xref: /titanic_51/usr/src/uts/common/inet/tcp/tcp.c (revision 627351e35aacd29d28d29ff70845f23e5b0da5c8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <rpc/pmap_prot.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
129  * squeue_fill). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 /*
237  * Values for squeue switch:
238  * 1: squeue_enter_nodrain
239  * 2: squeue_enter
240  * 3: squeue_fill
241  */
242 int tcp_squeue_close = 2;	/* Setable in /etc/system */
243 int tcp_squeue_wput = 2;
244 
245 squeue_func_t tcp_squeue_close_proc;
246 squeue_func_t tcp_squeue_wput_proc;
247 
248 /*
249  * This controls how tiny a write must be before we try to copy it
250  * into the the mblk on the tail of the transmit queue.  Not much
251  * speedup is observed for values larger than sixteen.  Zero will
252  * disable the optimisation.
253  */
254 int tcp_tx_pull_len = 16;
255 
256 /*
257  * TCP Statistics.
258  *
259  * How TCP statistics work.
260  *
261  * There are two types of statistics invoked by two macros.
262  *
263  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
264  * supposed to be used in non MT-hot paths of the code.
265  *
266  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
267  * supposed to be used for DEBUG purposes and may be used on a hot path.
268  *
269  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
270  * (use "kstat tcp" to get them).
271  *
272  * There is also additional debugging facility that marks tcp_clean_death()
273  * instances and saves them in tcp_t structure. It is triggered by
274  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
275  * tcp_clean_death() calls that counts the number of times each tag was hit. It
276  * is triggered by TCP_CLD_COUNTERS define.
277  *
278  * How to add new counters.
279  *
280  * 1) Add a field in the tcp_stat structure describing your counter.
281  * 2) Add a line in the template in tcp_kstat2_init() with the name
282  *    of the counter.
283  *
284  *    IMPORTANT!! - make sure that both are in sync !!
285  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
286  *
287  * Please avoid using private counters which are not kstat-exported.
288  *
289  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
290  * in tcp_t structure.
291  *
292  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
293  */
294 
295 #ifndef TCP_DEBUG_COUNTER
296 #ifdef DEBUG
297 #define	TCP_DEBUG_COUNTER 1
298 #else
299 #define	TCP_DEBUG_COUNTER 0
300 #endif
301 #endif
302 
303 #define	TCP_CLD_COUNTERS 0
304 
305 #define	TCP_TAG_CLEAN_DEATH 1
306 #define	TCP_MAX_CLEAN_DEATH_TAG 32
307 
308 #ifdef lint
309 static int _lint_dummy_;
310 #endif
311 
312 #if TCP_CLD_COUNTERS
313 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
314 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
315 #elif defined(lint)
316 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
317 #else
318 #define	TCP_CLD_STAT(x)
319 #endif
320 
321 #if TCP_DEBUG_COUNTER
322 #define	TCP_DBGSTAT(tcps, x)	\
323 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
324 #define	TCP_G_DBGSTAT(x)	\
325 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
326 #elif defined(lint)
327 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
328 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
329 #else
330 #define	TCP_DBGSTAT(tcps, x)
331 #define	TCP_G_DBGSTAT(x)
332 #endif
333 
334 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
335 
336 tcp_g_stat_t	tcp_g_statistics;
337 kstat_t		*tcp_g_kstat;
338 
339 /*
340  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
341  * tcp write side.
342  */
343 #define	CALL_IP_WPUT(connp, q, mp) {					\
344 	tcp_stack_t	*tcps;						\
345 									\
346 	tcps = connp->conn_netstack->netstack_tcp;			\
347 	ASSERT(((q)->q_flag & QREADR) == 0);				\
348 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
349 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
350 }
351 
352 /* Macros for timestamp comparisons */
353 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
354 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
355 
356 /*
357  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
358  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
359  * by adding three components: a time component which grows by 1 every 4096
360  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
361  * a per-connection component which grows by 125000 for every new connection;
362  * and an "extra" component that grows by a random amount centered
363  * approximately on 64000.  This causes the the ISS generator to cycle every
364  * 4.89 hours if no TCP connections are made, and faster if connections are
365  * made.
366  *
367  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
368  * components: a time component which grows by 250000 every second; and
369  * a per-connection component which grows by 125000 for every new connections.
370  *
371  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
372  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
373  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
374  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
375  * password.
376  */
377 #define	ISS_INCR	250000
378 #define	ISS_NSEC_SHT	12
379 
380 static sin_t	sin_null;	/* Zero address for quick clears */
381 static sin6_t	sin6_null;	/* Zero address for quick clears */
382 
383 /*
384  * This implementation follows the 4.3BSD interpretation of the urgent
385  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
386  * incompatible changes in protocols like telnet and rlogin.
387  */
388 #define	TCP_OLD_URP_INTERPRETATION	1
389 
390 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
391 	(TCP_IS_DETACHED(tcp) && \
392 	    (!(tcp)->tcp_hard_binding))
393 
394 /*
395  * TCP reassembly macros.  We hide starting and ending sequence numbers in
396  * b_next and b_prev of messages on the reassembly queue.  The messages are
397  * chained using b_cont.  These macros are used in tcp_reass() so we don't
398  * have to see the ugly casts and assignments.
399  */
400 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
401 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
402 					(mblk_t *)(uintptr_t)(u))
403 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
404 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
405 					(mblk_t *)(uintptr_t)(u))
406 
407 /*
408  * Implementation of TCP Timers.
409  * =============================
410  *
411  * INTERFACE:
412  *
413  * There are two basic functions dealing with tcp timers:
414  *
415  *	timeout_id_t	tcp_timeout(connp, func, time)
416  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
417  *	TCP_TIMER_RESTART(tcp, intvl)
418  *
419  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
420  * after 'time' ticks passed. The function called by timeout() must adhere to
421  * the same restrictions as a driver soft interrupt handler - it must not sleep
422  * or call other functions that might sleep. The value returned is the opaque
423  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
424  * cancel the request. The call to tcp_timeout() may fail in which case it
425  * returns zero. This is different from the timeout(9F) function which never
426  * fails.
427  *
428  * The call-back function 'func' always receives 'connp' as its single
429  * argument. It is always executed in the squeue corresponding to the tcp
430  * structure. The tcp structure is guaranteed to be present at the time the
431  * call-back is called.
432  *
433  * NOTE: The call-back function 'func' is never called if tcp is in
434  * 	the TCPS_CLOSED state.
435  *
436  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
437  * request. locks acquired by the call-back routine should not be held across
438  * the call to tcp_timeout_cancel() or a deadlock may result.
439  *
440  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
441  * Otherwise, it returns an integer value greater than or equal to 0. In
442  * particular, if the call-back function is already placed on the squeue, it can
443  * not be canceled.
444  *
445  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
446  * 	within squeue context corresponding to the tcp instance. Since the
447  *	call-back is also called via the same squeue, there are no race
448  *	conditions described in untimeout(9F) manual page since all calls are
449  *	strictly serialized.
450  *
451  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
452  *	stored in tcp_timer_tid and starts a new one using
453  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
454  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
455  *	field.
456  *
457  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
458  *	call-back may still be called, so it is possible tcp_timer() will be
459  *	called several times. This should not be a problem since tcp_timer()
460  *	should always check the tcp instance state.
461  *
462  *
463  * IMPLEMENTATION:
464  *
465  * TCP timers are implemented using three-stage process. The call to
466  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
467  * when the timer expires. The tcp_timer_callback() arranges the call of the
468  * tcp_timer_handler() function via squeue corresponding to the tcp
469  * instance. The tcp_timer_handler() calls actual requested timeout call-back
470  * and passes tcp instance as an argument to it. Information is passed between
471  * stages using the tcp_timer_t structure which contains the connp pointer, the
472  * tcp call-back to call and the timeout id returned by the timeout(9F).
473  *
474  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
475  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
476  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
477  * returns the pointer to this mblk.
478  *
479  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
480  * looks like a normal mblk without actual dblk attached to it.
481  *
482  * To optimize performance each tcp instance holds a small cache of timer
483  * mblocks. In the current implementation it caches up to two timer mblocks per
484  * tcp instance. The cache is preserved over tcp frees and is only freed when
485  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
486  * timer processing happens on a corresponding squeue, the cache manipulation
487  * does not require any locks. Experiments show that majority of timer mblocks
488  * allocations are satisfied from the tcp cache and do not involve kmem calls.
489  *
490  * The tcp_timeout() places a refhold on the connp instance which guarantees
491  * that it will be present at the time the call-back function fires. The
492  * tcp_timer_handler() drops the reference after calling the call-back, so the
493  * call-back function does not need to manipulate the references explicitly.
494  */
495 
496 typedef struct tcp_timer_s {
497 	conn_t	*connp;
498 	void 	(*tcpt_proc)(void *);
499 	timeout_id_t   tcpt_tid;
500 } tcp_timer_t;
501 
502 static kmem_cache_t *tcp_timercache;
503 kmem_cache_t	*tcp_sack_info_cache;
504 kmem_cache_t	*tcp_iphc_cache;
505 
506 /*
507  * For scalability, we must not run a timer for every TCP connection
508  * in TIME_WAIT state.  To see why, consider (for time wait interval of
509  * 4 minutes):
510  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
511  *
512  * This list is ordered by time, so you need only delete from the head
513  * until you get to entries which aren't old enough to delete yet.
514  * The list consists of only the detached TIME_WAIT connections.
515  *
516  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
517  * becomes detached TIME_WAIT (either by changing the state and already
518  * being detached or the other way around). This means that the TIME_WAIT
519  * state can be extended (up to doubled) if the connection doesn't become
520  * detached for a long time.
521  *
522  * The list manipulations (including tcp_time_wait_next/prev)
523  * are protected by the tcp_time_wait_lock. The content of the
524  * detached TIME_WAIT connections is protected by the normal perimeters.
525  *
526  * This list is per squeue and squeues are shared across the tcp_stack_t's.
527  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
528  * and conn_netstack.
529  * The tcp_t's that are added to tcp_free_list are disassociated and
530  * have NULL tcp_tcps and conn_netstack pointers.
531  */
532 typedef struct tcp_squeue_priv_s {
533 	kmutex_t	tcp_time_wait_lock;
534 	timeout_id_t	tcp_time_wait_tid;
535 	tcp_t		*tcp_time_wait_head;
536 	tcp_t		*tcp_time_wait_tail;
537 	tcp_t		*tcp_free_list;
538 	uint_t		tcp_free_list_cnt;
539 } tcp_squeue_priv_t;
540 
541 /*
542  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
543  * Running it every 5 seconds seems to give the best results.
544  */
545 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
546 
547 /*
548  * To prevent memory hog, limit the number of entries in tcp_free_list
549  * to 1% of available memory / number of cpus
550  */
551 uint_t tcp_free_list_max_cnt = 0;
552 
553 #define	TCP_XMIT_LOWATER	4096
554 #define	TCP_XMIT_HIWATER	49152
555 #define	TCP_RECV_LOWATER	2048
556 #define	TCP_RECV_HIWATER	49152
557 
558 /*
559  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
560  */
561 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
562 
563 #define	TIDUSZ	4096	/* transport interface data unit size */
564 
565 /*
566  * Bind hash list size and has function.  It has to be a power of 2 for
567  * hashing.
568  */
569 #define	TCP_BIND_FANOUT_SIZE	512
570 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
571 /*
572  * Size of listen and acceptor hash list.  It has to be a power of 2 for
573  * hashing.
574  */
575 #define	TCP_FANOUT_SIZE		256
576 
577 #ifdef	_ILP32
578 #define	TCP_ACCEPTOR_HASH(accid)					\
579 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
580 #else
581 #define	TCP_ACCEPTOR_HASH(accid)					\
582 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
583 #endif	/* _ILP32 */
584 
585 #define	IP_ADDR_CACHE_SIZE	2048
586 #define	IP_ADDR_CACHE_HASH(faddr)					\
587 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
588 
589 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
590 #define	TCP_HSP_HASH_SIZE 256
591 
592 #define	TCP_HSP_HASH(addr)					\
593 	(((addr>>24) ^ (addr >>16) ^			\
594 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
595 
596 /*
597  * TCP options struct returned from tcp_parse_options.
598  */
599 typedef struct tcp_opt_s {
600 	uint32_t	tcp_opt_mss;
601 	uint32_t	tcp_opt_wscale;
602 	uint32_t	tcp_opt_ts_val;
603 	uint32_t	tcp_opt_ts_ecr;
604 	tcp_t		*tcp;
605 } tcp_opt_t;
606 
607 /*
608  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
609  */
610 
611 #ifdef _BIG_ENDIAN
612 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
613 	(TCPOPT_TSTAMP << 8) | 10)
614 #else
615 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
616 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
617 #endif
618 
619 /*
620  * Flags returned from tcp_parse_options.
621  */
622 #define	TCP_OPT_MSS_PRESENT	1
623 #define	TCP_OPT_WSCALE_PRESENT	2
624 #define	TCP_OPT_TSTAMP_PRESENT	4
625 #define	TCP_OPT_SACK_OK_PRESENT	8
626 #define	TCP_OPT_SACK_PRESENT	16
627 
628 /* TCP option length */
629 #define	TCPOPT_NOP_LEN		1
630 #define	TCPOPT_MAXSEG_LEN	4
631 #define	TCPOPT_WS_LEN		3
632 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
633 #define	TCPOPT_TSTAMP_LEN	10
634 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
635 #define	TCPOPT_SACK_OK_LEN	2
636 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
637 #define	TCPOPT_REAL_SACK_LEN	4
638 #define	TCPOPT_MAX_SACK_LEN	36
639 #define	TCPOPT_HEADER_LEN	2
640 
641 /* TCP cwnd burst factor. */
642 #define	TCP_CWND_INFINITE	65535
643 #define	TCP_CWND_SS		3
644 #define	TCP_CWND_NORMAL		5
645 
646 /* Maximum TCP initial cwin (start/restart). */
647 #define	TCP_MAX_INIT_CWND	8
648 
649 /*
650  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
651  * either tcp_slow_start_initial or tcp_slow_start_after idle
652  * depending on the caller.  If the upper layer has not used the
653  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
654  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
655  * If the upper layer has changed set the tcp_init_cwnd, just use
656  * it to calculate the tcp_cwnd.
657  */
658 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
659 {									\
660 	if ((tcp)->tcp_init_cwnd == 0) {				\
661 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
662 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
663 	} else {							\
664 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
665 	}								\
666 	tcp->tcp_cwnd_cnt = 0;						\
667 }
668 
669 /* TCP Timer control structure */
670 typedef struct tcpt_s {
671 	pfv_t	tcpt_pfv;	/* The routine we are to call */
672 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
673 } tcpt_t;
674 
675 /* Host Specific Parameter structure */
676 typedef struct tcp_hsp {
677 	struct tcp_hsp	*tcp_hsp_next;
678 	in6_addr_t	tcp_hsp_addr_v6;
679 	in6_addr_t	tcp_hsp_subnet_v6;
680 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
681 	int32_t		tcp_hsp_sendspace;
682 	int32_t		tcp_hsp_recvspace;
683 	int32_t		tcp_hsp_tstamp;
684 } tcp_hsp_t;
685 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
686 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
687 
688 /*
689  * Functions called directly via squeue having a prototype of edesc_t.
690  */
691 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
692 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
693 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
694 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
696 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
697 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
698 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
699 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
700 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
702 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
703 
704 
705 /* Prototype for TCP functions */
706 static void	tcp_random_init(void);
707 int		tcp_random(void);
708 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
709 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
710 		    tcp_t *eager);
711 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
712 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
713     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
714     boolean_t user_specified);
715 static void	tcp_closei_local(tcp_t *tcp);
716 static void	tcp_close_detached(tcp_t *tcp);
717 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
718 			mblk_t *idmp, mblk_t **defermp);
719 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
720 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
721 		    in_port_t dstport, uint_t srcid);
722 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
723 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
724 		    uint32_t scope_id);
725 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
726 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
727 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
728 static char	*tcp_display(tcp_t *tcp, char *, char);
729 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
730 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
731 static void	tcp_eager_unlink(tcp_t *tcp);
732 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
733 		    int unixerr);
734 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
735 		    int tlierr, int unixerr);
736 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
737 		    cred_t *cr);
738 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
739 		    char *value, caddr_t cp, cred_t *cr);
740 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
741 		    char *value, caddr_t cp, cred_t *cr);
742 static int	tcp_tpistate(tcp_t *tcp);
743 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
744     int caller_holds_lock);
745 static void	tcp_bind_hash_remove(tcp_t *tcp);
746 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
747 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
748 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
749 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
750 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
751 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
752 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
753 void		tcp_g_q_setup(tcp_stack_t *);
754 void		tcp_g_q_create(tcp_stack_t *);
755 void		tcp_g_q_destroy(tcp_stack_t *);
756 static int	tcp_header_init_ipv4(tcp_t *tcp);
757 static int	tcp_header_init_ipv6(tcp_t *tcp);
758 int		tcp_init(tcp_t *tcp, queue_t *q);
759 static int	tcp_init_values(tcp_t *tcp);
760 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
761 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
762 		    t_scalar_t addr_length);
763 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
764 static void	tcp_ip_notify(tcp_t *tcp);
765 static mblk_t	*tcp_ire_mp(mblk_t *mp);
766 static void	tcp_iss_init(tcp_t *tcp);
767 static void	tcp_keepalive_killer(void *arg);
768 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
769 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
770 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
771 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
772 static boolean_t tcp_allow_connopt_set(int level, int name);
773 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
774 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
775 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
776 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
777 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
778 		    mblk_t *mblk);
779 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
780 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
781 		    uchar_t *ptr, uint_t len);
782 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
783 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
784     tcp_stack_t *);
785 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
786 		    caddr_t cp, cred_t *cr);
787 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
788 		    caddr_t cp, cred_t *cr);
789 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
790 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
791 		    caddr_t cp, cred_t *cr);
792 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
793 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
794 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_reinit(tcp_t *tcp);
796 static void	tcp_reinit_values(tcp_t *tcp);
797 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
798 		    tcp_t *thisstream, cred_t *cr);
799 
800 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
801 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
802 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
803 static void	tcp_ss_rexmit(tcp_t *tcp);
804 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
805 static void	tcp_process_options(tcp_t *, tcph_t *);
806 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
807 static void	tcp_rsrv(queue_t *q);
808 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
809 static int	tcp_snmp_state(tcp_t *tcp);
810 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
811 		    cred_t *cr);
812 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
813 		    cred_t *cr);
814 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
815 		    cred_t *cr);
816 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
817 		    cred_t *cr);
818 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
819 		    cred_t *cr);
820 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
821 		    caddr_t cp, cred_t *cr);
822 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
823 		    caddr_t cp, cred_t *cr);
824 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
825 		    cred_t *cr);
826 static void	tcp_timer(void *arg);
827 static void	tcp_timer_callback(void *);
828 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
829     boolean_t random);
830 static in_port_t tcp_get_next_priv_port(const tcp_t *);
831 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
832 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
833 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
834 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
835 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
836 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
837 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
838 		    const int num_sack_blk, int *usable, uint_t *snxt,
839 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
840 		    const int mdt_thres);
841 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
842 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
843 		    const int num_sack_blk, int *usable, uint_t *snxt,
844 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
845 		    const int mdt_thres);
846 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
847 		    int num_sack_blk);
848 static void	tcp_wsrv(queue_t *q);
849 static int	tcp_xmit_end(tcp_t *tcp);
850 static void	tcp_ack_timer(void *arg);
851 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
852 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
853 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
854 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
855 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
856 		    uint32_t ack, int ctl);
857 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
858 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
859 static int	setmaxps(queue_t *q, int maxpsz);
860 static void	tcp_set_rto(tcp_t *, time_t);
861 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
862 		    boolean_t, boolean_t);
863 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
864 		    boolean_t ipsec_mctl);
865 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
866 		    char *opt, int optlen);
867 static int	tcp_build_hdrs(queue_t *, tcp_t *);
868 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
869 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
870 		    tcph_t *tcph);
871 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
872 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
873 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
874 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
875 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
876 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
877 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
878 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
879 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
880 		    const boolean_t, const uint32_t, const uint32_t,
881 		    const uint32_t, const uint32_t, tcp_stack_t *);
882 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
883 		    const uint_t, const uint_t, boolean_t *);
884 static mblk_t	*tcp_lso_info_mp(mblk_t *);
885 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
886 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
887 extern mblk_t	*tcp_timermp_alloc(int);
888 extern void	tcp_timermp_free(tcp_t *);
889 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
890 static void	tcp_stop_lingering(tcp_t *tcp);
891 static void	tcp_close_linger_timeout(void *arg);
892 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
893 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
894 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
895 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
896 static void	tcp_g_kstat_fini(kstat_t *);
897 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
898 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
899 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
900 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
901 static int	tcp_kstat_update(kstat_t *kp, int rw);
902 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
903 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
904 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
905 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
906 			tcph_t *tcph, mblk_t *idmp);
907 static squeue_func_t tcp_squeue_switch(int);
908 
909 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
910 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
911 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
912 static int	tcp_close(queue_t *, int);
913 static int	tcpclose_accept(queue_t *);
914 
915 static void	tcp_squeue_add(squeue_t *);
916 static boolean_t tcp_zcopy_check(tcp_t *);
917 static void	tcp_zcopy_notify(tcp_t *);
918 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
919 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
920 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
921 
922 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
923 
924 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
925 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
926 
927 /*
928  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
929  *
930  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
931  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
932  * (defined in tcp.h) needs to be filled in and passed into the kernel
933  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
934  * structure contains the four-tuple of a TCP connection and a range of TCP
935  * states (specified by ac_start and ac_end). The use of wildcard addresses
936  * and ports is allowed. Connections with a matching four tuple and a state
937  * within the specified range will be aborted. The valid states for the
938  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
939  * inclusive.
940  *
941  * An application which has its connection aborted by this ioctl will receive
942  * an error that is dependent on the connection state at the time of the abort.
943  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
944  * though a RST packet has been received.  If the connection state is equal to
945  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
946  * and all resources associated with the connection will be freed.
947  */
948 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
949 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
950 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
951 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
952 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
953 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
954     boolean_t, tcp_stack_t *);
955 
956 static struct module_info tcp_rinfo =  {
957 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
958 };
959 
960 static struct module_info tcp_winfo =  {
961 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
962 };
963 
964 /*
965  * Entry points for TCP as a device. The normal case which supports
966  * the TCP functionality.
967  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
968  */
969 struct qinit tcp_rinitv4 = {
970 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
971 };
972 
973 struct qinit tcp_rinitv6 = {
974 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
975 };
976 
977 struct qinit tcp_winit = {
978 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
979 };
980 
981 /* Initial entry point for TCP in socket mode. */
982 struct qinit tcp_sock_winit = {
983 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
984 };
985 
986 /*
987  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
988  * an accept. Avoid allocating data structures since eager has already
989  * been created.
990  */
991 struct qinit tcp_acceptor_rinit = {
992 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
993 };
994 
995 struct qinit tcp_acceptor_winit = {
996 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
997 };
998 
999 /*
1000  * Entry points for TCP loopback (read side only)
1001  * The open routine is only used for reopens, thus no need to
1002  * have a separate one for tcp_openv6.
1003  */
1004 struct qinit tcp_loopback_rinit = {
1005 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1006 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1007 };
1008 
1009 /* For AF_INET aka /dev/tcp */
1010 struct streamtab tcpinfov4 = {
1011 	&tcp_rinitv4, &tcp_winit
1012 };
1013 
1014 /* For AF_INET6 aka /dev/tcp6 */
1015 struct streamtab tcpinfov6 = {
1016 	&tcp_rinitv6, &tcp_winit
1017 };
1018 
1019 /*
1020  * Have to ensure that tcp_g_q_close is not done by an
1021  * interrupt thread.
1022  */
1023 static taskq_t *tcp_taskq;
1024 
1025 /*
1026  * TCP has a private interface for other kernel modules to reserve a
1027  * port range for them to use.  Once reserved, TCP will not use any ports
1028  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1029  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1030  * has to be verified.
1031  *
1032  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1033  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1034  * range is [port a, port b] inclusive.  And each port range is between
1035  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1036  *
1037  * Note that the default anonymous port range starts from 32768.  There is
1038  * no port "collision" between that and the reserved port range.  If there
1039  * is port collision (because the default smallest anonymous port is lowered
1040  * or some apps specifically bind to ports in the reserved port range), the
1041  * system may not be able to reserve a port range even there are enough
1042  * unbound ports as a reserved port range contains consecutive ports .
1043  */
1044 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1045 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1046 #define	TCP_SMALLEST_RESERVED_PORT		10240
1047 #define	TCP_LARGEST_RESERVED_PORT		20480
1048 
1049 /* Structure to represent those reserved port ranges. */
1050 typedef struct tcp_rport_s {
1051 	in_port_t	lo_port;
1052 	in_port_t	hi_port;
1053 	tcp_t		**temp_tcp_array;
1054 } tcp_rport_t;
1055 
1056 /* Setable only in /etc/system. Move to ndd? */
1057 boolean_t tcp_icmp_source_quench = B_FALSE;
1058 
1059 /*
1060  * Following assumes TPI alignment requirements stay along 32 bit
1061  * boundaries
1062  */
1063 #define	ROUNDUP32(x) \
1064 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1065 
1066 /* Template for response to info request. */
1067 static struct T_info_ack tcp_g_t_info_ack = {
1068 	T_INFO_ACK,		/* PRIM_type */
1069 	0,			/* TSDU_size */
1070 	T_INFINITE,		/* ETSDU_size */
1071 	T_INVALID,		/* CDATA_size */
1072 	T_INVALID,		/* DDATA_size */
1073 	sizeof (sin_t),		/* ADDR_size */
1074 	0,			/* OPT_size - not initialized here */
1075 	TIDUSZ,			/* TIDU_size */
1076 	T_COTS_ORD,		/* SERV_type */
1077 	TCPS_IDLE,		/* CURRENT_state */
1078 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1079 };
1080 
1081 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1082 	T_INFO_ACK,		/* PRIM_type */
1083 	0,			/* TSDU_size */
1084 	T_INFINITE,		/* ETSDU_size */
1085 	T_INVALID,		/* CDATA_size */
1086 	T_INVALID,		/* DDATA_size */
1087 	sizeof (sin6_t),	/* ADDR_size */
1088 	0,			/* OPT_size - not initialized here */
1089 	TIDUSZ,		/* TIDU_size */
1090 	T_COTS_ORD,		/* SERV_type */
1091 	TCPS_IDLE,		/* CURRENT_state */
1092 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1093 };
1094 
1095 #define	MS	1L
1096 #define	SECONDS	(1000 * MS)
1097 #define	MINUTES	(60 * SECONDS)
1098 #define	HOURS	(60 * MINUTES)
1099 #define	DAYS	(24 * HOURS)
1100 
1101 #define	PARAM_MAX (~(uint32_t)0)
1102 
1103 /* Max size IP datagram is 64k - 1 */
1104 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1105 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1106 /* Max of the above */
1107 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1108 
1109 /* Largest TCP port number */
1110 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1111 
1112 /*
1113  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1114  * layer header.  It has to be a multiple of 4.
1115  */
1116 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1117 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1118 
1119 /*
1120  * All of these are alterable, within the min/max values given, at run time.
1121  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1122  * per the TCP spec.
1123  */
1124 /* BEGIN CSTYLED */
1125 static tcpparam_t	lcl_tcp_param_arr[] = {
1126  /*min		max		value		name */
1127  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1128  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1129  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1130  { 1,		1024,		1,		"tcp_conn_req_min" },
1131  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1132  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1133  { 0,		10,		0,		"tcp_debug" },
1134  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1135  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1136  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1137  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1138  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1139  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1140  { 1,		255,		64,		"tcp_ipv4_ttl"},
1141  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1142  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1143  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1144  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1145  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1146  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1147  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1148  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1149  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1150  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1151  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1152  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1153  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1154  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1155  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1156  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1157  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1158  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1159  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1160  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1161  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1162  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1163  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1164  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1165 /*
1166  * Question:  What default value should I set for tcp_strong_iss?
1167  */
1168  { 0,		2,		1,		"tcp_strong_iss"},
1169  { 0,		65536,		20,		"tcp_rtt_updates"},
1170  { 0,		1,		1,		"tcp_wscale_always"},
1171  { 0,		1,		0,		"tcp_tstamp_always"},
1172  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1173  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1174  { 0,		16,		2,		"tcp_deferred_acks_max"},
1175  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1176  { 1,		4,		4,		"tcp_slow_start_initial"},
1177  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1178  { 0,		2,		2,		"tcp_sack_permitted"},
1179  { 0,		1,		0,		"tcp_trace"},
1180  { 0,		1,		1,		"tcp_compression_enabled"},
1181  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1182  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1183  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1184  { 0,		1,		0,		"tcp_rev_src_routes"},
1185  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1186  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1187  { 0,		16,		8,		"tcp_local_dacks_max"},
1188  { 0,		2,		1,		"tcp_ecn_permitted"},
1189  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1190  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1191  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1192  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1193  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1194 };
1195 /* END CSTYLED */
1196 
1197 /*
1198  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1199  * each header fragment in the header buffer.  Each parameter value has
1200  * to be a multiple of 4 (32-bit aligned).
1201  */
1202 static tcpparam_t lcl_tcp_mdt_head_param =
1203 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1204 static tcpparam_t lcl_tcp_mdt_tail_param =
1205 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1206 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1207 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1208 
1209 /*
1210  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1211  * the maximum number of payload buffers associated per Multidata.
1212  */
1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1214 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1215 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1216 
1217 /* Round up the value to the nearest mss. */
1218 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1219 
1220 /*
1221  * Set ECN capable transport (ECT) code point in IP header.
1222  *
1223  * Note that there are 2 ECT code points '01' and '10', which are called
1224  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1225  * point ECT(0) for TCP as described in RFC 2481.
1226  */
1227 #define	SET_ECT(tcp, iph) \
1228 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1229 		/* We need to clear the code point first. */ \
1230 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1231 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1232 	} else { \
1233 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1234 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1235 	}
1236 
1237 /*
1238  * The format argument to pass to tcp_display().
1239  * DISP_PORT_ONLY means that the returned string has only port info.
1240  * DISP_ADDR_AND_PORT means that the returned string also contains the
1241  * remote and local IP address.
1242  */
1243 #define	DISP_PORT_ONLY		1
1244 #define	DISP_ADDR_AND_PORT	2
1245 
1246 #define	NDD_TOO_QUICK_MSG \
1247 	"ndd get info rate too high for non-privileged users, try again " \
1248 	"later.\n"
1249 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1250 
1251 #define	IS_VMLOANED_MBLK(mp) \
1252 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1253 
1254 
1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1256 boolean_t tcp_mdt_chain = B_TRUE;
1257 
1258 /*
1259  * MDT threshold in the form of effective send MSS multiplier; we take
1260  * the MDT path if the amount of unsent data exceeds the threshold value
1261  * (default threshold is 1*SMSS).
1262  */
1263 uint_t tcp_mdt_smss_threshold = 1;
1264 
1265 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1266 
1267 /*
1268  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1269  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1270  * determined dynamically during tcp_adapt_ire(), which is the default.
1271  */
1272 boolean_t tcp_static_maxpsz = B_FALSE;
1273 
1274 /* Setable in /etc/system */
1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1276 uint32_t tcp_random_anon_port = 1;
1277 
1278 /*
1279  * To reach to an eager in Q0 which can be dropped due to an incoming
1280  * new SYN request when Q0 is full, a new doubly linked list is
1281  * introduced. This list allows to select an eager from Q0 in O(1) time.
1282  * This is needed to avoid spending too much time walking through the
1283  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1284  * this new list has to be a member of Q0.
1285  * This list is headed by listener's tcp_t. When the list is empty,
1286  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1287  * of listener's tcp_t point to listener's tcp_t itself.
1288  *
1289  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1290  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1291  * These macros do not affect the eager's membership to Q0.
1292  */
1293 
1294 
1295 #define	MAKE_DROPPABLE(listener, eager)					\
1296 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1297 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1298 		    = (eager);						\
1299 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1300 		(eager)->tcp_eager_next_drop_q0 =			\
1301 		    (listener)->tcp_eager_next_drop_q0;			\
1302 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1303 	}
1304 
1305 #define	MAKE_UNDROPPABLE(eager)						\
1306 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1307 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1308 		    = (eager)->tcp_eager_prev_drop_q0;			\
1309 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1310 		    = (eager)->tcp_eager_next_drop_q0;			\
1311 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1312 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1313 	}
1314 
1315 /*
1316  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1317  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1318  * data, TCP will not respond with an ACK.  RFC 793 requires that
1319  * TCP responds with an ACK for such a bogus ACK.  By not following
1320  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1321  * an attacker successfully spoofs an acceptable segment to our
1322  * peer; or when our peer is "confused."
1323  */
1324 uint32_t tcp_drop_ack_unsent_cnt = 10;
1325 
1326 /*
1327  * Hook functions to enable cluster networking
1328  * On non-clustered systems these vectors must always be NULL.
1329  */
1330 
1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1332 			    uint8_t *laddrp, in_port_t lport) = NULL;
1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1334 			    uint8_t *laddrp, in_port_t lport) = NULL;
1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1336 			    uint8_t *laddrp, in_port_t lport,
1337 			    uint8_t *faddrp, in_port_t fport) = NULL;
1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 
1342 /*
1343  * The following are defined in ip.c
1344  */
1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1346 				uint8_t *laddrp);
1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1348 				uint8_t *laddrp, uint8_t *faddrp);
1349 
1350 #define	CL_INET_CONNECT(tcp)		{			\
1351 	if (cl_inet_connect != NULL) {				\
1352 		/*						\
1353 		 * Running in cluster mode - register active connection	\
1354 		 * information						\
1355 		 */							\
1356 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1357 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1358 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1359 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1360 				    (in_port_t)(tcp)->tcp_lport,	\
1361 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1362 				    (in_port_t)(tcp)->tcp_fport);	\
1363 			}						\
1364 		} else {						\
1365 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1366 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1367 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1368 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1369 				    (in_port_t)(tcp)->tcp_lport,	\
1370 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1371 				    (in_port_t)(tcp)->tcp_fport);	\
1372 			}						\
1373 		}							\
1374 	}								\
1375 }
1376 
1377 #define	CL_INET_DISCONNECT(tcp)	{				\
1378 	if (cl_inet_disconnect != NULL) {				\
1379 		/*							\
1380 		 * Running in cluster mode - deregister active		\
1381 		 * connection information				\
1382 		 */							\
1383 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1384 			if ((tcp)->tcp_ip_src != 0) {			\
1385 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1386 				    AF_INET,				\
1387 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1388 				    (in_port_t)(tcp)->tcp_lport,	\
1389 				    (uint8_t *)				\
1390 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1391 				    (in_port_t)(tcp)->tcp_fport);	\
1392 			}						\
1393 		} else {						\
1394 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1395 			    &(tcp)->tcp_ip_src_v6)) {			\
1396 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1397 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1398 				    (in_port_t)(tcp)->tcp_lport,	\
1399 				    (uint8_t *)				\
1400 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1401 				    (in_port_t)(tcp)->tcp_fport);	\
1402 			}						\
1403 		}							\
1404 	}								\
1405 }
1406 
1407 /*
1408  * Cluster networking hook for traversing current connection list.
1409  * This routine is used to extract the current list of live connections
1410  * which must continue to to be dispatched to this node.
1411  */
1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1413 
1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1415     void *arg, tcp_stack_t *tcps);
1416 
1417 /*
1418  * Figure out the value of window scale opton.  Note that the rwnd is
1419  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1420  * We cannot find the scale value and then do a round up of tcp_rwnd
1421  * because the scale value may not be correct after that.
1422  *
1423  * Set the compiler flag to make this function inline.
1424  */
1425 static void
1426 tcp_set_ws_value(tcp_t *tcp)
1427 {
1428 	int i;
1429 	uint32_t rwnd = tcp->tcp_rwnd;
1430 
1431 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1432 	    i++, rwnd >>= 1)
1433 		;
1434 	tcp->tcp_rcv_ws = i;
1435 }
1436 
1437 /*
1438  * Remove a connection from the list of detached TIME_WAIT connections.
1439  * It returns B_FALSE if it can't remove the connection from the list
1440  * as the connection has already been removed from the list due to an
1441  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1442  */
1443 static boolean_t
1444 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1445 {
1446 	boolean_t	locked = B_FALSE;
1447 
1448 	if (tcp_time_wait == NULL) {
1449 		tcp_time_wait = *((tcp_squeue_priv_t **)
1450 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1451 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1452 		locked = B_TRUE;
1453 	} else {
1454 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1455 	}
1456 
1457 	if (tcp->tcp_time_wait_expire == 0) {
1458 		ASSERT(tcp->tcp_time_wait_next == NULL);
1459 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1460 		if (locked)
1461 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1462 		return (B_FALSE);
1463 	}
1464 	ASSERT(TCP_IS_DETACHED(tcp));
1465 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1466 
1467 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1468 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1469 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1470 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1471 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1472 			    NULL;
1473 		} else {
1474 			tcp_time_wait->tcp_time_wait_tail = NULL;
1475 		}
1476 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1477 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1478 		ASSERT(tcp->tcp_time_wait_next == NULL);
1479 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1480 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1481 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1482 	} else {
1483 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1484 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1485 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1486 		    tcp->tcp_time_wait_next;
1487 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1488 		    tcp->tcp_time_wait_prev;
1489 	}
1490 	tcp->tcp_time_wait_next = NULL;
1491 	tcp->tcp_time_wait_prev = NULL;
1492 	tcp->tcp_time_wait_expire = 0;
1493 
1494 	if (locked)
1495 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1496 	return (B_TRUE);
1497 }
1498 
1499 /*
1500  * Add a connection to the list of detached TIME_WAIT connections
1501  * and set its time to expire.
1502  */
1503 static void
1504 tcp_time_wait_append(tcp_t *tcp)
1505 {
1506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1507 	tcp_squeue_priv_t *tcp_time_wait =
1508 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1509 	    SQPRIVATE_TCP));
1510 
1511 	tcp_timers_stop(tcp);
1512 
1513 	/* Freed above */
1514 	ASSERT(tcp->tcp_timer_tid == 0);
1515 	ASSERT(tcp->tcp_ack_tid == 0);
1516 
1517 	/* must have happened at the time of detaching the tcp */
1518 	ASSERT(tcp->tcp_ptpahn == NULL);
1519 	ASSERT(tcp->tcp_flow_stopped == 0);
1520 	ASSERT(tcp->tcp_time_wait_next == NULL);
1521 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1522 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1523 	ASSERT(tcp->tcp_listener == NULL);
1524 
1525 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1526 	/*
1527 	 * The value computed below in tcp->tcp_time_wait_expire may
1528 	 * appear negative or wrap around. That is ok since our
1529 	 * interest is only in the difference between the current lbolt
1530 	 * value and tcp->tcp_time_wait_expire. But the value should not
1531 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1532 	 * The corresponding comparison in tcp_time_wait_collector() uses
1533 	 * modular arithmetic.
1534 	 */
1535 	tcp->tcp_time_wait_expire +=
1536 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1537 	if (tcp->tcp_time_wait_expire == 0)
1538 		tcp->tcp_time_wait_expire = 1;
1539 
1540 	ASSERT(TCP_IS_DETACHED(tcp));
1541 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1542 	ASSERT(tcp->tcp_time_wait_next == NULL);
1543 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1544 	TCP_DBGSTAT(tcps, tcp_time_wait);
1545 
1546 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1547 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1548 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1549 		tcp_time_wait->tcp_time_wait_head = tcp;
1550 	} else {
1551 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1552 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1553 		    TCPS_TIME_WAIT);
1554 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1555 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1556 	}
1557 	tcp_time_wait->tcp_time_wait_tail = tcp;
1558 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1559 }
1560 
1561 /* ARGSUSED */
1562 void
1563 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1564 {
1565 	conn_t	*connp = (conn_t *)arg;
1566 	tcp_t	*tcp = connp->conn_tcp;
1567 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1568 
1569 	ASSERT(tcp != NULL);
1570 	if (tcp->tcp_state == TCPS_CLOSED) {
1571 		return;
1572 	}
1573 
1574 	ASSERT((tcp->tcp_family == AF_INET &&
1575 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1576 	    (tcp->tcp_family == AF_INET6 &&
1577 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1578 	    tcp->tcp_ipversion == IPV6_VERSION)));
1579 	ASSERT(!tcp->tcp_listener);
1580 
1581 	TCP_STAT(tcps, tcp_time_wait_reap);
1582 	ASSERT(TCP_IS_DETACHED(tcp));
1583 
1584 	/*
1585 	 * Because they have no upstream client to rebind or tcp_close()
1586 	 * them later, we axe the connection here and now.
1587 	 */
1588 	tcp_close_detached(tcp);
1589 }
1590 
1591 /*
1592  * Remove cached/latched IPsec references.
1593  */
1594 void
1595 tcp_ipsec_cleanup(tcp_t *tcp)
1596 {
1597 	conn_t		*connp = tcp->tcp_connp;
1598 
1599 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1600 
1601 	if (connp->conn_latch != NULL) {
1602 		IPLATCH_REFRELE(connp->conn_latch,
1603 		    connp->conn_netstack);
1604 		connp->conn_latch = NULL;
1605 	}
1606 	if (connp->conn_policy != NULL) {
1607 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1608 		connp->conn_policy = NULL;
1609 	}
1610 }
1611 
1612 /*
1613  * Cleaup before placing on free list.
1614  * Disassociate from the netstack/tcp_stack_t since the freelist
1615  * is per squeue and not per netstack.
1616  */
1617 void
1618 tcp_cleanup(tcp_t *tcp)
1619 {
1620 	mblk_t		*mp;
1621 	char		*tcp_iphc;
1622 	int		tcp_iphc_len;
1623 	int		tcp_hdr_grown;
1624 	tcp_sack_info_t	*tcp_sack_info;
1625 	conn_t		*connp = tcp->tcp_connp;
1626 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1627 	netstack_t	*ns = tcps->tcps_netstack;
1628 
1629 	tcp_bind_hash_remove(tcp);
1630 
1631 	/* Cleanup that which needs the netstack first */
1632 	tcp_ipsec_cleanup(tcp);
1633 
1634 	tcp_free(tcp);
1635 
1636 	/* Release any SSL context */
1637 	if (tcp->tcp_kssl_ent != NULL) {
1638 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1639 		tcp->tcp_kssl_ent = NULL;
1640 	}
1641 
1642 	if (tcp->tcp_kssl_ctx != NULL) {
1643 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1644 		tcp->tcp_kssl_ctx = NULL;
1645 	}
1646 	tcp->tcp_kssl_pending = B_FALSE;
1647 
1648 	conn_delete_ire(connp, NULL);
1649 
1650 	/*
1651 	 * Since we will bzero the entire structure, we need to
1652 	 * remove it and reinsert it in global hash list. We
1653 	 * know the walkers can't get to this conn because we
1654 	 * had set CONDEMNED flag earlier and checked reference
1655 	 * under conn_lock so walker won't pick it and when we
1656 	 * go the ipcl_globalhash_remove() below, no walker
1657 	 * can get to it.
1658 	 */
1659 	ipcl_globalhash_remove(connp);
1660 
1661 	/*
1662 	 * Now it is safe to decrement the reference counts.
1663 	 * This might be the last reference on the netstack and TCPS
1664 	 * in which case it will cause the tcp_g_q_close and
1665 	 * the freeing of the IP Instance.
1666 	 */
1667 	connp->conn_netstack = NULL;
1668 	netstack_rele(ns);
1669 	ASSERT(tcps != NULL);
1670 	tcp->tcp_tcps = NULL;
1671 	TCPS_REFRELE(tcps);
1672 
1673 	/* Save some state */
1674 	mp = tcp->tcp_timercache;
1675 
1676 	tcp_sack_info = tcp->tcp_sack_info;
1677 	tcp_iphc = tcp->tcp_iphc;
1678 	tcp_iphc_len = tcp->tcp_iphc_len;
1679 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1680 
1681 	if (connp->conn_cred != NULL) {
1682 		crfree(connp->conn_cred);
1683 		connp->conn_cred = NULL;
1684 	}
1685 	if (connp->conn_peercred != NULL) {
1686 		crfree(connp->conn_peercred);
1687 		connp->conn_peercred = NULL;
1688 	}
1689 	ipcl_conn_cleanup(connp);
1690 	connp->conn_flags = IPCL_TCPCONN;
1691 	bzero(tcp, sizeof (tcp_t));
1692 
1693 	/* restore the state */
1694 	tcp->tcp_timercache = mp;
1695 
1696 	tcp->tcp_sack_info = tcp_sack_info;
1697 	tcp->tcp_iphc = tcp_iphc;
1698 	tcp->tcp_iphc_len = tcp_iphc_len;
1699 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1700 
1701 	tcp->tcp_connp = connp;
1702 
1703 	ASSERT(connp->conn_tcp == tcp);
1704 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1705 	connp->conn_state_flags = CONN_INCIPIENT;
1706 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1707 	ASSERT(connp->conn_ref == 1);
1708 }
1709 
1710 /*
1711  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1712  * is done forwards from the head.
1713  * This walks all stack instances since
1714  * tcp_time_wait remains global across all stacks.
1715  */
1716 /* ARGSUSED */
1717 void
1718 tcp_time_wait_collector(void *arg)
1719 {
1720 	tcp_t *tcp;
1721 	clock_t now;
1722 	mblk_t *mp;
1723 	conn_t *connp;
1724 	kmutex_t *lock;
1725 	boolean_t removed;
1726 
1727 	squeue_t *sqp = (squeue_t *)arg;
1728 	tcp_squeue_priv_t *tcp_time_wait =
1729 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1730 
1731 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1732 	tcp_time_wait->tcp_time_wait_tid = 0;
1733 
1734 	if (tcp_time_wait->tcp_free_list != NULL &&
1735 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1736 		TCP_G_STAT(tcp_freelist_cleanup);
1737 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1738 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1739 			tcp->tcp_time_wait_next = NULL;
1740 			tcp_time_wait->tcp_free_list_cnt--;
1741 			ASSERT(tcp->tcp_tcps == NULL);
1742 			CONN_DEC_REF(tcp->tcp_connp);
1743 		}
1744 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1745 	}
1746 
1747 	/*
1748 	 * In order to reap time waits reliably, we should use a
1749 	 * source of time that is not adjustable by the user -- hence
1750 	 * the call to ddi_get_lbolt().
1751 	 */
1752 	now = ddi_get_lbolt();
1753 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1754 		/*
1755 		 * Compare times using modular arithmetic, since
1756 		 * lbolt can wrapover.
1757 		 */
1758 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1759 			break;
1760 		}
1761 
1762 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1763 		ASSERT(removed);
1764 
1765 		connp = tcp->tcp_connp;
1766 		ASSERT(connp->conn_fanout != NULL);
1767 		lock = &connp->conn_fanout->connf_lock;
1768 		/*
1769 		 * This is essentially a TW reclaim fast path optimization for
1770 		 * performance where the timewait collector checks under the
1771 		 * fanout lock (so that no one else can get access to the
1772 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1773 		 * the classifier hash list. If ref count is indeed 2, we can
1774 		 * just remove the conn under the fanout lock and avoid
1775 		 * cleaning up the conn under the squeue, provided that
1776 		 * clustering callbacks are not enabled. If clustering is
1777 		 * enabled, we need to make the clustering callback before
1778 		 * setting the CONDEMNED flag and after dropping all locks and
1779 		 * so we forego this optimization and fall back to the slow
1780 		 * path. Also please see the comments in tcp_closei_local
1781 		 * regarding the refcnt logic.
1782 		 *
1783 		 * Since we are holding the tcp_time_wait_lock, its better
1784 		 * not to block on the fanout_lock because other connections
1785 		 * can't add themselves to time_wait list. So we do a
1786 		 * tryenter instead of mutex_enter.
1787 		 */
1788 		if (mutex_tryenter(lock)) {
1789 			mutex_enter(&connp->conn_lock);
1790 			if ((connp->conn_ref == 2) &&
1791 			    (cl_inet_disconnect == NULL)) {
1792 				ipcl_hash_remove_locked(connp,
1793 				    connp->conn_fanout);
1794 				/*
1795 				 * Set the CONDEMNED flag now itself so that
1796 				 * the refcnt cannot increase due to any
1797 				 * walker. But we have still not cleaned up
1798 				 * conn_ire_cache. This is still ok since
1799 				 * we are going to clean it up in tcp_cleanup
1800 				 * immediately and any interface unplumb
1801 				 * thread will wait till the ire is blown away
1802 				 */
1803 				connp->conn_state_flags |= CONN_CONDEMNED;
1804 				mutex_exit(lock);
1805 				mutex_exit(&connp->conn_lock);
1806 				if (tcp_time_wait->tcp_free_list_cnt <
1807 				    tcp_free_list_max_cnt) {
1808 					/* Add to head of tcp_free_list */
1809 					mutex_exit(
1810 					    &tcp_time_wait->tcp_time_wait_lock);
1811 					tcp_cleanup(tcp);
1812 					ASSERT(connp->conn_latch == NULL);
1813 					ASSERT(connp->conn_policy == NULL);
1814 					ASSERT(tcp->tcp_tcps == NULL);
1815 					ASSERT(connp->conn_netstack == NULL);
1816 
1817 					mutex_enter(
1818 					    &tcp_time_wait->tcp_time_wait_lock);
1819 					tcp->tcp_time_wait_next =
1820 					    tcp_time_wait->tcp_free_list;
1821 					tcp_time_wait->tcp_free_list = tcp;
1822 					tcp_time_wait->tcp_free_list_cnt++;
1823 					continue;
1824 				} else {
1825 					/* Do not add to tcp_free_list */
1826 					mutex_exit(
1827 					    &tcp_time_wait->tcp_time_wait_lock);
1828 					tcp_bind_hash_remove(tcp);
1829 					conn_delete_ire(tcp->tcp_connp, NULL);
1830 					tcp_ipsec_cleanup(tcp);
1831 					CONN_DEC_REF(tcp->tcp_connp);
1832 				}
1833 			} else {
1834 				CONN_INC_REF_LOCKED(connp);
1835 				mutex_exit(lock);
1836 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1837 				mutex_exit(&connp->conn_lock);
1838 				/*
1839 				 * We can reuse the closemp here since conn has
1840 				 * detached (otherwise we wouldn't even be in
1841 				 * time_wait list). tcp_closemp_used can safely
1842 				 * be changed without taking a lock as no other
1843 				 * thread can concurrently access it at this
1844 				 * point in the connection lifecycle.
1845 				 */
1846 
1847 				if (tcp->tcp_closemp.b_prev == NULL)
1848 					tcp->tcp_closemp_used = B_TRUE;
1849 				else
1850 					cmn_err(CE_PANIC,
1851 					    "tcp_timewait_collector: "
1852 					    "concurrent use of tcp_closemp: "
1853 					    "connp %p tcp %p\n", (void *)connp,
1854 					    (void *)tcp);
1855 
1856 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1857 				mp = &tcp->tcp_closemp;
1858 				squeue_fill(connp->conn_sqp, mp,
1859 				    tcp_timewait_output, connp,
1860 				    SQTAG_TCP_TIMEWAIT);
1861 			}
1862 		} else {
1863 			mutex_enter(&connp->conn_lock);
1864 			CONN_INC_REF_LOCKED(connp);
1865 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1866 			mutex_exit(&connp->conn_lock);
1867 			/*
1868 			 * We can reuse the closemp here since conn has
1869 			 * detached (otherwise we wouldn't even be in
1870 			 * time_wait list). tcp_closemp_used can safely
1871 			 * be changed without taking a lock as no other
1872 			 * thread can concurrently access it at this
1873 			 * point in the connection lifecycle.
1874 			 */
1875 
1876 			if (tcp->tcp_closemp.b_prev == NULL)
1877 				tcp->tcp_closemp_used = B_TRUE;
1878 			else
1879 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1880 				    "concurrent use of tcp_closemp: "
1881 				    "connp %p tcp %p\n", (void *)connp,
1882 				    (void *)tcp);
1883 
1884 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1885 			mp = &tcp->tcp_closemp;
1886 			squeue_fill(connp->conn_sqp, mp,
1887 			    tcp_timewait_output, connp, 0);
1888 		}
1889 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1890 	}
1891 
1892 	if (tcp_time_wait->tcp_free_list != NULL)
1893 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1894 
1895 	tcp_time_wait->tcp_time_wait_tid =
1896 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1897 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1898 }
1899 /*
1900  * Reply to a clients T_CONN_RES TPI message. This function
1901  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1902  * on the acceptor STREAM and processed in tcp_wput_accept().
1903  * Read the block comment on top of tcp_conn_request().
1904  */
1905 static void
1906 tcp_accept(tcp_t *listener, mblk_t *mp)
1907 {
1908 	tcp_t	*acceptor;
1909 	tcp_t	*eager;
1910 	tcp_t   *tcp;
1911 	struct T_conn_res	*tcr;
1912 	t_uscalar_t	acceptor_id;
1913 	t_scalar_t	seqnum;
1914 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1915 	mblk_t	*ok_mp;
1916 	mblk_t	*mp1;
1917 	tcp_stack_t	*tcps = listener->tcp_tcps;
1918 
1919 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1920 		tcp_err_ack(listener, mp, TPROTO, 0);
1921 		return;
1922 	}
1923 	tcr = (struct T_conn_res *)mp->b_rptr;
1924 
1925 	/*
1926 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1927 	 * read side queue of the streams device underneath us i.e. the
1928 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1929 	 * look it up in the queue_hash.  Under LP64 it sends down the
1930 	 * minor_t of the accepting endpoint.
1931 	 *
1932 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1933 	 * fanout hash lock is held.
1934 	 * This prevents any thread from entering the acceptor queue from
1935 	 * below (since it has not been hard bound yet i.e. any inbound
1936 	 * packets will arrive on the listener or default tcp queue and
1937 	 * go through tcp_lookup).
1938 	 * The CONN_INC_REF will prevent the acceptor from closing.
1939 	 *
1940 	 * XXX It is still possible for a tli application to send down data
1941 	 * on the accepting stream while another thread calls t_accept.
1942 	 * This should not be a problem for well-behaved applications since
1943 	 * the T_OK_ACK is sent after the queue swapping is completed.
1944 	 *
1945 	 * If the accepting fd is the same as the listening fd, avoid
1946 	 * queue hash lookup since that will return an eager listener in a
1947 	 * already established state.
1948 	 */
1949 	acceptor_id = tcr->ACCEPTOR_id;
1950 	mutex_enter(&listener->tcp_eager_lock);
1951 	if (listener->tcp_acceptor_id == acceptor_id) {
1952 		eager = listener->tcp_eager_next_q;
1953 		/* only count how many T_CONN_INDs so don't count q0 */
1954 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1955 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1956 			mutex_exit(&listener->tcp_eager_lock);
1957 			tcp_err_ack(listener, mp, TBADF, 0);
1958 			return;
1959 		}
1960 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1961 			/* Throw away all the eagers on q0. */
1962 			tcp_eager_cleanup(listener, 1);
1963 		}
1964 		if (listener->tcp_syn_defense) {
1965 			listener->tcp_syn_defense = B_FALSE;
1966 			if (listener->tcp_ip_addr_cache != NULL) {
1967 				kmem_free(listener->tcp_ip_addr_cache,
1968 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1969 				listener->tcp_ip_addr_cache = NULL;
1970 			}
1971 		}
1972 		/*
1973 		 * Transfer tcp_conn_req_max to the eager so that when
1974 		 * a disconnect occurs we can revert the endpoint to the
1975 		 * listen state.
1976 		 */
1977 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1978 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1979 		/*
1980 		 * Get a reference on the acceptor just like the
1981 		 * tcp_acceptor_hash_lookup below.
1982 		 */
1983 		acceptor = listener;
1984 		CONN_INC_REF(acceptor->tcp_connp);
1985 	} else {
1986 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1987 		if (acceptor == NULL) {
1988 			if (listener->tcp_debug) {
1989 				(void) strlog(TCP_MOD_ID, 0, 1,
1990 				    SL_ERROR|SL_TRACE,
1991 				    "tcp_accept: did not find acceptor 0x%x\n",
1992 				    acceptor_id);
1993 			}
1994 			mutex_exit(&listener->tcp_eager_lock);
1995 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1996 			return;
1997 		}
1998 		/*
1999 		 * Verify acceptor state. The acceptable states for an acceptor
2000 		 * include TCPS_IDLE and TCPS_BOUND.
2001 		 */
2002 		switch (acceptor->tcp_state) {
2003 		case TCPS_IDLE:
2004 			/* FALLTHRU */
2005 		case TCPS_BOUND:
2006 			break;
2007 		default:
2008 			CONN_DEC_REF(acceptor->tcp_connp);
2009 			mutex_exit(&listener->tcp_eager_lock);
2010 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2011 			return;
2012 		}
2013 	}
2014 
2015 	/* The listener must be in TCPS_LISTEN */
2016 	if (listener->tcp_state != TCPS_LISTEN) {
2017 		CONN_DEC_REF(acceptor->tcp_connp);
2018 		mutex_exit(&listener->tcp_eager_lock);
2019 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2020 		return;
2021 	}
2022 
2023 	/*
2024 	 * Rendezvous with an eager connection request packet hanging off
2025 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2026 	 * tcp structure when the connection packet arrived in
2027 	 * tcp_conn_request().
2028 	 */
2029 	seqnum = tcr->SEQ_number;
2030 	eager = listener;
2031 	do {
2032 		eager = eager->tcp_eager_next_q;
2033 		if (eager == NULL) {
2034 			CONN_DEC_REF(acceptor->tcp_connp);
2035 			mutex_exit(&listener->tcp_eager_lock);
2036 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2037 			return;
2038 		}
2039 	} while (eager->tcp_conn_req_seqnum != seqnum);
2040 	mutex_exit(&listener->tcp_eager_lock);
2041 
2042 	/*
2043 	 * At this point, both acceptor and listener have 2 ref
2044 	 * that they begin with. Acceptor has one additional ref
2045 	 * we placed in lookup while listener has 3 additional
2046 	 * ref for being behind the squeue (tcp_accept() is
2047 	 * done on listener's squeue); being in classifier hash;
2048 	 * and eager's ref on listener.
2049 	 */
2050 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2051 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2052 
2053 	/*
2054 	 * The eager at this point is set in its own squeue and
2055 	 * could easily have been killed (tcp_accept_finish will
2056 	 * deal with that) because of a TH_RST so we can only
2057 	 * ASSERT for a single ref.
2058 	 */
2059 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2060 
2061 	/* Pre allocate the stroptions mblk also */
2062 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2063 	if (opt_mp == NULL) {
2064 		CONN_DEC_REF(acceptor->tcp_connp);
2065 		CONN_DEC_REF(eager->tcp_connp);
2066 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2067 		return;
2068 	}
2069 	DB_TYPE(opt_mp) = M_SETOPTS;
2070 	opt_mp->b_wptr += sizeof (struct stroptions);
2071 
2072 	/*
2073 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2074 	 * from listener to acceptor. The message is chained on opt_mp
2075 	 * which will be sent onto eager's squeue.
2076 	 */
2077 	if (listener->tcp_bound_if != 0) {
2078 		/* allocate optmgmt req */
2079 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2080 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2081 		    sizeof (int));
2082 		if (mp1 != NULL)
2083 			linkb(opt_mp, mp1);
2084 	}
2085 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2086 		uint_t on = 1;
2087 
2088 		/* allocate optmgmt req */
2089 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2090 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2091 		if (mp1 != NULL)
2092 			linkb(opt_mp, mp1);
2093 	}
2094 
2095 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2096 	if ((mp1 = copymsg(mp)) == NULL) {
2097 		CONN_DEC_REF(acceptor->tcp_connp);
2098 		CONN_DEC_REF(eager->tcp_connp);
2099 		freemsg(opt_mp);
2100 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2101 		return;
2102 	}
2103 
2104 	tcr = (struct T_conn_res *)mp1->b_rptr;
2105 
2106 	/*
2107 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2108 	 * which allocates a larger mblk and appends the new
2109 	 * local address to the ok_ack.  The address is copied by
2110 	 * soaccept() for getsockname().
2111 	 */
2112 	{
2113 		int extra;
2114 
2115 		extra = (eager->tcp_family == AF_INET) ?
2116 		    sizeof (sin_t) : sizeof (sin6_t);
2117 
2118 		/*
2119 		 * Try to re-use mp, if possible.  Otherwise, allocate
2120 		 * an mblk and return it as ok_mp.  In any case, mp
2121 		 * is no longer usable upon return.
2122 		 */
2123 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2124 			CONN_DEC_REF(acceptor->tcp_connp);
2125 			CONN_DEC_REF(eager->tcp_connp);
2126 			freemsg(opt_mp);
2127 			/* Original mp has been freed by now, so use mp1 */
2128 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2129 			return;
2130 		}
2131 
2132 		mp = NULL;	/* We should never use mp after this point */
2133 
2134 		switch (extra) {
2135 		case sizeof (sin_t): {
2136 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2137 
2138 				ok_mp->b_wptr += extra;
2139 				sin->sin_family = AF_INET;
2140 				sin->sin_port = eager->tcp_lport;
2141 				sin->sin_addr.s_addr =
2142 				    eager->tcp_ipha->ipha_src;
2143 				break;
2144 			}
2145 		case sizeof (sin6_t): {
2146 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2147 
2148 				ok_mp->b_wptr += extra;
2149 				sin6->sin6_family = AF_INET6;
2150 				sin6->sin6_port = eager->tcp_lport;
2151 				if (eager->tcp_ipversion == IPV4_VERSION) {
2152 					sin6->sin6_flowinfo = 0;
2153 					IN6_IPADDR_TO_V4MAPPED(
2154 					    eager->tcp_ipha->ipha_src,
2155 					    &sin6->sin6_addr);
2156 				} else {
2157 					ASSERT(eager->tcp_ip6h != NULL);
2158 					sin6->sin6_flowinfo =
2159 					    eager->tcp_ip6h->ip6_vcf &
2160 					    ~IPV6_VERS_AND_FLOW_MASK;
2161 					sin6->sin6_addr =
2162 					    eager->tcp_ip6h->ip6_src;
2163 				}
2164 				sin6->sin6_scope_id = 0;
2165 				sin6->__sin6_src_id = 0;
2166 				break;
2167 			}
2168 		default:
2169 			break;
2170 		}
2171 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2172 	}
2173 
2174 	/*
2175 	 * If there are no options we know that the T_CONN_RES will
2176 	 * succeed. However, we can't send the T_OK_ACK upstream until
2177 	 * the tcp_accept_swap is done since it would be dangerous to
2178 	 * let the application start using the new fd prior to the swap.
2179 	 */
2180 	tcp_accept_swap(listener, acceptor, eager);
2181 
2182 	/*
2183 	 * tcp_accept_swap unlinks eager from listener but does not drop
2184 	 * the eager's reference on the listener.
2185 	 */
2186 	ASSERT(eager->tcp_listener == NULL);
2187 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2188 
2189 	/*
2190 	 * The eager is now associated with its own queue. Insert in
2191 	 * the hash so that the connection can be reused for a future
2192 	 * T_CONN_RES.
2193 	 */
2194 	tcp_acceptor_hash_insert(acceptor_id, eager);
2195 
2196 	/*
2197 	 * We now do the processing of options with T_CONN_RES.
2198 	 * We delay till now since we wanted to have queue to pass to
2199 	 * option processing routines that points back to the right
2200 	 * instance structure which does not happen until after
2201 	 * tcp_accept_swap().
2202 	 *
2203 	 * Note:
2204 	 * The sanity of the logic here assumes that whatever options
2205 	 * are appropriate to inherit from listner=>eager are done
2206 	 * before this point, and whatever were to be overridden (or not)
2207 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2208 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2209 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2210 	 * This may not be true at this point in time but can be fixed
2211 	 * independently. This option processing code starts with
2212 	 * the instantiated acceptor instance and the final queue at
2213 	 * this point.
2214 	 */
2215 
2216 	if (tcr->OPT_length != 0) {
2217 		/* Options to process */
2218 		int t_error = 0;
2219 		int sys_error = 0;
2220 		int do_disconnect = 0;
2221 
2222 		if (tcp_conprim_opt_process(eager, mp1,
2223 		    &do_disconnect, &t_error, &sys_error) < 0) {
2224 			eager->tcp_accept_error = 1;
2225 			if (do_disconnect) {
2226 				/*
2227 				 * An option failed which does not allow
2228 				 * connection to be accepted.
2229 				 *
2230 				 * We allow T_CONN_RES to succeed and
2231 				 * put a T_DISCON_IND on the eager queue.
2232 				 */
2233 				ASSERT(t_error == 0 && sys_error == 0);
2234 				eager->tcp_send_discon_ind = 1;
2235 			} else {
2236 				ASSERT(t_error != 0);
2237 				freemsg(ok_mp);
2238 				/*
2239 				 * Original mp was either freed or set
2240 				 * to ok_mp above, so use mp1 instead.
2241 				 */
2242 				tcp_err_ack(listener, mp1, t_error, sys_error);
2243 				goto finish;
2244 			}
2245 		}
2246 		/*
2247 		 * Most likely success in setting options (except if
2248 		 * eager->tcp_send_discon_ind set).
2249 		 * mp1 option buffer represented by OPT_length/offset
2250 		 * potentially modified and contains results of setting
2251 		 * options at this point
2252 		 */
2253 	}
2254 
2255 	/* We no longer need mp1, since all options processing has passed */
2256 	freemsg(mp1);
2257 
2258 	putnext(listener->tcp_rq, ok_mp);
2259 
2260 	mutex_enter(&listener->tcp_eager_lock);
2261 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2262 		tcp_t	*tail;
2263 		mblk_t	*conn_ind;
2264 
2265 		/*
2266 		 * This path should not be executed if listener and
2267 		 * acceptor streams are the same.
2268 		 */
2269 		ASSERT(listener != acceptor);
2270 
2271 		tcp = listener->tcp_eager_prev_q0;
2272 		/*
2273 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2274 		 * deferred T_conn_ind queue. We need to get to the head of
2275 		 * the queue in order to send up T_conn_ind the same order as
2276 		 * how the 3WHS is completed.
2277 		 */
2278 		while (tcp != listener) {
2279 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2280 				break;
2281 			else
2282 				tcp = tcp->tcp_eager_prev_q0;
2283 		}
2284 		ASSERT(tcp != listener);
2285 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2286 		ASSERT(conn_ind != NULL);
2287 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2288 
2289 		/* Move from q0 to q */
2290 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2291 		listener->tcp_conn_req_cnt_q0--;
2292 		listener->tcp_conn_req_cnt_q++;
2293 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2294 		    tcp->tcp_eager_prev_q0;
2295 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2296 		    tcp->tcp_eager_next_q0;
2297 		tcp->tcp_eager_prev_q0 = NULL;
2298 		tcp->tcp_eager_next_q0 = NULL;
2299 		tcp->tcp_conn_def_q0 = B_FALSE;
2300 
2301 		/* Make sure the tcp isn't in the list of droppables */
2302 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2303 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2304 
2305 		/*
2306 		 * Insert at end of the queue because sockfs sends
2307 		 * down T_CONN_RES in chronological order. Leaving
2308 		 * the older conn indications at front of the queue
2309 		 * helps reducing search time.
2310 		 */
2311 		tail = listener->tcp_eager_last_q;
2312 		if (tail != NULL)
2313 			tail->tcp_eager_next_q = tcp;
2314 		else
2315 			listener->tcp_eager_next_q = tcp;
2316 		listener->tcp_eager_last_q = tcp;
2317 		tcp->tcp_eager_next_q = NULL;
2318 		mutex_exit(&listener->tcp_eager_lock);
2319 		putnext(tcp->tcp_rq, conn_ind);
2320 	} else {
2321 		mutex_exit(&listener->tcp_eager_lock);
2322 	}
2323 
2324 	/*
2325 	 * Done with the acceptor - free it
2326 	 *
2327 	 * Note: from this point on, no access to listener should be made
2328 	 * as listener can be equal to acceptor.
2329 	 */
2330 finish:
2331 	ASSERT(acceptor->tcp_detached);
2332 	ASSERT(tcps->tcps_g_q != NULL);
2333 	acceptor->tcp_rq = tcps->tcps_g_q;
2334 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2335 	(void) tcp_clean_death(acceptor, 0, 2);
2336 	CONN_DEC_REF(acceptor->tcp_connp);
2337 
2338 	/*
2339 	 * In case we already received a FIN we have to make tcp_rput send
2340 	 * the ordrel_ind. This will also send up a window update if the window
2341 	 * has opened up.
2342 	 *
2343 	 * In the normal case of a successful connection acceptance
2344 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2345 	 * indication that this was just accepted. This tells tcp_rput to
2346 	 * pass up any data queued in tcp_rcv_list.
2347 	 *
2348 	 * In the fringe case where options sent with T_CONN_RES failed and
2349 	 * we required, we would be indicating a T_DISCON_IND to blow
2350 	 * away this connection.
2351 	 */
2352 
2353 	/*
2354 	 * XXX: we currently have a problem if XTI application closes the
2355 	 * acceptor stream in between. This problem exists in on10-gate also
2356 	 * and is well know but nothing can be done short of major rewrite
2357 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2358 	 * eager same squeue as listener (we can distinguish non socket
2359 	 * listeners at the time of handling a SYN in tcp_conn_request)
2360 	 * and do most of the work that tcp_accept_finish does here itself
2361 	 * and then get behind the acceptor squeue to access the acceptor
2362 	 * queue.
2363 	 */
2364 	/*
2365 	 * We already have a ref on tcp so no need to do one before squeue_fill
2366 	 */
2367 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2368 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2369 }
2370 
2371 /*
2372  * Swap information between the eager and acceptor for a TLI/XTI client.
2373  * The sockfs accept is done on the acceptor stream and control goes
2374  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2375  * called. In either case, both the eager and listener are in their own
2376  * perimeter (squeue) and the code has to deal with potential race.
2377  *
2378  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2379  */
2380 static void
2381 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2382 {
2383 	conn_t	*econnp, *aconnp;
2384 
2385 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2386 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2387 	ASSERT(!eager->tcp_hard_bound);
2388 	ASSERT(!TCP_IS_SOCKET(acceptor));
2389 	ASSERT(!TCP_IS_SOCKET(eager));
2390 	ASSERT(!TCP_IS_SOCKET(listener));
2391 
2392 	acceptor->tcp_detached = B_TRUE;
2393 	/*
2394 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2395 	 * the acceptor id.
2396 	 */
2397 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2398 
2399 	/* remove eager from listen list... */
2400 	mutex_enter(&listener->tcp_eager_lock);
2401 	tcp_eager_unlink(eager);
2402 	ASSERT(eager->tcp_eager_next_q == NULL &&
2403 	    eager->tcp_eager_last_q == NULL);
2404 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2405 	    eager->tcp_eager_prev_q0 == NULL);
2406 	mutex_exit(&listener->tcp_eager_lock);
2407 	eager->tcp_rq = acceptor->tcp_rq;
2408 	eager->tcp_wq = acceptor->tcp_wq;
2409 
2410 	econnp = eager->tcp_connp;
2411 	aconnp = acceptor->tcp_connp;
2412 
2413 	eager->tcp_rq->q_ptr = econnp;
2414 	eager->tcp_wq->q_ptr = econnp;
2415 
2416 	/*
2417 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2418 	 * which might be a different squeue from our peer TCP instance.
2419 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2420 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2421 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2422 	 * above reach global visibility prior to the clearing of tcp_detached.
2423 	 */
2424 	membar_producer();
2425 	eager->tcp_detached = B_FALSE;
2426 
2427 	ASSERT(eager->tcp_ack_tid == 0);
2428 
2429 	econnp->conn_dev = aconnp->conn_dev;
2430 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2431 	ASSERT(econnp->conn_minor_arena != NULL);
2432 	if (eager->tcp_cred != NULL)
2433 		crfree(eager->tcp_cred);
2434 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2435 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2436 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2437 
2438 	aconnp->conn_cred = NULL;
2439 
2440 	econnp->conn_zoneid = aconnp->conn_zoneid;
2441 	econnp->conn_allzones = aconnp->conn_allzones;
2442 
2443 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2444 	aconnp->conn_mac_exempt = B_FALSE;
2445 
2446 	ASSERT(aconnp->conn_peercred == NULL);
2447 
2448 	/* Do the IPC initialization */
2449 	CONN_INC_REF(econnp);
2450 
2451 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2452 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2453 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2454 
2455 	/* Done with old IPC. Drop its ref on its connp */
2456 	CONN_DEC_REF(aconnp);
2457 }
2458 
2459 
2460 /*
2461  * Adapt to the information, such as rtt and rtt_sd, provided from the
2462  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2463  *
2464  * Checks for multicast and broadcast destination address.
2465  * Returns zero on failure; non-zero if ok.
2466  *
2467  * Note that the MSS calculation here is based on the info given in
2468  * the IRE.  We do not do any calculation based on TCP options.  They
2469  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2470  * knows which options to use.
2471  *
2472  * Note on how TCP gets its parameters for a connection.
2473  *
2474  * When a tcp_t structure is allocated, it gets all the default parameters.
2475  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2476  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2477  * default.  But if there is an associated tcp_host_param, it will override
2478  * the metrics.
2479  *
2480  * An incoming SYN with a multicast or broadcast destination address, is dropped
2481  * in 1 of 2 places.
2482  *
2483  * 1. If the packet was received over the wire it is dropped in
2484  * ip_rput_process_broadcast()
2485  *
2486  * 2. If the packet was received through internal IP loopback, i.e. the packet
2487  * was generated and received on the same machine, it is dropped in
2488  * ip_wput_local()
2489  *
2490  * An incoming SYN with a multicast or broadcast source address is always
2491  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2492  * reject an attempt to connect to a broadcast or multicast (destination)
2493  * address.
2494  */
2495 static int
2496 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2497 {
2498 	tcp_hsp_t	*hsp;
2499 	ire_t		*ire;
2500 	ire_t		*sire = NULL;
2501 	iulp_t		*ire_uinfo = NULL;
2502 	uint32_t	mss_max;
2503 	uint32_t	mss;
2504 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2505 	conn_t		*connp = tcp->tcp_connp;
2506 	boolean_t	ire_cacheable = B_FALSE;
2507 	zoneid_t	zoneid = connp->conn_zoneid;
2508 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2509 	    MATCH_IRE_SECATTR;
2510 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2511 	ill_t		*ill = NULL;
2512 	boolean_t	incoming = (ire_mp == NULL);
2513 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2514 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2515 
2516 	ASSERT(connp->conn_ire_cache == NULL);
2517 
2518 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2519 
2520 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2521 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2522 			return (0);
2523 		}
2524 		/*
2525 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2526 		 * for the destination with the nexthop as gateway.
2527 		 * ire_ctable_lookup() is used because this particular
2528 		 * ire, if it exists, will be marked private.
2529 		 * If that is not available, use the interface ire
2530 		 * for the nexthop.
2531 		 *
2532 		 * TSol: tcp_update_label will detect label mismatches based
2533 		 * only on the destination's label, but that would not
2534 		 * detect label mismatches based on the security attributes
2535 		 * of routes or next hop gateway. Hence we need to pass the
2536 		 * label to ire_ftable_lookup below in order to locate the
2537 		 * right prefix (and/or) ire cache. Similarly we also need
2538 		 * pass the label to the ire_cache_lookup below to locate
2539 		 * the right ire that also matches on the label.
2540 		 */
2541 		if (tcp->tcp_connp->conn_nexthop_set) {
2542 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2543 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2544 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2545 			    ipst);
2546 			if (ire == NULL) {
2547 				ire = ire_ftable_lookup(
2548 				    tcp->tcp_connp->conn_nexthop_v4,
2549 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2550 				    tsl, match_flags, ipst);
2551 				if (ire == NULL)
2552 					return (0);
2553 			} else {
2554 				ire_uinfo = &ire->ire_uinfo;
2555 			}
2556 		} else {
2557 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2558 			    zoneid, tsl, ipst);
2559 			if (ire != NULL) {
2560 				ire_cacheable = B_TRUE;
2561 				ire_uinfo = (ire_mp != NULL) ?
2562 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2563 				    &ire->ire_uinfo;
2564 
2565 			} else {
2566 				if (ire_mp == NULL) {
2567 					ire = ire_ftable_lookup(
2568 					    tcp->tcp_connp->conn_rem,
2569 					    0, 0, 0, NULL, &sire, zoneid, 0,
2570 					    tsl, (MATCH_IRE_RECURSIVE |
2571 					    MATCH_IRE_DEFAULT), ipst);
2572 					if (ire == NULL)
2573 						return (0);
2574 					ire_uinfo = (sire != NULL) ?
2575 					    &sire->ire_uinfo :
2576 					    &ire->ire_uinfo;
2577 				} else {
2578 					ire = (ire_t *)ire_mp->b_rptr;
2579 					ire_uinfo =
2580 					    &((ire_t *)
2581 					    ire_mp->b_rptr)->ire_uinfo;
2582 				}
2583 			}
2584 		}
2585 		ASSERT(ire != NULL);
2586 
2587 		if ((ire->ire_src_addr == INADDR_ANY) ||
2588 		    (ire->ire_type & IRE_BROADCAST)) {
2589 			/*
2590 			 * ire->ire_mp is non null when ire_mp passed in is used
2591 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2592 			 */
2593 			if (ire->ire_mp == NULL)
2594 				ire_refrele(ire);
2595 			if (sire != NULL)
2596 				ire_refrele(sire);
2597 			return (0);
2598 		}
2599 
2600 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2601 			ipaddr_t src_addr;
2602 
2603 			/*
2604 			 * ip_bind_connected() has stored the correct source
2605 			 * address in conn_src.
2606 			 */
2607 			src_addr = tcp->tcp_connp->conn_src;
2608 			tcp->tcp_ipha->ipha_src = src_addr;
2609 			/*
2610 			 * Copy of the src addr. in tcp_t is needed
2611 			 * for the lookup funcs.
2612 			 */
2613 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2614 		}
2615 		/*
2616 		 * Set the fragment bit so that IP will tell us if the MTU
2617 		 * should change. IP tells us the latest setting of
2618 		 * ip_path_mtu_discovery through ire_frag_flag.
2619 		 */
2620 		if (ipst->ips_ip_path_mtu_discovery) {
2621 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2622 			    htons(IPH_DF);
2623 		}
2624 		/*
2625 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2626 		 * for IP_NEXTHOP. No cache ire has been found for the
2627 		 * destination and we are working with the nexthop's
2628 		 * interface ire. Since we need to forward all packets
2629 		 * to the nexthop first, we "blindly" set tcp_localnet
2630 		 * to false, eventhough the destination may also be
2631 		 * onlink.
2632 		 */
2633 		if (ire_uinfo == NULL)
2634 			tcp->tcp_localnet = 0;
2635 		else
2636 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2637 	} else {
2638 		/*
2639 		 * For incoming connection ire_mp = NULL
2640 		 * For outgoing connection ire_mp != NULL
2641 		 * Technically we should check conn_incoming_ill
2642 		 * when ire_mp is NULL and conn_outgoing_ill when
2643 		 * ire_mp is non-NULL. But this is performance
2644 		 * critical path and for IPV*_BOUND_IF, outgoing
2645 		 * and incoming ill are always set to the same value.
2646 		 */
2647 		ill_t	*dst_ill = NULL;
2648 		ipif_t  *dst_ipif = NULL;
2649 
2650 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2651 
2652 		if (connp->conn_outgoing_ill != NULL) {
2653 			/* Outgoing or incoming path */
2654 			int   err;
2655 
2656 			dst_ill = conn_get_held_ill(connp,
2657 			    &connp->conn_outgoing_ill, &err);
2658 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2659 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2660 				return (0);
2661 			}
2662 			match_flags |= MATCH_IRE_ILL;
2663 			dst_ipif = dst_ill->ill_ipif;
2664 		}
2665 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2666 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2667 
2668 		if (ire != NULL) {
2669 			ire_cacheable = B_TRUE;
2670 			ire_uinfo = (ire_mp != NULL) ?
2671 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2672 			    &ire->ire_uinfo;
2673 		} else {
2674 			if (ire_mp == NULL) {
2675 				ire = ire_ftable_lookup_v6(
2676 				    &tcp->tcp_connp->conn_remv6,
2677 				    0, 0, 0, dst_ipif, &sire, zoneid,
2678 				    0, tsl, match_flags, ipst);
2679 				if (ire == NULL) {
2680 					if (dst_ill != NULL)
2681 						ill_refrele(dst_ill);
2682 					return (0);
2683 				}
2684 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2685 				    &ire->ire_uinfo;
2686 			} else {
2687 				ire = (ire_t *)ire_mp->b_rptr;
2688 				ire_uinfo =
2689 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2690 			}
2691 		}
2692 		if (dst_ill != NULL)
2693 			ill_refrele(dst_ill);
2694 
2695 		ASSERT(ire != NULL);
2696 		ASSERT(ire_uinfo != NULL);
2697 
2698 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2699 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2700 			/*
2701 			 * ire->ire_mp is non null when ire_mp passed in is used
2702 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2703 			 */
2704 			if (ire->ire_mp == NULL)
2705 				ire_refrele(ire);
2706 			if (sire != NULL)
2707 				ire_refrele(sire);
2708 			return (0);
2709 		}
2710 
2711 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2712 			in6_addr_t	src_addr;
2713 
2714 			/*
2715 			 * ip_bind_connected_v6() has stored the correct source
2716 			 * address per IPv6 addr. selection policy in
2717 			 * conn_src_v6.
2718 			 */
2719 			src_addr = tcp->tcp_connp->conn_srcv6;
2720 
2721 			tcp->tcp_ip6h->ip6_src = src_addr;
2722 			/*
2723 			 * Copy of the src addr. in tcp_t is needed
2724 			 * for the lookup funcs.
2725 			 */
2726 			tcp->tcp_ip_src_v6 = src_addr;
2727 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2728 			    &connp->conn_srcv6));
2729 		}
2730 		tcp->tcp_localnet =
2731 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2732 	}
2733 
2734 	/*
2735 	 * This allows applications to fail quickly when connections are made
2736 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2737 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2738 	 */
2739 	if ((ire->ire_flags & RTF_REJECT) &&
2740 	    (ire->ire_flags & RTF_PRIVATE))
2741 		goto error;
2742 
2743 	/*
2744 	 * Make use of the cached rtt and rtt_sd values to calculate the
2745 	 * initial RTO.  Note that they are already initialized in
2746 	 * tcp_init_values().
2747 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2748 	 * IP_NEXTHOP, but instead are using the interface ire for the
2749 	 * nexthop, then we do not use the ire_uinfo from that ire to
2750 	 * do any initializations.
2751 	 */
2752 	if (ire_uinfo != NULL) {
2753 		if (ire_uinfo->iulp_rtt != 0) {
2754 			clock_t	rto;
2755 
2756 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2757 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2758 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2759 			    tcps->tcps_rexmit_interval_extra +
2760 			    (tcp->tcp_rtt_sa >> 5);
2761 
2762 			if (rto > tcps->tcps_rexmit_interval_max) {
2763 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2764 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2765 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2766 			} else {
2767 				tcp->tcp_rto = rto;
2768 			}
2769 		}
2770 		if (ire_uinfo->iulp_ssthresh != 0)
2771 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2772 		else
2773 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2774 		if (ire_uinfo->iulp_spipe > 0) {
2775 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2776 			    tcps->tcps_max_buf);
2777 			if (tcps->tcps_snd_lowat_fraction != 0)
2778 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2779 				    tcps->tcps_snd_lowat_fraction;
2780 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2781 		}
2782 		/*
2783 		 * Note that up till now, acceptor always inherits receive
2784 		 * window from the listener.  But if there is a metrics
2785 		 * associated with a host, we should use that instead of
2786 		 * inheriting it from listener. Thus we need to pass this
2787 		 * info back to the caller.
2788 		 */
2789 		if (ire_uinfo->iulp_rpipe > 0) {
2790 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2791 			    tcps->tcps_max_buf);
2792 		}
2793 
2794 		if (ire_uinfo->iulp_rtomax > 0) {
2795 			tcp->tcp_second_timer_threshold =
2796 			    ire_uinfo->iulp_rtomax;
2797 		}
2798 
2799 		/*
2800 		 * Use the metric option settings, iulp_tstamp_ok and
2801 		 * iulp_wscale_ok, only for active open. What this means
2802 		 * is that if the other side uses timestamp or window
2803 		 * scale option, TCP will also use those options. That
2804 		 * is for passive open.  If the application sets a
2805 		 * large window, window scale is enabled regardless of
2806 		 * the value in iulp_wscale_ok.  This is the behavior
2807 		 * since 2.6.  So we keep it.
2808 		 * The only case left in passive open processing is the
2809 		 * check for SACK.
2810 		 * For ECN, it should probably be like SACK.  But the
2811 		 * current value is binary, so we treat it like the other
2812 		 * cases.  The metric only controls active open.For passive
2813 		 * open, the ndd param, tcp_ecn_permitted, controls the
2814 		 * behavior.
2815 		 */
2816 		if (!tcp_detached) {
2817 			/*
2818 			 * The if check means that the following can only
2819 			 * be turned on by the metrics only IRE, but not off.
2820 			 */
2821 			if (ire_uinfo->iulp_tstamp_ok)
2822 				tcp->tcp_snd_ts_ok = B_TRUE;
2823 			if (ire_uinfo->iulp_wscale_ok)
2824 				tcp->tcp_snd_ws_ok = B_TRUE;
2825 			if (ire_uinfo->iulp_sack == 2)
2826 				tcp->tcp_snd_sack_ok = B_TRUE;
2827 			if (ire_uinfo->iulp_ecn_ok)
2828 				tcp->tcp_ecn_ok = B_TRUE;
2829 		} else {
2830 			/*
2831 			 * Passive open.
2832 			 *
2833 			 * As above, the if check means that SACK can only be
2834 			 * turned on by the metric only IRE.
2835 			 */
2836 			if (ire_uinfo->iulp_sack > 0) {
2837 				tcp->tcp_snd_sack_ok = B_TRUE;
2838 			}
2839 		}
2840 	}
2841 
2842 
2843 	/*
2844 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2845 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2846 	 * length of all those options exceeds 28 bytes.  But because
2847 	 * of the tcp_mss_min check below, we may not have a problem if
2848 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2849 	 * the negative problem still exists.  And the check defeats PMTUd.
2850 	 * In fact, if PMTUd finds that the MSS should be smaller than
2851 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2852 	 * value.
2853 	 *
2854 	 * We do not deal with that now.  All those problems related to
2855 	 * PMTUd will be fixed later.
2856 	 */
2857 	ASSERT(ire->ire_max_frag != 0);
2858 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2859 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2860 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2861 			mss = MIN(mss, IPV6_MIN_MTU);
2862 		}
2863 	}
2864 
2865 	/* Sanity check for MSS value. */
2866 	if (tcp->tcp_ipversion == IPV4_VERSION)
2867 		mss_max = tcps->tcps_mss_max_ipv4;
2868 	else
2869 		mss_max = tcps->tcps_mss_max_ipv6;
2870 
2871 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2872 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2873 		/*
2874 		 * After receiving an ICMPv6 "packet too big" message with a
2875 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2876 		 * will insert a 8-byte fragment header in every packet; we
2877 		 * reduce the MSS by that amount here.
2878 		 */
2879 		mss -= sizeof (ip6_frag_t);
2880 	}
2881 
2882 	if (tcp->tcp_ipsec_overhead == 0)
2883 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2884 
2885 	mss -= tcp->tcp_ipsec_overhead;
2886 
2887 	if (mss < tcps->tcps_mss_min)
2888 		mss = tcps->tcps_mss_min;
2889 	if (mss > mss_max)
2890 		mss = mss_max;
2891 
2892 	/* Note that this is the maximum MSS, excluding all options. */
2893 	tcp->tcp_mss = mss;
2894 
2895 	/*
2896 	 * Initialize the ISS here now that we have the full connection ID.
2897 	 * The RFC 1948 method of initial sequence number generation requires
2898 	 * knowledge of the full connection ID before setting the ISS.
2899 	 */
2900 
2901 	tcp_iss_init(tcp);
2902 
2903 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2904 		tcp->tcp_loopback = B_TRUE;
2905 
2906 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2907 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2908 	} else {
2909 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2910 	}
2911 
2912 	if (hsp != NULL) {
2913 		/* Only modify if we're going to make them bigger */
2914 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2915 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2916 			if (tcps->tcps_snd_lowat_fraction != 0)
2917 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2918 				    tcps->tcps_snd_lowat_fraction;
2919 		}
2920 
2921 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2922 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2923 		}
2924 
2925 		/* Copy timestamp flag only for active open */
2926 		if (!tcp_detached)
2927 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2928 	}
2929 
2930 	if (sire != NULL)
2931 		IRE_REFRELE(sire);
2932 
2933 	/*
2934 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2935 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2936 	 */
2937 	if (tcp->tcp_loopback ||
2938 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2939 		/*
2940 		 * For incoming, see if this tcp may be MDT-capable.  For
2941 		 * outgoing, this process has been taken care of through
2942 		 * tcp_rput_other.
2943 		 */
2944 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2945 		tcp->tcp_ire_ill_check_done = B_TRUE;
2946 	}
2947 
2948 	mutex_enter(&connp->conn_lock);
2949 	/*
2950 	 * Make sure that conn is not marked incipient
2951 	 * for incoming connections. A blind
2952 	 * removal of incipient flag is cheaper than
2953 	 * check and removal.
2954 	 */
2955 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2956 
2957 	/*
2958 	 * Must not cache forwarding table routes
2959 	 * or recache an IRE after the conn_t has
2960 	 * had conn_ire_cache cleared and is flagged
2961 	 * unusable, (see the CONN_CACHE_IRE() macro).
2962 	 */
2963 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2964 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2965 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2966 			connp->conn_ire_cache = ire;
2967 			IRE_UNTRACE_REF(ire);
2968 			rw_exit(&ire->ire_bucket->irb_lock);
2969 			mutex_exit(&connp->conn_lock);
2970 			return (1);
2971 		}
2972 		rw_exit(&ire->ire_bucket->irb_lock);
2973 	}
2974 	mutex_exit(&connp->conn_lock);
2975 
2976 	if (ire->ire_mp == NULL)
2977 		ire_refrele(ire);
2978 	return (1);
2979 
2980 error:
2981 	if (ire->ire_mp == NULL)
2982 		ire_refrele(ire);
2983 	if (sire != NULL)
2984 		ire_refrele(sire);
2985 	return (0);
2986 }
2987 
2988 /*
2989  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2990  * O_T_BIND_REQ/T_BIND_REQ message.
2991  */
2992 static void
2993 tcp_bind(tcp_t *tcp, mblk_t *mp)
2994 {
2995 	sin_t	*sin;
2996 	sin6_t	*sin6;
2997 	mblk_t	*mp1;
2998 	in_port_t requested_port;
2999 	in_port_t allocated_port;
3000 	struct T_bind_req *tbr;
3001 	boolean_t	bind_to_req_port_only;
3002 	boolean_t	backlog_update = B_FALSE;
3003 	boolean_t	user_specified;
3004 	in6_addr_t	v6addr;
3005 	ipaddr_t	v4addr;
3006 	uint_t	origipversion;
3007 	int	err;
3008 	queue_t *q = tcp->tcp_wq;
3009 	conn_t	*connp = tcp->tcp_connp;
3010 	mlp_type_t addrtype, mlptype;
3011 	zone_t	*zone;
3012 	cred_t	*cr;
3013 	in_port_t mlp_port;
3014 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3015 
3016 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3017 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3018 		if (tcp->tcp_debug) {
3019 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3020 			    "tcp_bind: bad req, len %u",
3021 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3022 		}
3023 		tcp_err_ack(tcp, mp, TPROTO, 0);
3024 		return;
3025 	}
3026 	/* Make sure the largest address fits */
3027 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3028 	if (mp1 == NULL) {
3029 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3030 		return;
3031 	}
3032 	mp = mp1;
3033 	tbr = (struct T_bind_req *)mp->b_rptr;
3034 	if (tcp->tcp_state >= TCPS_BOUND) {
3035 		if ((tcp->tcp_state == TCPS_BOUND ||
3036 		    tcp->tcp_state == TCPS_LISTEN) &&
3037 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3038 		    tbr->CONIND_number > 0) {
3039 			/*
3040 			 * Handle listen() increasing CONIND_number.
3041 			 * This is more "liberal" then what the TPI spec
3042 			 * requires but is needed to avoid a t_unbind
3043 			 * when handling listen() since the port number
3044 			 * might be "stolen" between the unbind and bind.
3045 			 */
3046 			backlog_update = B_TRUE;
3047 			goto do_bind;
3048 		}
3049 		if (tcp->tcp_debug) {
3050 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3051 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3052 		}
3053 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3054 		return;
3055 	}
3056 	origipversion = tcp->tcp_ipversion;
3057 
3058 	switch (tbr->ADDR_length) {
3059 	case 0:			/* request for a generic port */
3060 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3061 		if (tcp->tcp_family == AF_INET) {
3062 			tbr->ADDR_length = sizeof (sin_t);
3063 			sin = (sin_t *)&tbr[1];
3064 			*sin = sin_null;
3065 			sin->sin_family = AF_INET;
3066 			mp->b_wptr = (uchar_t *)&sin[1];
3067 			tcp->tcp_ipversion = IPV4_VERSION;
3068 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3069 		} else {
3070 			ASSERT(tcp->tcp_family == AF_INET6);
3071 			tbr->ADDR_length = sizeof (sin6_t);
3072 			sin6 = (sin6_t *)&tbr[1];
3073 			*sin6 = sin6_null;
3074 			sin6->sin6_family = AF_INET6;
3075 			mp->b_wptr = (uchar_t *)&sin6[1];
3076 			tcp->tcp_ipversion = IPV6_VERSION;
3077 			V6_SET_ZERO(v6addr);
3078 		}
3079 		requested_port = 0;
3080 		break;
3081 
3082 	case sizeof (sin_t):	/* Complete IPv4 address */
3083 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3084 		    sizeof (sin_t));
3085 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3086 			if (tcp->tcp_debug) {
3087 				(void) strlog(TCP_MOD_ID, 0, 1,
3088 				    SL_ERROR|SL_TRACE,
3089 				    "tcp_bind: bad address parameter, "
3090 				    "offset %d, len %d",
3091 				    tbr->ADDR_offset, tbr->ADDR_length);
3092 			}
3093 			tcp_err_ack(tcp, mp, TPROTO, 0);
3094 			return;
3095 		}
3096 		/*
3097 		 * With sockets sockfs will accept bogus sin_family in
3098 		 * bind() and replace it with the family used in the socket
3099 		 * call.
3100 		 */
3101 		if (sin->sin_family != AF_INET ||
3102 		    tcp->tcp_family != AF_INET) {
3103 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3104 			return;
3105 		}
3106 		requested_port = ntohs(sin->sin_port);
3107 		tcp->tcp_ipversion = IPV4_VERSION;
3108 		v4addr = sin->sin_addr.s_addr;
3109 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3110 		break;
3111 
3112 	case sizeof (sin6_t): /* Complete IPv6 address */
3113 		sin6 = (sin6_t *)mi_offset_param(mp,
3114 		    tbr->ADDR_offset, sizeof (sin6_t));
3115 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3116 			if (tcp->tcp_debug) {
3117 				(void) strlog(TCP_MOD_ID, 0, 1,
3118 				    SL_ERROR|SL_TRACE,
3119 				    "tcp_bind: bad IPv6 address parameter, "
3120 				    "offset %d, len %d", tbr->ADDR_offset,
3121 				    tbr->ADDR_length);
3122 			}
3123 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3124 			return;
3125 		}
3126 		if (sin6->sin6_family != AF_INET6 ||
3127 		    tcp->tcp_family != AF_INET6) {
3128 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3129 			return;
3130 		}
3131 		requested_port = ntohs(sin6->sin6_port);
3132 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3133 		    IPV4_VERSION : IPV6_VERSION;
3134 		v6addr = sin6->sin6_addr;
3135 		break;
3136 
3137 	default:
3138 		if (tcp->tcp_debug) {
3139 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3140 			    "tcp_bind: bad address length, %d",
3141 			    tbr->ADDR_length);
3142 		}
3143 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3144 		return;
3145 	}
3146 	tcp->tcp_bound_source_v6 = v6addr;
3147 
3148 	/* Check for change in ipversion */
3149 	if (origipversion != tcp->tcp_ipversion) {
3150 		ASSERT(tcp->tcp_family == AF_INET6);
3151 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3152 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3153 		if (err) {
3154 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3155 			return;
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * Initialize family specific fields. Copy of the src addr.
3161 	 * in tcp_t is needed for the lookup funcs.
3162 	 */
3163 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3164 		tcp->tcp_ip6h->ip6_src = v6addr;
3165 	} else {
3166 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3167 	}
3168 	tcp->tcp_ip_src_v6 = v6addr;
3169 
3170 	/*
3171 	 * For O_T_BIND_REQ:
3172 	 * Verify that the target port/addr is available, or choose
3173 	 * another.
3174 	 * For  T_BIND_REQ:
3175 	 * Verify that the target port/addr is available or fail.
3176 	 * In both cases when it succeeds the tcp is inserted in the
3177 	 * bind hash table. This ensures that the operation is atomic
3178 	 * under the lock on the hash bucket.
3179 	 */
3180 	bind_to_req_port_only = requested_port != 0 &&
3181 	    tbr->PRIM_type != O_T_BIND_REQ;
3182 	/*
3183 	 * Get a valid port (within the anonymous range and should not
3184 	 * be a privileged one) to use if the user has not given a port.
3185 	 * If multiple threads are here, they may all start with
3186 	 * with the same initial port. But, it should be fine as long as
3187 	 * tcp_bindi will ensure that no two threads will be assigned
3188 	 * the same port.
3189 	 *
3190 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3191 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3192 	 * unless TCP_ANONPRIVBIND option is set.
3193 	 */
3194 	mlptype = mlptSingle;
3195 	mlp_port = requested_port;
3196 	if (requested_port == 0) {
3197 		requested_port = tcp->tcp_anon_priv_bind ?
3198 		    tcp_get_next_priv_port(tcp) :
3199 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3200 		    tcp, B_TRUE);
3201 		if (requested_port == 0) {
3202 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3203 			return;
3204 		}
3205 		user_specified = B_FALSE;
3206 
3207 		/*
3208 		 * If the user went through one of the RPC interfaces to create
3209 		 * this socket and RPC is MLP in this zone, then give him an
3210 		 * anonymous MLP.
3211 		 */
3212 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3213 		if (connp->conn_anon_mlp && is_system_labeled()) {
3214 			zone = crgetzone(cr);
3215 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3216 			    IPV6_VERSION, &v6addr,
3217 			    tcps->tcps_netstack->netstack_ip);
3218 			if (addrtype == mlptSingle) {
3219 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3220 				return;
3221 			}
3222 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3223 			    PMAPPORT, addrtype);
3224 			mlp_port = PMAPPORT;
3225 		}
3226 	} else {
3227 		int i;
3228 		boolean_t priv = B_FALSE;
3229 
3230 		/*
3231 		 * If the requested_port is in the well-known privileged range,
3232 		 * verify that the stream was opened by a privileged user.
3233 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3234 		 * but instead the code relies on:
3235 		 * - the fact that the address of the array and its size never
3236 		 *   changes
3237 		 * - the atomic assignment of the elements of the array
3238 		 */
3239 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3240 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3241 			priv = B_TRUE;
3242 		} else {
3243 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3244 				if (requested_port ==
3245 				    tcps->tcps_g_epriv_ports[i]) {
3246 					priv = B_TRUE;
3247 					break;
3248 				}
3249 			}
3250 		}
3251 		if (priv) {
3252 			if (secpolicy_net_privaddr(cr, requested_port,
3253 			    IPPROTO_TCP) != 0) {
3254 				if (tcp->tcp_debug) {
3255 					(void) strlog(TCP_MOD_ID, 0, 1,
3256 					    SL_ERROR|SL_TRACE,
3257 					    "tcp_bind: no priv for port %d",
3258 					    requested_port);
3259 				}
3260 				tcp_err_ack(tcp, mp, TACCES, 0);
3261 				return;
3262 			}
3263 		}
3264 		user_specified = B_TRUE;
3265 
3266 		if (is_system_labeled()) {
3267 			zone = crgetzone(cr);
3268 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3269 			    IPV6_VERSION, &v6addr,
3270 			    tcps->tcps_netstack->netstack_ip);
3271 			if (addrtype == mlptSingle) {
3272 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3273 				return;
3274 			}
3275 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3276 			    requested_port, addrtype);
3277 		}
3278 	}
3279 
3280 	if (mlptype != mlptSingle) {
3281 		if (secpolicy_net_bindmlp(cr) != 0) {
3282 			if (tcp->tcp_debug) {
3283 				(void) strlog(TCP_MOD_ID, 0, 1,
3284 				    SL_ERROR|SL_TRACE,
3285 				    "tcp_bind: no priv for multilevel port %d",
3286 				    requested_port);
3287 			}
3288 			tcp_err_ack(tcp, mp, TACCES, 0);
3289 			return;
3290 		}
3291 
3292 		/*
3293 		 * If we're specifically binding a shared IP address and the
3294 		 * port is MLP on shared addresses, then check to see if this
3295 		 * zone actually owns the MLP.  Reject if not.
3296 		 */
3297 		if (mlptype == mlptShared && addrtype == mlptShared) {
3298 			/*
3299 			 * No need to handle exclusive-stack zones since
3300 			 * ALL_ZONES only applies to the shared stack.
3301 			 */
3302 			zoneid_t mlpzone;
3303 
3304 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3305 			    htons(mlp_port));
3306 			if (connp->conn_zoneid != mlpzone) {
3307 				if (tcp->tcp_debug) {
3308 					(void) strlog(TCP_MOD_ID, 0, 1,
3309 					    SL_ERROR|SL_TRACE,
3310 					    "tcp_bind: attempt to bind port "
3311 					    "%d on shared addr in zone %d "
3312 					    "(should be %d)",
3313 					    mlp_port, connp->conn_zoneid,
3314 					    mlpzone);
3315 				}
3316 				tcp_err_ack(tcp, mp, TACCES, 0);
3317 				return;
3318 			}
3319 		}
3320 
3321 		if (!user_specified) {
3322 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3323 			    requested_port, B_TRUE);
3324 			if (err != 0) {
3325 				if (tcp->tcp_debug) {
3326 					(void) strlog(TCP_MOD_ID, 0, 1,
3327 					    SL_ERROR|SL_TRACE,
3328 					    "tcp_bind: cannot establish anon "
3329 					    "MLP for port %d",
3330 					    requested_port);
3331 				}
3332 				tcp_err_ack(tcp, mp, TSYSERR, err);
3333 				return;
3334 			}
3335 			connp->conn_anon_port = B_TRUE;
3336 		}
3337 		connp->conn_mlp_type = mlptype;
3338 	}
3339 
3340 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3341 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3342 
3343 	if (allocated_port == 0) {
3344 		connp->conn_mlp_type = mlptSingle;
3345 		if (connp->conn_anon_port) {
3346 			connp->conn_anon_port = B_FALSE;
3347 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3348 			    requested_port, B_FALSE);
3349 		}
3350 		if (bind_to_req_port_only) {
3351 			if (tcp->tcp_debug) {
3352 				(void) strlog(TCP_MOD_ID, 0, 1,
3353 				    SL_ERROR|SL_TRACE,
3354 				    "tcp_bind: requested addr busy");
3355 			}
3356 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3357 		} else {
3358 			/* If we are out of ports, fail the bind. */
3359 			if (tcp->tcp_debug) {
3360 				(void) strlog(TCP_MOD_ID, 0, 1,
3361 				    SL_ERROR|SL_TRACE,
3362 				    "tcp_bind: out of ports?");
3363 			}
3364 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3365 		}
3366 		return;
3367 	}
3368 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3369 do_bind:
3370 	if (!backlog_update) {
3371 		if (tcp->tcp_family == AF_INET)
3372 			sin->sin_port = htons(allocated_port);
3373 		else
3374 			sin6->sin6_port = htons(allocated_port);
3375 	}
3376 	if (tcp->tcp_family == AF_INET) {
3377 		if (tbr->CONIND_number != 0) {
3378 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3379 			    sizeof (sin_t));
3380 		} else {
3381 			/* Just verify the local IP address */
3382 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3383 		}
3384 	} else {
3385 		if (tbr->CONIND_number != 0) {
3386 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3387 			    sizeof (sin6_t));
3388 		} else {
3389 			/* Just verify the local IP address */
3390 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3391 			    IPV6_ADDR_LEN);
3392 		}
3393 	}
3394 	if (mp1 == NULL) {
3395 		if (connp->conn_anon_port) {
3396 			connp->conn_anon_port = B_FALSE;
3397 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3398 			    requested_port, B_FALSE);
3399 		}
3400 		connp->conn_mlp_type = mlptSingle;
3401 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3402 		return;
3403 	}
3404 
3405 	tbr->PRIM_type = T_BIND_ACK;
3406 	mp->b_datap->db_type = M_PCPROTO;
3407 
3408 	/* Chain in the reply mp for tcp_rput() */
3409 	mp1->b_cont = mp;
3410 	mp = mp1;
3411 
3412 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3413 	if (tcp->tcp_conn_req_max) {
3414 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3415 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3416 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3417 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3418 		/*
3419 		 * If this is a listener, do not reset the eager list
3420 		 * and other stuffs.  Note that we don't check if the
3421 		 * existing eager list meets the new tcp_conn_req_max
3422 		 * requirement.
3423 		 */
3424 		if (tcp->tcp_state != TCPS_LISTEN) {
3425 			tcp->tcp_state = TCPS_LISTEN;
3426 			/* Initialize the chain. Don't need the eager_lock */
3427 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3428 			tcp->tcp_eager_next_drop_q0 = tcp;
3429 			tcp->tcp_eager_prev_drop_q0 = tcp;
3430 			tcp->tcp_second_ctimer_threshold =
3431 			    tcps->tcps_ip_abort_linterval;
3432 		}
3433 	}
3434 
3435 	/*
3436 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3437 	 * processing continues in tcp_rput_other().
3438 	 *
3439 	 * We need to make sure that the conn_recv is set to a non-null
3440 	 * value before we insert the conn into the classifier table.
3441 	 * This is to avoid a race with an incoming packet which does an
3442 	 * ipcl_classify().
3443 	 */
3444 	connp->conn_recv = tcp_conn_request;
3445 	if (tcp->tcp_family == AF_INET6) {
3446 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3447 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3448 	} else {
3449 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3450 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3451 	}
3452 	/*
3453 	 * If the bind cannot complete immediately
3454 	 * IP will arrange to call tcp_rput_other
3455 	 * when the bind completes.
3456 	 */
3457 	if (mp != NULL) {
3458 		tcp_rput_other(tcp, mp);
3459 	} else {
3460 		/*
3461 		 * Bind will be resumed later. Need to ensure
3462 		 * that conn doesn't disappear when that happens.
3463 		 * This will be decremented in ip_resume_tcp_bind().
3464 		 */
3465 		CONN_INC_REF(tcp->tcp_connp);
3466 	}
3467 }
3468 
3469 
3470 /*
3471  * If the "bind_to_req_port_only" parameter is set, if the requested port
3472  * number is available, return it, If not return 0
3473  *
3474  * If "bind_to_req_port_only" parameter is not set and
3475  * If the requested port number is available, return it.  If not, return
3476  * the first anonymous port we happen across.  If no anonymous ports are
3477  * available, return 0. addr is the requested local address, if any.
3478  *
3479  * In either case, when succeeding update the tcp_t to record the port number
3480  * and insert it in the bind hash table.
3481  *
3482  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3483  * without setting SO_REUSEADDR. This is needed so that they
3484  * can be viewed as two independent transport protocols.
3485  */
3486 static in_port_t
3487 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3488     int reuseaddr, boolean_t quick_connect,
3489     boolean_t bind_to_req_port_only, boolean_t user_specified)
3490 {
3491 	/* number of times we have run around the loop */
3492 	int count = 0;
3493 	/* maximum number of times to run around the loop */
3494 	int loopmax;
3495 	conn_t *connp = tcp->tcp_connp;
3496 	zoneid_t zoneid = connp->conn_zoneid;
3497 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3498 
3499 	/*
3500 	 * Lookup for free addresses is done in a loop and "loopmax"
3501 	 * influences how long we spin in the loop
3502 	 */
3503 	if (bind_to_req_port_only) {
3504 		/*
3505 		 * If the requested port is busy, don't bother to look
3506 		 * for a new one. Setting loop maximum count to 1 has
3507 		 * that effect.
3508 		 */
3509 		loopmax = 1;
3510 	} else {
3511 		/*
3512 		 * If the requested port is busy, look for a free one
3513 		 * in the anonymous port range.
