xref: /titanic_51/usr/src/uts/common/inet/tcp/tcp.c (revision 8cd108911b492c7a96794e47d7064a4c4c064338)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <sys/sodirect.h>
70 #include <sys/uio.h>
71 #include <netinet/in.h>
72 #include <netinet/tcp.h>
73 #include <netinet/ip6.h>
74 #include <netinet/icmp6.h>
75 #include <net/if.h>
76 #include <net/route.h>
77 #include <inet/ipsec_impl.h>
78 
79 #include <inet/common.h>
80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip_ndp.h>
84 #include <inet/mi.h>
85 #include <inet/mib2.h>
86 #include <inet/nd.h>
87 #include <inet/optcom.h>
88 #include <inet/snmpcom.h>
89 #include <inet/kstatcom.h>
90 #include <inet/tcp.h>
91 #include <inet/tcp_impl.h>
92 #include <net/pfkeyv2.h>
93 #include <inet/ipsec_info.h>
94 #include <inet/ipdrop.h>
95 #include <inet/tcp_trace.h>
96 
97 #include <inet/ipclassifier.h>
98 #include <inet/ip_ire.h>
99 #include <inet/ip_ftable.h>
100 #include <inet/ip_if.h>
101 #include <inet/ipp_common.h>
102 #include <inet/ip_netinfo.h>
103 #include <sys/squeue.h>
104 #include <inet/kssl/ksslapi.h>
105 #include <sys/tsol/label.h>
106 #include <sys/tsol/tnet.h>
107 #include <rpc/pmap_prot.h>
108 
109 /*
110  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
111  *
112  * (Read the detailed design doc in PSARC case directory)
113  *
114  * The entire tcp state is contained in tcp_t and conn_t structure
115  * which are allocated in tandem using ipcl_conn_create() and passing
116  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
117  * the references on the tcp_t. The tcp_t structure is never compressed
118  * and packets always land on the correct TCP perimeter from the time
119  * eager is created till the time tcp_t dies (as such the old mentat
120  * TCP global queue is not used for detached state and no IPSEC checking
121  * is required). The global queue is still allocated to send out resets
122  * for connection which have no listeners and IP directly calls
123  * tcp_xmit_listeners_reset() which does any policy check.
124  *
125  * Protection and Synchronisation mechanism:
126  *
127  * The tcp data structure does not use any kind of lock for protecting
128  * its state but instead uses 'squeues' for mutual exclusion from various
129  * read and write side threads. To access a tcp member, the thread should
130  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
131  * squeue_fill). Since the squeues allow a direct function call, caller
132  * can pass any tcp function having prototype of edesc_t as argument
133  * (different from traditional STREAMs model where packets come in only
134  * designated entry points). The list of functions that can be directly
135  * called via squeue are listed before the usual function prototype.
136  *
137  * Referencing:
138  *
139  * TCP is MT-Hot and we use a reference based scheme to make sure that the
140  * tcp structure doesn't disappear when its needed. When the application
141  * creates an outgoing connection or accepts an incoming connection, we
142  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
143  * The IP reference is just a symbolic reference since ip_tcpclose()
144  * looks at tcp structure after tcp_close_output() returns which could
145  * have dropped the last TCP reference. So as long as the connection is
146  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
147  * conn_t. The classifier puts its own reference when the connection is
148  * inserted in listen or connected hash. Anytime a thread needs to enter
149  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
150  * on write side or by doing a classify on read side and then puts a
151  * reference on the conn before doing squeue_enter/tryenter/fill. For
152  * read side, the classifier itself puts the reference under fanout lock
153  * to make sure that tcp can't disappear before it gets processed. The
154  * squeue will drop this reference automatically so the called function
155  * doesn't have to do a DEC_REF.
156  *
157  * Opening a new connection:
158  *
159  * The outgoing connection open is pretty simple. tcp_open() does the
160  * work in creating the conn/tcp structure and initializing it. The
161  * squeue assignment is done based on the CPU the application
162  * is running on. So for outbound connections, processing is always done
163  * on application CPU which might be different from the incoming CPU
164  * being interrupted by the NIC. An optimal way would be to figure out
165  * the NIC <-> CPU binding at listen time, and assign the outgoing
166  * connection to the squeue attached to the CPU that will be interrupted
167  * for incoming packets (we know the NIC based on the bind IP address).
168  * This might seem like a problem if more data is going out but the
169  * fact is that in most cases the transmit is ACK driven transmit where
170  * the outgoing data normally sits on TCP's xmit queue waiting to be
171  * transmitted.
172  *
173  * Accepting a connection:
174  *
175  * This is a more interesting case because of various races involved in
176  * establishing a eager in its own perimeter. Read the meta comment on
177  * top of tcp_conn_request(). But briefly, the squeue is picked by
178  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
179  *
180  * Closing a connection:
181  *
182  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
183  * via squeue to do the close and mark the tcp as detached if the connection
184  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
185  * reference but tcp_close() drop IP's reference always. So if tcp was
186  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
187  * and 1 because it is in classifier's connected hash. This is the condition
188  * we use to determine that its OK to clean up the tcp outside of squeue
189  * when time wait expires (check the ref under fanout and conn_lock and
190  * if it is 2, remove it from fanout hash and kill it).
191  *
192  * Although close just drops the necessary references and marks the
193  * tcp_detached state, tcp_close needs to know the tcp_detached has been
194  * set (under squeue) before letting the STREAM go away (because a
195  * inbound packet might attempt to go up the STREAM while the close
196  * has happened and tcp_detached is not set). So a special lock and
197  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
198  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
199  * tcp_detached.
200  *
201  * Special provisions and fast paths:
202  *
203  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
204  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
205  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
206  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
207  * check to send packets directly to tcp_rput_data via squeue. Everyone
208  * else comes through tcp_input() on the read side.
209  *
210  * We also make special provisions for sockfs by marking tcp_issocket
211  * whenever we have only sockfs on top of TCP. This allows us to skip
212  * putting the tcp in acceptor hash since a sockfs listener can never
213  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
214  * since eager has already been allocated and the accept now happens
215  * on acceptor STREAM. There is a big blob of comment on top of
216  * tcp_conn_request explaining the new accept. When socket is POP'd,
217  * sockfs sends us an ioctl to mark the fact and we go back to old
218  * behaviour. Once tcp_issocket is unset, its never set for the
219  * life of that connection.
220  *
221  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
222  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
223  * directly to the socket (sodirect) and start an asynchronous copyout
224  * to a user-land receive-side buffer (uioa) when a blocking socket read
225  * (e.g. read, recv, ...) is pending.
226  *
227  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
228  * NULL so points to an sodirect_t and if marked enabled then we enqueue
229  * all mblk_t's directly to the socket.
230  *
231  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
232  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
233  * copyout will be started directly to the user-land uio buffer. Also, as we
234  * have a pending read, TCP's push logic can take into account the number of
235  * bytes to be received and only awake the blocked read()er when the uioa_t
236  * byte count has been satisfied.
237  *
238  * IPsec notes :
239  *
240  * Since a packet is always executed on the correct TCP perimeter
241  * all IPsec processing is defered to IP including checking new
242  * connections and setting IPSEC policies for new connection. The
243  * only exception is tcp_xmit_listeners_reset() which is called
244  * directly from IP and needs to policy check to see if TH_RST
245  * can be sent out.
246  *
247  * PFHooks notes :
248  *
249  * For mdt case, one meta buffer contains multiple packets. Mblks for every
250  * packet are assembled and passed to the hooks. When packets are blocked,
251  * or boundary of any packet is changed, the mdt processing is stopped, and
252  * packets of the meta buffer are send to the IP path one by one.
253  */
254 
255 /*
256  * Values for squeue switch:
257  * 1: squeue_enter_nodrain
258  * 2: squeue_enter
259  * 3: squeue_fill
260  */
261 int tcp_squeue_close = 2;	/* Setable in /etc/system */
262 int tcp_squeue_wput = 2;
263 
264 squeue_func_t tcp_squeue_close_proc;
265 squeue_func_t tcp_squeue_wput_proc;
266 
267 /*
268  * Macros for sodirect:
269  *
270  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
271  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
272  * if it exists and is enabled, else to NULL. Note, in the current
273  * sodirect implementation the sod_lock must not be held across any
274  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
275  * will result as sod_lock is the streamhead stdata.sd_lock.
276  *
277  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
278  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
279  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
280  * being used when sodirect code paths should be.
281  */
282 
283 #define	SOD_PTR_ENTER(tcp, sodp)					\
284 	(sodp) = (tcp)->tcp_sodirect;					\
285 									\
286 	if ((sodp) != NULL) {						\
287 		mutex_enter((sodp)->sod_lock);				\
288 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
289 			mutex_exit((sodp)->sod_lock);			\
290 			(sodp) = NULL;					\
291 		}							\
292 	}
293 
294 #define	SOD_NOT_ENABLED(tcp)						\
295 	((tcp)->tcp_sodirect == NULL ||					\
296 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
297 
298 /*
299  * This controls how tiny a write must be before we try to copy it
300  * into the the mblk on the tail of the transmit queue.  Not much
301  * speedup is observed for values larger than sixteen.  Zero will
302  * disable the optimisation.
303  */
304 int tcp_tx_pull_len = 16;
305 
306 /*
307  * TCP Statistics.
308  *
309  * How TCP statistics work.
310  *
311  * There are two types of statistics invoked by two macros.
312  *
313  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
314  * supposed to be used in non MT-hot paths of the code.
315  *
316  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
317  * supposed to be used for DEBUG purposes and may be used on a hot path.
318  *
319  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
320  * (use "kstat tcp" to get them).
321  *
322  * There is also additional debugging facility that marks tcp_clean_death()
323  * instances and saves them in tcp_t structure. It is triggered by
324  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
325  * tcp_clean_death() calls that counts the number of times each tag was hit. It
326  * is triggered by TCP_CLD_COUNTERS define.
327  *
328  * How to add new counters.
329  *
330  * 1) Add a field in the tcp_stat structure describing your counter.
331  * 2) Add a line in the template in tcp_kstat2_init() with the name
332  *    of the counter.
333  *
334  *    IMPORTANT!! - make sure that both are in sync !!
335  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
336  *
337  * Please avoid using private counters which are not kstat-exported.
338  *
339  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
340  * in tcp_t structure.
341  *
342  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
343  */
344 
345 #ifndef TCP_DEBUG_COUNTER
346 #ifdef DEBUG
347 #define	TCP_DEBUG_COUNTER 1
348 #else
349 #define	TCP_DEBUG_COUNTER 0
350 #endif
351 #endif
352 
353 #define	TCP_CLD_COUNTERS 0
354 
355 #define	TCP_TAG_CLEAN_DEATH 1
356 #define	TCP_MAX_CLEAN_DEATH_TAG 32
357 
358 #ifdef lint
359 static int _lint_dummy_;
360 #endif
361 
362 #if TCP_CLD_COUNTERS
363 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
364 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
365 #elif defined(lint)
366 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
367 #else
368 #define	TCP_CLD_STAT(x)
369 #endif
370 
371 #if TCP_DEBUG_COUNTER
372 #define	TCP_DBGSTAT(tcps, x)	\
373 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
374 #define	TCP_G_DBGSTAT(x)	\
375 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
376 #elif defined(lint)
377 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
378 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
379 #else
380 #define	TCP_DBGSTAT(tcps, x)
381 #define	TCP_G_DBGSTAT(x)
382 #endif
383 
384 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
385 
386 tcp_g_stat_t	tcp_g_statistics;
387 kstat_t		*tcp_g_kstat;
388 
389 /*
390  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
391  * tcp write side.
392  */
393 #define	CALL_IP_WPUT(connp, q, mp) {					\
394 	tcp_stack_t	*tcps;						\
395 									\
396 	tcps = connp->conn_netstack->netstack_tcp;			\
397 	ASSERT(((q)->q_flag & QREADR) == 0);				\
398 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
399 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
400 }
401 
402 /* Macros for timestamp comparisons */
403 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
404 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
405 
406 /*
407  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
408  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
409  * by adding three components: a time component which grows by 1 every 4096
410  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
411  * a per-connection component which grows by 125000 for every new connection;
412  * and an "extra" component that grows by a random amount centered
413  * approximately on 64000.  This causes the the ISS generator to cycle every
414  * 4.89 hours if no TCP connections are made, and faster if connections are
415  * made.
416  *
417  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
418  * components: a time component which grows by 250000 every second; and
419  * a per-connection component which grows by 125000 for every new connections.
420  *
421  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
422  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
423  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
424  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
425  * password.
426  */
427 #define	ISS_INCR	250000
428 #define	ISS_NSEC_SHT	12
429 
430 static sin_t	sin_null;	/* Zero address for quick clears */
431 static sin6_t	sin6_null;	/* Zero address for quick clears */
432 
433 /*
434  * This implementation follows the 4.3BSD interpretation of the urgent
435  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
436  * incompatible changes in protocols like telnet and rlogin.
437  */
438 #define	TCP_OLD_URP_INTERPRETATION	1
439 
440 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
441 	(TCP_IS_DETACHED(tcp) && \
442 	    (!(tcp)->tcp_hard_binding))
443 
444 /*
445  * TCP reassembly macros.  We hide starting and ending sequence numbers in
446  * b_next and b_prev of messages on the reassembly queue.  The messages are
447  * chained using b_cont.  These macros are used in tcp_reass() so we don't
448  * have to see the ugly casts and assignments.
449  */
450 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
451 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
452 					(mblk_t *)(uintptr_t)(u))
453 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
454 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
455 					(mblk_t *)(uintptr_t)(u))
456 
457 /*
458  * Implementation of TCP Timers.
459  * =============================
460  *
461  * INTERFACE:
462  *
463  * There are two basic functions dealing with tcp timers:
464  *
465  *	timeout_id_t	tcp_timeout(connp, func, time)
466  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
467  *	TCP_TIMER_RESTART(tcp, intvl)
468  *
469  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
470  * after 'time' ticks passed. The function called by timeout() must adhere to
471  * the same restrictions as a driver soft interrupt handler - it must not sleep
472  * or call other functions that might sleep. The value returned is the opaque
473  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
474  * cancel the request. The call to tcp_timeout() may fail in which case it
475  * returns zero. This is different from the timeout(9F) function which never
476  * fails.
477  *
478  * The call-back function 'func' always receives 'connp' as its single
479  * argument. It is always executed in the squeue corresponding to the tcp
480  * structure. The tcp structure is guaranteed to be present at the time the
481  * call-back is called.
482  *
483  * NOTE: The call-back function 'func' is never called if tcp is in
484  * 	the TCPS_CLOSED state.
485  *
486  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
487  * request. locks acquired by the call-back routine should not be held across
488  * the call to tcp_timeout_cancel() or a deadlock may result.
489  *
490  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
491  * Otherwise, it returns an integer value greater than or equal to 0. In
492  * particular, if the call-back function is already placed on the squeue, it can
493  * not be canceled.
494  *
495  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
496  * 	within squeue context corresponding to the tcp instance. Since the
497  *	call-back is also called via the same squeue, there are no race
498  *	conditions described in untimeout(9F) manual page since all calls are
499  *	strictly serialized.
500  *
501  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
502  *	stored in tcp_timer_tid and starts a new one using
503  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
504  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
505  *	field.
506  *
507  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
508  *	call-back may still be called, so it is possible tcp_timer() will be
509  *	called several times. This should not be a problem since tcp_timer()
510  *	should always check the tcp instance state.
511  *
512  *
513  * IMPLEMENTATION:
514  *
515  * TCP timers are implemented using three-stage process. The call to
516  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
517  * when the timer expires. The tcp_timer_callback() arranges the call of the
518  * tcp_timer_handler() function via squeue corresponding to the tcp
519  * instance. The tcp_timer_handler() calls actual requested timeout call-back
520  * and passes tcp instance as an argument to it. Information is passed between
521  * stages using the tcp_timer_t structure which contains the connp pointer, the
522  * tcp call-back to call and the timeout id returned by the timeout(9F).
523  *
524  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
525  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
526  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
527  * returns the pointer to this mblk.
528  *
529  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
530  * looks like a normal mblk without actual dblk attached to it.
531  *
532  * To optimize performance each tcp instance holds a small cache of timer
533  * mblocks. In the current implementation it caches up to two timer mblocks per
534  * tcp instance. The cache is preserved over tcp frees and is only freed when
535  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
536  * timer processing happens on a corresponding squeue, the cache manipulation
537  * does not require any locks. Experiments show that majority of timer mblocks
538  * allocations are satisfied from the tcp cache and do not involve kmem calls.
539  *
540  * The tcp_timeout() places a refhold on the connp instance which guarantees
541  * that it will be present at the time the call-back function fires. The
542  * tcp_timer_handler() drops the reference after calling the call-back, so the
543  * call-back function does not need to manipulate the references explicitly.
544  */
545 
546 typedef struct tcp_timer_s {
547 	conn_t	*connp;
548 	void 	(*tcpt_proc)(void *);
549 	timeout_id_t   tcpt_tid;
550 } tcp_timer_t;
551 
552 static kmem_cache_t *tcp_timercache;
553 kmem_cache_t	*tcp_sack_info_cache;
554 kmem_cache_t	*tcp_iphc_cache;
555 
556 /*
557  * For scalability, we must not run a timer for every TCP connection
558  * in TIME_WAIT state.  To see why, consider (for time wait interval of
559  * 4 minutes):
560  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
561  *
562  * This list is ordered by time, so you need only delete from the head
563  * until you get to entries which aren't old enough to delete yet.
564  * The list consists of only the detached TIME_WAIT connections.
565  *
566  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
567  * becomes detached TIME_WAIT (either by changing the state and already
568  * being detached or the other way around). This means that the TIME_WAIT
569  * state can be extended (up to doubled) if the connection doesn't become
570  * detached for a long time.
571  *
572  * The list manipulations (including tcp_time_wait_next/prev)
573  * are protected by the tcp_time_wait_lock. The content of the
574  * detached TIME_WAIT connections is protected by the normal perimeters.
575  *
576  * This list is per squeue and squeues are shared across the tcp_stack_t's.
577  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
578  * and conn_netstack.
579  * The tcp_t's that are added to tcp_free_list are disassociated and
580  * have NULL tcp_tcps and conn_netstack pointers.
581  */
582 typedef struct tcp_squeue_priv_s {
583 	kmutex_t	tcp_time_wait_lock;
584 	timeout_id_t	tcp_time_wait_tid;
585 	tcp_t		*tcp_time_wait_head;
586 	tcp_t		*tcp_time_wait_tail;
587 	tcp_t		*tcp_free_list;
588 	uint_t		tcp_free_list_cnt;
589 } tcp_squeue_priv_t;
590 
591 /*
592  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
593  * Running it every 5 seconds seems to give the best results.
594  */
595 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
596 
597 /*
598  * To prevent memory hog, limit the number of entries in tcp_free_list
599  * to 1% of available memory / number of cpus
600  */
601 uint_t tcp_free_list_max_cnt = 0;
602 
603 #define	TCP_XMIT_LOWATER	4096
604 #define	TCP_XMIT_HIWATER	49152
605 #define	TCP_RECV_LOWATER	2048
606 #define	TCP_RECV_HIWATER	49152
607 
608 /*
609  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
610  */
611 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
612 
613 #define	TIDUSZ	4096	/* transport interface data unit size */
614 
615 /*
616  * Bind hash list size and has function.  It has to be a power of 2 for
617  * hashing.
618  */
619 #define	TCP_BIND_FANOUT_SIZE	512
620 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
621 /*
622  * Size of listen and acceptor hash list.  It has to be a power of 2 for
623  * hashing.
624  */
625 #define	TCP_FANOUT_SIZE		256
626 
627 #ifdef	_ILP32
628 #define	TCP_ACCEPTOR_HASH(accid)					\
629 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
630 #else
631 #define	TCP_ACCEPTOR_HASH(accid)					\
632 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
633 #endif	/* _ILP32 */
634 
635 #define	IP_ADDR_CACHE_SIZE	2048
636 #define	IP_ADDR_CACHE_HASH(faddr)					\
637 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
638 
639 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
640 #define	TCP_HSP_HASH_SIZE 256
641 
642 #define	TCP_HSP_HASH(addr)					\
643 	(((addr>>24) ^ (addr >>16) ^			\
644 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
645 
646 /*
647  * TCP options struct returned from tcp_parse_options.
648  */
649 typedef struct tcp_opt_s {
650 	uint32_t	tcp_opt_mss;
651 	uint32_t	tcp_opt_wscale;
652 	uint32_t	tcp_opt_ts_val;
653 	uint32_t	tcp_opt_ts_ecr;
654 	tcp_t		*tcp;
655 } tcp_opt_t;
656 
657 /*
658  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
659  */
660 
661 #ifdef _BIG_ENDIAN
662 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
663 	(TCPOPT_TSTAMP << 8) | 10)
664 #else
665 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
666 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
667 #endif
668 
669 /*
670  * Flags returned from tcp_parse_options.
671  */
672 #define	TCP_OPT_MSS_PRESENT	1
673 #define	TCP_OPT_WSCALE_PRESENT	2
674 #define	TCP_OPT_TSTAMP_PRESENT	4
675 #define	TCP_OPT_SACK_OK_PRESENT	8
676 #define	TCP_OPT_SACK_PRESENT	16
677 
678 /* TCP option length */
679 #define	TCPOPT_NOP_LEN		1
680 #define	TCPOPT_MAXSEG_LEN	4
681 #define	TCPOPT_WS_LEN		3
682 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
683 #define	TCPOPT_TSTAMP_LEN	10
684 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
685 #define	TCPOPT_SACK_OK_LEN	2
686 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
687 #define	TCPOPT_REAL_SACK_LEN	4
688 #define	TCPOPT_MAX_SACK_LEN	36
689 #define	TCPOPT_HEADER_LEN	2
690 
691 /* TCP cwnd burst factor. */
692 #define	TCP_CWND_INFINITE	65535
693 #define	TCP_CWND_SS		3
694 #define	TCP_CWND_NORMAL		5
695 
696 /* Maximum TCP initial cwin (start/restart). */
697 #define	TCP_MAX_INIT_CWND	8
698 
699 /*
700  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
701  * either tcp_slow_start_initial or tcp_slow_start_after idle
702  * depending on the caller.  If the upper layer has not used the
703  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
704  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
705  * If the upper layer has changed set the tcp_init_cwnd, just use
706  * it to calculate the tcp_cwnd.
707  */
708 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
709 {									\
710 	if ((tcp)->tcp_init_cwnd == 0) {				\
711 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
712 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
713 	} else {							\
714 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
715 	}								\
716 	tcp->tcp_cwnd_cnt = 0;						\
717 }
718 
719 /* TCP Timer control structure */
720 typedef struct tcpt_s {
721 	pfv_t	tcpt_pfv;	/* The routine we are to call */
722 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
723 } tcpt_t;
724 
725 /* Host Specific Parameter structure */
726 typedef struct tcp_hsp {
727 	struct tcp_hsp	*tcp_hsp_next;
728 	in6_addr_t	tcp_hsp_addr_v6;
729 	in6_addr_t	tcp_hsp_subnet_v6;
730 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
731 	int32_t		tcp_hsp_sendspace;
732 	int32_t		tcp_hsp_recvspace;
733 	int32_t		tcp_hsp_tstamp;
734 } tcp_hsp_t;
735 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
736 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
737 
738 /*
739  * Functions called directly via squeue having a prototype of edesc_t.
740  */
741 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
742 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
743 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
744 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
745 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
746 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
747 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
748 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
749 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
750 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
751 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
752 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
753 
754 
755 /* Prototype for TCP functions */
756 static void	tcp_random_init(void);
757 int		tcp_random(void);
758 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
759 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
760 		    tcp_t *eager);
761 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
762 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
763     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
764     boolean_t user_specified);
765 static void	tcp_closei_local(tcp_t *tcp);
766 static void	tcp_close_detached(tcp_t *tcp);
767 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
768 			mblk_t *idmp, mblk_t **defermp);
769 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
770 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
771 		    in_port_t dstport, uint_t srcid);
772 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
773 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
774 		    uint32_t scope_id);
775 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
776 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
777 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
778 static char	*tcp_display(tcp_t *tcp, char *, char);
779 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
780 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
781 static void	tcp_eager_unlink(tcp_t *tcp);
782 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
783 		    int unixerr);
784 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
785 		    int tlierr, int unixerr);
786 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
787 		    cred_t *cr);
788 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
789 		    char *value, caddr_t cp, cred_t *cr);
790 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
791 		    char *value, caddr_t cp, cred_t *cr);
792 static int	tcp_tpistate(tcp_t *tcp);
793 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
794     int caller_holds_lock);
795 static void	tcp_bind_hash_remove(tcp_t *tcp);
796 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
797 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
798 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
799 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
800 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
801 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
802 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
803 void		tcp_g_q_setup(tcp_stack_t *);
804 void		tcp_g_q_create(tcp_stack_t *);
805 void		tcp_g_q_destroy(tcp_stack_t *);
806 static int	tcp_header_init_ipv4(tcp_t *tcp);
807 static int	tcp_header_init_ipv6(tcp_t *tcp);
808 int		tcp_init(tcp_t *tcp, queue_t *q);
809 static int	tcp_init_values(tcp_t *tcp);
810 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
811 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
812 		    t_scalar_t addr_length);
813 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
814 static void	tcp_ip_notify(tcp_t *tcp);
815 static mblk_t	*tcp_ire_mp(mblk_t *mp);
816 static void	tcp_iss_init(tcp_t *tcp);
817 static void	tcp_keepalive_killer(void *arg);
818 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
819 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
820 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
821 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
822 static boolean_t tcp_allow_connopt_set(int level, int name);
823 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
824 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
825 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
826 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
827 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
828 		    mblk_t *mblk);
829 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
830 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
831 		    uchar_t *ptr, uint_t len);
832 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
833 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
834     tcp_stack_t *);
835 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
836 		    caddr_t cp, cred_t *cr);
837 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
838 		    caddr_t cp, cred_t *cr);
839 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
840 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
841 		    caddr_t cp, cred_t *cr);
842 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
843 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
844 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
845 static void	tcp_reinit(tcp_t *tcp);
846 static void	tcp_reinit_values(tcp_t *tcp);
847 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
848 		    tcp_t *thisstream, cred_t *cr);
849 
850 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
851 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
852 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
853 static void	tcp_ss_rexmit(tcp_t *tcp);
854 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
855 static void	tcp_process_options(tcp_t *, tcph_t *);
856 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
857 static void	tcp_rsrv(queue_t *q);
858 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
859 static int	tcp_snmp_state(tcp_t *tcp);
860 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
861 		    cred_t *cr);
862 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
863 		    cred_t *cr);
864 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
865 		    cred_t *cr);
866 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
867 		    cred_t *cr);
868 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
869 		    cred_t *cr);
870 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
871 		    caddr_t cp, cred_t *cr);
872 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
873 		    caddr_t cp, cred_t *cr);
874 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
875 		    cred_t *cr);
876 static void	tcp_timer(void *arg);
877 static void	tcp_timer_callback(void *);
878 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
879     boolean_t random);
880 static in_port_t tcp_get_next_priv_port(const tcp_t *);
881 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
882 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
883 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
884 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
885 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
886 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
887 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
888 		    const int num_sack_blk, int *usable, uint_t *snxt,
889 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
890 		    const int mdt_thres);
891 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
892 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
893 		    const int num_sack_blk, int *usable, uint_t *snxt,
894 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
895 		    const int mdt_thres);
896 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
897 		    int num_sack_blk);
898 static void	tcp_wsrv(queue_t *q);
899 static int	tcp_xmit_end(tcp_t *tcp);
900 static void	tcp_ack_timer(void *arg);
901 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
902 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
903 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
904 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
905 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
906 		    uint32_t ack, int ctl);
907 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
908 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
909 static int	setmaxps(queue_t *q, int maxpsz);
910 static void	tcp_set_rto(tcp_t *, time_t);
911 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
912 		    boolean_t, boolean_t);
913 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
914 		    boolean_t ipsec_mctl);
915 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
916 		    char *opt, int optlen);
917 static int	tcp_build_hdrs(queue_t *, tcp_t *);
918 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
919 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
920 		    tcph_t *tcph);
921 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
922 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
923 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
924 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
925 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
926 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
927 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
928 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
929 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
930 		    const boolean_t, const uint32_t, const uint32_t,
931 		    const uint32_t, const uint32_t, tcp_stack_t *);
932 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
933 		    const uint_t, const uint_t, boolean_t *);
934 static mblk_t	*tcp_lso_info_mp(mblk_t *);
935 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
936 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
937 extern mblk_t	*tcp_timermp_alloc(int);
938 extern void	tcp_timermp_free(tcp_t *);
939 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
940 static void	tcp_stop_lingering(tcp_t *tcp);
941 static void	tcp_close_linger_timeout(void *arg);
942 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
943 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
944 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
945 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
946 static void	tcp_g_kstat_fini(kstat_t *);
947 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
948 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
949 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
950 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
951 static int	tcp_kstat_update(kstat_t *kp, int rw);
952 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
953 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
954 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
955 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
956 			tcph_t *tcph, mblk_t *idmp);
957 static squeue_func_t tcp_squeue_switch(int);
958 
959 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
960 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
961 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
962 static int	tcp_close(queue_t *, int);
963 static int	tcpclose_accept(queue_t *);
964 
965 static void	tcp_squeue_add(squeue_t *);
966 static boolean_t tcp_zcopy_check(tcp_t *);
967 static void	tcp_zcopy_notify(tcp_t *);
968 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
969 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
970 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
971 
972 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
973 
974 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
975 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
976 
977 /*
978  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
979  *
980  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
981  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
982  * (defined in tcp.h) needs to be filled in and passed into the kernel
983  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
984  * structure contains the four-tuple of a TCP connection and a range of TCP
985  * states (specified by ac_start and ac_end). The use of wildcard addresses
986  * and ports is allowed. Connections with a matching four tuple and a state
987  * within the specified range will be aborted. The valid states for the
988  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
989  * inclusive.
990  *
991  * An application which has its connection aborted by this ioctl will receive
992  * an error that is dependent on the connection state at the time of the abort.
993  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
994  * though a RST packet has been received.  If the connection state is equal to
995  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
996  * and all resources associated with the connection will be freed.
997  */
998 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
999 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1000 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1001 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
1002 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1003 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1004     boolean_t, tcp_stack_t *);
1005 
1006 static struct module_info tcp_rinfo =  {
1007 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1008 };
1009 
1010 static struct module_info tcp_winfo =  {
1011 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1012 };
1013 
1014 /*
1015  * Entry points for TCP as a device. The normal case which supports
1016  * the TCP functionality.
1017  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1018  */
1019 struct qinit tcp_rinitv4 = {
1020 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
1021 };
1022 
1023 struct qinit tcp_rinitv6 = {
1024 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
1025 };
1026 
1027 struct qinit tcp_winit = {
1028 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1029 };
1030 
1031 /* Initial entry point for TCP in socket mode. */
1032 struct qinit tcp_sock_winit = {
1033 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1034 };
1035 
1036 /*
1037  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1038  * an accept. Avoid allocating data structures since eager has already
1039  * been created.
1040  */
1041 struct qinit tcp_acceptor_rinit = {
1042 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1043 };
1044 
1045 struct qinit tcp_acceptor_winit = {
1046 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1047 };
1048 
1049 /*
1050  * Entry points for TCP loopback (read side only)
1051  * The open routine is only used for reopens, thus no need to
1052  * have a separate one for tcp_openv6.
1053  */
1054 struct qinit tcp_loopback_rinit = {
1055 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1056 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1057 };
1058 
1059 /* For AF_INET aka /dev/tcp */
1060 struct streamtab tcpinfov4 = {
1061 	&tcp_rinitv4, &tcp_winit
1062 };
1063 
1064 /* For AF_INET6 aka /dev/tcp6 */
1065 struct streamtab tcpinfov6 = {
1066 	&tcp_rinitv6, &tcp_winit
1067 };
1068 
1069 /*
1070  * Have to ensure that tcp_g_q_close is not done by an
1071  * interrupt thread.
1072  */
1073 static taskq_t *tcp_taskq;
1074 
1075 /*
1076  * TCP has a private interface for other kernel modules to reserve a
1077  * port range for them to use.  Once reserved, TCP will not use any ports
1078  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1079  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1080  * has to be verified.
1081  *
1082  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1083  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1084  * range is [port a, port b] inclusive.  And each port range is between
1085  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1086  *
1087  * Note that the default anonymous port range starts from 32768.  There is
1088  * no port "collision" between that and the reserved port range.  If there
1089  * is port collision (because the default smallest anonymous port is lowered
1090  * or some apps specifically bind to ports in the reserved port range), the
1091  * system may not be able to reserve a port range even there are enough
1092  * unbound ports as a reserved port range contains consecutive ports .
1093  */
1094 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1095 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1096 #define	TCP_SMALLEST_RESERVED_PORT		10240
1097 #define	TCP_LARGEST_RESERVED_PORT		20480
1098 
1099 /* Structure to represent those reserved port ranges. */
1100 typedef struct tcp_rport_s {
1101 	in_port_t	lo_port;
1102 	in_port_t	hi_port;
1103 	tcp_t		**temp_tcp_array;
1104 } tcp_rport_t;
1105 
1106 /* Setable only in /etc/system. Move to ndd? */
1107 boolean_t tcp_icmp_source_quench = B_FALSE;
1108 
1109 /*
1110  * Following assumes TPI alignment requirements stay along 32 bit
1111  * boundaries
1112  */
1113 #define	ROUNDUP32(x) \
1114 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1115 
1116 /* Template for response to info request. */
1117 static struct T_info_ack tcp_g_t_info_ack = {
1118 	T_INFO_ACK,		/* PRIM_type */
1119 	0,			/* TSDU_size */
1120 	T_INFINITE,		/* ETSDU_size */
1121 	T_INVALID,		/* CDATA_size */
1122 	T_INVALID,		/* DDATA_size */
1123 	sizeof (sin_t),		/* ADDR_size */
1124 	0,			/* OPT_size - not initialized here */
1125 	TIDUSZ,			/* TIDU_size */
1126 	T_COTS_ORD,		/* SERV_type */
1127 	TCPS_IDLE,		/* CURRENT_state */
1128 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1129 };
1130 
1131 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1132 	T_INFO_ACK,		/* PRIM_type */
1133 	0,			/* TSDU_size */
1134 	T_INFINITE,		/* ETSDU_size */
1135 	T_INVALID,		/* CDATA_size */
1136 	T_INVALID,		/* DDATA_size */
1137 	sizeof (sin6_t),	/* ADDR_size */
1138 	0,			/* OPT_size - not initialized here */
1139 	TIDUSZ,		/* TIDU_size */
1140 	T_COTS_ORD,		/* SERV_type */
1141 	TCPS_IDLE,		/* CURRENT_state */
1142 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1143 };
1144 
1145 #define	MS	1L
1146 #define	SECONDS	(1000 * MS)
1147 #define	MINUTES	(60 * SECONDS)
1148 #define	HOURS	(60 * MINUTES)
1149 #define	DAYS	(24 * HOURS)
1150 
1151 #define	PARAM_MAX (~(uint32_t)0)
1152 
1153 /* Max size IP datagram is 64k - 1 */
1154 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1155 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1156 /* Max of the above */
1157 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1158 
1159 /* Largest TCP port number */
1160 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1161 
1162 /*
1163  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1164  * layer header.  It has to be a multiple of 4.
1165  */
1166 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1167 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1168 
1169 /*
1170  * All of these are alterable, within the min/max values given, at run time.
1171  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1172  * per the TCP spec.
1173  */
1174 /* BEGIN CSTYLED */
1175 static tcpparam_t	lcl_tcp_param_arr[] = {
1176  /*min		max		value		name */
1177  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1178  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1179  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1180  { 1,		1024,		1,		"tcp_conn_req_min" },
1181  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1182  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1183  { 0,		10,		0,		"tcp_debug" },
1184  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1185  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1186  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1187  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1188  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1189  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1190  { 1,		255,		64,		"tcp_ipv4_ttl"},
1191  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1192  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1193  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1194  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1195  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1196  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1197  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1198  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1199  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1200  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1201  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1202  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1203  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1204  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1205  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1206  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1207  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1208  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1209  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1210  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1211  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1212  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1213  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1214  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1215 /*
1216  * Question:  What default value should I set for tcp_strong_iss?
1217  */
1218  { 0,		2,		1,		"tcp_strong_iss"},
1219  { 0,		65536,		20,		"tcp_rtt_updates"},
1220  { 0,		1,		1,		"tcp_wscale_always"},
1221  { 0,		1,		0,		"tcp_tstamp_always"},
1222  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1223  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1224  { 0,		16,		2,		"tcp_deferred_acks_max"},
1225  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1226  { 1,		4,		4,		"tcp_slow_start_initial"},
1227  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1228  { 0,		2,		2,		"tcp_sack_permitted"},
1229  { 0,		1,		0,		"tcp_trace"},
1230  { 0,		1,		1,		"tcp_compression_enabled"},
1231  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1232  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1233  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1234  { 0,		1,		0,		"tcp_rev_src_routes"},
1235  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1236  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1237  { 0,		16,		8,		"tcp_local_dacks_max"},
1238  { 0,		2,		1,		"tcp_ecn_permitted"},
1239  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1240  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1241  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1242  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1243  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1244 };
1245 /* END CSTYLED */
1246 
1247 /*
1248  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1249  * each header fragment in the header buffer.  Each parameter value has
1250  * to be a multiple of 4 (32-bit aligned).
1251  */
1252 static tcpparam_t lcl_tcp_mdt_head_param =
1253 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1254 static tcpparam_t lcl_tcp_mdt_tail_param =
1255 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1256 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1257 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1258 
1259 /*
1260  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1261  * the maximum number of payload buffers associated per Multidata.
1262  */
1263 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1264 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1265 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1266 
1267 /* Round up the value to the nearest mss. */
1268 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1269 
1270 /*
1271  * Set ECN capable transport (ECT) code point in IP header.
1272  *
1273  * Note that there are 2 ECT code points '01' and '10', which are called
1274  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1275  * point ECT(0) for TCP as described in RFC 2481.
1276  */
1277 #define	SET_ECT(tcp, iph) \
1278 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1279 		/* We need to clear the code point first. */ \
1280 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1281 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1282 	} else { \
1283 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1284 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1285 	}
1286 
1287 /*
1288  * The format argument to pass to tcp_display().
1289  * DISP_PORT_ONLY means that the returned string has only port info.
1290  * DISP_ADDR_AND_PORT means that the returned string also contains the
1291  * remote and local IP address.
1292  */
1293 #define	DISP_PORT_ONLY		1
1294 #define	DISP_ADDR_AND_PORT	2
1295 
1296 #define	NDD_TOO_QUICK_MSG \
1297 	"ndd get info rate too high for non-privileged users, try again " \
1298 	"later.\n"
1299 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1300 
1301 #define	IS_VMLOANED_MBLK(mp) \
1302 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1303 
1304 
1305 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1306 boolean_t tcp_mdt_chain = B_TRUE;
1307 
1308 /*
1309  * MDT threshold in the form of effective send MSS multiplier; we take
1310  * the MDT path if the amount of unsent data exceeds the threshold value
1311  * (default threshold is 1*SMSS).
1312  */
1313 uint_t tcp_mdt_smss_threshold = 1;
1314 
1315 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1316 
1317 /*
1318  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1319  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1320  * determined dynamically during tcp_adapt_ire(), which is the default.
1321  */
1322 boolean_t tcp_static_maxpsz = B_FALSE;
1323 
1324 /* Setable in /etc/system */
1325 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1326 uint32_t tcp_random_anon_port = 1;
1327 
1328 /*
1329  * To reach to an eager in Q0 which can be dropped due to an incoming
1330  * new SYN request when Q0 is full, a new doubly linked list is
1331  * introduced. This list allows to select an eager from Q0 in O(1) time.
1332  * This is needed to avoid spending too much time walking through the
1333  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1334  * this new list has to be a member of Q0.
1335  * This list is headed by listener's tcp_t. When the list is empty,
1336  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1337  * of listener's tcp_t point to listener's tcp_t itself.
1338  *
1339  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1340  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1341  * These macros do not affect the eager's membership to Q0.
1342  */
1343 
1344 
1345 #define	MAKE_DROPPABLE(listener, eager)					\
1346 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1347 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1348 		    = (eager);						\
1349 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1350 		(eager)->tcp_eager_next_drop_q0 =			\
1351 		    (listener)->tcp_eager_next_drop_q0;			\
1352 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1353 	}
1354 
1355 #define	MAKE_UNDROPPABLE(eager)						\
1356 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1357 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1358 		    = (eager)->tcp_eager_prev_drop_q0;			\
1359 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1360 		    = (eager)->tcp_eager_next_drop_q0;			\
1361 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1362 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1363 	}
1364 
1365 /*
1366  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1367  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1368  * data, TCP will not respond with an ACK.  RFC 793 requires that
1369  * TCP responds with an ACK for such a bogus ACK.  By not following
1370  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1371  * an attacker successfully spoofs an acceptable segment to our
1372  * peer; or when our peer is "confused."
1373  */
1374 uint32_t tcp_drop_ack_unsent_cnt = 10;
1375 
1376 /*
1377  * Hook functions to enable cluster networking
1378  * On non-clustered systems these vectors must always be NULL.
1379  */
1380 
1381 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1382 			    uint8_t *laddrp, in_port_t lport) = NULL;
1383 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1384 			    uint8_t *laddrp, in_port_t lport) = NULL;
1385 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1386 			    uint8_t *laddrp, in_port_t lport,
1387 			    uint8_t *faddrp, in_port_t fport) = NULL;
1388 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1389 			    uint8_t *laddrp, in_port_t lport,
1390 			    uint8_t *faddrp, in_port_t fport) = NULL;
1391 
1392 /*
1393  * The following are defined in ip.c
1394  */
1395 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1396 				uint8_t *laddrp);
1397 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1398 				uint8_t *laddrp, uint8_t *faddrp);
1399 
1400 #define	CL_INET_CONNECT(tcp)		{			\
1401 	if (cl_inet_connect != NULL) {				\
1402 		/*						\
1403 		 * Running in cluster mode - register active connection	\
1404 		 * information						\
1405 		 */							\
1406 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1407 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1408 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1409 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1410 				    (in_port_t)(tcp)->tcp_lport,	\
1411 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1412 				    (in_port_t)(tcp)->tcp_fport);	\
1413 			}						\
1414 		} else {						\
1415 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1416 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1417 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1418 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1419 				    (in_port_t)(tcp)->tcp_lport,	\
1420 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1421 				    (in_port_t)(tcp)->tcp_fport);	\
1422 			}						\
1423 		}							\
1424 	}								\
1425 }
1426 
1427 #define	CL_INET_DISCONNECT(tcp)	{				\
1428 	if (cl_inet_disconnect != NULL) {				\
1429 		/*							\
1430 		 * Running in cluster mode - deregister active		\
1431 		 * connection information				\
1432 		 */							\
1433 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1434 			if ((tcp)->tcp_ip_src != 0) {			\
1435 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1436 				    AF_INET,				\
1437 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1438 				    (in_port_t)(tcp)->tcp_lport,	\
1439 				    (uint8_t *)				\
1440 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1441 				    (in_port_t)(tcp)->tcp_fport);	\
1442 			}						\
1443 		} else {						\
1444 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1445 			    &(tcp)->tcp_ip_src_v6)) {			\
1446 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1447 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1448 				    (in_port_t)(tcp)->tcp_lport,	\
1449 				    (uint8_t *)				\
1450 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1451 				    (in_port_t)(tcp)->tcp_fport);	\
1452 			}						\
1453 		}							\
1454 	}								\
1455 }
1456 
1457 /*
1458  * Cluster networking hook for traversing current connection list.
1459  * This routine is used to extract the current list of live connections
1460  * which must continue to to be dispatched to this node.
1461  */
1462 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1463 
1464 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1465     void *arg, tcp_stack_t *tcps);
1466 
1467 /*
1468  * Figure out the value of window scale opton.  Note that the rwnd is
1469  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1470  * We cannot find the scale value and then do a round up of tcp_rwnd
1471  * because the scale value may not be correct after that.
1472  *
1473  * Set the compiler flag to make this function inline.
1474  */
1475 static void
1476 tcp_set_ws_value(tcp_t *tcp)
1477 {
1478 	int i;
1479 	uint32_t rwnd = tcp->tcp_rwnd;
1480 
1481 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1482 	    i++, rwnd >>= 1)
1483 		;
1484 	tcp->tcp_rcv_ws = i;
1485 }
1486 
1487 /*
1488  * Remove a connection from the list of detached TIME_WAIT connections.
1489  * It returns B_FALSE if it can't remove the connection from the list
1490  * as the connection has already been removed from the list due to an
1491  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1492  */
1493 static boolean_t
1494 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1495 {
1496 	boolean_t	locked = B_FALSE;
1497 
1498 	if (tcp_time_wait == NULL) {
1499 		tcp_time_wait = *((tcp_squeue_priv_t **)
1500 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1501 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1502 		locked = B_TRUE;
1503 	} else {
1504 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1505 	}
1506 
1507 	if (tcp->tcp_time_wait_expire == 0) {
1508 		ASSERT(tcp->tcp_time_wait_next == NULL);
1509 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1510 		if (locked)
1511 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1512 		return (B_FALSE);
1513 	}
1514 	ASSERT(TCP_IS_DETACHED(tcp));
1515 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1516 
1517 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1518 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1519 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1520 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1521 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1522 			    NULL;
1523 		} else {
1524 			tcp_time_wait->tcp_time_wait_tail = NULL;
1525 		}
1526 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1527 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1528 		ASSERT(tcp->tcp_time_wait_next == NULL);
1529 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1530 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1531 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1532 	} else {
1533 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1534 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1535 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1536 		    tcp->tcp_time_wait_next;
1537 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1538 		    tcp->tcp_time_wait_prev;
1539 	}
1540 	tcp->tcp_time_wait_next = NULL;
1541 	tcp->tcp_time_wait_prev = NULL;
1542 	tcp->tcp_time_wait_expire = 0;
1543 
1544 	if (locked)
1545 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1546 	return (B_TRUE);
1547 }
1548 
1549 /*
1550  * Add a connection to the list of detached TIME_WAIT connections
1551  * and set its time to expire.
1552  */
1553 static void
1554 tcp_time_wait_append(tcp_t *tcp)
1555 {
1556 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1557 	tcp_squeue_priv_t *tcp_time_wait =
1558 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1559 	    SQPRIVATE_TCP));
1560 
1561 	tcp_timers_stop(tcp);
1562 
1563 	/* Freed above */
1564 	ASSERT(tcp->tcp_timer_tid == 0);
1565 	ASSERT(tcp->tcp_ack_tid == 0);
1566 
1567 	/* must have happened at the time of detaching the tcp */
1568 	ASSERT(tcp->tcp_ptpahn == NULL);
1569 	ASSERT(tcp->tcp_flow_stopped == 0);
1570 	ASSERT(tcp->tcp_time_wait_next == NULL);
1571 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1572 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1573 	ASSERT(tcp->tcp_listener == NULL);
1574 
1575 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1576 	/*
1577 	 * The value computed below in tcp->tcp_time_wait_expire may
1578 	 * appear negative or wrap around. That is ok since our
1579 	 * interest is only in the difference between the current lbolt
1580 	 * value and tcp->tcp_time_wait_expire. But the value should not
1581 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1582 	 * The corresponding comparison in tcp_time_wait_collector() uses
1583 	 * modular arithmetic.
1584 	 */
1585 	tcp->tcp_time_wait_expire +=
1586 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1587 	if (tcp->tcp_time_wait_expire == 0)
1588 		tcp->tcp_time_wait_expire = 1;
1589 
1590 	ASSERT(TCP_IS_DETACHED(tcp));
1591 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1592 	ASSERT(tcp->tcp_time_wait_next == NULL);
1593 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1594 	TCP_DBGSTAT(tcps, tcp_time_wait);
1595 
1596 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1597 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1598 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1599 		tcp_time_wait->tcp_time_wait_head = tcp;
1600 	} else {
1601 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1602 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1603 		    TCPS_TIME_WAIT);
1604 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1605 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1606 	}
1607 	tcp_time_wait->tcp_time_wait_tail = tcp;
1608 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1609 }
1610 
1611 /* ARGSUSED */
1612 void
1613 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1614 {
1615 	conn_t	*connp = (conn_t *)arg;
1616 	tcp_t	*tcp = connp->conn_tcp;
1617 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1618 
1619 	ASSERT(tcp != NULL);
1620 	if (tcp->tcp_state == TCPS_CLOSED) {
1621 		return;
1622 	}
1623 
1624 	ASSERT((tcp->tcp_family == AF_INET &&
1625 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1626 	    (tcp->tcp_family == AF_INET6 &&
1627 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1628 	    tcp->tcp_ipversion == IPV6_VERSION)));
1629 	ASSERT(!tcp->tcp_listener);
1630 
1631 	TCP_STAT(tcps, tcp_time_wait_reap);
1632 	ASSERT(TCP_IS_DETACHED(tcp));
1633 
1634 	/*
1635 	 * Because they have no upstream client to rebind or tcp_close()
1636 	 * them later, we axe the connection here and now.
1637 	 */
1638 	tcp_close_detached(tcp);
1639 }
1640 
1641 /*
1642  * Remove cached/latched IPsec references.
1643  */
1644 void
1645 tcp_ipsec_cleanup(tcp_t *tcp)
1646 {
1647 	conn_t		*connp = tcp->tcp_connp;
1648 
1649 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1650 
1651 	if (connp->conn_latch != NULL) {
1652 		IPLATCH_REFRELE(connp->conn_latch,
1653 		    connp->conn_netstack);
1654 		connp->conn_latch = NULL;
1655 	}
1656 	if (connp->conn_policy != NULL) {
1657 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1658 		connp->conn_policy = NULL;
1659 	}
1660 }
1661 
1662 /*
1663  * Cleaup before placing on free list.
1664  * Disassociate from the netstack/tcp_stack_t since the freelist
1665  * is per squeue and not per netstack.
1666  */
1667 void
1668 tcp_cleanup(tcp_t *tcp)
1669 {
1670 	mblk_t		*mp;
1671 	char		*tcp_iphc;
1672 	int		tcp_iphc_len;
1673 	int		tcp_hdr_grown;
1674 	tcp_sack_info_t	*tcp_sack_info;
1675 	conn_t		*connp = tcp->tcp_connp;
1676 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1677 	netstack_t	*ns = tcps->tcps_netstack;
1678 
1679 	tcp_bind_hash_remove(tcp);
1680 
1681 	/* Cleanup that which needs the netstack first */
1682 	tcp_ipsec_cleanup(tcp);
1683 
1684 	tcp_free(tcp);
1685 
1686 	/* Release any SSL context */
1687 	if (tcp->tcp_kssl_ent != NULL) {
1688 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1689 		tcp->tcp_kssl_ent = NULL;
1690 	}
1691 
1692 	if (tcp->tcp_kssl_ctx != NULL) {
1693 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1694 		tcp->tcp_kssl_ctx = NULL;
1695 	}
1696 	tcp->tcp_kssl_pending = B_FALSE;
1697 
1698 	conn_delete_ire(connp, NULL);
1699 
1700 	/*
1701 	 * Since we will bzero the entire structure, we need to
1702 	 * remove it and reinsert it in global hash list. We
1703 	 * know the walkers can't get to this conn because we
1704 	 * had set CONDEMNED flag earlier and checked reference
1705 	 * under conn_lock so walker won't pick it and when we
1706 	 * go the ipcl_globalhash_remove() below, no walker
1707 	 * can get to it.
1708 	 */
1709 	ipcl_globalhash_remove(connp);
1710 
1711 	/*
1712 	 * Now it is safe to decrement the reference counts.
1713 	 * This might be the last reference on the netstack and TCPS
1714 	 * in which case it will cause the tcp_g_q_close and
1715 	 * the freeing of the IP Instance.
1716 	 */
1717 	connp->conn_netstack = NULL;
1718 	netstack_rele(ns);
1719 	ASSERT(tcps != NULL);
1720 	tcp->tcp_tcps = NULL;
1721 	TCPS_REFRELE(tcps);
1722 
1723 	/* Save some state */
1724 	mp = tcp->tcp_timercache;
1725 
1726 	tcp_sack_info = tcp->tcp_sack_info;
1727 	tcp_iphc = tcp->tcp_iphc;
1728 	tcp_iphc_len = tcp->tcp_iphc_len;
1729 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1730 
1731 	if (connp->conn_cred != NULL) {
1732 		crfree(connp->conn_cred);
1733 		connp->conn_cred = NULL;
1734 	}
1735 	if (connp->conn_peercred != NULL) {
1736 		crfree(connp->conn_peercred);
1737 		connp->conn_peercred = NULL;
1738 	}
1739 	ipcl_conn_cleanup(connp);
1740 	connp->conn_flags = IPCL_TCPCONN;
1741 	bzero(tcp, sizeof (tcp_t));
1742 
1743 	/* restore the state */
1744 	tcp->tcp_timercache = mp;
1745 
1746 	tcp->tcp_sack_info = tcp_sack_info;
1747 	tcp->tcp_iphc = tcp_iphc;
1748 	tcp->tcp_iphc_len = tcp_iphc_len;
1749 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1750 
1751 	tcp->tcp_connp = connp;
1752 
1753 	ASSERT(connp->conn_tcp == tcp);
1754 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1755 	connp->conn_state_flags = CONN_INCIPIENT;
1756 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1757 	ASSERT(connp->conn_ref == 1);
1758 }
1759 
1760 /*
1761  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1762  * is done forwards from the head.
1763  * This walks all stack instances since
1764  * tcp_time_wait remains global across all stacks.
1765  */
1766 /* ARGSUSED */
1767 void
1768 tcp_time_wait_collector(void *arg)
1769 {
1770 	tcp_t *tcp;
1771 	clock_t now;
1772 	mblk_t *mp;
1773 	conn_t *connp;
1774 	kmutex_t *lock;
1775 	boolean_t removed;
1776 
1777 	squeue_t *sqp = (squeue_t *)arg;
1778 	tcp_squeue_priv_t *tcp_time_wait =
1779 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1780 
1781 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1782 	tcp_time_wait->tcp_time_wait_tid = 0;
1783 
1784 	if (tcp_time_wait->tcp_free_list != NULL &&
1785 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1786 		TCP_G_STAT(tcp_freelist_cleanup);
1787 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1788 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1789 			tcp->tcp_time_wait_next = NULL;
1790 			tcp_time_wait->tcp_free_list_cnt--;
1791 			ASSERT(tcp->tcp_tcps == NULL);
1792 			CONN_DEC_REF(tcp->tcp_connp);
1793 		}
1794 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1795 	}
1796 
1797 	/*
1798 	 * In order to reap time waits reliably, we should use a
1799 	 * source of time that is not adjustable by the user -- hence
1800 	 * the call to ddi_get_lbolt().
1801 	 */
1802 	now = ddi_get_lbolt();
1803 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1804 		/*
1805 		 * Compare times using modular arithmetic, since
1806 		 * lbolt can wrapover.
1807 		 */
1808 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1809 			break;
1810 		}
1811 
1812 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1813 		ASSERT(removed);
1814 
1815 		connp = tcp->tcp_connp;
1816 		ASSERT(connp->conn_fanout != NULL);
1817 		lock = &connp->conn_fanout->connf_lock;
1818 		/*
1819 		 * This is essentially a TW reclaim fast path optimization for
1820 		 * performance where the timewait collector checks under the
1821 		 * fanout lock (so that no one else can get access to the
1822 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1823 		 * the classifier hash list. If ref count is indeed 2, we can
1824 		 * just remove the conn under the fanout lock and avoid
1825 		 * cleaning up the conn under the squeue, provided that
1826 		 * clustering callbacks are not enabled. If clustering is
1827 		 * enabled, we need to make the clustering callback before
1828 		 * setting the CONDEMNED flag and after dropping all locks and
1829 		 * so we forego this optimization and fall back to the slow
1830 		 * path. Also please see the comments in tcp_closei_local
1831 		 * regarding the refcnt logic.
1832 		 *
1833 		 * Since we are holding the tcp_time_wait_lock, its better
1834 		 * not to block on the fanout_lock because other connections
1835 		 * can't add themselves to time_wait list. So we do a
1836 		 * tryenter instead of mutex_enter.
1837 		 */
1838 		if (mutex_tryenter(lock)) {
1839 			mutex_enter(&connp->conn_lock);
1840 			if ((connp->conn_ref == 2) &&
1841 			    (cl_inet_disconnect == NULL)) {
1842 				ipcl_hash_remove_locked(connp,
1843 				    connp->conn_fanout);
1844 				/*
1845 				 * Set the CONDEMNED flag now itself so that
1846 				 * the refcnt cannot increase due to any
1847 				 * walker. But we have still not cleaned up
1848 				 * conn_ire_cache. This is still ok since
1849 				 * we are going to clean it up in tcp_cleanup
1850 				 * immediately and any interface unplumb
1851 				 * thread will wait till the ire is blown away
1852 				 */
1853 				connp->conn_state_flags |= CONN_CONDEMNED;
1854 				mutex_exit(lock);
1855 				mutex_exit(&connp->conn_lock);
1856 				if (tcp_time_wait->tcp_free_list_cnt <
1857 				    tcp_free_list_max_cnt) {
1858 					/* Add to head of tcp_free_list */
1859 					mutex_exit(
1860 					    &tcp_time_wait->tcp_time_wait_lock);
1861 					tcp_cleanup(tcp);
1862 					ASSERT(connp->conn_latch == NULL);
1863 					ASSERT(connp->conn_policy == NULL);
1864 					ASSERT(tcp->tcp_tcps == NULL);
1865 					ASSERT(connp->conn_netstack == NULL);
1866 
1867 					mutex_enter(
1868 					    &tcp_time_wait->tcp_time_wait_lock);
1869 					tcp->tcp_time_wait_next =
1870 					    tcp_time_wait->tcp_free_list;
1871 					tcp_time_wait->tcp_free_list = tcp;
1872 					tcp_time_wait->tcp_free_list_cnt++;
1873 					continue;
1874 				} else {
1875 					/* Do not add to tcp_free_list */
1876 					mutex_exit(
1877 					    &tcp_time_wait->tcp_time_wait_lock);
1878 					tcp_bind_hash_remove(tcp);
1879 					conn_delete_ire(tcp->tcp_connp, NULL);
1880 					tcp_ipsec_cleanup(tcp);
1881 					CONN_DEC_REF(tcp->tcp_connp);
1882 				}
1883 			} else {
1884 				CONN_INC_REF_LOCKED(connp);
1885 				mutex_exit(lock);
1886 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1887 				mutex_exit(&connp->conn_lock);
1888 				/*
1889 				 * We can reuse the closemp here since conn has
1890 				 * detached (otherwise we wouldn't even be in
1891 				 * time_wait list). tcp_closemp_used can safely
1892 				 * be changed without taking a lock as no other
1893 				 * thread can concurrently access it at this
1894 				 * point in the connection lifecycle.
1895 				 */
1896 
1897 				if (tcp->tcp_closemp.b_prev == NULL)
1898 					tcp->tcp_closemp_used = B_TRUE;
1899 				else
1900 					cmn_err(CE_PANIC,
1901 					    "tcp_timewait_collector: "
1902 					    "concurrent use of tcp_closemp: "
1903 					    "connp %p tcp %p\n", (void *)connp,
1904 					    (void *)tcp);
1905 
1906 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1907 				mp = &tcp->tcp_closemp;
1908 				squeue_fill(connp->conn_sqp, mp,
1909 				    tcp_timewait_output, connp,
1910 				    SQTAG_TCP_TIMEWAIT);
1911 			}
1912 		} else {
1913 			mutex_enter(&connp->conn_lock);
1914 			CONN_INC_REF_LOCKED(connp);
1915 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1916 			mutex_exit(&connp->conn_lock);
1917 			/*
1918 			 * We can reuse the closemp here since conn has
1919 			 * detached (otherwise we wouldn't even be in
1920 			 * time_wait list). tcp_closemp_used can safely
1921 			 * be changed without taking a lock as no other
1922 			 * thread can concurrently access it at this
1923 			 * point in the connection lifecycle.
1924 			 */
1925 
1926 			if (tcp->tcp_closemp.b_prev == NULL)
1927 				tcp->tcp_closemp_used = B_TRUE;
1928 			else
1929 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1930 				    "concurrent use of tcp_closemp: "
1931 				    "connp %p tcp %p\n", (void *)connp,
1932 				    (void *)tcp);
1933 
1934 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1935 			mp = &tcp->tcp_closemp;
1936 			squeue_fill(connp->conn_sqp, mp,
1937 			    tcp_timewait_output, connp, 0);
1938 		}
1939 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1940 	}
1941 
1942 	if (tcp_time_wait->tcp_free_list != NULL)
1943 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1944 
1945 	tcp_time_wait->tcp_time_wait_tid =
1946 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1947 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1948 }
1949 /*
1950  * Reply to a clients T_CONN_RES TPI message. This function
1951  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1952  * on the acceptor STREAM and processed in tcp_wput_accept().
1953  * Read the block comment on top of tcp_conn_request().
1954  */
1955 static void
1956 tcp_accept(tcp_t *listener, mblk_t *mp)
1957 {
1958 	tcp_t	*acceptor;
1959 	tcp_t	*eager;
1960 	tcp_t   *tcp;
1961 	struct T_conn_res	*tcr;
1962 	t_uscalar_t	acceptor_id;
1963 	t_scalar_t	seqnum;
1964 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1965 	mblk_t	*ok_mp;
1966 	mblk_t	*mp1;
1967 	tcp_stack_t	*tcps = listener->tcp_tcps;
1968 
1969 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1970 		tcp_err_ack(listener, mp, TPROTO, 0);
1971 		return;
1972 	}
1973 	tcr = (struct T_conn_res *)mp->b_rptr;
1974 
1975 	/*
1976 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1977 	 * read side queue of the streams device underneath us i.e. the
1978 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1979 	 * look it up in the queue_hash.  Under LP64 it sends down the
1980 	 * minor_t of the accepting endpoint.
1981 	 *
1982 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1983 	 * fanout hash lock is held.
1984 	 * This prevents any thread from entering the acceptor queue from
1985 	 * below (since it has not been hard bound yet i.e. any inbound
1986 	 * packets will arrive on the listener or default tcp queue and
1987 	 * go through tcp_lookup).
1988 	 * The CONN_INC_REF will prevent the acceptor from closing.
1989 	 *
1990 	 * XXX It is still possible for a tli application to send down data
1991 	 * on the accepting stream while another thread calls t_accept.
1992 	 * This should not be a problem for well-behaved applications since
1993 	 * the T_OK_ACK is sent after the queue swapping is completed.
1994 	 *
1995 	 * If the accepting fd is the same as the listening fd, avoid
1996 	 * queue hash lookup since that will return an eager listener in a
1997 	 * already established state.
1998 	 */
1999 	acceptor_id = tcr->ACCEPTOR_id;
2000 	mutex_enter(&listener->tcp_eager_lock);
2001 	if (listener->tcp_acceptor_id == acceptor_id) {
2002 		eager = listener->tcp_eager_next_q;
2003 		/* only count how many T_CONN_INDs so don't count q0 */
2004 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2005 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2006 			mutex_exit(&listener->tcp_eager_lock);
2007 			tcp_err_ack(listener, mp, TBADF, 0);
2008 			return;
2009 		}
2010 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2011 			/* Throw away all the eagers on q0. */
2012 			tcp_eager_cleanup(listener, 1);
2013 		}
2014 		if (listener->tcp_syn_defense) {
2015 			listener->tcp_syn_defense = B_FALSE;
2016 			if (listener->tcp_ip_addr_cache != NULL) {
2017 				kmem_free(listener->tcp_ip_addr_cache,
2018 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2019 				listener->tcp_ip_addr_cache = NULL;
2020 			}
2021 		}
2022 		/*
2023 		 * Transfer tcp_conn_req_max to the eager so that when
2024 		 * a disconnect occurs we can revert the endpoint to the
2025 		 * listen state.
2026 		 */
2027 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2028 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2029 		/*
2030 		 * Get a reference on the acceptor just like the
2031 		 * tcp_acceptor_hash_lookup below.
2032 		 */
2033 		acceptor = listener;
2034 		CONN_INC_REF(acceptor->tcp_connp);
2035 	} else {
2036 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
2037 		if (acceptor == NULL) {
2038 			if (listener->tcp_debug) {
2039 				(void) strlog(TCP_MOD_ID, 0, 1,
2040 				    SL_ERROR|SL_TRACE,
2041 				    "tcp_accept: did not find acceptor 0x%x\n",
2042 				    acceptor_id);
2043 			}
2044 			mutex_exit(&listener->tcp_eager_lock);
2045 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2046 			return;
2047 		}
2048 		/*
2049 		 * Verify acceptor state. The acceptable states for an acceptor
2050 		 * include TCPS_IDLE and TCPS_BOUND.
2051 		 */
2052 		switch (acceptor->tcp_state) {
2053 		case TCPS_IDLE:
2054 			/* FALLTHRU */
2055 		case TCPS_BOUND:
2056 			break;
2057 		default:
2058 			CONN_DEC_REF(acceptor->tcp_connp);
2059 			mutex_exit(&listener->tcp_eager_lock);
2060 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2061 			return;
2062 		}
2063 	}
2064 
2065 	/* The listener must be in TCPS_LISTEN */
2066 	if (listener->tcp_state != TCPS_LISTEN) {
2067 		CONN_DEC_REF(acceptor->tcp_connp);
2068 		mutex_exit(&listener->tcp_eager_lock);
2069 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * Rendezvous with an eager connection request packet hanging off
2075 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2076 	 * tcp structure when the connection packet arrived in
2077 	 * tcp_conn_request().
2078 	 */
2079 	seqnum = tcr->SEQ_number;
2080 	eager = listener;
2081 	do {
2082 		eager = eager->tcp_eager_next_q;
2083 		if (eager == NULL) {
2084 			CONN_DEC_REF(acceptor->tcp_connp);
2085 			mutex_exit(&listener->tcp_eager_lock);
2086 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2087 			return;
2088 		}
2089 	} while (eager->tcp_conn_req_seqnum != seqnum);
2090 	mutex_exit(&listener->tcp_eager_lock);
2091 
2092 	/*
2093 	 * At this point, both acceptor and listener have 2 ref
2094 	 * that they begin with. Acceptor has one additional ref
2095 	 * we placed in lookup while listener has 3 additional
2096 	 * ref for being behind the squeue (tcp_accept() is
2097 	 * done on listener's squeue); being in classifier hash;
2098 	 * and eager's ref on listener.
2099 	 */
2100 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2101 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2102 
2103 	/*
2104 	 * The eager at this point is set in its own squeue and
2105 	 * could easily have been killed (tcp_accept_finish will
2106 	 * deal with that) because of a TH_RST so we can only
2107 	 * ASSERT for a single ref.
2108 	 */
2109 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2110 
2111 	/* Pre allocate the stroptions mblk also */
2112 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2113 	if (opt_mp == NULL) {
2114 		CONN_DEC_REF(acceptor->tcp_connp);
2115 		CONN_DEC_REF(eager->tcp_connp);
2116 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2117 		return;
2118 	}
2119 	DB_TYPE(opt_mp) = M_SETOPTS;
2120 	opt_mp->b_wptr += sizeof (struct stroptions);
2121 
2122 	/*
2123 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2124 	 * from listener to acceptor. The message is chained on opt_mp
2125 	 * which will be sent onto eager's squeue.
2126 	 */
2127 	if (listener->tcp_bound_if != 0) {
2128 		/* allocate optmgmt req */
2129 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2130 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2131 		    sizeof (int));
2132 		if (mp1 != NULL)
2133 			linkb(opt_mp, mp1);
2134 	}
2135 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2136 		uint_t on = 1;
2137 
2138 		/* allocate optmgmt req */
2139 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2140 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2141 		if (mp1 != NULL)
2142 			linkb(opt_mp, mp1);
2143 	}
2144 
2145 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2146 	if ((mp1 = copymsg(mp)) == NULL) {
2147 		CONN_DEC_REF(acceptor->tcp_connp);
2148 		CONN_DEC_REF(eager->tcp_connp);
2149 		freemsg(opt_mp);
2150 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2151 		return;
2152 	}
2153 
2154 	tcr = (struct T_conn_res *)mp1->b_rptr;
2155 
2156 	/*
2157 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2158 	 * which allocates a larger mblk and appends the new
2159 	 * local address to the ok_ack.  The address is copied by
2160 	 * soaccept() for getsockname().
2161 	 */
2162 	{
2163 		int extra;
2164 
2165 		extra = (eager->tcp_family == AF_INET) ?
2166 		    sizeof (sin_t) : sizeof (sin6_t);
2167 
2168 		/*
2169 		 * Try to re-use mp, if possible.  Otherwise, allocate
2170 		 * an mblk and return it as ok_mp.  In any case, mp
2171 		 * is no longer usable upon return.
2172 		 */
2173 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2174 			CONN_DEC_REF(acceptor->tcp_connp);
2175 			CONN_DEC_REF(eager->tcp_connp);
2176 			freemsg(opt_mp);
2177 			/* Original mp has been freed by now, so use mp1 */
2178 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2179 			return;
2180 		}
2181 
2182 		mp = NULL;	/* We should never use mp after this point */
2183 
2184 		switch (extra) {
2185 		case sizeof (sin_t): {
2186 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2187 
2188 				ok_mp->b_wptr += extra;
2189 				sin->sin_family = AF_INET;
2190 				sin->sin_port = eager->tcp_lport;
2191 				sin->sin_addr.s_addr =
2192 				    eager->tcp_ipha->ipha_src;
2193 				break;
2194 			}
2195 		case sizeof (sin6_t): {
2196 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2197 
2198 				ok_mp->b_wptr += extra;
2199 				sin6->sin6_family = AF_INET6;
2200 				sin6->sin6_port = eager->tcp_lport;
2201 				if (eager->tcp_ipversion == IPV4_VERSION) {
2202 					sin6->sin6_flowinfo = 0;
2203 					IN6_IPADDR_TO_V4MAPPED(
2204 					    eager->tcp_ipha->ipha_src,
2205 					    &sin6->sin6_addr);
2206 				} else {
2207 					ASSERT(eager->tcp_ip6h != NULL);
2208 					sin6->sin6_flowinfo =
2209 					    eager->tcp_ip6h->ip6_vcf &
2210 					    ~IPV6_VERS_AND_FLOW_MASK;
2211 					sin6->sin6_addr =
2212 					    eager->tcp_ip6h->ip6_src;
2213 				}
2214 				sin6->sin6_scope_id = 0;
2215 				sin6->__sin6_src_id = 0;
2216 				break;
2217 			}
2218 		default:
2219 			break;
2220 		}
2221 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2222 	}
2223 
2224 	/*
2225 	 * If there are no options we know that the T_CONN_RES will
2226 	 * succeed. However, we can't send the T_OK_ACK upstream until
2227 	 * the tcp_accept_swap is done since it would be dangerous to
2228 	 * let the application start using the new fd prior to the swap.
2229 	 */
2230 	tcp_accept_swap(listener, acceptor, eager);
2231 
2232 	/*
2233 	 * tcp_accept_swap unlinks eager from listener but does not drop
2234 	 * the eager's reference on the listener.
2235 	 */
2236 	ASSERT(eager->tcp_listener == NULL);
2237 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2238 
2239 	/*
2240 	 * The eager is now associated with its own queue. Insert in
2241 	 * the hash so that the connection can be reused for a future
2242 	 * T_CONN_RES.
2243 	 */
2244 	tcp_acceptor_hash_insert(acceptor_id, eager);
2245 
2246 	/*
2247 	 * We now do the processing of options with T_CONN_RES.
2248 	 * We delay till now since we wanted to have queue to pass to
2249 	 * option processing routines that points back to the right
2250 	 * instance structure which does not happen until after
2251 	 * tcp_accept_swap().
2252 	 *
2253 	 * Note:
2254 	 * The sanity of the logic here assumes that whatever options
2255 	 * are appropriate to inherit from listner=>eager are done
2256 	 * before this point, and whatever were to be overridden (or not)
2257 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2258 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2259 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2260 	 * This may not be true at this point in time but can be fixed
2261 	 * independently. This option processing code starts with
2262 	 * the instantiated acceptor instance and the final queue at
2263 	 * this point.
2264 	 */
2265 
2266 	if (tcr->OPT_length != 0) {
2267 		/* Options to process */
2268 		int t_error = 0;
2269 		int sys_error = 0;
2270 		int do_disconnect = 0;
2271 
2272 		if (tcp_conprim_opt_process(eager, mp1,
2273 		    &do_disconnect, &t_error, &sys_error) < 0) {
2274 			eager->tcp_accept_error = 1;
2275 			if (do_disconnect) {
2276 				/*
2277 				 * An option failed which does not allow
2278 				 * connection to be accepted.
2279 				 *
2280 				 * We allow T_CONN_RES to succeed and
2281 				 * put a T_DISCON_IND on the eager queue.
2282 				 */
2283 				ASSERT(t_error == 0 && sys_error == 0);
2284 				eager->tcp_send_discon_ind = 1;
2285 			} else {
2286 				ASSERT(t_error != 0);
2287 				freemsg(ok_mp);
2288 				/*
2289 				 * Original mp was either freed or set
2290 				 * to ok_mp above, so use mp1 instead.
2291 				 */
2292 				tcp_err_ack(listener, mp1, t_error, sys_error);
2293 				goto finish;
2294 			}
2295 		}
2296 		/*
2297 		 * Most likely success in setting options (except if
2298 		 * eager->tcp_send_discon_ind set).
2299 		 * mp1 option buffer represented by OPT_length/offset
2300 		 * potentially modified and contains results of setting
2301 		 * options at this point
2302 		 */
2303 	}
2304 
2305 	/* We no longer need mp1, since all options processing has passed */
2306 	freemsg(mp1);
2307 
2308 	putnext(listener->tcp_rq, ok_mp);
2309 
2310 	mutex_enter(&listener->tcp_eager_lock);
2311 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2312 		tcp_t	*tail;
2313 		mblk_t	*conn_ind;
2314 
2315 		/*
2316 		 * This path should not be executed if listener and
2317 		 * acceptor streams are the same.
2318 		 */
2319 		ASSERT(listener != acceptor);
2320 
2321 		tcp = listener->tcp_eager_prev_q0;
2322 		/*
2323 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2324 		 * deferred T_conn_ind queue. We need to get to the head of
2325 		 * the queue in order to send up T_conn_ind the same order as
2326 		 * how the 3WHS is completed.
2327 		 */
2328 		while (tcp != listener) {
2329 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2330 				break;
2331 			else
2332 				tcp = tcp->tcp_eager_prev_q0;
2333 		}
2334 		ASSERT(tcp != listener);
2335 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2336 		ASSERT(conn_ind != NULL);
2337 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2338 
2339 		/* Move from q0 to q */
2340 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2341 		listener->tcp_conn_req_cnt_q0--;
2342 		listener->tcp_conn_req_cnt_q++;
2343 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2344 		    tcp->tcp_eager_prev_q0;
2345 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2346 		    tcp->tcp_eager_next_q0;
2347 		tcp->tcp_eager_prev_q0 = NULL;
2348 		tcp->tcp_eager_next_q0 = NULL;
2349 		tcp->tcp_conn_def_q0 = B_FALSE;
2350 
2351 		/* Make sure the tcp isn't in the list of droppables */
2352 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2353 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2354 
2355 		/*
2356 		 * Insert at end of the queue because sockfs sends
2357 		 * down T_CONN_RES in chronological order. Leaving
2358 		 * the older conn indications at front of the queue
2359 		 * helps reducing search time.
2360 		 */
2361 		tail = listener->tcp_eager_last_q;
2362 		if (tail != NULL)
2363 			tail->tcp_eager_next_q = tcp;
2364 		else
2365 			listener->tcp_eager_next_q = tcp;
2366 		listener->tcp_eager_last_q = tcp;
2367 		tcp->tcp_eager_next_q = NULL;
2368 		mutex_exit(&listener->tcp_eager_lock);
2369 		putnext(tcp->tcp_rq, conn_ind);
2370 	} else {
2371 		mutex_exit(&listener->tcp_eager_lock);
2372 	}
2373 
2374 	/*
2375 	 * Done with the acceptor - free it
2376 	 *
2377 	 * Note: from this point on, no access to listener should be made
2378 	 * as listener can be equal to acceptor.
2379 	 */
2380 finish:
2381 	ASSERT(acceptor->tcp_detached);
2382 	ASSERT(tcps->tcps_g_q != NULL);
2383 	acceptor->tcp_rq = tcps->tcps_g_q;
2384 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2385 	(void) tcp_clean_death(acceptor, 0, 2);
2386 	CONN_DEC_REF(acceptor->tcp_connp);
2387 
2388 	/*
2389 	 * In case we already received a FIN we have to make tcp_rput send
2390 	 * the ordrel_ind. This will also send up a window update if the window
2391 	 * has opened up.
2392 	 *
2393 	 * In the normal case of a successful connection acceptance
2394 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2395 	 * indication that this was just accepted. This tells tcp_rput to
2396 	 * pass up any data queued in tcp_rcv_list.
2397 	 *
2398 	 * In the fringe case where options sent with T_CONN_RES failed and
2399 	 * we required, we would be indicating a T_DISCON_IND to blow
2400 	 * away this connection.
2401 	 */
2402 
2403 	/*
2404 	 * XXX: we currently have a problem if XTI application closes the
2405 	 * acceptor stream in between. This problem exists in on10-gate also
2406 	 * and is well know but nothing can be done short of major rewrite
2407 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2408 	 * eager same squeue as listener (we can distinguish non socket
2409 	 * listeners at the time of handling a SYN in tcp_conn_request)
2410 	 * and do most of the work that tcp_accept_finish does here itself
2411 	 * and then get behind the acceptor squeue to access the acceptor
2412 	 * queue.
2413 	 */
2414 	/*
2415 	 * We already have a ref on tcp so no need to do one before squeue_fill
2416 	 */
2417 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2418 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2419 }
2420 
2421 /*
2422  * Swap information between the eager and acceptor for a TLI/XTI client.
2423  * The sockfs accept is done on the acceptor stream and control goes
2424  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2425  * called. In either case, both the eager and listener are in their own
2426  * perimeter (squeue) and the code has to deal with potential race.
2427  *
2428  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2429  */
2430 static void
2431 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2432 {
2433 	conn_t	*econnp, *aconnp;
2434 
2435 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2436 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2437 	ASSERT(!eager->tcp_hard_bound);
2438 	ASSERT(!TCP_IS_SOCKET(acceptor));
2439 	ASSERT(!TCP_IS_SOCKET(eager));
2440 	ASSERT(!TCP_IS_SOCKET(listener));
2441 
2442 	acceptor->tcp_detached = B_TRUE;
2443 	/*
2444 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2445 	 * the acceptor id.
2446 	 */
2447 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2448 
2449 	/* remove eager from listen list... */
2450 	mutex_enter(&listener->tcp_eager_lock);
2451 	tcp_eager_unlink(eager);
2452 	ASSERT(eager->tcp_eager_next_q == NULL &&
2453 	    eager->tcp_eager_last_q == NULL);
2454 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2455 	    eager->tcp_eager_prev_q0 == NULL);
2456 	mutex_exit(&listener->tcp_eager_lock);
2457 	eager->tcp_rq = acceptor->tcp_rq;
2458 	eager->tcp_wq = acceptor->tcp_wq;
2459 
2460 	econnp = eager->tcp_connp;
2461 	aconnp = acceptor->tcp_connp;
2462 
2463 	eager->tcp_rq->q_ptr = econnp;
2464 	eager->tcp_wq->q_ptr = econnp;
2465 
2466 	/*
2467 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2468 	 * which might be a different squeue from our peer TCP instance.
2469 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2470 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2471 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2472 	 * above reach global visibility prior to the clearing of tcp_detached.
2473 	 */
2474 	membar_producer();
2475 	eager->tcp_detached = B_FALSE;
2476 
2477 	ASSERT(eager->tcp_ack_tid == 0);
2478 
2479 	econnp->conn_dev = aconnp->conn_dev;
2480 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2481 	ASSERT(econnp->conn_minor_arena != NULL);
2482 	if (eager->tcp_cred != NULL)
2483 		crfree(eager->tcp_cred);
2484 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2485 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2486 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2487 
2488 	aconnp->conn_cred = NULL;
2489 
2490 	econnp->conn_zoneid = aconnp->conn_zoneid;
2491 	econnp->conn_allzones = aconnp->conn_allzones;
2492 
2493 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2494 	aconnp->conn_mac_exempt = B_FALSE;
2495 
2496 	ASSERT(aconnp->conn_peercred == NULL);
2497 
2498 	/* Do the IPC initialization */
2499 	CONN_INC_REF(econnp);
2500 
2501 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2502 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2503 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2504 
2505 	/* Done with old IPC. Drop its ref on its connp */
2506 	CONN_DEC_REF(aconnp);
2507 }
2508 
2509 
2510 /*
2511  * Adapt to the information, such as rtt and rtt_sd, provided from the
2512  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2513  *
2514  * Checks for multicast and broadcast destination address.
2515  * Returns zero on failure; non-zero if ok.
2516  *
2517  * Note that the MSS calculation here is based on the info given in
2518  * the IRE.  We do not do any calculation based on TCP options.  They
2519  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2520  * knows which options to use.
2521  *
2522  * Note on how TCP gets its parameters for a connection.
2523  *
2524  * When a tcp_t structure is allocated, it gets all the default parameters.
2525  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2526  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2527  * default.  But if there is an associated tcp_host_param, it will override
2528  * the metrics.
2529  *
2530  * An incoming SYN with a multicast or broadcast destination address, is dropped
2531  * in 1 of 2 places.
2532  *
2533  * 1. If the packet was received over the wire it is dropped in
2534  * ip_rput_process_broadcast()
2535  *
2536  * 2. If the packet was received through internal IP loopback, i.e. the packet
2537  * was generated and received on the same machine, it is dropped in
2538  * ip_wput_local()
2539  *
2540  * An incoming SYN with a multicast or broadcast source address is always
2541  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2542  * reject an attempt to connect to a broadcast or multicast (destination)
2543  * address.
2544  */
2545 static int
2546 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2547 {
2548 	tcp_hsp_t	*hsp;
2549 	ire_t		*ire;
2550 	ire_t		*sire = NULL;
2551 	iulp_t		*ire_uinfo = NULL;
2552 	uint32_t	mss_max;
2553 	uint32_t	mss;
2554 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2555 	conn_t		*connp = tcp->tcp_connp;
2556 	boolean_t	ire_cacheable = B_FALSE;
2557 	zoneid_t	zoneid = connp->conn_zoneid;
2558 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2559 	    MATCH_IRE_SECATTR;
2560 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2561 	ill_t		*ill = NULL;
2562 	boolean_t	incoming = (ire_mp == NULL);
2563 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2564 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2565 
2566 	ASSERT(connp->conn_ire_cache == NULL);
2567 
2568 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2569 
2570 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2571 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2572 			return (0);
2573 		}
2574 		/*
2575 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2576 		 * for the destination with the nexthop as gateway.
2577 		 * ire_ctable_lookup() is used because this particular
2578 		 * ire, if it exists, will be marked private.
2579 		 * If that is not available, use the interface ire
2580 		 * for the nexthop.
2581 		 *
2582 		 * TSol: tcp_update_label will detect label mismatches based
2583 		 * only on the destination's label, but that would not
2584 		 * detect label mismatches based on the security attributes
2585 		 * of routes or next hop gateway. Hence we need to pass the
2586 		 * label to ire_ftable_lookup below in order to locate the
2587 		 * right prefix (and/or) ire cache. Similarly we also need
2588 		 * pass the label to the ire_cache_lookup below to locate
2589 		 * the right ire that also matches on the label.
2590 		 */
2591 		if (tcp->tcp_connp->conn_nexthop_set) {
2592 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2593 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2594 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2595 			    ipst);
2596 			if (ire == NULL) {
2597 				ire = ire_ftable_lookup(
2598 				    tcp->tcp_connp->conn_nexthop_v4,
2599 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2600 				    tsl, match_flags, ipst);
2601 				if (ire == NULL)
2602 					return (0);
2603 			} else {
2604 				ire_uinfo = &ire->ire_uinfo;
2605 			}
2606 		} else {
2607 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2608 			    zoneid, tsl, ipst);
2609 			if (ire != NULL) {
2610 				ire_cacheable = B_TRUE;
2611 				ire_uinfo = (ire_mp != NULL) ?
2612 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2613 				    &ire->ire_uinfo;
2614 
2615 			} else {
2616 				if (ire_mp == NULL) {
2617 					ire = ire_ftable_lookup(
2618 					    tcp->tcp_connp->conn_rem,
2619 					    0, 0, 0, NULL, &sire, zoneid, 0,
2620 					    tsl, (MATCH_IRE_RECURSIVE |
2621 					    MATCH_IRE_DEFAULT), ipst);
2622 					if (ire == NULL)
2623 						return (0);
2624 					ire_uinfo = (sire != NULL) ?
2625 					    &sire->ire_uinfo :
2626 					    &ire->ire_uinfo;
2627 				} else {
2628 					ire = (ire_t *)ire_mp->b_rptr;
2629 					ire_uinfo =
2630 					    &((ire_t *)
2631 					    ire_mp->b_rptr)->ire_uinfo;
2632 				}
2633 			}
2634 		}
2635 		ASSERT(ire != NULL);
2636 
2637 		if ((ire->ire_src_addr == INADDR_ANY) ||
2638 		    (ire->ire_type & IRE_BROADCAST)) {
2639 			/*
2640 			 * ire->ire_mp is non null when ire_mp passed in is used
2641 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2642 			 */
2643 			if (ire->ire_mp == NULL)
2644 				ire_refrele(ire);
2645 			if (sire != NULL)
2646 				ire_refrele(sire);
2647 			return (0);
2648 		}
2649 
2650 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2651 			ipaddr_t src_addr;
2652 
2653 			/*
2654 			 * ip_bind_connected() has stored the correct source
2655 			 * address in conn_src.
2656 			 */
2657 			src_addr = tcp->tcp_connp->conn_src;
2658 			tcp->tcp_ipha->ipha_src = src_addr;
2659 			/*
2660 			 * Copy of the src addr. in tcp_t is needed
2661 			 * for the lookup funcs.
2662 			 */
2663 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2664 		}
2665 		/*
2666 		 * Set the fragment bit so that IP will tell us if the MTU
2667 		 * should change. IP tells us the latest setting of
2668 		 * ip_path_mtu_discovery through ire_frag_flag.
2669 		 */
2670 		if (ipst->ips_ip_path_mtu_discovery) {
2671 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2672 			    htons(IPH_DF);
2673 		}
2674 		/*
2675 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2676 		 * for IP_NEXTHOP. No cache ire has been found for the
2677 		 * destination and we are working with the nexthop's
2678 		 * interface ire. Since we need to forward all packets
2679 		 * to the nexthop first, we "blindly" set tcp_localnet
2680 		 * to false, eventhough the destination may also be
2681 		 * onlink.
2682 		 */
2683 		if (ire_uinfo == NULL)
2684 			tcp->tcp_localnet = 0;
2685 		else
2686 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2687 	} else {
2688 		/*
2689 		 * For incoming connection ire_mp = NULL
2690 		 * For outgoing connection ire_mp != NULL
2691 		 * Technically we should check conn_incoming_ill
2692 		 * when ire_mp is NULL and conn_outgoing_ill when
2693 		 * ire_mp is non-NULL. But this is performance
2694 		 * critical path and for IPV*_BOUND_IF, outgoing
2695 		 * and incoming ill are always set to the same value.
2696 		 */
2697 		ill_t	*dst_ill = NULL;
2698 		ipif_t  *dst_ipif = NULL;
2699 
2700 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2701 
2702 		if (connp->conn_outgoing_ill != NULL) {
2703 			/* Outgoing or incoming path */
2704 			int   err;
2705 
2706 			dst_ill = conn_get_held_ill(connp,
2707 			    &connp->conn_outgoing_ill, &err);
2708 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2709 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2710 				return (0);
2711 			}
2712 			match_flags |= MATCH_IRE_ILL;
2713 			dst_ipif = dst_ill->ill_ipif;
2714 		}
2715 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2716 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2717 
2718 		if (ire != NULL) {
2719 			ire_cacheable = B_TRUE;
2720 			ire_uinfo = (ire_mp != NULL) ?
2721 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2722 			    &ire->ire_uinfo;
2723 		} else {
2724 			if (ire_mp == NULL) {
2725 				ire = ire_ftable_lookup_v6(
2726 				    &tcp->tcp_connp->conn_remv6,
2727 				    0, 0, 0, dst_ipif, &sire, zoneid,
2728 				    0, tsl, match_flags, ipst);
2729 				if (ire == NULL) {
2730 					if (dst_ill != NULL)
2731 						ill_refrele(dst_ill);
2732 					return (0);
2733 				}
2734 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2735 				    &ire->ire_uinfo;
2736 			} else {
2737 				ire = (ire_t *)ire_mp->b_rptr;
2738 				ire_uinfo =
2739 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2740 			}
2741 		}
2742 		if (dst_ill != NULL)
2743 			ill_refrele(dst_ill);
2744 
2745 		ASSERT(ire != NULL);
2746 		ASSERT(ire_uinfo != NULL);
2747 
2748 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2749 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2750 			/*
2751 			 * ire->ire_mp is non null when ire_mp passed in is used
2752 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2753 			 */
2754 			if (ire->ire_mp == NULL)
2755 				ire_refrele(ire);
2756 			if (sire != NULL)
2757 				ire_refrele(sire);
2758 			return (0);
2759 		}
2760 
2761 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2762 			in6_addr_t	src_addr;
2763 
2764 			/*
2765 			 * ip_bind_connected_v6() has stored the correct source
2766 			 * address per IPv6 addr. selection policy in
2767 			 * conn_src_v6.
2768 			 */
2769 			src_addr = tcp->tcp_connp->conn_srcv6;
2770 
2771 			tcp->tcp_ip6h->ip6_src = src_addr;
2772 			/*
2773 			 * Copy of the src addr. in tcp_t is needed
2774 			 * for the lookup funcs.
2775 			 */
2776 			tcp->tcp_ip_src_v6 = src_addr;
2777 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2778 			    &connp->conn_srcv6));
2779 		}
2780 		tcp->tcp_localnet =
2781 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2782 	}
2783 
2784 	/*
2785 	 * This allows applications to fail quickly when connections are made
2786 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2787 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2788 	 */
2789 	if ((ire->ire_flags & RTF_REJECT) &&
2790 	    (ire->ire_flags & RTF_PRIVATE))
2791 		goto error;
2792 
2793 	/*
2794 	 * Make use of the cached rtt and rtt_sd values to calculate the
2795 	 * initial RTO.  Note that they are already initialized in
2796 	 * tcp_init_values().
2797 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2798 	 * IP_NEXTHOP, but instead are using the interface ire for the
2799 	 * nexthop, then we do not use the ire_uinfo from that ire to
2800 	 * do any initializations.
2801 	 */
2802 	if (ire_uinfo != NULL) {
2803 		if (ire_uinfo->iulp_rtt != 0) {
2804 			clock_t	rto;
2805 
2806 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2807 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2808 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2809 			    tcps->tcps_rexmit_interval_extra +
2810 			    (tcp->tcp_rtt_sa >> 5);
2811 
2812 			if (rto > tcps->tcps_rexmit_interval_max) {
2813 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2814 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2815 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2816 			} else {
2817 				tcp->tcp_rto = rto;
2818 			}
2819 		}
2820 		if (ire_uinfo->iulp_ssthresh != 0)
2821 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2822 		else
2823 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2824 		if (ire_uinfo->iulp_spipe > 0) {
2825 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2826 			    tcps->tcps_max_buf);
2827 			if (tcps->tcps_snd_lowat_fraction != 0)
2828 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2829 				    tcps->tcps_snd_lowat_fraction;
2830 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2831 		}
2832 		/*
2833 		 * Note that up till now, acceptor always inherits receive
2834 		 * window from the listener.  But if there is a metrics
2835 		 * associated with a host, we should use that instead of
2836 		 * inheriting it from listener. Thus we need to pass this
2837 		 * info back to the caller.
2838 		 */
2839 		if (ire_uinfo->iulp_rpipe > 0) {
2840 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2841 			    tcps->tcps_max_buf);
2842 		}
2843 
2844 		if (ire_uinfo->iulp_rtomax > 0) {
2845 			tcp->tcp_second_timer_threshold =
2846 			    ire_uinfo->iulp_rtomax;
2847 		}
2848 
2849 		/*
2850 		 * Use the metric option settings, iulp_tstamp_ok and
2851 		 * iulp_wscale_ok, only for active open. What this means
2852 		 * is that if the other side uses timestamp or window
2853 		 * scale option, TCP will also use those options. That
2854 		 * is for passive open.  If the application sets a
2855 		 * large window, window scale is enabled regardless of
2856 		 * the value in iulp_wscale_ok.  This is the behavior
2857 		 * since 2.6.  So we keep it.
2858 		 * The only case left in passive open processing is the
2859 		 * check for SACK.
2860 		 * For ECN, it should probably be like SACK.  But the
2861 		 * current value is binary, so we treat it like the other
2862 		 * cases.  The metric only controls active open.For passive
2863 		 * open, the ndd param, tcp_ecn_permitted, controls the
2864 		 * behavior.
2865 		 */
2866 		if (!tcp_detached) {
2867 			/*
2868 			 * The if check means that the following can only
2869 			 * be turned on by the metrics only IRE, but not off.
2870 			 */
2871 			if (ire_uinfo->iulp_tstamp_ok)
2872 				tcp->tcp_snd_ts_ok = B_TRUE;
2873 			if (ire_uinfo->iulp_wscale_ok)
2874 				tcp->tcp_snd_ws_ok = B_TRUE;
2875 			if (ire_uinfo->iulp_sack == 2)
2876 				tcp->tcp_snd_sack_ok = B_TRUE;
2877 			if (ire_uinfo->iulp_ecn_ok)
2878 				tcp->tcp_ecn_ok = B_TRUE;
2879 		} else {
2880 			/*
2881 			 * Passive open.
2882 			 *
2883 			 * As above, the if check means that SACK can only be
2884 			 * turned on by the metric only IRE.
2885 			 */
2886 			if (ire_uinfo->iulp_sack > 0) {
2887 				tcp->tcp_snd_sack_ok = B_TRUE;
2888 			}
2889 		}
2890 	}
2891 
2892 
2893 	/*
2894 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2895 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2896 	 * length of all those options exceeds 28 bytes.  But because
2897 	 * of the tcp_mss_min check below, we may not have a problem if
2898 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2899 	 * the negative problem still exists.  And the check defeats PMTUd.
2900 	 * In fact, if PMTUd finds that the MSS should be smaller than
2901 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2902 	 * value.
2903 	 *
2904 	 * We do not deal with that now.  All those problems related to
2905 	 * PMTUd will be fixed later.
2906 	 */
2907 	ASSERT(ire->ire_max_frag != 0);
2908 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2909 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2910 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2911 			mss = MIN(mss, IPV6_MIN_MTU);
2912 		}
2913 	}
2914 
2915 	/* Sanity check for MSS value. */
2916 	if (tcp->tcp_ipversion == IPV4_VERSION)
2917 		mss_max = tcps->tcps_mss_max_ipv4;
2918 	else
2919 		mss_max = tcps->tcps_mss_max_ipv6;
2920 
2921 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2922 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2923 		/*
2924 		 * After receiving an ICMPv6 "packet too big" message with a
2925 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2926 		 * will insert a 8-byte fragment header in every packet; we
2927 		 * reduce the MSS by that amount here.
2928 		 */
2929 		mss -= sizeof (ip6_frag_t);
2930 	}
2931 
2932 	if (tcp->tcp_ipsec_overhead == 0)
2933 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2934 
2935 	mss -= tcp->tcp_ipsec_overhead;
2936 
2937 	if (mss < tcps->tcps_mss_min)
2938 		mss = tcps->tcps_mss_min;
2939 	if (mss > mss_max)
2940 		mss = mss_max;
2941 
2942 	/* Note that this is the maximum MSS, excluding all options. */
2943 	tcp->tcp_mss = mss;
2944 
2945 	/*
2946 	 * Initialize the ISS here now that we have the full connection ID.
2947 	 * The RFC 1948 method of initial sequence number generation requires
2948 	 * knowledge of the full connection ID before setting the ISS.
2949 	 */
2950 
2951 	tcp_iss_init(tcp);
2952 
2953 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2954 		tcp->tcp_loopback = B_TRUE;
2955 
2956 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2957 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2958 	} else {
2959 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2960 	}
2961 
2962 	if (hsp != NULL) {
2963 		/* Only modify if we're going to make them bigger */
2964 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2965 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2966 			if (tcps->tcps_snd_lowat_fraction != 0)
2967 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2968 				    tcps->tcps_snd_lowat_fraction;
2969 		}
2970 
2971 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2972 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2973 		}
2974 
2975 		/* Copy timestamp flag only for active open */
2976 		if (!tcp_detached)
2977 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2978 	}
2979 
2980 	if (sire != NULL)
2981 		IRE_REFRELE(sire);
2982 
2983 	/*
2984 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2985 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2986 	 */
2987 	if (tcp->tcp_loopback ||
2988 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2989 		/*
2990 		 * For incoming, see if this tcp may be MDT-capable.  For
2991 		 * outgoing, this process has been taken care of through
2992 		 * tcp_rput_other.
2993 		 */
2994 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2995 		tcp->tcp_ire_ill_check_done = B_TRUE;
2996 	}
2997 
2998 	mutex_enter(&connp->conn_lock);
2999 	/*
3000 	 * Make sure that conn is not marked incipient
3001 	 * for incoming connections. A blind
3002 	 * removal of incipient flag is cheaper than
3003 	 * check and removal.
3004 	 */
3005 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3006 
3007 	/*
3008 	 * Must not cache forwarding table routes
3009 	 * or recache an IRE after the conn_t has
3010 	 * had conn_ire_cache cleared and is flagged
3011 	 * unusable, (see the CONN_CACHE_IRE() macro).
3012 	 */
3013 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
3014 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3015 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3016 			connp->conn_ire_cache = ire;
3017 			IRE_UNTRACE_REF(ire);
3018 			rw_exit(&ire->ire_bucket->irb_lock);
3019 			mutex_exit(&connp->conn_lock);
3020 			return (1);
3021 		}
3022 		rw_exit(&ire->ire_bucket->irb_lock);
3023 	}
3024 	mutex_exit(&connp->conn_lock);
3025 
3026 	if (ire->ire_mp == NULL)
3027 		ire_refrele(ire);
3028 	return (1);
3029 
3030 error:
3031 	if (ire->ire_mp == NULL)
3032 		ire_refrele(ire);
3033 	if (sire != NULL)
3034 		ire_refrele(sire);
3035 	return (0);
3036 }
3037 
3038 /*
3039  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
3040  * O_T_BIND_REQ/T_BIND_REQ message.
3041  */
3042 static void
3043 tcp_bind(tcp_t *tcp, mblk_t *mp)
3044 {
3045 	sin_t	*sin;
3046 	sin6_t	*sin6;
3047 	mblk_t	*mp1;
3048 	in_port_t requested_port;
3049 	in_port_t allocated_port;
3050 	struct T_bind_req *tbr;
3051 	boolean_t	bind_to_req_port_only;
3052 	boolean_t	backlog_update = B_FALSE;
3053 	boolean_t	user_specified;
3054 	in6_addr_t	v6addr;
3055 	ipaddr_t	v4addr;
3056 	uint_t	origipversion;
3057 	int	err;
3058 	queue_t *q = tcp->tcp_wq;
3059 	conn_t	*connp = tcp->tcp_connp;
3060 	mlp_type_t addrtype, mlptype;
3061 	zone_t	*zone;
3062 	cred_t	*cr;
3063 	in_port_t mlp_port;
3064 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3065 
3066 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3067 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3068 		if (tcp->tcp_debug) {
3069 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3070 			    "tcp_bind: bad req, len %u",
3071 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3072 		}
3073 		tcp_err_ack(tcp, mp, TPROTO, 0);
3074 		return;
3075 	}
3076 	/* Make sure the largest address fits */
3077 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3078 	if (mp1 == NULL) {
3079 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3080 		return;
3081 	}
3082 	mp = mp1;
3083 	tbr = (struct T_bind_req *)mp->b_rptr;
3084 	if (tcp->tcp_state >= TCPS_BOUND) {
3085 		if ((tcp->tcp_state == TCPS_BOUND ||
3086 		    tcp->tcp_state == TCPS_LISTEN) &&
3087 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3088 		    tbr->CONIND_number > 0) {
3089 			/*
3090 			 * Handle listen() increasing CONIND_number.
3091 			 * This is more "liberal" then what the TPI spec
3092 			 * requires but is needed to avoid a t_unbind
3093 			 * when handling listen() since the port number
3094 			 * might be "stolen" between the unbind and bind.
3095 			 */
3096 			backlog_update = B_TRUE;
3097 			goto do_bind;
3098 		}
3099 		if (tcp->tcp_debug) {
3100 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3101 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3102 		}
3103 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3104 		return;
3105 	}
3106 	origipversion = tcp->tcp_ipversion;
3107 
3108 	switch (tbr->ADDR_length) {
3109 	case 0:			/* request for a generic port */
3110 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3111 		if (tcp->tcp_family == AF_INET) {
3112 			tbr->ADDR_length = sizeof (sin_t);
3113 			sin = (sin_t *)&tbr[1];
3114 			*sin = sin_null;
3115 			sin->sin_family = AF_INET;
3116 			mp->b_wptr = (uchar_t *)&sin[1];
3117 			tcp->tcp_ipversion = IPV4_VERSION;
3118 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3119 		} else {
3120 			ASSERT(tcp->tcp_family == AF_INET6);
3121 			tbr->ADDR_length = sizeof (sin6_t);
3122 			sin6 = (sin6_t *)&tbr[1];
3123 			*sin6 = sin6_null;
3124 			sin6->sin6_family = AF_INET6;
3125 			mp->b_wptr = (uchar_t *)&sin6[1];
3126 			tcp->tcp_ipversion = IPV6_VERSION;
3127 			V6_SET_ZERO(v6addr);
3128 		}
3129 		requested_port = 0;
3130 		break;
3131 
3132 	case sizeof (sin_t):	/* Complete IPv4 address */
3133 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3134 		    sizeof (sin_t));
3135 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3136 			if (tcp->tcp_debug) {
3137 				(void) strlog(TCP_MOD_ID, 0, 1,
3138 				    SL_ERROR|SL_TRACE,
3139 				    "tcp_bind: bad address parameter, "
3140 				    "offset %d, len %d",
3141 				    tbr->ADDR_offset, tbr->ADDR_length);
3142 			}
3143 			tcp_err_ack(tcp, mp, TPROTO, 0);
3144 			return;
3145 		}
3146 		/*
3147 		 * With sockets sockfs will accept bogus sin_family in
3148 		 * bind() and replace it with the family used in the socket
3149 		 * call.
3150 		 */
3151 		if (sin->sin_family != AF_INET ||
3152 		    tcp->tcp_family != AF_INET) {
3153 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3154 			return;
3155 		}
3156 		requested_port = ntohs(sin->sin_port);
3157 		tcp->tcp_ipversion = IPV4_VERSION;
3158 		v4addr = sin->sin_addr.s_addr;
3159 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3160 		break;
3161 
3162 	case sizeof (sin6_t): /* Complete IPv6 address */
3163 		sin6 = (sin6_t *)mi_offset_param(mp,
3164 		    tbr->ADDR_offset, sizeof (sin6_t));
3165 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3166 			if (tcp->tcp_debug) {
3167 				(void) strlog(TCP_MOD_ID, 0, 1,
3168 				    SL_ERROR|SL_TRACE,
3169 				    "tcp_bind: bad IPv6 address parameter, "
3170 				    "offset %d, len %d", tbr->ADDR_offset,
3171 				    tbr->ADDR_length);
3172 			}
3173 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3174 			return;
3175 		}
3176 		if (sin6->sin6_family != AF_INET6 ||
3177 		    tcp->tcp_family != AF_INET6) {
3178 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3179 			return;
3180 		}
3181 		requested_port = ntohs(sin6->sin6_port);
3182 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3183 		    IPV4_VERSION : IPV6_VERSION;
3184 		v6addr = sin6->sin6_addr;
3185 		break;
3186 
3187 	default:
3188 		if (tcp->tcp_debug) {
3189 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3190 			    "tcp_bind: bad address length, %d",
3191 			    tbr->ADDR_length);
3192 		}
3193 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3194 		return;
3195 	}
3196 	tcp->tcp_bound_source_v6 = v6addr;
3197 
3198 	/* Check for change in ipversion */
3199 	if (origipversion != tcp->tcp_ipversion) {
3200 		ASSERT(tcp->tcp_family == AF_INET6);
3201 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3202 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3203 		if (err) {
3204 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3205 			return;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * Initialize family specific fields. Copy of the src addr.
3211 	 * in tcp_t is needed for the lookup funcs.
3212 	 */
3213 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3214 		tcp->tcp_ip6h->ip6_src = v6addr;
3215 	} else {
3216 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3217 	}
3218 	tcp->tcp_ip_src_v6 = v6addr;
3219 
3220 	/*
3221 	 * For O_T_BIND_REQ:
3222 	 * Verify that the target port/addr is available, or choose
3223 	 * another.
3224 	 * For  T_BIND_REQ:
3225 	 * Verify that the target port/addr is available or fail.
3226 	 * In both cases when it succeeds the tcp is inserted in the
3227 	 * bind hash table. This ensures that the operation is atomic
3228 	 * under the lock on the hash bucket.
3229 	 */
3230 	bind_to_req_port_only = requested_port != 0 &&
3231 	    tbr->PRIM_type != O_T_BIND_REQ;
3232 	/*
3233 	 * Get a valid port (within the anonymous range and should not
3234 	 * be a privileged one) to use if the user has not given a port.
3235 	 * If multiple threads are here, they may all start with
3236 	 * with the same initial port. But, it should be fine as long as
3237 	 * tcp_bindi will ensure that no two threads will be assigned
3238 	 * the same port.
3239 	 *
3240 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3241 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3242 	 * unless TCP_ANONPRIVBIND option is set.
3243 	 */
3244 	mlptype = mlptSingle;
3245 	mlp_port = requested_port;
3246 	if (requested_port == 0) {
3247 		requested_port = tcp->tcp_anon_priv_bind ?
3248 		    tcp_get_next_priv_port(tcp) :
3249 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3250 		    tcp, B_TRUE);
3251 		if (requested_port == 0) {
3252 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3253 			return;
3254 		}
3255 		user_specified = B_FALSE;
3256 
3257 		/*
3258 		 * If the user went through one of the RPC interfaces to create
3259 		 * this socket and RPC is MLP in this zone, then give him an
3260 		 * anonymous MLP.
3261 		 */
3262 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3263 		if (connp->conn_anon_mlp && is_system_labeled()) {
3264 			zone = crgetzone(cr);
3265 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3266 			    IPV6_VERSION, &v6addr,
3267 			    tcps->tcps_netstack->netstack_ip);
3268 			if (addrtype == mlptSingle) {
3269 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3270 				return;
3271 			}
3272 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3273 			    PMAPPORT, addrtype);
3274 			mlp_port = PMAPPORT;
3275 		}
3276 	} else {
3277 		int i;
3278 		boolean_t priv = B_FALSE;
3279 
3280 		/*
3281 		 * If the requested_port is in the well-known privileged range,
3282 		 * verify that the stream was opened by a privileged user.
3283 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3284 		 * but instead the code relies on:
3285 		 * - the fact that the address of the array and its size never
3286 		 *   changes
3287 		 * - the atomic assignment of the elements of the array
3288 		 */
3289 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3290 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3291 			priv = B_TRUE;
3292 		} else {
3293 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3294 				if (requested_port ==
3295 				    tcps->tcps_g_epriv_ports[i]) {
3296 					priv = B_TRUE;
3297 					break;
3298 				}
3299 			}
3300 		}
3301 		if (priv) {
3302 			if (secpolicy_net_privaddr(cr, requested_port,
3303 			    IPPROTO_TCP) != 0) {
3304 				if (tcp->tcp_debug) {
3305 					(void) strlog(TCP_MOD_ID, 0, 1,
3306 					    SL_ERROR|SL_TRACE,
3307 					    "tcp_bind: no priv for port %d",
3308 					    requested_port);
3309 				}
3310 				tcp_err_ack(tcp, mp, TACCES, 0);
3311 				return;
3312 			}
3313 		}
3314 		user_specified = B_TRUE;
3315 
3316 		if (is_system_labeled()) {
3317 			zone = crgetzone(cr);
3318 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3319 			    IPV6_VERSION, &v6addr,
3320 			    tcps->tcps_netstack->netstack_ip);
3321 			if (addrtype == mlptSingle) {
3322 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3323 				return;
3324 			}
3325 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3326 			    requested_port, addrtype);
3327 		}
3328 	}
3329 
3330 	if (mlptype != mlptSingle) {
3331 		if (secpolicy_net_bindmlp(cr) != 0) {
3332 			if (tcp->tcp_debug) {
3333 				(void) strlog(TCP_MOD_ID, 0, 1,
3334 				    SL_ERROR|SL_TRACE,
3335 				    "tcp_bind: no priv for multilevel port %d",
3336 				    requested_port);
3337 			}
3338 			tcp_err_ack(tcp, mp, TACCES, 0);
3339 			return;
3340 		}
3341 
3342 		/*
3343 		 * If we're specifically binding a shared IP address and the
3344 		 * port is MLP on shared addresses, then check to see if this
3345 		 * zone actually owns the MLP.  Reject if not.
3346 		 */
3347 		if (mlptype == mlptShared && addrtype == mlptShared) {
3348 			/*
3349 			 * No need to handle exclusive-stack zones since
3350 			 * ALL_ZONES only applies to the shared stack.
3351 			 */
3352 			zoneid_t mlpzone;
3353 
3354 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3355 			    htons(mlp_port));
3356 			if (connp->conn_zoneid != mlpzone) {
3357 				if (tcp->tcp_debug) {
3358 					(void) strlog(TCP_MOD_ID, 0, 1,
3359 					    SL_ERROR|SL_TRACE,
3360 					    "tcp_bind: attempt to bind port "
3361 					    "%d on shared addr in zone %d "
3362 					    "(should be %d)",
3363 					    mlp_port, connp->conn_zoneid,
3364 					    mlpzone);
3365 				}
3366 				tcp_err_ack(tcp, mp, TACCES, 0);
3367 				return;
3368 			}
3369 		}
3370 
3371 		if (!user_specified) {
3372 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3373 			    requested_port, B_TRUE);
3374 			if (err != 0) {
3375 				if (tcp->tcp_debug) {
3376 					(void) strlog(TCP_MOD_ID, 0, 1,
3377 					    SL_ERROR|SL_TRACE,
3378 					    "tcp_bind: cannot establish anon "
3379 					    "MLP for port %d",
3380 					    requested_port);
3381 				}
3382 				tcp_err_ack(tcp, mp, TSYSERR, err);
3383 				return;
3384 			}
3385 			connp->conn_anon_port = B_TRUE;
3386 		}
3387 		connp->conn_mlp_type = mlptype;
3388 	}
3389 
3390 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3391 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3392 
3393 	if (allocated_port == 0) {
3394 		connp->conn_mlp_type = mlptSingle;
3395 		if (connp->conn_anon_port) {
3396 			connp->conn_anon_port = B_FALSE;
3397 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3398 			    requested_port, B_FALSE);
3399 		}
3400 		if (bind_to_req_port_only) {
3401 			if (tcp->tcp_debug) {
3402 				(void) strlog(TCP_MOD_ID, 0, 1,
3403 				    SL_ERROR|SL_TRACE,
3404 				    "tcp_bind: requested addr busy");
3405 			}
3406 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3407 		} else {
3408 			/* If we are out of ports, fail the bind. */
3409 			if (tcp->tcp_debug) {
3410 				(void) strlog(TCP_MOD_ID, 0, 1,
3411 				    SL_ERROR|SL_TRACE,
3412 				    "tcp_bind: out of ports?");
3413 			}
3414 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3415 		}
3416 		return;
3417 	}
3418 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3419 do_bind:
3420 	if (!backlog_update) {
3421 		if (tcp->tcp_family == AF_INET)
3422 			sin->sin_port = htons(allocated_port);
3423 		else
3424 			sin6->sin6_port = htons(allocated_port);
3425 	}
3426 	if (tcp->tcp_family == AF_INET) {
3427 		if (tbr->CONIND_number != 0) {
3428 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3429 			    sizeof (sin_t));
3430 		} else {
3431 			/* Just verify the local IP address */
3432 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3433 		}
3434 	} else {
3435 		if (tbr->CONIND_number != 0) {
3436 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3437 			    sizeof (sin6_t));
3438 		} else {
3439 			/* Just verify the local IP address */
3440 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3441 			    IPV6_ADDR_LEN);
3442 		}
3443 	}
3444 	if (mp1 == NULL) {
3445 		if (connp->conn_anon_port) {
3446 			connp->conn_anon_port = B_FALSE;
3447 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3448 			    requested_port, B_FALSE);
3449 		}
3450 		connp->conn_mlp_type = mlptSingle;
3451 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3452 		return;
3453 	}
3454 
3455 	tbr->PRIM_type = T_BIND_ACK;
3456 	mp->b_datap->db_type = M_PCPROTO;
3457 
3458 	/* Chain in the reply mp for tcp_rput() */
3459 	mp1->b_cont = mp;
3460 	mp = mp1;
3461 
3462 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3463 	if (tcp->tcp_conn_req_max) {
3464 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3465 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3466 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3467 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3468 		/*
3469 		 * If this is a listener, do not reset the eager list
3470 		 * and other stuffs.  Note that we don't check if the
3471 		 * existing eager list meets the new tcp_conn_req_max
3472 		 * requirement.
