1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent Inc. All rights reserved. 25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2013 by Delphix. All rights reserved. 27 */ 28 /* Copyright (c) 1990 Mentat Inc. */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/strsun.h> 33 #include <sys/strsubr.h> 34 #include <sys/stropts.h> 35 #include <sys/strlog.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/timod.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/suntpi.h> 42 #include <sys/xti_inet.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/sdt.h> 46 #include <sys/vtrace.h> 47 #include <sys/kmem.h> 48 #include <sys/ethernet.h> 49 #include <sys/cpuvar.h> 50 #include <sys/dlpi.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/uio.h> 66 #include <sys/systm.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/proto_set.h> 81 #include <inet/mib2.h> 82 #include <inet/optcom.h> 83 #include <inet/snmpcom.h> 84 #include <inet/kstatcom.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/tcp_cluster.h> 88 #include <inet/udp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipdrop.h> 91 92 #include <inet/ipclassifier.h> 93 #include <inet/ip_ire.h> 94 #include <inet/ip_ftable.h> 95 #include <inet/ip_if.h> 96 #include <inet/ipp_common.h> 97 #include <inet/ip_rts.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <sys/tsol/label.h> 102 #include <sys/tsol/tnet.h> 103 #include <rpc/pmap_prot.h> 104 #include <sys/callo.h> 105 106 /* 107 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 108 * 109 * (Read the detailed design doc in PSARC case directory) 110 * 111 * The entire tcp state is contained in tcp_t and conn_t structure 112 * which are allocated in tandem using ipcl_conn_create() and passing 113 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 114 * the references on the tcp_t. The tcp_t structure is never compressed 115 * and packets always land on the correct TCP perimeter from the time 116 * eager is created till the time tcp_t dies (as such the old mentat 117 * TCP global queue is not used for detached state and no IPSEC checking 118 * is required). The global queue is still allocated to send out resets 119 * for connection which have no listeners and IP directly calls 120 * tcp_xmit_listeners_reset() which does any policy check. 121 * 122 * Protection and Synchronisation mechanism: 123 * 124 * The tcp data structure does not use any kind of lock for protecting 125 * its state but instead uses 'squeues' for mutual exclusion from various 126 * read and write side threads. To access a tcp member, the thread should 127 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 128 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 129 * can pass any tcp function having prototype of edesc_t as argument 130 * (different from traditional STREAMs model where packets come in only 131 * designated entry points). The list of functions that can be directly 132 * called via squeue are listed before the usual function prototype. 133 * 134 * Referencing: 135 * 136 * TCP is MT-Hot and we use a reference based scheme to make sure that the 137 * tcp structure doesn't disappear when its needed. When the application 138 * creates an outgoing connection or accepts an incoming connection, we 139 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 140 * The IP reference is just a symbolic reference since ip_tcpclose() 141 * looks at tcp structure after tcp_close_output() returns which could 142 * have dropped the last TCP reference. So as long as the connection is 143 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 144 * conn_t. The classifier puts its own reference when the connection is 145 * inserted in listen or connected hash. Anytime a thread needs to enter 146 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 147 * on write side or by doing a classify on read side and then puts a 148 * reference on the conn before doing squeue_enter/tryenter/fill. For 149 * read side, the classifier itself puts the reference under fanout lock 150 * to make sure that tcp can't disappear before it gets processed. The 151 * squeue will drop this reference automatically so the called function 152 * doesn't have to do a DEC_REF. 153 * 154 * Opening a new connection: 155 * 156 * The outgoing connection open is pretty simple. tcp_open() does the 157 * work in creating the conn/tcp structure and initializing it. The 158 * squeue assignment is done based on the CPU the application 159 * is running on. So for outbound connections, processing is always done 160 * on application CPU which might be different from the incoming CPU 161 * being interrupted by the NIC. An optimal way would be to figure out 162 * the NIC <-> CPU binding at listen time, and assign the outgoing 163 * connection to the squeue attached to the CPU that will be interrupted 164 * for incoming packets (we know the NIC based on the bind IP address). 165 * This might seem like a problem if more data is going out but the 166 * fact is that in most cases the transmit is ACK driven transmit where 167 * the outgoing data normally sits on TCP's xmit queue waiting to be 168 * transmitted. 169 * 170 * Accepting a connection: 171 * 172 * This is a more interesting case because of various races involved in 173 * establishing a eager in its own perimeter. Read the meta comment on 174 * top of tcp_input_listener(). But briefly, the squeue is picked by 175 * ip_fanout based on the ring or the sender (if loopback). 176 * 177 * Closing a connection: 178 * 179 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 180 * via squeue to do the close and mark the tcp as detached if the connection 181 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 182 * reference but tcp_close() drop IP's reference always. So if tcp was 183 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 184 * and 1 because it is in classifier's connected hash. This is the condition 185 * we use to determine that its OK to clean up the tcp outside of squeue 186 * when time wait expires (check the ref under fanout and conn_lock and 187 * if it is 2, remove it from fanout hash and kill it). 188 * 189 * Although close just drops the necessary references and marks the 190 * tcp_detached state, tcp_close needs to know the tcp_detached has been 191 * set (under squeue) before letting the STREAM go away (because a 192 * inbound packet might attempt to go up the STREAM while the close 193 * has happened and tcp_detached is not set). So a special lock and 194 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 195 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 196 * tcp_detached. 197 * 198 * Special provisions and fast paths: 199 * 200 * We make special provisions for sockfs by marking tcp_issocket 201 * whenever we have only sockfs on top of TCP. This allows us to skip 202 * putting the tcp in acceptor hash since a sockfs listener can never 203 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 204 * since eager has already been allocated and the accept now happens 205 * on acceptor STREAM. There is a big blob of comment on top of 206 * tcp_input_listener explaining the new accept. When socket is POP'd, 207 * sockfs sends us an ioctl to mark the fact and we go back to old 208 * behaviour. Once tcp_issocket is unset, its never set for the 209 * life of that connection. 210 * 211 * IPsec notes : 212 * 213 * Since a packet is always executed on the correct TCP perimeter 214 * all IPsec processing is defered to IP including checking new 215 * connections and setting IPSEC policies for new connection. The 216 * only exception is tcp_xmit_listeners_reset() which is called 217 * directly from IP and needs to policy check to see if TH_RST 218 * can be sent out. 219 */ 220 221 /* 222 * Values for squeue switch: 223 * 1: SQ_NODRAIN 224 * 2: SQ_PROCESS 225 * 3: SQ_FILL 226 */ 227 int tcp_squeue_wput = 2; /* /etc/systems */ 228 int tcp_squeue_flag; 229 230 /* 231 * To prevent memory hog, limit the number of entries in tcp_free_list 232 * to 1% of available memory / number of cpus 233 */ 234 uint_t tcp_free_list_max_cnt = 0; 235 236 #define TIDUSZ 4096 /* transport interface data unit size */ 237 238 /* 239 * Size of acceptor hash list. It has to be a power of 2 for hashing. 240 */ 241 #define TCP_ACCEPTOR_FANOUT_SIZE 512 242 243 #ifdef _ILP32 244 #define TCP_ACCEPTOR_HASH(accid) \ 245 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 246 #else 247 #define TCP_ACCEPTOR_HASH(accid) \ 248 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 249 #endif /* _ILP32 */ 250 251 /* 252 * Minimum number of connections which can be created per listener. Used 253 * when the listener connection count is in effect. 254 */ 255 static uint32_t tcp_min_conn_listener = 2; 256 257 uint32_t tcp_early_abort = 30; 258 259 /* TCP Timer control structure */ 260 typedef struct tcpt_s { 261 pfv_t tcpt_pfv; /* The routine we are to call */ 262 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 263 } tcpt_t; 264 265 /* 266 * Functions called directly via squeue having a prototype of edesc_t. 267 */ 268 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 269 ip_recv_attr_t *ira); 270 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 271 ip_recv_attr_t *ira); 272 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 273 ip_recv_attr_t *dummy); 274 275 276 /* Prototype for TCP functions */ 277 static void tcp_random_init(void); 278 int tcp_random(void); 279 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 280 in_port_t dstport, uint_t srcid); 281 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 282 in_port_t dstport, uint32_t flowinfo, 283 uint_t srcid, uint32_t scope_id); 284 static void tcp_iss_init(tcp_t *tcp); 285 static void tcp_reinit(tcp_t *tcp); 286 static void tcp_reinit_values(tcp_t *tcp); 287 288 static void tcp_wsrv(queue_t *q); 289 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 290 static void tcp_update_zcopy(tcp_t *tcp); 291 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 292 ixa_notify_arg_t); 293 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 294 static void tcp_stack_fini(netstackid_t stackid, void *arg); 295 296 static int tcp_squeue_switch(int); 297 298 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 299 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 300 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 301 302 static void tcp_squeue_add(squeue_t *); 303 304 struct module_info tcp_rinfo = { 305 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 306 }; 307 308 static struct module_info tcp_winfo = { 309 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 310 }; 311 312 /* 313 * Entry points for TCP as a device. The normal case which supports 314 * the TCP functionality. 315 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 316 */ 317 struct qinit tcp_rinitv4 = { 318 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 319 }; 320 321 struct qinit tcp_rinitv6 = { 322 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 323 }; 324 325 struct qinit tcp_winit = { 326 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 327 }; 328 329 /* Initial entry point for TCP in socket mode. */ 330 struct qinit tcp_sock_winit = { 331 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 332 }; 333 334 /* TCP entry point during fallback */ 335 struct qinit tcp_fallback_sock_winit = { 336 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 337 }; 338 339 /* 340 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 341 * an accept. Avoid allocating data structures since eager has already 342 * been created. 343 */ 344 struct qinit tcp_acceptor_rinit = { 345 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 346 }; 347 348 struct qinit tcp_acceptor_winit = { 349 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 350 }; 351 352 /* For AF_INET aka /dev/tcp */ 353 struct streamtab tcpinfov4 = { 354 &tcp_rinitv4, &tcp_winit 355 }; 356 357 /* For AF_INET6 aka /dev/tcp6 */ 358 struct streamtab tcpinfov6 = { 359 &tcp_rinitv6, &tcp_winit 360 }; 361 362 /* 363 * Following assumes TPI alignment requirements stay along 32 bit 364 * boundaries 365 */ 366 #define ROUNDUP32(x) \ 367 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 368 369 /* Template for response to info request. */ 370 struct T_info_ack tcp_g_t_info_ack = { 371 T_INFO_ACK, /* PRIM_type */ 372 0, /* TSDU_size */ 373 T_INFINITE, /* ETSDU_size */ 374 T_INVALID, /* CDATA_size */ 375 T_INVALID, /* DDATA_size */ 376 sizeof (sin_t), /* ADDR_size */ 377 0, /* OPT_size - not initialized here */ 378 TIDUSZ, /* TIDU_size */ 379 T_COTS_ORD, /* SERV_type */ 380 TCPS_IDLE, /* CURRENT_state */ 381 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 382 }; 383 384 struct T_info_ack tcp_g_t_info_ack_v6 = { 385 T_INFO_ACK, /* PRIM_type */ 386 0, /* TSDU_size */ 387 T_INFINITE, /* ETSDU_size */ 388 T_INVALID, /* CDATA_size */ 389 T_INVALID, /* DDATA_size */ 390 sizeof (sin6_t), /* ADDR_size */ 391 0, /* OPT_size - not initialized here */ 392 TIDUSZ, /* TIDU_size */ 393 T_COTS_ORD, /* SERV_type */ 394 TCPS_IDLE, /* CURRENT_state */ 395 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 396 }; 397 398 /* 399 * TCP tunables related declarations. Definitions are in tcp_tunables.c 400 */ 401 extern mod_prop_info_t tcp_propinfo_tbl[]; 402 extern int tcp_propinfo_count; 403 404 #define IS_VMLOANED_MBLK(mp) \ 405 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 406 407 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 408 409 /* 410 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 411 * tunable settable via NDD. Otherwise, the per-connection behavior is 412 * determined dynamically during tcp_set_destination(), which is the default. 413 */ 414 boolean_t tcp_static_maxpsz = B_FALSE; 415 416 /* 417 * If the receive buffer size is changed, this function is called to update 418 * the upper socket layer on the new delayed receive wake up threshold. 419 */ 420 static void 421 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 422 { 423 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 424 425 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 426 conn_t *connp = tcp->tcp_connp; 427 struct sock_proto_props sopp; 428 429 /* 430 * only increase rcvthresh upto default_threshold 431 */ 432 if (new_rcvthresh > default_threshold) 433 new_rcvthresh = default_threshold; 434 435 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 436 sopp.sopp_rcvthresh = new_rcvthresh; 437 438 (*connp->conn_upcalls->su_set_proto_props) 439 (connp->conn_upper_handle, &sopp); 440 } 441 } 442 443 /* 444 * Figure out the value of window scale opton. Note that the rwnd is 445 * ASSUMED to be rounded up to the nearest MSS before the calculation. 446 * We cannot find the scale value and then do a round up of tcp_rwnd 447 * because the scale value may not be correct after that. 448 * 449 * Set the compiler flag to make this function inline. 450 */ 451 void 452 tcp_set_ws_value(tcp_t *tcp) 453 { 454 int i; 455 uint32_t rwnd = tcp->tcp_rwnd; 456 457 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 458 i++, rwnd >>= 1) 459 ; 460 tcp->tcp_rcv_ws = i; 461 } 462 463 /* 464 * Remove cached/latched IPsec references. 465 */ 466 void 467 tcp_ipsec_cleanup(tcp_t *tcp) 468 { 469 conn_t *connp = tcp->tcp_connp; 470 471 ASSERT(connp->conn_flags & IPCL_TCPCONN); 472 473 if (connp->conn_latch != NULL) { 474 IPLATCH_REFRELE(connp->conn_latch); 475 connp->conn_latch = NULL; 476 } 477 if (connp->conn_latch_in_policy != NULL) { 478 IPPOL_REFRELE(connp->conn_latch_in_policy); 479 connp->conn_latch_in_policy = NULL; 480 } 481 if (connp->conn_latch_in_action != NULL) { 482 IPACT_REFRELE(connp->conn_latch_in_action); 483 connp->conn_latch_in_action = NULL; 484 } 485 if (connp->conn_policy != NULL) { 486 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 487 connp->conn_policy = NULL; 488 } 489 } 490 491 /* 492 * Cleaup before placing on free list. 493 * Disassociate from the netstack/tcp_stack_t since the freelist 494 * is per squeue and not per netstack. 495 */ 496 void 497 tcp_cleanup(tcp_t *tcp) 498 { 499 mblk_t *mp; 500 conn_t *connp = tcp->tcp_connp; 501 tcp_stack_t *tcps = tcp->tcp_tcps; 502 netstack_t *ns = tcps->tcps_netstack; 503 mblk_t *tcp_rsrv_mp; 504 505 tcp_bind_hash_remove(tcp); 506 507 /* Cleanup that which needs the netstack first */ 508 tcp_ipsec_cleanup(tcp); 509 ixa_cleanup(connp->conn_ixa); 510 511 if (connp->conn_ht_iphc != NULL) { 512 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 513 connp->conn_ht_iphc = NULL; 514 connp->conn_ht_iphc_allocated = 0; 515 connp->conn_ht_iphc_len = 0; 516 connp->conn_ht_ulp = NULL; 517 connp->conn_ht_ulp_len = 0; 518 tcp->tcp_ipha = NULL; 519 tcp->tcp_ip6h = NULL; 520 tcp->tcp_tcpha = NULL; 521 } 522 523 /* We clear any IP_OPTIONS and extension headers */ 524 ip_pkt_free(&connp->conn_xmit_ipp); 525 526 tcp_free(tcp); 527 528 /* 529 * Since we will bzero the entire structure, we need to 530 * remove it and reinsert it in global hash list. We 531 * know the walkers can't get to this conn because we 532 * had set CONDEMNED flag earlier and checked reference 533 * under conn_lock so walker won't pick it and when we 534 * go the ipcl_globalhash_remove() below, no walker 535 * can get to it. 536 */ 537 ipcl_globalhash_remove(connp); 538 539 /* Save some state */ 540 mp = tcp->tcp_timercache; 541 542 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 543 544 if (connp->conn_cred != NULL) { 545 crfree(connp->conn_cred); 546 connp->conn_cred = NULL; 547 } 548 ipcl_conn_cleanup(connp); 549 connp->conn_flags = IPCL_TCPCONN; 550 551 /* 552 * Now it is safe to decrement the reference counts. 