1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/sodirect.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/proto_set.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 220 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 221 * directly to the socket (sodirect) and start an asynchronous copyout 222 * to a user-land receive-side buffer (uioa) when a blocking socket read 223 * (e.g. read, recv, ...) is pending. 224 * 225 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 226 * NULL so points to an sodirect_t and if marked enabled then we enqueue 227 * all mblk_t's directly to the socket. 228 * 229 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 230 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 231 * copyout will be started directly to the user-land uio buffer. Also, as we 232 * have a pending read, TCP's push logic can take into account the number of 233 * bytes to be received and only awake the blocked read()er when the uioa_t 234 * byte count has been satisfied. 235 * 236 * IPsec notes : 237 * 238 * Since a packet is always executed on the correct TCP perimeter 239 * all IPsec processing is defered to IP including checking new 240 * connections and setting IPSEC policies for new connection. The 241 * only exception is tcp_xmit_listeners_reset() which is called 242 * directly from IP and needs to policy check to see if TH_RST 243 * can be sent out. 244 * 245 * PFHooks notes : 246 * 247 * For mdt case, one meta buffer contains multiple packets. Mblks for every 248 * packet are assembled and passed to the hooks. When packets are blocked, 249 * or boundary of any packet is changed, the mdt processing is stopped, and 250 * packets of the meta buffer are send to the IP path one by one. 251 */ 252 253 /* 254 * Values for squeue switch: 255 * 1: SQ_NODRAIN 256 * 2: SQ_PROCESS 257 * 3: SQ_FILL 258 */ 259 int tcp_squeue_wput = 2; /* /etc/systems */ 260 int tcp_squeue_flag; 261 262 /* 263 * Macros for sodirect: 264 * 265 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 266 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 267 * if it exists and is enabled, else to NULL. Note, in the current 268 * sodirect implementation the sod_lockp must not be held across any 269 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 270 * will result as sod_lockp is the streamhead stdata.sd_lock. 271 * 272 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 273 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 274 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 275 * being used when sodirect code paths should be. 276 */ 277 278 #define SOD_PTR_ENTER(tcp, sodp) \ 279 (sodp) = (tcp)->tcp_sodirect; \ 280 \ 281 if ((sodp) != NULL) { \ 282 mutex_enter((sodp)->sod_lockp); \ 283 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 284 mutex_exit((sodp)->sod_lockp); \ 285 (sodp) = NULL; \ 286 } \ 287 } 288 289 #define SOD_NOT_ENABLED(tcp) \ 290 ((tcp)->tcp_sodirect == NULL || \ 291 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 292 293 /* 294 * This controls how tiny a write must be before we try to copy it 295 * into the the mblk on the tail of the transmit queue. Not much 296 * speedup is observed for values larger than sixteen. Zero will 297 * disable the optimisation. 298 */ 299 int tcp_tx_pull_len = 16; 300 301 /* 302 * TCP Statistics. 303 * 304 * How TCP statistics work. 305 * 306 * There are two types of statistics invoked by two macros. 307 * 308 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 309 * supposed to be used in non MT-hot paths of the code. 310 * 311 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 312 * supposed to be used for DEBUG purposes and may be used on a hot path. 313 * 314 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 315 * (use "kstat tcp" to get them). 316 * 317 * There is also additional debugging facility that marks tcp_clean_death() 318 * instances and saves them in tcp_t structure. It is triggered by 319 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 320 * tcp_clean_death() calls that counts the number of times each tag was hit. It 321 * is triggered by TCP_CLD_COUNTERS define. 322 * 323 * How to add new counters. 324 * 325 * 1) Add a field in the tcp_stat structure describing your counter. 326 * 2) Add a line in the template in tcp_kstat2_init() with the name 327 * of the counter. 328 * 329 * IMPORTANT!! - make sure that both are in sync !! 330 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 331 * 332 * Please avoid using private counters which are not kstat-exported. 333 * 334 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 335 * in tcp_t structure. 336 * 337 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 338 */ 339 340 #ifndef TCP_DEBUG_COUNTER 341 #ifdef DEBUG 342 #define TCP_DEBUG_COUNTER 1 343 #else 344 #define TCP_DEBUG_COUNTER 0 345 #endif 346 #endif 347 348 #define TCP_CLD_COUNTERS 0 349 350 #define TCP_TAG_CLEAN_DEATH 1 351 #define TCP_MAX_CLEAN_DEATH_TAG 32 352 353 #ifdef lint 354 static int _lint_dummy_; 355 #endif 356 357 #if TCP_CLD_COUNTERS 358 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 359 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 360 #elif defined(lint) 361 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 362 #else 363 #define TCP_CLD_STAT(x) 364 #endif 365 366 #if TCP_DEBUG_COUNTER 367 #define TCP_DBGSTAT(tcps, x) \ 368 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 369 #define TCP_G_DBGSTAT(x) \ 370 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 371 #elif defined(lint) 372 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 373 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 374 #else 375 #define TCP_DBGSTAT(tcps, x) 376 #define TCP_G_DBGSTAT(x) 377 #endif 378 379 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 380 381 tcp_g_stat_t tcp_g_statistics; 382 kstat_t *tcp_g_kstat; 383 384 /* 385 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 386 * tcp write side. 387 */ 388 #define CALL_IP_WPUT(connp, q, mp) { \ 389 ASSERT(((q)->q_flag & QREADR) == 0); \ 390 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 391 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 392 } 393 394 /* Macros for timestamp comparisons */ 395 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 396 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 397 398 /* 399 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 400 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 401 * by adding three components: a time component which grows by 1 every 4096 402 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 403 * a per-connection component which grows by 125000 for every new connection; 404 * and an "extra" component that grows by a random amount centered 405 * approximately on 64000. This causes the the ISS generator to cycle every 406 * 4.89 hours if no TCP connections are made, and faster if connections are 407 * made. 408 * 409 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 410 * components: a time component which grows by 250000 every second; and 411 * a per-connection component which grows by 125000 for every new connections. 412 * 413 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 414 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 415 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 416 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 417 * password. 418 */ 419 #define ISS_INCR 250000 420 #define ISS_NSEC_SHT 12 421 422 static sin_t sin_null; /* Zero address for quick clears */ 423 static sin6_t sin6_null; /* Zero address for quick clears */ 424 425 /* 426 * This implementation follows the 4.3BSD interpretation of the urgent 427 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 428 * incompatible changes in protocols like telnet and rlogin. 429 */ 430 #define TCP_OLD_URP_INTERPRETATION 1 431 432 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 433 (TCP_IS_DETACHED(tcp) && \ 434 (!(tcp)->tcp_hard_binding)) 435 436 /* 437 * TCP reassembly macros. We hide starting and ending sequence numbers in 438 * b_next and b_prev of messages on the reassembly queue. The messages are 439 * chained using b_cont. These macros are used in tcp_reass() so we don't 440 * have to see the ugly casts and assignments. 441 */ 442 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 443 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 444 (mblk_t *)(uintptr_t)(u)) 445 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 446 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 447 (mblk_t *)(uintptr_t)(u)) 448 449 /* 450 * Implementation of TCP Timers. 451 * ============================= 452 * 453 * INTERFACE: 454 * 455 * There are two basic functions dealing with tcp timers: 456 * 457 * timeout_id_t tcp_timeout(connp, func, time) 458 * clock_t tcp_timeout_cancel(connp, timeout_id) 459 * TCP_TIMER_RESTART(tcp, intvl) 460 * 461 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 462 * after 'time' ticks passed. The function called by timeout() must adhere to 463 * the same restrictions as a driver soft interrupt handler - it must not sleep 464 * or call other functions that might sleep. The value returned is the opaque 465 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 466 * cancel the request. The call to tcp_timeout() may fail in which case it 467 * returns zero. This is different from the timeout(9F) function which never 468 * fails. 469 * 470 * The call-back function 'func' always receives 'connp' as its single 471 * argument. It is always executed in the squeue corresponding to the tcp 472 * structure. The tcp structure is guaranteed to be present at the time the 473 * call-back is called. 474 * 475 * NOTE: The call-back function 'func' is never called if tcp is in 476 * the TCPS_CLOSED state. 477 * 478 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 479 * request. locks acquired by the call-back routine should not be held across 480 * the call to tcp_timeout_cancel() or a deadlock may result. 481 * 482 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 483 * Otherwise, it returns an integer value greater than or equal to 0. In 484 * particular, if the call-back function is already placed on the squeue, it can 485 * not be canceled. 486 * 487 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 488 * within squeue context corresponding to the tcp instance. Since the 489 * call-back is also called via the same squeue, there are no race 490 * conditions described in untimeout(9F) manual page since all calls are 491 * strictly serialized. 492 * 493 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 494 * stored in tcp_timer_tid and starts a new one using 495 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 496 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 497 * field. 498 * 499 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 500 * call-back may still be called, so it is possible tcp_timer() will be 501 * called several times. This should not be a problem since tcp_timer() 502 * should always check the tcp instance state. 503 * 504 * 505 * IMPLEMENTATION: 506 * 507 * TCP timers are implemented using three-stage process. The call to 508 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 509 * when the timer expires. The tcp_timer_callback() arranges the call of the 510 * tcp_timer_handler() function via squeue corresponding to the tcp 511 * instance. The tcp_timer_handler() calls actual requested timeout call-back 512 * and passes tcp instance as an argument to it. Information is passed between 513 * stages using the tcp_timer_t structure which contains the connp pointer, the 514 * tcp call-back to call and the timeout id returned by the timeout(9F). 515 * 516 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 517 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 518 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 519 * returns the pointer to this mblk. 520 * 521 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 522 * looks like a normal mblk without actual dblk attached to it. 523 * 524 * To optimize performance each tcp instance holds a small cache of timer 525 * mblocks. In the current implementation it caches up to two timer mblocks per 526 * tcp instance. The cache is preserved over tcp frees and is only freed when 527 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 528 * timer processing happens on a corresponding squeue, the cache manipulation 529 * does not require any locks. Experiments show that majority of timer mblocks 530 * allocations are satisfied from the tcp cache and do not involve kmem calls. 531 * 532 * The tcp_timeout() places a refhold on the connp instance which guarantees 533 * that it will be present at the time the call-back function fires. The 534 * tcp_timer_handler() drops the reference after calling the call-back, so the 535 * call-back function does not need to manipulate the references explicitly. 536 */ 537 538 typedef struct tcp_timer_s { 539 conn_t *connp; 540 void (*tcpt_proc)(void *); 541 callout_id_t tcpt_tid; 542 } tcp_timer_t; 543 544 static kmem_cache_t *tcp_timercache; 545 kmem_cache_t *tcp_sack_info_cache; 546 kmem_cache_t *tcp_iphc_cache; 547 548 /* 549 * For scalability, we must not run a timer for every TCP connection 550 * in TIME_WAIT state. To see why, consider (for time wait interval of 551 * 4 minutes): 552 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 553 * 554 * This list is ordered by time, so you need only delete from the head 555 * until you get to entries which aren't old enough to delete yet. 556 * The list consists of only the detached TIME_WAIT connections. 557 * 558 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 559 * becomes detached TIME_WAIT (either by changing the state and already 560 * being detached or the other way around). This means that the TIME_WAIT 561 * state can be extended (up to doubled) if the connection doesn't become 562 * detached for a long time. 563 * 564 * The list manipulations (including tcp_time_wait_next/prev) 565 * are protected by the tcp_time_wait_lock. The content of the 566 * detached TIME_WAIT connections is protected by the normal perimeters. 567 * 568 * This list is per squeue and squeues are shared across the tcp_stack_t's. 569 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 570 * and conn_netstack. 571 * The tcp_t's that are added to tcp_free_list are disassociated and 572 * have NULL tcp_tcps and conn_netstack pointers. 573 */ 574 typedef struct tcp_squeue_priv_s { 575 kmutex_t tcp_time_wait_lock; 576 callout_id_t tcp_time_wait_tid; 577 tcp_t *tcp_time_wait_head; 578 tcp_t *tcp_time_wait_tail; 579 tcp_t *tcp_free_list; 580 uint_t tcp_free_list_cnt; 581 } tcp_squeue_priv_t; 582 583 /* 584 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 585 * Running it every 5 seconds seems to give the best results. 586 */ 587 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 588 589 /* 590 * To prevent memory hog, limit the number of entries in tcp_free_list 591 * to 1% of available memory / number of cpus 592 */ 593 uint_t tcp_free_list_max_cnt = 0; 594 595 #define TCP_XMIT_LOWATER 4096 596 #define TCP_XMIT_HIWATER 49152 597 #define TCP_RECV_LOWATER 2048 598 #define TCP_RECV_HIWATER 49152 599 600 /* 601 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 602 */ 603 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 604 605 #define TIDUSZ 4096 /* transport interface data unit size */ 606 607 /* 608 * Bind hash list size and has function. It has to be a power of 2 for 609 * hashing. 610 */ 611 #define TCP_BIND_FANOUT_SIZE 512 612 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 613 /* 614 * Size of listen and acceptor hash list. It has to be a power of 2 for 615 * hashing. 616 */ 617 #define TCP_FANOUT_SIZE 256 618 619 #ifdef _ILP32 620 #define TCP_ACCEPTOR_HASH(accid) \ 621 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 622 #else 623 #define TCP_ACCEPTOR_HASH(accid) \ 624 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 625 #endif /* _ILP32 */ 626 627 #define IP_ADDR_CACHE_SIZE 2048 628 #define IP_ADDR_CACHE_HASH(faddr) \ 629 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 630 631 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 632 #define TCP_HSP_HASH_SIZE 256 633 634 #define TCP_HSP_HASH(addr) \ 635 (((addr>>24) ^ (addr >>16) ^ \ 636 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 637 638 /* 639 * TCP options struct returned from tcp_parse_options. 640 */ 641 typedef struct tcp_opt_s { 642 uint32_t tcp_opt_mss; 643 uint32_t tcp_opt_wscale; 644 uint32_t tcp_opt_ts_val; 645 uint32_t tcp_opt_ts_ecr; 646 tcp_t *tcp; 647 } tcp_opt_t; 648 649 /* 650 * TCP option struct passing information b/w lisenter and eager. 651 */ 652 struct tcp_options { 653 uint_t to_flags; 654 ssize_t to_boundif; /* IPV6_BOUND_IF */ 655 sock_upper_handle_t to_handle; 656 }; 657 658 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 659 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 660 #define TCPOPT_UPPERHANDLE 0x00000004 /* set upper handle */ 661 662 /* 663 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 664 */ 665 666 #ifdef _BIG_ENDIAN 667 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 668 (TCPOPT_TSTAMP << 8) | 10) 669 #else 670 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 671 (TCPOPT_NOP << 8) | TCPOPT_NOP) 672 #endif 673 674 /* 675 * Flags returned from tcp_parse_options. 676 */ 677 #define TCP_OPT_MSS_PRESENT 1 678 #define TCP_OPT_WSCALE_PRESENT 2 679 #define TCP_OPT_TSTAMP_PRESENT 4 680 #define TCP_OPT_SACK_OK_PRESENT 8 681 #define TCP_OPT_SACK_PRESENT 16 682 683 /* TCP option length */ 684 #define TCPOPT_NOP_LEN 1 685 #define TCPOPT_MAXSEG_LEN 4 686 #define TCPOPT_WS_LEN 3 687 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 688 #define TCPOPT_TSTAMP_LEN 10 689 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 690 #define TCPOPT_SACK_OK_LEN 2 691 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 692 #define TCPOPT_REAL_SACK_LEN 4 693 #define TCPOPT_MAX_SACK_LEN 36 694 #define TCPOPT_HEADER_LEN 2 695 696 /* TCP cwnd burst factor. */ 697 #define TCP_CWND_INFINITE 65535 698 #define TCP_CWND_SS 3 699 #define TCP_CWND_NORMAL 5 700 701 /* Maximum TCP initial cwin (start/restart). */ 702 #define TCP_MAX_INIT_CWND 8 703 704 /* 705 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 706 * either tcp_slow_start_initial or tcp_slow_start_after idle 707 * depending on the caller. If the upper layer has not used the 708 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 709 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 710 * If the upper layer has changed set the tcp_init_cwnd, just use 711 * it to calculate the tcp_cwnd. 712 */ 713 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 714 { \ 715 if ((tcp)->tcp_init_cwnd == 0) { \ 716 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 717 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 718 } else { \ 719 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 720 } \ 721 tcp->tcp_cwnd_cnt = 0; \ 722 } 723 724 /* TCP Timer control structure */ 725 typedef struct tcpt_s { 726 pfv_t tcpt_pfv; /* The routine we are to call */ 727 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 728 } tcpt_t; 729 730 /* Host Specific Parameter structure */ 731 typedef struct tcp_hsp { 732 struct tcp_hsp *tcp_hsp_next; 733 in6_addr_t tcp_hsp_addr_v6; 734 in6_addr_t tcp_hsp_subnet_v6; 735 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 736 int32_t tcp_hsp_sendspace; 737 int32_t tcp_hsp_recvspace; 738 int32_t tcp_hsp_tstamp; 739 } tcp_hsp_t; 740 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 741 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 742 743 /* 744 * Functions called directly via squeue having a prototype of edesc_t. 745 */ 746 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 747 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 748 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 749 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 750 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 751 void tcp_input(void *arg, mblk_t *mp, void *arg2); 752 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 753 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 754 void tcp_output(void *arg, mblk_t *mp, void *arg2); 755 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 756 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 757 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 758 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 759 760 761 /* Prototype for TCP functions */ 762 static void tcp_random_init(void); 763 int tcp_random(void); 764 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 765 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 766 tcp_t *eager); 767 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 768 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 769 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 770 boolean_t user_specified); 771 static void tcp_closei_local(tcp_t *tcp); 772 static void tcp_close_detached(tcp_t *tcp); 773 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 774 mblk_t *idmp, mblk_t **defermp); 775 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 776 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 777 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 778 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 779 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 780 uint32_t scope_id, cred_t *cr, pid_t pid); 781 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 782 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 783 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 784 static char *tcp_display(tcp_t *tcp, char *, char); 785 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 786 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 787 static void tcp_eager_unlink(tcp_t *tcp); 788 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 789 int unixerr); 790 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 791 int tlierr, int unixerr); 792 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 793 cred_t *cr); 794 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 795 char *value, caddr_t cp, cred_t *cr); 796 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 797 char *value, caddr_t cp, cred_t *cr); 798 static int tcp_tpistate(tcp_t *tcp); 799 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 800 int caller_holds_lock); 801 static void tcp_bind_hash_remove(tcp_t *tcp); 802 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 803 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 804 static void tcp_acceptor_hash_remove(tcp_t *tcp); 805 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 806 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 807 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 808 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 809 void tcp_g_q_setup(tcp_stack_t *); 810 void tcp_g_q_create(tcp_stack_t *); 811 void tcp_g_q_destroy(tcp_stack_t *); 812 static int tcp_header_init_ipv4(tcp_t *tcp); 813 static int tcp_header_init_ipv6(tcp_t *tcp); 814 int tcp_init(tcp_t *tcp, queue_t *q); 815 static int tcp_init_values(tcp_t *tcp); 816 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 817 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 818 static void tcp_ip_notify(tcp_t *tcp); 819 static mblk_t *tcp_ire_mp(mblk_t **mpp); 820 static void tcp_iss_init(tcp_t *tcp); 821 static void tcp_keepalive_killer(void *arg); 822 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 823 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 824 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 825 int *do_disconnectp, int *t_errorp, int *sys_errorp); 826 static boolean_t tcp_allow_connopt_set(int level, int name); 827 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 828 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 829 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 830 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 831 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 832 mblk_t *mblk); 833 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 834 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 835 uchar_t *ptr, uint_t len); 836 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 837 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 838 tcp_stack_t *); 839 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 840 caddr_t cp, cred_t *cr); 841 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 842 caddr_t cp, cred_t *cr); 843 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 844 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 845 caddr_t cp, cred_t *cr); 846 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 847 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 848 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 849 static void tcp_reinit(tcp_t *tcp); 850 static void tcp_reinit_values(tcp_t *tcp); 851 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 852 tcp_t *thisstream, cred_t *cr); 853 854 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 855 static uint_t tcp_rcv_drain(tcp_t *tcp); 856 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 857 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 858 static void tcp_ss_rexmit(tcp_t *tcp); 859 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 860 static void tcp_process_options(tcp_t *, tcph_t *); 861 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 862 static void tcp_rsrv(queue_t *q); 863 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 864 static int tcp_snmp_state(tcp_t *tcp); 865 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 866 cred_t *cr); 867 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 868 cred_t *cr); 869 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 870 cred_t *cr); 871 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 872 cred_t *cr); 873 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 874 cred_t *cr); 875 static void tcp_timer(void *arg); 876 static void tcp_timer_callback(void *); 877 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 878 boolean_t random); 879 static in_port_t tcp_get_next_priv_port(const tcp_t *); 880 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 881 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 882 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 883 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 884 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 885 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 886 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 887 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 888 const int num_sack_blk, int *usable, uint_t *snxt, 889 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 890 const int mdt_thres); 891 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 892 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 893 const int num_sack_blk, int *usable, uint_t *snxt, 894 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 895 const int mdt_thres); 896 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 897 int num_sack_blk); 898 static void tcp_wsrv(queue_t *q); 899 static int tcp_xmit_end(tcp_t *tcp); 900 static void tcp_ack_timer(void *arg); 901 static mblk_t *tcp_ack_mp(tcp_t *tcp); 902 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 903 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 904 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 905 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 906 uint32_t ack, int ctl); 907 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 908 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 909 static int setmaxps(queue_t *q, int maxpsz); 910 static void tcp_set_rto(tcp_t *, time_t); 911 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 912 boolean_t, boolean_t); 913 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 914 boolean_t ipsec_mctl); 915 static int tcp_build_hdrs(tcp_t *); 916 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 917 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 918 tcph_t *tcph); 919 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 920 static mblk_t *tcp_mdt_info_mp(mblk_t *); 921 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 922 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 923 const boolean_t, const uint32_t, const uint32_t, 924 const uint32_t, const uint32_t, tcp_stack_t *); 925 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 926 const uint_t, const uint_t, boolean_t *); 927 static mblk_t *tcp_lso_info_mp(mblk_t *); 928 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 929 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 930 extern mblk_t *tcp_timermp_alloc(int); 931 extern void tcp_timermp_free(tcp_t *); 932 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 933 static void tcp_stop_lingering(tcp_t *tcp); 934 static void tcp_close_linger_timeout(void *arg); 935 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 936 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 937 static void tcp_stack_fini(netstackid_t stackid, void *arg); 938 static void *tcp_g_kstat_init(tcp_g_stat_t *); 939 static void tcp_g_kstat_fini(kstat_t *); 940 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 941 static void tcp_kstat_fini(netstackid_t, kstat_t *); 942 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 943 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 944 static int tcp_kstat_update(kstat_t *kp, int rw); 945 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 946 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 947 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 948 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 949 tcph_t *tcph, mblk_t *idmp); 950 static int tcp_squeue_switch(int); 951 952 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 953 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 954 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 955 static int tcp_tpi_close(queue_t *, int); 956 static int tcpclose_accept(queue_t *); 957 958 static void tcp_squeue_add(squeue_t *); 959 static boolean_t tcp_zcopy_check(tcp_t *); 960 static void tcp_zcopy_notify(tcp_t *); 961 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 962 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 963 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 964 965 extern void tcp_kssl_input(tcp_t *, mblk_t *); 966 967 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 968 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 969 970 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 971 sock_upper_handle_t, cred_t *); 972 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 973 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 974 static int tcp_do_listen(conn_t *, int, cred_t *); 975 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 976 cred_t *, pid_t); 977 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 978 boolean_t); 979 static int tcp_do_unbind(conn_t *); 980 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 981 boolean_t); 982 983 /* 984 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 985 * 986 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 987 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 988 * (defined in tcp.h) needs to be filled in and passed into the kernel 989 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 990 * structure contains the four-tuple of a TCP connection and a range of TCP 991 * states (specified by ac_start and ac_end). The use of wildcard addresses 992 * and ports is allowed. Connections with a matching four tuple and a state 993 * within the specified range will be aborted. The valid states for the 994 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 995 * inclusive. 996 * 997 * An application which has its connection aborted by this ioctl will receive 998 * an error that is dependent on the connection state at the time of the abort. 999 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1000 * though a RST packet has been received. If the connection state is equal to 1001 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1002 * and all resources associated with the connection will be freed. 1003 */ 1004 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1005 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1006 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1007 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 1008 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1009 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1010 boolean_t, tcp_stack_t *); 1011 1012 static struct module_info tcp_rinfo = { 1013 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1014 }; 1015 1016 static struct module_info tcp_winfo = { 1017 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1018 }; 1019 1020 /* 1021 * Entry points for TCP as a device. The normal case which supports 1022 * the TCP functionality. 1023 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1024 */ 1025 struct qinit tcp_rinitv4 = { 1026 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 1027 }; 1028 1029 struct qinit tcp_rinitv6 = { 1030 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 1031 }; 1032 1033 struct qinit tcp_winit = { 1034 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1035 }; 1036 1037 /* Initial entry point for TCP in socket mode. */ 1038 struct qinit tcp_sock_winit = { 1039 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1040 }; 1041 1042 /* TCP entry point during fallback */ 1043 struct qinit tcp_fallback_sock_winit = { 1044 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 1045 }; 1046 1047 /* 1048 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1049 * an accept. Avoid allocating data structures since eager has already 1050 * been created. 1051 */ 1052 struct qinit tcp_acceptor_rinit = { 1053 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1054 }; 1055 1056 struct qinit tcp_acceptor_winit = { 1057 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1058 }; 1059 1060 /* 1061 * Entry points for TCP loopback (read side only) 1062 * The open routine is only used for reopens, thus no need to 1063 * have a separate one for tcp_openv6. 1064 */ 1065 struct qinit tcp_loopback_rinit = { 1066 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 1067 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1068 }; 1069 1070 /* For AF_INET aka /dev/tcp */ 1071 struct streamtab tcpinfov4 = { 1072 &tcp_rinitv4, &tcp_winit 1073 }; 1074 1075 /* For AF_INET6 aka /dev/tcp6 */ 1076 struct streamtab tcpinfov6 = { 1077 &tcp_rinitv6, &tcp_winit 1078 }; 1079 1080 sock_downcalls_t sock_tcp_downcalls; 1081 1082 /* 1083 * Have to ensure that tcp_g_q_close is not done by an 1084 * interrupt thread. 1085 */ 1086 static taskq_t *tcp_taskq; 1087 1088 /* Setable only in /etc/system. Move to ndd? */ 1089 boolean_t tcp_icmp_source_quench = B_FALSE; 1090 1091 /* 1092 * Following assumes TPI alignment requirements stay along 32 bit 1093 * boundaries 1094 */ 1095 #define ROUNDUP32(x) \ 1096 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1097 1098 /* Template for response to info request. */ 1099 static struct T_info_ack tcp_g_t_info_ack = { 1100 T_INFO_ACK, /* PRIM_type */ 1101 0, /* TSDU_size */ 1102 T_INFINITE, /* ETSDU_size */ 1103 T_INVALID, /* CDATA_size */ 1104 T_INVALID, /* DDATA_size */ 1105 sizeof (sin_t), /* ADDR_size */ 1106 0, /* OPT_size - not initialized here */ 1107 TIDUSZ, /* TIDU_size */ 1108 T_COTS_ORD, /* SERV_type */ 1109 TCPS_IDLE, /* CURRENT_state */ 1110 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1111 }; 1112 1113 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1114 T_INFO_ACK, /* PRIM_type */ 1115 0, /* TSDU_size */ 1116 T_INFINITE, /* ETSDU_size */ 1117 T_INVALID, /* CDATA_size */ 1118 T_INVALID, /* DDATA_size */ 1119 sizeof (sin6_t), /* ADDR_size */ 1120 0, /* OPT_size - not initialized here */ 1121 TIDUSZ, /* TIDU_size */ 1122 T_COTS_ORD, /* SERV_type */ 1123 TCPS_IDLE, /* CURRENT_state */ 1124 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1125 }; 1126 1127 #define MS 1L 1128 #define SECONDS (1000 * MS) 1129 #define MINUTES (60 * SECONDS) 1130 #define HOURS (60 * MINUTES) 1131 #define DAYS (24 * HOURS) 1132 1133 #define PARAM_MAX (~(uint32_t)0) 1134 1135 /* Max size IP datagram is 64k - 1 */ 1136 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1137 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1138 /* Max of the above */ 1139 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1140 1141 /* Largest TCP port number */ 1142 #define TCP_MAX_PORT (64 * 1024 - 1) 1143 1144 /* 1145 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1146 * layer header. It has to be a multiple of 4. 1147 */ 1148 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1149 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1150 1151 /* 1152 * All of these are alterable, within the min/max values given, at run time. 1153 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1154 * per the TCP spec. 1155 */ 1156 /* BEGIN CSTYLED */ 1157 static tcpparam_t lcl_tcp_param_arr[] = { 1158 /*min max value name */ 1159 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1160 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1161 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1162 { 1, 1024, 1, "tcp_conn_req_min" }, 1163 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1164 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1165 { 0, 10, 0, "tcp_debug" }, 1166 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1167 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1168 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1169 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1170 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1171 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1172 { 1, 255, 64, "tcp_ipv4_ttl"}, 1173 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1174 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1175 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1176 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1177 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1178 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1179 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1180 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1181 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1182 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1183 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1184 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1185 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1186 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1187 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1188 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1189 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1190 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1191 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1192 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1193 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1194 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1195 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1196 /* 1197 * Question: What default value should I set for tcp_strong_iss? 1198 */ 1199 { 0, 2, 1, "tcp_strong_iss"}, 1200 { 0, 65536, 20, "tcp_rtt_updates"}, 1201 { 0, 1, 1, "tcp_wscale_always"}, 1202 { 0, 1, 0, "tcp_tstamp_always"}, 1203 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1204 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1205 { 0, 16, 2, "tcp_deferred_acks_max"}, 1206 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1207 { 1, 4, 4, "tcp_slow_start_initial"}, 1208 { 0, 2, 2, "tcp_sack_permitted"}, 1209 { 0, 1, 1, "tcp_compression_enabled"}, 1210 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1211 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1212 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1213 { 0, 1, 0, "tcp_rev_src_routes"}, 1214 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1215 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1216 { 0, 16, 8, "tcp_local_dacks_max"}, 1217 { 0, 2, 1, "tcp_ecn_permitted"}, 1218 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1219 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1220 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1221 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1222 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1223 }; 1224 /* END CSTYLED */ 1225 1226 /* 1227 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1228 * each header fragment in the header buffer. Each parameter value has 1229 * to be a multiple of 4 (32-bit aligned). 1230 */ 1231 static tcpparam_t lcl_tcp_mdt_head_param = 1232 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1233 static tcpparam_t lcl_tcp_mdt_tail_param = 1234 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1235 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1236 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1237 1238 /* 1239 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1240 * the maximum number of payload buffers associated per Multidata. 1241 */ 1242 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1243 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1244 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1245 1246 /* Round up the value to the nearest mss. */ 1247 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1248 1249 /* 1250 * Set ECN capable transport (ECT) code point in IP header. 1251 * 1252 * Note that there are 2 ECT code points '01' and '10', which are called 1253 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1254 * point ECT(0) for TCP as described in RFC 2481. 1255 */ 1256 #define SET_ECT(tcp, iph) \ 1257 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1258 /* We need to clear the code point first. */ \ 1259 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1260 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1261 } else { \ 1262 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1263 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1264 } 1265 1266 /* 1267 * The format argument to pass to tcp_display(). 1268 * DISP_PORT_ONLY means that the returned string has only port info. 1269 * DISP_ADDR_AND_PORT means that the returned string also contains the 1270 * remote and local IP address. 1271 */ 1272 #define DISP_PORT_ONLY 1 1273 #define DISP_ADDR_AND_PORT 2 1274 1275 #define NDD_TOO_QUICK_MSG \ 1276 "ndd get info rate too high for non-privileged users, try again " \ 1277 "later.\n" 1278 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1279 1280 #define IS_VMLOANED_MBLK(mp) \ 1281 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1282 1283 1284 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1285 boolean_t tcp_mdt_chain = B_TRUE; 1286 1287 /* 1288 * MDT threshold in the form of effective send MSS multiplier; we take 1289 * the MDT path if the amount of unsent data exceeds the threshold value 1290 * (default threshold is 1*SMSS). 1291 */ 1292 uint_t tcp_mdt_smss_threshold = 1; 1293 1294 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1295 1296 /* 1297 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1298 * tunable settable via NDD. Otherwise, the per-connection behavior is 1299 * determined dynamically during tcp_adapt_ire(), which is the default. 1300 */ 1301 boolean_t tcp_static_maxpsz = B_FALSE; 1302 1303 /* Setable in /etc/system */ 1304 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1305 uint32_t tcp_random_anon_port = 1; 1306 1307 /* 1308 * To reach to an eager in Q0 which can be dropped due to an incoming 1309 * new SYN request when Q0 is full, a new doubly linked list is 1310 * introduced. This list allows to select an eager from Q0 in O(1) time. 1311 * This is needed to avoid spending too much time walking through the 1312 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1313 * this new list has to be a member of Q0. 1314 * This list is headed by listener's tcp_t. When the list is empty, 1315 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1316 * of listener's tcp_t point to listener's tcp_t itself. 1317 * 1318 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1319 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1320 * These macros do not affect the eager's membership to Q0. 1321 */ 1322 1323 1324 #define MAKE_DROPPABLE(listener, eager) \ 1325 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1326 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1327 = (eager); \ 1328 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1329 (eager)->tcp_eager_next_drop_q0 = \ 1330 (listener)->tcp_eager_next_drop_q0; \ 1331 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1332 } 1333 1334 #define MAKE_UNDROPPABLE(eager) \ 1335 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1336 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1337 = (eager)->tcp_eager_prev_drop_q0; \ 1338 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1339 = (eager)->tcp_eager_next_drop_q0; \ 1340 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1341 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1342 } 1343 1344 /* 1345 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1346 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1347 * data, TCP will not respond with an ACK. RFC 793 requires that 1348 * TCP responds with an ACK for such a bogus ACK. By not following 1349 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1350 * an attacker successfully spoofs an acceptable segment to our 1351 * peer; or when our peer is "confused." 1352 */ 1353 uint32_t tcp_drop_ack_unsent_cnt = 10; 1354 1355 /* 1356 * Hook functions to enable cluster networking 1357 * On non-clustered systems these vectors must always be NULL. 1358 */ 1359 1360 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1361 sa_family_t addr_family, uint8_t *laddrp, 1362 in_port_t lport, void *args) = NULL; 1363 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1364 sa_family_t addr_family, uint8_t *laddrp, 1365 in_port_t lport, void *args) = NULL; 1366 1367 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1368 boolean_t is_outgoing, 1369 sa_family_t addr_family, 1370 uint8_t *laddrp, in_port_t lport, 1371 uint8_t *faddrp, in_port_t fport, 1372 void *args) = NULL; 1373 1374 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1375 sa_family_t addr_family, uint8_t *laddrp, 1376 in_port_t lport, uint8_t *faddrp, 1377 in_port_t fport, void *args) = NULL; 1378 1379 /* 1380 * The following are defined in ip.c 1381 */ 1382 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1383 sa_family_t addr_family, uint8_t *laddrp, 1384 void *args); 1385 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1386 sa_family_t addr_family, uint8_t *laddrp, 1387 uint8_t *faddrp, void *args); 1388 1389 1390 /* 1391 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1392 */ 1393 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1394 (err) = 0; \ 1395 if (cl_inet_connect2 != NULL) { \ 1396 /* \ 1397 * Running in cluster mode - register active connection \ 1398 * information \ 1399 */ \ 1400 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1401 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1402 (err) = (*cl_inet_connect2)( \ 1403 (connp)->conn_netstack->netstack_stackid,\ 1404 IPPROTO_TCP, is_outgoing, AF_INET, \ 1405 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1406 (in_port_t)(tcp)->tcp_lport, \ 1407 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1408 (in_port_t)(tcp)->tcp_fport, NULL); \ 1409 } \ 1410 } else { \ 1411 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1412 &(tcp)->tcp_ip6h->ip6_src)) { \ 1413 (err) = (*cl_inet_connect2)( \ 1414 (connp)->conn_netstack->netstack_stackid,\ 1415 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1416 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1417 (in_port_t)(tcp)->tcp_lport, \ 1418 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1419 (in_port_t)(tcp)->tcp_fport, NULL); \ 1420 } \ 1421 } \ 1422 } \ 1423 } 1424 1425 #define CL_INET_DISCONNECT(connp, tcp) { \ 1426 if (cl_inet_disconnect != NULL) { \ 1427 /* \ 1428 * Running in cluster mode - deregister active \ 1429 * connection information \ 1430 */ \ 1431 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1432 if ((tcp)->tcp_ip_src != 0) { \ 1433 (*cl_inet_disconnect)( \ 1434 (connp)->conn_netstack->netstack_stackid,\ 1435 IPPROTO_TCP, AF_INET, \ 1436 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1437 (in_port_t)(tcp)->tcp_lport, \ 1438 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1439 (in_port_t)(tcp)->tcp_fport, NULL); \ 1440 } \ 1441 } else { \ 1442 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1443 &(tcp)->tcp_ip_src_v6)) { \ 1444 (*cl_inet_disconnect)( \ 1445 (connp)->conn_netstack->netstack_stackid,\ 1446 IPPROTO_TCP, AF_INET6, \ 1447 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1448 (in_port_t)(tcp)->tcp_lport, \ 1449 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1450 (in_port_t)(tcp)->tcp_fport, NULL); \ 1451 } \ 1452 } \ 1453 } \ 1454 } 1455 1456 /* 1457 * Cluster networking hook for traversing current connection list. 1458 * This routine is used to extract the current list of live connections 1459 * which must continue to to be dispatched to this node. 1460 */ 1461 int cl_tcp_walk_list(netstackid_t stack_id, 1462 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1463 1464 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1465 void *arg, tcp_stack_t *tcps); 1466 1467 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1468 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1469 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1470 ip6_t *, ip6h, int, 0); 1471 1472 /* 1473 * Figure out the value of window scale opton. Note that the rwnd is 1474 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1475 * We cannot find the scale value and then do a round up of tcp_rwnd 1476 * because the scale value may not be correct after that. 1477 * 1478 * Set the compiler flag to make this function inline. 1479 */ 1480 static void 1481 tcp_set_ws_value(tcp_t *tcp) 1482 { 1483 int i; 1484 uint32_t rwnd = tcp->tcp_rwnd; 1485 1486 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1487 i++, rwnd >>= 1) 1488 ; 1489 tcp->tcp_rcv_ws = i; 1490 } 1491 1492 /* 1493 * Remove a connection from the list of detached TIME_WAIT connections. 1494 * It returns B_FALSE if it can't remove the connection from the list 1495 * as the connection has already been removed from the list due to an 1496 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1497 */ 1498 static boolean_t 1499 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1500 { 1501 boolean_t locked = B_FALSE; 1502 1503 if (tcp_time_wait == NULL) { 1504 tcp_time_wait = *((tcp_squeue_priv_t **) 1505 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1506 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1507 locked = B_TRUE; 1508 } else { 1509 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1510 } 1511 1512 if (tcp->tcp_time_wait_expire == 0) { 1513 ASSERT(tcp->tcp_time_wait_next == NULL); 1514 ASSERT(tcp->tcp_time_wait_prev == NULL); 1515 if (locked) 1516 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1517 return (B_FALSE); 1518 } 1519 ASSERT(TCP_IS_DETACHED(tcp)); 1520 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1521 1522 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1523 ASSERT(tcp->tcp_time_wait_prev == NULL); 1524 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1525 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1526 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1527 NULL; 1528 } else { 1529 tcp_time_wait->tcp_time_wait_tail = NULL; 1530 } 1531 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1532 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1533 ASSERT(tcp->tcp_time_wait_next == NULL); 1534 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1535 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1536 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1537 } else { 1538 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1539 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1540 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1541 tcp->tcp_time_wait_next; 1542 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1543 tcp->tcp_time_wait_prev; 1544 } 1545 tcp->tcp_time_wait_next = NULL; 1546 tcp->tcp_time_wait_prev = NULL; 1547 tcp->tcp_time_wait_expire = 0; 1548 1549 if (locked) 1550 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1551 return (B_TRUE); 1552 } 1553 1554 /* 1555 * Add a connection to the list of detached TIME_WAIT connections 1556 * and set its time to expire. 1557 */ 1558 static void 1559 tcp_time_wait_append(tcp_t *tcp) 1560 { 1561 tcp_stack_t *tcps = tcp->tcp_tcps; 1562 tcp_squeue_priv_t *tcp_time_wait = 1563 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1564 SQPRIVATE_TCP)); 1565 1566 tcp_timers_stop(tcp); 1567 1568 /* Freed above */ 1569 ASSERT(tcp->tcp_timer_tid == 0); 1570 ASSERT(tcp->tcp_ack_tid == 0); 1571 1572 /* must have happened at the time of detaching the tcp */ 1573 ASSERT(tcp->tcp_ptpahn == NULL); 1574 ASSERT(tcp->tcp_flow_stopped == 0); 1575 ASSERT(tcp->tcp_time_wait_next == NULL); 1576 ASSERT(tcp->tcp_time_wait_prev == NULL); 1577 ASSERT(tcp->tcp_time_wait_expire == NULL); 1578 ASSERT(tcp->tcp_listener == NULL); 1579 1580 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1581 /* 1582 * The value computed below in tcp->tcp_time_wait_expire may 1583 * appear negative or wrap around. That is ok since our 1584 * interest is only in the difference between the current lbolt 1585 * value and tcp->tcp_time_wait_expire. But the value should not 1586 * be zero, since it means the tcp is not in the TIME_WAIT list. 1587 * The corresponding comparison in tcp_time_wait_collector() uses 1588 * modular arithmetic. 1589 */ 1590 tcp->tcp_time_wait_expire += 1591 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1592 if (tcp->tcp_time_wait_expire == 0) 1593 tcp->tcp_time_wait_expire = 1; 1594 1595 ASSERT(TCP_IS_DETACHED(tcp)); 1596 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1597 ASSERT(tcp->tcp_time_wait_next == NULL); 1598 ASSERT(tcp->tcp_time_wait_prev == NULL); 1599 TCP_DBGSTAT(tcps, tcp_time_wait); 1600 1601 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1602 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1603 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1604 tcp_time_wait->tcp_time_wait_head = tcp; 1605 } else { 1606 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1607 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1608 TCPS_TIME_WAIT); 1609 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1610 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1611 } 1612 tcp_time_wait->tcp_time_wait_tail = tcp; 1613 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1614 } 1615 1616 /* ARGSUSED */ 1617 void 1618 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1619 { 1620 conn_t *connp = (conn_t *)arg; 1621 tcp_t *tcp = connp->conn_tcp; 1622 tcp_stack_t *tcps = tcp->tcp_tcps; 1623 1624 ASSERT(tcp != NULL); 1625 if (tcp->tcp_state == TCPS_CLOSED) { 1626 return; 1627 } 1628 1629 ASSERT((tcp->tcp_family == AF_INET && 1630 tcp->tcp_ipversion == IPV4_VERSION) || 1631 (tcp->tcp_family == AF_INET6 && 1632 (tcp->tcp_ipversion == IPV4_VERSION || 1633 tcp->tcp_ipversion == IPV6_VERSION))); 1634 ASSERT(!tcp->tcp_listener); 1635 1636 TCP_STAT(tcps, tcp_time_wait_reap); 1637 ASSERT(TCP_IS_DETACHED(tcp)); 1638 1639 /* 1640 * Because they have no upstream client to rebind or tcp_close() 1641 * them later, we axe the connection here and now. 1642 */ 1643 tcp_close_detached(tcp); 1644 } 1645 1646 /* 1647 * Remove cached/latched IPsec references. 1648 */ 1649 void 1650 tcp_ipsec_cleanup(tcp_t *tcp) 1651 { 1652 conn_t *connp = tcp->tcp_connp; 1653 1654 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1655 1656 if (connp->conn_latch != NULL) { 1657 IPLATCH_REFRELE(connp->conn_latch, 1658 connp->conn_netstack); 1659 connp->conn_latch = NULL; 1660 } 1661 if (connp->conn_policy != NULL) { 1662 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1663 connp->conn_policy = NULL; 1664 } 1665 } 1666 1667 /* 1668 * Cleaup before placing on free list. 1669 * Disassociate from the netstack/tcp_stack_t since the freelist 1670 * is per squeue and not per netstack. 1671 */ 1672 void 1673 tcp_cleanup(tcp_t *tcp) 1674 { 1675 mblk_t *mp; 1676 char *tcp_iphc; 1677 int tcp_iphc_len; 1678 int tcp_hdr_grown; 1679 tcp_sack_info_t *tcp_sack_info; 1680 conn_t *connp = tcp->tcp_connp; 1681 tcp_stack_t *tcps = tcp->tcp_tcps; 1682 netstack_t *ns = tcps->tcps_netstack; 1683 mblk_t *tcp_rsrv_mp; 1684 1685 tcp_bind_hash_remove(tcp); 1686 1687 /* Cleanup that which needs the netstack first */ 1688 tcp_ipsec_cleanup(tcp); 1689 1690 tcp_free(tcp); 1691 1692 /* Release any SSL context */ 1693 if (tcp->tcp_kssl_ent != NULL) { 1694 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1695 tcp->tcp_kssl_ent = NULL; 1696 } 1697 1698 if (tcp->tcp_kssl_ctx != NULL) { 1699 kssl_release_ctx(tcp->tcp_kssl_ctx); 1700 tcp->tcp_kssl_ctx = NULL; 1701 } 1702 tcp->tcp_kssl_pending = B_FALSE; 1703 1704 conn_delete_ire(connp, NULL); 1705 1706 /* 1707 * Since we will bzero the entire structure, we need to 1708 * remove it and reinsert it in global hash list. We 1709 * know the walkers can't get to this conn because we 1710 * had set CONDEMNED flag earlier and checked reference 1711 * under conn_lock so walker won't pick it and when we 1712 * go the ipcl_globalhash_remove() below, no walker 1713 * can get to it. 1714 */ 1715 ipcl_globalhash_remove(connp); 1716 1717 /* 1718 * Now it is safe to decrement the reference counts. 1719 * This might be the last reference on the netstack and TCPS 1720 * in which case it will cause the tcp_g_q_close and 1721 * the freeing of the IP Instance. 1722 */ 1723 connp->conn_netstack = NULL; 1724 netstack_rele(ns); 1725 ASSERT(tcps != NULL); 1726 tcp->tcp_tcps = NULL; 1727 TCPS_REFRELE(tcps); 1728 1729 /* Save some state */ 1730 mp = tcp->tcp_timercache; 1731 1732 tcp_sack_info = tcp->tcp_sack_info; 1733 tcp_iphc = tcp->tcp_iphc; 1734 tcp_iphc_len = tcp->tcp_iphc_len; 1735 tcp_hdr_grown = tcp->tcp_hdr_grown; 1736 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1737 1738 if (connp->conn_cred != NULL) { 1739 crfree(connp->conn_cred); 1740 connp->conn_cred = NULL; 1741 } 1742 if (connp->conn_peercred != NULL) { 1743 crfree(connp->conn_peercred); 1744 connp->conn_peercred = NULL; 1745 } 1746 ipcl_conn_cleanup(connp); 1747 connp->conn_flags = IPCL_TCPCONN; 1748 bzero(tcp, sizeof (tcp_t)); 1749 1750 /* restore the state */ 1751 tcp->tcp_timercache = mp; 1752 1753 tcp->tcp_sack_info = tcp_sack_info; 1754 tcp->tcp_iphc = tcp_iphc; 1755 tcp->tcp_iphc_len = tcp_iphc_len; 1756 tcp->tcp_hdr_grown = tcp_hdr_grown; 1757 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1758 1759 tcp->tcp_connp = connp; 1760 1761 ASSERT(connp->conn_tcp == tcp); 1762 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1763 connp->conn_state_flags = CONN_INCIPIENT; 1764 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1765 ASSERT(connp->conn_ref == 1); 1766 } 1767 1768 /* 1769 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1770 * is done forwards from the head. 1771 * This walks all stack instances since 1772 * tcp_time_wait remains global across all stacks. 1773 */ 1774 /* ARGSUSED */ 1775 void 1776 tcp_time_wait_collector(void *arg) 1777 { 1778 tcp_t *tcp; 1779 clock_t now; 1780 mblk_t *mp; 1781 conn_t *connp; 1782 kmutex_t *lock; 1783 boolean_t removed; 1784 1785 squeue_t *sqp = (squeue_t *)arg; 1786 tcp_squeue_priv_t *tcp_time_wait = 1787 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1788 1789 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1790 tcp_time_wait->tcp_time_wait_tid = 0; 1791 1792 if (tcp_time_wait->tcp_free_list != NULL && 1793 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1794 TCP_G_STAT(tcp_freelist_cleanup); 1795 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1796 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1797 tcp->tcp_time_wait_next = NULL; 1798 tcp_time_wait->tcp_free_list_cnt--; 1799 ASSERT(tcp->tcp_tcps == NULL); 1800 CONN_DEC_REF(tcp->tcp_connp); 1801 } 1802 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1803 } 1804 1805 /* 1806 * In order to reap time waits reliably, we should use a 1807 * source of time that is not adjustable by the user -- hence 1808 * the call to ddi_get_lbolt(). 1809 */ 1810 now = ddi_get_lbolt(); 1811 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1812 /* 1813 * Compare times using modular arithmetic, since 1814 * lbolt can wrapover. 1815 */ 1816 if ((now - tcp->tcp_time_wait_expire) < 0) { 1817 break; 1818 } 1819 1820 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1821 ASSERT(removed); 1822 1823 connp = tcp->tcp_connp; 1824 ASSERT(connp->conn_fanout != NULL); 1825 lock = &connp->conn_fanout->connf_lock; 1826 /* 1827 * This is essentially a TW reclaim fast path optimization for 1828 * performance where the timewait collector checks under the 1829 * fanout lock (so that no one else can get access to the 1830 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1831 * the classifier hash list. If ref count is indeed 2, we can 1832 * just remove the conn under the fanout lock and avoid 1833 * cleaning up the conn under the squeue, provided that 1834 * clustering callbacks are not enabled. If clustering is 1835 * enabled, we need to make the clustering callback before 1836 * setting the CONDEMNED flag and after dropping all locks and 1837 * so we forego this optimization and fall back to the slow 1838 * path. Also please see the comments in tcp_closei_local 1839 * regarding the refcnt logic. 1840 * 1841 * Since we are holding the tcp_time_wait_lock, its better 1842 * not to block on the fanout_lock because other connections 1843 * can't add themselves to time_wait list. So we do a 1844 * tryenter instead of mutex_enter. 1845 */ 1846 if (mutex_tryenter(lock)) { 1847 mutex_enter(&connp->conn_lock); 1848 if ((connp->conn_ref == 2) && 1849 (cl_inet_disconnect == NULL)) { 1850 ipcl_hash_remove_locked(connp, 1851 connp->conn_fanout); 1852 /* 1853 * Set the CONDEMNED flag now itself so that 1854 * the refcnt cannot increase due to any 1855 * walker. But we have still not cleaned up 1856 * conn_ire_cache. This is still ok since 1857 * we are going to clean it up in tcp_cleanup 1858 * immediately and any interface unplumb 1859 * thread will wait till the ire is blown away 1860 */ 1861 connp->conn_state_flags |= CONN_CONDEMNED; 1862 mutex_exit(lock); 1863 mutex_exit(&connp->conn_lock); 1864 if (tcp_time_wait->tcp_free_list_cnt < 1865 tcp_free_list_max_cnt) { 1866 /* Add to head of tcp_free_list */ 1867 mutex_exit( 1868 &tcp_time_wait->tcp_time_wait_lock); 1869 tcp_cleanup(tcp); 1870 ASSERT(connp->conn_latch == NULL); 1871 ASSERT(connp->conn_policy == NULL); 1872 ASSERT(tcp->tcp_tcps == NULL); 1873 ASSERT(connp->conn_netstack == NULL); 1874 1875 mutex_enter( 1876 &tcp_time_wait->tcp_time_wait_lock); 1877 tcp->tcp_time_wait_next = 1878 tcp_time_wait->tcp_free_list; 1879 tcp_time_wait->tcp_free_list = tcp; 1880 tcp_time_wait->tcp_free_list_cnt++; 1881 continue; 1882 } else { 1883 /* Do not add to tcp_free_list */ 1884 mutex_exit( 1885 &tcp_time_wait->tcp_time_wait_lock); 1886 tcp_bind_hash_remove(tcp); 1887 conn_delete_ire(tcp->tcp_connp, NULL); 1888 tcp_ipsec_cleanup(tcp); 1889 CONN_DEC_REF(tcp->tcp_connp); 1890 } 1891 } else { 1892 CONN_INC_REF_LOCKED(connp); 1893 mutex_exit(lock); 1894 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1895 mutex_exit(&connp->conn_lock); 1896 /* 1897 * We can reuse the closemp here since conn has 1898 * detached (otherwise we wouldn't even be in 1899 * time_wait list). tcp_closemp_used can safely 1900 * be changed without taking a lock as no other 1901 * thread can concurrently access it at this 1902 * point in the connection lifecycle. 1903 */ 1904 1905 if (tcp->tcp_closemp.b_prev == NULL) 1906 tcp->tcp_closemp_used = B_TRUE; 1907 else 1908 cmn_err(CE_PANIC, 1909 "tcp_timewait_collector: " 1910 "concurrent use of tcp_closemp: " 1911 "connp %p tcp %p\n", (void *)connp, 1912 (void *)tcp); 1913 1914 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1915 mp = &tcp->tcp_closemp; 1916 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1917 tcp_timewait_output, connp, 1918 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1919 } 1920 } else { 1921 mutex_enter(&connp->conn_lock); 1922 CONN_INC_REF_LOCKED(connp); 1923 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1924 mutex_exit(&connp->conn_lock); 1925 /* 1926 * We can reuse the closemp here since conn has 1927 * detached (otherwise we wouldn't even be in 1928 * time_wait list). tcp_closemp_used can safely 1929 * be changed without taking a lock as no other 1930 * thread can concurrently access it at this 1931 * point in the connection lifecycle. 1932 */ 1933 1934 if (tcp->tcp_closemp.b_prev == NULL) 1935 tcp->tcp_closemp_used = B_TRUE; 1936 else 1937 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1938 "concurrent use of tcp_closemp: " 1939 "connp %p tcp %p\n", (void *)connp, 1940 (void *)tcp); 1941 1942 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1943 mp = &tcp->tcp_closemp; 1944 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1945 tcp_timewait_output, connp, 1946 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1947 } 1948 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1949 } 1950 1951 if (tcp_time_wait->tcp_free_list != NULL) 1952 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1953 1954 tcp_time_wait->tcp_time_wait_tid = 1955 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1956 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1957 CALLOUT_FLAG_ROUNDUP); 1958 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1959 } 1960 1961 /* 1962 * Reply to a clients T_CONN_RES TPI message. This function 1963 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1964 * on the acceptor STREAM and processed in tcp_wput_accept(). 1965 * Read the block comment on top of tcp_conn_request(). 1966 */ 1967 static void 1968 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1969 { 1970 tcp_t *acceptor; 1971 tcp_t *eager; 1972 tcp_t *tcp; 1973 struct T_conn_res *tcr; 1974 t_uscalar_t acceptor_id; 1975 t_scalar_t seqnum; 1976 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1977 struct tcp_options *tcpopt; 1978 mblk_t *ok_mp; 1979 mblk_t *mp1; 1980 tcp_stack_t *tcps = listener->tcp_tcps; 1981 1982 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1983 tcp_err_ack(listener, mp, TPROTO, 0); 1984 return; 1985 } 1986 tcr = (struct T_conn_res *)mp->b_rptr; 1987 1988 /* 1989 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1990 * read side queue of the streams device underneath us i.e. the 1991 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1992 * look it up in the queue_hash. Under LP64 it sends down the 1993 * minor_t of the accepting endpoint. 1994 * 1995 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1996 * fanout hash lock is held. 1997 * This prevents any thread from entering the acceptor queue from 1998 * below (since it has not been hard bound yet i.e. any inbound 1999 * packets will arrive on the listener or default tcp queue and 2000 * go through tcp_lookup). 2001 * The CONN_INC_REF will prevent the acceptor from closing. 2002 * 2003 * XXX It is still possible for a tli application to send down data 2004 * on the accepting stream while another thread calls t_accept. 2005 * This should not be a problem for well-behaved applications since 2006 * the T_OK_ACK is sent after the queue swapping is completed. 2007 * 2008 * If the accepting fd is the same as the listening fd, avoid 2009 * queue hash lookup since that will return an eager listener in a 2010 * already established state. 2011 */ 2012 acceptor_id = tcr->ACCEPTOR_id; 2013 mutex_enter(&listener->tcp_eager_lock); 2014 if (listener->tcp_acceptor_id == acceptor_id) { 2015 eager = listener->tcp_eager_next_q; 2016 /* only count how many T_CONN_INDs so don't count q0 */ 2017 if ((listener->tcp_conn_req_cnt_q != 1) || 2018 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2019 mutex_exit(&listener->tcp_eager_lock); 2020 tcp_err_ack(listener, mp, TBADF, 0); 2021 return; 2022 } 2023 if (listener->tcp_conn_req_cnt_q0 != 0) { 2024 /* Throw away all the eagers on q0. */ 2025 tcp_eager_cleanup(listener, 1); 2026 } 2027 if (listener->tcp_syn_defense) { 2028 listener->tcp_syn_defense = B_FALSE; 2029 if (listener->tcp_ip_addr_cache != NULL) { 2030 kmem_free(listener->tcp_ip_addr_cache, 2031 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2032 listener->tcp_ip_addr_cache = NULL; 2033 } 2034 } 2035 /* 2036 * Transfer tcp_conn_req_max to the eager so that when 2037 * a disconnect occurs we can revert the endpoint to the 2038 * listen state. 2039 */ 2040 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2041 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2042 /* 2043 * Get a reference on the acceptor just like the 2044 * tcp_acceptor_hash_lookup below. 2045 */ 2046 acceptor = listener; 2047 CONN_INC_REF(acceptor->tcp_connp); 2048 } else { 2049 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 2050 if (acceptor == NULL) { 2051 if (listener->tcp_debug) { 2052 (void) strlog(TCP_MOD_ID, 0, 1, 2053 SL_ERROR|SL_TRACE, 2054 "tcp_accept: did not find acceptor 0x%x\n", 2055 acceptor_id); 2056 } 2057 mutex_exit(&listener->tcp_eager_lock); 2058 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2059 return; 2060 } 2061 /* 2062 * Verify acceptor state. The acceptable states for an acceptor 2063 * include TCPS_IDLE and TCPS_BOUND. 2064 */ 2065 switch (acceptor->tcp_state) { 2066 case TCPS_IDLE: 2067 /* FALLTHRU */ 2068 case TCPS_BOUND: 2069 break; 2070 default: 2071 CONN_DEC_REF(acceptor->tcp_connp); 2072 mutex_exit(&listener->tcp_eager_lock); 2073 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2074 return; 2075 } 2076 } 2077 2078 /* The listener must be in TCPS_LISTEN */ 2079 if (listener->tcp_state != TCPS_LISTEN) { 2080 CONN_DEC_REF(acceptor->tcp_connp); 2081 mutex_exit(&listener->tcp_eager_lock); 2082 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2083 return; 2084 } 2085 2086 /* 2087 * Rendezvous with an eager connection request packet hanging off 2088 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2089 * tcp structure when the connection packet arrived in 2090 * tcp_conn_request(). 2091 */ 2092 seqnum = tcr->SEQ_number; 2093 eager = listener; 2094 do { 2095 eager = eager->tcp_eager_next_q; 2096 if (eager == NULL) { 2097 CONN_DEC_REF(acceptor->tcp_connp); 2098 mutex_exit(&listener->tcp_eager_lock); 2099 tcp_err_ack(listener, mp, TBADSEQ, 0); 2100 return; 2101 } 2102 } while (eager->tcp_conn_req_seqnum != seqnum); 2103 mutex_exit(&listener->tcp_eager_lock); 2104 2105 /* 2106 * At this point, both acceptor and listener have 2 ref 2107 * that they begin with. Acceptor has one additional ref 2108 * we placed in lookup while listener has 3 additional 2109 * ref for being behind the squeue (tcp_accept() is 2110 * done on listener's squeue); being in classifier hash; 2111 * and eager's ref on listener. 2112 */ 2113 ASSERT(listener->tcp_connp->conn_ref >= 5); 2114 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2115 2116 /* 2117 * The eager at this point is set in its own squeue and 2118 * could easily have been killed (tcp_accept_finish will 2119 * deal with that) because of a TH_RST so we can only 2120 * ASSERT for a single ref. 2121 */ 2122 ASSERT(eager->tcp_connp->conn_ref >= 1); 2123 2124 /* Pre allocate the stroptions mblk also */ 2125 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2126 sizeof (struct T_conn_res)), BPRI_HI); 2127 if (opt_mp == NULL) { 2128 CONN_DEC_REF(acceptor->tcp_connp); 2129 CONN_DEC_REF(eager->tcp_connp); 2130 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2131 return; 2132 } 2133 DB_TYPE(opt_mp) = M_SETOPTS; 2134 opt_mp->b_wptr += sizeof (struct tcp_options); 2135 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2136 tcpopt->to_flags = 0; 2137 2138 /* 2139 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2140 * from listener to acceptor. 2141 */ 2142 if (listener->tcp_bound_if != 0) { 2143 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2144 tcpopt->to_boundif = listener->tcp_bound_if; 2145 } 2146 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2147 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2148 } 2149 2150 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2151 if ((mp1 = copymsg(mp)) == NULL) { 2152 CONN_DEC_REF(acceptor->tcp_connp); 2153 CONN_DEC_REF(eager->tcp_connp); 2154 freemsg(opt_mp); 2155 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2156 return; 2157 } 2158 2159 tcr = (struct T_conn_res *)mp1->b_rptr; 2160 2161 /* 2162 * This is an expanded version of mi_tpi_ok_ack_alloc() 2163 * which allocates a larger mblk and appends the new 2164 * local address to the ok_ack. The address is copied by 2165 * soaccept() for getsockname(). 2166 */ 2167 { 2168 int extra; 2169 2170 extra = (eager->tcp_family == AF_INET) ? 2171 sizeof (sin_t) : sizeof (sin6_t); 2172 2173 /* 2174 * Try to re-use mp, if possible. Otherwise, allocate 2175 * an mblk and return it as ok_mp. In any case, mp 2176 * is no longer usable upon return. 2177 */ 2178 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2179 CONN_DEC_REF(acceptor->tcp_connp); 2180 CONN_DEC_REF(eager->tcp_connp); 2181 freemsg(opt_mp); 2182 /* Original mp has been freed by now, so use mp1 */ 2183 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2184 return; 2185 } 2186 2187 mp = NULL; /* We should never use mp after this point */ 2188 2189 switch (extra) { 2190 case sizeof (sin_t): { 2191 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2192 2193 ok_mp->b_wptr += extra; 2194 sin->sin_family = AF_INET; 2195 sin->sin_port = eager->tcp_lport; 2196 sin->sin_addr.s_addr = 2197 eager->tcp_ipha->ipha_src; 2198 break; 2199 } 2200 case sizeof (sin6_t): { 2201 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2202 2203 ok_mp->b_wptr += extra; 2204 sin6->sin6_family = AF_INET6; 2205 sin6->sin6_port = eager->tcp_lport; 2206 if (eager->tcp_ipversion == IPV4_VERSION) { 2207 sin6->sin6_flowinfo = 0; 2208 IN6_IPADDR_TO_V4MAPPED( 2209 eager->tcp_ipha->ipha_src, 2210 &sin6->sin6_addr); 2211 } else { 2212 ASSERT(eager->tcp_ip6h != NULL); 2213 sin6->sin6_flowinfo = 2214 eager->tcp_ip6h->ip6_vcf & 2215 ~IPV6_VERS_AND_FLOW_MASK; 2216 sin6->sin6_addr = 2217 eager->tcp_ip6h->ip6_src; 2218 } 2219 sin6->sin6_scope_id = 0; 2220 sin6->__sin6_src_id = 0; 2221 break; 2222 } 2223 default: 2224 break; 2225 } 2226 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2227 } 2228 2229 /* 2230 * If there are no options we know that the T_CONN_RES will 2231 * succeed. However, we can't send the T_OK_ACK upstream until 2232 * the tcp_accept_swap is done since it would be dangerous to 2233 * let the application start using the new fd prior to the swap. 2234 */ 2235 tcp_accept_swap(listener, acceptor, eager); 2236 2237 /* 2238 * tcp_accept_swap unlinks eager from listener but does not drop 2239 * the eager's reference on the listener. 2240 */ 2241 ASSERT(eager->tcp_listener == NULL); 2242 ASSERT(listener->tcp_connp->conn_ref >= 5); 2243 2244 /* 2245 * The eager is now associated with its own queue. Insert in 2246 * the hash so that the connection can be reused for a future 2247 * T_CONN_RES. 2248 */ 2249 tcp_acceptor_hash_insert(acceptor_id, eager); 2250 2251 /* 2252 * We now do the processing of options with T_CONN_RES. 2253 * We delay till now since we wanted to have queue to pass to 2254 * option processing routines that points back to the right 2255 * instance structure which does not happen until after 2256 * tcp_accept_swap(). 2257 * 2258 * Note: 2259 * The sanity of the logic here assumes that whatever options 2260 * are appropriate to inherit from listner=>eager are done 2261 * before this point, and whatever were to be overridden (or not) 2262 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2263 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2264 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2265 * This may not be true at this point in time but can be fixed 2266 * independently. This option processing code starts with 2267 * the instantiated acceptor instance and the final queue at 2268 * this point. 2269 */ 2270 2271 if (tcr->OPT_length != 0) { 2272 /* Options to process */ 2273 int t_error = 0; 2274 int sys_error = 0; 2275 int do_disconnect = 0; 2276 2277 if (tcp_conprim_opt_process(eager, mp1, 2278 &do_disconnect, &t_error, &sys_error) < 0) { 2279 eager->tcp_accept_error = 1; 2280 if (do_disconnect) { 2281 /* 2282 * An option failed which does not allow 2283 * connection to be accepted. 2284 * 2285 * We allow T_CONN_RES to succeed and 2286 * put a T_DISCON_IND on the eager queue. 2287 */ 2288 ASSERT(t_error == 0 && sys_error == 0); 2289 eager->tcp_send_discon_ind = 1; 2290 } else { 2291 ASSERT(t_error != 0); 2292 freemsg(ok_mp); 2293 /* 2294 * Original mp was either freed or set 2295 * to ok_mp above, so use mp1 instead. 2296 */ 2297 tcp_err_ack(listener, mp1, t_error, sys_error); 2298 goto finish; 2299 } 2300 } 2301 /* 2302 * Most likely success in setting options (except if 2303 * eager->tcp_send_discon_ind set). 2304 * mp1 option buffer represented by OPT_length/offset 2305 * potentially modified and contains results of setting 2306 * options at this point 2307 */ 2308 } 2309 2310 /* We no longer need mp1, since all options processing has passed */ 2311 freemsg(mp1); 2312 2313 putnext(listener->tcp_rq, ok_mp); 2314 2315 mutex_enter(&listener->tcp_eager_lock); 2316 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2317 tcp_t *tail; 2318 mblk_t *conn_ind; 2319 2320 /* 2321 * This path should not be executed if listener and 2322 * acceptor streams are the same. 2323 */ 2324 ASSERT(listener != acceptor); 2325 2326 tcp = listener->tcp_eager_prev_q0; 2327 /* 2328 * listener->tcp_eager_prev_q0 points to the TAIL of the 2329 * deferred T_conn_ind queue. We need to get to the head of 2330 * the queue in order to send up T_conn_ind the same order as 2331 * how the 3WHS is completed. 2332 */ 2333 while (tcp != listener) { 2334 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2335 break; 2336 else 2337 tcp = tcp->tcp_eager_prev_q0; 2338 } 2339 ASSERT(tcp != listener); 2340 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2341 ASSERT(conn_ind != NULL); 2342 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2343 2344 /* Move from q0 to q */ 2345 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2346 listener->tcp_conn_req_cnt_q0--; 2347 listener->tcp_conn_req_cnt_q++; 2348 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2349 tcp->tcp_eager_prev_q0; 2350 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2351 tcp->tcp_eager_next_q0; 2352 tcp->tcp_eager_prev_q0 = NULL; 2353 tcp->tcp_eager_next_q0 = NULL; 2354 tcp->tcp_conn_def_q0 = B_FALSE; 2355 2356 /* Make sure the tcp isn't in the list of droppables */ 2357 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2358 tcp->tcp_eager_prev_drop_q0 == NULL); 2359 2360 /* 2361 * Insert at end of the queue because sockfs sends 2362 * down T_CONN_RES in chronological order. Leaving 2363 * the older conn indications at front of the queue 2364 * helps reducing search time. 2365 */ 2366 tail = listener->tcp_eager_last_q; 2367 if (tail != NULL) 2368 tail->tcp_eager_next_q = tcp; 2369 else 2370 listener->tcp_eager_next_q = tcp; 2371 listener->tcp_eager_last_q = tcp; 2372 tcp->tcp_eager_next_q = NULL; 2373 mutex_exit(&listener->tcp_eager_lock); 2374 putnext(tcp->tcp_rq, conn_ind); 2375 } else { 2376 mutex_exit(&listener->tcp_eager_lock); 2377 } 2378 2379 /* 2380 * Done with the acceptor - free it 2381 * 2382 * Note: from this point on, no access to listener should be made 2383 * as listener can be equal to acceptor. 2384 */ 2385 finish: 2386 ASSERT(acceptor->tcp_detached); 2387 ASSERT(tcps->tcps_g_q != NULL); 2388 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2389 acceptor->tcp_rq = tcps->tcps_g_q; 2390 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2391 (void) tcp_clean_death(acceptor, 0, 2); 2392 CONN_DEC_REF(acceptor->tcp_connp); 2393 2394 /* 2395 * In case we already received a FIN we have to make tcp_rput send 2396 * the ordrel_ind. This will also send up a window update if the window 2397 * has opened up. 2398 * 2399 * In the normal case of a successful connection acceptance 2400 * we give the O_T_BIND_REQ to the read side put procedure as an 2401 * indication that this was just accepted. This tells tcp_rput to 2402 * pass up any data queued in tcp_rcv_list. 2403 * 2404 * In the fringe case where options sent with T_CONN_RES failed and 2405 * we required, we would be indicating a T_DISCON_IND to blow 2406 * away this connection. 