3473 		 */
3474 		if (tcp->tcp_state != TCPS_LISTEN) {
3475 			tcp->tcp_state = TCPS_LISTEN;
3476 			/* Initialize the chain. Don't need the eager_lock */
3477 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3478 			tcp->tcp_eager_next_drop_q0 = tcp;
3479 			tcp->tcp_eager_prev_drop_q0 = tcp;
3480 			tcp->tcp_second_ctimer_threshold =
3481 			    tcps->tcps_ip_abort_linterval;
3482 		}
3483 	}
3484 
3485 	/*
3486 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3487 	 * processing continues in tcp_rput_other().
3488 	 *
3489 	 * We need to make sure that the conn_recv is set to a non-null
3490 	 * value before we insert the conn into the classifier table.
3491 	 * This is to avoid a race with an incoming packet which does an
3492 	 * ipcl_classify().
3493 	 */
3494 	connp->conn_recv = tcp_conn_request;
3495 	if (tcp->tcp_family == AF_INET6) {
3496 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3497 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3498 	} else {
3499 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3500 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3501 	}
3502 	/*
3503 	 * If the bind cannot complete immediately
3504 	 * IP will arrange to call tcp_rput_other
3505 	 * when the bind completes.
3506 	 */
3507 	if (mp != NULL) {
3508 		tcp_rput_other(tcp, mp);
3509 	} else {
3510 		/*
3511 		 * Bind will be resumed later. Need to ensure
3512 		 * that conn doesn't disappear when that happens.
3513 		 * This will be decremented in ip_resume_tcp_bind().
3514 		 */
3515 		CONN_INC_REF(tcp->tcp_connp);
3516 	}
3517 }
3518 
3519 
3520 /*
3521  * If the "bind_to_req_port_only" parameter is set, if the requested port
3522  * number is available, return it, If not return 0
3523  *
3524  * If "bind_to_req_port_only" parameter is not set and
3525  * If the requested port number is available, return it.  If not, return
3526  * the first anonymous port we happen across.  If no anonymous ports are
3527  * available, return 0. addr is the requested local address, if any.
3528  *
3529  * In either case, when succeeding update the tcp_t to record the port number
3530  * and insert it in the bind hash table.
3531  *
3532  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3533  * without setting SO_REUSEADDR. This is needed so that they
3534  * can be viewed as two independent transport protocols.
3535  */
3536 static in_port_t
3537 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3538     int reuseaddr, boolean_t quick_connect,
3539     boolean_t bind_to_req_port_only, boolean_t user_specified)
3540 {
3541 	/* number of times we have run around the loop */
3542 	int count = 0;
3543 	/* maximum number of times to run around the loop */
3544 	int loopmax;
3545 	conn_t *connp = tcp->tcp_connp;
3546 	zoneid_t zoneid = connp->conn_zoneid;
3547 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3548 
3549 	/*
3550 	 * Lookup for free addresses is done in a loop and "loopmax"
3551 	 * influences how long we spin in the loop
3552 	 */
3553 	if (bind_to_req_port_only) {
3554 		/*
3555 		 * If the requested port is busy, don't bother to look
3556 		 * for a new one. Setting loop maximum count to 1 has
3557 		 * that effect.
3558 		 */
3559 		loopmax = 1;
3560 	} else {
3561 		/*
3562 		 * If the requested port is busy, look for a free one
3563 		 * in the anonymous port range.
3564 		 * Set loopmax appropriately so that one does not look
3565 		 * forever in the case all of the anonymous ports are in use.
3566 		 */
3567 		if (tcp->tcp_anon_priv_bind) {
3568 			/*
3569 			 * loopmax =
3570 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3571 			 */
3572 			loopmax = IPPORT_RESERVED -
3573 			    tcps->tcps_min_anonpriv_port;
3574 		} else {
3575 			loopmax = (tcps->tcps_largest_anon_port -
3576 			    tcps->tcps_smallest_anon_port + 1);
3577 		}
3578 	}
3579 	do {
3580 		uint16_t	lport;
3581 		tf_t		*tbf;
3582 		tcp_t		*ltcp;
3583 		conn_t		*lconnp;
3584 
3585 		lport = htons(port);
3586 
3587 		/*
3588 		 * Ensure that the tcp_t is not currently in the bind hash.
3589 		 * Hold the lock on the hash bucket to ensure that
3590 		 * the duplicate check plus the insertion is an atomic
3591 		 * operation.
3592 		 *
3593 		 * This function does an inline lookup on the bind hash list
3594 		 * Make sure that we access only members of tcp_t
3595 		 * and that we don't look at tcp_tcp, since we are not
3596 		 * doing a CONN_INC_REF.
3597 		 */
3598 		tcp_bind_hash_remove(tcp);
3599 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3600 		mutex_enter(&tbf->tf_lock);
3601 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3602 		    ltcp = ltcp->tcp_bind_hash) {
3603 			boolean_t not_socket;
3604 			boolean_t exclbind;
3605 
3606 			if (lport != ltcp->tcp_lport)
3607 				continue;
3608 
3609 			lconnp = ltcp->tcp_connp;
3610 
3611 			/*
3612 			 * On a labeled system, we must treat bindings to ports
3613 			 * on shared IP addresses by sockets with MAC exemption
3614 			 * privilege as being in all zones, as there's
3615 			 * otherwise no way to identify the right receiver.
3616 			 */
3617 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3618 			    IPCL_ZONE_MATCH(connp,
3619 			    ltcp->tcp_connp->conn_zoneid)) &&
3620 			    !lconnp->conn_mac_exempt &&
3621 			    !connp->conn_mac_exempt)
3622 				continue;
3623 
3624 			/*
3625 			 * If TCP_EXCLBIND is set for either the bound or
3626 			 * binding endpoint, the semantics of bind
3627 			 * is changed according to the following.
3628 			 *
3629 			 * spec = specified address (v4 or v6)
3630 			 * unspec = unspecified address (v4 or v6)
3631 			 * A = specified addresses are different for endpoints
3632 			 *
3633 			 * bound	bind to		allowed
3634 			 * -------------------------------------
3635 			 * unspec	unspec		no
3636 			 * unspec	spec		no
3637 			 * spec		unspec		no
3638 			 * spec		spec		yes if A
3639 			 *
3640 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3641 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3642 			 *
3643 			 * Note:
3644 			 *
3645 			 * 1. Because of TLI semantics, an endpoint can go
3646 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3647 			 * TCPS_BOUND, depending on whether it is originally
3648 			 * a listener or not.  That is why we need to check
3649 			 * for states greater than or equal to TCPS_BOUND
3650 			 * here.
3651 			 *
3652 			 * 2. Ideally, we should only check for state equals
3653 			 * to TCPS_LISTEN. And the following check should be
3654 			 * added.
3655 			 *
3656 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3657 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3658 			 *		...
3659 			 * }
3660 			 *
3661 			 * The semantics will be changed to this.  If the
3662 			 * endpoint on the list is in state not equal to
3663 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3664 			 * set, let the bind succeed.
3665 			 *
3666 			 * Because of (1), we cannot do that for TLI
3667 			 * endpoints.  But we can do that for socket endpoints.
3668 			 * If in future, we can change this going back
3669 			 * semantics, we can use the above check for TLI also.
3670 			 */
3671 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3672 			    TCP_IS_SOCKET(tcp));
3673 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3674 
3675 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3676 			    (exclbind && (not_socket ||
3677 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3678 				if (V6_OR_V4_INADDR_ANY(
3679 				    ltcp->tcp_bound_source_v6) ||
3680 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3681 				    IN6_ARE_ADDR_EQUAL(laddr,
3682 				    &ltcp->tcp_bound_source_v6)) {
3683 					break;
3684 				}
3685 				continue;
3686 			}
3687 
3688 			/*
3689 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3690 			 * have disjoint port number spaces, if *_EXCLBIND
3691 			 * is not set and only if the application binds to a
3692 			 * specific port. We use the same autoassigned port
3693 			 * number space for IPv4 and IPv6 sockets.
3694 			 */
3695 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3696 			    bind_to_req_port_only)
3697 				continue;
3698 
3699 			/*
3700 			 * Ideally, we should make sure that the source
3701 			 * address, remote address, and remote port in the
3702 			 * four tuple for this tcp-connection is unique.
3703 			 * However, trying to find out the local source
3704 			 * address would require too much code duplication
3705 			 * with IP, since IP needs needs to have that code
3706 			 * to support userland TCP implementations.
3707 			 */
3708 			if (quick_connect &&
3709 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3710 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3711 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3712 			    &ltcp->tcp_remote_v6)))
3713 				continue;
3714 
3715 			if (!reuseaddr) {
3716 				/*
3717 				 * No socket option SO_REUSEADDR.
3718 				 * If existing port is bound to
3719 				 * a non-wildcard IP address
3720 				 * and the requesting stream is
3721 				 * bound to a distinct
3722 				 * different IP addresses
3723 				 * (non-wildcard, also), keep
3724 				 * going.
3725 				 */
3726 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3727 				    !V6_OR_V4_INADDR_ANY(
3728 				    ltcp->tcp_bound_source_v6) &&
3729 				    !IN6_ARE_ADDR_EQUAL(laddr,
3730 				    &ltcp->tcp_bound_source_v6))
3731 					continue;
3732 				if (ltcp->tcp_state >= TCPS_BOUND) {
3733 					/*
3734 					 * This port is being used and
3735 					 * its state is >= TCPS_BOUND,
3736 					 * so we can't bind to it.
3737 					 */
3738 					break;
3739 				}
3740 			} else {
3741 				/*
3742 				 * socket option SO_REUSEADDR is set on the
3743 				 * binding tcp_t.
3744 				 *
3745 				 * If two streams are bound to
3746 				 * same IP address or both addr
3747 				 * and bound source are wildcards
3748 				 * (INADDR_ANY), we want to stop
3749 				 * searching.
3750 				 * We have found a match of IP source
3751 				 * address and source port, which is
3752 				 * refused regardless of the
3753 				 * SO_REUSEADDR setting, so we break.
3754 				 */
3755 				if (IN6_ARE_ADDR_EQUAL(laddr,
3756 				    &ltcp->tcp_bound_source_v6) &&
3757 				    (ltcp->tcp_state == TCPS_LISTEN ||
3758 				    ltcp->tcp_state == TCPS_BOUND))
3759 					break;
3760 			}
3761 		}
3762 		if (ltcp != NULL) {
3763 			/* The port number is busy */
3764 			mutex_exit(&tbf->tf_lock);
3765 		} else {
3766 			/*
3767 			 * This port is ours. Insert in fanout and mark as
3768 			 * bound to prevent others from getting the port
3769 			 * number.
3770 			 */
3771 			tcp->tcp_state = TCPS_BOUND;
3772 			tcp->tcp_lport = htons(port);
3773 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3774 
3775 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3776 			    tcp->tcp_lport)] == tbf);
3777 			tcp_bind_hash_insert(tbf, tcp, 1);
3778 
3779 			mutex_exit(&tbf->tf_lock);
3780 
3781 			/*
3782 			 * We don't want tcp_next_port_to_try to "inherit"
3783 			 * a port number supplied by the user in a bind.
3784 			 */
3785 			if (user_specified)
3786 				return (port);
3787 
3788 			/*
3789 			 * This is the only place where tcp_next_port_to_try
3790 			 * is updated. After the update, it may or may not
3791 			 * be in the valid range.
3792 			 */
3793 			if (!tcp->tcp_anon_priv_bind)
3794 				tcps->tcps_next_port_to_try = port + 1;
3795 			return (port);
3796 		}
3797 
3798 		if (tcp->tcp_anon_priv_bind) {
3799 			port = tcp_get_next_priv_port(tcp);
3800 		} else {
3801 			if (count == 0 && user_specified) {
3802 				/*
3803 				 * We may have to return an anonymous port. So
3804 				 * get one to start with.
3805 				 */
3806 				port =
3807 				    tcp_update_next_port(
3808 				    tcps->tcps_next_port_to_try,
3809 				    tcp, B_TRUE);
3810 				user_specified = B_FALSE;
3811 			} else {
3812 				port = tcp_update_next_port(port + 1, tcp,
3813 				    B_FALSE);
3814 			}
3815 		}
3816 		if (port == 0)
3817 			break;
3818 
3819 		/*
3820 		 * Don't let this loop run forever in the case where
3821 		 * all of the anonymous ports are in use.
3822 		 */
3823 	} while (++count < loopmax);
3824 	return (0);
3825 }
3826 
3827 /*
3828  * tcp_clean_death / tcp_close_detached must not be called more than once
3829  * on a tcp. Thus every function that potentially calls tcp_clean_death
3830  * must check for the tcp state before calling tcp_clean_death.
3831  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3832  * tcp_timer_handler, all check for the tcp state.
3833  */
3834 /* ARGSUSED */
3835 void
3836 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3837 {
3838 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3839 
3840 	freemsg(mp);
3841 	if (tcp->tcp_state > TCPS_BOUND)
3842 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3843 		    ETIMEDOUT, 5);
3844 }
3845 
3846 /*
3847  * We are dying for some reason.  Try to do it gracefully.  (May be called
3848  * as writer.)
3849  *
3850  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3851  * done by a service procedure).
3852  * TBD - Should the return value distinguish between the tcp_t being
3853  * freed and it being reinitialized?
3854  */
3855 static int
3856 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3857 {
3858 	mblk_t	*mp;
3859 	queue_t	*q;
3860 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3861 	sodirect_t	*sodp;
3862 
3863 	TCP_CLD_STAT(tag);
3864 
3865 #if TCP_TAG_CLEAN_DEATH
3866 	tcp->tcp_cleandeathtag = tag;
3867 #endif
3868 
3869 	if (tcp->tcp_fused)
3870 		tcp_unfuse(tcp);
3871 
3872 	if (tcp->tcp_linger_tid != 0 &&
3873 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3874 		tcp_stop_lingering(tcp);
3875 	}
3876 
3877 	ASSERT(tcp != NULL);
3878 	ASSERT((tcp->tcp_family == AF_INET &&
3879 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3880 	    (tcp->tcp_family == AF_INET6 &&
3881 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3882 	    tcp->tcp_ipversion == IPV6_VERSION)));
3883 
3884 	if (TCP_IS_DETACHED(tcp)) {
3885 		if (tcp->tcp_hard_binding) {
3886 			/*
3887 			 * Its an eager that we are dealing with. We close the
3888 			 * eager but in case a conn_ind has already gone to the
3889 			 * listener, let tcp_accept_finish() send a discon_ind
3890 			 * to the listener and drop the last reference. If the
3891 			 * listener doesn't even know about the eager i.e. the
3892 			 * conn_ind hasn't gone up, blow away the eager and drop
3893 			 * the last reference as well. If the conn_ind has gone
3894 			 * up, state should be BOUND. tcp_accept_finish
3895 			 * will figure out that the connection has received a
3896 			 * RST and will send a DISCON_IND to the application.
3897 			 */
3898 			tcp_closei_local(tcp);
3899 			if (!tcp->tcp_tconnind_started) {
3900 				CONN_DEC_REF(tcp->tcp_connp);
3901 			} else {
3902 				tcp->tcp_state = TCPS_BOUND;
3903 			}
3904 		} else {
3905 			tcp_close_detached(tcp);
3906 		}
3907 		return (0);
3908 	}
3909 
3910 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3911 
3912 	/*
3913 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3914 	 * is run) postpone cleaning up the endpoint until service routine
3915 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3916 	 * client_errno since tcp_close uses the client_errno field.
3917 	 */
3918 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3919 		if (err != 0)
3920 			tcp->tcp_client_errno = err;
3921 
3922 		tcp->tcp_deferred_clean_death = B_TRUE;
3923 		return (-1);
3924 	}
3925 
3926 	/* If sodirect, not anymore */
3927 	SOD_PTR_ENTER(tcp, sodp);
3928 	if (sodp != NULL) {
3929 		tcp->tcp_sodirect = NULL;
3930 		mutex_exit(sodp->sod_lock);
3931 	}
3932 
3933 	q = tcp->tcp_rq;
3934 
3935 	/* Trash all inbound data */
3936 	flushq(q, FLUSHALL);
3937 
3938 	/*
3939 	 * If we are at least part way open and there is error
3940 	 * (err==0 implies no error)
3941 	 * notify our client by a T_DISCON_IND.
3942 	 */
3943 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3944 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3945 		    !TCP_IS_SOCKET(tcp)) {
3946 			/*
3947 			 * Send M_FLUSH according to TPI. Because sockets will
3948 			 * (and must) ignore FLUSHR we do that only for TPI
3949 			 * endpoints and sockets in STREAMS mode.
3950 			 */
3951 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3952 		}
3953 		if (tcp->tcp_debug) {
3954 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3955 			    "tcp_clean_death: discon err %d", err);
3956 		}
3957 		mp = mi_tpi_discon_ind(NULL, err, 0);
3958 		if (mp != NULL) {
3959 			putnext(q, mp);
3960 		} else {
3961 			if (tcp->tcp_debug) {
3962 				(void) strlog(TCP_MOD_ID, 0, 1,
3963 				    SL_ERROR|SL_TRACE,
3964 				    "tcp_clean_death, sending M_ERROR");
3965 			}
3966 			(void) putnextctl1(q, M_ERROR, EPROTO);
3967 		}
3968 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3969 			/* SYN_SENT or SYN_RCVD */
3970 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3971 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3972 			/* ESTABLISHED or CLOSE_WAIT */
3973 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3974 		}
3975 	}
3976 
3977 	tcp_reinit(tcp);
3978 	return (-1);
3979 }
3980 
3981 /*
3982  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3983  * to expire, stop the wait and finish the close.
3984  */
3985 static void
3986 tcp_stop_lingering(tcp_t *tcp)
3987 {
3988 	clock_t	delta = 0;
3989 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3990 
3991 	tcp->tcp_linger_tid = 0;
3992 	if (tcp->tcp_state > TCPS_LISTEN) {
3993 		tcp_acceptor_hash_remove(tcp);
3994 		mutex_enter(&tcp->tcp_non_sq_lock);
3995 		if (tcp->tcp_flow_stopped) {
3996 			tcp_clrqfull(tcp);
3997 		}
3998 		mutex_exit(&tcp->tcp_non_sq_lock);
3999 
4000 		if (tcp->tcp_timer_tid != 0) {
4001 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4002 			tcp->tcp_timer_tid = 0;
4003 		}
4004 		/*
4005 		 * Need to cancel those timers which will not be used when
4006 		 * TCP is detached.  This has to be done before the tcp_wq
4007 		 * is set to the global queue.
4008 		 */
4009 		tcp_timers_stop(tcp);
4010 
4011 
4012 		tcp->tcp_detached = B_TRUE;
4013 		ASSERT(tcps->tcps_g_q != NULL);
4014 		tcp->tcp_rq = tcps->tcps_g_q;
4015 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4016 
4017 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4018 			tcp_time_wait_append(tcp);
4019 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4020 			goto finish;
4021 		}
4022 
4023 		/*
4024 		 * If delta is zero the timer event wasn't executed and was
4025 		 * successfully canceled. In this case we need to restart it
4026 		 * with the minimal delta possible.
4027 		 */
4028 		if (delta >= 0) {
4029 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4030 			    delta ? delta : 1);
4031 		}
4032 	} else {
4033 		tcp_closei_local(tcp);
4034 		CONN_DEC_REF(tcp->tcp_connp);
4035 	}
4036 finish:
4037 	/* Signal closing thread that it can complete close */
4038 	mutex_enter(&tcp->tcp_closelock);
4039 	tcp->tcp_detached = B_TRUE;
4040 	ASSERT(tcps->tcps_g_q != NULL);
4041 	tcp->tcp_rq = tcps->tcps_g_q;
4042 	tcp->tcp_wq = WR(tcps->tcps_g_q);
4043 	tcp->tcp_closed = 1;
4044 	cv_signal(&tcp->tcp_closecv);
4045 	mutex_exit(&tcp->tcp_closelock);
4046 }
4047 
4048 /*
4049  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
4050  * expires.
4051  */
4052 static void
4053 tcp_close_linger_timeout(void *arg)
4054 {
4055 	conn_t	*connp = (conn_t *)arg;
4056 	tcp_t 	*tcp = connp->conn_tcp;
4057 
4058 	tcp->tcp_client_errno = ETIMEDOUT;
4059 	tcp_stop_lingering(tcp);
4060 }
4061 
4062 static int
4063 tcp_close(queue_t *q, int flags)
4064 {
4065 	conn_t		*connp = Q_TO_CONN(q);
4066 	tcp_t		*tcp = connp->conn_tcp;
4067 	mblk_t 		*mp = &tcp->tcp_closemp;
4068 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4069 	mblk_t		*bp;
4070 
4071 	ASSERT(WR(q)->q_next == NULL);
4072 	ASSERT(connp->conn_ref >= 2);
4073 
4074 	/*
4075 	 * We are being closed as /dev/tcp or /dev/tcp6.
4076 	 *
4077 	 * Mark the conn as closing. ill_pending_mp_add will not
4078 	 * add any mp to the pending mp list, after this conn has
4079 	 * started closing. Same for sq_pending_mp_add
4080 	 */
4081 	mutex_enter(&connp->conn_lock);
4082 	connp->conn_state_flags |= CONN_CLOSING;
4083 	if (connp->conn_oper_pending_ill != NULL)
4084 		conn_ioctl_cleanup_reqd = B_TRUE;
4085 	CONN_INC_REF_LOCKED(connp);
4086 	mutex_exit(&connp->conn_lock);
4087 	tcp->tcp_closeflags = (uint8_t)flags;
4088 	ASSERT(connp->conn_ref >= 3);
4089 
4090 	/*
4091 	 * tcp_closemp_used is used below without any protection of a lock
4092 	 * as we don't expect any one else to use it concurrently at this
4093 	 * point otherwise it would be a major defect.
4094 	 */
4095 
4096 	if (mp->b_prev == NULL)
4097 		tcp->tcp_closemp_used = B_TRUE;
4098 	else
4099 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4100 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4101 
4102 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4103 
4104 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4105 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4106 
4107 	mutex_enter(&tcp->tcp_closelock);
4108 	while (!tcp->tcp_closed) {
4109 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4110 			/*
4111 			 * The cv_wait_sig() was interrupted. We now do the
4112 			 * following:
4113 			 *
4114 			 * 1) If the endpoint was lingering, we allow this
4115 			 * to be interrupted by cancelling the linger timeout
4116 			 * and closing normally.
4117 			 *
4118 			 * 2) Revert to calling cv_wait()
4119 			 *
4120 			 * We revert to using cv_wait() to avoid an
4121 			 * infinite loop which can occur if the calling
4122 			 * thread is higher priority than the squeue worker
4123 			 * thread and is bound to the same cpu.
4124 			 */
4125 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4126 				mutex_exit(&tcp->tcp_closelock);
4127 				/* Entering squeue, bump ref count. */
4128 				CONN_INC_REF(connp);
4129 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4130 				squeue_enter(connp->conn_sqp, bp,
4131 				    tcp_linger_interrupted, connp,
4132 				    SQTAG_IP_TCP_CLOSE);
4133 				mutex_enter(&tcp->tcp_closelock);
4134 			}
4135 			break;
4136 		}
4137 	}
4138 	while (!tcp->tcp_closed)
4139 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4140 	mutex_exit(&tcp->tcp_closelock);
4141 
4142 	/*
4143 	 * In the case of listener streams that have eagers in the q or q0
4144 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4145 	 * tcp_wq of the eagers point to our queues. By waiting for the
4146 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4147 	 * up their queue pointers and also dropped their references to us.
4148 	 */
4149 	if (tcp->tcp_wait_for_eagers) {
4150 		mutex_enter(&connp->conn_lock);
4151 		while (connp->conn_ref != 1) {
4152 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4153 		}
4154 		mutex_exit(&connp->conn_lock);
4155 	}
4156 	/*
4157 	 * ioctl cleanup. The mp is queued in the
4158 	 * ill_pending_mp or in the sq_pending_mp.
4159 	 */
4160 	if (conn_ioctl_cleanup_reqd)
4161 		conn_ioctl_cleanup(connp);
4162 
4163 	qprocsoff(q);
4164 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4165 
4166 	tcp->tcp_cpid = -1;
4167 
4168 	/*
4169 	 * Drop IP's reference on the conn. This is the last reference
4170 	 * on the connp if the state was less than established. If the
4171 	 * connection has gone into timewait state, then we will have
4172 	 * one ref for the TCP and one more ref (total of two) for the
4173 	 * classifier connected hash list (a timewait connections stays
4174 	 * in connected hash till closed).
4175 	 *
4176 	 * We can't assert the references because there might be other
4177 	 * transient reference places because of some walkers or queued
4178 	 * packets in squeue for the timewait state.
4179 	 */
4180 	CONN_DEC_REF(connp);
4181 	q->q_ptr = WR(q)->q_ptr = NULL;
4182 	return (0);
4183 }
4184 
4185 static int
4186 tcpclose_accept(queue_t *q)
4187 {
4188 	vmem_t	*minor_arena;
4189 	dev_t	conn_dev;
4190 
4191 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4192 
4193 	/*
4194 	 * We had opened an acceptor STREAM for sockfs which is
4195 	 * now being closed due to some error.
4196 	 */
4197 	qprocsoff(q);
4198 
4199 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4200 	conn_dev = (dev_t)RD(q)->q_ptr;
4201 	ASSERT(minor_arena != NULL);
4202 	ASSERT(conn_dev != 0);
4203 	inet_minor_free(minor_arena, conn_dev);
4204 	q->q_ptr = WR(q)->q_ptr = NULL;
4205 	return (0);
4206 }
4207 
4208 /*
4209  * Called by tcp_close() routine via squeue when lingering is
4210  * interrupted by a signal.
4211  */
4212 
4213 /* ARGSUSED */
4214 static void
4215 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4216 {
4217 	conn_t	*connp = (conn_t *)arg;
4218 	tcp_t	*tcp = connp->conn_tcp;
4219 
4220 	freeb(mp);
4221 	if (tcp->tcp_linger_tid != 0 &&
4222 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4223 		tcp_stop_lingering(tcp);
4224 		tcp->tcp_client_errno = EINTR;
4225 	}
4226 }
4227 
4228 /*
4229  * Called by streams close routine via squeues when our client blows off her
4230  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4231  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4232  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4233  * acked.
4234  *
4235  * NOTE: tcp_close potentially returns error when lingering.
4236  * However, the stream head currently does not pass these errors
4237  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4238  * errors to the application (from tsleep()) and not errors
4239  * like ECONNRESET caused by receiving a reset packet.
4240  */
4241 
4242 /* ARGSUSED */
4243 static void
4244 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4245 {
4246 	char	*msg;
4247 	conn_t	*connp = (conn_t *)arg;
4248 	tcp_t	*tcp = connp->conn_tcp;
4249 	clock_t	delta = 0;
4250 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4251 
4252 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4253 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4254 
4255 	/* Cancel any pending timeout */
4256 	if (tcp->tcp_ordrelid != 0) {
4257 		if (tcp->tcp_timeout) {
4258 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4259 		}
4260 		tcp->tcp_ordrelid = 0;
4261 		tcp->tcp_timeout = B_FALSE;
4262 	}
4263 
4264 	mutex_enter(&tcp->tcp_eager_lock);
4265 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4266 		/* Cleanup for listener */
4267 		tcp_eager_cleanup(tcp, 0);
4268 		tcp->tcp_wait_for_eagers = 1;
4269 	}
4270 	mutex_exit(&tcp->tcp_eager_lock);
4271 
4272 	connp->conn_mdt_ok = B_FALSE;
4273 	tcp->tcp_mdt = B_FALSE;
4274 
4275 	connp->conn_lso_ok = B_FALSE;
4276 	tcp->tcp_lso = B_FALSE;
4277 
4278 	msg = NULL;
4279 	switch (tcp->tcp_state) {
4280 	case TCPS_CLOSED:
4281 	case TCPS_IDLE:
4282 	case TCPS_BOUND:
4283 	case TCPS_LISTEN:
4284 		break;
4285 	case TCPS_SYN_SENT:
4286 		msg = "tcp_close, during connect";
4287 		break;
4288 	case TCPS_SYN_RCVD:
4289 		/*
4290 		 * Close during the connect 3-way handshake
4291 		 * but here there may or may not be pending data
4292 		 * already on queue. Process almost same as in
4293 		 * the ESTABLISHED state.
4294 		 */
4295 		/* FALLTHRU */
4296 	default:
4297 		if (tcp->tcp_sodirect != NULL) {
4298 			/* Ok, no more sodirect */
4299 			tcp->tcp_sodirect = NULL;
4300 		}
4301 
4302 		if (tcp->tcp_fused)
4303 			tcp_unfuse(tcp);
4304 
4305 		/*
4306 		 * If SO_LINGER has set a zero linger time, abort the
4307 		 * connection with a reset.
4308 		 */
4309 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4310 			msg = "tcp_close, zero lingertime";
4311 			break;
4312 		}
4313 
4314 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4315 		/*
4316 		 * Abort connection if there is unread data queued.
4317 		 */
4318 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4319 			msg = "tcp_close, unread data";
4320 			break;
4321 		}
4322 		/*
4323 		 * tcp_hard_bound is now cleared thus all packets go through
4324 		 * tcp_lookup. This fact is used by tcp_detach below.
4325 		 *
4326 		 * We have done a qwait() above which could have possibly
4327 		 * drained more messages in turn causing transition to a
4328 		 * different state. Check whether we have to do the rest
4329 		 * of the processing or not.
4330 		 */
4331 		if (tcp->tcp_state <= TCPS_LISTEN)
4332 			break;
4333 
4334 		/*
4335 		 * Transmit the FIN before detaching the tcp_t.
4336 		 * After tcp_detach returns this queue/perimeter
4337 		 * no longer owns the tcp_t thus others can modify it.
4338 		 */
4339 		(void) tcp_xmit_end(tcp);
4340 
4341 		/*
4342 		 * If lingering on close then wait until the fin is acked,
4343 		 * the SO_LINGER time passes, or a reset is sent/received.
4344 		 */
4345 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4346 		    !(tcp->tcp_fin_acked) &&
4347 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4348 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4349 				tcp->tcp_client_errno = EWOULDBLOCK;
4350 			} else if (tcp->tcp_client_errno == 0) {
4351 
4352 				ASSERT(tcp->tcp_linger_tid == 0);
4353 
4354 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4355 				    tcp_close_linger_timeout,
4356 				    tcp->tcp_lingertime * hz);
4357 
4358 				/* tcp_close_linger_timeout will finish close */
4359 				if (tcp->tcp_linger_tid == 0)
4360 					tcp->tcp_client_errno = ENOSR;
4361 				else
4362 					return;
4363 			}
4364 
4365 			/*
4366 			 * Check if we need to detach or just close
4367 			 * the instance.
4368 			 */
4369 			if (tcp->tcp_state <= TCPS_LISTEN)
4370 				break;
4371 		}
4372 
4373 		/*
4374 		 * Make sure that no other thread will access the tcp_rq of
4375 		 * this instance (through lookups etc.) as tcp_rq will go
4376 		 * away shortly.
4377 		 */
4378 		tcp_acceptor_hash_remove(tcp);
4379 
4380 		mutex_enter(&tcp->tcp_non_sq_lock);
4381 		if (tcp->tcp_flow_stopped) {
4382 			tcp_clrqfull(tcp);
4383 		}
4384 		mutex_exit(&tcp->tcp_non_sq_lock);
4385 
4386 		if (tcp->tcp_timer_tid != 0) {
4387 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4388 			tcp->tcp_timer_tid = 0;
4389 		}
4390 		/*
4391 		 * Need to cancel those timers which will not be used when
4392 		 * TCP is detached.  This has to be done before the tcp_wq
4393 		 * is set to the global queue.
4394 		 */
4395 		tcp_timers_stop(tcp);
4396 
4397 		tcp->tcp_detached = B_TRUE;
4398 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4399 			tcp_time_wait_append(tcp);
4400 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4401 			ASSERT(connp->conn_ref >= 3);
4402 			goto finish;
4403 		}
4404 
4405 		/*
4406 		 * If delta is zero the timer event wasn't executed and was
4407 		 * successfully canceled. In this case we need to restart it
4408 		 * with the minimal delta possible.
4409 		 */
4410 		if (delta >= 0)
4411 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4412 			    delta ? delta : 1);
4413 
4414 		ASSERT(connp->conn_ref >= 3);
4415 		goto finish;
4416 	}
4417 
4418 	/* Detach did not complete. Still need to remove q from stream. */
4419 	if (msg) {
4420 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4421 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4422 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4423 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4424 		    tcp->tcp_state == TCPS_SYN_RCVD)
4425 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4426 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4427 	}
4428 
4429 	tcp_closei_local(tcp);
4430 	CONN_DEC_REF(connp);
4431 	ASSERT(connp->conn_ref >= 2);
4432 
4433 finish:
4434 	/*
4435 	 * Although packets are always processed on the correct
4436 	 * tcp's perimeter and access is serialized via squeue's,
4437 	 * IP still needs a queue when sending packets in time_wait
4438 	 * state so use WR(tcps_g_q) till ip_output() can be
4439 	 * changed to deal with just connp. For read side, we
4440 	 * could have set tcp_rq to NULL but there are some cases
4441 	 * in tcp_rput_data() from early days of this code which
4442 	 * do a putnext without checking if tcp is closed. Those
4443 	 * need to be identified before both tcp_rq and tcp_wq
4444 	 * can be set to NULL and tcps_g_q can disappear forever.
4445 	 */
4446 	mutex_enter(&tcp->tcp_closelock);
4447 	/*
4448 	 * Don't change the queues in the case of a listener that has
4449 	 * eagers in its q or q0. It could surprise the eagers.
4450 	 * Instead wait for the eagers outside the squeue.
4451 	 */
4452 	if (!tcp->tcp_wait_for_eagers) {
4453 		tcp->tcp_detached = B_TRUE;
4454 		/*
4455 		 * When default queue is closing we set tcps_g_q to NULL
4456 		 * after the close is done.
4457 		 */
4458 		ASSERT(tcps->tcps_g_q != NULL);
4459 		tcp->tcp_rq = tcps->tcps_g_q;
4460 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4461 	}
4462 
4463 	/* Signal tcp_close() to finish closing. */
4464 	tcp->tcp_closed = 1;
4465 	cv_signal(&tcp->tcp_closecv);
4466 	mutex_exit(&tcp->tcp_closelock);
4467 }
4468 
4469 
4470 /*
4471  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4472  * Some stream heads get upset if they see these later on as anything but NULL.
4473  */
4474 static void
4475 tcp_close_mpp(mblk_t **mpp)
4476 {
4477 	mblk_t	*mp;
4478 
4479 	if ((mp = *mpp) != NULL) {
4480 		do {
4481 			mp->b_next = NULL;
4482 			mp->b_prev = NULL;
4483 		} while ((mp = mp->b_cont) != NULL);
4484 
4485 		mp = *mpp;
4486 		*mpp = NULL;
4487 		freemsg(mp);
4488 	}
4489 }
4490 
4491 /* Do detached close. */
4492 static void
4493 tcp_close_detached(tcp_t *tcp)
4494 {
4495 	if (tcp->tcp_fused)
4496 		tcp_unfuse(tcp);
4497 
4498 	/*
4499 	 * Clustering code serializes TCP disconnect callbacks and
4500 	 * cluster tcp list walks by blocking a TCP disconnect callback
4501 	 * if a cluster tcp list walk is in progress. This ensures
4502 	 * accurate accounting of TCPs in the cluster code even though
4503 	 * the TCP list walk itself is not atomic.
4504 	 */
4505 	tcp_closei_local(tcp);
4506 	CONN_DEC_REF(tcp->tcp_connp);
4507 }
4508 
4509 /*
4510  * Stop all TCP timers, and free the timer mblks if requested.
4511  */
4512 void
4513 tcp_timers_stop(tcp_t *tcp)
4514 {
4515 	if (tcp->tcp_timer_tid != 0) {
4516 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4517 		tcp->tcp_timer_tid = 0;
4518 	}
4519 	if (tcp->tcp_ka_tid != 0) {
4520 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4521 		tcp->tcp_ka_tid = 0;
4522 	}
4523 	if (tcp->tcp_ack_tid != 0) {
4524 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4525 		tcp->tcp_ack_tid = 0;
4526 	}
4527 	if (tcp->tcp_push_tid != 0) {
4528 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4529 		tcp->tcp_push_tid = 0;
4530 	}
4531 }
4532 
4533 /*
4534  * The tcp_t is going away. Remove it from all lists and set it
4535  * to TCPS_CLOSED. The freeing up of memory is deferred until
4536  * tcp_inactive. This is needed since a thread in tcp_rput might have
4537  * done a CONN_INC_REF on this structure before it was removed from the
4538  * hashes.
4539  */
4540 static void
4541 tcp_closei_local(tcp_t *tcp)
4542 {
4543 	ire_t 	*ire;
4544 	conn_t	*connp = tcp->tcp_connp;
4545 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4546 
4547 	if (!TCP_IS_SOCKET(tcp))
4548 		tcp_acceptor_hash_remove(tcp);
4549 
4550 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4551 	tcp->tcp_ibsegs = 0;
4552 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4553 	tcp->tcp_obsegs = 0;
4554 
4555 	/*
4556 	 * If we are an eager connection hanging off a listener that
4557 	 * hasn't formally accepted the connection yet, get off his
4558 	 * list and blow off any data that we have accumulated.
4559 	 */
4560 	if (tcp->tcp_listener != NULL) {
4561 		tcp_t	*listener = tcp->tcp_listener;
4562 		mutex_enter(&listener->tcp_eager_lock);
4563 		/*
4564 		 * tcp_tconnind_started == B_TRUE means that the
4565 		 * conn_ind has already gone to listener. At
4566 		 * this point, eager will be closed but we
4567 		 * leave it in listeners eager list so that
4568 		 * if listener decides to close without doing
4569 		 * accept, we can clean this up. In tcp_wput_accept
4570 		 * we take care of the case of accept on closed
4571 		 * eager.
4572 		 */
4573 		if (!tcp->tcp_tconnind_started) {
4574 			tcp_eager_unlink(tcp);
4575 			mutex_exit(&listener->tcp_eager_lock);
4576 			/*
4577 			 * We don't want to have any pointers to the
4578 			 * listener queue, after we have released our
4579 			 * reference on the listener
4580 			 */
4581 			ASSERT(tcps->tcps_g_q != NULL);
4582 			tcp->tcp_rq = tcps->tcps_g_q;
4583 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4584 			CONN_DEC_REF(listener->tcp_connp);
4585 		} else {
4586 			mutex_exit(&listener->tcp_eager_lock);
4587 		}
4588 	}
4589 
4590 	/* Stop all the timers */
4591 	tcp_timers_stop(tcp);
4592 
4593 	if (tcp->tcp_state == TCPS_LISTEN) {
4594 		if (tcp->tcp_ip_addr_cache) {
4595 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4596 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4597 			tcp->tcp_ip_addr_cache = NULL;
4598 		}
4599 	}
4600 	mutex_enter(&tcp->tcp_non_sq_lock);
4601 	if (tcp->tcp_flow_stopped)
4602 		tcp_clrqfull(tcp);
4603 	mutex_exit(&tcp->tcp_non_sq_lock);
4604 
4605 	tcp_bind_hash_remove(tcp);
4606 	/*
4607 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4608 	 * is trying to remove this tcp from the time wait list, we will
4609 	 * block in tcp_time_wait_remove while trying to acquire the
4610 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4611 	 * requires the ipcl_hash_remove to be ordered after the
4612 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4613 	 */
4614 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4615 		(void) tcp_time_wait_remove(tcp, NULL);
4616 	CL_INET_DISCONNECT(tcp);
4617 	ipcl_hash_remove(connp);
4618 
4619 	/*
4620 	 * Delete the cached ire in conn_ire_cache and also mark
4621 	 * the conn as CONDEMNED
4622 	 */
4623 	mutex_enter(&connp->conn_lock);
4624 	connp->conn_state_flags |= CONN_CONDEMNED;
4625 	ire = connp->conn_ire_cache;
4626 	connp->conn_ire_cache = NULL;
4627 	mutex_exit(&connp->conn_lock);
4628 	if (ire != NULL)
4629 		IRE_REFRELE_NOTR(ire);
4630 
4631 	/* Need to cleanup any pending ioctls */
4632 	ASSERT(tcp->tcp_time_wait_next == NULL);
4633 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4634 	ASSERT(tcp->tcp_time_wait_expire == 0);
4635 	tcp->tcp_state = TCPS_CLOSED;
4636 
4637 	/* Release any SSL context */
4638 	if (tcp->tcp_kssl_ent != NULL) {
4639 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4640 		tcp->tcp_kssl_ent = NULL;
4641 	}
4642 	if (tcp->tcp_kssl_ctx != NULL) {
4643 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4644 		tcp->tcp_kssl_ctx = NULL;
4645 	}
4646 	tcp->tcp_kssl_pending = B_FALSE;
4647 
4648 	tcp_ipsec_cleanup(tcp);
4649 }
4650 
4651 /*
4652  * tcp is dying (called from ipcl_conn_destroy and error cases).
4653  * Free the tcp_t in either case.
4654  */
4655 void
4656 tcp_free(tcp_t *tcp)
4657 {
4658 	mblk_t	*mp;
4659 	ip6_pkt_t	*ipp;
4660 
4661 	ASSERT(tcp != NULL);
4662 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4663 
4664 	tcp->tcp_rq = NULL;
4665 	tcp->tcp_wq = NULL;
4666 
4667 	tcp_close_mpp(&tcp->tcp_xmit_head);
4668 	tcp_close_mpp(&tcp->tcp_reass_head);
4669 	if (tcp->tcp_rcv_list != NULL) {
4670 		/* Free b_next chain */
4671 		tcp_close_mpp(&tcp->tcp_rcv_list);
4672 	}
4673 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4674 		freemsg(mp);
4675 	}
4676 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4677 		freemsg(mp);
4678 	}
4679 
4680 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4681 		freeb(tcp->tcp_fused_sigurg_mp);
4682 		tcp->tcp_fused_sigurg_mp = NULL;
4683 	}
4684 
4685 	if (tcp->tcp_sack_info != NULL) {
4686 		if (tcp->tcp_notsack_list != NULL) {
4687 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4688 		}
4689 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4690 	}
4691 
4692 	if (tcp->tcp_hopopts != NULL) {
4693 		mi_free(tcp->tcp_hopopts);
4694 		tcp->tcp_hopopts = NULL;
4695 		tcp->tcp_hopoptslen = 0;
4696 	}
4697 	ASSERT(tcp->tcp_hopoptslen == 0);
4698 	if (tcp->tcp_dstopts != NULL) {
4699 		mi_free(tcp->tcp_dstopts);
4700 		tcp->tcp_dstopts = NULL;
4701 		tcp->tcp_dstoptslen = 0;
4702 	}
4703 	ASSERT(tcp->tcp_dstoptslen == 0);
4704 	if (tcp->tcp_rtdstopts != NULL) {
4705 		mi_free(tcp->tcp_rtdstopts);
4706 		tcp->tcp_rtdstopts = NULL;
4707 		tcp->tcp_rtdstoptslen = 0;
4708 	}
4709 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4710 	if (tcp->tcp_rthdr != NULL) {
4711 		mi_free(tcp->tcp_rthdr);
4712 		tcp->tcp_rthdr = NULL;
4713 		tcp->tcp_rthdrlen = 0;
4714 	}
4715 	ASSERT(tcp->tcp_rthdrlen == 0);
4716 
4717 	ipp = &tcp->tcp_sticky_ipp;
4718 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4719 	    IPPF_RTHDR))
4720 		ip6_pkt_free(ipp);
4721 
4722 	/*
4723 	 * Free memory associated with the tcp/ip header template.
4724 	 */
4725 
4726 	if (tcp->tcp_iphc != NULL)
4727 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4728 
4729 	/*
4730 	 * Following is really a blowing away a union.
4731 	 * It happens to have exactly two members of identical size
4732 	 * the following code is enough.
4733 	 */
4734 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4735 
4736 	if (tcp->tcp_tracebuf != NULL) {
4737 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4738 		tcp->tcp_tracebuf = NULL;
4739 	}
4740 }
4741 
4742 
4743 /*
4744  * Put a connection confirmation message upstream built from the
4745  * address information within 'iph' and 'tcph'.  Report our success or failure.
4746  */
4747 static boolean_t
4748 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4749     mblk_t **defermp)
4750 {
4751 	sin_t	sin;
4752 	sin6_t	sin6;
4753 	mblk_t	*mp;
4754 	char	*optp = NULL;
4755 	int	optlen = 0;
4756 	cred_t	*cr;
4757 
4758 	if (defermp != NULL)
4759 		*defermp = NULL;
4760 
4761 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4762 		/*
4763 		 * Return in T_CONN_CON results of option negotiation through
4764 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4765 		 * negotiation, then what is received from remote end needs
4766 		 * to be taken into account but there is no such thing (yet?)
4767 		 * in our TCP/IP.
4768 		 * Note: We do not use mi_offset_param() here as
4769 		 * tcp_opts_conn_req contents do not directly come from
4770 		 * an application and are either generated in kernel or
4771 		 * from user input that was already verified.
4772 		 */
4773 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4774 		optp = (char *)(mp->b_rptr +
4775 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4776 		optlen = (int)
4777 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4778 	}
4779 
4780 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4781 		ipha_t *ipha = (ipha_t *)iphdr;
4782 
4783 		/* packet is IPv4 */
4784 		if (tcp->tcp_family == AF_INET) {
4785 			sin = sin_null;
4786 			sin.sin_addr.s_addr = ipha->ipha_src;
4787 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4788 			sin.sin_family = AF_INET;
4789 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4790 			    (int)sizeof (sin_t), optp, optlen);
4791 		} else {
4792 			sin6 = sin6_null;
4793 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4794 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4795 			sin6.sin6_family = AF_INET6;
4796 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4797 			    (int)sizeof (sin6_t), optp, optlen);
4798 
4799 		}
4800 	} else {
4801 		ip6_t	*ip6h = (ip6_t *)iphdr;
4802 
4803 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4804 		ASSERT(tcp->tcp_family == AF_INET6);
4805 		sin6 = sin6_null;
4806 		sin6.sin6_addr = ip6h->ip6_src;
4807 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4808 		sin6.sin6_family = AF_INET6;
4809 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4810 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4811 		    (int)sizeof (sin6_t), optp, optlen);
4812 	}
4813 
4814 	if (!mp)
4815 		return (B_FALSE);
4816 
4817 	if ((cr = DB_CRED(idmp)) != NULL) {
4818 		mblk_setcred(mp, cr);
4819 		DB_CPID(mp) = DB_CPID(idmp);
4820 	}
4821 
4822 	if (defermp == NULL)
4823 		putnext(tcp->tcp_rq, mp);
4824 	else
4825 		*defermp = mp;
4826 
4827 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4828 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4829 	return (B_TRUE);
4830 }
4831 
4832 /*
4833  * Defense for the SYN attack -
4834  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4835  *    one from the list of droppable eagers. This list is a subset of q0.
4836  *    see comments before the definition of MAKE_DROPPABLE().
4837  * 2. Don't drop a SYN request before its first timeout. This gives every
4838  *    request at least til the first timeout to complete its 3-way handshake.
4839  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4840  *    requests currently on the queue that has timed out. This will be used
4841  *    as an indicator of whether an attack is under way, so that appropriate
4842  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4843  *    either when eager goes into ESTABLISHED, or gets freed up.)
4844  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4845  *    # of timeout drops back to <= q0len/32 => SYN alert off
4846  */
4847 static boolean_t
4848 tcp_drop_q0(tcp_t *tcp)
4849 {
4850 	tcp_t	*eager;
4851 	mblk_t	*mp;
4852 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4853 
4854 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4855 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4856 
4857 	/* Pick oldest eager from the list of droppable eagers */
4858 	eager = tcp->tcp_eager_prev_drop_q0;
4859 
4860 	/* If list is empty. return B_FALSE */
4861 	if (eager == tcp) {
4862 		return (B_FALSE);
4863 	}
4864 
4865 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4866 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4867 		return (B_FALSE);
4868 
4869 	/*
4870 	 * Take this eager out from the list of droppable eagers since we are
4871 	 * going to drop it.
4872 	 */
4873 	MAKE_UNDROPPABLE(eager);
4874 
4875 	if (tcp->tcp_debug) {
4876 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4877 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4878 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4879 		    tcp->tcp_conn_req_cnt_q0,
4880 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4881 	}
4882 
4883 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4884 
4885 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4886 	CONN_INC_REF(eager->tcp_connp);
4887 
4888 	/* Mark the IRE created for this SYN request temporary */
4889 	tcp_ip_ire_mark_advice(eager);
4890 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4891 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4892 
4893 	return (B_TRUE);
4894 }
4895 
4896 int
4897 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4898     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4899 {
4900 	tcp_t 		*ltcp = lconnp->conn_tcp;
4901 	tcp_t		*tcp = connp->conn_tcp;
4902 	mblk_t		*tpi_mp;
4903 	ipha_t		*ipha;
4904 	ip6_t		*ip6h;
4905 	sin6_t 		sin6;
4906 	in6_addr_t 	v6dst;
4907 	int		err;
4908 	int		ifindex = 0;
4909 	cred_t		*cr;
4910 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4911 
4912 	if (ipvers == IPV4_VERSION) {
4913 		ipha = (ipha_t *)mp->b_rptr;
4914 
4915 		connp->conn_send = ip_output;
4916 		connp->conn_recv = tcp_input;
4917 
4918 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4919 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4920 
4921 		sin6 = sin6_null;
4922 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4923 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4924 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4925 		sin6.sin6_family = AF_INET6;
4926 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4927 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4928 		if (tcp->tcp_recvdstaddr) {
4929 			sin6_t	sin6d;
4930 
4931 			sin6d = sin6_null;
4932 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4933 			    &sin6d.sin6_addr);
4934 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4935 			sin6d.sin6_family = AF_INET;
4936 			tpi_mp = mi_tpi_extconn_ind(NULL,
4937 			    (char *)&sin6d, sizeof (sin6_t),
4938 			    (char *)&tcp,
4939 			    (t_scalar_t)sizeof (intptr_t),
4940 			    (char *)&sin6d, sizeof (sin6_t),
4941 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4942 		} else {
4943 			tpi_mp = mi_tpi_conn_ind(NULL,
4944 			    (char *)&sin6, sizeof (sin6_t),
4945 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4946 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4947 		}
4948 	} else {
4949 		ip6h = (ip6_t *)mp->b_rptr;
4950 
4951 		connp->conn_send = ip_output_v6;
4952 		connp->conn_recv = tcp_input;
4953 
4954 		connp->conn_srcv6 = ip6h->ip6_dst;
4955 		connp->conn_remv6 = ip6h->ip6_src;
4956 
4957 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4958 		ifindex = (int)DB_CKSUMSTUFF(mp);
4959 		DB_CKSUMSTUFF(mp) = 0;
4960 
4961 		sin6 = sin6_null;
4962 		sin6.sin6_addr = ip6h->ip6_src;
4963 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4964 		sin6.sin6_family = AF_INET6;
4965 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4966 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4967 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4968 
4969 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4970 			/* Pass up the scope_id of remote addr */
4971 			sin6.sin6_scope_id = ifindex;
4972 		} else {
4973 			sin6.sin6_scope_id = 0;
4974 		}
4975 		if (tcp->tcp_recvdstaddr) {
4976 			sin6_t	sin6d;
4977 
4978 			sin6d = sin6_null;
4979 			sin6.sin6_addr = ip6h->ip6_dst;
4980 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4981 			sin6d.sin6_family = AF_INET;
4982 			tpi_mp = mi_tpi_extconn_ind(NULL,
4983 			    (char *)&sin6d, sizeof (sin6_t),
4984 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4985 			    (char *)&sin6d, sizeof (sin6_t),
4986 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4987 		} else {
4988 			tpi_mp = mi_tpi_conn_ind(NULL,
4989 			    (char *)&sin6, sizeof (sin6_t),
4990 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4991 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4992 		}
4993 	}
4994 
4995 	if (tpi_mp == NULL)
4996 		return (ENOMEM);
4997 
4998 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4999 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5000 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
5001 	connp->conn_fully_bound = B_FALSE;
5002 
5003 	if (tcps->tcps_trace)
5004 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5005 
5006 	/* Inherit information from the "parent" */
5007 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5008 	tcp->tcp_family = ltcp->tcp_family;
5009 	tcp->tcp_wq = ltcp->tcp_wq;
5010 	tcp->tcp_rq = ltcp->tcp_rq;
5011 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
5012 	tcp->tcp_detached = B_TRUE;
5013 	if ((err = tcp_init_values(tcp)) != 0) {
5014 		freemsg(tpi_mp);
5015 		return (err);
5016 	}
5017 
5018 	if (ipvers == IPV4_VERSION) {
5019 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
5020 			freemsg(tpi_mp);
5021 			return (err);
5022 		}
5023 		ASSERT(tcp->tcp_ipha != NULL);
5024 	} else {
5025 		/* ifindex must be already set */
5026 		ASSERT(ifindex != 0);
5027 
5028 		if (ltcp->tcp_bound_if != 0) {
5029 			/*
5030 			 * Set newtcp's bound_if equal to
5031 			 * listener's value. If ifindex is
5032 			 * not the same as ltcp->tcp_bound_if,
5033 			 * it must be a packet for the ipmp group
5034 			 * of interfaces
5035 			 */
5036 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
5037 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
5038 			tcp->tcp_bound_if = ifindex;
5039 		}
5040 
5041 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
5042 		tcp->tcp_recvifindex = 0;
5043 		tcp->tcp_recvhops = 0xffffffffU;
5044 		ASSERT(tcp->tcp_ip6h != NULL);
5045 	}
5046 
5047 	tcp->tcp_lport = ltcp->tcp_lport;
5048 
5049 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
5050 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
5051 			/*
5052 			 * Listener had options of some sort; eager inherits.
5053 			 * Free up the eager template and allocate one
5054 			 * of the right size.
5055 			 */
5056 			if (tcp->tcp_hdr_grown) {
5057 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
5058 			} else {
5059 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5060 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
5061 			}
5062 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5063 			    KM_NOSLEEP);
5064 			if (tcp->tcp_iphc == NULL) {
5065 				tcp->tcp_iphc_len = 0;
5066 				freemsg(tpi_mp);
5067 				return (ENOMEM);
5068 			}
5069 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5070 			tcp->tcp_hdr_grown = B_TRUE;
5071 		}
5072 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5073 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5074 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5075 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5076 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5077 
5078 		/*
5079 		 * Copy the IP+TCP header template from listener to eager
5080 		 */
5081 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5082 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5083 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5084 			    IPPROTO_RAW) {
5085 				tcp->tcp_ip6h =
5086 				    (ip6_t *)(tcp->tcp_iphc +
5087 				    sizeof (ip6i_t));
5088 			} else {
5089 				tcp->tcp_ip6h =
5090 				    (ip6_t *)(tcp->tcp_iphc);
5091 			}
5092 			tcp->tcp_ipha = NULL;
5093 		} else {
5094 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5095 			tcp->tcp_ip6h = NULL;
5096 		}
5097 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5098 		    tcp->tcp_ip_hdr_len);
5099 	} else {
5100 		/*
5101 		 * only valid case when ipversion of listener and
5102 		 * eager differ is when listener is IPv6 and
5103 		 * eager is IPv4.
5104 		 * Eager header template has been initialized to the
5105 		 * maximum v4 header sizes, which includes space for
5106 		 * TCP and IP options.
5107 		 */
5108 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5109 		    (tcp->tcp_ipversion == IPV4_VERSION));
5110 		ASSERT(tcp->tcp_iphc_len >=
5111 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5112 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5113 		/* copy IP header fields individually */
5114 		tcp->tcp_ipha->ipha_ttl =
5115 		    ltcp->tcp_ip6h->ip6_hops;
5116 		bcopy(ltcp->tcp_tcph->th_lport,
5117 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5118 	}
5119 
5120 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5121 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5122 	    sizeof (in_port_t));
5123 
5124 	if (ltcp->tcp_lport == 0) {
5125 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5126 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5127 		    sizeof (in_port_t));
5128 	}
5129 
5130 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5131 		ASSERT(ipha != NULL);
5132 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5133 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5134 
5135 		/* Source routing option copyover (reverse it) */
5136 		if (tcps->tcps_rev_src_routes)
5137 			tcp_opt_reverse(tcp, ipha);
5138 	} else {
5139 		ASSERT(ip6h != NULL);
5140 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5141 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5142 	}
5143 
5144 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5145 	ASSERT(!tcp->tcp_tconnind_started);
5146 	/*
5147 	 * If the SYN contains a credential, it's a loopback packet; attach
5148 	 * the credential to the TPI message.
5149 	 */
5150 	if ((cr = DB_CRED(idmp)) != NULL) {
5151 		mblk_setcred(tpi_mp, cr);
5152 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5153 	}
5154 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5155 
5156 	/* Inherit the listener's SSL protection state */
5157 
5158 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5159 		kssl_hold_ent(tcp->tcp_kssl_ent);
5160 		tcp->tcp_kssl_pending = B_TRUE;
5161 	}
5162 
5163 	return (0);
5164 }
5165 
5166 
5167 int
5168 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5169     tcph_t *tcph, mblk_t *idmp)
5170 {
5171 	tcp_t 		*ltcp = lconnp->conn_tcp;
5172 	tcp_t		*tcp = connp->conn_tcp;
5173 	sin_t		sin;
5174 	mblk_t		*tpi_mp = NULL;
5175 	int		err;
5176 	cred_t		*cr;
5177 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5178 
5179 	sin = sin_null;
5180 	sin.sin_addr.s_addr = ipha->ipha_src;
5181 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5182 	sin.sin_family = AF_INET;
5183 	if (ltcp->tcp_recvdstaddr) {
5184 		sin_t	sind;
5185 
5186 		sind = sin_null;
5187 		sind.sin_addr.s_addr = ipha->ipha_dst;
5188 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5189 		sind.sin_family = AF_INET;
5190 		tpi_mp = mi_tpi_extconn_ind(NULL,
5191 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5192 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5193 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5194 	} else {
5195 		tpi_mp = mi_tpi_conn_ind(NULL,
5196 		    (char *)&sin, sizeof (sin_t),
5197 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5198 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5199 	}
5200 
5201 	if (tpi_mp == NULL) {
5202 		return (ENOMEM);
5203 	}
5204 
5205 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5206 	connp->conn_send = ip_output;
5207 	connp->conn_recv = tcp_input;
5208 	connp->conn_fully_bound = B_FALSE;
5209 
5210 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5211 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5212 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5213 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5214 
5215 	if (tcps->tcps_trace) {
5216 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5217 	}
5218 
5219 	/* Inherit information from the "parent" */
5220 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5221 	tcp->tcp_family = ltcp->tcp_family;
5222 	tcp->tcp_wq = ltcp->tcp_wq;
5223 	tcp->tcp_rq = ltcp->tcp_rq;
5224 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5225 	tcp->tcp_detached = B_TRUE;
5226 	if ((err = tcp_init_values(tcp)) != 0) {
5227 		freemsg(tpi_mp);
5228 		return (err);
5229 	}
5230 
5231 	/*
5232 	 * Let's make sure that eager tcp template has enough space to
5233 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5234 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5235 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5236 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5237 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5238 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5239 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5240 	 */
5241 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5242 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5243 
5244 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5245 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5246 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5247 	tcp->tcp_ttl = ltcp->tcp_ttl;
5248 	tcp->tcp_tos = ltcp->tcp_tos;
5249 
5250 	/* Copy the IP+TCP header template from listener to eager */
5251 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5252 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5253 	tcp->tcp_ip6h = NULL;
5254 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5255 	    tcp->tcp_ip_hdr_len);
5256 
5257 	/* Initialize the IP addresses and Ports */
5258 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5259 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5260 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5261 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5262 
5263 	/* Source routing option copyover (reverse it) */
5264 	if (tcps->tcps_rev_src_routes)
5265 		tcp_opt_reverse(tcp, ipha);
5266 
5267 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5268 	ASSERT(!tcp->tcp_tconnind_started);
5269 
5270 	/*
5271 	 * If the SYN contains a credential, it's a loopback packet; attach
5272 	 * the credential to the TPI message.
5273 	 */
5274 	if ((cr = DB_CRED(idmp)) != NULL) {
5275 		mblk_setcred(tpi_mp, cr);
5276 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5277 	}
5278 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5279 
5280 	/* Inherit the listener's SSL protection state */
5281 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5282 		kssl_hold_ent(tcp->tcp_kssl_ent);
5283 		tcp->tcp_kssl_pending = B_TRUE;
5284 	}
5285 
5286 	return (0);
5287 }
5288 
5289 /*
5290  * sets up conn for ipsec.
5291  * if the first mblk is M_CTL it is consumed and mpp is updated.
5292  * in case of error mpp is freed.
5293  */
5294 conn_t *
5295 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5296 {
5297 	conn_t 		*connp = tcp->tcp_connp;
5298 	conn_t 		*econnp;
5299 	squeue_t 	*new_sqp;
5300 	mblk_t 		*first_mp = *mpp;
5301 	mblk_t		*mp = *mpp;
5302 	boolean_t	mctl_present = B_FALSE;
5303 	uint_t		ipvers;
5304 
5305 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5306 	if (econnp == NULL) {
5307 		freemsg(first_mp);
5308 		return (NULL);
5309 	}
5310 	if (DB_TYPE(mp) == M_CTL) {
5311 		if (mp->b_cont == NULL ||
5312 		    mp->b_cont->b_datap->db_type != M_DATA) {
5313 			freemsg(first_mp);
5314 			return (NULL);
5315 		}
5316 		mp = mp->b_cont;
5317 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5318 			freemsg(first_mp);
5319 			return (NULL);
5320 		}
5321 
5322 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5323 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5324 		mctl_present = B_TRUE;
5325 	} else {
5326 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5327 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5328 	}
5329 
5330 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5331 	DB_CKSUMSTART(mp) = 0;
5332 
5333 	ASSERT(OK_32PTR(mp->b_rptr));
5334 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5335 	if (ipvers == IPV4_VERSION) {
5336 		uint16_t  	*up;
5337 		uint32_t	ports;
5338 		ipha_t		*ipha;
5339 
5340 		ipha = (ipha_t *)mp->b_rptr;
5341 		up = (uint16_t *)((uchar_t *)ipha +
5342 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5343 		ports = *(uint32_t *)up;
5344 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5345 		    ipha->ipha_dst, ipha->ipha_src, ports);
5346 	} else {
5347 		uint16_t  	*up;
5348 		uint32_t	ports;
5349 		uint16_t	ip_hdr_len;
5350 		uint8_t		*nexthdrp;
5351 		ip6_t 		*ip6h;
5352 		tcph_t		*tcph;
5353 
5354 		ip6h = (ip6_t *)mp->b_rptr;
5355 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5356 			ip_hdr_len = IPV6_HDR_LEN;
5357 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5358 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5359 			CONN_DEC_REF(econnp);
5360 			freemsg(first_mp);
5361 			return (NULL);
5362 		}
5363 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5364 		up = (uint16_t *)tcph->th_lport;
5365 		ports = *(uint32_t *)up;
5366 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5367 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5368 	}
5369 
5370 	/*
5371 	 * The caller already ensured that there is a sqp present.
5372 	 */
5373 	econnp->conn_sqp = new_sqp;
5374 
5375 	if (connp->conn_policy != NULL) {
5376 		ipsec_in_t *ii;
5377 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5378 		ASSERT(ii->ipsec_in_policy == NULL);
5379 		IPPH_REFHOLD(connp->conn_policy);
5380 		ii->ipsec_in_policy = connp->conn_policy;
5381 
5382 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5383 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5384 			CONN_DEC_REF(econnp);
5385 			freemsg(first_mp);
5386 			return (NULL);
5387 		}
5388 	}
5389 
5390 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5391 		CONN_DEC_REF(econnp);
5392 		freemsg(first_mp);
5393 		return (NULL);
5394 	}
5395 
5396 	/*
5397 	 * If we know we have some policy, pass the "IPSEC"
5398 	 * options size TCP uses this adjust the MSS.
5399 	 */
5400 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5401 	if (mctl_present) {
5402 		freeb(first_mp);
5403 		*mpp = mp;
5404 	}
5405 
5406 	return (econnp);
5407 }
5408 
5409 /*
5410  * tcp_get_conn/tcp_free_conn
5411  *
5412  * tcp_get_conn is used to get a clean tcp connection structure.
5413  * It tries to reuse the connections put on the freelist by the
5414  * time_wait_collector failing which it goes to kmem_cache. This
5415  * way has two benefits compared to just allocating from and
5416  * freeing to kmem_cache.
5417  * 1) The time_wait_collector can free (which includes the cleanup)
5418  * outside the squeue. So when the interrupt comes, we have a clean
5419  * connection sitting in the freelist. Obviously, this buys us
5420  * performance.
5421  *
5422  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5423  * has multiple disadvantages - tying up the squeue during alloc, and the
5424  * fact that IPSec policy initialization has to happen here which
5425  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5426  * But allocating the conn/tcp in IP land is also not the best since
5427  * we can't check the 'q' and 'q0' which are protected by squeue and
5428  * blindly allocate memory which might have to be freed here if we are
5429  * not allowed to accept the connection. By using the freelist and
5430  * putting the conn/tcp back in freelist, we don't pay a penalty for
5431  * allocating memory without checking 'q/q0' and freeing it if we can't
5432  * accept the connection.
5433  *
5434  * Care should be taken to put the conn back in the same squeue's freelist
5435  * from which it was allocated. Best results are obtained if conn is
5436  * allocated from listener's squeue and freed to the same. Time wait
5437  * collector will free up the freelist is the connection ends up sitting
5438  * there for too long.
5439  */
5440 void *
5441 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5442 {
5443 	tcp_t			*tcp = NULL;
5444 	conn_t			*connp = NULL;
5445 	squeue_t		*sqp = (squeue_t *)arg;
5446 	tcp_squeue_priv_t 	*tcp_time_wait;
5447 	netstack_t		*ns;
5448 
5449 	tcp_time_wait =
5450 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5451 
5452 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5453 	tcp = tcp_time_wait->tcp_free_list;
5454 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5455 	if (tcp != NULL) {
5456 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5457 		tcp_time_wait->tcp_free_list_cnt--;
5458 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5459 		tcp->tcp_time_wait_next = NULL;
5460 		connp = tcp->tcp_connp;
5461 		connp->conn_flags |= IPCL_REUSED;
5462 
5463 		ASSERT(tcp->tcp_tcps == NULL);
5464 		ASSERT(connp->conn_netstack == NULL);
5465 		ns = tcps->tcps_netstack;
5466 		netstack_hold(ns);
5467 		connp->conn_netstack = ns;
5468 		tcp->tcp_tcps = tcps;
5469 		TCPS_REFHOLD(tcps);
5470 		ipcl_globalhash_insert(connp);
5471 		return ((void *)connp);
5472 	}
5473 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5474 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5475 	    tcps->tcps_netstack)) == NULL)
5476 		return (NULL);
5477 	tcp = connp->conn_tcp;
5478 	tcp->tcp_tcps = tcps;
5479 	TCPS_REFHOLD(tcps);
5480 	return ((void *)connp);
5481 }
5482 
5483 /*
5484  * Update the cached label for the given tcp_t.  This should be called once per
5485  * connection, and before any packets are sent or tcp_process_options is
5486  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5487  */
5488 static boolean_t
5489 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5490 {
5491 	conn_t *connp = tcp->tcp_connp;
5492 
5493 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5494 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5495 		int added;
5496 
5497 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5498 		    connp->conn_mac_exempt,
5499 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5500 			return (B_FALSE);
5501 
5502 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5503 		if (added == -1)
5504 			return (B_FALSE);
5505 		tcp->tcp_hdr_len += added;
5506 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5507 		tcp->tcp_ip_hdr_len += added;
5508 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5509 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5510 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5511 			    tcp->tcp_hdr_len);
5512 			if (added == -1)
5513 				return (B_FALSE);
5514 			tcp->tcp_hdr_len += added;
5515 			tcp->tcp_tcph = (tcph_t *)
5516 			    ((uchar_t *)tcp->tcp_tcph + added);
5517 			tcp->tcp_ip_hdr_len += added;
5518 		}
5519 	} else {
5520 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5521 
5522 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5523 		    connp->conn_mac_exempt,
5524 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5525 			return (B_FALSE);
5526 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5527 		    &tcp->tcp_label_len, optbuf) != 0)
5528 			return (B_FALSE);
5529 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5530 			return (B_FALSE);
5531 	}
5532 
5533 	connp->conn_ulp_labeled = 1;
5534 
5535 	return (B_TRUE);
5536 }
5537 
5538 /* BEGIN CSTYLED */
5539 /*
5540  *
5541  * The sockfs ACCEPT path:
5542  * =======================
5543  *
5544  * The eager is now established in its own perimeter as soon as SYN is
5545  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5546  * completes the accept processing on the acceptor STREAM. The sending
5547  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5548  * listener but a TLI/XTI listener completes the accept processing
5549  * on the listener perimeter.
5550  *
5551  * Common control flow for 3 way handshake:
5552  * ----------------------------------------
5553  *
5554  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5555  *					-> tcp_conn_request()
5556  *
5557  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5558  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5559  *
5560  * Sockfs ACCEPT Path:
5561  * -------------------
5562  *
5563  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5564  * as STREAM entry point)
5565  *
5566  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5567  *
5568  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5569  * association (we are not behind eager's squeue but sockfs is protecting us
5570  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5571  * is changed to point at tcp_wput().
5572  *
5573  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5574  * listener (done on listener's perimeter).
5575  *
5576  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5577  * accept.
5578  *
5579  * TLI/XTI client ACCEPT path:
5580  * ---------------------------
5581  *
5582  * soaccept() sends T_CONN_RES on the listener STREAM.
5583  *
5584  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5585  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5586  *
5587  * Locks:
5588  * ======
5589  *
5590  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5591  * and listeners->tcp_eager_next_q.
5592  *
5593  * Referencing:
5594  * ============
5595  *
5596  * 1) We start out in tcp_conn_request by eager placing a ref on
5597  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5598  *
5599  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5600  * doing so we place a ref on the eager. This ref is finally dropped at the
5601  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5602  * reference is dropped by the squeue framework.
5603  *
5604  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5605  *
5606  * The reference must be released by the same entity that added the reference
5607  * In the above scheme, the eager is the entity that adds and releases the
5608  * references. Note that tcp_accept_finish executes in the squeue of the eager
5609  * (albeit after it is attached to the acceptor stream). Though 1. executes
5610  * in the listener's squeue, the eager is nascent at this point and the
5611  * reference can be considered to have been added on behalf of the eager.
5612  *
5613  * Eager getting a Reset or listener closing:
5614  * ==========================================
5615  *
5616  * Once the listener and eager are linked, the listener never does the unlink.
5617  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5618  * a message on all eager perimeter. The eager then does the unlink, clears
5619  * any pointers to the listener's queue and drops the reference to the
5620  * listener. The listener waits in tcp_close outside the squeue until its
5621  * refcount has dropped to 1. This ensures that the listener has waited for
5622  * all eagers to clear their association with the listener.
5623  *
5624  * Similarly, if eager decides to go away, it can unlink itself and close.
5625  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5626  * the reference to eager is still valid because of the extra ref we put
5627  * in tcp_send_conn_ind.
5628  *
5629  * Listener can always locate the eager under the protection
5630  * of the listener->tcp_eager_lock, and then do a refhold
5631  * on the eager during the accept processing.
5632  *
5633  * The acceptor stream accesses the eager in the accept processing
5634  * based on the ref placed on eager before sending T_conn_ind.
5635  * The only entity that can negate this refhold is a listener close
5636  * which is mutually exclusive with an active acceptor stream.
5637  *
5638  * Eager's reference on the listener
5639  * ===================================
5640  *
5641  * If the accept happens (even on a closed eager) the eager drops its
5642  * reference on the listener at the start of tcp_accept_finish. If the
5643  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5644  * the reference is dropped in tcp_closei_local. If the listener closes,
5645  * the reference is dropped in tcp_eager_kill. In all cases the reference
5646  * is dropped while executing in the eager's context (squeue).
5647  */
5648 /* END CSTYLED */
5649 
5650 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5651 
5652 /*
5653  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5654  * tcp_rput_data will not see any SYN packets.
5655  */
5656 /* ARGSUSED */
5657 void
5658 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5659 {
5660 	tcph_t		*tcph;
5661 	uint32_t	seg_seq;
5662 	tcp_t		*eager;
5663 	uint_t		ipvers;
5664 	ipha_t		*ipha;
5665 	ip6_t		*ip6h;
5666 	int		err;
5667 	conn_t		*econnp = NULL;
5668 	squeue_t	*new_sqp;
5669 	mblk_t		*mp1;
5670 	uint_t 		ip_hdr_len;
5671 	conn_t		*connp = (conn_t *)arg;
5672 	tcp_t		*tcp = connp->conn_tcp;
5673 	cred_t		*credp;
5674 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5675 	ip_stack_t	*ipst;
5676 
5677 	if (tcp->tcp_state != TCPS_LISTEN)
5678 		goto error2;
5679 
5680 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5681 
5682 	mutex_enter(&tcp->tcp_eager_lock);
5683 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5684 		mutex_exit(&tcp->tcp_eager_lock);
5685 		TCP_STAT(tcps, tcp_listendrop);
5686 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5687 		if (tcp->tcp_debug) {
5688 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5689 			    "tcp_conn_request: listen backlog (max=%d) "
5690 			    "overflow (%d pending) on %s",
5691 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5692 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5693 		}
5694 		goto error2;
5695 	}
5696 
5697 	if (tcp->tcp_conn_req_cnt_q0 >=
5698 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5699 		/*
5700 		 * Q0 is full. Drop a pending half-open req from the queue
5701 		 * to make room for the new SYN req. Also mark the time we
5702 		 * drop a SYN.
5703 		 *
5704 		 * A more aggressive defense against SYN attack will
5705 		 * be to set the "tcp_syn_defense" flag now.
5706 		 */
5707 		TCP_STAT(tcps, tcp_listendropq0);
5708 		tcp->tcp_last_rcv_lbolt = lbolt64;
5709 		if (!tcp_drop_q0(tcp)) {
5710 			mutex_exit(&tcp->tcp_eager_lock);
5711 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5712 			if (tcp->tcp_debug) {
5713 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5714 				    "tcp_conn_request: listen half-open queue "
5715 				    "(max=%d) full (%d pending) on %s",
5716 				    tcps->tcps_conn_req_max_q0,
5717 				    tcp->tcp_conn_req_cnt_q0,
5718 				    tcp_display(tcp, NULL,
5719 				    DISP_PORT_ONLY));
5720 			}
5721 			goto error2;
5722 		}
5723 	}
5724 	mutex_exit(&tcp->tcp_eager_lock);
5725 
5726 	/*
5727 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5728 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5729 	 * link local address.  If IPSec is enabled, db_struioflag has
5730 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5731 	 * otherwise an error case if neither of them is set.
5732 	 */
5733 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5734 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5735 		DB_CKSUMSTART(mp) = 0;
5736 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5737 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5738 		if (econnp == NULL)
5739 			goto error2;
5740 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5741 		econnp->conn_sqp = new_sqp;
5742 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5743 		/*
5744 		 * mp is updated in tcp_get_ipsec_conn().
5745 		 */
5746 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5747 		if (econnp == NULL) {
5748 			/*
5749 			 * mp freed by tcp_get_ipsec_conn.
5750 			 */
5751 			return;
5752 		}
5753 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5754 	} else {
5755 		goto error2;
5756 	}
5757 
5758 	ASSERT(DB_TYPE(mp) == M_DATA);
5759 
5760 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5761 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5762 	ASSERT(OK_32PTR(mp->b_rptr));
5763 	if (ipvers == IPV4_VERSION) {
5764 		ipha = (ipha_t *)mp->b_rptr;
5765 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5766 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5767 	} else {
5768 		ip6h = (ip6_t *)mp->b_rptr;
5769 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5770 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5771 	}
5772 
5773 	if (tcp->tcp_family == AF_INET) {
5774 		ASSERT(ipvers == IPV4_VERSION);
5775 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5776 	} else {
5777 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5778 	}
5779 
5780 	if (err)
5781 		goto error3;
5782 
5783 	eager = econnp->conn_tcp;
5784 
5785 	/* Inherit various TCP parameters from the listener */
5786 	eager->tcp_naglim = tcp->tcp_naglim;
5787 	eager->tcp_first_timer_threshold =
5788 	    tcp->tcp_first_timer_threshold;
5789 	eager->tcp_second_timer_threshold =
5790 	    tcp->tcp_second_timer_threshold;
5791 
5792 	eager->tcp_first_ctimer_threshold =
5793 	    tcp->tcp_first_ctimer_threshold;
5794 	eager->tcp_second_ctimer_threshold =
5795 	    tcp->tcp_second_ctimer_threshold;
5796 
5797 	/*
5798 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5799 	 * If it does not, the eager's receive window will be set to the
5800 	 * listener's receive window later in this function.
5801 	 */
5802 	eager->tcp_rwnd = 0;
5803 
5804 	/*
5805 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5806 	 * calling tcp_process_options() where tcp_mss_set() is called
5807 	 * to set the initial cwnd.
5808 	 */
5809 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5810 
5811 	/*
5812 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5813 	 * zone id before the accept is completed in tcp_wput_accept().
5814 	 */
5815 	econnp->conn_zoneid = connp->conn_zoneid;
5816 	econnp->conn_allzones = connp->conn_allzones;
5817 
5818 	/* Copy nexthop information from listener to eager */
5819 	if (connp->conn_nexthop_set) {
5820 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5821 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5822 	}
5823 
5824 	/*
5825 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5826 	 * eager is accepted
5827 	 */
5828 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5829 	crhold(credp);
5830 
5831 	/*
5832 	 * If the caller has the process-wide flag set, then default to MAC
5833 	 * exempt mode.  This allows read-down to unlabeled hosts.
5834 	 */
5835 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5836 		econnp->conn_mac_exempt = B_TRUE;
5837 
5838 	if (is_system_labeled()) {
5839 		cred_t *cr;
5840 
5841 		if (connp->conn_mlp_type != mlptSingle) {
5842 			cr = econnp->conn_peercred = DB_CRED(mp);
5843 			if (cr != NULL)
5844 				crhold(cr);
5845 			else
5846 				cr = econnp->conn_cred;
5847 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5848 			    econnp, cred_t *, cr)
5849 		} else {
5850 			cr = econnp->conn_cred;
5851 			DTRACE_PROBE2(syn_accept, conn_t *,
5852 			    econnp, cred_t *, cr)
5853 		}
5854 
5855 		if (!tcp_update_label(eager, cr)) {
5856 			DTRACE_PROBE3(
5857 			    tx__ip__log__error__connrequest__tcp,
5858 			    char *, "eager connp(1) label on SYN mp(2) failed",
5859 			    conn_t *, econnp, mblk_t *, mp);
5860 			goto error3;
5861 		}
5862 	}
5863 
5864 	eager->tcp_hard_binding = B_TRUE;
5865 
5866 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5867 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5868 
5869 	CL_INET_CONNECT(eager);
5870 
5871 	/*
5872 	 * No need to check for multicast destination since ip will only pass
5873 	 * up multicasts to those that have expressed interest
5874 	 * TODO: what about rejecting broadcasts?
5875 	 * Also check that source is not a multicast or broadcast address.
5876 	 */
5877 	eager->tcp_state = TCPS_SYN_RCVD;
5878 
5879 
5880 	/*
5881 	 * There should be no ire in the mp as we are being called after
5882 	 * receiving the SYN.
5883 	 */
5884 	ASSERT(tcp_ire_mp(mp) == NULL);
5885 
5886 	/*
5887 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5888 	 */
5889 
5890 	if (tcp_adapt_ire(eager, NULL) == 0) {
5891 		/* Undo the bind_hash_insert */
5892 		tcp_bind_hash_remove(eager);
5893 		goto error3;
5894 	}
5895 
5896 	/* Process all TCP options. */
5897 	tcp_process_options(eager, tcph);
5898 
5899 	/* Is the other end ECN capable? */
5900 	if (tcps->tcps_ecn_permitted >= 1 &&
5901 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5902 		eager->tcp_ecn_ok = B_TRUE;
5903 	}
5904 
5905 	/*
5906 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5907 	 * window size changed via SO_RCVBUF option.  First round up the
5908 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5909 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5910 	 * setting.
5911 	 *
5912 	 * Note if there is a rpipe metric associated with the remote host,
5913 	 * we should not inherit receive window size from listener.
5914 	 */
5915 	eager->tcp_rwnd = MSS_ROUNDUP(
5916 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5917 	    eager->tcp_rwnd), eager->tcp_mss);
5918 	if (eager->tcp_snd_ws_ok)
5919 		tcp_set_ws_value(eager);
5920 	/*
5921 	 * Note that this is the only place tcp_rwnd_set() is called for
5922 	 * accepting a connection.  We need to call it here instead of
5923 	 * after the 3-way handshake because we need to tell the other
5924 	 * side our rwnd in the SYN-ACK segment.
5925 	 */
5926 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5927 
5928 	/*
5929 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5930 	 * via soaccept()->soinheritoptions() which essentially applies
5931 	 * all the listener options to the new STREAM. The options that we
5932 	 * need to take care of are:
5933 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5934 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5935 	 * SO_SNDBUF, SO_RCVBUF.
5936 	 *
5937 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5938 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5939 	 *		tcp_maxpsz_set() gets called later from
5940 	 *		tcp_accept_finish(), the option takes effect.
5941 	 *
5942 	 */
5943 	/* Set the TCP options */
5944 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5945 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5946 	eager->tcp_oobinline = tcp->tcp_oobinline;
5947 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5948 	eager->tcp_broadcast = tcp->tcp_broadcast;
5949 	eager->tcp_useloopback = tcp->tcp_useloopback;
5950 	eager->tcp_dontroute = tcp->tcp_dontroute;
5951 	eager->tcp_linger = tcp->tcp_linger;
5952 	eager->tcp_lingertime = tcp->tcp_lingertime;
5953 	if (tcp->tcp_ka_enabled)
5954 		eager->tcp_ka_enabled = 1;
5955 
5956 	/* Set the IP options */
5957 	econnp->conn_broadcast = connp->conn_broadcast;
5958 	econnp->conn_loopback = connp->conn_loopback;
5959 	econnp->conn_dontroute = connp->conn_dontroute;
5960 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5961 
5962 	/* Put a ref on the listener for the eager. */
5963 	CONN_INC_REF(connp);
5964 	mutex_enter(&tcp->tcp_eager_lock);
5965 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5966 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5967 	tcp->tcp_eager_next_q0 = eager;
5968 	eager->tcp_eager_prev_q0 = tcp;
5969 
5970 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5971 	eager->tcp_listener = tcp;
5972 	eager->tcp_saved_listener = tcp;
5973 
5974 	/*
5975 	 * Tag this detached tcp vector for later retrieval
5976 	 * by our listener client in tcp_accept().
5977 	 */
5978 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5979 	tcp->tcp_conn_req_cnt_q0++;
5980 	if (++tcp->tcp_conn_req_seqnum == -1) {
5981 		/*
5982 		 * -1 is "special" and defined in TPI as something
5983 		 * that should never be used in T_CONN_IND
5984 		 */
5985 		++tcp->tcp_conn_req_seqnum;
5986 	}
5987 	mutex_exit(&tcp->tcp_eager_lock);
5988 
5989 	if (tcp->tcp_syn_defense) {
5990 		/* Don't drop the SYN that comes from a good IP source */
5991 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5992 		if (addr_cache != NULL && eager->tcp_remote ==
5993 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5994 			eager->tcp_dontdrop = B_TRUE;
5995 		}
5996 	}
5997 
5998 	/*
5999 	 * We need to insert the eager in its own perimeter but as soon
6000 	 * as we do that, we expose the eager to the classifier and
6001 	 * should not touch any field outside the eager's perimeter.
6002 	 * So do all the work necessary before inserting the eager
6003 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
6004 	 * will succeed but undo everything if it fails.
6005 	 */
6006 	seg_seq = ABE32_TO_U32(tcph->th_seq);
6007 	eager->tcp_irs = seg_seq;
6008 	eager->tcp_rack = seg_seq;
6009 	eager->tcp_rnxt = seg_seq + 1;
6010 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
6011 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
6012 	eager->tcp_state = TCPS_SYN_RCVD;
6013 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
6014 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
6015 	if (mp1 == NULL) {
6016 		/*
6017 		 * Increment the ref count as we are going to
6018 		 * enqueueing an mp in squeue
6019 		 */
6020 		CONN_INC_REF(econnp);
6021 		goto error;
6022 	}
6023 	DB_CPID(mp1) = tcp->tcp_cpid;
6024 	eager->tcp_cpid = tcp->tcp_cpid;
6025 	eager->tcp_open_time = lbolt64;
6026 
6027 	/*
6028 	 * We need to start the rto timer. In normal case, we start
6029 	 * the timer after sending the packet on the wire (or at
6030 	 * least believing that packet was sent by waiting for
6031 	 * CALL_IP_WPUT() to return). Since this is the first packet
6032 	 * being sent on the wire for the eager, our initial tcp_rto
6033 	 * is at least tcp_rexmit_interval_min which is a fairly
6034 	 * large value to allow the algorithm to adjust slowly to large
6035 	 * fluctuations of RTT during first few transmissions.
6036 	 *
6037 	 * Starting the timer first and then sending the packet in this
6038 	 * case shouldn't make much difference since tcp_rexmit_interval_min
6039 	 * is of the order of several 100ms and starting the timer
6040 	 * first and then sending the packet will result in difference
6041 	 * of few micro seconds.
6042 	 *
6043 	 * Without this optimization, we are forced to hold the fanout
6044 	 * lock across the ipcl_bind_insert() and sending the packet
6045 	 * so that we don't race against an incoming packet (maybe RST)
6046 	 * for this eager.
6047 	 *
6048 	 * It is necessary to acquire an extra reference on the eager
6049 	 * at this point and hold it until after tcp_send_data() to
6050 	 * ensure against an eager close race.
6051 	 */
6052 
6053 	CONN_INC_REF(eager->tcp_connp);
6054 
6055 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
6056 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
6057 
6058 
6059 	/*
6060 	 * Insert the eager in its own perimeter now. We are ready to deal
6061 	 * with any packets on eager.
6062 	 */
6063 	if (eager->tcp_ipversion == IPV4_VERSION) {
6064 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6065 			goto error;
6066 		}
6067 	} else {
6068 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6069 			goto error;
6070 		}
6071 	}
6072 
6073 	/* mark conn as fully-bound */
6074 	econnp->conn_fully_bound = B_TRUE;
6075 
6076 	/* Send the SYN-ACK */
6077 	tcp_send_data(eager, eager->tcp_wq, mp1);
6078 	CONN_DEC_REF(eager->tcp_connp);
6079 	freemsg(mp);
6080 
6081 	return;
6082 error:
6083 	freemsg(mp1);
6084 	eager->tcp_closemp_used = B_TRUE;
6085 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6086 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6087 	    econnp, SQTAG_TCP_CONN_REQ_2);
6088 
6089 	/*
6090 	 * If a connection already exists, send the mp to that connections so
6091 	 * that it can be appropriately dealt with.
6092 	 */
6093 	ipst = tcps->tcps_netstack->netstack_ip;
6094 
6095 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6096 		if (!IPCL_IS_CONNECTED(econnp)) {
6097 			/*
6098 			 * Something bad happened. ipcl_conn_insert()
6099 			 * failed because a connection already existed
6100 			 * in connected hash but we can't find it
6101 			 * anymore (someone blew it away). Just
6102 			 * free this message and hopefully remote
6103 			 * will retransmit at which time the SYN can be
6104 			 * treated as a new connection or dealth with
6105 			 * a TH_RST if a connection already exists.
6106 			 */
6107 			CONN_DEC_REF(econnp);
6108 			freemsg(mp);
6109 		} else {
6110 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6111 			    econnp, SQTAG_TCP_CONN_REQ_1);
6112 		}
6113 	} else {
6114 		/* Nobody wants this packet */
6115 		freemsg(mp);
6116 	}
6117 	return;
6118 error3:
6119 	CONN_DEC_REF(econnp);
6120 error2:
6121 	freemsg(mp);
6122 }
6123 
6124 /*
6125  * In an ideal case of vertical partition in NUMA architecture, its
6126  * beneficial to have the listener and all the incoming connections
6127  * tied to the same squeue. The other constraint is that incoming
6128  * connections should be tied to the squeue attached to interrupted
6129  * CPU for obvious locality reason so this leaves the listener to
6130  * be tied to the same squeue. Our only problem is that when listener
6131  * is binding, the CPU that will get interrupted by the NIC whose
6132  * IP address the listener is binding to is not even known. So
6133  * the code below allows us to change that binding at the time the
6134  * CPU is interrupted by virtue of incoming connection's squeue.
6135  *
6136  * This is usefull only in case of a listener bound to a specific IP
6137  * address. For other kind of listeners, they get bound the
6138  * very first time and there is no attempt to rebind them.
6139  */
6140 void
6141 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6142 {
6143 	conn_t		*connp = (conn_t *)arg;
6144 	squeue_t	*sqp = (squeue_t *)arg2;
6145 	squeue_t	*new_sqp;
6146 	uint32_t	conn_flags;
6147 
6148 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6149 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6150 	} else {
6151 		goto done;
6152 	}
6153 
6154 	if (connp->conn_fanout == NULL)
6155 		goto done;
6156 
6157 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6158 		mutex_enter(&connp->conn_fanout->connf_lock);
6159 		mutex_enter(&connp->conn_lock);
6160 		/*
6161 		 * No one from read or write side can access us now
6162 		 * except for already queued packets on this squeue.
6163 		 * But since we haven't changed the squeue yet, they
6164 		 * can't execute. If they are processed after we have
6165 		 * changed the squeue, they are sent back to the
6166 		 * correct squeue down below.
6167 		 * But a listner close can race with processing of
6168 		 * incoming SYN. If incoming SYN processing changes
6169 		 * the squeue then the listener close which is waiting
6170 		 * to enter the squeue would operate on the wrong
6171 		 * squeue. Hence we don't change the squeue here unless
6172 		 * the refcount is exactly the minimum refcount. The
6173 		 * minimum refcount of 4 is counted as - 1 each for
6174 		 * TCP and IP, 1 for being in the classifier hash, and
6175 		 * 1 for the mblk being processed.
6176 		 */
6177 
6178 		if (connp->conn_ref != 4 ||
6179 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6180 			mutex_exit(&connp->conn_lock);
6181 			mutex_exit(&connp->conn_fanout->connf_lock);
6182 			goto done;
6183 		}
6184 		if (connp->conn_sqp != new_sqp) {
6185 			while (connp->conn_sqp != new_sqp)
6186 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6187 		}
6188 
6189 		do {
6190 			conn_flags = connp->conn_flags;
6191 			conn_flags |= IPCL_FULLY_BOUND;
6192 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6193 			    conn_flags);
6194 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6195 
6196 		mutex_exit(&connp->conn_fanout->connf_lock);
6197 		mutex_exit(&connp->conn_lock);
6198 	}
6199 
6200 done:
6201 	if (connp->conn_sqp != sqp) {
6202 		CONN_INC_REF(connp);
6203 		squeue_fill(connp->conn_sqp, mp,
6204 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6205 	} else {
6206 		tcp_conn_request(connp, mp, sqp);
6207 	}
6208 }
6209 
6210 /*
6211  * Successful connect request processing begins when our client passes
6212  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6213  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6214  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6215  *   upstream <- tcp_rput()                <- IP
6216  * After various error checks are completed, tcp_connect() lays
6217  * the target address and port into the composite header template,
6218  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6219  * request followed by an IRE request, and passes the three mblk message
6220  * down to IP looking like this:
6221  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6222  * Processing continues in tcp_rput() when we receive the following message:
6223  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6224  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6225  * to fire off the connection request, and then passes the T_OK_ACK mblk
6226  * upstream that we filled in below.  There are, of course, numerous
6227  * error conditions along the way which truncate the processing described
6228  * above.
6229  */
6230 static void
6231 tcp_connect(tcp_t *tcp, mblk_t *mp)
6232 {
6233 	sin_t		*sin;
6234 	sin6_t		*sin6;
6235 	queue_t		*q = tcp->tcp_wq;
6236 	struct T_conn_req	*tcr;
6237 	ipaddr_t	*dstaddrp;
6238 	in_port_t	dstport;
6239 	uint_t		srcid;
6240 
6241 	tcr = (struct T_conn_req *)mp->b_rptr;
6242 
6243 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6244 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6245 		tcp_err_ack(tcp, mp, TPROTO, 0);
6246 		return;
6247 	}
6248 
6249 	/*
6250 	 * Determine packet type based on type of address passed in
6251 	 * the request should contain an IPv4 or IPv6 address.
6252 	 * Make sure that address family matches the type of
6253 	 * family of the the address passed down
6254 	 */
6255 	switch (tcr->DEST_length) {
6256 	default:
6257 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6258 		return;
6259 
6260 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6261 		/*
6262 		 * XXX: The check for valid DEST_length was not there
6263 		 * in earlier releases and some buggy
6264 		 * TLI apps (e.g Sybase) got away with not feeding
6265 		 * in sin_zero part of address.
6266 		 * We allow that bug to keep those buggy apps humming.
6267 		 * Test suites require the check on DEST_length.
6268 		 * We construct a new mblk with valid DEST_length
6269 		 * free the original so the rest of the code does
6270 		 * not have to keep track of this special shorter
6271 		 * length address case.
6272 		 */
6273 		mblk_t *nmp;
6274 		struct T_conn_req *ntcr;
6275 		sin_t *nsin;
6276 
6277 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6278 		    tcr->OPT_length, BPRI_HI);
6279 		if (nmp == NULL) {
6280 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6281 			return;
6282 		}
6283 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6284 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6285 		ntcr->PRIM_type = T_CONN_REQ;
6286 		ntcr->DEST_length = sizeof (sin_t);
6287 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6288 
6289 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6290 		*nsin = sin_null;
6291 		/* Get pointer to shorter address to copy from original mp */
6292 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6293 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6294 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6295 			freemsg(nmp);
6296 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6297 			return;
6298 		}
6299 		nsin->sin_family = sin->sin_family;
6300 		nsin->sin_port = sin->sin_port;
6301 		nsin->sin_addr = sin->sin_addr;
6302 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6303 		nmp->b_wptr = (uchar_t *)&nsin[1];
6304 		if (tcr->OPT_length != 0) {
6305 			ntcr->OPT_length = tcr->OPT_length;
6306 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6307 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6308 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6309 			    tcr->OPT_length);
6310 			nmp->b_wptr += tcr->OPT_length;
6311 		}
6312 		freemsg(mp);	/* original mp freed */
6313 		mp = nmp;	/* re-initialize original variables */
6314 		tcr = ntcr;
6315 	}
6316 	/* FALLTHRU */
6317 
6318 	case sizeof (sin_t):
6319 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6320 		    sizeof (sin_t));
6321 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6322 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6323 			return;
6324 		}
6325 		if (tcp->tcp_family != AF_INET ||
6326 		    sin->sin_family != AF_INET) {
6327 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6328 			return;
6329 		}
6330 		if (sin->sin_port == 0) {
6331 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6332 			return;
6333 		}
6334 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6335 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6336 			return;
6337 		}
6338 
6339 		break;
6340 
6341 	case sizeof (sin6_t):
6342 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6343 		    sizeof (sin6_t));
6344 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6345 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6346 			return;
6347 		}
6348 		if (tcp->tcp_family != AF_INET6 ||
6349 		    sin6->sin6_family != AF_INET6) {
6350 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6351 			return;
6352 		}
6353 		if (sin6->sin6_port == 0) {
6354 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6355 			return;
6356 		}
6357 		break;
6358 	}
6359 	/*
6360 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6361 	 * should key on their sequence number and cut them loose.
6362 	 */
6363 
6364 	/*
6365 	 * If options passed in, feed it for verification and handling
6366 	 */
6367 	if (tcr->OPT_length != 0) {
6368 		mblk_t	*ok_mp;
6369 		mblk_t	*discon_mp;
6370 		mblk_t  *conn_opts_mp;
6371 		int t_error, sys_error, do_disconnect;
6372 
6373 		conn_opts_mp = NULL;
6374 
6375 		if (tcp_conprim_opt_process(tcp, mp,
6376 		    &do_disconnect, &t_error, &sys_error) < 0) {
6377 			if (do_disconnect) {
6378 				ASSERT(t_error == 0 && sys_error == 0);
6379 				discon_mp = mi_tpi_discon_ind(NULL,
6380 				    ECONNREFUSED, 0);
6381 				if (!discon_mp) {
6382 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6383 					    TSYSERR, ENOMEM);
6384 					return;
6385 				}
6386 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6387 				if (!ok_mp) {
6388 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6389 					    TSYSERR, ENOMEM);
6390 					return;
6391 				}
6392 				qreply(q, ok_mp);
6393 				qreply(q, discon_mp); /* no flush! */
6394 			} else {
6395 				ASSERT(t_error != 0);
6396 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6397 				    sys_error);
6398 			}
6399 			return;
6400 		}
6401 		/*
6402 		 * Success in setting options, the mp option buffer represented
6403 		 * by OPT_length/offset has been potentially modified and
6404 		 * contains results of option processing. We copy it in
6405 		 * another mp to save it for potentially influencing returning
6406 		 * it in T_CONN_CONN.
6407 		 */
6408 		if (tcr->OPT_length != 0) { /* there are resulting options */
6409 			conn_opts_mp = copyb(mp);
6410 			if (!conn_opts_mp) {
6411 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6412 				    TSYSERR, ENOMEM);
6413 				return;
6414 			}
6415 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6416 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6417 			/*
6418 			 * Note:
6419 			 * These resulting option negotiation can include any
6420 			 * end-to-end negotiation options but there no such
6421 			 * thing (yet?) in our TCP/IP.
6422 			 */
6423 		}
6424 	}
6425 
6426 	/*
6427 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6428 	 * make sure that the template IP header in the tcp structure is an
6429 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6430 	 * need to this before we call tcp_bindi() so that the port lookup
6431 	 * code will look for ports in the correct port space (IPv4 and
6432 	 * IPv6 have separate port spaces).
6433 	 */
6434 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6435 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6436 		int err = 0;
6437 
6438 		err = tcp_header_init_ipv4(tcp);
6439 		if (err != 0) {
6440 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6441 			goto connect_failed;
6442 		}
6443 		if (tcp->tcp_lport != 0)
6444 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6445 	}
6446 
6447 	if (tcp->tcp_issocket) {
6448 		/*
6449 		 * TCP is _D_SODIRECT and sockfs is directly above so save
6450 		 * the shared sonode sodirect_t pointer (if any) to enable
6451 		 * TCP sodirect.
6452 		 */
6453 		tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq);
6454 	}
6455 
6456 	switch (tcp->tcp_state) {
6457 	case TCPS_IDLE:
6458 		/*
6459 		 * We support quick connect, refer to comments in
6460 		 * tcp_connect_*()
6461 		 */
6462 		/* FALLTHRU */
6463 	case TCPS_BOUND:
6464 	case TCPS_LISTEN:
6465 		if (tcp->tcp_family == AF_INET6) {
6466 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6467 				tcp_connect_ipv6(tcp, mp,
6468 				    &sin6->sin6_addr,
6469 				    sin6->sin6_port, sin6->sin6_flowinfo,
6470 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6471 				return;
6472 			}
6473 			/*
6474 			 * Destination adress is mapped IPv6 address.
6475 			 * Source bound address should be unspecified or
6476 			 * IPv6 mapped address as well.
6477 			 */
6478 			if (!IN6_IS_ADDR_UNSPECIFIED(
6479 			    &tcp->tcp_bound_source_v6) &&
6480 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6481 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6482 				    EADDRNOTAVAIL);
6483 				break;
6484 			}
6485 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6486 			dstport = sin6->sin6_port;
6487 			srcid = sin6->__sin6_src_id;
6488 		} else {
6489 			dstaddrp = &sin->sin_addr.s_addr;
6490 			dstport = sin->sin_port;
6491 			srcid = 0;
6492 		}
6493 
6494 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6495 		return;
6496 	default:
6497 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6498 		break;
6499 	}
6500 	/*
6501 	 * Note: Code below is the "failure" case
6502 	 */
6503 	/* return error ack and blow away saved option results if any */
6504 connect_failed:
6505 	if (mp != NULL)
6506 		putnext(tcp->tcp_rq, mp);
6507 	else {
6508 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6509 		    TSYSERR, ENOMEM);
6510 	}
6511 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6512 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6513 }
6514 
6515 /*
6516  * Handle connect to IPv4 destinations, including connections for AF_INET6
6517  * sockets connecting to IPv4 mapped IPv6 destinations.
6518  */
6519 static void
6520 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6521     uint_t srcid)
6522 {
6523 	tcph_t	*tcph;
6524 	mblk_t	*mp1;
6525 	ipaddr_t dstaddr = *dstaddrp;
6526 	int32_t	oldstate;
6527 	uint16_t lport;
6528 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6529 
6530 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6531 
6532 	/* Check for attempt to connect to INADDR_ANY */
6533 	if (dstaddr == INADDR_ANY)  {
6534 		/*
6535 		 * SunOS 4.x and 4.3 BSD allow an application
6536 		 * to connect a TCP socket to INADDR_ANY.
6537 		 * When they do this, the kernel picks the
6538 		 * address of one interface and uses it
6539 		 * instead.  The kernel usually ends up
6540 		 * picking the address of the loopback
6541 		 * interface.  This is an undocumented feature.
6542 		 * However, we provide the same thing here
6543 		 * in order to have source and binary
6544 		 * compatibility with SunOS 4.x.
6545 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6546 		 * generate the T_CONN_CON.
6547 		 */
6548 		dstaddr = htonl(INADDR_LOOPBACK);
6549 		*dstaddrp = dstaddr;
6550 	}
6551 
6552 	/* Handle __sin6_src_id if socket not bound to an IP address */
6553 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6554 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6555 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6556 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6557 		    tcp->tcp_ipha->ipha_src);
6558 	}
6559 
6560 	/*
6561 	 * Don't let an endpoint connect to itself.  Note that
6562 	 * the test here does not catch the case where the
6563 	 * source IP addr was left unspecified by the user. In
6564 	 * this case, the source addr is set in tcp_adapt_ire()
6565 	 * using the reply to the T_BIND message that we send
6566 	 * down to IP here and the check is repeated in tcp_rput_other.
6567 	 */
6568 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6569 	    dstport == tcp->tcp_lport) {
6570 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6571 		goto failed;
6572 	}
6573 
6574 	tcp->tcp_ipha->ipha_dst = dstaddr;
6575 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6576 
6577 	/*
6578 	 * Massage a source route if any putting the first hop
6579 	 * in iph_dst. Compute a starting value for the checksum which
6580 	 * takes into account that the original iph_dst should be
6581 	 * included in the checksum but that ip will include the
6582 	 * first hop in the source route in the tcp checksum.
6583 	 */
6584 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6585 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6586 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6587 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6588 	if ((int)tcp->tcp_sum < 0)
6589 		tcp->tcp_sum--;
6590 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6591 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6592 	    (tcp->tcp_sum >> 16));
6593 	tcph = tcp->tcp_tcph;
6594 	*(uint16_t *)tcph->th_fport = dstport;
6595 	tcp->tcp_fport = dstport;
6596 
6597 	oldstate = tcp->tcp_state;
6598 	/*
6599 	 * At this point the remote destination address and remote port fields
6600 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6601 	 * have to see which state tcp was in so we can take apropriate action.
6602 	 */
6603 	if (oldstate == TCPS_IDLE) {
6604 		/*
6605 		 * We support a quick connect capability here, allowing
6606 		 * clients to transition directly from IDLE to SYN_SENT
6607 		 * tcp_bindi will pick an unused port, insert the connection
6608 		 * in the bind hash and transition to BOUND state.
6609 		 */
6610 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6611 		    tcp, B_TRUE);
6612 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6613 		    B_FALSE, B_FALSE);
6614 		if (lport == 0) {
6615 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6616 			goto failed;
6617 		}
6618 	}
6619 	tcp->tcp_state = TCPS_SYN_SENT;
6620 
6621 	/*
6622 	 * TODO: allow data with connect requests
6623 	 * by unlinking M_DATA trailers here and
6624 	 * linking them in behind the T_OK_ACK mblk.
6625 	 * The tcp_rput() bind ack handler would then
6626 	 * feed them to tcp_wput_data() rather than call
6627 	 * tcp_timer().
6628 	 */
6629 	mp = mi_tpi_ok_ack_alloc(mp);
6630 	if (!mp) {
6631 		tcp->tcp_state = oldstate;
6632 		goto failed;
6633 	}
6634 	if (tcp->tcp_family == AF_INET) {
6635 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6636 		    sizeof (ipa_conn_t));
6637 	} else {
6638 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6639 		    sizeof (ipa6_conn_t));
6640 	}
6641 	if (mp1) {
6642 		/*
6643 		 * We need to make sure that the conn_recv is set to a non-null
6644 		 * value before we insert the conn_t into the classifier table.
6645 		 * This is to avoid a race with an incoming packet which does
6646 		 * an ipcl_classify().
6647 		 */
6648 		tcp->tcp_connp->conn_recv = tcp_input;
6649 
6650 		/* Hang onto the T_OK_ACK for later. */
6651 		linkb(mp1, mp);
6652 		mblk_setcred(mp1, tcp->tcp_cred);
6653 		if (tcp->tcp_family == AF_INET)
6654 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6655 		else {
6656 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6657 			    &tcp->tcp_sticky_ipp);
6658 		}
6659 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6660 		tcp->tcp_active_open = 1;
6661 		/*
6662 		 * If the bind cannot complete immediately
6663 		 * IP will arrange to call tcp_rput_other
6664 		 * when the bind completes.
6665 		 */
6666 		if (mp1 != NULL)
6667 			tcp_rput_other(tcp, mp1);
6668 		return;
6669 	}
6670 	/* Error case */
6671 	tcp->tcp_state = oldstate;
6672 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6673 
6674 failed:
6675 	/* return error ack and blow away saved option results if any */
6676 	if (mp != NULL)
6677 		putnext(tcp->tcp_rq, mp);
6678 	else {
6679 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6680 		    TSYSERR, ENOMEM);
6681 	}
6682 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6683 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6684 
6685 }
6686 
6687 /*
6688  * Handle connect to IPv6 destinations.
6689  */
6690 static void
6691 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6692     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6693 {
6694 	tcph_t	*tcph;
6695 	mblk_t	*mp1;
6696 	ip6_rthdr_t *rth;
6697 	int32_t  oldstate;
6698 	uint16_t lport;
6699 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6700 
6701 	ASSERT(tcp->tcp_family == AF_INET6);
6702 
6703 	/*
6704 	 * If we're here, it means that the destination address is a native
6705 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6706 	 * reason why it might not be IPv6 is if the socket was bound to an
6707 	 * IPv4-mapped IPv6 address.
6708 	 */
6709 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6710 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6711 		goto failed;
6712 	}
6713 
6714 	/*
6715 	 * Interpret a zero destination to mean loopback.
6716 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6717 	 * generate the T_CONN_CON.
6718 	 */
6719 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6720 		*dstaddrp = ipv6_loopback;
6721 	}
6722 
6723 	/* Handle __sin6_src_id if socket not bound to an IP address */
6724 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6725 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6726 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6727 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6728 	}
6729 
6730 	/*
6731 	 * Take care of the scope_id now and add ip6i_t
6732 	 * if ip6i_t is not already allocated through TCP
6733 	 * sticky options. At this point tcp_ip6h does not
6734 	 * have dst info, thus use dstaddrp.
6735 	 */
6736 	if (scope_id != 0 &&
6737 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6738 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6739 		ip6i_t  *ip6i;
6740 
6741 		ipp->ipp_ifindex = scope_id;
6742 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6743 
6744 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6745 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6746 			/* Already allocated */
6747 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6748 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6749 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6750 		} else {
6751 			int reterr;
6752 
6753 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6754 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6755 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6756 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6757 			if (reterr != 0)
6758 				goto failed;
6759 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6760 		}
6761 	}
6762 
6763 	/*
6764 	 * Don't let an endpoint connect to itself.  Note that
6765 	 * the test here does not catch the case where the
6766 	 * source IP addr was left unspecified by the user. In
6767 	 * this case, the source addr is set in tcp_adapt_ire()
6768 	 * using the reply to the T_BIND message that we send
6769 	 * down to IP here and the check is repeated in tcp_rput_other.
6770 	 */
6771 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6772 	    (dstport == tcp->tcp_lport)) {
6773 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6774 		goto failed;
6775 	}
6776 
6777 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6778 	tcp->tcp_remote_v6 = *dstaddrp;
6779 	tcp->tcp_ip6h->ip6_vcf =
6780 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6781 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6782 
6783 
6784 	/*
6785 	 * Massage a routing header (if present) putting the first hop
6786 	 * in ip6_dst. Compute a starting value for the checksum which
6787 	 * takes into account that the original ip6_dst should be
6788 	 * included in the checksum but that ip will include the
6789 	 * first hop in the source route in the tcp checksum.
6790 	 */
6791 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6792 	if (rth != NULL) {
6793 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6794 		    tcps->tcps_netstack);
6795 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6796 		    (tcp->tcp_sum >> 16));
6797 	} else {
6798 		tcp->tcp_sum = 0;
6799 	}
6800 
6801 	tcph = tcp->tcp_tcph;
6802 	*(uint16_t *)tcph->th_fport = dstport;
6803 	tcp->tcp_fport = dstport;
6804 
6805 	oldstate = tcp->tcp_state;
6806 	/*
6807 	 * At this point the remote destination address and remote port fields
6808 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6809 	 * have to see which state tcp was in so we can take apropriate action.
6810 	 */
6811 	if (oldstate == TCPS_IDLE) {
6812 		/*
6813 		 * We support a quick connect capability here, allowing
6814 		 * clients to transition directly from IDLE to SYN_SENT
6815 		 * tcp_bindi will pick an unused port, insert the connection
6816 		 * in the bind hash and transition to BOUND state.
6817 		 */
6818 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6819 		    tcp, B_TRUE);
6820 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6821 		    B_FALSE, B_FALSE);
6822 		if (lport == 0) {
6823 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6824 			goto failed;
6825 		}
6826 	}
6827 	tcp->tcp_state = TCPS_SYN_SENT;
6828 	/*
6829 	 * TODO: allow data with connect requests
6830 	 * by unlinking M_DATA trailers here and
6831 	 * linking them in behind the T_OK_ACK mblk.
6832 	 * The tcp_rput() bind ack handler would then
6833 	 * feed them to tcp_wput_data() rather than call
6834 	 * tcp_timer().
6835 	 */
6836 	mp = mi_tpi_ok_ack_alloc(mp);
6837 	if (!mp) {
6838 		tcp->tcp_state = oldstate;
6839 		goto failed;
6840 	}
6841 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6842 	if (mp1) {
6843 		/*
6844 		 * We need to make sure that the conn_recv is set to a non-null
6845 		 * value before we insert the conn_t into the classifier table.
6846 		 * This is to avoid a race with an incoming packet which does
6847 		 * an ipcl_classify().