553 * This might be the last reference on the netstack 554 * in which case it will cause the freeing of the IP Instance. 555 */ 556 connp->conn_netstack = NULL; 557 connp->conn_ixa->ixa_ipst = NULL; 558 netstack_rele(ns); 559 ASSERT(tcps != NULL); 560 tcp->tcp_tcps = NULL; 561 562 bzero(tcp, sizeof (tcp_t)); 563 564 /* restore the state */ 565 tcp->tcp_timercache = mp; 566 567 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 568 569 tcp->tcp_connp = connp; 570 571 ASSERT(connp->conn_tcp == tcp); 572 ASSERT(connp->conn_flags & IPCL_TCPCONN); 573 connp->conn_state_flags = CONN_INCIPIENT; 574 ASSERT(connp->conn_proto == IPPROTO_TCP); 575 ASSERT(connp->conn_ref == 1); 576 } 577 578 /* 579 * Adapt to the information, such as rtt and rtt_sd, provided from the 580 * DCE and IRE maintained by IP. 581 * 582 * Checks for multicast and broadcast destination address. 583 * Returns zero if ok; an errno on failure. 584 * 585 * Note that the MSS calculation here is based on the info given in 586 * the DCE and IRE. We do not do any calculation based on TCP options. They 587 * will be handled in tcp_input_data() when TCP knows which options to use. 588 * 589 * Note on how TCP gets its parameters for a connection. 590 * 591 * When a tcp_t structure is allocated, it gets all the default parameters. 592 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 593 * spipe, rpipe, ... from the route metrics. Route metric overrides the 594 * default. 595 * 596 * An incoming SYN with a multicast or broadcast destination address is dropped 597 * in ip_fanout_v4/v6. 598 * 599 * An incoming SYN with a multicast or broadcast source address is always 600 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 601 * conn_connect. 602 * The same logic in tcp_set_destination also serves to 603 * reject an attempt to connect to a broadcast or multicast (destination) 604 * address. 605 */ 606 int 607 tcp_set_destination(tcp_t *tcp) 608 { 609 uint32_t mss_max; 610 uint32_t mss; 611 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 612 conn_t *connp = tcp->tcp_connp; 613 tcp_stack_t *tcps = tcp->tcp_tcps; 614 iulp_t uinfo; 615 int error; 616 uint32_t flags; 617 618 flags = IPDF_LSO | IPDF_ZCOPY; 619 /* 620 * Make sure we have a dce for the destination to avoid dce_ident 621 * contention for connected sockets. 622 */ 623 flags |= IPDF_UNIQUE_DCE; 624 625 if (!tcps->tcps_ignore_path_mtu) 626 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 627 628 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 629 mutex_enter(&connp->conn_lock); 630 error = conn_connect(connp, &uinfo, flags); 631 mutex_exit(&connp->conn_lock); 632 if (error != 0) 633 return (error); 634 635 error = tcp_build_hdrs(tcp); 636 if (error != 0) 637 return (error); 638 639 tcp->tcp_localnet = uinfo.iulp_localnet; 640 641 if (uinfo.iulp_rtt != 0) { 642 clock_t rto; 643 644 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 645 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 646 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 647 tcps->tcps_rexmit_interval_extra + 648 (tcp->tcp_rtt_sa >> 5); 649 650 TCP_SET_RTO(tcp, rto); 651 } 652 if (uinfo.iulp_ssthresh != 0) 653 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 654 else 655 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 656 if (uinfo.iulp_spipe > 0) { 657 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 658 tcps->tcps_max_buf); 659 if (tcps->tcps_snd_lowat_fraction != 0) { 660 connp->conn_sndlowat = connp->conn_sndbuf / 661 tcps->tcps_snd_lowat_fraction; 662 } 663 (void) tcp_maxpsz_set(tcp, B_TRUE); 664 } 665 /* 666 * Note that up till now, acceptor always inherits receive 667 * window from the listener. But if there is a metrics 668 * associated with a host, we should use that instead of 669 * inheriting it from listener. Thus we need to pass this 670 * info back to the caller. 671 */ 672 if (uinfo.iulp_rpipe > 0) { 673 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 674 tcps->tcps_max_buf); 675 } 676 677 if (uinfo.iulp_rtomax > 0) { 678 tcp->tcp_second_timer_threshold = 679 uinfo.iulp_rtomax; 680 } 681 682 /* 683 * Use the metric option settings, iulp_tstamp_ok and 684 * iulp_wscale_ok, only for active open. What this means 685 * is that if the other side uses timestamp or window 686 * scale option, TCP will also use those options. That 687 * is for passive open. If the application sets a 688 * large window, window scale is enabled regardless of 689 * the value in iulp_wscale_ok. This is the behavior 690 * since 2.6. So we keep it. 691 * The only case left in passive open processing is the 692 * check for SACK. 693 * For ECN, it should probably be like SACK. But the 694 * current value is binary, so we treat it like the other 695 * cases. The metric only controls active open.For passive 696 * open, the ndd param, tcp_ecn_permitted, controls the 697 * behavior. 698 */ 699 if (!tcp_detached) { 700 /* 701 * The if check means that the following can only 702 * be turned on by the metrics only IRE, but not off. 703 */ 704 if (uinfo.iulp_tstamp_ok) 705 tcp->tcp_snd_ts_ok = B_TRUE; 706 if (uinfo.iulp_wscale_ok) 707 tcp->tcp_snd_ws_ok = B_TRUE; 708 if (uinfo.iulp_sack == 2) 709 tcp->tcp_snd_sack_ok = B_TRUE; 710 if (uinfo.iulp_ecn_ok) 711 tcp->tcp_ecn_ok = B_TRUE; 712 } else { 713 /* 714 * Passive open. 715 * 716 * As above, the if check means that SACK can only be 717 * turned on by the metric only IRE. 718 */ 719 if (uinfo.iulp_sack > 0) { 720 tcp->tcp_snd_sack_ok = B_TRUE; 721 } 722 } 723 724 /* 725 * XXX Note that currently, iulp_mtu can be as small as 68 726 * because of PMTUd. So tcp_mss may go to negative if combined 727 * length of all those options exceeds 28 bytes. But because 728 * of the tcp_mss_min check below, we may not have a problem if 729 * tcp_mss_min is of a reasonable value. The default is 1 so 730 * the negative problem still exists. And the check defeats PMTUd. 731 * In fact, if PMTUd finds that the MSS should be smaller than 732 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 733 * value. 734 * 735 * We do not deal with that now. All those problems related to 736 * PMTUd will be fixed later. 737 */ 738 ASSERT(uinfo.iulp_mtu != 0); 739 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 740 741 /* Sanity check for MSS value. */ 742 if (connp->conn_ipversion == IPV4_VERSION) 743 mss_max = tcps->tcps_mss_max_ipv4; 744 else 745 mss_max = tcps->tcps_mss_max_ipv6; 746 747 if (tcp->tcp_ipsec_overhead == 0) 748 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 749 750 mss -= tcp->tcp_ipsec_overhead; 751 752 if (mss < tcps->tcps_mss_min) 753 mss = tcps->tcps_mss_min; 754 if (mss > mss_max) 755 mss = mss_max; 756 757 /* Note that this is the maximum MSS, excluding all options. */ 758 tcp->tcp_mss = mss; 759 760 /* 761 * Update the tcp connection with LSO capability. 762 */ 763 tcp_update_lso(tcp, connp->conn_ixa); 764 765 /* 766 * Initialize the ISS here now that we have the full connection ID. 767 * The RFC 1948 method of initial sequence number generation requires 768 * knowledge of the full connection ID before setting the ISS. 769 */ 770 tcp_iss_init(tcp); 771 772 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 773 774 /* 775 * Make sure that conn is not marked incipient 776 * for incoming connections. A blind 777 * removal of incipient flag is cheaper than 778 * check and removal. 779 */ 780 mutex_enter(&connp->conn_lock); 781 connp->conn_state_flags &= ~CONN_INCIPIENT; 782 mutex_exit(&connp->conn_lock); 783 return (0); 784 } 785 786 /* 787 * tcp_clean_death / tcp_close_detached must not be called more than once 788 * on a tcp. Thus every function that potentially calls tcp_clean_death 789 * must check for the tcp state before calling tcp_clean_death. 790 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 791 * tcp_timer_handler, all check for the tcp state. 792 */ 793 /* ARGSUSED */ 794 void 795 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 796 ip_recv_attr_t *dummy) 797 { 798 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 799 800 freemsg(mp); 801 if (tcp->tcp_state > TCPS_BOUND) 802 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 803 } 804 805 /* 806 * We are dying for some reason. Try to do it gracefully. (May be called 807 * as writer.) 808 * 809 * Return -1 if the structure was not cleaned up (if the cleanup had to be 810 * done by a service procedure). 811 * TBD - Should the return value distinguish between the tcp_t being 812 * freed and it being reinitialized? 813 */ 814 int 815 tcp_clean_death(tcp_t *tcp, int err) 816 { 817 mblk_t *mp; 818 queue_t *q; 819 conn_t *connp = tcp->tcp_connp; 820 tcp_stack_t *tcps = tcp->tcp_tcps; 821 822 if (tcp->tcp_fused) 823 tcp_unfuse(tcp); 824 825 if (tcp->tcp_linger_tid != 0 && 826 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 827 tcp_stop_lingering(tcp); 828 } 829 830 ASSERT(tcp != NULL); 831 ASSERT((connp->conn_family == AF_INET && 832 connp->conn_ipversion == IPV4_VERSION) || 833 (connp->conn_family == AF_INET6 && 834 (connp->conn_ipversion == IPV4_VERSION || 835 connp->conn_ipversion == IPV6_VERSION))); 836 837 if (TCP_IS_DETACHED(tcp)) { 838 if (tcp->tcp_hard_binding) { 839 /* 840 * Its an eager that we are dealing with. We close the 841 * eager but in case a conn_ind has already gone to the 842 * listener, let tcp_accept_finish() send a discon_ind 843 * to the listener and drop the last reference. If the 844 * listener doesn't even know about the eager i.e. the 845 * conn_ind hasn't gone up, blow away the eager and drop 846 * the last reference as well. If the conn_ind has gone 847 * up, state should be BOUND. tcp_accept_finish 848 * will figure out that the connection has received a 849 * RST and will send a DISCON_IND to the application. 850 */ 851 tcp_closei_local(tcp); 852 if (!tcp->tcp_tconnind_started) { 853 CONN_DEC_REF(connp); 854 } else { 855 tcp->tcp_state = TCPS_BOUND; 856 DTRACE_TCP6(state__change, void, NULL, 857 ip_xmit_attr_t *, connp->conn_ixa, 858 void, NULL, tcp_t *, tcp, void, NULL, 859 int32_t, TCPS_CLOSED); 860 } 861 } else { 862 tcp_close_detached(tcp); 863 } 864 return (0); 865 } 866 867 TCP_STAT(tcps, tcp_clean_death_nondetached); 868 869 /* 870 * The connection is dead. Decrement listener connection counter if 871 * necessary. 872 */ 873 if (tcp->tcp_listen_cnt != NULL) 874 TCP_DECR_LISTEN_CNT(tcp); 875 876 /* 877 * When a connection is moved to TIME_WAIT state, the connection 878 * counter is already decremented. So no need to decrement here 879 * again. See SET_TIME_WAIT() macro. 880 */ 881 if (tcp->tcp_state >= TCPS_ESTABLISHED && 882 tcp->tcp_state < TCPS_TIME_WAIT) { 883 TCPS_CONN_DEC(tcps); 884 } 885 886 q = connp->conn_rq; 887 888 /* Trash all inbound data */ 889 if (!IPCL_IS_NONSTR(connp)) { 890 ASSERT(q != NULL); 891 flushq(q, FLUSHALL); 892 } 893 894 /* 895 * If we are at least part way open and there is error 896 * (err==0 implies no error) 897 * notify our client by a T_DISCON_IND. 898 */ 899 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 900 if (tcp->tcp_state >= TCPS_ESTABLISHED && 901 !TCP_IS_SOCKET(tcp)) { 902 /* 903 * Send M_FLUSH according to TPI. Because sockets will 904 * (and must) ignore FLUSHR we do that only for TPI 905 * endpoints and sockets in STREAMS mode. 906 */ 907 (void) putnextctl1(q, M_FLUSH, FLUSHR); 908 } 909 if (connp->conn_debug) { 910 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 911 "tcp_clean_death: discon err %d", err); 912 } 913 if (IPCL_IS_NONSTR(connp)) { 914 /* Direct socket, use upcall */ 915 (*connp->conn_upcalls->su_disconnected)( 916 connp->conn_upper_handle, tcp->tcp_connid, err); 917 } else { 918 mp = mi_tpi_discon_ind(NULL, err, 0); 919 if (mp != NULL) { 920 putnext(q, mp); 921 } else { 922 if (connp->conn_debug) { 923 (void) strlog(TCP_MOD_ID, 0, 1, 924 SL_ERROR|SL_TRACE, 925 "tcp_clean_death, sending M_ERROR"); 926 } 927 (void) putnextctl1(q, M_ERROR, EPROTO); 928 } 929 } 930 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 931 /* SYN_SENT or SYN_RCVD */ 932 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 933 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 934 /* ESTABLISHED or CLOSE_WAIT */ 935 TCPS_BUMP_MIB(tcps, tcpEstabResets); 936 } 937 } 938 939 /* 940 * ESTABLISHED non-STREAMS eagers are not 'detached' because 941 * an upper handle is obtained when the SYN-ACK comes in. So it 942 * should receive the 'disconnected' upcall, but tcp_reinit should 943 * not be called since this is an eager. 944 */ 945 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 946 tcp_closei_local(tcp); 947 tcp->tcp_state = TCPS_BOUND; 948 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 949 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 950 int32_t, TCPS_CLOSED); 951 return (0); 952 } 953 954 tcp_reinit(tcp); 955 if (IPCL_IS_NONSTR(connp)) 956 (void) tcp_do_unbind(connp); 957 958 return (-1); 959 } 960 961 /* 962 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 963 * to expire, stop the wait and finish the close. 964 */ 965 void 966 tcp_stop_lingering(tcp_t *tcp) 967 { 968 clock_t delta = 0; 969 tcp_stack_t *tcps = tcp->tcp_tcps; 970 conn_t *connp = tcp->tcp_connp; 971 972 tcp->tcp_linger_tid = 0; 973 if (tcp->tcp_state > TCPS_LISTEN) { 974 tcp_acceptor_hash_remove(tcp); 975 mutex_enter(&tcp->tcp_non_sq_lock); 976 if (tcp->tcp_flow_stopped) { 977 tcp_clrqfull(tcp); 978 } 979 mutex_exit(&tcp->tcp_non_sq_lock); 980 981 if (tcp->tcp_timer_tid != 0) { 982 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 983 tcp->tcp_timer_tid = 0; 984 } 985 /* 986 * Need to cancel those timers which will not be used when 987 * TCP is detached. This has to be done before the conn_wq 988 * is cleared. 989 */ 990 tcp_timers_stop(tcp); 991 992 tcp->tcp_detached = B_TRUE; 993 connp->conn_rq = NULL; 994 connp->conn_wq = NULL; 995 996 if (tcp->tcp_state == TCPS_TIME_WAIT) { 997 tcp_time_wait_append(tcp); 998 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 999 goto finish; 1000 } 1001 1002 /* 1003 * If delta is zero the timer event wasn't executed and was 1004 * successfully canceled. In this case we need to restart it 1005 * with the minimal delta possible. 1006 */ 1007 if (delta >= 0) { 1008 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1009 delta ? delta : 1); 1010 } 1011 } else { 1012 tcp_closei_local(tcp); 1013 CONN_DEC_REF(connp); 1014 } 1015 finish: 1016 tcp->tcp_detached = B_TRUE; 1017 connp->conn_rq = NULL; 1018 connp->conn_wq = NULL; 1019 1020 /* Signal closing thread that it can complete close */ 1021 mutex_enter(&tcp->tcp_closelock); 1022 tcp->tcp_closed = 1; 1023 cv_signal(&tcp->tcp_closecv); 1024 mutex_exit(&tcp->tcp_closelock); 1025 1026 /* If we have an upper handle (socket), release it */ 1027 if (IPCL_IS_NONSTR(connp)) { 1028 ASSERT(connp->conn_upper_handle != NULL); 1029 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle); 1030 connp->conn_upper_handle = NULL; 1031 connp->conn_upcalls = NULL; 1032 } 1033 } 1034 1035 void 1036 tcp_close_common(conn_t *connp, int flags) 1037 { 1038 tcp_t *tcp = connp->conn_tcp; 1039 mblk_t *mp = &tcp->tcp_closemp; 1040 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1041 mblk_t *bp; 1042 1043 ASSERT(connp->conn_ref >= 2); 1044 1045 /* 1046 * Mark the conn as closing. ipsq_pending_mp_add will not 1047 * add any mp to the pending mp list, after this conn has 1048 * started closing. 1049 */ 1050 mutex_enter(&connp->conn_lock); 1051 connp->conn_state_flags |= CONN_CLOSING; 1052 if (connp->conn_oper_pending_ill != NULL) 1053 conn_ioctl_cleanup_reqd = B_TRUE; 1054 CONN_INC_REF_LOCKED(connp); 1055 mutex_exit(&connp->conn_lock); 1056 tcp->tcp_closeflags = (uint8_t)flags; 1057 ASSERT(connp->conn_ref >= 3); 1058 1059 /* 1060 * tcp_closemp_used is used below without any protection of a lock 1061 * as we don't expect any one else to use it concurrently at this 1062 * point otherwise it would be a major defect. 1063 */ 1064 1065 if (mp->b_prev == NULL) 1066 tcp->tcp_closemp_used = B_TRUE; 1067 else 1068 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1069 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1070 1071 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1072 1073 /* 1074 * Cleanup any queued ioctls here. This must be done before the wq/rq 1075 * are re-written by tcp_close_output(). 1076 */ 1077 if (conn_ioctl_cleanup_reqd) 1078 conn_ioctl_cleanup(connp); 1079 1080 /* 1081 * As CONN_CLOSING is set, no further ioctls should be passed down to 1082 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1083 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1084 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1085 * was still in flight at the time, we wait for it here. See comments 1086 * for CONN_INC_IOCTLREF in ip.h for details. 1087 */ 1088 mutex_enter(&connp->conn_lock); 1089 while (connp->conn_ioctlref > 0) 1090 cv_wait(&connp->conn_cv, &connp->conn_lock); 1091 ASSERT(connp->conn_ioctlref == 0); 1092 ASSERT(connp->conn_oper_pending_ill == NULL); 1093 mutex_exit(&connp->conn_lock); 1094 1095 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1096 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1097 1098 /* 1099 * For non-STREAMS sockets, the normal case is that the conn makes 1100 * an upcall when it's finally closed, so there is no need to wait 1101 * in the protocol. But in case of SO_LINGER the thread sleeps here 1102 * so it can properly deal with the thread being interrupted. 