2407 */ 2408 2409 /* 2410 * XXX: we currently have a problem if XTI application closes the 2411 * acceptor stream in between. This problem exists in on10-gate also 2412 * and is well know but nothing can be done short of major rewrite 2413 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2414 * eager same squeue as listener (we can distinguish non socket 2415 * listeners at the time of handling a SYN in tcp_conn_request) 2416 * and do most of the work that tcp_accept_finish does here itself 2417 * and then get behind the acceptor squeue to access the acceptor 2418 * queue. 2419 */ 2420 /* 2421 * We already have a ref on tcp so no need to do one before squeue_enter 2422 */ 2423 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2424 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2425 } 2426 2427 /* 2428 * Swap information between the eager and acceptor for a TLI/XTI client. 2429 * The sockfs accept is done on the acceptor stream and control goes 2430 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2431 * called. In either case, both the eager and listener are in their own 2432 * perimeter (squeue) and the code has to deal with potential race. 2433 * 2434 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2435 */ 2436 static void 2437 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2438 { 2439 conn_t *econnp, *aconnp; 2440 2441 ASSERT(eager->tcp_rq == listener->tcp_rq); 2442 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2443 ASSERT(!eager->tcp_hard_bound); 2444 ASSERT(!TCP_IS_SOCKET(acceptor)); 2445 ASSERT(!TCP_IS_SOCKET(eager)); 2446 ASSERT(!TCP_IS_SOCKET(listener)); 2447 2448 acceptor->tcp_detached = B_TRUE; 2449 /* 2450 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2451 * the acceptor id. 2452 */ 2453 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2454 2455 /* remove eager from listen list... */ 2456 mutex_enter(&listener->tcp_eager_lock); 2457 tcp_eager_unlink(eager); 2458 ASSERT(eager->tcp_eager_next_q == NULL && 2459 eager->tcp_eager_last_q == NULL); 2460 ASSERT(eager->tcp_eager_next_q0 == NULL && 2461 eager->tcp_eager_prev_q0 == NULL); 2462 mutex_exit(&listener->tcp_eager_lock); 2463 eager->tcp_rq = acceptor->tcp_rq; 2464 eager->tcp_wq = acceptor->tcp_wq; 2465 2466 econnp = eager->tcp_connp; 2467 aconnp = acceptor->tcp_connp; 2468 2469 eager->tcp_rq->q_ptr = econnp; 2470 eager->tcp_wq->q_ptr = econnp; 2471 2472 /* 2473 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2474 * which might be a different squeue from our peer TCP instance. 2475 * For TCP Fusion, the peer expects that whenever tcp_detached is 2476 * clear, our TCP queues point to the acceptor's queues. Thus, use 2477 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2478 * above reach global visibility prior to the clearing of tcp_detached. 2479 */ 2480 membar_producer(); 2481 eager->tcp_detached = B_FALSE; 2482 2483 ASSERT(eager->tcp_ack_tid == 0); 2484 2485 econnp->conn_dev = aconnp->conn_dev; 2486 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2487 ASSERT(econnp->conn_minor_arena != NULL); 2488 if (eager->tcp_cred != NULL) 2489 crfree(eager->tcp_cred); 2490 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2491 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2492 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2493 2494 aconnp->conn_cred = NULL; 2495 2496 econnp->conn_zoneid = aconnp->conn_zoneid; 2497 econnp->conn_allzones = aconnp->conn_allzones; 2498 2499 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2500 aconnp->conn_mac_exempt = B_FALSE; 2501 2502 ASSERT(aconnp->conn_peercred == NULL); 2503 2504 /* Do the IPC initialization */ 2505 CONN_INC_REF(econnp); 2506 2507 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2508 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2509 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2510 2511 /* Done with old IPC. Drop its ref on its connp */ 2512 CONN_DEC_REF(aconnp); 2513 } 2514 2515 2516 /* 2517 * Adapt to the information, such as rtt and rtt_sd, provided from the 2518 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2519 * 2520 * Checks for multicast and broadcast destination address. 2521 * Returns zero on failure; non-zero if ok. 2522 * 2523 * Note that the MSS calculation here is based on the info given in 2524 * the IRE. We do not do any calculation based on TCP options. They 2525 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2526 * knows which options to use. 2527 * 2528 * Note on how TCP gets its parameters for a connection. 2529 * 2530 * When a tcp_t structure is allocated, it gets all the default parameters. 2531 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2532 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2533 * default. 2534 * 2535 * An incoming SYN with a multicast or broadcast destination address, is dropped 2536 * in 1 of 2 places. 2537 * 2538 * 1. If the packet was received over the wire it is dropped in 2539 * ip_rput_process_broadcast() 2540 * 2541 * 2. If the packet was received through internal IP loopback, i.e. the packet 2542 * was generated and received on the same machine, it is dropped in 2543 * ip_wput_local() 2544 * 2545 * An incoming SYN with a multicast or broadcast source address is always 2546 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2547 * reject an attempt to connect to a broadcast or multicast (destination) 2548 * address. 2549 */ 2550 static int 2551 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2552 { 2553 tcp_hsp_t *hsp; 2554 ire_t *ire; 2555 ire_t *sire = NULL; 2556 iulp_t *ire_uinfo = NULL; 2557 uint32_t mss_max; 2558 uint32_t mss; 2559 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2560 conn_t *connp = tcp->tcp_connp; 2561 boolean_t ire_cacheable = B_FALSE; 2562 zoneid_t zoneid = connp->conn_zoneid; 2563 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2564 MATCH_IRE_SECATTR; 2565 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2566 ill_t *ill = NULL; 2567 boolean_t incoming = (ire_mp == NULL); 2568 tcp_stack_t *tcps = tcp->tcp_tcps; 2569 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2570 2571 ASSERT(connp->conn_ire_cache == NULL); 2572 2573 if (tcp->tcp_ipversion == IPV4_VERSION) { 2574 2575 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2576 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2577 return (0); 2578 } 2579 /* 2580 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2581 * for the destination with the nexthop as gateway. 2582 * ire_ctable_lookup() is used because this particular 2583 * ire, if it exists, will be marked private. 2584 * If that is not available, use the interface ire 2585 * for the nexthop. 2586 * 2587 * TSol: tcp_update_label will detect label mismatches based 2588 * only on the destination's label, but that would not 2589 * detect label mismatches based on the security attributes 2590 * of routes or next hop gateway. Hence we need to pass the 2591 * label to ire_ftable_lookup below in order to locate the 2592 * right prefix (and/or) ire cache. Similarly we also need 2593 * pass the label to the ire_cache_lookup below to locate 2594 * the right ire that also matches on the label. 2595 */ 2596 if (tcp->tcp_connp->conn_nexthop_set) { 2597 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2598 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2599 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2600 ipst); 2601 if (ire == NULL) { 2602 ire = ire_ftable_lookup( 2603 tcp->tcp_connp->conn_nexthop_v4, 2604 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2605 tsl, match_flags, ipst); 2606 if (ire == NULL) 2607 return (0); 2608 } else { 2609 ire_uinfo = &ire->ire_uinfo; 2610 } 2611 } else { 2612 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2613 zoneid, tsl, ipst); 2614 if (ire != NULL) { 2615 ire_cacheable = B_TRUE; 2616 ire_uinfo = (ire_mp != NULL) ? 2617 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2618 &ire->ire_uinfo; 2619 2620 } else { 2621 if (ire_mp == NULL) { 2622 ire = ire_ftable_lookup( 2623 tcp->tcp_connp->conn_rem, 2624 0, 0, 0, NULL, &sire, zoneid, 0, 2625 tsl, (MATCH_IRE_RECURSIVE | 2626 MATCH_IRE_DEFAULT), ipst); 2627 if (ire == NULL) 2628 return (0); 2629 ire_uinfo = (sire != NULL) ? 2630 &sire->ire_uinfo : 2631 &ire->ire_uinfo; 2632 } else { 2633 ire = (ire_t *)ire_mp->b_rptr; 2634 ire_uinfo = 2635 &((ire_t *) 2636 ire_mp->b_rptr)->ire_uinfo; 2637 } 2638 } 2639 } 2640 ASSERT(ire != NULL); 2641 2642 if ((ire->ire_src_addr == INADDR_ANY) || 2643 (ire->ire_type & IRE_BROADCAST)) { 2644 /* 2645 * ire->ire_mp is non null when ire_mp passed in is used 2646 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2647 */ 2648 if (ire->ire_mp == NULL) 2649 ire_refrele(ire); 2650 if (sire != NULL) 2651 ire_refrele(sire); 2652 return (0); 2653 } 2654 2655 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2656 ipaddr_t src_addr; 2657 2658 /* 2659 * ip_bind_connected() has stored the correct source 2660 * address in conn_src. 2661 */ 2662 src_addr = tcp->tcp_connp->conn_src; 2663 tcp->tcp_ipha->ipha_src = src_addr; 2664 /* 2665 * Copy of the src addr. in tcp_t is needed 2666 * for the lookup funcs. 2667 */ 2668 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2669 } 2670 /* 2671 * Set the fragment bit so that IP will tell us if the MTU 2672 * should change. IP tells us the latest setting of 2673 * ip_path_mtu_discovery through ire_frag_flag. 2674 */ 2675 if (ipst->ips_ip_path_mtu_discovery) { 2676 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2677 htons(IPH_DF); 2678 } 2679 /* 2680 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2681 * for IP_NEXTHOP. No cache ire has been found for the 2682 * destination and we are working with the nexthop's 2683 * interface ire. Since we need to forward all packets 2684 * to the nexthop first, we "blindly" set tcp_localnet 2685 * to false, eventhough the destination may also be 2686 * onlink. 2687 */ 2688 if (ire_uinfo == NULL) 2689 tcp->tcp_localnet = 0; 2690 else 2691 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2692 } else { 2693 /* 2694 * For incoming connection ire_mp = NULL 2695 * For outgoing connection ire_mp != NULL 2696 * Technically we should check conn_incoming_ill 2697 * when ire_mp is NULL and conn_outgoing_ill when 2698 * ire_mp is non-NULL. But this is performance 2699 * critical path and for IPV*_BOUND_IF, outgoing 2700 * and incoming ill are always set to the same value. 2701 */ 2702 ill_t *dst_ill = NULL; 2703 ipif_t *dst_ipif = NULL; 2704 2705 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2706 2707 if (connp->conn_outgoing_ill != NULL) { 2708 /* Outgoing or incoming path */ 2709 int err; 2710 2711 dst_ill = conn_get_held_ill(connp, 2712 &connp->conn_outgoing_ill, &err); 2713 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2714 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2715 return (0); 2716 } 2717 match_flags |= MATCH_IRE_ILL; 2718 dst_ipif = dst_ill->ill_ipif; 2719 } 2720 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2721 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2722 2723 if (ire != NULL) { 2724 ire_cacheable = B_TRUE; 2725 ire_uinfo = (ire_mp != NULL) ? 2726 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2727 &ire->ire_uinfo; 2728 } else { 2729 if (ire_mp == NULL) { 2730 ire = ire_ftable_lookup_v6( 2731 &tcp->tcp_connp->conn_remv6, 2732 0, 0, 0, dst_ipif, &sire, zoneid, 2733 0, tsl, match_flags, ipst); 2734 if (ire == NULL) { 2735 if (dst_ill != NULL) 2736 ill_refrele(dst_ill); 2737 return (0); 2738 } 2739 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2740 &ire->ire_uinfo; 2741 } else { 2742 ire = (ire_t *)ire_mp->b_rptr; 2743 ire_uinfo = 2744 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2745 } 2746 } 2747 if (dst_ill != NULL) 2748 ill_refrele(dst_ill); 2749 2750 ASSERT(ire != NULL); 2751 ASSERT(ire_uinfo != NULL); 2752 2753 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2754 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2755 /* 2756 * ire->ire_mp is non null when ire_mp passed in is used 2757 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2758 */ 2759 if (ire->ire_mp == NULL) 2760 ire_refrele(ire); 2761 if (sire != NULL) 2762 ire_refrele(sire); 2763 return (0); 2764 } 2765 2766 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2767 in6_addr_t src_addr; 2768 2769 /* 2770 * ip_bind_connected_v6() has stored the correct source 2771 * address per IPv6 addr. selection policy in 2772 * conn_src_v6. 2773 */ 2774 src_addr = tcp->tcp_connp->conn_srcv6; 2775 2776 tcp->tcp_ip6h->ip6_src = src_addr; 2777 /* 2778 * Copy of the src addr. in tcp_t is needed 2779 * for the lookup funcs. 2780 */ 2781 tcp->tcp_ip_src_v6 = src_addr; 2782 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2783 &connp->conn_srcv6)); 2784 } 2785 tcp->tcp_localnet = 2786 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2787 } 2788 2789 /* 2790 * This allows applications to fail quickly when connections are made 2791 * to dead hosts. Hosts can be labeled dead by adding a reject route 2792 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2793 */ 2794 if ((ire->ire_flags & RTF_REJECT) && 2795 (ire->ire_flags & RTF_PRIVATE)) 2796 goto error; 2797 2798 /* 2799 * Make use of the cached rtt and rtt_sd values to calculate the 2800 * initial RTO. Note that they are already initialized in 2801 * tcp_init_values(). 2802 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2803 * IP_NEXTHOP, but instead are using the interface ire for the 2804 * nexthop, then we do not use the ire_uinfo from that ire to 2805 * do any initializations. 2806 */ 2807 if (ire_uinfo != NULL) { 2808 if (ire_uinfo->iulp_rtt != 0) { 2809 clock_t rto; 2810 2811 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2812 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2813 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2814 tcps->tcps_rexmit_interval_extra + 2815 (tcp->tcp_rtt_sa >> 5); 2816 2817 if (rto > tcps->tcps_rexmit_interval_max) { 2818 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2819 } else if (rto < tcps->tcps_rexmit_interval_min) { 2820 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2821 } else { 2822 tcp->tcp_rto = rto; 2823 } 2824 } 2825 if (ire_uinfo->iulp_ssthresh != 0) 2826 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2827 else 2828 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2829 if (ire_uinfo->iulp_spipe > 0) { 2830 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2831 tcps->tcps_max_buf); 2832 if (tcps->tcps_snd_lowat_fraction != 0) 2833 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2834 tcps->tcps_snd_lowat_fraction; 2835 (void) tcp_maxpsz_set(tcp, B_TRUE); 2836 } 2837 /* 2838 * Note that up till now, acceptor always inherits receive 2839 * window from the listener. But if there is a metrics 2840 * associated with a host, we should use that instead of 2841 * inheriting it from listener. Thus we need to pass this 2842 * info back to the caller. 2843 */ 2844 if (ire_uinfo->iulp_rpipe > 0) { 2845 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2846 tcps->tcps_max_buf); 2847 } 2848 2849 if (ire_uinfo->iulp_rtomax > 0) { 2850 tcp->tcp_second_timer_threshold = 2851 ire_uinfo->iulp_rtomax; 2852 } 2853 2854 /* 2855 * Use the metric option settings, iulp_tstamp_ok and 2856 * iulp_wscale_ok, only for active open. What this means 2857 * is that if the other side uses timestamp or window 2858 * scale option, TCP will also use those options. That 2859 * is for passive open. If the application sets a 2860 * large window, window scale is enabled regardless of 2861 * the value in iulp_wscale_ok. This is the behavior 2862 * since 2.6. So we keep it. 2863 * The only case left in passive open processing is the 2864 * check for SACK. 2865 * For ECN, it should probably be like SACK. But the 2866 * current value is binary, so we treat it like the other 2867 * cases. The metric only controls active open.For passive 2868 * open, the ndd param, tcp_ecn_permitted, controls the 2869 * behavior. 2870 */ 2871 if (!tcp_detached) { 2872 /* 2873 * The if check means that the following can only 2874 * be turned on by the metrics only IRE, but not off. 2875 */ 2876 if (ire_uinfo->iulp_tstamp_ok) 2877 tcp->tcp_snd_ts_ok = B_TRUE; 2878 if (ire_uinfo->iulp_wscale_ok) 2879 tcp->tcp_snd_ws_ok = B_TRUE; 2880 if (ire_uinfo->iulp_sack == 2) 2881 tcp->tcp_snd_sack_ok = B_TRUE; 2882 if (ire_uinfo->iulp_ecn_ok) 2883 tcp->tcp_ecn_ok = B_TRUE; 2884 } else { 2885 /* 2886 * Passive open. 2887 * 2888 * As above, the if check means that SACK can only be 2889 * turned on by the metric only IRE. 2890 */ 2891 if (ire_uinfo->iulp_sack > 0) { 2892 tcp->tcp_snd_sack_ok = B_TRUE; 2893 } 2894 } 2895 } 2896 2897 2898 /* 2899 * XXX: Note that currently, ire_max_frag can be as small as 68 2900 * because of PMTUd. So tcp_mss may go to negative if combined 2901 * length of all those options exceeds 28 bytes. But because 2902 * of the tcp_mss_min check below, we may not have a problem if 2903 * tcp_mss_min is of a reasonable value. The default is 1 so 2904 * the negative problem still exists. And the check defeats PMTUd. 2905 * In fact, if PMTUd finds that the MSS should be smaller than 2906 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2907 * value. 2908 * 2909 * We do not deal with that now. All those problems related to 2910 * PMTUd will be fixed later. 2911 */ 2912 ASSERT(ire->ire_max_frag != 0); 2913 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2914 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2915 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2916 mss = MIN(mss, IPV6_MIN_MTU); 2917 } 2918 } 2919 2920 /* Sanity check for MSS value. */ 2921 if (tcp->tcp_ipversion == IPV4_VERSION) 2922 mss_max = tcps->tcps_mss_max_ipv4; 2923 else 2924 mss_max = tcps->tcps_mss_max_ipv6; 2925 2926 if (tcp->tcp_ipversion == IPV6_VERSION && 2927 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2928 /* 2929 * After receiving an ICMPv6 "packet too big" message with a 2930 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2931 * will insert a 8-byte fragment header in every packet; we 2932 * reduce the MSS by that amount here. 2933 */ 2934 mss -= sizeof (ip6_frag_t); 2935 } 2936 2937 if (tcp->tcp_ipsec_overhead == 0) 2938 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2939 2940 mss -= tcp->tcp_ipsec_overhead; 2941 2942 if (mss < tcps->tcps_mss_min) 2943 mss = tcps->tcps_mss_min; 2944 if (mss > mss_max) 2945 mss = mss_max; 2946 2947 /* Note that this is the maximum MSS, excluding all options. */ 2948 tcp->tcp_mss = mss; 2949 2950 /* 2951 * Initialize the ISS here now that we have the full connection ID. 2952 * The RFC 1948 method of initial sequence number generation requires 2953 * knowledge of the full connection ID before setting the ISS. 2954 */ 2955 2956 tcp_iss_init(tcp); 2957 2958 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2959 tcp->tcp_loopback = B_TRUE; 2960 2961 if (tcp->tcp_ipversion == IPV4_VERSION) { 2962 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2963 } else { 2964 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2965 } 2966 2967 if (hsp != NULL) { 2968 /* Only modify if we're going to make them bigger */ 2969 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2970 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2971 if (tcps->tcps_snd_lowat_fraction != 0) 2972 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2973 tcps->tcps_snd_lowat_fraction; 2974 } 2975 2976 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2977 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2978 } 2979 2980 /* Copy timestamp flag only for active open */ 2981 if (!tcp_detached) 2982 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2983 } 2984 2985 if (sire != NULL) 2986 IRE_REFRELE(sire); 2987 2988 /* 2989 * If we got an IRE_CACHE and an ILL, go through their properties; 2990 * otherwise, this is deferred until later when we have an IRE_CACHE. 2991 */ 2992 if (tcp->tcp_loopback || 2993 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2994 /* 2995 * For incoming, see if this tcp may be MDT-capable. For 2996 * outgoing, this process has been taken care of through 2997 * tcp_rput_other. 2998 */ 2999 tcp_ire_ill_check(tcp, ire, ill, incoming); 3000 tcp->tcp_ire_ill_check_done = B_TRUE; 3001 } 3002 3003 mutex_enter(&connp->conn_lock); 3004 /* 3005 * Make sure that conn is not marked incipient 3006 * for incoming connections. A blind 3007 * removal of incipient flag is cheaper than 3008 * check and removal. 3009 */ 3010 connp->conn_state_flags &= ~CONN_INCIPIENT; 3011 3012 /* 3013 * Must not cache forwarding table routes 3014 * or recache an IRE after the conn_t has 3015 * had conn_ire_cache cleared and is flagged 3016 * unusable, (see the CONN_CACHE_IRE() macro). 3017 */ 3018 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 3019 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3020 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3021 connp->conn_ire_cache = ire; 3022 IRE_UNTRACE_REF(ire); 3023 rw_exit(&ire->ire_bucket->irb_lock); 3024 mutex_exit(&connp->conn_lock); 3025 return (1); 3026 } 3027 rw_exit(&ire->ire_bucket->irb_lock); 3028 } 3029 mutex_exit(&connp->conn_lock); 3030 3031 if (ire->ire_mp == NULL) 3032 ire_refrele(ire); 3033 return (1); 3034 3035 error: 3036 if (ire->ire_mp == NULL) 3037 ire_refrele(ire); 3038 if (sire != NULL) 3039 ire_refrele(sire); 3040 return (0); 3041 } 3042 3043 static void 3044 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 3045 { 3046 int error; 3047 conn_t *connp = tcp->tcp_connp; 3048 struct sockaddr *sa; 3049 mblk_t *mp1; 3050 struct T_bind_req *tbr; 3051 int backlog; 3052 socklen_t len; 3053 sin_t *sin; 3054 sin6_t *sin6; 3055 3056 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3057 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3058 if (tcp->tcp_debug) { 3059 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3060 "tcp_tpi_bind: bad req, len %u", 3061 (uint_t)(mp->b_wptr - mp->b_rptr)); 3062 } 3063 tcp_err_ack(tcp, mp, TPROTO, 0); 3064 return; 3065 } 3066 /* Make sure the largest address fits */ 3067 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3068 if (mp1 == NULL) { 3069 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3070 return; 3071 } 3072 mp = mp1; 3073 tbr = (struct T_bind_req *)mp->b_rptr; 3074 3075 backlog = tbr->CONIND_number; 3076 len = tbr->ADDR_length; 3077 3078 switch (len) { 3079 case 0: /* request for a generic port */ 3080 tbr->ADDR_offset = sizeof (struct T_bind_req); 3081 if (tcp->tcp_family == AF_INET) { 3082 tbr->ADDR_length = sizeof (sin_t); 3083 sin = (sin_t *)&tbr[1]; 3084 *sin = sin_null; 3085 sin->sin_family = AF_INET; 3086 sa = (struct sockaddr *)sin; 3087 len = sizeof (sin_t); 3088 mp->b_wptr = (uchar_t *)&sin[1]; 3089 } else { 3090 ASSERT(tcp->tcp_family == AF_INET6); 3091 tbr->ADDR_length = sizeof (sin6_t); 3092 sin6 = (sin6_t *)&tbr[1]; 3093 *sin6 = sin6_null; 3094 sin6->sin6_family = AF_INET6; 3095 sa = (struct sockaddr *)sin6; 3096 len = sizeof (sin6_t); 3097 mp->b_wptr = (uchar_t *)&sin6[1]; 3098 } 3099 break; 3100 3101 case sizeof (sin_t): /* Complete IPv4 address */ 3102 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3103 sizeof (sin_t)); 3104 break; 3105 3106 case sizeof (sin6_t): /* Complete IPv6 address */ 3107 sa = (struct sockaddr *)mi_offset_param(mp, 3108 tbr->ADDR_offset, sizeof (sin6_t)); 3109 break; 3110 3111 default: 3112 if (tcp->tcp_debug) { 3113 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3114 "tcp_tpi_bind: bad address length, %d", 3115 tbr->ADDR_length); 3116 } 3117 tcp_err_ack(tcp, mp, TBADADDR, 0); 3118 return; 3119 } 3120 3121 error = tcp_bind_check(connp, sa, len, DB_CRED(mp), 3122 tbr->PRIM_type != O_T_BIND_REQ); 3123 if (error == 0) { 3124 if (tcp->tcp_family == AF_INET) { 3125 sin = (sin_t *)sa; 3126 sin->sin_port = tcp->tcp_lport; 3127 } else { 3128 sin6 = (sin6_t *)sa; 3129 sin6->sin6_port = tcp->tcp_lport; 3130 } 3131 3132 if (backlog > 0) { 3133 error = tcp_do_listen(connp, backlog, DB_CRED(mp)); 3134 } 3135 } 3136 done: 3137 if (error > 0) { 3138 tcp_err_ack(tcp, mp, TSYSERR, error); 3139 } else if (error < 0) { 3140 tcp_err_ack(tcp, mp, -error, 0); 3141 } else { 3142 mp->b_datap->db_type = M_PCPROTO; 3143 tbr->PRIM_type = T_BIND_ACK; 3144 putnext(tcp->tcp_rq, mp); 3145 } 3146 } 3147 3148 /* 3149 * If the "bind_to_req_port_only" parameter is set, if the requested port 3150 * number is available, return it, If not return 0 3151 * 3152 * If "bind_to_req_port_only" parameter is not set and 3153 * If the requested port number is available, return it. If not, return 3154 * the first anonymous port we happen across. If no anonymous ports are 3155 * available, return 0. addr is the requested local address, if any. 3156 * 3157 * In either case, when succeeding update the tcp_t to record the port number 3158 * and insert it in the bind hash table. 3159 * 3160 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3161 * without setting SO_REUSEADDR. This is needed so that they 3162 * can be viewed as two independent transport protocols. 3163 */ 3164 static in_port_t 3165 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3166 int reuseaddr, boolean_t quick_connect, 3167 boolean_t bind_to_req_port_only, boolean_t user_specified) 3168 { 3169 /* number of times we have run around the loop */ 3170 int count = 0; 3171 /* maximum number of times to run around the loop */ 3172 int loopmax; 3173 conn_t *connp = tcp->tcp_connp; 3174 zoneid_t zoneid = connp->conn_zoneid; 3175 tcp_stack_t *tcps = tcp->tcp_tcps; 3176 3177 /* 3178 * Lookup for free addresses is done in a loop and "loopmax" 3179 * influences how long we spin in the loop 3180 */ 3181 if (bind_to_req_port_only) { 3182 /* 3183 * If the requested port is busy, don't bother to look 3184 * for a new one. Setting loop maximum count to 1 has 3185 * that effect. 3186 */ 3187 loopmax = 1; 3188 } else { 3189 /* 3190 * If the requested port is busy, look for a free one 3191 * in the anonymous port range. 3192 * Set loopmax appropriately so that one does not look 3193 * forever in the case all of the anonymous ports are in use. 3194 */ 3195 if (tcp->tcp_anon_priv_bind) { 3196 /* 3197 * loopmax = 3198 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3199 */ 3200 loopmax = IPPORT_RESERVED - 3201 tcps->tcps_min_anonpriv_port; 3202 } else { 3203 loopmax = (tcps->tcps_largest_anon_port - 3204 tcps->tcps_smallest_anon_port + 1); 3205 } 3206 } 3207 do { 3208 uint16_t lport; 3209 tf_t *tbf; 3210 tcp_t *ltcp; 3211 conn_t *lconnp; 3212 3213 lport = htons(port); 3214 3215 /* 3216 * Ensure that the tcp_t is not currently in the bind hash. 3217 * Hold the lock on the hash bucket to ensure that 3218 * the duplicate check plus the insertion is an atomic 3219 * operation. 3220 * 3221 * This function does an inline lookup on the bind hash list 3222 * Make sure that we access only members of tcp_t 3223 * and that we don't look at tcp_tcp, since we are not 3224 * doing a CONN_INC_REF. 3225 */ 3226 tcp_bind_hash_remove(tcp); 3227 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3228 mutex_enter(&tbf->tf_lock); 3229 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3230 ltcp = ltcp->tcp_bind_hash) { 3231 if (lport == ltcp->tcp_lport) 3232 break; 3233 } 3234 3235 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3236 boolean_t not_socket; 3237 boolean_t exclbind; 3238 3239 lconnp = ltcp->tcp_connp; 3240 3241 /* 3242 * On a labeled system, we must treat bindings to ports 3243 * on shared IP addresses by sockets with MAC exemption 3244 * privilege as being in all zones, as there's 3245 * otherwise no way to identify the right receiver. 3246 */ 3247 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3248 IPCL_ZONE_MATCH(connp, 3249 ltcp->tcp_connp->conn_zoneid)) && 3250 !lconnp->conn_mac_exempt && 3251 !connp->conn_mac_exempt) 3252 continue; 3253 3254 /* 3255 * If TCP_EXCLBIND is set for either the bound or 3256 * binding endpoint, the semantics of bind 3257 * is changed according to the following. 3258 * 3259 * spec = specified address (v4 or v6) 3260 * unspec = unspecified address (v4 or v6) 3261 * A = specified addresses are different for endpoints 3262 * 3263 * bound bind to allowed 3264 * ------------------------------------- 3265 * unspec unspec no 3266 * unspec spec no 3267 * spec unspec no 3268 * spec spec yes if A 3269 * 3270 * For labeled systems, SO_MAC_EXEMPT behaves the same 3271 * as TCP_EXCLBIND, except that zoneid is ignored. 3272 * 3273 * Note: 3274 * 3275 * 1. Because of TLI semantics, an endpoint can go 3276 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3277 * TCPS_BOUND, depending on whether it is originally 3278 * a listener or not. That is why we need to check 3279 * for states greater than or equal to TCPS_BOUND 3280 * here. 3281 * 3282 * 2. Ideally, we should only check for state equals 3283 * to TCPS_LISTEN. And the following check should be 3284 * added. 3285 * 3286 * if (ltcp->tcp_state == TCPS_LISTEN || 3287 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3288 * ... 3289 * } 3290 * 3291 * The semantics will be changed to this. If the 3292 * endpoint on the list is in state not equal to 3293 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3294 * set, let the bind succeed. 3295 * 3296 * Because of (1), we cannot do that for TLI 3297 * endpoints. But we can do that for socket endpoints. 3298 * If in future, we can change this going back 3299 * semantics, we can use the above check for TLI also. 3300 */ 3301 not_socket = !(TCP_IS_SOCKET(ltcp) && 3302 TCP_IS_SOCKET(tcp)); 3303 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3304 3305 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3306 (exclbind && (not_socket || 3307 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3308 if (V6_OR_V4_INADDR_ANY( 3309 ltcp->tcp_bound_source_v6) || 3310 V6_OR_V4_INADDR_ANY(*laddr) || 3311 IN6_ARE_ADDR_EQUAL(laddr, 3312 <cp->tcp_bound_source_v6)) { 3313 break; 3314 } 3315 continue; 3316 } 3317 3318 /* 3319 * Check ipversion to allow IPv4 and IPv6 sockets to 3320 * have disjoint port number spaces, if *_EXCLBIND 3321 * is not set and only if the application binds to a 3322 * specific port. We use the same autoassigned port 3323 * number space for IPv4 and IPv6 sockets. 3324 */ 3325 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3326 bind_to_req_port_only) 3327 continue; 3328 3329 /* 3330 * Ideally, we should make sure that the source 3331 * address, remote address, and remote port in the 3332 * four tuple for this tcp-connection is unique. 3333 * However, trying to find out the local source 3334 * address would require too much code duplication 3335 * with IP, since IP needs needs to have that code 3336 * to support userland TCP implementations. 3337 */ 3338 if (quick_connect && 3339 (ltcp->tcp_state > TCPS_LISTEN) && 3340 ((tcp->tcp_fport != ltcp->tcp_fport) || 3341 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3342 <cp->tcp_remote_v6))) 3343 continue; 3344 3345 if (!reuseaddr) { 3346 /* 3347 * No socket option SO_REUSEADDR. 3348 * If existing port is bound to 3349 * a non-wildcard IP address 3350 * and the requesting stream is 3351 * bound to a distinct 3352 * different IP addresses 3353 * (non-wildcard, also), keep 3354 * going. 3355 */ 3356 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3357 !V6_OR_V4_INADDR_ANY( 3358 ltcp->tcp_bound_source_v6) && 3359 !IN6_ARE_ADDR_EQUAL(laddr, 3360 <cp->tcp_bound_source_v6)) 3361 continue; 3362 if (ltcp->tcp_state >= TCPS_BOUND) { 3363 /* 3364 * This port is being used and 3365 * its state is >= TCPS_BOUND, 3366 * so we can't bind to it. 3367 */ 3368 break; 3369 } 3370 } else { 3371 /* 3372 * socket option SO_REUSEADDR is set on the 3373 * binding tcp_t. 3374 * 3375 * If two streams are bound to 3376 * same IP address or both addr 3377 * and bound source are wildcards 3378 * (INADDR_ANY), we want to stop 3379 * searching. 3380 * We have found a match of IP source 3381 * address and source port, which is 3382 * refused regardless of the 3383 * SO_REUSEADDR setting, so we break. 3384 */ 3385 if (IN6_ARE_ADDR_EQUAL(laddr, 3386 <cp->tcp_bound_source_v6) && 3387 (ltcp->tcp_state == TCPS_LISTEN || 3388 ltcp->tcp_state == TCPS_BOUND)) 3389 break; 3390 } 3391 } 3392 if (ltcp != NULL) { 3393 /* The port number is busy */ 3394 mutex_exit(&tbf->tf_lock); 3395 } else { 3396 /* 3397 * This port is ours. Insert in fanout and mark as 3398 * bound to prevent others from getting the port 3399 * number. 3400 */ 3401 tcp->tcp_state = TCPS_BOUND; 3402 tcp->tcp_lport = htons(port); 3403 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3404 3405 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3406 tcp->tcp_lport)] == tbf); 3407 tcp_bind_hash_insert(tbf, tcp, 1); 3408 3409 mutex_exit(&tbf->tf_lock); 3410 3411 /* 3412 * We don't want tcp_next_port_to_try to "inherit" 3413 * a port number supplied by the user in a bind. 3414 */ 3415 if (user_specified) 3416 return (port); 3417 3418 /* 3419 * This is the only place where tcp_next_port_to_try 3420 * is updated. After the update, it may or may not 3421 * be in the valid range. 3422 */ 3423 if (!tcp->tcp_anon_priv_bind) 3424 tcps->tcps_next_port_to_try = port + 1; 3425 return (port); 3426 } 3427 3428 if (tcp->tcp_anon_priv_bind) { 3429 port = tcp_get_next_priv_port(tcp); 3430 } else { 3431 if (count == 0 && user_specified) { 3432 /* 3433 * We may have to return an anonymous port. So 3434 * get one to start with. 3435 */ 3436 port = 3437 tcp_update_next_port( 3438 tcps->tcps_next_port_to_try, 3439 tcp, B_TRUE); 3440 user_specified = B_FALSE; 3441 } else { 3442 port = tcp_update_next_port(port + 1, tcp, 3443 B_FALSE); 3444 } 3445 } 3446 if (port == 0) 3447 break; 3448 3449 /* 3450 * Don't let this loop run forever in the case where 3451 * all of the anonymous ports are in use. 3452 */ 3453 } while (++count < loopmax); 3454 return (0); 3455 } 3456 3457 /* 3458 * tcp_clean_death / tcp_close_detached must not be called more than once 3459 * on a tcp. Thus every function that potentially calls tcp_clean_death 3460 * must check for the tcp state before calling tcp_clean_death. 3461 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3462 * tcp_timer_handler, all check for the tcp state. 3463 */ 3464 /* ARGSUSED */ 3465 void 3466 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3467 { 3468 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3469 3470 freemsg(mp); 3471 if (tcp->tcp_state > TCPS_BOUND) 3472 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3473 ETIMEDOUT, 5); 3474 } 3475 3476 /* 3477 * We are dying for some reason. Try to do it gracefully. (May be called 3478 * as writer.) 3479 * 3480 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3481 * done by a service procedure). 3482 * TBD - Should the return value distinguish between the tcp_t being 3483 * freed and it being reinitialized? 3484 */ 3485 static int 3486 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3487 { 3488 mblk_t *mp; 3489 queue_t *q; 3490 conn_t *connp = tcp->tcp_connp; 3491 tcp_stack_t *tcps = tcp->tcp_tcps; 3492 sodirect_t *sodp; 3493 3494 TCP_CLD_STAT(tag); 3495 3496 #if TCP_TAG_CLEAN_DEATH 3497 tcp->tcp_cleandeathtag = tag; 3498 #endif 3499 3500 if (tcp->tcp_fused) 3501 tcp_unfuse(tcp); 3502 3503 if (tcp->tcp_linger_tid != 0 && 3504 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3505 tcp_stop_lingering(tcp); 3506 } 3507 3508 ASSERT(tcp != NULL); 3509 ASSERT((tcp->tcp_family == AF_INET && 3510 tcp->tcp_ipversion == IPV4_VERSION) || 3511 (tcp->tcp_family == AF_INET6 && 3512 (tcp->tcp_ipversion == IPV4_VERSION || 3513 tcp->tcp_ipversion == IPV6_VERSION))); 3514 3515 if (TCP_IS_DETACHED(tcp)) { 3516 if (tcp->tcp_hard_binding) { 3517 /* 3518 * Its an eager that we are dealing with. We close the 3519 * eager but in case a conn_ind has already gone to the 3520 * listener, let tcp_accept_finish() send a discon_ind 3521 * to the listener and drop the last reference. If the 3522 * listener doesn't even know about the eager i.e. the 3523 * conn_ind hasn't gone up, blow away the eager and drop 3524 * the last reference as well. If the conn_ind has gone 3525 * up, state should be BOUND. tcp_accept_finish 3526 * will figure out that the connection has received a 3527 * RST and will send a DISCON_IND to the application. 3528 */ 3529 tcp_closei_local(tcp); 3530 if (!tcp->tcp_tconnind_started) { 3531 CONN_DEC_REF(connp); 3532 } else { 3533 tcp->tcp_state = TCPS_BOUND; 3534 } 3535 } else { 3536 tcp_close_detached(tcp); 3537 } 3538 return (0); 3539 } 3540 3541 TCP_STAT(tcps, tcp_clean_death_nondetached); 3542 3543 /* If sodirect, not anymore */ 3544 SOD_PTR_ENTER(tcp, sodp); 3545 if (sodp != NULL) { 3546 tcp->tcp_sodirect = NULL; 3547 mutex_exit(sodp->sod_lockp); 3548 } 3549 3550 q = tcp->tcp_rq; 3551 3552 /* Trash all inbound data */ 3553 if (!IPCL_IS_NONSTR(connp)) { 3554 ASSERT(q != NULL); 3555 flushq(q, FLUSHALL); 3556 } 3557 3558 /* 3559 * If we are at least part way open and there is error 3560 * (err==0 implies no error) 3561 * notify our client by a T_DISCON_IND. 3562 */ 3563 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3564 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3565 !TCP_IS_SOCKET(tcp)) { 3566 /* 3567 * Send M_FLUSH according to TPI. Because sockets will 3568 * (and must) ignore FLUSHR we do that only for TPI 3569 * endpoints and sockets in STREAMS mode. 3570 */ 3571 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3572 } 3573 if (tcp->tcp_debug) { 3574 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3575 "tcp_clean_death: discon err %d", err); 3576 } 3577 if (IPCL_IS_NONSTR(connp)) { 3578 /* Direct socket, use upcall */ 3579 (*connp->conn_upcalls->su_disconnected)( 3580 connp->conn_upper_handle, tcp->tcp_connid, err); 3581 } else { 3582 mp = mi_tpi_discon_ind(NULL, err, 0); 3583 if (mp != NULL) { 3584 putnext(q, mp); 3585 } else { 3586 if (tcp->tcp_debug) { 3587 (void) strlog(TCP_MOD_ID, 0, 1, 3588 SL_ERROR|SL_TRACE, 3589 "tcp_clean_death, sending M_ERROR"); 3590 } 3591 (void) putnextctl1(q, M_ERROR, EPROTO); 3592 } 3593 } 3594 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3595 /* SYN_SENT or SYN_RCVD */ 3596 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3597 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3598 /* ESTABLISHED or CLOSE_WAIT */ 3599 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3600 } 3601 } 3602 3603 tcp_reinit(tcp); 3604 if (IPCL_IS_NONSTR(connp)) 3605 (void) tcp_do_unbind(connp); 3606 3607 return (-1); 3608 } 3609 3610 /* 3611 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3612 * to expire, stop the wait and finish the close. 3613 */ 3614 static void 3615 tcp_stop_lingering(tcp_t *tcp) 3616 { 3617 clock_t delta = 0; 3618 tcp_stack_t *tcps = tcp->tcp_tcps; 3619 3620 tcp->tcp_linger_tid = 0; 3621 if (tcp->tcp_state > TCPS_LISTEN) { 3622 tcp_acceptor_hash_remove(tcp); 3623 mutex_enter(&tcp->tcp_non_sq_lock); 3624 if (tcp->tcp_flow_stopped) { 3625 tcp_clrqfull(tcp); 3626 } 3627 mutex_exit(&tcp->tcp_non_sq_lock); 3628 3629 if (tcp->tcp_timer_tid != 0) { 3630 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3631 tcp->tcp_timer_tid = 0; 3632 } 3633 /* 3634 * Need to cancel those timers which will not be used when 3635 * TCP is detached. This has to be done before the tcp_wq 3636 * is set to the global queue. 3637 */ 3638 tcp_timers_stop(tcp); 3639 3640 tcp->tcp_detached = B_TRUE; 3641 ASSERT(tcps->tcps_g_q != NULL); 3642 tcp->tcp_rq = tcps->tcps_g_q; 3643 tcp->tcp_wq = WR(tcps->tcps_g_q); 3644 3645 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3646 tcp_time_wait_append(tcp); 3647 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3648 goto finish; 3649 } 3650 3651 /* 3652 * If delta is zero the timer event wasn't executed and was 3653 * successfully canceled. In this case we need to restart it 3654 * with the minimal delta possible. 3655 */ 3656 if (delta >= 0) { 3657 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3658 delta ? delta : 1); 3659 } 3660 } else { 3661 tcp_closei_local(tcp); 3662 CONN_DEC_REF(tcp->tcp_connp); 3663 } 3664 finish: 3665 /* Signal closing thread that it can complete close */ 3666 mutex_enter(&tcp->tcp_closelock); 3667 tcp->tcp_detached = B_TRUE; 3668 ASSERT(tcps->tcps_g_q != NULL); 3669 3670 tcp->tcp_rq = tcps->tcps_g_q; 3671 tcp->tcp_wq = WR(tcps->tcps_g_q); 3672 3673 tcp->tcp_closed = 1; 3674 cv_signal(&tcp->tcp_closecv); 3675 mutex_exit(&tcp->tcp_closelock); 3676 } 3677 3678 /* 3679 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3680 * expires. 3681 */ 3682 static void 3683 tcp_close_linger_timeout(void *arg) 3684 { 3685 conn_t *connp = (conn_t *)arg; 3686 tcp_t *tcp = connp->conn_tcp; 3687 3688 tcp->tcp_client_errno = ETIMEDOUT; 3689 tcp_stop_lingering(tcp); 3690 } 3691 3692 static void 3693 tcp_close_common(conn_t *connp, int flags) 3694 { 3695 tcp_t *tcp = connp->conn_tcp; 3696 mblk_t *mp = &tcp->tcp_closemp; 3697 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3698 mblk_t *bp; 3699 3700 ASSERT(connp->conn_ref >= 2); 3701 3702 /* 3703 * Mark the conn as closing. ill_pending_mp_add will not 3704 * add any mp to the pending mp list, after this conn has 3705 * started closing. Same for sq_pending_mp_add 3706 */ 3707 mutex_enter(&connp->conn_lock); 3708 connp->conn_state_flags |= CONN_CLOSING; 3709 if (connp->conn_oper_pending_ill != NULL) 3710 conn_ioctl_cleanup_reqd = B_TRUE; 3711 CONN_INC_REF_LOCKED(connp); 3712 mutex_exit(&connp->conn_lock); 3713 tcp->tcp_closeflags = (uint8_t)flags; 3714 ASSERT(connp->conn_ref >= 3); 3715 3716 /* 3717 * tcp_closemp_used is used below without any protection of a lock 3718 * as we don't expect any one else to use it concurrently at this 3719 * point otherwise it would be a major defect. 3720 */ 3721 3722 if (mp->b_prev == NULL) 3723 tcp->tcp_closemp_used = B_TRUE; 3724 else 3725 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3726 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3727 3728 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3729 3730 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3731 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3732 3733 mutex_enter(&tcp->tcp_closelock); 3734 while (!tcp->tcp_closed) { 3735 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3736 /* 3737 * The cv_wait_sig() was interrupted. We now do the 3738 * following: 3739 * 3740 * 1) If the endpoint was lingering, we allow this 3741 * to be interrupted by cancelling the linger timeout 3742 * and closing normally. 3743 * 3744 * 2) Revert to calling cv_wait() 3745 * 3746 * We revert to using cv_wait() to avoid an 3747 * infinite loop which can occur if the calling 3748 * thread is higher priority than the squeue worker 3749 * thread and is bound to the same cpu. 3750 */ 3751 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3752 mutex_exit(&tcp->tcp_closelock); 3753 /* Entering squeue, bump ref count. */ 3754 CONN_INC_REF(connp); 3755 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3756 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3757 tcp_linger_interrupted, connp, 3758 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3759 mutex_enter(&tcp->tcp_closelock); 3760 } 3761 break; 3762 } 3763 } 3764 while (!tcp->tcp_closed) 3765 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3766 mutex_exit(&tcp->tcp_closelock); 3767 3768 /* 3769 * In the case of listener streams that have eagers in the q or q0 3770 * we wait for the eagers to drop their reference to us. tcp_rq and 3771 * tcp_wq of the eagers point to our queues. By waiting for the 3772 * refcnt to drop to 1, we are sure that the eagers have cleaned 3773 * up their queue pointers and also dropped their references to us. 3774 */ 3775 if (tcp->tcp_wait_for_eagers) { 3776 mutex_enter(&connp->conn_lock); 3777 while (connp->conn_ref != 1) { 3778 cv_wait(&connp->conn_cv, &connp->conn_lock); 3779 } 3780 mutex_exit(&connp->conn_lock); 3781 } 3782 /* 3783 * ioctl cleanup. The mp is queued in the 3784 * ill_pending_mp or in the sq_pending_mp. 3785 */ 3786 if (conn_ioctl_cleanup_reqd) 3787 conn_ioctl_cleanup(connp); 3788 3789 tcp->tcp_cpid = -1; 3790 } 3791 3792 static int 3793 tcp_tpi_close(queue_t *q, int flags) 3794 { 3795 conn_t *connp; 3796 3797 ASSERT(WR(q)->q_next == NULL); 3798 3799 if (flags & SO_FALLBACK) { 3800 /* 3801 * stream is being closed while in fallback 3802 * simply free the resources that were allocated 3803 */ 3804 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3805 qprocsoff(q); 3806 goto done; 3807 } 3808 3809 connp = Q_TO_CONN(q); 3810 /* 3811 * We are being closed as /dev/tcp or /dev/tcp6. 3812 */ 3813 tcp_close_common(connp, flags); 3814 3815 qprocsoff(q); 3816 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3817 3818 /* 3819 * Drop IP's reference on the conn. This is the last reference 3820 * on the connp if the state was less than established. If the 3821 * connection has gone into timewait state, then we will have 3822 * one ref for the TCP and one more ref (total of two) for the 3823 * classifier connected hash list (a timewait connections stays 3824 * in connected hash till closed). 3825 * 3826 * We can't assert the references because there might be other 3827 * transient reference places because of some walkers or queued 3828 * packets in squeue for the timewait state. 3829 */ 3830 CONN_DEC_REF(connp); 3831 done: 3832 q->q_ptr = WR(q)->q_ptr = NULL; 3833 return (0); 3834 } 3835 3836 static int 3837 tcpclose_accept(queue_t *q) 3838 { 3839 vmem_t *minor_arena; 3840 dev_t conn_dev; 3841 3842 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3843 3844 /* 3845 * We had opened an acceptor STREAM for sockfs which is 3846 * now being closed due to some error. 3847 */ 3848 qprocsoff(q); 3849 3850 minor_arena = (vmem_t *)WR(q)->q_ptr; 3851 conn_dev = (dev_t)RD(q)->q_ptr; 3852 ASSERT(minor_arena != NULL); 3853 ASSERT(conn_dev != 0); 3854 inet_minor_free(minor_arena, conn_dev); 3855 q->q_ptr = WR(q)->q_ptr = NULL; 3856 return (0); 3857 } 3858 3859 /* 3860 * Called by tcp_close() routine via squeue when lingering is 3861 * interrupted by a signal. 3862 */ 3863 3864 /* ARGSUSED */ 3865 static void 3866 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3867 { 3868 conn_t *connp = (conn_t *)arg; 3869 tcp_t *tcp = connp->conn_tcp; 3870 3871 freeb(mp); 3872 if (tcp->tcp_linger_tid != 0 && 3873 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3874 tcp_stop_lingering(tcp); 3875 tcp->tcp_client_errno = EINTR; 3876 } 3877 } 3878 3879 /* 3880 * Called by streams close routine via squeues when our client blows off her 3881 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3882 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3883 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3884 * acked. 3885 * 3886 * NOTE: tcp_close potentially returns error when lingering. 3887 * However, the stream head currently does not pass these errors 3888 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3889 * errors to the application (from tsleep()) and not errors 3890 * like ECONNRESET caused by receiving a reset packet. 3891 */ 3892 3893 /* ARGSUSED */ 3894 static void 3895 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3896 { 3897 char *msg; 3898 conn_t *connp = (conn_t *)arg; 3899 tcp_t *tcp = connp->conn_tcp; 3900 clock_t delta = 0; 3901 tcp_stack_t *tcps = tcp->tcp_tcps; 3902 3903 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3904 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3905 3906 mutex_enter(&tcp->tcp_eager_lock); 3907 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3908 /* Cleanup for listener */ 3909 tcp_eager_cleanup(tcp, 0); 3910 tcp->tcp_wait_for_eagers = 1; 3911 } 3912 mutex_exit(&tcp->tcp_eager_lock); 3913 3914 connp->conn_mdt_ok = B_FALSE; 3915 tcp->tcp_mdt = B_FALSE; 3916 3917 connp->conn_lso_ok = B_FALSE; 3918 tcp->tcp_lso = B_FALSE; 3919 3920 msg = NULL; 3921 switch (tcp->tcp_state) { 3922 case TCPS_CLOSED: 3923 case TCPS_IDLE: 3924 case TCPS_BOUND: 3925 case TCPS_LISTEN: 3926 break; 3927 case TCPS_SYN_SENT: 3928 msg = "tcp_close, during connect"; 3929 break; 3930 case TCPS_SYN_RCVD: 3931 /* 3932 * Close during the connect 3-way handshake 3933 * but here there may or may not be pending data 3934 * already on queue. Process almost same as in 3935 * the ESTABLISHED state. 3936 */ 3937 /* FALLTHRU */ 3938 default: 3939 if (tcp->tcp_sodirect != NULL) { 3940 /* Ok, no more sodirect */ 3941 tcp->tcp_sodirect = NULL; 3942 } 3943 3944 if (tcp->tcp_fused) 3945 tcp_unfuse(tcp); 3946 3947 /* 3948 * If SO_LINGER has set a zero linger time, abort the 3949 * connection with a reset. 3950 */ 3951 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3952 msg = "tcp_close, zero lingertime"; 3953 break; 3954 } 3955 3956 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3957 /* 3958 * Abort connection if there is unread data queued. 3959 */ 3960 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3961 msg = "tcp_close, unread data"; 3962 break; 3963 } 3964 /* 3965 * tcp_hard_bound is now cleared thus all packets go through 3966 * tcp_lookup. This fact is used by tcp_detach below. 3967 * 3968 * We have done a qwait() above which could have possibly 3969 * drained more messages in turn causing transition to a 3970 * different state. Check whether we have to do the rest 3971 * of the processing or not. 3972 */ 3973 if (tcp->tcp_state <= TCPS_LISTEN) 3974 break; 3975 3976 /* 3977 * Transmit the FIN before detaching the tcp_t. 3978 * After tcp_detach returns this queue/perimeter 3979 * no longer owns the tcp_t thus others can modify it. 3980 */ 3981 (void) tcp_xmit_end(tcp); 3982 3983 /* 3984 * If lingering on close then wait until the fin is acked, 3985 * the SO_LINGER time passes, or a reset is sent/received. 3986 */ 3987 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3988 !(tcp->tcp_fin_acked) && 3989 tcp->tcp_state >= TCPS_ESTABLISHED) { 3990 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3991 tcp->tcp_client_errno = EWOULDBLOCK; 3992 } else if (tcp->tcp_client_errno == 0) { 3993 3994 ASSERT(tcp->tcp_linger_tid == 0); 3995 3996 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3997 tcp_close_linger_timeout, 3998 tcp->tcp_lingertime * hz); 3999 4000 /* tcp_close_linger_timeout will finish close */ 4001 if (tcp->tcp_linger_tid == 0) 4002 tcp->tcp_client_errno = ENOSR; 4003 else 4004 return; 4005 } 4006 4007 /* 4008 * Check if we need to detach or just close 4009 * the instance. 4010 */ 4011 if (tcp->tcp_state <= TCPS_LISTEN) 4012 break; 4013 } 4014 4015 /* 4016 * Make sure that no other thread will access the tcp_rq of 4017 * this instance (through lookups etc.) as tcp_rq will go 4018 * away shortly. 4019 */ 4020 tcp_acceptor_hash_remove(tcp); 4021 4022 mutex_enter(&tcp->tcp_non_sq_lock); 4023 if (tcp->tcp_flow_stopped) { 4024 tcp_clrqfull(tcp); 4025 } 4026 mutex_exit(&tcp->tcp_non_sq_lock); 4027 4028 if (tcp->tcp_timer_tid != 0) { 4029 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4030 tcp->tcp_timer_tid = 0; 4031 } 4032 /* 4033 * Need to cancel those timers which will not be used when 4034 * TCP is detached. This has to be done before the tcp_wq 4035 * is set to the global queue. 4036 */ 4037 tcp_timers_stop(tcp); 4038 4039 tcp->tcp_detached = B_TRUE; 4040 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4041 tcp_time_wait_append(tcp); 4042 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4043 ASSERT(connp->conn_ref >= 3); 4044 goto finish; 4045 } 4046 4047 /* 4048 * If delta is zero the timer event wasn't executed and was 4049 * successfully canceled. In this case we need to restart it 4050 * with the minimal delta possible. 4051 */ 4052 if (delta >= 0) 4053 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4054 delta ? delta : 1); 4055 4056 ASSERT(connp->conn_ref >= 3); 4057 goto finish; 4058 } 4059 4060 /* Detach did not complete. Still need to remove q from stream. */ 4061 if (msg) { 4062 if (tcp->tcp_state == TCPS_ESTABLISHED || 4063 tcp->tcp_state == TCPS_CLOSE_WAIT) 4064 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4065 if (tcp->tcp_state == TCPS_SYN_SENT || 4066 tcp->tcp_state == TCPS_SYN_RCVD) 4067 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4068 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4069 } 4070 4071 tcp_closei_local(tcp); 4072 CONN_DEC_REF(connp); 4073 ASSERT(connp->conn_ref >= 2); 4074 4075 finish: 4076 /* 4077 * Although packets are always processed on the correct 4078 * tcp's perimeter and access is serialized via squeue's, 4079 * IP still needs a queue when sending packets in time_wait 4080 * state so use WR(tcps_g_q) till ip_output() can be 4081 * changed to deal with just connp. For read side, we 4082 * could have set tcp_rq to NULL but there are some cases 4083 * in tcp_rput_data() from early days of this code which 4084 * do a putnext without checking if tcp is closed. Those 4085 * need to be identified before both tcp_rq and tcp_wq 4086 * can be set to NULL and tcps_g_q can disappear forever. 4087 */ 4088 mutex_enter(&tcp->tcp_closelock); 4089 /* 4090 * Don't change the queues in the case of a listener that has 4091 * eagers in its q or q0. It could surprise the eagers. 4092 * Instead wait for the eagers outside the squeue. 4093 */ 4094 if (!tcp->tcp_wait_for_eagers) { 4095 tcp->tcp_detached = B_TRUE; 4096 /* 4097 * When default queue is closing we set tcps_g_q to NULL 4098 * after the close is done. 4099 */ 4100 ASSERT(tcps->tcps_g_q != NULL); 4101 tcp->tcp_rq = tcps->tcps_g_q; 4102 tcp->tcp_wq = WR(tcps->tcps_g_q); 4103 } 4104 4105 /* Signal tcp_close() to finish closing. */ 4106 tcp->tcp_closed = 1; 4107 cv_signal(&tcp->tcp_closecv); 4108 mutex_exit(&tcp->tcp_closelock); 4109 } 4110 4111 4112 /* 4113 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4114 * Some stream heads get upset if they see these later on as anything but NULL. 4115 */ 4116 static void 4117 tcp_close_mpp(mblk_t **mpp) 4118 { 4119 mblk_t *mp; 4120 4121 if ((mp = *mpp) != NULL) { 4122 do { 4123 mp->b_next = NULL; 4124 mp->b_prev = NULL; 4125 } while ((mp = mp->b_cont) != NULL); 4126 4127 mp = *mpp; 4128 *mpp = NULL; 4129 freemsg(mp); 4130 } 4131 } 4132 4133 /* Do detached close. */ 4134 static void 4135 tcp_close_detached(tcp_t *tcp) 4136 { 4137 if (tcp->tcp_fused) 4138 tcp_unfuse(tcp); 4139 4140 /* 4141 * Clustering code serializes TCP disconnect callbacks and 4142 * cluster tcp list walks by blocking a TCP disconnect callback 4143 * if a cluster tcp list walk is in progress. This ensures 4144 * accurate accounting of TCPs in the cluster code even though 4145 * the TCP list walk itself is not atomic. 4146 */ 4147 tcp_closei_local(tcp); 4148 CONN_DEC_REF(tcp->tcp_connp); 4149 } 4150 4151 /* 4152 * Stop all TCP timers, and free the timer mblks if requested. 4153 */ 4154 void 4155 tcp_timers_stop(tcp_t *tcp) 4156 { 4157 if (tcp->tcp_timer_tid != 0) { 4158 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4159 tcp->tcp_timer_tid = 0; 4160 } 4161 if (tcp->tcp_ka_tid != 0) { 4162 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4163 tcp->tcp_ka_tid = 0; 4164 } 4165 if (tcp->tcp_ack_tid != 0) { 4166 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4167 tcp->tcp_ack_tid = 0; 4168 } 4169 if (tcp->tcp_push_tid != 0) { 4170 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4171 tcp->tcp_push_tid = 0; 4172 } 4173 } 4174 4175 /* 4176 * The tcp_t is going away. Remove it from all lists and set it 4177 * to TCPS_CLOSED. The freeing up of memory is deferred until 4178 * tcp_inactive. This is needed since a thread in tcp_rput might have 4179 * done a CONN_INC_REF on this structure before it was removed from the 4180 * hashes. 4181 */ 4182 static void 4183 tcp_closei_local(tcp_t *tcp) 4184 { 4185 ire_t *ire; 4186 conn_t *connp = tcp->tcp_connp; 4187 tcp_stack_t *tcps = tcp->tcp_tcps; 4188 4189 if (!TCP_IS_SOCKET(tcp)) 4190 tcp_acceptor_hash_remove(tcp); 4191 4192 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4193 tcp->tcp_ibsegs = 0; 4194 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4195 tcp->tcp_obsegs = 0; 4196 4197 /* 4198 * If we are an eager connection hanging off a listener that 4199 * hasn't formally accepted the connection yet, get off his 4200 * list and blow off any data that we have accumulated. 4201 */ 4202 if (tcp->tcp_listener != NULL) { 4203 tcp_t *listener = tcp->tcp_listener; 4204 mutex_enter(&listener->tcp_eager_lock); 4205 /* 4206 * tcp_tconnind_started == B_TRUE means that the 4207 * conn_ind has already gone to listener. At 4208 * this point, eager will be closed but we 4209 * leave it in listeners eager list so that 4210 * if listener decides to close without doing 4211 * accept, we can clean this up. In tcp_wput_accept 4212 * we take care of the case of accept on closed 4213 * eager. 4214 */ 4215 if (!tcp->tcp_tconnind_started) { 4216 tcp_eager_unlink(tcp); 4217 mutex_exit(&listener->tcp_eager_lock); 4218 /* 4219 * We don't want to have any pointers to the 4220 * listener queue, after we have released our 4221 * reference on the listener 4222 */ 4223 ASSERT(tcps->tcps_g_q != NULL); 4224 tcp->tcp_rq = tcps->tcps_g_q; 4225 tcp->tcp_wq = WR(tcps->tcps_g_q); 4226 CONN_DEC_REF(listener->tcp_connp); 4227 } else { 4228 mutex_exit(&listener->tcp_eager_lock); 4229 } 4230 } 4231 4232 /* Stop all the timers */ 4233 tcp_timers_stop(tcp); 4234 4235 if (tcp->tcp_state == TCPS_LISTEN) { 4236 if (tcp->tcp_ip_addr_cache) { 4237 kmem_free((void *)tcp->tcp_ip_addr_cache, 4238 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4239 tcp->tcp_ip_addr_cache = NULL; 4240 } 4241 } 4242 mutex_enter(&tcp->tcp_non_sq_lock); 4243 if (tcp->tcp_flow_stopped) 4244 tcp_clrqfull(tcp); 4245 mutex_exit(&tcp->tcp_non_sq_lock); 4246 4247 tcp_bind_hash_remove(tcp); 4248 /* 4249 * If the tcp_time_wait_collector (which runs outside the squeue) 4250 * is trying to remove this tcp from the time wait list, we will 4251 * block in tcp_time_wait_remove while trying to acquire the 4252 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4253 * requires the ipcl_hash_remove to be ordered after the 4254 * tcp_time_wait_remove for the refcnt checks to work correctly. 4255 */ 4256 if (tcp->tcp_state == TCPS_TIME_WAIT) 4257 (void) tcp_time_wait_remove(tcp, NULL); 4258 CL_INET_DISCONNECT(connp, tcp); 4259 ipcl_hash_remove(connp); 4260 4261 /* 4262 * Delete the cached ire in conn_ire_cache and also mark 4263 * the conn as CONDEMNED 4264 */ 4265 mutex_enter(&connp->conn_lock); 4266 connp->conn_state_flags |= CONN_CONDEMNED; 4267 ire = connp->conn_ire_cache; 4268 connp->conn_ire_cache = NULL; 4269 mutex_exit(&connp->conn_lock); 4270 if (ire != NULL) 4271 IRE_REFRELE_NOTR(ire); 4272 4273 /* Need to cleanup any pending ioctls */ 4274 ASSERT(tcp->tcp_time_wait_next == NULL); 4275 ASSERT(tcp->tcp_time_wait_prev == NULL); 4276 ASSERT(tcp->tcp_time_wait_expire == 0); 4277 tcp->tcp_state = TCPS_CLOSED; 4278 4279 /* Release any SSL context */ 4280 if (tcp->tcp_kssl_ent != NULL) { 4281 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4282 tcp->tcp_kssl_ent = NULL; 4283 } 4284 if (tcp->tcp_kssl_ctx != NULL) { 4285 kssl_release_ctx(tcp->tcp_kssl_ctx); 4286 tcp->tcp_kssl_ctx = NULL; 4287 } 4288 tcp->tcp_kssl_pending = B_FALSE; 4289 4290 tcp_ipsec_cleanup(tcp); 4291 } 4292 4293 /* 4294 * tcp is dying (called from ipcl_conn_destroy and error cases). 4295 * Free the tcp_t in either case. 4296 */ 4297 void 4298 tcp_free(tcp_t *tcp) 4299 { 4300 mblk_t *mp; 4301 ip6_pkt_t *ipp; 4302 4303 ASSERT(tcp != NULL); 4304 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4305 4306 tcp->tcp_rq = NULL; 4307 tcp->tcp_wq = NULL; 4308 4309 tcp_close_mpp(&tcp->tcp_xmit_head); 4310 tcp_close_mpp(&tcp->tcp_reass_head); 4311 if (tcp->tcp_rcv_list != NULL) { 4312 /* Free b_next chain */ 4313 tcp_close_mpp(&tcp->tcp_rcv_list); 4314 } 4315 if ((mp = tcp->tcp_urp_mp) != NULL) { 4316 freemsg(mp); 4317 } 4318 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4319 freemsg(mp); 4320 } 4321 4322 if (tcp->tcp_fused_sigurg_mp != NULL) { 4323 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4324 freeb(tcp->tcp_fused_sigurg_mp); 4325 tcp->tcp_fused_sigurg_mp = NULL; 4326 } 4327 4328 if (tcp->tcp_ordrel_mp != NULL) { 4329 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4330 freeb(tcp->tcp_ordrel_mp); 4331 tcp->tcp_ordrel_mp = NULL; 4332 } 4333 4334 if (tcp->tcp_sack_info != NULL) { 4335 if (tcp->tcp_notsack_list != NULL) { 4336 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4337 } 4338 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4339 } 4340 4341 if (tcp->tcp_hopopts != NULL) { 4342 mi_free(tcp->tcp_hopopts); 4343 tcp->tcp_hopopts = NULL; 4344 tcp->tcp_hopoptslen = 0; 4345 } 4346 ASSERT(tcp->tcp_hopoptslen == 0); 4347 if (tcp->tcp_dstopts != NULL) { 4348 mi_free(tcp->tcp_dstopts); 4349 tcp->tcp_dstopts = NULL; 4350 tcp->tcp_dstoptslen = 0; 4351 } 4352 ASSERT(tcp->tcp_dstoptslen == 0); 4353 if (tcp->tcp_rtdstopts != NULL) { 4354 mi_free(tcp->tcp_rtdstopts); 4355 tcp->tcp_rtdstopts = NULL; 4356 tcp->tcp_rtdstoptslen = 0; 4357 } 4358 ASSERT(tcp->tcp_rtdstoptslen == 0); 4359 if (tcp->tcp_rthdr != NULL) { 4360 mi_free(tcp->tcp_rthdr); 4361 tcp->tcp_rthdr = NULL; 4362 tcp->tcp_rthdrlen = 0; 4363 } 4364 ASSERT(tcp->tcp_rthdrlen == 0); 4365 4366 ipp = &tcp->tcp_sticky_ipp; 4367 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4368 IPPF_RTHDR)) 4369 ip6_pkt_free(ipp); 4370 4371 /* 4372 * Free memory associated with the tcp/ip header template. 4373 */ 4374 4375 if (tcp->tcp_iphc != NULL) 4376 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4377 4378 /* 4379 * Following is really a blowing away a union. 4380 * It happens to have exactly two members of identical size 4381 * the following code is enough. 4382 */ 4383 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4384 } 4385 4386 4387 /* 4388 * Put a connection confirmation message upstream built from the 4389 * address information within 'iph' and 'tcph'. Report our success or failure. 4390 */ 4391 static boolean_t 4392 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4393 mblk_t **defermp) 4394 { 4395 sin_t sin; 4396 sin6_t sin6; 4397 mblk_t *mp; 4398 char *optp = NULL; 4399 int optlen = 0; 4400 cred_t *cr; 4401 4402 if (defermp != NULL) 4403 *defermp = NULL; 4404 4405 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4406 /* 4407 * Return in T_CONN_CON results of option negotiation through 4408 * the T_CONN_REQ. Note: If there is an real end-to-end option 4409 * negotiation, then what is received from remote end needs 4410 * to be taken into account but there is no such thing (yet?) 4411 * in our TCP/IP. 4412 * Note: We do not use mi_offset_param() here as 4413 * tcp_opts_conn_req contents do not directly come from 4414 * an application and are either generated in kernel or 4415 * from user input that was already verified. 4416 */ 4417 mp = tcp->tcp_conn.tcp_opts_conn_req; 4418 optp = (char *)(mp->b_rptr + 4419 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4420 optlen = (int) 4421 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4422 } 4423 4424 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4425 ipha_t *ipha = (ipha_t *)iphdr; 4426 4427 /* packet is IPv4 */ 4428 if (tcp->tcp_family == AF_INET) { 4429 sin = sin_null; 4430 sin.sin_addr.s_addr = ipha->ipha_src; 4431 sin.sin_port = *(uint16_t *)tcph->th_lport; 4432 sin.sin_family = AF_INET; 4433 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4434 (int)sizeof (sin_t), optp, optlen); 4435 } else { 4436 sin6 = sin6_null; 4437 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4438 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4439 sin6.sin6_family = AF_INET6; 4440 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4441 (int)sizeof (sin6_t), optp, optlen); 4442 4443 } 4444 } else { 4445 ip6_t *ip6h = (ip6_t *)iphdr; 4446 4447 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4448 ASSERT(tcp->tcp_family == AF_INET6); 4449 sin6 = sin6_null; 4450 sin6.sin6_addr = ip6h->ip6_src; 4451 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4452 sin6.sin6_family = AF_INET6; 4453 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4454 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4455 (int)sizeof (sin6_t), optp, optlen); 4456 } 4457 4458 if (!mp) 4459 return (B_FALSE); 4460 4461 if ((cr = DB_CRED(idmp)) != NULL) { 4462 mblk_setcred(mp, cr); 4463 DB_CPID(mp) = DB_CPID(idmp); 4464 } 4465 4466 if (defermp == NULL) { 4467 conn_t *connp = tcp->tcp_connp; 4468 if (IPCL_IS_NONSTR(connp)) { 4469 (*connp->conn_upcalls->su_connected) 4470 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4471 DB_CPID(mp)); 4472 freemsg(mp); 4473 } else { 4474 putnext(tcp->tcp_rq, mp); 4475 } 4476 } else { 4477 *defermp = mp; 4478 } 4479 4480 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4481 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4482 return (B_TRUE); 4483 } 4484 4485 /* 4486 * Defense for the SYN attack - 4487 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4488 * one from the list of droppable eagers. This list is a subset of q0. 4489 * see comments before the definition of MAKE_DROPPABLE(). 4490 * 2. Don't drop a SYN request before its first timeout. This gives every 4491 * request at least til the first timeout to complete its 3-way handshake. 4492 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4493 * requests currently on the queue that has timed out. This will be used 4494 * as an indicator of whether an attack is under way, so that appropriate 4495 * actions can be taken. (It's incremented in tcp_timer() and decremented 4496 * either when eager goes into ESTABLISHED, or gets freed up.) 4497 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4498 * # of timeout drops back to <= q0len/32 => SYN alert off 4499 */ 4500 static boolean_t 4501 tcp_drop_q0(tcp_t *tcp) 4502 { 4503 tcp_t *eager; 4504 mblk_t *mp; 4505 tcp_stack_t *tcps = tcp->tcp_tcps; 4506 4507 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4508 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4509 4510 /* Pick oldest eager from the list of droppable eagers */ 4511 eager = tcp->tcp_eager_prev_drop_q0; 4512 4513 /* If list is empty. return B_FALSE */ 4514 if (eager == tcp) { 4515 return (B_FALSE); 4516 } 4517 4518 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4519 if ((mp = allocb(0, BPRI_HI)) == NULL) 4520 return (B_FALSE); 4521 4522 /* 4523 * Take this eager out from the list of droppable eagers since we are 4524 * going to drop it. 4525 */ 4526 MAKE_UNDROPPABLE(eager); 4527 4528 if (tcp->tcp_debug) { 4529 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4530 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4531 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4532 tcp->tcp_conn_req_cnt_q0, 4533 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4534 } 4535 4536 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4537 4538 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4539 CONN_INC_REF(eager->tcp_connp); 4540 4541 /* Mark the IRE created for this SYN request temporary */ 4542 tcp_ip_ire_mark_advice(eager); 4543 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4544 tcp_clean_death_wrapper, eager->tcp_connp, 4545 SQ_FILL, SQTAG_TCP_DROP_Q0); 4546 4547 return (B_TRUE); 4548 } 4549 4550 int 4551 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4552 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4553 { 4554 tcp_t *ltcp = lconnp->conn_tcp; 4555 tcp_t *tcp = connp->conn_tcp; 4556 mblk_t *tpi_mp; 4557 ipha_t *ipha; 4558 ip6_t *ip6h; 4559 sin6_t sin6; 4560 in6_addr_t v6dst; 4561 int err; 4562 int ifindex = 0; 4563 cred_t *cr; 4564 tcp_stack_t *tcps = tcp->tcp_tcps; 4565 4566 if (ipvers == IPV4_VERSION) { 4567 ipha = (ipha_t *)mp->b_rptr; 4568 4569 connp->conn_send = ip_output; 4570 connp->conn_recv = tcp_input; 4571 4572 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4573 &connp->conn_bound_source_v6); 4574 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4575 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4576 4577 sin6 = sin6_null; 4578 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4579 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4580 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4581 sin6.sin6_family = AF_INET6; 4582 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4583 lconnp->conn_zoneid, tcps->tcps_netstack); 4584 if (tcp->tcp_recvdstaddr) { 4585 sin6_t sin6d; 4586 4587 sin6d = sin6_null; 4588 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4589 &sin6d.sin6_addr); 4590 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4591 sin6d.sin6_family = AF_INET; 4592 tpi_mp = mi_tpi_extconn_ind(NULL, 4593 (char *)&sin6d, sizeof (sin6_t), 4594 (char *)&tcp, 4595 (t_scalar_t)sizeof (intptr_t), 4596 (char *)&sin6d, sizeof (sin6_t), 4597 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4598 } else { 4599 tpi_mp = mi_tpi_conn_ind(NULL, 4600 (char *)&sin6, sizeof (sin6_t), 4601 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4602 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4603 } 4604 } else { 4605 ip6h = (ip6_t *)mp->b_rptr; 4606 4607 connp->conn_send = ip_output_v6; 4608 connp->conn_recv = tcp_input; 4609 4610 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4611 connp->conn_srcv6 = ip6h->ip6_dst; 4612 connp->conn_remv6 = ip6h->ip6_src; 4613 4614 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4615 ifindex = (int)DB_CKSUMSTUFF(mp); 4616 DB_CKSUMSTUFF(mp) = 0; 4617 4618 sin6 = sin6_null; 4619 sin6.sin6_addr = ip6h->ip6_src; 4620 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4621 sin6.sin6_family = AF_INET6; 4622 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4623 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4624 lconnp->conn_zoneid, tcps->tcps_netstack); 4625 4626 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4627 /* Pass up the scope_id of remote addr */ 4628 sin6.sin6_scope_id = ifindex; 4629 } else { 4630 sin6.sin6_scope_id = 0; 4631 } 4632 if (tcp->tcp_recvdstaddr) { 4633 sin6_t sin6d; 4634 4635 sin6d = sin6_null; 4636 sin6.sin6_addr = ip6h->ip6_dst; 4637 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4638 sin6d.sin6_family = AF_INET; 4639 tpi_mp = mi_tpi_extconn_ind(NULL, 4640 (char *)&sin6d, sizeof (sin6_t), 4641 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4642 (char *)&sin6d, sizeof (sin6_t), 4643 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4644 } else { 4645 tpi_mp = mi_tpi_conn_ind(NULL, 4646 (char *)&sin6, sizeof (sin6_t), 4647 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4648 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4649 } 4650 } 4651 4652 if (tpi_mp == NULL) 4653 return (ENOMEM); 4654 4655 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4656 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4657 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4658 connp->conn_fully_bound = B_FALSE; 4659 4660 /* Inherit information from the "parent" */ 4661 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4662 tcp->tcp_family = ltcp->tcp_family; 4663 4664 tcp->tcp_wq = ltcp->tcp_wq; 4665 tcp->tcp_rq = ltcp->tcp_rq; 4666 4667 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4668 tcp->tcp_detached = B_TRUE; 4669 SOCK_CONNID_INIT(tcp->tcp_connid); 4670 if ((err = tcp_init_values(tcp)) != 0) { 4671 freemsg(tpi_mp); 4672 return (err); 4673 } 4674 4675 if (ipvers == IPV4_VERSION) { 4676 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4677 freemsg(tpi_mp); 4678 return (err); 4679 } 4680 ASSERT(tcp->tcp_ipha != NULL); 4681 } else { 4682 /* ifindex must be already set */ 4683 ASSERT(ifindex != 0); 4684 4685 if (ltcp->tcp_bound_if != 0) 4686 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4687 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4688 tcp->tcp_bound_if = ifindex; 4689 4690 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4691 tcp->tcp_recvifindex = 0; 4692 tcp->tcp_recvhops = 0xffffffffU; 4693 ASSERT(tcp->tcp_ip6h != NULL); 4694 } 4695 4696 tcp->tcp_lport = ltcp->tcp_lport; 4697 4698 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4699 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4700 /* 4701 * Listener had options of some sort; eager inherits. 4702 * Free up the eager template and allocate one 4703 * of the right size. 4704 */ 4705 if (tcp->tcp_hdr_grown) { 4706 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4707 } else { 4708 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4709 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4710 } 4711 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4712 KM_NOSLEEP); 4713 if (tcp->tcp_iphc == NULL) { 4714 tcp->tcp_iphc_len = 0; 4715 freemsg(tpi_mp); 4716 return (ENOMEM); 4717 } 4718 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4719 tcp->tcp_hdr_grown = B_TRUE; 4720 } 4721 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4722 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4723 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4724 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4725 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4726 4727 /* 4728 * Copy the IP+TCP header template from listener to eager 4729 */ 4730 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4731 if (tcp->tcp_ipversion == IPV6_VERSION) { 4732 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4733 IPPROTO_RAW) { 4734 tcp->tcp_ip6h = 4735 (ip6_t *)(tcp->tcp_iphc + 4736 sizeof (ip6i_t)); 4737 } else { 4738 tcp->tcp_ip6h = 4739 (ip6_t *)(tcp->tcp_iphc); 4740 } 4741 tcp->tcp_ipha = NULL; 4742 } else { 4743 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4744 tcp->tcp_ip6h = NULL; 4745 } 4746 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4747 tcp->tcp_ip_hdr_len); 4748 } else { 4749 /* 4750 * only valid case when ipversion of listener and 4751 * eager differ is when listener is IPv6 and 4752 * eager is IPv4. 4753 * Eager header template has been initialized to the 4754 * maximum v4 header sizes, which includes space for 4755 * TCP and IP options. 4756 */ 4757 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4758 (tcp->tcp_ipversion == IPV4_VERSION)); 4759 ASSERT(tcp->tcp_iphc_len >= 4760 TCP_MAX_COMBINED_HEADER_LENGTH); 4761 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4762 /* copy IP header fields individually */ 4763 tcp->tcp_ipha->ipha_ttl = 4764 ltcp->tcp_ip6h->ip6_hops; 4765 bcopy(ltcp->tcp_tcph->th_lport, 4766 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4767 } 4768 4769 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4770 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4771 sizeof (in_port_t)); 4772 4773 if (ltcp->tcp_lport == 0) { 4774 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4775 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4776 sizeof (in_port_t)); 4777 } 4778 4779 if (tcp->tcp_ipversion == IPV4_VERSION) { 4780 ASSERT(ipha != NULL); 4781 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4782 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4783 4784 /* Source routing option copyover (reverse it) */ 4785 if (tcps->tcps_rev_src_routes) 4786 tcp_opt_reverse(tcp, ipha); 4787 } else { 4788 ASSERT(ip6h != NULL); 4789 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4790 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4791 } 4792 4793 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4794 ASSERT(!tcp->tcp_tconnind_started); 4795 /* 4796 * If the SYN contains a credential, it's a loopback packet; attach 4797 * the credential to the TPI message. 4798 */ 4799 if ((cr = DB_CRED(idmp)) != NULL) { 4800 mblk_setcred(tpi_mp, cr); 4801 DB_CPID(tpi_mp) = DB_CPID(idmp); 4802 } 4803 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4804 4805 /* Inherit the listener's SSL protection state */ 4806 4807 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4808 kssl_hold_ent(tcp->tcp_kssl_ent); 4809 tcp->tcp_kssl_pending = B_TRUE; 4810 } 4811 4812 /* Inherit the listener's non-STREAMS flag */ 4813 if (IPCL_IS_NONSTR(lconnp)) { 4814 connp->conn_flags |= IPCL_NONSTR; 4815 connp->conn_upcalls = lconnp->conn_upcalls; 4816 } 4817 4818 return (0); 4819 } 4820 4821 4822 int 4823 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4824 tcph_t *tcph, mblk_t *idmp) 4825 { 4826 tcp_t *ltcp = lconnp->conn_tcp; 4827 tcp_t *tcp = connp->conn_tcp; 4828 sin_t sin; 4829 mblk_t *tpi_mp = NULL; 4830 int err; 4831 cred_t *cr; 4832 tcp_stack_t *tcps = tcp->tcp_tcps; 4833 4834 sin = sin_null; 4835 sin.sin_addr.s_addr = ipha->ipha_src; 4836 sin.sin_port = *(uint16_t *)tcph->th_lport; 4837 sin.sin_family = AF_INET; 4838 if (ltcp->tcp_recvdstaddr) { 4839 sin_t sind; 4840 4841 sind = sin_null; 4842 sind.sin_addr.s_addr = ipha->ipha_dst; 4843 sind.sin_port = *(uint16_t *)tcph->th_fport; 4844 sind.sin_family = AF_INET; 4845 tpi_mp = mi_tpi_extconn_ind(NULL, 4846 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4847 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4848 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4849 } else { 4850 tpi_mp = mi_tpi_conn_ind(NULL, 4851 (char *)&sin, sizeof (sin_t), 4852 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4853 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4854 } 4855 4856 if (tpi_mp == NULL) { 4857 return (ENOMEM); 4858 } 4859 4860 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4861 connp->conn_send = ip_output; 4862 connp->conn_recv = tcp_input; 4863 connp->conn_fully_bound = B_FALSE; 4864 4865 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4866 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4867 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4868 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4869 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4870 4871 /* Inherit information from the "parent" */ 4872 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4873 tcp->tcp_family = ltcp->tcp_family; 4874 tcp->tcp_wq = ltcp->tcp_wq; 4875 tcp->tcp_rq = ltcp->tcp_rq; 4876 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4877 tcp->tcp_detached = B_TRUE; 4878 SOCK_CONNID_INIT(tcp->tcp_connid); 4879 if ((err = tcp_init_values(tcp)) != 0) { 4880 freemsg(tpi_mp); 4881 return (err); 4882 } 4883 4884 /* 4885 * Let's make sure that eager tcp template has enough space to 4886 * copy IPv4 listener's tcp template. Since the conn_t structure is 4887 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4888 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4889 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4890 * extension headers or with ip6i_t struct). Note that bcopy() below 4891 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4892 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4893 */ 4894 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4895 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4896 4897 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4898 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4899 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4900 tcp->tcp_ttl = ltcp->tcp_ttl; 4901 tcp->tcp_tos = ltcp->tcp_tos; 4902 4903 /* Copy the IP+TCP header template from listener to eager */ 4904 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4905 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4906 tcp->tcp_ip6h = NULL; 4907 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4908 tcp->tcp_ip_hdr_len); 4909 4910 /* Initialize the IP addresses and Ports */ 4911 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4912 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4913 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4914 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4915 4916 /* Source routing option copyover (reverse it) */ 4917 if (tcps->tcps_rev_src_routes) 4918 tcp_opt_reverse(tcp, ipha); 4919 4920 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4921 ASSERT(!tcp->tcp_tconnind_started); 4922 4923 /* 4924 * If the SYN contains a credential, it's a loopback packet; attach 4925 * the credential to the TPI message. 4926 */ 4927 if ((cr = DB_CRED(idmp)) != NULL) { 4928 mblk_setcred(tpi_mp, cr); 4929 DB_CPID(tpi_mp) = DB_CPID(idmp); 4930 } 4931 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4932 4933 /* Inherit the listener's SSL protection state */ 4934 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4935 kssl_hold_ent(tcp->tcp_kssl_ent); 4936 tcp->tcp_kssl_pending = B_TRUE; 4937 } 4938 4939 /* Inherit the listener's non-STREAMS flag */ 4940 if (IPCL_IS_NONSTR(lconnp)) { 4941 connp->conn_flags |= IPCL_NONSTR; 4942 connp->conn_upcalls = lconnp->conn_upcalls; 4943 } 4944 4945 return (0); 4946 } 4947 4948 /* 4949 * sets up conn for ipsec. 4950 * if the first mblk is M_CTL it is consumed and mpp is updated. 4951 * in case of error mpp is freed. 