xref: /titanic_51/usr/src/uts/common/inet/tcp/tcp.c (revision 81f63062a60a29358c252e0d10807f8a8547fbb5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <sys/sdt.h>
106 #include <rpc/pmap_prot.h>
107 
108 /*
109  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
110  *
111  * (Read the detailed design doc in PSARC case directory)
112  *
113  * The entire tcp state is contained in tcp_t and conn_t structure
114  * which are allocated in tandem using ipcl_conn_create() and passing
115  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
116  * the references on the tcp_t. The tcp_t structure is never compressed
117  * and packets always land on the correct TCP perimeter from the time
118  * eager is created till the time tcp_t dies (as such the old mentat
119  * TCP global queue is not used for detached state and no IPSEC checking
120  * is required). The global queue is still allocated to send out resets
121  * for connection which have no listeners and IP directly calls
122  * tcp_xmit_listeners_reset() which does any policy check.
123  *
124  * Protection and Synchronisation mechanism:
125  *
126  * The tcp data structure does not use any kind of lock for protecting
127  * its state but instead uses 'squeues' for mutual exclusion from various
128  * read and write side threads. To access a tcp member, the thread should
129  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
130  * squeue_fill). Since the squeues allow a direct function call, caller
131  * can pass any tcp function having prototype of edesc_t as argument
132  * (different from traditional STREAMs model where packets come in only
133  * designated entry points). The list of functions that can be directly
134  * called via squeue are listed before the usual function prototype.
135  *
136  * Referencing:
137  *
138  * TCP is MT-Hot and we use a reference based scheme to make sure that the
139  * tcp structure doesn't disappear when its needed. When the application
140  * creates an outgoing connection or accepts an incoming connection, we
141  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
142  * The IP reference is just a symbolic reference since ip_tcpclose()
143  * looks at tcp structure after tcp_close_output() returns which could
144  * have dropped the last TCP reference. So as long as the connection is
145  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
146  * conn_t. The classifier puts its own reference when the connection is
147  * inserted in listen or connected hash. Anytime a thread needs to enter
148  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
149  * on write side or by doing a classify on read side and then puts a
150  * reference on the conn before doing squeue_enter/tryenter/fill. For
151  * read side, the classifier itself puts the reference under fanout lock
152  * to make sure that tcp can't disappear before it gets processed. The
153  * squeue will drop this reference automatically so the called function
154  * doesn't have to do a DEC_REF.
155  *
156  * Opening a new connection:
157  *
158  * The outgoing connection open is pretty simple. tcp_open() does the
159  * work in creating the conn/tcp structure and initializing it. The
160  * squeue assignment is done based on the CPU the application
161  * is running on. So for outbound connections, processing is always done
162  * on application CPU which might be different from the incoming CPU
163  * being interrupted by the NIC. An optimal way would be to figure out
164  * the NIC <-> CPU binding at listen time, and assign the outgoing
165  * connection to the squeue attached to the CPU that will be interrupted
166  * for incoming packets (we know the NIC based on the bind IP address).
167  * This might seem like a problem if more data is going out but the
168  * fact is that in most cases the transmit is ACK driven transmit where
169  * the outgoing data normally sits on TCP's xmit queue waiting to be
170  * transmitted.
171  *
172  * Accepting a connection:
173  *
174  * This is a more interesting case because of various races involved in
175  * establishing a eager in its own perimeter. Read the meta comment on
176  * top of tcp_conn_request(). But briefly, the squeue is picked by
177  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
178  *
179  * Closing a connection:
180  *
181  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
182  * via squeue to do the close and mark the tcp as detached if the connection
183  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
184  * reference but tcp_close() drop IP's reference always. So if tcp was
185  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
186  * and 1 because it is in classifier's connected hash. This is the condition
187  * we use to determine that its OK to clean up the tcp outside of squeue
188  * when time wait expires (check the ref under fanout and conn_lock and
189  * if it is 2, remove it from fanout hash and kill it).
190  *
191  * Although close just drops the necessary references and marks the
192  * tcp_detached state, tcp_close needs to know the tcp_detached has been
193  * set (under squeue) before letting the STREAM go away (because a
194  * inbound packet might attempt to go up the STREAM while the close
195  * has happened and tcp_detached is not set). So a special lock and
196  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
197  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
198  * tcp_detached.
199  *
200  * Special provisions and fast paths:
201  *
202  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
203  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
204  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
205  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
206  * check to send packets directly to tcp_rput_data via squeue. Everyone
207  * else comes through tcp_input() on the read side.
208  *
209  * We also make special provisions for sockfs by marking tcp_issocket
210  * whenever we have only sockfs on top of TCP. This allows us to skip
211  * putting the tcp in acceptor hash since a sockfs listener can never
212  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
213  * since eager has already been allocated and the accept now happens
214  * on acceptor STREAM. There is a big blob of comment on top of
215  * tcp_conn_request explaining the new accept. When socket is POP'd,
216  * sockfs sends us an ioctl to mark the fact and we go back to old
217  * behaviour. Once tcp_issocket is unset, its never set for the
218  * life of that connection.
219  *
220  * IPsec notes :
221  *
222  * Since a packet is always executed on the correct TCP perimeter
223  * all IPsec processing is defered to IP including checking new
224  * connections and setting IPSEC policies for new connection. The
225  * only exception is tcp_xmit_listeners_reset() which is called
226  * directly from IP and needs to policy check to see if TH_RST
227  * can be sent out.
228  *
229  * PFHooks notes :
230  *
231  * For mdt case, one meta buffer contains multiple packets. Mblks for every
232  * packet are assembled and passed to the hooks. When packets are blocked,
233  * or boundary of any packet is changed, the mdt processing is stopped, and
234  * packets of the meta buffer are send to the IP path one by one.
235  */
236 
237 extern major_t TCP6_MAJ;
238 
239 /*
240  * Values for squeue switch:
241  * 1: squeue_enter_nodrain
242  * 2: squeue_enter
243  * 3: squeue_fill
244  */
245 int tcp_squeue_close = 2;	/* Setable in /etc/system */
246 int tcp_squeue_wput = 2;
247 
248 squeue_func_t tcp_squeue_close_proc;
249 squeue_func_t tcp_squeue_wput_proc;
250 
251 /*
252  * This controls how tiny a write must be before we try to copy it
253  * into the the mblk on the tail of the transmit queue.  Not much
254  * speedup is observed for values larger than sixteen.  Zero will
255  * disable the optimisation.
256  */
257 int tcp_tx_pull_len = 16;
258 
259 /*
260  * TCP Statistics.
261  *
262  * How TCP statistics work.
263  *
264  * There are two types of statistics invoked by two macros.
265  *
266  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
267  * supposed to be used in non MT-hot paths of the code.
268  *
269  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
270  * supposed to be used for DEBUG purposes and may be used on a hot path.
271  *
272  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
273  * (use "kstat tcp" to get them).
274  *
275  * There is also additional debugging facility that marks tcp_clean_death()
276  * instances and saves them in tcp_t structure. It is triggered by
277  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
278  * tcp_clean_death() calls that counts the number of times each tag was hit. It
279  * is triggered by TCP_CLD_COUNTERS define.
280  *
281  * How to add new counters.
282  *
283  * 1) Add a field in the tcp_stat structure describing your counter.
284  * 2) Add a line in the template in tcp_kstat2_init() with the name
285  *    of the counter.
286  *
287  *    IMPORTANT!! - make sure that both are in sync !!
288  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
289  *
290  * Please avoid using private counters which are not kstat-exported.
291  *
292  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
293  * in tcp_t structure.
294  *
295  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
296  */
297 
298 #ifndef TCP_DEBUG_COUNTER
299 #ifdef DEBUG
300 #define	TCP_DEBUG_COUNTER 1
301 #else
302 #define	TCP_DEBUG_COUNTER 0
303 #endif
304 #endif
305 
306 #define	TCP_CLD_COUNTERS 0
307 
308 #define	TCP_TAG_CLEAN_DEATH 1
309 #define	TCP_MAX_CLEAN_DEATH_TAG 32
310 
311 #ifdef lint
312 static int _lint_dummy_;
313 #endif
314 
315 #if TCP_CLD_COUNTERS
316 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
317 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
318 #elif defined(lint)
319 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
320 #else
321 #define	TCP_CLD_STAT(x)
322 #endif
323 
324 #if TCP_DEBUG_COUNTER
325 #define	TCP_DBGSTAT(tcps, x)	\
326 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
327 #define	TCP_G_DBGSTAT(x)	\
328 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
329 #elif defined(lint)
330 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
331 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
332 #else
333 #define	TCP_DBGSTAT(tcps, x)
334 #define	TCP_G_DBGSTAT(x)
335 #endif
336 
337 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
338 
339 tcp_g_stat_t	tcp_g_statistics;
340 kstat_t		*tcp_g_kstat;
341 
342 /*
343  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
344  * tcp write side.
345  */
346 #define	CALL_IP_WPUT(connp, q, mp) {					\
347 	tcp_stack_t	*tcps;						\
348 									\
349 	tcps = connp->conn_netstack->netstack_tcp;			\
350 	ASSERT(((q)->q_flag & QREADR) == 0);				\
351 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
352 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
353 }
354 
355 /* Macros for timestamp comparisons */
356 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
357 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
358 
359 /*
360  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
361  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
362  * by adding three components: a time component which grows by 1 every 4096
363  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
364  * a per-connection component which grows by 125000 for every new connection;
365  * and an "extra" component that grows by a random amount centered
366  * approximately on 64000.  This causes the the ISS generator to cycle every
367  * 4.89 hours if no TCP connections are made, and faster if connections are
368  * made.
369  *
370  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
371  * components: a time component which grows by 250000 every second; and
372  * a per-connection component which grows by 125000 for every new connections.
373  *
374  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
375  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
376  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
377  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
378  * password.
379  */
380 #define	ISS_INCR	250000
381 #define	ISS_NSEC_SHT	12
382 
383 static sin_t	sin_null;	/* Zero address for quick clears */
384 static sin6_t	sin6_null;	/* Zero address for quick clears */
385 
386 /*
387  * This implementation follows the 4.3BSD interpretation of the urgent
388  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
389  * incompatible changes in protocols like telnet and rlogin.
390  */
391 #define	TCP_OLD_URP_INTERPRETATION	1
392 
393 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
394 	(TCP_IS_DETACHED(tcp) && \
395 	    (!(tcp)->tcp_hard_binding))
396 
397 /*
398  * TCP reassembly macros.  We hide starting and ending sequence numbers in
399  * b_next and b_prev of messages on the reassembly queue.  The messages are
400  * chained using b_cont.  These macros are used in tcp_reass() so we don't
401  * have to see the ugly casts and assignments.
402  */
403 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
404 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
405 					(mblk_t *)(uintptr_t)(u))
406 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
407 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
408 					(mblk_t *)(uintptr_t)(u))
409 
410 /*
411  * Implementation of TCP Timers.
412  * =============================
413  *
414  * INTERFACE:
415  *
416  * There are two basic functions dealing with tcp timers:
417  *
418  *	timeout_id_t	tcp_timeout(connp, func, time)
419  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
420  *	TCP_TIMER_RESTART(tcp, intvl)
421  *
422  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
423  * after 'time' ticks passed. The function called by timeout() must adhere to
424  * the same restrictions as a driver soft interrupt handler - it must not sleep
425  * or call other functions that might sleep. The value returned is the opaque
426  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
427  * cancel the request. The call to tcp_timeout() may fail in which case it
428  * returns zero. This is different from the timeout(9F) function which never
429  * fails.
430  *
431  * The call-back function 'func' always receives 'connp' as its single
432  * argument. It is always executed in the squeue corresponding to the tcp
433  * structure. The tcp structure is guaranteed to be present at the time the
434  * call-back is called.
435  *
436  * NOTE: The call-back function 'func' is never called if tcp is in
437  * 	the TCPS_CLOSED state.
438  *
439  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
440  * request. locks acquired by the call-back routine should not be held across
441  * the call to tcp_timeout_cancel() or a deadlock may result.
442  *
443  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
444  * Otherwise, it returns an integer value greater than or equal to 0. In
445  * particular, if the call-back function is already placed on the squeue, it can
446  * not be canceled.
447  *
448  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
449  * 	within squeue context corresponding to the tcp instance. Since the
450  *	call-back is also called via the same squeue, there are no race
451  *	conditions described in untimeout(9F) manual page since all calls are
452  *	strictly serialized.
453  *
454  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
455  *	stored in tcp_timer_tid and starts a new one using
456  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
457  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
458  *	field.
459  *
460  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
461  *	call-back may still be called, so it is possible tcp_timer() will be
462  *	called several times. This should not be a problem since tcp_timer()
463  *	should always check the tcp instance state.
464  *
465  *
466  * IMPLEMENTATION:
467  *
468  * TCP timers are implemented using three-stage process. The call to
469  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
470  * when the timer expires. The tcp_timer_callback() arranges the call of the
471  * tcp_timer_handler() function via squeue corresponding to the tcp
472  * instance. The tcp_timer_handler() calls actual requested timeout call-back
473  * and passes tcp instance as an argument to it. Information is passed between
474  * stages using the tcp_timer_t structure which contains the connp pointer, the
475  * tcp call-back to call and the timeout id returned by the timeout(9F).
476  *
477  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
478  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
479  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
480  * returns the pointer to this mblk.
481  *
482  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
483  * looks like a normal mblk without actual dblk attached to it.
484  *
485  * To optimize performance each tcp instance holds a small cache of timer
486  * mblocks. In the current implementation it caches up to two timer mblocks per
487  * tcp instance. The cache is preserved over tcp frees and is only freed when
488  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
489  * timer processing happens on a corresponding squeue, the cache manipulation
490  * does not require any locks. Experiments show that majority of timer mblocks
491  * allocations are satisfied from the tcp cache and do not involve kmem calls.
492  *
493  * The tcp_timeout() places a refhold on the connp instance which guarantees
494  * that it will be present at the time the call-back function fires. The
495  * tcp_timer_handler() drops the reference after calling the call-back, so the
496  * call-back function does not need to manipulate the references explicitly.
497  */
498 
499 typedef struct tcp_timer_s {
500 	conn_t	*connp;
501 	void 	(*tcpt_proc)(void *);
502 	timeout_id_t   tcpt_tid;
503 } tcp_timer_t;
504 
505 static kmem_cache_t *tcp_timercache;
506 kmem_cache_t	*tcp_sack_info_cache;
507 kmem_cache_t	*tcp_iphc_cache;
508 
509 /*
510  * For scalability, we must not run a timer for every TCP connection
511  * in TIME_WAIT state.  To see why, consider (for time wait interval of
512  * 4 minutes):
513  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
514  *
515  * This list is ordered by time, so you need only delete from the head
516  * until you get to entries which aren't old enough to delete yet.
517  * The list consists of only the detached TIME_WAIT connections.
518  *
519  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
520  * becomes detached TIME_WAIT (either by changing the state and already
521  * being detached or the other way around). This means that the TIME_WAIT
522  * state can be extended (up to doubled) if the connection doesn't become
523  * detached for a long time.
524  *
525  * The list manipulations (including tcp_time_wait_next/prev)
526  * are protected by the tcp_time_wait_lock. The content of the
527  * detached TIME_WAIT connections is protected by the normal perimeters.
528  *
529  * This list is per squeue and squeues are shared across the tcp_stack_t's.
530  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
531  * and conn_netstack.
532  * The tcp_t's that are added to tcp_free_list are disassociated and
533  * have NULL tcp_tcps and conn_netstack pointers.
534  */
535 typedef struct tcp_squeue_priv_s {
536 	kmutex_t	tcp_time_wait_lock;
537 	timeout_id_t	tcp_time_wait_tid;
538 	tcp_t		*tcp_time_wait_head;
539 	tcp_t		*tcp_time_wait_tail;
540 	tcp_t		*tcp_free_list;
541 	uint_t		tcp_free_list_cnt;
542 } tcp_squeue_priv_t;
543 
544 /*
545  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
546  * Running it every 5 seconds seems to give the best results.
547  */
548 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
549 
550 /*
551  * To prevent memory hog, limit the number of entries in tcp_free_list
552  * to 1% of available memory / number of cpus
553  */
554 uint_t tcp_free_list_max_cnt = 0;
555 
556 #define	TCP_XMIT_LOWATER	4096
557 #define	TCP_XMIT_HIWATER	49152
558 #define	TCP_RECV_LOWATER	2048
559 #define	TCP_RECV_HIWATER	49152
560 
561 /*
562  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
563  */
564 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
565 
566 #define	TIDUSZ	4096	/* transport interface data unit size */
567 
568 /*
569  * Bind hash list size and has function.  It has to be a power of 2 for
570  * hashing.
571  */
572 #define	TCP_BIND_FANOUT_SIZE	512
573 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
574 /*
575  * Size of listen and acceptor hash list.  It has to be a power of 2 for
576  * hashing.
577  */
578 #define	TCP_FANOUT_SIZE		256
579 
580 #ifdef	_ILP32
581 #define	TCP_ACCEPTOR_HASH(accid)					\
582 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
583 #else
584 #define	TCP_ACCEPTOR_HASH(accid)					\
585 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
586 #endif	/* _ILP32 */
587 
588 #define	IP_ADDR_CACHE_SIZE	2048
589 #define	IP_ADDR_CACHE_HASH(faddr)					\
590 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
591 
592 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
593 #define	TCP_HSP_HASH_SIZE 256
594 
595 #define	TCP_HSP_HASH(addr)					\
596 	(((addr>>24) ^ (addr >>16) ^			\
597 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
598 
599 /*
600  * TCP options struct returned from tcp_parse_options.
601  */
602 typedef struct tcp_opt_s {
603 	uint32_t	tcp_opt_mss;
604 	uint32_t	tcp_opt_wscale;
605 	uint32_t	tcp_opt_ts_val;
606 	uint32_t	tcp_opt_ts_ecr;
607 	tcp_t		*tcp;
608 } tcp_opt_t;
609 
610 /*
611  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
612  */
613 
614 #ifdef _BIG_ENDIAN
615 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
616 	(TCPOPT_TSTAMP << 8) | 10)
617 #else
618 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
619 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
620 #endif
621 
622 /*
623  * Flags returned from tcp_parse_options.
624  */
625 #define	TCP_OPT_MSS_PRESENT	1
626 #define	TCP_OPT_WSCALE_PRESENT	2
627 #define	TCP_OPT_TSTAMP_PRESENT	4
628 #define	TCP_OPT_SACK_OK_PRESENT	8
629 #define	TCP_OPT_SACK_PRESENT	16
630 
631 /* TCP option length */
632 #define	TCPOPT_NOP_LEN		1
633 #define	TCPOPT_MAXSEG_LEN	4
634 #define	TCPOPT_WS_LEN		3
635 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
636 #define	TCPOPT_TSTAMP_LEN	10
637 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
638 #define	TCPOPT_SACK_OK_LEN	2
639 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
640 #define	TCPOPT_REAL_SACK_LEN	4
641 #define	TCPOPT_MAX_SACK_LEN	36
642 #define	TCPOPT_HEADER_LEN	2
643 
644 /* TCP cwnd burst factor. */
645 #define	TCP_CWND_INFINITE	65535
646 #define	TCP_CWND_SS		3
647 #define	TCP_CWND_NORMAL		5
648 
649 /* Maximum TCP initial cwin (start/restart). */
650 #define	TCP_MAX_INIT_CWND	8
651 
652 /*
653  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
654  * either tcp_slow_start_initial or tcp_slow_start_after idle
655  * depending on the caller.  If the upper layer has not used the
656  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
657  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
658  * If the upper layer has changed set the tcp_init_cwnd, just use
659  * it to calculate the tcp_cwnd.
660  */
661 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
662 {									\
663 	if ((tcp)->tcp_init_cwnd == 0) {				\
664 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
665 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
666 	} else {							\
667 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
668 	}								\
669 	tcp->tcp_cwnd_cnt = 0;						\
670 }
671 
672 /* TCP Timer control structure */
673 typedef struct tcpt_s {
674 	pfv_t	tcpt_pfv;	/* The routine we are to call */
675 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
676 } tcpt_t;
677 
678 /* Host Specific Parameter structure */
679 typedef struct tcp_hsp {
680 	struct tcp_hsp	*tcp_hsp_next;
681 	in6_addr_t	tcp_hsp_addr_v6;
682 	in6_addr_t	tcp_hsp_subnet_v6;
683 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
684 	int32_t		tcp_hsp_sendspace;
685 	int32_t		tcp_hsp_recvspace;
686 	int32_t		tcp_hsp_tstamp;
687 } tcp_hsp_t;
688 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
689 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
690 
691 /*
692  * Functions called directly via squeue having a prototype of edesc_t.
693  */
694 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
696 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
697 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
698 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
699 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
700 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
702 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
703 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
704 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
705 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
706 
707 
708 /* Prototype for TCP functions */
709 static void	tcp_random_init(void);
710 int		tcp_random(void);
711 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
712 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
713 		    tcp_t *eager);
714 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
715 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
716     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
717     boolean_t user_specified);
718 static void	tcp_closei_local(tcp_t *tcp);
719 static void	tcp_close_detached(tcp_t *tcp);
720 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
721 			mblk_t *idmp, mblk_t **defermp);
722 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
723 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
724 		    in_port_t dstport, uint_t srcid);
725 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
726 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
727 		    uint32_t scope_id);
728 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
729 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
730 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
731 static char	*tcp_display(tcp_t *tcp, char *, char);
732 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
733 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
734 static void	tcp_eager_unlink(tcp_t *tcp);
735 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
736 		    int unixerr);
737 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
738 		    int tlierr, int unixerr);
739 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
740 		    cred_t *cr);
741 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
742 		    char *value, caddr_t cp, cred_t *cr);
743 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
744 		    char *value, caddr_t cp, cred_t *cr);
745 static int	tcp_tpistate(tcp_t *tcp);
746 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
747     int caller_holds_lock);
748 static void	tcp_bind_hash_remove(tcp_t *tcp);
749 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
750 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
751 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
752 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
753 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
754 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
755 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
756 void		tcp_g_q_setup(tcp_stack_t *);
757 void		tcp_g_q_create(tcp_stack_t *);
758 void		tcp_g_q_destroy(tcp_stack_t *);
759 static int	tcp_header_init_ipv4(tcp_t *tcp);
760 static int	tcp_header_init_ipv6(tcp_t *tcp);
761 int		tcp_init(tcp_t *tcp, queue_t *q);
762 static int	tcp_init_values(tcp_t *tcp);
763 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
764 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
765 		    t_scalar_t addr_length);
766 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
767 static void	tcp_ip_notify(tcp_t *tcp);
768 static mblk_t	*tcp_ire_mp(mblk_t *mp);
769 static void	tcp_iss_init(tcp_t *tcp);
770 static void	tcp_keepalive_killer(void *arg);
771 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
772 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
773 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
774 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
775 static boolean_t tcp_allow_connopt_set(int level, int name);
776 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
777 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
778 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
779 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
780 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
781 		    mblk_t *mblk);
782 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
783 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
784 		    uchar_t *ptr, uint_t len);
785 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
786 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
787     tcp_stack_t *);
788 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
789 		    caddr_t cp, cred_t *cr);
790 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
791 		    caddr_t cp, cred_t *cr);
792 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
793 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
794 		    caddr_t cp, cred_t *cr);
795 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
796 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
797 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
798 static void	tcp_reinit(tcp_t *tcp);
799 static void	tcp_reinit_values(tcp_t *tcp);
800 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
801 		    tcp_t *thisstream, cred_t *cr);
802 
803 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
804 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
805 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
806 static void	tcp_ss_rexmit(tcp_t *tcp);
807 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
808 static void	tcp_process_options(tcp_t *, tcph_t *);
809 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
810 static void	tcp_rsrv(queue_t *q);
811 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
812 static int	tcp_snmp_state(tcp_t *tcp);
813 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
814 		    cred_t *cr);
815 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
816 		    cred_t *cr);
817 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
818 		    cred_t *cr);
819 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
820 		    cred_t *cr);
821 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
822 		    cred_t *cr);
823 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
824 		    caddr_t cp, cred_t *cr);
825 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
826 		    caddr_t cp, cred_t *cr);
827 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
828 		    cred_t *cr);
829 static void	tcp_timer(void *arg);
830 static void	tcp_timer_callback(void *);
831 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
832     boolean_t random);
833 static in_port_t tcp_get_next_priv_port(const tcp_t *);
834 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
835 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
836 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
837 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
838 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
839 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
840 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
841 		    const int num_sack_blk, int *usable, uint_t *snxt,
842 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
843 		    const int mdt_thres);
844 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
845 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
846 		    const int num_sack_blk, int *usable, uint_t *snxt,
847 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
848 		    const int mdt_thres);
849 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
850 		    int num_sack_blk);
851 static void	tcp_wsrv(queue_t *q);
852 static int	tcp_xmit_end(tcp_t *tcp);
853 static void	tcp_ack_timer(void *arg);
854 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
855 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
856 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
857 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
858 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
859 		    uint32_t ack, int ctl);
860 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
861 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
862 static int	setmaxps(queue_t *q, int maxpsz);
863 static void	tcp_set_rto(tcp_t *, time_t);
864 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
865 		    boolean_t, boolean_t);
866 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
867 		    boolean_t ipsec_mctl);
868 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
869 		    char *opt, int optlen);
870 static int	tcp_build_hdrs(queue_t *, tcp_t *);
871 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
872 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
873 		    tcph_t *tcph);
874 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
875 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
876 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
877 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
878 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
879 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
880 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
881 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
882 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
883 		    const boolean_t, const uint32_t, const uint32_t,
884 		    const uint32_t, const uint32_t, tcp_stack_t *);
885 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
886 		    const uint_t, const uint_t, boolean_t *);
887 static mblk_t	*tcp_lso_info_mp(mblk_t *);
888 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
889 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
890 extern mblk_t	*tcp_timermp_alloc(int);
891 extern void	tcp_timermp_free(tcp_t *);
892 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
893 static void	tcp_stop_lingering(tcp_t *tcp);
894 static void	tcp_close_linger_timeout(void *arg);
895 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
896 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
897 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
898 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
899 static void	tcp_g_kstat_fini(kstat_t *);
900 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
901 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
902 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
903 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
904 static int	tcp_kstat_update(kstat_t *kp, int rw);
905 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
906 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
907 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
908 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
909 			tcph_t *tcph, mblk_t *idmp);
910 static squeue_func_t tcp_squeue_switch(int);
911 
912 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
913 static int	tcp_close(queue_t *, int);
914 static int	tcpclose_accept(queue_t *);
915 static int	tcp_modclose(queue_t *);
916 static void	tcp_wput_mod(queue_t *, mblk_t *);
917 
918 static void	tcp_squeue_add(squeue_t *);
919 static boolean_t tcp_zcopy_check(tcp_t *);
920 static void	tcp_zcopy_notify(tcp_t *);
921 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
922 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
923 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
924 
925 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
926 
927 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
928 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
929 
930 /*
931  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
932  *
933  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
934  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
935  * (defined in tcp.h) needs to be filled in and passed into the kernel
936  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
937  * structure contains the four-tuple of a TCP connection and a range of TCP
938  * states (specified by ac_start and ac_end). The use of wildcard addresses
939  * and ports is allowed. Connections with a matching four tuple and a state
940  * within the specified range will be aborted. The valid states for the
941  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
942  * inclusive.
943  *
944  * An application which has its connection aborted by this ioctl will receive
945  * an error that is dependent on the connection state at the time of the abort.
946  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
947  * though a RST packet has been received.  If the connection state is equal to
948  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
949  * and all resources associated with the connection will be freed.
950  */
951 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
952 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
953 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
954 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
955 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
956 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
957     boolean_t, tcp_stack_t *);
958 
959 static struct module_info tcp_rinfo =  {
960 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
961 };
962 
963 static struct module_info tcp_winfo =  {
964 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
965 };
966 
967 /*
968  * Entry points for TCP as a module. It only allows SNMP requests
969  * to pass through.
970  */
971 struct qinit tcp_mod_rinit = {
972 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
973 };
974 
975 struct qinit tcp_mod_winit = {
976 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
977 	&tcp_rinfo
978 };
979 
980 /*
981  * Entry points for TCP as a device. The normal case which supports
982  * the TCP functionality.
983  */
984 struct qinit tcp_rinit = {
985 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
986 };
987 
988 struct qinit tcp_winit = {
989 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
990 };
991 
992 /* Initial entry point for TCP in socket mode. */
993 struct qinit tcp_sock_winit = {
994 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
995 };
996 
997 /*
998  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
999  * an accept. Avoid allocating data structures since eager has already
1000  * been created.
1001  */
1002 struct qinit tcp_acceptor_rinit = {
1003 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1004 };
1005 
1006 struct qinit tcp_acceptor_winit = {
1007 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1008 };
1009 
1010 /*
1011  * Entry points for TCP loopback (read side only)
1012  */
1013 struct qinit tcp_loopback_rinit = {
1014 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1015 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1016 };
1017 
1018 struct streamtab tcpinfo = {
1019 	&tcp_rinit, &tcp_winit
1020 };
1021 
1022 /*
1023  * Have to ensure that tcp_g_q_close is not done by an
1024  * interrupt thread.
1025  */
1026 static taskq_t *tcp_taskq;
1027 
1028 /*
1029  * TCP has a private interface for other kernel modules to reserve a
1030  * port range for them to use.  Once reserved, TCP will not use any ports
1031  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1032  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1033  * has to be verified.
1034  *
1035  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1036  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1037  * range is [port a, port b] inclusive.  And each port range is between
1038  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1039  *
1040  * Note that the default anonymous port range starts from 32768.  There is
1041  * no port "collision" between that and the reserved port range.  If there
1042  * is port collision (because the default smallest anonymous port is lowered
1043  * or some apps specifically bind to ports in the reserved port range), the
1044  * system may not be able to reserve a port range even there are enough
1045  * unbound ports as a reserved port range contains consecutive ports .
1046  */
1047 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1048 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1049 #define	TCP_SMALLEST_RESERVED_PORT		10240
1050 #define	TCP_LARGEST_RESERVED_PORT		20480
1051 
1052 /* Structure to represent those reserved port ranges. */
1053 typedef struct tcp_rport_s {
1054 	in_port_t	lo_port;
1055 	in_port_t	hi_port;
1056 	tcp_t		**temp_tcp_array;
1057 } tcp_rport_t;
1058 
1059 /* Setable only in /etc/system. Move to ndd? */
1060 boolean_t tcp_icmp_source_quench = B_FALSE;
1061 
1062 /*
1063  * Following assumes TPI alignment requirements stay along 32 bit
1064  * boundaries
1065  */
1066 #define	ROUNDUP32(x) \
1067 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1068 
1069 /* Template for response to info request. */
1070 static struct T_info_ack tcp_g_t_info_ack = {
1071 	T_INFO_ACK,		/* PRIM_type */
1072 	0,			/* TSDU_size */
1073 	T_INFINITE,		/* ETSDU_size */
1074 	T_INVALID,		/* CDATA_size */
1075 	T_INVALID,		/* DDATA_size */
1076 	sizeof (sin_t),		/* ADDR_size */
1077 	0,			/* OPT_size - not initialized here */
1078 	TIDUSZ,			/* TIDU_size */
1079 	T_COTS_ORD,		/* SERV_type */
1080 	TCPS_IDLE,		/* CURRENT_state */
1081 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1082 };
1083 
1084 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1085 	T_INFO_ACK,		/* PRIM_type */
1086 	0,			/* TSDU_size */
1087 	T_INFINITE,		/* ETSDU_size */
1088 	T_INVALID,		/* CDATA_size */
1089 	T_INVALID,		/* DDATA_size */
1090 	sizeof (sin6_t),	/* ADDR_size */
1091 	0,			/* OPT_size - not initialized here */
1092 	TIDUSZ,		/* TIDU_size */
1093 	T_COTS_ORD,		/* SERV_type */
1094 	TCPS_IDLE,		/* CURRENT_state */
1095 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1096 };
1097 
1098 #define	MS	1L
1099 #define	SECONDS	(1000 * MS)
1100 #define	MINUTES	(60 * SECONDS)
1101 #define	HOURS	(60 * MINUTES)
1102 #define	DAYS	(24 * HOURS)
1103 
1104 #define	PARAM_MAX (~(uint32_t)0)
1105 
1106 /* Max size IP datagram is 64k - 1 */
1107 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1108 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1109 /* Max of the above */
1110 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1111 
1112 /* Largest TCP port number */
1113 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1114 
1115 /*
1116  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1117  * layer header.  It has to be a multiple of 4.
1118  */
1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1120 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1121 
1122 /*
1123  * All of these are alterable, within the min/max values given, at run time.
1124  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1125  * per the TCP spec.
1126  */
1127 /* BEGIN CSTYLED */
1128 static tcpparam_t	lcl_tcp_param_arr[] = {
1129  /*min		max		value		name */
1130  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1131  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1132  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1133  { 1,		1024,		1,		"tcp_conn_req_min" },
1134  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1135  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1136  { 0,		10,		0,		"tcp_debug" },
1137  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1138  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1139  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1140  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1141  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1142  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1143  { 1,		255,		64,		"tcp_ipv4_ttl"},
1144  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1145  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1146  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1147  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1148  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1149  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1150  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1151  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1152  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1153  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1154  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1155  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1156  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1157  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1158  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1159  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1160  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1161  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1162  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1163  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1164  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1165  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1166  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1167  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1168 /*
1169  * Question:  What default value should I set for tcp_strong_iss?
1170  */
1171  { 0,		2,		1,		"tcp_strong_iss"},
1172  { 0,		65536,		20,		"tcp_rtt_updates"},
1173  { 0,		1,		1,		"tcp_wscale_always"},
1174  { 0,		1,		0,		"tcp_tstamp_always"},
1175  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1176  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1177  { 0,		16,		2,		"tcp_deferred_acks_max"},
1178  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1179  { 1,		4,		4,		"tcp_slow_start_initial"},
1180  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1181  { 0,		2,		2,		"tcp_sack_permitted"},
1182  { 0,		1,		0,		"tcp_trace"},
1183  { 0,		1,		1,		"tcp_compression_enabled"},
1184  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1185  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1186  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1187  { 0,		1,		0,		"tcp_rev_src_routes"},
1188  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1189  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1190  { 0,		16,		8,		"tcp_local_dacks_max"},
1191  { 0,		2,		1,		"tcp_ecn_permitted"},
1192  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1193  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1194  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1195  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1196  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1197 };
1198 /* END CSTYLED */
1199 
1200 /*
1201  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1202  * each header fragment in the header buffer.  Each parameter value has
1203  * to be a multiple of 4 (32-bit aligned).
1204  */
1205 static tcpparam_t lcl_tcp_mdt_head_param =
1206 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1207 static tcpparam_t lcl_tcp_mdt_tail_param =
1208 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1209 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1210 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1211 
1212 /*
1213  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1214  * the maximum number of payload buffers associated per Multidata.
1215  */
1216 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1217 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1218 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1219 
1220 /* Round up the value to the nearest mss. */
1221 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1222 
1223 /*
1224  * Set ECN capable transport (ECT) code point in IP header.
1225  *
1226  * Note that there are 2 ECT code points '01' and '10', which are called
1227  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1228  * point ECT(0) for TCP as described in RFC 2481.
1229  */
1230 #define	SET_ECT(tcp, iph) \
1231 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1232 		/* We need to clear the code point first. */ \
1233 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1234 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1235 	} else { \
1236 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1237 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1238 	}
1239 
1240 /*
1241  * The format argument to pass to tcp_display().
1242  * DISP_PORT_ONLY means that the returned string has only port info.
1243  * DISP_ADDR_AND_PORT means that the returned string also contains the
1244  * remote and local IP address.
1245  */
1246 #define	DISP_PORT_ONLY		1
1247 #define	DISP_ADDR_AND_PORT	2
1248 
1249 #define	NDD_TOO_QUICK_MSG \
1250 	"ndd get info rate too high for non-privileged users, try again " \
1251 	"later.\n"
1252 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1253 
1254 #define	IS_VMLOANED_MBLK(mp) \
1255 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1256 
1257 
1258 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1259 boolean_t tcp_mdt_chain = B_TRUE;
1260 
1261 /*
1262  * MDT threshold in the form of effective send MSS multiplier; we take
1263  * the MDT path if the amount of unsent data exceeds the threshold value
1264  * (default threshold is 1*SMSS).
1265  */
1266 uint_t tcp_mdt_smss_threshold = 1;
1267 
1268 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1269 
1270 /*
1271  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1272  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1273  * determined dynamically during tcp_adapt_ire(), which is the default.
1274  */
1275 boolean_t tcp_static_maxpsz = B_FALSE;
1276 
1277 /* Setable in /etc/system */
1278 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1279 uint32_t tcp_random_anon_port = 1;
1280 
1281 /*
1282  * To reach to an eager in Q0 which can be dropped due to an incoming
1283  * new SYN request when Q0 is full, a new doubly linked list is
1284  * introduced. This list allows to select an eager from Q0 in O(1) time.
1285  * This is needed to avoid spending too much time walking through the
1286  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1287  * this new list has to be a member of Q0.
1288  * This list is headed by listener's tcp_t. When the list is empty,
1289  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1290  * of listener's tcp_t point to listener's tcp_t itself.
1291  *
1292  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1293  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1294  * These macros do not affect the eager's membership to Q0.
1295  */
1296 
1297 
1298 #define	MAKE_DROPPABLE(listener, eager)					\
1299 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1300 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1301 		    = (eager);						\
1302 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1303 		(eager)->tcp_eager_next_drop_q0 =			\
1304 		    (listener)->tcp_eager_next_drop_q0;			\
1305 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1306 	}
1307 
1308 #define	MAKE_UNDROPPABLE(eager)						\
1309 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1310 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1311 		    = (eager)->tcp_eager_prev_drop_q0;			\
1312 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1313 		    = (eager)->tcp_eager_next_drop_q0;			\
1314 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1315 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1316 	}
1317 
1318 /*
1319  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1320  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1321  * data, TCP will not respond with an ACK.  RFC 793 requires that
1322  * TCP responds with an ACK for such a bogus ACK.  By not following
1323  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1324  * an attacker successfully spoofs an acceptable segment to our
1325  * peer; or when our peer is "confused."
1326  */
1327 uint32_t tcp_drop_ack_unsent_cnt = 10;
1328 
1329 /*
1330  * Hook functions to enable cluster networking
1331  * On non-clustered systems these vectors must always be NULL.
1332  */
1333 
1334 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1335 			    uint8_t *laddrp, in_port_t lport) = NULL;
1336 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1337 			    uint8_t *laddrp, in_port_t lport) = NULL;
1338 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1342 			    uint8_t *laddrp, in_port_t lport,
1343 			    uint8_t *faddrp, in_port_t fport) = NULL;
1344 
1345 /*
1346  * The following are defined in ip.c
1347  */
1348 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1349 				uint8_t *laddrp);
1350 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1351 				uint8_t *laddrp, uint8_t *faddrp);
1352 
1353 #define	CL_INET_CONNECT(tcp)		{			\
1354 	if (cl_inet_connect != NULL) {				\
1355 		/*						\
1356 		 * Running in cluster mode - register active connection	\
1357 		 * information						\
1358 		 */							\
1359 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1360 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1361 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1362 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1363 				    (in_port_t)(tcp)->tcp_lport,	\
1364 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1365 				    (in_port_t)(tcp)->tcp_fport);	\
1366 			}						\
1367 		} else {						\
1368 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1369 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1370 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1371 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1372 				    (in_port_t)(tcp)->tcp_lport,	\
1373 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1374 				    (in_port_t)(tcp)->tcp_fport);	\
1375 			}						\
1376 		}							\
1377 	}								\
1378 }
1379 
1380 #define	CL_INET_DISCONNECT(tcp)	{				\
1381 	if (cl_inet_disconnect != NULL) {				\
1382 		/*							\
1383 		 * Running in cluster mode - deregister active		\
1384 		 * connection information				\
1385 		 */							\
1386 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1387 			if ((tcp)->tcp_ip_src != 0) {			\
1388 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1389 				    AF_INET,				\
1390 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1391 				    (in_port_t)(tcp)->tcp_lport,	\
1392 				    (uint8_t *)				\
1393 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1394 				    (in_port_t)(tcp)->tcp_fport);	\
1395 			}						\
1396 		} else {						\
1397 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1398 			    &(tcp)->tcp_ip_src_v6)) {			\
1399 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1400 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1401 				    (in_port_t)(tcp)->tcp_lport,	\
1402 				    (uint8_t *)				\
1403 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1404 				    (in_port_t)(tcp)->tcp_fport);	\
1405 			}						\
1406 		}							\
1407 	}								\
1408 }
1409 
1410 /*
1411  * Cluster networking hook for traversing current connection list.
1412  * This routine is used to extract the current list of live connections
1413  * which must continue to to be dispatched to this node.
1414  */
1415 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1416 
1417 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1418     void *arg, tcp_stack_t *tcps);
1419 
1420 /*
1421  * Figure out the value of window scale opton.  Note that the rwnd is
1422  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1423  * We cannot find the scale value and then do a round up of tcp_rwnd
1424  * because the scale value may not be correct after that.
1425  *
1426  * Set the compiler flag to make this function inline.
1427  */
1428 static void
1429 tcp_set_ws_value(tcp_t *tcp)
1430 {
1431 	int i;
1432 	uint32_t rwnd = tcp->tcp_rwnd;
1433 
1434 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1435 	    i++, rwnd >>= 1)
1436 		;
1437 	tcp->tcp_rcv_ws = i;
1438 }
1439 
1440 /*
1441  * Remove a connection from the list of detached TIME_WAIT connections.
1442  * It returns B_FALSE if it can't remove the connection from the list
1443  * as the connection has already been removed from the list due to an
1444  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1445  */
1446 static boolean_t
1447 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1448 {
1449 	boolean_t	locked = B_FALSE;
1450 
1451 	if (tcp_time_wait == NULL) {
1452 		tcp_time_wait = *((tcp_squeue_priv_t **)
1453 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1454 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1455 		locked = B_TRUE;
1456 	} else {
1457 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1458 	}
1459 
1460 	if (tcp->tcp_time_wait_expire == 0) {
1461 		ASSERT(tcp->tcp_time_wait_next == NULL);
1462 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1463 		if (locked)
1464 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1465 		return (B_FALSE);
1466 	}
1467 	ASSERT(TCP_IS_DETACHED(tcp));
1468 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1469 
1470 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1471 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1472 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1473 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1474 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1475 			    NULL;
1476 		} else {
1477 			tcp_time_wait->tcp_time_wait_tail = NULL;
1478 		}
1479 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1480 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1481 		ASSERT(tcp->tcp_time_wait_next == NULL);
1482 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1483 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1484 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1485 	} else {
1486 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1487 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1488 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1489 		    tcp->tcp_time_wait_next;
1490 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1491 		    tcp->tcp_time_wait_prev;
1492 	}
1493 	tcp->tcp_time_wait_next = NULL;
1494 	tcp->tcp_time_wait_prev = NULL;
1495 	tcp->tcp_time_wait_expire = 0;
1496 
1497 	if (locked)
1498 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1499 	return (B_TRUE);
1500 }
1501 
1502 /*
1503  * Add a connection to the list of detached TIME_WAIT connections
1504  * and set its time to expire.
1505  */
1506 static void
1507 tcp_time_wait_append(tcp_t *tcp)
1508 {
1509 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1510 	tcp_squeue_priv_t *tcp_time_wait =
1511 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1512 	    SQPRIVATE_TCP));
1513 
1514 	tcp_timers_stop(tcp);
1515 
1516 	/* Freed above */
1517 	ASSERT(tcp->tcp_timer_tid == 0);
1518 	ASSERT(tcp->tcp_ack_tid == 0);
1519 
1520 	/* must have happened at the time of detaching the tcp */
1521 	ASSERT(tcp->tcp_ptpahn == NULL);
1522 	ASSERT(tcp->tcp_flow_stopped == 0);
1523 	ASSERT(tcp->tcp_time_wait_next == NULL);
1524 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1525 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1526 	ASSERT(tcp->tcp_listener == NULL);
1527 
1528 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1529 	/*
1530 	 * The value computed below in tcp->tcp_time_wait_expire may
1531 	 * appear negative or wrap around. That is ok since our
1532 	 * interest is only in the difference between the current lbolt
1533 	 * value and tcp->tcp_time_wait_expire. But the value should not
1534 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1535 	 * The corresponding comparison in tcp_time_wait_collector() uses
1536 	 * modular arithmetic.
1537 	 */
1538 	tcp->tcp_time_wait_expire +=
1539 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1540 	if (tcp->tcp_time_wait_expire == 0)
1541 		tcp->tcp_time_wait_expire = 1;
1542 
1543 	ASSERT(TCP_IS_DETACHED(tcp));
1544 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1545 	ASSERT(tcp->tcp_time_wait_next == NULL);
1546 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1547 	TCP_DBGSTAT(tcps, tcp_time_wait);
1548 
1549 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1550 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1551 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1552 		tcp_time_wait->tcp_time_wait_head = tcp;
1553 	} else {
1554 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1555 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1556 		    TCPS_TIME_WAIT);
1557 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1558 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1559 	}
1560 	tcp_time_wait->tcp_time_wait_tail = tcp;
1561 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1562 }
1563 
1564 /* ARGSUSED */
1565 void
1566 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1567 {
1568 	conn_t	*connp = (conn_t *)arg;
1569 	tcp_t	*tcp = connp->conn_tcp;
1570 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1571 
1572 	ASSERT(tcp != NULL);
1573 	if (tcp->tcp_state == TCPS_CLOSED) {
1574 		return;
1575 	}
1576 
1577 	ASSERT((tcp->tcp_family == AF_INET &&
1578 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1579 	    (tcp->tcp_family == AF_INET6 &&
1580 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1581 	    tcp->tcp_ipversion == IPV6_VERSION)));
1582 	ASSERT(!tcp->tcp_listener);
1583 
1584 	TCP_STAT(tcps, tcp_time_wait_reap);
1585 	ASSERT(TCP_IS_DETACHED(tcp));
1586 
1587 	/*
1588 	 * Because they have no upstream client to rebind or tcp_close()
1589 	 * them later, we axe the connection here and now.
1590 	 */
1591 	tcp_close_detached(tcp);
1592 }
1593 
1594 /*
1595  * Remove cached/latched IPsec references.
1596  */
1597 void
1598 tcp_ipsec_cleanup(tcp_t *tcp)
1599 {
1600 	conn_t		*connp = tcp->tcp_connp;
1601 
1602 	if (connp->conn_flags & IPCL_TCPCONN) {
1603 		if (connp->conn_latch != NULL) {
1604 			IPLATCH_REFRELE(connp->conn_latch,
1605 			    connp->conn_netstack);
1606 			connp->conn_latch = NULL;
1607 		}
1608 		if (connp->conn_policy != NULL) {
1609 			IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1610 			connp->conn_policy = NULL;
1611 		}
1612 	}
1613 }
1614 
1615 /*
1616  * Cleaup before placing on free list.
1617  * Disassociate from the netstack/tcp_stack_t since the freelist
1618  * is per squeue and not per netstack.
1619  */
1620 void
1621 tcp_cleanup(tcp_t *tcp)
1622 {
1623 	mblk_t		*mp;
1624 	char		*tcp_iphc;
1625 	int		tcp_iphc_len;
1626 	int		tcp_hdr_grown;
1627 	tcp_sack_info_t	*tcp_sack_info;
1628 	conn_t		*connp = tcp->tcp_connp;
1629 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1630 	netstack_t	*ns = tcps->tcps_netstack;
1631 
1632 	tcp_bind_hash_remove(tcp);
1633 
1634 	/* Cleanup that which needs the netstack first */
1635 	tcp_ipsec_cleanup(tcp);
1636 
1637 	tcp_free(tcp);
1638 
1639 	/* Release any SSL context */
1640 	if (tcp->tcp_kssl_ent != NULL) {
1641 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1642 		tcp->tcp_kssl_ent = NULL;
1643 	}
1644 
1645 	if (tcp->tcp_kssl_ctx != NULL) {
1646 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1647 		tcp->tcp_kssl_ctx = NULL;
1648 	}
1649 	tcp->tcp_kssl_pending = B_FALSE;
1650 
1651 	conn_delete_ire(connp, NULL);
1652 
1653 	/*
1654 	 * Since we will bzero the entire structure, we need to
1655 	 * remove it and reinsert it in global hash list. We
1656 	 * know the walkers can't get to this conn because we
1657 	 * had set CONDEMNED flag earlier and checked reference
1658 	 * under conn_lock so walker won't pick it and when we
1659 	 * go the ipcl_globalhash_remove() below, no walker
1660 	 * can get to it.
1661 	 */
1662 	ipcl_globalhash_remove(connp);
1663 
1664 	/*
1665 	 * Now it is safe to decrement the reference counts.
1666 	 * This might be the last reference on the netstack and TCPS
1667 	 * in which case it will cause the tcp_g_q_close and
1668 	 * the freeing of the IP Instance.
1669 	 */
1670 	connp->conn_netstack = NULL;
1671 	netstack_rele(ns);
1672 	ASSERT(tcps != NULL);
1673 	tcp->tcp_tcps = NULL;
1674 	TCPS_REFRELE(tcps);
1675 
1676 	/* Save some state */
1677 	mp = tcp->tcp_timercache;
1678 
1679 	tcp_sack_info = tcp->tcp_sack_info;
1680 	tcp_iphc = tcp->tcp_iphc;
1681 	tcp_iphc_len = tcp->tcp_iphc_len;
1682 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1683 
1684 	if (connp->conn_cred != NULL)
1685 		crfree(connp->conn_cred);
1686 	if (connp->conn_peercred != NULL)
1687 		crfree(connp->conn_peercred);
1688 	bzero(connp, sizeof (conn_t));
1689 	bzero(tcp, sizeof (tcp_t));
1690 
1691 	/* restore the state */
1692 	tcp->tcp_timercache = mp;
1693 
1694 	tcp->tcp_sack_info = tcp_sack_info;
1695 	tcp->tcp_iphc = tcp_iphc;
1696 	tcp->tcp_iphc_len = tcp_iphc_len;
1697 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1698 
1699 
1700 	tcp->tcp_connp = connp;
1701 
1702 	connp->conn_tcp = tcp;
1703 	connp->conn_flags = IPCL_TCPCONN;
1704 	connp->conn_state_flags = CONN_INCIPIENT;
1705 	connp->conn_ulp = IPPROTO_TCP;
1706 	connp->conn_ref = 1;
1707 }
1708 
1709 /*
1710  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1711  * is done forwards from the head.
1712  * This walks all stack instances since
1713  * tcp_time_wait remains global across all stacks.
1714  */
1715 /* ARGSUSED */
1716 void
1717 tcp_time_wait_collector(void *arg)
1718 {
1719 	tcp_t *tcp;
1720 	clock_t now;
1721 	mblk_t *mp;
1722 	conn_t *connp;
1723 	kmutex_t *lock;
1724 	boolean_t removed;
1725 
1726 	squeue_t *sqp = (squeue_t *)arg;
1727 	tcp_squeue_priv_t *tcp_time_wait =
1728 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1729 
1730 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1731 	tcp_time_wait->tcp_time_wait_tid = 0;
1732 
1733 	if (tcp_time_wait->tcp_free_list != NULL &&
1734 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1735 		TCP_G_STAT(tcp_freelist_cleanup);
1736 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1737 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1738 			tcp->tcp_time_wait_next = NULL;
1739 			tcp_time_wait->tcp_free_list_cnt--;
1740 			ASSERT(tcp->tcp_tcps == NULL);
1741 			CONN_DEC_REF(tcp->tcp_connp);
1742 		}
1743 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1744 	}
1745 
1746 	/*
1747 	 * In order to reap time waits reliably, we should use a
1748 	 * source of time that is not adjustable by the user -- hence
1749 	 * the call to ddi_get_lbolt().
1750 	 */
1751 	now = ddi_get_lbolt();
1752 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1753 		/*
1754 		 * Compare times using modular arithmetic, since
1755 		 * lbolt can wrapover.
1756 		 */
1757 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1758 			break;
1759 		}
1760 
1761 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1762 		ASSERT(removed);
1763 
1764 		connp = tcp->tcp_connp;
1765 		ASSERT(connp->conn_fanout != NULL);
1766 		lock = &connp->conn_fanout->connf_lock;
1767 		/*
1768 		 * This is essentially a TW reclaim fast path optimization for
1769 		 * performance where the timewait collector checks under the
1770 		 * fanout lock (so that no one else can get access to the
1771 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1772 		 * the classifier hash list. If ref count is indeed 2, we can
1773 		 * just remove the conn under the fanout lock and avoid
1774 		 * cleaning up the conn under the squeue, provided that
1775 		 * clustering callbacks are not enabled. If clustering is
1776 		 * enabled, we need to make the clustering callback before
1777 		 * setting the CONDEMNED flag and after dropping all locks and
1778 		 * so we forego this optimization and fall back to the slow
1779 		 * path. Also please see the comments in tcp_closei_local
1780 		 * regarding the refcnt logic.
1781 		 *
1782 		 * Since we are holding the tcp_time_wait_lock, its better
1783 		 * not to block on the fanout_lock because other connections
1784 		 * can't add themselves to time_wait list. So we do a
1785 		 * tryenter instead of mutex_enter.
1786 		 */
1787 		if (mutex_tryenter(lock)) {
1788 			mutex_enter(&connp->conn_lock);
1789 			if ((connp->conn_ref == 2) &&
1790 			    (cl_inet_disconnect == NULL)) {
1791 				ipcl_hash_remove_locked(connp,
1792 				    connp->conn_fanout);
1793 				/*
1794 				 * Set the CONDEMNED flag now itself so that
1795 				 * the refcnt cannot increase due to any
1796 				 * walker. But we have still not cleaned up
1797 				 * conn_ire_cache. This is still ok since
1798 				 * we are going to clean it up in tcp_cleanup
1799 				 * immediately and any interface unplumb
1800 				 * thread will wait till the ire is blown away
1801 				 */
1802 				connp->conn_state_flags |= CONN_CONDEMNED;
1803 				mutex_exit(lock);
1804 				mutex_exit(&connp->conn_lock);
1805 				if (tcp_time_wait->tcp_free_list_cnt <
1806 				    tcp_free_list_max_cnt) {
1807 					/* Add to head of tcp_free_list */
1808 					mutex_exit(
1809 					    &tcp_time_wait->tcp_time_wait_lock);
1810 					tcp_cleanup(tcp);
1811 					ASSERT(connp->conn_latch == NULL);
1812 					ASSERT(connp->conn_policy == NULL);
1813 					ASSERT(tcp->tcp_tcps == NULL);
1814 					ASSERT(connp->conn_netstack == NULL);
1815 
1816 					mutex_enter(
1817 					    &tcp_time_wait->tcp_time_wait_lock);
1818 					tcp->tcp_time_wait_next =
1819 					    tcp_time_wait->tcp_free_list;
1820 					tcp_time_wait->tcp_free_list = tcp;
1821 					tcp_time_wait->tcp_free_list_cnt++;
1822 					continue;
1823 				} else {
1824 					/* Do not add to tcp_free_list */
1825 					mutex_exit(
1826 					    &tcp_time_wait->tcp_time_wait_lock);
1827 					tcp_bind_hash_remove(tcp);
1828 					conn_delete_ire(tcp->tcp_connp, NULL);
1829 					tcp_ipsec_cleanup(tcp);
1830 					CONN_DEC_REF(tcp->tcp_connp);
1831 				}
1832 			} else {
1833 				CONN_INC_REF_LOCKED(connp);
1834 				mutex_exit(lock);
1835 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1836 				mutex_exit(&connp->conn_lock);
1837 				/*
1838 				 * We can reuse the closemp here since conn has
1839 				 * detached (otherwise we wouldn't even be in
1840 				 * time_wait list). tcp_closemp_used can safely
1841 				 * be changed without taking a lock as no other
1842 				 * thread can concurrently access it at this
1843 				 * point in the connection lifecycle.
1844 				 */
1845 
1846 				if (tcp->tcp_closemp.b_prev == NULL)
1847 					tcp->tcp_closemp_used = B_TRUE;
1848 				else
1849 					cmn_err(CE_PANIC,
1850 					    "tcp_timewait_collector: "
1851 					    "concurrent use of tcp_closemp: "
1852 					    "connp %p tcp %p\n", (void *)connp,
1853 					    (void *)tcp);
1854 
1855 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1856 				mp = &tcp->tcp_closemp;
1857 				squeue_fill(connp->conn_sqp, mp,
1858 				    tcp_timewait_output, connp,
1859 				    SQTAG_TCP_TIMEWAIT);
1860 			}
1861 		} else {
1862 			mutex_enter(&connp->conn_lock);
1863 			CONN_INC_REF_LOCKED(connp);
1864 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1865 			mutex_exit(&connp->conn_lock);
1866 			/*
1867 			 * We can reuse the closemp here since conn has
1868 			 * detached (otherwise we wouldn't even be in
1869 			 * time_wait list). tcp_closemp_used can safely
1870 			 * be changed without taking a lock as no other
1871 			 * thread can concurrently access it at this
1872 			 * point in the connection lifecycle.
1873 			 */
1874 
1875 			if (tcp->tcp_closemp.b_prev == NULL)
1876 				tcp->tcp_closemp_used = B_TRUE;
1877 			else
1878 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1879 				    "concurrent use of tcp_closemp: "
1880 				    "connp %p tcp %p\n", (void *)connp,
1881 				    (void *)tcp);
1882 
1883 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1884 			mp = &tcp->tcp_closemp;
1885 			squeue_fill(connp->conn_sqp, mp,
1886 			    tcp_timewait_output, connp, 0);
1887 		}
1888 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1889 	}
1890 
1891 	if (tcp_time_wait->tcp_free_list != NULL)
1892 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1893 
1894 	tcp_time_wait->tcp_time_wait_tid =
1895 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1896 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1897 }
1898 /*
1899  * Reply to a clients T_CONN_RES TPI message. This function
1900  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1901  * on the acceptor STREAM and processed in tcp_wput_accept().
1902  * Read the block comment on top of tcp_conn_request().
1903  */
1904 static void
1905 tcp_accept(tcp_t *listener, mblk_t *mp)
1906 {
1907 	tcp_t	*acceptor;
1908 	tcp_t	*eager;
1909 	tcp_t   *tcp;
1910 	struct T_conn_res	*tcr;
1911 	t_uscalar_t	acceptor_id;
1912 	t_scalar_t	seqnum;
1913 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1914 	mblk_t	*ok_mp;
1915 	mblk_t	*mp1;
1916 	tcp_stack_t	*tcps = listener->tcp_tcps;
1917 
1918 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1919 		tcp_err_ack(listener, mp, TPROTO, 0);
1920 		return;
1921 	}
1922 	tcr = (struct T_conn_res *)mp->b_rptr;
1923 
1924 	/*
1925 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1926 	 * read side queue of the streams device underneath us i.e. the
1927 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1928 	 * look it up in the queue_hash.  Under LP64 it sends down the
1929 	 * minor_t of the accepting endpoint.
1930 	 *
1931 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1932 	 * fanout hash lock is held.
1933 	 * This prevents any thread from entering the acceptor queue from
1934 	 * below (since it has not been hard bound yet i.e. any inbound
1935 	 * packets will arrive on the listener or default tcp queue and
1936 	 * go through tcp_lookup).
1937 	 * The CONN_INC_REF will prevent the acceptor from closing.
1938 	 *
1939 	 * XXX It is still possible for a tli application to send down data
1940 	 * on the accepting stream while another thread calls t_accept.
1941 	 * This should not be a problem for well-behaved applications since
1942 	 * the T_OK_ACK is sent after the queue swapping is completed.
1943 	 *
1944 	 * If the accepting fd is the same as the listening fd, avoid
1945 	 * queue hash lookup since that will return an eager listener in a
1946 	 * already established state.
1947 	 */
1948 	acceptor_id = tcr->ACCEPTOR_id;
1949 	mutex_enter(&listener->tcp_eager_lock);
1950 	if (listener->tcp_acceptor_id == acceptor_id) {
1951 		eager = listener->tcp_eager_next_q;
1952 		/* only count how many T_CONN_INDs so don't count q0 */
1953 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1954 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1955 			mutex_exit(&listener->tcp_eager_lock);
1956 			tcp_err_ack(listener, mp, TBADF, 0);
1957 			return;
1958 		}
1959 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1960 			/* Throw away all the eagers on q0. */
1961 			tcp_eager_cleanup(listener, 1);
1962 		}
1963 		if (listener->tcp_syn_defense) {
1964 			listener->tcp_syn_defense = B_FALSE;
1965 			if (listener->tcp_ip_addr_cache != NULL) {
1966 				kmem_free(listener->tcp_ip_addr_cache,
1967 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1968 				listener->tcp_ip_addr_cache = NULL;
1969 			}
1970 		}
1971 		/*
1972 		 * Transfer tcp_conn_req_max to the eager so that when
1973 		 * a disconnect occurs we can revert the endpoint to the
1974 		 * listen state.
1975 		 */
1976 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1977 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1978 		/*
1979 		 * Get a reference on the acceptor just like the
1980 		 * tcp_acceptor_hash_lookup below.
1981 		 */
1982 		acceptor = listener;
1983 		CONN_INC_REF(acceptor->tcp_connp);
1984 	} else {
1985 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1986 		if (acceptor == NULL) {
1987 			if (listener->tcp_debug) {
1988 				(void) strlog(TCP_MOD_ID, 0, 1,
1989 				    SL_ERROR|SL_TRACE,
1990 				    "tcp_accept: did not find acceptor 0x%x\n",
1991 				    acceptor_id);
1992 			}
1993 			mutex_exit(&listener->tcp_eager_lock);
1994 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1995 			return;
1996 		}
1997 		/*
1998 		 * Verify acceptor state. The acceptable states for an acceptor
1999 		 * include TCPS_IDLE and TCPS_BOUND.
2000 		 */
2001 		switch (acceptor->tcp_state) {
2002 		case TCPS_IDLE:
2003 			/* FALLTHRU */
2004 		case TCPS_BOUND:
2005 			break;
2006 		default:
2007 			CONN_DEC_REF(acceptor->tcp_connp);
2008 			mutex_exit(&listener->tcp_eager_lock);
2009 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2010 			return;
2011 		}
2012 	}
2013 
2014 	/* The listener must be in TCPS_LISTEN */
2015 	if (listener->tcp_state != TCPS_LISTEN) {
2016 		CONN_DEC_REF(acceptor->tcp_connp);
2017 		mutex_exit(&listener->tcp_eager_lock);
2018 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2019 		return;
2020 	}
2021 
2022 	/*
2023 	 * Rendezvous with an eager connection request packet hanging off
2024 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2025 	 * tcp structure when the connection packet arrived in
2026 	 * tcp_conn_request().
2027 	 */
2028 	seqnum = tcr->SEQ_number;
2029 	eager = listener;
2030 	do {
2031 		eager = eager->tcp_eager_next_q;
2032 		if (eager == NULL) {
2033 			CONN_DEC_REF(acceptor->tcp_connp);
2034 			mutex_exit(&listener->tcp_eager_lock);
2035 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2036 			return;
2037 		}
2038 	} while (eager->tcp_conn_req_seqnum != seqnum);
2039 	mutex_exit(&listener->tcp_eager_lock);
2040 
2041 	/*
2042 	 * At this point, both acceptor and listener have 2 ref
2043 	 * that they begin with. Acceptor has one additional ref
2044 	 * we placed in lookup while listener has 3 additional
2045 	 * ref for being behind the squeue (tcp_accept() is
2046 	 * done on listener's squeue); being in classifier hash;
2047 	 * and eager's ref on listener.
2048 	 */
2049 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2050 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2051 
2052 	/*
2053 	 * The eager at this point is set in its own squeue and
2054 	 * could easily have been killed (tcp_accept_finish will
2055 	 * deal with that) because of a TH_RST so we can only
2056 	 * ASSERT for a single ref.
2057 	 */
2058 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2059 
2060 	/* Pre allocate the stroptions mblk also */
2061 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2062 	if (opt_mp == NULL) {
2063 		CONN_DEC_REF(acceptor->tcp_connp);
2064 		CONN_DEC_REF(eager->tcp_connp);
2065 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2066 		return;
2067 	}
2068 	DB_TYPE(opt_mp) = M_SETOPTS;
2069 	opt_mp->b_wptr += sizeof (struct stroptions);
2070 
2071 	/*
2072 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2073 	 * from listener to acceptor. The message is chained on opt_mp
2074 	 * which will be sent onto eager's squeue.
2075 	 */
2076 	if (listener->tcp_bound_if != 0) {
2077 		/* allocate optmgmt req */
2078 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2079 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2080 		    sizeof (int));
2081 		if (mp1 != NULL)
2082 			linkb(opt_mp, mp1);
2083 	}
2084 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2085 		uint_t on = 1;
2086 
2087 		/* allocate optmgmt req */
2088 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2089 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2090 		if (mp1 != NULL)
2091 			linkb(opt_mp, mp1);
2092 	}
2093 
2094 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2095 	if ((mp1 = copymsg(mp)) == NULL) {
2096 		CONN_DEC_REF(acceptor->tcp_connp);
2097 		CONN_DEC_REF(eager->tcp_connp);
2098 		freemsg(opt_mp);
2099 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2100 		return;
2101 	}
2102 
2103 	tcr = (struct T_conn_res *)mp1->b_rptr;
2104 
2105 	/*
2106 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2107 	 * which allocates a larger mblk and appends the new
2108 	 * local address to the ok_ack.  The address is copied by
2109 	 * soaccept() for getsockname().
2110 	 */
2111 	{
2112 		int extra;
2113 
2114 		extra = (eager->tcp_family == AF_INET) ?
2115 		    sizeof (sin_t) : sizeof (sin6_t);
2116 
2117 		/*
2118 		 * Try to re-use mp, if possible.  Otherwise, allocate
2119 		 * an mblk and return it as ok_mp.  In any case, mp
2120 		 * is no longer usable upon return.
2121 		 */
2122 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2123 			CONN_DEC_REF(acceptor->tcp_connp);
2124 			CONN_DEC_REF(eager->tcp_connp);
2125 			freemsg(opt_mp);
2126 			/* Original mp has been freed by now, so use mp1 */
2127 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2128 			return;
2129 		}
2130 
2131 		mp = NULL;	/* We should never use mp after this point */
2132 
2133 		switch (extra) {
2134 		case sizeof (sin_t): {
2135 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2136 
2137 				ok_mp->b_wptr += extra;
2138 				sin->sin_family = AF_INET;
2139 				sin->sin_port = eager->tcp_lport;
2140 				sin->sin_addr.s_addr =
2141 				    eager->tcp_ipha->ipha_src;
2142 				break;
2143 			}
2144 		case sizeof (sin6_t): {
2145 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2146 
2147 				ok_mp->b_wptr += extra;
2148 				sin6->sin6_family = AF_INET6;
2149 				sin6->sin6_port = eager->tcp_lport;
2150 				if (eager->tcp_ipversion == IPV4_VERSION) {
2151 					sin6->sin6_flowinfo = 0;
2152 					IN6_IPADDR_TO_V4MAPPED(
2153 					    eager->tcp_ipha->ipha_src,
2154 					    &sin6->sin6_addr);
2155 				} else {
2156 					ASSERT(eager->tcp_ip6h != NULL);
2157 					sin6->sin6_flowinfo =
2158 					    eager->tcp_ip6h->ip6_vcf &
2159 					    ~IPV6_VERS_AND_FLOW_MASK;
2160 					sin6->sin6_addr =
2161 					    eager->tcp_ip6h->ip6_src;
2162 				}
2163 				sin6->sin6_scope_id = 0;
2164 				sin6->__sin6_src_id = 0;
2165 				break;
2166 			}
2167 		default:
2168 			break;
2169 		}
2170 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2171 	}
2172 
2173 	/*
2174 	 * If there are no options we know that the T_CONN_RES will
2175 	 * succeed. However, we can't send the T_OK_ACK upstream until
2176 	 * the tcp_accept_swap is done since it would be dangerous to
2177 	 * let the application start using the new fd prior to the swap.
2178 	 */
2179 	tcp_accept_swap(listener, acceptor, eager);
2180 
2181 	/*
2182 	 * tcp_accept_swap unlinks eager from listener but does not drop
2183 	 * the eager's reference on the listener.
2184 	 */
2185 	ASSERT(eager->tcp_listener == NULL);
2186 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2187 
2188 	/*
2189 	 * The eager is now associated with its own queue. Insert in
2190 	 * the hash so that the connection can be reused for a future
2191 	 * T_CONN_RES.
2192 	 */
2193 	tcp_acceptor_hash_insert(acceptor_id, eager);
2194 
2195 	/*
2196 	 * We now do the processing of options with T_CONN_RES.
2197 	 * We delay till now since we wanted to have queue to pass to
2198 	 * option processing routines that points back to the right
2199 	 * instance structure which does not happen until after
2200 	 * tcp_accept_swap().
2201 	 *
2202 	 * Note:
2203 	 * The sanity of the logic here assumes that whatever options
2204 	 * are appropriate to inherit from listner=>eager are done
2205 	 * before this point, and whatever were to be overridden (or not)
2206 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2207 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2208 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2209 	 * This may not be true at this point in time but can be fixed
2210 	 * independently. This option processing code starts with
2211 	 * the instantiated acceptor instance and the final queue at
2212 	 * this point.
2213 	 */
2214 
2215 	if (tcr->OPT_length != 0) {
2216 		/* Options to process */
2217 		int t_error = 0;
2218 		int sys_error = 0;
2219 		int do_disconnect = 0;
2220 
2221 		if (tcp_conprim_opt_process(eager, mp1,
2222 		    &do_disconnect, &t_error, &sys_error) < 0) {
2223 			eager->tcp_accept_error = 1;
2224 			if (do_disconnect) {
2225 				/*
2226 				 * An option failed which does not allow
2227 				 * connection to be accepted.
2228 				 *
2229 				 * We allow T_CONN_RES to succeed and
2230 				 * put a T_DISCON_IND on the eager queue.
2231 				 */
2232 				ASSERT(t_error == 0 && sys_error == 0);
2233 				eager->tcp_send_discon_ind = 1;
2234 			} else {
2235 				ASSERT(t_error != 0);
2236 				freemsg(ok_mp);
2237 				/*
2238 				 * Original mp was either freed or set
2239 				 * to ok_mp above, so use mp1 instead.
2240 				 */
2241 				tcp_err_ack(listener, mp1, t_error, sys_error);
2242 				goto finish;
2243 			}
2244 		}
2245 		/*
2246 		 * Most likely success in setting options (except if
2247 		 * eager->tcp_send_discon_ind set).
2248 		 * mp1 option buffer represented by OPT_length/offset
2249 		 * potentially modified and contains results of setting
2250 		 * options at this point
2251 		 */
2252 	}
2253 
2254 	/* We no longer need mp1, since all options processing has passed */
2255 	freemsg(mp1);
2256 
2257 	putnext(listener->tcp_rq, ok_mp);
2258 
2259 	mutex_enter(&listener->tcp_eager_lock);
2260 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2261 		tcp_t	*tail;
2262 		mblk_t	*conn_ind;
2263 
2264 		/*
2265 		 * This path should not be executed if listener and
2266 		 * acceptor streams are the same.
2267 		 */
2268 		ASSERT(listener != acceptor);
2269 
2270 		tcp = listener->tcp_eager_prev_q0;
2271 		/*
2272 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2273 		 * deferred T_conn_ind queue. We need to get to the head of
2274 		 * the queue in order to send up T_conn_ind the same order as
2275 		 * how the 3WHS is completed.
2276 		 */
2277 		while (tcp != listener) {
2278 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2279 				break;
2280 			else
2281 				tcp = tcp->tcp_eager_prev_q0;
2282 		}
2283 		ASSERT(tcp != listener);
2284 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2285 		ASSERT(conn_ind != NULL);
2286 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2287 
2288 		/* Move from q0 to q */
2289 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2290 		listener->tcp_conn_req_cnt_q0--;
2291 		listener->tcp_conn_req_cnt_q++;
2292 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2293 		    tcp->tcp_eager_prev_q0;
2294 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2295 		    tcp->tcp_eager_next_q0;
2296 		tcp->tcp_eager_prev_q0 = NULL;
2297 		tcp->tcp_eager_next_q0 = NULL;
2298 		tcp->tcp_conn_def_q0 = B_FALSE;
2299 
2300 		/* Make sure the tcp isn't in the list of droppables */
2301 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2302 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2303 
2304 		/*
2305 		 * Insert at end of the queue because sockfs sends
2306 		 * down T_CONN_RES in chronological order. Leaving
2307 		 * the older conn indications at front of the queue
2308 		 * helps reducing search time.
2309 		 */
2310 		tail = listener->tcp_eager_last_q;
2311 		if (tail != NULL)
2312 			tail->tcp_eager_next_q = tcp;
2313 		else
2314 			listener->tcp_eager_next_q = tcp;
2315 		listener->tcp_eager_last_q = tcp;
2316 		tcp->tcp_eager_next_q = NULL;
2317 		mutex_exit(&listener->tcp_eager_lock);
2318 		putnext(tcp->tcp_rq, conn_ind);
2319 	} else {
2320 		mutex_exit(&listener->tcp_eager_lock);
2321 	}
2322 
2323 	/*
2324 	 * Done with the acceptor - free it
2325 	 *
2326 	 * Note: from this point on, no access to listener should be made
2327 	 * as listener can be equal to acceptor.
2328 	 */
2329 finish:
2330 	ASSERT(acceptor->tcp_detached);
2331 	ASSERT(tcps->tcps_g_q != NULL);
2332 	acceptor->tcp_rq = tcps->tcps_g_q;
2333 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2334 	(void) tcp_clean_death(acceptor, 0, 2);
2335 	CONN_DEC_REF(acceptor->tcp_connp);
2336 
2337 	/*
2338 	 * In case we already received a FIN we have to make tcp_rput send
2339 	 * the ordrel_ind. This will also send up a window update if the window
2340 	 * has opened up.
2341 	 *
2342 	 * In the normal case of a successful connection acceptance
2343 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2344 	 * indication that this was just accepted. This tells tcp_rput to
2345 	 * pass up any data queued in tcp_rcv_list.
2346 	 *
2347 	 * In the fringe case where options sent with T_CONN_RES failed and
2348 	 * we required, we would be indicating a T_DISCON_IND to blow
2349 	 * away this connection.
2350 	 */
2351 
2352 	/*
2353 	 * XXX: we currently have a problem if XTI application closes the
2354 	 * acceptor stream in between. This problem exists in on10-gate also
2355 	 * and is well know but nothing can be done short of major rewrite
2356 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2357 	 * eager same squeue as listener (we can distinguish non socket
2358 	 * listeners at the time of handling a SYN in tcp_conn_request)
2359 	 * and do most of the work that tcp_accept_finish does here itself
2360 	 * and then get behind the acceptor squeue to access the acceptor
2361 	 * queue.
2362 	 */
2363 	/*
2364 	 * We already have a ref on tcp so no need to do one before squeue_fill
2365 	 */
2366 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2367 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2368 }
2369 
2370 /*
2371  * Swap information between the eager and acceptor for a TLI/XTI client.
2372  * The sockfs accept is done on the acceptor stream and control goes
2373  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2374  * called. In either case, both the eager and listener are in their own
2375  * perimeter (squeue) and the code has to deal with potential race.
2376  *
2377  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2378  */
2379 static void
2380 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2381 {
2382 	conn_t	*econnp, *aconnp;
2383 
2384 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2385 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2386 	ASSERT(!eager->tcp_hard_bound);
2387 	ASSERT(!TCP_IS_SOCKET(acceptor));
2388 	ASSERT(!TCP_IS_SOCKET(eager));
2389 	ASSERT(!TCP_IS_SOCKET(listener));
2390 
2391 	acceptor->tcp_detached = B_TRUE;
2392 	/*
2393 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2394 	 * the acceptor id.
2395 	 */
2396 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2397 
2398 	/* remove eager from listen list... */
2399 	mutex_enter(&listener->tcp_eager_lock);
2400 	tcp_eager_unlink(eager);
2401 	ASSERT(eager->tcp_eager_next_q == NULL &&
2402 	    eager->tcp_eager_last_q == NULL);
2403 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2404 	    eager->tcp_eager_prev_q0 == NULL);
2405 	mutex_exit(&listener->tcp_eager_lock);
2406 	eager->tcp_rq = acceptor->tcp_rq;
2407 	eager->tcp_wq = acceptor->tcp_wq;
2408 
2409 	econnp = eager->tcp_connp;
2410 	aconnp = acceptor->tcp_connp;
2411 
2412 	eager->tcp_rq->q_ptr = econnp;
2413 	eager->tcp_wq->q_ptr = econnp;
2414 
2415 	/*
2416 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2417 	 * which might be a different squeue from our peer TCP instance.
2418 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2419 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2420 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2421 	 * above reach global visibility prior to the clearing of tcp_detached.
2422 	 */
2423 	membar_producer();
2424 	eager->tcp_detached = B_FALSE;
2425 
2426 	ASSERT(eager->tcp_ack_tid == 0);
2427 
2428 	econnp->conn_dev = aconnp->conn_dev;
2429 	if (eager->tcp_cred != NULL)
2430 		crfree(eager->tcp_cred);
2431 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2432 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2433 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2434 
2435 	aconnp->conn_cred = NULL;
2436 
2437 	econnp->conn_zoneid = aconnp->conn_zoneid;
2438 	econnp->conn_allzones = aconnp->conn_allzones;
2439 
2440 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2441 	aconnp->conn_mac_exempt = B_FALSE;
2442 
2443 	ASSERT(aconnp->conn_peercred == NULL);
2444 
2445 	/* Do the IPC initialization */
2446 	CONN_INC_REF(econnp);
2447 
2448 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2449 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2450 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2451 	econnp->conn_ulp = aconnp->conn_ulp;
2452 
2453 	/* Done with old IPC. Drop its ref on its connp */
2454 	CONN_DEC_REF(aconnp);
2455 }
2456 
2457 
2458 /*
2459  * Adapt to the information, such as rtt and rtt_sd, provided from the
2460  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2461  *
2462  * Checks for multicast and broadcast destination address.
2463  * Returns zero on failure; non-zero if ok.
2464  *
2465  * Note that the MSS calculation here is based on the info given in
2466  * the IRE.  We do not do any calculation based on TCP options.  They
2467  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2468  * knows which options to use.
2469  *
2470  * Note on how TCP gets its parameters for a connection.
2471  *
2472  * When a tcp_t structure is allocated, it gets all the default parameters.
2473  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2474  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2475  * default.  But if there is an associated tcp_host_param, it will override
2476  * the metrics.
2477  *
2478  * An incoming SYN with a multicast or broadcast destination address, is dropped
2479  * in 1 of 2 places.
2480  *
2481  * 1. If the packet was received over the wire it is dropped in
2482  * ip_rput_process_broadcast()
2483  *
2484  * 2. If the packet was received through internal IP loopback, i.e. the packet
2485  * was generated and received on the same machine, it is dropped in
2486  * ip_wput_local()
2487  *
2488  * An incoming SYN with a multicast or broadcast source address is always
2489  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2490  * reject an attempt to connect to a broadcast or multicast (destination)
2491  * address.
2492  */
2493 static int
2494 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2495 {
2496 	tcp_hsp_t	*hsp;
2497 	ire_t		*ire;
2498 	ire_t		*sire = NULL;
2499 	iulp_t		*ire_uinfo = NULL;
2500 	uint32_t	mss_max;
2501 	uint32_t	mss;
2502 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2503 	conn_t		*connp = tcp->tcp_connp;
2504 	boolean_t	ire_cacheable = B_FALSE;
2505 	zoneid_t	zoneid = connp->conn_zoneid;
2506 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2507 	    MATCH_IRE_SECATTR;
2508 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2509 	ill_t		*ill = NULL;
2510 	boolean_t	incoming = (ire_mp == NULL);
2511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2512 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2513 
2514 	ASSERT(connp->conn_ire_cache == NULL);
2515 
2516 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2517 
2518 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2519 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2520 			return (0);
2521 		}
2522 		/*
2523 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2524 		 * for the destination with the nexthop as gateway.
2525 		 * ire_ctable_lookup() is used because this particular
2526 		 * ire, if it exists, will be marked private.
2527 		 * If that is not available, use the interface ire
2528 		 * for the nexthop.
2529 		 *
2530 		 * TSol: tcp_update_label will detect label mismatches based
2531 		 * only on the destination's label, but that would not
2532 		 * detect label mismatches based on the security attributes
2533 		 * of routes or next hop gateway. Hence we need to pass the
2534 		 * label to ire_ftable_lookup below in order to locate the
2535 		 * right prefix (and/or) ire cache. Similarly we also need
2536 		 * pass the label to the ire_cache_lookup below to locate
2537 		 * the right ire that also matches on the label.
2538 		 */
2539 		if (tcp->tcp_connp->conn_nexthop_set) {
2540 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2541 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2542 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2543 			    ipst);
2544 			if (ire == NULL) {
2545 				ire = ire_ftable_lookup(
2546 				    tcp->tcp_connp->conn_nexthop_v4,
2547 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2548 				    tsl, match_flags, ipst);
2549 				if (ire == NULL)
2550 					return (0);
2551 			} else {
2552 				ire_uinfo = &ire->ire_uinfo;
2553 			}
2554 		} else {
2555 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2556 			    zoneid, tsl, ipst);
2557 			if (ire != NULL) {
2558 				ire_cacheable = B_TRUE;
2559 				ire_uinfo = (ire_mp != NULL) ?
2560 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2561 				    &ire->ire_uinfo;
2562 
2563 			} else {
2564 				if (ire_mp == NULL) {
2565 					ire = ire_ftable_lookup(
2566 					    tcp->tcp_connp->conn_rem,
2567 					    0, 0, 0, NULL, &sire, zoneid, 0,
2568 					    tsl, (MATCH_IRE_RECURSIVE |
2569 					    MATCH_IRE_DEFAULT), ipst);
2570 					if (ire == NULL)
2571 						return (0);
2572 					ire_uinfo = (sire != NULL) ?
2573 					    &sire->ire_uinfo :
2574 					    &ire->ire_uinfo;
2575 				} else {
2576 					ire = (ire_t *)ire_mp->b_rptr;
2577 					ire_uinfo =
2578 					    &((ire_t *)
2579 					    ire_mp->b_rptr)->ire_uinfo;
2580 				}
2581 			}
2582 		}
2583 		ASSERT(ire != NULL);
2584 
2585 		if ((ire->ire_src_addr == INADDR_ANY) ||
2586 		    (ire->ire_type & IRE_BROADCAST)) {
2587 			/*
2588 			 * ire->ire_mp is non null when ire_mp passed in is used
2589 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2590 			 */
2591 			if (ire->ire_mp == NULL)
2592 				ire_refrele(ire);
2593 			if (sire != NULL)
2594 				ire_refrele(sire);
2595 			return (0);
2596 		}
2597 
2598 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2599 			ipaddr_t src_addr;
2600 
2601 			/*
2602 			 * ip_bind_connected() has stored the correct source
2603 			 * address in conn_src.
2604 			 */
2605 			src_addr = tcp->tcp_connp->conn_src;
2606 			tcp->tcp_ipha->ipha_src = src_addr;
2607 			/*
2608 			 * Copy of the src addr. in tcp_t is needed
2609 			 * for the lookup funcs.
2610 			 */
2611 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2612 		}
2613 		/*
2614 		 * Set the fragment bit so that IP will tell us if the MTU
2615 		 * should change. IP tells us the latest setting of
2616 		 * ip_path_mtu_discovery through ire_frag_flag.
2617 		 */
2618 		if (ipst->ips_ip_path_mtu_discovery) {
2619 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2620 			    htons(IPH_DF);
2621 		}
2622 		/*
2623 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2624 		 * for IP_NEXTHOP. No cache ire has been found for the
2625 		 * destination and we are working with the nexthop's
2626 		 * interface ire. Since we need to forward all packets
2627 		 * to the nexthop first, we "blindly" set tcp_localnet
2628 		 * to false, eventhough the destination may also be
2629 		 * onlink.
2630 		 */
2631 		if (ire_uinfo == NULL)
2632 			tcp->tcp_localnet = 0;
2633 		else
2634 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2635 	} else {
2636 		/*
2637 		 * For incoming connection ire_mp = NULL
2638 		 * For outgoing connection ire_mp != NULL
2639 		 * Technically we should check conn_incoming_ill
2640 		 * when ire_mp is NULL and conn_outgoing_ill when
2641 		 * ire_mp is non-NULL. But this is performance
2642 		 * critical path and for IPV*_BOUND_IF, outgoing
2643 		 * and incoming ill are always set to the same value.
2644 		 */
2645 		ill_t	*dst_ill = NULL;
2646 		ipif_t  *dst_ipif = NULL;
2647 
2648 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2649 
2650 		if (connp->conn_outgoing_ill != NULL) {
2651 			/* Outgoing or incoming path */
2652 			int   err;
2653 
2654 			dst_ill = conn_get_held_ill(connp,
2655 			    &connp->conn_outgoing_ill, &err);
2656 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2657 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2658 				return (0);
2659 			}
2660 			match_flags |= MATCH_IRE_ILL;
2661 			dst_ipif = dst_ill->ill_ipif;
2662 		}
2663 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2664 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2665 
2666 		if (ire != NULL) {
2667 			ire_cacheable = B_TRUE;
2668 			ire_uinfo = (ire_mp != NULL) ?
2669 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2670 			    &ire->ire_uinfo;
2671 		} else {
2672 			if (ire_mp == NULL) {
2673 				ire = ire_ftable_lookup_v6(
2674 				    &tcp->tcp_connp->conn_remv6,
2675 				    0, 0, 0, dst_ipif, &sire, zoneid,
2676 				    0, tsl, match_flags, ipst);
2677 				if (ire == NULL) {
2678 					if (dst_ill != NULL)
2679 						ill_refrele(dst_ill);
2680 					return (0);
2681 				}
2682 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2683 				    &ire->ire_uinfo;
2684 			} else {
2685 				ire = (ire_t *)ire_mp->b_rptr;
2686 				ire_uinfo =
2687 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2688 			}
2689 		}
2690 		if (dst_ill != NULL)
2691 			ill_refrele(dst_ill);
2692 
2693 		ASSERT(ire != NULL);
2694 		ASSERT(ire_uinfo != NULL);
2695 
2696 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2697 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2698 			/*
2699 			 * ire->ire_mp is non null when ire_mp passed in is used
2700 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2701 			 */
2702 			if (ire->ire_mp == NULL)
2703 				ire_refrele(ire);
2704 			if (sire != NULL)
2705 				ire_refrele(sire);
2706 			return (0);
2707 		}
2708 
2709 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2710 			in6_addr_t	src_addr;
2711 
2712 			/*
2713 			 * ip_bind_connected_v6() has stored the correct source
2714 			 * address per IPv6 addr. selection policy in
2715 			 * conn_src_v6.
2716 			 */
2717 			src_addr = tcp->tcp_connp->conn_srcv6;
2718 
2719 			tcp->tcp_ip6h->ip6_src = src_addr;
2720 			/*
2721 			 * Copy of the src addr. in tcp_t is needed
2722 			 * for the lookup funcs.
2723 			 */
2724 			tcp->tcp_ip_src_v6 = src_addr;
2725 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2726 			    &connp->conn_srcv6));
2727 		}
2728 		tcp->tcp_localnet =
2729 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2730 	}
2731 
2732 	/*
2733 	 * This allows applications to fail quickly when connections are made
2734 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2735 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2736 	 */
2737 	if ((ire->ire_flags & RTF_REJECT) &&
2738 	    (ire->ire_flags & RTF_PRIVATE))
2739 		goto error;
2740 
2741 	/*
2742 	 * Make use of the cached rtt and rtt_sd values to calculate the
2743 	 * initial RTO.  Note that they are already initialized in
2744 	 * tcp_init_values().
2745 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2746 	 * IP_NEXTHOP, but instead are using the interface ire for the
2747 	 * nexthop, then we do not use the ire_uinfo from that ire to
2748 	 * do any initializations.
2749 	 */
2750 	if (ire_uinfo != NULL) {
2751 		if (ire_uinfo->iulp_rtt != 0) {
2752 			clock_t	rto;
2753 
2754 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2755 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2756 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2757 			    tcps->tcps_rexmit_interval_extra +
2758 			    (tcp->tcp_rtt_sa >> 5);
2759 
2760 			if (rto > tcps->tcps_rexmit_interval_max) {
2761 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2762 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2763 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2764 			} else {
2765 				tcp->tcp_rto = rto;
2766 			}
2767 		}
2768 		if (ire_uinfo->iulp_ssthresh != 0)
2769 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2770 		else
2771 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2772 		if (ire_uinfo->iulp_spipe > 0) {
2773 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2774 			    tcps->tcps_max_buf);
2775 			if (tcps->tcps_snd_lowat_fraction != 0)
2776 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2777 				    tcps->tcps_snd_lowat_fraction;
2778 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2779 		}
2780 		/*
2781 		 * Note that up till now, acceptor always inherits receive
2782 		 * window from the listener.  But if there is a metrics
2783 		 * associated with a host, we should use that instead of
2784 		 * inheriting it from listener. Thus we need to pass this
2785 		 * info back to the caller.
2786 		 */
2787 		if (ire_uinfo->iulp_rpipe > 0) {
2788 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2789 			    tcps->tcps_max_buf);
2790 		}
2791 
2792 		if (ire_uinfo->iulp_rtomax > 0) {
2793 			tcp->tcp_second_timer_threshold =
2794 			    ire_uinfo->iulp_rtomax;
2795 		}
2796 
2797 		/*
2798 		 * Use the metric option settings, iulp_tstamp_ok and
2799 		 * iulp_wscale_ok, only for active open. What this means
2800 		 * is that if the other side uses timestamp or window
2801 		 * scale option, TCP will also use those options. That
2802 		 * is for passive open.  If the application sets a
2803 		 * large window, window scale is enabled regardless of
2804 		 * the value in iulp_wscale_ok.  This is the behavior
2805 		 * since 2.6.  So we keep it.
2806 		 * The only case left in passive open processing is the
2807 		 * check for SACK.
2808 		 * For ECN, it should probably be like SACK.  But the
2809 		 * current value is binary, so we treat it like the other
2810 		 * cases.  The metric only controls active open.For passive
2811 		 * open, the ndd param, tcp_ecn_permitted, controls the
2812 		 * behavior.
2813 		 */
2814 		if (!tcp_detached) {
2815 			/*
2816 			 * The if check means that the following can only
2817 			 * be turned on by the metrics only IRE, but not off.
2818 			 */
2819 			if (ire_uinfo->iulp_tstamp_ok)
2820 				tcp->tcp_snd_ts_ok = B_TRUE;
2821 			if (ire_uinfo->iulp_wscale_ok)
2822 				tcp->tcp_snd_ws_ok = B_TRUE;
2823 			if (ire_uinfo->iulp_sack == 2)
2824 				tcp->tcp_snd_sack_ok = B_TRUE;
2825 			if (ire_uinfo->iulp_ecn_ok)
2826 				tcp->tcp_ecn_ok = B_TRUE;
2827 		} else {
2828 			/*
2829 			 * Passive open.
2830 			 *
2831 			 * As above, the if check means that SACK can only be
2832 			 * turned on by the metric only IRE.
2833 			 */
2834 			if (ire_uinfo->iulp_sack > 0) {
2835 				tcp->tcp_snd_sack_ok = B_TRUE;
2836 			}
2837 		}
2838 	}
2839 
2840 
2841 	/*
2842 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2843 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2844 	 * length of all those options exceeds 28 bytes.  But because
2845 	 * of the tcp_mss_min check below, we may not have a problem if
2846 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2847 	 * the negative problem still exists.  And the check defeats PMTUd.
2848 	 * In fact, if PMTUd finds that the MSS should be smaller than
2849 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2850 	 * value.
2851 	 *
2852 	 * We do not deal with that now.  All those problems related to
2853 	 * PMTUd will be fixed later.
2854 	 */
2855 	ASSERT(ire->ire_max_frag != 0);
2856 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2857 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2858 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2859 			mss = MIN(mss, IPV6_MIN_MTU);
2860 		}
2861 	}
2862 
2863 	/* Sanity check for MSS value. */
2864 	if (tcp->tcp_ipversion == IPV4_VERSION)
2865 		mss_max = tcps->tcps_mss_max_ipv4;
2866 	else
2867 		mss_max = tcps->tcps_mss_max_ipv6;
2868 
2869 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2870 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2871 		/*
2872 		 * After receiving an ICMPv6 "packet too big" message with a
2873 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2874 		 * will insert a 8-byte fragment header in every packet; we
2875 		 * reduce the MSS by that amount here.
2876 		 */
2877 		mss -= sizeof (ip6_frag_t);
2878 	}
2879 
2880 	if (tcp->tcp_ipsec_overhead == 0)
2881 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2882 
2883 	mss -= tcp->tcp_ipsec_overhead;
2884 
2885 	if (mss < tcps->tcps_mss_min)
2886 		mss = tcps->tcps_mss_min;
2887 	if (mss > mss_max)
2888 		mss = mss_max;
2889 
2890 	/* Note that this is the maximum MSS, excluding all options. */
2891 	tcp->tcp_mss = mss;
2892 
2893 	/*
2894 	 * Initialize the ISS here now that we have the full connection ID.
2895 	 * The RFC 1948 method of initial sequence number generation requires
2896 	 * knowledge of the full connection ID before setting the ISS.
2897 	 */
2898 
2899 	tcp_iss_init(tcp);
2900 
2901 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2902 		tcp->tcp_loopback = B_TRUE;
2903 
2904 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2905 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2906 	} else {
2907 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2908 	}
2909 
2910 	if (hsp != NULL) {
2911 		/* Only modify if we're going to make them bigger */
2912 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2913 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2914 			if (tcps->tcps_snd_lowat_fraction != 0)
2915 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2916 				    tcps->tcps_snd_lowat_fraction;
2917 		}
2918 
2919 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2920 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2921 		}
2922 
2923 		/* Copy timestamp flag only for active open */
2924 		if (!tcp_detached)
2925 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2926 	}
2927 
2928 	if (sire != NULL)
2929 		IRE_REFRELE(sire);
2930 
2931 	/*
2932 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2933 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2934 	 */
2935 	if (tcp->tcp_loopback ||
2936 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2937 		/*
2938 		 * For incoming, see if this tcp may be MDT-capable.  For
2939 		 * outgoing, this process has been taken care of through
2940 		 * tcp_rput_other.
2941 		 */
2942 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2943 		tcp->tcp_ire_ill_check_done = B_TRUE;
2944 	}
2945 
2946 	mutex_enter(&connp->conn_lock);
2947 	/*
2948 	 * Make sure that conn is not marked incipient
2949 	 * for incoming connections. A blind
2950 	 * removal of incipient flag is cheaper than
2951 	 * check and removal.
2952 	 */
2953 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2954 
2955 	/*
2956 	 * Must not cache forwarding table routes
2957 	 * or recache an IRE after the conn_t has
2958 	 * had conn_ire_cache cleared and is flagged
2959 	 * unusable, (see the CONN_CACHE_IRE() macro).
2960 	 */
2961 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2962 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2963 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2964 			connp->conn_ire_cache = ire;
2965 			IRE_UNTRACE_REF(ire);
2966 			rw_exit(&ire->ire_bucket->irb_lock);
2967 			mutex_exit(&connp->conn_lock);
2968 			return (1);
2969 		}
2970 		rw_exit(&ire->ire_bucket->irb_lock);
2971 	}
2972 	mutex_exit(&connp->conn_lock);
2973 
2974 	if (ire->ire_mp == NULL)
2975 		ire_refrele(ire);
2976 	return (1);
2977 
2978 error:
2979 	if (ire->ire_mp == NULL)
2980 		ire_refrele(ire);
2981 	if (sire != NULL)
2982 		ire_refrele(sire);
2983 	return (0);
2984 }
2985 
2986 /*
2987  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2988  * O_T_BIND_REQ/T_BIND_REQ message.
2989  */
2990 static void
2991 tcp_bind(tcp_t *tcp, mblk_t *mp)
2992 {
2993 	sin_t	*sin;
2994 	sin6_t	*sin6;
2995 	mblk_t	*mp1;
2996 	in_port_t requested_port;
2997 	in_port_t allocated_port;
2998 	struct T_bind_req *tbr;
2999 	boolean_t	bind_to_req_port_only;
3000 	boolean_t	backlog_update = B_FALSE;
3001 	boolean_t	user_specified;
3002 	in6_addr_t	v6addr;
3003 	ipaddr_t	v4addr;
3004 	uint_t	origipversion;
3005 	int	err;
3006 	queue_t *q = tcp->tcp_wq;
3007 	conn_t	*connp;
3008 	mlp_type_t addrtype, mlptype;
3009 	zone_t	*zone;
3010 	cred_t	*cr;
3011 	in_port_t mlp_port;
3012 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3013 
3014 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3015 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3016 		if (tcp->tcp_debug) {
3017 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3018 			    "tcp_bind: bad req, len %u",
3019 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3020 		}
3021 		tcp_err_ack(tcp, mp, TPROTO, 0);
3022 		return;
3023 	}
3024 	/* Make sure the largest address fits */
3025 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3026 	if (mp1 == NULL) {
3027 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3028 		return;
3029 	}
3030 	mp = mp1;
3031 	tbr = (struct T_bind_req *)mp->b_rptr;
3032 	if (tcp->tcp_state >= TCPS_BOUND) {
3033 		if ((tcp->tcp_state == TCPS_BOUND ||
3034 		    tcp->tcp_state == TCPS_LISTEN) &&
3035 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3036 		    tbr->CONIND_number > 0) {
3037 			/*
3038 			 * Handle listen() increasing CONIND_number.
3039 			 * This is more "liberal" then what the TPI spec
3040 			 * requires but is needed to avoid a t_unbind
3041 			 * when handling listen() since the port number
3042 			 * might be "stolen" between the unbind and bind.
3043 			 */
3044 			backlog_update = B_TRUE;
3045 			goto do_bind;
3046 		}
3047 		if (tcp->tcp_debug) {
3048 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3049 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3050 		}
3051 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3052 		return;
3053 	}
3054 	origipversion = tcp->tcp_ipversion;
3055 
3056 	switch (tbr->ADDR_length) {
3057 	case 0:			/* request for a generic port */
3058 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3059 		if (tcp->tcp_family == AF_INET) {
3060 			tbr->ADDR_length = sizeof (sin_t);
3061 			sin = (sin_t *)&tbr[1];
3062 			*sin = sin_null;
3063 			sin->sin_family = AF_INET;
3064 			mp->b_wptr = (uchar_t *)&sin[1];
3065 			tcp->tcp_ipversion = IPV4_VERSION;
3066 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3067 		} else {
3068 			ASSERT(tcp->tcp_family == AF_INET6);
3069 			tbr->ADDR_length = sizeof (sin6_t);
3070 			sin6 = (sin6_t *)&tbr[1];
3071 			*sin6 = sin6_null;
3072 			sin6->sin6_family = AF_INET6;
3073 			mp->b_wptr = (uchar_t *)&sin6[1];
3074 			tcp->tcp_ipversion = IPV6_VERSION;
3075 			V6_SET_ZERO(v6addr);
3076 		}
3077 		requested_port = 0;
3078 		break;
3079 
3080 	case sizeof (sin_t):	/* Complete IPv4 address */
3081 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3082 		    sizeof (sin_t));
3083 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3084 			if (tcp->tcp_debug) {
3085 				(void) strlog(TCP_MOD_ID, 0, 1,
3086 				    SL_ERROR|SL_TRACE,
3087 				    "tcp_bind: bad address parameter, "
3088 				    "offset %d, len %d",
3089 				    tbr->ADDR_offset, tbr->ADDR_length);
3090 			}
3091 			tcp_err_ack(tcp, mp, TPROTO, 0);
3092 			return;
3093 		}
3094 		/*
3095 		 * With sockets sockfs will accept bogus sin_family in
3096 		 * bind() and replace it with the family used in the socket
3097 		 * call.
3098 		 */
3099 		if (sin->sin_family != AF_INET ||
3100 		    tcp->tcp_family != AF_INET) {
3101 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3102 			return;
3103 		}
3104 		requested_port = ntohs(sin->sin_port);
3105 		tcp->tcp_ipversion = IPV4_VERSION;
3106 		v4addr = sin->sin_addr.s_addr;
3107 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3108 		break;
3109 
3110 	case sizeof (sin6_t): /* Complete IPv6 address */
3111 		sin6 = (sin6_t *)mi_offset_param(mp,
3112 		    tbr->ADDR_offset, sizeof (sin6_t));
3113 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3114 			if (tcp->tcp_debug) {
3115 				(void) strlog(TCP_MOD_ID, 0, 1,
3116 				    SL_ERROR|SL_TRACE,
3117 				    "tcp_bind: bad IPv6 address parameter, "
3118 				    "offset %d, len %d", tbr->ADDR_offset,
3119 				    tbr->ADDR_length);
3120 			}
3121 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3122 			return;
3123 		}
3124 		if (sin6->sin6_family != AF_INET6 ||
3125 		    tcp->tcp_family != AF_INET6) {
3126 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3127 			return;
3128 		}
3129 		requested_port = ntohs(sin6->sin6_port);
3130 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3131 		    IPV4_VERSION : IPV6_VERSION;
3132 		v6addr = sin6->sin6_addr;
3133 		break;
3134 
3135 	default:
3136 		if (tcp->tcp_debug) {
3137 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3138 			    "tcp_bind: bad address length, %d",
3139 			    tbr->ADDR_length);
3140 		}
3141 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3142 		return;
3143 	}
3144 	tcp->tcp_bound_source_v6 = v6addr;
3145 
3146 	/* Check for change in ipversion */
3147 	if (origipversion != tcp->tcp_ipversion) {
3148 		ASSERT(tcp->tcp_family == AF_INET6);
3149 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3150 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3151 		if (err) {
3152 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3153 			return;
3154 		}
3155 	}
3156 
3157 	/*
3158 	 * Initialize family specific fields. Copy of the src addr.
3159 	 * in tcp_t is needed for the lookup funcs.
3160 	 */
3161 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3162 		tcp->tcp_ip6h->ip6_src = v6addr;
3163 	} else {
3164 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3165 	}
3166 	tcp->tcp_ip_src_v6 = v6addr;
3167 
3168 	/*
3169 	 * For O_T_BIND_REQ:
3170 	 * Verify that the target port/addr is available, or choose
3171 	 * another.
3172 	 * For  T_BIND_REQ:
3173 	 * Verify that the target port/addr is available or fail.
3174 	 * In both cases when it succeeds the tcp is inserted in the
3175 	 * bind hash table. This ensures that the operation is atomic
3176 	 * under the lock on the hash bucket.
3177 	 */
3178 	bind_to_req_port_only = requested_port != 0 &&
3179 	    tbr->PRIM_type != O_T_BIND_REQ;
3180 	/*
3181 	 * Get a valid port (within the anonymous range and should not
3182 	 * be a privileged one) to use if the user has not given a port.
3183 	 * If multiple threads are here, they may all start with
3184 	 * with the same initial port. But, it should be fine as long as
3185 	 * tcp_bindi will ensure that no two threads will be assigned
3186 	 * the same port.
3187 	 *
3188 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3189 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3190 	 * unless TCP_ANONPRIVBIND option is set.
3191 	 */
3192 	mlptype = mlptSingle;
3193 	mlp_port = requested_port;
3194 	if (requested_port == 0) {
3195 		requested_port = tcp->tcp_anon_priv_bind ?
3196 		    tcp_get_next_priv_port(tcp) :
3197 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3198 		    tcp, B_TRUE);
3199 		if (requested_port == 0) {
3200 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3201 			return;
3202 		}
3203 		user_specified = B_FALSE;
3204 
3205 		/*
3206 		 * If the user went through one of the RPC interfaces to create
3207 		 * this socket and RPC is MLP in this zone, then give him an
3208 		 * anonymous MLP.
3209 		 */
3210 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3211 		connp = tcp->tcp_connp;
3212 		if (connp->conn_anon_mlp && is_system_labeled()) {
3213 			zone = crgetzone(cr);
3214 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3215 			    IPV6_VERSION, &v6addr,
3216 			    tcps->tcps_netstack->netstack_ip);
3217 			if (addrtype == mlptSingle) {
3218 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3219 				return;
3220 			}
3221 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3222 			    PMAPPORT, addrtype);
3223 			mlp_port = PMAPPORT;
3224 		}
3225 	} else {
3226 		int i;
3227 		boolean_t priv = B_FALSE;
3228 
3229 		/*
3230 		 * If the requested_port is in the well-known privileged range,
3231 		 * verify that the stream was opened by a privileged user.
3232 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3233 		 * but instead the code relies on:
3234 		 * - the fact that the address of the array and its size never
3235 		 *   changes
3236 		 * - the atomic assignment of the elements of the array
3237 		 */
3238 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3239 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3240 			priv = B_TRUE;
3241 		} else {
3242 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3243 				if (requested_port ==
3244 				    tcps->tcps_g_epriv_ports[i]) {
3245 					priv = B_TRUE;
3246 					break;
3247 				}
3248 			}
3249 		}
3250 		if (priv) {
3251 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3252 				if (tcp->tcp_debug) {
3253 					(void) strlog(TCP_MOD_ID, 0, 1,
3254 					    SL_ERROR|SL_TRACE,
3255 					    "tcp_bind: no priv for port %d",
3256 					    requested_port);
3257 				}
3258 				tcp_err_ack(tcp, mp, TACCES, 0);
3259 				return;
3260 			}
3261 		}
3262 		user_specified = B_TRUE;
3263 
3264 		connp = tcp->tcp_connp;
3265 		if (is_system_labeled()) {
3266 			zone = crgetzone(cr);
3267 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3268 			    IPV6_VERSION, &v6addr,
3269 			    tcps->tcps_netstack->netstack_ip);
3270 			if (addrtype == mlptSingle) {
3271 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3272 				return;
3273 			}
3274 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3275 			    requested_port, addrtype);
3276 		}
3277 	}
3278 
3279 	if (mlptype != mlptSingle) {
3280 		if (secpolicy_net_bindmlp(cr) != 0) {
3281 			if (tcp->tcp_debug) {
3282 				(void) strlog(TCP_MOD_ID, 0, 1,
3283 				    SL_ERROR|SL_TRACE,
3284 				    "tcp_bind: no priv for multilevel port %d",
3285 				    requested_port);
3286 			}
3287 			tcp_err_ack(tcp, mp, TACCES, 0);
3288 			return;
3289 		}
3290 
3291 		/*
3292 		 * If we're specifically binding a shared IP address and the
3293 		 * port is MLP on shared addresses, then check to see if this
3294 		 * zone actually owns the MLP.  Reject if not.
3295 		 */
3296 		if (mlptype == mlptShared && addrtype == mlptShared) {
3297 			/*
3298 			 * No need to handle exclusive-stack zones since
3299 			 * ALL_ZONES only applies to the shared stack.
3300 			 */
3301 			zoneid_t mlpzone;
3302 
3303 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3304 			    htons(mlp_port));
3305 			if (connp->conn_zoneid != mlpzone) {
3306 				if (tcp->tcp_debug) {
3307 					(void) strlog(TCP_MOD_ID, 0, 1,
3308 					    SL_ERROR|SL_TRACE,
3309 					    "tcp_bind: attempt to bind port "
3310 					    "%d on shared addr in zone %d "
3311 					    "(should be %d)",
3312 					    mlp_port, connp->conn_zoneid,
3313 					    mlpzone);
3314 				}
3315 				tcp_err_ack(tcp, mp, TACCES, 0);
3316 				return;
3317 			}
3318 		}
3319 
3320 		if (!user_specified) {
3321 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3322 			    requested_port, B_TRUE);
3323 			if (err != 0) {
3324 				if (tcp->tcp_debug) {
3325 					(void) strlog(TCP_MOD_ID, 0, 1,
3326 					    SL_ERROR|SL_TRACE,
3327 					    "tcp_bind: cannot establish anon "
3328 					    "MLP for port %d",
3329 					    requested_port);
3330 				}
3331 				tcp_err_ack(tcp, mp, TSYSERR, err);
3332 				return;
3333 			}
3334 			connp->conn_anon_port = B_TRUE;
3335 		}
3336 		connp->conn_mlp_type = mlptype;
3337 	}
3338 
3339 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3340 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3341 
3342 	if (allocated_port == 0) {
3343 		connp->conn_mlp_type = mlptSingle;
3344 		if (connp->conn_anon_port) {
3345 			connp->conn_anon_port = B_FALSE;
3346 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3347 			    requested_port, B_FALSE);
3348 		}
3349 		if (bind_to_req_port_only) {
3350 			if (tcp->tcp_debug) {
3351 				(void) strlog(TCP_MOD_ID, 0, 1,
3352 				    SL_ERROR|SL_TRACE,
3353 				    "tcp_bind: requested addr busy");
3354 			}
3355 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3356 		} else {
3357 			/* If we are out of ports, fail the bind. */
3358 			if (tcp->tcp_debug) {
3359 				(void) strlog(TCP_MOD_ID, 0, 1,
3360 				    SL_ERROR|SL_TRACE,
3361 				    "tcp_bind: out of ports?");
3362 			}
3363 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3364 		}
3365 		return;
3366 	}
3367 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3368 do_bind:
3369 	if (!backlog_update) {
3370 		if (tcp->tcp_family == AF_INET)
3371 			sin->sin_port = htons(allocated_port);
3372 		else
3373 			sin6->sin6_port = htons(allocated_port);
3374 	}
3375 	if (tcp->tcp_family == AF_INET) {
3376 		if (tbr->CONIND_number != 0) {
3377 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3378 			    sizeof (sin_t));
3379 		} else {
3380 			/* Just verify the local IP address */
3381 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3382 		}
3383 	} else {
3384 		if (tbr->CONIND_number != 0) {
3385 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3386 			    sizeof (sin6_t));
3387 		} else {
3388 			/* Just verify the local IP address */
3389 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3390 			    IPV6_ADDR_LEN);
3391 		}
3392 	}
3393 	if (mp1 == NULL) {
3394 		if (connp->conn_anon_port) {
3395 			connp->conn_anon_port = B_FALSE;
3396 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3397 			    requested_port, B_FALSE);
3398 		}
3399 		connp->conn_mlp_type = mlptSingle;
3400 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3401 		return;
3402 	}
3403 
3404 	tbr->PRIM_type = T_BIND_ACK;
3405 	mp->b_datap->db_type = M_PCPROTO;
3406 
3407 	/* Chain in the reply mp for tcp_rput() */
3408 	mp1->b_cont = mp;
3409 	mp = mp1;
3410 
3411 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3412 	if (tcp->tcp_conn_req_max) {
3413 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3414 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3415 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3416 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3417 		/*
3418 		 * If this is a listener, do not reset the eager list
3419 		 * and other stuffs.  Note that we don't check if the
3420 		 * existing eager list meets the new tcp_conn_req_max
3421 		 * requirement.