1103 */ 1104 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1105 goto nowait; 1106 1107 mutex_enter(&tcp->tcp_closelock); 1108 while (!tcp->tcp_closed) { 1109 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1110 /* 1111 * The cv_wait_sig() was interrupted. We now do the 1112 * following: 1113 * 1114 * 1) If the endpoint was lingering, we allow this 1115 * to be interrupted by cancelling the linger timeout 1116 * and closing normally. 1117 * 1118 * 2) Revert to calling cv_wait() 1119 * 1120 * We revert to using cv_wait() to avoid an 1121 * infinite loop which can occur if the calling 1122 * thread is higher priority than the squeue worker 1123 * thread and is bound to the same cpu. 1124 */ 1125 if (connp->conn_linger && connp->conn_lingertime > 0) { 1126 mutex_exit(&tcp->tcp_closelock); 1127 /* Entering squeue, bump ref count. */ 1128 CONN_INC_REF(connp); 1129 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1130 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1131 tcp_linger_interrupted, connp, NULL, 1132 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1133 mutex_enter(&tcp->tcp_closelock); 1134 } 1135 break; 1136 } 1137 } 1138 while (!tcp->tcp_closed) 1139 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1140 mutex_exit(&tcp->tcp_closelock); 1141 1142 /* 1143 * In the case of listener streams that have eagers in the q or q0 1144 * we wait for the eagers to drop their reference to us. conn_rq and 1145 * conn_wq of the eagers point to our queues. By waiting for the 1146 * refcnt to drop to 1, we are sure that the eagers have cleaned 1147 * up their queue pointers and also dropped their references to us. 1148 * 1149 * For non-STREAMS sockets we do not have to wait here; the 1150 * listener will instead make a su_closed upcall when the last 1151 * reference is dropped. 1152 */ 1153 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1154 mutex_enter(&connp->conn_lock); 1155 while (connp->conn_ref != 1) { 1156 cv_wait(&connp->conn_cv, &connp->conn_lock); 1157 } 1158 mutex_exit(&connp->conn_lock); 1159 } 1160 1161 nowait: 1162 connp->conn_cpid = NOPID; 1163 } 1164 1165 /* 1166 * Called by tcp_close() routine via squeue when lingering is 1167 * interrupted by a signal. 1168 */ 1169 1170 /* ARGSUSED */ 1171 static void 1172 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1173 { 1174 conn_t *connp = (conn_t *)arg; 1175 tcp_t *tcp = connp->conn_tcp; 1176 1177 freeb(mp); 1178 if (tcp->tcp_linger_tid != 0 && 1179 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1180 tcp_stop_lingering(tcp); 1181 tcp->tcp_client_errno = EINTR; 1182 } 1183 } 1184 1185 /* 1186 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1187 * Some stream heads get upset if they see these later on as anything but NULL. 1188 */ 1189 void 1190 tcp_close_mpp(mblk_t **mpp) 1191 { 1192 mblk_t *mp; 1193 1194 if ((mp = *mpp) != NULL) { 1195 do { 1196 mp->b_next = NULL; 1197 mp->b_prev = NULL; 1198 } while ((mp = mp->b_cont) != NULL); 1199 1200 mp = *mpp; 1201 *mpp = NULL; 1202 freemsg(mp); 1203 } 1204 } 1205 1206 /* Do detached close. */ 1207 void 1208 tcp_close_detached(tcp_t *tcp) 1209 { 1210 if (tcp->tcp_fused) 1211 tcp_unfuse(tcp); 1212 1213 /* 1214 * Clustering code serializes TCP disconnect callbacks and 1215 * cluster tcp list walks by blocking a TCP disconnect callback 1216 * if a cluster tcp list walk is in progress. This ensures 1217 * accurate accounting of TCPs in the cluster code even though 1218 * the TCP list walk itself is not atomic. 1219 */ 1220 tcp_closei_local(tcp); 1221 CONN_DEC_REF(tcp->tcp_connp); 1222 } 1223 1224 /* 1225 * The tcp_t is going away. Remove it from all lists and set it 1226 * to TCPS_CLOSED. The freeing up of memory is deferred until 1227 * tcp_inactive. This is needed since a thread in tcp_rput might have 1228 * done a CONN_INC_REF on this structure before it was removed from the 1229 * hashes. 1230 */ 1231 void 1232 tcp_closei_local(tcp_t *tcp) 1233 { 1234 conn_t *connp = tcp->tcp_connp; 1235 tcp_stack_t *tcps = tcp->tcp_tcps; 1236 int32_t oldstate; 1237 1238 if (!TCP_IS_SOCKET(tcp)) 1239 tcp_acceptor_hash_remove(tcp); 1240 1241 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1242 tcp->tcp_ibsegs = 0; 1243 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1244 tcp->tcp_obsegs = 0; 1245 1246 /* 1247 * This can be called via tcp_time_wait_processing() if TCP gets a 1248 * SYN with sequence number outside the TIME-WAIT connection's 1249 * window. So we need to check for TIME-WAIT state here as the 1250 * connection counter is already decremented. See SET_TIME_WAIT() 1251 * macro 1252 */ 1253 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1254 tcp->tcp_state < TCPS_TIME_WAIT) { 1255 TCPS_CONN_DEC(tcps); 1256 } 1257 1258 /* 1259 * If we are an eager connection hanging off a listener that 1260 * hasn't formally accepted the connection yet, get off his 1261 * list and blow off any data that we have accumulated. 1262 */ 1263 if (tcp->tcp_listener != NULL) { 1264 tcp_t *listener = tcp->tcp_listener; 1265 mutex_enter(&listener->tcp_eager_lock); 1266 /* 1267 * tcp_tconnind_started == B_TRUE means that the 1268 * conn_ind has already gone to listener. At 1269 * this point, eager will be closed but we 1270 * leave it in listeners eager list so that 1271 * if listener decides to close without doing 1272 * accept, we can clean this up. In tcp_tli_accept 1273 * we take care of the case of accept on closed 1274 * eager. 1275 */ 1276 if (!tcp->tcp_tconnind_started) { 1277 tcp_eager_unlink(tcp); 1278 mutex_exit(&listener->tcp_eager_lock); 1279 /* 1280 * We don't want to have any pointers to the 1281 * listener queue, after we have released our 1282 * reference on the listener 1283 */ 1284 ASSERT(tcp->tcp_detached); 1285 connp->conn_rq = NULL; 1286 connp->conn_wq = NULL; 1287 CONN_DEC_REF(listener->tcp_connp); 1288 } else { 1289 mutex_exit(&listener->tcp_eager_lock); 1290 } 1291 } 1292 1293 /* Stop all the timers */ 1294 tcp_timers_stop(tcp); 1295 1296 if (tcp->tcp_state == TCPS_LISTEN) { 1297 if (tcp->tcp_ip_addr_cache) { 1298 kmem_free((void *)tcp->tcp_ip_addr_cache, 1299 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1300 tcp->tcp_ip_addr_cache = NULL; 1301 } 1302 } 1303 1304 /* Decrement listerner connection counter if necessary. */ 1305 if (tcp->tcp_listen_cnt != NULL) 1306 TCP_DECR_LISTEN_CNT(tcp); 1307 1308 mutex_enter(&tcp->tcp_non_sq_lock); 1309 if (tcp->tcp_flow_stopped) 1310 tcp_clrqfull(tcp); 1311 mutex_exit(&tcp->tcp_non_sq_lock); 1312 1313 tcp_bind_hash_remove(tcp); 1314 /* 1315 * If the tcp_time_wait_collector (which runs outside the squeue) 1316 * is trying to remove this tcp from the time wait list, we will 1317 * block in tcp_time_wait_remove while trying to acquire the 1318 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1319 * requires the ipcl_hash_remove to be ordered after the 1320 * tcp_time_wait_remove for the refcnt checks to work correctly. 1321 */ 1322 if (tcp->tcp_state == TCPS_TIME_WAIT) 1323 (void) tcp_time_wait_remove(tcp, NULL); 1324 CL_INET_DISCONNECT(connp); 1325 ipcl_hash_remove(connp); 1326 oldstate = tcp->tcp_state; 1327 tcp->tcp_state = TCPS_CLOSED; 1328 /* Need to probe before ixa_cleanup() is called */ 1329 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1330 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1331 int32_t, oldstate); 1332 ixa_cleanup(connp->conn_ixa); 1333 1334 /* 1335 * Mark the conn as CONDEMNED 1336 */ 1337 mutex_enter(&connp->conn_lock); 1338 connp->conn_state_flags |= CONN_CONDEMNED; 1339 mutex_exit(&connp->conn_lock); 1340 1341 ASSERT(tcp->tcp_time_wait_next == NULL); 1342 ASSERT(tcp->tcp_time_wait_prev == NULL); 1343 ASSERT(tcp->tcp_time_wait_expire == 0); 1344 1345 tcp_ipsec_cleanup(tcp); 1346 } 1347 1348 /* 1349 * tcp is dying (called from ipcl_conn_destroy and error cases). 1350 * Free the tcp_t in either case. 1351 */ 1352 void 1353 tcp_free(tcp_t *tcp) 1354 { 1355 mblk_t *mp; 1356 conn_t *connp = tcp->tcp_connp; 1357 1358 ASSERT(tcp != NULL); 1359 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1360 1361 connp->conn_rq = NULL; 1362 connp->conn_wq = NULL; 1363 1364 tcp_close_mpp(&tcp->tcp_xmit_head); 1365 tcp_close_mpp(&tcp->tcp_reass_head); 1366 if (tcp->tcp_rcv_list != NULL) { 1367 /* Free b_next chain */ 1368 tcp_close_mpp(&tcp->tcp_rcv_list); 1369 } 1370 if ((mp = tcp->tcp_urp_mp) != NULL) { 1371 freemsg(mp); 1372 } 1373 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1374 freemsg(mp); 1375 } 1376 1377 if (tcp->tcp_fused_sigurg_mp != NULL) { 1378 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1379 freeb(tcp->tcp_fused_sigurg_mp); 1380 tcp->tcp_fused_sigurg_mp = NULL; 1381 } 1382 1383 if (tcp->tcp_ordrel_mp != NULL) { 1384 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1385 freeb(tcp->tcp_ordrel_mp); 1386 tcp->tcp_ordrel_mp = NULL; 1387 } 1388 1389 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1390 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1391 1392 if (tcp->tcp_hopopts != NULL) { 1393 mi_free(tcp->tcp_hopopts); 1394 tcp->tcp_hopopts = NULL; 1395 tcp->tcp_hopoptslen = 0; 1396 } 1397 ASSERT(tcp->tcp_hopoptslen == 0); 1398 if (tcp->tcp_dstopts != NULL) { 1399 mi_free(tcp->tcp_dstopts); 1400 tcp->tcp_dstopts = NULL; 1401 tcp->tcp_dstoptslen = 0; 1402 } 1403 ASSERT(tcp->tcp_dstoptslen == 0); 1404 if (tcp->tcp_rthdrdstopts != NULL) { 1405 mi_free(tcp->tcp_rthdrdstopts); 1406 tcp->tcp_rthdrdstopts = NULL; 1407 tcp->tcp_rthdrdstoptslen = 0; 1408 } 1409 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1410 if (tcp->tcp_rthdr != NULL) { 1411 mi_free(tcp->tcp_rthdr); 1412 tcp->tcp_rthdr = NULL; 1413 tcp->tcp_rthdrlen = 0; 1414 } 1415 ASSERT(tcp->tcp_rthdrlen == 0); 1416 1417 /* 1418 * Following is really a blowing away a union. 1419 * It happens to have exactly two members of identical size 1420 * the following code is enough. 1421 */ 1422 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1423 1424 /* 1425 * If this is a non-STREAM socket still holding on to an upper 1426 * handle, release it. As a result of fallback we might also see 1427 * STREAMS based conns with upper handles, in which case there is 1428 * nothing to do other than clearing the field. 1429 */ 1430 if (connp->conn_upper_handle != NULL) { 1431 if (IPCL_IS_NONSTR(connp)) { 1432 (*connp->conn_upcalls->su_closed)( 1433 connp->conn_upper_handle); 1434 tcp->tcp_detached = B_TRUE; 1435 } 1436 connp->conn_upper_handle = NULL; 1437 connp->conn_upcalls = NULL; 1438 } 1439 } 1440 1441 /* 1442 * tcp_get_conn/tcp_free_conn 1443 * 1444 * tcp_get_conn is used to get a clean tcp connection structure. 1445 * It tries to reuse the connections put on the freelist by the 1446 * time_wait_collector failing which it goes to kmem_cache. This 1447 * way has two benefits compared to just allocating from and 1448 * freeing to kmem_cache. 1449 * 1) The time_wait_collector can free (which includes the cleanup) 1450 * outside the squeue. So when the interrupt comes, we have a clean 1451 * connection sitting in the freelist. Obviously, this buys us 1452 * performance. 1453 * 1454 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1455 * has multiple disadvantages - tying up the squeue during alloc. 1456 * But allocating the conn/tcp in IP land is also not the best since 1457 * we can't check the 'q' and 'q0' which are protected by squeue and 1458 * blindly allocate memory which might have to be freed here if we are 1459 * not allowed to accept the connection. By using the freelist and 1460 * putting the conn/tcp back in freelist, we don't pay a penalty for 1461 * allocating memory without checking 'q/q0' and freeing it if we can't 1462 * accept the connection. 1463 * 1464 * Care should be taken to put the conn back in the same squeue's freelist 1465 * from which it was allocated. Best results are obtained if conn is 1466 * allocated from listener's squeue and freed to the same. Time wait 1467 * collector will free up the freelist is the connection ends up sitting 1468 * there for too long. 1469 */ 1470 void * 1471 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1472 { 1473 tcp_t *tcp = NULL; 1474 conn_t *connp = NULL; 1475 squeue_t *sqp = (squeue_t *)arg; 1476 tcp_squeue_priv_t *tcp_time_wait; 1477 netstack_t *ns; 1478 mblk_t *tcp_rsrv_mp = NULL; 1479 1480 tcp_time_wait = 1481 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1482 1483 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1484 tcp = tcp_time_wait->tcp_free_list; 1485 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1486 if (tcp != NULL) { 1487 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1488 tcp_time_wait->tcp_free_list_cnt--; 1489 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1490 tcp->tcp_time_wait_next = NULL; 1491 connp = tcp->tcp_connp; 1492 connp->conn_flags |= IPCL_REUSED; 1493 1494 ASSERT(tcp->tcp_tcps == NULL); 1495 ASSERT(connp->conn_netstack == NULL); 1496 ASSERT(tcp->tcp_rsrv_mp != NULL); 1497 ns = tcps->tcps_netstack; 1498 netstack_hold(ns); 1499 connp->conn_netstack = ns; 1500 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1501 tcp->tcp_tcps = tcps; 1502 ipcl_globalhash_insert(connp); 1503 1504 connp->conn_ixa->ixa_notify_cookie = tcp; 1505 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1506 connp->conn_recv = tcp_input_data; 1507 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1508 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1509 return ((void *)connp); 1510 } 1511 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1512 /* 1513 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1514 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1515 */ 1516 tcp_rsrv_mp = allocb(0, BPRI_HI); 1517 if (tcp_rsrv_mp == NULL) 1518 return (NULL); 1519 1520 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1521 tcps->tcps_netstack)) == NULL) { 1522 freeb(tcp_rsrv_mp); 1523 return (NULL); 1524 } 1525 1526 tcp = connp->conn_tcp; 1527 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1528 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1529 1530 tcp->tcp_tcps = tcps; 1531 1532 connp->conn_recv = tcp_input_data; 1533 connp->conn_recvicmp = tcp_icmp_input; 1534 connp->conn_verifyicmp = tcp_verifyicmp; 1535 1536 /* 1537 * Register tcp_notify to listen to capability changes detected by IP. 1538 * This upcall is made in the context of the call to conn_ip_output 1539 * thus it is inside the squeue. 1540 */ 1541 connp->conn_ixa->ixa_notify = tcp_notify; 1542 connp->conn_ixa->ixa_notify_cookie = tcp; 1543 1544 return ((void *)connp); 1545 } 1546 1547 /* 1548 * Handle connect to IPv4 destinations, including connections for AF_INET6 1549 * sockets connecting to IPv4 mapped IPv6 destinations. 1550 * Returns zero if OK, a positive errno, or a negative TLI error. 1551 */ 1552 static int 1553 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1554 uint_t srcid) 1555 { 1556 ipaddr_t dstaddr = *dstaddrp; 1557 uint16_t lport; 1558 conn_t *connp = tcp->tcp_connp; 1559 tcp_stack_t *tcps = tcp->tcp_tcps; 1560 int error; 1561 1562 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1563 1564 /* Check for attempt to connect to INADDR_ANY */ 1565 if (dstaddr == INADDR_ANY) { 1566 /* 1567 * SunOS 4.x and 4.3 BSD allow an application 1568 * to connect a TCP socket to INADDR_ANY. 1569 * When they do this, the kernel picks the 1570 * address of one interface and uses it 1571 * instead. The kernel usually ends up 1572 * picking the address of the loopback 1573 * interface. This is an undocumented feature. 1574 * However, we provide the same thing here 1575 * in order to have source and binary 1576 * compatibility with SunOS 4.x. 1577 * Update the T_CONN_REQ (sin/sin6) since it is used to 1578 * generate the T_CONN_CON. 1579 */ 1580 dstaddr = htonl(INADDR_LOOPBACK); 1581 *dstaddrp = dstaddr; 1582 } 1583 1584 /* Handle __sin6_src_id if socket not bound to an IP address */ 1585 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1586 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1587 IPCL_ZONEID(connp), tcps->tcps_netstack); 1588 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1589 } 1590 1591 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1592 connp->conn_fport = dstport; 1593 1594 /* 1595 * At this point the remote destination address and remote port fields 1596 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1597 * have to see which state tcp was in so we can take appropriate action. 1598 */ 1599 if (tcp->tcp_state == TCPS_IDLE) { 1600 /* 1601 * We support a quick connect capability here, allowing 1602 * clients to transition directly from IDLE to SYN_SENT 1603 * tcp_bindi will pick an unused port, insert the connection 1604 * in the bind hash and transition to BOUND state. 1605 */ 1606 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1607 tcp, B_TRUE); 1608 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1609 B_FALSE, B_FALSE); 1610 if (lport == 0) 1611 return (-TNOADDR); 1612 } 1613 1614 /* 1615 * Lookup the route to determine a source address and the uinfo. 1616 * Setup TCP parameters based on the metrics/DCE. 1617 */ 1618 error = tcp_set_destination(tcp); 1619 if (error != 0) 1620 return (error); 1621 1622 /* 1623 * Don't let an endpoint connect to itself. 1624 */ 1625 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1626 connp->conn_fport == connp->conn_lport) 1627 return (-TBADADDR); 1628 1629 tcp->tcp_state = TCPS_SYN_SENT; 1630 1631 return (ipcl_conn_insert_v4(connp)); 1632 } 1633 1634 /* 1635 * Handle connect to IPv6 destinations. 1636 * Returns zero if OK, a positive errno, or a negative TLI error. 