6848 		 */
6849 		tcp->tcp_connp->conn_recv = tcp_input;
6850 
6851 		/* Hang onto the T_OK_ACK for later. */
6852 		linkb(mp1, mp);
6853 		mblk_setcred(mp1, tcp->tcp_cred);
6854 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6855 		    &tcp->tcp_sticky_ipp);
6856 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6857 		tcp->tcp_active_open = 1;
6858 		/* ip_bind_v6() may return ACK or ERROR */
6859 		if (mp1 != NULL)
6860 			tcp_rput_other(tcp, mp1);
6861 		return;
6862 	}
6863 	/* Error case */
6864 	tcp->tcp_state = oldstate;
6865 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6866 
6867 failed:
6868 	/* return error ack and blow away saved option results if any */
6869 	if (mp != NULL)
6870 		putnext(tcp->tcp_rq, mp);
6871 	else {
6872 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6873 		    TSYSERR, ENOMEM);
6874 	}
6875 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6876 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6877 }
6878 
6879 /*
6880  * We need a stream q for detached closing tcp connections
6881  * to use.  Our client hereby indicates that this q is the
6882  * one to use.
6883  */
6884 static void
6885 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6886 {
6887 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6888 	queue_t	*q = tcp->tcp_wq;
6889 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6890 
6891 #ifdef NS_DEBUG
6892 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6893 	    tcps->tcps_netstack->netstack_stackid);
6894 #endif
6895 	mp->b_datap->db_type = M_IOCACK;
6896 	iocp->ioc_count = 0;
6897 	mutex_enter(&tcps->tcps_g_q_lock);
6898 	if (tcps->tcps_g_q != NULL) {
6899 		mutex_exit(&tcps->tcps_g_q_lock);
6900 		iocp->ioc_error = EALREADY;
6901 	} else {
6902 		mblk_t *mp1;
6903 
6904 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6905 		if (mp1 == NULL) {
6906 			mutex_exit(&tcps->tcps_g_q_lock);
6907 			iocp->ioc_error = ENOMEM;
6908 		} else {
6909 			tcps->tcps_g_q = tcp->tcp_rq;
6910 			mutex_exit(&tcps->tcps_g_q_lock);
6911 			iocp->ioc_error = 0;
6912 			iocp->ioc_rval = 0;
6913 			/*
6914 			 * We are passing tcp_sticky_ipp as NULL
6915 			 * as it is not useful for tcp_default queue
6916 			 *
6917 			 * Set conn_recv just in case.
6918 			 */
6919 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6920 
6921 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6922 			if (mp1 != NULL)
6923 				tcp_rput_other(tcp, mp1);
6924 		}
6925 	}
6926 	qreply(q, mp);
6927 }
6928 
6929 /*
6930  * Our client hereby directs us to reject the connection request
6931  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6932  * of sending the appropriate RST, not an ICMP error.
6933  */
6934 static void
6935 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6936 {
6937 	tcp_t	*ltcp = NULL;
6938 	t_scalar_t seqnum;
6939 	conn_t	*connp;
6940 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6941 
6942 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6943 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6944 		tcp_err_ack(tcp, mp, TPROTO, 0);
6945 		return;
6946 	}
6947 
6948 	/*
6949 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6950 	 * when the stream is in BOUND state. Do not send a reset,
6951 	 * since the destination IP address is not valid, and it can
6952 	 * be the initialized value of all zeros (broadcast address).
6953 	 *
6954 	 * If TCP has sent down a bind request to IP and has not
6955 	 * received the reply, reject the request.  Otherwise, TCP
6956 	 * will be confused.
6957 	 */
6958 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6959 		if (tcp->tcp_debug) {
6960 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6961 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6962 		}
6963 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6964 		return;
6965 	}
6966 
6967 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6968 
6969 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6970 
6971 		/*
6972 		 * According to TPI, for non-listeners, ignore seqnum
6973 		 * and disconnect.
6974 		 * Following interpretation of -1 seqnum is historical
6975 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6976 		 * a valid seqnum should not be -1).
6977 		 *
6978 		 *	-1 means disconnect everything
6979 		 *	regardless even on a listener.
6980 		 */
6981 
6982 		int old_state = tcp->tcp_state;
6983 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6984 
6985 		/*
6986 		 * The connection can't be on the tcp_time_wait_head list
6987 		 * since it is not detached.
6988 		 */
6989 		ASSERT(tcp->tcp_time_wait_next == NULL);
6990 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6991 		ASSERT(tcp->tcp_time_wait_expire == 0);
6992 		ltcp = NULL;
6993 		/*
6994 		 * If it used to be a listener, check to make sure no one else
6995 		 * has taken the port before switching back to LISTEN state.
6996 		 */
6997 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6998 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6999 			    tcp->tcp_ipha->ipha_src,
7000 			    tcp->tcp_connp->conn_zoneid, ipst);
7001 			if (connp != NULL)
7002 				ltcp = connp->conn_tcp;
7003 		} else {
7004 			/* Allow tcp_bound_if listeners? */
7005 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
7006 			    &tcp->tcp_ip6h->ip6_src, 0,
7007 			    tcp->tcp_connp->conn_zoneid, ipst);
7008 			if (connp != NULL)
7009 				ltcp = connp->conn_tcp;
7010 		}
7011 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
7012 			tcp->tcp_state = TCPS_LISTEN;
7013 		} else if (old_state > TCPS_BOUND) {
7014 			tcp->tcp_conn_req_max = 0;
7015 			tcp->tcp_state = TCPS_BOUND;
7016 		}
7017 		if (ltcp != NULL)
7018 			CONN_DEC_REF(ltcp->tcp_connp);
7019 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
7020 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
7021 		} else if (old_state == TCPS_ESTABLISHED ||
7022 		    old_state == TCPS_CLOSE_WAIT) {
7023 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
7024 		}
7025 
7026 		if (tcp->tcp_fused)
7027 			tcp_unfuse(tcp);
7028 
7029 		mutex_enter(&tcp->tcp_eager_lock);
7030 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
7031 		    (tcp->tcp_conn_req_cnt_q != 0)) {
7032 			tcp_eager_cleanup(tcp, 0);
7033 		}
7034 		mutex_exit(&tcp->tcp_eager_lock);
7035 
7036 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
7037 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
7038 
7039 		tcp_reinit(tcp);
7040 
7041 		if (old_state >= TCPS_ESTABLISHED) {
7042 			/* Send M_FLUSH according to TPI */
7043 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7044 		}
7045 		mp = mi_tpi_ok_ack_alloc(mp);
7046 		if (mp)
7047 			putnext(tcp->tcp_rq, mp);
7048 		return;
7049 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
7050 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
7051 		return;
7052 	}
7053 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
7054 		/* Send M_FLUSH according to TPI */
7055 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7056 	}
7057 	mp = mi_tpi_ok_ack_alloc(mp);
7058 	if (mp)
7059 		putnext(tcp->tcp_rq, mp);
7060 }
7061 
7062 /*
7063  * Diagnostic routine used to return a string associated with the tcp state.
7064  * Note that if the caller does not supply a buffer, it will use an internal
7065  * static string.  This means that if multiple threads call this function at
7066  * the same time, output can be corrupted...  Note also that this function
7067  * does not check the size of the supplied buffer.  The caller has to make
7068  * sure that it is big enough.
7069  */
7070 static char *
7071 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7072 {
7073 	char		buf1[30];
7074 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7075 	char		*buf;
7076 	char		*cp;
7077 	in6_addr_t	local, remote;
7078 	char		local_addrbuf[INET6_ADDRSTRLEN];
7079 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7080 
7081 	if (sup_buf != NULL)
7082 		buf = sup_buf;
7083 	else
7084 		buf = priv_buf;
7085 
7086 	if (tcp == NULL)
7087 		return ("NULL_TCP");
7088 	switch (tcp->tcp_state) {
7089 	case TCPS_CLOSED:
7090 		cp = "TCP_CLOSED";
7091 		break;
7092 	case TCPS_IDLE:
7093 		cp = "TCP_IDLE";
7094 		break;
7095 	case TCPS_BOUND:
7096 		cp = "TCP_BOUND";
7097 		break;
7098 	case TCPS_LISTEN:
7099 		cp = "TCP_LISTEN";
7100 		break;
7101 	case TCPS_SYN_SENT:
7102 		cp = "TCP_SYN_SENT";
7103 		break;
7104 	case TCPS_SYN_RCVD:
7105 		cp = "TCP_SYN_RCVD";
7106 		break;
7107 	case TCPS_ESTABLISHED:
7108 		cp = "TCP_ESTABLISHED";
7109 		break;
7110 	case TCPS_CLOSE_WAIT:
7111 		cp = "TCP_CLOSE_WAIT";
7112 		break;
7113 	case TCPS_FIN_WAIT_1:
7114 		cp = "TCP_FIN_WAIT_1";
7115 		break;
7116 	case TCPS_CLOSING:
7117 		cp = "TCP_CLOSING";
7118 		break;
7119 	case TCPS_LAST_ACK:
7120 		cp = "TCP_LAST_ACK";
7121 		break;
7122 	case TCPS_FIN_WAIT_2:
7123 		cp = "TCP_FIN_WAIT_2";
7124 		break;
7125 	case TCPS_TIME_WAIT:
7126 		cp = "TCP_TIME_WAIT";
7127 		break;
7128 	default:
7129 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7130 		cp = buf1;
7131 		break;
7132 	}
7133 	switch (format) {
7134 	case DISP_ADDR_AND_PORT:
7135 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7136 			/*
7137 			 * Note that we use the remote address in the tcp_b
7138 			 * structure.  This means that it will print out
7139 			 * the real destination address, not the next hop's
7140 			 * address if source routing is used.
7141 			 */
7142 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7143 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7144 
7145 		} else {
7146 			local = tcp->tcp_ip_src_v6;
7147 			remote = tcp->tcp_remote_v6;
7148 		}
7149 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7150 		    sizeof (local_addrbuf));
7151 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7152 		    sizeof (remote_addrbuf));
7153 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7154 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7155 		    ntohs(tcp->tcp_fport), cp);
7156 		break;
7157 	case DISP_PORT_ONLY:
7158 	default:
7159 		(void) mi_sprintf(buf, "[%u, %u] %s",
7160 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7161 		break;
7162 	}
7163 
7164 	return (buf);
7165 }
7166 
7167 /*
7168  * Called via squeue to get on to eager's perimeter. It sends a
7169  * TH_RST if eager is in the fanout table. The listener wants the
7170  * eager to disappear either by means of tcp_eager_blowoff() or
7171  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7172  * called (via squeue) if the eager cannot be inserted in the
7173  * fanout table in tcp_conn_request().
7174  */
7175 /* ARGSUSED */
7176 void
7177 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7178 {
7179 	conn_t	*econnp = (conn_t *)arg;
7180 	tcp_t	*eager = econnp->conn_tcp;
7181 	tcp_t	*listener = eager->tcp_listener;
7182 	tcp_stack_t	*tcps = eager->tcp_tcps;
7183 
7184 	/*
7185 	 * We could be called because listener is closing. Since
7186 	 * the eager is using listener's queue's, its not safe.
7187 	 * Better use the default queue just to send the TH_RST
7188 	 * out.
7189 	 */
7190 	ASSERT(tcps->tcps_g_q != NULL);
7191 	eager->tcp_rq = tcps->tcps_g_q;
7192 	eager->tcp_wq = WR(tcps->tcps_g_q);
7193 
7194 	/*
7195 	 * An eager's conn_fanout will be NULL if it's a duplicate
7196 	 * for an existing 4-tuples in the conn fanout table.
7197 	 * We don't want to send an RST out in such case.
7198 	 */
7199 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7200 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7201 		    eager, eager->tcp_snxt, 0, TH_RST);
7202 	}
7203 
7204 	/* We are here because listener wants this eager gone */
7205 	if (listener != NULL) {
7206 		mutex_enter(&listener->tcp_eager_lock);
7207 		tcp_eager_unlink(eager);
7208 		if (eager->tcp_tconnind_started) {
7209 			/*
7210 			 * The eager has sent a conn_ind up to the
7211 			 * listener but listener decides to close
7212 			 * instead. We need to drop the extra ref
7213 			 * placed on eager in tcp_rput_data() before
7214 			 * sending the conn_ind to listener.
7215 			 */
7216 			CONN_DEC_REF(econnp);
7217 		}
7218 		mutex_exit(&listener->tcp_eager_lock);
7219 		CONN_DEC_REF(listener->tcp_connp);
7220 	}
7221 
7222 	if (eager->tcp_state > TCPS_BOUND)
7223 		tcp_close_detached(eager);
7224 }
7225 
7226 /*
7227  * Reset any eager connection hanging off this listener marked
7228  * with 'seqnum' and then reclaim it's resources.
7229  */
7230 static boolean_t
7231 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7232 {
7233 	tcp_t	*eager;
7234 	mblk_t 	*mp;
7235 	tcp_stack_t	*tcps = listener->tcp_tcps;
7236 
7237 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7238 	eager = listener;
7239 	mutex_enter(&listener->tcp_eager_lock);
7240 	do {
7241 		eager = eager->tcp_eager_next_q;
7242 		if (eager == NULL) {
7243 			mutex_exit(&listener->tcp_eager_lock);
7244 			return (B_FALSE);
7245 		}
7246 	} while (eager->tcp_conn_req_seqnum != seqnum);
7247 
7248 	if (eager->tcp_closemp_used) {
7249 		mutex_exit(&listener->tcp_eager_lock);
7250 		return (B_TRUE);
7251 	}
7252 	eager->tcp_closemp_used = B_TRUE;
7253 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7254 	CONN_INC_REF(eager->tcp_connp);
7255 	mutex_exit(&listener->tcp_eager_lock);
7256 	mp = &eager->tcp_closemp;
7257 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7258 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7259 	return (B_TRUE);
7260 }
7261 
7262 /*
7263  * Reset any eager connection hanging off this listener
7264  * and then reclaim it's resources.
7265  */
7266 static void
7267 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7268 {
7269 	tcp_t	*eager;
7270 	mblk_t	*mp;
7271 	tcp_stack_t	*tcps = listener->tcp_tcps;
7272 
7273 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7274 
7275 	if (!q0_only) {
7276 		/* First cleanup q */
7277 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7278 		eager = listener->tcp_eager_next_q;
7279 		while (eager != NULL) {
7280 			if (!eager->tcp_closemp_used) {
7281 				eager->tcp_closemp_used = B_TRUE;
7282 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7283 				CONN_INC_REF(eager->tcp_connp);
7284 				mp = &eager->tcp_closemp;
7285 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7286 				    tcp_eager_kill, eager->tcp_connp,
7287 				    SQTAG_TCP_EAGER_CLEANUP);
7288 			}
7289 			eager = eager->tcp_eager_next_q;
7290 		}
7291 	}
7292 	/* Then cleanup q0 */
7293 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7294 	eager = listener->tcp_eager_next_q0;
7295 	while (eager != listener) {
7296 		if (!eager->tcp_closemp_used) {
7297 			eager->tcp_closemp_used = B_TRUE;
7298 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7299 			CONN_INC_REF(eager->tcp_connp);
7300 			mp = &eager->tcp_closemp;
7301 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7302 			    tcp_eager_kill, eager->tcp_connp,
7303 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7304 		}
7305 		eager = eager->tcp_eager_next_q0;
7306 	}
7307 }
7308 
7309 /*
7310  * If we are an eager connection hanging off a listener that hasn't
7311  * formally accepted the connection yet, get off his list and blow off
7312  * any data that we have accumulated.
7313  */
7314 static void
7315 tcp_eager_unlink(tcp_t *tcp)
7316 {
7317 	tcp_t	*listener = tcp->tcp_listener;
7318 
7319 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7320 	ASSERT(listener != NULL);
7321 	if (tcp->tcp_eager_next_q0 != NULL) {
7322 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7323 
7324 		/* Remove the eager tcp from q0 */
7325 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7326 		    tcp->tcp_eager_prev_q0;
7327 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7328 		    tcp->tcp_eager_next_q0;
7329 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7330 		listener->tcp_conn_req_cnt_q0--;
7331 
7332 		tcp->tcp_eager_next_q0 = NULL;
7333 		tcp->tcp_eager_prev_q0 = NULL;
7334 
7335 		/*
7336 		 * Take the eager out, if it is in the list of droppable
7337 		 * eagers.
7338 		 */
7339 		MAKE_UNDROPPABLE(tcp);
7340 
7341 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7342 			/* we have timed out before */
7343 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7344 			listener->tcp_syn_rcvd_timeout--;
7345 		}
7346 	} else {
7347 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7348 		tcp_t	*prev = NULL;
7349 
7350 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7351 			if (tcpp[0] == tcp) {
7352 				if (listener->tcp_eager_last_q == tcp) {
7353 					/*
7354 					 * If we are unlinking the last
7355 					 * element on the list, adjust
7356 					 * tail pointer. Set tail pointer
7357 					 * to nil when list is empty.
7358 					 */
7359 					ASSERT(tcp->tcp_eager_next_q == NULL);
7360 					if (listener->tcp_eager_last_q ==
7361 					    listener->tcp_eager_next_q) {
7362 						listener->tcp_eager_last_q =
7363 						    NULL;
7364 					} else {
7365 						/*
7366 						 * We won't get here if there
7367 						 * is only one eager in the
7368 						 * list.
7369 						 */
7370 						ASSERT(prev != NULL);
7371 						listener->tcp_eager_last_q =
7372 						    prev;
7373 					}
7374 				}
7375 				tcpp[0] = tcp->tcp_eager_next_q;
7376 				tcp->tcp_eager_next_q = NULL;
7377 				tcp->tcp_eager_last_q = NULL;
7378 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7379 				listener->tcp_conn_req_cnt_q--;
7380 				break;
7381 			}
7382 			prev = tcpp[0];
7383 		}
7384 	}
7385 	tcp->tcp_listener = NULL;
7386 }
7387 
7388 /* Shorthand to generate and send TPI error acks to our client */
7389 static void
7390 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7391 {
7392 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7393 		putnext(tcp->tcp_rq, mp);
7394 }
7395 
7396 /* Shorthand to generate and send TPI error acks to our client */
7397 static void
7398 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7399     int t_error, int sys_error)
7400 {
7401 	struct T_error_ack	*teackp;
7402 
7403 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7404 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7405 		teackp = (struct T_error_ack *)mp->b_rptr;
7406 		teackp->ERROR_prim = primitive;
7407 		teackp->TLI_error = t_error;
7408 		teackp->UNIX_error = sys_error;
7409 		putnext(tcp->tcp_rq, mp);
7410 	}
7411 }
7412 
7413 /*
7414  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7415  * but instead the code relies on:
7416  * - the fact that the address of the array and its size never changes
7417  * - the atomic assignment of the elements of the array
7418  */
7419 /* ARGSUSED */
7420 static int
7421 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7422 {
7423 	int i;
7424 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7425 
7426 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7427 		if (tcps->tcps_g_epriv_ports[i] != 0)
7428 			(void) mi_mpprintf(mp, "%d ",
7429 			    tcps->tcps_g_epriv_ports[i]);
7430 	}
7431 	return (0);
7432 }
7433 
7434 /*
7435  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7436  * threads from changing it at the same time.
7437  */
7438 /* ARGSUSED */
7439 static int
7440 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7441     cred_t *cr)
7442 {
7443 	long	new_value;
7444 	int	i;
7445 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7446 
7447 	/*
7448 	 * Fail the request if the new value does not lie within the
7449 	 * port number limits.
7450 	 */
7451 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7452 	    new_value <= 0 || new_value >= 65536) {
7453 		return (EINVAL);
7454 	}
7455 
7456 	mutex_enter(&tcps->tcps_epriv_port_lock);
7457 	/* Check if the value is already in the list */
7458 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7459 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7460 			mutex_exit(&tcps->tcps_epriv_port_lock);
7461 			return (EEXIST);
7462 		}
7463 	}
7464 	/* Find an empty slot */
7465 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7466 		if (tcps->tcps_g_epriv_ports[i] == 0)
7467 			break;
7468 	}
7469 	if (i == tcps->tcps_g_num_epriv_ports) {
7470 		mutex_exit(&tcps->tcps_epriv_port_lock);
7471 		return (EOVERFLOW);
7472 	}
7473 	/* Set the new value */
7474 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7475 	mutex_exit(&tcps->tcps_epriv_port_lock);
7476 	return (0);
7477 }
7478 
7479 /*
7480  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7481  * threads from changing it at the same time.
7482  */
7483 /* ARGSUSED */
7484 static int
7485 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7486     cred_t *cr)
7487 {
7488 	long	new_value;
7489 	int	i;
7490 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7491 
7492 	/*
7493 	 * Fail the request if the new value does not lie within the
7494 	 * port number limits.
7495 	 */
7496 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7497 	    new_value >= 65536) {
7498 		return (EINVAL);
7499 	}
7500 
7501 	mutex_enter(&tcps->tcps_epriv_port_lock);
7502 	/* Check that the value is already in the list */
7503 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7504 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7505 			break;
7506 	}
7507 	if (i == tcps->tcps_g_num_epriv_ports) {
7508 		mutex_exit(&tcps->tcps_epriv_port_lock);
7509 		return (ESRCH);
7510 	}
7511 	/* Clear the value */
7512 	tcps->tcps_g_epriv_ports[i] = 0;
7513 	mutex_exit(&tcps->tcps_epriv_port_lock);
7514 	return (0);
7515 }
7516 
7517 /* Return the TPI/TLI equivalent of our current tcp_state */
7518 static int
7519 tcp_tpistate(tcp_t *tcp)
7520 {
7521 	switch (tcp->tcp_state) {
7522 	case TCPS_IDLE:
7523 		return (TS_UNBND);
7524 	case TCPS_LISTEN:
7525 		/*
7526 		 * Return whether there are outstanding T_CONN_IND waiting
7527 		 * for the matching T_CONN_RES. Therefore don't count q0.
7528 		 */
7529 		if (tcp->tcp_conn_req_cnt_q > 0)
7530 			return (TS_WRES_CIND);
7531 		else
7532 			return (TS_IDLE);
7533 	case TCPS_BOUND:
7534 		return (TS_IDLE);
7535 	case TCPS_SYN_SENT:
7536 		return (TS_WCON_CREQ);
7537 	case TCPS_SYN_RCVD:
7538 		/*
7539 		 * Note: assumption: this has to the active open SYN_RCVD.
7540 		 * The passive instance is detached in SYN_RCVD stage of
7541 		 * incoming connection processing so we cannot get request
7542 		 * for T_info_ack on it.
7543 		 */
7544 		return (TS_WACK_CRES);
7545 	case TCPS_ESTABLISHED:
7546 		return (TS_DATA_XFER);
7547 	case TCPS_CLOSE_WAIT:
7548 		return (TS_WREQ_ORDREL);
7549 	case TCPS_FIN_WAIT_1:
7550 		return (TS_WIND_ORDREL);
7551 	case TCPS_FIN_WAIT_2:
7552 		return (TS_WIND_ORDREL);
7553 
7554 	case TCPS_CLOSING:
7555 	case TCPS_LAST_ACK:
7556 	case TCPS_TIME_WAIT:
7557 	case TCPS_CLOSED:
7558 		/*
7559 		 * Following TS_WACK_DREQ7 is a rendition of "not
7560 		 * yet TS_IDLE" TPI state. There is no best match to any
7561 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7562 		 * choose a value chosen that will map to TLI/XTI level
7563 		 * state of TSTATECHNG (state is process of changing) which
7564 		 * captures what this dummy state represents.
7565 		 */
7566 		return (TS_WACK_DREQ7);
7567 	default:
7568 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7569 		    tcp->tcp_state, tcp_display(tcp, NULL,
7570 		    DISP_PORT_ONLY));
7571 		return (TS_UNBND);
7572 	}
7573 }
7574 
7575 static void
7576 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7577 {
7578 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7579 
7580 	if (tcp->tcp_family == AF_INET6)
7581 		*tia = tcp_g_t_info_ack_v6;
7582 	else
7583 		*tia = tcp_g_t_info_ack;
7584 	tia->CURRENT_state = tcp_tpistate(tcp);
7585 	tia->OPT_size = tcp_max_optsize;
7586 	if (tcp->tcp_mss == 0) {
7587 		/* Not yet set - tcp_open does not set mss */
7588 		if (tcp->tcp_ipversion == IPV4_VERSION)
7589 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7590 		else
7591 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7592 	} else {
7593 		tia->TIDU_size = tcp->tcp_mss;
7594 	}
7595 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7596 }
7597 
7598 /*
7599  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7600  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7601  * tcp_g_t_info_ack.  The current state of the stream is copied from
7602  * tcp_state.
7603  */
7604 static void
7605 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7606 {
7607 	t_uscalar_t		cap_bits1;
7608 	struct T_capability_ack	*tcap;
7609 
7610 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7611 		freemsg(mp);
7612 		return;
7613 	}
7614 
7615 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7616 
7617 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7618 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7619 	if (mp == NULL)
7620 		return;
7621 
7622 	tcap = (struct T_capability_ack *)mp->b_rptr;
7623 	tcap->CAP_bits1 = 0;
7624 
7625 	if (cap_bits1 & TC1_INFO) {
7626 		tcp_copy_info(&tcap->INFO_ack, tcp);
7627 		tcap->CAP_bits1 |= TC1_INFO;
7628 	}
7629 
7630 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7631 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7632 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7633 	}
7634 
7635 	putnext(tcp->tcp_rq, mp);
7636 }
7637 
7638 /*
7639  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7640  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7641  * The current state of the stream is copied from tcp_state.
7642  */
7643 static void
7644 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7645 {
7646 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7647 	    T_INFO_ACK);
7648 	if (!mp) {
7649 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7650 		return;
7651 	}
7652 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7653 	putnext(tcp->tcp_rq, mp);
7654 }
7655 
7656 /* Respond to the TPI addr request */
7657 static void
7658 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7659 {
7660 	sin_t	*sin;
7661 	mblk_t	*ackmp;
7662 	struct T_addr_ack *taa;
7663 
7664 	/* Make it large enough for worst case */
7665 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7666 	    2 * sizeof (sin6_t), 1);
7667 	if (ackmp == NULL) {
7668 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7669 		return;
7670 	}
7671 
7672 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7673 		tcp_addr_req_ipv6(tcp, ackmp);
7674 		return;
7675 	}
7676 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7677 
7678 	bzero(taa, sizeof (struct T_addr_ack));
7679 	ackmp->b_wptr = (uchar_t *)&taa[1];
7680 
7681 	taa->PRIM_type = T_ADDR_ACK;
7682 	ackmp->b_datap->db_type = M_PCPROTO;
7683 
7684 	/*
7685 	 * Note: Following code assumes 32 bit alignment of basic
7686 	 * data structures like sin_t and struct T_addr_ack.
7687 	 */
7688 	if (tcp->tcp_state >= TCPS_BOUND) {
7689 		/*
7690 		 * Fill in local address
7691 		 */
7692 		taa->LOCADDR_length = sizeof (sin_t);
7693 		taa->LOCADDR_offset = sizeof (*taa);
7694 
7695 		sin = (sin_t *)&taa[1];
7696 
7697 		/* Fill zeroes and then intialize non-zero fields */
7698 		*sin = sin_null;
7699 
7700 		sin->sin_family = AF_INET;
7701 
7702 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7703 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7704 
7705 		ackmp->b_wptr = (uchar_t *)&sin[1];
7706 
7707 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7708 			/*
7709 			 * Fill in Remote address
7710 			 */
7711 			taa->REMADDR_length = sizeof (sin_t);
7712 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7713 			    taa->LOCADDR_length);
7714 
7715 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7716 			*sin = sin_null;
7717 			sin->sin_family = AF_INET;
7718 			sin->sin_addr.s_addr = tcp->tcp_remote;
7719 			sin->sin_port = tcp->tcp_fport;
7720 
7721 			ackmp->b_wptr = (uchar_t *)&sin[1];
7722 		}
7723 	}
7724 	putnext(tcp->tcp_rq, ackmp);
7725 }
7726 
7727 /* Assumes that tcp_addr_req gets enough space and alignment */
7728 static void
7729 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7730 {
7731 	sin6_t	*sin6;
7732 	struct T_addr_ack *taa;
7733 
7734 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7735 	ASSERT(OK_32PTR(ackmp->b_rptr));
7736 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7737 	    2 * sizeof (sin6_t));
7738 
7739 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7740 
7741 	bzero(taa, sizeof (struct T_addr_ack));
7742 	ackmp->b_wptr = (uchar_t *)&taa[1];
7743 
7744 	taa->PRIM_type = T_ADDR_ACK;
7745 	ackmp->b_datap->db_type = M_PCPROTO;
7746 
7747 	/*
7748 	 * Note: Following code assumes 32 bit alignment of basic
7749 	 * data structures like sin6_t and struct T_addr_ack.
7750 	 */
7751 	if (tcp->tcp_state >= TCPS_BOUND) {
7752 		/*
7753 		 * Fill in local address
7754 		 */
7755 		taa->LOCADDR_length = sizeof (sin6_t);
7756 		taa->LOCADDR_offset = sizeof (*taa);
7757 
7758 		sin6 = (sin6_t *)&taa[1];
7759 		*sin6 = sin6_null;
7760 
7761 		sin6->sin6_family = AF_INET6;
7762 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7763 		sin6->sin6_port = tcp->tcp_lport;
7764 
7765 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7766 
7767 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7768 			/*
7769 			 * Fill in Remote address
7770 			 */
7771 			taa->REMADDR_length = sizeof (sin6_t);
7772 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7773 			    taa->LOCADDR_length);
7774 
7775 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7776 			*sin6 = sin6_null;
7777 			sin6->sin6_family = AF_INET6;
7778 			sin6->sin6_flowinfo =
7779 			    tcp->tcp_ip6h->ip6_vcf &
7780 			    ~IPV6_VERS_AND_FLOW_MASK;
7781 			sin6->sin6_addr = tcp->tcp_remote_v6;
7782 			sin6->sin6_port = tcp->tcp_fport;
7783 
7784 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7785 		}
7786 	}
7787 	putnext(tcp->tcp_rq, ackmp);
7788 }
7789 
7790 /*
7791  * Handle reinitialization of a tcp structure.
7792  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7793  */
7794 static void
7795 tcp_reinit(tcp_t *tcp)
7796 {
7797 	mblk_t	*mp;
7798 	int 	err;
7799 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7800 
7801 	TCP_STAT(tcps, tcp_reinit_calls);
7802 
7803 	/* tcp_reinit should never be called for detached tcp_t's */
7804 	ASSERT(tcp->tcp_listener == NULL);
7805 	ASSERT((tcp->tcp_family == AF_INET &&
7806 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7807 	    (tcp->tcp_family == AF_INET6 &&
7808 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7809 	    tcp->tcp_ipversion == IPV6_VERSION)));
7810 
7811 	/* Cancel outstanding timers */
7812 	tcp_timers_stop(tcp);
7813 
7814 	/*
7815 	 * Reset everything in the state vector, after updating global
7816 	 * MIB data from instance counters.
7817 	 */
7818 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7819 	tcp->tcp_ibsegs = 0;
7820 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7821 	tcp->tcp_obsegs = 0;
7822 
7823 	tcp_close_mpp(&tcp->tcp_xmit_head);
7824 	if (tcp->tcp_snd_zcopy_aware)
7825 		tcp_zcopy_notify(tcp);
7826 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7827 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7828 	mutex_enter(&tcp->tcp_non_sq_lock);
7829 	if (tcp->tcp_flow_stopped &&
7830 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7831 		tcp_clrqfull(tcp);
7832 	}
7833 	mutex_exit(&tcp->tcp_non_sq_lock);
7834 	tcp_close_mpp(&tcp->tcp_reass_head);
7835 	tcp->tcp_reass_tail = NULL;
7836 	if (tcp->tcp_rcv_list != NULL) {
7837 		/* Free b_next chain */
7838 		tcp_close_mpp(&tcp->tcp_rcv_list);
7839 		tcp->tcp_rcv_last_head = NULL;
7840 		tcp->tcp_rcv_last_tail = NULL;
7841 		tcp->tcp_rcv_cnt = 0;
7842 	}
7843 	tcp->tcp_rcv_last_tail = NULL;
7844 
7845 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7846 		freemsg(mp);
7847 		tcp->tcp_urp_mp = NULL;
7848 	}
7849 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7850 		freemsg(mp);
7851 		tcp->tcp_urp_mark_mp = NULL;
7852 	}
7853 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7854 		freeb(tcp->tcp_fused_sigurg_mp);
7855 		tcp->tcp_fused_sigurg_mp = NULL;
7856 	}
7857 
7858 	/*
7859 	 * Following is a union with two members which are
7860 	 * identical types and size so the following cleanup
7861 	 * is enough.
7862 	 */
7863 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7864 
7865 	CL_INET_DISCONNECT(tcp);
7866 
7867 	/*
7868 	 * The connection can't be on the tcp_time_wait_head list
7869 	 * since it is not detached.
7870 	 */
7871 	ASSERT(tcp->tcp_time_wait_next == NULL);
7872 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7873 	ASSERT(tcp->tcp_time_wait_expire == 0);
7874 
7875 	if (tcp->tcp_kssl_pending) {
7876 		tcp->tcp_kssl_pending = B_FALSE;
7877 
7878 		/* Don't reset if the initialized by bind. */
7879 		if (tcp->tcp_kssl_ent != NULL) {
7880 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7881 			    KSSL_NO_PROXY);
7882 		}
7883 	}
7884 	if (tcp->tcp_kssl_ctx != NULL) {
7885 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7886 		tcp->tcp_kssl_ctx = NULL;
7887 	}
7888 
7889 	/*
7890 	 * Reset/preserve other values
7891 	 */
7892 	tcp_reinit_values(tcp);
7893 	ipcl_hash_remove(tcp->tcp_connp);
7894 	conn_delete_ire(tcp->tcp_connp, NULL);
7895 	tcp_ipsec_cleanup(tcp);
7896 
7897 	if (tcp->tcp_conn_req_max != 0) {
7898 		/*
7899 		 * This is the case when a TLI program uses the same
7900 		 * transport end point to accept a connection.  This
7901 		 * makes the TCP both a listener and acceptor.  When
7902 		 * this connection is closed, we need to set the state
7903 		 * back to TCPS_LISTEN.  Make sure that the eager list
7904 		 * is reinitialized.
7905 		 *
7906 		 * Note that this stream is still bound to the four
7907 		 * tuples of the previous connection in IP.  If a new
7908 		 * SYN with different foreign address comes in, IP will
7909 		 * not find it and will send it to the global queue.  In
7910 		 * the global queue, TCP will do a tcp_lookup_listener()
7911 		 * to find this stream.  This works because this stream
7912 		 * is only removed from connected hash.
7913 		 *
7914 		 */
7915 		tcp->tcp_state = TCPS_LISTEN;
7916 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7917 		tcp->tcp_eager_next_drop_q0 = tcp;
7918 		tcp->tcp_eager_prev_drop_q0 = tcp;
7919 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7920 		if (tcp->tcp_family == AF_INET6) {
7921 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7922 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7923 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7924 		} else {
7925 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7926 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7927 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7928 		}
7929 	} else {
7930 		tcp->tcp_state = TCPS_BOUND;
7931 	}
7932 
7933 	/*
7934 	 * Initialize to default values
7935 	 * Can't fail since enough header template space already allocated
7936 	 * at open().
7937 	 */
7938 	err = tcp_init_values(tcp);
7939 	ASSERT(err == 0);
7940 	/* Restore state in tcp_tcph */
7941 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7942 	if (tcp->tcp_ipversion == IPV4_VERSION)
7943 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7944 	else
7945 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7946 	/*
7947 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7948 	 * since the lookup funcs can only lookup on tcp_t
7949 	 */
7950 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7951 
7952 	ASSERT(tcp->tcp_ptpbhn != NULL);
7953 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7954 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7955 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7956 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7957 }
7958 
7959 /*
7960  * Force values to zero that need be zero.
7961  * Do not touch values asociated with the BOUND or LISTEN state
7962  * since the connection will end up in that state after the reinit.
7963  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7964  * structure!
7965  */
7966 static void
7967 tcp_reinit_values(tcp)
7968 	tcp_t *tcp;
7969 {
7970 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7971 
7972 #ifndef	lint
7973 #define	DONTCARE(x)
7974 #define	PRESERVE(x)
7975 #else
7976 #define	DONTCARE(x)	((x) = (x))
7977 #define	PRESERVE(x)	((x) = (x))
7978 #endif	/* lint */
7979 
7980 	PRESERVE(tcp->tcp_bind_hash);
7981 	PRESERVE(tcp->tcp_ptpbhn);
7982 	PRESERVE(tcp->tcp_acceptor_hash);
7983 	PRESERVE(tcp->tcp_ptpahn);
7984 
7985 	/* Should be ASSERT NULL on these with new code! */
7986 	ASSERT(tcp->tcp_time_wait_next == NULL);
7987 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7988 	ASSERT(tcp->tcp_time_wait_expire == 0);
7989 	PRESERVE(tcp->tcp_state);
7990 	PRESERVE(tcp->tcp_rq);
7991 	PRESERVE(tcp->tcp_wq);
7992 
7993 	ASSERT(tcp->tcp_xmit_head == NULL);
7994 	ASSERT(tcp->tcp_xmit_last == NULL);
7995 	ASSERT(tcp->tcp_unsent == 0);
7996 	ASSERT(tcp->tcp_xmit_tail == NULL);
7997 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7998 
7999 	tcp->tcp_snxt = 0;			/* Displayed in mib */
8000 	tcp->tcp_suna = 0;			/* Displayed in mib */
8001 	tcp->tcp_swnd = 0;
8002 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
8003 
8004 	ASSERT(tcp->tcp_ibsegs == 0);
8005 	ASSERT(tcp->tcp_obsegs == 0);
8006 
8007 	if (tcp->tcp_iphc != NULL) {
8008 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8009 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
8010 	}
8011 
8012 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
8013 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
8014 	DONTCARE(tcp->tcp_ipha);
8015 	DONTCARE(tcp->tcp_ip6h);
8016 	DONTCARE(tcp->tcp_ip_hdr_len);
8017 	DONTCARE(tcp->tcp_tcph);
8018 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
8019 	tcp->tcp_valid_bits = 0;
8020 
8021 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
8022 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
8023 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
8024 	tcp->tcp_last_rcv_lbolt = 0;
8025 
8026 	tcp->tcp_init_cwnd = 0;
8027 
8028 	tcp->tcp_urp_last_valid = 0;
8029 	tcp->tcp_hard_binding = 0;
8030 	tcp->tcp_hard_bound = 0;
8031 	PRESERVE(tcp->tcp_cred);
8032 	PRESERVE(tcp->tcp_cpid);
8033 	PRESERVE(tcp->tcp_open_time);
8034 	PRESERVE(tcp->tcp_exclbind);
8035 
8036 	tcp->tcp_fin_acked = 0;
8037 	tcp->tcp_fin_rcvd = 0;
8038 	tcp->tcp_fin_sent = 0;
8039 	tcp->tcp_ordrel_done = 0;
8040 
8041 	tcp->tcp_debug = 0;
8042 	tcp->tcp_dontroute = 0;
8043 	tcp->tcp_broadcast = 0;
8044 
8045 	tcp->tcp_useloopback = 0;
8046 	tcp->tcp_reuseaddr = 0;
8047 	tcp->tcp_oobinline = 0;
8048 	tcp->tcp_dgram_errind = 0;
8049 
8050 	tcp->tcp_detached = 0;
8051 	tcp->tcp_bind_pending = 0;
8052 	tcp->tcp_unbind_pending = 0;
8053 	tcp->tcp_deferred_clean_death = 0;
8054 
8055 	tcp->tcp_snd_ws_ok = B_FALSE;
8056 	tcp->tcp_snd_ts_ok = B_FALSE;
8057 	tcp->tcp_linger = 0;
8058 	tcp->tcp_ka_enabled = 0;
8059 	tcp->tcp_zero_win_probe = 0;
8060 
8061 	tcp->tcp_loopback = 0;
8062 	tcp->tcp_localnet = 0;
8063 	tcp->tcp_syn_defense = 0;
8064 	tcp->tcp_set_timer = 0;
8065 
8066 	tcp->tcp_active_open = 0;
8067 	ASSERT(tcp->tcp_timeout == B_FALSE);
8068 	tcp->tcp_rexmit = B_FALSE;
8069 	tcp->tcp_xmit_zc_clean = B_FALSE;
8070 
8071 	tcp->tcp_snd_sack_ok = B_FALSE;
8072 	PRESERVE(tcp->tcp_recvdstaddr);
8073 	tcp->tcp_hwcksum = B_FALSE;
8074 
8075 	tcp->tcp_ire_ill_check_done = B_FALSE;
8076 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8077 
8078 	tcp->tcp_mdt = B_FALSE;
8079 	tcp->tcp_mdt_hdr_head = 0;
8080 	tcp->tcp_mdt_hdr_tail = 0;
8081 
8082 	tcp->tcp_conn_def_q0 = 0;
8083 	tcp->tcp_ip_forward_progress = B_FALSE;
8084 	tcp->tcp_anon_priv_bind = 0;
8085 	tcp->tcp_ecn_ok = B_FALSE;
8086 
8087 	tcp->tcp_cwr = B_FALSE;
8088 	tcp->tcp_ecn_echo_on = B_FALSE;
8089 
8090 	if (tcp->tcp_sack_info != NULL) {
8091 		if (tcp->tcp_notsack_list != NULL) {
8092 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8093 		}
8094 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8095 		tcp->tcp_sack_info = NULL;
8096 	}
8097 
8098 	tcp->tcp_rcv_ws = 0;
8099 	tcp->tcp_snd_ws = 0;
8100 	tcp->tcp_ts_recent = 0;
8101 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8102 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8103 	tcp->tcp_if_mtu = 0;
8104 
8105 	ASSERT(tcp->tcp_reass_head == NULL);
8106 	ASSERT(tcp->tcp_reass_tail == NULL);
8107 
8108 	tcp->tcp_cwnd_cnt = 0;
8109 
8110 	ASSERT(tcp->tcp_rcv_list == NULL);
8111 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8112 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8113 	ASSERT(tcp->tcp_rcv_cnt == 0);
8114 
8115 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8116 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8117 	tcp->tcp_csuna = 0;
8118 
8119 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8120 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8121 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8122 	tcp->tcp_rtt_update = 0;
8123 
8124 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8125 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8126 
8127 	tcp->tcp_rack = 0;			/* Displayed in mib */
8128 	tcp->tcp_rack_cnt = 0;
8129 	tcp->tcp_rack_cur_max = 0;
8130 	tcp->tcp_rack_abs_max = 0;
8131 
8132 	tcp->tcp_max_swnd = 0;
8133 
8134 	ASSERT(tcp->tcp_listener == NULL);
8135 
8136 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8137 
8138 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8139 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8140 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8141 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8142 
8143 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8144 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8145 	PRESERVE(tcp->tcp_conn_req_max);
8146 	PRESERVE(tcp->tcp_conn_req_seqnum);
8147 
8148 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8149 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8150 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8151 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8152 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8153 
8154 	tcp->tcp_lingertime = 0;
8155 
8156 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8157 	ASSERT(tcp->tcp_urp_mp == NULL);
8158 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8159 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8160 
8161 	ASSERT(tcp->tcp_eager_next_q == NULL);
8162 	ASSERT(tcp->tcp_eager_last_q == NULL);
8163 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8164 	    tcp->tcp_eager_prev_q0 == NULL) ||
8165 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8166 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8167 
8168 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8169 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8170 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8171 
8172 	tcp->tcp_client_errno = 0;
8173 
8174 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8175 
8176 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8177 
8178 	PRESERVE(tcp->tcp_bound_source_v6);
8179 	tcp->tcp_last_sent_len = 0;
8180 	tcp->tcp_dupack_cnt = 0;
8181 
8182 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8183 	PRESERVE(tcp->tcp_lport);
8184 
8185 	PRESERVE(tcp->tcp_acceptor_lockp);
8186 
8187 	ASSERT(tcp->tcp_ordrelid == 0);
8188 	PRESERVE(tcp->tcp_acceptor_id);
8189 	DONTCARE(tcp->tcp_ipsec_overhead);
8190 
8191 	/*
8192 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8193 	 * in tcp structure and now tracing), Re-initialize all
8194 	 * members of tcp_traceinfo.
8195 	 */
8196 	if (tcp->tcp_tracebuf != NULL) {
8197 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8198 	}
8199 
8200 	PRESERVE(tcp->tcp_family);
8201 	if (tcp->tcp_family == AF_INET6) {
8202 		tcp->tcp_ipversion = IPV6_VERSION;
8203 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8204 	} else {
8205 		tcp->tcp_ipversion = IPV4_VERSION;
8206 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8207 	}
8208 
8209 	tcp->tcp_bound_if = 0;
8210 	tcp->tcp_ipv6_recvancillary = 0;
8211 	tcp->tcp_recvifindex = 0;
8212 	tcp->tcp_recvhops = 0;
8213 	tcp->tcp_closed = 0;
8214 	tcp->tcp_cleandeathtag = 0;
8215 	if (tcp->tcp_hopopts != NULL) {
8216 		mi_free(tcp->tcp_hopopts);
8217 		tcp->tcp_hopopts = NULL;
8218 		tcp->tcp_hopoptslen = 0;
8219 	}
8220 	ASSERT(tcp->tcp_hopoptslen == 0);
8221 	if (tcp->tcp_dstopts != NULL) {
8222 		mi_free(tcp->tcp_dstopts);
8223 		tcp->tcp_dstopts = NULL;
8224 		tcp->tcp_dstoptslen = 0;
8225 	}
8226 	ASSERT(tcp->tcp_dstoptslen == 0);
8227 	if (tcp->tcp_rtdstopts != NULL) {
8228 		mi_free(tcp->tcp_rtdstopts);
8229 		tcp->tcp_rtdstopts = NULL;
8230 		tcp->tcp_rtdstoptslen = 0;
8231 	}
8232 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8233 	if (tcp->tcp_rthdr != NULL) {
8234 		mi_free(tcp->tcp_rthdr);
8235 		tcp->tcp_rthdr = NULL;
8236 		tcp->tcp_rthdrlen = 0;
8237 	}
8238 	ASSERT(tcp->tcp_rthdrlen == 0);
8239 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8240 
8241 	/* Reset fusion-related fields */
8242 	tcp->tcp_fused = B_FALSE;
8243 	tcp->tcp_unfusable = B_FALSE;
8244 	tcp->tcp_fused_sigurg = B_FALSE;
8245 	tcp->tcp_direct_sockfs = B_FALSE;
8246 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8247 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8248 	tcp->tcp_loopback_peer = NULL;
8249 	tcp->tcp_fuse_rcv_hiwater = 0;
8250 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8251 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8252 
8253 	tcp->tcp_lso = B_FALSE;
8254 
8255 	tcp->tcp_in_ack_unsent = 0;
8256 	tcp->tcp_cork = B_FALSE;
8257 	tcp->tcp_tconnind_started = B_FALSE;
8258 
8259 	PRESERVE(tcp->tcp_squeue_bytes);
8260 
8261 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8262 	ASSERT(!tcp->tcp_kssl_pending);
8263 	PRESERVE(tcp->tcp_kssl_ent);
8264 
8265 	/* Sodirect */
8266 	tcp->tcp_sodirect = NULL;
8267 
8268 	tcp->tcp_closemp_used = B_FALSE;
8269 
8270 #ifdef DEBUG
8271 	DONTCARE(tcp->tcmp_stk[0]);
8272 #endif
8273 
8274 
8275 #undef	DONTCARE
8276 #undef	PRESERVE
8277 }
8278 
8279 /*
8280  * Allocate necessary resources and initialize state vector.
8281  * Guaranteed not to fail so that when an error is returned,
8282  * the caller doesn't need to do any additional cleanup.
8283  */
8284 int
8285 tcp_init(tcp_t *tcp, queue_t *q)
8286 {
8287 	int	err;
8288 
8289 	tcp->tcp_rq = q;
8290 	tcp->tcp_wq = WR(q);
8291 	tcp->tcp_state = TCPS_IDLE;
8292 	if ((err = tcp_init_values(tcp)) != 0)
8293 		tcp_timers_stop(tcp);
8294 	return (err);
8295 }
8296 
8297 static int
8298 tcp_init_values(tcp_t *tcp)
8299 {
8300 	int	err;
8301 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8302 
8303 	ASSERT((tcp->tcp_family == AF_INET &&
8304 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8305 	    (tcp->tcp_family == AF_INET6 &&
8306 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8307 	    tcp->tcp_ipversion == IPV6_VERSION)));
8308 
8309 	/*
8310 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8311 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8312 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8313 	 * during first few transmissions of a connection as seen in slow
8314 	 * links.
8315 	 */
8316 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8317 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8318 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8319 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8320 	    tcps->tcps_conn_grace_period;
8321 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8322 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8323 	tcp->tcp_timer_backoff = 0;
8324 	tcp->tcp_ms_we_have_waited = 0;
8325 	tcp->tcp_last_recv_time = lbolt;
8326 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8327 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8328 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8329 
8330 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8331 
8332 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8333 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8334 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8335 	/*
8336 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8337 	 * passive open.
8338 	 */
8339 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8340 
8341 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8342 
8343 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8344 
8345 	tcp->tcp_mdt_hdr_head = 0;
8346 	tcp->tcp_mdt_hdr_tail = 0;
8347 
8348 	/* Reset fusion-related fields */
8349 	tcp->tcp_fused = B_FALSE;
8350 	tcp->tcp_unfusable = B_FALSE;
8351 	tcp->tcp_fused_sigurg = B_FALSE;
8352 	tcp->tcp_direct_sockfs = B_FALSE;
8353 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8354 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8355 	tcp->tcp_loopback_peer = NULL;
8356 	tcp->tcp_fuse_rcv_hiwater = 0;
8357 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8358 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8359 
8360 	/* Sodirect */
8361 	tcp->tcp_sodirect = NULL;
8362 
8363 	/* Initialize the header template */
8364 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8365 		err = tcp_header_init_ipv4(tcp);
8366 	} else {
8367 		err = tcp_header_init_ipv6(tcp);
8368 	}
8369 	if (err)
8370 		return (err);
8371 
8372 	/*
8373 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8374 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8375 	 */
8376 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8377 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8378 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8379 
8380 	tcp->tcp_cork = B_FALSE;
8381 	/*
8382 	 * Init the tcp_debug option.  This value determines whether TCP
8383 	 * calls strlog() to print out debug messages.  Doing this
8384 	 * initialization here means that this value is not inherited thru
8385 	 * tcp_reinit().
8386 	 */
8387 	tcp->tcp_debug = tcps->tcps_dbg;
8388 
8389 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8390 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8391 
8392 	return (0);
8393 }
8394 
8395 /*
8396  * Initialize the IPv4 header. Loses any record of any IP options.
8397  */
8398 static int
8399 tcp_header_init_ipv4(tcp_t *tcp)
8400 {
8401 	tcph_t		*tcph;
8402 	uint32_t	sum;
8403 	conn_t		*connp;
8404 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8405 
8406 	/*
8407 	 * This is a simple initialization. If there's
8408 	 * already a template, it should never be too small,
8409 	 * so reuse it.  Otherwise, allocate space for the new one.
8410 	 */
8411 	if (tcp->tcp_iphc == NULL) {
8412 		ASSERT(tcp->tcp_iphc_len == 0);
8413 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8414 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8415 		if (tcp->tcp_iphc == NULL) {
8416 			tcp->tcp_iphc_len = 0;
8417 			return (ENOMEM);
8418 		}
8419 	}
8420 
8421 	/* options are gone; may need a new label */
8422 	connp = tcp->tcp_connp;
8423 	connp->conn_mlp_type = mlptSingle;
8424 	connp->conn_ulp_labeled = !is_system_labeled();
8425 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8426 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8427 	tcp->tcp_ip6h = NULL;
8428 	tcp->tcp_ipversion = IPV4_VERSION;
8429 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8430 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8431 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8432 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8433 	tcp->tcp_ipha->ipha_version_and_hdr_length
8434 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8435 	tcp->tcp_ipha->ipha_ident = 0;
8436 
8437 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8438 	tcp->tcp_tos = 0;
8439 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8440 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8441 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8442 
8443 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8444 	tcp->tcp_tcph = tcph;
8445 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8446 	/*
8447 	 * IP wants our header length in the checksum field to
8448 	 * allow it to perform a single pseudo-header+checksum
8449 	 * calculation on behalf of TCP.
8450 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8451 	 */
8452 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8453 	sum = (sum >> 16) + (sum & 0xFFFF);
8454 	U16_TO_ABE16(sum, tcph->th_sum);
8455 	return (0);
8456 }
8457 
8458 /*
8459  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8460  */
8461 static int
8462 tcp_header_init_ipv6(tcp_t *tcp)
8463 {
8464 	tcph_t	*tcph;
8465 	uint32_t	sum;
8466 	conn_t	*connp;
8467 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8468 
8469 	/*
8470 	 * This is a simple initialization. If there's
8471 	 * already a template, it should never be too small,
8472 	 * so reuse it. Otherwise, allocate space for the new one.
8473 	 * Ensure that there is enough space to "downgrade" the tcp_t
8474 	 * to an IPv4 tcp_t. This requires having space for a full load
8475 	 * of IPv4 options, as well as a full load of TCP options
8476 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8477 	 * than a v6 header and a TCP header with a full load of TCP options
8478 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8479 	 * We want to avoid reallocation in the "downgraded" case when
8480 	 * processing outbound IPv4 options.
8481 	 */
8482 	if (tcp->tcp_iphc == NULL) {
8483 		ASSERT(tcp->tcp_iphc_len == 0);
8484 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8485 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8486 		if (tcp->tcp_iphc == NULL) {
8487 			tcp->tcp_iphc_len = 0;
8488 			return (ENOMEM);
8489 		}
8490 	}
8491 
8492 	/* options are gone; may need a new label */
8493 	connp = tcp->tcp_connp;
8494 	connp->conn_mlp_type = mlptSingle;
8495 	connp->conn_ulp_labeled = !is_system_labeled();
8496 
8497 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8498 	tcp->tcp_ipversion = IPV6_VERSION;
8499 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8500 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8501 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8502 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8503 	tcp->tcp_ipha = NULL;
8504 
8505 	/* Initialize the header template */
8506 
8507 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8508 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8509 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8510 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8511 
8512 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8513 	tcp->tcp_tcph = tcph;
8514 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8515 	/*
8516 	 * IP wants our header length in the checksum field to
8517 	 * allow it to perform a single psuedo-header+checksum
8518 	 * calculation on behalf of TCP.
8519 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8520 	 */
8521 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8522 	sum = (sum >> 16) + (sum & 0xFFFF);
8523 	U16_TO_ABE16(sum, tcph->th_sum);
8524 	return (0);
8525 }
8526 
8527 /* At minimum we need 8 bytes in the TCP header for the lookup */
8528 #define	ICMP_MIN_TCP_HDR	8
8529 
8530 /*
8531  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8532  * passed up by IP. The message is always received on the correct tcp_t.
8533  * Assumes that IP has pulled up everything up to and including the ICMP header.
8534  */
8535 void
8536 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8537 {
8538 	icmph_t *icmph;
8539 	ipha_t	*ipha;
8540 	int	iph_hdr_length;
8541 	tcph_t	*tcph;
8542 	boolean_t ipsec_mctl = B_FALSE;
8543 	boolean_t secure;
8544 	mblk_t *first_mp = mp;
8545 	uint32_t new_mss;
8546 	uint32_t ratio;
8547 	size_t mp_size = MBLKL(mp);
8548 	uint32_t seg_seq;
8549 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8550 
8551 	/* Assume IP provides aligned packets - otherwise toss */
8552 	if (!OK_32PTR(mp->b_rptr)) {
8553 		freemsg(mp);
8554 		return;
8555 	}
8556 
8557 	/*
8558 	 * Since ICMP errors are normal data marked with M_CTL when sent
8559 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8560 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8561 	 */
8562 	if ((mp_size == sizeof (ipsec_info_t)) &&
8563 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8564 		ASSERT(mp->b_cont != NULL);
8565 		mp = mp->b_cont;
8566 		/* IP should have done this */
8567 		ASSERT(OK_32PTR(mp->b_rptr));
8568 		mp_size = MBLKL(mp);
8569 		ipsec_mctl = B_TRUE;
8570 	}
8571 
8572 	/*
8573 	 * Verify that we have a complete outer IP header. If not, drop it.
8574 	 */
8575 	if (mp_size < sizeof (ipha_t)) {
8576 noticmpv4:
8577 		freemsg(first_mp);
8578 		return;
8579 	}
8580 
8581 	ipha = (ipha_t *)mp->b_rptr;
8582 	/*
8583 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8584 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8585 	 */
8586 	switch (IPH_HDR_VERSION(ipha)) {
8587 	case IPV6_VERSION:
8588 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8589 		return;
8590 	case IPV4_VERSION:
8591 		break;
8592 	default:
8593 		goto noticmpv4;
8594 	}
8595 
8596 	/* Skip past the outer IP and ICMP headers */
8597 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8598 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8599 	/*
8600 	 * If we don't have the correct outer IP header length or if the ULP
8601 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8602 	 * send it upstream.
8603 	 */
8604 	if (iph_hdr_length < sizeof (ipha_t) ||
8605 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8606 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8607 		goto noticmpv4;
8608 	}
8609 	ipha = (ipha_t *)&icmph[1];
8610 
8611 	/* Skip past the inner IP and find the ULP header */
8612 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8613 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8614 	/*
8615 	 * If we don't have the correct inner IP header length or if the ULP
8616 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8617 	 * bytes of TCP header, drop it.
8618 	 */
8619 	if (iph_hdr_length < sizeof (ipha_t) ||
8620 	    ipha->ipha_protocol != IPPROTO_TCP ||
8621 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8622 		goto noticmpv4;
8623 	}
8624 
8625 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8626 		if (ipsec_mctl) {
8627 			secure = ipsec_in_is_secure(first_mp);
8628 		} else {
8629 			secure = B_FALSE;
8630 		}
8631 		if (secure) {
8632 			/*
8633 			 * If we are willing to accept this in clear
8634 			 * we don't have to verify policy.
8635 			 */
8636 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8637 				if (!tcp_check_policy(tcp, first_mp,
8638 				    ipha, NULL, secure, ipsec_mctl)) {
8639 					/*
8640 					 * tcp_check_policy called
8641 					 * ip_drop_packet() on failure.
8642 					 */
8643 					return;
8644 				}
8645 			}
8646 		}
8647 	} else if (ipsec_mctl) {
8648 		/*
8649 		 * This is a hard_bound connection. IP has already
8650 		 * verified policy. We don't have to do it again.
8651 		 */
8652 		freeb(first_mp);
8653 		first_mp = mp;
8654 		ipsec_mctl = B_FALSE;
8655 	}
8656 
8657 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8658 	/*
8659 	 * TCP SHOULD check that the TCP sequence number contained in
8660 	 * payload of the ICMP error message is within the range
8661 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8662 	 */
8663 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8664 		/*
8665 		 * If the ICMP message is bogus, should we kill the
8666 		 * connection, or should we just drop the bogus ICMP
8667 		 * message? It would probably make more sense to just
8668 		 * drop the message so that if this one managed to get
8669 		 * in, the real connection should not suffer.
8670 		 */
8671 		goto noticmpv4;
8672 	}
8673 
8674 	switch (icmph->icmph_type) {
8675 	case ICMP_DEST_UNREACHABLE:
8676 		switch (icmph->icmph_code) {
8677 		case ICMP_FRAGMENTATION_NEEDED:
8678 			/*
8679 			 * Reduce the MSS based on the new MTU.  This will
8680 			 * eliminate any fragmentation locally.
8681 			 * N.B.  There may well be some funny side-effects on
8682 			 * the local send policy and the remote receive policy.
8683 			 * Pending further research, we provide
8684 			 * tcp_ignore_path_mtu just in case this proves
8685 			 * disastrous somewhere.
8686 			 *
8687 			 * After updating the MSS, retransmit part of the
8688 			 * dropped segment using the new mss by calling
8689 			 * tcp_wput_data().  Need to adjust all those
8690 			 * params to make sure tcp_wput_data() work properly.
8691 			 */
8692 			if (tcps->tcps_ignore_path_mtu)
8693 				break;
8694 
8695 			/*
8696 			 * Decrease the MSS by time stamp options
8697 			 * IP options and IPSEC options. tcp_hdr_len
8698 			 * includes time stamp option and IP option
8699 			 * length.
8700 			 */
8701 
8702 			new_mss = ntohs(icmph->icmph_du_mtu) -
8703 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8704 
8705 			/*
8706 			 * Only update the MSS if the new one is
8707 			 * smaller than the previous one.  This is
8708 			 * to avoid problems when getting multiple
8709 			 * ICMP errors for the same MTU.
8710 			 */
8711 			if (new_mss >= tcp->tcp_mss)
8712 				break;
8713 
8714 			/*
8715 			 * Stop doing PMTU if new_mss is less than 68
8716 			 * or less than tcp_mss_min.
8717 			 * The value 68 comes from rfc 1191.
8718 			 */
8719 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8720 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8721 				    0;
8722 
8723 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8724 			ASSERT(ratio >= 1);
8725 			tcp_mss_set(tcp, new_mss, B_TRUE);
8726 
8727 			/*
8728 			 * Make sure we have something to
8729 			 * send.
8730 			 */
8731 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8732 			    (tcp->tcp_xmit_head != NULL)) {
8733 				/*
8734 				 * Shrink tcp_cwnd in
8735 				 * proportion to the old MSS/new MSS.
8736 				 */
8737 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8738 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8739 				    (tcp->tcp_unsent == 0)) {
8740 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8741 				} else {
8742 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8743 				}
8744 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8745 				tcp->tcp_rexmit = B_TRUE;
8746 				tcp->tcp_dupack_cnt = 0;
8747 				tcp->tcp_snd_burst = TCP_CWND_SS;
8748 				tcp_ss_rexmit(tcp);
8749 			}
8750 			break;
8751 		case ICMP_PORT_UNREACHABLE:
8752 		case ICMP_PROTOCOL_UNREACHABLE:
8753 			switch (tcp->tcp_state) {
8754 			case TCPS_SYN_SENT:
8755 			case TCPS_SYN_RCVD:
8756 				/*
8757 				 * ICMP can snipe away incipient
8758 				 * TCP connections as long as
8759 				 * seq number is same as initial
8760 				 * send seq number.
8761 				 */
8762 				if (seg_seq == tcp->tcp_iss) {
8763 					(void) tcp_clean_death(tcp,
8764 					    ECONNREFUSED, 6);
8765 				}
8766 				break;
8767 			}
8768 			break;
8769 		case ICMP_HOST_UNREACHABLE:
8770 		case ICMP_NET_UNREACHABLE:
8771 			/* Record the error in case we finally time out. */
8772 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8773 				tcp->tcp_client_errno = EHOSTUNREACH;
8774 			else
8775 				tcp->tcp_client_errno = ENETUNREACH;
8776 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8777 				if (tcp->tcp_listener != NULL &&
8778 				    tcp->tcp_listener->tcp_syn_defense) {
8779 					/*
8780 					 * Ditch the half-open connection if we
8781 					 * suspect a SYN attack is under way.
8782 					 */
8783 					tcp_ip_ire_mark_advice(tcp);
8784 					(void) tcp_clean_death(tcp,
8785 					    tcp->tcp_client_errno, 7);
8786 				}
8787 			}
8788 			break;
8789 		default:
8790 			break;
8791 		}
8792 		break;
8793 	case ICMP_SOURCE_QUENCH: {
8794 		/*
8795 		 * use a global boolean to control
8796 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8797 		 * The default is false.
8798 		 */
8799 		if (tcp_icmp_source_quench) {
8800 			/*
8801 			 * Reduce the sending rate as if we got a
8802 			 * retransmit timeout
8803 			 */
8804 			uint32_t npkt;
8805 
8806 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8807 			    tcp->tcp_mss;
8808 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8809 			tcp->tcp_cwnd = tcp->tcp_mss;
8810 			tcp->tcp_cwnd_cnt = 0;
8811 		}
8812 		break;
8813 	}
8814 	}
8815 	freemsg(first_mp);
8816 }
8817 
8818 /*
8819  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8820  * error messages passed up by IP.
8821  * Assumes that IP has pulled up all the extension headers as well
8822  * as the ICMPv6 header.
8823  */
8824 static void
8825 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8826 {
8827 	icmp6_t *icmp6;
8828 	ip6_t	*ip6h;
8829 	uint16_t	iph_hdr_length;
8830 	tcpha_t	*tcpha;
8831 	uint8_t	*nexthdrp;
8832 	uint32_t new_mss;
8833 	uint32_t ratio;
8834 	boolean_t secure;
8835 	mblk_t *first_mp = mp;
8836 	size_t mp_size;
8837 	uint32_t seg_seq;
8838 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8839 
8840 	/*
8841 	 * The caller has determined if this is an IPSEC_IN packet and
8842 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8843 	 */
8844 	if (ipsec_mctl)
8845 		mp = mp->b_cont;
8846 
8847 	mp_size = MBLKL(mp);
8848 
8849 	/*
8850 	 * Verify that we have a complete IP header. If not, send it upstream.
8851 	 */
8852 	if (mp_size < sizeof (ip6_t)) {
8853 noticmpv6:
8854 		freemsg(first_mp);
8855 		return;
8856 	}
8857 
8858 	/*
8859 	 * Verify this is an ICMPV6 packet, else send it upstream.
8860 	 */
8861 	ip6h = (ip6_t *)mp->b_rptr;
8862 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8863 		iph_hdr_length = IPV6_HDR_LEN;
8864 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8865 	    &nexthdrp) ||
8866 	    *nexthdrp != IPPROTO_ICMPV6) {
8867 		goto noticmpv6;
8868 	}
8869 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8870 	ip6h = (ip6_t *)&icmp6[1];
8871 	/*
8872 	 * Verify if we have a complete ICMP and inner IP header.
8873 	 */
8874 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8875 		goto noticmpv6;
8876 
8877 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8878 		goto noticmpv6;
8879 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8880 	/*
8881 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8882 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8883 	 * packet.
8884 	 */
8885 	if ((*nexthdrp != IPPROTO_TCP) ||
8886 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8887 		goto noticmpv6;
8888 	}
8889 
8890 	/*
8891 	 * ICMP errors come on the right queue or come on
8892 	 * listener/global queue for detached connections and
8893 	 * get switched to the right queue. If it comes on the
8894 	 * right queue, policy check has already been done by IP
8895 	 * and thus free the first_mp without verifying the policy.
8896 	 * If it has come for a non-hard bound connection, we need
8897 	 * to verify policy as IP may not have done it.
8898 	 */
8899 	if (!tcp->tcp_hard_bound) {
8900 		if (ipsec_mctl) {
8901 			secure = ipsec_in_is_secure(first_mp);
8902 		} else {
8903 			secure = B_FALSE;
8904 		}
8905 		if (secure) {
8906 			/*
8907 			 * If we are willing to accept this in clear
8908 			 * we don't have to verify policy.
8909 			 */
8910 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8911 				if (!tcp_check_policy(tcp, first_mp,
8912 				    NULL, ip6h, secure, ipsec_mctl)) {
8913 					/*
8914 					 * tcp_check_policy called
8915 					 * ip_drop_packet() on failure.
8916 					 */
8917 					return;
8918 				}
8919 			}
8920 		}
8921 	} else if (ipsec_mctl) {
8922 		/*
8923 		 * This is a hard_bound connection. IP has already
8924 		 * verified policy. We don't have to do it again.
8925 		 */
8926 		freeb(first_mp);
8927 		first_mp = mp;
8928 		ipsec_mctl = B_FALSE;
8929 	}
8930 
8931 	seg_seq = ntohl(tcpha->tha_seq);
8932 	/*
8933 	 * TCP SHOULD check that the TCP sequence number contained in
8934 	 * payload of the ICMP error message is within the range
8935 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8936 	 */
8937 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8938 		/*
8939 		 * If the ICMP message is bogus, should we kill the
8940 		 * connection, or should we just drop the bogus ICMP
8941 		 * message? It would probably make more sense to just
8942 		 * drop the message so that if this one managed to get
8943 		 * in, the real connection should not suffer.
8944 		 */
8945 		goto noticmpv6;
8946 	}
8947 
8948 	switch (icmp6->icmp6_type) {
8949 	case ICMP6_PACKET_TOO_BIG:
8950 		/*
8951 		 * Reduce the MSS based on the new MTU.  This will
8952 		 * eliminate any fragmentation locally.
8953 		 * N.B.  There may well be some funny side-effects on
8954 		 * the local send policy and the remote receive policy.
8955 		 * Pending further research, we provide
8956 		 * tcp_ignore_path_mtu just in case this proves
8957 		 * disastrous somewhere.
8958 		 *
8959 		 * After updating the MSS, retransmit part of the
8960 		 * dropped segment using the new mss by calling
8961 		 * tcp_wput_data().  Need to adjust all those
8962 		 * params to make sure tcp_wput_data() work properly.
8963 		 */
8964 		if (tcps->tcps_ignore_path_mtu)
8965 			break;
8966 
8967 		/*
8968 		 * Decrease the MSS by time stamp options
8969 		 * IP options and IPSEC options. tcp_hdr_len
8970 		 * includes time stamp option and IP option
8971 		 * length.
8972 		 */
8973 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8974 		    tcp->tcp_ipsec_overhead;
8975 
8976 		/*
8977 		 * Only update the MSS if the new one is
8978 		 * smaller than the previous one.  This is
8979 		 * to avoid problems when getting multiple
8980 		 * ICMP errors for the same MTU.
8981 		 */
8982 		if (new_mss >= tcp->tcp_mss)
8983 			break;
8984 
8985 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8986 		ASSERT(ratio >= 1);
8987 		tcp_mss_set(tcp, new_mss, B_TRUE);
8988 
8989 		/*
8990 		 * Make sure we have something to
8991 		 * send.
8992 		 */
8993 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8994 		    (tcp->tcp_xmit_head != NULL)) {
8995 			/*
8996 			 * Shrink tcp_cwnd in
8997 			 * proportion to the old MSS/new MSS.
8998 			 */
8999 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
9000 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
9001 			    (tcp->tcp_unsent == 0)) {
9002 				tcp->tcp_rexmit_max = tcp->tcp_fss;
9003 			} else {
9004 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
9005 			}
9006 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
9007 			tcp->tcp_rexmit = B_TRUE;
9008 			tcp->tcp_dupack_cnt = 0;
9009 			tcp->tcp_snd_burst = TCP_CWND_SS;
9010 			tcp_ss_rexmit(tcp);
9011 		}
9012 		break;
9013 
9014 	case ICMP6_DST_UNREACH:
9015 		switch (icmp6->icmp6_code) {
9016 		case ICMP6_DST_UNREACH_NOPORT:
9017 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
9018 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
9019 			    (seg_seq == tcp->tcp_iss)) {
9020 				(void) tcp_clean_death(tcp,
9021 				    ECONNREFUSED, 8);
9022 			}
9023 			break;
9024 
9025 		case ICMP6_DST_UNREACH_ADMIN:
9026 		case ICMP6_DST_UNREACH_NOROUTE:
9027 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
9028 		case ICMP6_DST_UNREACH_ADDR:
9029 			/* Record the error in case we finally time out. */
9030 			tcp->tcp_client_errno = EHOSTUNREACH;
9031 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
9032 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
9033 			    (seg_seq == tcp->tcp_iss)) {
9034 				if (tcp->tcp_listener != NULL &&
9035 				    tcp->tcp_listener->tcp_syn_defense) {
9036 					/*
9037 					 * Ditch the half-open connection if we
9038 					 * suspect a SYN attack is under way.
9039 					 */
9040 					tcp_ip_ire_mark_advice(tcp);
9041 					(void) tcp_clean_death(tcp,
9042 					    tcp->tcp_client_errno, 9);
9043 				}
9044 			}
9045 
9046 
9047 			break;
9048 		default:
9049 			break;
9050 		}
9051 		break;
9052 
9053 	case ICMP6_PARAM_PROB:
9054 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
9055 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
9056 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
9057 		    (uchar_t *)nexthdrp) {
9058 			if (tcp->tcp_state == TCPS_SYN_SENT ||
9059 			    tcp->tcp_state == TCPS_SYN_RCVD) {
9060 				(void) tcp_clean_death(tcp,
9061 				    ECONNREFUSED, 10);
9062 			}
9063 			break;
9064 		}
9065 		break;
9066 
9067 	case ICMP6_TIME_EXCEEDED:
9068 	default:
9069 		break;
9070 	}
9071 	freemsg(first_mp);
9072 }
9073 
9074 /*
9075  * IP recognizes seven kinds of bind requests:
9076  *
9077  * - A zero-length address binds only to the protocol number.
9078  *
9079  * - A 4-byte address is treated as a request to
9080  * validate that the address is a valid local IPv4
9081  * address, appropriate for an application to bind to.
9082  * IP does the verification, but does not make any note
9083  * of the address at this time.
9084  *
9085  * - A 16-byte address contains is treated as a request
9086  * to validate a local IPv6 address, as the 4-byte
9087  * address case above.
9088  *
9089  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9090  * use it for the inbound fanout of packets.
9091  *
9092  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9093  * use it for the inbound fanout of packets.
9094  *
9095  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9096  * information consisting of local and remote addresses
9097  * and ports.  In this case, the addresses are both
9098  * validated as appropriate for this operation, and, if
9099  * so, the information is retained for use in the
9100  * inbound fanout.
9101  *
9102  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9103  * fanout information, like the 12-byte case above.
9104  *
9105  * IP will also fill in the IRE request mblk with information
9106  * regarding our peer.  In all cases, we notify IP of our protocol
9107  * type by appending a single protocol byte to the bind request.
9108  */
9109 static mblk_t *
9110 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9111 {
9112 	char	*cp;
9113 	mblk_t	*mp;
9114 	struct T_bind_req *tbr;
9115 	ipa_conn_t	*ac;
9116 	ipa6_conn_t	*ac6;
9117 	sin_t		*sin;
9118 	sin6_t		*sin6;
9119 
9120 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9121 	ASSERT((tcp->tcp_family == AF_INET &&
9122 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9123 	    (tcp->tcp_family == AF_INET6 &&
9124 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9125 	    tcp->tcp_ipversion == IPV6_VERSION)));
9126 
9127 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9128 	if (!mp)
9129 		return (mp);
9130 	mp->b_datap->db_type = M_PROTO;
9131 	tbr = (struct T_bind_req *)mp->b_rptr;
9132 	tbr->PRIM_type = bind_prim;
9133 	tbr->ADDR_offset = sizeof (*tbr);
9134 	tbr->CONIND_number = 0;
9135 	tbr->ADDR_length = addr_length;
9136 	cp = (char *)&tbr[1];
9137 	switch (addr_length) {
9138 	case sizeof (ipa_conn_t):
9139 		ASSERT(tcp->tcp_family == AF_INET);
9140 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9141 
9142 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9143 		if (mp->b_cont == NULL) {
9144 			freemsg(mp);
9145 			return (NULL);
9146 		}
9147 		mp->b_cont->b_wptr += sizeof (ire_t);
9148 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9149 
9150 		/* cp known to be 32 bit aligned */
9151 		ac = (ipa_conn_t *)cp;
9152 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9153 		ac->ac_faddr = tcp->tcp_remote;
9154 		ac->ac_fport = tcp->tcp_fport;
9155 		ac->ac_lport = tcp->tcp_lport;
9156 		tcp->tcp_hard_binding = 1;
9157 		break;
9158 
9159 	case sizeof (ipa6_conn_t):
9160 		ASSERT(tcp->tcp_family == AF_INET6);
9161 
9162 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9163 		if (mp->b_cont == NULL) {
9164 			freemsg(mp);
9165 			return (NULL);
9166 		}
9167 		mp->b_cont->b_wptr += sizeof (ire_t);
9168 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9169 
9170 		/* cp known to be 32 bit aligned */
9171 		ac6 = (ipa6_conn_t *)cp;
9172 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9173 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9174 			    &ac6->ac6_laddr);
9175 		} else {
9176 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9177 		}
9178 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9179 		ac6->ac6_fport = tcp->tcp_fport;
9180 		ac6->ac6_lport = tcp->tcp_lport;
9181 		tcp->tcp_hard_binding = 1;
9182 		break;
9183 
9184 	case sizeof (sin_t):
9185 		/*
9186 		 * NOTE: IPV6_ADDR_LEN also has same size.
9187 		 * Use family to discriminate.
9188 		 */
9189 		if (tcp->tcp_family == AF_INET) {
9190 			sin = (sin_t *)cp;
9191 
9192 			*sin = sin_null;
9193 			sin->sin_family = AF_INET;
9194 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9195 			sin->sin_port = tcp->tcp_lport;
9196 			break;
9197 		} else {
9198 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9199 		}
9200 		break;
9201 
9202 	case sizeof (sin6_t):
9203 		ASSERT(tcp->tcp_family == AF_INET6);
9204 		sin6 = (sin6_t *)cp;
9205 
9206 		*sin6 = sin6_null;
9207 		sin6->sin6_family = AF_INET6;
9208 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9209 		sin6->sin6_port = tcp->tcp_lport;
9210 		break;
9211 
9212 	case IP_ADDR_LEN:
9213 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9214 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9215 		break;
9216 
9217 	}
9218 	/* Add protocol number to end */
9219 	cp[addr_length] = (char)IPPROTO_TCP;
9220 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9221 	return (mp);
9222 }
9223 
9224 /*
9225  * Notify IP that we are having trouble with this connection.  IP should
9226  * blow the IRE away and start over.
9227  */
9228 static void
9229 tcp_ip_notify(tcp_t *tcp)
9230 {
9231 	struct iocblk	*iocp;
9232 	ipid_t	*ipid;
9233 	mblk_t	*mp;
9234 
9235 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9236 	if (tcp->tcp_ipversion == IPV6_VERSION)
9237 		return;
9238 
9239 	mp = mkiocb(IP_IOCTL);
9240 	if (mp == NULL)
9241 		return;
9242 
9243 	iocp = (struct iocblk *)mp->b_rptr;
9244 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9245 
9246 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9247 	if (!mp->b_cont) {
9248 		freeb(mp);
9249 		return;
9250 	}
9251 
9252 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9253 	mp->b_cont->b_wptr += iocp->ioc_count;
9254 	bzero(ipid, sizeof (*ipid));
9255 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9256 	ipid->ipid_ire_type = IRE_CACHE;
9257 	ipid->ipid_addr_offset = sizeof (ipid_t);
9258 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9259 	/*
9260 	 * Note: in the case of source routing we want to blow away the
9261 	 * route to the first source route hop.
9262 	 */
9263 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9264 	    sizeof (tcp->tcp_ipha->ipha_dst));
9265 
9266 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9267 }
9268 
9269 /* Unlink and return any mblk that looks like it contains an ire */
9270 static mblk_t *
9271 tcp_ire_mp(mblk_t *mp)
9272 {
9273 	mblk_t	*prev_mp;
9274 
9275 	for (;;) {
9276 		prev_mp = mp;
9277 		mp = mp->b_cont;
9278 		if (mp == NULL)
9279 			break;
9280 		switch (DB_TYPE(mp)) {
9281 		case IRE_DB_TYPE:
9282 		case IRE_DB_REQ_TYPE:
9283 			if (prev_mp != NULL)
9284 				prev_mp->b_cont = mp->b_cont;
9285 			mp->b_cont = NULL;
9286 			return (mp);
9287 		default:
9288 			break;
9289 		}
9290 	}
9291 	return (mp);
9292 }
9293 
9294 /*
9295  * Timer callback routine for keepalive probe.  We do a fake resend of
9296  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9297  * check to see if we have heard anything from the other end for the last
9298  * RTO period.  If we have, set the timer to expire for another
9299  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9300  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9301  * the timeout if we have not heard from the other side.  If for more than
9302  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9303  * kill the connection unless the keepalive abort threshold is 0.  In
9304  * that case, we will probe "forever."
9305  */
9306 static void
9307 tcp_keepalive_killer(void *arg)
9308 {
9309 	mblk_t	*mp;
9310 	conn_t	*connp = (conn_t *)arg;
9311 	tcp_t  	*tcp = connp->conn_tcp;
9312 	int32_t	firetime;
9313 	int32_t	idletime;
9314 	int32_t	ka_intrvl;
9315 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9316 
9317 	tcp->tcp_ka_tid = 0;
9318 
9319 	if (tcp->tcp_fused)
9320 		return;
9321 
9322 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9323 	ka_intrvl = tcp->tcp_ka_interval;
9324 
9325 	/*
9326 	 * Keepalive probe should only be sent if the application has not
9327 	 * done a close on the connection.
9328 	 */
9329 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9330 		return;
9331 	}
9332 	/* Timer fired too early, restart it. */
9333 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9334 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9335 		    MSEC_TO_TICK(ka_intrvl));
9336 		return;
9337 	}
9338 
9339 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9340 	/*
9341 	 * If we have not heard from the other side for a long
9342 	 * time, kill the connection unless the keepalive abort
9343 	 * threshold is 0.  In that case, we will probe "forever."
9344 	 */
9345 	if (tcp->tcp_ka_abort_thres != 0 &&
9346 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9347 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9348 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9349 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9350 		return;
9351 	}
9352 
9353 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9354 	    idletime >= ka_intrvl) {
9355 		/* Fake resend of last ACKed byte. */
9356 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9357 
9358 		if (mp1 != NULL) {
9359 			*mp1->b_wptr++ = '\0';
9360 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9361 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9362 			freeb(mp1);
9363 			/*
9364 			 * if allocation failed, fall through to start the
9365 			 * timer back.
9366 			 */
9367 			if (mp != NULL) {
9368 				TCP_RECORD_TRACE(tcp, mp,
9369 				    TCP_TRACE_SEND_PKT);
9370 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9371 				BUMP_MIB(&tcps->tcps_mib,
9372 				    tcpTimKeepaliveProbe);
9373 				if (tcp->tcp_ka_last_intrvl != 0) {
9374 					int max;
9375 					/*
9376 					 * We should probe again at least
9377 					 * in ka_intrvl, but not more than
9378 					 * tcp_rexmit_interval_max.
9379 					 */
9380 					max = tcps->tcps_rexmit_interval_max;
9381 					firetime = MIN(ka_intrvl - 1,
9382 					    tcp->tcp_ka_last_intrvl << 1);
9383 					if (firetime > max)
9384 						firetime = max;
9385 				} else {
9386 					firetime = tcp->tcp_rto;
9387 				}
9388 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9389 				    tcp_keepalive_killer,
9390 				    MSEC_TO_TICK(firetime));
9391 				tcp->tcp_ka_last_intrvl = firetime;
9392 				return;
9393 			}
9394 		}
9395 	} else {
9396 		tcp->tcp_ka_last_intrvl = 0;
9397 	}
9398 
9399 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9400 	if ((firetime = ka_intrvl - idletime) < 0) {
9401 		firetime = ka_intrvl;
9402 	}
9403 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9404 	    MSEC_TO_TICK(firetime));
9405 }
9406 
9407 int
9408 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9409 {
9410 	queue_t	*q = tcp->tcp_rq;
9411 	int32_t	mss = tcp->tcp_mss;
9412 	int	maxpsz;
9413 
9414 	if (TCP_IS_DETACHED(tcp))
9415 		return (mss);
9416 
9417 	if (tcp->tcp_fused) {
9418 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9419 		mss = INFPSZ;
9420 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9421 		/*
9422 		 * Set the sd_qn_maxpsz according to the socket send buffer
9423 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9424 		 * instruct the stream head to copyin user data into contiguous
9425 		 * kernel-allocated buffers without breaking it up into smaller
9426 		 * chunks.  We round up the buffer size to the nearest SMSS.
9427 		 */
9428 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9429 		if (tcp->tcp_kssl_ctx == NULL)
9430 			mss = INFPSZ;
9431 		else
9432 			mss = SSL3_MAX_RECORD_LEN;
9433 	} else {
9434 		/*
9435 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9436 		 * (and a multiple of the mss).  This instructs the stream
9437 		 * head to break down larger than SMSS writes into SMSS-
9438 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9439 		 */
9440 		maxpsz = tcp->tcp_maxpsz * mss;
9441 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9442 			maxpsz = tcp->tcp_xmit_hiwater/2;
9443 			/* Round up to nearest mss */
9444 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9445 		}
9446 	}
9447 	(void) setmaxps(q, maxpsz);
9448 	tcp->tcp_wq->q_maxpsz = maxpsz;
9449 
9450 	if (set_maxblk)
9451 		(void) mi_set_sth_maxblk(q, mss);
9452 
9453 	return (mss);
9454 }
9455 
9456 /*
9457  * Extract option values from a tcp header.  We put any found values into the
9458  * tcpopt struct and return a bitmask saying which options were found.
9459  */
9460 static int
9461 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9462 {
9463 	uchar_t		*endp;
9464 	int		len;
9465 	uint32_t	mss;
9466 	uchar_t		*up = (uchar_t *)tcph;
9467 	int		found = 0;
9468 	int32_t		sack_len;
9469 	tcp_seq		sack_begin, sack_end;
9470 	tcp_t		*tcp;
9471 
9472 	endp = up + TCP_HDR_LENGTH(tcph);
9473 	up += TCP_MIN_HEADER_LENGTH;
9474 	while (up < endp) {
9475 		len = endp - up;
9476 		switch (*up) {
9477 		case TCPOPT_EOL:
9478 			break;
9479 
9480 		case TCPOPT_NOP:
9481 			up++;
9482 			continue;
9483 
9484 		case TCPOPT_MAXSEG:
9485 			if (len < TCPOPT_MAXSEG_LEN ||
9486 			    up[1] != TCPOPT_MAXSEG_LEN)
9487 				break;
9488 
9489 			mss = BE16_TO_U16(up+2);
9490 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9491 			tcpopt->tcp_opt_mss = mss;
9492 			found |= TCP_OPT_MSS_PRESENT;
9493 
9494 			up += TCPOPT_MAXSEG_LEN;
9495 			continue;
9496 
9497 		case TCPOPT_WSCALE:
9498 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9499 				break;
9500 
9501 			if (up[2] > TCP_MAX_WINSHIFT)
9502 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9503 			else
9504 				tcpopt->tcp_opt_wscale = up[2];
9505 			found |= TCP_OPT_WSCALE_PRESENT;
9506 
9507 			up += TCPOPT_WS_LEN;
9508 			continue;
9509 
9510 		case TCPOPT_SACK_PERMITTED:
9511 			if (len < TCPOPT_SACK_OK_LEN ||
9512 			    up[1] != TCPOPT_SACK_OK_LEN)
9513 				break;
9514 			found |= TCP_OPT_SACK_OK_PRESENT;
9515 			up += TCPOPT_SACK_OK_LEN;
9516 			continue;
9517 
9518 		case TCPOPT_SACK:
9519 			if (len <= 2 || up[1] <= 2 || len < up[1])
9520 				break;
9521 
9522 			/* If TCP is not interested in SACK blks... */
9523 			if ((tcp = tcpopt->tcp) == NULL) {
9524 				up += up[1];
9525 				continue;
9526 			}
9527 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9528 			up += TCPOPT_HEADER_LEN;
9529 
9530 			/*
9531 			 * If the list is empty, allocate one and assume
9532 			 * nothing is sack'ed.
9533 			 */
9534 			ASSERT(tcp->tcp_sack_info != NULL);
9535 			if (tcp->tcp_notsack_list == NULL) {
9536 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9537 				    tcp->tcp_suna, tcp->tcp_snxt,
9538 				    &(tcp->tcp_num_notsack_blk),
9539 				    &(tcp->tcp_cnt_notsack_list));
9540 
9541 				/*
9542 				 * Make sure tcp_notsack_list is not NULL.
9543 				 * This happens when kmem_alloc(KM_NOSLEEP)
9544 				 * returns NULL.
9545 				 */
9546 				if (tcp->tcp_notsack_list == NULL) {
9547 					up += sack_len;
9548 					continue;
9549 				}
9550 				tcp->tcp_fack = tcp->tcp_suna;
9551 			}
9552 
9553 			while (sack_len > 0) {
9554 				if (up + 8 > endp) {
9555 					up = endp;
9556 					break;
9557 				}
9558 				sack_begin = BE32_TO_U32(up);
9559 				up += 4;
9560 				sack_end = BE32_TO_U32(up);
9561 				up += 4;
9562 				sack_len -= 8;
9563 				/*
9564 				 * Bounds checking.  Make sure the SACK
9565 				 * info is within tcp_suna and tcp_snxt.
9566 				 * If this SACK blk is out of bound, ignore
9567 				 * it but continue to parse the following
9568 				 * blks.
9569 				 */
9570 				if (SEQ_LEQ(sack_end, sack_begin) ||
9571 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9572 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9573 					continue;
9574 				}
9575 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9576 				    sack_begin, sack_end,
9577 				    &(tcp->tcp_num_notsack_blk),
9578 				    &(tcp->tcp_cnt_notsack_list));
9579 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9580 					tcp->tcp_fack = sack_end;
9581 				}
9582 			}
9583 			found |= TCP_OPT_SACK_PRESENT;
9584 			continue;
9585 
9586 		case TCPOPT_TSTAMP:
9587 			if (len < TCPOPT_TSTAMP_LEN ||
9588 			    up[1] != TCPOPT_TSTAMP_LEN)
9589 				break;
9590 
9591 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9592 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9593 
9594 			found |= TCP_OPT_TSTAMP_PRESENT;
9595 
9596 			up += TCPOPT_TSTAMP_LEN;
9597 			continue;
9598 
9599 		default:
9600 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9601 				break;
9602 			up += up[1];
9603 			continue;
9604 		}
9605 		break;
9606 	}
9607 	return (found);
9608 }
9609 
9610 /*
9611  * Set the mss associated with a particular tcp based on its current value,
9612  * and a new one passed in. Observe minimums and maximums, and reset
9613  * other state variables that we want to view as multiples of mss.
9614  *
9615  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9616  * highwater marks etc. need to be initialized or adjusted.
9617  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9618  *    packet arrives.
9619  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9620  *    ICMP6_PACKET_TOO_BIG arrives.
9621  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9622  *    to increase the MSS to use the extra bytes available.
9623  *
9624  * Callers except tcp_paws_check() ensure that they only reduce mss.
9625  */
9626 static void
9627 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9628 {
9629 	uint32_t	mss_max;
9630 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9631 
9632 	if (tcp->tcp_ipversion == IPV4_VERSION)
9633 		mss_max = tcps->tcps_mss_max_ipv4;
9634 	else
9635 		mss_max = tcps->tcps_mss_max_ipv6;
9636 
9637 	if (mss < tcps->tcps_mss_min)
9638 		mss = tcps->tcps_mss_min;
9639 	if (mss > mss_max)
9640 		mss = mss_max;
9641 	/*
9642 	 * Unless naglim has been set by our client to
9643 	 * a non-mss value, force naglim to track mss.
9644 	 * This can help to aggregate small writes.
9645 	 */
9646 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9647 		tcp->tcp_naglim = mss;
9648 	/*
9649 	 * TCP should be able to buffer at least 4 MSS data for obvious
9650 	 * performance reason.
9651 	 */
9652 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9653 		tcp->tcp_xmit_hiwater = mss << 2;
9654 
9655 	if (do_ss) {
9656 		/*
9657 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9658 		 * changing due to a reduction in MTU, presumably as a
9659 		 * result of a new path component, reset cwnd to its
9660 		 * "initial" value, as a multiple of the new mss.
9661 		 */
9662 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9663 	} else {
9664 		/*
9665 		 * Called by tcp_paws_check(), the mss increased
9666 		 * marginally to allow use of space previously taken
9667 		 * by the timestamp option. It would be inappropriate
9668 		 * to apply slow start or tcp_init_cwnd values to
9669 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9670 		 */
9671 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9672 		tcp->tcp_cwnd_cnt = 0;
9673 	}
9674 	tcp->tcp_mss = mss;
9675 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9676 }
9677 
9678 /* For /dev/tcp aka AF_INET open */
9679 static int
9680 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9681 {
9682 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9683 }
9684 
9685 /* For /dev/tcp6 aka AF_INET6 open */
9686 static int
9687 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9688 {
9689 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9690 }
9691 
9692 static int
9693 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9694     boolean_t isv6)
9695 {
9696 	tcp_t		*tcp = NULL;
9697 	conn_t		*connp;
9698 	int		err;
9699 	vmem_t		*minor_arena = NULL;
9700 	dev_t		conn_dev;
9701 	zoneid_t	zoneid;
9702 	tcp_stack_t	*tcps = NULL;
9703 
9704 	if (q->q_ptr != NULL)
9705 		return (0);
9706 
9707 	if (sflag == MODOPEN)
9708 		return (EINVAL);
9709 
9710 	if (!(flag & SO_ACCEPTOR)) {
9711 		/*
9712 		 * Special case for install: miniroot needs to be able to
9713 		 * access files via NFS as though it were always in the
9714 		 * global zone.
9715 		 */
9716 		if (credp == kcred && nfs_global_client_only != 0) {
9717 			zoneid = GLOBAL_ZONEID;
9718 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9719 			    netstack_tcp;
9720 			ASSERT(tcps != NULL);
9721 		} else {
9722 			netstack_t *ns;
9723 
9724 			ns = netstack_find_by_cred(credp);
9725 			ASSERT(ns != NULL);
9726 			tcps = ns->netstack_tcp;
9727 			ASSERT(tcps != NULL);
9728 
9729 			/*
9730 			 * For exclusive stacks we set the zoneid to zero
9731 			 * to make TCP operate as if in the global zone.
9732 			 */
9733 			if (tcps->tcps_netstack->netstack_stackid !=
9734 			    GLOBAL_NETSTACKID)
9735 				zoneid = GLOBAL_ZONEID;
9736 			else
9737 				zoneid = crgetzoneid(credp);
9738 		}
9739 		/*
9740 		 * For stackid zero this is done from strplumb.c, but
9741 		 * non-zero stackids are handled here.
9742 		 */
9743 		if (tcps->tcps_g_q == NULL &&
9744 		    tcps->tcps_netstack->netstack_stackid !=
9745 		    GLOBAL_NETSTACKID) {
9746 			tcp_g_q_setup(tcps);
9747 		}
9748 	}
9749 
9750 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9751 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9752 		minor_arena = ip_minor_arena_la;
9753 	} else {
9754 		/*
9755 		 * Either minor numbers in the large arena were exhausted
9756 		 * or a non socket application is doing the open.
9757 		 * Try to allocate from the small arena.
9758 		 */
9759 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9760 			if (tcps != NULL)
9761 				netstack_rele(tcps->tcps_netstack);
9762 			return (EBUSY);
9763 		}
9764 		minor_arena = ip_minor_arena_sa;
9765 	}
9766 	ASSERT(minor_arena != NULL);
9767 
9768 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9769 
9770 	if (flag & SO_ACCEPTOR) {
9771 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9772 		ASSERT(tcps == NULL);
9773 		q->q_qinfo = &tcp_acceptor_rinit;
9774 		/*
9775 		 * the conn_dev and minor_arena will be subsequently used by
9776 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9777 		 * minor device number for this connection from the q_ptr.
9778 		 */
9779 		RD(q)->q_ptr = (void *)conn_dev;
9780 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9781 		WR(q)->q_ptr = (void *)minor_arena;
9782 		qprocson(q);
9783 		return (0);
9784 	}
9785 
9786 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9787 	/*
9788 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9789 	 * so we drop it by one.
9790 	 */
9791 	netstack_rele(tcps->tcps_netstack);
9792 	if (connp == NULL) {
9793 		inet_minor_free(minor_arena, conn_dev);
9794 		q->q_ptr = NULL;
9795 		return (ENOSR);
9796 	}
9797 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9798 	tcp = connp->conn_tcp;
9799 
9800 	q->q_ptr = WR(q)->q_ptr = connp;
9801 	if (isv6) {
9802 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9803 		connp->conn_send = ip_output_v6;
9804 		connp->conn_af_isv6 = B_TRUE;
9805 		connp->conn_pkt_isv6 = B_TRUE;
9806 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9807 		tcp->tcp_ipversion = IPV6_VERSION;
9808 		tcp->tcp_family = AF_INET6;
9809 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9810 	} else {
9811 		connp->conn_flags |= IPCL_TCP4;
9812 		connp->conn_send = ip_output;
9813 		connp->conn_af_isv6 = B_FALSE;
9814 		connp->conn_pkt_isv6 = B_FALSE;
9815 		tcp->tcp_ipversion = IPV4_VERSION;
9816 		tcp->tcp_family = AF_INET;
9817 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9818 	}
9819 
9820 	/*
9821 	 * TCP keeps a copy of cred for cache locality reasons but
9822 	 * we put a reference only once. If connp->conn_cred
9823 	 * becomes invalid, tcp_cred should also be set to NULL.
9824 	 */
9825 	tcp->tcp_cred = connp->conn_cred = credp;
9826 	crhold(connp->conn_cred);
9827 	tcp->tcp_cpid = curproc->p_pid;
9828 	tcp->tcp_open_time = lbolt64;
9829 	connp->conn_zoneid = zoneid;
9830 	connp->conn_mlp_type = mlptSingle;
9831 	connp->conn_ulp_labeled = !is_system_labeled();
9832 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9833 	ASSERT(tcp->tcp_tcps == tcps);
9834 
9835 	/*
9836 	 * If the caller has the process-wide flag set, then default to MAC
9837 	 * exempt mode.  This allows read-down to unlabeled hosts.
9838 	 */
9839 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9840 		connp->conn_mac_exempt = B_TRUE;
9841 
9842 	connp->conn_dev = conn_dev;
9843 	connp->conn_minor_arena = minor_arena;
9844 
9845 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9846 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9847 
9848 	if (flag & SO_SOCKSTR) {
9849 		/*
9850 		 * No need to insert a socket in tcp acceptor hash.
9851 		 * If it was a socket acceptor stream, we dealt with
9852 		 * it above. A socket listener can never accept a
9853 		 * connection and doesn't need acceptor_id.
9854 		 */
9855 		connp->conn_flags |= IPCL_SOCKET;
9856 		tcp->tcp_issocket = 1;
9857 		WR(q)->q_qinfo = &tcp_sock_winit;
9858 	} else {
9859 #ifdef	_ILP32
9860 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9861 #else
9862 		tcp->tcp_acceptor_id = conn_dev;
9863 #endif	/* _ILP32 */
9864 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9865 	}
9866 
9867 	if (tcps->tcps_trace)
9868 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9869 
9870 	err = tcp_init(tcp, q);
9871 	if (err != 0) {
9872 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9873 		tcp_acceptor_hash_remove(tcp);
9874 		CONN_DEC_REF(connp);
9875 		q->q_ptr = WR(q)->q_ptr = NULL;
9876 		return (err);
9877 	}
9878 
9879 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9880 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9881 
9882 	/* Non-zero default values */
9883 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9884 	/*
9885 	 * Put the ref for TCP. Ref for IP was already put
9886 	 * by ipcl_conn_create. Also Make the conn_t globally
9887 	 * visible to walkers
9888 	 */
9889 	mutex_enter(&connp->conn_lock);
9890 	CONN_INC_REF_LOCKED(connp);
9891 	ASSERT(connp->conn_ref == 2);
9892 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9893 	mutex_exit(&connp->conn_lock);
9894 
9895 	qprocson(q);
9896 	return (0);
9897 }
9898 
9899 /*
9900  * Some TCP options can be "set" by requesting them in the option
9901  * buffer. This is needed for XTI feature test though we do not
9902  * allow it in general. We interpret that this mechanism is more
9903  * applicable to OSI protocols and need not be allowed in general.
9904  * This routine filters out options for which it is not allowed (most)
9905  * and lets through those (few) for which it is. [ The XTI interface
9906  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9907  * ever implemented will have to be allowed here ].
9908  */
9909 static boolean_t
9910 tcp_allow_connopt_set(int level, int name)
9911 {
9912 
9913 	switch (level) {
9914 	case IPPROTO_TCP:
9915 		switch (name) {
9916 		case TCP_NODELAY:
9917 			return (B_TRUE);
9918 		default:
9919 			return (B_FALSE);
9920 		}
9921 		/*NOTREACHED*/
9922 	default:
9923 		return (B_FALSE);
9924 	}
9925 	/*NOTREACHED*/
9926 }
9927 
9928 /*
9929  * This routine gets default values of certain options whose default
9930  * values are maintained by protocol specific code
9931  */
9932 /* ARGSUSED */
9933 int
9934 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9935 {
9936 	int32_t	*i1 = (int32_t *)ptr;
9937 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9938 
9939 	switch (level) {
9940 	case IPPROTO_TCP:
9941 		switch (name) {
9942 		case TCP_NOTIFY_THRESHOLD:
9943 			*i1 = tcps->tcps_ip_notify_interval;
9944 			break;
9945 		case TCP_ABORT_THRESHOLD:
9946 			*i1 = tcps->tcps_ip_abort_interval;
9947 			break;
9948 		case TCP_CONN_NOTIFY_THRESHOLD:
9949 			*i1 = tcps->tcps_ip_notify_cinterval;
9950 			break;
9951 		case TCP_CONN_ABORT_THRESHOLD:
9952 			*i1 = tcps->tcps_ip_abort_cinterval;
9953 			break;
9954 		default:
9955 			return (-1);
9956 		}
9957 		break;
9958 	case IPPROTO_IP:
9959 		switch (name) {
9960 		case IP_TTL:
9961 			*i1 = tcps->tcps_ipv4_ttl;
9962 			break;
9963 		default:
9964 			return (-1);
9965 		}
9966 		break;
9967 	case IPPROTO_IPV6:
9968 		switch (name) {
9969 		case IPV6_UNICAST_HOPS:
9970 			*i1 = tcps->tcps_ipv6_hoplimit;
9971 			break;
9972 		default:
9973 			return (-1);
9974 		}
9975 		break;
9976 	default:
9977 		return (-1);
9978 	}
9979 	return (sizeof (int));
9980 }
9981 
9982 
9983 /*
9984  * TCP routine to get the values of options.
9985  */
9986 int
9987 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9988 {
9989 	int		*i1 = (int *)ptr;
9990 	conn_t		*connp = Q_TO_CONN(q);
9991 	tcp_t		*tcp = connp->conn_tcp;
9992 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9993 
9994 	switch (level) {
9995 	case SOL_SOCKET:
9996 		switch (name) {
9997 		case SO_LINGER:	{
9998 			struct linger *lgr = (struct linger *)ptr;
9999 
10000 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
10001 			lgr->l_linger = tcp->tcp_lingertime;
10002 			}
10003 			return (sizeof (struct linger));
10004 		case SO_DEBUG:
10005 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
10006 			break;
10007 		case SO_KEEPALIVE:
10008 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
10009 			break;
10010 		case SO_DONTROUTE:
10011 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
10012 			break;
10013 		case SO_USELOOPBACK:
10014 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
10015 			break;
10016 		case SO_BROADCAST:
10017 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
10018 			break;
10019 		case SO_REUSEADDR:
10020 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
10021 			break;
10022 		case SO_OOBINLINE:
10023 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
10024 			break;
10025 		case SO_DGRAM_ERRIND:
10026 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
10027 			break;
10028 		case SO_TYPE:
10029 			*i1 = SOCK_STREAM;
10030 			break;
10031 		case SO_SNDBUF:
10032 			*i1 = tcp->tcp_xmit_hiwater;
10033 			break;
10034 		case SO_RCVBUF:
10035 			*i1 = RD(q)->q_hiwat;
10036 			break;
10037 		case SO_SND_COPYAVOID:
10038 			*i1 = tcp->tcp_snd_zcopy_on ?
10039 			    SO_SND_COPYAVOID : 0;
10040 			break;
10041 		case SO_ALLZONES:
10042 			*i1 = connp->conn_allzones ? 1 : 0;
10043 			break;
10044 		case SO_ANON_MLP:
10045 			*i1 = connp->conn_anon_mlp;
10046 			break;
10047 		case SO_MAC_EXEMPT:
10048 			*i1 = connp->conn_mac_exempt;
10049 			break;
10050 		case SO_EXCLBIND:
10051 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
10052 			break;
10053 		case SO_PROTOTYPE:
10054 			*i1 = IPPROTO_TCP;
10055 			break;
10056 		case SO_DOMAIN:
10057 			*i1 = tcp->tcp_family;
10058 			break;
10059 		default:
10060 			return (-1);
10061 		}
10062 		break;
10063 	case IPPROTO_TCP:
10064 		switch (name) {
10065 		case TCP_NODELAY:
10066 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
10067 			break;
10068 		case TCP_MAXSEG:
10069 			*i1 = tcp->tcp_mss;
10070 			break;
10071 		case TCP_NOTIFY_THRESHOLD:
10072 			*i1 = (int)tcp->tcp_first_timer_threshold;
10073 			break;
10074 		case TCP_ABORT_THRESHOLD:
10075 			*i1 = tcp->tcp_second_timer_threshold;
10076 			break;
10077 		case TCP_CONN_NOTIFY_THRESHOLD:
10078 			*i1 = tcp->tcp_first_ctimer_threshold;
10079 			break;
10080 		case TCP_CONN_ABORT_THRESHOLD:
10081 			*i1 = tcp->tcp_second_ctimer_threshold;
10082 			break;
10083 		case TCP_RECVDSTADDR:
10084 			*i1 = tcp->tcp_recvdstaddr;
10085 			break;
10086 		case TCP_ANONPRIVBIND:
10087 			*i1 = tcp->tcp_anon_priv_bind;
10088 			break;
10089 		case TCP_EXCLBIND:
10090 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10091 			break;
10092 		case TCP_INIT_CWND:
10093 			*i1 = tcp->tcp_init_cwnd;
10094 			break;
10095 		case TCP_KEEPALIVE_THRESHOLD:
10096 			*i1 = tcp->tcp_ka_interval;
10097 			break;
10098 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10099 			*i1 = tcp->tcp_ka_abort_thres;
10100 			break;
10101 		case TCP_CORK:
10102 			*i1 = tcp->tcp_cork;
10103 			break;
10104 		default:
10105 			return (-1);
10106 		}
10107 		break;
10108 	case IPPROTO_IP:
10109 		if (tcp->tcp_family != AF_INET)
10110 			return (-1);
10111 		switch (name) {
10112 		case IP_OPTIONS:
10113 		case T_IP_OPTIONS: {
10114 			/*
10115 			 * This is compatible with BSD in that in only return
10116 			 * the reverse source route with the final destination
10117 			 * as the last entry. The first 4 bytes of the option
10118 			 * will contain the final destination.
10119 			 */
10120 			int	opt_len;
10121 
10122 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10123 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10124 			ASSERT(opt_len >= 0);
10125 			/* Caller ensures enough space */
10126 			if (opt_len > 0) {
10127 				/*
10128 				 * TODO: Do we have to handle getsockopt on an
10129 				 * initiator as well?
10130 				 */
10131 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10132 			}
10133 			return (0);
10134 			}
10135 		case IP_TOS:
10136 		case T_IP_TOS:
10137 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10138 			break;
10139 		case IP_TTL:
10140 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10141 			break;
10142 		case IP_NEXTHOP:
10143 			/* Handled at IP level */
10144 			return (-EINVAL);
10145 		default:
10146 			return (-1);
10147 		}
10148 		break;
10149 	case IPPROTO_IPV6:
10150 		/*
10151 		 * IPPROTO_IPV6 options are only supported for sockets
10152 		 * that are using IPv6 on the wire.
10153 		 */
10154 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10155 			return (-1);
10156 		}
10157 		switch (name) {
10158 		case IPV6_UNICAST_HOPS:
10159 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10160 			break;	/* goto sizeof (int) option return */
10161 		case IPV6_BOUND_IF:
10162 			/* Zero if not set */
10163 			*i1 = tcp->tcp_bound_if;
10164 			break;	/* goto sizeof (int) option return */
10165 		case IPV6_RECVPKTINFO:
10166 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10167 				*i1 = 1;
10168 			else
10169 				*i1 = 0;
10170 			break;	/* goto sizeof (int) option return */
10171 		case IPV6_RECVTCLASS:
10172 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10173 				*i1 = 1;
10174 			else
10175 				*i1 = 0;
10176 			break;	/* goto sizeof (int) option return */
10177 		case IPV6_RECVHOPLIMIT:
10178 			if (tcp->tcp_ipv6_recvancillary &
10179 			    TCP_IPV6_RECVHOPLIMIT)
10180 				*i1 = 1;
10181 			else
10182 				*i1 = 0;
10183 			break;	/* goto sizeof (int) option return */
10184 		case IPV6_RECVHOPOPTS:
10185 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10186 				*i1 = 1;
10187 			else
10188 				*i1 = 0;
10189 			break;	/* goto sizeof (int) option return */
10190 		case IPV6_RECVDSTOPTS:
10191 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10192 				*i1 = 1;
10193 			else
10194 				*i1 = 0;
10195 			break;	/* goto sizeof (int) option return */
10196 		case _OLD_IPV6_RECVDSTOPTS:
10197 			if (tcp->tcp_ipv6_recvancillary &
10198 			    TCP_OLD_IPV6_RECVDSTOPTS)
10199 				*i1 = 1;
10200 			else
10201 				*i1 = 0;
10202 			break;	/* goto sizeof (int) option return */
10203 		case IPV6_RECVRTHDR:
10204 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10205 				*i1 = 1;
10206 			else
10207 				*i1 = 0;
10208 			break;	/* goto sizeof (int) option return */
10209 		case IPV6_RECVRTHDRDSTOPTS:
10210 			if (tcp->tcp_ipv6_recvancillary &
10211 			    TCP_IPV6_RECVRTDSTOPTS)
10212 				*i1 = 1;
10213 			else
10214 				*i1 = 0;
10215 			break;	/* goto sizeof (int) option return */
10216 		case IPV6_PKTINFO: {
10217 			/* XXX assumes that caller has room for max size! */
10218 			struct in6_pktinfo *pkti;
10219 
10220 			pkti = (struct in6_pktinfo *)ptr;
10221 			if (ipp->ipp_fields & IPPF_IFINDEX)
10222 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10223 			else
10224 				pkti->ipi6_ifindex = 0;
10225 			if (ipp->ipp_fields & IPPF_ADDR)
10226 				pkti->ipi6_addr = ipp->ipp_addr;
10227 			else
10228 				pkti->ipi6_addr = ipv6_all_zeros;
10229 			return (sizeof (struct in6_pktinfo));
10230 		}
10231 		case IPV6_TCLASS:
10232 			if (ipp->ipp_fields & IPPF_TCLASS)
10233 				*i1 = ipp->ipp_tclass;
10234 			else
10235 				*i1 = IPV6_FLOW_TCLASS(
10236 				    IPV6_DEFAULT_VERS_AND_FLOW);
10237 			break;	/* goto sizeof (int) option return */
10238 		case IPV6_NEXTHOP: {
10239 			sin6_t *sin6 = (sin6_t *)ptr;
10240 
10241 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10242 				return (0);
10243 			*sin6 = sin6_null;
10244 			sin6->sin6_family = AF_INET6;
10245 			sin6->sin6_addr = ipp->ipp_nexthop;
10246 			return (sizeof (sin6_t));
10247 		}
10248 		case IPV6_HOPOPTS:
10249 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10250 				return (0);
10251 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10252 				return (0);
10253 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10254 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10255 			if (tcp->tcp_label_len > 0) {
10256 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10257 				ptr[1] = (ipp->ipp_hopoptslen -
10258 				    tcp->tcp_label_len + 7) / 8 - 1;
10259 			}
10260 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10261 		case IPV6_RTHDRDSTOPTS:
10262 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10263 				return (0);
10264 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10265 			return (ipp->ipp_rtdstoptslen);
10266 		case IPV6_RTHDR:
10267 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10268 				return (0);
10269 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10270 			return (ipp->ipp_rthdrlen);
10271 		case IPV6_DSTOPTS:
10272 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10273 				return (0);
10274 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10275 			return (ipp->ipp_dstoptslen);
10276 		case IPV6_SRC_PREFERENCES:
10277 			return (ip6_get_src_preferences(connp,
10278 			    (uint32_t *)ptr));
10279 		case IPV6_PATHMTU: {
10280 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10281 
10282 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10283 				return (-1);
10284 
10285 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10286 			    connp->conn_fport, mtuinfo,
10287 			    connp->conn_netstack));
10288 		}
10289 		default:
10290 			return (-1);
10291 		}
10292 		break;
10293 	default:
10294 		return (-1);
10295 	}
10296 	return (sizeof (int));
10297 }
10298 
10299 /*
10300  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10301  * Parameters are assumed to be verified by the caller.
10302  */
10303 /* ARGSUSED */
10304 int
10305 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10306     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10307     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10308 {
10309 	conn_t	*connp = Q_TO_CONN(q);
10310 	tcp_t	*tcp = connp->conn_tcp;
10311 	int	*i1 = (int *)invalp;
10312 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10313 	boolean_t checkonly;
10314 	int	reterr;
10315 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10316 
10317 	switch (optset_context) {
10318 	case SETFN_OPTCOM_CHECKONLY:
10319 		checkonly = B_TRUE;
10320 		/*
10321 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10322 		 * inlen != 0 implies value supplied and
10323 		 * 	we have to "pretend" to set it.