3422 		 */
3423 		if (tcp->tcp_state != TCPS_LISTEN) {
3424 			tcp->tcp_state = TCPS_LISTEN;
3425 			/* Initialize the chain. Don't need the eager_lock */
3426 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3427 			tcp->tcp_eager_next_drop_q0 = tcp;
3428 			tcp->tcp_eager_prev_drop_q0 = tcp;
3429 			tcp->tcp_second_ctimer_threshold =
3430 			    tcps->tcps_ip_abort_linterval;
3431 		}
3432 	}
3433 
3434 	/*
3435 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3436 	 * processing continues in tcp_rput_other().
3437 	 */
3438 	if (tcp->tcp_family == AF_INET6) {
3439 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3440 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3441 	} else {
3442 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3443 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3444 	}
3445 	/*
3446 	 * If the bind cannot complete immediately
3447 	 * IP will arrange to call tcp_rput_other
3448 	 * when the bind completes.
3449 	 */
3450 	if (mp != NULL) {
3451 		tcp_rput_other(tcp, mp);
3452 	} else {
3453 		/*
3454 		 * Bind will be resumed later. Need to ensure
3455 		 * that conn doesn't disappear when that happens.
3456 		 * This will be decremented in ip_resume_tcp_bind().
3457 		 */
3458 		CONN_INC_REF(tcp->tcp_connp);
3459 	}
3460 }
3461 
3462 
3463 /*
3464  * If the "bind_to_req_port_only" parameter is set, if the requested port
3465  * number is available, return it, If not return 0
3466  *
3467  * If "bind_to_req_port_only" parameter is not set and
3468  * If the requested port number is available, return it.  If not, return
3469  * the first anonymous port we happen across.  If no anonymous ports are
3470  * available, return 0. addr is the requested local address, if any.
3471  *
3472  * In either case, when succeeding update the tcp_t to record the port number
3473  * and insert it in the bind hash table.
3474  *
3475  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3476  * without setting SO_REUSEADDR. This is needed so that they
3477  * can be viewed as two independent transport protocols.
3478  */
3479 static in_port_t
3480 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3481     int reuseaddr, boolean_t quick_connect,
3482     boolean_t bind_to_req_port_only, boolean_t user_specified)
3483 {
3484 	/* number of times we have run around the loop */
3485 	int count = 0;
3486 	/* maximum number of times to run around the loop */
3487 	int loopmax;
3488 	conn_t *connp = tcp->tcp_connp;
3489 	zoneid_t zoneid = connp->conn_zoneid;
3490 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3491 
3492 	/*
3493 	 * Lookup for free addresses is done in a loop and "loopmax"
3494 	 * influences how long we spin in the loop
3495 	 */
3496 	if (bind_to_req_port_only) {
3497 		/*
3498 		 * If the requested port is busy, don't bother to look
3499 		 * for a new one. Setting loop maximum count to 1 has
3500 		 * that effect.
3501 		 */
3502 		loopmax = 1;
3503 	} else {
3504 		/*
3505 		 * If the requested port is busy, look for a free one
3506 		 * in the anonymous port range.
3507 		 * Set loopmax appropriately so that one does not look
3508 		 * forever in the case all of the anonymous ports are in use.
3509 		 */
3510 		if (tcp->tcp_anon_priv_bind) {
3511 			/*
3512 			 * loopmax =
3513 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3514 			 */
3515 			loopmax = IPPORT_RESERVED -
3516 			    tcps->tcps_min_anonpriv_port;
3517 		} else {
3518 			loopmax = (tcps->tcps_largest_anon_port -
3519 			    tcps->tcps_smallest_anon_port + 1);
3520 		}
3521 	}
3522 	do {
3523 		uint16_t	lport;
3524 		tf_t		*tbf;
3525 		tcp_t		*ltcp;
3526 		conn_t		*lconnp;
3527 
3528 		lport = htons(port);
3529 
3530 		/*
3531 		 * Ensure that the tcp_t is not currently in the bind hash.
3532 		 * Hold the lock on the hash bucket to ensure that
3533 		 * the duplicate check plus the insertion is an atomic
3534 		 * operation.
3535 		 *
3536 		 * This function does an inline lookup on the bind hash list
3537 		 * Make sure that we access only members of tcp_t
3538 		 * and that we don't look at tcp_tcp, since we are not
3539 		 * doing a CONN_INC_REF.
3540 		 */
3541 		tcp_bind_hash_remove(tcp);
3542 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3543 		mutex_enter(&tbf->tf_lock);
3544 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3545 		    ltcp = ltcp->tcp_bind_hash) {
3546 			boolean_t not_socket;
3547 			boolean_t exclbind;
3548 
3549 			if (lport != ltcp->tcp_lport)
3550 				continue;
3551 
3552 			lconnp = ltcp->tcp_connp;
3553 
3554 			/*
3555 			 * On a labeled system, we must treat bindings to ports
3556 			 * on shared IP addresses by sockets with MAC exemption
3557 			 * privilege as being in all zones, as there's
3558 			 * otherwise no way to identify the right receiver.
3559 			 */
3560 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3561 			    IPCL_ZONE_MATCH(connp,
3562 			    ltcp->tcp_connp->conn_zoneid)) &&
3563 			    !lconnp->conn_mac_exempt &&
3564 			    !connp->conn_mac_exempt)
3565 				continue;
3566 
3567 			/*
3568 			 * If TCP_EXCLBIND is set for either the bound or
3569 			 * binding endpoint, the semantics of bind
3570 			 * is changed according to the following.
3571 			 *
3572 			 * spec = specified address (v4 or v6)
3573 			 * unspec = unspecified address (v4 or v6)
3574 			 * A = specified addresses are different for endpoints
3575 			 *
3576 			 * bound	bind to		allowed
3577 			 * -------------------------------------
3578 			 * unspec	unspec		no
3579 			 * unspec	spec		no
3580 			 * spec		unspec		no
3581 			 * spec		spec		yes if A
3582 			 *
3583 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3584 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3585 			 *
3586 			 * Note:
3587 			 *
3588 			 * 1. Because of TLI semantics, an endpoint can go
3589 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3590 			 * TCPS_BOUND, depending on whether it is originally
3591 			 * a listener or not.  That is why we need to check
3592 			 * for states greater than or equal to TCPS_BOUND
3593 			 * here.
3594 			 *
3595 			 * 2. Ideally, we should only check for state equals
3596 			 * to TCPS_LISTEN. And the following check should be
3597 			 * added.
3598 			 *
3599 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3600 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3601 			 *		...
3602 			 * }
3603 			 *
3604 			 * The semantics will be changed to this.  If the
3605 			 * endpoint on the list is in state not equal to
3606 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3607 			 * set, let the bind succeed.
3608 			 *
3609 			 * Because of (1), we cannot do that for TLI
3610 			 * endpoints.  But we can do that for socket endpoints.
3611 			 * If in future, we can change this going back
3612 			 * semantics, we can use the above check for TLI also.
3613 			 */
3614 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3615 			    TCP_IS_SOCKET(tcp));
3616 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3617 
3618 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3619 			    (exclbind && (not_socket ||
3620 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3621 				if (V6_OR_V4_INADDR_ANY(
3622 				    ltcp->tcp_bound_source_v6) ||
3623 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3624 				    IN6_ARE_ADDR_EQUAL(laddr,
3625 				    &ltcp->tcp_bound_source_v6)) {
3626 					break;
3627 				}
3628 				continue;
3629 			}
3630 
3631 			/*
3632 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3633 			 * have disjoint port number spaces, if *_EXCLBIND
3634 			 * is not set and only if the application binds to a
3635 			 * specific port. We use the same autoassigned port
3636 			 * number space for IPv4 and IPv6 sockets.
3637 			 */
3638 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3639 			    bind_to_req_port_only)
3640 				continue;
3641 
3642 			/*
3643 			 * Ideally, we should make sure that the source
3644 			 * address, remote address, and remote port in the
3645 			 * four tuple for this tcp-connection is unique.
3646 			 * However, trying to find out the local source
3647 			 * address would require too much code duplication
3648 			 * with IP, since IP needs needs to have that code
3649 			 * to support userland TCP implementations.
3650 			 */
3651 			if (quick_connect &&
3652 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3653 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3654 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3655 			    &ltcp->tcp_remote_v6)))
3656 				continue;
3657 
3658 			if (!reuseaddr) {
3659 				/*
3660 				 * No socket option SO_REUSEADDR.
3661 				 * If existing port is bound to
3662 				 * a non-wildcard IP address
3663 				 * and the requesting stream is
3664 				 * bound to a distinct
3665 				 * different IP addresses
3666 				 * (non-wildcard, also), keep
3667 				 * going.
3668 				 */
3669 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3670 				    !V6_OR_V4_INADDR_ANY(
3671 				    ltcp->tcp_bound_source_v6) &&
3672 				    !IN6_ARE_ADDR_EQUAL(laddr,
3673 				    &ltcp->tcp_bound_source_v6))
3674 					continue;
3675 				if (ltcp->tcp_state >= TCPS_BOUND) {
3676 					/*
3677 					 * This port is being used and
3678 					 * its state is >= TCPS_BOUND,
3679 					 * so we can't bind to it.
3680 					 */
3681 					break;
3682 				}
3683 			} else {
3684 				/*
3685 				 * socket option SO_REUSEADDR is set on the
3686 				 * binding tcp_t.
3687 				 *
3688 				 * If two streams are bound to
3689 				 * same IP address or both addr
3690 				 * and bound source are wildcards
3691 				 * (INADDR_ANY), we want to stop
3692 				 * searching.
3693 				 * We have found a match of IP source
3694 				 * address and source port, which is
3695 				 * refused regardless of the
3696 				 * SO_REUSEADDR setting, so we break.
3697 				 */
3698 				if (IN6_ARE_ADDR_EQUAL(laddr,
3699 				    &ltcp->tcp_bound_source_v6) &&
3700 				    (ltcp->tcp_state == TCPS_LISTEN ||
3701 				    ltcp->tcp_state == TCPS_BOUND))
3702 					break;
3703 			}
3704 		}
3705 		if (ltcp != NULL) {
3706 			/* The port number is busy */
3707 			mutex_exit(&tbf->tf_lock);
3708 		} else {
3709 			/*
3710 			 * This port is ours. Insert in fanout and mark as
3711 			 * bound to prevent others from getting the port
3712 			 * number.
3713 			 */
3714 			tcp->tcp_state = TCPS_BOUND;
3715 			tcp->tcp_lport = htons(port);
3716 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3717 
3718 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3719 			    tcp->tcp_lport)] == tbf);
3720 			tcp_bind_hash_insert(tbf, tcp, 1);
3721 
3722 			mutex_exit(&tbf->tf_lock);
3723 
3724 			/*
3725 			 * We don't want tcp_next_port_to_try to "inherit"
3726 			 * a port number supplied by the user in a bind.
3727 			 */
3728 			if (user_specified)
3729 				return (port);
3730 
3731 			/*
3732 			 * This is the only place where tcp_next_port_to_try
3733 			 * is updated. After the update, it may or may not
3734 			 * be in the valid range.
3735 			 */
3736 			if (!tcp->tcp_anon_priv_bind)
3737 				tcps->tcps_next_port_to_try = port + 1;
3738 			return (port);
3739 		}
3740 
3741 		if (tcp->tcp_anon_priv_bind) {
3742 			port = tcp_get_next_priv_port(tcp);
3743 		} else {
3744 			if (count == 0 && user_specified) {
3745 				/*
3746 				 * We may have to return an anonymous port. So
3747 				 * get one to start with.
3748 				 */
3749 				port =
3750 				    tcp_update_next_port(
3751 				    tcps->tcps_next_port_to_try,
3752 				    tcp, B_TRUE);
3753 				user_specified = B_FALSE;
3754 			} else {
3755 				port = tcp_update_next_port(port + 1, tcp,
3756 				    B_FALSE);
3757 			}
3758 		}
3759 		if (port == 0)
3760 			break;
3761 
3762 		/*
3763 		 * Don't let this loop run forever in the case where
3764 		 * all of the anonymous ports are in use.
3765 		 */
3766 	} while (++count < loopmax);
3767 	return (0);
3768 }
3769 
3770 /*
3771  * tcp_clean_death / tcp_close_detached must not be called more than once
3772  * on a tcp. Thus every function that potentially calls tcp_clean_death
3773  * must check for the tcp state before calling tcp_clean_death.
3774  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3775  * tcp_timer_handler, all check for the tcp state.
3776  */
3777 /* ARGSUSED */
3778 void
3779 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3780 {
3781 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3782 
3783 	freemsg(mp);
3784 	if (tcp->tcp_state > TCPS_BOUND)
3785 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3786 		    ETIMEDOUT, 5);
3787 }
3788 
3789 /*
3790  * We are dying for some reason.  Try to do it gracefully.  (May be called
3791  * as writer.)
3792  *
3793  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3794  * done by a service procedure).
3795  * TBD - Should the return value distinguish between the tcp_t being
3796  * freed and it being reinitialized?
3797  */
3798 static int
3799 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3800 {
3801 	mblk_t	*mp;
3802 	queue_t	*q;
3803 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3804 
3805 	TCP_CLD_STAT(tag);
3806 
3807 #if TCP_TAG_CLEAN_DEATH
3808 	tcp->tcp_cleandeathtag = tag;
3809 #endif
3810 
3811 	if (tcp->tcp_fused)
3812 		tcp_unfuse(tcp);
3813 
3814 	if (tcp->tcp_linger_tid != 0 &&
3815 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3816 		tcp_stop_lingering(tcp);
3817 	}
3818 
3819 	ASSERT(tcp != NULL);
3820 	ASSERT((tcp->tcp_family == AF_INET &&
3821 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3822 	    (tcp->tcp_family == AF_INET6 &&
3823 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3824 	    tcp->tcp_ipversion == IPV6_VERSION)));
3825 
3826 	if (TCP_IS_DETACHED(tcp)) {
3827 		if (tcp->tcp_hard_binding) {
3828 			/*
3829 			 * Its an eager that we are dealing with. We close the
3830 			 * eager but in case a conn_ind has already gone to the
3831 			 * listener, let tcp_accept_finish() send a discon_ind
3832 			 * to the listener and drop the last reference. If the
3833 			 * listener doesn't even know about the eager i.e. the
3834 			 * conn_ind hasn't gone up, blow away the eager and drop
3835 			 * the last reference as well. If the conn_ind has gone
3836 			 * up, state should be BOUND. tcp_accept_finish
3837 			 * will figure out that the connection has received a
3838 			 * RST and will send a DISCON_IND to the application.
3839 			 */
3840 			tcp_closei_local(tcp);
3841 			if (!tcp->tcp_tconnind_started) {
3842 				CONN_DEC_REF(tcp->tcp_connp);
3843 			} else {
3844 				tcp->tcp_state = TCPS_BOUND;
3845 			}
3846 		} else {
3847 			tcp_close_detached(tcp);
3848 		}
3849 		return (0);
3850 	}
3851 
3852 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3853 
3854 	/*
3855 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3856 	 * is run) postpone cleaning up the endpoint until service routine
3857 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3858 	 * client_errno since tcp_close uses the client_errno field.
3859 	 */
3860 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3861 		if (err != 0)
3862 			tcp->tcp_client_errno = err;
3863 
3864 		tcp->tcp_deferred_clean_death = B_TRUE;
3865 		return (-1);
3866 	}
3867 
3868 	q = tcp->tcp_rq;
3869 
3870 	/* Trash all inbound data */
3871 	flushq(q, FLUSHALL);
3872 
3873 	/*
3874 	 * If we are at least part way open and there is error
3875 	 * (err==0 implies no error)
3876 	 * notify our client by a T_DISCON_IND.
3877 	 */
3878 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3879 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3880 		    !TCP_IS_SOCKET(tcp)) {
3881 			/*
3882 			 * Send M_FLUSH according to TPI. Because sockets will
3883 			 * (and must) ignore FLUSHR we do that only for TPI
3884 			 * endpoints and sockets in STREAMS mode.
3885 			 */
3886 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3887 		}
3888 		if (tcp->tcp_debug) {
3889 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3890 			    "tcp_clean_death: discon err %d", err);
3891 		}
3892 		mp = mi_tpi_discon_ind(NULL, err, 0);
3893 		if (mp != NULL) {
3894 			putnext(q, mp);
3895 		} else {
3896 			if (tcp->tcp_debug) {
3897 				(void) strlog(TCP_MOD_ID, 0, 1,
3898 				    SL_ERROR|SL_TRACE,
3899 				    "tcp_clean_death, sending M_ERROR");
3900 			}
3901 			(void) putnextctl1(q, M_ERROR, EPROTO);
3902 		}
3903 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3904 			/* SYN_SENT or SYN_RCVD */
3905 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3906 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3907 			/* ESTABLISHED or CLOSE_WAIT */
3908 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3909 		}
3910 	}
3911 
3912 	tcp_reinit(tcp);
3913 	return (-1);
3914 }
3915 
3916 /*
3917  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3918  * to expire, stop the wait and finish the close.
3919  */
3920 static void
3921 tcp_stop_lingering(tcp_t *tcp)
3922 {
3923 	clock_t	delta = 0;
3924 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3925 
3926 	tcp->tcp_linger_tid = 0;
3927 	if (tcp->tcp_state > TCPS_LISTEN) {
3928 		tcp_acceptor_hash_remove(tcp);
3929 		mutex_enter(&tcp->tcp_non_sq_lock);
3930 		if (tcp->tcp_flow_stopped) {
3931 			tcp_clrqfull(tcp);
3932 		}
3933 		mutex_exit(&tcp->tcp_non_sq_lock);
3934 
3935 		if (tcp->tcp_timer_tid != 0) {
3936 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3937 			tcp->tcp_timer_tid = 0;
3938 		}
3939 		/*
3940 		 * Need to cancel those timers which will not be used when
3941 		 * TCP is detached.  This has to be done before the tcp_wq
3942 		 * is set to the global queue.
3943 		 */
3944 		tcp_timers_stop(tcp);
3945 
3946 
3947 		tcp->tcp_detached = B_TRUE;
3948 		ASSERT(tcps->tcps_g_q != NULL);
3949 		tcp->tcp_rq = tcps->tcps_g_q;
3950 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3951 
3952 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3953 			tcp_time_wait_append(tcp);
3954 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3955 			goto finish;
3956 		}
3957 
3958 		/*
3959 		 * If delta is zero the timer event wasn't executed and was
3960 		 * successfully canceled. In this case we need to restart it
3961 		 * with the minimal delta possible.
3962 		 */
3963 		if (delta >= 0) {
3964 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3965 			    delta ? delta : 1);
3966 		}
3967 	} else {
3968 		tcp_closei_local(tcp);
3969 		CONN_DEC_REF(tcp->tcp_connp);
3970 	}
3971 finish:
3972 	/* Signal closing thread that it can complete close */
3973 	mutex_enter(&tcp->tcp_closelock);
3974 	tcp->tcp_detached = B_TRUE;
3975 	ASSERT(tcps->tcps_g_q != NULL);
3976 	tcp->tcp_rq = tcps->tcps_g_q;
3977 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3978 	tcp->tcp_closed = 1;
3979 	cv_signal(&tcp->tcp_closecv);
3980 	mutex_exit(&tcp->tcp_closelock);
3981 }
3982 
3983 /*
3984  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3985  * expires.
3986  */
3987 static void
3988 tcp_close_linger_timeout(void *arg)
3989 {
3990 	conn_t	*connp = (conn_t *)arg;
3991 	tcp_t 	*tcp = connp->conn_tcp;
3992 
3993 	tcp->tcp_client_errno = ETIMEDOUT;
3994 	tcp_stop_lingering(tcp);
3995 }
3996 
3997 static int
3998 tcp_close(queue_t *q, int flags)
3999 {
4000 	conn_t		*connp = Q_TO_CONN(q);
4001 	tcp_t		*tcp = connp->conn_tcp;
4002 	mblk_t 		*mp = &tcp->tcp_closemp;
4003 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4004 	boolean_t	linger_interrupted = B_FALSE;
4005 	mblk_t		*bp;
4006 
4007 	ASSERT(WR(q)->q_next == NULL);
4008 	ASSERT(connp->conn_ref >= 2);
4009 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
4010 
4011 	/*
4012 	 * We are being closed as /dev/tcp or /dev/tcp6.
4013 	 *
4014 	 * Mark the conn as closing. ill_pending_mp_add will not
4015 	 * add any mp to the pending mp list, after this conn has
4016 	 * started closing. Same for sq_pending_mp_add
4017 	 */
4018 	mutex_enter(&connp->conn_lock);
4019 	connp->conn_state_flags |= CONN_CLOSING;
4020 	if (connp->conn_oper_pending_ill != NULL)
4021 		conn_ioctl_cleanup_reqd = B_TRUE;
4022 	CONN_INC_REF_LOCKED(connp);
4023 	mutex_exit(&connp->conn_lock);
4024 	tcp->tcp_closeflags = (uint8_t)flags;
4025 	ASSERT(connp->conn_ref >= 3);
4026 
4027 	/*
4028 	 * tcp_closemp_used is used below without any protection of a lock
4029 	 * as we don't expect any one else to use it concurrently at this
4030 	 * point otherwise it would be a major defect.
4031 	 */
4032 
4033 	if (mp->b_prev == NULL)
4034 		tcp->tcp_closemp_used = B_TRUE;
4035 	else
4036 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4037 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4038 
4039 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4040 
4041 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4042 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4043 
4044 	mutex_enter(&tcp->tcp_closelock);
4045 	while (!tcp->tcp_closed) {
4046 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4047 			/*
4048 			 * We got interrupted. Check if we are lingering,
4049 			 * if yes, post a message to stop and wait until
4050 			 * tcp_closed is set. If we aren't lingering,
4051 			 * just go back around.
4052 			 */
4053 			if (tcp->tcp_linger &&
4054 			    tcp->tcp_lingertime > 0 &&
4055 			    !linger_interrupted) {
4056 				mutex_exit(&tcp->tcp_closelock);
4057 				/* Entering squeue, bump ref count. */
4058 				CONN_INC_REF(connp);
4059 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4060 				squeue_enter(connp->conn_sqp, bp,
4061 				    tcp_linger_interrupted, connp,
4062 				    SQTAG_IP_TCP_CLOSE);
4063 				linger_interrupted = B_TRUE;
4064 				mutex_enter(&tcp->tcp_closelock);
4065 			}
4066 		}
4067 	}
4068 	mutex_exit(&tcp->tcp_closelock);
4069 
4070 	/*
4071 	 * In the case of listener streams that have eagers in the q or q0
4072 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4073 	 * tcp_wq of the eagers point to our queues. By waiting for the
4074 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4075 	 * up their queue pointers and also dropped their references to us.
4076 	 */
4077 	if (tcp->tcp_wait_for_eagers) {
4078 		mutex_enter(&connp->conn_lock);
4079 		while (connp->conn_ref != 1) {
4080 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4081 		}
4082 		mutex_exit(&connp->conn_lock);
4083 	}
4084 	/*
4085 	 * ioctl cleanup. The mp is queued in the
4086 	 * ill_pending_mp or in the sq_pending_mp.
4087 	 */
4088 	if (conn_ioctl_cleanup_reqd)
4089 		conn_ioctl_cleanup(connp);
4090 
4091 	qprocsoff(q);
4092 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4093 
4094 	tcp->tcp_cpid = -1;
4095 
4096 	/*
4097 	 * Drop IP's reference on the conn. This is the last reference
4098 	 * on the connp if the state was less than established. If the
4099 	 * connection has gone into timewait state, then we will have
4100 	 * one ref for the TCP and one more ref (total of two) for the
4101 	 * classifier connected hash list (a timewait connections stays
4102 	 * in connected hash till closed).
4103 	 *
4104 	 * We can't assert the references because there might be other
4105 	 * transient reference places because of some walkers or queued
4106 	 * packets in squeue for the timewait state.
4107 	 */
4108 	CONN_DEC_REF(connp);
4109 	q->q_ptr = WR(q)->q_ptr = NULL;
4110 	return (0);
4111 }
4112 
4113 static int
4114 tcpclose_accept(queue_t *q)
4115 {
4116 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4117 
4118 	/*
4119 	 * We had opened an acceptor STREAM for sockfs which is
4120 	 * now being closed due to some error.
4121 	 */
4122 	qprocsoff(q);
4123 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4124 	q->q_ptr = WR(q)->q_ptr = NULL;
4125 	return (0);
4126 }
4127 
4128 /*
4129  * Called by tcp_close() routine via squeue when lingering is
4130  * interrupted by a signal.
4131  */
4132 
4133 /* ARGSUSED */
4134 static void
4135 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4136 {
4137 	conn_t	*connp = (conn_t *)arg;
4138 	tcp_t	*tcp = connp->conn_tcp;
4139 
4140 	freeb(mp);
4141 	if (tcp->tcp_linger_tid != 0 &&
4142 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4143 		tcp_stop_lingering(tcp);
4144 		tcp->tcp_client_errno = EINTR;
4145 	}
4146 }
4147 
4148 /*
4149  * Called by streams close routine via squeues when our client blows off her
4150  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4151  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4152  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4153  * acked.
4154  *
4155  * NOTE: tcp_close potentially returns error when lingering.
4156  * However, the stream head currently does not pass these errors
4157  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4158  * errors to the application (from tsleep()) and not errors
4159  * like ECONNRESET caused by receiving a reset packet.
4160  */
4161 
4162 /* ARGSUSED */
4163 static void
4164 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4165 {
4166 	char	*msg;
4167 	conn_t	*connp = (conn_t *)arg;
4168 	tcp_t	*tcp = connp->conn_tcp;
4169 	clock_t	delta = 0;
4170 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4171 
4172 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4173 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4174 
4175 	/* Cancel any pending timeout */
4176 	if (tcp->tcp_ordrelid != 0) {
4177 		if (tcp->tcp_timeout) {
4178 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4179 		}
4180 		tcp->tcp_ordrelid = 0;
4181 		tcp->tcp_timeout = B_FALSE;
4182 	}
4183 
4184 	mutex_enter(&tcp->tcp_eager_lock);
4185 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4186 		/* Cleanup for listener */
4187 		tcp_eager_cleanup(tcp, 0);
4188 		tcp->tcp_wait_for_eagers = 1;
4189 	}
4190 	mutex_exit(&tcp->tcp_eager_lock);
4191 
4192 	connp->conn_mdt_ok = B_FALSE;
4193 	tcp->tcp_mdt = B_FALSE;
4194 
4195 	connp->conn_lso_ok = B_FALSE;
4196 	tcp->tcp_lso = B_FALSE;
4197 
4198 	msg = NULL;
4199 	switch (tcp->tcp_state) {
4200 	case TCPS_CLOSED:
4201 	case TCPS_IDLE:
4202 	case TCPS_BOUND:
4203 	case TCPS_LISTEN:
4204 		break;
4205 	case TCPS_SYN_SENT:
4206 		msg = "tcp_close, during connect";
4207 		break;
4208 	case TCPS_SYN_RCVD:
4209 		/*
4210 		 * Close during the connect 3-way handshake
4211 		 * but here there may or may not be pending data
4212 		 * already on queue. Process almost same as in
4213 		 * the ESTABLISHED state.
4214 		 */
4215 		/* FALLTHRU */
4216 	default:
4217 		if (tcp->tcp_fused)
4218 			tcp_unfuse(tcp);
4219 
4220 		/*
4221 		 * If SO_LINGER has set a zero linger time, abort the
4222 		 * connection with a reset.
4223 		 */
4224 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4225 			msg = "tcp_close, zero lingertime";
4226 			break;
4227 		}
4228 
4229 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4230 		/*
4231 		 * Abort connection if there is unread data queued.
4232 		 */
4233 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4234 			msg = "tcp_close, unread data";
4235 			break;
4236 		}
4237 		/*
4238 		 * tcp_hard_bound is now cleared thus all packets go through
4239 		 * tcp_lookup. This fact is used by tcp_detach below.
4240 		 *
4241 		 * We have done a qwait() above which could have possibly
4242 		 * drained more messages in turn causing transition to a
4243 		 * different state. Check whether we have to do the rest
4244 		 * of the processing or not.
4245 		 */
4246 		if (tcp->tcp_state <= TCPS_LISTEN)
4247 			break;
4248 
4249 		/*
4250 		 * Transmit the FIN before detaching the tcp_t.
4251 		 * After tcp_detach returns this queue/perimeter
4252 		 * no longer owns the tcp_t thus others can modify it.
4253 		 */
4254 		(void) tcp_xmit_end(tcp);
4255 
4256 		/*
4257 		 * If lingering on close then wait until the fin is acked,
4258 		 * the SO_LINGER time passes, or a reset is sent/received.
4259 		 */
4260 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4261 		    !(tcp->tcp_fin_acked) &&
4262 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4263 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4264 				tcp->tcp_client_errno = EWOULDBLOCK;
4265 			} else if (tcp->tcp_client_errno == 0) {
4266 
4267 				ASSERT(tcp->tcp_linger_tid == 0);
4268 
4269 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4270 				    tcp_close_linger_timeout,
4271 				    tcp->tcp_lingertime * hz);
4272 
4273 				/* tcp_close_linger_timeout will finish close */
4274 				if (tcp->tcp_linger_tid == 0)
4275 					tcp->tcp_client_errno = ENOSR;
4276 				else
4277 					return;
4278 			}
4279 
4280 			/*
4281 			 * Check if we need to detach or just close
4282 			 * the instance.
4283 			 */
4284 			if (tcp->tcp_state <= TCPS_LISTEN)
4285 				break;
4286 		}
4287 
4288 		/*
4289 		 * Make sure that no other thread will access the tcp_rq of
4290 		 * this instance (through lookups etc.) as tcp_rq will go
4291 		 * away shortly.
4292 		 */
4293 		tcp_acceptor_hash_remove(tcp);
4294 
4295 		mutex_enter(&tcp->tcp_non_sq_lock);
4296 		if (tcp->tcp_flow_stopped) {
4297 			tcp_clrqfull(tcp);
4298 		}
4299 		mutex_exit(&tcp->tcp_non_sq_lock);
4300 
4301 		if (tcp->tcp_timer_tid != 0) {
4302 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4303 			tcp->tcp_timer_tid = 0;
4304 		}
4305 		/*
4306 		 * Need to cancel those timers which will not be used when
4307 		 * TCP is detached.  This has to be done before the tcp_wq
4308 		 * is set to the global queue.
4309 		 */
4310 		tcp_timers_stop(tcp);
4311 
4312 		tcp->tcp_detached = B_TRUE;
4313 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4314 			tcp_time_wait_append(tcp);
4315 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4316 			ASSERT(connp->conn_ref >= 3);
4317 			goto finish;
4318 		}
4319 
4320 		/*
4321 		 * If delta is zero the timer event wasn't executed and was
4322 		 * successfully canceled. In this case we need to restart it
4323 		 * with the minimal delta possible.
4324 		 */
4325 		if (delta >= 0)
4326 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4327 			    delta ? delta : 1);
4328 
4329 		ASSERT(connp->conn_ref >= 3);
4330 		goto finish;
4331 	}
4332 
4333 	/* Detach did not complete. Still need to remove q from stream. */
4334 	if (msg) {
4335 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4336 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4337 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4338 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4339 		    tcp->tcp_state == TCPS_SYN_RCVD)
4340 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4341 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4342 	}
4343 
4344 	tcp_closei_local(tcp);
4345 	CONN_DEC_REF(connp);
4346 	ASSERT(connp->conn_ref >= 2);
4347 
4348 finish:
4349 	/*
4350 	 * Although packets are always processed on the correct
4351 	 * tcp's perimeter and access is serialized via squeue's,
4352 	 * IP still needs a queue when sending packets in time_wait
4353 	 * state so use WR(tcps_g_q) till ip_output() can be
4354 	 * changed to deal with just connp. For read side, we
4355 	 * could have set tcp_rq to NULL but there are some cases
4356 	 * in tcp_rput_data() from early days of this code which
4357 	 * do a putnext without checking if tcp is closed. Those
4358 	 * need to be identified before both tcp_rq and tcp_wq
4359 	 * can be set to NULL and tcps_g_q can disappear forever.
4360 	 */
4361 	mutex_enter(&tcp->tcp_closelock);
4362 	/*
4363 	 * Don't change the queues in the case of a listener that has
4364 	 * eagers in its q or q0. It could surprise the eagers.
4365 	 * Instead wait for the eagers outside the squeue.
4366 	 */
4367 	if (!tcp->tcp_wait_for_eagers) {
4368 		tcp->tcp_detached = B_TRUE;
4369 		/*
4370 		 * When default queue is closing we set tcps_g_q to NULL
4371 		 * after the close is done.
4372 		 */
4373 		ASSERT(tcps->tcps_g_q != NULL);
4374 		tcp->tcp_rq = tcps->tcps_g_q;
4375 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4376 	}
4377 
4378 	/* Signal tcp_close() to finish closing. */
4379 	tcp->tcp_closed = 1;
4380 	cv_signal(&tcp->tcp_closecv);
4381 	mutex_exit(&tcp->tcp_closelock);
4382 }
4383 
4384 
4385 /*
4386  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4387  * Some stream heads get upset if they see these later on as anything but NULL.
4388  */
4389 static void
4390 tcp_close_mpp(mblk_t **mpp)
4391 {
4392 	mblk_t	*mp;
4393 
4394 	if ((mp = *mpp) != NULL) {
4395 		do {
4396 			mp->b_next = NULL;
4397 			mp->b_prev = NULL;
4398 		} while ((mp = mp->b_cont) != NULL);
4399 
4400 		mp = *mpp;
4401 		*mpp = NULL;
4402 		freemsg(mp);
4403 	}
4404 }
4405 
4406 /* Do detached close. */
4407 static void
4408 tcp_close_detached(tcp_t *tcp)
4409 {
4410 	if (tcp->tcp_fused)
4411 		tcp_unfuse(tcp);
4412 
4413 	/*
4414 	 * Clustering code serializes TCP disconnect callbacks and
4415 	 * cluster tcp list walks by blocking a TCP disconnect callback
4416 	 * if a cluster tcp list walk is in progress. This ensures
4417 	 * accurate accounting of TCPs in the cluster code even though
4418 	 * the TCP list walk itself is not atomic.
4419 	 */
4420 	tcp_closei_local(tcp);
4421 	CONN_DEC_REF(tcp->tcp_connp);
4422 }
4423 
4424 /*
4425  * Stop all TCP timers, and free the timer mblks if requested.
4426  */
4427 void
4428 tcp_timers_stop(tcp_t *tcp)
4429 {
4430 	if (tcp->tcp_timer_tid != 0) {
4431 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4432 		tcp->tcp_timer_tid = 0;
4433 	}
4434 	if (tcp->tcp_ka_tid != 0) {
4435 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4436 		tcp->tcp_ka_tid = 0;
4437 	}
4438 	if (tcp->tcp_ack_tid != 0) {
4439 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4440 		tcp->tcp_ack_tid = 0;
4441 	}
4442 	if (tcp->tcp_push_tid != 0) {
4443 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4444 		tcp->tcp_push_tid = 0;
4445 	}
4446 }
4447 
4448 /*
4449  * The tcp_t is going away. Remove it from all lists and set it
4450  * to TCPS_CLOSED. The freeing up of memory is deferred until
4451  * tcp_inactive. This is needed since a thread in tcp_rput might have
4452  * done a CONN_INC_REF on this structure before it was removed from the
4453  * hashes.
4454  */
4455 static void
4456 tcp_closei_local(tcp_t *tcp)
4457 {
4458 	ire_t 	*ire;
4459 	conn_t	*connp = tcp->tcp_connp;
4460 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4461 
4462 	if (!TCP_IS_SOCKET(tcp))
4463 		tcp_acceptor_hash_remove(tcp);
4464 
4465 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4466 	tcp->tcp_ibsegs = 0;
4467 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4468 	tcp->tcp_obsegs = 0;
4469 
4470 	/*
4471 	 * If we are an eager connection hanging off a listener that
4472 	 * hasn't formally accepted the connection yet, get off his
4473 	 * list and blow off any data that we have accumulated.
4474 	 */
4475 	if (tcp->tcp_listener != NULL) {
4476 		tcp_t	*listener = tcp->tcp_listener;
4477 		mutex_enter(&listener->tcp_eager_lock);
4478 		/*
4479 		 * tcp_tconnind_started == B_TRUE means that the
4480 		 * conn_ind has already gone to listener. At
4481 		 * this point, eager will be closed but we
4482 		 * leave it in listeners eager list so that
4483 		 * if listener decides to close without doing
4484 		 * accept, we can clean this up. In tcp_wput_accept
4485 		 * we take care of the case of accept on closed
4486 		 * eager.
4487 		 */
4488 		if (!tcp->tcp_tconnind_started) {
4489 			tcp_eager_unlink(tcp);
4490 			mutex_exit(&listener->tcp_eager_lock);
4491 			/*
4492 			 * We don't want to have any pointers to the
4493 			 * listener queue, after we have released our
4494 			 * reference on the listener
4495 			 */
4496 			ASSERT(tcps->tcps_g_q != NULL);
4497 			tcp->tcp_rq = tcps->tcps_g_q;
4498 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4499 			CONN_DEC_REF(listener->tcp_connp);
4500 		} else {
4501 			mutex_exit(&listener->tcp_eager_lock);
4502 		}
4503 	}
4504 
4505 	/* Stop all the timers */
4506 	tcp_timers_stop(tcp);
4507 
4508 	if (tcp->tcp_state == TCPS_LISTEN) {
4509 		if (tcp->tcp_ip_addr_cache) {
4510 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4511 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4512 			tcp->tcp_ip_addr_cache = NULL;
4513 		}
4514 	}
4515 	mutex_enter(&tcp->tcp_non_sq_lock);
4516 	if (tcp->tcp_flow_stopped)
4517 		tcp_clrqfull(tcp);
4518 	mutex_exit(&tcp->tcp_non_sq_lock);
4519 
4520 	tcp_bind_hash_remove(tcp);
4521 	/*
4522 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4523 	 * is trying to remove this tcp from the time wait list, we will
4524 	 * block in tcp_time_wait_remove while trying to acquire the
4525 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4526 	 * requires the ipcl_hash_remove to be ordered after the
4527 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4528 	 */
4529 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4530 		(void) tcp_time_wait_remove(tcp, NULL);
4531 	CL_INET_DISCONNECT(tcp);
4532 	ipcl_hash_remove(connp);
4533 
4534 	/*
4535 	 * Delete the cached ire in conn_ire_cache and also mark
4536 	 * the conn as CONDEMNED
4537 	 */
4538 	mutex_enter(&connp->conn_lock);
4539 	connp->conn_state_flags |= CONN_CONDEMNED;
4540 	ire = connp->conn_ire_cache;
4541 	connp->conn_ire_cache = NULL;
4542 	mutex_exit(&connp->conn_lock);
4543 	if (ire != NULL)
4544 		IRE_REFRELE_NOTR(ire);
4545 
4546 	/* Need to cleanup any pending ioctls */
4547 	ASSERT(tcp->tcp_time_wait_next == NULL);
4548 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4549 	ASSERT(tcp->tcp_time_wait_expire == 0);
4550 	tcp->tcp_state = TCPS_CLOSED;
4551 
4552 	/* Release any SSL context */
4553 	if (tcp->tcp_kssl_ent != NULL) {
4554 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4555 		tcp->tcp_kssl_ent = NULL;
4556 	}
4557 	if (tcp->tcp_kssl_ctx != NULL) {
4558 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4559 		tcp->tcp_kssl_ctx = NULL;
4560 	}
4561 	tcp->tcp_kssl_pending = B_FALSE;
4562 
4563 	tcp_ipsec_cleanup(tcp);
4564 }
4565 
4566 /*
4567  * tcp is dying (called from ipcl_conn_destroy and error cases).
4568  * Free the tcp_t in either case.
4569  */
4570 void
4571 tcp_free(tcp_t *tcp)
4572 {
4573 	mblk_t	*mp;
4574 	ip6_pkt_t	*ipp;
4575 
4576 	ASSERT(tcp != NULL);
4577 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4578 
4579 	tcp->tcp_rq = NULL;
4580 	tcp->tcp_wq = NULL;
4581 
4582 	tcp_close_mpp(&tcp->tcp_xmit_head);
4583 	tcp_close_mpp(&tcp->tcp_reass_head);
4584 	if (tcp->tcp_rcv_list != NULL) {
4585 		/* Free b_next chain */
4586 		tcp_close_mpp(&tcp->tcp_rcv_list);
4587 	}
4588 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4589 		freemsg(mp);
4590 	}
4591 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4592 		freemsg(mp);
4593 	}
4594 
4595 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4596 		freeb(tcp->tcp_fused_sigurg_mp);
4597 		tcp->tcp_fused_sigurg_mp = NULL;
4598 	}
4599 
4600 	if (tcp->tcp_sack_info != NULL) {
4601 		if (tcp->tcp_notsack_list != NULL) {
4602 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4603 		}
4604 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4605 	}
4606 
4607 	if (tcp->tcp_hopopts != NULL) {
4608 		mi_free(tcp->tcp_hopopts);
4609 		tcp->tcp_hopopts = NULL;
4610 		tcp->tcp_hopoptslen = 0;
4611 	}
4612 	ASSERT(tcp->tcp_hopoptslen == 0);
4613 	if (tcp->tcp_dstopts != NULL) {
4614 		mi_free(tcp->tcp_dstopts);
4615 		tcp->tcp_dstopts = NULL;
4616 		tcp->tcp_dstoptslen = 0;
4617 	}
4618 	ASSERT(tcp->tcp_dstoptslen == 0);
4619 	if (tcp->tcp_rtdstopts != NULL) {
4620 		mi_free(tcp->tcp_rtdstopts);
4621 		tcp->tcp_rtdstopts = NULL;
4622 		tcp->tcp_rtdstoptslen = 0;
4623 	}
4624 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4625 	if (tcp->tcp_rthdr != NULL) {
4626 		mi_free(tcp->tcp_rthdr);
4627 		tcp->tcp_rthdr = NULL;
4628 		tcp->tcp_rthdrlen = 0;
4629 	}
4630 	ASSERT(tcp->tcp_rthdrlen == 0);
4631 
4632 	ipp = &tcp->tcp_sticky_ipp;
4633 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4634 	    IPPF_RTHDR))
4635 		ip6_pkt_free(ipp);
4636 
4637 	/*
4638 	 * Free memory associated with the tcp/ip header template.
4639 	 */
4640 
4641 	if (tcp->tcp_iphc != NULL)
4642 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4643 
4644 	/*
4645 	 * Following is really a blowing away a union.
4646 	 * It happens to have exactly two members of identical size
4647 	 * the following code is enough.
4648 	 */
4649 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4650 
4651 	if (tcp->tcp_tracebuf != NULL) {
4652 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4653 		tcp->tcp_tracebuf = NULL;
4654 	}
4655 }
4656 
4657 
4658 /*
4659  * Put a connection confirmation message upstream built from the
4660  * address information within 'iph' and 'tcph'.  Report our success or failure.
4661  */
4662 static boolean_t
4663 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4664     mblk_t **defermp)
4665 {
4666 	sin_t	sin;
4667 	sin6_t	sin6;
4668 	mblk_t	*mp;
4669 	char	*optp = NULL;
4670 	int	optlen = 0;
4671 	cred_t	*cr;
4672 
4673 	if (defermp != NULL)
4674 		*defermp = NULL;
4675 
4676 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4677 		/*
4678 		 * Return in T_CONN_CON results of option negotiation through
4679 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4680 		 * negotiation, then what is received from remote end needs
4681 		 * to be taken into account but there is no such thing (yet?)
4682 		 * in our TCP/IP.
4683 		 * Note: We do not use mi_offset_param() here as
4684 		 * tcp_opts_conn_req contents do not directly come from
4685 		 * an application and are either generated in kernel or
4686 		 * from user input that was already verified.
4687 		 */
4688 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4689 		optp = (char *)(mp->b_rptr +
4690 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4691 		optlen = (int)
4692 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4693 	}
4694 
4695 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4696 		ipha_t *ipha = (ipha_t *)iphdr;
4697 
4698 		/* packet is IPv4 */
4699 		if (tcp->tcp_family == AF_INET) {
4700 			sin = sin_null;
4701 			sin.sin_addr.s_addr = ipha->ipha_src;
4702 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4703 			sin.sin_family = AF_INET;
4704 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4705 			    (int)sizeof (sin_t), optp, optlen);
4706 		} else {
4707 			sin6 = sin6_null;
4708 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4709 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4710 			sin6.sin6_family = AF_INET6;
4711 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4712 			    (int)sizeof (sin6_t), optp, optlen);
4713 
4714 		}
4715 	} else {
4716 		ip6_t	*ip6h = (ip6_t *)iphdr;
4717 
4718 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4719 		ASSERT(tcp->tcp_family == AF_INET6);
4720 		sin6 = sin6_null;
4721 		sin6.sin6_addr = ip6h->ip6_src;
4722 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4723 		sin6.sin6_family = AF_INET6;
4724 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4725 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4726 		    (int)sizeof (sin6_t), optp, optlen);
4727 	}
4728 
4729 	if (!mp)
4730 		return (B_FALSE);
4731 
4732 	if ((cr = DB_CRED(idmp)) != NULL) {
4733 		mblk_setcred(mp, cr);
4734 		DB_CPID(mp) = DB_CPID(idmp);
4735 	}
4736 
4737 	if (defermp == NULL)
4738 		putnext(tcp->tcp_rq, mp);
4739 	else
4740 		*defermp = mp;
4741 
4742 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4743 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4744 	return (B_TRUE);
4745 }
4746 
4747 /*
4748  * Defense for the SYN attack -
4749  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4750  *    one from the list of droppable eagers. This list is a subset of q0.
4751  *    see comments before the definition of MAKE_DROPPABLE().
4752  * 2. Don't drop a SYN request before its first timeout. This gives every
4753  *    request at least til the first timeout to complete its 3-way handshake.
4754  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4755  *    requests currently on the queue that has timed out. This will be used
4756  *    as an indicator of whether an attack is under way, so that appropriate
4757  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4758  *    either when eager goes into ESTABLISHED, or gets freed up.)
4759  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4760  *    # of timeout drops back to <= q0len/32 => SYN alert off
4761  */
4762 static boolean_t
4763 tcp_drop_q0(tcp_t *tcp)
4764 {
4765 	tcp_t	*eager;
4766 	mblk_t	*mp;
4767 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4768 
4769 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4770 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4771 
4772 	/* Pick oldest eager from the list of droppable eagers */
4773 	eager = tcp->tcp_eager_prev_drop_q0;
4774 
4775 	/* If list is empty. return B_FALSE */
4776 	if (eager == tcp) {
4777 		return (B_FALSE);
4778 	}
4779 
4780 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4781 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4782 		return (B_FALSE);
4783 
4784 	/*
4785 	 * Take this eager out from the list of droppable eagers since we are
4786 	 * going to drop it.
4787 	 */
4788 	MAKE_UNDROPPABLE(eager);
4789 
4790 	if (tcp->tcp_debug) {
4791 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4792 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4793 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4794 		    tcp->tcp_conn_req_cnt_q0,
4795 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4796 	}
4797 
4798 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4799 
4800 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4801 	CONN_INC_REF(eager->tcp_connp);
4802 
4803 	/* Mark the IRE created for this SYN request temporary */
4804 	tcp_ip_ire_mark_advice(eager);
4805 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4806 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4807 
4808 	return (B_TRUE);
4809 }
4810 
4811 int
4812 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4813     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4814 {
4815 	tcp_t 		*ltcp = lconnp->conn_tcp;
4816 	tcp_t		*tcp = connp->conn_tcp;
4817 	mblk_t		*tpi_mp;
4818 	ipha_t		*ipha;
4819 	ip6_t		*ip6h;
4820 	sin6_t 		sin6;
4821 	in6_addr_t 	v6dst;
4822 	int		err;
4823 	int		ifindex = 0;
4824 	cred_t		*cr;
4825 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4826 
4827 	if (ipvers == IPV4_VERSION) {
4828 		ipha = (ipha_t *)mp->b_rptr;
4829 
4830 		connp->conn_send = ip_output;
4831 		connp->conn_recv = tcp_input;
4832 
4833 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4834 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4835 
4836 		sin6 = sin6_null;
4837 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4838 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4839 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4840 		sin6.sin6_family = AF_INET6;
4841 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4842 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4843 		if (tcp->tcp_recvdstaddr) {
4844 			sin6_t	sin6d;
4845 
4846 			sin6d = sin6_null;
4847 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4848 			    &sin6d.sin6_addr);
4849 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4850 			sin6d.sin6_family = AF_INET;
4851 			tpi_mp = mi_tpi_extconn_ind(NULL,
4852 			    (char *)&sin6d, sizeof (sin6_t),
4853 			    (char *)&tcp,
4854 			    (t_scalar_t)sizeof (intptr_t),
4855 			    (char *)&sin6d, sizeof (sin6_t),
4856 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4857 		} else {
4858 			tpi_mp = mi_tpi_conn_ind(NULL,
4859 			    (char *)&sin6, sizeof (sin6_t),
4860 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4861 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4862 		}
4863 	} else {
4864 		ip6h = (ip6_t *)mp->b_rptr;
4865 
4866 		connp->conn_send = ip_output_v6;
4867 		connp->conn_recv = tcp_input;
4868 
4869 		connp->conn_srcv6 = ip6h->ip6_dst;
4870 		connp->conn_remv6 = ip6h->ip6_src;
4871 
4872 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4873 		ifindex = (int)DB_CKSUMSTUFF(mp);
4874 		DB_CKSUMSTUFF(mp) = 0;
4875 
4876 		sin6 = sin6_null;
4877 		sin6.sin6_addr = ip6h->ip6_src;
4878 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4879 		sin6.sin6_family = AF_INET6;
4880 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4881 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4882 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4883 
4884 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4885 			/* Pass up the scope_id of remote addr */
4886 			sin6.sin6_scope_id = ifindex;
4887 		} else {
4888 			sin6.sin6_scope_id = 0;
4889 		}
4890 		if (tcp->tcp_recvdstaddr) {
4891 			sin6_t	sin6d;
4892 
4893 			sin6d = sin6_null;
4894 			sin6.sin6_addr = ip6h->ip6_dst;
4895 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4896 			sin6d.sin6_family = AF_INET;
4897 			tpi_mp = mi_tpi_extconn_ind(NULL,
4898 			    (char *)&sin6d, sizeof (sin6_t),
4899 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4900 			    (char *)&sin6d, sizeof (sin6_t),
4901 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4902 		} else {
4903 			tpi_mp = mi_tpi_conn_ind(NULL,
4904 			    (char *)&sin6, sizeof (sin6_t),
4905 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4906 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4907 		}
4908 	}
4909 
4910 	if (tpi_mp == NULL)
4911 		return (ENOMEM);
4912 
4913 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4914 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4915 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4916 	connp->conn_fully_bound = B_FALSE;
4917 
4918 	if (tcps->tcps_trace)
4919 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4920 
4921 	/* Inherit information from the "parent" */
4922 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4923 	tcp->tcp_family = ltcp->tcp_family;
4924 	tcp->tcp_wq = ltcp->tcp_wq;
4925 	tcp->tcp_rq = ltcp->tcp_rq;
4926 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4927 	tcp->tcp_detached = B_TRUE;
4928 	if ((err = tcp_init_values(tcp)) != 0) {
4929 		freemsg(tpi_mp);
4930 		return (err);
4931 	}
4932 
4933 	if (ipvers == IPV4_VERSION) {
4934 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4935 			freemsg(tpi_mp);
4936 			return (err);
4937 		}
4938 		ASSERT(tcp->tcp_ipha != NULL);
4939 	} else {
4940 		/* ifindex must be already set */
4941 		ASSERT(ifindex != 0);
4942 
4943 		if (ltcp->tcp_bound_if != 0) {
4944 			/*
4945 			 * Set newtcp's bound_if equal to
4946 			 * listener's value. If ifindex is
4947 			 * not the same as ltcp->tcp_bound_if,
4948 			 * it must be a packet for the ipmp group
4949 			 * of interfaces
4950 			 */
4951 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4952 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4953 			tcp->tcp_bound_if = ifindex;
4954 		}
4955 
4956 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4957 		tcp->tcp_recvifindex = 0;
4958 		tcp->tcp_recvhops = 0xffffffffU;
4959 		ASSERT(tcp->tcp_ip6h != NULL);
4960 	}
4961 
4962 	tcp->tcp_lport = ltcp->tcp_lport;
4963 
4964 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4965 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4966 			/*
4967 			 * Listener had options of some sort; eager inherits.
4968 			 * Free up the eager template and allocate one
4969 			 * of the right size.
4970 			 */
4971 			if (tcp->tcp_hdr_grown) {
4972 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4973 			} else {
4974 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4975 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4976 			}
4977 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4978 			    KM_NOSLEEP);
4979 			if (tcp->tcp_iphc == NULL) {
4980 				tcp->tcp_iphc_len = 0;
4981 				freemsg(tpi_mp);
4982 				return (ENOMEM);
4983 			}
4984 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4985 			tcp->tcp_hdr_grown = B_TRUE;
4986 		}
4987 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4988 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4989 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4990 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4991 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4992 
4993 		/*
4994 		 * Copy the IP+TCP header template from listener to eager
4995 		 */
4996 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4997 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4998 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4999 			    IPPROTO_RAW) {
5000 				tcp->tcp_ip6h =
5001 				    (ip6_t *)(tcp->tcp_iphc +
5002 				    sizeof (ip6i_t));
5003 			} else {
5004 				tcp->tcp_ip6h =
5005 				    (ip6_t *)(tcp->tcp_iphc);
5006 			}
5007 			tcp->tcp_ipha = NULL;
5008 		} else {
5009 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5010 			tcp->tcp_ip6h = NULL;
5011 		}
5012 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5013 		    tcp->tcp_ip_hdr_len);
5014 	} else {
5015 		/*
5016 		 * only valid case when ipversion of listener and
5017 		 * eager differ is when listener is IPv6 and
5018 		 * eager is IPv4.
5019 		 * Eager header template has been initialized to the
5020 		 * maximum v4 header sizes, which includes space for
5021 		 * TCP and IP options.
5022 		 */
5023 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5024 		    (tcp->tcp_ipversion == IPV4_VERSION));
5025 		ASSERT(tcp->tcp_iphc_len >=
5026 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5027 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5028 		/* copy IP header fields individually */
5029 		tcp->tcp_ipha->ipha_ttl =
5030 		    ltcp->tcp_ip6h->ip6_hops;
5031 		bcopy(ltcp->tcp_tcph->th_lport,
5032 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5033 	}
5034 
5035 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5036 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5037 	    sizeof (in_port_t));
5038 
5039 	if (ltcp->tcp_lport == 0) {
5040 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5041 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5042 		    sizeof (in_port_t));
5043 	}
5044 
5045 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5046 		ASSERT(ipha != NULL);
5047 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5048 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5049 
5050 		/* Source routing option copyover (reverse it) */
5051 		if (tcps->tcps_rev_src_routes)
5052 			tcp_opt_reverse(tcp, ipha);
5053 	} else {
5054 		ASSERT(ip6h != NULL);
5055 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5056 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5057 	}
5058 
5059 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5060 	ASSERT(!tcp->tcp_tconnind_started);
5061 	/*
5062 	 * If the SYN contains a credential, it's a loopback packet; attach
5063 	 * the credential to the TPI message.
5064 	 */
5065 	if ((cr = DB_CRED(idmp)) != NULL) {
5066 		mblk_setcred(tpi_mp, cr);
5067 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5068 	}
5069 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5070 
5071 	/* Inherit the listener's SSL protection state */
5072 
5073 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5074 		kssl_hold_ent(tcp->tcp_kssl_ent);
5075 		tcp->tcp_kssl_pending = B_TRUE;
5076 	}
5077 
5078 	return (0);
5079 }
5080 
5081 
5082 int
5083 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5084     tcph_t *tcph, mblk_t *idmp)
5085 {
5086 	tcp_t 		*ltcp = lconnp->conn_tcp;
5087 	tcp_t		*tcp = connp->conn_tcp;
5088 	sin_t		sin;
5089 	mblk_t		*tpi_mp = NULL;
5090 	int		err;
5091 	cred_t		*cr;
5092 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5093 
5094 	sin = sin_null;
5095 	sin.sin_addr.s_addr = ipha->ipha_src;
5096 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5097 	sin.sin_family = AF_INET;
5098 	if (ltcp->tcp_recvdstaddr) {
5099 		sin_t	sind;
5100 
5101 		sind = sin_null;
5102 		sind.sin_addr.s_addr = ipha->ipha_dst;
5103 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5104 		sind.sin_family = AF_INET;
5105 		tpi_mp = mi_tpi_extconn_ind(NULL,
5106 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5107 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5108 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5109 	} else {
5110 		tpi_mp = mi_tpi_conn_ind(NULL,
5111 		    (char *)&sin, sizeof (sin_t),
5112 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5113 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5114 	}
5115 
5116 	if (tpi_mp == NULL) {
5117 		return (ENOMEM);
5118 	}
5119 
5120 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5121 	connp->conn_send = ip_output;
5122 	connp->conn_recv = tcp_input;
5123 	connp->conn_fully_bound = B_FALSE;
5124 
5125 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5126 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5127 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5128 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5129 
5130 	if (tcps->tcps_trace) {
5131 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5132 	}
5133 
5134 	/* Inherit information from the "parent" */
5135 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5136 	tcp->tcp_family = ltcp->tcp_family;
5137 	tcp->tcp_wq = ltcp->tcp_wq;
5138 	tcp->tcp_rq = ltcp->tcp_rq;
5139 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5140 	tcp->tcp_detached = B_TRUE;
5141 	if ((err = tcp_init_values(tcp)) != 0) {
5142 		freemsg(tpi_mp);
5143 		return (err);
5144 	}
5145 
5146 	/*
5147 	 * Let's make sure that eager tcp template has enough space to
5148 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5149 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5150 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5151 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5152 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5153 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5154 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5155 	 */
5156 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5157 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5158 
5159 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5160 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5161 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5162 	tcp->tcp_ttl = ltcp->tcp_ttl;
5163 	tcp->tcp_tos = ltcp->tcp_tos;
5164 
5165 	/* Copy the IP+TCP header template from listener to eager */
5166 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5167 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5168 	tcp->tcp_ip6h = NULL;
5169 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5170 	    tcp->tcp_ip_hdr_len);
5171 
5172 	/* Initialize the IP addresses and Ports */
5173 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5174 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5175 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5176 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5177 
5178 	/* Source routing option copyover (reverse it) */
5179 	if (tcps->tcps_rev_src_routes)
5180 		tcp_opt_reverse(tcp, ipha);
5181 
5182 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5183 	ASSERT(!tcp->tcp_tconnind_started);
5184 
5185 	/*
5186 	 * If the SYN contains a credential, it's a loopback packet; attach
5187 	 * the credential to the TPI message.
5188 	 */
5189 	if ((cr = DB_CRED(idmp)) != NULL) {
5190 		mblk_setcred(tpi_mp, cr);
5191 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5192 	}
5193 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5194 
5195 	/* Inherit the listener's SSL protection state */
5196 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5197 		kssl_hold_ent(tcp->tcp_kssl_ent);
5198 		tcp->tcp_kssl_pending = B_TRUE;
5199 	}
5200 
5201 	return (0);
5202 }
5203 
5204 /*
5205  * sets up conn for ipsec.
5206  * if the first mblk is M_CTL it is consumed and mpp is updated.
5207  * in case of error mpp is freed.
5208  */
5209 conn_t *
5210 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5211 {
5212 	conn_t 		*connp = tcp->tcp_connp;
5213 	conn_t 		*econnp;
5214 	squeue_t 	*new_sqp;
5215 	mblk_t 		*first_mp = *mpp;
5216 	mblk_t		*mp = *mpp;
5217 	boolean_t	mctl_present = B_FALSE;
5218 	uint_t		ipvers;
5219 
5220 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5221 	if (econnp == NULL) {
5222 		freemsg(first_mp);
5223 		return (NULL);
5224 	}
5225 	if (DB_TYPE(mp) == M_CTL) {
5226 		if (mp->b_cont == NULL ||
5227 		    mp->b_cont->b_datap->db_type != M_DATA) {
5228 			freemsg(first_mp);
5229 			return (NULL);
5230 		}
5231 		mp = mp->b_cont;
5232 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5233 			freemsg(first_mp);
5234 			return (NULL);
5235 		}
5236 
5237 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5238 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5239 		mctl_present = B_TRUE;
5240 	} else {
5241 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5242 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5243 	}
5244 
5245 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5246 	DB_CKSUMSTART(mp) = 0;
5247 
5248 	ASSERT(OK_32PTR(mp->b_rptr));
5249 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5250 	if (ipvers == IPV4_VERSION) {
5251 		uint16_t  	*up;
5252 		uint32_t	ports;
5253 		ipha_t		*ipha;
5254 
5255 		ipha = (ipha_t *)mp->b_rptr;
5256 		up = (uint16_t *)((uchar_t *)ipha +
5257 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5258 		ports = *(uint32_t *)up;
5259 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5260 		    ipha->ipha_dst, ipha->ipha_src, ports);
5261 	} else {
5262 		uint16_t  	*up;
5263 		uint32_t	ports;
5264 		uint16_t	ip_hdr_len;
5265 		uint8_t		*nexthdrp;
5266 		ip6_t 		*ip6h;
5267 		tcph_t		*tcph;
5268 
5269 		ip6h = (ip6_t *)mp->b_rptr;
5270 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5271 			ip_hdr_len = IPV6_HDR_LEN;
5272 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5273 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5274 			CONN_DEC_REF(econnp);
5275 			freemsg(first_mp);
5276 			return (NULL);
5277 		}
5278 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5279 		up = (uint16_t *)tcph->th_lport;
5280 		ports = *(uint32_t *)up;
5281 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5282 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5283 	}
5284 
5285 	/*
5286 	 * The caller already ensured that there is a sqp present.
5287 	 */
5288 	econnp->conn_sqp = new_sqp;
5289 
5290 	if (connp->conn_policy != NULL) {
5291 		ipsec_in_t *ii;
5292 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5293 		ASSERT(ii->ipsec_in_policy == NULL);
5294 		IPPH_REFHOLD(connp->conn_policy);
5295 		ii->ipsec_in_policy = connp->conn_policy;
5296 
5297 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5298 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5299 			CONN_DEC_REF(econnp);
5300 			freemsg(first_mp);
5301 			return (NULL);
5302 		}
5303 	}
5304 
5305 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5306 		CONN_DEC_REF(econnp);
5307 		freemsg(first_mp);
5308 		return (NULL);
5309 	}
5310 
5311 	/*
5312 	 * If we know we have some policy, pass the "IPSEC"
5313 	 * options size TCP uses this adjust the MSS.
5314 	 */
5315 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5316 	if (mctl_present) {
5317 		freeb(first_mp);
5318 		*mpp = mp;
5319 	}
5320 
5321 	return (econnp);
5322 }
5323 
5324 /*
5325  * tcp_get_conn/tcp_free_conn
5326  *
5327  * tcp_get_conn is used to get a clean tcp connection structure.
5328  * It tries to reuse the connections put on the freelist by the
5329  * time_wait_collector failing which it goes to kmem_cache. This
5330  * way has two benefits compared to just allocating from and
5331  * freeing to kmem_cache.
5332  * 1) The time_wait_collector can free (which includes the cleanup)
5333  * outside the squeue. So when the interrupt comes, we have a clean
5334  * connection sitting in the freelist. Obviously, this buys us
5335  * performance.
5336  *
5337  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5338  * has multiple disadvantages - tying up the squeue during alloc, and the
5339  * fact that IPSec policy initialization has to happen here which
5340  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5341  * But allocating the conn/tcp in IP land is also not the best since
5342  * we can't check the 'q' and 'q0' which are protected by squeue and
5343  * blindly allocate memory which might have to be freed here if we are
5344  * not allowed to accept the connection. By using the freelist and
5345  * putting the conn/tcp back in freelist, we don't pay a penalty for
5346  * allocating memory without checking 'q/q0' and freeing it if we can't
5347  * accept the connection.
5348  *
5349  * Care should be taken to put the conn back in the same squeue's freelist
5350  * from which it was allocated. Best results are obtained if conn is
5351  * allocated from listener's squeue and freed to the same. Time wait
5352  * collector will free up the freelist is the connection ends up sitting
5353  * there for too long.
5354  */
5355 void *
5356 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5357 {
5358 	tcp_t			*tcp = NULL;
5359 	conn_t			*connp = NULL;
5360 	squeue_t		*sqp = (squeue_t *)arg;
5361 	tcp_squeue_priv_t 	*tcp_time_wait;
5362 	netstack_t		*ns;
5363 
5364 	tcp_time_wait =
5365 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5366 
5367 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5368 	tcp = tcp_time_wait->tcp_free_list;
5369 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5370 	if (tcp != NULL) {
5371 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5372 		tcp_time_wait->tcp_free_list_cnt--;
5373 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5374 		tcp->tcp_time_wait_next = NULL;
5375 		connp = tcp->tcp_connp;
5376 		connp->conn_flags |= IPCL_REUSED;
5377 
5378 		ASSERT(tcp->tcp_tcps == NULL);
5379 		ASSERT(connp->conn_netstack == NULL);
5380 		ns = tcps->tcps_netstack;
5381 		netstack_hold(ns);
5382 		connp->conn_netstack = ns;
5383 		tcp->tcp_tcps = tcps;
5384 		TCPS_REFHOLD(tcps);
5385 		ipcl_globalhash_insert(connp);
5386 		return ((void *)connp);
5387 	}
5388 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5389 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5390 	    tcps->tcps_netstack)) == NULL)
5391 		return (NULL);
5392 	tcp = connp->conn_tcp;
5393 	tcp->tcp_tcps = tcps;
5394 	TCPS_REFHOLD(tcps);
5395 	return ((void *)connp);
5396 }
5397 
5398 /*
5399  * Update the cached label for the given tcp_t.  This should be called once per
5400  * connection, and before any packets are sent or tcp_process_options is
5401  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5402  */
5403 static boolean_t
5404 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5405 {
5406 	conn_t *connp = tcp->tcp_connp;
5407 
5408 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5409 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5410 		int added;
5411 
5412 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5413 		    connp->conn_mac_exempt,
5414 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5415 			return (B_FALSE);
5416 
5417 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5418 		if (added == -1)
5419 			return (B_FALSE);
5420 		tcp->tcp_hdr_len += added;
5421 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5422 		tcp->tcp_ip_hdr_len += added;
5423 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5424 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5425 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5426 			    tcp->tcp_hdr_len);
5427 			if (added == -1)
5428 				return (B_FALSE);
5429 			tcp->tcp_hdr_len += added;
5430 			tcp->tcp_tcph = (tcph_t *)
5431 			    ((uchar_t *)tcp->tcp_tcph + added);
5432 			tcp->tcp_ip_hdr_len += added;
5433 		}
5434 	} else {
5435 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5436 
5437 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5438 		    connp->conn_mac_exempt,
5439 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5440 			return (B_FALSE);
5441 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5442 		    &tcp->tcp_label_len, optbuf) != 0)
5443 			return (B_FALSE);
5444 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5445 			return (B_FALSE);
5446 	}
5447 
5448 	connp->conn_ulp_labeled = 1;
5449 
5450 	return (B_TRUE);
5451 }
5452 
5453 /* BEGIN CSTYLED */
5454 /*
5455  *
5456  * The sockfs ACCEPT path:
5457  * =======================
5458  *
5459  * The eager is now established in its own perimeter as soon as SYN is
5460  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5461  * completes the accept processing on the acceptor STREAM. The sending
5462  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5463  * listener but a TLI/XTI listener completes the accept processing
5464  * on the listener perimeter.
5465  *
5466  * Common control flow for 3 way handshake:
5467  * ----------------------------------------
5468  *
5469  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5470  *					-> tcp_conn_request()
5471  *
5472  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5473  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5474  *
5475  * Sockfs ACCEPT Path:
5476  * -------------------
5477  *
5478  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5479  * as STREAM entry point)
5480  *
5481  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5482  *
5483  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5484  * association (we are not behind eager's squeue but sockfs is protecting us
5485  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5486  * is changed to point at tcp_wput().
5487  *
5488  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5489  * listener (done on listener's perimeter).
5490  *
5491  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5492  * accept.
5493  *
5494  * TLI/XTI client ACCEPT path:
5495  * ---------------------------
5496  *
5497  * soaccept() sends T_CONN_RES on the listener STREAM.
5498  *
5499  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5500  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5501  *
5502  * Locks:
5503  * ======
5504  *
5505  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5506  * and listeners->tcp_eager_next_q.
5507  *
5508  * Referencing:
5509  * ============
5510  *
5511  * 1) We start out in tcp_conn_request by eager placing a ref on
5512  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5513  *
5514  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5515  * doing so we place a ref on the eager. This ref is finally dropped at the
5516  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5517  * reference is dropped by the squeue framework.
5518  *
5519  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5520  *
5521  * The reference must be released by the same entity that added the reference
5522  * In the above scheme, the eager is the entity that adds and releases the
5523  * references. Note that tcp_accept_finish executes in the squeue of the eager
5524  * (albeit after it is attached to the acceptor stream). Though 1. executes
5525  * in the listener's squeue, the eager is nascent at this point and the
5526  * reference can be considered to have been added on behalf of the eager.
5527  *
5528  * Eager getting a Reset or listener closing:
5529  * ==========================================
5530  *
5531  * Once the listener and eager are linked, the listener never does the unlink.
5532  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5533  * a message on all eager perimeter. The eager then does the unlink, clears
5534  * any pointers to the listener's queue and drops the reference to the
5535  * listener. The listener waits in tcp_close outside the squeue until its
5536  * refcount has dropped to 1. This ensures that the listener has waited for
5537  * all eagers to clear their association with the listener.
5538  *
5539  * Similarly, if eager decides to go away, it can unlink itself and close.
5540  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5541  * the reference to eager is still valid because of the extra ref we put
5542  * in tcp_send_conn_ind.
5543  *
5544  * Listener can always locate the eager under the protection
5545  * of the listener->tcp_eager_lock, and then do a refhold
5546  * on the eager during the accept processing.
5547  *
5548  * The acceptor stream accesses the eager in the accept processing
5549  * based on the ref placed on eager before sending T_conn_ind.
5550  * The only entity that can negate this refhold is a listener close
5551  * which is mutually exclusive with an active acceptor stream.
5552  *
5553  * Eager's reference on the listener
5554  * ===================================
5555  *
5556  * If the accept happens (even on a closed eager) the eager drops its
5557  * reference on the listener at the start of tcp_accept_finish. If the
5558  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5559  * the reference is dropped in tcp_closei_local. If the listener closes,
5560  * the reference is dropped in tcp_eager_kill. In all cases the reference
5561  * is dropped while executing in the eager's context (squeue).
5562  */
5563 /* END CSTYLED */
5564 
5565 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5566 
5567 /*
5568  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5569  * tcp_rput_data will not see any SYN packets.
5570  */
5571 /* ARGSUSED */
5572 void
5573 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5574 {
5575 	tcph_t		*tcph;
5576 	uint32_t	seg_seq;
5577 	tcp_t		*eager;
5578 	uint_t		ipvers;
5579 	ipha_t		*ipha;
5580 	ip6_t		*ip6h;
5581 	int		err;
5582 	conn_t		*econnp = NULL;
5583 	squeue_t	*new_sqp;
5584 	mblk_t		*mp1;
5585 	uint_t 		ip_hdr_len;
5586 	conn_t		*connp = (conn_t *)arg;
5587 	tcp_t		*tcp = connp->conn_tcp;
5588 	cred_t		*credp;
5589 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5590 	ip_stack_t	*ipst;
5591 
5592 	if (tcp->tcp_state != TCPS_LISTEN)
5593 		goto error2;
5594 
5595 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5596 
5597 	mutex_enter(&tcp->tcp_eager_lock);
5598 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5599 		mutex_exit(&tcp->tcp_eager_lock);
5600 		TCP_STAT(tcps, tcp_listendrop);
5601 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5602 		if (tcp->tcp_debug) {
5603 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5604 			    "tcp_conn_request: listen backlog (max=%d) "
5605 			    "overflow (%d pending) on %s",
5606 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5607 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5608 		}
5609 		goto error2;
5610 	}
5611 
5612 	if (tcp->tcp_conn_req_cnt_q0 >=
5613 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5614 		/*
5615 		 * Q0 is full. Drop a pending half-open req from the queue
5616 		 * to make room for the new SYN req. Also mark the time we
5617 		 * drop a SYN.
5618 		 *
5619 		 * A more aggressive defense against SYN attack will
5620 		 * be to set the "tcp_syn_defense" flag now.
5621 		 */
5622 		TCP_STAT(tcps, tcp_listendropq0);
5623 		tcp->tcp_last_rcv_lbolt = lbolt64;
5624 		if (!tcp_drop_q0(tcp)) {
5625 			mutex_exit(&tcp->tcp_eager_lock);
5626 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5627 			if (tcp->tcp_debug) {
5628 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5629 				    "tcp_conn_request: listen half-open queue "
5630 				    "(max=%d) full (%d pending) on %s",
5631 				    tcps->tcps_conn_req_max_q0,
5632 				    tcp->tcp_conn_req_cnt_q0,
5633 				    tcp_display(tcp, NULL,
5634 				    DISP_PORT_ONLY));
5635 			}
5636 			goto error2;
5637 		}
5638 	}
5639 	mutex_exit(&tcp->tcp_eager_lock);
5640 
5641 	/*
5642 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5643 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5644 	 * link local address.  If IPSec is enabled, db_struioflag has
5645 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5646 	 * otherwise an error case if neither of them is set.
5647 	 */
5648 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5649 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5650 		DB_CKSUMSTART(mp) = 0;
5651 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5652 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5653 		if (econnp == NULL)
5654 			goto error2;
5655 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5656 		econnp->conn_sqp = new_sqp;
5657 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5658 		/*
5659 		 * mp is updated in tcp_get_ipsec_conn().
5660 		 */
5661 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5662 		if (econnp == NULL) {
5663 			/*
5664 			 * mp freed by tcp_get_ipsec_conn.
5665 			 */
5666 			return;
5667 		}
5668 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5669 	} else {
5670 		goto error2;
5671 	}
5672 
5673 	ASSERT(DB_TYPE(mp) == M_DATA);
5674 
5675 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5676 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5677 	ASSERT(OK_32PTR(mp->b_rptr));
5678 	if (ipvers == IPV4_VERSION) {
5679 		ipha = (ipha_t *)mp->b_rptr;
5680 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5681 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5682 	} else {
5683 		ip6h = (ip6_t *)mp->b_rptr;
5684 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5685 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5686 	}
5687 
5688 	if (tcp->tcp_family == AF_INET) {
5689 		ASSERT(ipvers == IPV4_VERSION);
5690 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5691 	} else {
5692 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5693 	}
5694 
5695 	if (err)
5696 		goto error3;
5697 
5698 	eager = econnp->conn_tcp;
5699 
5700 	/* Inherit various TCP parameters from the listener */
5701 	eager->tcp_naglim = tcp->tcp_naglim;
5702 	eager->tcp_first_timer_threshold =
5703 	    tcp->tcp_first_timer_threshold;
5704 	eager->tcp_second_timer_threshold =
5705 	    tcp->tcp_second_timer_threshold;
5706 
5707 	eager->tcp_first_ctimer_threshold =
5708 	    tcp->tcp_first_ctimer_threshold;
5709 	eager->tcp_second_ctimer_threshold =
5710 	    tcp->tcp_second_ctimer_threshold;
5711 
5712 	/*
5713 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5714 	 * If it does not, the eager's receive window will be set to the
5715 	 * listener's receive window later in this function.
5716 	 */
5717 	eager->tcp_rwnd = 0;
5718 
5719 	/*
5720 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5721 	 * calling tcp_process_options() where tcp_mss_set() is called
5722 	 * to set the initial cwnd.
5723 	 */
5724 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5725 
5726 	/*
5727 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5728 	 * zone id before the accept is completed in tcp_wput_accept().
5729 	 */
5730 	econnp->conn_zoneid = connp->conn_zoneid;
5731 	econnp->conn_allzones = connp->conn_allzones;
5732 
5733 	/* Copy nexthop information from listener to eager */
5734 	if (connp->conn_nexthop_set) {
5735 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5736 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5737 	}
5738 
5739 	/*
5740 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5741 	 * eager is accepted
5742 	 */
5743 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5744 	crhold(credp);
5745 
5746 	/*
5747 	 * If the caller has the process-wide flag set, then default to MAC
5748 	 * exempt mode.  This allows read-down to unlabeled hosts.
5749 	 */
5750 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5751 		econnp->conn_mac_exempt = B_TRUE;
5752 
5753 	if (is_system_labeled()) {
5754 		cred_t *cr;
5755 
5756 		if (connp->conn_mlp_type != mlptSingle) {
5757 			cr = econnp->conn_peercred = DB_CRED(mp);
5758 			if (cr != NULL)
5759 				crhold(cr);
5760 			else
5761 				cr = econnp->conn_cred;
5762 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5763 			    econnp, cred_t *, cr)
5764 		} else {
5765 			cr = econnp->conn_cred;
5766 			DTRACE_PROBE2(syn_accept, conn_t *,
5767 			    econnp, cred_t *, cr)
5768 		}
5769 
5770 		if (!tcp_update_label(eager, cr)) {
5771 			DTRACE_PROBE3(
5772 			    tx__ip__log__error__connrequest__tcp,
5773 			    char *, "eager connp(1) label on SYN mp(2) failed",
5774 			    conn_t *, econnp, mblk_t *, mp);
5775 			goto error3;
5776 		}
5777 	}
5778 
5779 	eager->tcp_hard_binding = B_TRUE;
5780 
5781 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5782 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5783 
5784 	CL_INET_CONNECT(eager);
5785 
5786 	/*
5787 	 * No need to check for multicast destination since ip will only pass
5788 	 * up multicasts to those that have expressed interest
5789 	 * TODO: what about rejecting broadcasts?
5790 	 * Also check that source is not a multicast or broadcast address.
5791 	 */
5792 	eager->tcp_state = TCPS_SYN_RCVD;
5793 
5794 
5795 	/*
5796 	 * There should be no ire in the mp as we are being called after
5797 	 * receiving the SYN.
5798 	 */
5799 	ASSERT(tcp_ire_mp(mp) == NULL);
5800 
5801 	/*
5802 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5803 	 */
5804 
5805 	if (tcp_adapt_ire(eager, NULL) == 0) {
5806 		/* Undo the bind_hash_insert */
5807 		tcp_bind_hash_remove(eager);
5808 		goto error3;
5809 	}
5810 
5811 	/* Process all TCP options. */
5812 	tcp_process_options(eager, tcph);
5813 
5814 	/* Is the other end ECN capable? */
5815 	if (tcps->tcps_ecn_permitted >= 1 &&
5816 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5817 		eager->tcp_ecn_ok = B_TRUE;
5818 	}
5819 
5820 	/*
5821 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5822 	 * window size changed via SO_RCVBUF option.  First round up the
5823 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5824 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5825 	 * setting.
5826 	 *
5827 	 * Note if there is a rpipe metric associated with the remote host,
5828 	 * we should not inherit receive window size from listener.
5829 	 */
5830 	eager->tcp_rwnd = MSS_ROUNDUP(
5831 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5832 	    eager->tcp_rwnd), eager->tcp_mss);
5833 	if (eager->tcp_snd_ws_ok)
5834 		tcp_set_ws_value(eager);
5835 	/*
5836 	 * Note that this is the only place tcp_rwnd_set() is called for
5837 	 * accepting a connection.  We need to call it here instead of
5838 	 * after the 3-way handshake because we need to tell the other
5839 	 * side our rwnd in the SYN-ACK segment.
5840 	 */
5841 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5842 
5843 	/*
5844 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5845 	 * via soaccept()->soinheritoptions() which essentially applies
5846 	 * all the listener options to the new STREAM. The options that we
5847 	 * need to take care of are:
5848 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5849 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5850 	 * SO_SNDBUF, SO_RCVBUF.
5851 	 *
5852 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5853 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5854 	 *		tcp_maxpsz_set() gets called later from
5855 	 *		tcp_accept_finish(), the option takes effect.
5856 	 *
5857 	 */
5858 	/* Set the TCP options */
5859 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5860 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5861 	eager->tcp_oobinline = tcp->tcp_oobinline;
5862 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5863 	eager->tcp_broadcast = tcp->tcp_broadcast;
5864 	eager->tcp_useloopback = tcp->tcp_useloopback;
5865 	eager->tcp_dontroute = tcp->tcp_dontroute;
5866 	eager->tcp_linger = tcp->tcp_linger;
5867 	eager->tcp_lingertime = tcp->tcp_lingertime;
5868 	if (tcp->tcp_ka_enabled)
5869 		eager->tcp_ka_enabled = 1;
5870 
5871 	/* Set the IP options */
5872 	econnp->conn_broadcast = connp->conn_broadcast;
5873 	econnp->conn_loopback = connp->conn_loopback;
5874 	econnp->conn_dontroute = connp->conn_dontroute;
5875 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5876 
5877 	/* Put a ref on the listener for the eager. */
5878 	CONN_INC_REF(connp);
5879 	mutex_enter(&tcp->tcp_eager_lock);
5880 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5881 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5882 	tcp->tcp_eager_next_q0 = eager;
5883 	eager->tcp_eager_prev_q0 = tcp;
5884 
5885 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5886 	eager->tcp_listener = tcp;
5887 	eager->tcp_saved_listener = tcp;
5888 
5889 	/*
5890 	 * Tag this detached tcp vector for later retrieval
5891 	 * by our listener client in tcp_accept().
5892 	 */
5893 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5894 	tcp->tcp_conn_req_cnt_q0++;
5895 	if (++tcp->tcp_conn_req_seqnum == -1) {
5896 		/*
5897 		 * -1 is "special" and defined in TPI as something
5898 		 * that should never be used in T_CONN_IND
5899 		 */
5900 		++tcp->tcp_conn_req_seqnum;
5901 	}
5902 	mutex_exit(&tcp->tcp_eager_lock);
5903 
5904 	if (tcp->tcp_syn_defense) {
5905 		/* Don't drop the SYN that comes from a good IP source */
5906 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5907 		if (addr_cache != NULL && eager->tcp_remote ==
5908 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5909 			eager->tcp_dontdrop = B_TRUE;
5910 		}
5911 	}
5912 
5913 	/*
5914 	 * We need to insert the eager in its own perimeter but as soon
5915 	 * as we do that, we expose the eager to the classifier and
5916 	 * should not touch any field outside the eager's perimeter.
5917 	 * So do all the work necessary before inserting the eager
5918 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5919 	 * will succeed but undo everything if it fails.
5920 	 */
5921 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5922 	eager->tcp_irs = seg_seq;
5923 	eager->tcp_rack = seg_seq;
5924 	eager->tcp_rnxt = seg_seq + 1;
5925 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5926 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5927 	eager->tcp_state = TCPS_SYN_RCVD;
5928 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5929 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5930 	if (mp1 == NULL) {
5931 		/*
5932 		 * Increment the ref count as we are going to
5933 		 * enqueueing an mp in squeue
5934 		 */
5935 		CONN_INC_REF(econnp);
5936 		goto error;
5937 	}
5938 	DB_CPID(mp1) = tcp->tcp_cpid;
5939 	eager->tcp_cpid = tcp->tcp_cpid;
5940 	eager->tcp_open_time = lbolt64;
5941 
5942 	/*
5943 	 * We need to start the rto timer. In normal case, we start
5944 	 * the timer after sending the packet on the wire (or at
5945 	 * least believing that packet was sent by waiting for
5946 	 * CALL_IP_WPUT() to return). Since this is the first packet
5947 	 * being sent on the wire for the eager, our initial tcp_rto
5948 	 * is at least tcp_rexmit_interval_min which is a fairly
5949 	 * large value to allow the algorithm to adjust slowly to large
5950 	 * fluctuations of RTT during first few transmissions.
5951 	 *
5952 	 * Starting the timer first and then sending the packet in this
5953 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5954 	 * is of the order of several 100ms and starting the timer
5955 	 * first and then sending the packet will result in difference
5956 	 * of few micro seconds.
5957 	 *
5958 	 * Without this optimization, we are forced to hold the fanout
5959 	 * lock across the ipcl_bind_insert() and sending the packet
5960 	 * so that we don't race against an incoming packet (maybe RST)
5961 	 * for this eager.
5962 	 *
5963 	 * It is necessary to acquire an extra reference on the eager
5964 	 * at this point and hold it until after tcp_send_data() to
5965 	 * ensure against an eager close race.
5966 	 */
5967 
5968 	CONN_INC_REF(eager->tcp_connp);
5969 
5970 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5971 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5972 
5973 
5974 	/*
5975 	 * Insert the eager in its own perimeter now. We are ready to deal
5976 	 * with any packets on eager.
5977 	 */
5978 	if (eager->tcp_ipversion == IPV4_VERSION) {
5979 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5980 			goto error;
5981 		}
5982 	} else {
5983 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5984 			goto error;
5985 		}
5986 	}
5987 
5988 	/* mark conn as fully-bound */
5989 	econnp->conn_fully_bound = B_TRUE;
5990 
5991 	/* Send the SYN-ACK */
5992 	tcp_send_data(eager, eager->tcp_wq, mp1);
5993 	CONN_DEC_REF(eager->tcp_connp);
5994 	freemsg(mp);
5995 
5996 	return;
5997 error:
5998 	freemsg(mp1);
5999 	eager->tcp_closemp_used = B_TRUE;
6000 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6001 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6002 	    econnp, SQTAG_TCP_CONN_REQ_2);
6003 
6004 	/*
6005 	 * If a connection already exists, send the mp to that connections so
6006 	 * that it can be appropriately dealt with.
6007 	 */
6008 	ipst = tcps->tcps_netstack->netstack_ip;
6009 
6010 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6011 		if (!IPCL_IS_CONNECTED(econnp)) {
6012 			/*
6013 			 * Something bad happened. ipcl_conn_insert()
6014 			 * failed because a connection already existed
6015 			 * in connected hash but we can't find it
6016 			 * anymore (someone blew it away). Just
6017 			 * free this message and hopefully remote
6018 			 * will retransmit at which time the SYN can be
6019 			 * treated as a new connection or dealth with
6020 			 * a TH_RST if a connection already exists.
6021 			 */
6022 			CONN_DEC_REF(econnp);
6023 			freemsg(mp);
6024 		} else {
6025 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6026 			    econnp, SQTAG_TCP_CONN_REQ_1);
6027 		}
6028 	} else {
6029 		/* Nobody wants this packet */
6030 		freemsg(mp);
6031 	}
6032 	return;
6033 error3:
6034 	CONN_DEC_REF(econnp);
6035 error2:
6036 	freemsg(mp);
6037 }
6038 
6039 /*
6040  * In an ideal case of vertical partition in NUMA architecture, its
6041  * beneficial to have the listener and all the incoming connections
6042  * tied to the same squeue. The other constraint is that incoming
6043  * connections should be tied to the squeue attached to interrupted
6044  * CPU for obvious locality reason so this leaves the listener to
6045  * be tied to the same squeue. Our only problem is that when listener
6046  * is binding, the CPU that will get interrupted by the NIC whose
6047  * IP address the listener is binding to is not even known. So
6048  * the code below allows us to change that binding at the time the
6049  * CPU is interrupted by virtue of incoming connection's squeue.
6050  *
6051  * This is usefull only in case of a listener bound to a specific IP
6052  * address. For other kind of listeners, they get bound the
6053  * very first time and there is no attempt to rebind them.
6054  */
6055 void
6056 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6057 {
6058 	conn_t		*connp = (conn_t *)arg;
6059 	squeue_t	*sqp = (squeue_t *)arg2;
6060 	squeue_t	*new_sqp;
6061 	uint32_t	conn_flags;
6062 
6063 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6064 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6065 	} else {
6066 		goto done;
6067 	}
6068 
6069 	if (connp->conn_fanout == NULL)
6070 		goto done;
6071 
6072 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6073 		mutex_enter(&connp->conn_fanout->connf_lock);
6074 		mutex_enter(&connp->conn_lock);
6075 		/*
6076 		 * No one from read or write side can access us now
6077 		 * except for already queued packets on this squeue.
6078 		 * But since we haven't changed the squeue yet, they
6079 		 * can't execute. If they are processed after we have
6080 		 * changed the squeue, they are sent back to the
6081 		 * correct squeue down below.
6082 		 * But a listner close can race with processing of
6083 		 * incoming SYN. If incoming SYN processing changes
6084 		 * the squeue then the listener close which is waiting
6085 		 * to enter the squeue would operate on the wrong
6086 		 * squeue. Hence we don't change the squeue here unless
6087 		 * the refcount is exactly the minimum refcount. The
6088 		 * minimum refcount of 4 is counted as - 1 each for
6089 		 * TCP and IP, 1 for being in the classifier hash, and
6090 		 * 1 for the mblk being processed.
6091 		 */
6092 
6093 		if (connp->conn_ref != 4 ||
6094 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6095 			mutex_exit(&connp->conn_lock);
6096 			mutex_exit(&connp->conn_fanout->connf_lock);
6097 			goto done;
6098 		}
6099 		if (connp->conn_sqp != new_sqp) {
6100 			while (connp->conn_sqp != new_sqp)
6101 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6102 		}
6103 
6104 		do {
6105 			conn_flags = connp->conn_flags;
6106 			conn_flags |= IPCL_FULLY_BOUND;
6107 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6108 			    conn_flags);
6109 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6110 
6111 		mutex_exit(&connp->conn_fanout->connf_lock);
6112 		mutex_exit(&connp->conn_lock);
6113 	}
6114 
6115 done:
6116 	if (connp->conn_sqp != sqp) {
6117 		CONN_INC_REF(connp);
6118 		squeue_fill(connp->conn_sqp, mp,
6119 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6120 	} else {
6121 		tcp_conn_request(connp, mp, sqp);
6122 	}
6123 }
6124 
6125 /*
6126  * Successful connect request processing begins when our client passes
6127  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6128  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6129  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6130  *   upstream <- tcp_rput()                <- IP
6131  * After various error checks are completed, tcp_connect() lays
6132  * the target address and port into the composite header template,
6133  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6134  * request followed by an IRE request, and passes the three mblk message
6135  * down to IP looking like this:
6136  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6137  * Processing continues in tcp_rput() when we receive the following message:
6138  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6139  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6140  * to fire off the connection request, and then passes the T_OK_ACK mblk
6141  * upstream that we filled in below.  There are, of course, numerous
6142  * error conditions along the way which truncate the processing described
6143  * above.
6144  */
6145 static void
6146 tcp_connect(tcp_t *tcp, mblk_t *mp)
6147 {
6148 	sin_t		*sin;
6149 	sin6_t		*sin6;
6150 	queue_t		*q = tcp->tcp_wq;
6151 	struct T_conn_req	*tcr;
6152 	ipaddr_t	*dstaddrp;
6153 	in_port_t	dstport;
6154 	uint_t		srcid;
6155 
6156 	tcr = (struct T_conn_req *)mp->b_rptr;
6157 
6158 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6159 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6160 		tcp_err_ack(tcp, mp, TPROTO, 0);
6161 		return;
6162 	}
6163 
6164 	/*
6165 	 * Determine packet type based on type of address passed in
6166 	 * the request should contain an IPv4 or IPv6 address.
6167 	 * Make sure that address family matches the type of
6168 	 * family of the the address passed down
6169 	 */
6170 	switch (tcr->DEST_length) {
6171 	default:
6172 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6173 		return;
6174 
6175 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6176 		/*
6177 		 * XXX: The check for valid DEST_length was not there
6178 		 * in earlier releases and some buggy
6179 		 * TLI apps (e.g Sybase) got away with not feeding
6180 		 * in sin_zero part of address.
6181 		 * We allow that bug to keep those buggy apps humming.
6182 		 * Test suites require the check on DEST_length.
6183 		 * We construct a new mblk with valid DEST_length
6184 		 * free the original so the rest of the code does
6185 		 * not have to keep track of this special shorter
6186 		 * length address case.
6187 		 */
6188 		mblk_t *nmp;
6189 		struct T_conn_req *ntcr;
6190 		sin_t *nsin;
6191 
6192 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6193 		    tcr->OPT_length, BPRI_HI);
6194 		if (nmp == NULL) {
6195 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6196 			return;
6197 		}
6198 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6199 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6200 		ntcr->PRIM_type = T_CONN_REQ;
6201 		ntcr->DEST_length = sizeof (sin_t);
6202 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6203 
6204 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6205 		*nsin = sin_null;
6206 		/* Get pointer to shorter address to copy from original mp */
6207 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6208 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6209 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6210 			freemsg(nmp);
6211 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6212 			return;
6213 		}
6214 		nsin->sin_family = sin->sin_family;
6215 		nsin->sin_port = sin->sin_port;
6216 		nsin->sin_addr = sin->sin_addr;
6217 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6218 		nmp->b_wptr = (uchar_t *)&nsin[1];
6219 		if (tcr->OPT_length != 0) {
6220 			ntcr->OPT_length = tcr->OPT_length;
6221 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6222 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6223 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6224 			    tcr->OPT_length);
6225 			nmp->b_wptr += tcr->OPT_length;
6226 		}
6227 		freemsg(mp);	/* original mp freed */
6228 		mp = nmp;	/* re-initialize original variables */
6229 		tcr = ntcr;
6230 	}
6231 	/* FALLTHRU */
6232 
6233 	case sizeof (sin_t):
6234 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6235 		    sizeof (sin_t));
6236 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6237 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6238 			return;
6239 		}
6240 		if (tcp->tcp_family != AF_INET ||
6241 		    sin->sin_family != AF_INET) {
6242 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6243 			return;
6244 		}
6245 		if (sin->sin_port == 0) {
6246 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6247 			return;
6248 		}
6249 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6250 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6251 			return;
6252 		}
6253 
6254 		break;
6255 
6256 	case sizeof (sin6_t):
6257 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6258 		    sizeof (sin6_t));
6259 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6260 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6261 			return;
6262 		}
6263 		if (tcp->tcp_family != AF_INET6 ||
6264 		    sin6->sin6_family != AF_INET6) {
6265 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6266 			return;
6267 		}
6268 		if (sin6->sin6_port == 0) {
6269 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6270 			return;
6271 		}
6272 		break;
6273 	}
6274 	/*
6275 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6276 	 * should key on their sequence number and cut them loose.
6277 	 */
6278 
6279 	/*
6280 	 * If options passed in, feed it for verification and handling
6281 	 */
6282 	if (tcr->OPT_length != 0) {
6283 		mblk_t	*ok_mp;
6284 		mblk_t	*discon_mp;
6285 		mblk_t  *conn_opts_mp;
6286 		int t_error, sys_error, do_disconnect;
6287 
6288 		conn_opts_mp = NULL;
6289 
6290 		if (tcp_conprim_opt_process(tcp, mp,
6291 		    &do_disconnect, &t_error, &sys_error) < 0) {
6292 			if (do_disconnect) {
6293 				ASSERT(t_error == 0 && sys_error == 0);
6294 				discon_mp = mi_tpi_discon_ind(NULL,
6295 				    ECONNREFUSED, 0);
6296 				if (!discon_mp) {
6297 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6298 					    TSYSERR, ENOMEM);
6299 					return;
6300 				}
6301 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6302 				if (!ok_mp) {
6303 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6304 					    TSYSERR, ENOMEM);
6305 					return;
6306 				}
6307 				qreply(q, ok_mp);
6308 				qreply(q, discon_mp); /* no flush! */
6309 			} else {
6310 				ASSERT(t_error != 0);
6311 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6312 				    sys_error);
6313 			}
6314 			return;
6315 		}
6316 		/*
6317 		 * Success in setting options, the mp option buffer represented
6318 		 * by OPT_length/offset has been potentially modified and
6319 		 * contains results of option processing. We copy it in
6320 		 * another mp to save it for potentially influencing returning
6321 		 * it in T_CONN_CONN.
6322 		 */
6323 		if (tcr->OPT_length != 0) { /* there are resulting options */
6324 			conn_opts_mp = copyb(mp);
6325 			if (!conn_opts_mp) {
6326 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6327 				    TSYSERR, ENOMEM);
6328 				return;
6329 			}
6330 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6331 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6332 			/*
6333 			 * Note:
6334 			 * These resulting option negotiation can include any
6335 			 * end-to-end negotiation options but there no such
6336 			 * thing (yet?) in our TCP/IP.
6337 			 */
6338 		}
6339 	}
6340 
6341 	/*
6342 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6343 	 * make sure that the template IP header in the tcp structure is an
6344 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6345 	 * need to this before we call tcp_bindi() so that the port lookup
6346 	 * code will look for ports in the correct port space (IPv4 and
6347 	 * IPv6 have separate port spaces).
6348 	 */
6349 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6350 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6351 		int err = 0;
6352 
6353 		err = tcp_header_init_ipv4(tcp);
6354 		if (err != 0) {
6355 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6356 			goto connect_failed;
6357 		}
6358 		if (tcp->tcp_lport != 0)
6359 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6360 	}
6361 
6362 	switch (tcp->tcp_state) {
6363 	case TCPS_IDLE:
6364 		/*
6365 		 * We support quick connect, refer to comments in
6366 		 * tcp_connect_*()
6367 		 */
6368 		/* FALLTHRU */
6369 	case TCPS_BOUND:
6370 	case TCPS_LISTEN:
6371 		if (tcp->tcp_family == AF_INET6) {
6372 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6373 				tcp_connect_ipv6(tcp, mp,
6374 				    &sin6->sin6_addr,
6375 				    sin6->sin6_port, sin6->sin6_flowinfo,
6376 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6377 				return;
6378 			}
6379 			/*
6380 			 * Destination adress is mapped IPv6 address.
6381 			 * Source bound address should be unspecified or
6382 			 * IPv6 mapped address as well.
6383 			 */
6384 			if (!IN6_IS_ADDR_UNSPECIFIED(
6385 			    &tcp->tcp_bound_source_v6) &&
6386 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6387 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6388 				    EADDRNOTAVAIL);
6389 				break;
6390 			}
6391 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6392 			dstport = sin6->sin6_port;
6393 			srcid = sin6->__sin6_src_id;
6394 		} else {
6395 			dstaddrp = &sin->sin_addr.s_addr;
6396 			dstport = sin->sin_port;
6397 			srcid = 0;
6398 		}
6399 
6400 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6401 		return;
6402 	default:
6403 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6404 		break;
6405 	}
6406 	/*
6407 	 * Note: Code below is the "failure" case
6408 	 */
6409 	/* return error ack and blow away saved option results if any */
6410 connect_failed:
6411 	if (mp != NULL)
6412 		putnext(tcp->tcp_rq, mp);
6413 	else {
6414 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6415 		    TSYSERR, ENOMEM);
6416 	}
6417 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6418 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6419 }
6420 
6421 /*
6422  * Handle connect to IPv4 destinations, including connections for AF_INET6
6423  * sockets connecting to IPv4 mapped IPv6 destinations.
6424  */
6425 static void
6426 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6427     uint_t srcid)
6428 {
6429 	tcph_t	*tcph;
6430 	mblk_t	*mp1;
6431 	ipaddr_t dstaddr = *dstaddrp;
6432 	int32_t	oldstate;
6433 	uint16_t lport;
6434 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6435 
6436 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6437 
6438 	/* Check for attempt to connect to INADDR_ANY */
6439 	if (dstaddr == INADDR_ANY)  {
6440 		/*
6441 		 * SunOS 4.x and 4.3 BSD allow an application
6442 		 * to connect a TCP socket to INADDR_ANY.
6443 		 * When they do this, the kernel picks the
6444 		 * address of one interface and uses it
6445 		 * instead.  The kernel usually ends up
6446 		 * picking the address of the loopback
6447 		 * interface.  This is an undocumented feature.
6448 		 * However, we provide the same thing here
6449 		 * in order to have source and binary
6450 		 * compatibility with SunOS 4.x.
6451 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6452 		 * generate the T_CONN_CON.
6453 		 */
6454 		dstaddr = htonl(INADDR_LOOPBACK);
6455 		*dstaddrp = dstaddr;
6456 	}
6457 
6458 	/* Handle __sin6_src_id if socket not bound to an IP address */
6459 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6460 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6461 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6462 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6463 		    tcp->tcp_ipha->ipha_src);
6464 	}
6465 
6466 	/*
6467 	 * Don't let an endpoint connect to itself.  Note that
6468 	 * the test here does not catch the case where the
6469 	 * source IP addr was left unspecified by the user. In
6470 	 * this case, the source addr is set in tcp_adapt_ire()
6471 	 * using the reply to the T_BIND message that we send
6472 	 * down to IP here and the check is repeated in tcp_rput_other.
6473 	 */
6474 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6475 	    dstport == tcp->tcp_lport) {
6476 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6477 		goto failed;
6478 	}
6479 
6480 	tcp->tcp_ipha->ipha_dst = dstaddr;
6481 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6482 
6483 	/*
6484 	 * Massage a source route if any putting the first hop
6485 	 * in iph_dst. Compute a starting value for the checksum which
6486 	 * takes into account that the original iph_dst should be
6487 	 * included in the checksum but that ip will include the
6488 	 * first hop in the source route in the tcp checksum.
6489 	 */
6490 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6491 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6492 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6493 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6494 	if ((int)tcp->tcp_sum < 0)
6495 		tcp->tcp_sum--;
6496 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6497 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6498 	    (tcp->tcp_sum >> 16));
6499 	tcph = tcp->tcp_tcph;
6500 	*(uint16_t *)tcph->th_fport = dstport;
6501 	tcp->tcp_fport = dstport;
6502 
6503 	oldstate = tcp->tcp_state;
6504 	/*
6505 	 * At this point the remote destination address and remote port fields
6506 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6507 	 * have to see which state tcp was in so we can take apropriate action.
6508 	 */
6509 	if (oldstate == TCPS_IDLE) {
6510 		/*
6511 		 * We support a quick connect capability here, allowing
6512 		 * clients to transition directly from IDLE to SYN_SENT
6513 		 * tcp_bindi will pick an unused port, insert the connection
6514 		 * in the bind hash and transition to BOUND state.
6515 		 */
6516 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6517 		    tcp, B_TRUE);
6518 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6519 		    B_FALSE, B_FALSE);
6520 		if (lport == 0) {
6521 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6522 			goto failed;
6523 		}
6524 	}
6525 	tcp->tcp_state = TCPS_SYN_SENT;
6526 
6527 	/*
6528 	 * TODO: allow data with connect requests
6529 	 * by unlinking M_DATA trailers here and
6530 	 * linking them in behind the T_OK_ACK mblk.
6531 	 * The tcp_rput() bind ack handler would then
6532 	 * feed them to tcp_wput_data() rather than call
6533 	 * tcp_timer().
6534 	 */
6535 	mp = mi_tpi_ok_ack_alloc(mp);
6536 	if (!mp) {
6537 		tcp->tcp_state = oldstate;
6538 		goto failed;
6539 	}
6540 	if (tcp->tcp_family == AF_INET) {
6541 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6542 		    sizeof (ipa_conn_t));
6543 	} else {
6544 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6545 		    sizeof (ipa6_conn_t));
6546 	}
6547 	if (mp1) {
6548 		/* Hang onto the T_OK_ACK for later. */
6549 		linkb(mp1, mp);
6550 		mblk_setcred(mp1, tcp->tcp_cred);
6551 		if (tcp->tcp_family == AF_INET)
6552 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6553 		else {
6554 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6555 			    &tcp->tcp_sticky_ipp);
6556 		}
6557 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6558 		tcp->tcp_active_open = 1;
6559 		/*
6560 		 * If the bind cannot complete immediately
6561 		 * IP will arrange to call tcp_rput_other
6562 		 * when the bind completes.
6563 		 */
6564 		if (mp1 != NULL)
6565 			tcp_rput_other(tcp, mp1);
6566 		return;
6567 	}
6568 	/* Error case */
6569 	tcp->tcp_state = oldstate;
6570 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6571 
6572 failed:
6573 	/* return error ack and blow away saved option results if any */
6574 	if (mp != NULL)
6575 		putnext(tcp->tcp_rq, mp);
6576 	else {
6577 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6578 		    TSYSERR, ENOMEM);
6579 	}
6580 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6581 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6582 
6583 }
6584 
6585 /*
6586  * Handle connect to IPv6 destinations.
6587  */
6588 static void
6589 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6590     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6591 {
6592 	tcph_t	*tcph;
6593 	mblk_t	*mp1;
6594 	ip6_rthdr_t *rth;
6595 	int32_t  oldstate;
6596 	uint16_t lport;
6597 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6598 
6599 	ASSERT(tcp->tcp_family == AF_INET6);
6600 
6601 	/*
6602 	 * If we're here, it means that the destination address is a native
6603 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6604 	 * reason why it might not be IPv6 is if the socket was bound to an
6605 	 * IPv4-mapped IPv6 address.
6606 	 */
6607 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6608 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6609 		goto failed;
6610 	}
6611 
6612 	/*
6613 	 * Interpret a zero destination to mean loopback.
6614 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6615 	 * generate the T_CONN_CON.
6616 	 */
6617 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6618 		*dstaddrp = ipv6_loopback;
6619 	}
6620 
6621 	/* Handle __sin6_src_id if socket not bound to an IP address */
6622 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6623 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6624 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6625 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6626 	}
6627 
6628 	/*
6629 	 * Take care of the scope_id now and add ip6i_t
6630 	 * if ip6i_t is not already allocated through TCP
6631 	 * sticky options. At this point tcp_ip6h does not
6632 	 * have dst info, thus use dstaddrp.
6633 	 */
6634 	if (scope_id != 0 &&
6635 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6636 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6637 		ip6i_t  *ip6i;
6638 
6639 		ipp->ipp_ifindex = scope_id;
6640 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6641 
6642 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6643 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6644 			/* Already allocated */
6645 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6646 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6647 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6648 		} else {
6649 			int reterr;
6650 
6651 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6652 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6653 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6654 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6655 			if (reterr != 0)
6656 				goto failed;
6657 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6658 		}
6659 	}
6660 
6661 	/*
6662 	 * Don't let an endpoint connect to itself.  Note that
6663 	 * the test here does not catch the case where the
6664 	 * source IP addr was left unspecified by the user. In
6665 	 * this case, the source addr is set in tcp_adapt_ire()
6666 	 * using the reply to the T_BIND message that we send
6667 	 * down to IP here and the check is repeated in tcp_rput_other.
6668 	 */
6669 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6670 	    (dstport == tcp->tcp_lport)) {
6671 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6672 		goto failed;
6673 	}
6674 
6675 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6676 	tcp->tcp_remote_v6 = *dstaddrp;
6677 	tcp->tcp_ip6h->ip6_vcf =
6678 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6679 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6680 
6681 
6682 	/*
6683 	 * Massage a routing header (if present) putting the first hop
6684 	 * in ip6_dst. Compute a starting value for the checksum which
6685 	 * takes into account that the original ip6_dst should be
6686 	 * included in the checksum but that ip will include the
6687 	 * first hop in the source route in the tcp checksum.
6688 	 */
6689 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6690 	if (rth != NULL) {
6691 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6692 		    tcps->tcps_netstack);
6693 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6694 		    (tcp->tcp_sum >> 16));
6695 	} else {
6696 		tcp->tcp_sum = 0;
6697 	}
6698 
6699 	tcph = tcp->tcp_tcph;
6700 	*(uint16_t *)tcph->th_fport = dstport;
6701 	tcp->tcp_fport = dstport;
6702 
6703 	oldstate = tcp->tcp_state;
6704 	/*
6705 	 * At this point the remote destination address and remote port fields
6706 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6707 	 * have to see which state tcp was in so we can take apropriate action.