3514 		 * Set loopmax appropriately so that one does not look
3515 		 * forever in the case all of the anonymous ports are in use.
3516 		 */
3517 		if (tcp->tcp_anon_priv_bind) {
3518 			/*
3519 			 * loopmax =
3520 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3521 			 */
3522 			loopmax = IPPORT_RESERVED -
3523 			    tcps->tcps_min_anonpriv_port;
3524 		} else {
3525 			loopmax = (tcps->tcps_largest_anon_port -
3526 			    tcps->tcps_smallest_anon_port + 1);
3527 		}
3528 	}
3529 	do {
3530 		uint16_t	lport;
3531 		tf_t		*tbf;
3532 		tcp_t		*ltcp;
3533 		conn_t		*lconnp;
3534 
3535 		lport = htons(port);
3536 
3537 		/*
3538 		 * Ensure that the tcp_t is not currently in the bind hash.
3539 		 * Hold the lock on the hash bucket to ensure that
3540 		 * the duplicate check plus the insertion is an atomic
3541 		 * operation.
3542 		 *
3543 		 * This function does an inline lookup on the bind hash list
3544 		 * Make sure that we access only members of tcp_t
3545 		 * and that we don't look at tcp_tcp, since we are not
3546 		 * doing a CONN_INC_REF.
3547 		 */
3548 		tcp_bind_hash_remove(tcp);
3549 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3550 		mutex_enter(&tbf->tf_lock);
3551 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3552 		    ltcp = ltcp->tcp_bind_hash) {
3553 			boolean_t not_socket;
3554 			boolean_t exclbind;
3555 
3556 			if (lport != ltcp->tcp_lport)
3557 				continue;
3558 
3559 			lconnp = ltcp->tcp_connp;
3560 
3561 			/*
3562 			 * On a labeled system, we must treat bindings to ports
3563 			 * on shared IP addresses by sockets with MAC exemption
3564 			 * privilege as being in all zones, as there's
3565 			 * otherwise no way to identify the right receiver.
3566 			 */
3567 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3568 			    IPCL_ZONE_MATCH(connp,
3569 			    ltcp->tcp_connp->conn_zoneid)) &&
3570 			    !lconnp->conn_mac_exempt &&
3571 			    !connp->conn_mac_exempt)
3572 				continue;
3573 
3574 			/*
3575 			 * If TCP_EXCLBIND is set for either the bound or
3576 			 * binding endpoint, the semantics of bind
3577 			 * is changed according to the following.
3578 			 *
3579 			 * spec = specified address (v4 or v6)
3580 			 * unspec = unspecified address (v4 or v6)
3581 			 * A = specified addresses are different for endpoints
3582 			 *
3583 			 * bound	bind to		allowed
3584 			 * -------------------------------------
3585 			 * unspec	unspec		no
3586 			 * unspec	spec		no
3587 			 * spec		unspec		no
3588 			 * spec		spec		yes if A
3589 			 *
3590 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3591 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3592 			 *
3593 			 * Note:
3594 			 *
3595 			 * 1. Because of TLI semantics, an endpoint can go
3596 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3597 			 * TCPS_BOUND, depending on whether it is originally
3598 			 * a listener or not.  That is why we need to check
3599 			 * for states greater than or equal to TCPS_BOUND
3600 			 * here.
3601 			 *
3602 			 * 2. Ideally, we should only check for state equals
3603 			 * to TCPS_LISTEN. And the following check should be
3604 			 * added.
3605 			 *
3606 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3607 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3608 			 *		...
3609 			 * }
3610 			 *
3611 			 * The semantics will be changed to this.  If the
3612 			 * endpoint on the list is in state not equal to
3613 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3614 			 * set, let the bind succeed.
3615 			 *
3616 			 * Because of (1), we cannot do that for TLI
3617 			 * endpoints.  But we can do that for socket endpoints.
3618 			 * If in future, we can change this going back
3619 			 * semantics, we can use the above check for TLI also.
3620 			 */
3621 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3622 			    TCP_IS_SOCKET(tcp));
3623 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3624 
3625 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3626 			    (exclbind && (not_socket ||
3627 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3628 				if (V6_OR_V4_INADDR_ANY(
3629 				    ltcp->tcp_bound_source_v6) ||
3630 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3631 				    IN6_ARE_ADDR_EQUAL(laddr,
3632 				    &ltcp->tcp_bound_source_v6)) {
3633 					break;
3634 				}
3635 				continue;
3636 			}
3637 
3638 			/*
3639 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3640 			 * have disjoint port number spaces, if *_EXCLBIND
3641 			 * is not set and only if the application binds to a
3642 			 * specific port. We use the same autoassigned port
3643 			 * number space for IPv4 and IPv6 sockets.
3644 			 */
3645 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3646 			    bind_to_req_port_only)
3647 				continue;
3648 
3649 			/*
3650 			 * Ideally, we should make sure that the source
3651 			 * address, remote address, and remote port in the
3652 			 * four tuple for this tcp-connection is unique.
3653 			 * However, trying to find out the local source
3654 			 * address would require too much code duplication
3655 			 * with IP, since IP needs needs to have that code
3656 			 * to support userland TCP implementations.
3657 			 */
3658 			if (quick_connect &&
3659 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3660 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3661 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3662 			    &ltcp->tcp_remote_v6)))
3663 				continue;
3664 
3665 			if (!reuseaddr) {
3666 				/*
3667 				 * No socket option SO_REUSEADDR.
3668 				 * If existing port is bound to
3669 				 * a non-wildcard IP address
3670 				 * and the requesting stream is
3671 				 * bound to a distinct
3672 				 * different IP addresses
3673 				 * (non-wildcard, also), keep
3674 				 * going.
3675 				 */
3676 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3677 				    !V6_OR_V4_INADDR_ANY(
3678 				    ltcp->tcp_bound_source_v6) &&
3679 				    !IN6_ARE_ADDR_EQUAL(laddr,
3680 				    &ltcp->tcp_bound_source_v6))
3681 					continue;
3682 				if (ltcp->tcp_state >= TCPS_BOUND) {
3683 					/*
3684 					 * This port is being used and
3685 					 * its state is >= TCPS_BOUND,
3686 					 * so we can't bind to it.
3687 					 */
3688 					break;
3689 				}
3690 			} else {
3691 				/*
3692 				 * socket option SO_REUSEADDR is set on the
3693 				 * binding tcp_t.
3694 				 *
3695 				 * If two streams are bound to
3696 				 * same IP address or both addr
3697 				 * and bound source are wildcards
3698 				 * (INADDR_ANY), we want to stop
3699 				 * searching.
3700 				 * We have found a match of IP source
3701 				 * address and source port, which is
3702 				 * refused regardless of the
3703 				 * SO_REUSEADDR setting, so we break.
3704 				 */
3705 				if (IN6_ARE_ADDR_EQUAL(laddr,
3706 				    &ltcp->tcp_bound_source_v6) &&
3707 				    (ltcp->tcp_state == TCPS_LISTEN ||
3708 				    ltcp->tcp_state == TCPS_BOUND))
3709 					break;
3710 			}
3711 		}
3712 		if (ltcp != NULL) {
3713 			/* The port number is busy */
3714 			mutex_exit(&tbf->tf_lock);
3715 		} else {
3716 			/*
3717 			 * This port is ours. Insert in fanout and mark as
3718 			 * bound to prevent others from getting the port
3719 			 * number.
3720 			 */
3721 			tcp->tcp_state = TCPS_BOUND;
3722 			tcp->tcp_lport = htons(port);
3723 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3724 
3725 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3726 			    tcp->tcp_lport)] == tbf);
3727 			tcp_bind_hash_insert(tbf, tcp, 1);
3728 
3729 			mutex_exit(&tbf->tf_lock);
3730 
3731 			/*
3732 			 * We don't want tcp_next_port_to_try to "inherit"
3733 			 * a port number supplied by the user in a bind.
3734 			 */
3735 			if (user_specified)
3736 				return (port);
3737 
3738 			/*
3739 			 * This is the only place where tcp_next_port_to_try
3740 			 * is updated. After the update, it may or may not
3741 			 * be in the valid range.
3742 			 */
3743 			if (!tcp->tcp_anon_priv_bind)
3744 				tcps->tcps_next_port_to_try = port + 1;
3745 			return (port);
3746 		}
3747 
3748 		if (tcp->tcp_anon_priv_bind) {
3749 			port = tcp_get_next_priv_port(tcp);
3750 		} else {
3751 			if (count == 0 && user_specified) {
3752 				/*
3753 				 * We may have to return an anonymous port. So
3754 				 * get one to start with.
3755 				 */
3756 				port =
3757 				    tcp_update_next_port(
3758 				    tcps->tcps_next_port_to_try,
3759 				    tcp, B_TRUE);
3760 				user_specified = B_FALSE;
3761 			} else {
3762 				port = tcp_update_next_port(port + 1, tcp,
3763 				    B_FALSE);
3764 			}
3765 		}
3766 		if (port == 0)
3767 			break;
3768 
3769 		/*
3770 		 * Don't let this loop run forever in the case where
3771 		 * all of the anonymous ports are in use.
3772 		 */
3773 	} while (++count < loopmax);
3774 	return (0);
3775 }
3776 
3777 /*
3778  * tcp_clean_death / tcp_close_detached must not be called more than once
3779  * on a tcp. Thus every function that potentially calls tcp_clean_death
3780  * must check for the tcp state before calling tcp_clean_death.
3781  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3782  * tcp_timer_handler, all check for the tcp state.
3783  */
3784 /* ARGSUSED */
3785 void
3786 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3787 {
3788 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3789 
3790 	freemsg(mp);
3791 	if (tcp->tcp_state > TCPS_BOUND)
3792 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3793 		    ETIMEDOUT, 5);
3794 }
3795 
3796 /*
3797  * We are dying for some reason.  Try to do it gracefully.  (May be called
3798  * as writer.)
3799  *
3800  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3801  * done by a service procedure).
3802  * TBD - Should the return value distinguish between the tcp_t being
3803  * freed and it being reinitialized?
3804  */
3805 static int
3806 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3807 {
3808 	mblk_t	*mp;
3809 	queue_t	*q;
3810 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3811 
3812 	TCP_CLD_STAT(tag);
3813 
3814 #if TCP_TAG_CLEAN_DEATH
3815 	tcp->tcp_cleandeathtag = tag;
3816 #endif
3817 
3818 	if (tcp->tcp_fused)
3819 		tcp_unfuse(tcp);
3820 
3821 	if (tcp->tcp_linger_tid != 0 &&
3822 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3823 		tcp_stop_lingering(tcp);
3824 	}
3825 
3826 	ASSERT(tcp != NULL);
3827 	ASSERT((tcp->tcp_family == AF_INET &&
3828 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3829 	    (tcp->tcp_family == AF_INET6 &&
3830 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3831 	    tcp->tcp_ipversion == IPV6_VERSION)));
3832 
3833 	if (TCP_IS_DETACHED(tcp)) {
3834 		if (tcp->tcp_hard_binding) {
3835 			/*
3836 			 * Its an eager that we are dealing with. We close the
3837 			 * eager but in case a conn_ind has already gone to the
3838 			 * listener, let tcp_accept_finish() send a discon_ind
3839 			 * to the listener and drop the last reference. If the
3840 			 * listener doesn't even know about the eager i.e. the
3841 			 * conn_ind hasn't gone up, blow away the eager and drop
3842 			 * the last reference as well. If the conn_ind has gone
3843 			 * up, state should be BOUND. tcp_accept_finish
3844 			 * will figure out that the connection has received a
3845 			 * RST and will send a DISCON_IND to the application.
3846 			 */
3847 			tcp_closei_local(tcp);
3848 			if (!tcp->tcp_tconnind_started) {
3849 				CONN_DEC_REF(tcp->tcp_connp);
3850 			} else {
3851 				tcp->tcp_state = TCPS_BOUND;
3852 			}
3853 		} else {
3854 			tcp_close_detached(tcp);
3855 		}
3856 		return (0);
3857 	}
3858 
3859 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3860 
3861 	/*
3862 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3863 	 * is run) postpone cleaning up the endpoint until service routine
3864 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3865 	 * client_errno since tcp_close uses the client_errno field.
3866 	 */
3867 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3868 		if (err != 0)
3869 			tcp->tcp_client_errno = err;
3870 
3871 		tcp->tcp_deferred_clean_death = B_TRUE;
3872 		return (-1);
3873 	}
3874 
3875 	q = tcp->tcp_rq;
3876 
3877 	/* Trash all inbound data */
3878 	flushq(q, FLUSHALL);
3879 
3880 	/*
3881 	 * If we are at least part way open and there is error
3882 	 * (err==0 implies no error)
3883 	 * notify our client by a T_DISCON_IND.
3884 	 */
3885 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3886 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3887 		    !TCP_IS_SOCKET(tcp)) {
3888 			/*
3889 			 * Send M_FLUSH according to TPI. Because sockets will
3890 			 * (and must) ignore FLUSHR we do that only for TPI
3891 			 * endpoints and sockets in STREAMS mode.
3892 			 */
3893 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3894 		}
3895 		if (tcp->tcp_debug) {
3896 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3897 			    "tcp_clean_death: discon err %d", err);
3898 		}
3899 		mp = mi_tpi_discon_ind(NULL, err, 0);
3900 		if (mp != NULL) {
3901 			putnext(q, mp);
3902 		} else {
3903 			if (tcp->tcp_debug) {
3904 				(void) strlog(TCP_MOD_ID, 0, 1,
3905 				    SL_ERROR|SL_TRACE,
3906 				    "tcp_clean_death, sending M_ERROR");
3907 			}
3908 			(void) putnextctl1(q, M_ERROR, EPROTO);
3909 		}
3910 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3911 			/* SYN_SENT or SYN_RCVD */
3912 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3913 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3914 			/* ESTABLISHED or CLOSE_WAIT */
3915 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3916 		}
3917 	}
3918 
3919 	tcp_reinit(tcp);
3920 	return (-1);
3921 }
3922 
3923 /*
3924  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3925  * to expire, stop the wait and finish the close.
3926  */
3927 static void
3928 tcp_stop_lingering(tcp_t *tcp)
3929 {
3930 	clock_t	delta = 0;
3931 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3932 
3933 	tcp->tcp_linger_tid = 0;
3934 	if (tcp->tcp_state > TCPS_LISTEN) {
3935 		tcp_acceptor_hash_remove(tcp);
3936 		mutex_enter(&tcp->tcp_non_sq_lock);
3937 		if (tcp->tcp_flow_stopped) {
3938 			tcp_clrqfull(tcp);
3939 		}
3940 		mutex_exit(&tcp->tcp_non_sq_lock);
3941 
3942 		if (tcp->tcp_timer_tid != 0) {
3943 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3944 			tcp->tcp_timer_tid = 0;
3945 		}
3946 		/*
3947 		 * Need to cancel those timers which will not be used when
3948 		 * TCP is detached.  This has to be done before the tcp_wq
3949 		 * is set to the global queue.
3950 		 */
3951 		tcp_timers_stop(tcp);
3952 
3953 
3954 		tcp->tcp_detached = B_TRUE;
3955 		ASSERT(tcps->tcps_g_q != NULL);
3956 		tcp->tcp_rq = tcps->tcps_g_q;
3957 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3958 
3959 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3960 			tcp_time_wait_append(tcp);
3961 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3962 			goto finish;
3963 		}
3964 
3965 		/*
3966 		 * If delta is zero the timer event wasn't executed and was
3967 		 * successfully canceled. In this case we need to restart it
3968 		 * with the minimal delta possible.
3969 		 */
3970 		if (delta >= 0) {
3971 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3972 			    delta ? delta : 1);
3973 		}
3974 	} else {
3975 		tcp_closei_local(tcp);
3976 		CONN_DEC_REF(tcp->tcp_connp);
3977 	}
3978 finish:
3979 	/* Signal closing thread that it can complete close */
3980 	mutex_enter(&tcp->tcp_closelock);
3981 	tcp->tcp_detached = B_TRUE;
3982 	ASSERT(tcps->tcps_g_q != NULL);
3983 	tcp->tcp_rq = tcps->tcps_g_q;
3984 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3985 	tcp->tcp_closed = 1;
3986 	cv_signal(&tcp->tcp_closecv);
3987 	mutex_exit(&tcp->tcp_closelock);
3988 }
3989 
3990 /*
3991  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3992  * expires.
3993  */
3994 static void
3995 tcp_close_linger_timeout(void *arg)
3996 {
3997 	conn_t	*connp = (conn_t *)arg;
3998 	tcp_t 	*tcp = connp->conn_tcp;
3999 
4000 	tcp->tcp_client_errno = ETIMEDOUT;
4001 	tcp_stop_lingering(tcp);
4002 }
4003 
4004 static int
4005 tcp_close(queue_t *q, int flags)
4006 {
4007 	conn_t		*connp = Q_TO_CONN(q);
4008 	tcp_t		*tcp = connp->conn_tcp;
4009 	mblk_t 		*mp = &tcp->tcp_closemp;
4010 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4011 	mblk_t		*bp;
4012 
4013 	ASSERT(WR(q)->q_next == NULL);
4014 	ASSERT(connp->conn_ref >= 2);
4015 
4016 	/*
4017 	 * We are being closed as /dev/tcp or /dev/tcp6.
4018 	 *
4019 	 * Mark the conn as closing. ill_pending_mp_add will not
4020 	 * add any mp to the pending mp list, after this conn has
4021 	 * started closing. Same for sq_pending_mp_add
4022 	 */
4023 	mutex_enter(&connp->conn_lock);
4024 	connp->conn_state_flags |= CONN_CLOSING;
4025 	if (connp->conn_oper_pending_ill != NULL)
4026 		conn_ioctl_cleanup_reqd = B_TRUE;
4027 	CONN_INC_REF_LOCKED(connp);
4028 	mutex_exit(&connp->conn_lock);
4029 	tcp->tcp_closeflags = (uint8_t)flags;
4030 	ASSERT(connp->conn_ref >= 3);
4031 
4032 	/*
4033 	 * tcp_closemp_used is used below without any protection of a lock
4034 	 * as we don't expect any one else to use it concurrently at this
4035 	 * point otherwise it would be a major defect.
4036 	 */
4037 
4038 	if (mp->b_prev == NULL)
4039 		tcp->tcp_closemp_used = B_TRUE;
4040 	else
4041 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4042 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4043 
4044 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4045 
4046 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4047 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4048 
4049 	mutex_enter(&tcp->tcp_closelock);
4050 	while (!tcp->tcp_closed) {
4051 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4052 			/*
4053 			 * The cv_wait_sig() was interrupted. We now do the
4054 			 * following:
4055 			 *
4056 			 * 1) If the endpoint was lingering, we allow this
4057 			 * to be interrupted by cancelling the linger timeout
4058 			 * and closing normally.
4059 			 *
4060 			 * 2) Revert to calling cv_wait()
4061 			 *
4062 			 * We revert to using cv_wait() to avoid an
4063 			 * infinite loop which can occur if the calling
4064 			 * thread is higher priority than the squeue worker
4065 			 * thread and is bound to the same cpu.
4066 			 */
4067 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4068 				mutex_exit(&tcp->tcp_closelock);
4069 				/* Entering squeue, bump ref count. */
4070 				CONN_INC_REF(connp);
4071 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4072 				squeue_enter(connp->conn_sqp, bp,
4073 				    tcp_linger_interrupted, connp,
4074 				    SQTAG_IP_TCP_CLOSE);
4075 				mutex_enter(&tcp->tcp_closelock);
4076 			}
4077 			break;
4078 		}
4079 	}
4080 	while (!tcp->tcp_closed)
4081 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4082 	mutex_exit(&tcp->tcp_closelock);
4083 
4084 	/*
4085 	 * In the case of listener streams that have eagers in the q or q0
4086 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4087 	 * tcp_wq of the eagers point to our queues. By waiting for the
4088 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4089 	 * up their queue pointers and also dropped their references to us.
4090 	 */
4091 	if (tcp->tcp_wait_for_eagers) {
4092 		mutex_enter(&connp->conn_lock);
4093 		while (connp->conn_ref != 1) {
4094 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4095 		}
4096 		mutex_exit(&connp->conn_lock);
4097 	}
4098 	/*
4099 	 * ioctl cleanup. The mp is queued in the
4100 	 * ill_pending_mp or in the sq_pending_mp.
4101 	 */
4102 	if (conn_ioctl_cleanup_reqd)
4103 		conn_ioctl_cleanup(connp);
4104 
4105 	qprocsoff(q);
4106 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4107 
4108 	tcp->tcp_cpid = -1;
4109 
4110 	/*
4111 	 * Drop IP's reference on the conn. This is the last reference
4112 	 * on the connp if the state was less than established. If the
4113 	 * connection has gone into timewait state, then we will have
4114 	 * one ref for the TCP and one more ref (total of two) for the
4115 	 * classifier connected hash list (a timewait connections stays
4116 	 * in connected hash till closed).
4117 	 *
4118 	 * We can't assert the references because there might be other
4119 	 * transient reference places because of some walkers or queued
4120 	 * packets in squeue for the timewait state.
4121 	 */
4122 	CONN_DEC_REF(connp);
4123 	q->q_ptr = WR(q)->q_ptr = NULL;
4124 	return (0);
4125 }
4126 
4127 static int
4128 tcpclose_accept(queue_t *q)
4129 {
4130 	vmem_t	*minor_arena;
4131 	dev_t	conn_dev;
4132 
4133 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4134 
4135 	/*
4136 	 * We had opened an acceptor STREAM for sockfs which is
4137 	 * now being closed due to some error.
4138 	 */
4139 	qprocsoff(q);
4140 
4141 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4142 	conn_dev = (dev_t)RD(q)->q_ptr;
4143 	ASSERT(minor_arena != NULL);
4144 	ASSERT(conn_dev != 0);
4145 	inet_minor_free(minor_arena, conn_dev);
4146 	q->q_ptr = WR(q)->q_ptr = NULL;
4147 	return (0);
4148 }
4149 
4150 /*
4151  * Called by tcp_close() routine via squeue when lingering is
4152  * interrupted by a signal.
4153  */
4154 
4155 /* ARGSUSED */
4156 static void
4157 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4158 {
4159 	conn_t	*connp = (conn_t *)arg;
4160 	tcp_t	*tcp = connp->conn_tcp;
4161 
4162 	freeb(mp);
4163 	if (tcp->tcp_linger_tid != 0 &&
4164 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4165 		tcp_stop_lingering(tcp);
4166 		tcp->tcp_client_errno = EINTR;
4167 	}
4168 }
4169 
4170 /*
4171  * Called by streams close routine via squeues when our client blows off her
4172  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4173  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4174  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4175  * acked.
4176  *
4177  * NOTE: tcp_close potentially returns error when lingering.
4178  * However, the stream head currently does not pass these errors
4179  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4180  * errors to the application (from tsleep()) and not errors
4181  * like ECONNRESET caused by receiving a reset packet.
4182  */
4183 
4184 /* ARGSUSED */
4185 static void
4186 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4187 {
4188 	char	*msg;
4189 	conn_t	*connp = (conn_t *)arg;
4190 	tcp_t	*tcp = connp->conn_tcp;
4191 	clock_t	delta = 0;
4192 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4193 
4194 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4195 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4196 
4197 	/* Cancel any pending timeout */
4198 	if (tcp->tcp_ordrelid != 0) {
4199 		if (tcp->tcp_timeout) {
4200 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4201 		}
4202 		tcp->tcp_ordrelid = 0;
4203 		tcp->tcp_timeout = B_FALSE;
4204 	}
4205 
4206 	mutex_enter(&tcp->tcp_eager_lock);
4207 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4208 		/* Cleanup for listener */
4209 		tcp_eager_cleanup(tcp, 0);
4210 		tcp->tcp_wait_for_eagers = 1;
4211 	}
4212 	mutex_exit(&tcp->tcp_eager_lock);
4213 
4214 	connp->conn_mdt_ok = B_FALSE;
4215 	tcp->tcp_mdt = B_FALSE;
4216 
4217 	connp->conn_lso_ok = B_FALSE;
4218 	tcp->tcp_lso = B_FALSE;
4219 
4220 	msg = NULL;
4221 	switch (tcp->tcp_state) {
4222 	case TCPS_CLOSED:
4223 	case TCPS_IDLE:
4224 	case TCPS_BOUND:
4225 	case TCPS_LISTEN:
4226 		break;
4227 	case TCPS_SYN_SENT:
4228 		msg = "tcp_close, during connect";
4229 		break;
4230 	case TCPS_SYN_RCVD:
4231 		/*
4232 		 * Close during the connect 3-way handshake
4233 		 * but here there may or may not be pending data
4234 		 * already on queue. Process almost same as in
4235 		 * the ESTABLISHED state.
4236 		 */
4237 		/* FALLTHRU */
4238 	default:
4239 		if (tcp->tcp_fused)
4240 			tcp_unfuse(tcp);
4241 
4242 		/*
4243 		 * If SO_LINGER has set a zero linger time, abort the
4244 		 * connection with a reset.
4245 		 */
4246 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4247 			msg = "tcp_close, zero lingertime";
4248 			break;
4249 		}
4250 
4251 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4252 		/*
4253 		 * Abort connection if there is unread data queued.
4254 		 */
4255 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4256 			msg = "tcp_close, unread data";
4257 			break;
4258 		}
4259 		/*
4260 		 * tcp_hard_bound is now cleared thus all packets go through
4261 		 * tcp_lookup. This fact is used by tcp_detach below.
4262 		 *
4263 		 * We have done a qwait() above which could have possibly
4264 		 * drained more messages in turn causing transition to a
4265 		 * different state. Check whether we have to do the rest
4266 		 * of the processing or not.
4267 		 */
4268 		if (tcp->tcp_state <= TCPS_LISTEN)
4269 			break;
4270 
4271 		/*
4272 		 * Transmit the FIN before detaching the tcp_t.
4273 		 * After tcp_detach returns this queue/perimeter
4274 		 * no longer owns the tcp_t thus others can modify it.
4275 		 */
4276 		(void) tcp_xmit_end(tcp);
4277 
4278 		/*
4279 		 * If lingering on close then wait until the fin is acked,
4280 		 * the SO_LINGER time passes, or a reset is sent/received.
4281 		 */
4282 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4283 		    !(tcp->tcp_fin_acked) &&
4284 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4285 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4286 				tcp->tcp_client_errno = EWOULDBLOCK;
4287 			} else if (tcp->tcp_client_errno == 0) {
4288 
4289 				ASSERT(tcp->tcp_linger_tid == 0);
4290 
4291 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4292 				    tcp_close_linger_timeout,
4293 				    tcp->tcp_lingertime * hz);
4294 
4295 				/* tcp_close_linger_timeout will finish close */
4296 				if (tcp->tcp_linger_tid == 0)
4297 					tcp->tcp_client_errno = ENOSR;
4298 				else
4299 					return;
4300 			}
4301 
4302 			/*
4303 			 * Check if we need to detach or just close
4304 			 * the instance.
4305 			 */
4306 			if (tcp->tcp_state <= TCPS_LISTEN)
4307 				break;
4308 		}
4309 
4310 		/*
4311 		 * Make sure that no other thread will access the tcp_rq of
4312 		 * this instance (through lookups etc.) as tcp_rq will go
4313 		 * away shortly.
4314 		 */
4315 		tcp_acceptor_hash_remove(tcp);
4316 
4317 		mutex_enter(&tcp->tcp_non_sq_lock);
4318 		if (tcp->tcp_flow_stopped) {
4319 			tcp_clrqfull(tcp);
4320 		}
4321 		mutex_exit(&tcp->tcp_non_sq_lock);
4322 
4323 		if (tcp->tcp_timer_tid != 0) {
4324 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4325 			tcp->tcp_timer_tid = 0;
4326 		}
4327 		/*
4328 		 * Need to cancel those timers which will not be used when
4329 		 * TCP is detached.  This has to be done before the tcp_wq
4330 		 * is set to the global queue.
4331 		 */
4332 		tcp_timers_stop(tcp);
4333 
4334 		tcp->tcp_detached = B_TRUE;
4335 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4336 			tcp_time_wait_append(tcp);
4337 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4338 			ASSERT(connp->conn_ref >= 3);
4339 			goto finish;
4340 		}
4341 
4342 		/*
4343 		 * If delta is zero the timer event wasn't executed and was
4344 		 * successfully canceled. In this case we need to restart it
4345 		 * with the minimal delta possible.
4346 		 */
4347 		if (delta >= 0)
4348 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4349 			    delta ? delta : 1);
4350 
4351 		ASSERT(connp->conn_ref >= 3);
4352 		goto finish;
4353 	}
4354 
4355 	/* Detach did not complete. Still need to remove q from stream. */
4356 	if (msg) {
4357 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4358 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4359 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4360 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4361 		    tcp->tcp_state == TCPS_SYN_RCVD)
4362 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4363 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4364 	}
4365 
4366 	tcp_closei_local(tcp);
4367 	CONN_DEC_REF(connp);
4368 	ASSERT(connp->conn_ref >= 2);
4369 
4370 finish:
4371 	/*
4372 	 * Although packets are always processed on the correct
4373 	 * tcp's perimeter and access is serialized via squeue's,
4374 	 * IP still needs a queue when sending packets in time_wait
4375 	 * state so use WR(tcps_g_q) till ip_output() can be
4376 	 * changed to deal with just connp. For read side, we
4377 	 * could have set tcp_rq to NULL but there are some cases
4378 	 * in tcp_rput_data() from early days of this code which
4379 	 * do a putnext without checking if tcp is closed. Those
4380 	 * need to be identified before both tcp_rq and tcp_wq
4381 	 * can be set to NULL and tcps_g_q can disappear forever.
4382 	 */
4383 	mutex_enter(&tcp->tcp_closelock);
4384 	/*
4385 	 * Don't change the queues in the case of a listener that has
4386 	 * eagers in its q or q0. It could surprise the eagers.
4387 	 * Instead wait for the eagers outside the squeue.
4388 	 */
4389 	if (!tcp->tcp_wait_for_eagers) {
4390 		tcp->tcp_detached = B_TRUE;
4391 		/*
4392 		 * When default queue is closing we set tcps_g_q to NULL
4393 		 * after the close is done.
4394 		 */
4395 		ASSERT(tcps->tcps_g_q != NULL);
4396 		tcp->tcp_rq = tcps->tcps_g_q;
4397 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4398 	}
4399 
4400 	/* Signal tcp_close() to finish closing. */
4401 	tcp->tcp_closed = 1;
4402 	cv_signal(&tcp->tcp_closecv);
4403 	mutex_exit(&tcp->tcp_closelock);
4404 }
4405 
4406 
4407 /*
4408  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4409  * Some stream heads get upset if they see these later on as anything but NULL.
4410  */
4411 static void
4412 tcp_close_mpp(mblk_t **mpp)
4413 {
4414 	mblk_t	*mp;
4415 
4416 	if ((mp = *mpp) != NULL) {
4417 		do {
4418 			mp->b_next = NULL;
4419 			mp->b_prev = NULL;
4420 		} while ((mp = mp->b_cont) != NULL);
4421 
4422 		mp = *mpp;
4423 		*mpp = NULL;
4424 		freemsg(mp);
4425 	}
4426 }
4427 
4428 /* Do detached close. */
4429 static void
4430 tcp_close_detached(tcp_t *tcp)
4431 {
4432 	if (tcp->tcp_fused)
4433 		tcp_unfuse(tcp);
4434 
4435 	/*
4436 	 * Clustering code serializes TCP disconnect callbacks and
4437 	 * cluster tcp list walks by blocking a TCP disconnect callback
4438 	 * if a cluster tcp list walk is in progress. This ensures
4439 	 * accurate accounting of TCPs in the cluster code even though
4440 	 * the TCP list walk itself is not atomic.
4441 	 */
4442 	tcp_closei_local(tcp);
4443 	CONN_DEC_REF(tcp->tcp_connp);
4444 }
4445 
4446 /*
4447  * Stop all TCP timers, and free the timer mblks if requested.
4448  */
4449 void
4450 tcp_timers_stop(tcp_t *tcp)
4451 {
4452 	if (tcp->tcp_timer_tid != 0) {
4453 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4454 		tcp->tcp_timer_tid = 0;
4455 	}
4456 	if (tcp->tcp_ka_tid != 0) {
4457 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4458 		tcp->tcp_ka_tid = 0;
4459 	}
4460 	if (tcp->tcp_ack_tid != 0) {
4461 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4462 		tcp->tcp_ack_tid = 0;
4463 	}
4464 	if (tcp->tcp_push_tid != 0) {
4465 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4466 		tcp->tcp_push_tid = 0;
4467 	}
4468 }
4469 
4470 /*
4471  * The tcp_t is going away. Remove it from all lists and set it
4472  * to TCPS_CLOSED. The freeing up of memory is deferred until
4473  * tcp_inactive. This is needed since a thread in tcp_rput might have
4474  * done a CONN_INC_REF on this structure before it was removed from the
4475  * hashes.
4476  */
4477 static void
4478 tcp_closei_local(tcp_t *tcp)
4479 {
4480 	ire_t 	*ire;
4481 	conn_t	*connp = tcp->tcp_connp;
4482 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4483 
4484 	if (!TCP_IS_SOCKET(tcp))
4485 		tcp_acceptor_hash_remove(tcp);
4486 
4487 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4488 	tcp->tcp_ibsegs = 0;
4489 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4490 	tcp->tcp_obsegs = 0;
4491 
4492 	/*
4493 	 * If we are an eager connection hanging off a listener that
4494 	 * hasn't formally accepted the connection yet, get off his
4495 	 * list and blow off any data that we have accumulated.
4496 	 */
4497 	if (tcp->tcp_listener != NULL) {
4498 		tcp_t	*listener = tcp->tcp_listener;
4499 		mutex_enter(&listener->tcp_eager_lock);
4500 		/*
4501 		 * tcp_tconnind_started == B_TRUE means that the
4502 		 * conn_ind has already gone to listener. At
4503 		 * this point, eager will be closed but we
4504 		 * leave it in listeners eager list so that
4505 		 * if listener decides to close without doing
4506 		 * accept, we can clean this up. In tcp_wput_accept
4507 		 * we take care of the case of accept on closed
4508 		 * eager.
4509 		 */
4510 		if (!tcp->tcp_tconnind_started) {
4511 			tcp_eager_unlink(tcp);
4512 			mutex_exit(&listener->tcp_eager_lock);
4513 			/*
4514 			 * We don't want to have any pointers to the
4515 			 * listener queue, after we have released our
4516 			 * reference on the listener
4517 			 */
4518 			ASSERT(tcps->tcps_g_q != NULL);
4519 			tcp->tcp_rq = tcps->tcps_g_q;
4520 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4521 			CONN_DEC_REF(listener->tcp_connp);
4522 		} else {
4523 			mutex_exit(&listener->tcp_eager_lock);
4524 		}
4525 	}
4526 
4527 	/* Stop all the timers */
4528 	tcp_timers_stop(tcp);
4529 
4530 	if (tcp->tcp_state == TCPS_LISTEN) {
4531 		if (tcp->tcp_ip_addr_cache) {
4532 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4533 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4534 			tcp->tcp_ip_addr_cache = NULL;
4535 		}
4536 	}
4537 	mutex_enter(&tcp->tcp_non_sq_lock);
4538 	if (tcp->tcp_flow_stopped)
4539 		tcp_clrqfull(tcp);
4540 	mutex_exit(&tcp->tcp_non_sq_lock);
4541 
4542 	tcp_bind_hash_remove(tcp);
4543 	/*
4544 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4545 	 * is trying to remove this tcp from the time wait list, we will
4546 	 * block in tcp_time_wait_remove while trying to acquire the
4547 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4548 	 * requires the ipcl_hash_remove to be ordered after the
4549 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4550 	 */
4551 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4552 		(void) tcp_time_wait_remove(tcp, NULL);
4553 	CL_INET_DISCONNECT(tcp);
4554 	ipcl_hash_remove(connp);
4555 
4556 	/*
4557 	 * Delete the cached ire in conn_ire_cache and also mark
4558 	 * the conn as CONDEMNED
4559 	 */
4560 	mutex_enter(&connp->conn_lock);
4561 	connp->conn_state_flags |= CONN_CONDEMNED;
4562 	ire = connp->conn_ire_cache;
4563 	connp->conn_ire_cache = NULL;
4564 	mutex_exit(&connp->conn_lock);
4565 	if (ire != NULL)
4566 		IRE_REFRELE_NOTR(ire);
4567 
4568 	/* Need to cleanup any pending ioctls */
4569 	ASSERT(tcp->tcp_time_wait_next == NULL);
4570 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4571 	ASSERT(tcp->tcp_time_wait_expire == 0);
4572 	tcp->tcp_state = TCPS_CLOSED;
4573 
4574 	/* Release any SSL context */
4575 	if (tcp->tcp_kssl_ent != NULL) {
4576 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4577 		tcp->tcp_kssl_ent = NULL;
4578 	}
4579 	if (tcp->tcp_kssl_ctx != NULL) {
4580 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4581 		tcp->tcp_kssl_ctx = NULL;
4582 	}
4583 	tcp->tcp_kssl_pending = B_FALSE;
4584 
4585 	tcp_ipsec_cleanup(tcp);
4586 }
4587 
4588 /*
4589  * tcp is dying (called from ipcl_conn_destroy and error cases).
4590  * Free the tcp_t in either case.
4591  */
4592 void
4593 tcp_free(tcp_t *tcp)
4594 {
4595 	mblk_t	*mp;
4596 	ip6_pkt_t	*ipp;
4597 
4598 	ASSERT(tcp != NULL);
4599 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4600 
4601 	tcp->tcp_rq = NULL;
4602 	tcp->tcp_wq = NULL;
4603 
4604 	tcp_close_mpp(&tcp->tcp_xmit_head);
4605 	tcp_close_mpp(&tcp->tcp_reass_head);
4606 	if (tcp->tcp_rcv_list != NULL) {
4607 		/* Free b_next chain */
4608 		tcp_close_mpp(&tcp->tcp_rcv_list);
4609 	}
4610 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4611 		freemsg(mp);
4612 	}
4613 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4614 		freemsg(mp);
4615 	}
4616 
4617 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4618 		freeb(tcp->tcp_fused_sigurg_mp);
4619 		tcp->tcp_fused_sigurg_mp = NULL;
4620 	}
4621 
4622 	if (tcp->tcp_sack_info != NULL) {
4623 		if (tcp->tcp_notsack_list != NULL) {
4624 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4625 		}
4626 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4627 	}
4628 
4629 	if (tcp->tcp_hopopts != NULL) {
4630 		mi_free(tcp->tcp_hopopts);
4631 		tcp->tcp_hopopts = NULL;
4632 		tcp->tcp_hopoptslen = 0;
4633 	}
4634 	ASSERT(tcp->tcp_hopoptslen == 0);
4635 	if (tcp->tcp_dstopts != NULL) {
4636 		mi_free(tcp->tcp_dstopts);
4637 		tcp->tcp_dstopts = NULL;
4638 		tcp->tcp_dstoptslen = 0;
4639 	}
4640 	ASSERT(tcp->tcp_dstoptslen == 0);
4641 	if (tcp->tcp_rtdstopts != NULL) {
4642 		mi_free(tcp->tcp_rtdstopts);
4643 		tcp->tcp_rtdstopts = NULL;
4644 		tcp->tcp_rtdstoptslen = 0;
4645 	}
4646 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4647 	if (tcp->tcp_rthdr != NULL) {
4648 		mi_free(tcp->tcp_rthdr);
4649 		tcp->tcp_rthdr = NULL;
4650 		tcp->tcp_rthdrlen = 0;
4651 	}
4652 	ASSERT(tcp->tcp_rthdrlen == 0);
4653 
4654 	ipp = &tcp->tcp_sticky_ipp;
4655 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4656 	    IPPF_RTHDR))
4657 		ip6_pkt_free(ipp);
4658 
4659 	/*
4660 	 * Free memory associated with the tcp/ip header template.
4661 	 */
4662 
4663 	if (tcp->tcp_iphc != NULL)
4664 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4665 
4666 	/*
4667 	 * Following is really a blowing away a union.
4668 	 * It happens to have exactly two members of identical size
4669 	 * the following code is enough.
4670 	 */
4671 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4672 
4673 	if (tcp->tcp_tracebuf != NULL) {
4674 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4675 		tcp->tcp_tracebuf = NULL;
4676 	}
4677 }
4678 
4679 
4680 /*
4681  * Put a connection confirmation message upstream built from the
4682  * address information within 'iph' and 'tcph'.  Report our success or failure.
4683  */
4684 static boolean_t
4685 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4686     mblk_t **defermp)
4687 {
4688 	sin_t	sin;
4689 	sin6_t	sin6;
4690 	mblk_t	*mp;
4691 	char	*optp = NULL;
4692 	int	optlen = 0;
4693 	cred_t	*cr;
4694 
4695 	if (defermp != NULL)
4696 		*defermp = NULL;
4697 
4698 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4699 		/*
4700 		 * Return in T_CONN_CON results of option negotiation through
4701 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4702 		 * negotiation, then what is received from remote end needs
4703 		 * to be taken into account but there is no such thing (yet?)
4704 		 * in our TCP/IP.
4705 		 * Note: We do not use mi_offset_param() here as
4706 		 * tcp_opts_conn_req contents do not directly come from
4707 		 * an application and are either generated in kernel or
4708 		 * from user input that was already verified.
4709 		 */
4710 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4711 		optp = (char *)(mp->b_rptr +
4712 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4713 		optlen = (int)
4714 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4715 	}
4716 
4717 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4718 		ipha_t *ipha = (ipha_t *)iphdr;
4719 
4720 		/* packet is IPv4 */
4721 		if (tcp->tcp_family == AF_INET) {
4722 			sin = sin_null;
4723 			sin.sin_addr.s_addr = ipha->ipha_src;
4724 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4725 			sin.sin_family = AF_INET;
4726 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4727 			    (int)sizeof (sin_t), optp, optlen);
4728 		} else {
4729 			sin6 = sin6_null;
4730 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4731 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4732 			sin6.sin6_family = AF_INET6;
4733 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4734 			    (int)sizeof (sin6_t), optp, optlen);
4735 
4736 		}
4737 	} else {
4738 		ip6_t	*ip6h = (ip6_t *)iphdr;
4739 
4740 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4741 		ASSERT(tcp->tcp_family == AF_INET6);
4742 		sin6 = sin6_null;
4743 		sin6.sin6_addr = ip6h->ip6_src;
4744 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4745 		sin6.sin6_family = AF_INET6;
4746 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4747 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4748 		    (int)sizeof (sin6_t), optp, optlen);
4749 	}
4750 
4751 	if (!mp)
4752 		return (B_FALSE);
4753 
4754 	if ((cr = DB_CRED(idmp)) != NULL) {
4755 		mblk_setcred(mp, cr);
4756 		DB_CPID(mp) = DB_CPID(idmp);
4757 	}
4758 
4759 	if (defermp == NULL)
4760 		putnext(tcp->tcp_rq, mp);
4761 	else
4762 		*defermp = mp;
4763 
4764 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4765 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4766 	return (B_TRUE);
4767 }
4768 
4769 /*
4770  * Defense for the SYN attack -
4771  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4772  *    one from the list of droppable eagers. This list is a subset of q0.
4773  *    see comments before the definition of MAKE_DROPPABLE().
4774  * 2. Don't drop a SYN request before its first timeout. This gives every
4775  *    request at least til the first timeout to complete its 3-way handshake.
4776  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4777  *    requests currently on the queue that has timed out. This will be used
4778  *    as an indicator of whether an attack is under way, so that appropriate
4779  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4780  *    either when eager goes into ESTABLISHED, or gets freed up.)
4781  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4782  *    # of timeout drops back to <= q0len/32 => SYN alert off
4783  */
4784 static boolean_t
4785 tcp_drop_q0(tcp_t *tcp)
4786 {
4787 	tcp_t	*eager;
4788 	mblk_t	*mp;
4789 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4790 
4791 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4792 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4793 
4794 	/* Pick oldest eager from the list of droppable eagers */
4795 	eager = tcp->tcp_eager_prev_drop_q0;
4796 
4797 	/* If list is empty. return B_FALSE */
4798 	if (eager == tcp) {
4799 		return (B_FALSE);
4800 	}
4801 
4802 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4803 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4804 		return (B_FALSE);
4805 
4806 	/*
4807 	 * Take this eager out from the list of droppable eagers since we are
4808 	 * going to drop it.
4809 	 */
4810 	MAKE_UNDROPPABLE(eager);
4811 
4812 	if (tcp->tcp_debug) {
4813 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4814 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4815 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4816 		    tcp->tcp_conn_req_cnt_q0,
4817 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4818 	}
4819 
4820 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4821 
4822 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4823 	CONN_INC_REF(eager->tcp_connp);
4824 
4825 	/* Mark the IRE created for this SYN request temporary */
4826 	tcp_ip_ire_mark_advice(eager);
4827 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4828 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4829 
4830 	return (B_TRUE);
4831 }
4832 
4833 int
4834 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4835     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4836 {
4837 	tcp_t 		*ltcp = lconnp->conn_tcp;
4838 	tcp_t		*tcp = connp->conn_tcp;
4839 	mblk_t		*tpi_mp;
4840 	ipha_t		*ipha;
4841 	ip6_t		*ip6h;
4842 	sin6_t 		sin6;
4843 	in6_addr_t 	v6dst;
4844 	int		err;
4845 	int		ifindex = 0;
4846 	cred_t		*cr;
4847 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4848 
4849 	if (ipvers == IPV4_VERSION) {
4850 		ipha = (ipha_t *)mp->b_rptr;
4851 
4852 		connp->conn_send = ip_output;
4853 		connp->conn_recv = tcp_input;
4854 
4855 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4856 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4857 
4858 		sin6 = sin6_null;
4859 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4860 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4861 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4862 		sin6.sin6_family = AF_INET6;
4863 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4864 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4865 		if (tcp->tcp_recvdstaddr) {
4866 			sin6_t	sin6d;
4867 
4868 			sin6d = sin6_null;
4869 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4870 			    &sin6d.sin6_addr);
4871 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4872 			sin6d.sin6_family = AF_INET;
4873 			tpi_mp = mi_tpi_extconn_ind(NULL,
4874 			    (char *)&sin6d, sizeof (sin6_t),
4875 			    (char *)&tcp,
4876 			    (t_scalar_t)sizeof (intptr_t),
4877 			    (char *)&sin6d, sizeof (sin6_t),
4878 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4879 		} else {
4880 			tpi_mp = mi_tpi_conn_ind(NULL,
4881 			    (char *)&sin6, sizeof (sin6_t),
4882 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4883 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4884 		}
4885 	} else {
4886 		ip6h = (ip6_t *)mp->b_rptr;
4887 
4888 		connp->conn_send = ip_output_v6;
4889 		connp->conn_recv = tcp_input;
4890 
4891 		connp->conn_srcv6 = ip6h->ip6_dst;
4892 		connp->conn_remv6 = ip6h->ip6_src;
4893 
4894 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4895 		ifindex = (int)DB_CKSUMSTUFF(mp);
4896 		DB_CKSUMSTUFF(mp) = 0;
4897 
4898 		sin6 = sin6_null;
4899 		sin6.sin6_addr = ip6h->ip6_src;
4900 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4901 		sin6.sin6_family = AF_INET6;
4902 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4903 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4904 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4905 
4906 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4907 			/* Pass up the scope_id of remote addr */
4908 			sin6.sin6_scope_id = ifindex;
4909 		} else {
4910 			sin6.sin6_scope_id = 0;
4911 		}
4912 		if (tcp->tcp_recvdstaddr) {
4913 			sin6_t	sin6d;
4914 
4915 			sin6d = sin6_null;
4916 			sin6.sin6_addr = ip6h->ip6_dst;
4917 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4918 			sin6d.sin6_family = AF_INET;
4919 			tpi_mp = mi_tpi_extconn_ind(NULL,
4920 			    (char *)&sin6d, sizeof (sin6_t),
4921 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4922 			    (char *)&sin6d, sizeof (sin6_t),
4923 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4924 		} else {
4925 			tpi_mp = mi_tpi_conn_ind(NULL,
4926 			    (char *)&sin6, sizeof (sin6_t),
4927 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4928 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4929 		}
4930 	}
4931 
4932 	if (tpi_mp == NULL)
4933 		return (ENOMEM);
4934 
4935 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4936 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4937 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4938 	connp->conn_fully_bound = B_FALSE;
4939 
4940 	if (tcps->tcps_trace)
4941 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4942 
4943 	/* Inherit information from the "parent" */
4944 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4945 	tcp->tcp_family = ltcp->tcp_family;
4946 	tcp->tcp_wq = ltcp->tcp_wq;
4947 	tcp->tcp_rq = ltcp->tcp_rq;
4948 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4949 	tcp->tcp_detached = B_TRUE;
4950 	if ((err = tcp_init_values(tcp)) != 0) {
4951 		freemsg(tpi_mp);
4952 		return (err);
4953 	}
4954 
4955 	if (ipvers == IPV4_VERSION) {
4956 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4957 			freemsg(tpi_mp);
4958 			return (err);
4959 		}
4960 		ASSERT(tcp->tcp_ipha != NULL);
4961 	} else {
4962 		/* ifindex must be already set */
4963 		ASSERT(ifindex != 0);
4964 
4965 		if (ltcp->tcp_bound_if != 0) {
4966 			/*
4967 			 * Set newtcp's bound_if equal to
4968 			 * listener's value. If ifindex is
4969 			 * not the same as ltcp->tcp_bound_if,
4970 			 * it must be a packet for the ipmp group
4971 			 * of interfaces
4972 			 */
4973 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4974 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4975 			tcp->tcp_bound_if = ifindex;
4976 		}
4977 
4978 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4979 		tcp->tcp_recvifindex = 0;
4980 		tcp->tcp_recvhops = 0xffffffffU;
4981 		ASSERT(tcp->tcp_ip6h != NULL);
4982 	}
4983 
4984 	tcp->tcp_lport = ltcp->tcp_lport;
4985 
4986 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4987 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4988 			/*
4989 			 * Listener had options of some sort; eager inherits.
4990 			 * Free up the eager template and allocate one
4991 			 * of the right size.
4992 			 */
4993 			if (tcp->tcp_hdr_grown) {
4994 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4995 			} else {
4996 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4997 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4998 			}
4999 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5000 			    KM_NOSLEEP);
5001 			if (tcp->tcp_iphc == NULL) {
5002 				tcp->tcp_iphc_len = 0;
5003 				freemsg(tpi_mp);
5004 				return (ENOMEM);
5005 			}
5006 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5007 			tcp->tcp_hdr_grown = B_TRUE;
5008 		}
5009 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5010 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5011 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5012 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5013 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5014 
5015 		/*
5016 		 * Copy the IP+TCP header template from listener to eager
5017 		 */
5018 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5019 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5020 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5021 			    IPPROTO_RAW) {
5022 				tcp->tcp_ip6h =
5023 				    (ip6_t *)(tcp->tcp_iphc +
5024 				    sizeof (ip6i_t));
5025 			} else {
5026 				tcp->tcp_ip6h =
5027 				    (ip6_t *)(tcp->tcp_iphc);
5028 			}
5029 			tcp->tcp_ipha = NULL;
5030 		} else {
5031 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5032 			tcp->tcp_ip6h = NULL;
5033 		}
5034 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5035 		    tcp->tcp_ip_hdr_len);
5036 	} else {
5037 		/*
5038 		 * only valid case when ipversion of listener and
5039 		 * eager differ is when listener is IPv6 and
5040 		 * eager is IPv4.
5041 		 * Eager header template has been initialized to the
5042 		 * maximum v4 header sizes, which includes space for
5043 		 * TCP and IP options.
5044 		 */
5045 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5046 		    (tcp->tcp_ipversion == IPV4_VERSION));
5047 		ASSERT(tcp->tcp_iphc_len >=
5048 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5049 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5050 		/* copy IP header fields individually */
5051 		tcp->tcp_ipha->ipha_ttl =
5052 		    ltcp->tcp_ip6h->ip6_hops;
5053 		bcopy(ltcp->tcp_tcph->th_lport,
5054 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5055 	}
5056 
5057 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5058 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5059 	    sizeof (in_port_t));
5060 
5061 	if (ltcp->tcp_lport == 0) {
5062 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5063 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5064 		    sizeof (in_port_t));
5065 	}
5066 
5067 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5068 		ASSERT(ipha != NULL);
5069 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5070 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5071 
5072 		/* Source routing option copyover (reverse it) */
5073 		if (tcps->tcps_rev_src_routes)
5074 			tcp_opt_reverse(tcp, ipha);
5075 	} else {
5076 		ASSERT(ip6h != NULL);
5077 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5078 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5079 	}
5080 
5081 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5082 	ASSERT(!tcp->tcp_tconnind_started);
5083 	/*
5084 	 * If the SYN contains a credential, it's a loopback packet; attach
5085 	 * the credential to the TPI message.
5086 	 */
5087 	if ((cr = DB_CRED(idmp)) != NULL) {
5088 		mblk_setcred(tpi_mp, cr);
5089 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5090 	}
5091 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5092 
5093 	/* Inherit the listener's SSL protection state */
5094 
5095 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5096 		kssl_hold_ent(tcp->tcp_kssl_ent);
5097 		tcp->tcp_kssl_pending = B_TRUE;
5098 	}
5099 
5100 	return (0);
5101 }
5102 
5103 
5104 int
5105 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5106     tcph_t *tcph, mblk_t *idmp)
5107 {
5108 	tcp_t 		*ltcp = lconnp->conn_tcp;
5109 	tcp_t		*tcp = connp->conn_tcp;
5110 	sin_t		sin;
5111 	mblk_t		*tpi_mp = NULL;
5112 	int		err;
5113 	cred_t		*cr;
5114 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5115 
5116 	sin = sin_null;
5117 	sin.sin_addr.s_addr = ipha->ipha_src;
5118 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5119 	sin.sin_family = AF_INET;
5120 	if (ltcp->tcp_recvdstaddr) {
5121 		sin_t	sind;
5122 
5123 		sind = sin_null;
5124 		sind.sin_addr.s_addr = ipha->ipha_dst;
5125 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5126 		sind.sin_family = AF_INET;
5127 		tpi_mp = mi_tpi_extconn_ind(NULL,
5128 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5129 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5130 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5131 	} else {
5132 		tpi_mp = mi_tpi_conn_ind(NULL,
5133 		    (char *)&sin, sizeof (sin_t),
5134 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5135 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5136 	}
5137 
5138 	if (tpi_mp == NULL) {
5139 		return (ENOMEM);
5140 	}
5141 
5142 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5143 	connp->conn_send = ip_output;
5144 	connp->conn_recv = tcp_input;
5145 	connp->conn_fully_bound = B_FALSE;
5146 
5147 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5148 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5149 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5150 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5151 
5152 	if (tcps->tcps_trace) {
5153 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5154 	}
5155 
5156 	/* Inherit information from the "parent" */
5157 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5158 	tcp->tcp_family = ltcp->tcp_family;
5159 	tcp->tcp_wq = ltcp->tcp_wq;
5160 	tcp->tcp_rq = ltcp->tcp_rq;
5161 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5162 	tcp->tcp_detached = B_TRUE;
5163 	if ((err = tcp_init_values(tcp)) != 0) {
5164 		freemsg(tpi_mp);
5165 		return (err);
5166 	}
5167 
5168 	/*
5169 	 * Let's make sure that eager tcp template has enough space to
5170 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5171 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5172 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5173 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5174 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5175 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5176 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5177 	 */
5178 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5179 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5180 
5181 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5182 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5183 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5184 	tcp->tcp_ttl = ltcp->tcp_ttl;
5185 	tcp->tcp_tos = ltcp->tcp_tos;
5186 
5187 	/* Copy the IP+TCP header template from listener to eager */
5188 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5189 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5190 	tcp->tcp_ip6h = NULL;
5191 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5192 	    tcp->tcp_ip_hdr_len);
5193 
5194 	/* Initialize the IP addresses and Ports */
5195 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5196 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5197 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5198 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5199 
5200 	/* Source routing option copyover (reverse it) */
5201 	if (tcps->tcps_rev_src_routes)
5202 		tcp_opt_reverse(tcp, ipha);
5203 
5204 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5205 	ASSERT(!tcp->tcp_tconnind_started);
5206 
5207 	/*
5208 	 * If the SYN contains a credential, it's a loopback packet; attach
5209 	 * the credential to the TPI message.
5210 	 */
5211 	if ((cr = DB_CRED(idmp)) != NULL) {
5212 		mblk_setcred(tpi_mp, cr);
5213 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5214 	}
5215 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5216 
5217 	/* Inherit the listener's SSL protection state */
5218 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5219 		kssl_hold_ent(tcp->tcp_kssl_ent);
5220 		tcp->tcp_kssl_pending = B_TRUE;
5221 	}
5222 
5223 	return (0);
5224 }
5225 
5226 /*
5227  * sets up conn for ipsec.
5228  * if the first mblk is M_CTL it is consumed and mpp is updated.
5229  * in case of error mpp is freed.
5230  */
5231 conn_t *
5232 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5233 {
5234 	conn_t 		*connp = tcp->tcp_connp;
5235 	conn_t 		*econnp;
5236 	squeue_t 	*new_sqp;
5237 	mblk_t 		*first_mp = *mpp;
5238 	mblk_t		*mp = *mpp;
5239 	boolean_t	mctl_present = B_FALSE;
5240 	uint_t		ipvers;
5241 
5242 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5243 	if (econnp == NULL) {
5244 		freemsg(first_mp);
5245 		return (NULL);
5246 	}
5247 	if (DB_TYPE(mp) == M_CTL) {
5248 		if (mp->b_cont == NULL ||
5249 		    mp->b_cont->b_datap->db_type != M_DATA) {
5250 			freemsg(first_mp);
5251 			return (NULL);
5252 		}
5253 		mp = mp->b_cont;
5254 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5255 			freemsg(first_mp);
5256 			return (NULL);
5257 		}
5258 
5259 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5260 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5261 		mctl_present = B_TRUE;
5262 	} else {
5263 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5264 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5265 	}
5266 
5267 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5268 	DB_CKSUMSTART(mp) = 0;
5269 
5270 	ASSERT(OK_32PTR(mp->b_rptr));
5271 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5272 	if (ipvers == IPV4_VERSION) {
5273 		uint16_t  	*up;
5274 		uint32_t	ports;
5275 		ipha_t		*ipha;
5276 
5277 		ipha = (ipha_t *)mp->b_rptr;
5278 		up = (uint16_t *)((uchar_t *)ipha +
5279 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5280 		ports = *(uint32_t *)up;
5281 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5282 		    ipha->ipha_dst, ipha->ipha_src, ports);
5283 	} else {
5284 		uint16_t  	*up;
5285 		uint32_t	ports;
5286 		uint16_t	ip_hdr_len;
5287 		uint8_t		*nexthdrp;
5288 		ip6_t 		*ip6h;
5289 		tcph_t		*tcph;
5290 
5291 		ip6h = (ip6_t *)mp->b_rptr;
5292 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5293 			ip_hdr_len = IPV6_HDR_LEN;
5294 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5295 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5296 			CONN_DEC_REF(econnp);
5297 			freemsg(first_mp);
5298 			return (NULL);
5299 		}
5300 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5301 		up = (uint16_t *)tcph->th_lport;
5302 		ports = *(uint32_t *)up;
5303 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5304 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5305 	}
5306 
5307 	/*
5308 	 * The caller already ensured that there is a sqp present.
5309 	 */
5310 	econnp->conn_sqp = new_sqp;
5311 
5312 	if (connp->conn_policy != NULL) {
5313 		ipsec_in_t *ii;
5314 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5315 		ASSERT(ii->ipsec_in_policy == NULL);
5316 		IPPH_REFHOLD(connp->conn_policy);
5317 		ii->ipsec_in_policy = connp->conn_policy;
5318 
5319 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5320 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5321 			CONN_DEC_REF(econnp);
5322 			freemsg(first_mp);
5323 			return (NULL);
5324 		}
5325 	}
5326 
5327 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5328 		CONN_DEC_REF(econnp);
5329 		freemsg(first_mp);
5330 		return (NULL);
5331 	}
5332 
5333 	/*
5334 	 * If we know we have some policy, pass the "IPSEC"
5335 	 * options size TCP uses this adjust the MSS.
5336 	 */
5337 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5338 	if (mctl_present) {
5339 		freeb(first_mp);
5340 		*mpp = mp;
5341 	}
5342 
5343 	return (econnp);
5344 }
5345 
5346 /*
5347  * tcp_get_conn/tcp_free_conn
5348  *
5349  * tcp_get_conn is used to get a clean tcp connection structure.
5350  * It tries to reuse the connections put on the freelist by the
5351  * time_wait_collector failing which it goes to kmem_cache. This
5352  * way has two benefits compared to just allocating from and
5353  * freeing to kmem_cache.
5354  * 1) The time_wait_collector can free (which includes the cleanup)
5355  * outside the squeue. So when the interrupt comes, we have a clean
5356  * connection sitting in the freelist. Obviously, this buys us
5357  * performance.
5358  *
5359  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5360  * has multiple disadvantages - tying up the squeue during alloc, and the
5361  * fact that IPSec policy initialization has to happen here which
5362  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5363  * But allocating the conn/tcp in IP land is also not the best since
5364  * we can't check the 'q' and 'q0' which are protected by squeue and
5365  * blindly allocate memory which might have to be freed here if we are
5366  * not allowed to accept the connection. By using the freelist and
5367  * putting the conn/tcp back in freelist, we don't pay a penalty for
5368  * allocating memory without checking 'q/q0' and freeing it if we can't
5369  * accept the connection.
5370  *
5371  * Care should be taken to put the conn back in the same squeue's freelist
5372  * from which it was allocated. Best results are obtained if conn is
5373  * allocated from listener's squeue and freed to the same. Time wait
5374  * collector will free up the freelist is the connection ends up sitting
5375  * there for too long.
5376  */
5377 void *
5378 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5379 {
5380 	tcp_t			*tcp = NULL;
5381 	conn_t			*connp = NULL;
5382 	squeue_t		*sqp = (squeue_t *)arg;
5383 	tcp_squeue_priv_t 	*tcp_time_wait;
5384 	netstack_t		*ns;
5385 
5386 	tcp_time_wait =
5387 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5388 
5389 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5390 	tcp = tcp_time_wait->tcp_free_list;
5391 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5392 	if (tcp != NULL) {
5393 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5394 		tcp_time_wait->tcp_free_list_cnt--;
5395 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5396 		tcp->tcp_time_wait_next = NULL;
5397 		connp = tcp->tcp_connp;
5398 		connp->conn_flags |= IPCL_REUSED;
5399 
5400 		ASSERT(tcp->tcp_tcps == NULL);
5401 		ASSERT(connp->conn_netstack == NULL);
5402 		ns = tcps->tcps_netstack;
5403 		netstack_hold(ns);
5404 		connp->conn_netstack = ns;
5405 		tcp->tcp_tcps = tcps;
5406 		TCPS_REFHOLD(tcps);
5407 		ipcl_globalhash_insert(connp);
5408 		return ((void *)connp);
5409 	}
5410 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5411 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5412 	    tcps->tcps_netstack)) == NULL)
5413 		return (NULL);
5414 	tcp = connp->conn_tcp;
5415 	tcp->tcp_tcps = tcps;
5416 	TCPS_REFHOLD(tcps);
5417 	return ((void *)connp);
5418 }
5419 
5420 /*
5421  * Update the cached label for the given tcp_t.  This should be called once per
5422  * connection, and before any packets are sent or tcp_process_options is
5423  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5424  */
5425 static boolean_t
5426 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5427 {
5428 	conn_t *connp = tcp->tcp_connp;
5429 
5430 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5431 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5432 		int added;
5433 
5434 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5435 		    connp->conn_mac_exempt,
5436 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5437 			return (B_FALSE);
5438 
5439 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5440 		if (added == -1)
5441 			return (B_FALSE);
5442 		tcp->tcp_hdr_len += added;
5443 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5444 		tcp->tcp_ip_hdr_len += added;
5445 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5446 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5447 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5448 			    tcp->tcp_hdr_len);
5449 			if (added == -1)
5450 				return (B_FALSE);
5451 			tcp->tcp_hdr_len += added;
5452 			tcp->tcp_tcph = (tcph_t *)
5453 			    ((uchar_t *)tcp->tcp_tcph + added);
5454 			tcp->tcp_ip_hdr_len += added;
5455 		}
5456 	} else {
5457 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5458 
5459 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5460 		    connp->conn_mac_exempt,
5461 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5462 			return (B_FALSE);
5463 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5464 		    &tcp->tcp_label_len, optbuf) != 0)
5465 			return (B_FALSE);
5466 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5467 			return (B_FALSE);
5468 	}
5469 
5470 	connp->conn_ulp_labeled = 1;
5471 
5472 	return (B_TRUE);
5473 }
5474 
5475 /* BEGIN CSTYLED */
5476 /*
5477  *
5478  * The sockfs ACCEPT path:
5479  * =======================
5480  *
5481  * The eager is now established in its own perimeter as soon as SYN is
5482  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5483  * completes the accept processing on the acceptor STREAM. The sending
5484  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5485  * listener but a TLI/XTI listener completes the accept processing
5486  * on the listener perimeter.
5487  *
5488  * Common control flow for 3 way handshake:
5489  * ----------------------------------------
5490  *
5491  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5492  *					-> tcp_conn_request()
5493  *
5494  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5495  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5496  *
5497  * Sockfs ACCEPT Path:
5498  * -------------------
5499  *
5500  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5501  * as STREAM entry point)
5502  *
5503  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5504  *
5505  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5506  * association (we are not behind eager's squeue but sockfs is protecting us
5507  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5508  * is changed to point at tcp_wput().
5509  *
5510  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5511  * listener (done on listener's perimeter).
5512  *
5513  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5514  * accept.
5515  *
5516  * TLI/XTI client ACCEPT path:
5517  * ---------------------------
5518  *
5519  * soaccept() sends T_CONN_RES on the listener STREAM.
5520  *
5521  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5522  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5523  *
5524  * Locks:
5525  * ======
5526  *
5527  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5528  * and listeners->tcp_eager_next_q.
5529  *
5530  * Referencing:
5531  * ============
5532  *
5533  * 1) We start out in tcp_conn_request by eager placing a ref on
5534  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5535  *
5536  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5537  * doing so we place a ref on the eager. This ref is finally dropped at the
5538  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5539  * reference is dropped by the squeue framework.
5540  *
5541  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5542  *
5543  * The reference must be released by the same entity that added the reference
5544  * In the above scheme, the eager is the entity that adds and releases the
5545  * references. Note that tcp_accept_finish executes in the squeue of the eager
5546  * (albeit after it is attached to the acceptor stream). Though 1. executes
5547  * in the listener's squeue, the eager is nascent at this point and the
5548  * reference can be considered to have been added on behalf of the eager.
5549  *
5550  * Eager getting a Reset or listener closing:
5551  * ==========================================
5552  *
5553  * Once the listener and eager are linked, the listener never does the unlink.
5554  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5555  * a message on all eager perimeter. The eager then does the unlink, clears
5556  * any pointers to the listener's queue and drops the reference to the
5557  * listener. The listener waits in tcp_close outside the squeue until its
5558  * refcount has dropped to 1. This ensures that the listener has waited for
5559  * all eagers to clear their association with the listener.
5560  *
5561  * Similarly, if eager decides to go away, it can unlink itself and close.
5562  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5563  * the reference to eager is still valid because of the extra ref we put
5564  * in tcp_send_conn_ind.
5565  *
5566  * Listener can always locate the eager under the protection
5567  * of the listener->tcp_eager_lock, and then do a refhold
5568  * on the eager during the accept processing.
5569  *
5570  * The acceptor stream accesses the eager in the accept processing
5571  * based on the ref placed on eager before sending T_conn_ind.
5572  * The only entity that can negate this refhold is a listener close
5573  * which is mutually exclusive with an active acceptor stream.
5574  *
5575  * Eager's reference on the listener
5576  * ===================================
5577  *
5578  * If the accept happens (even on a closed eager) the eager drops its
5579  * reference on the listener at the start of tcp_accept_finish. If the
5580  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5581  * the reference is dropped in tcp_closei_local. If the listener closes,
5582  * the reference is dropped in tcp_eager_kill. In all cases the reference
5583  * is dropped while executing in the eager's context (squeue).
5584  */
5585 /* END CSTYLED */
5586 
5587 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5588 
5589 /*
5590  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5591  * tcp_rput_data will not see any SYN packets.
5592  */
5593 /* ARGSUSED */
5594 void
5595 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5596 {
5597 	tcph_t		*tcph;
5598 	uint32_t	seg_seq;
5599 	tcp_t		*eager;
5600 	uint_t		ipvers;
5601 	ipha_t		*ipha;
5602 	ip6_t		*ip6h;
5603 	int		err;
5604 	conn_t		*econnp = NULL;
5605 	squeue_t	*new_sqp;
5606 	mblk_t		*mp1;
5607 	uint_t 		ip_hdr_len;
5608 	conn_t		*connp = (conn_t *)arg;
5609 	tcp_t		*tcp = connp->conn_tcp;
5610 	cred_t		*credp;
5611 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5612 	ip_stack_t	*ipst;
5613 
5614 	if (tcp->tcp_state != TCPS_LISTEN)
5615 		goto error2;
5616 
5617 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5618 
5619 	mutex_enter(&tcp->tcp_eager_lock);
5620 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5621 		mutex_exit(&tcp->tcp_eager_lock);
5622 		TCP_STAT(tcps, tcp_listendrop);
5623 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5624 		if (tcp->tcp_debug) {
5625 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5626 			    "tcp_conn_request: listen backlog (max=%d) "
5627 			    "overflow (%d pending) on %s",
5628 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5629 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5630 		}
5631 		goto error2;
5632 	}
5633 
5634 	if (tcp->tcp_conn_req_cnt_q0 >=
5635 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5636 		/*
5637 		 * Q0 is full. Drop a pending half-open req from the queue
5638 		 * to make room for the new SYN req. Also mark the time we
5639 		 * drop a SYN.
5640 		 *
5641 		 * A more aggressive defense against SYN attack will
5642 		 * be to set the "tcp_syn_defense" flag now.
5643 		 */
5644 		TCP_STAT(tcps, tcp_listendropq0);
5645 		tcp->tcp_last_rcv_lbolt = lbolt64;
5646 		if (!tcp_drop_q0(tcp)) {
5647 			mutex_exit(&tcp->tcp_eager_lock);
5648 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5649 			if (tcp->tcp_debug) {
5650 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5651 				    "tcp_conn_request: listen half-open queue "
5652 				    "(max=%d) full (%d pending) on %s",
5653 				    tcps->tcps_conn_req_max_q0,
5654 				    tcp->tcp_conn_req_cnt_q0,
5655 				    tcp_display(tcp, NULL,
5656 				    DISP_PORT_ONLY));
5657 			}
5658 			goto error2;
5659 		}
5660 	}
5661 	mutex_exit(&tcp->tcp_eager_lock);
5662 
5663 	/*
5664 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5665 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5666 	 * link local address.  If IPSec is enabled, db_struioflag has
5667 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5668 	 * otherwise an error case if neither of them is set.
5669 	 */
5670 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5671 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5672 		DB_CKSUMSTART(mp) = 0;
5673 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5674 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5675 		if (econnp == NULL)
5676 			goto error2;
5677 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5678 		econnp->conn_sqp = new_sqp;
5679 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5680 		/*
5681 		 * mp is updated in tcp_get_ipsec_conn().
5682 		 */
5683 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5684 		if (econnp == NULL) {
5685 			/*
5686 			 * mp freed by tcp_get_ipsec_conn.
5687 			 */
5688 			return;
5689 		}
5690 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5691 	} else {
5692 		goto error2;
5693 	}
5694 
5695 	ASSERT(DB_TYPE(mp) == M_DATA);
5696 
5697 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5698 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5699 	ASSERT(OK_32PTR(mp->b_rptr));
5700 	if (ipvers == IPV4_VERSION) {
5701 		ipha = (ipha_t *)mp->b_rptr;
5702 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5703 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5704 	} else {
5705 		ip6h = (ip6_t *)mp->b_rptr;
5706 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5707 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5708 	}
5709 
5710 	if (tcp->tcp_family == AF_INET) {
5711 		ASSERT(ipvers == IPV4_VERSION);
5712 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5713 	} else {
5714 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5715 	}
5716 
5717 	if (err)
5718 		goto error3;
5719 
5720 	eager = econnp->conn_tcp;
5721 
5722 	/* Inherit various TCP parameters from the listener */
5723 	eager->tcp_naglim = tcp->tcp_naglim;
5724 	eager->tcp_first_timer_threshold =
5725 	    tcp->tcp_first_timer_threshold;
5726 	eager->tcp_second_timer_threshold =
5727 	    tcp->tcp_second_timer_threshold;
5728 
5729 	eager->tcp_first_ctimer_threshold =
5730 	    tcp->tcp_first_ctimer_threshold;
5731 	eager->tcp_second_ctimer_threshold =
5732 	    tcp->tcp_second_ctimer_threshold;
5733 
5734 	/*
5735 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5736 	 * If it does not, the eager's receive window will be set to the
5737 	 * listener's receive window later in this function.
5738 	 */
5739 	eager->tcp_rwnd = 0;
5740 
5741 	/*
5742 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5743 	 * calling tcp_process_options() where tcp_mss_set() is called
5744 	 * to set the initial cwnd.
5745 	 */
5746 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5747 
5748 	/*
5749 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5750 	 * zone id before the accept is completed in tcp_wput_accept().
5751 	 */
5752 	econnp->conn_zoneid = connp->conn_zoneid;
5753 	econnp->conn_allzones = connp->conn_allzones;
5754 
5755 	/* Copy nexthop information from listener to eager */
5756 	if (connp->conn_nexthop_set) {
5757 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5758 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5759 	}
5760 
5761 	/*
5762 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5763 	 * eager is accepted
5764 	 */
5765 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5766 	crhold(credp);
5767 
5768 	/*
5769 	 * If the caller has the process-wide flag set, then default to MAC
5770 	 * exempt mode.  This allows read-down to unlabeled hosts.
5771 	 */
5772 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5773 		econnp->conn_mac_exempt = B_TRUE;
5774 
5775 	if (is_system_labeled()) {
5776 		cred_t *cr;
5777 
5778 		if (connp->conn_mlp_type != mlptSingle) {
5779 			cr = econnp->conn_peercred = DB_CRED(mp);
5780 			if (cr != NULL)
5781 				crhold(cr);
5782 			else
5783 				cr = econnp->conn_cred;
5784 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5785 			    econnp, cred_t *, cr)
5786 		} else {
5787 			cr = econnp->conn_cred;
5788 			DTRACE_PROBE2(syn_accept, conn_t *,
5789 			    econnp, cred_t *, cr)
5790 		}
5791 
5792 		if (!tcp_update_label(eager, cr)) {
5793 			DTRACE_PROBE3(
5794 			    tx__ip__log__error__connrequest__tcp,
5795 			    char *, "eager connp(1) label on SYN mp(2) failed",
5796 			    conn_t *, econnp, mblk_t *, mp);
5797 			goto error3;
5798 		}
5799 	}
5800 
5801 	eager->tcp_hard_binding = B_TRUE;
5802 
5803 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5804 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5805 
5806 	CL_INET_CONNECT(eager);
5807 
5808 	/*
5809 	 * No need to check for multicast destination since ip will only pass
5810 	 * up multicasts to those that have expressed interest
5811 	 * TODO: what about rejecting broadcasts?
5812 	 * Also check that source is not a multicast or broadcast address.
5813 	 */
5814 	eager->tcp_state = TCPS_SYN_RCVD;
5815 
5816 
5817 	/*
5818 	 * There should be no ire in the mp as we are being called after
5819 	 * receiving the SYN.
5820 	 */
5821 	ASSERT(tcp_ire_mp(mp) == NULL);
5822 
5823 	/*
5824 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5825 	 */
5826 
5827 	if (tcp_adapt_ire(eager, NULL) == 0) {
5828 		/* Undo the bind_hash_insert */
5829 		tcp_bind_hash_remove(eager);
5830 		goto error3;
5831 	}
5832 
5833 	/* Process all TCP options. */
5834 	tcp_process_options(eager, tcph);
5835 
5836 	/* Is the other end ECN capable? */
5837 	if (tcps->tcps_ecn_permitted >= 1 &&
5838 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5839 		eager->tcp_ecn_ok = B_TRUE;
5840 	}
5841 
5842 	/*
5843 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5844 	 * window size changed via SO_RCVBUF option.  First round up the
5845 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5846 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5847 	 * setting.
5848 	 *
5849 	 * Note if there is a rpipe metric associated with the remote host,
5850 	 * we should not inherit receive window size from listener.
5851 	 */
5852 	eager->tcp_rwnd = MSS_ROUNDUP(
5853 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5854 	    eager->tcp_rwnd), eager->tcp_mss);
5855 	if (eager->tcp_snd_ws_ok)
5856 		tcp_set_ws_value(eager);
5857 	/*
5858 	 * Note that this is the only place tcp_rwnd_set() is called for
5859 	 * accepting a connection.  We need to call it here instead of
5860 	 * after the 3-way handshake because we need to tell the other
5861 	 * side our rwnd in the SYN-ACK segment.
5862 	 */
5863 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5864 
5865 	/*
5866 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5867 	 * via soaccept()->soinheritoptions() which essentially applies
5868 	 * all the listener options to the new STREAM. The options that we
5869 	 * need to take care of are:
5870 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5871 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5872 	 * SO_SNDBUF, SO_RCVBUF.
5873 	 *
5874 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5875 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5876 	 *		tcp_maxpsz_set() gets called later from
5877 	 *		tcp_accept_finish(), the option takes effect.
5878 	 *
5879 	 */
5880 	/* Set the TCP options */
5881 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5882 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5883 	eager->tcp_oobinline = tcp->tcp_oobinline;
5884 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5885 	eager->tcp_broadcast = tcp->tcp_broadcast;
5886 	eager->tcp_useloopback = tcp->tcp_useloopback;
5887 	eager->tcp_dontroute = tcp->tcp_dontroute;
5888 	eager->tcp_linger = tcp->tcp_linger;
5889 	eager->tcp_lingertime = tcp->tcp_lingertime;
5890 	if (tcp->tcp_ka_enabled)
5891 		eager->tcp_ka_enabled = 1;
5892 
5893 	/* Set the IP options */
5894 	econnp->conn_broadcast = connp->conn_broadcast;
5895 	econnp->conn_loopback = connp->conn_loopback;
5896 	econnp->conn_dontroute = connp->conn_dontroute;
5897 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5898 
5899 	/* Put a ref on the listener for the eager. */
5900 	CONN_INC_REF(connp);
5901 	mutex_enter(&tcp->tcp_eager_lock);
5902 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5903 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5904 	tcp->tcp_eager_next_q0 = eager;
5905 	eager->tcp_eager_prev_q0 = tcp;
5906 
5907 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5908 	eager->tcp_listener = tcp;
5909 	eager->tcp_saved_listener = tcp;
5910 
5911 	/*
5912 	 * Tag this detached tcp vector for later retrieval
5913 	 * by our listener client in tcp_accept().
5914 	 */
5915 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5916 	tcp->tcp_conn_req_cnt_q0++;
5917 	if (++tcp->tcp_conn_req_seqnum == -1) {
5918 		/*
5919 		 * -1 is "special" and defined in TPI as something
5920 		 * that should never be used in T_CONN_IND
5921 		 */
5922 		++tcp->tcp_conn_req_seqnum;
5923 	}
5924 	mutex_exit(&tcp->tcp_eager_lock);
5925 
5926 	if (tcp->tcp_syn_defense) {
5927 		/* Don't drop the SYN that comes from a good IP source */
5928 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5929 		if (addr_cache != NULL && eager->tcp_remote ==
5930 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5931 			eager->tcp_dontdrop = B_TRUE;
5932 		}
5933 	}
5934 
5935 	/*
5936 	 * We need to insert the eager in its own perimeter but as soon
5937 	 * as we do that, we expose the eager to the classifier and
5938 	 * should not touch any field outside the eager's perimeter.
5939 	 * So do all the work necessary before inserting the eager
5940 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5941 	 * will succeed but undo everything if it fails.
5942 	 */
5943 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5944 	eager->tcp_irs = seg_seq;
5945 	eager->tcp_rack = seg_seq;
5946 	eager->tcp_rnxt = seg_seq + 1;
5947 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5948 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5949 	eager->tcp_state = TCPS_SYN_RCVD;
5950 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5951 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5952 	if (mp1 == NULL) {
5953 		/*
5954 		 * Increment the ref count as we are going to
5955 		 * enqueueing an mp in squeue
5956 		 */
5957 		CONN_INC_REF(econnp);
5958 		goto error;
5959 	}
5960 	DB_CPID(mp1) = tcp->tcp_cpid;
5961 	eager->tcp_cpid = tcp->tcp_cpid;
5962 	eager->tcp_open_time = lbolt64;
5963 
5964 	/*
5965 	 * We need to start the rto timer. In normal case, we start
5966 	 * the timer after sending the packet on the wire (or at
5967 	 * least believing that packet was sent by waiting for
5968 	 * CALL_IP_WPUT() to return). Since this is the first packet
5969 	 * being sent on the wire for the eager, our initial tcp_rto
5970 	 * is at least tcp_rexmit_interval_min which is a fairly
5971 	 * large value to allow the algorithm to adjust slowly to large
5972 	 * fluctuations of RTT during first few transmissions.
5973 	 *
5974 	 * Starting the timer first and then sending the packet in this
5975 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5976 	 * is of the order of several 100ms and starting the timer
5977 	 * first and then sending the packet will result in difference
5978 	 * of few micro seconds.
5979 	 *
5980 	 * Without this optimization, we are forced to hold the fanout
5981 	 * lock across the ipcl_bind_insert() and sending the packet
5982 	 * so that we don't race against an incoming packet (maybe RST)
5983 	 * for this eager.
5984 	 *
5985 	 * It is necessary to acquire an extra reference on the eager
5986 	 * at this point and hold it until after tcp_send_data() to
5987 	 * ensure against an eager close race.
5988 	 */
5989 
5990 	CONN_INC_REF(eager->tcp_connp);
5991 
5992 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5993 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5994 
5995 
5996 	/*
5997 	 * Insert the eager in its own perimeter now. We are ready to deal
5998 	 * with any packets on eager.
5999 	 */
6000 	if (eager->tcp_ipversion == IPV4_VERSION) {
6001 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6002 			goto error;
6003 		}
6004 	} else {
6005 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6006 			goto error;
6007 		}
6008 	}
6009 
6010 	/* mark conn as fully-bound */
6011 	econnp->conn_fully_bound = B_TRUE;
6012 
6013 	/* Send the SYN-ACK */
6014 	tcp_send_data(eager, eager->tcp_wq, mp1);
6015 	CONN_DEC_REF(eager->tcp_connp);
6016 	freemsg(mp);
6017 
6018 	return;
6019 error:
6020 	freemsg(mp1);
6021 	eager->tcp_closemp_used = B_TRUE;
6022 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6023 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6024 	    econnp, SQTAG_TCP_CONN_REQ_2);
6025 
6026 	/*
6027 	 * If a connection already exists, send the mp to that connections so
6028 	 * that it can be appropriately dealt with.
6029 	 */
6030 	ipst = tcps->tcps_netstack->netstack_ip;
6031 
6032 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6033 		if (!IPCL_IS_CONNECTED(econnp)) {
6034 			/*
6035 			 * Something bad happened. ipcl_conn_insert()
6036 			 * failed because a connection already existed
6037 			 * in connected hash but we can't find it
6038 			 * anymore (someone blew it away). Just
6039 			 * free this message and hopefully remote
6040 			 * will retransmit at which time the SYN can be
6041 			 * treated as a new connection or dealth with
6042 			 * a TH_RST if a connection already exists.
6043 			 */
6044 			CONN_DEC_REF(econnp);
6045 			freemsg(mp);
6046 		} else {
6047 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6048 			    econnp, SQTAG_TCP_CONN_REQ_1);
6049 		}
6050 	} else {
6051 		/* Nobody wants this packet */
6052 		freemsg(mp);
6053 	}
6054 	return;
6055 error3:
6056 	CONN_DEC_REF(econnp);
6057 error2:
6058 	freemsg(mp);
6059 }
6060 
6061 /*
6062  * In an ideal case of vertical partition in NUMA architecture, its
6063  * beneficial to have the listener and all the incoming connections
6064  * tied to the same squeue. The other constraint is that incoming
6065  * connections should be tied to the squeue attached to interrupted
6066  * CPU for obvious locality reason so this leaves the listener to
6067  * be tied to the same squeue. Our only problem is that when listener
6068  * is binding, the CPU that will get interrupted by the NIC whose
6069  * IP address the listener is binding to is not even known. So
6070  * the code below allows us to change that binding at the time the
6071  * CPU is interrupted by virtue of incoming connection's squeue.
6072  *
6073  * This is usefull only in case of a listener bound to a specific IP
6074  * address. For other kind of listeners, they get bound the
6075  * very first time and there is no attempt to rebind them.
6076  */
6077 void
6078 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6079 {
6080 	conn_t		*connp = (conn_t *)arg;
6081 	squeue_t	*sqp = (squeue_t *)arg2;
6082 	squeue_t	*new_sqp;
6083 	uint32_t	conn_flags;
6084 
6085 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6086 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6087 	} else {
6088 		goto done;
6089 	}
6090 
6091 	if (connp->conn_fanout == NULL)
6092 		goto done;
6093 
6094 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6095 		mutex_enter(&connp->conn_fanout->connf_lock);
6096 		mutex_enter(&connp->conn_lock);
6097 		/*
6098 		 * No one from read or write side can access us now
6099 		 * except for already queued packets on this squeue.
6100 		 * But since we haven't changed the squeue yet, they
6101 		 * can't execute. If they are processed after we have
6102 		 * changed the squeue, they are sent back to the
6103 		 * correct squeue down below.
6104 		 * But a listner close can race with processing of
6105 		 * incoming SYN. If incoming SYN processing changes
6106 		 * the squeue then the listener close which is waiting
6107 		 * to enter the squeue would operate on the wrong
6108 		 * squeue. Hence we don't change the squeue here unless
6109 		 * the refcount is exactly the minimum refcount. The
6110 		 * minimum refcount of 4 is counted as - 1 each for
6111 		 * TCP and IP, 1 for being in the classifier hash, and
6112 		 * 1 for the mblk being processed.
6113 		 */
6114 
6115 		if (connp->conn_ref != 4 ||
6116 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6117 			mutex_exit(&connp->conn_lock);
6118 			mutex_exit(&connp->conn_fanout->connf_lock);
6119 			goto done;
6120 		}
6121 		if (connp->conn_sqp != new_sqp) {
6122 			while (connp->conn_sqp != new_sqp)
6123 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6124 		}
6125 
6126 		do {
6127 			conn_flags = connp->conn_flags;
6128 			conn_flags |= IPCL_FULLY_BOUND;
6129 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6130 			    conn_flags);
6131 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6132 
6133 		mutex_exit(&connp->conn_fanout->connf_lock);
6134 		mutex_exit(&connp->conn_lock);
6135 	}
6136 
6137 done:
6138 	if (connp->conn_sqp != sqp) {
6139 		CONN_INC_REF(connp);
6140 		squeue_fill(connp->conn_sqp, mp,
6141 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6142 	} else {
6143 		tcp_conn_request(connp, mp, sqp);
6144 	}
6145 }
6146 
6147 /*
6148  * Successful connect request processing begins when our client passes
6149  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6150  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6151  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6152  *   upstream <- tcp_rput()                <- IP
6153  * After various error checks are completed, tcp_connect() lays
6154  * the target address and port into the composite header template,
6155  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6156  * request followed by an IRE request, and passes the three mblk message
6157  * down to IP looking like this:
6158  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6159  * Processing continues in tcp_rput() when we receive the following message:
6160  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6161  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6162  * to fire off the connection request, and then passes the T_OK_ACK mblk
6163  * upstream that we filled in below.  There are, of course, numerous
6164  * error conditions along the way which truncate the processing described
6165  * above.
6166  */
6167 static void
6168 tcp_connect(tcp_t *tcp, mblk_t *mp)
6169 {
6170 	sin_t		*sin;
6171 	sin6_t		*sin6;
6172 	queue_t		*q = tcp->tcp_wq;
6173 	struct T_conn_req	*tcr;
6174 	ipaddr_t	*dstaddrp;
6175 	in_port_t	dstport;
6176 	uint_t		srcid;
6177 
6178 	tcr = (struct T_conn_req *)mp->b_rptr;
6179 
6180 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6181 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6182 		tcp_err_ack(tcp, mp, TPROTO, 0);
6183 		return;
6184 	}
6185 
6186 	/*
6187 	 * Determine packet type based on type of address passed in
6188 	 * the request should contain an IPv4 or IPv6 address.
6189 	 * Make sure that address family matches the type of
6190 	 * family of the the address passed down
6191 	 */
6192 	switch (tcr->DEST_length) {
6193 	default:
6194 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6195 		return;
6196 
6197 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6198 		/*
6199 		 * XXX: The check for valid DEST_length was not there
6200 		 * in earlier releases and some buggy
6201 		 * TLI apps (e.g Sybase) got away with not feeding
6202 		 * in sin_zero part of address.
6203 		 * We allow that bug to keep those buggy apps humming.
6204 		 * Test suites require the check on DEST_length.
6205 		 * We construct a new mblk with valid DEST_length
6206 		 * free the original so the rest of the code does
6207 		 * not have to keep track of this special shorter
6208 		 * length address case.
6209 		 */
6210 		mblk_t *nmp;
6211 		struct T_conn_req *ntcr;
6212 		sin_t *nsin;
6213 
6214 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6215 		    tcr->OPT_length, BPRI_HI);
6216 		if (nmp == NULL) {
6217 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6218 			return;
6219 		}
6220 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6221 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6222 		ntcr->PRIM_type = T_CONN_REQ;
6223 		ntcr->DEST_length = sizeof (sin_t);
6224 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6225 
6226 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6227 		*nsin = sin_null;
6228 		/* Get pointer to shorter address to copy from original mp */
6229 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6230 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6231 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6232 			freemsg(nmp);
6233 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6234 			return;
6235 		}
6236 		nsin->sin_family = sin->sin_family;
6237 		nsin->sin_port = sin->sin_port;
6238 		nsin->sin_addr = sin->sin_addr;
6239 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6240 		nmp->b_wptr = (uchar_t *)&nsin[1];
6241 		if (tcr->OPT_length != 0) {
6242 			ntcr->OPT_length = tcr->OPT_length;
6243 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6244 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6245 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6246 			    tcr->OPT_length);
6247 			nmp->b_wptr += tcr->OPT_length;
6248 		}
6249 		freemsg(mp);	/* original mp freed */
6250 		mp = nmp;	/* re-initialize original variables */
6251 		tcr = ntcr;
6252 	}
6253 	/* FALLTHRU */
6254 
6255 	case sizeof (sin_t):
6256 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6257 		    sizeof (sin_t));
6258 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6259 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6260 			return;
6261 		}
6262 		if (tcp->tcp_family != AF_INET ||
6263 		    sin->sin_family != AF_INET) {
6264 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6265 			return;
6266 		}
6267 		if (sin->sin_port == 0) {
6268 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6269 			return;
6270 		}
6271 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6272 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6273 			return;
6274 		}
6275 
6276 		break;
6277 
6278 	case sizeof (sin6_t):
6279 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6280 		    sizeof (sin6_t));
6281 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6282 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6283 			return;
6284 		}
6285 		if (tcp->tcp_family != AF_INET6 ||
6286 		    sin6->sin6_family != AF_INET6) {
6287 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6288 			return;
6289 		}
6290 		if (sin6->sin6_port == 0) {
6291 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6292 			return;
6293 		}
6294 		break;
6295 	}
6296 	/*
6297 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6298 	 * should key on their sequence number and cut them loose.
6299 	 */
6300 
6301 	/*
6302 	 * If options passed in, feed it for verification and handling
6303 	 */
6304 	if (tcr->OPT_length != 0) {
6305 		mblk_t	*ok_mp;
6306 		mblk_t	*discon_mp;
6307 		mblk_t  *conn_opts_mp;
6308 		int t_error, sys_error, do_disconnect;
6309 
6310 		conn_opts_mp = NULL;
6311 
6312 		if (tcp_conprim_opt_process(tcp, mp,
6313 		    &do_disconnect, &t_error, &sys_error) < 0) {
6314 			if (do_disconnect) {
6315 				ASSERT(t_error == 0 && sys_error == 0);
6316 				discon_mp = mi_tpi_discon_ind(NULL,
6317 				    ECONNREFUSED, 0);
6318 				if (!discon_mp) {
6319 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6320 					    TSYSERR, ENOMEM);
6321 					return;
6322 				}
6323 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6324 				if (!ok_mp) {
6325 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6326 					    TSYSERR, ENOMEM);
6327 					return;
6328 				}
6329 				qreply(q, ok_mp);
6330 				qreply(q, discon_mp); /* no flush! */
6331 			} else {
6332 				ASSERT(t_error != 0);
6333 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6334 				    sys_error);
6335 			}
6336 			return;
6337 		}
6338 		/*
6339 		 * Success in setting options, the mp option buffer represented
6340 		 * by OPT_length/offset has been potentially modified and
6341 		 * contains results of option processing. We copy it in
6342 		 * another mp to save it for potentially influencing returning
6343 		 * it in T_CONN_CONN.
6344 		 */
6345 		if (tcr->OPT_length != 0) { /* there are resulting options */
6346 			conn_opts_mp = copyb(mp);
6347 			if (!conn_opts_mp) {
6348 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6349 				    TSYSERR, ENOMEM);
6350 				return;
6351 			}
6352 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6353 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6354 			/*
6355 			 * Note:
6356 			 * These resulting option negotiation can include any
6357 			 * end-to-end negotiation options but there no such
6358 			 * thing (yet?) in our TCP/IP.
6359 			 */
6360 		}
6361 	}
6362 
6363 	/*
6364 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6365 	 * make sure that the template IP header in the tcp structure is an
6366 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6367 	 * need to this before we call tcp_bindi() so that the port lookup
6368 	 * code will look for ports in the correct port space (IPv4 and
6369 	 * IPv6 have separate port spaces).
6370 	 */
6371 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6372 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6373 		int err = 0;
6374 
6375 		err = tcp_header_init_ipv4(tcp);
6376 		if (err != 0) {
6377 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6378 			goto connect_failed;
6379 		}
6380 		if (tcp->tcp_lport != 0)
6381 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6382 	}
6383 
6384 	switch (tcp->tcp_state) {
6385 	case TCPS_IDLE:
6386 		/*
6387 		 * We support quick connect, refer to comments in
6388 		 * tcp_connect_*()
6389 		 */
6390 		/* FALLTHRU */
6391 	case TCPS_BOUND:
6392 	case TCPS_LISTEN:
6393 		if (tcp->tcp_family == AF_INET6) {
6394 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6395 				tcp_connect_ipv6(tcp, mp,
6396 				    &sin6->sin6_addr,
6397 				    sin6->sin6_port, sin6->sin6_flowinfo,
6398 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6399 				return;
6400 			}
6401 			/*
6402 			 * Destination adress is mapped IPv6 address.
6403 			 * Source bound address should be unspecified or
6404 			 * IPv6 mapped address as well.
6405 			 */
6406 			if (!IN6_IS_ADDR_UNSPECIFIED(
6407 			    &tcp->tcp_bound_source_v6) &&
6408 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6409 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6410 				    EADDRNOTAVAIL);
6411 				break;
6412 			}
6413 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6414 			dstport = sin6->sin6_port;
6415 			srcid = sin6->__sin6_src_id;
6416 		} else {
6417 			dstaddrp = &sin->sin_addr.s_addr;
6418 			dstport = sin->sin_port;
6419 			srcid = 0;
6420 		}
6421 
6422 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6423 		return;
6424 	default:
6425 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6426 		break;
6427 	}
6428 	/*
6429 	 * Note: Code below is the "failure" case
6430 	 */
6431 	/* return error ack and blow away saved option results if any */
6432 connect_failed:
6433 	if (mp != NULL)
6434 		putnext(tcp->tcp_rq, mp);
6435 	else {
6436 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6437 		    TSYSERR, ENOMEM);
6438 	}
6439 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6440 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6441 }
6442 
6443 /*
6444  * Handle connect to IPv4 destinations, including connections for AF_INET6
6445  * sockets connecting to IPv4 mapped IPv6 destinations.
6446  */
6447 static void
6448 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6449     uint_t srcid)
6450 {
6451 	tcph_t	*tcph;
6452 	mblk_t	*mp1;
6453 	ipaddr_t dstaddr = *dstaddrp;
6454 	int32_t	oldstate;
6455 	uint16_t lport;
6456 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6457 
6458 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6459 
6460 	/* Check for attempt to connect to INADDR_ANY */
6461 	if (dstaddr == INADDR_ANY)  {
6462 		/*
6463 		 * SunOS 4.x and 4.3 BSD allow an application
6464 		 * to connect a TCP socket to INADDR_ANY.
6465 		 * When they do this, the kernel picks the
6466 		 * address of one interface and uses it
6467 		 * instead.  The kernel usually ends up
6468 		 * picking the address of the loopback
6469 		 * interface.  This is an undocumented feature.
6470 		 * However, we provide the same thing here
6471 		 * in order to have source and binary
6472 		 * compatibility with SunOS 4.x.
6473 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6474 		 * generate the T_CONN_CON.
6475 		 */
6476 		dstaddr = htonl(INADDR_LOOPBACK);
6477 		*dstaddrp = dstaddr;
6478 	}
6479 
6480 	/* Handle __sin6_src_id if socket not bound to an IP address */
6481 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6482 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6483 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6484 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6485 		    tcp->tcp_ipha->ipha_src);
6486 	}
6487 
6488 	/*
6489 	 * Don't let an endpoint connect to itself.  Note that
6490 	 * the test here does not catch the case where the
6491 	 * source IP addr was left unspecified by the user. In
6492 	 * this case, the source addr is set in tcp_adapt_ire()
6493 	 * using the reply to the T_BIND message that we send
6494 	 * down to IP here and the check is repeated in tcp_rput_other.
6495 	 */
6496 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6497 	    dstport == tcp->tcp_lport) {
6498 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6499 		goto failed;
6500 	}
6501 
6502 	tcp->tcp_ipha->ipha_dst = dstaddr;
6503 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6504 
6505 	/*
6506 	 * Massage a source route if any putting the first hop
6507 	 * in iph_dst. Compute a starting value for the checksum which
6508 	 * takes into account that the original iph_dst should be
6509 	 * included in the checksum but that ip will include the
6510 	 * first hop in the source route in the tcp checksum.
6511 	 */
6512 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6513 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6514 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6515 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6516 	if ((int)tcp->tcp_sum < 0)
6517 		tcp->tcp_sum--;
6518 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6519 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6520 	    (tcp->tcp_sum >> 16));
6521 	tcph = tcp->tcp_tcph;
6522 	*(uint16_t *)tcph->th_fport = dstport;
6523 	tcp->tcp_fport = dstport;
6524 
6525 	oldstate = tcp->tcp_state;
6526 	/*
6527 	 * At this point the remote destination address and remote port fields
6528 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6529 	 * have to see which state tcp was in so we can take apropriate action.
6530 	 */
6531 	if (oldstate == TCPS_IDLE) {
6532 		/*
6533 		 * We support a quick connect capability here, allowing
6534 		 * clients to transition directly from IDLE to SYN_SENT
6535 		 * tcp_bindi will pick an unused port, insert the connection
6536 		 * in the bind hash and transition to BOUND state.
6537 		 */
6538 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6539 		    tcp, B_TRUE);
6540 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6541 		    B_FALSE, B_FALSE);
6542 		if (lport == 0) {
6543 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6544 			goto failed;
6545 		}
6546 	}
6547 	tcp->tcp_state = TCPS_SYN_SENT;
6548 
6549 	/*
6550 	 * TODO: allow data with connect requests
6551 	 * by unlinking M_DATA trailers here and
6552 	 * linking them in behind the T_OK_ACK mblk.
6553 	 * The tcp_rput() bind ack handler would then
6554 	 * feed them to tcp_wput_data() rather than call
6555 	 * tcp_timer().
6556 	 */
6557 	mp = mi_tpi_ok_ack_alloc(mp);
6558 	if (!mp) {
6559 		tcp->tcp_state = oldstate;
6560 		goto failed;
6561 	}
6562 	if (tcp->tcp_family == AF_INET) {
6563 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6564 		    sizeof (ipa_conn_t));
6565 	} else {
6566 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6567 		    sizeof (ipa6_conn_t));
6568 	}
6569 	if (mp1) {
6570 		/*
6571 		 * We need to make sure that the conn_recv is set to a non-null
6572 		 * value before we insert the conn_t into the classifier table.
6573 		 * This is to avoid a race with an incoming packet which does
6574 		 * an ipcl_classify().
6575 		 */
6576 		tcp->tcp_connp->conn_recv = tcp_input;
6577 
6578 		/* Hang onto the T_OK_ACK for later. */
6579 		linkb(mp1, mp);
6580 		mblk_setcred(mp1, tcp->tcp_cred);
6581 		if (tcp->tcp_family == AF_INET)
6582 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6583 		else {
6584 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6585 			    &tcp->tcp_sticky_ipp);
6586 		}
6587 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6588 		tcp->tcp_active_open = 1;
6589 		/*
6590 		 * If the bind cannot complete immediately
6591 		 * IP will arrange to call tcp_rput_other
6592 		 * when the bind completes.
6593 		 */
6594 		if (mp1 != NULL)
6595 			tcp_rput_other(tcp, mp1);
6596 		return;
6597 	}
6598 	/* Error case */
6599 	tcp->tcp_state = oldstate;
6600 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6601 
6602 failed:
6603 	/* return error ack and blow away saved option results if any */
6604 	if (mp != NULL)
6605 		putnext(tcp->tcp_rq, mp);
6606 	else {
6607 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6608 		    TSYSERR, ENOMEM);
6609 	}
6610 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6611 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6612 
6613 }
6614 
6615 /*
6616  * Handle connect to IPv6 destinations.
6617  */
6618 static void
6619 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6620     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6621 {
6622 	tcph_t	*tcph;
6623 	mblk_t	*mp1;
6624 	ip6_rthdr_t *rth;
6625 	int32_t  oldstate;
6626 	uint16_t lport;
6627 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6628 
6629 	ASSERT(tcp->tcp_family == AF_INET6);
6630 
6631 	/*
6632 	 * If we're here, it means that the destination address is a native
6633 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6634 	 * reason why it might not be IPv6 is if the socket was bound to an
6635 	 * IPv4-mapped IPv6 address.
6636 	 */
6637 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6638 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6639 		goto failed;
6640 	}
6641 
6642 	/*
6643 	 * Interpret a zero destination to mean loopback.
6644 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6645 	 * generate the T_CONN_CON.
6646 	 */
6647 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6648 		*dstaddrp = ipv6_loopback;
6649 	}
6650 
6651 	/* Handle __sin6_src_id if socket not bound to an IP address */
6652 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6653 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6654 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6655 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6656 	}
6657 
6658 	/*
6659 	 * Take care of the scope_id now and add ip6i_t
6660 	 * if ip6i_t is not already allocated through TCP
6661 	 * sticky options. At this point tcp_ip6h does not
6662 	 * have dst info, thus use dstaddrp.
6663 	 */
6664 	if (scope_id != 0 &&
6665 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6666 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6667 		ip6i_t  *ip6i;
6668 
6669 		ipp->ipp_ifindex = scope_id;
6670 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6671 
6672 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6673 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6674 			/* Already allocated */
6675 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6676 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6677 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6678 		} else {
6679 			int reterr;
6680 
6681 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6682 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6683 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6684 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6685 			if (reterr != 0)
6686 				goto failed;
6687 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6688 		}
6689 	}
6690 
6691 	/*
6692 	 * Don't let an endpoint connect to itself.  Note that
6693 	 * the test here does not catch the case where the
6694 	 * source IP addr was left unspecified by the user. In
6695 	 * this case, the source addr is set in tcp_adapt_ire()
6696 	 * using the reply to the T_BIND message that we send
6697 	 * down to IP here and the check is repeated in tcp_rput_other.
6698 	 */
6699 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6700 	    (dstport == tcp->tcp_lport)) {
6701 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6702 		goto failed;
6703 	}
6704 
6705 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6706 	tcp->tcp_remote_v6 = *dstaddrp;
6707 	tcp->tcp_ip6h->ip6_vcf =
6708 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6709 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6710 
6711 
6712 	/*
6713 	 * Massage a routing header (if present) putting the first hop
6714 	 * in ip6_dst. Compute a starting value for the checksum which
6715 	 * takes into account that the original ip6_dst should be
6716 	 * included in the checksum but that ip will include the
6717 	 * first hop in the source route in the tcp checksum.
6718 	 */
6719 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6720 	if (rth != NULL) {
6721 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6722 		    tcps->tcps_netstack);
6723 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6724 		    (tcp->tcp_sum >> 16));
6725 	} else {
6726 		tcp->tcp_sum = 0;
6727 	}
6728 
6729 	tcph = tcp->tcp_tcph;
6730 	*(uint16_t *)tcph->th_fport = dstport;
6731 	tcp->tcp_fport = dstport;
6732 
6733 	oldstate = tcp->tcp_state;
6734 	/*
6735 	 * At this point the remote destination address and remote port fields
6736 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6737 	 * have to see which state tcp was in so we can take apropriate action.
6738 	 */
6739 	if (oldstate == TCPS_IDLE) {
6740 		/*
6741 		 * We support a quick connect capability here, allowing
6742 		 * clients to transition directly from IDLE to SYN_SENT
6743 		 * tcp_bindi will pick an unused port, insert the connection
6744 		 * in the bind hash and transition to BOUND state.
6745 		 */
6746 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6747 		    tcp, B_TRUE);
6748 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6749 		    B_FALSE, B_FALSE);
6750 		if (lport == 0) {
6751 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6752 			goto failed;
6753 		}
6754 	}
6755 	tcp->tcp_state = TCPS_SYN_SENT;
6756 	/*
6757 	 * TODO: allow data with connect requests
6758 	 * by unlinking M_DATA trailers here and
6759 	 * linking them in behind the T_OK_ACK mblk.
6760 	 * The tcp_rput() bind ack handler would then
6761 	 * feed them to tcp_wput_data() rather than call
6762 	 * tcp_timer().
6763 	 */
6764 	mp = mi_tpi_ok_ack_alloc(mp);
6765 	if (!mp) {
6766 		tcp->tcp_state = oldstate;
6767 		goto failed;
6768 	}
6769 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6770 	if (mp1) {
6771 		/*
6772 		 * We need to make sure that the conn_recv is set to a non-null
6773 		 * value before we insert the conn_t into the classifier table.
6774 		 * This is to avoid a race with an incoming packet which does
6775 		 * an ipcl_classify().
6776 		 */
6777 		tcp->tcp_connp->conn_recv = tcp_input;
6778 
6779 		/* Hang onto the T_OK_ACK for later. */
6780 		linkb(mp1, mp);
6781 		mblk_setcred(mp1, tcp->tcp_cred);
6782 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6783 		    &tcp->tcp_sticky_ipp);
6784 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6785 		tcp->tcp_active_open = 1;
6786 		/* ip_bind_v6() may return ACK or ERROR */
6787 		if (mp1 != NULL)
6788 			tcp_rput_other(tcp, mp1);
6789 		return;
6790 	}
6791 	/* Error case */
6792 	tcp->tcp_state = oldstate;
6793 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6794 
6795 failed:
6796 	/* return error ack and blow away saved option results if any */
6797 	if (mp != NULL)
6798 		putnext(tcp->tcp_rq, mp);
6799 	else {
6800 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6801 		    TSYSERR, ENOMEM);
6802 	}
6803 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6804 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6805 }
6806 
6807 /*
6808  * We need a stream q for detached closing tcp connections
6809  * to use.  Our client hereby indicates that this q is the
6810  * one to use.
6811  */
6812 static void
6813 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6814 {
6815 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6816 	queue_t	*q = tcp->tcp_wq;
6817 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6818 
6819 #ifdef NS_DEBUG
6820 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6821 	    tcps->tcps_netstack->netstack_stackid);
6822 #endif
6823 	mp->b_datap->db_type = M_IOCACK;
6824 	iocp->ioc_count = 0;
6825 	mutex_enter(&tcps->tcps_g_q_lock);
6826 	if (tcps->tcps_g_q != NULL) {
6827 		mutex_exit(&tcps->tcps_g_q_lock);
6828 		iocp->ioc_error = EALREADY;
6829 	} else {
6830 		mblk_t *mp1;
6831 
6832 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6833 		if (mp1 == NULL) {
6834 			mutex_exit(&tcps->tcps_g_q_lock);
6835 			iocp->ioc_error = ENOMEM;
6836 		} else {
6837 			tcps->tcps_g_q = tcp->tcp_rq;
6838 			mutex_exit(&tcps->tcps_g_q_lock);
6839 			iocp->ioc_error = 0;
6840 			iocp->ioc_rval = 0;
6841 			/*
6842 			 * We are passing tcp_sticky_ipp as NULL
6843 			 * as it is not useful for tcp_default queue
6844 			 *
6845 			 * Set conn_recv just in case.