4952 */ 4953 conn_t * 4954 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4955 { 4956 conn_t *connp = tcp->tcp_connp; 4957 conn_t *econnp; 4958 squeue_t *new_sqp; 4959 mblk_t *first_mp = *mpp; 4960 mblk_t *mp = *mpp; 4961 boolean_t mctl_present = B_FALSE; 4962 uint_t ipvers; 4963 4964 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4965 if (econnp == NULL) { 4966 freemsg(first_mp); 4967 return (NULL); 4968 } 4969 if (DB_TYPE(mp) == M_CTL) { 4970 if (mp->b_cont == NULL || 4971 mp->b_cont->b_datap->db_type != M_DATA) { 4972 freemsg(first_mp); 4973 return (NULL); 4974 } 4975 mp = mp->b_cont; 4976 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4977 freemsg(first_mp); 4978 return (NULL); 4979 } 4980 4981 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4982 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4983 mctl_present = B_TRUE; 4984 } else { 4985 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4986 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4987 } 4988 4989 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4990 DB_CKSUMSTART(mp) = 0; 4991 4992 ASSERT(OK_32PTR(mp->b_rptr)); 4993 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4994 if (ipvers == IPV4_VERSION) { 4995 uint16_t *up; 4996 uint32_t ports; 4997 ipha_t *ipha; 4998 4999 ipha = (ipha_t *)mp->b_rptr; 5000 up = (uint16_t *)((uchar_t *)ipha + 5001 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5002 ports = *(uint32_t *)up; 5003 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5004 ipha->ipha_dst, ipha->ipha_src, ports); 5005 } else { 5006 uint16_t *up; 5007 uint32_t ports; 5008 uint16_t ip_hdr_len; 5009 uint8_t *nexthdrp; 5010 ip6_t *ip6h; 5011 tcph_t *tcph; 5012 5013 ip6h = (ip6_t *)mp->b_rptr; 5014 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5015 ip_hdr_len = IPV6_HDR_LEN; 5016 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5017 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5018 CONN_DEC_REF(econnp); 5019 freemsg(first_mp); 5020 return (NULL); 5021 } 5022 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5023 up = (uint16_t *)tcph->th_lport; 5024 ports = *(uint32_t *)up; 5025 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5026 ip6h->ip6_dst, ip6h->ip6_src, ports); 5027 } 5028 5029 /* 5030 * The caller already ensured that there is a sqp present. 5031 */ 5032 econnp->conn_sqp = new_sqp; 5033 econnp->conn_initial_sqp = new_sqp; 5034 5035 if (connp->conn_policy != NULL) { 5036 ipsec_in_t *ii; 5037 ii = (ipsec_in_t *)(first_mp->b_rptr); 5038 ASSERT(ii->ipsec_in_policy == NULL); 5039 IPPH_REFHOLD(connp->conn_policy); 5040 ii->ipsec_in_policy = connp->conn_policy; 5041 5042 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5043 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5044 CONN_DEC_REF(econnp); 5045 freemsg(first_mp); 5046 return (NULL); 5047 } 5048 } 5049 5050 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5051 CONN_DEC_REF(econnp); 5052 freemsg(first_mp); 5053 return (NULL); 5054 } 5055 5056 /* 5057 * If we know we have some policy, pass the "IPSEC" 5058 * options size TCP uses this adjust the MSS. 5059 */ 5060 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5061 if (mctl_present) { 5062 freeb(first_mp); 5063 *mpp = mp; 5064 } 5065 5066 return (econnp); 5067 } 5068 5069 /* 5070 * tcp_get_conn/tcp_free_conn 5071 * 5072 * tcp_get_conn is used to get a clean tcp connection structure. 5073 * It tries to reuse the connections put on the freelist by the 5074 * time_wait_collector failing which it goes to kmem_cache. This 5075 * way has two benefits compared to just allocating from and 5076 * freeing to kmem_cache. 5077 * 1) The time_wait_collector can free (which includes the cleanup) 5078 * outside the squeue. So when the interrupt comes, we have a clean 5079 * connection sitting in the freelist. Obviously, this buys us 5080 * performance. 5081 * 5082 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5083 * has multiple disadvantages - tying up the squeue during alloc, and the 5084 * fact that IPSec policy initialization has to happen here which 5085 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5086 * But allocating the conn/tcp in IP land is also not the best since 5087 * we can't check the 'q' and 'q0' which are protected by squeue and 5088 * blindly allocate memory which might have to be freed here if we are 5089 * not allowed to accept the connection. By using the freelist and 5090 * putting the conn/tcp back in freelist, we don't pay a penalty for 5091 * allocating memory without checking 'q/q0' and freeing it if we can't 5092 * accept the connection. 5093 * 5094 * Care should be taken to put the conn back in the same squeue's freelist 5095 * from which it was allocated. Best results are obtained if conn is 5096 * allocated from listener's squeue and freed to the same. Time wait 5097 * collector will free up the freelist is the connection ends up sitting 5098 * there for too long. 5099 */ 5100 void * 5101 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5102 { 5103 tcp_t *tcp = NULL; 5104 conn_t *connp = NULL; 5105 squeue_t *sqp = (squeue_t *)arg; 5106 tcp_squeue_priv_t *tcp_time_wait; 5107 netstack_t *ns; 5108 5109 tcp_time_wait = 5110 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5111 5112 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5113 tcp = tcp_time_wait->tcp_free_list; 5114 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5115 if (tcp != NULL) { 5116 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5117 tcp_time_wait->tcp_free_list_cnt--; 5118 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5119 tcp->tcp_time_wait_next = NULL; 5120 connp = tcp->tcp_connp; 5121 connp->conn_flags |= IPCL_REUSED; 5122 5123 ASSERT(tcp->tcp_tcps == NULL); 5124 ASSERT(connp->conn_netstack == NULL); 5125 ASSERT(tcp->tcp_rsrv_mp != NULL); 5126 ns = tcps->tcps_netstack; 5127 netstack_hold(ns); 5128 connp->conn_netstack = ns; 5129 tcp->tcp_tcps = tcps; 5130 TCPS_REFHOLD(tcps); 5131 ipcl_globalhash_insert(connp); 5132 return ((void *)connp); 5133 } 5134 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5135 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5136 tcps->tcps_netstack)) == NULL) 5137 return (NULL); 5138 tcp = connp->conn_tcp; 5139 /* 5140 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5141 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5142 */ 5143 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5144 ipcl_conn_destroy(connp); 5145 return (NULL); 5146 } 5147 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5148 tcp->tcp_tcps = tcps; 5149 TCPS_REFHOLD(tcps); 5150 5151 return ((void *)connp); 5152 } 5153 5154 /* 5155 * Update the cached label for the given tcp_t. This should be called once per 5156 * connection, and before any packets are sent or tcp_process_options is 5157 * invoked. Returns B_FALSE if the correct label could not be constructed. 5158 */ 5159 static boolean_t 5160 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5161 { 5162 conn_t *connp = tcp->tcp_connp; 5163 5164 if (tcp->tcp_ipversion == IPV4_VERSION) { 5165 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5166 int added; 5167 5168 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5169 connp->conn_mac_exempt, 5170 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5171 return (B_FALSE); 5172 5173 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5174 if (added == -1) 5175 return (B_FALSE); 5176 tcp->tcp_hdr_len += added; 5177 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5178 tcp->tcp_ip_hdr_len += added; 5179 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5180 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5181 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5182 tcp->tcp_hdr_len); 5183 if (added == -1) 5184 return (B_FALSE); 5185 tcp->tcp_hdr_len += added; 5186 tcp->tcp_tcph = (tcph_t *) 5187 ((uchar_t *)tcp->tcp_tcph + added); 5188 tcp->tcp_ip_hdr_len += added; 5189 } 5190 } else { 5191 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5192 5193 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5194 connp->conn_mac_exempt, 5195 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5196 return (B_FALSE); 5197 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5198 &tcp->tcp_label_len, optbuf) != 0) 5199 return (B_FALSE); 5200 if (tcp_build_hdrs(tcp) != 0) 5201 return (B_FALSE); 5202 } 5203 5204 connp->conn_ulp_labeled = 1; 5205 5206 return (B_TRUE); 5207 } 5208 5209 /* BEGIN CSTYLED */ 5210 /* 5211 * 5212 * The sockfs ACCEPT path: 5213 * ======================= 5214 * 5215 * The eager is now established in its own perimeter as soon as SYN is 5216 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5217 * completes the accept processing on the acceptor STREAM. The sending 5218 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5219 * listener but a TLI/XTI listener completes the accept processing 5220 * on the listener perimeter. 5221 * 5222 * Common control flow for 3 way handshake: 5223 * ---------------------------------------- 5224 * 5225 * incoming SYN (listener perimeter) -> tcp_rput_data() 5226 * -> tcp_conn_request() 5227 * 5228 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5229 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5230 * 5231 * Sockfs ACCEPT Path: 5232 * ------------------- 5233 * 5234 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5235 * as STREAM entry point) 5236 * 5237 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5238 * 5239 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5240 * association (we are not behind eager's squeue but sockfs is protecting us 5241 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5242 * is changed to point at tcp_wput(). 5243 * 5244 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5245 * listener (done on listener's perimeter). 5246 * 5247 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5248 * accept. 5249 * 5250 * TLI/XTI client ACCEPT path: 5251 * --------------------------- 5252 * 5253 * soaccept() sends T_CONN_RES on the listener STREAM. 5254 * 5255 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5256 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5257 * 5258 * Locks: 5259 * ====== 5260 * 5261 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5262 * and listeners->tcp_eager_next_q. 5263 * 5264 * Referencing: 5265 * ============ 5266 * 5267 * 1) We start out in tcp_conn_request by eager placing a ref on 5268 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5269 * 5270 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5271 * doing so we place a ref on the eager. This ref is finally dropped at the 5272 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5273 * reference is dropped by the squeue framework. 5274 * 5275 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5276 * 5277 * The reference must be released by the same entity that added the reference 5278 * In the above scheme, the eager is the entity that adds and releases the 5279 * references. Note that tcp_accept_finish executes in the squeue of the eager 5280 * (albeit after it is attached to the acceptor stream). Though 1. executes 5281 * in the listener's squeue, the eager is nascent at this point and the 5282 * reference can be considered to have been added on behalf of the eager. 5283 * 5284 * Eager getting a Reset or listener closing: 5285 * ========================================== 5286 * 5287 * Once the listener and eager are linked, the listener never does the unlink. 5288 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5289 * a message on all eager perimeter. The eager then does the unlink, clears 5290 * any pointers to the listener's queue and drops the reference to the 5291 * listener. The listener waits in tcp_close outside the squeue until its 5292 * refcount has dropped to 1. This ensures that the listener has waited for 5293 * all eagers to clear their association with the listener. 5294 * 5295 * Similarly, if eager decides to go away, it can unlink itself and close. 5296 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5297 * the reference to eager is still valid because of the extra ref we put 5298 * in tcp_send_conn_ind. 5299 * 5300 * Listener can always locate the eager under the protection 5301 * of the listener->tcp_eager_lock, and then do a refhold 5302 * on the eager during the accept processing. 5303 * 5304 * The acceptor stream accesses the eager in the accept processing 5305 * based on the ref placed on eager before sending T_conn_ind. 5306 * The only entity that can negate this refhold is a listener close 5307 * which is mutually exclusive with an active acceptor stream. 5308 * 5309 * Eager's reference on the listener 5310 * =================================== 5311 * 5312 * If the accept happens (even on a closed eager) the eager drops its 5313 * reference on the listener at the start of tcp_accept_finish. If the 5314 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5315 * the reference is dropped in tcp_closei_local. If the listener closes, 5316 * the reference is dropped in tcp_eager_kill. In all cases the reference 5317 * is dropped while executing in the eager's context (squeue). 5318 */ 5319 /* END CSTYLED */ 5320 5321 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5322 5323 /* 5324 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5325 * tcp_rput_data will not see any SYN packets. 5326 */ 5327 /* ARGSUSED */ 5328 void 5329 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5330 { 5331 tcph_t *tcph; 5332 uint32_t seg_seq; 5333 tcp_t *eager; 5334 uint_t ipvers; 5335 ipha_t *ipha; 5336 ip6_t *ip6h; 5337 int err; 5338 conn_t *econnp = NULL; 5339 squeue_t *new_sqp; 5340 mblk_t *mp1; 5341 uint_t ip_hdr_len; 5342 conn_t *connp = (conn_t *)arg; 5343 tcp_t *tcp = connp->conn_tcp; 5344 cred_t *credp; 5345 tcp_stack_t *tcps = tcp->tcp_tcps; 5346 ip_stack_t *ipst; 5347 5348 if (tcp->tcp_state != TCPS_LISTEN) 5349 goto error2; 5350 5351 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5352 5353 mutex_enter(&tcp->tcp_eager_lock); 5354 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5355 mutex_exit(&tcp->tcp_eager_lock); 5356 TCP_STAT(tcps, tcp_listendrop); 5357 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5358 if (tcp->tcp_debug) { 5359 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5360 "tcp_conn_request: listen backlog (max=%d) " 5361 "overflow (%d pending) on %s", 5362 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5363 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5364 } 5365 goto error2; 5366 } 5367 5368 if (tcp->tcp_conn_req_cnt_q0 >= 5369 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5370 /* 5371 * Q0 is full. Drop a pending half-open req from the queue 5372 * to make room for the new SYN req. Also mark the time we 5373 * drop a SYN. 5374 * 5375 * A more aggressive defense against SYN attack will 5376 * be to set the "tcp_syn_defense" flag now. 5377 */ 5378 TCP_STAT(tcps, tcp_listendropq0); 5379 tcp->tcp_last_rcv_lbolt = lbolt64; 5380 if (!tcp_drop_q0(tcp)) { 5381 mutex_exit(&tcp->tcp_eager_lock); 5382 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5383 if (tcp->tcp_debug) { 5384 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5385 "tcp_conn_request: listen half-open queue " 5386 "(max=%d) full (%d pending) on %s", 5387 tcps->tcps_conn_req_max_q0, 5388 tcp->tcp_conn_req_cnt_q0, 5389 tcp_display(tcp, NULL, 5390 DISP_PORT_ONLY)); 5391 } 5392 goto error2; 5393 } 5394 } 5395 mutex_exit(&tcp->tcp_eager_lock); 5396 5397 /* 5398 * IP adds STRUIO_EAGER and ensures that the received packet is 5399 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5400 * link local address. If IPSec is enabled, db_struioflag has 5401 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5402 * otherwise an error case if neither of them is set. 5403 */ 5404 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5405 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5406 DB_CKSUMSTART(mp) = 0; 5407 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5408 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5409 if (econnp == NULL) 5410 goto error2; 5411 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5412 econnp->conn_sqp = new_sqp; 5413 econnp->conn_initial_sqp = new_sqp; 5414 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5415 /* 5416 * mp is updated in tcp_get_ipsec_conn(). 5417 */ 5418 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5419 if (econnp == NULL) { 5420 /* 5421 * mp freed by tcp_get_ipsec_conn. 5422 */ 5423 return; 5424 } 5425 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5426 } else { 5427 goto error2; 5428 } 5429 5430 ASSERT(DB_TYPE(mp) == M_DATA); 5431 5432 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5433 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5434 ASSERT(OK_32PTR(mp->b_rptr)); 5435 if (ipvers == IPV4_VERSION) { 5436 ipha = (ipha_t *)mp->b_rptr; 5437 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5438 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5439 } else { 5440 ip6h = (ip6_t *)mp->b_rptr; 5441 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5442 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5443 } 5444 5445 if (tcp->tcp_family == AF_INET) { 5446 ASSERT(ipvers == IPV4_VERSION); 5447 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5448 } else { 5449 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5450 } 5451 5452 if (err) 5453 goto error3; 5454 5455 eager = econnp->conn_tcp; 5456 5457 /* 5458 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close 5459 * time, we will always have that to send up. Otherwise, we need to do 5460 * special handling in case the allocation fails at that time. 5461 */ 5462 ASSERT(eager->tcp_ordrel_mp == NULL); 5463 if (!IPCL_IS_NONSTR(econnp) && 5464 (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5465 goto error3; 5466 5467 /* Inherit various TCP parameters from the listener */ 5468 eager->tcp_naglim = tcp->tcp_naglim; 5469 eager->tcp_first_timer_threshold = 5470 tcp->tcp_first_timer_threshold; 5471 eager->tcp_second_timer_threshold = 5472 tcp->tcp_second_timer_threshold; 5473 5474 eager->tcp_first_ctimer_threshold = 5475 tcp->tcp_first_ctimer_threshold; 5476 eager->tcp_second_ctimer_threshold = 5477 tcp->tcp_second_ctimer_threshold; 5478 5479 /* 5480 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5481 * If it does not, the eager's receive window will be set to the 5482 * listener's receive window later in this function. 5483 */ 5484 eager->tcp_rwnd = 0; 5485 5486 /* 5487 * Inherit listener's tcp_init_cwnd. Need to do this before 5488 * calling tcp_process_options() where tcp_mss_set() is called 5489 * to set the initial cwnd. 5490 */ 5491 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5492 5493 /* 5494 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5495 * zone id before the accept is completed in tcp_wput_accept(). 5496 */ 5497 econnp->conn_zoneid = connp->conn_zoneid; 5498 econnp->conn_allzones = connp->conn_allzones; 5499 5500 /* Copy nexthop information from listener to eager */ 5501 if (connp->conn_nexthop_set) { 5502 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5503 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5504 } 5505 5506 /* 5507 * TSOL: tsol_input_proc() needs the eager's cred before the 5508 * eager is accepted 5509 */ 5510 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5511 crhold(credp); 5512 5513 /* 5514 * If the caller has the process-wide flag set, then default to MAC 5515 * exempt mode. This allows read-down to unlabeled hosts. 5516 */ 5517 if (getpflags(NET_MAC_AWARE, credp) != 0) 5518 econnp->conn_mac_exempt = B_TRUE; 5519 5520 if (is_system_labeled()) { 5521 cred_t *cr; 5522 5523 if (connp->conn_mlp_type != mlptSingle) { 5524 cr = econnp->conn_peercred = DB_CRED(mp); 5525 if (cr != NULL) 5526 crhold(cr); 5527 else 5528 cr = econnp->conn_cred; 5529 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5530 econnp, cred_t *, cr) 5531 } else { 5532 cr = econnp->conn_cred; 5533 DTRACE_PROBE2(syn_accept, conn_t *, 5534 econnp, cred_t *, cr) 5535 } 5536 5537 if (!tcp_update_label(eager, cr)) { 5538 DTRACE_PROBE3( 5539 tx__ip__log__error__connrequest__tcp, 5540 char *, "eager connp(1) label on SYN mp(2) failed", 5541 conn_t *, econnp, mblk_t *, mp); 5542 goto error3; 5543 } 5544 } 5545 5546 eager->tcp_hard_binding = B_TRUE; 5547 5548 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5549 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5550 5551 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5552 if (err != 0) { 5553 tcp_bind_hash_remove(eager); 5554 goto error3; 5555 } 5556 5557 /* 5558 * No need to check for multicast destination since ip will only pass 5559 * up multicasts to those that have expressed interest 5560 * TODO: what about rejecting broadcasts? 5561 * Also check that source is not a multicast or broadcast address. 5562 */ 5563 eager->tcp_state = TCPS_SYN_RCVD; 5564 5565 5566 /* 5567 * There should be no ire in the mp as we are being called after 5568 * receiving the SYN. 5569 */ 5570 ASSERT(tcp_ire_mp(&mp) == NULL); 5571 5572 /* 5573 * Adapt our mss, ttl, ... according to information provided in IRE. 5574 */ 5575 5576 if (tcp_adapt_ire(eager, NULL) == 0) { 5577 /* Undo the bind_hash_insert */ 5578 tcp_bind_hash_remove(eager); 5579 goto error3; 5580 } 5581 5582 /* Process all TCP options. */ 5583 tcp_process_options(eager, tcph); 5584 5585 /* Is the other end ECN capable? */ 5586 if (tcps->tcps_ecn_permitted >= 1 && 5587 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5588 eager->tcp_ecn_ok = B_TRUE; 5589 } 5590 5591 /* 5592 * listener->tcp_rq->q_hiwat should be the default window size or a 5593 * window size changed via SO_RCVBUF option. First round up the 5594 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5595 * scale option value if needed. Call tcp_rwnd_set() to finish the 5596 * setting. 5597 * 5598 * Note if there is a rpipe metric associated with the remote host, 5599 * we should not inherit receive window size from listener. 5600 */ 5601 eager->tcp_rwnd = MSS_ROUNDUP( 5602 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5603 eager->tcp_rwnd), eager->tcp_mss); 5604 if (eager->tcp_snd_ws_ok) 5605 tcp_set_ws_value(eager); 5606 /* 5607 * Note that this is the only place tcp_rwnd_set() is called for 5608 * accepting a connection. We need to call it here instead of 5609 * after the 3-way handshake because we need to tell the other 5610 * side our rwnd in the SYN-ACK segment. 5611 */ 5612 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5613 5614 /* 5615 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5616 * via soaccept()->soinheritoptions() which essentially applies 5617 * all the listener options to the new STREAM. The options that we 5618 * need to take care of are: 5619 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5620 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5621 * SO_SNDBUF, SO_RCVBUF. 5622 * 5623 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5624 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5625 * tcp_maxpsz_set() gets called later from 5626 * tcp_accept_finish(), the option takes effect. 5627 * 5628 */ 5629 /* Set the TCP options */ 5630 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5631 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5632 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5633 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5634 eager->tcp_oobinline = tcp->tcp_oobinline; 5635 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5636 eager->tcp_broadcast = tcp->tcp_broadcast; 5637 eager->tcp_useloopback = tcp->tcp_useloopback; 5638 eager->tcp_dontroute = tcp->tcp_dontroute; 5639 eager->tcp_debug = tcp->tcp_debug; 5640 eager->tcp_linger = tcp->tcp_linger; 5641 eager->tcp_lingertime = tcp->tcp_lingertime; 5642 if (tcp->tcp_ka_enabled) 5643 eager->tcp_ka_enabled = 1; 5644 5645 /* Set the IP options */ 5646 econnp->conn_broadcast = connp->conn_broadcast; 5647 econnp->conn_loopback = connp->conn_loopback; 5648 econnp->conn_dontroute = connp->conn_dontroute; 5649 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5650 5651 /* Put a ref on the listener for the eager. */ 5652 CONN_INC_REF(connp); 5653 mutex_enter(&tcp->tcp_eager_lock); 5654 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5655 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5656 tcp->tcp_eager_next_q0 = eager; 5657 eager->tcp_eager_prev_q0 = tcp; 5658 5659 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5660 eager->tcp_listener = tcp; 5661 eager->tcp_saved_listener = tcp; 5662 5663 /* 5664 * Tag this detached tcp vector for later retrieval 5665 * by our listener client in tcp_accept(). 5666 */ 5667 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5668 tcp->tcp_conn_req_cnt_q0++; 5669 if (++tcp->tcp_conn_req_seqnum == -1) { 5670 /* 5671 * -1 is "special" and defined in TPI as something 5672 * that should never be used in T_CONN_IND 5673 */ 5674 ++tcp->tcp_conn_req_seqnum; 5675 } 5676 mutex_exit(&tcp->tcp_eager_lock); 5677 5678 if (tcp->tcp_syn_defense) { 5679 /* Don't drop the SYN that comes from a good IP source */ 5680 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5681 if (addr_cache != NULL && eager->tcp_remote == 5682 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5683 eager->tcp_dontdrop = B_TRUE; 5684 } 5685 } 5686 5687 /* 5688 * We need to insert the eager in its own perimeter but as soon 5689 * as we do that, we expose the eager to the classifier and 5690 * should not touch any field outside the eager's perimeter. 5691 * So do all the work necessary before inserting the eager 5692 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5693 * will succeed but undo everything if it fails. 5694 */ 5695 seg_seq = ABE32_TO_U32(tcph->th_seq); 5696 eager->tcp_irs = seg_seq; 5697 eager->tcp_rack = seg_seq; 5698 eager->tcp_rnxt = seg_seq + 1; 5699 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5700 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5701 eager->tcp_state = TCPS_SYN_RCVD; 5702 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5703 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5704 if (mp1 == NULL) { 5705 /* 5706 * Increment the ref count as we are going to 5707 * enqueueing an mp in squeue 5708 */ 5709 CONN_INC_REF(econnp); 5710 goto error; 5711 } 5712 5713 DB_CPID(mp1) = tcp->tcp_cpid; 5714 mblk_setcred(mp1, CONN_CRED(eager->tcp_connp)); 5715 eager->tcp_cpid = tcp->tcp_cpid; 5716 eager->tcp_open_time = lbolt64; 5717 5718 /* 5719 * We need to start the rto timer. In normal case, we start 5720 * the timer after sending the packet on the wire (or at 5721 * least believing that packet was sent by waiting for 5722 * CALL_IP_WPUT() to return). Since this is the first packet 5723 * being sent on the wire for the eager, our initial tcp_rto 5724 * is at least tcp_rexmit_interval_min which is a fairly 5725 * large value to allow the algorithm to adjust slowly to large 5726 * fluctuations of RTT during first few transmissions. 5727 * 5728 * Starting the timer first and then sending the packet in this 5729 * case shouldn't make much difference since tcp_rexmit_interval_min 5730 * is of the order of several 100ms and starting the timer 5731 * first and then sending the packet will result in difference 5732 * of few micro seconds. 5733 * 5734 * Without this optimization, we are forced to hold the fanout 5735 * lock across the ipcl_bind_insert() and sending the packet 5736 * so that we don't race against an incoming packet (maybe RST) 5737 * for this eager. 5738 * 5739 * It is necessary to acquire an extra reference on the eager 5740 * at this point and hold it until after tcp_send_data() to 5741 * ensure against an eager close race. 5742 */ 5743 5744 CONN_INC_REF(eager->tcp_connp); 5745 5746 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5747 5748 /* 5749 * Insert the eager in its own perimeter now. We are ready to deal 5750 * with any packets on eager. 5751 */ 5752 if (eager->tcp_ipversion == IPV4_VERSION) { 5753 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5754 goto error; 5755 } 5756 } else { 5757 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5758 goto error; 5759 } 5760 } 5761 5762 /* mark conn as fully-bound */ 5763 econnp->conn_fully_bound = B_TRUE; 5764 5765 /* Send the SYN-ACK */ 5766 tcp_send_data(eager, eager->tcp_wq, mp1); 5767 CONN_DEC_REF(eager->tcp_connp); 5768 freemsg(mp); 5769 5770 return; 5771 error: 5772 freemsg(mp1); 5773 eager->tcp_closemp_used = B_TRUE; 5774 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5775 mp1 = &eager->tcp_closemp; 5776 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5777 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5778 5779 /* 5780 * If a connection already exists, send the mp to that connections so 5781 * that it can be appropriately dealt with. 5782 */ 5783 ipst = tcps->tcps_netstack->netstack_ip; 5784 5785 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5786 if (!IPCL_IS_CONNECTED(econnp)) { 5787 /* 5788 * Something bad happened. ipcl_conn_insert() 5789 * failed because a connection already existed 5790 * in connected hash but we can't find it 5791 * anymore (someone blew it away). Just 5792 * free this message and hopefully remote 5793 * will retransmit at which time the SYN can be 5794 * treated as a new connection or dealth with 5795 * a TH_RST if a connection already exists. 5796 */ 5797 CONN_DEC_REF(econnp); 5798 freemsg(mp); 5799 } else { 5800 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5801 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5802 } 5803 } else { 5804 /* Nobody wants this packet */ 5805 freemsg(mp); 5806 } 5807 return; 5808 error3: 5809 CONN_DEC_REF(econnp); 5810 error2: 5811 freemsg(mp); 5812 } 5813 5814 /* 5815 * In an ideal case of vertical partition in NUMA architecture, its 5816 * beneficial to have the listener and all the incoming connections 5817 * tied to the same squeue. The other constraint is that incoming 5818 * connections should be tied to the squeue attached to interrupted 5819 * CPU for obvious locality reason so this leaves the listener to 5820 * be tied to the same squeue. Our only problem is that when listener 5821 * is binding, the CPU that will get interrupted by the NIC whose 5822 * IP address the listener is binding to is not even known. So 5823 * the code below allows us to change that binding at the time the 5824 * CPU is interrupted by virtue of incoming connection's squeue. 5825 * 5826 * This is usefull only in case of a listener bound to a specific IP 5827 * address. For other kind of listeners, they get bound the 5828 * very first time and there is no attempt to rebind them. 5829 */ 5830 void 5831 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5832 { 5833 conn_t *connp = (conn_t *)arg; 5834 squeue_t *sqp = (squeue_t *)arg2; 5835 squeue_t *new_sqp; 5836 uint32_t conn_flags; 5837 5838 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5839 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5840 } else { 5841 goto done; 5842 } 5843 5844 if (connp->conn_fanout == NULL) 5845 goto done; 5846 5847 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5848 mutex_enter(&connp->conn_fanout->connf_lock); 5849 mutex_enter(&connp->conn_lock); 5850 /* 5851 * No one from read or write side can access us now 5852 * except for already queued packets on this squeue. 5853 * But since we haven't changed the squeue yet, they 5854 * can't execute. If they are processed after we have 5855 * changed the squeue, they are sent back to the 5856 * correct squeue down below. 5857 * But a listner close can race with processing of 5858 * incoming SYN. If incoming SYN processing changes 5859 * the squeue then the listener close which is waiting 5860 * to enter the squeue would operate on the wrong 5861 * squeue. Hence we don't change the squeue here unless 5862 * the refcount is exactly the minimum refcount. The 5863 * minimum refcount of 4 is counted as - 1 each for 5864 * TCP and IP, 1 for being in the classifier hash, and 5865 * 1 for the mblk being processed. 5866 */ 5867 5868 if (connp->conn_ref != 4 || 5869 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5870 mutex_exit(&connp->conn_lock); 5871 mutex_exit(&connp->conn_fanout->connf_lock); 5872 goto done; 5873 } 5874 if (connp->conn_sqp != new_sqp) { 5875 while (connp->conn_sqp != new_sqp) 5876 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5877 } 5878 5879 do { 5880 conn_flags = connp->conn_flags; 5881 conn_flags |= IPCL_FULLY_BOUND; 5882 (void) cas32(&connp->conn_flags, connp->conn_flags, 5883 conn_flags); 5884 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5885 5886 mutex_exit(&connp->conn_fanout->connf_lock); 5887 mutex_exit(&connp->conn_lock); 5888 } 5889 5890 done: 5891 if (connp->conn_sqp != sqp) { 5892 CONN_INC_REF(connp); 5893 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5894 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5895 } else { 5896 tcp_conn_request(connp, mp, sqp); 5897 } 5898 } 5899 5900 /* 5901 * Successful connect request processing begins when our client passes 5902 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5903 * our T_OK_ACK reply message upstream. The control flow looks like this: 5904 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5905 * upstream <- tcp_rput() <- IP 5906 * After various error checks are completed, tcp_tpi_connect() lays 5907 * the target address and port into the composite header template, 5908 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5909 * request followed by an IRE request, and passes the three mblk message 5910 * down to IP looking like this: 5911 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5912 * Processing continues in tcp_rput() when we receive the following message: 5913 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5914 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5915 * to fire off the connection request, and then passes the T_OK_ACK mblk 5916 * upstream that we filled in below. There are, of course, numerous 5917 * error conditions along the way which truncate the processing described 5918 * above. 5919 */ 5920 static void 5921 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5922 { 5923 sin_t *sin; 5924 queue_t *q = tcp->tcp_wq; 5925 struct T_conn_req *tcr; 5926 struct sockaddr *sa; 5927 socklen_t len; 5928 int error; 5929 5930 tcr = (struct T_conn_req *)mp->b_rptr; 5931 5932 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5933 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5934 tcp_err_ack(tcp, mp, TPROTO, 0); 5935 return; 5936 } 5937 5938 /* 5939 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5940 * will always have that to send up. Otherwise, we need to do 5941 * special handling in case the allocation fails at that time. 5942 * If the end point is TPI, the tcp_t can be reused and the 5943 * tcp_ordrel_mp may be allocated already. 5944 */ 5945 if (tcp->tcp_ordrel_mp == NULL) { 5946 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5947 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5948 return; 5949 } 5950 } 5951 5952 /* 5953 * Determine packet type based on type of address passed in 5954 * the request should contain an IPv4 or IPv6 address. 5955 * Make sure that address family matches the type of 5956 * family of the the address passed down 5957 */ 5958 switch (tcr->DEST_length) { 5959 default: 5960 tcp_err_ack(tcp, mp, TBADADDR, 0); 5961 return; 5962 5963 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5964 /* 5965 * XXX: The check for valid DEST_length was not there 5966 * in earlier releases and some buggy 5967 * TLI apps (e.g Sybase) got away with not feeding 5968 * in sin_zero part of address. 5969 * We allow that bug to keep those buggy apps humming. 5970 * Test suites require the check on DEST_length. 5971 * We construct a new mblk with valid DEST_length 5972 * free the original so the rest of the code does 5973 * not have to keep track of this special shorter 5974 * length address case. 5975 */ 5976 mblk_t *nmp; 5977 struct T_conn_req *ntcr; 5978 sin_t *nsin; 5979 5980 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5981 tcr->OPT_length, BPRI_HI); 5982 if (nmp == NULL) { 5983 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5984 return; 5985 } 5986 ntcr = (struct T_conn_req *)nmp->b_rptr; 5987 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5988 ntcr->PRIM_type = T_CONN_REQ; 5989 ntcr->DEST_length = sizeof (sin_t); 5990 ntcr->DEST_offset = sizeof (struct T_conn_req); 5991 5992 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5993 *nsin = sin_null; 5994 /* Get pointer to shorter address to copy from original mp */ 5995 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5996 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5997 if (sin == NULL || !OK_32PTR((char *)sin)) { 5998 freemsg(nmp); 5999 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6000 return; 6001 } 6002 nsin->sin_family = sin->sin_family; 6003 nsin->sin_port = sin->sin_port; 6004 nsin->sin_addr = sin->sin_addr; 6005 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6006 nmp->b_wptr = (uchar_t *)&nsin[1]; 6007 if (tcr->OPT_length != 0) { 6008 ntcr->OPT_length = tcr->OPT_length; 6009 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6010 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6011 (uchar_t *)ntcr + ntcr->OPT_offset, 6012 tcr->OPT_length); 6013 nmp->b_wptr += tcr->OPT_length; 6014 } 6015 freemsg(mp); /* original mp freed */ 6016 mp = nmp; /* re-initialize original variables */ 6017 tcr = ntcr; 6018 } 6019 /* FALLTHRU */ 6020 6021 case sizeof (sin_t): 6022 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6023 sizeof (sin_t)); 6024 len = sizeof (sin_t); 6025 break; 6026 6027 case sizeof (sin6_t): 6028 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6029 sizeof (sin6_t)); 6030 len = sizeof (sin6_t); 6031 break; 6032 } 6033 6034 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6035 if (error != 0) { 6036 tcp_err_ack(tcp, mp, TSYSERR, error); 6037 return; 6038 } 6039 6040 /* 6041 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6042 * should key on their sequence number and cut them loose. 6043 */ 6044 6045 /* 6046 * If options passed in, feed it for verification and handling 6047 */ 6048 if (tcr->OPT_length != 0) { 6049 mblk_t *ok_mp; 6050 mblk_t *discon_mp; 6051 mblk_t *conn_opts_mp; 6052 int t_error, sys_error, do_disconnect; 6053 6054 conn_opts_mp = NULL; 6055 6056 if (tcp_conprim_opt_process(tcp, mp, 6057 &do_disconnect, &t_error, &sys_error) < 0) { 6058 if (do_disconnect) { 6059 ASSERT(t_error == 0 && sys_error == 0); 6060 discon_mp = mi_tpi_discon_ind(NULL, 6061 ECONNREFUSED, 0); 6062 if (!discon_mp) { 6063 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6064 TSYSERR, ENOMEM); 6065 return; 6066 } 6067 ok_mp = mi_tpi_ok_ack_alloc(mp); 6068 if (!ok_mp) { 6069 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6070 TSYSERR, ENOMEM); 6071 return; 6072 } 6073 qreply(q, ok_mp); 6074 qreply(q, discon_mp); /* no flush! */ 6075 } else { 6076 ASSERT(t_error != 0); 6077 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6078 sys_error); 6079 } 6080 return; 6081 } 6082 /* 6083 * Success in setting options, the mp option buffer represented 6084 * by OPT_length/offset has been potentially modified and 6085 * contains results of option processing. We copy it in 6086 * another mp to save it for potentially influencing returning 6087 * it in T_CONN_CONN. 6088 */ 6089 if (tcr->OPT_length != 0) { /* there are resulting options */ 6090 conn_opts_mp = copyb(mp); 6091 if (!conn_opts_mp) { 6092 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6093 TSYSERR, ENOMEM); 6094 return; 6095 } 6096 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6097 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6098 /* 6099 * Note: 6100 * These resulting option negotiation can include any 6101 * end-to-end negotiation options but there no such 6102 * thing (yet?) in our TCP/IP. 6103 */ 6104 } 6105 } 6106 6107 /* call the non-TPI version */ 6108 error = tcp_do_connect(tcp->tcp_connp, sa, len, DB_CRED(mp), 6109 DB_CPID(mp)); 6110 if (error < 0) { 6111 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6112 } else if (error > 0) { 6113 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6114 } else { 6115 mp = mi_tpi_ok_ack_alloc(mp); 6116 } 6117 6118 /* 6119 * Note: Code below is the "failure" case 6120 */ 6121 /* return error ack and blow away saved option results if any */ 6122 connect_failed: 6123 if (mp != NULL) 6124 putnext(tcp->tcp_rq, mp); 6125 else { 6126 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6127 TSYSERR, ENOMEM); 6128 } 6129 } 6130 6131 /* 6132 * Handle connect to IPv4 destinations, including connections for AF_INET6 6133 * sockets connecting to IPv4 mapped IPv6 destinations. 6134 */ 6135 static int 6136 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6137 uint_t srcid, cred_t *cr, pid_t pid) 6138 { 6139 tcph_t *tcph; 6140 mblk_t *mp; 6141 ipaddr_t dstaddr = *dstaddrp; 6142 int32_t oldstate; 6143 uint16_t lport; 6144 int error = 0; 6145 tcp_stack_t *tcps = tcp->tcp_tcps; 6146 6147 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6148 6149 /* Check for attempt to connect to INADDR_ANY */ 6150 if (dstaddr == INADDR_ANY) { 6151 /* 6152 * SunOS 4.x and 4.3 BSD allow an application 6153 * to connect a TCP socket to INADDR_ANY. 6154 * When they do this, the kernel picks the 6155 * address of one interface and uses it 6156 * instead. The kernel usually ends up 6157 * picking the address of the loopback 6158 * interface. This is an undocumented feature. 6159 * However, we provide the same thing here 6160 * in order to have source and binary 6161 * compatibility with SunOS 4.x. 6162 * Update the T_CONN_REQ (sin/sin6) since it is used to 6163 * generate the T_CONN_CON. 6164 */ 6165 dstaddr = htonl(INADDR_LOOPBACK); 6166 *dstaddrp = dstaddr; 6167 } 6168 6169 /* Handle __sin6_src_id if socket not bound to an IP address */ 6170 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6171 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6172 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6173 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6174 tcp->tcp_ipha->ipha_src); 6175 } 6176 6177 /* 6178 * Don't let an endpoint connect to itself. Note that 6179 * the test here does not catch the case where the 6180 * source IP addr was left unspecified by the user. In 6181 * this case, the source addr is set in tcp_adapt_ire() 6182 * using the reply to the T_BIND message that we send 6183 * down to IP here and the check is repeated in tcp_rput_other. 6184 */ 6185 if (dstaddr == tcp->tcp_ipha->ipha_src && 6186 dstport == tcp->tcp_lport) { 6187 error = -TBADADDR; 6188 goto failed; 6189 } 6190 6191 tcp->tcp_ipha->ipha_dst = dstaddr; 6192 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6193 6194 /* 6195 * Massage a source route if any putting the first hop 6196 * in iph_dst. Compute a starting value for the checksum which 6197 * takes into account that the original iph_dst should be 6198 * included in the checksum but that ip will include the 6199 * first hop in the source route in the tcp checksum. 6200 */ 6201 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6202 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6203 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6204 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6205 if ((int)tcp->tcp_sum < 0) 6206 tcp->tcp_sum--; 6207 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6208 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6209 (tcp->tcp_sum >> 16)); 6210 tcph = tcp->tcp_tcph; 6211 *(uint16_t *)tcph->th_fport = dstport; 6212 tcp->tcp_fport = dstport; 6213 6214 oldstate = tcp->tcp_state; 6215 /* 6216 * At this point the remote destination address and remote port fields 6217 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6218 * have to see which state tcp was in so we can take apropriate action. 6219 */ 6220 if (oldstate == TCPS_IDLE) { 6221 /* 6222 * We support a quick connect capability here, allowing 6223 * clients to transition directly from IDLE to SYN_SENT 6224 * tcp_bindi will pick an unused port, insert the connection 6225 * in the bind hash and transition to BOUND state. 6226 */ 6227 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6228 tcp, B_TRUE); 6229 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6230 B_FALSE, B_FALSE); 6231 if (lport == 0) { 6232 error = -TNOADDR; 6233 goto failed; 6234 } 6235 } 6236 tcp->tcp_state = TCPS_SYN_SENT; 6237 6238 mp = allocb(sizeof (ire_t), BPRI_HI); 6239 if (mp == NULL) { 6240 tcp->tcp_state = oldstate; 6241 error = ENOMEM; 6242 goto failed; 6243 } 6244 6245 mp->b_wptr += sizeof (ire_t); 6246 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6247 tcp->tcp_hard_binding = 1; 6248 6249 /* 6250 * We need to make sure that the conn_recv is set to a non-null 6251 * value before we insert the conn_t into the classifier table. 6252 * This is to avoid a race with an incoming packet which does 6253 * an ipcl_classify(). 6254 */ 6255 tcp->tcp_connp->conn_recv = tcp_input; 6256 6257 if (tcp->tcp_family == AF_INET) { 6258 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6259 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6260 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE); 6261 } else { 6262 in6_addr_t v6src; 6263 if (tcp->tcp_ipversion == IPV4_VERSION) { 6264 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6265 } else { 6266 v6src = tcp->tcp_ip6h->ip6_src; 6267 } 6268 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6269 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6270 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6271 } 6272 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6273 tcp->tcp_active_open = 1; 6274 6275 6276 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6277 failed: 6278 /* return error ack and blow away saved option results if any */ 6279 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6280 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6281 return (error); 6282 } 6283 6284 /* 6285 * Handle connect to IPv6 destinations. 6286 */ 6287 static int 6288 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6289 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6290 { 6291 tcph_t *tcph; 6292 mblk_t *mp; 6293 ip6_rthdr_t *rth; 6294 int32_t oldstate; 6295 uint16_t lport; 6296 tcp_stack_t *tcps = tcp->tcp_tcps; 6297 int error = 0; 6298 conn_t *connp = tcp->tcp_connp; 6299 6300 ASSERT(tcp->tcp_family == AF_INET6); 6301 6302 /* 6303 * If we're here, it means that the destination address is a native 6304 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6305 * reason why it might not be IPv6 is if the socket was bound to an 6306 * IPv4-mapped IPv6 address. 6307 */ 6308 if (tcp->tcp_ipversion != IPV6_VERSION) { 6309 return (-TBADADDR); 6310 } 6311 6312 /* 6313 * Interpret a zero destination to mean loopback. 6314 * Update the T_CONN_REQ (sin/sin6) since it is used to 6315 * generate the T_CONN_CON. 6316 */ 6317 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6318 *dstaddrp = ipv6_loopback; 6319 } 6320 6321 /* Handle __sin6_src_id if socket not bound to an IP address */ 6322 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6323 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6324 connp->conn_zoneid, tcps->tcps_netstack); 6325 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6326 } 6327 6328 /* 6329 * Take care of the scope_id now and add ip6i_t 6330 * if ip6i_t is not already allocated through TCP 6331 * sticky options. At this point tcp_ip6h does not 6332 * have dst info, thus use dstaddrp. 6333 */ 6334 if (scope_id != 0 && 6335 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6336 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6337 ip6i_t *ip6i; 6338 6339 ipp->ipp_ifindex = scope_id; 6340 ip6i = (ip6i_t *)tcp->tcp_iphc; 6341 6342 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6343 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6344 /* Already allocated */ 6345 ip6i->ip6i_flags |= IP6I_IFINDEX; 6346 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6347 ipp->ipp_fields |= IPPF_SCOPE_ID; 6348 } else { 6349 int reterr; 6350 6351 ipp->ipp_fields |= IPPF_SCOPE_ID; 6352 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6353 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6354 reterr = tcp_build_hdrs(tcp); 6355 if (reterr != 0) 6356 goto failed; 6357 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6358 } 6359 } 6360 6361 /* 6362 * Don't let an endpoint connect to itself. Note that 6363 * the test here does not catch the case where the 6364 * source IP addr was left unspecified by the user. In 6365 * this case, the source addr is set in tcp_adapt_ire() 6366 * using the reply to the T_BIND message that we send 6367 * down to IP here and the check is repeated in tcp_rput_other. 6368 */ 6369 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6370 (dstport == tcp->tcp_lport)) { 6371 error = -TBADADDR; 6372 goto failed; 6373 } 6374 6375 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6376 tcp->tcp_remote_v6 = *dstaddrp; 6377 tcp->tcp_ip6h->ip6_vcf = 6378 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6379 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6380 6381 /* 6382 * Massage a routing header (if present) putting the first hop 6383 * in ip6_dst. Compute a starting value for the checksum which 6384 * takes into account that the original ip6_dst should be 6385 * included in the checksum but that ip will include the 6386 * first hop in the source route in the tcp checksum. 6387 */ 6388 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6389 if (rth != NULL) { 6390 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6391 tcps->tcps_netstack); 6392 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6393 (tcp->tcp_sum >> 16)); 6394 } else { 6395 tcp->tcp_sum = 0; 6396 } 6397 6398 tcph = tcp->tcp_tcph; 6399 *(uint16_t *)tcph->th_fport = dstport; 6400 tcp->tcp_fport = dstport; 6401 6402 oldstate = tcp->tcp_state; 6403 /* 6404 * At this point the remote destination address and remote port fields 6405 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6406 * have to see which state tcp was in so we can take apropriate action. 6407 */ 6408 if (oldstate == TCPS_IDLE) { 6409 /* 6410 * We support a quick connect capability here, allowing 6411 * clients to transition directly from IDLE to SYN_SENT 6412 * tcp_bindi will pick an unused port, insert the connection 6413 * in the bind hash and transition to BOUND state. 6414 */ 6415 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6416 tcp, B_TRUE); 6417 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6418 B_FALSE, B_FALSE); 6419 if (lport == 0) { 6420 error = -TNOADDR; 6421 goto failed; 6422 } 6423 } 6424 tcp->tcp_state = TCPS_SYN_SENT; 6425 6426 mp = allocb(sizeof (ire_t), BPRI_HI); 6427 if (mp != NULL) { 6428 in6_addr_t v6src; 6429 6430 mp->b_wptr += sizeof (ire_t); 6431 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6432 6433 tcp->tcp_hard_binding = 1; 6434 6435 /* 6436 * We need to make sure that the conn_recv is set to a non-null 6437 * value before we insert the conn_t into the classifier table. 6438 * This is to avoid a race with an incoming packet which does 6439 * an ipcl_classify(). 6440 */ 6441 tcp->tcp_connp->conn_recv = tcp_input; 6442 6443 if (tcp->tcp_ipversion == IPV4_VERSION) { 6444 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6445 } else { 6446 v6src = tcp->tcp_ip6h->ip6_src; 6447 } 6448 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6449 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6450 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6451 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6452 tcp->tcp_active_open = 1; 6453 6454 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6455 } 6456 /* Error case */ 6457 tcp->tcp_state = oldstate; 6458 error = ENOMEM; 6459 6460 failed: 6461 /* return error ack and blow away saved option results if any */ 6462 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6463 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6464 return (error); 6465 } 6466 6467 /* 6468 * We need a stream q for detached closing tcp connections 6469 * to use. Our client hereby indicates that this q is the 6470 * one to use. 6471 */ 6472 static void 6473 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6474 { 6475 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6476 queue_t *q = tcp->tcp_wq; 6477 tcp_stack_t *tcps = tcp->tcp_tcps; 6478 6479 #ifdef NS_DEBUG 6480 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6481 tcps->tcps_netstack->netstack_stackid); 6482 #endif 6483 mp->b_datap->db_type = M_IOCACK; 6484 iocp->ioc_count = 0; 6485 mutex_enter(&tcps->tcps_g_q_lock); 6486 if (tcps->tcps_g_q != NULL) { 6487 mutex_exit(&tcps->tcps_g_q_lock); 6488 iocp->ioc_error = EALREADY; 6489 } else { 6490 int error = 0; 6491 conn_t *connp = tcp->tcp_connp; 6492 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6493 6494 tcps->tcps_g_q = tcp->tcp_rq; 6495 mutex_exit(&tcps->tcps_g_q_lock); 6496 iocp->ioc_error = 0; 6497 iocp->ioc_rval = 0; 6498 /* 6499 * We are passing tcp_sticky_ipp as NULL 6500 * as it is not useful for tcp_default queue 6501 * 6502 * Set conn_recv just in case. 6503 */ 6504 tcp->tcp_connp->conn_recv = tcp_conn_request; 6505 6506 ASSERT(connp->conn_af_isv6); 6507 connp->conn_ulp = IPPROTO_TCP; 6508 6509 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6510 NULL || connp->conn_mac_exempt) { 6511 error = -TBADADDR; 6512 } else { 6513 connp->conn_srcv6 = ipv6_all_zeros; 6514 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6515 } 6516 6517 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6518 } 6519 qreply(q, mp); 6520 } 6521 6522 static int 6523 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6524 { 6525 tcp_t *ltcp = NULL; 6526 conn_t *connp; 6527 tcp_stack_t *tcps = tcp->tcp_tcps; 6528 6529 /* 6530 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6531 * when the stream is in BOUND state. Do not send a reset, 6532 * since the destination IP address is not valid, and it can 6533 * be the initialized value of all zeros (broadcast address). 6534 * 6535 * XXX There won't be any pending bind request to IP. 6536 */ 6537 if (tcp->tcp_state <= TCPS_BOUND) { 6538 if (tcp->tcp_debug) { 6539 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6540 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6541 } 6542 return (TOUTSTATE); 6543 } 6544 6545 6546 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6547 6548 /* 6549 * According to TPI, for non-listeners, ignore seqnum 6550 * and disconnect. 6551 * Following interpretation of -1 seqnum is historical 6552 * and implied TPI ? (TPI only states that for T_CONN_IND, 6553 * a valid seqnum should not be -1). 6554 * 6555 * -1 means disconnect everything 6556 * regardless even on a listener. 6557 */ 6558 6559 int old_state = tcp->tcp_state; 6560 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6561 6562 /* 6563 * The connection can't be on the tcp_time_wait_head list 6564 * since it is not detached. 6565 */ 6566 ASSERT(tcp->tcp_time_wait_next == NULL); 6567 ASSERT(tcp->tcp_time_wait_prev == NULL); 6568 ASSERT(tcp->tcp_time_wait_expire == 0); 6569 ltcp = NULL; 6570 /* 6571 * If it used to be a listener, check to make sure no one else 6572 * has taken the port before switching back to LISTEN state. 6573 */ 6574 if (tcp->tcp_ipversion == IPV4_VERSION) { 6575 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6576 tcp->tcp_ipha->ipha_src, 6577 tcp->tcp_connp->conn_zoneid, ipst); 6578 if (connp != NULL) 6579 ltcp = connp->conn_tcp; 6580 } else { 6581 /* Allow tcp_bound_if listeners? */ 6582 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6583 &tcp->tcp_ip6h->ip6_src, 0, 6584 tcp->tcp_connp->conn_zoneid, ipst); 6585 if (connp != NULL) 6586 ltcp = connp->conn_tcp; 6587 } 6588 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6589 tcp->tcp_state = TCPS_LISTEN; 6590 } else if (old_state > TCPS_BOUND) { 6591 tcp->tcp_conn_req_max = 0; 6592 tcp->tcp_state = TCPS_BOUND; 6593 } 6594 if (ltcp != NULL) 6595 CONN_DEC_REF(ltcp->tcp_connp); 6596 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6597 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6598 } else if (old_state == TCPS_ESTABLISHED || 6599 old_state == TCPS_CLOSE_WAIT) { 6600 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6601 } 6602 6603 if (tcp->tcp_fused) 6604 tcp_unfuse(tcp); 6605 6606 mutex_enter(&tcp->tcp_eager_lock); 6607 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6608 (tcp->tcp_conn_req_cnt_q != 0)) { 6609 tcp_eager_cleanup(tcp, 0); 6610 } 6611 mutex_exit(&tcp->tcp_eager_lock); 6612 6613 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6614 tcp->tcp_rnxt, TH_RST | TH_ACK); 6615 6616 tcp_reinit(tcp); 6617 6618 return (0); 6619 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6620 return (TBADSEQ); 6621 } 6622 return (0); 6623 } 6624 6625 /* 6626 * Our client hereby directs us to reject the connection request 6627 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6628 * of sending the appropriate RST, not an ICMP error. 6629 */ 6630 static void 6631 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6632 { 6633 t_scalar_t seqnum; 6634 int error; 6635 6636 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6637 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6638 tcp_err_ack(tcp, mp, TPROTO, 0); 6639 return; 6640 } 6641 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6642 error = tcp_disconnect_common(tcp, seqnum); 6643 if (error != 0) 6644 tcp_err_ack(tcp, mp, error, 0); 6645 else { 6646 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6647 /* Send M_FLUSH according to TPI */ 6648 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6649 } 6650 mp = mi_tpi_ok_ack_alloc(mp); 6651 if (mp) 6652 putnext(tcp->tcp_rq, mp); 6653 } 6654 } 6655 6656 /* 6657 * Diagnostic routine used to return a string associated with the tcp state. 6658 * Note that if the caller does not supply a buffer, it will use an internal 6659 * static string. This means that if multiple threads call this function at 6660 * the same time, output can be corrupted... Note also that this function 6661 * does not check the size of the supplied buffer. The caller has to make 6662 * sure that it is big enough. 6663 */ 6664 static char * 6665 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6666 { 6667 char buf1[30]; 6668 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6669 char *buf; 6670 char *cp; 6671 in6_addr_t local, remote; 6672 char local_addrbuf[INET6_ADDRSTRLEN]; 6673 char remote_addrbuf[INET6_ADDRSTRLEN]; 6674 6675 if (sup_buf != NULL) 6676 buf = sup_buf; 6677 else 6678 buf = priv_buf; 6679 6680 if (tcp == NULL) 6681 return ("NULL_TCP"); 6682 switch (tcp->tcp_state) { 6683 case TCPS_CLOSED: 6684 cp = "TCP_CLOSED"; 6685 break; 6686 case TCPS_IDLE: 6687 cp = "TCP_IDLE"; 6688 break; 6689 case TCPS_BOUND: 6690 cp = "TCP_BOUND"; 6691 break; 6692 case TCPS_LISTEN: 6693 cp = "TCP_LISTEN"; 6694 break; 6695 case TCPS_SYN_SENT: 6696 cp = "TCP_SYN_SENT"; 6697 break; 6698 case TCPS_SYN_RCVD: 6699 cp = "TCP_SYN_RCVD"; 6700 break; 6701 case TCPS_ESTABLISHED: 6702 cp = "TCP_ESTABLISHED"; 6703 break; 6704 case TCPS_CLOSE_WAIT: 6705 cp = "TCP_CLOSE_WAIT"; 6706 break; 6707 case TCPS_FIN_WAIT_1: 6708 cp = "TCP_FIN_WAIT_1"; 6709 break; 6710 case TCPS_CLOSING: 6711 cp = "TCP_CLOSING"; 6712 break; 6713 case TCPS_LAST_ACK: 6714 cp = "TCP_LAST_ACK"; 6715 break; 6716 case TCPS_FIN_WAIT_2: 6717 cp = "TCP_FIN_WAIT_2"; 6718 break; 6719 case TCPS_TIME_WAIT: 6720 cp = "TCP_TIME_WAIT"; 6721 break; 6722 default: 6723 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6724 cp = buf1; 6725 break; 6726 } 6727 switch (format) { 6728 case DISP_ADDR_AND_PORT: 6729 if (tcp->tcp_ipversion == IPV4_VERSION) { 6730 /* 6731 * Note that we use the remote address in the tcp_b 6732 * structure. This means that it will print out 6733 * the real destination address, not the next hop's 6734 * address if source routing is used. 6735 */ 6736 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6737 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6738 6739 } else { 6740 local = tcp->tcp_ip_src_v6; 6741 remote = tcp->tcp_remote_v6; 6742 } 6743 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6744 sizeof (local_addrbuf)); 6745 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6746 sizeof (remote_addrbuf)); 6747 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6748 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6749 ntohs(tcp->tcp_fport), cp); 6750 break; 6751 case DISP_PORT_ONLY: 6752 default: 6753 (void) mi_sprintf(buf, "[%u, %u] %s", 6754 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6755 break; 6756 } 6757 6758 return (buf); 6759 } 6760 6761 /* 6762 * Called via squeue to get on to eager's perimeter. It sends a 6763 * TH_RST if eager is in the fanout table. The listener wants the 6764 * eager to disappear either by means of tcp_eager_blowoff() or 6765 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6766 * called (via squeue) if the eager cannot be inserted in the 6767 * fanout table in tcp_conn_request(). 6768 */ 6769 /* ARGSUSED */ 6770 void 6771 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6772 { 6773 conn_t *econnp = (conn_t *)arg; 6774 tcp_t *eager = econnp->conn_tcp; 6775 tcp_t *listener = eager->tcp_listener; 6776 tcp_stack_t *tcps = eager->tcp_tcps; 6777 6778 /* 6779 * We could be called because listener is closing. Since 6780 * the eager is using listener's queue's, its not safe. 6781 * Better use the default queue just to send the TH_RST 6782 * out. 6783 */ 6784 ASSERT(tcps->tcps_g_q != NULL); 6785 eager->tcp_rq = tcps->tcps_g_q; 6786 eager->tcp_wq = WR(tcps->tcps_g_q); 6787 6788 /* 6789 * An eager's conn_fanout will be NULL if it's a duplicate 6790 * for an existing 4-tuples in the conn fanout table. 6791 * We don't want to send an RST out in such case. 6792 */ 6793 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6794 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6795 eager, eager->tcp_snxt, 0, TH_RST); 6796 } 6797 6798 /* We are here because listener wants this eager gone */ 6799 if (listener != NULL) { 6800 mutex_enter(&listener->tcp_eager_lock); 6801 tcp_eager_unlink(eager); 6802 if (eager->tcp_tconnind_started) { 6803 /* 6804 * The eager has sent a conn_ind up to the 6805 * listener but listener decides to close 6806 * instead. We need to drop the extra ref 6807 * placed on eager in tcp_rput_data() before 6808 * sending the conn_ind to listener. 6809 */ 6810 CONN_DEC_REF(econnp); 6811 } 6812 mutex_exit(&listener->tcp_eager_lock); 6813 CONN_DEC_REF(listener->tcp_connp); 6814 } 6815 6816 if (eager->tcp_state > TCPS_BOUND) 6817 tcp_close_detached(eager); 6818 } 6819 6820 /* 6821 * Reset any eager connection hanging off this listener marked 6822 * with 'seqnum' and then reclaim it's resources. 6823 */ 6824 static boolean_t 6825 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6826 { 6827 tcp_t *eager; 6828 mblk_t *mp; 6829 tcp_stack_t *tcps = listener->tcp_tcps; 6830 6831 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6832 eager = listener; 6833 mutex_enter(&listener->tcp_eager_lock); 6834 do { 6835 eager = eager->tcp_eager_next_q; 6836 if (eager == NULL) { 6837 mutex_exit(&listener->tcp_eager_lock); 6838 return (B_FALSE); 6839 } 6840 } while (eager->tcp_conn_req_seqnum != seqnum); 6841 6842 if (eager->tcp_closemp_used) { 6843 mutex_exit(&listener->tcp_eager_lock); 6844 return (B_TRUE); 6845 } 6846 eager->tcp_closemp_used = B_TRUE; 6847 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6848 CONN_INC_REF(eager->tcp_connp); 6849 mutex_exit(&listener->tcp_eager_lock); 6850 mp = &eager->tcp_closemp; 6851 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6852 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6853 return (B_TRUE); 6854 } 6855 6856 /* 6857 * Reset any eager connection hanging off this listener 6858 * and then reclaim it's resources. 6859 */ 6860 static void 6861 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6862 { 6863 tcp_t *eager; 6864 mblk_t *mp; 6865 tcp_stack_t *tcps = listener->tcp_tcps; 6866 6867 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6868 6869 if (!q0_only) { 6870 /* First cleanup q */ 6871 TCP_STAT(tcps, tcp_eager_blowoff_q); 6872 eager = listener->tcp_eager_next_q; 6873 while (eager != NULL) { 6874 if (!eager->tcp_closemp_used) { 6875 eager->tcp_closemp_used = B_TRUE; 6876 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6877 CONN_INC_REF(eager->tcp_connp); 6878 mp = &eager->tcp_closemp; 6879 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6880 tcp_eager_kill, eager->tcp_connp, 6881 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6882 } 6883 eager = eager->tcp_eager_next_q; 6884 } 6885 } 6886 /* Then cleanup q0 */ 6887 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6888 eager = listener->tcp_eager_next_q0; 6889 while (eager != listener) { 6890 if (!eager->tcp_closemp_used) { 6891 eager->tcp_closemp_used = B_TRUE; 6892 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6893 CONN_INC_REF(eager->tcp_connp); 6894 mp = &eager->tcp_closemp; 6895 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6896 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6897 SQTAG_TCP_EAGER_CLEANUP_Q0); 6898 } 6899 eager = eager->tcp_eager_next_q0; 6900 } 6901 } 6902 6903 /* 6904 * If we are an eager connection hanging off a listener that hasn't 6905 * formally accepted the connection yet, get off his list and blow off 6906 * any data that we have accumulated. 6907 */ 6908 static void 6909 tcp_eager_unlink(tcp_t *tcp) 6910 { 6911 tcp_t *listener = tcp->tcp_listener; 6912 6913 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6914 ASSERT(listener != NULL); 6915 if (tcp->tcp_eager_next_q0 != NULL) { 6916 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6917 6918 /* Remove the eager tcp from q0 */ 6919 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6920 tcp->tcp_eager_prev_q0; 6921 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6922 tcp->tcp_eager_next_q0; 6923 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6924 listener->tcp_conn_req_cnt_q0--; 6925 6926 tcp->tcp_eager_next_q0 = NULL; 6927 tcp->tcp_eager_prev_q0 = NULL; 6928 6929 /* 6930 * Take the eager out, if it is in the list of droppable 6931 * eagers. 6932 */ 6933 MAKE_UNDROPPABLE(tcp); 6934 6935 if (tcp->tcp_syn_rcvd_timeout != 0) { 6936 /* we have timed out before */ 6937 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6938 listener->tcp_syn_rcvd_timeout--; 6939 } 6940 } else { 6941 tcp_t **tcpp = &listener->tcp_eager_next_q; 6942 tcp_t *prev = NULL; 6943 6944 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6945 if (tcpp[0] == tcp) { 6946 if (listener->tcp_eager_last_q == tcp) { 6947 /* 6948 * If we are unlinking the last 6949 * element on the list, adjust 6950 * tail pointer. Set tail pointer 6951 * to nil when list is empty. 6952 */ 6953 ASSERT(tcp->tcp_eager_next_q == NULL); 6954 if (listener->tcp_eager_last_q == 6955 listener->tcp_eager_next_q) { 6956 listener->tcp_eager_last_q = 6957 NULL; 6958 } else { 6959 /* 6960 * We won't get here if there 6961 * is only one eager in the 6962 * list. 6963 */ 6964 ASSERT(prev != NULL); 6965 listener->tcp_eager_last_q = 6966 prev; 6967 } 6968 } 6969 tcpp[0] = tcp->tcp_eager_next_q; 6970 tcp->tcp_eager_next_q = NULL; 6971 tcp->tcp_eager_last_q = NULL; 6972 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6973 listener->tcp_conn_req_cnt_q--; 6974 break; 6975 } 6976 prev = tcpp[0]; 6977 } 6978 } 6979 tcp->tcp_listener = NULL; 6980 } 6981 6982 /* Shorthand to generate and send TPI error acks to our client */ 6983 static void 6984 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6985 { 6986 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6987 putnext(tcp->tcp_rq, mp); 6988 } 6989 6990 /* Shorthand to generate and send TPI error acks to our client */ 6991 static void 6992 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6993 int t_error, int sys_error) 6994 { 6995 struct T_error_ack *teackp; 6996 6997 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6998 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6999 teackp = (struct T_error_ack *)mp->b_rptr; 7000 teackp->ERROR_prim = primitive; 7001 teackp->TLI_error = t_error; 7002 teackp->UNIX_error = sys_error; 7003 putnext(tcp->tcp_rq, mp); 7004 } 7005 } 7006 7007 /* 7008 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7009 * but instead the code relies on: 7010 * - the fact that the address of the array and its size never changes 7011 * - the atomic assignment of the elements of the array 7012 */ 7013 /* ARGSUSED */ 7014 static int 7015 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7016 { 7017 int i; 7018 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7019 7020 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7021 if (tcps->tcps_g_epriv_ports[i] != 0) 7022 (void) mi_mpprintf(mp, "%d ", 7023 tcps->tcps_g_epriv_ports[i]); 7024 } 7025 return (0); 7026 } 7027 7028 /* 7029 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7030 * threads from changing it at the same time. 7031 */ 7032 /* ARGSUSED */ 7033 static int 7034 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7035 cred_t *cr) 7036 { 7037 long new_value; 7038 int i; 7039 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7040 7041 /* 7042 * Fail the request if the new value does not lie within the 7043 * port number limits. 7044 */ 7045 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7046 new_value <= 0 || new_value >= 65536) { 7047 return (EINVAL); 7048 } 7049 7050 mutex_enter(&tcps->tcps_epriv_port_lock); 7051 /* Check if the value is already in the list */ 7052 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7053 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7054 mutex_exit(&tcps->tcps_epriv_port_lock); 7055 return (EEXIST); 7056 } 7057 } 7058 /* Find an empty slot */ 7059 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7060 if (tcps->tcps_g_epriv_ports[i] == 0) 7061 break; 7062 } 7063 if (i == tcps->tcps_g_num_epriv_ports) { 7064 mutex_exit(&tcps->tcps_epriv_port_lock); 7065 return (EOVERFLOW); 7066 } 7067 /* Set the new value */ 7068 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7069 mutex_exit(&tcps->tcps_epriv_port_lock); 7070 return (0); 7071 } 7072 7073 /* 7074 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7075 * threads from changing it at the same time. 7076 */ 7077 /* ARGSUSED */ 7078 static int 7079 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7080 cred_t *cr) 7081 { 7082 long new_value; 7083 int i; 7084 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7085 7086 /* 7087 * Fail the request if the new value does not lie within the 7088 * port number limits. 7089 */ 7090 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7091 new_value >= 65536) { 7092 return (EINVAL); 7093 } 7094 7095 mutex_enter(&tcps->tcps_epriv_port_lock); 7096 /* Check that the value is already in the list */ 7097 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7098 if (tcps->tcps_g_epriv_ports[i] == new_value) 7099 break; 7100 } 7101 if (i == tcps->tcps_g_num_epriv_ports) { 7102 mutex_exit(&tcps->tcps_epriv_port_lock); 7103 return (ESRCH); 7104 } 7105 /* Clear the value */ 7106 tcps->tcps_g_epriv_ports[i] = 0; 7107 mutex_exit(&tcps->tcps_epriv_port_lock); 7108 return (0); 7109 } 7110 7111 /* Return the TPI/TLI equivalent of our current tcp_state */ 7112 static int 7113 tcp_tpistate(tcp_t *tcp) 7114 { 7115 switch (tcp->tcp_state) { 7116 case TCPS_IDLE: 7117 return (TS_UNBND); 7118 case TCPS_LISTEN: 7119 /* 7120 * Return whether there are outstanding T_CONN_IND waiting 7121 * for the matching T_CONN_RES. Therefore don't count q0. 7122 */ 7123 if (tcp->tcp_conn_req_cnt_q > 0) 7124 return (TS_WRES_CIND); 7125 else 7126 return (TS_IDLE); 7127 case TCPS_BOUND: 7128 return (TS_IDLE); 7129 case TCPS_SYN_SENT: 7130 return (TS_WCON_CREQ); 7131 case TCPS_SYN_RCVD: 7132 /* 7133 * Note: assumption: this has to the active open SYN_RCVD. 7134 * The passive instance is detached in SYN_RCVD stage of 7135 * incoming connection processing so we cannot get request 7136 * for T_info_ack on it. 7137 */ 7138 return (TS_WACK_CRES); 7139 case TCPS_ESTABLISHED: 7140 return (TS_DATA_XFER); 7141 case TCPS_CLOSE_WAIT: 7142 return (TS_WREQ_ORDREL); 7143 case TCPS_FIN_WAIT_1: 7144 return (TS_WIND_ORDREL); 7145 case TCPS_FIN_WAIT_2: 7146 return (TS_WIND_ORDREL); 7147 7148 case TCPS_CLOSING: 7149 case TCPS_LAST_ACK: 7150 case TCPS_TIME_WAIT: 7151 case TCPS_CLOSED: 7152 /* 7153 * Following TS_WACK_DREQ7 is a rendition of "not 7154 * yet TS_IDLE" TPI state. There is no best match to any 7155 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7156 * choose a value chosen that will map to TLI/XTI level 7157 * state of TSTATECHNG (state is process of changing) which 7158 * captures what this dummy state represents. 7159 */ 7160 return (TS_WACK_DREQ7); 7161 default: 7162 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7163 tcp->tcp_state, tcp_display(tcp, NULL, 7164 DISP_PORT_ONLY)); 7165 return (TS_UNBND); 7166 } 7167 } 7168 7169 static void 7170 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7171 { 7172 tcp_stack_t *tcps = tcp->tcp_tcps; 7173 7174 if (tcp->tcp_family == AF_INET6) 7175 *tia = tcp_g_t_info_ack_v6; 7176 else 7177 *tia = tcp_g_t_info_ack; 7178 tia->CURRENT_state = tcp_tpistate(tcp); 7179 tia->OPT_size = tcp_max_optsize; 7180 if (tcp->tcp_mss == 0) { 7181 /* Not yet set - tcp_open does not set mss */ 7182 if (tcp->tcp_ipversion == IPV4_VERSION) 7183 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7184 else 7185 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7186 } else { 7187 tia->TIDU_size = tcp->tcp_mss; 7188 } 7189 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7190 } 7191 7192 static void 7193 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7194 t_uscalar_t cap_bits1) 7195 { 7196 tcap->CAP_bits1 = 0; 7197 7198 if (cap_bits1 & TC1_INFO) { 7199 tcp_copy_info(&tcap->INFO_ack, tcp); 7200 tcap->CAP_bits1 |= TC1_INFO; 7201 } 7202 7203 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7204 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7205 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7206 } 7207 7208 } 7209 7210 /* 7211 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7212 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7213 * tcp_g_t_info_ack. The current state of the stream is copied from 7214 * tcp_state. 7215 */ 7216 static void 7217 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7218 { 7219 t_uscalar_t cap_bits1; 7220 struct T_capability_ack *tcap; 7221 7222 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7223 freemsg(mp); 7224 return; 7225 } 7226 7227 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7228 7229 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7230 mp->b_datap->db_type, T_CAPABILITY_ACK); 7231 if (mp == NULL) 7232 return; 7233 7234 tcap = (struct T_capability_ack *)mp->b_rptr; 7235 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7236 7237 putnext(tcp->tcp_rq, mp); 7238 } 7239 7240 /* 7241 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7242 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7243 * The current state of the stream is copied from tcp_state. 7244 */ 7245 static void 7246 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7247 { 7248 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7249 T_INFO_ACK); 7250 if (!mp) { 7251 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7252 return; 7253 } 7254 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7255 putnext(tcp->tcp_rq, mp); 7256 } 7257 7258 /* Respond to the TPI addr request */ 7259 static void 7260 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7261 { 7262 sin_t *sin; 7263 mblk_t *ackmp; 7264 struct T_addr_ack *taa; 7265 7266 /* Make it large enough for worst case */ 7267 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7268 2 * sizeof (sin6_t), 1); 7269 if (ackmp == NULL) { 7270 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7271 return; 7272 } 7273 7274 if (tcp->tcp_ipversion == IPV6_VERSION) { 7275 tcp_addr_req_ipv6(tcp, ackmp); 7276 return; 7277 } 7278 taa = (struct T_addr_ack *)ackmp->b_rptr; 7279 7280 bzero(taa, sizeof (struct T_addr_ack)); 7281 ackmp->b_wptr = (uchar_t *)&taa[1]; 7282 7283 taa->PRIM_type = T_ADDR_ACK; 7284 ackmp->b_datap->db_type = M_PCPROTO; 7285 7286 /* 7287 * Note: Following code assumes 32 bit alignment of basic 7288 * data structures like sin_t and struct T_addr_ack. 7289 */ 7290 if (tcp->tcp_state >= TCPS_BOUND) { 7291 /* 7292 * Fill in local address 7293 */ 7294 taa->LOCADDR_length = sizeof (sin_t); 7295 taa->LOCADDR_offset = sizeof (*taa); 7296 7297 sin = (sin_t *)&taa[1]; 7298 7299 /* Fill zeroes and then intialize non-zero fields */ 7300 *sin = sin_null; 7301 7302 sin->sin_family = AF_INET; 7303 7304 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7305 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7306 7307 ackmp->b_wptr = (uchar_t *)&sin[1]; 7308 7309 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7310 /* 7311 * Fill in Remote address 7312 */ 7313 taa->REMADDR_length = sizeof (sin_t); 7314 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7315 taa->LOCADDR_length); 7316 7317 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7318 *sin = sin_null; 7319 sin->sin_family = AF_INET; 7320 sin->sin_addr.s_addr = tcp->tcp_remote; 7321 sin->sin_port = tcp->tcp_fport; 7322 7323 ackmp->b_wptr = (uchar_t *)&sin[1]; 7324 } 7325 } 7326 putnext(tcp->tcp_rq, ackmp); 7327 } 7328 7329 /* Assumes that tcp_addr_req gets enough space and alignment */ 7330 static void 7331 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7332 { 7333 sin6_t *sin6; 7334 struct T_addr_ack *taa; 7335 7336 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7337 ASSERT(OK_32PTR(ackmp->b_rptr)); 7338 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7339 2 * sizeof (sin6_t)); 7340 7341 taa = (struct T_addr_ack *)ackmp->b_rptr; 7342 7343 bzero(taa, sizeof (struct T_addr_ack)); 7344 ackmp->b_wptr = (uchar_t *)&taa[1]; 7345 7346 taa->PRIM_type = T_ADDR_ACK; 7347 ackmp->b_datap->db_type = M_PCPROTO; 7348 7349 /* 7350 * Note: Following code assumes 32 bit alignment of basic 7351 * data structures like sin6_t and struct T_addr_ack. 7352 */ 7353 if (tcp->tcp_state >= TCPS_BOUND) { 7354 /* 7355 * Fill in local address 7356 */ 7357 taa->LOCADDR_length = sizeof (sin6_t); 7358 taa->LOCADDR_offset = sizeof (*taa); 7359 7360 sin6 = (sin6_t *)&taa[1]; 7361 *sin6 = sin6_null; 7362 7363 sin6->sin6_family = AF_INET6; 7364 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7365 sin6->sin6_port = tcp->tcp_lport; 7366 7367 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7368 7369 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7370 /* 7371 * Fill in Remote address 7372 */ 7373 taa->REMADDR_length = sizeof (sin6_t); 7374 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7375 taa->LOCADDR_length); 7376 7377 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7378 *sin6 = sin6_null; 7379 sin6->sin6_family = AF_INET6; 7380 sin6->sin6_flowinfo = 7381 tcp->tcp_ip6h->ip6_vcf & 7382 ~IPV6_VERS_AND_FLOW_MASK; 7383 sin6->sin6_addr = tcp->tcp_remote_v6; 7384 sin6->sin6_port = tcp->tcp_fport; 7385 7386 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7387 } 7388 } 7389 putnext(tcp->tcp_rq, ackmp); 7390 } 7391 7392 /* 7393 * Handle reinitialization of a tcp structure. 7394 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7395 */ 7396 static void 7397 tcp_reinit(tcp_t *tcp) 7398 { 7399 mblk_t *mp; 7400 int err; 7401 tcp_stack_t *tcps = tcp->tcp_tcps; 7402 7403 TCP_STAT(tcps, tcp_reinit_calls); 7404 7405 /* tcp_reinit should never be called for detached tcp_t's */ 7406 ASSERT(tcp->tcp_listener == NULL); 7407 ASSERT((tcp->tcp_family == AF_INET && 7408 tcp->tcp_ipversion == IPV4_VERSION) || 7409 (tcp->tcp_family == AF_INET6 && 7410 (tcp->tcp_ipversion == IPV4_VERSION || 7411 tcp->tcp_ipversion == IPV6_VERSION))); 7412 7413 /* Cancel outstanding timers */ 7414 tcp_timers_stop(tcp); 7415 7416 /* 7417 * Reset everything in the state vector, after updating global 7418 * MIB data from instance counters. 7419 */ 7420 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7421 tcp->tcp_ibsegs = 0; 7422 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7423 tcp->tcp_obsegs = 0; 7424 7425 tcp_close_mpp(&tcp->tcp_xmit_head); 7426 if (tcp->tcp_snd_zcopy_aware) 7427 tcp_zcopy_notify(tcp); 7428 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7429 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7430 mutex_enter(&tcp->tcp_non_sq_lock); 7431 if (tcp->tcp_flow_stopped && 7432 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7433 tcp_clrqfull(tcp); 7434 } 7435 mutex_exit(&tcp->tcp_non_sq_lock); 7436 tcp_close_mpp(&tcp->tcp_reass_head); 7437 tcp->tcp_reass_tail = NULL; 7438 if (tcp->tcp_rcv_list != NULL) { 7439 /* Free b_next chain */ 7440 tcp_close_mpp(&tcp->tcp_rcv_list); 7441 tcp->tcp_rcv_last_head = NULL; 7442 tcp->tcp_rcv_last_tail = NULL; 7443 tcp->tcp_rcv_cnt = 0; 7444 } 7445 tcp->tcp_rcv_last_tail = NULL; 7446 7447 if ((mp = tcp->tcp_urp_mp) != NULL) { 7448 freemsg(mp); 7449 tcp->tcp_urp_mp = NULL; 7450 } 7451 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7452 freemsg(mp); 7453 tcp->tcp_urp_mark_mp = NULL; 7454 } 7455 if (tcp->tcp_fused_sigurg_mp != NULL) { 7456 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7457 freeb(tcp->tcp_fused_sigurg_mp); 7458 tcp->tcp_fused_sigurg_mp = NULL; 7459 } 7460 if (tcp->tcp_ordrel_mp != NULL) { 7461 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7462 freeb(tcp->tcp_ordrel_mp); 7463 tcp->tcp_ordrel_mp = NULL; 7464 } 7465 7466 /* 7467 * Following is a union with two members which are 7468 * identical types and size so the following cleanup 7469 * is enough. 7470 */ 7471 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7472 7473 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7474 7475 /* 7476 * The connection can't be on the tcp_time_wait_head list 7477 * since it is not detached. 