1637 */ 1638 static int 1639 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1640 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1641 { 1642 uint16_t lport; 1643 conn_t *connp = tcp->tcp_connp; 1644 tcp_stack_t *tcps = tcp->tcp_tcps; 1645 int error; 1646 1647 ASSERT(connp->conn_family == AF_INET6); 1648 1649 /* 1650 * If we're here, it means that the destination address is a native 1651 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1652 * reason why it might not be IPv6 is if the socket was bound to an 1653 * IPv4-mapped IPv6 address. 1654 */ 1655 if (connp->conn_ipversion != IPV6_VERSION) 1656 return (-TBADADDR); 1657 1658 /* 1659 * Interpret a zero destination to mean loopback. 1660 * Update the T_CONN_REQ (sin/sin6) since it is used to 1661 * generate the T_CONN_CON. 1662 */ 1663 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1664 *dstaddrp = ipv6_loopback; 1665 1666 /* Handle __sin6_src_id if socket not bound to an IP address */ 1667 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1668 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1669 IPCL_ZONEID(connp), tcps->tcps_netstack); 1670 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1671 } 1672 1673 /* 1674 * Take care of the scope_id now. 1675 */ 1676 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1677 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1678 connp->conn_ixa->ixa_scopeid = scope_id; 1679 } else { 1680 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1681 } 1682 1683 connp->conn_flowinfo = flowinfo; 1684 connp->conn_faddr_v6 = *dstaddrp; 1685 connp->conn_fport = dstport; 1686 1687 /* 1688 * At this point the remote destination address and remote port fields 1689 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1690 * have to see which state tcp was in so we can take appropriate action. 1691 */ 1692 if (tcp->tcp_state == TCPS_IDLE) { 1693 /* 1694 * We support a quick connect capability here, allowing 1695 * clients to transition directly from IDLE to SYN_SENT 1696 * tcp_bindi will pick an unused port, insert the connection 1697 * in the bind hash and transition to BOUND state. 1698 */ 1699 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1700 tcp, B_TRUE); 1701 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1702 B_FALSE, B_FALSE); 1703 if (lport == 0) 1704 return (-TNOADDR); 1705 } 1706 1707 /* 1708 * Lookup the route to determine a source address and the uinfo. 1709 * Setup TCP parameters based on the metrics/DCE. 1710 */ 1711 error = tcp_set_destination(tcp); 1712 if (error != 0) 1713 return (error); 1714 1715 /* 1716 * Don't let an endpoint connect to itself. 1717 */ 1718 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1719 connp->conn_fport == connp->conn_lport) 1720 return (-TBADADDR); 1721 1722 tcp->tcp_state = TCPS_SYN_SENT; 1723 1724 return (ipcl_conn_insert_v6(connp)); 1725 } 1726 1727 /* 1728 * Disconnect 1729 * Note that unlike other functions this returns a positive tli error 1730 * when it fails; it never returns an errno. 1731 */ 1732 static int 1733 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1734 { 1735 conn_t *lconnp; 1736 tcp_stack_t *tcps = tcp->tcp_tcps; 1737 conn_t *connp = tcp->tcp_connp; 1738 1739 /* 1740 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1741 * when the stream is in BOUND state. Do not send a reset, 1742 * since the destination IP address is not valid, and it can 1743 * be the initialized value of all zeros (broadcast address). 1744 */ 1745 if (tcp->tcp_state <= TCPS_BOUND) { 1746 if (connp->conn_debug) { 1747 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1748 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1749 } 1750 return (TOUTSTATE); 1751 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1752 TCPS_CONN_DEC(tcps); 1753 } 1754 1755 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1756 1757 /* 1758 * According to TPI, for non-listeners, ignore seqnum 1759 * and disconnect. 1760 * Following interpretation of -1 seqnum is historical 1761 * and implied TPI ? (TPI only states that for T_CONN_IND, 1762 * a valid seqnum should not be -1). 1763 * 1764 * -1 means disconnect everything 1765 * regardless even on a listener. 1766 */ 1767 1768 int old_state = tcp->tcp_state; 1769 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1770 1771 /* 1772 * The connection can't be on the tcp_time_wait_head list 1773 * since it is not detached. 1774 */ 1775 ASSERT(tcp->tcp_time_wait_next == NULL); 1776 ASSERT(tcp->tcp_time_wait_prev == NULL); 1777 ASSERT(tcp->tcp_time_wait_expire == 0); 1778 /* 1779 * If it used to be a listener, check to make sure no one else 1780 * has taken the port before switching back to LISTEN state. 1781 */ 1782 if (connp->conn_ipversion == IPV4_VERSION) { 1783 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1784 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1785 } else { 1786 uint_t ifindex = 0; 1787 1788 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1789 ifindex = connp->conn_ixa->ixa_scopeid; 1790 1791 /* Allow conn_bound_if listeners? */ 1792 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1793 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1794 ipst); 1795 } 1796 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1797 tcp->tcp_state = TCPS_LISTEN; 1798 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1799 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1800 NULL, int32_t, old_state); 1801 } else if (old_state > TCPS_BOUND) { 1802 tcp->tcp_conn_req_max = 0; 1803 tcp->tcp_state = TCPS_BOUND; 1804 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1805 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1806 NULL, int32_t, old_state); 1807 1808 /* 1809 * If this end point is not going to become a listener, 1810 * decrement the listener connection count if 1811 * necessary. Note that we do not do this if it is 1812 * going to be a listner (the above if case) since 1813 * then it may remove the counter struct. 1814 */ 1815 if (tcp->tcp_listen_cnt != NULL) 1816 TCP_DECR_LISTEN_CNT(tcp); 1817 } 1818 if (lconnp != NULL) 1819 CONN_DEC_REF(lconnp); 1820 switch (old_state) { 1821 case TCPS_SYN_SENT: 1822 case TCPS_SYN_RCVD: 1823 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1824 break; 1825 case TCPS_ESTABLISHED: 1826 case TCPS_CLOSE_WAIT: 1827 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1828 break; 1829 } 1830 1831 if (tcp->tcp_fused) 1832 tcp_unfuse(tcp); 1833 1834 mutex_enter(&tcp->tcp_eager_lock); 1835 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1836 (tcp->tcp_conn_req_cnt_q != 0)) { 1837 tcp_eager_cleanup(tcp, 0); 1838 } 1839 mutex_exit(&tcp->tcp_eager_lock); 1840 1841 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1842 tcp->tcp_rnxt, TH_RST | TH_ACK); 1843 1844 tcp_reinit(tcp); 1845 1846 return (0); 1847 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1848 return (TBADSEQ); 1849 } 1850 return (0); 1851 } 1852 1853 /* 1854 * Our client hereby directs us to reject the connection request 1855 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1856 * of sending the appropriate RST, not an ICMP error. 1857 */ 1858 void 1859 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1860 { 1861 t_scalar_t seqnum; 1862 int error; 1863 conn_t *connp = tcp->tcp_connp; 1864 1865 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1866 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1867 tcp_err_ack(tcp, mp, TPROTO, 0); 1868 return; 1869 } 1870 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1871 error = tcp_disconnect_common(tcp, seqnum); 1872 if (error != 0) 1873 tcp_err_ack(tcp, mp, error, 0); 1874 else { 1875 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1876 /* Send M_FLUSH according to TPI */ 1877 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1878 } 1879 mp = mi_tpi_ok_ack_alloc(mp); 1880 if (mp != NULL) 1881 putnext(connp->conn_rq, mp); 1882 } 1883 } 1884 1885 /* 1886 * Handle reinitialization of a tcp structure. 1887 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1888 */ 1889 static void 1890 tcp_reinit(tcp_t *tcp) 1891 { 1892 mblk_t *mp; 1893 tcp_stack_t *tcps = tcp->tcp_tcps; 1894 conn_t *connp = tcp->tcp_connp; 1895 int32_t oldstate; 1896 1897 /* tcp_reinit should never be called for detached tcp_t's */ 1898 ASSERT(tcp->tcp_listener == NULL); 1899 ASSERT((connp->conn_family == AF_INET && 1900 connp->conn_ipversion == IPV4_VERSION) || 1901 (connp->conn_family == AF_INET6 && 1902 (connp->conn_ipversion == IPV4_VERSION || 1903 connp->conn_ipversion == IPV6_VERSION))); 1904 1905 /* Cancel outstanding timers */ 1906 tcp_timers_stop(tcp); 1907 1908 /* 1909 * Reset everything in the state vector, after updating global 1910 * MIB data from instance counters. 1911 */ 1912 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1913 tcp->tcp_ibsegs = 0; 1914 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1915 tcp->tcp_obsegs = 0; 1916 1917 tcp_close_mpp(&tcp->tcp_xmit_head); 1918 if (tcp->tcp_snd_zcopy_aware) 1919 tcp_zcopy_notify(tcp); 1920 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1921 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1922 mutex_enter(&tcp->tcp_non_sq_lock); 1923 if (tcp->tcp_flow_stopped && 1924 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1925 tcp_clrqfull(tcp); 1926 } 1927 mutex_exit(&tcp->tcp_non_sq_lock); 1928 tcp_close_mpp(&tcp->tcp_reass_head); 1929 tcp->tcp_reass_tail = NULL; 1930 if (tcp->tcp_rcv_list != NULL) { 1931 /* Free b_next chain */ 1932 tcp_close_mpp(&tcp->tcp_rcv_list); 1933 tcp->tcp_rcv_last_head = NULL; 1934 tcp->tcp_rcv_last_tail = NULL; 1935 tcp->tcp_rcv_cnt = 0; 1936 } 1937 tcp->tcp_rcv_last_tail = NULL; 1938 1939 if ((mp = tcp->tcp_urp_mp) != NULL) { 1940 freemsg(mp); 1941 tcp->tcp_urp_mp = NULL; 1942 } 1943 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1944 freemsg(mp); 1945 tcp->tcp_urp_mark_mp = NULL; 1946 } 1947 if (tcp->tcp_fused_sigurg_mp != NULL) { 1948 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1949 freeb(tcp->tcp_fused_sigurg_mp); 1950 tcp->tcp_fused_sigurg_mp = NULL; 1951 } 1952 if (tcp->tcp_ordrel_mp != NULL) { 1953 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1954 freeb(tcp->tcp_ordrel_mp); 1955 tcp->tcp_ordrel_mp = NULL; 1956 } 1957 1958 /* 1959 * Following is a union with two members which are 1960 * identical types and size so the following cleanup 1961 * is enough. 1962 */ 1963 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1964 1965 CL_INET_DISCONNECT(connp); 1966 1967 /* 1968 * The connection can't be on the tcp_time_wait_head list 1969 * since it is not detached. 1970 */ 1971 ASSERT(tcp->tcp_time_wait_next == NULL); 1972 ASSERT(tcp->tcp_time_wait_prev == NULL); 1973 ASSERT(tcp->tcp_time_wait_expire == 0); 1974 1975 /* 1976 * Reset/preserve other values 1977 */ 1978 tcp_reinit_values(tcp); 1979 ipcl_hash_remove(connp); 1980 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1981 ixa_cleanup(connp->conn_ixa); 1982 tcp_ipsec_cleanup(tcp); 1983 1984 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1985 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1986 oldstate = tcp->tcp_state; 1987 1988 if (tcp->tcp_conn_req_max != 0) { 1989 /* 1990 * This is the case when a TLI program uses the same 1991 * transport end point to accept a connection. This 1992 * makes the TCP both a listener and acceptor. When 1993 * this connection is closed, we need to set the state 1994 * back to TCPS_LISTEN. Make sure that the eager list 1995 * is reinitialized. 1996 * 1997 * Note that this stream is still bound to the four 1998 * tuples of the previous connection in IP. If a new 1999 * SYN with different foreign address comes in, IP will 2000 * not find it and will send it to the global queue. In 2001 * the global queue, TCP will do a tcp_lookup_listener() 2002 * to find this stream. This works because this stream 2003 * is only removed from connected hash. 2004 * 2005 */ 2006 tcp->tcp_state = TCPS_LISTEN; 2007 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2008 tcp->tcp_eager_next_drop_q0 = tcp; 2009 tcp->tcp_eager_prev_drop_q0 = tcp; 2010 /* 2011 * Initially set conn_recv to tcp_input_listener_unbound to try 2012 * to pick a good squeue for the listener when the first SYN 2013 * arrives. tcp_input_listener_unbound sets it to 2014 * tcp_input_listener on that first SYN. 2015 */ 2016 connp->conn_recv = tcp_input_listener_unbound; 2017 2018 connp->conn_proto = IPPROTO_TCP; 2019 connp->conn_faddr_v6 = ipv6_all_zeros; 2020 connp->conn_fport = 0; 2021 2022 (void) ipcl_bind_insert(connp); 2023 } else { 2024 tcp->tcp_state = TCPS_BOUND; 2025 } 2026 2027 /* 2028 * Initialize to default values 2029 */ 2030 tcp_init_values(tcp, NULL); 2031 2032 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2033 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2034 int32_t, oldstate); 2035 2036 ASSERT(tcp->tcp_ptpbhn != NULL); 2037 tcp->tcp_rwnd = connp->conn_rcvbuf; 2038 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2039 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2040 } 2041 2042 /* 2043 * Force values to zero that need be zero. 2044 * Do not touch values asociated with the BOUND or LISTEN state 2045 * since the connection will end up in that state after the reinit. 2046 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2047 * structure! 2048 */ 2049 static void 2050 tcp_reinit_values(tcp) 2051 tcp_t *tcp; 2052 { 2053 tcp_stack_t *tcps = tcp->tcp_tcps; 2054 conn_t *connp = tcp->tcp_connp; 2055 2056 #ifndef lint 2057 #define DONTCARE(x) 2058 #define PRESERVE(x) 2059 #else 2060 #define DONTCARE(x) ((x) = (x)) 2061 #define PRESERVE(x) ((x) = (x)) 2062 #endif /* lint */ 2063 2064 PRESERVE(tcp->tcp_bind_hash_port); 2065 PRESERVE(tcp->tcp_bind_hash); 2066 PRESERVE(tcp->tcp_ptpbhn); 2067 PRESERVE(tcp->tcp_acceptor_hash); 2068 PRESERVE(tcp->tcp_ptpahn); 2069 2070 /* Should be ASSERT NULL on these with new code! */ 2071 ASSERT(tcp->tcp_time_wait_next == NULL); 2072 ASSERT(tcp->tcp_time_wait_prev == NULL); 2073 ASSERT(tcp->tcp_time_wait_expire == 0); 2074 PRESERVE(tcp->tcp_state); 2075 PRESERVE(connp->conn_rq); 2076 PRESERVE(connp->conn_wq); 2077 2078 ASSERT(tcp->tcp_xmit_head == NULL); 2079 ASSERT(tcp->tcp_xmit_last == NULL); 2080 ASSERT(tcp->tcp_unsent == 0); 2081 ASSERT(tcp->tcp_xmit_tail == NULL); 2082 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2083 2084 tcp->tcp_snxt = 0; /* Displayed in mib */ 2085 tcp->tcp_suna = 0; /* Displayed in mib */ 2086 tcp->tcp_swnd = 0; 2087 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2088 2089 ASSERT(tcp->tcp_ibsegs == 0); 2090 ASSERT(tcp->tcp_obsegs == 0); 2091 2092 if (connp->conn_ht_iphc != NULL) { 2093 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2094 connp->conn_ht_iphc = NULL; 2095 connp->conn_ht_iphc_allocated = 0; 2096 connp->conn_ht_iphc_len = 0; 2097 connp->conn_ht_ulp = NULL; 2098 connp->conn_ht_ulp_len = 0; 2099 tcp->tcp_ipha = NULL; 2100 tcp->tcp_ip6h = NULL; 2101 tcp->tcp_tcpha = NULL; 2102 } 2103 2104 /* We clear any IP_OPTIONS and extension headers */ 2105 ip_pkt_free(&connp->conn_xmit_ipp); 2106 2107 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2108 DONTCARE(tcp->tcp_ipha); 2109 DONTCARE(tcp->tcp_ip6h); 2110 DONTCARE(tcp->tcp_tcpha); 2111 tcp->tcp_valid_bits = 0; 2112 2113 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2114 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2115 tcp->tcp_last_rcv_lbolt = 0; 2116 2117 tcp->tcp_init_cwnd = 0; 2118 2119 tcp->tcp_urp_last_valid = 0; 2120 tcp->tcp_hard_binding = 0; 2121 2122 tcp->tcp_fin_acked = 0; 2123 tcp->tcp_fin_rcvd = 0; 2124 tcp->tcp_fin_sent = 0; 2125 tcp->tcp_ordrel_done = 0; 2126 2127 tcp->tcp_detached = 0; 2128 2129 tcp->tcp_snd_ws_ok = B_FALSE; 2130 tcp->tcp_snd_ts_ok = B_FALSE; 2131 tcp->tcp_zero_win_probe = 0; 2132 2133 tcp->tcp_loopback = 0; 2134 tcp->tcp_localnet = 0; 2135 tcp->tcp_syn_defense = 0; 2136 tcp->tcp_set_timer = 0; 2137 2138 tcp->tcp_active_open = 0; 2139 tcp->tcp_rexmit = B_FALSE; 2140 tcp->tcp_xmit_zc_clean = B_FALSE; 2141 2142 tcp->tcp_snd_sack_ok = B_FALSE; 2143 tcp->tcp_hwcksum = B_FALSE; 2144 2145 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2146 2147 tcp->tcp_conn_def_q0 = 0; 2148 tcp->tcp_ip_forward_progress = B_FALSE; 2149 tcp->tcp_ecn_ok = B_FALSE; 2150 2151 tcp->tcp_cwr = B_FALSE; 2152 tcp->tcp_ecn_echo_on = B_FALSE; 2153 tcp->tcp_is_wnd_shrnk = B_FALSE; 2154 2155 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2156 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2157 2158 tcp->tcp_rcv_ws = 0; 2159 tcp->tcp_snd_ws = 0; 2160 tcp->tcp_ts_recent = 0; 2161 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2162 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2163 tcp->tcp_initial_pmtu = 0; 2164 2165 ASSERT(tcp->tcp_reass_head == NULL); 2166 ASSERT(tcp->tcp_reass_tail == NULL); 2167 2168 tcp->tcp_cwnd_cnt = 0; 2169 2170 ASSERT(tcp->tcp_rcv_list == NULL); 2171 ASSERT(tcp->tcp_rcv_last_head == NULL); 2172 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2173 ASSERT(tcp->tcp_rcv_cnt == 0); 2174 2175 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2176 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2177 tcp->tcp_csuna = 0; 2178 2179 tcp->tcp_rto = 0; /* Displayed in MIB */ 2180 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2181 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2182 tcp->tcp_rtt_update = 0; 2183 2184 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2185 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2186 2187 tcp->tcp_rack = 0; /* Displayed in mib */ 2188 tcp->tcp_rack_cnt = 0; 2189 tcp->tcp_rack_cur_max = 0; 2190 tcp->tcp_rack_abs_max = 0; 2191 2192 tcp->tcp_max_swnd = 0; 2193 2194 ASSERT(tcp->tcp_listener == NULL); 2195 2196 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2197 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2198 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2199 