10324 		 * inlen == 0 implies that there is no
10325 		 * 	value part in T_CHECK request and just validation
10326 		 * done elsewhere should be enough, we just return here.
10327 		 */
10328 		if (inlen == 0) {
10329 			*outlenp = 0;
10330 			return (0);
10331 		}
10332 		break;
10333 	case SETFN_OPTCOM_NEGOTIATE:
10334 		checkonly = B_FALSE;
10335 		break;
10336 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10337 	case SETFN_CONN_NEGOTIATE:
10338 		checkonly = B_FALSE;
10339 		/*
10340 		 * Negotiating local and "association-related" options
10341 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10342 		 * primitives is allowed by XTI, but we choose
10343 		 * to not implement this style negotiation for Internet
10344 		 * protocols (We interpret it is a must for OSI world but
10345 		 * optional for Internet protocols) for all options.
10346 		 * [ Will do only for the few options that enable test
10347 		 * suites that our XTI implementation of this feature
10348 		 * works for transports that do allow it ]
10349 		 */
10350 		if (!tcp_allow_connopt_set(level, name)) {
10351 			*outlenp = 0;
10352 			return (EINVAL);
10353 		}
10354 		break;
10355 	default:
10356 		/*
10357 		 * We should never get here
10358 		 */
10359 		*outlenp = 0;
10360 		return (EINVAL);
10361 	}
10362 
10363 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10364 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10365 
10366 	/*
10367 	 * For TCP, we should have no ancillary data sent down
10368 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10369 	 * has to be zero.
10370 	 */
10371 	ASSERT(thisdg_attrs == NULL);
10372 
10373 	/*
10374 	 * For fixed length options, no sanity check
10375 	 * of passed in length is done. It is assumed *_optcom_req()
10376 	 * routines do the right thing.
10377 	 */
10378 
10379 	switch (level) {
10380 	case SOL_SOCKET:
10381 		switch (name) {
10382 		case SO_LINGER: {
10383 			struct linger *lgr = (struct linger *)invalp;
10384 
10385 			if (!checkonly) {
10386 				if (lgr->l_onoff) {
10387 					tcp->tcp_linger = 1;
10388 					tcp->tcp_lingertime = lgr->l_linger;
10389 				} else {
10390 					tcp->tcp_linger = 0;
10391 					tcp->tcp_lingertime = 0;
10392 				}
10393 				/* struct copy */
10394 				*(struct linger *)outvalp = *lgr;
10395 			} else {
10396 				if (!lgr->l_onoff) {
10397 					((struct linger *)
10398 					    outvalp)->l_onoff = 0;
10399 					((struct linger *)
10400 					    outvalp)->l_linger = 0;
10401 				} else {
10402 					/* struct copy */
10403 					*(struct linger *)outvalp = *lgr;
10404 				}
10405 			}
10406 			*outlenp = sizeof (struct linger);
10407 			return (0);
10408 		}
10409 		case SO_DEBUG:
10410 			if (!checkonly)
10411 				tcp->tcp_debug = onoff;
10412 			break;
10413 		case SO_KEEPALIVE:
10414 			if (checkonly) {
10415 				/* T_CHECK case */
10416 				break;
10417 			}
10418 
10419 			if (!onoff) {
10420 				if (tcp->tcp_ka_enabled) {
10421 					if (tcp->tcp_ka_tid != 0) {
10422 						(void) TCP_TIMER_CANCEL(tcp,
10423 						    tcp->tcp_ka_tid);
10424 						tcp->tcp_ka_tid = 0;
10425 					}
10426 					tcp->tcp_ka_enabled = 0;
10427 				}
10428 				break;
10429 			}
10430 			if (!tcp->tcp_ka_enabled) {
10431 				/* Crank up the keepalive timer */
10432 				tcp->tcp_ka_last_intrvl = 0;
10433 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10434 				    tcp_keepalive_killer,
10435 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10436 				tcp->tcp_ka_enabled = 1;
10437 			}
10438 			break;
10439 		case SO_DONTROUTE:
10440 			/*
10441 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10442 			 * only of interest to IP.  We track them here only so
10443 			 * that we can report their current value.
10444 			 */
10445 			if (!checkonly) {
10446 				tcp->tcp_dontroute = onoff;
10447 				tcp->tcp_connp->conn_dontroute = onoff;
10448 			}
10449 			break;
10450 		case SO_USELOOPBACK:
10451 			if (!checkonly) {
10452 				tcp->tcp_useloopback = onoff;
10453 				tcp->tcp_connp->conn_loopback = onoff;
10454 			}
10455 			break;
10456 		case SO_BROADCAST:
10457 			if (!checkonly) {
10458 				tcp->tcp_broadcast = onoff;
10459 				tcp->tcp_connp->conn_broadcast = onoff;
10460 			}
10461 			break;
10462 		case SO_REUSEADDR:
10463 			if (!checkonly) {
10464 				tcp->tcp_reuseaddr = onoff;
10465 				tcp->tcp_connp->conn_reuseaddr = onoff;
10466 			}
10467 			break;
10468 		case SO_OOBINLINE:
10469 			if (!checkonly)
10470 				tcp->tcp_oobinline = onoff;
10471 			break;
10472 		case SO_DGRAM_ERRIND:
10473 			if (!checkonly)
10474 				tcp->tcp_dgram_errind = onoff;
10475 			break;
10476 		case SO_SNDBUF: {
10477 			if (*i1 > tcps->tcps_max_buf) {
10478 				*outlenp = 0;
10479 				return (ENOBUFS);
10480 			}
10481 			if (checkonly)
10482 				break;
10483 
10484 			tcp->tcp_xmit_hiwater = *i1;
10485 			if (tcps->tcps_snd_lowat_fraction != 0)
10486 				tcp->tcp_xmit_lowater =
10487 				    tcp->tcp_xmit_hiwater /
10488 				    tcps->tcps_snd_lowat_fraction;
10489 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10490 			/*
10491 			 * If we are flow-controlled, recheck the condition.
10492 			 * There are apps that increase SO_SNDBUF size when
10493 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10494 			 * control condition to be lifted right away.
10495 			 */
10496 			mutex_enter(&tcp->tcp_non_sq_lock);
10497 			if (tcp->tcp_flow_stopped &&
10498 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10499 				tcp_clrqfull(tcp);
10500 			}
10501 			mutex_exit(&tcp->tcp_non_sq_lock);
10502 			break;
10503 		}
10504 		case SO_RCVBUF:
10505 			if (*i1 > tcps->tcps_max_buf) {
10506 				*outlenp = 0;
10507 				return (ENOBUFS);
10508 			}
10509 			/* Silently ignore zero */
10510 			if (!checkonly && *i1 != 0) {
10511 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10512 				(void) tcp_rwnd_set(tcp, *i1);
10513 			}
10514 			/*
10515 			 * XXX should we return the rwnd here
10516 			 * and tcp_opt_get ?
10517 			 */
10518 			break;
10519 		case SO_SND_COPYAVOID:
10520 			if (!checkonly) {
10521 				/* we only allow enable at most once for now */
10522 				if (tcp->tcp_loopback ||
10523 				    (tcp->tcp_kssl_ctx != NULL) ||
10524 				    (!tcp->tcp_snd_zcopy_aware &&
10525 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10526 					*outlenp = 0;
10527 					return (EOPNOTSUPP);
10528 				}
10529 				tcp->tcp_snd_zcopy_aware = 1;
10530 			}
10531 			break;
10532 		case SO_ALLZONES:
10533 			/* Handled at the IP level */
10534 			return (-EINVAL);
10535 		case SO_ANON_MLP:
10536 			if (!checkonly) {
10537 				mutex_enter(&connp->conn_lock);
10538 				connp->conn_anon_mlp = onoff;
10539 				mutex_exit(&connp->conn_lock);
10540 			}
10541 			break;
10542 		case SO_MAC_EXEMPT:
10543 			if (secpolicy_net_mac_aware(cr) != 0 ||
10544 			    IPCL_IS_BOUND(connp))
10545 				return (EACCES);
10546 			if (!checkonly) {
10547 				mutex_enter(&connp->conn_lock);
10548 				connp->conn_mac_exempt = onoff;
10549 				mutex_exit(&connp->conn_lock);
10550 			}
10551 			break;
10552 		case SO_EXCLBIND:
10553 			if (!checkonly)
10554 				tcp->tcp_exclbind = onoff;
10555 			break;
10556 		default:
10557 			*outlenp = 0;
10558 			return (EINVAL);
10559 		}
10560 		break;
10561 	case IPPROTO_TCP:
10562 		switch (name) {
10563 		case TCP_NODELAY:
10564 			if (!checkonly)
10565 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10566 			break;
10567 		case TCP_NOTIFY_THRESHOLD:
10568 			if (!checkonly)
10569 				tcp->tcp_first_timer_threshold = *i1;
10570 			break;
10571 		case TCP_ABORT_THRESHOLD:
10572 			if (!checkonly)
10573 				tcp->tcp_second_timer_threshold = *i1;
10574 			break;
10575 		case TCP_CONN_NOTIFY_THRESHOLD:
10576 			if (!checkonly)
10577 				tcp->tcp_first_ctimer_threshold = *i1;
10578 			break;
10579 		case TCP_CONN_ABORT_THRESHOLD:
10580 			if (!checkonly)
10581 				tcp->tcp_second_ctimer_threshold = *i1;
10582 			break;
10583 		case TCP_RECVDSTADDR:
10584 			if (tcp->tcp_state > TCPS_LISTEN)
10585 				return (EOPNOTSUPP);
10586 			if (!checkonly)
10587 				tcp->tcp_recvdstaddr = onoff;
10588 			break;
10589 		case TCP_ANONPRIVBIND:
10590 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10591 			    IPPROTO_TCP)) != 0) {
10592 				*outlenp = 0;
10593 				return (reterr);
10594 			}
10595 			if (!checkonly) {
10596 				tcp->tcp_anon_priv_bind = onoff;
10597 			}
10598 			break;
10599 		case TCP_EXCLBIND:
10600 			if (!checkonly)
10601 				tcp->tcp_exclbind = onoff;
10602 			break;	/* goto sizeof (int) option return */
10603 		case TCP_INIT_CWND: {
10604 			uint32_t init_cwnd = *((uint32_t *)invalp);
10605 
10606 			if (checkonly)
10607 				break;
10608 
10609 			/*
10610 			 * Only allow socket with network configuration
10611 			 * privilege to set the initial cwnd to be larger
10612 			 * than allowed by RFC 3390.
10613 			 */
10614 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10615 				tcp->tcp_init_cwnd = init_cwnd;
10616 				break;
10617 			}
10618 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10619 				*outlenp = 0;
10620 				return (reterr);
10621 			}
10622 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10623 				*outlenp = 0;
10624 				return (EINVAL);
10625 			}
10626 			tcp->tcp_init_cwnd = init_cwnd;
10627 			break;
10628 		}
10629 		case TCP_KEEPALIVE_THRESHOLD:
10630 			if (checkonly)
10631 				break;
10632 
10633 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10634 			    *i1 > tcps->tcps_keepalive_interval_high) {
10635 				*outlenp = 0;
10636 				return (EINVAL);
10637 			}
10638 			if (*i1 != tcp->tcp_ka_interval) {
10639 				tcp->tcp_ka_interval = *i1;
10640 				/*
10641 				 * Check if we need to restart the
10642 				 * keepalive timer.
10643 				 */
10644 				if (tcp->tcp_ka_tid != 0) {
10645 					ASSERT(tcp->tcp_ka_enabled);
10646 					(void) TCP_TIMER_CANCEL(tcp,
10647 					    tcp->tcp_ka_tid);
10648 					tcp->tcp_ka_last_intrvl = 0;
10649 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10650 					    tcp_keepalive_killer,
10651 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10652 				}
10653 			}
10654 			break;
10655 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10656 			if (!checkonly) {
10657 				if (*i1 <
10658 				    tcps->tcps_keepalive_abort_interval_low ||
10659 				    *i1 >
10660 				    tcps->tcps_keepalive_abort_interval_high) {
10661 					*outlenp = 0;
10662 					return (EINVAL);
10663 				}
10664 				tcp->tcp_ka_abort_thres = *i1;
10665 			}
10666 			break;
10667 		case TCP_CORK:
10668 			if (!checkonly) {
10669 				/*
10670 				 * if tcp->tcp_cork was set and is now
10671 				 * being unset, we have to make sure that
10672 				 * the remaining data gets sent out. Also
10673 				 * unset tcp->tcp_cork so that tcp_wput_data()
10674 				 * can send data even if it is less than mss
10675 				 */
10676 				if (tcp->tcp_cork && onoff == 0 &&
10677 				    tcp->tcp_unsent > 0) {
10678 					tcp->tcp_cork = B_FALSE;
10679 					tcp_wput_data(tcp, NULL, B_FALSE);
10680 				}
10681 				tcp->tcp_cork = onoff;
10682 			}
10683 			break;
10684 		default:
10685 			*outlenp = 0;
10686 			return (EINVAL);
10687 		}
10688 		break;
10689 	case IPPROTO_IP:
10690 		if (tcp->tcp_family != AF_INET) {
10691 			*outlenp = 0;
10692 			return (ENOPROTOOPT);
10693 		}
10694 		switch (name) {
10695 		case IP_OPTIONS:
10696 		case T_IP_OPTIONS:
10697 			reterr = tcp_opt_set_header(tcp, checkonly,
10698 			    invalp, inlen);
10699 			if (reterr) {
10700 				*outlenp = 0;
10701 				return (reterr);
10702 			}
10703 			/* OK return - copy input buffer into output buffer */
10704 			if (invalp != outvalp) {
10705 				/* don't trust bcopy for identical src/dst */
10706 				bcopy(invalp, outvalp, inlen);
10707 			}
10708 			*outlenp = inlen;
10709 			return (0);
10710 		case IP_TOS:
10711 		case T_IP_TOS:
10712 			if (!checkonly) {
10713 				tcp->tcp_ipha->ipha_type_of_service =
10714 				    (uchar_t)*i1;
10715 				tcp->tcp_tos = (uchar_t)*i1;
10716 			}
10717 			break;
10718 		case IP_TTL:
10719 			if (!checkonly) {
10720 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10721 				tcp->tcp_ttl = (uchar_t)*i1;
10722 			}
10723 			break;
10724 		case IP_BOUND_IF:
10725 		case IP_NEXTHOP:
10726 			/* Handled at the IP level */
10727 			return (-EINVAL);
10728 		case IP_SEC_OPT:
10729 			/*
10730 			 * We should not allow policy setting after
10731 			 * we start listening for connections.
10732 			 */
10733 			if (tcp->tcp_state == TCPS_LISTEN) {
10734 				return (EINVAL);
10735 			} else {
10736 				/* Handled at the IP level */
10737 				return (-EINVAL);
10738 			}
10739 		default:
10740 			*outlenp = 0;
10741 			return (EINVAL);
10742 		}
10743 		break;
10744 	case IPPROTO_IPV6: {
10745 		ip6_pkt_t		*ipp;
10746 
10747 		/*
10748 		 * IPPROTO_IPV6 options are only supported for sockets
10749 		 * that are using IPv6 on the wire.
10750 		 */
10751 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10752 			*outlenp = 0;
10753 			return (ENOPROTOOPT);
10754 		}
10755 		/*
10756 		 * Only sticky options; no ancillary data
10757 		 */
10758 		ASSERT(thisdg_attrs == NULL);
10759 		ipp = &tcp->tcp_sticky_ipp;
10760 
10761 		switch (name) {
10762 		case IPV6_UNICAST_HOPS:
10763 			/* -1 means use default */
10764 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10765 				*outlenp = 0;
10766 				return (EINVAL);
10767 			}
10768 			if (!checkonly) {
10769 				if (*i1 == -1) {
10770 					tcp->tcp_ip6h->ip6_hops =
10771 					    ipp->ipp_unicast_hops =
10772 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10773 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10774 					/* Pass modified value to IP. */
10775 					*i1 = tcp->tcp_ip6h->ip6_hops;
10776 				} else {
10777 					tcp->tcp_ip6h->ip6_hops =
10778 					    ipp->ipp_unicast_hops =
10779 					    (uint8_t)*i1;
10780 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10781 				}
10782 				reterr = tcp_build_hdrs(q, tcp);
10783 				if (reterr != 0)
10784 					return (reterr);
10785 			}
10786 			break;
10787 		case IPV6_BOUND_IF:
10788 			if (!checkonly) {
10789 				int error = 0;
10790 
10791 				tcp->tcp_bound_if = *i1;
10792 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10793 				    B_TRUE, checkonly, level, name, mblk);
10794 				if (error != 0) {
10795 					*outlenp = 0;
10796 					return (error);
10797 				}
10798 			}
10799 			break;
10800 		/*
10801 		 * Set boolean switches for ancillary data delivery
10802 		 */
10803 		case IPV6_RECVPKTINFO:
10804 			if (!checkonly) {
10805 				if (onoff)
10806 					tcp->tcp_ipv6_recvancillary |=
10807 					    TCP_IPV6_RECVPKTINFO;
10808 				else
10809 					tcp->tcp_ipv6_recvancillary &=
10810 					    ~TCP_IPV6_RECVPKTINFO;
10811 				/* Force it to be sent up with the next msg */
10812 				tcp->tcp_recvifindex = 0;
10813 			}
10814 			break;
10815 		case IPV6_RECVTCLASS:
10816 			if (!checkonly) {
10817 				if (onoff)
10818 					tcp->tcp_ipv6_recvancillary |=
10819 					    TCP_IPV6_RECVTCLASS;
10820 				else
10821 					tcp->tcp_ipv6_recvancillary &=
10822 					    ~TCP_IPV6_RECVTCLASS;
10823 			}
10824 			break;
10825 		case IPV6_RECVHOPLIMIT:
10826 			if (!checkonly) {
10827 				if (onoff)
10828 					tcp->tcp_ipv6_recvancillary |=
10829 					    TCP_IPV6_RECVHOPLIMIT;
10830 				else
10831 					tcp->tcp_ipv6_recvancillary &=
10832 					    ~TCP_IPV6_RECVHOPLIMIT;
10833 				/* Force it to be sent up with the next msg */
10834 				tcp->tcp_recvhops = 0xffffffffU;
10835 			}
10836 			break;
10837 		case IPV6_RECVHOPOPTS:
10838 			if (!checkonly) {
10839 				if (onoff)
10840 					tcp->tcp_ipv6_recvancillary |=
10841 					    TCP_IPV6_RECVHOPOPTS;
10842 				else
10843 					tcp->tcp_ipv6_recvancillary &=
10844 					    ~TCP_IPV6_RECVHOPOPTS;
10845 			}
10846 			break;
10847 		case IPV6_RECVDSTOPTS:
10848 			if (!checkonly) {
10849 				if (onoff)
10850 					tcp->tcp_ipv6_recvancillary |=
10851 					    TCP_IPV6_RECVDSTOPTS;
10852 				else
10853 					tcp->tcp_ipv6_recvancillary &=
10854 					    ~TCP_IPV6_RECVDSTOPTS;
10855 			}
10856 			break;
10857 		case _OLD_IPV6_RECVDSTOPTS:
10858 			if (!checkonly) {
10859 				if (onoff)
10860 					tcp->tcp_ipv6_recvancillary |=
10861 					    TCP_OLD_IPV6_RECVDSTOPTS;
10862 				else
10863 					tcp->tcp_ipv6_recvancillary &=
10864 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10865 			}
10866 			break;
10867 		case IPV6_RECVRTHDR:
10868 			if (!checkonly) {
10869 				if (onoff)
10870 					tcp->tcp_ipv6_recvancillary |=
10871 					    TCP_IPV6_RECVRTHDR;
10872 				else
10873 					tcp->tcp_ipv6_recvancillary &=
10874 					    ~TCP_IPV6_RECVRTHDR;
10875 			}
10876 			break;
10877 		case IPV6_RECVRTHDRDSTOPTS:
10878 			if (!checkonly) {
10879 				if (onoff)
10880 					tcp->tcp_ipv6_recvancillary |=
10881 					    TCP_IPV6_RECVRTDSTOPTS;
10882 				else
10883 					tcp->tcp_ipv6_recvancillary &=
10884 					    ~TCP_IPV6_RECVRTDSTOPTS;
10885 			}
10886 			break;
10887 		case IPV6_PKTINFO:
10888 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10889 				return (EINVAL);
10890 			if (checkonly)
10891 				break;
10892 
10893 			if (inlen == 0) {
10894 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10895 			} else {
10896 				struct in6_pktinfo *pkti;
10897 
10898 				pkti = (struct in6_pktinfo *)invalp;
10899 				/*
10900 				 * RFC 3542 states that ipi6_addr must be
10901 				 * the unspecified address when setting the
10902 				 * IPV6_PKTINFO sticky socket option on a
10903 				 * TCP socket.
10904 				 */
10905 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10906 					return (EINVAL);
10907 				/*
10908 				 * ip6_set_pktinfo() validates the source
10909 				 * address and interface index.
10910 				 */
10911 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10912 				    pkti, mblk);
10913 				if (reterr != 0)
10914 					return (reterr);
10915 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10916 				ipp->ipp_addr = pkti->ipi6_addr;
10917 				if (ipp->ipp_ifindex != 0)
10918 					ipp->ipp_fields |= IPPF_IFINDEX;
10919 				else
10920 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10921 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10922 					ipp->ipp_fields |= IPPF_ADDR;
10923 				else
10924 					ipp->ipp_fields &= ~IPPF_ADDR;
10925 			}
10926 			reterr = tcp_build_hdrs(q, tcp);
10927 			if (reterr != 0)
10928 				return (reterr);
10929 			break;
10930 		case IPV6_TCLASS:
10931 			if (inlen != 0 && inlen != sizeof (int))
10932 				return (EINVAL);
10933 			if (checkonly)
10934 				break;
10935 
10936 			if (inlen == 0) {
10937 				ipp->ipp_fields &= ~IPPF_TCLASS;
10938 			} else {
10939 				if (*i1 > 255 || *i1 < -1)
10940 					return (EINVAL);
10941 				if (*i1 == -1) {
10942 					ipp->ipp_tclass = 0;
10943 					*i1 = 0;
10944 				} else {
10945 					ipp->ipp_tclass = *i1;
10946 				}
10947 				ipp->ipp_fields |= IPPF_TCLASS;
10948 			}
10949 			reterr = tcp_build_hdrs(q, tcp);
10950 			if (reterr != 0)
10951 				return (reterr);
10952 			break;
10953 		case IPV6_NEXTHOP:
10954 			/*
10955 			 * IP will verify that the nexthop is reachable
10956 			 * and fail for sticky options.
10957 			 */
10958 			if (inlen != 0 && inlen != sizeof (sin6_t))
10959 				return (EINVAL);
10960 			if (checkonly)
10961 				break;
10962 
10963 			if (inlen == 0) {
10964 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10965 			} else {
10966 				sin6_t *sin6 = (sin6_t *)invalp;
10967 
10968 				if (sin6->sin6_family != AF_INET6)
10969 					return (EAFNOSUPPORT);
10970 				if (IN6_IS_ADDR_V4MAPPED(
10971 				    &sin6->sin6_addr))
10972 					return (EADDRNOTAVAIL);
10973 				ipp->ipp_nexthop = sin6->sin6_addr;
10974 				if (!IN6_IS_ADDR_UNSPECIFIED(
10975 				    &ipp->ipp_nexthop))
10976 					ipp->ipp_fields |= IPPF_NEXTHOP;
10977 				else
10978 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10979 			}
10980 			reterr = tcp_build_hdrs(q, tcp);
10981 			if (reterr != 0)
10982 				return (reterr);
10983 			break;
10984 		case IPV6_HOPOPTS: {
10985 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10986 
10987 			/*
10988 			 * Sanity checks - minimum size, size a multiple of
10989 			 * eight bytes, and matching size passed in.
10990 			 */
10991 			if (inlen != 0 &&
10992 			    inlen != (8 * (hopts->ip6h_len + 1)))
10993 				return (EINVAL);
10994 
10995 			if (checkonly)
10996 				break;
10997 
10998 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10999 			    (uchar_t **)&ipp->ipp_hopopts,
11000 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
11001 			if (reterr != 0)
11002 				return (reterr);
11003 			if (ipp->ipp_hopoptslen == 0)
11004 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
11005 			else
11006 				ipp->ipp_fields |= IPPF_HOPOPTS;
11007 			reterr = tcp_build_hdrs(q, tcp);
11008 			if (reterr != 0)
11009 				return (reterr);
11010 			break;
11011 		}
11012 		case IPV6_RTHDRDSTOPTS: {
11013 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
11014 
11015 			/*
11016 			 * Sanity checks - minimum size, size a multiple of
11017 			 * eight bytes, and matching size passed in.
11018 			 */
11019 			if (inlen != 0 &&
11020 			    inlen != (8 * (dopts->ip6d_len + 1)))
11021 				return (EINVAL);
11022 
11023 			if (checkonly)
11024 				break;
11025 
11026 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11027 			    (uchar_t **)&ipp->ipp_rtdstopts,
11028 			    &ipp->ipp_rtdstoptslen, 0);
11029 			if (reterr != 0)
11030 				return (reterr);
11031 			if (ipp->ipp_rtdstoptslen == 0)
11032 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
11033 			else
11034 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
11035 			reterr = tcp_build_hdrs(q, tcp);
11036 			if (reterr != 0)
11037 				return (reterr);
11038 			break;
11039 		}
11040 		case IPV6_DSTOPTS: {
11041 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
11042 
11043 			/*
11044 			 * Sanity checks - minimum size, size a multiple of
11045 			 * eight bytes, and matching size passed in.
11046 			 */
11047 			if (inlen != 0 &&
11048 			    inlen != (8 * (dopts->ip6d_len + 1)))
11049 				return (EINVAL);
11050 
11051 			if (checkonly)
11052 				break;
11053 
11054 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11055 			    (uchar_t **)&ipp->ipp_dstopts,
11056 			    &ipp->ipp_dstoptslen, 0);
11057 			if (reterr != 0)
11058 				return (reterr);
11059 			if (ipp->ipp_dstoptslen == 0)
11060 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
11061 			else
11062 				ipp->ipp_fields |= IPPF_DSTOPTS;
11063 			reterr = tcp_build_hdrs(q, tcp);
11064 			if (reterr != 0)
11065 				return (reterr);
11066 			break;
11067 		}
11068 		case IPV6_RTHDR: {
11069 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
11070 
11071 			/*
11072 			 * Sanity checks - minimum size, size a multiple of
11073 			 * eight bytes, and matching size passed in.
11074 			 */
11075 			if (inlen != 0 &&
11076 			    inlen != (8 * (rt->ip6r_len + 1)))
11077 				return (EINVAL);
11078 
11079 			if (checkonly)
11080 				break;
11081 
11082 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11083 			    (uchar_t **)&ipp->ipp_rthdr,
11084 			    &ipp->ipp_rthdrlen, 0);
11085 			if (reterr != 0)
11086 				return (reterr);
11087 			if (ipp->ipp_rthdrlen == 0)
11088 				ipp->ipp_fields &= ~IPPF_RTHDR;
11089 			else
11090 				ipp->ipp_fields |= IPPF_RTHDR;
11091 			reterr = tcp_build_hdrs(q, tcp);
11092 			if (reterr != 0)
11093 				return (reterr);
11094 			break;
11095 		}
11096 		case IPV6_V6ONLY:
11097 			if (!checkonly)
11098 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11099 			break;
11100 		case IPV6_USE_MIN_MTU:
11101 			if (inlen != sizeof (int))
11102 				return (EINVAL);
11103 
11104 			if (*i1 < -1 || *i1 > 1)
11105 				return (EINVAL);
11106 
11107 			if (checkonly)
11108 				break;
11109 
11110 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11111 			ipp->ipp_use_min_mtu = *i1;
11112 			break;
11113 		case IPV6_BOUND_PIF:
11114 			/* Handled at the IP level */
11115 			return (-EINVAL);
11116 		case IPV6_SEC_OPT:
11117 			/*
11118 			 * We should not allow policy setting after
11119 			 * we start listening for connections.
11120 			 */
11121 			if (tcp->tcp_state == TCPS_LISTEN) {
11122 				return (EINVAL);
11123 			} else {
11124 				/* Handled at the IP level */
11125 				return (-EINVAL);
11126 			}
11127 		case IPV6_SRC_PREFERENCES:
11128 			if (inlen != sizeof (uint32_t))
11129 				return (EINVAL);
11130 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11131 			    *(uint32_t *)invalp);
11132 			if (reterr != 0) {
11133 				*outlenp = 0;
11134 				return (reterr);
11135 			}
11136 			break;
11137 		default:
11138 			*outlenp = 0;
11139 			return (EINVAL);
11140 		}
11141 		break;
11142 	}		/* end IPPROTO_IPV6 */
11143 	default:
11144 		*outlenp = 0;
11145 		return (EINVAL);
11146 	}
11147 	/*
11148 	 * Common case of OK return with outval same as inval
11149 	 */
11150 	if (invalp != outvalp) {
11151 		/* don't trust bcopy for identical src/dst */
11152 		(void) bcopy(invalp, outvalp, inlen);
11153 	}
11154 	*outlenp = inlen;
11155 	return (0);
11156 }
11157 
11158 /*
11159  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11160  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11161  * headers, and the maximum size tcp header (to avoid reallocation
11162  * on the fly for additional tcp options).
11163  * Returns failure if can't allocate memory.
11164  */
11165 static int
11166 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11167 {
11168 	char	*hdrs;
11169 	uint_t	hdrs_len;
11170 	ip6i_t	*ip6i;
11171 	char	buf[TCP_MAX_HDR_LENGTH];
11172 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11173 	in6_addr_t src, dst;
11174 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11175 
11176 	/*
11177 	 * save the existing tcp header and source/dest IP addresses
11178 	 */
11179 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11180 	src = tcp->tcp_ip6h->ip6_src;
11181 	dst = tcp->tcp_ip6h->ip6_dst;
11182 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11183 	ASSERT(hdrs_len != 0);
11184 	if (hdrs_len > tcp->tcp_iphc_len) {
11185 		/* Need to reallocate */
11186 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11187 		if (hdrs == NULL)
11188 			return (ENOMEM);
11189 		if (tcp->tcp_iphc != NULL) {
11190 			if (tcp->tcp_hdr_grown) {
11191 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11192 			} else {
11193 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11194 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11195 			}
11196 			tcp->tcp_iphc_len = 0;
11197 		}
11198 		ASSERT(tcp->tcp_iphc_len == 0);
11199 		tcp->tcp_iphc = hdrs;
11200 		tcp->tcp_iphc_len = hdrs_len;
11201 		tcp->tcp_hdr_grown = B_TRUE;
11202 	}
11203 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11204 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11205 
11206 	/* Set header fields not in ipp */
11207 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11208 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11209 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11210 	} else {
11211 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11212 	}
11213 	/*
11214 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11215 	 *
11216 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11217 	 */
11218 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11219 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11220 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11221 
11222 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11223 
11224 	tcp->tcp_ip6h->ip6_src = src;
11225 	tcp->tcp_ip6h->ip6_dst = dst;
11226 
11227 	/*
11228 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11229 	 * the default value for TCP.
11230 	 */
11231 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11232 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11233 
11234 	/*
11235 	 * If we're setting extension headers after a connection
11236 	 * has been established, and if we have a routing header
11237 	 * among the extension headers, call ip_massage_options_v6 to
11238 	 * manipulate the routing header/ip6_dst set the checksum
11239 	 * difference in the tcp header template.
11240 	 * (This happens in tcp_connect_ipv6 if the routing header
11241 	 * is set prior to the connect.)
11242 	 * Set the tcp_sum to zero first in case we've cleared a
11243 	 * routing header or don't have one at all.
11244 	 */
11245 	tcp->tcp_sum = 0;
11246 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11247 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11248 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11249 		    (uint8_t *)tcp->tcp_tcph);
11250 		if (rth != NULL) {
11251 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11252 			    rth, tcps->tcps_netstack);
11253 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11254 			    (tcp->tcp_sum >> 16));
11255 		}
11256 	}
11257 
11258 	/* Try to get everything in a single mblk */
11259 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11260 	return (0);
11261 }
11262 
11263 /*
11264  * Transfer any source route option from ipha to buf/dst in reversed form.
11265  */
11266 static int
11267 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11268 {
11269 	ipoptp_t	opts;
11270 	uchar_t		*opt;
11271 	uint8_t		optval;
11272 	uint8_t		optlen;
11273 	uint32_t	len = 0;
11274 
11275 	for (optval = ipoptp_first(&opts, ipha);
11276 	    optval != IPOPT_EOL;
11277 	    optval = ipoptp_next(&opts)) {
11278 		opt = opts.ipoptp_cur;
11279 		optlen = opts.ipoptp_len;
11280 		switch (optval) {
11281 			int	off1, off2;
11282 		case IPOPT_SSRR:
11283 		case IPOPT_LSRR:
11284 
11285 			/* Reverse source route */
11286 			/*
11287 			 * First entry should be the next to last one in the
11288 			 * current source route (the last entry is our
11289 			 * address.)
11290 			 * The last entry should be the final destination.
11291 			 */
11292 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11293 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11294 			off1 = IPOPT_MINOFF_SR - 1;
11295 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11296 			if (off2 < 0) {
11297 				/* No entries in source route */
11298 				break;
11299 			}
11300 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11301 			/*
11302 			 * Note: use src since ipha has not had its src
11303 			 * and dst reversed (it is in the state it was
11304 			 * received.
11305 			 */
11306 			bcopy(&ipha->ipha_src, buf + off2,
11307 			    IP_ADDR_LEN);
11308 			off2 -= IP_ADDR_LEN;
11309 
11310 			while (off2 > 0) {
11311 				bcopy(opt + off2, buf + off1,
11312 				    IP_ADDR_LEN);
11313 				off1 += IP_ADDR_LEN;
11314 				off2 -= IP_ADDR_LEN;
11315 			}
11316 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11317 			buf += optlen;
11318 			len += optlen;
11319 			break;
11320 		}
11321 	}
11322 done:
11323 	/* Pad the resulting options */
11324 	while (len & 0x3) {
11325 		*buf++ = IPOPT_EOL;
11326 		len++;
11327 	}
11328 	return (len);
11329 }
11330 
11331 
11332 /*
11333  * Extract and revert a source route from ipha (if any)
11334  * and then update the relevant fields in both tcp_t and the standard header.
11335  */
11336 static void
11337 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11338 {
11339 	char	buf[TCP_MAX_HDR_LENGTH];
11340 	uint_t	tcph_len;
11341 	int	len;
11342 
11343 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11344 	len = IPH_HDR_LENGTH(ipha);
11345 	if (len == IP_SIMPLE_HDR_LENGTH)
11346 		/* Nothing to do */
11347 		return;
11348 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11349 	    (len & 0x3))
11350 		return;
11351 
11352 	tcph_len = tcp->tcp_tcp_hdr_len;
11353 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11354 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11355 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11356 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11357 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11358 	len += IP_SIMPLE_HDR_LENGTH;
11359 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11360 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11361 	if ((int)tcp->tcp_sum < 0)
11362 		tcp->tcp_sum--;
11363 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11364 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11365 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11366 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11367 	tcp->tcp_ip_hdr_len = len;
11368 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11369 	    (IP_VERSION << 4) | (len >> 2);
11370 	len += tcph_len;
11371 	tcp->tcp_hdr_len = len;
11372 }
11373 
11374 /*
11375  * Copy the standard header into its new location,
11376  * lay in the new options and then update the relevant
11377  * fields in both tcp_t and the standard header.
11378  */
11379 static int
11380 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11381 {
11382 	uint_t	tcph_len;
11383 	uint8_t	*ip_optp;
11384 	tcph_t	*new_tcph;
11385 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11386 
11387 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11388 		return (EINVAL);
11389 
11390 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11391 		return (EINVAL);
11392 
11393 	if (checkonly) {
11394 		/*
11395 		 * do not really set, just pretend to - T_CHECK
11396 		 */
11397 		return (0);
11398 	}
11399 
11400 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11401 	if (tcp->tcp_label_len > 0) {
11402 		int padlen;
11403 		uint8_t opt;
11404 
11405 		/* convert list termination to no-ops */
11406 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11407 		ip_optp += ip_optp[IPOPT_OLEN];
11408 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11409 		while (--padlen >= 0)
11410 			*ip_optp++ = opt;
11411 	}
11412 	tcph_len = tcp->tcp_tcp_hdr_len;
11413 	new_tcph = (tcph_t *)(ip_optp + len);
11414 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11415 	tcp->tcp_tcph = new_tcph;
11416 	bcopy(ptr, ip_optp, len);
11417 
11418 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11419 
11420 	tcp->tcp_ip_hdr_len = len;
11421 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11422 	    (IP_VERSION << 4) | (len >> 2);
11423 	tcp->tcp_hdr_len = len + tcph_len;
11424 	if (!TCP_IS_DETACHED(tcp)) {
11425 		/* Always allocate room for all options. */
11426 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11427 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11428 	}
11429 	return (0);
11430 }
11431 
11432 /* Get callback routine passed to nd_load by tcp_param_register */
11433 /* ARGSUSED */
11434 static int
11435 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11436 {
11437 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11438 
11439 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11440 	return (0);
11441 }
11442 
11443 /*
11444  * Walk through the param array specified registering each element with the
11445  * named dispatch handler.
11446  */
11447 static boolean_t
11448 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11449 {
11450 	for (; cnt-- > 0; tcppa++) {
11451 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11452 			if (!nd_load(ndp, tcppa->tcp_param_name,
11453 			    tcp_param_get, tcp_param_set,
11454 			    (caddr_t)tcppa)) {
11455 				nd_free(ndp);
11456 				return (B_FALSE);
11457 			}
11458 		}
11459 	}
11460 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11461 	    KM_SLEEP);
11462 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11463 	    sizeof (tcpparam_t));
11464 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11465 	    tcp_param_get, tcp_param_set_aligned,
11466 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11467 		nd_free(ndp);
11468 		return (B_FALSE);
11469 	}
11470 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11471 	    KM_SLEEP);
11472 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11473 	    sizeof (tcpparam_t));
11474 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11475 	    tcp_param_get, tcp_param_set_aligned,
11476 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11477 		nd_free(ndp);
11478 		return (B_FALSE);
11479 	}
11480 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11481 	    KM_SLEEP);
11482 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11483 	    sizeof (tcpparam_t));
11484 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11485 	    tcp_param_get, tcp_param_set_aligned,
11486 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11487 		nd_free(ndp);
11488 		return (B_FALSE);
11489 	}
11490 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11491 	    KM_SLEEP);
11492 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11493 	    sizeof (tcpparam_t));
11494 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11495 	    tcp_param_get, tcp_param_set_aligned,
11496 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11497 		nd_free(ndp);
11498 		return (B_FALSE);
11499 	}
11500 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11501 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11502 		nd_free(ndp);
11503 		return (B_FALSE);
11504 	}
11505 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11506 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11507 		nd_free(ndp);
11508 		return (B_FALSE);
11509 	}
11510 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11511 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11512 		nd_free(ndp);
11513 		return (B_FALSE);
11514 	}
11515 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11516 	    NULL)) {
11517 		nd_free(ndp);
11518 		return (B_FALSE);
11519 	}
11520 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11521 	    NULL, NULL)) {
11522 		nd_free(ndp);
11523 		return (B_FALSE);
11524 	}
11525 	if (!nd_load(ndp, "tcp_listen_hash",
11526 	    tcp_listen_hash_report, NULL, NULL)) {
11527 		nd_free(ndp);
11528 		return (B_FALSE);
11529 	}
11530 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11531 	    NULL, NULL)) {
11532 		nd_free(ndp);
11533 		return (B_FALSE);
11534 	}
11535 	if (!nd_load(ndp, "tcp_acceptor_hash",
11536 	    tcp_acceptor_hash_report, NULL, NULL)) {
11537 		nd_free(ndp);
11538 		return (B_FALSE);
11539 	}
11540 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11541 	    tcp_host_param_set, NULL)) {
11542 		nd_free(ndp);
11543 		return (B_FALSE);
11544 	}
11545 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11546 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11547 		nd_free(ndp);
11548 		return (B_FALSE);
11549 	}
11550 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11551 	    tcp_1948_phrase_set, NULL)) {
11552 		nd_free(ndp);
11553 		return (B_FALSE);
11554 	}
11555 	if (!nd_load(ndp, "tcp_reserved_port_list",
11556 	    tcp_reserved_port_list, NULL, NULL)) {
11557 		nd_free(ndp);
11558 		return (B_FALSE);
11559 	}
11560 	/*
11561 	 * Dummy ndd variables - only to convey obsolescence information
11562 	 * through printing of their name (no get or set routines)
11563 	 * XXX Remove in future releases ?
11564 	 */
11565 	if (!nd_load(ndp,
11566 	    "tcp_close_wait_interval(obsoleted - "
11567 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11568 		nd_free(ndp);
11569 		return (B_FALSE);
11570 	}
11571 	return (B_TRUE);
11572 }
11573 
11574 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11575 /* ARGSUSED */
11576 static int
11577 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11578     cred_t *cr)
11579 {
11580 	long new_value;
11581 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11582 
11583 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11584 	    new_value < tcppa->tcp_param_min ||
11585 	    new_value > tcppa->tcp_param_max) {
11586 		return (EINVAL);
11587 	}
11588 	/*
11589 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11590 	 * round it up.  For future 64 bit requirement, we actually make it
11591 	 * a multiple of 8.
11592 	 */
11593 	if (new_value & 0x7) {
11594 		new_value = (new_value & ~0x7) + 0x8;
11595 	}
11596 	tcppa->tcp_param_val = new_value;
11597 	return (0);
11598 }
11599 
11600 /* Set callback routine passed to nd_load by tcp_param_register */
11601 /* ARGSUSED */
11602 static int
11603 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11604 {
11605 	long	new_value;
11606 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11607 
11608 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11609 	    new_value < tcppa->tcp_param_min ||
11610 	    new_value > tcppa->tcp_param_max) {
11611 		return (EINVAL);
11612 	}
11613 	tcppa->tcp_param_val = new_value;
11614 	return (0);
11615 }
11616 
11617 /*
11618  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11619  * is filled, return as much as we can.  The message passed in may be
11620  * multi-part, chained using b_cont.  "start" is the starting sequence
11621  * number for this piece.
11622  */
11623 static mblk_t *
11624 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11625 {
11626 	uint32_t	end;
11627 	mblk_t		*mp1;
11628 	mblk_t		*mp2;
11629 	mblk_t		*next_mp;
11630 	uint32_t	u1;
11631 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11632 
11633 	/* Walk through all the new pieces. */
11634 	do {
11635 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11636 		    (uintptr_t)INT_MAX);
11637 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11638 		next_mp = mp->b_cont;
11639 		if (start == end) {
11640 			/* Empty.  Blast it. */
11641 			freeb(mp);
11642 			continue;
11643 		}
11644 		mp->b_cont = NULL;
11645 		TCP_REASS_SET_SEQ(mp, start);
11646 		TCP_REASS_SET_END(mp, end);
11647 		mp1 = tcp->tcp_reass_tail;
11648 		if (!mp1) {
11649 			tcp->tcp_reass_tail = mp;
11650 			tcp->tcp_reass_head = mp;
11651 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11652 			UPDATE_MIB(&tcps->tcps_mib,
11653 			    tcpInDataUnorderBytes, end - start);
11654 			continue;
11655 		}
11656 		/* New stuff completely beyond tail? */
11657 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11658 			/* Link it on end. */
11659 			mp1->b_cont = mp;
11660 			tcp->tcp_reass_tail = mp;
11661 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11662 			UPDATE_MIB(&tcps->tcps_mib,
11663 			    tcpInDataUnorderBytes, end - start);
11664 			continue;
11665 		}
11666 		mp1 = tcp->tcp_reass_head;
11667 		u1 = TCP_REASS_SEQ(mp1);
11668 		/* New stuff at the front? */
11669 		if (SEQ_LT(start, u1)) {
11670 			/* Yes... Check for overlap. */
11671 			mp->b_cont = mp1;
11672 			tcp->tcp_reass_head = mp;
11673 			tcp_reass_elim_overlap(tcp, mp);
11674 			continue;
11675 		}
11676 		/*
11677 		 * The new piece fits somewhere between the head and tail.
11678 		 * We find our slot, where mp1 precedes us and mp2 trails.
11679 		 */
11680 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11681 			u1 = TCP_REASS_SEQ(mp2);
11682 			if (SEQ_LEQ(start, u1))
11683 				break;
11684 		}
11685 		/* Link ourselves in */
11686 		mp->b_cont = mp2;
11687 		mp1->b_cont = mp;
11688 
11689 		/* Trim overlap with following mblk(s) first */
11690 		tcp_reass_elim_overlap(tcp, mp);
11691 
11692 		/* Trim overlap with preceding mblk */
11693 		tcp_reass_elim_overlap(tcp, mp1);
11694 
11695 	} while (start = end, mp = next_mp);
11696 	mp1 = tcp->tcp_reass_head;
11697 	/* Anything ready to go? */
11698 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11699 		return (NULL);
11700 	/* Eat what we can off the queue */
11701 	for (;;) {
11702 		mp = mp1->b_cont;
11703 		end = TCP_REASS_END(mp1);
11704 		TCP_REASS_SET_SEQ(mp1, 0);
11705 		TCP_REASS_SET_END(mp1, 0);
11706 		if (!mp) {
11707 			tcp->tcp_reass_tail = NULL;
11708 			break;
11709 		}
11710 		if (end != TCP_REASS_SEQ(mp)) {
11711 			mp1->b_cont = NULL;
11712 			break;
11713 		}
11714 		mp1 = mp;
11715 	}
11716 	mp1 = tcp->tcp_reass_head;
11717 	tcp->tcp_reass_head = mp;
11718 	return (mp1);
11719 }
11720 
11721 /* Eliminate any overlap that mp may have over later mblks */
11722 static void
11723 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11724 {
11725 	uint32_t	end;
11726 	mblk_t		*mp1;
11727 	uint32_t	u1;
11728 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11729 
11730 	end = TCP_REASS_END(mp);
11731 	while ((mp1 = mp->b_cont) != NULL) {
11732 		u1 = TCP_REASS_SEQ(mp1);
11733 		if (!SEQ_GT(end, u1))
11734 			break;
11735 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11736 			mp->b_wptr -= end - u1;
11737 			TCP_REASS_SET_END(mp, u1);
11738 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11739 			UPDATE_MIB(&tcps->tcps_mib,
11740 			    tcpInDataPartDupBytes, end - u1);
11741 			break;
11742 		}
11743 		mp->b_cont = mp1->b_cont;
11744 		TCP_REASS_SET_SEQ(mp1, 0);
11745 		TCP_REASS_SET_END(mp1, 0);
11746 		freeb(mp1);
11747 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11748 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11749 	}
11750 	if (!mp1)
11751 		tcp->tcp_reass_tail = mp;
11752 }
11753 
11754 /*
11755  * Send up all messages queued on tcp_rcv_list.
11756  */
11757 static uint_t
11758 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11759 {
11760 	mblk_t *mp;
11761 	uint_t ret = 0;
11762 	uint_t thwin;
11763 #ifdef DEBUG
11764 	uint_t cnt = 0;
11765 #endif
11766 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11767 
11768 	/* Can't drain on an eager connection */
11769 	if (tcp->tcp_listener != NULL)
11770 		return (ret);
11771 
11772 	/* Can't be sodirect enabled */
11773 	ASSERT(SOD_NOT_ENABLED(tcp));
11774 
11775 	/*
11776 	 * Handle two cases here: we are currently fused or we were
11777 	 * previously fused and have some urgent data to be delivered
11778 	 * upstream.  The latter happens because we either ran out of
11779 	 * memory or were detached and therefore sending the SIGURG was
11780 	 * deferred until this point.  In either case we pass control
11781 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11782 	 * some work.
11783 	 */
11784 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11785 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11786 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11787 		    &tcp->tcp_fused_sigurg_mp))
11788 			return (ret);
11789 	}
11790 
11791 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11792 		tcp->tcp_rcv_list = mp->b_next;
11793 		mp->b_next = NULL;
11794 #ifdef DEBUG
11795 		cnt += msgdsize(mp);
11796 #endif
11797 		/* Does this need SSL processing first? */
11798 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11799 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11800 			    mblk_t *, mp);
11801 			tcp_kssl_input(tcp, mp);
11802 			continue;
11803 		}
11804 		putnext(q, mp);
11805 	}
11806 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11807 	tcp->tcp_rcv_last_head = NULL;
11808 	tcp->tcp_rcv_last_tail = NULL;
11809 	tcp->tcp_rcv_cnt = 0;
11810 
11811 	/* Learn the latest rwnd information that we sent to the other side. */
11812 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11813 	    << tcp->tcp_rcv_ws;
11814 	/* This is peer's calculated send window (our receive window). */
11815 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11816 	/*
11817 	 * Increase the receive window to max.  But we need to do receiver
11818 	 * SWS avoidance.  This means that we need to check the increase of
11819 	 * of receive window is at least 1 MSS.
11820 	 */
11821 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11822 		/*
11823 		 * If the window that the other side knows is less than max
11824 		 * deferred acks segments, send an update immediately.
11825 		 */
11826 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11827 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11828 			ret = TH_ACK_NEEDED;
11829 		}
11830 		tcp->tcp_rwnd = q->q_hiwat;
11831 	}
11832 	/* No need for the push timer now. */
11833 	if (tcp->tcp_push_tid != 0) {
11834 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11835 		tcp->tcp_push_tid = 0;
11836 	}
11837 	return (ret);
11838 }
11839 
11840 /*
11841  * Queue data on tcp_rcv_list which is a b_next chain.
11842  * tcp_rcv_last_head/tail is the last element of this chain.
11843  * Each element of the chain is a b_cont chain.
11844  *
11845  * M_DATA messages are added to the current element.
11846  * Other messages are added as new (b_next) elements.
11847  */
11848 void
11849 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11850 {
11851 	ASSERT(seg_len == msgdsize(mp));
11852 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11853 
11854 	/* Can't be sodirect enabled */
11855 	ASSERT(SOD_NOT_ENABLED(tcp));
11856 
11857 	if (tcp->tcp_rcv_list == NULL) {
11858 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11859 		tcp->tcp_rcv_list = mp;
11860 		tcp->tcp_rcv_last_head = mp;
11861 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11862 		tcp->tcp_rcv_last_tail->b_cont = mp;
11863 	} else {
11864 		tcp->tcp_rcv_last_head->b_next = mp;
11865 		tcp->tcp_rcv_last_head = mp;
11866 	}
11867 
11868 	while (mp->b_cont)
11869 		mp = mp->b_cont;
11870 
11871 	tcp->tcp_rcv_last_tail = mp;
11872 	tcp->tcp_rcv_cnt += seg_len;
11873 	tcp->tcp_rwnd -= seg_len;
11874 }
11875 
11876 /*
11877  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11878  * above, in addition when uioa is enabled schedule an asynchronous uio
11879  * prior to enqueuing. They implement the combinhed semantics of the
11880  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11881  * canputnext(), i.e. flow-control with backenable.
11882  *
11883  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11884  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11885  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11886  *
11887  * Must be called with sodp->sod_lock held and will return with the lock
11888  * released.
11889  */
11890 static uint_t
11891 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11892 {
11893 	queue_t		*q = tcp->tcp_rq;
11894 	uint_t		thwin;
11895 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11896 	uint_t		ret = 0;
11897 
11898 	/* Can't be an eager connection */
11899 	ASSERT(tcp->tcp_listener == NULL);
11900 
11901 	/* Caller must have lock held */
11902 	ASSERT(MUTEX_HELD(sodp->sod_lock));
11903 
11904 	/* Sodirect mode so must not be a tcp_rcv_list */
11905 	ASSERT(tcp->tcp_rcv_list == NULL);
11906 
11907 	if (SOD_QFULL(sodp)) {
11908 		/* Q is full, mark Q for need backenable */
11909 		SOD_QSETBE(sodp);
11910 	}
11911 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11912 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11913 	    << tcp->tcp_rcv_ws;
11914 	/* This is peer's calculated send window (our available rwnd). */
11915 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11916 	/*
11917 	 * Increase the receive window to max.  But we need to do receiver
11918 	 * SWS avoidance.  This means that we need to check the increase of
11919 	 * of receive window is at least 1 MSS.
11920 	 */
11921 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11922 		/*
11923 		 * If the window that the other side knows is less than max
11924 		 * deferred acks segments, send an update immediately.
11925 		 */
11926 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11927 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11928 			ret = TH_ACK_NEEDED;
11929 		}
11930 		tcp->tcp_rwnd = q->q_hiwat;
11931 	}
11932 
11933 	if (!SOD_QEMPTY(sodp)) {
11934 		/* Wakeup to socket */
11935 		sodp->sod_state &= SOD_WAKE_CLR;
11936 		sodp->sod_state |= SOD_WAKE_DONE;
11937 		(sodp->sod_wakeup)(sodp);
11938 		/* wakeup() does the mutex_ext() */
11939 	} else {
11940 		/* Q is empty, no need to wake */
11941 		sodp->sod_state &= SOD_WAKE_CLR;
11942 		sodp->sod_state |= SOD_WAKE_NOT;
11943 		mutex_exit(sodp->sod_lock);
11944 	}
11945 
11946 	/* No need for the push timer now. */
11947 	if (tcp->tcp_push_tid != 0) {
11948 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11949 		tcp->tcp_push_tid = 0;
11950 	}
11951 
11952 	return (ret);
11953 }
11954 
11955 /*
11956  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11957  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11958  * to the user-land buffer and flag the mblk_t as such.
11959  *
11960  * Also, handle tcp_rwnd.
11961  */
11962 uint_t
11963 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11964 {
11965 	uioa_t		*uioap = &sodp->sod_uioa;
11966 	boolean_t	qfull;
11967 	uint_t		thwin;
11968 
11969 	/* Can't be an eager connection */
11970 	ASSERT(tcp->tcp_listener == NULL);
11971 
11972 	/* Caller must have lock held */
11973 	ASSERT(MUTEX_HELD(sodp->sod_lock));
11974 
11975 	/* Sodirect mode so must not be a tcp_rcv_list */
11976 	ASSERT(tcp->tcp_rcv_list == NULL);
11977 
11978 	/* Passed in segment length must be equal to mblk_t chain data size */
11979 	ASSERT(seg_len == msgdsize(mp));
11980 
11981 	if (DB_TYPE(mp) != M_DATA) {
11982 		/* Only process M_DATA mblk_t's */
11983 		goto enq;
11984 	}
11985 	if (uioap->uioa_state & UIOA_ENABLED) {
11986 		/* Uioa is enabled */
11987 		mblk_t		*mp1 = mp;
11988 
11989 		if (seg_len > uioap->uio_resid) {
11990 			/*
11991 			 * There isn't enough uio space for the mblk_t chain
11992 			 * so disable uioa such that this and any additional
11993 			 * mblk_t data is handled by the socket and schedule
11994 			 * the socket for wakeup to finish this uioa.
11995 			 */
11996 			uioap->uioa_state &= UIOA_CLR;
11997 			uioap->uioa_state |= UIOA_FINI;
11998 			if (sodp->sod_state & SOD_WAKE_NOT) {
11999 				sodp->sod_state &= SOD_WAKE_CLR;
12000 				sodp->sod_state |= SOD_WAKE_NEED;
12001 			}
12002 			goto enq;
12003 		}
12004 		do {
12005 			uint32_t	len = MBLKL(mp1);
12006 
12007 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
12008 				/* Scheduled, mark dblk_t as such */
12009 				DB_FLAGS(mp1) |= DBLK_UIOA;
12010 			} else {
12011 				/* Error, turn off async processing */
12012 				uioap->uioa_state &= UIOA_CLR;
12013 				uioap->uioa_state |= UIOA_FINI;
12014 				break;
12015 			}
12016 		} while ((mp1 = mp1->b_cont) != NULL);
12017 
12018 		if (mp1 != NULL || uioap->uio_resid == 0) {
12019 			/*
12020 			 * Not all mblk_t(s) uioamoved (error) or all uio
12021 			 * space has been consumed so schedule the socket
12022 			 * for wakeup to finish this uio.
12023 			 */
12024 			sodp->sod_state &= SOD_WAKE_CLR;
12025 			sodp->sod_state |= SOD_WAKE_NEED;
12026 		}
12027 	} else if (uioap->uioa_state & UIOA_FINI) {
12028 		/*
12029 		 * Post UIO_ENABLED waiting for socket to finish processing
12030 		 * so just enqueue and update tcp_rwnd.
12031 		 */
12032 		if (SOD_QFULL(sodp))
12033 			tcp->tcp_rwnd -= seg_len;
12034 	} else if (sodp->sod_want > 0) {
12035 		/*
12036 		 * Uioa isn't enabled but sodirect has a pending read().
12037 		 */
12038 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
12039 			if (sodp->sod_state & SOD_WAKE_NOT) {
12040 				/* Schedule socket for wakeup */
12041 				sodp->sod_state &= SOD_WAKE_CLR;
12042 				sodp->sod_state |= SOD_WAKE_NEED;
12043 			}
12044 			tcp->tcp_rwnd -= seg_len;
12045 		}
12046 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
12047 		/*
12048 		 * No pending sodirect read() so used the default
12049 		 * TCP push logic to guess that a push is needed.
12050 		 */
12051 		if (sodp->sod_state & SOD_WAKE_NOT) {
12052 			/* Schedule socket for wakeup */
12053 			sodp->sod_state &= SOD_WAKE_CLR;
12054 			sodp->sod_state |= SOD_WAKE_NEED;
12055 		}
12056 		tcp->tcp_rwnd -= seg_len;
12057 	} else {
12058 		/* Just update tcp_rwnd */
12059 		tcp->tcp_rwnd -= seg_len;
12060 	}
12061 enq:
12062 	qfull = SOD_QFULL(sodp);
12063 
12064 	(sodp->sod_enqueue)(sodp, mp);
12065 
12066 	if (! qfull && SOD_QFULL(sodp)) {
12067 		/* Wasn't QFULL, now QFULL, need back-enable */
12068 		SOD_QSETBE(sodp);
12069 	}
12070 
12071 	/*
12072 	 * Check to see if remote avail swnd < mss due to delayed ACK,
12073 	 * first get advertised rwnd.
12074 	 */
12075 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
12076 	/* Minus delayed ACK count */
12077 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
12078 	if (thwin < tcp->tcp_mss) {
12079 		/* Remote avail swnd < mss, need ACK now */
12080 		return (TH_ACK_NEEDED);
12081 	}
12082 
12083 	return (0);
12084 }
12085 
12086 /*
12087  * DEFAULT TCP ENTRY POINT via squeue on READ side.
12088  *
12089  * This is the default entry function into TCP on the read side. TCP is
12090  * always entered via squeue i.e. using squeue's for mutual exclusion.
12091  * When classifier does a lookup to find the tcp, it also puts a reference
12092  * on the conn structure associated so the tcp is guaranteed to exist
12093  * when we come here. We still need to check the state because it might
12094  * as well has been closed. The squeue processing function i.e. squeue_enter,
12095  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
12096  * CONN_DEC_REF.
12097  *
12098  * Apart from the default entry point, IP also sends packets directly to
12099  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
12100  * connections.
12101  */
12102 void
12103 tcp_input(void *arg, mblk_t *mp, void *arg2)
12104 {
12105 	conn_t	*connp = (conn_t *)arg;
12106 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
12107 
12108 	/* arg2 is the sqp */
12109 	ASSERT(arg2 != NULL);
12110 	ASSERT(mp != NULL);
12111 
12112 	/*
12113 	 * Don't accept any input on a closed tcp as this TCP logically does
12114 	 * not exist on the system. Don't proceed further with this TCP.
12115 	 * For eg. this packet could trigger another close of this tcp
12116 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
12117 	 * tcp_clean_death / tcp_closei_local must be called at most once
12118 	 * on a TCP. In this case we need to refeed the packet into the
12119 	 * classifier and figure out where the packet should go. Need to
12120 	 * preserve the recv_ill somehow. Until we figure that out, for
12121 	 * now just drop the packet if we can't classify the packet.
12122 	 */
12123 	if (tcp->tcp_state == TCPS_CLOSED ||
12124 	    tcp->tcp_state == TCPS_BOUND) {
12125 		conn_t	*new_connp;
12126 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
12127 
12128 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
12129 		if (new_connp != NULL) {
12130 			tcp_reinput(new_connp, mp, arg2);
12131 			return;
12132 		}
12133 		/* We failed to classify. For now just drop the packet */
12134 		freemsg(mp);
12135 		return;
12136 	}
12137 
12138 	if (DB_TYPE(mp) == M_DATA)
12139 		tcp_rput_data(connp, mp, arg2);
12140 	else
12141 		tcp_rput_common(tcp, mp);
12142 }
12143 
12144 /*
12145  * The read side put procedure.
12146  * The packets passed up by ip are assume to be aligned according to
12147  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
12148  */
12149 static void
12150 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
12151 {
12152 	/*
12153 	 * tcp_rput_data() does not expect M_CTL except for the case
12154 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
12155 	 * type. Need to make sure that any other M_CTLs don't make
12156 	 * it to tcp_rput_data since it is not expecting any and doesn't
12157 	 * check for it.
12158 	 */
12159 	if (DB_TYPE(mp) == M_CTL) {
12160 		switch (*(uint32_t *)(mp->b_rptr)) {
12161 		case TCP_IOC_ABORT_CONN:
12162 			/*
12163 			 * Handle connection abort request.
12164 			 */
12165 			tcp_ioctl_abort_handler(tcp, mp);
12166 			return;
12167 		case IPSEC_IN:
12168 			/*
12169 			 * Only secure icmp arrive in TCP and they
12170 			 * don't go through data path.
12171 			 */
12172 			tcp_icmp_error(tcp, mp);
12173 			return;
12174 		case IN_PKTINFO:
12175 			/*
12176 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
12177 			 * sockets that are receiving IPv4 traffic. tcp
12178 			 */
12179 			ASSERT(tcp->tcp_family == AF_INET6);
12180 			ASSERT(tcp->tcp_ipv6_recvancillary &
12181 			    TCP_IPV6_RECVPKTINFO);
12182 			tcp_rput_data(tcp->tcp_connp, mp,
12183 			    tcp->tcp_connp->conn_sqp);
12184 			return;
12185 		case MDT_IOC_INFO_UPDATE:
12186 			/*
12187 			 * Handle Multidata information update; the
12188 			 * following routine will free the message.
12189 			 */
12190 			if (tcp->tcp_connp->conn_mdt_ok) {
12191 				tcp_mdt_update(tcp,
12192 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
12193 				    B_FALSE);
12194 			}
12195 			freemsg(mp);
12196 			return;
12197 		case LSO_IOC_INFO_UPDATE:
12198 			/*
12199 			 * Handle LSO information update; the following
12200 			 * routine will free the message.
12201 			 */
12202 			if (tcp->tcp_connp->conn_lso_ok) {
12203 				tcp_lso_update(tcp,
12204 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
12205 			}
12206 			freemsg(mp);
12207 			return;
12208 		default:
12209 			/*
12210 			 * tcp_icmp_err() will process the M_CTL packets.
12211 			 * Non-ICMP packets, if any, will be discarded in
12212 			 * tcp_icmp_err(). We will process the ICMP packet
12213 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
12214 			 * incoming ICMP packet may result in changing
12215 			 * the tcp_mss, which we would need if we have
12216 			 * packets to retransmit.
12217 			 */
12218 			tcp_icmp_error(tcp, mp);
12219 			return;
12220 		}
12221 	}
12222 
12223 	/* No point processing the message if tcp is already closed */
12224 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
12225 		freemsg(mp);
12226 		return;
12227 	}
12228 
12229 	tcp_rput_other(tcp, mp);
12230 }
12231 
12232 
12233 /* The minimum of smoothed mean deviation in RTO calculation. */
12234 #define	TCP_SD_MIN	400
12235 
12236 /*
12237  * Set RTO for this connection.  The formula is from Jacobson and Karels'
12238  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
12239  * are the same as those in Appendix A.2 of that paper.
12240  *
12241  * m = new measurement
12242  * sa = smoothed RTT average (8 * average estimates).
12243  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
12244  */
12245 static void
12246 tcp_set_rto(tcp_t *tcp, clock_t rtt)
12247 {
12248 	long m = TICK_TO_MSEC(rtt);
12249 	clock_t sa = tcp->tcp_rtt_sa;
12250 	clock_t sv = tcp->tcp_rtt_sd;
12251 	clock_t rto;
12252 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12253 
12254 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
12255 	tcp->tcp_rtt_update++;
12256 
12257 	/* tcp_rtt_sa is not 0 means this is a new sample. */
12258 	if (sa != 0) {
12259 		/*
12260 		 * Update average estimator:
12261 		 *	new rtt = 7/8 old rtt + 1/8 Error
12262 		 */
12263 
12264 		/* m is now Error in estimate. */
12265 		m -= sa >> 3;
12266 		if ((sa += m) <= 0) {
12267 			/*
12268 			 * Don't allow the smoothed average to be negative.
12269 			 * We use 0 to denote reinitialization of the
12270 			 * variables.
12271 			 */
12272 			sa = 1;
12273 		}
12274 
12275 		/*
12276 		 * Update deviation estimator:
12277 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
12278 		 */
12279 		if (m < 0)
12280 			m = -m;
12281 		m -= sv >> 2;
12282 		sv += m;
12283 	} else {
12284 		/*
12285 		 * This follows BSD's implementation.  So the reinitialized
12286 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12287 		 * link is bandwidth dominated, doubling the window size
12288 		 * during slow start means doubling the RTT.  We want to be
12289 		 * more conservative when we reinitialize our estimates.  3
12290 		 * is just a convenient number.
12291 		 */
12292 		sa = m << 3;
12293 		sv = m << 1;
12294 	}
12295 	if (sv < TCP_SD_MIN) {
12296 		/*
12297 		 * We do not know that if sa captures the delay ACK
12298 		 * effect as in a long train of segments, a receiver
12299 		 * does not delay its ACKs.  So set the minimum of sv
12300 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12301 		 * of BSD DATO.  That means the minimum of mean
12302 		 * deviation is 100 ms.
12303 		 *
12304 		 */
12305 		sv = TCP_SD_MIN;
12306 	}
12307 	tcp->tcp_rtt_sa = sa;
12308 	tcp->tcp_rtt_sd = sv;
12309 	/*
12310 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12311 	 *
12312 	 * Add tcp_rexmit_interval extra in case of extreme environment
12313 	 * where the algorithm fails to work.  The default value of
12314 	 * tcp_rexmit_interval_extra should be 0.
12315 	 *
12316 	 * As we use a finer grained clock than BSD and update
12317 	 * RTO for every ACKs, add in another .25 of RTT to the
12318 	 * deviation of RTO to accomodate burstiness of 1/4 of
12319 	 * window size.
12320 	 */
12321 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12322 
12323 	if (rto > tcps->tcps_rexmit_interval_max) {
12324 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12325 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12326 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12327 	} else {
12328 		tcp->tcp_rto = rto;
12329 	}
12330 
12331 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12332 	tcp->tcp_timer_backoff = 0;
12333 }
12334 
12335 /*
12336  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12337  * send queue which starts at the given seq. no.
12338  *
12339  * Parameters:
12340  *	tcp_t *tcp: the tcp instance pointer.
12341  *	uint32_t seq: the starting seq. no of the requested segment.
12342  *	int32_t *off: after the execution, *off will be the offset to
12343  *		the returned mblk which points to the requested seq no.
12344  *		It is the caller's responsibility to send in a non-null off.
12345  *
12346  * Return:
12347  *	A mblk_t pointer pointing to the requested segment in send queue.
12348  */
12349 static mblk_t *
12350 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12351 {
12352 	int32_t	cnt;
12353 	mblk_t	*mp;
12354 
12355 	/* Defensive coding.  Make sure we don't send incorrect data. */
12356 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12357 		return (NULL);
12358 
12359 	cnt = seq - tcp->tcp_suna;
12360 	mp = tcp->tcp_xmit_head;
12361 	while (cnt > 0 && mp != NULL) {
12362 		cnt -= mp->b_wptr - mp->b_rptr;
12363 		if (cnt < 0) {
12364 			cnt += mp->b_wptr - mp->b_rptr;
12365 			break;
12366 		}
12367 		mp = mp->b_cont;
12368 	}
12369 	ASSERT(mp != NULL);
12370 	*off = cnt;
12371 	return (mp);
12372 }
12373 
12374 /*
12375  * This function handles all retransmissions if SACK is enabled for this
12376  * connection.  First it calculates how many segments can be retransmitted
12377  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12378  * segments.  A segment is eligible if sack_cnt for that segment is greater
12379  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12380  * all eligible segments, it checks to see if TCP can send some new segments
12381  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12382  *
12383  * Parameters:
12384  *	tcp_t *tcp: the tcp structure of the connection.
12385  *	uint_t *flags: in return, appropriate value will be set for
12386  *	tcp_rput_data().
12387  */
12388 static void
12389 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12390 {
12391 	notsack_blk_t	*notsack_blk;
12392 	int32_t		usable_swnd;
12393 	int32_t		mss;
12394 	uint32_t	seg_len;
12395 	mblk_t		*xmit_mp;
12396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12397 
12398 	ASSERT(tcp->tcp_sack_info != NULL);
12399 	ASSERT(tcp->tcp_notsack_list != NULL);
12400 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12401 
12402 	/* Defensive coding in case there is a bug... */
12403 	if (tcp->tcp_notsack_list == NULL) {
12404 		return;
12405 	}
12406 	notsack_blk = tcp->tcp_notsack_list;
12407 	mss = tcp->tcp_mss;
12408 
12409 	/*
12410 	 * Limit the num of outstanding data in the network to be
12411 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12412 	 */
12413 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12414 
12415 	/* At least retransmit 1 MSS of data. */
12416 	if (usable_swnd <= 0) {
12417 		usable_swnd = mss;
12418 	}
12419 
12420 	/* Make sure no new RTT samples will be taken. */
12421 	tcp->tcp_csuna = tcp->tcp_snxt;
12422 
12423 	notsack_blk = tcp->tcp_notsack_list;
12424 	while (usable_swnd > 0) {
12425 		mblk_t		*snxt_mp, *tmp_mp;
12426 		tcp_seq		begin = tcp->tcp_sack_snxt;
12427 		tcp_seq		end;
12428 		int32_t		off;
12429 
12430 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12431 			if (SEQ_GT(notsack_blk->end, begin) &&
12432 			    (notsack_blk->sack_cnt >=
12433 			    tcps->tcps_dupack_fast_retransmit)) {
12434 				end = notsack_blk->end;
12435 				if (SEQ_LT(begin, notsack_blk->begin)) {
12436 					begin = notsack_blk->begin;
12437 				}
12438 				break;
12439 			}
12440 		}
12441 		/*
12442 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12443 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12444 		 * set to tcp_cwnd_ssthresh.
12445 		 */
12446 		if (notsack_blk == NULL) {
12447 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12448 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12449 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12450 				ASSERT(tcp->tcp_cwnd > 0);
12451 				return;
12452 			} else {
12453 				usable_swnd = usable_swnd / mss;
12454 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12455 				    MAX(usable_swnd * mss, mss);
12456 				*flags |= TH_XMIT_NEEDED;
12457 				return;
12458 			}
12459 		}
12460 
12461 		/*
12462 		 * Note that we may send more than usable_swnd allows here
12463 		 * because of round off, but no more than 1 MSS of data.
12464 		 */
12465 		seg_len = end - begin;
12466 		if (seg_len > mss)
12467 			seg_len = mss;
12468 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12469 		ASSERT(snxt_mp != NULL);
12470 		/* This should not happen.  Defensive coding again... */
12471 		if (snxt_mp == NULL) {
12472 			return;
12473 		}
12474 
12475 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12476 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12477 		if (xmit_mp == NULL)
12478 			return;
12479 
12480 		usable_swnd -= seg_len;
12481 		tcp->tcp_pipe += seg_len;
12482 		tcp->tcp_sack_snxt = begin + seg_len;
12483 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12484 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12485 
12486 		/*
12487 		 * Update the send timestamp to avoid false retransmission.
12488 		 */
12489 		snxt_mp->b_prev = (mblk_t *)lbolt;
12490 
12491 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12492 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12493 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12494 		/*
12495 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12496 		 * This happens when new data sent during fast recovery is
12497 		 * also lost.  If TCP retransmits those new data, it needs
12498 		 * to extend SACK recover phase to avoid starting another
12499 		 * fast retransmit/recovery unnecessarily.
12500 		 */
12501 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12502 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12503 		}
12504 	}
12505 }
12506 
12507 /*
12508  * This function handles policy checking at TCP level for non-hard_bound/
12509  * detached connections.
12510  */
12511 static boolean_t
12512 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12513     boolean_t secure, boolean_t mctl_present)
12514 {
12515 	ipsec_latch_t *ipl = NULL;
12516 	ipsec_action_t *act = NULL;
12517 	mblk_t *data_mp;
12518 	ipsec_in_t *ii;
12519 	const char *reason;
12520 	kstat_named_t *counter;
12521 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12522 	ipsec_stack_t	*ipss;
12523 	ip_stack_t	*ipst;
12524 
12525 	ASSERT(mctl_present || !secure);
12526 
12527 	ASSERT((ipha == NULL && ip6h != NULL) ||
12528 	    (ip6h == NULL && ipha != NULL));
12529 
12530 	/*
12531 	 * We don't necessarily have an ipsec_in_act action to verify
12532 	 * policy because of assymetrical policy where we have only
12533 	 * outbound policy and no inbound policy (possible with global
12534 	 * policy).
12535 	 */
12536 	if (!secure) {
12537 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12538 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12539 			return (B_TRUE);
12540 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12541 		    "tcp_check_policy", ipha, ip6h, secure,
12542 		    tcps->tcps_netstack);
12543 		ipss = tcps->tcps_netstack->netstack_ipsec;
12544 
12545 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12546 		    DROPPER(ipss, ipds_tcp_clear),
12547 		    &tcps->tcps_dropper);
12548 		return (B_FALSE);
12549 	}
12550 
12551 	/*
12552 	 * We have a secure packet.
12553 	 */
12554 	if (act == NULL) {
12555 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12556 		    "tcp_check_policy", ipha, ip6h, secure,
12557 		    tcps->tcps_netstack);
12558 		ipss = tcps->tcps_netstack->netstack_ipsec;
12559 
12560 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12561 		    DROPPER(ipss, ipds_tcp_secure),
12562 		    &tcps->tcps_dropper);
12563 		return (B_FALSE);
12564 	}
12565 
12566 	/*
12567 	 * XXX This whole routine is currently incorrect.  ipl should
12568 	 * be set to the latch pointer, but is currently not set, so
12569 	 * we initialize it to NULL to avoid picking up random garbage.
12570 	 */
12571 	if (ipl == NULL)
12572 		return (B_TRUE);
12573 
12574 	data_mp = first_mp->b_cont;
12575 
12576 	ii = (ipsec_in_t *)first_mp->b_rptr;
12577 
12578 	ipst = tcps->tcps_netstack->netstack_ip;
12579 
12580 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12581 	    &counter, tcp->tcp_connp)) {
12582 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12583 		return (B_TRUE);
12584 	}
12585 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12586 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12587 	    reason);
12588 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12589 
12590 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12591 	    &tcps->tcps_dropper);
12592 	return (B_FALSE);
12593 }
12594 
12595 /*
12596  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12597  * retransmission after a timeout.
12598  *
12599  * To limit the number of duplicate segments, we limit the number of segment
12600  * to be sent in one time to tcp_snd_burst, the burst variable.
12601  */
12602 static void
12603 tcp_ss_rexmit(tcp_t *tcp)
12604 {
12605 	uint32_t	snxt;
12606 	uint32_t	smax;
12607 	int32_t		win;
12608 	int32_t		mss;
12609 	int32_t		off;
12610 	int32_t		burst = tcp->tcp_snd_burst;
12611 	mblk_t		*snxt_mp;
12612 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12613 
12614 	/*
12615 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12616 	 * all unack'ed segments.
12617 	 */
12618 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12619 		smax = tcp->tcp_rexmit_max;
12620 		snxt = tcp->tcp_rexmit_nxt;
12621 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12622 			snxt = tcp->tcp_suna;
12623 		}
12624 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12625 		win -= snxt - tcp->tcp_suna;
12626 		mss = tcp->tcp_mss;
12627 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12628 
12629 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12630 		    (burst > 0) && (snxt_mp != NULL)) {
12631 			mblk_t	*xmit_mp;
12632 			mblk_t	*old_snxt_mp = snxt_mp;
12633 			uint32_t cnt = mss;
12634 
12635 			if (win < cnt) {
12636 				cnt = win;
12637 			}
12638 			if (SEQ_GT(snxt + cnt, smax)) {
12639 				cnt = smax - snxt;
12640 			}
12641 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12642 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12643 			if (xmit_mp == NULL)
12644 				return;
12645 
12646 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12647 
12648 			snxt += cnt;
12649 			win -= cnt;
12650 			/*
12651 			 * Update the send timestamp to avoid false
12652 			 * retransmission.
12653 			 */
12654 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12655 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12656 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12657 
12658 			tcp->tcp_rexmit_nxt = snxt;
12659 			burst--;
12660 		}
12661 		/*
12662 		 * If we have transmitted all we have at the time
12663 		 * we started the retranmission, we can leave
12664 		 * the rest of the job to tcp_wput_data().  But we
12665 		 * need to check the send window first.  If the
12666 		 * win is not 0, go on with tcp_wput_data().
12667 		 */
12668 		if (SEQ_LT(snxt, smax) || win == 0) {
12669 			return;
12670 		}
12671 	}
12672 	/* Only call tcp_wput_data() if there is data to be sent. */
12673 	if (tcp->tcp_unsent) {
12674 		tcp_wput_data(tcp, NULL, B_FALSE);
12675 	}
12676 }
12677 
12678 /*
12679  * Process all TCP option in SYN segment.  Note that this function should
12680  * be called after tcp_adapt_ire() is called so that the necessary info
12681  * from IRE is already set in the tcp structure.
12682  *
12683  * This function sets up the correct tcp_mss value according to the
12684  * MSS option value and our header size.  It also sets up the window scale
12685  * and timestamp values, and initialize SACK info blocks.  But it does not
12686  * change receive window size after setting the tcp_mss value.  The caller
12687  * should do the appropriate change.
12688  */
12689 void
12690 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12691 {
12692 	int options;
12693 	tcp_opt_t tcpopt;
12694 	uint32_t mss_max;
12695 	char *tmp_tcph;
12696 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12697 
12698 	tcpopt.tcp = NULL;
12699 	options = tcp_parse_options(tcph, &tcpopt);
12700 
12701 	/*
12702 	 * Process MSS option.  Note that MSS option value does not account
12703 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12704 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12705 	 * IPv6.
12706 	 */
12707 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12708 		if (tcp->tcp_ipversion == IPV4_VERSION)
12709 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12710 		else
12711 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12712 	} else {
12713 		if (tcp->tcp_ipversion == IPV4_VERSION)
12714 			mss_max = tcps->tcps_mss_max_ipv4;
12715 		else
12716 			mss_max = tcps->tcps_mss_max_ipv6;
12717 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12718 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12719 		else if (tcpopt.tcp_opt_mss > mss_max)
12720 			tcpopt.tcp_opt_mss = mss_max;
12721 	}
12722 
12723 	/* Process Window Scale option. */
12724 	if (options & TCP_OPT_WSCALE_PRESENT) {
12725 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12726 		tcp->tcp_snd_ws_ok = B_TRUE;
12727 	} else {
12728 		tcp->tcp_snd_ws = B_FALSE;
12729 		tcp->tcp_snd_ws_ok = B_FALSE;
12730 		tcp->tcp_rcv_ws = B_FALSE;
12731 	}
12732 
12733 	/* Process Timestamp option. */
12734 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12735 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12736 		tmp_tcph = (char *)tcp->tcp_tcph;
12737 
12738 		tcp->tcp_snd_ts_ok = B_TRUE;
12739 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12740 		tcp->tcp_last_rcv_lbolt = lbolt64;
12741 		ASSERT(OK_32PTR(tmp_tcph));
12742 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12743 
12744 		/* Fill in our template header with basic timestamp option. */
12745 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12746 		tmp_tcph[0] = TCPOPT_NOP;
12747 		tmp_tcph[1] = TCPOPT_NOP;
12748 		tmp_tcph[2] = TCPOPT_TSTAMP;
12749 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12750 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12751 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12752 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12753 	} else {
12754 		tcp->tcp_snd_ts_ok = B_FALSE;
12755 	}
12756 
12757 	/*
12758 	 * Process SACK options.  If SACK is enabled for this connection,
12759 	 * then allocate the SACK info structure.  Note the following ways
12760 	 * when tcp_snd_sack_ok is set to true.
12761 	 *
12762 	 * For active connection: in tcp_adapt_ire() called in
12763 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12764 	 * is checked.
12765 	 *
12766 	 * For passive connection: in tcp_adapt_ire() called in
12767 	 * tcp_accept_comm().
12768 	 *
12769 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12770 	 * That check makes sure that if we did not send a SACK OK option,
12771 	 * we will not enable SACK for this connection even though the other
12772 	 * side sends us SACK OK option.  For active connection, the SACK
12773 	 * info structure has already been allocated.  So we need to free
12774 	 * it if SACK is disabled.
12775 	 */
12776 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12777 	    (tcp->tcp_snd_sack_ok ||
12778 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12779 		/* This should be true only in the passive case. */
12780 		if (tcp->tcp_sack_info == NULL) {
12781 			ASSERT(TCP_IS_DETACHED(tcp));
12782 			tcp->tcp_sack_info =
12783 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12784 		}
12785 		if (tcp->tcp_sack_info == NULL) {
12786 			tcp->tcp_snd_sack_ok = B_FALSE;
12787 		} else {
12788 			tcp->tcp_snd_sack_ok = B_TRUE;
12789 			if (tcp->tcp_snd_ts_ok) {
12790 				tcp->tcp_max_sack_blk = 3;
12791 			} else {
12792 				tcp->tcp_max_sack_blk = 4;
12793 			}
12794 		}
12795 	} else {
12796 		/*
12797 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12798 		 * no SACK info will be used for this
12799 		 * connection.  This assumes that SACK usage
12800 		 * permission is negotiated.  This may need
12801 		 * to be changed once this is clarified.
12802 		 */
12803 		if (tcp->tcp_sack_info != NULL) {
12804 			ASSERT(tcp->tcp_notsack_list == NULL);
12805 			kmem_cache_free(tcp_sack_info_cache,
12806 			    tcp->tcp_sack_info);
12807 			tcp->tcp_sack_info = NULL;
12808 		}
12809 		tcp->tcp_snd_sack_ok = B_FALSE;
12810 	}
12811 
12812 	/*
12813 	 * Now we know the exact TCP/IP header length, subtract
12814 	 * that from tcp_mss to get our side's MSS.
12815 	 */
12816 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12817 	/*
12818 	 * Here we assume that the other side's header size will be equal to
12819 	 * our header size.  We calculate the real MSS accordingly.  Need to
12820 	 * take into additional stuffs IPsec puts in.
12821 	 *
12822 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12823 	 */
12824 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12825 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12826 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12827 
12828 	/*
12829 	 * Set MSS to the smaller one of both ends of the connection.
12830 	 * We should not have called tcp_mss_set() before, but our
12831 	 * side of the MSS should have been set to a proper value
12832 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12833 	 * STREAM head parameters properly.
12834 	 *
12835 	 * If we have a larger-than-16-bit window but the other side
12836 	 * didn't want to do window scale, tcp_rwnd_set() will take
12837 	 * care of that.
12838 	 */
12839 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12840 }
12841 
12842 /*
12843  * Sends the T_CONN_IND to the listener. The caller calls this
12844  * functions via squeue to get inside the listener's perimeter
12845  * once the 3 way hand shake is done a T_CONN_IND needs to be
12846  * sent. As an optimization, the caller can call this directly
12847  * if listener's perimeter is same as eager's.
12848  */
12849 /* ARGSUSED */
12850 void
12851 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12852 {
12853 	conn_t			*lconnp = (conn_t *)arg;
12854 	tcp_t			*listener = lconnp->conn_tcp;
12855 	tcp_t			*tcp;
12856 	struct T_conn_ind	*conn_ind;
12857 	ipaddr_t 		*addr_cache;
12858 	boolean_t		need_send_conn_ind = B_FALSE;
12859 	tcp_stack_t		*tcps = listener->tcp_tcps;
12860 
12861 	/* retrieve the eager */
12862 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12863 	ASSERT(conn_ind->OPT_offset != 0 &&
12864 	    conn_ind->OPT_length == sizeof (intptr_t));
12865 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12866 	    conn_ind->OPT_length);
12867 
12868 	/*
12869 	 * TLI/XTI applications will get confused by
12870 	 * sending eager as an option since it violates
12871 	 * the option semantics. So remove the eager as
12872 	 * option since TLI/XTI app doesn't need it anyway.
12873 	 */
12874 	if (!TCP_IS_SOCKET(listener)) {
12875 		conn_ind->OPT_length = 0;
12876 		conn_ind->OPT_offset = 0;
12877 	}
12878 	if (listener->tcp_state == TCPS_CLOSED ||
12879 	    TCP_IS_DETACHED(listener)) {
12880 		/*
12881 		 * If listener has closed, it would have caused a
12882 		 * a cleanup/blowoff to happen for the eager. We
12883 		 * just need to return.
12884 		 */
12885 		freemsg(mp);
12886 		return;
12887 	}
12888 
12889 
12890 	/*
12891 	 * if the conn_req_q is full defer passing up the
12892 	 * T_CONN_IND until space is availabe after t_accept()
12893 	 * processing
12894 	 */
12895 	mutex_enter(&listener->tcp_eager_lock);
12896 
12897 	/*
12898 	 * Take the eager out, if it is in the list of droppable eagers
12899 	 * as we are here because the 3W handshake is over.
12900 	 */
12901 	MAKE_UNDROPPABLE(tcp);
12902 
12903 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12904 		tcp_t *tail;
12905 
12906 		/*
12907 		 * The eager already has an extra ref put in tcp_rput_data
12908 		 * so that it stays till accept comes back even though it
12909 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12910 		 */
12911 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12912 		listener->tcp_conn_req_cnt_q0--;
12913 		listener->tcp_conn_req_cnt_q++;
12914 
12915 		/* Move from SYN_RCVD to ESTABLISHED list  */
12916 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12917 		    tcp->tcp_eager_prev_q0;
12918 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12919 		    tcp->tcp_eager_next_q0;
12920 		tcp->tcp_eager_prev_q0 = NULL;
12921 		tcp->tcp_eager_next_q0 = NULL;
12922 
12923 		/*
12924 		 * Insert at end of the queue because sockfs
12925 		 * sends down T_CONN_RES in chronological
12926 		 * order. Leaving the older conn indications
12927 		 * at front of the queue helps reducing search
12928 		 * time.
12929 		 */
12930 		tail = listener->tcp_eager_last_q;
12931 		if (tail != NULL)
12932 			tail->tcp_eager_next_q = tcp;
12933 		else
12934 			listener->tcp_eager_next_q = tcp;
12935 		listener->tcp_eager_last_q = tcp;
12936 		tcp->tcp_eager_next_q = NULL;
12937 		/*
12938 		 * Delay sending up the T_conn_ind until we are
12939 		 * done with the eager. Once we have have sent up
12940 		 * the T_conn_ind, the accept can potentially complete
12941 		 * any time and release the refhold we have on the eager.
12942 		 */
12943 		need_send_conn_ind = B_TRUE;
12944 	} else {
12945 		/*
12946 		 * Defer connection on q0 and set deferred
12947 		 * connection bit true
12948 		 */
12949 		tcp->tcp_conn_def_q0 = B_TRUE;
12950 
12951 		/* take tcp out of q0 ... */
12952 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12953 		    tcp->tcp_eager_next_q0;
12954 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12955 		    tcp->tcp_eager_prev_q0;
12956 
12957 		/* ... and place it at the end of q0 */
12958 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12959 		tcp->tcp_eager_next_q0 = listener;
12960 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12961 		listener->tcp_eager_prev_q0 = tcp;
12962 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12963 	}
12964 
12965 	/* we have timed out before */
12966 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12967 		tcp->tcp_syn_rcvd_timeout = 0;
12968 		listener->tcp_syn_rcvd_timeout--;
12969 		if (listener->tcp_syn_defense &&
12970 		    listener->tcp_syn_rcvd_timeout <=
12971 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12972 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12973 		    listener->tcp_last_rcv_lbolt)) {
12974 			/*
12975 			 * Turn off the defense mode if we
12976 			 * believe the SYN attack is over.
12977 			 */
12978 			listener->tcp_syn_defense = B_FALSE;
12979 			if (listener->tcp_ip_addr_cache) {
12980 				kmem_free((void *)listener->tcp_ip_addr_cache,
12981 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12982 				listener->tcp_ip_addr_cache = NULL;
12983 			}
12984 		}
12985 	}
12986 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12987 	if (addr_cache != NULL) {
12988 		/*
12989 		 * We have finished a 3-way handshake with this
12990 		 * remote host. This proves the IP addr is good.
12991 		 * Cache it!
12992 		 */
12993 		addr_cache[IP_ADDR_CACHE_HASH(
12994 		    tcp->tcp_remote)] = tcp->tcp_remote;
12995 	}
12996 	mutex_exit(&listener->tcp_eager_lock);
12997 	if (need_send_conn_ind)
12998 		putnext(listener->tcp_rq, mp);
12999 }
13000 
13001 mblk_t *
13002 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
13003     uint_t *ifindexp, ip6_pkt_t *ippp)
13004 {
13005 	ip_pktinfo_t	*pinfo;
13006 	ip6_t		*ip6h;
13007 	uchar_t		*rptr;
13008 	mblk_t		*first_mp = mp;
13009 	boolean_t	mctl_present = B_FALSE;
13010 	uint_t 		ifindex = 0;
13011 	ip6_pkt_t	ipp;
13012 	uint_t		ipvers;
13013 	uint_t		ip_hdr_len;
13014 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13015 
13016 	rptr = mp->b_rptr;
13017 	ASSERT(OK_32PTR(rptr));
13018 	ASSERT(tcp != NULL);
13019 	ipp.ipp_fields = 0;
13020 
13021 	switch DB_TYPE(mp) {
13022 	case M_CTL:
13023 		mp = mp->b_cont;
13024 		if (mp == NULL) {
13025 			freemsg(first_mp);
13026 			return (NULL);
13027 		}
13028 		if (DB_TYPE(mp) != M_DATA) {
13029 			freemsg(first_mp);
13030 			return (NULL);
13031 		}
13032 		mctl_present = B_TRUE;
13033 		break;
13034 	case M_DATA:
13035 		break;
13036 	default:
13037 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
13038 		freemsg(mp);
13039 		return (NULL);
13040 	}
13041 	ipvers = IPH_HDR_VERSION(rptr);
13042 	if (ipvers == IPV4_VERSION) {
13043 		if (tcp == NULL) {
13044 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
13045 			goto done;
13046 		}
13047 
13048 		ipp.ipp_fields |= IPPF_HOPLIMIT;
13049 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
13050 
13051 		/*
13052 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
13053 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
13054 		 */
13055 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
13056 		    mctl_present) {
13057 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
13058 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
13059 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
13060 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
13061 				ipp.ipp_fields |= IPPF_IFINDEX;
13062 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
13063 				ifindex = pinfo->ip_pkt_ifindex;
13064 			}
13065 			freeb(first_mp);
13066 			mctl_present = B_FALSE;
13067 		}
13068 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13069 	} else {
13070 		ip6h = (ip6_t *)rptr;
13071 
13072 		ASSERT(ipvers == IPV6_VERSION);
13073 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
13074 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
13075 		ipp.ipp_hoplimit = ip6h->ip6_hops;
13076 
13077 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
13078 			uint8_t	nexthdrp;
13079 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13080 
13081 			/* Look for ifindex information */
13082 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
13083 				ip6i_t *ip6i = (ip6i_t *)ip6h;
13084 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
13085 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13086 					freemsg(first_mp);
13087 					return (NULL);
13088 				}
13089 
13090 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
13091 					ASSERT(ip6i->ip6i_ifindex != 0);
13092 					ipp.ipp_fields |= IPPF_IFINDEX;
13093 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
13094 					ifindex = ip6i->ip6i_ifindex;
13095 				}
13096 				rptr = (uchar_t *)&ip6i[1];
13097 				mp->b_rptr = rptr;
13098 				if (rptr == mp->b_wptr) {
13099 					mblk_t *mp1;
13100 					mp1 = mp->b_cont;
13101 					freeb(mp);
13102 					mp = mp1;
13103 					rptr = mp->b_rptr;
13104 				}
13105 				if (MBLKL(mp) < IPV6_HDR_LEN +
13106 				    sizeof (tcph_t)) {
13107 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13108 					freemsg(first_mp);
13109 					return (NULL);
13110 				}
13111 				ip6h = (ip6_t *)rptr;
13112 			}
13113 
13114 			/*
13115 			 * Find any potentially interesting extension headers
13116 			 * as well as the length of the IPv6 + extension
13117 			 * headers.
13118 			 */
13119 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
13120 			/* Verify if this is a TCP packet */
13121 			if (nexthdrp != IPPROTO_TCP) {
13122 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13123 				freemsg(first_mp);
13124 				return (NULL);
13125 			}
13126 		} else {
13127 			ip_hdr_len = IPV6_HDR_LEN;
13128 		}
13129 	}
13130 
13131 done:
13132 	if (ipversp != NULL)
13133 		*ipversp = ipvers;
13134 	if (ip_hdr_lenp != NULL)
13135 		*ip_hdr_lenp = ip_hdr_len;
13136 	if (ippp != NULL)
13137 		*ippp = ipp;
13138 	if (ifindexp != NULL)
13139 		*ifindexp = ifindex;
13140 	if (mctl_present) {
13141 		freeb(first_mp);
13142 	}
13143 	return (mp);
13144 }
13145 
13146 /*
13147  * Handle M_DATA messages from IP. Its called directly from IP via
13148  * squeue for AF_INET type sockets fast path. No M_CTL are expected
13149  * in this path.
13150  *
13151  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
13152  * v4 and v6), we are called through tcp_input() and a M_CTL can
13153  * be present for options but tcp_find_pktinfo() deals with it. We
13154  * only expect M_DATA packets after tcp_find_pktinfo() is done.
13155  *
13156  * The first argument is always the connp/tcp to which the mp belongs.
13157  * There are no exceptions to this rule. The caller has already put
13158  * a reference on this connp/tcp and once tcp_rput_data() returns,
13159  * the squeue will do the refrele.
13160  *
13161  * The TH_SYN for the listener directly go to tcp_conn_request via
13162  * squeue.
13163  *
13164  * sqp: NULL = recursive, sqp != NULL means called from squeue
13165  */
13166 void
13167 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
13168 {
13169 	int32_t		bytes_acked;
13170 	int32_t		gap;
13171 	mblk_t		*mp1;
13172 	uint_t		flags;
13173 	uint32_t	new_swnd = 0;
13174 	uchar_t		*iphdr;
13175 	uchar_t		*rptr;
13176 	int32_t		rgap;
13177 	uint32_t	seg_ack;
13178 	int		seg_len;
13179 	uint_t		ip_hdr_len;
13180 	uint32_t	seg_seq;
13181 	tcph_t		*tcph;
13182 	int		urp;
13183 	tcp_opt_t	tcpopt;
13184 	uint_t		ipvers;
13185 	ip6_pkt_t	ipp;
13186 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
13187 	uint32_t	cwnd;
13188 	uint32_t	add;
13189 	int		npkt;
13190 	int		mss;
13191 	conn_t		*connp = (conn_t *)arg;
13192 	squeue_t	*sqp = (squeue_t *)arg2;
13193 	tcp_t		*tcp = connp->conn_tcp;
13194 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13195 
13196 	/*
13197 	 * RST from fused tcp loopback peer should trigger an unfuse.
13198 	 */
13199 	if (tcp->tcp_fused) {
13200 		TCP_STAT(tcps, tcp_fusion_aborted);
13201 		tcp_unfuse(tcp);
13202 	}
13203 
13204 	iphdr = mp->b_rptr;
13205 	rptr = mp->b_rptr;
13206 	ASSERT(OK_32PTR(rptr));
13207 
13208 	/*
13209 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
13210 	 * processing here. For rest call tcp_find_pktinfo to fill up the
13211 	 * necessary information.
13212 	 */
13213 	if (IPCL_IS_TCP4(connp)) {
13214 		ipvers = IPV4_VERSION;
13215 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13216 	} else {
13217 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
13218 		    NULL, &ipp);
13219 		if (mp == NULL) {
13220 			TCP_STAT(tcps, tcp_rput_v6_error);
13221 			return;
13222 		}
13223 		iphdr = mp->b_rptr;
13224 		rptr = mp->b_rptr;
13225 	}
13226 	ASSERT(DB_TYPE(mp) == M_DATA);
13227 
13228 	tcph = (tcph_t *)&rptr[ip_hdr_len];
13229 	seg_seq = ABE32_TO_U32(tcph->th_seq);
13230 	seg_ack = ABE32_TO_U32(tcph->th_ack);
13231 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
13232 	seg_len = (int)(mp->b_wptr - rptr) -
13233 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
13234 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
13235 		do {
13236 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
13237 			    (uintptr_t)INT_MAX);
13238 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
13239 		} while ((mp1 = mp1->b_cont) != NULL &&
13240 		    mp1->b_datap->db_type == M_DATA);
13241 	}
13242 
13243 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
13244 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
13245 		    seg_len, tcph);
13246 		return;
13247 	}
13248 
13249 	if (sqp != NULL) {
13250 		/*
13251 		 * This is the correct place to update tcp_last_recv_time. Note
13252 		 * that it is also updated for tcp structure that belongs to
13253 		 * global and listener queues which do not really need updating.
13254 		 * But that should not cause any harm.  And it is updated for
13255 		 * all kinds of incoming segments, not only for data segments.
13256 		 */
13257 		tcp->tcp_last_recv_time = lbolt;
13258 	}
13259 
13260 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13261 
13262 	BUMP_LOCAL(tcp->tcp_ibsegs);
13263 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
13264 
13265 	if ((flags & TH_URG) && sqp != NULL) {
13266 		/*
13267 		 * TCP can't handle urgent pointers that arrive before
13268 		 * the connection has been accept()ed since it can't
13269 		 * buffer OOB data.  Discard segment if this happens.
13270 		 *
13271 		 * We can't just rely on a non-null tcp_listener to indicate
13272 		 * that the accept() has completed since unlinking of the
13273 		 * eager and completion of the accept are not atomic.
13274 		 * tcp_detached, when it is not set (B_FALSE) indicates
13275 		 * that the accept() has completed.
13276 		 *
13277 		 * Nor can it reassemble urgent pointers, so discard
13278 		 * if it's not the next segment expected.
13279 		 *
13280 		 * Otherwise, collapse chain into one mblk (discard if
13281 		 * that fails).  This makes sure the headers, retransmitted
13282 		 * data, and new data all are in the same mblk.
13283 		 */
13284 		ASSERT(mp != NULL);
13285 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13286 			freemsg(mp);
13287 			return;
13288 		}
13289 		/* Update pointers into message */
13290 		iphdr = rptr = mp->b_rptr;
13291 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13292 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13293 			/*
13294 			 * Since we can't handle any data with this urgent
13295 			 * pointer that is out of sequence, we expunge
13296 			 * the data.  This allows us to still register
13297 			 * the urgent mark and generate the M_PCSIG,
13298 			 * which we can do.
13299 			 */
13300 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13301 			seg_len = 0;
13302 		}
13303 	}
13304 
13305 	switch (tcp->tcp_state) {
13306 	case TCPS_SYN_SENT:
13307 		if (flags & TH_ACK) {
13308 			/*
13309 			 * Note that our stack cannot send data before a
13310 			 * connection is established, therefore the
13311 			 * following check is valid.  Otherwise, it has
13312 			 * to be changed.
13313 			 */
13314 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13315 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13316 				freemsg(mp);
13317 				if (flags & TH_RST)
13318 					return;
13319 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13320 				    tcp, seg_ack, 0, TH_RST);
13321 				return;
13322 			}
13323 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13324 		}
13325 		if (flags & TH_RST) {
13326 			freemsg(mp);
13327 			if (flags & TH_ACK)
13328 				(void) tcp_clean_death(tcp,
13329 				    ECONNREFUSED, 13);
13330 			return;
13331 		}
13332 		if (!(flags & TH_SYN)) {
13333 			freemsg(mp);
13334 			return;
13335 		}
13336 
13337 		/* Process all TCP options. */
13338 		tcp_process_options(tcp, tcph);
13339 		/*
13340 		 * The following changes our rwnd to be a multiple of the
13341 		 * MIN(peer MSS, our MSS) for performance reason.
13342 		 */
13343 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13344 		    tcp->tcp_mss));
13345 
13346 		/* Is the other end ECN capable? */
13347 		if (tcp->tcp_ecn_ok) {
13348 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13349 				tcp->tcp_ecn_ok = B_FALSE;
13350 			}
13351 		}
13352 		/*
13353 		 * Clear ECN flags because it may interfere with later
13354 		 * processing.
13355 		 */
13356 		flags &= ~(TH_ECE|TH_CWR);
13357 
13358 		tcp->tcp_irs = seg_seq;
13359 		tcp->tcp_rack = seg_seq;
13360 		tcp->tcp_rnxt = seg_seq + 1;
13361 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13362 		if (!TCP_IS_DETACHED(tcp)) {
13363 			/* Allocate room for SACK options if needed. */
13364 			if (tcp->tcp_snd_sack_ok) {
13365 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13366 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13367 				    (tcp->tcp_loopback ? 0 :
13368 				    tcps->tcps_wroff_xtra));
13369 			} else {
13370 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13371 				    tcp->tcp_hdr_len +
13372 				    (tcp->tcp_loopback ? 0 :
13373 				    tcps->tcps_wroff_xtra));
13374 			}
13375 		}
13376 		if (flags & TH_ACK) {
13377 			/*
13378 			 * If we can't get the confirmation upstream, pretend
13379 			 * we didn't even see this one.
13380 			 *
13381 			 * XXX: how can we pretend we didn't see it if we
13382 			 * have updated rnxt et. al.
13383 			 *
13384 			 * For loopback we defer sending up the T_CONN_CON
13385 			 * until after some checks below.
13386 			 */
13387 			mp1 = NULL;
13388 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13389 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13390 				freemsg(mp);
13391 				return;
13392 			}
13393 			/* SYN was acked - making progress */
13394 			if (tcp->tcp_ipversion == IPV6_VERSION)
13395 				tcp->tcp_ip_forward_progress = B_TRUE;
13396 
13397 			/* One for the SYN */
13398 			tcp->tcp_suna = tcp->tcp_iss + 1;
13399 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13400 			tcp->tcp_state = TCPS_ESTABLISHED;
13401 
13402 			/*
13403 			 * If SYN was retransmitted, need to reset all
13404 			 * retransmission info.  This is because this
13405 			 * segment will be treated as a dup ACK.
13406 			 */
13407 			if (tcp->tcp_rexmit) {
13408 				tcp->tcp_rexmit = B_FALSE;
13409 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13410 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13411 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13412 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13413 				tcp->tcp_ms_we_have_waited = 0;
13414 
13415 				/*
13416 				 * Set tcp_cwnd back to 1 MSS, per
13417 				 * recommendation from
13418 				 * draft-floyd-incr-init-win-01.txt,
13419 				 * Increasing TCP's Initial Window.
13420 				 */
13421 				tcp->tcp_cwnd = tcp->tcp_mss;
13422 			}
13423 
13424 			tcp->tcp_swl1 = seg_seq;
13425 			tcp->tcp_swl2 = seg_ack;
13426 
13427 			new_swnd = BE16_TO_U16(tcph->th_win);
13428 			tcp->tcp_swnd = new_swnd;
13429 			if (new_swnd > tcp->tcp_max_swnd)
13430 				tcp->tcp_max_swnd = new_swnd;
13431 
13432 			/*
13433 			 * Always send the three-way handshake ack immediately
13434 			 * in order to make the connection complete as soon as
13435 			 * possible on the accepting host.
13436 			 */
13437 			flags |= TH_ACK_NEEDED;
13438 
13439 			/*
13440 			 * Special case for loopback.  At this point we have
13441 			 * received SYN-ACK from the remote endpoint.  In
13442 			 * order to ensure that both endpoints reach the
13443 			 * fused state prior to any data exchange, the final
13444 			 * ACK needs to be sent before we indicate T_CONN_CON
13445 			 * to the module upstream.
13446 			 */
13447 			if (tcp->tcp_loopback) {
13448 				mblk_t *ack_mp;
13449 
13450 				ASSERT(!tcp->tcp_unfusable);
13451 				ASSERT(mp1 != NULL);
13452 				/*
13453 				 * For loopback, we always get a pure SYN-ACK
13454 				 * and only need to send back the final ACK
13455 				 * with no data (this is because the other
13456 				 * tcp is ours and we don't do T/TCP).  This
13457 				 * final ACK triggers the passive side to
13458 				 * perform fusion in ESTABLISHED state.
13459 				 */
13460 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13461 					if (tcp->tcp_ack_tid != 0) {
13462 						(void) TCP_TIMER_CANCEL(tcp,
13463 						    tcp->tcp_ack_tid);
13464 						tcp->tcp_ack_tid = 0;
13465 					}
13466 					TCP_RECORD_TRACE(tcp, ack_mp,
13467 					    TCP_TRACE_SEND_PKT);
13468 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13469 					BUMP_LOCAL(tcp->tcp_obsegs);
13470 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13471 
13472 					/* Send up T_CONN_CON */
13473 					putnext(tcp->tcp_rq, mp1);
13474 
13475 					freemsg(mp);
13476 					return;
13477 				}
13478 				/*
13479 				 * Forget fusion; we need to handle more
13480 				 * complex cases below.  Send the deferred
13481 				 * T_CONN_CON message upstream and proceed
13482 				 * as usual.  Mark this tcp as not capable
13483 				 * of fusion.
13484 				 */
13485 				TCP_STAT(tcps, tcp_fusion_unfusable);
13486 				tcp->tcp_unfusable = B_TRUE;
13487 				putnext(tcp->tcp_rq, mp1);
13488 			}
13489 
13490 			/*
13491 			 * Check to see if there is data to be sent.  If
13492 			 * yes, set the transmit flag.  Then check to see
13493 			 * if received data processing needs to be done.
13494 			 * If not, go straight to xmit_check.  This short
13495 			 * cut is OK as we don't support T/TCP.
13496 			 */
13497 			if (tcp->tcp_unsent)
13498 				flags |= TH_XMIT_NEEDED;
13499 
13500 			if (seg_len == 0 && !(flags & TH_URG)) {
13501 				freemsg(mp);
13502 				goto xmit_check;
13503 			}
13504 
13505 			flags &= ~TH_SYN;
13506 			seg_seq++;
13507 			break;
13508 		}
13509 		tcp->tcp_state = TCPS_SYN_RCVD;
13510 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13511 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13512 		if (mp1) {
13513 			DB_CPID(mp1) = tcp->tcp_cpid;
13514 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13515 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13516 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13517 		}
13518 		freemsg(mp);
13519 		return;
13520 	case TCPS_SYN_RCVD:
13521 		if (flags & TH_ACK) {
13522 			/*
13523 			 * In this state, a SYN|ACK packet is either bogus
13524 			 * because the other side must be ACKing our SYN which
13525 			 * indicates it has seen the ACK for their SYN and
13526 			 * shouldn't retransmit it or we're crossing SYNs
13527 			 * on active open.
13528 			 */
13529 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13530 				freemsg(mp);
13531 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13532 				    tcp, seg_ack, 0, TH_RST);
13533 				return;
13534 			}
13535 			/*
13536 			 * NOTE: RFC 793 pg. 72 says this should be
13537 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13538 			 * but that would mean we have an ack that ignored
13539 			 * our SYN.
13540 			 */
13541 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13542 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13543 				freemsg(mp);
13544 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13545 				    tcp, seg_ack, 0, TH_RST);
13546 				return;
13547 			}
13548 		}
13549 		break;
13550 	case TCPS_LISTEN:
13551 		/*
13552 		 * Only a TLI listener can come through this path when a
13553 		 * acceptor is going back to be a listener and a packet
13554 		 * for the acceptor hits the classifier. For a socket
13555 		 * listener, this can never happen because a listener
13556 		 * can never accept connection on itself and hence a
13557 		 * socket acceptor can not go back to being a listener.
13558 		 */
13559 		ASSERT(!TCP_IS_SOCKET(tcp));
13560 		/*FALLTHRU*/
13561 	case TCPS_CLOSED:
13562 	case TCPS_BOUND: {
13563 		conn_t	*new_connp;
13564 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13565 
13566 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13567 		if (new_connp != NULL) {
13568 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13569 			return;
13570 		}
13571 		/* We failed to classify. For now just drop the packet */
13572 		freemsg(mp);
13573 		return;
13574 	}
13575 	case TCPS_IDLE:
13576 		/*
13577 		 * Handle the case where the tcp_clean_death() has happened
13578 		 * on a connection (application hasn't closed yet) but a packet
13579 		 * was already queued on squeue before tcp_clean_death()
13580 		 * was processed. Calling tcp_clean_death() twice on same
13581 		 * connection can result in weird behaviour.
13582 		 */
13583 		freemsg(mp);
13584 		return;
13585 	default:
13586 		break;
13587 	}
13588 
13589 	/*
13590 	 * Already on the correct queue/perimeter.
13591 	 * If this is a detached connection and not an eager
13592 	 * connection hanging off a listener then new data
13593 	 * (past the FIN) will cause a reset.
13594 	 * We do a special check here where it
13595 	 * is out of the main line, rather than check
13596 	 * if we are detached every time we see new
13597 	 * data down below.
13598 	 */
13599 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13600 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13601 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13602 		TCP_RECORD_TRACE(tcp,
13603 		    mp, TCP_TRACE_RECV_PKT);
13604 
13605 		freemsg(mp);
13606 		/*
13607 		 * This could be an SSL closure alert. We're detached so just
13608 		 * acknowledge it this last time.
13609 		 */
13610 		if (tcp->tcp_kssl_ctx != NULL) {
13611 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13612 			tcp->tcp_kssl_ctx = NULL;
13613 
13614 			tcp->tcp_rnxt += seg_len;
13615 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13616 			flags |= TH_ACK_NEEDED;
13617 			goto ack_check;
13618 		}
13619 
13620 		tcp_xmit_ctl("new data when detached", tcp,
13621 		    tcp->tcp_snxt, 0, TH_RST);
13622 		(void) tcp_clean_death(tcp, EPROTO, 12);
13623 		return;
13624 	}
13625 
13626 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13627 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13628 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13629 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13630 
13631 	if (tcp->tcp_snd_ts_ok) {
13632 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13633 			/*
13634 			 * This segment is not acceptable.
13635 			 * Drop it and send back an ACK.
13636 			 */
13637 			freemsg(mp);
13638 			flags |= TH_ACK_NEEDED;
13639 			goto ack_check;
13640 		}
13641 	} else if (tcp->tcp_snd_sack_ok) {
13642 		ASSERT(tcp->tcp_sack_info != NULL);
13643 		tcpopt.tcp = tcp;
13644 		/*
13645 		 * SACK info in already updated in tcp_parse_options.  Ignore
13646 		 * all other TCP options...
13647 		 */
13648 		(void) tcp_parse_options(tcph, &tcpopt);
13649 	}
13650 try_again:;
13651 	mss = tcp->tcp_mss;
13652 	gap = seg_seq - tcp->tcp_rnxt;
13653 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13654 	/*
13655 	 * gap is the amount of sequence space between what we expect to see
13656 	 * and what we got for seg_seq.  A positive value for gap means
13657 	 * something got lost.  A negative value means we got some old stuff.
13658 	 */
13659 	if (gap < 0) {
13660 		/* Old stuff present.  Is the SYN in there? */
13661 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13662 		    (seg_len != 0)) {
13663 			flags &= ~TH_SYN;
13664 			seg_seq++;
13665 			urp--;
13666 			/* Recompute the gaps after noting the SYN. */
13667 			goto try_again;
13668 		}
13669 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13670 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13671 		    (seg_len > -gap ? -gap : seg_len));
13672 		/* Remove the old stuff from seg_len. */
13673 		seg_len += gap;
13674 		/*
13675 		 * Anything left?