6846 			 */
6847 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6848 
6849 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6850 			if (mp1 != NULL)
6851 				tcp_rput_other(tcp, mp1);
6852 		}
6853 	}
6854 	qreply(q, mp);
6855 }
6856 
6857 /*
6858  * Our client hereby directs us to reject the connection request
6859  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6860  * of sending the appropriate RST, not an ICMP error.
6861  */
6862 static void
6863 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6864 {
6865 	tcp_t	*ltcp = NULL;
6866 	t_scalar_t seqnum;
6867 	conn_t	*connp;
6868 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6869 
6870 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6871 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6872 		tcp_err_ack(tcp, mp, TPROTO, 0);
6873 		return;
6874 	}
6875 
6876 	/*
6877 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6878 	 * when the stream is in BOUND state. Do not send a reset,
6879 	 * since the destination IP address is not valid, and it can
6880 	 * be the initialized value of all zeros (broadcast address).
6881 	 *
6882 	 * If TCP has sent down a bind request to IP and has not
6883 	 * received the reply, reject the request.  Otherwise, TCP
6884 	 * will be confused.
6885 	 */
6886 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6887 		if (tcp->tcp_debug) {
6888 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6889 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6890 		}
6891 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6892 		return;
6893 	}
6894 
6895 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6896 
6897 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6898 
6899 		/*
6900 		 * According to TPI, for non-listeners, ignore seqnum
6901 		 * and disconnect.
6902 		 * Following interpretation of -1 seqnum is historical
6903 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6904 		 * a valid seqnum should not be -1).
6905 		 *
6906 		 *	-1 means disconnect everything
6907 		 *	regardless even on a listener.
6908 		 */
6909 
6910 		int old_state = tcp->tcp_state;
6911 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6912 
6913 		/*
6914 		 * The connection can't be on the tcp_time_wait_head list
6915 		 * since it is not detached.
6916 		 */
6917 		ASSERT(tcp->tcp_time_wait_next == NULL);
6918 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6919 		ASSERT(tcp->tcp_time_wait_expire == 0);
6920 		ltcp = NULL;
6921 		/*
6922 		 * If it used to be a listener, check to make sure no one else
6923 		 * has taken the port before switching back to LISTEN state.
6924 		 */
6925 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6926 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6927 			    tcp->tcp_ipha->ipha_src,
6928 			    tcp->tcp_connp->conn_zoneid, ipst);
6929 			if (connp != NULL)
6930 				ltcp = connp->conn_tcp;
6931 		} else {
6932 			/* Allow tcp_bound_if listeners? */
6933 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6934 			    &tcp->tcp_ip6h->ip6_src, 0,
6935 			    tcp->tcp_connp->conn_zoneid, ipst);
6936 			if (connp != NULL)
6937 				ltcp = connp->conn_tcp;
6938 		}
6939 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6940 			tcp->tcp_state = TCPS_LISTEN;
6941 		} else if (old_state > TCPS_BOUND) {
6942 			tcp->tcp_conn_req_max = 0;
6943 			tcp->tcp_state = TCPS_BOUND;
6944 		}
6945 		if (ltcp != NULL)
6946 			CONN_DEC_REF(ltcp->tcp_connp);
6947 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6948 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6949 		} else if (old_state == TCPS_ESTABLISHED ||
6950 		    old_state == TCPS_CLOSE_WAIT) {
6951 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6952 		}
6953 
6954 		if (tcp->tcp_fused)
6955 			tcp_unfuse(tcp);
6956 
6957 		mutex_enter(&tcp->tcp_eager_lock);
6958 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6959 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6960 			tcp_eager_cleanup(tcp, 0);
6961 		}
6962 		mutex_exit(&tcp->tcp_eager_lock);
6963 
6964 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6965 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6966 
6967 		tcp_reinit(tcp);
6968 
6969 		if (old_state >= TCPS_ESTABLISHED) {
6970 			/* Send M_FLUSH according to TPI */
6971 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6972 		}
6973 		mp = mi_tpi_ok_ack_alloc(mp);
6974 		if (mp)
6975 			putnext(tcp->tcp_rq, mp);
6976 		return;
6977 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6978 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6979 		return;
6980 	}
6981 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6982 		/* Send M_FLUSH according to TPI */
6983 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6984 	}
6985 	mp = mi_tpi_ok_ack_alloc(mp);
6986 	if (mp)
6987 		putnext(tcp->tcp_rq, mp);
6988 }
6989 
6990 /*
6991  * Diagnostic routine used to return a string associated with the tcp state.
6992  * Note that if the caller does not supply a buffer, it will use an internal
6993  * static string.  This means that if multiple threads call this function at
6994  * the same time, output can be corrupted...  Note also that this function
6995  * does not check the size of the supplied buffer.  The caller has to make
6996  * sure that it is big enough.
6997  */
6998 static char *
6999 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7000 {
7001 	char		buf1[30];
7002 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7003 	char		*buf;
7004 	char		*cp;
7005 	in6_addr_t	local, remote;
7006 	char		local_addrbuf[INET6_ADDRSTRLEN];
7007 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7008 
7009 	if (sup_buf != NULL)
7010 		buf = sup_buf;
7011 	else
7012 		buf = priv_buf;
7013 
7014 	if (tcp == NULL)
7015 		return ("NULL_TCP");
7016 	switch (tcp->tcp_state) {
7017 	case TCPS_CLOSED:
7018 		cp = "TCP_CLOSED";
7019 		break;
7020 	case TCPS_IDLE:
7021 		cp = "TCP_IDLE";
7022 		break;
7023 	case TCPS_BOUND:
7024 		cp = "TCP_BOUND";
7025 		break;
7026 	case TCPS_LISTEN:
7027 		cp = "TCP_LISTEN";
7028 		break;
7029 	case TCPS_SYN_SENT:
7030 		cp = "TCP_SYN_SENT";
7031 		break;
7032 	case TCPS_SYN_RCVD:
7033 		cp = "TCP_SYN_RCVD";
7034 		break;
7035 	case TCPS_ESTABLISHED:
7036 		cp = "TCP_ESTABLISHED";
7037 		break;
7038 	case TCPS_CLOSE_WAIT:
7039 		cp = "TCP_CLOSE_WAIT";
7040 		break;
7041 	case TCPS_FIN_WAIT_1:
7042 		cp = "TCP_FIN_WAIT_1";
7043 		break;
7044 	case TCPS_CLOSING:
7045 		cp = "TCP_CLOSING";
7046 		break;
7047 	case TCPS_LAST_ACK:
7048 		cp = "TCP_LAST_ACK";
7049 		break;
7050 	case TCPS_FIN_WAIT_2:
7051 		cp = "TCP_FIN_WAIT_2";
7052 		break;
7053 	case TCPS_TIME_WAIT:
7054 		cp = "TCP_TIME_WAIT";
7055 		break;
7056 	default:
7057 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7058 		cp = buf1;
7059 		break;
7060 	}
7061 	switch (format) {
7062 	case DISP_ADDR_AND_PORT:
7063 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7064 			/*
7065 			 * Note that we use the remote address in the tcp_b
7066 			 * structure.  This means that it will print out
7067 			 * the real destination address, not the next hop's
7068 			 * address if source routing is used.
7069 			 */
7070 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7071 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7072 
7073 		} else {
7074 			local = tcp->tcp_ip_src_v6;
7075 			remote = tcp->tcp_remote_v6;
7076 		}
7077 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7078 		    sizeof (local_addrbuf));
7079 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7080 		    sizeof (remote_addrbuf));
7081 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7082 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7083 		    ntohs(tcp->tcp_fport), cp);
7084 		break;
7085 	case DISP_PORT_ONLY:
7086 	default:
7087 		(void) mi_sprintf(buf, "[%u, %u] %s",
7088 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7089 		break;
7090 	}
7091 
7092 	return (buf);
7093 }
7094 
7095 /*
7096  * Called via squeue to get on to eager's perimeter. It sends a
7097  * TH_RST if eager is in the fanout table. The listener wants the
7098  * eager to disappear either by means of tcp_eager_blowoff() or
7099  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7100  * called (via squeue) if the eager cannot be inserted in the
7101  * fanout table in tcp_conn_request().
7102  */
7103 /* ARGSUSED */
7104 void
7105 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7106 {
7107 	conn_t	*econnp = (conn_t *)arg;
7108 	tcp_t	*eager = econnp->conn_tcp;
7109 	tcp_t	*listener = eager->tcp_listener;
7110 	tcp_stack_t	*tcps = eager->tcp_tcps;
7111 
7112 	/*
7113 	 * We could be called because listener is closing. Since
7114 	 * the eager is using listener's queue's, its not safe.
7115 	 * Better use the default queue just to send the TH_RST
7116 	 * out.
7117 	 */
7118 	ASSERT(tcps->tcps_g_q != NULL);
7119 	eager->tcp_rq = tcps->tcps_g_q;
7120 	eager->tcp_wq = WR(tcps->tcps_g_q);
7121 
7122 	/*
7123 	 * An eager's conn_fanout will be NULL if it's a duplicate
7124 	 * for an existing 4-tuples in the conn fanout table.
7125 	 * We don't want to send an RST out in such case.
7126 	 */
7127 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7128 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7129 		    eager, eager->tcp_snxt, 0, TH_RST);
7130 	}
7131 
7132 	/* We are here because listener wants this eager gone */
7133 	if (listener != NULL) {
7134 		mutex_enter(&listener->tcp_eager_lock);
7135 		tcp_eager_unlink(eager);
7136 		if (eager->tcp_tconnind_started) {
7137 			/*
7138 			 * The eager has sent a conn_ind up to the
7139 			 * listener but listener decides to close
7140 			 * instead. We need to drop the extra ref
7141 			 * placed on eager in tcp_rput_data() before
7142 			 * sending the conn_ind to listener.
7143 			 */
7144 			CONN_DEC_REF(econnp);
7145 		}
7146 		mutex_exit(&listener->tcp_eager_lock);
7147 		CONN_DEC_REF(listener->tcp_connp);
7148 	}
7149 
7150 	if (eager->tcp_state > TCPS_BOUND)
7151 		tcp_close_detached(eager);
7152 }
7153 
7154 /*
7155  * Reset any eager connection hanging off this listener marked
7156  * with 'seqnum' and then reclaim it's resources.
7157  */
7158 static boolean_t
7159 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7160 {
7161 	tcp_t	*eager;
7162 	mblk_t 	*mp;
7163 	tcp_stack_t	*tcps = listener->tcp_tcps;
7164 
7165 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7166 	eager = listener;
7167 	mutex_enter(&listener->tcp_eager_lock);
7168 	do {
7169 		eager = eager->tcp_eager_next_q;
7170 		if (eager == NULL) {
7171 			mutex_exit(&listener->tcp_eager_lock);
7172 			return (B_FALSE);
7173 		}
7174 	} while (eager->tcp_conn_req_seqnum != seqnum);
7175 
7176 	if (eager->tcp_closemp_used) {
7177 		mutex_exit(&listener->tcp_eager_lock);
7178 		return (B_TRUE);
7179 	}
7180 	eager->tcp_closemp_used = B_TRUE;
7181 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7182 	CONN_INC_REF(eager->tcp_connp);
7183 	mutex_exit(&listener->tcp_eager_lock);
7184 	mp = &eager->tcp_closemp;
7185 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7186 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7187 	return (B_TRUE);
7188 }
7189 
7190 /*
7191  * Reset any eager connection hanging off this listener
7192  * and then reclaim it's resources.
7193  */
7194 static void
7195 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7196 {
7197 	tcp_t	*eager;
7198 	mblk_t	*mp;
7199 	tcp_stack_t	*tcps = listener->tcp_tcps;
7200 
7201 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7202 
7203 	if (!q0_only) {
7204 		/* First cleanup q */
7205 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7206 		eager = listener->tcp_eager_next_q;
7207 		while (eager != NULL) {
7208 			if (!eager->tcp_closemp_used) {
7209 				eager->tcp_closemp_used = B_TRUE;
7210 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7211 				CONN_INC_REF(eager->tcp_connp);
7212 				mp = &eager->tcp_closemp;
7213 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7214 				    tcp_eager_kill, eager->tcp_connp,
7215 				    SQTAG_TCP_EAGER_CLEANUP);
7216 			}
7217 			eager = eager->tcp_eager_next_q;
7218 		}
7219 	}
7220 	/* Then cleanup q0 */
7221 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7222 	eager = listener->tcp_eager_next_q0;
7223 	while (eager != listener) {
7224 		if (!eager->tcp_closemp_used) {
7225 			eager->tcp_closemp_used = B_TRUE;
7226 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7227 			CONN_INC_REF(eager->tcp_connp);
7228 			mp = &eager->tcp_closemp;
7229 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7230 			    tcp_eager_kill, eager->tcp_connp,
7231 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7232 		}
7233 		eager = eager->tcp_eager_next_q0;
7234 	}
7235 }
7236 
7237 /*
7238  * If we are an eager connection hanging off a listener that hasn't
7239  * formally accepted the connection yet, get off his list and blow off
7240  * any data that we have accumulated.
7241  */
7242 static void
7243 tcp_eager_unlink(tcp_t *tcp)
7244 {
7245 	tcp_t	*listener = tcp->tcp_listener;
7246 
7247 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7248 	ASSERT(listener != NULL);
7249 	if (tcp->tcp_eager_next_q0 != NULL) {
7250 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7251 
7252 		/* Remove the eager tcp from q0 */
7253 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7254 		    tcp->tcp_eager_prev_q0;
7255 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7256 		    tcp->tcp_eager_next_q0;
7257 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7258 		listener->tcp_conn_req_cnt_q0--;
7259 
7260 		tcp->tcp_eager_next_q0 = NULL;
7261 		tcp->tcp_eager_prev_q0 = NULL;
7262 
7263 		/*
7264 		 * Take the eager out, if it is in the list of droppable
7265 		 * eagers.
7266 		 */
7267 		MAKE_UNDROPPABLE(tcp);
7268 
7269 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7270 			/* we have timed out before */
7271 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7272 			listener->tcp_syn_rcvd_timeout--;
7273 		}
7274 	} else {
7275 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7276 		tcp_t	*prev = NULL;
7277 
7278 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7279 			if (tcpp[0] == tcp) {
7280 				if (listener->tcp_eager_last_q == tcp) {
7281 					/*
7282 					 * If we are unlinking the last
7283 					 * element on the list, adjust
7284 					 * tail pointer. Set tail pointer
7285 					 * to nil when list is empty.
7286 					 */
7287 					ASSERT(tcp->tcp_eager_next_q == NULL);
7288 					if (listener->tcp_eager_last_q ==
7289 					    listener->tcp_eager_next_q) {
7290 						listener->tcp_eager_last_q =
7291 						    NULL;
7292 					} else {
7293 						/*
7294 						 * We won't get here if there
7295 						 * is only one eager in the
7296 						 * list.
7297 						 */
7298 						ASSERT(prev != NULL);
7299 						listener->tcp_eager_last_q =
7300 						    prev;
7301 					}
7302 				}
7303 				tcpp[0] = tcp->tcp_eager_next_q;
7304 				tcp->tcp_eager_next_q = NULL;
7305 				tcp->tcp_eager_last_q = NULL;
7306 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7307 				listener->tcp_conn_req_cnt_q--;
7308 				break;
7309 			}
7310 			prev = tcpp[0];
7311 		}
7312 	}
7313 	tcp->tcp_listener = NULL;
7314 }
7315 
7316 /* Shorthand to generate and send TPI error acks to our client */
7317 static void
7318 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7319 {
7320 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7321 		putnext(tcp->tcp_rq, mp);
7322 }
7323 
7324 /* Shorthand to generate and send TPI error acks to our client */
7325 static void
7326 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7327     int t_error, int sys_error)
7328 {
7329 	struct T_error_ack	*teackp;
7330 
7331 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7332 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7333 		teackp = (struct T_error_ack *)mp->b_rptr;
7334 		teackp->ERROR_prim = primitive;
7335 		teackp->TLI_error = t_error;
7336 		teackp->UNIX_error = sys_error;
7337 		putnext(tcp->tcp_rq, mp);
7338 	}
7339 }
7340 
7341 /*
7342  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7343  * but instead the code relies on:
7344  * - the fact that the address of the array and its size never changes
7345  * - the atomic assignment of the elements of the array
7346  */
7347 /* ARGSUSED */
7348 static int
7349 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7350 {
7351 	int i;
7352 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7353 
7354 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7355 		if (tcps->tcps_g_epriv_ports[i] != 0)
7356 			(void) mi_mpprintf(mp, "%d ",
7357 			    tcps->tcps_g_epriv_ports[i]);
7358 	}
7359 	return (0);
7360 }
7361 
7362 /*
7363  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7364  * threads from changing it at the same time.
7365  */
7366 /* ARGSUSED */
7367 static int
7368 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7369     cred_t *cr)
7370 {
7371 	long	new_value;
7372 	int	i;
7373 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7374 
7375 	/*
7376 	 * Fail the request if the new value does not lie within the
7377 	 * port number limits.
7378 	 */
7379 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7380 	    new_value <= 0 || new_value >= 65536) {
7381 		return (EINVAL);
7382 	}
7383 
7384 	mutex_enter(&tcps->tcps_epriv_port_lock);
7385 	/* Check if the value is already in the list */
7386 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7387 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7388 			mutex_exit(&tcps->tcps_epriv_port_lock);
7389 			return (EEXIST);
7390 		}
7391 	}
7392 	/* Find an empty slot */
7393 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7394 		if (tcps->tcps_g_epriv_ports[i] == 0)
7395 			break;
7396 	}
7397 	if (i == tcps->tcps_g_num_epriv_ports) {
7398 		mutex_exit(&tcps->tcps_epriv_port_lock);
7399 		return (EOVERFLOW);
7400 	}
7401 	/* Set the new value */
7402 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7403 	mutex_exit(&tcps->tcps_epriv_port_lock);
7404 	return (0);
7405 }
7406 
7407 /*
7408  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7409  * threads from changing it at the same time.
7410  */
7411 /* ARGSUSED */
7412 static int
7413 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7414     cred_t *cr)
7415 {
7416 	long	new_value;
7417 	int	i;
7418 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7419 
7420 	/*
7421 	 * Fail the request if the new value does not lie within the
7422 	 * port number limits.
7423 	 */
7424 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7425 	    new_value >= 65536) {
7426 		return (EINVAL);
7427 	}
7428 
7429 	mutex_enter(&tcps->tcps_epriv_port_lock);
7430 	/* Check that the value is already in the list */
7431 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7432 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7433 			break;
7434 	}
7435 	if (i == tcps->tcps_g_num_epriv_ports) {
7436 		mutex_exit(&tcps->tcps_epriv_port_lock);
7437 		return (ESRCH);
7438 	}
7439 	/* Clear the value */
7440 	tcps->tcps_g_epriv_ports[i] = 0;
7441 	mutex_exit(&tcps->tcps_epriv_port_lock);
7442 	return (0);
7443 }
7444 
7445 /* Return the TPI/TLI equivalent of our current tcp_state */
7446 static int
7447 tcp_tpistate(tcp_t *tcp)
7448 {
7449 	switch (tcp->tcp_state) {
7450 	case TCPS_IDLE:
7451 		return (TS_UNBND);
7452 	case TCPS_LISTEN:
7453 		/*
7454 		 * Return whether there are outstanding T_CONN_IND waiting
7455 		 * for the matching T_CONN_RES. Therefore don't count q0.
7456 		 */
7457 		if (tcp->tcp_conn_req_cnt_q > 0)
7458 			return (TS_WRES_CIND);
7459 		else
7460 			return (TS_IDLE);
7461 	case TCPS_BOUND:
7462 		return (TS_IDLE);
7463 	case TCPS_SYN_SENT:
7464 		return (TS_WCON_CREQ);
7465 	case TCPS_SYN_RCVD:
7466 		/*
7467 		 * Note: assumption: this has to the active open SYN_RCVD.
7468 		 * The passive instance is detached in SYN_RCVD stage of
7469 		 * incoming connection processing so we cannot get request
7470 		 * for T_info_ack on it.
7471 		 */
7472 		return (TS_WACK_CRES);
7473 	case TCPS_ESTABLISHED:
7474 		return (TS_DATA_XFER);
7475 	case TCPS_CLOSE_WAIT:
7476 		return (TS_WREQ_ORDREL);
7477 	case TCPS_FIN_WAIT_1:
7478 		return (TS_WIND_ORDREL);
7479 	case TCPS_FIN_WAIT_2:
7480 		return (TS_WIND_ORDREL);
7481 
7482 	case TCPS_CLOSING:
7483 	case TCPS_LAST_ACK:
7484 	case TCPS_TIME_WAIT:
7485 	case TCPS_CLOSED:
7486 		/*
7487 		 * Following TS_WACK_DREQ7 is a rendition of "not
7488 		 * yet TS_IDLE" TPI state. There is no best match to any
7489 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7490 		 * choose a value chosen that will map to TLI/XTI level
7491 		 * state of TSTATECHNG (state is process of changing) which
7492 		 * captures what this dummy state represents.
7493 		 */
7494 		return (TS_WACK_DREQ7);
7495 	default:
7496 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7497 		    tcp->tcp_state, tcp_display(tcp, NULL,
7498 		    DISP_PORT_ONLY));
7499 		return (TS_UNBND);
7500 	}
7501 }
7502 
7503 static void
7504 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7505 {
7506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7507 
7508 	if (tcp->tcp_family == AF_INET6)
7509 		*tia = tcp_g_t_info_ack_v6;
7510 	else
7511 		*tia = tcp_g_t_info_ack;
7512 	tia->CURRENT_state = tcp_tpistate(tcp);
7513 	tia->OPT_size = tcp_max_optsize;
7514 	if (tcp->tcp_mss == 0) {
7515 		/* Not yet set - tcp_open does not set mss */
7516 		if (tcp->tcp_ipversion == IPV4_VERSION)
7517 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7518 		else
7519 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7520 	} else {
7521 		tia->TIDU_size = tcp->tcp_mss;
7522 	}
7523 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7524 }
7525 
7526 /*
7527  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7528  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7529  * tcp_g_t_info_ack.  The current state of the stream is copied from
7530  * tcp_state.
7531  */
7532 static void
7533 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7534 {
7535 	t_uscalar_t		cap_bits1;
7536 	struct T_capability_ack	*tcap;
7537 
7538 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7539 		freemsg(mp);
7540 		return;
7541 	}
7542 
7543 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7544 
7545 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7546 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7547 	if (mp == NULL)
7548 		return;
7549 
7550 	tcap = (struct T_capability_ack *)mp->b_rptr;
7551 	tcap->CAP_bits1 = 0;
7552 
7553 	if (cap_bits1 & TC1_INFO) {
7554 		tcp_copy_info(&tcap->INFO_ack, tcp);
7555 		tcap->CAP_bits1 |= TC1_INFO;
7556 	}
7557 
7558 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7559 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7560 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7561 	}
7562 
7563 	putnext(tcp->tcp_rq, mp);
7564 }
7565 
7566 /*
7567  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7568  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7569  * The current state of the stream is copied from tcp_state.
7570  */
7571 static void
7572 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7573 {
7574 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7575 	    T_INFO_ACK);
7576 	if (!mp) {
7577 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7578 		return;
7579 	}
7580 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7581 	putnext(tcp->tcp_rq, mp);
7582 }
7583 
7584 /* Respond to the TPI addr request */
7585 static void
7586 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7587 {
7588 	sin_t	*sin;
7589 	mblk_t	*ackmp;
7590 	struct T_addr_ack *taa;
7591 
7592 	/* Make it large enough for worst case */
7593 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7594 	    2 * sizeof (sin6_t), 1);
7595 	if (ackmp == NULL) {
7596 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7597 		return;
7598 	}
7599 
7600 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7601 		tcp_addr_req_ipv6(tcp, ackmp);
7602 		return;
7603 	}
7604 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7605 
7606 	bzero(taa, sizeof (struct T_addr_ack));
7607 	ackmp->b_wptr = (uchar_t *)&taa[1];
7608 
7609 	taa->PRIM_type = T_ADDR_ACK;
7610 	ackmp->b_datap->db_type = M_PCPROTO;
7611 
7612 	/*
7613 	 * Note: Following code assumes 32 bit alignment of basic
7614 	 * data structures like sin_t and struct T_addr_ack.
7615 	 */
7616 	if (tcp->tcp_state >= TCPS_BOUND) {
7617 		/*
7618 		 * Fill in local address
7619 		 */
7620 		taa->LOCADDR_length = sizeof (sin_t);
7621 		taa->LOCADDR_offset = sizeof (*taa);
7622 
7623 		sin = (sin_t *)&taa[1];
7624 
7625 		/* Fill zeroes and then intialize non-zero fields */
7626 		*sin = sin_null;
7627 
7628 		sin->sin_family = AF_INET;
7629 
7630 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7631 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7632 
7633 		ackmp->b_wptr = (uchar_t *)&sin[1];
7634 
7635 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7636 			/*
7637 			 * Fill in Remote address
7638 			 */
7639 			taa->REMADDR_length = sizeof (sin_t);
7640 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7641 			    taa->LOCADDR_length);
7642 
7643 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7644 			*sin = sin_null;
7645 			sin->sin_family = AF_INET;
7646 			sin->sin_addr.s_addr = tcp->tcp_remote;
7647 			sin->sin_port = tcp->tcp_fport;
7648 
7649 			ackmp->b_wptr = (uchar_t *)&sin[1];
7650 		}
7651 	}
7652 	putnext(tcp->tcp_rq, ackmp);
7653 }
7654 
7655 /* Assumes that tcp_addr_req gets enough space and alignment */
7656 static void
7657 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7658 {
7659 	sin6_t	*sin6;
7660 	struct T_addr_ack *taa;
7661 
7662 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7663 	ASSERT(OK_32PTR(ackmp->b_rptr));
7664 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7665 	    2 * sizeof (sin6_t));
7666 
7667 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7668 
7669 	bzero(taa, sizeof (struct T_addr_ack));
7670 	ackmp->b_wptr = (uchar_t *)&taa[1];
7671 
7672 	taa->PRIM_type = T_ADDR_ACK;
7673 	ackmp->b_datap->db_type = M_PCPROTO;
7674 
7675 	/*
7676 	 * Note: Following code assumes 32 bit alignment of basic
7677 	 * data structures like sin6_t and struct T_addr_ack.
7678 	 */
7679 	if (tcp->tcp_state >= TCPS_BOUND) {
7680 		/*
7681 		 * Fill in local address
7682 		 */
7683 		taa->LOCADDR_length = sizeof (sin6_t);
7684 		taa->LOCADDR_offset = sizeof (*taa);
7685 
7686 		sin6 = (sin6_t *)&taa[1];
7687 		*sin6 = sin6_null;
7688 
7689 		sin6->sin6_family = AF_INET6;
7690 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7691 		sin6->sin6_port = tcp->tcp_lport;
7692 
7693 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7694 
7695 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7696 			/*
7697 			 * Fill in Remote address
7698 			 */
7699 			taa->REMADDR_length = sizeof (sin6_t);
7700 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7701 			    taa->LOCADDR_length);
7702 
7703 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7704 			*sin6 = sin6_null;
7705 			sin6->sin6_family = AF_INET6;
7706 			sin6->sin6_flowinfo =
7707 			    tcp->tcp_ip6h->ip6_vcf &
7708 			    ~IPV6_VERS_AND_FLOW_MASK;
7709 			sin6->sin6_addr = tcp->tcp_remote_v6;
7710 			sin6->sin6_port = tcp->tcp_fport;
7711 
7712 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7713 		}
7714 	}
7715 	putnext(tcp->tcp_rq, ackmp);
7716 }
7717 
7718 /*
7719  * Handle reinitialization of a tcp structure.
7720  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7721  */
7722 static void
7723 tcp_reinit(tcp_t *tcp)
7724 {
7725 	mblk_t	*mp;
7726 	int 	err;
7727 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7728 
7729 	TCP_STAT(tcps, tcp_reinit_calls);
7730 
7731 	/* tcp_reinit should never be called for detached tcp_t's */
7732 	ASSERT(tcp->tcp_listener == NULL);
7733 	ASSERT((tcp->tcp_family == AF_INET &&
7734 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7735 	    (tcp->tcp_family == AF_INET6 &&
7736 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7737 	    tcp->tcp_ipversion == IPV6_VERSION)));
7738 
7739 	/* Cancel outstanding timers */
7740 	tcp_timers_stop(tcp);
7741 
7742 	/*
7743 	 * Reset everything in the state vector, after updating global
7744 	 * MIB data from instance counters.
7745 	 */
7746 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7747 	tcp->tcp_ibsegs = 0;
7748 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7749 	tcp->tcp_obsegs = 0;
7750 
7751 	tcp_close_mpp(&tcp->tcp_xmit_head);
7752 	if (tcp->tcp_snd_zcopy_aware)
7753 		tcp_zcopy_notify(tcp);
7754 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7755 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7756 	mutex_enter(&tcp->tcp_non_sq_lock);
7757 	if (tcp->tcp_flow_stopped &&
7758 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7759 		tcp_clrqfull(tcp);
7760 	}
7761 	mutex_exit(&tcp->tcp_non_sq_lock);
7762 	tcp_close_mpp(&tcp->tcp_reass_head);
7763 	tcp->tcp_reass_tail = NULL;
7764 	if (tcp->tcp_rcv_list != NULL) {
7765 		/* Free b_next chain */
7766 		tcp_close_mpp(&tcp->tcp_rcv_list);
7767 		tcp->tcp_rcv_last_head = NULL;
7768 		tcp->tcp_rcv_last_tail = NULL;
7769 		tcp->tcp_rcv_cnt = 0;
7770 	}
7771 	tcp->tcp_rcv_last_tail = NULL;
7772 
7773 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7774 		freemsg(mp);
7775 		tcp->tcp_urp_mp = NULL;
7776 	}
7777 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7778 		freemsg(mp);
7779 		tcp->tcp_urp_mark_mp = NULL;
7780 	}
7781 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7782 		freeb(tcp->tcp_fused_sigurg_mp);
7783 		tcp->tcp_fused_sigurg_mp = NULL;
7784 	}
7785 
7786 	/*
7787 	 * Following is a union with two members which are
7788 	 * identical types and size so the following cleanup
7789 	 * is enough.
7790 	 */
7791 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7792 
7793 	CL_INET_DISCONNECT(tcp);
7794 
7795 	/*
7796 	 * The connection can't be on the tcp_time_wait_head list
7797 	 * since it is not detached.
7798 	 */
7799 	ASSERT(tcp->tcp_time_wait_next == NULL);
7800 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7801 	ASSERT(tcp->tcp_time_wait_expire == 0);
7802 
7803 	if (tcp->tcp_kssl_pending) {
7804 		tcp->tcp_kssl_pending = B_FALSE;
7805 
7806 		/* Don't reset if the initialized by bind. */
7807 		if (tcp->tcp_kssl_ent != NULL) {
7808 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7809 			    KSSL_NO_PROXY);
7810 		}
7811 	}
7812 	if (tcp->tcp_kssl_ctx != NULL) {
7813 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7814 		tcp->tcp_kssl_ctx = NULL;
7815 	}
7816 
7817 	/*
7818 	 * Reset/preserve other values
7819 	 */
7820 	tcp_reinit_values(tcp);
7821 	ipcl_hash_remove(tcp->tcp_connp);
7822 	conn_delete_ire(tcp->tcp_connp, NULL);
7823 	tcp_ipsec_cleanup(tcp);
7824 
7825 	if (tcp->tcp_conn_req_max != 0) {
7826 		/*
7827 		 * This is the case when a TLI program uses the same
7828 		 * transport end point to accept a connection.  This
7829 		 * makes the TCP both a listener and acceptor.  When
7830 		 * this connection is closed, we need to set the state
7831 		 * back to TCPS_LISTEN.  Make sure that the eager list
7832 		 * is reinitialized.
7833 		 *
7834 		 * Note that this stream is still bound to the four
7835 		 * tuples of the previous connection in IP.  If a new
7836 		 * SYN with different foreign address comes in, IP will
7837 		 * not find it and will send it to the global queue.  In
7838 		 * the global queue, TCP will do a tcp_lookup_listener()
7839 		 * to find this stream.  This works because this stream
7840 		 * is only removed from connected hash.
7841 		 *
7842 		 */
7843 		tcp->tcp_state = TCPS_LISTEN;
7844 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7845 		tcp->tcp_eager_next_drop_q0 = tcp;
7846 		tcp->tcp_eager_prev_drop_q0 = tcp;
7847 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7848 		if (tcp->tcp_family == AF_INET6) {
7849 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7850 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7851 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7852 		} else {
7853 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7854 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7855 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7856 		}
7857 	} else {
7858 		tcp->tcp_state = TCPS_BOUND;
7859 	}
7860 
7861 	/*
7862 	 * Initialize to default values
7863 	 * Can't fail since enough header template space already allocated
7864 	 * at open().
7865 	 */
7866 	err = tcp_init_values(tcp);
7867 	ASSERT(err == 0);
7868 	/* Restore state in tcp_tcph */
7869 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7870 	if (tcp->tcp_ipversion == IPV4_VERSION)
7871 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7872 	else
7873 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7874 	/*
7875 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7876 	 * since the lookup funcs can only lookup on tcp_t
7877 	 */
7878 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7879 
7880 	ASSERT(tcp->tcp_ptpbhn != NULL);
7881 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7882 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7883 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7884 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7885 }
7886 
7887 /*
7888  * Force values to zero that need be zero.
7889  * Do not touch values asociated with the BOUND or LISTEN state
7890  * since the connection will end up in that state after the reinit.
7891  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7892  * structure!
7893  */
7894 static void
7895 tcp_reinit_values(tcp)
7896 	tcp_t *tcp;
7897 {
7898 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7899 
7900 #ifndef	lint
7901 #define	DONTCARE(x)
7902 #define	PRESERVE(x)
7903 #else
7904 #define	DONTCARE(x)	((x) = (x))
7905 #define	PRESERVE(x)	((x) = (x))
7906 #endif	/* lint */
7907 
7908 	PRESERVE(tcp->tcp_bind_hash);
7909 	PRESERVE(tcp->tcp_ptpbhn);
7910 	PRESERVE(tcp->tcp_acceptor_hash);
7911 	PRESERVE(tcp->tcp_ptpahn);
7912 
7913 	/* Should be ASSERT NULL on these with new code! */
7914 	ASSERT(tcp->tcp_time_wait_next == NULL);
7915 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7916 	ASSERT(tcp->tcp_time_wait_expire == 0);
7917 	PRESERVE(tcp->tcp_state);
7918 	PRESERVE(tcp->tcp_rq);
7919 	PRESERVE(tcp->tcp_wq);
7920 
7921 	ASSERT(tcp->tcp_xmit_head == NULL);
7922 	ASSERT(tcp->tcp_xmit_last == NULL);
7923 	ASSERT(tcp->tcp_unsent == 0);
7924 	ASSERT(tcp->tcp_xmit_tail == NULL);
7925 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7926 
7927 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7928 	tcp->tcp_suna = 0;			/* Displayed in mib */
7929 	tcp->tcp_swnd = 0;
7930 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7931 
7932 	ASSERT(tcp->tcp_ibsegs == 0);
7933 	ASSERT(tcp->tcp_obsegs == 0);
7934 
7935 	if (tcp->tcp_iphc != NULL) {
7936 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7937 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7938 	}
7939 
7940 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7941 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7942 	DONTCARE(tcp->tcp_ipha);
7943 	DONTCARE(tcp->tcp_ip6h);
7944 	DONTCARE(tcp->tcp_ip_hdr_len);
7945 	DONTCARE(tcp->tcp_tcph);
7946 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7947 	tcp->tcp_valid_bits = 0;
7948 
7949 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7950 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7951 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7952 	tcp->tcp_last_rcv_lbolt = 0;
7953 
7954 	tcp->tcp_init_cwnd = 0;
7955 
7956 	tcp->tcp_urp_last_valid = 0;
7957 	tcp->tcp_hard_binding = 0;
7958 	tcp->tcp_hard_bound = 0;
7959 	PRESERVE(tcp->tcp_cred);
7960 	PRESERVE(tcp->tcp_cpid);
7961 	PRESERVE(tcp->tcp_open_time);
7962 	PRESERVE(tcp->tcp_exclbind);
7963 
7964 	tcp->tcp_fin_acked = 0;
7965 	tcp->tcp_fin_rcvd = 0;
7966 	tcp->tcp_fin_sent = 0;
7967 	tcp->tcp_ordrel_done = 0;
7968 
7969 	tcp->tcp_debug = 0;
7970 	tcp->tcp_dontroute = 0;
7971 	tcp->tcp_broadcast = 0;
7972 
7973 	tcp->tcp_useloopback = 0;
7974 	tcp->tcp_reuseaddr = 0;
7975 	tcp->tcp_oobinline = 0;
7976 	tcp->tcp_dgram_errind = 0;
7977 
7978 	tcp->tcp_detached = 0;
7979 	tcp->tcp_bind_pending = 0;
7980 	tcp->tcp_unbind_pending = 0;
7981 	tcp->tcp_deferred_clean_death = 0;
7982 
7983 	tcp->tcp_snd_ws_ok = B_FALSE;
7984 	tcp->tcp_snd_ts_ok = B_FALSE;
7985 	tcp->tcp_linger = 0;
7986 	tcp->tcp_ka_enabled = 0;
7987 	tcp->tcp_zero_win_probe = 0;
7988 
7989 	tcp->tcp_loopback = 0;
7990 	tcp->tcp_localnet = 0;
7991 	tcp->tcp_syn_defense = 0;
7992 	tcp->tcp_set_timer = 0;
7993 
7994 	tcp->tcp_active_open = 0;
7995 	ASSERT(tcp->tcp_timeout == B_FALSE);
7996 	tcp->tcp_rexmit = B_FALSE;
7997 	tcp->tcp_xmit_zc_clean = B_FALSE;
7998 
7999 	tcp->tcp_snd_sack_ok = B_FALSE;
8000 	PRESERVE(tcp->tcp_recvdstaddr);
8001 	tcp->tcp_hwcksum = B_FALSE;
8002 
8003 	tcp->tcp_ire_ill_check_done = B_FALSE;
8004 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8005 
8006 	tcp->tcp_mdt = B_FALSE;
8007 	tcp->tcp_mdt_hdr_head = 0;
8008 	tcp->tcp_mdt_hdr_tail = 0;
8009 
8010 	tcp->tcp_conn_def_q0 = 0;
8011 	tcp->tcp_ip_forward_progress = B_FALSE;
8012 	tcp->tcp_anon_priv_bind = 0;
8013 	tcp->tcp_ecn_ok = B_FALSE;
8014 
8015 	tcp->tcp_cwr = B_FALSE;
8016 	tcp->tcp_ecn_echo_on = B_FALSE;
8017 
8018 	if (tcp->tcp_sack_info != NULL) {
8019 		if (tcp->tcp_notsack_list != NULL) {
8020 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8021 		}
8022 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8023 		tcp->tcp_sack_info = NULL;
8024 	}
8025 
8026 	tcp->tcp_rcv_ws = 0;
8027 	tcp->tcp_snd_ws = 0;
8028 	tcp->tcp_ts_recent = 0;
8029 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8030 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8031 	tcp->tcp_if_mtu = 0;
8032 
8033 	ASSERT(tcp->tcp_reass_head == NULL);
8034 	ASSERT(tcp->tcp_reass_tail == NULL);
8035 
8036 	tcp->tcp_cwnd_cnt = 0;
8037 
8038 	ASSERT(tcp->tcp_rcv_list == NULL);
8039 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8040 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8041 	ASSERT(tcp->tcp_rcv_cnt == 0);
8042 
8043 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8044 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8045 	tcp->tcp_csuna = 0;
8046 
8047 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8048 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8049 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8050 	tcp->tcp_rtt_update = 0;
8051 
8052 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8053 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8054 
8055 	tcp->tcp_rack = 0;			/* Displayed in mib */
8056 	tcp->tcp_rack_cnt = 0;
8057 	tcp->tcp_rack_cur_max = 0;
8058 	tcp->tcp_rack_abs_max = 0;
8059 
8060 	tcp->tcp_max_swnd = 0;
8061 
8062 	ASSERT(tcp->tcp_listener == NULL);
8063 
8064 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8065 
8066 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8067 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8068 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8069 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8070 
8071 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8072 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8073 	PRESERVE(tcp->tcp_conn_req_max);
8074 	PRESERVE(tcp->tcp_conn_req_seqnum);
8075 
8076 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8077 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8078 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8079 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8080 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8081 
8082 	tcp->tcp_lingertime = 0;
8083 
8084 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8085 	ASSERT(tcp->tcp_urp_mp == NULL);
8086 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8087 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8088 
8089 	ASSERT(tcp->tcp_eager_next_q == NULL);
8090 	ASSERT(tcp->tcp_eager_last_q == NULL);
8091 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8092 	    tcp->tcp_eager_prev_q0 == NULL) ||
8093 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8094 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8095 
8096 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8097 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8098 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8099 
8100 	tcp->tcp_client_errno = 0;
8101 
8102 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8103 
8104 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8105 
8106 	PRESERVE(tcp->tcp_bound_source_v6);
8107 	tcp->tcp_last_sent_len = 0;
8108 	tcp->tcp_dupack_cnt = 0;
8109 
8110 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8111 	PRESERVE(tcp->tcp_lport);
8112 
8113 	PRESERVE(tcp->tcp_acceptor_lockp);
8114 
8115 	ASSERT(tcp->tcp_ordrelid == 0);
8116 	PRESERVE(tcp->tcp_acceptor_id);
8117 	DONTCARE(tcp->tcp_ipsec_overhead);
8118 
8119 	/*
8120 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8121 	 * in tcp structure and now tracing), Re-initialize all
8122 	 * members of tcp_traceinfo.
8123 	 */
8124 	if (tcp->tcp_tracebuf != NULL) {
8125 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8126 	}
8127 
8128 	PRESERVE(tcp->tcp_family);
8129 	if (tcp->tcp_family == AF_INET6) {
8130 		tcp->tcp_ipversion = IPV6_VERSION;
8131 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8132 	} else {
8133 		tcp->tcp_ipversion = IPV4_VERSION;
8134 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8135 	}
8136 
8137 	tcp->tcp_bound_if = 0;
8138 	tcp->tcp_ipv6_recvancillary = 0;
8139 	tcp->tcp_recvifindex = 0;
8140 	tcp->tcp_recvhops = 0;
8141 	tcp->tcp_closed = 0;
8142 	tcp->tcp_cleandeathtag = 0;
8143 	if (tcp->tcp_hopopts != NULL) {
8144 		mi_free(tcp->tcp_hopopts);
8145 		tcp->tcp_hopopts = NULL;
8146 		tcp->tcp_hopoptslen = 0;
8147 	}
8148 	ASSERT(tcp->tcp_hopoptslen == 0);
8149 	if (tcp->tcp_dstopts != NULL) {
8150 		mi_free(tcp->tcp_dstopts);
8151 		tcp->tcp_dstopts = NULL;
8152 		tcp->tcp_dstoptslen = 0;
8153 	}
8154 	ASSERT(tcp->tcp_dstoptslen == 0);
8155 	if (tcp->tcp_rtdstopts != NULL) {
8156 		mi_free(tcp->tcp_rtdstopts);
8157 		tcp->tcp_rtdstopts = NULL;
8158 		tcp->tcp_rtdstoptslen = 0;
8159 	}
8160 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8161 	if (tcp->tcp_rthdr != NULL) {
8162 		mi_free(tcp->tcp_rthdr);
8163 		tcp->tcp_rthdr = NULL;
8164 		tcp->tcp_rthdrlen = 0;
8165 	}
8166 	ASSERT(tcp->tcp_rthdrlen == 0);
8167 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8168 
8169 	/* Reset fusion-related fields */
8170 	tcp->tcp_fused = B_FALSE;
8171 	tcp->tcp_unfusable = B_FALSE;
8172 	tcp->tcp_fused_sigurg = B_FALSE;
8173 	tcp->tcp_direct_sockfs = B_FALSE;
8174 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8175 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8176 	tcp->tcp_loopback_peer = NULL;
8177 	tcp->tcp_fuse_rcv_hiwater = 0;
8178 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8179 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8180 
8181 	tcp->tcp_lso = B_FALSE;
8182 
8183 	tcp->tcp_in_ack_unsent = 0;
8184 	tcp->tcp_cork = B_FALSE;
8185 	tcp->tcp_tconnind_started = B_FALSE;
8186 
8187 	PRESERVE(tcp->tcp_squeue_bytes);
8188 
8189 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8190 	ASSERT(!tcp->tcp_kssl_pending);
8191 	PRESERVE(tcp->tcp_kssl_ent);
8192 
8193 	tcp->tcp_closemp_used = B_FALSE;
8194 
8195 #ifdef DEBUG
8196 	DONTCARE(tcp->tcmp_stk[0]);
8197 #endif
8198 
8199 
8200 #undef	DONTCARE
8201 #undef	PRESERVE
8202 }
8203 
8204 /*
8205  * Allocate necessary resources and initialize state vector.
8206  * Guaranteed not to fail so that when an error is returned,
8207  * the caller doesn't need to do any additional cleanup.
8208  */
8209 int
8210 tcp_init(tcp_t *tcp, queue_t *q)
8211 {
8212 	int	err;
8213 
8214 	tcp->tcp_rq = q;
8215 	tcp->tcp_wq = WR(q);
8216 	tcp->tcp_state = TCPS_IDLE;
8217 	if ((err = tcp_init_values(tcp)) != 0)
8218 		tcp_timers_stop(tcp);
8219 	return (err);
8220 }
8221 
8222 static int
8223 tcp_init_values(tcp_t *tcp)
8224 {
8225 	int	err;
8226 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8227 
8228 	ASSERT((tcp->tcp_family == AF_INET &&
8229 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8230 	    (tcp->tcp_family == AF_INET6 &&
8231 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8232 	    tcp->tcp_ipversion == IPV6_VERSION)));
8233 
8234 	/*
8235 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8236 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8237 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8238 	 * during first few transmissions of a connection as seen in slow
8239 	 * links.
8240 	 */
8241 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8242 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8243 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8244 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8245 	    tcps->tcps_conn_grace_period;
8246 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8247 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8248 	tcp->tcp_timer_backoff = 0;
8249 	tcp->tcp_ms_we_have_waited = 0;
8250 	tcp->tcp_last_recv_time = lbolt;
8251 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8252 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8253 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8254 
8255 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8256 
8257 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8258 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8259 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8260 	/*
8261 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8262 	 * passive open.
8263 	 */
8264 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8265 
8266 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8267 
8268 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8269 
8270 	tcp->tcp_mdt_hdr_head = 0;
8271 	tcp->tcp_mdt_hdr_tail = 0;
8272 
8273 	/* Reset fusion-related fields */
8274 	tcp->tcp_fused = B_FALSE;
8275 	tcp->tcp_unfusable = B_FALSE;
8276 	tcp->tcp_fused_sigurg = B_FALSE;
8277 	tcp->tcp_direct_sockfs = B_FALSE;
8278 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8279 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8280 	tcp->tcp_loopback_peer = NULL;
8281 	tcp->tcp_fuse_rcv_hiwater = 0;
8282 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8283 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8284 
8285 	/* Initialize the header template */
8286 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8287 		err = tcp_header_init_ipv4(tcp);
8288 	} else {
8289 		err = tcp_header_init_ipv6(tcp);
8290 	}
8291 	if (err)
8292 		return (err);
8293 
8294 	/*
8295 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8296 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8297 	 */
8298 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8299 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8300 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8301 
8302 	tcp->tcp_cork = B_FALSE;
8303 	/*
8304 	 * Init the tcp_debug option.  This value determines whether TCP
8305 	 * calls strlog() to print out debug messages.  Doing this
8306 	 * initialization here means that this value is not inherited thru
8307 	 * tcp_reinit().
8308 	 */
8309 	tcp->tcp_debug = tcps->tcps_dbg;
8310 
8311 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8312 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8313 
8314 	return (0);
8315 }
8316 
8317 /*
8318  * Initialize the IPv4 header. Loses any record of any IP options.
8319  */
8320 static int
8321 tcp_header_init_ipv4(tcp_t *tcp)
8322 {
8323 	tcph_t		*tcph;
8324 	uint32_t	sum;
8325 	conn_t		*connp;
8326 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8327 
8328 	/*
8329 	 * This is a simple initialization. If there's
8330 	 * already a template, it should never be too small,
8331 	 * so reuse it.  Otherwise, allocate space for the new one.
8332 	 */
8333 	if (tcp->tcp_iphc == NULL) {
8334 		ASSERT(tcp->tcp_iphc_len == 0);
8335 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8336 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8337 		if (tcp->tcp_iphc == NULL) {
8338 			tcp->tcp_iphc_len = 0;
8339 			return (ENOMEM);
8340 		}
8341 	}
8342 
8343 	/* options are gone; may need a new label */
8344 	connp = tcp->tcp_connp;
8345 	connp->conn_mlp_type = mlptSingle;
8346 	connp->conn_ulp_labeled = !is_system_labeled();
8347 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8348 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8349 	tcp->tcp_ip6h = NULL;
8350 	tcp->tcp_ipversion = IPV4_VERSION;
8351 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8352 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8353 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8354 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8355 	tcp->tcp_ipha->ipha_version_and_hdr_length
8356 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8357 	tcp->tcp_ipha->ipha_ident = 0;
8358 
8359 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8360 	tcp->tcp_tos = 0;
8361 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8362 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8363 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8364 
8365 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8366 	tcp->tcp_tcph = tcph;
8367 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8368 	/*
8369 	 * IP wants our header length in the checksum field to
8370 	 * allow it to perform a single pseudo-header+checksum
8371 	 * calculation on behalf of TCP.
8372 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8373 	 */
8374 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8375 	sum = (sum >> 16) + (sum & 0xFFFF);
8376 	U16_TO_ABE16(sum, tcph->th_sum);
8377 	return (0);
8378 }
8379 
8380 /*
8381  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8382  */
8383 static int
8384 tcp_header_init_ipv6(tcp_t *tcp)
8385 {
8386 	tcph_t	*tcph;
8387 	uint32_t	sum;
8388 	conn_t	*connp;
8389 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8390 
8391 	/*
8392 	 * This is a simple initialization. If there's
8393 	 * already a template, it should never be too small,
8394 	 * so reuse it. Otherwise, allocate space for the new one.
8395 	 * Ensure that there is enough space to "downgrade" the tcp_t
8396 	 * to an IPv4 tcp_t. This requires having space for a full load
8397 	 * of IPv4 options, as well as a full load of TCP options
8398 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8399 	 * than a v6 header and a TCP header with a full load of TCP options
8400 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8401 	 * We want to avoid reallocation in the "downgraded" case when
8402 	 * processing outbound IPv4 options.
8403 	 */
8404 	if (tcp->tcp_iphc == NULL) {
8405 		ASSERT(tcp->tcp_iphc_len == 0);
8406 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8407 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8408 		if (tcp->tcp_iphc == NULL) {
8409 			tcp->tcp_iphc_len = 0;
8410 			return (ENOMEM);
8411 		}
8412 	}
8413 
8414 	/* options are gone; may need a new label */
8415 	connp = tcp->tcp_connp;
8416 	connp->conn_mlp_type = mlptSingle;
8417 	connp->conn_ulp_labeled = !is_system_labeled();
8418 
8419 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8420 	tcp->tcp_ipversion = IPV6_VERSION;
8421 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8422 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8423 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8424 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8425 	tcp->tcp_ipha = NULL;
8426 
8427 	/* Initialize the header template */
8428 
8429 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8430 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8431 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8432 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8433 
8434 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8435 	tcp->tcp_tcph = tcph;
8436 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8437 	/*
8438 	 * IP wants our header length in the checksum field to
8439 	 * allow it to perform a single psuedo-header+checksum
8440 	 * calculation on behalf of TCP.
8441 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8442 	 */
8443 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8444 	sum = (sum >> 16) + (sum & 0xFFFF);
8445 	U16_TO_ABE16(sum, tcph->th_sum);
8446 	return (0);
8447 }
8448 
8449 /* At minimum we need 8 bytes in the TCP header for the lookup */
8450 #define	ICMP_MIN_TCP_HDR	8
8451 
8452 /*
8453  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8454  * passed up by IP. The message is always received on the correct tcp_t.
8455  * Assumes that IP has pulled up everything up to and including the ICMP header.
8456  */
8457 void
8458 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8459 {
8460 	icmph_t *icmph;
8461 	ipha_t	*ipha;
8462 	int	iph_hdr_length;
8463 	tcph_t	*tcph;
8464 	boolean_t ipsec_mctl = B_FALSE;
8465 	boolean_t secure;
8466 	mblk_t *first_mp = mp;
8467 	uint32_t new_mss;
8468 	uint32_t ratio;
8469 	size_t mp_size = MBLKL(mp);
8470 	uint32_t seg_seq;
8471 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8472 
8473 	/* Assume IP provides aligned packets - otherwise toss */
8474 	if (!OK_32PTR(mp->b_rptr)) {
8475 		freemsg(mp);
8476 		return;
8477 	}
8478 
8479 	/*
8480 	 * Since ICMP errors are normal data marked with M_CTL when sent
8481 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8482 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8483 	 */
8484 	if ((mp_size == sizeof (ipsec_info_t)) &&
8485 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8486 		ASSERT(mp->b_cont != NULL);
8487 		mp = mp->b_cont;
8488 		/* IP should have done this */
8489 		ASSERT(OK_32PTR(mp->b_rptr));
8490 		mp_size = MBLKL(mp);
8491 		ipsec_mctl = B_TRUE;
8492 	}
8493 
8494 	/*
8495 	 * Verify that we have a complete outer IP header. If not, drop it.
8496 	 */
8497 	if (mp_size < sizeof (ipha_t)) {
8498 noticmpv4:
8499 		freemsg(first_mp);
8500 		return;
8501 	}
8502 
8503 	ipha = (ipha_t *)mp->b_rptr;
8504 	/*
8505 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8506 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8507 	 */
8508 	switch (IPH_HDR_VERSION(ipha)) {
8509 	case IPV6_VERSION:
8510 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8511 		return;
8512 	case IPV4_VERSION:
8513 		break;
8514 	default:
8515 		goto noticmpv4;
8516 	}
8517 
8518 	/* Skip past the outer IP and ICMP headers */
8519 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8520 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8521 	/*
8522 	 * If we don't have the correct outer IP header length or if the ULP
8523 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8524 	 * send it upstream.
8525 	 */
8526 	if (iph_hdr_length < sizeof (ipha_t) ||
8527 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8528 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8529 		goto noticmpv4;
8530 	}
8531 	ipha = (ipha_t *)&icmph[1];
8532 
8533 	/* Skip past the inner IP and find the ULP header */
8534 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8535 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8536 	/*
8537 	 * If we don't have the correct inner IP header length or if the ULP
8538 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8539 	 * bytes of TCP header, drop it.
8540 	 */
8541 	if (iph_hdr_length < sizeof (ipha_t) ||
8542 	    ipha->ipha_protocol != IPPROTO_TCP ||
8543 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8544 		goto noticmpv4;
8545 	}
8546 
8547 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8548 		if (ipsec_mctl) {
8549 			secure = ipsec_in_is_secure(first_mp);
8550 		} else {
8551 			secure = B_FALSE;
8552 		}
8553 		if (secure) {
8554 			/*
8555 			 * If we are willing to accept this in clear
8556 			 * we don't have to verify policy.
8557 			 */
8558 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8559 				if (!tcp_check_policy(tcp, first_mp,
8560 				    ipha, NULL, secure, ipsec_mctl)) {
8561 					/*
8562 					 * tcp_check_policy called
8563 					 * ip_drop_packet() on failure.
8564 					 */
8565 					return;
8566 				}
8567 			}
8568 		}
8569 	} else if (ipsec_mctl) {
8570 		/*
8571 		 * This is a hard_bound connection. IP has already
8572 		 * verified policy. We don't have to do it again.
8573 		 */
8574 		freeb(first_mp);
8575 		first_mp = mp;
8576 		ipsec_mctl = B_FALSE;
8577 	}
8578 
8579 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8580 	/*
8581 	 * TCP SHOULD check that the TCP sequence number contained in
8582 	 * payload of the ICMP error message is within the range
8583 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8584 	 */
8585 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8586 		/*
8587 		 * If the ICMP message is bogus, should we kill the
8588 		 * connection, or should we just drop the bogus ICMP
8589 		 * message? It would probably make more sense to just
8590 		 * drop the message so that if this one managed to get
8591 		 * in, the real connection should not suffer.
8592 		 */
8593 		goto noticmpv4;
8594 	}
8595 
8596 	switch (icmph->icmph_type) {
8597 	case ICMP_DEST_UNREACHABLE:
8598 		switch (icmph->icmph_code) {
8599 		case ICMP_FRAGMENTATION_NEEDED:
8600 			/*
8601 			 * Reduce the MSS based on the new MTU.  This will
8602 			 * eliminate any fragmentation locally.
8603 			 * N.B.  There may well be some funny side-effects on
8604 			 * the local send policy and the remote receive policy.
8605 			 * Pending further research, we provide
8606 			 * tcp_ignore_path_mtu just in case this proves
8607 			 * disastrous somewhere.
8608 			 *
8609 			 * After updating the MSS, retransmit part of the
8610 			 * dropped segment using the new mss by calling
8611 			 * tcp_wput_data().  Need to adjust all those
8612 			 * params to make sure tcp_wput_data() work properly.
8613 			 */
8614 			if (tcps->tcps_ignore_path_mtu)
8615 				break;
8616 
8617 			/*
8618 			 * Decrease the MSS by time stamp options
8619 			 * IP options and IPSEC options. tcp_hdr_len
8620 			 * includes time stamp option and IP option
8621 			 * length.
8622 			 */
8623 
8624 			new_mss = ntohs(icmph->icmph_du_mtu) -
8625 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8626 
8627 			/*
8628 			 * Only update the MSS if the new one is
8629 			 * smaller than the previous one.  This is
8630 			 * to avoid problems when getting multiple
8631 			 * ICMP errors for the same MTU.
8632 			 */
8633 			if (new_mss >= tcp->tcp_mss)
8634 				break;
8635 
8636 			/*
8637 			 * Stop doing PMTU if new_mss is less than 68
8638 			 * or less than tcp_mss_min.
8639 			 * The value 68 comes from rfc 1191.
8640 			 */
8641 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8642 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8643 				    0;
8644 
8645 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8646 			ASSERT(ratio >= 1);
8647 			tcp_mss_set(tcp, new_mss, B_TRUE);
8648 
8649 			/*
8650 			 * Make sure we have something to
8651 			 * send.
8652 			 */
8653 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8654 			    (tcp->tcp_xmit_head != NULL)) {
8655 				/*
8656 				 * Shrink tcp_cwnd in
8657 				 * proportion to the old MSS/new MSS.
8658 				 */
8659 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8660 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8661 				    (tcp->tcp_unsent == 0)) {
8662 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8663 				} else {
8664 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8665 				}
8666 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8667 				tcp->tcp_rexmit = B_TRUE;
8668 				tcp->tcp_dupack_cnt = 0;
8669 				tcp->tcp_snd_burst = TCP_CWND_SS;
8670 				tcp_ss_rexmit(tcp);
8671 			}
8672 			break;
8673 		case ICMP_PORT_UNREACHABLE:
8674 		case ICMP_PROTOCOL_UNREACHABLE:
8675 			switch (tcp->tcp_state) {
8676 			case TCPS_SYN_SENT:
8677 			case TCPS_SYN_RCVD:
8678 				/*
8679 				 * ICMP can snipe away incipient
8680 				 * TCP connections as long as
8681 				 * seq number is same as initial
8682 				 * send seq number.
8683 				 */
8684 				if (seg_seq == tcp->tcp_iss) {
8685 					(void) tcp_clean_death(tcp,
8686 					    ECONNREFUSED, 6);
8687 				}
8688 				break;
8689 			}
8690 			break;
8691 		case ICMP_HOST_UNREACHABLE:
8692 		case ICMP_NET_UNREACHABLE:
8693 			/* Record the error in case we finally time out. */
8694 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8695 				tcp->tcp_client_errno = EHOSTUNREACH;
8696 			else
8697 				tcp->tcp_client_errno = ENETUNREACH;
8698 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8699 				if (tcp->tcp_listener != NULL &&
8700 				    tcp->tcp_listener->tcp_syn_defense) {
8701 					/*
8702 					 * Ditch the half-open connection if we
8703 					 * suspect a SYN attack is under way.
8704 					 */
8705 					tcp_ip_ire_mark_advice(tcp);
8706 					(void) tcp_clean_death(tcp,
8707 					    tcp->tcp_client_errno, 7);
8708 				}
8709 			}
8710 			break;
8711 		default:
8712 			break;
8713 		}
8714 		break;
8715 	case ICMP_SOURCE_QUENCH: {
8716 		/*
8717 		 * use a global boolean to control
8718 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8719 		 * The default is false.
8720 		 */
8721 		if (tcp_icmp_source_quench) {
8722 			/*
8723 			 * Reduce the sending rate as if we got a
8724 			 * retransmit timeout
8725 			 */
8726 			uint32_t npkt;
8727 
8728 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8729 			    tcp->tcp_mss;
8730 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8731 			tcp->tcp_cwnd = tcp->tcp_mss;
8732 			tcp->tcp_cwnd_cnt = 0;
8733 		}
8734 		break;
8735 	}
8736 	}
8737 	freemsg(first_mp);
8738 }
8739 
8740 /*
8741  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8742  * error messages passed up by IP.
8743  * Assumes that IP has pulled up all the extension headers as well
8744  * as the ICMPv6 header.
8745  */
8746 static void
8747 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8748 {
8749 	icmp6_t *icmp6;
8750 	ip6_t	*ip6h;
8751 	uint16_t	iph_hdr_length;
8752 	tcpha_t	*tcpha;
8753 	uint8_t	*nexthdrp;
8754 	uint32_t new_mss;
8755 	uint32_t ratio;
8756 	boolean_t secure;
8757 	mblk_t *first_mp = mp;
8758 	size_t mp_size;
8759 	uint32_t seg_seq;
8760 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8761 
8762 	/*
8763 	 * The caller has determined if this is an IPSEC_IN packet and
8764 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8765 	 */
8766 	if (ipsec_mctl)
8767 		mp = mp->b_cont;
8768 
8769 	mp_size = MBLKL(mp);
8770 
8771 	/*
8772 	 * Verify that we have a complete IP header. If not, send it upstream.
8773 	 */
8774 	if (mp_size < sizeof (ip6_t)) {
8775 noticmpv6:
8776 		freemsg(first_mp);
8777 		return;
8778 	}
8779 
8780 	/*
8781 	 * Verify this is an ICMPV6 packet, else send it upstream.
8782 	 */
8783 	ip6h = (ip6_t *)mp->b_rptr;
8784 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8785 		iph_hdr_length = IPV6_HDR_LEN;
8786 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8787 	    &nexthdrp) ||
8788 	    *nexthdrp != IPPROTO_ICMPV6) {
8789 		goto noticmpv6;
8790 	}
8791 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8792 	ip6h = (ip6_t *)&icmp6[1];
8793 	/*
8794 	 * Verify if we have a complete ICMP and inner IP header.
8795 	 */
8796 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8797 		goto noticmpv6;
8798 
8799 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8800 		goto noticmpv6;
8801 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8802 	/*
8803 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8804 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8805 	 * packet.
8806 	 */
8807 	if ((*nexthdrp != IPPROTO_TCP) ||
8808 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8809 		goto noticmpv6;
8810 	}
8811 
8812 	/*
8813 	 * ICMP errors come on the right queue or come on
8814 	 * listener/global queue for detached connections and
8815 	 * get switched to the right queue. If it comes on the
8816 	 * right queue, policy check has already been done by IP
8817 	 * and thus free the first_mp without verifying the policy.
8818 	 * If it has come for a non-hard bound connection, we need
8819 	 * to verify policy as IP may not have done it.
8820 	 */
8821 	if (!tcp->tcp_hard_bound) {
8822 		if (ipsec_mctl) {
8823 			secure = ipsec_in_is_secure(first_mp);
8824 		} else {
8825 			secure = B_FALSE;
8826 		}
8827 		if (secure) {
8828 			/*
8829 			 * If we are willing to accept this in clear
8830 			 * we don't have to verify policy.
8831 			 */
8832 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8833 				if (!tcp_check_policy(tcp, first_mp,
8834 				    NULL, ip6h, secure, ipsec_mctl)) {
8835 					/*
8836 					 * tcp_check_policy called
8837 					 * ip_drop_packet() on failure.
8838 					 */
8839 					return;
8840 				}
8841 			}
8842 		}
8843 	} else if (ipsec_mctl) {
8844 		/*
8845 		 * This is a hard_bound connection. IP has already
8846 		 * verified policy. We don't have to do it again.
8847 		 */
8848 		freeb(first_mp);
8849 		first_mp = mp;
8850 		ipsec_mctl = B_FALSE;
8851 	}
8852 
8853 	seg_seq = ntohl(tcpha->tha_seq);
8854 	/*
8855 	 * TCP SHOULD check that the TCP sequence number contained in
8856 	 * payload of the ICMP error message is within the range
8857 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8858 	 */
8859 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8860 		/*
8861 		 * If the ICMP message is bogus, should we kill the
8862 		 * connection, or should we just drop the bogus ICMP
8863 		 * message? It would probably make more sense to just
8864 		 * drop the message so that if this one managed to get
8865 		 * in, the real connection should not suffer.
8866 		 */
8867 		goto noticmpv6;
8868 	}
8869 
8870 	switch (icmp6->icmp6_type) {
8871 	case ICMP6_PACKET_TOO_BIG:
8872 		/*
8873 		 * Reduce the MSS based on the new MTU.  This will
8874 		 * eliminate any fragmentation locally.
8875 		 * N.B.  There may well be some funny side-effects on
8876 		 * the local send policy and the remote receive policy.
8877 		 * Pending further research, we provide
8878 		 * tcp_ignore_path_mtu just in case this proves
8879 		 * disastrous somewhere.
8880 		 *
8881 		 * After updating the MSS, retransmit part of the
8882 		 * dropped segment using the new mss by calling
8883 		 * tcp_wput_data().  Need to adjust all those
8884 		 * params to make sure tcp_wput_data() work properly.
8885 		 */
8886 		if (tcps->tcps_ignore_path_mtu)
8887 			break;
8888 
8889 		/*
8890 		 * Decrease the MSS by time stamp options
8891 		 * IP options and IPSEC options. tcp_hdr_len
8892 		 * includes time stamp option and IP option
8893 		 * length.
8894 		 */
8895 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8896 		    tcp->tcp_ipsec_overhead;
8897 
8898 		/*
8899 		 * Only update the MSS if the new one is
8900 		 * smaller than the previous one.  This is
8901 		 * to avoid problems when getting multiple
8902 		 * ICMP errors for the same MTU.
8903 		 */
8904 		if (new_mss >= tcp->tcp_mss)
8905 			break;
8906 
8907 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8908 		ASSERT(ratio >= 1);
8909 		tcp_mss_set(tcp, new_mss, B_TRUE);
8910 
8911 		/*
8912 		 * Make sure we have something to
8913 		 * send.
8914 		 */
8915 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8916 		    (tcp->tcp_xmit_head != NULL)) {
8917 			/*
8918 			 * Shrink tcp_cwnd in
8919 			 * proportion to the old MSS/new MSS.
8920 			 */
8921 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8922 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8923 			    (tcp->tcp_unsent == 0)) {
8924 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8925 			} else {
8926 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8927 			}
8928 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8929 			tcp->tcp_rexmit = B_TRUE;
8930 			tcp->tcp_dupack_cnt = 0;
8931 			tcp->tcp_snd_burst = TCP_CWND_SS;
8932 			tcp_ss_rexmit(tcp);
8933 		}
8934 		break;
8935 
8936 	case ICMP6_DST_UNREACH:
8937 		switch (icmp6->icmp6_code) {
8938 		case ICMP6_DST_UNREACH_NOPORT:
8939 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8940 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8941 			    (seg_seq == tcp->tcp_iss)) {
8942 				(void) tcp_clean_death(tcp,
8943 				    ECONNREFUSED, 8);
8944 			}
8945 			break;
8946 
8947 		case ICMP6_DST_UNREACH_ADMIN:
8948 		case ICMP6_DST_UNREACH_NOROUTE:
8949 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8950 		case ICMP6_DST_UNREACH_ADDR:
8951 			/* Record the error in case we finally time out. */
8952 			tcp->tcp_client_errno = EHOSTUNREACH;
8953 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8954 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8955 			    (seg_seq == tcp->tcp_iss)) {
8956 				if (tcp->tcp_listener != NULL &&
8957 				    tcp->tcp_listener->tcp_syn_defense) {
8958 					/*
8959 					 * Ditch the half-open connection if we
8960 					 * suspect a SYN attack is under way.
8961 					 */
8962 					tcp_ip_ire_mark_advice(tcp);
8963 					(void) tcp_clean_death(tcp,
8964 					    tcp->tcp_client_errno, 9);
8965 				}
8966 			}
8967 
8968 
8969 			break;
8970 		default:
8971 			break;
8972 		}
8973 		break;
8974 
8975 	case ICMP6_PARAM_PROB:
8976 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8977 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8978 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8979 		    (uchar_t *)nexthdrp) {
8980 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8981 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8982 				(void) tcp_clean_death(tcp,
8983 				    ECONNREFUSED, 10);
8984 			}
8985 			break;
8986 		}
8987 		break;
8988 
8989 	case ICMP6_TIME_EXCEEDED:
8990 	default:
8991 		break;
8992 	}
8993 	freemsg(first_mp);
8994 }
8995 
8996 /*
8997  * IP recognizes seven kinds of bind requests:
8998  *
8999  * - A zero-length address binds only to the protocol number.
9000  *
9001  * - A 4-byte address is treated as a request to
9002  * validate that the address is a valid local IPv4
9003  * address, appropriate for an application to bind to.
9004  * IP does the verification, but does not make any note
9005  * of the address at this time.
9006  *
9007  * - A 16-byte address contains is treated as a request
9008  * to validate a local IPv6 address, as the 4-byte
9009  * address case above.
9010  *
9011  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9012  * use it for the inbound fanout of packets.
9013  *
9014  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9015  * use it for the inbound fanout of packets.
9016  *
9017  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9018  * information consisting of local and remote addresses
9019  * and ports.  In this case, the addresses are both
9020  * validated as appropriate for this operation, and, if
9021  * so, the information is retained for use in the
9022  * inbound fanout.
9023  *
9024  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9025  * fanout information, like the 12-byte case above.
9026  *
9027  * IP will also fill in the IRE request mblk with information
9028  * regarding our peer.  In all cases, we notify IP of our protocol
9029  * type by appending a single protocol byte to the bind request.
9030  */
9031 static mblk_t *
9032 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9033 {
9034 	char	*cp;
9035 	mblk_t	*mp;
9036 	struct T_bind_req *tbr;
9037 	ipa_conn_t	*ac;
9038 	ipa6_conn_t	*ac6;
9039 	sin_t		*sin;
9040 	sin6_t		*sin6;
9041 
9042 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9043 	ASSERT((tcp->tcp_family == AF_INET &&
9044 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9045 	    (tcp->tcp_family == AF_INET6 &&
9046 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9047 	    tcp->tcp_ipversion == IPV6_VERSION)));
9048 
9049 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9050 	if (!mp)
9051 		return (mp);
9052 	mp->b_datap->db_type = M_PROTO;
9053 	tbr = (struct T_bind_req *)mp->b_rptr;
9054 	tbr->PRIM_type = bind_prim;
9055 	tbr->ADDR_offset = sizeof (*tbr);
9056 	tbr->CONIND_number = 0;
9057 	tbr->ADDR_length = addr_length;
9058 	cp = (char *)&tbr[1];
9059 	switch (addr_length) {
9060 	case sizeof (ipa_conn_t):
9061 		ASSERT(tcp->tcp_family == AF_INET);
9062 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9063 
9064 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9065 		if (mp->b_cont == NULL) {
9066 			freemsg(mp);
9067 			return (NULL);
9068 		}
9069 		mp->b_cont->b_wptr += sizeof (ire_t);
9070 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9071 
9072 		/* cp known to be 32 bit aligned */
9073 		ac = (ipa_conn_t *)cp;
9074 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9075 		ac->ac_faddr = tcp->tcp_remote;
9076 		ac->ac_fport = tcp->tcp_fport;
9077 		ac->ac_lport = tcp->tcp_lport;
9078 		tcp->tcp_hard_binding = 1;
9079 		break;
9080 
9081 	case sizeof (ipa6_conn_t):
9082 		ASSERT(tcp->tcp_family == AF_INET6);
9083 
9084 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9085 		if (mp->b_cont == NULL) {
9086 			freemsg(mp);
9087 			return (NULL);
9088 		}
9089 		mp->b_cont->b_wptr += sizeof (ire_t);
9090 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9091 
9092 		/* cp known to be 32 bit aligned */
9093 		ac6 = (ipa6_conn_t *)cp;
9094 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9095 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9096 			    &ac6->ac6_laddr);
9097 		} else {
9098 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9099 		}
9100 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9101 		ac6->ac6_fport = tcp->tcp_fport;
9102 		ac6->ac6_lport = tcp->tcp_lport;
9103 		tcp->tcp_hard_binding = 1;
9104 		break;
9105 
9106 	case sizeof (sin_t):
9107 		/*
9108 		 * NOTE: IPV6_ADDR_LEN also has same size.
9109 		 * Use family to discriminate.
9110 		 */
9111 		if (tcp->tcp_family == AF_INET) {
9112 			sin = (sin_t *)cp;
9113 
9114 			*sin = sin_null;
9115 			sin->sin_family = AF_INET;
9116 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9117 			sin->sin_port = tcp->tcp_lport;
9118 			break;
9119 		} else {
9120 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9121 		}
9122 		break;
9123 
9124 	case sizeof (sin6_t):
9125 		ASSERT(tcp->tcp_family == AF_INET6);
9126 		sin6 = (sin6_t *)cp;
9127 
9128 		*sin6 = sin6_null;
9129 		sin6->sin6_family = AF_INET6;
9130 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9131 		sin6->sin6_port = tcp->tcp_lport;
9132 		break;
9133 
9134 	case IP_ADDR_LEN:
9135 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9136 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9137 		break;
9138 
9139 	}
9140 	/* Add protocol number to end */
9141 	cp[addr_length] = (char)IPPROTO_TCP;
9142 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9143 	return (mp);
9144 }
9145 
9146 /*
9147  * Notify IP that we are having trouble with this connection.  IP should
9148  * blow the IRE away and start over.
9149  */
9150 static void
9151 tcp_ip_notify(tcp_t *tcp)
9152 {
9153 	struct iocblk	*iocp;
9154 	ipid_t	*ipid;
9155 	mblk_t	*mp;
9156 
9157 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9158 	if (tcp->tcp_ipversion == IPV6_VERSION)
9159 		return;
9160 
9161 	mp = mkiocb(IP_IOCTL);
9162 	if (mp == NULL)
9163 		return;
9164 
9165 	iocp = (struct iocblk *)mp->b_rptr;
9166 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9167 
9168 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9169 	if (!mp->b_cont) {
9170 		freeb(mp);
9171 		return;
9172 	}
9173 
9174 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9175 	mp->b_cont->b_wptr += iocp->ioc_count;
9176 	bzero(ipid, sizeof (*ipid));
9177 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9178 	ipid->ipid_ire_type = IRE_CACHE;
9179 	ipid->ipid_addr_offset = sizeof (ipid_t);
9180 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9181 	/*
9182 	 * Note: in the case of source routing we want to blow away the
9183 	 * route to the first source route hop.
9184 	 */
9185 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9186 	    sizeof (tcp->tcp_ipha->ipha_dst));
9187 
9188 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9189 }
9190 
9191 /* Unlink and return any mblk that looks like it contains an ire */
9192 static mblk_t *
9193 tcp_ire_mp(mblk_t *mp)
9194 {
9195 	mblk_t	*prev_mp;
9196 
9197 	for (;;) {
9198 		prev_mp = mp;
9199 		mp = mp->b_cont;
9200 		if (mp == NULL)
9201 			break;
9202 		switch (DB_TYPE(mp)) {
9203 		case IRE_DB_TYPE:
9204 		case IRE_DB_REQ_TYPE:
9205 			if (prev_mp != NULL)
9206 				prev_mp->b_cont = mp->b_cont;
9207 			mp->b_cont = NULL;
9208 			return (mp);
9209 		default:
9210 			break;
9211 		}
9212 	}
9213 	return (mp);
9214 }
9215 
9216 /*
9217  * Timer callback routine for keepalive probe.  We do a fake resend of
9218  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9219  * check to see if we have heard anything from the other end for the last
9220  * RTO period.  If we have, set the timer to expire for another
9221  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9222  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9223  * the timeout if we have not heard from the other side.  If for more than
9224  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9225  * kill the connection unless the keepalive abort threshold is 0.  In
9226  * that case, we will probe "forever."
9227  */
9228 static void
9229 tcp_keepalive_killer(void *arg)
9230 {
9231 	mblk_t	*mp;
9232 	conn_t	*connp = (conn_t *)arg;
9233 	tcp_t  	*tcp = connp->conn_tcp;
9234 	int32_t	firetime;
9235 	int32_t	idletime;
9236 	int32_t	ka_intrvl;
9237 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9238 
9239 	tcp->tcp_ka_tid = 0;
9240 
9241 	if (tcp->tcp_fused)
9242 		return;
9243 
9244 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9245 	ka_intrvl = tcp->tcp_ka_interval;
9246 
9247 	/*
9248 	 * Keepalive probe should only be sent if the application has not
9249 	 * done a close on the connection.
9250 	 */
9251 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9252 		return;
9253 	}
9254 	/* Timer fired too early, restart it. */
9255 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9256 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9257 		    MSEC_TO_TICK(ka_intrvl));
9258 		return;
9259 	}
9260 
9261 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9262 	/*
9263 	 * If we have not heard from the other side for a long
9264 	 * time, kill the connection unless the keepalive abort
9265 	 * threshold is 0.  In that case, we will probe "forever."
9266 	 */
9267 	if (tcp->tcp_ka_abort_thres != 0 &&
9268 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9269 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9270 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9271 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9272 		return;
9273 	}
9274 
9275 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9276 	    idletime >= ka_intrvl) {
9277 		/* Fake resend of last ACKed byte. */
9278 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9279 
9280 		if (mp1 != NULL) {
9281 			*mp1->b_wptr++ = '\0';
9282 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9283 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9284 			freeb(mp1);
9285 			/*
9286 			 * if allocation failed, fall through to start the
9287 			 * timer back.
9288 			 */
9289 			if (mp != NULL) {
9290 				TCP_RECORD_TRACE(tcp, mp,
9291 				    TCP_TRACE_SEND_PKT);
9292 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9293 				BUMP_MIB(&tcps->tcps_mib,
9294 				    tcpTimKeepaliveProbe);
9295 				if (tcp->tcp_ka_last_intrvl != 0) {
9296 					int max;
9297 					/*
9298 					 * We should probe again at least
9299 					 * in ka_intrvl, but not more than
9300 					 * tcp_rexmit_interval_max.
9301 					 */
9302 					max = tcps->tcps_rexmit_interval_max;
9303 					firetime = MIN(ka_intrvl - 1,
9304 					    tcp->tcp_ka_last_intrvl << 1);
9305 					if (firetime > max)
9306 						firetime = max;
9307 				} else {
9308 					firetime = tcp->tcp_rto;
9309 				}
9310 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9311 				    tcp_keepalive_killer,
9312 				    MSEC_TO_TICK(firetime));
9313 				tcp->tcp_ka_last_intrvl = firetime;
9314 				return;
9315 			}
9316 		}
9317 	} else {
9318 		tcp->tcp_ka_last_intrvl = 0;
9319 	}
9320 
9321 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9322 	if ((firetime = ka_intrvl - idletime) < 0) {
9323 		firetime = ka_intrvl;
9324 	}
9325 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9326 	    MSEC_TO_TICK(firetime));
9327 }
9328 
9329 int
9330 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9331 {
9332 	queue_t	*q = tcp->tcp_rq;
9333 	int32_t	mss = tcp->tcp_mss;
9334 	int	maxpsz;
9335 
9336 	if (TCP_IS_DETACHED(tcp))
9337 		return (mss);
9338 
9339 	if (tcp->tcp_fused) {
9340 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9341 		mss = INFPSZ;
9342 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9343 		/*
9344 		 * Set the sd_qn_maxpsz according to the socket send buffer
9345 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9346 		 * instruct the stream head to copyin user data into contiguous
9347 		 * kernel-allocated buffers without breaking it up into smaller
9348 		 * chunks.  We round up the buffer size to the nearest SMSS.
9349 		 */
9350 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9351 		if (tcp->tcp_kssl_ctx == NULL)
9352 			mss = INFPSZ;
9353 		else
9354 			mss = SSL3_MAX_RECORD_LEN;
9355 	} else {
9356 		/*
9357 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9358 		 * (and a multiple of the mss).  This instructs the stream
9359 		 * head to break down larger than SMSS writes into SMSS-
9360 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9361 		 */
9362 		maxpsz = tcp->tcp_maxpsz * mss;
9363 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9364 			maxpsz = tcp->tcp_xmit_hiwater/2;
9365 			/* Round up to nearest mss */
9366 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9367 		}
9368 	}
9369 	(void) setmaxps(q, maxpsz);
9370 	tcp->tcp_wq->q_maxpsz = maxpsz;
9371 
9372 	if (set_maxblk)
9373 		(void) mi_set_sth_maxblk(q, mss);
9374 
9375 	return (mss);
9376 }
9377 
9378 /*
9379  * Extract option values from a tcp header.  We put any found values into the
9380  * tcpopt struct and return a bitmask saying which options were found.
9381  */
9382 static int
9383 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9384 {
9385 	uchar_t		*endp;
9386 	int		len;
9387 	uint32_t	mss;
9388 	uchar_t		*up = (uchar_t *)tcph;
9389 	int		found = 0;
9390 	int32_t		sack_len;
9391 	tcp_seq		sack_begin, sack_end;
9392 	tcp_t		*tcp;
9393 
9394 	endp = up + TCP_HDR_LENGTH(tcph);
9395 	up += TCP_MIN_HEADER_LENGTH;
9396 	while (up < endp) {
9397 		len = endp - up;
9398 		switch (*up) {
9399 		case TCPOPT_EOL:
9400 			break;
9401 
9402 		case TCPOPT_NOP:
9403 			up++;
9404 			continue;
9405 
9406 		case TCPOPT_MAXSEG:
9407 			if (len < TCPOPT_MAXSEG_LEN ||
9408 			    up[1] != TCPOPT_MAXSEG_LEN)
9409 				break;
9410 
9411 			mss = BE16_TO_U16(up+2);
9412 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9413 			tcpopt->tcp_opt_mss = mss;
9414 			found |= TCP_OPT_MSS_PRESENT;
9415 
9416 			up += TCPOPT_MAXSEG_LEN;
9417 			continue;
9418 
9419 		case TCPOPT_WSCALE:
9420 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9421 				break;
9422 
9423 			if (up[2] > TCP_MAX_WINSHIFT)
9424 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9425 			else
9426 				tcpopt->tcp_opt_wscale = up[2];
9427 			found |= TCP_OPT_WSCALE_PRESENT;
9428 
9429 			up += TCPOPT_WS_LEN;
9430 			continue;
9431 
9432 		case TCPOPT_SACK_PERMITTED:
9433 			if (len < TCPOPT_SACK_OK_LEN ||
9434 			    up[1] != TCPOPT_SACK_OK_LEN)
9435 				break;
9436 			found |= TCP_OPT_SACK_OK_PRESENT;
9437 			up += TCPOPT_SACK_OK_LEN;
9438 			continue;
9439 
9440 		case TCPOPT_SACK:
9441 			if (len <= 2 || up[1] <= 2 || len < up[1])
9442 				break;
9443 
9444 			/* If TCP is not interested in SACK blks... */
9445 			if ((tcp = tcpopt->tcp) == NULL) {
9446 				up += up[1];
9447 				continue;
9448 			}
9449 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9450 			up += TCPOPT_HEADER_LEN;
9451 
9452 			/*
9453 			 * If the list is empty, allocate one and assume
9454 			 * nothing is sack'ed.
9455 			 */
9456 			ASSERT(tcp->tcp_sack_info != NULL);
9457 			if (tcp->tcp_notsack_list == NULL) {
9458 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9459 				    tcp->tcp_suna, tcp->tcp_snxt,
9460 				    &(tcp->tcp_num_notsack_blk),
9461 				    &(tcp->tcp_cnt_notsack_list));
9462 
9463 				/*
9464 				 * Make sure tcp_notsack_list is not NULL.
9465 				 * This happens when kmem_alloc(KM_NOSLEEP)
9466 				 * returns NULL.
9467 				 */
9468 				if (tcp->tcp_notsack_list == NULL) {
9469 					up += sack_len;
9470 					continue;
9471 				}
9472 				tcp->tcp_fack = tcp->tcp_suna;
9473 			}
9474 
9475 			while (sack_len > 0) {
9476 				if (up + 8 > endp) {
9477 					up = endp;
9478 					break;
9479 				}
9480 				sack_begin = BE32_TO_U32(up);
9481 				up += 4;
9482 				sack_end = BE32_TO_U32(up);
9483 				up += 4;
9484 				sack_len -= 8;
9485 				/*
9486 				 * Bounds checking.  Make sure the SACK
9487 				 * info is within tcp_suna and tcp_snxt.
9488 				 * If this SACK blk is out of bound, ignore
9489 				 * it but continue to parse the following
9490 				 * blks.
9491 				 */
9492 				if (SEQ_LEQ(sack_end, sack_begin) ||
9493 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9494 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9495 					continue;
9496 				}
9497 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9498 				    sack_begin, sack_end,
9499 				    &(tcp->tcp_num_notsack_blk),
9500 				    &(tcp->tcp_cnt_notsack_list));
9501 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9502 					tcp->tcp_fack = sack_end;
9503 				}
9504 			}
9505 			found |= TCP_OPT_SACK_PRESENT;
9506 			continue;
9507 
9508 		case TCPOPT_TSTAMP:
9509 			if (len < TCPOPT_TSTAMP_LEN ||
9510 			    up[1] != TCPOPT_TSTAMP_LEN)
9511 				break;
9512 
9513 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9514 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9515 
9516 			found |= TCP_OPT_TSTAMP_PRESENT;
9517 
9518 			up += TCPOPT_TSTAMP_LEN;
9519 			continue;
9520 
9521 		default:
9522 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9523 				break;
9524 			up += up[1];
9525 			continue;
9526 		}
9527 		break;
9528 	}
9529 	return (found);
9530 }
9531 
9532 /*
9533  * Set the mss associated with a particular tcp based on its current value,
9534  * and a new one passed in. Observe minimums and maximums, and reset
9535  * other state variables that we want to view as multiples of mss.
9536  *
9537  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9538  * highwater marks etc. need to be initialized or adjusted.
9539  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9540  *    packet arrives.
9541  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9542  *    ICMP6_PACKET_TOO_BIG arrives.
9543  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9544  *    to increase the MSS to use the extra bytes available.
9545  *
9546  * Callers except tcp_paws_check() ensure that they only reduce mss.
9547  */
9548 static void
9549 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9550 {
9551 	uint32_t	mss_max;
9552 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9553 
9554 	if (tcp->tcp_ipversion == IPV4_VERSION)
9555 		mss_max = tcps->tcps_mss_max_ipv4;
9556 	else
9557 		mss_max = tcps->tcps_mss_max_ipv6;
9558 
9559 	if (mss < tcps->tcps_mss_min)
9560 		mss = tcps->tcps_mss_min;
9561 	if (mss > mss_max)
9562 		mss = mss_max;
9563 	/*
9564 	 * Unless naglim has been set by our client to
9565 	 * a non-mss value, force naglim to track mss.
9566 	 * This can help to aggregate small writes.
9567 	 */
9568 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9569 		tcp->tcp_naglim = mss;
9570 	/*
9571 	 * TCP should be able to buffer at least 4 MSS data for obvious
9572 	 * performance reason.
9573 	 */
9574 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9575 		tcp->tcp_xmit_hiwater = mss << 2;
9576 
9577 	if (do_ss) {
9578 		/*
9579 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9580 		 * changing due to a reduction in MTU, presumably as a
9581 		 * result of a new path component, reset cwnd to its
9582 		 * "initial" value, as a multiple of the new mss.
9583 		 */
9584 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9585 	} else {
9586 		/*
9587 		 * Called by tcp_paws_check(), the mss increased
9588 		 * marginally to allow use of space previously taken
9589 		 * by the timestamp option. It would be inappropriate
9590 		 * to apply slow start or tcp_init_cwnd values to
9591 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9592 		 */
9593 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9594 		tcp->tcp_cwnd_cnt = 0;
9595 	}
9596 	tcp->tcp_mss = mss;
9597 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9598 }
9599 
9600 /* For /dev/tcp aka AF_INET open */
9601 static int
9602 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9603 {
9604 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9605 }
9606 
9607 /* For /dev/tcp6 aka AF_INET6 open */
9608 static int
9609 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9610 {
9611 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9612 }
9613 
9614 static int
9615 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9616     boolean_t isv6)
9617 {
9618 	tcp_t		*tcp = NULL;
9619 	conn_t		*connp;
9620 	int		err;
9621 	vmem_t		*minor_arena = NULL;
9622 	dev_t		conn_dev;
9623 	zoneid_t	zoneid;
9624 	tcp_stack_t	*tcps = NULL;
9625 
9626 	if (q->q_ptr != NULL)
9627 		return (0);
9628 
9629 	if (sflag == MODOPEN)
9630 		return (EINVAL);
9631 
9632 	if (!(flag & SO_ACCEPTOR)) {
9633 		/*
9634 		 * Special case for install: miniroot needs to be able to
9635 		 * access files via NFS as though it were always in the
9636 		 * global zone.
9637 		 */
9638 		if (credp == kcred && nfs_global_client_only != 0) {
9639 			zoneid = GLOBAL_ZONEID;
9640 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9641 			    netstack_tcp;
9642 			ASSERT(tcps != NULL);
9643 		} else {
9644 			netstack_t *ns;
9645 
9646 			ns = netstack_find_by_cred(credp);
9647 			ASSERT(ns != NULL);
9648 			tcps = ns->netstack_tcp;
9649 			ASSERT(tcps != NULL);
9650 
9651 			/*
9652 			 * For exclusive stacks we set the zoneid to zero
9653 			 * to make TCP operate as if in the global zone.
9654 			 */
9655 			if (tcps->tcps_netstack->netstack_stackid !=
9656 			    GLOBAL_NETSTACKID)
9657 				zoneid = GLOBAL_ZONEID;
9658 			else
9659 				zoneid = crgetzoneid(credp);
9660 		}
9661 		/*
9662 		 * For stackid zero this is done from strplumb.c, but
9663 		 * non-zero stackids are handled here.
9664 		 */
9665 		if (tcps->tcps_g_q == NULL &&
9666 		    tcps->tcps_netstack->netstack_stackid !=
9667 		    GLOBAL_NETSTACKID) {
9668 			tcp_g_q_setup(tcps);
9669 		}
9670 	}
9671 
9672 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9673 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9674 		minor_arena = ip_minor_arena_la;
9675 	} else {
9676 		/*
9677 		 * Either minor numbers in the large arena were exhausted
9678 		 * or a non socket application is doing the open.
9679 		 * Try to allocate from the small arena.
9680 		 */
9681 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9682 			if (tcps != NULL)
9683 				netstack_rele(tcps->tcps_netstack);
9684 			return (EBUSY);
9685 		}
9686 		minor_arena = ip_minor_arena_sa;
9687 	}
9688 	ASSERT(minor_arena != NULL);
9689 
9690 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9691 
9692 	if (flag & SO_ACCEPTOR) {
9693 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9694 		ASSERT(tcps == NULL);
9695 		q->q_qinfo = &tcp_acceptor_rinit;
9696 		/*
9697 		 * the conn_dev and minor_arena will be subsequently used by
9698 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9699 		 * minor device number for this connection from the q_ptr.
9700 		 */
9701 		RD(q)->q_ptr = (void *)conn_dev;
9702 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9703 		WR(q)->q_ptr = (void *)minor_arena;
9704 		qprocson(q);
9705 		return (0);
9706 	}
9707 
9708 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9709 	/*
9710 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9711 	 * so we drop it by one.
9712 	 */
9713 	netstack_rele(tcps->tcps_netstack);
9714 	if (connp == NULL) {
9715 		inet_minor_free(minor_arena, conn_dev);
9716 		q->q_ptr = NULL;
9717 		return (ENOSR);
9718 	}
9719 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9720 	tcp = connp->conn_tcp;
9721 
9722 	q->q_ptr = WR(q)->q_ptr = connp;
9723 	if (isv6) {
9724 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9725 		connp->conn_send = ip_output_v6;
9726 		connp->conn_af_isv6 = B_TRUE;
9727 		connp->conn_pkt_isv6 = B_TRUE;
9728 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9729 		tcp->tcp_ipversion = IPV6_VERSION;
9730 		tcp->tcp_family = AF_INET6;
9731 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9732 	} else {
9733 		connp->conn_flags |= IPCL_TCP4;
9734 		connp->conn_send = ip_output;
9735 		connp->conn_af_isv6 = B_FALSE;
9736 		connp->conn_pkt_isv6 = B_FALSE;
9737 		tcp->tcp_ipversion = IPV4_VERSION;
9738 		tcp->tcp_family = AF_INET;
9739 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9740 	}
9741 
9742 	/*
9743 	 * TCP keeps a copy of cred for cache locality reasons but
9744 	 * we put a reference only once. If connp->conn_cred
9745 	 * becomes invalid, tcp_cred should also be set to NULL.
9746 	 */
9747 	tcp->tcp_cred = connp->conn_cred = credp;
9748 	crhold(connp->conn_cred);
9749 	tcp->tcp_cpid = curproc->p_pid;
9750 	tcp->tcp_open_time = lbolt64;
9751 	connp->conn_zoneid = zoneid;
9752 	connp->conn_mlp_type = mlptSingle;
9753 	connp->conn_ulp_labeled = !is_system_labeled();
9754 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9755 	ASSERT(tcp->tcp_tcps == tcps);
9756 
9757 	/*
9758 	 * If the caller has the process-wide flag set, then default to MAC
9759 	 * exempt mode.  This allows read-down to unlabeled hosts.
9760 	 */
9761 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9762 		connp->conn_mac_exempt = B_TRUE;
9763 
9764 	connp->conn_dev = conn_dev;
9765 	connp->conn_minor_arena = minor_arena;
9766 
9767 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9768 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9769 
9770 	if (flag & SO_SOCKSTR) {
9771 		/*
9772 		 * No need to insert a socket in tcp acceptor hash.
9773 		 * If it was a socket acceptor stream, we dealt with
9774 		 * it above. A socket listener can never accept a
9775 		 * connection and doesn't need acceptor_id.
9776 		 */
9777 		connp->conn_flags |= IPCL_SOCKET;
9778 		tcp->tcp_issocket = 1;
9779 		WR(q)->q_qinfo = &tcp_sock_winit;
9780 	} else {
9781 #ifdef	_ILP32
9782 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9783 #else
9784 		tcp->tcp_acceptor_id = conn_dev;
9785 #endif	/* _ILP32 */
9786 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9787 	}
9788 
9789 	if (tcps->tcps_trace)
9790 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9791 
9792 	err = tcp_init(tcp, q);
9793 	if (err != 0) {
9794 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9795 		tcp_acceptor_hash_remove(tcp);
9796 		CONN_DEC_REF(connp);
9797 		q->q_ptr = WR(q)->q_ptr = NULL;
9798 		return (err);
9799 	}
9800 
9801 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9802 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9803 
9804 	/* Non-zero default values */
9805 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9806 	/*
9807 	 * Put the ref for TCP. Ref for IP was already put
9808 	 * by ipcl_conn_create. Also Make the conn_t globally
9809 	 * visible to walkers
9810 	 */
9811 	mutex_enter(&connp->conn_lock);
9812 	CONN_INC_REF_LOCKED(connp);
9813 	ASSERT(connp->conn_ref == 2);
9814 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9815 	mutex_exit(&connp->conn_lock);
9816 
9817 	qprocson(q);
9818 	return (0);
9819 }
9820 
9821 /*
9822  * Some TCP options can be "set" by requesting them in the option
9823  * buffer. This is needed for XTI feature test though we do not
9824  * allow it in general. We interpret that this mechanism is more
9825  * applicable to OSI protocols and need not be allowed in general.
9826  * This routine filters out options for which it is not allowed (most)
9827  * and lets through those (few) for which it is. [ The XTI interface
9828  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9829  * ever implemented will have to be allowed here ].
9830  */
9831 static boolean_t
9832 tcp_allow_connopt_set(int level, int name)
9833 {
9834 
9835 	switch (level) {
9836 	case IPPROTO_TCP:
9837 		switch (name) {
9838 		case TCP_NODELAY:
9839 			return (B_TRUE);
9840 		default:
9841 			return (B_FALSE);
9842 		}
9843 		/*NOTREACHED*/
9844 	default:
9845 		return (B_FALSE);
9846 	}
9847 	/*NOTREACHED*/
9848 }
9849 
9850 /*
9851  * This routine gets default values of certain options whose default
9852  * values are maintained by protocol specific code
9853  */
9854 /* ARGSUSED */
9855 int
9856 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9857 {
9858 	int32_t	*i1 = (int32_t *)ptr;
9859 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9860 
9861 	switch (level) {
9862 	case IPPROTO_TCP:
9863 		switch (name) {
9864 		case TCP_NOTIFY_THRESHOLD:
9865 			*i1 = tcps->tcps_ip_notify_interval;
9866 			break;
9867 		case TCP_ABORT_THRESHOLD:
9868 			*i1 = tcps->tcps_ip_abort_interval;
9869 			break;
9870 		case TCP_CONN_NOTIFY_THRESHOLD:
9871 			*i1 = tcps->tcps_ip_notify_cinterval;
9872 			break;
9873 		case TCP_CONN_ABORT_THRESHOLD:
9874 			*i1 = tcps->tcps_ip_abort_cinterval;
9875 			break;
9876 		default:
9877 			return (-1);
9878 		}
9879 		break;
9880 	case IPPROTO_IP:
9881 		switch (name) {
9882 		case IP_TTL:
9883 			*i1 = tcps->tcps_ipv4_ttl;
9884 			break;
9885 		default:
9886 			return (-1);
9887 		}
9888 		break;
9889 	case IPPROTO_IPV6:
9890 		switch (name) {
9891 		case IPV6_UNICAST_HOPS:
9892 			*i1 = tcps->tcps_ipv6_hoplimit;
9893 			break;
9894 		default:
9895 			return (-1);
9896 		}
9897 		break;
9898 	default:
9899 		return (-1);
9900 	}
9901 	return (sizeof (int));
9902 }
9903 
9904 
9905 /*
9906  * TCP routine to get the values of options.
9907  */
9908 int
9909 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9910 {
9911 	int		*i1 = (int *)ptr;
9912 	conn_t		*connp = Q_TO_CONN(q);
9913 	tcp_t		*tcp = connp->conn_tcp;
9914 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9915 
9916 	switch (level) {
9917 	case SOL_SOCKET:
9918 		switch (name) {
9919 		case SO_LINGER:	{
9920 			struct linger *lgr = (struct linger *)ptr;
9921 
9922 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9923 			lgr->l_linger = tcp->tcp_lingertime;
9924 			}
9925 			return (sizeof (struct linger));
9926 		case SO_DEBUG:
9927 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9928 			break;
9929 		case SO_KEEPALIVE:
9930 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9931 			break;
9932 		case SO_DONTROUTE:
9933 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9934 			break;
9935 		case SO_USELOOPBACK:
9936 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9937 			break;
9938 		case SO_BROADCAST:
9939 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9940 			break;
9941 		case SO_REUSEADDR:
9942 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9943 			break;
9944 		case SO_OOBINLINE:
9945 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9946 			break;
9947 		case SO_DGRAM_ERRIND:
9948 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9949 			break;
9950 		case SO_TYPE:
9951 			*i1 = SOCK_STREAM;
9952 			break;
9953 		case SO_SNDBUF:
9954 			*i1 = tcp->tcp_xmit_hiwater;
9955 			break;
9956 		case SO_RCVBUF:
9957 			*i1 = RD(q)->q_hiwat;
9958 			break;
9959 		case SO_SND_COPYAVOID:
9960 			*i1 = tcp->tcp_snd_zcopy_on ?
9961 			    SO_SND_COPYAVOID : 0;
9962 			break;
9963 		case SO_ALLZONES:
9964 			*i1 = connp->conn_allzones ? 1 : 0;
9965 			break;
9966 		case SO_ANON_MLP:
9967 			*i1 = connp->conn_anon_mlp;
9968 			break;
9969 		case SO_MAC_EXEMPT:
9970 			*i1 = connp->conn_mac_exempt;
9971 			break;
9972 		case SO_EXCLBIND:
9973 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9974 			break;
9975 		case SO_PROTOTYPE:
9976 			*i1 = IPPROTO_TCP;
9977 			break;
9978 		case SO_DOMAIN:
9979 			*i1 = tcp->tcp_family;
9980 			break;
9981 		default:
9982 			return (-1);
9983 		}
9984 		break;
9985 	case IPPROTO_TCP:
9986 		switch (name) {
9987 		case TCP_NODELAY:
9988 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9989 			break;
9990 		case TCP_MAXSEG:
9991 			*i1 = tcp->tcp_mss;
9992 			break;
9993 		case TCP_NOTIFY_THRESHOLD:
9994 			*i1 = (int)tcp->tcp_first_timer_threshold;
9995 			break;
9996 		case TCP_ABORT_THRESHOLD:
9997 			*i1 = tcp->tcp_second_timer_threshold;
9998 			break;
9999 		case TCP_CONN_NOTIFY_THRESHOLD:
10000 			*i1 = tcp->tcp_first_ctimer_threshold;
10001 			break;
10002 		case TCP_CONN_ABORT_THRESHOLD:
10003 			*i1 = tcp->tcp_second_ctimer_threshold;
10004 			break;
10005 		case TCP_RECVDSTADDR:
10006 			*i1 = tcp->tcp_recvdstaddr;
10007 			break;
10008 		case TCP_ANONPRIVBIND:
10009 			*i1 = tcp->tcp_anon_priv_bind;
10010 			break;
10011 		case TCP_EXCLBIND:
10012 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10013 			break;
10014 		case TCP_INIT_CWND:
10015 			*i1 = tcp->tcp_init_cwnd;
10016 			break;
10017 		case TCP_KEEPALIVE_THRESHOLD:
10018 			*i1 = tcp->tcp_ka_interval;
10019 			break;
10020 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10021 			*i1 = tcp->tcp_ka_abort_thres;
10022 			break;
10023 		case TCP_CORK:
10024 			*i1 = tcp->tcp_cork;
10025 			break;
10026 		default:
10027 			return (-1);
10028 		}
10029 		break;
10030 	case IPPROTO_IP:
10031 		if (tcp->tcp_family != AF_INET)
10032 			return (-1);
10033 		switch (name) {
10034 		case IP_OPTIONS:
10035 		case T_IP_OPTIONS: {
10036 			/*
10037 			 * This is compatible with BSD in that in only return
10038 			 * the reverse source route with the final destination
10039 			 * as the last entry. The first 4 bytes of the option
10040 			 * will contain the final destination.
10041 			 */
10042 			int	opt_len;
10043 
10044 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10045 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10046 			ASSERT(opt_len >= 0);
10047 			/* Caller ensures enough space */
10048 			if (opt_len > 0) {
10049 				/*
10050 				 * TODO: Do we have to handle getsockopt on an
10051 				 * initiator as well?
10052 				 */
10053 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10054 			}
10055 			return (0);
10056 			}
10057 		case IP_TOS:
10058 		case T_IP_TOS:
10059 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10060 			break;
10061 		case IP_TTL:
10062 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10063 			break;
10064 		case IP_NEXTHOP:
10065 			/* Handled at IP level */
10066 			return (-EINVAL);
10067 		default:
10068 			return (-1);
10069 		}
10070 		break;
10071 	case IPPROTO_IPV6:
10072 		/*
10073 		 * IPPROTO_IPV6 options are only supported for sockets
10074 		 * that are using IPv6 on the wire.
10075 		 */
10076 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10077 			return (-1);
10078 		}
10079 		switch (name) {
10080 		case IPV6_UNICAST_HOPS:
10081 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10082 			break;	/* goto sizeof (int) option return */
10083 		case IPV6_BOUND_IF:
10084 			/* Zero if not set */
10085 			*i1 = tcp->tcp_bound_if;
10086 			break;	/* goto sizeof (int) option return */
10087 		case IPV6_RECVPKTINFO:
10088 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10089 				*i1 = 1;
10090 			else
10091 				*i1 = 0;
10092 			break;	/* goto sizeof (int) option return */
10093 		case IPV6_RECVTCLASS:
10094 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10095 				*i1 = 1;
10096 			else
10097 				*i1 = 0;
10098 			break;	/* goto sizeof (int) option return */
10099 		case IPV6_RECVHOPLIMIT:
10100 			if (tcp->tcp_ipv6_recvancillary &
10101 			    TCP_IPV6_RECVHOPLIMIT)
10102 				*i1 = 1;
10103 			else
10104 				*i1 = 0;
10105 			break;	/* goto sizeof (int) option return */
10106 		case IPV6_RECVHOPOPTS:
10107 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10108 				*i1 = 1;
10109 			else
10110 				*i1 = 0;
10111 			break;	/* goto sizeof (int) option return */
10112 		case IPV6_RECVDSTOPTS:
10113 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10114 				*i1 = 1;
10115 			else
10116 				*i1 = 0;
10117 			break;	/* goto sizeof (int) option return */
10118 		case _OLD_IPV6_RECVDSTOPTS:
10119 			if (tcp->tcp_ipv6_recvancillary &
10120 			    TCP_OLD_IPV6_RECVDSTOPTS)
10121 				*i1 = 1;
10122 			else
10123 				*i1 = 0;
10124 			break;	/* goto sizeof (int) option return */
10125 		case IPV6_RECVRTHDR:
10126 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10127 				*i1 = 1;
10128 			else
10129 				*i1 = 0;
10130 			break;	/* goto sizeof (int) option return */
10131 		case IPV6_RECVRTHDRDSTOPTS:
10132 			if (tcp->tcp_ipv6_recvancillary &
10133 			    TCP_IPV6_RECVRTDSTOPTS)
10134 				*i1 = 1;
10135 			else
10136 				*i1 = 0;
10137 			break;	/* goto sizeof (int) option return */
10138 		case IPV6_PKTINFO: {
10139 			/* XXX assumes that caller has room for max size! */
10140 			struct in6_pktinfo *pkti;
10141 
10142 			pkti = (struct in6_pktinfo *)ptr;
10143 			if (ipp->ipp_fields & IPPF_IFINDEX)
10144 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10145 			else
10146 				pkti->ipi6_ifindex = 0;
10147 			if (ipp->ipp_fields & IPPF_ADDR)
10148 				pkti->ipi6_addr = ipp->ipp_addr;
10149 			else
10150 				pkti->ipi6_addr = ipv6_all_zeros;
10151 			return (sizeof (struct in6_pktinfo));
10152 		}
10153 		case IPV6_TCLASS:
10154 			if (ipp->ipp_fields & IPPF_TCLASS)
10155 				*i1 = ipp->ipp_tclass;
10156 			else
10157 				*i1 = IPV6_FLOW_TCLASS(
10158 				    IPV6_DEFAULT_VERS_AND_FLOW);
10159 			break;	/* goto sizeof (int) option return */
10160 		case IPV6_NEXTHOP: {
10161 			sin6_t *sin6 = (sin6_t *)ptr;
10162 
10163 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10164 				return (0);
10165 			*sin6 = sin6_null;
10166 			sin6->sin6_family = AF_INET6;
10167 			sin6->sin6_addr = ipp->ipp_nexthop;
10168 			return (sizeof (sin6_t));
10169 		}
10170 		case IPV6_HOPOPTS:
10171 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10172 				return (0);
10173 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10174 				return (0);
10175 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10176 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10177 			if (tcp->tcp_label_len > 0) {
10178 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10179 				ptr[1] = (ipp->ipp_hopoptslen -
10180 				    tcp->tcp_label_len + 7) / 8 - 1;
10181 			}
10182 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10183 		case IPV6_RTHDRDSTOPTS:
10184 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10185 				return (0);
10186 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10187 			return (ipp->ipp_rtdstoptslen);
10188 		case IPV6_RTHDR:
10189 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10190 				return (0);
10191 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10192 			return (ipp->ipp_rthdrlen);
10193 		case IPV6_DSTOPTS:
10194 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10195 				return (0);
10196 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10197 			return (ipp->ipp_dstoptslen);
10198 		case IPV6_SRC_PREFERENCES:
10199 			return (ip6_get_src_preferences(connp,
10200 			    (uint32_t *)ptr));
10201 		case IPV6_PATHMTU: {
10202 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10203 
10204 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10205 				return (-1);
10206 
10207 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10208 			    connp->conn_fport, mtuinfo,
10209 			    connp->conn_netstack));
10210 		}
10211 		default:
10212 			return (-1);
10213 		}
10214 		break;
10215 	default:
10216 		return (-1);
10217 	}
10218 	return (sizeof (int));
10219 }
10220 
10221 /*
10222  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10223  * Parameters are assumed to be verified by the caller.