6708 	 */
6709 	if (oldstate == TCPS_IDLE) {
6710 		/*
6711 		 * We support a quick connect capability here, allowing
6712 		 * clients to transition directly from IDLE to SYN_SENT
6713 		 * tcp_bindi will pick an unused port, insert the connection
6714 		 * in the bind hash and transition to BOUND state.
6715 		 */
6716 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6717 		    tcp, B_TRUE);
6718 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6719 		    B_FALSE, B_FALSE);
6720 		if (lport == 0) {
6721 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6722 			goto failed;
6723 		}
6724 	}
6725 	tcp->tcp_state = TCPS_SYN_SENT;
6726 	/*
6727 	 * TODO: allow data with connect requests
6728 	 * by unlinking M_DATA trailers here and
6729 	 * linking them in behind the T_OK_ACK mblk.
6730 	 * The tcp_rput() bind ack handler would then
6731 	 * feed them to tcp_wput_data() rather than call
6732 	 * tcp_timer().
6733 	 */
6734 	mp = mi_tpi_ok_ack_alloc(mp);
6735 	if (!mp) {
6736 		tcp->tcp_state = oldstate;
6737 		goto failed;
6738 	}
6739 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6740 	if (mp1) {
6741 		/* Hang onto the T_OK_ACK for later. */
6742 		linkb(mp1, mp);
6743 		mblk_setcred(mp1, tcp->tcp_cred);
6744 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6745 		    &tcp->tcp_sticky_ipp);
6746 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6747 		tcp->tcp_active_open = 1;
6748 		/* ip_bind_v6() may return ACK or ERROR */
6749 		if (mp1 != NULL)
6750 			tcp_rput_other(tcp, mp1);
6751 		return;
6752 	}
6753 	/* Error case */
6754 	tcp->tcp_state = oldstate;
6755 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6756 
6757 failed:
6758 	/* return error ack and blow away saved option results if any */
6759 	if (mp != NULL)
6760 		putnext(tcp->tcp_rq, mp);
6761 	else {
6762 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6763 		    TSYSERR, ENOMEM);
6764 	}
6765 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6766 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6767 }
6768 
6769 /*
6770  * We need a stream q for detached closing tcp connections
6771  * to use.  Our client hereby indicates that this q is the
6772  * one to use.
6773  */
6774 static void
6775 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6776 {
6777 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6778 	queue_t	*q = tcp->tcp_wq;
6779 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6780 
6781 #ifdef NS_DEBUG
6782 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6783 	    tcps->tcps_netstack->netstack_stackid);
6784 #endif
6785 	mp->b_datap->db_type = M_IOCACK;
6786 	iocp->ioc_count = 0;
6787 	mutex_enter(&tcps->tcps_g_q_lock);
6788 	if (tcps->tcps_g_q != NULL) {
6789 		mutex_exit(&tcps->tcps_g_q_lock);
6790 		iocp->ioc_error = EALREADY;
6791 	} else {
6792 		mblk_t *mp1;
6793 
6794 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6795 		if (mp1 == NULL) {
6796 			mutex_exit(&tcps->tcps_g_q_lock);
6797 			iocp->ioc_error = ENOMEM;
6798 		} else {
6799 			tcps->tcps_g_q = tcp->tcp_rq;
6800 			mutex_exit(&tcps->tcps_g_q_lock);
6801 			iocp->ioc_error = 0;
6802 			iocp->ioc_rval = 0;
6803 			/*
6804 			 * We are passing tcp_sticky_ipp as NULL
6805 			 * as it is not useful for tcp_default queue
6806 			 */
6807 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6808 			if (mp1 != NULL)
6809 				tcp_rput_other(tcp, mp1);
6810 		}
6811 	}
6812 	qreply(q, mp);
6813 }
6814 
6815 /*
6816  * Our client hereby directs us to reject the connection request
6817  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6818  * of sending the appropriate RST, not an ICMP error.
6819  */
6820 static void
6821 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6822 {
6823 	tcp_t	*ltcp = NULL;
6824 	t_scalar_t seqnum;
6825 	conn_t	*connp;
6826 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6827 
6828 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6829 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6830 		tcp_err_ack(tcp, mp, TPROTO, 0);
6831 		return;
6832 	}
6833 
6834 	/*
6835 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6836 	 * when the stream is in BOUND state. Do not send a reset,
6837 	 * since the destination IP address is not valid, and it can
6838 	 * be the initialized value of all zeros (broadcast address).
6839 	 *
6840 	 * If TCP has sent down a bind request to IP and has not
6841 	 * received the reply, reject the request.  Otherwise, TCP
6842 	 * will be confused.
6843 	 */
6844 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6845 		if (tcp->tcp_debug) {
6846 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6847 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6848 		}
6849 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6850 		return;
6851 	}
6852 
6853 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6854 
6855 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6856 
6857 		/*
6858 		 * According to TPI, for non-listeners, ignore seqnum
6859 		 * and disconnect.
6860 		 * Following interpretation of -1 seqnum is historical
6861 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6862 		 * a valid seqnum should not be -1).
6863 		 *
6864 		 *	-1 means disconnect everything
6865 		 *	regardless even on a listener.
6866 		 */
6867 
6868 		int old_state = tcp->tcp_state;
6869 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6870 
6871 		/*
6872 		 * The connection can't be on the tcp_time_wait_head list
6873 		 * since it is not detached.
6874 		 */
6875 		ASSERT(tcp->tcp_time_wait_next == NULL);
6876 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6877 		ASSERT(tcp->tcp_time_wait_expire == 0);
6878 		ltcp = NULL;
6879 		/*
6880 		 * If it used to be a listener, check to make sure no one else
6881 		 * has taken the port before switching back to LISTEN state.
6882 		 */
6883 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6884 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6885 			    tcp->tcp_ipha->ipha_src,
6886 			    tcp->tcp_connp->conn_zoneid, ipst);
6887 			if (connp != NULL)
6888 				ltcp = connp->conn_tcp;
6889 		} else {
6890 			/* Allow tcp_bound_if listeners? */
6891 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6892 			    &tcp->tcp_ip6h->ip6_src, 0,
6893 			    tcp->tcp_connp->conn_zoneid, ipst);
6894 			if (connp != NULL)
6895 				ltcp = connp->conn_tcp;
6896 		}
6897 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6898 			tcp->tcp_state = TCPS_LISTEN;
6899 		} else if (old_state > TCPS_BOUND) {
6900 			tcp->tcp_conn_req_max = 0;
6901 			tcp->tcp_state = TCPS_BOUND;
6902 		}
6903 		if (ltcp != NULL)
6904 			CONN_DEC_REF(ltcp->tcp_connp);
6905 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6906 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6907 		} else if (old_state == TCPS_ESTABLISHED ||
6908 		    old_state == TCPS_CLOSE_WAIT) {
6909 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6910 		}
6911 
6912 		if (tcp->tcp_fused)
6913 			tcp_unfuse(tcp);
6914 
6915 		mutex_enter(&tcp->tcp_eager_lock);
6916 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6917 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6918 			tcp_eager_cleanup(tcp, 0);
6919 		}
6920 		mutex_exit(&tcp->tcp_eager_lock);
6921 
6922 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6923 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6924 
6925 		tcp_reinit(tcp);
6926 
6927 		if (old_state >= TCPS_ESTABLISHED) {
6928 			/* Send M_FLUSH according to TPI */
6929 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6930 		}
6931 		mp = mi_tpi_ok_ack_alloc(mp);
6932 		if (mp)
6933 			putnext(tcp->tcp_rq, mp);
6934 		return;
6935 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6936 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6937 		return;
6938 	}
6939 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6940 		/* Send M_FLUSH according to TPI */
6941 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6942 	}
6943 	mp = mi_tpi_ok_ack_alloc(mp);
6944 	if (mp)
6945 		putnext(tcp->tcp_rq, mp);
6946 }
6947 
6948 /*
6949  * Diagnostic routine used to return a string associated with the tcp state.
6950  * Note that if the caller does not supply a buffer, it will use an internal
6951  * static string.  This means that if multiple threads call this function at
6952  * the same time, output can be corrupted...  Note also that this function
6953  * does not check the size of the supplied buffer.  The caller has to make
6954  * sure that it is big enough.
6955  */
6956 static char *
6957 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6958 {
6959 	char		buf1[30];
6960 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6961 	char		*buf;
6962 	char		*cp;
6963 	in6_addr_t	local, remote;
6964 	char		local_addrbuf[INET6_ADDRSTRLEN];
6965 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6966 
6967 	if (sup_buf != NULL)
6968 		buf = sup_buf;
6969 	else
6970 		buf = priv_buf;
6971 
6972 	if (tcp == NULL)
6973 		return ("NULL_TCP");
6974 	switch (tcp->tcp_state) {
6975 	case TCPS_CLOSED:
6976 		cp = "TCP_CLOSED";
6977 		break;
6978 	case TCPS_IDLE:
6979 		cp = "TCP_IDLE";
6980 		break;
6981 	case TCPS_BOUND:
6982 		cp = "TCP_BOUND";
6983 		break;
6984 	case TCPS_LISTEN:
6985 		cp = "TCP_LISTEN";
6986 		break;
6987 	case TCPS_SYN_SENT:
6988 		cp = "TCP_SYN_SENT";
6989 		break;
6990 	case TCPS_SYN_RCVD:
6991 		cp = "TCP_SYN_RCVD";
6992 		break;
6993 	case TCPS_ESTABLISHED:
6994 		cp = "TCP_ESTABLISHED";
6995 		break;
6996 	case TCPS_CLOSE_WAIT:
6997 		cp = "TCP_CLOSE_WAIT";
6998 		break;
6999 	case TCPS_FIN_WAIT_1:
7000 		cp = "TCP_FIN_WAIT_1";
7001 		break;
7002 	case TCPS_CLOSING:
7003 		cp = "TCP_CLOSING";
7004 		break;
7005 	case TCPS_LAST_ACK:
7006 		cp = "TCP_LAST_ACK";
7007 		break;
7008 	case TCPS_FIN_WAIT_2:
7009 		cp = "TCP_FIN_WAIT_2";
7010 		break;
7011 	case TCPS_TIME_WAIT:
7012 		cp = "TCP_TIME_WAIT";
7013 		break;
7014 	default:
7015 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7016 		cp = buf1;
7017 		break;
7018 	}
7019 	switch (format) {
7020 	case DISP_ADDR_AND_PORT:
7021 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7022 			/*
7023 			 * Note that we use the remote address in the tcp_b
7024 			 * structure.  This means that it will print out
7025 			 * the real destination address, not the next hop's
7026 			 * address if source routing is used.
7027 			 */
7028 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7029 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7030 
7031 		} else {
7032 			local = tcp->tcp_ip_src_v6;
7033 			remote = tcp->tcp_remote_v6;
7034 		}
7035 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7036 		    sizeof (local_addrbuf));
7037 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7038 		    sizeof (remote_addrbuf));
7039 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7040 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7041 		    ntohs(tcp->tcp_fport), cp);
7042 		break;
7043 	case DISP_PORT_ONLY:
7044 	default:
7045 		(void) mi_sprintf(buf, "[%u, %u] %s",
7046 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7047 		break;
7048 	}
7049 
7050 	return (buf);
7051 }
7052 
7053 /*
7054  * Called via squeue to get on to eager's perimeter. It sends a
7055  * TH_RST if eager is in the fanout table. The listener wants the
7056  * eager to disappear either by means of tcp_eager_blowoff() or
7057  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7058  * called (via squeue) if the eager cannot be inserted in the
7059  * fanout table in tcp_conn_request().
7060  */
7061 /* ARGSUSED */
7062 void
7063 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7064 {
7065 	conn_t	*econnp = (conn_t *)arg;
7066 	tcp_t	*eager = econnp->conn_tcp;
7067 	tcp_t	*listener = eager->tcp_listener;
7068 	tcp_stack_t	*tcps = eager->tcp_tcps;
7069 
7070 	/*
7071 	 * We could be called because listener is closing. Since
7072 	 * the eager is using listener's queue's, its not safe.
7073 	 * Better use the default queue just to send the TH_RST
7074 	 * out.
7075 	 */
7076 	ASSERT(tcps->tcps_g_q != NULL);
7077 	eager->tcp_rq = tcps->tcps_g_q;
7078 	eager->tcp_wq = WR(tcps->tcps_g_q);
7079 
7080 	/*
7081 	 * An eager's conn_fanout will be NULL if it's a duplicate
7082 	 * for an existing 4-tuples in the conn fanout table.
7083 	 * We don't want to send an RST out in such case.
7084 	 */
7085 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7086 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7087 		    eager, eager->tcp_snxt, 0, TH_RST);
7088 	}
7089 
7090 	/* We are here because listener wants this eager gone */
7091 	if (listener != NULL) {
7092 		mutex_enter(&listener->tcp_eager_lock);
7093 		tcp_eager_unlink(eager);
7094 		if (eager->tcp_tconnind_started) {
7095 			/*
7096 			 * The eager has sent a conn_ind up to the
7097 			 * listener but listener decides to close
7098 			 * instead. We need to drop the extra ref
7099 			 * placed on eager in tcp_rput_data() before
7100 			 * sending the conn_ind to listener.
7101 			 */
7102 			CONN_DEC_REF(econnp);
7103 		}
7104 		mutex_exit(&listener->tcp_eager_lock);
7105 		CONN_DEC_REF(listener->tcp_connp);
7106 	}
7107 
7108 	if (eager->tcp_state > TCPS_BOUND)
7109 		tcp_close_detached(eager);
7110 }
7111 
7112 /*
7113  * Reset any eager connection hanging off this listener marked
7114  * with 'seqnum' and then reclaim it's resources.
7115  */
7116 static boolean_t
7117 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7118 {
7119 	tcp_t	*eager;
7120 	mblk_t 	*mp;
7121 	tcp_stack_t	*tcps = listener->tcp_tcps;
7122 
7123 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7124 	eager = listener;
7125 	mutex_enter(&listener->tcp_eager_lock);
7126 	do {
7127 		eager = eager->tcp_eager_next_q;
7128 		if (eager == NULL) {
7129 			mutex_exit(&listener->tcp_eager_lock);
7130 			return (B_FALSE);
7131 		}
7132 	} while (eager->tcp_conn_req_seqnum != seqnum);
7133 
7134 	if (eager->tcp_closemp_used) {
7135 		mutex_exit(&listener->tcp_eager_lock);
7136 		return (B_TRUE);
7137 	}
7138 	eager->tcp_closemp_used = B_TRUE;
7139 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7140 	CONN_INC_REF(eager->tcp_connp);
7141 	mutex_exit(&listener->tcp_eager_lock);
7142 	mp = &eager->tcp_closemp;
7143 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7144 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7145 	return (B_TRUE);
7146 }
7147 
7148 /*
7149  * Reset any eager connection hanging off this listener
7150  * and then reclaim it's resources.
7151  */
7152 static void
7153 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7154 {
7155 	tcp_t	*eager;
7156 	mblk_t	*mp;
7157 	tcp_stack_t	*tcps = listener->tcp_tcps;
7158 
7159 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7160 
7161 	if (!q0_only) {
7162 		/* First cleanup q */
7163 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7164 		eager = listener->tcp_eager_next_q;
7165 		while (eager != NULL) {
7166 			if (!eager->tcp_closemp_used) {
7167 				eager->tcp_closemp_used = B_TRUE;
7168 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7169 				CONN_INC_REF(eager->tcp_connp);
7170 				mp = &eager->tcp_closemp;
7171 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7172 				    tcp_eager_kill, eager->tcp_connp,
7173 				    SQTAG_TCP_EAGER_CLEANUP);
7174 			}
7175 			eager = eager->tcp_eager_next_q;
7176 		}
7177 	}
7178 	/* Then cleanup q0 */
7179 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7180 	eager = listener->tcp_eager_next_q0;
7181 	while (eager != listener) {
7182 		if (!eager->tcp_closemp_used) {
7183 			eager->tcp_closemp_used = B_TRUE;
7184 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7185 			CONN_INC_REF(eager->tcp_connp);
7186 			mp = &eager->tcp_closemp;
7187 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7188 			    tcp_eager_kill, eager->tcp_connp,
7189 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7190 		}
7191 		eager = eager->tcp_eager_next_q0;
7192 	}
7193 }
7194 
7195 /*
7196  * If we are an eager connection hanging off a listener that hasn't
7197  * formally accepted the connection yet, get off his list and blow off
7198  * any data that we have accumulated.
7199  */
7200 static void
7201 tcp_eager_unlink(tcp_t *tcp)
7202 {
7203 	tcp_t	*listener = tcp->tcp_listener;
7204 
7205 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7206 	ASSERT(listener != NULL);
7207 	if (tcp->tcp_eager_next_q0 != NULL) {
7208 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7209 
7210 		/* Remove the eager tcp from q0 */
7211 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7212 		    tcp->tcp_eager_prev_q0;
7213 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7214 		    tcp->tcp_eager_next_q0;
7215 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7216 		listener->tcp_conn_req_cnt_q0--;
7217 
7218 		tcp->tcp_eager_next_q0 = NULL;
7219 		tcp->tcp_eager_prev_q0 = NULL;
7220 
7221 		/*
7222 		 * Take the eager out, if it is in the list of droppable
7223 		 * eagers.
7224 		 */
7225 		MAKE_UNDROPPABLE(tcp);
7226 
7227 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7228 			/* we have timed out before */
7229 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7230 			listener->tcp_syn_rcvd_timeout--;
7231 		}
7232 	} else {
7233 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7234 		tcp_t	*prev = NULL;
7235 
7236 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7237 			if (tcpp[0] == tcp) {
7238 				if (listener->tcp_eager_last_q == tcp) {
7239 					/*
7240 					 * If we are unlinking the last
7241 					 * element on the list, adjust
7242 					 * tail pointer. Set tail pointer
7243 					 * to nil when list is empty.
7244 					 */
7245 					ASSERT(tcp->tcp_eager_next_q == NULL);
7246 					if (listener->tcp_eager_last_q ==
7247 					    listener->tcp_eager_next_q) {
7248 						listener->tcp_eager_last_q =
7249 						    NULL;
7250 					} else {
7251 						/*
7252 						 * We won't get here if there
7253 						 * is only one eager in the
7254 						 * list.
7255 						 */
7256 						ASSERT(prev != NULL);
7257 						listener->tcp_eager_last_q =
7258 						    prev;
7259 					}
7260 				}
7261 				tcpp[0] = tcp->tcp_eager_next_q;
7262 				tcp->tcp_eager_next_q = NULL;
7263 				tcp->tcp_eager_last_q = NULL;
7264 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7265 				listener->tcp_conn_req_cnt_q--;
7266 				break;
7267 			}
7268 			prev = tcpp[0];
7269 		}
7270 	}
7271 	tcp->tcp_listener = NULL;
7272 }
7273 
7274 /* Shorthand to generate and send TPI error acks to our client */
7275 static void
7276 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7277 {
7278 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7279 		putnext(tcp->tcp_rq, mp);
7280 }
7281 
7282 /* Shorthand to generate and send TPI error acks to our client */
7283 static void
7284 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7285     int t_error, int sys_error)
7286 {
7287 	struct T_error_ack	*teackp;
7288 
7289 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7290 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7291 		teackp = (struct T_error_ack *)mp->b_rptr;
7292 		teackp->ERROR_prim = primitive;
7293 		teackp->TLI_error = t_error;
7294 		teackp->UNIX_error = sys_error;
7295 		putnext(tcp->tcp_rq, mp);
7296 	}
7297 }
7298 
7299 /*
7300  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7301  * but instead the code relies on:
7302  * - the fact that the address of the array and its size never changes
7303  * - the atomic assignment of the elements of the array
7304  */
7305 /* ARGSUSED */
7306 static int
7307 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7308 {
7309 	int i;
7310 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7311 
7312 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7313 		if (tcps->tcps_g_epriv_ports[i] != 0)
7314 			(void) mi_mpprintf(mp, "%d ",
7315 			    tcps->tcps_g_epriv_ports[i]);
7316 	}
7317 	return (0);
7318 }
7319 
7320 /*
7321  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7322  * threads from changing it at the same time.
7323  */
7324 /* ARGSUSED */
7325 static int
7326 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7327     cred_t *cr)
7328 {
7329 	long	new_value;
7330 	int	i;
7331 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7332 
7333 	/*
7334 	 * Fail the request if the new value does not lie within the
7335 	 * port number limits.
7336 	 */
7337 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7338 	    new_value <= 0 || new_value >= 65536) {
7339 		return (EINVAL);
7340 	}
7341 
7342 	mutex_enter(&tcps->tcps_epriv_port_lock);
7343 	/* Check if the value is already in the list */
7344 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7345 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7346 			mutex_exit(&tcps->tcps_epriv_port_lock);
7347 			return (EEXIST);
7348 		}
7349 	}
7350 	/* Find an empty slot */
7351 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7352 		if (tcps->tcps_g_epriv_ports[i] == 0)
7353 			break;
7354 	}
7355 	if (i == tcps->tcps_g_num_epriv_ports) {
7356 		mutex_exit(&tcps->tcps_epriv_port_lock);
7357 		return (EOVERFLOW);
7358 	}
7359 	/* Set the new value */
7360 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7361 	mutex_exit(&tcps->tcps_epriv_port_lock);
7362 	return (0);
7363 }
7364 
7365 /*
7366  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7367  * threads from changing it at the same time.
7368  */
7369 /* ARGSUSED */
7370 static int
7371 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7372     cred_t *cr)
7373 {
7374 	long	new_value;
7375 	int	i;
7376 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7377 
7378 	/*
7379 	 * Fail the request if the new value does not lie within the
7380 	 * port number limits.
7381 	 */
7382 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7383 	    new_value >= 65536) {
7384 		return (EINVAL);
7385 	}
7386 
7387 	mutex_enter(&tcps->tcps_epriv_port_lock);
7388 	/* Check that the value is already in the list */
7389 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7390 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7391 			break;
7392 	}
7393 	if (i == tcps->tcps_g_num_epriv_ports) {
7394 		mutex_exit(&tcps->tcps_epriv_port_lock);
7395 		return (ESRCH);
7396 	}
7397 	/* Clear the value */
7398 	tcps->tcps_g_epriv_ports[i] = 0;
7399 	mutex_exit(&tcps->tcps_epriv_port_lock);
7400 	return (0);
7401 }
7402 
7403 /* Return the TPI/TLI equivalent of our current tcp_state */
7404 static int
7405 tcp_tpistate(tcp_t *tcp)
7406 {
7407 	switch (tcp->tcp_state) {
7408 	case TCPS_IDLE:
7409 		return (TS_UNBND);
7410 	case TCPS_LISTEN:
7411 		/*
7412 		 * Return whether there are outstanding T_CONN_IND waiting
7413 		 * for the matching T_CONN_RES. Therefore don't count q0.
7414 		 */
7415 		if (tcp->tcp_conn_req_cnt_q > 0)
7416 			return (TS_WRES_CIND);
7417 		else
7418 			return (TS_IDLE);
7419 	case TCPS_BOUND:
7420 		return (TS_IDLE);
7421 	case TCPS_SYN_SENT:
7422 		return (TS_WCON_CREQ);
7423 	case TCPS_SYN_RCVD:
7424 		/*
7425 		 * Note: assumption: this has to the active open SYN_RCVD.
7426 		 * The passive instance is detached in SYN_RCVD stage of
7427 		 * incoming connection processing so we cannot get request
7428 		 * for T_info_ack on it.
7429 		 */
7430 		return (TS_WACK_CRES);
7431 	case TCPS_ESTABLISHED:
7432 		return (TS_DATA_XFER);
7433 	case TCPS_CLOSE_WAIT:
7434 		return (TS_WREQ_ORDREL);
7435 	case TCPS_FIN_WAIT_1:
7436 		return (TS_WIND_ORDREL);
7437 	case TCPS_FIN_WAIT_2:
7438 		return (TS_WIND_ORDREL);
7439 
7440 	case TCPS_CLOSING:
7441 	case TCPS_LAST_ACK:
7442 	case TCPS_TIME_WAIT:
7443 	case TCPS_CLOSED:
7444 		/*
7445 		 * Following TS_WACK_DREQ7 is a rendition of "not
7446 		 * yet TS_IDLE" TPI state. There is no best match to any
7447 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7448 		 * choose a value chosen that will map to TLI/XTI level
7449 		 * state of TSTATECHNG (state is process of changing) which
7450 		 * captures what this dummy state represents.
7451 		 */
7452 		return (TS_WACK_DREQ7);
7453 	default:
7454 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7455 		    tcp->tcp_state, tcp_display(tcp, NULL,
7456 		    DISP_PORT_ONLY));
7457 		return (TS_UNBND);
7458 	}
7459 }
7460 
7461 static void
7462 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7463 {
7464 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7465 
7466 	if (tcp->tcp_family == AF_INET6)
7467 		*tia = tcp_g_t_info_ack_v6;
7468 	else
7469 		*tia = tcp_g_t_info_ack;
7470 	tia->CURRENT_state = tcp_tpistate(tcp);
7471 	tia->OPT_size = tcp_max_optsize;
7472 	if (tcp->tcp_mss == 0) {
7473 		/* Not yet set - tcp_open does not set mss */
7474 		if (tcp->tcp_ipversion == IPV4_VERSION)
7475 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7476 		else
7477 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7478 	} else {
7479 		tia->TIDU_size = tcp->tcp_mss;
7480 	}
7481 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7482 }
7483 
7484 /*
7485  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7486  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7487  * tcp_g_t_info_ack.  The current state of the stream is copied from
7488  * tcp_state.
7489  */
7490 static void
7491 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7492 {
7493 	t_uscalar_t		cap_bits1;
7494 	struct T_capability_ack	*tcap;
7495 
7496 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7497 		freemsg(mp);
7498 		return;
7499 	}
7500 
7501 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7502 
7503 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7504 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7505 	if (mp == NULL)
7506 		return;
7507 
7508 	tcap = (struct T_capability_ack *)mp->b_rptr;
7509 	tcap->CAP_bits1 = 0;
7510 
7511 	if (cap_bits1 & TC1_INFO) {
7512 		tcp_copy_info(&tcap->INFO_ack, tcp);
7513 		tcap->CAP_bits1 |= TC1_INFO;
7514 	}
7515 
7516 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7517 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7518 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7519 	}
7520 
7521 	putnext(tcp->tcp_rq, mp);
7522 }
7523 
7524 /*
7525  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7526  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7527  * The current state of the stream is copied from tcp_state.
7528  */
7529 static void
7530 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7531 {
7532 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7533 	    T_INFO_ACK);
7534 	if (!mp) {
7535 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7536 		return;
7537 	}
7538 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7539 	putnext(tcp->tcp_rq, mp);
7540 }
7541 
7542 /* Respond to the TPI addr request */
7543 static void
7544 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7545 {
7546 	sin_t	*sin;
7547 	mblk_t	*ackmp;
7548 	struct T_addr_ack *taa;
7549 
7550 	/* Make it large enough for worst case */
7551 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7552 	    2 * sizeof (sin6_t), 1);
7553 	if (ackmp == NULL) {
7554 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7555 		return;
7556 	}
7557 
7558 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7559 		tcp_addr_req_ipv6(tcp, ackmp);
7560 		return;
7561 	}
7562 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7563 
7564 	bzero(taa, sizeof (struct T_addr_ack));
7565 	ackmp->b_wptr = (uchar_t *)&taa[1];
7566 
7567 	taa->PRIM_type = T_ADDR_ACK;
7568 	ackmp->b_datap->db_type = M_PCPROTO;
7569 
7570 	/*
7571 	 * Note: Following code assumes 32 bit alignment of basic
7572 	 * data structures like sin_t and struct T_addr_ack.
7573 	 */
7574 	if (tcp->tcp_state >= TCPS_BOUND) {
7575 		/*
7576 		 * Fill in local address
7577 		 */
7578 		taa->LOCADDR_length = sizeof (sin_t);
7579 		taa->LOCADDR_offset = sizeof (*taa);
7580 
7581 		sin = (sin_t *)&taa[1];
7582 
7583 		/* Fill zeroes and then intialize non-zero fields */
7584 		*sin = sin_null;
7585 
7586 		sin->sin_family = AF_INET;
7587 
7588 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7589 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7590 
7591 		ackmp->b_wptr = (uchar_t *)&sin[1];
7592 
7593 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7594 			/*
7595 			 * Fill in Remote address
7596 			 */
7597 			taa->REMADDR_length = sizeof (sin_t);
7598 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7599 			    taa->LOCADDR_length);
7600 
7601 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7602 			*sin = sin_null;
7603 			sin->sin_family = AF_INET;
7604 			sin->sin_addr.s_addr = tcp->tcp_remote;
7605 			sin->sin_port = tcp->tcp_fport;
7606 
7607 			ackmp->b_wptr = (uchar_t *)&sin[1];
7608 		}
7609 	}
7610 	putnext(tcp->tcp_rq, ackmp);
7611 }
7612 
7613 /* Assumes that tcp_addr_req gets enough space and alignment */
7614 static void
7615 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7616 {
7617 	sin6_t	*sin6;
7618 	struct T_addr_ack *taa;
7619 
7620 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7621 	ASSERT(OK_32PTR(ackmp->b_rptr));
7622 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7623 	    2 * sizeof (sin6_t));
7624 
7625 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7626 
7627 	bzero(taa, sizeof (struct T_addr_ack));
7628 	ackmp->b_wptr = (uchar_t *)&taa[1];
7629 
7630 	taa->PRIM_type = T_ADDR_ACK;
7631 	ackmp->b_datap->db_type = M_PCPROTO;
7632 
7633 	/*
7634 	 * Note: Following code assumes 32 bit alignment of basic
7635 	 * data structures like sin6_t and struct T_addr_ack.
7636 	 */
7637 	if (tcp->tcp_state >= TCPS_BOUND) {
7638 		/*
7639 		 * Fill in local address
7640 		 */
7641 		taa->LOCADDR_length = sizeof (sin6_t);
7642 		taa->LOCADDR_offset = sizeof (*taa);
7643 
7644 		sin6 = (sin6_t *)&taa[1];
7645 		*sin6 = sin6_null;
7646 
7647 		sin6->sin6_family = AF_INET6;
7648 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7649 		sin6->sin6_port = tcp->tcp_lport;
7650 
7651 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7652 
7653 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7654 			/*
7655 			 * Fill in Remote address
7656 			 */
7657 			taa->REMADDR_length = sizeof (sin6_t);
7658 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7659 			    taa->LOCADDR_length);
7660 
7661 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7662 			*sin6 = sin6_null;
7663 			sin6->sin6_family = AF_INET6;
7664 			sin6->sin6_flowinfo =
7665 			    tcp->tcp_ip6h->ip6_vcf &
7666 			    ~IPV6_VERS_AND_FLOW_MASK;
7667 			sin6->sin6_addr = tcp->tcp_remote_v6;
7668 			sin6->sin6_port = tcp->tcp_fport;
7669 
7670 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7671 		}
7672 	}
7673 	putnext(tcp->tcp_rq, ackmp);
7674 }
7675 
7676 /*
7677  * Handle reinitialization of a tcp structure.
7678  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7679  */
7680 static void
7681 tcp_reinit(tcp_t *tcp)
7682 {
7683 	mblk_t	*mp;
7684 	int 	err;
7685 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7686 
7687 	TCP_STAT(tcps, tcp_reinit_calls);
7688 
7689 	/* tcp_reinit should never be called for detached tcp_t's */
7690 	ASSERT(tcp->tcp_listener == NULL);
7691 	ASSERT((tcp->tcp_family == AF_INET &&
7692 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7693 	    (tcp->tcp_family == AF_INET6 &&
7694 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7695 	    tcp->tcp_ipversion == IPV6_VERSION)));
7696 
7697 	/* Cancel outstanding timers */
7698 	tcp_timers_stop(tcp);
7699 
7700 	/*
7701 	 * Reset everything in the state vector, after updating global
7702 	 * MIB data from instance counters.
7703 	 */
7704 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7705 	tcp->tcp_ibsegs = 0;
7706 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7707 	tcp->tcp_obsegs = 0;
7708 
7709 	tcp_close_mpp(&tcp->tcp_xmit_head);
7710 	if (tcp->tcp_snd_zcopy_aware)
7711 		tcp_zcopy_notify(tcp);
7712 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7713 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7714 	mutex_enter(&tcp->tcp_non_sq_lock);
7715 	if (tcp->tcp_flow_stopped &&
7716 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7717 		tcp_clrqfull(tcp);
7718 	}
7719 	mutex_exit(&tcp->tcp_non_sq_lock);
7720 	tcp_close_mpp(&tcp->tcp_reass_head);
7721 	tcp->tcp_reass_tail = NULL;
7722 	if (tcp->tcp_rcv_list != NULL) {
7723 		/* Free b_next chain */
7724 		tcp_close_mpp(&tcp->tcp_rcv_list);
7725 		tcp->tcp_rcv_last_head = NULL;
7726 		tcp->tcp_rcv_last_tail = NULL;
7727 		tcp->tcp_rcv_cnt = 0;
7728 	}
7729 	tcp->tcp_rcv_last_tail = NULL;
7730 
7731 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7732 		freemsg(mp);
7733 		tcp->tcp_urp_mp = NULL;
7734 	}
7735 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7736 		freemsg(mp);
7737 		tcp->tcp_urp_mark_mp = NULL;
7738 	}
7739 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7740 		freeb(tcp->tcp_fused_sigurg_mp);
7741 		tcp->tcp_fused_sigurg_mp = NULL;
7742 	}
7743 
7744 	/*
7745 	 * Following is a union with two members which are
7746 	 * identical types and size so the following cleanup
7747 	 * is enough.
7748 	 */
7749 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7750 
7751 	CL_INET_DISCONNECT(tcp);
7752 
7753 	/*
7754 	 * The connection can't be on the tcp_time_wait_head list
7755 	 * since it is not detached.
7756 	 */
7757 	ASSERT(tcp->tcp_time_wait_next == NULL);
7758 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7759 	ASSERT(tcp->tcp_time_wait_expire == 0);
7760 
7761 	if (tcp->tcp_kssl_pending) {
7762 		tcp->tcp_kssl_pending = B_FALSE;
7763 
7764 		/* Don't reset if the initialized by bind. */
7765 		if (tcp->tcp_kssl_ent != NULL) {
7766 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7767 			    KSSL_NO_PROXY);
7768 		}
7769 	}
7770 	if (tcp->tcp_kssl_ctx != NULL) {
7771 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7772 		tcp->tcp_kssl_ctx = NULL;
7773 	}
7774 
7775 	/*
7776 	 * Reset/preserve other values
7777 	 */
7778 	tcp_reinit_values(tcp);
7779 	ipcl_hash_remove(tcp->tcp_connp);
7780 	conn_delete_ire(tcp->tcp_connp, NULL);
7781 	tcp_ipsec_cleanup(tcp);
7782 
7783 	if (tcp->tcp_conn_req_max != 0) {
7784 		/*
7785 		 * This is the case when a TLI program uses the same
7786 		 * transport end point to accept a connection.  This
7787 		 * makes the TCP both a listener and acceptor.  When
7788 		 * this connection is closed, we need to set the state
7789 		 * back to TCPS_LISTEN.  Make sure that the eager list
7790 		 * is reinitialized.
7791 		 *
7792 		 * Note that this stream is still bound to the four
7793 		 * tuples of the previous connection in IP.  If a new
7794 		 * SYN with different foreign address comes in, IP will
7795 		 * not find it and will send it to the global queue.  In
7796 		 * the global queue, TCP will do a tcp_lookup_listener()
7797 		 * to find this stream.  This works because this stream
7798 		 * is only removed from connected hash.
7799 		 *
7800 		 */
7801 		tcp->tcp_state = TCPS_LISTEN;
7802 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7803 		tcp->tcp_eager_next_drop_q0 = tcp;
7804 		tcp->tcp_eager_prev_drop_q0 = tcp;
7805 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7806 		if (tcp->tcp_family == AF_INET6) {
7807 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7808 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7809 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7810 		} else {
7811 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7812 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7813 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7814 		}
7815 	} else {
7816 		tcp->tcp_state = TCPS_BOUND;
7817 	}
7818 
7819 	/*
7820 	 * Initialize to default values
7821 	 * Can't fail since enough header template space already allocated
7822 	 * at open().
7823 	 */
7824 	err = tcp_init_values(tcp);
7825 	ASSERT(err == 0);
7826 	/* Restore state in tcp_tcph */
7827 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7828 	if (tcp->tcp_ipversion == IPV4_VERSION)
7829 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7830 	else
7831 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7832 	/*
7833 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7834 	 * since the lookup funcs can only lookup on tcp_t
7835 	 */
7836 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7837 
7838 	ASSERT(tcp->tcp_ptpbhn != NULL);
7839 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7840 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7841 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7842 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7843 }
7844 
7845 /*
7846  * Force values to zero that need be zero.
7847  * Do not touch values asociated with the BOUND or LISTEN state
7848  * since the connection will end up in that state after the reinit.
7849  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7850  * structure!
7851  */
7852 static void
7853 tcp_reinit_values(tcp)
7854 	tcp_t *tcp;
7855 {
7856 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7857 
7858 #ifndef	lint
7859 #define	DONTCARE(x)
7860 #define	PRESERVE(x)
7861 #else
7862 #define	DONTCARE(x)	((x) = (x))
7863 #define	PRESERVE(x)	((x) = (x))
7864 #endif	/* lint */
7865 
7866 	PRESERVE(tcp->tcp_bind_hash);
7867 	PRESERVE(tcp->tcp_ptpbhn);
7868 	PRESERVE(tcp->tcp_acceptor_hash);
7869 	PRESERVE(tcp->tcp_ptpahn);
7870 
7871 	/* Should be ASSERT NULL on these with new code! */
7872 	ASSERT(tcp->tcp_time_wait_next == NULL);
7873 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7874 	ASSERT(tcp->tcp_time_wait_expire == 0);
7875 	PRESERVE(tcp->tcp_state);
7876 	PRESERVE(tcp->tcp_rq);
7877 	PRESERVE(tcp->tcp_wq);
7878 
7879 	ASSERT(tcp->tcp_xmit_head == NULL);
7880 	ASSERT(tcp->tcp_xmit_last == NULL);
7881 	ASSERT(tcp->tcp_unsent == 0);
7882 	ASSERT(tcp->tcp_xmit_tail == NULL);
7883 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7884 
7885 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7886 	tcp->tcp_suna = 0;			/* Displayed in mib */
7887 	tcp->tcp_swnd = 0;
7888 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7889 
7890 	ASSERT(tcp->tcp_ibsegs == 0);
7891 	ASSERT(tcp->tcp_obsegs == 0);
7892 
7893 	if (tcp->tcp_iphc != NULL) {
7894 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7895 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7896 	}
7897 
7898 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7899 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7900 	DONTCARE(tcp->tcp_ipha);
7901 	DONTCARE(tcp->tcp_ip6h);
7902 	DONTCARE(tcp->tcp_ip_hdr_len);
7903 	DONTCARE(tcp->tcp_tcph);
7904 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7905 	tcp->tcp_valid_bits = 0;
7906 
7907 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7908 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7909 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7910 	tcp->tcp_last_rcv_lbolt = 0;
7911 
7912 	tcp->tcp_init_cwnd = 0;
7913 
7914 	tcp->tcp_urp_last_valid = 0;
7915 	tcp->tcp_hard_binding = 0;
7916 	tcp->tcp_hard_bound = 0;
7917 	PRESERVE(tcp->tcp_cred);
7918 	PRESERVE(tcp->tcp_cpid);
7919 	PRESERVE(tcp->tcp_open_time);
7920 	PRESERVE(tcp->tcp_exclbind);
7921 
7922 	tcp->tcp_fin_acked = 0;
7923 	tcp->tcp_fin_rcvd = 0;
7924 	tcp->tcp_fin_sent = 0;
7925 	tcp->tcp_ordrel_done = 0;
7926 
7927 	tcp->tcp_debug = 0;
7928 	tcp->tcp_dontroute = 0;
7929 	tcp->tcp_broadcast = 0;
7930 
7931 	tcp->tcp_useloopback = 0;
7932 	tcp->tcp_reuseaddr = 0;
7933 	tcp->tcp_oobinline = 0;
7934 	tcp->tcp_dgram_errind = 0;
7935 
7936 	tcp->tcp_detached = 0;
7937 	tcp->tcp_bind_pending = 0;
7938 	tcp->tcp_unbind_pending = 0;
7939 	tcp->tcp_deferred_clean_death = 0;
7940 
7941 	tcp->tcp_snd_ws_ok = B_FALSE;
7942 	tcp->tcp_snd_ts_ok = B_FALSE;
7943 	tcp->tcp_linger = 0;
7944 	tcp->tcp_ka_enabled = 0;
7945 	tcp->tcp_zero_win_probe = 0;
7946 
7947 	tcp->tcp_loopback = 0;
7948 	tcp->tcp_localnet = 0;
7949 	tcp->tcp_syn_defense = 0;
7950 	tcp->tcp_set_timer = 0;
7951 
7952 	tcp->tcp_active_open = 0;
7953 	ASSERT(tcp->tcp_timeout == B_FALSE);
7954 	tcp->tcp_rexmit = B_FALSE;
7955 	tcp->tcp_xmit_zc_clean = B_FALSE;
7956 
7957 	tcp->tcp_snd_sack_ok = B_FALSE;
7958 	PRESERVE(tcp->tcp_recvdstaddr);
7959 	tcp->tcp_hwcksum = B_FALSE;
7960 
7961 	tcp->tcp_ire_ill_check_done = B_FALSE;
7962 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7963 
7964 	tcp->tcp_mdt = B_FALSE;
7965 	tcp->tcp_mdt_hdr_head = 0;
7966 	tcp->tcp_mdt_hdr_tail = 0;
7967 
7968 	tcp->tcp_conn_def_q0 = 0;
7969 	tcp->tcp_ip_forward_progress = B_FALSE;
7970 	tcp->tcp_anon_priv_bind = 0;
7971 	tcp->tcp_ecn_ok = B_FALSE;
7972 
7973 	tcp->tcp_cwr = B_FALSE;
7974 	tcp->tcp_ecn_echo_on = B_FALSE;
7975 
7976 	if (tcp->tcp_sack_info != NULL) {
7977 		if (tcp->tcp_notsack_list != NULL) {
7978 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7979 		}
7980 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7981 		tcp->tcp_sack_info = NULL;
7982 	}
7983 
7984 	tcp->tcp_rcv_ws = 0;
7985 	tcp->tcp_snd_ws = 0;
7986 	tcp->tcp_ts_recent = 0;
7987 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7988 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7989 	tcp->tcp_if_mtu = 0;
7990 
7991 	ASSERT(tcp->tcp_reass_head == NULL);
7992 	ASSERT(tcp->tcp_reass_tail == NULL);
7993 
7994 	tcp->tcp_cwnd_cnt = 0;
7995 
7996 	ASSERT(tcp->tcp_rcv_list == NULL);
7997 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7998 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7999 	ASSERT(tcp->tcp_rcv_cnt == 0);
8000 
8001 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8002 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8003 	tcp->tcp_csuna = 0;
8004 
8005 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8006 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8007 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8008 	tcp->tcp_rtt_update = 0;
8009 
8010 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8011 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8012 
8013 	tcp->tcp_rack = 0;			/* Displayed in mib */
8014 	tcp->tcp_rack_cnt = 0;
8015 	tcp->tcp_rack_cur_max = 0;
8016 	tcp->tcp_rack_abs_max = 0;
8017 
8018 	tcp->tcp_max_swnd = 0;
8019 
8020 	ASSERT(tcp->tcp_listener == NULL);
8021 
8022 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8023 
8024 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8025 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8026 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8027 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8028 
8029 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8030 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8031 	PRESERVE(tcp->tcp_conn_req_max);
8032 	PRESERVE(tcp->tcp_conn_req_seqnum);
8033 
8034 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8035 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8036 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8037 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8038 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8039 
8040 	tcp->tcp_lingertime = 0;
8041 
8042 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8043 	ASSERT(tcp->tcp_urp_mp == NULL);
8044 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8045 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8046 
8047 	ASSERT(tcp->tcp_eager_next_q == NULL);
8048 	ASSERT(tcp->tcp_eager_last_q == NULL);
8049 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8050 	    tcp->tcp_eager_prev_q0 == NULL) ||
8051 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8052 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8053 
8054 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8055 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8056 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8057 
8058 	tcp->tcp_client_errno = 0;
8059 
8060 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8061 
8062 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8063 
8064 	PRESERVE(tcp->tcp_bound_source_v6);
8065 	tcp->tcp_last_sent_len = 0;
8066 	tcp->tcp_dupack_cnt = 0;
8067 
8068 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8069 	PRESERVE(tcp->tcp_lport);
8070 
8071 	PRESERVE(tcp->tcp_acceptor_lockp);
8072 
8073 	ASSERT(tcp->tcp_ordrelid == 0);
8074 	PRESERVE(tcp->tcp_acceptor_id);
8075 	DONTCARE(tcp->tcp_ipsec_overhead);
8076 
8077 	/*
8078 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8079 	 * in tcp structure and now tracing), Re-initialize all
8080 	 * members of tcp_traceinfo.
8081 	 */
8082 	if (tcp->tcp_tracebuf != NULL) {
8083 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8084 	}
8085 
8086 	PRESERVE(tcp->tcp_family);
8087 	if (tcp->tcp_family == AF_INET6) {
8088 		tcp->tcp_ipversion = IPV6_VERSION;
8089 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8090 	} else {
8091 		tcp->tcp_ipversion = IPV4_VERSION;
8092 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8093 	}
8094 
8095 	tcp->tcp_bound_if = 0;
8096 	tcp->tcp_ipv6_recvancillary = 0;
8097 	tcp->tcp_recvifindex = 0;
8098 	tcp->tcp_recvhops = 0;
8099 	tcp->tcp_closed = 0;
8100 	tcp->tcp_cleandeathtag = 0;
8101 	if (tcp->tcp_hopopts != NULL) {
8102 		mi_free(tcp->tcp_hopopts);
8103 		tcp->tcp_hopopts = NULL;
8104 		tcp->tcp_hopoptslen = 0;
8105 	}
8106 	ASSERT(tcp->tcp_hopoptslen == 0);
8107 	if (tcp->tcp_dstopts != NULL) {
8108 		mi_free(tcp->tcp_dstopts);
8109 		tcp->tcp_dstopts = NULL;
8110 		tcp->tcp_dstoptslen = 0;
8111 	}
8112 	ASSERT(tcp->tcp_dstoptslen == 0);
8113 	if (tcp->tcp_rtdstopts != NULL) {
8114 		mi_free(tcp->tcp_rtdstopts);
8115 		tcp->tcp_rtdstopts = NULL;
8116 		tcp->tcp_rtdstoptslen = 0;
8117 	}
8118 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8119 	if (tcp->tcp_rthdr != NULL) {
8120 		mi_free(tcp->tcp_rthdr);
8121 		tcp->tcp_rthdr = NULL;
8122 		tcp->tcp_rthdrlen = 0;
8123 	}
8124 	ASSERT(tcp->tcp_rthdrlen == 0);
8125 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8126 
8127 	/* Reset fusion-related fields */
8128 	tcp->tcp_fused = B_FALSE;
8129 	tcp->tcp_unfusable = B_FALSE;
8130 	tcp->tcp_fused_sigurg = B_FALSE;
8131 	tcp->tcp_direct_sockfs = B_FALSE;
8132 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8133 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8134 	tcp->tcp_loopback_peer = NULL;
8135 	tcp->tcp_fuse_rcv_hiwater = 0;
8136 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8137 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8138 
8139 	tcp->tcp_lso = B_FALSE;
8140 
8141 	tcp->tcp_in_ack_unsent = 0;
8142 	tcp->tcp_cork = B_FALSE;
8143 	tcp->tcp_tconnind_started = B_FALSE;
8144 
8145 	PRESERVE(tcp->tcp_squeue_bytes);
8146 
8147 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8148 	ASSERT(!tcp->tcp_kssl_pending);
8149 	PRESERVE(tcp->tcp_kssl_ent);
8150 
8151 	tcp->tcp_closemp_used = B_FALSE;
8152 
8153 #ifdef DEBUG
8154 	DONTCARE(tcp->tcmp_stk[0]);
8155 #endif
8156 
8157 
8158 #undef	DONTCARE
8159 #undef	PRESERVE
8160 }
8161 
8162 /*
8163  * Allocate necessary resources and initialize state vector.
8164  * Guaranteed not to fail so that when an error is returned,
8165  * the caller doesn't need to do any additional cleanup.
8166  */
8167 int
8168 tcp_init(tcp_t *tcp, queue_t *q)
8169 {
8170 	int	err;
8171 
8172 	tcp->tcp_rq = q;
8173 	tcp->tcp_wq = WR(q);
8174 	tcp->tcp_state = TCPS_IDLE;
8175 	if ((err = tcp_init_values(tcp)) != 0)
8176 		tcp_timers_stop(tcp);
8177 	return (err);
8178 }
8179 
8180 static int
8181 tcp_init_values(tcp_t *tcp)
8182 {
8183 	int	err;
8184 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8185 
8186 	ASSERT((tcp->tcp_family == AF_INET &&
8187 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8188 	    (tcp->tcp_family == AF_INET6 &&
8189 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8190 	    tcp->tcp_ipversion == IPV6_VERSION)));
8191 
8192 	/*
8193 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8194 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8195 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8196 	 * during first few transmissions of a connection as seen in slow
8197 	 * links.
8198 	 */
8199 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8200 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8201 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8202 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8203 	    tcps->tcps_conn_grace_period;
8204 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8205 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8206 	tcp->tcp_timer_backoff = 0;
8207 	tcp->tcp_ms_we_have_waited = 0;
8208 	tcp->tcp_last_recv_time = lbolt;
8209 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8210 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8211 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8212 
8213 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8214 
8215 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8216 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8217 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8218 	/*
8219 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8220 	 * passive open.
8221 	 */
8222 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8223 
8224 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8225 
8226 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8227 
8228 	tcp->tcp_mdt_hdr_head = 0;
8229 	tcp->tcp_mdt_hdr_tail = 0;
8230 
8231 	/* Reset fusion-related fields */
8232 	tcp->tcp_fused = B_FALSE;
8233 	tcp->tcp_unfusable = B_FALSE;
8234 	tcp->tcp_fused_sigurg = B_FALSE;
8235 	tcp->tcp_direct_sockfs = B_FALSE;
8236 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8237 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8238 	tcp->tcp_loopback_peer = NULL;
8239 	tcp->tcp_fuse_rcv_hiwater = 0;
8240 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8241 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8242 
8243 	/* Initialize the header template */
8244 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8245 		err = tcp_header_init_ipv4(tcp);
8246 	} else {
8247 		err = tcp_header_init_ipv6(tcp);
8248 	}
8249 	if (err)
8250 		return (err);
8251 
8252 	/*
8253 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8254 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8255 	 */
8256 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8257 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8258 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8259 
8260 	tcp->tcp_cork = B_FALSE;
8261 	/*
8262 	 * Init the tcp_debug option.  This value determines whether TCP
8263 	 * calls strlog() to print out debug messages.  Doing this
8264 	 * initialization here means that this value is not inherited thru
8265 	 * tcp_reinit().
8266 	 */
8267 	tcp->tcp_debug = tcps->tcps_dbg;
8268 
8269 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8270 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8271 
8272 	return (0);
8273 }
8274 
8275 /*
8276  * Initialize the IPv4 header. Loses any record of any IP options.
8277  */
8278 static int
8279 tcp_header_init_ipv4(tcp_t *tcp)
8280 {
8281 	tcph_t		*tcph;
8282 	uint32_t	sum;
8283 	conn_t		*connp;
8284 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8285 
8286 	/*
8287 	 * This is a simple initialization. If there's
8288 	 * already a template, it should never be too small,
8289 	 * so reuse it.  Otherwise, allocate space for the new one.
8290 	 */
8291 	if (tcp->tcp_iphc == NULL) {
8292 		ASSERT(tcp->tcp_iphc_len == 0);
8293 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8294 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8295 		if (tcp->tcp_iphc == NULL) {
8296 			tcp->tcp_iphc_len = 0;
8297 			return (ENOMEM);
8298 		}
8299 	}
8300 
8301 	/* options are gone; may need a new label */
8302 	connp = tcp->tcp_connp;
8303 	connp->conn_mlp_type = mlptSingle;
8304 	connp->conn_ulp_labeled = !is_system_labeled();
8305 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8306 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8307 	tcp->tcp_ip6h = NULL;
8308 	tcp->tcp_ipversion = IPV4_VERSION;
8309 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8310 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8311 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8312 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8313 	tcp->tcp_ipha->ipha_version_and_hdr_length
8314 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8315 	tcp->tcp_ipha->ipha_ident = 0;
8316 
8317 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8318 	tcp->tcp_tos = 0;
8319 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8320 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8321 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8322 
8323 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8324 	tcp->tcp_tcph = tcph;
8325 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8326 	/*
8327 	 * IP wants our header length in the checksum field to
8328 	 * allow it to perform a single pseudo-header+checksum
8329 	 * calculation on behalf of TCP.
8330 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8331 	 */
8332 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8333 	sum = (sum >> 16) + (sum & 0xFFFF);
8334 	U16_TO_ABE16(sum, tcph->th_sum);
8335 	return (0);
8336 }
8337 
8338 /*
8339  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8340  */
8341 static int
8342 tcp_header_init_ipv6(tcp_t *tcp)
8343 {
8344 	tcph_t	*tcph;
8345 	uint32_t	sum;
8346 	conn_t	*connp;
8347 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8348 
8349 	/*
8350 	 * This is a simple initialization. If there's
8351 	 * already a template, it should never be too small,
8352 	 * so reuse it. Otherwise, allocate space for the new one.
8353 	 * Ensure that there is enough space to "downgrade" the tcp_t
8354 	 * to an IPv4 tcp_t. This requires having space for a full load
8355 	 * of IPv4 options, as well as a full load of TCP options
8356 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8357 	 * than a v6 header and a TCP header with a full load of TCP options
8358 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8359 	 * We want to avoid reallocation in the "downgraded" case when
8360 	 * processing outbound IPv4 options.
8361 	 */
8362 	if (tcp->tcp_iphc == NULL) {
8363 		ASSERT(tcp->tcp_iphc_len == 0);
8364 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8365 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8366 		if (tcp->tcp_iphc == NULL) {
8367 			tcp->tcp_iphc_len = 0;
8368 			return (ENOMEM);
8369 		}
8370 	}
8371 
8372 	/* options are gone; may need a new label */
8373 	connp = tcp->tcp_connp;
8374 	connp->conn_mlp_type = mlptSingle;
8375 	connp->conn_ulp_labeled = !is_system_labeled();
8376 
8377 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8378 	tcp->tcp_ipversion = IPV6_VERSION;
8379 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8380 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8381 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8382 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8383 	tcp->tcp_ipha = NULL;
8384 
8385 	/* Initialize the header template */
8386 
8387 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8388 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8389 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8390 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8391 
8392 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8393 	tcp->tcp_tcph = tcph;
8394 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8395 	/*
8396 	 * IP wants our header length in the checksum field to
8397 	 * allow it to perform a single psuedo-header+checksum
8398 	 * calculation on behalf of TCP.
8399 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8400 	 */
8401 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8402 	sum = (sum >> 16) + (sum & 0xFFFF);
8403 	U16_TO_ABE16(sum, tcph->th_sum);
8404 	return (0);
8405 }
8406 
8407 /* At minimum we need 8 bytes in the TCP header for the lookup */
8408 #define	ICMP_MIN_TCP_HDR	8
8409 
8410 /*
8411  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8412  * passed up by IP. The message is always received on the correct tcp_t.
8413  * Assumes that IP has pulled up everything up to and including the ICMP header.
8414  */
8415 void
8416 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8417 {
8418 	icmph_t *icmph;
8419 	ipha_t	*ipha;
8420 	int	iph_hdr_length;
8421 	tcph_t	*tcph;
8422 	boolean_t ipsec_mctl = B_FALSE;
8423 	boolean_t secure;
8424 	mblk_t *first_mp = mp;
8425 	uint32_t new_mss;
8426 	uint32_t ratio;
8427 	size_t mp_size = MBLKL(mp);
8428 	uint32_t seg_seq;
8429 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8430 
8431 	/* Assume IP provides aligned packets - otherwise toss */
8432 	if (!OK_32PTR(mp->b_rptr)) {
8433 		freemsg(mp);
8434 		return;
8435 	}
8436 
8437 	/*
8438 	 * Since ICMP errors are normal data marked with M_CTL when sent
8439 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8440 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8441 	 */
8442 	if ((mp_size == sizeof (ipsec_info_t)) &&
8443 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8444 		ASSERT(mp->b_cont != NULL);
8445 		mp = mp->b_cont;
8446 		/* IP should have done this */
8447 		ASSERT(OK_32PTR(mp->b_rptr));
8448 		mp_size = MBLKL(mp);
8449 		ipsec_mctl = B_TRUE;
8450 	}
8451 
8452 	/*
8453 	 * Verify that we have a complete outer IP header. If not, drop it.
8454 	 */
8455 	if (mp_size < sizeof (ipha_t)) {
8456 noticmpv4:
8457 		freemsg(first_mp);
8458 		return;
8459 	}
8460 
8461 	ipha = (ipha_t *)mp->b_rptr;
8462 	/*
8463 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8464 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8465 	 */
8466 	switch (IPH_HDR_VERSION(ipha)) {
8467 	case IPV6_VERSION:
8468 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8469 		return;
8470 	case IPV4_VERSION:
8471 		break;
8472 	default:
8473 		goto noticmpv4;
8474 	}
8475 
8476 	/* Skip past the outer IP and ICMP headers */
8477 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8478 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8479 	/*
8480 	 * If we don't have the correct outer IP header length or if the ULP
8481 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8482 	 * send it upstream.
8483 	 */
8484 	if (iph_hdr_length < sizeof (ipha_t) ||
8485 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8486 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8487 		goto noticmpv4;
8488 	}
8489 	ipha = (ipha_t *)&icmph[1];
8490 
8491 	/* Skip past the inner IP and find the ULP header */
8492 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8493 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8494 	/*
8495 	 * If we don't have the correct inner IP header length or if the ULP
8496 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8497 	 * bytes of TCP header, drop it.
8498 	 */
8499 	if (iph_hdr_length < sizeof (ipha_t) ||
8500 	    ipha->ipha_protocol != IPPROTO_TCP ||
8501 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8502 		goto noticmpv4;
8503 	}
8504 
8505 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8506 		if (ipsec_mctl) {
8507 			secure = ipsec_in_is_secure(first_mp);
8508 		} else {
8509 			secure = B_FALSE;
8510 		}
8511 		if (secure) {
8512 			/*
8513 			 * If we are willing to accept this in clear
8514 			 * we don't have to verify policy.
8515 			 */
8516 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8517 				if (!tcp_check_policy(tcp, first_mp,
8518 				    ipha, NULL, secure, ipsec_mctl)) {
8519 					/*
8520 					 * tcp_check_policy called
8521 					 * ip_drop_packet() on failure.
8522 					 */
8523 					return;
8524 				}
8525 			}
8526 		}
8527 	} else if (ipsec_mctl) {
8528 		/*
8529 		 * This is a hard_bound connection. IP has already
8530 		 * verified policy. We don't have to do it again.
8531 		 */
8532 		freeb(first_mp);
8533 		first_mp = mp;
8534 		ipsec_mctl = B_FALSE;
8535 	}
8536 
8537 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8538 	/*
8539 	 * TCP SHOULD check that the TCP sequence number contained in
8540 	 * payload of the ICMP error message is within the range
8541 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8542 	 */
8543 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8544 		/*
8545 		 * If the ICMP message is bogus, should we kill the
8546 		 * connection, or should we just drop the bogus ICMP
8547 		 * message? It would probably make more sense to just
8548 		 * drop the message so that if this one managed to get
8549 		 * in, the real connection should not suffer.
8550 		 */
8551 		goto noticmpv4;
8552 	}
8553 
8554 	switch (icmph->icmph_type) {
8555 	case ICMP_DEST_UNREACHABLE:
8556 		switch (icmph->icmph_code) {
8557 		case ICMP_FRAGMENTATION_NEEDED:
8558 			/*
8559 			 * Reduce the MSS based on the new MTU.  This will
8560 			 * eliminate any fragmentation locally.
8561 			 * N.B.  There may well be some funny side-effects on
8562 			 * the local send policy and the remote receive policy.
8563 			 * Pending further research, we provide
8564 			 * tcp_ignore_path_mtu just in case this proves
8565 			 * disastrous somewhere.
8566 			 *
8567 			 * After updating the MSS, retransmit part of the
8568 			 * dropped segment using the new mss by calling
8569 			 * tcp_wput_data().  Need to adjust all those
8570 			 * params to make sure tcp_wput_data() work properly.
8571 			 */
8572 			if (tcps->tcps_ignore_path_mtu)
8573 				break;
8574 
8575 			/*
8576 			 * Decrease the MSS by time stamp options
8577 			 * IP options and IPSEC options. tcp_hdr_len
8578 			 * includes time stamp option and IP option
8579 			 * length.
8580 			 */
8581 
8582 			new_mss = ntohs(icmph->icmph_du_mtu) -
8583 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8584 
8585 			/*
8586 			 * Only update the MSS if the new one is
8587 			 * smaller than the previous one.  This is
8588 			 * to avoid problems when getting multiple
8589 			 * ICMP errors for the same MTU.
8590 			 */
8591 			if (new_mss >= tcp->tcp_mss)
8592 				break;
8593 
8594 			/*
8595 			 * Stop doing PMTU if new_mss is less than 68
8596 			 * or less than tcp_mss_min.
8597 			 * The value 68 comes from rfc 1191.
8598 			 */
8599 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8600 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8601 				    0;
8602 
8603 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8604 			ASSERT(ratio >= 1);
8605 			tcp_mss_set(tcp, new_mss, B_TRUE);
8606 
8607 			/*
8608 			 * Make sure we have something to
8609 			 * send.
8610 			 */
8611 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8612 			    (tcp->tcp_xmit_head != NULL)) {
8613 				/*
8614 				 * Shrink tcp_cwnd in
8615 				 * proportion to the old MSS/new MSS.
8616 				 */
8617 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8618 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8619 				    (tcp->tcp_unsent == 0)) {
8620 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8621 				} else {
8622 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8623 				}
8624 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8625 				tcp->tcp_rexmit = B_TRUE;
8626 				tcp->tcp_dupack_cnt = 0;
8627 				tcp->tcp_snd_burst = TCP_CWND_SS;
8628 				tcp_ss_rexmit(tcp);
8629 			}
8630 			break;
8631 		case ICMP_PORT_UNREACHABLE:
8632 		case ICMP_PROTOCOL_UNREACHABLE:
8633 			switch (tcp->tcp_state) {
8634 			case TCPS_SYN_SENT:
8635 			case TCPS_SYN_RCVD:
8636 				/*
8637 				 * ICMP can snipe away incipient
8638 				 * TCP connections as long as
8639 				 * seq number is same as initial
8640 				 * send seq number.
8641 				 */
8642 				if (seg_seq == tcp->tcp_iss) {
8643 					(void) tcp_clean_death(tcp,
8644 					    ECONNREFUSED, 6);
8645 				}
8646 				break;
8647 			}
8648 			break;
8649 		case ICMP_HOST_UNREACHABLE:
8650 		case ICMP_NET_UNREACHABLE:
8651 			/* Record the error in case we finally time out. */
8652 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8653 				tcp->tcp_client_errno = EHOSTUNREACH;
8654 			else
8655 				tcp->tcp_client_errno = ENETUNREACH;
8656 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8657 				if (tcp->tcp_listener != NULL &&
8658 				    tcp->tcp_listener->tcp_syn_defense) {
8659 					/*
8660 					 * Ditch the half-open connection if we
8661 					 * suspect a SYN attack is under way.
8662 					 */
8663 					tcp_ip_ire_mark_advice(tcp);
8664 					(void) tcp_clean_death(tcp,
8665 					    tcp->tcp_client_errno, 7);
8666 				}
8667 			}
8668 			break;
8669 		default:
8670 			break;
8671 		}
8672 		break;
8673 	case ICMP_SOURCE_QUENCH: {
8674 		/*
8675 		 * use a global boolean to control
8676 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8677 		 * The default is false.
8678 		 */
8679 		if (tcp_icmp_source_quench) {
8680 			/*
8681 			 * Reduce the sending rate as if we got a
8682 			 * retransmit timeout
8683 			 */
8684 			uint32_t npkt;
8685 
8686 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8687 			    tcp->tcp_mss;
8688 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8689 			tcp->tcp_cwnd = tcp->tcp_mss;
8690 			tcp->tcp_cwnd_cnt = 0;
8691 		}
8692 		break;
8693 	}
8694 	}
8695 	freemsg(first_mp);
8696 }
8697 
8698 /*
8699  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8700  * error messages passed up by IP.
8701  * Assumes that IP has pulled up all the extension headers as well
8702  * as the ICMPv6 header.
8703  */
8704 static void
8705 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8706 {
8707 	icmp6_t *icmp6;
8708 	ip6_t	*ip6h;
8709 	uint16_t	iph_hdr_length;
8710 	tcpha_t	*tcpha;
8711 	uint8_t	*nexthdrp;
8712 	uint32_t new_mss;
8713 	uint32_t ratio;
8714 	boolean_t secure;
8715 	mblk_t *first_mp = mp;
8716 	size_t mp_size;
8717 	uint32_t seg_seq;
8718 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8719 
8720 	/*
8721 	 * The caller has determined if this is an IPSEC_IN packet and
8722 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8723 	 */
8724 	if (ipsec_mctl)
8725 		mp = mp->b_cont;
8726 
8727 	mp_size = MBLKL(mp);
8728 
8729 	/*
8730 	 * Verify that we have a complete IP header. If not, send it upstream.
8731 	 */
8732 	if (mp_size < sizeof (ip6_t)) {
8733 noticmpv6:
8734 		freemsg(first_mp);
8735 		return;
8736 	}
8737 
8738 	/*
8739 	 * Verify this is an ICMPV6 packet, else send it upstream.
8740 	 */
8741 	ip6h = (ip6_t *)mp->b_rptr;
8742 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8743 		iph_hdr_length = IPV6_HDR_LEN;
8744 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8745 	    &nexthdrp) ||
8746 	    *nexthdrp != IPPROTO_ICMPV6) {
8747 		goto noticmpv6;
8748 	}
8749 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8750 	ip6h = (ip6_t *)&icmp6[1];
8751 	/*
8752 	 * Verify if we have a complete ICMP and inner IP header.
8753 	 */
8754 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8755 		goto noticmpv6;
8756 
8757 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8758 		goto noticmpv6;
8759 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8760 	/*
8761 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8762 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8763 	 * packet.
8764 	 */
8765 	if ((*nexthdrp != IPPROTO_TCP) ||
8766 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8767 		goto noticmpv6;
8768 	}
8769 
8770 	/*
8771 	 * ICMP errors come on the right queue or come on
8772 	 * listener/global queue for detached connections and
8773 	 * get switched to the right queue. If it comes on the
8774 	 * right queue, policy check has already been done by IP
8775 	 * and thus free the first_mp without verifying the policy.
8776 	 * If it has come for a non-hard bound connection, we need
8777 	 * to verify policy as IP may not have done it.
8778 	 */
8779 	if (!tcp->tcp_hard_bound) {
8780 		if (ipsec_mctl) {
8781 			secure = ipsec_in_is_secure(first_mp);
8782 		} else {
8783 			secure = B_FALSE;
8784 		}
8785 		if (secure) {
8786 			/*
8787 			 * If we are willing to accept this in clear
8788 			 * we don't have to verify policy.
8789 			 */
8790 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8791 				if (!tcp_check_policy(tcp, first_mp,
8792 				    NULL, ip6h, secure, ipsec_mctl)) {
8793 					/*
8794 					 * tcp_check_policy called
8795 					 * ip_drop_packet() on failure.
8796 					 */
8797 					return;
8798 				}
8799 			}
8800 		}
8801 	} else if (ipsec_mctl) {
8802 		/*
8803 		 * This is a hard_bound connection. IP has already
8804 		 * verified policy. We don't have to do it again.
8805 		 */
8806 		freeb(first_mp);
8807 		first_mp = mp;
8808 		ipsec_mctl = B_FALSE;
8809 	}
8810 
8811 	seg_seq = ntohl(tcpha->tha_seq);
8812 	/*
8813 	 * TCP SHOULD check that the TCP sequence number contained in
8814 	 * payload of the ICMP error message is within the range
8815 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8816 	 */
8817 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8818 		/*
8819 		 * If the ICMP message is bogus, should we kill the
8820 		 * connection, or should we just drop the bogus ICMP
8821 		 * message? It would probably make more sense to just
8822 		 * drop the message so that if this one managed to get
8823 		 * in, the real connection should not suffer.
8824 		 */
8825 		goto noticmpv6;
8826 	}
8827 
8828 	switch (icmp6->icmp6_type) {
8829 	case ICMP6_PACKET_TOO_BIG:
8830 		/*
8831 		 * Reduce the MSS based on the new MTU.  This will
8832 		 * eliminate any fragmentation locally.
8833 		 * N.B.  There may well be some funny side-effects on
8834 		 * the local send policy and the remote receive policy.
8835 		 * Pending further research, we provide
8836 		 * tcp_ignore_path_mtu just in case this proves
8837 		 * disastrous somewhere.
8838 		 *
8839 		 * After updating the MSS, retransmit part of the
8840 		 * dropped segment using the new mss by calling
8841 		 * tcp_wput_data().  Need to adjust all those
8842 		 * params to make sure tcp_wput_data() work properly.
8843 		 */
8844 		if (tcps->tcps_ignore_path_mtu)
8845 			break;
8846 
8847 		/*
8848 		 * Decrease the MSS by time stamp options
8849 		 * IP options and IPSEC options. tcp_hdr_len
8850 		 * includes time stamp option and IP option
8851 		 * length.
8852 		 */
8853 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8854 		    tcp->tcp_ipsec_overhead;
8855 
8856 		/*
8857 		 * Only update the MSS if the new one is
8858 		 * smaller than the previous one.  This is
8859 		 * to avoid problems when getting multiple
8860 		 * ICMP errors for the same MTU.
8861 		 */
8862 		if (new_mss >= tcp->tcp_mss)
8863 			break;
8864 
8865 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8866 		ASSERT(ratio >= 1);
8867 		tcp_mss_set(tcp, new_mss, B_TRUE);
8868 
8869 		/*
8870 		 * Make sure we have something to
8871 		 * send.
8872 		 */
8873 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8874 		    (tcp->tcp_xmit_head != NULL)) {
8875 			/*
8876 			 * Shrink tcp_cwnd in
8877 			 * proportion to the old MSS/new MSS.
8878 			 */
8879 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8880 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8881 			    (tcp->tcp_unsent == 0)) {
8882 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8883 			} else {
8884 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8885 			}
8886 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8887 			tcp->tcp_rexmit = B_TRUE;
8888 			tcp->tcp_dupack_cnt = 0;
8889 			tcp->tcp_snd_burst = TCP_CWND_SS;
8890 			tcp_ss_rexmit(tcp);
8891 		}
8892 		break;
8893 
8894 	case ICMP6_DST_UNREACH:
8895 		switch (icmp6->icmp6_code) {
8896 		case ICMP6_DST_UNREACH_NOPORT:
8897 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8898 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8899 			    (seg_seq == tcp->tcp_iss)) {
8900 				(void) tcp_clean_death(tcp,
8901 				    ECONNREFUSED, 8);
8902 			}
8903 			break;
8904 
8905 		case ICMP6_DST_UNREACH_ADMIN:
8906 		case ICMP6_DST_UNREACH_NOROUTE:
8907 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8908 		case ICMP6_DST_UNREACH_ADDR:
8909 			/* Record the error in case we finally time out. */
8910 			tcp->tcp_client_errno = EHOSTUNREACH;
8911 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8912 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8913 			    (seg_seq == tcp->tcp_iss)) {
8914 				if (tcp->tcp_listener != NULL &&
8915 				    tcp->tcp_listener->tcp_syn_defense) {
8916 					/*
8917 					 * Ditch the half-open connection if we
8918 					 * suspect a SYN attack is under way.
8919 					 */
8920 					tcp_ip_ire_mark_advice(tcp);
8921 					(void) tcp_clean_death(tcp,
8922 					    tcp->tcp_client_errno, 9);
8923 				}
8924 			}
8925 
8926 
8927 			break;
8928 		default:
8929 			break;
8930 		}
8931 		break;
8932 
8933 	case ICMP6_PARAM_PROB:
8934 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8935 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8936 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8937 		    (uchar_t *)nexthdrp) {
8938 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8939 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8940 				(void) tcp_clean_death(tcp,
8941 				    ECONNREFUSED, 10);
8942 			}
8943 			break;
8944 		}
8945 		break;
8946 
8947 	case ICMP6_TIME_EXCEEDED:
8948 	default:
8949 		break;
8950 	}
8951 	freemsg(first_mp);
8952 }
8953 
8954 /*
8955  * IP recognizes seven kinds of bind requests:
8956  *
8957  * - A zero-length address binds only to the protocol number.
8958  *
8959  * - A 4-byte address is treated as a request to
8960  * validate that the address is a valid local IPv4
8961  * address, appropriate for an application to bind to.
8962  * IP does the verification, but does not make any note
8963  * of the address at this time.
8964  *
8965  * - A 16-byte address contains is treated as a request
8966  * to validate a local IPv6 address, as the 4-byte
8967  * address case above.
8968  *
8969  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8970  * use it for the inbound fanout of packets.
8971  *
8972  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8973  * use it for the inbound fanout of packets.
8974  *
8975  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8976  * information consisting of local and remote addresses
8977  * and ports.  In this case, the addresses are both
8978  * validated as appropriate for this operation, and, if
8979  * so, the information is retained for use in the
8980  * inbound fanout.
8981  *
8982  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8983  * fanout information, like the 12-byte case above.
8984  *
8985  * IP will also fill in the IRE request mblk with information
8986  * regarding our peer.  In all cases, we notify IP of our protocol
8987  * type by appending a single protocol byte to the bind request.
8988  */
8989 static mblk_t *
8990 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8991 {
8992 	char	*cp;
8993 	mblk_t	*mp;
8994 	struct T_bind_req *tbr;
8995 	ipa_conn_t	*ac;
8996 	ipa6_conn_t	*ac6;
8997 	sin_t		*sin;
8998 	sin6_t		*sin6;
8999 
9000 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9001 	ASSERT((tcp->tcp_family == AF_INET &&
9002 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9003 	    (tcp->tcp_family == AF_INET6 &&
9004 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9005 	    tcp->tcp_ipversion == IPV6_VERSION)));
9006 
9007 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9008 	if (!mp)
9009 		return (mp);
9010 	mp->b_datap->db_type = M_PROTO;
9011 	tbr = (struct T_bind_req *)mp->b_rptr;
9012 	tbr->PRIM_type = bind_prim;
9013 	tbr->ADDR_offset = sizeof (*tbr);
9014 	tbr->CONIND_number = 0;
9015 	tbr->ADDR_length = addr_length;
9016 	cp = (char *)&tbr[1];
9017 	switch (addr_length) {
9018 	case sizeof (ipa_conn_t):
9019 		ASSERT(tcp->tcp_family == AF_INET);
9020 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9021 
9022 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9023 		if (mp->b_cont == NULL) {
9024 			freemsg(mp);
9025 			return (NULL);
9026 		}
9027 		mp->b_cont->b_wptr += sizeof (ire_t);
9028 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9029 
9030 		/* cp known to be 32 bit aligned */
9031 		ac = (ipa_conn_t *)cp;
9032 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9033 		ac->ac_faddr = tcp->tcp_remote;
9034 		ac->ac_fport = tcp->tcp_fport;
9035 		ac->ac_lport = tcp->tcp_lport;
9036 		tcp->tcp_hard_binding = 1;
9037 		break;
9038 
9039 	case sizeof (ipa6_conn_t):
9040 		ASSERT(tcp->tcp_family == AF_INET6);
9041 
9042 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9043 		if (mp->b_cont == NULL) {
9044 			freemsg(mp);
9045 			return (NULL);
9046 		}
9047 		mp->b_cont->b_wptr += sizeof (ire_t);
9048 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9049 
9050 		/* cp known to be 32 bit aligned */
9051 		ac6 = (ipa6_conn_t *)cp;
9052 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9053 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9054 			    &ac6->ac6_laddr);
9055 		} else {
9056 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9057 		}
9058 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9059 		ac6->ac6_fport = tcp->tcp_fport;
9060 		ac6->ac6_lport = tcp->tcp_lport;
9061 		tcp->tcp_hard_binding = 1;
9062 		break;
9063 
9064 	case sizeof (sin_t):
9065 		/*
9066 		 * NOTE: IPV6_ADDR_LEN also has same size.
9067 		 * Use family to discriminate.
9068 		 */
9069 		if (tcp->tcp_family == AF_INET) {
9070 			sin = (sin_t *)cp;
9071 
9072 			*sin = sin_null;
9073 			sin->sin_family = AF_INET;
9074 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9075 			sin->sin_port = tcp->tcp_lport;
9076 			break;
9077 		} else {
9078 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9079 		}
9080 		break;
9081 
9082 	case sizeof (sin6_t):
9083 		ASSERT(tcp->tcp_family == AF_INET6);
9084 		sin6 = (sin6_t *)cp;
9085 
9086 		*sin6 = sin6_null;
9087 		sin6->sin6_family = AF_INET6;
9088 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9089 		sin6->sin6_port = tcp->tcp_lport;
9090 		break;
9091 
9092 	case IP_ADDR_LEN:
9093 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9094 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9095 		break;
9096 
9097 	}
9098 	/* Add protocol number to end */
9099 	cp[addr_length] = (char)IPPROTO_TCP;
9100 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9101 	return (mp);
9102 }
9103 
9104 /*
9105  * Notify IP that we are having trouble with this connection.  IP should
9106  * blow the IRE away and start over.
9107  */
9108 static void
9109 tcp_ip_notify(tcp_t *tcp)
9110 {
9111 	struct iocblk	*iocp;
9112 	ipid_t	*ipid;
9113 	mblk_t	*mp;
9114 
9115 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9116 	if (tcp->tcp_ipversion == IPV6_VERSION)
9117 		return;
9118 
9119 	mp = mkiocb(IP_IOCTL);
9120 	if (mp == NULL)
9121 		return;
9122 
9123 	iocp = (struct iocblk *)mp->b_rptr;
9124 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9125 
9126 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9127 	if (!mp->b_cont) {
9128 		freeb(mp);
9129 		return;
9130 	}
9131 
9132 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9133 	mp->b_cont->b_wptr += iocp->ioc_count;
9134 	bzero(ipid, sizeof (*ipid));
9135 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9136 	ipid->ipid_ire_type = IRE_CACHE;
9137 	ipid->ipid_addr_offset = sizeof (ipid_t);
9138 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9139 	/*
9140 	 * Note: in the case of source routing we want to blow away the
9141 	 * route to the first source route hop.
9142 	 */
9143 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9144 	    sizeof (tcp->tcp_ipha->ipha_dst));
9145 
9146 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9147 }
9148 
9149 /* Unlink and return any mblk that looks like it contains an ire */
9150 static mblk_t *
9151 tcp_ire_mp(mblk_t *mp)
9152 {
9153 	mblk_t	*prev_mp;
9154 
9155 	for (;;) {
9156 		prev_mp = mp;
9157 		mp = mp->b_cont;
9158 		if (mp == NULL)
9159 			break;
9160 		switch (DB_TYPE(mp)) {
9161 		case IRE_DB_TYPE:
9162 		case IRE_DB_REQ_TYPE:
9163 			if (prev_mp != NULL)
9164 				prev_mp->b_cont = mp->b_cont;
9165 			mp->b_cont = NULL;
9166 			return (mp);
9167 		default:
9168 			break;
9169 		}
9170 	}
9171 	return (mp);
9172 }
9173 
9174 /*
9175  * Timer callback routine for keepalive probe.  We do a fake resend of
9176  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9177  * check to see if we have heard anything from the other end for the last
9178  * RTO period.  If we have, set the timer to expire for another
9179  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9180  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9181  * the timeout if we have not heard from the other side.  If for more than
9182  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9183  * kill the connection unless the keepalive abort threshold is 0.  In
9184  * that case, we will probe "forever."
9185  */
9186 static void
9187 tcp_keepalive_killer(void *arg)
9188 {
9189 	mblk_t	*mp;
9190 	conn_t	*connp = (conn_t *)arg;
9191 	tcp_t  	*tcp = connp->conn_tcp;
9192 	int32_t	firetime;
9193 	int32_t	idletime;
9194 	int32_t	ka_intrvl;
9195 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9196 
9197 	tcp->tcp_ka_tid = 0;
9198 
9199 	if (tcp->tcp_fused)
9200 		return;
9201 
9202 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9203 	ka_intrvl = tcp->tcp_ka_interval;
9204 
9205 	/*
9206 	 * Keepalive probe should only be sent if the application has not
9207 	 * done a close on the connection.
9208 	 */
9209 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9210 		return;
9211 	}
9212 	/* Timer fired too early, restart it. */
9213 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9214 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9215 		    MSEC_TO_TICK(ka_intrvl));
9216 		return;
9217 	}
9218 
9219 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9220 	/*
9221 	 * If we have not heard from the other side for a long
9222 	 * time, kill the connection unless the keepalive abort
9223 	 * threshold is 0.  In that case, we will probe "forever."
9224 	 */
9225 	if (tcp->tcp_ka_abort_thres != 0 &&
9226 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9227 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9228 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9229 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9230 		return;
9231 	}
9232 
9233 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9234 	    idletime >= ka_intrvl) {
9235 		/* Fake resend of last ACKed byte. */
9236 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9237 
9238 		if (mp1 != NULL) {
9239 			*mp1->b_wptr++ = '\0';
9240 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9241 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9242 			freeb(mp1);
9243 			/*
9244 			 * if allocation failed, fall through to start the
9245 			 * timer back.
9246 			 */
9247 			if (mp != NULL) {
9248 				TCP_RECORD_TRACE(tcp, mp,
9249 				    TCP_TRACE_SEND_PKT);
9250 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9251 				BUMP_MIB(&tcps->tcps_mib,
9252 				    tcpTimKeepaliveProbe);
9253 				if (tcp->tcp_ka_last_intrvl != 0) {
9254 					int max;
9255 					/*
9256 					 * We should probe again at least
9257 					 * in ka_intrvl, but not more than
9258 					 * tcp_rexmit_interval_max.
9259 					 */
9260 					max = tcps->tcps_rexmit_interval_max;
9261 					firetime = MIN(ka_intrvl - 1,
9262 					    tcp->tcp_ka_last_intrvl << 1);
9263 					if (firetime > max)
9264 						firetime = max;
9265 				} else {
9266 					firetime = tcp->tcp_rto;
9267 				}
9268 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9269 				    tcp_keepalive_killer,
9270 				    MSEC_TO_TICK(firetime));
9271 				tcp->tcp_ka_last_intrvl = firetime;
9272 				return;
9273 			}
9274 		}
9275 	} else {
9276 		tcp->tcp_ka_last_intrvl = 0;
9277 	}
9278 
9279 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9280 	if ((firetime = ka_intrvl - idletime) < 0) {
9281 		firetime = ka_intrvl;
9282 	}
9283 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9284 	    MSEC_TO_TICK(firetime));
9285 }
9286 
9287 int
9288 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9289 {
9290 	queue_t	*q = tcp->tcp_rq;
9291 	int32_t	mss = tcp->tcp_mss;
9292 	int	maxpsz;
9293 
9294 	if (TCP_IS_DETACHED(tcp))
9295 		return (mss);
9296 
9297 	if (tcp->tcp_fused) {
9298 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9299 		mss = INFPSZ;
9300 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9301 		/*
9302 		 * Set the sd_qn_maxpsz according to the socket send buffer
9303 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9304 		 * instruct the stream head to copyin user data into contiguous
9305 		 * kernel-allocated buffers without breaking it up into smaller
9306 		 * chunks.  We round up the buffer size to the nearest SMSS.
9307 		 */
9308 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9309 		if (tcp->tcp_kssl_ctx == NULL)
9310 			mss = INFPSZ;
9311 		else
9312 			mss = SSL3_MAX_RECORD_LEN;
9313 	} else {
9314 		/*
9315 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9316 		 * (and a multiple of the mss).  This instructs the stream
9317 		 * head to break down larger than SMSS writes into SMSS-
9318 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9319 		 */
9320 		maxpsz = tcp->tcp_maxpsz * mss;
9321 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9322 			maxpsz = tcp->tcp_xmit_hiwater/2;
9323 			/* Round up to nearest mss */
9324 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9325 		}
9326 	}
9327 	(void) setmaxps(q, maxpsz);
9328 	tcp->tcp_wq->q_maxpsz = maxpsz;
9329 
9330 	if (set_maxblk)
9331 		(void) mi_set_sth_maxblk(q, mss);
9332 
9333 	return (mss);
9334 }
9335 
9336 /*
9337  * Extract option values from a tcp header.  We put any found values into the
9338  * tcpopt struct and return a bitmask saying which options were found.
9339  */
9340 static int
9341 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9342 {
9343 	uchar_t		*endp;
9344 	int		len;
9345 	uint32_t	mss;
9346 	uchar_t		*up = (uchar_t *)tcph;
9347 	int		found = 0;
9348 	int32_t		sack_len;
9349 	tcp_seq		sack_begin, sack_end;
9350 	tcp_t		*tcp;
9351 
9352 	endp = up + TCP_HDR_LENGTH(tcph);
9353 	up += TCP_MIN_HEADER_LENGTH;
9354 	while (up < endp) {
9355 		len = endp - up;
9356 		switch (*up) {
9357 		case TCPOPT_EOL:
9358 			break;
9359 
9360 		case TCPOPT_NOP:
9361 			up++;
9362 			continue;
9363 
9364 		case TCPOPT_MAXSEG:
9365 			if (len < TCPOPT_MAXSEG_LEN ||
9366 			    up[1] != TCPOPT_MAXSEG_LEN)
9367 				break;
9368 
9369 			mss = BE16_TO_U16(up+2);
9370 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9371 			tcpopt->tcp_opt_mss = mss;
9372 			found |= TCP_OPT_MSS_PRESENT;
9373 
9374 			up += TCPOPT_MAXSEG_LEN;
9375 			continue;
9376 
9377 		case TCPOPT_WSCALE:
9378 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9379 				break;
9380 
9381 			if (up[2] > TCP_MAX_WINSHIFT)
9382 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9383 			else
9384 				tcpopt->tcp_opt_wscale = up[2];
9385 			found |= TCP_OPT_WSCALE_PRESENT;
9386 
9387 			up += TCPOPT_WS_LEN;
9388 			continue;
9389 
9390 		case TCPOPT_SACK_PERMITTED:
9391 			if (len < TCPOPT_SACK_OK_LEN ||
9392 			    up[1] != TCPOPT_SACK_OK_LEN)
9393 				break;
9394 			found |= TCP_OPT_SACK_OK_PRESENT;
9395 			up += TCPOPT_SACK_OK_LEN;
9396 			continue;
9397 
9398 		case TCPOPT_SACK:
9399 			if (len <= 2 || up[1] <= 2 || len < up[1])
9400 				break;
9401 
9402 			/* If TCP is not interested in SACK blks... */
9403 			if ((tcp = tcpopt->tcp) == NULL) {
9404 				up += up[1];
9405 				continue;
9406 			}
9407 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9408 			up += TCPOPT_HEADER_LEN;
9409 
9410 			/*
9411 			 * If the list is empty, allocate one and assume
9412 			 * nothing is sack'ed.
9413 			 */
9414 			ASSERT(tcp->tcp_sack_info != NULL);
9415 			if (tcp->tcp_notsack_list == NULL) {
9416 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9417 				    tcp->tcp_suna, tcp->tcp_snxt,
9418 				    &(tcp->tcp_num_notsack_blk),
9419 				    &(tcp->tcp_cnt_notsack_list));
9420 
9421 				/*
9422 				 * Make sure tcp_notsack_list is not NULL.
9423 				 * This happens when kmem_alloc(KM_NOSLEEP)
9424 				 * returns NULL.
9425 				 */
9426 				if (tcp->tcp_notsack_list == NULL) {
9427 					up += sack_len;
9428 					continue;
9429 				}
9430 				tcp->tcp_fack = tcp->tcp_suna;
9431 			}
9432 
9433 			while (sack_len > 0) {
9434 				if (up + 8 > endp) {
9435 					up = endp;
9436 					break;
9437 				}
9438 				sack_begin = BE32_TO_U32(up);
9439 				up += 4;
9440 				sack_end = BE32_TO_U32(up);
9441 				up += 4;
9442 				sack_len -= 8;
9443 				/*
9444 				 * Bounds checking.  Make sure the SACK
9445 				 * info is within tcp_suna and tcp_snxt.
9446 				 * If this SACK blk is out of bound, ignore
9447 				 * it but continue to parse the following
9448 				 * blks.
9449 				 */
9450 				if (SEQ_LEQ(sack_end, sack_begin) ||
9451 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9452 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9453 					continue;
9454 				}
9455 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9456 				    sack_begin, sack_end,
9457 				    &(tcp->tcp_num_notsack_blk),
9458 				    &(tcp->tcp_cnt_notsack_list));
9459 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9460 					tcp->tcp_fack = sack_end;
9461 				}
9462 			}
9463 			found |= TCP_OPT_SACK_PRESENT;
9464 			continue;
9465 
9466 		case TCPOPT_TSTAMP:
9467 			if (len < TCPOPT_TSTAMP_LEN ||
9468 			    up[1] != TCPOPT_TSTAMP_LEN)
9469 				break;
9470 
9471 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9472 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9473 
9474 			found |= TCP_OPT_TSTAMP_PRESENT;
9475 
9476 			up += TCPOPT_TSTAMP_LEN;
9477 			continue;
9478 
9479 		default:
9480 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9481 				break;
9482 			up += up[1];
9483 			continue;
9484 		}
9485 		break;
9486 	}
9487 	return (found);
9488 }
9489 
9490 /*
9491  * Set the mss associated with a particular tcp based on its current value,
9492  * and a new one passed in. Observe minimums and maximums, and reset
9493  * other state variables that we want to view as multiples of mss.
9494  *
9495  * This function is called in various places mainly because
9496  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9497  *    other side's SYN/SYN-ACK packet arrives.
9498  * 2) PMTUd may get us a new MSS.
9499  * 3) If the other side stops sending us timestamp option, we need to
9500  *    increase the MSS size to use the extra bytes available.
9501  *
9502  * do_ss is used to control whether we will be doing slow start or
9503  * not if there is a change in the mss. Note that for some events like
9504  * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but
9505  * do not perform a slow start specifically.
9506  */
9507 static void
9508 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9509 {
9510 	uint32_t	mss_max;
9511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9512 
9513 	if (tcp->tcp_ipversion == IPV4_VERSION)
9514 		mss_max = tcps->tcps_mss_max_ipv4;
9515 	else
9516 		mss_max = tcps->tcps_mss_max_ipv6;
9517 
9518 	if (mss < tcps->tcps_mss_min)
9519 		mss = tcps->tcps_mss_min;
9520 	if (mss > mss_max)
9521 		mss = mss_max;
9522 	/*
9523 	 * Unless naglim has been set by our client to
9524 	 * a non-mss value, force naglim to track mss.
9525 	 * This can help to aggregate small writes.
9526 	 */
9527 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9528 		tcp->tcp_naglim = mss;
9529 	/*
9530 	 * TCP should be able to buffer at least 4 MSS data for obvious
9531 	 * performance reason.
9532 	 */
9533 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9534 		tcp->tcp_xmit_hiwater = mss << 2;
9535 
9536 	/*
9537 	 * Check if we need to apply the tcp_init_cwnd here.  If
9538 	 * it is set and the MSS gets bigger (should not happen
9539 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9540 	 * The new tcp_cwnd should not get bigger.
9541 	 */
9542 	/*
9543 	 * We need to avoid setting tcp_cwnd to its slow start value
9544 	 * unnecessarily. However we have to let the tcp_cwnd adjust
9545 	 * to the modified mss.
9546 	 */
9547 	if (tcp->tcp_init_cwnd == 0 && do_ss) {
9548 		tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial *
9549 		    mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9550 	} else {
9551 		if (tcp->tcp_mss < mss) {
9552 			tcp->tcp_cwnd = MAX(1,
9553 			    (tcp->tcp_init_cwnd * tcp->tcp_mss /
9554 			    mss)) * mss;
9555 		} else {
9556 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9557 		}
9558 	}
9559 	tcp->tcp_mss = mss;
9560 	tcp->tcp_cwnd_cnt = 0;
9561 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9562 }
9563 
9564 static int
9565 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9566 {
9567 	tcp_t		*tcp = NULL;
9568 	conn_t		*connp;
9569 	int		err;
9570 	dev_t		conn_dev;
9571 	zoneid_t	zoneid;
9572 	tcp_stack_t	*tcps = NULL;
9573 
9574 	if (q->q_ptr != NULL)
9575 		return (0);
9576 
9577 	if (!(flag & SO_ACCEPTOR)) {
9578 		/*
9579 		 * Special case for install: miniroot needs to be able to
9580 		 * access files via NFS as though it were always in the
9581 		 * global zone.
9582 		 */
9583 		if (credp == kcred && nfs_global_client_only != 0) {
9584 			zoneid = GLOBAL_ZONEID;
9585 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9586 			    netstack_tcp;
9587 			ASSERT(tcps != NULL);
9588 		} else {
9589 			netstack_t *ns;
9590 
9591 			ns = netstack_find_by_cred(credp);
9592 			ASSERT(ns != NULL);
9593 			tcps = ns->netstack_tcp;
9594 			ASSERT(tcps != NULL);
9595 
9596 			/*
9597 			 * For exclusive stacks we set the zoneid to zero
9598 			 * to make TCP operate as if in the global zone.
9599 			 */
9600 			if (tcps->tcps_netstack->netstack_stackid !=
9601 			    GLOBAL_NETSTACKID)
9602 				zoneid = GLOBAL_ZONEID;
9603 			else
9604 				zoneid = crgetzoneid(credp);
9605 		}
9606 		/*
9607 		 * For stackid zero this is done from strplumb.c, but
9608 		 * non-zero stackids are handled here.
9609 		 */
9610 		if (tcps->tcps_g_q == NULL &&
9611 		    tcps->tcps_netstack->netstack_stackid !=
9612 		    GLOBAL_NETSTACKID) {
9613 			tcp_g_q_setup(tcps);
9614 		}
9615 	}
9616 	if (sflag == MODOPEN) {
9617 		/*
9618 		 * This is a special case. The purpose of a modopen
9619 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9620 		 * through for MIB browsers. Everything else is failed.
9621 		 */
9622 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9623 		/* tcp_get_conn incremented refcnt */
9624 		netstack_rele(tcps->tcps_netstack);
9625 
9626 		if (connp == NULL)
9627 			return (ENOMEM);
9628 
9629 		connp->conn_flags |= IPCL_TCPMOD;
9630 		connp->conn_cred = credp;
9631 		connp->conn_zoneid = zoneid;
9632 		ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9633 		ASSERT(connp->conn_netstack->netstack_tcp == tcps);
9634 		q->q_ptr = WR(q)->q_ptr = connp;
9635 		crhold(credp);
9636 		q->q_qinfo = &tcp_mod_rinit;
9637 		WR(q)->q_qinfo = &tcp_mod_winit;
9638 		qprocson(q);
9639 		return (0);
9640 	}
9641 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
9642 		if (tcps != NULL)
9643 			netstack_rele(tcps->tcps_netstack);
9644 		return (EBUSY);
9645 	}
9646 
9647 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9648 
9649 	if (flag & SO_ACCEPTOR) {
9650 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9651 		ASSERT(tcps == NULL);
9652 		q->q_qinfo = &tcp_acceptor_rinit;
9653 		q->q_ptr = (void *)conn_dev;
9654 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9655 		WR(q)->q_ptr = (void *)conn_dev;
9656 		qprocson(q);
9657 		return (0);
9658 	}
9659 
9660 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9661 	/*
9662 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9663 	 * so we drop it by one.
9664 	 */
9665 	netstack_rele(tcps->tcps_netstack);
9666 	if (connp == NULL) {
9667 		inet_minor_free(ip_minor_arena, conn_dev);
9668 		q->q_ptr = NULL;
9669 		return (ENOSR);
9670 	}
9671 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9672 	tcp = connp->conn_tcp;
9673 
9674 	q->q_ptr = WR(q)->q_ptr = connp;
9675 	if (getmajor(*devp) == TCP6_MAJ) {
9676 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9677 		connp->conn_send = ip_output_v6;
9678 		connp->conn_af_isv6 = B_TRUE;
9679 		connp->conn_pkt_isv6 = B_TRUE;
9680 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9681 		tcp->tcp_ipversion = IPV6_VERSION;
9682 		tcp->tcp_family = AF_INET6;
9683 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9684 	} else {
9685 		connp->conn_flags |= IPCL_TCP4;
9686 		connp->conn_send = ip_output;
9687 		connp->conn_af_isv6 = B_FALSE;
9688 		connp->conn_pkt_isv6 = B_FALSE;
9689 		tcp->tcp_ipversion = IPV4_VERSION;
9690 		tcp->tcp_family = AF_INET;
9691 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9692 	}
9693 
9694 	/*
9695 	 * TCP keeps a copy of cred for cache locality reasons but
9696 	 * we put a reference only once. If connp->conn_cred
9697 	 * becomes invalid, tcp_cred should also be set to NULL.
9698 	 */
9699 	tcp->tcp_cred = connp->conn_cred = credp;
9700 	crhold(connp->conn_cred);
9701 	tcp->tcp_cpid = curproc->p_pid;
9702 	tcp->tcp_open_time = lbolt64;
9703 	connp->conn_zoneid = zoneid;
9704 	connp->conn_mlp_type = mlptSingle;
9705 	connp->conn_ulp_labeled = !is_system_labeled();
9706 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9707 	ASSERT(tcp->tcp_tcps == tcps);
9708 
9709 	/*
9710 	 * If the caller has the process-wide flag set, then default to MAC
9711 	 * exempt mode.  This allows read-down to unlabeled hosts.
9712 	 */
9713 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9714 		connp->conn_mac_exempt = B_TRUE;
9715 
9716 	connp->conn_dev = conn_dev;
9717 
9718 	ASSERT(q->q_qinfo == &tcp_rinit);
9719 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9720 
9721 	if (flag & SO_SOCKSTR) {
9722 		/*
9723 		 * No need to insert a socket in tcp acceptor hash.
9724 		 * If it was a socket acceptor stream, we dealt with
9725 		 * it above. A socket listener can never accept a
9726 		 * connection and doesn't need acceptor_id.
9727 		 */
9728 		connp->conn_flags |= IPCL_SOCKET;
9729 		tcp->tcp_issocket = 1;
9730 		WR(q)->q_qinfo = &tcp_sock_winit;
9731 	} else {
9732 #ifdef	_ILP32
9733 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9734 #else
9735 		tcp->tcp_acceptor_id = conn_dev;
9736 #endif	/* _ILP32 */
9737 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9738 	}
9739 
9740 	if (tcps->tcps_trace)
9741 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9742 
9743 	err = tcp_init(tcp, q);
9744 	if (err != 0) {
9745 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9746 		tcp_acceptor_hash_remove(tcp);
9747 		CONN_DEC_REF(connp);
9748 		q->q_ptr = WR(q)->q_ptr = NULL;
9749 		return (err);
9750 	}
9751 
9752 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9753 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9754 
9755 	/* Non-zero default values */
9756 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9757 	/*
9758 	 * Put the ref for TCP. Ref for IP was already put
9759 	 * by ipcl_conn_create. Also Make the conn_t globally
9760 	 * visible to walkers
9761 	 */
9762 	mutex_enter(&connp->conn_lock);
9763 	CONN_INC_REF_LOCKED(connp);
9764 	ASSERT(connp->conn_ref == 2);
9765 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9766 	mutex_exit(&connp->conn_lock);
9767 
9768 	qprocson(q);
9769 	return (0);
9770 }
9771 
9772 /*
9773  * Some TCP options can be "set" by requesting them in the option
9774  * buffer. This is needed for XTI feature test though we do not
9775  * allow it in general. We interpret that this mechanism is more
9776  * applicable to OSI protocols and need not be allowed in general.
9777  * This routine filters out options for which it is not allowed (most)
9778  * and lets through those (few) for which it is. [ The XTI interface
9779  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9780  * ever implemented will have to be allowed here ].
9781  */
9782 static boolean_t
9783 tcp_allow_connopt_set(int level, int name)
9784 {
9785 
9786 	switch (level) {
9787 	case IPPROTO_TCP:
9788 		switch (name) {
9789 		case TCP_NODELAY:
9790 			return (B_TRUE);
9791 		default:
9792 			return (B_FALSE);
9793 		}
9794 		/*NOTREACHED*/
9795 	default:
9796 		return (B_FALSE);
9797 	}
9798 	/*NOTREACHED*/
9799 }
9800 
9801 /*
9802  * This routine gets default values of certain options whose default
9803  * values are maintained by protocol specific code
9804  */
9805 /* ARGSUSED */
9806 int
9807 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9808 {
9809 	int32_t	*i1 = (int32_t *)ptr;
9810 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9811 
9812 	switch (level) {
9813 	case IPPROTO_TCP:
9814 		switch (name) {
9815 		case TCP_NOTIFY_THRESHOLD:
9816 			*i1 = tcps->tcps_ip_notify_interval;
9817 			break;
9818 		case TCP_ABORT_THRESHOLD:
9819 			*i1 = tcps->tcps_ip_abort_interval;
9820 			break;
9821 		case TCP_CONN_NOTIFY_THRESHOLD:
9822 			*i1 = tcps->tcps_ip_notify_cinterval;
9823 			break;
9824 		case TCP_CONN_ABORT_THRESHOLD:
9825 			*i1 = tcps->tcps_ip_abort_cinterval;
9826 			break;
9827 		default:
9828 			return (-1);
9829 		}
9830 		break;
9831 	case IPPROTO_IP:
9832 		switch (name) {
9833 		case IP_TTL:
9834 			*i1 = tcps->tcps_ipv4_ttl;
9835 			break;
9836 		default:
9837 			return (-1);
9838 		}
9839 		break;
9840 	case IPPROTO_IPV6:
9841 		switch (name) {
9842 		case IPV6_UNICAST_HOPS:
9843 			*i1 = tcps->tcps_ipv6_hoplimit;
9844 			break;
9845 		default:
9846 			return (-1);
9847 		}
9848 		break;
9849 	default:
9850 		return (-1);
9851 	}
9852 	return (sizeof (int));
9853 }
9854 
9855 
9856 /*
9857  * TCP routine to get the values of options.
9858  */
9859 int
9860 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9861 {
9862 	int		*i1 = (int *)ptr;
9863 	conn_t		*connp = Q_TO_CONN(q);
9864 	tcp_t		*tcp = connp->conn_tcp;
9865 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9866 
9867 	switch (level) {
9868 	case SOL_SOCKET:
9869 		switch (name) {
9870 		case SO_LINGER:	{
9871 			struct linger *lgr = (struct linger *)ptr;
9872 
9873 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9874 			lgr->l_linger = tcp->tcp_lingertime;
9875 			}
9876 			return (sizeof (struct linger));
9877 		case SO_DEBUG:
9878 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9879 			break;
9880 		case SO_KEEPALIVE:
9881 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9882 			break;
9883 		case SO_DONTROUTE:
9884 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9885 			break;
9886 		case SO_USELOOPBACK:
9887 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9888 			break;
9889 		case SO_BROADCAST:
9890 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9891 			break;
9892 		case SO_REUSEADDR:
9893 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9894 			break;
9895 		case SO_OOBINLINE:
9896 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9897 			break;
9898 		case SO_DGRAM_ERRIND:
9899 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9900 			break;
9901 		case SO_TYPE:
9902 			*i1 = SOCK_STREAM;
9903 			break;
9904 		case SO_SNDBUF:
9905 			*i1 = tcp->tcp_xmit_hiwater;
9906 			break;
9907 		case SO_RCVBUF:
9908 			*i1 = RD(q)->q_hiwat;
9909 			break;
9910 		case SO_SND_COPYAVOID:
9911 			*i1 = tcp->tcp_snd_zcopy_on ?
9912 			    SO_SND_COPYAVOID : 0;
9913 			break;
9914 		case SO_ALLZONES:
9915 			*i1 = connp->conn_allzones ? 1 : 0;
9916 			break;
9917 		case SO_ANON_MLP:
9918 			*i1 = connp->conn_anon_mlp;
9919 			break;
9920 		case SO_MAC_EXEMPT:
9921 			*i1 = connp->conn_mac_exempt;
9922 			break;
9923 		case SO_EXCLBIND:
9924 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9925 			break;
9926 		case SO_PROTOTYPE:
9927 			*i1 = IPPROTO_TCP;
9928 			break;
9929 		case SO_DOMAIN:
9930 			*i1 = tcp->tcp_family;
9931 			break;
9932 		default:
9933 			return (-1);
9934 		}
9935 		break;
9936 	case IPPROTO_TCP:
9937 		switch (name) {
9938 		case TCP_NODELAY:
9939 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9940 			break;
9941 		case TCP_MAXSEG:
9942 			*i1 = tcp->tcp_mss;
9943 			break;
9944 		case TCP_NOTIFY_THRESHOLD:
9945 			*i1 = (int)tcp->tcp_first_timer_threshold;
9946 			break;
9947 		case TCP_ABORT_THRESHOLD:
9948 			*i1 = tcp->tcp_second_timer_threshold;
9949 			break;
9950 		case TCP_CONN_NOTIFY_THRESHOLD:
9951 			*i1 = tcp->tcp_first_ctimer_threshold;
9952 			break;
9953 		case TCP_CONN_ABORT_THRESHOLD:
9954 			*i1 = tcp->tcp_second_ctimer_threshold;
9955 			break;
9956 		case TCP_RECVDSTADDR:
9957 			*i1 = tcp->tcp_recvdstaddr;
9958 			break;
9959 		case TCP_ANONPRIVBIND:
9960 			*i1 = tcp->tcp_anon_priv_bind;
9961 			break;
9962 		case TCP_EXCLBIND:
9963 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9964 			break;
9965 		case TCP_INIT_CWND:
9966 			*i1 = tcp->tcp_init_cwnd;
9967 			break;
9968 		case TCP_KEEPALIVE_THRESHOLD:
9969 			*i1 = tcp->tcp_ka_interval;
9970 			break;
9971 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9972 			*i1 = tcp->tcp_ka_abort_thres;
9973 			break;
9974 		case TCP_CORK:
9975 			*i1 = tcp->tcp_cork;
9976 			break;
9977 		default:
9978 			return (-1);
9979 		}
9980 		break;
9981 	case IPPROTO_IP:
9982 		if (tcp->tcp_family != AF_INET)
9983 			return (-1);
9984 		switch (name) {
9985 		case IP_OPTIONS:
9986 		case T_IP_OPTIONS: {
9987 			/*
9988 			 * This is compatible with BSD in that in only return
9989 			 * the reverse source route with the final destination
9990 			 * as the last entry. The first 4 bytes of the option
9991 			 * will contain the final destination.
9992 			 */
9993 			int	opt_len;
9994 
9995 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9996 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9997 			ASSERT(opt_len >= 0);
9998 			/* Caller ensures enough space */
9999 			if (opt_len > 0) {
10000 				/*
10001 				 * TODO: Do we have to handle getsockopt on an
10002 				 * initiator as well?
10003 				 */
10004 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10005 			}
10006 			return (0);
10007 			}
10008 		case IP_TOS:
10009 		case T_IP_TOS:
10010 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10011 			break;
10012 		case IP_TTL:
10013 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10014 			break;
10015 		case IP_NEXTHOP:
10016 			/* Handled at IP level */
10017 			return (-EINVAL);
10018 		default:
10019 			return (-1);
10020 		}
10021 		break;
10022 	case IPPROTO_IPV6:
10023 		/*
10024 		 * IPPROTO_IPV6 options are only supported for sockets
10025 		 * that are using IPv6 on the wire.