7478 */ 7479 ASSERT(tcp->tcp_time_wait_next == NULL); 7480 ASSERT(tcp->tcp_time_wait_prev == NULL); 7481 ASSERT(tcp->tcp_time_wait_expire == 0); 7482 7483 if (tcp->tcp_kssl_pending) { 7484 tcp->tcp_kssl_pending = B_FALSE; 7485 7486 /* Don't reset if the initialized by bind. */ 7487 if (tcp->tcp_kssl_ent != NULL) { 7488 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7489 KSSL_NO_PROXY); 7490 } 7491 } 7492 if (tcp->tcp_kssl_ctx != NULL) { 7493 kssl_release_ctx(tcp->tcp_kssl_ctx); 7494 tcp->tcp_kssl_ctx = NULL; 7495 } 7496 7497 /* 7498 * Reset/preserve other values 7499 */ 7500 tcp_reinit_values(tcp); 7501 ipcl_hash_remove(tcp->tcp_connp); 7502 conn_delete_ire(tcp->tcp_connp, NULL); 7503 tcp_ipsec_cleanup(tcp); 7504 7505 if (tcp->tcp_conn_req_max != 0) { 7506 /* 7507 * This is the case when a TLI program uses the same 7508 * transport end point to accept a connection. This 7509 * makes the TCP both a listener and acceptor. When 7510 * this connection is closed, we need to set the state 7511 * back to TCPS_LISTEN. Make sure that the eager list 7512 * is reinitialized. 7513 * 7514 * Note that this stream is still bound to the four 7515 * tuples of the previous connection in IP. If a new 7516 * SYN with different foreign address comes in, IP will 7517 * not find it and will send it to the global queue. In 7518 * the global queue, TCP will do a tcp_lookup_listener() 7519 * to find this stream. This works because this stream 7520 * is only removed from connected hash. 7521 * 7522 */ 7523 tcp->tcp_state = TCPS_LISTEN; 7524 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7525 tcp->tcp_eager_next_drop_q0 = tcp; 7526 tcp->tcp_eager_prev_drop_q0 = tcp; 7527 tcp->tcp_connp->conn_recv = tcp_conn_request; 7528 if (tcp->tcp_family == AF_INET6) { 7529 ASSERT(tcp->tcp_connp->conn_af_isv6); 7530 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7531 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7532 } else { 7533 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7534 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7535 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7536 } 7537 } else { 7538 tcp->tcp_state = TCPS_BOUND; 7539 } 7540 7541 /* 7542 * Initialize to default values 7543 * Can't fail since enough header template space already allocated 7544 * at open(). 7545 */ 7546 err = tcp_init_values(tcp); 7547 ASSERT(err == 0); 7548 /* Restore state in tcp_tcph */ 7549 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7550 if (tcp->tcp_ipversion == IPV4_VERSION) 7551 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7552 else 7553 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7554 /* 7555 * Copy of the src addr. in tcp_t is needed in tcp_t 7556 * since the lookup funcs can only lookup on tcp_t 7557 */ 7558 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7559 7560 ASSERT(tcp->tcp_ptpbhn != NULL); 7561 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7562 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7563 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7564 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7565 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7566 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7567 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7568 } 7569 7570 /* 7571 * Force values to zero that need be zero. 7572 * Do not touch values asociated with the BOUND or LISTEN state 7573 * since the connection will end up in that state after the reinit. 7574 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7575 * structure! 7576 */ 7577 static void 7578 tcp_reinit_values(tcp) 7579 tcp_t *tcp; 7580 { 7581 tcp_stack_t *tcps = tcp->tcp_tcps; 7582 7583 #ifndef lint 7584 #define DONTCARE(x) 7585 #define PRESERVE(x) 7586 #else 7587 #define DONTCARE(x) ((x) = (x)) 7588 #define PRESERVE(x) ((x) = (x)) 7589 #endif /* lint */ 7590 7591 PRESERVE(tcp->tcp_bind_hash_port); 7592 PRESERVE(tcp->tcp_bind_hash); 7593 PRESERVE(tcp->tcp_ptpbhn); 7594 PRESERVE(tcp->tcp_acceptor_hash); 7595 PRESERVE(tcp->tcp_ptpahn); 7596 7597 /* Should be ASSERT NULL on these with new code! */ 7598 ASSERT(tcp->tcp_time_wait_next == NULL); 7599 ASSERT(tcp->tcp_time_wait_prev == NULL); 7600 ASSERT(tcp->tcp_time_wait_expire == 0); 7601 PRESERVE(tcp->tcp_state); 7602 PRESERVE(tcp->tcp_rq); 7603 PRESERVE(tcp->tcp_wq); 7604 7605 ASSERT(tcp->tcp_xmit_head == NULL); 7606 ASSERT(tcp->tcp_xmit_last == NULL); 7607 ASSERT(tcp->tcp_unsent == 0); 7608 ASSERT(tcp->tcp_xmit_tail == NULL); 7609 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7610 7611 tcp->tcp_snxt = 0; /* Displayed in mib */ 7612 tcp->tcp_suna = 0; /* Displayed in mib */ 7613 tcp->tcp_swnd = 0; 7614 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7615 7616 ASSERT(tcp->tcp_ibsegs == 0); 7617 ASSERT(tcp->tcp_obsegs == 0); 7618 7619 if (tcp->tcp_iphc != NULL) { 7620 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7621 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7622 } 7623 7624 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7625 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7626 DONTCARE(tcp->tcp_ipha); 7627 DONTCARE(tcp->tcp_ip6h); 7628 DONTCARE(tcp->tcp_ip_hdr_len); 7629 DONTCARE(tcp->tcp_tcph); 7630 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7631 tcp->tcp_valid_bits = 0; 7632 7633 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7634 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7635 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7636 tcp->tcp_last_rcv_lbolt = 0; 7637 7638 tcp->tcp_init_cwnd = 0; 7639 7640 tcp->tcp_urp_last_valid = 0; 7641 tcp->tcp_hard_binding = 0; 7642 tcp->tcp_hard_bound = 0; 7643 PRESERVE(tcp->tcp_cred); 7644 PRESERVE(tcp->tcp_cpid); 7645 PRESERVE(tcp->tcp_open_time); 7646 PRESERVE(tcp->tcp_exclbind); 7647 7648 tcp->tcp_fin_acked = 0; 7649 tcp->tcp_fin_rcvd = 0; 7650 tcp->tcp_fin_sent = 0; 7651 tcp->tcp_ordrel_done = 0; 7652 7653 tcp->tcp_debug = 0; 7654 tcp->tcp_dontroute = 0; 7655 tcp->tcp_broadcast = 0; 7656 7657 tcp->tcp_useloopback = 0; 7658 tcp->tcp_reuseaddr = 0; 7659 tcp->tcp_oobinline = 0; 7660 tcp->tcp_dgram_errind = 0; 7661 7662 tcp->tcp_detached = 0; 7663 tcp->tcp_bind_pending = 0; 7664 tcp->tcp_unbind_pending = 0; 7665 7666 tcp->tcp_snd_ws_ok = B_FALSE; 7667 tcp->tcp_snd_ts_ok = B_FALSE; 7668 tcp->tcp_linger = 0; 7669 tcp->tcp_ka_enabled = 0; 7670 tcp->tcp_zero_win_probe = 0; 7671 7672 tcp->tcp_loopback = 0; 7673 tcp->tcp_refuse = 0; 7674 tcp->tcp_localnet = 0; 7675 tcp->tcp_syn_defense = 0; 7676 tcp->tcp_set_timer = 0; 7677 7678 tcp->tcp_active_open = 0; 7679 tcp->tcp_rexmit = B_FALSE; 7680 tcp->tcp_xmit_zc_clean = B_FALSE; 7681 7682 tcp->tcp_snd_sack_ok = B_FALSE; 7683 PRESERVE(tcp->tcp_recvdstaddr); 7684 tcp->tcp_hwcksum = B_FALSE; 7685 7686 tcp->tcp_ire_ill_check_done = B_FALSE; 7687 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7688 7689 tcp->tcp_mdt = B_FALSE; 7690 tcp->tcp_mdt_hdr_head = 0; 7691 tcp->tcp_mdt_hdr_tail = 0; 7692 7693 tcp->tcp_conn_def_q0 = 0; 7694 tcp->tcp_ip_forward_progress = B_FALSE; 7695 tcp->tcp_anon_priv_bind = 0; 7696 tcp->tcp_ecn_ok = B_FALSE; 7697 7698 tcp->tcp_cwr = B_FALSE; 7699 tcp->tcp_ecn_echo_on = B_FALSE; 7700 7701 if (tcp->tcp_sack_info != NULL) { 7702 if (tcp->tcp_notsack_list != NULL) { 7703 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7704 } 7705 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7706 tcp->tcp_sack_info = NULL; 7707 } 7708 7709 tcp->tcp_rcv_ws = 0; 7710 tcp->tcp_snd_ws = 0; 7711 tcp->tcp_ts_recent = 0; 7712 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7713 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7714 tcp->tcp_if_mtu = 0; 7715 7716 ASSERT(tcp->tcp_reass_head == NULL); 7717 ASSERT(tcp->tcp_reass_tail == NULL); 7718 7719 tcp->tcp_cwnd_cnt = 0; 7720 7721 ASSERT(tcp->tcp_rcv_list == NULL); 7722 ASSERT(tcp->tcp_rcv_last_head == NULL); 7723 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7724 ASSERT(tcp->tcp_rcv_cnt == 0); 7725 7726 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7727 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7728 tcp->tcp_csuna = 0; 7729 7730 tcp->tcp_rto = 0; /* Displayed in MIB */ 7731 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7732 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7733 tcp->tcp_rtt_update = 0; 7734 7735 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7736 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7737 7738 tcp->tcp_rack = 0; /* Displayed in mib */ 7739 tcp->tcp_rack_cnt = 0; 7740 tcp->tcp_rack_cur_max = 0; 7741 tcp->tcp_rack_abs_max = 0; 7742 7743 tcp->tcp_max_swnd = 0; 7744 7745 ASSERT(tcp->tcp_listener == NULL); 7746 7747 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7748 7749 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7750 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7751 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7752 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7753 7754 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7755 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7756 PRESERVE(tcp->tcp_conn_req_max); 7757 PRESERVE(tcp->tcp_conn_req_seqnum); 7758 7759 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7760 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7761 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7762 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7763 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7764 7765 tcp->tcp_lingertime = 0; 7766 7767 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7768 ASSERT(tcp->tcp_urp_mp == NULL); 7769 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7770 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7771 7772 ASSERT(tcp->tcp_eager_next_q == NULL); 7773 ASSERT(tcp->tcp_eager_last_q == NULL); 7774 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7775 tcp->tcp_eager_prev_q0 == NULL) || 7776 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7777 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7778 7779 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7780 tcp->tcp_eager_prev_drop_q0 == NULL) || 7781 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7782 7783 tcp->tcp_client_errno = 0; 7784 7785 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7786 7787 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7788 7789 PRESERVE(tcp->tcp_bound_source_v6); 7790 tcp->tcp_last_sent_len = 0; 7791 tcp->tcp_dupack_cnt = 0; 7792 7793 tcp->tcp_fport = 0; /* Displayed in MIB */ 7794 PRESERVE(tcp->tcp_lport); 7795 7796 PRESERVE(tcp->tcp_acceptor_lockp); 7797 7798 ASSERT(tcp->tcp_ordrel_mp == NULL); 7799 PRESERVE(tcp->tcp_acceptor_id); 7800 DONTCARE(tcp->tcp_ipsec_overhead); 7801 7802 PRESERVE(tcp->tcp_family); 7803 if (tcp->tcp_family == AF_INET6) { 7804 tcp->tcp_ipversion = IPV6_VERSION; 7805 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7806 } else { 7807 tcp->tcp_ipversion = IPV4_VERSION; 7808 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7809 } 7810 7811 tcp->tcp_bound_if = 0; 7812 tcp->tcp_ipv6_recvancillary = 0; 7813 tcp->tcp_recvifindex = 0; 7814 tcp->tcp_recvhops = 0; 7815 tcp->tcp_closed = 0; 7816 tcp->tcp_cleandeathtag = 0; 7817 if (tcp->tcp_hopopts != NULL) { 7818 mi_free(tcp->tcp_hopopts); 7819 tcp->tcp_hopopts = NULL; 7820 tcp->tcp_hopoptslen = 0; 7821 } 7822 ASSERT(tcp->tcp_hopoptslen == 0); 7823 if (tcp->tcp_dstopts != NULL) { 7824 mi_free(tcp->tcp_dstopts); 7825 tcp->tcp_dstopts = NULL; 7826 tcp->tcp_dstoptslen = 0; 7827 } 7828 ASSERT(tcp->tcp_dstoptslen == 0); 7829 if (tcp->tcp_rtdstopts != NULL) { 7830 mi_free(tcp->tcp_rtdstopts); 7831 tcp->tcp_rtdstopts = NULL; 7832 tcp->tcp_rtdstoptslen = 0; 7833 } 7834 ASSERT(tcp->tcp_rtdstoptslen == 0); 7835 if (tcp->tcp_rthdr != NULL) { 7836 mi_free(tcp->tcp_rthdr); 7837 tcp->tcp_rthdr = NULL; 7838 tcp->tcp_rthdrlen = 0; 7839 } 7840 ASSERT(tcp->tcp_rthdrlen == 0); 7841 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7842 7843 /* Reset fusion-related fields */ 7844 tcp->tcp_fused = B_FALSE; 7845 tcp->tcp_unfusable = B_FALSE; 7846 tcp->tcp_fused_sigurg = B_FALSE; 7847 tcp->tcp_direct_sockfs = B_FALSE; 7848 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7849 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7850 tcp->tcp_loopback_peer = NULL; 7851 tcp->tcp_fuse_rcv_hiwater = 0; 7852 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7853 tcp->tcp_fuse_rcv_unread_cnt = 0; 7854 7855 tcp->tcp_lso = B_FALSE; 7856 7857 tcp->tcp_in_ack_unsent = 0; 7858 tcp->tcp_cork = B_FALSE; 7859 tcp->tcp_tconnind_started = B_FALSE; 7860 7861 PRESERVE(tcp->tcp_squeue_bytes); 7862 7863 ASSERT(tcp->tcp_kssl_ctx == NULL); 7864 ASSERT(!tcp->tcp_kssl_pending); 7865 PRESERVE(tcp->tcp_kssl_ent); 7866 7867 /* Sodirect */ 7868 tcp->tcp_sodirect = NULL; 7869 7870 tcp->tcp_closemp_used = B_FALSE; 7871 7872 PRESERVE(tcp->tcp_rsrv_mp); 7873 PRESERVE(tcp->tcp_rsrv_mp_lock); 7874 7875 #ifdef DEBUG 7876 DONTCARE(tcp->tcmp_stk[0]); 7877 #endif 7878 7879 PRESERVE(tcp->tcp_connid); 7880 7881 7882 #undef DONTCARE 7883 #undef PRESERVE 7884 } 7885 7886 /* 7887 * Allocate necessary resources and initialize state vector. 7888 * Guaranteed not to fail so that when an error is returned, 7889 * the caller doesn't need to do any additional cleanup. 7890 */ 7891 int 7892 tcp_init(tcp_t *tcp, queue_t *q) 7893 { 7894 int err; 7895 7896 tcp->tcp_rq = q; 7897 tcp->tcp_wq = WR(q); 7898 tcp->tcp_state = TCPS_IDLE; 7899 if ((err = tcp_init_values(tcp)) != 0) 7900 tcp_timers_stop(tcp); 7901 return (err); 7902 } 7903 7904 static int 7905 tcp_init_values(tcp_t *tcp) 7906 { 7907 int err; 7908 tcp_stack_t *tcps = tcp->tcp_tcps; 7909 7910 ASSERT((tcp->tcp_family == AF_INET && 7911 tcp->tcp_ipversion == IPV4_VERSION) || 7912 (tcp->tcp_family == AF_INET6 && 7913 (tcp->tcp_ipversion == IPV4_VERSION || 7914 tcp->tcp_ipversion == IPV6_VERSION))); 7915 7916 /* 7917 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7918 * will be close to tcp_rexmit_interval_initial. By doing this, we 7919 * allow the algorithm to adjust slowly to large fluctuations of RTT 7920 * during first few transmissions of a connection as seen in slow 7921 * links. 7922 */ 7923 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7924 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7925 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7926 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7927 tcps->tcps_conn_grace_period; 7928 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7929 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7930 tcp->tcp_timer_backoff = 0; 7931 tcp->tcp_ms_we_have_waited = 0; 7932 tcp->tcp_last_recv_time = lbolt; 7933 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7934 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7935 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7936 7937 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7938 7939 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7940 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7941 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7942 /* 7943 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7944 * passive open. 7945 */ 7946 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7947 7948 tcp->tcp_naglim = tcps->tcps_naglim_def; 7949 7950 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7951 7952 tcp->tcp_mdt_hdr_head = 0; 7953 tcp->tcp_mdt_hdr_tail = 0; 7954 7955 /* Reset fusion-related fields */ 7956 tcp->tcp_fused = B_FALSE; 7957 tcp->tcp_unfusable = B_FALSE; 7958 tcp->tcp_fused_sigurg = B_FALSE; 7959 tcp->tcp_direct_sockfs = B_FALSE; 7960 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7961 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7962 tcp->tcp_loopback_peer = NULL; 7963 tcp->tcp_fuse_rcv_hiwater = 0; 7964 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7965 tcp->tcp_fuse_rcv_unread_cnt = 0; 7966 7967 /* Sodirect */ 7968 tcp->tcp_sodirect = NULL; 7969 7970 /* Initialize the header template */ 7971 if (tcp->tcp_ipversion == IPV4_VERSION) { 7972 err = tcp_header_init_ipv4(tcp); 7973 } else { 7974 err = tcp_header_init_ipv6(tcp); 7975 } 7976 if (err) 7977 return (err); 7978 7979 /* 7980 * Init the window scale to the max so tcp_rwnd_set() won't pare 7981 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7982 */ 7983 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7984 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7985 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7986 7987 tcp->tcp_cork = B_FALSE; 7988 /* 7989 * Init the tcp_debug option. This value determines whether TCP 7990 * calls strlog() to print out debug messages. Doing this 7991 * initialization here means that this value is not inherited thru 7992 * tcp_reinit(). 7993 */ 7994 tcp->tcp_debug = tcps->tcps_dbg; 7995 7996 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 7997 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 7998 7999 return (0); 8000 } 8001 8002 /* 8003 * Initialize the IPv4 header. Loses any record of any IP options. 8004 */ 8005 static int 8006 tcp_header_init_ipv4(tcp_t *tcp) 8007 { 8008 tcph_t *tcph; 8009 uint32_t sum; 8010 conn_t *connp; 8011 tcp_stack_t *tcps = tcp->tcp_tcps; 8012 8013 /* 8014 * This is a simple initialization. If there's 8015 * already a template, it should never be too small, 8016 * so reuse it. Otherwise, allocate space for the new one. 8017 */ 8018 if (tcp->tcp_iphc == NULL) { 8019 ASSERT(tcp->tcp_iphc_len == 0); 8020 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8021 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8022 if (tcp->tcp_iphc == NULL) { 8023 tcp->tcp_iphc_len = 0; 8024 return (ENOMEM); 8025 } 8026 } 8027 8028 /* options are gone; may need a new label */ 8029 connp = tcp->tcp_connp; 8030 connp->conn_mlp_type = mlptSingle; 8031 connp->conn_ulp_labeled = !is_system_labeled(); 8032 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8033 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8034 tcp->tcp_ip6h = NULL; 8035 tcp->tcp_ipversion = IPV4_VERSION; 8036 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8037 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8038 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8039 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8040 tcp->tcp_ipha->ipha_version_and_hdr_length 8041 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8042 tcp->tcp_ipha->ipha_ident = 0; 8043 8044 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8045 tcp->tcp_tos = 0; 8046 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8047 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8048 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8049 8050 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8051 tcp->tcp_tcph = tcph; 8052 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8053 /* 8054 * IP wants our header length in the checksum field to 8055 * allow it to perform a single pseudo-header+checksum 8056 * calculation on behalf of TCP. 8057 * Include the adjustment for a source route once IP_OPTIONS is set. 8058 */ 8059 sum = sizeof (tcph_t) + tcp->tcp_sum; 8060 sum = (sum >> 16) + (sum & 0xFFFF); 8061 U16_TO_ABE16(sum, tcph->th_sum); 8062 return (0); 8063 } 8064 8065 /* 8066 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8067 */ 8068 static int 8069 tcp_header_init_ipv6(tcp_t *tcp) 8070 { 8071 tcph_t *tcph; 8072 uint32_t sum; 8073 conn_t *connp; 8074 tcp_stack_t *tcps = tcp->tcp_tcps; 8075 8076 /* 8077 * This is a simple initialization. If there's 8078 * already a template, it should never be too small, 8079 * so reuse it. Otherwise, allocate space for the new one. 8080 * Ensure that there is enough space to "downgrade" the tcp_t 8081 * to an IPv4 tcp_t. This requires having space for a full load 8082 * of IPv4 options, as well as a full load of TCP options 8083 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8084 * than a v6 header and a TCP header with a full load of TCP options 8085 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8086 * We want to avoid reallocation in the "downgraded" case when 8087 * processing outbound IPv4 options. 8088 */ 8089 if (tcp->tcp_iphc == NULL) { 8090 ASSERT(tcp->tcp_iphc_len == 0); 8091 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8092 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8093 if (tcp->tcp_iphc == NULL) { 8094 tcp->tcp_iphc_len = 0; 8095 return (ENOMEM); 8096 } 8097 } 8098 8099 /* options are gone; may need a new label */ 8100 connp = tcp->tcp_connp; 8101 connp->conn_mlp_type = mlptSingle; 8102 connp->conn_ulp_labeled = !is_system_labeled(); 8103 8104 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8105 tcp->tcp_ipversion = IPV6_VERSION; 8106 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8107 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8108 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8109 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8110 tcp->tcp_ipha = NULL; 8111 8112 /* Initialize the header template */ 8113 8114 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8115 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8116 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8117 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8118 8119 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8120 tcp->tcp_tcph = tcph; 8121 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8122 /* 8123 * IP wants our header length in the checksum field to 8124 * allow it to perform a single psuedo-header+checksum 8125 * calculation on behalf of TCP. 8126 * Include the adjustment for a source route when IPV6_RTHDR is set. 8127 */ 8128 sum = sizeof (tcph_t) + tcp->tcp_sum; 8129 sum = (sum >> 16) + (sum & 0xFFFF); 8130 U16_TO_ABE16(sum, tcph->th_sum); 8131 return (0); 8132 } 8133 8134 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8135 #define ICMP_MIN_TCP_HDR 8 8136 8137 /* 8138 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8139 * passed up by IP. The message is always received on the correct tcp_t. 8140 * Assumes that IP has pulled up everything up to and including the ICMP header. 8141 */ 8142 void 8143 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8144 { 8145 icmph_t *icmph; 8146 ipha_t *ipha; 8147 int iph_hdr_length; 8148 tcph_t *tcph; 8149 boolean_t ipsec_mctl = B_FALSE; 8150 boolean_t secure; 8151 mblk_t *first_mp = mp; 8152 int32_t new_mss; 8153 uint32_t ratio; 8154 size_t mp_size = MBLKL(mp); 8155 uint32_t seg_seq; 8156 tcp_stack_t *tcps = tcp->tcp_tcps; 8157 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8158 8159 /* Assume IP provides aligned packets - otherwise toss */ 8160 if (!OK_32PTR(mp->b_rptr)) { 8161 freemsg(mp); 8162 return; 8163 } 8164 8165 /* 8166 * Since ICMP errors are normal data marked with M_CTL when sent 8167 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8168 * packets starting with an ipsec_info_t, see ipsec_info.h. 8169 */ 8170 if ((mp_size == sizeof (ipsec_info_t)) && 8171 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8172 ASSERT(mp->b_cont != NULL); 8173 mp = mp->b_cont; 8174 /* IP should have done this */ 8175 ASSERT(OK_32PTR(mp->b_rptr)); 8176 mp_size = MBLKL(mp); 8177 ipsec_mctl = B_TRUE; 8178 } 8179 8180 /* 8181 * Verify that we have a complete outer IP header. If not, drop it. 8182 */ 8183 if (mp_size < sizeof (ipha_t)) { 8184 noticmpv4: 8185 freemsg(first_mp); 8186 return; 8187 } 8188 8189 ipha = (ipha_t *)mp->b_rptr; 8190 /* 8191 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8192 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8193 */ 8194 switch (IPH_HDR_VERSION(ipha)) { 8195 case IPV6_VERSION: 8196 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8197 return; 8198 case IPV4_VERSION: 8199 break; 8200 default: 8201 goto noticmpv4; 8202 } 8203 8204 /* Skip past the outer IP and ICMP headers */ 8205 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8206 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8207 /* 8208 * If we don't have the correct outer IP header length or if the ULP 8209 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8210 * send it upstream. 8211 */ 8212 if (iph_hdr_length < sizeof (ipha_t) || 8213 ipha->ipha_protocol != IPPROTO_ICMP || 8214 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8215 goto noticmpv4; 8216 } 8217 ipha = (ipha_t *)&icmph[1]; 8218 8219 /* Skip past the inner IP and find the ULP header */ 8220 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8221 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8222 /* 8223 * If we don't have the correct inner IP header length or if the ULP 8224 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8225 * bytes of TCP header, drop it. 8226 */ 8227 if (iph_hdr_length < sizeof (ipha_t) || 8228 ipha->ipha_protocol != IPPROTO_TCP || 8229 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8230 goto noticmpv4; 8231 } 8232 8233 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8234 if (ipsec_mctl) { 8235 secure = ipsec_in_is_secure(first_mp); 8236 } else { 8237 secure = B_FALSE; 8238 } 8239 if (secure) { 8240 /* 8241 * If we are willing to accept this in clear 8242 * we don't have to verify policy. 8243 */ 8244 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8245 if (!tcp_check_policy(tcp, first_mp, 8246 ipha, NULL, secure, ipsec_mctl)) { 8247 /* 8248 * tcp_check_policy called 8249 * ip_drop_packet() on failure. 8250 */ 8251 return; 8252 } 8253 } 8254 } 8255 } else if (ipsec_mctl) { 8256 /* 8257 * This is a hard_bound connection. IP has already 8258 * verified policy. We don't have to do it again. 8259 */ 8260 freeb(first_mp); 8261 first_mp = mp; 8262 ipsec_mctl = B_FALSE; 8263 } 8264 8265 seg_seq = ABE32_TO_U32(tcph->th_seq); 8266 /* 8267 * TCP SHOULD check that the TCP sequence number contained in 8268 * payload of the ICMP error message is within the range 8269 * SND.UNA <= SEG.SEQ < SND.NXT. 8270 */ 8271 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8272 /* 8273 * The ICMP message is bogus, just drop it. But if this is 8274 * an ICMP too big message, IP has already changed 8275 * the ire_max_frag to the bogus value. We need to change 8276 * it back. 8277 */ 8278 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8279 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8280 conn_t *connp = tcp->tcp_connp; 8281 ire_t *ire; 8282 int flag; 8283 8284 if (tcp->tcp_ipversion == IPV4_VERSION) { 8285 flag = tcp->tcp_ipha-> 8286 ipha_fragment_offset_and_flags; 8287 } else { 8288 flag = 0; 8289 } 8290 mutex_enter(&connp->conn_lock); 8291 if ((ire = connp->conn_ire_cache) != NULL) { 8292 mutex_enter(&ire->ire_lock); 8293 mutex_exit(&connp->conn_lock); 8294 ire->ire_max_frag = tcp->tcp_if_mtu; 8295 ire->ire_frag_flag |= flag; 8296 mutex_exit(&ire->ire_lock); 8297 } else { 8298 mutex_exit(&connp->conn_lock); 8299 } 8300 } 8301 goto noticmpv4; 8302 } 8303 8304 switch (icmph->icmph_type) { 8305 case ICMP_DEST_UNREACHABLE: 8306 switch (icmph->icmph_code) { 8307 case ICMP_FRAGMENTATION_NEEDED: 8308 /* 8309 * Reduce the MSS based on the new MTU. This will 8310 * eliminate any fragmentation locally. 8311 * N.B. There may well be some funny side-effects on 8312 * the local send policy and the remote receive policy. 8313 * Pending further research, we provide 8314 * tcp_ignore_path_mtu just in case this proves 8315 * disastrous somewhere. 8316 * 8317 * After updating the MSS, retransmit part of the 8318 * dropped segment using the new mss by calling 8319 * tcp_wput_data(). Need to adjust all those 8320 * params to make sure tcp_wput_data() work properly. 8321 */ 8322 if (tcps->tcps_ignore_path_mtu || 8323 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8324 break; 8325 8326 /* 8327 * Decrease the MSS by time stamp options 8328 * IP options and IPSEC options. tcp_hdr_len 8329 * includes time stamp option and IP option 8330 * length. Note that new_mss may be negative 8331 * if tcp_ipsec_overhead is large and the 8332 * icmph_du_mtu is the minimum value, which is 68. 8333 */ 8334 new_mss = ntohs(icmph->icmph_du_mtu) - 8335 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8336 8337 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8338 new_mss); 8339 8340 /* 8341 * Only update the MSS if the new one is 8342 * smaller than the previous one. This is 8343 * to avoid problems when getting multiple 8344 * ICMP errors for the same MTU. 8345 */ 8346 if (new_mss >= tcp->tcp_mss) 8347 break; 8348 8349 /* 8350 * Note that we are using the template header's DF 8351 * bit in the fast path sending. So we need to compare 8352 * the new mss with both tcps_mss_min and ip_pmtu_min. 8353 * And stop doing IPv4 PMTUd if new_mss is less than 8354 * MAX(tcps_mss_min, ip_pmtu_min). 8355 */ 8356 if (new_mss < tcps->tcps_mss_min || 8357 new_mss < ipst->ips_ip_pmtu_min) { 8358 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8359 0; 8360 } 8361 8362 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8363 ASSERT(ratio >= 1); 8364 tcp_mss_set(tcp, new_mss, B_TRUE); 8365 8366 /* 8367 * Make sure we have something to 8368 * send. 8369 */ 8370 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8371 (tcp->tcp_xmit_head != NULL)) { 8372 /* 8373 * Shrink tcp_cwnd in 8374 * proportion to the old MSS/new MSS. 8375 */ 8376 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8377 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8378 (tcp->tcp_unsent == 0)) { 8379 tcp->tcp_rexmit_max = tcp->tcp_fss; 8380 } else { 8381 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8382 } 8383 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8384 tcp->tcp_rexmit = B_TRUE; 8385 tcp->tcp_dupack_cnt = 0; 8386 tcp->tcp_snd_burst = TCP_CWND_SS; 8387 tcp_ss_rexmit(tcp); 8388 } 8389 break; 8390 case ICMP_PORT_UNREACHABLE: 8391 case ICMP_PROTOCOL_UNREACHABLE: 8392 switch (tcp->tcp_state) { 8393 case TCPS_SYN_SENT: 8394 case TCPS_SYN_RCVD: 8395 /* 8396 * ICMP can snipe away incipient 8397 * TCP connections as long as 8398 * seq number is same as initial 8399 * send seq number. 8400 */ 8401 if (seg_seq == tcp->tcp_iss) { 8402 (void) tcp_clean_death(tcp, 8403 ECONNREFUSED, 6); 8404 } 8405 break; 8406 } 8407 break; 8408 case ICMP_HOST_UNREACHABLE: 8409 case ICMP_NET_UNREACHABLE: 8410 /* Record the error in case we finally time out. */ 8411 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8412 tcp->tcp_client_errno = EHOSTUNREACH; 8413 else 8414 tcp->tcp_client_errno = ENETUNREACH; 8415 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8416 if (tcp->tcp_listener != NULL && 8417 tcp->tcp_listener->tcp_syn_defense) { 8418 /* 8419 * Ditch the half-open connection if we 8420 * suspect a SYN attack is under way. 8421 */ 8422 tcp_ip_ire_mark_advice(tcp); 8423 (void) tcp_clean_death(tcp, 8424 tcp->tcp_client_errno, 7); 8425 } 8426 } 8427 break; 8428 default: 8429 break; 8430 } 8431 break; 8432 case ICMP_SOURCE_QUENCH: { 8433 /* 8434 * use a global boolean to control 8435 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8436 * The default is false. 8437 */ 8438 if (tcp_icmp_source_quench) { 8439 /* 8440 * Reduce the sending rate as if we got a 8441 * retransmit timeout 8442 */ 8443 uint32_t npkt; 8444 8445 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8446 tcp->tcp_mss; 8447 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8448 tcp->tcp_cwnd = tcp->tcp_mss; 8449 tcp->tcp_cwnd_cnt = 0; 8450 } 8451 break; 8452 } 8453 } 8454 freemsg(first_mp); 8455 } 8456 8457 /* 8458 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8459 * error messages passed up by IP. 8460 * Assumes that IP has pulled up all the extension headers as well 8461 * as the ICMPv6 header. 8462 */ 8463 static void 8464 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8465 { 8466 icmp6_t *icmp6; 8467 ip6_t *ip6h; 8468 uint16_t iph_hdr_length; 8469 tcpha_t *tcpha; 8470 uint8_t *nexthdrp; 8471 uint32_t new_mss; 8472 uint32_t ratio; 8473 boolean_t secure; 8474 mblk_t *first_mp = mp; 8475 size_t mp_size; 8476 uint32_t seg_seq; 8477 tcp_stack_t *tcps = tcp->tcp_tcps; 8478 8479 /* 8480 * The caller has determined if this is an IPSEC_IN packet and 8481 * set ipsec_mctl appropriately (see tcp_icmp_error). 8482 */ 8483 if (ipsec_mctl) 8484 mp = mp->b_cont; 8485 8486 mp_size = MBLKL(mp); 8487 8488 /* 8489 * Verify that we have a complete IP header. If not, send it upstream. 8490 */ 8491 if (mp_size < sizeof (ip6_t)) { 8492 noticmpv6: 8493 freemsg(first_mp); 8494 return; 8495 } 8496 8497 /* 8498 * Verify this is an ICMPV6 packet, else send it upstream. 8499 */ 8500 ip6h = (ip6_t *)mp->b_rptr; 8501 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8502 iph_hdr_length = IPV6_HDR_LEN; 8503 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8504 &nexthdrp) || 8505 *nexthdrp != IPPROTO_ICMPV6) { 8506 goto noticmpv6; 8507 } 8508 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8509 ip6h = (ip6_t *)&icmp6[1]; 8510 /* 8511 * Verify if we have a complete ICMP and inner IP header. 8512 */ 8513 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8514 goto noticmpv6; 8515 8516 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8517 goto noticmpv6; 8518 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8519 /* 8520 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8521 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8522 * packet. 8523 */ 8524 if ((*nexthdrp != IPPROTO_TCP) || 8525 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8526 goto noticmpv6; 8527 } 8528 8529 /* 8530 * ICMP errors come on the right queue or come on 8531 * listener/global queue for detached connections and 8532 * get switched to the right queue. If it comes on the 8533 * right queue, policy check has already been done by IP 8534 * and thus free the first_mp without verifying the policy. 8535 * If it has come for a non-hard bound connection, we need 8536 * to verify policy as IP may not have done it. 8537 */ 8538 if (!tcp->tcp_hard_bound) { 8539 if (ipsec_mctl) { 8540 secure = ipsec_in_is_secure(first_mp); 8541 } else { 8542 secure = B_FALSE; 8543 } 8544 if (secure) { 8545 /* 8546 * If we are willing to accept this in clear 8547 * we don't have to verify policy. 8548 */ 8549 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8550 if (!tcp_check_policy(tcp, first_mp, 8551 NULL, ip6h, secure, ipsec_mctl)) { 8552 /* 8553 * tcp_check_policy called 8554 * ip_drop_packet() on failure. 8555 */ 8556 return; 8557 } 8558 } 8559 } 8560 } else if (ipsec_mctl) { 8561 /* 8562 * This is a hard_bound connection. IP has already 8563 * verified policy. We don't have to do it again. 8564 */ 8565 freeb(first_mp); 8566 first_mp = mp; 8567 ipsec_mctl = B_FALSE; 8568 } 8569 8570 seg_seq = ntohl(tcpha->tha_seq); 8571 /* 8572 * TCP SHOULD check that the TCP sequence number contained in 8573 * payload of the ICMP error message is within the range 8574 * SND.UNA <= SEG.SEQ < SND.NXT. 8575 */ 8576 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8577 /* 8578 * If the ICMP message is bogus, should we kill the 8579 * connection, or should we just drop the bogus ICMP 8580 * message? It would probably make more sense to just 8581 * drop the message so that if this one managed to get 8582 * in, the real connection should not suffer. 8583 */ 8584 goto noticmpv6; 8585 } 8586 8587 switch (icmp6->icmp6_type) { 8588 case ICMP6_PACKET_TOO_BIG: 8589 /* 8590 * Reduce the MSS based on the new MTU. This will 8591 * eliminate any fragmentation locally. 8592 * N.B. There may well be some funny side-effects on 8593 * the local send policy and the remote receive policy. 8594 * Pending further research, we provide 8595 * tcp_ignore_path_mtu just in case this proves 8596 * disastrous somewhere. 8597 * 8598 * After updating the MSS, retransmit part of the 8599 * dropped segment using the new mss by calling 8600 * tcp_wput_data(). Need to adjust all those 8601 * params to make sure tcp_wput_data() work properly. 8602 */ 8603 if (tcps->tcps_ignore_path_mtu) 8604 break; 8605 8606 /* 8607 * Decrease the MSS by time stamp options 8608 * IP options and IPSEC options. tcp_hdr_len 8609 * includes time stamp option and IP option 8610 * length. 8611 */ 8612 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8613 tcp->tcp_ipsec_overhead; 8614 8615 /* 8616 * Only update the MSS if the new one is 8617 * smaller than the previous one. This is 8618 * to avoid problems when getting multiple 8619 * ICMP errors for the same MTU. 8620 */ 8621 if (new_mss >= tcp->tcp_mss) 8622 break; 8623 8624 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8625 ASSERT(ratio >= 1); 8626 tcp_mss_set(tcp, new_mss, B_TRUE); 8627 8628 /* 8629 * Make sure we have something to 8630 * send. 8631 */ 8632 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8633 (tcp->tcp_xmit_head != NULL)) { 8634 /* 8635 * Shrink tcp_cwnd in 8636 * proportion to the old MSS/new MSS. 8637 */ 8638 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8639 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8640 (tcp->tcp_unsent == 0)) { 8641 tcp->tcp_rexmit_max = tcp->tcp_fss; 8642 } else { 8643 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8644 } 8645 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8646 tcp->tcp_rexmit = B_TRUE; 8647 tcp->tcp_dupack_cnt = 0; 8648 tcp->tcp_snd_burst = TCP_CWND_SS; 8649 tcp_ss_rexmit(tcp); 8650 } 8651 break; 8652 8653 case ICMP6_DST_UNREACH: 8654 switch (icmp6->icmp6_code) { 8655 case ICMP6_DST_UNREACH_NOPORT: 8656 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8657 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8658 (seg_seq == tcp->tcp_iss)) { 8659 (void) tcp_clean_death(tcp, 8660 ECONNREFUSED, 8); 8661 } 8662 break; 8663 8664 case ICMP6_DST_UNREACH_ADMIN: 8665 case ICMP6_DST_UNREACH_NOROUTE: 8666 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8667 case ICMP6_DST_UNREACH_ADDR: 8668 /* Record the error in case we finally time out. */ 8669 tcp->tcp_client_errno = EHOSTUNREACH; 8670 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8671 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8672 (seg_seq == tcp->tcp_iss)) { 8673 if (tcp->tcp_listener != NULL && 8674 tcp->tcp_listener->tcp_syn_defense) { 8675 /* 8676 * Ditch the half-open connection if we 8677 * suspect a SYN attack is under way. 8678 */ 8679 tcp_ip_ire_mark_advice(tcp); 8680 (void) tcp_clean_death(tcp, 8681 tcp->tcp_client_errno, 9); 8682 } 8683 } 8684 8685 8686 break; 8687 default: 8688 break; 8689 } 8690 break; 8691 8692 case ICMP6_PARAM_PROB: 8693 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8694 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8695 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8696 (uchar_t *)nexthdrp) { 8697 if (tcp->tcp_state == TCPS_SYN_SENT || 8698 tcp->tcp_state == TCPS_SYN_RCVD) { 8699 (void) tcp_clean_death(tcp, 8700 ECONNREFUSED, 10); 8701 } 8702 break; 8703 } 8704 break; 8705 8706 case ICMP6_TIME_EXCEEDED: 8707 default: 8708 break; 8709 } 8710 freemsg(first_mp); 8711 } 8712 8713 /* 8714 * Notify IP that we are having trouble with this connection. IP should 8715 * blow the IRE away and start over. 8716 */ 8717 static void 8718 tcp_ip_notify(tcp_t *tcp) 8719 { 8720 struct iocblk *iocp; 8721 ipid_t *ipid; 8722 mblk_t *mp; 8723 8724 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8725 if (tcp->tcp_ipversion == IPV6_VERSION) 8726 return; 8727 8728 mp = mkiocb(IP_IOCTL); 8729 if (mp == NULL) 8730 return; 8731 8732 iocp = (struct iocblk *)mp->b_rptr; 8733 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8734 8735 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8736 if (!mp->b_cont) { 8737 freeb(mp); 8738 return; 8739 } 8740 8741 ipid = (ipid_t *)mp->b_cont->b_rptr; 8742 mp->b_cont->b_wptr += iocp->ioc_count; 8743 bzero(ipid, sizeof (*ipid)); 8744 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8745 ipid->ipid_ire_type = IRE_CACHE; 8746 ipid->ipid_addr_offset = sizeof (ipid_t); 8747 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8748 /* 8749 * Note: in the case of source routing we want to blow away the 8750 * route to the first source route hop. 8751 */ 8752 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8753 sizeof (tcp->tcp_ipha->ipha_dst)); 8754 8755 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8756 } 8757 8758 /* Unlink and return any mblk that looks like it contains an ire */ 8759 static mblk_t * 8760 tcp_ire_mp(mblk_t **mpp) 8761 { 8762 mblk_t *mp = *mpp; 8763 mblk_t *prev_mp = NULL; 8764 8765 for (;;) { 8766 switch (DB_TYPE(mp)) { 8767 case IRE_DB_TYPE: 8768 case IRE_DB_REQ_TYPE: 8769 if (mp == *mpp) { 8770 *mpp = mp->b_cont; 8771 } else { 8772 prev_mp->b_cont = mp->b_cont; 8773 } 8774 mp->b_cont = NULL; 8775 return (mp); 8776 default: 8777 break; 8778 } 8779 prev_mp = mp; 8780 mp = mp->b_cont; 8781 if (mp == NULL) 8782 break; 8783 } 8784 return (mp); 8785 } 8786 8787 /* 8788 * Timer callback routine for keepalive probe. We do a fake resend of 8789 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8790 * check to see if we have heard anything from the other end for the last 8791 * RTO period. If we have, set the timer to expire for another 8792 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8793 * RTO << 1 and check again when it expires. Keep exponentially increasing 8794 * the timeout if we have not heard from the other side. If for more than 8795 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8796 * kill the connection unless the keepalive abort threshold is 0. In 8797 * that case, we will probe "forever." 8798 */ 8799 static void 8800 tcp_keepalive_killer(void *arg) 8801 { 8802 mblk_t *mp; 8803 conn_t *connp = (conn_t *)arg; 8804 tcp_t *tcp = connp->conn_tcp; 8805 int32_t firetime; 8806 int32_t idletime; 8807 int32_t ka_intrvl; 8808 tcp_stack_t *tcps = tcp->tcp_tcps; 8809 8810 tcp->tcp_ka_tid = 0; 8811 8812 if (tcp->tcp_fused) 8813 return; 8814 8815 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8816 ka_intrvl = tcp->tcp_ka_interval; 8817 8818 /* 8819 * Keepalive probe should only be sent if the application has not 8820 * done a close on the connection. 8821 */ 8822 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8823 return; 8824 } 8825 /* Timer fired too early, restart it. */ 8826 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8827 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8828 MSEC_TO_TICK(ka_intrvl)); 8829 return; 8830 } 8831 8832 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8833 /* 8834 * If we have not heard from the other side for a long 8835 * time, kill the connection unless the keepalive abort 8836 * threshold is 0. In that case, we will probe "forever." 8837 */ 8838 if (tcp->tcp_ka_abort_thres != 0 && 8839 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8840 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8841 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8842 tcp->tcp_client_errno : ETIMEDOUT, 11); 8843 return; 8844 } 8845 8846 if (tcp->tcp_snxt == tcp->tcp_suna && 8847 idletime >= ka_intrvl) { 8848 /* Fake resend of last ACKed byte. */ 8849 mblk_t *mp1 = allocb(1, BPRI_LO); 8850 8851 if (mp1 != NULL) { 8852 *mp1->b_wptr++ = '\0'; 8853 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8854 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8855 freeb(mp1); 8856 /* 8857 * if allocation failed, fall through to start the 8858 * timer back. 8859 */ 8860 if (mp != NULL) { 8861 tcp_send_data(tcp, tcp->tcp_wq, mp); 8862 BUMP_MIB(&tcps->tcps_mib, 8863 tcpTimKeepaliveProbe); 8864 if (tcp->tcp_ka_last_intrvl != 0) { 8865 int max; 8866 /* 8867 * We should probe again at least 8868 * in ka_intrvl, but not more than 8869 * tcp_rexmit_interval_max. 8870 */ 8871 max = tcps->tcps_rexmit_interval_max; 8872 firetime = MIN(ka_intrvl - 1, 8873 tcp->tcp_ka_last_intrvl << 1); 8874 if (firetime > max) 8875 firetime = max; 8876 } else { 8877 firetime = tcp->tcp_rto; 8878 } 8879 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8880 tcp_keepalive_killer, 8881 MSEC_TO_TICK(firetime)); 8882 tcp->tcp_ka_last_intrvl = firetime; 8883 return; 8884 } 8885 } 8886 } else { 8887 tcp->tcp_ka_last_intrvl = 0; 8888 } 8889 8890 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8891 if ((firetime = ka_intrvl - idletime) < 0) { 8892 firetime = ka_intrvl; 8893 } 8894 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8895 MSEC_TO_TICK(firetime)); 8896 } 8897 8898 int 8899 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8900 { 8901 queue_t *q = tcp->tcp_rq; 8902 int32_t mss = tcp->tcp_mss; 8903 int maxpsz; 8904 conn_t *connp = tcp->tcp_connp; 8905 8906 if (TCP_IS_DETACHED(tcp)) 8907 return (mss); 8908 if (tcp->tcp_fused) { 8909 maxpsz = tcp_fuse_maxpsz_set(tcp); 8910 mss = INFPSZ; 8911 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8912 /* 8913 * Set the sd_qn_maxpsz according to the socket send buffer 8914 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8915 * instruct the stream head to copyin user data into contiguous 8916 * kernel-allocated buffers without breaking it up into smaller 8917 * chunks. We round up the buffer size to the nearest SMSS. 8918 */ 8919 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8920 if (tcp->tcp_kssl_ctx == NULL) 8921 mss = INFPSZ; 8922 else 8923 mss = SSL3_MAX_RECORD_LEN; 8924 } else { 8925 /* 8926 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8927 * (and a multiple of the mss). This instructs the stream 8928 * head to break down larger than SMSS writes into SMSS- 8929 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8930 */ 8931 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8932 maxpsz = tcp->tcp_maxpsz * mss; 8933 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8934 maxpsz = tcp->tcp_xmit_hiwater/2; 8935 /* Round up to nearest mss */ 8936 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8937 } 8938 } 8939 8940 (void) proto_set_maxpsz(q, connp, maxpsz); 8941 if (!(IPCL_IS_NONSTR(connp))) { 8942 /* XXX do it in set_maxpsz()? */ 8943 tcp->tcp_wq->q_maxpsz = maxpsz; 8944 } 8945 8946 if (set_maxblk) 8947 (void) proto_set_tx_maxblk(q, connp, mss); 8948 return (mss); 8949 } 8950 8951 /* 8952 * Extract option values from a tcp header. We put any found values into the 8953 * tcpopt struct and return a bitmask saying which options were found. 8954 */ 8955 static int 8956 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8957 { 8958 uchar_t *endp; 8959 int len; 8960 uint32_t mss; 8961 uchar_t *up = (uchar_t *)tcph; 8962 int found = 0; 8963 int32_t sack_len; 8964 tcp_seq sack_begin, sack_end; 8965 tcp_t *tcp; 8966 8967 endp = up + TCP_HDR_LENGTH(tcph); 8968 up += TCP_MIN_HEADER_LENGTH; 8969 while (up < endp) { 8970 len = endp - up; 8971 switch (*up) { 8972 case TCPOPT_EOL: 8973 break; 8974 8975 case TCPOPT_NOP: 8976 up++; 8977 continue; 8978 8979 case TCPOPT_MAXSEG: 8980 if (len < TCPOPT_MAXSEG_LEN || 8981 up[1] != TCPOPT_MAXSEG_LEN) 8982 break; 8983 8984 mss = BE16_TO_U16(up+2); 8985 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8986 tcpopt->tcp_opt_mss = mss; 8987 found |= TCP_OPT_MSS_PRESENT; 8988 8989 up += TCPOPT_MAXSEG_LEN; 8990 continue; 8991 8992 case TCPOPT_WSCALE: 8993 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8994 break; 8995 8996 if (up[2] > TCP_MAX_WINSHIFT) 8997 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8998 else 8999 tcpopt->tcp_opt_wscale = up[2]; 9000 found |= TCP_OPT_WSCALE_PRESENT; 9001 9002 up += TCPOPT_WS_LEN; 9003 continue; 9004 9005 case TCPOPT_SACK_PERMITTED: 9006 if (len < TCPOPT_SACK_OK_LEN || 9007 up[1] != TCPOPT_SACK_OK_LEN) 9008 break; 9009 found |= TCP_OPT_SACK_OK_PRESENT; 9010 up += TCPOPT_SACK_OK_LEN; 9011 continue; 9012 9013 case TCPOPT_SACK: 9014 if (len <= 2 || up[1] <= 2 || len < up[1]) 9015 break; 9016 9017 /* If TCP is not interested in SACK blks... */ 9018 if ((tcp = tcpopt->tcp) == NULL) { 9019 up += up[1]; 9020 continue; 9021 } 9022 sack_len = up[1] - TCPOPT_HEADER_LEN; 9023 up += TCPOPT_HEADER_LEN; 9024 9025 /* 9026 * If the list is empty, allocate one and assume 9027 * nothing is sack'ed. 9028 */ 9029 ASSERT(tcp->tcp_sack_info != NULL); 9030 if (tcp->tcp_notsack_list == NULL) { 9031 tcp_notsack_update(&(tcp->tcp_notsack_list), 9032 tcp->tcp_suna, tcp->tcp_snxt, 9033 &(tcp->tcp_num_notsack_blk), 9034 &(tcp->tcp_cnt_notsack_list)); 9035 9036 /* 9037 * Make sure tcp_notsack_list is not NULL. 9038 * This happens when kmem_alloc(KM_NOSLEEP) 9039 * returns NULL. 9040 */ 9041 if (tcp->tcp_notsack_list == NULL) { 9042 up += sack_len; 9043 continue; 9044 } 9045 tcp->tcp_fack = tcp->tcp_suna; 9046 } 9047 9048 while (sack_len > 0) { 9049 if (up + 8 > endp) { 9050 up = endp; 9051 break; 9052 } 9053 sack_begin = BE32_TO_U32(up); 9054 up += 4; 9055 sack_end = BE32_TO_U32(up); 9056 up += 4; 9057 sack_len -= 8; 9058 /* 9059 * Bounds checking. Make sure the SACK 9060 * info is within tcp_suna and tcp_snxt. 9061 * If this SACK blk is out of bound, ignore 9062 * it but continue to parse the following 9063 * blks. 9064 */ 9065 if (SEQ_LEQ(sack_end, sack_begin) || 9066 SEQ_LT(sack_begin, tcp->tcp_suna) || 9067 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9068 continue; 9069 } 9070 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9071 sack_begin, sack_end, 9072 &(tcp->tcp_num_notsack_blk), 9073 &(tcp->tcp_cnt_notsack_list)); 9074 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9075 tcp->tcp_fack = sack_end; 9076 } 9077 } 9078 found |= TCP_OPT_SACK_PRESENT; 9079 continue; 9080 9081 case TCPOPT_TSTAMP: 9082 if (len < TCPOPT_TSTAMP_LEN || 9083 up[1] != TCPOPT_TSTAMP_LEN) 9084 break; 9085 9086 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9087 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9088 9089 found |= TCP_OPT_TSTAMP_PRESENT; 9090 9091 up += TCPOPT_TSTAMP_LEN; 9092 continue; 9093 9094 default: 9095 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9096 break; 9097 up += up[1]; 9098 continue; 9099 } 9100 break; 9101 } 9102 return (found); 9103 } 9104 9105 /* 9106 * Set the mss associated with a particular tcp based on its current value, 9107 * and a new one passed in. Observe minimums and maximums, and reset 9108 * other state variables that we want to view as multiples of mss. 9109 * 9110 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9111 * highwater marks etc. need to be initialized or adjusted. 9112 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9113 * packet arrives. 9114 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9115 * ICMP6_PACKET_TOO_BIG arrives. 9116 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9117 * to increase the MSS to use the extra bytes available. 9118 * 9119 * Callers except tcp_paws_check() ensure that they only reduce mss. 9120 */ 9121 static void 9122 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9123 { 9124 uint32_t mss_max; 9125 tcp_stack_t *tcps = tcp->tcp_tcps; 9126 9127 if (tcp->tcp_ipversion == IPV4_VERSION) 9128 mss_max = tcps->tcps_mss_max_ipv4; 9129 else 9130 mss_max = tcps->tcps_mss_max_ipv6; 9131 9132 if (mss < tcps->tcps_mss_min) 9133 mss = tcps->tcps_mss_min; 9134 if (mss > mss_max) 9135 mss = mss_max; 9136 /* 9137 * Unless naglim has been set by our client to 9138 * a non-mss value, force naglim to track mss. 9139 * This can help to aggregate small writes. 9140 */ 9141 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9142 tcp->tcp_naglim = mss; 9143 /* 9144 * TCP should be able to buffer at least 4 MSS data for obvious 9145 * performance reason. 9146 */ 9147 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9148 tcp->tcp_xmit_hiwater = mss << 2; 9149 9150 if (do_ss) { 9151 /* 9152 * Either the tcp_cwnd is as yet uninitialized, or mss is 9153 * changing due to a reduction in MTU, presumably as a 9154 * result of a new path component, reset cwnd to its 9155 * "initial" value, as a multiple of the new mss. 9156 */ 9157 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9158 } else { 9159 /* 9160 * Called by tcp_paws_check(), the mss increased 9161 * marginally to allow use of space previously taken 9162 * by the timestamp option. It would be inappropriate 9163 * to apply slow start or tcp_init_cwnd values to 9164 * tcp_cwnd, simply adjust to a multiple of the new mss. 9165 */ 9166 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9167 tcp->tcp_cwnd_cnt = 0; 9168 } 9169 tcp->tcp_mss = mss; 9170 (void) tcp_maxpsz_set(tcp, B_TRUE); 9171 } 9172 9173 /* For /dev/tcp aka AF_INET open */ 9174 static int 9175 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9176 { 9177 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9178 } 9179 9180 /* For /dev/tcp6 aka AF_INET6 open */ 9181 static int 9182 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9183 { 9184 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9185 } 9186 9187 static conn_t * 9188 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9189 boolean_t issocket, int *errorp) 9190 { 9191 tcp_t *tcp = NULL; 9192 conn_t *connp; 9193 int err; 9194 zoneid_t zoneid; 9195 tcp_stack_t *tcps; 9196 squeue_t *sqp; 9197 9198 ASSERT(errorp != NULL); 9199 /* 9200 * Find the proper zoneid and netstack. 9201 */ 9202 /* 9203 * Special case for install: miniroot needs to be able to 9204 * access files via NFS as though it were always in the 9205 * global zone. 9206 */ 9207 if (credp == kcred && nfs_global_client_only != 0) { 9208 zoneid = GLOBAL_ZONEID; 9209 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9210 netstack_tcp; 9211 ASSERT(tcps != NULL); 9212 } else { 9213 netstack_t *ns; 9214 9215 ns = netstack_find_by_cred(credp); 9216 ASSERT(ns != NULL); 9217 tcps = ns->netstack_tcp; 9218 ASSERT(tcps != NULL); 9219 9220 /* 9221 * For exclusive stacks we set the zoneid to zero 9222 * to make TCP operate as if in the global zone. 9223 */ 9224 if (tcps->tcps_netstack->netstack_stackid != 9225 GLOBAL_NETSTACKID) 9226 zoneid = GLOBAL_ZONEID; 9227 else 9228 zoneid = crgetzoneid(credp); 9229 } 9230 /* 9231 * For stackid zero this is done from strplumb.c, but 9232 * non-zero stackids are handled here. 9233 */ 9234 if (tcps->tcps_g_q == NULL && 9235 tcps->tcps_netstack->netstack_stackid != 9236 GLOBAL_NETSTACKID) { 9237 tcp_g_q_setup(tcps); 9238 } 9239 9240 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9241 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9242 /* 9243 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9244 * so we drop it by one. 9245 */ 9246 netstack_rele(tcps->tcps_netstack); 9247 if (connp == NULL) { 9248 *errorp = ENOSR; 9249 return (NULL); 9250 } 9251 connp->conn_sqp = sqp; 9252 connp->conn_initial_sqp = connp->conn_sqp; 9253 tcp = connp->conn_tcp; 9254 9255 if (isv6) { 9256 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9257 connp->conn_send = ip_output_v6; 9258 connp->conn_af_isv6 = B_TRUE; 9259 connp->conn_pkt_isv6 = B_TRUE; 9260 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9261 tcp->tcp_ipversion = IPV6_VERSION; 9262 tcp->tcp_family = AF_INET6; 9263 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9264 } else { 9265 connp->conn_flags |= IPCL_TCP4; 9266 connp->conn_send = ip_output; 9267 connp->conn_af_isv6 = B_FALSE; 9268 connp->conn_pkt_isv6 = B_FALSE; 9269 tcp->tcp_ipversion = IPV4_VERSION; 9270 tcp->tcp_family = AF_INET; 9271 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9272 } 9273 9274 /* 9275 * TCP keeps a copy of cred for cache locality reasons but 9276 * we put a reference only once. If connp->conn_cred 9277 * becomes invalid, tcp_cred should also be set to NULL. 9278 */ 9279 tcp->tcp_cred = connp->conn_cred = credp; 9280 crhold(connp->conn_cred); 9281 tcp->tcp_cpid = curproc->p_pid; 9282 tcp->tcp_open_time = lbolt64; 9283 connp->conn_zoneid = zoneid; 9284 connp->conn_mlp_type = mlptSingle; 9285 connp->conn_ulp_labeled = !is_system_labeled(); 9286 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9287 ASSERT(tcp->tcp_tcps == tcps); 9288 9289 /* 9290 * If the caller has the process-wide flag set, then default to MAC 9291 * exempt mode. This allows read-down to unlabeled hosts. 9292 */ 9293 if (getpflags(NET_MAC_AWARE, credp) != 0) 9294 connp->conn_mac_exempt = B_TRUE; 9295 9296 connp->conn_dev = NULL; 9297 if (issocket) { 9298 connp->conn_flags |= IPCL_SOCKET; 9299 tcp->tcp_issocket = 1; 9300 } 9301 9302 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9303 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9304 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9305 9306 /* Non-zero default values */ 9307 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9308 9309 if (q == NULL) { 9310 /* 9311 * Create a helper stream for non-STREAMS socket. 9312 */ 9313 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9314 if (err != 0) { 9315 ip1dbg(("tcp_create_common: create of IP helper stream " 9316 "failed\n")); 9317 CONN_DEC_REF(connp); 9318 *errorp = err; 9319 return (NULL); 9320 } 9321 q = connp->conn_rq; 9322 } else { 9323 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9324 } 9325 9326 SOCK_CONNID_INIT(tcp->tcp_connid); 9327 err = tcp_init(tcp, q); 9328 if (err != 0) { 9329 CONN_DEC_REF(connp); 9330 *errorp = err; 9331 return (NULL); 9332 } 9333 9334 return (connp); 9335 } 9336 9337 static int 9338 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9339 boolean_t isv6) 9340 { 9341 tcp_t *tcp = NULL; 9342 conn_t *connp = NULL; 9343 int err; 9344 vmem_t *minor_arena = NULL; 9345 dev_t conn_dev; 9346 boolean_t issocket; 9347 9348 if (q->q_ptr != NULL) 9349 return (0); 9350 9351 if (sflag == MODOPEN) 9352 return (EINVAL); 9353 9354 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9355 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9356 minor_arena = ip_minor_arena_la; 9357 } else { 9358 /* 9359 * Either minor numbers in the large arena were exhausted 9360 * or a non socket application is doing the open. 9361 * Try to allocate from the small arena. 9362 */ 9363 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9364 return (EBUSY); 9365 } 9366 minor_arena = ip_minor_arena_sa; 9367 } 9368 9369 ASSERT(minor_arena != NULL); 9370 9371 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9372 9373 if (flag & SO_FALLBACK) { 9374 /* 9375 * Non streams socket needs a stream to fallback to 9376 */ 9377 RD(q)->q_ptr = (void *)conn_dev; 9378 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9379 WR(q)->q_ptr = (void *)minor_arena; 9380 qprocson(q); 9381 return (0); 9382 } else if (flag & SO_ACCEPTOR) { 9383 q->q_qinfo = &tcp_acceptor_rinit; 9384 /* 9385 * the conn_dev and minor_arena will be subsequently used by 9386 * tcp_wput_accept() and tcpclose_accept() to figure out the 9387 * minor device number for this connection from the q_ptr. 9388 */ 9389 RD(q)->q_ptr = (void *)conn_dev; 9390 WR(q)->q_qinfo = &tcp_acceptor_winit; 9391 WR(q)->q_ptr = (void *)minor_arena; 9392 qprocson(q); 9393 return (0); 9394 } 9395 9396 issocket = flag & SO_SOCKSTR; 9397 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9398 9399 if (connp == NULL) { 9400 inet_minor_free(minor_arena, conn_dev); 9401 q->q_ptr = WR(q)->q_ptr = NULL; 9402 return (err); 9403 } 9404 9405 q->q_ptr = WR(q)->q_ptr = connp; 9406 9407 connp->conn_dev = conn_dev; 9408 connp->conn_minor_arena = minor_arena; 9409 9410 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9411 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9412 9413 if (issocket) { 9414 WR(q)->q_qinfo = &tcp_sock_winit; 9415 } else { 9416 tcp = connp->conn_tcp; 9417 #ifdef _ILP32 9418 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9419 #else 9420 tcp->tcp_acceptor_id = conn_dev; 9421 #endif /* _ILP32 */ 9422 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9423 } 9424 9425 /* 9426 * Put the ref for TCP. Ref for IP was already put 9427 * by ipcl_conn_create. Also Make the conn_t globally 9428 * visible to walkers 9429 */ 9430 mutex_enter(&connp->conn_lock); 9431 CONN_INC_REF_LOCKED(connp); 9432 ASSERT(connp->conn_ref == 2); 9433 connp->conn_state_flags &= ~CONN_INCIPIENT; 9434 mutex_exit(&connp->conn_lock); 9435 9436 qprocson(q); 9437 return (0); 9438 } 9439 9440 /* 9441 * Some TCP options can be "set" by requesting them in the option 9442 * buffer. This is needed for XTI feature test though we do not 9443 * allow it in general. We interpret that this mechanism is more 9444 * applicable to OSI protocols and need not be allowed in general. 9445 * This routine filters out options for which it is not allowed (most) 9446 * and lets through those (few) for which it is. [ The XTI interface 9447 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9448 * ever implemented will have to be allowed here ]. 9449 */ 9450 static boolean_t 9451 tcp_allow_connopt_set(int level, int name) 9452 { 9453 9454 switch (level) { 9455 case IPPROTO_TCP: 9456 switch (name) { 9457 case TCP_NODELAY: 9458 return (B_TRUE); 9459 default: 9460 return (B_FALSE); 9461 } 9462 /*NOTREACHED*/ 9463 default: 9464 return (B_FALSE); 9465 } 9466 /*NOTREACHED*/ 9467 } 9468 9469 /* 9470 * this routine gets default values of certain options whose default 9471 * values are maintained by protocol specific code 9472 */ 9473 /* ARGSUSED */ 9474 int 9475 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9476 { 9477 int32_t *i1 = (int32_t *)ptr; 9478 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9479 9480 switch (level) { 9481 case IPPROTO_TCP: 9482 switch (name) { 9483 case TCP_NOTIFY_THRESHOLD: 9484 *i1 = tcps->tcps_ip_notify_interval; 9485 break; 9486 case TCP_ABORT_THRESHOLD: 9487 *i1 = tcps->tcps_ip_abort_interval; 9488 break; 9489 case TCP_CONN_NOTIFY_THRESHOLD: 9490 *i1 = tcps->tcps_ip_notify_cinterval; 9491 break; 9492 case TCP_CONN_ABORT_THRESHOLD: 9493 *i1 = tcps->tcps_ip_abort_cinterval; 9494 break; 9495 default: 9496 return (-1); 9497 } 9498 break; 9499 case IPPROTO_IP: 9500 switch (name) { 9501 case IP_TTL: 9502 *i1 = tcps->tcps_ipv4_ttl; 9503 break; 9504 default: 9505 return (-1); 9506 } 9507 break; 9508 case IPPROTO_IPV6: 9509 switch (name) { 9510 case IPV6_UNICAST_HOPS: 9511 *i1 = tcps->tcps_ipv6_hoplimit; 9512 break; 9513 default: 9514 return (-1); 9515 } 9516 break; 9517 default: 9518 return (-1); 9519 } 9520 return (sizeof (int)); 9521 } 9522 9523 static int 9524 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9525 { 9526 int *i1 = (int *)ptr; 9527 tcp_t *tcp = connp->conn_tcp; 9528 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9529 9530 switch (level) { 9531 case SOL_SOCKET: 9532 switch (name) { 9533 case SO_LINGER: { 9534 struct linger *lgr = (struct linger *)ptr; 9535 9536 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9537 lgr->l_linger = tcp->tcp_lingertime; 9538 } 9539 return (sizeof (struct linger)); 9540 case SO_DEBUG: 9541 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9542 break; 9543 case SO_KEEPALIVE: 9544 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9545 break; 9546 case SO_DONTROUTE: 9547 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9548 break; 9549 case SO_USELOOPBACK: 9550 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9551 break; 9552 case SO_BROADCAST: 9553 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9554 break; 9555 case SO_REUSEADDR: 9556 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9557 break; 9558 case SO_OOBINLINE: 9559 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9560 break; 9561 case SO_DGRAM_ERRIND: 9562 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9563 break; 9564 case SO_TYPE: 9565 *i1 = SOCK_STREAM; 9566 break; 9567 case SO_SNDBUF: 9568 *i1 = tcp->tcp_xmit_hiwater; 9569 break; 9570 case SO_RCVBUF: 9571 *i1 = tcp->tcp_recv_hiwater; 9572 break; 9573 case SO_SND_COPYAVOID: 9574 *i1 = tcp->tcp_snd_zcopy_on ? 9575 SO_SND_COPYAVOID : 0; 9576 break; 9577 case SO_ALLZONES: 9578 *i1 = connp->conn_allzones ? 1 : 0; 9579 break; 9580 case SO_ANON_MLP: 9581 *i1 = connp->conn_anon_mlp; 9582 break; 9583 case SO_MAC_EXEMPT: 9584 *i1 = connp->conn_mac_exempt; 9585 break; 9586 case SO_EXCLBIND: 9587 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9588 break; 9589 case SO_PROTOTYPE: 9590 *i1 = IPPROTO_TCP; 9591 break; 9592 case SO_DOMAIN: 9593 *i1 = tcp->tcp_family; 9594 break; 9595 case SO_ACCEPTCONN: 9596 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9597 default: 9598 return (-1); 9599 } 9600 break; 9601 case IPPROTO_TCP: 9602 switch (name) { 9603 case TCP_NODELAY: 9604 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9605 break; 9606 case TCP_MAXSEG: 9607 *i1 = tcp->tcp_mss; 9608 break; 9609 case TCP_NOTIFY_THRESHOLD: 9610 *i1 = (int)tcp->tcp_first_timer_threshold; 9611 break; 9612 case TCP_ABORT_THRESHOLD: 9613 *i1 = tcp->tcp_second_timer_threshold; 9614 break; 9615 case TCP_CONN_NOTIFY_THRESHOLD: 9616 *i1 = tcp->tcp_first_ctimer_threshold; 9617 break; 9618 case TCP_CONN_ABORT_THRESHOLD: 9619 *i1 = tcp->tcp_second_ctimer_threshold; 9620 break; 9621 case TCP_RECVDSTADDR: 9622 *i1 = tcp->tcp_recvdstaddr; 9623 break; 9624 case TCP_ANONPRIVBIND: 9625 *i1 = tcp->tcp_anon_priv_bind; 9626 break; 9627 case TCP_EXCLBIND: 9628 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9629 break; 9630 case TCP_INIT_CWND: 9631 *i1 = tcp->tcp_init_cwnd; 9632 break; 9633 case TCP_KEEPALIVE_THRESHOLD: 9634 *i1 = tcp->tcp_ka_interval; 9635 break; 9636 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9637 *i1 = tcp->tcp_ka_abort_thres; 9638 break; 9639 case TCP_CORK: 9640 *i1 = tcp->tcp_cork; 9641 break; 9642 default: 9643 return (-1); 9644 } 9645 break; 9646 case IPPROTO_IP: 9647 if (tcp->tcp_family != AF_INET) 9648 return (-1); 9649 switch (name) { 9650 case IP_OPTIONS: 9651 case T_IP_OPTIONS: { 9652 /* 9653 * This is compatible with BSD in that in only return 9654 * the reverse source route with the final destination 9655 * as the last entry. The first 4 bytes of the option 9656 * will contain the final destination. 9657 */ 9658 int opt_len; 9659 9660 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9661 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9662 ASSERT(opt_len >= 0); 9663 /* Caller ensures enough space */ 9664 if (opt_len > 0) { 9665 /* 9666 * TODO: Do we have to handle getsockopt on an 9667 * initiator as well? 9668 */ 9669 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9670 } 9671 return (0); 9672 } 9673 case IP_TOS: 9674 case T_IP_TOS: 9675 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9676 break; 9677 case IP_TTL: 9678 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9679 break; 9680 case IP_NEXTHOP: 9681 /* Handled at IP level */ 9682 return (-EINVAL); 9683 default: 9684 return (-1); 9685 } 9686 break; 9687 case IPPROTO_IPV6: 9688 /* 9689 * IPPROTO_IPV6 options are only supported for sockets 9690 * that are using IPv6 on the wire. 9691 */ 9692 if (tcp->tcp_ipversion != IPV6_VERSION) { 9693 return (-1); 9694 } 9695 switch (name) { 9696 case IPV6_UNICAST_HOPS: 9697 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9698 break; /* goto sizeof (int) option return */ 9699 case IPV6_BOUND_IF: 9700 /* Zero if not set */ 9701 *i1 = tcp->tcp_bound_if; 9702 break; /* goto sizeof (int) option return */ 9703 case IPV6_RECVPKTINFO: 9704 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9705 *i1 = 1; 9706 else 9707 *i1 = 0; 9708 break; /* goto sizeof (int) option return */ 9709 case IPV6_RECVTCLASS: 9710 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9711 *i1 = 1; 9712 else 9713 *i1 = 0; 9714 break; /* goto sizeof (int) option return */ 9715 case IPV6_RECVHOPLIMIT: 9716 if (tcp->tcp_ipv6_recvancillary & 9717 TCP_IPV6_RECVHOPLIMIT) 9718 *i1 = 1; 9719 else 9720 *i1 = 0; 9721 break; /* goto sizeof (int) option return */ 9722 case IPV6_RECVHOPOPTS: 9723 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9724 *i1 = 1; 9725 else 9726 *i1 = 0; 9727 break; /* goto sizeof (int) option return */ 9728 case IPV6_RECVDSTOPTS: 9729 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9730 *i1 = 1; 9731 else 9732 *i1 = 0; 9733 break; /* goto sizeof (int) option return */ 9734 case _OLD_IPV6_RECVDSTOPTS: 9735 if (tcp->tcp_ipv6_recvancillary & 9736 TCP_OLD_IPV6_RECVDSTOPTS) 9737 *i1 = 1; 9738 else 9739 *i1 = 0; 9740 break; /* goto sizeof (int) option return */ 9741 case IPV6_RECVRTHDR: 9742 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9743 *i1 = 1; 9744 else 9745 *i1 = 0; 9746 break; /* goto sizeof (int) option return */ 9747 case IPV6_RECVRTHDRDSTOPTS: 9748 if (tcp->tcp_ipv6_recvancillary & 9749 TCP_IPV6_RECVRTDSTOPTS) 9750 *i1 = 1; 9751 else 9752 *i1 = 0; 9753 break; /* goto sizeof (int) option return */ 9754 case IPV6_PKTINFO: { 9755 /* XXX assumes that caller has room for max size! */ 9756 struct in6_pktinfo *pkti; 9757 9758 pkti = (struct in6_pktinfo *)ptr; 9759 if (ipp->ipp_fields & IPPF_IFINDEX) 9760 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9761 else 9762 pkti->ipi6_ifindex = 0; 9763 if (ipp->ipp_fields & IPPF_ADDR) 9764 pkti->ipi6_addr = ipp->ipp_addr; 9765 else 9766 pkti->ipi6_addr = ipv6_all_zeros; 9767 return (sizeof (struct in6_pktinfo)); 9768 } 9769 case IPV6_TCLASS: 9770 if (ipp->ipp_fields & IPPF_TCLASS) 9771 *i1 = ipp->ipp_tclass; 9772 else 9773 *i1 = IPV6_FLOW_TCLASS( 9774 IPV6_DEFAULT_VERS_AND_FLOW); 9775 break; /* goto sizeof (int) option return */ 9776 case IPV6_NEXTHOP: { 9777 sin6_t *sin6 = (sin6_t *)ptr; 9778 9779 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9780 return (0); 9781 *sin6 = sin6_null; 9782 sin6->sin6_family = AF_INET6; 9783 sin6->sin6_addr = ipp->ipp_nexthop; 9784 return (sizeof (sin6_t)); 9785 } 9786 case IPV6_HOPOPTS: 9787 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9788 return (0); 9789 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9790 return (0); 9791 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9792 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9793 if (tcp->tcp_label_len > 0) { 9794 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9795 ptr[1] = (ipp->ipp_hopoptslen - 9796 tcp->tcp_label_len + 7) / 8 - 1; 9797 } 9798 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9799 case IPV6_RTHDRDSTOPTS: 9800 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9801 return (0); 9802 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9803 return (ipp->ipp_rtdstoptslen); 9804 case IPV6_RTHDR: 9805 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9806 return (0); 9807 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9808 return (ipp->ipp_rthdrlen); 9809 case IPV6_DSTOPTS: 9810 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9811 return (0); 9812 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9813 return (ipp->ipp_dstoptslen); 9814 case IPV6_SRC_PREFERENCES: 9815 return (ip6_get_src_preferences(connp, 9816 (uint32_t *)ptr)); 9817 case IPV6_PATHMTU: { 9818 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9819 9820 if (tcp->tcp_state < TCPS_ESTABLISHED) 9821 return (-1); 9822 9823 return (ip_fill_mtuinfo(&connp->conn_remv6, 9824 connp->conn_fport, mtuinfo, 9825 connp->conn_netstack)); 9826 } 9827 default: 9828 return (-1); 9829 } 9830 break; 9831 default: 9832 return (-1); 9833 } 9834 return (sizeof (int)); 9835 } 9836 9837 /* 9838 * TCP routine to get the values of options. 9839 */ 9840 int 9841 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9842 { 9843 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9844 } 9845 9846 /* returns UNIX error, the optlen is a value-result arg */ 9847 int 9848 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9849 void *optvalp, socklen_t *optlen, cred_t *cr) 9850 { 9851 conn_t *connp = (conn_t *)proto_handle; 9852 squeue_t *sqp = connp->conn_sqp; 9853 int error; 9854 t_uscalar_t max_optbuf_len; 9855 void *optvalp_buf; 9856 int len; 9857 9858 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9859 tcp_opt_obj.odb_opt_des_arr, 9860 tcp_opt_obj.odb_opt_arr_cnt, 9861 tcp_opt_obj.odb_topmost_tpiprovider, 9862 B_FALSE, B_TRUE, cr); 9863 if (error != 0) { 9864 if (error < 0) { 9865 error = proto_tlitosyserr(-error); 9866 } 9867 return (error); 9868 } 9869 9870 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9871 9872 error = squeue_synch_enter(sqp, connp, 0); 9873 if (error == ENOMEM) { 9874 return (ENOMEM); 9875 } 9876 9877 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9878 squeue_synch_exit(sqp, connp); 9879 9880 if (len < 0) { 9881 /* 9882 * Pass on to IP 9883 */ 9884 kmem_free(optvalp_buf, max_optbuf_len); 9885 return (ip_get_options(connp, level, option_name, 9886 optvalp, optlen, cr)); 9887 } else { 9888 /* 9889 * update optlen and copy option value 9890 */ 9891 t_uscalar_t size = MIN(len, *optlen); 9892 bcopy(optvalp_buf, optvalp, size); 9893 bcopy(&size, optlen, sizeof (size)); 9894 9895 kmem_free(optvalp_buf, max_optbuf_len); 9896 return (0); 9897 } 9898 } 9899 9900 /* 9901 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9902 * Parameters are assumed to be verified by the caller. 9903 */ 9904 /* ARGSUSED */ 9905 int 9906 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9907 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9908 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9909 { 9910 tcp_t *tcp = connp->conn_tcp; 9911 int *i1 = (int *)invalp; 9912 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9913 boolean_t checkonly; 9914 int reterr; 9915 tcp_stack_t *tcps = tcp->tcp_tcps; 9916 9917 switch (optset_context) { 9918 case SETFN_OPTCOM_CHECKONLY: 9919 checkonly = B_TRUE; 9920 /* 9921 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9922 * inlen != 0 implies value supplied and 9923 * we have to "pretend" to set it. 9924 * inlen == 0 implies that there is no 9925 * value part in T_CHECK request and just validation 9926 * done elsewhere should be enough, we just return here. 9927 */ 9928 if (inlen == 0) { 9929 *outlenp = 0; 9930 return (0); 9931 } 9932 break; 9933 case SETFN_OPTCOM_NEGOTIATE: 9934 checkonly = B_FALSE; 9935 break; 9936 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9937 case SETFN_CONN_NEGOTIATE: 9938 checkonly = B_FALSE; 9939 /* 9940 * Negotiating local and "association-related" options 9941 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9942 * primitives is allowed by XTI, but we choose 9943 * to not implement this style negotiation for Internet 9944 * protocols (We interpret it is a must for OSI world but 9945 * optional for Internet protocols) for all options. 9946 * [ Will do only for the few options that enable test 9947 * suites that our XTI implementation of this feature 9948 * works for transports that do allow it ] 9949 */ 9950 if (!tcp_allow_connopt_set(level, name)) { 9951 *outlenp = 0; 9952 return (EINVAL); 9953 } 9954 break; 9955 default: 9956 /* 9957 * We should never get here 9958 */ 9959 *outlenp = 0; 9960 return (EINVAL); 9961 } 9962 9963 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9964 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9965 9966 /* 9967 * For TCP, we should have no ancillary data sent down 9968 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9969 * has to be zero. 9970 */ 9971 ASSERT(thisdg_attrs == NULL); 9972 9973 /* 9974 * For fixed length options, no sanity check 9975 * of passed in length is done. It is assumed *_optcom_req() 9976 * routines do the right thing. 9977 */ 9978 switch (level) { 9979 case SOL_SOCKET: 9980 switch (name) { 9981 case SO_LINGER: { 9982 struct linger *lgr = (struct linger *)invalp; 9983 9984 if (!checkonly) { 9985 if (lgr->l_onoff) { 9986 tcp->tcp_linger = 1; 9987 tcp->tcp_lingertime = lgr->l_linger; 9988 } else { 9989 tcp->tcp_linger = 0; 9990 tcp->tcp_lingertime = 0; 9991 } 9992 /* struct copy */ 9993 *(struct linger *)outvalp = *lgr; 9994 } else { 9995 if (!lgr->l_onoff) { 9996 ((struct linger *) 9997 outvalp)->l_onoff = 0; 9998 ((struct linger *) 9999 outvalp)->l_linger = 0; 10000 } else { 10001 /* struct copy */ 10002 *(struct linger *)outvalp = *lgr; 10003 } 10004 } 10005 *outlenp = sizeof (struct linger); 10006 return (0); 10007 } 10008 case SO_DEBUG: 10009 if (!checkonly) 10010 tcp->tcp_debug = onoff; 10011 break; 10012 case SO_KEEPALIVE: 10013 if (checkonly) { 10014 /* check only case */ 10015 break; 10016 } 10017 10018 if (!onoff) { 10019 if (tcp->tcp_ka_enabled) { 10020 if (tcp->tcp_ka_tid != 0) { 10021 (void) TCP_TIMER_CANCEL(tcp, 10022 tcp->tcp_ka_tid); 10023 tcp->tcp_ka_tid = 0; 10024 } 10025 tcp->tcp_ka_enabled = 0; 10026 } 10027 break; 10028 } 10029 if (!tcp->tcp_ka_enabled) { 10030 /* Crank up the keepalive timer */ 10031 tcp->tcp_ka_last_intrvl = 0; 10032 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10033 tcp_keepalive_killer, 10034 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10035 tcp->tcp_ka_enabled = 1; 10036 } 10037 break; 10038 case SO_DONTROUTE: 10039 /* 10040 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10041 * only of interest to IP. We track them here only so 10042 * that we can report their current value. 10043 */ 10044 if (!checkonly) { 10045 tcp->tcp_dontroute = onoff; 10046 tcp->tcp_connp->conn_dontroute = onoff; 10047 } 10048 break; 10049 case SO_USELOOPBACK: 10050 if (!checkonly) { 10051 tcp->tcp_useloopback = onoff; 10052 tcp->tcp_connp->conn_loopback = onoff; 10053 } 10054 break; 10055 case SO_BROADCAST: 10056 if (!checkonly) { 10057 tcp->tcp_broadcast = onoff; 10058 tcp->tcp_connp->conn_broadcast = onoff; 10059 } 10060 break; 10061 case SO_REUSEADDR: 10062 if (!checkonly) { 10063 tcp->tcp_reuseaddr = onoff; 10064 tcp->tcp_connp->conn_reuseaddr = onoff; 10065 } 10066 break; 10067 case SO_OOBINLINE: 10068 if (!checkonly) { 10069 tcp->tcp_oobinline = onoff; 10070 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10071 proto_set_rx_oob_opt(connp, onoff); 10072 } 10073 break; 10074 case SO_DGRAM_ERRIND: 10075 if (!checkonly) 10076 tcp->tcp_dgram_errind = onoff; 10077 break; 10078 case SO_SNDBUF: { 10079 if (*i1 > tcps->tcps_max_buf) { 10080 *outlenp = 0; 10081 return (ENOBUFS); 10082 } 10083 if (checkonly) 10084 break; 10085 10086 tcp->tcp_xmit_hiwater = *i1; 10087 if (tcps->tcps_snd_lowat_fraction != 0) 10088 tcp->tcp_xmit_lowater = 10089 tcp->tcp_xmit_hiwater / 10090 tcps->tcps_snd_lowat_fraction; 10091 (void) tcp_maxpsz_set(tcp, B_TRUE); 10092 /* 10093 * If we are flow-controlled, recheck the condition. 10094 * There are apps that increase SO_SNDBUF size when 10095 * flow-controlled (EWOULDBLOCK), and expect the flow 10096 * control condition to be lifted right away. 10097 */ 10098 mutex_enter(&tcp->tcp_non_sq_lock); 10099 if (tcp->tcp_flow_stopped && 10100 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10101 tcp_clrqfull(tcp); 10102 } 10103 mutex_exit(&tcp->tcp_non_sq_lock); 10104 break; 10105 } 10106 case SO_RCVBUF: 10107 if (*i1 > tcps->tcps_max_buf) { 10108 *outlenp = 0; 10109 return (ENOBUFS); 10110 } 10111 /* Silently ignore zero */ 10112 if (!checkonly && *i1 != 0) { 10113 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10114 (void) tcp_rwnd_set(tcp, *i1); 10115 } 10116 /* 10117 * XXX should we return the rwnd here 10118 * and tcp_opt_get ? 10119 */ 10120 break; 10121 case SO_SND_COPYAVOID: 10122 if (!checkonly) { 10123 /* we only allow enable at most once for now */ 10124 if (tcp->tcp_loopback || 10125 (tcp->tcp_kssl_ctx != NULL) || 10126 (!tcp->tcp_snd_zcopy_aware && 10127 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10128 *outlenp = 0; 10129 return (EOPNOTSUPP); 10130 } 10131 tcp->tcp_snd_zcopy_aware = 1; 10132 } 10133 break; 10134 case SO_ALLZONES: 10135 /* Pass option along to IP level for handling */ 10136 return (-EINVAL); 10137 case SO_ANON_MLP: 10138 /* Pass option along to IP level for handling */ 10139 return (-EINVAL); 10140 case SO_MAC_EXEMPT: 10141 /* Pass option along to IP level for handling */ 10142 return (-EINVAL); 10143 case SO_EXCLBIND: 10144 if (!checkonly) 10145 tcp->tcp_exclbind = onoff; 10146 break; 10147 default: 10148 *outlenp = 0; 10149 return (EINVAL); 10150 } 10151 break; 10152 case IPPROTO_TCP: 10153 switch (name) { 10154 case TCP_NODELAY: 10155 if (!checkonly) 10156 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10157 break; 10158 case TCP_NOTIFY_THRESHOLD: 10159 if (!checkonly) 10160 tcp->tcp_first_timer_threshold = *i1; 10161 break; 10162 case TCP_ABORT_THRESHOLD: 10163 if (!checkonly) 10164 tcp->tcp_second_timer_threshold = *i1; 10165 break; 10166 case TCP_CONN_NOTIFY_THRESHOLD: 10167 if (!checkonly) 10168 tcp->tcp_first_ctimer_threshold = *i1; 10169 break; 10170 case TCP_CONN_ABORT_THRESHOLD: 10171 if (!checkonly) 10172 tcp->tcp_second_ctimer_threshold = *i1; 10173 break; 10174 case TCP_RECVDSTADDR: 10175 if (tcp->tcp_state > TCPS_LISTEN) 10176 return (EOPNOTSUPP); 10177 if (!checkonly) 10178 tcp->tcp_recvdstaddr = onoff; 10179 break; 10180 case TCP_ANONPRIVBIND: 10181 if ((reterr = secpolicy_net_privaddr(cr, 0, 10182 IPPROTO_TCP)) != 0) { 10183 *outlenp = 0; 10184 return (reterr); 10185 } 10186 if (!checkonly) { 10187 tcp->tcp_anon_priv_bind = onoff; 10188 } 10189 break; 10190 case TCP_EXCLBIND: 10191 if (!checkonly) 10192 tcp->tcp_exclbind = onoff; 10193 break; /* goto sizeof (int) option return */ 10194 case TCP_INIT_CWND: { 10195 uint32_t init_cwnd = *((uint32_t *)invalp); 10196 10197 if (checkonly) 10198 break; 10199 10200 /* 10201 * Only allow socket with network configuration 10202 * privilege to set the initial cwnd to be larger 10203 * than allowed by RFC 3390. 10204 */ 10205 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10206 tcp->tcp_init_cwnd = init_cwnd; 10207 break; 10208 } 10209 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10210 *outlenp = 0; 10211 return (reterr); 10212 } 10213 if (init_cwnd > TCP_MAX_INIT_CWND) { 10214 *outlenp = 0; 10215 return (EINVAL); 10216 } 10217 tcp->tcp_init_cwnd = init_cwnd; 10218 break; 10219 } 10220 case TCP_KEEPALIVE_THRESHOLD: 10221 if (checkonly) 10222 break; 10223 10224 if (*i1 < tcps->tcps_keepalive_interval_low || 10225 *i1 > tcps->tcps_keepalive_interval_high) { 10226 *outlenp = 0; 10227 return (EINVAL); 10228 } 10229 if (*i1 != tcp->tcp_ka_interval) { 10230 tcp->tcp_ka_interval = *i1; 10231 /* 10232 * Check if we need to restart the 10233 * keepalive timer. 