13676 		 * Make sure to check for unack'd FIN when rest of data
13677 		 * has been previously ack'd.
13678 		 */
13679 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13680 			/*
13681 			 * Resets are only valid if they lie within our offered
13682 			 * window.  If the RST bit is set, we just ignore this
13683 			 * segment.
13684 			 */
13685 			if (flags & TH_RST) {
13686 				freemsg(mp);
13687 				return;
13688 			}
13689 
13690 			/*
13691 			 * The arriving of dup data packets indicate that we
13692 			 * may have postponed an ack for too long, or the other
13693 			 * side's RTT estimate is out of shape. Start acking
13694 			 * more often.
13695 			 */
13696 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13697 			    tcp->tcp_rack_cnt >= 1 &&
13698 			    tcp->tcp_rack_abs_max > 2) {
13699 				tcp->tcp_rack_abs_max--;
13700 			}
13701 			tcp->tcp_rack_cur_max = 1;
13702 
13703 			/*
13704 			 * This segment is "unacceptable".  None of its
13705 			 * sequence space lies within our advertized window.
13706 			 *
13707 			 * Adjust seg_len to the original value for tracing.
13708 			 */
13709 			seg_len -= gap;
13710 			if (tcp->tcp_debug) {
13711 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13712 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13713 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13714 				    "seg_len %d, rnxt %u, snxt %u, %s",
13715 				    gap, rgap, flags, seg_seq, seg_ack,
13716 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13717 				    tcp_display(tcp, NULL,
13718 				    DISP_ADDR_AND_PORT));
13719 			}
13720 
13721 			/*
13722 			 * Arrange to send an ACK in response to the
13723 			 * unacceptable segment per RFC 793 page 69. There
13724 			 * is only one small difference between ours and the
13725 			 * acceptability test in the RFC - we accept ACK-only
13726 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13727 			 * will be generated.
13728 			 *
13729 			 * Note that we have to ACK an ACK-only packet at least
13730 			 * for stacks that send 0-length keep-alives with
13731 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13732 			 * section 4.2.3.6. As long as we don't ever generate
13733 			 * an unacceptable packet in response to an incoming
13734 			 * packet that is unacceptable, it should not cause
13735 			 * "ACK wars".
13736 			 */
13737 			flags |=  TH_ACK_NEEDED;
13738 
13739 			/*
13740 			 * Continue processing this segment in order to use the
13741 			 * ACK information it contains, but skip all other
13742 			 * sequence-number processing.	Processing the ACK
13743 			 * information is necessary in order to
13744 			 * re-synchronize connections that may have lost
13745 			 * synchronization.
13746 			 *
13747 			 * We clear seg_len and flag fields related to
13748 			 * sequence number processing as they are not
13749 			 * to be trusted for an unacceptable segment.
13750 			 */
13751 			seg_len = 0;
13752 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13753 			goto process_ack;
13754 		}
13755 
13756 		/* Fix seg_seq, and chew the gap off the front. */
13757 		seg_seq = tcp->tcp_rnxt;
13758 		urp += gap;
13759 		do {
13760 			mblk_t	*mp2;
13761 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13762 			    (uintptr_t)UINT_MAX);
13763 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13764 			if (gap > 0) {
13765 				mp->b_rptr = mp->b_wptr - gap;
13766 				break;
13767 			}
13768 			mp2 = mp;
13769 			mp = mp->b_cont;
13770 			freeb(mp2);
13771 		} while (gap < 0);
13772 		/*
13773 		 * If the urgent data has already been acknowledged, we
13774 		 * should ignore TH_URG below
13775 		 */
13776 		if (urp < 0)
13777 			flags &= ~TH_URG;
13778 	}
13779 	/*
13780 	 * rgap is the amount of stuff received out of window.  A negative
13781 	 * value is the amount out of window.
13782 	 */
13783 	if (rgap < 0) {
13784 		mblk_t	*mp2;
13785 
13786 		if (tcp->tcp_rwnd == 0) {
13787 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13788 		} else {
13789 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13790 			UPDATE_MIB(&tcps->tcps_mib,
13791 			    tcpInDataPastWinBytes, -rgap);
13792 		}
13793 
13794 		/*
13795 		 * seg_len does not include the FIN, so if more than
13796 		 * just the FIN is out of window, we act like we don't
13797 		 * see it.  (If just the FIN is out of window, rgap
13798 		 * will be zero and we will go ahead and acknowledge
13799 		 * the FIN.)
13800 		 */
13801 		flags &= ~TH_FIN;
13802 
13803 		/* Fix seg_len and make sure there is something left. */
13804 		seg_len += rgap;
13805 		if (seg_len <= 0) {
13806 			/*
13807 			 * Resets are only valid if they lie within our offered
13808 			 * window.  If the RST bit is set, we just ignore this
13809 			 * segment.
13810 			 */
13811 			if (flags & TH_RST) {
13812 				freemsg(mp);
13813 				return;
13814 			}
13815 
13816 			/* Per RFC 793, we need to send back an ACK. */
13817 			flags |= TH_ACK_NEEDED;
13818 
13819 			/*
13820 			 * Send SIGURG as soon as possible i.e. even
13821 			 * if the TH_URG was delivered in a window probe
13822 			 * packet (which will be unacceptable).
13823 			 *
13824 			 * We generate a signal if none has been generated
13825 			 * for this connection or if this is a new urgent
13826 			 * byte. Also send a zero-length "unmarked" message
13827 			 * to inform SIOCATMARK that this is not the mark.
13828 			 *
13829 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13830 			 * is sent up. This plus the check for old data
13831 			 * (gap >= 0) handles the wraparound of the sequence
13832 			 * number space without having to always track the
13833 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13834 			 * this max in its rcv_up variable).
13835 			 *
13836 			 * This prevents duplicate SIGURGS due to a "late"
13837 			 * zero-window probe when the T_EXDATA_IND has already
13838 			 * been sent up.
13839 			 */
13840 			if ((flags & TH_URG) &&
13841 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13842 			    tcp->tcp_urp_last))) {
13843 				mp1 = allocb(0, BPRI_MED);
13844 				if (mp1 == NULL) {
13845 					freemsg(mp);
13846 					return;
13847 				}
13848 				if (!TCP_IS_DETACHED(tcp) &&
13849 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13850 				    SIGURG)) {
13851 					/* Try again on the rexmit. */
13852 					freemsg(mp1);
13853 					freemsg(mp);
13854 					return;
13855 				}
13856 				/*
13857 				 * If the next byte would be the mark
13858 				 * then mark with MARKNEXT else mark
13859 				 * with NOTMARKNEXT.
13860 				 */
13861 				if (gap == 0 && urp == 0)
13862 					mp1->b_flag |= MSGMARKNEXT;
13863 				else
13864 					mp1->b_flag |= MSGNOTMARKNEXT;
13865 				freemsg(tcp->tcp_urp_mark_mp);
13866 				tcp->tcp_urp_mark_mp = mp1;
13867 				flags |= TH_SEND_URP_MARK;
13868 				tcp->tcp_urp_last_valid = B_TRUE;
13869 				tcp->tcp_urp_last = urp + seg_seq;
13870 			}
13871 			/*
13872 			 * If this is a zero window probe, continue to
13873 			 * process the ACK part.  But we need to set seg_len
13874 			 * to 0 to avoid data processing.  Otherwise just
13875 			 * drop the segment and send back an ACK.
13876 			 */
13877 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13878 				flags &= ~(TH_SYN | TH_URG);
13879 				seg_len = 0;
13880 				goto process_ack;
13881 			} else {
13882 				freemsg(mp);
13883 				goto ack_check;
13884 			}
13885 		}
13886 		/* Pitch out of window stuff off the end. */
13887 		rgap = seg_len;
13888 		mp2 = mp;
13889 		do {
13890 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13891 			    (uintptr_t)INT_MAX);
13892 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13893 			if (rgap < 0) {
13894 				mp2->b_wptr += rgap;
13895 				if ((mp1 = mp2->b_cont) != NULL) {
13896 					mp2->b_cont = NULL;
13897 					freemsg(mp1);
13898 				}
13899 				break;
13900 			}
13901 		} while ((mp2 = mp2->b_cont) != NULL);
13902 	}
13903 ok:;
13904 	/*
13905 	 * TCP should check ECN info for segments inside the window only.
13906 	 * Therefore the check should be done here.
13907 	 */
13908 	if (tcp->tcp_ecn_ok) {
13909 		if (flags & TH_CWR) {
13910 			tcp->tcp_ecn_echo_on = B_FALSE;
13911 		}
13912 		/*
13913 		 * Note that both ECN_CE and CWR can be set in the
13914 		 * same segment.  In this case, we once again turn
13915 		 * on ECN_ECHO.
13916 		 */
13917 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13918 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13919 
13920 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13921 				tcp->tcp_ecn_echo_on = B_TRUE;
13922 			}
13923 		} else {
13924 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13925 
13926 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13927 			    htonl(IPH_ECN_CE << 20)) {
13928 				tcp->tcp_ecn_echo_on = B_TRUE;
13929 			}
13930 		}
13931 	}
13932 
13933 	/*
13934 	 * Check whether we can update tcp_ts_recent.  This test is
13935 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13936 	 * Extensions for High Performance: An Update", Internet Draft.
13937 	 */
13938 	if (tcp->tcp_snd_ts_ok &&
13939 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13940 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13941 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13942 		tcp->tcp_last_rcv_lbolt = lbolt64;
13943 	}
13944 
13945 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13946 		/*
13947 		 * FIN in an out of order segment.  We record this in
13948 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13949 		 * Clear the FIN so that any check on FIN flag will fail.
13950 		 * Remember that FIN also counts in the sequence number
13951 		 * space.  So we need to ack out of order FIN only segments.
13952 		 */
13953 		if (flags & TH_FIN) {
13954 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13955 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13956 			flags &= ~TH_FIN;
13957 			flags |= TH_ACK_NEEDED;
13958 		}
13959 		if (seg_len > 0) {
13960 			/* Fill in the SACK blk list. */
13961 			if (tcp->tcp_snd_sack_ok) {
13962 				ASSERT(tcp->tcp_sack_info != NULL);
13963 				tcp_sack_insert(tcp->tcp_sack_list,
13964 				    seg_seq, seg_seq + seg_len,
13965 				    &(tcp->tcp_num_sack_blk));
13966 			}
13967 
13968 			/*
13969 			 * Attempt reassembly and see if we have something
13970 			 * ready to go.
13971 			 */
13972 			mp = tcp_reass(tcp, mp, seg_seq);
13973 			/* Always ack out of order packets */
13974 			flags |= TH_ACK_NEEDED | TH_PUSH;
13975 			if (mp) {
13976 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13977 				    (uintptr_t)INT_MAX);
13978 				seg_len = mp->b_cont ? msgdsize(mp) :
13979 				    (int)(mp->b_wptr - mp->b_rptr);
13980 				seg_seq = tcp->tcp_rnxt;
13981 				/*
13982 				 * A gap is filled and the seq num and len
13983 				 * of the gap match that of a previously
13984 				 * received FIN, put the FIN flag back in.
13985 				 */
13986 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13987 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13988 					flags |= TH_FIN;
13989 					tcp->tcp_valid_bits &=
13990 					    ~TCP_OFO_FIN_VALID;
13991 				}
13992 			} else {
13993 				/*
13994 				 * Keep going even with NULL mp.
13995 				 * There may be a useful ACK or something else
13996 				 * we don't want to miss.
13997 				 *
13998 				 * But TCP should not perform fast retransmit
13999 				 * because of the ack number.  TCP uses
14000 				 * seg_len == 0 to determine if it is a pure
14001 				 * ACK.  And this is not a pure ACK.
14002 				 */
14003 				seg_len = 0;
14004 				ofo_seg = B_TRUE;
14005 			}
14006 		}
14007 	} else if (seg_len > 0) {
14008 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
14009 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
14010 		/*
14011 		 * If an out of order FIN was received before, and the seq
14012 		 * num and len of the new segment match that of the FIN,
14013 		 * put the FIN flag back in.
14014 		 */
14015 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
14016 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
14017 			flags |= TH_FIN;
14018 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
14019 		}
14020 	}
14021 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
14022 	if (flags & TH_RST) {
14023 		freemsg(mp);
14024 		switch (tcp->tcp_state) {
14025 		case TCPS_SYN_RCVD:
14026 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
14027 			break;
14028 		case TCPS_ESTABLISHED:
14029 		case TCPS_FIN_WAIT_1:
14030 		case TCPS_FIN_WAIT_2:
14031 		case TCPS_CLOSE_WAIT:
14032 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
14033 			break;
14034 		case TCPS_CLOSING:
14035 		case TCPS_LAST_ACK:
14036 			(void) tcp_clean_death(tcp, 0, 16);
14037 			break;
14038 		default:
14039 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14040 			(void) tcp_clean_death(tcp, ENXIO, 17);
14041 			break;
14042 		}
14043 		return;
14044 	}
14045 	if (flags & TH_SYN) {
14046 		/*
14047 		 * See RFC 793, Page 71
14048 		 *
14049 		 * The seq number must be in the window as it should
14050 		 * be "fixed" above.  If it is outside window, it should
14051 		 * be already rejected.  Note that we allow seg_seq to be
14052 		 * rnxt + rwnd because we want to accept 0 window probe.
14053 		 */
14054 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
14055 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
14056 		freemsg(mp);
14057 		/*
14058 		 * If the ACK flag is not set, just use our snxt as the
14059 		 * seq number of the RST segment.
14060 		 */
14061 		if (!(flags & TH_ACK)) {
14062 			seg_ack = tcp->tcp_snxt;
14063 		}
14064 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
14065 		    TH_RST|TH_ACK);
14066 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14067 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
14068 		return;
14069 	}
14070 	/*
14071 	 * urp could be -1 when the urp field in the packet is 0
14072 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
14073 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
14074 	 */
14075 	if (flags & TH_URG && urp >= 0) {
14076 		if (!tcp->tcp_urp_last_valid ||
14077 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
14078 			/*
14079 			 * If we haven't generated the signal yet for this
14080 			 * urgent pointer value, do it now.  Also, send up a
14081 			 * zero-length M_DATA indicating whether or not this is
14082 			 * the mark. The latter is not needed when a
14083 			 * T_EXDATA_IND is sent up. However, if there are
14084 			 * allocation failures this code relies on the sender
14085 			 * retransmitting and the socket code for determining
14086 			 * the mark should not block waiting for the peer to
14087 			 * transmit. Thus, for simplicity we always send up the
14088 			 * mark indication.
14089 			 */
14090 			mp1 = allocb(0, BPRI_MED);
14091 			if (mp1 == NULL) {
14092 				freemsg(mp);
14093 				return;
14094 			}
14095 			if (!TCP_IS_DETACHED(tcp) &&
14096 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
14097 				/* Try again on the rexmit. */
14098 				freemsg(mp1);
14099 				freemsg(mp);
14100 				return;
14101 			}
14102 			/*
14103 			 * Mark with NOTMARKNEXT for now.
14104 			 * The code below will change this to MARKNEXT
14105 			 * if we are at the mark.
14106 			 *
14107 			 * If there are allocation failures (e.g. in dupmsg
14108 			 * below) the next time tcp_rput_data sees the urgent
14109 			 * segment it will send up the MSG*MARKNEXT message.
14110 			 */
14111 			mp1->b_flag |= MSGNOTMARKNEXT;
14112 			freemsg(tcp->tcp_urp_mark_mp);
14113 			tcp->tcp_urp_mark_mp = mp1;
14114 			flags |= TH_SEND_URP_MARK;
14115 #ifdef DEBUG
14116 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14117 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
14118 			    "last %x, %s",
14119 			    seg_seq, urp, tcp->tcp_urp_last,
14120 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14121 #endif /* DEBUG */
14122 			tcp->tcp_urp_last_valid = B_TRUE;
14123 			tcp->tcp_urp_last = urp + seg_seq;
14124 		} else if (tcp->tcp_urp_mark_mp != NULL) {
14125 			/*
14126 			 * An allocation failure prevented the previous
14127 			 * tcp_rput_data from sending up the allocated
14128 			 * MSG*MARKNEXT message - send it up this time
14129 			 * around.
14130 			 */
14131 			flags |= TH_SEND_URP_MARK;
14132 		}
14133 
14134 		/*
14135 		 * If the urgent byte is in this segment, make sure that it is
14136 		 * all by itself.  This makes it much easier to deal with the
14137 		 * possibility of an allocation failure on the T_exdata_ind.
14138 		 * Note that seg_len is the number of bytes in the segment, and
14139 		 * urp is the offset into the segment of the urgent byte.
14140 		 * urp < seg_len means that the urgent byte is in this segment.
14141 		 */
14142 		if (urp < seg_len) {
14143 			if (seg_len != 1) {
14144 				uint32_t  tmp_rnxt;
14145 				/*
14146 				 * Break it up and feed it back in.
14147 				 * Re-attach the IP header.
14148 				 */
14149 				mp->b_rptr = iphdr;
14150 				if (urp > 0) {
14151 					/*
14152 					 * There is stuff before the urgent
14153 					 * byte.
14154 					 */
14155 					mp1 = dupmsg(mp);
14156 					if (!mp1) {
14157 						/*
14158 						 * Trim from urgent byte on.
14159 						 * The rest will come back.
14160 						 */
14161 						(void) adjmsg(mp,
14162 						    urp - seg_len);
14163 						tcp_rput_data(connp,
14164 						    mp, NULL);
14165 						return;
14166 					}
14167 					(void) adjmsg(mp1, urp - seg_len);
14168 					/* Feed this piece back in. */
14169 					tmp_rnxt = tcp->tcp_rnxt;
14170 					tcp_rput_data(connp, mp1, NULL);
14171 					/*
14172 					 * If the data passed back in was not
14173 					 * processed (ie: bad ACK) sending
14174 					 * the remainder back in will cause a
14175 					 * loop. In this case, drop the
14176 					 * packet and let the sender try
14177 					 * sending a good packet.
14178 					 */
14179 					if (tmp_rnxt == tcp->tcp_rnxt) {
14180 						freemsg(mp);
14181 						return;
14182 					}
14183 				}
14184 				if (urp != seg_len - 1) {
14185 					uint32_t  tmp_rnxt;
14186 					/*
14187 					 * There is stuff after the urgent
14188 					 * byte.
14189 					 */
14190 					mp1 = dupmsg(mp);
14191 					if (!mp1) {
14192 						/*
14193 						 * Trim everything beyond the
14194 						 * urgent byte.  The rest will
14195 						 * come back.
14196 						 */
14197 						(void) adjmsg(mp,
14198 						    urp + 1 - seg_len);
14199 						tcp_rput_data(connp,
14200 						    mp, NULL);
14201 						return;
14202 					}
14203 					(void) adjmsg(mp1, urp + 1 - seg_len);
14204 					tmp_rnxt = tcp->tcp_rnxt;
14205 					tcp_rput_data(connp, mp1, NULL);
14206 					/*
14207 					 * If the data passed back in was not
14208 					 * processed (ie: bad ACK) sending
14209 					 * the remainder back in will cause a
14210 					 * loop. In this case, drop the
14211 					 * packet and let the sender try
14212 					 * sending a good packet.
14213 					 */
14214 					if (tmp_rnxt == tcp->tcp_rnxt) {
14215 						freemsg(mp);
14216 						return;
14217 					}
14218 				}
14219 				tcp_rput_data(connp, mp, NULL);
14220 				return;
14221 			}
14222 			/*
14223 			 * This segment contains only the urgent byte.  We
14224 			 * have to allocate the T_exdata_ind, if we can.
14225 			 */
14226 			if (!tcp->tcp_urp_mp) {
14227 				struct T_exdata_ind *tei;
14228 				mp1 = allocb(sizeof (struct T_exdata_ind),
14229 				    BPRI_MED);
14230 				if (!mp1) {
14231 					/*
14232 					 * Sigh... It'll be back.
14233 					 * Generate any MSG*MARK message now.
14234 					 */
14235 					freemsg(mp);
14236 					seg_len = 0;
14237 					if (flags & TH_SEND_URP_MARK) {
14238 
14239 
14240 						ASSERT(tcp->tcp_urp_mark_mp);
14241 						tcp->tcp_urp_mark_mp->b_flag &=
14242 						    ~MSGNOTMARKNEXT;
14243 						tcp->tcp_urp_mark_mp->b_flag |=
14244 						    MSGMARKNEXT;
14245 					}
14246 					goto ack_check;
14247 				}
14248 				mp1->b_datap->db_type = M_PROTO;
14249 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14250 				tei->PRIM_type = T_EXDATA_IND;
14251 				tei->MORE_flag = 0;
14252 				mp1->b_wptr = (uchar_t *)&tei[1];
14253 				tcp->tcp_urp_mp = mp1;
14254 #ifdef DEBUG
14255 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14256 				    "tcp_rput: allocated exdata_ind %s",
14257 				    tcp_display(tcp, NULL,
14258 				    DISP_PORT_ONLY));
14259 #endif /* DEBUG */
14260 				/*
14261 				 * There is no need to send a separate MSG*MARK
14262 				 * message since the T_EXDATA_IND will be sent
14263 				 * now.
14264 				 */
14265 				flags &= ~TH_SEND_URP_MARK;
14266 				freemsg(tcp->tcp_urp_mark_mp);
14267 				tcp->tcp_urp_mark_mp = NULL;
14268 			}
14269 			/*
14270 			 * Now we are all set.  On the next putnext upstream,
14271 			 * tcp_urp_mp will be non-NULL and will get prepended
14272 			 * to what has to be this piece containing the urgent
14273 			 * byte.  If for any reason we abort this segment below,
14274 			 * if it comes back, we will have this ready, or it
14275 			 * will get blown off in close.
14276 			 */
14277 		} else if (urp == seg_len) {
14278 			/*
14279 			 * The urgent byte is the next byte after this sequence
14280 			 * number. If there is data it is marked with
14281 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14282 			 * since it is not needed. Otherwise, if the code
14283 			 * above just allocated a zero-length tcp_urp_mark_mp
14284 			 * message, that message is tagged with MSGMARKNEXT.
14285 			 * Sending up these MSGMARKNEXT messages makes
14286 			 * SIOCATMARK work correctly even though
14287 			 * the T_EXDATA_IND will not be sent up until the
14288 			 * urgent byte arrives.
14289 			 */
14290 			if (seg_len != 0) {
14291 				flags |= TH_MARKNEXT_NEEDED;
14292 				freemsg(tcp->tcp_urp_mark_mp);
14293 				tcp->tcp_urp_mark_mp = NULL;
14294 				flags &= ~TH_SEND_URP_MARK;
14295 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14296 				flags |= TH_SEND_URP_MARK;
14297 				tcp->tcp_urp_mark_mp->b_flag &=
14298 				    ~MSGNOTMARKNEXT;
14299 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14300 			}
14301 #ifdef DEBUG
14302 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14303 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14304 			    seg_len, flags,
14305 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14306 #endif /* DEBUG */
14307 		} else {
14308 			/* Data left until we hit mark */
14309 #ifdef DEBUG
14310 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14311 			    "tcp_rput: URP %d bytes left, %s",
14312 			    urp - seg_len, tcp_display(tcp, NULL,
14313 			    DISP_PORT_ONLY));
14314 #endif /* DEBUG */
14315 		}
14316 	}
14317 
14318 process_ack:
14319 	if (!(flags & TH_ACK)) {
14320 		freemsg(mp);
14321 		goto xmit_check;
14322 	}
14323 	}
14324 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14325 
14326 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14327 		tcp->tcp_ip_forward_progress = B_TRUE;
14328 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14329 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14330 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14331 			/* 3-way handshake complete - pass up the T_CONN_IND */
14332 			tcp_t	*listener = tcp->tcp_listener;
14333 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14334 
14335 			tcp->tcp_tconnind_started = B_TRUE;
14336 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14337 			/*
14338 			 * We are here means eager is fine but it can
14339 			 * get a TH_RST at any point between now and till
14340 			 * accept completes and disappear. We need to
14341 			 * ensure that reference to eager is valid after
14342 			 * we get out of eager's perimeter. So we do
14343 			 * an extra refhold.
14344 			 */
14345 			CONN_INC_REF(connp);
14346 
14347 			/*
14348 			 * The listener also exists because of the refhold
14349 			 * done in tcp_conn_request. Its possible that it
14350 			 * might have closed. We will check that once we
14351 			 * get inside listeners context.
14352 			 */
14353 			CONN_INC_REF(listener->tcp_connp);
14354 			if (listener->tcp_connp->conn_sqp ==
14355 			    connp->conn_sqp) {
14356 				tcp_send_conn_ind(listener->tcp_connp, mp,
14357 				    listener->tcp_connp->conn_sqp);
14358 				CONN_DEC_REF(listener->tcp_connp);
14359 			} else if (!tcp->tcp_loopback) {
14360 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14361 				    tcp_send_conn_ind,
14362 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14363 			} else {
14364 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14365 				    tcp_send_conn_ind, listener->tcp_connp,
14366 				    SQTAG_TCP_CONN_IND);
14367 			}
14368 		}
14369 
14370 		if (tcp->tcp_active_open) {
14371 			/*
14372 			 * We are seeing the final ack in the three way
14373 			 * hand shake of a active open'ed connection
14374 			 * so we must send up a T_CONN_CON
14375 			 */
14376 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14377 				freemsg(mp);
14378 				return;
14379 			}
14380 			/*
14381 			 * Don't fuse the loopback endpoints for
14382 			 * simultaneous active opens.
14383 			 */
14384 			if (tcp->tcp_loopback) {
14385 				TCP_STAT(tcps, tcp_fusion_unfusable);
14386 				tcp->tcp_unfusable = B_TRUE;
14387 			}
14388 		}
14389 
14390 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14391 		bytes_acked--;
14392 		/* SYN was acked - making progress */
14393 		if (tcp->tcp_ipversion == IPV6_VERSION)
14394 			tcp->tcp_ip_forward_progress = B_TRUE;
14395 
14396 		/*
14397 		 * If SYN was retransmitted, need to reset all
14398 		 * retransmission info as this segment will be
14399 		 * treated as a dup ACK.
14400 		 */
14401 		if (tcp->tcp_rexmit) {
14402 			tcp->tcp_rexmit = B_FALSE;
14403 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14404 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14405 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14406 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14407 			tcp->tcp_ms_we_have_waited = 0;
14408 			tcp->tcp_cwnd = mss;
14409 		}
14410 
14411 		/*
14412 		 * We set the send window to zero here.
14413 		 * This is needed if there is data to be
14414 		 * processed already on the queue.
14415 		 * Later (at swnd_update label), the
14416 		 * "new_swnd > tcp_swnd" condition is satisfied
14417 		 * the XMIT_NEEDED flag is set in the current
14418 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14419 		 * called if there is already data on queue in
14420 		 * this state.
14421 		 */
14422 		tcp->tcp_swnd = 0;
14423 
14424 		if (new_swnd > tcp->tcp_max_swnd)
14425 			tcp->tcp_max_swnd = new_swnd;
14426 		tcp->tcp_swl1 = seg_seq;
14427 		tcp->tcp_swl2 = seg_ack;
14428 		tcp->tcp_state = TCPS_ESTABLISHED;
14429 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14430 
14431 		/* Fuse when both sides are in ESTABLISHED state */
14432 		if (tcp->tcp_loopback && do_tcp_fusion)
14433 			tcp_fuse(tcp, iphdr, tcph);
14434 
14435 	}
14436 	/* This code follows 4.4BSD-Lite2 mostly. */
14437 	if (bytes_acked < 0)
14438 		goto est;
14439 
14440 	/*
14441 	 * If TCP is ECN capable and the congestion experience bit is
14442 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14443 	 * done once per window (or more loosely, per RTT).
14444 	 */
14445 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14446 		tcp->tcp_cwr = B_FALSE;
14447 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14448 		if (!tcp->tcp_cwr) {
14449 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14450 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14451 			tcp->tcp_cwnd = npkt * mss;
14452 			/*
14453 			 * If the cwnd is 0, use the timer to clock out
14454 			 * new segments.  This is required by the ECN spec.
14455 			 */
14456 			if (npkt == 0) {
14457 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14458 				/*
14459 				 * This makes sure that when the ACK comes
14460 				 * back, we will increase tcp_cwnd by 1 MSS.
14461 				 */
14462 				tcp->tcp_cwnd_cnt = 0;
14463 			}
14464 			tcp->tcp_cwr = B_TRUE;
14465 			/*
14466 			 * This marks the end of the current window of in
14467 			 * flight data.  That is why we don't use
14468 			 * tcp_suna + tcp_swnd.  Only data in flight can
14469 			 * provide ECN info.
14470 			 */
14471 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14472 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14473 		}
14474 	}
14475 
14476 	mp1 = tcp->tcp_xmit_head;
14477 	if (bytes_acked == 0) {
14478 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14479 			int dupack_cnt;
14480 
14481 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14482 			/*
14483 			 * Fast retransmit.  When we have seen exactly three
14484 			 * identical ACKs while we have unacked data
14485 			 * outstanding we take it as a hint that our peer
14486 			 * dropped something.
14487 			 *
14488 			 * If TCP is retransmitting, don't do fast retransmit.
14489 			 */
14490 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14491 			    ! tcp->tcp_rexmit) {
14492 				/* Do Limited Transmit */
14493 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14494 				    tcps->tcps_dupack_fast_retransmit) {
14495 					/*
14496 					 * RFC 3042
14497 					 *
14498 					 * What we need to do is temporarily
14499 					 * increase tcp_cwnd so that new
14500 					 * data can be sent if it is allowed
14501 					 * by the receive window (tcp_rwnd).
14502 					 * tcp_wput_data() will take care of
14503 					 * the rest.
14504 					 *
14505 					 * If the connection is SACK capable,
14506 					 * only do limited xmit when there
14507 					 * is SACK info.
14508 					 *
14509 					 * Note how tcp_cwnd is incremented.
14510 					 * The first dup ACK will increase
14511 					 * it by 1 MSS.  The second dup ACK
14512 					 * will increase it by 2 MSS.  This
14513 					 * means that only 1 new segment will
14514 					 * be sent for each dup ACK.
14515 					 */
14516 					if (tcp->tcp_unsent > 0 &&
14517 					    (!tcp->tcp_snd_sack_ok ||
14518 					    (tcp->tcp_snd_sack_ok &&
14519 					    tcp->tcp_notsack_list != NULL))) {
14520 						tcp->tcp_cwnd += mss <<
14521 						    (tcp->tcp_dupack_cnt - 1);
14522 						flags |= TH_LIMIT_XMIT;
14523 					}
14524 				} else if (dupack_cnt ==
14525 				    tcps->tcps_dupack_fast_retransmit) {
14526 
14527 				/*
14528 				 * If we have reduced tcp_ssthresh
14529 				 * because of ECN, do not reduce it again
14530 				 * unless it is already one window of data
14531 				 * away.  After one window of data, tcp_cwr
14532 				 * should then be cleared.  Note that
14533 				 * for non ECN capable connection, tcp_cwr
14534 				 * should always be false.
14535 				 *
14536 				 * Adjust cwnd since the duplicate
14537 				 * ack indicates that a packet was
14538 				 * dropped (due to congestion.)
14539 				 */
14540 				if (!tcp->tcp_cwr) {
14541 					npkt = ((tcp->tcp_snxt -
14542 					    tcp->tcp_suna) >> 1) / mss;
14543 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14544 					    mss;
14545 					tcp->tcp_cwnd = (npkt +
14546 					    tcp->tcp_dupack_cnt) * mss;
14547 				}
14548 				if (tcp->tcp_ecn_ok) {
14549 					tcp->tcp_cwr = B_TRUE;
14550 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14551 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14552 				}
14553 
14554 				/*
14555 				 * We do Hoe's algorithm.  Refer to her
14556 				 * paper "Improving the Start-up Behavior
14557 				 * of a Congestion Control Scheme for TCP,"
14558 				 * appeared in SIGCOMM'96.
14559 				 *
14560 				 * Save highest seq no we have sent so far.
14561 				 * Be careful about the invisible FIN byte.
14562 				 */
14563 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14564 				    (tcp->tcp_unsent == 0)) {
14565 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14566 				} else {
14567 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14568 				}
14569 
14570 				/*
14571 				 * Do not allow bursty traffic during.
14572 				 * fast recovery.  Refer to Fall and Floyd's
14573 				 * paper "Simulation-based Comparisons of
14574 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14575 				 * This is a best current practise.
14576 				 */
14577 				tcp->tcp_snd_burst = TCP_CWND_SS;
14578 
14579 				/*
14580 				 * For SACK:
14581 				 * Calculate tcp_pipe, which is the
14582 				 * estimated number of bytes in
14583 				 * network.
14584 				 *
14585 				 * tcp_fack is the highest sack'ed seq num
14586 				 * TCP has received.
14587 				 *
14588 				 * tcp_pipe is explained in the above quoted
14589 				 * Fall and Floyd's paper.  tcp_fack is
14590 				 * explained in Mathis and Mahdavi's
14591 				 * "Forward Acknowledgment: Refining TCP
14592 				 * Congestion Control" in SIGCOMM '96.
14593 				 */
14594 				if (tcp->tcp_snd_sack_ok) {
14595 					ASSERT(tcp->tcp_sack_info != NULL);
14596 					if (tcp->tcp_notsack_list != NULL) {
14597 						tcp->tcp_pipe = tcp->tcp_snxt -
14598 						    tcp->tcp_fack;
14599 						tcp->tcp_sack_snxt = seg_ack;
14600 						flags |= TH_NEED_SACK_REXMIT;
14601 					} else {
14602 						/*
14603 						 * Always initialize tcp_pipe
14604 						 * even though we don't have
14605 						 * any SACK info.  If later
14606 						 * we get SACK info and
14607 						 * tcp_pipe is not initialized,
14608 						 * funny things will happen.
14609 						 */
14610 						tcp->tcp_pipe =
14611 						    tcp->tcp_cwnd_ssthresh;
14612 					}
14613 				} else {
14614 					flags |= TH_REXMIT_NEEDED;
14615 				} /* tcp_snd_sack_ok */
14616 
14617 				} else {
14618 					/*
14619 					 * Here we perform congestion
14620 					 * avoidance, but NOT slow start.
14621 					 * This is known as the Fast
14622 					 * Recovery Algorithm.
14623 					 */
14624 					if (tcp->tcp_snd_sack_ok &&
14625 					    tcp->tcp_notsack_list != NULL) {
14626 						flags |= TH_NEED_SACK_REXMIT;
14627 						tcp->tcp_pipe -= mss;
14628 						if (tcp->tcp_pipe < 0)
14629 							tcp->tcp_pipe = 0;
14630 					} else {
14631 					/*
14632 					 * We know that one more packet has
14633 					 * left the pipe thus we can update
14634 					 * cwnd.
14635 					 */
14636 					cwnd = tcp->tcp_cwnd + mss;
14637 					if (cwnd > tcp->tcp_cwnd_max)
14638 						cwnd = tcp->tcp_cwnd_max;
14639 					tcp->tcp_cwnd = cwnd;
14640 					if (tcp->tcp_unsent > 0)
14641 						flags |= TH_XMIT_NEEDED;
14642 					}
14643 				}
14644 			}
14645 		} else if (tcp->tcp_zero_win_probe) {
14646 			/*
14647 			 * If the window has opened, need to arrange
14648 			 * to send additional data.
14649 			 */
14650 			if (new_swnd != 0) {
14651 				/* tcp_suna != tcp_snxt */
14652 				/* Packet contains a window update */
14653 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14654 				tcp->tcp_zero_win_probe = 0;
14655 				tcp->tcp_timer_backoff = 0;
14656 				tcp->tcp_ms_we_have_waited = 0;
14657 
14658 				/*
14659 				 * Transmit starting with tcp_suna since
14660 				 * the one byte probe is not ack'ed.
14661 				 * If TCP has sent more than one identical
14662 				 * probe, tcp_rexmit will be set.  That means
14663 				 * tcp_ss_rexmit() will send out the one
14664 				 * byte along with new data.  Otherwise,
14665 				 * fake the retransmission.
14666 				 */
14667 				flags |= TH_XMIT_NEEDED;
14668 				if (!tcp->tcp_rexmit) {
14669 					tcp->tcp_rexmit = B_TRUE;
14670 					tcp->tcp_dupack_cnt = 0;
14671 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14672 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14673 				}
14674 			}
14675 		}
14676 		goto swnd_update;
14677 	}
14678 
14679 	/*
14680 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14681 	 * If the ACK value acks something that we have not yet sent, it might
14682 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14683 	 * other side.
14684 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14685 	 * state is handled above, so we can always just drop the segment and
14686 	 * send an ACK here.
14687 	 *
14688 	 * Should we send ACKs in response to ACK only segments?
14689 	 */
14690 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14691 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14692 		/* drop the received segment */
14693 		freemsg(mp);
14694 
14695 		/*
14696 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14697 		 * greater than 0, check if the number of such
14698 		 * bogus ACks is greater than that count.  If yes,
14699 		 * don't send back any ACK.  This prevents TCP from
14700 		 * getting into an ACK storm if somehow an attacker
14701 		 * successfully spoofs an acceptable segment to our
14702 		 * peer.
14703 		 */
14704 		if (tcp_drop_ack_unsent_cnt > 0 &&
14705 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14706 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14707 			return;
14708 		}
14709 		mp = tcp_ack_mp(tcp);
14710 		if (mp != NULL) {
14711 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14712 			BUMP_LOCAL(tcp->tcp_obsegs);
14713 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14714 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14715 		}
14716 		return;
14717 	}
14718 
14719 	/*
14720 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14721 	 * blocks that are covered by this ACK.
14722 	 */
14723 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14724 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14725 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14726 	}
14727 
14728 	/*
14729 	 * If we got an ACK after fast retransmit, check to see
14730 	 * if it is a partial ACK.  If it is not and the congestion
14731 	 * window was inflated to account for the other side's
14732 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14733 	 */
14734 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14735 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14736 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14737 			tcp->tcp_dupack_cnt = 0;
14738 			/*
14739 			 * Restore the orig tcp_cwnd_ssthresh after
14740 			 * fast retransmit phase.
14741 			 */
14742 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14743 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14744 			}
14745 			tcp->tcp_rexmit_max = seg_ack;
14746 			tcp->tcp_cwnd_cnt = 0;
14747 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14748 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14749 
14750 			/*
14751 			 * Remove all notsack info to avoid confusion with
14752 			 * the next fast retrasnmit/recovery phase.
14753 			 */
14754 			if (tcp->tcp_snd_sack_ok &&
14755 			    tcp->tcp_notsack_list != NULL) {
14756 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14757 			}
14758 		} else {
14759 			if (tcp->tcp_snd_sack_ok &&
14760 			    tcp->tcp_notsack_list != NULL) {
14761 				flags |= TH_NEED_SACK_REXMIT;
14762 				tcp->tcp_pipe -= mss;
14763 				if (tcp->tcp_pipe < 0)
14764 					tcp->tcp_pipe = 0;
14765 			} else {
14766 				/*
14767 				 * Hoe's algorithm:
14768 				 *
14769 				 * Retransmit the unack'ed segment and
14770 				 * restart fast recovery.  Note that we
14771 				 * need to scale back tcp_cwnd to the
14772 				 * original value when we started fast
14773 				 * recovery.  This is to prevent overly
14774 				 * aggressive behaviour in sending new
14775 				 * segments.
14776 				 */
14777 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14778 				    tcps->tcps_dupack_fast_retransmit * mss;
14779 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14780 				flags |= TH_REXMIT_NEEDED;
14781 			}
14782 		}
14783 	} else {
14784 		tcp->tcp_dupack_cnt = 0;
14785 		if (tcp->tcp_rexmit) {
14786 			/*
14787 			 * TCP is retranmitting.  If the ACK ack's all
14788 			 * outstanding data, update tcp_rexmit_max and
14789 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14790 			 * to the correct value.
14791 			 *
14792 			 * Note that SEQ_LEQ() is used.  This is to avoid
14793 			 * unnecessary fast retransmit caused by dup ACKs
14794 			 * received when TCP does slow start retransmission
14795 			 * after a time out.  During this phase, TCP may
14796 			 * send out segments which are already received.
14797 			 * This causes dup ACKs to be sent back.
14798 			 */
14799 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14800 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14801 					tcp->tcp_rexmit_nxt = seg_ack;
14802 				}
14803 				if (seg_ack != tcp->tcp_rexmit_max) {
14804 					flags |= TH_XMIT_NEEDED;
14805 				}
14806 			} else {
14807 				tcp->tcp_rexmit = B_FALSE;
14808 				tcp->tcp_xmit_zc_clean = B_FALSE;
14809 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14810 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14811 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14812 			}
14813 			tcp->tcp_ms_we_have_waited = 0;
14814 		}
14815 	}
14816 
14817 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14818 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14819 	tcp->tcp_suna = seg_ack;
14820 	if (tcp->tcp_zero_win_probe != 0) {
14821 		tcp->tcp_zero_win_probe = 0;
14822 		tcp->tcp_timer_backoff = 0;
14823 	}
14824 
14825 	/*
14826 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14827 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14828 	 * will not reach here.
14829 	 */
14830 	if (mp1 == NULL) {
14831 		goto fin_acked;
14832 	}
14833 
14834 	/*
14835 	 * Update the congestion window.
14836 	 *
14837 	 * If TCP is not ECN capable or TCP is ECN capable but the
14838 	 * congestion experience bit is not set, increase the tcp_cwnd as
14839 	 * usual.
14840 	 */
14841 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14842 		cwnd = tcp->tcp_cwnd;
14843 		add = mss;
14844 
14845 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14846 			/*
14847 			 * This is to prevent an increase of less than 1 MSS of
14848 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14849 			 * may send out tinygrams in order to preserve mblk
14850 			 * boundaries.
14851 			 *
14852 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14853 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14854 			 * increased by 1 MSS for every RTTs.
14855 			 */
14856 			if (tcp->tcp_cwnd_cnt <= 0) {
14857 				tcp->tcp_cwnd_cnt = cwnd + add;
14858 			} else {
14859 				tcp->tcp_cwnd_cnt -= add;
14860 				add = 0;
14861 			}
14862 		}
14863 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14864 	}
14865 
14866 	/* See if the latest urgent data has been acknowledged */
14867 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14868 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14869 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14870 
14871 	/* Can we update the RTT estimates? */
14872 	if (tcp->tcp_snd_ts_ok) {
14873 		/* Ignore zero timestamp echo-reply. */
14874 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14875 			tcp_set_rto(tcp, (int32_t)lbolt -
14876 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14877 		}
14878 
14879 		/* If needed, restart the timer. */
14880 		if (tcp->tcp_set_timer == 1) {
14881 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14882 			tcp->tcp_set_timer = 0;
14883 		}
14884 		/*
14885 		 * Update tcp_csuna in case the other side stops sending
14886 		 * us timestamps.
14887 		 */
14888 		tcp->tcp_csuna = tcp->tcp_snxt;
14889 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14890 		/*
14891 		 * An ACK sequence we haven't seen before, so get the RTT
14892 		 * and update the RTO. But first check if the timestamp is
14893 		 * valid to use.
14894 		 */
14895 		if ((mp1->b_next != NULL) &&
14896 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14897 			tcp_set_rto(tcp, (int32_t)lbolt -
14898 			    (int32_t)(intptr_t)mp1->b_prev);
14899 		else
14900 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14901 
14902 		/* Remeber the last sequence to be ACKed */
14903 		tcp->tcp_csuna = seg_ack;
14904 		if (tcp->tcp_set_timer == 1) {
14905 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14906 			tcp->tcp_set_timer = 0;
14907 		}
14908 	} else {
14909 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14910 	}
14911 
14912 	/* Eat acknowledged bytes off the xmit queue. */
14913 	for (;;) {
14914 		mblk_t	*mp2;
14915 		uchar_t	*wptr;
14916 
14917 		wptr = mp1->b_wptr;
14918 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14919 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14920 		if (bytes_acked < 0) {
14921 			mp1->b_rptr = wptr + bytes_acked;
14922 			/*
14923 			 * Set a new timestamp if all the bytes timed by the
14924 			 * old timestamp have been ack'ed.
14925 			 */
14926 			if (SEQ_GT(seg_ack,
14927 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14928 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14929 				mp1->b_next = NULL;
14930 			}
14931 			break;
14932 		}
14933 		mp1->b_next = NULL;
14934 		mp1->b_prev = NULL;
14935 		mp2 = mp1;
14936 		mp1 = mp1->b_cont;
14937 
14938 		/*
14939 		 * This notification is required for some zero-copy
14940 		 * clients to maintain a copy semantic. After the data
14941 		 * is ack'ed, client is safe to modify or reuse the buffer.
14942 		 */
14943 		if (tcp->tcp_snd_zcopy_aware &&
14944 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14945 			tcp_zcopy_notify(tcp);
14946 		freeb(mp2);
14947 		if (bytes_acked == 0) {
14948 			if (mp1 == NULL) {
14949 				/* Everything is ack'ed, clear the tail. */
14950 				tcp->tcp_xmit_tail = NULL;
14951 				/*
14952 				 * Cancel the timer unless we are still
14953 				 * waiting for an ACK for the FIN packet.
14954 				 */
14955 				if (tcp->tcp_timer_tid != 0 &&
14956 				    tcp->tcp_snxt == tcp->tcp_suna) {
14957 					(void) TCP_TIMER_CANCEL(tcp,
14958 					    tcp->tcp_timer_tid);
14959 					tcp->tcp_timer_tid = 0;
14960 				}
14961 				goto pre_swnd_update;
14962 			}
14963 			if (mp2 != tcp->tcp_xmit_tail)
14964 				break;
14965 			tcp->tcp_xmit_tail = mp1;
14966 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14967 			    (uintptr_t)INT_MAX);
14968 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14969 			    mp1->b_rptr);
14970 			break;
14971 		}
14972 		if (mp1 == NULL) {
14973 			/*
14974 			 * More was acked but there is nothing more
14975 			 * outstanding.  This means that the FIN was
14976 			 * just acked or that we're talking to a clown.
14977 			 */
14978 fin_acked:
14979 			ASSERT(tcp->tcp_fin_sent);
14980 			tcp->tcp_xmit_tail = NULL;
14981 			if (tcp->tcp_fin_sent) {
14982 				/* FIN was acked - making progress */
14983 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14984 				    !tcp->tcp_fin_acked)
14985 					tcp->tcp_ip_forward_progress = B_TRUE;
14986 				tcp->tcp_fin_acked = B_TRUE;
14987 				if (tcp->tcp_linger_tid != 0 &&
14988 				    TCP_TIMER_CANCEL(tcp,
14989 				    tcp->tcp_linger_tid) >= 0) {
14990 					tcp_stop_lingering(tcp);
14991 					freemsg(mp);
14992 					mp = NULL;
14993 				}
14994 			} else {
14995 				/*
14996 				 * We should never get here because
14997 				 * we have already checked that the
14998 				 * number of bytes ack'ed should be
14999 				 * smaller than or equal to what we
15000 				 * have sent so far (it is the
15001 				 * acceptability check of the ACK).
15002 				 * We can only get here if the send
15003 				 * queue is corrupted.
15004 				 *
15005 				 * Terminate the connection and
15006 				 * panic the system.  It is better
15007 				 * for us to panic instead of
15008 				 * continuing to avoid other disaster.
15009 				 */
15010 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
15011 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
15012 				panic("Memory corruption "
15013 				    "detected for connection %s.",
15014 				    tcp_display(tcp, NULL,
15015 				    DISP_ADDR_AND_PORT));
15016 				/*NOTREACHED*/
15017 			}
15018 			goto pre_swnd_update;
15019 		}
15020 		ASSERT(mp2 != tcp->tcp_xmit_tail);
15021 	}
15022 	if (tcp->tcp_unsent) {
15023 		flags |= TH_XMIT_NEEDED;
15024 	}
15025 pre_swnd_update:
15026 	tcp->tcp_xmit_head = mp1;
15027 swnd_update:
15028 	/*
15029 	 * The following check is different from most other implementations.
15030 	 * For bi-directional transfer, when segments are dropped, the
15031 	 * "normal" check will not accept a window update in those
15032 	 * retransmitted segemnts.  Failing to do that, TCP may send out
15033 	 * segments which are outside receiver's window.  As TCP accepts
15034 	 * the ack in those retransmitted segments, if the window update in
15035 	 * the same segment is not accepted, TCP will incorrectly calculates
15036 	 * that it can send more segments.  This can create a deadlock
15037 	 * with the receiver if its window becomes zero.
15038 	 */
15039 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
15040 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
15041 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
15042 		/*
15043 		 * The criteria for update is:
15044 		 *
15045 		 * 1. the segment acknowledges some data.  Or
15046 		 * 2. the segment is new, i.e. it has a higher seq num. Or
15047 		 * 3. the segment is not old and the advertised window is
15048 		 * larger than the previous advertised window.
15049 		 */
15050 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
15051 			flags |= TH_XMIT_NEEDED;
15052 		tcp->tcp_swnd = new_swnd;
15053 		if (new_swnd > tcp->tcp_max_swnd)
15054 			tcp->tcp_max_swnd = new_swnd;
15055 		tcp->tcp_swl1 = seg_seq;
15056 		tcp->tcp_swl2 = seg_ack;
15057 	}
15058 est:
15059 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
15060 
15061 		switch (tcp->tcp_state) {
15062 		case TCPS_FIN_WAIT_1:
15063 			if (tcp->tcp_fin_acked) {
15064 				tcp->tcp_state = TCPS_FIN_WAIT_2;
15065 				/*
15066 				 * We implement the non-standard BSD/SunOS
15067 				 * FIN_WAIT_2 flushing algorithm.
15068 				 * If there is no user attached to this
15069 				 * TCP endpoint, then this TCP struct
15070 				 * could hang around forever in FIN_WAIT_2
15071 				 * state if the peer forgets to send us
15072 				 * a FIN.  To prevent this, we wait only
15073 				 * 2*MSL (a convenient time value) for
15074 				 * the FIN to arrive.  If it doesn't show up,
15075 				 * we flush the TCP endpoint.  This algorithm,
15076 				 * though a violation of RFC-793, has worked
15077 				 * for over 10 years in BSD systems.
15078 				 * Note: SunOS 4.x waits 675 seconds before
15079 				 * flushing the FIN_WAIT_2 connection.
15080 				 */
15081 				TCP_TIMER_RESTART(tcp,
15082 				    tcps->tcps_fin_wait_2_flush_interval);
15083 			}
15084 			break;
15085 		case TCPS_FIN_WAIT_2:
15086 			break;	/* Shutdown hook? */
15087 		case TCPS_LAST_ACK:
15088 			freemsg(mp);
15089 			if (tcp->tcp_fin_acked) {
15090 				(void) tcp_clean_death(tcp, 0, 19);
15091 				return;
15092 			}
15093 			goto xmit_check;
15094 		case TCPS_CLOSING:
15095 			if (tcp->tcp_fin_acked) {
15096 				tcp->tcp_state = TCPS_TIME_WAIT;
15097 				/*
15098 				 * Unconditionally clear the exclusive binding
15099 				 * bit so this TIME-WAIT connection won't
15100 				 * interfere with new ones.
15101 				 */
15102 				tcp->tcp_exclbind = 0;
15103 				if (!TCP_IS_DETACHED(tcp)) {
15104 					TCP_TIMER_RESTART(tcp,
15105 					    tcps->tcps_time_wait_interval);
15106 				} else {
15107 					tcp_time_wait_append(tcp);
15108 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15109 				}
15110 			}
15111 			/*FALLTHRU*/
15112 		case TCPS_CLOSE_WAIT:
15113 			freemsg(mp);
15114 			goto xmit_check;
15115 		default:
15116 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
15117 			break;
15118 		}
15119 	}
15120 	if (flags & TH_FIN) {
15121 		/* Make sure we ack the fin */
15122 		flags |= TH_ACK_NEEDED;
15123 		if (!tcp->tcp_fin_rcvd) {
15124 			tcp->tcp_fin_rcvd = B_TRUE;
15125 			tcp->tcp_rnxt++;
15126 			tcph = tcp->tcp_tcph;
15127 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15128 
15129 			/*
15130 			 * Generate the ordrel_ind at the end unless we
15131 			 * are an eager guy.
15132 			 * In the eager case tcp_rsrv will do this when run
15133 			 * after tcp_accept is done.
15134 			 */
15135 			if (tcp->tcp_listener == NULL &&
15136 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
15137 				flags |= TH_ORDREL_NEEDED;
15138 			switch (tcp->tcp_state) {
15139 			case TCPS_SYN_RCVD:
15140 			case TCPS_ESTABLISHED:
15141 				tcp->tcp_state = TCPS_CLOSE_WAIT;
15142 				/* Keepalive? */
15143 				break;
15144 			case TCPS_FIN_WAIT_1:
15145 				if (!tcp->tcp_fin_acked) {
15146 					tcp->tcp_state = TCPS_CLOSING;
15147 					break;
15148 				}
15149 				/* FALLTHRU */
15150 			case TCPS_FIN_WAIT_2:
15151 				tcp->tcp_state = TCPS_TIME_WAIT;
15152 				/*
15153 				 * Unconditionally clear the exclusive binding
15154 				 * bit so this TIME-WAIT connection won't
15155 				 * interfere with new ones.
15156 				 */
15157 				tcp->tcp_exclbind = 0;
15158 				if (!TCP_IS_DETACHED(tcp)) {
15159 					TCP_TIMER_RESTART(tcp,
15160 					    tcps->tcps_time_wait_interval);
15161 				} else {
15162 					tcp_time_wait_append(tcp);
15163 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15164 				}
15165 				if (seg_len) {
15166 					/*
15167 					 * implies data piggybacked on FIN.
15168 					 * break to handle data.
15169 					 */
15170 					break;
15171 				}
15172 				freemsg(mp);
15173 				goto ack_check;
15174 			}
15175 		}
15176 	}
15177 	if (mp == NULL)
15178 		goto xmit_check;
15179 	if (seg_len == 0) {
15180 		freemsg(mp);
15181 		goto xmit_check;
15182 	}
15183 	if (mp->b_rptr == mp->b_wptr) {
15184 		/*
15185 		 * The header has been consumed, so we remove the
15186 		 * zero-length mblk here.
15187 		 */
15188 		mp1 = mp;
15189 		mp = mp->b_cont;
15190 		freeb(mp1);
15191 	}
15192 	tcph = tcp->tcp_tcph;
15193 	tcp->tcp_rack_cnt++;
15194 	{
15195 		uint32_t cur_max;
15196 
15197 		cur_max = tcp->tcp_rack_cur_max;
15198 		if (tcp->tcp_rack_cnt >= cur_max) {
15199 			/*
15200 			 * We have more unacked data than we should - send
15201 			 * an ACK now.
15202 			 */
15203 			flags |= TH_ACK_NEEDED;
15204 			cur_max++;
15205 			if (cur_max > tcp->tcp_rack_abs_max)
15206 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15207 			else
15208 				tcp->tcp_rack_cur_max = cur_max;
15209 		} else if (TCP_IS_DETACHED(tcp)) {
15210 			/* We don't have an ACK timer for detached TCP. */
15211 			flags |= TH_ACK_NEEDED;
15212 		} else if (seg_len < mss) {
15213 			/*
15214 			 * If we get a segment that is less than an mss, and we
15215 			 * already have unacknowledged data, and the amount
15216 			 * unacknowledged is not a multiple of mss, then we
15217 			 * better generate an ACK now.  Otherwise, this may be
15218 			 * the tail piece of a transaction, and we would rather
15219 			 * wait for the response.
15220 			 */
15221 			uint32_t udif;
15222 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15223 			    (uintptr_t)INT_MAX);
15224 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15225 			if (udif && (udif % mss))
15226 				flags |= TH_ACK_NEEDED;
15227 			else
15228 				flags |= TH_ACK_TIMER_NEEDED;
15229 		} else {
15230 			/* Start delayed ack timer */
15231 			flags |= TH_ACK_TIMER_NEEDED;
15232 		}
15233 	}
15234 	tcp->tcp_rnxt += seg_len;
15235 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15236 
15237 	/* Update SACK list */
15238 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15239 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15240 		    &(tcp->tcp_num_sack_blk));
15241 	}
15242 
15243 	if (tcp->tcp_urp_mp) {
15244 		tcp->tcp_urp_mp->b_cont = mp;
15245 		mp = tcp->tcp_urp_mp;
15246 		tcp->tcp_urp_mp = NULL;
15247 		/* Ready for a new signal. */
15248 		tcp->tcp_urp_last_valid = B_FALSE;
15249 #ifdef DEBUG
15250 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15251 		    "tcp_rput: sending exdata_ind %s",
15252 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15253 #endif /* DEBUG */
15254 	}
15255 
15256 	/*
15257 	 * Check for ancillary data changes compared to last segment.
15258 	 */
15259 	if (tcp->tcp_ipv6_recvancillary != 0) {
15260 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15261 		if (mp == NULL)
15262 			return;
15263 	}
15264 
15265 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15266 		/*
15267 		 * Side queue inbound data until the accept happens.
15268 		 * tcp_accept/tcp_rput drains this when the accept happens.
15269 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15270 		 * T_EXDATA_IND) it is queued on b_next.
15271 		 * XXX Make urgent data use this. Requires:
15272 		 *	Removing tcp_listener check for TH_URG
15273 		 *	Making M_PCPROTO and MARK messages skip the eager case
15274 		 */
15275 
15276 		if (tcp->tcp_kssl_pending) {
15277 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15278 			    mblk_t *, mp);
15279 			tcp_kssl_input(tcp, mp);
15280 		} else {
15281 			tcp_rcv_enqueue(tcp, mp, seg_len);
15282 		}
15283 	} else {
15284 		sodirect_t	*sodp = tcp->tcp_sodirect;
15285 
15286 		/*
15287 		 * If an sodirect connection and an enabled sodirect_t then
15288 		 * sodp will be set to point to the tcp_t/sonode_t shared
15289 		 * sodirect_t and the sodirect_t's lock will be held.
15290 		 */
15291 		if (sodp != NULL) {
15292 			mutex_enter(sodp->sod_lock);
15293 			if (!(sodp->sod_state & SOD_ENABLED)) {
15294 				mutex_exit(sodp->sod_lock);
15295 				sodp = NULL;
15296 			} else if (tcp->tcp_kssl_ctx != NULL &&
15297 			    DB_TYPE(mp) == M_DATA) {
15298 				mutex_exit(sodp->sod_lock);
15299 				sodp = NULL;
15300 			}
15301 		}
15302 		if (mp->b_datap->db_type != M_DATA ||
15303 		    (flags & TH_MARKNEXT_NEEDED)) {
15304 			if (sodp != NULL) {
15305 				if (!SOD_QEMPTY(sodp) &&
15306 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15307 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15308 					/* sod_wakeup() did the mutex_exit() */
15309 					mutex_enter(sodp->sod_lock);
15310 				}
15311 			} else if (tcp->tcp_rcv_list != NULL) {
15312 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15313 			}
15314 			ASSERT(tcp->tcp_rcv_list == NULL ||
15315 			    tcp->tcp_fused_sigurg);
15316 
15317 			if (flags & TH_MARKNEXT_NEEDED) {
15318 #ifdef DEBUG
15319 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15320 				    "tcp_rput: sending MSGMARKNEXT %s",
15321 				    tcp_display(tcp, NULL,
15322 				    DISP_PORT_ONLY));
15323 #endif /* DEBUG */
15324 				mp->b_flag |= MSGMARKNEXT;
15325 				flags &= ~TH_MARKNEXT_NEEDED;
15326 			}
15327 
15328 			/* Does this need SSL processing first? */
15329 			if ((tcp->tcp_kssl_ctx != NULL) &&
15330 			    (DB_TYPE(mp) == M_DATA)) {
15331 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15332 				    mblk_t *, mp);
15333 				tcp_kssl_input(tcp, mp);
15334 			} else if (sodp) {
15335 				flags |= tcp_rcv_sod_enqueue(
15336 				    tcp, sodp, mp, seg_len);
15337 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15338 				/* sod_wakeup() did the mutex_exit() */
15339 			} else {
15340 				putnext(tcp->tcp_rq, mp);
15341 				if (!canputnext(tcp->tcp_rq))
15342 					tcp->tcp_rwnd -= seg_len;
15343 			}
15344 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15345 		    (DB_TYPE(mp) == M_DATA)) {
15346 			/* Do SSL processing first */
15347 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2,
15348 			    mblk_t *, mp);
15349 			tcp_kssl_input(tcp, mp);
15350 		} else if (sodp != NULL) {
15351 			/*
15352 			 * Sodirect so all mblk_t's are queued on the
15353 			 * socket directly, check for wakeup of blocked
15354 			 * reader (if any), and last if flow-controled.
15355 			 */
15356 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15357 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15358 			    (flags & (TH_PUSH|TH_FIN))) {
15359 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15360 				/* sod_wakeup() did the mutex_exit() */
15361 			} else {
15362 				if (SOD_QFULL(sodp)) {
15363 					/* Q is full, need backenable */
15364 					SOD_QSETBE(sodp);
15365 				}
15366 				mutex_exit(sodp->sod_lock);
15367 			}
15368 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15369 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15370 			if (tcp->tcp_rcv_list != NULL) {
15371 				/*
15372 				 * Enqueue the new segment first and then
15373 				 * call tcp_rcv_drain() to send all data
15374 				 * up.  The other way to do this is to
15375 				 * send all queued data up and then call
15376 				 * putnext() to send the new segment up.
15377 				 * This way can remove the else part later
15378 				 * on.
15379 				 *
15380 				 * We don't this to avoid one more call to
15381 				 * canputnext() as tcp_rcv_drain() needs to
15382 				 * call canputnext().
15383 				 */
15384 				tcp_rcv_enqueue(tcp, mp, seg_len);
15385 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15386 			} else {
15387 				putnext(tcp->tcp_rq, mp);
15388 				if (!canputnext(tcp->tcp_rq))
15389 					tcp->tcp_rwnd -= seg_len;
15390 			}
15391 		} else {
15392 			/*
15393 			 * Enqueue all packets when processing an mblk
15394 			 * from the co queue and also enqueue normal packets.
15395 			 */
15396 			tcp_rcv_enqueue(tcp, mp, seg_len);
15397 		}
15398 		/*
15399 		 * Make sure the timer is running if we have data waiting
15400 		 * for a push bit. This provides resiliency against
15401 		 * implementations that do not correctly generate push bits.
15402 		 *
15403 		 * Note, for sodirect if Q isn't empty and there's not a
15404 		 * pending wakeup then we need a timer. Also note that sodp
15405 		 * is assumed to be still valid after exit()ing the sod_lock
15406 		 * above and while the SOD state can change it can only change
15407 		 * such that the Q is empty now even though data was added
15408 		 * above.
15409 		 */
15410 		if (((sodp != NULL && !SOD_QEMPTY(sodp) &&
15411 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15412 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15413 		    tcp->tcp_push_tid == 0) {
15414 			/*
15415 			 * The connection may be closed at this point, so don't
15416 			 * do anything for a detached tcp.
15417 			 */
15418 			if (!TCP_IS_DETACHED(tcp))
15419 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15420 				    tcp_push_timer,
15421 				    MSEC_TO_TICK(
15422 				    tcps->tcps_push_timer_interval));
15423 		}
15424 	}
15425 
15426 xmit_check:
15427 	/* Is there anything left to do? */
15428 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15429 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15430 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15431 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15432 		goto done;
15433 
15434 	/* Any transmit work to do and a non-zero window? */
15435 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15436 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15437 		if (flags & TH_REXMIT_NEEDED) {
15438 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15439 
15440 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15441 			if (snd_size > mss)
15442 				snd_size = mss;
15443 			if (snd_size > tcp->tcp_swnd)
15444 				snd_size = tcp->tcp_swnd;
15445 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15446 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15447 			    B_TRUE);
15448 
15449 			if (mp1 != NULL) {
15450 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15451 				tcp->tcp_csuna = tcp->tcp_snxt;
15452 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15453 				UPDATE_MIB(&tcps->tcps_mib,
15454 				    tcpRetransBytes, snd_size);
15455 				TCP_RECORD_TRACE(tcp, mp1,
15456 				    TCP_TRACE_SEND_PKT);
15457 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15458 			}
15459 		}
15460 		if (flags & TH_NEED_SACK_REXMIT) {
15461 			tcp_sack_rxmit(tcp, &flags);
15462 		}
15463 		/*
15464 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15465 		 * out new segment.  Note that tcp_rexmit should not be
15466 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15467 		 */
15468 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15469 			if (!tcp->tcp_rexmit) {
15470 				tcp_wput_data(tcp, NULL, B_FALSE);
15471 			} else {
15472 				tcp_ss_rexmit(tcp);
15473 			}
15474 		}
15475 		/*
15476 		 * Adjust tcp_cwnd back to normal value after sending
15477 		 * new data segments.
15478 		 */
15479 		if (flags & TH_LIMIT_XMIT) {
15480 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15481 			/*
15482 			 * This will restart the timer.  Restarting the
15483 			 * timer is used to avoid a timeout before the
15484 			 * limited transmitted segment's ACK gets back.
15485 			 */
15486 			if (tcp->tcp_xmit_head != NULL)
15487 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15488 		}
15489 
15490 		/* Anything more to do? */
15491 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15492 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15493 			goto done;
15494 	}
15495 ack_check:
15496 	if (flags & TH_SEND_URP_MARK) {
15497 		ASSERT(tcp->tcp_urp_mark_mp);
15498 		/*
15499 		 * Send up any queued data and then send the mark message
15500 		 */
15501 		sodirect_t *sodp;
15502 
15503 		SOD_PTR_ENTER(tcp, sodp);
15504 
15505 		mp1 = tcp->tcp_urp_mark_mp;
15506 		tcp->tcp_urp_mark_mp = NULL;
15507 		if (sodp != NULL) {
15508 
15509 			ASSERT(tcp->tcp_rcv_list == NULL);
15510 
15511 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp1, 0);
15512 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15513 			/* sod_wakeup() does the mutex_exit() */
15514 		} else if (tcp->tcp_rcv_list != NULL) {
15515 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15516 
15517 			ASSERT(tcp->tcp_rcv_list == NULL ||
15518 			    tcp->tcp_fused_sigurg);
15519 
15520 			putnext(tcp->tcp_rq, mp1);
15521 		}
15522 #ifdef DEBUG
15523 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15524 		    "tcp_rput: sending zero-length %s %s",
15525 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15526 		    "MSGNOTMARKNEXT"),
15527 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15528 #endif /* DEBUG */
15529 		flags &= ~TH_SEND_URP_MARK;
15530 	}
15531 	if (flags & TH_ACK_NEEDED) {
15532 		/*
15533 		 * Time to send an ack for some reason.
15534 		 */
15535 		mp1 = tcp_ack_mp(tcp);
15536 
15537 		if (mp1 != NULL) {
15538 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15539 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15540 			BUMP_LOCAL(tcp->tcp_obsegs);
15541 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15542 		}
15543 		if (tcp->tcp_ack_tid != 0) {
15544 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15545 			tcp->tcp_ack_tid = 0;
15546 		}
15547 	}
15548 	if (flags & TH_ACK_TIMER_NEEDED) {
15549 		/*
15550 		 * Arrange for deferred ACK or push wait timeout.
15551 		 * Start timer if it is not already running.
15552 		 */
15553 		if (tcp->tcp_ack_tid == 0) {
15554 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15555 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15556 			    (clock_t)tcps->tcps_local_dack_interval :
15557 			    (clock_t)tcps->tcps_deferred_ack_interval));
15558 		}
15559 	}
15560 	if (flags & TH_ORDREL_NEEDED) {
15561 		/*
15562 		 * Send up the ordrel_ind unless we are an eager guy.
15563 		 * In the eager case tcp_rsrv will do this when run
15564 		 * after tcp_accept is done.
15565 		 */
15566 		sodirect_t *sodp;
15567 
15568 		ASSERT(tcp->tcp_listener == NULL);
15569 
15570 		SOD_PTR_ENTER(tcp, sodp);
15571 		if (sodp != NULL) {
15572 			/* No more sodirect */
15573 			tcp->tcp_sodirect = NULL;
15574 			if (!SOD_QEMPTY(sodp)) {
15575 				/* Mblk(s) to process, notify */
15576 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15577 				/* sod_wakeup() does the mutex_exit() */
15578 			} else {
15579 				/* Nothing to process */
15580 				mutex_exit(sodp->sod_lock);
15581 			}
15582 		} else if (tcp->tcp_rcv_list != NULL) {
15583 			/*
15584 			 * Push any mblk(s) enqueued from co processing.
15585 			 */
15586 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15587 
15588 			ASSERT(tcp->tcp_rcv_list == NULL ||
15589 			    tcp->tcp_fused_sigurg);
15590 		}
15591 
15592 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15593 			tcp->tcp_ordrel_done = B_TRUE;
15594 			putnext(tcp->tcp_rq, mp1);
15595 			if (tcp->tcp_deferred_clean_death) {
15596 				/*
15597 				 * tcp_clean_death was deferred
15598 				 * for T_ORDREL_IND - do it now
15599 				 */
15600 				(void) tcp_clean_death(tcp,
15601 				    tcp->tcp_client_errno, 20);
15602 				tcp->tcp_deferred_clean_death =	B_FALSE;
15603 			}
15604 		} else {
15605 			/*
15606 			 * Run the orderly release in the
15607 			 * service routine.
15608 			 */
15609 			qenable(tcp->tcp_rq);
15610 			/*
15611 			 * Caveat(XXX): The machine may be so
15612 			 * overloaded that tcp_rsrv() is not scheduled
15613 			 * until after the endpoint has transitioned
15614 			 * to TCPS_TIME_WAIT
15615 			 * and tcp_time_wait_interval expires. Then
15616 			 * tcp_timer() will blow away state in tcp_t
15617 			 * and T_ORDREL_IND will never be delivered
15618 			 * upstream. Unlikely but potentially
15619 			 * a problem.
15620 			 */
15621 		}
15622 	}
15623 done:
15624 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15625 }
15626 
15627 /*
15628  * This function does PAWS protection check. Returns B_TRUE if the
15629  * segment passes the PAWS test, else returns B_FALSE.
15630  */
15631 boolean_t
15632 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15633 {
15634 	uint8_t	flags;
15635 	int	options;
15636 	uint8_t *up;
15637 
15638 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15639 	/*
15640 	 * If timestamp option is aligned nicely, get values inline,
15641 	 * otherwise call general routine to parse.  Only do that
15642 	 * if timestamp is the only option.
15643 	 */
15644 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15645 	    TCPOPT_REAL_TS_LEN &&
15646 	    OK_32PTR((up = ((uint8_t *)tcph) +
15647 	    TCP_MIN_HEADER_LENGTH)) &&
15648 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15649 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15650 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15651 
15652 		options = TCP_OPT_TSTAMP_PRESENT;
15653 	} else {
15654 		if (tcp->tcp_snd_sack_ok) {
15655 			tcpoptp->tcp = tcp;
15656 		} else {
15657 			tcpoptp->tcp = NULL;
15658 		}
15659 		options = tcp_parse_options(tcph, tcpoptp);
15660 	}
15661 
15662 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15663 		/*
15664 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15665 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15666 		 */
15667 		if ((flags & TH_RST) == 0 &&
15668 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15669 		    tcp->tcp_ts_recent)) {
15670 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15671 			    PAWS_TIMEOUT)) {
15672 				/* This segment is not acceptable. */
15673 				return (B_FALSE);
15674 			} else {
15675 				/*
15676 				 * Connection has been idle for
15677 				 * too long.  Reset the timestamp
15678 				 * and assume the segment is valid.
15679 				 */
15680 				tcp->tcp_ts_recent =
15681 				    tcpoptp->tcp_opt_ts_val;
15682 			}
15683 		}
15684 	} else {
15685 		/*
15686 		 * If we don't get a timestamp on every packet, we
15687 		 * figure we can't really trust 'em, so we stop sending
15688 		 * and parsing them.
15689 		 */
15690 		tcp->tcp_snd_ts_ok = B_FALSE;
15691 
15692 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15693 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15694 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15695 		/*
15696 		 * Adjust the tcp_mss accordingly. We also need to
15697 		 * adjust tcp_cwnd here in accordance with the new mss.
15698 		 * But we avoid doing a slow start here so as to not
15699 		 * to lose on the transfer rate built up so far.
15700 		 */
15701 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15702 		if (tcp->tcp_snd_sack_ok) {
15703 			ASSERT(tcp->tcp_sack_info != NULL);
15704 			tcp->tcp_max_sack_blk = 4;
15705 		}
15706 	}
15707 	return (B_TRUE);
15708 }
15709 
15710 /*
15711  * Attach ancillary data to a received TCP segments for the
15712  * ancillary pieces requested by the application that are
15713  * different than they were in the previous data segment.
15714  *
15715  * Save the "current" values once memory allocation is ok so that
15716  * when memory allocation fails we can just wait for the next data segment.
15717  */
15718 static mblk_t *
15719 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15720 {
15721 	struct T_optdata_ind *todi;
15722 	int optlen;
15723 	uchar_t *optptr;
15724 	struct T_opthdr *toh;
15725 	uint_t addflag;	/* Which pieces to add */
15726 	mblk_t *mp1;
15727 
15728 	optlen = 0;
15729 	addflag = 0;
15730 	/* If app asked for pktinfo and the index has changed ... */
15731 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15732 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15733 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15734 		optlen += sizeof (struct T_opthdr) +
15735 		    sizeof (struct in6_pktinfo);
15736 		addflag |= TCP_IPV6_RECVPKTINFO;
15737 	}
15738 	/* If app asked for hoplimit and it has changed ... */
15739 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15740 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15741 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15742 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15743 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15744 	}
15745 	/* If app asked for tclass and it has changed ... */
15746 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15747 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15748 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15749 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15750 		addflag |= TCP_IPV6_RECVTCLASS;
15751 	}
15752 	/*
15753 	 * If app asked for hopbyhop headers and it has changed ...
15754 	 * For security labels, note that (1) security labels can't change on
15755 	 * a connected socket at all, (2) we're connected to at most one peer,
15756 	 * (3) if anything changes, then it must be some other extra option.
15757 	 */
15758 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15759 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15760 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15761 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15762 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15763 		    tcp->tcp_label_len;
15764 		addflag |= TCP_IPV6_RECVHOPOPTS;
15765 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15766 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15767 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15768 			return (mp);
15769 	}
15770 	/* If app asked for dst headers before routing headers ... */
15771 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15772 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15773 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15774 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15775 		optlen += sizeof (struct T_opthdr) +
15776 		    ipp->ipp_rtdstoptslen;
15777 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15778 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15779 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15780 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15781 			return (mp);
15782 	}
15783 	/* If app asked for routing headers and it has changed ... */
15784 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15785 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15786 	    (ipp->ipp_fields & IPPF_RTHDR),
15787 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15788 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15789 		addflag |= TCP_IPV6_RECVRTHDR;
15790 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15791 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15792 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15793 			return (mp);
15794 	}
15795 	/* If app asked for dest headers and it has changed ... */
15796 	if ((tcp->tcp_ipv6_recvancillary &
15797 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15798 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15799 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15800 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15801 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15802 		addflag |= TCP_IPV6_RECVDSTOPTS;
15803 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15804 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15805 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15806 			return (mp);
15807 	}
15808 
15809 	if (optlen == 0) {
15810 		/* Nothing to add */
15811 		return (mp);
15812 	}
15813 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15814 	if (mp1 == NULL) {
15815 		/*
15816 		 * Defer sending ancillary data until the next TCP segment
15817 		 * arrives.
15818 		 */
15819 		return (mp);
15820 	}
15821 	mp1->b_cont = mp;
15822 	mp = mp1;
15823 	mp->b_wptr += sizeof (*todi) + optlen;
15824 	mp->b_datap->db_type = M_PROTO;
15825 	todi = (struct T_optdata_ind *)mp->b_rptr;
15826 	todi->PRIM_type = T_OPTDATA_IND;
15827 	todi->DATA_flag = 1;	/* MORE data */
15828 	todi->OPT_length = optlen;
15829 	todi->OPT_offset = sizeof (*todi);
15830 	optptr = (uchar_t *)&todi[1];
15831 	/*
15832 	 * If app asked for pktinfo and the index has changed ...
15833 	 * Note that the local address never changes for the connection.
15834 	 */
15835 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15836 		struct in6_pktinfo *pkti;
15837 
15838 		toh = (struct T_opthdr *)optptr;
15839 		toh->level = IPPROTO_IPV6;
15840 		toh->name = IPV6_PKTINFO;
15841 		toh->len = sizeof (*toh) + sizeof (*pkti);
15842 		toh->status = 0;
15843 		optptr += sizeof (*toh);
15844 		pkti = (struct in6_pktinfo *)optptr;
15845 		if (tcp->tcp_ipversion == IPV6_VERSION)
15846 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15847 		else
15848 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15849 			    &pkti->ipi6_addr);
15850 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15851 		optptr += sizeof (*pkti);
15852 		ASSERT(OK_32PTR(optptr));
15853 		/* Save as "last" value */
15854 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15855 	}
15856 	/* If app asked for hoplimit and it has changed ... */
15857 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15858 		toh = (struct T_opthdr *)optptr;
15859 		toh->level = IPPROTO_IPV6;
15860 		toh->name = IPV6_HOPLIMIT;
15861 		toh->len = sizeof (*toh) + sizeof (uint_t);
15862 		toh->status = 0;
15863 		optptr += sizeof (*toh);
15864 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15865 		optptr += sizeof (uint_t);
15866 		ASSERT(OK_32PTR(optptr));
15867 		/* Save as "last" value */
15868 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15869 	}
15870 	/* If app asked for tclass and it has changed ... */
15871 	if (addflag & TCP_IPV6_RECVTCLASS) {
15872 		toh = (struct T_opthdr *)optptr;
15873 		toh->level = IPPROTO_IPV6;
15874 		toh->name = IPV6_TCLASS;
15875 		toh->len = sizeof (*toh) + sizeof (uint_t);
15876 		toh->status = 0;
15877 		optptr += sizeof (*toh);
15878 		*(uint_t *)optptr = ipp->ipp_tclass;
15879 		optptr += sizeof (uint_t);
15880 		ASSERT(OK_32PTR(optptr));
15881 		/* Save as "last" value */
15882 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15883 	}
15884 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15885 		toh = (struct T_opthdr *)optptr;
15886 		toh->level = IPPROTO_IPV6;
15887 		toh->name = IPV6_HOPOPTS;
15888 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15889 		    tcp->tcp_label_len;
15890 		toh->status = 0;
15891 		optptr += sizeof (*toh);
15892 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15893 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15894 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15895 		ASSERT(OK_32PTR(optptr));
15896 		/* Save as last value */
15897 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15898 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15899 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15900 	}
15901 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15902 		toh = (struct T_opthdr *)optptr;
15903 		toh->level = IPPROTO_IPV6;
15904 		toh->name = IPV6_RTHDRDSTOPTS;
15905 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15906 		toh->status = 0;
15907 		optptr += sizeof (*toh);
15908 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15909 		optptr += ipp->ipp_rtdstoptslen;
15910 		ASSERT(OK_32PTR(optptr));
15911 		/* Save as last value */
15912 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15913 		    &tcp->tcp_rtdstoptslen,
15914 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15915 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15916 	}
15917 	if (addflag & TCP_IPV6_RECVRTHDR) {
15918 		toh = (struct T_opthdr *)optptr;
15919 		toh->level = IPPROTO_IPV6;
15920 		toh->name = IPV6_RTHDR;
15921 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15922 		toh->status = 0;
15923 		optptr += sizeof (*toh);
15924 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15925 		optptr += ipp->ipp_rthdrlen;
15926 		ASSERT(OK_32PTR(optptr));
15927 		/* Save as last value */
15928 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15929 		    (ipp->ipp_fields & IPPF_RTHDR),
15930 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15931 	}
15932 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15933 		toh = (struct T_opthdr *)optptr;
15934 		toh->level = IPPROTO_IPV6;
15935 		toh->name = IPV6_DSTOPTS;
15936 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15937 		toh->status = 0;
15938 		optptr += sizeof (*toh);
15939 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15940 		optptr += ipp->ipp_dstoptslen;
15941 		ASSERT(OK_32PTR(optptr));
15942 		/* Save as last value */
15943 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15944 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15945 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15946 	}
15947 	ASSERT(optptr == mp->b_wptr);
15948 	return (mp);
15949 }
15950 
15951 
15952 /*
15953  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15954  * or a "bad" IRE detected by tcp_adapt_ire.
15955  * We can't tell if the failure was due to the laddr or the faddr
15956  * thus we clear out all addresses and ports.
15957  */
15958 static void
15959 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15960 {
15961 	queue_t	*q = tcp->tcp_rq;
15962 	tcph_t	*tcph;
15963 	struct T_error_ack *tea;
15964 	conn_t	*connp = tcp->tcp_connp;
15965 
15966 
15967 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15968 
15969 	if (mp->b_cont) {
15970 		freemsg(mp->b_cont);
15971 		mp->b_cont = NULL;
15972 	}
15973 	tea = (struct T_error_ack *)mp->b_rptr;
15974 	switch (tea->PRIM_type) {
15975 	case T_BIND_ACK:
15976 		/*
15977 		 * Need to unbind with classifier since we were just told that
15978 		 * our bind succeeded.
15979 		 */
15980 		tcp->tcp_hard_bound = B_FALSE;
15981 		tcp->tcp_hard_binding = B_FALSE;
15982 
15983 		ipcl_hash_remove(connp);
15984 		/* Reuse the mblk if possible */
15985 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15986 		    sizeof (*tea));
15987 		mp->b_rptr = mp->b_datap->db_base;
15988 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15989 		tea = (struct T_error_ack *)mp->b_rptr;
15990 		tea->PRIM_type = T_ERROR_ACK;
15991 		tea->TLI_error = TSYSERR;
15992 		tea->UNIX_error = error;
15993 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15994 			tea->ERROR_prim = T_CONN_REQ;
15995 		} else {
15996 			tea->ERROR_prim = O_T_BIND_REQ;
15997 		}
15998 		break;
15999 
16000 	case T_ERROR_ACK:
16001 		if (tcp->tcp_state >= TCPS_SYN_SENT)
16002 			tea->ERROR_prim = T_CONN_REQ;
16003 		break;
16004 	default:
16005 		panic("tcp_bind_failed: unexpected TPI type");
16006 		/*NOTREACHED*/
16007 	}
16008 
16009 	tcp->tcp_state = TCPS_IDLE;
16010 	if (tcp->tcp_ipversion == IPV4_VERSION)
16011 		tcp->tcp_ipha->ipha_src = 0;
16012 	else
16013 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16014 	/*
16015 	 * Copy of the src addr. in tcp_t is needed since
16016 	 * the lookup funcs. can only look at tcp_t
16017 	 */
16018 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16019 
16020 	tcph = tcp->tcp_tcph;
16021 	tcph->th_lport[0] = 0;
16022 	tcph->th_lport[1] = 0;
16023 	tcp_bind_hash_remove(tcp);
16024 	bzero(&connp->u_port, sizeof (connp->u_port));
16025 	/* blow away saved option results if any */
16026 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
16027 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
16028 
16029 	conn_delete_ire(tcp->tcp_connp, NULL);
16030 	putnext(q, mp);
16031 }
16032 
16033 /*
16034  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
16035  * messages.
16036  */
16037 void
16038 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
16039 {
16040 	mblk_t	*mp1;
16041 	uchar_t	*rptr = mp->b_rptr;
16042 	queue_t	*q = tcp->tcp_rq;
16043 	struct T_error_ack *tea;
16044 	uint32_t mss;
16045 	mblk_t *syn_mp;
16046 	mblk_t *mdti;
16047 	mblk_t *lsoi;
16048 	int	retval;
16049 	mblk_t *ire_mp;
16050 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16051 
16052 	switch (mp->b_datap->db_type) {
16053 	case M_PROTO:
16054 	case M_PCPROTO:
16055 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
16056 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
16057 			break;
16058 		tea = (struct T_error_ack *)rptr;
16059 		switch (tea->PRIM_type) {
16060 		case T_BIND_ACK:
16061 			/*
16062 			 * Adapt Multidata information, if any.  The
16063 			 * following tcp_mdt_update routine will free
16064 			 * the message.
16065 			 */
16066 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
16067 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
16068 				    b_rptr)->mdt_capab, B_TRUE);
16069 				freemsg(mdti);
16070 			}
16071 
16072 			/*
16073 			 * Check to update LSO information with tcp, and
16074 			 * tcp_lso_update routine will free the message.
16075 			 */
16076 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
16077 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
16078 				    b_rptr)->lso_capab);
16079 				freemsg(lsoi);
16080 			}
16081 
16082 			/* Get the IRE, if we had requested for it */
16083 			ire_mp = tcp_ire_mp(mp);
16084 
16085 			if (tcp->tcp_hard_binding) {
16086 				tcp->tcp_hard_binding = B_FALSE;
16087 				tcp->tcp_hard_bound = B_TRUE;
16088 				CL_INET_CONNECT(tcp);
16089 			} else {
16090 				if (ire_mp != NULL)
16091 					freeb(ire_mp);
16092 				goto after_syn_sent;
16093 			}
16094 
16095 			retval = tcp_adapt_ire(tcp, ire_mp);
16096 			if (ire_mp != NULL)
16097 				freeb(ire_mp);
16098 			if (retval == 0) {
16099 				tcp_bind_failed(tcp, mp,
16100 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16101 				    ENETUNREACH : EADDRNOTAVAIL));
16102 				return;
16103 			}
16104 			/*
16105 			 * Don't let an endpoint connect to itself.
16106 			 * Also checked in tcp_connect() but that
16107 			 * check can't handle the case when the
16108 			 * local IP address is INADDR_ANY.
16109 			 */
16110 			if (tcp->tcp_ipversion == IPV4_VERSION) {
16111 				if ((tcp->tcp_ipha->ipha_dst ==
16112 				    tcp->tcp_ipha->ipha_src) &&
16113 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16114 				    tcp->tcp_tcph->th_fport))) {
16115 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16116 					return;
16117 				}
16118 			} else {
16119 				if (IN6_ARE_ADDR_EQUAL(
16120 				    &tcp->tcp_ip6h->ip6_dst,
16121 				    &tcp->tcp_ip6h->ip6_src) &&
16122 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16123 				    tcp->tcp_tcph->th_fport))) {
16124 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16125 					return;
16126 				}
16127 			}
16128 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
16129 			/*
16130 			 * This should not be possible!  Just for
16131 			 * defensive coding...
16132 			 */
16133 			if (tcp->tcp_state != TCPS_SYN_SENT)
16134 				goto after_syn_sent;
16135 
16136 			if (is_system_labeled() &&
16137 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
16138 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
16139 				return;
16140 			}
16141 
16142 			ASSERT(q == tcp->tcp_rq);
16143 			/*
16144 			 * tcp_adapt_ire() does not adjust
16145 			 * for TCP/IP header length.
16146 			 */
16147 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
16148 
16149 			/*
16150 			 * Just make sure our rwnd is at
16151 			 * least tcp_recv_hiwat_mss * MSS
16152 			 * large, and round up to the nearest
16153 			 * MSS.
16154 			 *
16155 			 * We do the round up here because
16156 			 * we need to get the interface
16157 			 * MTU first before we can do the
16158 			 * round up.
16159 			 */
16160 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
16161 			    tcps->tcps_recv_hiwat_minmss * mss);
16162 			q->q_hiwat = tcp->tcp_rwnd;
16163 			tcp_set_ws_value(tcp);
16164 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
16165 			    tcp->tcp_tcph->th_win);
16166 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
16167 				tcp->tcp_snd_ws_ok = B_TRUE;
16168 
16169 			/*
16170 			 * Set tcp_snd_ts_ok to true
16171 			 * so that tcp_xmit_mp will
16172 			 * include the timestamp
16173 			 * option in the SYN segment.
16174 			 */
16175 			if (tcps->tcps_tstamp_always ||
16176 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
16177 				tcp->tcp_snd_ts_ok = B_TRUE;
16178 			}
16179 
16180 			/*
16181 			 * tcp_snd_sack_ok can be set in
16182 			 * tcp_adapt_ire() if the sack metric
16183 			 * is set.  So check it here also.
16184 			 */
16185 			if (tcps->tcps_sack_permitted == 2 ||
16186 			    tcp->tcp_snd_sack_ok) {
16187 				if (tcp->tcp_sack_info == NULL) {
16188 					tcp->tcp_sack_info =
16189 					    kmem_cache_alloc(
16190 					    tcp_sack_info_cache,
16191 					    KM_SLEEP);
16192 				}
16193 				tcp->tcp_snd_sack_ok = B_TRUE;
16194 			}
16195 
16196 			/*
16197 			 * Should we use ECN?  Note that the current
16198 			 * default value (SunOS 5.9) of tcp_ecn_permitted
16199 			 * is 1.  The reason for doing this is that there
16200 			 * are equipments out there that will drop ECN
16201 			 * enabled IP packets.  Setting it to 1 avoids
16202 			 * compatibility problems.
16203 			 */
16204 			if (tcps->tcps_ecn_permitted == 2)
16205 				tcp->tcp_ecn_ok = B_TRUE;
16206 
16207 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16208 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
16209 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
16210 			if (syn_mp) {
16211 				cred_t *cr;
16212 				pid_t pid;
16213 
16214 				/*
16215 				 * Obtain the credential from the
16216 				 * thread calling connect(); the credential
16217 				 * lives on in the second mblk which
16218 				 * originated from T_CONN_REQ and is echoed
16219 				 * with the T_BIND_ACK from ip.  If none
16220 				 * can be found, default to the creator
16221 				 * of the socket.
16222 				 */
16223 				if (mp->b_cont == NULL ||
16224 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
16225 					cr = tcp->tcp_cred;
16226 					pid = tcp->tcp_cpid;
16227 				} else {
16228 					pid = DB_CPID(mp->b_cont);
16229 				}
16230 
16231 				TCP_RECORD_TRACE(tcp, syn_mp,
16232 				    TCP_TRACE_SEND_PKT);
16233 				mblk_setcred(syn_mp, cr);
16234 				DB_CPID(syn_mp) = pid;
16235 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
16236 			}
16237 		after_syn_sent:
16238 			/*
16239 			 * A trailer mblk indicates a waiting client upstream.
16240 			 * We complete here the processing begun in
16241 			 * either tcp_bind() or tcp_connect() by passing
16242 			 * upstream the reply message they supplied.
16243 			 */
16244 			mp1 = mp;
16245 			mp = mp->b_cont;
16246 			freeb(mp1);
16247 			if (mp)
16248 				break;
16249 			return;
16250 		case T_ERROR_ACK:
16251 			if (tcp->tcp_debug) {
16252 				(void) strlog(TCP_MOD_ID, 0, 1,
16253 				    SL_TRACE|SL_ERROR,
16254 				    "tcp_rput_other: case T_ERROR_ACK, "
16255 				    "ERROR_prim == %d",
16256 				    tea->ERROR_prim);
16257 			}
16258 			switch (tea->ERROR_prim) {
16259 			case O_T_BIND_REQ:
16260 			case T_BIND_REQ:
16261 				tcp_bind_failed(tcp, mp,
16262 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16263 				    ENETUNREACH : EADDRNOTAVAIL));
16264 				return;
16265 			case T_UNBIND_REQ:
16266 				tcp->tcp_hard_binding = B_FALSE;
16267 				tcp->tcp_hard_bound = B_FALSE;
16268 				if (mp->b_cont) {
16269 					freemsg(mp->b_cont);
16270 					mp->b_cont = NULL;
16271 				}
16272 				if (tcp->tcp_unbind_pending)
16273 					tcp->tcp_unbind_pending = 0;
16274 				else {
16275 					/* From tcp_ip_unbind() - free */
16276 					freemsg(mp);
16277 					return;
16278 				}
16279 				break;
16280 			case T_SVR4_OPTMGMT_REQ:
16281 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
16282 					/* T_OPTMGMT_REQ generated by TCP */
16283 					printf("T_SVR4_OPTMGMT_REQ failed "
16284 					    "%d/%d - dropped (cnt %d)\n",
16285 					    tea->TLI_error, tea->UNIX_error,
16286 					    tcp->tcp_drop_opt_ack_cnt);
16287 					freemsg(mp);
16288 					tcp->tcp_drop_opt_ack_cnt--;
16289 					return;
16290 				}
16291 				break;
16292 			}
16293 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
16294 			    tcp->tcp_drop_opt_ack_cnt > 0) {
16295 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
16296 				    "- dropped (cnt %d)\n",
16297 				    tea->TLI_error, tea->UNIX_error,
16298 				    tcp->tcp_drop_opt_ack_cnt);
16299 				freemsg(mp);
16300 				tcp->tcp_drop_opt_ack_cnt--;
16301 				return;
16302 			}
16303 			break;
16304 		case T_OPTMGMT_ACK:
16305 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
16306 				/* T_OPTMGMT_REQ generated by TCP */
16307 				freemsg(mp);
16308 				tcp->tcp_drop_opt_ack_cnt--;
16309 				return;
16310 			}
16311 			break;
16312 		default:
16313 			break;
16314 		}
16315 		break;
16316 	case M_FLUSH:
16317 		if (*rptr & FLUSHR)
16318 			flushq(q, FLUSHDATA);
16319 		break;
16320 	default:
16321 		/* M_CTL will be directly sent to tcp_icmp_error() */
16322 		ASSERT(DB_TYPE(mp) != M_CTL);
16323 		break;
16324 	}
16325 	/*
16326 	 * Make sure we set this bit before sending the ACK for
16327 	 * bind. Otherwise accept could possibly run and free
16328 	 * this tcp struct.
16329 	 */
16330 	putnext(q, mp);
16331 }
16332 
16333 /*
16334  * Called as the result of a qbufcall or a qtimeout to remedy a failure
16335  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
16336  * tcp_rsrv() try again.
16337  */
16338 static void
16339 tcp_ordrel_kick(void *arg)
16340 {
16341 	conn_t 	*connp = (conn_t *)arg;
16342 	tcp_t	*tcp = connp->conn_tcp;
16343 
16344 	tcp->tcp_ordrelid = 0;
16345 	tcp->tcp_timeout = B_FALSE;
16346 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
16347 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16348 		qenable(tcp->tcp_rq);
16349 	}
16350 }
16351 
16352 /* ARGSUSED */
16353 static void
16354 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
16355 {
16356 	conn_t	*connp = (conn_t *)arg;
16357 	tcp_t	*tcp = connp->conn_tcp;
16358 	queue_t	*q = tcp->tcp_rq;
16359 	uint_t	thwin;
16360 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16361 	sodirect_t	*sodp;
16362 	boolean_t	fc;
16363 
16364 	freeb(mp);
16365 
16366 	TCP_STAT(tcps, tcp_rsrv_calls);
16367 
16368 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
16369 		return;
16370 	}
16371 
16372 	if (tcp->tcp_fused) {
16373 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16374 
16375 		ASSERT(tcp->tcp_fused);
16376 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16377 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16378 		ASSERT(!TCP_IS_DETACHED(tcp));
16379 		ASSERT(tcp->tcp_connp->conn_sqp ==
16380 		    peer_tcp->tcp_connp->conn_sqp);
16381 
16382 		/*
16383 		 * Normally we would not get backenabled in synchronous
16384 		 * streams mode, but in case this happens, we need to plug
16385 		 * synchronous streams during our drain to prevent a race
16386 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16387 		 */
16388 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16389 		if (tcp->tcp_rcv_list != NULL)
16390 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16391 
16392 		if (peer_tcp > tcp) {
16393 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16394 			mutex_enter(&tcp->tcp_non_sq_lock);
16395 		} else {
16396 			mutex_enter(&tcp->tcp_non_sq_lock);
16397 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16398 		}
16399 
16400 		if (peer_tcp->tcp_flow_stopped &&
16401 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16402 		    peer_tcp->tcp_xmit_lowater)) {
16403 			tcp_clrqfull(peer_tcp);
16404 		}
16405 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16406 		mutex_exit(&tcp->tcp_non_sq_lock);
16407 
16408 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16409 		TCP_STAT(tcps, tcp_fusion_backenabled);
16410 		return;
16411 	}
16412 
16413 	SOD_PTR_ENTER(tcp, sodp);
16414 	if (sodp != NULL) {
16415 		/* An sodirect connection */
16416 		if (SOD_QFULL(sodp)) {
16417 			/* Flow-controlled, need another back-enable */
16418 			fc = B_TRUE;
16419 			SOD_QSETBE(sodp);
16420 		} else {
16421 			/* Not flow-controlled */
16422 			fc = B_FALSE;
16423 		}
16424 		mutex_exit(sodp->sod_lock);
16425 	} else if (canputnext(q)) {
16426 		/* STREAMS, not flow-controlled */
16427 		fc = B_FALSE;
16428 	} else {
16429 		/* STREAMS, flow-controlled */
16430 		fc = B_TRUE;
16431 	}
16432 	if (!fc) {
16433 		/* Not flow-controlled, open rwnd */
16434 		tcp->tcp_rwnd = q->q_hiwat;
16435 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16436 		    << tcp->tcp_rcv_ws;
16437 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16438 		/*
16439 		 * Send back a window update immediately if TCP is above
16440 		 * ESTABLISHED state and the increase of the rcv window
16441 		 * that the other side knows is at least 1 MSS after flow
16442 		 * control is lifted.
16443 		 */
16444 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16445 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16446 			tcp_xmit_ctl(NULL, tcp,
16447 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16448 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16449 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16450 		}
16451 	}
16452 
16453 	/* Handle a failure to allocate a T_ORDREL_IND here */
16454 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16455 		ASSERT(tcp->tcp_listener == NULL);
16456 
16457 		SOD_PTR_ENTER(tcp, sodp);
16458 		if (sodp != NULL) {
16459 			/* No more sodirect */
16460 			tcp->tcp_sodirect = NULL;
16461 			if (!SOD_QEMPTY(sodp)) {
16462 				/* Notify mblk(s) to process */
16463 				(void) tcp_rcv_sod_wakeup(tcp, sodp);
16464 				/* sod_wakeup() does the mutex_exit() */
16465 			} else {
16466 				/* Nothing to process */
16467 				mutex_exit(sodp->sod_lock);
16468 			}
16469 		} else if (tcp->tcp_rcv_list != NULL) {
16470 			/*
16471 			 * Push any mblk(s) enqueued from co processing.
16472 			 */
16473 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16474 			ASSERT(tcp->tcp_rcv_list == NULL ||
16475 			    tcp->tcp_fused_sigurg);
16476 		}
16477 
16478 		mp = mi_tpi_ordrel_ind();
16479 		if (mp) {
16480 			tcp->tcp_ordrel_done = B_TRUE;
16481 			putnext(q, mp);
16482 			if (tcp->tcp_deferred_clean_death) {
16483 				/*
16484 				 * tcp_clean_death was deferred for
16485 				 * T_ORDREL_IND - do it now
16486 				 */
16487 				tcp->tcp_deferred_clean_death = B_FALSE;
16488 				(void) tcp_clean_death(tcp,
16489 				    tcp->tcp_client_errno, 22);
16490 			}
16491 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16492 			/*
16493 			 * If there isn't already a timer running
16494 			 * start one.  Use a 4 second
16495 			 * timer as a fallback since it can't fail.
16496 			 */
16497 			tcp->tcp_timeout = B_TRUE;
16498 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16499 			    MSEC_TO_TICK(4000));
16500 		}
16501 	}
16502 }
16503 
16504 /*
16505  * The read side service routine is called mostly when we get back-enabled as a
16506  * result of flow control relief.  Since we don't actually queue anything in
16507  * TCP, we have no data to send out of here.  What we do is clear the receive
16508  * window, and send out a window update.
16509  * This routine is also called to drive an orderly release message upstream
16510  * if the attempt in tcp_rput failed.
16511  */
16512 static void
16513 tcp_rsrv(queue_t *q)
16514 {
16515 	conn_t *connp = Q_TO_CONN(q);
16516 	tcp_t	*tcp = connp->conn_tcp;
16517 	mblk_t	*mp;
16518 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16519 
16520 	/* No code does a putq on the read side */
16521 	ASSERT(q->q_first == NULL);
16522 
16523 	/* Nothing to do for the default queue */
16524 	if (q == tcps->tcps_g_q) {
16525 		return;
16526 	}
16527 
16528 	mp = allocb(0, BPRI_HI);
16529 	if (mp == NULL) {
16530 		/*
16531 		 * We are under memory pressure. Return for now and we
16532 		 * we will be called again later.
16533 		 */
16534 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16535 			/*
16536 			 * If there isn't already a timer running
16537 			 * start one.  Use a 4 second
16538 			 * timer as a fallback since it can't fail.
16539 			 */
16540 			tcp->tcp_timeout = B_TRUE;
16541 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16542 			    MSEC_TO_TICK(4000));
16543 		}
16544 		return;
16545 	}
16546 	CONN_INC_REF(connp);
16547 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16548 	    SQTAG_TCP_RSRV);
16549 }
16550 
16551 /*
16552  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16553  * We do not allow the receive window to shrink.  After setting rwnd,
16554  * set the flow control hiwat of the stream.
16555  *
16556  * This function is called in 2 cases:
16557  *
16558  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16559  *    connection (passive open) and in tcp_rput_data() for active connect.
16560  *    This is called after tcp_mss_set() when the desired MSS value is known.
16561  *    This makes sure that our window size is a mutiple of the other side's
16562  *    MSS.
16563  * 2) Handling SO_RCVBUF option.
16564  *
16565  * It is ASSUMED that the requested size is a multiple of the current MSS.
16566  *
16567  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16568  * user requests so.
16569  */
16570 static int
16571 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16572 {
16573 	uint32_t	mss = tcp->tcp_mss;
16574 	uint32_t	old_max_rwnd;
16575 	uint32_t	max_transmittable_rwnd;
16576 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16577 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16578 
16579 	if (tcp->tcp_fused) {
16580 		size_t sth_hiwat;
16581 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16582 
16583 		ASSERT(peer_tcp != NULL);
16584 		/*
16585 		 * Record the stream head's high water mark for
16586 		 * this endpoint; this is used for flow-control
16587 		 * purposes in tcp_fuse_output().
16588 		 */
16589 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16590 		if (!tcp_detached)
16591 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16592 
16593 		/*
16594 		 * In the fusion case, the maxpsz stream head value of
16595 		 * our peer is set according to its send buffer size
16596 		 * and our receive buffer size; since the latter may
16597 		 * have changed we need to update the peer's maxpsz.
16598 		 */
16599 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16600 		return (rwnd);
16601 	}
16602 
16603 	if (tcp_detached)
16604 		old_max_rwnd = tcp->tcp_rwnd;
16605 	else
16606 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16607 
16608 	/*
16609 	 * Insist on a receive window that is at least
16610 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16611 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16612 	 * and delayed acknowledgement.
16613 	 */
16614 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16615 
16616 	/*
16617 	 * If window size info has already been exchanged, TCP should not
16618 	 * shrink the window.  Shrinking window is doable if done carefully.
16619 	 * We may add that support later.  But so far there is not a real
16620 	 * need to do that.
16621 	 */
16622 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16623 		/* MSS may have changed, do a round up again. */
16624 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16625 	}
16626 
16627 	/*
16628 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16629 	 * can be applied even before the window scale option is decided.
16630 	 */
16631 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16632 	if (rwnd > max_transmittable_rwnd) {
16633 		rwnd = max_transmittable_rwnd -
16634 		    (max_transmittable_rwnd % mss);
16635 		if (rwnd < mss)
16636 			rwnd = max_transmittable_rwnd;
16637 		/*
16638 		 * If we're over the limit we may have to back down tcp_rwnd.
16639 		 * The increment below won't work for us. So we set all three
16640 		 * here and the increment below will have no effect.
16641 		 */
16642 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16643 	}
16644 	if (tcp->tcp_localnet) {
16645 		tcp->tcp_rack_abs_max =
16646 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16647 	} else {
16648 		/*
16649 		 * For a remote host on a different subnet (through a router),
16650 		 * we ack every other packet to be conforming to RFC1122.
16651 		 * tcp_deferred_acks_max is default to 2.
16652 		 */
16653 		tcp->tcp_rack_abs_max =
16654 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16655 	}
16656 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16657 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16658 	else
16659 		tcp->tcp_rack_cur_max = 0;
16660 	/*
16661 	 * Increment the current rwnd by the amount the maximum grew (we
16662 	 * can not overwrite it since we might be in the middle of a
16663 	 * connection.)
16664 	 */
16665 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16666 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16667 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16668 		tcp->tcp_cwnd_max = rwnd;
16669 
16670 	if (tcp_detached)
16671 		return (rwnd);
16672 	/*
16673 	 * We set the maximum receive window into rq->q_hiwat.
16674 	 * This is not actually used for flow control.
16675 	 */
16676 	tcp->tcp_rq->q_hiwat = rwnd;
16677 	/*
16678 	 * Set the Stream head high water mark. This doesn't have to be
16679 	 * here, since we are simply using default values, but we would
16680 	 * prefer to choose these values algorithmically, with a likely
16681 	 * relationship to rwnd.
16682 	 */
16683 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16684 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16685 	return (rwnd);
16686 }
16687 
16688 /*
16689  * Return SNMP stuff in buffer in mpdata.
16690  */
16691 mblk_t *
16692 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16693 {
16694 	mblk_t			*mpdata;
16695 	mblk_t			*mp_conn_ctl = NULL;
16696 	mblk_t			*mp_conn_tail;
16697 	mblk_t			*mp_attr_ctl = NULL;
16698 	mblk_t			*mp_attr_tail;
16699 	mblk_t			*mp6_conn_ctl = NULL;
16700 	mblk_t			*mp6_conn_tail;
16701 	mblk_t			*mp6_attr_ctl = NULL;
16702 	mblk_t			*mp6_attr_tail;
16703 	struct opthdr		*optp;
16704 	mib2_tcpConnEntry_t	tce;
16705 	mib2_tcp6ConnEntry_t	tce6;
16706 	mib2_transportMLPEntry_t mlp;
16707 	connf_t			*connfp;
16708 	int			i;
16709 	boolean_t 		ispriv;
16710 	zoneid_t 		zoneid;
16711 	int			v4_conn_idx;
16712 	int			v6_conn_idx;
16713 	conn_t			*connp = Q_TO_CONN(q);
16714 	tcp_stack_t		*tcps;
16715 	ip_stack_t		*ipst;
16716 	mblk_t			*mp2ctl;
16717 
16718 	/*
16719 	 * make a copy of the original message
16720 	 */
16721 	mp2ctl = copymsg(mpctl);
16722 
16723 	if (mpctl == NULL ||
16724 	    (mpdata = mpctl->b_cont) == NULL ||
16725 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16726 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16727 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16728 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16729 		freemsg(mp_conn_ctl);
16730 		freemsg(mp_attr_ctl);
16731 		freemsg(mp6_conn_ctl);
16732 		freemsg(mp6_attr_ctl);
16733 		freemsg(mpctl);
16734 		freemsg(mp2ctl);
16735 		return (NULL);
16736 	}
16737 
16738 	ipst = connp->conn_netstack->netstack_ip;
16739 	tcps = connp->conn_netstack->netstack_tcp;
16740 
16741 	/* build table of connections -- need count in fixed part */
16742 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16743 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16744 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16745 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16746 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16747 
16748 	ispriv =
16749 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16750 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16751 
16752 	v4_conn_idx = v6_conn_idx = 0;
16753 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16754 
16755 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16756 		ipst = tcps->tcps_netstack->netstack_ip;
16757 
16758 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16759 
16760 		connp = NULL;
16761 
16762 		while ((connp =
16763 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16764 			tcp_t *tcp;
16765 			boolean_t needattr;
16766 
16767 			if (connp->conn_zoneid != zoneid)
16768 				continue;	/* not in this zone */
16769 
16770 			tcp = connp->conn_tcp;
16771 			UPDATE_MIB(&tcps->tcps_mib,
16772 			    tcpHCInSegs, tcp->tcp_ibsegs);
16773 			tcp->tcp_ibsegs = 0;
16774 			UPDATE_MIB(&tcps->tcps_mib,
16775 			    tcpHCOutSegs, tcp->tcp_obsegs);
16776 			tcp->tcp_obsegs = 0;
16777 
16778 			tce6.tcp6ConnState = tce.tcpConnState =
16779 			    tcp_snmp_state(tcp);
16780 			if (tce.tcpConnState == MIB2_TCP_established ||
16781 			    tce.tcpConnState == MIB2_TCP_closeWait)
16782 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16783 
16784 			needattr = B_FALSE;
16785 			bzero(&mlp, sizeof (mlp));
16786 			if (connp->conn_mlp_type != mlptSingle) {
16787 				if (connp->conn_mlp_type == mlptShared ||
16788 				    connp->conn_mlp_type == mlptBoth)
16789 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16790 				if (connp->conn_mlp_type == mlptPrivate ||
16791 				    connp->conn_mlp_type == mlptBoth)
16792 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16793 				needattr = B_TRUE;
16794 			}
16795 			if (connp->conn_peercred != NULL) {
16796 				ts_label_t *tsl;
16797 
16798 				tsl = crgetlabel(connp->conn_peercred);
16799 				mlp.tme_doi = label2doi(tsl);
16800 				mlp.tme_label = *label2bslabel(tsl);
16801 				needattr = B_TRUE;
16802 			}
16803 
16804 			/* Create a message to report on IPv6 entries */
16805 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16806 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16807 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16808 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16809 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16810 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16811 			/* Don't want just anybody seeing these... */
16812 			if (ispriv) {
16813 				tce6.tcp6ConnEntryInfo.ce_snxt =
16814 				    tcp->tcp_snxt;
16815 				tce6.tcp6ConnEntryInfo.ce_suna =
16816 				    tcp->tcp_suna;
16817 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16818 				    tcp->tcp_rnxt;
16819 				tce6.tcp6ConnEntryInfo.ce_rack =
16820 				    tcp->tcp_rack;
16821 			} else {
16822 				/*
16823 				 * Netstat, unfortunately, uses this to
16824 				 * get send/receive queue sizes.  How to fix?
16825 				 * Why not compute the difference only?
16826 				 */
16827 				tce6.tcp6ConnEntryInfo.ce_snxt =
16828 				    tcp->tcp_snxt - tcp->tcp_suna;
16829 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16830 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16831 				    tcp->tcp_rnxt - tcp->tcp_rack;
16832 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16833 			}
16834 
16835 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16836 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16837 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16838 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16839 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16840 
16841 			tce6.tcp6ConnCreationProcess =
16842 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16843 			    tcp->tcp_cpid;
16844 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16845 
16846 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16847 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16848 
16849 			mlp.tme_connidx = v6_conn_idx++;
16850 			if (needattr)
16851 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16852 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16853 			}
16854 			/*
16855 			 * Create an IPv4 table entry for IPv4 entries and also
16856 			 * for IPv6 entries which are bound to in6addr_any
16857 			 * but don't have IPV6_V6ONLY set.
16858 			 * (i.e. anything an IPv4 peer could connect to)
16859 			 */
16860 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16861 			    (tcp->tcp_state <= TCPS_LISTEN &&
16862 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16863 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16864 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16865 					tce.tcpConnRemAddress = INADDR_ANY;
16866 					tce.tcpConnLocalAddress = INADDR_ANY;
16867 				} else {
16868 					tce.tcpConnRemAddress =
16869 					    tcp->tcp_remote;
16870 					tce.tcpConnLocalAddress =
16871 					    tcp->tcp_ip_src;
16872 				}
16873 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16874 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16875 				/* Don't want just anybody seeing these... */
16876 				if (ispriv) {
16877 					tce.tcpConnEntryInfo.ce_snxt =
16878 					    tcp->tcp_snxt;
16879 					tce.tcpConnEntryInfo.ce_suna =
16880 					    tcp->tcp_suna;
16881 					tce.tcpConnEntryInfo.ce_rnxt =
16882 					    tcp->tcp_rnxt;
16883 					tce.tcpConnEntryInfo.ce_rack =
16884 					    tcp->tcp_rack;
16885 				} else {
16886 					/*
16887 					 * Netstat, unfortunately, uses this to
16888 					 * get send/receive queue sizes.  How
16889 					 * to fix?
16890 					 * Why not compute the difference only?