10026 		 */
10027 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10028 			return (-1);
10029 		}
10030 		switch (name) {
10031 		case IPV6_UNICAST_HOPS:
10032 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10033 			break;	/* goto sizeof (int) option return */
10034 		case IPV6_BOUND_IF:
10035 			/* Zero if not set */
10036 			*i1 = tcp->tcp_bound_if;
10037 			break;	/* goto sizeof (int) option return */
10038 		case IPV6_RECVPKTINFO:
10039 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10040 				*i1 = 1;
10041 			else
10042 				*i1 = 0;
10043 			break;	/* goto sizeof (int) option return */
10044 		case IPV6_RECVTCLASS:
10045 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10046 				*i1 = 1;
10047 			else
10048 				*i1 = 0;
10049 			break;	/* goto sizeof (int) option return */
10050 		case IPV6_RECVHOPLIMIT:
10051 			if (tcp->tcp_ipv6_recvancillary &
10052 			    TCP_IPV6_RECVHOPLIMIT)
10053 				*i1 = 1;
10054 			else
10055 				*i1 = 0;
10056 			break;	/* goto sizeof (int) option return */
10057 		case IPV6_RECVHOPOPTS:
10058 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10059 				*i1 = 1;
10060 			else
10061 				*i1 = 0;
10062 			break;	/* goto sizeof (int) option return */
10063 		case IPV6_RECVDSTOPTS:
10064 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10065 				*i1 = 1;
10066 			else
10067 				*i1 = 0;
10068 			break;	/* goto sizeof (int) option return */
10069 		case _OLD_IPV6_RECVDSTOPTS:
10070 			if (tcp->tcp_ipv6_recvancillary &
10071 			    TCP_OLD_IPV6_RECVDSTOPTS)
10072 				*i1 = 1;
10073 			else
10074 				*i1 = 0;
10075 			break;	/* goto sizeof (int) option return */
10076 		case IPV6_RECVRTHDR:
10077 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10078 				*i1 = 1;
10079 			else
10080 				*i1 = 0;
10081 			break;	/* goto sizeof (int) option return */
10082 		case IPV6_RECVRTHDRDSTOPTS:
10083 			if (tcp->tcp_ipv6_recvancillary &
10084 			    TCP_IPV6_RECVRTDSTOPTS)
10085 				*i1 = 1;
10086 			else
10087 				*i1 = 0;
10088 			break;	/* goto sizeof (int) option return */
10089 		case IPV6_PKTINFO: {
10090 			/* XXX assumes that caller has room for max size! */
10091 			struct in6_pktinfo *pkti;
10092 
10093 			pkti = (struct in6_pktinfo *)ptr;
10094 			if (ipp->ipp_fields & IPPF_IFINDEX)
10095 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10096 			else
10097 				pkti->ipi6_ifindex = 0;
10098 			if (ipp->ipp_fields & IPPF_ADDR)
10099 				pkti->ipi6_addr = ipp->ipp_addr;
10100 			else
10101 				pkti->ipi6_addr = ipv6_all_zeros;
10102 			return (sizeof (struct in6_pktinfo));
10103 		}
10104 		case IPV6_TCLASS:
10105 			if (ipp->ipp_fields & IPPF_TCLASS)
10106 				*i1 = ipp->ipp_tclass;
10107 			else
10108 				*i1 = IPV6_FLOW_TCLASS(
10109 				    IPV6_DEFAULT_VERS_AND_FLOW);
10110 			break;	/* goto sizeof (int) option return */
10111 		case IPV6_NEXTHOP: {
10112 			sin6_t *sin6 = (sin6_t *)ptr;
10113 
10114 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10115 				return (0);
10116 			*sin6 = sin6_null;
10117 			sin6->sin6_family = AF_INET6;
10118 			sin6->sin6_addr = ipp->ipp_nexthop;
10119 			return (sizeof (sin6_t));
10120 		}
10121 		case IPV6_HOPOPTS:
10122 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10123 				return (0);
10124 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10125 				return (0);
10126 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10127 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10128 			if (tcp->tcp_label_len > 0) {
10129 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10130 				ptr[1] = (ipp->ipp_hopoptslen -
10131 				    tcp->tcp_label_len + 7) / 8 - 1;
10132 			}
10133 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10134 		case IPV6_RTHDRDSTOPTS:
10135 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10136 				return (0);
10137 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10138 			return (ipp->ipp_rtdstoptslen);
10139 		case IPV6_RTHDR:
10140 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10141 				return (0);
10142 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10143 			return (ipp->ipp_rthdrlen);
10144 		case IPV6_DSTOPTS:
10145 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10146 				return (0);
10147 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10148 			return (ipp->ipp_dstoptslen);
10149 		case IPV6_SRC_PREFERENCES:
10150 			return (ip6_get_src_preferences(connp,
10151 			    (uint32_t *)ptr));
10152 		case IPV6_PATHMTU: {
10153 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10154 
10155 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10156 				return (-1);
10157 
10158 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10159 			    connp->conn_fport, mtuinfo,
10160 			    connp->conn_netstack));
10161 		}
10162 		default:
10163 			return (-1);
10164 		}
10165 		break;
10166 	default:
10167 		return (-1);
10168 	}
10169 	return (sizeof (int));
10170 }
10171 
10172 /*
10173  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10174  * Parameters are assumed to be verified by the caller.
10175  */
10176 /* ARGSUSED */
10177 int
10178 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10179     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10180     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10181 {
10182 	conn_t	*connp = Q_TO_CONN(q);
10183 	tcp_t	*tcp = connp->conn_tcp;
10184 	int	*i1 = (int *)invalp;
10185 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10186 	boolean_t checkonly;
10187 	int	reterr;
10188 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10189 
10190 	switch (optset_context) {
10191 	case SETFN_OPTCOM_CHECKONLY:
10192 		checkonly = B_TRUE;
10193 		/*
10194 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10195 		 * inlen != 0 implies value supplied and
10196 		 * 	we have to "pretend" to set it.
10197 		 * inlen == 0 implies that there is no
10198 		 * 	value part in T_CHECK request and just validation
10199 		 * done elsewhere should be enough, we just return here.
10200 		 */
10201 		if (inlen == 0) {
10202 			*outlenp = 0;
10203 			return (0);
10204 		}
10205 		break;
10206 	case SETFN_OPTCOM_NEGOTIATE:
10207 		checkonly = B_FALSE;
10208 		break;
10209 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10210 	case SETFN_CONN_NEGOTIATE:
10211 		checkonly = B_FALSE;
10212 		/*
10213 		 * Negotiating local and "association-related" options
10214 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10215 		 * primitives is allowed by XTI, but we choose
10216 		 * to not implement this style negotiation for Internet
10217 		 * protocols (We interpret it is a must for OSI world but
10218 		 * optional for Internet protocols) for all options.
10219 		 * [ Will do only for the few options that enable test
10220 		 * suites that our XTI implementation of this feature
10221 		 * works for transports that do allow it ]
10222 		 */
10223 		if (!tcp_allow_connopt_set(level, name)) {
10224 			*outlenp = 0;
10225 			return (EINVAL);
10226 		}
10227 		break;
10228 	default:
10229 		/*
10230 		 * We should never get here
10231 		 */
10232 		*outlenp = 0;
10233 		return (EINVAL);
10234 	}
10235 
10236 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10237 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10238 
10239 	/*
10240 	 * For TCP, we should have no ancillary data sent down
10241 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10242 	 * has to be zero.
10243 	 */
10244 	ASSERT(thisdg_attrs == NULL);
10245 
10246 	/*
10247 	 * For fixed length options, no sanity check
10248 	 * of passed in length is done. It is assumed *_optcom_req()
10249 	 * routines do the right thing.
10250 	 */
10251 
10252 	switch (level) {
10253 	case SOL_SOCKET:
10254 		switch (name) {
10255 		case SO_LINGER: {
10256 			struct linger *lgr = (struct linger *)invalp;
10257 
10258 			if (!checkonly) {
10259 				if (lgr->l_onoff) {
10260 					tcp->tcp_linger = 1;
10261 					tcp->tcp_lingertime = lgr->l_linger;
10262 				} else {
10263 					tcp->tcp_linger = 0;
10264 					tcp->tcp_lingertime = 0;
10265 				}
10266 				/* struct copy */
10267 				*(struct linger *)outvalp = *lgr;
10268 			} else {
10269 				if (!lgr->l_onoff) {
10270 					((struct linger *)
10271 					    outvalp)->l_onoff = 0;
10272 					((struct linger *)
10273 					    outvalp)->l_linger = 0;
10274 				} else {
10275 					/* struct copy */
10276 					*(struct linger *)outvalp = *lgr;
10277 				}
10278 			}
10279 			*outlenp = sizeof (struct linger);
10280 			return (0);
10281 		}
10282 		case SO_DEBUG:
10283 			if (!checkonly)
10284 				tcp->tcp_debug = onoff;
10285 			break;
10286 		case SO_KEEPALIVE:
10287 			if (checkonly) {
10288 				/* T_CHECK case */
10289 				break;
10290 			}
10291 
10292 			if (!onoff) {
10293 				if (tcp->tcp_ka_enabled) {
10294 					if (tcp->tcp_ka_tid != 0) {
10295 						(void) TCP_TIMER_CANCEL(tcp,
10296 						    tcp->tcp_ka_tid);
10297 						tcp->tcp_ka_tid = 0;
10298 					}
10299 					tcp->tcp_ka_enabled = 0;
10300 				}
10301 				break;
10302 			}
10303 			if (!tcp->tcp_ka_enabled) {
10304 				/* Crank up the keepalive timer */
10305 				tcp->tcp_ka_last_intrvl = 0;
10306 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10307 				    tcp_keepalive_killer,
10308 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10309 				tcp->tcp_ka_enabled = 1;
10310 			}
10311 			break;
10312 		case SO_DONTROUTE:
10313 			/*
10314 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10315 			 * only of interest to IP.  We track them here only so
10316 			 * that we can report their current value.
10317 			 */
10318 			if (!checkonly) {
10319 				tcp->tcp_dontroute = onoff;
10320 				tcp->tcp_connp->conn_dontroute = onoff;
10321 			}
10322 			break;
10323 		case SO_USELOOPBACK:
10324 			if (!checkonly) {
10325 				tcp->tcp_useloopback = onoff;
10326 				tcp->tcp_connp->conn_loopback = onoff;
10327 			}
10328 			break;
10329 		case SO_BROADCAST:
10330 			if (!checkonly) {
10331 				tcp->tcp_broadcast = onoff;
10332 				tcp->tcp_connp->conn_broadcast = onoff;
10333 			}
10334 			break;
10335 		case SO_REUSEADDR:
10336 			if (!checkonly) {
10337 				tcp->tcp_reuseaddr = onoff;
10338 				tcp->tcp_connp->conn_reuseaddr = onoff;
10339 			}
10340 			break;
10341 		case SO_OOBINLINE:
10342 			if (!checkonly)
10343 				tcp->tcp_oobinline = onoff;
10344 			break;
10345 		case SO_DGRAM_ERRIND:
10346 			if (!checkonly)
10347 				tcp->tcp_dgram_errind = onoff;
10348 			break;
10349 		case SO_SNDBUF: {
10350 			if (*i1 > tcps->tcps_max_buf) {
10351 				*outlenp = 0;
10352 				return (ENOBUFS);
10353 			}
10354 			if (checkonly)
10355 				break;
10356 
10357 			tcp->tcp_xmit_hiwater = *i1;
10358 			if (tcps->tcps_snd_lowat_fraction != 0)
10359 				tcp->tcp_xmit_lowater =
10360 				    tcp->tcp_xmit_hiwater /
10361 				    tcps->tcps_snd_lowat_fraction;
10362 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10363 			/*
10364 			 * If we are flow-controlled, recheck the condition.
10365 			 * There are apps that increase SO_SNDBUF size when
10366 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10367 			 * control condition to be lifted right away.
10368 			 */
10369 			mutex_enter(&tcp->tcp_non_sq_lock);
10370 			if (tcp->tcp_flow_stopped &&
10371 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10372 				tcp_clrqfull(tcp);
10373 			}
10374 			mutex_exit(&tcp->tcp_non_sq_lock);
10375 			break;
10376 		}
10377 		case SO_RCVBUF:
10378 			if (*i1 > tcps->tcps_max_buf) {
10379 				*outlenp = 0;
10380 				return (ENOBUFS);
10381 			}
10382 			/* Silently ignore zero */
10383 			if (!checkonly && *i1 != 0) {
10384 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10385 				(void) tcp_rwnd_set(tcp, *i1);
10386 			}
10387 			/*
10388 			 * XXX should we return the rwnd here
10389 			 * and tcp_opt_get ?
10390 			 */
10391 			break;
10392 		case SO_SND_COPYAVOID:
10393 			if (!checkonly) {
10394 				/* we only allow enable at most once for now */
10395 				if (tcp->tcp_loopback ||
10396 				    (!tcp->tcp_snd_zcopy_aware &&
10397 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10398 					*outlenp = 0;
10399 					return (EOPNOTSUPP);
10400 				}
10401 				tcp->tcp_snd_zcopy_aware = 1;
10402 			}
10403 			break;
10404 		case SO_ALLZONES:
10405 			/* Handled at the IP level */
10406 			return (-EINVAL);
10407 		case SO_ANON_MLP:
10408 			if (!checkonly) {
10409 				mutex_enter(&connp->conn_lock);
10410 				connp->conn_anon_mlp = onoff;
10411 				mutex_exit(&connp->conn_lock);
10412 			}
10413 			break;
10414 		case SO_MAC_EXEMPT:
10415 			if (secpolicy_net_mac_aware(cr) != 0 ||
10416 			    IPCL_IS_BOUND(connp))
10417 				return (EACCES);
10418 			if (!checkonly) {
10419 				mutex_enter(&connp->conn_lock);
10420 				connp->conn_mac_exempt = onoff;
10421 				mutex_exit(&connp->conn_lock);
10422 			}
10423 			break;
10424 		case SO_EXCLBIND:
10425 			if (!checkonly)
10426 				tcp->tcp_exclbind = onoff;
10427 			break;
10428 		default:
10429 			*outlenp = 0;
10430 			return (EINVAL);
10431 		}
10432 		break;
10433 	case IPPROTO_TCP:
10434 		switch (name) {
10435 		case TCP_NODELAY:
10436 			if (!checkonly)
10437 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10438 			break;
10439 		case TCP_NOTIFY_THRESHOLD:
10440 			if (!checkonly)
10441 				tcp->tcp_first_timer_threshold = *i1;
10442 			break;
10443 		case TCP_ABORT_THRESHOLD:
10444 			if (!checkonly)
10445 				tcp->tcp_second_timer_threshold = *i1;
10446 			break;
10447 		case TCP_CONN_NOTIFY_THRESHOLD:
10448 			if (!checkonly)
10449 				tcp->tcp_first_ctimer_threshold = *i1;
10450 			break;
10451 		case TCP_CONN_ABORT_THRESHOLD:
10452 			if (!checkonly)
10453 				tcp->tcp_second_ctimer_threshold = *i1;
10454 			break;
10455 		case TCP_RECVDSTADDR:
10456 			if (tcp->tcp_state > TCPS_LISTEN)
10457 				return (EOPNOTSUPP);
10458 			if (!checkonly)
10459 				tcp->tcp_recvdstaddr = onoff;
10460 			break;
10461 		case TCP_ANONPRIVBIND:
10462 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10463 				*outlenp = 0;
10464 				return (reterr);
10465 			}
10466 			if (!checkonly) {
10467 				tcp->tcp_anon_priv_bind = onoff;
10468 			}
10469 			break;
10470 		case TCP_EXCLBIND:
10471 			if (!checkonly)
10472 				tcp->tcp_exclbind = onoff;
10473 			break;	/* goto sizeof (int) option return */
10474 		case TCP_INIT_CWND: {
10475 			uint32_t init_cwnd = *((uint32_t *)invalp);
10476 
10477 			if (checkonly)
10478 				break;
10479 
10480 			/*
10481 			 * Only allow socket with network configuration
10482 			 * privilege to set the initial cwnd to be larger
10483 			 * than allowed by RFC 3390.
10484 			 */
10485 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10486 				tcp->tcp_init_cwnd = init_cwnd;
10487 				break;
10488 			}
10489 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10490 				*outlenp = 0;
10491 				return (reterr);
10492 			}
10493 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10494 				*outlenp = 0;
10495 				return (EINVAL);
10496 			}
10497 			tcp->tcp_init_cwnd = init_cwnd;
10498 			break;
10499 		}
10500 		case TCP_KEEPALIVE_THRESHOLD:
10501 			if (checkonly)
10502 				break;
10503 
10504 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10505 			    *i1 > tcps->tcps_keepalive_interval_high) {
10506 				*outlenp = 0;
10507 				return (EINVAL);
10508 			}
10509 			if (*i1 != tcp->tcp_ka_interval) {
10510 				tcp->tcp_ka_interval = *i1;
10511 				/*
10512 				 * Check if we need to restart the
10513 				 * keepalive timer.
10514 				 */
10515 				if (tcp->tcp_ka_tid != 0) {
10516 					ASSERT(tcp->tcp_ka_enabled);
10517 					(void) TCP_TIMER_CANCEL(tcp,
10518 					    tcp->tcp_ka_tid);
10519 					tcp->tcp_ka_last_intrvl = 0;
10520 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10521 					    tcp_keepalive_killer,
10522 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10523 				}
10524 			}
10525 			break;
10526 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10527 			if (!checkonly) {
10528 				if (*i1 <
10529 				    tcps->tcps_keepalive_abort_interval_low ||
10530 				    *i1 >
10531 				    tcps->tcps_keepalive_abort_interval_high) {
10532 					*outlenp = 0;
10533 					return (EINVAL);
10534 				}
10535 				tcp->tcp_ka_abort_thres = *i1;
10536 			}
10537 			break;
10538 		case TCP_CORK:
10539 			if (!checkonly) {
10540 				/*
10541 				 * if tcp->tcp_cork was set and is now
10542 				 * being unset, we have to make sure that
10543 				 * the remaining data gets sent out. Also
10544 				 * unset tcp->tcp_cork so that tcp_wput_data()
10545 				 * can send data even if it is less than mss
10546 				 */
10547 				if (tcp->tcp_cork && onoff == 0 &&
10548 				    tcp->tcp_unsent > 0) {
10549 					tcp->tcp_cork = B_FALSE;
10550 					tcp_wput_data(tcp, NULL, B_FALSE);
10551 				}
10552 				tcp->tcp_cork = onoff;
10553 			}
10554 			break;
10555 		default:
10556 			*outlenp = 0;
10557 			return (EINVAL);
10558 		}
10559 		break;
10560 	case IPPROTO_IP:
10561 		if (tcp->tcp_family != AF_INET) {
10562 			*outlenp = 0;
10563 			return (ENOPROTOOPT);
10564 		}
10565 		switch (name) {
10566 		case IP_OPTIONS:
10567 		case T_IP_OPTIONS:
10568 			reterr = tcp_opt_set_header(tcp, checkonly,
10569 			    invalp, inlen);
10570 			if (reterr) {
10571 				*outlenp = 0;
10572 				return (reterr);
10573 			}
10574 			/* OK return - copy input buffer into output buffer */
10575 			if (invalp != outvalp) {
10576 				/* don't trust bcopy for identical src/dst */
10577 				bcopy(invalp, outvalp, inlen);
10578 			}
10579 			*outlenp = inlen;
10580 			return (0);
10581 		case IP_TOS:
10582 		case T_IP_TOS:
10583 			if (!checkonly) {
10584 				tcp->tcp_ipha->ipha_type_of_service =
10585 				    (uchar_t)*i1;
10586 				tcp->tcp_tos = (uchar_t)*i1;
10587 			}
10588 			break;
10589 		case IP_TTL:
10590 			if (!checkonly) {
10591 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10592 				tcp->tcp_ttl = (uchar_t)*i1;
10593 			}
10594 			break;
10595 		case IP_BOUND_IF:
10596 		case IP_NEXTHOP:
10597 			/* Handled at the IP level */
10598 			return (-EINVAL);
10599 		case IP_SEC_OPT:
10600 			/*
10601 			 * We should not allow policy setting after
10602 			 * we start listening for connections.
10603 			 */
10604 			if (tcp->tcp_state == TCPS_LISTEN) {
10605 				return (EINVAL);
10606 			} else {
10607 				/* Handled at the IP level */
10608 				return (-EINVAL);
10609 			}
10610 		default:
10611 			*outlenp = 0;
10612 			return (EINVAL);
10613 		}
10614 		break;
10615 	case IPPROTO_IPV6: {
10616 		ip6_pkt_t		*ipp;
10617 
10618 		/*
10619 		 * IPPROTO_IPV6 options are only supported for sockets
10620 		 * that are using IPv6 on the wire.
10621 		 */
10622 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10623 			*outlenp = 0;
10624 			return (ENOPROTOOPT);
10625 		}
10626 		/*
10627 		 * Only sticky options; no ancillary data
10628 		 */
10629 		ASSERT(thisdg_attrs == NULL);
10630 		ipp = &tcp->tcp_sticky_ipp;
10631 
10632 		switch (name) {
10633 		case IPV6_UNICAST_HOPS:
10634 			/* -1 means use default */
10635 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10636 				*outlenp = 0;
10637 				return (EINVAL);
10638 			}
10639 			if (!checkonly) {
10640 				if (*i1 == -1) {
10641 					tcp->tcp_ip6h->ip6_hops =
10642 					    ipp->ipp_unicast_hops =
10643 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10644 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10645 					/* Pass modified value to IP. */
10646 					*i1 = tcp->tcp_ip6h->ip6_hops;
10647 				} else {
10648 					tcp->tcp_ip6h->ip6_hops =
10649 					    ipp->ipp_unicast_hops =
10650 					    (uint8_t)*i1;
10651 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10652 				}
10653 				reterr = tcp_build_hdrs(q, tcp);
10654 				if (reterr != 0)
10655 					return (reterr);
10656 			}
10657 			break;
10658 		case IPV6_BOUND_IF:
10659 			if (!checkonly) {
10660 				int error = 0;
10661 
10662 				tcp->tcp_bound_if = *i1;
10663 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10664 				    B_TRUE, checkonly, level, name, mblk);
10665 				if (error != 0) {
10666 					*outlenp = 0;
10667 					return (error);
10668 				}
10669 			}
10670 			break;
10671 		/*
10672 		 * Set boolean switches for ancillary data delivery
10673 		 */
10674 		case IPV6_RECVPKTINFO:
10675 			if (!checkonly) {
10676 				if (onoff)
10677 					tcp->tcp_ipv6_recvancillary |=
10678 					    TCP_IPV6_RECVPKTINFO;
10679 				else
10680 					tcp->tcp_ipv6_recvancillary &=
10681 					    ~TCP_IPV6_RECVPKTINFO;
10682 				/* Force it to be sent up with the next msg */
10683 				tcp->tcp_recvifindex = 0;
10684 			}
10685 			break;
10686 		case IPV6_RECVTCLASS:
10687 			if (!checkonly) {
10688 				if (onoff)
10689 					tcp->tcp_ipv6_recvancillary |=
10690 					    TCP_IPV6_RECVTCLASS;
10691 				else
10692 					tcp->tcp_ipv6_recvancillary &=
10693 					    ~TCP_IPV6_RECVTCLASS;
10694 			}
10695 			break;
10696 		case IPV6_RECVHOPLIMIT:
10697 			if (!checkonly) {
10698 				if (onoff)
10699 					tcp->tcp_ipv6_recvancillary |=
10700 					    TCP_IPV6_RECVHOPLIMIT;
10701 				else
10702 					tcp->tcp_ipv6_recvancillary &=
10703 					    ~TCP_IPV6_RECVHOPLIMIT;
10704 				/* Force it to be sent up with the next msg */
10705 				tcp->tcp_recvhops = 0xffffffffU;
10706 			}
10707 			break;
10708 		case IPV6_RECVHOPOPTS:
10709 			if (!checkonly) {
10710 				if (onoff)
10711 					tcp->tcp_ipv6_recvancillary |=
10712 					    TCP_IPV6_RECVHOPOPTS;
10713 				else
10714 					tcp->tcp_ipv6_recvancillary &=
10715 					    ~TCP_IPV6_RECVHOPOPTS;
10716 			}
10717 			break;
10718 		case IPV6_RECVDSTOPTS:
10719 			if (!checkonly) {
10720 				if (onoff)
10721 					tcp->tcp_ipv6_recvancillary |=
10722 					    TCP_IPV6_RECVDSTOPTS;
10723 				else
10724 					tcp->tcp_ipv6_recvancillary &=
10725 					    ~TCP_IPV6_RECVDSTOPTS;
10726 			}
10727 			break;
10728 		case _OLD_IPV6_RECVDSTOPTS:
10729 			if (!checkonly) {
10730 				if (onoff)
10731 					tcp->tcp_ipv6_recvancillary |=
10732 					    TCP_OLD_IPV6_RECVDSTOPTS;
10733 				else
10734 					tcp->tcp_ipv6_recvancillary &=
10735 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10736 			}
10737 			break;
10738 		case IPV6_RECVRTHDR:
10739 			if (!checkonly) {
10740 				if (onoff)
10741 					tcp->tcp_ipv6_recvancillary |=
10742 					    TCP_IPV6_RECVRTHDR;
10743 				else
10744 					tcp->tcp_ipv6_recvancillary &=
10745 					    ~TCP_IPV6_RECVRTHDR;
10746 			}
10747 			break;
10748 		case IPV6_RECVRTHDRDSTOPTS:
10749 			if (!checkonly) {
10750 				if (onoff)
10751 					tcp->tcp_ipv6_recvancillary |=
10752 					    TCP_IPV6_RECVRTDSTOPTS;
10753 				else
10754 					tcp->tcp_ipv6_recvancillary &=
10755 					    ~TCP_IPV6_RECVRTDSTOPTS;
10756 			}
10757 			break;
10758 		case IPV6_PKTINFO:
10759 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10760 				return (EINVAL);
10761 			if (checkonly)
10762 				break;
10763 
10764 			if (inlen == 0) {
10765 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10766 			} else {
10767 				struct in6_pktinfo *pkti;
10768 
10769 				pkti = (struct in6_pktinfo *)invalp;
10770 				/*
10771 				 * RFC 3542 states that ipi6_addr must be
10772 				 * the unspecified address when setting the
10773 				 * IPV6_PKTINFO sticky socket option on a
10774 				 * TCP socket.
10775 				 */
10776 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10777 					return (EINVAL);
10778 				/*
10779 				 * ip6_set_pktinfo() validates the source
10780 				 * address and interface index.
10781 				 */
10782 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10783 				    pkti, mblk);
10784 				if (reterr != 0)
10785 					return (reterr);
10786 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10787 				ipp->ipp_addr = pkti->ipi6_addr;
10788 				if (ipp->ipp_ifindex != 0)
10789 					ipp->ipp_fields |= IPPF_IFINDEX;
10790 				else
10791 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10792 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10793 					ipp->ipp_fields |= IPPF_ADDR;
10794 				else
10795 					ipp->ipp_fields &= ~IPPF_ADDR;
10796 			}
10797 			reterr = tcp_build_hdrs(q, tcp);
10798 			if (reterr != 0)
10799 				return (reterr);
10800 			break;
10801 		case IPV6_TCLASS:
10802 			if (inlen != 0 && inlen != sizeof (int))
10803 				return (EINVAL);
10804 			if (checkonly)
10805 				break;
10806 
10807 			if (inlen == 0) {
10808 				ipp->ipp_fields &= ~IPPF_TCLASS;
10809 			} else {
10810 				if (*i1 > 255 || *i1 < -1)
10811 					return (EINVAL);
10812 				if (*i1 == -1) {
10813 					ipp->ipp_tclass = 0;
10814 					*i1 = 0;
10815 				} else {
10816 					ipp->ipp_tclass = *i1;
10817 				}
10818 				ipp->ipp_fields |= IPPF_TCLASS;
10819 			}
10820 			reterr = tcp_build_hdrs(q, tcp);
10821 			if (reterr != 0)
10822 				return (reterr);
10823 			break;
10824 		case IPV6_NEXTHOP:
10825 			/*
10826 			 * IP will verify that the nexthop is reachable
10827 			 * and fail for sticky options.
10828 			 */
10829 			if (inlen != 0 && inlen != sizeof (sin6_t))
10830 				return (EINVAL);
10831 			if (checkonly)
10832 				break;
10833 
10834 			if (inlen == 0) {
10835 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10836 			} else {
10837 				sin6_t *sin6 = (sin6_t *)invalp;
10838 
10839 				if (sin6->sin6_family != AF_INET6)
10840 					return (EAFNOSUPPORT);
10841 				if (IN6_IS_ADDR_V4MAPPED(
10842 				    &sin6->sin6_addr))
10843 					return (EADDRNOTAVAIL);
10844 				ipp->ipp_nexthop = sin6->sin6_addr;
10845 				if (!IN6_IS_ADDR_UNSPECIFIED(
10846 				    &ipp->ipp_nexthop))
10847 					ipp->ipp_fields |= IPPF_NEXTHOP;
10848 				else
10849 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10850 			}
10851 			reterr = tcp_build_hdrs(q, tcp);
10852 			if (reterr != 0)
10853 				return (reterr);
10854 			break;
10855 		case IPV6_HOPOPTS: {
10856 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10857 
10858 			/*
10859 			 * Sanity checks - minimum size, size a multiple of
10860 			 * eight bytes, and matching size passed in.
10861 			 */
10862 			if (inlen != 0 &&
10863 			    inlen != (8 * (hopts->ip6h_len + 1)))
10864 				return (EINVAL);
10865 
10866 			if (checkonly)
10867 				break;
10868 
10869 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10870 			    (uchar_t **)&ipp->ipp_hopopts,
10871 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10872 			if (reterr != 0)
10873 				return (reterr);
10874 			if (ipp->ipp_hopoptslen == 0)
10875 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10876 			else
10877 				ipp->ipp_fields |= IPPF_HOPOPTS;
10878 			reterr = tcp_build_hdrs(q, tcp);
10879 			if (reterr != 0)
10880 				return (reterr);
10881 			break;
10882 		}
10883 		case IPV6_RTHDRDSTOPTS: {
10884 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10885 
10886 			/*
10887 			 * Sanity checks - minimum size, size a multiple of
10888 			 * eight bytes, and matching size passed in.
10889 			 */
10890 			if (inlen != 0 &&
10891 			    inlen != (8 * (dopts->ip6d_len + 1)))
10892 				return (EINVAL);
10893 
10894 			if (checkonly)
10895 				break;
10896 
10897 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10898 			    (uchar_t **)&ipp->ipp_rtdstopts,
10899 			    &ipp->ipp_rtdstoptslen, 0);
10900 			if (reterr != 0)
10901 				return (reterr);
10902 			if (ipp->ipp_rtdstoptslen == 0)
10903 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10904 			else
10905 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10906 			reterr = tcp_build_hdrs(q, tcp);
10907 			if (reterr != 0)
10908 				return (reterr);
10909 			break;
10910 		}
10911 		case IPV6_DSTOPTS: {
10912 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10913 
10914 			/*
10915 			 * Sanity checks - minimum size, size a multiple of
10916 			 * eight bytes, and matching size passed in.
10917 			 */
10918 			if (inlen != 0 &&
10919 			    inlen != (8 * (dopts->ip6d_len + 1)))
10920 				return (EINVAL);
10921 
10922 			if (checkonly)
10923 				break;
10924 
10925 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10926 			    (uchar_t **)&ipp->ipp_dstopts,
10927 			    &ipp->ipp_dstoptslen, 0);
10928 			if (reterr != 0)
10929 				return (reterr);
10930 			if (ipp->ipp_dstoptslen == 0)
10931 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10932 			else
10933 				ipp->ipp_fields |= IPPF_DSTOPTS;
10934 			reterr = tcp_build_hdrs(q, tcp);
10935 			if (reterr != 0)
10936 				return (reterr);
10937 			break;
10938 		}
10939 		case IPV6_RTHDR: {
10940 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10941 
10942 			/*
10943 			 * Sanity checks - minimum size, size a multiple of
10944 			 * eight bytes, and matching size passed in.
10945 			 */
10946 			if (inlen != 0 &&
10947 			    inlen != (8 * (rt->ip6r_len + 1)))
10948 				return (EINVAL);
10949 
10950 			if (checkonly)
10951 				break;
10952 
10953 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10954 			    (uchar_t **)&ipp->ipp_rthdr,
10955 			    &ipp->ipp_rthdrlen, 0);
10956 			if (reterr != 0)
10957 				return (reterr);
10958 			if (ipp->ipp_rthdrlen == 0)
10959 				ipp->ipp_fields &= ~IPPF_RTHDR;
10960 			else
10961 				ipp->ipp_fields |= IPPF_RTHDR;
10962 			reterr = tcp_build_hdrs(q, tcp);
10963 			if (reterr != 0)
10964 				return (reterr);
10965 			break;
10966 		}
10967 		case IPV6_V6ONLY:
10968 			if (!checkonly)
10969 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10970 			break;
10971 		case IPV6_USE_MIN_MTU:
10972 			if (inlen != sizeof (int))
10973 				return (EINVAL);
10974 
10975 			if (*i1 < -1 || *i1 > 1)
10976 				return (EINVAL);
10977 
10978 			if (checkonly)
10979 				break;
10980 
10981 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10982 			ipp->ipp_use_min_mtu = *i1;
10983 			break;
10984 		case IPV6_BOUND_PIF:
10985 			/* Handled at the IP level */
10986 			return (-EINVAL);
10987 		case IPV6_SEC_OPT:
10988 			/*
10989 			 * We should not allow policy setting after
10990 			 * we start listening for connections.
10991 			 */
10992 			if (tcp->tcp_state == TCPS_LISTEN) {
10993 				return (EINVAL);
10994 			} else {
10995 				/* Handled at the IP level */
10996 				return (-EINVAL);
10997 			}
10998 		case IPV6_SRC_PREFERENCES:
10999 			if (inlen != sizeof (uint32_t))
11000 				return (EINVAL);
11001 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11002 			    *(uint32_t *)invalp);
11003 			if (reterr != 0) {
11004 				*outlenp = 0;
11005 				return (reterr);
11006 			}
11007 			break;
11008 		default:
11009 			*outlenp = 0;
11010 			return (EINVAL);
11011 		}
11012 		break;
11013 	}		/* end IPPROTO_IPV6 */
11014 	default:
11015 		*outlenp = 0;
11016 		return (EINVAL);
11017 	}
11018 	/*
11019 	 * Common case of OK return with outval same as inval
11020 	 */
11021 	if (invalp != outvalp) {
11022 		/* don't trust bcopy for identical src/dst */
11023 		(void) bcopy(invalp, outvalp, inlen);
11024 	}
11025 	*outlenp = inlen;
11026 	return (0);
11027 }
11028 
11029 /*
11030  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11031  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11032  * headers, and the maximum size tcp header (to avoid reallocation
11033  * on the fly for additional tcp options).
11034  * Returns failure if can't allocate memory.
11035  */
11036 static int
11037 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11038 {
11039 	char	*hdrs;
11040 	uint_t	hdrs_len;
11041 	ip6i_t	*ip6i;
11042 	char	buf[TCP_MAX_HDR_LENGTH];
11043 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11044 	in6_addr_t src, dst;
11045 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11046 
11047 	/*
11048 	 * save the existing tcp header and source/dest IP addresses
11049 	 */
11050 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11051 	src = tcp->tcp_ip6h->ip6_src;
11052 	dst = tcp->tcp_ip6h->ip6_dst;
11053 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11054 	ASSERT(hdrs_len != 0);
11055 	if (hdrs_len > tcp->tcp_iphc_len) {
11056 		/* Need to reallocate */
11057 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11058 		if (hdrs == NULL)
11059 			return (ENOMEM);
11060 		if (tcp->tcp_iphc != NULL) {
11061 			if (tcp->tcp_hdr_grown) {
11062 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11063 			} else {
11064 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11065 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11066 			}
11067 			tcp->tcp_iphc_len = 0;
11068 		}
11069 		ASSERT(tcp->tcp_iphc_len == 0);
11070 		tcp->tcp_iphc = hdrs;
11071 		tcp->tcp_iphc_len = hdrs_len;
11072 		tcp->tcp_hdr_grown = B_TRUE;
11073 	}
11074 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11075 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11076 
11077 	/* Set header fields not in ipp */
11078 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11079 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11080 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11081 	} else {
11082 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11083 	}
11084 	/*
11085 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11086 	 *
11087 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11088 	 */
11089 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11090 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11091 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11092 
11093 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11094 
11095 	tcp->tcp_ip6h->ip6_src = src;
11096 	tcp->tcp_ip6h->ip6_dst = dst;
11097 
11098 	/*
11099 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11100 	 * the default value for TCP.
11101 	 */
11102 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11103 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11104 
11105 	/*
11106 	 * If we're setting extension headers after a connection
11107 	 * has been established, and if we have a routing header
11108 	 * among the extension headers, call ip_massage_options_v6 to
11109 	 * manipulate the routing header/ip6_dst set the checksum
11110 	 * difference in the tcp header template.
11111 	 * (This happens in tcp_connect_ipv6 if the routing header
11112 	 * is set prior to the connect.)
11113 	 * Set the tcp_sum to zero first in case we've cleared a
11114 	 * routing header or don't have one at all.
11115 	 */
11116 	tcp->tcp_sum = 0;
11117 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11118 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11119 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11120 		    (uint8_t *)tcp->tcp_tcph);
11121 		if (rth != NULL) {
11122 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11123 			    rth, tcps->tcps_netstack);
11124 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11125 			    (tcp->tcp_sum >> 16));
11126 		}
11127 	}
11128 
11129 	/* Try to get everything in a single mblk */
11130 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11131 	return (0);
11132 }
11133 
11134 /*
11135  * Transfer any source route option from ipha to buf/dst in reversed form.
11136  */
11137 static int
11138 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11139 {
11140 	ipoptp_t	opts;
11141 	uchar_t		*opt;
11142 	uint8_t		optval;
11143 	uint8_t		optlen;
11144 	uint32_t	len = 0;
11145 
11146 	for (optval = ipoptp_first(&opts, ipha);
11147 	    optval != IPOPT_EOL;
11148 	    optval = ipoptp_next(&opts)) {
11149 		opt = opts.ipoptp_cur;
11150 		optlen = opts.ipoptp_len;
11151 		switch (optval) {
11152 			int	off1, off2;
11153 		case IPOPT_SSRR:
11154 		case IPOPT_LSRR:
11155 
11156 			/* Reverse source route */
11157 			/*
11158 			 * First entry should be the next to last one in the
11159 			 * current source route (the last entry is our
11160 			 * address.)
11161 			 * The last entry should be the final destination.
11162 			 */
11163 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11164 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11165 			off1 = IPOPT_MINOFF_SR - 1;
11166 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11167 			if (off2 < 0) {
11168 				/* No entries in source route */
11169 				break;
11170 			}
11171 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11172 			/*
11173 			 * Note: use src since ipha has not had its src
11174 			 * and dst reversed (it is in the state it was
11175 			 * received.
11176 			 */
11177 			bcopy(&ipha->ipha_src, buf + off2,
11178 			    IP_ADDR_LEN);
11179 			off2 -= IP_ADDR_LEN;
11180 
11181 			while (off2 > 0) {
11182 				bcopy(opt + off2, buf + off1,
11183 				    IP_ADDR_LEN);
11184 				off1 += IP_ADDR_LEN;
11185 				off2 -= IP_ADDR_LEN;
11186 			}
11187 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11188 			buf += optlen;
11189 			len += optlen;
11190 			break;
11191 		}
11192 	}
11193 done:
11194 	/* Pad the resulting options */
11195 	while (len & 0x3) {
11196 		*buf++ = IPOPT_EOL;
11197 		len++;
11198 	}
11199 	return (len);
11200 }
11201 
11202 
11203 /*
11204  * Extract and revert a source route from ipha (if any)
11205  * and then update the relevant fields in both tcp_t and the standard header.
11206  */
11207 static void
11208 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11209 {
11210 	char	buf[TCP_MAX_HDR_LENGTH];
11211 	uint_t	tcph_len;
11212 	int	len;
11213 
11214 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11215 	len = IPH_HDR_LENGTH(ipha);
11216 	if (len == IP_SIMPLE_HDR_LENGTH)
11217 		/* Nothing to do */
11218 		return;
11219 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11220 	    (len & 0x3))
11221 		return;
11222 
11223 	tcph_len = tcp->tcp_tcp_hdr_len;
11224 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11225 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11226 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11227 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11228 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11229 	len += IP_SIMPLE_HDR_LENGTH;
11230 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11231 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11232 	if ((int)tcp->tcp_sum < 0)
11233 		tcp->tcp_sum--;
11234 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11235 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11236 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11237 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11238 	tcp->tcp_ip_hdr_len = len;
11239 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11240 	    (IP_VERSION << 4) | (len >> 2);
11241 	len += tcph_len;
11242 	tcp->tcp_hdr_len = len;
11243 }
11244 
11245 /*
11246  * Copy the standard header into its new location,
11247  * lay in the new options and then update the relevant
11248  * fields in both tcp_t and the standard header.
11249  */
11250 static int
11251 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11252 {
11253 	uint_t	tcph_len;
11254 	uint8_t	*ip_optp;
11255 	tcph_t	*new_tcph;
11256 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11257 
11258 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11259 		return (EINVAL);
11260 
11261 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11262 		return (EINVAL);
11263 
11264 	if (checkonly) {
11265 		/*
11266 		 * do not really set, just pretend to - T_CHECK
11267 		 */
11268 		return (0);
11269 	}
11270 
11271 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11272 	if (tcp->tcp_label_len > 0) {
11273 		int padlen;
11274 		uint8_t opt;
11275 
11276 		/* convert list termination to no-ops */
11277 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11278 		ip_optp += ip_optp[IPOPT_OLEN];
11279 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11280 		while (--padlen >= 0)
11281 			*ip_optp++ = opt;
11282 	}
11283 	tcph_len = tcp->tcp_tcp_hdr_len;
11284 	new_tcph = (tcph_t *)(ip_optp + len);
11285 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11286 	tcp->tcp_tcph = new_tcph;
11287 	bcopy(ptr, ip_optp, len);
11288 
11289 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11290 
11291 	tcp->tcp_ip_hdr_len = len;
11292 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11293 	    (IP_VERSION << 4) | (len >> 2);
11294 	tcp->tcp_hdr_len = len + tcph_len;
11295 	if (!TCP_IS_DETACHED(tcp)) {
11296 		/* Always allocate room for all options. */
11297 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11298 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11299 	}
11300 	return (0);
11301 }
11302 
11303 /* Get callback routine passed to nd_load by tcp_param_register */
11304 /* ARGSUSED */
11305 static int
11306 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11307 {
11308 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11309 
11310 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11311 	return (0);
11312 }
11313 
11314 /*
11315  * Walk through the param array specified registering each element with the
11316  * named dispatch handler.
11317  */
11318 static boolean_t
11319 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11320 {
11321 	for (; cnt-- > 0; tcppa++) {
11322 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11323 			if (!nd_load(ndp, tcppa->tcp_param_name,
11324 			    tcp_param_get, tcp_param_set,
11325 			    (caddr_t)tcppa)) {
11326 				nd_free(ndp);
11327 				return (B_FALSE);
11328 			}
11329 		}
11330 	}
11331 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11332 	    KM_SLEEP);
11333 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11334 	    sizeof (tcpparam_t));
11335 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11336 	    tcp_param_get, tcp_param_set_aligned,
11337 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11338 		nd_free(ndp);
11339 		return (B_FALSE);
11340 	}
11341 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11342 	    KM_SLEEP);
11343 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11344 	    sizeof (tcpparam_t));
11345 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11346 	    tcp_param_get, tcp_param_set_aligned,
11347 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11348 		nd_free(ndp);
11349 		return (B_FALSE);
11350 	}
11351 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11352 	    KM_SLEEP);
11353 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11354 	    sizeof (tcpparam_t));
11355 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11356 	    tcp_param_get, tcp_param_set_aligned,
11357 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11358 		nd_free(ndp);
11359 		return (B_FALSE);
11360 	}
11361 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11362 	    KM_SLEEP);
11363 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11364 	    sizeof (tcpparam_t));
11365 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11366 	    tcp_param_get, tcp_param_set_aligned,
11367 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11368 		nd_free(ndp);
11369 		return (B_FALSE);
11370 	}
11371 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11372 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11373 		nd_free(ndp);
11374 		return (B_FALSE);
11375 	}
11376 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11377 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11378 		nd_free(ndp);
11379 		return (B_FALSE);
11380 	}
11381 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11382 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11383 		nd_free(ndp);
11384 		return (B_FALSE);
11385 	}
11386 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11387 	    NULL)) {
11388 		nd_free(ndp);
11389 		return (B_FALSE);
11390 	}
11391 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11392 	    NULL, NULL)) {
11393 		nd_free(ndp);
11394 		return (B_FALSE);
11395 	}
11396 	if (!nd_load(ndp, "tcp_listen_hash",
11397 	    tcp_listen_hash_report, NULL, NULL)) {
11398 		nd_free(ndp);
11399 		return (B_FALSE);
11400 	}
11401 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11402 	    NULL, NULL)) {
11403 		nd_free(ndp);
11404 		return (B_FALSE);
11405 	}
11406 	if (!nd_load(ndp, "tcp_acceptor_hash",
11407 	    tcp_acceptor_hash_report, NULL, NULL)) {
11408 		nd_free(ndp);
11409 		return (B_FALSE);
11410 	}
11411 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11412 	    tcp_host_param_set, NULL)) {
11413 		nd_free(ndp);
11414 		return (B_FALSE);
11415 	}
11416 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11417 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11418 		nd_free(ndp);
11419 		return (B_FALSE);
11420 	}
11421 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11422 	    tcp_1948_phrase_set, NULL)) {
11423 		nd_free(ndp);
11424 		return (B_FALSE);
11425 	}
11426 	if (!nd_load(ndp, "tcp_reserved_port_list",
11427 	    tcp_reserved_port_list, NULL, NULL)) {
11428 		nd_free(ndp);
11429 		return (B_FALSE);
11430 	}
11431 	/*
11432 	 * Dummy ndd variables - only to convey obsolescence information
11433 	 * through printing of their name (no get or set routines)
11434 	 * XXX Remove in future releases ?
11435 	 */
11436 	if (!nd_load(ndp,
11437 	    "tcp_close_wait_interval(obsoleted - "
11438 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11439 		nd_free(ndp);
11440 		return (B_FALSE);
11441 	}
11442 	return (B_TRUE);
11443 }
11444 
11445 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11446 /* ARGSUSED */
11447 static int
11448 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11449     cred_t *cr)
11450 {
11451 	long new_value;
11452 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11453 
11454 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11455 	    new_value < tcppa->tcp_param_min ||
11456 	    new_value > tcppa->tcp_param_max) {
11457 		return (EINVAL);
11458 	}
11459 	/*
11460 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11461 	 * round it up.  For future 64 bit requirement, we actually make it
11462 	 * a multiple of 8.
11463 	 */
11464 	if (new_value & 0x7) {
11465 		new_value = (new_value & ~0x7) + 0x8;
11466 	}
11467 	tcppa->tcp_param_val = new_value;
11468 	return (0);
11469 }
11470 
11471 /* Set callback routine passed to nd_load by tcp_param_register */
11472 /* ARGSUSED */
11473 static int
11474 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11475 {
11476 	long	new_value;
11477 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11478 
11479 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11480 	    new_value < tcppa->tcp_param_min ||
11481 	    new_value > tcppa->tcp_param_max) {
11482 		return (EINVAL);
11483 	}
11484 	tcppa->tcp_param_val = new_value;
11485 	return (0);
11486 }
11487 
11488 /*
11489  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11490  * is filled, return as much as we can.  The message passed in may be
11491  * multi-part, chained using b_cont.  "start" is the starting sequence
11492  * number for this piece.
11493  */
11494 static mblk_t *
11495 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11496 {
11497 	uint32_t	end;
11498 	mblk_t		*mp1;
11499 	mblk_t		*mp2;
11500 	mblk_t		*next_mp;
11501 	uint32_t	u1;
11502 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11503 
11504 	/* Walk through all the new pieces. */
11505 	do {
11506 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11507 		    (uintptr_t)INT_MAX);
11508 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11509 		next_mp = mp->b_cont;
11510 		if (start == end) {
11511 			/* Empty.  Blast it. */
11512 			freeb(mp);
11513 			continue;
11514 		}
11515 		mp->b_cont = NULL;
11516 		TCP_REASS_SET_SEQ(mp, start);
11517 		TCP_REASS_SET_END(mp, end);
11518 		mp1 = tcp->tcp_reass_tail;
11519 		if (!mp1) {
11520 			tcp->tcp_reass_tail = mp;
11521 			tcp->tcp_reass_head = mp;
11522 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11523 			UPDATE_MIB(&tcps->tcps_mib,
11524 			    tcpInDataUnorderBytes, end - start);
11525 			continue;
11526 		}
11527 		/* New stuff completely beyond tail? */
11528 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11529 			/* Link it on end. */
11530 			mp1->b_cont = mp;
11531 			tcp->tcp_reass_tail = mp;
11532 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11533 			UPDATE_MIB(&tcps->tcps_mib,
11534 			    tcpInDataUnorderBytes, end - start);
11535 			continue;
11536 		}
11537 		mp1 = tcp->tcp_reass_head;
11538 		u1 = TCP_REASS_SEQ(mp1);
11539 		/* New stuff at the front? */
11540 		if (SEQ_LT(start, u1)) {
11541 			/* Yes... Check for overlap. */
11542 			mp->b_cont = mp1;
11543 			tcp->tcp_reass_head = mp;
11544 			tcp_reass_elim_overlap(tcp, mp);
11545 			continue;
11546 		}
11547 		/*
11548 		 * The new piece fits somewhere between the head and tail.
11549 		 * We find our slot, where mp1 precedes us and mp2 trails.
11550 		 */
11551 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11552 			u1 = TCP_REASS_SEQ(mp2);
11553 			if (SEQ_LEQ(start, u1))
11554 				break;
11555 		}
11556 		/* Link ourselves in */
11557 		mp->b_cont = mp2;
11558 		mp1->b_cont = mp;
11559 
11560 		/* Trim overlap with following mblk(s) first */
11561 		tcp_reass_elim_overlap(tcp, mp);
11562 
11563 		/* Trim overlap with preceding mblk */
11564 		tcp_reass_elim_overlap(tcp, mp1);
11565 
11566 	} while (start = end, mp = next_mp);
11567 	mp1 = tcp->tcp_reass_head;
11568 	/* Anything ready to go? */
11569 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11570 		return (NULL);
11571 	/* Eat what we can off the queue */
11572 	for (;;) {
11573 		mp = mp1->b_cont;
11574 		end = TCP_REASS_END(mp1);
11575 		TCP_REASS_SET_SEQ(mp1, 0);
11576 		TCP_REASS_SET_END(mp1, 0);
11577 		if (!mp) {
11578 			tcp->tcp_reass_tail = NULL;
11579 			break;
11580 		}
11581 		if (end != TCP_REASS_SEQ(mp)) {
11582 			mp1->b_cont = NULL;
11583 			break;
11584 		}
11585 		mp1 = mp;
11586 	}
11587 	mp1 = tcp->tcp_reass_head;
11588 	tcp->tcp_reass_head = mp;
11589 	return (mp1);
11590 }
11591 
11592 /* Eliminate any overlap that mp may have over later mblks */
11593 static void
11594 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11595 {
11596 	uint32_t	end;
11597 	mblk_t		*mp1;
11598 	uint32_t	u1;
11599 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11600 
11601 	end = TCP_REASS_END(mp);
11602 	while ((mp1 = mp->b_cont) != NULL) {
11603 		u1 = TCP_REASS_SEQ(mp1);
11604 		if (!SEQ_GT(end, u1))
11605 			break;
11606 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11607 			mp->b_wptr -= end - u1;
11608 			TCP_REASS_SET_END(mp, u1);
11609 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11610 			UPDATE_MIB(&tcps->tcps_mib,
11611 			    tcpInDataPartDupBytes, end - u1);
11612 			break;
11613 		}
11614 		mp->b_cont = mp1->b_cont;
11615 		TCP_REASS_SET_SEQ(mp1, 0);
11616 		TCP_REASS_SET_END(mp1, 0);
11617 		freeb(mp1);
11618 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11619 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11620 	}
11621 	if (!mp1)
11622 		tcp->tcp_reass_tail = mp;
11623 }
11624 
11625 /*
11626  * Send up all messages queued on tcp_rcv_list.
11627  */
11628 static uint_t
11629 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11630 {
11631 	mblk_t *mp;
11632 	uint_t ret = 0;
11633 	uint_t thwin;
11634 #ifdef DEBUG
11635 	uint_t cnt = 0;
11636 #endif
11637 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11638 
11639 	/* Can't drain on an eager connection */
11640 	if (tcp->tcp_listener != NULL)
11641 		return (ret);
11642 
11643 	/*
11644 	 * Handle two cases here: we are currently fused or we were
11645 	 * previously fused and have some urgent data to be delivered
11646 	 * upstream.  The latter happens because we either ran out of
11647 	 * memory or were detached and therefore sending the SIGURG was
11648 	 * deferred until this point.  In either case we pass control
11649 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11650 	 * some work.
11651 	 */
11652 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11653 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11654 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11655 		    &tcp->tcp_fused_sigurg_mp))
11656 			return (ret);
11657 	}
11658 
11659 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11660 		tcp->tcp_rcv_list = mp->b_next;
11661 		mp->b_next = NULL;
11662 #ifdef DEBUG
11663 		cnt += msgdsize(mp);
11664 #endif
11665 		/* Does this need SSL processing first? */
11666 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11667 			tcp_kssl_input(tcp, mp);
11668 			continue;
11669 		}
11670 		putnext(q, mp);
11671 	}
11672 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11673 	tcp->tcp_rcv_last_head = NULL;
11674 	tcp->tcp_rcv_last_tail = NULL;
11675 	tcp->tcp_rcv_cnt = 0;
11676 
11677 	/* Learn the latest rwnd information that we sent to the other side. */
11678 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11679 	    << tcp->tcp_rcv_ws;
11680 	/* This is peer's calculated send window (our receive window). */
11681 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11682 	/*
11683 	 * Increase the receive window to max.  But we need to do receiver
11684 	 * SWS avoidance.  This means that we need to check the increase of
11685 	 * of receive window is at least 1 MSS.
11686 	 */
11687 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11688 		/*
11689 		 * If the window that the other side knows is less than max
11690 		 * deferred acks segments, send an update immediately.
11691 		 */
11692 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11693 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11694 			ret = TH_ACK_NEEDED;
11695 		}
11696 		tcp->tcp_rwnd = q->q_hiwat;
11697 	}
11698 	/* No need for the push timer now. */
11699 	if (tcp->tcp_push_tid != 0) {
11700 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11701 		tcp->tcp_push_tid = 0;
11702 	}
11703 	return (ret);
11704 }
11705 
11706 /*
11707  * Queue data on tcp_rcv_list which is a b_next chain.
11708  * tcp_rcv_last_head/tail is the last element of this chain.
11709  * Each element of the chain is a b_cont chain.
11710  *
11711  * M_DATA messages are added to the current element.
11712  * Other messages are added as new (b_next) elements.
11713  */
11714 void
11715 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11716 {
11717 	ASSERT(seg_len == msgdsize(mp));
11718 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11719 
11720 	if (tcp->tcp_rcv_list == NULL) {
11721 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11722 		tcp->tcp_rcv_list = mp;
11723 		tcp->tcp_rcv_last_head = mp;
11724 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11725 		tcp->tcp_rcv_last_tail->b_cont = mp;
11726 	} else {
11727 		tcp->tcp_rcv_last_head->b_next = mp;
11728 		tcp->tcp_rcv_last_head = mp;
11729 	}
11730 
11731 	while (mp->b_cont)
11732 		mp = mp->b_cont;
11733 
11734 	tcp->tcp_rcv_last_tail = mp;
11735 	tcp->tcp_rcv_cnt += seg_len;
11736 	tcp->tcp_rwnd -= seg_len;
11737 }
11738 
11739 /*
11740  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11741  *
11742  * This is the default entry function into TCP on the read side. TCP is
11743  * always entered via squeue i.e. using squeue's for mutual exclusion.
11744  * When classifier does a lookup to find the tcp, it also puts a reference
11745  * on the conn structure associated so the tcp is guaranteed to exist
11746  * when we come here. We still need to check the state because it might
11747  * as well has been closed. The squeue processing function i.e. squeue_enter,
11748  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11749  * CONN_DEC_REF.
11750  *
11751  * Apart from the default entry point, IP also sends packets directly to
11752  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11753  * connections.
11754  */
11755 void
11756 tcp_input(void *arg, mblk_t *mp, void *arg2)
11757 {
11758 	conn_t	*connp = (conn_t *)arg;
11759 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11760 
11761 	/* arg2 is the sqp */
11762 	ASSERT(arg2 != NULL);
11763 	ASSERT(mp != NULL);
11764 
11765 	/*
11766 	 * Don't accept any input on a closed tcp as this TCP logically does
11767 	 * not exist on the system. Don't proceed further with this TCP.
11768 	 * For eg. this packet could trigger another close of this tcp
11769 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11770 	 * tcp_clean_death / tcp_closei_local must be called at most once
11771 	 * on a TCP. In this case we need to refeed the packet into the
11772 	 * classifier and figure out where the packet should go. Need to
11773 	 * preserve the recv_ill somehow. Until we figure that out, for
11774 	 * now just drop the packet if we can't classify the packet.
11775 	 */
11776 	if (tcp->tcp_state == TCPS_CLOSED ||
11777 	    tcp->tcp_state == TCPS_BOUND) {
11778 		conn_t	*new_connp;
11779 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11780 
11781 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11782 		if (new_connp != NULL) {
11783 			tcp_reinput(new_connp, mp, arg2);
11784 			return;
11785 		}
11786 		/* We failed to classify. For now just drop the packet */
11787 		freemsg(mp);
11788 		return;
11789 	}
11790 
11791 	if (DB_TYPE(mp) == M_DATA)
11792 		tcp_rput_data(connp, mp, arg2);
11793 	else
11794 		tcp_rput_common(tcp, mp);
11795 }
11796 
11797 /*
11798  * The read side put procedure.
11799  * The packets passed up by ip are assume to be aligned according to
11800  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11801  */
11802 static void
11803 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11804 {
11805 	/*
11806 	 * tcp_rput_data() does not expect M_CTL except for the case
11807 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11808 	 * type. Need to make sure that any other M_CTLs don't make
11809 	 * it to tcp_rput_data since it is not expecting any and doesn't
11810 	 * check for it.
11811 	 */
11812 	if (DB_TYPE(mp) == M_CTL) {
11813 		switch (*(uint32_t *)(mp->b_rptr)) {
11814 		case TCP_IOC_ABORT_CONN:
11815 			/*
11816 			 * Handle connection abort request.
11817 			 */
11818 			tcp_ioctl_abort_handler(tcp, mp);
11819 			return;
11820 		case IPSEC_IN:
11821 			/*
11822 			 * Only secure icmp arrive in TCP and they
11823 			 * don't go through data path.
11824 			 */
11825 			tcp_icmp_error(tcp, mp);
11826 			return;
11827 		case IN_PKTINFO:
11828 			/*
11829 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11830 			 * sockets that are receiving IPv4 traffic. tcp
11831 			 */
11832 			ASSERT(tcp->tcp_family == AF_INET6);
11833 			ASSERT(tcp->tcp_ipv6_recvancillary &
11834 			    TCP_IPV6_RECVPKTINFO);
11835 			tcp_rput_data(tcp->tcp_connp, mp,
11836 			    tcp->tcp_connp->conn_sqp);
11837 			return;
11838 		case MDT_IOC_INFO_UPDATE:
11839 			/*
11840 			 * Handle Multidata information update; the
11841 			 * following routine will free the message.
11842 			 */
11843 			if (tcp->tcp_connp->conn_mdt_ok) {
11844 				tcp_mdt_update(tcp,
11845 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11846 				    B_FALSE);
11847 			}
11848 			freemsg(mp);
11849 			return;
11850 		case LSO_IOC_INFO_UPDATE:
11851 			/*
11852 			 * Handle LSO information update; the following
11853 			 * routine will free the message.
11854 			 */
11855 			if (tcp->tcp_connp->conn_lso_ok) {
11856 				tcp_lso_update(tcp,
11857 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11858 			}
11859 			freemsg(mp);
11860 			return;
11861 		default:
11862 			/*
11863 			 * tcp_icmp_err() will process the M_CTL packets.
11864 			 * Non-ICMP packets, if any, will be discarded in
11865 			 * tcp_icmp_err(). We will process the ICMP packet
11866 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11867 			 * incoming ICMP packet may result in changing
11868 			 * the tcp_mss, which we would need if we have
11869 			 * packets to retransmit.
11870 			 */
11871 			tcp_icmp_error(tcp, mp);
11872 			return;
11873 		}
11874 	}
11875 
11876 	/* No point processing the message if tcp is already closed */
11877 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11878 		freemsg(mp);
11879 		return;
11880 	}
11881 
11882 	tcp_rput_other(tcp, mp);
11883 }
11884 
11885 
11886 /* The minimum of smoothed mean deviation in RTO calculation. */
11887 #define	TCP_SD_MIN	400
11888 
11889 /*
11890  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11891  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11892  * are the same as those in Appendix A.2 of that paper.
11893  *
11894  * m = new measurement
11895  * sa = smoothed RTT average (8 * average estimates).
11896  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11897  */
11898 static void
11899 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11900 {
11901 	long m = TICK_TO_MSEC(rtt);
11902 	clock_t sa = tcp->tcp_rtt_sa;
11903 	clock_t sv = tcp->tcp_rtt_sd;
11904 	clock_t rto;
11905 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11906 
11907 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11908 	tcp->tcp_rtt_update++;
11909 
11910 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11911 	if (sa != 0) {
11912 		/*
11913 		 * Update average estimator:
11914 		 *	new rtt = 7/8 old rtt + 1/8 Error
11915 		 */
11916 
11917 		/* m is now Error in estimate. */
11918 		m -= sa >> 3;
11919 		if ((sa += m) <= 0) {
11920 			/*
11921 			 * Don't allow the smoothed average to be negative.
11922 			 * We use 0 to denote reinitialization of the
11923 			 * variables.
11924 			 */
11925 			sa = 1;
11926 		}
11927 
11928 		/*
11929 		 * Update deviation estimator:
11930 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11931 		 */
11932 		if (m < 0)
11933 			m = -m;
11934 		m -= sv >> 2;
11935 		sv += m;
11936 	} else {
11937 		/*
11938 		 * This follows BSD's implementation.  So the reinitialized
11939 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11940 		 * link is bandwidth dominated, doubling the window size
11941 		 * during slow start means doubling the RTT.  We want to be
11942 		 * more conservative when we reinitialize our estimates.  3
11943 		 * is just a convenient number.
11944 		 */
11945 		sa = m << 3;
11946 		sv = m << 1;
11947 	}
11948 	if (sv < TCP_SD_MIN) {
11949 		/*
11950 		 * We do not know that if sa captures the delay ACK
11951 		 * effect as in a long train of segments, a receiver
11952 		 * does not delay its ACKs.  So set the minimum of sv
11953 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11954 		 * of BSD DATO.  That means the minimum of mean
11955 		 * deviation is 100 ms.
11956 		 *
11957 		 */
11958 		sv = TCP_SD_MIN;
11959 	}
11960 	tcp->tcp_rtt_sa = sa;
11961 	tcp->tcp_rtt_sd = sv;
11962 	/*
11963 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11964 	 *
11965 	 * Add tcp_rexmit_interval extra in case of extreme environment
11966 	 * where the algorithm fails to work.  The default value of
11967 	 * tcp_rexmit_interval_extra should be 0.
11968 	 *
11969 	 * As we use a finer grained clock than BSD and update
11970 	 * RTO for every ACKs, add in another .25 of RTT to the
11971 	 * deviation of RTO to accomodate burstiness of 1/4 of
11972 	 * window size.
11973 	 */
11974 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
11975 
11976 	if (rto > tcps->tcps_rexmit_interval_max) {
11977 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
11978 	} else if (rto < tcps->tcps_rexmit_interval_min) {
11979 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
11980 	} else {
11981 		tcp->tcp_rto = rto;
11982 	}
11983 
11984 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11985 	tcp->tcp_timer_backoff = 0;
11986 }
11987 
11988 /*
11989  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11990  * send queue which starts at the given seq. no.
11991  *
11992  * Parameters:
11993  *	tcp_t *tcp: the tcp instance pointer.
11994  *	uint32_t seq: the starting seq. no of the requested segment.
11995  *	int32_t *off: after the execution, *off will be the offset to
11996  *		the returned mblk which points to the requested seq no.
11997  *		It is the caller's responsibility to send in a non-null off.
11998  *
11999  * Return:
12000  *	A mblk_t pointer pointing to the requested segment in send queue.
12001  */
12002 static mblk_t *
12003 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12004 {
12005 	int32_t	cnt;
12006 	mblk_t	*mp;
12007 
12008 	/* Defensive coding.  Make sure we don't send incorrect data. */
12009 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12010 		return (NULL);
12011 
12012 	cnt = seq - tcp->tcp_suna;
12013 	mp = tcp->tcp_xmit_head;
12014 	while (cnt > 0 && mp != NULL) {
12015 		cnt -= mp->b_wptr - mp->b_rptr;
12016 		if (cnt < 0) {
12017 			cnt += mp->b_wptr - mp->b_rptr;
12018 			break;
12019 		}
12020 		mp = mp->b_cont;
12021 	}
12022 	ASSERT(mp != NULL);
12023 	*off = cnt;
12024 	return (mp);
12025 }
12026 
12027 /*
12028  * This function handles all retransmissions if SACK is enabled for this
12029  * connection.  First it calculates how many segments can be retransmitted
12030  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12031  * segments.  A segment is eligible if sack_cnt for that segment is greater
12032  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12033  * all eligible segments, it checks to see if TCP can send some new segments
12034  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12035  *
12036  * Parameters:
12037  *	tcp_t *tcp: the tcp structure of the connection.
12038  *	uint_t *flags: in return, appropriate value will be set for
12039  *	tcp_rput_data().
12040  */
12041 static void
12042 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12043 {
12044 	notsack_blk_t	*notsack_blk;
12045 	int32_t		usable_swnd;
12046 	int32_t		mss;
12047 	uint32_t	seg_len;
12048 	mblk_t		*xmit_mp;
12049 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12050 
12051 	ASSERT(tcp->tcp_sack_info != NULL);
12052 	ASSERT(tcp->tcp_notsack_list != NULL);
12053 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12054 
12055 	/* Defensive coding in case there is a bug... */
12056 	if (tcp->tcp_notsack_list == NULL) {
12057 		return;
12058 	}
12059 	notsack_blk = tcp->tcp_notsack_list;
12060 	mss = tcp->tcp_mss;
12061 
12062 	/*
12063 	 * Limit the num of outstanding data in the network to be
12064 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12065 	 */
12066 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12067 
12068 	/* At least retransmit 1 MSS of data. */
12069 	if (usable_swnd <= 0) {
12070 		usable_swnd = mss;
12071 	}
12072 
12073 	/* Make sure no new RTT samples will be taken. */
12074 	tcp->tcp_csuna = tcp->tcp_snxt;
12075 
12076 	notsack_blk = tcp->tcp_notsack_list;
12077 	while (usable_swnd > 0) {
12078 		mblk_t		*snxt_mp, *tmp_mp;
12079 		tcp_seq		begin = tcp->tcp_sack_snxt;
12080 		tcp_seq		end;
12081 		int32_t		off;
12082 
12083 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12084 			if (SEQ_GT(notsack_blk->end, begin) &&
12085 			    (notsack_blk->sack_cnt >=
12086 			    tcps->tcps_dupack_fast_retransmit)) {
12087 				end = notsack_blk->end;
12088 				if (SEQ_LT(begin, notsack_blk->begin)) {
12089 					begin = notsack_blk->begin;
12090 				}
12091 				break;
12092 			}
12093 		}
12094 		/*
12095 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12096 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12097 		 * set to tcp_cwnd_ssthresh.
12098 		 */
12099 		if (notsack_blk == NULL) {
12100 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12101 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12102 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12103 				ASSERT(tcp->tcp_cwnd > 0);
12104 				return;
12105 			} else {
12106 				usable_swnd = usable_swnd / mss;
12107 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12108 				    MAX(usable_swnd * mss, mss);
12109 				*flags |= TH_XMIT_NEEDED;
12110 				return;
12111 			}
12112 		}
12113 
12114 		/*
12115 		 * Note that we may send more than usable_swnd allows here
12116 		 * because of round off, but no more than 1 MSS of data.
12117 		 */
12118 		seg_len = end - begin;
12119 		if (seg_len > mss)
12120 			seg_len = mss;
12121 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12122 		ASSERT(snxt_mp != NULL);
12123 		/* This should not happen.  Defensive coding again... */
12124 		if (snxt_mp == NULL) {
12125 			return;
12126 		}
12127 
12128 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12129 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12130 		if (xmit_mp == NULL)
12131 			return;
12132 
12133 		usable_swnd -= seg_len;
12134 		tcp->tcp_pipe += seg_len;
12135 		tcp->tcp_sack_snxt = begin + seg_len;
12136 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12137 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12138 
12139 		/*
12140 		 * Update the send timestamp to avoid false retransmission.
12141 		 */
12142 		snxt_mp->b_prev = (mblk_t *)lbolt;
12143 
12144 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12145 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12146 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12147 		/*
12148 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12149 		 * This happens when new data sent during fast recovery is
12150 		 * also lost.  If TCP retransmits those new data, it needs
12151 		 * to extend SACK recover phase to avoid starting another
12152 		 * fast retransmit/recovery unnecessarily.
12153 		 */
12154 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12155 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12156 		}
12157 	}
12158 }
12159 
12160 /*
12161  * This function handles policy checking at TCP level for non-hard_bound/
12162  * detached connections.
12163  */
12164 static boolean_t
12165 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12166     boolean_t secure, boolean_t mctl_present)
12167 {
12168 	ipsec_latch_t *ipl = NULL;
12169 	ipsec_action_t *act = NULL;
12170 	mblk_t *data_mp;
12171 	ipsec_in_t *ii;
12172 	const char *reason;
12173 	kstat_named_t *counter;
12174 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12175 	ipsec_stack_t	*ipss;
12176 	ip_stack_t	*ipst;
12177 
12178 	ASSERT(mctl_present || !secure);
12179 
12180 	ASSERT((ipha == NULL && ip6h != NULL) ||
12181 	    (ip6h == NULL && ipha != NULL));
12182 
12183 	/*
12184 	 * We don't necessarily have an ipsec_in_act action to verify
12185 	 * policy because of assymetrical policy where we have only
12186 	 * outbound policy and no inbound policy (possible with global
12187 	 * policy).
12188 	 */
12189 	if (!secure) {
12190 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12191 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12192 			return (B_TRUE);
12193 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12194 		    "tcp_check_policy", ipha, ip6h, secure,
12195 		    tcps->tcps_netstack);
12196 		ipss = tcps->tcps_netstack->netstack_ipsec;
12197 
12198 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12199 		    DROPPER(ipss, ipds_tcp_clear),
12200 		    &tcps->tcps_dropper);
12201 		return (B_FALSE);
12202 	}
12203 
12204 	/*
12205 	 * We have a secure packet.
12206 	 */
12207 	if (act == NULL) {
12208 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12209 		    "tcp_check_policy", ipha, ip6h, secure,
12210 		    tcps->tcps_netstack);
12211 		ipss = tcps->tcps_netstack->netstack_ipsec;
12212 
12213 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12214 		    DROPPER(ipss, ipds_tcp_secure),
12215 		    &tcps->tcps_dropper);
12216 		return (B_FALSE);
12217 	}
12218 
12219 	/*
12220 	 * XXX This whole routine is currently incorrect.  ipl should
12221 	 * be set to the latch pointer, but is currently not set, so
12222 	 * we initialize it to NULL to avoid picking up random garbage.
12223 	 */
12224 	if (ipl == NULL)
12225 		return (B_TRUE);
12226 
12227 	data_mp = first_mp->b_cont;
12228 
12229 	ii = (ipsec_in_t *)first_mp->b_rptr;
12230 
12231 	ipst = tcps->tcps_netstack->netstack_ip;
12232 
12233 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12234 	    &counter, tcp->tcp_connp)) {
12235 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12236 		return (B_TRUE);
12237 	}
12238 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12239 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12240 	    reason);
12241 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12242 
12243 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12244 	    &tcps->tcps_dropper);
12245 	return (B_FALSE);
12246 }
12247 
12248 /*
12249  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12250  * retransmission after a timeout.
12251  *
12252  * To limit the number of duplicate segments, we limit the number of segment
12253  * to be sent in one time to tcp_snd_burst, the burst variable.
12254  */
12255 static void
12256 tcp_ss_rexmit(tcp_t *tcp)
12257 {
12258 	uint32_t	snxt;
12259 	uint32_t	smax;
12260 	int32_t		win;
12261 	int32_t		mss;
12262 	int32_t		off;
12263 	int32_t		burst = tcp->tcp_snd_burst;
12264 	mblk_t		*snxt_mp;
12265 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12266 
12267 	/*
12268 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12269 	 * all unack'ed segments.
12270 	 */
12271 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12272 		smax = tcp->tcp_rexmit_max;
12273 		snxt = tcp->tcp_rexmit_nxt;
12274 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12275 			snxt = tcp->tcp_suna;
12276 		}
12277 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12278 		win -= snxt - tcp->tcp_suna;
12279 		mss = tcp->tcp_mss;
12280 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12281 
12282 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12283 		    (burst > 0) && (snxt_mp != NULL)) {
12284 			mblk_t	*xmit_mp;
12285 			mblk_t	*old_snxt_mp = snxt_mp;
12286 			uint32_t cnt = mss;
12287 
12288 			if (win < cnt) {
12289 				cnt = win;
12290 			}
12291 			if (SEQ_GT(snxt + cnt, smax)) {
12292 				cnt = smax - snxt;
12293 			}
12294 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12295 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12296 			if (xmit_mp == NULL)
12297 				return;
12298 
12299 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12300 
12301 			snxt += cnt;
12302 			win -= cnt;
12303 			/*
12304 			 * Update the send timestamp to avoid false
12305 			 * retransmission.
12306 			 */
12307 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12308 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12309 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12310 
12311 			tcp->tcp_rexmit_nxt = snxt;
12312 			burst--;
12313 		}
12314 		/*
12315 		 * If we have transmitted all we have at the time
12316 		 * we started the retranmission, we can leave
12317 		 * the rest of the job to tcp_wput_data().  But we
12318 		 * need to check the send window first.  If the
12319 		 * win is not 0, go on with tcp_wput_data().
12320 		 */
12321 		if (SEQ_LT(snxt, smax) || win == 0) {
12322 			return;
12323 		}
12324 	}
12325 	/* Only call tcp_wput_data() if there is data to be sent. */
12326 	if (tcp->tcp_unsent) {
12327 		tcp_wput_data(tcp, NULL, B_FALSE);
12328 	}
12329 }
12330 
12331 /*
12332  * Process all TCP option in SYN segment.  Note that this function should
12333  * be called after tcp_adapt_ire() is called so that the necessary info
12334  * from IRE is already set in the tcp structure.
12335  *
12336  * This function sets up the correct tcp_mss value according to the
12337  * MSS option value and our header size.  It also sets up the window scale
12338  * and timestamp values, and initialize SACK info blocks.  But it does not
12339  * change receive window size after setting the tcp_mss value.  The caller
12340  * should do the appropriate change.
12341  */
12342 void
12343 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12344 {
12345 	int options;
12346 	tcp_opt_t tcpopt;
12347 	uint32_t mss_max;
12348 	char *tmp_tcph;
12349 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12350 
12351 	tcpopt.tcp = NULL;
12352 	options = tcp_parse_options(tcph, &tcpopt);
12353 
12354 	/*
12355 	 * Process MSS option.  Note that MSS option value does not account
12356 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12357 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12358 	 * IPv6.
12359 	 */
12360 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12361 		if (tcp->tcp_ipversion == IPV4_VERSION)
12362 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12363 		else
12364 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12365 	} else {
12366 		if (tcp->tcp_ipversion == IPV4_VERSION)
12367 			mss_max = tcps->tcps_mss_max_ipv4;
12368 		else
12369 			mss_max = tcps->tcps_mss_max_ipv6;
12370 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12371 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12372 		else if (tcpopt.tcp_opt_mss > mss_max)
12373 			tcpopt.tcp_opt_mss = mss_max;
12374 	}
12375 
12376 	/* Process Window Scale option. */
12377 	if (options & TCP_OPT_WSCALE_PRESENT) {
12378 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12379 		tcp->tcp_snd_ws_ok = B_TRUE;
12380 	} else {
12381 		tcp->tcp_snd_ws = B_FALSE;
12382 		tcp->tcp_snd_ws_ok = B_FALSE;
12383 		tcp->tcp_rcv_ws = B_FALSE;
12384 	}
12385 
12386 	/* Process Timestamp option. */
12387 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12388 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12389 		tmp_tcph = (char *)tcp->tcp_tcph;
12390 
12391 		tcp->tcp_snd_ts_ok = B_TRUE;
12392 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12393 		tcp->tcp_last_rcv_lbolt = lbolt64;
12394 		ASSERT(OK_32PTR(tmp_tcph));
12395 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12396 
12397 		/* Fill in our template header with basic timestamp option. */
12398 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12399 		tmp_tcph[0] = TCPOPT_NOP;
12400 		tmp_tcph[1] = TCPOPT_NOP;
12401 		tmp_tcph[2] = TCPOPT_TSTAMP;
12402 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12403 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12404 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12405 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12406 	} else {
12407 		tcp->tcp_snd_ts_ok = B_FALSE;
12408 	}
12409 
12410 	/*
12411 	 * Process SACK options.  If SACK is enabled for this connection,
12412 	 * then allocate the SACK info structure.  Note the following ways
12413 	 * when tcp_snd_sack_ok is set to true.
12414 	 *
12415 	 * For active connection: in tcp_adapt_ire() called in
12416 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12417 	 * is checked.
12418 	 *
12419 	 * For passive connection: in tcp_adapt_ire() called in
12420 	 * tcp_accept_comm().
12421 	 *
12422 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12423 	 * That check makes sure that if we did not send a SACK OK option,
12424 	 * we will not enable SACK for this connection even though the other
12425 	 * side sends us SACK OK option.  For active connection, the SACK
12426 	 * info structure has already been allocated.  So we need to free
12427 	 * it if SACK is disabled.
12428 	 */
12429 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12430 	    (tcp->tcp_snd_sack_ok ||
12431 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12432 		/* This should be true only in the passive case. */
12433 		if (tcp->tcp_sack_info == NULL) {
12434 			ASSERT(TCP_IS_DETACHED(tcp));
12435 			tcp->tcp_sack_info =
12436 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12437 		}
12438 		if (tcp->tcp_sack_info == NULL) {
12439 			tcp->tcp_snd_sack_ok = B_FALSE;
12440 		} else {
12441 			tcp->tcp_snd_sack_ok = B_TRUE;
12442 			if (tcp->tcp_snd_ts_ok) {
12443 				tcp->tcp_max_sack_blk = 3;
12444 			} else {
12445 				tcp->tcp_max_sack_blk = 4;
12446 			}
12447 		}
12448 	} else {
12449 		/*
12450 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12451 		 * no SACK info will be used for this
12452 		 * connection.  This assumes that SACK usage
12453 		 * permission is negotiated.  This may need
12454 		 * to be changed once this is clarified.
12455 		 */
12456 		if (tcp->tcp_sack_info != NULL) {
12457 			ASSERT(tcp->tcp_notsack_list == NULL);
12458 			kmem_cache_free(tcp_sack_info_cache,
12459 			    tcp->tcp_sack_info);
12460 			tcp->tcp_sack_info = NULL;
12461 		}
12462 		tcp->tcp_snd_sack_ok = B_FALSE;
12463 	}
12464 
12465 	/*
12466 	 * Now we know the exact TCP/IP header length, subtract
12467 	 * that from tcp_mss to get our side's MSS.
12468 	 */
12469 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12470 	/*
12471 	 * Here we assume that the other side's header size will be equal to
12472 	 * our header size.  We calculate the real MSS accordingly.  Need to
12473 	 * take into additional stuffs IPsec puts in.
12474 	 *
12475 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12476 	 */
12477 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12478 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12479 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12480 
12481 	/*
12482 	 * Set MSS to the smaller one of both ends of the connection.
12483 	 * We should not have called tcp_mss_set() before, but our
12484 	 * side of the MSS should have been set to a proper value
12485 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12486 	 * STREAM head parameters properly.
12487 	 *
12488 	 * If we have a larger-than-16-bit window but the other side
12489 	 * didn't want to do window scale, tcp_rwnd_set() will take
12490 	 * care of that.
12491 	 */
12492 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12493 }
12494 
12495 /*
12496  * Sends the T_CONN_IND to the listener. The caller calls this
12497  * functions via squeue to get inside the listener's perimeter
12498  * once the 3 way hand shake is done a T_CONN_IND needs to be
12499  * sent. As an optimization, the caller can call this directly
12500  * if listener's perimeter is same as eager's.
12501  */
12502 /* ARGSUSED */
12503 void
12504 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12505 {
12506 	conn_t			*lconnp = (conn_t *)arg;
12507 	tcp_t			*listener = lconnp->conn_tcp;
12508 	tcp_t			*tcp;
12509 	struct T_conn_ind	*conn_ind;
12510 	ipaddr_t 		*addr_cache;
12511 	boolean_t		need_send_conn_ind = B_FALSE;
12512 	tcp_stack_t		*tcps = listener->tcp_tcps;
12513 
12514 	/* retrieve the eager */
12515 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12516 	ASSERT(conn_ind->OPT_offset != 0 &&
12517 	    conn_ind->OPT_length == sizeof (intptr_t));
12518 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12519 	    conn_ind->OPT_length);
12520 
12521 	/*
12522 	 * TLI/XTI applications will get confused by
12523 	 * sending eager as an option since it violates
12524 	 * the option semantics. So remove the eager as
12525 	 * option since TLI/XTI app doesn't need it anyway.
12526 	 */
12527 	if (!TCP_IS_SOCKET(listener)) {
12528 		conn_ind->OPT_length = 0;
12529 		conn_ind->OPT_offset = 0;
12530 	}
12531 	if (listener->tcp_state == TCPS_CLOSED ||
12532 	    TCP_IS_DETACHED(listener)) {
12533 		/*
12534 		 * If listener has closed, it would have caused a
12535 		 * a cleanup/blowoff to happen for the eager. We
12536 		 * just need to return.
12537 		 */
12538 		freemsg(mp);
12539 		return;
12540 	}
12541 
12542 
12543 	/*
12544 	 * if the conn_req_q is full defer passing up the
12545 	 * T_CONN_IND until space is availabe after t_accept()
12546 	 * processing
12547 	 */
12548 	mutex_enter(&listener->tcp_eager_lock);
12549 
12550 	/*
12551 	 * Take the eager out, if it is in the list of droppable eagers
12552 	 * as we are here because the 3W handshake is over.
12553 	 */
12554 	MAKE_UNDROPPABLE(tcp);
12555 
12556 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12557 		tcp_t *tail;
12558 
12559 		/*
12560 		 * The eager already has an extra ref put in tcp_rput_data
12561 		 * so that it stays till accept comes back even though it
12562 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12563 		 */
12564 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12565 		listener->tcp_conn_req_cnt_q0--;
12566 		listener->tcp_conn_req_cnt_q++;
12567 
12568 		/* Move from SYN_RCVD to ESTABLISHED list  */
12569 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12570 		    tcp->tcp_eager_prev_q0;
12571 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12572 		    tcp->tcp_eager_next_q0;
12573 		tcp->tcp_eager_prev_q0 = NULL;
12574 		tcp->tcp_eager_next_q0 = NULL;
12575 
12576 		/*
12577 		 * Insert at end of the queue because sockfs
12578 		 * sends down T_CONN_RES in chronological
12579 		 * order. Leaving the older conn indications
12580 		 * at front of the queue helps reducing search
12581 		 * time.
12582 		 */
12583 		tail = listener->tcp_eager_last_q;
12584 		if (tail != NULL)
12585 			tail->tcp_eager_next_q = tcp;
12586 		else
12587 			listener->tcp_eager_next_q = tcp;
12588 		listener->tcp_eager_last_q = tcp;
12589 		tcp->tcp_eager_next_q = NULL;
12590 		/*
12591 		 * Delay sending up the T_conn_ind until we are
12592 		 * done with the eager. Once we have have sent up
12593 		 * the T_conn_ind, the accept can potentially complete
12594 		 * any time and release the refhold we have on the eager.
12595 		 */
12596 		need_send_conn_ind = B_TRUE;
12597 	} else {
12598 		/*
12599 		 * Defer connection on q0 and set deferred
12600 		 * connection bit true
12601 		 */
12602 		tcp->tcp_conn_def_q0 = B_TRUE;
12603 
12604 		/* take tcp out of q0 ... */
12605 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12606 		    tcp->tcp_eager_next_q0;
12607 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12608 		    tcp->tcp_eager_prev_q0;
12609 
12610 		/* ... and place it at the end of q0 */
12611 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12612 		tcp->tcp_eager_next_q0 = listener;
12613 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12614 		listener->tcp_eager_prev_q0 = tcp;
12615 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12616 	}
12617 
12618 	/* we have timed out before */
12619 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12620 		tcp->tcp_syn_rcvd_timeout = 0;
12621 		listener->tcp_syn_rcvd_timeout--;
12622 		if (listener->tcp_syn_defense &&
12623 		    listener->tcp_syn_rcvd_timeout <=
12624 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12625 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12626 		    listener->tcp_last_rcv_lbolt)) {
12627 			/*
12628 			 * Turn off the defense mode if we
12629 			 * believe the SYN attack is over.
12630 			 */
12631 			listener->tcp_syn_defense = B_FALSE;
12632 			if (listener->tcp_ip_addr_cache) {
12633 				kmem_free((void *)listener->tcp_ip_addr_cache,
12634 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12635 				listener->tcp_ip_addr_cache = NULL;
12636 			}
12637 		}
12638 	}
12639 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12640 	if (addr_cache != NULL) {
12641 		/*
12642 		 * We have finished a 3-way handshake with this
12643 		 * remote host. This proves the IP addr is good.
12644 		 * Cache it!
12645 		 */
12646 		addr_cache[IP_ADDR_CACHE_HASH(
12647 		    tcp->tcp_remote)] = tcp->tcp_remote;
12648 	}
12649 	mutex_exit(&listener->tcp_eager_lock);
12650 	if (need_send_conn_ind)
12651 		putnext(listener->tcp_rq, mp);
12652 }
12653 
12654 mblk_t *
12655 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12656     uint_t *ifindexp, ip6_pkt_t *ippp)
12657 {
12658 	ip_pktinfo_t	*pinfo;
12659 	ip6_t		*ip6h;
12660 	uchar_t		*rptr;
12661 	mblk_t		*first_mp = mp;
12662 	boolean_t	mctl_present = B_FALSE;
12663 	uint_t 		ifindex = 0;
12664 	ip6_pkt_t	ipp;
12665 	uint_t		ipvers;
12666 	uint_t		ip_hdr_len;
12667 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12668 
12669 	rptr = mp->b_rptr;
12670 	ASSERT(OK_32PTR(rptr));
12671 	ASSERT(tcp != NULL);
12672 	ipp.ipp_fields = 0;
12673 
12674 	switch DB_TYPE(mp) {
12675 	case M_CTL:
12676 		mp = mp->b_cont;
12677 		if (mp == NULL) {
12678 			freemsg(first_mp);
12679 			return (NULL);
12680 		}
12681 		if (DB_TYPE(mp) != M_DATA) {
12682 			freemsg(first_mp);
12683 			return (NULL);
12684 		}
12685 		mctl_present = B_TRUE;
12686 		break;
12687 	case M_DATA:
12688 		break;
12689 	default:
12690 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12691 		freemsg(mp);
12692 		return (NULL);
12693 	}
12694 	ipvers = IPH_HDR_VERSION(rptr);
12695 	if (ipvers == IPV4_VERSION) {
12696 		if (tcp == NULL) {
12697 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12698 			goto done;
12699 		}
12700 
12701 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12702 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12703 
12704 		/*
12705 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12706 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12707 		 */
12708 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12709 		    mctl_present) {
12710 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12711 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12712 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12713 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12714 				ipp.ipp_fields |= IPPF_IFINDEX;
12715 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12716 				ifindex = pinfo->ip_pkt_ifindex;
12717 			}
12718 			freeb(first_mp);
12719 			mctl_present = B_FALSE;
12720 		}
12721 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12722 	} else {
12723 		ip6h = (ip6_t *)rptr;
12724 
12725 		ASSERT(ipvers == IPV6_VERSION);
12726 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12727 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12728 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12729 
12730 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12731 			uint8_t	nexthdrp;
12732 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12733 
12734 			/* Look for ifindex information */
12735 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12736 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12737 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12738 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12739 					freemsg(first_mp);
12740 					return (NULL);
12741 				}
12742 
12743 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12744 					ASSERT(ip6i->ip6i_ifindex != 0);
12745 					ipp.ipp_fields |= IPPF_IFINDEX;
12746 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12747 					ifindex = ip6i->ip6i_ifindex;
12748 				}
12749 				rptr = (uchar_t *)&ip6i[1];
12750 				mp->b_rptr = rptr;
12751 				if (rptr == mp->b_wptr) {
12752 					mblk_t *mp1;
12753 					mp1 = mp->b_cont;
12754 					freeb(mp);
12755 					mp = mp1;
12756 					rptr = mp->b_rptr;
12757 				}
12758 				if (MBLKL(mp) < IPV6_HDR_LEN +
12759 				    sizeof (tcph_t)) {
12760 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12761 					freemsg(first_mp);
12762 					return (NULL);
12763 				}
12764 				ip6h = (ip6_t *)rptr;
12765 			}
12766 
12767 			/*
12768 			 * Find any potentially interesting extension headers
12769 			 * as well as the length of the IPv6 + extension
12770 			 * headers.
12771 			 */
12772 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12773 			/* Verify if this is a TCP packet */
12774 			if (nexthdrp != IPPROTO_TCP) {
12775 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12776 				freemsg(first_mp);
12777 				return (NULL);
12778 			}
12779 		} else {
12780 			ip_hdr_len = IPV6_HDR_LEN;
12781 		}
12782 	}
12783 
12784 done:
12785 	if (ipversp != NULL)
12786 		*ipversp = ipvers;
12787 	if (ip_hdr_lenp != NULL)
12788 		*ip_hdr_lenp = ip_hdr_len;
12789 	if (ippp != NULL)
12790 		*ippp = ipp;
12791 	if (ifindexp != NULL)
12792 		*ifindexp = ifindex;
12793 	if (mctl_present) {
12794 		freeb(first_mp);
12795 	}
12796 	return (mp);
12797 }
12798 
12799 /*
12800  * Handle M_DATA messages from IP. Its called directly from IP via
12801  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12802  * in this path.
12803  *
12804  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12805  * v4 and v6), we are called through tcp_input() and a M_CTL can
12806  * be present for options but tcp_find_pktinfo() deals with it. We
12807  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12808  *
12809  * The first argument is always the connp/tcp to which the mp belongs.
12810  * There are no exceptions to this rule. The caller has already put
12811  * a reference on this connp/tcp and once tcp_rput_data() returns,
12812  * the squeue will do the refrele.
12813  *
12814  * The TH_SYN for the listener directly go to tcp_conn_request via
12815  * squeue.
12816  *
12817  * sqp: NULL = recursive, sqp != NULL means called from squeue
12818  */
12819 void
12820 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12821 {
12822 	int32_t		bytes_acked;
12823 	int32_t		gap;
12824 	mblk_t		*mp1;
12825 	uint_t		flags;
12826 	uint32_t	new_swnd = 0;
12827 	uchar_t		*iphdr;
12828 	uchar_t		*rptr;
12829 	int32_t		rgap;
12830 	uint32_t	seg_ack;
12831 	int		seg_len;
12832 	uint_t		ip_hdr_len;
12833 	uint32_t	seg_seq;
12834 	tcph_t		*tcph;
12835 	int		urp;
12836 	tcp_opt_t	tcpopt;
12837 	uint_t		ipvers;
12838 	ip6_pkt_t	ipp;
12839 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12840 	uint32_t	cwnd;
12841 	uint32_t	add;
12842 	int		npkt;
12843 	int		mss;
12844 	conn_t		*connp = (conn_t *)arg;
12845 	squeue_t	*sqp = (squeue_t *)arg2;
12846 	tcp_t		*tcp = connp->conn_tcp;
12847 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12848 
12849 	/*
12850 	 * RST from fused tcp loopback peer should trigger an unfuse.
12851 	 */
12852 	if (tcp->tcp_fused) {
12853 		TCP_STAT(tcps, tcp_fusion_aborted);
12854 		tcp_unfuse(tcp);
12855 	}
12856 
12857 	iphdr = mp->b_rptr;
12858 	rptr = mp->b_rptr;
12859 	ASSERT(OK_32PTR(rptr));
12860 
12861 	/*
12862 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12863 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12864 	 * necessary information.
12865 	 */
12866 	if (IPCL_IS_TCP4(connp)) {
12867 		ipvers = IPV4_VERSION;
12868 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12869 	} else {
12870 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12871 		    NULL, &ipp);
12872 		if (mp == NULL) {
12873 			TCP_STAT(tcps, tcp_rput_v6_error);
12874 			return;
12875 		}
12876 		iphdr = mp->b_rptr;
12877 		rptr = mp->b_rptr;
12878 	}
12879 	ASSERT(DB_TYPE(mp) == M_DATA);
12880 
12881 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12882 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12883 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12884 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12885 	seg_len = (int)(mp->b_wptr - rptr) -
12886 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12887 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12888 		do {
12889 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12890 			    (uintptr_t)INT_MAX);
12891 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12892 		} while ((mp1 = mp1->b_cont) != NULL &&
12893 		    mp1->b_datap->db_type == M_DATA);
12894 	}
12895 
12896 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12897 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12898 		    seg_len, tcph);
12899 		return;
12900 	}
12901 
12902 	if (sqp != NULL) {
12903 		/*
12904 		 * This is the correct place to update tcp_last_recv_time. Note
12905 		 * that it is also updated for tcp structure that belongs to
12906 		 * global and listener queues which do not really need updating.
12907 		 * But that should not cause any harm.  And it is updated for
12908 		 * all kinds of incoming segments, not only for data segments.
12909 		 */
12910 		tcp->tcp_last_recv_time = lbolt;
12911 	}
12912 
12913 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12914 
12915 	BUMP_LOCAL(tcp->tcp_ibsegs);
12916 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12917 
12918 	if ((flags & TH_URG) && sqp != NULL) {
12919 		/*
12920 		 * TCP can't handle urgent pointers that arrive before
12921 		 * the connection has been accept()ed since it can't
12922 		 * buffer OOB data.  Discard segment if this happens.
12923 		 *
12924 		 * We can't just rely on a non-null tcp_listener to indicate
12925 		 * that the accept() has completed since unlinking of the
12926 		 * eager and completion of the accept are not atomic.
12927 		 * tcp_detached, when it is not set (B_FALSE) indicates
12928 		 * that the accept() has completed.
12929 		 *
12930 		 * Nor can it reassemble urgent pointers, so discard
12931 		 * if it's not the next segment expected.
12932 		 *
12933 		 * Otherwise, collapse chain into one mblk (discard if
12934 		 * that fails).  This makes sure the headers, retransmitted
12935 		 * data, and new data all are in the same mblk.
12936 		 */
12937 		ASSERT(mp != NULL);
12938 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12939 			freemsg(mp);
12940 			return;
12941 		}
12942 		/* Update pointers into message */
12943 		iphdr = rptr = mp->b_rptr;
12944 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12945 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12946 			/*
12947 			 * Since we can't handle any data with this urgent
12948 			 * pointer that is out of sequence, we expunge
12949 			 * the data.  This allows us to still register
12950 			 * the urgent mark and generate the M_PCSIG,
12951 			 * which we can do.
12952 			 */
12953 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12954 			seg_len = 0;
12955 		}
12956 	}
12957 
12958 	switch (tcp->tcp_state) {
12959 	case TCPS_SYN_SENT:
12960 		if (flags & TH_ACK) {
12961 			/*
12962 			 * Note that our stack cannot send data before a
12963 			 * connection is established, therefore the
12964 			 * following check is valid.  Otherwise, it has
12965 			 * to be changed.
12966 			 */
12967 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12968 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12969 				freemsg(mp);
12970 				if (flags & TH_RST)
12971 					return;
12972 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12973 				    tcp, seg_ack, 0, TH_RST);
12974 				return;
12975 			}
12976 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12977 		}
12978 		if (flags & TH_RST) {
12979 			freemsg(mp);
12980 			if (flags & TH_ACK)
12981 				(void) tcp_clean_death(tcp,
12982 				    ECONNREFUSED, 13);
12983 			return;
12984 		}
12985 		if (!(flags & TH_SYN)) {
12986 			freemsg(mp);
12987 			return;
12988 		}
12989 
12990 		/* Process all TCP options. */
12991 		tcp_process_options(tcp, tcph);
12992 		/*
12993 		 * The following changes our rwnd to be a multiple of the
12994 		 * MIN(peer MSS, our MSS) for performance reason.
12995 		 */
12996 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12997 		    tcp->tcp_mss));
12998 
12999 		/* Is the other end ECN capable? */
13000 		if (tcp->tcp_ecn_ok) {
13001 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13002 				tcp->tcp_ecn_ok = B_FALSE;
13003 			}
13004 		}
13005 		/*
13006 		 * Clear ECN flags because it may interfere with later
13007 		 * processing.
13008 		 */
13009 		flags &= ~(TH_ECE|TH_CWR);
13010 
13011 		tcp->tcp_irs = seg_seq;
13012 		tcp->tcp_rack = seg_seq;
13013 		tcp->tcp_rnxt = seg_seq + 1;
13014 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13015 		if (!TCP_IS_DETACHED(tcp)) {
13016 			/* Allocate room for SACK options if needed. */
13017 			if (tcp->tcp_snd_sack_ok) {
13018 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13019 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13020 				    (tcp->tcp_loopback ? 0 :
13021 				    tcps->tcps_wroff_xtra));
13022 			} else {
13023 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13024 				    tcp->tcp_hdr_len +
13025 				    (tcp->tcp_loopback ? 0 :
13026 				    tcps->tcps_wroff_xtra));
13027 			}
13028 		}
13029 		if (flags & TH_ACK) {
13030 			/*
13031 			 * If we can't get the confirmation upstream, pretend
13032 			 * we didn't even see this one.
13033 			 *
13034 			 * XXX: how can we pretend we didn't see it if we
13035 			 * have updated rnxt et. al.
13036 			 *
13037 			 * For loopback we defer sending up the T_CONN_CON
13038 			 * until after some checks below.
13039 			 */
13040 			mp1 = NULL;
13041 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13042 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13043 				freemsg(mp);
13044 				return;
13045 			}
13046 			/* SYN was acked - making progress */
13047 			if (tcp->tcp_ipversion == IPV6_VERSION)
13048 				tcp->tcp_ip_forward_progress = B_TRUE;
13049 
13050 			/* One for the SYN */
13051 			tcp->tcp_suna = tcp->tcp_iss + 1;
13052 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13053 			tcp->tcp_state = TCPS_ESTABLISHED;
13054 
13055 			/*
13056 			 * If SYN was retransmitted, need to reset all
13057 			 * retransmission info.  This is because this
13058 			 * segment will be treated as a dup ACK.
13059 			 */
13060 			if (tcp->tcp_rexmit) {
13061 				tcp->tcp_rexmit = B_FALSE;
13062 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13063 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13064 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13065 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13066 				tcp->tcp_ms_we_have_waited = 0;
13067 
13068 				/*
13069 				 * Set tcp_cwnd back to 1 MSS, per
13070 				 * recommendation from
13071 				 * draft-floyd-incr-init-win-01.txt,
13072 				 * Increasing TCP's Initial Window.
13073 				 */
13074 				tcp->tcp_cwnd = tcp->tcp_mss;
13075 			}
13076 
13077 			tcp->tcp_swl1 = seg_seq;
13078 			tcp->tcp_swl2 = seg_ack;
13079 
13080 			new_swnd = BE16_TO_U16(tcph->th_win);
13081 			tcp->tcp_swnd = new_swnd;
13082 			if (new_swnd > tcp->tcp_max_swnd)
13083 				tcp->tcp_max_swnd = new_swnd;
13084 
13085 			/*
13086 			 * Always send the three-way handshake ack immediately
13087 			 * in order to make the connection complete as soon as
13088 			 * possible on the accepting host.
13089 			 */
13090 			flags |= TH_ACK_NEEDED;
13091 
13092 			/*
13093 			 * Special case for loopback.  At this point we have
13094 			 * received SYN-ACK from the remote endpoint.  In
13095 			 * order to ensure that both endpoints reach the
13096 			 * fused state prior to any data exchange, the final
13097 			 * ACK needs to be sent before we indicate T_CONN_CON
13098 			 * to the module upstream.
13099 			 */
13100 			if (tcp->tcp_loopback) {
13101 				mblk_t *ack_mp;
13102 
13103 				ASSERT(!tcp->tcp_unfusable);
13104 				ASSERT(mp1 != NULL);
13105 				/*
13106 				 * For loopback, we always get a pure SYN-ACK
13107 				 * and only need to send back the final ACK
13108 				 * with no data (this is because the other
13109 				 * tcp is ours and we don't do T/TCP).  This
13110 				 * final ACK triggers the passive side to
13111 				 * perform fusion in ESTABLISHED state.
13112 				 */
13113 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13114 					if (tcp->tcp_ack_tid != 0) {
13115 						(void) TCP_TIMER_CANCEL(tcp,
13116 						    tcp->tcp_ack_tid);
13117 						tcp->tcp_ack_tid = 0;
13118 					}
13119 					TCP_RECORD_TRACE(tcp, ack_mp,
13120 					    TCP_TRACE_SEND_PKT);
13121 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13122 					BUMP_LOCAL(tcp->tcp_obsegs);
13123 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13124 
13125 					/* Send up T_CONN_CON */
13126 					putnext(tcp->tcp_rq, mp1);
13127 
13128 					freemsg(mp);
13129 					return;
13130 				}
13131 				/*
13132 				 * Forget fusion; we need to handle more
13133 				 * complex cases below.  Send the deferred
13134 				 * T_CONN_CON message upstream and proceed
13135 				 * as usual.  Mark this tcp as not capable
13136 				 * of fusion.
13137 				 */
13138 				TCP_STAT(tcps, tcp_fusion_unfusable);
13139 				tcp->tcp_unfusable = B_TRUE;
13140 				putnext(tcp->tcp_rq, mp1);
13141 			}
13142 
13143 			/*
13144 			 * Check to see if there is data to be sent.  If
13145 			 * yes, set the transmit flag.  Then check to see
13146 			 * if received data processing needs to be done.
13147 			 * If not, go straight to xmit_check.  This short
13148 			 * cut is OK as we don't support T/TCP.
13149 			 */
13150 			if (tcp->tcp_unsent)
13151 				flags |= TH_XMIT_NEEDED;
13152 
13153 			if (seg_len == 0 && !(flags & TH_URG)) {
13154 				freemsg(mp);
13155 				goto xmit_check;
13156 			}
13157 
13158 			flags &= ~TH_SYN;
13159 			seg_seq++;
13160 			break;
13161 		}
13162 		tcp->tcp_state = TCPS_SYN_RCVD;
13163 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13164 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13165 		if (mp1) {
13166 			DB_CPID(mp1) = tcp->tcp_cpid;
13167 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13168 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13169 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13170 		}
13171 		freemsg(mp);
13172 		return;
13173 	case TCPS_SYN_RCVD:
13174 		if (flags & TH_ACK) {
13175 			/*
13176 			 * In this state, a SYN|ACK packet is either bogus
13177 			 * because the other side must be ACKing our SYN which
13178 			 * indicates it has seen the ACK for their SYN and
13179 			 * shouldn't retransmit it or we're crossing SYNs
13180 			 * on active open.
13181 			 */
13182 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13183 				freemsg(mp);
13184 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13185 				    tcp, seg_ack, 0, TH_RST);
13186 				return;
13187 			}
13188 			/*
13189 			 * NOTE: RFC 793 pg. 72 says this should be
13190 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13191 			 * but that would mean we have an ack that ignored
13192 			 * our SYN.
13193 			 */
13194 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13195 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13196 				freemsg(mp);
13197 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13198 				    tcp, seg_ack, 0, TH_RST);
13199 				return;
13200 			}
13201 		}
13202 		break;
13203 	case TCPS_LISTEN:
13204 		/*
13205 		 * Only a TLI listener can come through this path when a
13206 		 * acceptor is going back to be a listener and a packet
13207 		 * for the acceptor hits the classifier. For a socket
13208 		 * listener, this can never happen because a listener
13209 		 * can never accept connection on itself and hence a
13210 		 * socket acceptor can not go back to being a listener.
13211 		 */
13212 		ASSERT(!TCP_IS_SOCKET(tcp));
13213 		/*FALLTHRU*/
13214 	case TCPS_CLOSED:
13215 	case TCPS_BOUND: {
13216 		conn_t	*new_connp;
13217 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13218 
13219 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13220 		if (new_connp != NULL) {
13221 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13222 			return;
13223 		}
13224 		/* We failed to classify. For now just drop the packet */
13225 		freemsg(mp);
13226 		return;
13227 	}
13228 	case TCPS_IDLE:
13229 		/*
13230 		 * Handle the case where the tcp_clean_death() has happened
13231 		 * on a connection (application hasn't closed yet) but a packet
13232 		 * was already queued on squeue before tcp_clean_death()
13233 		 * was processed. Calling tcp_clean_death() twice on same
13234 		 * connection can result in weird behaviour.
13235 		 */
13236 		freemsg(mp);
13237 		return;
13238 	default:
13239 		break;
13240 	}
13241 
13242 	/*
13243 	 * Already on the correct queue/perimeter.
13244 	 * If this is a detached connection and not an eager
13245 	 * connection hanging off a listener then new data
13246 	 * (past the FIN) will cause a reset.
13247 	 * We do a special check here where it
13248 	 * is out of the main line, rather than check
13249 	 * if we are detached every time we see new
13250 	 * data down below.
13251 	 */
13252 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13253 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13254 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13255 		TCP_RECORD_TRACE(tcp,
13256 		    mp, TCP_TRACE_RECV_PKT);
13257 
13258 		freemsg(mp);
13259 		/*
13260 		 * This could be an SSL closure alert. We're detached so just
13261 		 * acknowledge it this last time.
13262 		 */
13263 		if (tcp->tcp_kssl_ctx != NULL) {
13264 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13265 			tcp->tcp_kssl_ctx = NULL;
13266 
13267 			tcp->tcp_rnxt += seg_len;
13268 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13269 			flags |= TH_ACK_NEEDED;
13270 			goto ack_check;
13271 		}
13272 
13273 		tcp_xmit_ctl("new data when detached", tcp,
13274 		    tcp->tcp_snxt, 0, TH_RST);
13275 		(void) tcp_clean_death(tcp, EPROTO, 12);
13276 		return;
13277 	}
13278 
13279 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13280 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13281 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13282 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13283 
13284 	if (tcp->tcp_snd_ts_ok) {
13285 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13286 			/*
13287 			 * This segment is not acceptable.
13288 			 * Drop it and send back an ACK.
13289 			 */
13290 			freemsg(mp);
13291 			flags |= TH_ACK_NEEDED;
13292 			goto ack_check;
13293 		}
13294 	} else if (tcp->tcp_snd_sack_ok) {
13295 		ASSERT(tcp->tcp_sack_info != NULL);
13296 		tcpopt.tcp = tcp;
13297 		/*
13298 		 * SACK info in already updated in tcp_parse_options.  Ignore
13299 		 * all other TCP options...
13300 		 */
13301 		(void) tcp_parse_options(tcph, &tcpopt);
13302 	}
13303 try_again:;
13304 	mss = tcp->tcp_mss;
13305 	gap = seg_seq - tcp->tcp_rnxt;
13306 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13307 	/*
13308 	 * gap is the amount of sequence space between what we expect to see
13309 	 * and what we got for seg_seq.  A positive value for gap means
13310 	 * something got lost.  A negative value means we got some old stuff.
13311 	 */
13312 	if (gap < 0) {
13313 		/* Old stuff present.  Is the SYN in there? */
13314 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13315 		    (seg_len != 0)) {
13316 			flags &= ~TH_SYN;
13317 			seg_seq++;
13318 			urp--;
13319 			/* Recompute the gaps after noting the SYN. */
13320 			goto try_again;
13321 		}
13322 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13323 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13324 		    (seg_len > -gap ? -gap : seg_len));
13325 		/* Remove the old stuff from seg_len. */
13326 		seg_len += gap;
13327 		/*
13328 		 * Anything left?
13329 		 * Make sure to check for unack'd FIN when rest of data
13330 		 * has been previously ack'd.
13331 		 */
13332 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13333 			/*
13334 			 * Resets are only valid if they lie within our offered
13335 			 * window.  If the RST bit is set, we just ignore this
13336 			 * segment.
13337 			 */
13338 			if (flags & TH_RST) {
13339 				freemsg(mp);
13340 				return;
13341 			}
13342 
13343 			/*
13344 			 * The arriving of dup data packets indicate that we
13345 			 * may have postponed an ack for too long, or the other
13346 			 * side's RTT estimate is out of shape. Start acking
13347 			 * more often.