10234 */ 10235 if (tcp->tcp_ka_tid != 0) { 10236 ASSERT(tcp->tcp_ka_enabled); 10237 (void) TCP_TIMER_CANCEL(tcp, 10238 tcp->tcp_ka_tid); 10239 tcp->tcp_ka_last_intrvl = 0; 10240 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10241 tcp_keepalive_killer, 10242 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10243 } 10244 } 10245 break; 10246 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10247 if (!checkonly) { 10248 if (*i1 < 10249 tcps->tcps_keepalive_abort_interval_low || 10250 *i1 > 10251 tcps->tcps_keepalive_abort_interval_high) { 10252 *outlenp = 0; 10253 return (EINVAL); 10254 } 10255 tcp->tcp_ka_abort_thres = *i1; 10256 } 10257 break; 10258 case TCP_CORK: 10259 if (!checkonly) { 10260 /* 10261 * if tcp->tcp_cork was set and is now 10262 * being unset, we have to make sure that 10263 * the remaining data gets sent out. Also 10264 * unset tcp->tcp_cork so that tcp_wput_data() 10265 * can send data even if it is less than mss 10266 */ 10267 if (tcp->tcp_cork && onoff == 0 && 10268 tcp->tcp_unsent > 0) { 10269 tcp->tcp_cork = B_FALSE; 10270 tcp_wput_data(tcp, NULL, B_FALSE); 10271 } 10272 tcp->tcp_cork = onoff; 10273 } 10274 break; 10275 default: 10276 *outlenp = 0; 10277 return (EINVAL); 10278 } 10279 break; 10280 case IPPROTO_IP: 10281 if (tcp->tcp_family != AF_INET) { 10282 *outlenp = 0; 10283 return (ENOPROTOOPT); 10284 } 10285 switch (name) { 10286 case IP_OPTIONS: 10287 case T_IP_OPTIONS: 10288 reterr = tcp_opt_set_header(tcp, checkonly, 10289 invalp, inlen); 10290 if (reterr) { 10291 *outlenp = 0; 10292 return (reterr); 10293 } 10294 /* OK return - copy input buffer into output buffer */ 10295 if (invalp != outvalp) { 10296 /* don't trust bcopy for identical src/dst */ 10297 bcopy(invalp, outvalp, inlen); 10298 } 10299 *outlenp = inlen; 10300 return (0); 10301 case IP_TOS: 10302 case T_IP_TOS: 10303 if (!checkonly) { 10304 tcp->tcp_ipha->ipha_type_of_service = 10305 (uchar_t)*i1; 10306 tcp->tcp_tos = (uchar_t)*i1; 10307 } 10308 break; 10309 case IP_TTL: 10310 if (!checkonly) { 10311 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10312 tcp->tcp_ttl = (uchar_t)*i1; 10313 } 10314 break; 10315 case IP_BOUND_IF: 10316 case IP_NEXTHOP: 10317 /* Handled at the IP level */ 10318 return (-EINVAL); 10319 case IP_SEC_OPT: 10320 /* 10321 * We should not allow policy setting after 10322 * we start listening for connections. 10323 */ 10324 if (tcp->tcp_state == TCPS_LISTEN) { 10325 return (EINVAL); 10326 } else { 10327 /* Handled at the IP level */ 10328 return (-EINVAL); 10329 } 10330 default: 10331 *outlenp = 0; 10332 return (EINVAL); 10333 } 10334 break; 10335 case IPPROTO_IPV6: { 10336 ip6_pkt_t *ipp; 10337 10338 /* 10339 * IPPROTO_IPV6 options are only supported for sockets 10340 * that are using IPv6 on the wire. 10341 */ 10342 if (tcp->tcp_ipversion != IPV6_VERSION) { 10343 *outlenp = 0; 10344 return (ENOPROTOOPT); 10345 } 10346 /* 10347 * Only sticky options; no ancillary data 10348 */ 10349 ipp = &tcp->tcp_sticky_ipp; 10350 10351 switch (name) { 10352 case IPV6_UNICAST_HOPS: 10353 /* -1 means use default */ 10354 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10355 *outlenp = 0; 10356 return (EINVAL); 10357 } 10358 if (!checkonly) { 10359 if (*i1 == -1) { 10360 tcp->tcp_ip6h->ip6_hops = 10361 ipp->ipp_unicast_hops = 10362 (uint8_t)tcps->tcps_ipv6_hoplimit; 10363 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10364 /* Pass modified value to IP. */ 10365 *i1 = tcp->tcp_ip6h->ip6_hops; 10366 } else { 10367 tcp->tcp_ip6h->ip6_hops = 10368 ipp->ipp_unicast_hops = 10369 (uint8_t)*i1; 10370 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10371 } 10372 reterr = tcp_build_hdrs(tcp); 10373 if (reterr != 0) 10374 return (reterr); 10375 } 10376 break; 10377 case IPV6_BOUND_IF: 10378 if (!checkonly) { 10379 tcp->tcp_bound_if = *i1; 10380 PASS_OPT_TO_IP(connp); 10381 } 10382 break; 10383 /* 10384 * Set boolean switches for ancillary data delivery 10385 */ 10386 case IPV6_RECVPKTINFO: 10387 if (!checkonly) { 10388 if (onoff) 10389 tcp->tcp_ipv6_recvancillary |= 10390 TCP_IPV6_RECVPKTINFO; 10391 else 10392 tcp->tcp_ipv6_recvancillary &= 10393 ~TCP_IPV6_RECVPKTINFO; 10394 /* Force it to be sent up with the next msg */ 10395 tcp->tcp_recvifindex = 0; 10396 PASS_OPT_TO_IP(connp); 10397 } 10398 break; 10399 case IPV6_RECVTCLASS: 10400 if (!checkonly) { 10401 if (onoff) 10402 tcp->tcp_ipv6_recvancillary |= 10403 TCP_IPV6_RECVTCLASS; 10404 else 10405 tcp->tcp_ipv6_recvancillary &= 10406 ~TCP_IPV6_RECVTCLASS; 10407 PASS_OPT_TO_IP(connp); 10408 } 10409 break; 10410 case IPV6_RECVHOPLIMIT: 10411 if (!checkonly) { 10412 if (onoff) 10413 tcp->tcp_ipv6_recvancillary |= 10414 TCP_IPV6_RECVHOPLIMIT; 10415 else 10416 tcp->tcp_ipv6_recvancillary &= 10417 ~TCP_IPV6_RECVHOPLIMIT; 10418 /* Force it to be sent up with the next msg */ 10419 tcp->tcp_recvhops = 0xffffffffU; 10420 PASS_OPT_TO_IP(connp); 10421 } 10422 break; 10423 case IPV6_RECVHOPOPTS: 10424 if (!checkonly) { 10425 if (onoff) 10426 tcp->tcp_ipv6_recvancillary |= 10427 TCP_IPV6_RECVHOPOPTS; 10428 else 10429 tcp->tcp_ipv6_recvancillary &= 10430 ~TCP_IPV6_RECVHOPOPTS; 10431 PASS_OPT_TO_IP(connp); 10432 } 10433 break; 10434 case IPV6_RECVDSTOPTS: 10435 if (!checkonly) { 10436 if (onoff) 10437 tcp->tcp_ipv6_recvancillary |= 10438 TCP_IPV6_RECVDSTOPTS; 10439 else 10440 tcp->tcp_ipv6_recvancillary &= 10441 ~TCP_IPV6_RECVDSTOPTS; 10442 PASS_OPT_TO_IP(connp); 10443 } 10444 break; 10445 case _OLD_IPV6_RECVDSTOPTS: 10446 if (!checkonly) { 10447 if (onoff) 10448 tcp->tcp_ipv6_recvancillary |= 10449 TCP_OLD_IPV6_RECVDSTOPTS; 10450 else 10451 tcp->tcp_ipv6_recvancillary &= 10452 ~TCP_OLD_IPV6_RECVDSTOPTS; 10453 } 10454 break; 10455 case IPV6_RECVRTHDR: 10456 if (!checkonly) { 10457 if (onoff) 10458 tcp->tcp_ipv6_recvancillary |= 10459 TCP_IPV6_RECVRTHDR; 10460 else 10461 tcp->tcp_ipv6_recvancillary &= 10462 ~TCP_IPV6_RECVRTHDR; 10463 PASS_OPT_TO_IP(connp); 10464 } 10465 break; 10466 case IPV6_RECVRTHDRDSTOPTS: 10467 if (!checkonly) { 10468 if (onoff) 10469 tcp->tcp_ipv6_recvancillary |= 10470 TCP_IPV6_RECVRTDSTOPTS; 10471 else 10472 tcp->tcp_ipv6_recvancillary &= 10473 ~TCP_IPV6_RECVRTDSTOPTS; 10474 PASS_OPT_TO_IP(connp); 10475 } 10476 break; 10477 case IPV6_PKTINFO: 10478 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10479 return (EINVAL); 10480 if (checkonly) 10481 break; 10482 10483 if (inlen == 0) { 10484 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10485 } else { 10486 struct in6_pktinfo *pkti; 10487 10488 pkti = (struct in6_pktinfo *)invalp; 10489 /* 10490 * RFC 3542 states that ipi6_addr must be 10491 * the unspecified address when setting the 10492 * IPV6_PKTINFO sticky socket option on a 10493 * TCP socket. 10494 */ 10495 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10496 return (EINVAL); 10497 /* 10498 * IP will validate the source address and 10499 * interface index. 10500 */ 10501 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10502 reterr = ip_set_options(tcp->tcp_connp, 10503 level, name, invalp, inlen, cr); 10504 } else { 10505 reterr = ip6_set_pktinfo(cr, 10506 tcp->tcp_connp, pkti, mblk); 10507 } 10508 if (reterr != 0) 10509 return (reterr); 10510 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10511 ipp->ipp_addr = pkti->ipi6_addr; 10512 if (ipp->ipp_ifindex != 0) 10513 ipp->ipp_fields |= IPPF_IFINDEX; 10514 else 10515 ipp->ipp_fields &= ~IPPF_IFINDEX; 10516 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10517 ipp->ipp_fields |= IPPF_ADDR; 10518 else 10519 ipp->ipp_fields &= ~IPPF_ADDR; 10520 } 10521 reterr = tcp_build_hdrs(tcp); 10522 if (reterr != 0) 10523 return (reterr); 10524 break; 10525 case IPV6_TCLASS: 10526 if (inlen != 0 && inlen != sizeof (int)) 10527 return (EINVAL); 10528 if (checkonly) 10529 break; 10530 10531 if (inlen == 0) { 10532 ipp->ipp_fields &= ~IPPF_TCLASS; 10533 } else { 10534 if (*i1 > 255 || *i1 < -1) 10535 return (EINVAL); 10536 if (*i1 == -1) { 10537 ipp->ipp_tclass = 0; 10538 *i1 = 0; 10539 } else { 10540 ipp->ipp_tclass = *i1; 10541 } 10542 ipp->ipp_fields |= IPPF_TCLASS; 10543 } 10544 reterr = tcp_build_hdrs(tcp); 10545 if (reterr != 0) 10546 return (reterr); 10547 break; 10548 case IPV6_NEXTHOP: 10549 /* 10550 * IP will verify that the nexthop is reachable 10551 * and fail for sticky options. 10552 */ 10553 if (inlen != 0 && inlen != sizeof (sin6_t)) 10554 return (EINVAL); 10555 if (checkonly) 10556 break; 10557 10558 if (inlen == 0) { 10559 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10560 } else { 10561 sin6_t *sin6 = (sin6_t *)invalp; 10562 10563 if (sin6->sin6_family != AF_INET6) 10564 return (EAFNOSUPPORT); 10565 if (IN6_IS_ADDR_V4MAPPED( 10566 &sin6->sin6_addr)) 10567 return (EADDRNOTAVAIL); 10568 ipp->ipp_nexthop = sin6->sin6_addr; 10569 if (!IN6_IS_ADDR_UNSPECIFIED( 10570 &ipp->ipp_nexthop)) 10571 ipp->ipp_fields |= IPPF_NEXTHOP; 10572 else 10573 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10574 } 10575 reterr = tcp_build_hdrs(tcp); 10576 if (reterr != 0) 10577 return (reterr); 10578 PASS_OPT_TO_IP(connp); 10579 break; 10580 case IPV6_HOPOPTS: { 10581 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10582 10583 /* 10584 * Sanity checks - minimum size, size a multiple of 10585 * eight bytes, and matching size passed in. 10586 */ 10587 if (inlen != 0 && 10588 inlen != (8 * (hopts->ip6h_len + 1))) 10589 return (EINVAL); 10590 10591 if (checkonly) 10592 break; 10593 10594 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10595 (uchar_t **)&ipp->ipp_hopopts, 10596 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10597 if (reterr != 0) 10598 return (reterr); 10599 if (ipp->ipp_hopoptslen == 0) 10600 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10601 else 10602 ipp->ipp_fields |= IPPF_HOPOPTS; 10603 reterr = tcp_build_hdrs(tcp); 10604 if (reterr != 0) 10605 return (reterr); 10606 break; 10607 } 10608 case IPV6_RTHDRDSTOPTS: { 10609 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10610 10611 /* 10612 * Sanity checks - minimum size, size a multiple of 10613 * eight bytes, and matching size passed in. 10614 */ 10615 if (inlen != 0 && 10616 inlen != (8 * (dopts->ip6d_len + 1))) 10617 return (EINVAL); 10618 10619 if (checkonly) 10620 break; 10621 10622 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10623 (uchar_t **)&ipp->ipp_rtdstopts, 10624 &ipp->ipp_rtdstoptslen, 0); 10625 if (reterr != 0) 10626 return (reterr); 10627 if (ipp->ipp_rtdstoptslen == 0) 10628 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10629 else 10630 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10631 reterr = tcp_build_hdrs(tcp); 10632 if (reterr != 0) 10633 return (reterr); 10634 break; 10635 } 10636 case IPV6_DSTOPTS: { 10637 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10638 10639 /* 10640 * Sanity checks - minimum size, size a multiple of 10641 * eight bytes, and matching size passed in. 10642 */ 10643 if (inlen != 0 && 10644 inlen != (8 * (dopts->ip6d_len + 1))) 10645 return (EINVAL); 10646 10647 if (checkonly) 10648 break; 10649 10650 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10651 (uchar_t **)&ipp->ipp_dstopts, 10652 &ipp->ipp_dstoptslen, 0); 10653 if (reterr != 0) 10654 return (reterr); 10655 if (ipp->ipp_dstoptslen == 0) 10656 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10657 else 10658 ipp->ipp_fields |= IPPF_DSTOPTS; 10659 reterr = tcp_build_hdrs(tcp); 10660 if (reterr != 0) 10661 return (reterr); 10662 break; 10663 } 10664 case IPV6_RTHDR: { 10665 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10666 10667 /* 10668 * Sanity checks - minimum size, size a multiple of 10669 * eight bytes, and matching size passed in. 10670 */ 10671 if (inlen != 0 && 10672 inlen != (8 * (rt->ip6r_len + 1))) 10673 return (EINVAL); 10674 10675 if (checkonly) 10676 break; 10677 10678 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10679 (uchar_t **)&ipp->ipp_rthdr, 10680 &ipp->ipp_rthdrlen, 0); 10681 if (reterr != 0) 10682 return (reterr); 10683 if (ipp->ipp_rthdrlen == 0) 10684 ipp->ipp_fields &= ~IPPF_RTHDR; 10685 else 10686 ipp->ipp_fields |= IPPF_RTHDR; 10687 reterr = tcp_build_hdrs(tcp); 10688 if (reterr != 0) 10689 return (reterr); 10690 break; 10691 } 10692 case IPV6_V6ONLY: 10693 if (!checkonly) { 10694 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10695 } 10696 break; 10697 case IPV6_USE_MIN_MTU: 10698 if (inlen != sizeof (int)) 10699 return (EINVAL); 10700 10701 if (*i1 < -1 || *i1 > 1) 10702 return (EINVAL); 10703 10704 if (checkonly) 10705 break; 10706 10707 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10708 ipp->ipp_use_min_mtu = *i1; 10709 break; 10710 case IPV6_SEC_OPT: 10711 /* 10712 * We should not allow policy setting after 10713 * we start listening for connections. 10714 */ 10715 if (tcp->tcp_state == TCPS_LISTEN) { 10716 return (EINVAL); 10717 } else { 10718 /* Handled at the IP level */ 10719 return (-EINVAL); 10720 } 10721 case IPV6_SRC_PREFERENCES: 10722 if (inlen != sizeof (uint32_t)) 10723 return (EINVAL); 10724 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10725 *(uint32_t *)invalp); 10726 if (reterr != 0) { 10727 *outlenp = 0; 10728 return (reterr); 10729 } 10730 break; 10731 default: 10732 *outlenp = 0; 10733 return (EINVAL); 10734 } 10735 break; 10736 } /* end IPPROTO_IPV6 */ 10737 default: 10738 *outlenp = 0; 10739 return (EINVAL); 10740 } 10741 /* 10742 * Common case of OK return with outval same as inval 10743 */ 10744 if (invalp != outvalp) { 10745 /* don't trust bcopy for identical src/dst */ 10746 (void) bcopy(invalp, outvalp, inlen); 10747 } 10748 *outlenp = inlen; 10749 return (0); 10750 } 10751 10752 /* ARGSUSED */ 10753 int 10754 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10755 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10756 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10757 { 10758 conn_t *connp = Q_TO_CONN(q); 10759 10760 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10761 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10762 } 10763 10764 int 10765 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10766 const void *optvalp, socklen_t optlen, cred_t *cr) 10767 { 10768 conn_t *connp = (conn_t *)proto_handle; 10769 squeue_t *sqp = connp->conn_sqp; 10770 int error; 10771 10772 /* 10773 * Entering the squeue synchronously can result in a context switch, 10774 * which can cause a rather sever performance degradation. So we try to 10775 * handle whatever options we can without entering the squeue. 10776 */ 10777 if (level == IPPROTO_TCP) { 10778 switch (option_name) { 10779 case TCP_NODELAY: 10780 if (optlen != sizeof (int32_t)) 10781 return (EINVAL); 10782 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10783 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10784 connp->conn_tcp->tcp_mss; 10785 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10786 return (0); 10787 default: 10788 break; 10789 } 10790 } 10791 10792 error = squeue_synch_enter(sqp, connp, 0); 10793 if (error == ENOMEM) { 10794 return (ENOMEM); 10795 } 10796 10797 error = proto_opt_check(level, option_name, optlen, NULL, 10798 tcp_opt_obj.odb_opt_des_arr, 10799 tcp_opt_obj.odb_opt_arr_cnt, 10800 tcp_opt_obj.odb_topmost_tpiprovider, 10801 B_TRUE, B_FALSE, cr); 10802 10803 if (error != 0) { 10804 if (error < 0) { 10805 error = proto_tlitosyserr(-error); 10806 } 10807 squeue_synch_exit(sqp, connp); 10808 return (error); 10809 } 10810 10811 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10812 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10813 NULL, cr, NULL); 10814 squeue_synch_exit(sqp, connp); 10815 10816 if (error < 0) { 10817 /* 10818 * Pass on to ip 10819 */ 10820 error = ip_set_options(connp, level, option_name, optvalp, 10821 optlen, cr); 10822 } 10823 return (error); 10824 } 10825 10826 /* 10827 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10828 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10829 * headers, and the maximum size tcp header (to avoid reallocation 10830 * on the fly for additional tcp options). 10831 * Returns failure if can't allocate memory. 10832 */ 10833 static int 10834 tcp_build_hdrs(tcp_t *tcp) 10835 { 10836 char *hdrs; 10837 uint_t hdrs_len; 10838 ip6i_t *ip6i; 10839 char buf[TCP_MAX_HDR_LENGTH]; 10840 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10841 in6_addr_t src, dst; 10842 tcp_stack_t *tcps = tcp->tcp_tcps; 10843 conn_t *connp = tcp->tcp_connp; 10844 10845 /* 10846 * save the existing tcp header and source/dest IP addresses 10847 */ 10848 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10849 src = tcp->tcp_ip6h->ip6_src; 10850 dst = tcp->tcp_ip6h->ip6_dst; 10851 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10852 ASSERT(hdrs_len != 0); 10853 if (hdrs_len > tcp->tcp_iphc_len) { 10854 /* Need to reallocate */ 10855 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10856 if (hdrs == NULL) 10857 return (ENOMEM); 10858 if (tcp->tcp_iphc != NULL) { 10859 if (tcp->tcp_hdr_grown) { 10860 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10861 } else { 10862 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10863 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10864 } 10865 tcp->tcp_iphc_len = 0; 10866 } 10867 ASSERT(tcp->tcp_iphc_len == 0); 10868 tcp->tcp_iphc = hdrs; 10869 tcp->tcp_iphc_len = hdrs_len; 10870 tcp->tcp_hdr_grown = B_TRUE; 10871 } 10872 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10873 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10874 10875 /* Set header fields not in ipp */ 10876 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10877 ip6i = (ip6i_t *)tcp->tcp_iphc; 10878 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10879 } else { 10880 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10881 } 10882 /* 10883 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10884 * 10885 * tcp->tcp_tcp_hdr_len doesn't change here. 10886 */ 10887 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10888 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10889 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10890 10891 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10892 10893 tcp->tcp_ip6h->ip6_src = src; 10894 tcp->tcp_ip6h->ip6_dst = dst; 10895 10896 /* 10897 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10898 * the default value for TCP. 10899 */ 10900 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10901 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10902 10903 /* 10904 * If we're setting extension headers after a connection 10905 * has been established, and if we have a routing header 10906 * among the extension headers, call ip_massage_options_v6 to 10907 * manipulate the routing header/ip6_dst set the checksum 10908 * difference in the tcp header template. 10909 * (This happens in tcp_connect_ipv6 if the routing header 10910 * is set prior to the connect.) 10911 * Set the tcp_sum to zero first in case we've cleared a 10912 * routing header or don't have one at all. 10913 */ 10914 tcp->tcp_sum = 0; 10915 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10916 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10917 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10918 (uint8_t *)tcp->tcp_tcph); 10919 if (rth != NULL) { 10920 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10921 rth, tcps->tcps_netstack); 10922 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10923 (tcp->tcp_sum >> 16)); 10924 } 10925 } 10926 10927 /* Try to get everything in a single mblk */ 10928 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10929 hdrs_len + tcps->tcps_wroff_xtra); 10930 return (0); 10931 } 10932 10933 /* 10934 * Transfer any source route option from ipha to buf/dst in reversed form. 10935 */ 10936 static int 10937 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10938 { 10939 ipoptp_t opts; 10940 uchar_t *opt; 10941 uint8_t optval; 10942 uint8_t optlen; 10943 uint32_t len = 0; 10944 10945 for (optval = ipoptp_first(&opts, ipha); 10946 optval != IPOPT_EOL; 10947 optval = ipoptp_next(&opts)) { 10948 opt = opts.ipoptp_cur; 10949 optlen = opts.ipoptp_len; 10950 switch (optval) { 10951 int off1, off2; 10952 case IPOPT_SSRR: 10953 case IPOPT_LSRR: 10954 10955 /* Reverse source route */ 10956 /* 10957 * First entry should be the next to last one in the 10958 * current source route (the last entry is our 10959 * address.) 10960 * The last entry should be the final destination. 10961 */ 10962 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10963 buf[IPOPT_OLEN] = (uint8_t)optlen; 10964 off1 = IPOPT_MINOFF_SR - 1; 10965 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10966 if (off2 < 0) { 10967 /* No entries in source route */ 10968 break; 10969 } 10970 bcopy(opt + off2, dst, IP_ADDR_LEN); 10971 /* 10972 * Note: use src since ipha has not had its src 10973 * and dst reversed (it is in the state it was 10974 * received. 10975 */ 10976 bcopy(&ipha->ipha_src, buf + off2, 10977 IP_ADDR_LEN); 10978 off2 -= IP_ADDR_LEN; 10979 10980 while (off2 > 0) { 10981 bcopy(opt + off2, buf + off1, 10982 IP_ADDR_LEN); 10983 off1 += IP_ADDR_LEN; 10984 off2 -= IP_ADDR_LEN; 10985 } 10986 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10987 buf += optlen; 10988 len += optlen; 10989 break; 10990 } 10991 } 10992 done: 10993 /* Pad the resulting options */ 10994 while (len & 0x3) { 10995 *buf++ = IPOPT_EOL; 10996 len++; 10997 } 10998 return (len); 10999 } 11000 11001 11002 /* 11003 * Extract and revert a source route from ipha (if any) 11004 * and then update the relevant fields in both tcp_t and the standard header. 11005 */ 11006 static void 11007 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11008 { 11009 char buf[TCP_MAX_HDR_LENGTH]; 11010 uint_t tcph_len; 11011 int len; 11012 11013 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11014 len = IPH_HDR_LENGTH(ipha); 11015 if (len == IP_SIMPLE_HDR_LENGTH) 11016 /* Nothing to do */ 11017 return; 11018 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11019 (len & 0x3)) 11020 return; 11021 11022 tcph_len = tcp->tcp_tcp_hdr_len; 11023 bcopy(tcp->tcp_tcph, buf, tcph_len); 11024 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11025 (tcp->tcp_ipha->ipha_dst & 0xffff); 11026 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11027 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11028 len += IP_SIMPLE_HDR_LENGTH; 11029 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11030 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11031 if ((int)tcp->tcp_sum < 0) 11032 tcp->tcp_sum--; 11033 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11034 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11035 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11036 bcopy(buf, tcp->tcp_tcph, tcph_len); 11037 tcp->tcp_ip_hdr_len = len; 11038 tcp->tcp_ipha->ipha_version_and_hdr_length = 11039 (IP_VERSION << 4) | (len >> 2); 11040 len += tcph_len; 11041 tcp->tcp_hdr_len = len; 11042 } 11043 11044 /* 11045 * Copy the standard header into its new location, 11046 * lay in the new options and then update the relevant 11047 * fields in both tcp_t and the standard header. 11048 */ 11049 static int 11050 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11051 { 11052 uint_t tcph_len; 11053 uint8_t *ip_optp; 11054 tcph_t *new_tcph; 11055 tcp_stack_t *tcps = tcp->tcp_tcps; 11056 conn_t *connp = tcp->tcp_connp; 11057 11058 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11059 return (EINVAL); 11060 11061 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11062 return (EINVAL); 11063 11064 if (checkonly) { 11065 /* 11066 * do not really set, just pretend to - T_CHECK 11067 */ 11068 return (0); 11069 } 11070 11071 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11072 if (tcp->tcp_label_len > 0) { 11073 int padlen; 11074 uint8_t opt; 11075 11076 /* convert list termination to no-ops */ 11077 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11078 ip_optp += ip_optp[IPOPT_OLEN]; 11079 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11080 while (--padlen >= 0) 11081 *ip_optp++ = opt; 11082 } 11083 tcph_len = tcp->tcp_tcp_hdr_len; 11084 new_tcph = (tcph_t *)(ip_optp + len); 11085 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11086 tcp->tcp_tcph = new_tcph; 11087 bcopy(ptr, ip_optp, len); 11088 11089 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11090 11091 tcp->tcp_ip_hdr_len = len; 11092 tcp->tcp_ipha->ipha_version_and_hdr_length = 11093 (IP_VERSION << 4) | (len >> 2); 11094 tcp->tcp_hdr_len = len + tcph_len; 11095 if (!TCP_IS_DETACHED(tcp)) { 11096 /* Always allocate room for all options. */ 11097 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11098 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11099 } 11100 return (0); 11101 } 11102 11103 /* Get callback routine passed to nd_load by tcp_param_register */ 11104 /* ARGSUSED */ 11105 static int 11106 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11107 { 11108 tcpparam_t *tcppa = (tcpparam_t *)cp; 11109 11110 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11111 return (0); 11112 } 11113 11114 /* 11115 * Walk through the param array specified registering each element with the 11116 * named dispatch handler. 11117 */ 11118 static boolean_t 11119 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11120 { 11121 for (; cnt-- > 0; tcppa++) { 11122 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11123 if (!nd_load(ndp, tcppa->tcp_param_name, 11124 tcp_param_get, tcp_param_set, 11125 (caddr_t)tcppa)) { 11126 nd_free(ndp); 11127 return (B_FALSE); 11128 } 11129 } 11130 } 11131 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11132 KM_SLEEP); 11133 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11134 sizeof (tcpparam_t)); 11135 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11136 tcp_param_get, tcp_param_set_aligned, 11137 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11138 nd_free(ndp); 11139 return (B_FALSE); 11140 } 11141 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11142 KM_SLEEP); 11143 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11144 sizeof (tcpparam_t)); 11145 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11146 tcp_param_get, tcp_param_set_aligned, 11147 (caddr_t)tcps->tcps_mdt_head_param)) { 11148 nd_free(ndp); 11149 return (B_FALSE); 11150 } 11151 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11152 KM_SLEEP); 11153 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11154 sizeof (tcpparam_t)); 11155 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11156 tcp_param_get, tcp_param_set_aligned, 11157 (caddr_t)tcps->tcps_mdt_tail_param)) { 11158 nd_free(ndp); 11159 return (B_FALSE); 11160 } 11161 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11162 KM_SLEEP); 11163 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11164 sizeof (tcpparam_t)); 11165 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11166 tcp_param_get, tcp_param_set_aligned, 11167 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11168 nd_free(ndp); 11169 return (B_FALSE); 11170 } 11171 if (!nd_load(ndp, "tcp_extra_priv_ports", 11172 tcp_extra_priv_ports_get, NULL, NULL)) { 11173 nd_free(ndp); 11174 return (B_FALSE); 11175 } 11176 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11177 NULL, tcp_extra_priv_ports_add, NULL)) { 11178 nd_free(ndp); 11179 return (B_FALSE); 11180 } 11181 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11182 NULL, tcp_extra_priv_ports_del, NULL)) { 11183 nd_free(ndp); 11184 return (B_FALSE); 11185 } 11186 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11187 NULL)) { 11188 nd_free(ndp); 11189 return (B_FALSE); 11190 } 11191 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11192 NULL, NULL)) { 11193 nd_free(ndp); 11194 return (B_FALSE); 11195 } 11196 if (!nd_load(ndp, "tcp_listen_hash", 11197 tcp_listen_hash_report, NULL, NULL)) { 11198 nd_free(ndp); 11199 return (B_FALSE); 11200 } 11201 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11202 NULL, NULL)) { 11203 nd_free(ndp); 11204 return (B_FALSE); 11205 } 11206 if (!nd_load(ndp, "tcp_acceptor_hash", 11207 tcp_acceptor_hash_report, NULL, NULL)) { 11208 nd_free(ndp); 11209 return (B_FALSE); 11210 } 11211 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11212 tcp_1948_phrase_set, NULL)) { 11213 nd_free(ndp); 11214 return (B_FALSE); 11215 } 11216 /* 11217 * Dummy ndd variables - only to convey obsolescence information 11218 * through printing of their name (no get or set routines) 11219 * XXX Remove in future releases ? 11220 */ 11221 if (!nd_load(ndp, 11222 "tcp_close_wait_interval(obsoleted - " 11223 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11224 nd_free(ndp); 11225 return (B_FALSE); 11226 } 11227 return (B_TRUE); 11228 } 11229 11230 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11231 /* ARGSUSED */ 11232 static int 11233 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11234 cred_t *cr) 11235 { 11236 long new_value; 11237 tcpparam_t *tcppa = (tcpparam_t *)cp; 11238 11239 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11240 new_value < tcppa->tcp_param_min || 11241 new_value > tcppa->tcp_param_max) { 11242 return (EINVAL); 11243 } 11244 /* 11245 * Need to make sure new_value is a multiple of 4. If it is not, 11246 * round it up. For future 64 bit requirement, we actually make it 11247 * a multiple of 8. 11248 */ 11249 if (new_value & 0x7) { 11250 new_value = (new_value & ~0x7) + 0x8; 11251 } 11252 tcppa->tcp_param_val = new_value; 11253 return (0); 11254 } 11255 11256 /* Set callback routine passed to nd_load by tcp_param_register */ 11257 /* ARGSUSED */ 11258 static int 11259 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11260 { 11261 long new_value; 11262 tcpparam_t *tcppa = (tcpparam_t *)cp; 11263 11264 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11265 new_value < tcppa->tcp_param_min || 11266 new_value > tcppa->tcp_param_max) { 11267 return (EINVAL); 11268 } 11269 tcppa->tcp_param_val = new_value; 11270 return (0); 11271 } 11272 11273 /* 11274 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11275 * is filled, return as much as we can. The message passed in may be 11276 * multi-part, chained using b_cont. "start" is the starting sequence 11277 * number for this piece. 11278 */ 11279 static mblk_t * 11280 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11281 { 11282 uint32_t end; 11283 mblk_t *mp1; 11284 mblk_t *mp2; 11285 mblk_t *next_mp; 11286 uint32_t u1; 11287 tcp_stack_t *tcps = tcp->tcp_tcps; 11288 11289 /* Walk through all the new pieces. */ 11290 do { 11291 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11292 (uintptr_t)INT_MAX); 11293 end = start + (int)(mp->b_wptr - mp->b_rptr); 11294 next_mp = mp->b_cont; 11295 if (start == end) { 11296 /* Empty. Blast it. */ 11297 freeb(mp); 11298 continue; 11299 } 11300 mp->b_cont = NULL; 11301 TCP_REASS_SET_SEQ(mp, start); 11302 TCP_REASS_SET_END(mp, end); 11303 mp1 = tcp->tcp_reass_tail; 11304 if (!mp1) { 11305 tcp->tcp_reass_tail = mp; 11306 tcp->tcp_reass_head = mp; 11307 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11308 UPDATE_MIB(&tcps->tcps_mib, 11309 tcpInDataUnorderBytes, end - start); 11310 continue; 11311 } 11312 /* New stuff completely beyond tail? */ 11313 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11314 /* Link it on end. */ 11315 mp1->b_cont = mp; 11316 tcp->tcp_reass_tail = mp; 11317 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11318 UPDATE_MIB(&tcps->tcps_mib, 11319 tcpInDataUnorderBytes, end - start); 11320 continue; 11321 } 11322 mp1 = tcp->tcp_reass_head; 11323 u1 = TCP_REASS_SEQ(mp1); 11324 /* New stuff at the front? */ 11325 if (SEQ_LT(start, u1)) { 11326 /* Yes... Check for overlap. */ 11327 mp->b_cont = mp1; 11328 tcp->tcp_reass_head = mp; 11329 tcp_reass_elim_overlap(tcp, mp); 11330 continue; 11331 } 11332 /* 11333 * The new piece fits somewhere between the head and tail. 11334 * We find our slot, where mp1 precedes us and mp2 trails. 11335 */ 11336 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11337 u1 = TCP_REASS_SEQ(mp2); 11338 if (SEQ_LEQ(start, u1)) 11339 break; 11340 } 11341 /* Link ourselves in */ 11342 mp->b_cont = mp2; 11343 mp1->b_cont = mp; 11344 11345 /* Trim overlap with following mblk(s) first */ 11346 tcp_reass_elim_overlap(tcp, mp); 11347 11348 /* Trim overlap with preceding mblk */ 11349 tcp_reass_elim_overlap(tcp, mp1); 11350 11351 } while (start = end, mp = next_mp); 11352 mp1 = tcp->tcp_reass_head; 11353 /* Anything ready to go? */ 11354 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11355 return (NULL); 11356 /* Eat what we can off the queue */ 11357 for (;;) { 11358 mp = mp1->b_cont; 11359 end = TCP_REASS_END(mp1); 11360 TCP_REASS_SET_SEQ(mp1, 0); 11361 TCP_REASS_SET_END(mp1, 0); 11362 if (!mp) { 11363 tcp->tcp_reass_tail = NULL; 11364 break; 11365 } 11366 if (end != TCP_REASS_SEQ(mp)) { 11367 mp1->b_cont = NULL; 11368 break; 11369 } 11370 mp1 = mp; 11371 } 11372 mp1 = tcp->tcp_reass_head; 11373 tcp->tcp_reass_head = mp; 11374 return (mp1); 11375 } 11376 11377 /* Eliminate any overlap that mp may have over later mblks */ 11378 static void 11379 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11380 { 11381 uint32_t end; 11382 mblk_t *mp1; 11383 uint32_t u1; 11384 tcp_stack_t *tcps = tcp->tcp_tcps; 11385 11386 end = TCP_REASS_END(mp); 11387 while ((mp1 = mp->b_cont) != NULL) { 11388 u1 = TCP_REASS_SEQ(mp1); 11389 if (!SEQ_GT(end, u1)) 11390 break; 11391 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11392 mp->b_wptr -= end - u1; 11393 TCP_REASS_SET_END(mp, u1); 11394 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11395 UPDATE_MIB(&tcps->tcps_mib, 11396 tcpInDataPartDupBytes, end - u1); 11397 break; 11398 } 11399 mp->b_cont = mp1->b_cont; 11400 TCP_REASS_SET_SEQ(mp1, 0); 11401 TCP_REASS_SET_END(mp1, 0); 11402 freeb(mp1); 11403 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11404 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11405 } 11406 if (!mp1) 11407 tcp->tcp_reass_tail = mp; 11408 } 11409 11410 static uint_t 11411 tcp_rwnd_reopen(tcp_t *tcp) 11412 { 11413 uint_t ret = 0; 11414 uint_t thwin; 11415 11416 /* Learn the latest rwnd information that we sent to the other side. */ 11417 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11418 << tcp->tcp_rcv_ws; 11419 /* This is peer's calculated send window (our receive window). */ 11420 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11421 /* 11422 * Increase the receive window to max. But we need to do receiver 11423 * SWS avoidance. This means that we need to check the increase of 11424 * of receive window is at least 1 MSS. 11425 */ 11426 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11427 /* 11428 * If the window that the other side knows is less than max 11429 * deferred acks segments, send an update immediately. 11430 */ 11431 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11432 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11433 ret = TH_ACK_NEEDED; 11434 } 11435 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11436 } 11437 return (ret); 11438 } 11439 11440 /* 11441 * Send up all messages queued on tcp_rcv_list. 11442 */ 11443 static uint_t 11444 tcp_rcv_drain(tcp_t *tcp) 11445 { 11446 mblk_t *mp; 11447 uint_t ret = 0; 11448 #ifdef DEBUG 11449 uint_t cnt = 0; 11450 #endif 11451 queue_t *q = tcp->tcp_rq; 11452 11453 /* Can't drain on an eager connection */ 11454 if (tcp->tcp_listener != NULL) 11455 return (ret); 11456 11457 /* Can't be a non-STREAMS connection or sodirect enabled */ 11458 ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp)); 11459 11460 /* No need for the push timer now. */ 11461 if (tcp->tcp_push_tid != 0) { 11462 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11463 tcp->tcp_push_tid = 0; 11464 } 11465 11466 /* 11467 * Handle two cases here: we are currently fused or we were 11468 * previously fused and have some urgent data to be delivered 11469 * upstream. The latter happens because we either ran out of 11470 * memory or were detached and therefore sending the SIGURG was 11471 * deferred until this point. In either case we pass control 11472 * over to tcp_fuse_rcv_drain() since it may need to complete 11473 * some work. 11474 */ 11475 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11476 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11477 tcp->tcp_fused_sigurg_mp != NULL); 11478 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11479 &tcp->tcp_fused_sigurg_mp)) 11480 return (ret); 11481 } 11482 11483 while ((mp = tcp->tcp_rcv_list) != NULL) { 11484 tcp->tcp_rcv_list = mp->b_next; 11485 mp->b_next = NULL; 11486 #ifdef DEBUG 11487 cnt += msgdsize(mp); 11488 #endif 11489 /* Does this need SSL processing first? */ 11490 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11491 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11492 mblk_t *, mp); 11493 tcp_kssl_input(tcp, mp); 11494 continue; 11495 } 11496 putnext(q, mp); 11497 } 11498 #ifdef DEBUG 11499 ASSERT(cnt == tcp->tcp_rcv_cnt); 11500 #endif 11501 tcp->tcp_rcv_last_head = NULL; 11502 tcp->tcp_rcv_last_tail = NULL; 11503 tcp->tcp_rcv_cnt = 0; 11504 11505 if (canputnext(q)) 11506 return (tcp_rwnd_reopen(tcp)); 11507 11508 return (ret); 11509 } 11510 11511 /* 11512 * Queue data on tcp_rcv_list which is a b_next chain. 11513 * tcp_rcv_last_head/tail is the last element of this chain. 11514 * Each element of the chain is a b_cont chain. 11515 * 11516 * M_DATA messages are added to the current element. 11517 * Other messages are added as new (b_next) elements. 11518 */ 11519 void 11520 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11521 { 11522 ASSERT(seg_len == msgdsize(mp)); 11523 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11524 11525 if (tcp->tcp_rcv_list == NULL) { 11526 ASSERT(tcp->tcp_rcv_last_head == NULL); 11527 tcp->tcp_rcv_list = mp; 11528 tcp->tcp_rcv_last_head = mp; 11529 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11530 tcp->tcp_rcv_last_tail->b_cont = mp; 11531 } else { 11532 tcp->tcp_rcv_last_head->b_next = mp; 11533 tcp->tcp_rcv_last_head = mp; 11534 } 11535 11536 while (mp->b_cont) 11537 mp = mp->b_cont; 11538 11539 tcp->tcp_rcv_last_tail = mp; 11540 tcp->tcp_rcv_cnt += seg_len; 11541 tcp->tcp_rwnd -= seg_len; 11542 } 11543 11544 /* 11545 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11546 * above, in addition when uioa is enabled schedule an asynchronous uio 11547 * prior to enqueuing. They implement the combinhed semantics of the 11548 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11549 * canputnext(), i.e. flow-control with backenable. 11550 * 11551 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11552 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11553 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11554 * 11555 * Must be called with sodp->sod_lockp held and will return with the lock 11556 * released. 11557 */ 11558 static uint_t 11559 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11560 { 11561 queue_t *q = tcp->tcp_rq; 11562 uint_t thwin; 11563 tcp_stack_t *tcps = tcp->tcp_tcps; 11564 uint_t ret = 0; 11565 11566 /* Can't be an eager connection */ 11567 ASSERT(tcp->tcp_listener == NULL); 11568 11569 /* Caller must have lock held */ 11570 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11571 11572 /* Sodirect mode so must not be a tcp_rcv_list */ 11573 ASSERT(tcp->tcp_rcv_list == NULL); 11574 11575 if (SOD_QFULL(sodp)) { 11576 /* Q is full, mark Q for need backenable */ 11577 SOD_QSETBE(sodp); 11578 } 11579 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11580 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11581 << tcp->tcp_rcv_ws; 11582 /* This is peer's calculated send window (our available rwnd). */ 11583 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11584 /* 11585 * Increase the receive window to max. But we need to do receiver 11586 * SWS avoidance. This means that we need to check the increase of 11587 * of receive window is at least 1 MSS. 11588 */ 11589 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11590 /* 11591 * If the window that the other side knows is less than max 11592 * deferred acks segments, send an update immediately. 11593 */ 11594 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11595 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11596 ret = TH_ACK_NEEDED; 11597 } 11598 tcp->tcp_rwnd = q->q_hiwat; 11599 } 11600 11601 if (!SOD_QEMPTY(sodp)) { 11602 /* Wakeup to socket */ 11603 sodp->sod_state &= SOD_WAKE_CLR; 11604 sodp->sod_state |= SOD_WAKE_DONE; 11605 (sodp->sod_wakeup)(sodp); 11606 /* wakeup() does the mutex_ext() */ 11607 } else { 11608 /* Q is empty, no need to wake */ 11609 sodp->sod_state &= SOD_WAKE_CLR; 11610 sodp->sod_state |= SOD_WAKE_NOT; 11611 mutex_exit(sodp->sod_lockp); 11612 } 11613 11614 /* No need for the push timer now. */ 11615 if (tcp->tcp_push_tid != 0) { 11616 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11617 tcp->tcp_push_tid = 0; 11618 } 11619 11620 return (ret); 11621 } 11622 11623 /* 11624 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11625 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11626 * to the user-land buffer and flag the mblk_t as such. 11627 * 11628 * Also, handle tcp_rwnd. 11629 */ 11630 uint_t 11631 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11632 { 11633 uioa_t *uioap = &sodp->sod_uioa; 11634 boolean_t qfull; 11635 uint_t thwin; 11636 11637 /* Can't be an eager connection */ 11638 ASSERT(tcp->tcp_listener == NULL); 11639 11640 /* Caller must have lock held */ 11641 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11642 11643 /* Sodirect mode so must not be a tcp_rcv_list */ 11644 ASSERT(tcp->tcp_rcv_list == NULL); 11645 11646 /* Passed in segment length must be equal to mblk_t chain data size */ 11647 ASSERT(seg_len == msgdsize(mp)); 11648 11649 if (DB_TYPE(mp) != M_DATA) { 11650 /* Only process M_DATA mblk_t's */ 11651 goto enq; 11652 } 11653 if (uioap->uioa_state & UIOA_ENABLED) { 11654 /* Uioa is enabled */ 11655 mblk_t *mp1 = mp; 11656 mblk_t *lmp = NULL; 11657 11658 if (seg_len > uioap->uio_resid) { 11659 /* 11660 * There isn't enough uio space for the mblk_t chain 11661 * so disable uioa such that this and any additional 11662 * mblk_t data is handled by the socket and schedule 11663 * the socket for wakeup to finish this uioa. 11664 */ 11665 uioap->uioa_state &= UIOA_CLR; 11666 uioap->uioa_state |= UIOA_FINI; 11667 if (sodp->sod_state & SOD_WAKE_NOT) { 11668 sodp->sod_state &= SOD_WAKE_CLR; 11669 sodp->sod_state |= SOD_WAKE_NEED; 11670 } 11671 goto enq; 11672 } 11673 do { 11674 uint32_t len = MBLKL(mp1); 11675 11676 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11677 /* Scheduled, mark dblk_t as such */ 11678 DB_FLAGS(mp1) |= DBLK_UIOA; 11679 } else { 11680 /* Error, turn off async processing */ 11681 uioap->uioa_state &= UIOA_CLR; 11682 uioap->uioa_state |= UIOA_FINI; 11683 break; 11684 } 11685 lmp = mp1; 11686 } while ((mp1 = mp1->b_cont) != NULL); 11687 11688 if (mp1 != NULL || uioap->uio_resid == 0) { 11689 /* 11690 * Not all mblk_t(s) uioamoved (error) or all uio 11691 * space has been consumed so schedule the socket 11692 * for wakeup to finish this uio. 11693 */ 11694 sodp->sod_state &= SOD_WAKE_CLR; 11695 sodp->sod_state |= SOD_WAKE_NEED; 11696 11697 /* Break the mblk chain if neccessary. */ 11698 if (mp1 != NULL && lmp != NULL) { 11699 mp->b_next = mp1; 11700 lmp->b_cont = NULL; 11701 } 11702 } 11703 } else if (uioap->uioa_state & UIOA_FINI) { 11704 /* 11705 * Post UIO_ENABLED waiting for socket to finish processing 11706 * so just enqueue and update tcp_rwnd. 11707 */ 11708 if (SOD_QFULL(sodp)) 11709 tcp->tcp_rwnd -= seg_len; 11710 } else if (sodp->sod_want > 0) { 11711 /* 11712 * Uioa isn't enabled but sodirect has a pending read(). 11713 */ 11714 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11715 if (sodp->sod_state & SOD_WAKE_NOT) { 11716 /* Schedule socket for wakeup */ 11717 sodp->sod_state &= SOD_WAKE_CLR; 11718 sodp->sod_state |= SOD_WAKE_NEED; 11719 } 11720 tcp->tcp_rwnd -= seg_len; 11721 } 11722 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 11723 /* 11724 * No pending sodirect read() so used the default 11725 * TCP push logic to guess that a push is needed. 11726 */ 11727 if (sodp->sod_state & SOD_WAKE_NOT) { 11728 /* Schedule socket for wakeup */ 11729 sodp->sod_state &= SOD_WAKE_CLR; 11730 sodp->sod_state |= SOD_WAKE_NEED; 11731 } 11732 tcp->tcp_rwnd -= seg_len; 11733 } else { 11734 /* Just update tcp_rwnd */ 11735 tcp->tcp_rwnd -= seg_len; 11736 } 11737 enq: 11738 qfull = SOD_QFULL(sodp); 11739 11740 (sodp->sod_enqueue)(sodp, mp); 11741 11742 if (! qfull && SOD_QFULL(sodp)) { 11743 /* Wasn't QFULL, now QFULL, need back-enable */ 11744 SOD_QSETBE(sodp); 11745 } 11746 11747 /* 11748 * Check to see if remote avail swnd < mss due to delayed ACK, 11749 * first get advertised rwnd. 11750 */ 11751 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 11752 /* Minus delayed ACK count */ 11753 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11754 if (thwin < tcp->tcp_mss) { 11755 /* Remote avail swnd < mss, need ACK now */ 11756 return (TH_ACK_NEEDED); 11757 } 11758 11759 return (0); 11760 } 11761 11762 /* 11763 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11764 * 11765 * This is the default entry function into TCP on the read side. TCP is 11766 * always entered via squeue i.e. using squeue's for mutual exclusion. 11767 * When classifier does a lookup to find the tcp, it also puts a reference 11768 * on the conn structure associated so the tcp is guaranteed to exist 11769 * when we come here. We still need to check the state because it might 11770 * as well has been closed. The squeue processing function i.e. squeue_enter, 11771 * is responsible for doing the CONN_DEC_REF. 11772 * 11773 * Apart from the default entry point, IP also sends packets directly to 11774 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11775 * connections. 11776 */ 11777 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11778 void 11779 tcp_input(void *arg, mblk_t *mp, void *arg2) 11780 { 11781 conn_t *connp = (conn_t *)arg; 11782 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11783 11784 /* arg2 is the sqp */ 11785 ASSERT(arg2 != NULL); 11786 ASSERT(mp != NULL); 11787 11788 /* 11789 * Don't accept any input on a closed tcp as this TCP logically does 11790 * not exist on the system. Don't proceed further with this TCP. 11791 * For eg. this packet could trigger another close of this tcp 11792 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11793 * tcp_clean_death / tcp_closei_local must be called at most once 11794 * on a TCP. In this case we need to refeed the packet into the 11795 * classifier and figure out where the packet should go. Need to 11796 * preserve the recv_ill somehow. Until we figure that out, for 11797 * now just drop the packet if we can't classify the packet. 11798 */ 11799 if (tcp->tcp_state == TCPS_CLOSED || 11800 tcp->tcp_state == TCPS_BOUND) { 11801 conn_t *new_connp; 11802 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11803 11804 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11805 if (new_connp != NULL) { 11806 tcp_reinput(new_connp, mp, arg2); 11807 return; 11808 } 11809 /* We failed to classify. For now just drop the packet */ 11810 freemsg(mp); 11811 return; 11812 } 11813 11814 if (DB_TYPE(mp) != M_DATA) { 11815 tcp_rput_common(tcp, mp); 11816 return; 11817 } 11818 11819 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11820 squeue_t *final_sqp; 11821 11822 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11823 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11824 DB_CKSUMSTART(mp) = 0; 11825 if (tcp->tcp_state == TCPS_SYN_SENT && 11826 connp->conn_final_sqp == NULL && 11827 tcp_outbound_squeue_switch) { 11828 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11829 connp->conn_final_sqp = final_sqp; 11830 if (connp->conn_final_sqp != connp->conn_sqp) { 11831 CONN_INC_REF(connp); 11832 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11833 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11834 tcp_rput_data, connp, ip_squeue_flag, 11835 SQTAG_CONNECT_FINISH); 11836 return; 11837 } 11838 } 11839 } 11840 tcp_rput_data(connp, mp, arg2); 11841 } 11842 11843 /* 11844 * The read side put procedure. 11845 * The packets passed up by ip are assume to be aligned according to 11846 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11847 */ 11848 static void 11849 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11850 { 11851 /* 11852 * tcp_rput_data() does not expect M_CTL except for the case 11853 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11854 * type. Need to make sure that any other M_CTLs don't make 11855 * it to tcp_rput_data since it is not expecting any and doesn't 11856 * check for it. 11857 */ 11858 if (DB_TYPE(mp) == M_CTL) { 11859 switch (*(uint32_t *)(mp->b_rptr)) { 11860 case TCP_IOC_ABORT_CONN: 11861 /* 11862 * Handle connection abort request. 11863 */ 11864 tcp_ioctl_abort_handler(tcp, mp); 11865 return; 11866 case IPSEC_IN: 11867 /* 11868 * Only secure icmp arrive in TCP and they 11869 * don't go through data path. 11870 */ 11871 tcp_icmp_error(tcp, mp); 11872 return; 11873 case IN_PKTINFO: 11874 /* 11875 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11876 * sockets that are receiving IPv4 traffic. tcp 11877 */ 11878 ASSERT(tcp->tcp_family == AF_INET6); 11879 ASSERT(tcp->tcp_ipv6_recvancillary & 11880 TCP_IPV6_RECVPKTINFO); 11881 tcp_rput_data(tcp->tcp_connp, mp, 11882 tcp->tcp_connp->conn_sqp); 11883 return; 11884 case MDT_IOC_INFO_UPDATE: 11885 /* 11886 * Handle Multidata information update; the 11887 * following routine will free the message. 11888 */ 11889 if (tcp->tcp_connp->conn_mdt_ok) { 11890 tcp_mdt_update(tcp, 11891 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11892 B_FALSE); 11893 } 11894 freemsg(mp); 11895 return; 11896 case LSO_IOC_INFO_UPDATE: 11897 /* 11898 * Handle LSO information update; the following 11899 * routine will free the message. 11900 */ 11901 if (tcp->tcp_connp->conn_lso_ok) { 11902 tcp_lso_update(tcp, 11903 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11904 } 11905 freemsg(mp); 11906 return; 11907 default: 11908 /* 11909 * tcp_icmp_err() will process the M_CTL packets. 11910 * Non-ICMP packets, if any, will be discarded in 11911 * tcp_icmp_err(). We will process the ICMP packet 11912 * even if we are TCP_IS_DETACHED_NONEAGER as the 11913 * incoming ICMP packet may result in changing 11914 * the tcp_mss, which we would need if we have 11915 * packets to retransmit. 11916 */ 11917 tcp_icmp_error(tcp, mp); 11918 return; 11919 } 11920 } 11921 11922 /* No point processing the message if tcp is already closed */ 11923 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11924 freemsg(mp); 11925 return; 11926 } 11927 11928 tcp_rput_other(tcp, mp); 11929 } 11930 11931 11932 /* The minimum of smoothed mean deviation in RTO calculation. */ 11933 #define TCP_SD_MIN 400 11934 11935 /* 11936 * Set RTO for this connection. The formula is from Jacobson and Karels' 11937 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11938 * are the same as those in Appendix A.2 of that paper. 11939 * 11940 * m = new measurement 11941 * sa = smoothed RTT average (8 * average estimates). 11942 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11943 */ 11944 static void 11945 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11946 { 11947 long m = TICK_TO_MSEC(rtt); 11948 clock_t sa = tcp->tcp_rtt_sa; 11949 clock_t sv = tcp->tcp_rtt_sd; 11950 clock_t rto; 11951 tcp_stack_t *tcps = tcp->tcp_tcps; 11952 11953 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11954 tcp->tcp_rtt_update++; 11955 11956 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11957 if (sa != 0) { 11958 /* 11959 * Update average estimator: 11960 * new rtt = 7/8 old rtt + 1/8 Error 11961 */ 11962 11963 /* m is now Error in estimate. */ 11964 m -= sa >> 3; 11965 if ((sa += m) <= 0) { 11966 /* 11967 * Don't allow the smoothed average to be negative. 11968 * We use 0 to denote reinitialization of the 11969 * variables. 11970 */ 11971 sa = 1; 11972 } 11973 11974 /* 11975 * Update deviation estimator: 11976 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11977 */ 11978 if (m < 0) 11979 m = -m; 11980 m -= sv >> 2; 11981 sv += m; 11982 } else { 11983 /* 11984 * This follows BSD's implementation. So the reinitialized 11985 * RTO is 3 * m. We cannot go less than 2 because if the 11986 * link is bandwidth dominated, doubling the window size 11987 * during slow start means doubling the RTT. We want to be 11988 * more conservative when we reinitialize our estimates. 3 11989 * is just a convenient number. 11990 */ 11991 sa = m << 3; 11992 sv = m << 1; 11993 } 11994 if (sv < TCP_SD_MIN) { 11995 /* 11996 * We do not know that if sa captures the delay ACK 11997 * effect as in a long train of segments, a receiver 11998 * does not delay its ACKs. So set the minimum of sv 11999 * to be TCP_SD_MIN, which is default to 400 ms, twice 12000 * of BSD DATO. That means the minimum of mean 12001 * deviation is 100 ms. 12002 * 12003 */ 12004 sv = TCP_SD_MIN; 12005 } 12006 tcp->tcp_rtt_sa = sa; 12007 tcp->tcp_rtt_sd = sv; 12008 /* 12009 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12010 * 12011 * Add tcp_rexmit_interval extra in case of extreme environment 12012 * where the algorithm fails to work. The default value of 12013 * tcp_rexmit_interval_extra should be 0. 12014 * 12015 * As we use a finer grained clock than BSD and update 12016 * RTO for every ACKs, add in another .25 of RTT to the 12017 * deviation of RTO to accomodate burstiness of 1/4 of 12018 * window size. 12019 */ 12020 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12021 12022 if (rto > tcps->tcps_rexmit_interval_max) { 12023 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12024 } else if (rto < tcps->tcps_rexmit_interval_min) { 12025 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12026 } else { 12027 tcp->tcp_rto = rto; 12028 } 12029 12030 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12031 tcp->tcp_timer_backoff = 0; 12032 } 12033 12034 /* 12035 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12036 * send queue which starts at the given seq. no. 12037 * 12038 * Parameters: 12039 * tcp_t *tcp: the tcp instance pointer. 12040 * uint32_t seq: the starting seq. no of the requested segment. 12041 * int32_t *off: after the execution, *off will be the offset to 12042 * the returned mblk which points to the requested seq no. 12043 * It is the caller's responsibility to send in a non-null off. 12044 * 12045 * Return: 12046 * A mblk_t pointer pointing to the requested segment in send queue. 12047 */ 12048 static mblk_t * 12049 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12050 { 12051 int32_t cnt; 12052 mblk_t *mp; 12053 12054 /* Defensive coding. Make sure we don't send incorrect data. */ 12055 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12056 return (NULL); 12057 12058 cnt = seq - tcp->tcp_suna; 12059 mp = tcp->tcp_xmit_head; 12060 while (cnt > 0 && mp != NULL) { 12061 cnt -= mp->b_wptr - mp->b_rptr; 12062 if (cnt < 0) { 12063 cnt += mp->b_wptr - mp->b_rptr; 12064 break; 12065 } 12066 mp = mp->b_cont; 12067 } 12068 ASSERT(mp != NULL); 12069 *off = cnt; 12070 return (mp); 12071 } 12072 12073 /* 12074 * This function handles all retransmissions if SACK is enabled for this 12075 * connection. First it calculates how many segments can be retransmitted 12076 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12077 * segments. A segment is eligible if sack_cnt for that segment is greater 12078 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12079 * all eligible segments, it checks to see if TCP can send some new segments 12080 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12081 * 12082 * Parameters: 12083 * tcp_t *tcp: the tcp structure of the connection. 12084 * uint_t *flags: in return, appropriate value will be set for 12085 * tcp_rput_data(). 12086 */ 12087 static void 12088 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12089 { 12090 notsack_blk_t *notsack_blk; 12091 int32_t usable_swnd; 12092 int32_t mss; 12093 uint32_t seg_len; 12094 mblk_t *xmit_mp; 12095 tcp_stack_t *tcps = tcp->tcp_tcps; 12096 12097 ASSERT(tcp->tcp_sack_info != NULL); 12098 ASSERT(tcp->tcp_notsack_list != NULL); 12099 ASSERT(tcp->tcp_rexmit == B_FALSE); 12100 12101 /* Defensive coding in case there is a bug... */ 12102 if (tcp->tcp_notsack_list == NULL) { 12103 return; 12104 } 12105 notsack_blk = tcp->tcp_notsack_list; 12106 mss = tcp->tcp_mss; 12107 12108 /* 12109 * Limit the num of outstanding data in the network to be 12110 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12111 */ 12112 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12113 12114 /* At least retransmit 1 MSS of data. */ 12115 if (usable_swnd <= 0) { 12116 usable_swnd = mss; 12117 } 12118 12119 /* Make sure no new RTT samples will be taken. */ 12120 tcp->tcp_csuna = tcp->tcp_snxt; 12121 12122 notsack_blk = tcp->tcp_notsack_list; 12123 while (usable_swnd > 0) { 12124 mblk_t *snxt_mp, *tmp_mp; 12125 tcp_seq begin = tcp->tcp_sack_snxt; 12126 tcp_seq end; 12127 int32_t off; 12128 12129 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12130 if (SEQ_GT(notsack_blk->end, begin) && 12131 (notsack_blk->sack_cnt >= 12132 tcps->tcps_dupack_fast_retransmit)) { 12133 end = notsack_blk->end; 12134 if (SEQ_LT(begin, notsack_blk->begin)) { 12135 begin = notsack_blk->begin; 12136 } 12137 break; 12138 } 12139 } 12140 /* 12141 * All holes are filled. Manipulate tcp_cwnd to send more 12142 * if we can. Note that after the SACK recovery, tcp_cwnd is 12143 * set to tcp_cwnd_ssthresh. 12144 */ 12145 if (notsack_blk == NULL) { 12146 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12147 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12148 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12149 ASSERT(tcp->tcp_cwnd > 0); 12150 return; 12151 } else { 12152 usable_swnd = usable_swnd / mss; 12153 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12154 MAX(usable_swnd * mss, mss); 12155 *flags |= TH_XMIT_NEEDED; 12156 return; 12157 } 12158 } 12159 12160 /* 12161 * Note that we may send more than usable_swnd allows here 12162 * because of round off, but no more than 1 MSS of data. 12163 */ 12164 seg_len = end - begin; 12165 if (seg_len > mss) 12166 seg_len = mss; 12167 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12168 ASSERT(snxt_mp != NULL); 12169 /* This should not happen. Defensive coding again... */ 12170 if (snxt_mp == NULL) { 12171 return; 12172 } 12173 12174 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12175 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12176 if (xmit_mp == NULL) 12177 return; 12178 12179 usable_swnd -= seg_len; 12180 tcp->tcp_pipe += seg_len; 12181 tcp->tcp_sack_snxt = begin + seg_len; 12182 12183 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12184 12185 /* 12186 * Update the send timestamp to avoid false retransmission. 12187 */ 12188 snxt_mp->b_prev = (mblk_t *)lbolt; 12189 12190 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12191 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12192 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12193 /* 12194 * Update tcp_rexmit_max to extend this SACK recovery phase. 12195 * This happens when new data sent during fast recovery is 12196 * also lost. If TCP retransmits those new data, it needs 12197 * to extend SACK recover phase to avoid starting another 12198 * fast retransmit/recovery unnecessarily. 12199 */ 12200 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12201 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12202 } 12203 } 12204 } 12205 12206 /* 12207 * This function handles policy checking at TCP level for non-hard_bound/ 12208 * detached connections. 12209 */ 12210 static boolean_t 12211 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12212 boolean_t secure, boolean_t mctl_present) 12213 { 12214 ipsec_latch_t *ipl = NULL; 12215 ipsec_action_t *act = NULL; 12216 mblk_t *data_mp; 12217 ipsec_in_t *ii; 12218 const char *reason; 12219 kstat_named_t *counter; 12220 tcp_stack_t *tcps = tcp->tcp_tcps; 12221 ipsec_stack_t *ipss; 12222 ip_stack_t *ipst; 12223 12224 ASSERT(mctl_present || !secure); 12225 12226 ASSERT((ipha == NULL && ip6h != NULL) || 12227 (ip6h == NULL && ipha != NULL)); 12228 12229 /* 12230 * We don't necessarily have an ipsec_in_act action to verify 12231 * policy because of assymetrical policy where we have only 12232 * outbound policy and no inbound policy (possible with global 12233 * policy). 12234 */ 12235 if (!secure) { 12236 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12237 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12238 return (B_TRUE); 12239 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12240 "tcp_check_policy", ipha, ip6h, secure, 12241 tcps->tcps_netstack); 12242 ipss = tcps->tcps_netstack->netstack_ipsec; 12243 12244 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12245 DROPPER(ipss, ipds_tcp_clear), 12246 &tcps->tcps_dropper); 12247 return (B_FALSE); 12248 } 12249 12250 /* 12251 * We have a secure packet. 12252 */ 12253 if (act == NULL) { 12254 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12255 "tcp_check_policy", ipha, ip6h, secure, 12256 tcps->tcps_netstack); 12257 ipss = tcps->tcps_netstack->netstack_ipsec; 12258 12259 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12260 DROPPER(ipss, ipds_tcp_secure), 12261 &tcps->tcps_dropper); 12262 return (B_FALSE); 12263 } 12264 12265 /* 12266 * XXX This whole routine is currently incorrect. ipl should 12267 * be set to the latch pointer, but is currently not set, so 12268 * we initialize it to NULL to avoid picking up random garbage. 12269 */ 12270 if (ipl == NULL) 12271 return (B_TRUE); 12272 12273 data_mp = first_mp->b_cont; 12274 12275 ii = (ipsec_in_t *)first_mp->b_rptr; 12276 12277 ipst = tcps->tcps_netstack->netstack_ip; 12278 12279 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12280 &counter, tcp->tcp_connp)) { 12281 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12282 return (B_TRUE); 12283 } 12284 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12285 "tcp inbound policy mismatch: %s, packet dropped\n", 12286 reason); 12287 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12288 12289 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12290 &tcps->tcps_dropper); 12291 return (B_FALSE); 12292 } 12293 12294 /* 12295 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12296 * retransmission after a timeout. 12297 * 12298 * To limit the number of duplicate segments, we limit the number of segment 12299 * to be sent in one time to tcp_snd_burst, the burst variable. 12300 */ 12301 static void 12302 tcp_ss_rexmit(tcp_t *tcp) 12303 { 12304 uint32_t snxt; 12305 uint32_t smax; 12306 int32_t win; 12307 int32_t mss; 12308 int32_t off; 12309 int32_t burst = tcp->tcp_snd_burst; 12310 mblk_t *snxt_mp; 12311 tcp_stack_t *tcps = tcp->tcp_tcps; 12312 12313 /* 12314 * Note that tcp_rexmit can be set even though TCP has retransmitted 12315 * all unack'ed segments. 12316 */ 12317 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12318 smax = tcp->tcp_rexmit_max; 12319 snxt = tcp->tcp_rexmit_nxt; 12320 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12321 snxt = tcp->tcp_suna; 12322 } 12323 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12324 win -= snxt - tcp->tcp_suna; 12325 mss = tcp->tcp_mss; 12326 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12327 12328 while (SEQ_LT(snxt, smax) && (win > 0) && 12329 (burst > 0) && (snxt_mp != NULL)) { 12330 mblk_t *xmit_mp; 12331 mblk_t *old_snxt_mp = snxt_mp; 12332 uint32_t cnt = mss; 12333 12334 if (win < cnt) { 12335 cnt = win; 12336 } 12337 if (SEQ_GT(snxt + cnt, smax)) { 12338 cnt = smax - snxt; 12339 } 12340 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12341 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12342 if (xmit_mp == NULL) 12343 return; 12344 12345 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12346 12347 snxt += cnt; 12348 win -= cnt; 12349 /* 12350 * Update the send timestamp to avoid false 12351 * retransmission. 12352 */ 12353 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12354 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12355 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12356 12357 tcp->tcp_rexmit_nxt = snxt; 12358 burst--; 12359 } 12360 /* 12361 * If we have transmitted all we have at the time 12362 * we started the retranmission, we can leave 12363 * the rest of the job to tcp_wput_data(). But we 12364 * need to check the send window first. If the 12365 * win is not 0, go on with tcp_wput_data(). 12366 */ 12367 if (SEQ_LT(snxt, smax) || win == 0) { 12368 return; 12369 } 12370 } 12371 /* Only call tcp_wput_data() if there is data to be sent. */ 12372 if (tcp->tcp_unsent) { 12373 tcp_wput_data(tcp, NULL, B_FALSE); 12374 } 12375 } 12376 12377 /* 12378 * Process all TCP option in SYN segment. Note that this function should 12379 * be called after tcp_adapt_ire() is called so that the necessary info 12380 * from IRE is already set in the tcp structure. 12381 * 12382 * This function sets up the correct tcp_mss value according to the 12383 * MSS option value and our header size. It also sets up the window scale 12384 * and timestamp values, and initialize SACK info blocks. But it does not 12385 * change receive window size after setting the tcp_mss value. The caller 12386 * should do the appropriate change. 12387 */ 12388 void 12389 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12390 { 12391 int options; 12392 tcp_opt_t tcpopt; 12393 uint32_t mss_max; 12394 char *tmp_tcph; 12395 tcp_stack_t *tcps = tcp->tcp_tcps; 12396 12397 tcpopt.tcp = NULL; 12398 options = tcp_parse_options(tcph, &tcpopt); 12399 12400 /* 12401 * Process MSS option. Note that MSS option value does not account 12402 * for IP or TCP options. This means that it is equal to MTU - minimum 12403 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12404 * IPv6. 12405 */ 12406 if (!(options & TCP_OPT_MSS_PRESENT)) { 12407 if (tcp->tcp_ipversion == IPV4_VERSION) 12408 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12409 else 12410 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12411 } else { 12412 if (tcp->tcp_ipversion == IPV4_VERSION) 12413 mss_max = tcps->tcps_mss_max_ipv4; 12414 else 12415 mss_max = tcps->tcps_mss_max_ipv6; 12416 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12417 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12418 else if (tcpopt.tcp_opt_mss > mss_max) 12419 tcpopt.tcp_opt_mss = mss_max; 12420 } 12421 12422 /* Process Window Scale option. */ 12423 if (options & TCP_OPT_WSCALE_PRESENT) { 12424 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12425 tcp->tcp_snd_ws_ok = B_TRUE; 12426 } else { 12427 tcp->tcp_snd_ws = B_FALSE; 12428 tcp->tcp_snd_ws_ok = B_FALSE; 12429 tcp->tcp_rcv_ws = B_FALSE; 12430 } 12431 12432 /* Process Timestamp option. */ 12433 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12434 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12435 tmp_tcph = (char *)tcp->tcp_tcph; 12436 12437 tcp->tcp_snd_ts_ok = B_TRUE; 12438 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12439 tcp->tcp_last_rcv_lbolt = lbolt64; 12440 ASSERT(OK_32PTR(tmp_tcph)); 12441 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12442 12443 /* Fill in our template header with basic timestamp option. */ 12444 tmp_tcph += tcp->tcp_tcp_hdr_len; 12445 tmp_tcph[0] = TCPOPT_NOP; 12446 tmp_tcph[1] = TCPOPT_NOP; 12447 tmp_tcph[2] = TCPOPT_TSTAMP; 12448 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12449 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12450 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12451 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12452 } else { 12453 tcp->tcp_snd_ts_ok = B_FALSE; 12454 } 12455 12456 /* 12457 * Process SACK options. If SACK is enabled for this connection, 12458 * then allocate the SACK info structure. Note the following ways 12459 * when tcp_snd_sack_ok is set to true. 12460 * 12461 * For active connection: in tcp_adapt_ire() called in 12462 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12463 * is checked. 12464 * 12465 * For passive connection: in tcp_adapt_ire() called in 12466 * tcp_accept_comm(). 12467 * 12468 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12469 * That check makes sure that if we did not send a SACK OK option, 12470 * we will not enable SACK for this connection even though the other 12471 * side sends us SACK OK option. For active connection, the SACK 12472 * info structure has already been allocated. So we need to free 12473 * it if SACK is disabled. 12474 */ 12475 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12476 (tcp->tcp_snd_sack_ok || 12477 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12478 /* This should be true only in the passive case. */ 12479 if (tcp->tcp_sack_info == NULL) { 12480 ASSERT(TCP_IS_DETACHED(tcp)); 12481 tcp->tcp_sack_info = 12482 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12483 } 12484 if (tcp->tcp_sack_info == NULL) { 12485 tcp->tcp_snd_sack_ok = B_FALSE; 12486 } else { 12487 tcp->tcp_snd_sack_ok = B_TRUE; 12488 if (tcp->tcp_snd_ts_ok) { 12489 tcp->tcp_max_sack_blk = 3; 12490 } else { 12491 tcp->tcp_max_sack_blk = 4; 12492 } 12493 } 12494 } else { 12495 /* 12496 * Resetting tcp_snd_sack_ok to B_FALSE so that 12497 * no SACK info will be used for this 12498 * connection. This assumes that SACK usage 12499 * permission is negotiated. This may need 12500 * to be changed once this is clarified. 12501 */ 12502 if (tcp->tcp_sack_info != NULL) { 12503 ASSERT(tcp->tcp_notsack_list == NULL); 12504 kmem_cache_free(tcp_sack_info_cache, 12505 tcp->tcp_sack_info); 12506 tcp->tcp_sack_info = NULL; 12507 } 12508 tcp->tcp_snd_sack_ok = B_FALSE; 12509 } 12510 12511 /* 12512 * Now we know the exact TCP/IP header length, subtract 12513 * that from tcp_mss to get our side's MSS. 12514 */ 12515 tcp->tcp_mss -= tcp->tcp_hdr_len; 12516 /* 12517 * Here we assume that the other side's header size will be equal to 12518 * our header size. We calculate the real MSS accordingly. Need to 12519 * take into additional stuffs IPsec puts in. 12520 * 12521 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12522 */ 12523 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12524 ((tcp->tcp_ipversion == IPV4_VERSION ? 12525 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12526 12527 /* 12528 * Set MSS to the smaller one of both ends of the connection. 12529 * We should not have called tcp_mss_set() before, but our 12530 * side of the MSS should have been set to a proper value 12531 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12532 * STREAM head parameters properly. 12533 * 12534 * If we have a larger-than-16-bit window but the other side 12535 * didn't want to do window scale, tcp_rwnd_set() will take 12536 * care of that. 12537 */ 12538 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12539 } 12540 12541 /* 12542 * Sends the T_CONN_IND to the listener. The caller calls this 12543 * functions via squeue to get inside the listener's perimeter 12544 * once the 3 way hand shake is done a T_CONN_IND needs to be 12545 * sent. As an optimization, the caller can call this directly 12546 * if listener's perimeter is same as eager's. 12547 */ 12548 /* ARGSUSED */ 12549 void 12550 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12551 { 12552 conn_t *lconnp = (conn_t *)arg; 12553 tcp_t *listener = lconnp->conn_tcp; 12554 tcp_t *tcp; 12555 struct T_conn_ind *conn_ind; 12556 ipaddr_t *addr_cache; 12557 boolean_t need_send_conn_ind = B_FALSE; 12558 tcp_stack_t *tcps = listener->tcp_tcps; 12559 12560 /* retrieve the eager */ 12561 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12562 ASSERT(conn_ind->OPT_offset != 0 && 12563 conn_ind->OPT_length == sizeof (intptr_t)); 12564 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12565 conn_ind->OPT_length); 12566 12567 /* 12568 * TLI/XTI applications will get confused by 12569 * sending eager as an option since it violates 12570 * the option semantics. So remove the eager as 12571 * option since TLI/XTI app doesn't need it anyway. 12572 */ 12573 if (!TCP_IS_SOCKET(listener)) { 12574 conn_ind->OPT_length = 0; 12575 conn_ind->OPT_offset = 0; 12576 } 12577 if (listener->tcp_state == TCPS_CLOSED || 12578 TCP_IS_DETACHED(listener)) { 12579 /* 12580 * If listener has closed, it would have caused a 12581 * a cleanup/blowoff to happen for the eager. We 12582 * just need to return. 12583 */ 12584 freemsg(mp); 12585 return; 12586 } 12587 12588 12589 /* 12590 * if the conn_req_q is full defer passing up the 12591 * T_CONN_IND until space is availabe after t_accept() 12592 * processing 12593 */ 12594 mutex_enter(&listener->tcp_eager_lock); 12595 12596 /* 12597 * Take the eager out, if it is in the list of droppable eagers 12598 * as we are here because the 3W handshake is over. 12599 */ 12600 MAKE_UNDROPPABLE(tcp); 12601 12602 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12603 tcp_t *tail; 12604 12605 /* 12606 * The eager already has an extra ref put in tcp_rput_data 12607 * so that it stays till accept comes back even though it 12608 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12609 */ 12610 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12611 listener->tcp_conn_req_cnt_q0--; 12612 listener->tcp_conn_req_cnt_q++; 12613 12614 /* Move from SYN_RCVD to ESTABLISHED list */ 12615 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12616 tcp->tcp_eager_prev_q0; 12617 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12618 tcp->tcp_eager_next_q0; 12619 tcp->tcp_eager_prev_q0 = NULL; 12620 tcp->tcp_eager_next_q0 = NULL; 12621 12622 /* 12623 * Insert at end of the queue because sockfs 12624 * sends down T_CONN_RES in chronological 12625 * order. Leaving the older conn indications 12626 * at front of the queue helps reducing search 12627 * time. 12628 */ 12629 tail = listener->tcp_eager_last_q; 12630 if (tail != NULL) 12631 tail->tcp_eager_next_q = tcp; 12632 else 12633 listener->tcp_eager_next_q = tcp; 12634 listener->tcp_eager_last_q = tcp; 12635 tcp->tcp_eager_next_q = NULL; 12636 /* 12637 * Delay sending up the T_conn_ind until we are 12638 * done with the eager. Once we have have sent up 12639 * the T_conn_ind, the accept can potentially complete 12640 * any time and release the refhold we have on the eager. 12641 */ 12642 need_send_conn_ind = B_TRUE; 12643 } else { 12644 /* 12645 * Defer connection on q0 and set deferred 12646 * connection bit true 12647 */ 12648 tcp->tcp_conn_def_q0 = B_TRUE; 12649 12650 /* take tcp out of q0 ... */ 12651 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12652 tcp->tcp_eager_next_q0; 12653 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12654 tcp->tcp_eager_prev_q0; 12655 12656 /* ... and place it at the end of q0 */ 12657 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12658 tcp->tcp_eager_next_q0 = listener; 12659 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12660 listener->tcp_eager_prev_q0 = tcp; 12661 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12662 } 12663 12664 /* we have timed out before */ 12665 if (tcp->tcp_syn_rcvd_timeout != 0) { 12666 tcp->tcp_syn_rcvd_timeout = 0; 12667 listener->tcp_syn_rcvd_timeout--; 12668 if (listener->tcp_syn_defense && 12669 listener->tcp_syn_rcvd_timeout <= 12670 (tcps->tcps_conn_req_max_q0 >> 5) && 12671 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12672 listener->tcp_last_rcv_lbolt)) { 12673 /* 12674 * Turn off the defense mode if we 12675 * believe the SYN attack is over. 12676 */ 12677 listener->tcp_syn_defense = B_FALSE; 12678 if (listener->tcp_ip_addr_cache) { 12679 kmem_free((void *)listener->tcp_ip_addr_cache, 12680 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12681 listener->tcp_ip_addr_cache = NULL; 12682 } 12683 } 12684 } 12685 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12686 if (addr_cache != NULL) { 12687 /* 12688 * We have finished a 3-way handshake with this 12689 * remote host. This proves the IP addr is good. 12690 * Cache it! 12691 */ 12692 addr_cache[IP_ADDR_CACHE_HASH( 12693 tcp->tcp_remote)] = tcp->tcp_remote; 12694 } 12695 mutex_exit(&listener->tcp_eager_lock); 12696 if (need_send_conn_ind) { 12697 if (IPCL_IS_NONSTR(lconnp)) { 12698 ASSERT(tcp->tcp_listener == listener); 12699 ASSERT(tcp->tcp_saved_listener == listener); 12700 if ((*lconnp->conn_upcalls->su_newconn) 12701 (lconnp->conn_upper_handle, 12702 (sock_lower_handle_t)tcp->tcp_connp, 12703 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 12704 &tcp->tcp_connp->conn_upcalls) != NULL) { 12705 /* 12706 * Keep the message around 12707 * in case of fallback 12708 */ 12709 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12710 } else { 12711 freemsg(mp); 12712 } 12713 } else { 12714 putnext(listener->tcp_rq, mp); 12715 } 12716 } 12717 } 12718 12719 mblk_t * 12720 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12721 uint_t *ifindexp, ip6_pkt_t *ippp) 12722 { 12723 ip_pktinfo_t *pinfo; 12724 ip6_t *ip6h; 12725 uchar_t *rptr; 12726 mblk_t *first_mp = mp; 12727 boolean_t mctl_present = B_FALSE; 12728 uint_t ifindex = 0; 12729 ip6_pkt_t ipp; 12730 uint_t ipvers; 12731 uint_t ip_hdr_len; 12732 tcp_stack_t *tcps = tcp->tcp_tcps; 12733 12734 rptr = mp->b_rptr; 12735 ASSERT(OK_32PTR(rptr)); 12736 ASSERT(tcp != NULL); 12737 ipp.ipp_fields = 0; 12738 12739 switch DB_TYPE(mp) { 12740 case M_CTL: 12741 mp = mp->b_cont; 12742 if (mp == NULL) { 12743 freemsg(first_mp); 12744 return (NULL); 12745 } 12746 if (DB_TYPE(mp) != M_DATA) { 12747 freemsg(first_mp); 12748 return (NULL); 12749 } 12750 mctl_present = B_TRUE; 12751 break; 12752 case M_DATA: 12753 break; 12754 default: 12755 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12756 freemsg(mp); 12757 return (NULL); 12758 } 12759 ipvers = IPH_HDR_VERSION(rptr); 12760 if (ipvers == IPV4_VERSION) { 12761 if (tcp == NULL) { 12762 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12763 goto done; 12764 } 12765 12766 ipp.ipp_fields |= IPPF_HOPLIMIT; 12767 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12768 12769 /* 12770 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12771 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12772 */ 12773 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12774 mctl_present) { 12775 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12776 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12777 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12778 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12779 ipp.ipp_fields |= IPPF_IFINDEX; 12780 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12781 ifindex = pinfo->ip_pkt_ifindex; 12782 } 12783 freeb(first_mp); 12784 mctl_present = B_FALSE; 12785 } 12786 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12787 } else { 12788 ip6h = (ip6_t *)rptr; 12789 12790 ASSERT(ipvers == IPV6_VERSION); 12791 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12792 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12793 ipp.ipp_hoplimit = ip6h->ip6_hops; 12794 12795 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12796 uint8_t nexthdrp; 12797 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12798 12799 /* Look for ifindex information */ 12800 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12801 ip6i_t *ip6i = (ip6i_t *)ip6h; 12802 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12803 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12804 freemsg(first_mp); 12805 return (NULL); 12806 } 12807 12808 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12809 ASSERT(ip6i->ip6i_ifindex != 0); 12810 ipp.ipp_fields |= IPPF_IFINDEX; 12811 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12812 ifindex = ip6i->ip6i_ifindex; 12813 } 12814 rptr = (uchar_t *)&ip6i[1]; 12815 mp->b_rptr = rptr; 12816 if (rptr == mp->b_wptr) { 12817 mblk_t *mp1; 12818 mp1 = mp->b_cont; 12819 freeb(mp); 12820 mp = mp1; 12821 rptr = mp->b_rptr; 12822 } 12823 if (MBLKL(mp) < IPV6_HDR_LEN + 12824 sizeof (tcph_t)) { 12825 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12826 freemsg(first_mp); 12827 return (NULL); 12828 } 12829 ip6h = (ip6_t *)rptr; 12830 } 12831 12832 /* 12833 * Find any potentially interesting extension headers 12834 * as well as the length of the IPv6 + extension 12835 * headers. 12836 */ 12837 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12838 /* Verify if this is a TCP packet */ 12839 if (nexthdrp != IPPROTO_TCP) { 12840 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12841 freemsg(first_mp); 12842 return (NULL); 12843 } 12844 } else { 12845 ip_hdr_len = IPV6_HDR_LEN; 12846 } 12847 } 12848 12849 done: 12850 if (ipversp != NULL) 12851 *ipversp = ipvers; 12852 if (ip_hdr_lenp != NULL) 12853 *ip_hdr_lenp = ip_hdr_len; 12854 if (ippp != NULL) 12855 *ippp = ipp; 12856 if (ifindexp != NULL) 12857 *ifindexp = ifindex; 12858 if (mctl_present) { 12859 freeb(first_mp); 12860 } 12861 return (mp); 12862 } 12863 12864 /* 12865 * Handle M_DATA messages from IP. Its called directly from IP via 12866 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12867 * in this path. 12868 * 12869 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12870 * v4 and v6), we are called through tcp_input() and a M_CTL can 12871 * be present for options but tcp_find_pktinfo() deals with it. We 12872 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12873 * 12874 * The first argument is always the connp/tcp to which the mp belongs. 