16891 					 */
16892 					tce.tcpConnEntryInfo.ce_snxt =
16893 					    tcp->tcp_snxt - tcp->tcp_suna;
16894 					tce.tcpConnEntryInfo.ce_suna = 0;
16895 					tce.tcpConnEntryInfo.ce_rnxt =
16896 					    tcp->tcp_rnxt - tcp->tcp_rack;
16897 					tce.tcpConnEntryInfo.ce_rack = 0;
16898 				}
16899 
16900 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16901 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16902 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16903 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16904 				tce.tcpConnEntryInfo.ce_state =
16905 				    tcp->tcp_state;
16906 
16907 				tce.tcpConnCreationProcess =
16908 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16909 				    tcp->tcp_cpid;
16910 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16911 
16912 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16913 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16914 
16915 				mlp.tme_connidx = v4_conn_idx++;
16916 				if (needattr)
16917 					(void) snmp_append_data2(
16918 					    mp_attr_ctl->b_cont,
16919 					    &mp_attr_tail, (char *)&mlp,
16920 					    sizeof (mlp));
16921 			}
16922 		}
16923 	}
16924 
16925 	/* fixed length structure for IPv4 and IPv6 counters */
16926 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16927 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16928 	    sizeof (mib2_tcp6ConnEntry_t));
16929 	/* synchronize 32- and 64-bit counters */
16930 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16931 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16932 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16933 	optp->level = MIB2_TCP;
16934 	optp->name = 0;
16935 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16936 	    sizeof (tcps->tcps_mib));
16937 	optp->len = msgdsize(mpdata);
16938 	qreply(q, mpctl);
16939 
16940 	/* table of connections... */
16941 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16942 	    sizeof (struct T_optmgmt_ack)];
16943 	optp->level = MIB2_TCP;
16944 	optp->name = MIB2_TCP_CONN;
16945 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16946 	qreply(q, mp_conn_ctl);
16947 
16948 	/* table of MLP attributes... */
16949 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16950 	    sizeof (struct T_optmgmt_ack)];
16951 	optp->level = MIB2_TCP;
16952 	optp->name = EXPER_XPORT_MLP;
16953 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16954 	if (optp->len == 0)
16955 		freemsg(mp_attr_ctl);
16956 	else
16957 		qreply(q, mp_attr_ctl);
16958 
16959 	/* table of IPv6 connections... */
16960 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16961 	    sizeof (struct T_optmgmt_ack)];
16962 	optp->level = MIB2_TCP6;
16963 	optp->name = MIB2_TCP6_CONN;
16964 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16965 	qreply(q, mp6_conn_ctl);
16966 
16967 	/* table of IPv6 MLP attributes... */
16968 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16969 	    sizeof (struct T_optmgmt_ack)];
16970 	optp->level = MIB2_TCP6;
16971 	optp->name = EXPER_XPORT_MLP;
16972 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16973 	if (optp->len == 0)
16974 		freemsg(mp6_attr_ctl);
16975 	else
16976 		qreply(q, mp6_attr_ctl);
16977 	return (mp2ctl);
16978 }
16979 
16980 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16981 /* ARGSUSED */
16982 int
16983 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16984 {
16985 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16986 
16987 	switch (level) {
16988 	case MIB2_TCP:
16989 		switch (name) {
16990 		case 13:
16991 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16992 				return (0);
16993 			/* TODO: delete entry defined by tce */
16994 			return (1);
16995 		default:
16996 			return (0);
16997 		}
16998 	default:
16999 		return (1);
17000 	}
17001 }
17002 
17003 /* Translate TCP state to MIB2 TCP state. */
17004 static int
17005 tcp_snmp_state(tcp_t *tcp)
17006 {
17007 	if (tcp == NULL)
17008 		return (0);
17009 
17010 	switch (tcp->tcp_state) {
17011 	case TCPS_CLOSED:
17012 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
17013 	case TCPS_BOUND:
17014 		return (MIB2_TCP_closed);
17015 	case TCPS_LISTEN:
17016 		return (MIB2_TCP_listen);
17017 	case TCPS_SYN_SENT:
17018 		return (MIB2_TCP_synSent);
17019 	case TCPS_SYN_RCVD:
17020 		return (MIB2_TCP_synReceived);
17021 	case TCPS_ESTABLISHED:
17022 		return (MIB2_TCP_established);
17023 	case TCPS_CLOSE_WAIT:
17024 		return (MIB2_TCP_closeWait);
17025 	case TCPS_FIN_WAIT_1:
17026 		return (MIB2_TCP_finWait1);
17027 	case TCPS_CLOSING:
17028 		return (MIB2_TCP_closing);
17029 	case TCPS_LAST_ACK:
17030 		return (MIB2_TCP_lastAck);
17031 	case TCPS_FIN_WAIT_2:
17032 		return (MIB2_TCP_finWait2);
17033 	case TCPS_TIME_WAIT:
17034 		return (MIB2_TCP_timeWait);
17035 	default:
17036 		return (0);
17037 	}
17038 }
17039 
17040 static char tcp_report_header[] =
17041 	"TCP     " MI_COL_HDRPAD_STR
17042 	"zone dest            snxt     suna     "
17043 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
17044 	"recent   [lport,fport] state";
17045 
17046 /*
17047  * TCP status report triggered via the Named Dispatch mechanism.
17048  */
17049 /* ARGSUSED */
17050 static void
17051 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
17052     cred_t *cr)
17053 {
17054 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
17055 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
17056 	char cflag;
17057 	in6_addr_t	v6dst;
17058 	char buf[80];
17059 	uint_t print_len, buf_len;
17060 
17061 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
17062 	if (buf_len <= 0)
17063 		return;
17064 
17065 	if (hashval >= 0)
17066 		(void) sprintf(hash, "%03d ", hashval);
17067 	else
17068 		hash[0] = '\0';
17069 
17070 	/*
17071 	 * Note that we use the remote address in the tcp_b  structure.
17072 	 * This means that it will print out the real destination address,
17073 	 * not the next hop's address if source routing is used.  This
17074 	 * avoid the confusion on the output because user may not
17075 	 * know that source routing is used for a connection.
17076 	 */
17077 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17078 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
17079 	} else {
17080 		v6dst = tcp->tcp_remote_v6;
17081 	}
17082 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
17083 	/*
17084 	 * the ispriv checks are so that normal users cannot determine
17085 	 * sequence number information using NDD.
17086 	 */
17087 
17088 	if (TCP_IS_DETACHED(tcp))
17089 		cflag = '*';
17090 	else
17091 		cflag = ' ';
17092 	print_len = snprintf((char *)mp->b_wptr, buf_len,
17093 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
17094 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
17095 	    hash,
17096 	    (void *)tcp,
17097 	    tcp->tcp_connp->conn_zoneid,
17098 	    addrbuf,
17099 	    (ispriv) ? tcp->tcp_snxt : 0,
17100 	    (ispriv) ? tcp->tcp_suna : 0,
17101 	    tcp->tcp_swnd,
17102 	    (ispriv) ? tcp->tcp_rnxt : 0,
17103 	    (ispriv) ? tcp->tcp_rack : 0,
17104 	    tcp->tcp_rwnd,
17105 	    tcp->tcp_rto,
17106 	    tcp->tcp_mss,
17107 	    tcp->tcp_snd_ws_ok,
17108 	    tcp->tcp_snd_ws,
17109 	    tcp->tcp_rcv_ws,
17110 	    tcp->tcp_snd_ts_ok,
17111 	    tcp->tcp_ts_recent,
17112 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
17113 	if (print_len < buf_len) {
17114 		((mblk_t *)mp)->b_wptr += print_len;
17115 	} else {
17116 		((mblk_t *)mp)->b_wptr += buf_len;
17117 	}
17118 }
17119 
17120 /*
17121  * TCP status report (for listeners only) triggered via the Named Dispatch
17122  * mechanism.
17123  */
17124 /* ARGSUSED */
17125 static void
17126 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
17127 {
17128 	char addrbuf[INET6_ADDRSTRLEN];
17129 	in6_addr_t	v6dst;
17130 	uint_t print_len, buf_len;
17131 
17132 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
17133 	if (buf_len <= 0)
17134 		return;
17135 
17136 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17137 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
17138 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
17139 	} else {
17140 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
17141 		    addrbuf, sizeof (addrbuf));
17142 	}
17143 	print_len = snprintf((char *)mp->b_wptr, buf_len,
17144 	    "%03d "
17145 	    MI_COL_PTRFMT_STR
17146 	    "%d %s %05u %08u %d/%d/%d%c\n",
17147 	    hashval, (void *)tcp,
17148 	    tcp->tcp_connp->conn_zoneid,
17149 	    addrbuf,
17150 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
17151 	    tcp->tcp_conn_req_seqnum,
17152 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
17153 	    tcp->tcp_conn_req_max,
17154 	    tcp->tcp_syn_defense ? '*' : ' ');
17155 	if (print_len < buf_len) {
17156 		((mblk_t *)mp)->b_wptr += print_len;
17157 	} else {
17158 		((mblk_t *)mp)->b_wptr += buf_len;
17159 	}
17160 }
17161 
17162 /* TCP status report triggered via the Named Dispatch mechanism. */
17163 /* ARGSUSED */
17164 static int
17165 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17166 {
17167 	tcp_t	*tcp;
17168 	int	i;
17169 	conn_t	*connp;
17170 	connf_t	*connfp;
17171 	zoneid_t zoneid;
17172 	tcp_stack_t *tcps;
17173 	ip_stack_t *ipst;
17174 
17175 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17176 	tcps = Q_TO_TCP(q)->tcp_tcps;
17177 
17178 	/*
17179 	 * Because of the ndd constraint, at most we can have 64K buffer
17180 	 * to put in all TCP info.  So to be more efficient, just
17181 	 * allocate a 64K buffer here, assuming we need that large buffer.
17182 	 * This may be a problem as any user can read tcp_status.  Therefore
17183 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
17184 	 * This should be OK as normal users should not do this too often.
17185 	 */
17186 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17187 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17188 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17189 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17190 			return (0);
17191 		}
17192 	}
17193 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17194 		/* The following may work even if we cannot get a large buf. */
17195 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17196 		return (0);
17197 	}
17198 
17199 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
17200 
17201 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
17202 
17203 		ipst = tcps->tcps_netstack->netstack_ip;
17204 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
17205 
17206 		connp = NULL;
17207 
17208 		while ((connp =
17209 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17210 			tcp = connp->conn_tcp;
17211 			if (zoneid != GLOBAL_ZONEID &&
17212 			    zoneid != connp->conn_zoneid)
17213 				continue;
17214 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
17215 			    cr);
17216 		}
17217 
17218 	}
17219 
17220 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17221 	return (0);
17222 }
17223 
17224 /* TCP status report triggered via the Named Dispatch mechanism. */
17225 /* ARGSUSED */
17226 static int
17227 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17228 {
17229 	tf_t	*tbf;
17230 	tcp_t	*tcp;
17231 	int	i;
17232 	zoneid_t zoneid;
17233 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17234 
17235 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17236 
17237 	/* Refer to comments in tcp_status_report(). */
17238 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17239 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17240 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17241 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17242 			return (0);
17243 		}
17244 	}
17245 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17246 		/* The following may work even if we cannot get a large buf. */
17247 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17248 		return (0);
17249 	}
17250 
17251 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17252 
17253 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
17254 		tbf = &tcps->tcps_bind_fanout[i];
17255 		mutex_enter(&tbf->tf_lock);
17256 		for (tcp = tbf->tf_tcp; tcp != NULL;
17257 		    tcp = tcp->tcp_bind_hash) {
17258 			if (zoneid != GLOBAL_ZONEID &&
17259 			    zoneid != tcp->tcp_connp->conn_zoneid)
17260 				continue;
17261 			CONN_INC_REF(tcp->tcp_connp);
17262 			tcp_report_item(mp->b_cont, tcp, i,
17263 			    Q_TO_TCP(q), cr);
17264 			CONN_DEC_REF(tcp->tcp_connp);
17265 		}
17266 		mutex_exit(&tbf->tf_lock);
17267 	}
17268 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17269 	return (0);
17270 }
17271 
17272 /* TCP status report triggered via the Named Dispatch mechanism. */
17273 /* ARGSUSED */
17274 static int
17275 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17276 {
17277 	connf_t	*connfp;
17278 	conn_t	*connp;
17279 	tcp_t	*tcp;
17280 	int	i;
17281 	zoneid_t zoneid;
17282 	tcp_stack_t *tcps;
17283 	ip_stack_t	*ipst;
17284 
17285 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17286 	tcps = Q_TO_TCP(q)->tcp_tcps;
17287 
17288 	/* Refer to comments in tcp_status_report(). */
17289 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17290 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17291 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17292 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17293 			return (0);
17294 		}
17295 	}
17296 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17297 		/* The following may work even if we cannot get a large buf. */
17298 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17299 		return (0);
17300 	}
17301 
17302 	(void) mi_mpprintf(mp,
17303 	    "    TCP    " MI_COL_HDRPAD_STR
17304 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
17305 
17306 	ipst = tcps->tcps_netstack->netstack_ip;
17307 
17308 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
17309 		connfp = &ipst->ips_ipcl_bind_fanout[i];
17310 		connp = NULL;
17311 		while ((connp =
17312 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17313 			tcp = connp->conn_tcp;
17314 			if (zoneid != GLOBAL_ZONEID &&
17315 			    zoneid != connp->conn_zoneid)
17316 				continue;
17317 			tcp_report_listener(mp->b_cont, tcp, i);
17318 		}
17319 	}
17320 
17321 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17322 	return (0);
17323 }
17324 
17325 /* TCP status report triggered via the Named Dispatch mechanism. */
17326 /* ARGSUSED */
17327 static int
17328 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17329 {
17330 	connf_t	*connfp;
17331 	conn_t	*connp;
17332 	tcp_t	*tcp;
17333 	int	i;
17334 	zoneid_t zoneid;
17335 	tcp_stack_t *tcps;
17336 	ip_stack_t *ipst;
17337 
17338 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17339 	tcps = Q_TO_TCP(q)->tcp_tcps;
17340 	ipst = tcps->tcps_netstack->netstack_ip;
17341 
17342 	/* Refer to comments in tcp_status_report(). */
17343 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17344 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17345 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17346 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17347 			return (0);
17348 		}
17349 	}
17350 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17351 		/* The following may work even if we cannot get a large buf. */
17352 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17353 		return (0);
17354 	}
17355 
17356 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
17357 	    ipst->ips_ipcl_conn_fanout_size);
17358 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17359 
17360 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
17361 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
17362 		connp = NULL;
17363 		while ((connp =
17364 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17365 			tcp = connp->conn_tcp;
17366 			if (zoneid != GLOBAL_ZONEID &&
17367 			    zoneid != connp->conn_zoneid)
17368 				continue;
17369 			tcp_report_item(mp->b_cont, tcp, i,
17370 			    Q_TO_TCP(q), cr);
17371 		}
17372 	}
17373 
17374 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17375 	return (0);
17376 }
17377 
17378 /* TCP status report triggered via the Named Dispatch mechanism. */
17379 /* ARGSUSED */
17380 static int
17381 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17382 {
17383 	tf_t	*tf;
17384 	tcp_t	*tcp;
17385 	int	i;
17386 	zoneid_t zoneid;
17387 	tcp_stack_t	*tcps;
17388 
17389 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17390 	tcps = Q_TO_TCP(q)->tcp_tcps;
17391 
17392 	/* Refer to comments in tcp_status_report(). */
17393 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17394 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17395 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17396 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17397 			return (0);
17398 		}
17399 	}
17400 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17401 		/* The following may work even if we cannot get a large buf. */
17402 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17403 		return (0);
17404 	}
17405 
17406 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17407 
17408 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
17409 		tf = &tcps->tcps_acceptor_fanout[i];
17410 		mutex_enter(&tf->tf_lock);
17411 		for (tcp = tf->tf_tcp; tcp != NULL;
17412 		    tcp = tcp->tcp_acceptor_hash) {
17413 			if (zoneid != GLOBAL_ZONEID &&
17414 			    zoneid != tcp->tcp_connp->conn_zoneid)
17415 				continue;
17416 			tcp_report_item(mp->b_cont, tcp, i,
17417 			    Q_TO_TCP(q), cr);
17418 		}
17419 		mutex_exit(&tf->tf_lock);
17420 	}
17421 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17422 	return (0);
17423 }
17424 
17425 /*
17426  * tcp_timer is the timer service routine.  It handles the retransmission,
17427  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17428  * from the state of the tcp instance what kind of action needs to be done
17429  * at the time it is called.
17430  */
17431 static void
17432 tcp_timer(void *arg)
17433 {
17434 	mblk_t		*mp;
17435 	clock_t		first_threshold;
17436 	clock_t		second_threshold;
17437 	clock_t		ms;
17438 	uint32_t	mss;
17439 	conn_t		*connp = (conn_t *)arg;
17440 	tcp_t		*tcp = connp->conn_tcp;
17441 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17442 
17443 	tcp->tcp_timer_tid = 0;
17444 
17445 	if (tcp->tcp_fused)
17446 		return;
17447 
17448 	first_threshold =  tcp->tcp_first_timer_threshold;
17449 	second_threshold = tcp->tcp_second_timer_threshold;
17450 	switch (tcp->tcp_state) {
17451 	case TCPS_IDLE:
17452 	case TCPS_BOUND:
17453 	case TCPS_LISTEN:
17454 		return;
17455 	case TCPS_SYN_RCVD: {
17456 		tcp_t	*listener = tcp->tcp_listener;
17457 
17458 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17459 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17460 			/* it's our first timeout */
17461 			tcp->tcp_syn_rcvd_timeout = 1;
17462 			mutex_enter(&listener->tcp_eager_lock);
17463 			listener->tcp_syn_rcvd_timeout++;
17464 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17465 				/*
17466 				 * Make this eager available for drop if we
17467 				 * need to drop one to accomodate a new
17468 				 * incoming SYN request.
17469 				 */
17470 				MAKE_DROPPABLE(listener, tcp);
17471 			}
17472 			if (!listener->tcp_syn_defense &&
17473 			    (listener->tcp_syn_rcvd_timeout >
17474 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17475 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17476 				/* We may be under attack. Put on a defense. */
17477 				listener->tcp_syn_defense = B_TRUE;
17478 				cmn_err(CE_WARN, "High TCP connect timeout "
17479 				    "rate! System (port %d) may be under a "
17480 				    "SYN flood attack!",
17481 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17482 
17483 				listener->tcp_ip_addr_cache = kmem_zalloc(
17484 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17485 				    KM_NOSLEEP);
17486 			}
17487 			mutex_exit(&listener->tcp_eager_lock);
17488 		} else if (listener != NULL) {
17489 			mutex_enter(&listener->tcp_eager_lock);
17490 			tcp->tcp_syn_rcvd_timeout++;
17491 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17492 			    !tcp->tcp_closemp_used) {
17493 				/*
17494 				 * This is our second timeout. Put the tcp in
17495 				 * the list of droppable eagers to allow it to
17496 				 * be dropped, if needed. We don't check
17497 				 * whether tcp_dontdrop is set or not to
17498 				 * protect ourselve from a SYN attack where a
17499 				 * remote host can spoof itself as one of the
17500 				 * good IP source and continue to hold
17501 				 * resources too long.
17502 				 */
17503 				MAKE_DROPPABLE(listener, tcp);
17504 			}
17505 			mutex_exit(&listener->tcp_eager_lock);
17506 		}
17507 	}
17508 		/* FALLTHRU */
17509 	case TCPS_SYN_SENT:
17510 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17511 		second_threshold = tcp->tcp_second_ctimer_threshold;
17512 		break;
17513 	case TCPS_ESTABLISHED:
17514 	case TCPS_FIN_WAIT_1:
17515 	case TCPS_CLOSING:
17516 	case TCPS_CLOSE_WAIT:
17517 	case TCPS_LAST_ACK:
17518 		/* If we have data to rexmit */
17519 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17520 			clock_t	time_to_wait;
17521 
17522 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17523 			if (!tcp->tcp_xmit_head)
17524 				break;
17525 			time_to_wait = lbolt -
17526 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17527 			time_to_wait = tcp->tcp_rto -
17528 			    TICK_TO_MSEC(time_to_wait);
17529 			/*
17530 			 * If the timer fires too early, 1 clock tick earlier,
17531 			 * restart the timer.
17532 			 */
17533 			if (time_to_wait > msec_per_tick) {
17534 				TCP_STAT(tcps, tcp_timer_fire_early);
17535 				TCP_TIMER_RESTART(tcp, time_to_wait);
17536 				return;
17537 			}
17538 			/*
17539 			 * When we probe zero windows, we force the swnd open.
17540 			 * If our peer acks with a closed window swnd will be
17541 			 * set to zero by tcp_rput(). As long as we are
17542 			 * receiving acks tcp_rput will
17543 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17544 			 * first and second interval actions.  NOTE: the timer
17545 			 * interval is allowed to continue its exponential
17546 			 * backoff.
17547 			 */
17548 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17549 				if (tcp->tcp_debug) {
17550 					(void) strlog(TCP_MOD_ID, 0, 1,
17551 					    SL_TRACE, "tcp_timer: zero win");
17552 				}
17553 			} else {
17554 				/*
17555 				 * After retransmission, we need to do
17556 				 * slow start.  Set the ssthresh to one
17557 				 * half of current effective window and
17558 				 * cwnd to one MSS.  Also reset
17559 				 * tcp_cwnd_cnt.
17560 				 *
17561 				 * Note that if tcp_ssthresh is reduced because
17562 				 * of ECN, do not reduce it again unless it is
17563 				 * already one window of data away (tcp_cwr
17564 				 * should then be cleared) or this is a
17565 				 * timeout for a retransmitted segment.
17566 				 */
17567 				uint32_t npkt;
17568 
17569 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17570 					npkt = ((tcp->tcp_timer_backoff ?
17571 					    tcp->tcp_cwnd_ssthresh :
17572 					    tcp->tcp_snxt -
17573 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17574 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17575 					    tcp->tcp_mss;
17576 				}
17577 				tcp->tcp_cwnd = tcp->tcp_mss;
17578 				tcp->tcp_cwnd_cnt = 0;
17579 				if (tcp->tcp_ecn_ok) {
17580 					tcp->tcp_cwr = B_TRUE;
17581 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17582 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17583 				}
17584 			}
17585 			break;
17586 		}
17587 		/*
17588 		 * We have something to send yet we cannot send.  The
17589 		 * reason can be:
17590 		 *
17591 		 * 1. Zero send window: we need to do zero window probe.
17592 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17593 		 * segments.
17594 		 * 3. SWS avoidance: receiver may have shrunk window,
17595 		 * reset our knowledge.
17596 		 *
17597 		 * Note that condition 2 can happen with either 1 or
17598 		 * 3.  But 1 and 3 are exclusive.
17599 		 */
17600 		if (tcp->tcp_unsent != 0) {
17601 			if (tcp->tcp_cwnd == 0) {
17602 				/*
17603 				 * Set tcp_cwnd to 1 MSS so that a
17604 				 * new segment can be sent out.  We
17605 				 * are "clocking out" new data when
17606 				 * the network is really congested.
17607 				 */
17608 				ASSERT(tcp->tcp_ecn_ok);
17609 				tcp->tcp_cwnd = tcp->tcp_mss;
17610 			}
17611 			if (tcp->tcp_swnd == 0) {
17612 				/* Extend window for zero window probe */
17613 				tcp->tcp_swnd++;
17614 				tcp->tcp_zero_win_probe = B_TRUE;
17615 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17616 			} else {
17617 				/*
17618 				 * Handle timeout from sender SWS avoidance.
17619 				 * Reset our knowledge of the max send window
17620 				 * since the receiver might have reduced its
17621 				 * receive buffer.  Avoid setting tcp_max_swnd
17622 				 * to one since that will essentially disable
17623 				 * the SWS checks.
17624 				 *
17625 				 * Note that since we don't have a SWS
17626 				 * state variable, if the timeout is set
17627 				 * for ECN but not for SWS, this
17628 				 * code will also be executed.  This is
17629 				 * fine as tcp_max_swnd is updated
17630 				 * constantly and it will not affect
17631 				 * anything.
17632 				 */
17633 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17634 			}
17635 			tcp_wput_data(tcp, NULL, B_FALSE);
17636 			return;
17637 		}
17638 		/* Is there a FIN that needs to be to re retransmitted? */
17639 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17640 		    !tcp->tcp_fin_acked)
17641 			break;
17642 		/* Nothing to do, return without restarting timer. */
17643 		TCP_STAT(tcps, tcp_timer_fire_miss);
17644 		return;
17645 	case TCPS_FIN_WAIT_2:
17646 		/*
17647 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17648 		 * We waited some time for for peer's FIN, but it hasn't
17649 		 * arrived.  We flush the connection now to avoid
17650 		 * case where the peer has rebooted.
17651 		 */
17652 		if (TCP_IS_DETACHED(tcp)) {
17653 			(void) tcp_clean_death(tcp, 0, 23);
17654 		} else {
17655 			TCP_TIMER_RESTART(tcp,
17656 			    tcps->tcps_fin_wait_2_flush_interval);
17657 		}
17658 		return;
17659 	case TCPS_TIME_WAIT:
17660 		(void) tcp_clean_death(tcp, 0, 24);
17661 		return;
17662 	default:
17663 		if (tcp->tcp_debug) {
17664 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17665 			    "tcp_timer: strange state (%d) %s",
17666 			    tcp->tcp_state, tcp_display(tcp, NULL,
17667 			    DISP_PORT_ONLY));
17668 		}
17669 		return;
17670 	}
17671 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17672 		/*
17673 		 * For zero window probe, we need to send indefinitely,
17674 		 * unless we have not heard from the other side for some
17675 		 * time...
17676 		 */
17677 		if ((tcp->tcp_zero_win_probe == 0) ||
17678 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17679 		    second_threshold)) {
17680 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17681 			/*
17682 			 * If TCP is in SYN_RCVD state, send back a
17683 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17684 			 * should be zero in TCPS_SYN_RCVD state.
17685 			 */
17686 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17687 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17688 				    "in SYN_RCVD",
17689 				    tcp, tcp->tcp_snxt,
17690 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17691 			}
17692 			(void) tcp_clean_death(tcp,
17693 			    tcp->tcp_client_errno ?
17694 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17695 			return;
17696 		} else {
17697 			/*
17698 			 * Set tcp_ms_we_have_waited to second_threshold
17699 			 * so that in next timeout, we will do the above
17700 			 * check (lbolt - tcp_last_recv_time).  This is
17701 			 * also to avoid overflow.
17702 			 *
17703 			 * We don't need to decrement tcp_timer_backoff
17704 			 * to avoid overflow because it will be decremented
17705 			 * later if new timeout value is greater than
17706 			 * tcp_rexmit_interval_max.  In the case when
17707 			 * tcp_rexmit_interval_max is greater than
17708 			 * second_threshold, it means that we will wait
17709 			 * longer than second_threshold to send the next
17710 			 * window probe.
17711 			 */
17712 			tcp->tcp_ms_we_have_waited = second_threshold;
17713 		}
17714 	} else if (ms > first_threshold) {
17715 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17716 		    tcp->tcp_xmit_head != NULL) {
17717 			tcp->tcp_xmit_head =
17718 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17719 		}
17720 		/*
17721 		 * We have been retransmitting for too long...  The RTT
17722 		 * we calculated is probably incorrect.  Reinitialize it.
17723 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17724 		 * tcp_rtt_update so that we won't accidentally cache a
17725 		 * bad value.  But only do this if this is not a zero
17726 		 * window probe.
17727 		 */
17728 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17729 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17730 			    (tcp->tcp_rtt_sa >> 5);
17731 			tcp->tcp_rtt_sa = 0;
17732 			tcp_ip_notify(tcp);
17733 			tcp->tcp_rtt_update = 0;
17734 		}
17735 	}
17736 	tcp->tcp_timer_backoff++;
17737 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17738 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17739 	    tcps->tcps_rexmit_interval_min) {
17740 		/*
17741 		 * This means the original RTO is tcp_rexmit_interval_min.
17742 		 * So we will use tcp_rexmit_interval_min as the RTO value
17743 		 * and do the backoff.
17744 		 */
17745 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17746 	} else {
17747 		ms <<= tcp->tcp_timer_backoff;
17748 	}
17749 	if (ms > tcps->tcps_rexmit_interval_max) {
17750 		ms = tcps->tcps_rexmit_interval_max;
17751 		/*
17752 		 * ms is at max, decrement tcp_timer_backoff to avoid
17753 		 * overflow.
17754 		 */
17755 		tcp->tcp_timer_backoff--;
17756 	}
17757 	tcp->tcp_ms_we_have_waited += ms;
17758 	if (tcp->tcp_zero_win_probe == 0) {
17759 		tcp->tcp_rto = ms;
17760 	}
17761 	TCP_TIMER_RESTART(tcp, ms);
17762 	/*
17763 	 * This is after a timeout and tcp_rto is backed off.  Set
17764 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17765 	 * restart the timer with a correct value.
17766 	 */
17767 	tcp->tcp_set_timer = 1;
17768 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17769 	if (mss > tcp->tcp_mss)
17770 		mss = tcp->tcp_mss;
17771 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17772 		mss = tcp->tcp_swnd;
17773 
17774 	if ((mp = tcp->tcp_xmit_head) != NULL)
17775 		mp->b_prev = (mblk_t *)lbolt;
17776 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17777 	    B_TRUE);
17778 
17779 	/*
17780 	 * When slow start after retransmission begins, start with
17781 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17782 	 * start phase.  tcp_snd_burst controls how many segments
17783 	 * can be sent because of an ack.
17784 	 */
17785 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17786 	tcp->tcp_snd_burst = TCP_CWND_SS;
17787 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17788 	    (tcp->tcp_unsent == 0)) {
17789 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17790 	} else {
17791 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17792 	}
17793 	tcp->tcp_rexmit = B_TRUE;
17794 	tcp->tcp_dupack_cnt = 0;
17795 
17796 	/*
17797 	 * Remove all rexmit SACK blk to start from fresh.
17798 	 */
17799 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17800 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17801 		tcp->tcp_num_notsack_blk = 0;
17802 		tcp->tcp_cnt_notsack_list = 0;
17803 	}
17804 	if (mp == NULL) {
17805 		return;
17806 	}
17807 	/* Attach credentials to retransmitted initial SYNs. */
17808 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17809 		mblk_setcred(mp, tcp->tcp_cred);
17810 		DB_CPID(mp) = tcp->tcp_cpid;
17811 	}
17812 
17813 	tcp->tcp_csuna = tcp->tcp_snxt;
17814 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17815 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17816 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17817 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17818 
17819 }
17820 
17821 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17822 static void
17823 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17824 {
17825 	conn_t	*connp;
17826 
17827 	switch (tcp->tcp_state) {
17828 	case TCPS_BOUND:
17829 	case TCPS_LISTEN:
17830 		break;
17831 	default:
17832 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17833 		return;
17834 	}
17835 
17836 	/*
17837 	 * Need to clean up all the eagers since after the unbind, segments
17838 	 * will no longer be delivered to this listener stream.
17839 	 */
17840 	mutex_enter(&tcp->tcp_eager_lock);
17841 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17842 		tcp_eager_cleanup(tcp, 0);
17843 	}
17844 	mutex_exit(&tcp->tcp_eager_lock);
17845 
17846 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17847 		tcp->tcp_ipha->ipha_src = 0;
17848 	} else {
17849 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17850 	}
17851 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17852 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17853 	tcp_bind_hash_remove(tcp);
17854 	tcp->tcp_state = TCPS_IDLE;
17855 	tcp->tcp_mdt = B_FALSE;
17856 	/* Send M_FLUSH according to TPI */
17857 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17858 	connp = tcp->tcp_connp;
17859 	connp->conn_mdt_ok = B_FALSE;
17860 	ipcl_hash_remove(connp);
17861 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17862 	mp = mi_tpi_ok_ack_alloc(mp);
17863 	putnext(tcp->tcp_rq, mp);
17864 }
17865 
17866 /*
17867  * Don't let port fall into the privileged range.
17868  * Since the extra privileged ports can be arbitrary we also
17869  * ensure that we exclude those from consideration.
17870  * tcp_g_epriv_ports is not sorted thus we loop over it until
17871  * there are no changes.
17872  *
17873  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17874  * but instead the code relies on:
17875  * - the fact that the address of the array and its size never changes
17876  * - the atomic assignment of the elements of the array
17877  *
17878  * Returns 0 if there are no more ports available.
17879  *
17880  * TS note: skip multilevel ports.
17881  */
17882 static in_port_t
17883 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17884 {
17885 	int i;
17886 	boolean_t restart = B_FALSE;
17887 	tcp_stack_t *tcps = tcp->tcp_tcps;
17888 
17889 	if (random && tcp_random_anon_port != 0) {
17890 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17891 		    sizeof (in_port_t));
17892 		/*
17893 		 * Unless changed by a sys admin, the smallest anon port
17894 		 * is 32768 and the largest anon port is 65535.  It is
17895 		 * very likely (50%) for the random port to be smaller
17896 		 * than the smallest anon port.  When that happens,
17897 		 * add port % (anon port range) to the smallest anon
17898 		 * port to get the random port.  It should fall into the
17899 		 * valid anon port range.
17900 		 */
17901 		if (port < tcps->tcps_smallest_anon_port) {
17902 			port = tcps->tcps_smallest_anon_port +
17903 			    port % (tcps->tcps_largest_anon_port -
17904 			    tcps->tcps_smallest_anon_port);
17905 		}
17906 	}
17907 
17908 retry:
17909 	if (port < tcps->tcps_smallest_anon_port)
17910 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17911 
17912 	if (port > tcps->tcps_largest_anon_port) {
17913 		if (restart)
17914 			return (0);
17915 		restart = B_TRUE;
17916 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17917 	}
17918 
17919 	if (port < tcps->tcps_smallest_nonpriv_port)
17920 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17921 
17922 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17923 		if (port == tcps->tcps_g_epriv_ports[i]) {
17924 			port++;
17925 			/*
17926 			 * Make sure whether the port is in the
17927 			 * valid range.
17928 			 */
17929 			goto retry;
17930 		}
17931 	}
17932 	if (is_system_labeled() &&
17933 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17934 	    IPPROTO_TCP, B_TRUE)) != 0) {
17935 		port = i;
17936 		goto retry;
17937 	}
17938 	return (port);
17939 }
17940 
17941 /*
17942  * Return the next anonymous port in the privileged port range for
17943  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17944  * downwards.  This is the same behavior as documented in the userland
17945  * library call rresvport(3N).
17946  *
17947  * TS note: skip multilevel ports.
17948  */
17949 static in_port_t
17950 tcp_get_next_priv_port(const tcp_t *tcp)
17951 {
17952 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17953 	in_port_t nextport;
17954 	boolean_t restart = B_FALSE;
17955 	tcp_stack_t *tcps = tcp->tcp_tcps;
17956 retry:
17957 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17958 	    next_priv_port >= IPPORT_RESERVED) {
17959 		next_priv_port = IPPORT_RESERVED - 1;
17960 		if (restart)
17961 			return (0);
17962 		restart = B_TRUE;
17963 	}
17964 	if (is_system_labeled() &&
17965 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17966 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17967 		next_priv_port = nextport;
17968 		goto retry;
17969 	}
17970 	return (next_priv_port--);
17971 }
17972 
17973 /* The write side r/w procedure. */
17974 
17975 #if CCS_STATS
17976 struct {
17977 	struct {
17978 		int64_t count, bytes;
17979 	} tot, hit;
17980 } wrw_stats;
17981 #endif
17982 
17983 /*
17984  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17985  * messages.
17986  */
17987 /* ARGSUSED */
17988 static void
17989 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17990 {
17991 	conn_t	*connp = (conn_t *)arg;
17992 	tcp_t	*tcp = connp->conn_tcp;
17993 	queue_t	*q = tcp->tcp_wq;
17994 
17995 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17996 	/*
17997 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17998 	 * Once the close starts, streamhead and sockfs will not let any data
17999 	 * packets come down (close ensures that there are no threads using the
18000 	 * queue and no new threads will come down) but since qprocsoff()
18001 	 * hasn't happened yet, a M_FLUSH or some non data message might
18002 	 * get reflected back (in response to our own FLUSHRW) and get
18003 	 * processed after tcp_close() is done. The conn would still be valid
18004 	 * because a ref would have added but we need to check the state
18005 	 * before actually processing the packet.
18006 	 */
18007 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
18008 		freemsg(mp);
18009 		return;
18010 	}
18011 
18012 	switch (DB_TYPE(mp)) {
18013 	case M_IOCDATA:
18014 		tcp_wput_iocdata(tcp, mp);
18015 		break;
18016 	case M_FLUSH:
18017 		tcp_wput_flush(tcp, mp);
18018 		break;
18019 	default:
18020 		CALL_IP_WPUT(connp, q, mp);
18021 		break;
18022 	}
18023 }
18024 
18025 /*
18026  * The TCP fast path write put procedure.
18027  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
18028  */
18029 /* ARGSUSED */
18030 void
18031 tcp_output(void *arg, mblk_t *mp, void *arg2)
18032 {
18033 	int		len;
18034 	int		hdrlen;
18035 	int		plen;
18036 	mblk_t		*mp1;
18037 	uchar_t		*rptr;
18038 	uint32_t	snxt;
18039 	tcph_t		*tcph;
18040 	struct datab	*db;
18041 	uint32_t	suna;
18042 	uint32_t	mss;
18043 	ipaddr_t	*dst;
18044 	ipaddr_t	*src;
18045 	uint32_t	sum;
18046 	int		usable;
18047 	conn_t		*connp = (conn_t *)arg;
18048 	tcp_t		*tcp = connp->conn_tcp;
18049 	uint32_t	msize;
18050 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18051 
18052 	/*
18053 	 * Try and ASSERT the minimum possible references on the
18054 	 * conn early enough. Since we are executing on write side,
18055 	 * the connection is obviously not detached and that means
18056 	 * there is a ref each for TCP and IP. Since we are behind
18057 	 * the squeue, the minimum references needed are 3. If the
18058 	 * conn is in classifier hash list, there should be an
18059 	 * extra ref for that (we check both the possibilities).
18060 	 */
18061 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18062 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18063 
18064 	ASSERT(DB_TYPE(mp) == M_DATA);
18065 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
18066 
18067 	mutex_enter(&tcp->tcp_non_sq_lock);
18068 	tcp->tcp_squeue_bytes -= msize;
18069 	mutex_exit(&tcp->tcp_non_sq_lock);
18070 
18071 	/* Bypass tcp protocol for fused tcp loopback */
18072 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
18073 		return;
18074 
18075 	mss = tcp->tcp_mss;
18076 	if (tcp->tcp_xmit_zc_clean)
18077 		mp = tcp_zcopy_backoff(tcp, mp, 0);
18078 
18079 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18080 	len = (int)(mp->b_wptr - mp->b_rptr);
18081 
18082 	/*
18083 	 * Criteria for fast path:
18084 	 *
18085 	 *   1. no unsent data
18086 	 *   2. single mblk in request
18087 	 *   3. connection established
18088 	 *   4. data in mblk
18089 	 *   5. len <= mss
18090 	 *   6. no tcp_valid bits
18091 	 */
18092 	if ((tcp->tcp_unsent != 0) ||
18093 	    (tcp->tcp_cork) ||
18094 	    (mp->b_cont != NULL) ||
18095 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
18096 	    (len == 0) ||
18097 	    (len > mss) ||
18098 	    (tcp->tcp_valid_bits != 0)) {
18099 		tcp_wput_data(tcp, mp, B_FALSE);
18100 		return;
18101 	}
18102 
18103 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
18104 	ASSERT(tcp->tcp_fin_sent == 0);
18105 
18106 	/* queue new packet onto retransmission queue */
18107 	if (tcp->tcp_xmit_head == NULL) {
18108 		tcp->tcp_xmit_head = mp;
18109 	} else {
18110 		tcp->tcp_xmit_last->b_cont = mp;
18111 	}
18112 	tcp->tcp_xmit_last = mp;
18113 	tcp->tcp_xmit_tail = mp;
18114 
18115 	/* find out how much we can send */
18116 	/* BEGIN CSTYLED */
18117 	/*
18118 	 *    un-acked           usable
18119 	 *  |--------------|-----------------|
18120 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
18121 	 */
18122 	/* END CSTYLED */
18123 
18124 	/* start sending from tcp_snxt */
18125 	snxt = tcp->tcp_snxt;
18126 
18127 	/*
18128 	 * Check to see if this connection has been idled for some
18129 	 * time and no ACK is expected.  If it is, we need to slow
18130 	 * start again to get back the connection's "self-clock" as
18131 	 * described in VJ's paper.
18132 	 *
18133 	 * Refer to the comment in tcp_mss_set() for the calculation
18134 	 * of tcp_cwnd after idle.
18135 	 */
18136 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18137 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18138 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
18139 	}
18140 
18141 	usable = tcp->tcp_swnd;		/* tcp window size */
18142 	if (usable > tcp->tcp_cwnd)
18143 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
18144 	usable -= snxt;		/* subtract stuff already sent */
18145 	suna = tcp->tcp_suna;
18146 	usable += suna;
18147 	/* usable can be < 0 if the congestion window is smaller */
18148 	if (len > usable) {
18149 		/* Can't send complete M_DATA in one shot */
18150 		goto slow;
18151 	}
18152 
18153 	mutex_enter(&tcp->tcp_non_sq_lock);
18154 	if (tcp->tcp_flow_stopped &&
18155 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18156 		tcp_clrqfull(tcp);
18157 	}
18158 	mutex_exit(&tcp->tcp_non_sq_lock);
18159 
18160 	/*
18161 	 * determine if anything to send (Nagle).
18162 	 *
18163 	 *   1. len < tcp_mss (i.e. small)
18164 	 *   2. unacknowledged data present
18165 	 *   3. len < nagle limit
18166 	 *   4. last packet sent < nagle limit (previous packet sent)
18167 	 */
18168 	if ((len < mss) && (snxt != suna) &&
18169 	    (len < (int)tcp->tcp_naglim) &&
18170 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
18171 		/*
18172 		 * This was the first unsent packet and normally
18173 		 * mss < xmit_hiwater so there is no need to worry
18174 		 * about flow control. The next packet will go
18175 		 * through the flow control check in tcp_wput_data().
18176 		 */
18177 		/* leftover work from above */
18178 		tcp->tcp_unsent = len;
18179 		tcp->tcp_xmit_tail_unsent = len;
18180 
18181 		return;
18182 	}
18183 
18184 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
18185 
18186 	if (snxt == suna) {
18187 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18188 	}
18189 
18190 	/* we have always sent something */
18191 	tcp->tcp_rack_cnt = 0;
18192 
18193 	tcp->tcp_snxt = snxt + len;
18194 	tcp->tcp_rack = tcp->tcp_rnxt;
18195 
18196 	if ((mp1 = dupb(mp)) == 0)
18197 		goto no_memory;
18198 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
18199 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
18200 
18201 	/* adjust tcp header information */
18202 	tcph = tcp->tcp_tcph;
18203 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
18204 
18205 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
18206 	sum = (sum >> 16) + (sum & 0xFFFF);
18207 	U16_TO_ABE16(sum, tcph->th_sum);
18208 
18209 	U32_TO_ABE32(snxt, tcph->th_seq);
18210 
18211 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
18212 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
18213 	BUMP_LOCAL(tcp->tcp_obsegs);
18214 
18215 	/* Update the latest receive window size in TCP header. */
18216 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18217 	    tcph->th_win);
18218 
18219 	tcp->tcp_last_sent_len = (ushort_t)len;
18220 
18221 	plen = len + tcp->tcp_hdr_len;
18222 
18223 	if (tcp->tcp_ipversion == IPV4_VERSION) {
18224 		tcp->tcp_ipha->ipha_length = htons(plen);
18225 	} else {
18226 		tcp->tcp_ip6h->ip6_plen = htons(plen -
18227 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
18228 	}
18229 
18230 	/* see if we need to allocate a mblk for the headers */
18231 	hdrlen = tcp->tcp_hdr_len;
18232 	rptr = mp1->b_rptr - hdrlen;
18233 	db = mp1->b_datap;
18234 	if ((db->db_ref != 2) || rptr < db->db_base ||
18235 	    (!OK_32PTR(rptr))) {
18236 		/* NOTE: we assume allocb returns an OK_32PTR */
18237 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
18238 		    tcps->tcps_wroff_xtra, BPRI_MED);
18239 		if (!mp) {
18240 			freemsg(mp1);
18241 			goto no_memory;
18242 		}
18243 		mp->b_cont = mp1;
18244 		mp1 = mp;
18245 		/* Leave room for Link Level header */
18246 		/* hdrlen = tcp->tcp_hdr_len; */
18247 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
18248 		mp1->b_wptr = &rptr[hdrlen];
18249 	}
18250 	mp1->b_rptr = rptr;
18251 
18252 	/* Fill in the timestamp option. */
18253 	if (tcp->tcp_snd_ts_ok) {
18254 		U32_TO_BE32((uint32_t)lbolt,
18255 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
18256 		U32_TO_BE32(tcp->tcp_ts_recent,
18257 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
18258 	} else {
18259 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18260 	}
18261 
18262 	/* copy header into outgoing packet */
18263 	dst = (ipaddr_t *)rptr;
18264 	src = (ipaddr_t *)tcp->tcp_iphc;
18265 	dst[0] = src[0];
18266 	dst[1] = src[1];
18267 	dst[2] = src[2];
18268 	dst[3] = src[3];
18269 	dst[4] = src[4];
18270 	dst[5] = src[5];
18271 	dst[6] = src[6];
18272 	dst[7] = src[7];
18273 	dst[8] = src[8];
18274 	dst[9] = src[9];
18275 	if (hdrlen -= 40) {
18276 		hdrlen >>= 2;
18277 		dst += 10;
18278 		src += 10;
18279 		do {
18280 			*dst++ = *src++;
18281 		} while (--hdrlen);
18282 	}
18283 
18284 	/*
18285 	 * Set the ECN info in the TCP header.  Note that this
18286 	 * is not the template header.
18287 	 */
18288 	if (tcp->tcp_ecn_ok) {
18289 		SET_ECT(tcp, rptr);
18290 
18291 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18292 		if (tcp->tcp_ecn_echo_on)
18293 			tcph->th_flags[0] |= TH_ECE;
18294 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18295 			tcph->th_flags[0] |= TH_CWR;
18296 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18297 		}
18298 	}
18299 
18300 	if (tcp->tcp_ip_forward_progress) {
18301 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
18302 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
18303 		tcp->tcp_ip_forward_progress = B_FALSE;
18304 	}
18305 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
18306 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
18307 	return;
18308 
18309 	/*
18310 	 * If we ran out of memory, we pretend to have sent the packet
18311 	 * and that it was lost on the wire.
18312 	 */
18313 no_memory:
18314 	return;
18315 
18316 slow:
18317 	/* leftover work from above */
18318 	tcp->tcp_unsent = len;
18319 	tcp->tcp_xmit_tail_unsent = len;
18320 	tcp_wput_data(tcp, NULL, B_FALSE);
18321 }
18322 
18323 /*
18324  * The function called through squeue to get behind eager's perimeter to
18325  * finish the accept processing.
18326  */
18327 /* ARGSUSED */
18328 void
18329 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
18330 {
18331 	conn_t			*connp = (conn_t *)arg;
18332 	tcp_t			*tcp = connp->conn_tcp;
18333 	queue_t			*q = tcp->tcp_rq;
18334 	mblk_t			*mp1;
18335 	mblk_t			*stropt_mp = mp;
18336 	struct  stroptions	*stropt;
18337 	uint_t			thwin;
18338 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18339 
18340 	/*
18341 	 * Drop the eager's ref on the listener, that was placed when
18342 	 * this eager began life in tcp_conn_request.
18343 	 */
18344 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
18345 
18346 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
18347 		/*
18348 		 * Someone blewoff the eager before we could finish
18349 		 * the accept.
18350 		 *
18351 		 * The only reason eager exists it because we put in
18352 		 * a ref on it when conn ind went up. We need to send
18353 		 * a disconnect indication up while the last reference
18354 		 * on the eager will be dropped by the squeue when we
18355 		 * return.
18356 		 */
18357 		ASSERT(tcp->tcp_listener == NULL);
18358 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
18359 			struct	T_discon_ind	*tdi;
18360 
18361 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
18362 			/*
18363 			 * Let us reuse the incoming mblk to avoid memory
18364 			 * allocation failure problems. We know that the
18365 			 * size of the incoming mblk i.e. stroptions is greater
18366 			 * than sizeof T_discon_ind. So the reallocb below
18367 			 * can't fail.
18368 			 */
18369 			freemsg(mp->b_cont);
18370 			mp->b_cont = NULL;
18371 			ASSERT(DB_REF(mp) == 1);
18372 			mp = reallocb(mp, sizeof (struct T_discon_ind),
18373 			    B_FALSE);
18374 			ASSERT(mp != NULL);
18375 			DB_TYPE(mp) = M_PROTO;
18376 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
18377 			tdi = (struct T_discon_ind *)mp->b_rptr;
18378 			if (tcp->tcp_issocket) {
18379 				tdi->DISCON_reason = ECONNREFUSED;
18380 				tdi->SEQ_number = 0;
18381 			} else {
18382 				tdi->DISCON_reason = ENOPROTOOPT;
18383 				tdi->SEQ_number =
18384 				    tcp->tcp_conn_req_seqnum;
18385 			}
18386 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
18387 			putnext(q, mp);
18388 		} else {
18389 			freemsg(mp);
18390 		}
18391 		if (tcp->tcp_hard_binding) {
18392 			tcp->tcp_hard_binding = B_FALSE;
18393 			tcp->tcp_hard_bound = B_TRUE;
18394 		}
18395 		tcp->tcp_detached = B_FALSE;
18396 		return;
18397 	}
18398 
18399 	mp1 = stropt_mp->b_cont;
18400 	stropt_mp->b_cont = NULL;
18401 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
18402 	stropt = (struct stroptions *)stropt_mp->b_rptr;
18403 
18404 	while (mp1 != NULL) {
18405 		mp = mp1;
18406 		mp1 = mp1->b_cont;
18407 		mp->b_cont = NULL;
18408 		tcp->tcp_drop_opt_ack_cnt++;
18409 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
18410 	}
18411 	mp = NULL;
18412 
18413 	/*
18414 	 * For a loopback connection with tcp_direct_sockfs on, note that
18415 	 * we don't have to protect tcp_rcv_list yet because synchronous
18416 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18417 	 * possibly race with us.
18418 	 */
18419 
18420 	/*
18421 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18422 	 * properly.  This is the first time we know of the acceptor'
18423 	 * queue.  So we do it here.
18424 	 */
18425 	if (tcp->tcp_rcv_list == NULL) {
18426 		/*
18427 		 * Recv queue is empty, tcp_rwnd should not have changed.
18428 		 * That means it should be equal to the listener's tcp_rwnd.
18429 		 */
18430 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18431 	} else {
18432 #ifdef DEBUG
18433 		uint_t cnt = 0;
18434 
18435 		mp1 = tcp->tcp_rcv_list;
18436 		while ((mp = mp1) != NULL) {
18437 			mp1 = mp->b_next;
18438 			cnt += msgdsize(mp);
18439 		}
18440 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18441 #endif
18442 		/* There is some data, add them back to get the max. */
18443 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18444 	}
18445 
18446 	stropt->so_flags = SO_HIWAT;
18447 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18448 
18449 	stropt->so_flags |= SO_MAXBLK;
18450 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18451 
18452 	/*
18453 	 * This is the first time we run on the correct
18454 	 * queue after tcp_accept. So fix all the q parameters
18455 	 * here.
18456 	 */
18457 	/* Allocate room for SACK options if needed. */
18458 	stropt->so_flags |= SO_WROFF;
18459 	if (tcp->tcp_fused) {
18460 		ASSERT(tcp->tcp_loopback);
18461 		ASSERT(tcp->tcp_loopback_peer != NULL);
18462 		/*
18463 		 * For fused tcp loopback, set the stream head's write
18464 		 * offset value to zero since we won't be needing any room
18465 		 * for TCP/IP headers.  This would also improve performance
18466 		 * since it would reduce the amount of work done by kmem.
18467 		 * Non-fused tcp loopback case is handled separately below.
18468 		 */
18469 		stropt->so_wroff = 0;
18470 		/*
18471 		 * Record the stream head's high water mark for this endpoint;
18472 		 * this is used for flow-control purposes in tcp_fuse_output().
18473 		 */
18474 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
18475 		/*
18476 		 * Update the peer's transmit parameters according to
18477 		 * our recently calculated high water mark value.
18478 		 */
18479 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18480 	} else if (tcp->tcp_snd_sack_ok) {
18481 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18482 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18483 	} else {
18484 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18485 		    tcps->tcps_wroff_xtra);
18486 	}
18487 
18488 	/*
18489 	 * If this is endpoint is handling SSL, then reserve extra
18490 	 * offset and space at the end.
18491 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18492 	 * overriding the previous setting. The extra cost of signing and
18493 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18494 	 * instead of a single contiguous one by the stream head
18495 	 * largely outweighs the statistical reduction of ACKs, when
18496 	 * applicable. The peer will also save on decryption and verification
18497 	 * costs.
18498 	 */
18499 	if (tcp->tcp_kssl_ctx != NULL) {
18500 		stropt->so_wroff += SSL3_WROFFSET;
18501 
18502 		stropt->so_flags |= SO_TAIL;
18503 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18504 
18505 		stropt->so_flags |= SO_COPYOPT;
18506 		stropt->so_copyopt = ZCVMUNSAFE;
18507 
18508 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18509 	}
18510 
18511 	/* Send the options up */
18512 	putnext(q, stropt_mp);
18513 
18514 	/*
18515 	 * Pass up any data and/or a fin that has been received.
18516 	 *
18517 	 * Adjust receive window in case it had decreased
18518 	 * (because there is data <=> tcp_rcv_list != NULL)
18519 	 * while the connection was detached. Note that
18520 	 * in case the eager was flow-controlled, w/o this
18521 	 * code, the rwnd may never open up again!
18522 	 */
18523 	if (tcp->tcp_rcv_list != NULL) {
18524 		/* We drain directly in case of fused tcp loopback */
18525 		sodirect_t *sodp;
18526 
18527 		if (!tcp->tcp_fused && canputnext(q)) {
18528 			tcp->tcp_rwnd = q->q_hiwat;
18529 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18530 			    << tcp->tcp_rcv_ws;
18531 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18532 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18533 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18534 				tcp_xmit_ctl(NULL,
18535 				    tcp, (tcp->tcp_swnd == 0) ?
18536 				    tcp->tcp_suna : tcp->tcp_snxt,
18537 				    tcp->tcp_rnxt, TH_ACK);
18538 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18539 			}
18540 
18541 		}
18542 
18543 		SOD_PTR_ENTER(tcp, sodp);
18544 		if (sodp != NULL) {
18545 			/* Sodirect, move from rcv_list */
18546 			ASSERT(!tcp->tcp_fused);
18547 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18548 				tcp->tcp_rcv_list = mp->b_next;
18549 				mp->b_next = NULL;
18550 				(void) tcp_rcv_sod_enqueue(tcp, sodp, mp,
18551 				    msgdsize(mp));
18552 			}
18553 			tcp->tcp_rcv_last_head = NULL;
18554 			tcp->tcp_rcv_last_tail = NULL;
18555 			tcp->tcp_rcv_cnt = 0;
18556 			(void) tcp_rcv_sod_wakeup(tcp, sodp);
18557 			/* sod_wakeup() did the mutex_exit() */
18558 		} else {
18559 			/* Not sodirect, drain */
18560 			(void) tcp_rcv_drain(q, tcp);
18561 		}
18562 
18563 		/*
18564 		 * For fused tcp loopback, back-enable peer endpoint
18565 		 * if it's currently flow-controlled.
18566 		 */
18567 		if (tcp->tcp_fused) {
18568 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18569 
18570 			ASSERT(peer_tcp != NULL);
18571 			ASSERT(peer_tcp->tcp_fused);
18572 			/*
18573 			 * In order to change the peer's tcp_flow_stopped,
18574 			 * we need to take locks for both end points. The
18575 			 * highest address is taken first.
18576 			 */
18577 			if (peer_tcp > tcp) {
18578 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18579 				mutex_enter(&tcp->tcp_non_sq_lock);
18580 			} else {
18581 				mutex_enter(&tcp->tcp_non_sq_lock);
18582 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18583 			}
18584 			if (peer_tcp->tcp_flow_stopped) {
18585 				tcp_clrqfull(peer_tcp);
18586 				TCP_STAT(tcps, tcp_fusion_backenabled);
18587 			}
18588 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18589 			mutex_exit(&tcp->tcp_non_sq_lock);
18590 		}
18591 	}
18592 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18593 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18594 		mp = mi_tpi_ordrel_ind();
18595 		if (mp) {
18596 			tcp->tcp_ordrel_done = B_TRUE;
18597 			putnext(q, mp);
18598 			if (tcp->tcp_deferred_clean_death) {
18599 				/*
18600 				 * tcp_clean_death was deferred
18601 				 * for T_ORDREL_IND - do it now
18602 				 */
18603 				(void) tcp_clean_death(tcp,
18604 				    tcp->tcp_client_errno, 21);
18605 				tcp->tcp_deferred_clean_death = B_FALSE;
18606 			}
18607 		} else {
18608 			/*
18609 			 * Run the orderly release in the
18610 			 * service routine.
18611 			 */
18612 			qenable(q);
18613 		}
18614 	}
18615 	if (tcp->tcp_hard_binding) {
18616 		tcp->tcp_hard_binding = B_FALSE;
18617 		tcp->tcp_hard_bound = B_TRUE;
18618 	}
18619 
18620 	tcp->tcp_detached = B_FALSE;
18621 
18622 	/* We can enable synchronous streams now */
18623 	if (tcp->tcp_fused) {
18624 		tcp_fuse_syncstr_enable_pair(tcp);
18625 	}
18626 
18627 	if (tcp->tcp_ka_enabled) {
18628 		tcp->tcp_ka_last_intrvl = 0;
18629 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18630 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18631 	}
18632 
18633 	/*
18634 	 * At this point, eager is fully established and will
18635 	 * have the following references -
18636 	 *
18637 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18638 	 * 1 reference for the squeue which will be dropped by the squeue as
18639 	 *	soon as this function returns.
18640 	 * There will be 1 additonal reference for being in classifier
18641 	 *	hash list provided something bad hasn't happened.
18642 	 */
18643 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18644 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18645 }
18646 
18647 /*
18648  * The function called through squeue to get behind listener's perimeter to
18649  * send a deffered conn_ind.
18650  */
18651 /* ARGSUSED */
18652 void
18653 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18654 {
18655 	conn_t	*connp = (conn_t *)arg;
18656 	tcp_t *listener = connp->conn_tcp;
18657 
18658 	if (listener->tcp_state == TCPS_CLOSED ||
18659 	    TCP_IS_DETACHED(listener)) {
18660 		/*
18661 		 * If listener has closed, it would have caused a
18662 		 * a cleanup/blowoff to happen for the eager.
18663 		 */
18664 		tcp_t *tcp;
18665 		struct T_conn_ind	*conn_ind;
18666 
18667 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18668 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18669 		    conn_ind->OPT_length);
18670 		/*
18671 		 * We need to drop the ref on eager that was put
18672 		 * tcp_rput_data() before trying to send the conn_ind
18673 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18674 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18675 		 * listener is closed so we drop the ref.
18676 		 */
18677 		CONN_DEC_REF(tcp->tcp_connp);
18678 		freemsg(mp);
18679 		return;
18680 	}
18681 	putnext(listener->tcp_rq, mp);
18682 }
18683 
18684 
18685 /*
18686  * This is the STREAMS entry point for T_CONN_RES coming down on
18687  * Acceptor STREAM when  sockfs listener does accept processing.
18688  * Read the block comment on top of tcp_conn_request().
18689  */
18690 void
18691 tcp_wput_accept(queue_t *q, mblk_t *mp)
18692 {
18693 	queue_t *rq = RD(q);
18694 	struct T_conn_res *conn_res;
18695 	tcp_t *eager;
18696 	tcp_t *listener;
18697 	struct T_ok_ack *ok;
18698 	t_scalar_t PRIM_type;
18699 	mblk_t *opt_mp;
18700 	conn_t *econnp;
18701 
18702 	ASSERT(DB_TYPE(mp) == M_PROTO);
18703 
18704 	conn_res = (struct T_conn_res *)mp->b_rptr;
18705 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18706 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18707 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18708 		if (mp != NULL)
18709 			putnext(rq, mp);
18710 		return;
18711 	}
18712 	switch (conn_res->PRIM_type) {
18713 	case O_T_CONN_RES:
18714 	case T_CONN_RES:
18715 		/*
18716 		 * We pass up an err ack if allocb fails. This will
18717 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18718 		 * tcp_eager_blowoff to be called. sockfs will then call
18719 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18720 		 * we need to do the allocb up here because we have to
18721 		 * make sure rq->q_qinfo->qi_qclose still points to the
18722 		 * correct function (tcpclose_accept) in case allocb
18723 		 * fails.
18724 		 */
18725 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18726 		if (opt_mp == NULL) {
18727 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18728 			if (mp != NULL)
18729 				putnext(rq, mp);
18730 			return;
18731 		}
18732 
18733 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18734 		    &eager, conn_res->OPT_length);
18735 		PRIM_type = conn_res->PRIM_type;
18736 		mp->b_datap->db_type = M_PCPROTO;
18737 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18738 		ok = (struct T_ok_ack *)mp->b_rptr;
18739 		ok->PRIM_type = T_OK_ACK;
18740 		ok->CORRECT_prim = PRIM_type;
18741 		econnp = eager->tcp_connp;
18742 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18743 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18744 		eager->tcp_rq = rq;
18745 		eager->tcp_wq = q;
18746 		rq->q_ptr = econnp;
18747 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18748 		q->q_ptr = econnp;
18749 		q->q_qinfo = &tcp_winit;
18750 		listener = eager->tcp_listener;
18751 		eager->tcp_issocket = B_TRUE;
18752 
18753 		/*
18754 		 * TCP is _D_SODIRECT and sockfs is directly above so
18755 		 * save shared sodirect_t pointer (if any).
18756 		 *
18757 		 * If tcp_fused and sodirect enabled disable it.
18758 		 */
18759 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18760 		if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18761 			/* Fused, disable sodirect */
18762 			mutex_enter(eager->tcp_sodirect->sod_lock);
18763 			SOD_DISABLE(eager->tcp_sodirect);
18764 			mutex_exit(eager->tcp_sodirect->sod_lock);
18765 			eager->tcp_sodirect = NULL;
18766 		}
18767 
18768 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18769 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18770 		ASSERT(econnp->conn_netstack ==
18771 		    listener->tcp_connp->conn_netstack);
18772 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18773 
18774 		/* Put the ref for IP */
18775 		CONN_INC_REF(econnp);
18776 
18777 		/*
18778 		 * We should have minimum of 3 references on the conn
18779 		 * at this point. One each for TCP and IP and one for
18780 		 * the T_conn_ind that was sent up when the 3-way handshake
18781 		 * completed. In the normal case we would also have another
18782 		 * reference (making a total of 4) for the conn being in the
18783 		 * classifier hash list. However the eager could have received
18784 		 * an RST subsequently and tcp_closei_local could have removed
18785 		 * the eager from the classifier hash list, hence we can't
18786 		 * assert that reference.
18787 		 */
18788 		ASSERT(econnp->conn_ref >= 3);
18789 
18790 		/*
18791 		 * Send the new local address also up to sockfs. There
18792 		 * should already be enough space in the mp that came
18793 		 * down from soaccept().
18794 		 */
18795 		if (eager->tcp_family == AF_INET) {
18796 			sin_t *sin;
18797 
18798 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18799 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18800 			sin = (sin_t *)mp->b_wptr;
18801 			mp->b_wptr += sizeof (sin_t);
18802 			sin->sin_family = AF_INET;
18803 			sin->sin_port = eager->tcp_lport;
18804 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18805 		} else {
18806 			sin6_t *sin6;
18807 
18808 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18809 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18810 			sin6 = (sin6_t *)mp->b_wptr;
18811 			mp->b_wptr += sizeof (sin6_t);
18812 			sin6->sin6_family = AF_INET6;
18813 			sin6->sin6_port = eager->tcp_lport;
18814 			if (eager->tcp_ipversion == IPV4_VERSION) {
18815 				sin6->sin6_flowinfo = 0;
18816 				IN6_IPADDR_TO_V4MAPPED(
18817 				    eager->tcp_ipha->ipha_src,
18818 				    &sin6->sin6_addr);
18819 			} else {
18820 				ASSERT(eager->tcp_ip6h != NULL);
18821 				sin6->sin6_flowinfo =
18822 				    eager->tcp_ip6h->ip6_vcf &
18823 				    ~IPV6_VERS_AND_FLOW_MASK;
18824 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18825 			}
18826 			sin6->sin6_scope_id = 0;
18827 			sin6->__sin6_src_id = 0;
18828 		}
18829 
18830 		putnext(rq, mp);
18831 
18832 		opt_mp->b_datap->db_type = M_SETOPTS;
18833 		opt_mp->b_wptr += sizeof (struct stroptions);
18834 
18835 		/*
18836 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18837 		 * from listener to acceptor. The message is chained on the
18838 		 * bind_mp which tcp_rput_other will send down to IP.
18839 		 */
18840 		if (listener->tcp_bound_if != 0) {
18841 			/* allocate optmgmt req */
18842 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18843 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18844 			    sizeof (int));
18845 			if (mp != NULL)
18846 				linkb(opt_mp, mp);
18847 		}
18848 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18849 			uint_t on = 1;
18850 
18851 			/* allocate optmgmt req */
18852 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18853 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18854 			if (mp != NULL)
18855 				linkb(opt_mp, mp);
18856 		}
18857 
18858 
18859 		mutex_enter(&listener->tcp_eager_lock);
18860 
18861 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18862 
18863 			tcp_t *tail;
18864 			tcp_t *tcp;
18865 			mblk_t *mp1;
18866 
18867 			tcp = listener->tcp_eager_prev_q0;
18868 			/*
18869 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18870 			 * deferred T_conn_ind queue. We need to get to the head
18871 			 * of the queue in order to send up T_conn_ind the same
18872 			 * order as how the 3WHS is completed.
18873 			 */
18874 			while (tcp != listener) {
18875 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18876 				    !tcp->tcp_kssl_pending)
18877 					break;
18878 				else
18879 					tcp = tcp->tcp_eager_prev_q0;
18880 			}
18881 			/* None of the pending eagers can be sent up now */
18882 			if (tcp == listener)
18883 				goto no_more_eagers;
18884 
18885 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18886 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18887 			/* Move from q0 to q */
18888 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18889 			listener->tcp_conn_req_cnt_q0--;
18890 			listener->tcp_conn_req_cnt_q++;
18891 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18892 			    tcp->tcp_eager_prev_q0;
18893 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18894 			    tcp->tcp_eager_next_q0;
18895 			tcp->tcp_eager_prev_q0 = NULL;
18896 			tcp->tcp_eager_next_q0 = NULL;
18897 			tcp->tcp_conn_def_q0 = B_FALSE;
18898 
18899 			/* Make sure the tcp isn't in the list of droppables */
18900 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18901 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18902 
18903 			/*
18904 			 * Insert at end of the queue because sockfs sends
18905 			 * down T_CONN_RES in chronological order. Leaving
18906 			 * the older conn indications at front of the queue
18907 			 * helps reducing search time.
18908 			 */
18909 			tail = listener->tcp_eager_last_q;
18910 			if (tail != NULL) {
18911 				tail->tcp_eager_next_q = tcp;
18912 			} else {
18913 				listener->tcp_eager_next_q = tcp;
18914 			}
18915 			listener->tcp_eager_last_q = tcp;
18916 			tcp->tcp_eager_next_q = NULL;
18917 
18918 			/* Need to get inside the listener perimeter */
18919 			CONN_INC_REF(listener->tcp_connp);
18920 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18921 			    tcp_send_pending, listener->tcp_connp,
18922 			    SQTAG_TCP_SEND_PENDING);
18923 		}
18924 no_more_eagers:
18925 		tcp_eager_unlink(eager);
18926 		mutex_exit(&listener->tcp_eager_lock);
18927 
18928 		/*
18929 		 * At this point, the eager is detached from the listener
18930 		 * but we still have an extra refs on eager (apart from the
18931 		 * usual tcp references). The ref was placed in tcp_rput_data
18932 		 * before sending the conn_ind in tcp_send_conn_ind.
18933 		 * The ref will be dropped in tcp_accept_finish().
18934 		 */
18935 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18936 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18937 		return;
18938 	default:
18939 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18940 		if (mp != NULL)
18941 			putnext(rq, mp);
18942 		return;
18943 	}
18944 }
18945 
18946 void
18947 tcp_wput(queue_t *q, mblk_t *mp)
18948 {
18949 	conn_t	*connp = Q_TO_CONN(q);
18950 	tcp_t	*tcp;
18951 	void (*output_proc)();
18952 	t_scalar_t type;
18953 	uchar_t *rptr;
18954 	struct iocblk	*iocp;
18955 	uint32_t	msize;
18956 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18957 
18958 	ASSERT(connp->conn_ref >= 2);
18959 
18960 	switch (DB_TYPE(mp)) {
18961 	case M_DATA:
18962 		tcp = connp->conn_tcp;
18963 		ASSERT(tcp != NULL);
18964 
18965 		msize = msgdsize(mp);
18966 
18967 		mutex_enter(&tcp->tcp_non_sq_lock);
18968 		tcp->tcp_squeue_bytes += msize;
18969 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18970 			tcp_setqfull(tcp);
18971 		}
18972 		mutex_exit(&tcp->tcp_non_sq_lock);
18973 
18974 		CONN_INC_REF(connp);
18975 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18976 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18977 		return;
18978 	case M_PROTO:
18979 	case M_PCPROTO:
18980 		/*
18981 		 * if it is a snmp message, don't get behind the squeue
18982 		 */
18983 		tcp = connp->conn_tcp;
18984 		rptr = mp->b_rptr;
18985 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18986 			type = ((union T_primitives *)rptr)->type;
18987 		} else {
18988 			if (tcp->tcp_debug) {
18989 				(void) strlog(TCP_MOD_ID, 0, 1,
18990 				    SL_ERROR|SL_TRACE,
18991 				    "tcp_wput_proto, dropping one...");
18992 			}
18993 			freemsg(mp);
18994 			return;
18995 		}
18996 		if (type == T_SVR4_OPTMGMT_REQ) {
18997 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18998 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18999 			    cr)) {
19000 				/*
19001 				 * This was a SNMP request
19002 				 */
19003 				return;
19004 			} else {
19005 				output_proc = tcp_wput_proto;
19006 			}
19007 		} else {
19008 			output_proc = tcp_wput_proto;
19009 		}
19010 		break;
19011 	case M_IOCTL:
19012 		/*
19013 		 * Most ioctls can be processed right away without going via
19014 		 * squeues - process them right here. Those that do require
19015 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
19016 		 * are processed by tcp_wput_ioctl().
19017 		 */
19018 		iocp = (struct iocblk *)mp->b_rptr;
19019 		tcp = connp->conn_tcp;
19020 
19021 		switch (iocp->ioc_cmd) {
19022 		case TCP_IOC_ABORT_CONN:
19023 			tcp_ioctl_abort_conn(q, mp);
19024 			return;
19025 		case TI_GETPEERNAME:
19026 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
19027 				iocp->ioc_error = ENOTCONN;
19028 				iocp->ioc_count = 0;
19029 				mp->b_datap->db_type = M_IOCACK;
19030 				qreply(q, mp);
19031 				return;
19032 			}
19033 			/* FALLTHRU */
19034 		case TI_GETMYNAME:
19035 			mi_copyin(q, mp, NULL,
19036 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
19037 			return;
19038 		case ND_SET:
19039 			/* nd_getset does the necessary checks */
19040 		case ND_GET:
19041 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
19042 				CALL_IP_WPUT(connp, q, mp);
19043 				return;
19044 			}
19045 			qreply(q, mp);
19046 			return;
19047 		case TCP_IOC_DEFAULT_Q:
19048 			/*
19049 			 * Wants to be the default wq. Check the credentials
19050 			 * first, the rest is executed via squeue.
19051 			 */
19052 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
19053 				iocp->ioc_error = EPERM;
19054 				iocp->ioc_count = 0;
19055 				mp->b_datap->db_type = M_IOCACK;
19056 				qreply(q, mp);
19057 				return;
19058 			}
19059 			output_proc = tcp_wput_ioctl;
19060 			break;
19061 		default:
19062 			output_proc = tcp_wput_ioctl;
19063 			break;
19064 		}
19065 		break;
19066 	default:
19067 		output_proc = tcp_wput_nondata;
19068 		break;
19069 	}
19070 
19071 	CONN_INC_REF(connp);
19072 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
19073 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
19074 }
19075 
19076 /*
19077  * Initial STREAMS write side put() procedure for sockets. It tries to
19078  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
19079  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
19080  * are handled by tcp_wput() as usual.
19081  *
19082  * All further messages will also be handled by tcp_wput() because we cannot
19083  * be sure that the above short cut is safe later.
19084  */
19085 static void
19086 tcp_wput_sock(queue_t *wq, mblk_t *mp)
19087 {
19088 	conn_t			*connp = Q_TO_CONN(wq);
19089 	tcp_t			*tcp = connp->conn_tcp;
19090 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
19091 
19092 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
19093 	wq->q_qinfo = &tcp_winit;
19094 
19095 	ASSERT(IPCL_IS_TCP(connp));
19096 	ASSERT(TCP_IS_SOCKET(tcp));
19097 
19098 	if (DB_TYPE(mp) == M_PCPROTO &&
19099 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
19100 	    car->PRIM_type == T_CAPABILITY_REQ) {
19101 		tcp_capability_req(tcp, mp);
19102 		return;
19103 	}
19104 
19105 	tcp_wput(wq, mp);
19106 }
19107 
19108 static boolean_t
19109 tcp_zcopy_check(tcp_t *tcp)
19110 {
19111 	conn_t	*connp = tcp->tcp_connp;
19112 	ire_t	*ire;
19113 	boolean_t	zc_enabled = B_FALSE;
19114 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19115 
19116 	if (do_tcpzcopy == 2)
19117 		zc_enabled = B_TRUE;
19118 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
19119 	    IPCL_IS_CONNECTED(connp) &&
19120 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
19121 	    connp->conn_dontroute == 0 &&
19122 	    !connp->conn_nexthop_set &&
19123 	    connp->conn_outgoing_ill == NULL &&
19124 	    connp->conn_nofailover_ill == NULL &&
19125 	    do_tcpzcopy == 1) {
19126 		/*
19127 		 * the checks above  closely resemble the fast path checks
19128 		 * in tcp_send_data().
19129 		 */
19130 		mutex_enter(&connp->conn_lock);
19131 		ire = connp->conn_ire_cache;
19132 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19133 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19134 			IRE_REFHOLD(ire);
19135 			if (ire->ire_stq != NULL) {
19136 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
19137 
19138 				zc_enabled = ill && (ill->ill_capabilities &
19139 				    ILL_CAPAB_ZEROCOPY) &&
19140 				    (ill->ill_zerocopy_capab->
19141 				    ill_zerocopy_flags != 0);
19142 			}
19143 			IRE_REFRELE(ire);
19144 		}
19145 		mutex_exit(&connp->conn_lock);
19146 	}
19147 	tcp->tcp_snd_zcopy_on = zc_enabled;
19148 	if (!TCP_IS_DETACHED(tcp)) {
19149 		if (zc_enabled) {
19150 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
19151 			TCP_STAT(tcps, tcp_zcopy_on);
19152 		} else {
19153 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19154 			TCP_STAT(tcps, tcp_zcopy_off);
19155 		}
19156 	}
19157 	return (zc_enabled);
19158 }
19159 
19160 static mblk_t *
19161 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
19162 {
19163 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19164 
19165 	if (do_tcpzcopy == 2)
19166 		return (bp);
19167 	else if (tcp->tcp_snd_zcopy_on) {
19168 		tcp->tcp_snd_zcopy_on = B_FALSE;
19169 		if (!TCP_IS_DETACHED(tcp)) {
19170 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19171 			TCP_STAT(tcps, tcp_zcopy_disable);
19172 		}
19173 	}
19174 	return (tcp_zcopy_backoff(tcp, bp, 0));
19175 }
19176 
19177 /*
19178  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
19179  * the original desballoca'ed segmapped mblk.
19180  */
19181 static mblk_t *
19182 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
19183 {
19184 	mblk_t *head, *tail, *nbp;
19185 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19186 
19187 	if (IS_VMLOANED_MBLK(bp)) {
19188 		TCP_STAT(tcps, tcp_zcopy_backoff);
19189 		if ((head = copyb(bp)) == NULL) {
19190 			/* fail to backoff; leave it for the next backoff */
19191 			tcp->tcp_xmit_zc_clean = B_FALSE;
19192 			return (bp);
19193 		}
19194 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19195 			if (fix_xmitlist)
19196 				tcp_zcopy_notify(tcp);
19197 			else
19198 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19199 		}
19200 		nbp = bp->b_cont;
19201 		if (fix_xmitlist) {
19202 			head->b_prev = bp->b_prev;
19203 			head->b_next = bp->b_next;
19204 			if (tcp->tcp_xmit_tail == bp)
19205 				tcp->tcp_xmit_tail = head;
19206 		}
19207 		bp->b_next = NULL;
19208 		bp->b_prev = NULL;
19209 		freeb(bp);
19210 	} else {
19211 		head = bp;
19212 		nbp = bp->b_cont;
19213 	}
19214 	tail = head;
19215 	while (nbp) {
19216 		if (IS_VMLOANED_MBLK(nbp)) {
19217 			TCP_STAT(tcps, tcp_zcopy_backoff);
19218 			if ((tail->b_cont = copyb(nbp)) == NULL) {
19219 				tcp->tcp_xmit_zc_clean = B_FALSE;
19220 				tail->b_cont = nbp;
19221 				return (head);
19222 			}
19223 			tail = tail->b_cont;
19224 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19225 				if (fix_xmitlist)
19226 					tcp_zcopy_notify(tcp);
19227 				else
19228 					tail->b_datap->db_struioflag |=
19229 					    STRUIO_ZCNOTIFY;
19230 			}
19231 			bp = nbp;
19232 			nbp = nbp->b_cont;
19233 			if (fix_xmitlist) {
19234 				tail->b_prev = bp->b_prev;
19235 				tail->b_next = bp->b_next;
19236 				if (tcp->tcp_xmit_tail == bp)
19237 					tcp->tcp_xmit_tail = tail;
19238 			}
19239 			bp->b_next = NULL;
19240 			bp->b_prev = NULL;
19241 			freeb(bp);
19242 		} else {
19243 			tail->b_cont = nbp;
19244 			tail = nbp;
19245 			nbp = nbp->b_cont;
19246 		}
19247 	}
19248 	if (fix_xmitlist) {
19249 		tcp->tcp_xmit_last = tail;
19250 		tcp->tcp_xmit_zc_clean = B_TRUE;
19251 	}
19252 	return (head);
19253 }
19254 
19255 static void
19256 tcp_zcopy_notify(tcp_t *tcp)
19257 {
19258 	struct stdata	*stp;
19259 
19260 	if (tcp->tcp_detached)
19261 		return;
19262 	stp = STREAM(tcp->tcp_rq);
19263 	mutex_enter(&stp->sd_lock);
19264 	stp->sd_flag |= STZCNOTIFY;
19265 	cv_broadcast(&stp->sd_zcopy_wait);
19266 	mutex_exit(&stp->sd_lock);
19267 }
19268 
19269 static boolean_t
19270 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19271 {
19272 	ire_t	*ire;
19273 	conn_t	*connp = tcp->tcp_connp;
19274 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19275 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19276 
19277 	mutex_enter(&connp->conn_lock);
19278 	ire = connp->conn_ire_cache;
19279 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19280 
19281 	if ((ire != NULL) &&
19282 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19283 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19284 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19285 		IRE_REFHOLD(ire);
19286 		mutex_exit(&connp->conn_lock);
19287 	} else {
19288 		boolean_t cached = B_FALSE;
19289 		ts_label_t *tsl;
19290 
19291 		/* force a recheck later on */
19292 		tcp->tcp_ire_ill_check_done = B_FALSE;
19293 
19294 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19295 		connp->conn_ire_cache = NULL;
19296 		mutex_exit(&connp->conn_lock);
19297 
19298 		if (ire != NULL)
19299 			IRE_REFRELE_NOTR(ire);
19300 
19301 		tsl = crgetlabel(CONN_CRED(connp));
19302 		ire = (dst ?
19303 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19304 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19305 		    connp->conn_zoneid, tsl, ipst));
19306 
19307 		if (ire == NULL) {
19308 			TCP_STAT(tcps, tcp_ire_null);
19309 			return (B_FALSE);
19310 		}
19311 
19312 		IRE_REFHOLD_NOTR(ire);
19313 		/*
19314 		 * Since we are inside the squeue, there cannot be another
19315 		 * thread in TCP trying to set the conn_ire_cache now.  The
19316 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19317 		 * unplumb thread has not yet started cleaning up the conns.
19318 		 * Hence we don't need to grab the conn lock.
19319 		 */
19320 		if (CONN_CACHE_IRE(connp)) {
19321 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19322 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19323 				TCP_CHECK_IREINFO(tcp, ire);
19324 				connp->conn_ire_cache = ire;
19325 				cached = B_TRUE;
19326 			}
19327 			rw_exit(&ire->ire_bucket->irb_lock);
19328 		}
19329 
19330 		/*
19331 		 * We can continue to use the ire but since it was
19332 		 * not cached, we should drop the extra reference.
19333 		 */
19334 		if (!cached)
19335 			IRE_REFRELE_NOTR(ire);
19336 
19337 		/*
19338 		 * Rampart note: no need to select a new label here, since
19339 		 * labels are not allowed to change during the life of a TCP
19340 		 * connection.
19341 		 */
19342 	}
19343 
19344 	*irep = ire;
19345 
19346 	return (B_TRUE);
19347 }
19348 
19349 /*
19350  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19351  *
19352  * 0 = success;
19353  * 1 = failed to find ire and ill.
19354  */
19355 static boolean_t
19356 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19357 {
19358 	ipha_t		*ipha;
19359 	ipaddr_t	dst;
19360 	ire_t		*ire;
19361 	ill_t		*ill;
19362 	conn_t		*connp = tcp->tcp_connp;
19363 	mblk_t		*ire_fp_mp;
19364 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19365 
19366 	if (mp != NULL)
19367 		ipha = (ipha_t *)mp->b_rptr;
19368 	else
19369 		ipha = tcp->tcp_ipha;
19370 	dst = ipha->ipha_dst;
19371 
19372 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19373 		return (B_FALSE);
19374 
19375 	if ((ire->ire_flags & RTF_MULTIRT) ||
19376 	    (ire->ire_stq == NULL) ||
19377 	    (ire->ire_nce == NULL) ||
19378 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19379 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19380 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19381 		TCP_STAT(tcps, tcp_ip_ire_send);
19382 		IRE_REFRELE(ire);
19383 		return (B_FALSE);
19384 	}
19385 
19386 	ill = ire_to_ill(ire);
19387 	if (connp->conn_outgoing_ill != NULL) {
19388 		ill_t *conn_outgoing_ill = NULL;
19389 		/*
19390 		 * Choose a good ill in the group to send the packets on.
19391 		 */
19392 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
19393 		ill = ire_to_ill(ire);
19394 	}
19395 	ASSERT(ill != NULL);
19396 
19397 	if (!tcp->tcp_ire_ill_check_done) {
19398 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19399 		tcp->tcp_ire_ill_check_done = B_TRUE;
19400 	}
19401 
19402 	*irep = ire;
19403 	*illp = ill;
19404 
19405 	return (B_TRUE);
19406 }
19407 
19408 static void
19409 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19410 {
19411 	ipha_t		*ipha;
19412 	ipaddr_t	src;
19413 	ipaddr_t	dst;
19414 	uint32_t	cksum;
19415 	ire_t		*ire;
19416 	uint16_t	*up;
19417 	ill_t		*ill;
19418 	conn_t		*connp = tcp->tcp_connp;
19419 	uint32_t	hcksum_txflags = 0;
19420 	mblk_t		*ire_fp_mp;
19421 	uint_t		ire_fp_mp_len;
19422 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19423 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19424 
19425 	ASSERT(DB_TYPE(mp) == M_DATA);
19426 
19427 	if (DB_CRED(mp) == NULL)
19428 		mblk_setcred(mp, CONN_CRED(connp));
19429 
19430 	ipha = (ipha_t *)mp->b_rptr;
19431 	src = ipha->ipha_src;
19432 	dst = ipha->ipha_dst;
19433 
19434 	/*
19435 	 * Drop off fast path for IPv6 and also if options are present or
19436 	 * we need to resolve a TS label.
19437 	 */
19438 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19439 	    !IPCL_IS_CONNECTED(connp) ||
19440 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19441 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19442 	    !connp->conn_ulp_labeled ||
19443 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19444 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19445 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19446 		if (tcp->tcp_snd_zcopy_aware)
19447 			mp = tcp_zcopy_disable(tcp, mp);
19448 		TCP_STAT(tcps, tcp_ip_send);
19449 		CALL_IP_WPUT(connp, q, mp);
19450 		return;
19451 	}
19452 
19453 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19454 		if (tcp->tcp_snd_zcopy_aware)
19455 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19456 		CALL_IP_WPUT(connp, q, mp);
19457 		return;
19458 	}
19459 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19460 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19461 
19462 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19463 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19464 #ifndef _BIG_ENDIAN
19465 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19466 #endif
19467 
19468 	/*
19469 	 * Check to see if we need to re-enable LSO/MDT for this connection
19470 	 * because it was previously disabled due to changes in the ill;
19471 	 * note that by doing it here, this re-enabling only applies when
19472 	 * the packet is not dispatched through CALL_IP_WPUT().
19473 	 *
19474 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19475 	 * case, since that's how we ended up here.  For IPv6, we do the
19476 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19477 	 */
19478 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19479 		/*
19480 		 * Restore LSO for this connection, so that next time around
19481 		 * it is eligible to go through tcp_lsosend() path again.
19482 		 */
19483 		TCP_STAT(tcps, tcp_lso_enabled);
19484 		tcp->tcp_lso = B_TRUE;
19485 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19486 		    "interface %s\n", (void *)connp, ill->ill_name));
19487 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19488 		/*
19489 		 * Restore MDT for this connection, so that next time around
19490 		 * it is eligible to go through tcp_multisend() path again.
19491 		 */
19492 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19493 		tcp->tcp_mdt = B_TRUE;
19494 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19495 		    "interface %s\n", (void *)connp, ill->ill_name));
19496 	}
19497 
19498 	if (tcp->tcp_snd_zcopy_aware) {
19499 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19500 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19501 			mp = tcp_zcopy_disable(tcp, mp);
19502 		/*
19503 		 * we shouldn't need to reset ipha as the mp containing
19504 		 * ipha should never be a zero-copy mp.
19505 		 */
19506 	}
19507 
19508 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19509 		ASSERT(ill->ill_hcksum_capab != NULL);
19510 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19511 	}
19512 
19513 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19514 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19515 
19516 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19517 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19518 
19519 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19520 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19521 
19522 	/* Software checksum? */
19523 	if (DB_CKSUMFLAGS(mp) == 0) {
19524 		TCP_STAT(tcps, tcp_out_sw_cksum);
19525 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19526 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19527 	}
19528 
19529 	ipha->ipha_fragment_offset_and_flags |=
19530 	    (uint32_t)htons(ire->ire_frag_flag);
19531 
19532 	/* Calculate IP header checksum if hardware isn't capable */
19533 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19534 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19535 		    ((uint16_t *)ipha)[4]);
19536 	}
19537 
19538 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19539 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19540 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19541 
19542 	UPDATE_OB_PKT_COUNT(ire);
19543 	ire->ire_last_used_time = lbolt;
19544 
19545 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19546 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19547 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19548 	    ntohs(ipha->ipha_length));
19549 
19550 	if (ILL_DLS_CAPABLE(ill)) {
19551 		/*
19552 		 * Send the packet directly to DLD, where it may be queued
19553 		 * depending on the availability of transmit resources at
19554 		 * the media layer.
19555 		 */
19556 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19557 	} else {
19558 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19559 		DTRACE_PROBE4(ip4__physical__out__start,
19560 		    ill_t *, NULL, ill_t *, out_ill,
19561 		    ipha_t *, ipha, mblk_t *, mp);
19562 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19563 		    ipst->ips_ipv4firewall_physical_out,
19564 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19565 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19566 		if (mp != NULL)
19567 			putnext(ire->ire_stq, mp);
19568 	}
19569 	IRE_REFRELE(ire);
19570 }
19571 
19572 /*
19573  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19574  * if the receiver shrinks the window, i.e. moves the right window to the
19575  * left, the we should not send new data, but should retransmit normally the
19576  * old unacked data between suna and suna + swnd. We might has sent data
19577  * that is now outside the new window, pretend that we didn't send  it.
19578  */
19579 static void
19580 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19581 {
19582 	uint32_t	snxt = tcp->tcp_snxt;
19583 	mblk_t		*xmit_tail;
19584 	int32_t		offset;
19585 
19586 	ASSERT(shrunk_count > 0);
19587 
19588 	/* Pretend we didn't send the data outside the window */
19589 	snxt -= shrunk_count;
19590 
19591 	/* Get the mblk and the offset in it per the shrunk window */
19592 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19593 
19594 	ASSERT(xmit_tail != NULL);
19595 
19596 	/* Reset all the values per the now shrunk window */
19597 	tcp->tcp_snxt = snxt;
19598 	tcp->tcp_xmit_tail = xmit_tail;
19599 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19600 	    offset;
19601 	tcp->tcp_unsent += shrunk_count;
19602 
19603 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19604 		/*
19605 		 * Make sure the timer is running so that we will probe a zero
19606 		 * window.
19607 		 */
19608 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19609 }
19610 
19611 
19612 /*
19613  * The TCP normal data output path.
19614  * NOTE: the logic of the fast path is duplicated from this function.
19615  */
19616 static void
19617 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19618 {
19619 	int		len;
19620 	mblk_t		*local_time;
19621 	mblk_t		*mp1;
19622 	uint32_t	snxt;
19623 	int		tail_unsent;
19624 	int		tcpstate;
19625 	int		usable = 0;
19626 	mblk_t		*xmit_tail;
19627 	queue_t		*q = tcp->tcp_wq;
19628 	int32_t		mss;
19629 	int32_t		num_sack_blk = 0;
19630 	int32_t		tcp_hdr_len;
19631 	int32_t		tcp_tcp_hdr_len;
19632 	int		mdt_thres;
19633 	int		rc;
19634 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19635 	ip_stack_t	*ipst;
19636 
19637 	tcpstate = tcp->tcp_state;
19638 	if (mp == NULL) {
19639 		/*
19640 		 * tcp_wput_data() with NULL mp should only be called when
19641 		 * there is unsent data.
19642 		 */
19643 		ASSERT(tcp->tcp_unsent > 0);
19644 		/* Really tacky... but we need this for detached closes. */
19645 		len = tcp->tcp_unsent;
19646 		goto data_null;
19647 	}
19648 
19649 #if CCS_STATS
19650 	wrw_stats.tot.count++;
19651 	wrw_stats.tot.bytes += msgdsize(mp);
19652 #endif
19653 	ASSERT(mp->b_datap->db_type == M_DATA);
19654 	/*
19655 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19656 	 * or before a connection attempt has begun.
19657 	 */
19658 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19659 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19660 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19661 #ifdef DEBUG
19662 			cmn_err(CE_WARN,
19663 			    "tcp_wput_data: data after ordrel, %s",
19664 			    tcp_display(tcp, NULL,
19665 			    DISP_ADDR_AND_PORT));
19666 #else
19667 			if (tcp->tcp_debug) {
19668 				(void) strlog(TCP_MOD_ID, 0, 1,
19669 				    SL_TRACE|SL_ERROR,
19670 				    "tcp_wput_data: data after ordrel, %s\n",
19671 				    tcp_display(tcp, NULL,
19672 				    DISP_ADDR_AND_PORT));
19673 			}
19674 #endif /* DEBUG */
19675 		}
19676 		if (tcp->tcp_snd_zcopy_aware &&
19677 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19678 			tcp_zcopy_notify(tcp);
19679 		freemsg(mp);
19680 		mutex_enter(&tcp->tcp_non_sq_lock);
19681 		if (tcp->tcp_flow_stopped &&
19682 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19683 			tcp_clrqfull(tcp);
19684 		}
19685 		mutex_exit(&tcp->tcp_non_sq_lock);
19686 		return;
19687 	}
19688 
19689 	/* Strip empties */
19690 	for (;;) {
19691 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19692 		    (uintptr_t)INT_MAX);
19693 		len = (int)(mp->b_wptr - mp->b_rptr);
19694 		if (len > 0)
19695 			break;
19696 		mp1 = mp;
19697 		mp = mp->b_cont;
19698 		freeb(mp1);
19699 		if (!mp) {
19700 			return;
19701 		}
19702 	}
19703 
19704 	/* If we are the first on the list ... */
19705 	if (tcp->tcp_xmit_head == NULL) {
19706 		tcp->tcp_xmit_head = mp;
19707 		tcp->tcp_xmit_tail = mp;
19708 		tcp->tcp_xmit_tail_unsent = len;
19709 	} else {
19710 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19711 		struct datab *dp;
19712 
19713 		mp1 = tcp->tcp_xmit_last;
19714 		if (len < tcp_tx_pull_len &&
19715 		    (dp = mp1->b_datap)->db_ref == 1 &&
19716 		    dp->db_lim - mp1->b_wptr >= len) {
19717 			ASSERT(len > 0);
19718 			ASSERT(!mp1->b_cont);
19719 			if (len == 1) {
19720 				*mp1->b_wptr++ = *mp->b_rptr;
19721 			} else {
19722 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19723 				mp1->b_wptr += len;
19724 			}
19725 			if (mp1 == tcp->tcp_xmit_tail)
19726 				tcp->tcp_xmit_tail_unsent += len;
19727 			mp1->b_cont = mp->b_cont;
19728 			if (tcp->tcp_snd_zcopy_aware &&
19729 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19730 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19731 			freeb(mp);
19732 			mp = mp1;
19733 		} else {
19734 			tcp->tcp_xmit_last->b_cont = mp;
19735 		}
19736 		len += tcp->tcp_unsent;
19737 	}
19738 
19739 	/* Tack on however many more positive length mblks we have */
19740 	if ((mp1 = mp->b_cont) != NULL) {
19741 		do {
19742 			int tlen;
19743 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19744 			    (uintptr_t)INT_MAX);
19745 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19746 			if (tlen <= 0) {
19747 				mp->b_cont = mp1->b_cont;
19748 				freeb(mp1);
19749 			} else {
19750 				len += tlen;
19751 				mp = mp1;
19752 			}
19753 		} while ((mp1 = mp->b_cont) != NULL);
19754 	}
19755 	tcp->tcp_xmit_last = mp;
19756 	tcp->tcp_unsent = len;
19757 
19758 	if (urgent)
19759 		usable = 1;
19760 
19761 data_null:
19762 	snxt = tcp->tcp_snxt;
19763 	xmit_tail = tcp->tcp_xmit_tail;
19764 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19765 
19766 	/*
19767 	 * Note that tcp_mss has been adjusted to take into account the
19768 	 * timestamp option if applicable.  Because SACK options do not
19769 	 * appear in every TCP segments and they are of variable lengths,
19770 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19771 	 * the actual segment length when we need to send a segment which
19772 	 * includes SACK options.
19773 	 */
19774 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19775 		int32_t	opt_len;
19776 
19777 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19778 		    tcp->tcp_num_sack_blk);
19779 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19780 		    2 + TCPOPT_HEADER_LEN;
19781 		mss = tcp->tcp_mss - opt_len;
19782 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19783 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19784 	} else {
19785 		mss = tcp->tcp_mss;
19786 		tcp_hdr_len = tcp->tcp_hdr_len;
19787 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19788 	}
19789 
19790 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19791 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19792 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19793 	}
19794 	if (tcpstate == TCPS_SYN_RCVD) {
19795 		/*
19796 		 * The three-way connection establishment handshake is not
19797 		 * complete yet. We want to queue the data for transmission
19798 		 * after entering ESTABLISHED state (RFC793). A jump to
19799 		 * "done" label effectively leaves data on the queue.
19800 		 */
19801 		goto done;
19802 	} else {
19803 		int usable_r;
19804 
19805 		/*
19806 		 * In the special case when cwnd is zero, which can only
19807 		 * happen if the connection is ECN capable, return now.
19808 		 * New segments is sent using tcp_timer().  The timer
19809 		 * is set in tcp_rput_data().
19810 		 */
19811 		if (tcp->tcp_cwnd == 0) {
19812 			/*
19813 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19814 			 * finished.
19815 			 */
19816 			ASSERT(tcp->tcp_ecn_ok ||
19817 			    tcp->tcp_state < TCPS_ESTABLISHED);
19818 			return;
19819 		}
19820 
19821 		/* NOTE: trouble if xmitting while SYN not acked? */
19822 		usable_r = snxt - tcp->tcp_suna;
19823 		usable_r = tcp->tcp_swnd - usable_r;
19824 
19825 		/*
19826 		 * Check if the receiver has shrunk the window.  If
19827 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19828 		 * cannot be set as there is unsent data, so FIN cannot
19829 		 * be sent out.  Otherwise, we need to take into account
19830 		 * of FIN as it consumes an "invisible" sequence number.
19831 		 */
19832 		ASSERT(tcp->tcp_fin_sent == 0);
19833 		if (usable_r < 0) {
19834 			/*
19835 			 * The receiver has shrunk the window and we have sent
19836 			 * -usable_r date beyond the window, re-adjust.
19837 			 *
19838 			 * If TCP window scaling is enabled, there can be
19839 			 * round down error as the advertised receive window
19840 			 * is actually right shifted n bits.  This means that
19841 			 * the lower n bits info is wiped out.  It will look
19842 			 * like the window is shrunk.  Do a check here to
19843 			 * see if the shrunk amount is actually within the
19844 			 * error in window calculation.  If it is, just
19845 			 * return.  Note that this check is inside the
19846 			 * shrunk window check.  This makes sure that even
19847 			 * though tcp_process_shrunk_swnd() is not called,
19848 			 * we will stop further processing.
19849 			 */
19850 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19851 				tcp_process_shrunk_swnd(tcp, -usable_r);
19852 			}
19853 			return;
19854 		}
19855 
19856 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19857 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19858 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19859 
19860 		/* usable = MIN(usable, unsent) */
19861 		if (usable_r > len)
19862 			usable_r = len;
19863 
19864 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19865 		if (usable_r > 0) {
19866 			usable = usable_r;
19867 		} else {
19868 			/* Bypass all other unnecessary processing. */
19869 			goto done;
19870 		}
19871 	}
19872 
19873 	local_time = (mblk_t *)lbolt;
19874 
19875 	/*
19876 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19877 	 * BSD.  This is more in line with the true intent of Nagle.
19878 	 *
19879 	 * The conditions are:
19880 	 * 1. The amount of unsent data (or amount of data which can be
19881 	 *    sent, whichever is smaller) is less than Nagle limit.
19882 	 * 2. The last sent size is also less than Nagle limit.
19883 	 * 3. There is unack'ed data.
19884 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19885 	 *    Nagle algorithm.  This reduces the probability that urgent
19886 	 *    bytes get "merged" together.
19887 	 * 5. The app has not closed the connection.  This eliminates the
19888 	 *    wait time of the receiving side waiting for the last piece of
19889 	 *    (small) data.
19890 	 *
19891 	 * If all are satisified, exit without sending anything.  Note
19892 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19893 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19894 	 * 4095).
19895 	 */
19896 	if (usable < (int)tcp->tcp_naglim &&
19897 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19898 	    snxt != tcp->tcp_suna &&
19899 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19900 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19901 		goto done;
19902 	}
19903 
19904 	if (tcp->tcp_cork) {
19905 		/*
19906 		 * if the tcp->tcp_cork option is set, then we have to force
19907 		 * TCP not to send partial segment (smaller than MSS bytes).
19908 		 * We are calculating the usable now based on full mss and
19909 		 * will save the rest of remaining data for later.
19910 		 */
19911 		if (usable < mss)
19912 			goto done;
19913 		usable = (usable / mss) * mss;
19914 	}
19915 
19916 	/* Update the latest receive window size in TCP header. */
19917 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19918 	    tcp->tcp_tcph->th_win);
19919 
19920 	/*
19921 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19922 	 *
19923 	 * 1. Simple TCP/IP{v4,v6} (no options).
19924 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19925 	 * 3. If the TCP connection is in ESTABLISHED state.
19926 	 * 4. The TCP is not detached.
19927 	 *
19928 	 * If any of the above conditions have changed during the
19929 	 * connection, stop using LSO/MDT and restore the stream head
19930 	 * parameters accordingly.
19931 	 */
19932 	ipst = tcps->tcps_netstack->netstack_ip;
19933 
19934 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19935 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19936 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19937 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19938 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19939 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19940 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19941 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19942 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19943 		if (tcp->tcp_lso) {
19944 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19945 			tcp->tcp_lso = B_FALSE;
19946 		} else {
19947 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19948 			tcp->tcp_mdt = B_FALSE;
19949 		}
19950 
19951 		/* Anything other than detached is considered pathological */
19952 		if (!TCP_IS_DETACHED(tcp)) {
19953 			if (tcp->tcp_lso)
19954 				TCP_STAT(tcps, tcp_lso_disabled);
19955 			else
19956 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19957 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19958 		}
19959 	}
19960 
19961 	/* Use MDT if sendable amount is greater than the threshold */
19962 	if (tcp->tcp_mdt &&
19963 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19964 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19965 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19966 	    (tcp->tcp_valid_bits == 0 ||
19967 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19968 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19969 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19970 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19971 		    local_time, mdt_thres);
19972 	} else {
19973 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19974 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19975 		    local_time, INT_MAX);
19976 	}
19977 
19978 	/* Pretend that all we were trying to send really got sent */
19979 	if (rc < 0 && tail_unsent < 0) {
19980 		do {
19981 			xmit_tail = xmit_tail->b_cont;
19982 			xmit_tail->b_prev = local_time;
19983 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19984 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19985 			tail_unsent += (int)(xmit_tail->b_wptr -
19986 			    xmit_tail->b_rptr);
19987 		} while (tail_unsent < 0);
19988 	}
19989 done:;
19990 	tcp->tcp_xmit_tail = xmit_tail;
19991 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19992 	len = tcp->tcp_snxt - snxt;
19993 	if (len) {
19994 		/*
19995 		 * If new data was sent, need to update the notsack
19996 		 * list, which is, afterall, data blocks that have
19997 		 * not been sack'ed by the receiver.  New data is
19998 		 * not sack'ed.
19999 		 */
20000 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
20001 			/* len is a negative value. */
20002 			tcp->tcp_pipe -= len;
20003 			tcp_notsack_update(&(tcp->tcp_notsack_list),
20004 			    tcp->tcp_snxt, snxt,
20005 			    &(tcp->tcp_num_notsack_blk),
20006 			    &(tcp->tcp_cnt_notsack_list));
20007 		}
20008 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
20009 		tcp->tcp_rack = tcp->tcp_rnxt;
20010 		tcp->tcp_rack_cnt = 0;
20011 		if ((snxt + len) == tcp->tcp_suna) {
20012 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20013 		}
20014 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
20015 		/*
20016 		 * Didn't send anything. Make sure the timer is running
20017 		 * so that we will probe a zero window.
20018 		 */
20019 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20020 	}
20021 	/* Note that len is the amount we just sent but with a negative sign */
20022 	tcp->tcp_unsent += len;
20023 	mutex_enter(&tcp->tcp_non_sq_lock);
20024 	if (tcp->tcp_flow_stopped) {
20025 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
20026 			tcp_clrqfull(tcp);
20027 		}
20028 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
20029 		tcp_setqfull(tcp);
20030 	}
20031 	mutex_exit(&tcp->tcp_non_sq_lock);
20032 }
20033 
20034 /*
20035  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
20036  * outgoing TCP header with the template header, as well as other
20037  * options such as time-stamp, ECN and/or SACK.
20038  */
20039 static void
20040 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
20041 {
20042 	tcph_t *tcp_tmpl, *tcp_h;
20043 	uint32_t *dst, *src;
20044 	int hdrlen;
20045 
20046 	ASSERT(OK_32PTR(rptr));
20047 
20048 	/* Template header */
20049 	tcp_tmpl = tcp->tcp_tcph;
20050 
20051 	/* Header of outgoing packet */
20052 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20053 
20054 	/* dst and src are opaque 32-bit fields, used for copying */
20055 	dst = (uint32_t *)rptr;
20056 	src = (uint32_t *)tcp->tcp_iphc;
20057 	hdrlen = tcp->tcp_hdr_len;
20058 
20059 	/* Fill time-stamp option if needed */
20060 	if (tcp->tcp_snd_ts_ok) {
20061 		U32_TO_BE32((uint32_t)now,
20062 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
20063 		U32_TO_BE32(tcp->tcp_ts_recent,
20064 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
20065 	} else {
20066 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
20067 	}
20068 
20069 	/*
20070 	 * Copy the template header; is this really more efficient than
20071 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
20072 	 * but perhaps not for other scenarios.
20073 	 */
20074 	dst[0] = src[0];
20075 	dst[1] = src[1];
20076 	dst[2] = src[2];
20077 	dst[3] = src[3];
20078 	dst[4] = src[4];
20079 	dst[5] = src[5];
20080 	dst[6] = src[6];
20081 	dst[7] = src[7];
20082 	dst[8] = src[8];
20083 	dst[9] = src[9];
20084 	if (hdrlen -= 40) {
20085 		hdrlen >>= 2;
20086 		dst += 10;
20087 		src += 10;
20088 		do {
20089 			*dst++ = *src++;
20090 		} while (--hdrlen);
20091 	}
20092 
20093 	/*
20094 	 * Set the ECN info in the TCP header if it is not a zero
20095 	 * window probe.  Zero window probe is only sent in
20096 	 * tcp_wput_data() and tcp_timer().
20097 	 */
20098 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
20099 		SET_ECT(tcp, rptr);
20100 
20101 		if (tcp->tcp_ecn_echo_on)
20102 			tcp_h->th_flags[0] |= TH_ECE;
20103 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
20104 			tcp_h->th_flags[0] |= TH_CWR;
20105 			tcp->tcp_ecn_cwr_sent = B_TRUE;
20106 		}
20107 	}
20108 
20109 	/* Fill in SACK options */
20110 	if (num_sack_blk > 0) {
20111 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
20112 		sack_blk_t *tmp;
20113 		int32_t	i;
20114 
20115 		wptr[0] = TCPOPT_NOP;
20116 		wptr[1] = TCPOPT_NOP;
20117 		wptr[2] = TCPOPT_SACK;
20118 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
20119 		    sizeof (sack_blk_t);
20120 		wptr += TCPOPT_REAL_SACK_LEN;
20121 
20122 		tmp = tcp->tcp_sack_list;
20123 		for (i = 0; i < num_sack_blk; i++) {
20124 			U32_TO_BE32(tmp[i].begin, wptr);
20125 			wptr += sizeof (tcp_seq);
20126 			U32_TO_BE32(tmp[i].end, wptr);
20127 			wptr += sizeof (tcp_seq);
20128 		}
20129 		tcp_h->th_offset_and_rsrvd[0] +=
20130 		    ((num_sack_blk * 2 + 1) << 4);
20131 	}
20132 }
20133 
20134 /*
20135  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
20136  * the destination address and SAP attribute, and if necessary, the
20137  * hardware checksum offload attribute to a Multidata message.
20138  */
20139 static int
20140 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
20141     const uint32_t start, const uint32_t stuff, const uint32_t end,
20142     const uint32_t flags, tcp_stack_t *tcps)
20143 {
20144 	/* Add global destination address & SAP attribute */
20145 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
20146 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
20147 		    "destination address+SAP\n"));
20148 
20149 		if (dlmp != NULL)
20150 			TCP_STAT(tcps, tcp_mdt_allocfail);
20151 		return (-1);
20152 	}
20153 
20154 	/* Add global hwcksum attribute */
20155 	if (hwcksum &&
20156 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
20157 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
20158 		    "checksum attribute\n"));
20159 
20160 		TCP_STAT(tcps, tcp_mdt_allocfail);
20161 		return (-1);
20162 	}
20163 
20164 	return (0);
20165 }
20166 
20167 /*
20168  * Smaller and private version of pdescinfo_t used specifically for TCP,
20169  * which allows for only two payload spans per packet.
20170  */
20171 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
20172 
20173 /*
20174  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
20175  * scheme, and returns one the following:
20176  *
20177  * -1 = failed allocation.
20178  *  0 = success; burst count reached, or usable send window is too small,
20179  *      and that we'd rather wait until later before sending again.
20180  */
20181 static int
20182 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20183     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20184     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20185     const int mdt_thres)
20186 {
20187 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
20188 	multidata_t	*mmd;
20189 	uint_t		obsegs, obbytes, hdr_frag_sz;
20190 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
20191 	int		num_burst_seg, max_pld;
20192 	pdesc_t		*pkt;
20193 	tcp_pdescinfo_t	tcp_pkt_info;
20194 	pdescinfo_t	*pkt_info;
20195 	int		pbuf_idx, pbuf_idx_nxt;
20196 	int		seg_len, len, spill, af;
20197 	boolean_t	add_buffer, zcopy, clusterwide;
20198 	boolean_t	buf_trunked = B_FALSE;
20199 	boolean_t	rconfirm = B_FALSE;
20200 	boolean_t	done = B_FALSE;
20201 	uint32_t	cksum;
20202 	uint32_t	hwcksum_flags;
20203 	ire_t		*ire = NULL;
20204 	ill_t		*ill;
20205 	ipha_t		*ipha;
20206 	ip6_t		*ip6h;
20207 	ipaddr_t	src, dst;
20208 	ill_zerocopy_capab_t *zc_cap = NULL;
20209 	uint16_t	*up;
20210 	int		err;
20211 	conn_t		*connp;
20212 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
20213 	uchar_t		*pld_start;
20214 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20215 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
20216 
20217 #ifdef	_BIG_ENDIAN
20218 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
20219 #else
20220 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
20221 #endif
20222 
20223 #define	PREP_NEW_MULTIDATA() {			\
20224 	mmd = NULL;				\
20225 	md_mp = md_hbuf = NULL;			\
20226 	cur_hdr_off = 0;			\
20227 	max_pld = tcp->tcp_mdt_max_pld;		\
20228 	pbuf_idx = pbuf_idx_nxt = -1;		\
20229 	add_buffer = B_TRUE;			\
20230 	zcopy = B_FALSE;			\
20231 }
20232 
20233 #define	PREP_NEW_PBUF() {			\
20234 	md_pbuf = md_pbuf_nxt = NULL;		\
20235 	pbuf_idx = pbuf_idx_nxt = -1;		\
20236 	cur_pld_off = 0;			\
20237 	first_snxt = *snxt;			\
20238 	ASSERT(*tail_unsent > 0);		\
20239 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20240 }
20241 
20242 	ASSERT(mdt_thres >= mss);
20243 	ASSERT(*usable > 0 && *usable > mdt_thres);
20244 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20245 	ASSERT(!TCP_IS_DETACHED(tcp));
20246 	ASSERT(tcp->tcp_valid_bits == 0 ||
20247 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20248 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20249 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20250 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20251 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20252 
20253 	connp = tcp->tcp_connp;
20254 	ASSERT(connp != NULL);
20255 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20256 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20257 
20258 	/*
20259 	 * Note that tcp will only declare at most 2 payload spans per
20260 	 * packet, which is much lower than the maximum allowable number
20261 	 * of packet spans per Multidata.  For this reason, we use the
20262 	 * privately declared and smaller descriptor info structure, in
20263 	 * order to save some stack space.
20264 	 */
20265 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20266 
20267 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20268 	if (af == AF_INET) {
20269 		dst = tcp->tcp_ipha->ipha_dst;
20270 		src = tcp->tcp_ipha->ipha_src;
20271 		ASSERT(!CLASSD(dst));
20272 	}
20273 	ASSERT(af == AF_INET ||
20274 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20275 
20276 	obsegs = obbytes = 0;
20277 	num_burst_seg = tcp->tcp_snd_burst;
20278 	md_mp_head = NULL;
20279 	PREP_NEW_MULTIDATA();
20280 
20281 	/*
20282 	 * Before we go on further, make sure there is an IRE that we can
20283 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20284 	 * in proceeding any further, and we should just hand everything
20285 	 * off to the legacy path.
20286 	 */
20287 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20288 		goto legacy_send_no_md;
20289 
20290 	ASSERT(ire != NULL);
20291 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20292 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20293 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20294 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20295 	/*
20296 	 * If we do support loopback for MDT (which requires modifications
20297 	 * to the receiving paths), the following assertions should go away,
20298 	 * and we would be sending the Multidata to loopback conn later on.