10224  */
10225 /* ARGSUSED */
10226 int
10227 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10228     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10229     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10230 {
10231 	conn_t	*connp = Q_TO_CONN(q);
10232 	tcp_t	*tcp = connp->conn_tcp;
10233 	int	*i1 = (int *)invalp;
10234 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10235 	boolean_t checkonly;
10236 	int	reterr;
10237 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10238 
10239 	switch (optset_context) {
10240 	case SETFN_OPTCOM_CHECKONLY:
10241 		checkonly = B_TRUE;
10242 		/*
10243 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10244 		 * inlen != 0 implies value supplied and
10245 		 * 	we have to "pretend" to set it.
10246 		 * inlen == 0 implies that there is no
10247 		 * 	value part in T_CHECK request and just validation
10248 		 * done elsewhere should be enough, we just return here.
10249 		 */
10250 		if (inlen == 0) {
10251 			*outlenp = 0;
10252 			return (0);
10253 		}
10254 		break;
10255 	case SETFN_OPTCOM_NEGOTIATE:
10256 		checkonly = B_FALSE;
10257 		break;
10258 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10259 	case SETFN_CONN_NEGOTIATE:
10260 		checkonly = B_FALSE;
10261 		/*
10262 		 * Negotiating local and "association-related" options
10263 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10264 		 * primitives is allowed by XTI, but we choose
10265 		 * to not implement this style negotiation for Internet
10266 		 * protocols (We interpret it is a must for OSI world but
10267 		 * optional for Internet protocols) for all options.
10268 		 * [ Will do only for the few options that enable test
10269 		 * suites that our XTI implementation of this feature
10270 		 * works for transports that do allow it ]
10271 		 */
10272 		if (!tcp_allow_connopt_set(level, name)) {
10273 			*outlenp = 0;
10274 			return (EINVAL);
10275 		}
10276 		break;
10277 	default:
10278 		/*
10279 		 * We should never get here
10280 		 */
10281 		*outlenp = 0;
10282 		return (EINVAL);
10283 	}
10284 
10285 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10286 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10287 
10288 	/*
10289 	 * For TCP, we should have no ancillary data sent down
10290 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10291 	 * has to be zero.
10292 	 */
10293 	ASSERT(thisdg_attrs == NULL);
10294 
10295 	/*
10296 	 * For fixed length options, no sanity check
10297 	 * of passed in length is done. It is assumed *_optcom_req()
10298 	 * routines do the right thing.
10299 	 */
10300 
10301 	switch (level) {
10302 	case SOL_SOCKET:
10303 		switch (name) {
10304 		case SO_LINGER: {
10305 			struct linger *lgr = (struct linger *)invalp;
10306 
10307 			if (!checkonly) {
10308 				if (lgr->l_onoff) {
10309 					tcp->tcp_linger = 1;
10310 					tcp->tcp_lingertime = lgr->l_linger;
10311 				} else {
10312 					tcp->tcp_linger = 0;
10313 					tcp->tcp_lingertime = 0;
10314 				}
10315 				/* struct copy */
10316 				*(struct linger *)outvalp = *lgr;
10317 			} else {
10318 				if (!lgr->l_onoff) {
10319 					((struct linger *)
10320 					    outvalp)->l_onoff = 0;
10321 					((struct linger *)
10322 					    outvalp)->l_linger = 0;
10323 				} else {
10324 					/* struct copy */
10325 					*(struct linger *)outvalp = *lgr;
10326 				}
10327 			}
10328 			*outlenp = sizeof (struct linger);
10329 			return (0);
10330 		}
10331 		case SO_DEBUG:
10332 			if (!checkonly)
10333 				tcp->tcp_debug = onoff;
10334 			break;
10335 		case SO_KEEPALIVE:
10336 			if (checkonly) {
10337 				/* T_CHECK case */
10338 				break;
10339 			}
10340 
10341 			if (!onoff) {
10342 				if (tcp->tcp_ka_enabled) {
10343 					if (tcp->tcp_ka_tid != 0) {
10344 						(void) TCP_TIMER_CANCEL(tcp,
10345 						    tcp->tcp_ka_tid);
10346 						tcp->tcp_ka_tid = 0;
10347 					}
10348 					tcp->tcp_ka_enabled = 0;
10349 				}
10350 				break;
10351 			}
10352 			if (!tcp->tcp_ka_enabled) {
10353 				/* Crank up the keepalive timer */
10354 				tcp->tcp_ka_last_intrvl = 0;
10355 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10356 				    tcp_keepalive_killer,
10357 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10358 				tcp->tcp_ka_enabled = 1;
10359 			}
10360 			break;
10361 		case SO_DONTROUTE:
10362 			/*
10363 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10364 			 * only of interest to IP.  We track them here only so
10365 			 * that we can report their current value.
10366 			 */
10367 			if (!checkonly) {
10368 				tcp->tcp_dontroute = onoff;
10369 				tcp->tcp_connp->conn_dontroute = onoff;
10370 			}
10371 			break;
10372 		case SO_USELOOPBACK:
10373 			if (!checkonly) {
10374 				tcp->tcp_useloopback = onoff;
10375 				tcp->tcp_connp->conn_loopback = onoff;
10376 			}
10377 			break;
10378 		case SO_BROADCAST:
10379 			if (!checkonly) {
10380 				tcp->tcp_broadcast = onoff;
10381 				tcp->tcp_connp->conn_broadcast = onoff;
10382 			}
10383 			break;
10384 		case SO_REUSEADDR:
10385 			if (!checkonly) {
10386 				tcp->tcp_reuseaddr = onoff;
10387 				tcp->tcp_connp->conn_reuseaddr = onoff;
10388 			}
10389 			break;
10390 		case SO_OOBINLINE:
10391 			if (!checkonly)
10392 				tcp->tcp_oobinline = onoff;
10393 			break;
10394 		case SO_DGRAM_ERRIND:
10395 			if (!checkonly)
10396 				tcp->tcp_dgram_errind = onoff;
10397 			break;
10398 		case SO_SNDBUF: {
10399 			if (*i1 > tcps->tcps_max_buf) {
10400 				*outlenp = 0;
10401 				return (ENOBUFS);
10402 			}
10403 			if (checkonly)
10404 				break;
10405 
10406 			tcp->tcp_xmit_hiwater = *i1;
10407 			if (tcps->tcps_snd_lowat_fraction != 0)
10408 				tcp->tcp_xmit_lowater =
10409 				    tcp->tcp_xmit_hiwater /
10410 				    tcps->tcps_snd_lowat_fraction;
10411 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10412 			/*
10413 			 * If we are flow-controlled, recheck the condition.
10414 			 * There are apps that increase SO_SNDBUF size when
10415 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10416 			 * control condition to be lifted right away.
10417 			 */
10418 			mutex_enter(&tcp->tcp_non_sq_lock);
10419 			if (tcp->tcp_flow_stopped &&
10420 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10421 				tcp_clrqfull(tcp);
10422 			}
10423 			mutex_exit(&tcp->tcp_non_sq_lock);
10424 			break;
10425 		}
10426 		case SO_RCVBUF:
10427 			if (*i1 > tcps->tcps_max_buf) {
10428 				*outlenp = 0;
10429 				return (ENOBUFS);
10430 			}
10431 			/* Silently ignore zero */
10432 			if (!checkonly && *i1 != 0) {
10433 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10434 				(void) tcp_rwnd_set(tcp, *i1);
10435 			}
10436 			/*
10437 			 * XXX should we return the rwnd here
10438 			 * and tcp_opt_get ?
10439 			 */
10440 			break;
10441 		case SO_SND_COPYAVOID:
10442 			if (!checkonly) {
10443 				/* we only allow enable at most once for now */
10444 				if (tcp->tcp_loopback ||
10445 				    (tcp->tcp_kssl_ctx != NULL) ||
10446 				    (!tcp->tcp_snd_zcopy_aware &&
10447 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10448 					*outlenp = 0;
10449 					return (EOPNOTSUPP);
10450 				}
10451 				tcp->tcp_snd_zcopy_aware = 1;
10452 			}
10453 			break;
10454 		case SO_ALLZONES:
10455 			/* Handled at the IP level */
10456 			return (-EINVAL);
10457 		case SO_ANON_MLP:
10458 			if (!checkonly) {
10459 				mutex_enter(&connp->conn_lock);
10460 				connp->conn_anon_mlp = onoff;
10461 				mutex_exit(&connp->conn_lock);
10462 			}
10463 			break;
10464 		case SO_MAC_EXEMPT:
10465 			if (secpolicy_net_mac_aware(cr) != 0 ||
10466 			    IPCL_IS_BOUND(connp))
10467 				return (EACCES);
10468 			if (!checkonly) {
10469 				mutex_enter(&connp->conn_lock);
10470 				connp->conn_mac_exempt = onoff;
10471 				mutex_exit(&connp->conn_lock);
10472 			}
10473 			break;
10474 		case SO_EXCLBIND:
10475 			if (!checkonly)
10476 				tcp->tcp_exclbind = onoff;
10477 			break;
10478 		default:
10479 			*outlenp = 0;
10480 			return (EINVAL);
10481 		}
10482 		break;
10483 	case IPPROTO_TCP:
10484 		switch (name) {
10485 		case TCP_NODELAY:
10486 			if (!checkonly)
10487 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10488 			break;
10489 		case TCP_NOTIFY_THRESHOLD:
10490 			if (!checkonly)
10491 				tcp->tcp_first_timer_threshold = *i1;
10492 			break;
10493 		case TCP_ABORT_THRESHOLD:
10494 			if (!checkonly)
10495 				tcp->tcp_second_timer_threshold = *i1;
10496 			break;
10497 		case TCP_CONN_NOTIFY_THRESHOLD:
10498 			if (!checkonly)
10499 				tcp->tcp_first_ctimer_threshold = *i1;
10500 			break;
10501 		case TCP_CONN_ABORT_THRESHOLD:
10502 			if (!checkonly)
10503 				tcp->tcp_second_ctimer_threshold = *i1;
10504 			break;
10505 		case TCP_RECVDSTADDR:
10506 			if (tcp->tcp_state > TCPS_LISTEN)
10507 				return (EOPNOTSUPP);
10508 			if (!checkonly)
10509 				tcp->tcp_recvdstaddr = onoff;
10510 			break;
10511 		case TCP_ANONPRIVBIND:
10512 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10513 			    IPPROTO_TCP)) != 0) {
10514 				*outlenp = 0;
10515 				return (reterr);
10516 			}
10517 			if (!checkonly) {
10518 				tcp->tcp_anon_priv_bind = onoff;
10519 			}
10520 			break;
10521 		case TCP_EXCLBIND:
10522 			if (!checkonly)
10523 				tcp->tcp_exclbind = onoff;
10524 			break;	/* goto sizeof (int) option return */
10525 		case TCP_INIT_CWND: {
10526 			uint32_t init_cwnd = *((uint32_t *)invalp);
10527 
10528 			if (checkonly)
10529 				break;
10530 
10531 			/*
10532 			 * Only allow socket with network configuration
10533 			 * privilege to set the initial cwnd to be larger
10534 			 * than allowed by RFC 3390.
10535 			 */
10536 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10537 				tcp->tcp_init_cwnd = init_cwnd;
10538 				break;
10539 			}
10540 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10541 				*outlenp = 0;
10542 				return (reterr);
10543 			}
10544 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10545 				*outlenp = 0;
10546 				return (EINVAL);
10547 			}
10548 			tcp->tcp_init_cwnd = init_cwnd;
10549 			break;
10550 		}
10551 		case TCP_KEEPALIVE_THRESHOLD:
10552 			if (checkonly)
10553 				break;
10554 
10555 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10556 			    *i1 > tcps->tcps_keepalive_interval_high) {
10557 				*outlenp = 0;
10558 				return (EINVAL);
10559 			}
10560 			if (*i1 != tcp->tcp_ka_interval) {
10561 				tcp->tcp_ka_interval = *i1;
10562 				/*
10563 				 * Check if we need to restart the
10564 				 * keepalive timer.
10565 				 */
10566 				if (tcp->tcp_ka_tid != 0) {
10567 					ASSERT(tcp->tcp_ka_enabled);
10568 					(void) TCP_TIMER_CANCEL(tcp,
10569 					    tcp->tcp_ka_tid);
10570 					tcp->tcp_ka_last_intrvl = 0;
10571 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10572 					    tcp_keepalive_killer,
10573 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10574 				}
10575 			}
10576 			break;
10577 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10578 			if (!checkonly) {
10579 				if (*i1 <
10580 				    tcps->tcps_keepalive_abort_interval_low ||
10581 				    *i1 >
10582 				    tcps->tcps_keepalive_abort_interval_high) {
10583 					*outlenp = 0;
10584 					return (EINVAL);
10585 				}
10586 				tcp->tcp_ka_abort_thres = *i1;
10587 			}
10588 			break;
10589 		case TCP_CORK:
10590 			if (!checkonly) {
10591 				/*
10592 				 * if tcp->tcp_cork was set and is now
10593 				 * being unset, we have to make sure that
10594 				 * the remaining data gets sent out. Also
10595 				 * unset tcp->tcp_cork so that tcp_wput_data()
10596 				 * can send data even if it is less than mss
10597 				 */
10598 				if (tcp->tcp_cork && onoff == 0 &&
10599 				    tcp->tcp_unsent > 0) {
10600 					tcp->tcp_cork = B_FALSE;
10601 					tcp_wput_data(tcp, NULL, B_FALSE);
10602 				}
10603 				tcp->tcp_cork = onoff;
10604 			}
10605 			break;
10606 		default:
10607 			*outlenp = 0;
10608 			return (EINVAL);
10609 		}
10610 		break;
10611 	case IPPROTO_IP:
10612 		if (tcp->tcp_family != AF_INET) {
10613 			*outlenp = 0;
10614 			return (ENOPROTOOPT);
10615 		}
10616 		switch (name) {
10617 		case IP_OPTIONS:
10618 		case T_IP_OPTIONS:
10619 			reterr = tcp_opt_set_header(tcp, checkonly,
10620 			    invalp, inlen);
10621 			if (reterr) {
10622 				*outlenp = 0;
10623 				return (reterr);
10624 			}
10625 			/* OK return - copy input buffer into output buffer */
10626 			if (invalp != outvalp) {
10627 				/* don't trust bcopy for identical src/dst */
10628 				bcopy(invalp, outvalp, inlen);
10629 			}
10630 			*outlenp = inlen;
10631 			return (0);
10632 		case IP_TOS:
10633 		case T_IP_TOS:
10634 			if (!checkonly) {
10635 				tcp->tcp_ipha->ipha_type_of_service =
10636 				    (uchar_t)*i1;
10637 				tcp->tcp_tos = (uchar_t)*i1;
10638 			}
10639 			break;
10640 		case IP_TTL:
10641 			if (!checkonly) {
10642 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10643 				tcp->tcp_ttl = (uchar_t)*i1;
10644 			}
10645 			break;
10646 		case IP_BOUND_IF:
10647 		case IP_NEXTHOP:
10648 			/* Handled at the IP level */
10649 			return (-EINVAL);
10650 		case IP_SEC_OPT:
10651 			/*
10652 			 * We should not allow policy setting after
10653 			 * we start listening for connections.
10654 			 */
10655 			if (tcp->tcp_state == TCPS_LISTEN) {
10656 				return (EINVAL);
10657 			} else {
10658 				/* Handled at the IP level */
10659 				return (-EINVAL);
10660 			}
10661 		default:
10662 			*outlenp = 0;
10663 			return (EINVAL);
10664 		}
10665 		break;
10666 	case IPPROTO_IPV6: {
10667 		ip6_pkt_t		*ipp;
10668 
10669 		/*
10670 		 * IPPROTO_IPV6 options are only supported for sockets
10671 		 * that are using IPv6 on the wire.
10672 		 */
10673 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10674 			*outlenp = 0;
10675 			return (ENOPROTOOPT);
10676 		}
10677 		/*
10678 		 * Only sticky options; no ancillary data
10679 		 */
10680 		ASSERT(thisdg_attrs == NULL);
10681 		ipp = &tcp->tcp_sticky_ipp;
10682 
10683 		switch (name) {
10684 		case IPV6_UNICAST_HOPS:
10685 			/* -1 means use default */
10686 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10687 				*outlenp = 0;
10688 				return (EINVAL);
10689 			}
10690 			if (!checkonly) {
10691 				if (*i1 == -1) {
10692 					tcp->tcp_ip6h->ip6_hops =
10693 					    ipp->ipp_unicast_hops =
10694 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10695 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10696 					/* Pass modified value to IP. */
10697 					*i1 = tcp->tcp_ip6h->ip6_hops;
10698 				} else {
10699 					tcp->tcp_ip6h->ip6_hops =
10700 					    ipp->ipp_unicast_hops =
10701 					    (uint8_t)*i1;
10702 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10703 				}
10704 				reterr = tcp_build_hdrs(q, tcp);
10705 				if (reterr != 0)
10706 					return (reterr);
10707 			}
10708 			break;
10709 		case IPV6_BOUND_IF:
10710 			if (!checkonly) {
10711 				int error = 0;
10712 
10713 				tcp->tcp_bound_if = *i1;
10714 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10715 				    B_TRUE, checkonly, level, name, mblk);
10716 				if (error != 0) {
10717 					*outlenp = 0;
10718 					return (error);
10719 				}
10720 			}
10721 			break;
10722 		/*
10723 		 * Set boolean switches for ancillary data delivery
10724 		 */
10725 		case IPV6_RECVPKTINFO:
10726 			if (!checkonly) {
10727 				if (onoff)
10728 					tcp->tcp_ipv6_recvancillary |=
10729 					    TCP_IPV6_RECVPKTINFO;
10730 				else
10731 					tcp->tcp_ipv6_recvancillary &=
10732 					    ~TCP_IPV6_RECVPKTINFO;
10733 				/* Force it to be sent up with the next msg */
10734 				tcp->tcp_recvifindex = 0;
10735 			}
10736 			break;
10737 		case IPV6_RECVTCLASS:
10738 			if (!checkonly) {
10739 				if (onoff)
10740 					tcp->tcp_ipv6_recvancillary |=
10741 					    TCP_IPV6_RECVTCLASS;
10742 				else
10743 					tcp->tcp_ipv6_recvancillary &=
10744 					    ~TCP_IPV6_RECVTCLASS;
10745 			}
10746 			break;
10747 		case IPV6_RECVHOPLIMIT:
10748 			if (!checkonly) {
10749 				if (onoff)
10750 					tcp->tcp_ipv6_recvancillary |=
10751 					    TCP_IPV6_RECVHOPLIMIT;
10752 				else
10753 					tcp->tcp_ipv6_recvancillary &=
10754 					    ~TCP_IPV6_RECVHOPLIMIT;
10755 				/* Force it to be sent up with the next msg */
10756 				tcp->tcp_recvhops = 0xffffffffU;
10757 			}
10758 			break;
10759 		case IPV6_RECVHOPOPTS:
10760 			if (!checkonly) {
10761 				if (onoff)
10762 					tcp->tcp_ipv6_recvancillary |=
10763 					    TCP_IPV6_RECVHOPOPTS;
10764 				else
10765 					tcp->tcp_ipv6_recvancillary &=
10766 					    ~TCP_IPV6_RECVHOPOPTS;
10767 			}
10768 			break;
10769 		case IPV6_RECVDSTOPTS:
10770 			if (!checkonly) {
10771 				if (onoff)
10772 					tcp->tcp_ipv6_recvancillary |=
10773 					    TCP_IPV6_RECVDSTOPTS;
10774 				else
10775 					tcp->tcp_ipv6_recvancillary &=
10776 					    ~TCP_IPV6_RECVDSTOPTS;
10777 			}
10778 			break;
10779 		case _OLD_IPV6_RECVDSTOPTS:
10780 			if (!checkonly) {
10781 				if (onoff)
10782 					tcp->tcp_ipv6_recvancillary |=
10783 					    TCP_OLD_IPV6_RECVDSTOPTS;
10784 				else
10785 					tcp->tcp_ipv6_recvancillary &=
10786 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10787 			}
10788 			break;
10789 		case IPV6_RECVRTHDR:
10790 			if (!checkonly) {
10791 				if (onoff)
10792 					tcp->tcp_ipv6_recvancillary |=
10793 					    TCP_IPV6_RECVRTHDR;
10794 				else
10795 					tcp->tcp_ipv6_recvancillary &=
10796 					    ~TCP_IPV6_RECVRTHDR;
10797 			}
10798 			break;
10799 		case IPV6_RECVRTHDRDSTOPTS:
10800 			if (!checkonly) {
10801 				if (onoff)
10802 					tcp->tcp_ipv6_recvancillary |=
10803 					    TCP_IPV6_RECVRTDSTOPTS;
10804 				else
10805 					tcp->tcp_ipv6_recvancillary &=
10806 					    ~TCP_IPV6_RECVRTDSTOPTS;
10807 			}
10808 			break;
10809 		case IPV6_PKTINFO:
10810 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10811 				return (EINVAL);
10812 			if (checkonly)
10813 				break;
10814 
10815 			if (inlen == 0) {
10816 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10817 			} else {
10818 				struct in6_pktinfo *pkti;
10819 
10820 				pkti = (struct in6_pktinfo *)invalp;
10821 				/*
10822 				 * RFC 3542 states that ipi6_addr must be
10823 				 * the unspecified address when setting the
10824 				 * IPV6_PKTINFO sticky socket option on a
10825 				 * TCP socket.
10826 				 */
10827 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10828 					return (EINVAL);
10829 				/*
10830 				 * ip6_set_pktinfo() validates the source
10831 				 * address and interface index.
10832 				 */
10833 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10834 				    pkti, mblk);
10835 				if (reterr != 0)
10836 					return (reterr);
10837 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10838 				ipp->ipp_addr = pkti->ipi6_addr;
10839 				if (ipp->ipp_ifindex != 0)
10840 					ipp->ipp_fields |= IPPF_IFINDEX;
10841 				else
10842 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10843 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10844 					ipp->ipp_fields |= IPPF_ADDR;
10845 				else
10846 					ipp->ipp_fields &= ~IPPF_ADDR;
10847 			}
10848 			reterr = tcp_build_hdrs(q, tcp);
10849 			if (reterr != 0)
10850 				return (reterr);
10851 			break;
10852 		case IPV6_TCLASS:
10853 			if (inlen != 0 && inlen != sizeof (int))
10854 				return (EINVAL);
10855 			if (checkonly)
10856 				break;
10857 
10858 			if (inlen == 0) {
10859 				ipp->ipp_fields &= ~IPPF_TCLASS;
10860 			} else {
10861 				if (*i1 > 255 || *i1 < -1)
10862 					return (EINVAL);
10863 				if (*i1 == -1) {
10864 					ipp->ipp_tclass = 0;
10865 					*i1 = 0;
10866 				} else {
10867 					ipp->ipp_tclass = *i1;
10868 				}
10869 				ipp->ipp_fields |= IPPF_TCLASS;
10870 			}
10871 			reterr = tcp_build_hdrs(q, tcp);
10872 			if (reterr != 0)
10873 				return (reterr);
10874 			break;
10875 		case IPV6_NEXTHOP:
10876 			/*
10877 			 * IP will verify that the nexthop is reachable
10878 			 * and fail for sticky options.
10879 			 */
10880 			if (inlen != 0 && inlen != sizeof (sin6_t))
10881 				return (EINVAL);
10882 			if (checkonly)
10883 				break;
10884 
10885 			if (inlen == 0) {
10886 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10887 			} else {
10888 				sin6_t *sin6 = (sin6_t *)invalp;
10889 
10890 				if (sin6->sin6_family != AF_INET6)
10891 					return (EAFNOSUPPORT);
10892 				if (IN6_IS_ADDR_V4MAPPED(
10893 				    &sin6->sin6_addr))
10894 					return (EADDRNOTAVAIL);
10895 				ipp->ipp_nexthop = sin6->sin6_addr;
10896 				if (!IN6_IS_ADDR_UNSPECIFIED(
10897 				    &ipp->ipp_nexthop))
10898 					ipp->ipp_fields |= IPPF_NEXTHOP;
10899 				else
10900 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10901 			}
10902 			reterr = tcp_build_hdrs(q, tcp);
10903 			if (reterr != 0)
10904 				return (reterr);
10905 			break;
10906 		case IPV6_HOPOPTS: {
10907 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10908 
10909 			/*
10910 			 * Sanity checks - minimum size, size a multiple of
10911 			 * eight bytes, and matching size passed in.
10912 			 */
10913 			if (inlen != 0 &&
10914 			    inlen != (8 * (hopts->ip6h_len + 1)))
10915 				return (EINVAL);
10916 
10917 			if (checkonly)
10918 				break;
10919 
10920 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10921 			    (uchar_t **)&ipp->ipp_hopopts,
10922 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10923 			if (reterr != 0)
10924 				return (reterr);
10925 			if (ipp->ipp_hopoptslen == 0)
10926 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10927 			else
10928 				ipp->ipp_fields |= IPPF_HOPOPTS;
10929 			reterr = tcp_build_hdrs(q, tcp);
10930 			if (reterr != 0)
10931 				return (reterr);
10932 			break;
10933 		}
10934 		case IPV6_RTHDRDSTOPTS: {
10935 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10936 
10937 			/*
10938 			 * Sanity checks - minimum size, size a multiple of
10939 			 * eight bytes, and matching size passed in.
10940 			 */
10941 			if (inlen != 0 &&
10942 			    inlen != (8 * (dopts->ip6d_len + 1)))
10943 				return (EINVAL);
10944 
10945 			if (checkonly)
10946 				break;
10947 
10948 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10949 			    (uchar_t **)&ipp->ipp_rtdstopts,
10950 			    &ipp->ipp_rtdstoptslen, 0);
10951 			if (reterr != 0)
10952 				return (reterr);
10953 			if (ipp->ipp_rtdstoptslen == 0)
10954 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10955 			else
10956 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10957 			reterr = tcp_build_hdrs(q, tcp);
10958 			if (reterr != 0)
10959 				return (reterr);
10960 			break;
10961 		}
10962 		case IPV6_DSTOPTS: {
10963 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10964 
10965 			/*
10966 			 * Sanity checks - minimum size, size a multiple of
10967 			 * eight bytes, and matching size passed in.
10968 			 */
10969 			if (inlen != 0 &&
10970 			    inlen != (8 * (dopts->ip6d_len + 1)))
10971 				return (EINVAL);
10972 
10973 			if (checkonly)
10974 				break;
10975 
10976 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10977 			    (uchar_t **)&ipp->ipp_dstopts,
10978 			    &ipp->ipp_dstoptslen, 0);
10979 			if (reterr != 0)
10980 				return (reterr);
10981 			if (ipp->ipp_dstoptslen == 0)
10982 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10983 			else
10984 				ipp->ipp_fields |= IPPF_DSTOPTS;
10985 			reterr = tcp_build_hdrs(q, tcp);
10986 			if (reterr != 0)
10987 				return (reterr);
10988 			break;
10989 		}
10990 		case IPV6_RTHDR: {
10991 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10992 
10993 			/*
10994 			 * Sanity checks - minimum size, size a multiple of
10995 			 * eight bytes, and matching size passed in.
10996 			 */
10997 			if (inlen != 0 &&
10998 			    inlen != (8 * (rt->ip6r_len + 1)))
10999 				return (EINVAL);
11000 
11001 			if (checkonly)
11002 				break;
11003 
11004 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11005 			    (uchar_t **)&ipp->ipp_rthdr,
11006 			    &ipp->ipp_rthdrlen, 0);
11007 			if (reterr != 0)
11008 				return (reterr);
11009 			if (ipp->ipp_rthdrlen == 0)
11010 				ipp->ipp_fields &= ~IPPF_RTHDR;
11011 			else
11012 				ipp->ipp_fields |= IPPF_RTHDR;
11013 			reterr = tcp_build_hdrs(q, tcp);
11014 			if (reterr != 0)
11015 				return (reterr);
11016 			break;
11017 		}
11018 		case IPV6_V6ONLY:
11019 			if (!checkonly)
11020 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11021 			break;
11022 		case IPV6_USE_MIN_MTU:
11023 			if (inlen != sizeof (int))
11024 				return (EINVAL);
11025 
11026 			if (*i1 < -1 || *i1 > 1)
11027 				return (EINVAL);
11028 
11029 			if (checkonly)
11030 				break;
11031 
11032 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11033 			ipp->ipp_use_min_mtu = *i1;
11034 			break;
11035 		case IPV6_BOUND_PIF:
11036 			/* Handled at the IP level */
11037 			return (-EINVAL);
11038 		case IPV6_SEC_OPT:
11039 			/*
11040 			 * We should not allow policy setting after
11041 			 * we start listening for connections.
11042 			 */
11043 			if (tcp->tcp_state == TCPS_LISTEN) {
11044 				return (EINVAL);
11045 			} else {
11046 				/* Handled at the IP level */
11047 				return (-EINVAL);
11048 			}
11049 		case IPV6_SRC_PREFERENCES:
11050 			if (inlen != sizeof (uint32_t))
11051 				return (EINVAL);
11052 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11053 			    *(uint32_t *)invalp);
11054 			if (reterr != 0) {
11055 				*outlenp = 0;
11056 				return (reterr);
11057 			}
11058 			break;
11059 		default:
11060 			*outlenp = 0;
11061 			return (EINVAL);
11062 		}
11063 		break;
11064 	}		/* end IPPROTO_IPV6 */
11065 	default:
11066 		*outlenp = 0;
11067 		return (EINVAL);
11068 	}
11069 	/*
11070 	 * Common case of OK return with outval same as inval
11071 	 */
11072 	if (invalp != outvalp) {
11073 		/* don't trust bcopy for identical src/dst */
11074 		(void) bcopy(invalp, outvalp, inlen);
11075 	}
11076 	*outlenp = inlen;
11077 	return (0);
11078 }
11079 
11080 /*
11081  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11082  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11083  * headers, and the maximum size tcp header (to avoid reallocation
11084  * on the fly for additional tcp options).
11085  * Returns failure if can't allocate memory.
11086  */
11087 static int
11088 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11089 {
11090 	char	*hdrs;
11091 	uint_t	hdrs_len;
11092 	ip6i_t	*ip6i;
11093 	char	buf[TCP_MAX_HDR_LENGTH];
11094 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11095 	in6_addr_t src, dst;
11096 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11097 
11098 	/*
11099 	 * save the existing tcp header and source/dest IP addresses
11100 	 */
11101 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11102 	src = tcp->tcp_ip6h->ip6_src;
11103 	dst = tcp->tcp_ip6h->ip6_dst;
11104 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11105 	ASSERT(hdrs_len != 0);
11106 	if (hdrs_len > tcp->tcp_iphc_len) {
11107 		/* Need to reallocate */
11108 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11109 		if (hdrs == NULL)
11110 			return (ENOMEM);
11111 		if (tcp->tcp_iphc != NULL) {
11112 			if (tcp->tcp_hdr_grown) {
11113 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11114 			} else {
11115 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11116 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11117 			}
11118 			tcp->tcp_iphc_len = 0;
11119 		}
11120 		ASSERT(tcp->tcp_iphc_len == 0);
11121 		tcp->tcp_iphc = hdrs;
11122 		tcp->tcp_iphc_len = hdrs_len;
11123 		tcp->tcp_hdr_grown = B_TRUE;
11124 	}
11125 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11126 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11127 
11128 	/* Set header fields not in ipp */
11129 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11130 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11131 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11132 	} else {
11133 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11134 	}
11135 	/*
11136 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11137 	 *
11138 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11139 	 */
11140 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11141 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11142 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11143 
11144 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11145 
11146 	tcp->tcp_ip6h->ip6_src = src;
11147 	tcp->tcp_ip6h->ip6_dst = dst;
11148 
11149 	/*
11150 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11151 	 * the default value for TCP.
11152 	 */
11153 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11154 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11155 
11156 	/*
11157 	 * If we're setting extension headers after a connection
11158 	 * has been established, and if we have a routing header
11159 	 * among the extension headers, call ip_massage_options_v6 to
11160 	 * manipulate the routing header/ip6_dst set the checksum
11161 	 * difference in the tcp header template.
11162 	 * (This happens in tcp_connect_ipv6 if the routing header
11163 	 * is set prior to the connect.)
11164 	 * Set the tcp_sum to zero first in case we've cleared a
11165 	 * routing header or don't have one at all.
11166 	 */
11167 	tcp->tcp_sum = 0;
11168 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11169 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11170 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11171 		    (uint8_t *)tcp->tcp_tcph);
11172 		if (rth != NULL) {
11173 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11174 			    rth, tcps->tcps_netstack);
11175 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11176 			    (tcp->tcp_sum >> 16));
11177 		}
11178 	}
11179 
11180 	/* Try to get everything in a single mblk */
11181 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11182 	return (0);
11183 }
11184 
11185 /*
11186  * Transfer any source route option from ipha to buf/dst in reversed form.
11187  */
11188 static int
11189 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11190 {
11191 	ipoptp_t	opts;
11192 	uchar_t		*opt;
11193 	uint8_t		optval;
11194 	uint8_t		optlen;
11195 	uint32_t	len = 0;
11196 
11197 	for (optval = ipoptp_first(&opts, ipha);
11198 	    optval != IPOPT_EOL;
11199 	    optval = ipoptp_next(&opts)) {
11200 		opt = opts.ipoptp_cur;
11201 		optlen = opts.ipoptp_len;
11202 		switch (optval) {
11203 			int	off1, off2;
11204 		case IPOPT_SSRR:
11205 		case IPOPT_LSRR:
11206 
11207 			/* Reverse source route */
11208 			/*
11209 			 * First entry should be the next to last one in the
11210 			 * current source route (the last entry is our
11211 			 * address.)
11212 			 * The last entry should be the final destination.
11213 			 */
11214 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11215 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11216 			off1 = IPOPT_MINOFF_SR - 1;
11217 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11218 			if (off2 < 0) {
11219 				/* No entries in source route */
11220 				break;
11221 			}
11222 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11223 			/*
11224 			 * Note: use src since ipha has not had its src
11225 			 * and dst reversed (it is in the state it was
11226 			 * received.
11227 			 */
11228 			bcopy(&ipha->ipha_src, buf + off2,
11229 			    IP_ADDR_LEN);
11230 			off2 -= IP_ADDR_LEN;
11231 
11232 			while (off2 > 0) {
11233 				bcopy(opt + off2, buf + off1,
11234 				    IP_ADDR_LEN);
11235 				off1 += IP_ADDR_LEN;
11236 				off2 -= IP_ADDR_LEN;
11237 			}
11238 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11239 			buf += optlen;
11240 			len += optlen;
11241 			break;
11242 		}
11243 	}
11244 done:
11245 	/* Pad the resulting options */
11246 	while (len & 0x3) {
11247 		*buf++ = IPOPT_EOL;
11248 		len++;
11249 	}
11250 	return (len);
11251 }
11252 
11253 
11254 /*
11255  * Extract and revert a source route from ipha (if any)
11256  * and then update the relevant fields in both tcp_t and the standard header.
11257  */
11258 static void
11259 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11260 {
11261 	char	buf[TCP_MAX_HDR_LENGTH];
11262 	uint_t	tcph_len;
11263 	int	len;
11264 
11265 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11266 	len = IPH_HDR_LENGTH(ipha);
11267 	if (len == IP_SIMPLE_HDR_LENGTH)
11268 		/* Nothing to do */
11269 		return;
11270 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11271 	    (len & 0x3))
11272 		return;
11273 
11274 	tcph_len = tcp->tcp_tcp_hdr_len;
11275 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11276 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11277 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11278 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11279 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11280 	len += IP_SIMPLE_HDR_LENGTH;
11281 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11282 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11283 	if ((int)tcp->tcp_sum < 0)
11284 		tcp->tcp_sum--;
11285 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11286 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11287 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11288 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11289 	tcp->tcp_ip_hdr_len = len;
11290 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11291 	    (IP_VERSION << 4) | (len >> 2);
11292 	len += tcph_len;
11293 	tcp->tcp_hdr_len = len;
11294 }
11295 
11296 /*
11297  * Copy the standard header into its new location,
11298  * lay in the new options and then update the relevant
11299  * fields in both tcp_t and the standard header.
11300  */
11301 static int
11302 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11303 {
11304 	uint_t	tcph_len;
11305 	uint8_t	*ip_optp;
11306 	tcph_t	*new_tcph;
11307 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11308 
11309 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11310 		return (EINVAL);
11311 
11312 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11313 		return (EINVAL);
11314 
11315 	if (checkonly) {
11316 		/*
11317 		 * do not really set, just pretend to - T_CHECK
11318 		 */
11319 		return (0);
11320 	}
11321 
11322 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11323 	if (tcp->tcp_label_len > 0) {
11324 		int padlen;
11325 		uint8_t opt;
11326 
11327 		/* convert list termination to no-ops */
11328 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11329 		ip_optp += ip_optp[IPOPT_OLEN];
11330 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11331 		while (--padlen >= 0)
11332 			*ip_optp++ = opt;
11333 	}
11334 	tcph_len = tcp->tcp_tcp_hdr_len;
11335 	new_tcph = (tcph_t *)(ip_optp + len);
11336 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11337 	tcp->tcp_tcph = new_tcph;
11338 	bcopy(ptr, ip_optp, len);
11339 
11340 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11341 
11342 	tcp->tcp_ip_hdr_len = len;
11343 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11344 	    (IP_VERSION << 4) | (len >> 2);
11345 	tcp->tcp_hdr_len = len + tcph_len;
11346 	if (!TCP_IS_DETACHED(tcp)) {
11347 		/* Always allocate room for all options. */
11348 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11349 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11350 	}
11351 	return (0);
11352 }
11353 
11354 /* Get callback routine passed to nd_load by tcp_param_register */
11355 /* ARGSUSED */
11356 static int
11357 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11358 {
11359 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11360 
11361 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11362 	return (0);
11363 }
11364 
11365 /*
11366  * Walk through the param array specified registering each element with the
11367  * named dispatch handler.
11368  */
11369 static boolean_t
11370 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11371 {
11372 	for (; cnt-- > 0; tcppa++) {
11373 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11374 			if (!nd_load(ndp, tcppa->tcp_param_name,
11375 			    tcp_param_get, tcp_param_set,
11376 			    (caddr_t)tcppa)) {
11377 				nd_free(ndp);
11378 				return (B_FALSE);
11379 			}
11380 		}
11381 	}
11382 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11383 	    KM_SLEEP);
11384 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11385 	    sizeof (tcpparam_t));
11386 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11387 	    tcp_param_get, tcp_param_set_aligned,
11388 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11389 		nd_free(ndp);
11390 		return (B_FALSE);
11391 	}
11392 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11393 	    KM_SLEEP);
11394 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11395 	    sizeof (tcpparam_t));
11396 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11397 	    tcp_param_get, tcp_param_set_aligned,
11398 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11399 		nd_free(ndp);
11400 		return (B_FALSE);
11401 	}
11402 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11403 	    KM_SLEEP);
11404 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11405 	    sizeof (tcpparam_t));
11406 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11407 	    tcp_param_get, tcp_param_set_aligned,
11408 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11409 		nd_free(ndp);
11410 		return (B_FALSE);
11411 	}
11412 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11413 	    KM_SLEEP);
11414 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11415 	    sizeof (tcpparam_t));
11416 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11417 	    tcp_param_get, tcp_param_set_aligned,
11418 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11419 		nd_free(ndp);
11420 		return (B_FALSE);
11421 	}
11422 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11423 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11424 		nd_free(ndp);
11425 		return (B_FALSE);
11426 	}
11427 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11428 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11429 		nd_free(ndp);
11430 		return (B_FALSE);
11431 	}
11432 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11433 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11434 		nd_free(ndp);
11435 		return (B_FALSE);
11436 	}
11437 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11438 	    NULL)) {
11439 		nd_free(ndp);
11440 		return (B_FALSE);
11441 	}
11442 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11443 	    NULL, NULL)) {
11444 		nd_free(ndp);
11445 		return (B_FALSE);
11446 	}
11447 	if (!nd_load(ndp, "tcp_listen_hash",
11448 	    tcp_listen_hash_report, NULL, NULL)) {
11449 		nd_free(ndp);
11450 		return (B_FALSE);
11451 	}
11452 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11453 	    NULL, NULL)) {
11454 		nd_free(ndp);
11455 		return (B_FALSE);
11456 	}
11457 	if (!nd_load(ndp, "tcp_acceptor_hash",
11458 	    tcp_acceptor_hash_report, NULL, NULL)) {
11459 		nd_free(ndp);
11460 		return (B_FALSE);
11461 	}
11462 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11463 	    tcp_host_param_set, NULL)) {
11464 		nd_free(ndp);
11465 		return (B_FALSE);
11466 	}
11467 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11468 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11469 		nd_free(ndp);
11470 		return (B_FALSE);
11471 	}
11472 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11473 	    tcp_1948_phrase_set, NULL)) {
11474 		nd_free(ndp);
11475 		return (B_FALSE);
11476 	}
11477 	if (!nd_load(ndp, "tcp_reserved_port_list",
11478 	    tcp_reserved_port_list, NULL, NULL)) {
11479 		nd_free(ndp);
11480 		return (B_FALSE);
11481 	}
11482 	/*
11483 	 * Dummy ndd variables - only to convey obsolescence information
11484 	 * through printing of their name (no get or set routines)
11485 	 * XXX Remove in future releases ?
11486 	 */
11487 	if (!nd_load(ndp,
11488 	    "tcp_close_wait_interval(obsoleted - "
11489 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11490 		nd_free(ndp);
11491 		return (B_FALSE);
11492 	}
11493 	return (B_TRUE);
11494 }
11495 
11496 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11497 /* ARGSUSED */
11498 static int
11499 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11500     cred_t *cr)
11501 {
11502 	long new_value;
11503 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11504 
11505 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11506 	    new_value < tcppa->tcp_param_min ||
11507 	    new_value > tcppa->tcp_param_max) {
11508 		return (EINVAL);
11509 	}
11510 	/*
11511 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11512 	 * round it up.  For future 64 bit requirement, we actually make it
11513 	 * a multiple of 8.
11514 	 */
11515 	if (new_value & 0x7) {
11516 		new_value = (new_value & ~0x7) + 0x8;
11517 	}
11518 	tcppa->tcp_param_val = new_value;
11519 	return (0);
11520 }
11521 
11522 /* Set callback routine passed to nd_load by tcp_param_register */
11523 /* ARGSUSED */
11524 static int
11525 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11526 {
11527 	long	new_value;
11528 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11529 
11530 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11531 	    new_value < tcppa->tcp_param_min ||
11532 	    new_value > tcppa->tcp_param_max) {
11533 		return (EINVAL);
11534 	}
11535 	tcppa->tcp_param_val = new_value;
11536 	return (0);
11537 }
11538 
11539 /*
11540  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11541  * is filled, return as much as we can.  The message passed in may be
11542  * multi-part, chained using b_cont.  "start" is the starting sequence
11543  * number for this piece.
11544  */
11545 static mblk_t *
11546 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11547 {
11548 	uint32_t	end;
11549 	mblk_t		*mp1;
11550 	mblk_t		*mp2;
11551 	mblk_t		*next_mp;
11552 	uint32_t	u1;
11553 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11554 
11555 	/* Walk through all the new pieces. */
11556 	do {
11557 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11558 		    (uintptr_t)INT_MAX);
11559 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11560 		next_mp = mp->b_cont;
11561 		if (start == end) {
11562 			/* Empty.  Blast it. */
11563 			freeb(mp);
11564 			continue;
11565 		}
11566 		mp->b_cont = NULL;
11567 		TCP_REASS_SET_SEQ(mp, start);
11568 		TCP_REASS_SET_END(mp, end);
11569 		mp1 = tcp->tcp_reass_tail;
11570 		if (!mp1) {
11571 			tcp->tcp_reass_tail = mp;
11572 			tcp->tcp_reass_head = mp;
11573 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11574 			UPDATE_MIB(&tcps->tcps_mib,
11575 			    tcpInDataUnorderBytes, end - start);
11576 			continue;
11577 		}
11578 		/* New stuff completely beyond tail? */
11579 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11580 			/* Link it on end. */
11581 			mp1->b_cont = mp;
11582 			tcp->tcp_reass_tail = mp;
11583 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11584 			UPDATE_MIB(&tcps->tcps_mib,
11585 			    tcpInDataUnorderBytes, end - start);
11586 			continue;
11587 		}
11588 		mp1 = tcp->tcp_reass_head;
11589 		u1 = TCP_REASS_SEQ(mp1);
11590 		/* New stuff at the front? */
11591 		if (SEQ_LT(start, u1)) {
11592 			/* Yes... Check for overlap. */
11593 			mp->b_cont = mp1;
11594 			tcp->tcp_reass_head = mp;
11595 			tcp_reass_elim_overlap(tcp, mp);
11596 			continue;
11597 		}
11598 		/*
11599 		 * The new piece fits somewhere between the head and tail.
11600 		 * We find our slot, where mp1 precedes us and mp2 trails.
11601 		 */
11602 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11603 			u1 = TCP_REASS_SEQ(mp2);
11604 			if (SEQ_LEQ(start, u1))
11605 				break;
11606 		}
11607 		/* Link ourselves in */
11608 		mp->b_cont = mp2;
11609 		mp1->b_cont = mp;
11610 
11611 		/* Trim overlap with following mblk(s) first */
11612 		tcp_reass_elim_overlap(tcp, mp);
11613 
11614 		/* Trim overlap with preceding mblk */
11615 		tcp_reass_elim_overlap(tcp, mp1);
11616 
11617 	} while (start = end, mp = next_mp);
11618 	mp1 = tcp->tcp_reass_head;
11619 	/* Anything ready to go? */
11620 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11621 		return (NULL);
11622 	/* Eat what we can off the queue */
11623 	for (;;) {
11624 		mp = mp1->b_cont;
11625 		end = TCP_REASS_END(mp1);
11626 		TCP_REASS_SET_SEQ(mp1, 0);
11627 		TCP_REASS_SET_END(mp1, 0);
11628 		if (!mp) {
11629 			tcp->tcp_reass_tail = NULL;
11630 			break;
11631 		}
11632 		if (end != TCP_REASS_SEQ(mp)) {
11633 			mp1->b_cont = NULL;
11634 			break;
11635 		}
11636 		mp1 = mp;
11637 	}
11638 	mp1 = tcp->tcp_reass_head;
11639 	tcp->tcp_reass_head = mp;
11640 	return (mp1);
11641 }
11642 
11643 /* Eliminate any overlap that mp may have over later mblks */
11644 static void
11645 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11646 {
11647 	uint32_t	end;
11648 	mblk_t		*mp1;
11649 	uint32_t	u1;
11650 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11651 
11652 	end = TCP_REASS_END(mp);
11653 	while ((mp1 = mp->b_cont) != NULL) {
11654 		u1 = TCP_REASS_SEQ(mp1);
11655 		if (!SEQ_GT(end, u1))
11656 			break;
11657 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11658 			mp->b_wptr -= end - u1;
11659 			TCP_REASS_SET_END(mp, u1);
11660 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11661 			UPDATE_MIB(&tcps->tcps_mib,
11662 			    tcpInDataPartDupBytes, end - u1);
11663 			break;
11664 		}
11665 		mp->b_cont = mp1->b_cont;
11666 		TCP_REASS_SET_SEQ(mp1, 0);
11667 		TCP_REASS_SET_END(mp1, 0);
11668 		freeb(mp1);
11669 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11670 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11671 	}
11672 	if (!mp1)
11673 		tcp->tcp_reass_tail = mp;
11674 }
11675 
11676 /*
11677  * Send up all messages queued on tcp_rcv_list.
11678  */
11679 static uint_t
11680 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11681 {
11682 	mblk_t *mp;
11683 	uint_t ret = 0;
11684 	uint_t thwin;
11685 #ifdef DEBUG
11686 	uint_t cnt = 0;
11687 #endif
11688 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11689 
11690 	/* Can't drain on an eager connection */
11691 	if (tcp->tcp_listener != NULL)
11692 		return (ret);
11693 
11694 	/*
11695 	 * Handle two cases here: we are currently fused or we were
11696 	 * previously fused and have some urgent data to be delivered
11697 	 * upstream.  The latter happens because we either ran out of
11698 	 * memory or were detached and therefore sending the SIGURG was
11699 	 * deferred until this point.  In either case we pass control
11700 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11701 	 * some work.
11702 	 */
11703 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11704 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11705 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11706 		    &tcp->tcp_fused_sigurg_mp))
11707 			return (ret);
11708 	}
11709 
11710 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11711 		tcp->tcp_rcv_list = mp->b_next;
11712 		mp->b_next = NULL;
11713 #ifdef DEBUG
11714 		cnt += msgdsize(mp);
11715 #endif
11716 		/* Does this need SSL processing first? */
11717 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11718 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11719 			    mblk_t *, mp);
11720 			tcp_kssl_input(tcp, mp);
11721 			continue;
11722 		}
11723 		putnext(q, mp);
11724 	}
11725 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11726 	tcp->tcp_rcv_last_head = NULL;
11727 	tcp->tcp_rcv_last_tail = NULL;
11728 	tcp->tcp_rcv_cnt = 0;
11729 
11730 	/* Learn the latest rwnd information that we sent to the other side. */
11731 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11732 	    << tcp->tcp_rcv_ws;
11733 	/* This is peer's calculated send window (our receive window). */
11734 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11735 	/*
11736 	 * Increase the receive window to max.  But we need to do receiver
11737 	 * SWS avoidance.  This means that we need to check the increase of
11738 	 * of receive window is at least 1 MSS.
11739 	 */
11740 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11741 		/*
11742 		 * If the window that the other side knows is less than max
11743 		 * deferred acks segments, send an update immediately.
11744 		 */
11745 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11746 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11747 			ret = TH_ACK_NEEDED;
11748 		}
11749 		tcp->tcp_rwnd = q->q_hiwat;
11750 	}
11751 	/* No need for the push timer now. */
11752 	if (tcp->tcp_push_tid != 0) {
11753 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11754 		tcp->tcp_push_tid = 0;
11755 	}
11756 	return (ret);
11757 }
11758 
11759 /*
11760  * Queue data on tcp_rcv_list which is a b_next chain.
11761  * tcp_rcv_last_head/tail is the last element of this chain.
11762  * Each element of the chain is a b_cont chain.
11763  *
11764  * M_DATA messages are added to the current element.
11765  * Other messages are added as new (b_next) elements.
11766  */
11767 void
11768 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11769 {
11770 	ASSERT(seg_len == msgdsize(mp));
11771 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11772 
11773 	if (tcp->tcp_rcv_list == NULL) {
11774 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11775 		tcp->tcp_rcv_list = mp;
11776 		tcp->tcp_rcv_last_head = mp;
11777 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11778 		tcp->tcp_rcv_last_tail->b_cont = mp;
11779 	} else {
11780 		tcp->tcp_rcv_last_head->b_next = mp;
11781 		tcp->tcp_rcv_last_head = mp;
11782 	}
11783 
11784 	while (mp->b_cont)
11785 		mp = mp->b_cont;
11786 
11787 	tcp->tcp_rcv_last_tail = mp;
11788 	tcp->tcp_rcv_cnt += seg_len;
11789 	tcp->tcp_rwnd -= seg_len;
11790 }
11791 
11792 /*
11793  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11794  *
11795  * This is the default entry function into TCP on the read side. TCP is
11796  * always entered via squeue i.e. using squeue's for mutual exclusion.
11797  * When classifier does a lookup to find the tcp, it also puts a reference
11798  * on the conn structure associated so the tcp is guaranteed to exist
11799  * when we come here. We still need to check the state because it might
11800  * as well has been closed. The squeue processing function i.e. squeue_enter,
11801  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11802  * CONN_DEC_REF.
11803  *
11804  * Apart from the default entry point, IP also sends packets directly to
11805  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11806  * connections.
11807  */
11808 void
11809 tcp_input(void *arg, mblk_t *mp, void *arg2)
11810 {
11811 	conn_t	*connp = (conn_t *)arg;
11812 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11813 
11814 	/* arg2 is the sqp */
11815 	ASSERT(arg2 != NULL);
11816 	ASSERT(mp != NULL);
11817 
11818 	/*
11819 	 * Don't accept any input on a closed tcp as this TCP logically does
11820 	 * not exist on the system. Don't proceed further with this TCP.
11821 	 * For eg. this packet could trigger another close of this tcp
11822 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11823 	 * tcp_clean_death / tcp_closei_local must be called at most once
11824 	 * on a TCP. In this case we need to refeed the packet into the
11825 	 * classifier and figure out where the packet should go. Need to
11826 	 * preserve the recv_ill somehow. Until we figure that out, for
11827 	 * now just drop the packet if we can't classify the packet.
11828 	 */
11829 	if (tcp->tcp_state == TCPS_CLOSED ||
11830 	    tcp->tcp_state == TCPS_BOUND) {
11831 		conn_t	*new_connp;
11832 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11833 
11834 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11835 		if (new_connp != NULL) {
11836 			tcp_reinput(new_connp, mp, arg2);
11837 			return;
11838 		}
11839 		/* We failed to classify. For now just drop the packet */
11840 		freemsg(mp);
11841 		return;
11842 	}
11843 
11844 	if (DB_TYPE(mp) == M_DATA)
11845 		tcp_rput_data(connp, mp, arg2);
11846 	else
11847 		tcp_rput_common(tcp, mp);
11848 }
11849 
11850 /*
11851  * The read side put procedure.
11852  * The packets passed up by ip are assume to be aligned according to
11853  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11854  */
11855 static void
11856 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11857 {
11858 	/*
11859 	 * tcp_rput_data() does not expect M_CTL except for the case
11860 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11861 	 * type. Need to make sure that any other M_CTLs don't make
11862 	 * it to tcp_rput_data since it is not expecting any and doesn't
11863 	 * check for it.
11864 	 */
11865 	if (DB_TYPE(mp) == M_CTL) {
11866 		switch (*(uint32_t *)(mp->b_rptr)) {
11867 		case TCP_IOC_ABORT_CONN:
11868 			/*
11869 			 * Handle connection abort request.
11870 			 */
11871 			tcp_ioctl_abort_handler(tcp, mp);
11872 			return;
11873 		case IPSEC_IN:
11874 			/*
11875 			 * Only secure icmp arrive in TCP and they
11876 			 * don't go through data path.
11877 			 */
11878 			tcp_icmp_error(tcp, mp);
11879 			return;
11880 		case IN_PKTINFO:
11881 			/*
11882 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11883 			 * sockets that are receiving IPv4 traffic. tcp
11884 			 */
11885 			ASSERT(tcp->tcp_family == AF_INET6);
11886 			ASSERT(tcp->tcp_ipv6_recvancillary &
11887 			    TCP_IPV6_RECVPKTINFO);
11888 			tcp_rput_data(tcp->tcp_connp, mp,
11889 			    tcp->tcp_connp->conn_sqp);
11890 			return;
11891 		case MDT_IOC_INFO_UPDATE:
11892 			/*
11893 			 * Handle Multidata information update; the
11894 			 * following routine will free the message.
11895 			 */
11896 			if (tcp->tcp_connp->conn_mdt_ok) {
11897 				tcp_mdt_update(tcp,
11898 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11899 				    B_FALSE);
11900 			}
11901 			freemsg(mp);
11902 			return;
11903 		case LSO_IOC_INFO_UPDATE:
11904 			/*
11905 			 * Handle LSO information update; the following
11906 			 * routine will free the message.
11907 			 */
11908 			if (tcp->tcp_connp->conn_lso_ok) {
11909 				tcp_lso_update(tcp,
11910 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11911 			}
11912 			freemsg(mp);
11913 			return;
11914 		default:
11915 			/*
11916 			 * tcp_icmp_err() will process the M_CTL packets.
11917 			 * Non-ICMP packets, if any, will be discarded in
11918 			 * tcp_icmp_err(). We will process the ICMP packet
11919 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11920 			 * incoming ICMP packet may result in changing
11921 			 * the tcp_mss, which we would need if we have
11922 			 * packets to retransmit.
11923 			 */
11924 			tcp_icmp_error(tcp, mp);
11925 			return;
11926 		}
11927 	}
11928 
11929 	/* No point processing the message if tcp is already closed */
11930 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11931 		freemsg(mp);
11932 		return;
11933 	}
11934 
11935 	tcp_rput_other(tcp, mp);
11936 }
11937 
11938 
11939 /* The minimum of smoothed mean deviation in RTO calculation. */
11940 #define	TCP_SD_MIN	400
11941 
11942 /*
11943  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11944  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11945  * are the same as those in Appendix A.2 of that paper.
11946  *
11947  * m = new measurement
11948  * sa = smoothed RTT average (8 * average estimates).
11949  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11950  */
11951 static void
11952 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11953 {
11954 	long m = TICK_TO_MSEC(rtt);
11955 	clock_t sa = tcp->tcp_rtt_sa;
11956 	clock_t sv = tcp->tcp_rtt_sd;
11957 	clock_t rto;
11958 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11959 
11960 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11961 	tcp->tcp_rtt_update++;
11962 
11963 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11964 	if (sa != 0) {
11965 		/*
11966 		 * Update average estimator:
11967 		 *	new rtt = 7/8 old rtt + 1/8 Error
11968 		 */
11969 
11970 		/* m is now Error in estimate. */
11971 		m -= sa >> 3;
11972 		if ((sa += m) <= 0) {
11973 			/*
11974 			 * Don't allow the smoothed average to be negative.
11975 			 * We use 0 to denote reinitialization of the
11976 			 * variables.
11977 			 */
11978 			sa = 1;
11979 		}
11980 
11981 		/*
11982 		 * Update deviation estimator:
11983 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11984 		 */
11985 		if (m < 0)
11986 			m = -m;
11987 		m -= sv >> 2;
11988 		sv += m;
11989 	} else {
11990 		/*
11991 		 * This follows BSD's implementation.  So the reinitialized
11992 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11993 		 * link is bandwidth dominated, doubling the window size
11994 		 * during slow start means doubling the RTT.  We want to be
11995 		 * more conservative when we reinitialize our estimates.  3
11996 		 * is just a convenient number.
11997 		 */
11998 		sa = m << 3;
11999 		sv = m << 1;
12000 	}
12001 	if (sv < TCP_SD_MIN) {
12002 		/*
12003 		 * We do not know that if sa captures the delay ACK
12004 		 * effect as in a long train of segments, a receiver
12005 		 * does not delay its ACKs.  So set the minimum of sv
12006 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12007 		 * of BSD DATO.  That means the minimum of mean
12008 		 * deviation is 100 ms.
12009 		 *
12010 		 */
12011 		sv = TCP_SD_MIN;
12012 	}
12013 	tcp->tcp_rtt_sa = sa;
12014 	tcp->tcp_rtt_sd = sv;
12015 	/*
12016 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12017 	 *
12018 	 * Add tcp_rexmit_interval extra in case of extreme environment
12019 	 * where the algorithm fails to work.  The default value of
12020 	 * tcp_rexmit_interval_extra should be 0.
12021 	 *
12022 	 * As we use a finer grained clock than BSD and update
12023 	 * RTO for every ACKs, add in another .25 of RTT to the
12024 	 * deviation of RTO to accomodate burstiness of 1/4 of
12025 	 * window size.
12026 	 */
12027 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12028 
12029 	if (rto > tcps->tcps_rexmit_interval_max) {
12030 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12031 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12032 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12033 	} else {
12034 		tcp->tcp_rto = rto;
12035 	}
12036 
12037 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12038 	tcp->tcp_timer_backoff = 0;
12039 }
12040 
12041 /*
12042  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12043  * send queue which starts at the given seq. no.
12044  *
12045  * Parameters:
12046  *	tcp_t *tcp: the tcp instance pointer.
12047  *	uint32_t seq: the starting seq. no of the requested segment.
12048  *	int32_t *off: after the execution, *off will be the offset to
12049  *		the returned mblk which points to the requested seq no.
12050  *		It is the caller's responsibility to send in a non-null off.
12051  *
12052  * Return:
12053  *	A mblk_t pointer pointing to the requested segment in send queue.
12054  */
12055 static mblk_t *
12056 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12057 {
12058 	int32_t	cnt;
12059 	mblk_t	*mp;
12060 
12061 	/* Defensive coding.  Make sure we don't send incorrect data. */
12062 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12063 		return (NULL);
12064 
12065 	cnt = seq - tcp->tcp_suna;
12066 	mp = tcp->tcp_xmit_head;
12067 	while (cnt > 0 && mp != NULL) {
12068 		cnt -= mp->b_wptr - mp->b_rptr;
12069 		if (cnt < 0) {
12070 			cnt += mp->b_wptr - mp->b_rptr;
12071 			break;
12072 		}
12073 		mp = mp->b_cont;
12074 	}
12075 	ASSERT(mp != NULL);
12076 	*off = cnt;
12077 	return (mp);
12078 }
12079 
12080 /*
12081  * This function handles all retransmissions if SACK is enabled for this
12082  * connection.  First it calculates how many segments can be retransmitted
12083  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12084  * segments.  A segment is eligible if sack_cnt for that segment is greater
12085  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12086  * all eligible segments, it checks to see if TCP can send some new segments
12087  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12088  *
12089  * Parameters:
12090  *	tcp_t *tcp: the tcp structure of the connection.
12091  *	uint_t *flags: in return, appropriate value will be set for
12092  *	tcp_rput_data().
12093  */
12094 static void
12095 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12096 {
12097 	notsack_blk_t	*notsack_blk;
12098 	int32_t		usable_swnd;
12099 	int32_t		mss;
12100 	uint32_t	seg_len;
12101 	mblk_t		*xmit_mp;
12102 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12103 
12104 	ASSERT(tcp->tcp_sack_info != NULL);
12105 	ASSERT(tcp->tcp_notsack_list != NULL);
12106 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12107 
12108 	/* Defensive coding in case there is a bug... */
12109 	if (tcp->tcp_notsack_list == NULL) {
12110 		return;
12111 	}
12112 	notsack_blk = tcp->tcp_notsack_list;
12113 	mss = tcp->tcp_mss;
12114 
12115 	/*
12116 	 * Limit the num of outstanding data in the network to be
12117 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12118 	 */
12119 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12120 
12121 	/* At least retransmit 1 MSS of data. */
12122 	if (usable_swnd <= 0) {
12123 		usable_swnd = mss;
12124 	}
12125 
12126 	/* Make sure no new RTT samples will be taken. */
12127 	tcp->tcp_csuna = tcp->tcp_snxt;
12128 
12129 	notsack_blk = tcp->tcp_notsack_list;
12130 	while (usable_swnd > 0) {
12131 		mblk_t		*snxt_mp, *tmp_mp;
12132 		tcp_seq		begin = tcp->tcp_sack_snxt;
12133 		tcp_seq		end;
12134 		int32_t		off;
12135 
12136 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12137 			if (SEQ_GT(notsack_blk->end, begin) &&
12138 			    (notsack_blk->sack_cnt >=
12139 			    tcps->tcps_dupack_fast_retransmit)) {
12140 				end = notsack_blk->end;
12141 				if (SEQ_LT(begin, notsack_blk->begin)) {
12142 					begin = notsack_blk->begin;
12143 				}
12144 				break;
12145 			}
12146 		}
12147 		/*
12148 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12149 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12150 		 * set to tcp_cwnd_ssthresh.
12151 		 */
12152 		if (notsack_blk == NULL) {
12153 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12154 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12155 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12156 				ASSERT(tcp->tcp_cwnd > 0);
12157 				return;
12158 			} else {
12159 				usable_swnd = usable_swnd / mss;
12160 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12161 				    MAX(usable_swnd * mss, mss);
12162 				*flags |= TH_XMIT_NEEDED;
12163 				return;
12164 			}
12165 		}
12166 
12167 		/*
12168 		 * Note that we may send more than usable_swnd allows here
12169 		 * because of round off, but no more than 1 MSS of data.
12170 		 */
12171 		seg_len = end - begin;
12172 		if (seg_len > mss)
12173 			seg_len = mss;
12174 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12175 		ASSERT(snxt_mp != NULL);
12176 		/* This should not happen.  Defensive coding again... */
12177 		if (snxt_mp == NULL) {
12178 			return;
12179 		}
12180 
12181 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12182 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12183 		if (xmit_mp == NULL)
12184 			return;
12185 
12186 		usable_swnd -= seg_len;
12187 		tcp->tcp_pipe += seg_len;
12188 		tcp->tcp_sack_snxt = begin + seg_len;
12189 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12190 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12191 
12192 		/*
12193 		 * Update the send timestamp to avoid false retransmission.
12194 		 */
12195 		snxt_mp->b_prev = (mblk_t *)lbolt;
12196 
12197 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12198 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12199 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12200 		/*
12201 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12202 		 * This happens when new data sent during fast recovery is
12203 		 * also lost.  If TCP retransmits those new data, it needs
12204 		 * to extend SACK recover phase to avoid starting another
12205 		 * fast retransmit/recovery unnecessarily.
12206 		 */
12207 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12208 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12209 		}
12210 	}
12211 }
12212 
12213 /*
12214  * This function handles policy checking at TCP level for non-hard_bound/
12215  * detached connections.
12216  */
12217 static boolean_t
12218 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12219     boolean_t secure, boolean_t mctl_present)
12220 {
12221 	ipsec_latch_t *ipl = NULL;
12222 	ipsec_action_t *act = NULL;
12223 	mblk_t *data_mp;
12224 	ipsec_in_t *ii;
12225 	const char *reason;
12226 	kstat_named_t *counter;
12227 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12228 	ipsec_stack_t	*ipss;
12229 	ip_stack_t	*ipst;
12230 
12231 	ASSERT(mctl_present || !secure);
12232 
12233 	ASSERT((ipha == NULL && ip6h != NULL) ||
12234 	    (ip6h == NULL && ipha != NULL));
12235 
12236 	/*
12237 	 * We don't necessarily have an ipsec_in_act action to verify
12238 	 * policy because of assymetrical policy where we have only
12239 	 * outbound policy and no inbound policy (possible with global
12240 	 * policy).
12241 	 */
12242 	if (!secure) {
12243 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12244 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12245 			return (B_TRUE);
12246 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12247 		    "tcp_check_policy", ipha, ip6h, secure,
12248 		    tcps->tcps_netstack);
12249 		ipss = tcps->tcps_netstack->netstack_ipsec;
12250 
12251 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12252 		    DROPPER(ipss, ipds_tcp_clear),
12253 		    &tcps->tcps_dropper);
12254 		return (B_FALSE);
12255 	}
12256 
12257 	/*
12258 	 * We have a secure packet.
12259 	 */
12260 	if (act == NULL) {
12261 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12262 		    "tcp_check_policy", ipha, ip6h, secure,
12263 		    tcps->tcps_netstack);
12264 		ipss = tcps->tcps_netstack->netstack_ipsec;
12265 
12266 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12267 		    DROPPER(ipss, ipds_tcp_secure),
12268 		    &tcps->tcps_dropper);
12269 		return (B_FALSE);
12270 	}
12271 
12272 	/*
12273 	 * XXX This whole routine is currently incorrect.  ipl should
12274 	 * be set to the latch pointer, but is currently not set, so
12275 	 * we initialize it to NULL to avoid picking up random garbage.
12276 	 */
12277 	if (ipl == NULL)
12278 		return (B_TRUE);
12279 
12280 	data_mp = first_mp->b_cont;
12281 
12282 	ii = (ipsec_in_t *)first_mp->b_rptr;
12283 
12284 	ipst = tcps->tcps_netstack->netstack_ip;
12285 
12286 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12287 	    &counter, tcp->tcp_connp)) {
12288 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12289 		return (B_TRUE);
12290 	}
12291 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12292 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12293 	    reason);
12294 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12295 
12296 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12297 	    &tcps->tcps_dropper);
12298 	return (B_FALSE);
12299 }
12300 
12301 /*
12302  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12303  * retransmission after a timeout.
12304  *
12305  * To limit the number of duplicate segments, we limit the number of segment
12306  * to be sent in one time to tcp_snd_burst, the burst variable.
12307  */
12308 static void
12309 tcp_ss_rexmit(tcp_t *tcp)
12310 {
12311 	uint32_t	snxt;
12312 	uint32_t	smax;
12313 	int32_t		win;
12314 	int32_t		mss;
12315 	int32_t		off;
12316 	int32_t		burst = tcp->tcp_snd_burst;
12317 	mblk_t		*snxt_mp;
12318 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12319 
12320 	/*
12321 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12322 	 * all unack'ed segments.
12323 	 */
12324 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12325 		smax = tcp->tcp_rexmit_max;
12326 		snxt = tcp->tcp_rexmit_nxt;
12327 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12328 			snxt = tcp->tcp_suna;
12329 		}
12330 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12331 		win -= snxt - tcp->tcp_suna;
12332 		mss = tcp->tcp_mss;
12333 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12334 
12335 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12336 		    (burst > 0) && (snxt_mp != NULL)) {
12337 			mblk_t	*xmit_mp;
12338 			mblk_t	*old_snxt_mp = snxt_mp;
12339 			uint32_t cnt = mss;
12340 
12341 			if (win < cnt) {
12342 				cnt = win;
12343 			}
12344 			if (SEQ_GT(snxt + cnt, smax)) {
12345 				cnt = smax - snxt;
12346 			}
12347 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12348 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12349 			if (xmit_mp == NULL)
12350 				return;
12351 
12352 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12353 
12354 			snxt += cnt;
12355 			win -= cnt;
12356 			/*
12357 			 * Update the send timestamp to avoid false
12358 			 * retransmission.
12359 			 */
12360 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12361 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12362 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12363 
12364 			tcp->tcp_rexmit_nxt = snxt;
12365 			burst--;
12366 		}
12367 		/*
12368 		 * If we have transmitted all we have at the time
12369 		 * we started the retranmission, we can leave
12370 		 * the rest of the job to tcp_wput_data().  But we
12371 		 * need to check the send window first.  If the
12372 		 * win is not 0, go on with tcp_wput_data().
12373 		 */
12374 		if (SEQ_LT(snxt, smax) || win == 0) {
12375 			return;
12376 		}
12377 	}
12378 	/* Only call tcp_wput_data() if there is data to be sent. */
12379 	if (tcp->tcp_unsent) {
12380 		tcp_wput_data(tcp, NULL, B_FALSE);
12381 	}
12382 }
12383 
12384 /*
12385  * Process all TCP option in SYN segment.  Note that this function should
12386  * be called after tcp_adapt_ire() is called so that the necessary info
12387  * from IRE is already set in the tcp structure.
12388  *
12389  * This function sets up the correct tcp_mss value according to the
12390  * MSS option value and our header size.  It also sets up the window scale
12391  * and timestamp values, and initialize SACK info blocks.  But it does not
12392  * change receive window size after setting the tcp_mss value.  The caller
12393  * should do the appropriate change.
12394  */
12395 void
12396 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12397 {
12398 	int options;
12399 	tcp_opt_t tcpopt;
12400 	uint32_t mss_max;
12401 	char *tmp_tcph;
12402 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12403 
12404 	tcpopt.tcp = NULL;
12405 	options = tcp_parse_options(tcph, &tcpopt);
12406 
12407 	/*
12408 	 * Process MSS option.  Note that MSS option value does not account
12409 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12410 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12411 	 * IPv6.
12412 	 */
12413 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12414 		if (tcp->tcp_ipversion == IPV4_VERSION)
12415 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12416 		else
12417 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12418 	} else {
12419 		if (tcp->tcp_ipversion == IPV4_VERSION)
12420 			mss_max = tcps->tcps_mss_max_ipv4;
12421 		else
12422 			mss_max = tcps->tcps_mss_max_ipv6;
12423 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12424 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12425 		else if (tcpopt.tcp_opt_mss > mss_max)
12426 			tcpopt.tcp_opt_mss = mss_max;
12427 	}
12428 
12429 	/* Process Window Scale option. */
12430 	if (options & TCP_OPT_WSCALE_PRESENT) {
12431 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12432 		tcp->tcp_snd_ws_ok = B_TRUE;
12433 	} else {
12434 		tcp->tcp_snd_ws = B_FALSE;
12435 		tcp->tcp_snd_ws_ok = B_FALSE;
12436 		tcp->tcp_rcv_ws = B_FALSE;
12437 	}
12438 
12439 	/* Process Timestamp option. */
12440 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12441 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12442 		tmp_tcph = (char *)tcp->tcp_tcph;
12443 
12444 		tcp->tcp_snd_ts_ok = B_TRUE;
12445 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12446 		tcp->tcp_last_rcv_lbolt = lbolt64;
12447 		ASSERT(OK_32PTR(tmp_tcph));
12448 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12449 
12450 		/* Fill in our template header with basic timestamp option. */
12451 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12452 		tmp_tcph[0] = TCPOPT_NOP;
12453 		tmp_tcph[1] = TCPOPT_NOP;
12454 		tmp_tcph[2] = TCPOPT_TSTAMP;
12455 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12456 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12457 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12458 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12459 	} else {
12460 		tcp->tcp_snd_ts_ok = B_FALSE;
12461 	}
12462 
12463 	/*
12464 	 * Process SACK options.  If SACK is enabled for this connection,
12465 	 * then allocate the SACK info structure.  Note the following ways
12466 	 * when tcp_snd_sack_ok is set to true.
12467 	 *
12468 	 * For active connection: in tcp_adapt_ire() called in
12469 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12470 	 * is checked.
12471 	 *
12472 	 * For passive connection: in tcp_adapt_ire() called in
12473 	 * tcp_accept_comm().
12474 	 *
12475 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12476 	 * That check makes sure that if we did not send a SACK OK option,
12477 	 * we will not enable SACK for this connection even though the other
12478 	 * side sends us SACK OK option.  For active connection, the SACK
12479 	 * info structure has already been allocated.  So we need to free
12480 	 * it if SACK is disabled.
12481 	 */
12482 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12483 	    (tcp->tcp_snd_sack_ok ||
12484 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12485 		/* This should be true only in the passive case. */
12486 		if (tcp->tcp_sack_info == NULL) {
12487 			ASSERT(TCP_IS_DETACHED(tcp));
12488 			tcp->tcp_sack_info =
12489 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12490 		}
12491 		if (tcp->tcp_sack_info == NULL) {
12492 			tcp->tcp_snd_sack_ok = B_FALSE;
12493 		} else {
12494 			tcp->tcp_snd_sack_ok = B_TRUE;
12495 			if (tcp->tcp_snd_ts_ok) {
12496 				tcp->tcp_max_sack_blk = 3;
12497 			} else {
12498 				tcp->tcp_max_sack_blk = 4;
12499 			}
12500 		}
12501 	} else {
12502 		/*
12503 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12504 		 * no SACK info will be used for this
12505 		 * connection.  This assumes that SACK usage
12506 		 * permission is negotiated.  This may need
12507 		 * to be changed once this is clarified.
12508 		 */
12509 		if (tcp->tcp_sack_info != NULL) {
12510 			ASSERT(tcp->tcp_notsack_list == NULL);
12511 			kmem_cache_free(tcp_sack_info_cache,
12512 			    tcp->tcp_sack_info);
12513 			tcp->tcp_sack_info = NULL;
12514 		}
12515 		tcp->tcp_snd_sack_ok = B_FALSE;
12516 	}
12517 
12518 	/*
12519 	 * Now we know the exact TCP/IP header length, subtract
12520 	 * that from tcp_mss to get our side's MSS.
12521 	 */
12522 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12523 	/*
12524 	 * Here we assume that the other side's header size will be equal to
12525 	 * our header size.  We calculate the real MSS accordingly.  Need to
12526 	 * take into additional stuffs IPsec puts in.
12527 	 *
12528 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12529 	 */
12530 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12531 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12532 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12533 
12534 	/*
12535 	 * Set MSS to the smaller one of both ends of the connection.
12536 	 * We should not have called tcp_mss_set() before, but our
12537 	 * side of the MSS should have been set to a proper value
12538 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12539 	 * STREAM head parameters properly.
12540 	 *
12541 	 * If we have a larger-than-16-bit window but the other side
12542 	 * didn't want to do window scale, tcp_rwnd_set() will take
12543 	 * care of that.
12544 	 */
12545 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12546 }
12547 
12548 /*
12549  * Sends the T_CONN_IND to the listener. The caller calls this
12550  * functions via squeue to get inside the listener's perimeter
12551  * once the 3 way hand shake is done a T_CONN_IND needs to be
12552  * sent. As an optimization, the caller can call this directly
12553  * if listener's perimeter is same as eager's.
12554  */
12555 /* ARGSUSED */
12556 void
12557 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12558 {
12559 	conn_t			*lconnp = (conn_t *)arg;
12560 	tcp_t			*listener = lconnp->conn_tcp;
12561 	tcp_t			*tcp;
12562 	struct T_conn_ind	*conn_ind;
12563 	ipaddr_t 		*addr_cache;
12564 	boolean_t		need_send_conn_ind = B_FALSE;
12565 	tcp_stack_t		*tcps = listener->tcp_tcps;
12566 
12567 	/* retrieve the eager */
12568 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12569 	ASSERT(conn_ind->OPT_offset != 0 &&
12570 	    conn_ind->OPT_length == sizeof (intptr_t));
12571 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12572 	    conn_ind->OPT_length);
12573 
12574 	/*
12575 	 * TLI/XTI applications will get confused by
12576 	 * sending eager as an option since it violates
12577 	 * the option semantics. So remove the eager as
12578 	 * option since TLI/XTI app doesn't need it anyway.
12579 	 */
12580 	if (!TCP_IS_SOCKET(listener)) {
12581 		conn_ind->OPT_length = 0;
12582 		conn_ind->OPT_offset = 0;
12583 	}
12584 	if (listener->tcp_state == TCPS_CLOSED ||
12585 	    TCP_IS_DETACHED(listener)) {
12586 		/*
12587 		 * If listener has closed, it would have caused a
12588 		 * a cleanup/blowoff to happen for the eager. We
12589 		 * just need to return.
12590 		 */
12591 		freemsg(mp);
12592 		return;
12593 	}
12594 
12595 
12596 	/*
12597 	 * if the conn_req_q is full defer passing up the
12598 	 * T_CONN_IND until space is availabe after t_accept()
12599 	 * processing
12600 	 */
12601 	mutex_enter(&listener->tcp_eager_lock);
12602 
12603 	/*
12604 	 * Take the eager out, if it is in the list of droppable eagers
12605 	 * as we are here because the 3W handshake is over.
12606 	 */
12607 	MAKE_UNDROPPABLE(tcp);
12608 
12609 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12610 		tcp_t *tail;
12611 
12612 		/*
12613 		 * The eager already has an extra ref put in tcp_rput_data
12614 		 * so that it stays till accept comes back even though it
12615 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12616 		 */
12617 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12618 		listener->tcp_conn_req_cnt_q0--;
12619 		listener->tcp_conn_req_cnt_q++;
12620 
12621 		/* Move from SYN_RCVD to ESTABLISHED list  */
12622 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12623 		    tcp->tcp_eager_prev_q0;
12624 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12625 		    tcp->tcp_eager_next_q0;
12626 		tcp->tcp_eager_prev_q0 = NULL;
12627 		tcp->tcp_eager_next_q0 = NULL;
12628 
12629 		/*
12630 		 * Insert at end of the queue because sockfs
12631 		 * sends down T_CONN_RES in chronological
12632 		 * order. Leaving the older conn indications
12633 		 * at front of the queue helps reducing search
12634 		 * time.
12635 		 */
12636 		tail = listener->tcp_eager_last_q;
12637 		if (tail != NULL)
12638 			tail->tcp_eager_next_q = tcp;
12639 		else
12640 			listener->tcp_eager_next_q = tcp;
12641 		listener->tcp_eager_last_q = tcp;
12642 		tcp->tcp_eager_next_q = NULL;
12643 		/*
12644 		 * Delay sending up the T_conn_ind until we are
12645 		 * done with the eager. Once we have have sent up
12646 		 * the T_conn_ind, the accept can potentially complete
12647 		 * any time and release the refhold we have on the eager.
12648 		 */
12649 		need_send_conn_ind = B_TRUE;
12650 	} else {
12651 		/*
12652 		 * Defer connection on q0 and set deferred
12653 		 * connection bit true
12654 		 */
12655 		tcp->tcp_conn_def_q0 = B_TRUE;
12656 
12657 		/* take tcp out of q0 ... */
12658 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12659 		    tcp->tcp_eager_next_q0;
12660 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12661 		    tcp->tcp_eager_prev_q0;
12662 
12663 		/* ... and place it at the end of q0 */
12664 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12665 		tcp->tcp_eager_next_q0 = listener;
12666 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12667 		listener->tcp_eager_prev_q0 = tcp;
12668 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12669 	}
12670 
12671 	/* we have timed out before */
12672 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12673 		tcp->tcp_syn_rcvd_timeout = 0;
12674 		listener->tcp_syn_rcvd_timeout--;
12675 		if (listener->tcp_syn_defense &&
12676 		    listener->tcp_syn_rcvd_timeout <=
12677 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12678 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12679 		    listener->tcp_last_rcv_lbolt)) {
12680 			/*
12681 			 * Turn off the defense mode if we
12682 			 * believe the SYN attack is over.
12683 			 */
12684 			listener->tcp_syn_defense = B_FALSE;
12685 			if (listener->tcp_ip_addr_cache) {
12686 				kmem_free((void *)listener->tcp_ip_addr_cache,
12687 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12688 				listener->tcp_ip_addr_cache = NULL;
12689 			}
12690 		}
12691 	}
12692 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12693 	if (addr_cache != NULL) {
12694 		/*
12695 		 * We have finished a 3-way handshake with this
12696 		 * remote host. This proves the IP addr is good.
12697 		 * Cache it!
12698 		 */
12699 		addr_cache[IP_ADDR_CACHE_HASH(
12700 		    tcp->tcp_remote)] = tcp->tcp_remote;
12701 	}
12702 	mutex_exit(&listener->tcp_eager_lock);
12703 	if (need_send_conn_ind)
12704 		putnext(listener->tcp_rq, mp);
12705 }
12706 
12707 mblk_t *
12708 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12709     uint_t *ifindexp, ip6_pkt_t *ippp)
12710 {
12711 	ip_pktinfo_t	*pinfo;
12712 	ip6_t		*ip6h;
12713 	uchar_t		*rptr;
12714 	mblk_t		*first_mp = mp;
12715 	boolean_t	mctl_present = B_FALSE;
12716 	uint_t 		ifindex = 0;
12717 	ip6_pkt_t	ipp;
12718 	uint_t		ipvers;
12719 	uint_t		ip_hdr_len;
12720 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12721 
12722 	rptr = mp->b_rptr;
12723 	ASSERT(OK_32PTR(rptr));
12724 	ASSERT(tcp != NULL);
12725 	ipp.ipp_fields = 0;
12726 
12727 	switch DB_TYPE(mp) {
12728 	case M_CTL:
12729 		mp = mp->b_cont;
12730 		if (mp == NULL) {
12731 			freemsg(first_mp);
12732 			return (NULL);
12733 		}
12734 		if (DB_TYPE(mp) != M_DATA) {
12735 			freemsg(first_mp);
12736 			return (NULL);
12737 		}
12738 		mctl_present = B_TRUE;
12739 		break;
12740 	case M_DATA:
12741 		break;
12742 	default:
12743 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12744 		freemsg(mp);
12745 		return (NULL);
12746 	}
12747 	ipvers = IPH_HDR_VERSION(rptr);
12748 	if (ipvers == IPV4_VERSION) {
12749 		if (tcp == NULL) {
12750 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12751 			goto done;
12752 		}
12753 
12754 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12755 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12756 
12757 		/*
12758 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12759 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12760 		 */
12761 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12762 		    mctl_present) {
12763 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12764 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12765 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12766 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12767 				ipp.ipp_fields |= IPPF_IFINDEX;
12768 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12769 				ifindex = pinfo->ip_pkt_ifindex;
12770 			}
12771 			freeb(first_mp);
12772 			mctl_present = B_FALSE;
12773 		}
12774 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12775 	} else {
12776 		ip6h = (ip6_t *)rptr;
12777 
12778 		ASSERT(ipvers == IPV6_VERSION);
12779 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12780 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12781 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12782 
12783 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12784 			uint8_t	nexthdrp;
12785 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12786 
12787 			/* Look for ifindex information */
12788 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12789 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12790 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12791 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12792 					freemsg(first_mp);
12793 					return (NULL);
12794 				}
12795 
12796 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12797 					ASSERT(ip6i->ip6i_ifindex != 0);
12798 					ipp.ipp_fields |= IPPF_IFINDEX;
12799 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12800 					ifindex = ip6i->ip6i_ifindex;
12801 				}
12802 				rptr = (uchar_t *)&ip6i[1];
12803 				mp->b_rptr = rptr;
12804 				if (rptr == mp->b_wptr) {
12805 					mblk_t *mp1;
12806 					mp1 = mp->b_cont;
12807 					freeb(mp);
12808 					mp = mp1;
12809 					rptr = mp->b_rptr;
12810 				}
12811 				if (MBLKL(mp) < IPV6_HDR_LEN +
12812 				    sizeof (tcph_t)) {
12813 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12814 					freemsg(first_mp);
12815 					return (NULL);
12816 				}
12817 				ip6h = (ip6_t *)rptr;
12818 			}
12819 
12820 			/*
12821 			 * Find any potentially interesting extension headers
12822 			 * as well as the length of the IPv6 + extension
12823 			 * headers.
12824 			 */
12825 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12826 			/* Verify if this is a TCP packet */
12827 			if (nexthdrp != IPPROTO_TCP) {
12828 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12829 				freemsg(first_mp);
12830 				return (NULL);
12831 			}
12832 		} else {
12833 			ip_hdr_len = IPV6_HDR_LEN;
12834 		}
12835 	}
12836 
12837 done:
12838 	if (ipversp != NULL)
12839 		*ipversp = ipvers;
12840 	if (ip_hdr_lenp != NULL)
12841 		*ip_hdr_lenp = ip_hdr_len;
12842 	if (ippp != NULL)
12843 		*ippp = ipp;
12844 	if (ifindexp != NULL)
12845 		*ifindexp = ifindex;
12846 	if (mctl_present) {
12847 		freeb(first_mp);
12848 	}
12849 	return (mp);
12850 }
12851 
12852 /*
12853  * Handle M_DATA messages from IP. Its called directly from IP via
12854  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12855  * in this path.
12856  *
12857  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12858  * v4 and v6), we are called through tcp_input() and a M_CTL can
12859  * be present for options but tcp_find_pktinfo() deals with it. We
12860  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12861  *
12862  * The first argument is always the connp/tcp to which the mp belongs.
12863  * There are no exceptions to this rule. The caller has already put
12864  * a reference on this connp/tcp and once tcp_rput_data() returns,
12865  * the squeue will do the refrele.
12866  *
12867  * The TH_SYN for the listener directly go to tcp_conn_request via
12868  * squeue.
12869  *
12870  * sqp: NULL = recursive, sqp != NULL means called from squeue
12871  */
12872 void
12873 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12874 {
12875 	int32_t		bytes_acked;
12876 	int32_t		gap;
12877 	mblk_t		*mp1;
12878 	uint_t		flags;
12879 	uint32_t	new_swnd = 0;
12880 	uchar_t		*iphdr;
12881 	uchar_t		*rptr;
12882 	int32_t		rgap;
12883 	uint32_t	seg_ack;
12884 	int		seg_len;
12885 	uint_t		ip_hdr_len;
12886 	uint32_t	seg_seq;
12887 	tcph_t		*tcph;
12888 	int		urp;
12889 	tcp_opt_t	tcpopt;
12890 	uint_t		ipvers;
12891 	ip6_pkt_t	ipp;
12892 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12893 	uint32_t	cwnd;
12894 	uint32_t	add;
12895 	int		npkt;
12896 	int		mss;
12897 	conn_t		*connp = (conn_t *)arg;
12898 	squeue_t	*sqp = (squeue_t *)arg2;
12899 	tcp_t		*tcp = connp->conn_tcp;
12900 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12901 
12902 	/*
12903 	 * RST from fused tcp loopback peer should trigger an unfuse.
12904 	 */
12905 	if (tcp->tcp_fused) {
12906 		TCP_STAT(tcps, tcp_fusion_aborted);
12907 		tcp_unfuse(tcp);
12908 	}
12909 
12910 	iphdr = mp->b_rptr;
12911 	rptr = mp->b_rptr;
12912 	ASSERT(OK_32PTR(rptr));
12913 
12914 	/*
12915 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12916 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12917 	 * necessary information.
12918 	 */
12919 	if (IPCL_IS_TCP4(connp)) {
12920 		ipvers = IPV4_VERSION;
12921 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12922 	} else {
12923 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12924 		    NULL, &ipp);
12925 		if (mp == NULL) {
12926 			TCP_STAT(tcps, tcp_rput_v6_error);
12927 			return;
12928 		}
12929 		iphdr = mp->b_rptr;
12930 		rptr = mp->b_rptr;
12931 	}
12932 	ASSERT(DB_TYPE(mp) == M_DATA);
12933 
12934 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12935 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12936 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12937 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12938 	seg_len = (int)(mp->b_wptr - rptr) -
12939 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12940 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12941 		do {
12942 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12943 			    (uintptr_t)INT_MAX);
12944 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12945 		} while ((mp1 = mp1->b_cont) != NULL &&
12946 		    mp1->b_datap->db_type == M_DATA);
12947 	}
12948 
12949 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12950 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12951 		    seg_len, tcph);
12952 		return;
12953 	}
12954 
12955 	if (sqp != NULL) {
12956 		/*
12957 		 * This is the correct place to update tcp_last_recv_time. Note
12958 		 * that it is also updated for tcp structure that belongs to
12959 		 * global and listener queues which do not really need updating.
12960 		 * But that should not cause any harm.  And it is updated for
12961 		 * all kinds of incoming segments, not only for data segments.
12962 		 */
12963 		tcp->tcp_last_recv_time = lbolt;
12964 	}
12965 
12966 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12967 
12968 	BUMP_LOCAL(tcp->tcp_ibsegs);
12969 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12970 
12971 	if ((flags & TH_URG) && sqp != NULL) {
12972 		/*
12973 		 * TCP can't handle urgent pointers that arrive before
12974 		 * the connection has been accept()ed since it can't
12975 		 * buffer OOB data.  Discard segment if this happens.
12976 		 *
12977 		 * We can't just rely on a non-null tcp_listener to indicate
12978 		 * that the accept() has completed since unlinking of the
12979 		 * eager and completion of the accept are not atomic.
12980 		 * tcp_detached, when it is not set (B_FALSE) indicates
12981 		 * that the accept() has completed.
12982 		 *
12983 		 * Nor can it reassemble urgent pointers, so discard
12984 		 * if it's not the next segment expected.
12985 		 *
12986 		 * Otherwise, collapse chain into one mblk (discard if
12987 		 * that fails).  This makes sure the headers, retransmitted
12988 		 * data, and new data all are in the same mblk.
12989 		 */
12990 		ASSERT(mp != NULL);
12991 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12992 			freemsg(mp);
12993 			return;
12994 		}
12995 		/* Update pointers into message */
12996 		iphdr = rptr = mp->b_rptr;
12997 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12998 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12999 			/*
13000 			 * Since we can't handle any data with this urgent
13001 			 * pointer that is out of sequence, we expunge
13002 			 * the data.  This allows us to still register
13003 			 * the urgent mark and generate the M_PCSIG,
13004 			 * which we can do.
13005 			 */
13006 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13007 			seg_len = 0;
13008 		}
13009 	}
13010 
13011 	switch (tcp->tcp_state) {
13012 	case TCPS_SYN_SENT:
13013 		if (flags & TH_ACK) {
13014 			/*
13015 			 * Note that our stack cannot send data before a
13016 			 * connection is established, therefore the
13017 			 * following check is valid.  Otherwise, it has
13018 			 * to be changed.
13019 			 */
13020 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13021 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13022 				freemsg(mp);
13023 				if (flags & TH_RST)
13024 					return;
13025 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13026 				    tcp, seg_ack, 0, TH_RST);
13027 				return;
13028 			}
13029 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13030 		}
13031 		if (flags & TH_RST) {
13032 			freemsg(mp);
13033 			if (flags & TH_ACK)
13034 				(void) tcp_clean_death(tcp,
13035 				    ECONNREFUSED, 13);
13036 			return;
13037 		}
13038 		if (!(flags & TH_SYN)) {
13039 			freemsg(mp);
13040 			return;
13041 		}
13042 
13043 		/* Process all TCP options. */
13044 		tcp_process_options(tcp, tcph);
13045 		/*
13046 		 * The following changes our rwnd to be a multiple of the
13047 		 * MIN(peer MSS, our MSS) for performance reason.
13048 		 */
13049 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13050 		    tcp->tcp_mss));
13051 
13052 		/* Is the other end ECN capable? */
13053 		if (tcp->tcp_ecn_ok) {
13054 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13055 				tcp->tcp_ecn_ok = B_FALSE;
13056 			}
13057 		}
13058 		/*
13059 		 * Clear ECN flags because it may interfere with later
13060 		 * processing.
13061 		 */
13062 		flags &= ~(TH_ECE|TH_CWR);
13063 
13064 		tcp->tcp_irs = seg_seq;
13065 		tcp->tcp_rack = seg_seq;
13066 		tcp->tcp_rnxt = seg_seq + 1;
13067 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13068 		if (!TCP_IS_DETACHED(tcp)) {
13069 			/* Allocate room for SACK options if needed. */
13070 			if (tcp->tcp_snd_sack_ok) {
13071 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13072 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13073 				    (tcp->tcp_loopback ? 0 :
13074 				    tcps->tcps_wroff_xtra));
13075 			} else {
13076 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13077 				    tcp->tcp_hdr_len +
13078 				    (tcp->tcp_loopback ? 0 :
13079 				    tcps->tcps_wroff_xtra));
13080 			}
13081 		}
13082 		if (flags & TH_ACK) {
13083 			/*
13084 			 * If we can't get the confirmation upstream, pretend
13085 			 * we didn't even see this one.
13086 			 *
13087 			 * XXX: how can we pretend we didn't see it if we
13088 			 * have updated rnxt et. al.
13089 			 *
13090 			 * For loopback we defer sending up the T_CONN_CON
13091 			 * until after some checks below.
13092 			 */
13093 			mp1 = NULL;
13094 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13095 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13096 				freemsg(mp);
13097 				return;
13098 			}
13099 			/* SYN was acked - making progress */
13100 			if (tcp->tcp_ipversion == IPV6_VERSION)
13101 				tcp->tcp_ip_forward_progress = B_TRUE;
13102 
13103 			/* One for the SYN */
13104 			tcp->tcp_suna = tcp->tcp_iss + 1;
13105 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13106 			tcp->tcp_state = TCPS_ESTABLISHED;
13107 
13108 			/*
13109 			 * If SYN was retransmitted, need to reset all
13110 			 * retransmission info.  This is because this
13111 			 * segment will be treated as a dup ACK.
13112 			 */
13113 			if (tcp->tcp_rexmit) {
13114 				tcp->tcp_rexmit = B_FALSE;
13115 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13116 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13117 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13118 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13119 				tcp->tcp_ms_we_have_waited = 0;
13120 
13121 				/*
13122 				 * Set tcp_cwnd back to 1 MSS, per
13123 				 * recommendation from
13124 				 * draft-floyd-incr-init-win-01.txt,
13125 				 * Increasing TCP's Initial Window.
13126 				 */
13127 				tcp->tcp_cwnd = tcp->tcp_mss;
13128 			}
13129 
13130 			tcp->tcp_swl1 = seg_seq;
13131 			tcp->tcp_swl2 = seg_ack;
13132 
13133 			new_swnd = BE16_TO_U16(tcph->th_win);
13134 			tcp->tcp_swnd = new_swnd;
13135 			if (new_swnd > tcp->tcp_max_swnd)
13136 				tcp->tcp_max_swnd = new_swnd;
13137 
13138 			/*
13139 			 * Always send the three-way handshake ack immediately
13140 			 * in order to make the connection complete as soon as
13141 			 * possible on the accepting host.
13142 			 */
13143 			flags |= TH_ACK_NEEDED;
13144 
13145 			/*
13146 			 * Special case for loopback.  At this point we have
13147 			 * received SYN-ACK from the remote endpoint.  In
13148 			 * order to ensure that both endpoints reach the
13149 			 * fused state prior to any data exchange, the final
13150 			 * ACK needs to be sent before we indicate T_CONN_CON
13151 			 * to the module upstream.
13152 			 */
13153 			if (tcp->tcp_loopback) {
13154 				mblk_t *ack_mp;
13155 
13156 				ASSERT(!tcp->tcp_unfusable);
13157 				ASSERT(mp1 != NULL);
13158 				/*
13159 				 * For loopback, we always get a pure SYN-ACK
13160 				 * and only need to send back the final ACK
13161 				 * with no data (this is because the other
13162 				 * tcp is ours and we don't do T/TCP).  This
13163 				 * final ACK triggers the passive side to
13164 				 * perform fusion in ESTABLISHED state.
13165 				 */
13166 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13167 					if (tcp->tcp_ack_tid != 0) {
13168 						(void) TCP_TIMER_CANCEL(tcp,
13169 						    tcp->tcp_ack_tid);
13170 						tcp->tcp_ack_tid = 0;
13171 					}
13172 					TCP_RECORD_TRACE(tcp, ack_mp,
13173 					    TCP_TRACE_SEND_PKT);
13174 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13175 					BUMP_LOCAL(tcp->tcp_obsegs);
13176 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13177 
13178 					/* Send up T_CONN_CON */
13179 					putnext(tcp->tcp_rq, mp1);
13180 
13181 					freemsg(mp);
13182 					return;
13183 				}
13184 				/*
13185 				 * Forget fusion; we need to handle more
13186 				 * complex cases below.  Send the deferred
13187 				 * T_CONN_CON message upstream and proceed
13188 				 * as usual.  Mark this tcp as not capable
13189 				 * of fusion.
13190 				 */
13191 				TCP_STAT(tcps, tcp_fusion_unfusable);
13192 				tcp->tcp_unfusable = B_TRUE;
13193 				putnext(tcp->tcp_rq, mp1);
13194 			}
13195 
13196 			/*
13197 			 * Check to see if there is data to be sent.  If
13198 			 * yes, set the transmit flag.  Then check to see
13199 			 * if received data processing needs to be done.
13200 			 * If not, go straight to xmit_check.  This short
13201 			 * cut is OK as we don't support T/TCP.
13202 			 */
13203 			if (tcp->tcp_unsent)
13204 				flags |= TH_XMIT_NEEDED;
13205 
13206 			if (seg_len == 0 && !(flags & TH_URG)) {
13207 				freemsg(mp);
13208 				goto xmit_check;
13209 			}
13210 
13211 			flags &= ~TH_SYN;
13212 			seg_seq++;
13213 			break;
13214 		}
13215 		tcp->tcp_state = TCPS_SYN_RCVD;
13216 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13217 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13218 		if (mp1) {
13219 			DB_CPID(mp1) = tcp->tcp_cpid;
13220 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13221 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13222 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13223 		}
13224 		freemsg(mp);
13225 		return;
13226 	case TCPS_SYN_RCVD:
13227 		if (flags & TH_ACK) {
13228 			/*
13229 			 * In this state, a SYN|ACK packet is either bogus
13230 			 * because the other side must be ACKing our SYN which
13231 			 * indicates it has seen the ACK for their SYN and
13232 			 * shouldn't retransmit it or we're crossing SYNs
13233 			 * on active open.
13234 			 */
13235 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13236 				freemsg(mp);
13237 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13238 				    tcp, seg_ack, 0, TH_RST);
13239 				return;
13240 			}
13241 			/*
13242 			 * NOTE: RFC 793 pg. 72 says this should be
13243 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13244 			 * but that would mean we have an ack that ignored
13245 			 * our SYN.
13246 			 */
13247 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13248 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13249 				freemsg(mp);
13250 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13251 				    tcp, seg_ack, 0, TH_RST);
13252 				return;
13253 			}
13254 		}
13255 		break;
13256 	case TCPS_LISTEN:
13257 		/*
13258 		 * Only a TLI listener can come through this path when a
13259 		 * acceptor is going back to be a listener and a packet
13260 		 * for the acceptor hits the classifier. For a socket
13261 		 * listener, this can never happen because a listener
13262 		 * can never accept connection on itself and hence a
13263 		 * socket acceptor can not go back to being a listener.
13264 		 */
13265 		ASSERT(!TCP_IS_SOCKET(tcp));
13266 		/*FALLTHRU*/
13267 	case TCPS_CLOSED:
13268 	case TCPS_BOUND: {
13269 		conn_t	*new_connp;
13270 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13271 
13272 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13273 		if (new_connp != NULL) {
13274 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13275 			return;
13276 		}
13277 		/* We failed to classify. For now just drop the packet */
13278 		freemsg(mp);
13279 		return;
13280 	}
13281 	case TCPS_IDLE:
13282 		/*
13283 		 * Handle the case where the tcp_clean_death() has happened
13284 		 * on a connection (application hasn't closed yet) but a packet
13285 		 * was already queued on squeue before tcp_clean_death()
13286 		 * was processed. Calling tcp_clean_death() twice on same
13287 		 * connection can result in weird behaviour.
13288 		 */
13289 		freemsg(mp);
13290 		return;
13291 	default:
13292 		break;
13293 	}
13294 
13295 	/*
13296 	 * Already on the correct queue/perimeter.
13297 	 * If this is a detached connection and not an eager
13298 	 * connection hanging off a listener then new data
13299 	 * (past the FIN) will cause a reset.
13300 	 * We do a special check here where it
13301 	 * is out of the main line, rather than check
13302 	 * if we are detached every time we see new
13303 	 * data down below.
13304 	 */
13305 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13306 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13307 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13308 		TCP_RECORD_TRACE(tcp,
13309 		    mp, TCP_TRACE_RECV_PKT);
13310 
13311 		freemsg(mp);
13312 		/*
13313 		 * This could be an SSL closure alert. We're detached so just
13314 		 * acknowledge it this last time.
13315 		 */
13316 		if (tcp->tcp_kssl_ctx != NULL) {
13317 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13318 			tcp->tcp_kssl_ctx = NULL;
13319 
13320 			tcp->tcp_rnxt += seg_len;
13321 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13322 			flags |= TH_ACK_NEEDED;
13323 			goto ack_check;
13324 		}
13325 
13326 		tcp_xmit_ctl("new data when detached", tcp,
13327 		    tcp->tcp_snxt, 0, TH_RST);
13328 		(void) tcp_clean_death(tcp, EPROTO, 12);
13329 		return;
13330 	}
13331 
13332 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13333 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13334 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13335 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13336 
13337 	if (tcp->tcp_snd_ts_ok) {
13338 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13339 			/*
13340 			 * This segment is not acceptable.
13341 			 * Drop it and send back an ACK.
13342 			 */
13343 			freemsg(mp);
13344 			flags |= TH_ACK_NEEDED;
13345 			goto ack_check;
13346 		}
13347 	} else if (tcp->tcp_snd_sack_ok) {
13348 		ASSERT(tcp->tcp_sack_info != NULL);
13349 		tcpopt.tcp = tcp;
13350 		/*
13351 		 * SACK info in already updated in tcp_parse_options.  Ignore
13352 		 * all other TCP options...
13353 		 */
13354 		(void) tcp_parse_options(tcph, &tcpopt);
13355 	}
13356 try_again:;
13357 	mss = tcp->tcp_mss;
13358 	gap = seg_seq - tcp->tcp_rnxt;
13359 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13360 	/*
13361 	 * gap is the amount of sequence space between what we expect to see
13362 	 * and what we got for seg_seq.  A positive value for gap means
13363 	 * something got lost.  A negative value means we got some old stuff.
13364 	 */
13365 	if (gap < 0) {
13366 		/* Old stuff present.  Is the SYN in there? */
13367 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13368 		    (seg_len != 0)) {
13369 			flags &= ~TH_SYN;
13370 			seg_seq++;
13371 			urp--;
13372 			/* Recompute the gaps after noting the SYN. */
13373 			goto try_again;
13374 		}
13375 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13376 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13377 		    (seg_len > -gap ? -gap : seg_len));
13378 		/* Remove the old stuff from seg_len. */
13379 		seg_len += gap;
13380 		/*
13381 		 * Anything left?
13382 		 * Make sure to check for unack'd FIN when rest of data
13383 		 * has been previously ack'd.
13384 		 */
13385 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13386 			/*
13387 			 * Resets are only valid if they lie within our offered
13388 			 * window.  If the RST bit is set, we just ignore this
13389 			 * segment.
13390 			 */
13391 			if (flags & TH_RST) {
13392 				freemsg(mp);
13393 				return;
13394 			}
13395 
13396 			/*
13397 			 * The arriving of dup data packets indicate that we
13398 			 * may have postponed an ack for too long, or the other
13399 			 * side's RTT estimate is out of shape. Start acking
13400 			 * more often.
13401 			 */
13402 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13403 			    tcp->tcp_rack_cnt >= 1 &&
13404 			    tcp->tcp_rack_abs_max > 2) {
13405 				tcp->tcp_rack_abs_max--;
13406 			}
13407 			tcp->tcp_rack_cur_max = 1;
13408 
13409 			/*
13410 			 * This segment is "unacceptable".  None of its
13411 			 * sequence space lies within our advertized window.
13412 			 *
13413 			 * Adjust seg_len to the original value for tracing.
13414 			 */
13415 			seg_len -= gap;
13416 			if (tcp->tcp_debug) {
13417 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13418 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13419 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13420 				    "seg_len %d, rnxt %u, snxt %u, %s",
13421 				    gap, rgap, flags, seg_seq, seg_ack,
13422 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13423 				    tcp_display(tcp, NULL,
13424 				    DISP_ADDR_AND_PORT));
13425 			}
13426 
13427 			/*
13428 			 * Arrange to send an ACK in response to the
13429 			 * unacceptable segment per RFC 793 page 69. There
13430 			 * is only one small difference between ours and the
13431 			 * acceptability test in the RFC - we accept ACK-only
13432 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13433 			 * will be generated.
13434 			 *
13435 			 * Note that we have to ACK an ACK-only packet at least
13436 			 * for stacks that send 0-length keep-alives with
13437 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13438 			 * section 4.2.3.6. As long as we don't ever generate
13439 			 * an unacceptable packet in response to an incoming
13440 			 * packet that is unacceptable, it should not cause
13441 			 * "ACK wars".
13442 			 */
13443 			flags |=  TH_ACK_NEEDED;
13444 
13445 			/*
13446 			 * Continue processing this segment in order to use the
13447 			 * ACK information it contains, but skip all other
13448 			 * sequence-number processing.	Processing the ACK
13449 			 * information is necessary in order to
13450 			 * re-synchronize connections that may have lost
13451 			 * synchronization.
13452 			 *
13453 			 * We clear seg_len and flag fields related to
13454 			 * sequence number processing as they are not
13455 			 * to be trusted for an unacceptable segment.
13456 			 */
13457 			seg_len = 0;
13458 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13459 			goto process_ack;
13460 		}
13461 
13462 		/* Fix seg_seq, and chew the gap off the front. */
13463 		seg_seq = tcp->tcp_rnxt;
13464 		urp += gap;
13465 		do {
13466 			mblk_t	*mp2;
13467 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13468 			    (uintptr_t)UINT_MAX);
13469 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13470 			if (gap > 0) {
13471 				mp->b_rptr = mp->b_wptr - gap;
13472 				break;
13473 			}
13474 			mp2 = mp;
13475 			mp = mp->b_cont;
13476 			freeb(mp2);
13477 		} while (gap < 0);
13478 		/*
13479 		 * If the urgent data has already been acknowledged, we
13480 		 * should ignore TH_URG below
13481 		 */
13482 		if (urp < 0)
13483 			flags &= ~TH_URG;
13484 	}
13485 	/*
13486 	 * rgap is the amount of stuff received out of window.  A negative
13487 	 * value is the amount out of window.