13348 			 */
13349 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13350 			    tcp->tcp_rack_cnt >= 1 &&
13351 			    tcp->tcp_rack_abs_max > 2) {
13352 				tcp->tcp_rack_abs_max--;
13353 			}
13354 			tcp->tcp_rack_cur_max = 1;
13355 
13356 			/*
13357 			 * This segment is "unacceptable".  None of its
13358 			 * sequence space lies within our advertized window.
13359 			 *
13360 			 * Adjust seg_len to the original value for tracing.
13361 			 */
13362 			seg_len -= gap;
13363 			if (tcp->tcp_debug) {
13364 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13365 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13366 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13367 				    "seg_len %d, rnxt %u, snxt %u, %s",
13368 				    gap, rgap, flags, seg_seq, seg_ack,
13369 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13370 				    tcp_display(tcp, NULL,
13371 				    DISP_ADDR_AND_PORT));
13372 			}
13373 
13374 			/*
13375 			 * Arrange to send an ACK in response to the
13376 			 * unacceptable segment per RFC 793 page 69. There
13377 			 * is only one small difference between ours and the
13378 			 * acceptability test in the RFC - we accept ACK-only
13379 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13380 			 * will be generated.
13381 			 *
13382 			 * Note that we have to ACK an ACK-only packet at least
13383 			 * for stacks that send 0-length keep-alives with
13384 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13385 			 * section 4.2.3.6. As long as we don't ever generate
13386 			 * an unacceptable packet in response to an incoming
13387 			 * packet that is unacceptable, it should not cause
13388 			 * "ACK wars".
13389 			 */
13390 			flags |=  TH_ACK_NEEDED;
13391 
13392 			/*
13393 			 * Continue processing this segment in order to use the
13394 			 * ACK information it contains, but skip all other
13395 			 * sequence-number processing.	Processing the ACK
13396 			 * information is necessary in order to
13397 			 * re-synchronize connections that may have lost
13398 			 * synchronization.
13399 			 *
13400 			 * We clear seg_len and flag fields related to
13401 			 * sequence number processing as they are not
13402 			 * to be trusted for an unacceptable segment.
13403 			 */
13404 			seg_len = 0;
13405 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13406 			goto process_ack;
13407 		}
13408 
13409 		/* Fix seg_seq, and chew the gap off the front. */
13410 		seg_seq = tcp->tcp_rnxt;
13411 		urp += gap;
13412 		do {
13413 			mblk_t	*mp2;
13414 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13415 			    (uintptr_t)UINT_MAX);
13416 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13417 			if (gap > 0) {
13418 				mp->b_rptr = mp->b_wptr - gap;
13419 				break;
13420 			}
13421 			mp2 = mp;
13422 			mp = mp->b_cont;
13423 			freeb(mp2);
13424 		} while (gap < 0);
13425 		/*
13426 		 * If the urgent data has already been acknowledged, we
13427 		 * should ignore TH_URG below
13428 		 */
13429 		if (urp < 0)
13430 			flags &= ~TH_URG;
13431 	}
13432 	/*
13433 	 * rgap is the amount of stuff received out of window.  A negative
13434 	 * value is the amount out of window.
13435 	 */
13436 	if (rgap < 0) {
13437 		mblk_t	*mp2;
13438 
13439 		if (tcp->tcp_rwnd == 0) {
13440 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13441 		} else {
13442 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13443 			UPDATE_MIB(&tcps->tcps_mib,
13444 			    tcpInDataPastWinBytes, -rgap);
13445 		}
13446 
13447 		/*
13448 		 * seg_len does not include the FIN, so if more than
13449 		 * just the FIN is out of window, we act like we don't
13450 		 * see it.  (If just the FIN is out of window, rgap
13451 		 * will be zero and we will go ahead and acknowledge
13452 		 * the FIN.)
13453 		 */
13454 		flags &= ~TH_FIN;
13455 
13456 		/* Fix seg_len and make sure there is something left. */
13457 		seg_len += rgap;
13458 		if (seg_len <= 0) {
13459 			/*
13460 			 * Resets are only valid if they lie within our offered
13461 			 * window.  If the RST bit is set, we just ignore this
13462 			 * segment.
13463 			 */
13464 			if (flags & TH_RST) {
13465 				freemsg(mp);
13466 				return;
13467 			}
13468 
13469 			/* Per RFC 793, we need to send back an ACK. */
13470 			flags |= TH_ACK_NEEDED;
13471 
13472 			/*
13473 			 * Send SIGURG as soon as possible i.e. even
13474 			 * if the TH_URG was delivered in a window probe
13475 			 * packet (which will be unacceptable).
13476 			 *
13477 			 * We generate a signal if none has been generated
13478 			 * for this connection or if this is a new urgent
13479 			 * byte. Also send a zero-length "unmarked" message
13480 			 * to inform SIOCATMARK that this is not the mark.
13481 			 *
13482 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13483 			 * is sent up. This plus the check for old data
13484 			 * (gap >= 0) handles the wraparound of the sequence
13485 			 * number space without having to always track the
13486 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13487 			 * this max in its rcv_up variable).
13488 			 *
13489 			 * This prevents duplicate SIGURGS due to a "late"
13490 			 * zero-window probe when the T_EXDATA_IND has already
13491 			 * been sent up.
13492 			 */
13493 			if ((flags & TH_URG) &&
13494 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13495 			    tcp->tcp_urp_last))) {
13496 				mp1 = allocb(0, BPRI_MED);
13497 				if (mp1 == NULL) {
13498 					freemsg(mp);
13499 					return;
13500 				}
13501 				if (!TCP_IS_DETACHED(tcp) &&
13502 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13503 				    SIGURG)) {
13504 					/* Try again on the rexmit. */
13505 					freemsg(mp1);
13506 					freemsg(mp);
13507 					return;
13508 				}
13509 				/*
13510 				 * If the next byte would be the mark
13511 				 * then mark with MARKNEXT else mark
13512 				 * with NOTMARKNEXT.
13513 				 */
13514 				if (gap == 0 && urp == 0)
13515 					mp1->b_flag |= MSGMARKNEXT;
13516 				else
13517 					mp1->b_flag |= MSGNOTMARKNEXT;
13518 				freemsg(tcp->tcp_urp_mark_mp);
13519 				tcp->tcp_urp_mark_mp = mp1;
13520 				flags |= TH_SEND_URP_MARK;
13521 				tcp->tcp_urp_last_valid = B_TRUE;
13522 				tcp->tcp_urp_last = urp + seg_seq;
13523 			}
13524 			/*
13525 			 * If this is a zero window probe, continue to
13526 			 * process the ACK part.  But we need to set seg_len
13527 			 * to 0 to avoid data processing.  Otherwise just
13528 			 * drop the segment and send back an ACK.
13529 			 */
13530 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13531 				flags &= ~(TH_SYN | TH_URG);
13532 				seg_len = 0;
13533 				goto process_ack;
13534 			} else {
13535 				freemsg(mp);
13536 				goto ack_check;
13537 			}
13538 		}
13539 		/* Pitch out of window stuff off the end. */
13540 		rgap = seg_len;
13541 		mp2 = mp;
13542 		do {
13543 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13544 			    (uintptr_t)INT_MAX);
13545 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13546 			if (rgap < 0) {
13547 				mp2->b_wptr += rgap;
13548 				if ((mp1 = mp2->b_cont) != NULL) {
13549 					mp2->b_cont = NULL;
13550 					freemsg(mp1);
13551 				}
13552 				break;
13553 			}
13554 		} while ((mp2 = mp2->b_cont) != NULL);
13555 	}
13556 ok:;
13557 	/*
13558 	 * TCP should check ECN info for segments inside the window only.
13559 	 * Therefore the check should be done here.
13560 	 */
13561 	if (tcp->tcp_ecn_ok) {
13562 		if (flags & TH_CWR) {
13563 			tcp->tcp_ecn_echo_on = B_FALSE;
13564 		}
13565 		/*
13566 		 * Note that both ECN_CE and CWR can be set in the
13567 		 * same segment.  In this case, we once again turn
13568 		 * on ECN_ECHO.
13569 		 */
13570 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13571 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13572 
13573 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13574 				tcp->tcp_ecn_echo_on = B_TRUE;
13575 			}
13576 		} else {
13577 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13578 
13579 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13580 			    htonl(IPH_ECN_CE << 20)) {
13581 				tcp->tcp_ecn_echo_on = B_TRUE;
13582 			}
13583 		}
13584 	}
13585 
13586 	/*
13587 	 * Check whether we can update tcp_ts_recent.  This test is
13588 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13589 	 * Extensions for High Performance: An Update", Internet Draft.
13590 	 */
13591 	if (tcp->tcp_snd_ts_ok &&
13592 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13593 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13594 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13595 		tcp->tcp_last_rcv_lbolt = lbolt64;
13596 	}
13597 
13598 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13599 		/*
13600 		 * FIN in an out of order segment.  We record this in
13601 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13602 		 * Clear the FIN so that any check on FIN flag will fail.
13603 		 * Remember that FIN also counts in the sequence number
13604 		 * space.  So we need to ack out of order FIN only segments.
13605 		 */
13606 		if (flags & TH_FIN) {
13607 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13608 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13609 			flags &= ~TH_FIN;
13610 			flags |= TH_ACK_NEEDED;
13611 		}
13612 		if (seg_len > 0) {
13613 			/* Fill in the SACK blk list. */
13614 			if (tcp->tcp_snd_sack_ok) {
13615 				ASSERT(tcp->tcp_sack_info != NULL);
13616 				tcp_sack_insert(tcp->tcp_sack_list,
13617 				    seg_seq, seg_seq + seg_len,
13618 				    &(tcp->tcp_num_sack_blk));
13619 			}
13620 
13621 			/*
13622 			 * Attempt reassembly and see if we have something
13623 			 * ready to go.
13624 			 */
13625 			mp = tcp_reass(tcp, mp, seg_seq);
13626 			/* Always ack out of order packets */
13627 			flags |= TH_ACK_NEEDED | TH_PUSH;
13628 			if (mp) {
13629 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13630 				    (uintptr_t)INT_MAX);
13631 				seg_len = mp->b_cont ? msgdsize(mp) :
13632 				    (int)(mp->b_wptr - mp->b_rptr);
13633 				seg_seq = tcp->tcp_rnxt;
13634 				/*
13635 				 * A gap is filled and the seq num and len
13636 				 * of the gap match that of a previously
13637 				 * received FIN, put the FIN flag back in.
13638 				 */
13639 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13640 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13641 					flags |= TH_FIN;
13642 					tcp->tcp_valid_bits &=
13643 					    ~TCP_OFO_FIN_VALID;
13644 				}
13645 			} else {
13646 				/*
13647 				 * Keep going even with NULL mp.
13648 				 * There may be a useful ACK or something else
13649 				 * we don't want to miss.
13650 				 *
13651 				 * But TCP should not perform fast retransmit
13652 				 * because of the ack number.  TCP uses
13653 				 * seg_len == 0 to determine if it is a pure
13654 				 * ACK.  And this is not a pure ACK.
13655 				 */
13656 				seg_len = 0;
13657 				ofo_seg = B_TRUE;
13658 			}
13659 		}
13660 	} else if (seg_len > 0) {
13661 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13662 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13663 		/*
13664 		 * If an out of order FIN was received before, and the seq
13665 		 * num and len of the new segment match that of the FIN,
13666 		 * put the FIN flag back in.
13667 		 */
13668 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13669 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13670 			flags |= TH_FIN;
13671 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13672 		}
13673 	}
13674 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13675 	if (flags & TH_RST) {
13676 		freemsg(mp);
13677 		switch (tcp->tcp_state) {
13678 		case TCPS_SYN_RCVD:
13679 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13680 			break;
13681 		case TCPS_ESTABLISHED:
13682 		case TCPS_FIN_WAIT_1:
13683 		case TCPS_FIN_WAIT_2:
13684 		case TCPS_CLOSE_WAIT:
13685 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13686 			break;
13687 		case TCPS_CLOSING:
13688 		case TCPS_LAST_ACK:
13689 			(void) tcp_clean_death(tcp, 0, 16);
13690 			break;
13691 		default:
13692 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13693 			(void) tcp_clean_death(tcp, ENXIO, 17);
13694 			break;
13695 		}
13696 		return;
13697 	}
13698 	if (flags & TH_SYN) {
13699 		/*
13700 		 * See RFC 793, Page 71
13701 		 *
13702 		 * The seq number must be in the window as it should
13703 		 * be "fixed" above.  If it is outside window, it should
13704 		 * be already rejected.  Note that we allow seg_seq to be
13705 		 * rnxt + rwnd because we want to accept 0 window probe.
13706 		 */
13707 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13708 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13709 		freemsg(mp);
13710 		/*
13711 		 * If the ACK flag is not set, just use our snxt as the
13712 		 * seq number of the RST segment.
13713 		 */
13714 		if (!(flags & TH_ACK)) {
13715 			seg_ack = tcp->tcp_snxt;
13716 		}
13717 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13718 		    TH_RST|TH_ACK);
13719 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13720 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13721 		return;
13722 	}
13723 	/*
13724 	 * urp could be -1 when the urp field in the packet is 0
13725 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13726 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13727 	 */
13728 	if (flags & TH_URG && urp >= 0) {
13729 		if (!tcp->tcp_urp_last_valid ||
13730 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13731 			/*
13732 			 * If we haven't generated the signal yet for this
13733 			 * urgent pointer value, do it now.  Also, send up a
13734 			 * zero-length M_DATA indicating whether or not this is
13735 			 * the mark. The latter is not needed when a
13736 			 * T_EXDATA_IND is sent up. However, if there are
13737 			 * allocation failures this code relies on the sender
13738 			 * retransmitting and the socket code for determining
13739 			 * the mark should not block waiting for the peer to
13740 			 * transmit. Thus, for simplicity we always send up the
13741 			 * mark indication.
13742 			 */
13743 			mp1 = allocb(0, BPRI_MED);
13744 			if (mp1 == NULL) {
13745 				freemsg(mp);
13746 				return;
13747 			}
13748 			if (!TCP_IS_DETACHED(tcp) &&
13749 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13750 				/* Try again on the rexmit. */
13751 				freemsg(mp1);
13752 				freemsg(mp);
13753 				return;
13754 			}
13755 			/*
13756 			 * Mark with NOTMARKNEXT for now.
13757 			 * The code below will change this to MARKNEXT
13758 			 * if we are at the mark.
13759 			 *
13760 			 * If there are allocation failures (e.g. in dupmsg
13761 			 * below) the next time tcp_rput_data sees the urgent
13762 			 * segment it will send up the MSG*MARKNEXT message.
13763 			 */
13764 			mp1->b_flag |= MSGNOTMARKNEXT;
13765 			freemsg(tcp->tcp_urp_mark_mp);
13766 			tcp->tcp_urp_mark_mp = mp1;
13767 			flags |= TH_SEND_URP_MARK;
13768 #ifdef DEBUG
13769 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13770 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13771 			    "last %x, %s",
13772 			    seg_seq, urp, tcp->tcp_urp_last,
13773 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13774 #endif /* DEBUG */
13775 			tcp->tcp_urp_last_valid = B_TRUE;
13776 			tcp->tcp_urp_last = urp + seg_seq;
13777 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13778 			/*
13779 			 * An allocation failure prevented the previous
13780 			 * tcp_rput_data from sending up the allocated
13781 			 * MSG*MARKNEXT message - send it up this time
13782 			 * around.
13783 			 */
13784 			flags |= TH_SEND_URP_MARK;
13785 		}
13786 
13787 		/*
13788 		 * If the urgent byte is in this segment, make sure that it is
13789 		 * all by itself.  This makes it much easier to deal with the
13790 		 * possibility of an allocation failure on the T_exdata_ind.
13791 		 * Note that seg_len is the number of bytes in the segment, and
13792 		 * urp is the offset into the segment of the urgent byte.
13793 		 * urp < seg_len means that the urgent byte is in this segment.
13794 		 */
13795 		if (urp < seg_len) {
13796 			if (seg_len != 1) {
13797 				uint32_t  tmp_rnxt;
13798 				/*
13799 				 * Break it up and feed it back in.
13800 				 * Re-attach the IP header.
13801 				 */
13802 				mp->b_rptr = iphdr;
13803 				if (urp > 0) {
13804 					/*
13805 					 * There is stuff before the urgent
13806 					 * byte.
13807 					 */
13808 					mp1 = dupmsg(mp);
13809 					if (!mp1) {
13810 						/*
13811 						 * Trim from urgent byte on.
13812 						 * The rest will come back.
13813 						 */
13814 						(void) adjmsg(mp,
13815 						    urp - seg_len);
13816 						tcp_rput_data(connp,
13817 						    mp, NULL);
13818 						return;
13819 					}
13820 					(void) adjmsg(mp1, urp - seg_len);
13821 					/* Feed this piece back in. */
13822 					tmp_rnxt = tcp->tcp_rnxt;
13823 					tcp_rput_data(connp, mp1, NULL);
13824 					/*
13825 					 * If the data passed back in was not
13826 					 * processed (ie: bad ACK) sending
13827 					 * the remainder back in will cause a
13828 					 * loop. In this case, drop the
13829 					 * packet and let the sender try
13830 					 * sending a good packet.
13831 					 */
13832 					if (tmp_rnxt == tcp->tcp_rnxt) {
13833 						freemsg(mp);
13834 						return;
13835 					}
13836 				}
13837 				if (urp != seg_len - 1) {
13838 					uint32_t  tmp_rnxt;
13839 					/*
13840 					 * There is stuff after the urgent
13841 					 * byte.
13842 					 */
13843 					mp1 = dupmsg(mp);
13844 					if (!mp1) {
13845 						/*
13846 						 * Trim everything beyond the
13847 						 * urgent byte.  The rest will
13848 						 * come back.
13849 						 */
13850 						(void) adjmsg(mp,
13851 						    urp + 1 - seg_len);
13852 						tcp_rput_data(connp,
13853 						    mp, NULL);
13854 						return;
13855 					}
13856 					(void) adjmsg(mp1, urp + 1 - seg_len);
13857 					tmp_rnxt = tcp->tcp_rnxt;
13858 					tcp_rput_data(connp, mp1, NULL);
13859 					/*
13860 					 * If the data passed back in was not
13861 					 * processed (ie: bad ACK) sending
13862 					 * the remainder back in will cause a
13863 					 * loop. In this case, drop the
13864 					 * packet and let the sender try
13865 					 * sending a good packet.
13866 					 */
13867 					if (tmp_rnxt == tcp->tcp_rnxt) {
13868 						freemsg(mp);
13869 						return;
13870 					}
13871 				}
13872 				tcp_rput_data(connp, mp, NULL);
13873 				return;
13874 			}
13875 			/*
13876 			 * This segment contains only the urgent byte.  We
13877 			 * have to allocate the T_exdata_ind, if we can.
13878 			 */
13879 			if (!tcp->tcp_urp_mp) {
13880 				struct T_exdata_ind *tei;
13881 				mp1 = allocb(sizeof (struct T_exdata_ind),
13882 				    BPRI_MED);
13883 				if (!mp1) {
13884 					/*
13885 					 * Sigh... It'll be back.
13886 					 * Generate any MSG*MARK message now.
13887 					 */
13888 					freemsg(mp);
13889 					seg_len = 0;
13890 					if (flags & TH_SEND_URP_MARK) {
13891 
13892 
13893 						ASSERT(tcp->tcp_urp_mark_mp);
13894 						tcp->tcp_urp_mark_mp->b_flag &=
13895 						    ~MSGNOTMARKNEXT;
13896 						tcp->tcp_urp_mark_mp->b_flag |=
13897 						    MSGMARKNEXT;
13898 					}
13899 					goto ack_check;
13900 				}
13901 				mp1->b_datap->db_type = M_PROTO;
13902 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13903 				tei->PRIM_type = T_EXDATA_IND;
13904 				tei->MORE_flag = 0;
13905 				mp1->b_wptr = (uchar_t *)&tei[1];
13906 				tcp->tcp_urp_mp = mp1;
13907 #ifdef DEBUG
13908 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13909 				    "tcp_rput: allocated exdata_ind %s",
13910 				    tcp_display(tcp, NULL,
13911 				    DISP_PORT_ONLY));
13912 #endif /* DEBUG */
13913 				/*
13914 				 * There is no need to send a separate MSG*MARK
13915 				 * message since the T_EXDATA_IND will be sent
13916 				 * now.
13917 				 */
13918 				flags &= ~TH_SEND_URP_MARK;
13919 				freemsg(tcp->tcp_urp_mark_mp);
13920 				tcp->tcp_urp_mark_mp = NULL;
13921 			}
13922 			/*
13923 			 * Now we are all set.  On the next putnext upstream,
13924 			 * tcp_urp_mp will be non-NULL and will get prepended
13925 			 * to what has to be this piece containing the urgent
13926 			 * byte.  If for any reason we abort this segment below,
13927 			 * if it comes back, we will have this ready, or it
13928 			 * will get blown off in close.
13929 			 */
13930 		} else if (urp == seg_len) {
13931 			/*
13932 			 * The urgent byte is the next byte after this sequence
13933 			 * number. If there is data it is marked with
13934 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13935 			 * since it is not needed. Otherwise, if the code
13936 			 * above just allocated a zero-length tcp_urp_mark_mp
13937 			 * message, that message is tagged with MSGMARKNEXT.
13938 			 * Sending up these MSGMARKNEXT messages makes
13939 			 * SIOCATMARK work correctly even though
13940 			 * the T_EXDATA_IND will not be sent up until the
13941 			 * urgent byte arrives.
13942 			 */
13943 			if (seg_len != 0) {
13944 				flags |= TH_MARKNEXT_NEEDED;
13945 				freemsg(tcp->tcp_urp_mark_mp);
13946 				tcp->tcp_urp_mark_mp = NULL;
13947 				flags &= ~TH_SEND_URP_MARK;
13948 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13949 				flags |= TH_SEND_URP_MARK;
13950 				tcp->tcp_urp_mark_mp->b_flag &=
13951 				    ~MSGNOTMARKNEXT;
13952 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13953 			}
13954 #ifdef DEBUG
13955 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13956 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13957 			    seg_len, flags,
13958 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13959 #endif /* DEBUG */
13960 		} else {
13961 			/* Data left until we hit mark */
13962 #ifdef DEBUG
13963 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13964 			    "tcp_rput: URP %d bytes left, %s",
13965 			    urp - seg_len, tcp_display(tcp, NULL,
13966 			    DISP_PORT_ONLY));
13967 #endif /* DEBUG */
13968 		}
13969 	}
13970 
13971 process_ack:
13972 	if (!(flags & TH_ACK)) {
13973 		freemsg(mp);
13974 		goto xmit_check;
13975 	}
13976 	}
13977 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13978 
13979 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13980 		tcp->tcp_ip_forward_progress = B_TRUE;
13981 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13982 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13983 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13984 			/* 3-way handshake complete - pass up the T_CONN_IND */
13985 			tcp_t	*listener = tcp->tcp_listener;
13986 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13987 
13988 			tcp->tcp_tconnind_started = B_TRUE;
13989 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13990 			/*
13991 			 * We are here means eager is fine but it can
13992 			 * get a TH_RST at any point between now and till
13993 			 * accept completes and disappear. We need to
13994 			 * ensure that reference to eager is valid after
13995 			 * we get out of eager's perimeter. So we do
13996 			 * an extra refhold.
13997 			 */
13998 			CONN_INC_REF(connp);
13999 
14000 			/*
14001 			 * The listener also exists because of the refhold
14002 			 * done in tcp_conn_request. Its possible that it
14003 			 * might have closed. We will check that once we
14004 			 * get inside listeners context.
14005 			 */
14006 			CONN_INC_REF(listener->tcp_connp);
14007 			if (listener->tcp_connp->conn_sqp ==
14008 			    connp->conn_sqp) {
14009 				tcp_send_conn_ind(listener->tcp_connp, mp,
14010 				    listener->tcp_connp->conn_sqp);
14011 				CONN_DEC_REF(listener->tcp_connp);
14012 			} else if (!tcp->tcp_loopback) {
14013 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14014 				    tcp_send_conn_ind,
14015 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14016 			} else {
14017 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14018 				    tcp_send_conn_ind, listener->tcp_connp,
14019 				    SQTAG_TCP_CONN_IND);
14020 			}
14021 		}
14022 
14023 		if (tcp->tcp_active_open) {
14024 			/*
14025 			 * We are seeing the final ack in the three way
14026 			 * hand shake of a active open'ed connection
14027 			 * so we must send up a T_CONN_CON
14028 			 */
14029 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14030 				freemsg(mp);
14031 				return;
14032 			}
14033 			/*
14034 			 * Don't fuse the loopback endpoints for
14035 			 * simultaneous active opens.
14036 			 */
14037 			if (tcp->tcp_loopback) {
14038 				TCP_STAT(tcps, tcp_fusion_unfusable);
14039 				tcp->tcp_unfusable = B_TRUE;
14040 			}
14041 		}
14042 
14043 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14044 		bytes_acked--;
14045 		/* SYN was acked - making progress */
14046 		if (tcp->tcp_ipversion == IPV6_VERSION)
14047 			tcp->tcp_ip_forward_progress = B_TRUE;
14048 
14049 		/*
14050 		 * If SYN was retransmitted, need to reset all
14051 		 * retransmission info as this segment will be
14052 		 * treated as a dup ACK.
14053 		 */
14054 		if (tcp->tcp_rexmit) {
14055 			tcp->tcp_rexmit = B_FALSE;
14056 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14057 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14058 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14059 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14060 			tcp->tcp_ms_we_have_waited = 0;
14061 			tcp->tcp_cwnd = mss;
14062 		}
14063 
14064 		/*
14065 		 * We set the send window to zero here.
14066 		 * This is needed if there is data to be
14067 		 * processed already on the queue.
14068 		 * Later (at swnd_update label), the
14069 		 * "new_swnd > tcp_swnd" condition is satisfied
14070 		 * the XMIT_NEEDED flag is set in the current
14071 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14072 		 * called if there is already data on queue in
14073 		 * this state.
14074 		 */
14075 		tcp->tcp_swnd = 0;
14076 
14077 		if (new_swnd > tcp->tcp_max_swnd)
14078 			tcp->tcp_max_swnd = new_swnd;
14079 		tcp->tcp_swl1 = seg_seq;
14080 		tcp->tcp_swl2 = seg_ack;
14081 		tcp->tcp_state = TCPS_ESTABLISHED;
14082 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14083 
14084 		/* Fuse when both sides are in ESTABLISHED state */
14085 		if (tcp->tcp_loopback && do_tcp_fusion)
14086 			tcp_fuse(tcp, iphdr, tcph);
14087 
14088 	}
14089 	/* This code follows 4.4BSD-Lite2 mostly. */
14090 	if (bytes_acked < 0)
14091 		goto est;
14092 
14093 	/*
14094 	 * If TCP is ECN capable and the congestion experience bit is
14095 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14096 	 * done once per window (or more loosely, per RTT).
14097 	 */
14098 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14099 		tcp->tcp_cwr = B_FALSE;
14100 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14101 		if (!tcp->tcp_cwr) {
14102 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14103 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14104 			tcp->tcp_cwnd = npkt * mss;
14105 			/*
14106 			 * If the cwnd is 0, use the timer to clock out
14107 			 * new segments.  This is required by the ECN spec.
14108 			 */
14109 			if (npkt == 0) {
14110 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14111 				/*
14112 				 * This makes sure that when the ACK comes
14113 				 * back, we will increase tcp_cwnd by 1 MSS.
14114 				 */
14115 				tcp->tcp_cwnd_cnt = 0;
14116 			}
14117 			tcp->tcp_cwr = B_TRUE;
14118 			/*
14119 			 * This marks the end of the current window of in
14120 			 * flight data.  That is why we don't use
14121 			 * tcp_suna + tcp_swnd.  Only data in flight can
14122 			 * provide ECN info.
14123 			 */
14124 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14125 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14126 		}
14127 	}
14128 
14129 	mp1 = tcp->tcp_xmit_head;
14130 	if (bytes_acked == 0) {
14131 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14132 			int dupack_cnt;
14133 
14134 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14135 			/*
14136 			 * Fast retransmit.  When we have seen exactly three
14137 			 * identical ACKs while we have unacked data
14138 			 * outstanding we take it as a hint that our peer
14139 			 * dropped something.
14140 			 *
14141 			 * If TCP is retransmitting, don't do fast retransmit.
14142 			 */
14143 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14144 			    ! tcp->tcp_rexmit) {
14145 				/* Do Limited Transmit */
14146 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14147 				    tcps->tcps_dupack_fast_retransmit) {
14148 					/*
14149 					 * RFC 3042
14150 					 *
14151 					 * What we need to do is temporarily
14152 					 * increase tcp_cwnd so that new
14153 					 * data can be sent if it is allowed
14154 					 * by the receive window (tcp_rwnd).
14155 					 * tcp_wput_data() will take care of
14156 					 * the rest.
14157 					 *
14158 					 * If the connection is SACK capable,
14159 					 * only do limited xmit when there
14160 					 * is SACK info.
14161 					 *
14162 					 * Note how tcp_cwnd is incremented.
14163 					 * The first dup ACK will increase
14164 					 * it by 1 MSS.  The second dup ACK
14165 					 * will increase it by 2 MSS.  This
14166 					 * means that only 1 new segment will
14167 					 * be sent for each dup ACK.
14168 					 */
14169 					if (tcp->tcp_unsent > 0 &&
14170 					    (!tcp->tcp_snd_sack_ok ||
14171 					    (tcp->tcp_snd_sack_ok &&
14172 					    tcp->tcp_notsack_list != NULL))) {
14173 						tcp->tcp_cwnd += mss <<
14174 						    (tcp->tcp_dupack_cnt - 1);
14175 						flags |= TH_LIMIT_XMIT;
14176 					}
14177 				} else if (dupack_cnt ==
14178 				    tcps->tcps_dupack_fast_retransmit) {
14179 
14180 				/*
14181 				 * If we have reduced tcp_ssthresh
14182 				 * because of ECN, do not reduce it again
14183 				 * unless it is already one window of data
14184 				 * away.  After one window of data, tcp_cwr
14185 				 * should then be cleared.  Note that
14186 				 * for non ECN capable connection, tcp_cwr
14187 				 * should always be false.
14188 				 *
14189 				 * Adjust cwnd since the duplicate
14190 				 * ack indicates that a packet was
14191 				 * dropped (due to congestion.)
14192 				 */
14193 				if (!tcp->tcp_cwr) {
14194 					npkt = ((tcp->tcp_snxt -
14195 					    tcp->tcp_suna) >> 1) / mss;
14196 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14197 					    mss;
14198 					tcp->tcp_cwnd = (npkt +
14199 					    tcp->tcp_dupack_cnt) * mss;
14200 				}
14201 				if (tcp->tcp_ecn_ok) {
14202 					tcp->tcp_cwr = B_TRUE;
14203 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14204 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14205 				}
14206 
14207 				/*
14208 				 * We do Hoe's algorithm.  Refer to her
14209 				 * paper "Improving the Start-up Behavior
14210 				 * of a Congestion Control Scheme for TCP,"
14211 				 * appeared in SIGCOMM'96.
14212 				 *
14213 				 * Save highest seq no we have sent so far.
14214 				 * Be careful about the invisible FIN byte.
14215 				 */
14216 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14217 				    (tcp->tcp_unsent == 0)) {
14218 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14219 				} else {
14220 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14221 				}
14222 
14223 				/*
14224 				 * Do not allow bursty traffic during.
14225 				 * fast recovery.  Refer to Fall and Floyd's
14226 				 * paper "Simulation-based Comparisons of
14227 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14228 				 * This is a best current practise.
14229 				 */
14230 				tcp->tcp_snd_burst = TCP_CWND_SS;
14231 
14232 				/*
14233 				 * For SACK:
14234 				 * Calculate tcp_pipe, which is the
14235 				 * estimated number of bytes in
14236 				 * network.
14237 				 *
14238 				 * tcp_fack is the highest sack'ed seq num
14239 				 * TCP has received.
14240 				 *
14241 				 * tcp_pipe is explained in the above quoted
14242 				 * Fall and Floyd's paper.  tcp_fack is
14243 				 * explained in Mathis and Mahdavi's
14244 				 * "Forward Acknowledgment: Refining TCP
14245 				 * Congestion Control" in SIGCOMM '96.
14246 				 */
14247 				if (tcp->tcp_snd_sack_ok) {
14248 					ASSERT(tcp->tcp_sack_info != NULL);
14249 					if (tcp->tcp_notsack_list != NULL) {
14250 						tcp->tcp_pipe = tcp->tcp_snxt -
14251 						    tcp->tcp_fack;
14252 						tcp->tcp_sack_snxt = seg_ack;
14253 						flags |= TH_NEED_SACK_REXMIT;
14254 					} else {
14255 						/*
14256 						 * Always initialize tcp_pipe
14257 						 * even though we don't have
14258 						 * any SACK info.  If later
14259 						 * we get SACK info and
14260 						 * tcp_pipe is not initialized,
14261 						 * funny things will happen.
14262 						 */
14263 						tcp->tcp_pipe =
14264 						    tcp->tcp_cwnd_ssthresh;
14265 					}
14266 				} else {
14267 					flags |= TH_REXMIT_NEEDED;
14268 				} /* tcp_snd_sack_ok */
14269 
14270 				} else {
14271 					/*
14272 					 * Here we perform congestion
14273 					 * avoidance, but NOT slow start.
14274 					 * This is known as the Fast
14275 					 * Recovery Algorithm.
14276 					 */
14277 					if (tcp->tcp_snd_sack_ok &&
14278 					    tcp->tcp_notsack_list != NULL) {
14279 						flags |= TH_NEED_SACK_REXMIT;
14280 						tcp->tcp_pipe -= mss;
14281 						if (tcp->tcp_pipe < 0)
14282 							tcp->tcp_pipe = 0;
14283 					} else {
14284 					/*
14285 					 * We know that one more packet has
14286 					 * left the pipe thus we can update
14287 					 * cwnd.
14288 					 */
14289 					cwnd = tcp->tcp_cwnd + mss;
14290 					if (cwnd > tcp->tcp_cwnd_max)
14291 						cwnd = tcp->tcp_cwnd_max;
14292 					tcp->tcp_cwnd = cwnd;
14293 					if (tcp->tcp_unsent > 0)
14294 						flags |= TH_XMIT_NEEDED;
14295 					}
14296 				}
14297 			}
14298 		} else if (tcp->tcp_zero_win_probe) {
14299 			/*
14300 			 * If the window has opened, need to arrange
14301 			 * to send additional data.
14302 			 */
14303 			if (new_swnd != 0) {
14304 				/* tcp_suna != tcp_snxt */
14305 				/* Packet contains a window update */
14306 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14307 				tcp->tcp_zero_win_probe = 0;
14308 				tcp->tcp_timer_backoff = 0;
14309 				tcp->tcp_ms_we_have_waited = 0;
14310 
14311 				/*
14312 				 * Transmit starting with tcp_suna since
14313 				 * the one byte probe is not ack'ed.
14314 				 * If TCP has sent more than one identical
14315 				 * probe, tcp_rexmit will be set.  That means
14316 				 * tcp_ss_rexmit() will send out the one
14317 				 * byte along with new data.  Otherwise,
14318 				 * fake the retransmission.
14319 				 */
14320 				flags |= TH_XMIT_NEEDED;
14321 				if (!tcp->tcp_rexmit) {
14322 					tcp->tcp_rexmit = B_TRUE;
14323 					tcp->tcp_dupack_cnt = 0;
14324 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14325 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14326 				}
14327 			}
14328 		}
14329 		goto swnd_update;
14330 	}
14331 
14332 	/*
14333 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14334 	 * If the ACK value acks something that we have not yet sent, it might
14335 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14336 	 * other side.
14337 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14338 	 * state is handled above, so we can always just drop the segment and
14339 	 * send an ACK here.
14340 	 *
14341 	 * Should we send ACKs in response to ACK only segments?
14342 	 */
14343 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14344 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14345 		/* drop the received segment */
14346 		freemsg(mp);
14347 
14348 		/*
14349 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14350 		 * greater than 0, check if the number of such
14351 		 * bogus ACks is greater than that count.  If yes,
14352 		 * don't send back any ACK.  This prevents TCP from
14353 		 * getting into an ACK storm if somehow an attacker
14354 		 * successfully spoofs an acceptable segment to our
14355 		 * peer.
14356 		 */
14357 		if (tcp_drop_ack_unsent_cnt > 0 &&
14358 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14359 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14360 			return;
14361 		}
14362 		mp = tcp_ack_mp(tcp);
14363 		if (mp != NULL) {
14364 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14365 			BUMP_LOCAL(tcp->tcp_obsegs);
14366 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14367 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14368 		}
14369 		return;
14370 	}
14371 
14372 	/*
14373 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14374 	 * blocks that are covered by this ACK.
14375 	 */
14376 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14377 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14378 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14379 	}
14380 
14381 	/*
14382 	 * If we got an ACK after fast retransmit, check to see
14383 	 * if it is a partial ACK.  If it is not and the congestion
14384 	 * window was inflated to account for the other side's
14385 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14386 	 */
14387 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14388 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14389 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14390 			tcp->tcp_dupack_cnt = 0;
14391 			/*
14392 			 * Restore the orig tcp_cwnd_ssthresh after
14393 			 * fast retransmit phase.
14394 			 */
14395 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14396 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14397 			}
14398 			tcp->tcp_rexmit_max = seg_ack;
14399 			tcp->tcp_cwnd_cnt = 0;
14400 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14401 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14402 
14403 			/*
14404 			 * Remove all notsack info to avoid confusion with
14405 			 * the next fast retrasnmit/recovery phase.
14406 			 */
14407 			if (tcp->tcp_snd_sack_ok &&
14408 			    tcp->tcp_notsack_list != NULL) {
14409 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14410 			}
14411 		} else {
14412 			if (tcp->tcp_snd_sack_ok &&
14413 			    tcp->tcp_notsack_list != NULL) {
14414 				flags |= TH_NEED_SACK_REXMIT;
14415 				tcp->tcp_pipe -= mss;
14416 				if (tcp->tcp_pipe < 0)
14417 					tcp->tcp_pipe = 0;
14418 			} else {
14419 				/*
14420 				 * Hoe's algorithm:
14421 				 *
14422 				 * Retransmit the unack'ed segment and
14423 				 * restart fast recovery.  Note that we
14424 				 * need to scale back tcp_cwnd to the
14425 				 * original value when we started fast
14426 				 * recovery.  This is to prevent overly
14427 				 * aggressive behaviour in sending new
14428 				 * segments.
14429 				 */
14430 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14431 				    tcps->tcps_dupack_fast_retransmit * mss;
14432 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14433 				flags |= TH_REXMIT_NEEDED;
14434 			}
14435 		}
14436 	} else {
14437 		tcp->tcp_dupack_cnt = 0;
14438 		if (tcp->tcp_rexmit) {
14439 			/*
14440 			 * TCP is retranmitting.  If the ACK ack's all
14441 			 * outstanding data, update tcp_rexmit_max and
14442 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14443 			 * to the correct value.
14444 			 *
14445 			 * Note that SEQ_LEQ() is used.  This is to avoid
14446 			 * unnecessary fast retransmit caused by dup ACKs
14447 			 * received when TCP does slow start retransmission
14448 			 * after a time out.  During this phase, TCP may
14449 			 * send out segments which are already received.
14450 			 * This causes dup ACKs to be sent back.
14451 			 */
14452 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14453 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14454 					tcp->tcp_rexmit_nxt = seg_ack;
14455 				}
14456 				if (seg_ack != tcp->tcp_rexmit_max) {
14457 					flags |= TH_XMIT_NEEDED;
14458 				}
14459 			} else {
14460 				tcp->tcp_rexmit = B_FALSE;
14461 				tcp->tcp_xmit_zc_clean = B_FALSE;
14462 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14463 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14464 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14465 			}
14466 			tcp->tcp_ms_we_have_waited = 0;
14467 		}
14468 	}
14469 
14470 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14471 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14472 	tcp->tcp_suna = seg_ack;
14473 	if (tcp->tcp_zero_win_probe != 0) {
14474 		tcp->tcp_zero_win_probe = 0;
14475 		tcp->tcp_timer_backoff = 0;
14476 	}
14477 
14478 	/*
14479 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14480 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14481 	 * will not reach here.
14482 	 */
14483 	if (mp1 == NULL) {
14484 		goto fin_acked;
14485 	}
14486 
14487 	/*
14488 	 * Update the congestion window.
14489 	 *
14490 	 * If TCP is not ECN capable or TCP is ECN capable but the
14491 	 * congestion experience bit is not set, increase the tcp_cwnd as
14492 	 * usual.
14493 	 */
14494 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14495 		cwnd = tcp->tcp_cwnd;
14496 		add = mss;
14497 
14498 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14499 			/*
14500 			 * This is to prevent an increase of less than 1 MSS of
14501 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14502 			 * may send out tinygrams in order to preserve mblk
14503 			 * boundaries.
14504 			 *
14505 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14506 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14507 			 * increased by 1 MSS for every RTTs.
14508 			 */
14509 			if (tcp->tcp_cwnd_cnt <= 0) {
14510 				tcp->tcp_cwnd_cnt = cwnd + add;
14511 			} else {
14512 				tcp->tcp_cwnd_cnt -= add;
14513 				add = 0;
14514 			}
14515 		}
14516 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14517 	}
14518 
14519 	/* See if the latest urgent data has been acknowledged */
14520 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14521 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14522 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14523 
14524 	/* Can we update the RTT estimates? */
14525 	if (tcp->tcp_snd_ts_ok) {
14526 		/* Ignore zero timestamp echo-reply. */
14527 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14528 			tcp_set_rto(tcp, (int32_t)lbolt -
14529 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14530 		}
14531 
14532 		/* If needed, restart the timer. */
14533 		if (tcp->tcp_set_timer == 1) {
14534 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14535 			tcp->tcp_set_timer = 0;
14536 		}
14537 		/*
14538 		 * Update tcp_csuna in case the other side stops sending
14539 		 * us timestamps.
14540 		 */
14541 		tcp->tcp_csuna = tcp->tcp_snxt;
14542 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14543 		/*
14544 		 * An ACK sequence we haven't seen before, so get the RTT
14545 		 * and update the RTO. But first check if the timestamp is
14546 		 * valid to use.
14547 		 */
14548 		if ((mp1->b_next != NULL) &&
14549 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14550 			tcp_set_rto(tcp, (int32_t)lbolt -
14551 			    (int32_t)(intptr_t)mp1->b_prev);
14552 		else
14553 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14554 
14555 		/* Remeber the last sequence to be ACKed */
14556 		tcp->tcp_csuna = seg_ack;
14557 		if (tcp->tcp_set_timer == 1) {
14558 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14559 			tcp->tcp_set_timer = 0;
14560 		}
14561 	} else {
14562 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14563 	}
14564 
14565 	/* Eat acknowledged bytes off the xmit queue. */
14566 	for (;;) {
14567 		mblk_t	*mp2;
14568 		uchar_t	*wptr;
14569 
14570 		wptr = mp1->b_wptr;
14571 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14572 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14573 		if (bytes_acked < 0) {
14574 			mp1->b_rptr = wptr + bytes_acked;
14575 			/*
14576 			 * Set a new timestamp if all the bytes timed by the
14577 			 * old timestamp have been ack'ed.
14578 			 */
14579 			if (SEQ_GT(seg_ack,
14580 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14581 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14582 				mp1->b_next = NULL;
14583 			}
14584 			break;
14585 		}
14586 		mp1->b_next = NULL;
14587 		mp1->b_prev = NULL;
14588 		mp2 = mp1;
14589 		mp1 = mp1->b_cont;
14590 
14591 		/*
14592 		 * This notification is required for some zero-copy
14593 		 * clients to maintain a copy semantic. After the data
14594 		 * is ack'ed, client is safe to modify or reuse the buffer.
14595 		 */
14596 		if (tcp->tcp_snd_zcopy_aware &&
14597 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14598 			tcp_zcopy_notify(tcp);
14599 		freeb(mp2);
14600 		if (bytes_acked == 0) {
14601 			if (mp1 == NULL) {
14602 				/* Everything is ack'ed, clear the tail. */
14603 				tcp->tcp_xmit_tail = NULL;
14604 				/*
14605 				 * Cancel the timer unless we are still
14606 				 * waiting for an ACK for the FIN packet.
14607 				 */
14608 				if (tcp->tcp_timer_tid != 0 &&
14609 				    tcp->tcp_snxt == tcp->tcp_suna) {
14610 					(void) TCP_TIMER_CANCEL(tcp,
14611 					    tcp->tcp_timer_tid);
14612 					tcp->tcp_timer_tid = 0;
14613 				}
14614 				goto pre_swnd_update;
14615 			}
14616 			if (mp2 != tcp->tcp_xmit_tail)
14617 				break;
14618 			tcp->tcp_xmit_tail = mp1;
14619 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14620 			    (uintptr_t)INT_MAX);
14621 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14622 			    mp1->b_rptr);
14623 			break;
14624 		}
14625 		if (mp1 == NULL) {
14626 			/*
14627 			 * More was acked but there is nothing more
14628 			 * outstanding.  This means that the FIN was
14629 			 * just acked or that we're talking to a clown.
14630 			 */
14631 fin_acked:
14632 			ASSERT(tcp->tcp_fin_sent);
14633 			tcp->tcp_xmit_tail = NULL;
14634 			if (tcp->tcp_fin_sent) {
14635 				/* FIN was acked - making progress */
14636 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14637 				    !tcp->tcp_fin_acked)
14638 					tcp->tcp_ip_forward_progress = B_TRUE;
14639 				tcp->tcp_fin_acked = B_TRUE;
14640 				if (tcp->tcp_linger_tid != 0 &&
14641 				    TCP_TIMER_CANCEL(tcp,
14642 				    tcp->tcp_linger_tid) >= 0) {
14643 					tcp_stop_lingering(tcp);
14644 					freemsg(mp);
14645 					mp = NULL;
14646 				}
14647 			} else {
14648 				/*
14649 				 * We should never get here because
14650 				 * we have already checked that the
14651 				 * number of bytes ack'ed should be
14652 				 * smaller than or equal to what we
14653 				 * have sent so far (it is the
14654 				 * acceptability check of the ACK).
14655 				 * We can only get here if the send
14656 				 * queue is corrupted.
14657 				 *
14658 				 * Terminate the connection and
14659 				 * panic the system.  It is better
14660 				 * for us to panic instead of
14661 				 * continuing to avoid other disaster.
14662 				 */
14663 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14664 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14665 				panic("Memory corruption "
14666 				    "detected for connection %s.",
14667 				    tcp_display(tcp, NULL,
14668 				    DISP_ADDR_AND_PORT));
14669 				/*NOTREACHED*/
14670 			}
14671 			goto pre_swnd_update;
14672 		}
14673 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14674 	}
14675 	if (tcp->tcp_unsent) {
14676 		flags |= TH_XMIT_NEEDED;
14677 	}
14678 pre_swnd_update:
14679 	tcp->tcp_xmit_head = mp1;
14680 swnd_update:
14681 	/*
14682 	 * The following check is different from most other implementations.
14683 	 * For bi-directional transfer, when segments are dropped, the
14684 	 * "normal" check will not accept a window update in those
14685 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14686 	 * segments which are outside receiver's window.  As TCP accepts
14687 	 * the ack in those retransmitted segments, if the window update in
14688 	 * the same segment is not accepted, TCP will incorrectly calculates
14689 	 * that it can send more segments.  This can create a deadlock
14690 	 * with the receiver if its window becomes zero.
14691 	 */
14692 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14693 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14694 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14695 		/*
14696 		 * The criteria for update is:
14697 		 *
14698 		 * 1. the segment acknowledges some data.  Or
14699 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14700 		 * 3. the segment is not old and the advertised window is
14701 		 * larger than the previous advertised window.
14702 		 */
14703 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14704 			flags |= TH_XMIT_NEEDED;
14705 		tcp->tcp_swnd = new_swnd;
14706 		if (new_swnd > tcp->tcp_max_swnd)
14707 			tcp->tcp_max_swnd = new_swnd;
14708 		tcp->tcp_swl1 = seg_seq;
14709 		tcp->tcp_swl2 = seg_ack;
14710 	}
14711 est:
14712 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14713 
14714 		switch (tcp->tcp_state) {
14715 		case TCPS_FIN_WAIT_1:
14716 			if (tcp->tcp_fin_acked) {
14717 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14718 				/*
14719 				 * We implement the non-standard BSD/SunOS
14720 				 * FIN_WAIT_2 flushing algorithm.
14721 				 * If there is no user attached to this
14722 				 * TCP endpoint, then this TCP struct
14723 				 * could hang around forever in FIN_WAIT_2
14724 				 * state if the peer forgets to send us
14725 				 * a FIN.  To prevent this, we wait only
14726 				 * 2*MSL (a convenient time value) for
14727 				 * the FIN to arrive.  If it doesn't show up,
14728 				 * we flush the TCP endpoint.  This algorithm,
14729 				 * though a violation of RFC-793, has worked
14730 				 * for over 10 years in BSD systems.
14731 				 * Note: SunOS 4.x waits 675 seconds before
14732 				 * flushing the FIN_WAIT_2 connection.
14733 				 */
14734 				TCP_TIMER_RESTART(tcp,
14735 				    tcps->tcps_fin_wait_2_flush_interval);
14736 			}
14737 			break;
14738 		case TCPS_FIN_WAIT_2:
14739 			break;	/* Shutdown hook? */
14740 		case TCPS_LAST_ACK:
14741 			freemsg(mp);
14742 			if (tcp->tcp_fin_acked) {
14743 				(void) tcp_clean_death(tcp, 0, 19);
14744 				return;
14745 			}
14746 			goto xmit_check;
14747 		case TCPS_CLOSING:
14748 			if (tcp->tcp_fin_acked) {
14749 				tcp->tcp_state = TCPS_TIME_WAIT;
14750 				/*
14751 				 * Unconditionally clear the exclusive binding
14752 				 * bit so this TIME-WAIT connection won't
14753 				 * interfere with new ones.
14754 				 */
14755 				tcp->tcp_exclbind = 0;
14756 				if (!TCP_IS_DETACHED(tcp)) {
14757 					TCP_TIMER_RESTART(tcp,
14758 					    tcps->tcps_time_wait_interval);
14759 				} else {
14760 					tcp_time_wait_append(tcp);
14761 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14762 				}
14763 			}
14764 			/*FALLTHRU*/
14765 		case TCPS_CLOSE_WAIT:
14766 			freemsg(mp);
14767 			goto xmit_check;
14768 		default:
14769 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14770 			break;
14771 		}
14772 	}
14773 	if (flags & TH_FIN) {
14774 		/* Make sure we ack the fin */
14775 		flags |= TH_ACK_NEEDED;
14776 		if (!tcp->tcp_fin_rcvd) {
14777 			tcp->tcp_fin_rcvd = B_TRUE;
14778 			tcp->tcp_rnxt++;
14779 			tcph = tcp->tcp_tcph;
14780 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14781 
14782 			/*
14783 			 * Generate the ordrel_ind at the end unless we
14784 			 * are an eager guy.
14785 			 * In the eager case tcp_rsrv will do this when run
14786 			 * after tcp_accept is done.
14787 			 */
14788 			if (tcp->tcp_listener == NULL &&
14789 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14790 				flags |= TH_ORDREL_NEEDED;
14791 			switch (tcp->tcp_state) {
14792 			case TCPS_SYN_RCVD:
14793 			case TCPS_ESTABLISHED:
14794 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14795 				/* Keepalive? */
14796 				break;
14797 			case TCPS_FIN_WAIT_1:
14798 				if (!tcp->tcp_fin_acked) {
14799 					tcp->tcp_state = TCPS_CLOSING;
14800 					break;
14801 				}
14802 				/* FALLTHRU */
14803 			case TCPS_FIN_WAIT_2:
14804 				tcp->tcp_state = TCPS_TIME_WAIT;
14805 				/*
14806 				 * Unconditionally clear the exclusive binding
14807 				 * bit so this TIME-WAIT connection won't
14808 				 * interfere with new ones.
14809 				 */
14810 				tcp->tcp_exclbind = 0;
14811 				if (!TCP_IS_DETACHED(tcp)) {
14812 					TCP_TIMER_RESTART(tcp,
14813 					    tcps->tcps_time_wait_interval);
14814 				} else {
14815 					tcp_time_wait_append(tcp);
14816 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14817 				}
14818 				if (seg_len) {
14819 					/*
14820 					 * implies data piggybacked on FIN.
14821 					 * break to handle data.
14822 					 */
14823 					break;
14824 				}
14825 				freemsg(mp);
14826 				goto ack_check;
14827 			}
14828 		}
14829 	}
14830 	if (mp == NULL)
14831 		goto xmit_check;
14832 	if (seg_len == 0) {
14833 		freemsg(mp);
14834 		goto xmit_check;
14835 	}
14836 	if (mp->b_rptr == mp->b_wptr) {
14837 		/*
14838 		 * The header has been consumed, so we remove the
14839 		 * zero-length mblk here.
14840 		 */
14841 		mp1 = mp;
14842 		mp = mp->b_cont;
14843 		freeb(mp1);
14844 	}
14845 	tcph = tcp->tcp_tcph;
14846 	tcp->tcp_rack_cnt++;
14847 	{
14848 		uint32_t cur_max;
14849 
14850 		cur_max = tcp->tcp_rack_cur_max;
14851 		if (tcp->tcp_rack_cnt >= cur_max) {
14852 			/*
14853 			 * We have more unacked data than we should - send
14854 			 * an ACK now.
14855 			 */
14856 			flags |= TH_ACK_NEEDED;
14857 			cur_max++;
14858 			if (cur_max > tcp->tcp_rack_abs_max)
14859 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14860 			else
14861 				tcp->tcp_rack_cur_max = cur_max;
14862 		} else if (TCP_IS_DETACHED(tcp)) {
14863 			/* We don't have an ACK timer for detached TCP. */
14864 			flags |= TH_ACK_NEEDED;
14865 		} else if (seg_len < mss) {
14866 			/*
14867 			 * If we get a segment that is less than an mss, and we
14868 			 * already have unacknowledged data, and the amount
14869 			 * unacknowledged is not a multiple of mss, then we
14870 			 * better generate an ACK now.  Otherwise, this may be
14871 			 * the tail piece of a transaction, and we would rather
14872 			 * wait for the response.
14873 			 */
14874 			uint32_t udif;
14875 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14876 			    (uintptr_t)INT_MAX);
14877 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14878 			if (udif && (udif % mss))
14879 				flags |= TH_ACK_NEEDED;
14880 			else
14881 				flags |= TH_ACK_TIMER_NEEDED;
14882 		} else {
14883 			/* Start delayed ack timer */
14884 			flags |= TH_ACK_TIMER_NEEDED;
14885 		}
14886 	}
14887 	tcp->tcp_rnxt += seg_len;
14888 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14889 
14890 	/* Update SACK list */
14891 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14892 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14893 		    &(tcp->tcp_num_sack_blk));
14894 	}
14895 
14896 	if (tcp->tcp_urp_mp) {
14897 		tcp->tcp_urp_mp->b_cont = mp;
14898 		mp = tcp->tcp_urp_mp;
14899 		tcp->tcp_urp_mp = NULL;
14900 		/* Ready for a new signal. */
14901 		tcp->tcp_urp_last_valid = B_FALSE;
14902 #ifdef DEBUG
14903 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14904 		    "tcp_rput: sending exdata_ind %s",
14905 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14906 #endif /* DEBUG */
14907 	}
14908 
14909 	/*
14910 	 * Check for ancillary data changes compared to last segment.
14911 	 */
14912 	if (tcp->tcp_ipv6_recvancillary != 0) {
14913 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14914 		if (mp == NULL)
14915 			return;
14916 	}
14917 
14918 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14919 		/*
14920 		 * Side queue inbound data until the accept happens.
14921 		 * tcp_accept/tcp_rput drains this when the accept happens.
14922 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14923 		 * T_EXDATA_IND) it is queued on b_next.
14924 		 * XXX Make urgent data use this. Requires:
14925 		 *	Removing tcp_listener check for TH_URG
14926 		 *	Making M_PCPROTO and MARK messages skip the eager case
14927 		 */
14928 
14929 		if (tcp->tcp_kssl_pending) {
14930 			tcp_kssl_input(tcp, mp);
14931 		} else {
14932 			tcp_rcv_enqueue(tcp, mp, seg_len);
14933 		}
14934 	} else {
14935 		if (mp->b_datap->db_type != M_DATA ||
14936 		    (flags & TH_MARKNEXT_NEEDED)) {
14937 			if (tcp->tcp_rcv_list != NULL) {
14938 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14939 			}
14940 			ASSERT(tcp->tcp_rcv_list == NULL ||
14941 			    tcp->tcp_fused_sigurg);
14942 			if (flags & TH_MARKNEXT_NEEDED) {
14943 #ifdef DEBUG
14944 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14945 				    "tcp_rput: sending MSGMARKNEXT %s",
14946 				    tcp_display(tcp, NULL,
14947 				    DISP_PORT_ONLY));
14948 #endif /* DEBUG */
14949 				mp->b_flag |= MSGMARKNEXT;
14950 				flags &= ~TH_MARKNEXT_NEEDED;
14951 			}
14952 
14953 			/* Does this need SSL processing first? */
14954 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14955 			    (DB_TYPE(mp) == M_DATA)) {
14956 				tcp_kssl_input(tcp, mp);
14957 			} else {
14958 				putnext(tcp->tcp_rq, mp);
14959 				if (!canputnext(tcp->tcp_rq))
14960 					tcp->tcp_rwnd -= seg_len;
14961 			}
14962 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14963 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14964 			if (tcp->tcp_rcv_list != NULL) {
14965 				/*
14966 				 * Enqueue the new segment first and then
14967 				 * call tcp_rcv_drain() to send all data
14968 				 * up.  The other way to do this is to
14969 				 * send all queued data up and then call
14970 				 * putnext() to send the new segment up.
14971 				 * This way can remove the else part later
14972 				 * on.
14973 				 *
14974 				 * We don't this to avoid one more call to
14975 				 * canputnext() as tcp_rcv_drain() needs to
14976 				 * call canputnext().
14977 				 */
14978 				tcp_rcv_enqueue(tcp, mp, seg_len);
14979 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14980 			} else {
14981 				/* Does this need SSL processing first? */
14982 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14983 				    (DB_TYPE(mp) == M_DATA)) {
14984 					tcp_kssl_input(tcp, mp);
14985 				} else {
14986 					putnext(tcp->tcp_rq, mp);
14987 					if (!canputnext(tcp->tcp_rq))
14988 						tcp->tcp_rwnd -= seg_len;
14989 				}
14990 			}
14991 		} else {
14992 			/*
14993 			 * Enqueue all packets when processing an mblk
14994 			 * from the co queue and also enqueue normal packets.
14995 			 * For packets which belong to SSL stream do SSL
14996 			 * processing first.
14997 			 */
14998 			if ((tcp->tcp_kssl_ctx != NULL) &&
14999 			    (DB_TYPE(mp) == M_DATA)) {
15000 				tcp_kssl_input(tcp, mp);
15001 			} else {
15002 				tcp_rcv_enqueue(tcp, mp, seg_len);
15003 			}
15004 		}
15005 		/*
15006 		 * Make sure the timer is running if we have data waiting
15007 		 * for a push bit. This provides resiliency against
15008 		 * implementations that do not correctly generate push bits.
15009 		 */
15010 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
15011 			/*
15012 			 * The connection may be closed at this point, so don't
15013 			 * do anything for a detached tcp.
15014 			 */
15015 			if (!TCP_IS_DETACHED(tcp))
15016 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15017 				    tcp_push_timer,
15018 				    MSEC_TO_TICK(
15019 				    tcps->tcps_push_timer_interval));
15020 		}
15021 	}
15022 xmit_check:
15023 	/* Is there anything left to do? */
15024 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15025 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15026 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15027 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15028 		goto done;
15029 
15030 	/* Any transmit work to do and a non-zero window? */
15031 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15032 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15033 		if (flags & TH_REXMIT_NEEDED) {
15034 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15035 
15036 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15037 			if (snd_size > mss)
15038 				snd_size = mss;
15039 			if (snd_size > tcp->tcp_swnd)
15040 				snd_size = tcp->tcp_swnd;
15041 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15042 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15043 			    B_TRUE);
15044 
15045 			if (mp1 != NULL) {
15046 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15047 				tcp->tcp_csuna = tcp->tcp_snxt;
15048 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15049 				UPDATE_MIB(&tcps->tcps_mib,
15050 				    tcpRetransBytes, snd_size);
15051 				TCP_RECORD_TRACE(tcp, mp1,
15052 				    TCP_TRACE_SEND_PKT);
15053 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15054 			}
15055 		}
15056 		if (flags & TH_NEED_SACK_REXMIT) {
15057 			tcp_sack_rxmit(tcp, &flags);
15058 		}
15059 		/*
15060 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15061 		 * out new segment.  Note that tcp_rexmit should not be
15062 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15063 		 */
15064 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15065 			if (!tcp->tcp_rexmit) {
15066 				tcp_wput_data(tcp, NULL, B_FALSE);
15067 			} else {
15068 				tcp_ss_rexmit(tcp);
15069 			}
15070 		}
15071 		/*
15072 		 * Adjust tcp_cwnd back to normal value after sending
15073 		 * new data segments.
15074 		 */
15075 		if (flags & TH_LIMIT_XMIT) {
15076 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15077 			/*
15078 			 * This will restart the timer.  Restarting the
15079 			 * timer is used to avoid a timeout before the
15080 			 * limited transmitted segment's ACK gets back.
15081 			 */
15082 			if (tcp->tcp_xmit_head != NULL)
15083 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15084 		}
15085 
15086 		/* Anything more to do? */
15087 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15088 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15089 			goto done;
15090 	}
15091 ack_check:
15092 	if (flags & TH_SEND_URP_MARK) {
15093 		ASSERT(tcp->tcp_urp_mark_mp);
15094 		/*
15095 		 * Send up any queued data and then send the mark message
15096 		 */
15097 		if (tcp->tcp_rcv_list != NULL) {
15098 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15099 		}
15100 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15101 
15102 		mp1 = tcp->tcp_urp_mark_mp;
15103 		tcp->tcp_urp_mark_mp = NULL;
15104 #ifdef DEBUG
15105 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15106 		    "tcp_rput: sending zero-length %s %s",
15107 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15108 		    "MSGNOTMARKNEXT"),
15109 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15110 #endif /* DEBUG */
15111 		putnext(tcp->tcp_rq, mp1);
15112 		flags &= ~TH_SEND_URP_MARK;
15113 	}
15114 	if (flags & TH_ACK_NEEDED) {
15115 		/*
15116 		 * Time to send an ack for some reason.
15117 		 */
15118 		mp1 = tcp_ack_mp(tcp);
15119 
15120 		if (mp1 != NULL) {
15121 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15122 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15123 			BUMP_LOCAL(tcp->tcp_obsegs);
15124 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15125 		}
15126 		if (tcp->tcp_ack_tid != 0) {
15127 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15128 			tcp->tcp_ack_tid = 0;
15129 		}
15130 	}
15131 	if (flags & TH_ACK_TIMER_NEEDED) {
15132 		/*
15133 		 * Arrange for deferred ACK or push wait timeout.
15134 		 * Start timer if it is not already running.
15135 		 */
15136 		if (tcp->tcp_ack_tid == 0) {
15137 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15138 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15139 			    (clock_t)tcps->tcps_local_dack_interval :
15140 			    (clock_t)tcps->tcps_deferred_ack_interval));
15141 		}
15142 	}
15143 	if (flags & TH_ORDREL_NEEDED) {
15144 		/*
15145 		 * Send up the ordrel_ind unless we are an eager guy.
15146 		 * In the eager case tcp_rsrv will do this when run
15147 		 * after tcp_accept is done.
15148 		 */
15149 		ASSERT(tcp->tcp_listener == NULL);
15150 		if (tcp->tcp_rcv_list != NULL) {
15151 			/*
15152 			 * Push any mblk(s) enqueued from co processing.
15153 			 */
15154 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15155 		}
15156 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15157 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15158 			tcp->tcp_ordrel_done = B_TRUE;
15159 			putnext(tcp->tcp_rq, mp1);
15160 			if (tcp->tcp_deferred_clean_death) {
15161 				/*
15162 				 * tcp_clean_death was deferred
15163 				 * for T_ORDREL_IND - do it now
15164 				 */
15165 				(void) tcp_clean_death(tcp,
15166 				    tcp->tcp_client_errno, 20);
15167 				tcp->tcp_deferred_clean_death =	B_FALSE;
15168 			}
15169 		} else {
15170 			/*
15171 			 * Run the orderly release in the
15172 			 * service routine.
15173 			 */
15174 			qenable(tcp->tcp_rq);
15175 			/*
15176 			 * Caveat(XXX): The machine may be so
15177 			 * overloaded that tcp_rsrv() is not scheduled
15178 			 * until after the endpoint has transitioned
15179 			 * to TCPS_TIME_WAIT
15180 			 * and tcp_time_wait_interval expires. Then
15181 			 * tcp_timer() will blow away state in tcp_t
15182 			 * and T_ORDREL_IND will never be delivered
15183 			 * upstream. Unlikely but potentially
15184 			 * a problem.
15185 			 */
15186 		}
15187 	}
15188 done:
15189 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15190 }
15191 
15192 /*
15193  * This function does PAWS protection check. Returns B_TRUE if the
15194  * segment passes the PAWS test, else returns B_FALSE.
15195  */
15196 boolean_t
15197 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15198 {
15199 	uint8_t	flags;
15200 	int	options;
15201 	uint8_t *up;
15202 
15203 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15204 	/*
15205 	 * If timestamp option is aligned nicely, get values inline,
15206 	 * otherwise call general routine to parse.  Only do that
15207 	 * if timestamp is the only option.
15208 	 */
15209 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15210 	    TCPOPT_REAL_TS_LEN &&
15211 	    OK_32PTR((up = ((uint8_t *)tcph) +
15212 	    TCP_MIN_HEADER_LENGTH)) &&
15213 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15214 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15215 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15216 
15217 		options = TCP_OPT_TSTAMP_PRESENT;
15218 	} else {
15219 		if (tcp->tcp_snd_sack_ok) {
15220 			tcpoptp->tcp = tcp;
15221 		} else {
15222 			tcpoptp->tcp = NULL;
15223 		}
15224 		options = tcp_parse_options(tcph, tcpoptp);
15225 	}
15226 
15227 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15228 		/*
15229 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15230 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15231 		 */
15232 		if ((flags & TH_RST) == 0 &&
15233 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15234 		    tcp->tcp_ts_recent)) {
15235 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15236 			    PAWS_TIMEOUT)) {
15237 				/* This segment is not acceptable. */
15238 				return (B_FALSE);
15239 			} else {
15240 				/*
15241 				 * Connection has been idle for
15242 				 * too long.  Reset the timestamp
15243 				 * and assume the segment is valid.
15244 				 */
15245 				tcp->tcp_ts_recent =
15246 				    tcpoptp->tcp_opt_ts_val;
15247 			}
15248 		}
15249 	} else {
15250 		/*
15251 		 * If we don't get a timestamp on every packet, we
15252 		 * figure we can't really trust 'em, so we stop sending
15253 		 * and parsing them.
15254 		 */
15255 		tcp->tcp_snd_ts_ok = B_FALSE;
15256 
15257 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15258 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15259 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15260 		/*
15261 		 * Adjust the tcp_mss accordingly. We also need to
15262 		 * adjust tcp_cwnd here in accordance with the new mss.
15263 		 * But we avoid doing a slow start here so as to not
15264 		 * to lose on the transfer rate built up so far.
15265 		 */
15266 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15267 		if (tcp->tcp_snd_sack_ok) {
15268 			ASSERT(tcp->tcp_sack_info != NULL);
15269 			tcp->tcp_max_sack_blk = 4;
15270 		}
15271 	}
15272 	return (B_TRUE);
15273 }
15274 
15275 /*
15276  * Attach ancillary data to a received TCP segments for the
15277  * ancillary pieces requested by the application that are
15278  * different than they were in the previous data segment.
15279  *
15280  * Save the "current" values once memory allocation is ok so that
15281  * when memory allocation fails we can just wait for the next data segment.
15282  */
15283 static mblk_t *
15284 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15285 {
15286 	struct T_optdata_ind *todi;
15287 	int optlen;
15288 	uchar_t *optptr;
15289 	struct T_opthdr *toh;
15290 	uint_t addflag;	/* Which pieces to add */
15291 	mblk_t *mp1;
15292 
15293 	optlen = 0;
15294 	addflag = 0;
15295 	/* If app asked for pktinfo and the index has changed ... */
15296 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15297 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15298 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15299 		optlen += sizeof (struct T_opthdr) +
15300 		    sizeof (struct in6_pktinfo);
15301 		addflag |= TCP_IPV6_RECVPKTINFO;
15302 	}
15303 	/* If app asked for hoplimit and it has changed ... */
15304 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15305 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15306 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15307 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15308 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15309 	}
15310 	/* If app asked for tclass and it has changed ... */
15311 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15312 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15313 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15314 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15315 		addflag |= TCP_IPV6_RECVTCLASS;
15316 	}
15317 	/*
15318 	 * If app asked for hopbyhop headers and it has changed ...
15319 	 * For security labels, note that (1) security labels can't change on
15320 	 * a connected socket at all, (2) we're connected to at most one peer,
15321 	 * (3) if anything changes, then it must be some other extra option.
15322 	 */
15323 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15324 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15325 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15326 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15327 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15328 		    tcp->tcp_label_len;
15329 		addflag |= TCP_IPV6_RECVHOPOPTS;
15330 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15331 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15332 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15333 			return (mp);
15334 	}
15335 	/* If app asked for dst headers before routing headers ... */
15336 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15337 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15338 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15339 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15340 		optlen += sizeof (struct T_opthdr) +
15341 		    ipp->ipp_rtdstoptslen;
15342 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15343 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15344 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15345 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15346 			return (mp);
15347 	}
15348 	/* If app asked for routing headers and it has changed ... */
15349 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15350 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15351 	    (ipp->ipp_fields & IPPF_RTHDR),
15352 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15353 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15354 		addflag |= TCP_IPV6_RECVRTHDR;
15355 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15356 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15357 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15358 			return (mp);
15359 	}
15360 	/* If app asked for dest headers and it has changed ... */
15361 	if ((tcp->tcp_ipv6_recvancillary &
15362 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15363 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15364 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15365 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15366 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15367 		addflag |= TCP_IPV6_RECVDSTOPTS;
15368 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15369 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15370 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15371 			return (mp);
15372 	}
15373 
15374 	if (optlen == 0) {
15375 		/* Nothing to add */
15376 		return (mp);
15377 	}
15378 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15379 	if (mp1 == NULL) {
15380 		/*
15381 		 * Defer sending ancillary data until the next TCP segment
15382 		 * arrives.
15383 		 */
15384 		return (mp);
15385 	}
15386 	mp1->b_cont = mp;
15387 	mp = mp1;
15388 	mp->b_wptr += sizeof (*todi) + optlen;
15389 	mp->b_datap->db_type = M_PROTO;
15390 	todi = (struct T_optdata_ind *)mp->b_rptr;
15391 	todi->PRIM_type = T_OPTDATA_IND;
15392 	todi->DATA_flag = 1;	/* MORE data */
15393 	todi->OPT_length = optlen;
15394 	todi->OPT_offset = sizeof (*todi);
15395 	optptr = (uchar_t *)&todi[1];
15396 	/*
15397 	 * If app asked for pktinfo and the index has changed ...
15398 	 * Note that the local address never changes for the connection.
15399 	 */
15400 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15401 		struct in6_pktinfo *pkti;
15402 
15403 		toh = (struct T_opthdr *)optptr;
15404 		toh->level = IPPROTO_IPV6;
15405 		toh->name = IPV6_PKTINFO;
15406 		toh->len = sizeof (*toh) + sizeof (*pkti);
15407 		toh->status = 0;
15408 		optptr += sizeof (*toh);
15409 		pkti = (struct in6_pktinfo *)optptr;
15410 		if (tcp->tcp_ipversion == IPV6_VERSION)
15411 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15412 		else
15413 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15414 			    &pkti->ipi6_addr);
15415 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15416 		optptr += sizeof (*pkti);
15417 		ASSERT(OK_32PTR(optptr));
15418 		/* Save as "last" value */
15419 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15420 	}
15421 	/* If app asked for hoplimit and it has changed ... */
15422 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15423 		toh = (struct T_opthdr *)optptr;
15424 		toh->level = IPPROTO_IPV6;
15425 		toh->name = IPV6_HOPLIMIT;
15426 		toh->len = sizeof (*toh) + sizeof (uint_t);
15427 		toh->status = 0;
15428 		optptr += sizeof (*toh);
15429 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15430 		optptr += sizeof (uint_t);
15431 		ASSERT(OK_32PTR(optptr));
15432 		/* Save as "last" value */
15433 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15434 	}
15435 	/* If app asked for tclass and it has changed ... */
15436 	if (addflag & TCP_IPV6_RECVTCLASS) {
15437 		toh = (struct T_opthdr *)optptr;
15438 		toh->level = IPPROTO_IPV6;
15439 		toh->name = IPV6_TCLASS;
15440 		toh->len = sizeof (*toh) + sizeof (uint_t);
15441 		toh->status = 0;
15442 		optptr += sizeof (*toh);
15443 		*(uint_t *)optptr = ipp->ipp_tclass;
15444 		optptr += sizeof (uint_t);
15445 		ASSERT(OK_32PTR(optptr));
15446 		/* Save as "last" value */
15447 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15448 	}
15449 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15450 		toh = (struct T_opthdr *)optptr;
15451 		toh->level = IPPROTO_IPV6;
15452 		toh->name = IPV6_HOPOPTS;
15453 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15454 		    tcp->tcp_label_len;
15455 		toh->status = 0;
15456 		optptr += sizeof (*toh);
15457 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15458 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15459 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15460 		ASSERT(OK_32PTR(optptr));
15461 		/* Save as last value */
15462 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15463 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15464 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15465 	}
15466 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15467 		toh = (struct T_opthdr *)optptr;
15468 		toh->level = IPPROTO_IPV6;
15469 		toh->name = IPV6_RTHDRDSTOPTS;
15470 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15471 		toh->status = 0;
15472 		optptr += sizeof (*toh);
15473 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15474 		optptr += ipp->ipp_rtdstoptslen;
15475 		ASSERT(OK_32PTR(optptr));
15476 		/* Save as last value */
15477 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15478 		    &tcp->tcp_rtdstoptslen,
15479 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15480 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15481 	}
15482 	if (addflag & TCP_IPV6_RECVRTHDR) {
15483 		toh = (struct T_opthdr *)optptr;
15484 		toh->level = IPPROTO_IPV6;
15485 		toh->name = IPV6_RTHDR;
15486 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15487 		toh->status = 0;
15488 		optptr += sizeof (*toh);
15489 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15490 		optptr += ipp->ipp_rthdrlen;
15491 		ASSERT(OK_32PTR(optptr));
15492 		/* Save as last value */
15493 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15494 		    (ipp->ipp_fields & IPPF_RTHDR),
15495 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15496 	}
15497 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15498 		toh = (struct T_opthdr *)optptr;
15499 		toh->level = IPPROTO_IPV6;
15500 		toh->name = IPV6_DSTOPTS;
15501 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15502 		toh->status = 0;
15503 		optptr += sizeof (*toh);
15504 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15505 		optptr += ipp->ipp_dstoptslen;
15506 		ASSERT(OK_32PTR(optptr));
15507 		/* Save as last value */
15508 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15509 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15510 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15511 	}
15512 	ASSERT(optptr == mp->b_wptr);
15513 	return (mp);
15514 }
15515 
15516 
15517 /*
15518  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15519  * or a "bad" IRE detected by tcp_adapt_ire.
15520  * We can't tell if the failure was due to the laddr or the faddr
15521  * thus we clear out all addresses and ports.
15522  */
15523 static void
15524 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15525 {
15526 	queue_t	*q = tcp->tcp_rq;
15527 	tcph_t	*tcph;
15528 	struct T_error_ack *tea;
15529 	conn_t	*connp = tcp->tcp_connp;
15530 
15531 
15532 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15533 
15534 	if (mp->b_cont) {
15535 		freemsg(mp->b_cont);
15536 		mp->b_cont = NULL;
15537 	}
15538 	tea = (struct T_error_ack *)mp->b_rptr;
15539 	switch (tea->PRIM_type) {
15540 	case T_BIND_ACK:
15541 		/*
15542 		 * Need to unbind with classifier since we were just told that
15543 		 * our bind succeeded.
15544 		 */
15545 		tcp->tcp_hard_bound = B_FALSE;
15546 		tcp->tcp_hard_binding = B_FALSE;
15547 
15548 		ipcl_hash_remove(connp);
15549 		/* Reuse the mblk if possible */
15550 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15551 		    sizeof (*tea));
15552 		mp->b_rptr = mp->b_datap->db_base;
15553 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15554 		tea = (struct T_error_ack *)mp->b_rptr;
15555 		tea->PRIM_type = T_ERROR_ACK;
15556 		tea->TLI_error = TSYSERR;
15557 		tea->UNIX_error = error;
15558 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15559 			tea->ERROR_prim = T_CONN_REQ;
15560 		} else {
15561 			tea->ERROR_prim = O_T_BIND_REQ;
15562 		}
15563 		break;
15564 
15565 	case T_ERROR_ACK:
15566 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15567 			tea->ERROR_prim = T_CONN_REQ;
15568 		break;
15569 	default:
15570 		panic("tcp_bind_failed: unexpected TPI type");
15571 		/*NOTREACHED*/
15572 	}
15573 
15574 	tcp->tcp_state = TCPS_IDLE;
15575 	if (tcp->tcp_ipversion == IPV4_VERSION)
15576 		tcp->tcp_ipha->ipha_src = 0;
15577 	else
15578 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15579 	/*
15580 	 * Copy of the src addr. in tcp_t is needed since
15581 	 * the lookup funcs. can only look at tcp_t
15582 	 */
15583 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15584 
15585 	tcph = tcp->tcp_tcph;
15586 	tcph->th_lport[0] = 0;
15587 	tcph->th_lport[1] = 0;
15588 	tcp_bind_hash_remove(tcp);
15589 	bzero(&connp->u_port, sizeof (connp->u_port));
15590 	/* blow away saved option results if any */
15591 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15592 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15593 
15594 	conn_delete_ire(tcp->tcp_connp, NULL);
15595 	putnext(q, mp);
15596 }
15597 
15598 /*
15599  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15600  * messages.
15601  */
15602 void
15603 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15604 {
15605 	mblk_t	*mp1;
15606 	uchar_t	*rptr = mp->b_rptr;
15607 	queue_t	*q = tcp->tcp_rq;
15608 	struct T_error_ack *tea;
15609 	uint32_t mss;
15610 	mblk_t *syn_mp;
15611 	mblk_t *mdti;
15612 	mblk_t *lsoi;
15613 	int	retval;
15614 	mblk_t *ire_mp;
15615 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15616 
15617 	switch (mp->b_datap->db_type) {
15618 	case M_PROTO:
15619 	case M_PCPROTO:
15620 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15621 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15622 			break;
15623 		tea = (struct T_error_ack *)rptr;
15624 		switch (tea->PRIM_type) {
15625 		case T_BIND_ACK:
15626 			/*
15627 			 * Adapt Multidata information, if any.  The
15628 			 * following tcp_mdt_update routine will free
15629 			 * the message.
15630 			 */
15631 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15632 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15633 				    b_rptr)->mdt_capab, B_TRUE);
15634 				freemsg(mdti);
15635 			}
15636 
15637 			/*
15638 			 * Check to update LSO information with tcp, and
15639 			 * tcp_lso_update routine will free the message.
15640 			 */
15641 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15642 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15643 				    b_rptr)->lso_capab);
15644 				freemsg(lsoi);
15645 			}
15646 
15647 			/* Get the IRE, if we had requested for it */
15648 			ire_mp = tcp_ire_mp(mp);
15649 
15650 			if (tcp->tcp_hard_binding) {
15651 				tcp->tcp_hard_binding = B_FALSE;
15652 				tcp->tcp_hard_bound = B_TRUE;
15653 				CL_INET_CONNECT(tcp);
15654 			} else {
15655 				if (ire_mp != NULL)
15656 					freeb(ire_mp);
15657 				goto after_syn_sent;
15658 			}
15659 
15660 			retval = tcp_adapt_ire(tcp, ire_mp);
15661 			if (ire_mp != NULL)
15662 				freeb(ire_mp);
15663 			if (retval == 0) {
15664 				tcp_bind_failed(tcp, mp,
15665 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15666 				    ENETUNREACH : EADDRNOTAVAIL));
15667 				return;
15668 			}
15669 			/*
15670 			 * Don't let an endpoint connect to itself.
15671 			 * Also checked in tcp_connect() but that
15672 			 * check can't handle the case when the
15673 			 * local IP address is INADDR_ANY.
15674 			 */
15675 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15676 				if ((tcp->tcp_ipha->ipha_dst ==
15677 				    tcp->tcp_ipha->ipha_src) &&
15678 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15679 				    tcp->tcp_tcph->th_fport))) {
15680 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15681 					return;
15682 				}
15683 			} else {
15684 				if (IN6_ARE_ADDR_EQUAL(
15685 				    &tcp->tcp_ip6h->ip6_dst,
15686 				    &tcp->tcp_ip6h->ip6_src) &&
15687 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15688 				    tcp->tcp_tcph->th_fport))) {
15689 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15690 					return;
15691 				}
15692 			}
15693 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15694 			/*
15695 			 * This should not be possible!  Just for
15696 			 * defensive coding...
15697 			 */
15698 			if (tcp->tcp_state != TCPS_SYN_SENT)
15699 				goto after_syn_sent;
15700 
15701 			if (is_system_labeled() &&
15702 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15703 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15704 				return;
15705 			}
15706 
15707 			ASSERT(q == tcp->tcp_rq);
15708 			/*
15709 			 * tcp_adapt_ire() does not adjust
15710 			 * for TCP/IP header length.
15711 			 */
15712 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15713 
15714 			/*
15715 			 * Just make sure our rwnd is at
15716 			 * least tcp_recv_hiwat_mss * MSS
15717 			 * large, and round up to the nearest
15718 			 * MSS.
15719 			 *
15720 			 * We do the round up here because
15721 			 * we need to get the interface
15722 			 * MTU first before we can do the
15723 			 * round up.
15724 			 */
15725 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15726 			    tcps->tcps_recv_hiwat_minmss * mss);
15727 			q->q_hiwat = tcp->tcp_rwnd;
15728 			tcp_set_ws_value(tcp);
15729 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15730 			    tcp->tcp_tcph->th_win);
15731 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15732 				tcp->tcp_snd_ws_ok = B_TRUE;
15733 
15734 			/*
15735 			 * Set tcp_snd_ts_ok to true
15736 			 * so that tcp_xmit_mp will
15737 			 * include the timestamp
15738 			 * option in the SYN segment.
15739 			 */
15740 			if (tcps->tcps_tstamp_always ||
15741 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15742 				tcp->tcp_snd_ts_ok = B_TRUE;
15743 			}
15744 
15745 			/*
15746 			 * tcp_snd_sack_ok can be set in
15747 			 * tcp_adapt_ire() if the sack metric
15748 			 * is set.  So check it here also.
15749 			 */
15750 			if (tcps->tcps_sack_permitted == 2 ||
15751 			    tcp->tcp_snd_sack_ok) {
15752 				if (tcp->tcp_sack_info == NULL) {
15753 					tcp->tcp_sack_info =
15754 					    kmem_cache_alloc(
15755 					    tcp_sack_info_cache,
15756 					    KM_SLEEP);
15757 				}
15758 				tcp->tcp_snd_sack_ok = B_TRUE;
15759 			}
15760 
15761 			/*
15762 			 * Should we use ECN?  Note that the current
15763 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15764 			 * is 1.  The reason for doing this is that there
15765 			 * are equipments out there that will drop ECN
15766 			 * enabled IP packets.  Setting it to 1 avoids
15767 			 * compatibility problems.
15768 			 */
15769 			if (tcps->tcps_ecn_permitted == 2)
15770 				tcp->tcp_ecn_ok = B_TRUE;
15771 
15772 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15773 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15774 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15775 			if (syn_mp) {
15776 				cred_t *cr;
15777 				pid_t pid;
15778 
15779 				/*
15780 				 * Obtain the credential from the
15781 				 * thread calling connect(); the credential
15782 				 * lives on in the second mblk which
15783 				 * originated from T_CONN_REQ and is echoed
15784 				 * with the T_BIND_ACK from ip.  If none
15785 				 * can be found, default to the creator
15786 				 * of the socket.
15787 				 */
15788 				if (mp->b_cont == NULL ||
15789 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15790 					cr = tcp->tcp_cred;
15791 					pid = tcp->tcp_cpid;
15792 				} else {
15793 					pid = DB_CPID(mp->b_cont);
15794 				}
15795 
15796 				TCP_RECORD_TRACE(tcp, syn_mp,
15797 				    TCP_TRACE_SEND_PKT);
15798 				mblk_setcred(syn_mp, cr);
15799 				DB_CPID(syn_mp) = pid;
15800 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15801 			}
15802 		after_syn_sent:
15803 			/*
15804 			 * A trailer mblk indicates a waiting client upstream.
15805 			 * We complete here the processing begun in
15806 			 * either tcp_bind() or tcp_connect() by passing
15807 			 * upstream the reply message they supplied.
15808 			 */
15809 			mp1 = mp;
15810 			mp = mp->b_cont;
15811 			freeb(mp1);
15812 			if (mp)
15813 				break;
15814 			return;
15815 		case T_ERROR_ACK:
15816 			if (tcp->tcp_debug) {
15817 				(void) strlog(TCP_MOD_ID, 0, 1,
15818 				    SL_TRACE|SL_ERROR,
15819 				    "tcp_rput_other: case T_ERROR_ACK, "
15820 				    "ERROR_prim == %d",
15821 				    tea->ERROR_prim);
15822 			}
15823 			switch (tea->ERROR_prim) {
15824 			case O_T_BIND_REQ:
15825 			case T_BIND_REQ:
15826 				tcp_bind_failed(tcp, mp,
15827 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15828 				    ENETUNREACH : EADDRNOTAVAIL));
15829 				return;
15830 			case T_UNBIND_REQ:
15831 				tcp->tcp_hard_binding = B_FALSE;
15832 				tcp->tcp_hard_bound = B_FALSE;
15833 				if (mp->b_cont) {
15834 					freemsg(mp->b_cont);
15835 					mp->b_cont = NULL;
15836 				}
15837 				if (tcp->tcp_unbind_pending)
15838 					tcp->tcp_unbind_pending = 0;
15839 				else {
15840 					/* From tcp_ip_unbind() - free */
15841 					freemsg(mp);
15842 					return;
15843 				}
15844 				break;
15845 			case T_SVR4_OPTMGMT_REQ:
15846 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15847 					/* T_OPTMGMT_REQ generated by TCP */
15848 					printf("T_SVR4_OPTMGMT_REQ failed "
15849 					    "%d/%d - dropped (cnt %d)\n",
15850 					    tea->TLI_error, tea->UNIX_error,
15851 					    tcp->tcp_drop_opt_ack_cnt);
15852 					freemsg(mp);
15853 					tcp->tcp_drop_opt_ack_cnt--;
15854 					return;
15855 				}
15856 				break;
15857 			}
15858 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15859 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15860 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15861 				    "- dropped (cnt %d)\n",
15862 				    tea->TLI_error, tea->UNIX_error,
15863 				    tcp->tcp_drop_opt_ack_cnt);
15864 				freemsg(mp);
15865 				tcp->tcp_drop_opt_ack_cnt--;
15866 				return;
15867 			}
15868 			break;
15869 		case T_OPTMGMT_ACK:
15870 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15871 				/* T_OPTMGMT_REQ generated by TCP */
15872 				freemsg(mp);
15873 				tcp->tcp_drop_opt_ack_cnt--;
15874 				return;
15875 			}
15876 			break;
15877 		default:
15878 			break;
15879 		}
15880 		break;
15881 	case M_FLUSH:
15882 		if (*rptr & FLUSHR)
15883 			flushq(q, FLUSHDATA);
15884 		break;
15885 	default:
15886 		/* M_CTL will be directly sent to tcp_icmp_error() */
15887 		ASSERT(DB_TYPE(mp) != M_CTL);
15888 		break;
15889 	}
15890 	/*
15891 	 * Make sure we set this bit before sending the ACK for
15892 	 * bind. Otherwise accept could possibly run and free
15893 	 * this tcp struct.
15894 	 */
15895 	putnext(q, mp);
15896 }
15897 
15898 /*
15899  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15900  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15901  * tcp_rsrv() try again.
15902  */
15903 static void
15904 tcp_ordrel_kick(void *arg)
15905 {
15906 	conn_t 	*connp = (conn_t *)arg;
15907 	tcp_t	*tcp = connp->conn_tcp;
15908 
15909 	tcp->tcp_ordrelid = 0;
15910 	tcp->tcp_timeout = B_FALSE;
15911 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15912 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15913 		qenable(tcp->tcp_rq);
15914 	}
15915 }
15916 
15917 /* ARGSUSED */
15918 static void
15919 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15920 {
15921 	conn_t	*connp = (conn_t *)arg;
15922 	tcp_t	*tcp = connp->conn_tcp;
15923 	queue_t	*q = tcp->tcp_rq;
15924 	uint_t	thwin;
15925 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15926 
15927 	freeb(mp);
15928 
15929 	TCP_STAT(tcps, tcp_rsrv_calls);
15930 
15931 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15932 		return;
15933 	}
15934 
15935 	if (tcp->tcp_fused) {
15936 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15937 
15938 		ASSERT(tcp->tcp_fused);
15939 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15940 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15941 		ASSERT(!TCP_IS_DETACHED(tcp));
15942 		ASSERT(tcp->tcp_connp->conn_sqp ==
15943 		    peer_tcp->tcp_connp->conn_sqp);
15944 
15945 		/*
15946 		 * Normally we would not get backenabled in synchronous
15947 		 * streams mode, but in case this happens, we need to plug
15948 		 * synchronous streams during our drain to prevent a race
15949 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15950 		 */
15951 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15952 		if (tcp->tcp_rcv_list != NULL)
15953 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15954 
15955 		if (peer_tcp > tcp) {
15956 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15957 			mutex_enter(&tcp->tcp_non_sq_lock);
15958 		} else {
15959 			mutex_enter(&tcp->tcp_non_sq_lock);
15960 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15961 		}
15962 
15963 		if (peer_tcp->tcp_flow_stopped &&
15964 		    (TCP_UNSENT_BYTES(peer_tcp) <=
15965 		    peer_tcp->tcp_xmit_lowater)) {
15966 			tcp_clrqfull(peer_tcp);
15967 		}
15968 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
15969 		mutex_exit(&tcp->tcp_non_sq_lock);
15970 
15971 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15972 		TCP_STAT(tcps, tcp_fusion_backenabled);
15973 		return;
15974 	}
15975 
15976 	if (canputnext(q)) {
15977 		tcp->tcp_rwnd = q->q_hiwat;
15978 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15979 		    << tcp->tcp_rcv_ws;
15980 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15981 		/*
15982 		 * Send back a window update immediately if TCP is above
15983 		 * ESTABLISHED state and the increase of the rcv window
15984 		 * that the other side knows is at least 1 MSS after flow
15985 		 * control is lifted.
15986 		 */
15987 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15988 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15989 			tcp_xmit_ctl(NULL, tcp,
15990 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15991 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15992 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
15993 		}
15994 	}
15995 	/* Handle a failure to allocate a T_ORDREL_IND here */
15996 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15997 		ASSERT(tcp->tcp_listener == NULL);
15998 		if (tcp->tcp_rcv_list != NULL) {
15999 			(void) tcp_rcv_drain(q, tcp);
16000 		}
16001 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
16002 		mp = mi_tpi_ordrel_ind();
16003 		if (mp) {
16004 			tcp->tcp_ordrel_done = B_TRUE;
16005 			putnext(q, mp);
16006 			if (tcp->tcp_deferred_clean_death) {
16007 				/*
16008 				 * tcp_clean_death was deferred for
16009 				 * T_ORDREL_IND - do it now
16010 				 */
16011 				tcp->tcp_deferred_clean_death = B_FALSE;
16012 				(void) tcp_clean_death(tcp,
16013 				    tcp->tcp_client_errno, 22);
16014 			}
16015 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16016 			/*
16017 			 * If there isn't already a timer running
16018 			 * start one.  Use a 4 second
16019 			 * timer as a fallback since it can't fail.
16020 			 */
16021 			tcp->tcp_timeout = B_TRUE;
16022 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16023 			    MSEC_TO_TICK(4000));
16024 		}
16025 	}
16026 }
16027 
16028 /*
16029  * The read side service routine is called mostly when we get back-enabled as a
16030  * result of flow control relief.  Since we don't actually queue anything in
16031  * TCP, we have no data to send out of here.  What we do is clear the receive
16032  * window, and send out a window update.
16033  * This routine is also called to drive an orderly release message upstream
16034  * if the attempt in tcp_rput failed.
16035  */
16036 static void
16037 tcp_rsrv(queue_t *q)
16038 {
16039 	conn_t *connp = Q_TO_CONN(q);
16040 	tcp_t	*tcp = connp->conn_tcp;
16041 	mblk_t	*mp;
16042 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16043 
16044 	/* No code does a putq on the read side */
16045 	ASSERT(q->q_first == NULL);
16046 
16047 	/* Nothing to do for the default queue */
16048 	if (q == tcps->tcps_g_q) {
16049 		return;
16050 	}
16051 
16052 	mp = allocb(0, BPRI_HI);
16053 	if (mp == NULL) {
16054 		/*
16055 		 * We are under memory pressure. Return for now and we
16056 		 * we will be called again later.
16057 		 */
16058 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16059 			/*
16060 			 * If there isn't already a timer running
16061 			 * start one.  Use a 4 second
16062 			 * timer as a fallback since it can't fail.
16063 			 */
16064 			tcp->tcp_timeout = B_TRUE;
16065 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16066 			    MSEC_TO_TICK(4000));
16067 		}
16068 		return;
16069 	}
16070 	CONN_INC_REF(connp);
16071 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16072 	    SQTAG_TCP_RSRV);
16073 }
16074 
16075 /*
16076  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16077  * We do not allow the receive window to shrink.  After setting rwnd,
16078  * set the flow control hiwat of the stream.
16079  *
16080  * This function is called in 2 cases:
16081  *
16082  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16083  *    connection (passive open) and in tcp_rput_data() for active connect.
16084  *    This is called after tcp_mss_set() when the desired MSS value is known.
16085  *    This makes sure that our window size is a mutiple of the other side's
16086  *    MSS.
16087  * 2) Handling SO_RCVBUF option.
16088  *
16089  * It is ASSUMED that the requested size is a multiple of the current MSS.
16090  *
16091  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16092  * user requests so.
16093  */
16094 static int
16095 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16096 {
16097 	uint32_t	mss = tcp->tcp_mss;
16098 	uint32_t	old_max_rwnd;
16099 	uint32_t	max_transmittable_rwnd;
16100 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16101 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16102 
16103 	if (tcp->tcp_fused) {
16104 		size_t sth_hiwat;
16105 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16106 
16107 		ASSERT(peer_tcp != NULL);
16108 		/*
16109 		 * Record the stream head's high water mark for
16110 		 * this endpoint; this is used for flow-control
16111 		 * purposes in tcp_fuse_output().
16112 		 */
16113 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16114 		if (!tcp_detached)
16115 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16116 
16117 		/*
16118 		 * In the fusion case, the maxpsz stream head value of
16119 		 * our peer is set according to its send buffer size
16120 		 * and our receive buffer size; since the latter may
16121 		 * have changed we need to update the peer's maxpsz.
16122 		 */
16123 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16124 		return (rwnd);
16125 	}
16126 
16127 	if (tcp_detached)
16128 		old_max_rwnd = tcp->tcp_rwnd;
16129 	else
16130 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16131 
16132 	/*
16133 	 * Insist on a receive window that is at least
16134 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16135 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16136 	 * and delayed acknowledgement.
16137 	 */
16138 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16139 
16140 	/*
16141 	 * If window size info has already been exchanged, TCP should not
16142 	 * shrink the window.  Shrinking window is doable if done carefully.
16143 	 * We may add that support later.  But so far there is not a real
16144 	 * need to do that.
16145 	 */
16146 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16147 		/* MSS may have changed, do a round up again. */
16148 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16149 	}
16150 
16151 	/*
16152 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16153 	 * can be applied even before the window scale option is decided.
16154 	 */
16155 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16156 	if (rwnd > max_transmittable_rwnd) {
16157 		rwnd = max_transmittable_rwnd -
16158 		    (max_transmittable_rwnd % mss);
16159 		if (rwnd < mss)
16160 			rwnd = max_transmittable_rwnd;
16161 		/*
16162 		 * If we're over the limit we may have to back down tcp_rwnd.
16163 		 * The increment below won't work for us. So we set all three
16164 		 * here and the increment below will have no effect.
16165 		 */
16166 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16167 	}
16168 	if (tcp->tcp_localnet) {
16169 		tcp->tcp_rack_abs_max =
16170 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16171 	} else {
16172 		/*
16173 		 * For a remote host on a different subnet (through a router),
16174 		 * we ack every other packet to be conforming to RFC1122.
16175 		 * tcp_deferred_acks_max is default to 2.
16176 		 */
16177 		tcp->tcp_rack_abs_max =
16178 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16179 	}
16180 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16181 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16182 	else
16183 		tcp->tcp_rack_cur_max = 0;
16184 	/*
16185 	 * Increment the current rwnd by the amount the maximum grew (we
16186 	 * can not overwrite it since we might be in the middle of a
16187 	 * connection.)
16188 	 */
16189 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16190 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16191 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16192 		tcp->tcp_cwnd_max = rwnd;
16193 
16194 	if (tcp_detached)
16195 		return (rwnd);
16196 	/*
16197 	 * We set the maximum receive window into rq->q_hiwat.
16198 	 * This is not actually used for flow control.
16199 	 */
16200 	tcp->tcp_rq->q_hiwat = rwnd;
16201 	/*
16202 	 * Set the Stream head high water mark. This doesn't have to be
16203 	 * here, since we are simply using default values, but we would
16204 	 * prefer to choose these values algorithmically, with a likely
16205 	 * relationship to rwnd.
16206 	 */
16207 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16208 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16209 	return (rwnd);
16210 }
16211 
16212 /*
16213  * Return SNMP stuff in buffer in mpdata.
16214  */
16215 int
16216 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16217 {
16218 	mblk_t			*mpdata;
16219 	mblk_t			*mp_conn_ctl = NULL;
16220 	mblk_t			*mp_conn_tail;
16221 	mblk_t			*mp_attr_ctl = NULL;
16222 	mblk_t			*mp_attr_tail;
16223 	mblk_t			*mp6_conn_ctl = NULL;
16224 	mblk_t			*mp6_conn_tail;
16225 	mblk_t			*mp6_attr_ctl = NULL;
16226 	mblk_t			*mp6_attr_tail;
16227 	struct opthdr		*optp;
16228 	mib2_tcpConnEntry_t	tce;
16229 	mib2_tcp6ConnEntry_t	tce6;
16230 	mib2_transportMLPEntry_t mlp;
16231 	connf_t			*connfp;
16232 	conn_t			*connp;
16233 	int			i;
16234 	boolean_t 		ispriv;
16235 	zoneid_t 		zoneid;
16236 	int			v4_conn_idx;
16237 	int			v6_conn_idx;
16238 	tcp_stack_t		*tcps = Q_TO_TCP(q)->tcp_tcps;
16239 	ip_stack_t	*ipst;
16240 
16241 	if (mpctl == NULL ||
16242 	    (mpdata = mpctl->b_cont) == NULL ||
16243 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16244 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16245 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16246 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16247 		freemsg(mp_conn_ctl);
16248 		freemsg(mp_attr_ctl);
16249 		freemsg(mp6_conn_ctl);
16250 		freemsg(mp6_attr_ctl);
16251 		return (0);
16252 	}
16253 
16254 	/* build table of connections -- need count in fixed part */
16255 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16256 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16257 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16258 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16259 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16260 
16261 	ispriv =
16262 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16263 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16264 
16265 	v4_conn_idx = v6_conn_idx = 0;
16266 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16267 
16268 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16269 		ipst = tcps->tcps_netstack->netstack_ip;
16270 
16271 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16272 
16273 		connp = NULL;
16274 
16275 		while ((connp =
16276 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16277 			tcp_t *tcp;
16278 			boolean_t needattr;
16279 
16280 			if (connp->conn_zoneid != zoneid)
16281 				continue;	/* not in this zone */
16282 
16283 			tcp = connp->conn_tcp;
16284 			UPDATE_MIB(&tcps->tcps_mib,
16285 			    tcpHCInSegs, tcp->tcp_ibsegs);
16286 			tcp->tcp_ibsegs = 0;
16287 			UPDATE_MIB(&tcps->tcps_mib,
16288 			    tcpHCOutSegs, tcp->tcp_obsegs);
16289 			tcp->tcp_obsegs = 0;
16290 
16291 			tce6.tcp6ConnState = tce.tcpConnState =
16292 			    tcp_snmp_state(tcp);
16293 			if (tce.tcpConnState == MIB2_TCP_established ||
16294 			    tce.tcpConnState == MIB2_TCP_closeWait)
16295 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16296 
16297 			needattr = B_FALSE;
16298 			bzero(&mlp, sizeof (mlp));
16299 			if (connp->conn_mlp_type != mlptSingle) {
16300 				if (connp->conn_mlp_type == mlptShared ||
16301 				    connp->conn_mlp_type == mlptBoth)
16302 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16303 				if (connp->conn_mlp_type == mlptPrivate ||
16304 				    connp->conn_mlp_type == mlptBoth)
16305 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16306 				needattr = B_TRUE;
16307 			}
16308 			if (connp->conn_peercred != NULL) {
16309 				ts_label_t *tsl;
16310 
16311 				tsl = crgetlabel(connp->conn_peercred);
16312 				mlp.tme_doi = label2doi(tsl);
16313 				mlp.tme_label = *label2bslabel(tsl);
16314 				needattr = B_TRUE;
16315 			}
16316 
16317 			/* Create a message to report on IPv6 entries */
16318 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16319 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16320 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16321 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16322 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16323 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16324 			/* Don't want just anybody seeing these... */
16325 			if (ispriv) {
16326 				tce6.tcp6ConnEntryInfo.ce_snxt =
16327 				    tcp->tcp_snxt;
16328 				tce6.tcp6ConnEntryInfo.ce_suna =
16329 				    tcp->tcp_suna;
16330 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16331 				    tcp->tcp_rnxt;
16332 				tce6.tcp6ConnEntryInfo.ce_rack =
16333 				    tcp->tcp_rack;
16334 			} else {
16335 				/*
16336 				 * Netstat, unfortunately, uses this to
16337 				 * get send/receive queue sizes.  How to fix?
16338 				 * Why not compute the difference only?
16339 				 */
16340 				tce6.tcp6ConnEntryInfo.ce_snxt =
16341 				    tcp->tcp_snxt - tcp->tcp_suna;
16342 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16343 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16344 				    tcp->tcp_rnxt - tcp->tcp_rack;
16345 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16346 			}
16347 
16348 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16349 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16350 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16351 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16352 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16353 
16354 			tce6.tcp6ConnCreationProcess =
16355 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16356 			    tcp->tcp_cpid;
16357 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16358 
16359 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16360 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16361 
16362 			mlp.tme_connidx = v6_conn_idx++;
16363 			if (needattr)
16364 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16365 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16366 			}
16367 			/*
16368 			 * Create an IPv4 table entry for IPv4 entries and also
16369 			 * for IPv6 entries which are bound to in6addr_any
16370 			 * but don't have IPV6_V6ONLY set.
16371 			 * (i.e. anything an IPv4 peer could connect to)
16372 			 */
16373 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16374 			    (tcp->tcp_state <= TCPS_LISTEN &&
16375 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16376 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16377 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16378 					tce.tcpConnRemAddress = INADDR_ANY;
16379 					tce.tcpConnLocalAddress = INADDR_ANY;
16380 				} else {
16381 					tce.tcpConnRemAddress =
16382 					    tcp->tcp_remote;
16383 					tce.tcpConnLocalAddress =
16384 					    tcp->tcp_ip_src;
16385 				}
16386 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16387 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16388 				/* Don't want just anybody seeing these... */
16389 				if (ispriv) {
16390 					tce.tcpConnEntryInfo.ce_snxt =
16391 					    tcp->tcp_snxt;
16392 					tce.tcpConnEntryInfo.ce_suna =
16393 					    tcp->tcp_suna;
16394 					tce.tcpConnEntryInfo.ce_rnxt =
16395 					    tcp->tcp_rnxt;
16396 					tce.tcpConnEntryInfo.ce_rack =
16397 					    tcp->tcp_rack;
16398 				} else {
16399 					/*
16400 					 * Netstat, unfortunately, uses this to
16401 					 * get send/receive queue sizes.  How
16402 					 * to fix?
16403 					 * Why not compute the difference only?
16404 					 */
16405 					tce.tcpConnEntryInfo.ce_snxt =
16406 					    tcp->tcp_snxt - tcp->tcp_suna;
16407 					tce.tcpConnEntryInfo.ce_suna = 0;
16408 					tce.tcpConnEntryInfo.ce_rnxt =
16409 					    tcp->tcp_rnxt - tcp->tcp_rack;
16410 					tce.tcpConnEntryInfo.ce_rack = 0;
16411 				}
16412 
16413 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16414 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16415 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16416 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16417 				tce.tcpConnEntryInfo.ce_state =
16418 				    tcp->tcp_state;
16419 
16420 				tce.tcpConnCreationProcess =
16421 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16422 				    tcp->tcp_cpid;
16423 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16424 
16425 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16426 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16427 
16428 				mlp.tme_connidx = v4_conn_idx++;
16429 				if (needattr)
16430 					(void) snmp_append_data2(
16431 					    mp_attr_ctl->b_cont,
16432 					    &mp_attr_tail, (char *)&mlp,
16433 					    sizeof (mlp));
16434 			}
16435 		}
16436 	}
16437 
16438 	/* fixed length structure for IPv4 and IPv6 counters */
16439 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16440 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16441 	    sizeof (mib2_tcp6ConnEntry_t));
16442 	/* synchronize 32- and 64-bit counters */
16443 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16444 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16445 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16446 	optp->level = MIB2_TCP;
16447 	optp->name = 0;
16448 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16449 	    sizeof (tcps->tcps_mib));
16450 	optp->len = msgdsize(mpdata);
16451 	qreply(q, mpctl);
16452 
16453 	/* table of connections... */
16454 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16455 	    sizeof (struct T_optmgmt_ack)];
16456 	optp->level = MIB2_TCP;
16457 	optp->name = MIB2_TCP_CONN;
16458 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16459 	qreply(q, mp_conn_ctl);
16460 
16461 	/* table of MLP attributes... */
16462 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16463 	    sizeof (struct T_optmgmt_ack)];
16464 	optp->level = MIB2_TCP;
16465 	optp->name = EXPER_XPORT_MLP;
16466 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16467 	if (optp->len == 0)
16468 		freemsg(mp_attr_ctl);
16469 	else
16470 		qreply(q, mp_attr_ctl);
16471 
16472 	/* table of IPv6 connections... */
16473 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16474 	    sizeof (struct T_optmgmt_ack)];
16475 	optp->level = MIB2_TCP6;
16476 	optp->name = MIB2_TCP6_CONN;
16477 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16478 	qreply(q, mp6_conn_ctl);
16479 
16480 	/* table of IPv6 MLP attributes... */
16481 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16482 	    sizeof (struct T_optmgmt_ack)];
16483 	optp->level = MIB2_TCP6;
16484 	optp->name = EXPER_XPORT_MLP;
16485 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16486 	if (optp->len == 0)
16487 		freemsg(mp6_attr_ctl);
16488 	else
16489 		qreply(q, mp6_attr_ctl);
16490 	return (1);
16491 }
16492 
16493 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16494 /* ARGSUSED */
16495 int
16496 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16497 {
16498 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16499 
16500 	switch (level) {
16501 	case MIB2_TCP:
16502 		switch (name) {
16503 		case 13:
16504 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16505 				return (0);
16506 			/* TODO: delete entry defined by tce */
16507 			return (1);
16508 		default:
16509 			return (0);
16510 		}
16511 	default:
16512 		return (1);
16513 	}
16514 }
16515 
16516 /* Translate TCP state to MIB2 TCP state. */
16517 static int
16518 tcp_snmp_state(tcp_t *tcp)
16519 {
16520 	if (tcp == NULL)
16521 		return (0);
16522 
16523 	switch (tcp->tcp_state) {
16524 	case TCPS_CLOSED:
16525 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16526 	case TCPS_BOUND:
16527 		return (MIB2_TCP_closed);
16528 	case TCPS_LISTEN:
16529 		return (MIB2_TCP_listen);
16530 	case TCPS_SYN_SENT:
16531 		return (MIB2_TCP_synSent);
16532 	case TCPS_SYN_RCVD:
16533 		return (MIB2_TCP_synReceived);
16534 	case TCPS_ESTABLISHED:
16535 		return (MIB2_TCP_established);
16536 	case TCPS_CLOSE_WAIT:
16537 		return (MIB2_TCP_closeWait);
16538 	case TCPS_FIN_WAIT_1:
16539 		return (MIB2_TCP_finWait1);
16540 	case TCPS_CLOSING:
16541 		return (MIB2_TCP_closing);
16542 	case TCPS_LAST_ACK:
16543 		return (MIB2_TCP_lastAck);
16544 	case TCPS_FIN_WAIT_2:
16545 		return (MIB2_TCP_finWait2);
16546 	case TCPS_TIME_WAIT:
16547 		return (MIB2_TCP_timeWait);
16548 	default:
16549 		return (0);
16550 	}
16551 }
16552 
16553 static char tcp_report_header[] =
16554 	"TCP     " MI_COL_HDRPAD_STR
16555 	"zone dest            snxt     suna     "
16556 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16557 	"recent   [lport,fport] state";
16558 
16559 /*
16560  * TCP status report triggered via the Named Dispatch mechanism.