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2200 2201 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2202 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2203 PRESERVE(tcp->tcp_conn_req_max); 2204 PRESERVE(tcp->tcp_conn_req_seqnum); 2205 2206 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2207 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2208 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2209 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2210 2211 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2212 ASSERT(tcp->tcp_urp_mp == NULL); 2213 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2214 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2215 2216 ASSERT(tcp->tcp_eager_next_q == NULL); 2217 ASSERT(tcp->tcp_eager_last_q == NULL); 2218 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2219 tcp->tcp_eager_prev_q0 == NULL) || 2220 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2221 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2222 2223 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2224 tcp->tcp_eager_prev_drop_q0 == NULL) || 2225 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2226 2227 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */ 2228 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */ 2229 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */ 2230 2231 tcp->tcp_client_errno = 0; 2232 2233 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2234 2235 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2236 2237 PRESERVE(connp->conn_bound_addr_v6); 2238 tcp->tcp_last_sent_len = 0; 2239 tcp->tcp_dupack_cnt = 0; 2240 2241 connp->conn_fport = 0; /* Displayed in MIB */ 2242 PRESERVE(connp->conn_lport); 2243 2244 PRESERVE(tcp->tcp_acceptor_lockp); 2245 2246 ASSERT(tcp->tcp_ordrel_mp == NULL); 2247 PRESERVE(tcp->tcp_acceptor_id); 2248 DONTCARE(tcp->tcp_ipsec_overhead); 2249 2250 PRESERVE(connp->conn_family); 2251 /* Remove any remnants of mapped address binding */ 2252 if (connp->conn_family == AF_INET6) { 2253 connp->conn_ipversion = IPV6_VERSION; 2254 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2255 } else { 2256 connp->conn_ipversion = IPV4_VERSION; 2257 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2258 } 2259 2260 connp->conn_bound_if = 0; 2261 connp->conn_recv_ancillary.crb_all = 0; 2262 tcp->tcp_recvifindex = 0; 2263 tcp->tcp_recvhops = 0; 2264 tcp->tcp_closed = 0; 2265 if (tcp->tcp_hopopts != NULL) { 2266 mi_free(tcp->tcp_hopopts); 2267 tcp->tcp_hopopts = NULL; 2268 tcp->tcp_hopoptslen = 0; 2269 } 2270 ASSERT(tcp->tcp_hopoptslen == 0); 2271 if (tcp->tcp_dstopts != NULL) { 2272 mi_free(tcp->tcp_dstopts); 2273 tcp->tcp_dstopts = NULL; 2274 tcp->tcp_dstoptslen = 0; 2275 } 2276 ASSERT(tcp->tcp_dstoptslen == 0); 2277 if (tcp->tcp_rthdrdstopts != NULL) { 2278 mi_free(tcp->tcp_rthdrdstopts); 2279 tcp->tcp_rthdrdstopts = NULL; 2280 tcp->tcp_rthdrdstoptslen = 0; 2281 } 2282 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2283 if (tcp->tcp_rthdr != NULL) { 2284 mi_free(tcp->tcp_rthdr); 2285 tcp->tcp_rthdr = NULL; 2286 tcp->tcp_rthdrlen = 0; 2287 } 2288 ASSERT(tcp->tcp_rthdrlen == 0); 2289 2290 /* Reset fusion-related fields */ 2291 tcp->tcp_fused = B_FALSE; 2292 tcp->tcp_unfusable = B_FALSE; 2293 tcp->tcp_fused_sigurg = B_FALSE; 2294 tcp->tcp_loopback_peer = NULL; 2295 2296 tcp->tcp_lso = B_FALSE; 2297 2298 tcp->tcp_in_ack_unsent = 0; 2299 tcp->tcp_cork = B_FALSE; 2300 tcp->tcp_tconnind_started = B_FALSE; 2301 2302 PRESERVE(tcp->tcp_squeue_bytes); 2303 2304 tcp->tcp_closemp_used = B_FALSE; 2305 2306 PRESERVE(tcp->tcp_rsrv_mp); 2307 PRESERVE(tcp->tcp_rsrv_mp_lock); 2308 2309 #ifdef DEBUG 2310 DONTCARE(tcp->tcmp_stk[0]); 2311 #endif 2312 2313 PRESERVE(tcp->tcp_connid); 2314 2315 ASSERT(tcp->tcp_listen_cnt == NULL); 2316 ASSERT(tcp->tcp_reass_tid == 0); 2317 2318 #undef DONTCARE 2319 #undef PRESERVE 2320 } 2321 2322 /* 2323 * Initialize the various fields in tcp_t. If parent (the listener) is non 2324 * NULL, certain values will be inheritted from it. 2325 */ 2326 void 2327 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2328 { 2329 tcp_stack_t *tcps = tcp->tcp_tcps; 2330 conn_t *connp = tcp->tcp_connp; 2331 clock_t rto; 2332 2333 ASSERT((connp->conn_family == AF_INET && 2334 connp->conn_ipversion == IPV4_VERSION) || 2335 (connp->conn_family == AF_INET6 && 2336 (connp->conn_ipversion == IPV4_VERSION || 2337 connp->conn_ipversion == IPV6_VERSION))); 2338 2339 if (parent == NULL) { 2340 tcp->tcp_naglim = tcps->tcps_naglim_def; 2341 2342 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2343 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2344 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2345 2346 tcp->tcp_first_ctimer_threshold = 2347 tcps->tcps_ip_notify_cinterval; 2348 tcp->tcp_second_ctimer_threshold = 2349 tcps->tcps_ip_abort_cinterval; 2350 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2351 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2352 2353 tcp->tcp_fin_wait_2_flush_interval = 2354 tcps->tcps_fin_wait_2_flush_interval; 2355 2356 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2357 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2358 tcp->tcp_ka_cnt = 0; 2359 tcp->tcp_ka_rinterval = 0; 2360 2361 /* 2362 * Default value of tcp_init_cwnd is 0, so no need to set here 2363 * if parent is NULL. But we need to inherit it from parent. 2364 */ 2365 } else { 2366 /* Inherit various TCP parameters from the parent. */ 2367 tcp->tcp_naglim = parent->tcp_naglim; 2368 2369 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2370 tcp->tcp_rto_min = parent->tcp_rto_min; 2371 tcp->tcp_rto_max = parent->tcp_rto_max; 2372 2373 tcp->tcp_first_ctimer_threshold = 2374 parent->tcp_first_ctimer_threshold; 2375 tcp->tcp_second_ctimer_threshold = 2376 parent->tcp_second_ctimer_threshold; 2377 tcp->tcp_first_timer_threshold = 2378 parent->tcp_first_timer_threshold; 2379 tcp->tcp_second_timer_threshold = 2380 parent->tcp_second_timer_threshold; 2381 2382 tcp->tcp_fin_wait_2_flush_interval = 2383 parent->tcp_fin_wait_2_flush_interval; 2384 2385 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2386 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2387 tcp->tcp_ka_cnt = parent->tcp_ka_cnt; 2388 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval; 2389 2390 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2391 } 2392 2393 /* 2394 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2395 * will be close to tcp_rexmit_interval_initial. By doing this, we 2396 * allow the algorithm to adjust slowly to large fluctuations of RTT 2397 * during first few transmissions of a connection as seen in slow 2398 * links. 2399 */ 2400 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2; 2401 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1; 2402 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2403 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2404 tcps->tcps_conn_grace_period; 2405 TCP_SET_RTO(tcp, rto); 2406 2407 tcp->tcp_timer_backoff = 0; 2408 tcp->tcp_ms_we_have_waited = 0; 2409 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2410 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2411 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2412 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 2413 2414 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2415 2416 /* NOTE: ISS is now set in tcp_set_destination(). */ 2417 2418 /* Reset fusion-related fields */ 2419 tcp->tcp_fused = B_FALSE; 2420 tcp->tcp_unfusable = B_FALSE; 2421 tcp->tcp_fused_sigurg = B_FALSE; 2422 tcp->tcp_loopback_peer = NULL; 2423 2424 /* We rebuild the header template on the next connect/conn_request */ 2425 2426 connp->conn_mlp_type = mlptSingle; 2427 2428 /* 2429 * Init the window scale to the max so tcp_rwnd_set() won't pare 2430 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2431 */ 2432 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2433 tcp->tcp_rwnd = connp->conn_rcvbuf; 2434 2435 tcp->tcp_cork = B_FALSE; 2436 /* 2437 * Init the tcp_debug option if it wasn't already set. This value 2438 * determines whether TCP 2439 * calls strlog() to print out debug messages. Doing this 2440 * initialization here means that this value is not inherited thru 2441 * tcp_reinit(). 2442 */ 2443 if (!connp->conn_debug) 2444 connp->conn_debug = tcps->tcps_dbg; 2445 } 2446 2447 /* 2448 * Update the TCP connection according to change of PMTU. 2449 * 2450 * Path MTU might have changed by either increase or decrease, so need to 2451 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2452 * or negative MSS, since tcp_mss_set() will do it. 2453 */ 2454 void 2455 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2456 { 2457 uint32_t pmtu; 2458 int32_t mss; 2459 conn_t *connp = tcp->tcp_connp; 2460 ip_xmit_attr_t *ixa = connp->conn_ixa; 2461 iaflags_t ixaflags; 2462 2463 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2464 return; 2465 2466 if (tcp->tcp_state < TCPS_ESTABLISHED) 2467 return; 2468 2469 /* 2470 * Always call ip_get_pmtu() to make sure that IP has updated 2471 * ixa_flags properly. 2472 */ 2473 pmtu = ip_get_pmtu(ixa); 2474 ixaflags = ixa->ixa_flags; 2475 2476 /* 2477 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2478 * IPsec overhead if applied. Make sure to use the most recent 2479 * IPsec information. 2480 */ 2481 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2482 2483 /* 2484 * Nothing to change, so just return. 2485 */ 2486 if (mss == tcp->tcp_mss) 2487 return; 2488 2489 /* 2490 * Currently, for ICMP errors, only PMTU decrease is handled. 2491 */ 2492 if (mss > tcp->tcp_mss && decrease_only) 2493 return; 2494 2495 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2496 2497 /* 2498 * Update ixa_fragsize and ixa_pmtu. 2499 */ 2500 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2501 2502 /* 2503 * Adjust MSS and all relevant variables. 2504 */ 2505 tcp_mss_set(tcp, mss); 2506 2507 /* 2508 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2509 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2510 * has a (potentially different) min size we do the same. Make sure to 2511 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2512 * fragment the packet. 2513 * 2514 * LSO over IPv6 can not be fragmented. So need to disable LSO 2515 * when IPv6 fragmentation is needed. 2516 */ 2517 if (mss < tcp->tcp_tcps->tcps_mss_min) 2518 ixaflags |= IXAF_PMTU_TOO_SMALL; 2519 2520 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2521 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2522 2523 if ((connp->conn_ipversion == IPV4_VERSION) && 2524 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2525 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2526 } 2527 ixa->ixa_flags = ixaflags; 2528 } 2529 2530 int 2531 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2532 { 2533 conn_t *connp = tcp->tcp_connp; 2534 queue_t *q = connp->conn_rq; 2535 int32_t mss = tcp->tcp_mss; 2536 int maxpsz; 2537 2538 if (TCP_IS_DETACHED(tcp)) 2539 return (mss); 2540 if (tcp->tcp_fused) { 2541 maxpsz = tcp_fuse_maxpsz(tcp); 2542 mss = INFPSZ; 2543 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2544 /* 2545 * Set the sd_qn_maxpsz according to the socket send buffer 2546 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2547 * instruct the stream head to copyin user data into contiguous 2548 * kernel-allocated buffers without breaking it up into smaller 2549 * chunks. We round up the buffer size to the nearest SMSS. 2550 */ 2551 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2552 mss = INFPSZ; 2553 } else { 2554 /* 2555 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2556 * (and a multiple of the mss). This instructs the stream 2557 * head to break down larger than SMSS writes into SMSS- 2558 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2559 */ 2560 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2561 if (maxpsz > connp->conn_sndbuf / 2) { 2562 maxpsz = connp->conn_sndbuf / 2; 2563 /* Round up to nearest mss */ 2564 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2565 } 2566 } 2567 2568 (void) proto_set_maxpsz(q, connp, maxpsz); 2569 if (!(IPCL_IS_NONSTR(connp))) 2570 connp->conn_wq->q_maxpsz = maxpsz; 2571 if (set_maxblk) 2572 (void) proto_set_tx_maxblk(q, connp, mss); 2573 return (mss); 2574 } 2575 2576 /* For /dev/tcp aka AF_INET open */ 2577 static int 2578 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2579 { 2580 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2581 } 2582 2583 /* For /dev/tcp6 aka AF_INET6 open */ 2584 static int 2585 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2586 { 2587 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2588 } 2589 2590 conn_t * 2591 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2592 int *errorp) 2593 { 2594 tcp_t *tcp = NULL; 2595 conn_t *connp; 2596 zoneid_t zoneid; 2597 tcp_stack_t *tcps; 2598 squeue_t *sqp; 2599 2600 ASSERT(errorp != NULL); 2601 /* 2602 * Find the proper zoneid and netstack. 2603 */ 2604 /* 2605 * Special case for install: miniroot needs to be able to 2606 * access files via NFS as though it were always in the 2607 * global zone. 2608 */ 2609 if (credp == kcred && nfs_global_client_only != 0) { 2610 zoneid = GLOBAL_ZONEID; 2611 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2612 netstack_tcp; 2613 ASSERT(tcps != NULL); 2614 } else { 2615 netstack_t *ns; 2616 int err; 2617 2618 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2619 *errorp = err; 2620 return (NULL); 2621 } 2622 2623 ns = netstack_find_by_cred(credp); 2624 ASSERT(ns != NULL); 2625 tcps = ns->netstack_tcp; 2626 ASSERT(tcps != NULL); 2627 2628 /* 2629 * For exclusive stacks we set the zoneid to zero 2630 * to make TCP operate as if in the global zone. 2631 */ 2632 if (tcps->tcps_netstack->netstack_stackid != 2633 GLOBAL_NETSTACKID) 2634 zoneid = GLOBAL_ZONEID; 2635 else 2636 zoneid = crgetzoneid(credp); 2637 } 2638 2639 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2640 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2641 /* 2642 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2643 * so we drop it by one. 2644 */ 2645 netstack_rele(tcps->tcps_netstack); 2646 if (connp == NULL) { 2647 *errorp = ENOSR; 2648 return (NULL); 2649 } 2650 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2651 2652 connp->conn_sqp = sqp; 2653 connp->conn_initial_sqp = connp->conn_sqp; 2654 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2655 tcp = connp->conn_tcp; 2656 2657 /* 2658 * Besides asking IP to set the checksum for us, have conn_ip_output 2659 * to do the following checks when necessary: 2660 * 2661 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2662 * IXAF_VERIFY_PMTU: verify PMTU changes 2663 * IXAF_VERIFY_LSO: verify LSO capability changes 2664 */ 2665 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2666 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2667 2668 if (!tcps->tcps_dev_flow_ctl) 2669 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2670 2671 if (isv6) { 2672 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2673 connp->conn_ipversion = IPV6_VERSION; 2674 connp->conn_family = AF_INET6; 2675 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2676 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2677 } else { 2678 connp->conn_ipversion = IPV4_VERSION; 2679 connp->conn_family = AF_INET; 2680 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2681 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2682 } 2683 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2684 2685 crhold(credp); 2686 connp->conn_cred = credp; 2687 connp->conn_cpid = curproc->p_pid; 2688 connp->conn_open_time = ddi_get_lbolt64(); 2689 2690 /* Cache things in the ixa without any refhold */ 2691 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2692 connp->conn_ixa->ixa_cred = credp; 2693 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2694 2695 connp->conn_zoneid = zoneid; 2696 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2697 connp->conn_ixa->ixa_zoneid = zoneid; 2698 connp->conn_mlp_type = mlptSingle; 2699 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2700 ASSERT(tcp->tcp_tcps == tcps); 2701 2702 /* 2703 * If the caller has the process-wide flag set, then default to MAC 2704 * exempt mode. This allows read-down to unlabeled hosts. 2705 */ 2706 if (getpflags(NET_MAC_AWARE, credp) != 0) 2707 connp->conn_mac_mode = CONN_MAC_AWARE; 2708 2709 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2710 2711 if (issocket) { 2712 tcp->tcp_issocket = 1; 2713 } 2714 2715 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2716 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2717 if (tcps->tcps_snd_lowat_fraction != 0) { 2718 connp->conn_sndlowat = connp->conn_sndbuf / 2719 tcps->tcps_snd_lowat_fraction; 2720 } else { 2721 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2722 } 2723 connp->conn_so_type = SOCK_STREAM; 2724 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2725 tcps->tcps_wroff_xtra; 2726 2727 SOCK_CONNID_INIT(tcp->tcp_connid); 2728 /* DTrace ignores this - it isn't a tcp:::state-change */ 2729 tcp->tcp_state = TCPS_IDLE; 2730 tcp_init_values(tcp, NULL); 2731 return (connp); 2732 } 2733 2734 static int 2735 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2736 boolean_t isv6) 2737 { 2738 tcp_t *tcp = NULL; 2739 conn_t *connp = NULL; 2740 int err; 2741 vmem_t *minor_arena = NULL; 2742 dev_t conn_dev; 2743 boolean_t issocket; 2744 2745 if (q->q_ptr != NULL) 2746 return (0); 2747 2748 if (sflag == MODOPEN) 2749 return (EINVAL); 2750 2751 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2752 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2753 minor_arena = ip_minor_arena_la; 2754 } else { 2755 /* 2756 * Either minor numbers in the large arena were exhausted 2757 * or a non socket application is doing the open. 2758 * Try to allocate from the small arena. 