13488 	 */
13489 	if (rgap < 0) {
13490 		mblk_t	*mp2;
13491 
13492 		if (tcp->tcp_rwnd == 0) {
13493 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13494 		} else {
13495 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13496 			UPDATE_MIB(&tcps->tcps_mib,
13497 			    tcpInDataPastWinBytes, -rgap);
13498 		}
13499 
13500 		/*
13501 		 * seg_len does not include the FIN, so if more than
13502 		 * just the FIN is out of window, we act like we don't
13503 		 * see it.  (If just the FIN is out of window, rgap
13504 		 * will be zero and we will go ahead and acknowledge
13505 		 * the FIN.)
13506 		 */
13507 		flags &= ~TH_FIN;
13508 
13509 		/* Fix seg_len and make sure there is something left. */
13510 		seg_len += rgap;
13511 		if (seg_len <= 0) {
13512 			/*
13513 			 * Resets are only valid if they lie within our offered
13514 			 * window.  If the RST bit is set, we just ignore this
13515 			 * segment.
13516 			 */
13517 			if (flags & TH_RST) {
13518 				freemsg(mp);
13519 				return;
13520 			}
13521 
13522 			/* Per RFC 793, we need to send back an ACK. */
13523 			flags |= TH_ACK_NEEDED;
13524 
13525 			/*
13526 			 * Send SIGURG as soon as possible i.e. even
13527 			 * if the TH_URG was delivered in a window probe
13528 			 * packet (which will be unacceptable).
13529 			 *
13530 			 * We generate a signal if none has been generated
13531 			 * for this connection or if this is a new urgent
13532 			 * byte. Also send a zero-length "unmarked" message
13533 			 * to inform SIOCATMARK that this is not the mark.
13534 			 *
13535 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13536 			 * is sent up. This plus the check for old data
13537 			 * (gap >= 0) handles the wraparound of the sequence
13538 			 * number space without having to always track the
13539 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13540 			 * this max in its rcv_up variable).
13541 			 *
13542 			 * This prevents duplicate SIGURGS due to a "late"
13543 			 * zero-window probe when the T_EXDATA_IND has already
13544 			 * been sent up.
13545 			 */
13546 			if ((flags & TH_URG) &&
13547 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13548 			    tcp->tcp_urp_last))) {
13549 				mp1 = allocb(0, BPRI_MED);
13550 				if (mp1 == NULL) {
13551 					freemsg(mp);
13552 					return;
13553 				}
13554 				if (!TCP_IS_DETACHED(tcp) &&
13555 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13556 				    SIGURG)) {
13557 					/* Try again on the rexmit. */
13558 					freemsg(mp1);
13559 					freemsg(mp);
13560 					return;
13561 				}
13562 				/*
13563 				 * If the next byte would be the mark
13564 				 * then mark with MARKNEXT else mark
13565 				 * with NOTMARKNEXT.
13566 				 */
13567 				if (gap == 0 && urp == 0)
13568 					mp1->b_flag |= MSGMARKNEXT;
13569 				else
13570 					mp1->b_flag |= MSGNOTMARKNEXT;
13571 				freemsg(tcp->tcp_urp_mark_mp);
13572 				tcp->tcp_urp_mark_mp = mp1;
13573 				flags |= TH_SEND_URP_MARK;
13574 				tcp->tcp_urp_last_valid = B_TRUE;
13575 				tcp->tcp_urp_last = urp + seg_seq;
13576 			}
13577 			/*
13578 			 * If this is a zero window probe, continue to
13579 			 * process the ACK part.  But we need to set seg_len
13580 			 * to 0 to avoid data processing.  Otherwise just
13581 			 * drop the segment and send back an ACK.
13582 			 */
13583 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13584 				flags &= ~(TH_SYN | TH_URG);
13585 				seg_len = 0;
13586 				goto process_ack;
13587 			} else {
13588 				freemsg(mp);
13589 				goto ack_check;
13590 			}
13591 		}
13592 		/* Pitch out of window stuff off the end. */
13593 		rgap = seg_len;
13594 		mp2 = mp;
13595 		do {
13596 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13597 			    (uintptr_t)INT_MAX);
13598 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13599 			if (rgap < 0) {
13600 				mp2->b_wptr += rgap;
13601 				if ((mp1 = mp2->b_cont) != NULL) {
13602 					mp2->b_cont = NULL;
13603 					freemsg(mp1);
13604 				}
13605 				break;
13606 			}
13607 		} while ((mp2 = mp2->b_cont) != NULL);
13608 	}
13609 ok:;
13610 	/*
13611 	 * TCP should check ECN info for segments inside the window only.
13612 	 * Therefore the check should be done here.
13613 	 */
13614 	if (tcp->tcp_ecn_ok) {
13615 		if (flags & TH_CWR) {
13616 			tcp->tcp_ecn_echo_on = B_FALSE;
13617 		}
13618 		/*
13619 		 * Note that both ECN_CE and CWR can be set in the
13620 		 * same segment.  In this case, we once again turn
13621 		 * on ECN_ECHO.
13622 		 */
13623 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13624 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13625 
13626 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13627 				tcp->tcp_ecn_echo_on = B_TRUE;
13628 			}
13629 		} else {
13630 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13631 
13632 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13633 			    htonl(IPH_ECN_CE << 20)) {
13634 				tcp->tcp_ecn_echo_on = B_TRUE;
13635 			}
13636 		}
13637 	}
13638 
13639 	/*
13640 	 * Check whether we can update tcp_ts_recent.  This test is
13641 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13642 	 * Extensions for High Performance: An Update", Internet Draft.
13643 	 */
13644 	if (tcp->tcp_snd_ts_ok &&
13645 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13646 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13647 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13648 		tcp->tcp_last_rcv_lbolt = lbolt64;
13649 	}
13650 
13651 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13652 		/*
13653 		 * FIN in an out of order segment.  We record this in
13654 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13655 		 * Clear the FIN so that any check on FIN flag will fail.
13656 		 * Remember that FIN also counts in the sequence number
13657 		 * space.  So we need to ack out of order FIN only segments.
13658 		 */
13659 		if (flags & TH_FIN) {
13660 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13661 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13662 			flags &= ~TH_FIN;
13663 			flags |= TH_ACK_NEEDED;
13664 		}
13665 		if (seg_len > 0) {
13666 			/* Fill in the SACK blk list. */
13667 			if (tcp->tcp_snd_sack_ok) {
13668 				ASSERT(tcp->tcp_sack_info != NULL);
13669 				tcp_sack_insert(tcp->tcp_sack_list,
13670 				    seg_seq, seg_seq + seg_len,
13671 				    &(tcp->tcp_num_sack_blk));
13672 			}
13673 
13674 			/*
13675 			 * Attempt reassembly and see if we have something
13676 			 * ready to go.
13677 			 */
13678 			mp = tcp_reass(tcp, mp, seg_seq);
13679 			/* Always ack out of order packets */
13680 			flags |= TH_ACK_NEEDED | TH_PUSH;
13681 			if (mp) {
13682 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13683 				    (uintptr_t)INT_MAX);
13684 				seg_len = mp->b_cont ? msgdsize(mp) :
13685 				    (int)(mp->b_wptr - mp->b_rptr);
13686 				seg_seq = tcp->tcp_rnxt;
13687 				/*
13688 				 * A gap is filled and the seq num and len
13689 				 * of the gap match that of a previously
13690 				 * received FIN, put the FIN flag back in.
13691 				 */
13692 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13693 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13694 					flags |= TH_FIN;
13695 					tcp->tcp_valid_bits &=
13696 					    ~TCP_OFO_FIN_VALID;
13697 				}
13698 			} else {
13699 				/*
13700 				 * Keep going even with NULL mp.
13701 				 * There may be a useful ACK or something else
13702 				 * we don't want to miss.
13703 				 *
13704 				 * But TCP should not perform fast retransmit
13705 				 * because of the ack number.  TCP uses
13706 				 * seg_len == 0 to determine if it is a pure
13707 				 * ACK.  And this is not a pure ACK.
13708 				 */
13709 				seg_len = 0;
13710 				ofo_seg = B_TRUE;
13711 			}
13712 		}
13713 	} else if (seg_len > 0) {
13714 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13715 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13716 		/*
13717 		 * If an out of order FIN was received before, and the seq
13718 		 * num and len of the new segment match that of the FIN,
13719 		 * put the FIN flag back in.
13720 		 */
13721 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13722 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13723 			flags |= TH_FIN;
13724 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13725 		}
13726 	}
13727 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13728 	if (flags & TH_RST) {
13729 		freemsg(mp);
13730 		switch (tcp->tcp_state) {
13731 		case TCPS_SYN_RCVD:
13732 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13733 			break;
13734 		case TCPS_ESTABLISHED:
13735 		case TCPS_FIN_WAIT_1:
13736 		case TCPS_FIN_WAIT_2:
13737 		case TCPS_CLOSE_WAIT:
13738 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13739 			break;
13740 		case TCPS_CLOSING:
13741 		case TCPS_LAST_ACK:
13742 			(void) tcp_clean_death(tcp, 0, 16);
13743 			break;
13744 		default:
13745 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13746 			(void) tcp_clean_death(tcp, ENXIO, 17);
13747 			break;
13748 		}
13749 		return;
13750 	}
13751 	if (flags & TH_SYN) {
13752 		/*
13753 		 * See RFC 793, Page 71
13754 		 *
13755 		 * The seq number must be in the window as it should
13756 		 * be "fixed" above.  If it is outside window, it should
13757 		 * be already rejected.  Note that we allow seg_seq to be
13758 		 * rnxt + rwnd because we want to accept 0 window probe.
13759 		 */
13760 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13761 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13762 		freemsg(mp);
13763 		/*
13764 		 * If the ACK flag is not set, just use our snxt as the
13765 		 * seq number of the RST segment.
13766 		 */
13767 		if (!(flags & TH_ACK)) {
13768 			seg_ack = tcp->tcp_snxt;
13769 		}
13770 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13771 		    TH_RST|TH_ACK);
13772 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13773 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13774 		return;
13775 	}
13776 	/*
13777 	 * urp could be -1 when the urp field in the packet is 0
13778 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13779 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13780 	 */
13781 	if (flags & TH_URG && urp >= 0) {
13782 		if (!tcp->tcp_urp_last_valid ||
13783 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13784 			/*
13785 			 * If we haven't generated the signal yet for this
13786 			 * urgent pointer value, do it now.  Also, send up a
13787 			 * zero-length M_DATA indicating whether or not this is
13788 			 * the mark. The latter is not needed when a
13789 			 * T_EXDATA_IND is sent up. However, if there are
13790 			 * allocation failures this code relies on the sender
13791 			 * retransmitting and the socket code for determining
13792 			 * the mark should not block waiting for the peer to
13793 			 * transmit. Thus, for simplicity we always send up the
13794 			 * mark indication.
13795 			 */
13796 			mp1 = allocb(0, BPRI_MED);
13797 			if (mp1 == NULL) {
13798 				freemsg(mp);
13799 				return;
13800 			}
13801 			if (!TCP_IS_DETACHED(tcp) &&
13802 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13803 				/* Try again on the rexmit. */
13804 				freemsg(mp1);
13805 				freemsg(mp);
13806 				return;
13807 			}
13808 			/*
13809 			 * Mark with NOTMARKNEXT for now.
13810 			 * The code below will change this to MARKNEXT
13811 			 * if we are at the mark.
13812 			 *
13813 			 * If there are allocation failures (e.g. in dupmsg
13814 			 * below) the next time tcp_rput_data sees the urgent
13815 			 * segment it will send up the MSG*MARKNEXT message.
13816 			 */
13817 			mp1->b_flag |= MSGNOTMARKNEXT;
13818 			freemsg(tcp->tcp_urp_mark_mp);
13819 			tcp->tcp_urp_mark_mp = mp1;
13820 			flags |= TH_SEND_URP_MARK;
13821 #ifdef DEBUG
13822 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13823 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13824 			    "last %x, %s",
13825 			    seg_seq, urp, tcp->tcp_urp_last,
13826 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13827 #endif /* DEBUG */
13828 			tcp->tcp_urp_last_valid = B_TRUE;
13829 			tcp->tcp_urp_last = urp + seg_seq;
13830 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13831 			/*
13832 			 * An allocation failure prevented the previous
13833 			 * tcp_rput_data from sending up the allocated
13834 			 * MSG*MARKNEXT message - send it up this time
13835 			 * around.
13836 			 */
13837 			flags |= TH_SEND_URP_MARK;
13838 		}
13839 
13840 		/*
13841 		 * If the urgent byte is in this segment, make sure that it is
13842 		 * all by itself.  This makes it much easier to deal with the
13843 		 * possibility of an allocation failure on the T_exdata_ind.
13844 		 * Note that seg_len is the number of bytes in the segment, and
13845 		 * urp is the offset into the segment of the urgent byte.
13846 		 * urp < seg_len means that the urgent byte is in this segment.
13847 		 */
13848 		if (urp < seg_len) {
13849 			if (seg_len != 1) {
13850 				uint32_t  tmp_rnxt;
13851 				/*
13852 				 * Break it up and feed it back in.
13853 				 * Re-attach the IP header.
13854 				 */
13855 				mp->b_rptr = iphdr;
13856 				if (urp > 0) {
13857 					/*
13858 					 * There is stuff before the urgent
13859 					 * byte.
13860 					 */
13861 					mp1 = dupmsg(mp);
13862 					if (!mp1) {
13863 						/*
13864 						 * Trim from urgent byte on.
13865 						 * The rest will come back.
13866 						 */
13867 						(void) adjmsg(mp,
13868 						    urp - seg_len);
13869 						tcp_rput_data(connp,
13870 						    mp, NULL);
13871 						return;
13872 					}
13873 					(void) adjmsg(mp1, urp - seg_len);
13874 					/* Feed this piece back in. */
13875 					tmp_rnxt = tcp->tcp_rnxt;
13876 					tcp_rput_data(connp, mp1, NULL);
13877 					/*
13878 					 * If the data passed back in was not
13879 					 * processed (ie: bad ACK) sending
13880 					 * the remainder back in will cause a
13881 					 * loop. In this case, drop the
13882 					 * packet and let the sender try
13883 					 * sending a good packet.
13884 					 */
13885 					if (tmp_rnxt == tcp->tcp_rnxt) {
13886 						freemsg(mp);
13887 						return;
13888 					}
13889 				}
13890 				if (urp != seg_len - 1) {
13891 					uint32_t  tmp_rnxt;
13892 					/*
13893 					 * There is stuff after the urgent
13894 					 * byte.
13895 					 */
13896 					mp1 = dupmsg(mp);
13897 					if (!mp1) {
13898 						/*
13899 						 * Trim everything beyond the
13900 						 * urgent byte.  The rest will
13901 						 * come back.
13902 						 */
13903 						(void) adjmsg(mp,
13904 						    urp + 1 - seg_len);
13905 						tcp_rput_data(connp,
13906 						    mp, NULL);
13907 						return;
13908 					}
13909 					(void) adjmsg(mp1, urp + 1 - seg_len);
13910 					tmp_rnxt = tcp->tcp_rnxt;
13911 					tcp_rput_data(connp, mp1, NULL);
13912 					/*
13913 					 * If the data passed back in was not
13914 					 * processed (ie: bad ACK) sending
13915 					 * the remainder back in will cause a
13916 					 * loop. In this case, drop the
13917 					 * packet and let the sender try
13918 					 * sending a good packet.
13919 					 */
13920 					if (tmp_rnxt == tcp->tcp_rnxt) {
13921 						freemsg(mp);
13922 						return;
13923 					}
13924 				}
13925 				tcp_rput_data(connp, mp, NULL);
13926 				return;
13927 			}
13928 			/*
13929 			 * This segment contains only the urgent byte.  We
13930 			 * have to allocate the T_exdata_ind, if we can.
13931 			 */
13932 			if (!tcp->tcp_urp_mp) {
13933 				struct T_exdata_ind *tei;
13934 				mp1 = allocb(sizeof (struct T_exdata_ind),
13935 				    BPRI_MED);
13936 				if (!mp1) {
13937 					/*
13938 					 * Sigh... It'll be back.
13939 					 * Generate any MSG*MARK message now.
13940 					 */
13941 					freemsg(mp);
13942 					seg_len = 0;
13943 					if (flags & TH_SEND_URP_MARK) {
13944 
13945 
13946 						ASSERT(tcp->tcp_urp_mark_mp);
13947 						tcp->tcp_urp_mark_mp->b_flag &=
13948 						    ~MSGNOTMARKNEXT;
13949 						tcp->tcp_urp_mark_mp->b_flag |=
13950 						    MSGMARKNEXT;
13951 					}
13952 					goto ack_check;
13953 				}
13954 				mp1->b_datap->db_type = M_PROTO;
13955 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13956 				tei->PRIM_type = T_EXDATA_IND;
13957 				tei->MORE_flag = 0;
13958 				mp1->b_wptr = (uchar_t *)&tei[1];
13959 				tcp->tcp_urp_mp = mp1;
13960 #ifdef DEBUG
13961 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13962 				    "tcp_rput: allocated exdata_ind %s",
13963 				    tcp_display(tcp, NULL,
13964 				    DISP_PORT_ONLY));
13965 #endif /* DEBUG */
13966 				/*
13967 				 * There is no need to send a separate MSG*MARK
13968 				 * message since the T_EXDATA_IND will be sent
13969 				 * now.
13970 				 */
13971 				flags &= ~TH_SEND_URP_MARK;
13972 				freemsg(tcp->tcp_urp_mark_mp);
13973 				tcp->tcp_urp_mark_mp = NULL;
13974 			}
13975 			/*
13976 			 * Now we are all set.  On the next putnext upstream,
13977 			 * tcp_urp_mp will be non-NULL and will get prepended
13978 			 * to what has to be this piece containing the urgent
13979 			 * byte.  If for any reason we abort this segment below,
13980 			 * if it comes back, we will have this ready, or it
13981 			 * will get blown off in close.
13982 			 */
13983 		} else if (urp == seg_len) {
13984 			/*
13985 			 * The urgent byte is the next byte after this sequence
13986 			 * number. If there is data it is marked with
13987 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13988 			 * since it is not needed. Otherwise, if the code
13989 			 * above just allocated a zero-length tcp_urp_mark_mp
13990 			 * message, that message is tagged with MSGMARKNEXT.
13991 			 * Sending up these MSGMARKNEXT messages makes
13992 			 * SIOCATMARK work correctly even though
13993 			 * the T_EXDATA_IND will not be sent up until the
13994 			 * urgent byte arrives.
13995 			 */
13996 			if (seg_len != 0) {
13997 				flags |= TH_MARKNEXT_NEEDED;
13998 				freemsg(tcp->tcp_urp_mark_mp);
13999 				tcp->tcp_urp_mark_mp = NULL;
14000 				flags &= ~TH_SEND_URP_MARK;
14001 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14002 				flags |= TH_SEND_URP_MARK;
14003 				tcp->tcp_urp_mark_mp->b_flag &=
14004 				    ~MSGNOTMARKNEXT;
14005 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14006 			}
14007 #ifdef DEBUG
14008 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14009 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14010 			    seg_len, flags,
14011 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14012 #endif /* DEBUG */
14013 		} else {
14014 			/* Data left until we hit mark */
14015 #ifdef DEBUG
14016 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14017 			    "tcp_rput: URP %d bytes left, %s",
14018 			    urp - seg_len, tcp_display(tcp, NULL,
14019 			    DISP_PORT_ONLY));
14020 #endif /* DEBUG */
14021 		}
14022 	}
14023 
14024 process_ack:
14025 	if (!(flags & TH_ACK)) {
14026 		freemsg(mp);
14027 		goto xmit_check;
14028 	}
14029 	}
14030 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14031 
14032 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14033 		tcp->tcp_ip_forward_progress = B_TRUE;
14034 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14035 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14036 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14037 			/* 3-way handshake complete - pass up the T_CONN_IND */
14038 			tcp_t	*listener = tcp->tcp_listener;
14039 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14040 
14041 			tcp->tcp_tconnind_started = B_TRUE;
14042 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14043 			/*
14044 			 * We are here means eager is fine but it can
14045 			 * get a TH_RST at any point between now and till
14046 			 * accept completes and disappear. We need to
14047 			 * ensure that reference to eager is valid after
14048 			 * we get out of eager's perimeter. So we do
14049 			 * an extra refhold.
14050 			 */
14051 			CONN_INC_REF(connp);
14052 
14053 			/*
14054 			 * The listener also exists because of the refhold
14055 			 * done in tcp_conn_request. Its possible that it
14056 			 * might have closed. We will check that once we
14057 			 * get inside listeners context.
14058 			 */
14059 			CONN_INC_REF(listener->tcp_connp);
14060 			if (listener->tcp_connp->conn_sqp ==
14061 			    connp->conn_sqp) {
14062 				tcp_send_conn_ind(listener->tcp_connp, mp,
14063 				    listener->tcp_connp->conn_sqp);
14064 				CONN_DEC_REF(listener->tcp_connp);
14065 			} else if (!tcp->tcp_loopback) {
14066 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14067 				    tcp_send_conn_ind,
14068 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14069 			} else {
14070 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14071 				    tcp_send_conn_ind, listener->tcp_connp,
14072 				    SQTAG_TCP_CONN_IND);
14073 			}
14074 		}
14075 
14076 		if (tcp->tcp_active_open) {
14077 			/*
14078 			 * We are seeing the final ack in the three way
14079 			 * hand shake of a active open'ed connection
14080 			 * so we must send up a T_CONN_CON
14081 			 */
14082 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14083 				freemsg(mp);
14084 				return;
14085 			}
14086 			/*
14087 			 * Don't fuse the loopback endpoints for
14088 			 * simultaneous active opens.
14089 			 */
14090 			if (tcp->tcp_loopback) {
14091 				TCP_STAT(tcps, tcp_fusion_unfusable);
14092 				tcp->tcp_unfusable = B_TRUE;
14093 			}
14094 		}
14095 
14096 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14097 		bytes_acked--;
14098 		/* SYN was acked - making progress */
14099 		if (tcp->tcp_ipversion == IPV6_VERSION)
14100 			tcp->tcp_ip_forward_progress = B_TRUE;
14101 
14102 		/*
14103 		 * If SYN was retransmitted, need to reset all
14104 		 * retransmission info as this segment will be
14105 		 * treated as a dup ACK.
14106 		 */
14107 		if (tcp->tcp_rexmit) {
14108 			tcp->tcp_rexmit = B_FALSE;
14109 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14110 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14111 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14112 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14113 			tcp->tcp_ms_we_have_waited = 0;
14114 			tcp->tcp_cwnd = mss;
14115 		}
14116 
14117 		/*
14118 		 * We set the send window to zero here.
14119 		 * This is needed if there is data to be
14120 		 * processed already on the queue.
14121 		 * Later (at swnd_update label), the
14122 		 * "new_swnd > tcp_swnd" condition is satisfied
14123 		 * the XMIT_NEEDED flag is set in the current
14124 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14125 		 * called if there is already data on queue in
14126 		 * this state.
14127 		 */
14128 		tcp->tcp_swnd = 0;
14129 
14130 		if (new_swnd > tcp->tcp_max_swnd)
14131 			tcp->tcp_max_swnd = new_swnd;
14132 		tcp->tcp_swl1 = seg_seq;
14133 		tcp->tcp_swl2 = seg_ack;
14134 		tcp->tcp_state = TCPS_ESTABLISHED;
14135 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14136 
14137 		/* Fuse when both sides are in ESTABLISHED state */
14138 		if (tcp->tcp_loopback && do_tcp_fusion)
14139 			tcp_fuse(tcp, iphdr, tcph);
14140 
14141 	}
14142 	/* This code follows 4.4BSD-Lite2 mostly. */
14143 	if (bytes_acked < 0)
14144 		goto est;
14145 
14146 	/*
14147 	 * If TCP is ECN capable and the congestion experience bit is
14148 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14149 	 * done once per window (or more loosely, per RTT).
14150 	 */
14151 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14152 		tcp->tcp_cwr = B_FALSE;
14153 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14154 		if (!tcp->tcp_cwr) {
14155 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14156 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14157 			tcp->tcp_cwnd = npkt * mss;
14158 			/*
14159 			 * If the cwnd is 0, use the timer to clock out
14160 			 * new segments.  This is required by the ECN spec.
14161 			 */
14162 			if (npkt == 0) {
14163 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14164 				/*
14165 				 * This makes sure that when the ACK comes
14166 				 * back, we will increase tcp_cwnd by 1 MSS.
14167 				 */
14168 				tcp->tcp_cwnd_cnt = 0;
14169 			}
14170 			tcp->tcp_cwr = B_TRUE;
14171 			/*
14172 			 * This marks the end of the current window of in
14173 			 * flight data.  That is why we don't use
14174 			 * tcp_suna + tcp_swnd.  Only data in flight can
14175 			 * provide ECN info.
14176 			 */
14177 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14178 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14179 		}
14180 	}
14181 
14182 	mp1 = tcp->tcp_xmit_head;
14183 	if (bytes_acked == 0) {
14184 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14185 			int dupack_cnt;
14186 
14187 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14188 			/*
14189 			 * Fast retransmit.  When we have seen exactly three
14190 			 * identical ACKs while we have unacked data
14191 			 * outstanding we take it as a hint that our peer
14192 			 * dropped something.
14193 			 *
14194 			 * If TCP is retransmitting, don't do fast retransmit.
14195 			 */
14196 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14197 			    ! tcp->tcp_rexmit) {
14198 				/* Do Limited Transmit */
14199 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14200 				    tcps->tcps_dupack_fast_retransmit) {
14201 					/*
14202 					 * RFC 3042
14203 					 *
14204 					 * What we need to do is temporarily
14205 					 * increase tcp_cwnd so that new
14206 					 * data can be sent if it is allowed
14207 					 * by the receive window (tcp_rwnd).
14208 					 * tcp_wput_data() will take care of
14209 					 * the rest.
14210 					 *
14211 					 * If the connection is SACK capable,
14212 					 * only do limited xmit when there
14213 					 * is SACK info.
14214 					 *
14215 					 * Note how tcp_cwnd is incremented.
14216 					 * The first dup ACK will increase
14217 					 * it by 1 MSS.  The second dup ACK
14218 					 * will increase it by 2 MSS.  This
14219 					 * means that only 1 new segment will
14220 					 * be sent for each dup ACK.
14221 					 */
14222 					if (tcp->tcp_unsent > 0 &&
14223 					    (!tcp->tcp_snd_sack_ok ||
14224 					    (tcp->tcp_snd_sack_ok &&
14225 					    tcp->tcp_notsack_list != NULL))) {
14226 						tcp->tcp_cwnd += mss <<
14227 						    (tcp->tcp_dupack_cnt - 1);
14228 						flags |= TH_LIMIT_XMIT;
14229 					}
14230 				} else if (dupack_cnt ==
14231 				    tcps->tcps_dupack_fast_retransmit) {
14232 
14233 				/*
14234 				 * If we have reduced tcp_ssthresh
14235 				 * because of ECN, do not reduce it again
14236 				 * unless it is already one window of data
14237 				 * away.  After one window of data, tcp_cwr
14238 				 * should then be cleared.  Note that
14239 				 * for non ECN capable connection, tcp_cwr
14240 				 * should always be false.
14241 				 *
14242 				 * Adjust cwnd since the duplicate
14243 				 * ack indicates that a packet was
14244 				 * dropped (due to congestion.)
14245 				 */
14246 				if (!tcp->tcp_cwr) {
14247 					npkt = ((tcp->tcp_snxt -
14248 					    tcp->tcp_suna) >> 1) / mss;
14249 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14250 					    mss;
14251 					tcp->tcp_cwnd = (npkt +
14252 					    tcp->tcp_dupack_cnt) * mss;
14253 				}
14254 				if (tcp->tcp_ecn_ok) {
14255 					tcp->tcp_cwr = B_TRUE;
14256 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14257 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14258 				}
14259 
14260 				/*
14261 				 * We do Hoe's algorithm.  Refer to her
14262 				 * paper "Improving the Start-up Behavior
14263 				 * of a Congestion Control Scheme for TCP,"
14264 				 * appeared in SIGCOMM'96.
14265 				 *
14266 				 * Save highest seq no we have sent so far.
14267 				 * Be careful about the invisible FIN byte.
14268 				 */
14269 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14270 				    (tcp->tcp_unsent == 0)) {
14271 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14272 				} else {
14273 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14274 				}
14275 
14276 				/*
14277 				 * Do not allow bursty traffic during.
14278 				 * fast recovery.  Refer to Fall and Floyd's
14279 				 * paper "Simulation-based Comparisons of
14280 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14281 				 * This is a best current practise.
14282 				 */
14283 				tcp->tcp_snd_burst = TCP_CWND_SS;
14284 
14285 				/*
14286 				 * For SACK:
14287 				 * Calculate tcp_pipe, which is the
14288 				 * estimated number of bytes in
14289 				 * network.
14290 				 *
14291 				 * tcp_fack is the highest sack'ed seq num
14292 				 * TCP has received.
14293 				 *
14294 				 * tcp_pipe is explained in the above quoted
14295 				 * Fall and Floyd's paper.  tcp_fack is
14296 				 * explained in Mathis and Mahdavi's
14297 				 * "Forward Acknowledgment: Refining TCP
14298 				 * Congestion Control" in SIGCOMM '96.
14299 				 */
14300 				if (tcp->tcp_snd_sack_ok) {
14301 					ASSERT(tcp->tcp_sack_info != NULL);
14302 					if (tcp->tcp_notsack_list != NULL) {
14303 						tcp->tcp_pipe = tcp->tcp_snxt -
14304 						    tcp->tcp_fack;
14305 						tcp->tcp_sack_snxt = seg_ack;
14306 						flags |= TH_NEED_SACK_REXMIT;
14307 					} else {
14308 						/*
14309 						 * Always initialize tcp_pipe
14310 						 * even though we don't have
14311 						 * any SACK info.  If later
14312 						 * we get SACK info and
14313 						 * tcp_pipe is not initialized,
14314 						 * funny things will happen.
14315 						 */
14316 						tcp->tcp_pipe =
14317 						    tcp->tcp_cwnd_ssthresh;
14318 					}
14319 				} else {
14320 					flags |= TH_REXMIT_NEEDED;
14321 				} /* tcp_snd_sack_ok */
14322 
14323 				} else {
14324 					/*
14325 					 * Here we perform congestion
14326 					 * avoidance, but NOT slow start.
14327 					 * This is known as the Fast
14328 					 * Recovery Algorithm.
14329 					 */
14330 					if (tcp->tcp_snd_sack_ok &&
14331 					    tcp->tcp_notsack_list != NULL) {
14332 						flags |= TH_NEED_SACK_REXMIT;
14333 						tcp->tcp_pipe -= mss;
14334 						if (tcp->tcp_pipe < 0)
14335 							tcp->tcp_pipe = 0;
14336 					} else {
14337 					/*
14338 					 * We know that one more packet has
14339 					 * left the pipe thus we can update
14340 					 * cwnd.
14341 					 */
14342 					cwnd = tcp->tcp_cwnd + mss;
14343 					if (cwnd > tcp->tcp_cwnd_max)
14344 						cwnd = tcp->tcp_cwnd_max;
14345 					tcp->tcp_cwnd = cwnd;
14346 					if (tcp->tcp_unsent > 0)
14347 						flags |= TH_XMIT_NEEDED;
14348 					}
14349 				}
14350 			}
14351 		} else if (tcp->tcp_zero_win_probe) {
14352 			/*
14353 			 * If the window has opened, need to arrange
14354 			 * to send additional data.
14355 			 */
14356 			if (new_swnd != 0) {
14357 				/* tcp_suna != tcp_snxt */
14358 				/* Packet contains a window update */
14359 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14360 				tcp->tcp_zero_win_probe = 0;
14361 				tcp->tcp_timer_backoff = 0;
14362 				tcp->tcp_ms_we_have_waited = 0;
14363 
14364 				/*
14365 				 * Transmit starting with tcp_suna since
14366 				 * the one byte probe is not ack'ed.
14367 				 * If TCP has sent more than one identical
14368 				 * probe, tcp_rexmit will be set.  That means
14369 				 * tcp_ss_rexmit() will send out the one
14370 				 * byte along with new data.  Otherwise,
14371 				 * fake the retransmission.
14372 				 */
14373 				flags |= TH_XMIT_NEEDED;
14374 				if (!tcp->tcp_rexmit) {
14375 					tcp->tcp_rexmit = B_TRUE;
14376 					tcp->tcp_dupack_cnt = 0;
14377 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14378 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14379 				}
14380 			}
14381 		}
14382 		goto swnd_update;
14383 	}
14384 
14385 	/*
14386 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14387 	 * If the ACK value acks something that we have not yet sent, it might
14388 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14389 	 * other side.
14390 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14391 	 * state is handled above, so we can always just drop the segment and
14392 	 * send an ACK here.
14393 	 *
14394 	 * Should we send ACKs in response to ACK only segments?
14395 	 */
14396 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14397 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14398 		/* drop the received segment */
14399 		freemsg(mp);
14400 
14401 		/*
14402 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14403 		 * greater than 0, check if the number of such
14404 		 * bogus ACks is greater than that count.  If yes,
14405 		 * don't send back any ACK.  This prevents TCP from
14406 		 * getting into an ACK storm if somehow an attacker
14407 		 * successfully spoofs an acceptable segment to our
14408 		 * peer.
14409 		 */
14410 		if (tcp_drop_ack_unsent_cnt > 0 &&
14411 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14412 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14413 			return;
14414 		}
14415 		mp = tcp_ack_mp(tcp);
14416 		if (mp != NULL) {
14417 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14418 			BUMP_LOCAL(tcp->tcp_obsegs);
14419 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14420 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14421 		}
14422 		return;
14423 	}
14424 
14425 	/*
14426 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14427 	 * blocks that are covered by this ACK.
14428 	 */
14429 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14430 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14431 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14432 	}
14433 
14434 	/*
14435 	 * If we got an ACK after fast retransmit, check to see
14436 	 * if it is a partial ACK.  If it is not and the congestion
14437 	 * window was inflated to account for the other side's
14438 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14439 	 */
14440 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14441 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14442 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14443 			tcp->tcp_dupack_cnt = 0;
14444 			/*
14445 			 * Restore the orig tcp_cwnd_ssthresh after
14446 			 * fast retransmit phase.
14447 			 */
14448 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14449 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14450 			}
14451 			tcp->tcp_rexmit_max = seg_ack;
14452 			tcp->tcp_cwnd_cnt = 0;
14453 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14454 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14455 
14456 			/*
14457 			 * Remove all notsack info to avoid confusion with
14458 			 * the next fast retrasnmit/recovery phase.
14459 			 */
14460 			if (tcp->tcp_snd_sack_ok &&
14461 			    tcp->tcp_notsack_list != NULL) {
14462 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14463 			}
14464 		} else {
14465 			if (tcp->tcp_snd_sack_ok &&
14466 			    tcp->tcp_notsack_list != NULL) {
14467 				flags |= TH_NEED_SACK_REXMIT;
14468 				tcp->tcp_pipe -= mss;
14469 				if (tcp->tcp_pipe < 0)
14470 					tcp->tcp_pipe = 0;
14471 			} else {
14472 				/*
14473 				 * Hoe's algorithm:
14474 				 *
14475 				 * Retransmit the unack'ed segment and
14476 				 * restart fast recovery.  Note that we
14477 				 * need to scale back tcp_cwnd to the
14478 				 * original value when we started fast
14479 				 * recovery.  This is to prevent overly
14480 				 * aggressive behaviour in sending new
14481 				 * segments.
14482 				 */
14483 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14484 				    tcps->tcps_dupack_fast_retransmit * mss;
14485 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14486 				flags |= TH_REXMIT_NEEDED;
14487 			}
14488 		}
14489 	} else {
14490 		tcp->tcp_dupack_cnt = 0;
14491 		if (tcp->tcp_rexmit) {
14492 			/*
14493 			 * TCP is retranmitting.  If the ACK ack's all
14494 			 * outstanding data, update tcp_rexmit_max and
14495 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14496 			 * to the correct value.
14497 			 *
14498 			 * Note that SEQ_LEQ() is used.  This is to avoid
14499 			 * unnecessary fast retransmit caused by dup ACKs
14500 			 * received when TCP does slow start retransmission
14501 			 * after a time out.  During this phase, TCP may
14502 			 * send out segments which are already received.
14503 			 * This causes dup ACKs to be sent back.
14504 			 */
14505 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14506 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14507 					tcp->tcp_rexmit_nxt = seg_ack;
14508 				}
14509 				if (seg_ack != tcp->tcp_rexmit_max) {
14510 					flags |= TH_XMIT_NEEDED;
14511 				}
14512 			} else {
14513 				tcp->tcp_rexmit = B_FALSE;
14514 				tcp->tcp_xmit_zc_clean = B_FALSE;
14515 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14516 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14517 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14518 			}
14519 			tcp->tcp_ms_we_have_waited = 0;
14520 		}
14521 	}
14522 
14523 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14524 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14525 	tcp->tcp_suna = seg_ack;
14526 	if (tcp->tcp_zero_win_probe != 0) {
14527 		tcp->tcp_zero_win_probe = 0;
14528 		tcp->tcp_timer_backoff = 0;
14529 	}
14530 
14531 	/*
14532 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14533 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14534 	 * will not reach here.
14535 	 */
14536 	if (mp1 == NULL) {
14537 		goto fin_acked;
14538 	}
14539 
14540 	/*
14541 	 * Update the congestion window.
14542 	 *
14543 	 * If TCP is not ECN capable or TCP is ECN capable but the
14544 	 * congestion experience bit is not set, increase the tcp_cwnd as
14545 	 * usual.
14546 	 */
14547 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14548 		cwnd = tcp->tcp_cwnd;
14549 		add = mss;
14550 
14551 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14552 			/*
14553 			 * This is to prevent an increase of less than 1 MSS of
14554 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14555 			 * may send out tinygrams in order to preserve mblk
14556 			 * boundaries.
14557 			 *
14558 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14559 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14560 			 * increased by 1 MSS for every RTTs.
14561 			 */
14562 			if (tcp->tcp_cwnd_cnt <= 0) {
14563 				tcp->tcp_cwnd_cnt = cwnd + add;
14564 			} else {
14565 				tcp->tcp_cwnd_cnt -= add;
14566 				add = 0;
14567 			}
14568 		}
14569 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14570 	}
14571 
14572 	/* See if the latest urgent data has been acknowledged */
14573 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14574 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14575 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14576 
14577 	/* Can we update the RTT estimates? */
14578 	if (tcp->tcp_snd_ts_ok) {
14579 		/* Ignore zero timestamp echo-reply. */
14580 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14581 			tcp_set_rto(tcp, (int32_t)lbolt -
14582 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14583 		}
14584 
14585 		/* If needed, restart the timer. */
14586 		if (tcp->tcp_set_timer == 1) {
14587 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14588 			tcp->tcp_set_timer = 0;
14589 		}
14590 		/*
14591 		 * Update tcp_csuna in case the other side stops sending
14592 		 * us timestamps.
14593 		 */
14594 		tcp->tcp_csuna = tcp->tcp_snxt;
14595 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14596 		/*
14597 		 * An ACK sequence we haven't seen before, so get the RTT
14598 		 * and update the RTO. But first check if the timestamp is
14599 		 * valid to use.
14600 		 */
14601 		if ((mp1->b_next != NULL) &&
14602 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14603 			tcp_set_rto(tcp, (int32_t)lbolt -
14604 			    (int32_t)(intptr_t)mp1->b_prev);
14605 		else
14606 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14607 
14608 		/* Remeber the last sequence to be ACKed */
14609 		tcp->tcp_csuna = seg_ack;
14610 		if (tcp->tcp_set_timer == 1) {
14611 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14612 			tcp->tcp_set_timer = 0;
14613 		}
14614 	} else {
14615 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14616 	}
14617 
14618 	/* Eat acknowledged bytes off the xmit queue. */
14619 	for (;;) {
14620 		mblk_t	*mp2;
14621 		uchar_t	*wptr;
14622 
14623 		wptr = mp1->b_wptr;
14624 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14625 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14626 		if (bytes_acked < 0) {
14627 			mp1->b_rptr = wptr + bytes_acked;
14628 			/*
14629 			 * Set a new timestamp if all the bytes timed by the
14630 			 * old timestamp have been ack'ed.
14631 			 */
14632 			if (SEQ_GT(seg_ack,
14633 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14634 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14635 				mp1->b_next = NULL;
14636 			}
14637 			break;
14638 		}
14639 		mp1->b_next = NULL;
14640 		mp1->b_prev = NULL;
14641 		mp2 = mp1;
14642 		mp1 = mp1->b_cont;
14643 
14644 		/*
14645 		 * This notification is required for some zero-copy
14646 		 * clients to maintain a copy semantic. After the data
14647 		 * is ack'ed, client is safe to modify or reuse the buffer.
14648 		 */
14649 		if (tcp->tcp_snd_zcopy_aware &&
14650 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14651 			tcp_zcopy_notify(tcp);
14652 		freeb(mp2);
14653 		if (bytes_acked == 0) {
14654 			if (mp1 == NULL) {
14655 				/* Everything is ack'ed, clear the tail. */
14656 				tcp->tcp_xmit_tail = NULL;
14657 				/*
14658 				 * Cancel the timer unless we are still
14659 				 * waiting for an ACK for the FIN packet.
14660 				 */
14661 				if (tcp->tcp_timer_tid != 0 &&
14662 				    tcp->tcp_snxt == tcp->tcp_suna) {
14663 					(void) TCP_TIMER_CANCEL(tcp,
14664 					    tcp->tcp_timer_tid);
14665 					tcp->tcp_timer_tid = 0;
14666 				}
14667 				goto pre_swnd_update;
14668 			}
14669 			if (mp2 != tcp->tcp_xmit_tail)
14670 				break;
14671 			tcp->tcp_xmit_tail = mp1;
14672 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14673 			    (uintptr_t)INT_MAX);
14674 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14675 			    mp1->b_rptr);
14676 			break;
14677 		}
14678 		if (mp1 == NULL) {
14679 			/*
14680 			 * More was acked but there is nothing more
14681 			 * outstanding.  This means that the FIN was
14682 			 * just acked or that we're talking to a clown.
14683 			 */
14684 fin_acked:
14685 			ASSERT(tcp->tcp_fin_sent);
14686 			tcp->tcp_xmit_tail = NULL;
14687 			if (tcp->tcp_fin_sent) {
14688 				/* FIN was acked - making progress */
14689 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14690 				    !tcp->tcp_fin_acked)
14691 					tcp->tcp_ip_forward_progress = B_TRUE;
14692 				tcp->tcp_fin_acked = B_TRUE;
14693 				if (tcp->tcp_linger_tid != 0 &&
14694 				    TCP_TIMER_CANCEL(tcp,
14695 				    tcp->tcp_linger_tid) >= 0) {
14696 					tcp_stop_lingering(tcp);
14697 					freemsg(mp);
14698 					mp = NULL;
14699 				}
14700 			} else {
14701 				/*
14702 				 * We should never get here because
14703 				 * we have already checked that the
14704 				 * number of bytes ack'ed should be
14705 				 * smaller than or equal to what we
14706 				 * have sent so far (it is the
14707 				 * acceptability check of the ACK).
14708 				 * We can only get here if the send
14709 				 * queue is corrupted.
14710 				 *
14711 				 * Terminate the connection and
14712 				 * panic the system.  It is better
14713 				 * for us to panic instead of
14714 				 * continuing to avoid other disaster.
14715 				 */
14716 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14717 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14718 				panic("Memory corruption "
14719 				    "detected for connection %s.",
14720 				    tcp_display(tcp, NULL,
14721 				    DISP_ADDR_AND_PORT));
14722 				/*NOTREACHED*/
14723 			}
14724 			goto pre_swnd_update;
14725 		}
14726 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14727 	}
14728 	if (tcp->tcp_unsent) {
14729 		flags |= TH_XMIT_NEEDED;
14730 	}
14731 pre_swnd_update:
14732 	tcp->tcp_xmit_head = mp1;
14733 swnd_update:
14734 	/*
14735 	 * The following check is different from most other implementations.
14736 	 * For bi-directional transfer, when segments are dropped, the
14737 	 * "normal" check will not accept a window update in those
14738 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14739 	 * segments which are outside receiver's window.  As TCP accepts
14740 	 * the ack in those retransmitted segments, if the window update in
14741 	 * the same segment is not accepted, TCP will incorrectly calculates
14742 	 * that it can send more segments.  This can create a deadlock
14743 	 * with the receiver if its window becomes zero.
14744 	 */
14745 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14746 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14747 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14748 		/*
14749 		 * The criteria for update is:
14750 		 *
14751 		 * 1. the segment acknowledges some data.  Or
14752 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14753 		 * 3. the segment is not old and the advertised window is
14754 		 * larger than the previous advertised window.
14755 		 */
14756 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14757 			flags |= TH_XMIT_NEEDED;
14758 		tcp->tcp_swnd = new_swnd;
14759 		if (new_swnd > tcp->tcp_max_swnd)
14760 			tcp->tcp_max_swnd = new_swnd;
14761 		tcp->tcp_swl1 = seg_seq;
14762 		tcp->tcp_swl2 = seg_ack;
14763 	}
14764 est:
14765 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14766 
14767 		switch (tcp->tcp_state) {
14768 		case TCPS_FIN_WAIT_1:
14769 			if (tcp->tcp_fin_acked) {
14770 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14771 				/*
14772 				 * We implement the non-standard BSD/SunOS
14773 				 * FIN_WAIT_2 flushing algorithm.
14774 				 * If there is no user attached to this
14775 				 * TCP endpoint, then this TCP struct
14776 				 * could hang around forever in FIN_WAIT_2
14777 				 * state if the peer forgets to send us
14778 				 * a FIN.  To prevent this, we wait only
14779 				 * 2*MSL (a convenient time value) for
14780 				 * the FIN to arrive.  If it doesn't show up,
14781 				 * we flush the TCP endpoint.  This algorithm,
14782 				 * though a violation of RFC-793, has worked
14783 				 * for over 10 years in BSD systems.
14784 				 * Note: SunOS 4.x waits 675 seconds before
14785 				 * flushing the FIN_WAIT_2 connection.
14786 				 */
14787 				TCP_TIMER_RESTART(tcp,
14788 				    tcps->tcps_fin_wait_2_flush_interval);
14789 			}
14790 			break;
14791 		case TCPS_FIN_WAIT_2:
14792 			break;	/* Shutdown hook? */
14793 		case TCPS_LAST_ACK:
14794 			freemsg(mp);
14795 			if (tcp->tcp_fin_acked) {
14796 				(void) tcp_clean_death(tcp, 0, 19);
14797 				return;
14798 			}
14799 			goto xmit_check;
14800 		case TCPS_CLOSING:
14801 			if (tcp->tcp_fin_acked) {
14802 				tcp->tcp_state = TCPS_TIME_WAIT;
14803 				/*
14804 				 * Unconditionally clear the exclusive binding
14805 				 * bit so this TIME-WAIT connection won't
14806 				 * interfere with new ones.
14807 				 */
14808 				tcp->tcp_exclbind = 0;
14809 				if (!TCP_IS_DETACHED(tcp)) {
14810 					TCP_TIMER_RESTART(tcp,
14811 					    tcps->tcps_time_wait_interval);
14812 				} else {
14813 					tcp_time_wait_append(tcp);
14814 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14815 				}
14816 			}
14817 			/*FALLTHRU*/
14818 		case TCPS_CLOSE_WAIT:
14819 			freemsg(mp);
14820 			goto xmit_check;
14821 		default:
14822 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14823 			break;
14824 		}
14825 	}
14826 	if (flags & TH_FIN) {
14827 		/* Make sure we ack the fin */
14828 		flags |= TH_ACK_NEEDED;
14829 		if (!tcp->tcp_fin_rcvd) {
14830 			tcp->tcp_fin_rcvd = B_TRUE;
14831 			tcp->tcp_rnxt++;
14832 			tcph = tcp->tcp_tcph;
14833 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14834 
14835 			/*
14836 			 * Generate the ordrel_ind at the end unless we
14837 			 * are an eager guy.
14838 			 * In the eager case tcp_rsrv will do this when run
14839 			 * after tcp_accept is done.
14840 			 */
14841 			if (tcp->tcp_listener == NULL &&
14842 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14843 				flags |= TH_ORDREL_NEEDED;
14844 			switch (tcp->tcp_state) {
14845 			case TCPS_SYN_RCVD:
14846 			case TCPS_ESTABLISHED:
14847 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14848 				/* Keepalive? */
14849 				break;
14850 			case TCPS_FIN_WAIT_1:
14851 				if (!tcp->tcp_fin_acked) {
14852 					tcp->tcp_state = TCPS_CLOSING;
14853 					break;
14854 				}
14855 				/* FALLTHRU */
14856 			case TCPS_FIN_WAIT_2:
14857 				tcp->tcp_state = TCPS_TIME_WAIT;
14858 				/*
14859 				 * Unconditionally clear the exclusive binding
14860 				 * bit so this TIME-WAIT connection won't
14861 				 * interfere with new ones.
14862 				 */
14863 				tcp->tcp_exclbind = 0;
14864 				if (!TCP_IS_DETACHED(tcp)) {
14865 					TCP_TIMER_RESTART(tcp,
14866 					    tcps->tcps_time_wait_interval);
14867 				} else {
14868 					tcp_time_wait_append(tcp);
14869 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14870 				}
14871 				if (seg_len) {
14872 					/*
14873 					 * implies data piggybacked on FIN.
14874 					 * break to handle data.
14875 					 */
14876 					break;
14877 				}
14878 				freemsg(mp);
14879 				goto ack_check;
14880 			}
14881 		}
14882 	}
14883 	if (mp == NULL)
14884 		goto xmit_check;
14885 	if (seg_len == 0) {
14886 		freemsg(mp);
14887 		goto xmit_check;
14888 	}
14889 	if (mp->b_rptr == mp->b_wptr) {
14890 		/*
14891 		 * The header has been consumed, so we remove the
14892 		 * zero-length mblk here.
14893 		 */
14894 		mp1 = mp;
14895 		mp = mp->b_cont;
14896 		freeb(mp1);
14897 	}
14898 	tcph = tcp->tcp_tcph;
14899 	tcp->tcp_rack_cnt++;
14900 	{
14901 		uint32_t cur_max;
14902 
14903 		cur_max = tcp->tcp_rack_cur_max;
14904 		if (tcp->tcp_rack_cnt >= cur_max) {
14905 			/*
14906 			 * We have more unacked data than we should - send
14907 			 * an ACK now.
14908 			 */
14909 			flags |= TH_ACK_NEEDED;
14910 			cur_max++;
14911 			if (cur_max > tcp->tcp_rack_abs_max)
14912 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14913 			else
14914 				tcp->tcp_rack_cur_max = cur_max;
14915 		} else if (TCP_IS_DETACHED(tcp)) {
14916 			/* We don't have an ACK timer for detached TCP. */
14917 			flags |= TH_ACK_NEEDED;
14918 		} else if (seg_len < mss) {
14919 			/*
14920 			 * If we get a segment that is less than an mss, and we
14921 			 * already have unacknowledged data, and the amount
14922 			 * unacknowledged is not a multiple of mss, then we
14923 			 * better generate an ACK now.  Otherwise, this may be
14924 			 * the tail piece of a transaction, and we would rather
14925 			 * wait for the response.
14926 			 */
14927 			uint32_t udif;
14928 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14929 			    (uintptr_t)INT_MAX);
14930 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14931 			if (udif && (udif % mss))
14932 				flags |= TH_ACK_NEEDED;
14933 			else
14934 				flags |= TH_ACK_TIMER_NEEDED;
14935 		} else {
14936 			/* Start delayed ack timer */
14937 			flags |= TH_ACK_TIMER_NEEDED;
14938 		}
14939 	}
14940 	tcp->tcp_rnxt += seg_len;
14941 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14942 
14943 	/* Update SACK list */
14944 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14945 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14946 		    &(tcp->tcp_num_sack_blk));
14947 	}
14948 
14949 	if (tcp->tcp_urp_mp) {
14950 		tcp->tcp_urp_mp->b_cont = mp;
14951 		mp = tcp->tcp_urp_mp;
14952 		tcp->tcp_urp_mp = NULL;
14953 		/* Ready for a new signal. */
14954 		tcp->tcp_urp_last_valid = B_FALSE;
14955 #ifdef DEBUG
14956 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14957 		    "tcp_rput: sending exdata_ind %s",
14958 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14959 #endif /* DEBUG */
14960 	}
14961 
14962 	/*
14963 	 * Check for ancillary data changes compared to last segment.
14964 	 */
14965 	if (tcp->tcp_ipv6_recvancillary != 0) {
14966 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14967 		if (mp == NULL)
14968 			return;
14969 	}
14970 
14971 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14972 		/*
14973 		 * Side queue inbound data until the accept happens.
14974 		 * tcp_accept/tcp_rput drains this when the accept happens.
14975 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14976 		 * T_EXDATA_IND) it is queued on b_next.
14977 		 * XXX Make urgent data use this. Requires:
14978 		 *	Removing tcp_listener check for TH_URG
14979 		 *	Making M_PCPROTO and MARK messages skip the eager case
14980 		 */
14981 
14982 		if (tcp->tcp_kssl_pending) {
14983 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
14984 			    mblk_t *, mp);
14985 			tcp_kssl_input(tcp, mp);
14986 		} else {
14987 			tcp_rcv_enqueue(tcp, mp, seg_len);
14988 		}
14989 	} else {
14990 		if (mp->b_datap->db_type != M_DATA ||
14991 		    (flags & TH_MARKNEXT_NEEDED)) {
14992 			if (tcp->tcp_rcv_list != NULL) {
14993 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14994 			}
14995 			ASSERT(tcp->tcp_rcv_list == NULL ||
14996 			    tcp->tcp_fused_sigurg);
14997 			if (flags & TH_MARKNEXT_NEEDED) {
14998 #ifdef DEBUG
14999 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15000 				    "tcp_rput: sending MSGMARKNEXT %s",
15001 				    tcp_display(tcp, NULL,
15002 				    DISP_PORT_ONLY));
15003 #endif /* DEBUG */
15004 				mp->b_flag |= MSGMARKNEXT;
15005 				flags &= ~TH_MARKNEXT_NEEDED;
15006 			}
15007 
15008 			/* Does this need SSL processing first? */
15009 			if ((tcp->tcp_kssl_ctx != NULL) &&
15010 			    (DB_TYPE(mp) == M_DATA)) {
15011 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15012 				    mblk_t *, mp);
15013 				tcp_kssl_input(tcp, mp);
15014 			} else {
15015 				putnext(tcp->tcp_rq, mp);
15016 				if (!canputnext(tcp->tcp_rq))
15017 					tcp->tcp_rwnd -= seg_len;
15018 			}
15019 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15020 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15021 			if (tcp->tcp_rcv_list != NULL) {
15022 				/*
15023 				 * Enqueue the new segment first and then
15024 				 * call tcp_rcv_drain() to send all data
15025 				 * up.  The other way to do this is to
15026 				 * send all queued data up and then call
15027 				 * putnext() to send the new segment up.
15028 				 * This way can remove the else part later
15029 				 * on.
15030 				 *
15031 				 * We don't this to avoid one more call to
15032 				 * canputnext() as tcp_rcv_drain() needs to
15033 				 * call canputnext().
15034 				 */
15035 				tcp_rcv_enqueue(tcp, mp, seg_len);
15036 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15037 			} else {
15038 				/* Does this need SSL processing first? */
15039 				if ((tcp->tcp_kssl_ctx != NULL) &&
15040 				    (DB_TYPE(mp) == M_DATA)) {
15041 					DTRACE_PROBE1(
15042 					    kssl_mblk__ksslinput_data2,
15043 					    mblk_t *, mp);
15044 					tcp_kssl_input(tcp, mp);
15045 				} else {
15046 					putnext(tcp->tcp_rq, mp);
15047 					if (!canputnext(tcp->tcp_rq))
15048 						tcp->tcp_rwnd -= seg_len;
15049 				}
15050 			}
15051 		} else {
15052 			/*
15053 			 * Enqueue all packets when processing an mblk
15054 			 * from the co queue and also enqueue normal packets.
15055 			 * For packets which belong to SSL stream do SSL
15056 			 * processing first.
15057 			 */
15058 			if ((tcp->tcp_kssl_ctx != NULL) &&
15059 			    (DB_TYPE(mp) == M_DATA)) {
15060 				DTRACE_PROBE1(kssl_mblk__tcpksslin3,
15061 				    mblk_t *, mp);
15062 				tcp_kssl_input(tcp, mp);
15063 			} else {
15064 				tcp_rcv_enqueue(tcp, mp, seg_len);
15065 			}
15066 		}
15067 		/*
15068 		 * Make sure the timer is running if we have data waiting
15069 		 * for a push bit. This provides resiliency against
15070 		 * implementations that do not correctly generate push bits.
15071 		 */
15072 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
15073 			/*
15074 			 * The connection may be closed at this point, so don't
15075 			 * do anything for a detached tcp.
15076 			 */
15077 			if (!TCP_IS_DETACHED(tcp))
15078 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15079 				    tcp_push_timer,
15080 				    MSEC_TO_TICK(
15081 				    tcps->tcps_push_timer_interval));
15082 		}
15083 	}
15084 xmit_check:
15085 	/* Is there anything left to do? */
15086 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15087 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15088 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15089 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15090 		goto done;
15091 
15092 	/* Any transmit work to do and a non-zero window? */
15093 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15094 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15095 		if (flags & TH_REXMIT_NEEDED) {
15096 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15097 
15098 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15099 			if (snd_size > mss)
15100 				snd_size = mss;
15101 			if (snd_size > tcp->tcp_swnd)
15102 				snd_size = tcp->tcp_swnd;
15103 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15104 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15105 			    B_TRUE);
15106 
15107 			if (mp1 != NULL) {
15108 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15109 				tcp->tcp_csuna = tcp->tcp_snxt;
15110 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15111 				UPDATE_MIB(&tcps->tcps_mib,
15112 				    tcpRetransBytes, snd_size);
15113 				TCP_RECORD_TRACE(tcp, mp1,
15114 				    TCP_TRACE_SEND_PKT);
15115 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15116 			}
15117 		}
15118 		if (flags & TH_NEED_SACK_REXMIT) {
15119 			tcp_sack_rxmit(tcp, &flags);
15120 		}
15121 		/*
15122 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15123 		 * out new segment.  Note that tcp_rexmit should not be
15124 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15125 		 */
15126 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15127 			if (!tcp->tcp_rexmit) {
15128 				tcp_wput_data(tcp, NULL, B_FALSE);
15129 			} else {
15130 				tcp_ss_rexmit(tcp);
15131 			}
15132 		}
15133 		/*
15134 		 * Adjust tcp_cwnd back to normal value after sending
15135 		 * new data segments.
15136 		 */
15137 		if (flags & TH_LIMIT_XMIT) {
15138 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15139 			/*
15140 			 * This will restart the timer.  Restarting the
15141 			 * timer is used to avoid a timeout before the
15142 			 * limited transmitted segment's ACK gets back.
15143 			 */
15144 			if (tcp->tcp_xmit_head != NULL)
15145 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15146 		}
15147 
15148 		/* Anything more to do? */
15149 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15150 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15151 			goto done;
15152 	}
15153 ack_check:
15154 	if (flags & TH_SEND_URP_MARK) {
15155 		ASSERT(tcp->tcp_urp_mark_mp);
15156 		/*
15157 		 * Send up any queued data and then send the mark message
15158 		 */
15159 		if (tcp->tcp_rcv_list != NULL) {
15160 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15161 		}
15162 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15163 
15164 		mp1 = tcp->tcp_urp_mark_mp;
15165 		tcp->tcp_urp_mark_mp = NULL;
15166 #ifdef DEBUG
15167 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15168 		    "tcp_rput: sending zero-length %s %s",
15169 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15170 		    "MSGNOTMARKNEXT"),
15171 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15172 #endif /* DEBUG */
15173 		putnext(tcp->tcp_rq, mp1);
15174 		flags &= ~TH_SEND_URP_MARK;
15175 	}
15176 	if (flags & TH_ACK_NEEDED) {
15177 		/*
15178 		 * Time to send an ack for some reason.
15179 		 */
15180 		mp1 = tcp_ack_mp(tcp);
15181 
15182 		if (mp1 != NULL) {
15183 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15184 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15185 			BUMP_LOCAL(tcp->tcp_obsegs);
15186 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15187 		}
15188 		if (tcp->tcp_ack_tid != 0) {
15189 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15190 			tcp->tcp_ack_tid = 0;
15191 		}
15192 	}
15193 	if (flags & TH_ACK_TIMER_NEEDED) {
15194 		/*
15195 		 * Arrange for deferred ACK or push wait timeout.
15196 		 * Start timer if it is not already running.
15197 		 */
15198 		if (tcp->tcp_ack_tid == 0) {
15199 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15200 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15201 			    (clock_t)tcps->tcps_local_dack_interval :
15202 			    (clock_t)tcps->tcps_deferred_ack_interval));
15203 		}
15204 	}
15205 	if (flags & TH_ORDREL_NEEDED) {
15206 		/*
15207 		 * Send up the ordrel_ind unless we are an eager guy.
15208 		 * In the eager case tcp_rsrv will do this when run
15209 		 * after tcp_accept is done.
15210 		 */
15211 		ASSERT(tcp->tcp_listener == NULL);
15212 		if (tcp->tcp_rcv_list != NULL) {
15213 			/*
15214 			 * Push any mblk(s) enqueued from co processing.
15215 			 */
15216 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15217 		}
15218 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15219 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15220 			tcp->tcp_ordrel_done = B_TRUE;
15221 			putnext(tcp->tcp_rq, mp1);
15222 			if (tcp->tcp_deferred_clean_death) {
15223 				/*
15224 				 * tcp_clean_death was deferred
15225 				 * for T_ORDREL_IND - do it now
15226 				 */
15227 				(void) tcp_clean_death(tcp,
15228 				    tcp->tcp_client_errno, 20);
15229 				tcp->tcp_deferred_clean_death =	B_FALSE;
15230 			}
15231 		} else {
15232 			/*
15233 			 * Run the orderly release in the
15234 			 * service routine.
15235 			 */
15236 			qenable(tcp->tcp_rq);
15237 			/*
15238 			 * Caveat(XXX): The machine may be so
15239 			 * overloaded that tcp_rsrv() is not scheduled
15240 			 * until after the endpoint has transitioned
15241 			 * to TCPS_TIME_WAIT
15242 			 * and tcp_time_wait_interval expires. Then
15243 			 * tcp_timer() will blow away state in tcp_t
15244 			 * and T_ORDREL_IND will never be delivered
15245 			 * upstream. Unlikely but potentially
15246 			 * a problem.
15247 			 */
15248 		}
15249 	}
15250 done:
15251 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15252 }
15253 
15254 /*
15255  * This function does PAWS protection check. Returns B_TRUE if the
15256  * segment passes the PAWS test, else returns B_FALSE.
15257  */
15258 boolean_t
15259 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15260 {
15261 	uint8_t	flags;
15262 	int	options;
15263 	uint8_t *up;
15264 
15265 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15266 	/*
15267 	 * If timestamp option is aligned nicely, get values inline,
15268 	 * otherwise call general routine to parse.  Only do that
15269 	 * if timestamp is the only option.
15270 	 */
15271 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15272 	    TCPOPT_REAL_TS_LEN &&
15273 	    OK_32PTR((up = ((uint8_t *)tcph) +
15274 	    TCP_MIN_HEADER_LENGTH)) &&
15275 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15276 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15277 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15278 
15279 		options = TCP_OPT_TSTAMP_PRESENT;
15280 	} else {
15281 		if (tcp->tcp_snd_sack_ok) {
15282 			tcpoptp->tcp = tcp;
15283 		} else {
15284 			tcpoptp->tcp = NULL;
15285 		}
15286 		options = tcp_parse_options(tcph, tcpoptp);
15287 	}
15288 
15289 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15290 		/*
15291 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15292 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15293 		 */
15294 		if ((flags & TH_RST) == 0 &&
15295 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15296 		    tcp->tcp_ts_recent)) {
15297 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15298 			    PAWS_TIMEOUT)) {
15299 				/* This segment is not acceptable. */
15300 				return (B_FALSE);
15301 			} else {
15302 				/*
15303 				 * Connection has been idle for
15304 				 * too long.  Reset the timestamp
15305 				 * and assume the segment is valid.
15306 				 */
15307 				tcp->tcp_ts_recent =
15308 				    tcpoptp->tcp_opt_ts_val;
15309 			}
15310 		}
15311 	} else {
15312 		/*
15313 		 * If we don't get a timestamp on every packet, we
15314 		 * figure we can't really trust 'em, so we stop sending
15315 		 * and parsing them.
15316 		 */
15317 		tcp->tcp_snd_ts_ok = B_FALSE;
15318 
15319 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15320 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15321 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15322 		/*
15323 		 * Adjust the tcp_mss accordingly. We also need to
15324 		 * adjust tcp_cwnd here in accordance with the new mss.
15325 		 * But we avoid doing a slow start here so as to not
15326 		 * to lose on the transfer rate built up so far.
15327 		 */
15328 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15329 		if (tcp->tcp_snd_sack_ok) {
15330 			ASSERT(tcp->tcp_sack_info != NULL);
15331 			tcp->tcp_max_sack_blk = 4;
15332 		}
15333 	}
15334 	return (B_TRUE);
15335 }
15336 
15337 /*
15338  * Attach ancillary data to a received TCP segments for the
15339  * ancillary pieces requested by the application that are
15340  * different than they were in the previous data segment.
15341  *
15342  * Save the "current" values once memory allocation is ok so that
15343  * when memory allocation fails we can just wait for the next data segment.
15344  */
15345 static mblk_t *
15346 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15347 {
15348 	struct T_optdata_ind *todi;
15349 	int optlen;
15350 	uchar_t *optptr;
15351 	struct T_opthdr *toh;
15352 	uint_t addflag;	/* Which pieces to add */
15353 	mblk_t *mp1;
15354 
15355 	optlen = 0;
15356 	addflag = 0;
15357 	/* If app asked for pktinfo and the index has changed ... */
15358 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15359 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15360 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15361 		optlen += sizeof (struct T_opthdr) +
15362 		    sizeof (struct in6_pktinfo);
15363 		addflag |= TCP_IPV6_RECVPKTINFO;
15364 	}
15365 	/* If app asked for hoplimit and it has changed ... */
15366 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15367 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15368 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15369 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15370 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15371 	}
15372 	/* If app asked for tclass and it has changed ... */
15373 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15374 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15375 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15376 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15377 		addflag |= TCP_IPV6_RECVTCLASS;
15378 	}
15379 	/*
15380 	 * If app asked for hopbyhop headers and it has changed ...
15381 	 * For security labels, note that (1) security labels can't change on
15382 	 * a connected socket at all, (2) we're connected to at most one peer,
15383 	 * (3) if anything changes, then it must be some other extra option.
15384 	 */
15385 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15386 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15387 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15388 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15389 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15390 		    tcp->tcp_label_len;
15391 		addflag |= TCP_IPV6_RECVHOPOPTS;
15392 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15393 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15394 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15395 			return (mp);
15396 	}
15397 	/* If app asked for dst headers before routing headers ... */
15398 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15399 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15400 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15401 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15402 		optlen += sizeof (struct T_opthdr) +
15403 		    ipp->ipp_rtdstoptslen;
15404 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15405 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15406 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15407 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15408 			return (mp);
15409 	}
15410 	/* If app asked for routing headers and it has changed ... */
15411 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15412 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15413 	    (ipp->ipp_fields & IPPF_RTHDR),
15414 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15415 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15416 		addflag |= TCP_IPV6_RECVRTHDR;
15417 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15418 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15419 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15420 			return (mp);
15421 	}
15422 	/* If app asked for dest headers and it has changed ... */
15423 	if ((tcp->tcp_ipv6_recvancillary &
15424 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15425 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15426 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15427 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15428 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15429 		addflag |= TCP_IPV6_RECVDSTOPTS;
15430 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15431 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15432 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15433 			return (mp);
15434 	}
15435 
15436 	if (optlen == 0) {
15437 		/* Nothing to add */
15438 		return (mp);
15439 	}
15440 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15441 	if (mp1 == NULL) {
15442 		/*
15443 		 * Defer sending ancillary data until the next TCP segment
15444 		 * arrives.
15445 		 */
15446 		return (mp);
15447 	}
15448 	mp1->b_cont = mp;
15449 	mp = mp1;
15450 	mp->b_wptr += sizeof (*todi) + optlen;
15451 	mp->b_datap->db_type = M_PROTO;
15452 	todi = (struct T_optdata_ind *)mp->b_rptr;
15453 	todi->PRIM_type = T_OPTDATA_IND;
15454 	todi->DATA_flag = 1;	/* MORE data */
15455 	todi->OPT_length = optlen;
15456 	todi->OPT_offset = sizeof (*todi);
15457 	optptr = (uchar_t *)&todi[1];
15458 	/*
15459 	 * If app asked for pktinfo and the index has changed ...
15460 	 * Note that the local address never changes for the connection.
15461 	 */
15462 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15463 		struct in6_pktinfo *pkti;
15464 
15465 		toh = (struct T_opthdr *)optptr;
15466 		toh->level = IPPROTO_IPV6;
15467 		toh->name = IPV6_PKTINFO;
15468 		toh->len = sizeof (*toh) + sizeof (*pkti);
15469 		toh->status = 0;
15470 		optptr += sizeof (*toh);
15471 		pkti = (struct in6_pktinfo *)optptr;
15472 		if (tcp->tcp_ipversion == IPV6_VERSION)
15473 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15474 		else
15475 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15476 			    &pkti->ipi6_addr);
15477 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15478 		optptr += sizeof (*pkti);
15479 		ASSERT(OK_32PTR(optptr));
15480 		/* Save as "last" value */
15481 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15482 	}
15483 	/* If app asked for hoplimit and it has changed ... */
15484 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15485 		toh = (struct T_opthdr *)optptr;
15486 		toh->level = IPPROTO_IPV6;
15487 		toh->name = IPV6_HOPLIMIT;
15488 		toh->len = sizeof (*toh) + sizeof (uint_t);
15489 		toh->status = 0;
15490 		optptr += sizeof (*toh);
15491 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15492 		optptr += sizeof (uint_t);
15493 		ASSERT(OK_32PTR(optptr));
15494 		/* Save as "last" value */
15495 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15496 	}
15497 	/* If app asked for tclass and it has changed ... */
15498 	if (addflag & TCP_IPV6_RECVTCLASS) {
15499 		toh = (struct T_opthdr *)optptr;
15500 		toh->level = IPPROTO_IPV6;
15501 		toh->name = IPV6_TCLASS;
15502 		toh->len = sizeof (*toh) + sizeof (uint_t);
15503 		toh->status = 0;
15504 		optptr += sizeof (*toh);
15505 		*(uint_t *)optptr = ipp->ipp_tclass;
15506 		optptr += sizeof (uint_t);
15507 		ASSERT(OK_32PTR(optptr));
15508 		/* Save as "last" value */
15509 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15510 	}
15511 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15512 		toh = (struct T_opthdr *)optptr;
15513 		toh->level = IPPROTO_IPV6;
15514 		toh->name = IPV6_HOPOPTS;
15515 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15516 		    tcp->tcp_label_len;
15517 		toh->status = 0;
15518 		optptr += sizeof (*toh);
15519 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15520 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15521 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15522 		ASSERT(OK_32PTR(optptr));
15523 		/* Save as last value */
15524 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15525 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15526 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15527 	}
15528 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15529 		toh = (struct T_opthdr *)optptr;
15530 		toh->level = IPPROTO_IPV6;
15531 		toh->name = IPV6_RTHDRDSTOPTS;
15532 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15533 		toh->status = 0;
15534 		optptr += sizeof (*toh);
15535 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15536 		optptr += ipp->ipp_rtdstoptslen;
15537 		ASSERT(OK_32PTR(optptr));
15538 		/* Save as last value */
15539 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15540 		    &tcp->tcp_rtdstoptslen,
15541 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15542 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15543 	}
15544 	if (addflag & TCP_IPV6_RECVRTHDR) {
15545 		toh = (struct T_opthdr *)optptr;
15546 		toh->level = IPPROTO_IPV6;
15547 		toh->name = IPV6_RTHDR;
15548 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15549 		toh->status = 0;
15550 		optptr += sizeof (*toh);
15551 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15552 		optptr += ipp->ipp_rthdrlen;
15553 		ASSERT(OK_32PTR(optptr));
15554 		/* Save as last value */
15555 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15556 		    (ipp->ipp_fields & IPPF_RTHDR),
15557 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15558 	}
15559 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15560 		toh = (struct T_opthdr *)optptr;
15561 		toh->level = IPPROTO_IPV6;
15562 		toh->name = IPV6_DSTOPTS;
15563 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15564 		toh->status = 0;
15565 		optptr += sizeof (*toh);
15566 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15567 		optptr += ipp->ipp_dstoptslen;
15568 		ASSERT(OK_32PTR(optptr));
15569 		/* Save as last value */
15570 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15571 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15572 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15573 	}
15574 	ASSERT(optptr == mp->b_wptr);
15575 	return (mp);
15576 }
15577 
15578 
15579 /*
15580  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15581  * or a "bad" IRE detected by tcp_adapt_ire.
15582  * We can't tell if the failure was due to the laddr or the faddr
15583  * thus we clear out all addresses and ports.
15584  */
15585 static void
15586 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15587 {
15588 	queue_t	*q = tcp->tcp_rq;
15589 	tcph_t	*tcph;
15590 	struct T_error_ack *tea;
15591 	conn_t	*connp = tcp->tcp_connp;
15592 
15593 
15594 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15595 
15596 	if (mp->b_cont) {
15597 		freemsg(mp->b_cont);
15598 		mp->b_cont = NULL;
15599 	}
15600 	tea = (struct T_error_ack *)mp->b_rptr;
15601 	switch (tea->PRIM_type) {
15602 	case T_BIND_ACK:
15603 		/*
15604 		 * Need to unbind with classifier since we were just told that
15605 		 * our bind succeeded.
15606 		 */
15607 		tcp->tcp_hard_bound = B_FALSE;
15608 		tcp->tcp_hard_binding = B_FALSE;
15609 
15610 		ipcl_hash_remove(connp);
15611 		/* Reuse the mblk if possible */
15612 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15613 		    sizeof (*tea));
15614 		mp->b_rptr = mp->b_datap->db_base;
15615 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15616 		tea = (struct T_error_ack *)mp->b_rptr;
15617 		tea->PRIM_type = T_ERROR_ACK;
15618 		tea->TLI_error = TSYSERR;
15619 		tea->UNIX_error = error;
15620 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15621 			tea->ERROR_prim = T_CONN_REQ;
15622 		} else {
15623 			tea->ERROR_prim = O_T_BIND_REQ;
15624 		}
15625 		break;
15626 
15627 	case T_ERROR_ACK:
15628 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15629 			tea->ERROR_prim = T_CONN_REQ;
15630 		break;
15631 	default:
15632 		panic("tcp_bind_failed: unexpected TPI type");
15633 		/*NOTREACHED*/
15634 	}
15635 
15636 	tcp->tcp_state = TCPS_IDLE;
15637 	if (tcp->tcp_ipversion == IPV4_VERSION)
15638 		tcp->tcp_ipha->ipha_src = 0;
15639 	else
15640 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15641 	/*
15642 	 * Copy of the src addr. in tcp_t is needed since
15643 	 * the lookup funcs. can only look at tcp_t
15644 	 */
15645 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15646 
15647 	tcph = tcp->tcp_tcph;
15648 	tcph->th_lport[0] = 0;
15649 	tcph->th_lport[1] = 0;
15650 	tcp_bind_hash_remove(tcp);
15651 	bzero(&connp->u_port, sizeof (connp->u_port));
15652 	/* blow away saved option results if any */
15653 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15654 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15655 
15656 	conn_delete_ire(tcp->tcp_connp, NULL);
15657 	putnext(q, mp);
15658 }
15659 
15660 /*
15661  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15662  * messages.
15663  */
15664 void
15665 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15666 {
15667 	mblk_t	*mp1;
15668 	uchar_t	*rptr = mp->b_rptr;
15669 	queue_t	*q = tcp->tcp_rq;
15670 	struct T_error_ack *tea;
15671 	uint32_t mss;
15672 	mblk_t *syn_mp;
15673 	mblk_t *mdti;
15674 	mblk_t *lsoi;
15675 	int	retval;
15676 	mblk_t *ire_mp;
15677 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15678 
15679 	switch (mp->b_datap->db_type) {
15680 	case M_PROTO:
15681 	case M_PCPROTO:
15682 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15683 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15684 			break;
15685 		tea = (struct T_error_ack *)rptr;
15686 		switch (tea->PRIM_type) {
15687 		case T_BIND_ACK:
15688 			/*
15689 			 * Adapt Multidata information, if any.  The
15690 			 * following tcp_mdt_update routine will free
15691 			 * the message.
15692 			 */
15693 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15694 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15695 				    b_rptr)->mdt_capab, B_TRUE);
15696 				freemsg(mdti);
15697 			}
15698 
15699 			/*
15700 			 * Check to update LSO information with tcp, and
15701 			 * tcp_lso_update routine will free the message.
15702 			 */
15703 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15704 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15705 				    b_rptr)->lso_capab);
15706 				freemsg(lsoi);
15707 			}
15708 
15709 			/* Get the IRE, if we had requested for it */
15710 			ire_mp = tcp_ire_mp(mp);
15711 
15712 			if (tcp->tcp_hard_binding) {
15713 				tcp->tcp_hard_binding = B_FALSE;
15714 				tcp->tcp_hard_bound = B_TRUE;
15715 				CL_INET_CONNECT(tcp);
15716 			} else {
15717 				if (ire_mp != NULL)
15718 					freeb(ire_mp);
15719 				goto after_syn_sent;
15720 			}
15721 
15722 			retval = tcp_adapt_ire(tcp, ire_mp);
15723 			if (ire_mp != NULL)
15724 				freeb(ire_mp);
15725 			if (retval == 0) {
15726 				tcp_bind_failed(tcp, mp,
15727 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15728 				    ENETUNREACH : EADDRNOTAVAIL));
15729 				return;
15730 			}
15731 			/*
15732 			 * Don't let an endpoint connect to itself.
15733 			 * Also checked in tcp_connect() but that
15734 			 * check can't handle the case when the
15735 			 * local IP address is INADDR_ANY.
15736 			 */
15737 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15738 				if ((tcp->tcp_ipha->ipha_dst ==
15739 				    tcp->tcp_ipha->ipha_src) &&
15740 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15741 				    tcp->tcp_tcph->th_fport))) {
15742 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15743 					return;
15744 				}
15745 			} else {
15746 				if (IN6_ARE_ADDR_EQUAL(
15747 				    &tcp->tcp_ip6h->ip6_dst,
15748 				    &tcp->tcp_ip6h->ip6_src) &&
15749 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15750 				    tcp->tcp_tcph->th_fport))) {
15751 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15752 					return;
15753 				}
15754 			}
15755 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15756 			/*
15757 			 * This should not be possible!  Just for
15758 			 * defensive coding...
15759 			 */
15760 			if (tcp->tcp_state != TCPS_SYN_SENT)
15761 				goto after_syn_sent;
15762 
15763 			if (is_system_labeled() &&
15764 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15765 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15766 				return;
15767 			}
15768 
15769 			ASSERT(q == tcp->tcp_rq);
15770 			/*
15771 			 * tcp_adapt_ire() does not adjust
15772 			 * for TCP/IP header length.
15773 			 */
15774 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15775 
15776 			/*
15777 			 * Just make sure our rwnd is at
15778 			 * least tcp_recv_hiwat_mss * MSS
15779 			 * large, and round up to the nearest
15780 			 * MSS.
15781 			 *
15782 			 * We do the round up here because
15783 			 * we need to get the interface
15784 			 * MTU first before we can do the
15785 			 * round up.
15786 			 */
15787 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15788 			    tcps->tcps_recv_hiwat_minmss * mss);
15789 			q->q_hiwat = tcp->tcp_rwnd;
15790 			tcp_set_ws_value(tcp);
15791 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15792 			    tcp->tcp_tcph->th_win);
15793 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15794 				tcp->tcp_snd_ws_ok = B_TRUE;
15795 
15796 			/*
15797 			 * Set tcp_snd_ts_ok to true
15798 			 * so that tcp_xmit_mp will
15799 			 * include the timestamp
15800 			 * option in the SYN segment.
15801 			 */
15802 			if (tcps->tcps_tstamp_always ||
15803 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15804 				tcp->tcp_snd_ts_ok = B_TRUE;
15805 			}
15806 
15807 			/*
15808 			 * tcp_snd_sack_ok can be set in
15809 			 * tcp_adapt_ire() if the sack metric
15810 			 * is set.  So check it here also.
15811 			 */
15812 			if (tcps->tcps_sack_permitted == 2 ||
15813 			    tcp->tcp_snd_sack_ok) {
15814 				if (tcp->tcp_sack_info == NULL) {
15815 					tcp->tcp_sack_info =
15816 					    kmem_cache_alloc(
15817 					    tcp_sack_info_cache,
15818 					    KM_SLEEP);
15819 				}
15820 				tcp->tcp_snd_sack_ok = B_TRUE;
15821 			}
15822 
15823 			/*
15824 			 * Should we use ECN?  Note that the current
15825 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15826 			 * is 1.  The reason for doing this is that there
15827 			 * are equipments out there that will drop ECN
15828 			 * enabled IP packets.  Setting it to 1 avoids
15829 			 * compatibility problems.
15830 			 */
15831 			if (tcps->tcps_ecn_permitted == 2)
15832 				tcp->tcp_ecn_ok = B_TRUE;
15833 
15834 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15835 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15836 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15837 			if (syn_mp) {
15838 				cred_t *cr;
15839 				pid_t pid;
15840 
15841 				/*
15842 				 * Obtain the credential from the
15843 				 * thread calling connect(); the credential
15844 				 * lives on in the second mblk which
15845 				 * originated from T_CONN_REQ and is echoed
15846 				 * with the T_BIND_ACK from ip.  If none
15847 				 * can be found, default to the creator
15848 				 * of the socket.
15849 				 */
15850 				if (mp->b_cont == NULL ||
15851 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15852 					cr = tcp->tcp_cred;
15853 					pid = tcp->tcp_cpid;
15854 				} else {
15855 					pid = DB_CPID(mp->b_cont);
15856 				}
15857 
15858 				TCP_RECORD_TRACE(tcp, syn_mp,
15859 				    TCP_TRACE_SEND_PKT);
15860 				mblk_setcred(syn_mp, cr);
15861 				DB_CPID(syn_mp) = pid;
15862 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15863 			}
15864 		after_syn_sent:
15865 			/*
15866 			 * A trailer mblk indicates a waiting client upstream.
15867 			 * We complete here the processing begun in
15868 			 * either tcp_bind() or tcp_connect() by passing
15869 			 * upstream the reply message they supplied.
15870 			 */
15871 			mp1 = mp;
15872 			mp = mp->b_cont;
15873 			freeb(mp1);
15874 			if (mp)
15875 				break;
15876 			return;
15877 		case T_ERROR_ACK:
15878 			if (tcp->tcp_debug) {
15879 				(void) strlog(TCP_MOD_ID, 0, 1,
15880 				    SL_TRACE|SL_ERROR,
15881 				    "tcp_rput_other: case T_ERROR_ACK, "
15882 				    "ERROR_prim == %d",
15883 				    tea->ERROR_prim);
15884 			}
15885 			switch (tea->ERROR_prim) {
15886 			case O_T_BIND_REQ:
15887 			case T_BIND_REQ:
15888 				tcp_bind_failed(tcp, mp,
15889 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15890 				    ENETUNREACH : EADDRNOTAVAIL));
15891 				return;
15892 			case T_UNBIND_REQ:
15893 				tcp->tcp_hard_binding = B_FALSE;
15894 				tcp->tcp_hard_bound = B_FALSE;
15895 				if (mp->b_cont) {
15896 					freemsg(mp->b_cont);
15897 					mp->b_cont = NULL;
15898 				}
15899 				if (tcp->tcp_unbind_pending)
15900 					tcp->tcp_unbind_pending = 0;
15901 				else {
15902 					/* From tcp_ip_unbind() - free */
15903 					freemsg(mp);
15904 					return;
15905 				}
15906 				break;
15907 			case T_SVR4_OPTMGMT_REQ:
15908 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15909 					/* T_OPTMGMT_REQ generated by TCP */
15910 					printf("T_SVR4_OPTMGMT_REQ failed "
15911 					    "%d/%d - dropped (cnt %d)\n",
15912 					    tea->TLI_error, tea->UNIX_error,
15913 					    tcp->tcp_drop_opt_ack_cnt);
15914 					freemsg(mp);
15915 					tcp->tcp_drop_opt_ack_cnt--;
15916 					return;
15917 				}
15918 				break;
15919 			}
15920 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15921 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15922 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15923 				    "- dropped (cnt %d)\n",
15924 				    tea->TLI_error, tea->UNIX_error,
15925 				    tcp->tcp_drop_opt_ack_cnt);
15926 				freemsg(mp);
15927 				tcp->tcp_drop_opt_ack_cnt--;
15928 				return;
15929 			}
15930 			break;
15931 		case T_OPTMGMT_ACK:
15932 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15933 				/* T_OPTMGMT_REQ generated by TCP */
15934 				freemsg(mp);
15935 				tcp->tcp_drop_opt_ack_cnt--;
15936 				return;
15937 			}
15938 			break;
15939 		default:
15940 			break;
15941 		}
15942 		break;
15943 	case M_FLUSH:
15944 		if (*rptr & FLUSHR)
15945 			flushq(q, FLUSHDATA);
15946 		break;
15947 	default:
15948 		/* M_CTL will be directly sent to tcp_icmp_error() */
15949 		ASSERT(DB_TYPE(mp) != M_CTL);
15950 		break;
15951 	}
15952 	/*
15953 	 * Make sure we set this bit before sending the ACK for
15954 	 * bind. Otherwise accept could possibly run and free
15955 	 * this tcp struct.
15956 	 */
15957 	putnext(q, mp);
15958 }
15959 
15960 /*
15961  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15962  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15963  * tcp_rsrv() try again.
15964  */
15965 static void
15966 tcp_ordrel_kick(void *arg)
15967 {
15968 	conn_t 	*connp = (conn_t *)arg;
15969 	tcp_t	*tcp = connp->conn_tcp;
15970 
15971 	tcp->tcp_ordrelid = 0;
15972 	tcp->tcp_timeout = B_FALSE;
15973 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15974 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15975 		qenable(tcp->tcp_rq);
15976 	}
15977 }
15978 
15979 /* ARGSUSED */
15980 static void
15981 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15982 {
15983 	conn_t	*connp = (conn_t *)arg;
15984 	tcp_t	*tcp = connp->conn_tcp;
15985 	queue_t	*q = tcp->tcp_rq;
15986 	uint_t	thwin;
15987 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15988 
15989 	freeb(mp);
15990 
15991 	TCP_STAT(tcps, tcp_rsrv_calls);
15992 
15993 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15994 		return;
15995 	}
15996 
15997 	if (tcp->tcp_fused) {
15998 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15999 
16000 		ASSERT(tcp->tcp_fused);
16001 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16002 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16003 		ASSERT(!TCP_IS_DETACHED(tcp));
16004 		ASSERT(tcp->tcp_connp->conn_sqp ==
16005 		    peer_tcp->tcp_connp->conn_sqp);
16006 
16007 		/*
16008 		 * Normally we would not get backenabled in synchronous
16009 		 * streams mode, but in case this happens, we need to plug
16010 		 * synchronous streams during our drain to prevent a race
16011 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16012 		 */
16013 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16014 		if (tcp->tcp_rcv_list != NULL)
16015 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16016 
16017 		if (peer_tcp > tcp) {
16018 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16019 			mutex_enter(&tcp->tcp_non_sq_lock);
16020 		} else {
16021 			mutex_enter(&tcp->tcp_non_sq_lock);
16022 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16023 		}
16024 
16025 		if (peer_tcp->tcp_flow_stopped &&
16026 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16027 		    peer_tcp->tcp_xmit_lowater)) {
16028 			tcp_clrqfull(peer_tcp);
16029 		}
16030 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16031 		mutex_exit(&tcp->tcp_non_sq_lock);
16032 
16033 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16034 		TCP_STAT(tcps, tcp_fusion_backenabled);
16035 		return;
16036 	}
16037 
16038 	if (canputnext(q)) {
16039 		tcp->tcp_rwnd = q->q_hiwat;
16040 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16041 		    << tcp->tcp_rcv_ws;
16042 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16043 		/*
16044 		 * Send back a window update immediately if TCP is above
16045 		 * ESTABLISHED state and the increase of the rcv window
16046 		 * that the other side knows is at least 1 MSS after flow
16047 		 * control is lifted.
16048 		 */
16049 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16050 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16051 			tcp_xmit_ctl(NULL, tcp,
16052 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16053 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16054 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16055 		}
16056 	}
16057 	/* Handle a failure to allocate a T_ORDREL_IND here */
16058 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16059 		ASSERT(tcp->tcp_listener == NULL);
16060 		if (tcp->tcp_rcv_list != NULL) {
16061 			(void) tcp_rcv_drain(q, tcp);
16062 		}
16063 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
16064 		mp = mi_tpi_ordrel_ind();
16065 		if (mp) {
16066 			tcp->tcp_ordrel_done = B_TRUE;
16067 			putnext(q, mp);
16068 			if (tcp->tcp_deferred_clean_death) {
16069 				/*
16070 				 * tcp_clean_death was deferred for
16071 				 * T_ORDREL_IND - do it now
16072 				 */
16073 				tcp->tcp_deferred_clean_death = B_FALSE;
16074 				(void) tcp_clean_death(tcp,
16075 				    tcp->tcp_client_errno, 22);
16076 			}
16077 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16078 			/*
16079 			 * If there isn't already a timer running
16080 			 * start one.  Use a 4 second
16081 			 * timer as a fallback since it can't fail.
16082 			 */
16083 			tcp->tcp_timeout = B_TRUE;
16084 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16085 			    MSEC_TO_TICK(4000));
16086 		}
16087 	}
16088 }
16089 
16090 /*
16091  * The read side service routine is called mostly when we get back-enabled as a
16092  * result of flow control relief.  Since we don't actually queue anything in
16093  * TCP, we have no data to send out of here.  What we do is clear the receive
16094  * window, and send out a window update.
16095  * This routine is also called to drive an orderly release message upstream
16096  * if the attempt in tcp_rput failed.
16097  */
16098 static void
16099 tcp_rsrv(queue_t *q)
16100 {
16101 	conn_t *connp = Q_TO_CONN(q);
16102 	tcp_t	*tcp = connp->conn_tcp;
16103 	mblk_t	*mp;
16104 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16105 
16106 	/* No code does a putq on the read side */
16107 	ASSERT(q->q_first == NULL);
16108 
16109 	/* Nothing to do for the default queue */
16110 	if (q == tcps->tcps_g_q) {
16111 		return;
16112 	}
16113 
16114 	mp = allocb(0, BPRI_HI);
16115 	if (mp == NULL) {
16116 		/*
16117 		 * We are under memory pressure. Return for now and we
16118 		 * we will be called again later.
16119 		 */
16120 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16121 			/*
16122 			 * If there isn't already a timer running
16123 			 * start one.  Use a 4 second
16124 			 * timer as a fallback since it can't fail.
16125 			 */
16126 			tcp->tcp_timeout = B_TRUE;
16127 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16128 			    MSEC_TO_TICK(4000));
16129 		}
16130 		return;
16131 	}
16132 	CONN_INC_REF(connp);
16133 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16134 	    SQTAG_TCP_RSRV);
16135 }
16136 
16137 /*
16138  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16139  * We do not allow the receive window to shrink.  After setting rwnd,
16140  * set the flow control hiwat of the stream.
16141  *
16142  * This function is called in 2 cases:
16143  *
16144  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16145  *    connection (passive open) and in tcp_rput_data() for active connect.
16146  *    This is called after tcp_mss_set() when the desired MSS value is known.
16147  *    This makes sure that our window size is a mutiple of the other side's
16148  *    MSS.
16149  * 2) Handling SO_RCVBUF option.
16150  *
16151  * It is ASSUMED that the requested size is a multiple of the current MSS.
16152  *
16153  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16154  * user requests so.
16155  */
16156 static int
16157 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16158 {
16159 	uint32_t	mss = tcp->tcp_mss;
16160 	uint32_t	old_max_rwnd;
16161 	uint32_t	max_transmittable_rwnd;
16162 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16163 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16164 
16165 	if (tcp->tcp_fused) {
16166 		size_t sth_hiwat;
16167 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16168 
16169 		ASSERT(peer_tcp != NULL);
16170 		/*
16171 		 * Record the stream head's high water mark for
16172 		 * this endpoint; this is used for flow-control
16173 		 * purposes in tcp_fuse_output().
16174 		 */
16175 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16176 		if (!tcp_detached)
16177 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16178 
16179 		/*
16180 		 * In the fusion case, the maxpsz stream head value of
16181 		 * our peer is set according to its send buffer size
16182 		 * and our receive buffer size; since the latter may
16183 		 * have changed we need to update the peer's maxpsz.
16184 		 */
16185 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16186 		return (rwnd);
16187 	}
16188 
16189 	if (tcp_detached)
16190 		old_max_rwnd = tcp->tcp_rwnd;
16191 	else
16192 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16193 
16194 	/*
16195 	 * Insist on a receive window that is at least
16196 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16197 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16198 	 * and delayed acknowledgement.
16199 	 */
16200 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16201 
16202 	/*
16203 	 * If window size info has already been exchanged, TCP should not
16204 	 * shrink the window.  Shrinking window is doable if done carefully.
16205 	 * We may add that support later.  But so far there is not a real
16206 	 * need to do that.
16207 	 */
16208 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16209 		/* MSS may have changed, do a round up again. */
16210 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16211 	}
16212 
16213 	/*
16214 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16215 	 * can be applied even before the window scale option is decided.
16216 	 */
16217 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16218 	if (rwnd > max_transmittable_rwnd) {
16219 		rwnd = max_transmittable_rwnd -
16220 		    (max_transmittable_rwnd % mss);
16221 		if (rwnd < mss)
16222 			rwnd = max_transmittable_rwnd;
16223 		/*
16224 		 * If we're over the limit we may have to back down tcp_rwnd.
16225 		 * The increment below won't work for us. So we set all three
16226 		 * here and the increment below will have no effect.
16227 		 */
16228 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16229 	}
16230 	if (tcp->tcp_localnet) {
16231 		tcp->tcp_rack_abs_max =
16232 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16233 	} else {
16234 		/*
16235 		 * For a remote host on a different subnet (through a router),
16236 		 * we ack every other packet to be conforming to RFC1122.
16237 		 * tcp_deferred_acks_max is default to 2.
16238 		 */
16239 		tcp->tcp_rack_abs_max =
16240 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16241 	}
16242 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16243 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16244 	else
16245 		tcp->tcp_rack_cur_max = 0;
16246 	/*
16247 	 * Increment the current rwnd by the amount the maximum grew (we
16248 	 * can not overwrite it since we might be in the middle of a
16249 	 * connection.)
16250 	 */
16251 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16252 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16253 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16254 		tcp->tcp_cwnd_max = rwnd;
16255 
16256 	if (tcp_detached)
16257 		return (rwnd);
16258 	/*
16259 	 * We set the maximum receive window into rq->q_hiwat.
16260 	 * This is not actually used for flow control.
16261 	 */
16262 	tcp->tcp_rq->q_hiwat = rwnd;
16263 	/*
16264 	 * Set the Stream head high water mark. This doesn't have to be
16265 	 * here, since we are simply using default values, but we would
16266 	 * prefer to choose these values algorithmically, with a likely
16267 	 * relationship to rwnd.
16268 	 */
16269 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16270 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16271 	return (rwnd);
16272 }
16273 
16274 /*
16275  * Return SNMP stuff in buffer in mpdata.
16276  */
16277 mblk_t *
16278 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16279 {
16280 	mblk_t			*mpdata;
16281 	mblk_t			*mp_conn_ctl = NULL;
16282 	mblk_t			*mp_conn_tail;
16283 	mblk_t			*mp_attr_ctl = NULL;
16284 	mblk_t			*mp_attr_tail;
16285 	mblk_t			*mp6_conn_ctl = NULL;
16286 	mblk_t			*mp6_conn_tail;
16287 	mblk_t			*mp6_attr_ctl = NULL;
16288 	mblk_t			*mp6_attr_tail;
16289 	struct opthdr		*optp;
16290 	mib2_tcpConnEntry_t	tce;
16291 	mib2_tcp6ConnEntry_t	tce6;
16292 	mib2_transportMLPEntry_t mlp;
16293 	connf_t			*connfp;
16294 	int			i;
16295 	boolean_t 		ispriv;
16296 	zoneid_t 		zoneid;
16297 	int			v4_conn_idx;
16298 	int			v6_conn_idx;
16299 	conn_t			*connp = Q_TO_CONN(q);
16300 	tcp_stack_t		*tcps;
16301 	ip_stack_t		*ipst;
16302 	mblk_t			*mp2ctl;
16303 
16304 	/*
16305 	 * make a copy of the original message
16306 	 */
16307 	mp2ctl = copymsg(mpctl);
16308 
16309 	if (mpctl == NULL ||
16310 	    (mpdata = mpctl->b_cont) == NULL ||
16311 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16312 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16313 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16314 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16315 		freemsg(mp_conn_ctl);
16316 		freemsg(mp_attr_ctl);
16317 		freemsg(mp6_conn_ctl);
16318 		freemsg(mp6_attr_ctl);
16319 		freemsg(mpctl);
16320 		freemsg(mp2ctl);
16321 		return (NULL);
16322 	}
16323 
16324 	ipst = connp->conn_netstack->netstack_ip;
16325 	tcps = connp->conn_netstack->netstack_tcp;
16326 
16327 	/* build table of connections -- need count in fixed part */
16328 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16329 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16330 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16331 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16332 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16333 
16334 	ispriv =
16335 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16336 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16337 
16338 	v4_conn_idx = v6_conn_idx = 0;
16339 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16340 
16341 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16342 		ipst = tcps->tcps_netstack->netstack_ip;
16343 
16344 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16345 
16346 		connp = NULL;
16347 
16348 		while ((connp =
16349 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16350 			tcp_t *tcp;
16351 			boolean_t needattr;
16352 
16353 			if (connp->conn_zoneid != zoneid)
16354 				continue;	/* not in this zone */
16355 
16356 			tcp = connp->conn_tcp;
16357 			UPDATE_MIB(&tcps->tcps_mib,
16358 			    tcpHCInSegs, tcp->tcp_ibsegs);
16359 			tcp->tcp_ibsegs = 0;
16360 			UPDATE_MIB(&tcps->tcps_mib,
16361 			    tcpHCOutSegs, tcp->tcp_obsegs);
16362 			tcp->tcp_obsegs = 0;
16363 
16364 			tce6.tcp6ConnState = tce.tcpConnState =
16365 			    tcp_snmp_state(tcp);
16366 			if (tce.tcpConnState == MIB2_TCP_established ||
16367 			    tce.tcpConnState == MIB2_TCP_closeWait)
16368 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16369 
16370 			needattr = B_FALSE;
16371 			bzero(&mlp, sizeof (mlp));
16372 			if (connp->conn_mlp_type != mlptSingle) {
16373 				if (connp->conn_mlp_type == mlptShared ||
16374 				    connp->conn_mlp_type == mlptBoth)
16375 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16376 				if (connp->conn_mlp_type == mlptPrivate ||
16377 				    connp->conn_mlp_type == mlptBoth)
16378 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16379 				needattr = B_TRUE;
16380 			}
16381 			if (connp->conn_peercred != NULL) {
16382 				ts_label_t *tsl;
16383 
16384 				tsl = crgetlabel(connp->conn_peercred);
16385 				mlp.tme_doi = label2doi(tsl);
16386 				mlp.tme_label = *label2bslabel(tsl);
16387 				needattr = B_TRUE;
16388 			}
16389 
16390 			/* Create a message to report on IPv6 entries */
16391 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16392 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16393 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16394 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16395 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16396 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16397 			/* Don't want just anybody seeing these... */
16398 			if (ispriv) {
16399 				tce6.tcp6ConnEntryInfo.ce_snxt =
16400 				    tcp->tcp_snxt;
16401 				tce6.tcp6ConnEntryInfo.ce_suna =
16402 				    tcp->tcp_suna;
16403 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16404 				    tcp->tcp_rnxt;
16405 				tce6.tcp6ConnEntryInfo.ce_rack =
16406 				    tcp->tcp_rack;
16407 			} else {
16408 				/*
16409 				 * Netstat, unfortunately, uses this to
16410 				 * get send/receive queue sizes.  How to fix?
16411 				 * Why not compute the difference only?
16412 				 */
16413 				tce6.tcp6ConnEntryInfo.ce_snxt =
16414 				    tcp->tcp_snxt - tcp->tcp_suna;
16415 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16416 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16417 				    tcp->tcp_rnxt - tcp->tcp_rack;
16418 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16419 			}
16420 
16421 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16422 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16423 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16424 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16425 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16426 
16427 			tce6.tcp6ConnCreationProcess =
16428 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16429 			    tcp->tcp_cpid;
16430 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16431 
16432 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16433 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16434 
16435 			mlp.tme_connidx = v6_conn_idx++;
16436 			if (needattr)
16437 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16438 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16439 			}
16440 			/*
16441 			 * Create an IPv4 table entry for IPv4 entries and also
16442 			 * for IPv6 entries which are bound to in6addr_any
16443 			 * but don't have IPV6_V6ONLY set.
16444 			 * (i.e. anything an IPv4 peer could connect to)
16445 			 */
16446 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16447 			    (tcp->tcp_state <= TCPS_LISTEN &&
16448 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16449 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16450 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16451 					tce.tcpConnRemAddress = INADDR_ANY;
16452 					tce.tcpConnLocalAddress = INADDR_ANY;
16453 				} else {
16454 					tce.tcpConnRemAddress =
16455 					    tcp->tcp_remote;
16456 					tce.tcpConnLocalAddress =
16457 					    tcp->tcp_ip_src;
16458 				}
16459 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16460 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16461 				/* Don't want just anybody seeing these... */
16462 				if (ispriv) {
16463 					tce.tcpConnEntryInfo.ce_snxt =
16464 					    tcp->tcp_snxt;
16465 					tce.tcpConnEntryInfo.ce_suna =
16466 					    tcp->tcp_suna;
16467 					tce.tcpConnEntryInfo.ce_rnxt =
16468 					    tcp->tcp_rnxt;
16469 					tce.tcpConnEntryInfo.ce_rack =
16470 					    tcp->tcp_rack;
16471 				} else {
16472 					/*
16473 					 * Netstat, unfortunately, uses this to
16474 					 * get send/receive queue sizes.  How
16475 					 * to fix?
16476 					 * Why not compute the difference only?
16477 					 */
16478 					tce.tcpConnEntryInfo.ce_snxt =
16479 					    tcp->tcp_snxt - tcp->tcp_suna;
16480 					tce.tcpConnEntryInfo.ce_suna = 0;
16481 					tce.tcpConnEntryInfo.ce_rnxt =
16482 					    tcp->tcp_rnxt - tcp->tcp_rack;
16483 					tce.tcpConnEntryInfo.ce_rack = 0;
16484 				}
16485 
16486 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16487 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16488 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16489 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16490 				tce.tcpConnEntryInfo.ce_state =
16491 				    tcp->tcp_state;
16492 
16493 				tce.tcpConnCreationProcess =
16494 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16495 				    tcp->tcp_cpid;
16496 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16497 
16498 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16499 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16500 
16501 				mlp.tme_connidx = v4_conn_idx++;
16502 				if (needattr)
16503 					(void) snmp_append_data2(
16504 					    mp_attr_ctl->b_cont,
16505 					    &mp_attr_tail, (char *)&mlp,
16506 					    sizeof (mlp));
16507 			}
16508 		}
16509 	}
16510 
16511 	/* fixed length structure for IPv4 and IPv6 counters */
16512 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16513 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16514 	    sizeof (mib2_tcp6ConnEntry_t));
16515 	/* synchronize 32- and 64-bit counters */
16516 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16517 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16518 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16519 	optp->level = MIB2_TCP;
16520 	optp->name = 0;
16521 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16522 	    sizeof (tcps->tcps_mib));
16523 	optp->len = msgdsize(mpdata);
16524 	qreply(q, mpctl);
16525 
16526 	/* table of connections... */
16527 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16528 	    sizeof (struct T_optmgmt_ack)];
16529 	optp->level = MIB2_TCP;
16530 	optp->name = MIB2_TCP_CONN;
16531 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16532 	qreply(q, mp_conn_ctl);
16533 
16534 	/* table of MLP attributes... */
16535 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16536 	    sizeof (struct T_optmgmt_ack)];
16537 	optp->level = MIB2_TCP;
16538 	optp->name = EXPER_XPORT_MLP;
16539 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16540 	if (optp->len == 0)
16541 		freemsg(mp_attr_ctl);
16542 	else
16543 		qreply(q, mp_attr_ctl);
16544 
16545 	/* table of IPv6 connections... */
16546 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16547 	    sizeof (struct T_optmgmt_ack)];
16548 	optp->level = MIB2_TCP6;
16549 	optp->name = MIB2_TCP6_CONN;
16550 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16551 	qreply(q, mp6_conn_ctl);
16552 
16553 	/* table of IPv6 MLP attributes... */
16554 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16555 	    sizeof (struct T_optmgmt_ack)];
16556 	optp->level = MIB2_TCP6;
16557 	optp->name = EXPER_XPORT_MLP;
16558 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16559 	if (optp->len == 0)
16560 		freemsg(mp6_attr_ctl);
16561 	else
16562 		qreply(q, mp6_attr_ctl);
16563 	return (mp2ctl);
16564 }
16565 
16566 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16567 /* ARGSUSED */
16568 int
16569 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16570 {
16571 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16572 
16573 	switch (level) {
16574 	case MIB2_TCP:
16575 		switch (name) {
16576 		case 13:
16577 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16578 				return (0);
16579 			/* TODO: delete entry defined by tce */
16580 			return (1);
16581 		default:
16582 			return (0);
16583 		}
16584 	default:
16585 		return (1);
16586 	}
16587 }
16588 
16589 /* Translate TCP state to MIB2 TCP state. */
16590 static int
16591 tcp_snmp_state(tcp_t *tcp)
16592 {
16593 	if (tcp == NULL)
16594 		return (0);
16595 
16596 	switch (tcp->tcp_state) {
16597 	case TCPS_CLOSED:
16598 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16599 	case TCPS_BOUND:
16600 		return (MIB2_TCP_closed);
16601 	case TCPS_LISTEN:
16602 		return (MIB2_TCP_listen);
16603 	case TCPS_SYN_SENT:
16604 		return (MIB2_TCP_synSent);
16605 	case TCPS_SYN_RCVD:
16606 		return (MIB2_TCP_synReceived);
16607 	case TCPS_ESTABLISHED:
16608 		return (MIB2_TCP_established);
16609 	case TCPS_CLOSE_WAIT:
16610 		return (MIB2_TCP_closeWait);
16611 	case TCPS_FIN_WAIT_1:
16612 		return (MIB2_TCP_finWait1);
16613 	case TCPS_CLOSING:
16614 		return (MIB2_TCP_closing);
16615 	case TCPS_LAST_ACK:
16616 		return (MIB2_TCP_lastAck);
16617 	case TCPS_FIN_WAIT_2:
16618 		return (MIB2_TCP_finWait2);
16619 	case TCPS_TIME_WAIT:
16620 		return (MIB2_TCP_timeWait);
16621 	default:
16622 		return (0);
16623 	}
16624 }
16625 
16626 static char tcp_report_header[] =
16627 	"TCP     " MI_COL_HDRPAD_STR
16628 	"zone dest            snxt     suna     "
16629 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16630 	"recent   [lport,fport] state";
16631 
16632 /*
16633  * TCP status report triggered via the Named Dispatch mechanism.
16634  */
16635 /* ARGSUSED */
16636 static void
16637 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16638     cred_t *cr)
16639 {
16640 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16641 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16642 	char cflag;
16643 	in6_addr_t	v6dst;
16644 	char buf[80];
16645 	uint_t print_len, buf_len;
16646 
16647 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16648 	if (buf_len <= 0)
16649 		return;
16650 
16651 	if (hashval >= 0)
16652 		(void) sprintf(hash, "%03d ", hashval);
16653 	else
16654 		hash[0] = '\0';
16655 
16656 	/*
16657 	 * Note that we use the remote address in the tcp_b  structure.