12875 * There are no exceptions to this rule. The caller has already put 12876 * a reference on this connp/tcp and once tcp_rput_data() returns, 12877 * the squeue will do the refrele. 12878 * 12879 * The TH_SYN for the listener directly go to tcp_conn_request via 12880 * squeue. 12881 * 12882 * sqp: NULL = recursive, sqp != NULL means called from squeue 12883 */ 12884 void 12885 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12886 { 12887 int32_t bytes_acked; 12888 int32_t gap; 12889 mblk_t *mp1; 12890 uint_t flags; 12891 uint32_t new_swnd = 0; 12892 uchar_t *iphdr; 12893 uchar_t *rptr; 12894 int32_t rgap; 12895 uint32_t seg_ack; 12896 int seg_len; 12897 uint_t ip_hdr_len; 12898 uint32_t seg_seq; 12899 tcph_t *tcph; 12900 int urp; 12901 tcp_opt_t tcpopt; 12902 uint_t ipvers; 12903 ip6_pkt_t ipp; 12904 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12905 uint32_t cwnd; 12906 uint32_t add; 12907 int npkt; 12908 int mss; 12909 conn_t *connp = (conn_t *)arg; 12910 squeue_t *sqp = (squeue_t *)arg2; 12911 tcp_t *tcp = connp->conn_tcp; 12912 tcp_stack_t *tcps = tcp->tcp_tcps; 12913 12914 /* 12915 * RST from fused tcp loopback peer should trigger an unfuse. 12916 */ 12917 if (tcp->tcp_fused) { 12918 TCP_STAT(tcps, tcp_fusion_aborted); 12919 tcp_unfuse(tcp); 12920 } 12921 12922 iphdr = mp->b_rptr; 12923 rptr = mp->b_rptr; 12924 ASSERT(OK_32PTR(rptr)); 12925 12926 /* 12927 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12928 * processing here. For rest call tcp_find_pktinfo to fill up the 12929 * necessary information. 12930 */ 12931 if (IPCL_IS_TCP4(connp)) { 12932 ipvers = IPV4_VERSION; 12933 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12934 } else { 12935 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12936 NULL, &ipp); 12937 if (mp == NULL) { 12938 TCP_STAT(tcps, tcp_rput_v6_error); 12939 return; 12940 } 12941 iphdr = mp->b_rptr; 12942 rptr = mp->b_rptr; 12943 } 12944 ASSERT(DB_TYPE(mp) == M_DATA); 12945 ASSERT(mp->b_next == NULL); 12946 12947 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12948 seg_seq = ABE32_TO_U32(tcph->th_seq); 12949 seg_ack = ABE32_TO_U32(tcph->th_ack); 12950 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12951 seg_len = (int)(mp->b_wptr - rptr) - 12952 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12953 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12954 do { 12955 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12956 (uintptr_t)INT_MAX); 12957 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12958 } while ((mp1 = mp1->b_cont) != NULL && 12959 mp1->b_datap->db_type == M_DATA); 12960 } 12961 12962 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12963 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12964 seg_len, tcph); 12965 return; 12966 } 12967 12968 if (sqp != NULL) { 12969 /* 12970 * This is the correct place to update tcp_last_recv_time. Note 12971 * that it is also updated for tcp structure that belongs to 12972 * global and listener queues which do not really need updating. 12973 * But that should not cause any harm. And it is updated for 12974 * all kinds of incoming segments, not only for data segments. 12975 */ 12976 tcp->tcp_last_recv_time = lbolt; 12977 } 12978 12979 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12980 12981 BUMP_LOCAL(tcp->tcp_ibsegs); 12982 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12983 12984 if ((flags & TH_URG) && sqp != NULL) { 12985 /* 12986 * TCP can't handle urgent pointers that arrive before 12987 * the connection has been accept()ed since it can't 12988 * buffer OOB data. Discard segment if this happens. 12989 * 12990 * We can't just rely on a non-null tcp_listener to indicate 12991 * that the accept() has completed since unlinking of the 12992 * eager and completion of the accept are not atomic. 12993 * tcp_detached, when it is not set (B_FALSE) indicates 12994 * that the accept() has completed. 12995 * 12996 * Nor can it reassemble urgent pointers, so discard 12997 * if it's not the next segment expected. 12998 * 12999 * Otherwise, collapse chain into one mblk (discard if 13000 * that fails). This makes sure the headers, retransmitted 13001 * data, and new data all are in the same mblk. 13002 */ 13003 ASSERT(mp != NULL); 13004 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 13005 freemsg(mp); 13006 return; 13007 } 13008 /* Update pointers into message */ 13009 iphdr = rptr = mp->b_rptr; 13010 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13011 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13012 /* 13013 * Since we can't handle any data with this urgent 13014 * pointer that is out of sequence, we expunge 13015 * the data. This allows us to still register 13016 * the urgent mark and generate the M_PCSIG, 13017 * which we can do. 13018 */ 13019 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13020 seg_len = 0; 13021 } 13022 } 13023 13024 switch (tcp->tcp_state) { 13025 case TCPS_SYN_SENT: 13026 if (flags & TH_ACK) { 13027 /* 13028 * Note that our stack cannot send data before a 13029 * connection is established, therefore the 13030 * following check is valid. Otherwise, it has 13031 * to be changed. 13032 */ 13033 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13034 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13035 freemsg(mp); 13036 if (flags & TH_RST) 13037 return; 13038 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13039 tcp, seg_ack, 0, TH_RST); 13040 return; 13041 } 13042 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13043 } 13044 if (flags & TH_RST) { 13045 freemsg(mp); 13046 if (flags & TH_ACK) 13047 (void) tcp_clean_death(tcp, 13048 ECONNREFUSED, 13); 13049 return; 13050 } 13051 if (!(flags & TH_SYN)) { 13052 freemsg(mp); 13053 return; 13054 } 13055 13056 /* Process all TCP options. */ 13057 tcp_process_options(tcp, tcph); 13058 /* 13059 * The following changes our rwnd to be a multiple of the 13060 * MIN(peer MSS, our MSS) for performance reason. 13061 */ 13062 (void) tcp_rwnd_set(tcp, 13063 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 13064 13065 /* Is the other end ECN capable? */ 13066 if (tcp->tcp_ecn_ok) { 13067 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13068 tcp->tcp_ecn_ok = B_FALSE; 13069 } 13070 } 13071 /* 13072 * Clear ECN flags because it may interfere with later 13073 * processing. 13074 */ 13075 flags &= ~(TH_ECE|TH_CWR); 13076 13077 tcp->tcp_irs = seg_seq; 13078 tcp->tcp_rack = seg_seq; 13079 tcp->tcp_rnxt = seg_seq + 1; 13080 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13081 if (!TCP_IS_DETACHED(tcp)) { 13082 /* Allocate room for SACK options if needed. */ 13083 if (tcp->tcp_snd_sack_ok) { 13084 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13085 tcp->tcp_hdr_len + 13086 TCPOPT_MAX_SACK_LEN + 13087 (tcp->tcp_loopback ? 0 : 13088 tcps->tcps_wroff_xtra)); 13089 } else { 13090 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13091 tcp->tcp_hdr_len + 13092 (tcp->tcp_loopback ? 0 : 13093 tcps->tcps_wroff_xtra)); 13094 } 13095 } 13096 if (flags & TH_ACK) { 13097 /* 13098 * If we can't get the confirmation upstream, pretend 13099 * we didn't even see this one. 13100 * 13101 * XXX: how can we pretend we didn't see it if we 13102 * have updated rnxt et. al. 13103 * 13104 * For loopback we defer sending up the T_CONN_CON 13105 * until after some checks below. 13106 */ 13107 mp1 = NULL; 13108 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13109 tcp->tcp_loopback ? &mp1 : NULL)) { 13110 freemsg(mp); 13111 return; 13112 } 13113 /* SYN was acked - making progress */ 13114 if (tcp->tcp_ipversion == IPV6_VERSION) 13115 tcp->tcp_ip_forward_progress = B_TRUE; 13116 13117 /* One for the SYN */ 13118 tcp->tcp_suna = tcp->tcp_iss + 1; 13119 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13120 tcp->tcp_state = TCPS_ESTABLISHED; 13121 13122 /* 13123 * If SYN was retransmitted, need to reset all 13124 * retransmission info. This is because this 13125 * segment will be treated as a dup ACK. 13126 */ 13127 if (tcp->tcp_rexmit) { 13128 tcp->tcp_rexmit = B_FALSE; 13129 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13130 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13131 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13132 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13133 tcp->tcp_ms_we_have_waited = 0; 13134 13135 /* 13136 * Set tcp_cwnd back to 1 MSS, per 13137 * recommendation from 13138 * draft-floyd-incr-init-win-01.txt, 13139 * Increasing TCP's Initial Window. 13140 */ 13141 tcp->tcp_cwnd = tcp->tcp_mss; 13142 } 13143 13144 tcp->tcp_swl1 = seg_seq; 13145 tcp->tcp_swl2 = seg_ack; 13146 13147 new_swnd = BE16_TO_U16(tcph->th_win); 13148 tcp->tcp_swnd = new_swnd; 13149 if (new_swnd > tcp->tcp_max_swnd) 13150 tcp->tcp_max_swnd = new_swnd; 13151 13152 /* 13153 * Always send the three-way handshake ack immediately 13154 * in order to make the connection complete as soon as 13155 * possible on the accepting host. 13156 */ 13157 flags |= TH_ACK_NEEDED; 13158 13159 /* 13160 * Special case for loopback. At this point we have 13161 * received SYN-ACK from the remote endpoint. In 13162 * order to ensure that both endpoints reach the 13163 * fused state prior to any data exchange, the final 13164 * ACK needs to be sent before we indicate T_CONN_CON 13165 * to the module upstream. 13166 */ 13167 if (tcp->tcp_loopback) { 13168 mblk_t *ack_mp; 13169 13170 ASSERT(!tcp->tcp_unfusable); 13171 ASSERT(mp1 != NULL); 13172 /* 13173 * For loopback, we always get a pure SYN-ACK 13174 * and only need to send back the final ACK 13175 * with no data (this is because the other 13176 * tcp is ours and we don't do T/TCP). This 13177 * final ACK triggers the passive side to 13178 * perform fusion in ESTABLISHED state. 13179 */ 13180 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13181 if (tcp->tcp_ack_tid != 0) { 13182 (void) TCP_TIMER_CANCEL(tcp, 13183 tcp->tcp_ack_tid); 13184 tcp->tcp_ack_tid = 0; 13185 } 13186 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13187 BUMP_LOCAL(tcp->tcp_obsegs); 13188 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13189 13190 if (!IPCL_IS_NONSTR(connp)) { 13191 /* Send up T_CONN_CON */ 13192 putnext(tcp->tcp_rq, mp1); 13193 } else { 13194 (*connp->conn_upcalls-> 13195 su_connected) 13196 (connp->conn_upper_handle, 13197 tcp->tcp_connid, 13198 DB_CRED(mp1), 13199 DB_CPID(mp1)); 13200 freemsg(mp1); 13201 } 13202 13203 freemsg(mp); 13204 return; 13205 } 13206 /* 13207 * Forget fusion; we need to handle more 13208 * complex cases below. Send the deferred 13209 * T_CONN_CON message upstream and proceed 13210 * as usual. Mark this tcp as not capable 13211 * of fusion. 13212 */ 13213 TCP_STAT(tcps, tcp_fusion_unfusable); 13214 tcp->tcp_unfusable = B_TRUE; 13215 if (!IPCL_IS_NONSTR(connp)) { 13216 putnext(tcp->tcp_rq, mp1); 13217 } else { 13218 (*connp->conn_upcalls->su_connected) 13219 (connp->conn_upper_handle, 13220 tcp->tcp_connid, DB_CRED(mp1), 13221 DB_CPID(mp1)); 13222 freemsg(mp1); 13223 } 13224 } 13225 13226 /* 13227 * Check to see if there is data to be sent. If 13228 * yes, set the transmit flag. Then check to see 13229 * if received data processing needs to be done. 13230 * If not, go straight to xmit_check. This short 13231 * cut is OK as we don't support T/TCP. 13232 */ 13233 if (tcp->tcp_unsent) 13234 flags |= TH_XMIT_NEEDED; 13235 13236 if (seg_len == 0 && !(flags & TH_URG)) { 13237 freemsg(mp); 13238 goto xmit_check; 13239 } 13240 13241 flags &= ~TH_SYN; 13242 seg_seq++; 13243 break; 13244 } 13245 tcp->tcp_state = TCPS_SYN_RCVD; 13246 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13247 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13248 if (mp1) { 13249 DB_CPID(mp1) = tcp->tcp_cpid; 13250 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13251 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13252 } 13253 freemsg(mp); 13254 return; 13255 case TCPS_SYN_RCVD: 13256 if (flags & TH_ACK) { 13257 /* 13258 * In this state, a SYN|ACK packet is either bogus 13259 * because the other side must be ACKing our SYN which 13260 * indicates it has seen the ACK for their SYN and 13261 * shouldn't retransmit it or we're crossing SYNs 13262 * on active open. 13263 */ 13264 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13265 freemsg(mp); 13266 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13267 tcp, seg_ack, 0, TH_RST); 13268 return; 13269 } 13270 /* 13271 * NOTE: RFC 793 pg. 72 says this should be 13272 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13273 * but that would mean we have an ack that ignored 13274 * our SYN. 13275 */ 13276 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13277 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13278 freemsg(mp); 13279 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13280 tcp, seg_ack, 0, TH_RST); 13281 return; 13282 } 13283 } 13284 break; 13285 case TCPS_LISTEN: 13286 /* 13287 * Only a TLI listener can come through this path when a 13288 * acceptor is going back to be a listener and a packet 13289 * for the acceptor hits the classifier. For a socket 13290 * listener, this can never happen because a listener 13291 * can never accept connection on itself and hence a 13292 * socket acceptor can not go back to being a listener. 13293 */ 13294 ASSERT(!TCP_IS_SOCKET(tcp)); 13295 /*FALLTHRU*/ 13296 case TCPS_CLOSED: 13297 case TCPS_BOUND: { 13298 conn_t *new_connp; 13299 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13300 13301 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13302 if (new_connp != NULL) { 13303 tcp_reinput(new_connp, mp, connp->conn_sqp); 13304 return; 13305 } 13306 /* We failed to classify. For now just drop the packet */ 13307 freemsg(mp); 13308 return; 13309 } 13310 case TCPS_IDLE: 13311 /* 13312 * Handle the case where the tcp_clean_death() has happened 13313 * on a connection (application hasn't closed yet) but a packet 13314 * was already queued on squeue before tcp_clean_death() 13315 * was processed. Calling tcp_clean_death() twice on same 13316 * connection can result in weird behaviour. 13317 */ 13318 freemsg(mp); 13319 return; 13320 default: 13321 break; 13322 } 13323 13324 /* 13325 * Already on the correct queue/perimeter. 13326 * If this is a detached connection and not an eager 13327 * connection hanging off a listener then new data 13328 * (past the FIN) will cause a reset. 13329 * We do a special check here where it 13330 * is out of the main line, rather than check 13331 * if we are detached every time we see new 13332 * data down below. 13333 */ 13334 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13335 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13336 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13337 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13338 13339 freemsg(mp); 13340 /* 13341 * This could be an SSL closure alert. We're detached so just 13342 * acknowledge it this last time. 13343 */ 13344 if (tcp->tcp_kssl_ctx != NULL) { 13345 kssl_release_ctx(tcp->tcp_kssl_ctx); 13346 tcp->tcp_kssl_ctx = NULL; 13347 13348 tcp->tcp_rnxt += seg_len; 13349 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13350 flags |= TH_ACK_NEEDED; 13351 goto ack_check; 13352 } 13353 13354 tcp_xmit_ctl("new data when detached", tcp, 13355 tcp->tcp_snxt, 0, TH_RST); 13356 (void) tcp_clean_death(tcp, EPROTO, 12); 13357 return; 13358 } 13359 13360 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13361 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13362 new_swnd = BE16_TO_U16(tcph->th_win) << 13363 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13364 13365 if (tcp->tcp_snd_ts_ok) { 13366 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13367 /* 13368 * This segment is not acceptable. 13369 * Drop it and send back an ACK. 13370 */ 13371 freemsg(mp); 13372 flags |= TH_ACK_NEEDED; 13373 goto ack_check; 13374 } 13375 } else if (tcp->tcp_snd_sack_ok) { 13376 ASSERT(tcp->tcp_sack_info != NULL); 13377 tcpopt.tcp = tcp; 13378 /* 13379 * SACK info in already updated in tcp_parse_options. Ignore 13380 * all other TCP options... 13381 */ 13382 (void) tcp_parse_options(tcph, &tcpopt); 13383 } 13384 try_again:; 13385 mss = tcp->tcp_mss; 13386 gap = seg_seq - tcp->tcp_rnxt; 13387 rgap = tcp->tcp_rwnd - (gap + seg_len); 13388 /* 13389 * gap is the amount of sequence space between what we expect to see 13390 * and what we got for seg_seq. A positive value for gap means 13391 * something got lost. A negative value means we got some old stuff. 13392 */ 13393 if (gap < 0) { 13394 /* Old stuff present. Is the SYN in there? */ 13395 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13396 (seg_len != 0)) { 13397 flags &= ~TH_SYN; 13398 seg_seq++; 13399 urp--; 13400 /* Recompute the gaps after noting the SYN. */ 13401 goto try_again; 13402 } 13403 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13404 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13405 (seg_len > -gap ? -gap : seg_len)); 13406 /* Remove the old stuff from seg_len. */ 13407 seg_len += gap; 13408 /* 13409 * Anything left? 13410 * Make sure to check for unack'd FIN when rest of data 13411 * has been previously ack'd. 13412 */ 13413 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13414 /* 13415 * Resets are only valid if they lie within our offered 13416 * window. If the RST bit is set, we just ignore this 13417 * segment. 13418 */ 13419 if (flags & TH_RST) { 13420 freemsg(mp); 13421 return; 13422 } 13423 13424 /* 13425 * The arriving of dup data packets indicate that we 13426 * may have postponed an ack for too long, or the other 13427 * side's RTT estimate is out of shape. Start acking 13428 * more often. 13429 */ 13430 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13431 tcp->tcp_rack_cnt >= 1 && 13432 tcp->tcp_rack_abs_max > 2) { 13433 tcp->tcp_rack_abs_max--; 13434 } 13435 tcp->tcp_rack_cur_max = 1; 13436 13437 /* 13438 * This segment is "unacceptable". None of its 13439 * sequence space lies within our advertized window. 13440 * 13441 * Adjust seg_len to the original value for tracing. 13442 */ 13443 seg_len -= gap; 13444 if (tcp->tcp_debug) { 13445 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13446 "tcp_rput: unacceptable, gap %d, rgap %d, " 13447 "flags 0x%x, seg_seq %u, seg_ack %u, " 13448 "seg_len %d, rnxt %u, snxt %u, %s", 13449 gap, rgap, flags, seg_seq, seg_ack, 13450 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13451 tcp_display(tcp, NULL, 13452 DISP_ADDR_AND_PORT)); 13453 } 13454 13455 /* 13456 * Arrange to send an ACK in response to the 13457 * unacceptable segment per RFC 793 page 69. There 13458 * is only one small difference between ours and the 13459 * acceptability test in the RFC - we accept ACK-only 13460 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13461 * will be generated. 13462 * 13463 * Note that we have to ACK an ACK-only packet at least 13464 * for stacks that send 0-length keep-alives with 13465 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13466 * section 4.2.3.6. As long as we don't ever generate 13467 * an unacceptable packet in response to an incoming 13468 * packet that is unacceptable, it should not cause 13469 * "ACK wars". 13470 */ 13471 flags |= TH_ACK_NEEDED; 13472 13473 /* 13474 * Continue processing this segment in order to use the 13475 * ACK information it contains, but skip all other 13476 * sequence-number processing. Processing the ACK 13477 * information is necessary in order to 13478 * re-synchronize connections that may have lost 13479 * synchronization. 13480 * 13481 * We clear seg_len and flag fields related to 13482 * sequence number processing as they are not 13483 * to be trusted for an unacceptable segment. 13484 */ 13485 seg_len = 0; 13486 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13487 goto process_ack; 13488 } 13489 13490 /* Fix seg_seq, and chew the gap off the front. */ 13491 seg_seq = tcp->tcp_rnxt; 13492 urp += gap; 13493 do { 13494 mblk_t *mp2; 13495 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13496 (uintptr_t)UINT_MAX); 13497 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13498 if (gap > 0) { 13499 mp->b_rptr = mp->b_wptr - gap; 13500 break; 13501 } 13502 mp2 = mp; 13503 mp = mp->b_cont; 13504 freeb(mp2); 13505 } while (gap < 0); 13506 /* 13507 * If the urgent data has already been acknowledged, we 13508 * should ignore TH_URG below 13509 */ 13510 if (urp < 0) 13511 flags &= ~TH_URG; 13512 } 13513 /* 13514 * rgap is the amount of stuff received out of window. A negative 13515 * value is the amount out of window. 13516 */ 13517 if (rgap < 0) { 13518 mblk_t *mp2; 13519 13520 if (tcp->tcp_rwnd == 0) { 13521 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13522 } else { 13523 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13524 UPDATE_MIB(&tcps->tcps_mib, 13525 tcpInDataPastWinBytes, -rgap); 13526 } 13527 13528 /* 13529 * seg_len does not include the FIN, so if more than 13530 * just the FIN is out of window, we act like we don't 13531 * see it. (If just the FIN is out of window, rgap 13532 * will be zero and we will go ahead and acknowledge 13533 * the FIN.) 13534 */ 13535 flags &= ~TH_FIN; 13536 13537 /* Fix seg_len and make sure there is something left. */ 13538 seg_len += rgap; 13539 if (seg_len <= 0) { 13540 /* 13541 * Resets are only valid if they lie within our offered 13542 * window. If the RST bit is set, we just ignore this 13543 * segment. 13544 */ 13545 if (flags & TH_RST) { 13546 freemsg(mp); 13547 return; 13548 } 13549 13550 /* Per RFC 793, we need to send back an ACK. */ 13551 flags |= TH_ACK_NEEDED; 13552 13553 /* 13554 * Send SIGURG as soon as possible i.e. even 13555 * if the TH_URG was delivered in a window probe 13556 * packet (which will be unacceptable). 13557 * 13558 * We generate a signal if none has been generated 13559 * for this connection or if this is a new urgent 13560 * byte. Also send a zero-length "unmarked" message 13561 * to inform SIOCATMARK that this is not the mark. 13562 * 13563 * tcp_urp_last_valid is cleared when the T_exdata_ind 13564 * is sent up. This plus the check for old data 13565 * (gap >= 0) handles the wraparound of the sequence 13566 * number space without having to always track the 13567 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13568 * this max in its rcv_up variable). 13569 * 13570 * This prevents duplicate SIGURGS due to a "late" 13571 * zero-window probe when the T_EXDATA_IND has already 13572 * been sent up. 13573 */ 13574 if ((flags & TH_URG) && 13575 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13576 tcp->tcp_urp_last))) { 13577 if (IPCL_IS_NONSTR(connp)) { 13578 if (!TCP_IS_DETACHED(tcp)) { 13579 (*connp->conn_upcalls-> 13580 su_signal_oob) 13581 (connp->conn_upper_handle, 13582 urp); 13583 } 13584 } else { 13585 mp1 = allocb(0, BPRI_MED); 13586 if (mp1 == NULL) { 13587 freemsg(mp); 13588 return; 13589 } 13590 if (!TCP_IS_DETACHED(tcp) && 13591 !putnextctl1(tcp->tcp_rq, 13592 M_PCSIG, SIGURG)) { 13593 /* Try again on the rexmit. */ 13594 freemsg(mp1); 13595 freemsg(mp); 13596 return; 13597 } 13598 /* 13599 * If the next byte would be the mark 13600 * then mark with MARKNEXT else mark 13601 * with NOTMARKNEXT. 13602 */ 13603 if (gap == 0 && urp == 0) 13604 mp1->b_flag |= MSGMARKNEXT; 13605 else 13606 mp1->b_flag |= MSGNOTMARKNEXT; 13607 freemsg(tcp->tcp_urp_mark_mp); 13608 tcp->tcp_urp_mark_mp = mp1; 13609 flags |= TH_SEND_URP_MARK; 13610 } 13611 tcp->tcp_urp_last_valid = B_TRUE; 13612 tcp->tcp_urp_last = urp + seg_seq; 13613 } 13614 /* 13615 * If this is a zero window probe, continue to 13616 * process the ACK part. But we need to set seg_len 13617 * to 0 to avoid data processing. Otherwise just 13618 * drop the segment and send back an ACK. 13619 */ 13620 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13621 flags &= ~(TH_SYN | TH_URG); 13622 seg_len = 0; 13623 goto process_ack; 13624 } else { 13625 freemsg(mp); 13626 goto ack_check; 13627 } 13628 } 13629 /* Pitch out of window stuff off the end. */ 13630 rgap = seg_len; 13631 mp2 = mp; 13632 do { 13633 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13634 (uintptr_t)INT_MAX); 13635 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13636 if (rgap < 0) { 13637 mp2->b_wptr += rgap; 13638 if ((mp1 = mp2->b_cont) != NULL) { 13639 mp2->b_cont = NULL; 13640 freemsg(mp1); 13641 } 13642 break; 13643 } 13644 } while ((mp2 = mp2->b_cont) != NULL); 13645 } 13646 ok:; 13647 /* 13648 * TCP should check ECN info for segments inside the window only. 13649 * Therefore the check should be done here. 13650 */ 13651 if (tcp->tcp_ecn_ok) { 13652 if (flags & TH_CWR) { 13653 tcp->tcp_ecn_echo_on = B_FALSE; 13654 } 13655 /* 13656 * Note that both ECN_CE and CWR can be set in the 13657 * same segment. In this case, we once again turn 13658 * on ECN_ECHO. 13659 */ 13660 if (tcp->tcp_ipversion == IPV4_VERSION) { 13661 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13662 13663 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13664 tcp->tcp_ecn_echo_on = B_TRUE; 13665 } 13666 } else { 13667 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13668 13669 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13670 htonl(IPH_ECN_CE << 20)) { 13671 tcp->tcp_ecn_echo_on = B_TRUE; 13672 } 13673 } 13674 } 13675 13676 /* 13677 * Check whether we can update tcp_ts_recent. This test is 13678 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13679 * Extensions for High Performance: An Update", Internet Draft. 13680 */ 13681 if (tcp->tcp_snd_ts_ok && 13682 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13683 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13684 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13685 tcp->tcp_last_rcv_lbolt = lbolt64; 13686 } 13687 13688 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13689 /* 13690 * FIN in an out of order segment. We record this in 13691 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13692 * Clear the FIN so that any check on FIN flag will fail. 13693 * Remember that FIN also counts in the sequence number 13694 * space. So we need to ack out of order FIN only segments. 13695 */ 13696 if (flags & TH_FIN) { 13697 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13698 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13699 flags &= ~TH_FIN; 13700 flags |= TH_ACK_NEEDED; 13701 } 13702 if (seg_len > 0) { 13703 /* Fill in the SACK blk list. */ 13704 if (tcp->tcp_snd_sack_ok) { 13705 ASSERT(tcp->tcp_sack_info != NULL); 13706 tcp_sack_insert(tcp->tcp_sack_list, 13707 seg_seq, seg_seq + seg_len, 13708 &(tcp->tcp_num_sack_blk)); 13709 } 13710 13711 /* 13712 * Attempt reassembly and see if we have something 13713 * ready to go. 13714 */ 13715 mp = tcp_reass(tcp, mp, seg_seq); 13716 /* Always ack out of order packets */ 13717 flags |= TH_ACK_NEEDED | TH_PUSH; 13718 if (mp) { 13719 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13720 (uintptr_t)INT_MAX); 13721 seg_len = mp->b_cont ? msgdsize(mp) : 13722 (int)(mp->b_wptr - mp->b_rptr); 13723 seg_seq = tcp->tcp_rnxt; 13724 /* 13725 * A gap is filled and the seq num and len 13726 * of the gap match that of a previously 13727 * received FIN, put the FIN flag back in. 13728 */ 13729 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13730 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13731 flags |= TH_FIN; 13732 tcp->tcp_valid_bits &= 13733 ~TCP_OFO_FIN_VALID; 13734 } 13735 } else { 13736 /* 13737 * Keep going even with NULL mp. 13738 * There may be a useful ACK or something else 13739 * we don't want to miss. 13740 * 13741 * But TCP should not perform fast retransmit 13742 * because of the ack number. TCP uses 13743 * seg_len == 0 to determine if it is a pure 13744 * ACK. And this is not a pure ACK. 13745 */ 13746 seg_len = 0; 13747 ofo_seg = B_TRUE; 13748 } 13749 } 13750 } else if (seg_len > 0) { 13751 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13752 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13753 /* 13754 * If an out of order FIN was received before, and the seq 13755 * num and len of the new segment match that of the FIN, 13756 * put the FIN flag back in. 13757 */ 13758 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13759 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13760 flags |= TH_FIN; 13761 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13762 } 13763 } 13764 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13765 if (flags & TH_RST) { 13766 freemsg(mp); 13767 switch (tcp->tcp_state) { 13768 case TCPS_SYN_RCVD: 13769 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13770 break; 13771 case TCPS_ESTABLISHED: 13772 case TCPS_FIN_WAIT_1: 13773 case TCPS_FIN_WAIT_2: 13774 case TCPS_CLOSE_WAIT: 13775 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13776 break; 13777 case TCPS_CLOSING: 13778 case TCPS_LAST_ACK: 13779 (void) tcp_clean_death(tcp, 0, 16); 13780 break; 13781 default: 13782 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13783 (void) tcp_clean_death(tcp, ENXIO, 17); 13784 break; 13785 } 13786 return; 13787 } 13788 if (flags & TH_SYN) { 13789 /* 13790 * See RFC 793, Page 71 13791 * 13792 * The seq number must be in the window as it should 13793 * be "fixed" above. If it is outside window, it should 13794 * be already rejected. Note that we allow seg_seq to be 13795 * rnxt + rwnd because we want to accept 0 window probe. 13796 */ 13797 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13798 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13799 freemsg(mp); 13800 /* 13801 * If the ACK flag is not set, just use our snxt as the 13802 * seq number of the RST segment. 13803 */ 13804 if (!(flags & TH_ACK)) { 13805 seg_ack = tcp->tcp_snxt; 13806 } 13807 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13808 TH_RST|TH_ACK); 13809 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13810 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13811 return; 13812 } 13813 /* 13814 * urp could be -1 when the urp field in the packet is 0 13815 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13816 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13817 */ 13818 if (flags & TH_URG && urp >= 0) { 13819 if (!tcp->tcp_urp_last_valid || 13820 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13821 if (IPCL_IS_NONSTR(connp)) { 13822 if (!TCP_IS_DETACHED(tcp)) { 13823 (*connp->conn_upcalls->su_signal_oob) 13824 (connp->conn_upper_handle, urp); 13825 } 13826 } else { 13827 /* 13828 * If we haven't generated the signal yet for 13829 * this urgent pointer value, do it now. Also, 13830 * send up a zero-length M_DATA indicating 13831 * whether or not this is the mark. The latter 13832 * is not needed when a T_EXDATA_IND is sent up. 13833 * However, if there are allocation failures 13834 * this code relies on the sender retransmitting 13835 * and the socket code for determining the mark 13836 * should not block waiting for the peer to 13837 * transmit. Thus, for simplicity we always 13838 * send up the mark indication. 13839 */ 13840 mp1 = allocb(0, BPRI_MED); 13841 if (mp1 == NULL) { 13842 freemsg(mp); 13843 return; 13844 } 13845 if (!TCP_IS_DETACHED(tcp) && 13846 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13847 SIGURG)) { 13848 /* Try again on the rexmit. */ 13849 freemsg(mp1); 13850 freemsg(mp); 13851 return; 13852 } 13853 /* 13854 * Mark with NOTMARKNEXT for now. 13855 * The code below will change this to MARKNEXT 13856 * if we are at the mark. 13857 * 13858 * If there are allocation failures (e.g. in 13859 * dupmsg below) the next time tcp_rput_data 13860 * sees the urgent segment it will send up the 13861 * MSGMARKNEXT message. 13862 */ 13863 mp1->b_flag |= MSGNOTMARKNEXT; 13864 freemsg(tcp->tcp_urp_mark_mp); 13865 tcp->tcp_urp_mark_mp = mp1; 13866 flags |= TH_SEND_URP_MARK; 13867 #ifdef DEBUG 13868 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13869 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13870 "last %x, %s", 13871 seg_seq, urp, tcp->tcp_urp_last, 13872 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13873 #endif /* DEBUG */ 13874 } 13875 tcp->tcp_urp_last_valid = B_TRUE; 13876 tcp->tcp_urp_last = urp + seg_seq; 13877 } else if (tcp->tcp_urp_mark_mp != NULL) { 13878 /* 13879 * An allocation failure prevented the previous 13880 * tcp_rput_data from sending up the allocated 13881 * MSG*MARKNEXT message - send it up this time 13882 * around. 13883 */ 13884 flags |= TH_SEND_URP_MARK; 13885 } 13886 13887 /* 13888 * If the urgent byte is in this segment, make sure that it is 13889 * all by itself. This makes it much easier to deal with the 13890 * possibility of an allocation failure on the T_exdata_ind. 13891 * Note that seg_len is the number of bytes in the segment, and 13892 * urp is the offset into the segment of the urgent byte. 13893 * urp < seg_len means that the urgent byte is in this segment. 13894 */ 13895 if (urp < seg_len) { 13896 if (seg_len != 1) { 13897 uint32_t tmp_rnxt; 13898 /* 13899 * Break it up and feed it back in. 13900 * Re-attach the IP header. 13901 */ 13902 mp->b_rptr = iphdr; 13903 if (urp > 0) { 13904 /* 13905 * There is stuff before the urgent 13906 * byte. 13907 */ 13908 mp1 = dupmsg(mp); 13909 if (!mp1) { 13910 /* 13911 * Trim from urgent byte on. 13912 * The rest will come back. 13913 */ 13914 (void) adjmsg(mp, 13915 urp - seg_len); 13916 tcp_rput_data(connp, 13917 mp, NULL); 13918 return; 13919 } 13920 (void) adjmsg(mp1, urp - seg_len); 13921 /* Feed this piece back in. */ 13922 tmp_rnxt = tcp->tcp_rnxt; 13923 tcp_rput_data(connp, mp1, NULL); 13924 /* 13925 * If the data passed back in was not 13926 * processed (ie: bad ACK) sending 13927 * the remainder back in will cause a 13928 * loop. In this case, drop the 13929 * packet and let the sender try 13930 * sending a good packet. 13931 */ 13932 if (tmp_rnxt == tcp->tcp_rnxt) { 13933 freemsg(mp); 13934 return; 13935 } 13936 } 13937 if (urp != seg_len - 1) { 13938 uint32_t tmp_rnxt; 13939 /* 13940 * There is stuff after the urgent 13941 * byte. 13942 */ 13943 mp1 = dupmsg(mp); 13944 if (!mp1) { 13945 /* 13946 * Trim everything beyond the 13947 * urgent byte. The rest will 13948 * come back. 13949 */ 13950 (void) adjmsg(mp, 13951 urp + 1 - seg_len); 13952 tcp_rput_data(connp, 13953 mp, NULL); 13954 return; 13955 } 13956 (void) adjmsg(mp1, urp + 1 - seg_len); 13957 tmp_rnxt = tcp->tcp_rnxt; 13958 tcp_rput_data(connp, mp1, NULL); 13959 /* 13960 * If the data passed back in was not 13961 * processed (ie: bad ACK) sending 13962 * the remainder back in will cause a 13963 * loop. In this case, drop the 13964 * packet and let the sender try 13965 * sending a good packet. 13966 */ 13967 if (tmp_rnxt == tcp->tcp_rnxt) { 13968 freemsg(mp); 13969 return; 13970 } 13971 } 13972 tcp_rput_data(connp, mp, NULL); 13973 return; 13974 } 13975 /* 13976 * This segment contains only the urgent byte. We 13977 * have to allocate the T_exdata_ind, if we can. 13978 */ 13979 if (IPCL_IS_NONSTR(connp)) { 13980 int error; 13981 13982 (*connp->conn_upcalls->su_recv) 13983 (connp->conn_upper_handle, mp, seg_len, 13984 MSG_OOB, &error, NULL); 13985 mp = NULL; 13986 goto update_ack; 13987 } else if (!tcp->tcp_urp_mp) { 13988 struct T_exdata_ind *tei; 13989 mp1 = allocb(sizeof (struct T_exdata_ind), 13990 BPRI_MED); 13991 if (!mp1) { 13992 /* 13993 * Sigh... It'll be back. 13994 * Generate any MSG*MARK message now. 13995 */ 13996 freemsg(mp); 13997 seg_len = 0; 13998 if (flags & TH_SEND_URP_MARK) { 13999 14000 14001 ASSERT(tcp->tcp_urp_mark_mp); 14002 tcp->tcp_urp_mark_mp->b_flag &= 14003 ~MSGNOTMARKNEXT; 14004 tcp->tcp_urp_mark_mp->b_flag |= 14005 MSGMARKNEXT; 14006 } 14007 goto ack_check; 14008 } 14009 mp1->b_datap->db_type = M_PROTO; 14010 tei = (struct T_exdata_ind *)mp1->b_rptr; 14011 tei->PRIM_type = T_EXDATA_IND; 14012 tei->MORE_flag = 0; 14013 mp1->b_wptr = (uchar_t *)&tei[1]; 14014 tcp->tcp_urp_mp = mp1; 14015 #ifdef DEBUG 14016 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14017 "tcp_rput: allocated exdata_ind %s", 14018 tcp_display(tcp, NULL, 14019 DISP_PORT_ONLY)); 14020 #endif /* DEBUG */ 14021 /* 14022 * There is no need to send a separate MSG*MARK 14023 * message since the T_EXDATA_IND will be sent 14024 * now. 14025 */ 14026 flags &= ~TH_SEND_URP_MARK; 14027 freemsg(tcp->tcp_urp_mark_mp); 14028 tcp->tcp_urp_mark_mp = NULL; 14029 } 14030 /* 14031 * Now we are all set. On the next putnext upstream, 14032 * tcp_urp_mp will be non-NULL and will get prepended 14033 * to what has to be this piece containing the urgent 14034 * byte. If for any reason we abort this segment below, 14035 * if it comes back, we will have this ready, or it 14036 * will get blown off in close. 14037 */ 14038 } else if (urp == seg_len) { 14039 /* 14040 * The urgent byte is the next byte after this sequence 14041 * number. If there is data it is marked with 14042 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14043 * since it is not needed. Otherwise, if the code 14044 * above just allocated a zero-length tcp_urp_mark_mp 14045 * message, that message is tagged with MSGMARKNEXT. 14046 * Sending up these MSGMARKNEXT messages makes 14047 * SIOCATMARK work correctly even though 14048 * the T_EXDATA_IND will not be sent up until the 14049 * urgent byte arrives. 14050 */ 14051 if (seg_len != 0) { 14052 flags |= TH_MARKNEXT_NEEDED; 14053 freemsg(tcp->tcp_urp_mark_mp); 14054 tcp->tcp_urp_mark_mp = NULL; 14055 flags &= ~TH_SEND_URP_MARK; 14056 } else if (tcp->tcp_urp_mark_mp != NULL) { 14057 flags |= TH_SEND_URP_MARK; 14058 tcp->tcp_urp_mark_mp->b_flag &= 14059 ~MSGNOTMARKNEXT; 14060 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14061 } 14062 #ifdef DEBUG 14063 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14064 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14065 seg_len, flags, 14066 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14067 #endif /* DEBUG */ 14068 } 14069 #ifdef DEBUG 14070 else { 14071 /* Data left until we hit mark */ 14072 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14073 "tcp_rput: URP %d bytes left, %s", 14074 urp - seg_len, tcp_display(tcp, NULL, 14075 DISP_PORT_ONLY)); 14076 } 14077 #endif /* DEBUG */ 14078 } 14079 14080 process_ack: 14081 if (!(flags & TH_ACK)) { 14082 freemsg(mp); 14083 goto xmit_check; 14084 } 14085 } 14086 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14087 14088 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14089 tcp->tcp_ip_forward_progress = B_TRUE; 14090 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14091 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14092 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14093 /* 3-way handshake complete - pass up the T_CONN_IND */ 14094 tcp_t *listener = tcp->tcp_listener; 14095 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14096 14097 tcp->tcp_tconnind_started = B_TRUE; 14098 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14099 /* 14100 * We are here means eager is fine but it can 14101 * get a TH_RST at any point between now and till 14102 * accept completes and disappear. We need to 14103 * ensure that reference to eager is valid after 14104 * we get out of eager's perimeter. So we do 14105 * an extra refhold. 14106 */ 14107 CONN_INC_REF(connp); 14108 14109 /* 14110 * The listener also exists because of the refhold 14111 * done in tcp_conn_request. Its possible that it 14112 * might have closed. We will check that once we 14113 * get inside listeners context. 14114 */ 14115 CONN_INC_REF(listener->tcp_connp); 14116 if (listener->tcp_connp->conn_sqp == 14117 connp->conn_sqp) { 14118 /* 14119 * We optimize by not calling an SQUEUE_ENTER 14120 * on the listener since we know that the 14121 * listener and eager squeues are the same. 14122 * We are able to make this check safely only 14123 * because neither the eager nor the listener 14124 * can change its squeue. Only an active connect 14125 * can change its squeue 14126 */ 14127 tcp_send_conn_ind(listener->tcp_connp, mp, 14128 listener->tcp_connp->conn_sqp); 14129 CONN_DEC_REF(listener->tcp_connp); 14130 } else if (!tcp->tcp_loopback) { 14131 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14132 mp, tcp_send_conn_ind, 14133 listener->tcp_connp, SQ_FILL, 14134 SQTAG_TCP_CONN_IND); 14135 } else { 14136 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14137 mp, tcp_send_conn_ind, 14138 listener->tcp_connp, SQ_PROCESS, 14139 SQTAG_TCP_CONN_IND); 14140 } 14141 } 14142 14143 if (tcp->tcp_active_open) { 14144 /* 14145 * We are seeing the final ack in the three way 14146 * hand shake of a active open'ed connection 14147 * so we must send up a T_CONN_CON 14148 */ 14149 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14150 freemsg(mp); 14151 return; 14152 } 14153 /* 14154 * Don't fuse the loopback endpoints for 14155 * simultaneous active opens. 14156 */ 14157 if (tcp->tcp_loopback) { 14158 TCP_STAT(tcps, tcp_fusion_unfusable); 14159 tcp->tcp_unfusable = B_TRUE; 14160 } 14161 } 14162 14163 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14164 bytes_acked--; 14165 /* SYN was acked - making progress */ 14166 if (tcp->tcp_ipversion == IPV6_VERSION) 14167 tcp->tcp_ip_forward_progress = B_TRUE; 14168 14169 /* 14170 * If SYN was retransmitted, need to reset all 14171 * retransmission info as this segment will be 14172 * treated as a dup ACK. 14173 */ 14174 if (tcp->tcp_rexmit) { 14175 tcp->tcp_rexmit = B_FALSE; 14176 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14177 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14178 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14179 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14180 tcp->tcp_ms_we_have_waited = 0; 14181 tcp->tcp_cwnd = mss; 14182 } 14183 14184 /* 14185 * We set the send window to zero here. 14186 * This is needed if there is data to be 14187 * processed already on the queue. 14188 * Later (at swnd_update label), the 14189 * "new_swnd > tcp_swnd" condition is satisfied 14190 * the XMIT_NEEDED flag is set in the current 14191 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14192 * called if there is already data on queue in 14193 * this state. 14194 */ 14195 tcp->tcp_swnd = 0; 14196 14197 if (new_swnd > tcp->tcp_max_swnd) 14198 tcp->tcp_max_swnd = new_swnd; 14199 tcp->tcp_swl1 = seg_seq; 14200 tcp->tcp_swl2 = seg_ack; 14201 tcp->tcp_state = TCPS_ESTABLISHED; 14202 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14203 14204 /* Fuse when both sides are in ESTABLISHED state */ 14205 if (tcp->tcp_loopback && do_tcp_fusion) 14206 tcp_fuse(tcp, iphdr, tcph); 14207 14208 } 14209 /* This code follows 4.4BSD-Lite2 mostly. */ 14210 if (bytes_acked < 0) 14211 goto est; 14212 14213 /* 14214 * If TCP is ECN capable and the congestion experience bit is 14215 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14216 * done once per window (or more loosely, per RTT). 14217 */ 14218 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14219 tcp->tcp_cwr = B_FALSE; 14220 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14221 if (!tcp->tcp_cwr) { 14222 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14223 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14224 tcp->tcp_cwnd = npkt * mss; 14225 /* 14226 * If the cwnd is 0, use the timer to clock out 14227 * new segments. This is required by the ECN spec. 14228 */ 14229 if (npkt == 0) { 14230 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14231 /* 14232 * This makes sure that when the ACK comes 14233 * back, we will increase tcp_cwnd by 1 MSS. 14234 */ 14235 tcp->tcp_cwnd_cnt = 0; 14236 } 14237 tcp->tcp_cwr = B_TRUE; 14238 /* 14239 * This marks the end of the current window of in 14240 * flight data. That is why we don't use 14241 * tcp_suna + tcp_swnd. Only data in flight can 14242 * provide ECN info. 14243 */ 14244 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14245 tcp->tcp_ecn_cwr_sent = B_FALSE; 14246 } 14247 } 14248 14249 mp1 = tcp->tcp_xmit_head; 14250 if (bytes_acked == 0) { 14251 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14252 int dupack_cnt; 14253 14254 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14255 /* 14256 * Fast retransmit. When we have seen exactly three 14257 * identical ACKs while we have unacked data 14258 * outstanding we take it as a hint that our peer 14259 * dropped something. 14260 * 14261 * If TCP is retransmitting, don't do fast retransmit. 14262 */ 14263 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14264 ! tcp->tcp_rexmit) { 14265 /* Do Limited Transmit */ 14266 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14267 tcps->tcps_dupack_fast_retransmit) { 14268 /* 14269 * RFC 3042 14270 * 14271 * What we need to do is temporarily 14272 * increase tcp_cwnd so that new 14273 * data can be sent if it is allowed 14274 * by the receive window (tcp_rwnd). 14275 * tcp_wput_data() will take care of 14276 * the rest. 14277 * 14278 * If the connection is SACK capable, 14279 * only do limited xmit when there 14280 * is SACK info. 14281 * 14282 * Note how tcp_cwnd is incremented. 14283 * The first dup ACK will increase 14284 * it by 1 MSS. The second dup ACK 14285 * will increase it by 2 MSS. This 14286 * means that only 1 new segment will 14287 * be sent for each dup ACK. 14288 */ 14289 if (tcp->tcp_unsent > 0 && 14290 (!tcp->tcp_snd_sack_ok || 14291 (tcp->tcp_snd_sack_ok && 14292 tcp->tcp_notsack_list != NULL))) { 14293 tcp->tcp_cwnd += mss << 14294 (tcp->tcp_dupack_cnt - 1); 14295 flags |= TH_LIMIT_XMIT; 14296 } 14297 } else if (dupack_cnt == 14298 tcps->tcps_dupack_fast_retransmit) { 14299 14300 /* 14301 * If we have reduced tcp_ssthresh 14302 * because of ECN, do not reduce it again 14303 * unless it is already one window of data 14304 * away. After one window of data, tcp_cwr 14305 * should then be cleared. Note that 14306 * for non ECN capable connection, tcp_cwr 14307 * should always be false. 14308 * 14309 * Adjust cwnd since the duplicate 14310 * ack indicates that a packet was 14311 * dropped (due to congestion.) 14312 */ 14313 if (!tcp->tcp_cwr) { 14314 npkt = ((tcp->tcp_snxt - 14315 tcp->tcp_suna) >> 1) / mss; 14316 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14317 mss; 14318 tcp->tcp_cwnd = (npkt + 14319 tcp->tcp_dupack_cnt) * mss; 14320 } 14321 if (tcp->tcp_ecn_ok) { 14322 tcp->tcp_cwr = B_TRUE; 14323 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14324 tcp->tcp_ecn_cwr_sent = B_FALSE; 14325 } 14326 14327 /* 14328 * We do Hoe's algorithm. Refer to her 14329 * paper "Improving the Start-up Behavior 14330 * of a Congestion Control Scheme for TCP," 14331 * appeared in SIGCOMM'96. 14332 * 14333 * Save highest seq no we have sent so far. 14334 * Be careful about the invisible FIN byte. 14335 */ 14336 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14337 (tcp->tcp_unsent == 0)) { 14338 tcp->tcp_rexmit_max = tcp->tcp_fss; 14339 } else { 14340 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14341 } 14342 14343 /* 14344 * Do not allow bursty traffic during. 14345 * fast recovery. Refer to Fall and Floyd's 14346 * paper "Simulation-based Comparisons of 14347 * Tahoe, Reno and SACK TCP" (in CCR?) 14348 * This is a best current practise. 14349 */ 14350 tcp->tcp_snd_burst = TCP_CWND_SS; 14351 14352 /* 14353 * For SACK: 14354 * Calculate tcp_pipe, which is the 14355 * estimated number of bytes in 14356 * network. 14357 * 14358 * tcp_fack is the highest sack'ed seq num 14359 * TCP has received. 14360 * 14361 * tcp_pipe is explained in the above quoted 14362 * Fall and Floyd's paper. tcp_fack is 14363 * explained in Mathis and Mahdavi's 14364 * "Forward Acknowledgment: Refining TCP 14365 * Congestion Control" in SIGCOMM '96. 14366 */ 14367 if (tcp->tcp_snd_sack_ok) { 14368 ASSERT(tcp->tcp_sack_info != NULL); 14369 if (tcp->tcp_notsack_list != NULL) { 14370 tcp->tcp_pipe = tcp->tcp_snxt - 14371 tcp->tcp_fack; 14372 tcp->tcp_sack_snxt = seg_ack; 14373 flags |= TH_NEED_SACK_REXMIT; 14374 } else { 14375 /* 14376 * Always initialize tcp_pipe 14377 * even though we don't have 14378 * any SACK info. If later 14379 * we get SACK info and 14380 * tcp_pipe is not initialized, 14381 * funny things will happen. 14382 */ 14383 tcp->tcp_pipe = 14384 tcp->tcp_cwnd_ssthresh; 14385 } 14386 } else { 14387 flags |= TH_REXMIT_NEEDED; 14388 } /* tcp_snd_sack_ok */ 14389 14390 } else { 14391 /* 14392 * Here we perform congestion 14393 * avoidance, but NOT slow start. 14394 * This is known as the Fast 14395 * Recovery Algorithm. 14396 */ 14397 if (tcp->tcp_snd_sack_ok && 14398 tcp->tcp_notsack_list != NULL) { 14399 flags |= TH_NEED_SACK_REXMIT; 14400 tcp->tcp_pipe -= mss; 14401 if (tcp->tcp_pipe < 0) 14402 tcp->tcp_pipe = 0; 14403 } else { 14404 /* 14405 * We know that one more packet has 14406 * left the pipe thus we can update 14407 * cwnd. 14408 */ 14409 cwnd = tcp->tcp_cwnd + mss; 14410 if (cwnd > tcp->tcp_cwnd_max) 14411 cwnd = tcp->tcp_cwnd_max; 14412 tcp->tcp_cwnd = cwnd; 14413 if (tcp->tcp_unsent > 0) 14414 flags |= TH_XMIT_NEEDED; 14415 } 14416 } 14417 } 14418 } else if (tcp->tcp_zero_win_probe) { 14419 /* 14420 * If the window has opened, need to arrange 14421 * to send additional data. 14422 */ 14423 if (new_swnd != 0) { 14424 /* tcp_suna != tcp_snxt */ 14425 /* Packet contains a window update */ 14426 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14427 tcp->tcp_zero_win_probe = 0; 14428 tcp->tcp_timer_backoff = 0; 14429 tcp->tcp_ms_we_have_waited = 0; 14430 14431 /* 14432 * Transmit starting with tcp_suna since 14433 * the one byte probe is not ack'ed. 14434 * If TCP has sent more than one identical 14435 * probe, tcp_rexmit will be set. That means 14436 * tcp_ss_rexmit() will send out the one 14437 * byte along with new data. Otherwise, 14438 * fake the retransmission. 14439 */ 14440 flags |= TH_XMIT_NEEDED; 14441 if (!tcp->tcp_rexmit) { 14442 tcp->tcp_rexmit = B_TRUE; 14443 tcp->tcp_dupack_cnt = 0; 14444 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14445 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14446 } 14447 } 14448 } 14449 goto swnd_update; 14450 } 14451 14452 /* 14453 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14454 * If the ACK value acks something that we have not yet sent, it might 14455 * be an old duplicate segment. Send an ACK to re-synchronize the 14456 * other side. 14457 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14458 * state is handled above, so we can always just drop the segment and 14459 * send an ACK here. 14460 * 14461 * Should we send ACKs in response to ACK only segments? 14462 */ 14463 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14464 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14465 /* drop the received segment */ 14466 freemsg(mp); 14467 14468 /* 14469 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14470 * greater than 0, check if the number of such 14471 * bogus ACks is greater than that count. If yes, 14472 * don't send back any ACK. This prevents TCP from 14473 * getting into an ACK storm if somehow an attacker 14474 * successfully spoofs an acceptable segment to our 14475 * peer. 14476 */ 14477 if (tcp_drop_ack_unsent_cnt > 0 && 14478 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14479 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14480 return; 14481 } 14482 mp = tcp_ack_mp(tcp); 14483 if (mp != NULL) { 14484 BUMP_LOCAL(tcp->tcp_obsegs); 14485 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14486 tcp_send_data(tcp, tcp->tcp_wq, mp); 14487 } 14488 return; 14489 } 14490 14491 /* 14492 * TCP gets a new ACK, update the notsack'ed list to delete those 14493 * blocks that are covered by this ACK. 14494 */ 14495 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14496 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14497 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14498 } 14499 14500 /* 14501 * If we got an ACK after fast retransmit, check to see 14502 * if it is a partial ACK. If it is not and the congestion 14503 * window was inflated to account for the other side's 14504 * cached packets, retract it. If it is, do Hoe's algorithm. 14505 */ 14506 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14507 ASSERT(tcp->tcp_rexmit == B_FALSE); 14508 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14509 tcp->tcp_dupack_cnt = 0; 14510 /* 14511 * Restore the orig tcp_cwnd_ssthresh after 14512 * fast retransmit phase. 14513 */ 14514 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14515 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14516 } 14517 tcp->tcp_rexmit_max = seg_ack; 14518 tcp->tcp_cwnd_cnt = 0; 14519 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14520 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14521 14522 /* 14523 * Remove all notsack info to avoid confusion with 14524 * the next fast retrasnmit/recovery phase. 14525 */ 14526 if (tcp->tcp_snd_sack_ok && 14527 tcp->tcp_notsack_list != NULL) { 14528 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14529 } 14530 } else { 14531 if (tcp->tcp_snd_sack_ok && 14532 tcp->tcp_notsack_list != NULL) { 14533 flags |= TH_NEED_SACK_REXMIT; 14534 tcp->tcp_pipe -= mss; 14535 if (tcp->tcp_pipe < 0) 14536 tcp->tcp_pipe = 0; 14537 } else { 14538 /* 14539 * Hoe's algorithm: 14540 * 14541 * Retransmit the unack'ed segment and 14542 * restart fast recovery. Note that we 14543 * need to scale back tcp_cwnd to the 14544 * original value when we started fast 14545 * recovery. This is to prevent overly 14546 * aggressive behaviour in sending new 14547 * segments. 14548 */ 14549 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14550 tcps->tcps_dupack_fast_retransmit * mss; 14551 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14552 flags |= TH_REXMIT_NEEDED; 14553 } 14554 } 14555 } else { 14556 tcp->tcp_dupack_cnt = 0; 14557 if (tcp->tcp_rexmit) { 14558 /* 14559 * TCP is retranmitting. If the ACK ack's all 14560 * outstanding data, update tcp_rexmit_max and 14561 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14562 * to the correct value. 14563 * 14564 * Note that SEQ_LEQ() is used. This is to avoid 14565 * unnecessary fast retransmit caused by dup ACKs 14566 * received when TCP does slow start retransmission 14567 * after a time out. During this phase, TCP may 14568 * send out segments which are already received. 14569 * This causes dup ACKs to be sent back. 14570 */ 14571 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14572 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14573 tcp->tcp_rexmit_nxt = seg_ack; 14574 } 14575 if (seg_ack != tcp->tcp_rexmit_max) { 14576 flags |= TH_XMIT_NEEDED; 14577 } 14578 } else { 14579 tcp->tcp_rexmit = B_FALSE; 14580 tcp->tcp_xmit_zc_clean = B_FALSE; 14581 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14582 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14583 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14584 } 14585 tcp->tcp_ms_we_have_waited = 0; 14586 } 14587 } 14588 14589 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14590 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14591 tcp->tcp_suna = seg_ack; 14592 if (tcp->tcp_zero_win_probe != 0) { 14593 tcp->tcp_zero_win_probe = 0; 14594 tcp->tcp_timer_backoff = 0; 14595 } 14596 14597 /* 14598 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14599 * Note that it cannot be the SYN being ack'ed. The code flow 14600 * will not reach here. 14601 */ 14602 if (mp1 == NULL) { 14603 goto fin_acked; 14604 } 14605 14606 /* 14607 * Update the congestion window. 14608 * 14609 * If TCP is not ECN capable or TCP is ECN capable but the 14610 * congestion experience bit is not set, increase the tcp_cwnd as 14611 * usual. 14612 */ 14613 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14614 cwnd = tcp->tcp_cwnd; 14615 add = mss; 14616 14617 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14618 /* 14619 * This is to prevent an increase of less than 1 MSS of 14620 * tcp_cwnd. With partial increase, tcp_wput_data() 14621 * may send out tinygrams in order to preserve mblk 14622 * boundaries. 14623 * 14624 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14625 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14626 * increased by 1 MSS for every RTTs. 14627 */ 14628 if (tcp->tcp_cwnd_cnt <= 0) { 14629 tcp->tcp_cwnd_cnt = cwnd + add; 14630 } else { 14631 tcp->tcp_cwnd_cnt -= add; 14632 add = 0; 14633 } 14634 } 14635 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14636 } 14637 14638 /* See if the latest urgent data has been acknowledged */ 14639 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14640 SEQ_GT(seg_ack, tcp->tcp_urg)) 14641 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14642 14643 /* Can we update the RTT estimates? */ 14644 if (tcp->tcp_snd_ts_ok) { 14645 /* Ignore zero timestamp echo-reply. */ 14646 if (tcpopt.tcp_opt_ts_ecr != 0) { 14647 tcp_set_rto(tcp, (int32_t)lbolt - 14648 (int32_t)tcpopt.tcp_opt_ts_ecr); 14649 } 14650 14651 /* If needed, restart the timer. */ 14652 if (tcp->tcp_set_timer == 1) { 14653 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14654 tcp->tcp_set_timer = 0; 14655 } 14656 /* 14657 * Update tcp_csuna in case the other side stops sending 14658 * us timestamps. 14659 */ 14660 tcp->tcp_csuna = tcp->tcp_snxt; 14661 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14662 /* 14663 * An ACK sequence we haven't seen before, so get the RTT 14664 * and update the RTO. But first check if the timestamp is 14665 * valid to use. 14666 */ 14667 if ((mp1->b_next != NULL) && 14668 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14669 tcp_set_rto(tcp, (int32_t)lbolt - 14670 (int32_t)(intptr_t)mp1->b_prev); 14671 else 14672 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14673 14674 /* Remeber the last sequence to be ACKed */ 14675 tcp->tcp_csuna = seg_ack; 14676 if (tcp->tcp_set_timer == 1) { 14677 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14678 tcp->tcp_set_timer = 0; 14679 } 14680 } else { 14681 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14682 } 14683 14684 /* Eat acknowledged bytes off the xmit queue. */ 14685 for (;;) { 14686 mblk_t *mp2; 14687 uchar_t *wptr; 14688 14689 wptr = mp1->b_wptr; 14690 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14691 bytes_acked -= (int)(wptr - mp1->b_rptr); 14692 if (bytes_acked < 0) { 14693 mp1->b_rptr = wptr + bytes_acked; 14694 /* 14695 * Set a new timestamp if all the bytes timed by the 14696 * old timestamp have been ack'ed. 14697 */ 14698 if (SEQ_GT(seg_ack, 14699 (uint32_t)(uintptr_t)(mp1->b_next))) { 14700 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14701 mp1->b_next = NULL; 14702 } 14703 break; 14704 } 14705 mp1->b_next = NULL; 14706 mp1->b_prev = NULL; 14707 mp2 = mp1; 14708 mp1 = mp1->b_cont; 14709 14710 /* 14711 * This notification is required for some zero-copy 14712 * clients to maintain a copy semantic. After the data 14713 * is ack'ed, client is safe to modify or reuse the buffer. 14714 */ 14715 if (tcp->tcp_snd_zcopy_aware && 14716 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14717 tcp_zcopy_notify(tcp); 14718 freeb(mp2); 14719 if (bytes_acked == 0) { 14720 if (mp1 == NULL) { 14721 /* Everything is ack'ed, clear the tail. */ 14722 tcp->tcp_xmit_tail = NULL; 14723 /* 14724 * Cancel the timer unless we are still 14725 * waiting for an ACK for the FIN packet. 14726 */ 14727 if (tcp->tcp_timer_tid != 0 && 14728 tcp->tcp_snxt == tcp->tcp_suna) { 14729 (void) TCP_TIMER_CANCEL(tcp, 14730 tcp->tcp_timer_tid); 14731 tcp->tcp_timer_tid = 0; 14732 } 14733 goto pre_swnd_update; 14734 } 14735 if (mp2 != tcp->tcp_xmit_tail) 14736 break; 14737 tcp->tcp_xmit_tail = mp1; 14738 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14739 (uintptr_t)INT_MAX); 14740 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14741 mp1->b_rptr); 14742 break; 14743 } 14744 if (mp1 == NULL) { 14745 /* 14746 * More was acked but there is nothing more 14747 * outstanding. This means that the FIN was 14748 * just acked or that we're talking to a clown. 14749 */ 14750 fin_acked: 14751 ASSERT(tcp->tcp_fin_sent); 14752 tcp->tcp_xmit_tail = NULL; 14753 if (tcp->tcp_fin_sent) { 14754 /* FIN was acked - making progress */ 14755 if (tcp->tcp_ipversion == IPV6_VERSION && 14756 !tcp->tcp_fin_acked) 14757 tcp->tcp_ip_forward_progress = B_TRUE; 14758 tcp->tcp_fin_acked = B_TRUE; 14759 if (tcp->tcp_linger_tid != 0 && 14760 TCP_TIMER_CANCEL(tcp, 14761 tcp->tcp_linger_tid) >= 0) { 14762 tcp_stop_lingering(tcp); 14763 freemsg(mp); 14764 mp = NULL; 14765 } 14766 } else { 14767 /* 14768 * We should never get here because 14769 * we have already checked that the 14770 * number of bytes ack'ed should be 14771 * smaller than or equal to what we 14772 * have sent so far (it is the 14773 * acceptability check of the ACK). 14774 * We can only get here if the send 14775 * queue is corrupted. 14776 * 14777 * Terminate the connection and 14778 * panic the system. It is better 14779 * for us to panic instead of 14780 * continuing to avoid other disaster. 14781 */ 14782 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14783 tcp->tcp_rnxt, TH_RST|TH_ACK); 14784 panic("Memory corruption " 14785 "detected for connection %s.", 14786 tcp_display(tcp, NULL, 14787 DISP_ADDR_AND_PORT)); 14788 /*NOTREACHED*/ 14789 } 14790 goto pre_swnd_update; 14791 } 14792 ASSERT(mp2 != tcp->tcp_xmit_tail); 14793 } 14794 if (tcp->tcp_unsent) { 14795 flags |= TH_XMIT_NEEDED; 14796 } 14797 pre_swnd_update: 14798 tcp->tcp_xmit_head = mp1; 14799 swnd_update: 14800 /* 14801 * The following check is different from most other implementations. 14802 * For bi-directional transfer, when segments are dropped, the 14803 * "normal" check will not accept a window update in those 14804 * retransmitted segemnts. Failing to do that, TCP may send out 14805 * segments which are outside receiver's window. As TCP accepts 14806 * the ack in those retransmitted segments, if the window update in 14807 * the same segment is not accepted, TCP will incorrectly calculates 14808 * that it can send more segments. This can create a deadlock 14809 * with the receiver if its window becomes zero. 14810 */ 14811 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14812 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14813 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14814 /* 14815 * The criteria for update is: 14816 * 14817 * 1. the segment acknowledges some data. Or 14818 * 2. the segment is new, i.e. it has a higher seq num. Or 14819 * 3. the segment is not old and the advertised window is 14820 * larger than the previous advertised window. 14821 */ 14822 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14823 flags |= TH_XMIT_NEEDED; 14824 tcp->tcp_swnd = new_swnd; 14825 if (new_swnd > tcp->tcp_max_swnd) 14826 tcp->tcp_max_swnd = new_swnd; 14827 tcp->tcp_swl1 = seg_seq; 14828 tcp->tcp_swl2 = seg_ack; 14829 } 14830 est: 14831 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14832 14833 switch (tcp->tcp_state) { 14834 case TCPS_FIN_WAIT_1: 14835 if (tcp->tcp_fin_acked) { 14836 tcp->tcp_state = TCPS_FIN_WAIT_2; 14837 /* 14838 * We implement the non-standard BSD/SunOS 14839 * FIN_WAIT_2 flushing algorithm. 14840 * If there is no user attached to this 14841 * TCP endpoint, then this TCP struct 14842 * could hang around forever in FIN_WAIT_2 14843 * state if the peer forgets to send us 14844 * a FIN. To prevent this, we wait only 14845 * 2*MSL (a convenient time value) for 14846 * the FIN to arrive. If it doesn't show up, 14847 * we flush the TCP endpoint. This algorithm, 14848 * though a violation of RFC-793, has worked 14849 * for over 10 years in BSD systems. 14850 * Note: SunOS 4.x waits 675 seconds before 14851 * flushing the FIN_WAIT_2 connection. 14852 */ 14853 TCP_TIMER_RESTART(tcp, 14854 tcps->tcps_fin_wait_2_flush_interval); 14855 } 14856 break; 14857 case TCPS_FIN_WAIT_2: 14858 break; /* Shutdown hook? */ 14859 case TCPS_LAST_ACK: 14860 freemsg(mp); 14861 if (tcp->tcp_fin_acked) { 14862 (void) tcp_clean_death(tcp, 0, 19); 14863 return; 14864 } 14865 goto xmit_check; 14866 case TCPS_CLOSING: 14867 if (tcp->tcp_fin_acked) { 14868 tcp->tcp_state = TCPS_TIME_WAIT; 14869 /* 14870 * Unconditionally clear the exclusive binding 14871 * bit so this TIME-WAIT connection won't 14872 * interfere with new ones. 14873 */ 14874 tcp->tcp_exclbind = 0; 14875 if (!TCP_IS_DETACHED(tcp)) { 14876 TCP_TIMER_RESTART(tcp, 14877 tcps->tcps_time_wait_interval); 14878 } else { 14879 tcp_time_wait_append(tcp); 14880 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14881 } 14882 } 14883 /*FALLTHRU*/ 14884 case TCPS_CLOSE_WAIT: 14885 freemsg(mp); 14886 goto xmit_check; 14887 default: 14888 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14889 break; 14890 } 14891 } 14892 if (flags & TH_FIN) { 14893 /* Make sure we ack the fin */ 14894 flags |= TH_ACK_NEEDED; 14895 if (!tcp->tcp_fin_rcvd) { 14896 tcp->tcp_fin_rcvd = B_TRUE; 14897 tcp->tcp_rnxt++; 14898 tcph = tcp->tcp_tcph; 14899 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14900 14901 /* 14902 * Generate the ordrel_ind at the end unless we 14903 * are an eager guy. 14904 * In the eager case tcp_rsrv will do this when run 14905 * after tcp_accept is done. 14906 */ 14907 if (tcp->tcp_listener == NULL && 14908 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14909 flags |= TH_ORDREL_NEEDED; 14910 switch (tcp->tcp_state) { 14911 case TCPS_SYN_RCVD: 14912 case TCPS_ESTABLISHED: 14913 tcp->tcp_state = TCPS_CLOSE_WAIT; 14914 /* Keepalive? */ 14915 break; 14916 case TCPS_FIN_WAIT_1: 14917 if (!tcp->tcp_fin_acked) { 14918 tcp->tcp_state = TCPS_CLOSING; 14919 break; 14920 } 14921 /* FALLTHRU */ 14922 case TCPS_FIN_WAIT_2: 14923 tcp->tcp_state = TCPS_TIME_WAIT; 14924 /* 14925 * Unconditionally clear the exclusive binding 14926 * bit so this TIME-WAIT connection won't 14927 * interfere with new ones. 14928 */ 14929 tcp->tcp_exclbind = 0; 14930 if (!TCP_IS_DETACHED(tcp)) { 14931 TCP_TIMER_RESTART(tcp, 14932 tcps->tcps_time_wait_interval); 14933 } else { 14934 tcp_time_wait_append(tcp); 14935 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14936 } 14937 if (seg_len) { 14938 /* 14939 * implies data piggybacked on FIN. 14940 * break to handle data. 14941 */ 14942 break; 14943 } 14944 freemsg(mp); 14945 goto ack_check; 14946 } 14947 } 14948 } 14949 if (mp == NULL) 14950 goto xmit_check; 14951 if (seg_len == 0) { 14952 freemsg(mp); 14953 goto xmit_check; 14954 } 14955 if (mp->b_rptr == mp->b_wptr) { 14956 /* 14957 * The header has been consumed, so we remove the 14958 * zero-length mblk here. 14959 */ 14960 mp1 = mp; 14961 mp = mp->b_cont; 14962 freeb(mp1); 14963 } 14964 update_ack: 14965 tcph = tcp->tcp_tcph; 14966 tcp->tcp_rack_cnt++; 14967 { 14968 uint32_t cur_max; 14969 14970 cur_max = tcp->tcp_rack_cur_max; 14971 if (tcp->tcp_rack_cnt >= cur_max) { 14972 /* 14973 * We have more unacked data than we should - send 14974 * an ACK now. 14975 */ 14976 flags |= TH_ACK_NEEDED; 14977 cur_max++; 14978 if (cur_max > tcp->tcp_rack_abs_max) 14979 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14980 else 14981 tcp->tcp_rack_cur_max = cur_max; 14982 } else if (TCP_IS_DETACHED(tcp)) { 14983 /* We don't have an ACK timer for detached TCP. */ 14984 flags |= TH_ACK_NEEDED; 14985 } else if (seg_len < mss) { 14986 /* 14987 * If we get a segment that is less than an mss, and we 14988 * already have unacknowledged data, and the amount 14989 * unacknowledged is not a multiple of mss, then we 14990 * better generate an ACK now. Otherwise, this may be 14991 * the tail piece of a transaction, and we would rather 14992 * wait for the response. 14993 */ 14994 uint32_t udif; 14995 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14996 (uintptr_t)INT_MAX); 14997 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14998 if (udif && (udif % mss)) 14999 flags |= TH_ACK_NEEDED; 15000 else 15001 flags |= TH_ACK_TIMER_NEEDED; 15002 } else { 15003 /* Start delayed ack timer */ 15004 flags |= TH_ACK_TIMER_NEEDED; 15005 } 15006 } 15007 tcp->tcp_rnxt += seg_len; 15008 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15009 15010 if (mp == NULL) 15011 goto xmit_check; 15012 15013 /* Update SACK list */ 15014 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15015 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15016 &(tcp->tcp_num_sack_blk)); 15017 } 15018 15019 if (tcp->tcp_urp_mp) { 15020 tcp->tcp_urp_mp->b_cont = mp; 15021 mp = tcp->tcp_urp_mp; 15022 tcp->tcp_urp_mp = NULL; 15023 /* Ready for a new signal. */ 15024 tcp->tcp_urp_last_valid = B_FALSE; 15025 #ifdef DEBUG 15026 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15027 "tcp_rput: sending exdata_ind %s", 15028 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15029 #endif /* DEBUG */ 15030 } 15031 15032 /* 15033 * Check for ancillary data changes compared to last segment. 15034 */ 15035 if (tcp->tcp_ipv6_recvancillary != 0) { 15036 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15037 ASSERT(mp != NULL); 15038 } 15039 15040 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15041 /* 15042 * Side queue inbound data until the accept happens. 15043 * tcp_accept/tcp_rput drains this when the accept happens. 15044 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15045 * T_EXDATA_IND) it is queued on b_next. 15046 * XXX Make urgent data use this. Requires: 15047 * Removing tcp_listener check for TH_URG 15048 * Making M_PCPROTO and MARK messages skip the eager case 15049 */ 15050 15051 if (tcp->tcp_kssl_pending) { 15052 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15053 mblk_t *, mp); 15054 tcp_kssl_input(tcp, mp); 15055 } else { 15056 tcp_rcv_enqueue(tcp, mp, seg_len); 15057 } 15058 } else { 15059 sodirect_t *sodp = tcp->tcp_sodirect; 15060 15061 /* 15062 * If an sodirect connection and an enabled sodirect_t then 15063 * sodp will be set to point to the tcp_t/sonode_t shared 15064 * sodirect_t and the sodirect_t's lock will be held. 15065 */ 15066 if (sodp != NULL) { 15067 mutex_enter(sodp->sod_lockp); 15068 if (!(sodp->sod_state & SOD_ENABLED) || 15069 (tcp->tcp_kssl_ctx != NULL && 15070 DB_TYPE(mp) == M_DATA)) { 15071 sodp = NULL; 15072 } 15073 mutex_exit(sodp->sod_lockp); 15074 } 15075 if (mp->b_datap->db_type != M_DATA || 15076 (flags & TH_MARKNEXT_NEEDED)) { 15077 if (IPCL_IS_NONSTR(connp)) { 15078 int error; 15079 15080 if ((*connp->conn_upcalls->su_recv) 15081 (connp->conn_upper_handle, mp, 15082 seg_len, 0, &error, NULL) <= 0) { 15083 if (error == ENOSPC) { 15084 tcp->tcp_rwnd -= seg_len; 15085 } else if (error == EOPNOTSUPP) { 15086 tcp_rcv_enqueue(tcp, mp, 15087 seg_len); 15088 } 15089 } 15090 } else if (sodp != NULL) { 15091 mutex_enter(sodp->sod_lockp); 15092 SOD_UIOAFINI(sodp); 15093 if (!SOD_QEMPTY(sodp) && 15094 (sodp->sod_state & SOD_WAKE_NOT)) { 15095 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15096 /* sod_wakeup() did the mutex_exit() */ 15097 } else { 15098 mutex_exit(sodp->sod_lockp); 15099 } 15100 } else if (tcp->tcp_rcv_list != NULL) { 15101 flags |= tcp_rcv_drain(tcp); 15102 } 15103 ASSERT(tcp->tcp_rcv_list == NULL || 15104 tcp->tcp_fused_sigurg); 15105 15106 if (flags & TH_MARKNEXT_NEEDED) { 15107 #ifdef DEBUG 15108 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15109 "tcp_rput: sending MSGMARKNEXT %s", 15110 tcp_display(tcp, NULL, 15111 DISP_PORT_ONLY)); 15112 #endif /* DEBUG */ 15113 mp->b_flag |= MSGMARKNEXT; 15114 flags &= ~TH_MARKNEXT_NEEDED; 15115 } 15116 15117 /* Does this need SSL processing first? */ 15118 if ((tcp->tcp_kssl_ctx != NULL) && 15119 (DB_TYPE(mp) == M_DATA)) { 15120 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15121 mblk_t *, mp); 15122 tcp_kssl_input(tcp, mp); 15123 } else if (!IPCL_IS_NONSTR(connp)) { 15124 /* Already handled non-STREAMS case. */ 15125 putnext(tcp->tcp_rq, mp); 15126 if (!canputnext(tcp->tcp_rq)) 15127 tcp->tcp_rwnd -= seg_len; 15128 } 15129 } else if ((tcp->tcp_kssl_ctx != NULL) && 15130 (DB_TYPE(mp) == M_DATA)) { 15131 /* Does this need SSL processing first? */ 15132 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15133 tcp_kssl_input(tcp, mp); 15134 } else if (IPCL_IS_NONSTR(connp)) { 15135 /* Non-STREAMS socket */ 15136 boolean_t push = flags & (TH_PUSH|TH_FIN); 15137 int error; 15138 15139 if ((*connp->conn_upcalls->su_recv)( 15140 connp->conn_upper_handle, 15141 mp, seg_len, 0, &error, &push) <= 0) { 15142 if (error == ENOSPC) { 15143 tcp->tcp_rwnd -= seg_len; 15144 } else if (error == EOPNOTSUPP) { 15145 tcp_rcv_enqueue(tcp, mp, seg_len); 15146 } 15147 } else if (push) { 15148 /* 15149 * PUSH bit set and sockfs is not 15150 * flow controlled 15151 */ 15152 flags |= tcp_rwnd_reopen(tcp); 15153 } 15154 } else if (sodp != NULL) { 15155 /* 15156 * Sodirect so all mblk_t's are queued on the 15157 * socket directly, check for wakeup of blocked 15158 * reader (if any), and last if flow-controled. 15159 */ 15160 mutex_enter(sodp->sod_lockp); 15161 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15162 if ((sodp->sod_state & SOD_WAKE_NEED) || 15163 (flags & (TH_PUSH|TH_FIN))) { 15164 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15165 /* sod_wakeup() did the mutex_exit() */ 15166 } else { 15167 if (SOD_QFULL(sodp)) { 15168 /* Q is full, need backenable */ 15169 SOD_QSETBE(sodp); 15170 } 15171 mutex_exit(sodp->sod_lockp); 15172 } 15173 } else if ((flags & (TH_PUSH|TH_FIN)) || 15174 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15175 if (tcp->tcp_rcv_list != NULL) { 15176 /* 15177 * Enqueue the new segment first and then 15178 * call tcp_rcv_drain() to send all data 15179 * up. The other way to do this is to 15180 * send all queued data up and then call 15181 * putnext() to send the new segment up. 15182 * This way can remove the else part later 15183 * on. 15184 * 15185 * We don't do this to avoid one more call to 15186 * canputnext() as tcp_rcv_drain() needs to 15187 * call canputnext(). 15188 */ 15189 tcp_rcv_enqueue(tcp, mp, seg_len); 15190 flags |= tcp_rcv_drain(tcp); 15191 } else { 15192 putnext(tcp->tcp_rq, mp); 15193 if (!canputnext(tcp->tcp_rq)) 15194 tcp->tcp_rwnd -= seg_len; 15195 } 15196 } else { 15197 /* 15198 * Enqueue all packets when processing an mblk 15199 * from the co queue and also enqueue normal packets. 15200 * For packets which belong to SSL stream do SSL 15201 * processing first. 15202 */ 15203 tcp_rcv_enqueue(tcp, mp, seg_len); 15204 } 15205 /* 15206 * Make sure the timer is running if we have data waiting 15207 * for a push bit. This provides resiliency against 15208 * implementations that do not correctly generate push bits. 15209 * 15210 * Note, for sodirect if Q isn't empty and there's not a 15211 * pending wakeup then we need a timer. Also note that sodp 15212 * is assumed to be still valid after exit()ing the sod_lockp 15213 * above and while the SOD state can change it can only change 15214 * such that the Q is empty now even though data was added 15215 * above. 15216 */ 15217 if (!IPCL_IS_NONSTR(connp) && 15218 ((sodp != NULL && !SOD_QEMPTY(sodp) && 15219 (sodp->sod_state & SOD_WAKE_NOT)) || 15220 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15221 tcp->tcp_push_tid == 0) { 15222 /* 15223 * The connection may be closed at this point, so don't 15224 * do anything for a detached tcp. 15225 */ 15226 if (!TCP_IS_DETACHED(tcp)) 15227 tcp->tcp_push_tid = TCP_TIMER(tcp, 15228 tcp_push_timer, 15229 MSEC_TO_TICK( 15230 tcps->tcps_push_timer_interval)); 15231 } 15232 } 15233 15234 xmit_check: 15235 /* Is there anything left to do? */ 15236 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15237 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15238 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15239 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15240 goto done; 15241 15242 /* Any transmit work to do and a non-zero window? */ 15243 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15244 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15245 if (flags & TH_REXMIT_NEEDED) { 15246 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15247 15248 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15249 if (snd_size > mss) 15250 snd_size = mss; 15251 if (snd_size > tcp->tcp_swnd) 15252 snd_size = tcp->tcp_swnd; 15253 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15254 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15255 B_TRUE); 15256 15257 if (mp1 != NULL) { 15258 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15259 tcp->tcp_csuna = tcp->tcp_snxt; 15260 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15261 UPDATE_MIB(&tcps->tcps_mib, 15262 tcpRetransBytes, snd_size); 15263 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15264 } 15265 } 15266 if (flags & TH_NEED_SACK_REXMIT) { 15267 tcp_sack_rxmit(tcp, &flags); 15268 } 15269 /* 15270 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15271 * out new segment. Note that tcp_rexmit should not be 15272 * set, otherwise TH_LIMIT_XMIT should not be set. 15273 */ 15274 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15275 if (!tcp->tcp_rexmit) { 15276 tcp_wput_data(tcp, NULL, B_FALSE); 15277 } else { 15278 tcp_ss_rexmit(tcp); 15279 } 15280 } 15281 /* 15282 * Adjust tcp_cwnd back to normal value after sending 15283 * new data segments. 15284 */ 15285 if (flags & TH_LIMIT_XMIT) { 15286 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15287 /* 15288 * This will restart the timer. Restarting the 15289 * timer is used to avoid a timeout before the 15290 * limited transmitted segment's ACK gets back. 15291 */ 15292 if (tcp->tcp_xmit_head != NULL) 15293 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15294 } 15295 15296 /* Anything more to do? */ 15297 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15298 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15299 goto done; 15300 } 15301 ack_check: 15302 if (flags & TH_SEND_URP_MARK) { 15303 ASSERT(tcp->tcp_urp_mark_mp); 15304 ASSERT(!IPCL_IS_NONSTR(connp)); 15305 /* 15306 * Send up any queued data and then send the mark message 15307 */ 15308 sodirect_t *sodp; 15309 15310 SOD_PTR_ENTER(tcp, sodp); 15311 15312 mp1 = tcp->tcp_urp_mark_mp; 15313 tcp->tcp_urp_mark_mp = NULL; 15314 if (sodp != NULL) { 15315 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15316 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15317 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15318 } 15319 ASSERT(tcp->tcp_rcv_list == NULL); 15320 15321 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15322 /* sod_wakeup() does the mutex_exit() */ 15323 } else if (tcp->tcp_rcv_list != NULL) { 15324 flags |= tcp_rcv_drain(tcp); 15325 15326 ASSERT(tcp->tcp_rcv_list == NULL || 15327 tcp->tcp_fused_sigurg); 15328 15329 } 15330 putnext(tcp->tcp_rq, mp1); 15331 #ifdef DEBUG 15332 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15333 "tcp_rput: sending zero-length %s %s", 15334 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15335 "MSGNOTMARKNEXT"), 15336 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15337 #endif /* DEBUG */ 15338 flags &= ~TH_SEND_URP_MARK; 15339 } 15340 if (flags & TH_ACK_NEEDED) { 15341 /* 15342 * Time to send an ack for some reason. 15343 */ 15344 mp1 = tcp_ack_mp(tcp); 15345 15346 if (mp1 != NULL) { 15347 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15348 BUMP_LOCAL(tcp->tcp_obsegs); 15349 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15350 } 15351 if (tcp->tcp_ack_tid != 0) { 15352 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15353 tcp->tcp_ack_tid = 0; 15354 } 15355 } 15356 if (flags & TH_ACK_TIMER_NEEDED) { 15357 /* 15358 * Arrange for deferred ACK or push wait timeout. 15359 * Start timer if it is not already running. 15360 */ 15361 if (tcp->tcp_ack_tid == 0) { 15362 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15363 MSEC_TO_TICK(tcp->tcp_localnet ? 15364 (clock_t)tcps->tcps_local_dack_interval : 15365 (clock_t)tcps->tcps_deferred_ack_interval)); 15366 } 15367 } 15368 if (flags & TH_ORDREL_NEEDED) { 15369 /* 15370 * Send up the ordrel_ind unless we are an eager guy. 15371 * In the eager case tcp_rsrv will do this when run 15372 * after tcp_accept is done. 15373 */ 15374 sodirect_t *sodp; 15375 15376 ASSERT(tcp->tcp_listener == NULL); 15377 15378 if (IPCL_IS_NONSTR(connp)) { 15379 ASSERT(tcp->tcp_ordrel_mp == NULL); 15380 tcp->tcp_ordrel_done = B_TRUE; 15381 (*connp->conn_upcalls->su_opctl) 15382 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15383 goto done; 15384 } 15385 15386 SOD_PTR_ENTER(tcp, sodp); 15387 if (sodp != NULL) { 15388 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15389 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15390 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15391 } 15392 /* No more sodirect */ 15393 tcp->tcp_sodirect = NULL; 15394 if (!SOD_QEMPTY(sodp)) { 15395 /* Mblk(s) to process, notify */ 15396 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15397 /* sod_wakeup() does the mutex_exit() */ 15398 } else { 15399 /* Nothing to process */ 15400 mutex_exit(sodp->sod_lockp); 15401 } 15402 } else if (tcp->tcp_rcv_list != NULL) { 15403 /* 15404 * Push any mblk(s) enqueued from co processing. 