2759 */ 2760 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2761 return (EBUSY); 2762 } 2763 minor_arena = ip_minor_arena_sa; 2764 } 2765 2766 ASSERT(minor_arena != NULL); 2767 2768 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2769 2770 if (flag & SO_FALLBACK) { 2771 /* 2772 * Non streams socket needs a stream to fallback to 2773 */ 2774 RD(q)->q_ptr = (void *)conn_dev; 2775 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2776 WR(q)->q_ptr = (void *)minor_arena; 2777 qprocson(q); 2778 return (0); 2779 } else if (flag & SO_ACCEPTOR) { 2780 q->q_qinfo = &tcp_acceptor_rinit; 2781 /* 2782 * the conn_dev and minor_arena will be subsequently used by 2783 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2784 * the minor device number for this connection from the q_ptr. 2785 */ 2786 RD(q)->q_ptr = (void *)conn_dev; 2787 WR(q)->q_qinfo = &tcp_acceptor_winit; 2788 WR(q)->q_ptr = (void *)minor_arena; 2789 qprocson(q); 2790 return (0); 2791 } 2792 2793 issocket = flag & SO_SOCKSTR; 2794 connp = tcp_create_common(credp, isv6, issocket, &err); 2795 2796 if (connp == NULL) { 2797 inet_minor_free(minor_arena, conn_dev); 2798 q->q_ptr = WR(q)->q_ptr = NULL; 2799 return (err); 2800 } 2801 2802 connp->conn_rq = q; 2803 connp->conn_wq = WR(q); 2804 q->q_ptr = WR(q)->q_ptr = connp; 2805 2806 connp->conn_dev = conn_dev; 2807 connp->conn_minor_arena = minor_arena; 2808 2809 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2810 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2811 2812 tcp = connp->conn_tcp; 2813 2814 if (issocket) { 2815 WR(q)->q_qinfo = &tcp_sock_winit; 2816 } else { 2817 #ifdef _ILP32 2818 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2819 #else 2820 tcp->tcp_acceptor_id = conn_dev; 2821 #endif /* _ILP32 */ 2822 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2823 } 2824 2825 /* 2826 * Put the ref for TCP. Ref for IP was already put 2827 * by ipcl_conn_create. Also Make the conn_t globally 2828 * visible to walkers 2829 */ 2830 mutex_enter(&connp->conn_lock); 2831 CONN_INC_REF_LOCKED(connp); 2832 ASSERT(connp->conn_ref == 2); 2833 connp->conn_state_flags &= ~CONN_INCIPIENT; 2834 mutex_exit(&connp->conn_lock); 2835 2836 qprocson(q); 2837 return (0); 2838 } 2839 2840 /* 2841 * Build/update the tcp header template (in conn_ht_iphc) based on 2842 * conn_xmit_ipp. The headers include ip6_t, any extension 2843 * headers, and the maximum size tcp header (to avoid reallocation 2844 * on the fly for additional tcp options). 2845 * 2846 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2847 * Returns failure if can't allocate memory. 2848 */ 2849 int 2850 tcp_build_hdrs(tcp_t *tcp) 2851 { 2852 tcp_stack_t *tcps = tcp->tcp_tcps; 2853 conn_t *connp = tcp->tcp_connp; 2854 char buf[TCP_MAX_HDR_LENGTH]; 2855 uint_t buflen; 2856 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2857 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2858 tcpha_t *tcpha; 2859 uint32_t cksum; 2860 int error; 2861 2862 /* 2863 * We might be called after the connection is set up, and we might 2864 * have TS options already in the TCP header. Thus we save any 2865 * existing tcp header. 2866 */ 2867 buflen = connp->conn_ht_ulp_len; 2868 if (buflen != 0) { 2869 bcopy(connp->conn_ht_ulp, buf, buflen); 2870 extralen -= buflen - ulplen; 2871 ulplen = buflen; 2872 } 2873 2874 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2875 mutex_enter(&connp->conn_lock); 2876 error = conn_build_hdr_template(connp, ulplen, extralen, 2877 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2878 mutex_exit(&connp->conn_lock); 2879 if (error != 0) 2880 return (error); 2881 2882 /* 2883 * Any routing header/option has been massaged. The checksum difference 2884 * is stored in conn_sum for later use. 2885 */ 2886 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2887 tcp->tcp_tcpha = tcpha; 2888 2889 /* restore any old tcp header */ 2890 if (buflen != 0) { 2891 bcopy(buf, connp->conn_ht_ulp, buflen); 2892 } else { 2893 tcpha->tha_sum = 0; 2894 tcpha->tha_urp = 0; 2895 tcpha->tha_ack = 0; 2896 tcpha->tha_offset_and_reserved = (5 << 4); 2897 tcpha->tha_lport = connp->conn_lport; 2898 tcpha->tha_fport = connp->conn_fport; 2899 } 2900 2901 /* 2902 * IP wants our header length in the checksum field to 2903 * allow it to perform a single pseudo-header+checksum 2904 * calculation on behalf of TCP. 2905 * Include the adjustment for a source route once IP_OPTIONS is set. 2906 */ 2907 cksum = sizeof (tcpha_t) + connp->conn_sum; 2908 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2909 ASSERT(cksum < 0x10000); 2910 tcpha->tha_sum = htons(cksum); 2911 2912 if (connp->conn_ipversion == IPV4_VERSION) 2913 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2914 else 2915 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2916 2917 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2918 connp->conn_wroff) { 2919 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2920 tcps->tcps_wroff_xtra; 2921 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2922 connp->conn_wroff); 2923 } 2924 return (0); 2925 } 2926 2927 /* 2928 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2929 * We do not allow the receive window to shrink. After setting rwnd, 2930 * set the flow control hiwat of the stream. 2931 * 2932 * This function is called in 2 cases: 2933 * 2934 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2935 * connection (passive open) and in tcp_input_data() for active connect. 2936 * This is called after tcp_mss_set() when the desired MSS value is known. 2937 * This makes sure that our window size is a mutiple of the other side's 2938 * MSS. 2939 * 2) Handling SO_RCVBUF option. 2940 * 2941 * It is ASSUMED that the requested size is a multiple of the current MSS. 2942 * 2943 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2944 * user requests so. 2945 */ 2946 int 2947 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2948 { 2949 uint32_t mss = tcp->tcp_mss; 2950 uint32_t old_max_rwnd; 2951 uint32_t max_transmittable_rwnd; 2952 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2953 tcp_stack_t *tcps = tcp->tcp_tcps; 2954 conn_t *connp = tcp->tcp_connp; 2955 2956 /* 2957 * Insist on a receive window that is at least 2958 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2959 * funny TCP interactions of Nagle algorithm, SWS avoidance 2960 * and delayed acknowledgement. 2961 */ 2962 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2963 2964 if (tcp->tcp_fused) { 2965 size_t sth_hiwat; 2966 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2967 2968 ASSERT(peer_tcp != NULL); 2969 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2970 if (!tcp_detached) { 2971 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2972 sth_hiwat); 2973 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2974 } 2975 2976 /* Caller could have changed tcp_rwnd; update tha_win */ 2977 if (tcp->tcp_tcpha != NULL) { 2978 tcp->tcp_tcpha->tha_win = 2979 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2980 } 2981 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2982 tcp->tcp_cwnd_max = rwnd; 2983 2984 /* 2985 * In the fusion case, the maxpsz stream head value of 2986 * our peer is set according to its send buffer size 2987 * and our receive buffer size; since the latter may 2988 * have changed we need to update the peer's maxpsz. 2989 */ 2990 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2991 return (sth_hiwat); 2992 } 2993 2994 if (tcp_detached) 2995 old_max_rwnd = tcp->tcp_rwnd; 2996 else 2997 old_max_rwnd = connp->conn_rcvbuf; 2998 2999 3000 /* 3001 * If window size info has already been exchanged, TCP should not 3002 * shrink the window. Shrinking window is doable if done carefully. 3003 * We may add that support later. But so far there is not a real 3004 * need to do that. 3005 */ 3006 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 3007 /* MSS may have changed, do a round up again. */ 3008 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 3009 } 3010 3011 /* 3012 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3013 * can be applied even before the window scale option is decided. 3014 */ 3015 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3016 if (rwnd > max_transmittable_rwnd) { 3017 rwnd = max_transmittable_rwnd - 3018 (max_transmittable_rwnd % mss); 3019 if (rwnd < mss) 3020 rwnd = max_transmittable_rwnd; 3021 /* 3022 * If we're over the limit we may have to back down tcp_rwnd. 3023 * The increment below won't work for us. So we set all three 3024 * here and the increment below will have no effect. 3025 */ 3026 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3027 } 3028 if (tcp->tcp_localnet) { 3029 tcp->tcp_rack_abs_max = 3030 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3031 } else { 3032 /* 3033 * For a remote host on a different subnet (through a router), 3034 * we ack every other packet to be conforming to RFC1122. 3035 * tcp_deferred_acks_max is default to 2. 3036 */ 3037 tcp->tcp_rack_abs_max = 3038 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3039 } 3040 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3041 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3042 else 3043 tcp->tcp_rack_cur_max = 0; 3044 /* 3045 * Increment the current rwnd by the amount the maximum grew (we 3046 * can not overwrite it since we might be in the middle of a 3047 * connection.) 3048 */ 3049 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3050 connp->conn_rcvbuf = rwnd; 3051 3052 /* Are we already connected? */ 3053 if (tcp->tcp_tcpha != NULL) { 3054 tcp->tcp_tcpha->tha_win = 3055 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3056 } 3057 3058 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3059 tcp->tcp_cwnd_max = rwnd; 3060 3061 if (tcp_detached) 3062 return (rwnd); 3063 3064 tcp_set_recv_threshold(tcp, rwnd >> 3); 3065 3066 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3067 return (rwnd); 3068 } 3069 3070 int 3071 tcp_do_unbind(conn_t *connp) 3072 { 3073 tcp_t *tcp = connp->conn_tcp; 3074 int32_t oldstate; 3075 3076 switch (tcp->tcp_state) { 3077 case TCPS_BOUND: 3078 case TCPS_LISTEN: 3079 break; 3080 default: 3081 return (-TOUTSTATE); 3082 } 3083 3084 /* 3085 * Need to clean up all the eagers since after the unbind, segments 3086 * will no longer be delivered to this listener stream. 3087 */ 3088 mutex_enter(&tcp->tcp_eager_lock); 3089 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3090 tcp_eager_cleanup(tcp, 0); 3091 } 3092 mutex_exit(&tcp->tcp_eager_lock); 3093 3094 /* Clean up the listener connection counter if necessary. */ 3095 if (tcp->tcp_listen_cnt != NULL) 3096 TCP_DECR_LISTEN_CNT(tcp); 3097 connp->conn_laddr_v6 = ipv6_all_zeros; 3098 connp->conn_saddr_v6 = ipv6_all_zeros; 3099 tcp_bind_hash_remove(tcp); 3100 oldstate = tcp->tcp_state; 3101 tcp->tcp_state = TCPS_IDLE; 3102 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3103 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3104 int32_t, oldstate); 3105 3106 ip_unbind(connp); 3107 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3108 3109 return (0); 3110 } 3111 3112 /* 3113 * Collect protocol properties to send to the upper handle. 3114 */ 3115 void 3116 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3117 { 3118 conn_t *connp = tcp->tcp_connp; 3119 3120 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3121 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3122 3123 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3124 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3125 connp->conn_rcvbuf; 3126 /* 3127 * Determine what write offset value to use depending on SACK and 3128 * whether the endpoint is fused or not. 3129 */ 3130 if (tcp->tcp_fused) { 3131 ASSERT(tcp->tcp_loopback); 3132 ASSERT(tcp->tcp_loopback_peer != NULL); 3133 /* 3134 * For fused tcp loopback, set the stream head's write 3135 * offset value to zero since we won't be needing any room 3136 * for TCP/IP headers. This would also improve performance 3137 * since it would reduce the amount of work done by kmem. 3138 * Non-fused tcp loopback case is handled separately below. 3139 */ 3140 sopp->sopp_wroff = 0; 3141 /* 3142 * Update the peer's transmit parameters according to 3143 * our recently calculated high water mark value. 3144 */ 3145 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3146 } else if (tcp->tcp_snd_sack_ok) { 3147 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3148 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3149 } else { 3150 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3151 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3152 } 3153 3154 if (tcp->tcp_loopback) { 3155 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3156 sopp->sopp_loopback = B_TRUE; 3157 } 3158 } 3159 3160 /* 3161 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3162 */ 3163 boolean_t 3164 tcp_zcopy_check(tcp_t *tcp) 3165 { 3166 conn_t *connp = tcp->tcp_connp; 3167 ip_xmit_attr_t *ixa = connp->conn_ixa; 3168 boolean_t zc_enabled = B_FALSE; 3169 tcp_stack_t *tcps = tcp->tcp_tcps; 3170 3171 if (do_tcpzcopy == 2) 3172 zc_enabled = B_TRUE; 3173 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3174 zc_enabled = B_TRUE; 3175 3176 tcp->tcp_snd_zcopy_on = zc_enabled; 3177 if (!TCP_IS_DETACHED(tcp)) { 3178 if (zc_enabled) { 3179 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3180 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3181 ZCVMSAFE); 3182 TCP_STAT(tcps, tcp_zcopy_on); 3183 } else { 3184 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3185 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3186 ZCVMUNSAFE); 3187 TCP_STAT(tcps, tcp_zcopy_off); 3188 } 3189 } 3190 return (zc_enabled); 3191 } 3192 3193 /* 3194 * Backoff from a zero-copy message by copying data to a new allocated 3195 * message and freeing the original desballoca'ed segmapped message. 3196 * 3197 * This function is called by following two callers: 3198 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3199 * the origial desballoca'ed message and notify sockfs. This is in re- 3200 * transmit state. 3201 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3202 * to be copied to new message. 3203 */ 3204 mblk_t * 3205 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3206 { 3207 mblk_t *nbp; 3208 mblk_t *head = NULL; 3209 mblk_t *tail = NULL; 3210 tcp_stack_t *tcps = tcp->tcp_tcps; 3211 3212 ASSERT(bp != NULL); 3213 while (bp != NULL) { 3214 if (IS_VMLOANED_MBLK(bp)) { 3215 TCP_STAT(tcps, tcp_zcopy_backoff); 3216 if ((nbp = copyb(bp)) == NULL) { 3217 tcp->tcp_xmit_zc_clean = B_FALSE; 3218 if (tail != NULL) 3219 tail->b_cont = bp; 3220 return ((head == NULL) ? bp : head); 3221 } 3222 3223 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3224 if (fix_xmitlist) 3225 tcp_zcopy_notify(tcp); 3226 else 3227 nbp->b_datap->db_struioflag |= 3228 STRUIO_ZCNOTIFY; 3229 } 3230 nbp->b_cont = bp->b_cont; 3231 3232 /* 3233 * Copy saved information and adjust tcp_xmit_tail 3234 * if needed. 3235 */ 3236 if (fix_xmitlist) { 3237 nbp->b_prev = bp->b_prev; 3238 nbp->b_next = bp->b_next; 3239 3240 if (tcp->tcp_xmit_tail == bp) 3241 tcp->tcp_xmit_tail = nbp; 3242 } 3243 3244 /* Free the original message. */ 3245 bp->b_prev = NULL; 3246 bp->b_next = NULL; 3247 freeb(bp); 3248 3249 bp = nbp; 3250 } 3251 3252 if (head == NULL) { 3253 head = bp; 3254 } 3255 if (tail == NULL) { 3256 tail = bp; 3257 } else { 3258 tail->b_cont = bp; 3259 tail = bp; 3260 } 3261 3262 /* Move forward. */ 3263 bp = bp->b_cont; 3264 } 3265 3266 if (fix_xmitlist) { 3267 tcp->tcp_xmit_last = tail; 3268 tcp->tcp_xmit_zc_clean = B_TRUE; 3269 } 3270 3271 return (head); 3272 } 3273 3274 void 3275 tcp_zcopy_notify(tcp_t *tcp) 3276 { 3277 struct stdata *stp; 3278 conn_t *connp; 3279 3280 if (tcp->tcp_detached) 3281 return; 3282 connp = tcp->tcp_connp; 3283 if (IPCL_IS_NONSTR(connp)) { 3284 (*connp->conn_upcalls->su_zcopy_notify) 3285 (connp->conn_upper_handle); 3286 return; 3287 } 3288 stp = STREAM(connp->conn_rq); 3289 mutex_enter(&stp->sd_lock); 3290 stp->sd_flag |= STZCNOTIFY; 3291 cv_broadcast(&stp->sd_zcopy_wait); 3292 mutex_exit(&stp->sd_lock); 3293 } 3294 3295 /* 3296 * Update the TCP connection according to change of LSO capability. 3297 */ 3298 static void 3299 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3300 { 3301 /* 3302 * We check against IPv4 header length to preserve the old behavior 3303 * of only enabling LSO when there are no IP options. 3304 * But this restriction might not be necessary at all. Before removing 3305 * it, need to verify how LSO is handled for source routing case, with 3306 * which IP does software checksum. 3307 * 3308 * For IPv6, whenever any extension header is needed, LSO is supressed. 3309 */ 3310 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3311 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3312 return; 3313 3314 /* 3315 * Either the LSO capability newly became usable, or it has changed. 3316 */ 3317 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3318 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3319 3320 ASSERT(lsoc->ill_lso_max > 0); 3321 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3322 3323 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3324 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3325 3326 /* 3327 * If LSO to be enabled, notify the STREAM header with larger 3328 * data block. 