16561  */
16562 /* ARGSUSED */
16563 static void
16564 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16565     cred_t *cr)
16566 {
16567 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16568 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16569 	char cflag;
16570 	in6_addr_t	v6dst;
16571 	char buf[80];
16572 	uint_t print_len, buf_len;
16573 
16574 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16575 	if (buf_len <= 0)
16576 		return;
16577 
16578 	if (hashval >= 0)
16579 		(void) sprintf(hash, "%03d ", hashval);
16580 	else
16581 		hash[0] = '\0';
16582 
16583 	/*
16584 	 * Note that we use the remote address in the tcp_b  structure.
16585 	 * This means that it will print out the real destination address,
16586 	 * not the next hop's address if source routing is used.  This
16587 	 * avoid the confusion on the output because user may not
16588 	 * know that source routing is used for a connection.
16589 	 */
16590 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16591 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16592 	} else {
16593 		v6dst = tcp->tcp_remote_v6;
16594 	}
16595 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16596 	/*
16597 	 * the ispriv checks are so that normal users cannot determine
16598 	 * sequence number information using NDD.
16599 	 */
16600 
16601 	if (TCP_IS_DETACHED(tcp))
16602 		cflag = '*';
16603 	else
16604 		cflag = ' ';
16605 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16606 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16607 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16608 	    hash,
16609 	    (void *)tcp,
16610 	    tcp->tcp_connp->conn_zoneid,
16611 	    addrbuf,
16612 	    (ispriv) ? tcp->tcp_snxt : 0,
16613 	    (ispriv) ? tcp->tcp_suna : 0,
16614 	    tcp->tcp_swnd,
16615 	    (ispriv) ? tcp->tcp_rnxt : 0,
16616 	    (ispriv) ? tcp->tcp_rack : 0,
16617 	    tcp->tcp_rwnd,
16618 	    tcp->tcp_rto,
16619 	    tcp->tcp_mss,
16620 	    tcp->tcp_snd_ws_ok,
16621 	    tcp->tcp_snd_ws,
16622 	    tcp->tcp_rcv_ws,
16623 	    tcp->tcp_snd_ts_ok,
16624 	    tcp->tcp_ts_recent,
16625 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16626 	if (print_len < buf_len) {
16627 		((mblk_t *)mp)->b_wptr += print_len;
16628 	} else {
16629 		((mblk_t *)mp)->b_wptr += buf_len;
16630 	}
16631 }
16632 
16633 /*
16634  * TCP status report (for listeners only) triggered via the Named Dispatch
16635  * mechanism.
16636  */
16637 /* ARGSUSED */
16638 static void
16639 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16640 {
16641 	char addrbuf[INET6_ADDRSTRLEN];
16642 	in6_addr_t	v6dst;
16643 	uint_t print_len, buf_len;
16644 
16645 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16646 	if (buf_len <= 0)
16647 		return;
16648 
16649 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16650 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16651 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16652 	} else {
16653 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16654 		    addrbuf, sizeof (addrbuf));
16655 	}
16656 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16657 	    "%03d "
16658 	    MI_COL_PTRFMT_STR
16659 	    "%d %s %05u %08u %d/%d/%d%c\n",
16660 	    hashval, (void *)tcp,
16661 	    tcp->tcp_connp->conn_zoneid,
16662 	    addrbuf,
16663 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16664 	    tcp->tcp_conn_req_seqnum,
16665 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16666 	    tcp->tcp_conn_req_max,
16667 	    tcp->tcp_syn_defense ? '*' : ' ');
16668 	if (print_len < buf_len) {
16669 		((mblk_t *)mp)->b_wptr += print_len;
16670 	} else {
16671 		((mblk_t *)mp)->b_wptr += buf_len;
16672 	}
16673 }
16674 
16675 /* TCP status report triggered via the Named Dispatch mechanism. */
16676 /* ARGSUSED */
16677 static int
16678 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16679 {
16680 	tcp_t	*tcp;
16681 	int	i;
16682 	conn_t	*connp;
16683 	connf_t	*connfp;
16684 	zoneid_t zoneid;
16685 	tcp_stack_t *tcps;
16686 	ip_stack_t *ipst;
16687 
16688 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16689 	tcps = Q_TO_TCP(q)->tcp_tcps;
16690 
16691 	/*
16692 	 * Because of the ndd constraint, at most we can have 64K buffer
16693 	 * to put in all TCP info.  So to be more efficient, just
16694 	 * allocate a 64K buffer here, assuming we need that large buffer.
16695 	 * This may be a problem as any user can read tcp_status.  Therefore
16696 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16697 	 * This should be OK as normal users should not do this too often.
16698 	 */
16699 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16700 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16701 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16702 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16703 			return (0);
16704 		}
16705 	}
16706 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16707 		/* The following may work even if we cannot get a large buf. */
16708 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16709 		return (0);
16710 	}
16711 
16712 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16713 
16714 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16715 
16716 		ipst = tcps->tcps_netstack->netstack_ip;
16717 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16718 
16719 		connp = NULL;
16720 
16721 		while ((connp =
16722 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16723 			tcp = connp->conn_tcp;
16724 			if (zoneid != GLOBAL_ZONEID &&
16725 			    zoneid != connp->conn_zoneid)
16726 				continue;
16727 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16728 			    cr);
16729 		}
16730 
16731 	}
16732 
16733 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16734 	return (0);
16735 }
16736 
16737 /* TCP status report triggered via the Named Dispatch mechanism. */
16738 /* ARGSUSED */
16739 static int
16740 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16741 {
16742 	tf_t	*tbf;
16743 	tcp_t	*tcp;
16744 	int	i;
16745 	zoneid_t zoneid;
16746 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16747 
16748 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16749 
16750 	/* Refer to comments in tcp_status_report(). */
16751 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16752 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16753 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16754 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16755 			return (0);
16756 		}
16757 	}
16758 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16759 		/* The following may work even if we cannot get a large buf. */
16760 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16761 		return (0);
16762 	}
16763 
16764 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16765 
16766 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16767 		tbf = &tcps->tcps_bind_fanout[i];
16768 		mutex_enter(&tbf->tf_lock);
16769 		for (tcp = tbf->tf_tcp; tcp != NULL;
16770 		    tcp = tcp->tcp_bind_hash) {
16771 			if (zoneid != GLOBAL_ZONEID &&
16772 			    zoneid != tcp->tcp_connp->conn_zoneid)
16773 				continue;
16774 			CONN_INC_REF(tcp->tcp_connp);
16775 			tcp_report_item(mp->b_cont, tcp, i,
16776 			    Q_TO_TCP(q), cr);
16777 			CONN_DEC_REF(tcp->tcp_connp);
16778 		}
16779 		mutex_exit(&tbf->tf_lock);
16780 	}
16781 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16782 	return (0);
16783 }
16784 
16785 /* TCP status report triggered via the Named Dispatch mechanism. */
16786 /* ARGSUSED */
16787 static int
16788 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16789 {
16790 	connf_t	*connfp;
16791 	conn_t	*connp;
16792 	tcp_t	*tcp;
16793 	int	i;
16794 	zoneid_t zoneid;
16795 	tcp_stack_t *tcps;
16796 	ip_stack_t	*ipst;
16797 
16798 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16799 	tcps = Q_TO_TCP(q)->tcp_tcps;
16800 
16801 	/* Refer to comments in tcp_status_report(). */
16802 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16803 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16804 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16805 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16806 			return (0);
16807 		}
16808 	}
16809 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16810 		/* The following may work even if we cannot get a large buf. */
16811 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16812 		return (0);
16813 	}
16814 
16815 	(void) mi_mpprintf(mp,
16816 	    "    TCP    " MI_COL_HDRPAD_STR
16817 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16818 
16819 	ipst = tcps->tcps_netstack->netstack_ip;
16820 
16821 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16822 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16823 		connp = NULL;
16824 		while ((connp =
16825 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16826 			tcp = connp->conn_tcp;
16827 			if (zoneid != GLOBAL_ZONEID &&
16828 			    zoneid != connp->conn_zoneid)
16829 				continue;
16830 			tcp_report_listener(mp->b_cont, tcp, i);
16831 		}
16832 	}
16833 
16834 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16835 	return (0);
16836 }
16837 
16838 /* TCP status report triggered via the Named Dispatch mechanism. */
16839 /* ARGSUSED */
16840 static int
16841 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16842 {
16843 	connf_t	*connfp;
16844 	conn_t	*connp;
16845 	tcp_t	*tcp;
16846 	int	i;
16847 	zoneid_t zoneid;
16848 	tcp_stack_t *tcps;
16849 	ip_stack_t *ipst;
16850 
16851 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16852 	tcps = Q_TO_TCP(q)->tcp_tcps;
16853 	ipst = tcps->tcps_netstack->netstack_ip;
16854 
16855 	/* Refer to comments in tcp_status_report(). */
16856 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16857 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16858 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16859 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16860 			return (0);
16861 		}
16862 	}
16863 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16864 		/* The following may work even if we cannot get a large buf. */
16865 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16866 		return (0);
16867 	}
16868 
16869 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16870 	    ipst->ips_ipcl_conn_fanout_size);
16871 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16872 
16873 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16874 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16875 		connp = NULL;
16876 		while ((connp =
16877 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16878 			tcp = connp->conn_tcp;
16879 			if (zoneid != GLOBAL_ZONEID &&
16880 			    zoneid != connp->conn_zoneid)
16881 				continue;
16882 			tcp_report_item(mp->b_cont, tcp, i,
16883 			    Q_TO_TCP(q), cr);
16884 		}
16885 	}
16886 
16887 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16888 	return (0);
16889 }
16890 
16891 /* TCP status report triggered via the Named Dispatch mechanism. */
16892 /* ARGSUSED */
16893 static int
16894 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16895 {
16896 	tf_t	*tf;
16897 	tcp_t	*tcp;
16898 	int	i;
16899 	zoneid_t zoneid;
16900 	tcp_stack_t	*tcps;
16901 
16902 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16903 	tcps = Q_TO_TCP(q)->tcp_tcps;
16904 
16905 	/* Refer to comments in tcp_status_report(). */
16906 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16907 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16908 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16909 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16910 			return (0);
16911 		}
16912 	}
16913 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16914 		/* The following may work even if we cannot get a large buf. */
16915 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16916 		return (0);
16917 	}
16918 
16919 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16920 
16921 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16922 		tf = &tcps->tcps_acceptor_fanout[i];
16923 		mutex_enter(&tf->tf_lock);
16924 		for (tcp = tf->tf_tcp; tcp != NULL;
16925 		    tcp = tcp->tcp_acceptor_hash) {
16926 			if (zoneid != GLOBAL_ZONEID &&
16927 			    zoneid != tcp->tcp_connp->conn_zoneid)
16928 				continue;
16929 			tcp_report_item(mp->b_cont, tcp, i,
16930 			    Q_TO_TCP(q), cr);
16931 		}
16932 		mutex_exit(&tf->tf_lock);
16933 	}
16934 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16935 	return (0);
16936 }
16937 
16938 /*
16939  * tcp_timer is the timer service routine.  It handles the retransmission,
16940  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16941  * from the state of the tcp instance what kind of action needs to be done
16942  * at the time it is called.
16943  */
16944 static void
16945 tcp_timer(void *arg)
16946 {
16947 	mblk_t		*mp;
16948 	clock_t		first_threshold;
16949 	clock_t		second_threshold;
16950 	clock_t		ms;
16951 	uint32_t	mss;
16952 	conn_t		*connp = (conn_t *)arg;
16953 	tcp_t		*tcp = connp->conn_tcp;
16954 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16955 
16956 	tcp->tcp_timer_tid = 0;
16957 
16958 	if (tcp->tcp_fused)
16959 		return;
16960 
16961 	first_threshold =  tcp->tcp_first_timer_threshold;
16962 	second_threshold = tcp->tcp_second_timer_threshold;
16963 	switch (tcp->tcp_state) {
16964 	case TCPS_IDLE:
16965 	case TCPS_BOUND:
16966 	case TCPS_LISTEN:
16967 		return;
16968 	case TCPS_SYN_RCVD: {
16969 		tcp_t	*listener = tcp->tcp_listener;
16970 
16971 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16972 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16973 			/* it's our first timeout */
16974 			tcp->tcp_syn_rcvd_timeout = 1;
16975 			mutex_enter(&listener->tcp_eager_lock);
16976 			listener->tcp_syn_rcvd_timeout++;
16977 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16978 				/*
16979 				 * Make this eager available for drop if we
16980 				 * need to drop one to accomodate a new
16981 				 * incoming SYN request.
16982 				 */
16983 				MAKE_DROPPABLE(listener, tcp);
16984 			}
16985 			if (!listener->tcp_syn_defense &&
16986 			    (listener->tcp_syn_rcvd_timeout >
16987 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16988 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16989 				/* We may be under attack. Put on a defense. */
16990 				listener->tcp_syn_defense = B_TRUE;
16991 				cmn_err(CE_WARN, "High TCP connect timeout "
16992 				    "rate! System (port %d) may be under a "
16993 				    "SYN flood attack!",
16994 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16995 
16996 				listener->tcp_ip_addr_cache = kmem_zalloc(
16997 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16998 				    KM_NOSLEEP);
16999 			}
17000 			mutex_exit(&listener->tcp_eager_lock);
17001 		} else if (listener != NULL) {
17002 			mutex_enter(&listener->tcp_eager_lock);
17003 			tcp->tcp_syn_rcvd_timeout++;
17004 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17005 			    !tcp->tcp_closemp_used) {
17006 				/*
17007 				 * This is our second timeout. Put the tcp in
17008 				 * the list of droppable eagers to allow it to
17009 				 * be dropped, if needed. We don't check
17010 				 * whether tcp_dontdrop is set or not to
17011 				 * protect ourselve from a SYN attack where a
17012 				 * remote host can spoof itself as one of the
17013 				 * good IP source and continue to hold
17014 				 * resources too long.
17015 				 */
17016 				MAKE_DROPPABLE(listener, tcp);
17017 			}
17018 			mutex_exit(&listener->tcp_eager_lock);
17019 		}
17020 	}
17021 		/* FALLTHRU */
17022 	case TCPS_SYN_SENT:
17023 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17024 		second_threshold = tcp->tcp_second_ctimer_threshold;
17025 		break;
17026 	case TCPS_ESTABLISHED:
17027 	case TCPS_FIN_WAIT_1:
17028 	case TCPS_CLOSING:
17029 	case TCPS_CLOSE_WAIT:
17030 	case TCPS_LAST_ACK:
17031 		/* If we have data to rexmit */
17032 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17033 			clock_t	time_to_wait;
17034 
17035 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17036 			if (!tcp->tcp_xmit_head)
17037 				break;
17038 			time_to_wait = lbolt -
17039 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17040 			time_to_wait = tcp->tcp_rto -
17041 			    TICK_TO_MSEC(time_to_wait);
17042 			/*
17043 			 * If the timer fires too early, 1 clock tick earlier,
17044 			 * restart the timer.
17045 			 */
17046 			if (time_to_wait > msec_per_tick) {
17047 				TCP_STAT(tcps, tcp_timer_fire_early);
17048 				TCP_TIMER_RESTART(tcp, time_to_wait);
17049 				return;
17050 			}
17051 			/*
17052 			 * When we probe zero windows, we force the swnd open.
17053 			 * If our peer acks with a closed window swnd will be
17054 			 * set to zero by tcp_rput(). As long as we are
17055 			 * receiving acks tcp_rput will
17056 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17057 			 * first and second interval actions.  NOTE: the timer
17058 			 * interval is allowed to continue its exponential
17059 			 * backoff.
17060 			 */
17061 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17062 				if (tcp->tcp_debug) {
17063 					(void) strlog(TCP_MOD_ID, 0, 1,
17064 					    SL_TRACE, "tcp_timer: zero win");
17065 				}
17066 			} else {
17067 				/*
17068 				 * After retransmission, we need to do
17069 				 * slow start.  Set the ssthresh to one
17070 				 * half of current effective window and
17071 				 * cwnd to one MSS.  Also reset
17072 				 * tcp_cwnd_cnt.
17073 				 *
17074 				 * Note that if tcp_ssthresh is reduced because
17075 				 * of ECN, do not reduce it again unless it is
17076 				 * already one window of data away (tcp_cwr
17077 				 * should then be cleared) or this is a
17078 				 * timeout for a retransmitted segment.
17079 				 */
17080 				uint32_t npkt;
17081 
17082 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17083 					npkt = ((tcp->tcp_timer_backoff ?
17084 					    tcp->tcp_cwnd_ssthresh :
17085 					    tcp->tcp_snxt -
17086 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17087 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17088 					    tcp->tcp_mss;
17089 				}
17090 				tcp->tcp_cwnd = tcp->tcp_mss;
17091 				tcp->tcp_cwnd_cnt = 0;
17092 				if (tcp->tcp_ecn_ok) {
17093 					tcp->tcp_cwr = B_TRUE;
17094 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17095 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17096 				}
17097 			}
17098 			break;
17099 		}
17100 		/*
17101 		 * We have something to send yet we cannot send.  The
17102 		 * reason can be:
17103 		 *
17104 		 * 1. Zero send window: we need to do zero window probe.
17105 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17106 		 * segments.
17107 		 * 3. SWS avoidance: receiver may have shrunk window,
17108 		 * reset our knowledge.
17109 		 *
17110 		 * Note that condition 2 can happen with either 1 or
17111 		 * 3.  But 1 and 3 are exclusive.
17112 		 */
17113 		if (tcp->tcp_unsent != 0) {
17114 			if (tcp->tcp_cwnd == 0) {
17115 				/*
17116 				 * Set tcp_cwnd to 1 MSS so that a
17117 				 * new segment can be sent out.  We
17118 				 * are "clocking out" new data when
17119 				 * the network is really congested.
17120 				 */
17121 				ASSERT(tcp->tcp_ecn_ok);
17122 				tcp->tcp_cwnd = tcp->tcp_mss;
17123 			}
17124 			if (tcp->tcp_swnd == 0) {
17125 				/* Extend window for zero window probe */
17126 				tcp->tcp_swnd++;
17127 				tcp->tcp_zero_win_probe = B_TRUE;
17128 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17129 			} else {
17130 				/*
17131 				 * Handle timeout from sender SWS avoidance.
17132 				 * Reset our knowledge of the max send window
17133 				 * since the receiver might have reduced its
17134 				 * receive buffer.  Avoid setting tcp_max_swnd
17135 				 * to one since that will essentially disable
17136 				 * the SWS checks.
17137 				 *
17138 				 * Note that since we don't have a SWS
17139 				 * state variable, if the timeout is set
17140 				 * for ECN but not for SWS, this
17141 				 * code will also be executed.  This is
17142 				 * fine as tcp_max_swnd is updated
17143 				 * constantly and it will not affect
17144 				 * anything.
17145 				 */
17146 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17147 			}
17148 			tcp_wput_data(tcp, NULL, B_FALSE);
17149 			return;
17150 		}
17151 		/* Is there a FIN that needs to be to re retransmitted? */
17152 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17153 		    !tcp->tcp_fin_acked)
17154 			break;
17155 		/* Nothing to do, return without restarting timer. */
17156 		TCP_STAT(tcps, tcp_timer_fire_miss);
17157 		return;
17158 	case TCPS_FIN_WAIT_2:
17159 		/*
17160 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17161 		 * We waited some time for for peer's FIN, but it hasn't
17162 		 * arrived.  We flush the connection now to avoid
17163 		 * case where the peer has rebooted.
17164 		 */
17165 		if (TCP_IS_DETACHED(tcp)) {
17166 			(void) tcp_clean_death(tcp, 0, 23);
17167 		} else {
17168 			TCP_TIMER_RESTART(tcp,
17169 			    tcps->tcps_fin_wait_2_flush_interval);
17170 		}
17171 		return;
17172 	case TCPS_TIME_WAIT:
17173 		(void) tcp_clean_death(tcp, 0, 24);
17174 		return;
17175 	default:
17176 		if (tcp->tcp_debug) {
17177 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17178 			    "tcp_timer: strange state (%d) %s",
17179 			    tcp->tcp_state, tcp_display(tcp, NULL,
17180 			    DISP_PORT_ONLY));
17181 		}
17182 		return;
17183 	}
17184 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17185 		/*
17186 		 * For zero window probe, we need to send indefinitely,
17187 		 * unless we have not heard from the other side for some
17188 		 * time...
17189 		 */
17190 		if ((tcp->tcp_zero_win_probe == 0) ||
17191 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17192 		    second_threshold)) {
17193 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17194 			/*
17195 			 * If TCP is in SYN_RCVD state, send back a
17196 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17197 			 * should be zero in TCPS_SYN_RCVD state.
17198 			 */
17199 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17200 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17201 				    "in SYN_RCVD",
17202 				    tcp, tcp->tcp_snxt,
17203 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17204 			}
17205 			(void) tcp_clean_death(tcp,
17206 			    tcp->tcp_client_errno ?
17207 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17208 			return;
17209 		} else {
17210 			/*
17211 			 * Set tcp_ms_we_have_waited to second_threshold
17212 			 * so that in next timeout, we will do the above
17213 			 * check (lbolt - tcp_last_recv_time).  This is
17214 			 * also to avoid overflow.
17215 			 *
17216 			 * We don't need to decrement tcp_timer_backoff
17217 			 * to avoid overflow because it will be decremented
17218 			 * later if new timeout value is greater than
17219 			 * tcp_rexmit_interval_max.  In the case when
17220 			 * tcp_rexmit_interval_max is greater than
17221 			 * second_threshold, it means that we will wait
17222 			 * longer than second_threshold to send the next
17223 			 * window probe.
17224 			 */
17225 			tcp->tcp_ms_we_have_waited = second_threshold;
17226 		}
17227 	} else if (ms > first_threshold) {
17228 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17229 		    tcp->tcp_xmit_head != NULL) {
17230 			tcp->tcp_xmit_head =
17231 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17232 		}
17233 		/*
17234 		 * We have been retransmitting for too long...  The RTT
17235 		 * we calculated is probably incorrect.  Reinitialize it.
17236 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17237 		 * tcp_rtt_update so that we won't accidentally cache a
17238 		 * bad value.  But only do this if this is not a zero
17239 		 * window probe.
17240 		 */
17241 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17242 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17243 			    (tcp->tcp_rtt_sa >> 5);
17244 			tcp->tcp_rtt_sa = 0;
17245 			tcp_ip_notify(tcp);
17246 			tcp->tcp_rtt_update = 0;
17247 		}
17248 	}
17249 	tcp->tcp_timer_backoff++;
17250 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17251 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17252 	    tcps->tcps_rexmit_interval_min) {
17253 		/*
17254 		 * This means the original RTO is tcp_rexmit_interval_min.
17255 		 * So we will use tcp_rexmit_interval_min as the RTO value
17256 		 * and do the backoff.
17257 		 */
17258 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17259 	} else {
17260 		ms <<= tcp->tcp_timer_backoff;
17261 	}
17262 	if (ms > tcps->tcps_rexmit_interval_max) {
17263 		ms = tcps->tcps_rexmit_interval_max;
17264 		/*
17265 		 * ms is at max, decrement tcp_timer_backoff to avoid
17266 		 * overflow.
17267 		 */
17268 		tcp->tcp_timer_backoff--;
17269 	}
17270 	tcp->tcp_ms_we_have_waited += ms;
17271 	if (tcp->tcp_zero_win_probe == 0) {
17272 		tcp->tcp_rto = ms;
17273 	}
17274 	TCP_TIMER_RESTART(tcp, ms);
17275 	/*
17276 	 * This is after a timeout and tcp_rto is backed off.  Set
17277 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17278 	 * restart the timer with a correct value.
17279 	 */
17280 	tcp->tcp_set_timer = 1;
17281 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17282 	if (mss > tcp->tcp_mss)
17283 		mss = tcp->tcp_mss;
17284 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17285 		mss = tcp->tcp_swnd;
17286 
17287 	if ((mp = tcp->tcp_xmit_head) != NULL)
17288 		mp->b_prev = (mblk_t *)lbolt;
17289 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17290 	    B_TRUE);
17291 
17292 	/*
17293 	 * When slow start after retransmission begins, start with
17294 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17295 	 * start phase.  tcp_snd_burst controls how many segments
17296 	 * can be sent because of an ack.
17297 	 */
17298 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17299 	tcp->tcp_snd_burst = TCP_CWND_SS;
17300 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17301 	    (tcp->tcp_unsent == 0)) {
17302 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17303 	} else {
17304 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17305 	}
17306 	tcp->tcp_rexmit = B_TRUE;
17307 	tcp->tcp_dupack_cnt = 0;
17308 
17309 	/*
17310 	 * Remove all rexmit SACK blk to start from fresh.
17311 	 */
17312 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17313 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17314 		tcp->tcp_num_notsack_blk = 0;
17315 		tcp->tcp_cnt_notsack_list = 0;
17316 	}
17317 	if (mp == NULL) {
17318 		return;
17319 	}
17320 	/* Attach credentials to retransmitted initial SYNs. */
17321 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17322 		mblk_setcred(mp, tcp->tcp_cred);
17323 		DB_CPID(mp) = tcp->tcp_cpid;
17324 	}
17325 
17326 	tcp->tcp_csuna = tcp->tcp_snxt;
17327 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17328 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17329 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17330 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17331 
17332 }
17333 
17334 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17335 static void
17336 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17337 {
17338 	conn_t	*connp;
17339 
17340 	switch (tcp->tcp_state) {
17341 	case TCPS_BOUND:
17342 	case TCPS_LISTEN:
17343 		break;
17344 	default:
17345 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17346 		return;
17347 	}
17348 
17349 	/*
17350 	 * Need to clean up all the eagers since after the unbind, segments
17351 	 * will no longer be delivered to this listener stream.
17352 	 */
17353 	mutex_enter(&tcp->tcp_eager_lock);
17354 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17355 		tcp_eager_cleanup(tcp, 0);
17356 	}
17357 	mutex_exit(&tcp->tcp_eager_lock);
17358 
17359 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17360 		tcp->tcp_ipha->ipha_src = 0;
17361 	} else {
17362 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17363 	}
17364 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17365 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17366 	tcp_bind_hash_remove(tcp);
17367 	tcp->tcp_state = TCPS_IDLE;
17368 	tcp->tcp_mdt = B_FALSE;
17369 	/* Send M_FLUSH according to TPI */
17370 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17371 	connp = tcp->tcp_connp;
17372 	connp->conn_mdt_ok = B_FALSE;
17373 	ipcl_hash_remove(connp);
17374 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17375 	mp = mi_tpi_ok_ack_alloc(mp);
17376 	putnext(tcp->tcp_rq, mp);
17377 }
17378 
17379 /*
17380  * Don't let port fall into the privileged range.
17381  * Since the extra privileged ports can be arbitrary we also
17382  * ensure that we exclude those from consideration.
17383  * tcp_g_epriv_ports is not sorted thus we loop over it until
17384  * there are no changes.
17385  *
17386  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17387  * but instead the code relies on:
17388  * - the fact that the address of the array and its size never changes
17389  * - the atomic assignment of the elements of the array
17390  *
17391  * Returns 0 if there are no more ports available.
17392  *
17393  * TS note: skip multilevel ports.
17394  */
17395 static in_port_t
17396 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17397 {
17398 	int i;
17399 	boolean_t restart = B_FALSE;
17400 	tcp_stack_t *tcps = tcp->tcp_tcps;
17401 
17402 	if (random && tcp_random_anon_port != 0) {
17403 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17404 		    sizeof (in_port_t));
17405 		/*
17406 		 * Unless changed by a sys admin, the smallest anon port
17407 		 * is 32768 and the largest anon port is 65535.  It is
17408 		 * very likely (50%) for the random port to be smaller
17409 		 * than the smallest anon port.  When that happens,
17410 		 * add port % (anon port range) to the smallest anon
17411 		 * port to get the random port.  It should fall into the
17412 		 * valid anon port range.
17413 		 */
17414 		if (port < tcps->tcps_smallest_anon_port) {
17415 			port = tcps->tcps_smallest_anon_port +
17416 			    port % (tcps->tcps_largest_anon_port -
17417 			    tcps->tcps_smallest_anon_port);
17418 		}
17419 	}
17420 
17421 retry:
17422 	if (port < tcps->tcps_smallest_anon_port)
17423 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17424 
17425 	if (port > tcps->tcps_largest_anon_port) {
17426 		if (restart)
17427 			return (0);
17428 		restart = B_TRUE;
17429 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17430 	}
17431 
17432 	if (port < tcps->tcps_smallest_nonpriv_port)
17433 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17434 
17435 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17436 		if (port == tcps->tcps_g_epriv_ports[i]) {
17437 			port++;
17438 			/*
17439 			 * Make sure whether the port is in the
17440 			 * valid range.
17441 			 */
17442 			goto retry;
17443 		}
17444 	}
17445 	if (is_system_labeled() &&
17446 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17447 	    IPPROTO_TCP, B_TRUE)) != 0) {
17448 		port = i;
17449 		goto retry;
17450 	}
17451 	return (port);
17452 }
17453 
17454 /*
17455  * Return the next anonymous port in the privileged port range for
17456  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17457  * downwards.  This is the same behavior as documented in the userland
17458  * library call rresvport(3N).
17459  *
17460  * TS note: skip multilevel ports.
17461  */
17462 static in_port_t
17463 tcp_get_next_priv_port(const tcp_t *tcp)
17464 {
17465 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17466 	in_port_t nextport;
17467 	boolean_t restart = B_FALSE;
17468 	tcp_stack_t *tcps = tcp->tcp_tcps;
17469 retry:
17470 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17471 	    next_priv_port >= IPPORT_RESERVED) {
17472 		next_priv_port = IPPORT_RESERVED - 1;
17473 		if (restart)
17474 			return (0);
17475 		restart = B_TRUE;
17476 	}
17477 	if (is_system_labeled() &&
17478 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17479 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17480 		next_priv_port = nextport;
17481 		goto retry;
17482 	}
17483 	return (next_priv_port--);
17484 }
17485 
17486 /* The write side r/w procedure. */
17487 
17488 #if CCS_STATS
17489 struct {
17490 	struct {
17491 		int64_t count, bytes;
17492 	} tot, hit;
17493 } wrw_stats;
17494 #endif
17495 
17496 /*
17497  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17498  * messages.
17499  */
17500 /* ARGSUSED */
17501 static void
17502 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17503 {
17504 	conn_t	*connp = (conn_t *)arg;
17505 	tcp_t	*tcp = connp->conn_tcp;
17506 	queue_t	*q = tcp->tcp_wq;
17507 
17508 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17509 	/*
17510 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17511 	 * Once the close starts, streamhead and sockfs will not let any data
17512 	 * packets come down (close ensures that there are no threads using the
17513 	 * queue and no new threads will come down) but since qprocsoff()
17514 	 * hasn't happened yet, a M_FLUSH or some non data message might
17515 	 * get reflected back (in response to our own FLUSHRW) and get
17516 	 * processed after tcp_close() is done. The conn would still be valid
17517 	 * because a ref would have added but we need to check the state
17518 	 * before actually processing the packet.
17519 	 */
17520 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17521 		freemsg(mp);
17522 		return;
17523 	}
17524 
17525 	switch (DB_TYPE(mp)) {
17526 	case M_IOCDATA:
17527 		tcp_wput_iocdata(tcp, mp);
17528 		break;
17529 	case M_FLUSH:
17530 		tcp_wput_flush(tcp, mp);
17531 		break;
17532 	default:
17533 		CALL_IP_WPUT(connp, q, mp);
17534 		break;
17535 	}
17536 }
17537 
17538 /*
17539  * The TCP fast path write put procedure.
17540  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17541  */
17542 /* ARGSUSED */
17543 void
17544 tcp_output(void *arg, mblk_t *mp, void *arg2)
17545 {
17546 	int		len;
17547 	int		hdrlen;
17548 	int		plen;
17549 	mblk_t		*mp1;
17550 	uchar_t		*rptr;
17551 	uint32_t	snxt;
17552 	tcph_t		*tcph;
17553 	struct datab	*db;
17554 	uint32_t	suna;
17555 	uint32_t	mss;
17556 	ipaddr_t	*dst;
17557 	ipaddr_t	*src;
17558 	uint32_t	sum;
17559 	int		usable;
17560 	conn_t		*connp = (conn_t *)arg;
17561 	tcp_t		*tcp = connp->conn_tcp;
17562 	uint32_t	msize;
17563 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17564 
17565 	/*
17566 	 * Try and ASSERT the minimum possible references on the
17567 	 * conn early enough. Since we are executing on write side,
17568 	 * the connection is obviously not detached and that means
17569 	 * there is a ref each for TCP and IP. Since we are behind
17570 	 * the squeue, the minimum references needed are 3. If the
17571 	 * conn is in classifier hash list, there should be an
17572 	 * extra ref for that (we check both the possibilities).
17573 	 */
17574 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17575 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17576 
17577 	ASSERT(DB_TYPE(mp) == M_DATA);
17578 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17579 
17580 	mutex_enter(&tcp->tcp_non_sq_lock);
17581 	tcp->tcp_squeue_bytes -= msize;
17582 	mutex_exit(&tcp->tcp_non_sq_lock);
17583 
17584 	/* Bypass tcp protocol for fused tcp loopback */
17585 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17586 		return;
17587 
17588 	mss = tcp->tcp_mss;
17589 	if (tcp->tcp_xmit_zc_clean)
17590 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17591 
17592 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17593 	len = (int)(mp->b_wptr - mp->b_rptr);
17594 
17595 	/*
17596 	 * Criteria for fast path:
17597 	 *
17598 	 *   1. no unsent data
17599 	 *   2. single mblk in request
17600 	 *   3. connection established
17601 	 *   4. data in mblk
17602 	 *   5. len <= mss
17603 	 *   6. no tcp_valid bits
17604 	 */
17605 	if ((tcp->tcp_unsent != 0) ||
17606 	    (tcp->tcp_cork) ||
17607 	    (mp->b_cont != NULL) ||
17608 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17609 	    (len == 0) ||
17610 	    (len > mss) ||
17611 	    (tcp->tcp_valid_bits != 0)) {
17612 		tcp_wput_data(tcp, mp, B_FALSE);
17613 		return;
17614 	}
17615 
17616 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17617 	ASSERT(tcp->tcp_fin_sent == 0);
17618 
17619 	/* queue new packet onto retransmission queue */
17620 	if (tcp->tcp_xmit_head == NULL) {
17621 		tcp->tcp_xmit_head = mp;
17622 	} else {
17623 		tcp->tcp_xmit_last->b_cont = mp;
17624 	}
17625 	tcp->tcp_xmit_last = mp;
17626 	tcp->tcp_xmit_tail = mp;
17627 
17628 	/* find out how much we can send */
17629 	/* BEGIN CSTYLED */
17630 	/*
17631 	 *    un-acked           usable
17632 	 *  |--------------|-----------------|
17633 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17634 	 */
17635 	/* END CSTYLED */
17636 
17637 	/* start sending from tcp_snxt */
17638 	snxt = tcp->tcp_snxt;
17639 
17640 	/*
17641 	 * Check to see if this connection has been idled for some
17642 	 * time and no ACK is expected.  If it is, we need to slow
17643 	 * start again to get back the connection's "self-clock" as
17644 	 * described in VJ's paper.
17645 	 *
17646 	 * Refer to the comment in tcp_mss_set() for the calculation
17647 	 * of tcp_cwnd after idle.
17648 	 */
17649 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17650 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17651 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17652 	}
17653 
17654 	usable = tcp->tcp_swnd;		/* tcp window size */
17655 	if (usable > tcp->tcp_cwnd)
17656 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17657 	usable -= snxt;		/* subtract stuff already sent */
17658 	suna = tcp->tcp_suna;
17659 	usable += suna;
17660 	/* usable can be < 0 if the congestion window is smaller */
17661 	if (len > usable) {
17662 		/* Can't send complete M_DATA in one shot */
17663 		goto slow;
17664 	}
17665 
17666 	mutex_enter(&tcp->tcp_non_sq_lock);
17667 	if (tcp->tcp_flow_stopped &&
17668 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17669 		tcp_clrqfull(tcp);
17670 	}
17671 	mutex_exit(&tcp->tcp_non_sq_lock);
17672 
17673 	/*
17674 	 * determine if anything to send (Nagle).
17675 	 *
17676 	 *   1. len < tcp_mss (i.e. small)
17677 	 *   2. unacknowledged data present
17678 	 *   3. len < nagle limit
17679 	 *   4. last packet sent < nagle limit (previous packet sent)
17680 	 */
17681 	if ((len < mss) && (snxt != suna) &&
17682 	    (len < (int)tcp->tcp_naglim) &&
17683 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17684 		/*
17685 		 * This was the first unsent packet and normally
17686 		 * mss < xmit_hiwater so there is no need to worry
17687 		 * about flow control. The next packet will go
17688 		 * through the flow control check in tcp_wput_data().
17689 		 */
17690 		/* leftover work from above */
17691 		tcp->tcp_unsent = len;
17692 		tcp->tcp_xmit_tail_unsent = len;
17693 
17694 		return;
17695 	}
17696 
17697 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17698 
17699 	if (snxt == suna) {
17700 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17701 	}
17702 
17703 	/* we have always sent something */
17704 	tcp->tcp_rack_cnt = 0;
17705 
17706 	tcp->tcp_snxt = snxt + len;
17707 	tcp->tcp_rack = tcp->tcp_rnxt;
17708 
17709 	if ((mp1 = dupb(mp)) == 0)
17710 		goto no_memory;
17711 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17712 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17713 
17714 	/* adjust tcp header information */
17715 	tcph = tcp->tcp_tcph;
17716 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17717 
17718 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17719 	sum = (sum >> 16) + (sum & 0xFFFF);
17720 	U16_TO_ABE16(sum, tcph->th_sum);
17721 
17722 	U32_TO_ABE32(snxt, tcph->th_seq);
17723 
17724 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17725 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17726 	BUMP_LOCAL(tcp->tcp_obsegs);
17727 
17728 	/* Update the latest receive window size in TCP header. */
17729 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17730 	    tcph->th_win);
17731 
17732 	tcp->tcp_last_sent_len = (ushort_t)len;
17733 
17734 	plen = len + tcp->tcp_hdr_len;
17735 
17736 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17737 		tcp->tcp_ipha->ipha_length = htons(plen);
17738 	} else {
17739 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17740 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17741 	}
17742 
17743 	/* see if we need to allocate a mblk for the headers */
17744 	hdrlen = tcp->tcp_hdr_len;
17745 	rptr = mp1->b_rptr - hdrlen;
17746 	db = mp1->b_datap;
17747 	if ((db->db_ref != 2) || rptr < db->db_base ||
17748 	    (!OK_32PTR(rptr))) {
17749 		/* NOTE: we assume allocb returns an OK_32PTR */
17750 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17751 		    tcps->tcps_wroff_xtra, BPRI_MED);
17752 		if (!mp) {
17753 			freemsg(mp1);
17754 			goto no_memory;
17755 		}
17756 		mp->b_cont = mp1;
17757 		mp1 = mp;
17758 		/* Leave room for Link Level header */
17759 		/* hdrlen = tcp->tcp_hdr_len; */
17760 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17761 		mp1->b_wptr = &rptr[hdrlen];
17762 	}
17763 	mp1->b_rptr = rptr;
17764 
17765 	/* Fill in the timestamp option. */
17766 	if (tcp->tcp_snd_ts_ok) {
17767 		U32_TO_BE32((uint32_t)lbolt,
17768 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17769 		U32_TO_BE32(tcp->tcp_ts_recent,
17770 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17771 	} else {
17772 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17773 	}
17774 
17775 	/* copy header into outgoing packet */
17776 	dst = (ipaddr_t *)rptr;
17777 	src = (ipaddr_t *)tcp->tcp_iphc;
17778 	dst[0] = src[0];
17779 	dst[1] = src[1];
17780 	dst[2] = src[2];
17781 	dst[3] = src[3];
17782 	dst[4] = src[4];
17783 	dst[5] = src[5];
17784 	dst[6] = src[6];
17785 	dst[7] = src[7];
17786 	dst[8] = src[8];
17787 	dst[9] = src[9];
17788 	if (hdrlen -= 40) {
17789 		hdrlen >>= 2;
17790 		dst += 10;
17791 		src += 10;
17792 		do {
17793 			*dst++ = *src++;
17794 		} while (--hdrlen);
17795 	}
17796 
17797 	/*
17798 	 * Set the ECN info in the TCP header.  Note that this
17799 	 * is not the template header.
17800 	 */
17801 	if (tcp->tcp_ecn_ok) {
17802 		SET_ECT(tcp, rptr);
17803 
17804 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17805 		if (tcp->tcp_ecn_echo_on)
17806 			tcph->th_flags[0] |= TH_ECE;
17807 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17808 			tcph->th_flags[0] |= TH_CWR;
17809 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17810 		}
17811 	}
17812 
17813 	if (tcp->tcp_ip_forward_progress) {
17814 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17815 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17816 		tcp->tcp_ip_forward_progress = B_FALSE;
17817 	}
17818 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17819 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17820 	return;
17821 
17822 	/*
17823 	 * If we ran out of memory, we pretend to have sent the packet
17824 	 * and that it was lost on the wire.
17825 	 */
17826 no_memory:
17827 	return;
17828 
17829 slow:
17830 	/* leftover work from above */
17831 	tcp->tcp_unsent = len;
17832 	tcp->tcp_xmit_tail_unsent = len;
17833 	tcp_wput_data(tcp, NULL, B_FALSE);
17834 }
17835 
17836 /*
17837  * The function called through squeue to get behind eager's perimeter to
17838  * finish the accept processing.
17839  */
17840 /* ARGSUSED */
17841 void
17842 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17843 {
17844 	conn_t			*connp = (conn_t *)arg;
17845 	tcp_t			*tcp = connp->conn_tcp;
17846 	queue_t			*q = tcp->tcp_rq;
17847 	mblk_t			*mp1;
17848 	mblk_t			*stropt_mp = mp;
17849 	struct  stroptions	*stropt;
17850 	uint_t			thwin;
17851 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17852 
17853 	/*
17854 	 * Drop the eager's ref on the listener, that was placed when
17855 	 * this eager began life in tcp_conn_request.
17856 	 */
17857 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17858 
17859 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17860 		/*
17861 		 * Someone blewoff the eager before we could finish
17862 		 * the accept.
17863 		 *
17864 		 * The only reason eager exists it because we put in
17865 		 * a ref on it when conn ind went up. We need to send
17866 		 * a disconnect indication up while the last reference
17867 		 * on the eager will be dropped by the squeue when we
17868 		 * return.
17869 		 */
17870 		ASSERT(tcp->tcp_listener == NULL);
17871 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17872 			struct	T_discon_ind	*tdi;
17873 
17874 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17875 			/*
17876 			 * Let us reuse the incoming mblk to avoid memory
17877 			 * allocation failure problems. We know that the
17878 			 * size of the incoming mblk i.e. stroptions is greater
17879 			 * than sizeof T_discon_ind. So the reallocb below
17880 			 * can't fail.
17881 			 */
17882 			freemsg(mp->b_cont);
17883 			mp->b_cont = NULL;
17884 			ASSERT(DB_REF(mp) == 1);
17885 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17886 			    B_FALSE);
17887 			ASSERT(mp != NULL);
17888 			DB_TYPE(mp) = M_PROTO;
17889 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17890 			tdi = (struct T_discon_ind *)mp->b_rptr;
17891 			if (tcp->tcp_issocket) {
17892 				tdi->DISCON_reason = ECONNREFUSED;
17893 				tdi->SEQ_number = 0;
17894 			} else {
17895 				tdi->DISCON_reason = ENOPROTOOPT;
17896 				tdi->SEQ_number =
17897 				    tcp->tcp_conn_req_seqnum;
17898 			}
17899 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17900 			putnext(q, mp);
17901 		} else {
17902 			freemsg(mp);
17903 		}
17904 		if (tcp->tcp_hard_binding) {
17905 			tcp->tcp_hard_binding = B_FALSE;
17906 			tcp->tcp_hard_bound = B_TRUE;
17907 		}
17908 		tcp->tcp_detached = B_FALSE;
17909 		return;
17910 	}
17911 
17912 	mp1 = stropt_mp->b_cont;
17913 	stropt_mp->b_cont = NULL;
17914 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17915 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17916 
17917 	while (mp1 != NULL) {
17918 		mp = mp1;
17919 		mp1 = mp1->b_cont;
17920 		mp->b_cont = NULL;
17921 		tcp->tcp_drop_opt_ack_cnt++;
17922 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17923 	}
17924 	mp = NULL;
17925 
17926 	/*
17927 	 * For a loopback connection with tcp_direct_sockfs on, note that
17928 	 * we don't have to protect tcp_rcv_list yet because synchronous
17929 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17930 	 * possibly race with us.
17931 	 */
17932 
17933 	/*
17934 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17935 	 * properly.  This is the first time we know of the acceptor'
17936 	 * queue.  So we do it here.
17937 	 */
17938 	if (tcp->tcp_rcv_list == NULL) {
17939 		/*
17940 		 * Recv queue is empty, tcp_rwnd should not have changed.
17941 		 * That means it should be equal to the listener's tcp_rwnd.
17942 		 */
17943 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17944 	} else {
17945 #ifdef DEBUG
17946 		uint_t cnt = 0;
17947 
17948 		mp1 = tcp->tcp_rcv_list;
17949 		while ((mp = mp1) != NULL) {
17950 			mp1 = mp->b_next;
17951 			cnt += msgdsize(mp);
17952 		}
17953 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17954 #endif
17955 		/* There is some data, add them back to get the max. */
17956 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17957 	}
17958 
17959 	stropt->so_flags = SO_HIWAT;
17960 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
17961 
17962 	stropt->so_flags |= SO_MAXBLK;
17963 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17964 
17965 	/*
17966 	 * This is the first time we run on the correct
17967 	 * queue after tcp_accept. So fix all the q parameters
17968 	 * here.
17969 	 */
17970 	/* Allocate room for SACK options if needed. */
17971 	stropt->so_flags |= SO_WROFF;
17972 	if (tcp->tcp_fused) {
17973 		ASSERT(tcp->tcp_loopback);
17974 		ASSERT(tcp->tcp_loopback_peer != NULL);
17975 		/*
17976 		 * For fused tcp loopback, set the stream head's write
17977 		 * offset value to zero since we won't be needing any room
17978 		 * for TCP/IP headers.  This would also improve performance
17979 		 * since it would reduce the amount of work done by kmem.
17980 		 * Non-fused tcp loopback case is handled separately below.
17981 		 */
17982 		stropt->so_wroff = 0;
17983 		/*
17984 		 * Record the stream head's high water mark for this endpoint;
17985 		 * this is used for flow-control purposes in tcp_fuse_output().
17986 		 */
17987 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17988 		/*
17989 		 * Update the peer's transmit parameters according to
17990 		 * our recently calculated high water mark value.
17991 		 */
17992 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17993 	} else if (tcp->tcp_snd_sack_ok) {
17994 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17995 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17996 	} else {
17997 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17998 		    tcps->tcps_wroff_xtra);
17999 	}
18000 
18001 	/*
18002 	 * If this is endpoint is handling SSL, then reserve extra
18003 	 * offset and space at the end.
18004 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18005 	 * overriding the previous setting. The extra cost of signing and
18006 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18007 	 * instead of a single contiguous one by the stream head
18008 	 * largely outweighs the statistical reduction of ACKs, when
18009 	 * applicable. The peer will also save on decyption and verification
18010 	 * costs.
18011 	 */
18012 	if (tcp->tcp_kssl_ctx != NULL) {
18013 		stropt->so_wroff += SSL3_WROFFSET;
18014 
18015 		stropt->so_flags |= SO_TAIL;
18016 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18017 
18018 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18019 	}
18020 
18021 	/* Send the options up */
18022 	putnext(q, stropt_mp);
18023 
18024 	/*
18025 	 * Pass up any data and/or a fin that has been received.
18026 	 *
18027 	 * Adjust receive window in case it had decreased
18028 	 * (because there is data <=> tcp_rcv_list != NULL)
18029 	 * while the connection was detached. Note that
18030 	 * in case the eager was flow-controlled, w/o this
18031 	 * code, the rwnd may never open up again!
18032 	 */
18033 	if (tcp->tcp_rcv_list != NULL) {
18034 		/* We drain directly in case of fused tcp loopback */
18035 		if (!tcp->tcp_fused && canputnext(q)) {
18036 			tcp->tcp_rwnd = q->q_hiwat;
18037 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18038 			    << tcp->tcp_rcv_ws;
18039 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18040 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18041 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18042 				tcp_xmit_ctl(NULL,
18043 				    tcp, (tcp->tcp_swnd == 0) ?
18044 				    tcp->tcp_suna : tcp->tcp_snxt,
18045 				    tcp->tcp_rnxt, TH_ACK);
18046 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18047 			}
18048 
18049 		}
18050 		(void) tcp_rcv_drain(q, tcp);
18051 
18052 		/*
18053 		 * For fused tcp loopback, back-enable peer endpoint
18054 		 * if it's currently flow-controlled.
18055 		 */
18056 		if (tcp->tcp_fused) {
18057 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18058 
18059 			ASSERT(peer_tcp != NULL);
18060 			ASSERT(peer_tcp->tcp_fused);
18061 			/*
18062 			 * In order to change the peer's tcp_flow_stopped,
18063 			 * we need to take locks for both end points. The
18064 			 * highest address is taken first.
18065 			 */
18066 			if (peer_tcp > tcp) {
18067 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18068 				mutex_enter(&tcp->tcp_non_sq_lock);
18069 			} else {
18070 				mutex_enter(&tcp->tcp_non_sq_lock);
18071 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18072 			}
18073 			if (peer_tcp->tcp_flow_stopped) {
18074 				tcp_clrqfull(peer_tcp);
18075 				TCP_STAT(tcps, tcp_fusion_backenabled);
18076 			}
18077 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18078 			mutex_exit(&tcp->tcp_non_sq_lock);
18079 		}
18080 	}
18081 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18082 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18083 		mp = mi_tpi_ordrel_ind();
18084 		if (mp) {
18085 			tcp->tcp_ordrel_done = B_TRUE;
18086 			putnext(q, mp);
18087 			if (tcp->tcp_deferred_clean_death) {
18088 				/*
18089 				 * tcp_clean_death was deferred
18090 				 * for T_ORDREL_IND - do it now
18091 				 */
18092 				(void) tcp_clean_death(tcp,
18093 				    tcp->tcp_client_errno, 21);
18094 				tcp->tcp_deferred_clean_death = B_FALSE;
18095 			}
18096 		} else {
18097 			/*
18098 			 * Run the orderly release in the
18099 			 * service routine.
18100 			 */
18101 			qenable(q);
18102 		}
18103 	}
18104 	if (tcp->tcp_hard_binding) {
18105 		tcp->tcp_hard_binding = B_FALSE;
18106 		tcp->tcp_hard_bound = B_TRUE;
18107 	}
18108 
18109 	tcp->tcp_detached = B_FALSE;
18110 
18111 	/* We can enable synchronous streams now */
18112 	if (tcp->tcp_fused) {
18113 		tcp_fuse_syncstr_enable_pair(tcp);
18114 	}
18115 
18116 	if (tcp->tcp_ka_enabled) {
18117 		tcp->tcp_ka_last_intrvl = 0;
18118 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18119 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18120 	}
18121 
18122 	/*
18123 	 * At this point, eager is fully established and will
18124 	 * have the following references -
18125 	 *
18126 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18127 	 * 1 reference for the squeue which will be dropped by the squeue as
18128 	 *	soon as this function returns.
18129 	 * There will be 1 additonal reference for being in classifier
18130 	 *	hash list provided something bad hasn't happened.
18131 	 */
18132 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18133 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18134 }
18135 
18136 /*
18137  * The function called through squeue to get behind listener's perimeter to
18138  * send a deffered conn_ind.
18139  */
18140 /* ARGSUSED */
18141 void
18142 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18143 {
18144 	conn_t	*connp = (conn_t *)arg;
18145 	tcp_t *listener = connp->conn_tcp;
18146 
18147 	if (listener->tcp_state == TCPS_CLOSED ||
18148 	    TCP_IS_DETACHED(listener)) {
18149 		/*
18150 		 * If listener has closed, it would have caused a
18151 		 * a cleanup/blowoff to happen for the eager.
18152 		 */
18153 		tcp_t *tcp;
18154 		struct T_conn_ind	*conn_ind;
18155 
18156 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18157 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18158 		    conn_ind->OPT_length);
18159 		/*
18160 		 * We need to drop the ref on eager that was put
18161 		 * tcp_rput_data() before trying to send the conn_ind
18162 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18163 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18164 		 * listener is closed so we drop the ref.
18165 		 */
18166 		CONN_DEC_REF(tcp->tcp_connp);
18167 		freemsg(mp);
18168 		return;
18169 	}
18170 	putnext(listener->tcp_rq, mp);
18171 }
18172 
18173 
18174 /*
18175  * This is the STREAMS entry point for T_CONN_RES coming down on
18176  * Acceptor STREAM when  sockfs listener does accept processing.
18177  * Read the block comment on top of tcp_conn_request().
18178  */
18179 void
18180 tcp_wput_accept(queue_t *q, mblk_t *mp)
18181 {
18182 	queue_t *rq = RD(q);
18183 	struct T_conn_res *conn_res;
18184 	tcp_t *eager;
18185 	tcp_t *listener;
18186 	struct T_ok_ack *ok;
18187 	t_scalar_t PRIM_type;
18188 	mblk_t *opt_mp;
18189 	conn_t *econnp;
18190 
18191 	ASSERT(DB_TYPE(mp) == M_PROTO);
18192 
18193 	conn_res = (struct T_conn_res *)mp->b_rptr;
18194 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18195 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18196 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18197 		if (mp != NULL)
18198 			putnext(rq, mp);
18199 		return;
18200 	}
18201 	switch (conn_res->PRIM_type) {
18202 	case O_T_CONN_RES:
18203 	case T_CONN_RES:
18204 		/*
18205 		 * We pass up an err ack if allocb fails. This will
18206 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18207 		 * tcp_eager_blowoff to be called. sockfs will then call
18208 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18209 		 * we need to do the allocb up here because we have to
18210 		 * make sure rq->q_qinfo->qi_qclose still points to the
18211 		 * correct function (tcpclose_accept) in case allocb
18212 		 * fails.
18213 		 */
18214 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18215 		if (opt_mp == NULL) {
18216 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18217 			if (mp != NULL)
18218 				putnext(rq, mp);
18219 			return;
18220 		}
18221 
18222 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18223 		    &eager, conn_res->OPT_length);
18224 		PRIM_type = conn_res->PRIM_type;
18225 		mp->b_datap->db_type = M_PCPROTO;
18226 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18227 		ok = (struct T_ok_ack *)mp->b_rptr;
18228 		ok->PRIM_type = T_OK_ACK;
18229 		ok->CORRECT_prim = PRIM_type;
18230 		econnp = eager->tcp_connp;
18231 		econnp->conn_dev = (dev_t)q->q_ptr;
18232 		eager->tcp_rq = rq;
18233 		eager->tcp_wq = q;
18234 		rq->q_ptr = econnp;
18235 		rq->q_qinfo = &tcp_rinit;
18236 		q->q_ptr = econnp;
18237 		q->q_qinfo = &tcp_winit;
18238 		listener = eager->tcp_listener;
18239 		eager->tcp_issocket = B_TRUE;
18240 
18241 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18242 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18243 		ASSERT(econnp->conn_netstack ==
18244 		    listener->tcp_connp->conn_netstack);
18245 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18246 
18247 		/* Put the ref for IP */
18248 		CONN_INC_REF(econnp);
18249 
18250 		/*
18251 		 * We should have minimum of 3 references on the conn
18252 		 * at this point. One each for TCP and IP and one for
18253 		 * the T_conn_ind that was sent up when the 3-way handshake
18254 		 * completed. In the normal case we would also have another
18255 		 * reference (making a total of 4) for the conn being in the
18256 		 * classifier hash list. However the eager could have received
18257 		 * an RST subsequently and tcp_closei_local could have removed
18258 		 * the eager from the classifier hash list, hence we can't
18259 		 * assert that reference.
18260 		 */
18261 		ASSERT(econnp->conn_ref >= 3);
18262 
18263 		/*
18264 		 * Send the new local address also up to sockfs. There
18265 		 * should already be enough space in the mp that came
18266 		 * down from soaccept().
18267 		 */
18268 		if (eager->tcp_family == AF_INET) {
18269 			sin_t *sin;
18270 
18271 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18272 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18273 			sin = (sin_t *)mp->b_wptr;
18274 			mp->b_wptr += sizeof (sin_t);
18275 			sin->sin_family = AF_INET;
18276 			sin->sin_port = eager->tcp_lport;
18277 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18278 		} else {
18279 			sin6_t *sin6;
18280 
18281 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18282 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18283 			sin6 = (sin6_t *)mp->b_wptr;
18284 			mp->b_wptr += sizeof (sin6_t);
18285 			sin6->sin6_family = AF_INET6;
18286 			sin6->sin6_port = eager->tcp_lport;
18287 			if (eager->tcp_ipversion == IPV4_VERSION) {
18288 				sin6->sin6_flowinfo = 0;
18289 				IN6_IPADDR_TO_V4MAPPED(
18290 				    eager->tcp_ipha->ipha_src,
18291 				    &sin6->sin6_addr);
18292 			} else {
18293 				ASSERT(eager->tcp_ip6h != NULL);
18294 				sin6->sin6_flowinfo =
18295 				    eager->tcp_ip6h->ip6_vcf &
18296 				    ~IPV6_VERS_AND_FLOW_MASK;
18297 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18298 			}
18299 			sin6->sin6_scope_id = 0;
18300 			sin6->__sin6_src_id = 0;
18301 		}
18302 
18303 		putnext(rq, mp);
18304 
18305 		opt_mp->b_datap->db_type = M_SETOPTS;
18306 		opt_mp->b_wptr += sizeof (struct stroptions);
18307 
18308 		/*
18309 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18310 		 * from listener to acceptor. The message is chained on the
18311 		 * bind_mp which tcp_rput_other will send down to IP.
18312 		 */
18313 		if (listener->tcp_bound_if != 0) {
18314 			/* allocate optmgmt req */
18315 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18316 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18317 			    sizeof (int));
18318 			if (mp != NULL)
18319 				linkb(opt_mp, mp);
18320 		}
18321 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18322 			uint_t on = 1;
18323 
18324 			/* allocate optmgmt req */
18325 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18326 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18327 			if (mp != NULL)
18328 				linkb(opt_mp, mp);
18329 		}
18330 
18331 
18332 		mutex_enter(&listener->tcp_eager_lock);
18333 
18334 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18335 
18336 			tcp_t *tail;
18337 			tcp_t *tcp;
18338 			mblk_t *mp1;
18339 
18340 			tcp = listener->tcp_eager_prev_q0;
18341 			/*
18342 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18343 			 * deferred T_conn_ind queue. We need to get to the head
18344 			 * of the queue in order to send up T_conn_ind the same
18345 			 * order as how the 3WHS is completed.
18346 			 */
18347 			while (tcp != listener) {
18348 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18349 				    !tcp->tcp_kssl_pending)
18350 					break;
18351 				else
18352 					tcp = tcp->tcp_eager_prev_q0;
18353 			}
18354 			/* None of the pending eagers can be sent up now */
18355 			if (tcp == listener)
18356 				goto no_more_eagers;
18357 
18358 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18359 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18360 			/* Move from q0 to q */
18361 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18362 			listener->tcp_conn_req_cnt_q0--;
18363 			listener->tcp_conn_req_cnt_q++;
18364 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18365 			    tcp->tcp_eager_prev_q0;
18366 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18367 			    tcp->tcp_eager_next_q0;
18368 			tcp->tcp_eager_prev_q0 = NULL;
18369 			tcp->tcp_eager_next_q0 = NULL;
18370 			tcp->tcp_conn_def_q0 = B_FALSE;
18371 
18372 			/* Make sure the tcp isn't in the list of droppables */
18373 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18374 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18375 
18376 			/*
18377 			 * Insert at end of the queue because sockfs sends
18378 			 * down T_CONN_RES in chronological order. Leaving
18379 			 * the older conn indications at front of the queue
18380 			 * helps reducing search time.
18381 			 */
18382 			tail = listener->tcp_eager_last_q;
18383 			if (tail != NULL) {
18384 				tail->tcp_eager_next_q = tcp;
18385 			} else {
18386 				listener->tcp_eager_next_q = tcp;
18387 			}
18388 			listener->tcp_eager_last_q = tcp;
18389 			tcp->tcp_eager_next_q = NULL;
18390 
18391 			/* Need to get inside the listener perimeter */
18392 			CONN_INC_REF(listener->tcp_connp);
18393 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18394 			    tcp_send_pending, listener->tcp_connp,
18395 			    SQTAG_TCP_SEND_PENDING);
18396 		}
18397 no_more_eagers:
18398 		tcp_eager_unlink(eager);
18399 		mutex_exit(&listener->tcp_eager_lock);
18400 
18401 		/*
18402 		 * At this point, the eager is detached from the listener
18403 		 * but we still have an extra refs on eager (apart from the
18404 		 * usual tcp references). The ref was placed in tcp_rput_data
18405 		 * before sending the conn_ind in tcp_send_conn_ind.
18406 		 * The ref will be dropped in tcp_accept_finish().
18407 		 */
18408 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18409 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18410 		return;
18411 	default:
18412 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18413 		if (mp != NULL)
18414 			putnext(rq, mp);
18415 		return;
18416 	}
18417 }
18418 
18419 void
18420 tcp_wput(queue_t *q, mblk_t *mp)
18421 {
18422 	conn_t	*connp = Q_TO_CONN(q);
18423 	tcp_t	*tcp;
18424 	void (*output_proc)();
18425 	t_scalar_t type;
18426 	uchar_t *rptr;
18427 	struct iocblk	*iocp;
18428 	uint32_t	msize;
18429 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18430 
18431 	ASSERT(connp->conn_ref >= 2);
18432 
18433 	switch (DB_TYPE(mp)) {
18434 	case M_DATA:
18435 		tcp = connp->conn_tcp;
18436 		ASSERT(tcp != NULL);
18437 
18438 		msize = msgdsize(mp);
18439 
18440 		mutex_enter(&tcp->tcp_non_sq_lock);
18441 		tcp->tcp_squeue_bytes += msize;
18442 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18443 			tcp_setqfull(tcp);
18444 		}
18445 		mutex_exit(&tcp->tcp_non_sq_lock);
18446 
18447 		CONN_INC_REF(connp);
18448 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18449 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18450 		return;
18451 	case M_PROTO:
18452 	case M_PCPROTO:
18453 		/*
18454 		 * if it is a snmp message, don't get behind the squeue
18455 		 */
18456 		tcp = connp->conn_tcp;
18457 		rptr = mp->b_rptr;
18458 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18459 			type = ((union T_primitives *)rptr)->type;
18460 		} else {
18461 			if (tcp->tcp_debug) {
18462 				(void) strlog(TCP_MOD_ID, 0, 1,
18463 				    SL_ERROR|SL_TRACE,
18464 				    "tcp_wput_proto, dropping one...");
18465 			}
18466 			freemsg(mp);
18467 			return;
18468 		}
18469 		if (type == T_SVR4_OPTMGMT_REQ) {
18470 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18471 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18472 			    cr)) {
18473 				/*
18474 				 * This was a SNMP request
18475 				 */
18476 				return;
18477 			} else {
18478 				output_proc = tcp_wput_proto;
18479 			}
18480 		} else {
18481 			output_proc = tcp_wput_proto;
18482 		}
18483 		break;
18484 	case M_IOCTL:
18485 		/*
18486 		 * Most ioctls can be processed right away without going via
18487 		 * squeues - process them right here. Those that do require
18488 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18489 		 * are processed by tcp_wput_ioctl().
18490 		 */
18491 		iocp = (struct iocblk *)mp->b_rptr;
18492 		tcp = connp->conn_tcp;
18493 
18494 		switch (iocp->ioc_cmd) {
18495 		case TCP_IOC_ABORT_CONN:
18496 			tcp_ioctl_abort_conn(q, mp);
18497 			return;
18498 		case TI_GETPEERNAME:
18499 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18500 				iocp->ioc_error = ENOTCONN;
18501 				iocp->ioc_count = 0;
18502 				mp->b_datap->db_type = M_IOCACK;
18503 				qreply(q, mp);
18504 				return;
18505 			}
18506 			/* FALLTHRU */
18507 		case TI_GETMYNAME:
18508 			mi_copyin(q, mp, NULL,
18509 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18510 			return;
18511 		case ND_SET:
18512 			/* nd_getset does the necessary checks */
18513 		case ND_GET:
18514 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18515 				CALL_IP_WPUT(connp, q, mp);
18516 				return;
18517 			}
18518 			qreply(q, mp);
18519 			return;
18520 		case TCP_IOC_DEFAULT_Q:
18521 			/*
18522 			 * Wants to be the default wq. Check the credentials
18523 			 * first, the rest is executed via squeue.
18524 			 */
18525 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18526 				iocp->ioc_error = EPERM;
18527 				iocp->ioc_count = 0;
18528 				mp->b_datap->db_type = M_IOCACK;
18529 				qreply(q, mp);
18530 				return;
18531 			}
18532 			output_proc = tcp_wput_ioctl;
18533 			break;
18534 		default:
18535 			output_proc = tcp_wput_ioctl;
18536 			break;
18537 		}
18538 		break;
18539 	default:
18540 		output_proc = tcp_wput_nondata;
18541 		break;
18542 	}
18543 
18544 	CONN_INC_REF(connp);
18545 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18546 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18547 }
18548 
18549 /*
18550  * Initial STREAMS write side put() procedure for sockets. It tries to
18551  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18552  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18553  * are handled by tcp_wput() as usual.
18554  *
18555  * All further messages will also be handled by tcp_wput() because we cannot
18556  * be sure that the above short cut is safe later.
18557  */
18558 static void
18559 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18560 {
18561 	conn_t			*connp = Q_TO_CONN(wq);
18562 	tcp_t			*tcp = connp->conn_tcp;
18563 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18564 
18565 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18566 	wq->q_qinfo = &tcp_winit;
18567 
18568 	ASSERT(IPCL_IS_TCP(connp));
18569 	ASSERT(TCP_IS_SOCKET(tcp));
18570 
18571 	if (DB_TYPE(mp) == M_PCPROTO &&
18572 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18573 	    car->PRIM_type == T_CAPABILITY_REQ) {
18574 		tcp_capability_req(tcp, mp);
18575 		return;
18576 	}
18577 
18578 	tcp_wput(wq, mp);
18579 }
18580 
18581 static boolean_t
18582 tcp_zcopy_check(tcp_t *tcp)
18583 {
18584 	conn_t	*connp = tcp->tcp_connp;
18585 	ire_t	*ire;
18586 	boolean_t	zc_enabled = B_FALSE;
18587 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18588 
18589 	if (do_tcpzcopy == 2)
18590 		zc_enabled = B_TRUE;
18591 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18592 	    IPCL_IS_CONNECTED(connp) &&
18593 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18594 	    connp->conn_dontroute == 0 &&
18595 	    !connp->conn_nexthop_set &&
18596 	    connp->conn_xmit_if_ill == NULL &&
18597 	    connp->conn_nofailover_ill == NULL &&
18598 	    do_tcpzcopy == 1) {
18599 		/*
18600 		 * the checks above  closely resemble the fast path checks
18601 		 * in tcp_send_data().
18602 		 */
18603 		mutex_enter(&connp->conn_lock);
18604 		ire = connp->conn_ire_cache;
18605 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18606 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18607 			IRE_REFHOLD(ire);
18608 			if (ire->ire_stq != NULL) {
18609 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18610 
18611 				zc_enabled = ill && (ill->ill_capabilities &
18612 				    ILL_CAPAB_ZEROCOPY) &&
18613 				    (ill->ill_zerocopy_capab->
18614 				    ill_zerocopy_flags != 0);
18615 			}
18616 			IRE_REFRELE(ire);
18617 		}
18618 		mutex_exit(&connp->conn_lock);
18619 	}
18620 	tcp->tcp_snd_zcopy_on = zc_enabled;
18621 	if (!TCP_IS_DETACHED(tcp)) {
18622 		if (zc_enabled) {
18623 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18624 			TCP_STAT(tcps, tcp_zcopy_on);
18625 		} else {
18626 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18627 			TCP_STAT(tcps, tcp_zcopy_off);
18628 		}
18629 	}
18630 	return (zc_enabled);
18631 }
18632 
18633 static mblk_t *
18634 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18635 {
18636 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18637 
18638 	if (do_tcpzcopy == 2)
18639 		return (bp);
18640 	else if (tcp->tcp_snd_zcopy_on) {
18641 		tcp->tcp_snd_zcopy_on = B_FALSE;
18642 		if (!TCP_IS_DETACHED(tcp)) {
18643 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18644 			TCP_STAT(tcps, tcp_zcopy_disable);
18645 		}
18646 	}
18647 	return (tcp_zcopy_backoff(tcp, bp, 0));
18648 }
18649 
18650 /*
18651  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18652  * the original desballoca'ed segmapped mblk.
18653  */
18654 static mblk_t *
18655 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18656 {
18657 	mblk_t *head, *tail, *nbp;
18658 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18659 
18660 	if (IS_VMLOANED_MBLK(bp)) {
18661 		TCP_STAT(tcps, tcp_zcopy_backoff);
18662 		if ((head = copyb(bp)) == NULL) {
18663 			/* fail to backoff; leave it for the next backoff */
18664 			tcp->tcp_xmit_zc_clean = B_FALSE;
18665 			return (bp);
18666 		}
18667 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18668 			if (fix_xmitlist)
18669 				tcp_zcopy_notify(tcp);
18670 			else
18671 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18672 		}
18673 		nbp = bp->b_cont;
18674 		if (fix_xmitlist) {
18675 			head->b_prev = bp->b_prev;
18676 			head->b_next = bp->b_next;
18677 			if (tcp->tcp_xmit_tail == bp)
18678 				tcp->tcp_xmit_tail = head;
18679 		}
18680 		bp->b_next = NULL;
18681 		bp->b_prev = NULL;
18682 		freeb(bp);
18683 	} else {
18684 		head = bp;
18685 		nbp = bp->b_cont;
18686 	}
18687 	tail = head;
18688 	while (nbp) {
18689 		if (IS_VMLOANED_MBLK(nbp)) {
18690 			TCP_STAT(tcps, tcp_zcopy_backoff);
18691 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18692 				tcp->tcp_xmit_zc_clean = B_FALSE;
18693 				tail->b_cont = nbp;
18694 				return (head);
18695 			}
18696 			tail = tail->b_cont;
18697 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18698 				if (fix_xmitlist)
18699 					tcp_zcopy_notify(tcp);
18700 				else
18701 					tail->b_datap->db_struioflag |=
18702 					    STRUIO_ZCNOTIFY;
18703 			}
18704 			bp = nbp;
18705 			nbp = nbp->b_cont;
18706 			if (fix_xmitlist) {
18707 				tail->b_prev = bp->b_prev;
18708 				tail->b_next = bp->b_next;
18709 				if (tcp->tcp_xmit_tail == bp)
18710 					tcp->tcp_xmit_tail = tail;
18711 			}
18712 			bp->b_next = NULL;
18713 			bp->b_prev = NULL;
18714 			freeb(bp);
18715 		} else {
18716 			tail->b_cont = nbp;
18717 			tail = nbp;
18718 			nbp = nbp->b_cont;
18719 		}
18720 	}
18721 	if (fix_xmitlist) {
18722 		tcp->tcp_xmit_last = tail;
18723 		tcp->tcp_xmit_zc_clean = B_TRUE;
18724 	}
18725 	return (head);
18726 }
18727 
18728 static void
18729 tcp_zcopy_notify(tcp_t *tcp)
18730 {
18731 	struct stdata	*stp;
18732 
18733 	if (tcp->tcp_detached)
18734 		return;
18735 	stp = STREAM(tcp->tcp_rq);
18736 	mutex_enter(&stp->sd_lock);
18737 	stp->sd_flag |= STZCNOTIFY;
18738 	cv_broadcast(&stp->sd_zcopy_wait);
18739 	mutex_exit(&stp->sd_lock);
18740 }
18741 
18742 static boolean_t
18743 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18744 {
18745 	ire_t	*ire;
18746 	conn_t	*connp = tcp->tcp_connp;
18747 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18748 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18749 
18750 	mutex_enter(&connp->conn_lock);
18751 	ire = connp->conn_ire_cache;
18752 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18753 
18754 	if ((ire != NULL) &&
18755 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18756 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18757 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18758 		IRE_REFHOLD(ire);
18759 		mutex_exit(&connp->conn_lock);
18760 	} else {
18761 		boolean_t cached = B_FALSE;
18762 		ts_label_t *tsl;
18763 
18764 		/* force a recheck later on */
18765 		tcp->tcp_ire_ill_check_done = B_FALSE;
18766 
18767 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18768 		connp->conn_ire_cache = NULL;
18769 		mutex_exit(&connp->conn_lock);
18770 
18771 		if (ire != NULL)
18772 			IRE_REFRELE_NOTR(ire);
18773 
18774 		tsl = crgetlabel(CONN_CRED(connp));
18775 		ire = (dst ?
18776 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18777 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18778 		    connp->conn_zoneid, tsl, ipst));
18779 
18780 		if (ire == NULL) {
18781 			TCP_STAT(tcps, tcp_ire_null);
18782 			return (B_FALSE);
18783 		}
18784 
18785 		IRE_REFHOLD_NOTR(ire);
18786 		/*
18787 		 * Since we are inside the squeue, there cannot be another
18788 		 * thread in TCP trying to set the conn_ire_cache now.  The
18789 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18790 		 * unplumb thread has not yet started cleaning up the conns.
18791 		 * Hence we don't need to grab the conn lock.
18792 		 */
18793 		if (CONN_CACHE_IRE(connp)) {
18794 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18795 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18796 				TCP_CHECK_IREINFO(tcp, ire);
18797 				connp->conn_ire_cache = ire;
18798 				cached = B_TRUE;
18799 			}
18800 			rw_exit(&ire->ire_bucket->irb_lock);
18801 		}
18802 
18803 		/*
18804 		 * We can continue to use the ire but since it was
18805 		 * not cached, we should drop the extra reference.
18806 		 */
18807 		if (!cached)
18808 			IRE_REFRELE_NOTR(ire);
18809 
18810 		/*
18811 		 * Rampart note: no need to select a new label here, since
18812 		 * labels are not allowed to change during the life of a TCP
18813 		 * connection.
18814 		 */
18815 	}
18816 
18817 	*irep = ire;
18818 
18819 	return (B_TRUE);
18820 }
18821 
18822 /*
18823  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18824  *
18825  * 0 = success;
18826  * 1 = failed to find ire and ill.
18827  */
18828 static boolean_t
18829 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18830 {
18831 	ipha_t		*ipha;
18832 	ipaddr_t	dst;
18833 	ire_t		*ire;
18834 	ill_t		*ill;
18835 	conn_t		*connp = tcp->tcp_connp;
18836 	mblk_t		*ire_fp_mp;
18837 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18838 
18839 	if (mp != NULL)
18840 		ipha = (ipha_t *)mp->b_rptr;
18841 	else
18842 		ipha = tcp->tcp_ipha;
18843 	dst = ipha->ipha_dst;
18844 
18845 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18846 		return (B_FALSE);
18847 
18848 	if ((ire->ire_flags & RTF_MULTIRT) ||
18849 	    (ire->ire_stq == NULL) ||
18850 	    (ire->ire_nce == NULL) ||
18851 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18852 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18853 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18854 		TCP_STAT(tcps, tcp_ip_ire_send);
18855 		IRE_REFRELE(ire);
18856 		return (B_FALSE);
18857 	}
18858 
18859 	ill = ire_to_ill(ire);
18860 	if (connp->conn_outgoing_ill != NULL) {
18861 		ill_t *conn_outgoing_ill = NULL;
18862 		/*
18863 		 * Choose a good ill in the group to send the packets on.
18864 		 */
18865 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18866 		ill = ire_to_ill(ire);
18867 	}
18868 	ASSERT(ill != NULL);
18869 
18870 	if (!tcp->tcp_ire_ill_check_done) {
18871 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18872 		tcp->tcp_ire_ill_check_done = B_TRUE;
18873 	}
18874 
18875 	*irep = ire;
18876 	*illp = ill;
18877 
18878 	return (B_TRUE);
18879 }
18880 
18881 static void
18882 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18883 {
18884 	ipha_t		*ipha;
18885 	ipaddr_t	src;
18886 	ipaddr_t	dst;
18887 	uint32_t	cksum;
18888 	ire_t		*ire;
18889 	uint16_t	*up;
18890 	ill_t		*ill;
18891 	conn_t		*connp = tcp->tcp_connp;
18892 	uint32_t	hcksum_txflags = 0;
18893 	mblk_t		*ire_fp_mp;
18894 	uint_t		ire_fp_mp_len;
18895 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18896 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18897 
18898 	ASSERT(DB_TYPE(mp) == M_DATA);
18899 
18900 	if (DB_CRED(mp) == NULL)
18901 		mblk_setcred(mp, CONN_CRED(connp));
18902 
18903 	ipha = (ipha_t *)mp->b_rptr;
18904 	src = ipha->ipha_src;
18905 	dst = ipha->ipha_dst;
18906 
18907 	/*
18908 	 * Drop off fast path for IPv6 and also if options are present or
18909 	 * we need to resolve a TS label.
18910 	 */
18911 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18912 	    !IPCL_IS_CONNECTED(connp) ||
18913 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18914 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18915 	    !connp->conn_ulp_labeled ||
18916 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18917 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18918 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18919 		if (tcp->tcp_snd_zcopy_aware)
18920 			mp = tcp_zcopy_disable(tcp, mp);
18921 		TCP_STAT(tcps, tcp_ip_send);
18922 		CALL_IP_WPUT(connp, q, mp);
18923 		return;
18924 	}
18925 
18926 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18927 		if (tcp->tcp_snd_zcopy_aware)
18928 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18929 		CALL_IP_WPUT(connp, q, mp);
18930 		return;
18931 	}
18932 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18933 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18934 
18935 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18936 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18937 #ifndef _BIG_ENDIAN
18938 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18939 #endif
18940 
18941 	/*
18942 	 * Check to see if we need to re-enable LSO/MDT for this connection
18943 	 * because it was previously disabled due to changes in the ill;
18944 	 * note that by doing it here, this re-enabling only applies when
18945 	 * the packet is not dispatched through CALL_IP_WPUT().
18946 	 *
18947 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18948 	 * case, since that's how we ended up here.  For IPv6, we do the
18949 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18950 	 */
18951 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18952 		/*
18953 		 * Restore LSO for this connection, so that next time around
18954 		 * it is eligible to go through tcp_lsosend() path again.
18955 		 */
18956 		TCP_STAT(tcps, tcp_lso_enabled);
18957 		tcp->tcp_lso = B_TRUE;
18958 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18959 		    "interface %s\n", (void *)connp, ill->ill_name));
18960 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18961 		/*
18962 		 * Restore MDT for this connection, so that next time around
18963 		 * it is eligible to go through tcp_multisend() path again.
18964 		 */
18965 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18966 		tcp->tcp_mdt = B_TRUE;
18967 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18968 		    "interface %s\n", (void *)connp, ill->ill_name));
18969 	}
18970 
18971 	if (tcp->tcp_snd_zcopy_aware) {
18972 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18973 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18974 			mp = tcp_zcopy_disable(tcp, mp);
18975 		/*
18976 		 * we shouldn't need to reset ipha as the mp containing
18977 		 * ipha should never be a zero-copy mp.
18978 		 */
18979 	}
18980 
18981 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18982 		ASSERT(ill->ill_hcksum_capab != NULL);
18983 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18984 	}
18985 
18986 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18987 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18988 
18989 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18990 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18991 
18992 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18993 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18994 
18995 	/* Software checksum? */
18996 	if (DB_CKSUMFLAGS(mp) == 0) {
18997 		TCP_STAT(tcps, tcp_out_sw_cksum);
18998 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18999 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19000 	}
19001 
19002 	ipha->ipha_fragment_offset_and_flags |=
19003 	    (uint32_t)htons(ire->ire_frag_flag);
19004 
19005 	/* Calculate IP header checksum if hardware isn't capable */
19006 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19007 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19008 		    ((uint16_t *)ipha)[4]);
19009 	}
19010 
19011 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19012 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19013 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19014 
19015 	UPDATE_OB_PKT_COUNT(ire);
19016 	ire->ire_last_used_time = lbolt;
19017 
19018 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19019 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19020 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19021 	    ntohs(ipha->ipha_length));
19022 
19023 	if (ILL_DLS_CAPABLE(ill)) {
19024 		/*
19025 		 * Send the packet directly to DLD, where it may be queued
19026 		 * depending on the availability of transmit resources at
19027 		 * the media layer.
19028 		 */
19029 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19030 	} else {
19031 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19032 		DTRACE_PROBE4(ip4__physical__out__start,
19033 		    ill_t *, NULL, ill_t *, out_ill,
19034 		    ipha_t *, ipha, mblk_t *, mp);
19035 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19036 		    ipst->ips_ipv4firewall_physical_out,
19037 		    NULL, out_ill, ipha, mp, mp, ipst);
19038 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19039 		if (mp != NULL)
19040 			putnext(ire->ire_stq, mp);
19041 	}
19042 	IRE_REFRELE(ire);
19043 }
19044 
19045 /*
19046  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19047  * if the receiver shrinks the window, i.e. moves the right window to the
19048  * left, the we should not send new data, but should retransmit normally the
19049  * old unacked data between suna and suna + swnd. We might has sent data
19050  * that is now outside the new window, pretend that we didn't send  it.
19051  */
19052 static void
19053 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19054 {
19055 	uint32_t	snxt = tcp->tcp_snxt;
19056 	mblk_t		*xmit_tail;
19057 	int32_t		offset;
19058 
19059 	ASSERT(shrunk_count > 0);
19060 
19061 	/* Pretend we didn't send the data outside the window */
19062 	snxt -= shrunk_count;
19063 
19064 	/* Get the mblk and the offset in it per the shrunk window */
19065 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19066 
19067 	ASSERT(xmit_tail != NULL);
19068 
19069 	/* Reset all the values per the now shrunk window */
19070 	tcp->tcp_snxt = snxt;
19071 	tcp->tcp_xmit_tail = xmit_tail;
19072 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19073 	    offset;
19074 	tcp->tcp_unsent += shrunk_count;
19075 
19076 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19077 		/*
19078 		 * Make sure the timer is running so that we will probe a zero
19079 		 * window.
19080 		 */
19081 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19082 }
19083 
19084 
19085 /*
19086  * The TCP normal data output path.
19087  * NOTE: the logic of the fast path is duplicated from this function.
19088  */
19089 static void
19090 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19091 {
19092 	int		len;
19093 	mblk_t		*local_time;
19094 	mblk_t		*mp1;
19095 	uint32_t	snxt;
19096 	int		tail_unsent;
19097 	int		tcpstate;
19098 	int		usable = 0;
19099 	mblk_t		*xmit_tail;
19100 	queue_t		*q = tcp->tcp_wq;
19101 	int32_t		mss;
19102 	int32_t		num_sack_blk = 0;
19103 	int32_t		tcp_hdr_len;
19104 	int32_t		tcp_tcp_hdr_len;
19105 	int		mdt_thres;
19106 	int		rc;
19107 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19108 	ip_stack_t	*ipst;
19109 
19110 	tcpstate = tcp->tcp_state;
19111 	if (mp == NULL) {
19112 		/*
19113 		 * tcp_wput_data() with NULL mp should only be called when
19114 		 * there is unsent data.
19115 		 */
19116 		ASSERT(tcp->tcp_unsent > 0);
19117 		/* Really tacky... but we need this for detached closes. */
19118 		len = tcp->tcp_unsent;
19119 		goto data_null;
19120 	}
19121 
19122 #if CCS_STATS
19123 	wrw_stats.tot.count++;
19124 	wrw_stats.tot.bytes += msgdsize(mp);
19125 #endif
19126 	ASSERT(mp->b_datap->db_type == M_DATA);
19127 	/*
19128 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19129 	 * or before a connection attempt has begun.
19130 	 */
19131 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19132 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19133 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19134 #ifdef DEBUG
19135 			cmn_err(CE_WARN,
19136 			    "tcp_wput_data: data after ordrel, %s",
19137 			    tcp_display(tcp, NULL,
19138 			    DISP_ADDR_AND_PORT));
19139 #else
19140 			if (tcp->tcp_debug) {
19141 				(void) strlog(TCP_MOD_ID, 0, 1,
19142 				    SL_TRACE|SL_ERROR,
19143 				    "tcp_wput_data: data after ordrel, %s\n",
19144 				    tcp_display(tcp, NULL,
19145 				    DISP_ADDR_AND_PORT));
19146 			}
19147 #endif /* DEBUG */
19148 		}
19149 		if (tcp->tcp_snd_zcopy_aware &&
19150 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19151 			tcp_zcopy_notify(tcp);
19152 		freemsg(mp);
19153 		mutex_enter(&tcp->tcp_non_sq_lock);
19154 		if (tcp->tcp_flow_stopped &&
19155 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19156 			tcp_clrqfull(tcp);
19157 		}
19158 		mutex_exit(&tcp->tcp_non_sq_lock);
19159 		return;
19160 	}
19161 
19162 	/* Strip empties */
19163 	for (;;) {
19164 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19165 		    (uintptr_t)INT_MAX);
19166 		len = (int)(mp->b_wptr - mp->b_rptr);
19167 		if (len > 0)
19168 			break;
19169 		mp1 = mp;
19170 		mp = mp->b_cont;
19171 		freeb(mp1);
19172 		if (!mp) {
19173 			return;
19174 		}
19175 	}
19176 
19177 	/* If we are the first on the list ... */
19178 	if (tcp->tcp_xmit_head == NULL) {
19179 		tcp->tcp_xmit_head = mp;
19180 		tcp->tcp_xmit_tail = mp;
19181 		tcp->tcp_xmit_tail_unsent = len;
19182 	} else {
19183 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19184 		struct datab *dp;
19185 
19186 		mp1 = tcp->tcp_xmit_last;
19187 		if (len < tcp_tx_pull_len &&
19188 		    (dp = mp1->b_datap)->db_ref == 1 &&
19189 		    dp->db_lim - mp1->b_wptr >= len) {
19190 			ASSERT(len > 0);
19191 			ASSERT(!mp1->b_cont);
19192 			if (len == 1) {
19193 				*mp1->b_wptr++ = *mp->b_rptr;
19194 			} else {
19195 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19196 				mp1->b_wptr += len;
19197 			}
19198 			if (mp1 == tcp->tcp_xmit_tail)
19199 				tcp->tcp_xmit_tail_unsent += len;
19200 			mp1->b_cont = mp->b_cont;
19201 			if (tcp->tcp_snd_zcopy_aware &&
19202 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19203 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19204 			freeb(mp);
19205 			mp = mp1;
19206 		} else {
19207 			tcp->tcp_xmit_last->b_cont = mp;
19208 		}
19209 		len += tcp->tcp_unsent;
19210 	}
19211 
19212 	/* Tack on however many more positive length mblks we have */
19213 	if ((mp1 = mp->b_cont) != NULL) {
19214 		do {
19215 			int tlen;
19216 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19217 			    (uintptr_t)INT_MAX);
19218 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19219 			if (tlen <= 0) {
19220 				mp->b_cont = mp1->b_cont;
19221 				freeb(mp1);
19222 			} else {
19223 				len += tlen;
19224 				mp = mp1;
19225 			}
19226 		} while ((mp1 = mp->b_cont) != NULL);
19227 	}
19228 	tcp->tcp_xmit_last = mp;
19229 	tcp->tcp_unsent = len;
19230 
19231 	if (urgent)
19232 		usable = 1;
19233 
19234 data_null:
19235 	snxt = tcp->tcp_snxt;
19236 	xmit_tail = tcp->tcp_xmit_tail;
19237 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19238 
19239 	/*
19240 	 * Note that tcp_mss has been adjusted to take into account the
19241 	 * timestamp option if applicable.  Because SACK options do not
19242 	 * appear in every TCP segments and they are of variable lengths,
19243 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19244 	 * the actual segment length when we need to send a segment which
19245 	 * includes SACK options.
19246 	 */
19247 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19248 		int32_t	opt_len;
19249 
19250 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19251 		    tcp->tcp_num_sack_blk);
19252 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19253 		    2 + TCPOPT_HEADER_LEN;
19254 		mss = tcp->tcp_mss - opt_len;
19255 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19256 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19257 	} else {
19258 		mss = tcp->tcp_mss;
19259 		tcp_hdr_len = tcp->tcp_hdr_len;
19260 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19261 	}
19262 
19263 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19264 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19265 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19266 	}
19267 	if (tcpstate == TCPS_SYN_RCVD) {
19268 		/*
19269 		 * The three-way connection establishment handshake is not
19270 		 * complete yet. We want to queue the data for transmission
19271 		 * after entering ESTABLISHED state (RFC793). A jump to
19272 		 * "done" label effectively leaves data on the queue.
19273 		 */
19274 		goto done;
19275 	} else {
19276 		int usable_r;
19277 
19278 		/*
19279 		 * In the special case when cwnd is zero, which can only
19280 		 * happen if the connection is ECN capable, return now.
19281 		 * New segments is sent using tcp_timer().  The timer
19282 		 * is set in tcp_rput_data().
19283 		 */
19284 		if (tcp->tcp_cwnd == 0) {
19285 			/*
19286 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19287 			 * finished.
19288 			 */
19289 			ASSERT(tcp->tcp_ecn_ok ||
19290 			    tcp->tcp_state < TCPS_ESTABLISHED);
19291 			return;
19292 		}
19293 
19294 		/* NOTE: trouble if xmitting while SYN not acked? */
19295 		usable_r = snxt - tcp->tcp_suna;
19296 		usable_r = tcp->tcp_swnd - usable_r;
19297 
19298 		/*
19299 		 * Check if the receiver has shrunk the window.  If
19300 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19301 		 * cannot be set as there is unsent data, so FIN cannot
19302 		 * be sent out.  Otherwise, we need to take into account
19303 		 * of FIN as it consumes an "invisible" sequence number.
19304 		 */
19305 		ASSERT(tcp->tcp_fin_sent == 0);
19306 		if (usable_r < 0) {
19307 			/*
19308 			 * The receiver has shrunk the window and we have sent
19309 			 * -usable_r date beyond the window, re-adjust.
19310 			 *
19311 			 * If TCP window scaling is enabled, there can be
19312 			 * round down error as the advertised receive window
19313 			 * is actually right shifted n bits.  This means that
19314 			 * the lower n bits info is wiped out.  It will look
19315 			 * like the window is shrunk.  Do a check here to
19316 			 * see if the shrunk amount is actually within the
19317 			 * error in window calculation.  If it is, just
19318 			 * return.  Note that this check is inside the
19319 			 * shrunk window check.  This makes sure that even
19320 			 * though tcp_process_shrunk_swnd() is not called,
19321 			 * we will stop further processing.
19322 			 */
19323 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19324 				tcp_process_shrunk_swnd(tcp, -usable_r);
19325 			}
19326 			return;
19327 		}
19328 
19329 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19330 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19331 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19332 
19333 		/* usable = MIN(usable, unsent) */
19334 		if (usable_r > len)
19335 			usable_r = len;
19336 
19337 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19338 		if (usable_r > 0) {
19339 			usable = usable_r;
19340 		} else {
19341 			/* Bypass all other unnecessary processing. */
19342 			goto done;
19343 		}
19344 	}
19345 
19346 	local_time = (mblk_t *)lbolt;
19347 
19348 	/*
19349 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19350 	 * BSD.  This is more in line with the true intent of Nagle.
19351 	 *
19352 	 * The conditions are:
19353 	 * 1. The amount of unsent data (or amount of data which can be
19354 	 *    sent, whichever is smaller) is less than Nagle limit.
19355 	 * 2. The last sent size is also less than Nagle limit.
19356 	 * 3. There is unack'ed data.
19357 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19358 	 *    Nagle algorithm.  This reduces the probability that urgent
19359 	 *    bytes get "merged" together.
19360 	 * 5. The app has not closed the connection.  This eliminates the
19361 	 *    wait time of the receiving side waiting for the last piece of
19362 	 *    (small) data.
19363 	 *
19364 	 * If all are satisified, exit without sending anything.  Note
19365 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19366 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19367 	 * 4095).
19368 	 */
19369 	if (usable < (int)tcp->tcp_naglim &&
19370 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19371 	    snxt != tcp->tcp_suna &&
19372 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19373 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19374 		goto done;
19375 	}
19376 
19377 	if (tcp->tcp_cork) {
19378 		/*
19379 		 * if the tcp->tcp_cork option is set, then we have to force
19380 		 * TCP not to send partial segment (smaller than MSS bytes).
19381 		 * We are calculating the usable now based on full mss and
19382 		 * will save the rest of remaining data for later.
19383 		 */
19384 		if (usable < mss)
19385 			goto done;
19386 		usable = (usable / mss) * mss;
19387 	}
19388 
19389 	/* Update the latest receive window size in TCP header. */
19390 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19391 	    tcp->tcp_tcph->th_win);
19392 
19393 	/*
19394 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19395 	 *
19396 	 * 1. Simple TCP/IP{v4,v6} (no options).
19397 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19398 	 * 3. If the TCP connection is in ESTABLISHED state.
19399 	 * 4. The TCP is not detached.
19400 	 *
19401 	 * If any of the above conditions have changed during the
19402 	 * connection, stop using LSO/MDT and restore the stream head
19403 	 * parameters accordingly.
19404 	 */
19405 	ipst = tcps->tcps_netstack->netstack_ip;
19406 
19407 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19408 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19409 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19410 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19411 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19412 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19413 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19414 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19415 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19416 		if (tcp->tcp_lso) {
19417 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19418 			tcp->tcp_lso = B_FALSE;
19419 		} else {
19420 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19421 			tcp->tcp_mdt = B_FALSE;
19422 		}
19423 
19424 		/* Anything other than detached is considered pathological */
19425 		if (!TCP_IS_DETACHED(tcp)) {
19426 			if (tcp->tcp_lso)
19427 				TCP_STAT(tcps, tcp_lso_disabled);
19428 			else
19429 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19430 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19431 		}
19432 	}
19433 
19434 	/* Use MDT if sendable amount is greater than the threshold */
19435 	if (tcp->tcp_mdt &&
19436 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19437 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19438 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19439 	    (tcp->tcp_valid_bits == 0 ||
19440 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19441 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19442 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19443 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19444 		    local_time, mdt_thres);
19445 	} else {
19446 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19447 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19448 		    local_time, INT_MAX);
19449 	}
19450 
19451 	/* Pretend that all we were trying to send really got sent */
19452 	if (rc < 0 && tail_unsent < 0) {
19453 		do {
19454 			xmit_tail = xmit_tail->b_cont;
19455 			xmit_tail->b_prev = local_time;
19456 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19457 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19458 			tail_unsent += (int)(xmit_tail->b_wptr -
19459 			    xmit_tail->b_rptr);
19460 		} while (tail_unsent < 0);
19461 	}
19462 done:;
19463 	tcp->tcp_xmit_tail = xmit_tail;
19464 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19465 	len = tcp->tcp_snxt - snxt;
19466 	if (len) {
19467 		/*
19468 		 * If new data was sent, need to update the notsack
19469 		 * list, which is, afterall, data blocks that have
19470 		 * not been sack'ed by the receiver.  New data is
19471 		 * not sack'ed.
19472 		 */
19473 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19474 			/* len is a negative value. */
19475 			tcp->tcp_pipe -= len;
19476 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19477 			    tcp->tcp_snxt, snxt,
19478 			    &(tcp->tcp_num_notsack_blk),
19479 			    &(tcp->tcp_cnt_notsack_list));
19480 		}
19481 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19482 		tcp->tcp_rack = tcp->tcp_rnxt;
19483 		tcp->tcp_rack_cnt = 0;
19484 		if ((snxt + len) == tcp->tcp_suna) {
19485 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19486 		}
19487 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19488 		/*
19489 		 * Didn't send anything. Make sure the timer is running
19490 		 * so that we will probe a zero window.
19491 		 */
19492 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19493 	}
19494 	/* Note that len is the amount we just sent but with a negative sign */
19495 	tcp->tcp_unsent += len;
19496 	mutex_enter(&tcp->tcp_non_sq_lock);
19497 	if (tcp->tcp_flow_stopped) {
19498 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19499 			tcp_clrqfull(tcp);
19500 		}
19501 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19502 		tcp_setqfull(tcp);
19503 	}
19504 	mutex_exit(&tcp->tcp_non_sq_lock);
19505 }
19506 
19507 /*
19508  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19509  * outgoing TCP header with the template header, as well as other
19510  * options such as time-stamp, ECN and/or SACK.
19511  */
19512 static void
19513 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19514 {
19515 	tcph_t *tcp_tmpl, *tcp_h;
19516 	uint32_t *dst, *src;
19517 	int hdrlen;
19518 
19519 	ASSERT(OK_32PTR(rptr));
19520 
19521 	/* Template header */
19522 	tcp_tmpl = tcp->tcp_tcph;
19523 
19524 	/* Header of outgoing packet */
19525 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19526 
19527 	/* dst and src are opaque 32-bit fields, used for copying */
19528 	dst = (uint32_t *)rptr;
19529 	src = (uint32_t *)tcp->tcp_iphc;
19530 	hdrlen = tcp->tcp_hdr_len;
19531 
19532 	/* Fill time-stamp option if needed */
19533 	if (tcp->tcp_snd_ts_ok) {
19534 		U32_TO_BE32((uint32_t)now,
19535 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19536 		U32_TO_BE32(tcp->tcp_ts_recent,
19537 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19538 	} else {
19539 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19540 	}
19541 
19542 	/*
19543 	 * Copy the template header; is this really more efficient than
19544 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19545 	 * but perhaps not for other scenarios.
19546 	 */
19547 	dst[0] = src[0];
19548 	dst[1] = src[1];
19549 	dst[2] = src[2];
19550 	dst[3] = src[3];
19551 	dst[4] = src[4];
19552 	dst[5] = src[5];
19553 	dst[6] = src[6];
19554 	dst[7] = src[7];
19555 	dst[8] = src[8];
19556 	dst[9] = src[9];
19557 	if (hdrlen -= 40) {
19558 		hdrlen >>= 2;
19559 		dst += 10;
19560 		src += 10;
19561 		do {
19562 			*dst++ = *src++;
19563 		} while (--hdrlen);
19564 	}
19565 
19566 	/*
19567 	 * Set the ECN info in the TCP header if it is not a zero
19568 	 * window probe.  Zero window probe is only sent in
19569 	 * tcp_wput_data() and tcp_timer().
19570 	 */
19571 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19572 		SET_ECT(tcp, rptr);
19573 
19574 		if (tcp->tcp_ecn_echo_on)
19575 			tcp_h->th_flags[0] |= TH_ECE;
19576 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19577 			tcp_h->th_flags[0] |= TH_CWR;
19578 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19579 		}
19580 	}
19581 
19582 	/* Fill in SACK options */
19583 	if (num_sack_blk > 0) {
19584 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19585 		sack_blk_t *tmp;
19586 		int32_t	i;
19587 
19588 		wptr[0] = TCPOPT_NOP;
19589 		wptr[1] = TCPOPT_NOP;
19590 		wptr[2] = TCPOPT_SACK;
19591 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19592 		    sizeof (sack_blk_t);
19593 		wptr += TCPOPT_REAL_SACK_LEN;
19594 
19595 		tmp = tcp->tcp_sack_list;
19596 		for (i = 0; i < num_sack_blk; i++) {
19597 			U32_TO_BE32(tmp[i].begin, wptr);
19598 			wptr += sizeof (tcp_seq);
19599 			U32_TO_BE32(tmp[i].end, wptr);
19600 			wptr += sizeof (tcp_seq);
19601 		}
19602 		tcp_h->th_offset_and_rsrvd[0] +=
19603 		    ((num_sack_blk * 2 + 1) << 4);
19604 	}
19605 }
19606 
19607 /*
19608  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19609  * the destination address and SAP attribute, and if necessary, the
19610  * hardware checksum offload attribute to a Multidata message.
19611  */
19612 static int
19613 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19614     const uint32_t start, const uint32_t stuff, const uint32_t end,
19615     const uint32_t flags, tcp_stack_t *tcps)
19616 {
19617 	/* Add global destination address & SAP attribute */
19618 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19619 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19620 		    "destination address+SAP\n"));
19621 
19622 		if (dlmp != NULL)
19623 			TCP_STAT(tcps, tcp_mdt_allocfail);
19624 		return (-1);
19625 	}
19626 
19627 	/* Add global hwcksum attribute */
19628 	if (hwcksum &&
19629 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19630 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19631 		    "checksum attribute\n"));
19632 
19633 		TCP_STAT(tcps, tcp_mdt_allocfail);
19634 		return (-1);
19635 	}
19636 
19637 	return (0);
19638 }
19639 
19640 /*
19641  * Smaller and private version of pdescinfo_t used specifically for TCP,
19642  * which allows for only two payload spans per packet.
19643  */
19644 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19645 
19646 /*
19647  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19648  * scheme, and returns one the following:
19649  *
19650  * -1 = failed allocation.
19651  *  0 = success; burst count reached, or usable send window is too small,
19652  *      and that we'd rather wait until later before sending again.
19653  */
19654 static int
19655 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19656     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19657     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19658     const int mdt_thres)
19659 {
19660 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19661 	multidata_t	*mmd;
19662 	uint_t		obsegs, obbytes, hdr_frag_sz;
19663 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19664 	int		num_burst_seg, max_pld;
19665 	pdesc_t		*pkt;
19666 	tcp_pdescinfo_t	tcp_pkt_info;
19667 	pdescinfo_t	*pkt_info;
19668 	int		pbuf_idx, pbuf_idx_nxt;
19669 	int		seg_len, len, spill, af;
19670 	boolean_t	add_buffer, zcopy, clusterwide;
19671 	boolean_t	buf_trunked = B_FALSE;
19672 	boolean_t	rconfirm = B_FALSE;
19673 	boolean_t	done = B_FALSE;
19674 	uint32_t	cksum;
19675 	uint32_t	hwcksum_flags;
19676 	ire_t		*ire = NULL;
19677 	ill_t		*ill;
19678 	ipha_t		*ipha;
19679 	ip6_t		*ip6h;
19680 	ipaddr_t	src, dst;
19681 	ill_zerocopy_capab_t *zc_cap = NULL;
19682 	uint16_t	*up;
19683 	int		err;
19684 	conn_t		*connp;
19685 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19686 	uchar_t		*pld_start;
19687 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19688 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19689 
19690 #ifdef	_BIG_ENDIAN
19691 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19692 #else
19693 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19694 #endif
19695 
19696 #define	PREP_NEW_MULTIDATA() {			\
19697 	mmd = NULL;				\
19698 	md_mp = md_hbuf = NULL;			\
19699 	cur_hdr_off = 0;			\
19700 	max_pld = tcp->tcp_mdt_max_pld;		\
19701 	pbuf_idx = pbuf_idx_nxt = -1;		\
19702 	add_buffer = B_TRUE;			\
19703 	zcopy = B_FALSE;			\
19704 }
19705 
19706 #define	PREP_NEW_PBUF() {			\
19707 	md_pbuf = md_pbuf_nxt = NULL;		\
19708 	pbuf_idx = pbuf_idx_nxt = -1;		\
19709 	cur_pld_off = 0;			\
19710 	first_snxt = *snxt;			\
19711 	ASSERT(*tail_unsent > 0);		\
19712 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19713 }
19714 
19715 	ASSERT(mdt_thres >= mss);
19716 	ASSERT(*usable > 0 && *usable > mdt_thres);
19717 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19718 	ASSERT(!TCP_IS_DETACHED(tcp));
19719 	ASSERT(tcp->tcp_valid_bits == 0 ||
19720 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19721 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19722 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19723 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19724 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19725 
19726 	connp = tcp->tcp_connp;
19727 	ASSERT(connp != NULL);
19728 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19729 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19730 
19731 	/*
19732 	 * Note that tcp will only declare at most 2 payload spans per
19733 	 * packet, which is much lower than the maximum allowable number
19734 	 * of packet spans per Multidata.  For this reason, we use the
19735 	 * privately declared and smaller descriptor info structure, in
19736 	 * order to save some stack space.
19737 	 */
19738 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19739 
19740 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19741 	if (af == AF_INET) {
19742 		dst = tcp->tcp_ipha->ipha_dst;
19743 		src = tcp->tcp_ipha->ipha_src;
19744 		ASSERT(!CLASSD(dst));
19745 	}
19746 	ASSERT(af == AF_INET ||
19747 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19748 
19749 	obsegs = obbytes = 0;
19750 	num_burst_seg = tcp->tcp_snd_burst;
19751 	md_mp_head = NULL;
19752 	PREP_NEW_MULTIDATA();
19753 
19754 	/*
19755 	 * Before we go on further, make sure there is an IRE that we can
19756 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19757 	 * in proceeding any further, and we should just hand everything
19758 	 * off to the legacy path.
19759 	 */
19760 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19761 		goto legacy_send_no_md;
19762 
19763 	ASSERT(ire != NULL);
19764 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19765 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19766 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19767 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19768 	/*
19769 	 * If we do support loopback for MDT (which requires modifications
19770 	 * to the receiving paths), the following assertions should go away,
19771 	 * and we would be sending the Multidata to loopback conn later on.
19772 	 */
19773 	ASSERT(!IRE_IS_LOCAL(ire));
19774 	ASSERT(ire->ire_stq != NULL);
19775 
19776 	ill = ire_to_ill(ire);
19777 	ASSERT(ill != NULL);
19778 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19779 
19780 	if (!tcp->tcp_ire_ill_check_done) {
19781 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19782 		tcp->tcp_ire_ill_check_done = B_TRUE;
19783 	}
19784 
19785 	/*
19786 	 * If the underlying interface conditions have changed, or if the
19787 	 * new interface does not support MDT, go back to legacy path.
19788 	 */
19789 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19790 		/* don't go through this path anymore for this connection */
19791 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19792 		tcp->tcp_mdt = B_FALSE;
19793 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19794 		    "interface %s\n", (void *)connp, ill->ill_name));
19795 		/* IRE will be released prior to returning */
19796 		goto legacy_send_no_md;
19797 	}
19798 
19799 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19800 		zc_cap = ill->ill_zerocopy_capab;
19801 
19802 	/*
19803 	 * Check if we can take tcp fast-path. Note that "incomplete"
19804 	 * ire's (where the link-layer for next hop is not resolved
19805 	 * or where the fast-path header in nce_fp_mp is not available
19806 	 * yet) are sent down the legacy (slow) path.
19807 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19808 	 */
19809 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19810 		/* IRE will be released prior to returning */
19811 		goto legacy_send_no_md;
19812 	}
19813 
19814 	/* go to legacy path if interface doesn't support zerocopy */
19815 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19816 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19817 		/* IRE will be released prior to returning */
19818 		goto legacy_send_no_md;
19819 	}
19820 
19821 	/* does the interface support hardware checksum offload? */
19822 	hwcksum_flags = 0;
19823 	if (ILL_HCKSUM_CAPABLE(ill) &&
19824 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19825 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19826 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19827 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19828 		    HCKSUM_IPHDRCKSUM)
19829 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19830 
19831 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19832 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19833 			hwcksum_flags |= HCK_FULLCKSUM;
19834 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19835 		    HCKSUM_INET_PARTIAL)
19836 			hwcksum_flags |= HCK_PARTIALCKSUM;
19837 	}
19838 
19839 	/*
19840 	 * Each header fragment consists of the leading extra space,
19841 	 * followed by the TCP/IP header, and the trailing extra space.
19842 	 * We make sure that each header fragment begins on a 32-bit
19843 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19844 	 * aligned in tcp_mdt_update).