20299 	 */
20300 	ASSERT(!IRE_IS_LOCAL(ire));
20301 	ASSERT(ire->ire_stq != NULL);
20302 
20303 	ill = ire_to_ill(ire);
20304 	ASSERT(ill != NULL);
20305 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20306 
20307 	if (!tcp->tcp_ire_ill_check_done) {
20308 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20309 		tcp->tcp_ire_ill_check_done = B_TRUE;
20310 	}
20311 
20312 	/*
20313 	 * If the underlying interface conditions have changed, or if the
20314 	 * new interface does not support MDT, go back to legacy path.
20315 	 */
20316 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20317 		/* don't go through this path anymore for this connection */
20318 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20319 		tcp->tcp_mdt = B_FALSE;
20320 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20321 		    "interface %s\n", (void *)connp, ill->ill_name));
20322 		/* IRE will be released prior to returning */
20323 		goto legacy_send_no_md;
20324 	}
20325 
20326 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20327 		zc_cap = ill->ill_zerocopy_capab;
20328 
20329 	/*
20330 	 * Check if we can take tcp fast-path. Note that "incomplete"
20331 	 * ire's (where the link-layer for next hop is not resolved
20332 	 * or where the fast-path header in nce_fp_mp is not available
20333 	 * yet) are sent down the legacy (slow) path.
20334 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20335 	 */
20336 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20337 		/* IRE will be released prior to returning */
20338 		goto legacy_send_no_md;
20339 	}
20340 
20341 	/* go to legacy path if interface doesn't support zerocopy */
20342 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20343 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20344 		/* IRE will be released prior to returning */
20345 		goto legacy_send_no_md;
20346 	}
20347 
20348 	/* does the interface support hardware checksum offload? */
20349 	hwcksum_flags = 0;
20350 	if (ILL_HCKSUM_CAPABLE(ill) &&
20351 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20352 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20353 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20354 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20355 		    HCKSUM_IPHDRCKSUM)
20356 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20357 
20358 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20359 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20360 			hwcksum_flags |= HCK_FULLCKSUM;
20361 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20362 		    HCKSUM_INET_PARTIAL)
20363 			hwcksum_flags |= HCK_PARTIALCKSUM;
20364 	}
20365 
20366 	/*
20367 	 * Each header fragment consists of the leading extra space,
20368 	 * followed by the TCP/IP header, and the trailing extra space.
20369 	 * We make sure that each header fragment begins on a 32-bit
20370 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20371 	 * aligned in tcp_mdt_update).
20372 	 */
20373 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20374 	    tcp->tcp_mdt_hdr_tail), 4);
20375 
20376 	/* are we starting from the beginning of data block? */
20377 	if (*tail_unsent == 0) {
20378 		*xmit_tail = (*xmit_tail)->b_cont;
20379 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20380 		*tail_unsent = (int)MBLKL(*xmit_tail);
20381 	}
20382 
20383 	/*
20384 	 * Here we create one or more Multidata messages, each made up of
20385 	 * one header buffer and up to N payload buffers.  This entire
20386 	 * operation is done within two loops:
20387 	 *
20388 	 * The outer loop mostly deals with creating the Multidata message,
20389 	 * as well as the header buffer that gets added to it.  It also
20390 	 * links the Multidata messages together such that all of them can
20391 	 * be sent down to the lower layer in a single putnext call; this
20392 	 * linking behavior depends on the tcp_mdt_chain tunable.
20393 	 *
20394 	 * The inner loop takes an existing Multidata message, and adds
20395 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20396 	 * packetizes those buffers by filling up the corresponding header
20397 	 * buffer fragments with the proper IP and TCP headers, and by
20398 	 * describing the layout of each packet in the packet descriptors
20399 	 * that get added to the Multidata.
20400 	 */
20401 	do {
20402 		/*
20403 		 * If usable send window is too small, or data blocks in
20404 		 * transmit list are smaller than our threshold (i.e. app
20405 		 * performs large writes followed by small ones), we hand
20406 		 * off the control over to the legacy path.  Note that we'll
20407 		 * get back the control once it encounters a large block.
20408 		 */
20409 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20410 		    (*xmit_tail)->b_cont != NULL &&
20411 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20412 			/* send down what we've got so far */
20413 			if (md_mp_head != NULL) {
20414 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20415 				    obsegs, obbytes, &rconfirm);
20416 			}
20417 			/*
20418 			 * Pass control over to tcp_send(), but tell it to
20419 			 * return to us once a large-size transmission is
20420 			 * possible.
20421 			 */
20422 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20423 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20424 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20425 			    tail_unsent, xmit_tail, local_time,
20426 			    mdt_thres)) <= 0) {
20427 				/* burst count reached, or alloc failed */
20428 				IRE_REFRELE(ire);
20429 				return (err);
20430 			}
20431 
20432 			/* tcp_send() may have sent everything, so check */
20433 			if (*usable <= 0) {
20434 				IRE_REFRELE(ire);
20435 				return (0);
20436 			}
20437 
20438 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20439 			/*
20440 			 * We may have delivered the Multidata, so make sure
20441 			 * to re-initialize before the next round.
20442 			 */
20443 			md_mp_head = NULL;
20444 			obsegs = obbytes = 0;
20445 			num_burst_seg = tcp->tcp_snd_burst;
20446 			PREP_NEW_MULTIDATA();
20447 
20448 			/* are we starting from the beginning of data block? */
20449 			if (*tail_unsent == 0) {
20450 				*xmit_tail = (*xmit_tail)->b_cont;
20451 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20452 				    (uintptr_t)INT_MAX);
20453 				*tail_unsent = (int)MBLKL(*xmit_tail);
20454 			}
20455 		}
20456 
20457 		/*
20458 		 * max_pld limits the number of mblks in tcp's transmit
20459 		 * queue that can be added to a Multidata message.  Once
20460 		 * this counter reaches zero, no more additional mblks
20461 		 * can be added to it.  What happens afterwards depends
20462 		 * on whether or not we are set to chain the Multidata
20463 		 * messages.  If we are to link them together, reset
20464 		 * max_pld to its original value (tcp_mdt_max_pld) and
20465 		 * prepare to create a new Multidata message which will
20466 		 * get linked to md_mp_head.  Else, leave it alone and
20467 		 * let the inner loop break on its own.
20468 		 */
20469 		if (tcp_mdt_chain && max_pld == 0)
20470 			PREP_NEW_MULTIDATA();
20471 
20472 		/* adding a payload buffer; re-initialize values */
20473 		if (add_buffer)
20474 			PREP_NEW_PBUF();
20475 
20476 		/*
20477 		 * If we don't have a Multidata, either because we just
20478 		 * (re)entered this outer loop, or after we branched off
20479 		 * to tcp_send above, setup the Multidata and header
20480 		 * buffer to be used.
20481 		 */
20482 		if (md_mp == NULL) {
20483 			int md_hbuflen;
20484 			uint32_t start, stuff;
20485 
20486 			/*
20487 			 * Calculate Multidata header buffer size large enough
20488 			 * to hold all of the headers that can possibly be
20489 			 * sent at this moment.  We'd rather over-estimate
20490 			 * the size than running out of space; this is okay
20491 			 * since this buffer is small anyway.
20492 			 */
20493 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20494 
20495 			/*
20496 			 * Start and stuff offset for partial hardware
20497 			 * checksum offload; these are currently for IPv4.
20498 			 * For full checksum offload, they are set to zero.
20499 			 */
20500 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20501 				if (af == AF_INET) {
20502 					start = IP_SIMPLE_HDR_LENGTH;
20503 					stuff = IP_SIMPLE_HDR_LENGTH +
20504 					    TCP_CHECKSUM_OFFSET;
20505 				} else {
20506 					start = IPV6_HDR_LEN;
20507 					stuff = IPV6_HDR_LEN +
20508 					    TCP_CHECKSUM_OFFSET;
20509 				}
20510 			} else {
20511 				start = stuff = 0;
20512 			}
20513 
20514 			/*
20515 			 * Create the header buffer, Multidata, as well as
20516 			 * any necessary attributes (destination address,
20517 			 * SAP and hardware checksum offload) that should
20518 			 * be associated with the Multidata message.
20519 			 */
20520 			ASSERT(cur_hdr_off == 0);
20521 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20522 			    ((md_hbuf->b_wptr += md_hbuflen),
20523 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20524 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20525 			    /* fastpath mblk */
20526 			    ire->ire_nce->nce_res_mp,
20527 			    /* hardware checksum enabled */
20528 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20529 			    /* hardware checksum offsets */
20530 			    start, stuff, 0,
20531 			    /* hardware checksum flag */
20532 			    hwcksum_flags, tcps) != 0)) {
20533 legacy_send:
20534 				if (md_mp != NULL) {
20535 					/* Unlink message from the chain */
20536 					if (md_mp_head != NULL) {
20537 						err = (intptr_t)rmvb(md_mp_head,
20538 						    md_mp);
20539 						/*
20540 						 * We can't assert that rmvb
20541 						 * did not return -1, since we
20542 						 * may get here before linkb
20543 						 * happens.  We do, however,
20544 						 * check if we just removed the
20545 						 * only element in the list.
20546 						 */
20547 						if (err == 0)
20548 							md_mp_head = NULL;
20549 					}
20550 					/* md_hbuf gets freed automatically */
20551 					TCP_STAT(tcps, tcp_mdt_discarded);
20552 					freeb(md_mp);
20553 				} else {
20554 					/* Either allocb or mmd_alloc failed */
20555 					TCP_STAT(tcps, tcp_mdt_allocfail);
20556 					if (md_hbuf != NULL)
20557 						freeb(md_hbuf);
20558 				}
20559 
20560 				/* send down what we've got so far */
20561 				if (md_mp_head != NULL) {
20562 					tcp_multisend_data(tcp, ire, ill,
20563 					    md_mp_head, obsegs, obbytes,
20564 					    &rconfirm);
20565 				}
20566 legacy_send_no_md:
20567 				if (ire != NULL)
20568 					IRE_REFRELE(ire);
20569 				/*
20570 				 * Too bad; let the legacy path handle this.
20571 				 * We specify INT_MAX for the threshold, since
20572 				 * we gave up with the Multidata processings
20573 				 * and let the old path have it all.
20574 				 */
20575 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20576 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20577 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20578 				    snxt, tail_unsent, xmit_tail, local_time,
20579 				    INT_MAX));
20580 			}
20581 
20582 			/* link to any existing ones, if applicable */
20583 			TCP_STAT(tcps, tcp_mdt_allocd);
20584 			if (md_mp_head == NULL) {
20585 				md_mp_head = md_mp;
20586 			} else if (tcp_mdt_chain) {
20587 				TCP_STAT(tcps, tcp_mdt_linked);
20588 				linkb(md_mp_head, md_mp);
20589 			}
20590 		}
20591 
20592 		ASSERT(md_mp_head != NULL);
20593 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20594 		ASSERT(md_mp != NULL && mmd != NULL);
20595 		ASSERT(md_hbuf != NULL);
20596 
20597 		/*
20598 		 * Packetize the transmittable portion of the data block;
20599 		 * each data block is essentially added to the Multidata
20600 		 * as a payload buffer.  We also deal with adding more
20601 		 * than one payload buffers, which happens when the remaining
20602 		 * packetized portion of the current payload buffer is less
20603 		 * than MSS, while the next data block in transmit queue
20604 		 * has enough data to make up for one.  This "spillover"
20605 		 * case essentially creates a split-packet, where portions
20606 		 * of the packet's payload fragments may span across two
20607 		 * virtually discontiguous address blocks.
20608 		 */
20609 		seg_len = mss;
20610 		do {
20611 			len = seg_len;
20612 
20613 			ASSERT(len > 0);
20614 			ASSERT(max_pld >= 0);
20615 			ASSERT(!add_buffer || cur_pld_off == 0);
20616 
20617 			/*
20618 			 * First time around for this payload buffer; note
20619 			 * in the case of a spillover, the following has
20620 			 * been done prior to adding the split-packet
20621 			 * descriptor to Multidata, and we don't want to
20622 			 * repeat the process.
20623 			 */
20624 			if (add_buffer) {
20625 				ASSERT(mmd != NULL);
20626 				ASSERT(md_pbuf == NULL);
20627 				ASSERT(md_pbuf_nxt == NULL);
20628 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20629 
20630 				/*
20631 				 * Have we reached the limit?  We'd get to
20632 				 * this case when we're not chaining the
20633 				 * Multidata messages together, and since
20634 				 * we're done, terminate this loop.
20635 				 */
20636 				if (max_pld == 0)
20637 					break; /* done */
20638 
20639 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20640 					TCP_STAT(tcps, tcp_mdt_allocfail);
20641 					goto legacy_send; /* out_of_mem */
20642 				}
20643 
20644 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20645 				    zc_cap != NULL) {
20646 					if (!ip_md_zcopy_attr(mmd, NULL,
20647 					    zc_cap->ill_zerocopy_flags)) {
20648 						freeb(md_pbuf);
20649 						TCP_STAT(tcps,
20650 						    tcp_mdt_allocfail);
20651 						/* out_of_mem */
20652 						goto legacy_send;
20653 					}
20654 					zcopy = B_TRUE;
20655 				}
20656 
20657 				md_pbuf->b_rptr += base_pld_off;
20658 
20659 				/*
20660 				 * Add a payload buffer to the Multidata; this
20661 				 * operation must not fail, or otherwise our
20662 				 * logic in this routine is broken.  There
20663 				 * is no memory allocation done by the
20664 				 * routine, so any returned failure simply
20665 				 * tells us that we've done something wrong.
20666 				 *
20667 				 * A failure tells us that either we're adding
20668 				 * the same payload buffer more than once, or
20669 				 * we're trying to add more buffers than
20670 				 * allowed (max_pld calculation is wrong).
20671 				 * None of the above cases should happen, and
20672 				 * we panic because either there's horrible
20673 				 * heap corruption, and/or programming mistake.
20674 				 */
20675 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20676 				if (pbuf_idx < 0) {
20677 					cmn_err(CE_PANIC, "tcp_multisend: "
20678 					    "payload buffer logic error "
20679 					    "detected for tcp %p mmd %p "
20680 					    "pbuf %p (%d)\n",
20681 					    (void *)tcp, (void *)mmd,
20682 					    (void *)md_pbuf, pbuf_idx);
20683 				}
20684 
20685 				ASSERT(max_pld > 0);
20686 				--max_pld;
20687 				add_buffer = B_FALSE;
20688 			}
20689 
20690 			ASSERT(md_mp_head != NULL);
20691 			ASSERT(md_pbuf != NULL);
20692 			ASSERT(md_pbuf_nxt == NULL);
20693 			ASSERT(pbuf_idx != -1);
20694 			ASSERT(pbuf_idx_nxt == -1);
20695 			ASSERT(*usable > 0);
20696 
20697 			/*
20698 			 * We spillover to the next payload buffer only
20699 			 * if all of the following is true:
20700 			 *
20701 			 *   1. There is not enough data on the current
20702 			 *	payload buffer to make up `len',
20703 			 *   2. We are allowed to send `len',
20704 			 *   3. The next payload buffer length is large
20705 			 *	enough to accomodate `spill'.
20706 			 */
20707 			if ((spill = len - *tail_unsent) > 0 &&
20708 			    *usable >= len &&
20709 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20710 			    max_pld > 0) {
20711 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20712 				if (md_pbuf_nxt == NULL) {
20713 					TCP_STAT(tcps, tcp_mdt_allocfail);
20714 					goto legacy_send; /* out_of_mem */
20715 				}
20716 
20717 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20718 				    zc_cap != NULL) {
20719 					if (!ip_md_zcopy_attr(mmd, NULL,
20720 					    zc_cap->ill_zerocopy_flags)) {
20721 						freeb(md_pbuf_nxt);
20722 						TCP_STAT(tcps,
20723 						    tcp_mdt_allocfail);
20724 						/* out_of_mem */
20725 						goto legacy_send;
20726 					}
20727 					zcopy = B_TRUE;
20728 				}
20729 
20730 				/*
20731 				 * See comments above on the first call to
20732 				 * mmd_addpldbuf for explanation on the panic.
20733 				 */
20734 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20735 				if (pbuf_idx_nxt < 0) {
20736 					panic("tcp_multisend: "
20737 					    "next payload buffer logic error "
20738 					    "detected for tcp %p mmd %p "
20739 					    "pbuf %p (%d)\n",
20740 					    (void *)tcp, (void *)mmd,
20741 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20742 				}
20743 
20744 				ASSERT(max_pld > 0);
20745 				--max_pld;
20746 			} else if (spill > 0) {
20747 				/*
20748 				 * If there's a spillover, but the following
20749 				 * xmit_tail couldn't give us enough octets
20750 				 * to reach "len", then stop the current
20751 				 * Multidata creation and let the legacy
20752 				 * tcp_send() path take over.  We don't want
20753 				 * to send the tiny segment as part of this
20754 				 * Multidata for performance reasons; instead,
20755 				 * we let the legacy path deal with grouping
20756 				 * it with the subsequent small mblks.
20757 				 */
20758 				if (*usable >= len &&
20759 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20760 					max_pld = 0;
20761 					break;	/* done */
20762 				}
20763 
20764 				/*
20765 				 * We can't spillover, and we are near
20766 				 * the end of the current payload buffer,
20767 				 * so send what's left.
20768 				 */
20769 				ASSERT(*tail_unsent > 0);
20770 				len = *tail_unsent;
20771 			}
20772 
20773 			/* tail_unsent is negated if there is a spillover */
20774 			*tail_unsent -= len;
20775 			*usable -= len;
20776 			ASSERT(*usable >= 0);
20777 
20778 			if (*usable < mss)
20779 				seg_len = *usable;
20780 			/*
20781 			 * Sender SWS avoidance; see comments in tcp_send();
20782 			 * everything else is the same, except that we only
20783 			 * do this here if there is no more data to be sent
20784 			 * following the current xmit_tail.  We don't check
20785 			 * for 1-byte urgent data because we shouldn't get
20786 			 * here if TCP_URG_VALID is set.
20787 			 */
20788 			if (*usable > 0 && *usable < mss &&
20789 			    ((md_pbuf_nxt == NULL &&
20790 			    (*xmit_tail)->b_cont == NULL) ||
20791 			    (md_pbuf_nxt != NULL &&
20792 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20793 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20794 			    (tcp->tcp_unsent -
20795 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20796 			    !tcp->tcp_zero_win_probe) {
20797 				if ((*snxt + len) == tcp->tcp_snxt &&
20798 				    (*snxt + len) == tcp->tcp_suna) {
20799 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20800 				}
20801 				done = B_TRUE;
20802 			}
20803 
20804 			/*
20805 			 * Prime pump for IP's checksumming on our behalf;
20806 			 * include the adjustment for a source route if any.
20807 			 * Do this only for software/partial hardware checksum
20808 			 * offload, as this field gets zeroed out later for
20809 			 * the full hardware checksum offload case.
20810 			 */
20811 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20812 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20813 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20814 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20815 			}
20816 
20817 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20818 			*snxt += len;
20819 
20820 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20821 			/*
20822 			 * We set the PUSH bit only if TCP has no more buffered
20823 			 * data to be transmitted (or if sender SWS avoidance
20824 			 * takes place), as opposed to setting it for every
20825 			 * last packet in the burst.
20826 			 */
20827 			if (done ||
20828 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20829 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20830 
20831 			/*
20832 			 * Set FIN bit if this is our last segment; snxt
20833 			 * already includes its length, and it will not
20834 			 * be adjusted after this point.
20835 			 */
20836 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20837 			    *snxt == tcp->tcp_fss) {
20838 				if (!tcp->tcp_fin_acked) {
20839 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20840 					BUMP_MIB(&tcps->tcps_mib,
20841 					    tcpOutControl);
20842 				}
20843 				if (!tcp->tcp_fin_sent) {
20844 					tcp->tcp_fin_sent = B_TRUE;
20845 					/*
20846 					 * tcp state must be ESTABLISHED
20847 					 * in order for us to get here in
20848 					 * the first place.
20849 					 */
20850 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20851 
20852 					/*
20853 					 * Upon returning from this routine,
20854 					 * tcp_wput_data() will set tcp_snxt
20855 					 * to be equal to snxt + tcp_fin_sent.
20856 					 * This is essentially the same as
20857 					 * setting it to tcp_fss + 1.
20858 					 */
20859 				}
20860 			}
20861 
20862 			tcp->tcp_last_sent_len = (ushort_t)len;
20863 
20864 			len += tcp_hdr_len;
20865 			if (tcp->tcp_ipversion == IPV4_VERSION)
20866 				tcp->tcp_ipha->ipha_length = htons(len);
20867 			else
20868 				tcp->tcp_ip6h->ip6_plen = htons(len -
20869 				    ((char *)&tcp->tcp_ip6h[1] -
20870 				    tcp->tcp_iphc));
20871 
20872 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20873 
20874 			/* setup header fragment */
20875 			PDESC_HDR_ADD(pkt_info,
20876 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20877 			    tcp->tcp_mdt_hdr_head,		/* head room */
20878 			    tcp_hdr_len,			/* len */
20879 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20880 
20881 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20882 			    hdr_frag_sz);
20883 			ASSERT(MBLKIN(md_hbuf,
20884 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20885 			    PDESC_HDRSIZE(pkt_info)));
20886 
20887 			/* setup first payload fragment */
20888 			PDESC_PLD_INIT(pkt_info);
20889 			PDESC_PLD_SPAN_ADD(pkt_info,
20890 			    pbuf_idx,				/* index */
20891 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20892 			    tcp->tcp_last_sent_len);		/* len */
20893 
20894 			/* create a split-packet in case of a spillover */
20895 			if (md_pbuf_nxt != NULL) {
20896 				ASSERT(spill > 0);
20897 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20898 				ASSERT(!add_buffer);
20899 
20900 				md_pbuf = md_pbuf_nxt;
20901 				md_pbuf_nxt = NULL;
20902 				pbuf_idx = pbuf_idx_nxt;
20903 				pbuf_idx_nxt = -1;
20904 				cur_pld_off = spill;
20905 
20906 				/* trim out first payload fragment */
20907 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20908 
20909 				/* setup second payload fragment */
20910 				PDESC_PLD_SPAN_ADD(pkt_info,
20911 				    pbuf_idx,			/* index */
20912 				    md_pbuf->b_rptr,		/* start */
20913 				    spill);			/* len */
20914 
20915 				if ((*xmit_tail)->b_next == NULL) {
20916 					/*
20917 					 * Store the lbolt used for RTT
20918 					 * estimation. We can only record one
20919 					 * timestamp per mblk so we do it when
20920 					 * we reach the end of the payload
20921 					 * buffer.  Also we only take a new
20922 					 * timestamp sample when the previous
20923 					 * timed data from the same mblk has
20924 					 * been ack'ed.
20925 					 */
20926 					(*xmit_tail)->b_prev = local_time;
20927 					(*xmit_tail)->b_next =
20928 					    (mblk_t *)(uintptr_t)first_snxt;
20929 				}
20930 
20931 				first_snxt = *snxt - spill;
20932 
20933 				/*
20934 				 * Advance xmit_tail; usable could be 0 by
20935 				 * the time we got here, but we made sure
20936 				 * above that we would only spillover to
20937 				 * the next data block if usable includes
20938 				 * the spilled-over amount prior to the
20939 				 * subtraction.  Therefore, we are sure
20940 				 * that xmit_tail->b_cont can't be NULL.
20941 				 */
20942 				ASSERT((*xmit_tail)->b_cont != NULL);
20943 				*xmit_tail = (*xmit_tail)->b_cont;
20944 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20945 				    (uintptr_t)INT_MAX);
20946 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20947 			} else {
20948 				cur_pld_off += tcp->tcp_last_sent_len;
20949 			}
20950 
20951 			/*
20952 			 * Fill in the header using the template header, and
20953 			 * add options such as time-stamp, ECN and/or SACK,
20954 			 * as needed.
20955 			 */
20956 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20957 			    (clock_t)local_time, num_sack_blk);
20958 
20959 			/* take care of some IP header businesses */
20960 			if (af == AF_INET) {
20961 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20962 
20963 				ASSERT(OK_32PTR((uchar_t *)ipha));
20964 				ASSERT(PDESC_HDRL(pkt_info) >=
20965 				    IP_SIMPLE_HDR_LENGTH);
20966 				ASSERT(ipha->ipha_version_and_hdr_length ==
20967 				    IP_SIMPLE_HDR_VERSION);
20968 
20969 				/*
20970 				 * Assign ident value for current packet; see
20971 				 * related comments in ip_wput_ire() about the
20972 				 * contract private interface with clustering
20973 				 * group.
20974 				 */
20975 				clusterwide = B_FALSE;
20976 				if (cl_inet_ipident != NULL) {
20977 					ASSERT(cl_inet_isclusterwide != NULL);
20978 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20979 					    AF_INET,
20980 					    (uint8_t *)(uintptr_t)src)) {
20981 						ipha->ipha_ident =
20982 						    (*cl_inet_ipident)
20983 						    (IPPROTO_IP, AF_INET,
20984 						    (uint8_t *)(uintptr_t)src,
20985 						    (uint8_t *)(uintptr_t)dst);
20986 						clusterwide = B_TRUE;
20987 					}
20988 				}
20989 
20990 				if (!clusterwide) {
20991 					ipha->ipha_ident = (uint16_t)
20992 					    atomic_add_32_nv(
20993 						&ire->ire_ident, 1);
20994 				}
20995 #ifndef _BIG_ENDIAN
20996 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20997 				    (ipha->ipha_ident >> 8);
20998 #endif
20999 			} else {
21000 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
21001 
21002 				ASSERT(OK_32PTR((uchar_t *)ip6h));
21003 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
21004 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
21005 				ASSERT(PDESC_HDRL(pkt_info) >=
21006 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
21007 				    TCP_CHECKSUM_SIZE));
21008 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21009 
21010 				if (tcp->tcp_ip_forward_progress) {
21011 					rconfirm = B_TRUE;
21012 					tcp->tcp_ip_forward_progress = B_FALSE;
21013 				}
21014 			}
21015 
21016 			/* at least one payload span, and at most two */
21017 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
21018 
21019 			/* add the packet descriptor to Multidata */
21020 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
21021 			    KM_NOSLEEP)) == NULL) {
21022 				/*
21023 				 * Any failure other than ENOMEM indicates
21024 				 * that we have passed in invalid pkt_info
21025 				 * or parameters to mmd_addpdesc, which must
21026 				 * not happen.
21027 				 *
21028 				 * EINVAL is a result of failure on boundary
21029 				 * checks against the pkt_info contents.  It
21030 				 * should not happen, and we panic because
21031 				 * either there's horrible heap corruption,
21032 				 * and/or programming mistake.
21033 				 */
21034 				if (err != ENOMEM) {
21035 					cmn_err(CE_PANIC, "tcp_multisend: "
21036 					    "pdesc logic error detected for "
21037 					    "tcp %p mmd %p pinfo %p (%d)\n",
21038 					    (void *)tcp, (void *)mmd,
21039 					    (void *)pkt_info, err);
21040 				}
21041 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
21042 				goto legacy_send; /* out_of_mem */
21043 			}
21044 			ASSERT(pkt != NULL);
21045 
21046 			/* calculate IP header and TCP checksums */
21047 			if (af == AF_INET) {
21048 				/* calculate pseudo-header checksum */
21049 				cksum = (dst >> 16) + (dst & 0xFFFF) +
21050 				    (src >> 16) + (src & 0xFFFF);
21051 
21052 				/* offset for TCP header checksum */
21053 				up = IPH_TCPH_CHECKSUMP(ipha,
21054 				    IP_SIMPLE_HDR_LENGTH);
21055 			} else {
21056 				up = (uint16_t *)&ip6h->ip6_src;
21057 
21058 				/* calculate pseudo-header checksum */
21059 				cksum = up[0] + up[1] + up[2] + up[3] +
21060 				    up[4] + up[5] + up[6] + up[7] +
21061 				    up[8] + up[9] + up[10] + up[11] +
21062 				    up[12] + up[13] + up[14] + up[15];
21063 
21064 				/* Fold the initial sum */
21065 				cksum = (cksum & 0xffff) + (cksum >> 16);
21066 
21067 				up = (uint16_t *)(((uchar_t *)ip6h) +
21068 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
21069 			}
21070 
21071 			if (hwcksum_flags & HCK_FULLCKSUM) {
21072 				/* clear checksum field for hardware */
21073 				*up = 0;
21074 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
21075 				uint32_t sum;
21076 
21077 				/* pseudo-header checksumming */
21078 				sum = *up + cksum + IP_TCP_CSUM_COMP;
21079 				sum = (sum & 0xFFFF) + (sum >> 16);
21080 				*up = (sum & 0xFFFF) + (sum >> 16);
21081 			} else {
21082 				/* software checksumming */
21083 				TCP_STAT(tcps, tcp_out_sw_cksum);
21084 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
21085 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
21086 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
21087 				    cksum + IP_TCP_CSUM_COMP);
21088 				if (*up == 0)
21089 					*up = 0xFFFF;
21090 			}
21091 
21092 			/* IPv4 header checksum */
21093 			if (af == AF_INET) {
21094 				ipha->ipha_fragment_offset_and_flags |=
21095 				    (uint32_t)htons(ire->ire_frag_flag);
21096 
21097 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
21098 					ipha->ipha_hdr_checksum = 0;
21099 				} else {
21100 					IP_HDR_CKSUM(ipha, cksum,
21101 					    ((uint32_t *)ipha)[0],
21102 					    ((uint16_t *)ipha)[4]);
21103 				}
21104 			}
21105 
21106 			if (af == AF_INET &&
21107 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
21108 			    af == AF_INET6 &&
21109 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
21110 				/* build header(IP/TCP) mblk for this segment */
21111 				if ((mp = dupb(md_hbuf)) == NULL)
21112 					goto legacy_send;
21113 
21114 				mp->b_rptr = pkt_info->hdr_rptr;
21115 				mp->b_wptr = pkt_info->hdr_wptr;
21116 
21117 				/* build payload mblk for this segment */
21118 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
21119 					freemsg(mp);
21120 					goto legacy_send;
21121 				}
21122 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
21123 				mp1->b_rptr = mp1->b_wptr -
21124 				    tcp->tcp_last_sent_len;
21125 				linkb(mp, mp1);
21126 
21127 				pld_start = mp1->b_rptr;
21128 
21129 				if (af == AF_INET) {
21130 					DTRACE_PROBE4(
21131 					    ip4__physical__out__start,
21132 					    ill_t *, NULL,
21133 					    ill_t *, ill,
21134 					    ipha_t *, ipha,
21135 					    mblk_t *, mp);
21136 					FW_HOOKS(
21137 					    ipst->ips_ip4_physical_out_event,
21138 					    ipst->ips_ipv4firewall_physical_out,
21139 					    NULL, ill, ipha, mp, mp, 0, ipst);
21140 					DTRACE_PROBE1(
21141 					    ip4__physical__out__end,
21142 					    mblk_t *, mp);
21143 				} else {
21144 					DTRACE_PROBE4(
21145 					    ip6__physical__out_start,
21146 					    ill_t *, NULL,
21147 					    ill_t *, ill,
21148 					    ip6_t *, ip6h,
21149 					    mblk_t *, mp);
21150 					FW_HOOKS6(
21151 					    ipst->ips_ip6_physical_out_event,
21152 					    ipst->ips_ipv6firewall_physical_out,
21153 					    NULL, ill, ip6h, mp, mp, 0, ipst);
21154 					DTRACE_PROBE1(
21155 					    ip6__physical__out__end,
21156 					    mblk_t *, mp);
21157 				}
21158 
21159 				if (buf_trunked && mp != NULL) {
21160 					/*
21161 					 * Need to pass it to normal path.
21162 					 */
21163 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21164 				} else if (mp == NULL ||
21165 				    mp->b_rptr != pkt_info->hdr_rptr ||
21166 				    mp->b_wptr != pkt_info->hdr_wptr ||
21167 				    (mp1 = mp->b_cont) == NULL ||
21168 				    mp1->b_rptr != pld_start ||
21169 				    mp1->b_wptr != pld_start +
21170 				    tcp->tcp_last_sent_len ||
21171 				    mp1->b_cont != NULL) {
21172 					/*
21173 					 * Need to pass all packets of this
21174 					 * buffer to normal path, either when
21175 					 * packet is blocked, or when boundary
21176 					 * of header buffer or payload buffer
21177 					 * has been changed by FW_HOOKS[6].
21178 					 */
21179 					buf_trunked = B_TRUE;
21180 					if (md_mp_head != NULL) {
21181 						err = (intptr_t)rmvb(md_mp_head,
21182 						    md_mp);
21183 						if (err == 0)
21184 							md_mp_head = NULL;
21185 					}
21186 
21187 					/* send down what we've got so far */
21188 					if (md_mp_head != NULL) {
21189 						tcp_multisend_data(tcp, ire,
21190 						    ill, md_mp_head, obsegs,
21191 						    obbytes, &rconfirm);
21192 					}
21193 					md_mp_head = NULL;
21194 
21195 					if (mp != NULL)
21196 						CALL_IP_WPUT(tcp->tcp_connp,
21197 						    q, mp);
21198 
21199 					mp1 = fw_mp_head;
21200 					do {
21201 						mp = mp1;
21202 						mp1 = mp1->b_next;
21203 						mp->b_next = NULL;
21204 						mp->b_prev = NULL;
21205 						CALL_IP_WPUT(tcp->tcp_connp,
21206 						    q, mp);
21207 					} while (mp1 != NULL);
21208 
21209 					fw_mp_head = NULL;
21210 				} else {
21211 					if (fw_mp_head == NULL)
21212 						fw_mp_head = mp;
21213 					else
21214 						fw_mp_head->b_prev->b_next = mp;
21215 					fw_mp_head->b_prev = mp;
21216 				}
21217 			}
21218 
21219 			/* advance header offset */
21220 			cur_hdr_off += hdr_frag_sz;
21221 
21222 			obbytes += tcp->tcp_last_sent_len;
21223 			++obsegs;
21224 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21225 		    *tail_unsent > 0);
21226 
21227 		if ((*xmit_tail)->b_next == NULL) {
21228 			/*
21229 			 * Store the lbolt used for RTT estimation. We can only
21230 			 * record one timestamp per mblk so we do it when we
21231 			 * reach the end of the payload buffer. Also we only
21232 			 * take a new timestamp sample when the previous timed
21233 			 * data from the same mblk has been ack'ed.
21234 			 */
21235 			(*xmit_tail)->b_prev = local_time;
21236 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21237 		}
21238 
21239 		ASSERT(*tail_unsent >= 0);
21240 		if (*tail_unsent > 0) {
21241 			/*
21242 			 * We got here because we broke out of the above
21243 			 * loop due to of one of the following cases:
21244 			 *
21245 			 *   1. len < adjusted MSS (i.e. small),
21246 			 *   2. Sender SWS avoidance,
21247 			 *   3. max_pld is zero.
21248 			 *
21249 			 * We are done for this Multidata, so trim our
21250 			 * last payload buffer (if any) accordingly.
21251 			 */
21252 			if (md_pbuf != NULL)
21253 				md_pbuf->b_wptr -= *tail_unsent;
21254 		} else if (*usable > 0) {
21255 			*xmit_tail = (*xmit_tail)->b_cont;
21256 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21257 			    (uintptr_t)INT_MAX);
21258 			*tail_unsent = (int)MBLKL(*xmit_tail);
21259 			add_buffer = B_TRUE;
21260 		}
21261 
21262 		while (fw_mp_head) {
21263 			mp = fw_mp_head;
21264 			fw_mp_head = fw_mp_head->b_next;
21265 			mp->b_prev = mp->b_next = NULL;
21266 			freemsg(mp);
21267 		}
21268 		if (buf_trunked) {
21269 			TCP_STAT(tcps, tcp_mdt_discarded);
21270 			freeb(md_mp);
21271 			buf_trunked = B_FALSE;
21272 		}
21273 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21274 	    (tcp_mdt_chain || max_pld > 0));
21275 
21276 	if (md_mp_head != NULL) {
21277 		/* send everything down */
21278 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21279 		    &rconfirm);
21280 	}
21281 
21282 #undef PREP_NEW_MULTIDATA
21283 #undef PREP_NEW_PBUF
21284 #undef IPVER
21285 
21286 	IRE_REFRELE(ire);
21287 	return (0);
21288 }
21289 
21290 /*
21291  * A wrapper function for sending one or more Multidata messages down to
21292  * the module below ip; this routine does not release the reference of the
21293  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21294  */
21295 static void
21296 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21297     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21298 {
21299 	uint64_t delta;
21300 	nce_t *nce;
21301 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21302 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21303 
21304 	ASSERT(ire != NULL && ill != NULL);
21305 	ASSERT(ire->ire_stq != NULL);
21306 	ASSERT(md_mp_head != NULL);
21307 	ASSERT(rconfirm != NULL);
21308 
21309 	/* adjust MIBs and IRE timestamp */
21310 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
21311 	tcp->tcp_obsegs += obsegs;
21312 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21313 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21314 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21315 
21316 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21317 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21318 	} else {
21319 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21320 	}
21321 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21322 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21323 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21324 
21325 	ire->ire_ob_pkt_count += obsegs;
21326 	if (ire->ire_ipif != NULL)
21327 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21328 	ire->ire_last_used_time = lbolt;
21329 
21330 	/* send it down */
21331 	if (ILL_DLS_CAPABLE(ill)) {
21332 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
21333 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
21334 	} else {
21335 		putnext(ire->ire_stq, md_mp_head);
21336 	}
21337 
21338 	/* we're done for TCP/IPv4 */
21339 	if (tcp->tcp_ipversion == IPV4_VERSION)
21340 		return;
21341 
21342 	nce = ire->ire_nce;
21343 
21344 	ASSERT(nce != NULL);
21345 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21346 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21347 
21348 	/* reachability confirmation? */
21349 	if (*rconfirm) {
21350 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21351 		if (nce->nce_state != ND_REACHABLE) {
21352 			mutex_enter(&nce->nce_lock);
21353 			nce->nce_state = ND_REACHABLE;
21354 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21355 			mutex_exit(&nce->nce_lock);
21356 			(void) untimeout(nce->nce_timeout_id);
21357 			if (ip_debug > 2) {
21358 				/* ip1dbg */
21359 				pr_addr_dbg("tcp_multisend_data: state "
21360 				    "for %s changed to REACHABLE\n",
21361 				    AF_INET6, &ire->ire_addr_v6);
21362 			}
21363 		}
21364 		/* reset transport reachability confirmation */
21365 		*rconfirm = B_FALSE;
21366 	}
21367 
21368 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21369 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21370 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21371 
21372 	if (delta > (uint64_t)ill->ill_reachable_time) {
21373 		mutex_enter(&nce->nce_lock);
21374 		switch (nce->nce_state) {
21375 		case ND_REACHABLE:
21376 		case ND_STALE:
21377 			/*
21378 			 * ND_REACHABLE is identical to ND_STALE in this
21379 			 * specific case. If reachable time has expired for
21380 			 * this neighbor (delta is greater than reachable
21381 			 * time), conceptually, the neighbor cache is no
21382 			 * longer in REACHABLE state, but already in STALE
21383 			 * state.  So the correct transition here is to
21384 			 * ND_DELAY.
21385 			 */
21386 			nce->nce_state = ND_DELAY;
21387 			mutex_exit(&nce->nce_lock);
21388 			NDP_RESTART_TIMER(nce,
21389 			    ipst->ips_delay_first_probe_time);
21390 			if (ip_debug > 3) {
21391 				/* ip2dbg */
21392 				pr_addr_dbg("tcp_multisend_data: state "
21393 				    "for %s changed to DELAY\n",
21394 				    AF_INET6, &ire->ire_addr_v6);
21395 			}
21396 			break;
21397 		case ND_DELAY:
21398 		case ND_PROBE:
21399 			mutex_exit(&nce->nce_lock);
21400 			/* Timers have already started */
21401 			break;
21402 		case ND_UNREACHABLE:
21403 			/*
21404 			 * ndp timer has detected that this nce is
21405 			 * unreachable and initiated deleting this nce
21406 			 * and all its associated IREs. This is a race
21407 			 * where we found the ire before it was deleted
21408 			 * and have just sent out a packet using this
21409 			 * unreachable nce.
21410 			 */
21411 			mutex_exit(&nce->nce_lock);
21412 			break;
21413 		default:
21414 			ASSERT(0);
21415 		}
21416 	}
21417 }
21418 
21419 /*
21420  * Derived from tcp_send_data().
21421  */
21422 static void
21423 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21424     int num_lso_seg)
21425 {
21426 	ipha_t		*ipha;
21427 	mblk_t		*ire_fp_mp;
21428 	uint_t		ire_fp_mp_len;
21429 	uint32_t	hcksum_txflags = 0;
21430 	ipaddr_t	src;
21431 	ipaddr_t	dst;
21432 	uint32_t	cksum;
21433 	uint16_t	*up;
21434 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21435 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21436 
21437 	ASSERT(DB_TYPE(mp) == M_DATA);
21438 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21439 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21440 	ASSERT(tcp->tcp_connp != NULL);
21441 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21442 
21443 	ipha = (ipha_t *)mp->b_rptr;
21444 	src = ipha->ipha_src;
21445 	dst = ipha->ipha_dst;
21446 
21447 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21448 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21449 	    num_lso_seg);
21450 #ifndef _BIG_ENDIAN
21451 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21452 #endif
21453 	if (tcp->tcp_snd_zcopy_aware) {
21454 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21455 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21456 			mp = tcp_zcopy_disable(tcp, mp);
21457 	}
21458 
21459 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21460 		ASSERT(ill->ill_hcksum_capab != NULL);
21461 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21462 	}
21463 
21464 	/*
21465 	 * Since the TCP checksum should be recalculated by h/w, we can just
21466 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21467 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21468 	 * The partial pseudo-header excludes TCP length, that was calculated
21469 	 * in tcp_send(), so to zero *up before further processing.
21470 	 */
21471 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21472 
21473 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21474 	*up = 0;
21475 
21476 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21477 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21478 
21479 	/*
21480 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21481 	 */
21482 	DB_LSOFLAGS(mp) |= HW_LSO;
21483 	DB_LSOMSS(mp) = mss;
21484 
21485 	ipha->ipha_fragment_offset_and_flags |=
21486 	    (uint32_t)htons(ire->ire_frag_flag);
21487 
21488 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21489 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21490 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21491 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21492 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21493 
21494 	UPDATE_OB_PKT_COUNT(ire);
21495 	ire->ire_last_used_time = lbolt;
21496 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21497 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21498 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21499 	    ntohs(ipha->ipha_length));
21500 
21501 	if (ILL_DLS_CAPABLE(ill)) {
21502 		/*
21503 		 * Send the packet directly to DLD, where it may be queued
21504 		 * depending on the availability of transmit resources at
21505 		 * the media layer.
21506 		 */
21507 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
21508 	} else {
21509 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21510 		DTRACE_PROBE4(ip4__physical__out__start,
21511 		    ill_t *, NULL, ill_t *, out_ill,
21512 		    ipha_t *, ipha, mblk_t *, mp);
21513 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21514 		    ipst->ips_ipv4firewall_physical_out,
21515 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21516 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21517 		if (mp != NULL)
21518 			putnext(ire->ire_stq, mp);
21519 	}
21520 }
21521 
21522 /*
21523  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21524  * scheme, and returns one of the following:
21525  *
21526  * -1 = failed allocation.
21527  *  0 = success; burst count reached, or usable send window is too small,
21528  *      and that we'd rather wait until later before sending again.
21529  *  1 = success; we are called from tcp_multisend(), and both usable send
21530  *      window and tail_unsent are greater than the MDT threshold, and thus
21531  *      Multidata Transmit should be used instead.
21532  */
21533 static int
21534 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21535     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21536     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21537     const int mdt_thres)
21538 {
21539 	int num_burst_seg = tcp->tcp_snd_burst;
21540 	ire_t		*ire = NULL;
21541 	ill_t		*ill = NULL;
21542 	mblk_t		*ire_fp_mp = NULL;
21543 	uint_t		ire_fp_mp_len = 0;
21544 	int		num_lso_seg = 1;
21545 	uint_t		lso_usable;
21546 	boolean_t	do_lso_send = B_FALSE;
21547 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21548 
21549 	/*
21550 	 * Check LSO capability before any further work. And the similar check
21551 	 * need to be done in for(;;) loop.
21552 	 * LSO will be deployed when therer is more than one mss of available
21553 	 * data and a burst transmission is allowed.
21554 	 */
21555 	if (tcp->tcp_lso &&
21556 	    (tcp->tcp_valid_bits == 0 ||
21557 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21558 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21559 		/*
21560 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21561 		 */
21562 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21563 			/*
21564 			 * Enable LSO with this transmission.
21565 			 * Since IRE has been hold in
21566 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21567 			 * should be called before return.
21568 			 */
21569 			do_lso_send = B_TRUE;
21570 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21571 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21572 			/* Round up to multiple of 4 */
21573 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21574 		} else {
21575 			do_lso_send = B_FALSE;
21576 			ill = NULL;
21577 		}
21578 	}
21579 
21580 	for (;;) {
21581 		struct datab	*db;
21582 		tcph_t		*tcph;
21583 		uint32_t	sum;
21584 		mblk_t		*mp, *mp1;
21585 		uchar_t		*rptr;
21586 		int		len;
21587 
21588 		/*
21589 		 * If we're called by tcp_multisend(), and the amount of
21590 		 * sendable data as well as the size of current xmit_tail
21591 		 * is beyond the MDT threshold, return to the caller and
21592 		 * let the large data transmit be done using MDT.
21593 		 */
21594 		if (*usable > 0 && *usable > mdt_thres &&
21595 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21596 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21597 			ASSERT(tcp->tcp_mdt);
21598 			return (1);	/* success; do large send */
21599 		}
21600 
21601 		if (num_burst_seg == 0)
21602 			break;		/* success; burst count reached */
21603 
21604 		/*
21605 		 * Calculate the maximum payload length we can send in *one*
21606 		 * time.
21607 		 */
21608 		if (do_lso_send) {
21609 			/*
21610 			 * Check whether need to do LSO any more.
21611 			 */
21612 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21613 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21614 				lso_usable = MIN(lso_usable,
21615 				    num_burst_seg * mss);
21616 
21617 				num_lso_seg = lso_usable / mss;
21618 				if (lso_usable % mss) {
21619 					num_lso_seg++;
21620 					tcp->tcp_last_sent_len = (ushort_t)
21621 					    (lso_usable % mss);
21622 				} else {
21623 					tcp->tcp_last_sent_len = (ushort_t)mss;
21624 				}
21625 			} else {
21626 				do_lso_send = B_FALSE;
21627 				num_lso_seg = 1;
21628 				lso_usable = mss;
21629 			}
21630 		}
21631 
21632 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21633 
21634 		/*
21635 		 * Adjust num_burst_seg here.
21636 		 */
21637 		num_burst_seg -= num_lso_seg;
21638 
21639 		len = mss;
21640 		if (len > *usable) {
21641 			ASSERT(do_lso_send == B_FALSE);
21642 
21643 			len = *usable;
21644 			if (len <= 0) {
21645 				/* Terminate the loop */
21646 				break;	/* success; too small */
21647 			}
21648 			/*
21649 			 * Sender silly-window avoidance.
21650 			 * Ignore this if we are going to send a
21651 			 * zero window probe out.
21652 			 *
21653 			 * TODO: force data into microscopic window?
21654 			 *	==> (!pushed || (unsent > usable))
21655 			 */
21656 			if (len < (tcp->tcp_max_swnd >> 1) &&
21657 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21658 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21659 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21660 				/*
21661 				 * If the retransmit timer is not running
21662 				 * we start it so that we will retransmit
21663 				 * in the case when the the receiver has
21664 				 * decremented the window.
21665 				 */
21666 				if (*snxt == tcp->tcp_snxt &&
21667 				    *snxt == tcp->tcp_suna) {
21668 					/*
21669 					 * We are not supposed to send
21670 					 * anything.  So let's wait a little
21671 					 * bit longer before breaking SWS
21672 					 * avoidance.
21673 					 *
21674 					 * What should the value be?
21675 					 * Suggestion: MAX(init rexmit time,
21676 					 * tcp->tcp_rto)
21677 					 */
21678 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21679 				}
21680 				break;	/* success; too small */
21681 			}
21682 		}
21683 
21684 		tcph = tcp->tcp_tcph;
21685 
21686 		/*
21687 		 * The reason to adjust len here is that we need to set flags
21688 		 * and calculate checksum.
21689 		 */
21690 		if (do_lso_send)
21691 			len = lso_usable;
21692 
21693 		*usable -= len; /* Approximate - can be adjusted later */
21694 		if (*usable > 0)
21695 			tcph->th_flags[0] = TH_ACK;
21696 		else
21697 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21698 
21699 		/*
21700 		 * Prime pump for IP's checksumming on our behalf
21701 		 * Include the adjustment for a source route if any.
21702 		 */
21703 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21704 		sum = (sum >> 16) + (sum & 0xFFFF);
21705 		U16_TO_ABE16(sum, tcph->th_sum);
21706 
21707 		U32_TO_ABE32(*snxt, tcph->th_seq);
21708 
21709 		/*
21710 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21711 		 * set.  For the case when TCP_FSS_VALID is the only valid
21712 		 * bit (normal active close), branch off only when we think
21713 		 * that the FIN flag needs to be set.  Note for this case,
21714 		 * that (snxt + len) may not reflect the actual seg_len,
21715 		 * as len may be further reduced in tcp_xmit_mp().  If len
21716 		 * gets modified, we will end up here again.
21717 		 */
21718 		if (tcp->tcp_valid_bits != 0 &&
21719 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21720 		    ((*snxt + len) == tcp->tcp_fss))) {
21721 			uchar_t		*prev_rptr;
21722 			uint32_t	prev_snxt = tcp->tcp_snxt;
21723 
21724 			if (*tail_unsent == 0) {
21725 				ASSERT((*xmit_tail)->b_cont != NULL);
21726 				*xmit_tail = (*xmit_tail)->b_cont;
21727 				prev_rptr = (*xmit_tail)->b_rptr;
21728 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21729 				    (*xmit_tail)->b_rptr);
21730 			} else {
21731 				prev_rptr = (*xmit_tail)->b_rptr;
21732 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21733 				    *tail_unsent;
21734 			}
21735 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21736 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21737 			/* Restore tcp_snxt so we get amount sent right. */
21738 			tcp->tcp_snxt = prev_snxt;
21739 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21740 				/*
21741 				 * If the previous timestamp is still in use,
21742 				 * don't stomp on it.
21743 				 */
21744 				if ((*xmit_tail)->b_next == NULL) {
21745 					(*xmit_tail)->b_prev = local_time;
21746 					(*xmit_tail)->b_next =
21747 					    (mblk_t *)(uintptr_t)(*snxt);
21748 				}
21749 			} else
21750 				(*xmit_tail)->b_rptr = prev_rptr;
21751 
21752 			if (mp == NULL) {
21753 				if (ire != NULL)
21754 					IRE_REFRELE(ire);
21755 				return (-1);
21756 			}
21757 			mp1 = mp->b_cont;
21758 
21759 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21760 				tcp->tcp_last_sent_len = (ushort_t)len;
21761 			while (mp1->b_cont) {
21762 				*xmit_tail = (*xmit_tail)->b_cont;
21763 				(*xmit_tail)->b_prev = local_time;
21764 				(*xmit_tail)->b_next =
21765 				    (mblk_t *)(uintptr_t)(*snxt);
21766 				mp1 = mp1->b_cont;
21767 			}
21768 			*snxt += len;
21769 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21770 			BUMP_LOCAL(tcp->tcp_obsegs);
21771 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21772 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21773 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21774 			tcp_send_data(tcp, q, mp);
21775 			continue;
21776 		}
21777 
21778 		*snxt += len;	/* Adjust later if we don't send all of len */
21779 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21780 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21781 
21782 		if (*tail_unsent) {
21783 			/* Are the bytes above us in flight? */
21784 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21785 			if (rptr != (*xmit_tail)->b_rptr) {
21786 				*tail_unsent -= len;
21787 				if (len <= mss) /* LSO is unusable */
21788 					tcp->tcp_last_sent_len = (ushort_t)len;
21789 				len += tcp_hdr_len;
21790 				if (tcp->tcp_ipversion == IPV4_VERSION)
21791 					tcp->tcp_ipha->ipha_length = htons(len);
21792 				else
21793 					tcp->tcp_ip6h->ip6_plen =
21794 					    htons(len -
21795 					    ((char *)&tcp->tcp_ip6h[1] -
21796 					    tcp->tcp_iphc));
21797 				mp = dupb(*xmit_tail);
21798 				if (mp == NULL) {
21799 					if (ire != NULL)
21800 						IRE_REFRELE(ire);
21801 					return (-1);	/* out_of_mem */
21802 				}
21803 				mp->b_rptr = rptr;
21804 				/*
21805 				 * If the old timestamp is no longer in use,
21806 				 * sample a new timestamp now.
21807 				 */
21808 				if ((*xmit_tail)->b_next == NULL) {
21809 					(*xmit_tail)->b_prev = local_time;
21810 					(*xmit_tail)->b_next =
21811 					    (mblk_t *)(uintptr_t)(*snxt-len);
21812 				}
21813 				goto must_alloc;
21814 			}
21815 		} else {
21816 			*xmit_tail = (*xmit_tail)->b_cont;
21817 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21818 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21819 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21820 			    (*xmit_tail)->b_rptr);
21821 		}
21822 
21823 		(*xmit_tail)->b_prev = local_time;
21824 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21825 
21826 		*tail_unsent -= len;
21827 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21828 			tcp->tcp_last_sent_len = (ushort_t)len;
21829 
21830 		len += tcp_hdr_len;
21831 		if (tcp->tcp_ipversion == IPV4_VERSION)
21832 			tcp->tcp_ipha->ipha_length = htons(len);
21833 		else
21834 			tcp->tcp_ip6h->ip6_plen = htons(len -
21835 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21836 
21837 		mp = dupb(*xmit_tail);
21838 		if (mp == NULL) {
21839 			if (ire != NULL)
21840 				IRE_REFRELE(ire);
21841 			return (-1);	/* out_of_mem */
21842 		}
21843 
21844 		len = tcp_hdr_len;
21845 		/*
21846 		 * There are four reasons to allocate a new hdr mblk:
21847 		 *  1) The bytes above us are in use by another packet
21848 		 *  2) We don't have good alignment
21849 		 *  3) The mblk is being shared
21850 		 *  4) We don't have enough room for a header
21851 		 */
21852 		rptr = mp->b_rptr - len;
21853 		if (!OK_32PTR(rptr) ||
21854 		    ((db = mp->b_datap), db->db_ref != 2) ||
21855 		    rptr < db->db_base + ire_fp_mp_len) {
21856 			/* NOTE: we assume allocb returns an OK_32PTR */
21857 
21858 		must_alloc:;
21859 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21860 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21861 			if (mp1 == NULL) {
21862 				freemsg(mp);
21863 				if (ire != NULL)
21864 					IRE_REFRELE(ire);
21865 				return (-1);	/* out_of_mem */
21866 			}
21867 			mp1->b_cont = mp;
21868 			mp = mp1;
21869 			/* Leave room for Link Level header */
21870 			len = tcp_hdr_len;
21871 			rptr =
21872 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21873 			mp->b_wptr = &rptr[len];
21874 		}
21875 
21876 		/*
21877 		 * Fill in the header using the template header, and add
21878 		 * options such as time-stamp, ECN and/or SACK, as needed.
21879 		 */
21880 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21881 
21882 		mp->b_rptr = rptr;
21883 
21884 		if (*tail_unsent) {
21885 			int spill = *tail_unsent;
21886 
21887 			mp1 = mp->b_cont;
21888 			if (mp1 == NULL)
21889 				mp1 = mp;
21890 
21891 			/*
21892 			 * If we're a little short, tack on more mblks until
21893 			 * there is no more spillover.
21894 			 */
21895 			while (spill < 0) {
21896 				mblk_t *nmp;
21897 				int nmpsz;
21898 
21899 				nmp = (*xmit_tail)->b_cont;
21900 				nmpsz = MBLKL(nmp);
21901 
21902 				/*
21903 				 * Excess data in mblk; can we split it?
21904 				 * If MDT is enabled for the connection,
21905 				 * keep on splitting as this is a transient
21906 				 * send path.
21907 				 */
21908 				if (!do_lso_send && !tcp->tcp_mdt &&
21909 				    (spill + nmpsz > 0)) {
21910 					/*
21911 					 * Don't split if stream head was
21912 					 * told to break up larger writes
21913 					 * into smaller ones.
21914 					 */
21915 					if (tcp->tcp_maxpsz > 0)
21916 						break;
21917 
21918 					/*
21919 					 * Next mblk is less than SMSS/2
21920 					 * rounded up to nearest 64-byte;
21921 					 * let it get sent as part of the
21922 					 * next segment.
21923 					 */
21924 					if (tcp->tcp_localnet &&
21925 					    !tcp->tcp_cork &&
21926 					    (nmpsz < roundup((mss >> 1), 64)))
21927 						break;
21928 				}
21929 
21930 				*xmit_tail = nmp;
21931 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21932 				/* Stash for rtt use later */
21933 				(*xmit_tail)->b_prev = local_time;
21934 				(*xmit_tail)->b_next =
21935 				    (mblk_t *)(uintptr_t)(*snxt - len);
21936 				mp1->b_cont = dupb(*xmit_tail);
21937 				mp1 = mp1->b_cont;
21938 
21939 				spill += nmpsz;
21940 				if (mp1 == NULL) {
21941 					*tail_unsent = spill;
21942 					freemsg(mp);
21943 					if (ire != NULL)
21944 						IRE_REFRELE(ire);
21945 					return (-1);	/* out_of_mem */
21946 				}
21947 			}
21948 
21949 			/* Trim back any surplus on the last mblk */
21950 			if (spill >= 0) {
21951 				mp1->b_wptr -= spill;
21952 				*tail_unsent = spill;
21953 			} else {
21954 				/*
21955 				 * We did not send everything we could in
21956 				 * order to remain within the b_cont limit.
21957 				 */
21958 				*usable -= spill;
21959 				*snxt += spill;
21960 				tcp->tcp_last_sent_len += spill;
21961 				UPDATE_MIB(&tcps->tcps_mib,
21962 				    tcpOutDataBytes, spill);
21963 				/*
21964 				 * Adjust the checksum
21965 				 */
21966 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21967 				sum += spill;
21968 				sum = (sum >> 16) + (sum & 0xFFFF);
21969 				U16_TO_ABE16(sum, tcph->th_sum);
21970 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21971 					sum = ntohs(
21972 					    ((ipha_t *)rptr)->ipha_length) +
21973 					    spill;
21974 					((ipha_t *)rptr)->ipha_length =
21975 					    htons(sum);
21976 				} else {
21977 					sum = ntohs(
21978 					    ((ip6_t *)rptr)->ip6_plen) +
21979 					    spill;
21980 					((ip6_t *)rptr)->ip6_plen =
21981 					    htons(sum);
21982 				}
21983 				*tail_unsent = 0;
21984 			}
21985 		}
21986 		if (tcp->tcp_ip_forward_progress) {
21987 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21988 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21989 			tcp->tcp_ip_forward_progress = B_FALSE;
21990 		}
21991 
21992 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21993 		if (do_lso_send) {
21994 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21995 			    num_lso_seg);
21996 			tcp->tcp_obsegs += num_lso_seg;
21997 
21998 			TCP_STAT(tcps, tcp_lso_times);
21999 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
22000 		} else {
22001 			tcp_send_data(tcp, q, mp);
22002 			BUMP_LOCAL(tcp->tcp_obsegs);
22003 		}
22004 	}
22005 
22006 	if (ire != NULL)
22007 		IRE_REFRELE(ire);
22008 	return (0);
22009 }
22010 
22011 /* Unlink and return any mblk that looks like it contains a MDT info */
22012 static mblk_t *
22013 tcp_mdt_info_mp(mblk_t *mp)
22014 {
22015 	mblk_t	*prev_mp;
22016 
22017 	for (;;) {
22018 		prev_mp = mp;
22019 		/* no more to process? */
22020 		if ((mp = mp->b_cont) == NULL)
22021 			break;
22022 
22023 		switch (DB_TYPE(mp)) {
22024 		case M_CTL:
22025 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
22026 				continue;
22027 			ASSERT(prev_mp != NULL);
22028 			prev_mp->b_cont = mp->b_cont;
22029 			mp->b_cont = NULL;
22030 			return (mp);
22031 		default:
22032 			break;
22033 		}
22034 	}
22035 	return (mp);
22036 }
22037 
22038 /* MDT info update routine, called when IP notifies us about MDT */
22039 static void
22040 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
22041 {
22042 	boolean_t prev_state;
22043 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22044 
22045 	/*
22046 	 * IP is telling us to abort MDT on this connection?  We know
22047 	 * this because the capability is only turned off when IP
22048 	 * encounters some pathological cases, e.g. link-layer change
22049 	 * where the new driver doesn't support MDT, or in situation
22050 	 * where MDT usage on the link-layer has been switched off.
22051 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
22052 	 * if the link-layer doesn't support MDT, and if it does, it
22053 	 * will indicate that the feature is to be turned on.
22054 	 */
22055 	prev_state = tcp->tcp_mdt;
22056 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
22057 	if (!tcp->tcp_mdt && !first) {
22058 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
22059 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
22060 		    (void *)tcp->tcp_connp));
22061 	}
22062 
22063 	/*
22064 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
22065 	 * so disable MDT otherwise.  The checks are done here
22066 	 * and in tcp_wput_data().
22067 	 */
22068 	if (tcp->tcp_mdt &&
22069 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22070 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22071 	    (tcp->tcp_ipversion == IPV6_VERSION &&
22072 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
22073 		tcp->tcp_mdt = B_FALSE;
22074 
22075 	if (tcp->tcp_mdt) {
22076 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
22077 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
22078 			    "version (%d), expected version is %d",
22079 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
22080 			tcp->tcp_mdt = B_FALSE;
22081 			return;
22082 		}
22083 
22084 		/*
22085 		 * We need the driver to be able to handle at least three
22086 		 * spans per packet in order for tcp MDT to be utilized.
22087 		 * The first is for the header portion, while the rest are
22088 		 * needed to handle a packet that straddles across two
22089 		 * virtually non-contiguous buffers; a typical tcp packet
22090 		 * therefore consists of only two spans.  Note that we take
22091 		 * a zero as "don't care".
22092 		 */
22093 		if (mdt_capab->ill_mdt_span_limit > 0 &&
22094 		    mdt_capab->ill_mdt_span_limit < 3) {
22095 			tcp->tcp_mdt = B_FALSE;
22096 			return;
22097 		}
22098 
22099 		/* a zero means driver wants default value */
22100 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
22101 		    tcps->tcps_mdt_max_pbufs);
22102 		if (tcp->tcp_mdt_max_pld == 0)
22103 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
22104 
22105 		/* ensure 32-bit alignment */
22106 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
22107 		    mdt_capab->ill_mdt_hdr_head), 4);
22108 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
22109 		    mdt_capab->ill_mdt_hdr_tail), 4);
22110 
22111 		if (!first && !prev_state) {
22112 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
22113 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
22114 			    (void *)tcp->tcp_connp));
22115 		}
22116 	}
22117 }
22118 
22119 /* Unlink and return any mblk that looks like it contains a LSO info */
22120 static mblk_t *
22121 tcp_lso_info_mp(mblk_t *mp)
22122 {
22123 	mblk_t	*prev_mp;
22124 
22125 	for (;;) {
22126 		prev_mp = mp;
22127 		/* no more to process? */
22128 		if ((mp = mp->b_cont) == NULL)
22129 			break;
22130 
22131 		switch (DB_TYPE(mp)) {
22132 		case M_CTL:
22133 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
22134 				continue;
22135 			ASSERT(prev_mp != NULL);
22136 			prev_mp->b_cont = mp->b_cont;
22137 			mp->b_cont = NULL;
22138 			return (mp);
22139 		default:
22140 			break;
22141 		}
22142 	}
22143 
22144 	return (mp);
22145 }
22146 
22147 /* LSO info update routine, called when IP notifies us about LSO */
22148 static void
22149 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
22150 {
22151 	tcp_stack_t *tcps = tcp->tcp_tcps;
22152 
22153 	/*
22154 	 * IP is telling us to abort LSO on this connection?  We know
22155 	 * this because the capability is only turned off when IP
22156 	 * encounters some pathological cases, e.g. link-layer change
22157 	 * where the new NIC/driver doesn't support LSO, or in situation
22158 	 * where LSO usage on the link-layer has been switched off.
22159 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
22160 	 * if the link-layer doesn't support LSO, and if it does, it
22161 	 * will indicate that the feature is to be turned on.
22162 	 */
22163 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
22164 	TCP_STAT(tcps, tcp_lso_enabled);
22165 
22166 	/*
22167 	 * We currently only support LSO on simple TCP/IPv4,
22168 	 * so disable LSO otherwise.  The checks are done here
22169 	 * and in tcp_wput_data().
22170 	 */
22171 	if (tcp->tcp_lso &&
22172 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22173 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22174 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
22175 		tcp->tcp_lso = B_FALSE;
22176 		TCP_STAT(tcps, tcp_lso_disabled);
22177 	} else {
22178 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
22179 		    lso_capab->ill_lso_max);
22180 	}
22181 }
22182 
22183 static void
22184 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
22185 {
22186 	conn_t *connp = tcp->tcp_connp;
22187 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22188 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22189 
22190 	ASSERT(ire != NULL);
22191 
22192 	/*
22193 	 * We may be in the fastpath here, and although we essentially do
22194 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
22195 	 * we try to keep things as brief as possible.  After all, these
22196 	 * are only best-effort checks, and we do more thorough ones prior
22197 	 * to calling tcp_send()/tcp_multisend().
22198 	 */
22199 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22200 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22201 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22202 	    !(ire->ire_flags & RTF_MULTIRT) &&
22203 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22204 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22205 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22206 			/* Cache the result */
22207 			connp->conn_lso_ok = B_TRUE;
22208 
22209 			ASSERT(ill->ill_lso_capab != NULL);
22210 			if (!ill->ill_lso_capab->ill_lso_on) {
22211 				ill->ill_lso_capab->ill_lso_on = 1;
22212 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22213 				    "LSO for interface %s\n", (void *)connp,
22214 				    ill->ill_name));
22215 			}
22216 			tcp_lso_update(tcp, ill->ill_lso_capab);
22217 		} else if (ipst->ips_ip_multidata_outbound &&
22218 		    ILL_MDT_CAPABLE(ill)) {
22219 			/* Cache the result */
22220 			connp->conn_mdt_ok = B_TRUE;
22221 
22222 			ASSERT(ill->ill_mdt_capab != NULL);
22223 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22224 				ill->ill_mdt_capab->ill_mdt_on = 1;
22225 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22226 				    "MDT for interface %s\n", (void *)connp,
22227 				    ill->ill_name));
22228 			}
22229 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22230 		}
22231 	}
22232 
22233 	/*
22234 	 * The goal is to reduce the number of generated tcp segments by
22235 	 * setting the maxpsz multiplier to 0; this will have an affect on
22236 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22237 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22238 	 * of outbound segments and incoming ACKs, thus allowing for better
22239 	 * network and system performance.  In contrast the legacy behavior
22240 	 * may result in sending less than SMSS size, because the last mblk
22241 	 * for some packets may have more data than needed to make up SMSS,
22242 	 * and the legacy code refused to "split" it.
22243 	 *
22244 	 * We apply the new behavior on following situations:
22245 	 *
22246 	 *   1) Loopback connections,
22247 	 *   2) Connections in which the remote peer is not on local subnet,
22248 	 *   3) Local subnet connections over the bge interface (see below).
22249 	 *
22250 	 * Ideally, we would like this behavior to apply for interfaces other
22251 	 * than bge.  However, doing so would negatively impact drivers which
22252 	 * perform dynamic mapping and unmapping of DMA resources, which are
22253 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22254 	 * packet will be generated by tcp).  The bge driver does not suffer
22255 	 * from this, as it copies the mblks into pre-mapped buffers, and
22256 	 * therefore does not require more I/O resources than before.
22257 	 *
22258 	 * Otherwise, this behavior is present on all network interfaces when
22259 	 * the destination endpoint is non-local, since reducing the number
22260 	 * of packets in general is good for the network.
22261 	 *
22262 	 * TODO We need to remove this hard-coded conditional for bge once
22263 	 *	a better "self-tuning" mechanism, or a way to comprehend
22264 	 *	the driver transmit strategy is devised.  Until the solution
22265 	 *	is found and well understood, we live with this hack.
22266 	 */
22267 	if (!tcp_static_maxpsz &&
22268 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22269 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22270 		/* override the default value */
22271 		tcp->tcp_maxpsz = 0;
22272 
22273 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22274 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22275 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22276 	}
22277 
22278 	/* set the stream head parameters accordingly */
22279 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22280 }
22281 
22282 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22283 static void
22284 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22285 {
22286 	uchar_t	fval = *mp->b_rptr;
22287 	mblk_t	*tail;
22288 	queue_t	*q = tcp->tcp_wq;
22289 
22290 	/* TODO: How should flush interact with urgent data? */
22291 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22292 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22293 		/*
22294 		 * Flush only data that has not yet been put on the wire.  If
22295 		 * we flush data that we have already transmitted, life, as we
22296 		 * know it, may come to an end.
22297 		 */
22298 		tail = tcp->tcp_xmit_tail;
22299 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22300 		tcp->tcp_xmit_tail_unsent = 0;
22301 		tcp->tcp_unsent = 0;
22302 		if (tail->b_wptr != tail->b_rptr)
22303 			tail = tail->b_cont;
22304 		if (tail) {
22305 			mblk_t **excess = &tcp->tcp_xmit_head;
22306 			for (;;) {
22307 				mblk_t *mp1 = *excess;
22308 				if (mp1 == tail)
22309 					break;
22310 				tcp->tcp_xmit_tail = mp1;
22311 				tcp->tcp_xmit_last = mp1;
22312 				excess = &mp1->b_cont;
22313 			}
22314 			*excess = NULL;
22315 			tcp_close_mpp(&tail);
22316 			if (tcp->tcp_snd_zcopy_aware)
22317 				tcp_zcopy_notify(tcp);
22318 		}
22319 		/*
22320 		 * We have no unsent data, so unsent must be less than
22321 		 * tcp_xmit_lowater, so re-enable flow.
22322 		 */
22323 		mutex_enter(&tcp->tcp_non_sq_lock);
22324 		if (tcp->tcp_flow_stopped) {
22325 			tcp_clrqfull(tcp);
22326 		}
22327 		mutex_exit(&tcp->tcp_non_sq_lock);
22328 	}
22329 	/*
22330 	 * TODO: you can't just flush these, you have to increase rwnd for one
22331 	 * thing.  For another, how should urgent data interact?
22332 	 */
22333 	if (fval & FLUSHR) {
22334 		*mp->b_rptr = fval & ~FLUSHW;
22335 		/* XXX */
22336 		qreply(q, mp);
22337 		return;
22338 	}
22339 	freemsg(mp);
22340 }
22341 
22342 /*
22343  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22344  * messages.
22345  */
22346 static void
22347 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22348 {
22349 	mblk_t	*mp1;
22350 	STRUCT_HANDLE(strbuf, sb);
22351 	uint16_t port;
22352 	queue_t 	*q = tcp->tcp_wq;
22353 	in6_addr_t	v6addr;
22354 	ipaddr_t	v4addr;
22355 	uint32_t	flowinfo = 0;
22356 	int		addrlen;
22357 
22358 	/* Make sure it is one of ours. */
22359 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
22360 	case TI_GETMYNAME:
22361 	case TI_GETPEERNAME:
22362 		break;
22363 	default:
22364 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22365 		return;
22366 	}
22367 	switch (mi_copy_state(q, mp, &mp1)) {
22368 	case -1:
22369 		return;
22370 	case MI_COPY_CASE(MI_COPY_IN, 1):
22371 		break;
22372 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22373 		/* Copy out the strbuf. */
22374 		mi_copyout(q, mp);
22375 		return;
22376 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22377 		/* All done. */
22378 		mi_copy_done(q, mp, 0);
22379 		return;
22380 	default:
22381 		mi_copy_done(q, mp, EPROTO);
22382 		return;
22383 	}
22384 	/* Check alignment of the strbuf */
22385 	if (!OK_32PTR(mp1->b_rptr)) {
22386 		mi_copy_done(q, mp, EINVAL);
22387 		return;
22388 	}
22389 
22390 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
22391 	    (void *)mp1->b_rptr);
22392 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22393 
22394 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22395 		mi_copy_done(q, mp, EINVAL);
22396 		return;
22397 	}
22398 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
22399 	case TI_GETMYNAME:
22400 		if (tcp->tcp_family == AF_INET) {
22401 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22402 				v4addr = tcp->tcp_ipha->ipha_src;
22403 			} else {
22404 				/* can't return an address in this case */
22405 				v4addr = 0;
22406 			}
22407 		} else {
22408 			/* tcp->tcp_family == AF_INET6 */
22409 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22410 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
22411 				    &v6addr);
22412 			} else {
22413 				v6addr = tcp->tcp_ip6h->ip6_src;
22414 			}
22415 		}
22416 		port = tcp->tcp_lport;
22417 		break;
22418 	case TI_GETPEERNAME:
22419 		if (tcp->tcp_family == AF_INET) {
22420 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22421 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
22422 				    v4addr);
22423 			} else {
22424 				/* can't return an address in this case */
22425 				v4addr = 0;
22426 			}
22427 		} else {
22428 			/* tcp->tcp_family == AF_INET6) */
22429 			v6addr = tcp->tcp_remote_v6;
22430 			if (tcp->tcp_ipversion == IPV6_VERSION) {
22431 				/*
22432 				 * No flowinfo if tcp->tcp_ipversion is v4.
22433 				 *
22434 				 * flowinfo was already initialized to zero
22435 				 * where it was declared above, so only
22436 				 * set it if ipversion is v6.
22437 				 */
22438 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
22439 				    ~IPV6_VERS_AND_FLOW_MASK;
22440 			}
22441 		}
22442 		port = tcp->tcp_fport;
22443 		break;
22444 	default:
22445 		mi_copy_done(q, mp, EPROTO);
22446 		return;
22447 	}
22448 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22449 	if (!mp1)
22450 		return;
22451 
22452 	if (tcp->tcp_family == AF_INET) {
22453 		sin_t *sin;
22454 
22455 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
22456 		sin = (sin_t *)mp1->b_rptr;
22457 		mp1->b_wptr = (uchar_t *)&sin[1];
22458 		*sin = sin_null;
22459 		sin->sin_family = AF_INET;
22460 		sin->sin_addr.s_addr = v4addr;
22461 		sin->sin_port = port;
22462 	} else {
22463 		/* tcp->tcp_family == AF_INET6 */
22464 		sin6_t *sin6;
22465 
22466 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
22467 		sin6 = (sin6_t *)mp1->b_rptr;
22468 		mp1->b_wptr = (uchar_t *)&sin6[1];
22469 		*sin6 = sin6_null;
22470 		sin6->sin6_family = AF_INET6;
22471 		sin6->sin6_flowinfo = flowinfo;
22472 		sin6->sin6_addr = v6addr;
22473 		sin6->sin6_port = port;
22474 	}
22475 	/* Copy out the address */
22476 	mi_copyout(q, mp);
22477 }
22478 
22479 /*
22480  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22481  * messages.
22482  */
22483 /* ARGSUSED */
22484 static void
22485 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22486 {
22487 	conn_t 	*connp = (conn_t *)arg;
22488 	tcp_t	*tcp = connp->conn_tcp;
22489 	queue_t	*q = tcp->tcp_wq;
22490 	struct iocblk	*iocp;
22491 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22492 
22493 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22494 	/*
22495 	 * Try and ASSERT the minimum possible references on the
22496 	 * conn early enough. Since we are executing on write side,
22497 	 * the connection is obviously not detached and that means
22498 	 * there is a ref each for TCP and IP. Since we are behind
22499 	 * the squeue, the minimum references needed are 3. If the
22500 	 * conn is in classifier hash list, there should be an
22501 	 * extra ref for that (we check both the possibilities).
22502 	 */
22503 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22504 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22505 
22506 	iocp = (struct iocblk *)mp->b_rptr;
22507 	switch (iocp->ioc_cmd) {
22508 	case TCP_IOC_DEFAULT_Q:
22509 		/* Wants to be the default wq. */
22510 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22511 			iocp->ioc_error = EPERM;
22512 			iocp->ioc_count = 0;
22513 			mp->b_datap->db_type = M_IOCACK;
22514 			qreply(q, mp);
22515 			return;
22516 		}
22517 		tcp_def_q_set(tcp, mp);
22518 		return;
22519 	case _SIOCSOCKFALLBACK:
22520 		/*
22521 		 * Either sockmod is about to be popped and the socket
22522 		 * would now be treated as a plain stream, or a module
22523 		 * is about to be pushed so we could no longer use read-
22524 		 * side synchronous streams for fused loopback tcp.
22525 		 * Drain any queued data and disable direct sockfs
22526 		 * interface from now on.
22527 		 */
22528 		if (!tcp->tcp_issocket) {
22529 			DB_TYPE(mp) = M_IOCNAK;
22530 			iocp->ioc_error = EINVAL;
22531 		} else {
22532 #ifdef	_ILP32
22533 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22534 #else
22535 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22536 #endif
22537 			/*
22538 			 * Insert this socket into the acceptor hash.
22539 			 * We might need it for T_CONN_RES message
22540 			 */
22541 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22542 
22543 			if (tcp->tcp_fused) {
22544 				/*
22545 				 * This is a fused loopback tcp; disable
22546 				 * read-side synchronous streams interface
22547 				 * and drain any queued data.  It is okay
22548 				 * to do this for non-synchronous streams
22549 				 * fused tcp as well.
22550 				 */
22551 				tcp_fuse_disable_pair(tcp, B_FALSE);
22552 			}
22553 			tcp->tcp_issocket = B_FALSE;
22554 			tcp->tcp_sodirect = NULL;
22555 			TCP_STAT(tcps, tcp_sock_fallback);
22556 
22557 			DB_TYPE(mp) = M_IOCACK;
22558 			iocp->ioc_error = 0;
22559 		}
22560 		iocp->ioc_count = 0;
22561 		iocp->ioc_rval = 0;
22562 		qreply(q, mp);
22563 		return;
22564 	}
22565 	CALL_IP_WPUT(connp, q, mp);
22566 }
22567 
22568 /*
22569  * This routine is called by tcp_wput() to handle all TPI requests.
22570  */
22571 /* ARGSUSED */
22572 static void
22573 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22574 {
22575 	conn_t 	*connp = (conn_t *)arg;
22576 	tcp_t	*tcp = connp->conn_tcp;
22577 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22578 	uchar_t *rptr;
22579 	t_scalar_t type;
22580 	int len;
22581 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22582 
22583 	/*
22584 	 * Try and ASSERT the minimum possible references on the
22585 	 * conn early enough. Since we are executing on write side,
22586 	 * the connection is obviously not detached and that means
22587 	 * there is a ref each for TCP and IP. Since we are behind
22588 	 * the squeue, the minimum references needed are 3. If the
22589 	 * conn is in classifier hash list, there should be an
22590 	 * extra ref for that (we check both the possibilities).
22591 	 */
22592 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22593 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22594 
22595 	rptr = mp->b_rptr;
22596 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22597 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22598 		type = ((union T_primitives *)rptr)->type;
22599 		if (type == T_EXDATA_REQ) {
22600 			uint32_t msize = msgdsize(mp->b_cont);
22601 
22602 			len = msize - 1;
22603 			if (len < 0) {
22604 				freemsg(mp);
22605 				return;
22606 			}
22607 			/*
22608 			 * Try to force urgent data out on the wire.
22609 			 * Even if we have unsent data this will
22610 			 * at least send the urgent flag.
22611 			 * XXX does not handle more flag correctly.
22612 			 */
22613 			len += tcp->tcp_unsent;
22614 			len += tcp->tcp_snxt;
22615 			tcp->tcp_urg = len;
22616 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22617 
22618 			/* Bypass tcp protocol for fused tcp loopback */
22619 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22620 				return;
22621 		} else if (type != T_DATA_REQ) {
22622 			goto non_urgent_data;
22623 		}
22624 		/* TODO: options, flags, ... from user */
22625 		/* Set length to zero for reclamation below */
22626 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22627 		freeb(mp);
22628 		return;
22629 	} else {
22630 		if (tcp->tcp_debug) {
22631 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22632 			    "tcp_wput_proto, dropping one...");
22633 		}
22634 		freemsg(mp);
22635 		return;
22636 	}
22637 
22638 non_urgent_data:
22639 
22640 	switch ((int)tprim->type) {
22641 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22642 		/*
22643 		 * save the kssl_ent_t from the next block, and convert this
22644 		 * back to a normal bind_req.
22645 		 */
22646 		if (mp->b_cont != NULL) {
22647 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22648 
22649 			if (tcp->tcp_kssl_ent != NULL) {
22650 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22651 				    KSSL_NO_PROXY);
22652 				tcp->tcp_kssl_ent = NULL;
22653 			}
22654 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22655 			    sizeof (kssl_ent_t));
22656 			kssl_hold_ent(tcp->tcp_kssl_ent);
22657 			freemsg(mp->b_cont);
22658 			mp->b_cont = NULL;
22659 		}
22660 		tprim->type = T_BIND_REQ;
22661 
22662 	/* FALLTHROUGH */
22663 	case O_T_BIND_REQ:	/* bind request */
22664 	case T_BIND_REQ:	/* new semantics bind request */
22665 		tcp_bind(tcp, mp);
22666 		break;
22667 	case T_UNBIND_REQ:	/* unbind request */
22668 		tcp_unbind(tcp, mp);
22669 		break;
22670 	case O_T_CONN_RES:	/* old connection response XXX */
22671 	case T_CONN_RES:	/* connection response */
22672 		tcp_accept(tcp, mp);
22673 		break;
22674 	case T_CONN_REQ:	/* connection request */
22675 		tcp_connect(tcp, mp);
22676 		break;
22677 	case T_DISCON_REQ:	/* disconnect request */
22678 		tcp_disconnect(tcp, mp);
22679 		break;
22680 	case T_CAPABILITY_REQ:
22681 		tcp_capability_req(tcp, mp);	/* capability request */
22682 		break;
22683 	case T_INFO_REQ:	/* information request */
22684 		tcp_info_req(tcp, mp);
22685 		break;
22686 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22687 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22688 		    &tcp_opt_obj, B_TRUE);
22689 		break;
22690 	case T_OPTMGMT_REQ:
22691 		/*
22692 		 * Note:  no support for snmpcom_req() through new
22693 		 * T_OPTMGMT_REQ. See comments in ip.c
22694 		 */
22695 		/* Only IP is allowed to return meaningful value */
22696 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22697 		    B_TRUE);
22698 		break;
22699 
22700 	case T_UNITDATA_REQ:	/* unitdata request */
22701 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22702 		break;
22703 	case T_ORDREL_REQ:	/* orderly release req */
22704 		freemsg(mp);
22705 
22706 		if (tcp->tcp_fused)
22707 			tcp_unfuse(tcp);
22708 
22709 		if (tcp_xmit_end(tcp) != 0) {
22710 			/*
22711 			 * We were crossing FINs and got a reset from
22712 			 * the other side. Just ignore it.
22713 			 */
22714 			if (tcp->tcp_debug) {
22715 				(void) strlog(TCP_MOD_ID, 0, 1,
22716 				    SL_ERROR|SL_TRACE,
22717 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22718 				    "state %s",
22719 				    tcp_display(tcp, NULL,
22720 				    DISP_ADDR_AND_PORT));
22721 			}
22722 		}
22723 		break;
22724 	case T_ADDR_REQ:
22725 		tcp_addr_req(tcp, mp);
22726 		break;
22727 	default:
22728 		if (tcp->tcp_debug) {
22729 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22730 			    "tcp_wput_proto, bogus TPI msg, type %d",
22731 			    tprim->type);
22732 		}
22733 		/*
22734 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22735 		 * to recover.
22736 		 */
22737 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22738 		break;
22739 	}
22740 }
22741 
22742 /*
22743  * The TCP write service routine should never be called...
22744  */
22745 /* ARGSUSED */
22746 static void
22747 tcp_wsrv(queue_t *q)
22748 {
22749 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22750 
22751 	TCP_STAT(tcps, tcp_wsrv_called);
22752 }
22753 
22754 /* Non overlapping byte exchanger */
22755 static void
22756 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22757 {
22758 	uchar_t	uch;
22759 
22760 	while (len-- > 0) {
22761 		uch = a[len];
22762 		a[len] = b[len];
22763 		b[len] = uch;
22764 	}
22765 }
22766 
22767 /*
22768  * Send out a control packet on the tcp connection specified.  This routine
22769  * is typically called where we need a simple ACK or RST generated.
22770  */
22771 static void
22772 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22773 {
22774 	uchar_t		*rptr;
22775 	tcph_t		*tcph;
22776 	ipha_t		*ipha = NULL;
22777 	ip6_t		*ip6h = NULL;
22778 	uint32_t	sum;
22779 	int		tcp_hdr_len;
22780 	int		tcp_ip_hdr_len;
22781 	mblk_t		*mp;
22782 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22783 
22784 	/*
22785 	 * Save sum for use in source route later.
22786 	 */
22787 	ASSERT(tcp != NULL);
22788 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22789 	tcp_hdr_len = tcp->tcp_hdr_len;
22790 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22791 
22792 	/* If a text string is passed in with the request, pass it to strlog. */
22793 	if (str != NULL && tcp->tcp_debug) {
22794 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22795 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22796 		    str, seq, ack, ctl);
22797 	}
22798 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22799 	    BPRI_MED);
22800 	if (mp == NULL) {
22801 		return;
22802 	}
22803 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22804 	mp->b_rptr = rptr;
22805 	mp->b_wptr = &rptr[tcp_hdr_len];
22806 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22807 
22808 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22809 		ipha = (ipha_t *)rptr;
22810 		ipha->ipha_length = htons(tcp_hdr_len);
22811 	} else {
22812 		ip6h = (ip6_t *)rptr;
22813 		ASSERT(tcp != NULL);
22814 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22815 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22816 	}
22817 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22818 	tcph->th_flags[0] = (uint8_t)ctl;
22819 	if (ctl & TH_RST) {
22820 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22821 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22822 		/*
22823 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22824 		 */
22825 		if (tcp->tcp_snd_ts_ok &&
22826 		    tcp->tcp_state > TCPS_SYN_SENT) {
22827 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22828 			*(mp->b_wptr) = TCPOPT_EOL;
22829 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22830 				ipha->ipha_length = htons(tcp_hdr_len -
22831 				    TCPOPT_REAL_TS_LEN);
22832 			} else {
22833 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22834 				    TCPOPT_REAL_TS_LEN);
22835 			}
22836 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22837 			sum -= TCPOPT_REAL_TS_LEN;
22838 		}
22839 	}
22840 	if (ctl & TH_ACK) {
22841 		if (tcp->tcp_snd_ts_ok) {
22842 			U32_TO_BE32(lbolt,
22843 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22844 			U32_TO_BE32(tcp->tcp_ts_recent,
22845 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22846 		}
22847 
22848 		/* Update the latest receive window size in TCP header. */
22849 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22850 		    tcph->th_win);
22851 		tcp->tcp_rack = ack;
22852 		tcp->tcp_rack_cnt = 0;
22853 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22854 	}
22855 	BUMP_LOCAL(tcp->tcp_obsegs);
22856 	U32_TO_BE32(seq, tcph->th_seq);
22857 	U32_TO_BE32(ack, tcph->th_ack);
22858 	/*
22859 	 * Include the adjustment for a source route if any.
22860 	 */
22861 	sum = (sum >> 16) + (sum & 0xFFFF);
22862 	U16_TO_BE16(sum, tcph->th_sum);
22863 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22864 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22865 }
22866 
22867 /*
22868  * If this routine returns B_TRUE, TCP can generate a RST in response
22869  * to a segment.  If it returns B_FALSE, TCP should not respond.
22870  */
22871 static boolean_t
22872 tcp_send_rst_chk(tcp_stack_t *tcps)
22873 {
22874 	clock_t	now;
22875 
22876 	/*
22877 	 * TCP needs to protect itself from generating too many RSTs.
22878 	 * This can be a DoS attack by sending us random segments
22879 	 * soliciting RSTs.
22880 	 *
22881 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22882 	 * in each 1 second interval.  In this way, TCP still generate
22883 	 * RSTs in normal cases but when under attack, the impact is
22884 	 * limited.
22885 	 */
22886 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22887 		now = lbolt;
22888 		/* lbolt can wrap around. */
22889 		if ((tcps->tcps_last_rst_intrvl > now) ||
22890 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22891 		    1*SECONDS)) {
22892 			tcps->tcps_last_rst_intrvl = now;
22893 			tcps->tcps_rst_cnt = 1;
22894 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22895 			return (B_FALSE);
22896 		}
22897 	}
22898 	return (B_TRUE);
22899 }
22900 
22901 /*
22902  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22903  */
22904 static void
22905 tcp_ip_ire_mark_advice(tcp_t *tcp)
22906 {
22907 	mblk_t *mp;
22908 	ipic_t *ipic;
22909 
22910 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22911 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22912 		    &ipic);
22913 	} else {
22914 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22915 		    &ipic);
22916 	}
22917 	if (mp == NULL)
22918 		return;
22919 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22920 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22921 }
22922 
22923 /*
22924  * Return an IP advice ioctl mblk and set ipic to be the pointer
22925  * to the advice structure.
22926  */
22927 static mblk_t *
22928 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22929 {
22930 	struct iocblk *ioc;
22931 	mblk_t *mp, *mp1;
22932 
22933 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22934 	if (mp == NULL)
22935 		return (NULL);
22936 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22937 	*ipic = (ipic_t *)mp->b_rptr;
22938 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22939 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22940 
22941 	bcopy(addr, *ipic + 1, addr_len);
22942 
22943 	(*ipic)->ipic_addr_length = addr_len;
22944 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22945 
22946 	mp1 = mkiocb(IP_IOCTL);
22947 	if (mp1 == NULL) {
22948 		freemsg(mp);
22949 		return (NULL);
22950 	}
22951 	mp1->b_cont = mp;
22952 	ioc = (struct iocblk *)mp1->b_rptr;
22953 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22954 
22955 	return (mp1);
22956 }
22957 
22958 /*
22959  * Generate a reset based on an inbound packet, connp is set by caller
22960  * when RST is in response to an unexpected inbound packet for which
22961  * there is active tcp state in the system.
22962  *
22963  * IPSEC NOTE : Try to send the reply with the same protection as it came
22964  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22965  * the packet will go out at the same level of protection as it came in by
22966  * converting the IPSEC_IN to IPSEC_OUT.
22967  */
22968 static void
22969 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22970     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22971     tcp_stack_t *tcps, conn_t *connp)
22972 {
22973 	ipha_t		*ipha = NULL;
22974 	ip6_t		*ip6h = NULL;
22975 	ushort_t	len;
22976 	tcph_t		*tcph;
22977 	int		i;
22978 	mblk_t		*ipsec_mp;
22979 	boolean_t	mctl_present;
22980 	ipic_t		*ipic;
22981 	ipaddr_t	v4addr;
22982 	in6_addr_t	v6addr;
22983 	int		addr_len;
22984 	void		*addr;
22985 	queue_t		*q = tcps->tcps_g_q;
22986 	tcp_t		*tcp;
22987 	cred_t		*cr;
22988 	mblk_t		*nmp;
22989 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22990 
22991 	if (tcps->tcps_g_q == NULL) {
22992 		/*
22993 		 * For non-zero stackids the default queue isn't created
22994 		 * until the first open, thus there can be a need to send
22995 		 * a reset before then. But we can't do that, hence we just
22996 		 * drop the packet. Later during boot, when the default queue
22997 		 * has been setup, a retransmitted packet from the peer
22998 		 * will result in a reset.
22999 		 */
23000 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
23001 		    GLOBAL_NETSTACKID);
23002 		freemsg(mp);
23003 		return;
23004 	}
23005 
23006 	if (connp != NULL)
23007 		tcp = connp->conn_tcp;
23008 	else
23009 		tcp = Q_TO_TCP(q);
23010 
23011 	if (!tcp_send_rst_chk(tcps)) {
23012 		tcps->tcps_rst_unsent++;
23013 		freemsg(mp);
23014 		return;
23015 	}
23016 
23017 	if (mp->b_datap->db_type == M_CTL) {
23018 		ipsec_mp = mp;
23019 		mp = mp->b_cont;
23020 		mctl_present = B_TRUE;
23021 	} else {
23022 		ipsec_mp = mp;
23023 		mctl_present = B_FALSE;
23024 	}
23025 
23026 	if (str && q && tcps->tcps_dbg) {
23027 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
23028 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
23029 		    "flags 0x%x",
23030 		    str, seq, ack, ctl);
23031 	}
23032 	if (mp->b_datap->db_ref != 1) {
23033 		mblk_t *mp1 = copyb(mp);
23034 		freemsg(mp);
23035 		mp = mp1;
23036 		if (!mp) {
23037 			if (mctl_present)
23038 				freeb(ipsec_mp);
23039 			return;
23040 		} else {
23041 			if (mctl_present) {
23042 				ipsec_mp->b_cont = mp;
23043 			} else {
23044 				ipsec_mp = mp;
23045 			}
23046 		}
23047 	} else if (mp->b_cont) {
23048 		freemsg(mp->b_cont);
23049 		mp->b_cont = NULL;
23050 	}
23051 	/*
23052 	 * We skip reversing source route here.
23053 	 * (for now we replace all IP options with EOL)
23054 	 */
23055 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23056 		ipha = (ipha_t *)mp->b_rptr;
23057 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
23058 			mp->b_rptr[i] = IPOPT_EOL;
23059 		/*
23060 		 * Make sure that src address isn't flagrantly invalid.
23061 		 * Not all broadcast address checking for the src address
23062 		 * is possible, since we don't know the netmask of the src
23063 		 * addr.  No check for destination address is done, since
23064 		 * IP will not pass up a packet with a broadcast dest
23065 		 * address to TCP.  Similar checks are done below for IPv6.
23066 		 */
23067 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
23068 		    CLASSD(ipha->ipha_src)) {
23069 			freemsg(ipsec_mp);
23070 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
23071 			return;
23072 		}
23073 	} else {
23074 		ip6h = (ip6_t *)mp->b_rptr;
23075 
23076 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
23077 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
23078 			freemsg(ipsec_mp);
23079 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
23080 			return;
23081 		}
23082 
23083 		/* Remove any extension headers assuming partial overlay */
23084 		if (ip_hdr_len > IPV6_HDR_LEN) {
23085 			uint8_t *to;
23086 
23087 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
23088 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
23089 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
23090 			ip_hdr_len = IPV6_HDR_LEN;
23091 			ip6h = (ip6_t *)mp->b_rptr;
23092 			ip6h->ip6_nxt = IPPROTO_TCP;
23093 		}
23094 	}
23095 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
23096 	if (tcph->th_flags[0] & TH_RST) {
23097 		freemsg(ipsec_mp);
23098 		return;
23099 	}
23100 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
23101 	len = ip_hdr_len + sizeof (tcph_t);
23102 	mp->b_wptr = &mp->b_rptr[len];
23103 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23104 		ipha->ipha_length = htons(len);
23105 		/* Swap addresses */
23106 		v4addr = ipha->ipha_src;
23107 		ipha->ipha_src = ipha->ipha_dst;
23108 		ipha->ipha_dst = v4addr;
23109 		ipha->ipha_ident = 0;
23110 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
23111 		addr_len = IP_ADDR_LEN;
23112 		addr = &v4addr;
23113 	} else {
23114 		/* No ip6i_t in this case */
23115 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
23116 		/* Swap addresses */
23117 		v6addr = ip6h->ip6_src;
23118 		ip6h->ip6_src = ip6h->ip6_dst;
23119 		ip6h->ip6_dst = v6addr;
23120 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
23121 		addr_len = IPV6_ADDR_LEN;
23122 		addr = &v6addr;
23123 	}
23124 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
23125 	U32_TO_BE32(ack, tcph->th_ack);
23126 	U32_TO_BE32(seq, tcph->th_seq);
23127 	U16_TO_BE16(0, tcph->th_win);
23128 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
23129 	tcph->th_flags[0] = (uint8_t)ctl;
23130 	if (ctl & TH_RST) {
23131 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
23132 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23133 	}
23134 
23135 	/* IP trusts us to set up labels when required. */
23136 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
23137 	    crgetlabel(cr) != NULL) {
23138 		int err, adjust;
23139 
23140 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
23141 			err = tsol_check_label(cr, &mp, &adjust,
23142 			    tcp->tcp_connp->conn_mac_exempt,
23143 			    tcps->tcps_netstack->netstack_ip);
23144 		else
23145 			err = tsol_check_label_v6(cr, &mp, &adjust,
23146 			    tcp->tcp_connp->conn_mac_exempt,
23147 			    tcps->tcps_netstack->netstack_ip);
23148 		if (mctl_present)
23149 			ipsec_mp->b_cont = mp;
23150 		else
23151 			ipsec_mp = mp;
23152 		if (err != 0) {
23153 			freemsg(ipsec_mp);
23154 			return;
23155 		}
23156 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23157 			ipha = (ipha_t *)mp->b_rptr;
23158 			adjust += ntohs(ipha->ipha_length);
23159 			ipha->ipha_length = htons(adjust);
23160 		} else {
23161 			ip6h = (ip6_t *)mp->b_rptr;
23162 		}
23163 	}
23164 
23165 	if (mctl_present) {
23166 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23167 
23168 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23169 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
23170 			return;
23171 		}
23172 	}
23173 	if (zoneid == ALL_ZONES)
23174 		zoneid = GLOBAL_ZONEID;
23175 
23176 	/* Add the zoneid so ip_output routes it properly */
23177 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
23178 		freemsg(ipsec_mp);
23179 		return;
23180 	}
23181 	ipsec_mp = nmp;
23182 
23183 	/*
23184 	 * NOTE:  one might consider tracing a TCP packet here, but
23185 	 * this function has no active TCP state and no tcp structure
23186 	 * that has a trace buffer.  If we traced here, we would have
23187 	 * to keep a local trace buffer in tcp_record_trace().
23188 	 *
23189 	 * TSol note: The mblk that contains the incoming packet was
23190 	 * reused by tcp_xmit_listener_reset, so it already contains
23191 	 * the right credentials and we don't need to call mblk_setcred.
23192 	 * Also the conn's cred is not right since it is associated
23193 	 * with tcps_g_q.
23194 	 */
23195 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
23196 
23197 	/*
23198 	 * Tell IP to mark the IRE used for this destination temporary.
23199 	 * This way, we can limit our exposure to DoS attack because IP
23200 	 * creates an IRE for each destination.  If there are too many,
23201 	 * the time to do any routing lookup will be extremely long.  And
23202 	 * the lookup can be in interrupt context.
23203 	 *
23204 	 * Note that in normal circumstances, this marking should not
23205 	 * affect anything.  It would be nice if only 1 message is
23206 	 * needed to inform IP that the IRE created for this RST should
23207 	 * not be added to the cache table.  But there is currently
23208 	 * not such communication mechanism between TCP and IP.  So
23209 	 * the best we can do now is to send the advice ioctl to IP
23210 	 * to mark the IRE temporary.
23211 	 */
23212 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
23213 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
23214 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23215 	}
23216 }
23217 
23218 /*
23219  * Initiate closedown sequence on an active connection.  (May be called as
23220  * writer.)  Return value zero for OK return, non-zero for error return.
23221  */
23222 static int
23223 tcp_xmit_end(tcp_t *tcp)
23224 {
23225 	ipic_t	*ipic;
23226 	mblk_t	*mp;
23227 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23228 
23229 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
23230 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
23231 		/*
23232 		 * Invalid state, only states TCPS_SYN_RCVD,
23233 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
23234 		 */
23235 		return (-1);
23236 	}
23237 
23238 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
23239 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
23240 	/*
23241 	 * If there is nothing more unsent, send the FIN now.
23242 	 * Otherwise, it will go out with the last segment.
23243 	 */
23244 	if (tcp->tcp_unsent == 0) {
23245 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
23246 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
23247 
23248 		if (mp) {
23249 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23250 			tcp_send_data(tcp, tcp->tcp_wq, mp);
23251 		} else {
23252 			/*
23253 			 * Couldn't allocate msg.  Pretend we got it out.
23254 			 * Wait for rexmit timeout.
23255 			 */
23256 			tcp->tcp_snxt = tcp->tcp_fss + 1;
23257 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23258 		}
23259 
23260 		/*
23261 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
23262 		 * changed.
23263 		 */
23264 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
23265 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23266 		}
23267 	} else {
23268 		/*
23269 		 * If tcp->tcp_cork is set, then the data will not get sent,
23270 		 * so we have to check that and unset it first.
23271 		 */
23272 		if (tcp->tcp_cork)
23273 			tcp->tcp_cork = B_FALSE;
23274 		tcp_wput_data(tcp, NULL, B_FALSE);
23275 	}
23276 
23277 	/*
23278 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23279 	 * is 0, don't update the cache.
23280 	 */
23281 	if (tcps->tcps_rtt_updates == 0 ||
23282 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23283 		return (0);
23284 
23285 	/*
23286 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23287 	 * different from the destination.
23288 	 */
23289 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23290 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23291 			return (0);
23292 		}
23293 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23294 		    &ipic);
23295 	} else {
23296 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23297 		    &tcp->tcp_ip6h->ip6_dst))) {
23298 			return (0);
23299 		}
23300 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23301 		    &ipic);
23302 	}
23303 
23304 	/* Record route attributes in the IRE for use by future connections. */
23305 	if (mp == NULL)
23306 		return (0);
23307 
23308 	/*
23309 	 * We do not have a good algorithm to update ssthresh at this time.
23310 	 * So don't do any update.
23311 	 */
23312 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23313 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23314 
23315 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23316 	return (0);
23317 }
23318 
23319 /*
23320  * Generate a "no listener here" RST in response to an "unknown" segment.
23321  * connp is set by caller when RST is in response to an unexpected
23322  * inbound packet for which there is active tcp state in the system.
23323  * Note that we are reusing the incoming mp to construct the outgoing RST.
23324  */
23325 void
23326 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23327     tcp_stack_t *tcps, conn_t *connp)
23328 {
23329 	uchar_t		*rptr;
23330 	uint32_t	seg_len;
23331 	tcph_t		*tcph;
23332 	uint32_t	seg_seq;
23333 	uint32_t	seg_ack;
23334 	uint_t		flags;
23335 	mblk_t		*ipsec_mp;
23336 	ipha_t 		*ipha;
23337 	ip6_t 		*ip6h;
23338 	boolean_t	mctl_present = B_FALSE;
23339 	boolean_t	check = B_TRUE;
23340 	boolean_t	policy_present;
23341 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23342 
23343 	TCP_STAT(tcps, tcp_no_listener);
23344 
23345 	ipsec_mp = mp;
23346 
23347 	if (mp->b_datap->db_type == M_CTL) {
23348 		ipsec_in_t *ii;
23349 
23350 		mctl_present = B_TRUE;
23351 		mp = mp->b_cont;
23352 
23353 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23354 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23355 		if (ii->ipsec_in_dont_check) {
23356 			check = B_FALSE;
23357 			if (!ii->ipsec_in_secure) {
23358 				freeb(ipsec_mp);
23359 				mctl_present = B_FALSE;
23360 				ipsec_mp = mp;
23361 			}
23362 		}
23363 	}
23364 
23365 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23366 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23367 		ipha = (ipha_t *)mp->b_rptr;
23368 		ip6h = NULL;
23369 	} else {
23370 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23371 		ipha = NULL;
23372 		ip6h = (ip6_t *)mp->b_rptr;
23373 	}
23374 
23375 	if (check && policy_present) {
23376 		/*
23377 		 * The conn_t parameter is NULL because we already know
23378 		 * nobody's home.
23379 		 */
23380 		ipsec_mp = ipsec_check_global_policy(
23381 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23382 		    tcps->tcps_netstack);
23383 		if (ipsec_mp == NULL)
23384 			return;
23385 	}
23386 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23387 		DTRACE_PROBE2(
23388 		    tx__ip__log__error__nolistener__tcp,
23389 		    char *, "Could not reply with RST to mp(1)",
23390 		    mblk_t *, mp);
23391 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23392 		freemsg(ipsec_mp);
23393 		return;
23394 	}
23395 
23396 	rptr = mp->b_rptr;
23397 
23398 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23399 	seg_seq = BE32_TO_U32(tcph->th_seq);
23400 	seg_ack = BE32_TO_U32(tcph->th_ack);
23401 	flags = tcph->th_flags[0];
23402 
23403 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23404 	if (flags & TH_RST) {
23405 		freemsg(ipsec_mp);
23406 	} else if (flags & TH_ACK) {
23407 		tcp_xmit_early_reset("no tcp, reset",
23408 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23409 		    connp);
23410 	} else {
23411 		if (flags & TH_SYN) {
23412 			seg_len++;
23413 		} else {
23414 			/*
23415 			 * Here we violate the RFC.  Note that a normal
23416 			 * TCP will never send a segment without the ACK
23417 			 * flag, except for RST or SYN segment.  This
23418 			 * segment is neither.  Just drop it on the
23419 			 * floor.
23420 			 */
23421 			freemsg(ipsec_mp);
23422 			tcps->tcps_rst_unsent++;
23423 			return;
23424 		}
23425 
23426 		tcp_xmit_early_reset("no tcp, reset/ack",
23427 		    ipsec_mp, 0, seg_seq + seg_len,
23428 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23429 	}
23430 }
23431 
23432 /*
23433  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23434  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23435  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23436  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23437  * otherwise it will dup partial mblks.)
23438  * Otherwise, an appropriate ACK packet will be generated.  This
23439  * routine is not usually called to send new data for the first time.  It
23440  * is mostly called out of the timer for retransmits, and to generate ACKs.
23441  *
23442  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23443  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23444  * of the original mblk chain will be returned in *offset and *end_mp.
23445  */
23446 mblk_t *
23447 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23448     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23449     boolean_t rexmit)
23450 {
23451 	int	data_length;
23452 	int32_t	off = 0;
23453 	uint_t	flags;
23454 	mblk_t	*mp1;
23455 	mblk_t	*mp2;
23456 	uchar_t	*rptr;
23457 	tcph_t	*tcph;
23458 	int32_t	num_sack_blk = 0;
23459 	int32_t	sack_opt_len = 0;
23460 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23461 
23462 	/* Allocate for our maximum TCP header + link-level */
23463 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23464 	    tcps->tcps_wroff_xtra, BPRI_MED);
23465 	if (!mp1)
23466 		return (NULL);
23467 	data_length = 0;
23468 
23469 	/*
23470 	 * Note that tcp_mss has been adjusted to take into account the
23471 	 * timestamp option if applicable.  Because SACK options do not
23472 	 * appear in every TCP segments and they are of variable lengths,
23473 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23474 	 * the actual segment length when we need to send a segment which
23475 	 * includes SACK options.
23476 	 */
23477 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23478 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23479 		    tcp->tcp_num_sack_blk);
23480 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23481 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23482 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23483 			max_to_send -= sack_opt_len;
23484 	}
23485 
23486 	if (offset != NULL) {
23487 		off = *offset;
23488 		/* We use offset as an indicator that end_mp is not NULL. */
23489 		*end_mp = NULL;
23490 	}
23491 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23492 		/* This could be faster with cooperation from downstream */
23493 		if (mp2 != mp1 && !sendall &&
23494 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23495 		    max_to_send)
23496 			/*
23497 			 * Don't send the next mblk since the whole mblk
23498 			 * does not fit.
23499 			 */
23500 			break;
23501 		mp2->b_cont = dupb(mp);
23502 		mp2 = mp2->b_cont;
23503 		if (!mp2) {
23504 			freemsg(mp1);
23505 			return (NULL);
23506 		}
23507 		mp2->b_rptr += off;
23508 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23509 		    (uintptr_t)INT_MAX);
23510 
23511 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23512 		if (data_length > max_to_send) {
23513 			mp2->b_wptr -= data_length - max_to_send;
23514 			data_length = max_to_send;
23515 			off = mp2->b_wptr - mp->b_rptr;
23516 			break;
23517 		} else {
23518 			off = 0;
23519 		}
23520 	}
23521 	if (offset != NULL) {
23522 		*offset = off;
23523 		*end_mp = mp;
23524 	}
23525 	if (seg_len != NULL) {
23526 		*seg_len = data_length;
23527 	}
23528 
23529 	/* Update the latest receive window size in TCP header. */
23530 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23531 	    tcp->tcp_tcph->th_win);
23532 
23533 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23534 	mp1->b_rptr = rptr;
23535 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23536 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23537 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23538 	U32_TO_ABE32(seq, tcph->th_seq);
23539 
23540 	/*
23541 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23542 	 * that this function was called from tcp_wput_data. Thus, when called
23543 	 * to retransmit data the setting of the PUSH bit may appear some
23544 	 * what random in that it might get set when it should not. This
23545 	 * should not pose any performance issues.
23546 	 */
23547 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23548 	    tcp->tcp_unsent == data_length)) {
23549 		flags = TH_ACK | TH_PUSH;
23550 	} else {
23551 		flags = TH_ACK;
23552 	}
23553 
23554 	if (tcp->tcp_ecn_ok) {
23555 		if (tcp->tcp_ecn_echo_on)
23556 			flags |= TH_ECE;
23557 
23558 		/*
23559 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23560 		 * There is no TCP flow control for non-data segments, and
23561 		 * only data segment is transmitted reliably.
23562 		 */
23563 		if (data_length > 0 && !rexmit) {
23564 			SET_ECT(tcp, rptr);
23565 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23566 				flags |= TH_CWR;
23567 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23568 			}
23569 		}
23570 	}
23571 
23572 	if (tcp->tcp_valid_bits) {
23573 		uint32_t u1;
23574 
23575 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23576 		    seq == tcp->tcp_iss) {
23577 			uchar_t	*wptr;
23578 
23579 			/*
23580 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23581 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23582 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23583 			 * our SYN is not ack'ed but the app closes this
23584 			 * TCP connection.
23585 			 */
23586 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23587 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23588 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23589 
23590 			/*
23591 			 * Tack on the MSS option.  It is always needed
23592 			 * for both active and passive open.
23593 			 *
23594 			 * MSS option value should be interface MTU - MIN
23595 			 * TCP/IP header according to RFC 793 as it means
23596 			 * the maximum segment size TCP can receive.  But
23597 			 * to get around some broken middle boxes/end hosts
23598 			 * out there, we allow the option value to be the
23599 			 * same as the MSS option size on the peer side.
23600 			 * In this way, the other side will not send
23601 			 * anything larger than they can receive.
23602 			 *
23603 			 * Note that for SYN_SENT state, the ndd param
23604 			 * tcp_use_smss_as_mss_opt has no effect as we
23605 			 * don't know the peer's MSS option value. So
23606 			 * the only case we need to take care of is in
23607 			 * SYN_RCVD state, which is done later.
23608 			 */
23609 			wptr = mp1->b_wptr;
23610 			wptr[0] = TCPOPT_MAXSEG;
23611 			wptr[1] = TCPOPT_MAXSEG_LEN;
23612 			wptr += 2;
23613 			u1 = tcp->tcp_if_mtu -
23614 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23615 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23616 			    TCP_MIN_HEADER_LENGTH;
23617 			U16_TO_BE16(u1, wptr);
23618 			mp1->b_wptr = wptr + 2;
23619 			/* Update the offset to cover the additional word */
23620 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23621 
23622 			/*
23623 			 * Note that the following way of filling in
23624 			 * TCP options are not optimal.  Some NOPs can
23625 			 * be saved.  But there is no need at this time
23626 			 * to optimize it.  When it is needed, we will
23627 			 * do it.
23628 			 */
23629 			switch (tcp->tcp_state) {
23630 			case TCPS_SYN_SENT:
23631 				flags = TH_SYN;
23632 
23633 				if (tcp->tcp_snd_ts_ok) {
23634 					uint32_t llbolt = (uint32_t)lbolt;
23635 
23636 					wptr = mp1->b_wptr;
23637 					wptr[0] = TCPOPT_NOP;
23638 					wptr[1] = TCPOPT_NOP;
23639 					wptr[2] = TCPOPT_TSTAMP;
23640 					wptr[3] = TCPOPT_TSTAMP_LEN;
23641 					wptr += 4;
23642 					U32_TO_BE32(llbolt, wptr);
23643 					wptr += 4;
23644 					ASSERT(tcp->tcp_ts_recent == 0);
23645 					U32_TO_BE32(0L, wptr);
23646 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23647 					tcph->th_offset_and_rsrvd[0] +=
23648 					    (3 << 4);
23649 				}
23650 
23651 				/*
23652 				 * Set up all the bits to tell other side
23653 				 * we are ECN capable.