15405 */ 15406 flags |= tcp_rcv_drain(tcp); 15407 15408 ASSERT(tcp->tcp_rcv_list == NULL || 15409 tcp->tcp_fused_sigurg); 15410 } 15411 15412 mp1 = tcp->tcp_ordrel_mp; 15413 tcp->tcp_ordrel_mp = NULL; 15414 tcp->tcp_ordrel_done = B_TRUE; 15415 putnext(tcp->tcp_rq, mp1); 15416 } 15417 done: 15418 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15419 } 15420 15421 /* 15422 * This function does PAWS protection check. Returns B_TRUE if the 15423 * segment passes the PAWS test, else returns B_FALSE. 15424 */ 15425 boolean_t 15426 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15427 { 15428 uint8_t flags; 15429 int options; 15430 uint8_t *up; 15431 15432 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15433 /* 15434 * If timestamp option is aligned nicely, get values inline, 15435 * otherwise call general routine to parse. Only do that 15436 * if timestamp is the only option. 15437 */ 15438 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15439 TCPOPT_REAL_TS_LEN && 15440 OK_32PTR((up = ((uint8_t *)tcph) + 15441 TCP_MIN_HEADER_LENGTH)) && 15442 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15443 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15444 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15445 15446 options = TCP_OPT_TSTAMP_PRESENT; 15447 } else { 15448 if (tcp->tcp_snd_sack_ok) { 15449 tcpoptp->tcp = tcp; 15450 } else { 15451 tcpoptp->tcp = NULL; 15452 } 15453 options = tcp_parse_options(tcph, tcpoptp); 15454 } 15455 15456 if (options & TCP_OPT_TSTAMP_PRESENT) { 15457 /* 15458 * Do PAWS per RFC 1323 section 4.2. Accept RST 15459 * regardless of the timestamp, page 18 RFC 1323.bis. 15460 */ 15461 if ((flags & TH_RST) == 0 && 15462 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15463 tcp->tcp_ts_recent)) { 15464 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15465 PAWS_TIMEOUT)) { 15466 /* This segment is not acceptable. */ 15467 return (B_FALSE); 15468 } else { 15469 /* 15470 * Connection has been idle for 15471 * too long. Reset the timestamp 15472 * and assume the segment is valid. 15473 */ 15474 tcp->tcp_ts_recent = 15475 tcpoptp->tcp_opt_ts_val; 15476 } 15477 } 15478 } else { 15479 /* 15480 * If we don't get a timestamp on every packet, we 15481 * figure we can't really trust 'em, so we stop sending 15482 * and parsing them. 15483 */ 15484 tcp->tcp_snd_ts_ok = B_FALSE; 15485 15486 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15487 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15488 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15489 /* 15490 * Adjust the tcp_mss accordingly. We also need to 15491 * adjust tcp_cwnd here in accordance with the new mss. 15492 * But we avoid doing a slow start here so as to not 15493 * to lose on the transfer rate built up so far. 15494 */ 15495 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15496 if (tcp->tcp_snd_sack_ok) { 15497 ASSERT(tcp->tcp_sack_info != NULL); 15498 tcp->tcp_max_sack_blk = 4; 15499 } 15500 } 15501 return (B_TRUE); 15502 } 15503 15504 /* 15505 * Attach ancillary data to a received TCP segments for the 15506 * ancillary pieces requested by the application that are 15507 * different than they were in the previous data segment. 15508 * 15509 * Save the "current" values once memory allocation is ok so that 15510 * when memory allocation fails we can just wait for the next data segment. 15511 */ 15512 static mblk_t * 15513 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15514 { 15515 struct T_optdata_ind *todi; 15516 int optlen; 15517 uchar_t *optptr; 15518 struct T_opthdr *toh; 15519 uint_t addflag; /* Which pieces to add */ 15520 mblk_t *mp1; 15521 15522 optlen = 0; 15523 addflag = 0; 15524 /* If app asked for pktinfo and the index has changed ... */ 15525 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15526 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15527 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15528 optlen += sizeof (struct T_opthdr) + 15529 sizeof (struct in6_pktinfo); 15530 addflag |= TCP_IPV6_RECVPKTINFO; 15531 } 15532 /* If app asked for hoplimit and it has changed ... */ 15533 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15534 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15535 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15536 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15537 addflag |= TCP_IPV6_RECVHOPLIMIT; 15538 } 15539 /* If app asked for tclass and it has changed ... */ 15540 if ((ipp->ipp_fields & IPPF_TCLASS) && 15541 ipp->ipp_tclass != tcp->tcp_recvtclass && 15542 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15543 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15544 addflag |= TCP_IPV6_RECVTCLASS; 15545 } 15546 /* 15547 * If app asked for hopbyhop headers and it has changed ... 15548 * For security labels, note that (1) security labels can't change on 15549 * a connected socket at all, (2) we're connected to at most one peer, 15550 * (3) if anything changes, then it must be some other extra option. 15551 */ 15552 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15553 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15554 (ipp->ipp_fields & IPPF_HOPOPTS), 15555 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15556 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15557 tcp->tcp_label_len; 15558 addflag |= TCP_IPV6_RECVHOPOPTS; 15559 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15560 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15561 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15562 return (mp); 15563 } 15564 /* If app asked for dst headers before routing headers ... */ 15565 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15566 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15567 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15568 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15569 optlen += sizeof (struct T_opthdr) + 15570 ipp->ipp_rtdstoptslen; 15571 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15572 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15573 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15574 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15575 return (mp); 15576 } 15577 /* If app asked for routing headers and it has changed ... */ 15578 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15579 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15580 (ipp->ipp_fields & IPPF_RTHDR), 15581 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15582 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15583 addflag |= TCP_IPV6_RECVRTHDR; 15584 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15585 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15586 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15587 return (mp); 15588 } 15589 /* If app asked for dest headers and it has changed ... */ 15590 if ((tcp->tcp_ipv6_recvancillary & 15591 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15592 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15593 (ipp->ipp_fields & IPPF_DSTOPTS), 15594 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15595 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15596 addflag |= TCP_IPV6_RECVDSTOPTS; 15597 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15598 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15599 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15600 return (mp); 15601 } 15602 15603 if (optlen == 0) { 15604 /* Nothing to add */ 15605 return (mp); 15606 } 15607 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15608 if (mp1 == NULL) { 15609 /* 15610 * Defer sending ancillary data until the next TCP segment 15611 * arrives. 15612 */ 15613 return (mp); 15614 } 15615 mp1->b_cont = mp; 15616 mp = mp1; 15617 mp->b_wptr += sizeof (*todi) + optlen; 15618 mp->b_datap->db_type = M_PROTO; 15619 todi = (struct T_optdata_ind *)mp->b_rptr; 15620 todi->PRIM_type = T_OPTDATA_IND; 15621 todi->DATA_flag = 1; /* MORE data */ 15622 todi->OPT_length = optlen; 15623 todi->OPT_offset = sizeof (*todi); 15624 optptr = (uchar_t *)&todi[1]; 15625 /* 15626 * If app asked for pktinfo and the index has changed ... 15627 * Note that the local address never changes for the connection. 15628 */ 15629 if (addflag & TCP_IPV6_RECVPKTINFO) { 15630 struct in6_pktinfo *pkti; 15631 15632 toh = (struct T_opthdr *)optptr; 15633 toh->level = IPPROTO_IPV6; 15634 toh->name = IPV6_PKTINFO; 15635 toh->len = sizeof (*toh) + sizeof (*pkti); 15636 toh->status = 0; 15637 optptr += sizeof (*toh); 15638 pkti = (struct in6_pktinfo *)optptr; 15639 if (tcp->tcp_ipversion == IPV6_VERSION) 15640 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15641 else 15642 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15643 &pkti->ipi6_addr); 15644 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15645 optptr += sizeof (*pkti); 15646 ASSERT(OK_32PTR(optptr)); 15647 /* Save as "last" value */ 15648 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15649 } 15650 /* If app asked for hoplimit and it has changed ... */ 15651 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15652 toh = (struct T_opthdr *)optptr; 15653 toh->level = IPPROTO_IPV6; 15654 toh->name = IPV6_HOPLIMIT; 15655 toh->len = sizeof (*toh) + sizeof (uint_t); 15656 toh->status = 0; 15657 optptr += sizeof (*toh); 15658 *(uint_t *)optptr = ipp->ipp_hoplimit; 15659 optptr += sizeof (uint_t); 15660 ASSERT(OK_32PTR(optptr)); 15661 /* Save as "last" value */ 15662 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15663 } 15664 /* If app asked for tclass and it has changed ... */ 15665 if (addflag & TCP_IPV6_RECVTCLASS) { 15666 toh = (struct T_opthdr *)optptr; 15667 toh->level = IPPROTO_IPV6; 15668 toh->name = IPV6_TCLASS; 15669 toh->len = sizeof (*toh) + sizeof (uint_t); 15670 toh->status = 0; 15671 optptr += sizeof (*toh); 15672 *(uint_t *)optptr = ipp->ipp_tclass; 15673 optptr += sizeof (uint_t); 15674 ASSERT(OK_32PTR(optptr)); 15675 /* Save as "last" value */ 15676 tcp->tcp_recvtclass = ipp->ipp_tclass; 15677 } 15678 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15679 toh = (struct T_opthdr *)optptr; 15680 toh->level = IPPROTO_IPV6; 15681 toh->name = IPV6_HOPOPTS; 15682 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15683 tcp->tcp_label_len; 15684 toh->status = 0; 15685 optptr += sizeof (*toh); 15686 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15687 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15688 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15689 ASSERT(OK_32PTR(optptr)); 15690 /* Save as last value */ 15691 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15692 (ipp->ipp_fields & IPPF_HOPOPTS), 15693 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15694 } 15695 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15696 toh = (struct T_opthdr *)optptr; 15697 toh->level = IPPROTO_IPV6; 15698 toh->name = IPV6_RTHDRDSTOPTS; 15699 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15700 toh->status = 0; 15701 optptr += sizeof (*toh); 15702 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15703 optptr += ipp->ipp_rtdstoptslen; 15704 ASSERT(OK_32PTR(optptr)); 15705 /* Save as last value */ 15706 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15707 &tcp->tcp_rtdstoptslen, 15708 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15709 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15710 } 15711 if (addflag & TCP_IPV6_RECVRTHDR) { 15712 toh = (struct T_opthdr *)optptr; 15713 toh->level = IPPROTO_IPV6; 15714 toh->name = IPV6_RTHDR; 15715 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15716 toh->status = 0; 15717 optptr += sizeof (*toh); 15718 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15719 optptr += ipp->ipp_rthdrlen; 15720 ASSERT(OK_32PTR(optptr)); 15721 /* Save as last value */ 15722 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15723 (ipp->ipp_fields & IPPF_RTHDR), 15724 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15725 } 15726 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15727 toh = (struct T_opthdr *)optptr; 15728 toh->level = IPPROTO_IPV6; 15729 toh->name = IPV6_DSTOPTS; 15730 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15731 toh->status = 0; 15732 optptr += sizeof (*toh); 15733 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15734 optptr += ipp->ipp_dstoptslen; 15735 ASSERT(OK_32PTR(optptr)); 15736 /* Save as last value */ 15737 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15738 (ipp->ipp_fields & IPPF_DSTOPTS), 15739 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15740 } 15741 ASSERT(optptr == mp->b_wptr); 15742 return (mp); 15743 } 15744 15745 /* 15746 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15747 * messages. 15748 */ 15749 void 15750 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15751 { 15752 uchar_t *rptr = mp->b_rptr; 15753 queue_t *q = tcp->tcp_rq; 15754 struct T_error_ack *tea; 15755 15756 switch (mp->b_datap->db_type) { 15757 case M_PROTO: 15758 case M_PCPROTO: 15759 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15760 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15761 break; 15762 tea = (struct T_error_ack *)rptr; 15763 ASSERT(tea->PRIM_type != T_BIND_ACK); 15764 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15765 tea->ERROR_prim != T_BIND_REQ); 15766 switch (tea->PRIM_type) { 15767 case T_ERROR_ACK: 15768 if (tcp->tcp_debug) { 15769 (void) strlog(TCP_MOD_ID, 0, 1, 15770 SL_TRACE|SL_ERROR, 15771 "tcp_rput_other: case T_ERROR_ACK, " 15772 "ERROR_prim == %d", 15773 tea->ERROR_prim); 15774 } 15775 switch (tea->ERROR_prim) { 15776 case T_SVR4_OPTMGMT_REQ: 15777 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15778 /* T_OPTMGMT_REQ generated by TCP */ 15779 printf("T_SVR4_OPTMGMT_REQ failed " 15780 "%d/%d - dropped (cnt %d)\n", 15781 tea->TLI_error, tea->UNIX_error, 15782 tcp->tcp_drop_opt_ack_cnt); 15783 freemsg(mp); 15784 tcp->tcp_drop_opt_ack_cnt--; 15785 return; 15786 } 15787 break; 15788 } 15789 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15790 tcp->tcp_drop_opt_ack_cnt > 0) { 15791 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15792 "- dropped (cnt %d)\n", 15793 tea->TLI_error, tea->UNIX_error, 15794 tcp->tcp_drop_opt_ack_cnt); 15795 freemsg(mp); 15796 tcp->tcp_drop_opt_ack_cnt--; 15797 return; 15798 } 15799 break; 15800 case T_OPTMGMT_ACK: 15801 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15802 /* T_OPTMGMT_REQ generated by TCP */ 15803 freemsg(mp); 15804 tcp->tcp_drop_opt_ack_cnt--; 15805 return; 15806 } 15807 break; 15808 default: 15809 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15810 break; 15811 } 15812 break; 15813 case M_FLUSH: 15814 if (*rptr & FLUSHR) 15815 flushq(q, FLUSHDATA); 15816 break; 15817 default: 15818 /* M_CTL will be directly sent to tcp_icmp_error() */ 15819 ASSERT(DB_TYPE(mp) != M_CTL); 15820 break; 15821 } 15822 /* 15823 * Make sure we set this bit before sending the ACK for 15824 * bind. Otherwise accept could possibly run and free 15825 * this tcp struct. 15826 */ 15827 ASSERT(q != NULL); 15828 putnext(q, mp); 15829 } 15830 15831 /* ARGSUSED */ 15832 static void 15833 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15834 { 15835 conn_t *connp = (conn_t *)arg; 15836 tcp_t *tcp = connp->conn_tcp; 15837 queue_t *q = tcp->tcp_rq; 15838 uint_t thwin; 15839 tcp_stack_t *tcps = tcp->tcp_tcps; 15840 sodirect_t *sodp; 15841 boolean_t fc; 15842 15843 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15844 tcp->tcp_rsrv_mp = mp; 15845 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15846 15847 TCP_STAT(tcps, tcp_rsrv_calls); 15848 15849 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15850 return; 15851 } 15852 15853 if (tcp->tcp_fused) { 15854 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15855 15856 ASSERT(tcp->tcp_fused); 15857 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15858 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15859 ASSERT(!TCP_IS_DETACHED(tcp)); 15860 ASSERT(tcp->tcp_connp->conn_sqp == 15861 peer_tcp->tcp_connp->conn_sqp); 15862 15863 /* 15864 * Normally we would not get backenabled in synchronous 15865 * streams mode, but in case this happens, we need to plug 15866 * synchronous streams during our drain to prevent a race 15867 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15868 */ 15869 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15870 if (tcp->tcp_rcv_list != NULL) 15871 (void) tcp_rcv_drain(tcp); 15872 15873 if (peer_tcp > tcp) { 15874 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15875 mutex_enter(&tcp->tcp_non_sq_lock); 15876 } else { 15877 mutex_enter(&tcp->tcp_non_sq_lock); 15878 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15879 } 15880 15881 if (peer_tcp->tcp_flow_stopped && 15882 (TCP_UNSENT_BYTES(peer_tcp) <= 15883 peer_tcp->tcp_xmit_lowater)) { 15884 tcp_clrqfull(peer_tcp); 15885 } 15886 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15887 mutex_exit(&tcp->tcp_non_sq_lock); 15888 15889 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15890 TCP_STAT(tcps, tcp_fusion_backenabled); 15891 return; 15892 } 15893 15894 SOD_PTR_ENTER(tcp, sodp); 15895 if (sodp != NULL) { 15896 /* An sodirect connection */ 15897 if (SOD_QFULL(sodp)) { 15898 /* Flow-controlled, need another back-enable */ 15899 fc = B_TRUE; 15900 SOD_QSETBE(sodp); 15901 } else { 15902 /* Not flow-controlled */ 15903 fc = B_FALSE; 15904 } 15905 mutex_exit(sodp->sod_lockp); 15906 } else if (canputnext(q)) { 15907 /* STREAMS, not flow-controlled */ 15908 fc = B_FALSE; 15909 } else { 15910 /* STREAMS, flow-controlled */ 15911 fc = B_TRUE; 15912 } 15913 if (!fc) { 15914 /* Not flow-controlled, open rwnd */ 15915 tcp->tcp_rwnd = q->q_hiwat; 15916 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15917 << tcp->tcp_rcv_ws; 15918 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15919 /* 15920 * Send back a window update immediately if TCP is above 15921 * ESTABLISHED state and the increase of the rcv window 15922 * that the other side knows is at least 1 MSS after flow 15923 * control is lifted. 15924 */ 15925 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15926 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15927 tcp_xmit_ctl(NULL, tcp, 15928 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15929 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15930 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 15931 } 15932 } 15933 } 15934 15935 /* 15936 * The read side service routine is called mostly when we get back-enabled as a 15937 * result of flow control relief. Since we don't actually queue anything in 15938 * TCP, we have no data to send out of here. What we do is clear the receive 15939 * window, and send out a window update. 15940 */ 15941 static void 15942 tcp_rsrv(queue_t *q) 15943 { 15944 conn_t *connp = Q_TO_CONN(q); 15945 tcp_t *tcp = connp->conn_tcp; 15946 mblk_t *mp; 15947 tcp_stack_t *tcps = tcp->tcp_tcps; 15948 15949 /* No code does a putq on the read side */ 15950 ASSERT(q->q_first == NULL); 15951 15952 /* Nothing to do for the default queue */ 15953 if (q == tcps->tcps_g_q) { 15954 return; 15955 } 15956 15957 /* 15958 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15959 * been run. So just return. 15960 */ 15961 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15962 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15963 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15964 return; 15965 } 15966 tcp->tcp_rsrv_mp = NULL; 15967 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15968 15969 CONN_INC_REF(connp); 15970 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15971 SQ_PROCESS, SQTAG_TCP_RSRV); 15972 } 15973 15974 /* 15975 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15976 * We do not allow the receive window to shrink. After setting rwnd, 15977 * set the flow control hiwat of the stream. 15978 * 15979 * This function is called in 2 cases: 15980 * 15981 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15982 * connection (passive open) and in tcp_rput_data() for active connect. 15983 * This is called after tcp_mss_set() when the desired MSS value is known. 15984 * This makes sure that our window size is a mutiple of the other side's 15985 * MSS. 15986 * 2) Handling SO_RCVBUF option. 15987 * 15988 * It is ASSUMED that the requested size is a multiple of the current MSS. 15989 * 15990 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15991 * user requests so. 15992 */ 15993 static int 15994 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15995 { 15996 uint32_t mss = tcp->tcp_mss; 15997 uint32_t old_max_rwnd; 15998 uint32_t max_transmittable_rwnd; 15999 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16000 tcp_stack_t *tcps = tcp->tcp_tcps; 16001 16002 if (tcp->tcp_fused) { 16003 size_t sth_hiwat; 16004 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16005 16006 ASSERT(peer_tcp != NULL); 16007 /* 16008 * Record the stream head's high water mark for 16009 * this endpoint; this is used for flow-control 16010 * purposes in tcp_fuse_output(). 16011 */ 16012 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16013 if (!tcp_detached) { 16014 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16015 sth_hiwat); 16016 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 16017 conn_t *connp = tcp->tcp_connp; 16018 struct sock_proto_props sopp; 16019 16020 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 16021 sopp.sopp_rcvthresh = sth_hiwat >> 3; 16022 16023 (*connp->conn_upcalls->su_set_proto_props) 16024 (connp->conn_upper_handle, &sopp); 16025 } 16026 } 16027 16028 /* 16029 * In the fusion case, the maxpsz stream head value of 16030 * our peer is set according to its send buffer size 16031 * and our receive buffer size; since the latter may 16032 * have changed we need to update the peer's maxpsz. 16033 */ 16034 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16035 return (rwnd); 16036 } 16037 16038 if (tcp_detached) { 16039 old_max_rwnd = tcp->tcp_rwnd; 16040 } else { 16041 old_max_rwnd = tcp->tcp_recv_hiwater; 16042 } 16043 16044 /* 16045 * Insist on a receive window that is at least 16046 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16047 * funny TCP interactions of Nagle algorithm, SWS avoidance 16048 * and delayed acknowledgement. 16049 */ 16050 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16051 16052 /* 16053 * If window size info has already been exchanged, TCP should not 16054 * shrink the window. Shrinking window is doable if done carefully. 16055 * We may add that support later. But so far there is not a real 16056 * need to do that. 16057 */ 16058 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16059 /* MSS may have changed, do a round up again. */ 16060 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16061 } 16062 16063 /* 16064 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16065 * can be applied even before the window scale option is decided. 16066 */ 16067 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16068 if (rwnd > max_transmittable_rwnd) { 16069 rwnd = max_transmittable_rwnd - 16070 (max_transmittable_rwnd % mss); 16071 if (rwnd < mss) 16072 rwnd = max_transmittable_rwnd; 16073 /* 16074 * If we're over the limit we may have to back down tcp_rwnd. 16075 * The increment below won't work for us. So we set all three 16076 * here and the increment below will have no effect. 16077 */ 16078 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16079 } 16080 if (tcp->tcp_localnet) { 16081 tcp->tcp_rack_abs_max = 16082 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16083 } else { 16084 /* 16085 * For a remote host on a different subnet (through a router), 16086 * we ack every other packet to be conforming to RFC1122. 16087 * tcp_deferred_acks_max is default to 2. 16088 */ 16089 tcp->tcp_rack_abs_max = 16090 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16091 } 16092 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16093 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16094 else 16095 tcp->tcp_rack_cur_max = 0; 16096 /* 16097 * Increment the current rwnd by the amount the maximum grew (we 16098 * can not overwrite it since we might be in the middle of a 16099 * connection.) 16100 */ 16101 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16102 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16103 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16104 tcp->tcp_cwnd_max = rwnd; 16105 16106 if (tcp_detached) 16107 return (rwnd); 16108 /* 16109 * We set the maximum receive window into rq->q_hiwat if it is 16110 * a STREAMS socket. 16111 * This is not actually used for flow control. 16112 */ 16113 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 16114 tcp->tcp_rq->q_hiwat = rwnd; 16115 tcp->tcp_recv_hiwater = rwnd; 16116 /* 16117 * Set the STREAM head high water mark. This doesn't have to be 16118 * here, since we are simply using default values, but we would 16119 * prefer to choose these values algorithmically, with a likely 16120 * relationship to rwnd. 16121 */ 16122 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16123 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16124 return (rwnd); 16125 } 16126 16127 /* 16128 * Return SNMP stuff in buffer in mpdata. 16129 */ 16130 mblk_t * 16131 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16132 { 16133 mblk_t *mpdata; 16134 mblk_t *mp_conn_ctl = NULL; 16135 mblk_t *mp_conn_tail; 16136 mblk_t *mp_attr_ctl = NULL; 16137 mblk_t *mp_attr_tail; 16138 mblk_t *mp6_conn_ctl = NULL; 16139 mblk_t *mp6_conn_tail; 16140 mblk_t *mp6_attr_ctl = NULL; 16141 mblk_t *mp6_attr_tail; 16142 struct opthdr *optp; 16143 mib2_tcpConnEntry_t tce; 16144 mib2_tcp6ConnEntry_t tce6; 16145 mib2_transportMLPEntry_t mlp; 16146 connf_t *connfp; 16147 int i; 16148 boolean_t ispriv; 16149 zoneid_t zoneid; 16150 int v4_conn_idx; 16151 int v6_conn_idx; 16152 conn_t *connp = Q_TO_CONN(q); 16153 tcp_stack_t *tcps; 16154 ip_stack_t *ipst; 16155 mblk_t *mp2ctl; 16156 16157 /* 16158 * make a copy of the original message 16159 */ 16160 mp2ctl = copymsg(mpctl); 16161 16162 if (mpctl == NULL || 16163 (mpdata = mpctl->b_cont) == NULL || 16164 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16165 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16166 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16167 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16168 freemsg(mp_conn_ctl); 16169 freemsg(mp_attr_ctl); 16170 freemsg(mp6_conn_ctl); 16171 freemsg(mp6_attr_ctl); 16172 freemsg(mpctl); 16173 freemsg(mp2ctl); 16174 return (NULL); 16175 } 16176 16177 ipst = connp->conn_netstack->netstack_ip; 16178 tcps = connp->conn_netstack->netstack_tcp; 16179 16180 /* build table of connections -- need count in fixed part */ 16181 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16182 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16183 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16184 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16185 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16186 16187 ispriv = 16188 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16189 zoneid = Q_TO_CONN(q)->conn_zoneid; 16190 16191 v4_conn_idx = v6_conn_idx = 0; 16192 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16193 16194 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16195 ipst = tcps->tcps_netstack->netstack_ip; 16196 16197 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16198 16199 connp = NULL; 16200 16201 while ((connp = 16202 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16203 tcp_t *tcp; 16204 boolean_t needattr; 16205 16206 if (connp->conn_zoneid != zoneid) 16207 continue; /* not in this zone */ 16208 16209 tcp = connp->conn_tcp; 16210 UPDATE_MIB(&tcps->tcps_mib, 16211 tcpHCInSegs, tcp->tcp_ibsegs); 16212 tcp->tcp_ibsegs = 0; 16213 UPDATE_MIB(&tcps->tcps_mib, 16214 tcpHCOutSegs, tcp->tcp_obsegs); 16215 tcp->tcp_obsegs = 0; 16216 16217 tce6.tcp6ConnState = tce.tcpConnState = 16218 tcp_snmp_state(tcp); 16219 if (tce.tcpConnState == MIB2_TCP_established || 16220 tce.tcpConnState == MIB2_TCP_closeWait) 16221 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16222 16223 needattr = B_FALSE; 16224 bzero(&mlp, sizeof (mlp)); 16225 if (connp->conn_mlp_type != mlptSingle) { 16226 if (connp->conn_mlp_type == mlptShared || 16227 connp->conn_mlp_type == mlptBoth) 16228 mlp.tme_flags |= MIB2_TMEF_SHARED; 16229 if (connp->conn_mlp_type == mlptPrivate || 16230 connp->conn_mlp_type == mlptBoth) 16231 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16232 needattr = B_TRUE; 16233 } 16234 if (connp->conn_peercred != NULL) { 16235 ts_label_t *tsl; 16236 16237 tsl = crgetlabel(connp->conn_peercred); 16238 mlp.tme_doi = label2doi(tsl); 16239 mlp.tme_label = *label2bslabel(tsl); 16240 needattr = B_TRUE; 16241 } 16242 16243 /* Create a message to report on IPv6 entries */ 16244 if (tcp->tcp_ipversion == IPV6_VERSION) { 16245 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16246 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16247 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16248 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16249 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16250 /* Don't want just anybody seeing these... */ 16251 if (ispriv) { 16252 tce6.tcp6ConnEntryInfo.ce_snxt = 16253 tcp->tcp_snxt; 16254 tce6.tcp6ConnEntryInfo.ce_suna = 16255 tcp->tcp_suna; 16256 tce6.tcp6ConnEntryInfo.ce_rnxt = 16257 tcp->tcp_rnxt; 16258 tce6.tcp6ConnEntryInfo.ce_rack = 16259 tcp->tcp_rack; 16260 } else { 16261 /* 16262 * Netstat, unfortunately, uses this to 16263 * get send/receive queue sizes. How to fix? 16264 * Why not compute the difference only? 16265 */ 16266 tce6.tcp6ConnEntryInfo.ce_snxt = 16267 tcp->tcp_snxt - tcp->tcp_suna; 16268 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16269 tce6.tcp6ConnEntryInfo.ce_rnxt = 16270 tcp->tcp_rnxt - tcp->tcp_rack; 16271 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16272 } 16273 16274 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16275 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16276 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16277 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16278 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16279 16280 tce6.tcp6ConnCreationProcess = 16281 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16282 tcp->tcp_cpid; 16283 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16284 16285 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16286 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16287 16288 mlp.tme_connidx = v6_conn_idx++; 16289 if (needattr) 16290 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16291 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16292 } 16293 /* 16294 * Create an IPv4 table entry for IPv4 entries and also 16295 * for IPv6 entries which are bound to in6addr_any 16296 * but don't have IPV6_V6ONLY set. 16297 * (i.e. anything an IPv4 peer could connect to) 16298 */ 16299 if (tcp->tcp_ipversion == IPV4_VERSION || 16300 (tcp->tcp_state <= TCPS_LISTEN && 16301 !tcp->tcp_connp->conn_ipv6_v6only && 16302 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16303 if (tcp->tcp_ipversion == IPV6_VERSION) { 16304 tce.tcpConnRemAddress = INADDR_ANY; 16305 tce.tcpConnLocalAddress = INADDR_ANY; 16306 } else { 16307 tce.tcpConnRemAddress = 16308 tcp->tcp_remote; 16309 tce.tcpConnLocalAddress = 16310 tcp->tcp_ip_src; 16311 } 16312 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16313 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16314 /* Don't want just anybody seeing these... */ 16315 if (ispriv) { 16316 tce.tcpConnEntryInfo.ce_snxt = 16317 tcp->tcp_snxt; 16318 tce.tcpConnEntryInfo.ce_suna = 16319 tcp->tcp_suna; 16320 tce.tcpConnEntryInfo.ce_rnxt = 16321 tcp->tcp_rnxt; 16322 tce.tcpConnEntryInfo.ce_rack = 16323 tcp->tcp_rack; 16324 } else { 16325 /* 16326 * Netstat, unfortunately, uses this to 16327 * get send/receive queue sizes. How 16328 * to fix? 16329 * Why not compute the difference only? 16330 */ 16331 tce.tcpConnEntryInfo.ce_snxt = 16332 tcp->tcp_snxt - tcp->tcp_suna; 16333 tce.tcpConnEntryInfo.ce_suna = 0; 16334 tce.tcpConnEntryInfo.ce_rnxt = 16335 tcp->tcp_rnxt - tcp->tcp_rack; 16336 tce.tcpConnEntryInfo.ce_rack = 0; 16337 } 16338 16339 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16340 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16341 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16342 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16343 tce.tcpConnEntryInfo.ce_state = 16344 tcp->tcp_state; 16345 16346 tce.tcpConnCreationProcess = 16347 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16348 tcp->tcp_cpid; 16349 tce.tcpConnCreationTime = tcp->tcp_open_time; 16350 16351 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16352 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16353 16354 mlp.tme_connidx = v4_conn_idx++; 16355 if (needattr) 16356 (void) snmp_append_data2( 16357 mp_attr_ctl->b_cont, 16358 &mp_attr_tail, (char *)&mlp, 16359 sizeof (mlp)); 16360 } 16361 } 16362 } 16363 16364 /* fixed length structure for IPv4 and IPv6 counters */ 16365 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16366 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16367 sizeof (mib2_tcp6ConnEntry_t)); 16368 /* synchronize 32- and 64-bit counters */ 16369 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16370 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16371 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16372 optp->level = MIB2_TCP; 16373 optp->name = 0; 16374 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16375 sizeof (tcps->tcps_mib)); 16376 optp->len = msgdsize(mpdata); 16377 qreply(q, mpctl); 16378 16379 /* table of connections... */ 16380 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16381 sizeof (struct T_optmgmt_ack)]; 16382 optp->level = MIB2_TCP; 16383 optp->name = MIB2_TCP_CONN; 16384 optp->len = msgdsize(mp_conn_ctl->b_cont); 16385 qreply(q, mp_conn_ctl); 16386 16387 /* table of MLP attributes... */ 16388 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16389 sizeof (struct T_optmgmt_ack)]; 16390 optp->level = MIB2_TCP; 16391 optp->name = EXPER_XPORT_MLP; 16392 optp->len = msgdsize(mp_attr_ctl->b_cont); 16393 if (optp->len == 0) 16394 freemsg(mp_attr_ctl); 16395 else 16396 qreply(q, mp_attr_ctl); 16397 16398 /* table of IPv6 connections... */ 16399 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16400 sizeof (struct T_optmgmt_ack)]; 16401 optp->level = MIB2_TCP6; 16402 optp->name = MIB2_TCP6_CONN; 16403 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16404 qreply(q, mp6_conn_ctl); 16405 16406 /* table of IPv6 MLP attributes... */ 16407 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16408 sizeof (struct T_optmgmt_ack)]; 16409 optp->level = MIB2_TCP6; 16410 optp->name = EXPER_XPORT_MLP; 16411 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16412 if (optp->len == 0) 16413 freemsg(mp6_attr_ctl); 16414 else 16415 qreply(q, mp6_attr_ctl); 16416 return (mp2ctl); 16417 } 16418 16419 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16420 /* ARGSUSED */ 16421 int 16422 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16423 { 16424 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16425 16426 switch (level) { 16427 case MIB2_TCP: 16428 switch (name) { 16429 case 13: 16430 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16431 return (0); 16432 /* TODO: delete entry defined by tce */ 16433 return (1); 16434 default: 16435 return (0); 16436 } 16437 default: 16438 return (1); 16439 } 16440 } 16441 16442 /* Translate TCP state to MIB2 TCP state. */ 16443 static int 16444 tcp_snmp_state(tcp_t *tcp) 16445 { 16446 if (tcp == NULL) 16447 return (0); 16448 16449 switch (tcp->tcp_state) { 16450 case TCPS_CLOSED: 16451 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16452 case TCPS_BOUND: 16453 return (MIB2_TCP_closed); 16454 case TCPS_LISTEN: 16455 return (MIB2_TCP_listen); 16456 case TCPS_SYN_SENT: 16457 return (MIB2_TCP_synSent); 16458 case TCPS_SYN_RCVD: 16459 return (MIB2_TCP_synReceived); 16460 case TCPS_ESTABLISHED: 16461 return (MIB2_TCP_established); 16462 case TCPS_CLOSE_WAIT: 16463 return (MIB2_TCP_closeWait); 16464 case TCPS_FIN_WAIT_1: 16465 return (MIB2_TCP_finWait1); 16466 case TCPS_CLOSING: 16467 return (MIB2_TCP_closing); 16468 case TCPS_LAST_ACK: 16469 return (MIB2_TCP_lastAck); 16470 case TCPS_FIN_WAIT_2: 16471 return (MIB2_TCP_finWait2); 16472 case TCPS_TIME_WAIT: 16473 return (MIB2_TCP_timeWait); 16474 default: 16475 return (0); 16476 } 16477 } 16478 16479 static char tcp_report_header[] = 16480 "TCP " MI_COL_HDRPAD_STR 16481 "zone dest snxt suna " 16482 "swnd rnxt rack rwnd rto mss w sw rw t " 16483 "recent [lport,fport] state"; 16484 16485 /* 16486 * TCP status report triggered via the Named Dispatch mechanism. 16487 */ 16488 /* ARGSUSED */ 16489 static void 16490 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16491 cred_t *cr) 16492 { 16493 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16494 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16495 char cflag; 16496 in6_addr_t v6dst; 16497 char buf[80]; 16498 uint_t print_len, buf_len; 16499 16500 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16501 if (buf_len <= 0) 16502 return; 16503 16504 if (hashval >= 0) 16505 (void) sprintf(hash, "%03d ", hashval); 16506 else 16507 hash[0] = '\0'; 16508 16509 /* 16510 * Note that we use the remote address in the tcp_b structure. 16511 * This means that it will print out the real destination address, 16512 * not the next hop's address if source routing is used. This 16513 * avoid the confusion on the output because user may not 16514 * know that source routing is used for a connection. 16515 */ 16516 if (tcp->tcp_ipversion == IPV4_VERSION) { 16517 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16518 } else { 16519 v6dst = tcp->tcp_remote_v6; 16520 } 16521 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16522 /* 16523 * the ispriv checks are so that normal users cannot determine 16524 * sequence number information using NDD. 16525 */ 16526 16527 if (TCP_IS_DETACHED(tcp)) 16528 cflag = '*'; 16529 else 16530 cflag = ' '; 16531 print_len = snprintf((char *)mp->b_wptr, buf_len, 16532 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16533 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16534 hash, 16535 (void *)tcp, 16536 tcp->tcp_connp->conn_zoneid, 16537 addrbuf, 16538 (ispriv) ? tcp->tcp_snxt : 0, 16539 (ispriv) ? tcp->tcp_suna : 0, 16540 tcp->tcp_swnd, 16541 (ispriv) ? tcp->tcp_rnxt : 0, 16542 (ispriv) ? tcp->tcp_rack : 0, 16543 tcp->tcp_rwnd, 16544 tcp->tcp_rto, 16545 tcp->tcp_mss, 16546 tcp->tcp_snd_ws_ok, 16547 tcp->tcp_snd_ws, 16548 tcp->tcp_rcv_ws, 16549 tcp->tcp_snd_ts_ok, 16550 tcp->tcp_ts_recent, 16551 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16552 if (print_len < buf_len) { 16553 ((mblk_t *)mp)->b_wptr += print_len; 16554 } else { 16555 ((mblk_t *)mp)->b_wptr += buf_len; 16556 } 16557 } 16558 16559 /* 16560 * TCP status report (for listeners only) triggered via the Named Dispatch 16561 * mechanism. 16562 */ 16563 /* ARGSUSED */ 16564 static void 16565 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16566 { 16567 char addrbuf[INET6_ADDRSTRLEN]; 16568 in6_addr_t v6dst; 16569 uint_t print_len, buf_len; 16570 16571 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16572 if (buf_len <= 0) 16573 return; 16574 16575 if (tcp->tcp_ipversion == IPV4_VERSION) { 16576 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16577 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16578 } else { 16579 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16580 addrbuf, sizeof (addrbuf)); 16581 } 16582 print_len = snprintf((char *)mp->b_wptr, buf_len, 16583 "%03d " 16584 MI_COL_PTRFMT_STR 16585 "%d %s %05u %08u %d/%d/%d%c\n", 16586 hashval, (void *)tcp, 16587 tcp->tcp_connp->conn_zoneid, 16588 addrbuf, 16589 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16590 tcp->tcp_conn_req_seqnum, 16591 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16592 tcp->tcp_conn_req_max, 16593 tcp->tcp_syn_defense ? '*' : ' '); 16594 if (print_len < buf_len) { 16595 ((mblk_t *)mp)->b_wptr += print_len; 16596 } else { 16597 ((mblk_t *)mp)->b_wptr += buf_len; 16598 } 16599 } 16600 16601 /* TCP status report triggered via the Named Dispatch mechanism. */ 16602 /* ARGSUSED */ 16603 static int 16604 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16605 { 16606 tcp_t *tcp; 16607 int i; 16608 conn_t *connp; 16609 connf_t *connfp; 16610 zoneid_t zoneid; 16611 tcp_stack_t *tcps; 16612 ip_stack_t *ipst; 16613 16614 zoneid = Q_TO_CONN(q)->conn_zoneid; 16615 tcps = Q_TO_TCP(q)->tcp_tcps; 16616 16617 /* 16618 * Because of the ndd constraint, at most we can have 64K buffer 16619 * to put in all TCP info. So to be more efficient, just 16620 * allocate a 64K buffer here, assuming we need that large buffer. 16621 * This may be a problem as any user can read tcp_status. Therefore 16622 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16623 * This should be OK as normal users should not do this too often. 16624 */ 16625 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16626 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16627 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16628 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16629 return (0); 16630 } 16631 } 16632 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16633 /* The following may work even if we cannot get a large buf. */ 16634 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16635 return (0); 16636 } 16637 16638 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16639 16640 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16641 16642 ipst = tcps->tcps_netstack->netstack_ip; 16643 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16644 16645 connp = NULL; 16646 16647 while ((connp = 16648 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16649 tcp = connp->conn_tcp; 16650 if (zoneid != GLOBAL_ZONEID && 16651 zoneid != connp->conn_zoneid) 16652 continue; 16653 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16654 cr); 16655 } 16656 16657 } 16658 16659 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16660 return (0); 16661 } 16662 16663 /* TCP status report triggered via the Named Dispatch mechanism. */ 16664 /* ARGSUSED */ 16665 static int 16666 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16667 { 16668 tf_t *tbf; 16669 tcp_t *tcp, *ltcp; 16670 int i; 16671 zoneid_t zoneid; 16672 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16673 16674 zoneid = Q_TO_CONN(q)->conn_zoneid; 16675 16676 /* Refer to comments in tcp_status_report(). */ 16677 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16678 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16679 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16680 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16681 return (0); 16682 } 16683 } 16684 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16685 /* The following may work even if we cannot get a large buf. */ 16686 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16687 return (0); 16688 } 16689 16690 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16691 16692 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16693 tbf = &tcps->tcps_bind_fanout[i]; 16694 mutex_enter(&tbf->tf_lock); 16695 for (ltcp = tbf->tf_tcp; ltcp != NULL; 16696 ltcp = ltcp->tcp_bind_hash) { 16697 for (tcp = ltcp; tcp != NULL; 16698 tcp = tcp->tcp_bind_hash_port) { 16699 if (zoneid != GLOBAL_ZONEID && 16700 zoneid != tcp->tcp_connp->conn_zoneid) 16701 continue; 16702 CONN_INC_REF(tcp->tcp_connp); 16703 tcp_report_item(mp->b_cont, tcp, i, 16704 Q_TO_TCP(q), cr); 16705 CONN_DEC_REF(tcp->tcp_connp); 16706 } 16707 } 16708 mutex_exit(&tbf->tf_lock); 16709 } 16710 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16711 return (0); 16712 } 16713 16714 /* TCP status report triggered via the Named Dispatch mechanism. */ 16715 /* ARGSUSED */ 16716 static int 16717 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16718 { 16719 connf_t *connfp; 16720 conn_t *connp; 16721 tcp_t *tcp; 16722 int i; 16723 zoneid_t zoneid; 16724 tcp_stack_t *tcps; 16725 ip_stack_t *ipst; 16726 16727 zoneid = Q_TO_CONN(q)->conn_zoneid; 16728 tcps = Q_TO_TCP(q)->tcp_tcps; 16729 16730 /* Refer to comments in tcp_status_report(). */ 16731 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16732 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16733 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16734 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16735 return (0); 16736 } 16737 } 16738 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16739 /* The following may work even if we cannot get a large buf. */ 16740 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16741 return (0); 16742 } 16743 16744 (void) mi_mpprintf(mp, 16745 " TCP " MI_COL_HDRPAD_STR 16746 "zone IP addr port seqnum backlog (q0/q/max)"); 16747 16748 ipst = tcps->tcps_netstack->netstack_ip; 16749 16750 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16751 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16752 connp = NULL; 16753 while ((connp = 16754 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16755 tcp = connp->conn_tcp; 16756 if (zoneid != GLOBAL_ZONEID && 16757 zoneid != connp->conn_zoneid) 16758 continue; 16759 tcp_report_listener(mp->b_cont, tcp, i); 16760 } 16761 } 16762 16763 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16764 return (0); 16765 } 16766 16767 /* TCP status report triggered via the Named Dispatch mechanism. */ 16768 /* ARGSUSED */ 16769 static int 16770 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16771 { 16772 connf_t *connfp; 16773 conn_t *connp; 16774 tcp_t *tcp; 16775 int i; 16776 zoneid_t zoneid; 16777 tcp_stack_t *tcps; 16778 ip_stack_t *ipst; 16779 16780 zoneid = Q_TO_CONN(q)->conn_zoneid; 16781 tcps = Q_TO_TCP(q)->tcp_tcps; 16782 ipst = tcps->tcps_netstack->netstack_ip; 16783 16784 /* Refer to comments in tcp_status_report(). */ 16785 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16786 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16787 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16788 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16789 return (0); 16790 } 16791 } 16792 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16793 /* The following may work even if we cannot get a large buf. */ 16794 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16795 return (0); 16796 } 16797 16798 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16799 ipst->ips_ipcl_conn_fanout_size); 16800 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16801 16802 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16803 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16804 connp = NULL; 16805 while ((connp = 16806 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16807 tcp = connp->conn_tcp; 16808 if (zoneid != GLOBAL_ZONEID && 16809 zoneid != connp->conn_zoneid) 16810 continue; 16811 tcp_report_item(mp->b_cont, tcp, i, 16812 Q_TO_TCP(q), cr); 16813 } 16814 } 16815 16816 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16817 return (0); 16818 } 16819 16820 /* TCP status report triggered via the Named Dispatch mechanism. */ 16821 /* ARGSUSED */ 16822 static int 16823 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16824 { 16825 tf_t *tf; 16826 tcp_t *tcp; 16827 int i; 16828 zoneid_t zoneid; 16829 tcp_stack_t *tcps; 16830 16831 zoneid = Q_TO_CONN(q)->conn_zoneid; 16832 tcps = Q_TO_TCP(q)->tcp_tcps; 16833 16834 /* Refer to comments in tcp_status_report(). */ 16835 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16836 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16837 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16838 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16839 return (0); 16840 } 16841 } 16842 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16843 /* The following may work even if we cannot get a large buf. */ 16844 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16845 return (0); 16846 } 16847 16848 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16849 16850 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16851 tf = &tcps->tcps_acceptor_fanout[i]; 16852 mutex_enter(&tf->tf_lock); 16853 for (tcp = tf->tf_tcp; tcp != NULL; 16854 tcp = tcp->tcp_acceptor_hash) { 16855 if (zoneid != GLOBAL_ZONEID && 16856 zoneid != tcp->tcp_connp->conn_zoneid) 16857 continue; 16858 tcp_report_item(mp->b_cont, tcp, i, 16859 Q_TO_TCP(q), cr); 16860 } 16861 mutex_exit(&tf->tf_lock); 16862 } 16863 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16864 return (0); 16865 } 16866 16867 /* 16868 * tcp_timer is the timer service routine. It handles the retransmission, 16869 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16870 * from the state of the tcp instance what kind of action needs to be done 16871 * at the time it is called. 16872 */ 16873 static void 16874 tcp_timer(void *arg) 16875 { 16876 mblk_t *mp; 16877 clock_t first_threshold; 16878 clock_t second_threshold; 16879 clock_t ms; 16880 uint32_t mss; 16881 conn_t *connp = (conn_t *)arg; 16882 tcp_t *tcp = connp->conn_tcp; 16883 tcp_stack_t *tcps = tcp->tcp_tcps; 16884 16885 tcp->tcp_timer_tid = 0; 16886 16887 if (tcp->tcp_fused) 16888 return; 16889 16890 first_threshold = tcp->tcp_first_timer_threshold; 16891 second_threshold = tcp->tcp_second_timer_threshold; 16892 switch (tcp->tcp_state) { 16893 case TCPS_IDLE: 16894 case TCPS_BOUND: 16895 case TCPS_LISTEN: 16896 return; 16897 case TCPS_SYN_RCVD: { 16898 tcp_t *listener = tcp->tcp_listener; 16899 16900 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16901 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16902 /* it's our first timeout */ 16903 tcp->tcp_syn_rcvd_timeout = 1; 16904 mutex_enter(&listener->tcp_eager_lock); 16905 listener->tcp_syn_rcvd_timeout++; 16906 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16907 /* 16908 * Make this eager available for drop if we 16909 * need to drop one to accomodate a new 16910 * incoming SYN request. 16911 */ 16912 MAKE_DROPPABLE(listener, tcp); 16913 } 16914 if (!listener->tcp_syn_defense && 16915 (listener->tcp_syn_rcvd_timeout > 16916 (tcps->tcps_conn_req_max_q0 >> 2)) && 16917 (tcps->tcps_conn_req_max_q0 > 200)) { 16918 /* We may be under attack. Put on a defense. */ 16919 listener->tcp_syn_defense = B_TRUE; 16920 cmn_err(CE_WARN, "High TCP connect timeout " 16921 "rate! System (port %d) may be under a " 16922 "SYN flood attack!", 16923 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16924 16925 listener->tcp_ip_addr_cache = kmem_zalloc( 16926 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16927 KM_NOSLEEP); 16928 } 16929 mutex_exit(&listener->tcp_eager_lock); 16930 } else if (listener != NULL) { 16931 mutex_enter(&listener->tcp_eager_lock); 16932 tcp->tcp_syn_rcvd_timeout++; 16933 if (tcp->tcp_syn_rcvd_timeout > 1 && 16934 !tcp->tcp_closemp_used) { 16935 /* 16936 * This is our second timeout. Put the tcp in 16937 * the list of droppable eagers to allow it to 16938 * be dropped, if needed. We don't check 16939 * whether tcp_dontdrop is set or not to 16940 * protect ourselve from a SYN attack where a 16941 * remote host can spoof itself as one of the 16942 * good IP source and continue to hold 16943 * resources too long. 16944 */ 16945 MAKE_DROPPABLE(listener, tcp); 16946 } 16947 mutex_exit(&listener->tcp_eager_lock); 16948 } 16949 } 16950 /* FALLTHRU */ 16951 case TCPS_SYN_SENT: 16952 first_threshold = tcp->tcp_first_ctimer_threshold; 16953 second_threshold = tcp->tcp_second_ctimer_threshold; 16954 break; 16955 case TCPS_ESTABLISHED: 16956 case TCPS_FIN_WAIT_1: 16957 case TCPS_CLOSING: 16958 case TCPS_CLOSE_WAIT: 16959 case TCPS_LAST_ACK: 16960 /* If we have data to rexmit */ 16961 if (tcp->tcp_suna != tcp->tcp_snxt) { 16962 clock_t time_to_wait; 16963 16964 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16965 if (!tcp->tcp_xmit_head) 16966 break; 16967 time_to_wait = lbolt - 16968 (clock_t)tcp->tcp_xmit_head->b_prev; 16969 time_to_wait = tcp->tcp_rto - 16970 TICK_TO_MSEC(time_to_wait); 16971 /* 16972 * If the timer fires too early, 1 clock tick earlier, 16973 * restart the timer. 16974 */ 16975 if (time_to_wait > msec_per_tick) { 16976 TCP_STAT(tcps, tcp_timer_fire_early); 16977 TCP_TIMER_RESTART(tcp, time_to_wait); 16978 return; 16979 } 16980 /* 16981 * When we probe zero windows, we force the swnd open. 16982 * If our peer acks with a closed window swnd will be 16983 * set to zero by tcp_rput(). As long as we are 16984 * receiving acks tcp_rput will 16985 * reset 'tcp_ms_we_have_waited' so as not to trip the 16986 * first and second interval actions. NOTE: the timer 16987 * interval is allowed to continue its exponential 16988 * backoff. 16989 */ 16990 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16991 if (tcp->tcp_debug) { 16992 (void) strlog(TCP_MOD_ID, 0, 1, 16993 SL_TRACE, "tcp_timer: zero win"); 16994 } 16995 } else { 16996 /* 16997 * After retransmission, we need to do 16998 * slow start. Set the ssthresh to one 16999 * half of current effective window and 17000 * cwnd to one MSS. Also reset 17001 * tcp_cwnd_cnt. 17002 * 17003 * Note that if tcp_ssthresh is reduced because 17004 * of ECN, do not reduce it again unless it is 17005 * already one window of data away (tcp_cwr 17006 * should then be cleared) or this is a 17007 * timeout for a retransmitted segment. 17008 */ 17009 uint32_t npkt; 17010 17011 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17012 npkt = ((tcp->tcp_timer_backoff ? 17013 tcp->tcp_cwnd_ssthresh : 17014 tcp->tcp_snxt - 17015 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17016 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17017 tcp->tcp_mss; 17018 } 17019 tcp->tcp_cwnd = tcp->tcp_mss; 17020 tcp->tcp_cwnd_cnt = 0; 17021 if (tcp->tcp_ecn_ok) { 17022 tcp->tcp_cwr = B_TRUE; 17023 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17024 tcp->tcp_ecn_cwr_sent = B_FALSE; 17025 } 17026 } 17027 break; 17028 } 17029 /* 17030 * We have something to send yet we cannot send. The 17031 * reason can be: 17032 * 17033 * 1. Zero send window: we need to do zero window probe. 17034 * 2. Zero cwnd: because of ECN, we need to "clock out 17035 * segments. 17036 * 3. SWS avoidance: receiver may have shrunk window, 17037 * reset our knowledge. 17038 * 17039 * Note that condition 2 can happen with either 1 or 17040 * 3. But 1 and 3 are exclusive. 17041 */ 17042 if (tcp->tcp_unsent != 0) { 17043 if (tcp->tcp_cwnd == 0) { 17044 /* 17045 * Set tcp_cwnd to 1 MSS so that a 17046 * new segment can be sent out. We 17047 * are "clocking out" new data when 17048 * the network is really congested. 17049 */ 17050 ASSERT(tcp->tcp_ecn_ok); 17051 tcp->tcp_cwnd = tcp->tcp_mss; 17052 } 17053 if (tcp->tcp_swnd == 0) { 17054 /* Extend window for zero window probe */ 17055 tcp->tcp_swnd++; 17056 tcp->tcp_zero_win_probe = B_TRUE; 17057 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17058 } else { 17059 /* 17060 * Handle timeout from sender SWS avoidance. 17061 * Reset our knowledge of the max send window 17062 * since the receiver might have reduced its 17063 * receive buffer. Avoid setting tcp_max_swnd 17064 * to one since that will essentially disable 17065 * the SWS checks. 17066 * 17067 * Note that since we don't have a SWS 17068 * state variable, if the timeout is set 17069 * for ECN but not for SWS, this 17070 * code will also be executed. This is 17071 * fine as tcp_max_swnd is updated 17072 * constantly and it will not affect 17073 * anything. 17074 */ 17075 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17076 } 17077 tcp_wput_data(tcp, NULL, B_FALSE); 17078 return; 17079 } 17080 /* Is there a FIN that needs to be to re retransmitted? */ 17081 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17082 !tcp->tcp_fin_acked) 17083 break; 17084 /* Nothing to do, return without restarting timer. */ 17085 TCP_STAT(tcps, tcp_timer_fire_miss); 17086 return; 17087 case TCPS_FIN_WAIT_2: 17088 /* 17089 * User closed the TCP endpoint and peer ACK'ed our FIN. 17090 * We waited some time for for peer's FIN, but it hasn't 17091 * arrived. We flush the connection now to avoid 17092 * case where the peer has rebooted. 17093 */ 17094 if (TCP_IS_DETACHED(tcp)) { 17095 (void) tcp_clean_death(tcp, 0, 23); 17096 } else { 17097 TCP_TIMER_RESTART(tcp, 17098 tcps->tcps_fin_wait_2_flush_interval); 17099 } 17100 return; 17101 case TCPS_TIME_WAIT: 17102 (void) tcp_clean_death(tcp, 0, 24); 17103 return; 17104 default: 17105 if (tcp->tcp_debug) { 17106 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17107 "tcp_timer: strange state (%d) %s", 17108 tcp->tcp_state, tcp_display(tcp, NULL, 17109 DISP_PORT_ONLY)); 17110 } 17111 return; 17112 } 17113 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17114 /* 17115 * For zero window probe, we need to send indefinitely, 17116 * unless we have not heard from the other side for some 17117 * time... 17118 */ 17119 if ((tcp->tcp_zero_win_probe == 0) || 17120 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17121 second_threshold)) { 17122 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17123 /* 17124 * If TCP is in SYN_RCVD state, send back a 17125 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17126 * should be zero in TCPS_SYN_RCVD state. 17127 */ 17128 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17129 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17130 "in SYN_RCVD", 17131 tcp, tcp->tcp_snxt, 17132 tcp->tcp_rnxt, TH_RST | TH_ACK); 17133 } 17134 (void) tcp_clean_death(tcp, 17135 tcp->tcp_client_errno ? 17136 tcp->tcp_client_errno : ETIMEDOUT, 25); 17137 return; 17138 } else { 17139 /* 17140 * Set tcp_ms_we_have_waited to second_threshold 17141 * so that in next timeout, we will do the above 17142 * check (lbolt - tcp_last_recv_time). This is 17143 * also to avoid overflow. 17144 * 17145 * We don't need to decrement tcp_timer_backoff 17146 * to avoid overflow because it will be decremented 17147 * later if new timeout value is greater than 17148 * tcp_rexmit_interval_max. In the case when 17149 * tcp_rexmit_interval_max is greater than 17150 * second_threshold, it means that we will wait 17151 * longer than second_threshold to send the next 17152 * window probe. 17153 */ 17154 tcp->tcp_ms_we_have_waited = second_threshold; 17155 } 17156 } else if (ms > first_threshold) { 17157 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17158 tcp->tcp_xmit_head != NULL) { 17159 tcp->tcp_xmit_head = 17160 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17161 } 17162 /* 17163 * We have been retransmitting for too long... The RTT 17164 * we calculated is probably incorrect. Reinitialize it. 17165 * Need to compensate for 0 tcp_rtt_sa. Reset 17166 * tcp_rtt_update so that we won't accidentally cache a 17167 * bad value. But only do this if this is not a zero 17168 * window probe. 17169 */ 17170 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17171 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17172 (tcp->tcp_rtt_sa >> 5); 17173 tcp->tcp_rtt_sa = 0; 17174 tcp_ip_notify(tcp); 17175 tcp->tcp_rtt_update = 0; 17176 } 17177 } 17178 tcp->tcp_timer_backoff++; 17179 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17180 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17181 tcps->tcps_rexmit_interval_min) { 17182 /* 17183 * This means the original RTO is tcp_rexmit_interval_min. 17184 * So we will use tcp_rexmit_interval_min as the RTO value 17185 * and do the backoff. 17186 */ 17187 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17188 } else { 17189 ms <<= tcp->tcp_timer_backoff; 17190 } 17191 if (ms > tcps->tcps_rexmit_interval_max) { 17192 ms = tcps->tcps_rexmit_interval_max; 17193 /* 17194 * ms is at max, decrement tcp_timer_backoff to avoid 17195 * overflow. 17196 */ 17197 tcp->tcp_timer_backoff--; 17198 } 17199 tcp->tcp_ms_we_have_waited += ms; 17200 if (tcp->tcp_zero_win_probe == 0) { 17201 tcp->tcp_rto = ms; 17202 } 17203 TCP_TIMER_RESTART(tcp, ms); 17204 /* 17205 * This is after a timeout and tcp_rto is backed off. Set 17206 * tcp_set_timer to 1 so that next time RTO is updated, we will 17207 * restart the timer with a correct value. 17208 */ 17209 tcp->tcp_set_timer = 1; 17210 mss = tcp->tcp_snxt - tcp->tcp_suna; 17211 if (mss > tcp->tcp_mss) 17212 mss = tcp->tcp_mss; 17213 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17214 mss = tcp->tcp_swnd; 17215 17216 if ((mp = tcp->tcp_xmit_head) != NULL) 17217 mp->b_prev = (mblk_t *)lbolt; 17218 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17219 B_TRUE); 17220 17221 /* 17222 * When slow start after retransmission begins, start with 17223 * this seq no. tcp_rexmit_max marks the end of special slow 17224 * start phase. tcp_snd_burst controls how many segments 17225 * can be sent because of an ack. 17226 */ 17227 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17228 tcp->tcp_snd_burst = TCP_CWND_SS; 17229 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17230 (tcp->tcp_unsent == 0)) { 17231 tcp->tcp_rexmit_max = tcp->tcp_fss; 17232 } else { 17233 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17234 } 17235 tcp->tcp_rexmit = B_TRUE; 17236 tcp->tcp_dupack_cnt = 0; 17237 17238 /* 17239 * Remove all rexmit SACK blk to start from fresh. 17240 */ 17241 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17242 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17243 tcp->tcp_num_notsack_blk = 0; 17244 tcp->tcp_cnt_notsack_list = 0; 17245 } 17246 if (mp == NULL) { 17247 return; 17248 } 17249 /* Attach credentials to retransmitted initial SYNs. */ 17250 if (tcp->tcp_state == TCPS_SYN_SENT) { 17251 mblk_setcred(mp, tcp->tcp_cred); 17252 DB_CPID(mp) = tcp->tcp_cpid; 17253 } 17254 17255 tcp->tcp_csuna = tcp->tcp_snxt; 17256 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17257 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17258 tcp_send_data(tcp, tcp->tcp_wq, mp); 17259 17260 } 17261 17262 static int 17263 tcp_do_unbind(conn_t *connp) 17264 { 17265 tcp_t *tcp = connp->conn_tcp; 17266 int error = 0; 17267 17268 switch (tcp->tcp_state) { 17269 case TCPS_BOUND: 17270 case TCPS_LISTEN: 17271 break; 17272 default: 17273 return (-TOUTSTATE); 17274 } 17275 17276 /* 17277 * Need to clean up all the eagers since after the unbind, segments 17278 * will no longer be delivered to this listener stream. 17279 */ 17280 mutex_enter(&tcp->tcp_eager_lock); 17281 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17282 tcp_eager_cleanup(tcp, 0); 17283 } 17284 mutex_exit(&tcp->tcp_eager_lock); 17285 17286 if (tcp->tcp_ipversion == IPV4_VERSION) { 17287 tcp->tcp_ipha->ipha_src = 0; 17288 } else { 17289 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17290 } 17291 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17292 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17293 tcp_bind_hash_remove(tcp); 17294 tcp->tcp_state = TCPS_IDLE; 17295 tcp->tcp_mdt = B_FALSE; 17296 17297 connp = tcp->tcp_connp; 17298 connp->conn_mdt_ok = B_FALSE; 17299 ipcl_hash_remove(connp); 17300 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17301 17302 return (error); 17303 } 17304 17305 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17306 static void 17307 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 17308 { 17309 int error = tcp_do_unbind(tcp->tcp_connp); 17310 17311 if (error > 0) { 17312 tcp_err_ack(tcp, mp, TSYSERR, error); 17313 } else if (error < 0) { 17314 tcp_err_ack(tcp, mp, -error, 0); 17315 } else { 17316 /* Send M_FLUSH according to TPI */ 17317 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17318 17319 mp = mi_tpi_ok_ack_alloc(mp); 17320 putnext(tcp->tcp_rq, mp); 17321 } 17322 } 17323 17324 /* 17325 * Don't let port fall into the privileged range. 17326 * Since the extra privileged ports can be arbitrary we also 17327 * ensure that we exclude those from consideration. 17328 * tcp_g_epriv_ports is not sorted thus we loop over it until 17329 * there are no changes. 17330 * 17331 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17332 * but instead the code relies on: 17333 * - the fact that the address of the array and its size never changes 17334 * - the atomic assignment of the elements of the array 17335 * 17336 * Returns 0 if there are no more ports available. 17337 * 17338 * TS note: skip multilevel ports. 17339 */ 17340 static in_port_t 17341 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17342 { 17343 int i; 17344 boolean_t restart = B_FALSE; 17345 tcp_stack_t *tcps = tcp->tcp_tcps; 17346 17347 if (random && tcp_random_anon_port != 0) { 17348 (void) random_get_pseudo_bytes((uint8_t *)&port, 17349 sizeof (in_port_t)); 17350 /* 17351 * Unless changed by a sys admin, the smallest anon port 17352 * is 32768 and the largest anon port is 65535. It is 17353 * very likely (50%) for the random port to be smaller 17354 * than the smallest anon port. When that happens, 17355 * add port % (anon port range) to the smallest anon 17356 * port to get the random port. It should fall into the 17357 * valid anon port range. 17358 */ 17359 if (port < tcps->tcps_smallest_anon_port) { 17360 port = tcps->tcps_smallest_anon_port + 17361 port % (tcps->tcps_largest_anon_port - 17362 tcps->tcps_smallest_anon_port); 17363 } 17364 } 17365 17366 retry: 17367 if (port < tcps->tcps_smallest_anon_port) 17368 port = (in_port_t)tcps->tcps_smallest_anon_port; 17369 17370 if (port > tcps->tcps_largest_anon_port) { 17371 if (restart) 17372 return (0); 17373 restart = B_TRUE; 17374 port = (in_port_t)tcps->tcps_smallest_anon_port; 17375 } 17376 17377 if (port < tcps->tcps_smallest_nonpriv_port) 17378 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17379 17380 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17381 if (port == tcps->tcps_g_epriv_ports[i]) { 17382 port++; 17383 /* 17384 * Make sure whether the port is in the 17385 * valid range. 17386 */ 17387 goto retry; 17388 } 17389 } 17390 if (is_system_labeled() && 17391 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17392 IPPROTO_TCP, B_TRUE)) != 0) { 17393 port = i; 17394 goto retry; 17395 } 17396 return (port); 17397 } 17398 17399 /* 17400 * Return the next anonymous port in the privileged port range for 17401 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17402 * downwards. This is the same behavior as documented in the userland 17403 * library call rresvport(3N). 17404 * 17405 * TS note: skip multilevel ports. 17406 */ 17407 static in_port_t 17408 tcp_get_next_priv_port(const tcp_t *tcp) 17409 { 17410 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17411 in_port_t nextport; 17412 boolean_t restart = B_FALSE; 17413 tcp_stack_t *tcps = tcp->tcp_tcps; 17414 retry: 17415 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17416 next_priv_port >= IPPORT_RESERVED) { 17417 next_priv_port = IPPORT_RESERVED - 1; 17418 if (restart) 17419 return (0); 17420 restart = B_TRUE; 17421 } 17422 if (is_system_labeled() && 17423 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17424 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17425 next_priv_port = nextport; 17426 goto retry; 17427 } 17428 return (next_priv_port--); 17429 } 17430 17431 /* The write side r/w procedure. */ 17432 17433 #if CCS_STATS 17434 struct { 17435 struct { 17436 int64_t count, bytes; 17437 } tot, hit; 17438 } wrw_stats; 17439 #endif 17440 17441 /* 17442 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17443 * messages. 17444 */ 17445 /* ARGSUSED */ 17446 static void 17447 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17448 { 17449 conn_t *connp = (conn_t *)arg; 17450 tcp_t *tcp = connp->conn_tcp; 17451 queue_t *q = tcp->tcp_wq; 17452 17453 ASSERT(DB_TYPE(mp) != M_IOCTL); 17454 /* 17455 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17456 * Once the close starts, streamhead and sockfs will not let any data 17457 * packets come down (close ensures that there are no threads using the 17458 * queue and no new threads will come down) but since qprocsoff() 17459 * hasn't happened yet, a M_FLUSH or some non data message might 17460 * get reflected back (in response to our own FLUSHRW) and get 17461 * processed after tcp_close() is done. The conn would still be valid 17462 * because a ref would have added but we need to check the state 17463 * before actually processing the packet. 17464 */ 17465 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17466 freemsg(mp); 17467 return; 17468 } 17469 17470 switch (DB_TYPE(mp)) { 17471 case M_IOCDATA: 17472 tcp_wput_iocdata(tcp, mp); 17473 break; 17474 case M_FLUSH: 17475 tcp_wput_flush(tcp, mp); 17476 break; 17477 default: 17478 CALL_IP_WPUT(connp, q, mp); 17479 break; 17480 } 17481 } 17482 17483 /* 17484 * The TCP fast path write put procedure. 17485 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17486 */ 17487 /* ARGSUSED */ 17488 void 17489 tcp_output(void *arg, mblk_t *mp, void *arg2) 17490 { 17491 int len; 17492 int hdrlen; 17493 int plen; 17494 mblk_t *mp1; 17495 uchar_t *rptr; 17496 uint32_t snxt; 17497 tcph_t *tcph; 17498 struct datab *db; 17499 uint32_t suna; 17500 uint32_t mss; 17501 ipaddr_t *dst; 17502 ipaddr_t *src; 17503 uint32_t sum; 17504 int usable; 17505 conn_t *connp = (conn_t *)arg; 17506 tcp_t *tcp = connp->conn_tcp; 17507 uint32_t msize; 17508 tcp_stack_t *tcps = tcp->tcp_tcps; 17509 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17510 17511 /* 17512 * Try and ASSERT the minimum possible references on the 17513 * conn early enough. Since we are executing on write side, 17514 * the connection is obviously not detached and that means 17515 * there is a ref each for TCP and IP. Since we are behind 17516 * the squeue, the minimum references needed are 3. If the 17517 * conn is in classifier hash list, there should be an 17518 * extra ref for that (we check both the possibilities). 17519 */ 17520 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17521 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17522 17523 ASSERT(DB_TYPE(mp) == M_DATA); 17524 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17525 17526 mutex_enter(&tcp->tcp_non_sq_lock); 17527 tcp->tcp_squeue_bytes -= msize; 17528 mutex_exit(&tcp->tcp_non_sq_lock); 17529 17530 /* Check to see if this connection wants to be re-fused. */ 17531 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17532 if (tcp->tcp_ipversion == IPV4_VERSION) { 17533 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17534 &tcp->tcp_saved_tcph); 17535 } else { 17536 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17537 &tcp->tcp_saved_tcph); 17538 } 17539 } 17540 /* Bypass tcp protocol for fused tcp loopback */ 17541 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17542 return; 17543 17544 mss = tcp->tcp_mss; 17545 if (tcp->tcp_xmit_zc_clean) 17546 mp = tcp_zcopy_backoff(tcp, mp, 0); 17547 17548 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17549 len = (int)(mp->b_wptr - mp->b_rptr); 17550 17551 /* 17552 * Criteria for fast path: 17553 * 17554 * 1. no unsent data 17555 * 2. single mblk in request 17556 * 3. connection established 17557 * 4. data in mblk 17558 * 5. len <= mss 17559 * 6. no tcp_valid bits 17560 */ 17561 if ((tcp->tcp_unsent != 0) || 17562 (tcp->tcp_cork) || 17563 (mp->b_cont != NULL) || 17564 (tcp->tcp_state != TCPS_ESTABLISHED) || 17565 (len == 0) || 17566 (len > mss) || 17567 (tcp->tcp_valid_bits != 0)) { 17568 tcp_wput_data(tcp, mp, B_FALSE); 17569 return; 17570 } 17571 17572 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17573 ASSERT(tcp->tcp_fin_sent == 0); 17574 17575 /* queue new packet onto retransmission queue */ 17576 if (tcp->tcp_xmit_head == NULL) { 17577 tcp->tcp_xmit_head = mp; 17578 } else { 17579 tcp->tcp_xmit_last->b_cont = mp; 17580 } 17581 tcp->tcp_xmit_last = mp; 17582 tcp->tcp_xmit_tail = mp; 17583 17584 /* find out how much we can send */ 17585 /* BEGIN CSTYLED */ 17586 /* 17587 * un-acked usable 17588 * |--------------|-----------------| 17589 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17590 */ 17591 /* END CSTYLED */ 17592 17593 /* start sending from tcp_snxt */ 17594 snxt = tcp->tcp_snxt; 17595 17596 /* 17597 * Check to see if this connection has been idled for some 17598 * time and no ACK is expected. If it is, we need to slow 17599 * start again to get back the connection's "self-clock" as 17600 * described in VJ's paper. 17601 * 17602 * Refer to the comment in tcp_mss_set() for the calculation 17603 * of tcp_cwnd after idle. 17604 */ 17605 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17606 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17607 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17608 } 17609 17610 usable = tcp->tcp_swnd; /* tcp window size */ 17611 if (usable > tcp->tcp_cwnd) 17612 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17613 usable -= snxt; /* subtract stuff already sent */ 17614 suna = tcp->tcp_suna; 17615 usable += suna; 17616 /* usable can be < 0 if the congestion window is smaller */ 17617 if (len > usable) { 17618 /* Can't send complete M_DATA in one shot */ 17619 goto slow; 17620 } 17621 17622 mutex_enter(&tcp->tcp_non_sq_lock); 17623 if (tcp->tcp_flow_stopped && 17624 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17625 tcp_clrqfull(tcp); 17626 } 17627 mutex_exit(&tcp->tcp_non_sq_lock); 17628 17629 /* 17630 * determine if anything to send (Nagle). 17631 * 17632 * 1. len < tcp_mss (i.e. small) 17633 * 2. unacknowledged data present 17634 * 3. len < nagle limit 17635 * 4. last packet sent < nagle limit (previous packet sent) 17636 */ 17637 if ((len < mss) && (snxt != suna) && 17638 (len < (int)tcp->tcp_naglim) && 17639 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17640 /* 17641 * This was the first unsent packet and normally 17642 * mss < xmit_hiwater so there is no need to worry 17643 * about flow control. The next packet will go 17644 * through the flow control check in tcp_wput_data(). 17645 */ 17646 /* leftover work from above */ 17647 tcp->tcp_unsent = len; 17648 tcp->tcp_xmit_tail_unsent = len; 17649 17650 return; 17651 } 17652 17653 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17654 17655 if (snxt == suna) { 17656 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17657 } 17658 17659 /* we have always sent something */ 17660 tcp->tcp_rack_cnt = 0; 17661 17662 tcp->tcp_snxt = snxt + len; 17663 tcp->tcp_rack = tcp->tcp_rnxt; 17664 17665 if ((mp1 = dupb(mp)) == 0) 17666 goto no_memory; 17667 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17668 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17669 17670 /* adjust tcp header information */ 17671 tcph = tcp->tcp_tcph; 17672 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17673 17674 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17675 sum = (sum >> 16) + (sum & 0xFFFF); 17676 U16_TO_ABE16(sum, tcph->th_sum); 17677 17678 U32_TO_ABE32(snxt, tcph->th_seq); 17679 17680 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17681 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17682 BUMP_LOCAL(tcp->tcp_obsegs); 17683 17684 /* Update the latest receive window size in TCP header. */ 17685 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17686 tcph->th_win); 17687 17688 tcp->tcp_last_sent_len = (ushort_t)len; 17689 17690 plen = len + tcp->tcp_hdr_len; 17691 17692 if (tcp->tcp_ipversion == IPV4_VERSION) { 17693 tcp->tcp_ipha->ipha_length = htons(plen); 17694 } else { 17695 tcp->tcp_ip6h->ip6_plen = htons(plen - 17696 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17697 } 17698 17699 /* see if we need to allocate a mblk for the headers */ 17700 hdrlen = tcp->tcp_hdr_len; 17701 rptr = mp1->b_rptr - hdrlen; 17702 db = mp1->b_datap; 17703 if ((db->db_ref != 2) || rptr < db->db_base || 17704 (!OK_32PTR(rptr))) { 17705 /* NOTE: we assume allocb returns an OK_32PTR */ 17706 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17707 tcps->tcps_wroff_xtra, BPRI_MED); 17708 if (!mp) { 17709 freemsg(mp1); 17710 goto no_memory; 17711 } 17712 mp->b_cont = mp1; 17713 mp1 = mp; 17714 /* Leave room for Link Level header */ 17715 /* hdrlen = tcp->tcp_hdr_len; */ 17716 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17717 mp1->b_wptr = &rptr[hdrlen]; 17718 } 17719 mp1->b_rptr = rptr; 17720 17721 /* Fill in the timestamp option. */ 17722 if (tcp->tcp_snd_ts_ok) { 17723 U32_TO_BE32((uint32_t)lbolt, 17724 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17725 U32_TO_BE32(tcp->tcp_ts_recent, 17726 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17727 } else { 17728 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17729 } 17730 17731 /* copy header into outgoing packet */ 17732 dst = (ipaddr_t *)rptr; 17733 src = (ipaddr_t *)tcp->tcp_iphc; 17734 dst[0] = src[0]; 17735 dst[1] = src[1]; 17736 dst[2] = src[2]; 17737 dst[3] = src[3]; 17738 dst[4] = src[4]; 17739 dst[5] = src[5]; 17740 dst[6] = src[6]; 17741 dst[7] = src[7]; 17742 dst[8] = src[8]; 17743 dst[9] = src[9]; 17744 if (hdrlen -= 40) { 17745 hdrlen >>= 2; 17746 dst += 10; 17747 src += 10; 17748 do { 17749 *dst++ = *src++; 17750 } while (--hdrlen); 17751 } 17752 17753 /* 17754 * Set the ECN info in the TCP header. Note that this 17755 * is not the template header. 17756 */ 17757 if (tcp->tcp_ecn_ok) { 17758 SET_ECT(tcp, rptr); 17759 17760 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17761 if (tcp->tcp_ecn_echo_on) 17762 tcph->th_flags[0] |= TH_ECE; 17763 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17764 tcph->th_flags[0] |= TH_CWR; 17765 tcp->tcp_ecn_cwr_sent = B_TRUE; 17766 } 17767 } 17768 17769 if (tcp->tcp_ip_forward_progress) { 17770 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17771 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17772 tcp->tcp_ip_forward_progress = B_FALSE; 17773 } 17774 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17775 return; 17776 17777 /* 17778 * If we ran out of memory, we pretend to have sent the packet 17779 * and that it was lost on the wire. 17780 */ 17781 no_memory: 17782 return; 17783 17784 slow: 17785 /* leftover work from above */ 17786 tcp->tcp_unsent = len; 17787 tcp->tcp_xmit_tail_unsent = len; 17788 tcp_wput_data(tcp, NULL, B_FALSE); 17789 } 17790 17791 /* ARGSUSED */ 17792 void 17793 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17794 { 17795 conn_t *connp = (conn_t *)arg; 17796 tcp_t *tcp = connp->conn_tcp; 17797 queue_t *q = tcp->tcp_rq; 17798 struct tcp_options *tcpopt; 17799 tcp_stack_t *tcps = tcp->tcp_tcps; 17800 17801 /* socket options */ 17802 uint_t sopp_flags; 17803 ssize_t sopp_rxhiwat; 17804 ssize_t sopp_maxblk; 17805 ushort_t sopp_wroff; 17806 ushort_t sopp_tail; 17807 ushort_t sopp_copyopt; 17808 17809 tcpopt = (struct tcp_options *)mp->b_rptr; 17810 17811 /* 17812 * Drop the eager's ref on the listener, that was placed when 17813 * this eager began life in tcp_conn_request. 17814 */ 17815 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17816 if (IPCL_IS_NONSTR(connp)) { 17817 /* Safe to free conn_ind message */ 17818 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17819 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17820 17821 /* The listener tells us which upper handle to use */ 17822 ASSERT(tcpopt->to_flags & TCPOPT_UPPERHANDLE); 17823 connp->conn_upper_handle = tcpopt->to_handle; 17824 } 17825 17826 tcp->tcp_detached = B_FALSE; 17827 17828 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17829 /* 17830 * Someone blewoff the eager before we could finish 17831 * the accept. 17832 * 17833 * The only reason eager exists it because we put in 17834 * a ref on it when conn ind went up. We need to send 17835 * a disconnect indication up while the last reference 17836 * on the eager will be dropped by the squeue when we 17837 * return. 17838 */ 17839 ASSERT(tcp->tcp_listener == NULL); 17840 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17841 if (IPCL_IS_NONSTR(connp)) { 17842 ASSERT(tcp->tcp_issocket); 17843 (*connp->conn_upcalls->su_disconnected)( 17844 connp->conn_upper_handle, tcp->tcp_connid, 17845 ECONNREFUSED); 17846 freemsg(mp); 17847 } else { 17848 struct T_discon_ind *tdi; 17849 17850 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17851 /* 17852 * Let us reuse the incoming mblk to avoid 17853 * memory allocation failure problems. We know 17854 * that the size of the incoming mblk i.e. 17855 * stroptions is greater than sizeof 17856 * T_discon_ind. So the reallocb below can't 17857 * fail. 17858 */ 17859 freemsg(mp->b_cont); 17860 mp->b_cont = NULL; 17861 ASSERT(DB_REF(mp) == 1); 17862 mp = reallocb(mp, sizeof (struct T_discon_ind), 17863 B_FALSE); 17864 ASSERT(mp != NULL); 17865 DB_TYPE(mp) = M_PROTO; 17866 ((union T_primitives *)mp->b_rptr)->type = 17867 T_DISCON_IND; 17868 tdi = (struct T_discon_ind *)mp->b_rptr; 17869 if (tcp->tcp_issocket) { 17870 tdi->DISCON_reason = ECONNREFUSED; 17871 tdi->SEQ_number = 0; 17872 } else { 17873 tdi->DISCON_reason = ENOPROTOOPT; 17874 tdi->SEQ_number = 17875 tcp->tcp_conn_req_seqnum; 17876 } 17877 mp->b_wptr = mp->b_rptr + 17878 sizeof (struct T_discon_ind); 17879 putnext(q, mp); 17880 return; 17881 } 17882 } 17883 if (tcp->tcp_hard_binding) { 17884 tcp->tcp_hard_binding = B_FALSE; 17885 tcp->tcp_hard_bound = B_TRUE; 17886 } 17887 return; 17888 } 17889 17890 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17891 int boundif = tcpopt->to_boundif; 17892 uint_t len = sizeof (int); 17893 17894 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17895 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17896 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17897 } 17898 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17899 uint_t on = 1; 17900 uint_t len = sizeof (uint_t); 17901 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17902 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17903 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17904 } 17905 17906 /* 17907 * For a loopback connection with tcp_direct_sockfs on, note that 17908 * we don't have to protect tcp_rcv_list yet because synchronous 17909 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17910 * possibly race with us. 17911 */ 17912 17913 /* 17914 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17915 * properly. This is the first time we know of the acceptor' 17916 * queue. So we do it here. 17917 * 17918 * XXX 17919 */ 17920 if (tcp->tcp_rcv_list == NULL) { 17921 /* 17922 * Recv queue is empty, tcp_rwnd should not have changed. 