19845 	 */
19846 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19847 	    tcp->tcp_mdt_hdr_tail), 4);
19848 
19849 	/* are we starting from the beginning of data block? */
19850 	if (*tail_unsent == 0) {
19851 		*xmit_tail = (*xmit_tail)->b_cont;
19852 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19853 		*tail_unsent = (int)MBLKL(*xmit_tail);
19854 	}
19855 
19856 	/*
19857 	 * Here we create one or more Multidata messages, each made up of
19858 	 * one header buffer and up to N payload buffers.  This entire
19859 	 * operation is done within two loops:
19860 	 *
19861 	 * The outer loop mostly deals with creating the Multidata message,
19862 	 * as well as the header buffer that gets added to it.  It also
19863 	 * links the Multidata messages together such that all of them can
19864 	 * be sent down to the lower layer in a single putnext call; this
19865 	 * linking behavior depends on the tcp_mdt_chain tunable.
19866 	 *
19867 	 * The inner loop takes an existing Multidata message, and adds
19868 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19869 	 * packetizes those buffers by filling up the corresponding header
19870 	 * buffer fragments with the proper IP and TCP headers, and by
19871 	 * describing the layout of each packet in the packet descriptors
19872 	 * that get added to the Multidata.
19873 	 */
19874 	do {
19875 		/*
19876 		 * If usable send window is too small, or data blocks in
19877 		 * transmit list are smaller than our threshold (i.e. app
19878 		 * performs large writes followed by small ones), we hand
19879 		 * off the control over to the legacy path.  Note that we'll
19880 		 * get back the control once it encounters a large block.
19881 		 */
19882 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19883 		    (*xmit_tail)->b_cont != NULL &&
19884 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19885 			/* send down what we've got so far */
19886 			if (md_mp_head != NULL) {
19887 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19888 				    obsegs, obbytes, &rconfirm);
19889 			}
19890 			/*
19891 			 * Pass control over to tcp_send(), but tell it to
19892 			 * return to us once a large-size transmission is
19893 			 * possible.
19894 			 */
19895 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19896 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19897 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19898 			    tail_unsent, xmit_tail, local_time,
19899 			    mdt_thres)) <= 0) {
19900 				/* burst count reached, or alloc failed */
19901 				IRE_REFRELE(ire);
19902 				return (err);
19903 			}
19904 
19905 			/* tcp_send() may have sent everything, so check */
19906 			if (*usable <= 0) {
19907 				IRE_REFRELE(ire);
19908 				return (0);
19909 			}
19910 
19911 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19912 			/*
19913 			 * We may have delivered the Multidata, so make sure
19914 			 * to re-initialize before the next round.
19915 			 */
19916 			md_mp_head = NULL;
19917 			obsegs = obbytes = 0;
19918 			num_burst_seg = tcp->tcp_snd_burst;
19919 			PREP_NEW_MULTIDATA();
19920 
19921 			/* are we starting from the beginning of data block? */
19922 			if (*tail_unsent == 0) {
19923 				*xmit_tail = (*xmit_tail)->b_cont;
19924 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19925 				    (uintptr_t)INT_MAX);
19926 				*tail_unsent = (int)MBLKL(*xmit_tail);
19927 			}
19928 		}
19929 
19930 		/*
19931 		 * max_pld limits the number of mblks in tcp's transmit
19932 		 * queue that can be added to a Multidata message.  Once
19933 		 * this counter reaches zero, no more additional mblks
19934 		 * can be added to it.  What happens afterwards depends
19935 		 * on whether or not we are set to chain the Multidata
19936 		 * messages.  If we are to link them together, reset
19937 		 * max_pld to its original value (tcp_mdt_max_pld) and
19938 		 * prepare to create a new Multidata message which will
19939 		 * get linked to md_mp_head.  Else, leave it alone and
19940 		 * let the inner loop break on its own.
19941 		 */
19942 		if (tcp_mdt_chain && max_pld == 0)
19943 			PREP_NEW_MULTIDATA();
19944 
19945 		/* adding a payload buffer; re-initialize values */
19946 		if (add_buffer)
19947 			PREP_NEW_PBUF();
19948 
19949 		/*
19950 		 * If we don't have a Multidata, either because we just
19951 		 * (re)entered this outer loop, or after we branched off
19952 		 * to tcp_send above, setup the Multidata and header
19953 		 * buffer to be used.
19954 		 */
19955 		if (md_mp == NULL) {
19956 			int md_hbuflen;
19957 			uint32_t start, stuff;
19958 
19959 			/*
19960 			 * Calculate Multidata header buffer size large enough
19961 			 * to hold all of the headers that can possibly be
19962 			 * sent at this moment.  We'd rather over-estimate
19963 			 * the size than running out of space; this is okay
19964 			 * since this buffer is small anyway.
19965 			 */
19966 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19967 
19968 			/*
19969 			 * Start and stuff offset for partial hardware
19970 			 * checksum offload; these are currently for IPv4.
19971 			 * For full checksum offload, they are set to zero.
19972 			 */
19973 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19974 				if (af == AF_INET) {
19975 					start = IP_SIMPLE_HDR_LENGTH;
19976 					stuff = IP_SIMPLE_HDR_LENGTH +
19977 					    TCP_CHECKSUM_OFFSET;
19978 				} else {
19979 					start = IPV6_HDR_LEN;
19980 					stuff = IPV6_HDR_LEN +
19981 					    TCP_CHECKSUM_OFFSET;
19982 				}
19983 			} else {
19984 				start = stuff = 0;
19985 			}
19986 
19987 			/*
19988 			 * Create the header buffer, Multidata, as well as
19989 			 * any necessary attributes (destination address,
19990 			 * SAP and hardware checksum offload) that should
19991 			 * be associated with the Multidata message.
19992 			 */
19993 			ASSERT(cur_hdr_off == 0);
19994 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19995 			    ((md_hbuf->b_wptr += md_hbuflen),
19996 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19997 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19998 			    /* fastpath mblk */
19999 			    ire->ire_nce->nce_res_mp,
20000 			    /* hardware checksum enabled */
20001 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20002 			    /* hardware checksum offsets */
20003 			    start, stuff, 0,
20004 			    /* hardware checksum flag */
20005 			    hwcksum_flags, tcps) != 0)) {
20006 legacy_send:
20007 				if (md_mp != NULL) {
20008 					/* Unlink message from the chain */
20009 					if (md_mp_head != NULL) {
20010 						err = (intptr_t)rmvb(md_mp_head,
20011 						    md_mp);
20012 						/*
20013 						 * We can't assert that rmvb
20014 						 * did not return -1, since we
20015 						 * may get here before linkb
20016 						 * happens.  We do, however,
20017 						 * check if we just removed the
20018 						 * only element in the list.
20019 						 */
20020 						if (err == 0)
20021 							md_mp_head = NULL;
20022 					}
20023 					/* md_hbuf gets freed automatically */
20024 					TCP_STAT(tcps, tcp_mdt_discarded);
20025 					freeb(md_mp);
20026 				} else {
20027 					/* Either allocb or mmd_alloc failed */
20028 					TCP_STAT(tcps, tcp_mdt_allocfail);
20029 					if (md_hbuf != NULL)
20030 						freeb(md_hbuf);
20031 				}
20032 
20033 				/* send down what we've got so far */
20034 				if (md_mp_head != NULL) {
20035 					tcp_multisend_data(tcp, ire, ill,
20036 					    md_mp_head, obsegs, obbytes,
20037 					    &rconfirm);
20038 				}
20039 legacy_send_no_md:
20040 				if (ire != NULL)
20041 					IRE_REFRELE(ire);
20042 				/*
20043 				 * Too bad; let the legacy path handle this.
20044 				 * We specify INT_MAX for the threshold, since
20045 				 * we gave up with the Multidata processings
20046 				 * and let the old path have it all.
20047 				 */
20048 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20049 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20050 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20051 				    snxt, tail_unsent, xmit_tail, local_time,
20052 				    INT_MAX));
20053 			}
20054 
20055 			/* link to any existing ones, if applicable */
20056 			TCP_STAT(tcps, tcp_mdt_allocd);
20057 			if (md_mp_head == NULL) {
20058 				md_mp_head = md_mp;
20059 			} else if (tcp_mdt_chain) {
20060 				TCP_STAT(tcps, tcp_mdt_linked);
20061 				linkb(md_mp_head, md_mp);
20062 			}
20063 		}
20064 
20065 		ASSERT(md_mp_head != NULL);
20066 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20067 		ASSERT(md_mp != NULL && mmd != NULL);
20068 		ASSERT(md_hbuf != NULL);
20069 
20070 		/*
20071 		 * Packetize the transmittable portion of the data block;
20072 		 * each data block is essentially added to the Multidata
20073 		 * as a payload buffer.  We also deal with adding more
20074 		 * than one payload buffers, which happens when the remaining
20075 		 * packetized portion of the current payload buffer is less
20076 		 * than MSS, while the next data block in transmit queue
20077 		 * has enough data to make up for one.  This "spillover"
20078 		 * case essentially creates a split-packet, where portions
20079 		 * of the packet's payload fragments may span across two
20080 		 * virtually discontiguous address blocks.
20081 		 */
20082 		seg_len = mss;
20083 		do {
20084 			len = seg_len;
20085 
20086 			ASSERT(len > 0);
20087 			ASSERT(max_pld >= 0);
20088 			ASSERT(!add_buffer || cur_pld_off == 0);
20089 
20090 			/*
20091 			 * First time around for this payload buffer; note
20092 			 * in the case of a spillover, the following has
20093 			 * been done prior to adding the split-packet
20094 			 * descriptor to Multidata, and we don't want to
20095 			 * repeat the process.
20096 			 */
20097 			if (add_buffer) {
20098 				ASSERT(mmd != NULL);
20099 				ASSERT(md_pbuf == NULL);
20100 				ASSERT(md_pbuf_nxt == NULL);
20101 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20102 
20103 				/*
20104 				 * Have we reached the limit?  We'd get to
20105 				 * this case when we're not chaining the
20106 				 * Multidata messages together, and since
20107 				 * we're done, terminate this loop.
20108 				 */
20109 				if (max_pld == 0)
20110 					break; /* done */
20111 
20112 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20113 					TCP_STAT(tcps, tcp_mdt_allocfail);
20114 					goto legacy_send; /* out_of_mem */
20115 				}
20116 
20117 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20118 				    zc_cap != NULL) {
20119 					if (!ip_md_zcopy_attr(mmd, NULL,
20120 					    zc_cap->ill_zerocopy_flags)) {
20121 						freeb(md_pbuf);
20122 						TCP_STAT(tcps,
20123 						    tcp_mdt_allocfail);
20124 						/* out_of_mem */
20125 						goto legacy_send;
20126 					}
20127 					zcopy = B_TRUE;
20128 				}
20129 
20130 				md_pbuf->b_rptr += base_pld_off;
20131 
20132 				/*
20133 				 * Add a payload buffer to the Multidata; this
20134 				 * operation must not fail, or otherwise our
20135 				 * logic in this routine is broken.  There
20136 				 * is no memory allocation done by the
20137 				 * routine, so any returned failure simply
20138 				 * tells us that we've done something wrong.
20139 				 *
20140 				 * A failure tells us that either we're adding
20141 				 * the same payload buffer more than once, or
20142 				 * we're trying to add more buffers than
20143 				 * allowed (max_pld calculation is wrong).
20144 				 * None of the above cases should happen, and
20145 				 * we panic because either there's horrible
20146 				 * heap corruption, and/or programming mistake.
20147 				 */
20148 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20149 				if (pbuf_idx < 0) {
20150 					cmn_err(CE_PANIC, "tcp_multisend: "
20151 					    "payload buffer logic error "
20152 					    "detected for tcp %p mmd %p "
20153 					    "pbuf %p (%d)\n",
20154 					    (void *)tcp, (void *)mmd,
20155 					    (void *)md_pbuf, pbuf_idx);
20156 				}
20157 
20158 				ASSERT(max_pld > 0);
20159 				--max_pld;
20160 				add_buffer = B_FALSE;
20161 			}
20162 
20163 			ASSERT(md_mp_head != NULL);
20164 			ASSERT(md_pbuf != NULL);
20165 			ASSERT(md_pbuf_nxt == NULL);
20166 			ASSERT(pbuf_idx != -1);
20167 			ASSERT(pbuf_idx_nxt == -1);
20168 			ASSERT(*usable > 0);
20169 
20170 			/*
20171 			 * We spillover to the next payload buffer only
20172 			 * if all of the following is true:
20173 			 *
20174 			 *   1. There is not enough data on the current
20175 			 *	payload buffer to make up `len',
20176 			 *   2. We are allowed to send `len',
20177 			 *   3. The next payload buffer length is large
20178 			 *	enough to accomodate `spill'.
20179 			 */
20180 			if ((spill = len - *tail_unsent) > 0 &&
20181 			    *usable >= len &&
20182 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20183 			    max_pld > 0) {
20184 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20185 				if (md_pbuf_nxt == NULL) {
20186 					TCP_STAT(tcps, tcp_mdt_allocfail);
20187 					goto legacy_send; /* out_of_mem */
20188 				}
20189 
20190 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20191 				    zc_cap != NULL) {
20192 					if (!ip_md_zcopy_attr(mmd, NULL,
20193 					    zc_cap->ill_zerocopy_flags)) {
20194 						freeb(md_pbuf_nxt);
20195 						TCP_STAT(tcps,
20196 						    tcp_mdt_allocfail);
20197 						/* out_of_mem */
20198 						goto legacy_send;
20199 					}
20200 					zcopy = B_TRUE;
20201 				}
20202 
20203 				/*
20204 				 * See comments above on the first call to
20205 				 * mmd_addpldbuf for explanation on the panic.
20206 				 */
20207 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20208 				if (pbuf_idx_nxt < 0) {
20209 					panic("tcp_multisend: "
20210 					    "next payload buffer logic error "
20211 					    "detected for tcp %p mmd %p "
20212 					    "pbuf %p (%d)\n",
20213 					    (void *)tcp, (void *)mmd,
20214 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20215 				}
20216 
20217 				ASSERT(max_pld > 0);
20218 				--max_pld;
20219 			} else if (spill > 0) {
20220 				/*
20221 				 * If there's a spillover, but the following
20222 				 * xmit_tail couldn't give us enough octets
20223 				 * to reach "len", then stop the current
20224 				 * Multidata creation and let the legacy
20225 				 * tcp_send() path take over.  We don't want
20226 				 * to send the tiny segment as part of this
20227 				 * Multidata for performance reasons; instead,
20228 				 * we let the legacy path deal with grouping
20229 				 * it with the subsequent small mblks.
20230 				 */
20231 				if (*usable >= len &&
20232 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20233 					max_pld = 0;
20234 					break;	/* done */
20235 				}
20236 
20237 				/*
20238 				 * We can't spillover, and we are near
20239 				 * the end of the current payload buffer,
20240 				 * so send what's left.
20241 				 */
20242 				ASSERT(*tail_unsent > 0);
20243 				len = *tail_unsent;
20244 			}
20245 
20246 			/* tail_unsent is negated if there is a spillover */
20247 			*tail_unsent -= len;
20248 			*usable -= len;
20249 			ASSERT(*usable >= 0);
20250 
20251 			if (*usable < mss)
20252 				seg_len = *usable;
20253 			/*
20254 			 * Sender SWS avoidance; see comments in tcp_send();
20255 			 * everything else is the same, except that we only
20256 			 * do this here if there is no more data to be sent
20257 			 * following the current xmit_tail.  We don't check
20258 			 * for 1-byte urgent data because we shouldn't get
20259 			 * here if TCP_URG_VALID is set.
20260 			 */
20261 			if (*usable > 0 && *usable < mss &&
20262 			    ((md_pbuf_nxt == NULL &&
20263 			    (*xmit_tail)->b_cont == NULL) ||
20264 			    (md_pbuf_nxt != NULL &&
20265 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20266 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20267 			    (tcp->tcp_unsent -
20268 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20269 			    !tcp->tcp_zero_win_probe) {
20270 				if ((*snxt + len) == tcp->tcp_snxt &&
20271 				    (*snxt + len) == tcp->tcp_suna) {
20272 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20273 				}
20274 				done = B_TRUE;
20275 			}
20276 
20277 			/*
20278 			 * Prime pump for IP's checksumming on our behalf;
20279 			 * include the adjustment for a source route if any.
20280 			 * Do this only for software/partial hardware checksum
20281 			 * offload, as this field gets zeroed out later for
20282 			 * the full hardware checksum offload case.
20283 			 */
20284 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20285 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20286 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20287 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20288 			}
20289 
20290 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20291 			*snxt += len;
20292 
20293 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20294 			/*
20295 			 * We set the PUSH bit only if TCP has no more buffered
20296 			 * data to be transmitted (or if sender SWS avoidance
20297 			 * takes place), as opposed to setting it for every
20298 			 * last packet in the burst.
20299 			 */
20300 			if (done ||
20301 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20302 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20303 
20304 			/*
20305 			 * Set FIN bit if this is our last segment; snxt
20306 			 * already includes its length, and it will not
20307 			 * be adjusted after this point.
20308 			 */
20309 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20310 			    *snxt == tcp->tcp_fss) {
20311 				if (!tcp->tcp_fin_acked) {
20312 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20313 					BUMP_MIB(&tcps->tcps_mib,
20314 					    tcpOutControl);
20315 				}
20316 				if (!tcp->tcp_fin_sent) {
20317 					tcp->tcp_fin_sent = B_TRUE;
20318 					/*
20319 					 * tcp state must be ESTABLISHED
20320 					 * in order for us to get here in
20321 					 * the first place.
20322 					 */
20323 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20324 
20325 					/*
20326 					 * Upon returning from this routine,
20327 					 * tcp_wput_data() will set tcp_snxt
20328 					 * to be equal to snxt + tcp_fin_sent.
20329 					 * This is essentially the same as
20330 					 * setting it to tcp_fss + 1.
20331 					 */
20332 				}
20333 			}
20334 
20335 			tcp->tcp_last_sent_len = (ushort_t)len;
20336 
20337 			len += tcp_hdr_len;
20338 			if (tcp->tcp_ipversion == IPV4_VERSION)
20339 				tcp->tcp_ipha->ipha_length = htons(len);
20340 			else
20341 				tcp->tcp_ip6h->ip6_plen = htons(len -
20342 				    ((char *)&tcp->tcp_ip6h[1] -
20343 				    tcp->tcp_iphc));
20344 
20345 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20346 
20347 			/* setup header fragment */
20348 			PDESC_HDR_ADD(pkt_info,
20349 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20350 			    tcp->tcp_mdt_hdr_head,		/* head room */
20351 			    tcp_hdr_len,			/* len */
20352 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20353 
20354 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20355 			    hdr_frag_sz);
20356 			ASSERT(MBLKIN(md_hbuf,
20357 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20358 			    PDESC_HDRSIZE(pkt_info)));
20359 
20360 			/* setup first payload fragment */
20361 			PDESC_PLD_INIT(pkt_info);
20362 			PDESC_PLD_SPAN_ADD(pkt_info,
20363 			    pbuf_idx,				/* index */
20364 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20365 			    tcp->tcp_last_sent_len);		/* len */
20366 
20367 			/* create a split-packet in case of a spillover */
20368 			if (md_pbuf_nxt != NULL) {
20369 				ASSERT(spill > 0);
20370 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20371 				ASSERT(!add_buffer);
20372 
20373 				md_pbuf = md_pbuf_nxt;
20374 				md_pbuf_nxt = NULL;
20375 				pbuf_idx = pbuf_idx_nxt;
20376 				pbuf_idx_nxt = -1;
20377 				cur_pld_off = spill;
20378 
20379 				/* trim out first payload fragment */
20380 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20381 
20382 				/* setup second payload fragment */
20383 				PDESC_PLD_SPAN_ADD(pkt_info,
20384 				    pbuf_idx,			/* index */
20385 				    md_pbuf->b_rptr,		/* start */
20386 				    spill);			/* len */
20387 
20388 				if ((*xmit_tail)->b_next == NULL) {
20389 					/*
20390 					 * Store the lbolt used for RTT
20391 					 * estimation. We can only record one
20392 					 * timestamp per mblk so we do it when
20393 					 * we reach the end of the payload
20394 					 * buffer.  Also we only take a new
20395 					 * timestamp sample when the previous
20396 					 * timed data from the same mblk has
20397 					 * been ack'ed.
20398 					 */
20399 					(*xmit_tail)->b_prev = local_time;
20400 					(*xmit_tail)->b_next =
20401 					    (mblk_t *)(uintptr_t)first_snxt;
20402 				}
20403 
20404 				first_snxt = *snxt - spill;
20405 
20406 				/*
20407 				 * Advance xmit_tail; usable could be 0 by
20408 				 * the time we got here, but we made sure
20409 				 * above that we would only spillover to
20410 				 * the next data block if usable includes
20411 				 * the spilled-over amount prior to the
20412 				 * subtraction.  Therefore, we are sure
20413 				 * that xmit_tail->b_cont can't be NULL.
20414 				 */
20415 				ASSERT((*xmit_tail)->b_cont != NULL);
20416 				*xmit_tail = (*xmit_tail)->b_cont;
20417 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20418 				    (uintptr_t)INT_MAX);
20419 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20420 			} else {
20421 				cur_pld_off += tcp->tcp_last_sent_len;
20422 			}
20423 
20424 			/*
20425 			 * Fill in the header using the template header, and
20426 			 * add options such as time-stamp, ECN and/or SACK,
20427 			 * as needed.
20428 			 */
20429 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20430 			    (clock_t)local_time, num_sack_blk);
20431 
20432 			/* take care of some IP header businesses */
20433 			if (af == AF_INET) {
20434 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20435 
20436 				ASSERT(OK_32PTR((uchar_t *)ipha));
20437 				ASSERT(PDESC_HDRL(pkt_info) >=
20438 				    IP_SIMPLE_HDR_LENGTH);
20439 				ASSERT(ipha->ipha_version_and_hdr_length ==
20440 				    IP_SIMPLE_HDR_VERSION);
20441 
20442 				/*
20443 				 * Assign ident value for current packet; see
20444 				 * related comments in ip_wput_ire() about the
20445 				 * contract private interface with clustering
20446 				 * group.
20447 				 */
20448 				clusterwide = B_FALSE;
20449 				if (cl_inet_ipident != NULL) {
20450 					ASSERT(cl_inet_isclusterwide != NULL);
20451 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20452 					    AF_INET,
20453 					    (uint8_t *)(uintptr_t)src)) {
20454 						ipha->ipha_ident =
20455 						    (*cl_inet_ipident)
20456 						    (IPPROTO_IP, AF_INET,
20457 						    (uint8_t *)(uintptr_t)src,
20458 						    (uint8_t *)(uintptr_t)dst);
20459 						clusterwide = B_TRUE;
20460 					}
20461 				}
20462 
20463 				if (!clusterwide) {
20464 					ipha->ipha_ident = (uint16_t)
20465 					    atomic_add_32_nv(
20466 						&ire->ire_ident, 1);
20467 				}
20468 #ifndef _BIG_ENDIAN
20469 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20470 				    (ipha->ipha_ident >> 8);
20471 #endif
20472 			} else {
20473 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20474 
20475 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20476 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20477 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20478 				ASSERT(PDESC_HDRL(pkt_info) >=
20479 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20480 				    TCP_CHECKSUM_SIZE));
20481 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20482 
20483 				if (tcp->tcp_ip_forward_progress) {
20484 					rconfirm = B_TRUE;
20485 					tcp->tcp_ip_forward_progress = B_FALSE;
20486 				}
20487 			}
20488 
20489 			/* at least one payload span, and at most two */
20490 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20491 
20492 			/* add the packet descriptor to Multidata */
20493 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20494 			    KM_NOSLEEP)) == NULL) {
20495 				/*
20496 				 * Any failure other than ENOMEM indicates
20497 				 * that we have passed in invalid pkt_info
20498 				 * or parameters to mmd_addpdesc, which must
20499 				 * not happen.
20500 				 *
20501 				 * EINVAL is a result of failure on boundary
20502 				 * checks against the pkt_info contents.  It
20503 				 * should not happen, and we panic because
20504 				 * either there's horrible heap corruption,
20505 				 * and/or programming mistake.
20506 				 */
20507 				if (err != ENOMEM) {
20508 					cmn_err(CE_PANIC, "tcp_multisend: "
20509 					    "pdesc logic error detected for "
20510 					    "tcp %p mmd %p pinfo %p (%d)\n",
20511 					    (void *)tcp, (void *)mmd,
20512 					    (void *)pkt_info, err);
20513 				}
20514 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20515 				goto legacy_send; /* out_of_mem */
20516 			}
20517 			ASSERT(pkt != NULL);
20518 
20519 			/* calculate IP header and TCP checksums */
20520 			if (af == AF_INET) {
20521 				/* calculate pseudo-header checksum */
20522 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20523 				    (src >> 16) + (src & 0xFFFF);
20524 
20525 				/* offset for TCP header checksum */
20526 				up = IPH_TCPH_CHECKSUMP(ipha,
20527 				    IP_SIMPLE_HDR_LENGTH);
20528 			} else {
20529 				up = (uint16_t *)&ip6h->ip6_src;
20530 
20531 				/* calculate pseudo-header checksum */
20532 				cksum = up[0] + up[1] + up[2] + up[3] +
20533 				    up[4] + up[5] + up[6] + up[7] +
20534 				    up[8] + up[9] + up[10] + up[11] +
20535 				    up[12] + up[13] + up[14] + up[15];
20536 
20537 				/* Fold the initial sum */
20538 				cksum = (cksum & 0xffff) + (cksum >> 16);
20539 
20540 				up = (uint16_t *)(((uchar_t *)ip6h) +
20541 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20542 			}
20543 
20544 			if (hwcksum_flags & HCK_FULLCKSUM) {
20545 				/* clear checksum field for hardware */
20546 				*up = 0;
20547 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20548 				uint32_t sum;
20549 
20550 				/* pseudo-header checksumming */
20551 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20552 				sum = (sum & 0xFFFF) + (sum >> 16);
20553 				*up = (sum & 0xFFFF) + (sum >> 16);
20554 			} else {
20555 				/* software checksumming */
20556 				TCP_STAT(tcps, tcp_out_sw_cksum);
20557 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20558 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20559 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20560 				    cksum + IP_TCP_CSUM_COMP);
20561 				if (*up == 0)
20562 					*up = 0xFFFF;
20563 			}
20564 
20565 			/* IPv4 header checksum */
20566 			if (af == AF_INET) {
20567 				ipha->ipha_fragment_offset_and_flags |=
20568 				    (uint32_t)htons(ire->ire_frag_flag);
20569 
20570 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20571 					ipha->ipha_hdr_checksum = 0;
20572 				} else {
20573 					IP_HDR_CKSUM(ipha, cksum,
20574 					    ((uint32_t *)ipha)[0],
20575 					    ((uint16_t *)ipha)[4]);
20576 				}
20577 			}
20578 
20579 			if (af == AF_INET &&
20580 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20581 			    af == AF_INET6 &&
20582 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20583 				/* build header(IP/TCP) mblk for this segment */
20584 				if ((mp = dupb(md_hbuf)) == NULL)
20585 					goto legacy_send;
20586 
20587 				mp->b_rptr = pkt_info->hdr_rptr;
20588 				mp->b_wptr = pkt_info->hdr_wptr;
20589 
20590 				/* build payload mblk for this segment */
20591 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20592 					freemsg(mp);
20593 					goto legacy_send;
20594 				}
20595 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20596 				mp1->b_rptr = mp1->b_wptr -
20597 				    tcp->tcp_last_sent_len;
20598 				linkb(mp, mp1);
20599 
20600 				pld_start = mp1->b_rptr;
20601 
20602 				if (af == AF_INET) {
20603 					DTRACE_PROBE4(
20604 					    ip4__physical__out__start,
20605 					    ill_t *, NULL,
20606 					    ill_t *, ill,
20607 					    ipha_t *, ipha,
20608 					    mblk_t *, mp);
20609 					FW_HOOKS(
20610 					    ipst->ips_ip4_physical_out_event,
20611 					    ipst->ips_ipv4firewall_physical_out,
20612 					    NULL, ill, ipha, mp, mp, ipst);
20613 					DTRACE_PROBE1(
20614 					    ip4__physical__out__end,
20615 					    mblk_t *, mp);
20616 				} else {
20617 					DTRACE_PROBE4(
20618 					    ip6__physical__out_start,
20619 					    ill_t *, NULL,
20620 					    ill_t *, ill,
20621 					    ip6_t *, ip6h,
20622 					    mblk_t *, mp);
20623 					FW_HOOKS6(
20624 					    ipst->ips_ip6_physical_out_event,
20625 					    ipst->ips_ipv6firewall_physical_out,
20626 					    NULL, ill, ip6h, mp, mp, ipst);
20627 					DTRACE_PROBE1(
20628 					    ip6__physical__out__end,
20629 					    mblk_t *, mp);
20630 				}
20631 
20632 				if (buf_trunked && mp != NULL) {
20633 					/*
20634 					 * Need to pass it to normal path.
20635 					 */
20636 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20637 				} else if (mp == NULL ||
20638 				    mp->b_rptr != pkt_info->hdr_rptr ||
20639 				    mp->b_wptr != pkt_info->hdr_wptr ||
20640 				    (mp1 = mp->b_cont) == NULL ||
20641 				    mp1->b_rptr != pld_start ||
20642 				    mp1->b_wptr != pld_start +
20643 				    tcp->tcp_last_sent_len ||
20644 				    mp1->b_cont != NULL) {
20645 					/*
20646 					 * Need to pass all packets of this
20647 					 * buffer to normal path, either when
20648 					 * packet is blocked, or when boundary
20649 					 * of header buffer or payload buffer
20650 					 * has been changed by FW_HOOKS[6].
20651 					 */
20652 					buf_trunked = B_TRUE;
20653 					if (md_mp_head != NULL) {
20654 						err = (intptr_t)rmvb(md_mp_head,
20655 						    md_mp);
20656 						if (err == 0)
20657 							md_mp_head = NULL;
20658 					}
20659 
20660 					/* send down what we've got so far */
20661 					if (md_mp_head != NULL) {
20662 						tcp_multisend_data(tcp, ire,
20663 						    ill, md_mp_head, obsegs,
20664 						    obbytes, &rconfirm);
20665 					}
20666 					md_mp_head = NULL;
20667 
20668 					if (mp != NULL)
20669 						CALL_IP_WPUT(tcp->tcp_connp,
20670 						    q, mp);
20671 
20672 					mp1 = fw_mp_head;
20673 					do {
20674 						mp = mp1;
20675 						mp1 = mp1->b_next;
20676 						mp->b_next = NULL;
20677 						mp->b_prev = NULL;
20678 						CALL_IP_WPUT(tcp->tcp_connp,
20679 						    q, mp);
20680 					} while (mp1 != NULL);
20681 
20682 					fw_mp_head = NULL;
20683 				} else {
20684 					if (fw_mp_head == NULL)
20685 						fw_mp_head = mp;
20686 					else
20687 						fw_mp_head->b_prev->b_next = mp;
20688 					fw_mp_head->b_prev = mp;
20689 				}
20690 			}
20691 
20692 			/* advance header offset */
20693 			cur_hdr_off += hdr_frag_sz;
20694 
20695 			obbytes += tcp->tcp_last_sent_len;
20696 			++obsegs;
20697 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20698 		    *tail_unsent > 0);
20699 
20700 		if ((*xmit_tail)->b_next == NULL) {
20701 			/*
20702 			 * Store the lbolt used for RTT estimation. We can only
20703 			 * record one timestamp per mblk so we do it when we
20704 			 * reach the end of the payload buffer. Also we only
20705 			 * take a new timestamp sample when the previous timed
20706 			 * data from the same mblk has been ack'ed.
20707 			 */
20708 			(*xmit_tail)->b_prev = local_time;
20709 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20710 		}
20711 
20712 		ASSERT(*tail_unsent >= 0);
20713 		if (*tail_unsent > 0) {
20714 			/*
20715 			 * We got here because we broke out of the above
20716 			 * loop due to of one of the following cases:
20717 			 *
20718 			 *   1. len < adjusted MSS (i.e. small),
20719 			 *   2. Sender SWS avoidance,
20720 			 *   3. max_pld is zero.
20721 			 *
20722 			 * We are done for this Multidata, so trim our
20723 			 * last payload buffer (if any) accordingly.
20724 			 */
20725 			if (md_pbuf != NULL)
20726 				md_pbuf->b_wptr -= *tail_unsent;
20727 		} else if (*usable > 0) {
20728 			*xmit_tail = (*xmit_tail)->b_cont;
20729 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20730 			    (uintptr_t)INT_MAX);
20731 			*tail_unsent = (int)MBLKL(*xmit_tail);
20732 			add_buffer = B_TRUE;
20733 		}
20734 
20735 		while (fw_mp_head) {
20736 			mp = fw_mp_head;
20737 			fw_mp_head = fw_mp_head->b_next;
20738 			mp->b_prev = mp->b_next = NULL;
20739 			freemsg(mp);
20740 		}
20741 		if (buf_trunked) {
20742 			TCP_STAT(tcps, tcp_mdt_discarded);
20743 			freeb(md_mp);
20744 			buf_trunked = B_FALSE;
20745 		}
20746 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20747 	    (tcp_mdt_chain || max_pld > 0));
20748 
20749 	if (md_mp_head != NULL) {
20750 		/* send everything down */
20751 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20752 		    &rconfirm);
20753 	}
20754 
20755 #undef PREP_NEW_MULTIDATA
20756 #undef PREP_NEW_PBUF
20757 #undef IPVER
20758 
20759 	IRE_REFRELE(ire);
20760 	return (0);
20761 }
20762 
20763 /*
20764  * A wrapper function for sending one or more Multidata messages down to
20765  * the module below ip; this routine does not release the reference of the
20766  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20767  */
20768 static void
20769 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20770     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20771 {
20772 	uint64_t delta;
20773 	nce_t *nce;
20774 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20775 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20776 
20777 	ASSERT(ire != NULL && ill != NULL);
20778 	ASSERT(ire->ire_stq != NULL);
20779 	ASSERT(md_mp_head != NULL);
20780 	ASSERT(rconfirm != NULL);
20781 
20782 	/* adjust MIBs and IRE timestamp */
20783 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20784 	tcp->tcp_obsegs += obsegs;
20785 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20786 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20787 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20788 
20789 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20790 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20791 	} else {
20792 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20793 	}
20794 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20795 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20796 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20797 
20798 	ire->ire_ob_pkt_count += obsegs;
20799 	if (ire->ire_ipif != NULL)
20800 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20801 	ire->ire_last_used_time = lbolt;
20802 
20803 	/* send it down */
20804 	putnext(ire->ire_stq, md_mp_head);
20805 
20806 	/* we're done for TCP/IPv4 */
20807 	if (tcp->tcp_ipversion == IPV4_VERSION)
20808 		return;
20809 
20810 	nce = ire->ire_nce;
20811 
20812 	ASSERT(nce != NULL);
20813 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20814 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20815 
20816 	/* reachability confirmation? */
20817 	if (*rconfirm) {
20818 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20819 		if (nce->nce_state != ND_REACHABLE) {
20820 			mutex_enter(&nce->nce_lock);
20821 			nce->nce_state = ND_REACHABLE;
20822 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20823 			mutex_exit(&nce->nce_lock);
20824 			(void) untimeout(nce->nce_timeout_id);
20825 			if (ip_debug > 2) {
20826 				/* ip1dbg */
20827 				pr_addr_dbg("tcp_multisend_data: state "
20828 				    "for %s changed to REACHABLE\n",
20829 				    AF_INET6, &ire->ire_addr_v6);
20830 			}
20831 		}
20832 		/* reset transport reachability confirmation */
20833 		*rconfirm = B_FALSE;
20834 	}
20835 
20836 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20837 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20838 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20839 
20840 	if (delta > (uint64_t)ill->ill_reachable_time) {
20841 		mutex_enter(&nce->nce_lock);
20842 		switch (nce->nce_state) {
20843 		case ND_REACHABLE:
20844 		case ND_STALE:
20845 			/*
20846 			 * ND_REACHABLE is identical to ND_STALE in this
20847 			 * specific case. If reachable time has expired for
20848 			 * this neighbor (delta is greater than reachable
20849 			 * time), conceptually, the neighbor cache is no
20850 			 * longer in REACHABLE state, but already in STALE
20851 			 * state.  So the correct transition here is to
20852 			 * ND_DELAY.
20853 			 */
20854 			nce->nce_state = ND_DELAY;
20855 			mutex_exit(&nce->nce_lock);
20856 			NDP_RESTART_TIMER(nce,
20857 			    ipst->ips_delay_first_probe_time);
20858 			if (ip_debug > 3) {
20859 				/* ip2dbg */
20860 				pr_addr_dbg("tcp_multisend_data: state "
20861 				    "for %s changed to DELAY\n",
20862 				    AF_INET6, &ire->ire_addr_v6);
20863 			}
20864 			break;
20865 		case ND_DELAY:
20866 		case ND_PROBE:
20867 			mutex_exit(&nce->nce_lock);
20868 			/* Timers have already started */
20869 			break;
20870 		case ND_UNREACHABLE:
20871 			/*
20872 			 * ndp timer has detected that this nce is
20873 			 * unreachable and initiated deleting this nce
20874 			 * and all its associated IREs. This is a race
20875 			 * where we found the ire before it was deleted
20876 			 * and have just sent out a packet using this
20877 			 * unreachable nce.
20878 			 */
20879 			mutex_exit(&nce->nce_lock);
20880 			break;
20881 		default:
20882 			ASSERT(0);
20883 		}
20884 	}
20885 }
20886 
20887 /*
20888  * Derived from tcp_send_data().
20889  */
20890 static void
20891 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20892     int num_lso_seg)
20893 {
20894 	ipha_t		*ipha;
20895 	mblk_t		*ire_fp_mp;
20896 	uint_t		ire_fp_mp_len;
20897 	uint32_t	hcksum_txflags = 0;
20898 	ipaddr_t	src;
20899 	ipaddr_t	dst;
20900 	uint32_t	cksum;
20901 	uint16_t	*up;
20902 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20903 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20904 
20905 	ASSERT(DB_TYPE(mp) == M_DATA);
20906 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20907 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20908 	ASSERT(tcp->tcp_connp != NULL);
20909 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20910 
20911 	ipha = (ipha_t *)mp->b_rptr;
20912 	src = ipha->ipha_src;
20913 	dst = ipha->ipha_dst;
20914 
20915 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20916 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20917 	    num_lso_seg);
20918 #ifndef _BIG_ENDIAN
20919 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20920 #endif
20921 	if (tcp->tcp_snd_zcopy_aware) {
20922 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20923 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20924 			mp = tcp_zcopy_disable(tcp, mp);
20925 	}
20926 
20927 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20928 		ASSERT(ill->ill_hcksum_capab != NULL);
20929 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20930 	}
20931 
20932 	/*
20933 	 * Since the TCP checksum should be recalculated by h/w, we can just
20934 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20935 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20936 	 * The partial pseudo-header excludes TCP length, that was calculated
20937 	 * in tcp_send(), so to zero *up before further processing.
20938 	 */
20939 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20940 
20941 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20942 	*up = 0;
20943 
20944 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20945 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20946 
20947 	/*
20948 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
20949 	 */
20950 	DB_LSOFLAGS(mp) |= HW_LSO;
20951 	DB_LSOMSS(mp) = mss;
20952 
20953 	ipha->ipha_fragment_offset_and_flags |=
20954 	    (uint32_t)htons(ire->ire_frag_flag);
20955 
20956 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20957 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20958 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20959 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20960 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20961 
20962 	UPDATE_OB_PKT_COUNT(ire);
20963 	ire->ire_last_used_time = lbolt;
20964 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20965 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20966 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20967 	    ntohs(ipha->ipha_length));
20968 
20969 	if (ILL_DLS_CAPABLE(ill)) {
20970 		/*
20971 		 * Send the packet directly to DLD, where it may be queued
20972 		 * depending on the availability of transmit resources at
20973 		 * the media layer.
20974 		 */
20975 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
20976 	} else {
20977 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
20978 		DTRACE_PROBE4(ip4__physical__out__start,
20979 		    ill_t *, NULL, ill_t *, out_ill,
20980 		    ipha_t *, ipha, mblk_t *, mp);
20981 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
20982 		    ipst->ips_ipv4firewall_physical_out,
20983 		    NULL, out_ill, ipha, mp, mp, ipst);
20984 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20985 		if (mp != NULL)
20986 			putnext(ire->ire_stq, mp);
20987 	}
20988 }
20989 
20990 /*
20991  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20992  * scheme, and returns one of the following:
20993  *
20994  * -1 = failed allocation.
20995  *  0 = success; burst count reached, or usable send window is too small,
20996  *      and that we'd rather wait until later before sending again.
20997  *  1 = success; we are called from tcp_multisend(), and both usable send
20998  *      window and tail_unsent are greater than the MDT threshold, and thus
20999  *      Multidata Transmit should be used instead.
21000  */
21001 static int
21002 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21003     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21004     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21005     const int mdt_thres)
21006 {
21007 	int num_burst_seg = tcp->tcp_snd_burst;
21008 	ire_t		*ire = NULL;
21009 	ill_t		*ill = NULL;
21010 	mblk_t		*ire_fp_mp = NULL;
21011 	uint_t		ire_fp_mp_len = 0;
21012 	int		num_lso_seg = 1;
21013 	uint_t		lso_usable;
21014 	boolean_t	do_lso_send = B_FALSE;
21015 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21016 
21017 	/*
21018 	 * Check LSO capability before any further work. And the similar check
21019 	 * need to be done in for(;;) loop.
21020 	 * LSO will be deployed when therer is more than one mss of available
21021 	 * data and a burst transmission is allowed.
21022 	 */
21023 	if (tcp->tcp_lso &&
21024 	    (tcp->tcp_valid_bits == 0 ||
21025 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21026 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21027 		/*
21028 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21029 		 */
21030 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21031 			/*
21032 			 * Enable LSO with this transmission.
21033 			 * Since IRE has been hold in
21034 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21035 			 * should be called before return.
21036 			 */
21037 			do_lso_send = B_TRUE;
21038 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21039 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21040 			/* Round up to multiple of 4 */
21041 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21042 		} else {
21043 			do_lso_send = B_FALSE;
21044 			ill = NULL;
21045 		}
21046 	}
21047 
21048 	for (;;) {
21049 		struct datab	*db;
21050 		tcph_t		*tcph;
21051 		uint32_t	sum;
21052 		mblk_t		*mp, *mp1;
21053 		uchar_t		*rptr;
21054 		int		len;
21055 
21056 		/*
21057 		 * If we're called by tcp_multisend(), and the amount of
21058 		 * sendable data as well as the size of current xmit_tail
21059 		 * is beyond the MDT threshold, return to the caller and
21060 		 * let the large data transmit be done using MDT.
21061 		 */
21062 		if (*usable > 0 && *usable > mdt_thres &&
21063 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21064 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21065 			ASSERT(tcp->tcp_mdt);
21066 			return (1);	/* success; do large send */
21067 		}
21068 
21069 		if (num_burst_seg == 0)
21070 			break;		/* success; burst count reached */
21071 
21072 		/*
21073 		 * Calculate the maximum payload length we can send in *one*
21074 		 * time.
21075 		 */
21076 		if (do_lso_send) {
21077 			/*
21078 			 * Check whether need to do LSO any more.
21079 			 */
21080 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21081 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21082 				lso_usable = MIN(lso_usable,
21083 				    num_burst_seg * mss);
21084 
21085 				num_lso_seg = lso_usable / mss;
21086 				if (lso_usable % mss) {
21087 					num_lso_seg++;
21088 					tcp->tcp_last_sent_len = (ushort_t)
21089 					    (lso_usable % mss);
21090 				} else {
21091 					tcp->tcp_last_sent_len = (ushort_t)mss;
21092 				}
21093 			} else {
21094 				do_lso_send = B_FALSE;
21095 				num_lso_seg = 1;
21096 				lso_usable = mss;
21097 			}
21098 		}
21099 
21100 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21101 
21102 		/*
21103 		 * Adjust num_burst_seg here.
21104 		 */
21105 		num_burst_seg -= num_lso_seg;
21106 
21107 		len = mss;
21108 		if (len > *usable) {
21109 			ASSERT(do_lso_send == B_FALSE);
21110 
21111 			len = *usable;
21112 			if (len <= 0) {
21113 				/* Terminate the loop */
21114 				break;	/* success; too small */
21115 			}
21116 			/*
21117 			 * Sender silly-window avoidance.
21118 			 * Ignore this if we are going to send a
21119 			 * zero window probe out.
21120 			 *
21121 			 * TODO: force data into microscopic window?
21122 			 *	==> (!pushed || (unsent > usable))
21123 			 */
21124 			if (len < (tcp->tcp_max_swnd >> 1) &&
21125 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21126 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21127 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21128 				/*
21129 				 * If the retransmit timer is not running
21130 				 * we start it so that we will retransmit
21131 				 * in the case when the the receiver has
21132 				 * decremented the window.
21133 				 */
21134 				if (*snxt == tcp->tcp_snxt &&
21135 				    *snxt == tcp->tcp_suna) {
21136 					/*
21137 					 * We are not supposed to send
21138 					 * anything.  So let's wait a little
21139 					 * bit longer before breaking SWS
21140 					 * avoidance.
21141 					 *
21142 					 * What should the value be?
21143 					 * Suggestion: MAX(init rexmit time,
21144 					 * tcp->tcp_rto)
21145 					 */
21146 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21147 				}
21148 				break;	/* success; too small */
21149 			}
21150 		}
21151 
21152 		tcph = tcp->tcp_tcph;
21153 
21154 		/*
21155 		 * The reason to adjust len here is that we need to set flags
21156 		 * and calculate checksum.
21157 		 */
21158 		if (do_lso_send)
21159 			len = lso_usable;
21160 
21161 		*usable -= len; /* Approximate - can be adjusted later */
21162 		if (*usable > 0)
21163 			tcph->th_flags[0] = TH_ACK;
21164 		else
21165 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21166 
21167 		/*
21168 		 * Prime pump for IP's checksumming on our behalf
21169 		 * Include the adjustment for a source route if any.
21170 		 */
21171 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21172 		sum = (sum >> 16) + (sum & 0xFFFF);
21173 		U16_TO_ABE16(sum, tcph->th_sum);
21174 
21175 		U32_TO_ABE32(*snxt, tcph->th_seq);
21176 
21177 		/*
21178 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21179 		 * set.  For the case when TCP_FSS_VALID is the only valid
21180 		 * bit (normal active close), branch off only when we think
21181 		 * that the FIN flag needs to be set.  Note for this case,
21182 		 * that (snxt + len) may not reflect the actual seg_len,
21183 		 * as len may be further reduced in tcp_xmit_mp().  If len
21184 		 * gets modified, we will end up here again.
21185 		 */
21186 		if (tcp->tcp_valid_bits != 0 &&
21187 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21188 		    ((*snxt + len) == tcp->tcp_fss))) {
21189 			uchar_t		*prev_rptr;
21190 			uint32_t	prev_snxt = tcp->tcp_snxt;
21191 
21192 			if (*tail_unsent == 0) {
21193 				ASSERT((*xmit_tail)->b_cont != NULL);
21194 				*xmit_tail = (*xmit_tail)->b_cont;
21195 				prev_rptr = (*xmit_tail)->b_rptr;
21196 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21197 				    (*xmit_tail)->b_rptr);
21198 			} else {
21199 				prev_rptr = (*xmit_tail)->b_rptr;
21200 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21201 				    *tail_unsent;
21202 			}
21203 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21204 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21205 			/* Restore tcp_snxt so we get amount sent right. */
21206 			tcp->tcp_snxt = prev_snxt;
21207 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21208 				/*
21209 				 * If the previous timestamp is still in use,
21210 				 * don't stomp on it.
21211 				 */
21212 				if ((*xmit_tail)->b_next == NULL) {
21213 					(*xmit_tail)->b_prev = local_time;
21214 					(*xmit_tail)->b_next =
21215 					    (mblk_t *)(uintptr_t)(*snxt);
21216 				}
21217 			} else
21218 				(*xmit_tail)->b_rptr = prev_rptr;
21219 
21220 			if (mp == NULL) {
21221 				if (ire != NULL)
21222 					IRE_REFRELE(ire);
21223 				return (-1);
21224 			}
21225 			mp1 = mp->b_cont;
21226 
21227 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21228 				tcp->tcp_last_sent_len = (ushort_t)len;
21229 			while (mp1->b_cont) {
21230 				*xmit_tail = (*xmit_tail)->b_cont;
21231 				(*xmit_tail)->b_prev = local_time;
21232 				(*xmit_tail)->b_next =
21233 				    (mblk_t *)(uintptr_t)(*snxt);
21234 				mp1 = mp1->b_cont;
21235 			}
21236 			*snxt += len;
21237 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21238 			BUMP_LOCAL(tcp->tcp_obsegs);
21239 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21240 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21241 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21242 			tcp_send_data(tcp, q, mp);
21243 			continue;
21244 		}
21245 
21246 		*snxt += len;	/* Adjust later if we don't send all of len */
21247 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21248 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21249 
21250 		if (*tail_unsent) {
21251 			/* Are the bytes above us in flight? */
21252 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21253 			if (rptr != (*xmit_tail)->b_rptr) {
21254 				*tail_unsent -= len;
21255 				if (len <= mss) /* LSO is unusable */
21256 					tcp->tcp_last_sent_len = (ushort_t)len;
21257 				len += tcp_hdr_len;
21258 				if (tcp->tcp_ipversion == IPV4_VERSION)
21259 					tcp->tcp_ipha->ipha_length = htons(len);
21260 				else
21261 					tcp->tcp_ip6h->ip6_plen =
21262 					    htons(len -
21263 					    ((char *)&tcp->tcp_ip6h[1] -
21264 					    tcp->tcp_iphc));
21265 				mp = dupb(*xmit_tail);
21266 				if (mp == NULL) {
21267 					if (ire != NULL)
21268 						IRE_REFRELE(ire);
21269 					return (-1);	/* out_of_mem */
21270 				}
21271 				mp->b_rptr = rptr;
21272 				/*
21273 				 * If the old timestamp is no longer in use,
21274 				 * sample a new timestamp now.
21275 				 */
21276 				if ((*xmit_tail)->b_next == NULL) {
21277 					(*xmit_tail)->b_prev = local_time;
21278 					(*xmit_tail)->b_next =
21279 					    (mblk_t *)(uintptr_t)(*snxt-len);
21280 				}
21281 				goto must_alloc;
21282 			}
21283 		} else {
21284 			*xmit_tail = (*xmit_tail)->b_cont;
21285 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21286 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21287 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21288 			    (*xmit_tail)->b_rptr);
21289 		}
21290 
21291 		(*xmit_tail)->b_prev = local_time;
21292 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21293 
21294 		*tail_unsent -= len;
21295 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21296 			tcp->tcp_last_sent_len = (ushort_t)len;
21297 
21298 		len += tcp_hdr_len;
21299 		if (tcp->tcp_ipversion == IPV4_VERSION)
21300 			tcp->tcp_ipha->ipha_length = htons(len);
21301 		else
21302 			tcp->tcp_ip6h->ip6_plen = htons(len -
21303 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21304 
21305 		mp = dupb(*xmit_tail);
21306 		if (mp == NULL) {
21307 			if (ire != NULL)
21308 				IRE_REFRELE(ire);
21309 			return (-1);	/* out_of_mem */
21310 		}
21311 
21312 		len = tcp_hdr_len;
21313 		/*
21314 		 * There are four reasons to allocate a new hdr mblk:
21315 		 *  1) The bytes above us are in use by another packet
21316 		 *  2) We don't have good alignment
21317 		 *  3) The mblk is being shared
21318 		 *  4) We don't have enough room for a header
21319 		 */
21320 		rptr = mp->b_rptr - len;
21321 		if (!OK_32PTR(rptr) ||
21322 		    ((db = mp->b_datap), db->db_ref != 2) ||
21323 		    rptr < db->db_base + ire_fp_mp_len) {
21324 			/* NOTE: we assume allocb returns an OK_32PTR */
21325 
21326 		must_alloc:;
21327 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21328 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21329 			if (mp1 == NULL) {
21330 				freemsg(mp);
21331 				if (ire != NULL)
21332 					IRE_REFRELE(ire);
21333 				return (-1);	/* out_of_mem */
21334 			}
21335 			mp1->b_cont = mp;
21336 			mp = mp1;
21337 			/* Leave room for Link Level header */
21338 			len = tcp_hdr_len;
21339 			rptr =
21340 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21341 			mp->b_wptr = &rptr[len];
21342 		}
21343 
21344 		/*
21345 		 * Fill in the header using the template header, and add
21346 		 * options such as time-stamp, ECN and/or SACK, as needed.
21347 		 */
21348 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21349 
21350 		mp->b_rptr = rptr;
21351 
21352 		if (*tail_unsent) {
21353 			int spill = *tail_unsent;
21354 
21355 			mp1 = mp->b_cont;
21356 			if (mp1 == NULL)
21357 				mp1 = mp;
21358 
21359 			/*
21360 			 * If we're a little short, tack on more mblks until
21361 			 * there is no more spillover.
21362 			 */
21363 			while (spill < 0) {
21364 				mblk_t *nmp;
21365 				int nmpsz;
21366 
21367 				nmp = (*xmit_tail)->b_cont;
21368 				nmpsz = MBLKL(nmp);
21369 
21370 				/*
21371 				 * Excess data in mblk; can we split it?
21372 				 * If MDT is enabled for the connection,
21373 				 * keep on splitting as this is a transient
21374 				 * send path.
21375 				 */
21376 				if (!do_lso_send && !tcp->tcp_mdt &&
21377 				    (spill + nmpsz > 0)) {
21378 					/*
21379 					 * Don't split if stream head was
21380 					 * told to break up larger writes
21381 					 * into smaller ones.
21382 					 */
21383 					if (tcp->tcp_maxpsz > 0)
21384 						break;
21385 
21386 					/*
21387 					 * Next mblk is less than SMSS/2
21388 					 * rounded up to nearest 64-byte;
21389 					 * let it get sent as part of the
21390 					 * next segment.
21391 					 */
21392 					if (tcp->tcp_localnet &&
21393 					    !tcp->tcp_cork &&
21394 					    (nmpsz < roundup((mss >> 1), 64)))
21395 						break;
21396 				}
21397 
21398 				*xmit_tail = nmp;
21399 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21400 				/* Stash for rtt use later */
21401 				(*xmit_tail)->b_prev = local_time;
21402 				(*xmit_tail)->b_next =
21403 				    (mblk_t *)(uintptr_t)(*snxt - len);
21404 				mp1->b_cont = dupb(*xmit_tail);
21405 				mp1 = mp1->b_cont;
21406 
21407 				spill += nmpsz;
21408 				if (mp1 == NULL) {
21409 					*tail_unsent = spill;
21410 					freemsg(mp);
21411 					if (ire != NULL)
21412 						IRE_REFRELE(ire);
21413 					return (-1);	/* out_of_mem */
21414 				}
21415 			}
21416 
21417 			/* Trim back any surplus on the last mblk */
21418 			if (spill >= 0) {
21419 				mp1->b_wptr -= spill;
21420 				*tail_unsent = spill;
21421 			} else {
21422 				/*
21423 				 * We did not send everything we could in
21424 				 * order to remain within the b_cont limit.
21425 				 */
21426 				*usable -= spill;
21427 				*snxt += spill;
21428 				tcp->tcp_last_sent_len += spill;
21429 				UPDATE_MIB(&tcps->tcps_mib,
21430 				    tcpOutDataBytes, spill);
21431 				/*
21432 				 * Adjust the checksum
21433 				 */
21434 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21435 				sum += spill;
21436 				sum = (sum >> 16) + (sum & 0xFFFF);
21437 				U16_TO_ABE16(sum, tcph->th_sum);
21438 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21439 					sum = ntohs(
21440 					    ((ipha_t *)rptr)->ipha_length) +
21441 					    spill;
21442 					((ipha_t *)rptr)->ipha_length =
21443 					    htons(sum);
21444 				} else {
21445 					sum = ntohs(
21446 					    ((ip6_t *)rptr)->ip6_plen) +
21447 					    spill;
21448 					((ip6_t *)rptr)->ip6_plen =
21449 					    htons(sum);
21450 				}
21451 				*tail_unsent = 0;
21452 			}
21453 		}
21454 		if (tcp->tcp_ip_forward_progress) {
21455 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21456 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21457 			tcp->tcp_ip_forward_progress = B_FALSE;
21458 		}
21459 
21460 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21461 		if (do_lso_send) {
21462 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21463 			    num_lso_seg);
21464 			tcp->tcp_obsegs += num_lso_seg;
21465 
21466 			TCP_STAT(tcps, tcp_lso_times);
21467 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21468 		} else {
21469 			tcp_send_data(tcp, q, mp);
21470 			BUMP_LOCAL(tcp->tcp_obsegs);
21471 		}
21472 	}
21473 
21474 	if (ire != NULL)
21475 		IRE_REFRELE(ire);
21476 	return (0);
21477 }
21478 
21479 /* Unlink and return any mblk that looks like it contains a MDT info */
21480 static mblk_t *
21481 tcp_mdt_info_mp(mblk_t *mp)
21482 {
21483 	mblk_t	*prev_mp;
21484 
21485 	for (;;) {
21486 		prev_mp = mp;
21487 		/* no more to process? */
21488 		if ((mp = mp->b_cont) == NULL)
21489 			break;
21490 
21491 		switch (DB_TYPE(mp)) {
21492 		case M_CTL:
21493 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21494 				continue;
21495 			ASSERT(prev_mp != NULL);
21496 			prev_mp->b_cont = mp->b_cont;
21497 			mp->b_cont = NULL;
21498 			return (mp);
21499 		default:
21500 			break;
21501 		}
21502 	}
21503 	return (mp);
21504 }
21505 
21506 /* MDT info update routine, called when IP notifies us about MDT */
21507 static void
21508 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21509 {
21510 	boolean_t prev_state;
21511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21512 
21513 	/*
21514 	 * IP is telling us to abort MDT on this connection?  We know
21515 	 * this because the capability is only turned off when IP
21516 	 * encounters some pathological cases, e.g. link-layer change
21517 	 * where the new driver doesn't support MDT, or in situation
21518 	 * where MDT usage on the link-layer has been switched off.
21519 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21520 	 * if the link-layer doesn't support MDT, and if it does, it
21521 	 * will indicate that the feature is to be turned on.
21522 	 */
21523 	prev_state = tcp->tcp_mdt;
21524 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21525 	if (!tcp->tcp_mdt && !first) {
21526 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21527 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21528 		    (void *)tcp->tcp_connp));
21529 	}
21530 
21531 	/*
21532 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21533 	 * so disable MDT otherwise.  The checks are done here
21534 	 * and in tcp_wput_data().
21535 	 */
21536 	if (tcp->tcp_mdt &&
21537 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21538 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21539 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21540 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21541 		tcp->tcp_mdt = B_FALSE;
21542 
21543 	if (tcp->tcp_mdt) {
21544 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21545 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21546 			    "version (%d), expected version is %d",
21547 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21548 			tcp->tcp_mdt = B_FALSE;
21549 			return;
21550 		}
21551 
21552 		/*
21553 		 * We need the driver to be able to handle at least three
21554 		 * spans per packet in order for tcp MDT to be utilized.
21555 		 * The first is for the header portion, while the rest are
21556 		 * needed to handle a packet that straddles across two
21557 		 * virtually non-contiguous buffers; a typical tcp packet
21558 		 * therefore consists of only two spans.  Note that we take
21559 		 * a zero as "don't care".
21560 		 */
21561 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21562 		    mdt_capab->ill_mdt_span_limit < 3) {
21563 			tcp->tcp_mdt = B_FALSE;
21564 			return;
21565 		}
21566 
21567 		/* a zero means driver wants default value */
21568 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21569 		    tcps->tcps_mdt_max_pbufs);
21570 		if (tcp->tcp_mdt_max_pld == 0)
21571 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21572 
21573 		/* ensure 32-bit alignment */
21574 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21575 		    mdt_capab->ill_mdt_hdr_head), 4);
21576 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21577 		    mdt_capab->ill_mdt_hdr_tail), 4);
21578 
21579 		if (!first && !prev_state) {
21580 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21581 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21582 			    (void *)tcp->tcp_connp));
21583 		}
21584 	}
21585 }
21586 
21587 /* Unlink and return any mblk that looks like it contains a LSO info */
21588 static mblk_t *
21589 tcp_lso_info_mp(mblk_t *mp)
21590 {
21591 	mblk_t	*prev_mp;
21592 
21593 	for (;;) {
21594 		prev_mp = mp;
21595 		/* no more to process? */
21596 		if ((mp = mp->b_cont) == NULL)
21597 			break;
21598 
21599 		switch (DB_TYPE(mp)) {
21600 		case M_CTL:
21601 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21602 				continue;
21603 			ASSERT(prev_mp != NULL);
21604 			prev_mp->b_cont = mp->b_cont;
21605 			mp->b_cont = NULL;
21606 			return (mp);
21607 		default:
21608 			break;
21609 		}
21610 	}
21611 
21612 	return (mp);
21613 }
21614 
21615 /* LSO info update routine, called when IP notifies us about LSO */
21616 static void
21617 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21618 {
21619 	tcp_stack_t *tcps = tcp->tcp_tcps;
21620 
21621 	/*
21622 	 * IP is telling us to abort LSO on this connection?  We know
21623 	 * this because the capability is only turned off when IP
21624 	 * encounters some pathological cases, e.g. link-layer change
21625 	 * where the new NIC/driver doesn't support LSO, or in situation
21626 	 * where LSO usage on the link-layer has been switched off.
21627 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21628 	 * if the link-layer doesn't support LSO, and if it does, it
21629 	 * will indicate that the feature is to be turned on.
21630 	 */
21631 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21632 	TCP_STAT(tcps, tcp_lso_enabled);
21633 
21634 	/*
21635 	 * We currently only support LSO on simple TCP/IPv4,
21636 	 * so disable LSO otherwise.  The checks are done here
21637 	 * and in tcp_wput_data().
21638 	 */
21639 	if (tcp->tcp_lso &&
21640 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21641 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21642 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21643 		tcp->tcp_lso = B_FALSE;
21644 		TCP_STAT(tcps, tcp_lso_disabled);
21645 	} else {
21646 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21647 		    lso_capab->ill_lso_max);
21648 	}
21649 }
21650 
21651 static void
21652 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21653 {
21654 	conn_t *connp = tcp->tcp_connp;
21655 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21656 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21657 
21658 	ASSERT(ire != NULL);
21659 
21660 	/*
21661 	 * We may be in the fastpath here, and although we essentially do
21662 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21663 	 * we try to keep things as brief as possible.  After all, these
21664 	 * are only best-effort checks, and we do more thorough ones prior
21665 	 * to calling tcp_send()/tcp_multisend().
21666 	 */
21667 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21668 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21669 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21670 	    !(ire->ire_flags & RTF_MULTIRT) &&
21671 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21672 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21673 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21674 			/* Cache the result */
21675 			connp->conn_lso_ok = B_TRUE;
21676 
21677 			ASSERT(ill->ill_lso_capab != NULL);
21678 			if (!ill->ill_lso_capab->ill_lso_on) {
21679 				ill->ill_lso_capab->ill_lso_on = 1;
21680 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21681 				    "LSO for interface %s\n", (void *)connp,
21682 				    ill->ill_name));
21683 			}
21684 			tcp_lso_update(tcp, ill->ill_lso_capab);
21685 		} else if (ipst->ips_ip_multidata_outbound &&
21686 		    ILL_MDT_CAPABLE(ill)) {
21687 			/* Cache the result */
21688 			connp->conn_mdt_ok = B_TRUE;
21689 
21690 			ASSERT(ill->ill_mdt_capab != NULL);
21691 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21692 				ill->ill_mdt_capab->ill_mdt_on = 1;
21693 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21694 				    "MDT for interface %s\n", (void *)connp,
21695 				    ill->ill_name));
21696 			}
21697 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21698 		}
21699 	}
21700 
21701 	/*
21702 	 * The goal is to reduce the number of generated tcp segments by
21703 	 * setting the maxpsz multiplier to 0; this will have an affect on
21704 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21705 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21706 	 * of outbound segments and incoming ACKs, thus allowing for better
21707 	 * network and system performance.  In contrast the legacy behavior
21708 	 * may result in sending less than SMSS size, because the last mblk
21709 	 * for some packets may have more data than needed to make up SMSS,
21710 	 * and the legacy code refused to "split" it.
21711 	 *
21712 	 * We apply the new behavior on following situations:
21713 	 *
21714 	 *   1) Loopback connections,
21715 	 *   2) Connections in which the remote peer is not on local subnet,
21716 	 *   3) Local subnet connections over the bge interface (see below).
21717 	 *
21718 	 * Ideally, we would like this behavior to apply for interfaces other
21719 	 * than bge.  However, doing so would negatively impact drivers which
21720 	 * perform dynamic mapping and unmapping of DMA resources, which are
21721 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21722 	 * packet will be generated by tcp).  The bge driver does not suffer
21723 	 * from this, as it copies the mblks into pre-mapped buffers, and
21724 	 * therefore does not require more I/O resources than before.
21725 	 *
21726 	 * Otherwise, this behavior is present on all network interfaces when
21727 	 * the destination endpoint is non-local, since reducing the number
21728 	 * of packets in general is good for the network.
21729 	 *
21730 	 * TODO We need to remove this hard-coded conditional for bge once
21731 	 *	a better "self-tuning" mechanism, or a way to comprehend
21732 	 *	the driver transmit strategy is devised.  Until the solution
21733 	 *	is found and well understood, we live with this hack.
21734 	 */
21735 	if (!tcp_static_maxpsz &&
21736 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21737 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21738 		/* override the default value */
21739 		tcp->tcp_maxpsz = 0;
21740 
21741 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21742 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21743 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21744 	}
21745 
21746 	/* set the stream head parameters accordingly */
21747 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21748 }
21749 
21750 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21751 static void
21752 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21753 {
21754 	uchar_t	fval = *mp->b_rptr;
21755 	mblk_t	*tail;
21756 	queue_t	*q = tcp->tcp_wq;
21757 
21758 	/* TODO: How should flush interact with urgent data? */
21759 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21760 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21761 		/*
21762 		 * Flush only data that has not yet been put on the wire.  If
21763 		 * we flush data that we have already transmitted, life, as we
21764 		 * know it, may come to an end.
21765 		 */
21766 		tail = tcp->tcp_xmit_tail;
21767 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21768 		tcp->tcp_xmit_tail_unsent = 0;
21769 		tcp->tcp_unsent = 0;
21770 		if (tail->b_wptr != tail->b_rptr)
21771 			tail = tail->b_cont;
21772 		if (tail) {
21773 			mblk_t **excess = &tcp->tcp_xmit_head;
21774 			for (;;) {
21775 				mblk_t *mp1 = *excess;
21776 				if (mp1 == tail)
21777 					break;
21778 				tcp->tcp_xmit_tail = mp1;
21779 				tcp->tcp_xmit_last = mp1;
21780 				excess = &mp1->b_cont;
21781 			}
21782 			*excess = NULL;
21783 			tcp_close_mpp(&tail);
21784 			if (tcp->tcp_snd_zcopy_aware)
21785 				tcp_zcopy_notify(tcp);
21786 		}
21787 		/*
21788 		 * We have no unsent data, so unsent must be less than
21789 		 * tcp_xmit_lowater, so re-enable flow.
21790 		 */
21791 		mutex_enter(&tcp->tcp_non_sq_lock);
21792 		if (tcp->tcp_flow_stopped) {
21793 			tcp_clrqfull(tcp);
21794 		}
21795 		mutex_exit(&tcp->tcp_non_sq_lock);
21796 	}
21797 	/*
21798 	 * TODO: you can't just flush these, you have to increase rwnd for one
21799 	 * thing.  For another, how should urgent data interact?
21800 	 */
21801 	if (fval & FLUSHR) {
21802 		*mp->b_rptr = fval & ~FLUSHW;
21803 		/* XXX */
21804 		qreply(q, mp);
21805 		return;
21806 	}
21807 	freemsg(mp);
21808 }
21809 
21810 /*
21811  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21812  * messages.
21813  */
21814 static void
21815 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21816 {
21817 	mblk_t	*mp1;
21818 	STRUCT_HANDLE(strbuf, sb);
21819 	uint16_t port;
21820 	queue_t 	*q = tcp->tcp_wq;
21821 	in6_addr_t	v6addr;
21822 	ipaddr_t	v4addr;
21823 	uint32_t	flowinfo = 0;
21824 	int		addrlen;
21825 
21826 	/* Make sure it is one of ours. */
21827 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21828 	case TI_GETMYNAME:
21829 	case TI_GETPEERNAME:
21830 		break;
21831 	default:
21832 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21833 		return;
21834 	}
21835 	switch (mi_copy_state(q, mp, &mp1)) {
21836 	case -1:
21837 		return;
21838 	case MI_COPY_CASE(MI_COPY_IN, 1):
21839 		break;
21840 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21841 		/* Copy out the strbuf. */
21842 		mi_copyout(q, mp);
21843 		return;
21844 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21845 		/* All done. */
21846 		mi_copy_done(q, mp, 0);
21847 		return;
21848 	default:
21849 		mi_copy_done(q, mp, EPROTO);
21850 		return;
21851 	}
21852 	/* Check alignment of the strbuf */
21853 	if (!OK_32PTR(mp1->b_rptr)) {
21854 		mi_copy_done(q, mp, EINVAL);
21855 		return;
21856 	}
21857 
21858 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21859 	    (void *)mp1->b_rptr);
21860 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21861 
21862 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21863 		mi_copy_done(q, mp, EINVAL);
21864 		return;
21865 	}
21866 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21867 	case TI_GETMYNAME:
21868 		if (tcp->tcp_family == AF_INET) {
21869 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21870 				v4addr = tcp->tcp_ipha->ipha_src;
21871 			} else {
21872 				/* can't return an address in this case */
21873 				v4addr = 0;
21874 			}
21875 		} else {
21876 			/* tcp->tcp_family == AF_INET6 */
21877 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21878 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21879 				    &v6addr);
21880 			} else {
21881 				v6addr = tcp->tcp_ip6h->ip6_src;
21882 			}
21883 		}
21884 		port = tcp->tcp_lport;
21885 		break;
21886 	case TI_GETPEERNAME:
21887 		if (tcp->tcp_family == AF_INET) {
21888 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21889 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21890 				    v4addr);
21891 			} else {
21892 				/* can't return an address in this case */
21893 				v4addr = 0;
21894 			}
21895 		} else {
21896 			/* tcp->tcp_family == AF_INET6) */
21897 			v6addr = tcp->tcp_remote_v6;
21898 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21899 				/*
21900 				 * No flowinfo if tcp->tcp_ipversion is v4.
21901 				 *
21902 				 * flowinfo was already initialized to zero
21903 				 * where it was declared above, so only
21904 				 * set it if ipversion is v6.
21905 				 */
21906 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21907 				    ~IPV6_VERS_AND_FLOW_MASK;
21908 			}
21909 		}
21910 		port = tcp->tcp_fport;
21911 		break;
21912 	default:
21913 		mi_copy_done(q, mp, EPROTO);
21914 		return;
21915 	}
21916 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21917 	if (!mp1)
21918 		return;
21919 
21920 	if (tcp->tcp_family == AF_INET) {
21921 		sin_t *sin;
21922 
21923 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21924 		sin = (sin_t *)mp1->b_rptr;
21925 		mp1->b_wptr = (uchar_t *)&sin[1];
21926 		*sin = sin_null;
21927 		sin->sin_family = AF_INET;
21928 		sin->sin_addr.s_addr = v4addr;
21929 		sin->sin_port = port;
21930 	} else {
21931 		/* tcp->tcp_family == AF_INET6 */
21932 		sin6_t *sin6;
21933 
21934 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21935 		sin6 = (sin6_t *)mp1->b_rptr;
21936 		mp1->b_wptr = (uchar_t *)&sin6[1];
21937 		*sin6 = sin6_null;
21938 		sin6->sin6_family = AF_INET6;
21939 		sin6->sin6_flowinfo = flowinfo;
21940 		sin6->sin6_addr = v6addr;
21941 		sin6->sin6_port = port;
21942 	}
21943 	/* Copy out the address */
21944 	mi_copyout(q, mp);
21945 }
21946 
21947 /*
21948  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21949  * messages.
21950  */
21951 /* ARGSUSED */
21952 static void
21953 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21954 {
21955 	conn_t 	*connp = (conn_t *)arg;
21956 	tcp_t	*tcp = connp->conn_tcp;
21957 	queue_t	*q = tcp->tcp_wq;
21958 	struct iocblk	*iocp;
21959 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21960 
21961 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21962 	/*
21963 	 * Try and ASSERT the minimum possible references on the
21964 	 * conn early enough. Since we are executing on write side,
21965 	 * the connection is obviously not detached and that means
21966 	 * there is a ref each for TCP and IP. Since we are behind
21967 	 * the squeue, the minimum references needed are 3. If the
21968 	 * conn is in classifier hash list, there should be an
21969 	 * extra ref for that (we check both the possibilities).
21970 	 */
21971 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21972 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21973 
21974 	iocp = (struct iocblk *)mp->b_rptr;
21975 	switch (iocp->ioc_cmd) {
21976 	case TCP_IOC_DEFAULT_Q:
21977 		/* Wants to be the default wq. */
21978 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21979 			iocp->ioc_error = EPERM;
21980 			iocp->ioc_count = 0;
21981 			mp->b_datap->db_type = M_IOCACK;
21982 			qreply(q, mp);
21983 			return;
21984 		}
21985 		tcp_def_q_set(tcp, mp);
21986 		return;
21987 	case _SIOCSOCKFALLBACK:
21988 		/*
21989 		 * Either sockmod is about to be popped and the socket
21990 		 * would now be treated as a plain stream, or a module
21991 		 * is about to be pushed so we could no longer use read-
21992 		 * side synchronous streams for fused loopback tcp.
21993 		 * Drain any queued data and disable direct sockfs
21994 		 * interface from now on.
21995 		 */
21996 		if (!tcp->tcp_issocket) {
21997 			DB_TYPE(mp) = M_IOCNAK;
21998 			iocp->ioc_error = EINVAL;
21999 		} else {
22000 #ifdef	_ILP32
22001 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22002 #else
22003 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22004 #endif
22005 			/*
22006 			 * Insert this socket into the acceptor hash.
22007 			 * We might need it for T_CONN_RES message
22008 			 */
22009 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22010 
22011 			if (tcp->tcp_fused) {
22012 				/*
22013 				 * This is a fused loopback tcp; disable
22014 				 * read-side synchronous streams interface
22015 				 * and drain any queued data.  It is okay
22016 				 * to do this for non-synchronous streams
22017 				 * fused tcp as well.
22018 				 */
22019 				tcp_fuse_disable_pair(tcp, B_FALSE);
22020 			}
22021 			tcp->tcp_issocket = B_FALSE;
22022 			TCP_STAT(tcps, tcp_sock_fallback);
22023 
22024 			DB_TYPE(mp) = M_IOCACK;
22025 			iocp->ioc_error = 0;
22026 		}
22027 		iocp->ioc_count = 0;
22028 		iocp->ioc_rval = 0;
22029 		qreply(q, mp);
22030 		return;
22031 	}
22032 	CALL_IP_WPUT(connp, q, mp);
22033 }
22034 
22035 /*
22036  * This routine is called by tcp_wput() to handle all TPI requests.
22037  */
22038 /* ARGSUSED */
22039 static void
22040 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22041 {
22042 	conn_t 	*connp = (conn_t *)arg;
22043 	tcp_t	*tcp = connp->conn_tcp;
22044 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22045 	uchar_t *rptr;
22046 	t_scalar_t type;
22047 	int len;
22048 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22049 
22050 	/*
22051 	 * Try and ASSERT the minimum possible references on the
22052 	 * conn early enough. Since we are executing on write side,
22053 	 * the connection is obviously not detached and that means
22054 	 * there is a ref each for TCP and IP. Since we are behind
22055 	 * the squeue, the minimum references needed are 3. If the
22056 	 * conn is in classifier hash list, there should be an
22057 	 * extra ref for that (we check both the possibilities).
22058 	 */
22059 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22060 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22061 
22062 	rptr = mp->b_rptr;
22063 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22064 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22065 		type = ((union T_primitives *)rptr)->type;
22066 		if (type == T_EXDATA_REQ) {
22067 			uint32_t msize = msgdsize(mp->b_cont);
22068 
22069 			len = msize - 1;
22070 			if (len < 0) {
22071 				freemsg(mp);
22072 				return;
22073 			}
22074 			/*
22075 			 * Try to force urgent data out on the wire.
22076 			 * Even if we have unsent data this will
22077 			 * at least send the urgent flag.
22078 			 * XXX does not handle more flag correctly.
22079 			 */
22080 			len += tcp->tcp_unsent;
22081 			len += tcp->tcp_snxt;
22082 			tcp->tcp_urg = len;
22083 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22084 
22085 			/* Bypass tcp protocol for fused tcp loopback */
22086 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22087 				return;
22088 		} else if (type != T_DATA_REQ) {
22089 			goto non_urgent_data;
22090 		}
22091 		/* TODO: options, flags, ... from user */
22092 		/* Set length to zero for reclamation below */
22093 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22094 		freeb(mp);
22095 		return;
22096 	} else {
22097 		if (tcp->tcp_debug) {
22098 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22099 			    "tcp_wput_proto, dropping one...");
22100 		}
22101 		freemsg(mp);
22102 		return;
22103 	}
22104 
22105 non_urgent_data:
22106 
22107 	switch ((int)tprim->type) {
22108 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22109 		/*
22110 		 * save the kssl_ent_t from the next block, and convert this
22111 		 * back to a normal bind_req.
22112 		 */
22113 		if (mp->b_cont != NULL) {
22114 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22115 
22116 			if (tcp->tcp_kssl_ent != NULL) {
22117 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22118 				    KSSL_NO_PROXY);
22119 				tcp->tcp_kssl_ent = NULL;
22120 			}
22121 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22122 			    sizeof (kssl_ent_t));
22123 			kssl_hold_ent(tcp->tcp_kssl_ent);
22124 			freemsg(mp->b_cont);
22125 			mp->b_cont = NULL;
22126 		}
22127 		tprim->type = T_BIND_REQ;
22128 
22129 	/* FALLTHROUGH */
22130 	case O_T_BIND_REQ:	/* bind request */
22131 	case T_BIND_REQ:	/* new semantics bind request */
22132 		tcp_bind(tcp, mp);
22133 		break;
22134 	case T_UNBIND_REQ:	/* unbind request */
22135 		tcp_unbind(tcp, mp);
22136 		break;
22137 	case O_T_CONN_RES:	/* old connection response XXX */
22138 	case T_CONN_RES:	/* connection response */
22139 		tcp_accept(tcp, mp);
22140 		break;
22141 	case T_CONN_REQ:	/* connection request */
22142 		tcp_connect(tcp, mp);
22143 		break;
22144 	case T_DISCON_REQ:	/* disconnect request */
22145 		tcp_disconnect(tcp, mp);
22146 		break;
22147 	case T_CAPABILITY_REQ:
22148 		tcp_capability_req(tcp, mp);	/* capability request */
22149 		break;
22150 	case T_INFO_REQ:	/* information request */
22151 		tcp_info_req(tcp, mp);
22152 		break;
22153 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22154 		/* Only IP is allowed to return meaningful value */
22155 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
22156 		break;
22157 	case T_OPTMGMT_REQ:
22158 		/*
22159 		 * Note:  no support for snmpcom_req() through new
22160 		 * T_OPTMGMT_REQ. See comments in ip.c
22161 		 */
22162 		/* Only IP is allowed to return meaningful value */
22163 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
22164 		break;
22165 
22166 	case T_UNITDATA_REQ:	/* unitdata request */
22167 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22168 		break;
22169 	case T_ORDREL_REQ:	/* orderly release req */
22170 		freemsg(mp);
22171 
22172 		if (tcp->tcp_fused)
22173 			tcp_unfuse(tcp);
22174 
22175 		if (tcp_xmit_end(tcp) != 0) {
22176 			/*
22177 			 * We were crossing FINs and got a reset from
22178 			 * the other side. Just ignore it.
22179 			 */
22180 			if (tcp->tcp_debug) {
22181 				(void) strlog(TCP_MOD_ID, 0, 1,
22182 				    SL_ERROR|SL_TRACE,
22183 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22184 				    "state %s",
22185 				    tcp_display(tcp, NULL,
22186 				    DISP_ADDR_AND_PORT));
22187 			}
22188 		}
22189 		break;
22190 	case T_ADDR_REQ:
22191 		tcp_addr_req(tcp, mp);
22192 		break;
22193 	default:
22194 		if (tcp->tcp_debug) {
22195 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22196 			    "tcp_wput_proto, bogus TPI msg, type %d",
22197 			    tprim->type);
22198 		}
22199 		/*
22200 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22201 		 * to recover.
22202 		 */
22203 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22204 		break;
22205 	}
22206 }
22207 
22208 /*
22209  * The TCP write service routine should never be called...
22210  */
22211 /* ARGSUSED */
22212 static void
22213 tcp_wsrv(queue_t *q)
22214 {
22215 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22216 
22217 	TCP_STAT(tcps, tcp_wsrv_called);
22218 }
22219 
22220 /* Non overlapping byte exchanger */
22221 static void
22222 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22223 {
22224 	uchar_t	uch;
22225 
22226 	while (len-- > 0) {
22227 		uch = a[len];
22228 		a[len] = b[len];
22229 		b[len] = uch;
22230 	}
22231 }
22232 
22233 /*
22234  * Send out a control packet on the tcp connection specified.  This routine
22235  * is typically called where we need a simple ACK or RST generated.
22236  */
22237 static void
22238 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22239 {
22240 	uchar_t		*rptr;
22241 	tcph_t		*tcph;
22242 	ipha_t		*ipha = NULL;
22243 	ip6_t		*ip6h = NULL;
22244 	uint32_t	sum;
22245 	int		tcp_hdr_len;
22246 	int		tcp_ip_hdr_len;
22247 	mblk_t		*mp;
22248 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22249 
22250 	/*
22251 	 * Save sum for use in source route later.
22252 	 */
22253 	ASSERT(tcp != NULL);
22254 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22255 	tcp_hdr_len = tcp->tcp_hdr_len;
22256 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22257 
22258 	/* If a text string is passed in with the request, pass it to strlog. */
22259 	if (str != NULL && tcp->tcp_debug) {
22260 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22261 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22262 		    str, seq, ack, ctl);
22263 	}
22264 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22265 	    BPRI_MED);
22266 	if (mp == NULL) {
22267 		return;
22268 	}
22269 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22270 	mp->b_rptr = rptr;
22271 	mp->b_wptr = &rptr[tcp_hdr_len];
22272 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22273 
22274 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22275 		ipha = (ipha_t *)rptr;
22276 		ipha->ipha_length = htons(tcp_hdr_len);
22277 	} else {
22278 		ip6h = (ip6_t *)rptr;
22279 		ASSERT(tcp != NULL);
22280 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22281 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22282 	}
22283 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22284 	tcph->th_flags[0] = (uint8_t)ctl;
22285 	if (ctl & TH_RST) {
22286 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22287 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22288 		/*
22289 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22290 		 */
22291 		if (tcp->tcp_snd_ts_ok &&
22292 		    tcp->tcp_state > TCPS_SYN_SENT) {
22293 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22294 			*(mp->b_wptr) = TCPOPT_EOL;
22295 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22296 				ipha->ipha_length = htons(tcp_hdr_len -
22297 				    TCPOPT_REAL_TS_LEN);
22298 			} else {
22299 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22300 				    TCPOPT_REAL_TS_LEN);
22301 			}
22302 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22303 			sum -= TCPOPT_REAL_TS_LEN;
22304 		}
22305 	}
22306 	if (ctl & TH_ACK) {
22307 		if (tcp->tcp_snd_ts_ok) {
22308 			U32_TO_BE32(lbolt,
22309 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22310 			U32_TO_BE32(tcp->tcp_ts_recent,
22311 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22312 		}
22313 
22314 		/* Update the latest receive window size in TCP header. */
22315 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22316 		    tcph->th_win);
22317 		tcp->tcp_rack = ack;
22318 		tcp->tcp_rack_cnt = 0;
22319 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22320 	}
22321 	BUMP_LOCAL(tcp->tcp_obsegs);
22322 	U32_TO_BE32(seq, tcph->th_seq);
22323 	U32_TO_BE32(ack, tcph->th_ack);
22324 	/*
22325 	 * Include the adjustment for a source route if any.
22326 	 */
22327 	sum = (sum >> 16) + (sum & 0xFFFF);
22328 	U16_TO_BE16(sum, tcph->th_sum);
22329 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22330 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22331 }
22332 
22333 /*
22334  * If this routine returns B_TRUE, TCP can generate a RST in response
22335  * to a segment.  If it returns B_FALSE, TCP should not respond.
22336  */
22337 static boolean_t
22338 tcp_send_rst_chk(tcp_stack_t *tcps)
22339 {
22340 	clock_t	now;
22341 
22342 	/*
22343 	 * TCP needs to protect itself from generating too many RSTs.
22344 	 * This can be a DoS attack by sending us random segments
22345 	 * soliciting RSTs.
22346 	 *
22347 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22348 	 * in each 1 second interval.  In this way, TCP still generate
22349 	 * RSTs in normal cases but when under attack, the impact is
22350 	 * limited.
22351 	 */
22352 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22353 		now = lbolt;
22354 		/* lbolt can wrap around. */
22355 		if ((tcps->tcps_last_rst_intrvl > now) ||
22356 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22357 		    1*SECONDS)) {
22358 			tcps->tcps_last_rst_intrvl = now;
22359 			tcps->tcps_rst_cnt = 1;
22360 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22361 			return (B_FALSE);
22362 		}
22363 	}
22364 	return (B_TRUE);
22365 }
22366 
22367 /*
22368  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22369  */
22370 static void
22371 tcp_ip_ire_mark_advice(tcp_t *tcp)
22372 {
22373 	mblk_t *mp;
22374 	ipic_t *ipic;
22375 
22376 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22377 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22378 		    &ipic);
22379 	} else {
22380 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22381 		    &ipic);
22382 	}
22383 	if (mp == NULL)
22384 		return;
22385 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22386 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22387 }
22388 
22389 /*
22390  * Return an IP advice ioctl mblk and set ipic to be the pointer
22391  * to the advice structure.
22392  */
22393 static mblk_t *
22394 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22395 {
22396 	struct iocblk *ioc;
22397 	mblk_t *mp, *mp1;
22398 
22399 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22400 	if (mp == NULL)
22401 		return (NULL);
22402 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22403 	*ipic = (ipic_t *)mp->b_rptr;
22404 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22405 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22406 
22407 	bcopy(addr, *ipic + 1, addr_len);
22408 
22409 	(*ipic)->ipic_addr_length = addr_len;
22410 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22411 
22412 	mp1 = mkiocb(IP_IOCTL);
22413 	if (mp1 == NULL) {
22414 		freemsg(mp);
22415 		return (NULL);
22416 	}
22417 	mp1->b_cont = mp;
22418 	ioc = (struct iocblk *)mp1->b_rptr;
22419 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22420 
22421 	return (mp1);
22422 }
22423 
22424 /*
22425  * Generate a reset based on an inbound packet, connp is set by caller
22426  * when RST is in response to an unexpected inbound packet for which
22427  * there is active tcp state in the system.
22428  *
22429  * IPSEC NOTE : Try to send the reply with the same protection as it came
22430  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22431  * the packet will go out at the same level of protection as it came in by
22432  * converting the IPSEC_IN to IPSEC_OUT.
22433  */
22434 static void
22435 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22436     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22437     tcp_stack_t *tcps, conn_t *connp)
22438 {
22439 	ipha_t		*ipha = NULL;
22440 	ip6_t		*ip6h = NULL;
22441 	ushort_t	len;
22442 	tcph_t		*tcph;
22443 	int		i;
22444 	mblk_t		*ipsec_mp;
22445 	boolean_t	mctl_present;
22446 	ipic_t		*ipic;
22447 	ipaddr_t	v4addr;
22448 	in6_addr_t	v6addr;
22449 	int		addr_len;
22450 	void		*addr;
22451 	queue_t		*q = tcps->tcps_g_q;
22452 	tcp_t		*tcp;
22453 	cred_t		*cr;
22454 	mblk_t		*nmp;
22455 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22456 
22457 	if (tcps->tcps_g_q == NULL) {
22458 		/*
22459 		 * For non-zero stackids the default queue isn't created
22460 		 * until the first open, thus there can be a need to send
22461 		 * a reset before then. But we can't do that, hence we just
22462 		 * drop the packet. Later during boot, when the default queue
22463 		 * has been setup, a retransmitted packet from the peer
22464 		 * will result in a reset.
22465 		 */
22466 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22467 		    GLOBAL_NETSTACKID);
22468 		freemsg(mp);
22469 		return;
22470 	}
22471 
22472 	if (connp != NULL)
22473 		tcp = connp->conn_tcp;
22474 	else
22475 		tcp = Q_TO_TCP(q);
22476 
22477 	if (!tcp_send_rst_chk(tcps)) {
22478 		tcps->tcps_rst_unsent++;
22479 		freemsg(mp);
22480 		return;
22481 	}
22482 
22483 	if (mp->b_datap->db_type == M_CTL) {
22484 		ipsec_mp = mp;
22485 		mp = mp->b_cont;
22486 		mctl_present = B_TRUE;
22487 	} else {
22488 		ipsec_mp = mp;
22489 		mctl_present = B_FALSE;
22490 	}
22491 
22492 	if (str && q && tcps->tcps_dbg) {
22493 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22494 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22495 		    "flags 0x%x",
22496 		    str, seq, ack, ctl);
22497 	}
22498 	if (mp->b_datap->db_ref != 1) {
22499 		mblk_t *mp1 = copyb(mp);
22500 		freemsg(mp);
22501 		mp = mp1;
22502 		if (!mp) {
22503 			if (mctl_present)
22504 				freeb(ipsec_mp);
22505 			return;
22506 		} else {
22507 			if (mctl_present) {
22508 				ipsec_mp->b_cont = mp;
22509 			} else {
22510 				ipsec_mp = mp;
22511 			}
22512 		}
22513 	} else if (mp->b_cont) {
22514 		freemsg(mp->b_cont);
22515 		mp->b_cont = NULL;
22516 	}
22517 	/*
22518 	 * We skip reversing source route here.
22519 	 * (for now we replace all IP options with EOL)
22520 	 */
22521 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22522 		ipha = (ipha_t *)mp->b_rptr;
22523 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22524 			mp->b_rptr[i] = IPOPT_EOL;
22525 		/*
22526 		 * Make sure that src address isn't flagrantly invalid.
22527 		 * Not all broadcast address checking for the src address
22528 		 * is possible, since we don't know the netmask of the src
22529 		 * addr.  No check for destination address is done, since
22530 		 * IP will not pass up a packet with a broadcast dest
22531 		 * address to TCP.  Similar checks are done below for IPv6.
22532 		 */
22533 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22534 		    CLASSD(ipha->ipha_src)) {
22535 			freemsg(ipsec_mp);
22536 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22537 			return;
22538 		}
22539 	} else {
22540 		ip6h = (ip6_t *)mp->b_rptr;
22541 
22542 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22543 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22544 			freemsg(ipsec_mp);
22545 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22546 			return;
22547 		}
22548 
22549 		/* Remove any extension headers assuming partial overlay */
22550 		if (ip_hdr_len > IPV6_HDR_LEN) {
22551 			uint8_t *to;
22552 
22553 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22554 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22555 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22556 			ip_hdr_len = IPV6_HDR_LEN;
22557 			ip6h = (ip6_t *)mp->b_rptr;
22558 			ip6h->ip6_nxt = IPPROTO_TCP;
22559 		}
22560 	}
22561 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22562 	if (tcph->th_flags[0] & TH_RST) {
22563 		freemsg(ipsec_mp);
22564 		return;
22565 	}
22566 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22567 	len = ip_hdr_len + sizeof (tcph_t);
22568 	mp->b_wptr = &mp->b_rptr[len];
22569 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22570 		ipha->ipha_length = htons(len);
22571 		/* Swap addresses */
22572 		v4addr = ipha->ipha_src;
22573 		ipha->ipha_src = ipha->ipha_dst;
22574 		ipha->ipha_dst = v4addr;
22575 		ipha->ipha_ident = 0;
22576 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22577 		addr_len = IP_ADDR_LEN;
22578 		addr = &v4addr;
22579 	} else {
22580 		/* No ip6i_t in this case */
22581 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22582 		/* Swap addresses */
22583 		v6addr = ip6h->ip6_src;
22584 		ip6h->ip6_src = ip6h->ip6_dst;
22585 		ip6h->ip6_dst = v6addr;
22586 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22587 		addr_len = IPV6_ADDR_LEN;
22588 		addr = &v6addr;
22589 	}
22590 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22591 	U32_TO_BE32(ack, tcph->th_ack);
22592 	U32_TO_BE32(seq, tcph->th_seq);
22593 	U16_TO_BE16(0, tcph->th_win);
22594 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22595 	tcph->th_flags[0] = (uint8_t)ctl;
22596 	if (ctl & TH_RST) {
22597 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22598 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22599 	}
22600 
22601 	/* IP trusts us to set up labels when required. */
22602 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22603 	    crgetlabel(cr) != NULL) {
22604 		int err, adjust;
22605 
22606 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22607 			err = tsol_check_label(cr, &mp, &adjust,
22608 			    tcp->tcp_connp->conn_mac_exempt,
22609 			    tcps->tcps_netstack->netstack_ip);
22610 		else
22611 			err = tsol_check_label_v6(cr, &mp, &adjust,
22612 			    tcp->tcp_connp->conn_mac_exempt,
22613 			    tcps->tcps_netstack->netstack_ip);
22614 		if (mctl_present)
22615 			ipsec_mp->b_cont = mp;
22616 		else
22617 			ipsec_mp = mp;
22618 		if (err != 0) {
22619 			freemsg(ipsec_mp);
22620 			return;
22621 		}
22622 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22623 			ipha = (ipha_t *)mp->b_rptr;
22624 			adjust += ntohs(ipha->ipha_length);
22625 			ipha->ipha_length = htons(adjust);
22626 		} else {
22627 			ip6h = (ip6_t *)mp->b_rptr;
22628 		}
22629 	}
22630 
22631 	if (mctl_present) {
22632 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22633 
22634 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22635 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22636 			return;
22637 		}
22638 	}
22639 	if (zoneid == ALL_ZONES)
22640 		zoneid = GLOBAL_ZONEID;
22641 
22642 	/* Add the zoneid so ip_output routes it properly */
22643 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22644 		freemsg(ipsec_mp);
22645 		return;
22646 	}
22647 	ipsec_mp = nmp;
22648 
22649 	/*
22650 	 * NOTE:  one might consider tracing a TCP packet here, but
22651 	 * this function has no active TCP state and no tcp structure
22652 	 * that has a trace buffer.  If we traced here, we would have
22653 	 * to keep a local trace buffer in tcp_record_trace().
22654 	 *
22655 	 * TSol note: The mblk that contains the incoming packet was
22656 	 * reused by tcp_xmit_listener_reset, so it already contains
22657 	 * the right credentials and we don't need to call mblk_setcred.
22658 	 * Also the conn's cred is not right since it is associated
22659 	 * with tcps_g_q.
22660 	 */
22661 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22662 
22663 	/*
22664 	 * Tell IP to mark the IRE used for this destination temporary.
22665 	 * This way, we can limit our exposure to DoS attack because IP
22666 	 * creates an IRE for each destination.  If there are too many,
22667 	 * the time to do any routing lookup will be extremely long.  And
22668 	 * the lookup can be in interrupt context.
22669 	 *
22670 	 * Note that in normal circumstances, this marking should not
22671 	 * affect anything.  It would be nice if only 1 message is
22672 	 * needed to inform IP that the IRE created for this RST should
22673 	 * not be added to the cache table.  But there is currently
22674 	 * not such communication mechanism between TCP and IP.  So
22675 	 * the best we can do now is to send the advice ioctl to IP
22676 	 * to mark the IRE temporary.
22677 	 */
22678 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22679 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22680 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22681 	}
22682 }
22683 
22684 /*
22685  * Initiate closedown sequence on an active connection.  (May be called as
22686  * writer.)  Return value zero for OK return, non-zero for error return.
22687  */
22688 static int
22689 tcp_xmit_end(tcp_t *tcp)
22690 {
22691 	ipic_t	*ipic;
22692 	mblk_t	*mp;
22693 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22694 
22695 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22696 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22697 		/*
22698 		 * Invalid state, only states TCPS_SYN_RCVD,
22699 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22700 		 */
22701 		return (-1);
22702 	}
22703 
22704 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22705 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22706 	/*
22707 	 * If there is nothing more unsent, send the FIN now.
22708 	 * Otherwise, it will go out with the last segment.
22709 	 */
22710 	if (tcp->tcp_unsent == 0) {
22711 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22712 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22713 
22714 		if (mp) {
22715 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22716 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22717 		} else {
22718 			/*
22719 			 * Couldn't allocate msg.  Pretend we got it out.
22720 			 * Wait for rexmit timeout.
22721 			 */
22722 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22723 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22724 		}
22725 
22726 		/*
22727 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22728 		 * changed.
22729 		 */
22730 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22731 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22732 		}
22733 	} else {
22734 		/*
22735 		 * If tcp->tcp_cork is set, then the data will not get sent,
22736 		 * so we have to check that and unset it first.
22737 		 */
22738 		if (tcp->tcp_cork)
22739 			tcp->tcp_cork = B_FALSE;
22740 		tcp_wput_data(tcp, NULL, B_FALSE);
22741 	}
22742 
22743 	/*
22744 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22745 	 * is 0, don't update the cache.
22746 	 */
22747 	if (tcps->tcps_rtt_updates == 0 ||
22748 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22749 		return (0);
22750 
22751 	/*
22752 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22753 	 * different from the destination.
22754 	 */
22755 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22756 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22757 			return (0);
22758 		}
22759 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22760 		    &ipic);
22761 	} else {
22762 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22763 		    &tcp->tcp_ip6h->ip6_dst))) {
22764 			return (0);
22765 		}
22766 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22767 		    &ipic);
22768 	}
22769 
22770 	/* Record route attributes in the IRE for use by future connections. */
22771 	if (mp == NULL)
22772 		return (0);
22773 
22774 	/*
22775 	 * We do not have a good algorithm to update ssthresh at this time.
22776 	 * So don't do any update.
22777 	 */
22778 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22779 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22780 
22781 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22782 	return (0);
22783 }
22784 
22785 /*
22786  * Generate a "no listener here" RST in response to an "unknown" segment.
22787  * connp is set by caller when RST is in response to an unexpected
22788  * inbound packet for which there is active tcp state in the system.
22789  * Note that we are reusing the incoming mp to construct the outgoing RST.
22790  */
22791 void
22792 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22793     tcp_stack_t *tcps, conn_t *connp)
22794 {
22795 	uchar_t		*rptr;
22796 	uint32_t	seg_len;
22797 	tcph_t		*tcph;
22798 	uint32_t	seg_seq;
22799 	uint32_t	seg_ack;
22800 	uint_t		flags;
22801 	mblk_t		*ipsec_mp;
22802 	ipha_t 		*ipha;
22803 	ip6_t 		*ip6h;
22804 	boolean_t	mctl_present = B_FALSE;
22805 	boolean_t	check = B_TRUE;
22806 	boolean_t	policy_present;
22807 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22808 
22809 	TCP_STAT(tcps, tcp_no_listener);
22810 
22811 	ipsec_mp = mp;
22812 
22813 	if (mp->b_datap->db_type == M_CTL) {
22814 		ipsec_in_t *ii;
22815 
22816 		mctl_present = B_TRUE;
22817 		mp = mp->b_cont;
22818 
22819 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22820 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22821 		if (ii->ipsec_in_dont_check) {
22822 			check = B_FALSE;
22823 			if (!ii->ipsec_in_secure) {
22824 				freeb(ipsec_mp);
22825 				mctl_present = B_FALSE;
22826 				ipsec_mp = mp;
22827 			}
22828 		}
22829 	}
22830 
22831 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22832 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22833 		ipha = (ipha_t *)mp->b_rptr;
22834 		ip6h = NULL;
22835 	} else {
22836 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22837 		ipha = NULL;
22838 		ip6h = (ip6_t *)mp->b_rptr;
22839 	}
22840 
22841 	if (check && policy_present) {
22842 		/*
22843 		 * The conn_t parameter is NULL because we already know
22844 		 * nobody's home.
22845 		 */
22846 		ipsec_mp = ipsec_check_global_policy(
22847 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22848 		    tcps->tcps_netstack);
22849 		if (ipsec_mp == NULL)
22850 			return;
22851 	}
22852 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22853 		DTRACE_PROBE2(
22854 		    tx__ip__log__error__nolistener__tcp,
22855 		    char *, "Could not reply with RST to mp(1)",
22856 		    mblk_t *, mp);
22857 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22858 		freemsg(ipsec_mp);
22859 		return;
22860 	}
22861 
22862 	rptr = mp->b_rptr;
22863 
22864 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22865 	seg_seq = BE32_TO_U32(tcph->th_seq);
22866 	seg_ack = BE32_TO_U32(tcph->th_ack);
22867 	flags = tcph->th_flags[0];
22868 
22869 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22870 	if (flags & TH_RST) {
22871 		freemsg(ipsec_mp);
22872 	} else if (flags & TH_ACK) {
22873 		tcp_xmit_early_reset("no tcp, reset",
22874 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22875 		    connp);
22876 	} else {
22877 		if (flags & TH_SYN) {
22878 			seg_len++;
22879 		} else {
22880 			/*
22881 			 * Here we violate the RFC.  Note that a normal
22882 			 * TCP will never send a segment without the ACK
22883 			 * flag, except for RST or SYN segment.  This
22884 			 * segment is neither.  Just drop it on the
22885 			 * floor.
22886 			 */
22887 			freemsg(ipsec_mp);
22888 			tcps->tcps_rst_unsent++;
22889 			return;
22890 		}
22891 
22892 		tcp_xmit_early_reset("no tcp, reset/ack",
22893 		    ipsec_mp, 0, seg_seq + seg_len,
22894 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22895 	}
22896 }
22897 
22898 /*
22899  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22900  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22901  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22902  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22903  * otherwise it will dup partial mblks.)
22904  * Otherwise, an appropriate ACK packet will be generated.  This
22905  * routine is not usually called to send new data for the first time.  It
22906  * is mostly called out of the timer for retransmits, and to generate ACKs.
22907  *
22908  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22909  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22910  * of the original mblk chain will be returned in *offset and *end_mp.
22911  */
22912 mblk_t *
22913 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22914     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22915     boolean_t rexmit)
22916 {
22917 	int	data_length;
22918 	int32_t	off = 0;
22919 	uint_t	flags;
22920 	mblk_t	*mp1;
22921 	mblk_t	*mp2;
22922 	uchar_t	*rptr;
22923 	tcph_t	*tcph;
22924 	int32_t	num_sack_blk = 0;
22925 	int32_t	sack_opt_len = 0;
22926 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22927 
22928 	/* Allocate for our maximum TCP header + link-level */
22929 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22930 	    tcps->tcps_wroff_xtra, BPRI_MED);
22931 	if (!mp1)
22932 		return (NULL);
22933 	data_length = 0;
22934 
22935 	/*
22936 	 * Note that tcp_mss has been adjusted to take into account the
22937 	 * timestamp option if applicable.  Because SACK options do not
22938 	 * appear in every TCP segments and they are of variable lengths,
22939 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22940 	 * the actual segment length when we need to send a segment which
22941 	 * includes SACK options.
22942 	 */
22943 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22944 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22945 		    tcp->tcp_num_sack_blk);
22946 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22947 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22948 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22949 			max_to_send -= sack_opt_len;
22950 	}
22951 
22952 	if (offset != NULL) {
22953 		off = *offset;
22954 		/* We use offset as an indicator that end_mp is not NULL. */
22955 		*end_mp = NULL;
22956 	}
22957 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22958 		/* This could be faster with cooperation from downstream */
22959 		if (mp2 != mp1 && !sendall &&
22960 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22961 		    max_to_send)
22962 			/*
22963 			 * Don't send the next mblk since the whole mblk
22964 			 * does not fit.
22965 			 */
22966 			break;
22967 		mp2->b_cont = dupb(mp);
22968 		mp2 = mp2->b_cont;
22969 		if (!mp2) {
22970 			freemsg(mp1);
22971 			return (NULL);
22972 		}
22973 		mp2->b_rptr += off;
22974 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22975 		    (uintptr_t)INT_MAX);
22976 
22977 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22978 		if (data_length > max_to_send) {
22979 			mp2->b_wptr -= data_length - max_to_send;
22980 			data_length = max_to_send;
22981 			off = mp2->b_wptr - mp->b_rptr;
22982 			break;
22983 		} else {
22984 			off = 0;
22985 		}
22986 	}
22987 	if (offset != NULL) {
22988 		*offset = off;
22989 		*end_mp = mp;
22990 	}
22991 	if (seg_len != NULL) {
22992 		*seg_len = data_length;
22993 	}
22994 
22995 	/* Update the latest receive window size in TCP header. */
22996 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22997 	    tcp->tcp_tcph->th_win);
22998 
22999 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23000 	mp1->b_rptr = rptr;
23001 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23002 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23003 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23004 	U32_TO_ABE32(seq, tcph->th_seq);
23005 
23006 	/*
23007 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23008 	 * that this function was called from tcp_wput_data. Thus, when called
23009 	 * to retransmit data the setting of the PUSH bit may appear some
23010 	 * what random in that it might get set when it should not. This
23011 	 * should not pose any performance issues.
23012 	 */
23013 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23014 	    tcp->tcp_unsent == data_length)) {
23015 		flags = TH_ACK | TH_PUSH;
23016 	} else {
23017 		flags = TH_ACK;
23018 	}
23019 
23020 	if (tcp->tcp_ecn_ok) {
23021 		if (tcp->tcp_ecn_echo_on)
23022 			flags |= TH_ECE;
23023 
23024 		/*
23025 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23026 		 * There is no TCP flow control for non-data segments, and
23027 		 * only data segment is transmitted reliably.
23028 		 */
23029 		if (data_length > 0 && !rexmit) {
23030 			SET_ECT(tcp, rptr);
23031 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23032 				flags |= TH_CWR;
23033 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23034 			}
23035 		}
23036 	}
23037 
23038 	if (tcp->tcp_valid_bits) {
23039 		uint32_t u1;
23040 
23041 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23042 		    seq == tcp->tcp_iss) {
23043 			uchar_t	*wptr;
23044 
23045 			/*
23046 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23047 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23048 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23049 			 * our SYN is not ack'ed but the app closes this
23050 			 * TCP connection.
23051 			 */
23052 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23053 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23054 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23055 
23056 			/*
23057 			 * Tack on the MSS option.  It is always needed
23058 			 * for both active and passive open.
23059 			 *
23060 			 * MSS option value should be interface MTU - MIN
23061 			 * TCP/IP header according to RFC 793 as it means
23062 			 * the maximum segment size TCP can receive.  But
23063 			 * to get around some broken middle boxes/end hosts
23064 			 * out there, we allow the option value to be the
23065 			 * same as the MSS option size on the peer side.
23066 			 * In this way, the other side will not send
23067 			 * anything larger than they can receive.
23068 			 *
23069 			 * Note that for SYN_SENT state, the ndd param
23070 			 * tcp_use_smss_as_mss_opt has no effect as we
23071 			 * don't know the peer's MSS option value. So
23072 			 * the only case we need to take care of is in
23073 			 * SYN_RCVD state, which is done later.
23074 			 */
23075 			wptr = mp1->b_wptr;
23076 			wptr[0] = TCPOPT_MAXSEG;
23077 			wptr[1] = TCPOPT_MAXSEG_LEN;
23078 			wptr += 2;
23079 			u1 = tcp->tcp_if_mtu -
23080 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23081 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23082 			    TCP_MIN_HEADER_LENGTH;
23083 			U16_TO_BE16(u1, wptr);
23084 			mp1->b_wptr = wptr + 2;
23085 			/* Update the offset to cover the additional word */
23086 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23087 
23088 			/*
23089 			 * Note that the following way of filling in
23090 			 * TCP options are not optimal.  Some NOPs can
23091 			 * be saved.  But there is no need at this time
23092 			 * to optimize it.  When it is needed, we will
23093 			 * do it.
23094 			 */
23095 			switch (tcp->tcp_state) {
23096 			case TCPS_SYN_SENT:
23097 				flags = TH_SYN;
23098 
23099 				if (tcp->tcp_snd_ts_ok) {
23100 					uint32_t llbolt = (uint32_t)lbolt;
23101 
23102 					wptr = mp1->b_wptr;
23103 					wptr[0] = TCPOPT_NOP;
23104 					wptr[1] = TCPOPT_NOP;
23105 					wptr[2] = TCPOPT_TSTAMP;
23106 					wptr[3] = TCPOPT_TSTAMP_LEN;
23107 					wptr += 4;
23108 					U32_TO_BE32(llbolt, wptr);
23109 					wptr += 4;
23110 					ASSERT(tcp->tcp_ts_recent == 0);
23111 					U32_TO_BE32(0L, wptr);
23112 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23113 					tcph->th_offset_and_rsrvd[0] +=
23114 					    (3 << 4);
23115 				}
23116 
23117 				/*
23118 				 * Set up all the bits to tell other side
23119 				 * we are ECN capable.