3329 */ 3330 if (!tcp->tcp_lso) 3331 tcp->tcp_maxpsz_multiplier = 0; 3332 3333 tcp->tcp_lso = B_TRUE; 3334 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3335 } else { /* LSO capability is not usable any more. */ 3336 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3337 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3338 3339 /* 3340 * If LSO to be disabled, notify the STREAM header with smaller 3341 * data block. And need to restore fragsize to PMTU. 3342 */ 3343 if (tcp->tcp_lso) { 3344 tcp->tcp_maxpsz_multiplier = 3345 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3346 ixa->ixa_fragsize = ixa->ixa_pmtu; 3347 tcp->tcp_lso = B_FALSE; 3348 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3349 } 3350 } 3351 3352 (void) tcp_maxpsz_set(tcp, B_TRUE); 3353 } 3354 3355 /* 3356 * Update the TCP connection according to change of ZEROCOPY capability. 3357 */ 3358 static void 3359 tcp_update_zcopy(tcp_t *tcp) 3360 { 3361 conn_t *connp = tcp->tcp_connp; 3362 tcp_stack_t *tcps = tcp->tcp_tcps; 3363 3364 if (tcp->tcp_snd_zcopy_on) { 3365 tcp->tcp_snd_zcopy_on = B_FALSE; 3366 if (!TCP_IS_DETACHED(tcp)) { 3367 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3368 ZCVMUNSAFE); 3369 TCP_STAT(tcps, tcp_zcopy_off); 3370 } 3371 } else { 3372 tcp->tcp_snd_zcopy_on = B_TRUE; 3373 if (!TCP_IS_DETACHED(tcp)) { 3374 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3375 ZCVMSAFE); 3376 TCP_STAT(tcps, tcp_zcopy_on); 3377 } 3378 } 3379 } 3380 3381 /* 3382 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3383 * so it's safe to update the TCP connection. 3384 */ 3385 /* ARGSUSED1 */ 3386 static void 3387 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3388 ixa_notify_arg_t narg) 3389 { 3390 tcp_t *tcp = (tcp_t *)arg; 3391 conn_t *connp = tcp->tcp_connp; 3392 3393 switch (ntype) { 3394 case IXAN_LSO: 3395 tcp_update_lso(tcp, connp->conn_ixa); 3396 break; 3397 case IXAN_PMTU: 3398 tcp_update_pmtu(tcp, B_FALSE); 3399 break; 3400 case IXAN_ZCOPY: 3401 tcp_update_zcopy(tcp); 3402 break; 3403 default: 3404 break; 3405 } 3406 } 3407 3408 /* 3409 * The TCP write service routine should never be called... 3410 */ 3411 /* ARGSUSED */ 3412 static void 3413 tcp_wsrv(queue_t *q) 3414 { 3415 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3416 3417 TCP_STAT(tcps, tcp_wsrv_called); 3418 } 3419 3420 /* 3421 * Hash list lookup routine for tcp_t structures. 3422 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3423 */ 3424 tcp_t * 3425 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3426 { 3427 tf_t *tf; 3428 tcp_t *tcp; 3429 3430 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3431 mutex_enter(&tf->tf_lock); 3432 for (tcp = tf->tf_tcp; tcp != NULL; 3433 tcp = tcp->tcp_acceptor_hash) { 3434 if (tcp->tcp_acceptor_id == id) { 3435 CONN_INC_REF(tcp->tcp_connp); 3436 mutex_exit(&tf->tf_lock); 3437 return (tcp); 3438 } 3439 } 3440 mutex_exit(&tf->tf_lock); 3441 return (NULL); 3442 } 3443 3444 /* 3445 * Hash list insertion routine for tcp_t structures. 3446 */ 3447 void 3448 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3449 { 3450 tf_t *tf; 3451 tcp_t **tcpp; 3452 tcp_t *tcpnext; 3453 tcp_stack_t *tcps = tcp->tcp_tcps; 3454 3455 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3456 3457 if (tcp->tcp_ptpahn != NULL) 3458 tcp_acceptor_hash_remove(tcp); 3459 tcpp = &tf->tf_tcp; 3460 mutex_enter(&tf->tf_lock); 3461 tcpnext = tcpp[0]; 3462 if (tcpnext) 3463 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3464 tcp->tcp_acceptor_hash = tcpnext; 3465 tcp->tcp_ptpahn = tcpp; 3466 tcpp[0] = tcp; 3467 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3468 mutex_exit(&tf->tf_lock); 3469 } 3470 3471 /* 3472 * Hash list removal routine for tcp_t structures. 3473 */ 3474 void 3475 tcp_acceptor_hash_remove(tcp_t *tcp) 3476 { 3477 tcp_t *tcpnext; 3478 kmutex_t *lockp; 3479 3480 /* 3481 * Extract the lock pointer in case there are concurrent 3482 * hash_remove's for this instance. 3483 */ 3484 lockp = tcp->tcp_acceptor_lockp; 3485 3486 if (tcp->tcp_ptpahn == NULL) 3487 return; 3488 3489 ASSERT(lockp != NULL); 3490 mutex_enter(lockp); 3491 if (tcp->tcp_ptpahn) { 3492 tcpnext = tcp->tcp_acceptor_hash; 3493 if (tcpnext) { 3494 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3495 tcp->tcp_acceptor_hash = NULL; 3496 } 3497 *tcp->tcp_ptpahn = tcpnext; 3498 tcp->tcp_ptpahn = NULL; 3499 } 3500 mutex_exit(lockp); 3501 tcp->tcp_acceptor_lockp = NULL; 3502 } 3503 3504 /* 3505 * Type three generator adapted from the random() function in 4.4 BSD: 3506 */ 3507 3508 /* 3509 * Copyright (c) 1983, 1993 3510 * The Regents of the University of California. All rights reserved. 3511 * 3512 * Redistribution and use in source and binary forms, with or without 3513 * modification, are permitted provided that the following conditions 3514 * are met: 3515 * 1. Redistributions of source code must retain the above copyright 3516 * notice, this list of conditions and the following disclaimer. 3517 * 2. Redistributions in binary form must reproduce the above copyright 3518 * notice, this list of conditions and the following disclaimer in the 3519 * documentation and/or other materials provided with the distribution. 3520 * 3. All advertising materials mentioning features or use of this software 3521 * must display the following acknowledgement: 3522 * This product includes software developed by the University of 3523 * California, Berkeley and its contributors. 3524 * 4. Neither the name of the University nor the names of its contributors 3525 * may be used to endorse or promote products derived from this software 3526 * without specific prior written permission. 3527 * 3528 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3529 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3530 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3531 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3532 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3533 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3534 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3535 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3536 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3537 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3538 * SUCH DAMAGE. 3539 */ 3540 3541 /* Type 3 -- x**31 + x**3 + 1 */ 3542 #define DEG_3 31 3543 #define SEP_3 3 3544 3545 3546 /* Protected by tcp_random_lock */ 3547 static int tcp_randtbl[DEG_3 + 1]; 3548 3549 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3550 static int *tcp_random_rptr = &tcp_randtbl[1]; 3551 3552 static int *tcp_random_state = &tcp_randtbl[1]; 3553 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3554 3555 kmutex_t tcp_random_lock; 3556 3557 void 3558 tcp_random_init(void) 3559 { 3560 int i; 3561 hrtime_t hrt; 3562 time_t wallclock; 3563 uint64_t result; 3564 3565 /* 3566 * Use high-res timer and current time for seed. Gethrtime() returns 3567 * a longlong, which may contain resolution down to nanoseconds. 3568 * The current time will either be a 32-bit or a 64-bit quantity. 3569 * XOR the two together in a 64-bit result variable. 3570 * Convert the result to a 32-bit value by multiplying the high-order 3571 * 32-bits by the low-order 32-bits. 3572 */ 3573 3574 hrt = gethrtime(); 3575 (void) drv_getparm(TIME, &wallclock); 3576 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3577 mutex_enter(&tcp_random_lock); 3578 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3579 (result & 0xffffffff); 3580 3581 for (i = 1; i < DEG_3; i++) 3582 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3583 + 12345; 3584 tcp_random_fptr = &tcp_random_state[SEP_3]; 3585 tcp_random_rptr = &tcp_random_state[0]; 3586 mutex_exit(&tcp_random_lock); 3587 for (i = 0; i < 10 * DEG_3; i++) 3588 (void) tcp_random(); 3589 } 3590 3591 /* 3592 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3593 * This range is selected to be approximately centered on TCP_ISS / 2, 3594 * and easy to compute. We get this value by generating a 32-bit random 3595 * number, selecting out the high-order 17 bits, and then adding one so 3596 * that we never return zero. 3597 */ 3598 int 3599 tcp_random(void) 3600 { 3601 int i; 3602 3603 mutex_enter(&tcp_random_lock); 3604 *tcp_random_fptr += *tcp_random_rptr; 3605 3606 /* 3607 * The high-order bits are more random than the low-order bits, 3608 * so we select out the high-order 17 bits and add one so that 3609 * we never return zero. 3610 */ 3611 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3612 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3613 tcp_random_fptr = tcp_random_state; 3614 ++tcp_random_rptr; 3615 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3616 tcp_random_rptr = tcp_random_state; 3617 3618 mutex_exit(&tcp_random_lock); 3619 return (i); 3620 } 3621 3622 /* 3623 * Split this function out so that if the secret changes, I'm okay. 3624 * 3625 * Initialize the tcp_iss_cookie and tcp_iss_key. 3626 */ 3627 3628 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3629 3630 void 3631 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3632 { 3633 struct { 3634 int32_t current_time; 3635 uint32_t randnum; 3636 uint16_t pad; 3637 uint8_t ether[6]; 3638 uint8_t passwd[PASSWD_SIZE]; 3639 } tcp_iss_cookie; 3640 time_t t; 3641 3642 /* 3643 * Start with the current absolute time. 3644 */ 3645 (void) drv_getparm(TIME, &t); 3646 tcp_iss_cookie.current_time = t; 3647 3648 /* 3649 * XXX - Need a more random number per RFC 1750, not this crap. 3650 * OTOH, if what follows is pretty random, then I'm in better shape. 3651 */ 3652 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3653 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3654 3655 /* 3656 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3657 * as a good template. 3658 */ 3659 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3660 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3661 3662 /* 3663 * The pass-phrase. Normally this is supplied by user-called NDD. 3664 */ 3665 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3666 3667 /* 3668 * See 4010593 if this section becomes a problem again, 3669 * but the local ethernet address is useful here. 3670 */ 3671 (void) localetheraddr(NULL, 3672 (struct ether_addr *)&tcp_iss_cookie.ether); 3673 3674 /* 3675 * Hash 'em all together. The MD5Final is called per-connection. 3676 */ 3677 mutex_enter(&tcps->tcps_iss_key_lock); 3678 MD5Init(&tcps->tcps_iss_key); 3679 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3680 sizeof (tcp_iss_cookie)); 3681 mutex_exit(&tcps->tcps_iss_key_lock); 3682 } 3683 3684 /* 3685 * Called by IP when IP is loaded into the kernel 3686 */ 3687 void 3688 tcp_ddi_g_init(void) 3689 { 3690 tcp_timercache = kmem_cache_create("tcp_timercache", 3691 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3692 NULL, NULL, NULL, NULL, NULL, 0); 3693 3694 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3695 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3696 3697 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3698 3699 /* Initialize the random number generator */ 3700 tcp_random_init(); 3701 3702 /* A single callback independently of how many netstacks we have */ 3703 ip_squeue_init(tcp_squeue_add); 3704 3705 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3706 3707 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3708 3709 /* 3710 * We want to be informed each time a stack is created or 3711 * destroyed in the kernel, so we can maintain the 3712 * set of tcp_stack_t's. 3713 */ 3714 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3715 } 3716 3717 3718 #define INET_NAME "ip" 3719 3720 /* 3721 * Initialize the TCP stack instance. 3722 */ 3723 static void * 3724 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3725 { 3726 tcp_stack_t *tcps; 3727 int i; 3728 int error = 0; 3729 major_t major; 3730 size_t arrsz; 3731 3732 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3733 tcps->tcps_netstack = ns; 3734 3735 /* Initialize locks */ 3736 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3737 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3738 3739 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3740 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3741 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3742 tcps->tcps_min_anonpriv_port = 512; 3743 3744 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3745 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3746 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3747 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3748 3749 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3750 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3751 MUTEX_DEFAULT, NULL); 3752 } 3753 3754 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3755 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3756 MUTEX_DEFAULT, NULL); 3757 } 3758 3759 /* TCP's IPsec code calls the packet dropper. */ 3760 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3761 3762 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3763 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3764 KM_SLEEP); 3765 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3766 3767 /* 3768 * Note: To really walk the device tree you need the devinfo 3769 * pointer to your device which is only available after probe/attach. 3770 * The following is safe only because it uses ddi_root_node() 3771 */ 3772 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3773 tcp_opt_obj.odb_opt_arr_cnt); 3774 3775 /* 3776 * Initialize RFC 1948 secret values. This will probably be reset once 3777 * by the boot scripts. 3778 * 3779 * Use NULL name, as the name is caught by the new lockstats. 3780 * 3781 * Initialize with some random, non-guessable string, like the global 3782 * T_INFO_ACK. 3783 */ 3784 3785 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3786 sizeof (tcp_g_t_info_ack), tcps); 3787 3788 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3789 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3790 3791 major = mod_name_to_major(INET_NAME); 3792 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3793 ASSERT(error == 0); 3794 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3795 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3796 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL); 3797 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL); 3798 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3799 3800 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3801 tcps->tcps_reclaim = B_FALSE; 3802 tcps->tcps_reclaim_tid = 0; 3803 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3804 3805 /* 3806 * ncpus is the current number of CPUs, which can be bigger than 3807 * boot_ncpus. But we don't want to use ncpus to allocate all the 3808 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3809 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3810 * there are many CPUs as we will be adding them 1 by 1. 3811 * 3812 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3813 * are not freed until the stack is going away. So there is no need 3814 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3815 */ 3816 mutex_enter(&cpu_lock); 3817 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3818 mutex_exit(&cpu_lock); 3819 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3820 KM_SLEEP); 3821 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3822 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3823 KM_SLEEP); 3824 } 3825 3826 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3827 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3828 offsetof(tcp_listener_t, tl_link)); 3829 3830 return (tcps); 3831 } 3832 3833 /* 3834 * Called when the IP module is about to be unloaded. 3835 */ 3836 void 3837 tcp_ddi_g_destroy(void) 3838 { 3839 tcp_g_kstat_fini(tcp_g_kstat); 3840 tcp_g_kstat = NULL; 3841 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3842 3843 mutex_destroy(&tcp_random_lock); 3844 3845 kmem_cache_destroy(tcp_timercache); 3846 kmem_cache_destroy(tcp_notsack_blk_cache); 3847 3848 netstack_unregister(NS_TCP); 3849 } 3850 3851 /* 3852 * Free the TCP stack instance. 3853 */ 3854 static void 3855 tcp_stack_fini(netstackid_t stackid, void *arg) 3856 { 3857 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3858 int i; 3859 3860 freeb(tcps->tcps_ixa_cleanup_mp); 3861 tcps->tcps_ixa_cleanup_mp = NULL; 3862 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv); 3863 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv); 3864 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3865 3866 /* 3867 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3868 * the timer. 3869 */ 3870 mutex_enter(&tcps->tcps_reclaim_lock); 3871 tcps->tcps_reclaim = B_FALSE; 3872 mutex_exit(&tcps->tcps_reclaim_lock); 3873 if (tcps->tcps_reclaim_tid != 0) 3874 (void) untimeout(tcps->tcps_reclaim_tid); 3875 mutex_destroy(&tcps->tcps_reclaim_lock); 3876 3877 tcp_listener_conf_cleanup(tcps); 3878 3879 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3880 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3881 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3882 3883 kmem_free(tcps->tcps_propinfo_tbl, 3884 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3885 tcps->tcps_propinfo_tbl = NULL; 3886 3887 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3888 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3889 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3890 } 3891 3892 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3893 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3894 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3895 } 3896 3897 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3898 tcps->tcps_bind_fanout = NULL; 3899 3900 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3901 TCP_ACCEPTOR_FANOUT_SIZE); 3902 tcps->tcps_acceptor_fanout = NULL; 3903 3904 mutex_destroy(&tcps->tcps_iss_key_lock); 3905 mutex_destroy(&tcps->tcps_epriv_port_lock); 3906 3907 ip_drop_unregister(&tcps->tcps_dropper); 3908 3909 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3910 tcps->tcps_kstat = NULL; 3911 3912 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3913 tcps->tcps_mibkp = NULL; 3914 3915 ldi_ident_release(tcps->tcps_ldi_ident); 3916 kmem_free(tcps, sizeof (*tcps)); 3917 } 3918 3919 /* 3920 * Generate ISS, taking into account NDD changes may happen halfway through. 