16658 	 * This means that it will print out the real destination address,
16659 	 * not the next hop's address if source routing is used.  This
16660 	 * avoid the confusion on the output because user may not
16661 	 * know that source routing is used for a connection.
16662 	 */
16663 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16664 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16665 	} else {
16666 		v6dst = tcp->tcp_remote_v6;
16667 	}
16668 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16669 	/*
16670 	 * the ispriv checks are so that normal users cannot determine
16671 	 * sequence number information using NDD.
16672 	 */
16673 
16674 	if (TCP_IS_DETACHED(tcp))
16675 		cflag = '*';
16676 	else
16677 		cflag = ' ';
16678 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16679 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16680 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16681 	    hash,
16682 	    (void *)tcp,
16683 	    tcp->tcp_connp->conn_zoneid,
16684 	    addrbuf,
16685 	    (ispriv) ? tcp->tcp_snxt : 0,
16686 	    (ispriv) ? tcp->tcp_suna : 0,
16687 	    tcp->tcp_swnd,
16688 	    (ispriv) ? tcp->tcp_rnxt : 0,
16689 	    (ispriv) ? tcp->tcp_rack : 0,
16690 	    tcp->tcp_rwnd,
16691 	    tcp->tcp_rto,
16692 	    tcp->tcp_mss,
16693 	    tcp->tcp_snd_ws_ok,
16694 	    tcp->tcp_snd_ws,
16695 	    tcp->tcp_rcv_ws,
16696 	    tcp->tcp_snd_ts_ok,
16697 	    tcp->tcp_ts_recent,
16698 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16699 	if (print_len < buf_len) {
16700 		((mblk_t *)mp)->b_wptr += print_len;
16701 	} else {
16702 		((mblk_t *)mp)->b_wptr += buf_len;
16703 	}
16704 }
16705 
16706 /*
16707  * TCP status report (for listeners only) triggered via the Named Dispatch
16708  * mechanism.
16709  */
16710 /* ARGSUSED */
16711 static void
16712 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16713 {
16714 	char addrbuf[INET6_ADDRSTRLEN];
16715 	in6_addr_t	v6dst;
16716 	uint_t print_len, buf_len;
16717 
16718 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16719 	if (buf_len <= 0)
16720 		return;
16721 
16722 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16723 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16724 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16725 	} else {
16726 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16727 		    addrbuf, sizeof (addrbuf));
16728 	}
16729 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16730 	    "%03d "
16731 	    MI_COL_PTRFMT_STR
16732 	    "%d %s %05u %08u %d/%d/%d%c\n",
16733 	    hashval, (void *)tcp,
16734 	    tcp->tcp_connp->conn_zoneid,
16735 	    addrbuf,
16736 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16737 	    tcp->tcp_conn_req_seqnum,
16738 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16739 	    tcp->tcp_conn_req_max,
16740 	    tcp->tcp_syn_defense ? '*' : ' ');
16741 	if (print_len < buf_len) {
16742 		((mblk_t *)mp)->b_wptr += print_len;
16743 	} else {
16744 		((mblk_t *)mp)->b_wptr += buf_len;
16745 	}
16746 }
16747 
16748 /* TCP status report triggered via the Named Dispatch mechanism. */
16749 /* ARGSUSED */
16750 static int
16751 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16752 {
16753 	tcp_t	*tcp;
16754 	int	i;
16755 	conn_t	*connp;
16756 	connf_t	*connfp;
16757 	zoneid_t zoneid;
16758 	tcp_stack_t *tcps;
16759 	ip_stack_t *ipst;
16760 
16761 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16762 	tcps = Q_TO_TCP(q)->tcp_tcps;
16763 
16764 	/*
16765 	 * Because of the ndd constraint, at most we can have 64K buffer
16766 	 * to put in all TCP info.  So to be more efficient, just
16767 	 * allocate a 64K buffer here, assuming we need that large buffer.
16768 	 * This may be a problem as any user can read tcp_status.  Therefore
16769 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16770 	 * This should be OK as normal users should not do this too often.
16771 	 */
16772 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16773 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16774 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16775 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16776 			return (0);
16777 		}
16778 	}
16779 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16780 		/* The following may work even if we cannot get a large buf. */
16781 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16782 		return (0);
16783 	}
16784 
16785 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16786 
16787 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16788 
16789 		ipst = tcps->tcps_netstack->netstack_ip;
16790 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16791 
16792 		connp = NULL;
16793 
16794 		while ((connp =
16795 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16796 			tcp = connp->conn_tcp;
16797 			if (zoneid != GLOBAL_ZONEID &&
16798 			    zoneid != connp->conn_zoneid)
16799 				continue;
16800 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16801 			    cr);
16802 		}
16803 
16804 	}
16805 
16806 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16807 	return (0);
16808 }
16809 
16810 /* TCP status report triggered via the Named Dispatch mechanism. */
16811 /* ARGSUSED */
16812 static int
16813 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16814 {
16815 	tf_t	*tbf;
16816 	tcp_t	*tcp;
16817 	int	i;
16818 	zoneid_t zoneid;
16819 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16820 
16821 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16822 
16823 	/* Refer to comments in tcp_status_report(). */
16824 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16825 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16826 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16827 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16828 			return (0);
16829 		}
16830 	}
16831 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16832 		/* The following may work even if we cannot get a large buf. */
16833 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16834 		return (0);
16835 	}
16836 
16837 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16838 
16839 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16840 		tbf = &tcps->tcps_bind_fanout[i];
16841 		mutex_enter(&tbf->tf_lock);
16842 		for (tcp = tbf->tf_tcp; tcp != NULL;
16843 		    tcp = tcp->tcp_bind_hash) {
16844 			if (zoneid != GLOBAL_ZONEID &&
16845 			    zoneid != tcp->tcp_connp->conn_zoneid)
16846 				continue;
16847 			CONN_INC_REF(tcp->tcp_connp);
16848 			tcp_report_item(mp->b_cont, tcp, i,
16849 			    Q_TO_TCP(q), cr);
16850 			CONN_DEC_REF(tcp->tcp_connp);
16851 		}
16852 		mutex_exit(&tbf->tf_lock);
16853 	}
16854 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16855 	return (0);
16856 }
16857 
16858 /* TCP status report triggered via the Named Dispatch mechanism. */
16859 /* ARGSUSED */
16860 static int
16861 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16862 {
16863 	connf_t	*connfp;
16864 	conn_t	*connp;
16865 	tcp_t	*tcp;
16866 	int	i;
16867 	zoneid_t zoneid;
16868 	tcp_stack_t *tcps;
16869 	ip_stack_t	*ipst;
16870 
16871 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16872 	tcps = Q_TO_TCP(q)->tcp_tcps;
16873 
16874 	/* Refer to comments in tcp_status_report(). */
16875 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16876 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16877 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16878 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16879 			return (0);
16880 		}
16881 	}
16882 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16883 		/* The following may work even if we cannot get a large buf. */
16884 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16885 		return (0);
16886 	}
16887 
16888 	(void) mi_mpprintf(mp,
16889 	    "    TCP    " MI_COL_HDRPAD_STR
16890 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16891 
16892 	ipst = tcps->tcps_netstack->netstack_ip;
16893 
16894 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16895 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16896 		connp = NULL;
16897 		while ((connp =
16898 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16899 			tcp = connp->conn_tcp;
16900 			if (zoneid != GLOBAL_ZONEID &&
16901 			    zoneid != connp->conn_zoneid)
16902 				continue;
16903 			tcp_report_listener(mp->b_cont, tcp, i);
16904 		}
16905 	}
16906 
16907 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16908 	return (0);
16909 }
16910 
16911 /* TCP status report triggered via the Named Dispatch mechanism. */
16912 /* ARGSUSED */
16913 static int
16914 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16915 {
16916 	connf_t	*connfp;
16917 	conn_t	*connp;
16918 	tcp_t	*tcp;
16919 	int	i;
16920 	zoneid_t zoneid;
16921 	tcp_stack_t *tcps;
16922 	ip_stack_t *ipst;
16923 
16924 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16925 	tcps = Q_TO_TCP(q)->tcp_tcps;
16926 	ipst = tcps->tcps_netstack->netstack_ip;
16927 
16928 	/* Refer to comments in tcp_status_report(). */
16929 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16930 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16931 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16932 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16933 			return (0);
16934 		}
16935 	}
16936 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16937 		/* The following may work even if we cannot get a large buf. */
16938 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16939 		return (0);
16940 	}
16941 
16942 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16943 	    ipst->ips_ipcl_conn_fanout_size);
16944 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16945 
16946 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16947 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16948 		connp = NULL;
16949 		while ((connp =
16950 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16951 			tcp = connp->conn_tcp;
16952 			if (zoneid != GLOBAL_ZONEID &&
16953 			    zoneid != connp->conn_zoneid)
16954 				continue;
16955 			tcp_report_item(mp->b_cont, tcp, i,
16956 			    Q_TO_TCP(q), cr);
16957 		}
16958 	}
16959 
16960 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16961 	return (0);
16962 }
16963 
16964 /* TCP status report triggered via the Named Dispatch mechanism. */
16965 /* ARGSUSED */
16966 static int
16967 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16968 {
16969 	tf_t	*tf;
16970 	tcp_t	*tcp;
16971 	int	i;
16972 	zoneid_t zoneid;
16973 	tcp_stack_t	*tcps;
16974 
16975 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16976 	tcps = Q_TO_TCP(q)->tcp_tcps;
16977 
16978 	/* Refer to comments in tcp_status_report(). */
16979 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16980 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16981 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16982 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16983 			return (0);
16984 		}
16985 	}
16986 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16987 		/* The following may work even if we cannot get a large buf. */
16988 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16989 		return (0);
16990 	}
16991 
16992 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16993 
16994 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16995 		tf = &tcps->tcps_acceptor_fanout[i];
16996 		mutex_enter(&tf->tf_lock);
16997 		for (tcp = tf->tf_tcp; tcp != NULL;
16998 		    tcp = tcp->tcp_acceptor_hash) {
16999 			if (zoneid != GLOBAL_ZONEID &&
17000 			    zoneid != tcp->tcp_connp->conn_zoneid)
17001 				continue;
17002 			tcp_report_item(mp->b_cont, tcp, i,
17003 			    Q_TO_TCP(q), cr);
17004 		}
17005 		mutex_exit(&tf->tf_lock);
17006 	}
17007 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17008 	return (0);
17009 }
17010 
17011 /*
17012  * tcp_timer is the timer service routine.  It handles the retransmission,
17013  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17014  * from the state of the tcp instance what kind of action needs to be done
17015  * at the time it is called.
17016  */
17017 static void
17018 tcp_timer(void *arg)
17019 {
17020 	mblk_t		*mp;
17021 	clock_t		first_threshold;
17022 	clock_t		second_threshold;
17023 	clock_t		ms;
17024 	uint32_t	mss;
17025 	conn_t		*connp = (conn_t *)arg;
17026 	tcp_t		*tcp = connp->conn_tcp;
17027 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17028 
17029 	tcp->tcp_timer_tid = 0;
17030 
17031 	if (tcp->tcp_fused)
17032 		return;
17033 
17034 	first_threshold =  tcp->tcp_first_timer_threshold;
17035 	second_threshold = tcp->tcp_second_timer_threshold;
17036 	switch (tcp->tcp_state) {
17037 	case TCPS_IDLE:
17038 	case TCPS_BOUND:
17039 	case TCPS_LISTEN:
17040 		return;
17041 	case TCPS_SYN_RCVD: {
17042 		tcp_t	*listener = tcp->tcp_listener;
17043 
17044 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17045 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17046 			/* it's our first timeout */
17047 			tcp->tcp_syn_rcvd_timeout = 1;
17048 			mutex_enter(&listener->tcp_eager_lock);
17049 			listener->tcp_syn_rcvd_timeout++;
17050 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17051 				/*
17052 				 * Make this eager available for drop if we
17053 				 * need to drop one to accomodate a new
17054 				 * incoming SYN request.
17055 				 */
17056 				MAKE_DROPPABLE(listener, tcp);
17057 			}
17058 			if (!listener->tcp_syn_defense &&
17059 			    (listener->tcp_syn_rcvd_timeout >
17060 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17061 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17062 				/* We may be under attack. Put on a defense. */
17063 				listener->tcp_syn_defense = B_TRUE;
17064 				cmn_err(CE_WARN, "High TCP connect timeout "
17065 				    "rate! System (port %d) may be under a "
17066 				    "SYN flood attack!",
17067 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17068 
17069 				listener->tcp_ip_addr_cache = kmem_zalloc(
17070 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17071 				    KM_NOSLEEP);
17072 			}
17073 			mutex_exit(&listener->tcp_eager_lock);
17074 		} else if (listener != NULL) {
17075 			mutex_enter(&listener->tcp_eager_lock);
17076 			tcp->tcp_syn_rcvd_timeout++;
17077 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17078 			    !tcp->tcp_closemp_used) {
17079 				/*
17080 				 * This is our second timeout. Put the tcp in
17081 				 * the list of droppable eagers to allow it to
17082 				 * be dropped, if needed. We don't check
17083 				 * whether tcp_dontdrop is set or not to
17084 				 * protect ourselve from a SYN attack where a
17085 				 * remote host can spoof itself as one of the
17086 				 * good IP source and continue to hold
17087 				 * resources too long.
17088 				 */
17089 				MAKE_DROPPABLE(listener, tcp);
17090 			}
17091 			mutex_exit(&listener->tcp_eager_lock);
17092 		}
17093 	}
17094 		/* FALLTHRU */
17095 	case TCPS_SYN_SENT:
17096 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17097 		second_threshold = tcp->tcp_second_ctimer_threshold;
17098 		break;
17099 	case TCPS_ESTABLISHED:
17100 	case TCPS_FIN_WAIT_1:
17101 	case TCPS_CLOSING:
17102 	case TCPS_CLOSE_WAIT:
17103 	case TCPS_LAST_ACK:
17104 		/* If we have data to rexmit */
17105 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17106 			clock_t	time_to_wait;
17107 
17108 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17109 			if (!tcp->tcp_xmit_head)
17110 				break;
17111 			time_to_wait = lbolt -
17112 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17113 			time_to_wait = tcp->tcp_rto -
17114 			    TICK_TO_MSEC(time_to_wait);
17115 			/*
17116 			 * If the timer fires too early, 1 clock tick earlier,
17117 			 * restart the timer.
17118 			 */
17119 			if (time_to_wait > msec_per_tick) {
17120 				TCP_STAT(tcps, tcp_timer_fire_early);
17121 				TCP_TIMER_RESTART(tcp, time_to_wait);
17122 				return;
17123 			}
17124 			/*
17125 			 * When we probe zero windows, we force the swnd open.
17126 			 * If our peer acks with a closed window swnd will be
17127 			 * set to zero by tcp_rput(). As long as we are
17128 			 * receiving acks tcp_rput will
17129 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17130 			 * first and second interval actions.  NOTE: the timer
17131 			 * interval is allowed to continue its exponential
17132 			 * backoff.
17133 			 */
17134 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17135 				if (tcp->tcp_debug) {
17136 					(void) strlog(TCP_MOD_ID, 0, 1,
17137 					    SL_TRACE, "tcp_timer: zero win");
17138 				}
17139 			} else {
17140 				/*
17141 				 * After retransmission, we need to do
17142 				 * slow start.  Set the ssthresh to one
17143 				 * half of current effective window and
17144 				 * cwnd to one MSS.  Also reset
17145 				 * tcp_cwnd_cnt.
17146 				 *
17147 				 * Note that if tcp_ssthresh is reduced because
17148 				 * of ECN, do not reduce it again unless it is
17149 				 * already one window of data away (tcp_cwr
17150 				 * should then be cleared) or this is a
17151 				 * timeout for a retransmitted segment.
17152 				 */
17153 				uint32_t npkt;
17154 
17155 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17156 					npkt = ((tcp->tcp_timer_backoff ?
17157 					    tcp->tcp_cwnd_ssthresh :
17158 					    tcp->tcp_snxt -
17159 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17160 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17161 					    tcp->tcp_mss;
17162 				}
17163 				tcp->tcp_cwnd = tcp->tcp_mss;
17164 				tcp->tcp_cwnd_cnt = 0;
17165 				if (tcp->tcp_ecn_ok) {
17166 					tcp->tcp_cwr = B_TRUE;
17167 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17168 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17169 				}
17170 			}
17171 			break;
17172 		}
17173 		/*
17174 		 * We have something to send yet we cannot send.  The
17175 		 * reason can be:
17176 		 *
17177 		 * 1. Zero send window: we need to do zero window probe.
17178 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17179 		 * segments.
17180 		 * 3. SWS avoidance: receiver may have shrunk window,
17181 		 * reset our knowledge.
17182 		 *
17183 		 * Note that condition 2 can happen with either 1 or
17184 		 * 3.  But 1 and 3 are exclusive.
17185 		 */
17186 		if (tcp->tcp_unsent != 0) {
17187 			if (tcp->tcp_cwnd == 0) {
17188 				/*
17189 				 * Set tcp_cwnd to 1 MSS so that a
17190 				 * new segment can be sent out.  We
17191 				 * are "clocking out" new data when
17192 				 * the network is really congested.
17193 				 */
17194 				ASSERT(tcp->tcp_ecn_ok);
17195 				tcp->tcp_cwnd = tcp->tcp_mss;
17196 			}
17197 			if (tcp->tcp_swnd == 0) {
17198 				/* Extend window for zero window probe */
17199 				tcp->tcp_swnd++;
17200 				tcp->tcp_zero_win_probe = B_TRUE;
17201 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17202 			} else {
17203 				/*
17204 				 * Handle timeout from sender SWS avoidance.
17205 				 * Reset our knowledge of the max send window
17206 				 * since the receiver might have reduced its
17207 				 * receive buffer.  Avoid setting tcp_max_swnd
17208 				 * to one since that will essentially disable
17209 				 * the SWS checks.
17210 				 *
17211 				 * Note that since we don't have a SWS
17212 				 * state variable, if the timeout is set
17213 				 * for ECN but not for SWS, this
17214 				 * code will also be executed.  This is
17215 				 * fine as tcp_max_swnd is updated
17216 				 * constantly and it will not affect
17217 				 * anything.
17218 				 */
17219 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17220 			}
17221 			tcp_wput_data(tcp, NULL, B_FALSE);
17222 			return;
17223 		}
17224 		/* Is there a FIN that needs to be to re retransmitted? */
17225 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17226 		    !tcp->tcp_fin_acked)
17227 			break;
17228 		/* Nothing to do, return without restarting timer. */
17229 		TCP_STAT(tcps, tcp_timer_fire_miss);
17230 		return;
17231 	case TCPS_FIN_WAIT_2:
17232 		/*
17233 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17234 		 * We waited some time for for peer's FIN, but it hasn't
17235 		 * arrived.  We flush the connection now to avoid
17236 		 * case where the peer has rebooted.
17237 		 */
17238 		if (TCP_IS_DETACHED(tcp)) {
17239 			(void) tcp_clean_death(tcp, 0, 23);
17240 		} else {
17241 			TCP_TIMER_RESTART(tcp,
17242 			    tcps->tcps_fin_wait_2_flush_interval);
17243 		}
17244 		return;
17245 	case TCPS_TIME_WAIT:
17246 		(void) tcp_clean_death(tcp, 0, 24);
17247 		return;
17248 	default:
17249 		if (tcp->tcp_debug) {
17250 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17251 			    "tcp_timer: strange state (%d) %s",
17252 			    tcp->tcp_state, tcp_display(tcp, NULL,
17253 			    DISP_PORT_ONLY));
17254 		}
17255 		return;
17256 	}
17257 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17258 		/*
17259 		 * For zero window probe, we need to send indefinitely,
17260 		 * unless we have not heard from the other side for some
17261 		 * time...
17262 		 */
17263 		if ((tcp->tcp_zero_win_probe == 0) ||
17264 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17265 		    second_threshold)) {
17266 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17267 			/*
17268 			 * If TCP is in SYN_RCVD state, send back a
17269 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17270 			 * should be zero in TCPS_SYN_RCVD state.
17271 			 */
17272 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17273 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17274 				    "in SYN_RCVD",
17275 				    tcp, tcp->tcp_snxt,
17276 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17277 			}
17278 			(void) tcp_clean_death(tcp,
17279 			    tcp->tcp_client_errno ?
17280 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17281 			return;
17282 		} else {
17283 			/*
17284 			 * Set tcp_ms_we_have_waited to second_threshold
17285 			 * so that in next timeout, we will do the above
17286 			 * check (lbolt - tcp_last_recv_time).  This is
17287 			 * also to avoid overflow.
17288 			 *
17289 			 * We don't need to decrement tcp_timer_backoff
17290 			 * to avoid overflow because it will be decremented
17291 			 * later if new timeout value is greater than
17292 			 * tcp_rexmit_interval_max.  In the case when
17293 			 * tcp_rexmit_interval_max is greater than
17294 			 * second_threshold, it means that we will wait
17295 			 * longer than second_threshold to send the next
17296 			 * window probe.
17297 			 */
17298 			tcp->tcp_ms_we_have_waited = second_threshold;
17299 		}
17300 	} else if (ms > first_threshold) {
17301 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17302 		    tcp->tcp_xmit_head != NULL) {
17303 			tcp->tcp_xmit_head =
17304 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17305 		}
17306 		/*
17307 		 * We have been retransmitting for too long...  The RTT
17308 		 * we calculated is probably incorrect.  Reinitialize it.
17309 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17310 		 * tcp_rtt_update so that we won't accidentally cache a
17311 		 * bad value.  But only do this if this is not a zero
17312 		 * window probe.
17313 		 */
17314 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17315 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17316 			    (tcp->tcp_rtt_sa >> 5);
17317 			tcp->tcp_rtt_sa = 0;
17318 			tcp_ip_notify(tcp);
17319 			tcp->tcp_rtt_update = 0;
17320 		}
17321 	}
17322 	tcp->tcp_timer_backoff++;
17323 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17324 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17325 	    tcps->tcps_rexmit_interval_min) {
17326 		/*
17327 		 * This means the original RTO is tcp_rexmit_interval_min.
17328 		 * So we will use tcp_rexmit_interval_min as the RTO value
17329 		 * and do the backoff.
17330 		 */
17331 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17332 	} else {
17333 		ms <<= tcp->tcp_timer_backoff;
17334 	}
17335 	if (ms > tcps->tcps_rexmit_interval_max) {
17336 		ms = tcps->tcps_rexmit_interval_max;
17337 		/*
17338 		 * ms is at max, decrement tcp_timer_backoff to avoid
17339 		 * overflow.
17340 		 */
17341 		tcp->tcp_timer_backoff--;
17342 	}
17343 	tcp->tcp_ms_we_have_waited += ms;
17344 	if (tcp->tcp_zero_win_probe == 0) {
17345 		tcp->tcp_rto = ms;
17346 	}
17347 	TCP_TIMER_RESTART(tcp, ms);
17348 	/*
17349 	 * This is after a timeout and tcp_rto is backed off.  Set
17350 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17351 	 * restart the timer with a correct value.
17352 	 */
17353 	tcp->tcp_set_timer = 1;
17354 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17355 	if (mss > tcp->tcp_mss)
17356 		mss = tcp->tcp_mss;
17357 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17358 		mss = tcp->tcp_swnd;
17359 
17360 	if ((mp = tcp->tcp_xmit_head) != NULL)
17361 		mp->b_prev = (mblk_t *)lbolt;
17362 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17363 	    B_TRUE);
17364 
17365 	/*
17366 	 * When slow start after retransmission begins, start with
17367 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17368 	 * start phase.  tcp_snd_burst controls how many segments
17369 	 * can be sent because of an ack.
17370 	 */
17371 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17372 	tcp->tcp_snd_burst = TCP_CWND_SS;
17373 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17374 	    (tcp->tcp_unsent == 0)) {
17375 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17376 	} else {
17377 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17378 	}
17379 	tcp->tcp_rexmit = B_TRUE;
17380 	tcp->tcp_dupack_cnt = 0;
17381 
17382 	/*
17383 	 * Remove all rexmit SACK blk to start from fresh.
17384 	 */
17385 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17386 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17387 		tcp->tcp_num_notsack_blk = 0;
17388 		tcp->tcp_cnt_notsack_list = 0;
17389 	}
17390 	if (mp == NULL) {
17391 		return;
17392 	}
17393 	/* Attach credentials to retransmitted initial SYNs. */
17394 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17395 		mblk_setcred(mp, tcp->tcp_cred);
17396 		DB_CPID(mp) = tcp->tcp_cpid;
17397 	}
17398 
17399 	tcp->tcp_csuna = tcp->tcp_snxt;
17400 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17401 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17402 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17403 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17404 
17405 }
17406 
17407 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17408 static void
17409 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17410 {
17411 	conn_t	*connp;
17412 
17413 	switch (tcp->tcp_state) {
17414 	case TCPS_BOUND:
17415 	case TCPS_LISTEN:
17416 		break;
17417 	default:
17418 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17419 		return;
17420 	}
17421 
17422 	/*
17423 	 * Need to clean up all the eagers since after the unbind, segments
17424 	 * will no longer be delivered to this listener stream.
17425 	 */
17426 	mutex_enter(&tcp->tcp_eager_lock);
17427 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17428 		tcp_eager_cleanup(tcp, 0);
17429 	}
17430 	mutex_exit(&tcp->tcp_eager_lock);
17431 
17432 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17433 		tcp->tcp_ipha->ipha_src = 0;
17434 	} else {
17435 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17436 	}
17437 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17438 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17439 	tcp_bind_hash_remove(tcp);
17440 	tcp->tcp_state = TCPS_IDLE;
17441 	tcp->tcp_mdt = B_FALSE;
17442 	/* Send M_FLUSH according to TPI */
17443 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17444 	connp = tcp->tcp_connp;
17445 	connp->conn_mdt_ok = B_FALSE;
17446 	ipcl_hash_remove(connp);
17447 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17448 	mp = mi_tpi_ok_ack_alloc(mp);
17449 	putnext(tcp->tcp_rq, mp);
17450 }
17451 
17452 /*
17453  * Don't let port fall into the privileged range.
17454  * Since the extra privileged ports can be arbitrary we also
17455  * ensure that we exclude those from consideration.
17456  * tcp_g_epriv_ports is not sorted thus we loop over it until
17457  * there are no changes.
17458  *
17459  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17460  * but instead the code relies on:
17461  * - the fact that the address of the array and its size never changes
17462  * - the atomic assignment of the elements of the array
17463  *
17464  * Returns 0 if there are no more ports available.
17465  *
17466  * TS note: skip multilevel ports.
17467  */
17468 static in_port_t
17469 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17470 {
17471 	int i;
17472 	boolean_t restart = B_FALSE;
17473 	tcp_stack_t *tcps = tcp->tcp_tcps;
17474 
17475 	if (random && tcp_random_anon_port != 0) {
17476 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17477 		    sizeof (in_port_t));
17478 		/*
17479 		 * Unless changed by a sys admin, the smallest anon port
17480 		 * is 32768 and the largest anon port is 65535.  It is
17481 		 * very likely (50%) for the random port to be smaller
17482 		 * than the smallest anon port.  When that happens,
17483 		 * add port % (anon port range) to the smallest anon
17484 		 * port to get the random port.  It should fall into the
17485 		 * valid anon port range.
17486 		 */
17487 		if (port < tcps->tcps_smallest_anon_port) {
17488 			port = tcps->tcps_smallest_anon_port +
17489 			    port % (tcps->tcps_largest_anon_port -
17490 			    tcps->tcps_smallest_anon_port);
17491 		}
17492 	}
17493 
17494 retry:
17495 	if (port < tcps->tcps_smallest_anon_port)
17496 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17497 
17498 	if (port > tcps->tcps_largest_anon_port) {
17499 		if (restart)
17500 			return (0);
17501 		restart = B_TRUE;
17502 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17503 	}
17504 
17505 	if (port < tcps->tcps_smallest_nonpriv_port)
17506 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17507 
17508 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17509 		if (port == tcps->tcps_g_epriv_ports[i]) {
17510 			port++;
17511 			/*
17512 			 * Make sure whether the port is in the
17513 			 * valid range.
17514 			 */
17515 			goto retry;
17516 		}
17517 	}
17518 	if (is_system_labeled() &&
17519 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17520 	    IPPROTO_TCP, B_TRUE)) != 0) {
17521 		port = i;
17522 		goto retry;
17523 	}
17524 	return (port);
17525 }
17526 
17527 /*
17528  * Return the next anonymous port in the privileged port range for
17529  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17530  * downwards.  This is the same behavior as documented in the userland
17531  * library call rresvport(3N).
17532  *
17533  * TS note: skip multilevel ports.
17534  */
17535 static in_port_t
17536 tcp_get_next_priv_port(const tcp_t *tcp)
17537 {
17538 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17539 	in_port_t nextport;
17540 	boolean_t restart = B_FALSE;
17541 	tcp_stack_t *tcps = tcp->tcp_tcps;
17542 retry:
17543 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17544 	    next_priv_port >= IPPORT_RESERVED) {
17545 		next_priv_port = IPPORT_RESERVED - 1;
17546 		if (restart)
17547 			return (0);
17548 		restart = B_TRUE;
17549 	}
17550 	if (is_system_labeled() &&
17551 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17552 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17553 		next_priv_port = nextport;
17554 		goto retry;
17555 	}
17556 	return (next_priv_port--);
17557 }
17558 
17559 /* The write side r/w procedure. */
17560 
17561 #if CCS_STATS
17562 struct {
17563 	struct {
17564 		int64_t count, bytes;
17565 	} tot, hit;
17566 } wrw_stats;
17567 #endif
17568 
17569 /*
17570  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17571  * messages.
17572  */
17573 /* ARGSUSED */
17574 static void
17575 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17576 {
17577 	conn_t	*connp = (conn_t *)arg;
17578 	tcp_t	*tcp = connp->conn_tcp;
17579 	queue_t	*q = tcp->tcp_wq;
17580 
17581 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17582 	/*
17583 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17584 	 * Once the close starts, streamhead and sockfs will not let any data
17585 	 * packets come down (close ensures that there are no threads using the
17586 	 * queue and no new threads will come down) but since qprocsoff()
17587 	 * hasn't happened yet, a M_FLUSH or some non data message might
17588 	 * get reflected back (in response to our own FLUSHRW) and get
17589 	 * processed after tcp_close() is done. The conn would still be valid
17590 	 * because a ref would have added but we need to check the state
17591 	 * before actually processing the packet.
17592 	 */
17593 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17594 		freemsg(mp);
17595 		return;
17596 	}
17597 
17598 	switch (DB_TYPE(mp)) {
17599 	case M_IOCDATA:
17600 		tcp_wput_iocdata(tcp, mp);
17601 		break;
17602 	case M_FLUSH:
17603 		tcp_wput_flush(tcp, mp);
17604 		break;
17605 	default:
17606 		CALL_IP_WPUT(connp, q, mp);
17607 		break;
17608 	}
17609 }
17610 
17611 /*
17612  * The TCP fast path write put procedure.
17613  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17614  */
17615 /* ARGSUSED */
17616 void
17617 tcp_output(void *arg, mblk_t *mp, void *arg2)
17618 {
17619 	int		len;
17620 	int		hdrlen;
17621 	int		plen;
17622 	mblk_t		*mp1;
17623 	uchar_t		*rptr;
17624 	uint32_t	snxt;
17625 	tcph_t		*tcph;
17626 	struct datab	*db;
17627 	uint32_t	suna;
17628 	uint32_t	mss;
17629 	ipaddr_t	*dst;
17630 	ipaddr_t	*src;
17631 	uint32_t	sum;
17632 	int		usable;
17633 	conn_t		*connp = (conn_t *)arg;
17634 	tcp_t		*tcp = connp->conn_tcp;
17635 	uint32_t	msize;
17636 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17637 
17638 	/*
17639 	 * Try and ASSERT the minimum possible references on the
17640 	 * conn early enough. Since we are executing on write side,
17641 	 * the connection is obviously not detached and that means
17642 	 * there is a ref each for TCP and IP. Since we are behind
17643 	 * the squeue, the minimum references needed are 3. If the
17644 	 * conn is in classifier hash list, there should be an
17645 	 * extra ref for that (we check both the possibilities).
17646 	 */
17647 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17648 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17649 
17650 	ASSERT(DB_TYPE(mp) == M_DATA);
17651 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17652 
17653 	mutex_enter(&tcp->tcp_non_sq_lock);
17654 	tcp->tcp_squeue_bytes -= msize;
17655 	mutex_exit(&tcp->tcp_non_sq_lock);
17656 
17657 	/* Bypass tcp protocol for fused tcp loopback */
17658 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17659 		return;
17660 
17661 	mss = tcp->tcp_mss;
17662 	if (tcp->tcp_xmit_zc_clean)
17663 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17664 
17665 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17666 	len = (int)(mp->b_wptr - mp->b_rptr);
17667 
17668 	/*
17669 	 * Criteria for fast path:
17670 	 *
17671 	 *   1. no unsent data
17672 	 *   2. single mblk in request
17673 	 *   3. connection established
17674 	 *   4. data in mblk
17675 	 *   5. len <= mss
17676 	 *   6. no tcp_valid bits
17677 	 */
17678 	if ((tcp->tcp_unsent != 0) ||
17679 	    (tcp->tcp_cork) ||
17680 	    (mp->b_cont != NULL) ||
17681 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17682 	    (len == 0) ||
17683 	    (len > mss) ||
17684 	    (tcp->tcp_valid_bits != 0)) {
17685 		tcp_wput_data(tcp, mp, B_FALSE);
17686 		return;
17687 	}
17688 
17689 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17690 	ASSERT(tcp->tcp_fin_sent == 0);
17691 
17692 	/* queue new packet onto retransmission queue */
17693 	if (tcp->tcp_xmit_head == NULL) {
17694 		tcp->tcp_xmit_head = mp;
17695 	} else {
17696 		tcp->tcp_xmit_last->b_cont = mp;
17697 	}
17698 	tcp->tcp_xmit_last = mp;
17699 	tcp->tcp_xmit_tail = mp;
17700 
17701 	/* find out how much we can send */
17702 	/* BEGIN CSTYLED */
17703 	/*
17704 	 *    un-acked           usable
17705 	 *  |--------------|-----------------|
17706 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17707 	 */
17708 	/* END CSTYLED */
17709 
17710 	/* start sending from tcp_snxt */
17711 	snxt = tcp->tcp_snxt;
17712 
17713 	/*
17714 	 * Check to see if this connection has been idled for some
17715 	 * time and no ACK is expected.  If it is, we need to slow
17716 	 * start again to get back the connection's "self-clock" as
17717 	 * described in VJ's paper.
17718 	 *
17719 	 * Refer to the comment in tcp_mss_set() for the calculation
17720 	 * of tcp_cwnd after idle.
17721 	 */
17722 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17723 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17724 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17725 	}
17726 
17727 	usable = tcp->tcp_swnd;		/* tcp window size */
17728 	if (usable > tcp->tcp_cwnd)
17729 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17730 	usable -= snxt;		/* subtract stuff already sent */
17731 	suna = tcp->tcp_suna;
17732 	usable += suna;
17733 	/* usable can be < 0 if the congestion window is smaller */
17734 	if (len > usable) {
17735 		/* Can't send complete M_DATA in one shot */
17736 		goto slow;
17737 	}
17738 
17739 	mutex_enter(&tcp->tcp_non_sq_lock);
17740 	if (tcp->tcp_flow_stopped &&
17741 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17742 		tcp_clrqfull(tcp);
17743 	}
17744 	mutex_exit(&tcp->tcp_non_sq_lock);
17745 
17746 	/*
17747 	 * determine if anything to send (Nagle).
17748 	 *
17749 	 *   1. len < tcp_mss (i.e. small)
17750 	 *   2. unacknowledged data present
17751 	 *   3. len < nagle limit
17752 	 *   4. last packet sent < nagle limit (previous packet sent)
17753 	 */
17754 	if ((len < mss) && (snxt != suna) &&
17755 	    (len < (int)tcp->tcp_naglim) &&
17756 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17757 		/*
17758 		 * This was the first unsent packet and normally
17759 		 * mss < xmit_hiwater so there is no need to worry
17760 		 * about flow control. The next packet will go
17761 		 * through the flow control check in tcp_wput_data().
17762 		 */
17763 		/* leftover work from above */
17764 		tcp->tcp_unsent = len;
17765 		tcp->tcp_xmit_tail_unsent = len;
17766 
17767 		return;
17768 	}
17769 
17770 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17771 
17772 	if (snxt == suna) {
17773 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17774 	}
17775 
17776 	/* we have always sent something */
17777 	tcp->tcp_rack_cnt = 0;
17778 
17779 	tcp->tcp_snxt = snxt + len;
17780 	tcp->tcp_rack = tcp->tcp_rnxt;
17781 
17782 	if ((mp1 = dupb(mp)) == 0)
17783 		goto no_memory;
17784 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17785 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17786 
17787 	/* adjust tcp header information */
17788 	tcph = tcp->tcp_tcph;
17789 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17790 
17791 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17792 	sum = (sum >> 16) + (sum & 0xFFFF);
17793 	U16_TO_ABE16(sum, tcph->th_sum);
17794 
17795 	U32_TO_ABE32(snxt, tcph->th_seq);
17796 
17797 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17798 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17799 	BUMP_LOCAL(tcp->tcp_obsegs);
17800 
17801 	/* Update the latest receive window size in TCP header. */
17802 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17803 	    tcph->th_win);
17804 
17805 	tcp->tcp_last_sent_len = (ushort_t)len;
17806 
17807 	plen = len + tcp->tcp_hdr_len;
17808 
17809 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17810 		tcp->tcp_ipha->ipha_length = htons(plen);
17811 	} else {
17812 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17813 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17814 	}
17815 
17816 	/* see if we need to allocate a mblk for the headers */
17817 	hdrlen = tcp->tcp_hdr_len;
17818 	rptr = mp1->b_rptr - hdrlen;
17819 	db = mp1->b_datap;
17820 	if ((db->db_ref != 2) || rptr < db->db_base ||
17821 	    (!OK_32PTR(rptr))) {
17822 		/* NOTE: we assume allocb returns an OK_32PTR */
17823 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17824 		    tcps->tcps_wroff_xtra, BPRI_MED);
17825 		if (!mp) {
17826 			freemsg(mp1);
17827 			goto no_memory;
17828 		}
17829 		mp->b_cont = mp1;
17830 		mp1 = mp;
17831 		/* Leave room for Link Level header */
17832 		/* hdrlen = tcp->tcp_hdr_len; */
17833 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17834 		mp1->b_wptr = &rptr[hdrlen];
17835 	}
17836 	mp1->b_rptr = rptr;
17837 
17838 	/* Fill in the timestamp option. */
17839 	if (tcp->tcp_snd_ts_ok) {
17840 		U32_TO_BE32((uint32_t)lbolt,
17841 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17842 		U32_TO_BE32(tcp->tcp_ts_recent,
17843 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17844 	} else {
17845 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17846 	}
17847 
17848 	/* copy header into outgoing packet */
17849 	dst = (ipaddr_t *)rptr;
17850 	src = (ipaddr_t *)tcp->tcp_iphc;
17851 	dst[0] = src[0];
17852 	dst[1] = src[1];
17853 	dst[2] = src[2];
17854 	dst[3] = src[3];
17855 	dst[4] = src[4];
17856 	dst[5] = src[5];
17857 	dst[6] = src[6];
17858 	dst[7] = src[7];
17859 	dst[8] = src[8];
17860 	dst[9] = src[9];
17861 	if (hdrlen -= 40) {
17862 		hdrlen >>= 2;
17863 		dst += 10;
17864 		src += 10;
17865 		do {
17866 			*dst++ = *src++;
17867 		} while (--hdrlen);
17868 	}
17869 
17870 	/*
17871 	 * Set the ECN info in the TCP header.  Note that this
17872 	 * is not the template header.
17873 	 */
17874 	if (tcp->tcp_ecn_ok) {
17875 		SET_ECT(tcp, rptr);
17876 
17877 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17878 		if (tcp->tcp_ecn_echo_on)
17879 			tcph->th_flags[0] |= TH_ECE;
17880 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17881 			tcph->th_flags[0] |= TH_CWR;
17882 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17883 		}
17884 	}
17885 
17886 	if (tcp->tcp_ip_forward_progress) {
17887 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17888 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17889 		tcp->tcp_ip_forward_progress = B_FALSE;
17890 	}
17891 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17892 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17893 	return;
17894 
17895 	/*
17896 	 * If we ran out of memory, we pretend to have sent the packet
17897 	 * and that it was lost on the wire.
17898 	 */
17899 no_memory:
17900 	return;
17901 
17902 slow:
17903 	/* leftover work from above */
17904 	tcp->tcp_unsent = len;
17905 	tcp->tcp_xmit_tail_unsent = len;
17906 	tcp_wput_data(tcp, NULL, B_FALSE);
17907 }
17908 
17909 /*
17910  * The function called through squeue to get behind eager's perimeter to
17911  * finish the accept processing.
17912  */
17913 /* ARGSUSED */
17914 void
17915 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17916 {
17917 	conn_t			*connp = (conn_t *)arg;
17918 	tcp_t			*tcp = connp->conn_tcp;
17919 	queue_t			*q = tcp->tcp_rq;
17920 	mblk_t			*mp1;
17921 	mblk_t			*stropt_mp = mp;
17922 	struct  stroptions	*stropt;
17923 	uint_t			thwin;
17924 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17925 
17926 	/*
17927 	 * Drop the eager's ref on the listener, that was placed when
17928 	 * this eager began life in tcp_conn_request.
17929 	 */
17930 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17931 
17932 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17933 		/*
17934 		 * Someone blewoff the eager before we could finish
17935 		 * the accept.
17936 		 *
17937 		 * The only reason eager exists it because we put in
17938 		 * a ref on it when conn ind went up. We need to send
17939 		 * a disconnect indication up while the last reference
17940 		 * on the eager will be dropped by the squeue when we
17941 		 * return.
17942 		 */
17943 		ASSERT(tcp->tcp_listener == NULL);
17944 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17945 			struct	T_discon_ind	*tdi;
17946 
17947 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17948 			/*
17949 			 * Let us reuse the incoming mblk to avoid memory
17950 			 * allocation failure problems. We know that the
17951 			 * size of the incoming mblk i.e. stroptions is greater
17952 			 * than sizeof T_discon_ind. So the reallocb below
17953 			 * can't fail.
17954 			 */
17955 			freemsg(mp->b_cont);
17956 			mp->b_cont = NULL;
17957 			ASSERT(DB_REF(mp) == 1);
17958 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17959 			    B_FALSE);
17960 			ASSERT(mp != NULL);
17961 			DB_TYPE(mp) = M_PROTO;
17962 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17963 			tdi = (struct T_discon_ind *)mp->b_rptr;
17964 			if (tcp->tcp_issocket) {
17965 				tdi->DISCON_reason = ECONNREFUSED;
17966 				tdi->SEQ_number = 0;
17967 			} else {
17968 				tdi->DISCON_reason = ENOPROTOOPT;
17969 				tdi->SEQ_number =
17970 				    tcp->tcp_conn_req_seqnum;
17971 			}
17972 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17973 			putnext(q, mp);
17974 		} else {
17975 			freemsg(mp);
17976 		}
17977 		if (tcp->tcp_hard_binding) {
17978 			tcp->tcp_hard_binding = B_FALSE;
17979 			tcp->tcp_hard_bound = B_TRUE;
17980 		}
17981 		tcp->tcp_detached = B_FALSE;
17982 		return;
17983 	}
17984 
17985 	mp1 = stropt_mp->b_cont;
17986 	stropt_mp->b_cont = NULL;
17987 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17988 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17989 
17990 	while (mp1 != NULL) {
17991 		mp = mp1;
17992 		mp1 = mp1->b_cont;
17993 		mp->b_cont = NULL;
17994 		tcp->tcp_drop_opt_ack_cnt++;
17995 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17996 	}
17997 	mp = NULL;
17998 
17999 	/*
18000 	 * For a loopback connection with tcp_direct_sockfs on, note that
18001 	 * we don't have to protect tcp_rcv_list yet because synchronous
18002 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18003 	 * possibly race with us.
18004 	 */
18005 
18006 	/*
18007 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18008 	 * properly.  This is the first time we know of the acceptor'
18009 	 * queue.  So we do it here.
18010 	 */
18011 	if (tcp->tcp_rcv_list == NULL) {
18012 		/*
18013 		 * Recv queue is empty, tcp_rwnd should not have changed.
18014 		 * That means it should be equal to the listener's tcp_rwnd.
18015 		 */
18016 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18017 	} else {
18018 #ifdef DEBUG
18019 		uint_t cnt = 0;
18020 
18021 		mp1 = tcp->tcp_rcv_list;
18022 		while ((mp = mp1) != NULL) {
18023 			mp1 = mp->b_next;
18024 			cnt += msgdsize(mp);
18025 		}
18026 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18027 #endif
18028 		/* There is some data, add them back to get the max. */
18029 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18030 	}
18031 
18032 	stropt->so_flags = SO_HIWAT;
18033 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18034 
18035 	stropt->so_flags |= SO_MAXBLK;
18036 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18037 
18038 	/*
18039 	 * This is the first time we run on the correct
18040 	 * queue after tcp_accept. So fix all the q parameters
18041 	 * here.
18042 	 */
18043 	/* Allocate room for SACK options if needed. */
18044 	stropt->so_flags |= SO_WROFF;
18045 	if (tcp->tcp_fused) {
18046 		ASSERT(tcp->tcp_loopback);
18047 		ASSERT(tcp->tcp_loopback_peer != NULL);
18048 		/*
18049 		 * For fused tcp loopback, set the stream head's write
18050 		 * offset value to zero since we won't be needing any room
18051 		 * for TCP/IP headers.  This would also improve performance
18052 		 * since it would reduce the amount of work done by kmem.
18053 		 * Non-fused tcp loopback case is handled separately below.
18054 		 */
18055 		stropt->so_wroff = 0;
18056 		/*
18057 		 * Record the stream head's high water mark for this endpoint;
18058 		 * this is used for flow-control purposes in tcp_fuse_output().
18059 		 */
18060 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
18061 		/*
18062 		 * Update the peer's transmit parameters according to
18063 		 * our recently calculated high water mark value.
18064 		 */
18065 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18066 	} else if (tcp->tcp_snd_sack_ok) {
18067 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18068 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18069 	} else {
18070 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18071 		    tcps->tcps_wroff_xtra);
18072 	}
18073 
18074 	/*
18075 	 * If this is endpoint is handling SSL, then reserve extra
18076 	 * offset and space at the end.
18077 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18078 	 * overriding the previous setting. The extra cost of signing and
18079 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18080 	 * instead of a single contiguous one by the stream head
18081 	 * largely outweighs the statistical reduction of ACKs, when
18082 	 * applicable. The peer will also save on decryption and verification
18083 	 * costs.
18084 	 */
18085 	if (tcp->tcp_kssl_ctx != NULL) {
18086 		stropt->so_wroff += SSL3_WROFFSET;
18087 
18088 		stropt->so_flags |= SO_TAIL;
18089 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18090 
18091 		stropt->so_flags |= SO_COPYOPT;
18092 		stropt->so_copyopt = ZCVMUNSAFE;
18093 
18094 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18095 	}
18096 
18097 	/* Send the options up */
18098 	putnext(q, stropt_mp);
18099 
18100 	/*
18101 	 * Pass up any data and/or a fin that has been received.
18102 	 *
18103 	 * Adjust receive window in case it had decreased
18104 	 * (because there is data <=> tcp_rcv_list != NULL)
18105 	 * while the connection was detached. Note that
18106 	 * in case the eager was flow-controlled, w/o this
18107 	 * code, the rwnd may never open up again!
18108 	 */
18109 	if (tcp->tcp_rcv_list != NULL) {
18110 		/* We drain directly in case of fused tcp loopback */
18111 		if (!tcp->tcp_fused && canputnext(q)) {
18112 			tcp->tcp_rwnd = q->q_hiwat;
18113 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18114 			    << tcp->tcp_rcv_ws;
18115 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18116 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18117 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18118 				tcp_xmit_ctl(NULL,
18119 				    tcp, (tcp->tcp_swnd == 0) ?
18120 				    tcp->tcp_suna : tcp->tcp_snxt,
18121 				    tcp->tcp_rnxt, TH_ACK);
18122 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18123 			}
18124 
18125 		}
18126 		(void) tcp_rcv_drain(q, tcp);
18127 
18128 		/*
18129 		 * For fused tcp loopback, back-enable peer endpoint
18130 		 * if it's currently flow-controlled.
18131 		 */
18132 		if (tcp->tcp_fused) {
18133 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18134 
18135 			ASSERT(peer_tcp != NULL);
18136 			ASSERT(peer_tcp->tcp_fused);
18137 			/*
18138 			 * In order to change the peer's tcp_flow_stopped,
18139 			 * we need to take locks for both end points. The
18140 			 * highest address is taken first.
18141 			 */
18142 			if (peer_tcp > tcp) {
18143 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18144 				mutex_enter(&tcp->tcp_non_sq_lock);
18145 			} else {
18146 				mutex_enter(&tcp->tcp_non_sq_lock);
18147 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18148 			}
18149 			if (peer_tcp->tcp_flow_stopped) {
18150 				tcp_clrqfull(peer_tcp);
18151 				TCP_STAT(tcps, tcp_fusion_backenabled);
18152 			}
18153 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18154 			mutex_exit(&tcp->tcp_non_sq_lock);
18155 		}
18156 	}
18157 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18158 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18159 		mp = mi_tpi_ordrel_ind();
18160 		if (mp) {
18161 			tcp->tcp_ordrel_done = B_TRUE;
18162 			putnext(q, mp);
18163 			if (tcp->tcp_deferred_clean_death) {
18164 				/*
18165 				 * tcp_clean_death was deferred
18166 				 * for T_ORDREL_IND - do it now
18167 				 */
18168 				(void) tcp_clean_death(tcp,
18169 				    tcp->tcp_client_errno, 21);
18170 				tcp->tcp_deferred_clean_death = B_FALSE;
18171 			}
18172 		} else {
18173 			/*
18174 			 * Run the orderly release in the
18175 			 * service routine.
18176 			 */
18177 			qenable(q);
18178 		}
18179 	}
18180 	if (tcp->tcp_hard_binding) {
18181 		tcp->tcp_hard_binding = B_FALSE;
18182 		tcp->tcp_hard_bound = B_TRUE;
18183 	}
18184 
18185 	tcp->tcp_detached = B_FALSE;
18186 
18187 	/* We can enable synchronous streams now */
18188 	if (tcp->tcp_fused) {
18189 		tcp_fuse_syncstr_enable_pair(tcp);
18190 	}
18191 
18192 	if (tcp->tcp_ka_enabled) {
18193 		tcp->tcp_ka_last_intrvl = 0;
18194 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18195 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18196 	}
18197 
18198 	/*
18199 	 * At this point, eager is fully established and will
18200 	 * have the following references -
18201 	 *
18202 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18203 	 * 1 reference for the squeue which will be dropped by the squeue as
18204 	 *	soon as this function returns.
18205 	 * There will be 1 additonal reference for being in classifier
18206 	 *	hash list provided something bad hasn't happened.
18207 	 */
18208 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18209 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18210 }
18211 
18212 /*
18213  * The function called through squeue to get behind listener's perimeter to
18214  * send a deffered conn_ind.
18215  */
18216 /* ARGSUSED */
18217 void
18218 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18219 {
18220 	conn_t	*connp = (conn_t *)arg;
18221 	tcp_t *listener = connp->conn_tcp;
18222 
18223 	if (listener->tcp_state == TCPS_CLOSED ||
18224 	    TCP_IS_DETACHED(listener)) {
18225 		/*
18226 		 * If listener has closed, it would have caused a
18227 		 * a cleanup/blowoff to happen for the eager.
18228 		 */
18229 		tcp_t *tcp;
18230 		struct T_conn_ind	*conn_ind;
18231 
18232 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18233 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18234 		    conn_ind->OPT_length);
18235 		/*
18236 		 * We need to drop the ref on eager that was put
18237 		 * tcp_rput_data() before trying to send the conn_ind
18238 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18239 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18240 		 * listener is closed so we drop the ref.
18241 		 */
18242 		CONN_DEC_REF(tcp->tcp_connp);
18243 		freemsg(mp);
18244 		return;
18245 	}
18246 	putnext(listener->tcp_rq, mp);
18247 }
18248 
18249 
18250 /*
18251  * This is the STREAMS entry point for T_CONN_RES coming down on
18252  * Acceptor STREAM when  sockfs listener does accept processing.
18253  * Read the block comment on top of tcp_conn_request().
18254  */
18255 void
18256 tcp_wput_accept(queue_t *q, mblk_t *mp)
18257 {
18258 	queue_t *rq = RD(q);
18259 	struct T_conn_res *conn_res;
18260 	tcp_t *eager;
18261 	tcp_t *listener;
18262 	struct T_ok_ack *ok;
18263 	t_scalar_t PRIM_type;
18264 	mblk_t *opt_mp;
18265 	conn_t *econnp;
18266 
18267 	ASSERT(DB_TYPE(mp) == M_PROTO);
18268 
18269 	conn_res = (struct T_conn_res *)mp->b_rptr;
18270 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18271 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18272 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18273 		if (mp != NULL)
18274 			putnext(rq, mp);
18275 		return;
18276 	}
18277 	switch (conn_res->PRIM_type) {
18278 	case O_T_CONN_RES:
18279 	case T_CONN_RES:
18280 		/*
18281 		 * We pass up an err ack if allocb fails. This will
18282 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18283 		 * tcp_eager_blowoff to be called. sockfs will then call
18284 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18285 		 * we need to do the allocb up here because we have to
18286 		 * make sure rq->q_qinfo->qi_qclose still points to the
18287 		 * correct function (tcpclose_accept) in case allocb
18288 		 * fails.
18289 		 */
18290 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18291 		if (opt_mp == NULL) {
18292 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18293 			if (mp != NULL)
18294 				putnext(rq, mp);
18295 			return;
18296 		}
18297 
18298 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18299 		    &eager, conn_res->OPT_length);
18300 		PRIM_type = conn_res->PRIM_type;
18301 		mp->b_datap->db_type = M_PCPROTO;
18302 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18303 		ok = (struct T_ok_ack *)mp->b_rptr;
18304 		ok->PRIM_type = T_OK_ACK;
18305 		ok->CORRECT_prim = PRIM_type;
18306 		econnp = eager->tcp_connp;
18307 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18308 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18309 		eager->tcp_rq = rq;
18310 		eager->tcp_wq = q;
18311 		rq->q_ptr = econnp;
18312 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18313 		q->q_ptr = econnp;
18314 		q->q_qinfo = &tcp_winit;
18315 		listener = eager->tcp_listener;
18316 		eager->tcp_issocket = B_TRUE;
18317 
18318 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18319 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18320 		ASSERT(econnp->conn_netstack ==
18321 		    listener->tcp_connp->conn_netstack);
18322 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18323 
18324 		/* Put the ref for IP */
18325 		CONN_INC_REF(econnp);
18326 
18327 		/*
18328 		 * We should have minimum of 3 references on the conn
18329 		 * at this point. One each for TCP and IP and one for
18330 		 * the T_conn_ind that was sent up when the 3-way handshake
18331 		 * completed. In the normal case we would also have another
18332 		 * reference (making a total of 4) for the conn being in the
18333 		 * classifier hash list. However the eager could have received
18334 		 * an RST subsequently and tcp_closei_local could have removed
18335 		 * the eager from the classifier hash list, hence we can't
18336 		 * assert that reference.
18337 		 */
18338 		ASSERT(econnp->conn_ref >= 3);
18339 
18340 		/*
18341 		 * Send the new local address also up to sockfs. There
18342 		 * should already be enough space in the mp that came
18343 		 * down from soaccept().
18344 		 */
18345 		if (eager->tcp_family == AF_INET) {
18346 			sin_t *sin;
18347 
18348 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18349 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18350 			sin = (sin_t *)mp->b_wptr;
18351 			mp->b_wptr += sizeof (sin_t);
18352 			sin->sin_family = AF_INET;
18353 			sin->sin_port = eager->tcp_lport;
18354 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18355 		} else {
18356 			sin6_t *sin6;
18357 
18358 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18359 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18360 			sin6 = (sin6_t *)mp->b_wptr;
18361 			mp->b_wptr += sizeof (sin6_t);
18362 			sin6->sin6_family = AF_INET6;
18363 			sin6->sin6_port = eager->tcp_lport;
18364 			if (eager->tcp_ipversion == IPV4_VERSION) {
18365 				sin6->sin6_flowinfo = 0;
18366 				IN6_IPADDR_TO_V4MAPPED(
18367 				    eager->tcp_ipha->ipha_src,
18368 				    &sin6->sin6_addr);
18369 			} else {
18370 				ASSERT(eager->tcp_ip6h != NULL);
18371 				sin6->sin6_flowinfo =
18372 				    eager->tcp_ip6h->ip6_vcf &
18373 				    ~IPV6_VERS_AND_FLOW_MASK;
18374 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18375 			}
18376 			sin6->sin6_scope_id = 0;
18377 			sin6->__sin6_src_id = 0;
18378 		}
18379 
18380 		putnext(rq, mp);
18381 
18382 		opt_mp->b_datap->db_type = M_SETOPTS;
18383 		opt_mp->b_wptr += sizeof (struct stroptions);
18384 
18385 		/*
18386 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18387 		 * from listener to acceptor. The message is chained on the
18388 		 * bind_mp which tcp_rput_other will send down to IP.
18389 		 */
18390 		if (listener->tcp_bound_if != 0) {
18391 			/* allocate optmgmt req */
18392 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18393 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18394 			    sizeof (int));
18395 			if (mp != NULL)
18396 				linkb(opt_mp, mp);
18397 		}
18398 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18399 			uint_t on = 1;
18400 
18401 			/* allocate optmgmt req */
18402 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18403 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18404 			if (mp != NULL)
18405 				linkb(opt_mp, mp);
18406 		}
18407 
18408 
18409 		mutex_enter(&listener->tcp_eager_lock);
18410 
18411 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18412 
18413 			tcp_t *tail;
18414 			tcp_t *tcp;
18415 			mblk_t *mp1;
18416 
18417 			tcp = listener->tcp_eager_prev_q0;
18418 			/*
18419 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18420 			 * deferred T_conn_ind queue. We need to get to the head
18421 			 * of the queue in order to send up T_conn_ind the same
18422 			 * order as how the 3WHS is completed.
18423 			 */
18424 			while (tcp != listener) {
18425 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18426 				    !tcp->tcp_kssl_pending)
18427 					break;
18428 				else
18429 					tcp = tcp->tcp_eager_prev_q0;
18430 			}
18431 			/* None of the pending eagers can be sent up now */
18432 			if (tcp == listener)
18433 				goto no_more_eagers;
18434 
18435 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18436 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18437 			/* Move from q0 to q */
18438 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18439 			listener->tcp_conn_req_cnt_q0--;
18440 			listener->tcp_conn_req_cnt_q++;
18441 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18442 			    tcp->tcp_eager_prev_q0;
18443 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18444 			    tcp->tcp_eager_next_q0;
18445 			tcp->tcp_eager_prev_q0 = NULL;
18446 			tcp->tcp_eager_next_q0 = NULL;
18447 			tcp->tcp_conn_def_q0 = B_FALSE;
18448 
18449 			/* Make sure the tcp isn't in the list of droppables */
18450 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18451 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18452 
18453 			/*
18454 			 * Insert at end of the queue because sockfs sends
18455 			 * down T_CONN_RES in chronological order. Leaving
18456 			 * the older conn indications at front of the queue
18457 			 * helps reducing search time.
18458 			 */
18459 			tail = listener->tcp_eager_last_q;
18460 			if (tail != NULL) {
18461 				tail->tcp_eager_next_q = tcp;
18462 			} else {
18463 				listener->tcp_eager_next_q = tcp;
18464 			}
18465 			listener->tcp_eager_last_q = tcp;
18466 			tcp->tcp_eager_next_q = NULL;
18467 
18468 			/* Need to get inside the listener perimeter */
18469 			CONN_INC_REF(listener->tcp_connp);
18470 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18471 			    tcp_send_pending, listener->tcp_connp,
18472 			    SQTAG_TCP_SEND_PENDING);
18473 		}
18474 no_more_eagers:
18475 		tcp_eager_unlink(eager);
18476 		mutex_exit(&listener->tcp_eager_lock);
18477 
18478 		/*
18479 		 * At this point, the eager is detached from the listener
18480 		 * but we still have an extra refs on eager (apart from the
18481 		 * usual tcp references). The ref was placed in tcp_rput_data
18482 		 * before sending the conn_ind in tcp_send_conn_ind.
18483 		 * The ref will be dropped in tcp_accept_finish().
18484 		 */
18485 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18486 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18487 		return;
18488 	default:
18489 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18490 		if (mp != NULL)
18491 			putnext(rq, mp);
18492 		return;
18493 	}
18494 }
18495 
18496 void
18497 tcp_wput(queue_t *q, mblk_t *mp)
18498 {
18499 	conn_t	*connp = Q_TO_CONN(q);
18500 	tcp_t	*tcp;
18501 	void (*output_proc)();
18502 	t_scalar_t type;
18503 	uchar_t *rptr;
18504 	struct iocblk	*iocp;
18505 	uint32_t	msize;
18506 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18507 
18508 	ASSERT(connp->conn_ref >= 2);
18509 
18510 	switch (DB_TYPE(mp)) {
18511 	case M_DATA:
18512 		tcp = connp->conn_tcp;
18513 		ASSERT(tcp != NULL);
18514 
18515 		msize = msgdsize(mp);
18516 
18517 		mutex_enter(&tcp->tcp_non_sq_lock);
18518 		tcp->tcp_squeue_bytes += msize;
18519 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18520 			tcp_setqfull(tcp);
18521 		}
18522 		mutex_exit(&tcp->tcp_non_sq_lock);
18523 
18524 		CONN_INC_REF(connp);
18525 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18526 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18527 		return;
18528 	case M_PROTO:
18529 	case M_PCPROTO:
18530 		/*
18531 		 * if it is a snmp message, don't get behind the squeue
18532 		 */
18533 		tcp = connp->conn_tcp;
18534 		rptr = mp->b_rptr;
18535 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18536 			type = ((union T_primitives *)rptr)->type;
18537 		} else {
18538 			if (tcp->tcp_debug) {
18539 				(void) strlog(TCP_MOD_ID, 0, 1,
18540 				    SL_ERROR|SL_TRACE,
18541 				    "tcp_wput_proto, dropping one...");
18542 			}
18543 			freemsg(mp);
18544 			return;
18545 		}
18546 		if (type == T_SVR4_OPTMGMT_REQ) {
18547 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18548 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18549 			    cr)) {
18550 				/*
18551 				 * This was a SNMP request
18552 				 */
18553 				return;
18554 			} else {
18555 				output_proc = tcp_wput_proto;
18556 			}
18557 		} else {
18558 			output_proc = tcp_wput_proto;
18559 		}
18560 		break;
18561 	case M_IOCTL:
18562 		/*
18563 		 * Most ioctls can be processed right away without going via
18564 		 * squeues - process them right here. Those that do require
18565 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18566 		 * are processed by tcp_wput_ioctl().
18567 		 */
18568 		iocp = (struct iocblk *)mp->b_rptr;
18569 		tcp = connp->conn_tcp;
18570 
18571 		switch (iocp->ioc_cmd) {
18572 		case TCP_IOC_ABORT_CONN:
18573 			tcp_ioctl_abort_conn(q, mp);
18574 			return;
18575 		case TI_GETPEERNAME:
18576 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18577 				iocp->ioc_error = ENOTCONN;
18578 				iocp->ioc_count = 0;
18579 				mp->b_datap->db_type = M_IOCACK;
18580 				qreply(q, mp);
18581 				return;
18582 			}
18583 			/* FALLTHRU */
18584 		case TI_GETMYNAME:
18585 			mi_copyin(q, mp, NULL,
18586 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18587 			return;
18588 		case ND_SET:
18589 			/* nd_getset does the necessary checks */
18590 		case ND_GET:
18591 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18592 				CALL_IP_WPUT(connp, q, mp);
18593 				return;
18594 			}
18595 			qreply(q, mp);
18596 			return;
18597 		case TCP_IOC_DEFAULT_Q:
18598 			/*
18599 			 * Wants to be the default wq. Check the credentials
18600 			 * first, the rest is executed via squeue.
18601 			 */
18602 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18603 				iocp->ioc_error = EPERM;
18604 				iocp->ioc_count = 0;
18605 				mp->b_datap->db_type = M_IOCACK;
18606 				qreply(q, mp);
18607 				return;
18608 			}
18609 			output_proc = tcp_wput_ioctl;
18610 			break;
18611 		default:
18612 			output_proc = tcp_wput_ioctl;
18613 			break;
18614 		}
18615 		break;
18616 	default:
18617 		output_proc = tcp_wput_nondata;
18618 		break;
18619 	}
18620 
18621 	CONN_INC_REF(connp);
18622 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18623 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18624 }
18625 
18626 /*
18627  * Initial STREAMS write side put() procedure for sockets. It tries to
18628  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18629  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18630  * are handled by tcp_wput() as usual.
18631  *
18632  * All further messages will also be handled by tcp_wput() because we cannot
18633  * be sure that the above short cut is safe later.
18634  */
18635 static void
18636 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18637 {
18638 	conn_t			*connp = Q_TO_CONN(wq);
18639 	tcp_t			*tcp = connp->conn_tcp;
18640 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18641 
18642 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18643 	wq->q_qinfo = &tcp_winit;
18644 
18645 	ASSERT(IPCL_IS_TCP(connp));
18646 	ASSERT(TCP_IS_SOCKET(tcp));
18647 
18648 	if (DB_TYPE(mp) == M_PCPROTO &&
18649 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18650 	    car->PRIM_type == T_CAPABILITY_REQ) {
18651 		tcp_capability_req(tcp, mp);
18652 		return;
18653 	}
18654 
18655 	tcp_wput(wq, mp);
18656 }
18657 
18658 static boolean_t
18659 tcp_zcopy_check(tcp_t *tcp)
18660 {
18661 	conn_t	*connp = tcp->tcp_connp;
18662 	ire_t	*ire;
18663 	boolean_t	zc_enabled = B_FALSE;
18664 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18665 
18666 	if (do_tcpzcopy == 2)
18667 		zc_enabled = B_TRUE;
18668 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18669 	    IPCL_IS_CONNECTED(connp) &&
18670 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18671 	    connp->conn_dontroute == 0 &&
18672 	    !connp->conn_nexthop_set &&
18673 	    connp->conn_outgoing_ill == NULL &&
18674 	    connp->conn_nofailover_ill == NULL &&
18675 	    do_tcpzcopy == 1) {
18676 		/*
18677 		 * the checks above  closely resemble the fast path checks
18678 		 * in tcp_send_data().
18679 		 */
18680 		mutex_enter(&connp->conn_lock);
18681 		ire = connp->conn_ire_cache;
18682 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18683 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18684 			IRE_REFHOLD(ire);
18685 			if (ire->ire_stq != NULL) {
18686 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18687 
18688 				zc_enabled = ill && (ill->ill_capabilities &
18689 				    ILL_CAPAB_ZEROCOPY) &&
18690 				    (ill->ill_zerocopy_capab->
18691 				    ill_zerocopy_flags != 0);
18692 			}
18693 			IRE_REFRELE(ire);
18694 		}
18695 		mutex_exit(&connp->conn_lock);
18696 	}
18697 	tcp->tcp_snd_zcopy_on = zc_enabled;
18698 	if (!TCP_IS_DETACHED(tcp)) {
18699 		if (zc_enabled) {
18700 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18701 			TCP_STAT(tcps, tcp_zcopy_on);
18702 		} else {
18703 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18704 			TCP_STAT(tcps, tcp_zcopy_off);
18705 		}
18706 	}
18707 	return (zc_enabled);
18708 }
18709 
18710 static mblk_t *
18711 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18712 {
18713 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18714 
18715 	if (do_tcpzcopy == 2)
18716 		return (bp);
18717 	else if (tcp->tcp_snd_zcopy_on) {
18718 		tcp->tcp_snd_zcopy_on = B_FALSE;
18719 		if (!TCP_IS_DETACHED(tcp)) {
18720 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18721 			TCP_STAT(tcps, tcp_zcopy_disable);
18722 		}
18723 	}
18724 	return (tcp_zcopy_backoff(tcp, bp, 0));
18725 }
18726 
18727 /*
18728  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18729  * the original desballoca'ed segmapped mblk.
18730  */
18731 static mblk_t *
18732 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18733 {
18734 	mblk_t *head, *tail, *nbp;
18735 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18736 
18737 	if (IS_VMLOANED_MBLK(bp)) {
18738 		TCP_STAT(tcps, tcp_zcopy_backoff);
18739 		if ((head = copyb(bp)) == NULL) {
18740 			/* fail to backoff; leave it for the next backoff */
18741 			tcp->tcp_xmit_zc_clean = B_FALSE;
18742 			return (bp);
18743 		}
18744 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18745 			if (fix_xmitlist)
18746 				tcp_zcopy_notify(tcp);
18747 			else
18748 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18749 		}
18750 		nbp = bp->b_cont;
18751 		if (fix_xmitlist) {
18752 			head->b_prev = bp->b_prev;
18753 			head->b_next = bp->b_next;
18754 			if (tcp->tcp_xmit_tail == bp)
18755 				tcp->tcp_xmit_tail = head;
18756 		}
18757 		bp->b_next = NULL;
18758 		bp->b_prev = NULL;
18759 		freeb(bp);
18760 	} else {
18761 		head = bp;
18762 		nbp = bp->b_cont;
18763 	}
18764 	tail = head;
18765 	while (nbp) {
18766 		if (IS_VMLOANED_MBLK(nbp)) {
18767 			TCP_STAT(tcps, tcp_zcopy_backoff);
18768 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18769 				tcp->tcp_xmit_zc_clean = B_FALSE;
18770 				tail->b_cont = nbp;
18771 				return (head);
18772 			}
18773 			tail = tail->b_cont;
18774 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18775 				if (fix_xmitlist)
18776 					tcp_zcopy_notify(tcp);
18777 				else
18778 					tail->b_datap->db_struioflag |=
18779 					    STRUIO_ZCNOTIFY;
18780 			}
18781 			bp = nbp;
18782 			nbp = nbp->b_cont;
18783 			if (fix_xmitlist) {
18784 				tail->b_prev = bp->b_prev;
18785 				tail->b_next = bp->b_next;
18786 				if (tcp->tcp_xmit_tail == bp)
18787 					tcp->tcp_xmit_tail = tail;
18788 			}
18789 			bp->b_next = NULL;
18790 			bp->b_prev = NULL;
18791 			freeb(bp);
18792 		} else {
18793 			tail->b_cont = nbp;
18794 			tail = nbp;
18795 			nbp = nbp->b_cont;
18796 		}
18797 	}
18798 	if (fix_xmitlist) {
18799 		tcp->tcp_xmit_last = tail;
18800 		tcp->tcp_xmit_zc_clean = B_TRUE;
18801 	}
18802 	return (head);
18803 }
18804 
18805 static void
18806 tcp_zcopy_notify(tcp_t *tcp)
18807 {
18808 	struct stdata	*stp;
18809 
18810 	if (tcp->tcp_detached)
18811 		return;
18812 	stp = STREAM(tcp->tcp_rq);
18813 	mutex_enter(&stp->sd_lock);
18814 	stp->sd_flag |= STZCNOTIFY;
18815 	cv_broadcast(&stp->sd_zcopy_wait);
18816 	mutex_exit(&stp->sd_lock);
18817 }
18818 
18819 static boolean_t
18820 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18821 {
18822 	ire_t	*ire;
18823 	conn_t	*connp = tcp->tcp_connp;
18824 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18825 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18826 
18827 	mutex_enter(&connp->conn_lock);
18828 	ire = connp->conn_ire_cache;
18829 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18830 
18831 	if ((ire != NULL) &&
18832 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18833 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18834 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18835 		IRE_REFHOLD(ire);
18836 		mutex_exit(&connp->conn_lock);
18837 	} else {
18838 		boolean_t cached = B_FALSE;
18839 		ts_label_t *tsl;
18840 
18841 		/* force a recheck later on */
18842 		tcp->tcp_ire_ill_check_done = B_FALSE;
18843 
18844 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18845 		connp->conn_ire_cache = NULL;
18846 		mutex_exit(&connp->conn_lock);
18847 
18848 		if (ire != NULL)
18849 			IRE_REFRELE_NOTR(ire);
18850 
18851 		tsl = crgetlabel(CONN_CRED(connp));
18852 		ire = (dst ?
18853 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18854 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18855 		    connp->conn_zoneid, tsl, ipst));
18856 
18857 		if (ire == NULL) {
18858 			TCP_STAT(tcps, tcp_ire_null);
18859 			return (B_FALSE);
18860 		}
18861 
18862 		IRE_REFHOLD_NOTR(ire);
18863 		/*
18864 		 * Since we are inside the squeue, there cannot be another
18865 		 * thread in TCP trying to set the conn_ire_cache now.  The
18866 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18867 		 * unplumb thread has not yet started cleaning up the conns.
18868 		 * Hence we don't need to grab the conn lock.
18869 		 */
18870 		if (CONN_CACHE_IRE(connp)) {
18871 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18872 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18873 				TCP_CHECK_IREINFO(tcp, ire);
18874 				connp->conn_ire_cache = ire;
18875 				cached = B_TRUE;
18876 			}
18877 			rw_exit(&ire->ire_bucket->irb_lock);
18878 		}
18879 
18880 		/*
18881 		 * We can continue to use the ire but since it was
18882 		 * not cached, we should drop the extra reference.
18883 		 */
18884 		if (!cached)
18885 			IRE_REFRELE_NOTR(ire);
18886 
18887 		/*
18888 		 * Rampart note: no need to select a new label here, since
18889 		 * labels are not allowed to change during the life of a TCP
18890 		 * connection.
18891 		 */
18892 	}
18893 
18894 	*irep = ire;
18895 
18896 	return (B_TRUE);
18897 }
18898 
18899 /*
18900  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18901  *
18902  * 0 = success;
18903  * 1 = failed to find ire and ill.
18904  */
18905 static boolean_t
18906 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18907 {
18908 	ipha_t		*ipha;
18909 	ipaddr_t	dst;
18910 	ire_t		*ire;
18911 	ill_t		*ill;
18912 	conn_t		*connp = tcp->tcp_connp;
18913 	mblk_t		*ire_fp_mp;
18914 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18915 
18916 	if (mp != NULL)
18917 		ipha = (ipha_t *)mp->b_rptr;
18918 	else
18919 		ipha = tcp->tcp_ipha;
18920 	dst = ipha->ipha_dst;
18921 
18922 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18923 		return (B_FALSE);
18924 
18925 	if ((ire->ire_flags & RTF_MULTIRT) ||
18926 	    (ire->ire_stq == NULL) ||
18927 	    (ire->ire_nce == NULL) ||
18928 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18929 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18930 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18931 		TCP_STAT(tcps, tcp_ip_ire_send);
18932 		IRE_REFRELE(ire);
18933 		return (B_FALSE);
18934 	}
18935 
18936 	ill = ire_to_ill(ire);
18937 	if (connp->conn_outgoing_ill != NULL) {
18938 		ill_t *conn_outgoing_ill = NULL;
18939 		/*
18940 		 * Choose a good ill in the group to send the packets on.
18941 		 */
18942 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18943 		ill = ire_to_ill(ire);
18944 	}
18945 	ASSERT(ill != NULL);
18946 
18947 	if (!tcp->tcp_ire_ill_check_done) {
18948 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18949 		tcp->tcp_ire_ill_check_done = B_TRUE;
18950 	}
18951 
18952 	*irep = ire;
18953 	*illp = ill;
18954 
18955 	return (B_TRUE);
18956 }
18957 
18958 static void
18959 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18960 {
18961 	ipha_t		*ipha;
18962 	ipaddr_t	src;
18963 	ipaddr_t	dst;
18964 	uint32_t	cksum;
18965 	ire_t		*ire;
18966 	uint16_t	*up;
18967 	ill_t		*ill;
18968 	conn_t		*connp = tcp->tcp_connp;
18969 	uint32_t	hcksum_txflags = 0;
18970 	mblk_t		*ire_fp_mp;
18971 	uint_t		ire_fp_mp_len;
18972 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18973 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18974 
18975 	ASSERT(DB_TYPE(mp) == M_DATA);
18976 
18977 	if (DB_CRED(mp) == NULL)
18978 		mblk_setcred(mp, CONN_CRED(connp));
18979 
18980 	ipha = (ipha_t *)mp->b_rptr;
18981 	src = ipha->ipha_src;
18982 	dst = ipha->ipha_dst;
18983 
18984 	/*
18985 	 * Drop off fast path for IPv6 and also if options are present or
18986 	 * we need to resolve a TS label.
18987 	 */
18988 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18989 	    !IPCL_IS_CONNECTED(connp) ||
18990 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18991 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18992 	    !connp->conn_ulp_labeled ||
18993 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18994 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18995 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18996 		if (tcp->tcp_snd_zcopy_aware)
18997 			mp = tcp_zcopy_disable(tcp, mp);
18998 		TCP_STAT(tcps, tcp_ip_send);
18999 		CALL_IP_WPUT(connp, q, mp);
19000 		return;
19001 	}
19002 
19003 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19004 		if (tcp->tcp_snd_zcopy_aware)
19005 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19006 		CALL_IP_WPUT(connp, q, mp);
19007 		return;
19008 	}
19009 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19010 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19011 
19012 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19013 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19014 #ifndef _BIG_ENDIAN
19015 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19016 #endif
19017 
19018 	/*
19019 	 * Check to see if we need to re-enable LSO/MDT for this connection
19020 	 * because it was previously disabled due to changes in the ill;
19021 	 * note that by doing it here, this re-enabling only applies when
19022 	 * the packet is not dispatched through CALL_IP_WPUT().
19023 	 *
19024 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19025 	 * case, since that's how we ended up here.  For IPv6, we do the
19026 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19027 	 */
19028 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19029 		/*
19030 		 * Restore LSO for this connection, so that next time around
19031 		 * it is eligible to go through tcp_lsosend() path again.
19032 		 */
19033 		TCP_STAT(tcps, tcp_lso_enabled);
19034 		tcp->tcp_lso = B_TRUE;
19035 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19036 		    "interface %s\n", (void *)connp, ill->ill_name));
19037 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19038 		/*
19039 		 * Restore MDT for this connection, so that next time around
19040 		 * it is eligible to go through tcp_multisend() path again.
19041 		 */
19042 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19043 		tcp->tcp_mdt = B_TRUE;
19044 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19045 		    "interface %s\n", (void *)connp, ill->ill_name));
19046 	}
19047 
19048 	if (tcp->tcp_snd_zcopy_aware) {
19049 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19050 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19051 			mp = tcp_zcopy_disable(tcp, mp);
19052 		/*
19053 		 * we shouldn't need to reset ipha as the mp containing
19054 		 * ipha should never be a zero-copy mp.
19055 		 */
19056 	}
19057 
19058 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19059 		ASSERT(ill->ill_hcksum_capab != NULL);
19060 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19061 	}
19062 
19063 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19064 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19065 
19066 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19067 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19068 
19069 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19070 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19071 
19072 	/* Software checksum? */
19073 	if (DB_CKSUMFLAGS(mp) == 0) {
19074 		TCP_STAT(tcps, tcp_out_sw_cksum);
19075 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19076 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19077 	}
19078 
19079 	ipha->ipha_fragment_offset_and_flags |=
19080 	    (uint32_t)htons(ire->ire_frag_flag);
19081 
19082 	/* Calculate IP header checksum if hardware isn't capable */
19083 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19084 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19085 		    ((uint16_t *)ipha)[4]);
19086 	}
19087 
19088 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19089 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19090 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19091 
19092 	UPDATE_OB_PKT_COUNT(ire);
19093 	ire->ire_last_used_time = lbolt;
19094 
19095 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19096 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19097 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19098 	    ntohs(ipha->ipha_length));
19099 
19100 	if (ILL_DLS_CAPABLE(ill)) {
19101 		/*
19102 		 * Send the packet directly to DLD, where it may be queued
19103 		 * depending on the availability of transmit resources at
19104 		 * the media layer.
19105 		 */
19106 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19107 	} else {
19108 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19109 		DTRACE_PROBE4(ip4__physical__out__start,
19110 		    ill_t *, NULL, ill_t *, out_ill,
19111 		    ipha_t *, ipha, mblk_t *, mp);
19112 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19113 		    ipst->ips_ipv4firewall_physical_out,
19114 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19115 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19116 		if (mp != NULL)
19117 			putnext(ire->ire_stq, mp);
19118 	}
19119 	IRE_REFRELE(ire);
19120 }
19121 
19122 /*
19123  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19124  * if the receiver shrinks the window, i.e. moves the right window to the
19125  * left, the we should not send new data, but should retransmit normally the
19126  * old unacked data between suna and suna + swnd. We might has sent data
19127  * that is now outside the new window, pretend that we didn't send  it.
19128  */
19129 static void
19130 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19131 {
19132 	uint32_t	snxt = tcp->tcp_snxt;
19133 	mblk_t		*xmit_tail;
19134 	int32_t		offset;
19135 
19136 	ASSERT(shrunk_count > 0);
19137 
19138 	/* Pretend we didn't send the data outside the window */
19139 	snxt -= shrunk_count;
19140 
19141 	/* Get the mblk and the offset in it per the shrunk window */
19142 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19143 
19144 	ASSERT(xmit_tail != NULL);
19145 
19146 	/* Reset all the values per the now shrunk window */
19147 	tcp->tcp_snxt = snxt;
19148 	tcp->tcp_xmit_tail = xmit_tail;
19149 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19150 	    offset;
19151 	tcp->tcp_unsent += shrunk_count;
19152 
19153 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19154 		/*
19155 		 * Make sure the timer is running so that we will probe a zero
19156 		 * window.
19157 		 */
19158 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19159 }
19160 
19161 
19162 /*
19163  * The TCP normal data output path.
19164  * NOTE: the logic of the fast path is duplicated from this function.
19165  */
19166 static void
19167 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19168 {
19169 	int		len;
19170 	mblk_t		*local_time;
19171 	mblk_t		*mp1;
19172 	uint32_t	snxt;
19173 	int		tail_unsent;
19174 	int		tcpstate;
19175 	int		usable = 0;
19176 	mblk_t		*xmit_tail;
19177 	queue_t		*q = tcp->tcp_wq;
19178 	int32_t		mss;
19179 	int32_t		num_sack_blk = 0;
19180 	int32_t		tcp_hdr_len;
19181 	int32_t		tcp_tcp_hdr_len;
19182 	int		mdt_thres;
19183 	int		rc;
19184 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19185 	ip_stack_t	*ipst;
19186 
19187 	tcpstate = tcp->tcp_state;
19188 	if (mp == NULL) {
19189 		/*
19190 		 * tcp_wput_data() with NULL mp should only be called when
19191 		 * there is unsent data.
19192 		 */
19193 		ASSERT(tcp->tcp_unsent > 0);
19194 		/* Really tacky... but we need this for detached closes. */
19195 		len = tcp->tcp_unsent;
19196 		goto data_null;
19197 	}
19198 
19199 #if CCS_STATS
19200 	wrw_stats.tot.count++;
19201 	wrw_stats.tot.bytes += msgdsize(mp);
19202 #endif
19203 	ASSERT(mp->b_datap->db_type == M_DATA);
19204 	/*
19205 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19206 	 * or before a connection attempt has begun.
19207 	 */
19208 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19209 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19210 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19211 #ifdef DEBUG
19212 			cmn_err(CE_WARN,
19213 			    "tcp_wput_data: data after ordrel, %s",
19214 			    tcp_display(tcp, NULL,
19215 			    DISP_ADDR_AND_PORT));
19216 #else
19217 			if (tcp->tcp_debug) {
19218 				(void) strlog(TCP_MOD_ID, 0, 1,
19219 				    SL_TRACE|SL_ERROR,
19220 				    "tcp_wput_data: data after ordrel, %s\n",
19221 				    tcp_display(tcp, NULL,
19222 				    DISP_ADDR_AND_PORT));
19223 			}
19224 #endif /* DEBUG */
19225 		}
19226 		if (tcp->tcp_snd_zcopy_aware &&
19227 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19228 			tcp_zcopy_notify(tcp);
19229 		freemsg(mp);
19230 		mutex_enter(&tcp->tcp_non_sq_lock);
19231 		if (tcp->tcp_flow_stopped &&
19232 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19233 			tcp_clrqfull(tcp);
19234 		}
19235 		mutex_exit(&tcp->tcp_non_sq_lock);
19236 		return;
19237 	}
19238 
19239 	/* Strip empties */
19240 	for (;;) {
19241 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19242 		    (uintptr_t)INT_MAX);
19243 		len = (int)(mp->b_wptr - mp->b_rptr);
19244 		if (len > 0)
19245 			break;
19246 		mp1 = mp;
19247 		mp = mp->b_cont;
19248 		freeb(mp1);
19249 		if (!mp) {
19250 			return;
19251 		}
19252 	}
19253 
19254 	/* If we are the first on the list ... */
19255 	if (tcp->tcp_xmit_head == NULL) {
19256 		tcp->tcp_xmit_head = mp;
19257 		tcp->tcp_xmit_tail = mp;
19258 		tcp->tcp_xmit_tail_unsent = len;
19259 	} else {
19260 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19261 		struct datab *dp;
19262 
19263 		mp1 = tcp->tcp_xmit_last;
19264 		if (len < tcp_tx_pull_len &&
19265 		    (dp = mp1->b_datap)->db_ref == 1 &&
19266 		    dp->db_lim - mp1->b_wptr >= len) {
19267 			ASSERT(len > 0);
19268 			ASSERT(!mp1->b_cont);
19269 			if (len == 1) {
19270 				*mp1->b_wptr++ = *mp->b_rptr;
19271 			} else {
19272 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19273 				mp1->b_wptr += len;
19274 			}
19275 			if (mp1 == tcp->tcp_xmit_tail)
19276 				tcp->tcp_xmit_tail_unsent += len;
19277 			mp1->b_cont = mp->b_cont;
19278 			if (tcp->tcp_snd_zcopy_aware &&
19279 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19280 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19281 			freeb(mp);
19282 			mp = mp1;
19283 		} else {
19284 			tcp->tcp_xmit_last->b_cont = mp;
19285 		}
19286 		len += tcp->tcp_unsent;
19287 	}
19288 
19289 	/* Tack on however many more positive length mblks we have */
19290 	if ((mp1 = mp->b_cont) != NULL) {
19291 		do {
19292 			int tlen;
19293 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19294 			    (uintptr_t)INT_MAX);
19295 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19296 			if (tlen <= 0) {
19297 				mp->b_cont = mp1->b_cont;
19298 				freeb(mp1);
19299 			} else {
19300 				len += tlen;
19301 				mp = mp1;
19302 			}
19303 		} while ((mp1 = mp->b_cont) != NULL);
19304 	}
19305 	tcp->tcp_xmit_last = mp;
19306 	tcp->tcp_unsent = len;
19307 
19308 	if (urgent)
19309 		usable = 1;
19310 
19311 data_null:
19312 	snxt = tcp->tcp_snxt;
19313 	xmit_tail = tcp->tcp_xmit_tail;
19314 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19315 
19316 	/*
19317 	 * Note that tcp_mss has been adjusted to take into account the
19318 	 * timestamp option if applicable.  Because SACK options do not
19319 	 * appear in every TCP segments and they are of variable lengths,
19320 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19321 	 * the actual segment length when we need to send a segment which
19322 	 * includes SACK options.
19323 	 */
19324 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19325 		int32_t	opt_len;
19326 
19327 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19328 		    tcp->tcp_num_sack_blk);
19329 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19330 		    2 + TCPOPT_HEADER_LEN;
19331 		mss = tcp->tcp_mss - opt_len;
19332 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19333 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19334 	} else {
19335 		mss = tcp->tcp_mss;
19336 		tcp_hdr_len = tcp->tcp_hdr_len;
19337 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19338 	}
19339 
19340 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19341 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19342 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19343 	}
19344 	if (tcpstate == TCPS_SYN_RCVD) {
19345 		/*
19346 		 * The three-way connection establishment handshake is not
19347 		 * complete yet. We want to queue the data for transmission
19348 		 * after entering ESTABLISHED state (RFC793). A jump to
19349 		 * "done" label effectively leaves data on the queue.
19350 		 */
19351 		goto done;
19352 	} else {
19353 		int usable_r;
19354 
19355 		/*
19356 		 * In the special case when cwnd is zero, which can only
19357 		 * happen if the connection is ECN capable, return now.
19358 		 * New segments is sent using tcp_timer().  The timer
19359 		 * is set in tcp_rput_data().
19360 		 */
19361 		if (tcp->tcp_cwnd == 0) {
19362 			/*
19363 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19364 			 * finished.
19365 			 */
19366 			ASSERT(tcp->tcp_ecn_ok ||
19367 			    tcp->tcp_state < TCPS_ESTABLISHED);
19368 			return;
19369 		}
19370 
19371 		/* NOTE: trouble if xmitting while SYN not acked? */
19372 		usable_r = snxt - tcp->tcp_suna;
19373 		usable_r = tcp->tcp_swnd - usable_r;
19374 
19375 		/*
19376 		 * Check if the receiver has shrunk the window.  If
19377 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19378 		 * cannot be set as there is unsent data, so FIN cannot
19379 		 * be sent out.  Otherwise, we need to take into account
19380 		 * of FIN as it consumes an "invisible" sequence number.
19381 		 */
19382 		ASSERT(tcp->tcp_fin_sent == 0);
19383 		if (usable_r < 0) {
19384 			/*
19385 			 * The receiver has shrunk the window and we have sent
19386 			 * -usable_r date beyond the window, re-adjust.
19387 			 *
19388 			 * If TCP window scaling is enabled, there can be
19389 			 * round down error as the advertised receive window
19390 			 * is actually right shifted n bits.  This means that
19391 			 * the lower n bits info is wiped out.  It will look
19392 			 * like the window is shrunk.  Do a check here to
19393 			 * see if the shrunk amount is actually within the
19394 			 * error in window calculation.  If it is, just
19395 			 * return.  Note that this check is inside the
19396 			 * shrunk window check.  This makes sure that even
19397 			 * though tcp_process_shrunk_swnd() is not called,
19398 			 * we will stop further processing.
19399 			 */
19400 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19401 				tcp_process_shrunk_swnd(tcp, -usable_r);
19402 			}
19403 			return;
19404 		}
19405 
19406 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19407 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19408 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19409 
19410 		/* usable = MIN(usable, unsent) */
19411 		if (usable_r > len)
19412 			usable_r = len;
19413 
19414 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19415 		if (usable_r > 0) {
19416 			usable = usable_r;
19417 		} else {
19418 			/* Bypass all other unnecessary processing. */
19419 			goto done;
19420 		}
19421 	}
19422 
19423 	local_time = (mblk_t *)lbolt;
19424 
19425 	/*
19426 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19427 	 * BSD.  This is more in line with the true intent of Nagle.
19428 	 *
19429 	 * The conditions are:
19430 	 * 1. The amount of unsent data (or amount of data which can be
19431 	 *    sent, whichever is smaller) is less than Nagle limit.
19432 	 * 2. The last sent size is also less than Nagle limit.
19433 	 * 3. There is unack'ed data.
19434 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19435 	 *    Nagle algorithm.  This reduces the probability that urgent
19436 	 *    bytes get "merged" together.
19437 	 * 5. The app has not closed the connection.  This eliminates the
19438 	 *    wait time of the receiving side waiting for the last piece of
19439 	 *    (small) data.
19440 	 *
19441 	 * If all are satisified, exit without sending anything.  Note
19442 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19443 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19444 	 * 4095).
19445 	 */
19446 	if (usable < (int)tcp->tcp_naglim &&
19447 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19448 	    snxt != tcp->tcp_suna &&
19449 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19450 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19451 		goto done;
19452 	}
19453 
19454 	if (tcp->tcp_cork) {
19455 		/*
19456 		 * if the tcp->tcp_cork option is set, then we have to force
19457 		 * TCP not to send partial segment (smaller than MSS bytes).
19458 		 * We are calculating the usable now based on full mss and
19459 		 * will save the rest of remaining data for later.
19460 		 */
19461 		if (usable < mss)
19462 			goto done;
19463 		usable = (usable / mss) * mss;
19464 	}
19465 
19466 	/* Update the latest receive window size in TCP header. */
19467 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19468 	    tcp->tcp_tcph->th_win);
19469 
19470 	/*
19471 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19472 	 *
19473 	 * 1. Simple TCP/IP{v4,v6} (no options).
19474 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19475 	 * 3. If the TCP connection is in ESTABLISHED state.
19476 	 * 4. The TCP is not detached.
19477 	 *
19478 	 * If any of the above conditions have changed during the
19479 	 * connection, stop using LSO/MDT and restore the stream head
19480 	 * parameters accordingly.
19481 	 */
19482 	ipst = tcps->tcps_netstack->netstack_ip;
19483 
19484 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19485 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19486 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19487 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19488 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19489 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19490 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19491 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19492 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19493 		if (tcp->tcp_lso) {
19494 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19495 			tcp->tcp_lso = B_FALSE;
19496 		} else {
19497 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19498 			tcp->tcp_mdt = B_FALSE;
19499 		}
19500 
19501 		/* Anything other than detached is considered pathological */
19502 		if (!TCP_IS_DETACHED(tcp)) {
19503 			if (tcp->tcp_lso)
19504 				TCP_STAT(tcps, tcp_lso_disabled);
19505 			else
19506 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19507 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19508 		}
19509 	}
19510 
19511 	/* Use MDT if sendable amount is greater than the threshold */
19512 	if (tcp->tcp_mdt &&
19513 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19514 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19515 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19516 	    (tcp->tcp_valid_bits == 0 ||
19517 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19518 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19519 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19520 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19521 		    local_time, mdt_thres);
19522 	} else {
19523 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19524 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19525 		    local_time, INT_MAX);
19526 	}
19527 
19528 	/* Pretend that all we were trying to send really got sent */
19529 	if (rc < 0 && tail_unsent < 0) {
19530 		do {
19531 			xmit_tail = xmit_tail->b_cont;
19532 			xmit_tail->b_prev = local_time;
19533 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19534 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19535 			tail_unsent += (int)(xmit_tail->b_wptr -
19536 			    xmit_tail->b_rptr);
19537 		} while (tail_unsent < 0);
19538 	}
19539 done:;
19540 	tcp->tcp_xmit_tail = xmit_tail;
19541 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19542 	len = tcp->tcp_snxt - snxt;
19543 	if (len) {
19544 		/*
19545 		 * If new data was sent, need to update the notsack
19546 		 * list, which is, afterall, data blocks that have
19547 		 * not been sack'ed by the receiver.  New data is
19548 		 * not sack'ed.
19549 		 */
19550 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19551 			/* len is a negative value. */
19552 			tcp->tcp_pipe -= len;
19553 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19554 			    tcp->tcp_snxt, snxt,
19555 			    &(tcp->tcp_num_notsack_blk),
19556 			    &(tcp->tcp_cnt_notsack_list));
19557 		}
19558 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19559 		tcp->tcp_rack = tcp->tcp_rnxt;
19560 		tcp->tcp_rack_cnt = 0;
19561 		if ((snxt + len) == tcp->tcp_suna) {
19562 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19563 		}
19564 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19565 		/*
19566 		 * Didn't send anything. Make sure the timer is running
19567 		 * so that we will probe a zero window.
19568 		 */
19569 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19570 	}
19571 	/* Note that len is the amount we just sent but with a negative sign */
19572 	tcp->tcp_unsent += len;
19573 	mutex_enter(&tcp->tcp_non_sq_lock);
19574 	if (tcp->tcp_flow_stopped) {
19575 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19576 			tcp_clrqfull(tcp);
19577 		}
19578 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19579 		tcp_setqfull(tcp);
19580 	}
19581 	mutex_exit(&tcp->tcp_non_sq_lock);
19582 }
19583 
19584 /*
19585  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19586  * outgoing TCP header with the template header, as well as other
19587  * options such as time-stamp, ECN and/or SACK.
19588  */
19589 static void
19590 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19591 {
19592 	tcph_t *tcp_tmpl, *tcp_h;
19593 	uint32_t *dst, *src;
19594 	int hdrlen;
19595 
19596 	ASSERT(OK_32PTR(rptr));
19597 
19598 	/* Template header */
19599 	tcp_tmpl = tcp->tcp_tcph;
19600 
19601 	/* Header of outgoing packet */
19602 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19603 
19604 	/* dst and src are opaque 32-bit fields, used for copying */
19605 	dst = (uint32_t *)rptr;
19606 	src = (uint32_t *)tcp->tcp_iphc;
19607 	hdrlen = tcp->tcp_hdr_len;
19608 
19609 	/* Fill time-stamp option if needed */
19610 	if (tcp->tcp_snd_ts_ok) {
19611 		U32_TO_BE32((uint32_t)now,
19612 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19613 		U32_TO_BE32(tcp->tcp_ts_recent,
19614 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19615 	} else {
19616 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19617 	}
19618 
19619 	/*
19620 	 * Copy the template header; is this really more efficient than
19621 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19622 	 * but perhaps not for other scenarios.
19623 	 */
19624 	dst[0] = src[0];
19625 	dst[1] = src[1];
19626 	dst[2] = src[2];
19627 	dst[3] = src[3];
19628 	dst[4] = src[4];
19629 	dst[5] = src[5];
19630 	dst[6] = src[6];
19631 	dst[7] = src[7];
19632 	dst[8] = src[8];
19633 	dst[9] = src[9];
19634 	if (hdrlen -= 40) {
19635 		hdrlen >>= 2;
19636 		dst += 10;
19637 		src += 10;
19638 		do {
19639 			*dst++ = *src++;
19640 		} while (--hdrlen);
19641 	}
19642 
19643 	/*
19644 	 * Set the ECN info in the TCP header if it is not a zero
19645 	 * window probe.  Zero window probe is only sent in
19646 	 * tcp_wput_data() and tcp_timer().
19647 	 */
19648 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19649 		SET_ECT(tcp, rptr);
19650 
19651 		if (tcp->tcp_ecn_echo_on)
19652 			tcp_h->th_flags[0] |= TH_ECE;
19653 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19654 			tcp_h->th_flags[0] |= TH_CWR;
19655 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19656 		}
19657 	}
19658 
19659 	/* Fill in SACK options */
19660 	if (num_sack_blk > 0) {
19661 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19662 		sack_blk_t *tmp;
19663 		int32_t	i;
19664 
19665 		wptr[0] = TCPOPT_NOP;
19666 		wptr[1] = TCPOPT_NOP;
19667 		wptr[2] = TCPOPT_SACK;
19668 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19669 		    sizeof (sack_blk_t);
19670 		wptr += TCPOPT_REAL_SACK_LEN;
19671 
19672 		tmp = tcp->tcp_sack_list;
19673 		for (i = 0; i < num_sack_blk; i++) {
19674 			U32_TO_BE32(tmp[i].begin, wptr);
19675 			wptr += sizeof (tcp_seq);
19676 			U32_TO_BE32(tmp[i].end, wptr);
19677 			wptr += sizeof (tcp_seq);
19678 		}
19679 		tcp_h->th_offset_and_rsrvd[0] +=
19680 		    ((num_sack_blk * 2 + 1) << 4);
19681 	}
19682 }
19683 
19684 /*
19685  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19686  * the destination address and SAP attribute, and if necessary, the
19687  * hardware checksum offload attribute to a Multidata message.
19688  */
19689 static int
19690 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19691     const uint32_t start, const uint32_t stuff, const uint32_t end,
19692     const uint32_t flags, tcp_stack_t *tcps)
19693 {
19694 	/* Add global destination address & SAP attribute */
19695 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19696 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19697 		    "destination address+SAP\n"));
19698 
19699 		if (dlmp != NULL)
19700 			TCP_STAT(tcps, tcp_mdt_allocfail);
19701 		return (-1);
19702 	}
19703 
19704 	/* Add global hwcksum attribute */
19705 	if (hwcksum &&
19706 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19707 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19708 		    "checksum attribute\n"));
19709 
19710 		TCP_STAT(tcps, tcp_mdt_allocfail);
19711 		return (-1);
19712 	}
19713 
19714 	return (0);
19715 }
19716 
19717 /*
19718  * Smaller and private version of pdescinfo_t used specifically for TCP,
19719  * which allows for only two payload spans per packet.
19720  */
19721 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19722 
19723 /*
19724  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19725  * scheme, and returns one the following:
19726  *
19727  * -1 = failed allocation.
19728  *  0 = success; burst count reached, or usable send window is too small,
19729  *      and that we'd rather wait until later before sending again.
19730  */
19731 static int
19732 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19733     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19734     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19735     const int mdt_thres)
19736 {
19737 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19738 	multidata_t	*mmd;
19739 	uint_t		obsegs, obbytes, hdr_frag_sz;
19740 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19741 	int		num_burst_seg, max_pld;
19742 	pdesc_t		*pkt;
19743 	tcp_pdescinfo_t	tcp_pkt_info;
19744 	pdescinfo_t	*pkt_info;
19745 	int		pbuf_idx, pbuf_idx_nxt;
19746 	int		seg_len, len, spill, af;
19747 	boolean_t	add_buffer, zcopy, clusterwide;
19748 	boolean_t	buf_trunked = B_FALSE;
19749 	boolean_t	rconfirm = B_FALSE;
19750 	boolean_t	done = B_FALSE;
19751 	uint32_t	cksum;
19752 	uint32_t	hwcksum_flags;
19753 	ire_t		*ire = NULL;
19754 	ill_t		*ill;
19755 	ipha_t		*ipha;
19756 	ip6_t		*ip6h;
19757 	ipaddr_t	src, dst;
19758 	ill_zerocopy_capab_t *zc_cap = NULL;
19759 	uint16_t	*up;
19760 	int		err;
19761 	conn_t		*connp;
19762 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19763 	uchar_t		*pld_start;
19764 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19765 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19766 
19767 #ifdef	_BIG_ENDIAN
19768 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19769 #else
19770 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19771 #endif
19772 
19773 #define	PREP_NEW_MULTIDATA() {			\
19774 	mmd = NULL;				\
19775 	md_mp = md_hbuf = NULL;			\
19776 	cur_hdr_off = 0;			\
19777 	max_pld = tcp->tcp_mdt_max_pld;		\
19778 	pbuf_idx = pbuf_idx_nxt = -1;		\
19779 	add_buffer = B_TRUE;			\
19780 	zcopy = B_FALSE;			\
19781 }
19782 
19783 #define	PREP_NEW_PBUF() {			\
19784 	md_pbuf = md_pbuf_nxt = NULL;		\
19785 	pbuf_idx = pbuf_idx_nxt = -1;		\
19786 	cur_pld_off = 0;			\
19787 	first_snxt = *snxt;			\
19788 	ASSERT(*tail_unsent > 0);		\
19789 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19790 }
19791 
19792 	ASSERT(mdt_thres >= mss);
19793 	ASSERT(*usable > 0 && *usable > mdt_thres);
19794 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19795 	ASSERT(!TCP_IS_DETACHED(tcp));
19796 	ASSERT(tcp->tcp_valid_bits == 0 ||
19797 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19798 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19799 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19800 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19801 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19802 
19803 	connp = tcp->tcp_connp;
19804 	ASSERT(connp != NULL);
19805 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19806 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19807 
19808 	/*
19809 	 * Note that tcp will only declare at most 2 payload spans per
19810 	 * packet, which is much lower than the maximum allowable number
19811 	 * of packet spans per Multidata.  For this reason, we use the
19812 	 * privately declared and smaller descriptor info structure, in
19813 	 * order to save some stack space.
19814 	 */
19815 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19816 
19817 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19818 	if (af == AF_INET) {
19819 		dst = tcp->tcp_ipha->ipha_dst;
19820 		src = tcp->tcp_ipha->ipha_src;
19821 		ASSERT(!CLASSD(dst));
19822 	}
19823 	ASSERT(af == AF_INET ||
19824 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19825 
19826 	obsegs = obbytes = 0;
19827 	num_burst_seg = tcp->tcp_snd_burst;
19828 	md_mp_head = NULL;
19829 	PREP_NEW_MULTIDATA();
19830 
19831 	/*
19832 	 * Before we go on further, make sure there is an IRE that we can
19833 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19834 	 * in proceeding any further, and we should just hand everything
19835 	 * off to the legacy path.
19836 	 */
19837 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19838 		goto legacy_send_no_md;
19839 
19840 	ASSERT(ire != NULL);
19841 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19842 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19843 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19844 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19845 	/*
19846 	 * If we do support loopback for MDT (which requires modifications
19847 	 * to the receiving paths), the following assertions should go away,
19848 	 * and we would be sending the Multidata to loopback conn later on.
19849 	 */
19850 	ASSERT(!IRE_IS_LOCAL(ire));
19851 	ASSERT(ire->ire_stq != NULL);
19852 
19853 	ill = ire_to_ill(ire);
19854 	ASSERT(ill != NULL);
19855 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19856 
19857 	if (!tcp->tcp_ire_ill_check_done) {
19858 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19859 		tcp->tcp_ire_ill_check_done = B_TRUE;
19860 	}
19861 
19862 	/*
19863 	 * If the underlying interface conditions have changed, or if the
19864 	 * new interface does not support MDT, go back to legacy path.
19865 	 */
19866 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19867 		/* don't go through this path anymore for this connection */
19868 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19869 		tcp->tcp_mdt = B_FALSE;
19870 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19871 		    "interface %s\n", (void *)connp, ill->ill_name));
19872 		/* IRE will be released prior to returning */
19873 		goto legacy_send_no_md;
19874 	}
19875 
19876 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19877 		zc_cap = ill->ill_zerocopy_capab;
19878 
19879 	/*
19880 	 * Check if we can take tcp fast-path. Note that "incomplete"
19881 	 * ire's (where the link-layer for next hop is not resolved
19882 	 * or where the fast-path header in nce_fp_mp is not available
19883 	 * yet) are sent down the legacy (slow) path.
19884 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19885 	 */
19886 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19887 		/* IRE will be released prior to returning */
19888 		goto legacy_send_no_md;
19889 	}
19890 
19891 	/* go to legacy path if interface doesn't support zerocopy */
19892 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19893 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19894 		/* IRE will be released prior to returning */
19895 		goto legacy_send_no_md;
19896 	}
19897 
19898 	/* does the interface support hardware checksum offload? */
19899 	hwcksum_flags = 0;
19900 	if (ILL_HCKSUM_CAPABLE(ill) &&
19901 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19902 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19903 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19904 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19905 		    HCKSUM_IPHDRCKSUM)
19906 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19907 
19908 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19909 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19910 			hwcksum_flags |= HCK_FULLCKSUM;
19911 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19912 		    HCKSUM_INET_PARTIAL)
19913 			hwcksum_flags |= HCK_PARTIALCKSUM;
19914 	}
19915 
19916 	/*
19917 	 * Each header fragment consists of the leading extra space,
19918 	 * followed by the TCP/IP header, and the trailing extra space.
19919 	 * We make sure that each header fragment begins on a 32-bit
19920 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19921 	 * aligned in tcp_mdt_update).
19922 	 */
19923 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19924 	    tcp->tcp_mdt_hdr_tail), 4);
19925 
19926 	/* are we starting from the beginning of data block? */
19927 	if (*tail_unsent == 0) {
19928 		*xmit_tail = (*xmit_tail)->b_cont;
19929 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19930 		*tail_unsent = (int)MBLKL(*xmit_tail);
19931 	}
19932 
19933 	/*
19934 	 * Here we create one or more Multidata messages, each made up of
19935 	 * one header buffer and up to N payload buffers.  This entire
19936 	 * operation is done within two loops:
19937 	 *
19938 	 * The outer loop mostly deals with creating the Multidata message,
19939 	 * as well as the header buffer that gets added to it.  It also
19940 	 * links the Multidata messages together such that all of them can
19941 	 * be sent down to the lower layer in a single putnext call; this
19942 	 * linking behavior depends on the tcp_mdt_chain tunable.
19943 	 *
19944 	 * The inner loop takes an existing Multidata message, and adds
19945 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19946 	 * packetizes those buffers by filling up the corresponding header
19947 	 * buffer fragments with the proper IP and TCP headers, and by
19948 	 * describing the layout of each packet in the packet descriptors
19949 	 * that get added to the Multidata.