23120 				 */
23121 				if (tcp->tcp_ecn_ok) {
23122 					flags |= (TH_ECE | TH_CWR);
23123 				}
23124 				break;
23125 			case TCPS_SYN_RCVD:
23126 				flags |= TH_SYN;
23127 
23128 				/*
23129 				 * Reset the MSS option value to be SMSS
23130 				 * We should probably add back the bytes
23131 				 * for timestamp option and IPsec.  We
23132 				 * don't do that as this is a workaround
23133 				 * for broken middle boxes/end hosts, it
23134 				 * is better for us to be more cautious.
23135 				 * They may not take these things into
23136 				 * account in their SMSS calculation.  Thus
23137 				 * the peer's calculated SMSS may be smaller
23138 				 * than what it can be.  This should be OK.
23139 				 */
23140 				if (tcps->tcps_use_smss_as_mss_opt) {
23141 					u1 = tcp->tcp_mss;
23142 					U16_TO_BE16(u1, wptr);
23143 				}
23144 
23145 				/*
23146 				 * If the other side is ECN capable, reply
23147 				 * that we are also ECN capable.
23148 				 */
23149 				if (tcp->tcp_ecn_ok)
23150 					flags |= TH_ECE;
23151 				break;
23152 			default:
23153 				/*
23154 				 * The above ASSERT() makes sure that this
23155 				 * must be FIN-WAIT-1 state.  Our SYN has
23156 				 * not been ack'ed so retransmit it.
23157 				 */
23158 				flags |= TH_SYN;
23159 				break;
23160 			}
23161 
23162 			if (tcp->tcp_snd_ws_ok) {
23163 				wptr = mp1->b_wptr;
23164 				wptr[0] =  TCPOPT_NOP;
23165 				wptr[1] =  TCPOPT_WSCALE;
23166 				wptr[2] =  TCPOPT_WS_LEN;
23167 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23168 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23169 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23170 			}
23171 
23172 			if (tcp->tcp_snd_sack_ok) {
23173 				wptr = mp1->b_wptr;
23174 				wptr[0] = TCPOPT_NOP;
23175 				wptr[1] = TCPOPT_NOP;
23176 				wptr[2] = TCPOPT_SACK_PERMITTED;
23177 				wptr[3] = TCPOPT_SACK_OK_LEN;
23178 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23179 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23180 			}
23181 
23182 			/* allocb() of adequate mblk assures space */
23183 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23184 			    (uintptr_t)INT_MAX);
23185 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23186 			/*
23187 			 * Get IP set to checksum on our behalf
23188 			 * Include the adjustment for a source route if any.
23189 			 */
23190 			u1 += tcp->tcp_sum;
23191 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23192 			U16_TO_BE16(u1, tcph->th_sum);
23193 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23194 		}
23195 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23196 		    (seq + data_length) == tcp->tcp_fss) {
23197 			if (!tcp->tcp_fin_acked) {
23198 				flags |= TH_FIN;
23199 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23200 			}
23201 			if (!tcp->tcp_fin_sent) {
23202 				tcp->tcp_fin_sent = B_TRUE;
23203 				switch (tcp->tcp_state) {
23204 				case TCPS_SYN_RCVD:
23205 				case TCPS_ESTABLISHED:
23206 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23207 					break;
23208 				case TCPS_CLOSE_WAIT:
23209 					tcp->tcp_state = TCPS_LAST_ACK;
23210 					break;
23211 				}
23212 				if (tcp->tcp_suna == tcp->tcp_snxt)
23213 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23214 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23215 			}
23216 		}
23217 		/*
23218 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23219 		 * is smaller than seq, u1 will become a very huge value.
23220 		 * So the comparison will fail.  Also note that tcp_urp
23221 		 * should be positive, see RFC 793 page 17.
23222 		 */
23223 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23224 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23225 		    u1 < (uint32_t)(64 * 1024)) {
23226 			flags |= TH_URG;
23227 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23228 			U32_TO_ABE16(u1, tcph->th_urp);
23229 		}
23230 	}
23231 	tcph->th_flags[0] = (uchar_t)flags;
23232 	tcp->tcp_rack = tcp->tcp_rnxt;
23233 	tcp->tcp_rack_cnt = 0;
23234 
23235 	if (tcp->tcp_snd_ts_ok) {
23236 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23237 			uint32_t llbolt = (uint32_t)lbolt;
23238 
23239 			U32_TO_BE32(llbolt,
23240 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23241 			U32_TO_BE32(tcp->tcp_ts_recent,
23242 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23243 		}
23244 	}
23245 
23246 	if (num_sack_blk > 0) {
23247 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23248 		sack_blk_t *tmp;
23249 		int32_t	i;
23250 
23251 		wptr[0] = TCPOPT_NOP;
23252 		wptr[1] = TCPOPT_NOP;
23253 		wptr[2] = TCPOPT_SACK;
23254 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23255 		    sizeof (sack_blk_t);
23256 		wptr += TCPOPT_REAL_SACK_LEN;
23257 
23258 		tmp = tcp->tcp_sack_list;
23259 		for (i = 0; i < num_sack_blk; i++) {
23260 			U32_TO_BE32(tmp[i].begin, wptr);
23261 			wptr += sizeof (tcp_seq);
23262 			U32_TO_BE32(tmp[i].end, wptr);
23263 			wptr += sizeof (tcp_seq);
23264 		}
23265 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23266 	}
23267 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23268 	data_length += (int)(mp1->b_wptr - rptr);
23269 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23270 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23271 	} else {
23272 		ip6_t *ip6 = (ip6_t *)(rptr +
23273 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23274 		    sizeof (ip6i_t) : 0));
23275 
23276 		ip6->ip6_plen = htons(data_length -
23277 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23278 	}
23279 
23280 	/*
23281 	 * Prime pump for IP
23282 	 * Include the adjustment for a source route if any.
23283 	 */
23284 	data_length -= tcp->tcp_ip_hdr_len;
23285 	data_length += tcp->tcp_sum;
23286 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23287 	U16_TO_ABE16(data_length, tcph->th_sum);
23288 	if (tcp->tcp_ip_forward_progress) {
23289 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23290 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23291 		tcp->tcp_ip_forward_progress = B_FALSE;
23292 	}
23293 	return (mp1);
23294 }
23295 
23296 /* This function handles the push timeout. */
23297 void
23298 tcp_push_timer(void *arg)
23299 {
23300 	conn_t	*connp = (conn_t *)arg;
23301 	tcp_t *tcp = connp->conn_tcp;
23302 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23303 
23304 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23305 
23306 	ASSERT(tcp->tcp_listener == NULL);
23307 
23308 	/*
23309 	 * We need to plug synchronous streams during our drain to prevent
23310 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23311 	 */
23312 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23313 	tcp->tcp_push_tid = 0;
23314 	if ((tcp->tcp_rcv_list != NULL) &&
23315 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23316 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23317 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23318 }
23319 
23320 /*
23321  * This function handles delayed ACK timeout.
23322  */
23323 static void
23324 tcp_ack_timer(void *arg)
23325 {
23326 	conn_t	*connp = (conn_t *)arg;
23327 	tcp_t *tcp = connp->conn_tcp;
23328 	mblk_t *mp;
23329 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23330 
23331 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23332 
23333 	tcp->tcp_ack_tid = 0;
23334 
23335 	if (tcp->tcp_fused)
23336 		return;
23337 
23338 	/*
23339 	 * Do not send ACK if there is no outstanding unack'ed data.
23340 	 */
23341 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23342 		return;
23343 	}
23344 
23345 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23346 		/*
23347 		 * Make sure we don't allow deferred ACKs to result in
23348 		 * timer-based ACKing.  If we have held off an ACK
23349 		 * when there was more than an mss here, and the timer
23350 		 * goes off, we have to worry about the possibility
23351 		 * that the sender isn't doing slow-start, or is out
23352 		 * of step with us for some other reason.  We fall
23353 		 * permanently back in the direction of
23354 		 * ACK-every-other-packet as suggested in RFC 1122.
23355 		 */
23356 		if (tcp->tcp_rack_abs_max > 2)
23357 			tcp->tcp_rack_abs_max--;
23358 		tcp->tcp_rack_cur_max = 2;
23359 	}
23360 	mp = tcp_ack_mp(tcp);
23361 
23362 	if (mp != NULL) {
23363 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23364 		BUMP_LOCAL(tcp->tcp_obsegs);
23365 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23366 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23367 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23368 	}
23369 }
23370 
23371 
23372 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23373 static mblk_t *
23374 tcp_ack_mp(tcp_t *tcp)
23375 {
23376 	uint32_t	seq_no;
23377 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23378 
23379 	/*
23380 	 * There are a few cases to be considered while setting the sequence no.
23381 	 * Essentially, we can come here while processing an unacceptable pkt
23382 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23383 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23384 	 * If we are here for a zero window probe, stick with suna. In all
23385 	 * other cases, we check if suna + swnd encompasses snxt and set
23386 	 * the sequence number to snxt, if so. If snxt falls outside the
23387 	 * window (the receiver probably shrunk its window), we will go with
23388 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23389 	 * receiver.
23390 	 */
23391 	if (tcp->tcp_zero_win_probe) {
23392 		seq_no = tcp->tcp_suna;
23393 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23394 		ASSERT(tcp->tcp_swnd == 0);
23395 		seq_no = tcp->tcp_snxt;
23396 	} else {
23397 		seq_no = SEQ_GT(tcp->tcp_snxt,
23398 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23399 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23400 	}
23401 
23402 	if (tcp->tcp_valid_bits) {
23403 		/*
23404 		 * For the complex case where we have to send some
23405 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23406 		 */
23407 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23408 		    NULL, B_FALSE));
23409 	} else {
23410 		/* Generate a simple ACK */
23411 		int	data_length;
23412 		uchar_t	*rptr;
23413 		tcph_t	*tcph;
23414 		mblk_t	*mp1;
23415 		int32_t	tcp_hdr_len;
23416 		int32_t	tcp_tcp_hdr_len;
23417 		int32_t	num_sack_blk = 0;
23418 		int32_t sack_opt_len;
23419 
23420 		/*
23421 		 * Allocate space for TCP + IP headers
23422 		 * and link-level header
23423 		 */
23424 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23425 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23426 			    tcp->tcp_num_sack_blk);
23427 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23428 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23429 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23430 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23431 		} else {
23432 			tcp_hdr_len = tcp->tcp_hdr_len;
23433 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23434 		}
23435 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23436 		if (!mp1)
23437 			return (NULL);
23438 
23439 		/* Update the latest receive window size in TCP header. */
23440 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23441 		    tcp->tcp_tcph->th_win);
23442 		/* copy in prototype TCP + IP header */
23443 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23444 		mp1->b_rptr = rptr;
23445 		mp1->b_wptr = rptr + tcp_hdr_len;
23446 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23447 
23448 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23449 
23450 		/* Set the TCP sequence number. */
23451 		U32_TO_ABE32(seq_no, tcph->th_seq);
23452 
23453 		/* Set up the TCP flag field. */
23454 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23455 		if (tcp->tcp_ecn_echo_on)
23456 			tcph->th_flags[0] |= TH_ECE;
23457 
23458 		tcp->tcp_rack = tcp->tcp_rnxt;
23459 		tcp->tcp_rack_cnt = 0;
23460 
23461 		/* fill in timestamp option if in use */
23462 		if (tcp->tcp_snd_ts_ok) {
23463 			uint32_t llbolt = (uint32_t)lbolt;
23464 
23465 			U32_TO_BE32(llbolt,
23466 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23467 			U32_TO_BE32(tcp->tcp_ts_recent,
23468 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23469 		}
23470 
23471 		/* Fill in SACK options */
23472 		if (num_sack_blk > 0) {
23473 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23474 			sack_blk_t *tmp;
23475 			int32_t	i;
23476 
23477 			wptr[0] = TCPOPT_NOP;
23478 			wptr[1] = TCPOPT_NOP;
23479 			wptr[2] = TCPOPT_SACK;
23480 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23481 			    sizeof (sack_blk_t);
23482 			wptr += TCPOPT_REAL_SACK_LEN;
23483 
23484 			tmp = tcp->tcp_sack_list;
23485 			for (i = 0; i < num_sack_blk; i++) {
23486 				U32_TO_BE32(tmp[i].begin, wptr);
23487 				wptr += sizeof (tcp_seq);
23488 				U32_TO_BE32(tmp[i].end, wptr);
23489 				wptr += sizeof (tcp_seq);
23490 			}
23491 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23492 			    << 4);
23493 		}
23494 
23495 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23496 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23497 		} else {
23498 			/* Check for ip6i_t header in sticky hdrs */
23499 			ip6_t *ip6 = (ip6_t *)(rptr +
23500 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23501 			    sizeof (ip6i_t) : 0));
23502 
23503 			ip6->ip6_plen = htons(tcp_hdr_len -
23504 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23505 		}
23506 
23507 		/*
23508 		 * Prime pump for checksum calculation in IP.  Include the
23509 		 * adjustment for a source route if any.
23510 		 */
23511 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23512 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23513 		U16_TO_ABE16(data_length, tcph->th_sum);
23514 
23515 		if (tcp->tcp_ip_forward_progress) {
23516 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23517 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23518 			tcp->tcp_ip_forward_progress = B_FALSE;
23519 		}
23520 		return (mp1);
23521 	}
23522 }
23523 
23524 /*
23525  * To create a temporary tcp structure for inserting into bind hash list.
23526  * The parameter is assumed to be in network byte order, ready for use.
23527  */
23528 /* ARGSUSED */
23529 static tcp_t *
23530 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23531 {
23532 	conn_t	*connp;
23533 	tcp_t	*tcp;
23534 
23535 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23536 	if (connp == NULL)
23537 		return (NULL);
23538 
23539 	tcp = connp->conn_tcp;
23540 	tcp->tcp_tcps = tcps;
23541 	TCPS_REFHOLD(tcps);
23542 
23543 	/*
23544 	 * Only initialize the necessary info in those structures.  Note
23545 	 * that since INADDR_ANY is all 0, we do not need to set
23546 	 * tcp_bound_source to INADDR_ANY here.
23547 	 */
23548 	tcp->tcp_state = TCPS_BOUND;
23549 	tcp->tcp_lport = port;
23550 	tcp->tcp_exclbind = 1;
23551 	tcp->tcp_reserved_port = 1;
23552 
23553 	/* Just for place holding... */
23554 	tcp->tcp_ipversion = IPV4_VERSION;
23555 
23556 	return (tcp);
23557 }
23558 
23559 /*
23560  * To remove a port range specified by lo_port and hi_port from the
23561  * reserved port ranges.  This is one of the three public functions of
23562  * the reserved port interface.  Note that a port range has to be removed
23563  * as a whole.  Ports in a range cannot be removed individually.
23564  *
23565  * Params:
23566  *	in_port_t lo_port: the beginning port of the reserved port range to
23567  *		be deleted.
23568  *	in_port_t hi_port: the ending port of the reserved port range to
23569  *		be deleted.
23570  *
23571  * Return:
23572  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23573  *
23574  * Assumes that nca is only for zoneid=0
23575  */
23576 boolean_t
23577 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23578 {
23579 	int	i, j;
23580 	int	size;
23581 	tcp_t	**temp_tcp_array;
23582 	tcp_t	*tcp;
23583 	tcp_stack_t	*tcps;
23584 
23585 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23586 	ASSERT(tcps != NULL);
23587 
23588 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23589 
23590 	/* First make sure that the port ranage is indeed reserved. */
23591 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23592 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23593 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23594 			temp_tcp_array =
23595 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23596 			break;
23597 		}
23598 	}
23599 	if (i == tcps->tcps_reserved_port_array_size) {
23600 		rw_exit(&tcps->tcps_reserved_port_lock);
23601 		netstack_rele(tcps->tcps_netstack);
23602 		return (B_FALSE);
23603 	}
23604 
23605 	/*
23606 	 * Remove the range from the array.  This simple loop is possible
23607 	 * because port ranges are inserted in ascending order.
23608 	 */
23609 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23610 		tcps->tcps_reserved_port[j].lo_port =
23611 		    tcps->tcps_reserved_port[j+1].lo_port;
23612 		tcps->tcps_reserved_port[j].hi_port =
23613 		    tcps->tcps_reserved_port[j+1].hi_port;
23614 		tcps->tcps_reserved_port[j].temp_tcp_array =
23615 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23616 	}
23617 
23618 	/* Remove all the temporary tcp structures. */
23619 	size = hi_port - lo_port + 1;
23620 	while (size > 0) {
23621 		tcp = temp_tcp_array[size - 1];
23622 		ASSERT(tcp != NULL);
23623 		tcp_bind_hash_remove(tcp);
23624 		CONN_DEC_REF(tcp->tcp_connp);
23625 		size--;
23626 	}
23627 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23628 	tcps->tcps_reserved_port_array_size--;
23629 	rw_exit(&tcps->tcps_reserved_port_lock);
23630 	netstack_rele(tcps->tcps_netstack);
23631 	return (B_TRUE);
23632 }
23633 
23634 /*
23635  * Macro to remove temporary tcp structure from the bind hash list.  The
23636  * first parameter is the list of tcp to be removed.  The second parameter
23637  * is the number of tcps in the array.
23638  */
23639 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23640 { \
23641 	while ((num) > 0) { \
23642 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23643 		tf_t *tbf; \
23644 		tcp_t *tcpnext; \
23645 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23646 		mutex_enter(&tbf->tf_lock); \
23647 		tcpnext = tcp->tcp_bind_hash; \
23648 		if (tcpnext) { \
23649 			tcpnext->tcp_ptpbhn = \
23650 				tcp->tcp_ptpbhn; \
23651 		} \
23652 		*tcp->tcp_ptpbhn = tcpnext; \
23653 		mutex_exit(&tbf->tf_lock); \
23654 		kmem_free(tcp, sizeof (tcp_t)); \
23655 		(tcp_array)[(num) - 1] = NULL; \
23656 		(num)--; \
23657 	} \
23658 }
23659 
23660 /*
23661  * The public interface for other modules to call to reserve a port range
23662  * in TCP.  The caller passes in how large a port range it wants.  TCP
23663  * will try to find a range and return it via lo_port and hi_port.  This is
23664  * used by NCA's nca_conn_init.
23665  * NCA can only be used in the global zone so this only affects the global
23666  * zone's ports.
23667  *
23668  * Params:
23669  *	int size: the size of the port range to be reserved.
23670  *	in_port_t *lo_port (referenced): returns the beginning port of the
23671  *		reserved port range added.
23672  *	in_port_t *hi_port (referenced): returns the ending port of the
23673  *		reserved port range added.
23674  *
23675  * Return:
23676  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23677  *
23678  * Assumes that nca is only for zoneid=0
23679  */
23680 boolean_t
23681 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23682 {
23683 	tcp_t		*tcp;
23684 	tcp_t		*tmp_tcp;
23685 	tcp_t		**temp_tcp_array;
23686 	tf_t		*tbf;
23687 	in_port_t	net_port;
23688 	in_port_t	port;
23689 	int32_t		cur_size;
23690 	int		i, j;
23691 	boolean_t	used;
23692 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23693 	zoneid_t	zoneid = GLOBAL_ZONEID;
23694 	tcp_stack_t	*tcps;
23695 
23696 	/* Sanity check. */
23697 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23698 		return (B_FALSE);
23699 	}
23700 
23701 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23702 	ASSERT(tcps != NULL);
23703 
23704 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23705 	if (tcps->tcps_reserved_port_array_size ==
23706 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23707 		rw_exit(&tcps->tcps_reserved_port_lock);
23708 		netstack_rele(tcps->tcps_netstack);
23709 		return (B_FALSE);
23710 	}
23711 
23712 	/*
23713 	 * Find the starting port to try.  Since the port ranges are ordered
23714 	 * in the reserved port array, we can do a simple search here.
23715 	 */
23716 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23717 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23718 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23719 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23720 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23721 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23722 			break;
23723 		}
23724 	}
23725 	/* No available port range. */
23726 	if (i == tcps->tcps_reserved_port_array_size &&
23727 	    *hi_port - *lo_port < size) {
23728 		rw_exit(&tcps->tcps_reserved_port_lock);
23729 		netstack_rele(tcps->tcps_netstack);
23730 		return (B_FALSE);
23731 	}
23732 
23733 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23734 	if (temp_tcp_array == NULL) {
23735 		rw_exit(&tcps->tcps_reserved_port_lock);
23736 		netstack_rele(tcps->tcps_netstack);
23737 		return (B_FALSE);
23738 	}
23739 
23740 	/* Go thru the port range to see if some ports are already bound. */
23741 	for (port = *lo_port, cur_size = 0;
23742 	    cur_size < size && port <= *hi_port;
23743 	    cur_size++, port++) {
23744 		used = B_FALSE;
23745 		net_port = htons(port);
23746 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23747 		mutex_enter(&tbf->tf_lock);
23748 		for (tcp = tbf->tf_tcp; tcp != NULL;
23749 		    tcp = tcp->tcp_bind_hash) {
23750 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23751 			    net_port == tcp->tcp_lport) {
23752 				/*
23753 				 * A port is already bound.  Search again
23754 				 * starting from port + 1.  Release all
23755 				 * temporary tcps.
23756 				 */
23757 				mutex_exit(&tbf->tf_lock);
23758 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23759 				    tcps);
23760 				*lo_port = port + 1;
23761 				cur_size = -1;
23762 				used = B_TRUE;
23763 				break;
23764 			}
23765 		}
23766 		if (!used) {
23767 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23768 			    NULL) {
23769 				/*
23770 				 * Allocation failure.  Just fail the request.
23771 				 * Need to remove all those temporary tcp
23772 				 * structures.
23773 				 */
23774 				mutex_exit(&tbf->tf_lock);
23775 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23776 				    tcps);
23777 				rw_exit(&tcps->tcps_reserved_port_lock);
23778 				kmem_free(temp_tcp_array,
23779 				    (hi_port - lo_port + 1) *
23780 				    sizeof (tcp_t *));
23781 				netstack_rele(tcps->tcps_netstack);
23782 				return (B_FALSE);
23783 			}
23784 			temp_tcp_array[cur_size] = tmp_tcp;
23785 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23786 			mutex_exit(&tbf->tf_lock);
23787 		}
23788 	}
23789 
23790 	/*
23791 	 * The current range is not large enough.  We can actually do another
23792 	 * search if this search is done between 2 reserved port ranges.  But
23793 	 * for first release, we just stop here and return saying that no port
23794 	 * range is available.
23795 	 */
23796 	if (cur_size < size) {
23797 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23798 		rw_exit(&tcps->tcps_reserved_port_lock);
23799 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23800 		netstack_rele(tcps->tcps_netstack);
23801 		return (B_FALSE);
23802 	}
23803 	*hi_port = port - 1;
23804 
23805 	/*
23806 	 * Insert range into array in ascending order.  Since this function
23807 	 * must not be called often, we choose to use the simplest method.
23808 	 * The above array should not consume excessive stack space as
23809 	 * the size must be very small.  If in future releases, we find
23810 	 * that we should provide more reserved port ranges, this function
23811 	 * has to be modified to be more efficient.
23812 	 */
23813 	if (tcps->tcps_reserved_port_array_size == 0) {
23814 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23815 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23816 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23817 	} else {
23818 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23819 		    i++, j++) {
23820 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23821 			    i == j) {
23822 				tmp_ports[j].lo_port = *lo_port;
23823 				tmp_ports[j].hi_port = *hi_port;
23824 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23825 				j++;
23826 			}
23827 			tmp_ports[j].lo_port =
23828 			    tcps->tcps_reserved_port[i].lo_port;
23829 			tmp_ports[j].hi_port =
23830 			    tcps->tcps_reserved_port[i].hi_port;
23831 			tmp_ports[j].temp_tcp_array =
23832 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23833 		}
23834 		if (j == i) {
23835 			tmp_ports[j].lo_port = *lo_port;
23836 			tmp_ports[j].hi_port = *hi_port;
23837 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23838 		}
23839 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23840 	}
23841 	tcps->tcps_reserved_port_array_size++;
23842 	rw_exit(&tcps->tcps_reserved_port_lock);
23843 	netstack_rele(tcps->tcps_netstack);
23844 	return (B_TRUE);
23845 }
23846 
23847 /*
23848  * Check to see if a port is in any reserved port range.
23849  *
23850  * Params:
23851  *	in_port_t port: the port to be verified.
23852  *
23853  * Return:
23854  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23855  */
23856 boolean_t
23857 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23858 {
23859 	int i;
23860 
23861 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23862 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23863 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23864 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23865 			rw_exit(&tcps->tcps_reserved_port_lock);
23866 			return (B_TRUE);
23867 		}
23868 	}
23869 	rw_exit(&tcps->tcps_reserved_port_lock);
23870 	return (B_FALSE);
23871 }
23872 
23873 /*
23874  * To list all reserved port ranges.  This is the function to handle
23875  * ndd tcp_reserved_port_list.
23876  */
23877 /* ARGSUSED */
23878 static int
23879 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23880 {
23881 	int i;
23882 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23883 
23884 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23885 	if (tcps->tcps_reserved_port_array_size > 0)
23886 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23887 	else
23888 		(void) mi_mpprintf(mp, "No port is reserved.");
23889 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23890 		(void) mi_mpprintf(mp, "%d-%d",
23891 		    tcps->tcps_reserved_port[i].lo_port,
23892 		    tcps->tcps_reserved_port[i].hi_port);
23893 	}
23894 	rw_exit(&tcps->tcps_reserved_port_lock);
23895 	return (0);
23896 }
23897 
23898 /*
23899  * Hash list insertion routine for tcp_t structures.
23900  * Inserts entries with the ones bound to a specific IP address first
23901  * followed by those bound to INADDR_ANY.
23902  */
23903 static void
23904 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23905 {
23906 	tcp_t	**tcpp;
23907 	tcp_t	*tcpnext;
23908 
23909 	if (tcp->tcp_ptpbhn != NULL) {
23910 		ASSERT(!caller_holds_lock);
23911 		tcp_bind_hash_remove(tcp);
23912 	}
23913 	tcpp = &tbf->tf_tcp;
23914 	if (!caller_holds_lock) {
23915 		mutex_enter(&tbf->tf_lock);
23916 	} else {
23917 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23918 	}
23919 	tcpnext = tcpp[0];
23920 	if (tcpnext) {
23921 		/*
23922 		 * If the new tcp bound to the INADDR_ANY address
23923 		 * and the first one in the list is not bound to
23924 		 * INADDR_ANY we skip all entries until we find the
23925 		 * first one bound to INADDR_ANY.
23926 		 * This makes sure that applications binding to a
23927 		 * specific address get preference over those binding to
23928 		 * INADDR_ANY.
23929 		 */
23930 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23931 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23932 			while ((tcpnext = tcpp[0]) != NULL &&
23933 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23934 				tcpp = &(tcpnext->tcp_bind_hash);
23935 			if (tcpnext)
23936 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23937 		} else
23938 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23939 	}
23940 	tcp->tcp_bind_hash = tcpnext;
23941 	tcp->tcp_ptpbhn = tcpp;
23942 	tcpp[0] = tcp;
23943 	if (!caller_holds_lock)
23944 		mutex_exit(&tbf->tf_lock);
23945 }
23946 
23947 /*
23948  * Hash list removal routine for tcp_t structures.
23949  */
23950 static void
23951 tcp_bind_hash_remove(tcp_t *tcp)
23952 {
23953 	tcp_t	*tcpnext;
23954 	kmutex_t *lockp;
23955 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23956 
23957 	if (tcp->tcp_ptpbhn == NULL)
23958 		return;
23959 
23960 	/*
23961 	 * Extract the lock pointer in case there are concurrent
23962 	 * hash_remove's for this instance.
23963 	 */
23964 	ASSERT(tcp->tcp_lport != 0);
23965 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23966 
23967 	ASSERT(lockp != NULL);
23968 	mutex_enter(lockp);
23969 	if (tcp->tcp_ptpbhn) {
23970 		tcpnext = tcp->tcp_bind_hash;
23971 		if (tcpnext) {
23972 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23973 			tcp->tcp_bind_hash = NULL;
23974 		}
23975 		*tcp->tcp_ptpbhn = tcpnext;
23976 		tcp->tcp_ptpbhn = NULL;
23977 	}
23978 	mutex_exit(lockp);
23979 }
23980 
23981 
23982 /*
23983  * Hash list lookup routine for tcp_t structures.
23984  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23985  */
23986 static tcp_t *
23987 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23988 {
23989 	tf_t	*tf;
23990 	tcp_t	*tcp;
23991 
23992 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23993 	mutex_enter(&tf->tf_lock);
23994 	for (tcp = tf->tf_tcp; tcp != NULL;
23995 	    tcp = tcp->tcp_acceptor_hash) {
23996 		if (tcp->tcp_acceptor_id == id) {
23997 			CONN_INC_REF(tcp->tcp_connp);
23998 			mutex_exit(&tf->tf_lock);
23999 			return (tcp);
24000 		}
24001 	}
24002 	mutex_exit(&tf->tf_lock);
24003 	return (NULL);
24004 }
24005 
24006 
24007 /*
24008  * Hash list insertion routine for tcp_t structures.
24009  */
24010 void
24011 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24012 {
24013 	tf_t	*tf;
24014 	tcp_t	**tcpp;
24015 	tcp_t	*tcpnext;
24016 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24017 
24018 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24019 
24020 	if (tcp->tcp_ptpahn != NULL)
24021 		tcp_acceptor_hash_remove(tcp);
24022 	tcpp = &tf->tf_tcp;
24023 	mutex_enter(&tf->tf_lock);
24024 	tcpnext = tcpp[0];
24025 	if (tcpnext)
24026 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24027 	tcp->tcp_acceptor_hash = tcpnext;
24028 	tcp->tcp_ptpahn = tcpp;
24029 	tcpp[0] = tcp;
24030 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24031 	mutex_exit(&tf->tf_lock);
24032 }
24033 
24034 /*
24035  * Hash list removal routine for tcp_t structures.
24036  */
24037 static void
24038 tcp_acceptor_hash_remove(tcp_t *tcp)
24039 {
24040 	tcp_t	*tcpnext;
24041 	kmutex_t *lockp;
24042 
24043 	/*
24044 	 * Extract the lock pointer in case there are concurrent
24045 	 * hash_remove's for this instance.
24046 	 */
24047 	lockp = tcp->tcp_acceptor_lockp;
24048 
24049 	if (tcp->tcp_ptpahn == NULL)
24050 		return;
24051 
24052 	ASSERT(lockp != NULL);
24053 	mutex_enter(lockp);
24054 	if (tcp->tcp_ptpahn) {
24055 		tcpnext = tcp->tcp_acceptor_hash;
24056 		if (tcpnext) {
24057 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24058 			tcp->tcp_acceptor_hash = NULL;
24059 		}
24060 		*tcp->tcp_ptpahn = tcpnext;
24061 		tcp->tcp_ptpahn = NULL;
24062 	}
24063 	mutex_exit(lockp);
24064 	tcp->tcp_acceptor_lockp = NULL;
24065 }
24066 
24067 /* ARGSUSED */
24068 static int
24069 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24070 {
24071 	int error = 0;
24072 	int retval;
24073 	char *end;
24074 	tcp_hsp_t *hsp;
24075 	tcp_hsp_t *hspprev;
24076 	ipaddr_t addr = 0;		/* Address we're looking for */
24077 	in6_addr_t v6addr;		/* Address we're looking for */
24078 	uint32_t hash;			/* Hash of that address */
24079 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24080 
24081 	/*
24082 	 * If the following variables are still zero after parsing the input
24083 	 * string, the user didn't specify them and we don't change them in
24084 	 * the HSP.
24085 	 */
24086 
24087 	ipaddr_t mask = 0;		/* Subnet mask */
24088 	in6_addr_t v6mask;
24089 	long sendspace = 0;		/* Send buffer size */
24090 	long recvspace = 0;		/* Receive buffer size */
24091 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24092 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24093 
24094 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24095 
24096 	/* Parse and validate address */
24097 	if (af == AF_INET) {
24098 		retval = inet_pton(af, value, &addr);
24099 		if (retval == 1)
24100 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24101 	} else if (af == AF_INET6) {
24102 		retval = inet_pton(af, value, &v6addr);
24103 	} else {
24104 		error = EINVAL;
24105 		goto done;
24106 	}
24107 	if (retval == 0) {
24108 		error = EINVAL;
24109 		goto done;
24110 	}
24111 
24112 	while ((*value) && *value != ' ')
24113 		value++;
24114 
24115 	/* Parse individual keywords, set variables if found */
24116 	while (*value) {
24117 		/* Skip leading blanks */
24118 
24119 		while (*value == ' ' || *value == '\t')
24120 			value++;
24121 
24122 		/* If at end of string, we're done */
24123 
24124 		if (!*value)
24125 			break;
24126 
24127 		/* We have a word, figure out what it is */
24128 
24129 		if (strncmp("mask", value, 4) == 0) {
24130 			value += 4;
24131 			while (*value == ' ' || *value == '\t')
24132 				value++;
24133 			/* Parse subnet mask */
24134 			if (af == AF_INET) {
24135 				retval = inet_pton(af, value, &mask);
24136 				if (retval == 1) {
24137 					V4MASK_TO_V6(mask, v6mask);
24138 				}
24139 			} else if (af == AF_INET6) {
24140 				retval = inet_pton(af, value, &v6mask);
24141 			}
24142 			if (retval != 1) {
24143 				error = EINVAL;
24144 				goto done;
24145 			}
24146 			while ((*value) && *value != ' ')
24147 				value++;
24148 		} else if (strncmp("sendspace", value, 9) == 0) {
24149 			value += 9;
24150 
24151 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24152 			    sendspace < TCP_XMIT_HIWATER ||
24153 			    sendspace >= (1L<<30)) {
24154 				error = EINVAL;
24155 				goto done;
24156 			}
24157 			value = end;
24158 		} else if (strncmp("recvspace", value, 9) == 0) {
24159 			value += 9;
24160 
24161 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24162 			    recvspace < TCP_RECV_HIWATER ||
24163 			    recvspace >= (1L<<30)) {
24164 				error = EINVAL;
24165 				goto done;
24166 			}
24167 			value = end;
24168 		} else if (strncmp("timestamp", value, 9) == 0) {
24169 			value += 9;
24170 
24171 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24172 			    timestamp < 0 || timestamp > 1) {
24173 				error = EINVAL;
24174 				goto done;
24175 			}
24176 
24177 			/*
24178 			 * We increment timestamp so we know it's been set;
24179 			 * this is undone when we put it in the HSP
24180 			 */
24181 			timestamp++;
24182 			value = end;
24183 		} else if (strncmp("delete", value, 6) == 0) {
24184 			value += 6;
24185 			delete = B_TRUE;
24186 		} else {
24187 			error = EINVAL;
24188 			goto done;
24189 		}
24190 	}
24191 
24192 	/* Hash address for lookup */
24193 
24194 	hash = TCP_HSP_HASH(addr);
24195 
24196 	if (delete) {
24197 		/*
24198 		 * Note that deletes don't return an error if the thing
24199 		 * we're trying to delete isn't there.
24200 		 */
24201 		if (tcps->tcps_hsp_hash == NULL)
24202 			goto done;
24203 		hsp = tcps->tcps_hsp_hash[hash];
24204 
24205 		if (hsp) {
24206 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24207 			    &v6addr)) {
24208 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24209 				mi_free((char *)hsp);
24210 			} else {
24211 				hspprev = hsp;
24212 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24213 					if (IN6_ARE_ADDR_EQUAL(
24214 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24215 						hspprev->tcp_hsp_next =
24216 						    hsp->tcp_hsp_next;
24217 						mi_free((char *)hsp);
24218 						break;
24219 					}
24220 					hspprev = hsp;
24221 				}
24222 			}
24223 		}
24224 	} else {
24225 		/*
24226 		 * We're adding/modifying an HSP.  If we haven't already done
24227 		 * so, allocate the hash table.
24228 		 */
24229 
24230 		if (!tcps->tcps_hsp_hash) {
24231 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24232 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24233 			if (!tcps->tcps_hsp_hash) {
24234 				error = EINVAL;
24235 				goto done;
24236 			}
24237 		}
24238 
24239 		/* Get head of hash chain */
24240 
24241 		hsp = tcps->tcps_hsp_hash[hash];
24242 
24243 		/* Try to find pre-existing hsp on hash chain */
24244 		/* Doesn't handle CIDR prefixes. */
24245 		while (hsp) {
24246 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24247 				break;
24248 			hsp = hsp->tcp_hsp_next;
24249 		}
24250 
24251 		/*
24252 		 * If we didn't, create one with default values and put it
24253 		 * at head of hash chain
24254 		 */
24255 
24256 		if (!hsp) {
24257 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24258 			if (!hsp) {
24259 				error = EINVAL;
24260 				goto done;
24261 			}
24262 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24263 			tcps->tcps_hsp_hash[hash] = hsp;
24264 		}
24265 
24266 		/* Set values that the user asked us to change */
24267 
24268 		hsp->tcp_hsp_addr_v6 = v6addr;
24269 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24270 			hsp->tcp_hsp_vers = IPV4_VERSION;
24271 		else
24272 			hsp->tcp_hsp_vers = IPV6_VERSION;
24273 		hsp->tcp_hsp_subnet_v6 = v6mask;
24274 		if (sendspace > 0)
24275 			hsp->tcp_hsp_sendspace = sendspace;
24276 		if (recvspace > 0)
24277 			hsp->tcp_hsp_recvspace = recvspace;
24278 		if (timestamp > 0)
24279 			hsp->tcp_hsp_tstamp = timestamp - 1;
24280 	}
24281 
24282 done:
24283 	rw_exit(&tcps->tcps_hsp_lock);
24284 	return (error);
24285 }
24286 
24287 /* Set callback routine passed to nd_load by tcp_param_register. */
24288 /* ARGSUSED */
24289 static int
24290 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24291 {
24292 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24293 }
24294 /* ARGSUSED */
24295 static int
24296 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24297     cred_t *cr)
24298 {
24299 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24300 }
24301 
24302 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24303 /* ARGSUSED */
24304 static int
24305 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24306 {
24307 	tcp_hsp_t *hsp;
24308 	int i;
24309 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24310 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24311 
24312 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24313 	(void) mi_mpprintf(mp,
24314 	    "Hash HSP     " MI_COL_HDRPAD_STR
24315 	    "Address         Subnet Mask     Send       Receive    TStamp");
24316 	if (tcps->tcps_hsp_hash) {
24317 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24318 			hsp = tcps->tcps_hsp_hash[i];
24319 			while (hsp) {
24320 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24321 					(void) inet_ntop(AF_INET,
24322 					    &hsp->tcp_hsp_addr,
24323 					    addrbuf, sizeof (addrbuf));
24324 					(void) inet_ntop(AF_INET,
24325 					    &hsp->tcp_hsp_subnet,
24326 					    subnetbuf, sizeof (subnetbuf));
24327 				} else {
24328 					(void) inet_ntop(AF_INET6,
24329 					    &hsp->tcp_hsp_addr_v6,
24330 					    addrbuf, sizeof (addrbuf));
24331 					(void) inet_ntop(AF_INET6,
24332 					    &hsp->tcp_hsp_subnet_v6,
24333 					    subnetbuf, sizeof (subnetbuf));
24334 				}
24335 				(void) mi_mpprintf(mp,
24336 				    " %03d " MI_COL_PTRFMT_STR
24337 				    "%s %s %010d %010d      %d",
24338 				    i,
24339 				    (void *)hsp,
24340 				    addrbuf,
24341 				    subnetbuf,
24342 				    hsp->tcp_hsp_sendspace,
24343 				    hsp->tcp_hsp_recvspace,
24344 				    hsp->tcp_hsp_tstamp);
24345 
24346 				hsp = hsp->tcp_hsp_next;
24347 			}
24348 		}
24349 	}
24350 	rw_exit(&tcps->tcps_hsp_lock);
24351 	return (0);
24352 }
24353 
24354 
24355 /* Data for fast netmask macro used by tcp_hsp_lookup */
24356 
24357 static ipaddr_t netmasks[] = {
24358 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24359 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24360 };
24361 
24362 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24363 
24364 /*
24365  * XXX This routine should go away and instead we should use the metrics
24366  * associated with the routes to determine the default sndspace and rcvspace.
24367  */
24368 static tcp_hsp_t *
24369 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24370 {
24371 	tcp_hsp_t *hsp = NULL;
24372 
24373 	/* Quick check without acquiring the lock. */
24374 	if (tcps->tcps_hsp_hash == NULL)
24375 		return (NULL);
24376 
24377 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24378 
24379 	/* This routine finds the best-matching HSP for address addr. */
24380 
24381 	if (tcps->tcps_hsp_hash) {
24382 		int i;
24383 		ipaddr_t srchaddr;
24384 		tcp_hsp_t *hsp_net;
24385 
24386 		/* We do three passes: host, network, and subnet. */
24387 
24388 		srchaddr = addr;
24389 
24390 		for (i = 1; i <= 3; i++) {
24391 			/* Look for exact match on srchaddr */
24392 
24393 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24394 			while (hsp) {
24395 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24396 				    hsp->tcp_hsp_addr == srchaddr)
24397 					break;
24398 				hsp = hsp->tcp_hsp_next;
24399 			}
24400 			ASSERT(hsp == NULL ||
24401 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24402 
24403 			/*
24404 			 * If this is the first pass:
24405 			 *   If we found a match, great, return it.
24406 			 *   If not, search for the network on the second pass.
24407 			 */
24408 
24409 			if (i == 1)
24410 				if (hsp)
24411 					break;
24412 				else
24413 				{
24414 					srchaddr = addr & netmask(addr);
24415 					continue;
24416 				}
24417 
24418 			/*
24419 			 * If this is the second pass:
24420 			 *   If we found a match, but there's a subnet mask,
24421 			 *    save the match but try again using the subnet
24422 			 *    mask on the third pass.
24423 			 *   Otherwise, return whatever we found.
24424 			 */
24425 
24426 			if (i == 2) {
24427 				if (hsp && hsp->tcp_hsp_subnet) {
24428 					hsp_net = hsp;
24429 					srchaddr = addr & hsp->tcp_hsp_subnet;
24430 					continue;
24431 				} else {
24432 					break;
24433 				}
24434 			}
24435 
24436 			/*
24437 			 * This must be the third pass.  If we didn't find
24438 			 * anything, return the saved network HSP instead.
24439 			 */
24440 
24441 			if (!hsp)
24442 				hsp = hsp_net;
24443 		}
24444 	}
24445 
24446 	rw_exit(&tcps->tcps_hsp_lock);
24447 	return (hsp);
24448 }
24449 
24450 /*
24451  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24452  * match lookup.
24453  */
24454 static tcp_hsp_t *
24455 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24456 {
24457 	tcp_hsp_t *hsp = NULL;
24458 
24459 	/* Quick check without acquiring the lock. */
24460 	if (tcps->tcps_hsp_hash == NULL)
24461 		return (NULL);
24462 
24463 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24464 
24465 	/* This routine finds the best-matching HSP for address addr. */
24466 
24467 	if (tcps->tcps_hsp_hash) {
24468 		int i;
24469 		in6_addr_t v6srchaddr;
24470 		tcp_hsp_t *hsp_net;
24471 
24472 		/* We do three passes: host, network, and subnet. */
24473 
24474 		v6srchaddr = *v6addr;
24475 
24476 		for (i = 1; i <= 3; i++) {
24477 			/* Look for exact match on srchaddr */
24478 
24479 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24480 			    V4_PART_OF_V6(v6srchaddr))];
24481 			while (hsp) {
24482 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24483 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24484 				    &v6srchaddr))
24485 					break;
24486 				hsp = hsp->tcp_hsp_next;
24487 			}
24488 
24489 			/*
24490 			 * If this is the first pass:
24491 			 *   If we found a match, great, return it.
24492 			 *   If not, search for the network on the second pass.
24493 			 */
24494 
24495 			if (i == 1)
24496 				if (hsp)
24497 					break;
24498 				else {
24499 					/* Assume a 64 bit mask */
24500 					v6srchaddr.s6_addr32[0] =
24501 					    v6addr->s6_addr32[0];
24502 					v6srchaddr.s6_addr32[1] =
24503 					    v6addr->s6_addr32[1];
24504 					v6srchaddr.s6_addr32[2] = 0;
24505 					v6srchaddr.s6_addr32[3] = 0;
24506 					continue;
24507 				}
24508 
24509 			/*
24510 			 * If this is the second pass:
24511 			 *   If we found a match, but there's a subnet mask,
24512 			 *    save the match but try again using the subnet
24513 			 *    mask on the third pass.
24514 			 *   Otherwise, return whatever we found.
24515 			 */
24516 
24517 			if (i == 2) {
24518 				ASSERT(hsp == NULL ||
24519 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24520 				if (hsp &&
24521 				    !IN6_IS_ADDR_UNSPECIFIED(
24522 				    &hsp->tcp_hsp_subnet_v6)) {
24523 					hsp_net = hsp;
24524 					V6_MASK_COPY(*v6addr,
24525 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24526 					continue;
24527 				} else {
24528 					break;
24529 				}
24530 			}
24531 
24532 			/*
24533 			 * This must be the third pass.  If we didn't find
24534 			 * anything, return the saved network HSP instead.
24535 			 */
24536 
24537 			if (!hsp)
24538 				hsp = hsp_net;
24539 		}
24540 	}
24541 
24542 	rw_exit(&tcps->tcps_hsp_lock);
24543 	return (hsp);
24544 }
24545 
24546 /*
24547  * Type three generator adapted from the random() function in 4.4 BSD:
24548  */
24549 
24550 /*
24551  * Copyright (c) 1983, 1993
24552  *	The Regents of the University of California.  All rights reserved.
24553  *
24554  * Redistribution and use in source and binary forms, with or without
24555  * modification, are permitted provided that the following conditions
24556  * are met:
24557  * 1. Redistributions of source code must retain the above copyright
24558  *    notice, this list of conditions and the following disclaimer.
24559  * 2. Redistributions in binary form must reproduce the above copyright
24560  *    notice, this list of conditions and the following disclaimer in the
24561  *    documentation and/or other materials provided with the distribution.
24562  * 3. All advertising materials mentioning features or use of this software
24563  *    must display the following acknowledgement:
24564  *	This product includes software developed by the University of
24565  *	California, Berkeley and its contributors.
24566  * 4. Neither the name of the University nor the names of its contributors
24567  *    may be used to endorse or promote products derived from this software
24568  *    without specific prior written permission.
24569  *
24570  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24571  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24572  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24573  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24574  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24575  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24576  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24577  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24578  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24579  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24580  * SUCH DAMAGE.
24581  */
24582 
24583 /* Type 3 -- x**31 + x**3 + 1 */
24584 #define	DEG_3		31
24585 #define	SEP_3		3
24586 
24587 
24588 /* Protected by tcp_random_lock */
24589 static int tcp_randtbl[DEG_3 + 1];
24590 
24591 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24592 static int *tcp_random_rptr = &tcp_randtbl[1];
24593 
24594 static int *tcp_random_state = &tcp_randtbl[1];
24595 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24596 
24597 kmutex_t tcp_random_lock;
24598 
24599 void
24600 tcp_random_init(void)
24601 {
24602 	int i;
24603 	hrtime_t hrt;
24604 	time_t wallclock;
24605 	uint64_t result;
24606 
24607 	/*
24608 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24609 	 * a longlong, which may contain resolution down to nanoseconds.
24610 	 * The current time will either be a 32-bit or a 64-bit quantity.
24611 	 * XOR the two together in a 64-bit result variable.
24612 	 * Convert the result to a 32-bit value by multiplying the high-order
24613 	 * 32-bits by the low-order 32-bits.
24614 	 */
24615 
24616 	hrt = gethrtime();
24617 	(void) drv_getparm(TIME, &wallclock);
24618 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24619 	mutex_enter(&tcp_random_lock);
24620 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24621 	    (result & 0xffffffff);
24622 
24623 	for (i = 1; i < DEG_3; i++)
24624 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24625 		    + 12345;
24626 	tcp_random_fptr = &tcp_random_state[SEP_3];
24627 	tcp_random_rptr = &tcp_random_state[0];
24628 	mutex_exit(&tcp_random_lock);
24629 	for (i = 0; i < 10 * DEG_3; i++)
24630 		(void) tcp_random();
24631 }
24632 
24633 /*
24634  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24635  * This range is selected to be approximately centered on TCP_ISS / 2,
24636  * and easy to compute. We get this value by generating a 32-bit random
24637  * number, selecting out the high-order 17 bits, and then adding one so
24638  * that we never return zero.
24639  */
24640 int
24641 tcp_random(void)
24642 {
24643 	int i;
24644 
24645 	mutex_enter(&tcp_random_lock);
24646 	*tcp_random_fptr += *tcp_random_rptr;
24647 
24648 	/*
24649 	 * The high-order bits are more random than the low-order bits,
24650 	 * so we select out the high-order 17 bits and add one so that
24651 	 * we never return zero.
24652 	 */
24653 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24654 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24655 		tcp_random_fptr = tcp_random_state;
24656 		++tcp_random_rptr;
24657 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24658 		tcp_random_rptr = tcp_random_state;
24659 
24660 	mutex_exit(&tcp_random_lock);
24661 	return (i);
24662 }
24663 
24664 /*
24665  * XXX This will go away when TPI is extended to send
24666  * info reqs to sockfs/timod .....
24667  * Given a queue, set the max packet size for the write
24668  * side of the queue below stream head.  This value is
24669  * cached on the stream head.
24670  * Returns 1 on success, 0 otherwise.
24671  */
24672 static int
24673 setmaxps(queue_t *q, int maxpsz)
24674 {
24675 	struct stdata	*stp;
24676 	queue_t		*wq;
24677 	stp = STREAM(q);
24678 
24679 	/*
24680 	 * At this point change of a queue parameter is not allowed
24681 	 * when a multiplexor is sitting on top.
24682 	 */
24683 	if (stp->sd_flag & STPLEX)
24684 		return (0);
24685 
24686 	claimstr(stp->sd_wrq);
24687 	wq = stp->sd_wrq->q_next;
24688 	ASSERT(wq != NULL);
24689 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24690 	releasestr(stp->sd_wrq);
24691 	return (1);
24692 }
24693 
24694 static int
24695 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24696     int *t_errorp, int *sys_errorp)
24697 {
24698 	int error;
24699 	int is_absreq_failure;
24700 	t_scalar_t *opt_lenp;
24701 	t_scalar_t opt_offset;
24702 	int prim_type;
24703 	struct T_conn_req *tcreqp;
24704 	struct T_conn_res *tcresp;
24705 	cred_t *cr;
24706 
24707 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24708 
24709 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24710 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24711 	    prim_type == T_CONN_RES);
24712 
24713 	switch (prim_type) {
24714 	case T_CONN_REQ:
24715 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24716 		opt_offset = tcreqp->OPT_offset;
24717 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24718 		break;
24719 	case O_T_CONN_RES:
24720 	case T_CONN_RES:
24721 		tcresp = (struct T_conn_res *)mp->b_rptr;
24722 		opt_offset = tcresp->OPT_offset;
24723 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24724 		break;
24725 	}
24726 
24727 	*t_errorp = 0;
24728 	*sys_errorp = 0;
24729 	*do_disconnectp = 0;
24730 
24731 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24732 	    opt_offset, cr, &tcp_opt_obj,
24733 	    NULL, &is_absreq_failure);
24734 
24735 	switch (error) {
24736 	case  0:		/* no error */
24737 		ASSERT(is_absreq_failure == 0);
24738 		return (0);
24739 	case ENOPROTOOPT:
24740 		*t_errorp = TBADOPT;
24741 		break;
24742 	case EACCES:
24743 		*t_errorp = TACCES;
24744 		break;
24745 	default:
24746 		*t_errorp = TSYSERR; *sys_errorp = error;
24747 		break;
24748 	}
24749 	if (is_absreq_failure != 0) {
24750 		/*
24751 		 * The connection request should get the local ack
24752 		 * T_OK_ACK and then a T_DISCON_IND.
24753 		 */
24754 		*do_disconnectp = 1;
24755 	}
24756 	return (-1);
24757 }
24758 
24759 /*
24760  * Split this function out so that if the secret changes, I'm okay.
24761  *
24762  * Initialize the tcp_iss_cookie and tcp_iss_key.
24763  */
24764 
24765 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24766 
24767 static void
24768 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24769 {
24770 	struct {
24771 		int32_t current_time;
24772 		uint32_t randnum;
24773 		uint16_t pad;
24774 		uint8_t ether[6];
24775 		uint8_t passwd[PASSWD_SIZE];
24776 	} tcp_iss_cookie;
24777 	time_t t;
24778 
24779 	/*
24780 	 * Start with the current absolute time.
24781 	 */
24782 	(void) drv_getparm(TIME, &t);
24783 	tcp_iss_cookie.current_time = t;
24784 
24785 	/*
24786 	 * XXX - Need a more random number per RFC 1750, not this crap.
24787 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24788 	 */
24789 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24790 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24791 
24792 	/*
24793 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24794 	 * as a good template.
24795 	 */
24796 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24797 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24798 
24799 	/*
24800 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24801 	 */
24802 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24803 
24804 	/*
24805 	 * See 4010593 if this section becomes a problem again,
24806 	 * but the local ethernet address is useful here.
24807 	 */
24808 	(void) localetheraddr(NULL,
24809 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24810 
24811 	/*
24812 	 * Hash 'em all together.  The MD5Final is called per-connection.
24813 	 */
24814 	mutex_enter(&tcps->tcps_iss_key_lock);
24815 	MD5Init(&tcps->tcps_iss_key);
24816 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24817 	    sizeof (tcp_iss_cookie));
24818 	mutex_exit(&tcps->tcps_iss_key_lock);
24819 }
24820 
24821 /*
24822  * Set the RFC 1948 pass phrase
24823  */
24824 /* ARGSUSED */
24825 static int
24826 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24827     cred_t *cr)
24828 {
24829 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24830 
24831 	/*
24832 	 * Basically, value contains a new pass phrase.  Pass it along!
24833 	 */
24834 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24835 	return (0);
24836 }
24837 
24838 /* ARGSUSED */
24839 static int
24840 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24841 {
24842 	bzero(buf, sizeof (tcp_sack_info_t));
24843 	return (0);
24844 }
24845 
24846 /* ARGSUSED */
24847 static int
24848 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24849 {
24850 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24851 	return (0);
24852 }
24853 
24854 /*
24855  * Make sure we wait until the default queue is setup, yet allow
24856  * tcp_g_q_create() to open a TCP stream.
24857  * We need to allow tcp_g_q_create() do do an open
24858  * of tcp, hence we compare curhread.
24859  * All others have to wait until the tcps_g_q has been
24860  * setup.
24861  */
24862 void
24863 tcp_g_q_setup(tcp_stack_t *tcps)
24864 {
24865 	mutex_enter(&tcps->tcps_g_q_lock);
24866 	if (tcps->tcps_g_q != NULL) {
24867 		mutex_exit(&tcps->tcps_g_q_lock);
24868 		return;
24869 	}
24870 	if (tcps->tcps_g_q_creator == NULL) {
24871 		/* This thread will set it up */
24872 		tcps->tcps_g_q_creator = curthread;
24873 		mutex_exit(&tcps->tcps_g_q_lock);
24874 		tcp_g_q_create(tcps);
24875 		mutex_enter(&tcps->tcps_g_q_lock);
24876 		ASSERT(tcps->tcps_g_q_creator == curthread);
24877 		tcps->tcps_g_q_creator = NULL;
24878 		cv_signal(&tcps->tcps_g_q_cv);
24879 		ASSERT(tcps->tcps_g_q != NULL);
24880 		mutex_exit(&tcps->tcps_g_q_lock);
24881 		return;
24882 	}
24883 	/* Everybody but the creator has to wait */
24884 	if (tcps->tcps_g_q_creator != curthread) {
24885 		while (tcps->tcps_g_q == NULL)
24886 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24887 	}
24888 	mutex_exit(&tcps->tcps_g_q_lock);
24889 }
24890 
24891 major_t IP_MAJ;
24892 #define	IP	"ip"
24893 
24894 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24895 
24896 /*
24897  * Create a default tcp queue here instead of in strplumb
24898  */
24899 void
24900 tcp_g_q_create(tcp_stack_t *tcps)
24901 {
24902 	int error;
24903 	ldi_handle_t	lh = NULL;
24904 	ldi_ident_t	li = NULL;
24905 	int		rval;
24906 	cred_t		*cr;
24907 
24908 #ifdef NS_DEBUG
24909 	(void) printf("tcp_g_q_create()\n");
24910 #endif
24911 
24912 	ASSERT(tcps->tcps_g_q_creator == curthread);
24913 
24914 	error = ldi_ident_from_major(IP_MAJ, &li);
24915 	if (error) {
24916 #ifdef DEBUG
24917 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24918 		    error);
24919 #endif
24920 		return;
24921 	}
24922 
24923 	cr = zone_get_kcred(netstackid_to_zoneid(
24924 	    tcps->tcps_netstack->netstack_stackid));
24925 	ASSERT(cr != NULL);
24926 	/*
24927 	 * We set the tcp default queue to IPv6 because IPv4 falls
24928 	 * back to IPv6 when it can't find a client, but
24929 	 * IPv6 does not fall back to IPv4.
24930 	 */
24931 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24932 	if (error) {
24933 #ifdef DEBUG
24934 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24935 		    error);
24936 #endif
24937 		goto out;
24938 	}
24939 
24940 	/*
24941 	 * This ioctl causes the tcp framework to cache a pointer to
24942 	 * this stream, so we don't want to close the stream after
24943 	 * this operation.
24944 	 * Use the kernel credentials that are for the zone we're in.
24945 	 */
24946 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24947 	    (intptr_t)0, FKIOCTL, cr, &rval);
24948 	if (error) {
24949 #ifdef DEBUG
24950 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24951 		    "error %d\n", error);
24952 #endif
24953 		goto out;
24954 	}
24955 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24956 	lh = NULL;
24957 out:
24958 	/* Close layered handles */
24959 	if (li)
24960 		ldi_ident_release(li);
24961 	/* Keep cred around until _inactive needs it */
24962 	tcps->tcps_g_q_cr = cr;
24963 }
24964 
24965 /*
24966  * We keep tcp_g_q set until all other tcp_t's in the zone
24967  * has gone away, and then when tcp_g_q_inactive() is called
24968  * we clear it.
24969  */
24970 void
24971 tcp_g_q_destroy(tcp_stack_t *tcps)
24972 {
24973 #ifdef NS_DEBUG
24974 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24975 	    tcps->tcps_netstack->netstack_stackid);
24976 #endif
24977 
24978 	if (tcps->tcps_g_q == NULL) {
24979 		return;	/* Nothing to cleanup */
24980 	}
24981 	/*
24982 	 * Drop reference corresponding to the default queue.
24983 	 * This reference was added from tcp_open when the default queue
24984 	 * was created, hence we compensate for this extra drop in
24985 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24986 	 * the default queue was the last one to be open, in which
24987 	 * case, then tcp_g_q_inactive will be
24988 	 * called as a result of the refrele.
24989 	 */
24990 	TCPS_REFRELE(tcps);
24991 }
24992 
24993 /*
24994  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24995  * Run by tcp_q_q_inactive using a taskq.
24996  */
24997 static void
24998 tcp_g_q_close(void *arg)
24999 {
25000 	tcp_stack_t *tcps = arg;
25001 	int error;
25002 	ldi_handle_t	lh = NULL;
25003 	ldi_ident_t	li = NULL;
25004 	cred_t		*cr;
25005 
25006 #ifdef NS_DEBUG
25007 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
25008 	    tcps->tcps_netstack->netstack_stackid,
25009 	    tcps->tcps_netstack->netstack_refcnt);
25010 #endif
25011 	lh = tcps->tcps_g_q_lh;
25012 	if (lh == NULL)
25013 		return;	/* Nothing to cleanup */
25014 
25015 	ASSERT(tcps->tcps_refcnt == 1);
25016 	ASSERT(tcps->tcps_g_q != NULL);
25017 
25018 	error = ldi_ident_from_major(IP_MAJ, &li);
25019 	if (error) {
25020 #ifdef DEBUG
25021 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25022 		    error);
25023 #endif
25024 		return;
25025 	}
25026 
25027 	cr = tcps->tcps_g_q_cr;
25028 	tcps->tcps_g_q_cr = NULL;
25029 	ASSERT(cr != NULL);
25030 
25031 	/*
25032 	 * Make sure we can break the recursion when tcp_close decrements
25033 	 * the reference count causing g_q_inactive to be called again.
25034 	 */
25035 	tcps->tcps_g_q_lh = NULL;
25036 
25037 	/* close the default queue */
25038 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25039 	/*
25040 	 * At this point in time tcps and the rest of netstack_t might
25041 	 * have been deleted.
25042 	 */
25043 	tcps = NULL;
25044 
25045 	/* Close layered handles */
25046 	ldi_ident_release(li);
25047 	crfree(cr);
25048 }
25049 
25050 /*
25051  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25052  *
25053  * Have to ensure that the ldi routines are not used by an
25054  * interrupt thread by using a taskq.
25055  */
25056 void
25057 tcp_g_q_inactive(tcp_stack_t *tcps)
25058 {
25059 	if (tcps->tcps_g_q_lh == NULL)
25060 		return;	/* Nothing to cleanup */
25061 
25062 	ASSERT(tcps->tcps_refcnt == 0);
25063 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25064 
25065 	if (servicing_interrupt()) {
25066 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25067 		    (void *) tcps, TQ_SLEEP);
25068 	} else {
25069 		tcp_g_q_close(tcps);
25070 	}
25071 }
25072 
25073 /*
25074  * Called by IP when IP is loaded into the kernel
25075  */
25076 void
25077 tcp_ddi_g_init(void)
25078 {
25079 	IP_MAJ = ddi_name_to_major(IP);
25080 
25081 	tcp_timercache = kmem_cache_create("tcp_timercache",
25082 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25083 	    NULL, NULL, NULL, NULL, NULL, 0);
25084 
25085 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25086 	    sizeof (tcp_sack_info_t), 0,
25087 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25088 
25089 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25090 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25091 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25092 
25093 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25094 
25095 	/* Initialize the random number generator */
25096 	tcp_random_init();
25097 
25098 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25099 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25100 
25101 	/* A single callback independently of how many netstacks we have */
25102 	ip_squeue_init(tcp_squeue_add);
25103 
25104 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25105 
25106 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25107 	    TASKQ_PREPOPULATE);
25108 
25109 	/*
25110 	 * We want to be informed each time a stack is created or
25111 	 * destroyed in the kernel, so we can maintain the
25112 	 * set of tcp_stack_t's.
25113 	 */
25114 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25115 	    tcp_stack_fini);
25116 }
25117 
25118 
25119 /*
25120  * Initialize the TCP stack instance.
25121  */
25122 static void *
25123 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25124 {
25125 	tcp_stack_t	*tcps;
25126 	tcpparam_t	*pa;
25127 	int		i;
25128 
25129 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25130 	tcps->tcps_netstack = ns;
25131 
25132 	/* Initialize locks */
25133 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25134 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25135 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25136 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25137 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25138 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25139 
25140 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25141 	tcps->tcps_g_epriv_ports[0] = 2049;
25142 	tcps->tcps_g_epriv_ports[1] = 4045;
25143 	tcps->tcps_min_anonpriv_port = 512;
25144 
25145 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25146 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25147 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25148 	    TCP_FANOUT_SIZE, KM_SLEEP);
25149 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25150 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25151 
25152 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25153 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25154 		    MUTEX_DEFAULT, NULL);
25155 	}
25156 
25157 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25158 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25159 		    MUTEX_DEFAULT, NULL);
25160 	}
25161 
25162 	/* TCP's IPsec code calls the packet dropper. */
25163 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25164 
25165 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25166 	tcps->tcps_params = pa;
25167 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25168 
25169 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25170 	    A_CNT(lcl_tcp_param_arr), tcps);
25171 
25172 	/*
25173 	 * Note: To really walk the device tree you need the devinfo
25174 	 * pointer to your device which is only available after probe/attach.
25175 	 * The following is safe only because it uses ddi_root_node()
25176 	 */
25177 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25178 	    tcp_opt_obj.odb_opt_arr_cnt);
25179 
25180 	/*
25181 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25182 	 * by the boot scripts.
25183 	 *
25184 	 * Use NULL name, as the name is caught by the new lockstats.
25185 	 *
25186 	 * Initialize with some random, non-guessable string, like the global
25187 	 * T_INFO_ACK.
25188 	 */
25189 
25190 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25191 	    sizeof (tcp_g_t_info_ack), tcps);
25192 
25193 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25194 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25195 
25196 	return (tcps);
25197 }
25198 
25199 /*
25200  * Called when the IP module is about to be unloaded.
25201  */
25202 void
25203 tcp_ddi_g_destroy(void)
25204 {
25205 	tcp_g_kstat_fini(tcp_g_kstat);
25206 	tcp_g_kstat = NULL;
25207 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25208 
25209 	mutex_destroy(&tcp_random_lock);
25210 
25211 	kmem_cache_destroy(tcp_timercache);
25212 	kmem_cache_destroy(tcp_sack_info_cache);
25213 	kmem_cache_destroy(tcp_iphc_cache);
25214 
25215 	netstack_unregister(NS_TCP);
25216 	taskq_destroy(tcp_taskq);
25217 }
25218 
25219 /*
25220  * Shut down the TCP stack instance.
25221  */
25222 /* ARGSUSED */
25223 static void
25224 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25225 {
25226 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25227 
25228 	tcp_g_q_destroy(tcps);
25229 }
25230 
25231 /*
25232  * Free the TCP stack instance.
25233  */
25234 static void
25235 tcp_stack_fini(netstackid_t stackid, void *arg)
25236 {
25237 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25238 	int i;
25239 
25240 	nd_free(&tcps->tcps_g_nd);
25241 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25242 	tcps->tcps_params = NULL;
25243 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25244 	tcps->tcps_wroff_xtra_param = NULL;
25245 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25246 	tcps->tcps_mdt_head_param = NULL;
25247 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25248 	tcps->tcps_mdt_tail_param = NULL;
25249 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25250 	tcps->tcps_mdt_max_pbufs_param = NULL;
25251 
25252 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25253 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25254 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25255 	}
25256 
25257 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25258 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25259 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25260 	}
25261 
25262 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25263 	tcps->tcps_bind_fanout = NULL;
25264 
25265 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25266 	tcps->tcps_acceptor_fanout = NULL;
25267 
25268 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25269 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25270 	tcps->tcps_reserved_port = NULL;
25271 
25272 	mutex_destroy(&tcps->tcps_iss_key_lock);
25273 	rw_destroy(&tcps->tcps_hsp_lock);
25274 	mutex_destroy(&tcps->tcps_g_q_lock);
25275 	cv_destroy(&tcps->tcps_g_q_cv);
25276 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25277 	rw_destroy(&tcps->tcps_reserved_port_lock);
25278 
25279 	ip_drop_unregister(&tcps->tcps_dropper);
25280 
25281 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25282 	tcps->tcps_kstat = NULL;
25283 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25284 
25285 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25286 	tcps->tcps_mibkp = NULL;
25287 
25288 	kmem_free(tcps, sizeof (*tcps));
25289 }
25290 
25291 /*
25292  * Generate ISS, taking into account NDD changes may happen halfway through.
25293  * (If the iss is not zero, set it.)
25294  */
25295 
25296 static void
25297 tcp_iss_init(tcp_t *tcp)
25298 {
25299 	MD5_CTX context;
25300 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25301 	uint32_t answer[4];
25302 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25303 
25304 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25305 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25306 	switch (tcps->tcps_strong_iss) {
25307 	case 2:
25308 		mutex_enter(&tcps->tcps_iss_key_lock);
25309 		context = tcps->tcps_iss_key;
25310 		mutex_exit(&tcps->tcps_iss_key_lock);
25311 		arg.ports = tcp->tcp_ports;
25312 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25313 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25314 			    &arg.src);
25315 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25316 			    &arg.dst);
25317 		} else {
25318 			arg.src = tcp->tcp_ip6h->ip6_src;
25319 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25320 		}
25321 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25322 		MD5Final((uchar_t *)answer, &context);
25323 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25324 		/*
25325 		 * Now that we've hashed into a unique per-connection sequence
25326 		 * space, add a random increment per strong_iss == 1.  So I
25327 		 * guess we'll have to...
25328 		 */
25329 		/* FALLTHRU */
25330 	case 1:
25331 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25332 		break;
25333 	default:
25334 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25335 		break;
25336 	}
25337 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25338 	tcp->tcp_fss = tcp->tcp_iss - 1;
25339 	tcp->tcp_suna = tcp->tcp_iss;
25340 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25341 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25342 	tcp->tcp_csuna = tcp->tcp_snxt;
25343 }
25344 
25345 /*
25346  * Exported routine for extracting active tcp connection status.
25347  *
25348  * This is used by the Solaris Cluster Networking software to
25349  * gather a list of connections that need to be forwarded to
25350  * specific nodes in the cluster when configuration changes occur.
25351  *
25352  * The callback is invoked for each tcp_t structure. Returning
25353  * non-zero from the callback routine terminates the search.
25354  */
25355 int
25356 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25357     void *arg)
25358 {
25359 	netstack_handle_t nh;
25360 	netstack_t *ns;
25361 	int ret = 0;
25362 
25363 	netstack_next_init(&nh);
25364 	while ((ns = netstack_next(&nh)) != NULL) {
25365 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25366 		    ns->netstack_tcp);
25367 		netstack_rele(ns);
25368 	}
25369 	netstack_next_fini(&nh);
25370 	return (ret);
25371 }
25372 
25373 static int
25374 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25375     tcp_stack_t *tcps)
25376 {
25377 	tcp_t *tcp;
25378 	cl_tcp_info_t	cl_tcpi;
25379 	connf_t	*connfp;
25380 	conn_t	*connp;
25381 	int	i;
25382 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25383 
25384 	ASSERT(callback != NULL);
25385 
25386 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25387 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25388 		connp = NULL;
25389 
25390 		while ((connp =
25391 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25392 
25393 			tcp = connp->conn_tcp;
25394 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25395 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25396 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25397 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25398 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25399 			/*
25400 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25401 			 * addresses. They are copied implicitly below as
25402 			 * mapped addresses.
25403 			 */
25404 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25405 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25406 				cl_tcpi.cl_tcpi_faddr =
25407 				    tcp->tcp_ipha->ipha_dst;
25408 			} else {
25409 				cl_tcpi.cl_tcpi_faddr_v6 =
25410 				    tcp->tcp_ip6h->ip6_dst;
25411 			}
25412 
25413 			/*
25414 			 * If the callback returns non-zero
25415 			 * we terminate the traversal.
25416 			 */
25417 			if ((*callback)(&cl_tcpi, arg) != 0) {
25418 				CONN_DEC_REF(tcp->tcp_connp);
25419 				return (1);
25420 			}
25421 		}
25422 	}
25423 
25424 	return (0);
25425 }
25426 
25427 /*
25428  * Macros used for accessing the different types of sockaddr
25429  * structures inside a tcp_ioc_abort_conn_t.
25430  */
25431 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25432 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25433 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25434 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25435 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25436 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25437 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25438 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25439 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25440 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25441 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25442 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25443 
25444 /*
25445  * Return the correct error code to mimic the behavior
25446  * of a connection reset.
25447  */
25448 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25449 		switch ((state)) {		\
25450 		case TCPS_SYN_SENT:		\
25451 		case TCPS_SYN_RCVD:		\
25452 			(err) = ECONNREFUSED;	\
25453 			break;			\
25454 		case TCPS_ESTABLISHED:		\
25455 		case TCPS_FIN_WAIT_1:		\
25456 		case TCPS_FIN_WAIT_2:		\
25457 		case TCPS_CLOSE_WAIT:		\
25458 			(err) = ECONNRESET;	\
25459 			break;			\
25460 		case TCPS_CLOSING:		\
25461 		case TCPS_LAST_ACK:		\
25462 		case TCPS_TIME_WAIT:		\
25463 			(err) = 0;		\
25464 			break;			\
25465 		default:			\
25466 			(err) = ENXIO;		\
25467 		}				\
25468 	}
25469 
25470 /*
25471  * Check if a tcp structure matches the info in acp.
25472  */
25473 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25474 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25475 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25476 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25477 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25478 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25479 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25480 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25481 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25482 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25483 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25484 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25485 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25486 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25487 	&(tcp)->tcp_ip_src_v6)) &&				\
25488 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25489 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25490 	&(tcp)->tcp_remote_v6)) &&				\
25491 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25492 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25493 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25494 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25495 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25496 	(acp)->ac_end >= (tcp)->tcp_state))
25497 
25498 #define	TCP_AC_MATCH(acp, tcp)					\
25499 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25500 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25501 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25502 
25503 /*
25504  * Build a message containing a tcp_ioc_abort_conn_t structure
25505  * which is filled in with information from acp and tp.
25506  */
25507 static mblk_t *
25508 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25509 {
25510 	mblk_t *mp;
25511 	tcp_ioc_abort_conn_t *tacp;
25512 
25513 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25514 	if (mp == NULL)
25515 		return (NULL);
25516 
25517 	mp->b_datap->db_type = M_CTL;
25518 
25519 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25520 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25521 	    sizeof (uint32_t));
25522 
25523 	tacp->ac_start = acp->ac_start;
25524 	tacp->ac_end = acp->ac_end;
25525 	tacp->ac_zoneid = acp->ac_zoneid;
25526 
25527 	if (acp->ac_local.ss_family == AF_INET) {
25528 		tacp->ac_local.ss_family = AF_INET;
25529 		tacp->ac_remote.ss_family = AF_INET;
25530 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25531 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25532 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25533 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25534 	} else {
25535 		tacp->ac_local.ss_family = AF_INET6;
25536 		tacp->ac_remote.ss_family = AF_INET6;
25537 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25538 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25539 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25540 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25541 	}
25542 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25543 	return (mp);
25544 }
25545 
25546 /*
25547  * Print a tcp_ioc_abort_conn_t structure.
25548  */
25549 static void
25550 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25551 {
25552 	char lbuf[128];
25553 	char rbuf[128];
25554 	sa_family_t af;
25555 	in_port_t lport, rport;
25556 	ushort_t logflags;
25557 
25558 	af = acp->ac_local.ss_family;
25559 
25560 	if (af == AF_INET) {
25561 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25562 		    lbuf, 128);
25563 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25564 		    rbuf, 128);
25565 		lport = ntohs(TCP_AC_V4LPORT(acp));
25566 		rport = ntohs(TCP_AC_V4RPORT(acp));
25567 	} else {
25568 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25569 		    lbuf, 128);
25570 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25571 		    rbuf, 128);
25572 		lport = ntohs(TCP_AC_V6LPORT(acp));
25573 		rport = ntohs(TCP_AC_V6RPORT(acp));
25574 	}
25575 
25576 	logflags = SL_TRACE | SL_NOTE;
25577 	/*
25578 	 * Don't print this message to the console if the operation was done
25579 	 * to a non-global zone.
25580 	 */
25581 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25582 		logflags |= SL_CONSOLE;
25583 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25584 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25585 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25586 	    acp->ac_start, acp->ac_end);
25587 }
25588 
25589 /*
25590  * Called inside tcp_rput when a message built using
25591  * tcp_ioctl_abort_build_msg is put into a queue.
25592  * Note that when we get here there is no wildcard in acp any more.
25593  */
25594 static void
25595 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25596 {
25597 	tcp_ioc_abort_conn_t *acp;
25598 
25599 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25600 	if (tcp->tcp_state <= acp->ac_end) {
25601 		/*
25602 		 * If we get here, we are already on the correct
25603 		 * squeue. This ioctl follows the following path
25604 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25605 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25606 		 * different squeue)
25607 		 */
25608 		int errcode;
25609 
25610 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25611 		(void) tcp_clean_death(tcp, errcode, 26);
25612 	}
25613 	freemsg(mp);
25614 }
25615 
25616 /*
25617  * Abort all matching connections on a hash chain.
25618  */
25619 static int
25620 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25621     boolean_t exact, tcp_stack_t *tcps)
25622 {
25623 	int nmatch, err = 0;
25624 	tcp_t *tcp;
25625 	MBLKP mp, last, listhead = NULL;
25626 	conn_t	*tconnp;
25627 	connf_t	*connfp;
25628 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25629 
25630 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25631 
25632 startover:
25633 	nmatch = 0;
25634 
25635 	mutex_enter(&connfp->connf_lock);
25636 	for (tconnp = connfp->connf_head; tconnp != NULL;
25637 	    tconnp = tconnp->conn_next) {
25638 		tcp = tconnp->conn_tcp;
25639 		if (TCP_AC_MATCH(acp, tcp)) {
25640 			CONN_INC_REF(tcp->tcp_connp);
25641 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25642 			if (mp == NULL) {
25643 				err = ENOMEM;
25644 				CONN_DEC_REF(tcp->tcp_connp);
25645 				break;
25646 			}
25647 			mp->b_prev = (mblk_t *)tcp;
25648 
25649 			if (listhead == NULL) {
25650 				listhead = mp;
25651 				last = mp;
25652 			} else {
25653 				last->b_next = mp;
25654 				last = mp;
25655 			}
25656 			nmatch++;
25657 			if (exact)
25658 				break;
25659 		}
25660 
25661 		/* Avoid holding lock for too long. */
25662 		if (nmatch >= 500)
25663 			break;
25664 	}
25665 	mutex_exit(&connfp->connf_lock);
25666 
25667 	/* Pass mp into the correct tcp */
25668 	while ((mp = listhead) != NULL) {
25669 		listhead = listhead->b_next;
25670 		tcp = (tcp_t *)mp->b_prev;
25671 		mp->b_next = mp->b_prev = NULL;
25672 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25673 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25674 	}
25675 
25676 	*count += nmatch;
25677 	if (nmatch >= 500 && err == 0)
25678 		goto startover;
25679 	return (err);
25680 }
25681 
25682 /*
25683  * Abort all connections that matches the attributes specified in acp.
25684  */
25685 static int
25686 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25687 {
25688 	sa_family_t af;
25689 	uint32_t  ports;
25690 	uint16_t *pports;
25691 	int err = 0, count = 0;
25692 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25693 	int index = -1;
25694 	ushort_t logflags;
25695 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25696 
25697 	af = acp->ac_local.ss_family;
25698 
25699 	if (af == AF_INET) {
25700 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25701 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25702 			pports = (uint16_t *)&ports;
25703 			pports[1] = TCP_AC_V4LPORT(acp);
25704 			pports[0] = TCP_AC_V4RPORT(acp);
25705 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25706 		}
25707 	} else {
25708 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25709 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25710 			pports = (uint16_t *)&ports;
25711 			pports[1] = TCP_AC_V6LPORT(acp);
25712 			pports[0] = TCP_AC_V6RPORT(acp);
25713 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25714 		}
25715 	}
25716 
25717 	/*
25718 	 * For cases where remote addr, local port, and remote port are non-
25719 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25720 	 */
25721 	if (index != -1) {
25722 		err = tcp_ioctl_abort_bucket(acp, index,
25723 		    &count, exact, tcps);
25724 	} else {
25725 		/*
25726 		 * loop through all entries for wildcard case
25727 		 */
25728 		for (index = 0;
25729 		    index < ipst->ips_ipcl_conn_fanout_size;
25730 		    index++) {
25731 			err = tcp_ioctl_abort_bucket(acp, index,
25732 			    &count, exact, tcps);
25733 			if (err != 0)
25734 				break;
25735 		}
25736 	}
25737 
25738 	logflags = SL_TRACE | SL_NOTE;
25739 	/*
25740 	 * Don't print this message to the console if the operation was done
25741 	 * to a non-global zone.
25742 	 */
25743 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25744 		logflags |= SL_CONSOLE;
25745 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25746 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25747 	if (err == 0 && count == 0)
25748 		err = ENOENT;
25749 	return (err);
25750 }
25751 
25752 /*
25753  * Process the TCP_IOC_ABORT_CONN ioctl request.
25754  */
25755 static void
25756 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25757 {
25758 	int	err;
25759 	IOCP    iocp;
25760 	MBLKP   mp1;
25761 	sa_family_t laf, raf;
25762 	tcp_ioc_abort_conn_t *acp;
25763 	zone_t		*zptr;
25764 	conn_t		*connp = Q_TO_CONN(q);
25765 	zoneid_t	zoneid = connp->conn_zoneid;
25766 	tcp_t		*tcp = connp->conn_tcp;
25767 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25768 
25769 	iocp = (IOCP)mp->b_rptr;
25770 
25771 	if ((mp1 = mp->b_cont) == NULL ||
25772 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25773 		err = EINVAL;
25774 		goto out;
25775 	}
25776 
25777 	/* check permissions */
25778 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25779 		err = EPERM;
25780 		goto out;
25781 	}
25782 
25783 	if (mp1->b_cont != NULL) {
25784 		freemsg(mp1->b_cont);
25785 		mp1->b_cont = NULL;
25786 	}
25787 
25788 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25789 	laf = acp->ac_local.ss_family;
25790 	raf = acp->ac_remote.ss_family;
25791 
25792 	/* check that a zone with the supplied zoneid exists */
25793 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25794 		zptr = zone_find_by_id(zoneid);
25795 		if (zptr != NULL) {
25796 			zone_rele(zptr);
25797 		} else {
25798 			err = EINVAL;
25799 			goto out;
25800 		}
25801 	}
25802 
25803 	/*
25804 	 * For exclusive stacks we set the zoneid to zero
25805 	 * to make TCP operate as if in the global zone.
25806 	 */
25807 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25808 		acp->ac_zoneid = GLOBAL_ZONEID;
25809 
25810 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25811 	    acp->ac_start > acp->ac_end || laf != raf ||
25812 	    (laf != AF_INET && laf != AF_INET6)) {
25813 		err = EINVAL;
25814 		goto out;
25815 	}
25816 
25817 	tcp_ioctl_abort_dump(acp);
25818 	err = tcp_ioctl_abort(acp, tcps);
25819 
25820 out:
25821 	if (mp1 != NULL) {
25822 		freemsg(mp1);
25823 		mp->b_cont = NULL;
25824 	}
25825 
25826 	if (err != 0)
25827 		miocnak(q, mp, 0, err);
25828 	else
25829 		miocack(q, mp, 0, 0);
25830 }
25831 
25832 /*
25833  * tcp_time_wait_processing() handles processing of incoming packets when
25834  * the tcp is in the TIME_WAIT state.
25835  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25836  * on the time wait list.
25837  */
25838 void
25839 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25840     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25841 {
25842 	int32_t		bytes_acked;
25843 	int32_t		gap;
25844 	int32_t		rgap;
25845 	tcp_opt_t	tcpopt;
25846 	uint_t		flags;
25847 	uint32_t	new_swnd = 0;
25848 	conn_t		*connp;
25849 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25850 
25851 	BUMP_LOCAL(tcp->tcp_ibsegs);
25852 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25853 
25854 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25855 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25856 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25857 	if (tcp->tcp_snd_ts_ok) {
25858 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25859 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25860 			    tcp->tcp_rnxt, TH_ACK);
25861 			goto done;
25862 		}
25863 	}
25864 	gap = seg_seq - tcp->tcp_rnxt;
25865 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25866 	if (gap < 0) {
25867 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25868 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25869 		    (seg_len > -gap ? -gap : seg_len));
25870 		seg_len += gap;
25871 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25872 			if (flags & TH_RST) {
25873 				goto done;
25874 			}
25875 			if ((flags & TH_FIN) && seg_len == -1) {
25876 				/*
25877 				 * When TCP receives a duplicate FIN in
25878 				 * TIME_WAIT state, restart the 2 MSL timer.
25879 				 * See page 73 in RFC 793. Make sure this TCP
25880 				 * is already on the TIME_WAIT list. If not,
25881 				 * just restart the timer.
25882 				 */
25883 				if (TCP_IS_DETACHED(tcp)) {
25884 					if (tcp_time_wait_remove(tcp, NULL) ==
25885 					    B_TRUE) {
25886 						tcp_time_wait_append(tcp);
25887 						TCP_DBGSTAT(tcps,
25888 						    tcp_rput_time_wait);
25889 					}
25890 				} else {
25891 					ASSERT(tcp != NULL);
25892 					TCP_TIMER_RESTART(tcp,
25893 					    tcps->tcps_time_wait_interval);
25894 				}
25895 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25896 				    tcp->tcp_rnxt, TH_ACK);
25897 				goto done;
25898 			}
25899 			flags |=  TH_ACK_NEEDED;
25900 			seg_len = 0;
25901 			goto process_ack;
25902 		}
25903 
25904 		/* Fix seg_seq, and chew the gap off the front. */
25905 		seg_seq = tcp->tcp_rnxt;
25906 	}
25907 
25908 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25909 		/*
25910 		 * Make sure that when we accept the connection, pick
25911 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25912 		 * old connection.
25913 		 *
25914 		 * The next ISS generated is equal to tcp_iss_incr_extra
25915 		 * + ISS_INCR/2 + other components depending on the
25916 		 * value of tcp_strong_iss.  We pre-calculate the new
25917 		 * ISS here and compare with tcp_snxt to determine if
25918 		 * we need to make adjustment to tcp_iss_incr_extra.
25919 		 *
25920 		 * The above calculation is ugly and is a
25921 		 * waste of CPU cycles...
25922 		 */
25923 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25924 		int32_t adj;
25925 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25926 
25927 		switch (tcps->tcps_strong_iss) {
25928 		case 2: {
25929 			/* Add time and MD5 components. */
25930 			uint32_t answer[4];
25931 			struct {
25932 				uint32_t ports;
25933 				in6_addr_t src;
25934 				in6_addr_t dst;
25935 			} arg;
25936 			MD5_CTX context;
25937 
25938 			mutex_enter(&tcps->tcps_iss_key_lock);
25939 			context = tcps->tcps_iss_key;
25940 			mutex_exit(&tcps->tcps_iss_key_lock);
25941 			arg.ports = tcp->tcp_ports;
25942 			/* We use MAPPED addresses in tcp_iss_init */
25943 			arg.src = tcp->tcp_ip_src_v6;
25944 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25945 				IN6_IPADDR_TO_V4MAPPED(
25946 				    tcp->tcp_ipha->ipha_dst,
25947 				    &arg.dst);
25948 			} else {
25949 				arg.dst =
25950 				    tcp->tcp_ip6h->ip6_dst;
25951 			}
25952 			MD5Update(&context, (uchar_t *)&arg,
25953 			    sizeof (arg));
25954 			MD5Final((uchar_t *)answer, &context);
25955 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25956 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25957 			break;
25958 		}
25959 		case 1:
25960 			/* Add time component and min random (i.e. 1). */
25961 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25962 			break;
25963 		default:
25964 			/* Add only time component. */
25965 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25966 			break;
25967 		}
25968 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25969 			/*
25970 			 * New ISS not guaranteed to be ISS_INCR/2
25971 			 * ahead of the current tcp_snxt, so add the
25972 			 * difference to tcp_iss_incr_extra.
25973 			 */
25974 			tcps->tcps_iss_incr_extra += adj;
25975 		}
25976 		/*
25977 		 * If tcp_clean_death() can not perform the task now,
25978 		 * drop the SYN packet and let the other side re-xmit.
25979 		 * Otherwise pass the SYN packet back in, since the
25980 		 * old tcp state has been cleaned up or freed.
25981 		 */
25982 		if (tcp_clean_death(tcp, 0, 27) == -1)
25983 			goto done;
25984 		/*
25985 		 * We will come back to tcp_rput_data
25986 		 * on the global queue. Packets destined
25987 		 * for the global queue will be checked
25988 		 * with global policy. But the policy for
25989 		 * this packet has already been checked as
25990 		 * this was destined for the detached
25991 		 * connection. We need to bypass policy
25992 		 * check this time by attaching a dummy
25993 		 * ipsec_in with ipsec_in_dont_check set.
25994 		 */
25995 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25996 		if (connp != NULL) {
25997 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25998 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25999 			return;
26000 		}
26001 		goto done;
26002 	}
26003 
26004 	/*
26005 	 * rgap is the amount of stuff received out of window.  A negative
26006 	 * value is the amount out of window.
26007 	 */
26008 	if (rgap < 0) {
26009 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
26010 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
26011 		/* Fix seg_len and make sure there is something left. */
26012 		seg_len += rgap;
26013 		if (seg_len <= 0) {
26014 			if (flags & TH_RST) {
26015 				goto done;
26016 			}
26017 			flags |=  TH_ACK_NEEDED;
26018 			seg_len = 0;
26019 			goto process_ack;
26020 		}
26021 	}
26022 	/*
26023 	 * Check whether we can update tcp_ts_recent.  This test is
26024 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26025 	 * Extensions for High Performance: An Update", Internet Draft.
26026 	 */
26027 	if (tcp->tcp_snd_ts_ok &&
26028 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26029 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26030 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26031 		tcp->tcp_last_rcv_lbolt = lbolt64;
26032 	}
26033 
26034 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26035 		/* Always ack out of order packets */
26036 		flags |= TH_ACK_NEEDED;
26037 		seg_len = 0;
26038 	} else if (seg_len > 0) {
26039 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26040 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26041 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26042 	}
26043 	if (flags & TH_RST) {
26044 		(void) tcp_clean_death(tcp, 0, 28);
26045 		goto done;
26046 	}
26047 	if (flags & TH_SYN) {
26048 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26049 		    TH_RST|TH_ACK);
26050 		/*
26051 		 * Do not delete the TCP structure if it is in
26052 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26053 		 */
26054 		goto done;
26055 	}
26056 process_ack:
26057 	if (flags & TH_ACK) {
26058 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26059 		if (bytes_acked <= 0) {
26060 			if (bytes_acked == 0 && seg_len == 0 &&
26061 			    new_swnd == tcp->tcp_swnd)
26062 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26063 		} else {
26064 			/* Acks something not sent */
26065 			flags |= TH_ACK_NEEDED;
26066 		}
26067 	}
26068 	if (flags & TH_ACK_NEEDED) {
26069 		/*
26070 		 * Time to send an ack for some reason.
26071 		 */
26072 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26073 		    tcp->tcp_rnxt, TH_ACK);
26074 	}
26075 done:
26076 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26077 		DB_CKSUMSTART(mp) = 0;
26078 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26079 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26080 	}
26081 	freemsg(mp);
26082 }
26083 
26084 /*
26085  * Allocate a T_SVR4_OPTMGMT_REQ.
26086  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26087  * that tcp_rput_other can drop the acks.
26088  */
26089 static mblk_t *
26090 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26091 {
26092 	mblk_t *mp;
26093 	struct T_optmgmt_req *tor;
26094 	struct opthdr *oh;
26095 	uint_t size;
26096 	char *optptr;
26097 
26098 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26099 	mp = allocb(size, BPRI_MED);
26100 	if (mp == NULL)
26101 		return (NULL);
26102 
26103 	mp->b_wptr += size;
26104 	mp->b_datap->db_type = M_PROTO;
26105 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26106 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26107 	tor->MGMT_flags = T_NEGOTIATE;
26108 	tor->OPT_length = sizeof (*oh) + optlen;
26109 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26110 
26111 	oh = (struct opthdr *)&tor[1];
26112 	oh->level = level;
26113 	oh->name = cmd;
26114 	oh->len = optlen;
26115 	if (optlen != 0) {
26116 		optptr = (char *)&oh[1];
26117 		bcopy(opt, optptr, optlen);
26118 	}
26119 	return (mp);
26120 }
26121 
26122 /*
26123  * TCP Timers Implementation.
26124  */
26125 timeout_id_t
26126 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26127 {
26128 	mblk_t *mp;
26129 	tcp_timer_t *tcpt;
26130 	tcp_t *tcp = connp->conn_tcp;
26131 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26132 
26133 	ASSERT(connp->conn_sqp != NULL);
26134 
26135 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26136 
26137 	if (tcp->tcp_timercache == NULL) {
26138 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26139 	} else {
26140 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26141 		mp = tcp->tcp_timercache;
26142 		tcp->tcp_timercache = mp->b_next;
26143 		mp->b_next = NULL;
26144 		ASSERT(mp->b_wptr == NULL);
26145 	}
26146 
26147 	CONN_INC_REF(connp);
26148 	tcpt = (tcp_timer_t *)mp->b_rptr;
26149 	tcpt->connp = connp;
26150 	tcpt->tcpt_proc = f;
26151 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26152 	return ((timeout_id_t)mp);
26153 }
26154 
26155 static void
26156 tcp_timer_callback(void *arg)
26157 {
26158 	mblk_t *mp = (mblk_t *)arg;
26159 	tcp_timer_t *tcpt;
26160 	conn_t	*connp;
26161 
26162 	tcpt = (tcp_timer_t *)mp->b_rptr;
26163 	connp = tcpt->connp;
26164 	squeue_fill(connp->conn_sqp, mp,
26165 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26166 }
26167 
26168 static void
26169 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26170 {
26171 	tcp_timer_t *tcpt;
26172 	conn_t *connp = (conn_t *)arg;
26173 	tcp_t *tcp = connp->conn_tcp;
26174 
26175 	tcpt = (tcp_timer_t *)mp->b_rptr;
26176 	ASSERT(connp == tcpt->connp);
26177 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26178 
26179 	/*
26180 	 * If the TCP has reached the closed state, don't proceed any
26181 	 * further. This TCP logically does not exist on the system.
26182 	 * tcpt_proc could for example access queues, that have already
26183 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26184 	 */
26185 	if (tcp->tcp_state != TCPS_CLOSED) {
26186 		(*tcpt->tcpt_proc)(connp);
26187 	} else {
26188 		tcp->tcp_timer_tid = 0;
26189 	}
26190 	tcp_timer_free(connp->conn_tcp, mp);
26191 }
26192 
26193 /*
26194  * There is potential race with untimeout and the handler firing at the same
26195  * time. The mblock may be freed by the handler while we are trying to use
26196  * it. But since both should execute on the same squeue, this race should not
26197  * occur.
26198  */
26199 clock_t
26200 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26201 {
26202 	mblk_t	*mp = (mblk_t *)id;
26203 	tcp_timer_t *tcpt;
26204 	clock_t delta;
26205 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26206 
26207 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26208 
26209 	if (mp == NULL)
26210 		return (-1);
26211 
26212 	tcpt = (tcp_timer_t *)mp->b_rptr;
26213 	ASSERT(tcpt->connp == connp);
26214 
26215 	delta = untimeout(tcpt->tcpt_tid);
26216 
26217 	if (delta >= 0) {
26218 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26219 		tcp_timer_free(connp->conn_tcp, mp);
26220 		CONN_DEC_REF(connp);
26221 	}
26222 
26223 	return (delta);
26224 }
26225 
26226 /*
26227  * Allocate space for the timer event. The allocation looks like mblk, but it is
26228  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26229  *
26230  * Dealing with failures: If we can't allocate from the timer cache we try
26231  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26232  * points to b_rptr.
26233  * If we can't allocate anything using allocb_tryhard(), we perform a last
26234  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26235  * save the actual allocation size in b_datap.
26236  */
26237 mblk_t *
26238 tcp_timermp_alloc(int kmflags)
26239 {
26240 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26241 	    kmflags & ~KM_PANIC);
26242 
26243 	if (mp != NULL) {
26244 		mp->b_next = mp->b_prev = NULL;
26245 		mp->b_rptr = (uchar_t *)(&mp[1]);
26246 		mp->b_wptr = NULL;
26247 		mp->b_datap = NULL;
26248 		mp->b_queue = NULL;
26249 		mp->b_cont = NULL;
26250 	} else if (kmflags & KM_PANIC) {
26251 		/*
26252 		 * Failed to allocate memory for the timer. Try allocating from
26253 		 * dblock caches.
26254 		 */
26255 		/* ipclassifier calls this from a constructor - hence no tcps */
26256 		TCP_G_STAT(tcp_timermp_allocfail);
26257 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26258 		if (mp == NULL) {
26259 			size_t size = 0;
26260 			/*
26261 			 * Memory is really low. Try tryhard allocation.
26262 			 *
26263 			 * ipclassifier calls this from a constructor -
26264 			 * hence no tcps
26265 			 */
26266 			TCP_G_STAT(tcp_timermp_allocdblfail);
26267 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26268 			    sizeof (tcp_timer_t), &size, kmflags);
26269 			mp->b_rptr = (uchar_t *)(&mp[1]);
26270 			mp->b_next = mp->b_prev = NULL;
26271 			mp->b_wptr = (uchar_t *)-1;
26272 			mp->b_datap = (dblk_t *)size;
26273 			mp->b_queue = NULL;
26274 			mp->b_cont = NULL;
26275 		}
26276 		ASSERT(mp->b_wptr != NULL);
26277 	}
26278 	/* ipclassifier calls this from a constructor - hence no tcps */
26279 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26280 
26281 	return (mp);
26282 }
26283 
26284 /*
26285  * Free per-tcp timer cache.
26286  * It can only contain entries from tcp_timercache.
26287  */
26288 void
26289 tcp_timermp_free(tcp_t *tcp)
26290 {
26291 	mblk_t *mp;
26292 
26293 	while ((mp = tcp->tcp_timercache) != NULL) {
26294 		ASSERT(mp->b_wptr == NULL);
26295 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26296 		kmem_cache_free(tcp_timercache, mp);
26297 	}
26298 }
26299 
26300 /*
26301  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26302  * events there already (currently at most two events are cached).
26303  * If the event is not allocated from the timer cache, free it right away.
26304  */
26305 static void
26306 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26307 {
26308 	mblk_t *mp1 = tcp->tcp_timercache;
26309 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26310 
26311 	if (mp->b_wptr != NULL) {
26312 		/*
26313 		 * This allocation is not from a timer cache, free it right
26314 		 * away.
26315 		 */
26316 		if (mp->b_wptr != (uchar_t *)-1)
26317 			freeb(mp);
26318 		else
26319 			kmem_free(mp, (size_t)mp->b_datap);
26320 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26321 		/* Cache this timer block for future allocations */
26322 		mp->b_rptr = (uchar_t *)(&mp[1]);
26323 		mp->b_next = mp1;
26324 		tcp->tcp_timercache = mp;
26325 	} else {
26326 		kmem_cache_free(tcp_timercache, mp);
26327 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26328 	}
26329 }
26330 
26331 /*
26332  * End of TCP Timers implementation.
26333  */
26334 
26335 /*
26336  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26337  * on the specified backing STREAMS q. Note, the caller may make the
26338  * decision to call based on the tcp_t.tcp_flow_stopped value which
26339  * when check outside the q's lock is only an advisory check ...
26340  */
26341 
26342 void
26343 tcp_setqfull(tcp_t *tcp)
26344 {
26345 	queue_t *q = tcp->tcp_wq;
26346 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26347 
26348 	if (!(q->q_flag & QFULL)) {
26349 		mutex_enter(QLOCK(q));
26350 		if (!(q->q_flag & QFULL)) {
26351 			/* still need to set QFULL */
26352 			q->q_flag |= QFULL;
26353 			tcp->tcp_flow_stopped = B_TRUE;
26354 			mutex_exit(QLOCK(q));
26355 			TCP_STAT(tcps, tcp_flwctl_on);
26356 		} else {
26357 			mutex_exit(QLOCK(q));
26358 		}
26359 	}
26360 }
26361 
26362 void
26363 tcp_clrqfull(tcp_t *tcp)
26364 {
26365 	queue_t *q = tcp->tcp_wq;
26366 
26367 	if (q->q_flag & QFULL) {
26368 		mutex_enter(QLOCK(q));
26369 		if (q->q_flag & QFULL) {
26370 			q->q_flag &= ~QFULL;
26371 			tcp->tcp_flow_stopped = B_FALSE;
26372 			mutex_exit(QLOCK(q));
26373 			if (q->q_flag & QWANTW)
26374 				qbackenable(q, 0);
26375 		} else {
26376 			mutex_exit(QLOCK(q));
26377 		}
26378 	}
26379 }
26380 
26381 
26382 /*
26383  * kstats related to squeues i.e. not per IP instance
26384  */
26385 static void *
26386 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26387 {
26388 	kstat_t *ksp;
26389 
26390 	tcp_g_stat_t template = {
26391 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26392 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26393 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26394 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26395 	};
26396 
26397 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26398 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26399 	    KSTAT_FLAG_VIRTUAL);
26400 
26401 	if (ksp == NULL)
26402 		return (NULL);
26403 
26404 	bcopy(&template, tcp_g_statp, sizeof (template));
26405 	ksp->ks_data = (void *)tcp_g_statp;
26406 
26407 	kstat_install(ksp);
26408 	return (ksp);
26409 }
26410 
26411 static void
26412 tcp_g_kstat_fini(kstat_t *ksp)
26413 {
26414 	if (ksp != NULL) {
26415 		kstat_delete(ksp);
26416 	}
26417 }
26418 
26419 
26420 static void *
26421 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26422 {
26423 	kstat_t *ksp;
26424 
26425 	tcp_stat_t template = {
26426 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26427 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26428 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26429 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26430 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26431 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26432 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26433 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26434 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26435 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26436 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26437 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26438 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26439 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26440 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26441 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26442 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26443 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26444 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26445 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26446 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26447 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26448 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26449 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26450 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26451 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26452 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26453 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26454 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26455 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26456 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26457 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26458 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26459 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26460 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26461 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26462 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26463 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26464 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26465 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26466 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26467 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26468 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26469 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26470 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26471 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26472 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26473 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26474 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26475 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26476 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26477 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26478 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26479 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26480 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26481 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26482 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26483 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26484 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26485 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26486 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26487 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26488 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26489 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26490 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26491 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26492 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26493 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26494 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26495 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26496 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26497 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26498 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26499 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26500 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26501 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26502 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26503 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26504 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26505 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26506 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26507 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26508 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26509 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26510 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26511 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26512 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26513 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26514 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26515 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26516 	};
26517 
26518 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26519 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26520 	    KSTAT_FLAG_VIRTUAL, stackid);
26521 
26522 	if (ksp == NULL)
26523 		return (NULL);
26524 
26525 	bcopy(&template, tcps_statisticsp, sizeof (template));
26526 	ksp->ks_data = (void *)tcps_statisticsp;
26527 	ksp->ks_private = (void *)(uintptr_t)stackid;
26528 
26529 	kstat_install(ksp);
26530 	return (ksp);
26531 }
26532 
26533 static void
26534 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26535 {
26536 	if (ksp != NULL) {
26537 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26538 		kstat_delete_netstack(ksp, stackid);
26539 	}
26540 }
26541 
26542 /*
26543  * TCP Kstats implementation
26544  */
26545 static void *
26546 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26547 {
26548 	kstat_t	*ksp;
26549 
26550 	tcp_named_kstat_t template = {
26551 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26552 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26553 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26554 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26555 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26556 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26557 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26558 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26559 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26560 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26561 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26562 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26563 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26564 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26565 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26566 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26567 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26568 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26569 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26570 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26571 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26572 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26573 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26574 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26575 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26576 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26577 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26578 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26579 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26580 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26581 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26582 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26583 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26584 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26585 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26586 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26587 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26588 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26589 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26590 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26591 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26592 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26593 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26594 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26595 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26596 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26597 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26598 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26599 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26600 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26601 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26602 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26603 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26604 	};
26605 
26606 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26607 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26608 
26609 	if (ksp == NULL)
26610 		return (NULL);
26611 
26612 	template.rtoAlgorithm.value.ui32 = 4;
26613 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26614 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26615 	template.maxConn.value.i32 = -1;
26616 
26617 	bcopy(&template, ksp->ks_data, sizeof (template));
26618 	ksp->ks_update = tcp_kstat_update;
26619 	ksp->ks_private = (void *)(uintptr_t)stackid;
26620 
26621 	kstat_install(ksp);
26622 	return (ksp);
26623 }
26624 
26625 static void
26626 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26627 {
26628 	if (ksp != NULL) {
26629 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26630 		kstat_delete_netstack(ksp, stackid);
26631 	}
26632 }
26633 
26634 static int
26635 tcp_kstat_update(kstat_t *kp, int rw)
26636 {
26637 	tcp_named_kstat_t *tcpkp;
26638 	tcp_t		*tcp;
26639 	connf_t		*connfp;
26640 	conn_t		*connp;
26641 	int 		i;
26642 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26643 	netstack_t	*ns;
26644 	tcp_stack_t	*tcps;
26645 	ip_stack_t	*ipst;
26646 
26647 	if ((kp == NULL) || (kp->ks_data == NULL))
26648 		return (EIO);
26649 
26650 	if (rw == KSTAT_WRITE)
26651 		return (EACCES);
26652 
26653 	ns = netstack_find_by_stackid(stackid);
26654 	if (ns == NULL)
26655 		return (-1);
26656 	tcps = ns->netstack_tcp;
26657 	if (tcps == NULL) {
26658 		netstack_rele(ns);
26659 		return (-1);
26660 	}
26661 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26662 
26663 	tcpkp->currEstab.value.ui32 = 0;
26664 
26665 	ipst = ns->netstack_ip;
26666 
26667 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26668 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26669 		connp = NULL;
26670 		while ((connp =
26671 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26672 			tcp = connp->conn_tcp;
26673 			switch (tcp_snmp_state(tcp)) {
26674 			case MIB2_TCP_established:
26675 			case MIB2_TCP_closeWait:
26676 				tcpkp->currEstab.value.ui32++;
26677 				break;
26678 			}
26679 		}
26680 	}
26681 
26682 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26683 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26684 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26685 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26686 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26687 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26688 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26689 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26690 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26691 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26692 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26693 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26694 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26695 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26696 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26697 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26698 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26699 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26700 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26701 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26702 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26703 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26704 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26705 	tcpkp->inDataInorderSegs.value.ui32 =
26706 	    tcps->tcps_mib.tcpInDataInorderSegs;
26707 	tcpkp->inDataInorderBytes.value.ui32 =
26708 	    tcps->tcps_mib.tcpInDataInorderBytes;
26709 	tcpkp->inDataUnorderSegs.value.ui32 =
26710 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26711 	tcpkp->inDataUnorderBytes.value.ui32 =
26712 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26713 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26714 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26715 	tcpkp->inDataPartDupSegs.value.ui32 =
26716 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26717 	tcpkp->inDataPartDupBytes.value.ui32 =
26718 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26719 	tcpkp->inDataPastWinSegs.value.ui32 =
26720 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26721 	tcpkp->inDataPastWinBytes.value.ui32 =
26722 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26723 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26724 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26725 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26726 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26727 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26728 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26729 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26730 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26731 	tcpkp->timKeepaliveProbe.value.ui32 =
26732 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26733 	tcpkp->timKeepaliveDrop.value.ui32 =
26734 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26735 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26736 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26737 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26738 	tcpkp->outSackRetransSegs.value.ui32 =
26739 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26740 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26741 
26742 	netstack_rele(ns);
26743 	return (0);
26744 }
26745 
26746 void
26747 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26748 {
26749 	uint16_t	hdr_len;
26750 	ipha_t		*ipha;
26751 	uint8_t		*nexthdrp;
26752 	tcph_t		*tcph;
26753 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26754 
26755 	/* Already has an eager */
26756 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26757 		TCP_STAT(tcps, tcp_reinput_syn);
26758 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26759 		    connp, SQTAG_TCP_REINPUT_EAGER);
26760 		return;
26761 	}
26762 
26763 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26764 	case IPV4_VERSION:
26765 		ipha = (ipha_t *)mp->b_rptr;
26766 		hdr_len = IPH_HDR_LENGTH(ipha);
26767 		break;
26768 	case IPV6_VERSION:
26769 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26770 		    &hdr_len, &nexthdrp)) {
26771 			CONN_DEC_REF(connp);
26772 			freemsg(mp);
26773 			return;
26774 		}
26775 		break;
26776 	}
26777 
26778 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26779 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26780 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26781 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26782 	}
26783 
26784 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26785 	    SQTAG_TCP_REINPUT);
26786 }
26787 
26788 static squeue_func_t
26789 tcp_squeue_switch(int val)
26790 {
26791 	squeue_func_t rval = squeue_fill;
26792 
26793 	switch (val) {
26794 	case 1:
26795 		rval = squeue_enter_nodrain;
26796 		break;
26797 	case 2:
26798 		rval = squeue_enter;
26799 		break;
26800 	default:
26801 		break;
26802 	}
26803 	return (rval);
26804 }
26805 
26806 /*
26807  * This is called once for each squeue - globally for all stack
26808  * instances.
26809  */
26810 static void
26811 tcp_squeue_add(squeue_t *sqp)
26812 {
26813 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26814 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26815 
26816 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26817 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26818 	    sqp, TCP_TIME_WAIT_DELAY);
26819 	if (tcp_free_list_max_cnt == 0) {
26820 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26821 		    max_ncpus : boot_max_ncpus);
26822 
26823 		/*
26824 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26825 		 */
26826 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26827 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26828 	}
26829 	tcp_time_wait->tcp_free_list_cnt = 0;
26830 }
26831