3921 * (If the iss is not zero, set it.) 3922 */ 3923 3924 static void 3925 tcp_iss_init(tcp_t *tcp) 3926 { 3927 MD5_CTX context; 3928 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3929 uint32_t answer[4]; 3930 tcp_stack_t *tcps = tcp->tcp_tcps; 3931 conn_t *connp = tcp->tcp_connp; 3932 3933 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1); 3934 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3935 switch (tcps->tcps_strong_iss) { 3936 case 2: 3937 mutex_enter(&tcps->tcps_iss_key_lock); 3938 context = tcps->tcps_iss_key; 3939 mutex_exit(&tcps->tcps_iss_key_lock); 3940 arg.ports = connp->conn_ports; 3941 arg.src = connp->conn_laddr_v6; 3942 arg.dst = connp->conn_faddr_v6; 3943 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3944 MD5Final((uchar_t *)answer, &context); 3945 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3946 /* 3947 * Now that we've hashed into a unique per-connection sequence 3948 * space, add a random increment per strong_iss == 1. So I 3949 * guess we'll have to... 3950 */ 3951 /* FALLTHRU */ 3952 case 1: 3953 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3954 break; 3955 default: 3956 tcp->tcp_iss += (uint32_t)gethrestime_sec() * 3957 tcps->tcps_iss_incr; 3958 break; 3959 } 3960 tcp->tcp_valid_bits = TCP_ISS_VALID; 3961 tcp->tcp_fss = tcp->tcp_iss - 1; 3962 tcp->tcp_suna = tcp->tcp_iss; 3963 tcp->tcp_snxt = tcp->tcp_iss + 1; 3964 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3965 tcp->tcp_csuna = tcp->tcp_snxt; 3966 } 3967 3968 /* 3969 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 3970 * on the specified backing STREAMS q. Note, the caller may make the 3971 * decision to call based on the tcp_t.tcp_flow_stopped value which 3972 * when check outside the q's lock is only an advisory check ... 3973 */ 3974 void 3975 tcp_setqfull(tcp_t *tcp) 3976 { 3977 tcp_stack_t *tcps = tcp->tcp_tcps; 3978 conn_t *connp = tcp->tcp_connp; 3979 3980 if (tcp->tcp_closed) 3981 return; 3982 3983 conn_setqfull(connp, &tcp->tcp_flow_stopped); 3984 if (tcp->tcp_flow_stopped) 3985 TCP_STAT(tcps, tcp_flwctl_on); 3986 } 3987 3988 void 3989 tcp_clrqfull(tcp_t *tcp) 3990 { 3991 conn_t *connp = tcp->tcp_connp; 3992 3993 if (tcp->tcp_closed) 3994 return; 3995 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 3996 } 3997 3998 static int 3999 tcp_squeue_switch(int val) 4000 { 4001 int rval = SQ_FILL; 4002 4003 switch (val) { 4004 case 1: 4005 rval = SQ_NODRAIN; 4006 break; 4007 case 2: 4008 rval = SQ_PROCESS; 4009 break; 4010 default: 4011 break; 4012 } 4013 return (rval); 4014 } 4015 4016 /* 4017 * This is called once for each squeue - globally for all stack 4018 * instances. 4019 */ 4020 static void 4021 tcp_squeue_add(squeue_t *sqp) 4022 { 4023 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4024 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4025 4026 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4027 if (tcp_free_list_max_cnt == 0) { 4028 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4029 max_ncpus : boot_max_ncpus); 4030 4031 /* 4032 * Limit number of entries to 1% of availble memory / tcp_ncpus 4033 */ 4034 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4035 (tcp_ncpus * sizeof (tcp_t) * 100); 4036 } 4037 tcp_time_wait->tcp_free_list_cnt = 0; 4038 } 4039 /* 4040 * Return unix error is tli error is TSYSERR, otherwise return a negative 4041 * tli error. 4042 */ 4043 int 4044 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4045 boolean_t bind_to_req_port_only) 4046 { 4047 int error; 4048 tcp_t *tcp = connp->conn_tcp; 4049 4050 if (tcp->tcp_state >= TCPS_BOUND) { 4051 if (connp->conn_debug) { 4052 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4053 "tcp_bind: bad state, %d", tcp->tcp_state); 4054 } 4055 return (-TOUTSTATE); 4056 } 4057 4058 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4059 if (error != 0) 4060 return (error); 4061 4062 ASSERT(tcp->tcp_state == TCPS_BOUND); 4063 tcp->tcp_conn_req_max = 0; 4064 return (0); 4065 } 4066 4067 /* 4068 * If the return value from this function is positive, it's a UNIX error. 4069 * Otherwise, if it's negative, then the absolute value is a TLI error. 4070 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4071 */ 4072 int 4073 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4074 cred_t *cr, pid_t pid) 4075 { 4076 tcp_t *tcp = connp->conn_tcp; 4077 sin_t *sin = (sin_t *)sa; 4078 sin6_t *sin6 = (sin6_t *)sa; 4079 ipaddr_t *dstaddrp; 4080 in_port_t dstport; 4081 uint_t srcid; 4082 int error; 4083 uint32_t mss; 4084 mblk_t *syn_mp; 4085 tcp_stack_t *tcps = tcp->tcp_tcps; 4086 int32_t oldstate; 4087 ip_xmit_attr_t *ixa = connp->conn_ixa; 4088 4089 oldstate = tcp->tcp_state; 4090 4091 switch (len) { 4092 default: 4093 /* 4094 * Should never happen 4095 */ 4096 return (EINVAL); 4097 4098 case sizeof (sin_t): 4099 sin = (sin_t *)sa; 4100 if (sin->sin_port == 0) { 4101 return (-TBADADDR); 4102 } 4103 if (connp->conn_ipv6_v6only) { 4104 return (EAFNOSUPPORT); 4105 } 4106 break; 4107 4108 case sizeof (sin6_t): 4109 sin6 = (sin6_t *)sa; 4110 if (sin6->sin6_port == 0) { 4111 return (-TBADADDR); 4112 } 4113 break; 4114 } 4115 /* 4116 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4117 * make sure that the conn_ipversion is IPV4_VERSION. We 4118 * need to this before we call tcp_bindi() so that the port lookup 4119 * code will look for ports in the correct port space (IPv4 and 4120 * IPv6 have separate port spaces). 4121 */ 4122 if (connp->conn_family == AF_INET6 && 4123 connp->conn_ipversion == IPV6_VERSION && 4124 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4125 if (connp->conn_ipv6_v6only) 4126 return (EADDRNOTAVAIL); 4127 4128 connp->conn_ipversion = IPV4_VERSION; 4129 } 4130 4131 switch (tcp->tcp_state) { 4132 case TCPS_LISTEN: 4133 /* 4134 * Listening sockets are not allowed to issue connect(). 4135 */ 4136 if (IPCL_IS_NONSTR(connp)) 4137 return (EOPNOTSUPP); 4138 /* FALLTHRU */ 4139 case TCPS_IDLE: 4140 /* 4141 * We support quick connect, refer to comments in 4142 * tcp_connect_*() 4143 */ 4144 /* FALLTHRU */ 4145 case TCPS_BOUND: 4146 break; 4147 default: 4148 return (-TOUTSTATE); 4149 } 4150 4151 /* 4152 * We update our cred/cpid based on the caller of connect 4153 */ 4154 if (connp->conn_cred != cr) { 4155 crhold(cr); 4156 crfree(connp->conn_cred); 4157 connp->conn_cred = cr; 4158 } 4159 connp->conn_cpid = pid; 4160 4161 /* Cache things in the ixa without any refhold */ 4162 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4163 ixa->ixa_cred = cr; 4164 ixa->ixa_cpid = pid; 4165 if (is_system_labeled()) { 4166 /* We need to restart with a label based on the cred */ 4167 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4168 } 4169 4170 if (connp->conn_family == AF_INET6) { 4171 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4172 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4173 sin6->sin6_port, sin6->sin6_flowinfo, 4174 sin6->__sin6_src_id, sin6->sin6_scope_id); 4175 } else { 4176 /* 4177 * Destination adress is mapped IPv6 address. 4178 * Source bound address should be unspecified or 4179 * IPv6 mapped address as well. 4180 */ 4181 if (!IN6_IS_ADDR_UNSPECIFIED( 4182 &connp->conn_bound_addr_v6) && 4183 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4184 return (EADDRNOTAVAIL); 4185 } 4186 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4187 dstport = sin6->sin6_port; 4188 srcid = sin6->__sin6_src_id; 4189 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4190 srcid); 4191 } 4192 } else { 4193 dstaddrp = &sin->sin_addr.s_addr; 4194 dstport = sin->sin_port; 4195 srcid = 0; 4196 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4197 } 4198 4199 if (error != 0) 4200 goto connect_failed; 4201 4202 CL_INET_CONNECT(connp, B_TRUE, error); 4203 if (error != 0) 4204 goto connect_failed; 4205 4206 /* connect succeeded */ 4207 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4208 tcp->tcp_active_open = 1; 4209 4210 /* 4211 * tcp_set_destination() does not adjust for TCP/IP header length. 4212 */ 4213 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4214 4215 /* 4216 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4217 * to the nearest MSS. 4218 * 4219 * We do the round up here because we need to get the interface MTU 4220 * first before we can do the round up. 4221 */ 4222 tcp->tcp_rwnd = connp->conn_rcvbuf; 4223 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4224 tcps->tcps_recv_hiwat_minmss * mss); 4225 connp->conn_rcvbuf = tcp->tcp_rwnd; 4226 tcp_set_ws_value(tcp); 4227 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4228 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4229 tcp->tcp_snd_ws_ok = B_TRUE; 4230 4231 /* 4232 * Set tcp_snd_ts_ok to true 4233 * so that tcp_xmit_mp will 4234 * include the timestamp 4235 * option in the SYN segment. 4236 */ 4237 if (tcps->tcps_tstamp_always || 4238 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4239 tcp->tcp_snd_ts_ok = B_TRUE; 4240 } 4241 4242 /* 4243 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4244 * the SACK metric is set. So here we just check the per stack SACK 4245 * permitted param. 4246 */ 4247 if (tcps->tcps_sack_permitted == 2) { 4248 ASSERT(tcp->tcp_num_sack_blk == 0); 4249 ASSERT(tcp->tcp_notsack_list == NULL); 4250 tcp->tcp_snd_sack_ok = B_TRUE; 4251 } 4252 4253 /* 4254 * Should we use ECN? Note that the current 4255 * default value (SunOS 5.9) of tcp_ecn_permitted 4256 * is 1. The reason for doing this is that there 4257 * are equipments out there that will drop ECN 4258 * enabled IP packets. Setting it to 1 avoids 4259 * compatibility problems. 4260 */ 4261 if (tcps->tcps_ecn_permitted == 2) 4262 tcp->tcp_ecn_ok = B_TRUE; 4263 4264 /* Trace change from BOUND -> SYN_SENT here */ 4265 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4266 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4267 int32_t, TCPS_BOUND); 4268 4269 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4270 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4271 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4272 if (syn_mp != NULL) { 4273 /* 4274 * We must bump the generation before sending the syn 4275 * to ensure that we use the right generation in case 4276 * this thread issues a "connected" up call. 4277 */ 4278 SOCK_CONNID_BUMP(tcp->tcp_connid); 4279 /* 4280 * DTrace sending the first SYN as a 4281 * tcp:::connect-request event. 4282 */ 4283 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4284 ip_xmit_attr_t *, connp->conn_ixa, 4285 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4286 tcph_t *, 4287 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4288 tcp_send_data(tcp, syn_mp); 4289 } 4290 4291 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4292 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4293 return (0); 4294 4295 connect_failed: 4296 connp->conn_faddr_v6 = ipv6_all_zeros; 4297 connp->conn_fport = 0; 4298 tcp->tcp_state = oldstate; 4299 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4300 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4301 return (error); 4302 } 4303 4304 int 4305 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4306 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4307 { 4308 tcp_t *tcp = connp->conn_tcp; 4309 int error = 0; 4310 tcp_stack_t *tcps = tcp->tcp_tcps; 4311 int32_t oldstate; 4312 4313 /* All Solaris components should pass a cred for this operation. */ 4314 ASSERT(cr != NULL); 4315 4316 if (tcp->tcp_state >= TCPS_BOUND) { 4317 if ((tcp->tcp_state == TCPS_BOUND || 4318 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4319 /* 4320 * Handle listen() increasing backlog. 4321 * This is more "liberal" then what the TPI spec 4322 * requires but is needed to avoid a t_unbind 4323 * when handling listen() since the port number 4324 * might be "stolen" between the unbind and bind. 4325 */ 4326 goto do_listen; 4327 } 4328 if (connp->conn_debug) { 4329 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4330 "tcp_listen: bad state, %d", tcp->tcp_state); 4331 } 4332 return (-TOUTSTATE); 4333 } else { 4334 if (sa == NULL) { 4335 sin6_t addr; 4336 sin_t *sin; 4337 sin6_t *sin6; 4338 4339 ASSERT(IPCL_IS_NONSTR(connp)); 4340 /* Do an implicit bind: Request for a generic port. */ 4341 if (connp->conn_family == AF_INET) { 4342 len = sizeof (sin_t); 4343 sin = (sin_t *)&addr; 4344 *sin = sin_null; 4345 sin->sin_family = AF_INET; 4346 } else { 4347 ASSERT(connp->conn_family == AF_INET6); 4348 len = sizeof (sin6_t); 4349 sin6 = (sin6_t *)&addr; 4350 *sin6 = sin6_null; 4351 sin6->sin6_family = AF_INET6; 4352 } 4353 sa = (struct sockaddr *)&addr; 4354 } 4355 4356 error = tcp_bind_check(connp, sa, len, cr, 4357 bind_to_req_port_only); 4358 if (error) 4359 return (error); 4360 /* Fall through and do the fanout insertion */ 4361 } 4362 4363 do_listen: 4364 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4365 tcp->tcp_conn_req_max = backlog; 4366 if (tcp->tcp_conn_req_max) { 4367 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4368 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4369 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4370 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4371 /* 4372 * If this is a listener, do not reset the eager list 4373 * and other stuffs. Note that we don't check if the 4374 * existing eager list meets the new tcp_conn_req_max 4375 * requirement. 4376 */ 4377 if (tcp->tcp_state != TCPS_LISTEN) { 4378 tcp->tcp_state = TCPS_LISTEN; 4379 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4380 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4381 void, NULL, int32_t, TCPS_BOUND); 4382 /* Initialize the chain. Don't need the eager_lock */ 4383 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4384 tcp->tcp_eager_next_drop_q0 = tcp; 4385 tcp->tcp_eager_prev_drop_q0 = tcp; 4386 tcp->tcp_second_ctimer_threshold = 4387 tcps->tcps_ip_abort_linterval; 4388 } 4389 } 4390 4391 /* 4392 * We need to make sure that the conn_recv is set to a non-null 4393 * value before we insert the conn into the classifier table. 4394 * This is to avoid a race with an incoming packet which does an 4395 * ipcl_classify(). 4396 * We initially set it to tcp_input_listener_unbound to try to 4397 * pick a good squeue for the listener when the first SYN arrives. 4398 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4399 * first SYN. 4400 */ 4401 connp->conn_recv = tcp_input_listener_unbound; 4402 4403 /* Insert the listener in the classifier table */ 4404 error = ip_laddr_fanout_insert(connp); 4405 if (error != 0) { 4406 /* Undo the bind - release the port number */ 4407 oldstate = tcp->tcp_state; 4408 tcp->tcp_state = TCPS_IDLE; 4409 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4410 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4411 int32_t, oldstate); 4412 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4413 4414 connp->conn_laddr_v6 = ipv6_all_zeros; 4415 connp->conn_saddr_v6 = ipv6_all_zeros; 4416 connp->conn_ports = 0; 4417 4418 if (connp->conn_anon_port) { 4419 zone_t *zone; 4420 4421 zone = crgetzone(cr); 4422 connp->conn_anon_port = B_FALSE; 4423 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4424 connp->conn_proto, connp->conn_lport, B_FALSE); 4425 } 4426 connp->conn_mlp_type = mlptSingle; 4427 4428 tcp_bind_hash_remove(tcp); 4429 return (error); 4430 } else { 4431 /* 4432 * If there is a connection limit, allocate and initialize 4433 * the counter struct. Note that since listen can be called 4434 * multiple times, the struct may have been allready allocated. 4435 */ 4436 if (!list_is_empty(&tcps->tcps_listener_conf) && 4437 tcp->tcp_listen_cnt == NULL) { 4438 tcp_listen_cnt_t *tlc; 4439 uint32_t ratio; 4440 4441 ratio = tcp_find_listener_conf(tcps, 4442 ntohs(connp->conn_lport)); 4443 if (ratio != 0) { 4444 uint32_t mem_ratio, tot_buf; 4445 4446 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4447 KM_SLEEP); 4448 /* 4449 * Calculate the connection limit based on 4450 * the configured ratio and maxusers. Maxusers 4451 * are calculated based on memory size, 4452 * ~ 1 user per MB. Note that the conn_rcvbuf 4453 * and conn_sndbuf may change after a 4454 * connection is accepted. So what we have 4455 * is only an approximation. 4456 */ 4457 if ((tot_buf = connp->conn_rcvbuf + 4458 connp->conn_sndbuf) < MB) { 4459 mem_ratio = MB / tot_buf; 4460 tlc->tlc_max = maxusers / ratio * 4461 mem_ratio; 4462 } else { 4463 mem_ratio = tot_buf / MB; 4464 tlc->tlc_max = maxusers / ratio / 4465 mem_ratio; 4466 } 4467 /* At least we should allow two connections! */ 4468 if (tlc->tlc_max <= tcp_min_conn_listener) 4469 tlc->tlc_max = tcp_min_conn_listener; 4470 tlc->tlc_cnt = 1; 4471 tlc->tlc_drop = 0; 4472 tcp->tcp_listen_cnt = tlc; 4473 } 4474 } 4475 } 4476 return (error); 4477 } 4478