19950 	 */
19951 	do {
19952 		/*
19953 		 * If usable send window is too small, or data blocks in
19954 		 * transmit list are smaller than our threshold (i.e. app
19955 		 * performs large writes followed by small ones), we hand
19956 		 * off the control over to the legacy path.  Note that we'll
19957 		 * get back the control once it encounters a large block.
19958 		 */
19959 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19960 		    (*xmit_tail)->b_cont != NULL &&
19961 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19962 			/* send down what we've got so far */
19963 			if (md_mp_head != NULL) {
19964 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19965 				    obsegs, obbytes, &rconfirm);
19966 			}
19967 			/*
19968 			 * Pass control over to tcp_send(), but tell it to
19969 			 * return to us once a large-size transmission is
19970 			 * possible.
19971 			 */
19972 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19973 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19974 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19975 			    tail_unsent, xmit_tail, local_time,
19976 			    mdt_thres)) <= 0) {
19977 				/* burst count reached, or alloc failed */
19978 				IRE_REFRELE(ire);
19979 				return (err);
19980 			}
19981 
19982 			/* tcp_send() may have sent everything, so check */
19983 			if (*usable <= 0) {
19984 				IRE_REFRELE(ire);
19985 				return (0);
19986 			}
19987 
19988 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19989 			/*
19990 			 * We may have delivered the Multidata, so make sure
19991 			 * to re-initialize before the next round.
19992 			 */
19993 			md_mp_head = NULL;
19994 			obsegs = obbytes = 0;
19995 			num_burst_seg = tcp->tcp_snd_burst;
19996 			PREP_NEW_MULTIDATA();
19997 
19998 			/* are we starting from the beginning of data block? */
19999 			if (*tail_unsent == 0) {
20000 				*xmit_tail = (*xmit_tail)->b_cont;
20001 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20002 				    (uintptr_t)INT_MAX);
20003 				*tail_unsent = (int)MBLKL(*xmit_tail);
20004 			}
20005 		}
20006 
20007 		/*
20008 		 * max_pld limits the number of mblks in tcp's transmit
20009 		 * queue that can be added to a Multidata message.  Once
20010 		 * this counter reaches zero, no more additional mblks
20011 		 * can be added to it.  What happens afterwards depends
20012 		 * on whether or not we are set to chain the Multidata
20013 		 * messages.  If we are to link them together, reset
20014 		 * max_pld to its original value (tcp_mdt_max_pld) and
20015 		 * prepare to create a new Multidata message which will
20016 		 * get linked to md_mp_head.  Else, leave it alone and
20017 		 * let the inner loop break on its own.
20018 		 */
20019 		if (tcp_mdt_chain && max_pld == 0)
20020 			PREP_NEW_MULTIDATA();
20021 
20022 		/* adding a payload buffer; re-initialize values */
20023 		if (add_buffer)
20024 			PREP_NEW_PBUF();
20025 
20026 		/*
20027 		 * If we don't have a Multidata, either because we just
20028 		 * (re)entered this outer loop, or after we branched off
20029 		 * to tcp_send above, setup the Multidata and header
20030 		 * buffer to be used.
20031 		 */
20032 		if (md_mp == NULL) {
20033 			int md_hbuflen;
20034 			uint32_t start, stuff;
20035 
20036 			/*
20037 			 * Calculate Multidata header buffer size large enough
20038 			 * to hold all of the headers that can possibly be
20039 			 * sent at this moment.  We'd rather over-estimate
20040 			 * the size than running out of space; this is okay
20041 			 * since this buffer is small anyway.
20042 			 */
20043 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20044 
20045 			/*
20046 			 * Start and stuff offset for partial hardware
20047 			 * checksum offload; these are currently for IPv4.
20048 			 * For full checksum offload, they are set to zero.
20049 			 */
20050 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20051 				if (af == AF_INET) {
20052 					start = IP_SIMPLE_HDR_LENGTH;
20053 					stuff = IP_SIMPLE_HDR_LENGTH +
20054 					    TCP_CHECKSUM_OFFSET;
20055 				} else {
20056 					start = IPV6_HDR_LEN;
20057 					stuff = IPV6_HDR_LEN +
20058 					    TCP_CHECKSUM_OFFSET;
20059 				}
20060 			} else {
20061 				start = stuff = 0;
20062 			}
20063 
20064 			/*
20065 			 * Create the header buffer, Multidata, as well as
20066 			 * any necessary attributes (destination address,
20067 			 * SAP and hardware checksum offload) that should
20068 			 * be associated with the Multidata message.
20069 			 */
20070 			ASSERT(cur_hdr_off == 0);
20071 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20072 			    ((md_hbuf->b_wptr += md_hbuflen),
20073 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20074 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20075 			    /* fastpath mblk */
20076 			    ire->ire_nce->nce_res_mp,
20077 			    /* hardware checksum enabled */
20078 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20079 			    /* hardware checksum offsets */
20080 			    start, stuff, 0,
20081 			    /* hardware checksum flag */
20082 			    hwcksum_flags, tcps) != 0)) {
20083 legacy_send:
20084 				if (md_mp != NULL) {
20085 					/* Unlink message from the chain */
20086 					if (md_mp_head != NULL) {
20087 						err = (intptr_t)rmvb(md_mp_head,
20088 						    md_mp);
20089 						/*
20090 						 * We can't assert that rmvb
20091 						 * did not return -1, since we
20092 						 * may get here before linkb
20093 						 * happens.  We do, however,
20094 						 * check if we just removed the
20095 						 * only element in the list.
20096 						 */
20097 						if (err == 0)
20098 							md_mp_head = NULL;
20099 					}
20100 					/* md_hbuf gets freed automatically */
20101 					TCP_STAT(tcps, tcp_mdt_discarded);
20102 					freeb(md_mp);
20103 				} else {
20104 					/* Either allocb or mmd_alloc failed */
20105 					TCP_STAT(tcps, tcp_mdt_allocfail);
20106 					if (md_hbuf != NULL)
20107 						freeb(md_hbuf);
20108 				}
20109 
20110 				/* send down what we've got so far */
20111 				if (md_mp_head != NULL) {
20112 					tcp_multisend_data(tcp, ire, ill,
20113 					    md_mp_head, obsegs, obbytes,
20114 					    &rconfirm);
20115 				}
20116 legacy_send_no_md:
20117 				if (ire != NULL)
20118 					IRE_REFRELE(ire);
20119 				/*
20120 				 * Too bad; let the legacy path handle this.
20121 				 * We specify INT_MAX for the threshold, since
20122 				 * we gave up with the Multidata processings
20123 				 * and let the old path have it all.
20124 				 */
20125 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20126 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20127 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20128 				    snxt, tail_unsent, xmit_tail, local_time,
20129 				    INT_MAX));
20130 			}
20131 
20132 			/* link to any existing ones, if applicable */
20133 			TCP_STAT(tcps, tcp_mdt_allocd);
20134 			if (md_mp_head == NULL) {
20135 				md_mp_head = md_mp;
20136 			} else if (tcp_mdt_chain) {
20137 				TCP_STAT(tcps, tcp_mdt_linked);
20138 				linkb(md_mp_head, md_mp);
20139 			}
20140 		}
20141 
20142 		ASSERT(md_mp_head != NULL);
20143 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20144 		ASSERT(md_mp != NULL && mmd != NULL);
20145 		ASSERT(md_hbuf != NULL);
20146 
20147 		/*
20148 		 * Packetize the transmittable portion of the data block;
20149 		 * each data block is essentially added to the Multidata
20150 		 * as a payload buffer.  We also deal with adding more
20151 		 * than one payload buffers, which happens when the remaining
20152 		 * packetized portion of the current payload buffer is less
20153 		 * than MSS, while the next data block in transmit queue
20154 		 * has enough data to make up for one.  This "spillover"
20155 		 * case essentially creates a split-packet, where portions
20156 		 * of the packet's payload fragments may span across two
20157 		 * virtually discontiguous address blocks.
20158 		 */
20159 		seg_len = mss;
20160 		do {
20161 			len = seg_len;
20162 
20163 			ASSERT(len > 0);
20164 			ASSERT(max_pld >= 0);
20165 			ASSERT(!add_buffer || cur_pld_off == 0);
20166 
20167 			/*
20168 			 * First time around for this payload buffer; note
20169 			 * in the case of a spillover, the following has
20170 			 * been done prior to adding the split-packet
20171 			 * descriptor to Multidata, and we don't want to
20172 			 * repeat the process.
20173 			 */
20174 			if (add_buffer) {
20175 				ASSERT(mmd != NULL);
20176 				ASSERT(md_pbuf == NULL);
20177 				ASSERT(md_pbuf_nxt == NULL);
20178 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20179 
20180 				/*
20181 				 * Have we reached the limit?  We'd get to
20182 				 * this case when we're not chaining the
20183 				 * Multidata messages together, and since
20184 				 * we're done, terminate this loop.
20185 				 */
20186 				if (max_pld == 0)
20187 					break; /* done */
20188 
20189 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20190 					TCP_STAT(tcps, tcp_mdt_allocfail);
20191 					goto legacy_send; /* out_of_mem */
20192 				}
20193 
20194 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20195 				    zc_cap != NULL) {
20196 					if (!ip_md_zcopy_attr(mmd, NULL,
20197 					    zc_cap->ill_zerocopy_flags)) {
20198 						freeb(md_pbuf);
20199 						TCP_STAT(tcps,
20200 						    tcp_mdt_allocfail);
20201 						/* out_of_mem */
20202 						goto legacy_send;
20203 					}
20204 					zcopy = B_TRUE;
20205 				}
20206 
20207 				md_pbuf->b_rptr += base_pld_off;
20208 
20209 				/*
20210 				 * Add a payload buffer to the Multidata; this
20211 				 * operation must not fail, or otherwise our
20212 				 * logic in this routine is broken.  There
20213 				 * is no memory allocation done by the
20214 				 * routine, so any returned failure simply
20215 				 * tells us that we've done something wrong.
20216 				 *
20217 				 * A failure tells us that either we're adding
20218 				 * the same payload buffer more than once, or
20219 				 * we're trying to add more buffers than
20220 				 * allowed (max_pld calculation is wrong).
20221 				 * None of the above cases should happen, and
20222 				 * we panic because either there's horrible
20223 				 * heap corruption, and/or programming mistake.
20224 				 */
20225 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20226 				if (pbuf_idx < 0) {
20227 					cmn_err(CE_PANIC, "tcp_multisend: "
20228 					    "payload buffer logic error "
20229 					    "detected for tcp %p mmd %p "
20230 					    "pbuf %p (%d)\n",
20231 					    (void *)tcp, (void *)mmd,
20232 					    (void *)md_pbuf, pbuf_idx);
20233 				}
20234 
20235 				ASSERT(max_pld > 0);
20236 				--max_pld;
20237 				add_buffer = B_FALSE;
20238 			}
20239 
20240 			ASSERT(md_mp_head != NULL);
20241 			ASSERT(md_pbuf != NULL);
20242 			ASSERT(md_pbuf_nxt == NULL);
20243 			ASSERT(pbuf_idx != -1);
20244 			ASSERT(pbuf_idx_nxt == -1);
20245 			ASSERT(*usable > 0);
20246 
20247 			/*
20248 			 * We spillover to the next payload buffer only
20249 			 * if all of the following is true:
20250 			 *
20251 			 *   1. There is not enough data on the current
20252 			 *	payload buffer to make up `len',
20253 			 *   2. We are allowed to send `len',
20254 			 *   3. The next payload buffer length is large
20255 			 *	enough to accomodate `spill'.
20256 			 */
20257 			if ((spill = len - *tail_unsent) > 0 &&
20258 			    *usable >= len &&
20259 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20260 			    max_pld > 0) {
20261 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20262 				if (md_pbuf_nxt == NULL) {
20263 					TCP_STAT(tcps, tcp_mdt_allocfail);
20264 					goto legacy_send; /* out_of_mem */
20265 				}
20266 
20267 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20268 				    zc_cap != NULL) {
20269 					if (!ip_md_zcopy_attr(mmd, NULL,
20270 					    zc_cap->ill_zerocopy_flags)) {
20271 						freeb(md_pbuf_nxt);
20272 						TCP_STAT(tcps,
20273 						    tcp_mdt_allocfail);
20274 						/* out_of_mem */
20275 						goto legacy_send;
20276 					}
20277 					zcopy = B_TRUE;
20278 				}
20279 
20280 				/*
20281 				 * See comments above on the first call to
20282 				 * mmd_addpldbuf for explanation on the panic.
20283 				 */
20284 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20285 				if (pbuf_idx_nxt < 0) {
20286 					panic("tcp_multisend: "
20287 					    "next payload buffer logic error "
20288 					    "detected for tcp %p mmd %p "
20289 					    "pbuf %p (%d)\n",
20290 					    (void *)tcp, (void *)mmd,
20291 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20292 				}
20293 
20294 				ASSERT(max_pld > 0);
20295 				--max_pld;
20296 			} else if (spill > 0) {
20297 				/*
20298 				 * If there's a spillover, but the following
20299 				 * xmit_tail couldn't give us enough octets
20300 				 * to reach "len", then stop the current
20301 				 * Multidata creation and let the legacy
20302 				 * tcp_send() path take over.  We don't want
20303 				 * to send the tiny segment as part of this
20304 				 * Multidata for performance reasons; instead,
20305 				 * we let the legacy path deal with grouping
20306 				 * it with the subsequent small mblks.
20307 				 */
20308 				if (*usable >= len &&
20309 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20310 					max_pld = 0;
20311 					break;	/* done */
20312 				}
20313 
20314 				/*
20315 				 * We can't spillover, and we are near
20316 				 * the end of the current payload buffer,
20317 				 * so send what's left.
20318 				 */
20319 				ASSERT(*tail_unsent > 0);
20320 				len = *tail_unsent;
20321 			}
20322 
20323 			/* tail_unsent is negated if there is a spillover */
20324 			*tail_unsent -= len;
20325 			*usable -= len;
20326 			ASSERT(*usable >= 0);
20327 
20328 			if (*usable < mss)
20329 				seg_len = *usable;
20330 			/*
20331 			 * Sender SWS avoidance; see comments in tcp_send();
20332 			 * everything else is the same, except that we only
20333 			 * do this here if there is no more data to be sent
20334 			 * following the current xmit_tail.  We don't check
20335 			 * for 1-byte urgent data because we shouldn't get
20336 			 * here if TCP_URG_VALID is set.
20337 			 */
20338 			if (*usable > 0 && *usable < mss &&
20339 			    ((md_pbuf_nxt == NULL &&
20340 			    (*xmit_tail)->b_cont == NULL) ||
20341 			    (md_pbuf_nxt != NULL &&
20342 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20343 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20344 			    (tcp->tcp_unsent -
20345 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20346 			    !tcp->tcp_zero_win_probe) {
20347 				if ((*snxt + len) == tcp->tcp_snxt &&
20348 				    (*snxt + len) == tcp->tcp_suna) {
20349 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20350 				}
20351 				done = B_TRUE;
20352 			}
20353 
20354 			/*
20355 			 * Prime pump for IP's checksumming on our behalf;
20356 			 * include the adjustment for a source route if any.
20357 			 * Do this only for software/partial hardware checksum
20358 			 * offload, as this field gets zeroed out later for
20359 			 * the full hardware checksum offload case.
20360 			 */
20361 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20362 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20363 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20364 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20365 			}
20366 
20367 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20368 			*snxt += len;
20369 
20370 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20371 			/*
20372 			 * We set the PUSH bit only if TCP has no more buffered
20373 			 * data to be transmitted (or if sender SWS avoidance
20374 			 * takes place), as opposed to setting it for every
20375 			 * last packet in the burst.
20376 			 */
20377 			if (done ||
20378 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20379 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20380 
20381 			/*
20382 			 * Set FIN bit if this is our last segment; snxt
20383 			 * already includes its length, and it will not
20384 			 * be adjusted after this point.
20385 			 */
20386 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20387 			    *snxt == tcp->tcp_fss) {
20388 				if (!tcp->tcp_fin_acked) {
20389 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20390 					BUMP_MIB(&tcps->tcps_mib,
20391 					    tcpOutControl);
20392 				}
20393 				if (!tcp->tcp_fin_sent) {
20394 					tcp->tcp_fin_sent = B_TRUE;
20395 					/*
20396 					 * tcp state must be ESTABLISHED
20397 					 * in order for us to get here in
20398 					 * the first place.
20399 					 */
20400 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20401 
20402 					/*
20403 					 * Upon returning from this routine,
20404 					 * tcp_wput_data() will set tcp_snxt
20405 					 * to be equal to snxt + tcp_fin_sent.
20406 					 * This is essentially the same as
20407 					 * setting it to tcp_fss + 1.
20408 					 */
20409 				}
20410 			}
20411 
20412 			tcp->tcp_last_sent_len = (ushort_t)len;
20413 
20414 			len += tcp_hdr_len;
20415 			if (tcp->tcp_ipversion == IPV4_VERSION)
20416 				tcp->tcp_ipha->ipha_length = htons(len);
20417 			else
20418 				tcp->tcp_ip6h->ip6_plen = htons(len -
20419 				    ((char *)&tcp->tcp_ip6h[1] -
20420 				    tcp->tcp_iphc));
20421 
20422 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20423 
20424 			/* setup header fragment */
20425 			PDESC_HDR_ADD(pkt_info,
20426 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20427 			    tcp->tcp_mdt_hdr_head,		/* head room */
20428 			    tcp_hdr_len,			/* len */
20429 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20430 
20431 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20432 			    hdr_frag_sz);
20433 			ASSERT(MBLKIN(md_hbuf,
20434 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20435 			    PDESC_HDRSIZE(pkt_info)));
20436 
20437 			/* setup first payload fragment */
20438 			PDESC_PLD_INIT(pkt_info);
20439 			PDESC_PLD_SPAN_ADD(pkt_info,
20440 			    pbuf_idx,				/* index */
20441 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20442 			    tcp->tcp_last_sent_len);		/* len */
20443 
20444 			/* create a split-packet in case of a spillover */
20445 			if (md_pbuf_nxt != NULL) {
20446 				ASSERT(spill > 0);
20447 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20448 				ASSERT(!add_buffer);
20449 
20450 				md_pbuf = md_pbuf_nxt;
20451 				md_pbuf_nxt = NULL;
20452 				pbuf_idx = pbuf_idx_nxt;
20453 				pbuf_idx_nxt = -1;
20454 				cur_pld_off = spill;
20455 
20456 				/* trim out first payload fragment */
20457 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20458 
20459 				/* setup second payload fragment */
20460 				PDESC_PLD_SPAN_ADD(pkt_info,
20461 				    pbuf_idx,			/* index */
20462 				    md_pbuf->b_rptr,		/* start */
20463 				    spill);			/* len */
20464 
20465 				if ((*xmit_tail)->b_next == NULL) {
20466 					/*
20467 					 * Store the lbolt used for RTT
20468 					 * estimation. We can only record one
20469 					 * timestamp per mblk so we do it when
20470 					 * we reach the end of the payload
20471 					 * buffer.  Also we only take a new
20472 					 * timestamp sample when the previous
20473 					 * timed data from the same mblk has
20474 					 * been ack'ed.
20475 					 */
20476 					(*xmit_tail)->b_prev = local_time;
20477 					(*xmit_tail)->b_next =
20478 					    (mblk_t *)(uintptr_t)first_snxt;
20479 				}
20480 
20481 				first_snxt = *snxt - spill;
20482 
20483 				/*
20484 				 * Advance xmit_tail; usable could be 0 by
20485 				 * the time we got here, but we made sure
20486 				 * above that we would only spillover to
20487 				 * the next data block if usable includes
20488 				 * the spilled-over amount prior to the
20489 				 * subtraction.  Therefore, we are sure
20490 				 * that xmit_tail->b_cont can't be NULL.
20491 				 */
20492 				ASSERT((*xmit_tail)->b_cont != NULL);
20493 				*xmit_tail = (*xmit_tail)->b_cont;
20494 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20495 				    (uintptr_t)INT_MAX);
20496 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20497 			} else {
20498 				cur_pld_off += tcp->tcp_last_sent_len;
20499 			}
20500 
20501 			/*
20502 			 * Fill in the header using the template header, and
20503 			 * add options such as time-stamp, ECN and/or SACK,
20504 			 * as needed.
20505 			 */
20506 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20507 			    (clock_t)local_time, num_sack_blk);
20508 
20509 			/* take care of some IP header businesses */
20510 			if (af == AF_INET) {
20511 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20512 
20513 				ASSERT(OK_32PTR((uchar_t *)ipha));
20514 				ASSERT(PDESC_HDRL(pkt_info) >=
20515 				    IP_SIMPLE_HDR_LENGTH);
20516 				ASSERT(ipha->ipha_version_and_hdr_length ==
20517 				    IP_SIMPLE_HDR_VERSION);
20518 
20519 				/*
20520 				 * Assign ident value for current packet; see
20521 				 * related comments in ip_wput_ire() about the
20522 				 * contract private interface with clustering
20523 				 * group.
20524 				 */
20525 				clusterwide = B_FALSE;
20526 				if (cl_inet_ipident != NULL) {
20527 					ASSERT(cl_inet_isclusterwide != NULL);
20528 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20529 					    AF_INET,
20530 					    (uint8_t *)(uintptr_t)src)) {
20531 						ipha->ipha_ident =
20532 						    (*cl_inet_ipident)
20533 						    (IPPROTO_IP, AF_INET,
20534 						    (uint8_t *)(uintptr_t)src,
20535 						    (uint8_t *)(uintptr_t)dst);
20536 						clusterwide = B_TRUE;
20537 					}
20538 				}
20539 
20540 				if (!clusterwide) {
20541 					ipha->ipha_ident = (uint16_t)
20542 					    atomic_add_32_nv(
20543 						&ire->ire_ident, 1);
20544 				}
20545 #ifndef _BIG_ENDIAN
20546 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20547 				    (ipha->ipha_ident >> 8);
20548 #endif
20549 			} else {
20550 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20551 
20552 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20553 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20554 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20555 				ASSERT(PDESC_HDRL(pkt_info) >=
20556 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20557 				    TCP_CHECKSUM_SIZE));
20558 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20559 
20560 				if (tcp->tcp_ip_forward_progress) {
20561 					rconfirm = B_TRUE;
20562 					tcp->tcp_ip_forward_progress = B_FALSE;
20563 				}
20564 			}
20565 
20566 			/* at least one payload span, and at most two */
20567 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20568 
20569 			/* add the packet descriptor to Multidata */
20570 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20571 			    KM_NOSLEEP)) == NULL) {
20572 				/*
20573 				 * Any failure other than ENOMEM indicates
20574 				 * that we have passed in invalid pkt_info
20575 				 * or parameters to mmd_addpdesc, which must
20576 				 * not happen.
20577 				 *
20578 				 * EINVAL is a result of failure on boundary
20579 				 * checks against the pkt_info contents.  It
20580 				 * should not happen, and we panic because
20581 				 * either there's horrible heap corruption,
20582 				 * and/or programming mistake.
20583 				 */
20584 				if (err != ENOMEM) {
20585 					cmn_err(CE_PANIC, "tcp_multisend: "
20586 					    "pdesc logic error detected for "
20587 					    "tcp %p mmd %p pinfo %p (%d)\n",
20588 					    (void *)tcp, (void *)mmd,
20589 					    (void *)pkt_info, err);
20590 				}
20591 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20592 				goto legacy_send; /* out_of_mem */
20593 			}
20594 			ASSERT(pkt != NULL);
20595 
20596 			/* calculate IP header and TCP checksums */
20597 			if (af == AF_INET) {
20598 				/* calculate pseudo-header checksum */
20599 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20600 				    (src >> 16) + (src & 0xFFFF);
20601 
20602 				/* offset for TCP header checksum */
20603 				up = IPH_TCPH_CHECKSUMP(ipha,
20604 				    IP_SIMPLE_HDR_LENGTH);
20605 			} else {
20606 				up = (uint16_t *)&ip6h->ip6_src;
20607 
20608 				/* calculate pseudo-header checksum */
20609 				cksum = up[0] + up[1] + up[2] + up[3] +
20610 				    up[4] + up[5] + up[6] + up[7] +
20611 				    up[8] + up[9] + up[10] + up[11] +
20612 				    up[12] + up[13] + up[14] + up[15];
20613 
20614 				/* Fold the initial sum */
20615 				cksum = (cksum & 0xffff) + (cksum >> 16);
20616 
20617 				up = (uint16_t *)(((uchar_t *)ip6h) +
20618 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20619 			}
20620 
20621 			if (hwcksum_flags & HCK_FULLCKSUM) {
20622 				/* clear checksum field for hardware */
20623 				*up = 0;
20624 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20625 				uint32_t sum;
20626 
20627 				/* pseudo-header checksumming */
20628 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20629 				sum = (sum & 0xFFFF) + (sum >> 16);
20630 				*up = (sum & 0xFFFF) + (sum >> 16);
20631 			} else {
20632 				/* software checksumming */
20633 				TCP_STAT(tcps, tcp_out_sw_cksum);
20634 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20635 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20636 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20637 				    cksum + IP_TCP_CSUM_COMP);
20638 				if (*up == 0)
20639 					*up = 0xFFFF;
20640 			}
20641 
20642 			/* IPv4 header checksum */
20643 			if (af == AF_INET) {
20644 				ipha->ipha_fragment_offset_and_flags |=
20645 				    (uint32_t)htons(ire->ire_frag_flag);
20646 
20647 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20648 					ipha->ipha_hdr_checksum = 0;
20649 				} else {
20650 					IP_HDR_CKSUM(ipha, cksum,
20651 					    ((uint32_t *)ipha)[0],
20652 					    ((uint16_t *)ipha)[4]);
20653 				}
20654 			}
20655 
20656 			if (af == AF_INET &&
20657 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20658 			    af == AF_INET6 &&
20659 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20660 				/* build header(IP/TCP) mblk for this segment */
20661 				if ((mp = dupb(md_hbuf)) == NULL)
20662 					goto legacy_send;
20663 
20664 				mp->b_rptr = pkt_info->hdr_rptr;
20665 				mp->b_wptr = pkt_info->hdr_wptr;
20666 
20667 				/* build payload mblk for this segment */
20668 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20669 					freemsg(mp);
20670 					goto legacy_send;
20671 				}
20672 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20673 				mp1->b_rptr = mp1->b_wptr -
20674 				    tcp->tcp_last_sent_len;
20675 				linkb(mp, mp1);
20676 
20677 				pld_start = mp1->b_rptr;
20678 
20679 				if (af == AF_INET) {
20680 					DTRACE_PROBE4(
20681 					    ip4__physical__out__start,
20682 					    ill_t *, NULL,
20683 					    ill_t *, ill,
20684 					    ipha_t *, ipha,
20685 					    mblk_t *, mp);
20686 					FW_HOOKS(
20687 					    ipst->ips_ip4_physical_out_event,
20688 					    ipst->ips_ipv4firewall_physical_out,
20689 					    NULL, ill, ipha, mp, mp, 0, ipst);
20690 					DTRACE_PROBE1(
20691 					    ip4__physical__out__end,
20692 					    mblk_t *, mp);
20693 				} else {
20694 					DTRACE_PROBE4(
20695 					    ip6__physical__out_start,
20696 					    ill_t *, NULL,
20697 					    ill_t *, ill,
20698 					    ip6_t *, ip6h,
20699 					    mblk_t *, mp);
20700 					FW_HOOKS6(
20701 					    ipst->ips_ip6_physical_out_event,
20702 					    ipst->ips_ipv6firewall_physical_out,
20703 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20704 					DTRACE_PROBE1(
20705 					    ip6__physical__out__end,
20706 					    mblk_t *, mp);
20707 				}
20708 
20709 				if (buf_trunked && mp != NULL) {
20710 					/*
20711 					 * Need to pass it to normal path.
20712 					 */
20713 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20714 				} else if (mp == NULL ||
20715 				    mp->b_rptr != pkt_info->hdr_rptr ||
20716 				    mp->b_wptr != pkt_info->hdr_wptr ||
20717 				    (mp1 = mp->b_cont) == NULL ||
20718 				    mp1->b_rptr != pld_start ||
20719 				    mp1->b_wptr != pld_start +
20720 				    tcp->tcp_last_sent_len ||
20721 				    mp1->b_cont != NULL) {
20722 					/*
20723 					 * Need to pass all packets of this
20724 					 * buffer to normal path, either when
20725 					 * packet is blocked, or when boundary
20726 					 * of header buffer or payload buffer
20727 					 * has been changed by FW_HOOKS[6].
20728 					 */
20729 					buf_trunked = B_TRUE;
20730 					if (md_mp_head != NULL) {
20731 						err = (intptr_t)rmvb(md_mp_head,
20732 						    md_mp);
20733 						if (err == 0)
20734 							md_mp_head = NULL;
20735 					}
20736 
20737 					/* send down what we've got so far */
20738 					if (md_mp_head != NULL) {
20739 						tcp_multisend_data(tcp, ire,
20740 						    ill, md_mp_head, obsegs,
20741 						    obbytes, &rconfirm);
20742 					}
20743 					md_mp_head = NULL;
20744 
20745 					if (mp != NULL)
20746 						CALL_IP_WPUT(tcp->tcp_connp,
20747 						    q, mp);
20748 
20749 					mp1 = fw_mp_head;
20750 					do {
20751 						mp = mp1;
20752 						mp1 = mp1->b_next;
20753 						mp->b_next = NULL;
20754 						mp->b_prev = NULL;
20755 						CALL_IP_WPUT(tcp->tcp_connp,
20756 						    q, mp);
20757 					} while (mp1 != NULL);
20758 
20759 					fw_mp_head = NULL;
20760 				} else {
20761 					if (fw_mp_head == NULL)
20762 						fw_mp_head = mp;
20763 					else
20764 						fw_mp_head->b_prev->b_next = mp;
20765 					fw_mp_head->b_prev = mp;
20766 				}
20767 			}
20768 
20769 			/* advance header offset */
20770 			cur_hdr_off += hdr_frag_sz;
20771 
20772 			obbytes += tcp->tcp_last_sent_len;
20773 			++obsegs;
20774 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20775 		    *tail_unsent > 0);
20776 
20777 		if ((*xmit_tail)->b_next == NULL) {
20778 			/*
20779 			 * Store the lbolt used for RTT estimation. We can only
20780 			 * record one timestamp per mblk so we do it when we
20781 			 * reach the end of the payload buffer. Also we only
20782 			 * take a new timestamp sample when the previous timed
20783 			 * data from the same mblk has been ack'ed.
20784 			 */
20785 			(*xmit_tail)->b_prev = local_time;
20786 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20787 		}
20788 
20789 		ASSERT(*tail_unsent >= 0);
20790 		if (*tail_unsent > 0) {
20791 			/*
20792 			 * We got here because we broke out of the above
20793 			 * loop due to of one of the following cases:
20794 			 *
20795 			 *   1. len < adjusted MSS (i.e. small),
20796 			 *   2. Sender SWS avoidance,
20797 			 *   3. max_pld is zero.
20798 			 *
20799 			 * We are done for this Multidata, so trim our
20800 			 * last payload buffer (if any) accordingly.
20801 			 */
20802 			if (md_pbuf != NULL)
20803 				md_pbuf->b_wptr -= *tail_unsent;
20804 		} else if (*usable > 0) {
20805 			*xmit_tail = (*xmit_tail)->b_cont;
20806 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20807 			    (uintptr_t)INT_MAX);
20808 			*tail_unsent = (int)MBLKL(*xmit_tail);
20809 			add_buffer = B_TRUE;
20810 		}
20811 
20812 		while (fw_mp_head) {
20813 			mp = fw_mp_head;
20814 			fw_mp_head = fw_mp_head->b_next;
20815 			mp->b_prev = mp->b_next = NULL;
20816 			freemsg(mp);
20817 		}
20818 		if (buf_trunked) {
20819 			TCP_STAT(tcps, tcp_mdt_discarded);
20820 			freeb(md_mp);
20821 			buf_trunked = B_FALSE;
20822 		}
20823 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20824 	    (tcp_mdt_chain || max_pld > 0));
20825 
20826 	if (md_mp_head != NULL) {
20827 		/* send everything down */
20828 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20829 		    &rconfirm);
20830 	}
20831 
20832 #undef PREP_NEW_MULTIDATA
20833 #undef PREP_NEW_PBUF
20834 #undef IPVER
20835 
20836 	IRE_REFRELE(ire);
20837 	return (0);
20838 }
20839 
20840 /*
20841  * A wrapper function for sending one or more Multidata messages down to
20842  * the module below ip; this routine does not release the reference of the
20843  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20844  */
20845 static void
20846 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20847     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20848 {
20849 	uint64_t delta;
20850 	nce_t *nce;
20851 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20852 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20853 
20854 	ASSERT(ire != NULL && ill != NULL);
20855 	ASSERT(ire->ire_stq != NULL);
20856 	ASSERT(md_mp_head != NULL);
20857 	ASSERT(rconfirm != NULL);
20858 
20859 	/* adjust MIBs and IRE timestamp */
20860 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20861 	tcp->tcp_obsegs += obsegs;
20862 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20863 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20864 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20865 
20866 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20867 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20868 	} else {
20869 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20870 	}
20871 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20872 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20873 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20874 
20875 	ire->ire_ob_pkt_count += obsegs;
20876 	if (ire->ire_ipif != NULL)
20877 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20878 	ire->ire_last_used_time = lbolt;
20879 
20880 	/* send it down */
20881 	if (ILL_DLS_CAPABLE(ill)) {
20882 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
20883 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
20884 	} else {
20885 		putnext(ire->ire_stq, md_mp_head);
20886 	}
20887 
20888 	/* we're done for TCP/IPv4 */
20889 	if (tcp->tcp_ipversion == IPV4_VERSION)
20890 		return;
20891 
20892 	nce = ire->ire_nce;
20893 
20894 	ASSERT(nce != NULL);
20895 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20896 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20897 
20898 	/* reachability confirmation? */
20899 	if (*rconfirm) {
20900 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20901 		if (nce->nce_state != ND_REACHABLE) {
20902 			mutex_enter(&nce->nce_lock);
20903 			nce->nce_state = ND_REACHABLE;
20904 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20905 			mutex_exit(&nce->nce_lock);
20906 			(void) untimeout(nce->nce_timeout_id);
20907 			if (ip_debug > 2) {
20908 				/* ip1dbg */
20909 				pr_addr_dbg("tcp_multisend_data: state "
20910 				    "for %s changed to REACHABLE\n",
20911 				    AF_INET6, &ire->ire_addr_v6);
20912 			}
20913 		}
20914 		/* reset transport reachability confirmation */
20915 		*rconfirm = B_FALSE;
20916 	}
20917 
20918 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20919 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20920 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20921 
20922 	if (delta > (uint64_t)ill->ill_reachable_time) {
20923 		mutex_enter(&nce->nce_lock);
20924 		switch (nce->nce_state) {
20925 		case ND_REACHABLE:
20926 		case ND_STALE:
20927 			/*
20928 			 * ND_REACHABLE is identical to ND_STALE in this
20929 			 * specific case. If reachable time has expired for
20930 			 * this neighbor (delta is greater than reachable
20931 			 * time), conceptually, the neighbor cache is no
20932 			 * longer in REACHABLE state, but already in STALE
20933 			 * state.  So the correct transition here is to
20934 			 * ND_DELAY.
20935 			 */
20936 			nce->nce_state = ND_DELAY;
20937 			mutex_exit(&nce->nce_lock);
20938 			NDP_RESTART_TIMER(nce,
20939 			    ipst->ips_delay_first_probe_time);
20940 			if (ip_debug > 3) {
20941 				/* ip2dbg */
20942 				pr_addr_dbg("tcp_multisend_data: state "
20943 				    "for %s changed to DELAY\n",
20944 				    AF_INET6, &ire->ire_addr_v6);
20945 			}
20946 			break;
20947 		case ND_DELAY:
20948 		case ND_PROBE:
20949 			mutex_exit(&nce->nce_lock);
20950 			/* Timers have already started */
20951 			break;
20952 		case ND_UNREACHABLE:
20953 			/*
20954 			 * ndp timer has detected that this nce is
20955 			 * unreachable and initiated deleting this nce
20956 			 * and all its associated IREs. This is a race
20957 			 * where we found the ire before it was deleted
20958 			 * and have just sent out a packet using this
20959 			 * unreachable nce.
20960 			 */
20961 			mutex_exit(&nce->nce_lock);
20962 			break;
20963 		default:
20964 			ASSERT(0);
20965 		}
20966 	}
20967 }
20968 
20969 /*
20970  * Derived from tcp_send_data().
20971  */
20972 static void
20973 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20974     int num_lso_seg)
20975 {
20976 	ipha_t		*ipha;
20977 	mblk_t		*ire_fp_mp;
20978 	uint_t		ire_fp_mp_len;
20979 	uint32_t	hcksum_txflags = 0;
20980 	ipaddr_t	src;
20981 	ipaddr_t	dst;
20982 	uint32_t	cksum;
20983 	uint16_t	*up;
20984 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20985 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20986 
20987 	ASSERT(DB_TYPE(mp) == M_DATA);
20988 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20989 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20990 	ASSERT(tcp->tcp_connp != NULL);
20991 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20992 
20993 	ipha = (ipha_t *)mp->b_rptr;
20994 	src = ipha->ipha_src;
20995 	dst = ipha->ipha_dst;
20996 
20997 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20998 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20999 	    num_lso_seg);
21000 #ifndef _BIG_ENDIAN
21001 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21002 #endif
21003 	if (tcp->tcp_snd_zcopy_aware) {
21004 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21005 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21006 			mp = tcp_zcopy_disable(tcp, mp);
21007 	}
21008 
21009 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21010 		ASSERT(ill->ill_hcksum_capab != NULL);
21011 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21012 	}
21013 
21014 	/*
21015 	 * Since the TCP checksum should be recalculated by h/w, we can just
21016 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21017 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21018 	 * The partial pseudo-header excludes TCP length, that was calculated
21019 	 * in tcp_send(), so to zero *up before further processing.
21020 	 */
21021 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21022 
21023 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21024 	*up = 0;
21025 
21026 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21027 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21028 
21029 	/*
21030 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21031 	 */
21032 	DB_LSOFLAGS(mp) |= HW_LSO;
21033 	DB_LSOMSS(mp) = mss;
21034 
21035 	ipha->ipha_fragment_offset_and_flags |=
21036 	    (uint32_t)htons(ire->ire_frag_flag);
21037 
21038 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21039 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21040 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21041 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21042 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21043 
21044 	UPDATE_OB_PKT_COUNT(ire);
21045 	ire->ire_last_used_time = lbolt;
21046 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21047 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21048 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21049 	    ntohs(ipha->ipha_length));
21050 
21051 	if (ILL_DLS_CAPABLE(ill)) {
21052 		/*
21053 		 * Send the packet directly to DLD, where it may be queued
21054 		 * depending on the availability of transmit resources at
21055 		 * the media layer.
21056 		 */
21057 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
21058 	} else {
21059 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21060 		DTRACE_PROBE4(ip4__physical__out__start,
21061 		    ill_t *, NULL, ill_t *, out_ill,
21062 		    ipha_t *, ipha, mblk_t *, mp);
21063 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21064 		    ipst->ips_ipv4firewall_physical_out,
21065 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21066 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21067 		if (mp != NULL)
21068 			putnext(ire->ire_stq, mp);
21069 	}
21070 }
21071 
21072 /*
21073  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21074  * scheme, and returns one of the following:
21075  *
21076  * -1 = failed allocation.
21077  *  0 = success; burst count reached, or usable send window is too small,
21078  *      and that we'd rather wait until later before sending again.
21079  *  1 = success; we are called from tcp_multisend(), and both usable send
21080  *      window and tail_unsent are greater than the MDT threshold, and thus
21081  *      Multidata Transmit should be used instead.
21082  */
21083 static int
21084 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21085     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21086     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21087     const int mdt_thres)
21088 {
21089 	int num_burst_seg = tcp->tcp_snd_burst;
21090 	ire_t		*ire = NULL;
21091 	ill_t		*ill = NULL;
21092 	mblk_t		*ire_fp_mp = NULL;
21093 	uint_t		ire_fp_mp_len = 0;
21094 	int		num_lso_seg = 1;
21095 	uint_t		lso_usable;
21096 	boolean_t	do_lso_send = B_FALSE;
21097 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21098 
21099 	/*
21100 	 * Check LSO capability before any further work. And the similar check
21101 	 * need to be done in for(;;) loop.
21102 	 * LSO will be deployed when therer is more than one mss of available
21103 	 * data and a burst transmission is allowed.
21104 	 */
21105 	if (tcp->tcp_lso &&
21106 	    (tcp->tcp_valid_bits == 0 ||
21107 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21108 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21109 		/*
21110 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21111 		 */
21112 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21113 			/*
21114 			 * Enable LSO with this transmission.
21115 			 * Since IRE has been hold in
21116 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21117 			 * should be called before return.
21118 			 */
21119 			do_lso_send = B_TRUE;
21120 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21121 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21122 			/* Round up to multiple of 4 */
21123 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21124 		} else {
21125 			do_lso_send = B_FALSE;
21126 			ill = NULL;
21127 		}
21128 	}
21129 
21130 	for (;;) {
21131 		struct datab	*db;
21132 		tcph_t		*tcph;
21133 		uint32_t	sum;
21134 		mblk_t		*mp, *mp1;
21135 		uchar_t		*rptr;
21136 		int		len;
21137 
21138 		/*
21139 		 * If we're called by tcp_multisend(), and the amount of
21140 		 * sendable data as well as the size of current xmit_tail
21141 		 * is beyond the MDT threshold, return to the caller and
21142 		 * let the large data transmit be done using MDT.
21143 		 */
21144 		if (*usable > 0 && *usable > mdt_thres &&
21145 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21146 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21147 			ASSERT(tcp->tcp_mdt);
21148 			return (1);	/* success; do large send */
21149 		}
21150 
21151 		if (num_burst_seg == 0)
21152 			break;		/* success; burst count reached */
21153 
21154 		/*
21155 		 * Calculate the maximum payload length we can send in *one*
21156 		 * time.
21157 		 */
21158 		if (do_lso_send) {
21159 			/*
21160 			 * Check whether need to do LSO any more.
21161 			 */
21162 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21163 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21164 				lso_usable = MIN(lso_usable,
21165 				    num_burst_seg * mss);
21166 
21167 				num_lso_seg = lso_usable / mss;
21168 				if (lso_usable % mss) {
21169 					num_lso_seg++;
21170 					tcp->tcp_last_sent_len = (ushort_t)
21171 					    (lso_usable % mss);
21172 				} else {
21173 					tcp->tcp_last_sent_len = (ushort_t)mss;
21174 				}
21175 			} else {
21176 				do_lso_send = B_FALSE;
21177 				num_lso_seg = 1;
21178 				lso_usable = mss;
21179 			}
21180 		}
21181 
21182 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21183 
21184 		/*
21185 		 * Adjust num_burst_seg here.
21186 		 */
21187 		num_burst_seg -= num_lso_seg;
21188 
21189 		len = mss;
21190 		if (len > *usable) {
21191 			ASSERT(do_lso_send == B_FALSE);
21192 
21193 			len = *usable;
21194 			if (len <= 0) {
21195 				/* Terminate the loop */
21196 				break;	/* success; too small */
21197 			}
21198 			/*
21199 			 * Sender silly-window avoidance.
21200 			 * Ignore this if we are going to send a
21201 			 * zero window probe out.
21202 			 *
21203 			 * TODO: force data into microscopic window?
21204 			 *	==> (!pushed || (unsent > usable))
21205 			 */
21206 			if (len < (tcp->tcp_max_swnd >> 1) &&
21207 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21208 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21209 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21210 				/*
21211 				 * If the retransmit timer is not running
21212 				 * we start it so that we will retransmit
21213 				 * in the case when the the receiver has
21214 				 * decremented the window.
21215 				 */
21216 				if (*snxt == tcp->tcp_snxt &&
21217 				    *snxt == tcp->tcp_suna) {
21218 					/*
21219 					 * We are not supposed to send
21220 					 * anything.  So let's wait a little
21221 					 * bit longer before breaking SWS
21222 					 * avoidance.
21223 					 *
21224 					 * What should the value be?
21225 					 * Suggestion: MAX(init rexmit time,
21226 					 * tcp->tcp_rto)
21227 					 */
21228 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21229 				}
21230 				break;	/* success; too small */
21231 			}
21232 		}
21233 
21234 		tcph = tcp->tcp_tcph;
21235 
21236 		/*
21237 		 * The reason to adjust len here is that we need to set flags
21238 		 * and calculate checksum.
21239 		 */
21240 		if (do_lso_send)
21241 			len = lso_usable;
21242 
21243 		*usable -= len; /* Approximate - can be adjusted later */
21244 		if (*usable > 0)
21245 			tcph->th_flags[0] = TH_ACK;
21246 		else
21247 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21248 
21249 		/*
21250 		 * Prime pump for IP's checksumming on our behalf
21251 		 * Include the adjustment for a source route if any.
21252 		 */
21253 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21254 		sum = (sum >> 16) + (sum & 0xFFFF);
21255 		U16_TO_ABE16(sum, tcph->th_sum);
21256 
21257 		U32_TO_ABE32(*snxt, tcph->th_seq);
21258 
21259 		/*
21260 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21261 		 * set.  For the case when TCP_FSS_VALID is the only valid
21262 		 * bit (normal active close), branch off only when we think
21263 		 * that the FIN flag needs to be set.  Note for this case,
21264 		 * that (snxt + len) may not reflect the actual seg_len,
21265 		 * as len may be further reduced in tcp_xmit_mp().  If len
21266 		 * gets modified, we will end up here again.
21267 		 */
21268 		if (tcp->tcp_valid_bits != 0 &&
21269 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21270 		    ((*snxt + len) == tcp->tcp_fss))) {
21271 			uchar_t		*prev_rptr;
21272 			uint32_t	prev_snxt = tcp->tcp_snxt;
21273 
21274 			if (*tail_unsent == 0) {
21275 				ASSERT((*xmit_tail)->b_cont != NULL);
21276 				*xmit_tail = (*xmit_tail)->b_cont;
21277 				prev_rptr = (*xmit_tail)->b_rptr;
21278 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21279 				    (*xmit_tail)->b_rptr);
21280 			} else {
21281 				prev_rptr = (*xmit_tail)->b_rptr;
21282 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21283 				    *tail_unsent;
21284 			}
21285 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21286 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21287 			/* Restore tcp_snxt so we get amount sent right. */
21288 			tcp->tcp_snxt = prev_snxt;
21289 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21290 				/*
21291 				 * If the previous timestamp is still in use,
21292 				 * don't stomp on it.
21293 				 */
21294 				if ((*xmit_tail)->b_next == NULL) {
21295 					(*xmit_tail)->b_prev = local_time;
21296 					(*xmit_tail)->b_next =
21297 					    (mblk_t *)(uintptr_t)(*snxt);
21298 				}
21299 			} else
21300 				(*xmit_tail)->b_rptr = prev_rptr;
21301 
21302 			if (mp == NULL) {
21303 				if (ire != NULL)
21304 					IRE_REFRELE(ire);
21305 				return (-1);
21306 			}
21307 			mp1 = mp->b_cont;
21308 
21309 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21310 				tcp->tcp_last_sent_len = (ushort_t)len;
21311 			while (mp1->b_cont) {
21312 				*xmit_tail = (*xmit_tail)->b_cont;
21313 				(*xmit_tail)->b_prev = local_time;
21314 				(*xmit_tail)->b_next =
21315 				    (mblk_t *)(uintptr_t)(*snxt);
21316 				mp1 = mp1->b_cont;
21317 			}
21318 			*snxt += len;
21319 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21320 			BUMP_LOCAL(tcp->tcp_obsegs);
21321 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21322 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21323 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21324 			tcp_send_data(tcp, q, mp);
21325 			continue;
21326 		}
21327 
21328 		*snxt += len;	/* Adjust later if we don't send all of len */
21329 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21330 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21331 
21332 		if (*tail_unsent) {
21333 			/* Are the bytes above us in flight? */
21334 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21335 			if (rptr != (*xmit_tail)->b_rptr) {
21336 				*tail_unsent -= len;
21337 				if (len <= mss) /* LSO is unusable */
21338 					tcp->tcp_last_sent_len = (ushort_t)len;
21339 				len += tcp_hdr_len;
21340 				if (tcp->tcp_ipversion == IPV4_VERSION)
21341 					tcp->tcp_ipha->ipha_length = htons(len);
21342 				else
21343 					tcp->tcp_ip6h->ip6_plen =
21344 					    htons(len -
21345 					    ((char *)&tcp->tcp_ip6h[1] -
21346 					    tcp->tcp_iphc));
21347 				mp = dupb(*xmit_tail);
21348 				if (mp == NULL) {
21349 					if (ire != NULL)
21350 						IRE_REFRELE(ire);
21351 					return (-1);	/* out_of_mem */
21352 				}
21353 				mp->b_rptr = rptr;
21354 				/*
21355 				 * If the old timestamp is no longer in use,
21356 				 * sample a new timestamp now.
21357 				 */
21358 				if ((*xmit_tail)->b_next == NULL) {
21359 					(*xmit_tail)->b_prev = local_time;
21360 					(*xmit_tail)->b_next =
21361 					    (mblk_t *)(uintptr_t)(*snxt-len);
21362 				}
21363 				goto must_alloc;
21364 			}
21365 		} else {
21366 			*xmit_tail = (*xmit_tail)->b_cont;
21367 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21368 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21369 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21370 			    (*xmit_tail)->b_rptr);
21371 		}
21372 
21373 		(*xmit_tail)->b_prev = local_time;
21374 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21375 
21376 		*tail_unsent -= len;
21377 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21378 			tcp->tcp_last_sent_len = (ushort_t)len;
21379 
21380 		len += tcp_hdr_len;
21381 		if (tcp->tcp_ipversion == IPV4_VERSION)
21382 			tcp->tcp_ipha->ipha_length = htons(len);
21383 		else
21384 			tcp->tcp_ip6h->ip6_plen = htons(len -
21385 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21386 
21387 		mp = dupb(*xmit_tail);
21388 		if (mp == NULL) {
21389 			if (ire != NULL)
21390 				IRE_REFRELE(ire);
21391 			return (-1);	/* out_of_mem */
21392 		}
21393 
21394 		len = tcp_hdr_len;
21395 		/*
21396 		 * There are four reasons to allocate a new hdr mblk:
21397 		 *  1) The bytes above us are in use by another packet
21398 		 *  2) We don't have good alignment
21399 		 *  3) The mblk is being shared
21400 		 *  4) We don't have enough room for a header
21401 		 */
21402 		rptr = mp->b_rptr - len;
21403 		if (!OK_32PTR(rptr) ||
21404 		    ((db = mp->b_datap), db->db_ref != 2) ||
21405 		    rptr < db->db_base + ire_fp_mp_len) {
21406 			/* NOTE: we assume allocb returns an OK_32PTR */
21407 
21408 		must_alloc:;
21409 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21410 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21411 			if (mp1 == NULL) {
21412 				freemsg(mp);
21413 				if (ire != NULL)
21414 					IRE_REFRELE(ire);
21415 				return (-1);	/* out_of_mem */
21416 			}
21417 			mp1->b_cont = mp;
21418 			mp = mp1;
21419 			/* Leave room for Link Level header */
21420 			len = tcp_hdr_len;
21421 			rptr =
21422 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21423 			mp->b_wptr = &rptr[len];
21424 		}
21425 
21426 		/*
21427 		 * Fill in the header using the template header, and add
21428 		 * options such as time-stamp, ECN and/or SACK, as needed.
21429 		 */
21430 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21431 
21432 		mp->b_rptr = rptr;
21433 
21434 		if (*tail_unsent) {
21435 			int spill = *tail_unsent;
21436 
21437 			mp1 = mp->b_cont;
21438 			if (mp1 == NULL)
21439 				mp1 = mp;
21440 
21441 			/*
21442 			 * If we're a little short, tack on more mblks until
21443 			 * there is no more spillover.
21444 			 */
21445 			while (spill < 0) {
21446 				mblk_t *nmp;
21447 				int nmpsz;
21448 
21449 				nmp = (*xmit_tail)->b_cont;
21450 				nmpsz = MBLKL(nmp);
21451 
21452 				/*
21453 				 * Excess data in mblk; can we split it?
21454 				 * If MDT is enabled for the connection,
21455 				 * keep on splitting as this is a transient
21456 				 * send path.
21457 				 */
21458 				if (!do_lso_send && !tcp->tcp_mdt &&
21459 				    (spill + nmpsz > 0)) {
21460 					/*
21461 					 * Don't split if stream head was
21462 					 * told to break up larger writes
21463 					 * into smaller ones.
21464 					 */
21465 					if (tcp->tcp_maxpsz > 0)
21466 						break;
21467 
21468 					/*
21469 					 * Next mblk is less than SMSS/2
21470 					 * rounded up to nearest 64-byte;
21471 					 * let it get sent as part of the
21472 					 * next segment.
21473 					 */
21474 					if (tcp->tcp_localnet &&
21475 					    !tcp->tcp_cork &&
21476 					    (nmpsz < roundup((mss >> 1), 64)))
21477 						break;
21478 				}
21479 
21480 				*xmit_tail = nmp;
21481 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21482 				/* Stash for rtt use later */
21483 				(*xmit_tail)->b_prev = local_time;
21484 				(*xmit_tail)->b_next =
21485 				    (mblk_t *)(uintptr_t)(*snxt - len);
21486 				mp1->b_cont = dupb(*xmit_tail);
21487 				mp1 = mp1->b_cont;
21488 
21489 				spill += nmpsz;
21490 				if (mp1 == NULL) {
21491 					*tail_unsent = spill;
21492 					freemsg(mp);
21493 					if (ire != NULL)
21494 						IRE_REFRELE(ire);
21495 					return (-1);	/* out_of_mem */
21496 				}
21497 			}
21498 
21499 			/* Trim back any surplus on the last mblk */
21500 			if (spill >= 0) {
21501 				mp1->b_wptr -= spill;
21502 				*tail_unsent = spill;
21503 			} else {
21504 				/*
21505 				 * We did not send everything we could in
21506 				 * order to remain within the b_cont limit.
21507 				 */
21508 				*usable -= spill;
21509 				*snxt += spill;
21510 				tcp->tcp_last_sent_len += spill;
21511 				UPDATE_MIB(&tcps->tcps_mib,
21512 				    tcpOutDataBytes, spill);
21513 				/*
21514 				 * Adjust the checksum
21515 				 */
21516 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21517 				sum += spill;
21518 				sum = (sum >> 16) + (sum & 0xFFFF);
21519 				U16_TO_ABE16(sum, tcph->th_sum);
21520 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21521 					sum = ntohs(
21522 					    ((ipha_t *)rptr)->ipha_length) +
21523 					    spill;
21524 					((ipha_t *)rptr)->ipha_length =
21525 					    htons(sum);
21526 				} else {
21527 					sum = ntohs(
21528 					    ((ip6_t *)rptr)->ip6_plen) +
21529 					    spill;
21530 					((ip6_t *)rptr)->ip6_plen =
21531 					    htons(sum);
21532 				}
21533 				*tail_unsent = 0;
21534 			}
21535 		}
21536 		if (tcp->tcp_ip_forward_progress) {
21537 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21538 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21539 			tcp->tcp_ip_forward_progress = B_FALSE;
21540 		}
21541 
21542 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21543 		if (do_lso_send) {
21544 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21545 			    num_lso_seg);
21546 			tcp->tcp_obsegs += num_lso_seg;
21547 
21548 			TCP_STAT(tcps, tcp_lso_times);
21549 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21550 		} else {
21551 			tcp_send_data(tcp, q, mp);
21552 			BUMP_LOCAL(tcp->tcp_obsegs);
21553 		}
21554 	}
21555 
21556 	if (ire != NULL)
21557 		IRE_REFRELE(ire);
21558 	return (0);
21559 }
21560 
21561 /* Unlink and return any mblk that looks like it contains a MDT info */
21562 static mblk_t *
21563 tcp_mdt_info_mp(mblk_t *mp)
21564 {
21565 	mblk_t	*prev_mp;
21566 
21567 	for (;;) {
21568 		prev_mp = mp;
21569 		/* no more to process? */
21570 		if ((mp = mp->b_cont) == NULL)
21571 			break;
21572 
21573 		switch (DB_TYPE(mp)) {
21574 		case M_CTL:
21575 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21576 				continue;
21577 			ASSERT(prev_mp != NULL);
21578 			prev_mp->b_cont = mp->b_cont;
21579 			mp->b_cont = NULL;
21580 			return (mp);
21581 		default:
21582 			break;
21583 		}
21584 	}
21585 	return (mp);
21586 }
21587 
21588 /* MDT info update routine, called when IP notifies us about MDT */
21589 static void
21590 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21591 {
21592 	boolean_t prev_state;
21593 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21594 
21595 	/*
21596 	 * IP is telling us to abort MDT on this connection?  We know
21597 	 * this because the capability is only turned off when IP
21598 	 * encounters some pathological cases, e.g. link-layer change
21599 	 * where the new driver doesn't support MDT, or in situation
21600 	 * where MDT usage on the link-layer has been switched off.
21601 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21602 	 * if the link-layer doesn't support MDT, and if it does, it
21603 	 * will indicate that the feature is to be turned on.
21604 	 */
21605 	prev_state = tcp->tcp_mdt;
21606 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21607 	if (!tcp->tcp_mdt && !first) {
21608 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21609 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21610 		    (void *)tcp->tcp_connp));
21611 	}
21612 
21613 	/*
21614 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21615 	 * so disable MDT otherwise.  The checks are done here
21616 	 * and in tcp_wput_data().
21617 	 */
21618 	if (tcp->tcp_mdt &&
21619 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21620 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21621 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21622 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21623 		tcp->tcp_mdt = B_FALSE;
21624 
21625 	if (tcp->tcp_mdt) {
21626 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21627 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21628 			    "version (%d), expected version is %d",
21629 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21630 			tcp->tcp_mdt = B_FALSE;
21631 			return;
21632 		}
21633 
21634 		/*
21635 		 * We need the driver to be able to handle at least three
21636 		 * spans per packet in order for tcp MDT to be utilized.
21637 		 * The first is for the header portion, while the rest are
21638 		 * needed to handle a packet that straddles across two
21639 		 * virtually non-contiguous buffers; a typical tcp packet
21640 		 * therefore consists of only two spans.  Note that we take
21641 		 * a zero as "don't care".
21642 		 */
21643 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21644 		    mdt_capab->ill_mdt_span_limit < 3) {
21645 			tcp->tcp_mdt = B_FALSE;
21646 			return;
21647 		}
21648 
21649 		/* a zero means driver wants default value */
21650 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21651 		    tcps->tcps_mdt_max_pbufs);
21652 		if (tcp->tcp_mdt_max_pld == 0)
21653 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21654 
21655 		/* ensure 32-bit alignment */
21656 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21657 		    mdt_capab->ill_mdt_hdr_head), 4);
21658 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21659 		    mdt_capab->ill_mdt_hdr_tail), 4);
21660 
21661 		if (!first && !prev_state) {
21662 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21663 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21664 			    (void *)tcp->tcp_connp));
21665 		}
21666 	}
21667 }
21668 
21669 /* Unlink and return any mblk that looks like it contains a LSO info */
21670 static mblk_t *
21671 tcp_lso_info_mp(mblk_t *mp)
21672 {
21673 	mblk_t	*prev_mp;
21674 
21675 	for (;;) {
21676 		prev_mp = mp;
21677 		/* no more to process? */
21678 		if ((mp = mp->b_cont) == NULL)
21679 			break;
21680 
21681 		switch (DB_TYPE(mp)) {
21682 		case M_CTL:
21683 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21684 				continue;
21685 			ASSERT(prev_mp != NULL);
21686 			prev_mp->b_cont = mp->b_cont;
21687 			mp->b_cont = NULL;
21688 			return (mp);
21689 		default:
21690 			break;
21691 		}
21692 	}
21693 
21694 	return (mp);
21695 }
21696 
21697 /* LSO info update routine, called when IP notifies us about LSO */
21698 static void
21699 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21700 {
21701 	tcp_stack_t *tcps = tcp->tcp_tcps;
21702 
21703 	/*
21704 	 * IP is telling us to abort LSO on this connection?  We know
21705 	 * this because the capability is only turned off when IP
21706 	 * encounters some pathological cases, e.g. link-layer change
21707 	 * where the new NIC/driver doesn't support LSO, or in situation
21708 	 * where LSO usage on the link-layer has been switched off.
21709 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21710 	 * if the link-layer doesn't support LSO, and if it does, it
21711 	 * will indicate that the feature is to be turned on.
21712 	 */
21713 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21714 	TCP_STAT(tcps, tcp_lso_enabled);
21715 
21716 	/*
21717 	 * We currently only support LSO on simple TCP/IPv4,
21718 	 * so disable LSO otherwise.  The checks are done here
21719 	 * and in tcp_wput_data().
21720 	 */
21721 	if (tcp->tcp_lso &&
21722 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21723 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21724 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21725 		tcp->tcp_lso = B_FALSE;
21726 		TCP_STAT(tcps, tcp_lso_disabled);
21727 	} else {
21728 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21729 		    lso_capab->ill_lso_max);
21730 	}
21731 }
21732 
21733 static void
21734 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21735 {
21736 	conn_t *connp = tcp->tcp_connp;
21737 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21738 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21739 
21740 	ASSERT(ire != NULL);
21741 
21742 	/*
21743 	 * We may be in the fastpath here, and although we essentially do
21744 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21745 	 * we try to keep things as brief as possible.  After all, these
21746 	 * are only best-effort checks, and we do more thorough ones prior
21747 	 * to calling tcp_send()/tcp_multisend().
21748 	 */
21749 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21750 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21751 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21752 	    !(ire->ire_flags & RTF_MULTIRT) &&
21753 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21754 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21755 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21756 			/* Cache the result */
21757 			connp->conn_lso_ok = B_TRUE;
21758 
21759 			ASSERT(ill->ill_lso_capab != NULL);
21760 			if (!ill->ill_lso_capab->ill_lso_on) {
21761 				ill->ill_lso_capab->ill_lso_on = 1;
21762 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21763 				    "LSO for interface %s\n", (void *)connp,
21764 				    ill->ill_name));
21765 			}
21766 			tcp_lso_update(tcp, ill->ill_lso_capab);
21767 		} else if (ipst->ips_ip_multidata_outbound &&
21768 		    ILL_MDT_CAPABLE(ill)) {
21769 			/* Cache the result */
21770 			connp->conn_mdt_ok = B_TRUE;
21771 
21772 			ASSERT(ill->ill_mdt_capab != NULL);
21773 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21774 				ill->ill_mdt_capab->ill_mdt_on = 1;
21775 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21776 				    "MDT for interface %s\n", (void *)connp,
21777 				    ill->ill_name));
21778 			}
21779 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21780 		}
21781 	}
21782 
21783 	/*
21784 	 * The goal is to reduce the number of generated tcp segments by
21785 	 * setting the maxpsz multiplier to 0; this will have an affect on
21786 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21787 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21788 	 * of outbound segments and incoming ACKs, thus allowing for better
21789 	 * network and system performance.  In contrast the legacy behavior
21790 	 * may result in sending less than SMSS size, because the last mblk
21791 	 * for some packets may have more data than needed to make up SMSS,
21792 	 * and the legacy code refused to "split" it.
21793 	 *
21794 	 * We apply the new behavior on following situations:
21795 	 *
21796 	 *   1) Loopback connections,
21797 	 *   2) Connections in which the remote peer is not on local subnet,
21798 	 *   3) Local subnet connections over the bge interface (see below).
21799 	 *
21800 	 * Ideally, we would like this behavior to apply for interfaces other
21801 	 * than bge.  However, doing so would negatively impact drivers which
21802 	 * perform dynamic mapping and unmapping of DMA resources, which are
21803 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21804 	 * packet will be generated by tcp).  The bge driver does not suffer
21805 	 * from this, as it copies the mblks into pre-mapped buffers, and
21806 	 * therefore does not require more I/O resources than before.
21807 	 *
21808 	 * Otherwise, this behavior is present on all network interfaces when
21809 	 * the destination endpoint is non-local, since reducing the number
21810 	 * of packets in general is good for the network.
21811 	 *
21812 	 * TODO We need to remove this hard-coded conditional for bge once
21813 	 *	a better "self-tuning" mechanism, or a way to comprehend
21814 	 *	the driver transmit strategy is devised.  Until the solution
21815 	 *	is found and well understood, we live with this hack.
21816 	 */
21817 	if (!tcp_static_maxpsz &&
21818 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21819 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21820 		/* override the default value */
21821 		tcp->tcp_maxpsz = 0;
21822 
21823 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21824 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21825 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21826 	}
21827 
21828 	/* set the stream head parameters accordingly */
21829 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21830 }
21831 
21832 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21833 static void
21834 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21835 {
21836 	uchar_t	fval = *mp->b_rptr;
21837 	mblk_t	*tail;
21838 	queue_t	*q = tcp->tcp_wq;
21839 
21840 	/* TODO: How should flush interact with urgent data? */
21841 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21842 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21843 		/*
21844 		 * Flush only data that has not yet been put on the wire.  If
21845 		 * we flush data that we have already transmitted, life, as we
21846 		 * know it, may come to an end.
21847 		 */
21848 		tail = tcp->tcp_xmit_tail;
21849 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21850 		tcp->tcp_xmit_tail_unsent = 0;
21851 		tcp->tcp_unsent = 0;
21852 		if (tail->b_wptr != tail->b_rptr)
21853 			tail = tail->b_cont;
21854 		if (tail) {
21855 			mblk_t **excess = &tcp->tcp_xmit_head;
21856 			for (;;) {
21857 				mblk_t *mp1 = *excess;
21858 				if (mp1 == tail)
21859 					break;
21860 				tcp->tcp_xmit_tail = mp1;
21861 				tcp->tcp_xmit_last = mp1;
21862 				excess = &mp1->b_cont;
21863 			}
21864 			*excess = NULL;
21865 			tcp_close_mpp(&tail);
21866 			if (tcp->tcp_snd_zcopy_aware)
21867 				tcp_zcopy_notify(tcp);
21868 		}
21869 		/*
21870 		 * We have no unsent data, so unsent must be less than
21871 		 * tcp_xmit_lowater, so re-enable flow.
21872 		 */
21873 		mutex_enter(&tcp->tcp_non_sq_lock);
21874 		if (tcp->tcp_flow_stopped) {
21875 			tcp_clrqfull(tcp);
21876 		}
21877 		mutex_exit(&tcp->tcp_non_sq_lock);
21878 	}
21879 	/*
21880 	 * TODO: you can't just flush these, you have to increase rwnd for one
21881 	 * thing.  For another, how should urgent data interact?
21882 	 */
21883 	if (fval & FLUSHR) {
21884 		*mp->b_rptr = fval & ~FLUSHW;
21885 		/* XXX */
21886 		qreply(q, mp);
21887 		return;
21888 	}
21889 	freemsg(mp);
21890 }
21891 
21892 /*
21893  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21894  * messages.
21895  */
21896 static void
21897 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21898 {
21899 	mblk_t	*mp1;
21900 	STRUCT_HANDLE(strbuf, sb);
21901 	uint16_t port;
21902 	queue_t 	*q = tcp->tcp_wq;
21903 	in6_addr_t	v6addr;
21904 	ipaddr_t	v4addr;
21905 	uint32_t	flowinfo = 0;
21906 	int		addrlen;
21907 
21908 	/* Make sure it is one of ours. */
21909 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21910 	case TI_GETMYNAME:
21911 	case TI_GETPEERNAME:
21912 		break;
21913 	default:
21914 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21915 		return;
21916 	}
21917 	switch (mi_copy_state(q, mp, &mp1)) {
21918 	case -1:
21919 		return;
21920 	case MI_COPY_CASE(MI_COPY_IN, 1):
21921 		break;
21922 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21923 		/* Copy out the strbuf. */
21924 		mi_copyout(q, mp);
21925 		return;
21926 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21927 		/* All done. */
21928 		mi_copy_done(q, mp, 0);
21929 		return;
21930 	default:
21931 		mi_copy_done(q, mp, EPROTO);
21932 		return;
21933 	}
21934 	/* Check alignment of the strbuf */
21935 	if (!OK_32PTR(mp1->b_rptr)) {
21936 		mi_copy_done(q, mp, EINVAL);
21937 		return;
21938 	}
21939 
21940 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21941 	    (void *)mp1->b_rptr);
21942 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21943 
21944 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21945 		mi_copy_done(q, mp, EINVAL);
21946 		return;
21947 	}
21948 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21949 	case TI_GETMYNAME:
21950 		if (tcp->tcp_family == AF_INET) {
21951 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21952 				v4addr = tcp->tcp_ipha->ipha_src;
21953 			} else {
21954 				/* can't return an address in this case */
21955 				v4addr = 0;
21956 			}
21957 		} else {
21958 			/* tcp->tcp_family == AF_INET6 */
21959 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21960 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21961 				    &v6addr);
21962 			} else {
21963 				v6addr = tcp->tcp_ip6h->ip6_src;
21964 			}
21965 		}
21966 		port = tcp->tcp_lport;
21967 		break;
21968 	case TI_GETPEERNAME:
21969 		if (tcp->tcp_family == AF_INET) {
21970 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21971 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21972 				    v4addr);
21973 			} else {
21974 				/* can't return an address in this case */
21975 				v4addr = 0;
21976 			}
21977 		} else {
21978 			/* tcp->tcp_family == AF_INET6) */
21979 			v6addr = tcp->tcp_remote_v6;
21980 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21981 				/*
21982 				 * No flowinfo if tcp->tcp_ipversion is v4.
21983 				 *
21984 				 * flowinfo was already initialized to zero
21985 				 * where it was declared above, so only
21986 				 * set it if ipversion is v6.
21987 				 */
21988 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21989 				    ~IPV6_VERS_AND_FLOW_MASK;
21990 			}
21991 		}
21992 		port = tcp->tcp_fport;
21993 		break;
21994 	default:
21995 		mi_copy_done(q, mp, EPROTO);
21996 		return;
21997 	}
21998 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21999 	if (!mp1)
22000 		return;
22001 
22002 	if (tcp->tcp_family == AF_INET) {
22003 		sin_t *sin;
22004 
22005 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
22006 		sin = (sin_t *)mp1->b_rptr;
22007 		mp1->b_wptr = (uchar_t *)&sin[1];
22008 		*sin = sin_null;
22009 		sin->sin_family = AF_INET;
22010 		sin->sin_addr.s_addr = v4addr;
22011 		sin->sin_port = port;
22012 	} else {
22013 		/* tcp->tcp_family == AF_INET6 */
22014 		sin6_t *sin6;
22015 
22016 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
22017 		sin6 = (sin6_t *)mp1->b_rptr;
22018 		mp1->b_wptr = (uchar_t *)&sin6[1];
22019 		*sin6 = sin6_null;
22020 		sin6->sin6_family = AF_INET6;
22021 		sin6->sin6_flowinfo = flowinfo;
22022 		sin6->sin6_addr = v6addr;
22023 		sin6->sin6_port = port;
22024 	}
22025 	/* Copy out the address */
22026 	mi_copyout(q, mp);
22027 }
22028 
22029 /*
22030  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22031  * messages.
22032  */
22033 /* ARGSUSED */
22034 static void
22035 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22036 {
22037 	conn_t 	*connp = (conn_t *)arg;
22038 	tcp_t	*tcp = connp->conn_tcp;
22039 	queue_t	*q = tcp->tcp_wq;
22040 	struct iocblk	*iocp;
22041 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22042 
22043 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22044 	/*
22045 	 * Try and ASSERT the minimum possible references on the
22046 	 * conn early enough. Since we are executing on write side,
22047 	 * the connection is obviously not detached and that means
22048 	 * there is a ref each for TCP and IP. Since we are behind
22049 	 * the squeue, the minimum references needed are 3. If the
22050 	 * conn is in classifier hash list, there should be an
22051 	 * extra ref for that (we check both the possibilities).
22052 	 */
22053 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22054 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22055 
22056 	iocp = (struct iocblk *)mp->b_rptr;
22057 	switch (iocp->ioc_cmd) {
22058 	case TCP_IOC_DEFAULT_Q:
22059 		/* Wants to be the default wq. */
22060 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22061 			iocp->ioc_error = EPERM;
22062 			iocp->ioc_count = 0;
22063 			mp->b_datap->db_type = M_IOCACK;
22064 			qreply(q, mp);
22065 			return;
22066 		}
22067 		tcp_def_q_set(tcp, mp);
22068 		return;
22069 	case _SIOCSOCKFALLBACK:
22070 		/*
22071 		 * Either sockmod is about to be popped and the socket
22072 		 * would now be treated as a plain stream, or a module
22073 		 * is about to be pushed so we could no longer use read-
22074 		 * side synchronous streams for fused loopback tcp.
22075 		 * Drain any queued data and disable direct sockfs
22076 		 * interface from now on.
22077 		 */
22078 		if (!tcp->tcp_issocket) {
22079 			DB_TYPE(mp) = M_IOCNAK;
22080 			iocp->ioc_error = EINVAL;
22081 		} else {
22082 #ifdef	_ILP32
22083 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22084 #else
22085 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22086 #endif
22087 			/*
22088 			 * Insert this socket into the acceptor hash.
22089 			 * We might need it for T_CONN_RES message
22090 			 */
22091 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22092 
22093 			if (tcp->tcp_fused) {
22094 				/*
22095 				 * This is a fused loopback tcp; disable
22096 				 * read-side synchronous streams interface
22097 				 * and drain any queued data.  It is okay
22098 				 * to do this for non-synchronous streams
22099 				 * fused tcp as well.
22100 				 */
22101 				tcp_fuse_disable_pair(tcp, B_FALSE);
22102 			}
22103 			tcp->tcp_issocket = B_FALSE;
22104 			TCP_STAT(tcps, tcp_sock_fallback);
22105 
22106 			DB_TYPE(mp) = M_IOCACK;
22107 			iocp->ioc_error = 0;
22108 		}
22109 		iocp->ioc_count = 0;
22110 		iocp->ioc_rval = 0;
22111 		qreply(q, mp);
22112 		return;
22113 	}
22114 	CALL_IP_WPUT(connp, q, mp);
22115 }
22116 
22117 /*
22118  * This routine is called by tcp_wput() to handle all TPI requests.
22119  */
22120 /* ARGSUSED */
22121 static void
22122 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22123 {
22124 	conn_t 	*connp = (conn_t *)arg;
22125 	tcp_t	*tcp = connp->conn_tcp;
22126 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22127 	uchar_t *rptr;
22128 	t_scalar_t type;
22129 	int len;
22130 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22131 
22132 	/*
22133 	 * Try and ASSERT the minimum possible references on the
22134 	 * conn early enough. Since we are executing on write side,
22135 	 * the connection is obviously not detached and that means
22136 	 * there is a ref each for TCP and IP. Since we are behind
22137 	 * the squeue, the minimum references needed are 3. If the
22138 	 * conn is in classifier hash list, there should be an
22139 	 * extra ref for that (we check both the possibilities).
22140 	 */
22141 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22142 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22143 
22144 	rptr = mp->b_rptr;
22145 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22146 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22147 		type = ((union T_primitives *)rptr)->type;
22148 		if (type == T_EXDATA_REQ) {
22149 			uint32_t msize = msgdsize(mp->b_cont);
22150 
22151 			len = msize - 1;
22152 			if (len < 0) {
22153 				freemsg(mp);
22154 				return;
22155 			}
22156 			/*
22157 			 * Try to force urgent data out on the wire.
22158 			 * Even if we have unsent data this will
22159 			 * at least send the urgent flag.
22160 			 * XXX does not handle more flag correctly.
22161 			 */
22162 			len += tcp->tcp_unsent;
22163 			len += tcp->tcp_snxt;
22164 			tcp->tcp_urg = len;
22165 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22166 
22167 			/* Bypass tcp protocol for fused tcp loopback */
22168 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22169 				return;
22170 		} else if (type != T_DATA_REQ) {
22171 			goto non_urgent_data;
22172 		}
22173 		/* TODO: options, flags, ... from user */
22174 		/* Set length to zero for reclamation below */
22175 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22176 		freeb(mp);
22177 		return;
22178 	} else {
22179 		if (tcp->tcp_debug) {
22180 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22181 			    "tcp_wput_proto, dropping one...");
22182 		}
22183 		freemsg(mp);
22184 		return;
22185 	}
22186 
22187 non_urgent_data:
22188 
22189 	switch ((int)tprim->type) {
22190 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22191 		/*
22192 		 * save the kssl_ent_t from the next block, and convert this
22193 		 * back to a normal bind_req.
22194 		 */
22195 		if (mp->b_cont != NULL) {
22196 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22197 
22198 			if (tcp->tcp_kssl_ent != NULL) {
22199 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22200 				    KSSL_NO_PROXY);
22201 				tcp->tcp_kssl_ent = NULL;
22202 			}
22203 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22204 			    sizeof (kssl_ent_t));
22205 			kssl_hold_ent(tcp->tcp_kssl_ent);
22206 			freemsg(mp->b_cont);
22207 			mp->b_cont = NULL;
22208 		}
22209 		tprim->type = T_BIND_REQ;
22210 
22211 	/* FALLTHROUGH */
22212 	case O_T_BIND_REQ:	/* bind request */
22213 	case T_BIND_REQ:	/* new semantics bind request */
22214 		tcp_bind(tcp, mp);
22215 		break;
22216 	case T_UNBIND_REQ:	/* unbind request */
22217 		tcp_unbind(tcp, mp);
22218 		break;
22219 	case O_T_CONN_RES:	/* old connection response XXX */
22220 	case T_CONN_RES:	/* connection response */
22221 		tcp_accept(tcp, mp);
22222 		break;
22223 	case T_CONN_REQ:	/* connection request */
22224 		tcp_connect(tcp, mp);
22225 		break;
22226 	case T_DISCON_REQ:	/* disconnect request */
22227 		tcp_disconnect(tcp, mp);
22228 		break;
22229 	case T_CAPABILITY_REQ:
22230 		tcp_capability_req(tcp, mp);	/* capability request */
22231 		break;
22232 	case T_INFO_REQ:	/* information request */
22233 		tcp_info_req(tcp, mp);
22234 		break;
22235 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22236 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22237 		    &tcp_opt_obj, B_TRUE);
22238 		break;
22239 	case T_OPTMGMT_REQ:
22240 		/*
22241 		 * Note:  no support for snmpcom_req() through new
22242 		 * T_OPTMGMT_REQ. See comments in ip.c
22243 		 */
22244 		/* Only IP is allowed to return meaningful value */
22245 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22246 		    B_TRUE);
22247 		break;
22248 
22249 	case T_UNITDATA_REQ:	/* unitdata request */
22250 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22251 		break;
22252 	case T_ORDREL_REQ:	/* orderly release req */
22253 		freemsg(mp);
22254 
22255 		if (tcp->tcp_fused)
22256 			tcp_unfuse(tcp);
22257 
22258 		if (tcp_xmit_end(tcp) != 0) {
22259 			/*
22260 			 * We were crossing FINs and got a reset from
22261 			 * the other side. Just ignore it.
22262 			 */
22263 			if (tcp->tcp_debug) {
22264 				(void) strlog(TCP_MOD_ID, 0, 1,
22265 				    SL_ERROR|SL_TRACE,
22266 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22267 				    "state %s",
22268 				    tcp_display(tcp, NULL,
22269 				    DISP_ADDR_AND_PORT));
22270 			}
22271 		}
22272 		break;
22273 	case T_ADDR_REQ:
22274 		tcp_addr_req(tcp, mp);
22275 		break;
22276 	default:
22277 		if (tcp->tcp_debug) {
22278 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22279 			    "tcp_wput_proto, bogus TPI msg, type %d",
22280 			    tprim->type);
22281 		}
22282 		/*
22283 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22284 		 * to recover.
22285 		 */
22286 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22287 		break;
22288 	}
22289 }
22290 
22291 /*
22292  * The TCP write service routine should never be called...
22293  */
22294 /* ARGSUSED */
22295 static void
22296 tcp_wsrv(queue_t *q)
22297 {
22298 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22299 
22300 	TCP_STAT(tcps, tcp_wsrv_called);
22301 }
22302 
22303 /* Non overlapping byte exchanger */
22304 static void
22305 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22306 {
22307 	uchar_t	uch;
22308 
22309 	while (len-- > 0) {
22310 		uch = a[len];
22311 		a[len] = b[len];
22312 		b[len] = uch;
22313 	}
22314 }
22315 
22316 /*
22317  * Send out a control packet on the tcp connection specified.  This routine
22318  * is typically called where we need a simple ACK or RST generated.
22319  */
22320 static void
22321 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22322 {
22323 	uchar_t		*rptr;
22324 	tcph_t		*tcph;
22325 	ipha_t		*ipha = NULL;
22326 	ip6_t		*ip6h = NULL;
22327 	uint32_t	sum;
22328 	int		tcp_hdr_len;
22329 	int		tcp_ip_hdr_len;
22330 	mblk_t		*mp;
22331 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22332 
22333 	/*
22334 	 * Save sum for use in source route later.
22335 	 */
22336 	ASSERT(tcp != NULL);
22337 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22338 	tcp_hdr_len = tcp->tcp_hdr_len;
22339 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22340 
22341 	/* If a text string is passed in with the request, pass it to strlog. */
22342 	if (str != NULL && tcp->tcp_debug) {
22343 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22344 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22345 		    str, seq, ack, ctl);
22346 	}
22347 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22348 	    BPRI_MED);
22349 	if (mp == NULL) {
22350 		return;
22351 	}
22352 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22353 	mp->b_rptr = rptr;
22354 	mp->b_wptr = &rptr[tcp_hdr_len];
22355 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22356 
22357 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22358 		ipha = (ipha_t *)rptr;
22359 		ipha->ipha_length = htons(tcp_hdr_len);
22360 	} else {
22361 		ip6h = (ip6_t *)rptr;
22362 		ASSERT(tcp != NULL);
22363 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22364 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22365 	}
22366 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22367 	tcph->th_flags[0] = (uint8_t)ctl;
22368 	if (ctl & TH_RST) {
22369 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22370 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22371 		/*
22372 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22373 		 */
22374 		if (tcp->tcp_snd_ts_ok &&
22375 		    tcp->tcp_state > TCPS_SYN_SENT) {
22376 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22377 			*(mp->b_wptr) = TCPOPT_EOL;
22378 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22379 				ipha->ipha_length = htons(tcp_hdr_len -
22380 				    TCPOPT_REAL_TS_LEN);
22381 			} else {
22382 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22383 				    TCPOPT_REAL_TS_LEN);
22384 			}
22385 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22386 			sum -= TCPOPT_REAL_TS_LEN;
22387 		}
22388 	}
22389 	if (ctl & TH_ACK) {
22390 		if (tcp->tcp_snd_ts_ok) {
22391 			U32_TO_BE32(lbolt,
22392 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22393 			U32_TO_BE32(tcp->tcp_ts_recent,
22394 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22395 		}
22396 
22397 		/* Update the latest receive window size in TCP header. */
22398 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22399 		    tcph->th_win);
22400 		tcp->tcp_rack = ack;
22401 		tcp->tcp_rack_cnt = 0;
22402 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22403 	}
22404 	BUMP_LOCAL(tcp->tcp_obsegs);
22405 	U32_TO_BE32(seq, tcph->th_seq);
22406 	U32_TO_BE32(ack, tcph->th_ack);
22407 	/*
22408 	 * Include the adjustment for a source route if any.
22409 	 */
22410 	sum = (sum >> 16) + (sum & 0xFFFF);
22411 	U16_TO_BE16(sum, tcph->th_sum);
22412 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22413 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22414 }
22415 
22416 /*
22417  * If this routine returns B_TRUE, TCP can generate a RST in response
22418  * to a segment.  If it returns B_FALSE, TCP should not respond.
22419  */
22420 static boolean_t
22421 tcp_send_rst_chk(tcp_stack_t *tcps)
22422 {
22423 	clock_t	now;
22424 
22425 	/*
22426 	 * TCP needs to protect itself from generating too many RSTs.
22427 	 * This can be a DoS attack by sending us random segments
22428 	 * soliciting RSTs.
22429 	 *
22430 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22431 	 * in each 1 second interval.  In this way, TCP still generate
22432 	 * RSTs in normal cases but when under attack, the impact is
22433 	 * limited.
22434 	 */
22435 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22436 		now = lbolt;
22437 		/* lbolt can wrap around. */
22438 		if ((tcps->tcps_last_rst_intrvl > now) ||
22439 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22440 		    1*SECONDS)) {
22441 			tcps->tcps_last_rst_intrvl = now;
22442 			tcps->tcps_rst_cnt = 1;
22443 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22444 			return (B_FALSE);
22445 		}
22446 	}
22447 	return (B_TRUE);
22448 }
22449 
22450 /*
22451  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22452  */
22453 static void
22454 tcp_ip_ire_mark_advice(tcp_t *tcp)
22455 {
22456 	mblk_t *mp;
22457 	ipic_t *ipic;
22458 
22459 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22460 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22461 		    &ipic);
22462 	} else {
22463 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22464 		    &ipic);
22465 	}
22466 	if (mp == NULL)
22467 		return;
22468 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22469 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22470 }
22471 
22472 /*
22473  * Return an IP advice ioctl mblk and set ipic to be the pointer
22474  * to the advice structure.
22475  */
22476 static mblk_t *
22477 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22478 {
22479 	struct iocblk *ioc;
22480 	mblk_t *mp, *mp1;
22481 
22482 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22483 	if (mp == NULL)
22484 		return (NULL);
22485 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22486 	*ipic = (ipic_t *)mp->b_rptr;
22487 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22488 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22489 
22490 	bcopy(addr, *ipic + 1, addr_len);
22491 
22492 	(*ipic)->ipic_addr_length = addr_len;
22493 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22494 
22495 	mp1 = mkiocb(IP_IOCTL);
22496 	if (mp1 == NULL) {
22497 		freemsg(mp);
22498 		return (NULL);
22499 	}
22500 	mp1->b_cont = mp;
22501 	ioc = (struct iocblk *)mp1->b_rptr;
22502 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22503 
22504 	return (mp1);
22505 }
22506 
22507 /*
22508  * Generate a reset based on an inbound packet, connp is set by caller
22509  * when RST is in response to an unexpected inbound packet for which
22510  * there is active tcp state in the system.
22511  *
22512  * IPSEC NOTE : Try to send the reply with the same protection as it came
22513  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22514  * the packet will go out at the same level of protection as it came in by
22515  * converting the IPSEC_IN to IPSEC_OUT.
22516  */
22517 static void
22518 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22519     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22520     tcp_stack_t *tcps, conn_t *connp)
22521 {
22522 	ipha_t		*ipha = NULL;
22523 	ip6_t		*ip6h = NULL;
22524 	ushort_t	len;
22525 	tcph_t		*tcph;
22526 	int		i;
22527 	mblk_t		*ipsec_mp;
22528 	boolean_t	mctl_present;
22529 	ipic_t		*ipic;
22530 	ipaddr_t	v4addr;
22531 	in6_addr_t	v6addr;
22532 	int		addr_len;
22533 	void		*addr;
22534 	queue_t		*q = tcps->tcps_g_q;
22535 	tcp_t		*tcp;
22536 	cred_t		*cr;
22537 	mblk_t		*nmp;
22538 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22539 
22540 	if (tcps->tcps_g_q == NULL) {
22541 		/*
22542 		 * For non-zero stackids the default queue isn't created
22543 		 * until the first open, thus there can be a need to send
22544 		 * a reset before then. But we can't do that, hence we just
22545 		 * drop the packet. Later during boot, when the default queue
22546 		 * has been setup, a retransmitted packet from the peer
22547 		 * will result in a reset.
22548 		 */
22549 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22550 		    GLOBAL_NETSTACKID);
22551 		freemsg(mp);
22552 		return;
22553 	}
22554 
22555 	if (connp != NULL)
22556 		tcp = connp->conn_tcp;
22557 	else
22558 		tcp = Q_TO_TCP(q);
22559 
22560 	if (!tcp_send_rst_chk(tcps)) {
22561 		tcps->tcps_rst_unsent++;
22562 		freemsg(mp);
22563 		return;
22564 	}
22565 
22566 	if (mp->b_datap->db_type == M_CTL) {
22567 		ipsec_mp = mp;
22568 		mp = mp->b_cont;
22569 		mctl_present = B_TRUE;
22570 	} else {
22571 		ipsec_mp = mp;
22572 		mctl_present = B_FALSE;
22573 	}
22574 
22575 	if (str && q && tcps->tcps_dbg) {
22576 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22577 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22578 		    "flags 0x%x",
22579 		    str, seq, ack, ctl);
22580 	}
22581 	if (mp->b_datap->db_ref != 1) {
22582 		mblk_t *mp1 = copyb(mp);
22583 		freemsg(mp);
22584 		mp = mp1;
22585 		if (!mp) {
22586 			if (mctl_present)
22587 				freeb(ipsec_mp);
22588 			return;
22589 		} else {
22590 			if (mctl_present) {
22591 				ipsec_mp->b_cont = mp;
22592 			} else {
22593 				ipsec_mp = mp;
22594 			}
22595 		}
22596 	} else if (mp->b_cont) {
22597 		freemsg(mp->b_cont);
22598 		mp->b_cont = NULL;
22599 	}
22600 	/*
22601 	 * We skip reversing source route here.
22602 	 * (for now we replace all IP options with EOL)
22603 	 */
22604 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22605 		ipha = (ipha_t *)mp->b_rptr;
22606 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22607 			mp->b_rptr[i] = IPOPT_EOL;
22608 		/*
22609 		 * Make sure that src address isn't flagrantly invalid.
22610 		 * Not all broadcast address checking for the src address
22611 		 * is possible, since we don't know the netmask of the src
22612 		 * addr.  No check for destination address is done, since
22613 		 * IP will not pass up a packet with a broadcast dest
22614 		 * address to TCP.  Similar checks are done below for IPv6.
22615 		 */
22616 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22617 		    CLASSD(ipha->ipha_src)) {
22618 			freemsg(ipsec_mp);
22619 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22620 			return;
22621 		}
22622 	} else {
22623 		ip6h = (ip6_t *)mp->b_rptr;
22624 
22625 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22626 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22627 			freemsg(ipsec_mp);
22628 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22629 			return;
22630 		}
22631 
22632 		/* Remove any extension headers assuming partial overlay */
22633 		if (ip_hdr_len > IPV6_HDR_LEN) {
22634 			uint8_t *to;
22635 
22636 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22637 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22638 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22639 			ip_hdr_len = IPV6_HDR_LEN;
22640 			ip6h = (ip6_t *)mp->b_rptr;
22641 			ip6h->ip6_nxt = IPPROTO_TCP;
22642 		}
22643 	}
22644 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22645 	if (tcph->th_flags[0] & TH_RST) {
22646 		freemsg(ipsec_mp);
22647 		return;
22648 	}
22649 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22650 	len = ip_hdr_len + sizeof (tcph_t);
22651 	mp->b_wptr = &mp->b_rptr[len];
22652 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22653 		ipha->ipha_length = htons(len);
22654 		/* Swap addresses */
22655 		v4addr = ipha->ipha_src;
22656 		ipha->ipha_src = ipha->ipha_dst;
22657 		ipha->ipha_dst = v4addr;
22658 		ipha->ipha_ident = 0;
22659 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22660 		addr_len = IP_ADDR_LEN;
22661 		addr = &v4addr;
22662 	} else {
22663 		/* No ip6i_t in this case */
22664 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22665 		/* Swap addresses */
22666 		v6addr = ip6h->ip6_src;
22667 		ip6h->ip6_src = ip6h->ip6_dst;
22668 		ip6h->ip6_dst = v6addr;
22669 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22670 		addr_len = IPV6_ADDR_LEN;
22671 		addr = &v6addr;
22672 	}
22673 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22674 	U32_TO_BE32(ack, tcph->th_ack);
22675 	U32_TO_BE32(seq, tcph->th_seq);
22676 	U16_TO_BE16(0, tcph->th_win);
22677 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22678 	tcph->th_flags[0] = (uint8_t)ctl;
22679 	if (ctl & TH_RST) {
22680 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22681 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22682 	}
22683 
22684 	/* IP trusts us to set up labels when required. */
22685 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22686 	    crgetlabel(cr) != NULL) {
22687 		int err, adjust;
22688 
22689 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22690 			err = tsol_check_label(cr, &mp, &adjust,
22691 			    tcp->tcp_connp->conn_mac_exempt,
22692 			    tcps->tcps_netstack->netstack_ip);
22693 		else
22694 			err = tsol_check_label_v6(cr, &mp, &adjust,
22695 			    tcp->tcp_connp->conn_mac_exempt,
22696 			    tcps->tcps_netstack->netstack_ip);
22697 		if (mctl_present)
22698 			ipsec_mp->b_cont = mp;
22699 		else
22700 			ipsec_mp = mp;
22701 		if (err != 0) {
22702 			freemsg(ipsec_mp);
22703 			return;
22704 		}
22705 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22706 			ipha = (ipha_t *)mp->b_rptr;
22707 			adjust += ntohs(ipha->ipha_length);
22708 			ipha->ipha_length = htons(adjust);
22709 		} else {
22710 			ip6h = (ip6_t *)mp->b_rptr;
22711 		}
22712 	}
22713 
22714 	if (mctl_present) {
22715 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22716 
22717 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22718 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22719 			return;
22720 		}
22721 	}
22722 	if (zoneid == ALL_ZONES)
22723 		zoneid = GLOBAL_ZONEID;
22724 
22725 	/* Add the zoneid so ip_output routes it properly */
22726 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22727 		freemsg(ipsec_mp);
22728 		return;
22729 	}
22730 	ipsec_mp = nmp;
22731 
22732 	/*
22733 	 * NOTE:  one might consider tracing a TCP packet here, but
22734 	 * this function has no active TCP state and no tcp structure
22735 	 * that has a trace buffer.  If we traced here, we would have
22736 	 * to keep a local trace buffer in tcp_record_trace().
22737 	 *
22738 	 * TSol note: The mblk that contains the incoming packet was
22739 	 * reused by tcp_xmit_listener_reset, so it already contains
22740 	 * the right credentials and we don't need to call mblk_setcred.
22741 	 * Also the conn's cred is not right since it is associated
22742 	 * with tcps_g_q.
22743 	 */
22744 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22745 
22746 	/*
22747 	 * Tell IP to mark the IRE used for this destination temporary.
22748 	 * This way, we can limit our exposure to DoS attack because IP
22749 	 * creates an IRE for each destination.  If there are too many,
22750 	 * the time to do any routing lookup will be extremely long.  And
22751 	 * the lookup can be in interrupt context.
22752 	 *
22753 	 * Note that in normal circumstances, this marking should not
22754 	 * affect anything.  It would be nice if only 1 message is
22755 	 * needed to inform IP that the IRE created for this RST should
22756 	 * not be added to the cache table.  But there is currently
22757 	 * not such communication mechanism between TCP and IP.  So
22758 	 * the best we can do now is to send the advice ioctl to IP
22759 	 * to mark the IRE temporary.
22760 	 */
22761 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22762 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22763 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22764 	}
22765 }
22766 
22767 /*
22768  * Initiate closedown sequence on an active connection.  (May be called as
22769  * writer.)  Return value zero for OK return, non-zero for error return.
22770  */
22771 static int
22772 tcp_xmit_end(tcp_t *tcp)
22773 {
22774 	ipic_t	*ipic;
22775 	mblk_t	*mp;
22776 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22777 
22778 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22779 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22780 		/*
22781 		 * Invalid state, only states TCPS_SYN_RCVD,
22782 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22783 		 */
22784 		return (-1);
22785 	}
22786 
22787 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22788 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22789 	/*
22790 	 * If there is nothing more unsent, send the FIN now.
22791 	 * Otherwise, it will go out with the last segment.
22792 	 */
22793 	if (tcp->tcp_unsent == 0) {
22794 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22795 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22796 
22797 		if (mp) {
22798 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22799 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22800 		} else {
22801 			/*
22802 			 * Couldn't allocate msg.  Pretend we got it out.
22803 			 * Wait for rexmit timeout.
22804 			 */
22805 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22806 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22807 		}
22808 
22809 		/*
22810 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22811 		 * changed.
22812 		 */
22813 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22814 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22815 		}
22816 	} else {
22817 		/*
22818 		 * If tcp->tcp_cork is set, then the data will not get sent,
22819 		 * so we have to check that and unset it first.
22820 		 */
22821 		if (tcp->tcp_cork)
22822 			tcp->tcp_cork = B_FALSE;
22823 		tcp_wput_data(tcp, NULL, B_FALSE);
22824 	}
22825 
22826 	/*
22827 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22828 	 * is 0, don't update the cache.
22829 	 */
22830 	if (tcps->tcps_rtt_updates == 0 ||
22831 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22832 		return (0);
22833 
22834 	/*
22835 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22836 	 * different from the destination.
22837 	 */
22838 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22839 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22840 			return (0);
22841 		}
22842 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22843 		    &ipic);
22844 	} else {
22845 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22846 		    &tcp->tcp_ip6h->ip6_dst))) {
22847 			return (0);
22848 		}
22849 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22850 		    &ipic);
22851 	}
22852 
22853 	/* Record route attributes in the IRE for use by future connections. */
22854 	if (mp == NULL)
22855 		return (0);
22856 
22857 	/*
22858 	 * We do not have a good algorithm to update ssthresh at this time.
22859 	 * So don't do any update.
22860 	 */
22861 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22862 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22863 
22864 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22865 	return (0);
22866 }
22867 
22868 /*
22869  * Generate a "no listener here" RST in response to an "unknown" segment.
22870  * connp is set by caller when RST is in response to an unexpected
22871  * inbound packet for which there is active tcp state in the system.
22872  * Note that we are reusing the incoming mp to construct the outgoing RST.
22873  */
22874 void
22875 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22876     tcp_stack_t *tcps, conn_t *connp)
22877 {
22878 	uchar_t		*rptr;
22879 	uint32_t	seg_len;
22880 	tcph_t		*tcph;
22881 	uint32_t	seg_seq;
22882 	uint32_t	seg_ack;
22883 	uint_t		flags;
22884 	mblk_t		*ipsec_mp;
22885 	ipha_t 		*ipha;
22886 	ip6_t 		*ip6h;
22887 	boolean_t	mctl_present = B_FALSE;
22888 	boolean_t	check = B_TRUE;
22889 	boolean_t	policy_present;
22890 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22891 
22892 	TCP_STAT(tcps, tcp_no_listener);
22893 
22894 	ipsec_mp = mp;
22895 
22896 	if (mp->b_datap->db_type == M_CTL) {
22897 		ipsec_in_t *ii;
22898 
22899 		mctl_present = B_TRUE;
22900 		mp = mp->b_cont;
22901 
22902 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22903 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22904 		if (ii->ipsec_in_dont_check) {
22905 			check = B_FALSE;
22906 			if (!ii->ipsec_in_secure) {
22907 				freeb(ipsec_mp);
22908 				mctl_present = B_FALSE;
22909 				ipsec_mp = mp;
22910 			}
22911 		}
22912 	}
22913 
22914 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22915 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22916 		ipha = (ipha_t *)mp->b_rptr;
22917 		ip6h = NULL;
22918 	} else {
22919 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22920 		ipha = NULL;
22921 		ip6h = (ip6_t *)mp->b_rptr;
22922 	}
22923 
22924 	if (check && policy_present) {
22925 		/*
22926 		 * The conn_t parameter is NULL because we already know
22927 		 * nobody's home.
22928 		 */
22929 		ipsec_mp = ipsec_check_global_policy(
22930 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22931 		    tcps->tcps_netstack);
22932 		if (ipsec_mp == NULL)
22933 			return;
22934 	}
22935 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22936 		DTRACE_PROBE2(
22937 		    tx__ip__log__error__nolistener__tcp,
22938 		    char *, "Could not reply with RST to mp(1)",
22939 		    mblk_t *, mp);
22940 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22941 		freemsg(ipsec_mp);
22942 		return;
22943 	}
22944 
22945 	rptr = mp->b_rptr;
22946 
22947 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22948 	seg_seq = BE32_TO_U32(tcph->th_seq);
22949 	seg_ack = BE32_TO_U32(tcph->th_ack);
22950 	flags = tcph->th_flags[0];
22951 
22952 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22953 	if (flags & TH_RST) {
22954 		freemsg(ipsec_mp);
22955 	} else if (flags & TH_ACK) {
22956 		tcp_xmit_early_reset("no tcp, reset",
22957 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22958 		    connp);
22959 	} else {
22960 		if (flags & TH_SYN) {
22961 			seg_len++;
22962 		} else {
22963 			/*
22964 			 * Here we violate the RFC.  Note that a normal
22965 			 * TCP will never send a segment without the ACK
22966 			 * flag, except for RST or SYN segment.  This
22967 			 * segment is neither.  Just drop it on the
22968 			 * floor.
22969 			 */
22970 			freemsg(ipsec_mp);
22971 			tcps->tcps_rst_unsent++;
22972 			return;
22973 		}
22974 
22975 		tcp_xmit_early_reset("no tcp, reset/ack",
22976 		    ipsec_mp, 0, seg_seq + seg_len,
22977 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22978 	}
22979 }
22980 
22981 /*
22982  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22983  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22984  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22985  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22986  * otherwise it will dup partial mblks.)
22987  * Otherwise, an appropriate ACK packet will be generated.  This
22988  * routine is not usually called to send new data for the first time.  It
22989  * is mostly called out of the timer for retransmits, and to generate ACKs.
22990  *
22991  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22992  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22993  * of the original mblk chain will be returned in *offset and *end_mp.
22994  */
22995 mblk_t *
22996 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22997     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22998     boolean_t rexmit)
22999 {
23000 	int	data_length;
23001 	int32_t	off = 0;
23002 	uint_t	flags;
23003 	mblk_t	*mp1;
23004 	mblk_t	*mp2;
23005 	uchar_t	*rptr;
23006 	tcph_t	*tcph;
23007 	int32_t	num_sack_blk = 0;
23008 	int32_t	sack_opt_len = 0;
23009 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23010 
23011 	/* Allocate for our maximum TCP header + link-level */
23012 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23013 	    tcps->tcps_wroff_xtra, BPRI_MED);
23014 	if (!mp1)
23015 		return (NULL);
23016 	data_length = 0;
23017 
23018 	/*
23019 	 * Note that tcp_mss has been adjusted to take into account the
23020 	 * timestamp option if applicable.  Because SACK options do not
23021 	 * appear in every TCP segments and they are of variable lengths,
23022 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23023 	 * the actual segment length when we need to send a segment which
23024 	 * includes SACK options.
23025 	 */
23026 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23027 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23028 		    tcp->tcp_num_sack_blk);
23029 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23030 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23031 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23032 			max_to_send -= sack_opt_len;
23033 	}
23034 
23035 	if (offset != NULL) {
23036 		off = *offset;
23037 		/* We use offset as an indicator that end_mp is not NULL. */
23038 		*end_mp = NULL;
23039 	}
23040 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23041 		/* This could be faster with cooperation from downstream */
23042 		if (mp2 != mp1 && !sendall &&
23043 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23044 		    max_to_send)
23045 			/*
23046 			 * Don't send the next mblk since the whole mblk
23047 			 * does not fit.
23048 			 */
23049 			break;
23050 		mp2->b_cont = dupb(mp);
23051 		mp2 = mp2->b_cont;
23052 		if (!mp2) {
23053 			freemsg(mp1);
23054 			return (NULL);
23055 		}
23056 		mp2->b_rptr += off;
23057 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23058 		    (uintptr_t)INT_MAX);
23059 
23060 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23061 		if (data_length > max_to_send) {
23062 			mp2->b_wptr -= data_length - max_to_send;
23063 			data_length = max_to_send;
23064 			off = mp2->b_wptr - mp->b_rptr;
23065 			break;
23066 		} else {
23067 			off = 0;
23068 		}
23069 	}
23070 	if (offset != NULL) {
23071 		*offset = off;
23072 		*end_mp = mp;
23073 	}
23074 	if (seg_len != NULL) {
23075 		*seg_len = data_length;
23076 	}
23077 
23078 	/* Update the latest receive window size in TCP header. */
23079 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23080 	    tcp->tcp_tcph->th_win);
23081 
23082 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23083 	mp1->b_rptr = rptr;
23084 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23085 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23086 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23087 	U32_TO_ABE32(seq, tcph->th_seq);
23088 
23089 	/*
23090 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23091 	 * that this function was called from tcp_wput_data. Thus, when called
23092 	 * to retransmit data the setting of the PUSH bit may appear some
23093 	 * what random in that it might get set when it should not. This
23094 	 * should not pose any performance issues.
23095 	 */
23096 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23097 	    tcp->tcp_unsent == data_length)) {
23098 		flags = TH_ACK | TH_PUSH;
23099 	} else {
23100 		flags = TH_ACK;
23101 	}
23102 
23103 	if (tcp->tcp_ecn_ok) {
23104 		if (tcp->tcp_ecn_echo_on)
23105 			flags |= TH_ECE;
23106 
23107 		/*
23108 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23109 		 * There is no TCP flow control for non-data segments, and
23110 		 * only data segment is transmitted reliably.
23111 		 */
23112 		if (data_length > 0 && !rexmit) {
23113 			SET_ECT(tcp, rptr);
23114 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23115 				flags |= TH_CWR;
23116 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23117 			}
23118 		}
23119 	}
23120 
23121 	if (tcp->tcp_valid_bits) {
23122 		uint32_t u1;
23123 
23124 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23125 		    seq == tcp->tcp_iss) {
23126 			uchar_t	*wptr;
23127 
23128 			/*
23129 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23130 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23131 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23132 			 * our SYN is not ack'ed but the app closes this
23133 			 * TCP connection.
23134 			 */
23135 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23136 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23137 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23138 
23139 			/*
23140 			 * Tack on the MSS option.  It is always needed
23141 			 * for both active and passive open.
23142 			 *
23143 			 * MSS option value should be interface MTU - MIN
23144 			 * TCP/IP header according to RFC 793 as it means
23145 			 * the maximum segment size TCP can receive.  But
23146 			 * to get around some broken middle boxes/end hosts
23147 			 * out there, we allow the option value to be the
23148 			 * same as the MSS option size on the peer side.
23149 			 * In this way, the other side will not send
23150 			 * anything larger than they can receive.
23151 			 *
23152 			 * Note that for SYN_SENT state, the ndd param
23153 			 * tcp_use_smss_as_mss_opt has no effect as we
23154 			 * don't know the peer's MSS option value. So
23155 			 * the only case we need to take care of is in
23156 			 * SYN_RCVD state, which is done later.
23157 			 */
23158 			wptr = mp1->b_wptr;
23159 			wptr[0] = TCPOPT_MAXSEG;
23160 			wptr[1] = TCPOPT_MAXSEG_LEN;
23161 			wptr += 2;
23162 			u1 = tcp->tcp_if_mtu -
23163 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23164 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23165 			    TCP_MIN_HEADER_LENGTH;
23166 			U16_TO_BE16(u1, wptr);
23167 			mp1->b_wptr = wptr + 2;
23168 			/* Update the offset to cover the additional word */
23169 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23170 
23171 			/*
23172 			 * Note that the following way of filling in
23173 			 * TCP options are not optimal.  Some NOPs can
23174 			 * be saved.  But there is no need at this time
23175 			 * to optimize it.  When it is needed, we will
23176 			 * do it.
23177 			 */
23178 			switch (tcp->tcp_state) {
23179 			case TCPS_SYN_SENT:
23180 				flags = TH_SYN;
23181 
23182 				if (tcp->tcp_snd_ts_ok) {
23183 					uint32_t llbolt = (uint32_t)lbolt;
23184 
23185 					wptr = mp1->b_wptr;
23186 					wptr[0] = TCPOPT_NOP;
23187 					wptr[1] = TCPOPT_NOP;
23188 					wptr[2] = TCPOPT_TSTAMP;
23189 					wptr[3] = TCPOPT_TSTAMP_LEN;
23190 					wptr += 4;
23191 					U32_TO_BE32(llbolt, wptr);
23192 					wptr += 4;
23193 					ASSERT(tcp->tcp_ts_recent == 0);
23194 					U32_TO_BE32(0L, wptr);
23195 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23196 					tcph->th_offset_and_rsrvd[0] +=
23197 					    (3 << 4);
23198 				}
23199 
23200 				/*
23201 				 * Set up all the bits to tell other side
23202 				 * we are ECN capable.
23203 				 */
23204 				if (tcp->tcp_ecn_ok) {
23205 					flags |= (TH_ECE | TH_CWR);
23206 				}
23207 				break;
23208 			case TCPS_SYN_RCVD:
23209 				flags |= TH_SYN;
23210 
23211 				/*
23212 				 * Reset the MSS option value to be SMSS
23213 				 * We should probably add back the bytes
23214 				 * for timestamp option and IPsec.  We
23215 				 * don't do that as this is a workaround
23216 				 * for broken middle boxes/end hosts, it
23217 				 * is better for us to be more cautious.