23654 				 */
23655 				if (tcp->tcp_ecn_ok) {
23656 					flags |= (TH_ECE | TH_CWR);
23657 				}
23658 				break;
23659 			case TCPS_SYN_RCVD:
23660 				flags |= TH_SYN;
23661 
23662 				/*
23663 				 * Reset the MSS option value to be SMSS
23664 				 * We should probably add back the bytes
23665 				 * for timestamp option and IPsec.  We
23666 				 * don't do that as this is a workaround
23667 				 * for broken middle boxes/end hosts, it
23668 				 * is better for us to be more cautious.
23669 				 * They may not take these things into
23670 				 * account in their SMSS calculation.  Thus
23671 				 * the peer's calculated SMSS may be smaller
23672 				 * than what it can be.  This should be OK.
23673 				 */
23674 				if (tcps->tcps_use_smss_as_mss_opt) {
23675 					u1 = tcp->tcp_mss;
23676 					U16_TO_BE16(u1, wptr);
23677 				}
23678 
23679 				/*
23680 				 * If the other side is ECN capable, reply
23681 				 * that we are also ECN capable.
23682 				 */
23683 				if (tcp->tcp_ecn_ok)
23684 					flags |= TH_ECE;
23685 				break;
23686 			default:
23687 				/*
23688 				 * The above ASSERT() makes sure that this
23689 				 * must be FIN-WAIT-1 state.  Our SYN has
23690 				 * not been ack'ed so retransmit it.
23691 				 */
23692 				flags |= TH_SYN;
23693 				break;
23694 			}
23695 
23696 			if (tcp->tcp_snd_ws_ok) {
23697 				wptr = mp1->b_wptr;
23698 				wptr[0] =  TCPOPT_NOP;
23699 				wptr[1] =  TCPOPT_WSCALE;
23700 				wptr[2] =  TCPOPT_WS_LEN;
23701 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23702 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23703 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23704 			}
23705 
23706 			if (tcp->tcp_snd_sack_ok) {
23707 				wptr = mp1->b_wptr;
23708 				wptr[0] = TCPOPT_NOP;
23709 				wptr[1] = TCPOPT_NOP;
23710 				wptr[2] = TCPOPT_SACK_PERMITTED;
23711 				wptr[3] = TCPOPT_SACK_OK_LEN;
23712 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23713 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23714 			}
23715 
23716 			/* allocb() of adequate mblk assures space */
23717 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23718 			    (uintptr_t)INT_MAX);
23719 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23720 			/*
23721 			 * Get IP set to checksum on our behalf
23722 			 * Include the adjustment for a source route if any.
23723 			 */
23724 			u1 += tcp->tcp_sum;
23725 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23726 			U16_TO_BE16(u1, tcph->th_sum);
23727 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23728 		}
23729 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23730 		    (seq + data_length) == tcp->tcp_fss) {
23731 			if (!tcp->tcp_fin_acked) {
23732 				flags |= TH_FIN;
23733 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23734 			}
23735 			if (!tcp->tcp_fin_sent) {
23736 				tcp->tcp_fin_sent = B_TRUE;
23737 				switch (tcp->tcp_state) {
23738 				case TCPS_SYN_RCVD:
23739 				case TCPS_ESTABLISHED:
23740 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23741 					break;
23742 				case TCPS_CLOSE_WAIT:
23743 					tcp->tcp_state = TCPS_LAST_ACK;
23744 					break;
23745 				}
23746 				if (tcp->tcp_suna == tcp->tcp_snxt)
23747 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23748 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23749 			}
23750 		}
23751 		/*
23752 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23753 		 * is smaller than seq, u1 will become a very huge value.
23754 		 * So the comparison will fail.  Also note that tcp_urp
23755 		 * should be positive, see RFC 793 page 17.
23756 		 */
23757 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23758 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23759 		    u1 < (uint32_t)(64 * 1024)) {
23760 			flags |= TH_URG;
23761 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23762 			U32_TO_ABE16(u1, tcph->th_urp);
23763 		}
23764 	}
23765 	tcph->th_flags[0] = (uchar_t)flags;
23766 	tcp->tcp_rack = tcp->tcp_rnxt;
23767 	tcp->tcp_rack_cnt = 0;
23768 
23769 	if (tcp->tcp_snd_ts_ok) {
23770 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23771 			uint32_t llbolt = (uint32_t)lbolt;
23772 
23773 			U32_TO_BE32(llbolt,
23774 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23775 			U32_TO_BE32(tcp->tcp_ts_recent,
23776 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23777 		}
23778 	}
23779 
23780 	if (num_sack_blk > 0) {
23781 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23782 		sack_blk_t *tmp;
23783 		int32_t	i;
23784 
23785 		wptr[0] = TCPOPT_NOP;
23786 		wptr[1] = TCPOPT_NOP;
23787 		wptr[2] = TCPOPT_SACK;
23788 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23789 		    sizeof (sack_blk_t);
23790 		wptr += TCPOPT_REAL_SACK_LEN;
23791 
23792 		tmp = tcp->tcp_sack_list;
23793 		for (i = 0; i < num_sack_blk; i++) {
23794 			U32_TO_BE32(tmp[i].begin, wptr);
23795 			wptr += sizeof (tcp_seq);
23796 			U32_TO_BE32(tmp[i].end, wptr);
23797 			wptr += sizeof (tcp_seq);
23798 		}
23799 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23800 	}
23801 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23802 	data_length += (int)(mp1->b_wptr - rptr);
23803 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23804 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23805 	} else {
23806 		ip6_t *ip6 = (ip6_t *)(rptr +
23807 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23808 		    sizeof (ip6i_t) : 0));
23809 
23810 		ip6->ip6_plen = htons(data_length -
23811 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23812 	}
23813 
23814 	/*
23815 	 * Prime pump for IP
23816 	 * Include the adjustment for a source route if any.
23817 	 */
23818 	data_length -= tcp->tcp_ip_hdr_len;
23819 	data_length += tcp->tcp_sum;
23820 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23821 	U16_TO_ABE16(data_length, tcph->th_sum);
23822 	if (tcp->tcp_ip_forward_progress) {
23823 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23824 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23825 		tcp->tcp_ip_forward_progress = B_FALSE;
23826 	}
23827 	return (mp1);
23828 }
23829 
23830 /* This function handles the push timeout. */
23831 void
23832 tcp_push_timer(void *arg)
23833 {
23834 	conn_t	*connp = (conn_t *)arg;
23835 	tcp_t *tcp = connp->conn_tcp;
23836 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23837 	uint_t		flags;
23838 	sodirect_t	*sodp;
23839 
23840 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23841 
23842 	ASSERT(tcp->tcp_listener == NULL);
23843 
23844 	/*
23845 	 * We need to plug synchronous streams during our drain to prevent
23846 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23847 	 */
23848 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23849 	tcp->tcp_push_tid = 0;
23850 
23851 	SOD_PTR_ENTER(tcp, sodp);
23852 	if (sodp != NULL) {
23853 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23854 		/* sod_wakeup() does the mutex_exit() */
23855 	} else if (tcp->tcp_rcv_list != NULL) {
23856 		flags = tcp_rcv_drain(tcp->tcp_rq, tcp);
23857 	}
23858 	if (flags == TH_ACK_NEEDED)
23859 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23860 
23861 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23862 }
23863 
23864 /*
23865  * This function handles delayed ACK timeout.
23866  */
23867 static void
23868 tcp_ack_timer(void *arg)
23869 {
23870 	conn_t	*connp = (conn_t *)arg;
23871 	tcp_t *tcp = connp->conn_tcp;
23872 	mblk_t *mp;
23873 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23874 
23875 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23876 
23877 	tcp->tcp_ack_tid = 0;
23878 
23879 	if (tcp->tcp_fused)
23880 		return;
23881 
23882 	/*
23883 	 * Do not send ACK if there is no outstanding unack'ed data.
23884 	 */
23885 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23886 		return;
23887 	}
23888 
23889 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23890 		/*
23891 		 * Make sure we don't allow deferred ACKs to result in
23892 		 * timer-based ACKing.  If we have held off an ACK
23893 		 * when there was more than an mss here, and the timer
23894 		 * goes off, we have to worry about the possibility
23895 		 * that the sender isn't doing slow-start, or is out
23896 		 * of step with us for some other reason.  We fall
23897 		 * permanently back in the direction of
23898 		 * ACK-every-other-packet as suggested in RFC 1122.
23899 		 */
23900 		if (tcp->tcp_rack_abs_max > 2)
23901 			tcp->tcp_rack_abs_max--;
23902 		tcp->tcp_rack_cur_max = 2;
23903 	}
23904 	mp = tcp_ack_mp(tcp);
23905 
23906 	if (mp != NULL) {
23907 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23908 		BUMP_LOCAL(tcp->tcp_obsegs);
23909 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23910 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23911 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23912 	}
23913 }
23914 
23915 
23916 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23917 static mblk_t *
23918 tcp_ack_mp(tcp_t *tcp)
23919 {
23920 	uint32_t	seq_no;
23921 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23922 
23923 	/*
23924 	 * There are a few cases to be considered while setting the sequence no.
23925 	 * Essentially, we can come here while processing an unacceptable pkt
23926 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23927 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23928 	 * If we are here for a zero window probe, stick with suna. In all
23929 	 * other cases, we check if suna + swnd encompasses snxt and set
23930 	 * the sequence number to snxt, if so. If snxt falls outside the
23931 	 * window (the receiver probably shrunk its window), we will go with
23932 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23933 	 * receiver.
23934 	 */
23935 	if (tcp->tcp_zero_win_probe) {
23936 		seq_no = tcp->tcp_suna;
23937 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23938 		ASSERT(tcp->tcp_swnd == 0);
23939 		seq_no = tcp->tcp_snxt;
23940 	} else {
23941 		seq_no = SEQ_GT(tcp->tcp_snxt,
23942 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23943 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23944 	}
23945 
23946 	if (tcp->tcp_valid_bits) {
23947 		/*
23948 		 * For the complex case where we have to send some
23949 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23950 		 */
23951 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23952 		    NULL, B_FALSE));
23953 	} else {
23954 		/* Generate a simple ACK */
23955 		int	data_length;
23956 		uchar_t	*rptr;
23957 		tcph_t	*tcph;
23958 		mblk_t	*mp1;
23959 		int32_t	tcp_hdr_len;
23960 		int32_t	tcp_tcp_hdr_len;
23961 		int32_t	num_sack_blk = 0;
23962 		int32_t sack_opt_len;
23963 
23964 		/*
23965 		 * Allocate space for TCP + IP headers
23966 		 * and link-level header
23967 		 */
23968 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23969 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23970 			    tcp->tcp_num_sack_blk);
23971 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23972 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23973 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23974 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23975 		} else {
23976 			tcp_hdr_len = tcp->tcp_hdr_len;
23977 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23978 		}
23979 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23980 		if (!mp1)
23981 			return (NULL);
23982 
23983 		/* Update the latest receive window size in TCP header. */
23984 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23985 		    tcp->tcp_tcph->th_win);
23986 		/* copy in prototype TCP + IP header */
23987 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23988 		mp1->b_rptr = rptr;
23989 		mp1->b_wptr = rptr + tcp_hdr_len;
23990 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23991 
23992 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23993 
23994 		/* Set the TCP sequence number. */
23995 		U32_TO_ABE32(seq_no, tcph->th_seq);
23996 
23997 		/* Set up the TCP flag field. */
23998 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23999 		if (tcp->tcp_ecn_echo_on)
24000 			tcph->th_flags[0] |= TH_ECE;
24001 
24002 		tcp->tcp_rack = tcp->tcp_rnxt;
24003 		tcp->tcp_rack_cnt = 0;
24004 
24005 		/* fill in timestamp option if in use */
24006 		if (tcp->tcp_snd_ts_ok) {
24007 			uint32_t llbolt = (uint32_t)lbolt;
24008 
24009 			U32_TO_BE32(llbolt,
24010 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
24011 			U32_TO_BE32(tcp->tcp_ts_recent,
24012 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
24013 		}
24014 
24015 		/* Fill in SACK options */
24016 		if (num_sack_blk > 0) {
24017 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
24018 			sack_blk_t *tmp;
24019 			int32_t	i;
24020 
24021 			wptr[0] = TCPOPT_NOP;
24022 			wptr[1] = TCPOPT_NOP;
24023 			wptr[2] = TCPOPT_SACK;
24024 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
24025 			    sizeof (sack_blk_t);
24026 			wptr += TCPOPT_REAL_SACK_LEN;
24027 
24028 			tmp = tcp->tcp_sack_list;
24029 			for (i = 0; i < num_sack_blk; i++) {
24030 				U32_TO_BE32(tmp[i].begin, wptr);
24031 				wptr += sizeof (tcp_seq);
24032 				U32_TO_BE32(tmp[i].end, wptr);
24033 				wptr += sizeof (tcp_seq);
24034 			}
24035 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
24036 			    << 4);
24037 		}
24038 
24039 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24040 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
24041 		} else {
24042 			/* Check for ip6i_t header in sticky hdrs */
24043 			ip6_t *ip6 = (ip6_t *)(rptr +
24044 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
24045 			    sizeof (ip6i_t) : 0));
24046 
24047 			ip6->ip6_plen = htons(tcp_hdr_len -
24048 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
24049 		}
24050 
24051 		/*
24052 		 * Prime pump for checksum calculation in IP.  Include the
24053 		 * adjustment for a source route if any.
24054 		 */
24055 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
24056 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
24057 		U16_TO_ABE16(data_length, tcph->th_sum);
24058 
24059 		if (tcp->tcp_ip_forward_progress) {
24060 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
24061 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
24062 			tcp->tcp_ip_forward_progress = B_FALSE;
24063 		}
24064 		return (mp1);
24065 	}
24066 }
24067 
24068 /*
24069  * To create a temporary tcp structure for inserting into bind hash list.
24070  * The parameter is assumed to be in network byte order, ready for use.
24071  */
24072 /* ARGSUSED */
24073 static tcp_t *
24074 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
24075 {
24076 	conn_t	*connp;
24077 	tcp_t	*tcp;
24078 
24079 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
24080 	if (connp == NULL)
24081 		return (NULL);
24082 
24083 	tcp = connp->conn_tcp;
24084 	tcp->tcp_tcps = tcps;
24085 	TCPS_REFHOLD(tcps);
24086 
24087 	/*
24088 	 * Only initialize the necessary info in those structures.  Note
24089 	 * that since INADDR_ANY is all 0, we do not need to set
24090 	 * tcp_bound_source to INADDR_ANY here.
24091 	 */
24092 	tcp->tcp_state = TCPS_BOUND;
24093 	tcp->tcp_lport = port;
24094 	tcp->tcp_exclbind = 1;
24095 	tcp->tcp_reserved_port = 1;
24096 
24097 	/* Just for place holding... */
24098 	tcp->tcp_ipversion = IPV4_VERSION;
24099 
24100 	return (tcp);
24101 }
24102 
24103 /*
24104  * To remove a port range specified by lo_port and hi_port from the
24105  * reserved port ranges.  This is one of the three public functions of
24106  * the reserved port interface.  Note that a port range has to be removed
24107  * as a whole.  Ports in a range cannot be removed individually.
24108  *
24109  * Params:
24110  *	in_port_t lo_port: the beginning port of the reserved port range to
24111  *		be deleted.
24112  *	in_port_t hi_port: the ending port of the reserved port range to
24113  *		be deleted.
24114  *
24115  * Return:
24116  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
24117  *
24118  * Assumes that nca is only for zoneid=0
24119  */
24120 boolean_t
24121 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
24122 {
24123 	int	i, j;
24124 	int	size;
24125 	tcp_t	**temp_tcp_array;
24126 	tcp_t	*tcp;
24127 	tcp_stack_t	*tcps;
24128 
24129 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
24130 	ASSERT(tcps != NULL);
24131 
24132 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
24133 
24134 	/* First make sure that the port ranage is indeed reserved. */
24135 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
24136 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
24137 			hi_port = tcps->tcps_reserved_port[i].hi_port;
24138 			temp_tcp_array =
24139 			    tcps->tcps_reserved_port[i].temp_tcp_array;
24140 			break;
24141 		}
24142 	}
24143 	if (i == tcps->tcps_reserved_port_array_size) {
24144 		rw_exit(&tcps->tcps_reserved_port_lock);
24145 		netstack_rele(tcps->tcps_netstack);
24146 		return (B_FALSE);
24147 	}
24148 
24149 	/*
24150 	 * Remove the range from the array.  This simple loop is possible
24151 	 * because port ranges are inserted in ascending order.
24152 	 */
24153 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
24154 		tcps->tcps_reserved_port[j].lo_port =
24155 		    tcps->tcps_reserved_port[j+1].lo_port;
24156 		tcps->tcps_reserved_port[j].hi_port =
24157 		    tcps->tcps_reserved_port[j+1].hi_port;
24158 		tcps->tcps_reserved_port[j].temp_tcp_array =
24159 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
24160 	}
24161 
24162 	/* Remove all the temporary tcp structures. */
24163 	size = hi_port - lo_port + 1;
24164 	while (size > 0) {
24165 		tcp = temp_tcp_array[size - 1];
24166 		ASSERT(tcp != NULL);
24167 		tcp_bind_hash_remove(tcp);
24168 		CONN_DEC_REF(tcp->tcp_connp);
24169 		size--;
24170 	}
24171 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
24172 	tcps->tcps_reserved_port_array_size--;
24173 	rw_exit(&tcps->tcps_reserved_port_lock);
24174 	netstack_rele(tcps->tcps_netstack);
24175 	return (B_TRUE);
24176 }
24177 
24178 /*
24179  * Macro to remove temporary tcp structure from the bind hash list.  The
24180  * first parameter is the list of tcp to be removed.  The second parameter
24181  * is the number of tcps in the array.
24182  */
24183 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
24184 { \
24185 	while ((num) > 0) { \
24186 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
24187 		tf_t *tbf; \
24188 		tcp_t *tcpnext; \
24189 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
24190 		mutex_enter(&tbf->tf_lock); \
24191 		tcpnext = tcp->tcp_bind_hash; \
24192 		if (tcpnext) { \
24193 			tcpnext->tcp_ptpbhn = \
24194 				tcp->tcp_ptpbhn; \
24195 		} \
24196 		*tcp->tcp_ptpbhn = tcpnext; \
24197 		mutex_exit(&tbf->tf_lock); \
24198 		kmem_free(tcp, sizeof (tcp_t)); \
24199 		(tcp_array)[(num) - 1] = NULL; \
24200 		(num)--; \
24201 	} \
24202 }
24203 
24204 /*
24205  * The public interface for other modules to call to reserve a port range
24206  * in TCP.  The caller passes in how large a port range it wants.  TCP
24207  * will try to find a range and return it via lo_port and hi_port.  This is
24208  * used by NCA's nca_conn_init.
24209  * NCA can only be used in the global zone so this only affects the global
24210  * zone's ports.
24211  *
24212  * Params:
24213  *	int size: the size of the port range to be reserved.
24214  *	in_port_t *lo_port (referenced): returns the beginning port of the
24215  *		reserved port range added.
24216  *	in_port_t *hi_port (referenced): returns the ending port of the
24217  *		reserved port range added.
24218  *
24219  * Return:
24220  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
24221  *
24222  * Assumes that nca is only for zoneid=0
24223  */
24224 boolean_t
24225 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
24226 {
24227 	tcp_t		*tcp;
24228 	tcp_t		*tmp_tcp;
24229 	tcp_t		**temp_tcp_array;
24230 	tf_t		*tbf;
24231 	in_port_t	net_port;
24232 	in_port_t	port;
24233 	int32_t		cur_size;
24234 	int		i, j;
24235 	boolean_t	used;
24236 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
24237 	zoneid_t	zoneid = GLOBAL_ZONEID;
24238 	tcp_stack_t	*tcps;
24239 
24240 	/* Sanity check. */
24241 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
24242 		return (B_FALSE);
24243 	}
24244 
24245 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
24246 	ASSERT(tcps != NULL);
24247 
24248 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
24249 	if (tcps->tcps_reserved_port_array_size ==
24250 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
24251 		rw_exit(&tcps->tcps_reserved_port_lock);
24252 		netstack_rele(tcps->tcps_netstack);
24253 		return (B_FALSE);
24254 	}
24255 
24256 	/*
24257 	 * Find the starting port to try.  Since the port ranges are ordered
24258 	 * in the reserved port array, we can do a simple search here.
24259 	 */
24260 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
24261 	*hi_port = TCP_LARGEST_RESERVED_PORT;
24262 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
24263 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
24264 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
24265 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
24266 			break;
24267 		}
24268 	}
24269 	/* No available port range. */
24270 	if (i == tcps->tcps_reserved_port_array_size &&
24271 	    *hi_port - *lo_port < size) {
24272 		rw_exit(&tcps->tcps_reserved_port_lock);
24273 		netstack_rele(tcps->tcps_netstack);
24274 		return (B_FALSE);
24275 	}
24276 
24277 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
24278 	if (temp_tcp_array == NULL) {
24279 		rw_exit(&tcps->tcps_reserved_port_lock);
24280 		netstack_rele(tcps->tcps_netstack);
24281 		return (B_FALSE);
24282 	}
24283 
24284 	/* Go thru the port range to see if some ports are already bound. */
24285 	for (port = *lo_port, cur_size = 0;
24286 	    cur_size < size && port <= *hi_port;
24287 	    cur_size++, port++) {
24288 		used = B_FALSE;
24289 		net_port = htons(port);
24290 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
24291 		mutex_enter(&tbf->tf_lock);
24292 		for (tcp = tbf->tf_tcp; tcp != NULL;
24293 		    tcp = tcp->tcp_bind_hash) {
24294 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
24295 			    net_port == tcp->tcp_lport) {
24296 				/*
24297 				 * A port is already bound.  Search again
24298 				 * starting from port + 1.  Release all
24299 				 * temporary tcps.
24300 				 */
24301 				mutex_exit(&tbf->tf_lock);
24302 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
24303 				    tcps);
24304 				*lo_port = port + 1;
24305 				cur_size = -1;
24306 				used = B_TRUE;
24307 				break;
24308 			}
24309 		}
24310 		if (!used) {
24311 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
24312 			    NULL) {
24313 				/*
24314 				 * Allocation failure.  Just fail the request.
24315 				 * Need to remove all those temporary tcp
24316 				 * structures.
24317 				 */
24318 				mutex_exit(&tbf->tf_lock);
24319 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
24320 				    tcps);
24321 				rw_exit(&tcps->tcps_reserved_port_lock);
24322 				kmem_free(temp_tcp_array,
24323 				    (hi_port - lo_port + 1) *
24324 				    sizeof (tcp_t *));
24325 				netstack_rele(tcps->tcps_netstack);
24326 				return (B_FALSE);
24327 			}
24328 			temp_tcp_array[cur_size] = tmp_tcp;
24329 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
24330 			mutex_exit(&tbf->tf_lock);
24331 		}
24332 	}
24333 
24334 	/*
24335 	 * The current range is not large enough.  We can actually do another
24336 	 * search if this search is done between 2 reserved port ranges.  But
24337 	 * for first release, we just stop here and return saying that no port
24338 	 * range is available.
24339 	 */
24340 	if (cur_size < size) {
24341 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
24342 		rw_exit(&tcps->tcps_reserved_port_lock);
24343 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
24344 		netstack_rele(tcps->tcps_netstack);
24345 		return (B_FALSE);
24346 	}
24347 	*hi_port = port - 1;
24348 
24349 	/*
24350 	 * Insert range into array in ascending order.  Since this function
24351 	 * must not be called often, we choose to use the simplest method.
24352 	 * The above array should not consume excessive stack space as
24353 	 * the size must be very small.  If in future releases, we find
24354 	 * that we should provide more reserved port ranges, this function
24355 	 * has to be modified to be more efficient.
24356 	 */
24357 	if (tcps->tcps_reserved_port_array_size == 0) {
24358 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
24359 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
24360 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
24361 	} else {
24362 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
24363 		    i++, j++) {
24364 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
24365 			    i == j) {
24366 				tmp_ports[j].lo_port = *lo_port;
24367 				tmp_ports[j].hi_port = *hi_port;
24368 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
24369 				j++;
24370 			}
24371 			tmp_ports[j].lo_port =
24372 			    tcps->tcps_reserved_port[i].lo_port;
24373 			tmp_ports[j].hi_port =
24374 			    tcps->tcps_reserved_port[i].hi_port;
24375 			tmp_ports[j].temp_tcp_array =
24376 			    tcps->tcps_reserved_port[i].temp_tcp_array;
24377 		}
24378 		if (j == i) {
24379 			tmp_ports[j].lo_port = *lo_port;
24380 			tmp_ports[j].hi_port = *hi_port;
24381 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
24382 		}
24383 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
24384 	}
24385 	tcps->tcps_reserved_port_array_size++;
24386 	rw_exit(&tcps->tcps_reserved_port_lock);
24387 	netstack_rele(tcps->tcps_netstack);
24388 	return (B_TRUE);
24389 }
24390 
24391 /*
24392  * Check to see if a port is in any reserved port range.
24393  *
24394  * Params:
24395  *	in_port_t port: the port to be verified.
24396  *
24397  * Return:
24398  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
24399  */
24400 boolean_t
24401 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
24402 {
24403 	int i;
24404 
24405 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
24406 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
24407 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
24408 		    port <= tcps->tcps_reserved_port[i].hi_port) {
24409 			rw_exit(&tcps->tcps_reserved_port_lock);
24410 			return (B_TRUE);
24411 		}
24412 	}
24413 	rw_exit(&tcps->tcps_reserved_port_lock);
24414 	return (B_FALSE);
24415 }
24416 
24417 /*
24418  * To list all reserved port ranges.  This is the function to handle
24419  * ndd tcp_reserved_port_list.
24420  */
24421 /* ARGSUSED */
24422 static int
24423 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24424 {
24425 	int i;
24426 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24427 
24428 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
24429 	if (tcps->tcps_reserved_port_array_size > 0)
24430 		(void) mi_mpprintf(mp, "The following ports are reserved:");
24431 	else
24432 		(void) mi_mpprintf(mp, "No port is reserved.");
24433 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
24434 		(void) mi_mpprintf(mp, "%d-%d",
24435 		    tcps->tcps_reserved_port[i].lo_port,
24436 		    tcps->tcps_reserved_port[i].hi_port);
24437 	}
24438 	rw_exit(&tcps->tcps_reserved_port_lock);
24439 	return (0);
24440 }
24441 
24442 /*
24443  * Hash list insertion routine for tcp_t structures.
24444  * Inserts entries with the ones bound to a specific IP address first
24445  * followed by those bound to INADDR_ANY.
24446  */
24447 static void
24448 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
24449 {
24450 	tcp_t	**tcpp;
24451 	tcp_t	*tcpnext;
24452 
24453 	if (tcp->tcp_ptpbhn != NULL) {
24454 		ASSERT(!caller_holds_lock);
24455 		tcp_bind_hash_remove(tcp);
24456 	}
24457 	tcpp = &tbf->tf_tcp;
24458 	if (!caller_holds_lock) {
24459 		mutex_enter(&tbf->tf_lock);
24460 	} else {
24461 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
24462 	}
24463 	tcpnext = tcpp[0];
24464 	if (tcpnext) {
24465 		/*
24466 		 * If the new tcp bound to the INADDR_ANY address
24467 		 * and the first one in the list is not bound to
24468 		 * INADDR_ANY we skip all entries until we find the
24469 		 * first one bound to INADDR_ANY.
24470 		 * This makes sure that applications binding to a
24471 		 * specific address get preference over those binding to
24472 		 * INADDR_ANY.
24473 		 */
24474 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24475 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24476 			while ((tcpnext = tcpp[0]) != NULL &&
24477 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24478 				tcpp = &(tcpnext->tcp_bind_hash);
24479 			if (tcpnext)
24480 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24481 		} else
24482 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24483 	}
24484 	tcp->tcp_bind_hash = tcpnext;
24485 	tcp->tcp_ptpbhn = tcpp;
24486 	tcpp[0] = tcp;
24487 	if (!caller_holds_lock)
24488 		mutex_exit(&tbf->tf_lock);
24489 }
24490 
24491 /*
24492  * Hash list removal routine for tcp_t structures.
24493  */
24494 static void
24495 tcp_bind_hash_remove(tcp_t *tcp)
24496 {
24497 	tcp_t	*tcpnext;
24498 	kmutex_t *lockp;
24499 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24500 
24501 	if (tcp->tcp_ptpbhn == NULL)
24502 		return;
24503 
24504 	/*
24505 	 * Extract the lock pointer in case there are concurrent
24506 	 * hash_remove's for this instance.
24507 	 */
24508 	ASSERT(tcp->tcp_lport != 0);
24509 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24510 
24511 	ASSERT(lockp != NULL);
24512 	mutex_enter(lockp);
24513 	if (tcp->tcp_ptpbhn) {
24514 		tcpnext = tcp->tcp_bind_hash;
24515 		if (tcpnext) {
24516 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24517 			tcp->tcp_bind_hash = NULL;
24518 		}
24519 		*tcp->tcp_ptpbhn = tcpnext;
24520 		tcp->tcp_ptpbhn = NULL;
24521 	}
24522 	mutex_exit(lockp);
24523 }
24524 
24525 
24526 /*
24527  * Hash list lookup routine for tcp_t structures.
24528  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24529  */
24530 static tcp_t *
24531 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24532 {
24533 	tf_t	*tf;
24534 	tcp_t	*tcp;
24535 
24536 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24537 	mutex_enter(&tf->tf_lock);
24538 	for (tcp = tf->tf_tcp; tcp != NULL;
24539 	    tcp = tcp->tcp_acceptor_hash) {
24540 		if (tcp->tcp_acceptor_id == id) {
24541 			CONN_INC_REF(tcp->tcp_connp);
24542 			mutex_exit(&tf->tf_lock);
24543 			return (tcp);
24544 		}
24545 	}
24546 	mutex_exit(&tf->tf_lock);
24547 	return (NULL);
24548 }
24549 
24550 
24551 /*
24552  * Hash list insertion routine for tcp_t structures.
24553  */
24554 void
24555 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24556 {
24557 	tf_t	*tf;
24558 	tcp_t	**tcpp;
24559 	tcp_t	*tcpnext;
24560 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24561 
24562 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24563 
24564 	if (tcp->tcp_ptpahn != NULL)
24565 		tcp_acceptor_hash_remove(tcp);
24566 	tcpp = &tf->tf_tcp;
24567 	mutex_enter(&tf->tf_lock);
24568 	tcpnext = tcpp[0];
24569 	if (tcpnext)
24570 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24571 	tcp->tcp_acceptor_hash = tcpnext;
24572 	tcp->tcp_ptpahn = tcpp;
24573 	tcpp[0] = tcp;
24574 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24575 	mutex_exit(&tf->tf_lock);
24576 }
24577 
24578 /*
24579  * Hash list removal routine for tcp_t structures.
24580  */
24581 static void
24582 tcp_acceptor_hash_remove(tcp_t *tcp)
24583 {
24584 	tcp_t	*tcpnext;
24585 	kmutex_t *lockp;
24586 
24587 	/*
24588 	 * Extract the lock pointer in case there are concurrent
24589 	 * hash_remove's for this instance.
24590 	 */
24591 	lockp = tcp->tcp_acceptor_lockp;
24592 
24593 	if (tcp->tcp_ptpahn == NULL)
24594 		return;
24595 
24596 	ASSERT(lockp != NULL);
24597 	mutex_enter(lockp);
24598 	if (tcp->tcp_ptpahn) {
24599 		tcpnext = tcp->tcp_acceptor_hash;
24600 		if (tcpnext) {
24601 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24602 			tcp->tcp_acceptor_hash = NULL;
24603 		}
24604 		*tcp->tcp_ptpahn = tcpnext;
24605 		tcp->tcp_ptpahn = NULL;
24606 	}
24607 	mutex_exit(lockp);
24608 	tcp->tcp_acceptor_lockp = NULL;
24609 }
24610 
24611 /* ARGSUSED */
24612 static int
24613 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24614 {
24615 	int error = 0;
24616 	int retval;
24617 	char *end;
24618 	tcp_hsp_t *hsp;
24619 	tcp_hsp_t *hspprev;
24620 	ipaddr_t addr = 0;		/* Address we're looking for */
24621 	in6_addr_t v6addr;		/* Address we're looking for */
24622 	uint32_t hash;			/* Hash of that address */
24623 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24624 
24625 	/*
24626 	 * If the following variables are still zero after parsing the input
24627 	 * string, the user didn't specify them and we don't change them in
24628 	 * the HSP.
24629 	 */
24630 
24631 	ipaddr_t mask = 0;		/* Subnet mask */
24632 	in6_addr_t v6mask;
24633 	long sendspace = 0;		/* Send buffer size */
24634 	long recvspace = 0;		/* Receive buffer size */
24635 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24636 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24637 
24638 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24639 
24640 	/* Parse and validate address */
24641 	if (af == AF_INET) {
24642 		retval = inet_pton(af, value, &addr);
24643 		if (retval == 1)
24644 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24645 	} else if (af == AF_INET6) {
24646 		retval = inet_pton(af, value, &v6addr);
24647 	} else {
24648 		error = EINVAL;
24649 		goto done;
24650 	}
24651 	if (retval == 0) {
24652 		error = EINVAL;
24653 		goto done;
24654 	}
24655 
24656 	while ((*value) && *value != ' ')
24657 		value++;
24658 
24659 	/* Parse individual keywords, set variables if found */
24660 	while (*value) {
24661 		/* Skip leading blanks */
24662 
24663 		while (*value == ' ' || *value == '\t')
24664 			value++;
24665 
24666 		/* If at end of string, we're done */
24667 
24668 		if (!*value)
24669 			break;
24670 
24671 		/* We have a word, figure out what it is */
24672 
24673 		if (strncmp("mask", value, 4) == 0) {
24674 			value += 4;
24675 			while (*value == ' ' || *value == '\t')
24676 				value++;
24677 			/* Parse subnet mask */
24678 			if (af == AF_INET) {
24679 				retval = inet_pton(af, value, &mask);
24680 				if (retval == 1) {
24681 					V4MASK_TO_V6(mask, v6mask);
24682 				}
24683 			} else if (af == AF_INET6) {
24684 				retval = inet_pton(af, value, &v6mask);
24685 			}
24686 			if (retval != 1) {
24687 				error = EINVAL;
24688 				goto done;
24689 			}
24690 			while ((*value) && *value != ' ')
24691 				value++;
24692 		} else if (strncmp("sendspace", value, 9) == 0) {
24693 			value += 9;
24694 
24695 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24696 			    sendspace < TCP_XMIT_HIWATER ||
24697 			    sendspace >= (1L<<30)) {
24698 				error = EINVAL;
24699 				goto done;
24700 			}
24701 			value = end;
24702 		} else if (strncmp("recvspace", value, 9) == 0) {
24703 			value += 9;
24704 
24705 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24706 			    recvspace < TCP_RECV_HIWATER ||
24707 			    recvspace >= (1L<<30)) {
24708 				error = EINVAL;
24709 				goto done;
24710 			}
24711 			value = end;
24712 		} else if (strncmp("timestamp", value, 9) == 0) {
24713 			value += 9;
24714 
24715 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24716 			    timestamp < 0 || timestamp > 1) {
24717 				error = EINVAL;
24718 				goto done;
24719 			}
24720 
24721 			/*
24722 			 * We increment timestamp so we know it's been set;
24723 			 * this is undone when we put it in the HSP
24724 			 */
24725 			timestamp++;
24726 			value = end;
24727 		} else if (strncmp("delete", value, 6) == 0) {
24728 			value += 6;
24729 			delete = B_TRUE;
24730 		} else {
24731 			error = EINVAL;
24732 			goto done;
24733 		}
24734 	}
24735 
24736 	/* Hash address for lookup */
24737 
24738 	hash = TCP_HSP_HASH(addr);
24739 
24740 	if (delete) {
24741 		/*
24742 		 * Note that deletes don't return an error if the thing
24743 		 * we're trying to delete isn't there.
24744 		 */
24745 		if (tcps->tcps_hsp_hash == NULL)
24746 			goto done;
24747 		hsp = tcps->tcps_hsp_hash[hash];
24748 
24749 		if (hsp) {
24750 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24751 			    &v6addr)) {
24752 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24753 				mi_free((char *)hsp);
24754 			} else {
24755 				hspprev = hsp;
24756 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24757 					if (IN6_ARE_ADDR_EQUAL(
24758 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24759 						hspprev->tcp_hsp_next =
24760 						    hsp->tcp_hsp_next;
24761 						mi_free((char *)hsp);
24762 						break;
24763 					}
24764 					hspprev = hsp;
24765 				}
24766 			}
24767 		}
24768 	} else {
24769 		/*
24770 		 * We're adding/modifying an HSP.  If we haven't already done
24771 		 * so, allocate the hash table.
24772 		 */
24773 
24774 		if (!tcps->tcps_hsp_hash) {
24775 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24776 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24777 			if (!tcps->tcps_hsp_hash) {
24778 				error = EINVAL;
24779 				goto done;
24780 			}
24781 		}
24782 
24783 		/* Get head of hash chain */
24784 
24785 		hsp = tcps->tcps_hsp_hash[hash];
24786 
24787 		/* Try to find pre-existing hsp on hash chain */
24788 		/* Doesn't handle CIDR prefixes. */
24789 		while (hsp) {
24790 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24791 				break;
24792 			hsp = hsp->tcp_hsp_next;
24793 		}
24794 
24795 		/*
24796 		 * If we didn't, create one with default values and put it
24797 		 * at head of hash chain
24798 		 */
24799 
24800 		if (!hsp) {
24801 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24802 			if (!hsp) {
24803 				error = EINVAL;
24804 				goto done;
24805 			}
24806 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24807 			tcps->tcps_hsp_hash[hash] = hsp;
24808 		}
24809 
24810 		/* Set values that the user asked us to change */
24811 
24812 		hsp->tcp_hsp_addr_v6 = v6addr;
24813 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24814 			hsp->tcp_hsp_vers = IPV4_VERSION;
24815 		else
24816 			hsp->tcp_hsp_vers = IPV6_VERSION;
24817 		hsp->tcp_hsp_subnet_v6 = v6mask;
24818 		if (sendspace > 0)
24819 			hsp->tcp_hsp_sendspace = sendspace;
24820 		if (recvspace > 0)
24821 			hsp->tcp_hsp_recvspace = recvspace;
24822 		if (timestamp > 0)
24823 			hsp->tcp_hsp_tstamp = timestamp - 1;
24824 	}
24825 
24826 done:
24827 	rw_exit(&tcps->tcps_hsp_lock);
24828 	return (error);
24829 }
24830 
24831 /* Set callback routine passed to nd_load by tcp_param_register. */
24832 /* ARGSUSED */
24833 static int
24834 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24835 {
24836 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24837 }
24838 /* ARGSUSED */
24839 static int
24840 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24841     cred_t *cr)
24842 {
24843 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24844 }
24845 
24846 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24847 /* ARGSUSED */
24848 static int
24849 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24850 {
24851 	tcp_hsp_t *hsp;
24852 	int i;
24853 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24854 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24855 
24856 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24857 	(void) mi_mpprintf(mp,
24858 	    "Hash HSP     " MI_COL_HDRPAD_STR
24859 	    "Address         Subnet Mask     Send       Receive    TStamp");
24860 	if (tcps->tcps_hsp_hash) {
24861 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24862 			hsp = tcps->tcps_hsp_hash[i];
24863 			while (hsp) {
24864 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24865 					(void) inet_ntop(AF_INET,
24866 					    &hsp->tcp_hsp_addr,
24867 					    addrbuf, sizeof (addrbuf));
24868 					(void) inet_ntop(AF_INET,
24869 					    &hsp->tcp_hsp_subnet,
24870 					    subnetbuf, sizeof (subnetbuf));
24871 				} else {
24872 					(void) inet_ntop(AF_INET6,
24873 					    &hsp->tcp_hsp_addr_v6,
24874 					    addrbuf, sizeof (addrbuf));
24875 					(void) inet_ntop(AF_INET6,
24876 					    &hsp->tcp_hsp_subnet_v6,
24877 					    subnetbuf, sizeof (subnetbuf));
24878 				}
24879 				(void) mi_mpprintf(mp,
24880 				    " %03d " MI_COL_PTRFMT_STR
24881 				    "%s %s %010d %010d      %d",
24882 				    i,
24883 				    (void *)hsp,
24884 				    addrbuf,
24885 				    subnetbuf,
24886 				    hsp->tcp_hsp_sendspace,
24887 				    hsp->tcp_hsp_recvspace,
24888 				    hsp->tcp_hsp_tstamp);
24889 
24890 				hsp = hsp->tcp_hsp_next;
24891 			}
24892 		}
24893 	}
24894 	rw_exit(&tcps->tcps_hsp_lock);
24895 	return (0);
24896 }
24897 
24898 
24899 /* Data for fast netmask macro used by tcp_hsp_lookup */
24900 
24901 static ipaddr_t netmasks[] = {
24902 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24903 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24904 };
24905 
24906 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24907 
24908 /*
24909  * XXX This routine should go away and instead we should use the metrics
24910  * associated with the routes to determine the default sndspace and rcvspace.
24911  */
24912 static tcp_hsp_t *
24913 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24914 {
24915 	tcp_hsp_t *hsp = NULL;
24916 
24917 	/* Quick check without acquiring the lock. */
24918 	if (tcps->tcps_hsp_hash == NULL)
24919 		return (NULL);
24920 
24921 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24922 
24923 	/* This routine finds the best-matching HSP for address addr. */
24924 
24925 	if (tcps->tcps_hsp_hash) {
24926 		int i;
24927 		ipaddr_t srchaddr;
24928 		tcp_hsp_t *hsp_net;
24929 
24930 		/* We do three passes: host, network, and subnet. */
24931 
24932 		srchaddr = addr;
24933 
24934 		for (i = 1; i <= 3; i++) {
24935 			/* Look for exact match on srchaddr */
24936 
24937 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24938 			while (hsp) {
24939 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24940 				    hsp->tcp_hsp_addr == srchaddr)
24941 					break;
24942 				hsp = hsp->tcp_hsp_next;
24943 			}
24944 			ASSERT(hsp == NULL ||
24945 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24946 
24947 			/*
24948 			 * If this is the first pass:
24949 			 *   If we found a match, great, return it.
24950 			 *   If not, search for the network on the second pass.
24951 			 */
24952 
24953 			if (i == 1)
24954 				if (hsp)
24955 					break;
24956 				else
24957 				{
24958 					srchaddr = addr & netmask(addr);
24959 					continue;
24960 				}
24961 
24962 			/*
24963 			 * If this is the second pass:
24964 			 *   If we found a match, but there's a subnet mask,
24965 			 *    save the match but try again using the subnet
24966 			 *    mask on the third pass.
24967 			 *   Otherwise, return whatever we found.
24968 			 */
24969 
24970 			if (i == 2) {
24971 				if (hsp && hsp->tcp_hsp_subnet) {
24972 					hsp_net = hsp;
24973 					srchaddr = addr & hsp->tcp_hsp_subnet;
24974 					continue;
24975 				} else {
24976 					break;
24977 				}
24978 			}
24979 
24980 			/*
24981 			 * This must be the third pass.  If we didn't find
24982 			 * anything, return the saved network HSP instead.
24983 			 */
24984 
24985 			if (!hsp)
24986 				hsp = hsp_net;
24987 		}
24988 	}
24989 
24990 	rw_exit(&tcps->tcps_hsp_lock);
24991 	return (hsp);
24992 }
24993 
24994 /*
24995  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24996  * match lookup.
24997  */
24998 static tcp_hsp_t *
24999 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
25000 {
25001 	tcp_hsp_t *hsp = NULL;
25002 
25003 	/* Quick check without acquiring the lock. */
25004 	if (tcps->tcps_hsp_hash == NULL)
25005 		return (NULL);
25006 
25007 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
25008 
25009 	/* This routine finds the best-matching HSP for address addr. */
25010 
25011 	if (tcps->tcps_hsp_hash) {
25012 		int i;
25013 		in6_addr_t v6srchaddr;
25014 		tcp_hsp_t *hsp_net;
25015 
25016 		/* We do three passes: host, network, and subnet. */
25017 
25018 		v6srchaddr = *v6addr;
25019 
25020 		for (i = 1; i <= 3; i++) {
25021 			/* Look for exact match on srchaddr */
25022 
25023 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
25024 			    V4_PART_OF_V6(v6srchaddr))];
25025 			while (hsp) {
25026 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
25027 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
25028 				    &v6srchaddr))
25029 					break;
25030 				hsp = hsp->tcp_hsp_next;
25031 			}
25032 
25033 			/*
25034 			 * If this is the first pass:
25035 			 *   If we found a match, great, return it.
25036 			 *   If not, search for the network on the second pass.
25037 			 */
25038 
25039 			if (i == 1)
25040 				if (hsp)
25041 					break;
25042 				else {
25043 					/* Assume a 64 bit mask */
25044 					v6srchaddr.s6_addr32[0] =
25045 					    v6addr->s6_addr32[0];
25046 					v6srchaddr.s6_addr32[1] =
25047 					    v6addr->s6_addr32[1];
25048 					v6srchaddr.s6_addr32[2] = 0;
25049 					v6srchaddr.s6_addr32[3] = 0;
25050 					continue;
25051 				}
25052 
25053 			/*
25054 			 * If this is the second pass:
25055 			 *   If we found a match, but there's a subnet mask,
25056 			 *    save the match but try again using the subnet
25057 			 *    mask on the third pass.
25058 			 *   Otherwise, return whatever we found.
25059 			 */
25060 
25061 			if (i == 2) {
25062 				ASSERT(hsp == NULL ||
25063 				    hsp->tcp_hsp_vers == IPV6_VERSION);
25064 				if (hsp &&
25065 				    !IN6_IS_ADDR_UNSPECIFIED(
25066 				    &hsp->tcp_hsp_subnet_v6)) {
25067 					hsp_net = hsp;
25068 					V6_MASK_COPY(*v6addr,
25069 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
25070 					continue;
25071 				} else {
25072 					break;
25073 				}
25074 			}
25075 
25076 			/*
25077 			 * This must be the third pass.  If we didn't find
25078 			 * anything, return the saved network HSP instead.
25079 			 */
25080 
25081 			if (!hsp)
25082 				hsp = hsp_net;
25083 		}
25084 	}
25085 
25086 	rw_exit(&tcps->tcps_hsp_lock);
25087 	return (hsp);
25088 }
25089 
25090 /*
25091  * Type three generator adapted from the random() function in 4.4 BSD:
25092  */
25093 
25094 /*
25095  * Copyright (c) 1983, 1993
25096  *	The Regents of the University of California.  All rights reserved.
25097  *
25098  * Redistribution and use in source and binary forms, with or without
25099  * modification, are permitted provided that the following conditions
25100  * are met:
25101  * 1. Redistributions of source code must retain the above copyright
25102  *    notice, this list of conditions and the following disclaimer.
25103  * 2. Redistributions in binary form must reproduce the above copyright
25104  *    notice, this list of conditions and the following disclaimer in the
25105  *    documentation and/or other materials provided with the distribution.
25106  * 3. All advertising materials mentioning features or use of this software
25107  *    must display the following acknowledgement:
25108  *	This product includes software developed by the University of
25109  *	California, Berkeley and its contributors.
25110  * 4. Neither the name of the University nor the names of its contributors
25111  *    may be used to endorse or promote products derived from this software
25112  *    without specific prior written permission.
25113  *
25114  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25115  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25116  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25117  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25118  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25119  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25120  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25121  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25122  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25123  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25124  * SUCH DAMAGE.
25125  */
25126 
25127 /* Type 3 -- x**31 + x**3 + 1 */
25128 #define	DEG_3		31
25129 #define	SEP_3		3
25130 
25131 
25132 /* Protected by tcp_random_lock */
25133 static int tcp_randtbl[DEG_3 + 1];
25134 
25135 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
25136 static int *tcp_random_rptr = &tcp_randtbl[1];
25137 
25138 static int *tcp_random_state = &tcp_randtbl[1];
25139 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
25140 
25141 kmutex_t tcp_random_lock;
25142 
25143 void
25144 tcp_random_init(void)
25145 {
25146 	int i;
25147 	hrtime_t hrt;
25148 	time_t wallclock;
25149 	uint64_t result;
25150 
25151 	/*
25152 	 * Use high-res timer and current time for seed.  Gethrtime() returns
25153 	 * a longlong, which may contain resolution down to nanoseconds.
25154 	 * The current time will either be a 32-bit or a 64-bit quantity.
25155 	 * XOR the two together in a 64-bit result variable.
25156 	 * Convert the result to a 32-bit value by multiplying the high-order
25157 	 * 32-bits by the low-order 32-bits.
25158 	 */
25159 
25160 	hrt = gethrtime();
25161 	(void) drv_getparm(TIME, &wallclock);
25162 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
25163 	mutex_enter(&tcp_random_lock);
25164 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
25165 	    (result & 0xffffffff);
25166 
25167 	for (i = 1; i < DEG_3; i++)
25168 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
25169 		    + 12345;
25170 	tcp_random_fptr = &tcp_random_state[SEP_3];
25171 	tcp_random_rptr = &tcp_random_state[0];
25172 	mutex_exit(&tcp_random_lock);
25173 	for (i = 0; i < 10 * DEG_3; i++)
25174 		(void) tcp_random();
25175 }
25176 
25177 /*
25178  * tcp_random: Return a random number in the range [1 - (128K + 1)].
25179  * This range is selected to be approximately centered on TCP_ISS / 2,
25180  * and easy to compute. We get this value by generating a 32-bit random
25181  * number, selecting out the high-order 17 bits, and then adding one so
25182  * that we never return zero.
25183  */
25184 int
25185 tcp_random(void)
25186 {
25187 	int i;
25188 
25189 	mutex_enter(&tcp_random_lock);
25190 	*tcp_random_fptr += *tcp_random_rptr;
25191 
25192 	/*
25193 	 * The high-order bits are more random than the low-order bits,
25194 	 * so we select out the high-order 17 bits and add one so that
25195 	 * we never return zero.
25196 	 */
25197 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
25198 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
25199 		tcp_random_fptr = tcp_random_state;
25200 		++tcp_random_rptr;
25201 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
25202 		tcp_random_rptr = tcp_random_state;
25203 
25204 	mutex_exit(&tcp_random_lock);
25205 	return (i);
25206 }
25207 
25208 /*
25209  * XXX This will go away when TPI is extended to send
25210  * info reqs to sockfs/timod .....
25211  * Given a queue, set the max packet size for the write
25212  * side of the queue below stream head.  This value is
25213  * cached on the stream head.
25214  * Returns 1 on success, 0 otherwise.
25215  */
25216 static int
25217 setmaxps(queue_t *q, int maxpsz)
25218 {
25219 	struct stdata	*stp;
25220 	queue_t		*wq;
25221 	stp = STREAM(q);
25222 
25223 	/*
25224 	 * At this point change of a queue parameter is not allowed
25225 	 * when a multiplexor is sitting on top.
25226 	 */
25227 	if (stp->sd_flag & STPLEX)
25228 		return (0);
25229 
25230 	claimstr(stp->sd_wrq);
25231 	wq = stp->sd_wrq->q_next;
25232 	ASSERT(wq != NULL);
25233 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
25234 	releasestr(stp->sd_wrq);
25235 	return (1);
25236 }
25237 
25238 static int
25239 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
25240     int *t_errorp, int *sys_errorp)
25241 {
25242 	int error;
25243 	int is_absreq_failure;
25244 	t_scalar_t *opt_lenp;
25245 	t_scalar_t opt_offset;
25246 	int prim_type;
25247 	struct T_conn_req *tcreqp;
25248 	struct T_conn_res *tcresp;
25249 	cred_t *cr;
25250 
25251 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
25252 
25253 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
25254 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
25255 	    prim_type == T_CONN_RES);
25256 
25257 	switch (prim_type) {
25258 	case T_CONN_REQ:
25259 		tcreqp = (struct T_conn_req *)mp->b_rptr;
25260 		opt_offset = tcreqp->OPT_offset;
25261 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
25262 		break;
25263 	case O_T_CONN_RES:
25264 	case T_CONN_RES:
25265 		tcresp = (struct T_conn_res *)mp->b_rptr;
25266 		opt_offset = tcresp->OPT_offset;
25267 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
25268 		break;
25269 	}
25270 
25271 	*t_errorp = 0;
25272 	*sys_errorp = 0;
25273 	*do_disconnectp = 0;
25274 
25275 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
25276 	    opt_offset, cr, &tcp_opt_obj,
25277 	    NULL, &is_absreq_failure);
25278 
25279 	switch (error) {
25280 	case  0:		/* no error */
25281 		ASSERT(is_absreq_failure == 0);
25282 		return (0);
25283 	case ENOPROTOOPT:
25284 		*t_errorp = TBADOPT;
25285 		break;
25286 	case EACCES:
25287 		*t_errorp = TACCES;
25288 		break;
25289 	default:
25290 		*t_errorp = TSYSERR; *sys_errorp = error;
25291 		break;
25292 	}
25293 	if (is_absreq_failure != 0) {
25294 		/*
25295 		 * The connection request should get the local ack
25296 		 * T_OK_ACK and then a T_DISCON_IND.
25297 		 */
25298 		*do_disconnectp = 1;
25299 	}
25300 	return (-1);
25301 }
25302 
25303 /*
25304  * Split this function out so that if the secret changes, I'm okay.
25305  *
25306  * Initialize the tcp_iss_cookie and tcp_iss_key.
25307  */
25308 
25309 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
25310 
25311 static void
25312 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
25313 {
25314 	struct {
25315 		int32_t current_time;
25316 		uint32_t randnum;
25317 		uint16_t pad;
25318 		uint8_t ether[6];
25319 		uint8_t passwd[PASSWD_SIZE];
25320 	} tcp_iss_cookie;
25321 	time_t t;
25322 
25323 	/*
25324 	 * Start with the current absolute time.
25325 	 */
25326 	(void) drv_getparm(TIME, &t);
25327 	tcp_iss_cookie.current_time = t;
25328 
25329 	/*
25330 	 * XXX - Need a more random number per RFC 1750, not this crap.
25331 	 * OTOH, if what follows is pretty random, then I'm in better shape.
25332 	 */
25333 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
25334 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
25335 
25336 	/*
25337 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
25338 	 * as a good template.
25339 	 */
25340 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
25341 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
25342 
25343 	/*
25344 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
25345 	 */
25346 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
25347 
25348 	/*
25349 	 * See 4010593 if this section becomes a problem again,
25350 	 * but the local ethernet address is useful here.
25351 	 */
25352 	(void) localetheraddr(NULL,
25353 	    (struct ether_addr *)&tcp_iss_cookie.ether);
25354 
25355 	/*
25356 	 * Hash 'em all together.  The MD5Final is called per-connection.
25357 	 */
25358 	mutex_enter(&tcps->tcps_iss_key_lock);
25359 	MD5Init(&tcps->tcps_iss_key);
25360 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
25361 	    sizeof (tcp_iss_cookie));
25362 	mutex_exit(&tcps->tcps_iss_key_lock);
25363 }
25364 
25365 /*
25366  * Set the RFC 1948 pass phrase
25367  */
25368 /* ARGSUSED */
25369 static int
25370 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
25371     cred_t *cr)
25372 {
25373 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
25374 
25375 	/*
25376 	 * Basically, value contains a new pass phrase.  Pass it along!
25377 	 */
25378 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
25379 	return (0);
25380 }
25381 
25382 /* ARGSUSED */
25383 static int
25384 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
25385 {
25386 	bzero(buf, sizeof (tcp_sack_info_t));
25387 	return (0);
25388 }
25389 
25390 /* ARGSUSED */
25391 static int
25392 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
25393 {
25394 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
25395 	return (0);
25396 }
25397 
25398 /*
25399  * Make sure we wait until the default queue is setup, yet allow
25400  * tcp_g_q_create() to open a TCP stream.
25401  * We need to allow tcp_g_q_create() do do an open
25402  * of tcp, hence we compare curhread.
25403  * All others have to wait until the tcps_g_q has been
25404  * setup.
25405  */
25406 void
25407 tcp_g_q_setup(tcp_stack_t *tcps)
25408 {
25409 	mutex_enter(&tcps->tcps_g_q_lock);
25410 	if (tcps->tcps_g_q != NULL) {
25411 		mutex_exit(&tcps->tcps_g_q_lock);
25412 		return;
25413 	}
25414 	if (tcps->tcps_g_q_creator == NULL) {
25415 		/* This thread will set it up */
25416 		tcps->tcps_g_q_creator = curthread;
25417 		mutex_exit(&tcps->tcps_g_q_lock);
25418 		tcp_g_q_create(tcps);
25419 		mutex_enter(&tcps->tcps_g_q_lock);
25420 		ASSERT(tcps->tcps_g_q_creator == curthread);
25421 		tcps->tcps_g_q_creator = NULL;
25422 		cv_signal(&tcps->tcps_g_q_cv);
25423 		ASSERT(tcps->tcps_g_q != NULL);
25424 		mutex_exit(&tcps->tcps_g_q_lock);
25425 		return;
25426 	}
25427 	/* Everybody but the creator has to wait */
25428 	if (tcps->tcps_g_q_creator != curthread) {
25429 		while (tcps->tcps_g_q == NULL)
25430 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
25431 	}
25432 	mutex_exit(&tcps->tcps_g_q_lock);
25433 }
25434 
25435 #define	IP	"ip"
25436 
25437 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
25438 
25439 /*
25440  * Create a default tcp queue here instead of in strplumb
25441  */
25442 void
25443 tcp_g_q_create(tcp_stack_t *tcps)
25444 {
25445 	int error;
25446 	ldi_handle_t	lh = NULL;
25447 	ldi_ident_t	li = NULL;
25448 	int		rval;
25449 	cred_t		*cr;
25450 	major_t IP_MAJ;
25451 
25452 #ifdef NS_DEBUG
25453 	(void) printf("tcp_g_q_create()\n");
25454 #endif
25455 
25456 	IP_MAJ = ddi_name_to_major(IP);
25457 
25458 	ASSERT(tcps->tcps_g_q_creator == curthread);
25459 
25460 	error = ldi_ident_from_major(IP_MAJ, &li);
25461 	if (error) {
25462 #ifdef DEBUG
25463 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
25464 		    error);
25465 #endif
25466 		return;
25467 	}
25468 
25469 	cr = zone_get_kcred(netstackid_to_zoneid(
25470 	    tcps->tcps_netstack->netstack_stackid));
25471 	ASSERT(cr != NULL);
25472 	/*
25473 	 * We set the tcp default queue to IPv6 because IPv4 falls
25474 	 * back to IPv6 when it can't find a client, but
25475 	 * IPv6 does not fall back to IPv4.
25476 	 */
25477 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
25478 	if (error) {
25479 #ifdef DEBUG
25480 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
25481 		    error);
25482 #endif
25483 		goto out;
25484 	}
25485 
25486 	/*
25487 	 * This ioctl causes the tcp framework to cache a pointer to
25488 	 * this stream, so we don't want to close the stream after
25489 	 * this operation.
25490 	 * Use the kernel credentials that are for the zone we're in.
25491 	 */
25492 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
25493 	    (intptr_t)0, FKIOCTL, cr, &rval);
25494 	if (error) {
25495 #ifdef DEBUG
25496 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
25497 		    "error %d\n", error);
25498 #endif
25499 		goto out;
25500 	}
25501 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
25502 	lh = NULL;
25503 out:
25504 	/* Close layered handles */
25505 	if (li)
25506 		ldi_ident_release(li);
25507 	/* Keep cred around until _inactive needs it */
25508 	tcps->tcps_g_q_cr = cr;
25509 }
25510 
25511 /*
25512  * We keep tcp_g_q set until all other tcp_t's in the zone
25513  * has gone away, and then when tcp_g_q_inactive() is called
25514  * we clear it.
25515  */
25516 void
25517 tcp_g_q_destroy(tcp_stack_t *tcps)
25518 {
25519 #ifdef NS_DEBUG
25520 	(void) printf("tcp_g_q_destroy()for stack %d\n",
25521 	    tcps->tcps_netstack->netstack_stackid);
25522 #endif
25523 
25524 	if (tcps->tcps_g_q == NULL) {
25525 		return;	/* Nothing to cleanup */
25526 	}
25527 	/*
25528 	 * Drop reference corresponding to the default queue.
25529 	 * This reference was added from tcp_open when the default queue
25530 	 * was created, hence we compensate for this extra drop in
25531 	 * tcp_g_q_close. If the refcnt drops to zero here it means
25532 	 * the default queue was the last one to be open, in which
25533 	 * case, then tcp_g_q_inactive will be
25534 	 * called as a result of the refrele.
25535 	 */
25536 	TCPS_REFRELE(tcps);
25537 }
25538 
25539 /*
25540  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25541  * Run by tcp_q_q_inactive using a taskq.
25542  */
25543 static void
25544 tcp_g_q_close(void *arg)
25545 {
25546 	tcp_stack_t *tcps = arg;
25547 	int error;
25548 	ldi_handle_t	lh = NULL;
25549 	ldi_ident_t	li = NULL;
25550 	cred_t		*cr;
25551 	major_t IP_MAJ;
25552 
25553 	IP_MAJ = ddi_name_to_major(IP);
25554 
25555 #ifdef NS_DEBUG
25556 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
25557 	    tcps->tcps_netstack->netstack_stackid,
25558 	    tcps->tcps_netstack->netstack_refcnt);
25559 #endif
25560 	lh = tcps->tcps_g_q_lh;
25561 	if (lh == NULL)
25562 		return;	/* Nothing to cleanup */
25563 
25564 	ASSERT(tcps->tcps_refcnt == 1);
25565 	ASSERT(tcps->tcps_g_q != NULL);
25566 
25567 	error = ldi_ident_from_major(IP_MAJ, &li);
25568 	if (error) {
25569 #ifdef DEBUG
25570 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25571 		    error);
25572 #endif
25573 		return;
25574 	}
25575 
25576 	cr = tcps->tcps_g_q_cr;
25577 	tcps->tcps_g_q_cr = NULL;
25578 	ASSERT(cr != NULL);
25579 
25580 	/*
25581 	 * Make sure we can break the recursion when tcp_close decrements
25582 	 * the reference count causing g_q_inactive to be called again.
25583 	 */
25584 	tcps->tcps_g_q_lh = NULL;
25585 
25586 	/* close the default queue */
25587 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25588 	/*
25589 	 * At this point in time tcps and the rest of netstack_t might
25590 	 * have been deleted.
25591 	 */
25592 	tcps = NULL;
25593 
25594 	/* Close layered handles */
25595 	ldi_ident_release(li);
25596 	crfree(cr);
25597 }
25598 
25599 /*
25600  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25601  *
25602  * Have to ensure that the ldi routines are not used by an
25603  * interrupt thread by using a taskq.
25604  */
25605 void
25606 tcp_g_q_inactive(tcp_stack_t *tcps)
25607 {
25608 	if (tcps->tcps_g_q_lh == NULL)
25609 		return;	/* Nothing to cleanup */
25610 
25611 	ASSERT(tcps->tcps_refcnt == 0);
25612 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25613 
25614 	if (servicing_interrupt()) {
25615 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25616 		    (void *) tcps, TQ_SLEEP);
25617 	} else {
25618 		tcp_g_q_close(tcps);
25619 	}
25620 }
25621 
25622 /*
25623  * Called by IP when IP is loaded into the kernel
25624  */
25625 void
25626 tcp_ddi_g_init(void)
25627 {
25628 	tcp_timercache = kmem_cache_create("tcp_timercache",
25629 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25630 	    NULL, NULL, NULL, NULL, NULL, 0);
25631 
25632 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25633 	    sizeof (tcp_sack_info_t), 0,
25634 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25635 
25636 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25637 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25638 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25639 
25640 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25641 
25642 	/* Initialize the random number generator */
25643 	tcp_random_init();
25644 
25645 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25646 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25647 
25648 	/* A single callback independently of how many netstacks we have */
25649 	ip_squeue_init(tcp_squeue_add);
25650 
25651 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25652 
25653 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25654 	    TASKQ_PREPOPULATE);
25655 
25656 	/*
25657 	 * We want to be informed each time a stack is created or
25658 	 * destroyed in the kernel, so we can maintain the
25659 	 * set of tcp_stack_t's.
25660 	 */
25661 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25662 	    tcp_stack_fini);
25663 }
25664 
25665 
25666 /*
25667  * Initialize the TCP stack instance.
25668  */
25669 static void *
25670 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25671 {
25672 	tcp_stack_t	*tcps;
25673 	tcpparam_t	*pa;
25674 	int		i;
25675 
25676 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25677 	tcps->tcps_netstack = ns;
25678 
25679 	/* Initialize locks */
25680 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25681 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25682 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25683 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25684 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25685 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25686 
25687 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25688 	tcps->tcps_g_epriv_ports[0] = 2049;
25689 	tcps->tcps_g_epriv_ports[1] = 4045;
25690 	tcps->tcps_min_anonpriv_port = 512;
25691 
25692 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25693 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25694 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25695 	    TCP_FANOUT_SIZE, KM_SLEEP);
25696 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25697 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25698 
25699 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25700 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25701 		    MUTEX_DEFAULT, NULL);
25702 	}
25703 
25704 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25705 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25706 		    MUTEX_DEFAULT, NULL);
25707 	}
25708 
25709 	/* TCP's IPsec code calls the packet dropper. */
25710 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25711 
25712 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25713 	tcps->tcps_params = pa;
25714 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25715 
25716 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25717 	    A_CNT(lcl_tcp_param_arr), tcps);
25718 
25719 	/*
25720 	 * Note: To really walk the device tree you need the devinfo
25721 	 * pointer to your device which is only available after probe/attach.
25722 	 * The following is safe only because it uses ddi_root_node()
25723 	 */
25724 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25725 	    tcp_opt_obj.odb_opt_arr_cnt);
25726 
25727 	/*
25728 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25729 	 * by the boot scripts.
25730 	 *
25731 	 * Use NULL name, as the name is caught by the new lockstats.
25732 	 *
25733 	 * Initialize with some random, non-guessable string, like the global
25734 	 * T_INFO_ACK.
25735 	 */
25736 
25737 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25738 	    sizeof (tcp_g_t_info_ack), tcps);
25739 
25740 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25741 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25742 
25743 	return (tcps);
25744 }
25745 
25746 /*
25747  * Called when the IP module is about to be unloaded.
25748  */
25749 void
25750 tcp_ddi_g_destroy(void)
25751 {
25752 	tcp_g_kstat_fini(tcp_g_kstat);
25753 	tcp_g_kstat = NULL;
25754 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25755 
25756 	mutex_destroy(&tcp_random_lock);
25757 
25758 	kmem_cache_destroy(tcp_timercache);
25759 	kmem_cache_destroy(tcp_sack_info_cache);
25760 	kmem_cache_destroy(tcp_iphc_cache);
25761 
25762 	netstack_unregister(NS_TCP);
25763 	taskq_destroy(tcp_taskq);
25764 }
25765 
25766 /*
25767  * Shut down the TCP stack instance.
25768  */
25769 /* ARGSUSED */
25770 static void
25771 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25772 {
25773 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25774 
25775 	tcp_g_q_destroy(tcps);
25776 }
25777 
25778 /*
25779  * Free the TCP stack instance.
25780  */
25781 static void
25782 tcp_stack_fini(netstackid_t stackid, void *arg)
25783 {
25784 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25785 	int i;
25786 
25787 	nd_free(&tcps->tcps_g_nd);
25788 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25789 	tcps->tcps_params = NULL;
25790 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25791 	tcps->tcps_wroff_xtra_param = NULL;
25792 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25793 	tcps->tcps_mdt_head_param = NULL;
25794 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25795 	tcps->tcps_mdt_tail_param = NULL;
25796 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25797 	tcps->tcps_mdt_max_pbufs_param = NULL;
25798 
25799 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25800 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25801 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25802 	}
25803 
25804 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25805 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25806 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25807 	}
25808 
25809 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25810 	tcps->tcps_bind_fanout = NULL;
25811 
25812 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25813 	tcps->tcps_acceptor_fanout = NULL;
25814 
25815 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25816 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25817 	tcps->tcps_reserved_port = NULL;
25818 
25819 	mutex_destroy(&tcps->tcps_iss_key_lock);
25820 	rw_destroy(&tcps->tcps_hsp_lock);
25821 	mutex_destroy(&tcps->tcps_g_q_lock);
25822 	cv_destroy(&tcps->tcps_g_q_cv);
25823 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25824 	rw_destroy(&tcps->tcps_reserved_port_lock);
25825 
25826 	ip_drop_unregister(&tcps->tcps_dropper);
25827 
25828 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25829 	tcps->tcps_kstat = NULL;
25830 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25831 
25832 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25833 	tcps->tcps_mibkp = NULL;
25834 
25835 	kmem_free(tcps, sizeof (*tcps));
25836 }
25837 
25838 /*
25839  * Generate ISS, taking into account NDD changes may happen halfway through.
25840  * (If the iss is not zero, set it.)
25841  */
25842 
25843 static void
25844 tcp_iss_init(tcp_t *tcp)
25845 {
25846 	MD5_CTX context;
25847 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25848 	uint32_t answer[4];
25849 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25850 
25851 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25852 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25853 	switch (tcps->tcps_strong_iss) {
25854 	case 2:
25855 		mutex_enter(&tcps->tcps_iss_key_lock);
25856 		context = tcps->tcps_iss_key;
25857 		mutex_exit(&tcps->tcps_iss_key_lock);
25858 		arg.ports = tcp->tcp_ports;
25859 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25860 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25861 			    &arg.src);
25862 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25863 			    &arg.dst);
25864 		} else {
25865 			arg.src = tcp->tcp_ip6h->ip6_src;
25866 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25867 		}
25868 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25869 		MD5Final((uchar_t *)answer, &context);
25870 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25871 		/*
25872 		 * Now that we've hashed into a unique per-connection sequence
25873 		 * space, add a random increment per strong_iss == 1.  So I
25874 		 * guess we'll have to...
25875 		 */
25876 		/* FALLTHRU */
25877 	case 1:
25878 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25879 		break;
25880 	default:
25881 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25882 		break;
25883 	}
25884 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25885 	tcp->tcp_fss = tcp->tcp_iss - 1;
25886 	tcp->tcp_suna = tcp->tcp_iss;
25887 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25888 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25889 	tcp->tcp_csuna = tcp->tcp_snxt;
25890 }
25891 
25892 /*
25893  * Exported routine for extracting active tcp connection status.
25894  *
25895  * This is used by the Solaris Cluster Networking software to
25896  * gather a list of connections that need to be forwarded to
25897  * specific nodes in the cluster when configuration changes occur.
25898  *
25899  * The callback is invoked for each tcp_t structure. Returning
25900  * non-zero from the callback routine terminates the search.
25901  */
25902 int
25903 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25904     void *arg)
25905 {
25906 	netstack_handle_t nh;
25907 	netstack_t *ns;
25908 	int ret = 0;
25909 
25910 	netstack_next_init(&nh);
25911 	while ((ns = netstack_next(&nh)) != NULL) {
25912 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25913 		    ns->netstack_tcp);
25914 		netstack_rele(ns);
25915 	}
25916 	netstack_next_fini(&nh);
25917 	return (ret);
25918 }
25919 
25920 static int
25921 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25922     tcp_stack_t *tcps)
25923 {
25924 	tcp_t *tcp;
25925 	cl_tcp_info_t	cl_tcpi;
25926 	connf_t	*connfp;
25927 	conn_t	*connp;
25928 	int	i;
25929 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25930 
25931 	ASSERT(callback != NULL);
25932 
25933 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25934 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25935 		connp = NULL;
25936 
25937 		while ((connp =
25938 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25939 
25940 			tcp = connp->conn_tcp;
25941 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25942 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25943 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25944 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25945 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25946 			/*
25947 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25948 			 * addresses. They are copied implicitly below as
25949 			 * mapped addresses.
25950 			 */
25951 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25952 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25953 				cl_tcpi.cl_tcpi_faddr =
25954 				    tcp->tcp_ipha->ipha_dst;
25955 			} else {
25956 				cl_tcpi.cl_tcpi_faddr_v6 =
25957 				    tcp->tcp_ip6h->ip6_dst;
25958 			}
25959 
25960 			/*
25961 			 * If the callback returns non-zero
25962 			 * we terminate the traversal.
25963 			 */
25964 			if ((*callback)(&cl_tcpi, arg) != 0) {
25965 				CONN_DEC_REF(tcp->tcp_connp);
25966 				return (1);
25967 			}
25968 		}
25969 	}
25970 
25971 	return (0);
25972 }
25973 
25974 /*
25975  * Macros used for accessing the different types of sockaddr
25976  * structures inside a tcp_ioc_abort_conn_t.
25977  */
25978 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25979 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25980 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25981 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25982 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25983 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25984 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25985 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25986 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25987 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25988 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25989 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25990 
25991 /*
25992  * Return the correct error code to mimic the behavior
25993  * of a connection reset.
25994  */
25995 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25996 		switch ((state)) {		\
25997 		case TCPS_SYN_SENT:		\
25998 		case TCPS_SYN_RCVD:		\
25999 			(err) = ECONNREFUSED;	\
26000 			break;			\
26001 		case TCPS_ESTABLISHED:		\
26002 		case TCPS_FIN_WAIT_1:		\
26003 		case TCPS_FIN_WAIT_2:		\
26004 		case TCPS_CLOSE_WAIT:		\
26005 			(err) = ECONNRESET;	\
26006 			break;			\
26007 		case TCPS_CLOSING:		\
26008 		case TCPS_LAST_ACK:		\
26009 		case TCPS_TIME_WAIT:		\
26010 			(err) = 0;		\
26011 			break;			\
26012 		default:			\
26013 			(err) = ENXIO;		\
26014 		}				\
26015 	}
26016 
26017 /*
26018  * Check if a tcp structure matches the info in acp.
26019  */
26020 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
26021 	(((acp)->ac_local.ss_family == AF_INET) ?		\
26022 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
26023 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
26024 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
26025 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
26026 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
26027 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
26028 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
26029 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
26030 	(acp)->ac_start <= (tcp)->tcp_state &&	\
26031 	(acp)->ac_end >= (tcp)->tcp_state) :		\
26032 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
26033 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
26034 	&(tcp)->tcp_ip_src_v6)) &&				\
26035 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
26036 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
26037 	&(tcp)->tcp_remote_v6)) &&				\
26038 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
26039 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
26040 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
26041 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
26042 	(acp)->ac_start <= (tcp)->tcp_state &&	\
26043 	(acp)->ac_end >= (tcp)->tcp_state))
26044 
26045 #define	TCP_AC_MATCH(acp, tcp)					\
26046 	(((acp)->ac_zoneid == ALL_ZONES ||			\
26047 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
26048 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
26049 
26050 /*
26051  * Build a message containing a tcp_ioc_abort_conn_t structure
26052  * which is filled in with information from acp and tp.
26053  */
26054 static mblk_t *
26055 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
26056 {
26057 	mblk_t *mp;
26058 	tcp_ioc_abort_conn_t *tacp;
26059 
26060 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
26061 	if (mp == NULL)
26062 		return (NULL);
26063 
26064 	mp->b_datap->db_type = M_CTL;
26065 
26066 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
26067 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
26068 	    sizeof (uint32_t));
26069 
26070 	tacp->ac_start = acp->ac_start;
26071 	tacp->ac_end = acp->ac_end;
26072 	tacp->ac_zoneid = acp->ac_zoneid;
26073 
26074 	if (acp->ac_local.ss_family == AF_INET) {
26075 		tacp->ac_local.ss_family = AF_INET;
26076 		tacp->ac_remote.ss_family = AF_INET;
26077 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
26078 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
26079 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
26080 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
26081 	} else {
26082 		tacp->ac_local.ss_family = AF_INET6;
26083 		tacp->ac_remote.ss_family = AF_INET6;
26084 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
26085 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
26086 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
26087 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
26088 	}
26089 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
26090 	return (mp);
26091 }
26092 
26093 /*
26094  * Print a tcp_ioc_abort_conn_t structure.
26095  */
26096 static void
26097 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
26098 {
26099 	char lbuf[128];
26100 	char rbuf[128];
26101 	sa_family_t af;
26102 	in_port_t lport, rport;
26103 	ushort_t logflags;
26104 
26105 	af = acp->ac_local.ss_family;
26106 
26107 	if (af == AF_INET) {
26108 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
26109 		    lbuf, 128);
26110 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
26111 		    rbuf, 128);
26112 		lport = ntohs(TCP_AC_V4LPORT(acp));
26113 		rport = ntohs(TCP_AC_V4RPORT(acp));
26114 	} else {
26115 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
26116 		    lbuf, 128);
26117 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
26118 		    rbuf, 128);
26119 		lport = ntohs(TCP_AC_V6LPORT(acp));
26120 		rport = ntohs(TCP_AC_V6RPORT(acp));
26121 	}
26122 
26123 	logflags = SL_TRACE | SL_NOTE;
26124 	/*
26125 	 * Don't print this message to the console if the operation was done
26126 	 * to a non-global zone.
26127 	 */
26128 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
26129 		logflags |= SL_CONSOLE;
26130 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
26131 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
26132 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
26133 	    acp->ac_start, acp->ac_end);
26134 }
26135 
26136 /*
26137  * Called inside tcp_rput when a message built using
26138  * tcp_ioctl_abort_build_msg is put into a queue.
26139  * Note that when we get here there is no wildcard in acp any more.
26140  */
26141 static void
26142 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
26143 {
26144 	tcp_ioc_abort_conn_t *acp;
26145 
26146 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
26147 	if (tcp->tcp_state <= acp->ac_end) {
26148 		/*
26149 		 * If we get here, we are already on the correct
26150 		 * squeue. This ioctl follows the following path
26151 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
26152 		 * ->tcp_ioctl_abort->squeue_fill (if on a
26153 		 * different squeue)
26154 		 */
26155 		int errcode;
26156 
26157 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
26158 		(void) tcp_clean_death(tcp, errcode, 26);
26159 	}
26160 	freemsg(mp);
26161 }
26162 
26163 /*
26164  * Abort all matching connections on a hash chain.
26165  */
26166 static int
26167 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
26168     boolean_t exact, tcp_stack_t *tcps)
26169 {
26170 	int nmatch, err = 0;
26171 	tcp_t *tcp;
26172 	MBLKP mp, last, listhead = NULL;
26173 	conn_t	*tconnp;
26174 	connf_t	*connfp;
26175 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
26176 
26177 	connfp = &ipst->ips_ipcl_conn_fanout[index];
26178 
26179 startover:
26180 	nmatch = 0;
26181 
26182 	mutex_enter(&connfp->connf_lock);
26183 	for (tconnp = connfp->connf_head; tconnp != NULL;
26184 	    tconnp = tconnp->conn_next) {
26185 		tcp = tconnp->conn_tcp;
26186 		if (TCP_AC_MATCH(acp, tcp)) {
26187 			CONN_INC_REF(tcp->tcp_connp);
26188 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
26189 			if (mp == NULL) {
26190 				err = ENOMEM;
26191 				CONN_DEC_REF(tcp->tcp_connp);
26192 				break;
26193 			}
26194 			mp->b_prev = (mblk_t *)tcp;
26195 
26196 			if (listhead == NULL) {
26197 				listhead = mp;
26198 				last = mp;
26199 			} else {
26200 				last->b_next = mp;
26201 				last = mp;
26202 			}
26203 			nmatch++;
26204 			if (exact)
26205 				break;
26206 		}
26207 
26208 		/* Avoid holding lock for too long. */
26209 		if (nmatch >= 500)
26210 			break;
26211 	}
26212 	mutex_exit(&connfp->connf_lock);
26213 
26214 	/* Pass mp into the correct tcp */
26215 	while ((mp = listhead) != NULL) {
26216 		listhead = listhead->b_next;
26217 		tcp = (tcp_t *)mp->b_prev;
26218 		mp->b_next = mp->b_prev = NULL;
26219 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
26220 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
26221 	}
26222 
26223 	*count += nmatch;
26224 	if (nmatch >= 500 && err == 0)
26225 		goto startover;
26226 	return (err);
26227 }
26228 
26229 /*
26230  * Abort all connections that matches the attributes specified in acp.
26231  */
26232 static int
26233 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
26234 {
26235 	sa_family_t af;
26236 	uint32_t  ports;
26237 	uint16_t *pports;
26238 	int err = 0, count = 0;
26239 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
26240 	int index = -1;
26241 	ushort_t logflags;
26242 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
26243 
26244 	af = acp->ac_local.ss_family;
26245 
26246 	if (af == AF_INET) {
26247 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
26248 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
26249 			pports = (uint16_t *)&ports;
26250 			pports[1] = TCP_AC_V4LPORT(acp);
26251 			pports[0] = TCP_AC_V4RPORT(acp);
26252 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
26253 		}
26254 	} else {
26255 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
26256 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
26257 			pports = (uint16_t *)&ports;
26258 			pports[1] = TCP_AC_V6LPORT(acp);
26259 			pports[0] = TCP_AC_V6RPORT(acp);
26260 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
26261 		}
26262 	}
26263 
26264 	/*
26265 	 * For cases where remote addr, local port, and remote port are non-
26266 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
26267 	 */
26268 	if (index != -1) {
26269 		err = tcp_ioctl_abort_bucket(acp, index,
26270 		    &count, exact, tcps);
26271 	} else {
26272 		/*
26273 		 * loop through all entries for wildcard case
26274 		 */
26275 		for (index = 0;
26276 		    index < ipst->ips_ipcl_conn_fanout_size;
26277 		    index++) {
26278 			err = tcp_ioctl_abort_bucket(acp, index,
26279 			    &count, exact, tcps);
26280 			if (err != 0)
26281 				break;
26282 		}
26283 	}
26284 
26285 	logflags = SL_TRACE | SL_NOTE;
26286 	/*
26287 	 * Don't print this message to the console if the operation was done
26288 	 * to a non-global zone.
26289 	 */
26290 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
26291 		logflags |= SL_CONSOLE;
26292 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
26293 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
26294 	if (err == 0 && count == 0)
26295 		err = ENOENT;
26296 	return (err);
26297 }
26298 
26299 /*
26300  * Process the TCP_IOC_ABORT_CONN ioctl request.
26301  */
26302 static void
26303 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
26304 {
26305 	int	err;
26306 	IOCP    iocp;
26307 	MBLKP   mp1;
26308 	sa_family_t laf, raf;
26309 	tcp_ioc_abort_conn_t *acp;
26310 	zone_t		*zptr;
26311 	conn_t		*connp = Q_TO_CONN(q);
26312 	zoneid_t	zoneid = connp->conn_zoneid;
26313 	tcp_t		*tcp = connp->conn_tcp;
26314 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26315 
26316 	iocp = (IOCP)mp->b_rptr;
26317 
26318 	if ((mp1 = mp->b_cont) == NULL ||
26319 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
26320 		err = EINVAL;
26321 		goto out;
26322 	}
26323 
26324 	/* check permissions */
26325 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
26326 		err = EPERM;
26327 		goto out;
26328 	}
26329 
26330 	if (mp1->b_cont != NULL) {
26331 		freemsg(mp1->b_cont);
26332 		mp1->b_cont = NULL;
26333 	}
26334 
26335 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
26336 	laf = acp->ac_local.ss_family;
26337 	raf = acp->ac_remote.ss_family;
26338 
26339 	/* check that a zone with the supplied zoneid exists */
26340 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
26341 		zptr = zone_find_by_id(zoneid);
26342 		if (zptr != NULL) {
26343 			zone_rele(zptr);
26344 		} else {
26345 			err = EINVAL;
26346 			goto out;
26347 		}
26348 	}
26349 
26350 	/*
26351 	 * For exclusive stacks we set the zoneid to zero
26352 	 * to make TCP operate as if in the global zone.
26353 	 */
26354 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
26355 		acp->ac_zoneid = GLOBAL_ZONEID;
26356 
26357 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
26358 	    acp->ac_start > acp->ac_end || laf != raf ||
26359 	    (laf != AF_INET && laf != AF_INET6)) {
26360 		err = EINVAL;
26361 		goto out;
26362 	}
26363 
26364 	tcp_ioctl_abort_dump(acp);
26365 	err = tcp_ioctl_abort(acp, tcps);
26366 
26367 out:
26368 	if (mp1 != NULL) {
26369 		freemsg(mp1);
26370 		mp->b_cont = NULL;
26371 	}
26372 
26373 	if (err != 0)
26374 		miocnak(q, mp, 0, err);
26375 	else
26376 		miocack(q, mp, 0, 0);
26377 }
26378 
26379 /*
26380  * tcp_time_wait_processing() handles processing of incoming packets when
26381  * the tcp is in the TIME_WAIT state.
26382  * A TIME_WAIT tcp that has an associated open TCP stream is never put
26383  * on the time wait list.
26384  */
26385 void
26386 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
26387     uint32_t seg_ack, int seg_len, tcph_t *tcph)
26388 {
26389 	int32_t		bytes_acked;
26390 	int32_t		gap;
26391 	int32_t		rgap;
26392 	tcp_opt_t	tcpopt;
26393 	uint_t		flags;
26394 	uint32_t	new_swnd = 0;
26395 	conn_t		*connp;
26396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26397 
26398 	BUMP_LOCAL(tcp->tcp_ibsegs);
26399 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
26400 
26401 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
26402 	new_swnd = BE16_TO_U16(tcph->th_win) <<
26403 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
26404 	if (tcp->tcp_snd_ts_ok) {
26405 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
26406 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26407 			    tcp->tcp_rnxt, TH_ACK);
26408 			goto done;
26409 		}
26410 	}
26411 	gap = seg_seq - tcp->tcp_rnxt;
26412 	rgap = tcp->tcp_rwnd - (gap + seg_len);
26413 	if (gap < 0) {
26414 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
26415 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
26416 		    (seg_len > -gap ? -gap : seg_len));
26417 		seg_len += gap;
26418 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
26419 			if (flags & TH_RST) {
26420 				goto done;
26421 			}
26422 			if ((flags & TH_FIN) && seg_len == -1) {
26423 				/*
26424 				 * When TCP receives a duplicate FIN in
26425 				 * TIME_WAIT state, restart the 2 MSL timer.
26426 				 * See page 73 in RFC 793. Make sure this TCP
26427 				 * is already on the TIME_WAIT list. If not,
26428 				 * just restart the timer.
26429 				 */
26430 				if (TCP_IS_DETACHED(tcp)) {
26431 					if (tcp_time_wait_remove(tcp, NULL) ==
26432 					    B_TRUE) {
26433 						tcp_time_wait_append(tcp);
26434 						TCP_DBGSTAT(tcps,
26435 						    tcp_rput_time_wait);
26436 					}
26437 				} else {
26438 					ASSERT(tcp != NULL);
26439 					TCP_TIMER_RESTART(tcp,
26440 					    tcps->tcps_time_wait_interval);
26441 				}
26442 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26443 				    tcp->tcp_rnxt, TH_ACK);
26444 				goto done;
26445 			}
26446 			flags |=  TH_ACK_NEEDED;
26447 			seg_len = 0;
26448 			goto process_ack;
26449 		}
26450 
26451 		/* Fix seg_seq, and chew the gap off the front. */
26452 		seg_seq = tcp->tcp_rnxt;
26453 	}
26454 
26455 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
26456 		/*
26457 		 * Make sure that when we accept the connection, pick
26458 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
26459 		 * old connection.
26460 		 *
26461 		 * The next ISS generated is equal to tcp_iss_incr_extra
26462 		 * + ISS_INCR/2 + other components depending on the
26463 		 * value of tcp_strong_iss.  We pre-calculate the new
26464 		 * ISS here and compare with tcp_snxt to determine if
26465 		 * we need to make adjustment to tcp_iss_incr_extra.
26466 		 *
26467 		 * The above calculation is ugly and is a
26468 		 * waste of CPU cycles...
26469 		 */
26470 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
26471 		int32_t adj;
26472 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
26473 
26474 		switch (tcps->tcps_strong_iss) {
26475 		case 2: {
26476 			/* Add time and MD5 components. */
26477 			uint32_t answer[4];
26478 			struct {
26479 				uint32_t ports;
26480 				in6_addr_t src;
26481 				in6_addr_t dst;
26482 			} arg;
26483 			MD5_CTX context;
26484 
26485 			mutex_enter(&tcps->tcps_iss_key_lock);
26486 			context = tcps->tcps_iss_key;
26487 			mutex_exit(&tcps->tcps_iss_key_lock);
26488 			arg.ports = tcp->tcp_ports;
26489 			/* We use MAPPED addresses in tcp_iss_init */
26490 			arg.src = tcp->tcp_ip_src_v6;
26491 			if (tcp->tcp_ipversion == IPV4_VERSION) {
26492 				IN6_IPADDR_TO_V4MAPPED(
26493 				    tcp->tcp_ipha->ipha_dst,
26494 				    &arg.dst);
26495 			} else {
26496 				arg.dst =
26497 				    tcp->tcp_ip6h->ip6_dst;
26498 			}
26499 			MD5Update(&context, (uchar_t *)&arg,
26500 			    sizeof (arg));
26501 			MD5Final((uchar_t *)answer, &context);
26502 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
26503 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
26504 			break;
26505 		}
26506 		case 1:
26507 			/* Add time component and min random (i.e. 1). */
26508 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
26509 			break;
26510 		default:
26511 			/* Add only time component. */
26512 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
26513 			break;
26514 		}
26515 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
26516 			/*
26517 			 * New ISS not guaranteed to be ISS_INCR/2
26518 			 * ahead of the current tcp_snxt, so add the
26519 			 * difference to tcp_iss_incr_extra.
26520 			 */
26521 			tcps->tcps_iss_incr_extra += adj;
26522 		}
26523 		/*
26524 		 * If tcp_clean_death() can not perform the task now,
26525 		 * drop the SYN packet and let the other side re-xmit.
26526 		 * Otherwise pass the SYN packet back in, since the
26527 		 * old tcp state has been cleaned up or freed.
26528 		 */
26529 		if (tcp_clean_death(tcp, 0, 27) == -1)
26530 			goto done;
26531 		/*
26532 		 * We will come back to tcp_rput_data
26533 		 * on the global queue. Packets destined
26534 		 * for the global queue will be checked
26535 		 * with global policy. But the policy for
26536 		 * this packet has already been checked as
26537 		 * this was destined for the detached
26538 		 * connection. We need to bypass policy
26539 		 * check this time by attaching a dummy
26540 		 * ipsec_in with ipsec_in_dont_check set.
26541 		 */
26542 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
26543 		if (connp != NULL) {
26544 			TCP_STAT(tcps, tcp_time_wait_syn_success);
26545 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
26546 			return;
26547 		}
26548 		goto done;
26549 	}
26550 
26551 	/*
26552 	 * rgap is the amount of stuff received out of window.  A negative
26553 	 * value is the amount out of window.
26554 	 */
26555 	if (rgap < 0) {
26556 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
26557 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
26558 		/* Fix seg_len and make sure there is something left. */
26559 		seg_len += rgap;
26560 		if (seg_len <= 0) {
26561 			if (flags & TH_RST) {
26562 				goto done;
26563 			}
26564 			flags |=  TH_ACK_NEEDED;
26565 			seg_len = 0;
26566 			goto process_ack;
26567 		}
26568 	}
26569 	/*
26570 	 * Check whether we can update tcp_ts_recent.  This test is
26571 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26572 	 * Extensions for High Performance: An Update", Internet Draft.
26573 	 */
26574 	if (tcp->tcp_snd_ts_ok &&
26575 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26576 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26577 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26578 		tcp->tcp_last_rcv_lbolt = lbolt64;
26579 	}
26580 
26581 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26582 		/* Always ack out of order packets */
26583 		flags |= TH_ACK_NEEDED;
26584 		seg_len = 0;
26585 	} else if (seg_len > 0) {
26586 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26587 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26588 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26589 	}
26590 	if (flags & TH_RST) {
26591 		(void) tcp_clean_death(tcp, 0, 28);
26592 		goto done;
26593 	}
26594 	if (flags & TH_SYN) {
26595 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26596 		    TH_RST|TH_ACK);
26597 		/*
26598 		 * Do not delete the TCP structure if it is in
26599 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26600 		 */
26601 		goto done;
26602 	}
26603 process_ack:
26604 	if (flags & TH_ACK) {
26605 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26606 		if (bytes_acked <= 0) {
26607 			if (bytes_acked == 0 && seg_len == 0 &&
26608 			    new_swnd == tcp->tcp_swnd)
26609 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26610 		} else {
26611 			/* Acks something not sent */
26612 			flags |= TH_ACK_NEEDED;
26613 		}
26614 	}
26615 	if (flags & TH_ACK_NEEDED) {
26616 		/*
26617 		 * Time to send an ack for some reason.
26618 		 */
26619 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26620 		    tcp->tcp_rnxt, TH_ACK);
26621 	}
26622 done:
26623 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26624 		DB_CKSUMSTART(mp) = 0;
26625 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26626 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26627 	}
26628 	freemsg(mp);
26629 }
26630 
26631 /*
26632  * Allocate a T_SVR4_OPTMGMT_REQ.
26633  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26634  * that tcp_rput_other can drop the acks.
26635  */
26636 static mblk_t *
26637 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26638 {
26639 	mblk_t *mp;
26640 	struct T_optmgmt_req *tor;
26641 	struct opthdr *oh;
26642 	uint_t size;
26643 	char *optptr;
26644 
26645 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26646 	mp = allocb(size, BPRI_MED);
26647 	if (mp == NULL)
26648 		return (NULL);
26649 
26650 	mp->b_wptr += size;
26651 	mp->b_datap->db_type = M_PROTO;
26652 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26653 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26654 	tor->MGMT_flags = T_NEGOTIATE;
26655 	tor->OPT_length = sizeof (*oh) + optlen;
26656 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26657 
26658 	oh = (struct opthdr *)&tor[1];
26659 	oh->level = level;
26660 	oh->name = cmd;
26661 	oh->len = optlen;
26662 	if (optlen != 0) {
26663 		optptr = (char *)&oh[1];
26664 		bcopy(opt, optptr, optlen);
26665 	}
26666 	return (mp);
26667 }
26668 
26669 /*
26670  * TCP Timers Implementation.
26671  */
26672 timeout_id_t
26673 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26674 {
26675 	mblk_t *mp;
26676 	tcp_timer_t *tcpt;
26677 	tcp_t *tcp = connp->conn_tcp;
26678 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26679 
26680 	ASSERT(connp->conn_sqp != NULL);
26681 
26682 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26683 
26684 	if (tcp->tcp_timercache == NULL) {
26685 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26686 	} else {
26687 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26688 		mp = tcp->tcp_timercache;
26689 		tcp->tcp_timercache = mp->b_next;
26690 		mp->b_next = NULL;
26691 		ASSERT(mp->b_wptr == NULL);
26692 	}
26693 
26694 	CONN_INC_REF(connp);
26695 	tcpt = (tcp_timer_t *)mp->b_rptr;
26696 	tcpt->connp = connp;
26697 	tcpt->tcpt_proc = f;
26698 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26699 	return ((timeout_id_t)mp);
26700 }
26701 
26702 static void
26703 tcp_timer_callback(void *arg)
26704 {
26705 	mblk_t *mp = (mblk_t *)arg;
26706 	tcp_timer_t *tcpt;
26707 	conn_t	*connp;
26708 
26709 	tcpt = (tcp_timer_t *)mp->b_rptr;
26710 	connp = tcpt->connp;
26711 	squeue_fill(connp->conn_sqp, mp,
26712 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26713 }
26714 
26715 static void
26716 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26717 {
26718 	tcp_timer_t *tcpt;
26719 	conn_t *connp = (conn_t *)arg;
26720 	tcp_t *tcp = connp->conn_tcp;
26721 
26722 	tcpt = (tcp_timer_t *)mp->b_rptr;
26723 	ASSERT(connp == tcpt->connp);
26724 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26725 
26726 	/*
26727 	 * If the TCP has reached the closed state, don't proceed any
26728 	 * further. This TCP logically does not exist on the system.
26729 	 * tcpt_proc could for example access queues, that have already
26730 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26731 	 */
26732 	if (tcp->tcp_state != TCPS_CLOSED) {
26733 		(*tcpt->tcpt_proc)(connp);
26734 	} else {
26735 		tcp->tcp_timer_tid = 0;
26736 	}
26737 	tcp_timer_free(connp->conn_tcp, mp);
26738 }
26739 
26740 /*
26741  * There is potential race with untimeout and the handler firing at the same
26742  * time. The mblock may be freed by the handler while we are trying to use
26743  * it. But since both should execute on the same squeue, this race should not
26744  * occur.
26745  */
26746 clock_t
26747 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26748 {
26749 	mblk_t	*mp = (mblk_t *)id;
26750 	tcp_timer_t *tcpt;
26751 	clock_t delta;
26752 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26753 
26754 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26755 
26756 	if (mp == NULL)
26757 		return (-1);
26758 
26759 	tcpt = (tcp_timer_t *)mp->b_rptr;
26760 	ASSERT(tcpt->connp == connp);
26761 
26762 	delta = untimeout(tcpt->tcpt_tid);
26763 
26764 	if (delta >= 0) {
26765 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26766 		tcp_timer_free(connp->conn_tcp, mp);
26767 		CONN_DEC_REF(connp);
26768 	}
26769 
26770 	return (delta);
26771 }
26772 
26773 /*
26774  * Allocate space for the timer event. The allocation looks like mblk, but it is
26775  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26776  *
26777  * Dealing with failures: If we can't allocate from the timer cache we try
26778  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26779  * points to b_rptr.
26780  * If we can't allocate anything using allocb_tryhard(), we perform a last
26781  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26782  * save the actual allocation size in b_datap.
26783  */
26784 mblk_t *
26785 tcp_timermp_alloc(int kmflags)
26786 {
26787 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26788 	    kmflags & ~KM_PANIC);
26789 
26790 	if (mp != NULL) {
26791 		mp->b_next = mp->b_prev = NULL;
26792 		mp->b_rptr = (uchar_t *)(&mp[1]);
26793 		mp->b_wptr = NULL;
26794 		mp->b_datap = NULL;
26795 		mp->b_queue = NULL;
26796 		mp->b_cont = NULL;
26797 	} else if (kmflags & KM_PANIC) {
26798 		/*
26799 		 * Failed to allocate memory for the timer. Try allocating from
26800 		 * dblock caches.
26801 		 */
26802 		/* ipclassifier calls this from a constructor - hence no tcps */
26803 		TCP_G_STAT(tcp_timermp_allocfail);
26804 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26805 		if (mp == NULL) {
26806 			size_t size = 0;
26807 			/*
26808 			 * Memory is really low. Try tryhard allocation.
26809 			 *
26810 			 * ipclassifier calls this from a constructor -
26811 			 * hence no tcps
26812 			 */
26813 			TCP_G_STAT(tcp_timermp_allocdblfail);
26814 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26815 			    sizeof (tcp_timer_t), &size, kmflags);
26816 			mp->b_rptr = (uchar_t *)(&mp[1]);
26817 			mp->b_next = mp->b_prev = NULL;
26818 			mp->b_wptr = (uchar_t *)-1;
26819 			mp->b_datap = (dblk_t *)size;
26820 			mp->b_queue = NULL;
26821 			mp->b_cont = NULL;
26822 		}
26823 		ASSERT(mp->b_wptr != NULL);
26824 	}
26825 	/* ipclassifier calls this from a constructor - hence no tcps */
26826 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26827 
26828 	return (mp);
26829 }
26830 
26831 /*
26832  * Free per-tcp timer cache.
26833  * It can only contain entries from tcp_timercache.
26834  */
26835 void
26836 tcp_timermp_free(tcp_t *tcp)
26837 {
26838 	mblk_t *mp;
26839 
26840 	while ((mp = tcp->tcp_timercache) != NULL) {
26841 		ASSERT(mp->b_wptr == NULL);
26842 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26843 		kmem_cache_free(tcp_timercache, mp);
26844 	}
26845 }
26846 
26847 /*
26848  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26849  * events there already (currently at most two events are cached).
26850  * If the event is not allocated from the timer cache, free it right away.
26851  */
26852 static void
26853 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26854 {
26855 	mblk_t *mp1 = tcp->tcp_timercache;
26856 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26857 
26858 	if (mp->b_wptr != NULL) {
26859 		/*
26860 		 * This allocation is not from a timer cache, free it right
26861 		 * away.
26862 		 */
26863 		if (mp->b_wptr != (uchar_t *)-1)
26864 			freeb(mp);
26865 		else
26866 			kmem_free(mp, (size_t)mp->b_datap);
26867 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26868 		/* Cache this timer block for future allocations */
26869 		mp->b_rptr = (uchar_t *)(&mp[1]);
26870 		mp->b_next = mp1;
26871 		tcp->tcp_timercache = mp;
26872 	} else {
26873 		kmem_cache_free(tcp_timercache, mp);
26874 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26875 	}
26876 }
26877 
26878 /*
26879  * End of TCP Timers implementation.
26880  */
26881 
26882 /*
26883  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26884  * on the specified backing STREAMS q. Note, the caller may make the
26885  * decision to call based on the tcp_t.tcp_flow_stopped value which
26886  * when check outside the q's lock is only an advisory check ...
26887  */
26888 
26889 void
26890 tcp_setqfull(tcp_t *tcp)
26891 {
26892 	queue_t *q = tcp->tcp_wq;
26893 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26894 
26895 	if (!(q->q_flag & QFULL)) {
26896 		mutex_enter(QLOCK(q));
26897 		if (!(q->q_flag & QFULL)) {
26898 			/* still need to set QFULL */
26899 			q->q_flag |= QFULL;
26900 			tcp->tcp_flow_stopped = B_TRUE;
26901 			mutex_exit(QLOCK(q));
26902 			TCP_STAT(tcps, tcp_flwctl_on);
26903 		} else {
26904 			mutex_exit(QLOCK(q));
26905 		}
26906 	}
26907 }
26908 
26909 void
26910 tcp_clrqfull(tcp_t *tcp)
26911 {
26912 	queue_t *q = tcp->tcp_wq;
26913 
26914 	if (q->q_flag & QFULL) {
26915 		mutex_enter(QLOCK(q));
26916 		if (q->q_flag & QFULL) {
26917 			q->q_flag &= ~QFULL;
26918 			tcp->tcp_flow_stopped = B_FALSE;
26919 			mutex_exit(QLOCK(q));
26920 			if (q->q_flag & QWANTW)
26921 				qbackenable(q, 0);
26922 		} else {
26923 			mutex_exit(QLOCK(q));
26924 		}
26925 	}
26926 }
26927 
26928 
26929 /*
26930  * kstats related to squeues i.e. not per IP instance
26931  */
26932 static void *
26933 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26934 {
26935 	kstat_t *ksp;
26936 
26937 	tcp_g_stat_t template = {
26938 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26939 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26940 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26941 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26942 	};
26943 
26944 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26945 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26946 	    KSTAT_FLAG_VIRTUAL);
26947 
26948 	if (ksp == NULL)
26949 		return (NULL);
26950 
26951 	bcopy(&template, tcp_g_statp, sizeof (template));
26952 	ksp->ks_data = (void *)tcp_g_statp;
26953 
26954 	kstat_install(ksp);
26955 	return (ksp);
26956 }
26957 
26958 static void
26959 tcp_g_kstat_fini(kstat_t *ksp)
26960 {
26961 	if (ksp != NULL) {
26962 		kstat_delete(ksp);
26963 	}
26964 }
26965 
26966 
26967 static void *
26968 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26969 {
26970 	kstat_t *ksp;
26971 
26972 	tcp_stat_t template = {
26973 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26974 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26975 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26976 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26977 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26978 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26979 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26980 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26981 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26982 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26983 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26984 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26985 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26986 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26987 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26988 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26989 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26990 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26991 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26992 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26993 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26994 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26995 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26996 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26997 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26998 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26999 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
27000 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
27001 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
27002 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
27003 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
27004 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
27005 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
27006 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
27007 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
27008 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
27009 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
27010 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
27011 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
27012 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
27013 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
27014 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
27015 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
27016 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
27017 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
27018 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
27019 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
27020 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
27021 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
27022 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
27023 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
27024 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
27025 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
27026 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
27027 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
27028 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
27029 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
27030 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
27031 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
27032 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
27033 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
27034 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
27035 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
27036 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
27037 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
27038 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
27039 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
27040 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
27041 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
27042 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
27043 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
27044 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
27045 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
27046 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
27047 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
27048 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
27049 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
27050 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
27051 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
27052 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
27053 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
27054 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
27055 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
27056 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
27057 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
27058 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
27059 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
27060 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
27061 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
27062 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
27063 	};
27064 
27065 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
27066 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
27067 	    KSTAT_FLAG_VIRTUAL, stackid);
27068 
27069 	if (ksp == NULL)
27070 		return (NULL);
27071 
27072 	bcopy(&template, tcps_statisticsp, sizeof (template));
27073 	ksp->ks_data = (void *)tcps_statisticsp;
27074 	ksp->ks_private = (void *)(uintptr_t)stackid;
27075 
27076 	kstat_install(ksp);
27077 	return (ksp);
27078 }
27079 
27080 static void
27081 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
27082 {
27083 	if (ksp != NULL) {
27084 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
27085 		kstat_delete_netstack(ksp, stackid);
27086 	}
27087 }
27088 
27089 /*
27090  * TCP Kstats implementation
27091  */
27092 static void *
27093 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
27094 {
27095 	kstat_t	*ksp;
27096 
27097 	tcp_named_kstat_t template = {
27098 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
27099 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
27100 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
27101 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
27102 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
27103 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
27104 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
27105 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
27106 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
27107 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
27108 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
27109 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
27110 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
27111 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
27112 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
27113 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
27114 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
27115 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
27116 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
27117 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
27118 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
27119 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
27120 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
27121 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
27122 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
27123 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
27124 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
27125 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
27126 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
27127 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
27128 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
27129 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
27130 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
27131 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
27132 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
27133 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
27134 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
27135 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
27136 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
27137 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
27138 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
27139 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
27140 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
27141 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
27142 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
27143 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
27144 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
27145 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
27146 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
27147 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
27148 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
27149 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
27150 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
27151 	};
27152 
27153 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
27154 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
27155 
27156 	if (ksp == NULL)
27157 		return (NULL);
27158 
27159 	template.rtoAlgorithm.value.ui32 = 4;
27160 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
27161 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
27162 	template.maxConn.value.i32 = -1;
27163 
27164 	bcopy(&template, ksp->ks_data, sizeof (template));
27165 	ksp->ks_update = tcp_kstat_update;
27166 	ksp->ks_private = (void *)(uintptr_t)stackid;
27167 
27168 	kstat_install(ksp);
27169 	return (ksp);
27170 }
27171 
27172 static void
27173 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
27174 {
27175 	if (ksp != NULL) {
27176 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
27177 		kstat_delete_netstack(ksp, stackid);
27178 	}
27179 }
27180 
27181 static int
27182 tcp_kstat_update(kstat_t *kp, int rw)
27183 {
27184 	tcp_named_kstat_t *tcpkp;
27185 	tcp_t		*tcp;
27186 	connf_t		*connfp;
27187 	conn_t		*connp;
27188 	int 		i;
27189 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
27190 	netstack_t	*ns;
27191 	tcp_stack_t	*tcps;
27192 	ip_stack_t	*ipst;
27193 
27194 	if ((kp == NULL) || (kp->ks_data == NULL))
27195 		return (EIO);
27196 
27197 	if (rw == KSTAT_WRITE)
27198 		return (EACCES);
27199 
27200 	ns = netstack_find_by_stackid(stackid);
27201 	if (ns == NULL)
27202 		return (-1);
27203 	tcps = ns->netstack_tcp;
27204 	if (tcps == NULL) {
27205 		netstack_rele(ns);
27206 		return (-1);
27207 	}
27208 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
27209 
27210 	tcpkp->currEstab.value.ui32 = 0;
27211 
27212 	ipst = ns->netstack_ip;
27213 
27214 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
27215 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
27216 		connp = NULL;
27217 		while ((connp =
27218 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
27219 			tcp = connp->conn_tcp;
27220 			switch (tcp_snmp_state(tcp)) {
27221 			case MIB2_TCP_established:
27222 			case MIB2_TCP_closeWait:
27223 				tcpkp->currEstab.value.ui32++;
27224 				break;
27225 			}
27226 		}
27227 	}
27228 
27229 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
27230 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
27231 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
27232 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
27233 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
27234 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
27235 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
27236 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
27237 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
27238 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
27239 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
27240 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
27241 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
27242 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
27243 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
27244 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
27245 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
27246 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
27247 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
27248 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
27249 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
27250 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
27251 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
27252 	tcpkp->inDataInorderSegs.value.ui32 =
27253 	    tcps->tcps_mib.tcpInDataInorderSegs;
27254 	tcpkp->inDataInorderBytes.value.ui32 =
27255 	    tcps->tcps_mib.tcpInDataInorderBytes;
27256 	tcpkp->inDataUnorderSegs.value.ui32 =
27257 	    tcps->tcps_mib.tcpInDataUnorderSegs;
27258 	tcpkp->inDataUnorderBytes.value.ui32 =
27259 	    tcps->tcps_mib.tcpInDataUnorderBytes;
27260 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
27261 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
27262 	tcpkp->inDataPartDupSegs.value.ui32 =
27263 	    tcps->tcps_mib.tcpInDataPartDupSegs;
27264 	tcpkp->inDataPartDupBytes.value.ui32 =
27265 	    tcps->tcps_mib.tcpInDataPartDupBytes;
27266 	tcpkp->inDataPastWinSegs.value.ui32 =
27267 	    tcps->tcps_mib.tcpInDataPastWinSegs;
27268 	tcpkp->inDataPastWinBytes.value.ui32 =
27269 	    tcps->tcps_mib.tcpInDataPastWinBytes;
27270 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
27271 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
27272 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
27273 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
27274 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
27275 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
27276 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
27277 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
27278 	tcpkp->timKeepaliveProbe.value.ui32 =
27279 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
27280 	tcpkp->timKeepaliveDrop.value.ui32 =
27281 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
27282 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
27283 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
27284 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
27285 	tcpkp->outSackRetransSegs.value.ui32 =
27286 	    tcps->tcps_mib.tcpOutSackRetransSegs;
27287 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
27288 
27289 	netstack_rele(ns);
27290 	return (0);
27291 }
27292 
27293 void
27294 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
27295 {
27296 	uint16_t	hdr_len;
27297 	ipha_t		*ipha;
27298 	uint8_t		*nexthdrp;
27299 	tcph_t		*tcph;
27300 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
27301 
27302 	/* Already has an eager */
27303 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
27304 		TCP_STAT(tcps, tcp_reinput_syn);
27305 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
27306 		    connp, SQTAG_TCP_REINPUT_EAGER);
27307 		return;
27308 	}
27309 
27310 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
27311 	case IPV4_VERSION:
27312 		ipha = (ipha_t *)mp->b_rptr;
27313 		hdr_len = IPH_HDR_LENGTH(ipha);
27314 		break;
27315 	case IPV6_VERSION:
27316 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
27317 		    &hdr_len, &nexthdrp)) {
27318 			CONN_DEC_REF(connp);
27319 			freemsg(mp);
27320 			return;
27321 		}
27322 		break;
27323 	}
27324 
27325 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
27326 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
27327 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
27328 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
27329 	}
27330 
27331 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
27332 	    SQTAG_TCP_REINPUT);
27333 }
27334 
27335 static squeue_func_t
27336 tcp_squeue_switch(int val)
27337 {
27338 	squeue_func_t rval = squeue_fill;
27339 
27340 	switch (val) {
27341 	case 1:
27342 		rval = squeue_enter_nodrain;
27343 		break;
27344 	case 2:
27345 		rval = squeue_enter;
27346 		break;
27347 	default:
27348 		break;
27349 	}
27350 	return (rval);
27351 }
27352 
27353 /*
27354  * This is called once for each squeue - globally for all stack
27355  * instances.
27356  */
27357 static void
27358 tcp_squeue_add(squeue_t *sqp)
27359 {
27360 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
27361 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
27362 
27363 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
27364 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
27365 	    sqp, TCP_TIME_WAIT_DELAY);
27366 	if (tcp_free_list_max_cnt == 0) {
27367 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
27368 		    max_ncpus : boot_max_ncpus);
27369 
27370 		/*
27371 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
27372 		 */
27373 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
27374 		    (tcp_ncpus * sizeof (tcp_t) * 100);
27375 	}
27376 	tcp_time_wait->tcp_free_list_cnt = 0;
27377 }
27378