23218 				 * They may not take these things into
23219 				 * account in their SMSS calculation.  Thus
23220 				 * the peer's calculated SMSS may be smaller
23221 				 * than what it can be.  This should be OK.
23222 				 */
23223 				if (tcps->tcps_use_smss_as_mss_opt) {
23224 					u1 = tcp->tcp_mss;
23225 					U16_TO_BE16(u1, wptr);
23226 				}
23227 
23228 				/*
23229 				 * If the other side is ECN capable, reply
23230 				 * that we are also ECN capable.
23231 				 */
23232 				if (tcp->tcp_ecn_ok)
23233 					flags |= TH_ECE;
23234 				break;
23235 			default:
23236 				/*
23237 				 * The above ASSERT() makes sure that this
23238 				 * must be FIN-WAIT-1 state.  Our SYN has
23239 				 * not been ack'ed so retransmit it.
23240 				 */
23241 				flags |= TH_SYN;
23242 				break;
23243 			}
23244 
23245 			if (tcp->tcp_snd_ws_ok) {
23246 				wptr = mp1->b_wptr;
23247 				wptr[0] =  TCPOPT_NOP;
23248 				wptr[1] =  TCPOPT_WSCALE;
23249 				wptr[2] =  TCPOPT_WS_LEN;
23250 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23251 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23252 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23253 			}
23254 
23255 			if (tcp->tcp_snd_sack_ok) {
23256 				wptr = mp1->b_wptr;
23257 				wptr[0] = TCPOPT_NOP;
23258 				wptr[1] = TCPOPT_NOP;
23259 				wptr[2] = TCPOPT_SACK_PERMITTED;
23260 				wptr[3] = TCPOPT_SACK_OK_LEN;
23261 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23262 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23263 			}
23264 
23265 			/* allocb() of adequate mblk assures space */
23266 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23267 			    (uintptr_t)INT_MAX);
23268 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23269 			/*
23270 			 * Get IP set to checksum on our behalf
23271 			 * Include the adjustment for a source route if any.
23272 			 */
23273 			u1 += tcp->tcp_sum;
23274 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23275 			U16_TO_BE16(u1, tcph->th_sum);
23276 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23277 		}
23278 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23279 		    (seq + data_length) == tcp->tcp_fss) {
23280 			if (!tcp->tcp_fin_acked) {
23281 				flags |= TH_FIN;
23282 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23283 			}
23284 			if (!tcp->tcp_fin_sent) {
23285 				tcp->tcp_fin_sent = B_TRUE;
23286 				switch (tcp->tcp_state) {
23287 				case TCPS_SYN_RCVD:
23288 				case TCPS_ESTABLISHED:
23289 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23290 					break;
23291 				case TCPS_CLOSE_WAIT:
23292 					tcp->tcp_state = TCPS_LAST_ACK;
23293 					break;
23294 				}
23295 				if (tcp->tcp_suna == tcp->tcp_snxt)
23296 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23297 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23298 			}
23299 		}
23300 		/*
23301 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23302 		 * is smaller than seq, u1 will become a very huge value.
23303 		 * So the comparison will fail.  Also note that tcp_urp
23304 		 * should be positive, see RFC 793 page 17.
23305 		 */
23306 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23307 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23308 		    u1 < (uint32_t)(64 * 1024)) {
23309 			flags |= TH_URG;
23310 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23311 			U32_TO_ABE16(u1, tcph->th_urp);
23312 		}
23313 	}
23314 	tcph->th_flags[0] = (uchar_t)flags;
23315 	tcp->tcp_rack = tcp->tcp_rnxt;
23316 	tcp->tcp_rack_cnt = 0;
23317 
23318 	if (tcp->tcp_snd_ts_ok) {
23319 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23320 			uint32_t llbolt = (uint32_t)lbolt;
23321 
23322 			U32_TO_BE32(llbolt,
23323 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23324 			U32_TO_BE32(tcp->tcp_ts_recent,
23325 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23326 		}
23327 	}
23328 
23329 	if (num_sack_blk > 0) {
23330 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23331 		sack_blk_t *tmp;
23332 		int32_t	i;
23333 
23334 		wptr[0] = TCPOPT_NOP;
23335 		wptr[1] = TCPOPT_NOP;
23336 		wptr[2] = TCPOPT_SACK;
23337 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23338 		    sizeof (sack_blk_t);
23339 		wptr += TCPOPT_REAL_SACK_LEN;
23340 
23341 		tmp = tcp->tcp_sack_list;
23342 		for (i = 0; i < num_sack_blk; i++) {
23343 			U32_TO_BE32(tmp[i].begin, wptr);
23344 			wptr += sizeof (tcp_seq);
23345 			U32_TO_BE32(tmp[i].end, wptr);
23346 			wptr += sizeof (tcp_seq);
23347 		}
23348 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23349 	}
23350 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23351 	data_length += (int)(mp1->b_wptr - rptr);
23352 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23353 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23354 	} else {
23355 		ip6_t *ip6 = (ip6_t *)(rptr +
23356 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23357 		    sizeof (ip6i_t) : 0));
23358 
23359 		ip6->ip6_plen = htons(data_length -
23360 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23361 	}
23362 
23363 	/*
23364 	 * Prime pump for IP
23365 	 * Include the adjustment for a source route if any.
23366 	 */
23367 	data_length -= tcp->tcp_ip_hdr_len;
23368 	data_length += tcp->tcp_sum;
23369 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23370 	U16_TO_ABE16(data_length, tcph->th_sum);
23371 	if (tcp->tcp_ip_forward_progress) {
23372 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23373 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23374 		tcp->tcp_ip_forward_progress = B_FALSE;
23375 	}
23376 	return (mp1);
23377 }
23378 
23379 /* This function handles the push timeout. */
23380 void
23381 tcp_push_timer(void *arg)
23382 {
23383 	conn_t	*connp = (conn_t *)arg;
23384 	tcp_t *tcp = connp->conn_tcp;
23385 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23386 
23387 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23388 
23389 	ASSERT(tcp->tcp_listener == NULL);
23390 
23391 	/*
23392 	 * We need to plug synchronous streams during our drain to prevent
23393 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23394 	 */
23395 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23396 	tcp->tcp_push_tid = 0;
23397 	if ((tcp->tcp_rcv_list != NULL) &&
23398 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23399 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23400 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23401 }
23402 
23403 /*
23404  * This function handles delayed ACK timeout.
23405  */
23406 static void
23407 tcp_ack_timer(void *arg)
23408 {
23409 	conn_t	*connp = (conn_t *)arg;
23410 	tcp_t *tcp = connp->conn_tcp;
23411 	mblk_t *mp;
23412 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23413 
23414 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23415 
23416 	tcp->tcp_ack_tid = 0;
23417 
23418 	if (tcp->tcp_fused)
23419 		return;
23420 
23421 	/*
23422 	 * Do not send ACK if there is no outstanding unack'ed data.
23423 	 */
23424 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23425 		return;
23426 	}
23427 
23428 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23429 		/*
23430 		 * Make sure we don't allow deferred ACKs to result in
23431 		 * timer-based ACKing.  If we have held off an ACK
23432 		 * when there was more than an mss here, and the timer
23433 		 * goes off, we have to worry about the possibility
23434 		 * that the sender isn't doing slow-start, or is out
23435 		 * of step with us for some other reason.  We fall
23436 		 * permanently back in the direction of
23437 		 * ACK-every-other-packet as suggested in RFC 1122.
23438 		 */
23439 		if (tcp->tcp_rack_abs_max > 2)
23440 			tcp->tcp_rack_abs_max--;
23441 		tcp->tcp_rack_cur_max = 2;
23442 	}
23443 	mp = tcp_ack_mp(tcp);
23444 
23445 	if (mp != NULL) {
23446 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23447 		BUMP_LOCAL(tcp->tcp_obsegs);
23448 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23449 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23450 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23451 	}
23452 }
23453 
23454 
23455 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23456 static mblk_t *
23457 tcp_ack_mp(tcp_t *tcp)
23458 {
23459 	uint32_t	seq_no;
23460 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23461 
23462 	/*
23463 	 * There are a few cases to be considered while setting the sequence no.
23464 	 * Essentially, we can come here while processing an unacceptable pkt
23465 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23466 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23467 	 * If we are here for a zero window probe, stick with suna. In all
23468 	 * other cases, we check if suna + swnd encompasses snxt and set
23469 	 * the sequence number to snxt, if so. If snxt falls outside the
23470 	 * window (the receiver probably shrunk its window), we will go with
23471 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23472 	 * receiver.
23473 	 */
23474 	if (tcp->tcp_zero_win_probe) {
23475 		seq_no = tcp->tcp_suna;
23476 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23477 		ASSERT(tcp->tcp_swnd == 0);
23478 		seq_no = tcp->tcp_snxt;
23479 	} else {
23480 		seq_no = SEQ_GT(tcp->tcp_snxt,
23481 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23482 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23483 	}
23484 
23485 	if (tcp->tcp_valid_bits) {
23486 		/*
23487 		 * For the complex case where we have to send some
23488 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23489 		 */
23490 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23491 		    NULL, B_FALSE));
23492 	} else {
23493 		/* Generate a simple ACK */
23494 		int	data_length;
23495 		uchar_t	*rptr;
23496 		tcph_t	*tcph;
23497 		mblk_t	*mp1;
23498 		int32_t	tcp_hdr_len;
23499 		int32_t	tcp_tcp_hdr_len;
23500 		int32_t	num_sack_blk = 0;
23501 		int32_t sack_opt_len;
23502 
23503 		/*
23504 		 * Allocate space for TCP + IP headers
23505 		 * and link-level header
23506 		 */
23507 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23508 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23509 			    tcp->tcp_num_sack_blk);
23510 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23511 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23512 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23513 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23514 		} else {
23515 			tcp_hdr_len = tcp->tcp_hdr_len;
23516 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23517 		}
23518 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23519 		if (!mp1)
23520 			return (NULL);
23521 
23522 		/* Update the latest receive window size in TCP header. */
23523 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23524 		    tcp->tcp_tcph->th_win);
23525 		/* copy in prototype TCP + IP header */
23526 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23527 		mp1->b_rptr = rptr;
23528 		mp1->b_wptr = rptr + tcp_hdr_len;
23529 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23530 
23531 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23532 
23533 		/* Set the TCP sequence number. */
23534 		U32_TO_ABE32(seq_no, tcph->th_seq);
23535 
23536 		/* Set up the TCP flag field. */
23537 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23538 		if (tcp->tcp_ecn_echo_on)
23539 			tcph->th_flags[0] |= TH_ECE;
23540 
23541 		tcp->tcp_rack = tcp->tcp_rnxt;
23542 		tcp->tcp_rack_cnt = 0;
23543 
23544 		/* fill in timestamp option if in use */
23545 		if (tcp->tcp_snd_ts_ok) {
23546 			uint32_t llbolt = (uint32_t)lbolt;
23547 
23548 			U32_TO_BE32(llbolt,
23549 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23550 			U32_TO_BE32(tcp->tcp_ts_recent,
23551 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23552 		}
23553 
23554 		/* Fill in SACK options */
23555 		if (num_sack_blk > 0) {
23556 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23557 			sack_blk_t *tmp;
23558 			int32_t	i;
23559 
23560 			wptr[0] = TCPOPT_NOP;
23561 			wptr[1] = TCPOPT_NOP;
23562 			wptr[2] = TCPOPT_SACK;
23563 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23564 			    sizeof (sack_blk_t);
23565 			wptr += TCPOPT_REAL_SACK_LEN;
23566 
23567 			tmp = tcp->tcp_sack_list;
23568 			for (i = 0; i < num_sack_blk; i++) {
23569 				U32_TO_BE32(tmp[i].begin, wptr);
23570 				wptr += sizeof (tcp_seq);
23571 				U32_TO_BE32(tmp[i].end, wptr);
23572 				wptr += sizeof (tcp_seq);
23573 			}
23574 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23575 			    << 4);
23576 		}
23577 
23578 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23579 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23580 		} else {
23581 			/* Check for ip6i_t header in sticky hdrs */
23582 			ip6_t *ip6 = (ip6_t *)(rptr +
23583 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23584 			    sizeof (ip6i_t) : 0));
23585 
23586 			ip6->ip6_plen = htons(tcp_hdr_len -
23587 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23588 		}
23589 
23590 		/*
23591 		 * Prime pump for checksum calculation in IP.  Include the
23592 		 * adjustment for a source route if any.
23593 		 */
23594 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23595 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23596 		U16_TO_ABE16(data_length, tcph->th_sum);
23597 
23598 		if (tcp->tcp_ip_forward_progress) {
23599 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23600 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23601 			tcp->tcp_ip_forward_progress = B_FALSE;
23602 		}
23603 		return (mp1);
23604 	}
23605 }
23606 
23607 /*
23608  * To create a temporary tcp structure for inserting into bind hash list.
23609  * The parameter is assumed to be in network byte order, ready for use.
23610  */
23611 /* ARGSUSED */
23612 static tcp_t *
23613 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23614 {
23615 	conn_t	*connp;
23616 	tcp_t	*tcp;
23617 
23618 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23619 	if (connp == NULL)
23620 		return (NULL);
23621 
23622 	tcp = connp->conn_tcp;
23623 	tcp->tcp_tcps = tcps;
23624 	TCPS_REFHOLD(tcps);
23625 
23626 	/*
23627 	 * Only initialize the necessary info in those structures.  Note
23628 	 * that since INADDR_ANY is all 0, we do not need to set
23629 	 * tcp_bound_source to INADDR_ANY here.
23630 	 */
23631 	tcp->tcp_state = TCPS_BOUND;
23632 	tcp->tcp_lport = port;
23633 	tcp->tcp_exclbind = 1;
23634 	tcp->tcp_reserved_port = 1;
23635 
23636 	/* Just for place holding... */
23637 	tcp->tcp_ipversion = IPV4_VERSION;
23638 
23639 	return (tcp);
23640 }
23641 
23642 /*
23643  * To remove a port range specified by lo_port and hi_port from the
23644  * reserved port ranges.  This is one of the three public functions of
23645  * the reserved port interface.  Note that a port range has to be removed
23646  * as a whole.  Ports in a range cannot be removed individually.
23647  *
23648  * Params:
23649  *	in_port_t lo_port: the beginning port of the reserved port range to
23650  *		be deleted.
23651  *	in_port_t hi_port: the ending port of the reserved port range to
23652  *		be deleted.
23653  *
23654  * Return:
23655  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23656  *
23657  * Assumes that nca is only for zoneid=0
23658  */
23659 boolean_t
23660 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23661 {
23662 	int	i, j;
23663 	int	size;
23664 	tcp_t	**temp_tcp_array;
23665 	tcp_t	*tcp;
23666 	tcp_stack_t	*tcps;
23667 
23668 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23669 	ASSERT(tcps != NULL);
23670 
23671 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23672 
23673 	/* First make sure that the port ranage is indeed reserved. */
23674 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23675 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23676 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23677 			temp_tcp_array =
23678 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23679 			break;
23680 		}
23681 	}
23682 	if (i == tcps->tcps_reserved_port_array_size) {
23683 		rw_exit(&tcps->tcps_reserved_port_lock);
23684 		netstack_rele(tcps->tcps_netstack);
23685 		return (B_FALSE);
23686 	}
23687 
23688 	/*
23689 	 * Remove the range from the array.  This simple loop is possible
23690 	 * because port ranges are inserted in ascending order.
23691 	 */
23692 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23693 		tcps->tcps_reserved_port[j].lo_port =
23694 		    tcps->tcps_reserved_port[j+1].lo_port;
23695 		tcps->tcps_reserved_port[j].hi_port =
23696 		    tcps->tcps_reserved_port[j+1].hi_port;
23697 		tcps->tcps_reserved_port[j].temp_tcp_array =
23698 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23699 	}
23700 
23701 	/* Remove all the temporary tcp structures. */
23702 	size = hi_port - lo_port + 1;
23703 	while (size > 0) {
23704 		tcp = temp_tcp_array[size - 1];
23705 		ASSERT(tcp != NULL);
23706 		tcp_bind_hash_remove(tcp);
23707 		CONN_DEC_REF(tcp->tcp_connp);
23708 		size--;
23709 	}
23710 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23711 	tcps->tcps_reserved_port_array_size--;
23712 	rw_exit(&tcps->tcps_reserved_port_lock);
23713 	netstack_rele(tcps->tcps_netstack);
23714 	return (B_TRUE);
23715 }
23716 
23717 /*
23718  * Macro to remove temporary tcp structure from the bind hash list.  The
23719  * first parameter is the list of tcp to be removed.  The second parameter
23720  * is the number of tcps in the array.
23721  */
23722 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23723 { \
23724 	while ((num) > 0) { \
23725 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23726 		tf_t *tbf; \
23727 		tcp_t *tcpnext; \
23728 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23729 		mutex_enter(&tbf->tf_lock); \
23730 		tcpnext = tcp->tcp_bind_hash; \
23731 		if (tcpnext) { \
23732 			tcpnext->tcp_ptpbhn = \
23733 				tcp->tcp_ptpbhn; \
23734 		} \
23735 		*tcp->tcp_ptpbhn = tcpnext; \
23736 		mutex_exit(&tbf->tf_lock); \
23737 		kmem_free(tcp, sizeof (tcp_t)); \
23738 		(tcp_array)[(num) - 1] = NULL; \
23739 		(num)--; \
23740 	} \
23741 }
23742 
23743 /*
23744  * The public interface for other modules to call to reserve a port range
23745  * in TCP.  The caller passes in how large a port range it wants.  TCP
23746  * will try to find a range and return it via lo_port and hi_port.  This is
23747  * used by NCA's nca_conn_init.
23748  * NCA can only be used in the global zone so this only affects the global
23749  * zone's ports.
23750  *
23751  * Params:
23752  *	int size: the size of the port range to be reserved.
23753  *	in_port_t *lo_port (referenced): returns the beginning port of the
23754  *		reserved port range added.
23755  *	in_port_t *hi_port (referenced): returns the ending port of the
23756  *		reserved port range added.
23757  *
23758  * Return:
23759  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23760  *
23761  * Assumes that nca is only for zoneid=0
23762  */
23763 boolean_t
23764 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23765 {
23766 	tcp_t		*tcp;
23767 	tcp_t		*tmp_tcp;
23768 	tcp_t		**temp_tcp_array;
23769 	tf_t		*tbf;
23770 	in_port_t	net_port;
23771 	in_port_t	port;
23772 	int32_t		cur_size;
23773 	int		i, j;
23774 	boolean_t	used;
23775 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23776 	zoneid_t	zoneid = GLOBAL_ZONEID;
23777 	tcp_stack_t	*tcps;
23778 
23779 	/* Sanity check. */
23780 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23781 		return (B_FALSE);
23782 	}
23783 
23784 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23785 	ASSERT(tcps != NULL);
23786 
23787 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23788 	if (tcps->tcps_reserved_port_array_size ==
23789 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23790 		rw_exit(&tcps->tcps_reserved_port_lock);
23791 		netstack_rele(tcps->tcps_netstack);
23792 		return (B_FALSE);
23793 	}
23794 
23795 	/*
23796 	 * Find the starting port to try.  Since the port ranges are ordered
23797 	 * in the reserved port array, we can do a simple search here.
23798 	 */
23799 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23800 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23801 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23802 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23803 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23804 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23805 			break;
23806 		}
23807 	}
23808 	/* No available port range. */
23809 	if (i == tcps->tcps_reserved_port_array_size &&
23810 	    *hi_port - *lo_port < size) {
23811 		rw_exit(&tcps->tcps_reserved_port_lock);
23812 		netstack_rele(tcps->tcps_netstack);
23813 		return (B_FALSE);
23814 	}
23815 
23816 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23817 	if (temp_tcp_array == NULL) {
23818 		rw_exit(&tcps->tcps_reserved_port_lock);
23819 		netstack_rele(tcps->tcps_netstack);
23820 		return (B_FALSE);
23821 	}
23822 
23823 	/* Go thru the port range to see if some ports are already bound. */
23824 	for (port = *lo_port, cur_size = 0;
23825 	    cur_size < size && port <= *hi_port;
23826 	    cur_size++, port++) {
23827 		used = B_FALSE;
23828 		net_port = htons(port);
23829 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23830 		mutex_enter(&tbf->tf_lock);
23831 		for (tcp = tbf->tf_tcp; tcp != NULL;
23832 		    tcp = tcp->tcp_bind_hash) {
23833 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23834 			    net_port == tcp->tcp_lport) {
23835 				/*
23836 				 * A port is already bound.  Search again
23837 				 * starting from port + 1.  Release all
23838 				 * temporary tcps.
23839 				 */
23840 				mutex_exit(&tbf->tf_lock);
23841 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23842 				    tcps);
23843 				*lo_port = port + 1;
23844 				cur_size = -1;
23845 				used = B_TRUE;
23846 				break;
23847 			}
23848 		}
23849 		if (!used) {
23850 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23851 			    NULL) {
23852 				/*
23853 				 * Allocation failure.  Just fail the request.
23854 				 * Need to remove all those temporary tcp
23855 				 * structures.
23856 				 */
23857 				mutex_exit(&tbf->tf_lock);
23858 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23859 				    tcps);
23860 				rw_exit(&tcps->tcps_reserved_port_lock);
23861 				kmem_free(temp_tcp_array,
23862 				    (hi_port - lo_port + 1) *
23863 				    sizeof (tcp_t *));
23864 				netstack_rele(tcps->tcps_netstack);
23865 				return (B_FALSE);
23866 			}
23867 			temp_tcp_array[cur_size] = tmp_tcp;
23868 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23869 			mutex_exit(&tbf->tf_lock);
23870 		}
23871 	}
23872 
23873 	/*
23874 	 * The current range is not large enough.  We can actually do another
23875 	 * search if this search is done between 2 reserved port ranges.  But
23876 	 * for first release, we just stop here and return saying that no port
23877 	 * range is available.
23878 	 */
23879 	if (cur_size < size) {
23880 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23881 		rw_exit(&tcps->tcps_reserved_port_lock);
23882 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23883 		netstack_rele(tcps->tcps_netstack);
23884 		return (B_FALSE);
23885 	}
23886 	*hi_port = port - 1;
23887 
23888 	/*
23889 	 * Insert range into array in ascending order.  Since this function
23890 	 * must not be called often, we choose to use the simplest method.
23891 	 * The above array should not consume excessive stack space as
23892 	 * the size must be very small.  If in future releases, we find
23893 	 * that we should provide more reserved port ranges, this function
23894 	 * has to be modified to be more efficient.
23895 	 */
23896 	if (tcps->tcps_reserved_port_array_size == 0) {
23897 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23898 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23899 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23900 	} else {
23901 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23902 		    i++, j++) {
23903 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23904 			    i == j) {
23905 				tmp_ports[j].lo_port = *lo_port;
23906 				tmp_ports[j].hi_port = *hi_port;
23907 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23908 				j++;
23909 			}
23910 			tmp_ports[j].lo_port =
23911 			    tcps->tcps_reserved_port[i].lo_port;
23912 			tmp_ports[j].hi_port =
23913 			    tcps->tcps_reserved_port[i].hi_port;
23914 			tmp_ports[j].temp_tcp_array =
23915 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23916 		}
23917 		if (j == i) {
23918 			tmp_ports[j].lo_port = *lo_port;
23919 			tmp_ports[j].hi_port = *hi_port;
23920 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23921 		}
23922 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23923 	}
23924 	tcps->tcps_reserved_port_array_size++;
23925 	rw_exit(&tcps->tcps_reserved_port_lock);
23926 	netstack_rele(tcps->tcps_netstack);
23927 	return (B_TRUE);
23928 }
23929 
23930 /*
23931  * Check to see if a port is in any reserved port range.
23932  *
23933  * Params:
23934  *	in_port_t port: the port to be verified.
23935  *
23936  * Return:
23937  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23938  */
23939 boolean_t
23940 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23941 {
23942 	int i;
23943 
23944 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23945 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23946 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23947 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23948 			rw_exit(&tcps->tcps_reserved_port_lock);
23949 			return (B_TRUE);
23950 		}
23951 	}
23952 	rw_exit(&tcps->tcps_reserved_port_lock);
23953 	return (B_FALSE);
23954 }
23955 
23956 /*
23957  * To list all reserved port ranges.  This is the function to handle
23958  * ndd tcp_reserved_port_list.
23959  */
23960 /* ARGSUSED */
23961 static int
23962 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23963 {
23964 	int i;
23965 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23966 
23967 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23968 	if (tcps->tcps_reserved_port_array_size > 0)
23969 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23970 	else
23971 		(void) mi_mpprintf(mp, "No port is reserved.");
23972 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23973 		(void) mi_mpprintf(mp, "%d-%d",
23974 		    tcps->tcps_reserved_port[i].lo_port,
23975 		    tcps->tcps_reserved_port[i].hi_port);
23976 	}
23977 	rw_exit(&tcps->tcps_reserved_port_lock);
23978 	return (0);
23979 }
23980 
23981 /*
23982  * Hash list insertion routine for tcp_t structures.
23983  * Inserts entries with the ones bound to a specific IP address first
23984  * followed by those bound to INADDR_ANY.
23985  */
23986 static void
23987 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23988 {
23989 	tcp_t	**tcpp;
23990 	tcp_t	*tcpnext;
23991 
23992 	if (tcp->tcp_ptpbhn != NULL) {
23993 		ASSERT(!caller_holds_lock);
23994 		tcp_bind_hash_remove(tcp);
23995 	}
23996 	tcpp = &tbf->tf_tcp;
23997 	if (!caller_holds_lock) {
23998 		mutex_enter(&tbf->tf_lock);
23999 	} else {
24000 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
24001 	}
24002 	tcpnext = tcpp[0];
24003 	if (tcpnext) {
24004 		/*
24005 		 * If the new tcp bound to the INADDR_ANY address
24006 		 * and the first one in the list is not bound to
24007 		 * INADDR_ANY we skip all entries until we find the
24008 		 * first one bound to INADDR_ANY.
24009 		 * This makes sure that applications binding to a
24010 		 * specific address get preference over those binding to
24011 		 * INADDR_ANY.
24012 		 */
24013 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24014 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24015 			while ((tcpnext = tcpp[0]) != NULL &&
24016 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24017 				tcpp = &(tcpnext->tcp_bind_hash);
24018 			if (tcpnext)
24019 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24020 		} else
24021 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24022 	}
24023 	tcp->tcp_bind_hash = tcpnext;
24024 	tcp->tcp_ptpbhn = tcpp;
24025 	tcpp[0] = tcp;
24026 	if (!caller_holds_lock)
24027 		mutex_exit(&tbf->tf_lock);
24028 }
24029 
24030 /*
24031  * Hash list removal routine for tcp_t structures.
24032  */
24033 static void
24034 tcp_bind_hash_remove(tcp_t *tcp)
24035 {
24036 	tcp_t	*tcpnext;
24037 	kmutex_t *lockp;
24038 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24039 
24040 	if (tcp->tcp_ptpbhn == NULL)
24041 		return;
24042 
24043 	/*
24044 	 * Extract the lock pointer in case there are concurrent
24045 	 * hash_remove's for this instance.
24046 	 */
24047 	ASSERT(tcp->tcp_lport != 0);
24048 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24049 
24050 	ASSERT(lockp != NULL);
24051 	mutex_enter(lockp);
24052 	if (tcp->tcp_ptpbhn) {
24053 		tcpnext = tcp->tcp_bind_hash;
24054 		if (tcpnext) {
24055 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24056 			tcp->tcp_bind_hash = NULL;
24057 		}
24058 		*tcp->tcp_ptpbhn = tcpnext;
24059 		tcp->tcp_ptpbhn = NULL;
24060 	}
24061 	mutex_exit(lockp);
24062 }
24063 
24064 
24065 /*
24066  * Hash list lookup routine for tcp_t structures.
24067  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24068  */
24069 static tcp_t *
24070 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24071 {
24072 	tf_t	*tf;
24073 	tcp_t	*tcp;
24074 
24075 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24076 	mutex_enter(&tf->tf_lock);
24077 	for (tcp = tf->tf_tcp; tcp != NULL;
24078 	    tcp = tcp->tcp_acceptor_hash) {
24079 		if (tcp->tcp_acceptor_id == id) {
24080 			CONN_INC_REF(tcp->tcp_connp);
24081 			mutex_exit(&tf->tf_lock);
24082 			return (tcp);
24083 		}
24084 	}
24085 	mutex_exit(&tf->tf_lock);
24086 	return (NULL);
24087 }
24088 
24089 
24090 /*
24091  * Hash list insertion routine for tcp_t structures.
24092  */
24093 void
24094 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24095 {
24096 	tf_t	*tf;
24097 	tcp_t	**tcpp;
24098 	tcp_t	*tcpnext;
24099 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24100 
24101 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24102 
24103 	if (tcp->tcp_ptpahn != NULL)
24104 		tcp_acceptor_hash_remove(tcp);
24105 	tcpp = &tf->tf_tcp;
24106 	mutex_enter(&tf->tf_lock);
24107 	tcpnext = tcpp[0];
24108 	if (tcpnext)
24109 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24110 	tcp->tcp_acceptor_hash = tcpnext;
24111 	tcp->tcp_ptpahn = tcpp;
24112 	tcpp[0] = tcp;
24113 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24114 	mutex_exit(&tf->tf_lock);
24115 }
24116 
24117 /*
24118  * Hash list removal routine for tcp_t structures.
24119  */
24120 static void
24121 tcp_acceptor_hash_remove(tcp_t *tcp)
24122 {
24123 	tcp_t	*tcpnext;
24124 	kmutex_t *lockp;
24125 
24126 	/*
24127 	 * Extract the lock pointer in case there are concurrent
24128 	 * hash_remove's for this instance.
24129 	 */
24130 	lockp = tcp->tcp_acceptor_lockp;
24131 
24132 	if (tcp->tcp_ptpahn == NULL)
24133 		return;
24134 
24135 	ASSERT(lockp != NULL);
24136 	mutex_enter(lockp);
24137 	if (tcp->tcp_ptpahn) {
24138 		tcpnext = tcp->tcp_acceptor_hash;
24139 		if (tcpnext) {
24140 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24141 			tcp->tcp_acceptor_hash = NULL;
24142 		}
24143 		*tcp->tcp_ptpahn = tcpnext;
24144 		tcp->tcp_ptpahn = NULL;
24145 	}
24146 	mutex_exit(lockp);
24147 	tcp->tcp_acceptor_lockp = NULL;
24148 }
24149 
24150 /* ARGSUSED */
24151 static int
24152 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24153 {
24154 	int error = 0;
24155 	int retval;
24156 	char *end;
24157 	tcp_hsp_t *hsp;
24158 	tcp_hsp_t *hspprev;
24159 	ipaddr_t addr = 0;		/* Address we're looking for */
24160 	in6_addr_t v6addr;		/* Address we're looking for */
24161 	uint32_t hash;			/* Hash of that address */
24162 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24163 
24164 	/*
24165 	 * If the following variables are still zero after parsing the input
24166 	 * string, the user didn't specify them and we don't change them in
24167 	 * the HSP.
24168 	 */
24169 
24170 	ipaddr_t mask = 0;		/* Subnet mask */
24171 	in6_addr_t v6mask;
24172 	long sendspace = 0;		/* Send buffer size */
24173 	long recvspace = 0;		/* Receive buffer size */
24174 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24175 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24176 
24177 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24178 
24179 	/* Parse and validate address */
24180 	if (af == AF_INET) {
24181 		retval = inet_pton(af, value, &addr);
24182 		if (retval == 1)
24183 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24184 	} else if (af == AF_INET6) {
24185 		retval = inet_pton(af, value, &v6addr);
24186 	} else {
24187 		error = EINVAL;
24188 		goto done;
24189 	}
24190 	if (retval == 0) {
24191 		error = EINVAL;
24192 		goto done;
24193 	}
24194 
24195 	while ((*value) && *value != ' ')
24196 		value++;
24197 
24198 	/* Parse individual keywords, set variables if found */
24199 	while (*value) {
24200 		/* Skip leading blanks */
24201 
24202 		while (*value == ' ' || *value == '\t')
24203 			value++;
24204 
24205 		/* If at end of string, we're done */
24206 
24207 		if (!*value)
24208 			break;
24209 
24210 		/* We have a word, figure out what it is */
24211 
24212 		if (strncmp("mask", value, 4) == 0) {
24213 			value += 4;
24214 			while (*value == ' ' || *value == '\t')
24215 				value++;
24216 			/* Parse subnet mask */
24217 			if (af == AF_INET) {
24218 				retval = inet_pton(af, value, &mask);
24219 				if (retval == 1) {
24220 					V4MASK_TO_V6(mask, v6mask);
24221 				}
24222 			} else if (af == AF_INET6) {
24223 				retval = inet_pton(af, value, &v6mask);
24224 			}
24225 			if (retval != 1) {
24226 				error = EINVAL;
24227 				goto done;
24228 			}
24229 			while ((*value) && *value != ' ')
24230 				value++;
24231 		} else if (strncmp("sendspace", value, 9) == 0) {
24232 			value += 9;
24233 
24234 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24235 			    sendspace < TCP_XMIT_HIWATER ||
24236 			    sendspace >= (1L<<30)) {
24237 				error = EINVAL;
24238 				goto done;
24239 			}
24240 			value = end;
24241 		} else if (strncmp("recvspace", value, 9) == 0) {
24242 			value += 9;
24243 
24244 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24245 			    recvspace < TCP_RECV_HIWATER ||
24246 			    recvspace >= (1L<<30)) {
24247 				error = EINVAL;
24248 				goto done;
24249 			}
24250 			value = end;
24251 		} else if (strncmp("timestamp", value, 9) == 0) {
24252 			value += 9;
24253 
24254 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24255 			    timestamp < 0 || timestamp > 1) {
24256 				error = EINVAL;
24257 				goto done;
24258 			}
24259 
24260 			/*
24261 			 * We increment timestamp so we know it's been set;
24262 			 * this is undone when we put it in the HSP
24263 			 */
24264 			timestamp++;
24265 			value = end;
24266 		} else if (strncmp("delete", value, 6) == 0) {
24267 			value += 6;
24268 			delete = B_TRUE;
24269 		} else {
24270 			error = EINVAL;
24271 			goto done;
24272 		}
24273 	}
24274 
24275 	/* Hash address for lookup */
24276 
24277 	hash = TCP_HSP_HASH(addr);
24278 
24279 	if (delete) {
24280 		/*
24281 		 * Note that deletes don't return an error if the thing
24282 		 * we're trying to delete isn't there.
24283 		 */
24284 		if (tcps->tcps_hsp_hash == NULL)
24285 			goto done;
24286 		hsp = tcps->tcps_hsp_hash[hash];
24287 
24288 		if (hsp) {
24289 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24290 			    &v6addr)) {
24291 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24292 				mi_free((char *)hsp);
24293 			} else {
24294 				hspprev = hsp;
24295 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24296 					if (IN6_ARE_ADDR_EQUAL(
24297 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24298 						hspprev->tcp_hsp_next =
24299 						    hsp->tcp_hsp_next;
24300 						mi_free((char *)hsp);
24301 						break;
24302 					}
24303 					hspprev = hsp;
24304 				}
24305 			}
24306 		}
24307 	} else {
24308 		/*
24309 		 * We're adding/modifying an HSP.  If we haven't already done
24310 		 * so, allocate the hash table.
24311 		 */
24312 
24313 		if (!tcps->tcps_hsp_hash) {
24314 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24315 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24316 			if (!tcps->tcps_hsp_hash) {
24317 				error = EINVAL;
24318 				goto done;
24319 			}
24320 		}
24321 
24322 		/* Get head of hash chain */
24323 
24324 		hsp = tcps->tcps_hsp_hash[hash];
24325 
24326 		/* Try to find pre-existing hsp on hash chain */
24327 		/* Doesn't handle CIDR prefixes. */
24328 		while (hsp) {
24329 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24330 				break;
24331 			hsp = hsp->tcp_hsp_next;
24332 		}
24333 
24334 		/*
24335 		 * If we didn't, create one with default values and put it
24336 		 * at head of hash chain
24337 		 */
24338 
24339 		if (!hsp) {
24340 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24341 			if (!hsp) {
24342 				error = EINVAL;
24343 				goto done;
24344 			}
24345 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24346 			tcps->tcps_hsp_hash[hash] = hsp;
24347 		}
24348 
24349 		/* Set values that the user asked us to change */
24350 
24351 		hsp->tcp_hsp_addr_v6 = v6addr;
24352 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24353 			hsp->tcp_hsp_vers = IPV4_VERSION;
24354 		else
24355 			hsp->tcp_hsp_vers = IPV6_VERSION;
24356 		hsp->tcp_hsp_subnet_v6 = v6mask;
24357 		if (sendspace > 0)
24358 			hsp->tcp_hsp_sendspace = sendspace;
24359 		if (recvspace > 0)
24360 			hsp->tcp_hsp_recvspace = recvspace;
24361 		if (timestamp > 0)
24362 			hsp->tcp_hsp_tstamp = timestamp - 1;
24363 	}
24364 
24365 done:
24366 	rw_exit(&tcps->tcps_hsp_lock);
24367 	return (error);
24368 }
24369 
24370 /* Set callback routine passed to nd_load by tcp_param_register. */
24371 /* ARGSUSED */
24372 static int
24373 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24374 {
24375 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24376 }
24377 /* ARGSUSED */
24378 static int
24379 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24380     cred_t *cr)
24381 {
24382 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24383 }
24384 
24385 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24386 /* ARGSUSED */
24387 static int
24388 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24389 {
24390 	tcp_hsp_t *hsp;
24391 	int i;
24392 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24393 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24394 
24395 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24396 	(void) mi_mpprintf(mp,
24397 	    "Hash HSP     " MI_COL_HDRPAD_STR
24398 	    "Address         Subnet Mask     Send       Receive    TStamp");
24399 	if (tcps->tcps_hsp_hash) {
24400 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24401 			hsp = tcps->tcps_hsp_hash[i];
24402 			while (hsp) {
24403 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24404 					(void) inet_ntop(AF_INET,
24405 					    &hsp->tcp_hsp_addr,
24406 					    addrbuf, sizeof (addrbuf));
24407 					(void) inet_ntop(AF_INET,
24408 					    &hsp->tcp_hsp_subnet,
24409 					    subnetbuf, sizeof (subnetbuf));
24410 				} else {
24411 					(void) inet_ntop(AF_INET6,
24412 					    &hsp->tcp_hsp_addr_v6,
24413 					    addrbuf, sizeof (addrbuf));
24414 					(void) inet_ntop(AF_INET6,
24415 					    &hsp->tcp_hsp_subnet_v6,
24416 					    subnetbuf, sizeof (subnetbuf));
24417 				}
24418 				(void) mi_mpprintf(mp,
24419 				    " %03d " MI_COL_PTRFMT_STR
24420 				    "%s %s %010d %010d      %d",
24421 				    i,
24422 				    (void *)hsp,
24423 				    addrbuf,
24424 				    subnetbuf,
24425 				    hsp->tcp_hsp_sendspace,
24426 				    hsp->tcp_hsp_recvspace,
24427 				    hsp->tcp_hsp_tstamp);
24428 
24429 				hsp = hsp->tcp_hsp_next;
24430 			}
24431 		}
24432 	}
24433 	rw_exit(&tcps->tcps_hsp_lock);
24434 	return (0);
24435 }
24436 
24437 
24438 /* Data for fast netmask macro used by tcp_hsp_lookup */
24439 
24440 static ipaddr_t netmasks[] = {
24441 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24442 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24443 };
24444 
24445 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24446 
24447 /*
24448  * XXX This routine should go away and instead we should use the metrics
24449  * associated with the routes to determine the default sndspace and rcvspace.
24450  */
24451 static tcp_hsp_t *
24452 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24453 {
24454 	tcp_hsp_t *hsp = NULL;
24455 
24456 	/* Quick check without acquiring the lock. */
24457 	if (tcps->tcps_hsp_hash == NULL)
24458 		return (NULL);
24459 
24460 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24461 
24462 	/* This routine finds the best-matching HSP for address addr. */
24463 
24464 	if (tcps->tcps_hsp_hash) {
24465 		int i;
24466 		ipaddr_t srchaddr;
24467 		tcp_hsp_t *hsp_net;
24468 
24469 		/* We do three passes: host, network, and subnet. */
24470 
24471 		srchaddr = addr;
24472 
24473 		for (i = 1; i <= 3; i++) {
24474 			/* Look for exact match on srchaddr */
24475 
24476 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24477 			while (hsp) {
24478 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24479 				    hsp->tcp_hsp_addr == srchaddr)
24480 					break;
24481 				hsp = hsp->tcp_hsp_next;
24482 			}
24483 			ASSERT(hsp == NULL ||
24484 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24485 
24486 			/*
24487 			 * If this is the first pass:
24488 			 *   If we found a match, great, return it.
24489 			 *   If not, search for the network on the second pass.
24490 			 */
24491 
24492 			if (i == 1)
24493 				if (hsp)
24494 					break;
24495 				else
24496 				{
24497 					srchaddr = addr & netmask(addr);
24498 					continue;
24499 				}
24500 
24501 			/*
24502 			 * If this is the second pass:
24503 			 *   If we found a match, but there's a subnet mask,
24504 			 *    save the match but try again using the subnet
24505 			 *    mask on the third pass.
24506 			 *   Otherwise, return whatever we found.
24507 			 */
24508 
24509 			if (i == 2) {
24510 				if (hsp && hsp->tcp_hsp_subnet) {
24511 					hsp_net = hsp;
24512 					srchaddr = addr & hsp->tcp_hsp_subnet;
24513 					continue;
24514 				} else {
24515 					break;
24516 				}
24517 			}
24518 
24519 			/*
24520 			 * This must be the third pass.  If we didn't find
24521 			 * anything, return the saved network HSP instead.
24522 			 */
24523 
24524 			if (!hsp)
24525 				hsp = hsp_net;
24526 		}
24527 	}
24528 
24529 	rw_exit(&tcps->tcps_hsp_lock);
24530 	return (hsp);
24531 }
24532 
24533 /*
24534  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24535  * match lookup.
24536  */
24537 static tcp_hsp_t *
24538 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24539 {
24540 	tcp_hsp_t *hsp = NULL;
24541 
24542 	/* Quick check without acquiring the lock. */
24543 	if (tcps->tcps_hsp_hash == NULL)
24544 		return (NULL);
24545 
24546 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24547 
24548 	/* This routine finds the best-matching HSP for address addr. */
24549 
24550 	if (tcps->tcps_hsp_hash) {
24551 		int i;
24552 		in6_addr_t v6srchaddr;
24553 		tcp_hsp_t *hsp_net;
24554 
24555 		/* We do three passes: host, network, and subnet. */
24556 
24557 		v6srchaddr = *v6addr;
24558 
24559 		for (i = 1; i <= 3; i++) {
24560 			/* Look for exact match on srchaddr */
24561 
24562 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24563 			    V4_PART_OF_V6(v6srchaddr))];
24564 			while (hsp) {
24565 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24566 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24567 				    &v6srchaddr))
24568 					break;
24569 				hsp = hsp->tcp_hsp_next;
24570 			}
24571 
24572 			/*
24573 			 * If this is the first pass:
24574 			 *   If we found a match, great, return it.
24575 			 *   If not, search for the network on the second pass.
24576 			 */
24577 
24578 			if (i == 1)
24579 				if (hsp)
24580 					break;
24581 				else {
24582 					/* Assume a 64 bit mask */
24583 					v6srchaddr.s6_addr32[0] =
24584 					    v6addr->s6_addr32[0];
24585 					v6srchaddr.s6_addr32[1] =
24586 					    v6addr->s6_addr32[1];
24587 					v6srchaddr.s6_addr32[2] = 0;
24588 					v6srchaddr.s6_addr32[3] = 0;
24589 					continue;
24590 				}
24591 
24592 			/*
24593 			 * If this is the second pass:
24594 			 *   If we found a match, but there's a subnet mask,
24595 			 *    save the match but try again using the subnet
24596 			 *    mask on the third pass.
24597 			 *   Otherwise, return whatever we found.
24598 			 */
24599 
24600 			if (i == 2) {
24601 				ASSERT(hsp == NULL ||
24602 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24603 				if (hsp &&
24604 				    !IN6_IS_ADDR_UNSPECIFIED(
24605 				    &hsp->tcp_hsp_subnet_v6)) {
24606 					hsp_net = hsp;
24607 					V6_MASK_COPY(*v6addr,
24608 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24609 					continue;
24610 				} else {
24611 					break;
24612 				}
24613 			}
24614 
24615 			/*
24616 			 * This must be the third pass.  If we didn't find
24617 			 * anything, return the saved network HSP instead.
24618 			 */
24619 
24620 			if (!hsp)
24621 				hsp = hsp_net;
24622 		}
24623 	}
24624 
24625 	rw_exit(&tcps->tcps_hsp_lock);
24626 	return (hsp);
24627 }
24628 
24629 /*
24630  * Type three generator adapted from the random() function in 4.4 BSD:
24631  */
24632 
24633 /*
24634  * Copyright (c) 1983, 1993
24635  *	The Regents of the University of California.  All rights reserved.
24636  *
24637  * Redistribution and use in source and binary forms, with or without
24638  * modification, are permitted provided that the following conditions
24639  * are met:
24640  * 1. Redistributions of source code must retain the above copyright
24641  *    notice, this list of conditions and the following disclaimer.
24642  * 2. Redistributions in binary form must reproduce the above copyright
24643  *    notice, this list of conditions and the following disclaimer in the
24644  *    documentation and/or other materials provided with the distribution.
24645  * 3. All advertising materials mentioning features or use of this software
24646  *    must display the following acknowledgement:
24647  *	This product includes software developed by the University of
24648  *	California, Berkeley and its contributors.
24649  * 4. Neither the name of the University nor the names of its contributors
24650  *    may be used to endorse or promote products derived from this software
24651  *    without specific prior written permission.
24652  *
24653  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24654  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24655  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24656  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24657  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24658  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24659  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24660  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24661  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24662  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24663  * SUCH DAMAGE.
24664  */
24665 
24666 /* Type 3 -- x**31 + x**3 + 1 */
24667 #define	DEG_3		31
24668 #define	SEP_3		3
24669 
24670 
24671 /* Protected by tcp_random_lock */
24672 static int tcp_randtbl[DEG_3 + 1];
24673 
24674 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24675 static int *tcp_random_rptr = &tcp_randtbl[1];
24676 
24677 static int *tcp_random_state = &tcp_randtbl[1];
24678 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24679 
24680 kmutex_t tcp_random_lock;
24681 
24682 void
24683 tcp_random_init(void)
24684 {
24685 	int i;
24686 	hrtime_t hrt;
24687 	time_t wallclock;
24688 	uint64_t result;
24689 
24690 	/*
24691 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24692 	 * a longlong, which may contain resolution down to nanoseconds.
24693 	 * The current time will either be a 32-bit or a 64-bit quantity.
24694 	 * XOR the two together in a 64-bit result variable.
24695 	 * Convert the result to a 32-bit value by multiplying the high-order
24696 	 * 32-bits by the low-order 32-bits.
24697 	 */
24698 
24699 	hrt = gethrtime();
24700 	(void) drv_getparm(TIME, &wallclock);
24701 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24702 	mutex_enter(&tcp_random_lock);
24703 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24704 	    (result & 0xffffffff);
24705 
24706 	for (i = 1; i < DEG_3; i++)
24707 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24708 		    + 12345;
24709 	tcp_random_fptr = &tcp_random_state[SEP_3];
24710 	tcp_random_rptr = &tcp_random_state[0];
24711 	mutex_exit(&tcp_random_lock);
24712 	for (i = 0; i < 10 * DEG_3; i++)
24713 		(void) tcp_random();
24714 }
24715 
24716 /*
24717  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24718  * This range is selected to be approximately centered on TCP_ISS / 2,
24719  * and easy to compute. We get this value by generating a 32-bit random
24720  * number, selecting out the high-order 17 bits, and then adding one so
24721  * that we never return zero.
24722  */
24723 int
24724 tcp_random(void)
24725 {
24726 	int i;
24727 
24728 	mutex_enter(&tcp_random_lock);
24729 	*tcp_random_fptr += *tcp_random_rptr;
24730 
24731 	/*
24732 	 * The high-order bits are more random than the low-order bits,
24733 	 * so we select out the high-order 17 bits and add one so that
24734 	 * we never return zero.
24735 	 */
24736 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24737 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24738 		tcp_random_fptr = tcp_random_state;
24739 		++tcp_random_rptr;
24740 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24741 		tcp_random_rptr = tcp_random_state;
24742 
24743 	mutex_exit(&tcp_random_lock);
24744 	return (i);
24745 }
24746 
24747 /*
24748  * XXX This will go away when TPI is extended to send
24749  * info reqs to sockfs/timod .....
24750  * Given a queue, set the max packet size for the write
24751  * side of the queue below stream head.  This value is
24752  * cached on the stream head.
24753  * Returns 1 on success, 0 otherwise.
24754  */
24755 static int
24756 setmaxps(queue_t *q, int maxpsz)
24757 {
24758 	struct stdata	*stp;
24759 	queue_t		*wq;
24760 	stp = STREAM(q);
24761 
24762 	/*
24763 	 * At this point change of a queue parameter is not allowed
24764 	 * when a multiplexor is sitting on top.
24765 	 */
24766 	if (stp->sd_flag & STPLEX)
24767 		return (0);
24768 
24769 	claimstr(stp->sd_wrq);
24770 	wq = stp->sd_wrq->q_next;
24771 	ASSERT(wq != NULL);
24772 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24773 	releasestr(stp->sd_wrq);
24774 	return (1);
24775 }
24776 
24777 static int
24778 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24779     int *t_errorp, int *sys_errorp)
24780 {
24781 	int error;
24782 	int is_absreq_failure;
24783 	t_scalar_t *opt_lenp;
24784 	t_scalar_t opt_offset;
24785 	int prim_type;
24786 	struct T_conn_req *tcreqp;
24787 	struct T_conn_res *tcresp;
24788 	cred_t *cr;
24789 
24790 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24791 
24792 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24793 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24794 	    prim_type == T_CONN_RES);
24795 
24796 	switch (prim_type) {
24797 	case T_CONN_REQ:
24798 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24799 		opt_offset = tcreqp->OPT_offset;
24800 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24801 		break;
24802 	case O_T_CONN_RES:
24803 	case T_CONN_RES:
24804 		tcresp = (struct T_conn_res *)mp->b_rptr;
24805 		opt_offset = tcresp->OPT_offset;
24806 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24807 		break;
24808 	}
24809 
24810 	*t_errorp = 0;
24811 	*sys_errorp = 0;
24812 	*do_disconnectp = 0;
24813 
24814 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24815 	    opt_offset, cr, &tcp_opt_obj,
24816 	    NULL, &is_absreq_failure);
24817 
24818 	switch (error) {
24819 	case  0:		/* no error */
24820 		ASSERT(is_absreq_failure == 0);
24821 		return (0);
24822 	case ENOPROTOOPT:
24823 		*t_errorp = TBADOPT;
24824 		break;
24825 	case EACCES:
24826 		*t_errorp = TACCES;
24827 		break;
24828 	default:
24829 		*t_errorp = TSYSERR; *sys_errorp = error;
24830 		break;
24831 	}
24832 	if (is_absreq_failure != 0) {
24833 		/*
24834 		 * The connection request should get the local ack
24835 		 * T_OK_ACK and then a T_DISCON_IND.
24836 		 */
24837 		*do_disconnectp = 1;
24838 	}
24839 	return (-1);
24840 }
24841 
24842 /*
24843  * Split this function out so that if the secret changes, I'm okay.
24844  *
24845  * Initialize the tcp_iss_cookie and tcp_iss_key.
24846  */
24847 
24848 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24849 
24850 static void
24851 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24852 {
24853 	struct {
24854 		int32_t current_time;
24855 		uint32_t randnum;
24856 		uint16_t pad;
24857 		uint8_t ether[6];
24858 		uint8_t passwd[PASSWD_SIZE];
24859 	} tcp_iss_cookie;
24860 	time_t t;
24861 
24862 	/*
24863 	 * Start with the current absolute time.
24864 	 */
24865 	(void) drv_getparm(TIME, &t);
24866 	tcp_iss_cookie.current_time = t;
24867 
24868 	/*
24869 	 * XXX - Need a more random number per RFC 1750, not this crap.
24870 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24871 	 */
24872 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24873 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24874 
24875 	/*
24876 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24877 	 * as a good template.
24878 	 */
24879 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24880 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24881 
24882 	/*
24883 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24884 	 */
24885 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24886 
24887 	/*
24888 	 * See 4010593 if this section becomes a problem again,
24889 	 * but the local ethernet address is useful here.
24890 	 */
24891 	(void) localetheraddr(NULL,
24892 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24893 
24894 	/*
24895 	 * Hash 'em all together.  The MD5Final is called per-connection.
24896 	 */
24897 	mutex_enter(&tcps->tcps_iss_key_lock);
24898 	MD5Init(&tcps->tcps_iss_key);
24899 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24900 	    sizeof (tcp_iss_cookie));
24901 	mutex_exit(&tcps->tcps_iss_key_lock);
24902 }
24903 
24904 /*
24905  * Set the RFC 1948 pass phrase
24906  */
24907 /* ARGSUSED */
24908 static int
24909 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24910     cred_t *cr)
24911 {
24912 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24913 
24914 	/*
24915 	 * Basically, value contains a new pass phrase.  Pass it along!
24916 	 */
24917 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24918 	return (0);
24919 }
24920 
24921 /* ARGSUSED */
24922 static int
24923 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24924 {
24925 	bzero(buf, sizeof (tcp_sack_info_t));
24926 	return (0);
24927 }
24928 
24929 /* ARGSUSED */
24930 static int
24931 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24932 {
24933 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24934 	return (0);
24935 }
24936 
24937 /*
24938  * Make sure we wait until the default queue is setup, yet allow
24939  * tcp_g_q_create() to open a TCP stream.
24940  * We need to allow tcp_g_q_create() do do an open
24941  * of tcp, hence we compare curhread.
24942  * All others have to wait until the tcps_g_q has been
24943  * setup.
24944  */
24945 void
24946 tcp_g_q_setup(tcp_stack_t *tcps)
24947 {
24948 	mutex_enter(&tcps->tcps_g_q_lock);
24949 	if (tcps->tcps_g_q != NULL) {
24950 		mutex_exit(&tcps->tcps_g_q_lock);
24951 		return;
24952 	}
24953 	if (tcps->tcps_g_q_creator == NULL) {
24954 		/* This thread will set it up */
24955 		tcps->tcps_g_q_creator = curthread;
24956 		mutex_exit(&tcps->tcps_g_q_lock);
24957 		tcp_g_q_create(tcps);
24958 		mutex_enter(&tcps->tcps_g_q_lock);
24959 		ASSERT(tcps->tcps_g_q_creator == curthread);
24960 		tcps->tcps_g_q_creator = NULL;
24961 		cv_signal(&tcps->tcps_g_q_cv);
24962 		ASSERT(tcps->tcps_g_q != NULL);
24963 		mutex_exit(&tcps->tcps_g_q_lock);
24964 		return;
24965 	}
24966 	/* Everybody but the creator has to wait */
24967 	if (tcps->tcps_g_q_creator != curthread) {
24968 		while (tcps->tcps_g_q == NULL)
24969 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24970 	}
24971 	mutex_exit(&tcps->tcps_g_q_lock);
24972 }
24973 
24974 #define	IP	"ip"
24975 
24976 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24977 
24978 /*
24979  * Create a default tcp queue here instead of in strplumb
24980  */
24981 void
24982 tcp_g_q_create(tcp_stack_t *tcps)
24983 {
24984 	int error;
24985 	ldi_handle_t	lh = NULL;
24986 	ldi_ident_t	li = NULL;
24987 	int		rval;
24988 	cred_t		*cr;
24989 	major_t IP_MAJ;
24990 
24991 #ifdef NS_DEBUG
24992 	(void) printf("tcp_g_q_create()\n");
24993 #endif
24994 
24995 	IP_MAJ = ddi_name_to_major(IP);
24996 
24997 	ASSERT(tcps->tcps_g_q_creator == curthread);
24998 
24999 	error = ldi_ident_from_major(IP_MAJ, &li);
25000 	if (error) {
25001 #ifdef DEBUG
25002 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
25003 		    error);
25004 #endif
25005 		return;
25006 	}
25007 
25008 	cr = zone_get_kcred(netstackid_to_zoneid(
25009 	    tcps->tcps_netstack->netstack_stackid));
25010 	ASSERT(cr != NULL);
25011 	/*
25012 	 * We set the tcp default queue to IPv6 because IPv4 falls
25013 	 * back to IPv6 when it can't find a client, but
25014 	 * IPv6 does not fall back to IPv4.
25015 	 */
25016 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
25017 	if (error) {
25018 #ifdef DEBUG
25019 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
25020 		    error);
25021 #endif
25022 		goto out;
25023 	}
25024 
25025 	/*
25026 	 * This ioctl causes the tcp framework to cache a pointer to
25027 	 * this stream, so we don't want to close the stream after
25028 	 * this operation.
25029 	 * Use the kernel credentials that are for the zone we're in.
25030 	 */
25031 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
25032 	    (intptr_t)0, FKIOCTL, cr, &rval);
25033 	if (error) {
25034 #ifdef DEBUG
25035 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
25036 		    "error %d\n", error);
25037 #endif
25038 		goto out;
25039 	}
25040 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
25041 	lh = NULL;
25042 out:
25043 	/* Close layered handles */
25044 	if (li)
25045 		ldi_ident_release(li);
25046 	/* Keep cred around until _inactive needs it */
25047 	tcps->tcps_g_q_cr = cr;
25048 }
25049 
25050 /*
25051  * We keep tcp_g_q set until all other tcp_t's in the zone
25052  * has gone away, and then when tcp_g_q_inactive() is called
25053  * we clear it.
25054  */
25055 void
25056 tcp_g_q_destroy(tcp_stack_t *tcps)
25057 {
25058 #ifdef NS_DEBUG
25059 	(void) printf("tcp_g_q_destroy()for stack %d\n",
25060 	    tcps->tcps_netstack->netstack_stackid);
25061 #endif
25062 
25063 	if (tcps->tcps_g_q == NULL) {
25064 		return;	/* Nothing to cleanup */
25065 	}
25066 	/*
25067 	 * Drop reference corresponding to the default queue.
25068 	 * This reference was added from tcp_open when the default queue
25069 	 * was created, hence we compensate for this extra drop in
25070 	 * tcp_g_q_close. If the refcnt drops to zero here it means
25071 	 * the default queue was the last one to be open, in which
25072 	 * case, then tcp_g_q_inactive will be
25073 	 * called as a result of the refrele.
25074 	 */
25075 	TCPS_REFRELE(tcps);
25076 }
25077 
25078 /*
25079  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25080  * Run by tcp_q_q_inactive using a taskq.
25081  */
25082 static void
25083 tcp_g_q_close(void *arg)
25084 {
25085 	tcp_stack_t *tcps = arg;
25086 	int error;
25087 	ldi_handle_t	lh = NULL;
25088 	ldi_ident_t	li = NULL;
25089 	cred_t		*cr;
25090 	major_t IP_MAJ;
25091 
25092 	IP_MAJ = ddi_name_to_major(IP);
25093 
25094 #ifdef NS_DEBUG
25095 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
25096 	    tcps->tcps_netstack->netstack_stackid,
25097 	    tcps->tcps_netstack->netstack_refcnt);
25098 #endif
25099 	lh = tcps->tcps_g_q_lh;
25100 	if (lh == NULL)
25101 		return;	/* Nothing to cleanup */
25102 
25103 	ASSERT(tcps->tcps_refcnt == 1);
25104 	ASSERT(tcps->tcps_g_q != NULL);
25105 
25106 	error = ldi_ident_from_major(IP_MAJ, &li);
25107 	if (error) {
25108 #ifdef DEBUG
25109 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25110 		    error);
25111 #endif
25112 		return;
25113 	}
25114 
25115 	cr = tcps->tcps_g_q_cr;
25116 	tcps->tcps_g_q_cr = NULL;
25117 	ASSERT(cr != NULL);
25118 
25119 	/*
25120 	 * Make sure we can break the recursion when tcp_close decrements
25121 	 * the reference count causing g_q_inactive to be called again.
25122 	 */
25123 	tcps->tcps_g_q_lh = NULL;
25124 
25125 	/* close the default queue */
25126 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25127 	/*
25128 	 * At this point in time tcps and the rest of netstack_t might
25129 	 * have been deleted.
25130 	 */
25131 	tcps = NULL;
25132 
25133 	/* Close layered handles */
25134 	ldi_ident_release(li);
25135 	crfree(cr);
25136 }
25137 
25138 /*
25139  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25140  *
25141  * Have to ensure that the ldi routines are not used by an
25142  * interrupt thread by using a taskq.
25143  */
25144 void
25145 tcp_g_q_inactive(tcp_stack_t *tcps)
25146 {
25147 	if (tcps->tcps_g_q_lh == NULL)
25148 		return;	/* Nothing to cleanup */
25149 
25150 	ASSERT(tcps->tcps_refcnt == 0);
25151 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25152 
25153 	if (servicing_interrupt()) {
25154 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25155 		    (void *) tcps, TQ_SLEEP);
25156 	} else {
25157 		tcp_g_q_close(tcps);
25158 	}
25159 }
25160 
25161 /*
25162  * Called by IP when IP is loaded into the kernel
25163  */
25164 void
25165 tcp_ddi_g_init(void)
25166 {
25167 	tcp_timercache = kmem_cache_create("tcp_timercache",
25168 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25169 	    NULL, NULL, NULL, NULL, NULL, 0);
25170 
25171 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25172 	    sizeof (tcp_sack_info_t), 0,
25173 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25174 
25175 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25176 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25177 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25178 
25179 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25180 
25181 	/* Initialize the random number generator */
25182 	tcp_random_init();
25183 
25184 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25185 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25186 
25187 	/* A single callback independently of how many netstacks we have */
25188 	ip_squeue_init(tcp_squeue_add);
25189 
25190 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25191 
25192 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25193 	    TASKQ_PREPOPULATE);
25194 
25195 	/*
25196 	 * We want to be informed each time a stack is created or
25197 	 * destroyed in the kernel, so we can maintain the
25198 	 * set of tcp_stack_t's.
25199 	 */
25200 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25201 	    tcp_stack_fini);
25202 }
25203 
25204 
25205 /*
25206  * Initialize the TCP stack instance.
25207  */
25208 static void *
25209 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25210 {
25211 	tcp_stack_t	*tcps;
25212 	tcpparam_t	*pa;
25213 	int		i;
25214 
25215 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25216 	tcps->tcps_netstack = ns;
25217 
25218 	/* Initialize locks */
25219 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25220 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25221 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25222 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25223 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25224 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25225 
25226 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25227 	tcps->tcps_g_epriv_ports[0] = 2049;
25228 	tcps->tcps_g_epriv_ports[1] = 4045;
25229 	tcps->tcps_min_anonpriv_port = 512;
25230 
25231 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25232 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25233 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25234 	    TCP_FANOUT_SIZE, KM_SLEEP);
25235 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25236 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25237 
25238 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25239 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25240 		    MUTEX_DEFAULT, NULL);
25241 	}
25242 
25243 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25244 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25245 		    MUTEX_DEFAULT, NULL);
25246 	}
25247 
25248 	/* TCP's IPsec code calls the packet dropper. */
25249 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25250 
25251 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25252 	tcps->tcps_params = pa;
25253 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25254 
25255 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25256 	    A_CNT(lcl_tcp_param_arr), tcps);
25257 
25258 	/*
25259 	 * Note: To really walk the device tree you need the devinfo
25260 	 * pointer to your device which is only available after probe/attach.
25261 	 * The following is safe only because it uses ddi_root_node()
25262 	 */
25263 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25264 	    tcp_opt_obj.odb_opt_arr_cnt);
25265 
25266 	/*
25267 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25268 	 * by the boot scripts.
25269 	 *
25270 	 * Use NULL name, as the name is caught by the new lockstats.
25271 	 *
25272 	 * Initialize with some random, non-guessable string, like the global
25273 	 * T_INFO_ACK.
25274 	 */
25275 
25276 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25277 	    sizeof (tcp_g_t_info_ack), tcps);
25278 
25279 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25280 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25281 
25282 	return (tcps);
25283 }
25284 
25285 /*
25286  * Called when the IP module is about to be unloaded.
25287  */
25288 void
25289 tcp_ddi_g_destroy(void)
25290 {
25291 	tcp_g_kstat_fini(tcp_g_kstat);
25292 	tcp_g_kstat = NULL;
25293 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25294 
25295 	mutex_destroy(&tcp_random_lock);
25296 
25297 	kmem_cache_destroy(tcp_timercache);
25298 	kmem_cache_destroy(tcp_sack_info_cache);
25299 	kmem_cache_destroy(tcp_iphc_cache);
25300 
25301 	netstack_unregister(NS_TCP);
25302 	taskq_destroy(tcp_taskq);
25303 }
25304 
25305 /*
25306  * Shut down the TCP stack instance.
25307  */
25308 /* ARGSUSED */
25309 static void
25310 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25311 {
25312 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25313 
25314 	tcp_g_q_destroy(tcps);
25315 }
25316 
25317 /*
25318  * Free the TCP stack instance.
25319  */
25320 static void
25321 tcp_stack_fini(netstackid_t stackid, void *arg)
25322 {
25323 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25324 	int i;
25325 
25326 	nd_free(&tcps->tcps_g_nd);
25327 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25328 	tcps->tcps_params = NULL;
25329 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25330 	tcps->tcps_wroff_xtra_param = NULL;
25331 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25332 	tcps->tcps_mdt_head_param = NULL;
25333 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25334 	tcps->tcps_mdt_tail_param = NULL;
25335 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25336 	tcps->tcps_mdt_max_pbufs_param = NULL;
25337 
25338 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25339 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25340 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25341 	}
25342 
25343 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25344 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25345 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25346 	}
25347 
25348 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25349 	tcps->tcps_bind_fanout = NULL;
25350 
25351 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25352 	tcps->tcps_acceptor_fanout = NULL;
25353 
25354 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25355 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25356 	tcps->tcps_reserved_port = NULL;
25357 
25358 	mutex_destroy(&tcps->tcps_iss_key_lock);
25359 	rw_destroy(&tcps->tcps_hsp_lock);
25360 	mutex_destroy(&tcps->tcps_g_q_lock);
25361 	cv_destroy(&tcps->tcps_g_q_cv);
25362 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25363 	rw_destroy(&tcps->tcps_reserved_port_lock);
25364 
25365 	ip_drop_unregister(&tcps->tcps_dropper);
25366 
25367 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25368 	tcps->tcps_kstat = NULL;
25369 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25370 
25371 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25372 	tcps->tcps_mibkp = NULL;
25373 
25374 	kmem_free(tcps, sizeof (*tcps));
25375 }
25376 
25377 /*
25378  * Generate ISS, taking into account NDD changes may happen halfway through.
25379  * (If the iss is not zero, set it.)
25380  */
25381 
25382 static void
25383 tcp_iss_init(tcp_t *tcp)
25384 {
25385 	MD5_CTX context;
25386 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25387 	uint32_t answer[4];
25388 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25389 
25390 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25391 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25392 	switch (tcps->tcps_strong_iss) {
25393 	case 2:
25394 		mutex_enter(&tcps->tcps_iss_key_lock);
25395 		context = tcps->tcps_iss_key;
25396 		mutex_exit(&tcps->tcps_iss_key_lock);
25397 		arg.ports = tcp->tcp_ports;
25398 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25399 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25400 			    &arg.src);
25401 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25402 			    &arg.dst);
25403 		} else {
25404 			arg.src = tcp->tcp_ip6h->ip6_src;
25405 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25406 		}
25407 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25408 		MD5Final((uchar_t *)answer, &context);
25409 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25410 		/*
25411 		 * Now that we've hashed into a unique per-connection sequence
25412 		 * space, add a random increment per strong_iss == 1.  So I
25413 		 * guess we'll have to...
25414 		 */
25415 		/* FALLTHRU */
25416 	case 1:
25417 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25418 		break;
25419 	default:
25420 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25421 		break;
25422 	}
25423 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25424 	tcp->tcp_fss = tcp->tcp_iss - 1;
25425 	tcp->tcp_suna = tcp->tcp_iss;
25426 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25427 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25428 	tcp->tcp_csuna = tcp->tcp_snxt;
25429 }
25430 
25431 /*
25432  * Exported routine for extracting active tcp connection status.
25433  *
25434  * This is used by the Solaris Cluster Networking software to
25435  * gather a list of connections that need to be forwarded to
25436  * specific nodes in the cluster when configuration changes occur.
25437  *
25438  * The callback is invoked for each tcp_t structure. Returning
25439  * non-zero from the callback routine terminates the search.
25440  */
25441 int
25442 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25443     void *arg)
25444 {
25445 	netstack_handle_t nh;
25446 	netstack_t *ns;
25447 	int ret = 0;
25448 
25449 	netstack_next_init(&nh);
25450 	while ((ns = netstack_next(&nh)) != NULL) {
25451 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25452 		    ns->netstack_tcp);
25453 		netstack_rele(ns);
25454 	}
25455 	netstack_next_fini(&nh);
25456 	return (ret);
25457 }
25458 
25459 static int
25460 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25461     tcp_stack_t *tcps)
25462 {
25463 	tcp_t *tcp;
25464 	cl_tcp_info_t	cl_tcpi;
25465 	connf_t	*connfp;
25466 	conn_t	*connp;
25467 	int	i;
25468 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25469 
25470 	ASSERT(callback != NULL);
25471 
25472 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25473 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25474 		connp = NULL;
25475 
25476 		while ((connp =
25477 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25478 
25479 			tcp = connp->conn_tcp;
25480 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25481 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25482 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25483 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25484 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25485 			/*
25486 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25487 			 * addresses. They are copied implicitly below as
25488 			 * mapped addresses.
25489 			 */
25490 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25491 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25492 				cl_tcpi.cl_tcpi_faddr =
25493 				    tcp->tcp_ipha->ipha_dst;
25494 			} else {
25495 				cl_tcpi.cl_tcpi_faddr_v6 =
25496 				    tcp->tcp_ip6h->ip6_dst;
25497 			}
25498 
25499 			/*
25500 			 * If the callback returns non-zero
25501 			 * we terminate the traversal.
25502 			 */
25503 			if ((*callback)(&cl_tcpi, arg) != 0) {
25504 				CONN_DEC_REF(tcp->tcp_connp);
25505 				return (1);
25506 			}
25507 		}
25508 	}
25509 
25510 	return (0);
25511 }
25512 
25513 /*
25514  * Macros used for accessing the different types of sockaddr
25515  * structures inside a tcp_ioc_abort_conn_t.
25516  */
25517 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25518 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25519 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25520 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25521 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25522 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25523 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25524 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25525 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25526 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25527 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25528 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25529 
25530 /*
25531  * Return the correct error code to mimic the behavior
25532  * of a connection reset.
25533  */
25534 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25535 		switch ((state)) {		\
25536 		case TCPS_SYN_SENT:		\
25537 		case TCPS_SYN_RCVD:		\
25538 			(err) = ECONNREFUSED;	\
25539 			break;			\
25540 		case TCPS_ESTABLISHED:		\
25541 		case TCPS_FIN_WAIT_1:		\
25542 		case TCPS_FIN_WAIT_2:		\
25543 		case TCPS_CLOSE_WAIT:		\
25544 			(err) = ECONNRESET;	\
25545 			break;			\
25546 		case TCPS_CLOSING:		\
25547 		case TCPS_LAST_ACK:		\
25548 		case TCPS_TIME_WAIT:		\
25549 			(err) = 0;		\
25550 			break;			\
25551 		default:			\
25552 			(err) = ENXIO;		\
25553 		}				\
25554 	}
25555 
25556 /*
25557  * Check if a tcp structure matches the info in acp.
25558  */
25559 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25560 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25561 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25562 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25563 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25564 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25565 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25566 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25567 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25568 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25569 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25570 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25571 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25572 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25573 	&(tcp)->tcp_ip_src_v6)) &&				\
25574 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25575 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25576 	&(tcp)->tcp_remote_v6)) &&				\
25577 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25578 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25579 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25580 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25581 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25582 	(acp)->ac_end >= (tcp)->tcp_state))
25583 
25584 #define	TCP_AC_MATCH(acp, tcp)					\
25585 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25586 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25587 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25588 
25589 /*
25590  * Build a message containing a tcp_ioc_abort_conn_t structure
25591  * which is filled in with information from acp and tp.
25592  */
25593 static mblk_t *
25594 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25595 {
25596 	mblk_t *mp;
25597 	tcp_ioc_abort_conn_t *tacp;
25598 
25599 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25600 	if (mp == NULL)
25601 		return (NULL);
25602 
25603 	mp->b_datap->db_type = M_CTL;
25604 
25605 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25606 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25607 	    sizeof (uint32_t));
25608 
25609 	tacp->ac_start = acp->ac_start;
25610 	tacp->ac_end = acp->ac_end;
25611 	tacp->ac_zoneid = acp->ac_zoneid;
25612 
25613 	if (acp->ac_local.ss_family == AF_INET) {
25614 		tacp->ac_local.ss_family = AF_INET;
25615 		tacp->ac_remote.ss_family = AF_INET;
25616 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25617 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25618 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25619 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25620 	} else {
25621 		tacp->ac_local.ss_family = AF_INET6;
25622 		tacp->ac_remote.ss_family = AF_INET6;
25623 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25624 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25625 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25626 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25627 	}
25628 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25629 	return (mp);
25630 }
25631 
25632 /*
25633  * Print a tcp_ioc_abort_conn_t structure.
25634  */
25635 static void
25636 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25637 {
25638 	char lbuf[128];
25639 	char rbuf[128];
25640 	sa_family_t af;
25641 	in_port_t lport, rport;
25642 	ushort_t logflags;
25643 
25644 	af = acp->ac_local.ss_family;
25645 
25646 	if (af == AF_INET) {
25647 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25648 		    lbuf, 128);
25649 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25650 		    rbuf, 128);
25651 		lport = ntohs(TCP_AC_V4LPORT(acp));
25652 		rport = ntohs(TCP_AC_V4RPORT(acp));
25653 	} else {
25654 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25655 		    lbuf, 128);
25656 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25657 		    rbuf, 128);
25658 		lport = ntohs(TCP_AC_V6LPORT(acp));
25659 		rport = ntohs(TCP_AC_V6RPORT(acp));
25660 	}
25661 
25662 	logflags = SL_TRACE | SL_NOTE;
25663 	/*
25664 	 * Don't print this message to the console if the operation was done
25665 	 * to a non-global zone.
25666 	 */
25667 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25668 		logflags |= SL_CONSOLE;
25669 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25670 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25671 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25672 	    acp->ac_start, acp->ac_end);
25673 }
25674 
25675 /*
25676  * Called inside tcp_rput when a message built using
25677  * tcp_ioctl_abort_build_msg is put into a queue.
25678  * Note that when we get here there is no wildcard in acp any more.
25679  */
25680 static void
25681 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25682 {
25683 	tcp_ioc_abort_conn_t *acp;
25684 
25685 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25686 	if (tcp->tcp_state <= acp->ac_end) {
25687 		/*
25688 		 * If we get here, we are already on the correct
25689 		 * squeue. This ioctl follows the following path
25690 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25691 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25692 		 * different squeue)
25693 		 */
25694 		int errcode;
25695 
25696 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25697 		(void) tcp_clean_death(tcp, errcode, 26);
25698 	}
25699 	freemsg(mp);
25700 }
25701 
25702 /*
25703  * Abort all matching connections on a hash chain.
25704  */
25705 static int
25706 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25707     boolean_t exact, tcp_stack_t *tcps)
25708 {
25709 	int nmatch, err = 0;
25710 	tcp_t *tcp;
25711 	MBLKP mp, last, listhead = NULL;
25712 	conn_t	*tconnp;
25713 	connf_t	*connfp;
25714 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25715 
25716 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25717 
25718 startover:
25719 	nmatch = 0;
25720 
25721 	mutex_enter(&connfp->connf_lock);
25722 	for (tconnp = connfp->connf_head; tconnp != NULL;
25723 	    tconnp = tconnp->conn_next) {
25724 		tcp = tconnp->conn_tcp;
25725 		if (TCP_AC_MATCH(acp, tcp)) {
25726 			CONN_INC_REF(tcp->tcp_connp);
25727 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25728 			if (mp == NULL) {
25729 				err = ENOMEM;
25730 				CONN_DEC_REF(tcp->tcp_connp);
25731 				break;
25732 			}
25733 			mp->b_prev = (mblk_t *)tcp;
25734 
25735 			if (listhead == NULL) {
25736 				listhead = mp;
25737 				last = mp;
25738 			} else {
25739 				last->b_next = mp;
25740 				last = mp;
25741 			}
25742 			nmatch++;
25743 			if (exact)
25744 				break;
25745 		}
25746 
25747 		/* Avoid holding lock for too long. */
25748 		if (nmatch >= 500)
25749 			break;
25750 	}
25751 	mutex_exit(&connfp->connf_lock);
25752 
25753 	/* Pass mp into the correct tcp */
25754 	while ((mp = listhead) != NULL) {
25755 		listhead = listhead->b_next;
25756 		tcp = (tcp_t *)mp->b_prev;
25757 		mp->b_next = mp->b_prev = NULL;
25758 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25759 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25760 	}
25761 
25762 	*count += nmatch;
25763 	if (nmatch >= 500 && err == 0)
25764 		goto startover;
25765 	return (err);
25766 }
25767 
25768 /*
25769  * Abort all connections that matches the attributes specified in acp.
25770  */
25771 static int
25772 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25773 {
25774 	sa_family_t af;
25775 	uint32_t  ports;
25776 	uint16_t *pports;
25777 	int err = 0, count = 0;
25778 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25779 	int index = -1;
25780 	ushort_t logflags;
25781 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25782 
25783 	af = acp->ac_local.ss_family;
25784 
25785 	if (af == AF_INET) {
25786 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25787 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25788 			pports = (uint16_t *)&ports;
25789 			pports[1] = TCP_AC_V4LPORT(acp);
25790 			pports[0] = TCP_AC_V4RPORT(acp);
25791 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25792 		}
25793 	} else {
25794 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25795 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25796 			pports = (uint16_t *)&ports;
25797 			pports[1] = TCP_AC_V6LPORT(acp);
25798 			pports[0] = TCP_AC_V6RPORT(acp);
25799 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25800 		}
25801 	}
25802 
25803 	/*
25804 	 * For cases where remote addr, local port, and remote port are non-
25805 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25806 	 */
25807 	if (index != -1) {
25808 		err = tcp_ioctl_abort_bucket(acp, index,
25809 		    &count, exact, tcps);
25810 	} else {
25811 		/*
25812 		 * loop through all entries for wildcard case
25813 		 */
25814 		for (index = 0;
25815 		    index < ipst->ips_ipcl_conn_fanout_size;
25816 		    index++) {
25817 			err = tcp_ioctl_abort_bucket(acp, index,
25818 			    &count, exact, tcps);
25819 			if (err != 0)
25820 				break;
25821 		}
25822 	}
25823 
25824 	logflags = SL_TRACE | SL_NOTE;
25825 	/*
25826 	 * Don't print this message to the console if the operation was done
25827 	 * to a non-global zone.
25828 	 */
25829 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25830 		logflags |= SL_CONSOLE;
25831 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25832 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25833 	if (err == 0 && count == 0)
25834 		err = ENOENT;
25835 	return (err);
25836 }
25837 
25838 /*
25839  * Process the TCP_IOC_ABORT_CONN ioctl request.
25840  */
25841 static void
25842 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25843 {
25844 	int	err;
25845 	IOCP    iocp;
25846 	MBLKP   mp1;
25847 	sa_family_t laf, raf;
25848 	tcp_ioc_abort_conn_t *acp;
25849 	zone_t		*zptr;
25850 	conn_t		*connp = Q_TO_CONN(q);
25851 	zoneid_t	zoneid = connp->conn_zoneid;
25852 	tcp_t		*tcp = connp->conn_tcp;
25853 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25854 
25855 	iocp = (IOCP)mp->b_rptr;
25856 
25857 	if ((mp1 = mp->b_cont) == NULL ||
25858 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25859 		err = EINVAL;
25860 		goto out;
25861 	}
25862 
25863 	/* check permissions */
25864 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25865 		err = EPERM;
25866 		goto out;
25867 	}
25868 
25869 	if (mp1->b_cont != NULL) {
25870 		freemsg(mp1->b_cont);
25871 		mp1->b_cont = NULL;
25872 	}
25873 
25874 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25875 	laf = acp->ac_local.ss_family;
25876 	raf = acp->ac_remote.ss_family;
25877 
25878 	/* check that a zone with the supplied zoneid exists */
25879 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25880 		zptr = zone_find_by_id(zoneid);
25881 		if (zptr != NULL) {
25882 			zone_rele(zptr);
25883 		} else {
25884 			err = EINVAL;
25885 			goto out;
25886 		}
25887 	}
25888 
25889 	/*
25890 	 * For exclusive stacks we set the zoneid to zero
25891 	 * to make TCP operate as if in the global zone.
25892 	 */
25893 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25894 		acp->ac_zoneid = GLOBAL_ZONEID;
25895 
25896 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25897 	    acp->ac_start > acp->ac_end || laf != raf ||
25898 	    (laf != AF_INET && laf != AF_INET6)) {
25899 		err = EINVAL;
25900 		goto out;
25901 	}
25902 
25903 	tcp_ioctl_abort_dump(acp);
25904 	err = tcp_ioctl_abort(acp, tcps);
25905 
25906 out:
25907 	if (mp1 != NULL) {
25908 		freemsg(mp1);
25909 		mp->b_cont = NULL;
25910 	}
25911 
25912 	if (err != 0)
25913 		miocnak(q, mp, 0, err);
25914 	else
25915 		miocack(q, mp, 0, 0);
25916 }
25917 
25918 /*
25919  * tcp_time_wait_processing() handles processing of incoming packets when
25920  * the tcp is in the TIME_WAIT state.
25921  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25922  * on the time wait list.
25923  */
25924 void
25925 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25926     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25927 {
25928 	int32_t		bytes_acked;
25929 	int32_t		gap;
25930 	int32_t		rgap;
25931 	tcp_opt_t	tcpopt;
25932 	uint_t		flags;
25933 	uint32_t	new_swnd = 0;
25934 	conn_t		*connp;
25935 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25936 
25937 	BUMP_LOCAL(tcp->tcp_ibsegs);
25938 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25939 
25940 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25941 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25942 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25943 	if (tcp->tcp_snd_ts_ok) {
25944 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25945 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25946 			    tcp->tcp_rnxt, TH_ACK);
25947 			goto done;
25948 		}
25949 	}
25950 	gap = seg_seq - tcp->tcp_rnxt;
25951 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25952 	if (gap < 0) {
25953 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25954 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25955 		    (seg_len > -gap ? -gap : seg_len));
25956 		seg_len += gap;
25957 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25958 			if (flags & TH_RST) {
25959 				goto done;
25960 			}
25961 			if ((flags & TH_FIN) && seg_len == -1) {
25962 				/*
25963 				 * When TCP receives a duplicate FIN in
25964 				 * TIME_WAIT state, restart the 2 MSL timer.
25965 				 * See page 73 in RFC 793. Make sure this TCP
25966 				 * is already on the TIME_WAIT list. If not,
25967 				 * just restart the timer.
25968 				 */
25969 				if (TCP_IS_DETACHED(tcp)) {
25970 					if (tcp_time_wait_remove(tcp, NULL) ==
25971 					    B_TRUE) {
25972 						tcp_time_wait_append(tcp);
25973 						TCP_DBGSTAT(tcps,
25974 						    tcp_rput_time_wait);
25975 					}
25976 				} else {
25977 					ASSERT(tcp != NULL);
25978 					TCP_TIMER_RESTART(tcp,
25979 					    tcps->tcps_time_wait_interval);
25980 				}
25981 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25982 				    tcp->tcp_rnxt, TH_ACK);
25983 				goto done;
25984 			}
25985 			flags |=  TH_ACK_NEEDED;
25986 			seg_len = 0;
25987 			goto process_ack;
25988 		}
25989 
25990 		/* Fix seg_seq, and chew the gap off the front. */
25991 		seg_seq = tcp->tcp_rnxt;
25992 	}
25993 
25994 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25995 		/*
25996 		 * Make sure that when we accept the connection, pick
25997 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25998 		 * old connection.
25999 		 *
26000 		 * The next ISS generated is equal to tcp_iss_incr_extra
26001 		 * + ISS_INCR/2 + other components depending on the
26002 		 * value of tcp_strong_iss.  We pre-calculate the new
26003 		 * ISS here and compare with tcp_snxt to determine if
26004 		 * we need to make adjustment to tcp_iss_incr_extra.
26005 		 *
26006 		 * The above calculation is ugly and is a
26007 		 * waste of CPU cycles...
26008 		 */
26009 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
26010 		int32_t adj;
26011 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
26012 
26013 		switch (tcps->tcps_strong_iss) {
26014 		case 2: {
26015 			/* Add time and MD5 components. */
26016 			uint32_t answer[4];
26017 			struct {
26018 				uint32_t ports;
26019 				in6_addr_t src;
26020 				in6_addr_t dst;
26021 			} arg;
26022 			MD5_CTX context;
26023 
26024 			mutex_enter(&tcps->tcps_iss_key_lock);
26025 			context = tcps->tcps_iss_key;
26026 			mutex_exit(&tcps->tcps_iss_key_lock);
26027 			arg.ports = tcp->tcp_ports;
26028 			/* We use MAPPED addresses in tcp_iss_init */
26029 			arg.src = tcp->tcp_ip_src_v6;
26030 			if (tcp->tcp_ipversion == IPV4_VERSION) {
26031 				IN6_IPADDR_TO_V4MAPPED(
26032 				    tcp->tcp_ipha->ipha_dst,
26033 				    &arg.dst);
26034 			} else {
26035 				arg.dst =
26036 				    tcp->tcp_ip6h->ip6_dst;
26037 			}
26038 			MD5Update(&context, (uchar_t *)&arg,
26039 			    sizeof (arg));
26040 			MD5Final((uchar_t *)answer, &context);
26041 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
26042 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
26043 			break;
26044 		}
26045 		case 1:
26046 			/* Add time component and min random (i.e. 1). */
26047 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
26048 			break;
26049 		default:
26050 			/* Add only time component. */
26051 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
26052 			break;
26053 		}
26054 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
26055 			/*
26056 			 * New ISS not guaranteed to be ISS_INCR/2
26057 			 * ahead of the current tcp_snxt, so add the
26058 			 * difference to tcp_iss_incr_extra.
26059 			 */
26060 			tcps->tcps_iss_incr_extra += adj;
26061 		}
26062 		/*
26063 		 * If tcp_clean_death() can not perform the task now,
26064 		 * drop the SYN packet and let the other side re-xmit.
26065 		 * Otherwise pass the SYN packet back in, since the
26066 		 * old tcp state has been cleaned up or freed.
26067 		 */
26068 		if (tcp_clean_death(tcp, 0, 27) == -1)
26069 			goto done;
26070 		/*
26071 		 * We will come back to tcp_rput_data
26072 		 * on the global queue. Packets destined
26073 		 * for the global queue will be checked
26074 		 * with global policy. But the policy for
26075 		 * this packet has already been checked as
26076 		 * this was destined for the detached
26077 		 * connection. We need to bypass policy
26078 		 * check this time by attaching a dummy
26079 		 * ipsec_in with ipsec_in_dont_check set.
26080 		 */
26081 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
26082 		if (connp != NULL) {
26083 			TCP_STAT(tcps, tcp_time_wait_syn_success);
26084 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
26085 			return;
26086 		}
26087 		goto done;
26088 	}
26089 
26090 	/*
26091 	 * rgap is the amount of stuff received out of window.  A negative
26092 	 * value is the amount out of window.
26093 	 */
26094 	if (rgap < 0) {
26095 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
26096 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
26097 		/* Fix seg_len and make sure there is something left. */
26098 		seg_len += rgap;
26099 		if (seg_len <= 0) {
26100 			if (flags & TH_RST) {
26101 				goto done;
26102 			}
26103 			flags |=  TH_ACK_NEEDED;
26104 			seg_len = 0;
26105 			goto process_ack;
26106 		}
26107 	}
26108 	/*
26109 	 * Check whether we can update tcp_ts_recent.  This test is
26110 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26111 	 * Extensions for High Performance: An Update", Internet Draft.
26112 	 */
26113 	if (tcp->tcp_snd_ts_ok &&
26114 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26115 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26116 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26117 		tcp->tcp_last_rcv_lbolt = lbolt64;
26118 	}
26119 
26120 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26121 		/* Always ack out of order packets */
26122 		flags |= TH_ACK_NEEDED;
26123 		seg_len = 0;
26124 	} else if (seg_len > 0) {
26125 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26126 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26127 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26128 	}
26129 	if (flags & TH_RST) {
26130 		(void) tcp_clean_death(tcp, 0, 28);
26131 		goto done;
26132 	}
26133 	if (flags & TH_SYN) {
26134 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26135 		    TH_RST|TH_ACK);
26136 		/*
26137 		 * Do not delete the TCP structure if it is in
26138 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26139 		 */
26140 		goto done;
26141 	}
26142 process_ack:
26143 	if (flags & TH_ACK) {
26144 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26145 		if (bytes_acked <= 0) {
26146 			if (bytes_acked == 0 && seg_len == 0 &&
26147 			    new_swnd == tcp->tcp_swnd)
26148 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26149 		} else {
26150 			/* Acks something not sent */
26151 			flags |= TH_ACK_NEEDED;
26152 		}
26153 	}
26154 	if (flags & TH_ACK_NEEDED) {
26155 		/*
26156 		 * Time to send an ack for some reason.
26157 		 */
26158 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26159 		    tcp->tcp_rnxt, TH_ACK);
26160 	}
26161 done:
26162 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26163 		DB_CKSUMSTART(mp) = 0;
26164 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26165 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26166 	}
26167 	freemsg(mp);
26168 }
26169 
26170 /*
26171  * Allocate a T_SVR4_OPTMGMT_REQ.
26172  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26173  * that tcp_rput_other can drop the acks.
26174  */
26175 static mblk_t *
26176 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26177 {
26178 	mblk_t *mp;
26179 	struct T_optmgmt_req *tor;
26180 	struct opthdr *oh;
26181 	uint_t size;
26182 	char *optptr;
26183 
26184 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26185 	mp = allocb(size, BPRI_MED);
26186 	if (mp == NULL)
26187 		return (NULL);
26188 
26189 	mp->b_wptr += size;
26190 	mp->b_datap->db_type = M_PROTO;
26191 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26192 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26193 	tor->MGMT_flags = T_NEGOTIATE;
26194 	tor->OPT_length = sizeof (*oh) + optlen;
26195 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26196 
26197 	oh = (struct opthdr *)&tor[1];
26198 	oh->level = level;
26199 	oh->name = cmd;
26200 	oh->len = optlen;
26201 	if (optlen != 0) {
26202 		optptr = (char *)&oh[1];
26203 		bcopy(opt, optptr, optlen);
26204 	}
26205 	return (mp);
26206 }
26207 
26208 /*
26209  * TCP Timers Implementation.
26210  */
26211 timeout_id_t
26212 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26213 {
26214 	mblk_t *mp;
26215 	tcp_timer_t *tcpt;
26216 	tcp_t *tcp = connp->conn_tcp;
26217 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26218 
26219 	ASSERT(connp->conn_sqp != NULL);
26220 
26221 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26222 
26223 	if (tcp->tcp_timercache == NULL) {
26224 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26225 	} else {
26226 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26227 		mp = tcp->tcp_timercache;
26228 		tcp->tcp_timercache = mp->b_next;
26229 		mp->b_next = NULL;
26230 		ASSERT(mp->b_wptr == NULL);
26231 	}
26232 
26233 	CONN_INC_REF(connp);
26234 	tcpt = (tcp_timer_t *)mp->b_rptr;
26235 	tcpt->connp = connp;
26236 	tcpt->tcpt_proc = f;
26237 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26238 	return ((timeout_id_t)mp);
26239 }
26240 
26241 static void
26242 tcp_timer_callback(void *arg)
26243 {
26244 	mblk_t *mp = (mblk_t *)arg;
26245 	tcp_timer_t *tcpt;
26246 	conn_t	*connp;
26247 
26248 	tcpt = (tcp_timer_t *)mp->b_rptr;
26249 	connp = tcpt->connp;
26250 	squeue_fill(connp->conn_sqp, mp,
26251 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26252 }
26253 
26254 static void
26255 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26256 {
26257 	tcp_timer_t *tcpt;
26258 	conn_t *connp = (conn_t *)arg;
26259 	tcp_t *tcp = connp->conn_tcp;
26260 
26261 	tcpt = (tcp_timer_t *)mp->b_rptr;
26262 	ASSERT(connp == tcpt->connp);
26263 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26264 
26265 	/*
26266 	 * If the TCP has reached the closed state, don't proceed any
26267 	 * further. This TCP logically does not exist on the system.
26268 	 * tcpt_proc could for example access queues, that have already
26269 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26270 	 */
26271 	if (tcp->tcp_state != TCPS_CLOSED) {
26272 		(*tcpt->tcpt_proc)(connp);
26273 	} else {
26274 		tcp->tcp_timer_tid = 0;
26275 	}
26276 	tcp_timer_free(connp->conn_tcp, mp);
26277 }
26278 
26279 /*
26280  * There is potential race with untimeout and the handler firing at the same
26281  * time. The mblock may be freed by the handler while we are trying to use
26282  * it. But since both should execute on the same squeue, this race should not
26283  * occur.
26284  */
26285 clock_t
26286 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26287 {
26288 	mblk_t	*mp = (mblk_t *)id;
26289 	tcp_timer_t *tcpt;
26290 	clock_t delta;
26291 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26292 
26293 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26294 
26295 	if (mp == NULL)
26296 		return (-1);
26297 
26298 	tcpt = (tcp_timer_t *)mp->b_rptr;
26299 	ASSERT(tcpt->connp == connp);
26300 
26301 	delta = untimeout(tcpt->tcpt_tid);
26302 
26303 	if (delta >= 0) {
26304 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26305 		tcp_timer_free(connp->conn_tcp, mp);
26306 		CONN_DEC_REF(connp);
26307 	}
26308 
26309 	return (delta);
26310 }
26311 
26312 /*
26313  * Allocate space for the timer event. The allocation looks like mblk, but it is
26314  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26315  *
26316  * Dealing with failures: If we can't allocate from the timer cache we try
26317  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26318  * points to b_rptr.
26319  * If we can't allocate anything using allocb_tryhard(), we perform a last
26320  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26321  * save the actual allocation size in b_datap.
26322  */
26323 mblk_t *
26324 tcp_timermp_alloc(int kmflags)
26325 {
26326 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26327 	    kmflags & ~KM_PANIC);
26328 
26329 	if (mp != NULL) {
26330 		mp->b_next = mp->b_prev = NULL;
26331 		mp->b_rptr = (uchar_t *)(&mp[1]);
26332 		mp->b_wptr = NULL;
26333 		mp->b_datap = NULL;
26334 		mp->b_queue = NULL;
26335 		mp->b_cont = NULL;
26336 	} else if (kmflags & KM_PANIC) {
26337 		/*
26338 		 * Failed to allocate memory for the timer. Try allocating from
26339 		 * dblock caches.
26340 		 */
26341 		/* ipclassifier calls this from a constructor - hence no tcps */
26342 		TCP_G_STAT(tcp_timermp_allocfail);
26343 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26344 		if (mp == NULL) {
26345 			size_t size = 0;
26346 			/*
26347 			 * Memory is really low. Try tryhard allocation.
26348 			 *
26349 			 * ipclassifier calls this from a constructor -
26350 			 * hence no tcps
26351 			 */
26352 			TCP_G_STAT(tcp_timermp_allocdblfail);
26353 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26354 			    sizeof (tcp_timer_t), &size, kmflags);
26355 			mp->b_rptr = (uchar_t *)(&mp[1]);
26356 			mp->b_next = mp->b_prev = NULL;
26357 			mp->b_wptr = (uchar_t *)-1;
26358 			mp->b_datap = (dblk_t *)size;
26359 			mp->b_queue = NULL;
26360 			mp->b_cont = NULL;
26361 		}
26362 		ASSERT(mp->b_wptr != NULL);
26363 	}
26364 	/* ipclassifier calls this from a constructor - hence no tcps */
26365 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26366 
26367 	return (mp);
26368 }
26369 
26370 /*
26371  * Free per-tcp timer cache.
26372  * It can only contain entries from tcp_timercache.
26373  */
26374 void
26375 tcp_timermp_free(tcp_t *tcp)
26376 {
26377 	mblk_t *mp;
26378 
26379 	while ((mp = tcp->tcp_timercache) != NULL) {
26380 		ASSERT(mp->b_wptr == NULL);
26381 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26382 		kmem_cache_free(tcp_timercache, mp);
26383 	}
26384 }
26385 
26386 /*
26387  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26388  * events there already (currently at most two events are cached).
26389  * If the event is not allocated from the timer cache, free it right away.
26390  */
26391 static void
26392 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26393 {
26394 	mblk_t *mp1 = tcp->tcp_timercache;
26395 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26396 
26397 	if (mp->b_wptr != NULL) {
26398 		/*
26399 		 * This allocation is not from a timer cache, free it right
26400 		 * away.
26401 		 */
26402 		if (mp->b_wptr != (uchar_t *)-1)
26403 			freeb(mp);
26404 		else
26405 			kmem_free(mp, (size_t)mp->b_datap);
26406 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26407 		/* Cache this timer block for future allocations */
26408 		mp->b_rptr = (uchar_t *)(&mp[1]);
26409 		mp->b_next = mp1;
26410 		tcp->tcp_timercache = mp;
26411 	} else {
26412 		kmem_cache_free(tcp_timercache, mp);
26413 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26414 	}
26415 }
26416 
26417 /*
26418  * End of TCP Timers implementation.
26419  */
26420 
26421 /*
26422  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26423  * on the specified backing STREAMS q. Note, the caller may make the
26424  * decision to call based on the tcp_t.tcp_flow_stopped value which
26425  * when check outside the q's lock is only an advisory check ...
26426  */
26427 
26428 void
26429 tcp_setqfull(tcp_t *tcp)
26430 {
26431 	queue_t *q = tcp->tcp_wq;
26432 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26433 
26434 	if (!(q->q_flag & QFULL)) {
26435 		mutex_enter(QLOCK(q));
26436 		if (!(q->q_flag & QFULL)) {
26437 			/* still need to set QFULL */
26438 			q->q_flag |= QFULL;
26439 			tcp->tcp_flow_stopped = B_TRUE;
26440 			mutex_exit(QLOCK(q));
26441 			TCP_STAT(tcps, tcp_flwctl_on);
26442 		} else {
26443 			mutex_exit(QLOCK(q));
26444 		}
26445 	}
26446 }
26447 
26448 void
26449 tcp_clrqfull(tcp_t *tcp)
26450 {
26451 	queue_t *q = tcp->tcp_wq;
26452 
26453 	if (q->q_flag & QFULL) {
26454 		mutex_enter(QLOCK(q));
26455 		if (q->q_flag & QFULL) {
26456 			q->q_flag &= ~QFULL;
26457 			tcp->tcp_flow_stopped = B_FALSE;
26458 			mutex_exit(QLOCK(q));
26459 			if (q->q_flag & QWANTW)
26460 				qbackenable(q, 0);
26461 		} else {
26462 			mutex_exit(QLOCK(q));
26463 		}
26464 	}
26465 }
26466 
26467 
26468 /*
26469  * kstats related to squeues i.e. not per IP instance
26470  */
26471 static void *
26472 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26473 {
26474 	kstat_t *ksp;
26475 
26476 	tcp_g_stat_t template = {
26477 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26478 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26479 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26480 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26481 	};
26482 
26483 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26484 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26485 	    KSTAT_FLAG_VIRTUAL);
26486 
26487 	if (ksp == NULL)
26488 		return (NULL);
26489 
26490 	bcopy(&template, tcp_g_statp, sizeof (template));
26491 	ksp->ks_data = (void *)tcp_g_statp;
26492 
26493 	kstat_install(ksp);
26494 	return (ksp);
26495 }
26496 
26497 static void
26498 tcp_g_kstat_fini(kstat_t *ksp)
26499 {
26500 	if (ksp != NULL) {
26501 		kstat_delete(ksp);
26502 	}
26503 }
26504 
26505 
26506 static void *
26507 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26508 {
26509 	kstat_t *ksp;
26510 
26511 	tcp_stat_t template = {
26512 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26513 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26514 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26515 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26516 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26517 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26518 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26519 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26520 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26521 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26522 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26523 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26524 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26525 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26526 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26527 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26528 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26529 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26530 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26531 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26532 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26533 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26534 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26535 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26536 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26537 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26538 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26539 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26540 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26541 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26542 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26543 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26544 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26545 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26546 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26547 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26548 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26549 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26550 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26551 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26552 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26553 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26554 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26555 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26556 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26557 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26558 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26559 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26560 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26561 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26562 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26563 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26564 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26565 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26566 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26567 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26568 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26569 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26570 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26571 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26572 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26573 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26574 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26575 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26576 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26577 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26578 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26579 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26580 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26581 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26582 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26583 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26584 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26585 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26586 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26587 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26588 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26589 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26590 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26591 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26592 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26593 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26594 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26595 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26596 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26597 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26598 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26599 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26600 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26601 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26602 	};
26603 
26604 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26605 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26606 	    KSTAT_FLAG_VIRTUAL, stackid);
26607 
26608 	if (ksp == NULL)
26609 		return (NULL);
26610 
26611 	bcopy(&template, tcps_statisticsp, sizeof (template));
26612 	ksp->ks_data = (void *)tcps_statisticsp;
26613 	ksp->ks_private = (void *)(uintptr_t)stackid;
26614 
26615 	kstat_install(ksp);
26616 	return (ksp);
26617 }
26618 
26619 static void
26620 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26621 {
26622 	if (ksp != NULL) {
26623 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26624 		kstat_delete_netstack(ksp, stackid);
26625 	}
26626 }
26627 
26628 /*
26629  * TCP Kstats implementation
26630  */
26631 static void *
26632 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26633 {
26634 	kstat_t	*ksp;
26635 
26636 	tcp_named_kstat_t template = {
26637 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26638 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26639 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26640 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26641 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26642 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26643 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26644 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26645 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26646 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26647 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26648 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26649 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26650 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26651 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26652 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26653 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26654 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26655 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26656 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26657 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26658 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26659 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26660 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26661 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26662 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26663 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26664 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26665 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26666 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26667 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26668 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26669 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26670 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26671 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26672 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26673 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26674 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26675 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26676 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26677 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26678 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26679 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26680 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26681 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26682 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26683 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26684 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26685 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26686 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26687 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26688 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26689 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26690 	};
26691 
26692 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26693 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26694 
26695 	if (ksp == NULL)
26696 		return (NULL);
26697 
26698 	template.rtoAlgorithm.value.ui32 = 4;
26699 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26700 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26701 	template.maxConn.value.i32 = -1;
26702 
26703 	bcopy(&template, ksp->ks_data, sizeof (template));
26704 	ksp->ks_update = tcp_kstat_update;
26705 	ksp->ks_private = (void *)(uintptr_t)stackid;
26706 
26707 	kstat_install(ksp);
26708 	return (ksp);
26709 }
26710 
26711 static void
26712 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26713 {
26714 	if (ksp != NULL) {
26715 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26716 		kstat_delete_netstack(ksp, stackid);
26717 	}
26718 }
26719 
26720 static int
26721 tcp_kstat_update(kstat_t *kp, int rw)
26722 {
26723 	tcp_named_kstat_t *tcpkp;
26724 	tcp_t		*tcp;
26725 	connf_t		*connfp;
26726 	conn_t		*connp;
26727 	int 		i;
26728 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26729 	netstack_t	*ns;
26730 	tcp_stack_t	*tcps;
26731 	ip_stack_t	*ipst;
26732 
26733 	if ((kp == NULL) || (kp->ks_data == NULL))
26734 		return (EIO);
26735 
26736 	if (rw == KSTAT_WRITE)
26737 		return (EACCES);
26738 
26739 	ns = netstack_find_by_stackid(stackid);
26740 	if (ns == NULL)
26741 		return (-1);
26742 	tcps = ns->netstack_tcp;
26743 	if (tcps == NULL) {
26744 		netstack_rele(ns);
26745 		return (-1);
26746 	}
26747 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26748 
26749 	tcpkp->currEstab.value.ui32 = 0;
26750 
26751 	ipst = ns->netstack_ip;
26752 
26753 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26754 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26755 		connp = NULL;
26756 		while ((connp =
26757 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26758 			tcp = connp->conn_tcp;
26759 			switch (tcp_snmp_state(tcp)) {
26760 			case MIB2_TCP_established:
26761 			case MIB2_TCP_closeWait:
26762 				tcpkp->currEstab.value.ui32++;
26763 				break;
26764 			}
26765 		}
26766 	}
26767 
26768 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26769 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26770 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26771 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26772 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26773 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26774 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26775 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26776 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26777 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26778 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26779 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26780 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26781 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26782 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26783 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26784 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26785 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26786 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26787 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26788 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26789 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26790 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26791 	tcpkp->inDataInorderSegs.value.ui32 =
26792 	    tcps->tcps_mib.tcpInDataInorderSegs;
26793 	tcpkp->inDataInorderBytes.value.ui32 =
26794 	    tcps->tcps_mib.tcpInDataInorderBytes;
26795 	tcpkp->inDataUnorderSegs.value.ui32 =
26796 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26797 	tcpkp->inDataUnorderBytes.value.ui32 =
26798 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26799 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26800 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26801 	tcpkp->inDataPartDupSegs.value.ui32 =
26802 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26803 	tcpkp->inDataPartDupBytes.value.ui32 =
26804 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26805 	tcpkp->inDataPastWinSegs.value.ui32 =
26806 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26807 	tcpkp->inDataPastWinBytes.value.ui32 =
26808 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26809 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26810 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26811 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26812 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26813 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26814 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26815 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26816 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26817 	tcpkp->timKeepaliveProbe.value.ui32 =
26818 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26819 	tcpkp->timKeepaliveDrop.value.ui32 =
26820 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26821 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26822 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26823 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26824 	tcpkp->outSackRetransSegs.value.ui32 =
26825 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26826 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26827 
26828 	netstack_rele(ns);
26829 	return (0);
26830 }
26831 
26832 void
26833 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26834 {
26835 	uint16_t	hdr_len;
26836 	ipha_t		*ipha;
26837 	uint8_t		*nexthdrp;
26838 	tcph_t		*tcph;
26839 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26840 
26841 	/* Already has an eager */
26842 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26843 		TCP_STAT(tcps, tcp_reinput_syn);
26844 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26845 		    connp, SQTAG_TCP_REINPUT_EAGER);
26846 		return;
26847 	}
26848 
26849 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26850 	case IPV4_VERSION:
26851 		ipha = (ipha_t *)mp->b_rptr;
26852 		hdr_len = IPH_HDR_LENGTH(ipha);
26853 		break;
26854 	case IPV6_VERSION:
26855 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26856 		    &hdr_len, &nexthdrp)) {
26857 			CONN_DEC_REF(connp);
26858 			freemsg(mp);
26859 			return;
26860 		}
26861 		break;
26862 	}
26863 
26864 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26865 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26866 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26867 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26868 	}
26869 
26870 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26871 	    SQTAG_TCP_REINPUT);
26872 }
26873 
26874 static squeue_func_t
26875 tcp_squeue_switch(int val)
26876 {
26877 	squeue_func_t rval = squeue_fill;
26878 
26879 	switch (val) {
26880 	case 1:
26881 		rval = squeue_enter_nodrain;
26882 		break;
26883 	case 2:
26884 		rval = squeue_enter;
26885 		break;
26886 	default:
26887 		break;
26888 	}
26889 	return (rval);
26890 }
26891 
26892 /*
26893  * This is called once for each squeue - globally for all stack
26894  * instances.
26895  */
26896 static void
26897 tcp_squeue_add(squeue_t *sqp)
26898 {
26899 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26900 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26901 
26902 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26903 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26904 	    sqp, TCP_TIME_WAIT_DELAY);
26905 	if (tcp_free_list_max_cnt == 0) {
26906 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26907 		    max_ncpus : boot_max_ncpus);
26908 
26909 		/*
26910 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26911 		 */
26912 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26913 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26914 	}
26915 	tcp_time_wait->tcp_free_list_cnt = 0;
26916 }
26917