17923 * That means it should be equal to the listener's tcp_rwnd. 17924 */ 17925 if (!IPCL_IS_NONSTR(connp)) 17926 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17927 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17928 } else { 17929 #ifdef DEBUG 17930 mblk_t *tmp; 17931 mblk_t *mp1; 17932 uint_t cnt = 0; 17933 17934 mp1 = tcp->tcp_rcv_list; 17935 while ((tmp = mp1) != NULL) { 17936 mp1 = tmp->b_next; 17937 cnt += msgdsize(tmp); 17938 } 17939 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17940 #endif 17941 /* There is some data, add them back to get the max. */ 17942 if (!IPCL_IS_NONSTR(connp)) 17943 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17944 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17945 } 17946 /* 17947 * This is the first time we run on the correct 17948 * queue after tcp_accept. So fix all the q parameters 17949 * here. 17950 */ 17951 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17952 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17953 17954 /* 17955 * Record the stream head's high water mark for this endpoint; 17956 * this is used for flow-control purposes. 17957 */ 17958 sopp_rxhiwat = tcp->tcp_fused ? 17959 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17960 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17961 17962 /* 17963 * Determine what write offset value to use depending on SACK and 17964 * whether the endpoint is fused or not. 17965 */ 17966 if (tcp->tcp_fused) { 17967 ASSERT(tcp->tcp_loopback); 17968 ASSERT(tcp->tcp_loopback_peer != NULL); 17969 /* 17970 * For fused tcp loopback, set the stream head's write 17971 * offset value to zero since we won't be needing any room 17972 * for TCP/IP headers. This would also improve performance 17973 * since it would reduce the amount of work done by kmem. 17974 * Non-fused tcp loopback case is handled separately below. 17975 */ 17976 sopp_wroff = 0; 17977 /* 17978 * Update the peer's transmit parameters according to 17979 * our recently calculated high water mark value. 17980 */ 17981 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17982 } else if (tcp->tcp_snd_sack_ok) { 17983 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17984 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17985 } else { 17986 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17987 tcps->tcps_wroff_xtra); 17988 } 17989 17990 /* 17991 * If this is endpoint is handling SSL, then reserve extra 17992 * offset and space at the end. 17993 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17994 * overriding the previous setting. The extra cost of signing and 17995 * encrypting multiple MSS-size records (12 of them with Ethernet), 17996 * instead of a single contiguous one by the stream head 17997 * largely outweighs the statistical reduction of ACKs, when 17998 * applicable. The peer will also save on decryption and verification 17999 * costs. 18000 */ 18001 if (tcp->tcp_kssl_ctx != NULL) { 18002 sopp_wroff += SSL3_WROFFSET; 18003 18004 sopp_flags |= SOCKOPT_TAIL; 18005 sopp_tail = SSL3_MAX_TAIL_LEN; 18006 18007 sopp_flags |= SOCKOPT_ZCOPY; 18008 sopp_copyopt = ZCVMUNSAFE; 18009 18010 sopp_maxblk = SSL3_MAX_RECORD_LEN; 18011 } 18012 18013 /* Send the options up */ 18014 if (IPCL_IS_NONSTR(connp)) { 18015 struct sock_proto_props sopp; 18016 18017 sopp.sopp_flags = sopp_flags; 18018 sopp.sopp_wroff = sopp_wroff; 18019 sopp.sopp_maxblk = sopp_maxblk; 18020 sopp.sopp_rxhiwat = sopp_rxhiwat; 18021 if (sopp_flags & SOCKOPT_TAIL) { 18022 ASSERT(tcp->tcp_kssl_ctx != NULL); 18023 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 18024 sopp.sopp_tail = sopp_tail; 18025 sopp.sopp_zcopyflag = sopp_copyopt; 18026 } 18027 (*connp->conn_upcalls->su_set_proto_props) 18028 (connp->conn_upper_handle, &sopp); 18029 } else { 18030 struct stroptions *stropt; 18031 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18032 if (stropt_mp == NULL) { 18033 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 18034 return; 18035 } 18036 DB_TYPE(stropt_mp) = M_SETOPTS; 18037 stropt = (struct stroptions *)stropt_mp->b_rptr; 18038 stropt_mp->b_wptr += sizeof (struct stroptions); 18039 stropt = (struct stroptions *)stropt_mp->b_rptr; 18040 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 18041 stropt->so_hiwat = sopp_rxhiwat; 18042 stropt->so_wroff = sopp_wroff; 18043 stropt->so_maxblk = sopp_maxblk; 18044 18045 if (sopp_flags & SOCKOPT_TAIL) { 18046 ASSERT(tcp->tcp_kssl_ctx != NULL); 18047 18048 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 18049 stropt->so_tail = sopp_tail; 18050 stropt->so_copyopt = sopp_copyopt; 18051 } 18052 18053 /* Send the options up */ 18054 putnext(q, stropt_mp); 18055 } 18056 18057 freemsg(mp); 18058 /* 18059 * Pass up any data and/or a fin that has been received. 18060 * 18061 * Adjust receive window in case it had decreased 18062 * (because there is data <=> tcp_rcv_list != NULL) 18063 * while the connection was detached. Note that 18064 * in case the eager was flow-controlled, w/o this 18065 * code, the rwnd may never open up again! 18066 */ 18067 if (tcp->tcp_rcv_list != NULL) { 18068 if (IPCL_IS_NONSTR(connp)) { 18069 mblk_t *mp; 18070 int space_left; 18071 int error; 18072 boolean_t push = B_TRUE; 18073 18074 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 18075 (connp->conn_upper_handle, NULL, 0, 0, &error, 18076 &push) >= 0) { 18077 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 18078 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18079 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18080 tcp_xmit_ctl(NULL, 18081 tcp, (tcp->tcp_swnd == 0) ? 18082 tcp->tcp_suna : tcp->tcp_snxt, 18083 tcp->tcp_rnxt, TH_ACK); 18084 } 18085 } 18086 while ((mp = tcp->tcp_rcv_list) != NULL) { 18087 push = B_TRUE; 18088 tcp->tcp_rcv_list = mp->b_next; 18089 mp->b_next = NULL; 18090 space_left = (*connp->conn_upcalls->su_recv) 18091 (connp->conn_upper_handle, mp, msgdsize(mp), 18092 0, &error, &push); 18093 if (space_left < 0) { 18094 /* 18095 * At this point the eager is not 18096 * visible to anyone, so fallback 18097 * can not happen. 18098 */ 18099 ASSERT(error != EOPNOTSUPP); 18100 } 18101 } 18102 tcp->tcp_rcv_last_head = NULL; 18103 tcp->tcp_rcv_last_tail = NULL; 18104 tcp->tcp_rcv_cnt = 0; 18105 } else { 18106 /* We drain directly in case of fused tcp loopback */ 18107 sodirect_t *sodp; 18108 18109 if (!tcp->tcp_fused && canputnext(q)) { 18110 tcp->tcp_rwnd = q->q_hiwat; 18111 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18112 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18113 tcp_xmit_ctl(NULL, 18114 tcp, (tcp->tcp_swnd == 0) ? 18115 tcp->tcp_suna : tcp->tcp_snxt, 18116 tcp->tcp_rnxt, TH_ACK); 18117 } 18118 } 18119 18120 SOD_PTR_ENTER(tcp, sodp); 18121 if (sodp != NULL) { 18122 /* Sodirect, move from rcv_list */ 18123 ASSERT(!tcp->tcp_fused); 18124 while ((mp = tcp->tcp_rcv_list) != NULL) { 18125 tcp->tcp_rcv_list = mp->b_next; 18126 mp->b_next = NULL; 18127 (void) tcp_rcv_sod_enqueue(tcp, sodp, 18128 mp, msgdsize(mp)); 18129 } 18130 tcp->tcp_rcv_last_head = NULL; 18131 tcp->tcp_rcv_last_tail = NULL; 18132 tcp->tcp_rcv_cnt = 0; 18133 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18134 /* sod_wakeup() did the mutex_exit() */ 18135 } else { 18136 /* Not sodirect, drain */ 18137 (void) tcp_rcv_drain(tcp); 18138 } 18139 } 18140 18141 /* 18142 * For fused tcp loopback, back-enable peer endpoint 18143 * if it's currently flow-controlled. 18144 */ 18145 if (tcp->tcp_fused) { 18146 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18147 18148 ASSERT(peer_tcp != NULL); 18149 ASSERT(peer_tcp->tcp_fused); 18150 /* 18151 * In order to change the peer's tcp_flow_stopped, 18152 * we need to take locks for both end points. The 18153 * highest address is taken first. 18154 */ 18155 if (peer_tcp > tcp) { 18156 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18157 mutex_enter(&tcp->tcp_non_sq_lock); 18158 } else { 18159 mutex_enter(&tcp->tcp_non_sq_lock); 18160 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18161 } 18162 if (peer_tcp->tcp_flow_stopped) { 18163 tcp_clrqfull(peer_tcp); 18164 TCP_STAT(tcps, tcp_fusion_backenabled); 18165 } 18166 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18167 mutex_exit(&tcp->tcp_non_sq_lock); 18168 } 18169 } 18170 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18171 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18172 tcp->tcp_ordrel_done = B_TRUE; 18173 if (IPCL_IS_NONSTR(connp)) { 18174 ASSERT(tcp->tcp_ordrel_mp == NULL); 18175 (*connp->conn_upcalls->su_opctl)( 18176 connp->conn_upper_handle, 18177 SOCK_OPCTL_SHUT_RECV, 0); 18178 } else { 18179 mp = tcp->tcp_ordrel_mp; 18180 tcp->tcp_ordrel_mp = NULL; 18181 putnext(q, mp); 18182 } 18183 } 18184 if (tcp->tcp_hard_binding) { 18185 tcp->tcp_hard_binding = B_FALSE; 18186 tcp->tcp_hard_bound = B_TRUE; 18187 } 18188 18189 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 18190 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 18191 tcp->tcp_loopback_peer != NULL && 18192 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 18193 tcp_fuse_syncstr_enable_pair(tcp); 18194 } 18195 18196 if (tcp->tcp_ka_enabled) { 18197 tcp->tcp_ka_last_intrvl = 0; 18198 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18199 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18200 } 18201 18202 /* 18203 * At this point, eager is fully established and will 18204 * have the following references - 18205 * 18206 * 2 references for connection to exist (1 for TCP and 1 for IP). 18207 * 1 reference for the squeue which will be dropped by the squeue as 18208 * soon as this function returns. 18209 * There will be 1 additonal reference for being in classifier 18210 * hash list provided something bad hasn't happened. 18211 */ 18212 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18213 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18214 } 18215 18216 /* 18217 * The function called through squeue to get behind listener's perimeter to 18218 * send a deffered conn_ind. 18219 */ 18220 /* ARGSUSED */ 18221 void 18222 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18223 { 18224 conn_t *connp = (conn_t *)arg; 18225 tcp_t *listener = connp->conn_tcp; 18226 struct T_conn_ind *conn_ind; 18227 tcp_t *tcp; 18228 18229 if (listener->tcp_state == TCPS_CLOSED || 18230 TCP_IS_DETACHED(listener)) { 18231 /* 18232 * If listener has closed, it would have caused a 18233 * a cleanup/blowoff to happen for the eager. 18234 */ 18235 18236 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18237 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18238 conn_ind->OPT_length); 18239 /* 18240 * We need to drop the ref on eager that was put 18241 * tcp_rput_data() before trying to send the conn_ind 18242 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18243 * and tcp_wput_accept() is sending this deferred conn_ind but 18244 * listener is closed so we drop the ref. 18245 */ 18246 CONN_DEC_REF(tcp->tcp_connp); 18247 freemsg(mp); 18248 return; 18249 } 18250 if (IPCL_IS_NONSTR(connp)) { 18251 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18252 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18253 conn_ind->OPT_length); 18254 18255 if ((*connp->conn_upcalls->su_newconn) 18256 (connp->conn_upper_handle, 18257 (sock_lower_handle_t)tcp->tcp_connp, 18258 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 18259 &tcp->tcp_connp->conn_upcalls) != NULL) { 18260 /* Keep the message around in case of fallback */ 18261 tcp->tcp_conn.tcp_eager_conn_ind = mp; 18262 } else { 18263 freemsg(mp); 18264 } 18265 } else { 18266 putnext(listener->tcp_rq, mp); 18267 } 18268 } 18269 18270 /* ARGSUSED */ 18271 static int 18272 tcp_accept_common(conn_t *lconnp, conn_t *econnp, 18273 sock_upper_handle_t sock_handle, cred_t *cr) 18274 { 18275 tcp_t *listener, *eager; 18276 mblk_t *opt_mp; 18277 struct tcp_options *tcpopt; 18278 18279 listener = lconnp->conn_tcp; 18280 ASSERT(listener->tcp_state == TCPS_LISTEN); 18281 eager = econnp->conn_tcp; 18282 ASSERT(eager->tcp_listener != NULL); 18283 18284 ASSERT(eager->tcp_rq != NULL); 18285 18286 /* If tcp_fused and sodirect enabled disable it */ 18287 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18288 /* Fused, disable sodirect */ 18289 mutex_enter(eager->tcp_sodirect->sod_lockp); 18290 SOD_DISABLE(eager->tcp_sodirect); 18291 mutex_exit(eager->tcp_sodirect->sod_lockp); 18292 eager->tcp_sodirect = NULL; 18293 } 18294 18295 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 18296 if (opt_mp == NULL) { 18297 return (-TPROTO); 18298 } 18299 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 18300 eager->tcp_issocket = B_TRUE; 18301 18302 econnp->conn_upcalls = lconnp->conn_upcalls; 18303 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18304 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18305 ASSERT(econnp->conn_netstack == 18306 listener->tcp_connp->conn_netstack); 18307 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18308 18309 /* Put the ref for IP */ 18310 CONN_INC_REF(econnp); 18311 18312 /* 18313 * We should have minimum of 3 references on the conn 18314 * at this point. One each for TCP and IP and one for 18315 * the T_conn_ind that was sent up when the 3-way handshake 18316 * completed. In the normal case we would also have another 18317 * reference (making a total of 4) for the conn being in the 18318 * classifier hash list. However the eager could have received 18319 * an RST subsequently and tcp_closei_local could have removed 18320 * the eager from the classifier hash list, hence we can't 18321 * assert that reference. 18322 */ 18323 ASSERT(econnp->conn_ref >= 3); 18324 18325 opt_mp->b_datap->db_type = M_SETOPTS; 18326 opt_mp->b_wptr += sizeof (struct tcp_options); 18327 18328 /* 18329 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18330 * from listener to acceptor. In case of non-STREAMS sockets, 18331 * we also need to pass the upper handle along. 18332 */ 18333 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 18334 tcpopt->to_flags = 0; 18335 18336 if (IPCL_IS_NONSTR(econnp)) { 18337 ASSERT(sock_handle != NULL); 18338 tcpopt->to_flags |= TCPOPT_UPPERHANDLE; 18339 tcpopt->to_handle = sock_handle; 18340 } 18341 if (listener->tcp_bound_if != 0) { 18342 tcpopt->to_flags |= TCPOPT_BOUNDIF; 18343 tcpopt->to_boundif = listener->tcp_bound_if; 18344 } 18345 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18346 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 18347 } 18348 18349 mutex_enter(&listener->tcp_eager_lock); 18350 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18351 18352 tcp_t *tail; 18353 tcp_t *tcp; 18354 mblk_t *mp1; 18355 18356 tcp = listener->tcp_eager_prev_q0; 18357 /* 18358 * listener->tcp_eager_prev_q0 points to the TAIL of the 18359 * deferred T_conn_ind queue. We need to get to the head 18360 * of the queue in order to send up T_conn_ind the same 18361 * order as how the 3WHS is completed. 18362 */ 18363 while (tcp != listener) { 18364 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18365 !tcp->tcp_kssl_pending) 18366 break; 18367 else 18368 tcp = tcp->tcp_eager_prev_q0; 18369 } 18370 /* None of the pending eagers can be sent up now */ 18371 if (tcp == listener) 18372 goto no_more_eagers; 18373 18374 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18375 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18376 /* Move from q0 to q */ 18377 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18378 listener->tcp_conn_req_cnt_q0--; 18379 listener->tcp_conn_req_cnt_q++; 18380 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18381 tcp->tcp_eager_prev_q0; 18382 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18383 tcp->tcp_eager_next_q0; 18384 tcp->tcp_eager_prev_q0 = NULL; 18385 tcp->tcp_eager_next_q0 = NULL; 18386 tcp->tcp_conn_def_q0 = B_FALSE; 18387 18388 /* Make sure the tcp isn't in the list of droppables */ 18389 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18390 tcp->tcp_eager_prev_drop_q0 == NULL); 18391 18392 /* 18393 * Insert at end of the queue because sockfs sends 18394 * down T_CONN_RES in chronological order. Leaving 18395 * the older conn indications at front of the queue 18396 * helps reducing search time. 18397 */ 18398 tail = listener->tcp_eager_last_q; 18399 if (tail != NULL) { 18400 tail->tcp_eager_next_q = tcp; 18401 } else { 18402 listener->tcp_eager_next_q = tcp; 18403 } 18404 listener->tcp_eager_last_q = tcp; 18405 tcp->tcp_eager_next_q = NULL; 18406 18407 /* Need to get inside the listener perimeter */ 18408 CONN_INC_REF(listener->tcp_connp); 18409 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 18410 tcp_send_pending, listener->tcp_connp, SQ_FILL, 18411 SQTAG_TCP_SEND_PENDING); 18412 } 18413 no_more_eagers: 18414 tcp_eager_unlink(eager); 18415 mutex_exit(&listener->tcp_eager_lock); 18416 18417 /* 18418 * At this point, the eager is detached from the listener 18419 * but we still have an extra refs on eager (apart from the 18420 * usual tcp references). The ref was placed in tcp_rput_data 18421 * before sending the conn_ind in tcp_send_conn_ind. 18422 * The ref will be dropped in tcp_accept_finish(). 18423 */ 18424 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 18425 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 18426 return (0); 18427 } 18428 18429 int 18430 tcp_accept(sock_lower_handle_t lproto_handle, 18431 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 18432 cred_t *cr) 18433 { 18434 conn_t *lconnp, *econnp; 18435 tcp_t *listener, *eager; 18436 tcp_stack_t *tcps; 18437 18438 lconnp = (conn_t *)lproto_handle; 18439 listener = lconnp->conn_tcp; 18440 ASSERT(listener->tcp_state == TCPS_LISTEN); 18441 econnp = (conn_t *)eproto_handle; 18442 eager = econnp->conn_tcp; 18443 ASSERT(eager->tcp_listener != NULL); 18444 tcps = eager->tcp_tcps; 18445 18446 ASSERT(IPCL_IS_NONSTR(econnp)); 18447 /* 18448 * Create helper stream if it is a non-TPI TCP connection. 18449 */ 18450 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 18451 ip1dbg(("tcp_accept: create of IP helper stream" 18452 " failed\n")); 18453 return (EPROTO); 18454 } 18455 eager->tcp_rq = econnp->conn_rq; 18456 eager->tcp_wq = econnp->conn_wq; 18457 18458 ASSERT(eager->tcp_rq != NULL); 18459 18460 eager->tcp_sodirect = SOD_SOTOSODP(sock_handle); 18461 return (tcp_accept_common(lconnp, econnp, sock_handle, cr)); 18462 } 18463 18464 18465 /* 18466 * This is the STREAMS entry point for T_CONN_RES coming down on 18467 * Acceptor STREAM when sockfs listener does accept processing. 18468 * Read the block comment on top of tcp_conn_request(). 18469 */ 18470 void 18471 tcp_tpi_accept(queue_t *q, mblk_t *mp) 18472 { 18473 queue_t *rq = RD(q); 18474 struct T_conn_res *conn_res; 18475 tcp_t *eager; 18476 tcp_t *listener; 18477 struct T_ok_ack *ok; 18478 t_scalar_t PRIM_type; 18479 conn_t *econnp; 18480 18481 ASSERT(DB_TYPE(mp) == M_PROTO); 18482 18483 conn_res = (struct T_conn_res *)mp->b_rptr; 18484 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18485 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18486 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18487 if (mp != NULL) 18488 putnext(rq, mp); 18489 return; 18490 } 18491 switch (conn_res->PRIM_type) { 18492 case O_T_CONN_RES: 18493 case T_CONN_RES: 18494 /* 18495 * We pass up an err ack if allocb fails. This will 18496 * cause sockfs to issue a T_DISCON_REQ which will cause 18497 * tcp_eager_blowoff to be called. sockfs will then call 18498 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18499 * we need to do the allocb up here because we have to 18500 * make sure rq->q_qinfo->qi_qclose still points to the 18501 * correct function (tcpclose_accept) in case allocb 18502 * fails. 18503 */ 18504 bcopy(mp->b_rptr + conn_res->OPT_offset, 18505 &eager, conn_res->OPT_length); 18506 PRIM_type = conn_res->PRIM_type; 18507 mp->b_datap->db_type = M_PCPROTO; 18508 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18509 ok = (struct T_ok_ack *)mp->b_rptr; 18510 ok->PRIM_type = T_OK_ACK; 18511 ok->CORRECT_prim = PRIM_type; 18512 econnp = eager->tcp_connp; 18513 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18514 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18515 eager->tcp_rq = rq; 18516 eager->tcp_wq = q; 18517 rq->q_ptr = econnp; 18518 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18519 q->q_ptr = econnp; 18520 q->q_qinfo = &tcp_winit; 18521 listener = eager->tcp_listener; 18522 18523 /* 18524 * TCP is _D_SODIRECT and sockfs is directly above so 18525 * save shared sodirect_t pointer (if any). 18526 */ 18527 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18528 if (tcp_accept_common(listener->tcp_connp, 18529 econnp, NULL, CRED()) < 0) { 18530 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18531 if (mp != NULL) 18532 putnext(rq, mp); 18533 return; 18534 } 18535 18536 /* 18537 * Send the new local address also up to sockfs. There 18538 * should already be enough space in the mp that came 18539 * down from soaccept(). 18540 */ 18541 if (eager->tcp_family == AF_INET) { 18542 sin_t *sin; 18543 18544 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18545 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18546 sin = (sin_t *)mp->b_wptr; 18547 mp->b_wptr += sizeof (sin_t); 18548 sin->sin_family = AF_INET; 18549 sin->sin_port = eager->tcp_lport; 18550 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18551 } else { 18552 sin6_t *sin6; 18553 18554 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18555 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18556 sin6 = (sin6_t *)mp->b_wptr; 18557 mp->b_wptr += sizeof (sin6_t); 18558 sin6->sin6_family = AF_INET6; 18559 sin6->sin6_port = eager->tcp_lport; 18560 if (eager->tcp_ipversion == IPV4_VERSION) { 18561 sin6->sin6_flowinfo = 0; 18562 IN6_IPADDR_TO_V4MAPPED( 18563 eager->tcp_ipha->ipha_src, 18564 &sin6->sin6_addr); 18565 } else { 18566 ASSERT(eager->tcp_ip6h != NULL); 18567 sin6->sin6_flowinfo = 18568 eager->tcp_ip6h->ip6_vcf & 18569 ~IPV6_VERS_AND_FLOW_MASK; 18570 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18571 } 18572 sin6->sin6_scope_id = 0; 18573 sin6->__sin6_src_id = 0; 18574 } 18575 18576 putnext(rq, mp); 18577 return; 18578 default: 18579 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18580 if (mp != NULL) 18581 putnext(rq, mp); 18582 return; 18583 } 18584 } 18585 18586 static int 18587 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18588 { 18589 sin_t *sin = (sin_t *)sa; 18590 sin6_t *sin6 = (sin6_t *)sa; 18591 18592 switch (tcp->tcp_family) { 18593 case AF_INET: 18594 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18595 18596 if (*salenp < sizeof (sin_t)) 18597 return (EINVAL); 18598 18599 *sin = sin_null; 18600 sin->sin_family = AF_INET; 18601 sin->sin_port = tcp->tcp_lport; 18602 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18603 break; 18604 18605 case AF_INET6: 18606 if (*salenp < sizeof (sin6_t)) 18607 return (EINVAL); 18608 18609 *sin6 = sin6_null; 18610 sin6->sin6_family = AF_INET6; 18611 sin6->sin6_port = tcp->tcp_lport; 18612 if (tcp->tcp_ipversion == IPV4_VERSION) { 18613 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18614 &sin6->sin6_addr); 18615 } else { 18616 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18617 } 18618 break; 18619 } 18620 18621 return (0); 18622 } 18623 18624 static int 18625 i_tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18626 { 18627 sin_t *sin = (sin_t *)sa; 18628 sin6_t *sin6 = (sin6_t *)sa; 18629 18630 if (tcp->tcp_state < TCPS_SYN_RCVD) 18631 return (ENOTCONN); 18632 18633 switch (tcp->tcp_family) { 18634 case AF_INET: 18635 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18636 18637 if (*salenp < sizeof (sin_t)) 18638 return (EINVAL); 18639 18640 *sin = sin_null; 18641 sin->sin_family = AF_INET; 18642 sin->sin_port = tcp->tcp_fport; 18643 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18644 sin->sin_addr.s_addr); 18645 *salenp = sizeof (sin_t); 18646 break; 18647 18648 case AF_INET6: 18649 if (*salenp < sizeof (sin6_t)) 18650 return (EINVAL); 18651 18652 *sin6 = sin6_null; 18653 sin6->sin6_family = AF_INET6; 18654 sin6->sin6_port = tcp->tcp_fport; 18655 sin6->sin6_addr = tcp->tcp_remote_v6; 18656 if (tcp->tcp_ipversion == IPV6_VERSION) { 18657 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18658 ~IPV6_VERS_AND_FLOW_MASK; 18659 } 18660 *salenp = sizeof (sin6_t); 18661 break; 18662 } 18663 18664 return (0); 18665 } 18666 18667 /* 18668 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18669 */ 18670 static void 18671 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18672 { 18673 void *data; 18674 mblk_t *datamp = mp->b_cont; 18675 tcp_t *tcp = Q_TO_TCP(q); 18676 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18677 18678 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18679 cmdp->cb_error = EPROTO; 18680 qreply(q, mp); 18681 return; 18682 } 18683 18684 data = datamp->b_rptr; 18685 18686 switch (cmdp->cb_cmd) { 18687 case TI_GETPEERNAME: 18688 cmdp->cb_error = i_tcp_getpeername(tcp, data, &cmdp->cb_len); 18689 break; 18690 case TI_GETMYNAME: 18691 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 18692 break; 18693 default: 18694 cmdp->cb_error = EINVAL; 18695 break; 18696 } 18697 18698 qreply(q, mp); 18699 } 18700 18701 void 18702 tcp_wput(queue_t *q, mblk_t *mp) 18703 { 18704 conn_t *connp = Q_TO_CONN(q); 18705 tcp_t *tcp; 18706 void (*output_proc)(); 18707 t_scalar_t type; 18708 uchar_t *rptr; 18709 struct iocblk *iocp; 18710 size_t size; 18711 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18712 18713 ASSERT(connp->conn_ref >= 2); 18714 18715 switch (DB_TYPE(mp)) { 18716 case M_DATA: 18717 tcp = connp->conn_tcp; 18718 ASSERT(tcp != NULL); 18719 18720 size = msgdsize(mp); 18721 18722 mutex_enter(&tcp->tcp_non_sq_lock); 18723 tcp->tcp_squeue_bytes += size; 18724 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18725 tcp_setqfull(tcp); 18726 } 18727 mutex_exit(&tcp->tcp_non_sq_lock); 18728 18729 CONN_INC_REF(connp); 18730 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18731 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18732 return; 18733 18734 case M_CMD: 18735 tcp_wput_cmdblk(q, mp); 18736 return; 18737 18738 case M_PROTO: 18739 case M_PCPROTO: 18740 /* 18741 * if it is a snmp message, don't get behind the squeue 18742 */ 18743 tcp = connp->conn_tcp; 18744 rptr = mp->b_rptr; 18745 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18746 type = ((union T_primitives *)rptr)->type; 18747 } else { 18748 if (tcp->tcp_debug) { 18749 (void) strlog(TCP_MOD_ID, 0, 1, 18750 SL_ERROR|SL_TRACE, 18751 "tcp_wput_proto, dropping one..."); 18752 } 18753 freemsg(mp); 18754 return; 18755 } 18756 if (type == T_SVR4_OPTMGMT_REQ) { 18757 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18758 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18759 cr)) { 18760 /* 18761 * This was a SNMP request 18762 */ 18763 return; 18764 } else { 18765 output_proc = tcp_wput_proto; 18766 } 18767 } else { 18768 output_proc = tcp_wput_proto; 18769 } 18770 break; 18771 case M_IOCTL: 18772 /* 18773 * Most ioctls can be processed right away without going via 18774 * squeues - process them right here. Those that do require 18775 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18776 * are processed by tcp_wput_ioctl(). 18777 */ 18778 iocp = (struct iocblk *)mp->b_rptr; 18779 tcp = connp->conn_tcp; 18780 18781 switch (iocp->ioc_cmd) { 18782 case TCP_IOC_ABORT_CONN: 18783 tcp_ioctl_abort_conn(q, mp); 18784 return; 18785 case TI_GETPEERNAME: 18786 case TI_GETMYNAME: 18787 mi_copyin(q, mp, NULL, 18788 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18789 return; 18790 case ND_SET: 18791 /* nd_getset does the necessary checks */ 18792 case ND_GET: 18793 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18794 CALL_IP_WPUT(connp, q, mp); 18795 return; 18796 } 18797 qreply(q, mp); 18798 return; 18799 case TCP_IOC_DEFAULT_Q: 18800 /* 18801 * Wants to be the default wq. Check the credentials 18802 * first, the rest is executed via squeue. 18803 */ 18804 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18805 iocp->ioc_error = EPERM; 18806 iocp->ioc_count = 0; 18807 mp->b_datap->db_type = M_IOCACK; 18808 qreply(q, mp); 18809 return; 18810 } 18811 output_proc = tcp_wput_ioctl; 18812 break; 18813 default: 18814 output_proc = tcp_wput_ioctl; 18815 break; 18816 } 18817 break; 18818 default: 18819 output_proc = tcp_wput_nondata; 18820 break; 18821 } 18822 18823 CONN_INC_REF(connp); 18824 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18825 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18826 } 18827 18828 /* 18829 * Initial STREAMS write side put() procedure for sockets. It tries to 18830 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18831 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18832 * are handled by tcp_wput() as usual. 18833 * 18834 * All further messages will also be handled by tcp_wput() because we cannot 18835 * be sure that the above short cut is safe later. 18836 */ 18837 static void 18838 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18839 { 18840 conn_t *connp = Q_TO_CONN(wq); 18841 tcp_t *tcp = connp->conn_tcp; 18842 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18843 18844 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18845 wq->q_qinfo = &tcp_winit; 18846 18847 ASSERT(IPCL_IS_TCP(connp)); 18848 ASSERT(TCP_IS_SOCKET(tcp)); 18849 18850 if (DB_TYPE(mp) == M_PCPROTO && 18851 MBLKL(mp) == sizeof (struct T_capability_req) && 18852 car->PRIM_type == T_CAPABILITY_REQ) { 18853 tcp_capability_req(tcp, mp); 18854 return; 18855 } 18856 18857 tcp_wput(wq, mp); 18858 } 18859 18860 /* ARGSUSED */ 18861 static void 18862 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18863 { 18864 #ifdef DEBUG 18865 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18866 #endif 18867 freemsg(mp); 18868 } 18869 18870 static boolean_t 18871 tcp_zcopy_check(tcp_t *tcp) 18872 { 18873 conn_t *connp = tcp->tcp_connp; 18874 ire_t *ire; 18875 boolean_t zc_enabled = B_FALSE; 18876 tcp_stack_t *tcps = tcp->tcp_tcps; 18877 18878 if (do_tcpzcopy == 2) 18879 zc_enabled = B_TRUE; 18880 else if (tcp->tcp_ipversion == IPV4_VERSION && 18881 IPCL_IS_CONNECTED(connp) && 18882 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18883 connp->conn_dontroute == 0 && 18884 !connp->conn_nexthop_set && 18885 connp->conn_outgoing_ill == NULL && 18886 do_tcpzcopy == 1) { 18887 /* 18888 * the checks above closely resemble the fast path checks 18889 * in tcp_send_data(). 18890 */ 18891 mutex_enter(&connp->conn_lock); 18892 ire = connp->conn_ire_cache; 18893 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18894 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18895 IRE_REFHOLD(ire); 18896 if (ire->ire_stq != NULL) { 18897 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18898 18899 zc_enabled = ill && (ill->ill_capabilities & 18900 ILL_CAPAB_ZEROCOPY) && 18901 (ill->ill_zerocopy_capab-> 18902 ill_zerocopy_flags != 0); 18903 } 18904 IRE_REFRELE(ire); 18905 } 18906 mutex_exit(&connp->conn_lock); 18907 } 18908 tcp->tcp_snd_zcopy_on = zc_enabled; 18909 if (!TCP_IS_DETACHED(tcp)) { 18910 if (zc_enabled) { 18911 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18912 ZCVMSAFE); 18913 TCP_STAT(tcps, tcp_zcopy_on); 18914 } else { 18915 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18916 ZCVMUNSAFE); 18917 TCP_STAT(tcps, tcp_zcopy_off); 18918 } 18919 } 18920 return (zc_enabled); 18921 } 18922 18923 static mblk_t * 18924 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18925 { 18926 tcp_stack_t *tcps = tcp->tcp_tcps; 18927 18928 if (do_tcpzcopy == 2) 18929 return (bp); 18930 else if (tcp->tcp_snd_zcopy_on) { 18931 tcp->tcp_snd_zcopy_on = B_FALSE; 18932 if (!TCP_IS_DETACHED(tcp)) { 18933 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18934 ZCVMUNSAFE); 18935 TCP_STAT(tcps, tcp_zcopy_disable); 18936 } 18937 } 18938 return (tcp_zcopy_backoff(tcp, bp, 0)); 18939 } 18940 18941 /* 18942 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18943 * the original desballoca'ed segmapped mblk. 18944 */ 18945 static mblk_t * 18946 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18947 { 18948 mblk_t *head, *tail, *nbp; 18949 tcp_stack_t *tcps = tcp->tcp_tcps; 18950 18951 if (IS_VMLOANED_MBLK(bp)) { 18952 TCP_STAT(tcps, tcp_zcopy_backoff); 18953 if ((head = copyb(bp)) == NULL) { 18954 /* fail to backoff; leave it for the next backoff */ 18955 tcp->tcp_xmit_zc_clean = B_FALSE; 18956 return (bp); 18957 } 18958 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18959 if (fix_xmitlist) 18960 tcp_zcopy_notify(tcp); 18961 else 18962 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18963 } 18964 nbp = bp->b_cont; 18965 if (fix_xmitlist) { 18966 head->b_prev = bp->b_prev; 18967 head->b_next = bp->b_next; 18968 if (tcp->tcp_xmit_tail == bp) 18969 tcp->tcp_xmit_tail = head; 18970 } 18971 bp->b_next = NULL; 18972 bp->b_prev = NULL; 18973 freeb(bp); 18974 } else { 18975 head = bp; 18976 nbp = bp->b_cont; 18977 } 18978 tail = head; 18979 while (nbp) { 18980 if (IS_VMLOANED_MBLK(nbp)) { 18981 TCP_STAT(tcps, tcp_zcopy_backoff); 18982 if ((tail->b_cont = copyb(nbp)) == NULL) { 18983 tcp->tcp_xmit_zc_clean = B_FALSE; 18984 tail->b_cont = nbp; 18985 return (head); 18986 } 18987 tail = tail->b_cont; 18988 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18989 if (fix_xmitlist) 18990 tcp_zcopy_notify(tcp); 18991 else 18992 tail->b_datap->db_struioflag |= 18993 STRUIO_ZCNOTIFY; 18994 } 18995 bp = nbp; 18996 nbp = nbp->b_cont; 18997 if (fix_xmitlist) { 18998 tail->b_prev = bp->b_prev; 18999 tail->b_next = bp->b_next; 19000 if (tcp->tcp_xmit_tail == bp) 19001 tcp->tcp_xmit_tail = tail; 19002 } 19003 bp->b_next = NULL; 19004 bp->b_prev = NULL; 19005 freeb(bp); 19006 } else { 19007 tail->b_cont = nbp; 19008 tail = nbp; 19009 nbp = nbp->b_cont; 19010 } 19011 } 19012 if (fix_xmitlist) { 19013 tcp->tcp_xmit_last = tail; 19014 tcp->tcp_xmit_zc_clean = B_TRUE; 19015 } 19016 return (head); 19017 } 19018 19019 static void 19020 tcp_zcopy_notify(tcp_t *tcp) 19021 { 19022 struct stdata *stp; 19023 conn_t *connp; 19024 19025 if (tcp->tcp_detached) 19026 return; 19027 connp = tcp->tcp_connp; 19028 if (IPCL_IS_NONSTR(connp)) { 19029 (*connp->conn_upcalls->su_zcopy_notify) 19030 (connp->conn_upper_handle); 19031 return; 19032 } 19033 stp = STREAM(tcp->tcp_rq); 19034 mutex_enter(&stp->sd_lock); 19035 stp->sd_flag |= STZCNOTIFY; 19036 cv_broadcast(&stp->sd_zcopy_wait); 19037 mutex_exit(&stp->sd_lock); 19038 } 19039 19040 static boolean_t 19041 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19042 { 19043 ire_t *ire; 19044 conn_t *connp = tcp->tcp_connp; 19045 tcp_stack_t *tcps = tcp->tcp_tcps; 19046 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19047 19048 mutex_enter(&connp->conn_lock); 19049 ire = connp->conn_ire_cache; 19050 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19051 19052 if ((ire != NULL) && 19053 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19054 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19055 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19056 IRE_REFHOLD(ire); 19057 mutex_exit(&connp->conn_lock); 19058 } else { 19059 boolean_t cached = B_FALSE; 19060 ts_label_t *tsl; 19061 19062 /* force a recheck later on */ 19063 tcp->tcp_ire_ill_check_done = B_FALSE; 19064 19065 TCP_DBGSTAT(tcps, tcp_ire_null1); 19066 connp->conn_ire_cache = NULL; 19067 mutex_exit(&connp->conn_lock); 19068 19069 if (ire != NULL) 19070 IRE_REFRELE_NOTR(ire); 19071 19072 tsl = crgetlabel(CONN_CRED(connp)); 19073 ire = (dst ? 19074 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19075 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19076 connp->conn_zoneid, tsl, ipst)); 19077 19078 if (ire == NULL) { 19079 TCP_STAT(tcps, tcp_ire_null); 19080 return (B_FALSE); 19081 } 19082 19083 IRE_REFHOLD_NOTR(ire); 19084 19085 mutex_enter(&connp->conn_lock); 19086 if (CONN_CACHE_IRE(connp)) { 19087 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19088 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19089 TCP_CHECK_IREINFO(tcp, ire); 19090 connp->conn_ire_cache = ire; 19091 cached = B_TRUE; 19092 } 19093 rw_exit(&ire->ire_bucket->irb_lock); 19094 } 19095 mutex_exit(&connp->conn_lock); 19096 19097 /* 19098 * We can continue to use the ire but since it was 19099 * not cached, we should drop the extra reference. 19100 */ 19101 if (!cached) 19102 IRE_REFRELE_NOTR(ire); 19103 19104 /* 19105 * Rampart note: no need to select a new label here, since 19106 * labels are not allowed to change during the life of a TCP 19107 * connection. 19108 */ 19109 } 19110 19111 *irep = ire; 19112 19113 return (B_TRUE); 19114 } 19115 19116 /* 19117 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19118 * 19119 * 0 = success; 19120 * 1 = failed to find ire and ill. 19121 */ 19122 static boolean_t 19123 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19124 { 19125 ipha_t *ipha; 19126 ipaddr_t dst; 19127 ire_t *ire; 19128 ill_t *ill; 19129 mblk_t *ire_fp_mp; 19130 tcp_stack_t *tcps = tcp->tcp_tcps; 19131 19132 if (mp != NULL) 19133 ipha = (ipha_t *)mp->b_rptr; 19134 else 19135 ipha = tcp->tcp_ipha; 19136 dst = ipha->ipha_dst; 19137 19138 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19139 return (B_FALSE); 19140 19141 if ((ire->ire_flags & RTF_MULTIRT) || 19142 (ire->ire_stq == NULL) || 19143 (ire->ire_nce == NULL) || 19144 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19145 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19146 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19147 TCP_STAT(tcps, tcp_ip_ire_send); 19148 IRE_REFRELE(ire); 19149 return (B_FALSE); 19150 } 19151 19152 ill = ire_to_ill(ire); 19153 ASSERT(ill != NULL); 19154 19155 if (!tcp->tcp_ire_ill_check_done) { 19156 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19157 tcp->tcp_ire_ill_check_done = B_TRUE; 19158 } 19159 19160 *irep = ire; 19161 *illp = ill; 19162 19163 return (B_TRUE); 19164 } 19165 19166 static void 19167 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19168 { 19169 ipha_t *ipha; 19170 ipaddr_t src; 19171 ipaddr_t dst; 19172 uint32_t cksum; 19173 ire_t *ire; 19174 uint16_t *up; 19175 ill_t *ill; 19176 conn_t *connp = tcp->tcp_connp; 19177 uint32_t hcksum_txflags = 0; 19178 mblk_t *ire_fp_mp; 19179 uint_t ire_fp_mp_len; 19180 tcp_stack_t *tcps = tcp->tcp_tcps; 19181 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19182 19183 ASSERT(DB_TYPE(mp) == M_DATA); 19184 19185 if (is_system_labeled() && DB_CRED(mp) == NULL) 19186 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp)); 19187 19188 ipha = (ipha_t *)mp->b_rptr; 19189 src = ipha->ipha_src; 19190 dst = ipha->ipha_dst; 19191 19192 ASSERT(q != NULL); 19193 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 19194 19195 /* 19196 * Drop off fast path for IPv6 and also if options are present or 19197 * we need to resolve a TS label. 19198 */ 19199 if (tcp->tcp_ipversion != IPV4_VERSION || 19200 !IPCL_IS_CONNECTED(connp) || 19201 !CONN_IS_LSO_MD_FASTPATH(connp) || 19202 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19203 !connp->conn_ulp_labeled || 19204 ipha->ipha_ident == IP_HDR_INCLUDED || 19205 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19206 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19207 if (tcp->tcp_snd_zcopy_aware) 19208 mp = tcp_zcopy_disable(tcp, mp); 19209 TCP_STAT(tcps, tcp_ip_send); 19210 CALL_IP_WPUT(connp, q, mp); 19211 return; 19212 } 19213 19214 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19215 if (tcp->tcp_snd_zcopy_aware) 19216 mp = tcp_zcopy_backoff(tcp, mp, 0); 19217 CALL_IP_WPUT(connp, q, mp); 19218 return; 19219 } 19220 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19221 ire_fp_mp_len = MBLKL(ire_fp_mp); 19222 19223 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19224 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19225 #ifndef _BIG_ENDIAN 19226 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19227 #endif 19228 19229 /* 19230 * Check to see if we need to re-enable LSO/MDT for this connection 19231 * because it was previously disabled due to changes in the ill; 19232 * note that by doing it here, this re-enabling only applies when 19233 * the packet is not dispatched through CALL_IP_WPUT(). 19234 * 19235 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19236 * case, since that's how we ended up here. For IPv6, we do the 19237 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19238 */ 19239 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19240 /* 19241 * Restore LSO for this connection, so that next time around 19242 * it is eligible to go through tcp_lsosend() path again. 19243 */ 19244 TCP_STAT(tcps, tcp_lso_enabled); 19245 tcp->tcp_lso = B_TRUE; 19246 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19247 "interface %s\n", (void *)connp, ill->ill_name)); 19248 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19249 /* 19250 * Restore MDT for this connection, so that next time around 19251 * it is eligible to go through tcp_multisend() path again. 19252 */ 19253 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19254 tcp->tcp_mdt = B_TRUE; 19255 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19256 "interface %s\n", (void *)connp, ill->ill_name)); 19257 } 19258 19259 if (tcp->tcp_snd_zcopy_aware) { 19260 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19261 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19262 mp = tcp_zcopy_disable(tcp, mp); 19263 /* 19264 * we shouldn't need to reset ipha as the mp containing 19265 * ipha should never be a zero-copy mp. 19266 */ 19267 } 19268 19269 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19270 ASSERT(ill->ill_hcksum_capab != NULL); 19271 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19272 } 19273 19274 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19275 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19276 19277 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19278 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19279 19280 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19281 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19282 19283 /* Software checksum? */ 19284 if (DB_CKSUMFLAGS(mp) == 0) { 19285 TCP_STAT(tcps, tcp_out_sw_cksum); 19286 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19287 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19288 } 19289 19290 /* Calculate IP header checksum if hardware isn't capable */ 19291 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19292 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19293 ((uint16_t *)ipha)[4]); 19294 } 19295 19296 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19297 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19298 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19299 19300 UPDATE_OB_PKT_COUNT(ire); 19301 ire->ire_last_used_time = lbolt; 19302 19303 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19304 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19305 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19306 ntohs(ipha->ipha_length)); 19307 19308 DTRACE_PROBE4(ip4__physical__out__start, 19309 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 19310 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19311 ipst->ips_ipv4firewall_physical_out, 19312 NULL, ill, ipha, mp, mp, 0, ipst); 19313 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19314 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 19315 19316 if (mp != NULL) { 19317 if (ipst->ips_ipobs_enabled) { 19318 zoneid_t szone; 19319 19320 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 19321 ipst, ALL_ZONES); 19322 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 19323 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 19324 } 19325 19326 ILL_SEND_TX(ill, ire, connp, mp, 0); 19327 } 19328 19329 IRE_REFRELE(ire); 19330 } 19331 19332 /* 19333 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19334 * if the receiver shrinks the window, i.e. moves the right window to the 19335 * left, the we should not send new data, but should retransmit normally the 19336 * old unacked data between suna and suna + swnd. We might has sent data 19337 * that is now outside the new window, pretend that we didn't send it. 19338 */ 19339 static void 19340 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19341 { 19342 uint32_t snxt = tcp->tcp_snxt; 19343 mblk_t *xmit_tail; 19344 int32_t offset; 19345 19346 ASSERT(shrunk_count > 0); 19347 19348 /* Pretend we didn't send the data outside the window */ 19349 snxt -= shrunk_count; 19350 19351 /* Get the mblk and the offset in it per the shrunk window */ 19352 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19353 19354 ASSERT(xmit_tail != NULL); 19355 19356 /* Reset all the values per the now shrunk window */ 19357 tcp->tcp_snxt = snxt; 19358 tcp->tcp_xmit_tail = xmit_tail; 19359 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19360 offset; 19361 tcp->tcp_unsent += shrunk_count; 19362 19363 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19364 /* 19365 * Make sure the timer is running so that we will probe a zero 19366 * window. 19367 */ 19368 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19369 } 19370 19371 19372 /* 19373 * The TCP normal data output path. 19374 * NOTE: the logic of the fast path is duplicated from this function. 19375 */ 19376 static void 19377 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19378 { 19379 int len; 19380 mblk_t *local_time; 19381 mblk_t *mp1; 19382 uint32_t snxt; 19383 int tail_unsent; 19384 int tcpstate; 19385 int usable = 0; 19386 mblk_t *xmit_tail; 19387 queue_t *q = tcp->tcp_wq; 19388 int32_t mss; 19389 int32_t num_sack_blk = 0; 19390 int32_t tcp_hdr_len; 19391 int32_t tcp_tcp_hdr_len; 19392 int mdt_thres; 19393 int rc; 19394 tcp_stack_t *tcps = tcp->tcp_tcps; 19395 ip_stack_t *ipst; 19396 19397 tcpstate = tcp->tcp_state; 19398 if (mp == NULL) { 19399 /* 19400 * tcp_wput_data() with NULL mp should only be called when 19401 * there is unsent data. 19402 */ 19403 ASSERT(tcp->tcp_unsent > 0); 19404 /* Really tacky... but we need this for detached closes. */ 19405 len = tcp->tcp_unsent; 19406 goto data_null; 19407 } 19408 19409 #if CCS_STATS 19410 wrw_stats.tot.count++; 19411 wrw_stats.tot.bytes += msgdsize(mp); 19412 #endif 19413 ASSERT(mp->b_datap->db_type == M_DATA); 19414 /* 19415 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19416 * or before a connection attempt has begun. 19417 */ 19418 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19419 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19420 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19421 #ifdef DEBUG 19422 cmn_err(CE_WARN, 19423 "tcp_wput_data: data after ordrel, %s", 19424 tcp_display(tcp, NULL, 19425 DISP_ADDR_AND_PORT)); 19426 #else 19427 if (tcp->tcp_debug) { 19428 (void) strlog(TCP_MOD_ID, 0, 1, 19429 SL_TRACE|SL_ERROR, 19430 "tcp_wput_data: data after ordrel, %s\n", 19431 tcp_display(tcp, NULL, 19432 DISP_ADDR_AND_PORT)); 19433 } 19434 #endif /* DEBUG */ 19435 } 19436 if (tcp->tcp_snd_zcopy_aware && 19437 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19438 tcp_zcopy_notify(tcp); 19439 freemsg(mp); 19440 mutex_enter(&tcp->tcp_non_sq_lock); 19441 if (tcp->tcp_flow_stopped && 19442 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19443 tcp_clrqfull(tcp); 19444 } 19445 mutex_exit(&tcp->tcp_non_sq_lock); 19446 return; 19447 } 19448 19449 /* Strip empties */ 19450 for (;;) { 19451 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19452 (uintptr_t)INT_MAX); 19453 len = (int)(mp->b_wptr - mp->b_rptr); 19454 if (len > 0) 19455 break; 19456 mp1 = mp; 19457 mp = mp->b_cont; 19458 freeb(mp1); 19459 if (!mp) { 19460 return; 19461 } 19462 } 19463 19464 /* If we are the first on the list ... */ 19465 if (tcp->tcp_xmit_head == NULL) { 19466 tcp->tcp_xmit_head = mp; 19467 tcp->tcp_xmit_tail = mp; 19468 tcp->tcp_xmit_tail_unsent = len; 19469 } else { 19470 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19471 struct datab *dp; 19472 19473 mp1 = tcp->tcp_xmit_last; 19474 if (len < tcp_tx_pull_len && 19475 (dp = mp1->b_datap)->db_ref == 1 && 19476 dp->db_lim - mp1->b_wptr >= len) { 19477 ASSERT(len > 0); 19478 ASSERT(!mp1->b_cont); 19479 if (len == 1) { 19480 *mp1->b_wptr++ = *mp->b_rptr; 19481 } else { 19482 bcopy(mp->b_rptr, mp1->b_wptr, len); 19483 mp1->b_wptr += len; 19484 } 19485 if (mp1 == tcp->tcp_xmit_tail) 19486 tcp->tcp_xmit_tail_unsent += len; 19487 mp1->b_cont = mp->b_cont; 19488 if (tcp->tcp_snd_zcopy_aware && 19489 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19490 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19491 freeb(mp); 19492 mp = mp1; 19493 } else { 19494 tcp->tcp_xmit_last->b_cont = mp; 19495 } 19496 len += tcp->tcp_unsent; 19497 } 19498 19499 /* Tack on however many more positive length mblks we have */ 19500 if ((mp1 = mp->b_cont) != NULL) { 19501 do { 19502 int tlen; 19503 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19504 (uintptr_t)INT_MAX); 19505 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19506 if (tlen <= 0) { 19507 mp->b_cont = mp1->b_cont; 19508 freeb(mp1); 19509 } else { 19510 len += tlen; 19511 mp = mp1; 19512 } 19513 } while ((mp1 = mp->b_cont) != NULL); 19514 } 19515 tcp->tcp_xmit_last = mp; 19516 tcp->tcp_unsent = len; 19517 19518 if (urgent) 19519 usable = 1; 19520 19521 data_null: 19522 snxt = tcp->tcp_snxt; 19523 xmit_tail = tcp->tcp_xmit_tail; 19524 tail_unsent = tcp->tcp_xmit_tail_unsent; 19525 19526 /* 19527 * Note that tcp_mss has been adjusted to take into account the 19528 * timestamp option if applicable. Because SACK options do not 19529 * appear in every TCP segments and they are of variable lengths, 19530 * they cannot be included in tcp_mss. Thus we need to calculate 19531 * the actual segment length when we need to send a segment which 19532 * includes SACK options. 19533 */ 19534 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19535 int32_t opt_len; 19536 19537 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19538 tcp->tcp_num_sack_blk); 19539 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19540 2 + TCPOPT_HEADER_LEN; 19541 mss = tcp->tcp_mss - opt_len; 19542 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19543 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19544 } else { 19545 mss = tcp->tcp_mss; 19546 tcp_hdr_len = tcp->tcp_hdr_len; 19547 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19548 } 19549 19550 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19551 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19552 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19553 } 19554 if (tcpstate == TCPS_SYN_RCVD) { 19555 /* 19556 * The three-way connection establishment handshake is not 19557 * complete yet. We want to queue the data for transmission 19558 * after entering ESTABLISHED state (RFC793). A jump to 19559 * "done" label effectively leaves data on the queue. 19560 */ 19561 goto done; 19562 } else { 19563 int usable_r; 19564 19565 /* 19566 * In the special case when cwnd is zero, which can only 19567 * happen if the connection is ECN capable, return now. 19568 * New segments is sent using tcp_timer(). The timer 19569 * is set in tcp_rput_data(). 19570 */ 19571 if (tcp->tcp_cwnd == 0) { 19572 /* 19573 * Note that tcp_cwnd is 0 before 3-way handshake is 19574 * finished. 19575 */ 19576 ASSERT(tcp->tcp_ecn_ok || 19577 tcp->tcp_state < TCPS_ESTABLISHED); 19578 return; 19579 } 19580 19581 /* NOTE: trouble if xmitting while SYN not acked? */ 19582 usable_r = snxt - tcp->tcp_suna; 19583 usable_r = tcp->tcp_swnd - usable_r; 19584 19585 /* 19586 * Check if the receiver has shrunk the window. If 19587 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19588 * cannot be set as there is unsent data, so FIN cannot 19589 * be sent out. Otherwise, we need to take into account 19590 * of FIN as it consumes an "invisible" sequence number. 19591 */ 19592 ASSERT(tcp->tcp_fin_sent == 0); 19593 if (usable_r < 0) { 19594 /* 19595 * The receiver has shrunk the window and we have sent 19596 * -usable_r date beyond the window, re-adjust. 19597 * 19598 * If TCP window scaling is enabled, there can be 19599 * round down error as the advertised receive window 19600 * is actually right shifted n bits. This means that 19601 * the lower n bits info is wiped out. It will look 19602 * like the window is shrunk. Do a check here to 19603 * see if the shrunk amount is actually within the 19604 * error in window calculation. If it is, just 19605 * return. Note that this check is inside the 19606 * shrunk window check. This makes sure that even 19607 * though tcp_process_shrunk_swnd() is not called, 19608 * we will stop further processing. 19609 */ 19610 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19611 tcp_process_shrunk_swnd(tcp, -usable_r); 19612 } 19613 return; 19614 } 19615 19616 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19617 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19618 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19619 19620 /* usable = MIN(usable, unsent) */ 19621 if (usable_r > len) 19622 usable_r = len; 19623 19624 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19625 if (usable_r > 0) { 19626 usable = usable_r; 19627 } else { 19628 /* Bypass all other unnecessary processing. */ 19629 goto done; 19630 } 19631 } 19632 19633 local_time = (mblk_t *)lbolt; 19634 19635 /* 19636 * "Our" Nagle Algorithm. This is not the same as in the old 19637 * BSD. This is more in line with the true intent of Nagle. 19638 * 19639 * The conditions are: 19640 * 1. The amount of unsent data (or amount of data which can be 19641 * sent, whichever is smaller) is less than Nagle limit. 19642 * 2. The last sent size is also less than Nagle limit. 19643 * 3. There is unack'ed data. 19644 * 4. Urgent pointer is not set. Send urgent data ignoring the 19645 * Nagle algorithm. This reduces the probability that urgent 19646 * bytes get "merged" together. 19647 * 5. The app has not closed the connection. This eliminates the 19648 * wait time of the receiving side waiting for the last piece of 19649 * (small) data. 19650 * 19651 * If all are satisified, exit without sending anything. Note 19652 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19653 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19654 * 4095). 19655 */ 19656 if (usable < (int)tcp->tcp_naglim && 19657 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19658 snxt != tcp->tcp_suna && 19659 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19660 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19661 goto done; 19662 } 19663 19664 if (tcp->tcp_cork) { 19665 /* 19666 * if the tcp->tcp_cork option is set, then we have to force 19667 * TCP not to send partial segment (smaller than MSS bytes). 19668 * We are calculating the usable now based on full mss and 19669 * will save the rest of remaining data for later. 19670 */ 19671 if (usable < mss) 19672 goto done; 19673 usable = (usable / mss) * mss; 19674 } 19675 19676 /* Update the latest receive window size in TCP header. */ 19677 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19678 tcp->tcp_tcph->th_win); 19679 19680 /* 19681 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19682 * 19683 * 1. Simple TCP/IP{v4,v6} (no options). 19684 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19685 * 3. If the TCP connection is in ESTABLISHED state. 19686 * 4. The TCP is not detached. 19687 * 19688 * If any of the above conditions have changed during the 19689 * connection, stop using LSO/MDT and restore the stream head 19690 * parameters accordingly. 19691 */ 19692 ipst = tcps->tcps_netstack->netstack_ip; 19693 19694 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19695 ((tcp->tcp_ipversion == IPV4_VERSION && 19696 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19697 (tcp->tcp_ipversion == IPV6_VERSION && 19698 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19699 tcp->tcp_state != TCPS_ESTABLISHED || 19700 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19701 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19702 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19703 if (tcp->tcp_lso) { 19704 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19705 tcp->tcp_lso = B_FALSE; 19706 } else { 19707 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19708 tcp->tcp_mdt = B_FALSE; 19709 } 19710 19711 /* Anything other than detached is considered pathological */ 19712 if (!TCP_IS_DETACHED(tcp)) { 19713 if (tcp->tcp_lso) 19714 TCP_STAT(tcps, tcp_lso_disabled); 19715 else 19716 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19717 (void) tcp_maxpsz_set(tcp, B_TRUE); 19718 } 19719 } 19720 19721 /* Use MDT if sendable amount is greater than the threshold */ 19722 if (tcp->tcp_mdt && 19723 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19724 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19725 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19726 (tcp->tcp_valid_bits == 0 || 19727 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19728 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19729 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19730 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19731 local_time, mdt_thres); 19732 } else { 19733 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19734 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19735 local_time, INT_MAX); 19736 } 19737 19738 /* Pretend that all we were trying to send really got sent */ 19739 if (rc < 0 && tail_unsent < 0) { 19740 do { 19741 xmit_tail = xmit_tail->b_cont; 19742 xmit_tail->b_prev = local_time; 19743 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19744 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19745 tail_unsent += (int)(xmit_tail->b_wptr - 19746 xmit_tail->b_rptr); 19747 } while (tail_unsent < 0); 19748 } 19749 done:; 19750 tcp->tcp_xmit_tail = xmit_tail; 19751 tcp->tcp_xmit_tail_unsent = tail_unsent; 19752 len = tcp->tcp_snxt - snxt; 19753 if (len) { 19754 /* 19755 * If new data was sent, need to update the notsack 19756 * list, which is, afterall, data blocks that have 19757 * not been sack'ed by the receiver. New data is 19758 * not sack'ed. 19759 */ 19760 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19761 /* len is a negative value. */ 19762 tcp->tcp_pipe -= len; 19763 tcp_notsack_update(&(tcp->tcp_notsack_list), 19764 tcp->tcp_snxt, snxt, 19765 &(tcp->tcp_num_notsack_blk), 19766 &(tcp->tcp_cnt_notsack_list)); 19767 } 19768 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19769 tcp->tcp_rack = tcp->tcp_rnxt; 19770 tcp->tcp_rack_cnt = 0; 19771 if ((snxt + len) == tcp->tcp_suna) { 19772 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19773 } 19774 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19775 /* 19776 * Didn't send anything. Make sure the timer is running 19777 * so that we will probe a zero window. 19778 */ 19779 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19780 } 19781 /* Note that len is the amount we just sent but with a negative sign */ 19782 tcp->tcp_unsent += len; 19783 mutex_enter(&tcp->tcp_non_sq_lock); 19784 if (tcp->tcp_flow_stopped) { 19785 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19786 tcp_clrqfull(tcp); 19787 } 19788 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19789 tcp_setqfull(tcp); 19790 } 19791 mutex_exit(&tcp->tcp_non_sq_lock); 19792 } 19793 19794 /* 19795 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19796 * outgoing TCP header with the template header, as well as other 19797 * options such as time-stamp, ECN and/or SACK. 19798 */ 19799 static void 19800 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19801 { 19802 tcph_t *tcp_tmpl, *tcp_h; 19803 uint32_t *dst, *src; 19804 int hdrlen; 19805 19806 ASSERT(OK_32PTR(rptr)); 19807 19808 /* Template header */ 19809 tcp_tmpl = tcp->tcp_tcph; 19810 19811 /* Header of outgoing packet */ 19812 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19813 19814 /* dst and src are opaque 32-bit fields, used for copying */ 19815 dst = (uint32_t *)rptr; 19816 src = (uint32_t *)tcp->tcp_iphc; 19817 hdrlen = tcp->tcp_hdr_len; 19818 19819 /* Fill time-stamp option if needed */ 19820 if (tcp->tcp_snd_ts_ok) { 19821 U32_TO_BE32((uint32_t)now, 19822 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19823 U32_TO_BE32(tcp->tcp_ts_recent, 19824 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19825 } else { 19826 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19827 } 19828 19829 /* 19830 * Copy the template header; is this really more efficient than 19831 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19832 * but perhaps not for other scenarios. 19833 */ 19834 dst[0] = src[0]; 19835 dst[1] = src[1]; 19836 dst[2] = src[2]; 19837 dst[3] = src[3]; 19838 dst[4] = src[4]; 19839 dst[5] = src[5]; 19840 dst[6] = src[6]; 19841 dst[7] = src[7]; 19842 dst[8] = src[8]; 19843 dst[9] = src[9]; 19844 if (hdrlen -= 40) { 19845 hdrlen >>= 2; 19846 dst += 10; 19847 src += 10; 19848 do { 19849 *dst++ = *src++; 19850 } while (--hdrlen); 19851 } 19852 19853 /* 19854 * Set the ECN info in the TCP header if it is not a zero 19855 * window probe. Zero window probe is only sent in 19856 * tcp_wput_data() and tcp_timer(). 19857 */ 19858 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19859 SET_ECT(tcp, rptr); 19860 19861 if (tcp->tcp_ecn_echo_on) 19862 tcp_h->th_flags[0] |= TH_ECE; 19863 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19864 tcp_h->th_flags[0] |= TH_CWR; 19865 tcp->tcp_ecn_cwr_sent = B_TRUE; 19866 } 19867 } 19868 19869 /* Fill in SACK options */ 19870 if (num_sack_blk > 0) { 19871 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19872 sack_blk_t *tmp; 19873 int32_t i; 19874 19875 wptr[0] = TCPOPT_NOP; 19876 wptr[1] = TCPOPT_NOP; 19877 wptr[2] = TCPOPT_SACK; 19878 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19879 sizeof (sack_blk_t); 19880 wptr += TCPOPT_REAL_SACK_LEN; 19881 19882 tmp = tcp->tcp_sack_list; 19883 for (i = 0; i < num_sack_blk; i++) { 19884 U32_TO_BE32(tmp[i].begin, wptr); 19885 wptr += sizeof (tcp_seq); 19886 U32_TO_BE32(tmp[i].end, wptr); 19887 wptr += sizeof (tcp_seq); 19888 } 19889 tcp_h->th_offset_and_rsrvd[0] += 19890 ((num_sack_blk * 2 + 1) << 4); 19891 } 19892 } 19893 19894 /* 19895 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19896 * the destination address and SAP attribute, and if necessary, the 19897 * hardware checksum offload attribute to a Multidata message. 19898 */ 19899 static int 19900 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19901 const uint32_t start, const uint32_t stuff, const uint32_t end, 19902 const uint32_t flags, tcp_stack_t *tcps) 19903 { 19904 /* Add global destination address & SAP attribute */ 19905 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19906 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19907 "destination address+SAP\n")); 19908 19909 if (dlmp != NULL) 19910 TCP_STAT(tcps, tcp_mdt_allocfail); 19911 return (-1); 19912 } 19913 19914 /* Add global hwcksum attribute */ 19915 if (hwcksum && 19916 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19917 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19918 "checksum attribute\n")); 19919 19920 TCP_STAT(tcps, tcp_mdt_allocfail); 19921 return (-1); 19922 } 19923 19924 return (0); 19925 } 19926 19927 /* 19928 * Smaller and private version of pdescinfo_t used specifically for TCP, 19929 * which allows for only two payload spans per packet. 19930 */ 19931 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19932 19933 /* 19934 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19935 * scheme, and returns one the following: 19936 * 19937 * -1 = failed allocation. 19938 * 0 = success; burst count reached, or usable send window is too small, 19939 * and that we'd rather wait until later before sending again. 19940 */ 19941 static int 19942 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19943 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19944 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19945 const int mdt_thres) 19946 { 19947 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19948 multidata_t *mmd; 19949 uint_t obsegs, obbytes, hdr_frag_sz; 19950 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19951 int num_burst_seg, max_pld; 19952 pdesc_t *pkt; 19953 tcp_pdescinfo_t tcp_pkt_info; 19954 pdescinfo_t *pkt_info; 19955 int pbuf_idx, pbuf_idx_nxt; 19956 int seg_len, len, spill, af; 19957 boolean_t add_buffer, zcopy, clusterwide; 19958 boolean_t rconfirm = B_FALSE; 19959 boolean_t done = B_FALSE; 19960 uint32_t cksum; 19961 uint32_t hwcksum_flags; 19962 ire_t *ire = NULL; 19963 ill_t *ill; 19964 ipha_t *ipha; 19965 ip6_t *ip6h; 19966 ipaddr_t src, dst; 19967 ill_zerocopy_capab_t *zc_cap = NULL; 19968 uint16_t *up; 19969 int err; 19970 conn_t *connp; 19971 tcp_stack_t *tcps = tcp->tcp_tcps; 19972 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19973 int usable_mmd, tail_unsent_mmd; 19974 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19975 mblk_t *xmit_tail_mmd; 19976 netstackid_t stack_id; 19977 19978 #ifdef _BIG_ENDIAN 19979 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19980 #else 19981 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19982 #endif 19983 19984 #define PREP_NEW_MULTIDATA() { \ 19985 mmd = NULL; \ 19986 md_mp = md_hbuf = NULL; \ 19987 cur_hdr_off = 0; \ 19988 max_pld = tcp->tcp_mdt_max_pld; \ 19989 pbuf_idx = pbuf_idx_nxt = -1; \ 19990 add_buffer = B_TRUE; \ 19991 zcopy = B_FALSE; \ 19992 } 19993 19994 #define PREP_NEW_PBUF() { \ 19995 md_pbuf = md_pbuf_nxt = NULL; \ 19996 pbuf_idx = pbuf_idx_nxt = -1; \ 19997 cur_pld_off = 0; \ 19998 first_snxt = *snxt; \ 19999 ASSERT(*tail_unsent > 0); \ 20000 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20001 } 20002 20003 ASSERT(mdt_thres >= mss); 20004 ASSERT(*usable > 0 && *usable > mdt_thres); 20005 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20006 ASSERT(!TCP_IS_DETACHED(tcp)); 20007 ASSERT(tcp->tcp_valid_bits == 0 || 20008 tcp->tcp_valid_bits == TCP_FSS_VALID); 20009 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20010 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20011 (tcp->tcp_ipversion == IPV6_VERSION && 20012 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20013 20014 connp = tcp->tcp_connp; 20015 ASSERT(connp != NULL); 20016 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20017 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20018 20019 stack_id = connp->conn_netstack->netstack_stackid; 20020 20021 usable_mmd = tail_unsent_mmd = 0; 20022 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 20023 xmit_tail_mmd = NULL; 20024 /* 20025 * Note that tcp will only declare at most 2 payload spans per 20026 * packet, which is much lower than the maximum allowable number 20027 * of packet spans per Multidata. For this reason, we use the 20028 * privately declared and smaller descriptor info structure, in 20029 * order to save some stack space. 20030 */ 20031 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20032 20033 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20034 if (af == AF_INET) { 20035 dst = tcp->tcp_ipha->ipha_dst; 20036 src = tcp->tcp_ipha->ipha_src; 20037 ASSERT(!CLASSD(dst)); 20038 } 20039 ASSERT(af == AF_INET || 20040 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20041 20042 obsegs = obbytes = 0; 20043 num_burst_seg = tcp->tcp_snd_burst; 20044 md_mp_head = NULL; 20045 PREP_NEW_MULTIDATA(); 20046 20047 /* 20048 * Before we go on further, make sure there is an IRE that we can 20049 * use, and that the ILL supports MDT. Otherwise, there's no point 20050 * in proceeding any further, and we should just hand everything 20051 * off to the legacy path. 20052 */ 20053 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20054 goto legacy_send_no_md; 20055 20056 ASSERT(ire != NULL); 20057 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20058 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20059 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20060 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20061 /* 20062 * If we do support loopback for MDT (which requires modifications 20063 * to the receiving paths), the following assertions should go away, 20064 * and we would be sending the Multidata to loopback conn later on. 20065 */ 20066 ASSERT(!IRE_IS_LOCAL(ire)); 20067 ASSERT(ire->ire_stq != NULL); 20068 20069 ill = ire_to_ill(ire); 20070 ASSERT(ill != NULL); 20071 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20072 20073 if (!tcp->tcp_ire_ill_check_done) { 20074 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20075 tcp->tcp_ire_ill_check_done = B_TRUE; 20076 } 20077 20078 /* 20079 * If the underlying interface conditions have changed, or if the 20080 * new interface does not support MDT, go back to legacy path. 20081 */ 20082 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20083 /* don't go through this path anymore for this connection */ 20084 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20085 tcp->tcp_mdt = B_FALSE; 20086 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20087 "interface %s\n", (void *)connp, ill->ill_name)); 20088 /* IRE will be released prior to returning */ 20089 goto legacy_send_no_md; 20090 } 20091 20092 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20093 zc_cap = ill->ill_zerocopy_capab; 20094 20095 /* 20096 * Check if we can take tcp fast-path. Note that "incomplete" 20097 * ire's (where the link-layer for next hop is not resolved 20098 * or where the fast-path header in nce_fp_mp is not available 20099 * yet) are sent down the legacy (slow) path. 20100 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20101 */ 20102 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20103 /* IRE will be released prior to returning */ 20104 goto legacy_send_no_md; 20105 } 20106 20107 /* go to legacy path if interface doesn't support zerocopy */ 20108 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20109 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20110 /* IRE will be released prior to returning */ 20111 goto legacy_send_no_md; 20112 } 20113 20114 /* does the interface support hardware checksum offload? */ 20115 hwcksum_flags = 0; 20116 if (ILL_HCKSUM_CAPABLE(ill) && 20117 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20118 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20119 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20120 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20121 HCKSUM_IPHDRCKSUM) 20122 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20123 20124 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20125 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20126 hwcksum_flags |= HCK_FULLCKSUM; 20127 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20128 HCKSUM_INET_PARTIAL) 20129 hwcksum_flags |= HCK_PARTIALCKSUM; 20130 } 20131 20132 /* 20133 * Each header fragment consists of the leading extra space, 20134 * followed by the TCP/IP header, and the trailing extra space. 20135 * We make sure that each header fragment begins on a 32-bit 20136 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20137 * aligned in tcp_mdt_update). 20138 */ 20139 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20140 tcp->tcp_mdt_hdr_tail), 4); 20141 20142 /* are we starting from the beginning of data block? */ 20143 if (*tail_unsent == 0) { 20144 *xmit_tail = (*xmit_tail)->b_cont; 20145 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20146 *tail_unsent = (int)MBLKL(*xmit_tail); 20147 } 20148 20149 /* 20150 * Here we create one or more Multidata messages, each made up of 20151 * one header buffer and up to N payload buffers. This entire 20152 * operation is done within two loops: 20153 * 20154 * The outer loop mostly deals with creating the Multidata message, 20155 * as well as the header buffer that gets added to it. It also 20156 * links the Multidata messages together such that all of them can 20157 * be sent down to the lower layer in a single putnext call; this 20158 * linking behavior depends on the tcp_mdt_chain tunable. 20159 * 20160 * The inner loop takes an existing Multidata message, and adds 20161 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20162 * packetizes those buffers by filling up the corresponding header 20163 * buffer fragments with the proper IP and TCP headers, and by 20164 * describing the layout of each packet in the packet descriptors 20165 * that get added to the Multidata. 20166 */ 20167 do { 20168 /* 20169 * If usable send window is too small, or data blocks in 20170 * transmit list are smaller than our threshold (i.e. app 20171 * performs large writes followed by small ones), we hand 20172 * off the control over to the legacy path. Note that we'll 20173 * get back the control once it encounters a large block. 20174 */ 20175 if (*usable < mss || (*tail_unsent <= mdt_thres && 20176 (*xmit_tail)->b_cont != NULL && 20177 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20178 /* send down what we've got so far */ 20179 if (md_mp_head != NULL) { 20180 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20181 obsegs, obbytes, &rconfirm); 20182 } 20183 /* 20184 * Pass control over to tcp_send(), but tell it to 20185 * return to us once a large-size transmission is 20186 * possible. 20187 */ 20188 TCP_STAT(tcps, tcp_mdt_legacy_small); 20189 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20190 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20191 tail_unsent, xmit_tail, local_time, 20192 mdt_thres)) <= 0) { 20193 /* burst count reached, or alloc failed */ 20194 IRE_REFRELE(ire); 20195 return (err); 20196 } 20197 20198 /* tcp_send() may have sent everything, so check */ 20199 if (*usable <= 0) { 20200 IRE_REFRELE(ire); 20201 return (0); 20202 } 20203 20204 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20205 /* 20206 * We may have delivered the Multidata, so make sure 20207 * to re-initialize before the next round. 20208 */ 20209 md_mp_head = NULL; 20210 obsegs = obbytes = 0; 20211 num_burst_seg = tcp->tcp_snd_burst; 20212 PREP_NEW_MULTIDATA(); 20213 20214 /* are we starting from the beginning of data block? */ 20215 if (*tail_unsent == 0) { 20216 *xmit_tail = (*xmit_tail)->b_cont; 20217 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20218 (uintptr_t)INT_MAX); 20219 *tail_unsent = (int)MBLKL(*xmit_tail); 20220 } 20221 } 20222 /* 20223 * Record current values for parameters we may need to pass 20224 * to tcp_send() or tcp_multisend_data(). We checkpoint at 20225 * each iteration of the outer loop (each multidata message 20226 * creation). If we have a failure in the inner loop, we send 20227 * any complete multidata messages we have before reverting 20228 * to using the traditional non-md path. 20229 */ 20230 snxt_mmd = *snxt; 20231 usable_mmd = *usable; 20232 xmit_tail_mmd = *xmit_tail; 20233 tail_unsent_mmd = *tail_unsent; 20234 obsegs_mmd = obsegs; 20235 obbytes_mmd = obbytes; 20236 20237 /* 20238 * max_pld limits the number of mblks in tcp's transmit 20239 * queue that can be added to a Multidata message. Once 20240 * this counter reaches zero, no more additional mblks 20241 * can be added to it. What happens afterwards depends 20242 * on whether or not we are set to chain the Multidata 20243 * messages. If we are to link them together, reset 20244 * max_pld to its original value (tcp_mdt_max_pld) and 20245 * prepare to create a new Multidata message which will 20246 * get linked to md_mp_head. Else, leave it alone and 20247 * let the inner loop break on its own. 20248 */ 20249 if (tcp_mdt_chain && max_pld == 0) 20250 PREP_NEW_MULTIDATA(); 20251 20252 /* adding a payload buffer; re-initialize values */ 20253 if (add_buffer) 20254 PREP_NEW_PBUF(); 20255 20256 /* 20257 * If we don't have a Multidata, either because we just 20258 * (re)entered this outer loop, or after we branched off 20259 * to tcp_send above, setup the Multidata and header 20260 * buffer to be used. 20261 */ 20262 if (md_mp == NULL) { 20263 int md_hbuflen; 20264 uint32_t start, stuff; 20265 20266 /* 20267 * Calculate Multidata header buffer size large enough 20268 * to hold all of the headers that can possibly be 20269 * sent at this moment. We'd rather over-estimate 20270 * the size than running out of space; this is okay 20271 * since this buffer is small anyway. 20272 */ 20273 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20274 20275 /* 20276 * Start and stuff offset for partial hardware 20277 * checksum offload; these are currently for IPv4. 20278 * For full checksum offload, they are set to zero. 20279 */ 20280 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20281 if (af == AF_INET) { 20282 start = IP_SIMPLE_HDR_LENGTH; 20283 stuff = IP_SIMPLE_HDR_LENGTH + 20284 TCP_CHECKSUM_OFFSET; 20285 } else { 20286 start = IPV6_HDR_LEN; 20287 stuff = IPV6_HDR_LEN + 20288 TCP_CHECKSUM_OFFSET; 20289 } 20290 } else { 20291 start = stuff = 0; 20292 } 20293 20294 /* 20295 * Create the header buffer, Multidata, as well as 20296 * any necessary attributes (destination address, 20297 * SAP and hardware checksum offload) that should 20298 * be associated with the Multidata message. 20299 */ 20300 ASSERT(cur_hdr_off == 0); 20301 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20302 ((md_hbuf->b_wptr += md_hbuflen), 20303 (mmd = mmd_alloc(md_hbuf, &md_mp, 20304 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20305 /* fastpath mblk */ 20306 ire->ire_nce->nce_res_mp, 20307 /* hardware checksum enabled */ 20308 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20309 /* hardware checksum offsets */ 20310 start, stuff, 0, 20311 /* hardware checksum flag */ 20312 hwcksum_flags, tcps) != 0)) { 20313 legacy_send: 20314 /* 20315 * We arrive here from a failure within the 20316 * inner (packetizer) loop or we fail one of 20317 * the conditionals above. We restore the 20318 * previously checkpointed values for: 20319 * xmit_tail 20320 * usable 20321 * tail_unsent 20322 * snxt 20323 * obbytes 20324 * obsegs 20325 * We should then be able to dispatch any 20326 * complete multidata before reverting to the 20327 * traditional path with consistent parameters 20328 * (the inner loop updates these as it 20329 * iterates). 20330 */ 20331 *xmit_tail = xmit_tail_mmd; 20332 *usable = usable_mmd; 20333 *tail_unsent = tail_unsent_mmd; 20334 *snxt = snxt_mmd; 20335 obbytes = obbytes_mmd; 20336 obsegs = obsegs_mmd; 20337 if (md_mp != NULL) { 20338 /* Unlink message from the chain */ 20339 if (md_mp_head != NULL) { 20340 err = (intptr_t)rmvb(md_mp_head, 20341 md_mp); 20342 /* 20343 * We can't assert that rmvb 20344 * did not return -1, since we 20345 * may get here before linkb 20346 * happens. We do, however, 20347 * check if we just removed the 20348 * only element in the list. 20349 */ 20350 if (err == 0) 20351 md_mp_head = NULL; 20352 } 20353 /* md_hbuf gets freed automatically */ 20354 TCP_STAT(tcps, tcp_mdt_discarded); 20355 freeb(md_mp); 20356 } else { 20357 /* Either allocb or mmd_alloc failed */ 20358 TCP_STAT(tcps, tcp_mdt_allocfail); 20359 if (md_hbuf != NULL) 20360 freeb(md_hbuf); 20361 } 20362 20363 /* send down what we've got so far */ 20364 if (md_mp_head != NULL) { 20365 tcp_multisend_data(tcp, ire, ill, 20366 md_mp_head, obsegs, obbytes, 20367 &rconfirm); 20368 } 20369 legacy_send_no_md: 20370 if (ire != NULL) 20371 IRE_REFRELE(ire); 20372 /* 20373 * Too bad; let the legacy path handle this. 20374 * We specify INT_MAX for the threshold, since 20375 * we gave up with the Multidata processings 20376 * and let the old path have it all. 20377 */ 20378 TCP_STAT(tcps, tcp_mdt_legacy_all); 20379 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20380 tcp_tcp_hdr_len, num_sack_blk, usable, 20381 snxt, tail_unsent, xmit_tail, local_time, 20382 INT_MAX)); 20383 } 20384 20385 /* link to any existing ones, if applicable */ 20386 TCP_STAT(tcps, tcp_mdt_allocd); 20387 if (md_mp_head == NULL) { 20388 md_mp_head = md_mp; 20389 } else if (tcp_mdt_chain) { 20390 TCP_STAT(tcps, tcp_mdt_linked); 20391 linkb(md_mp_head, md_mp); 20392 } 20393 } 20394 20395 ASSERT(md_mp_head != NULL); 20396 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20397 ASSERT(md_mp != NULL && mmd != NULL); 20398 ASSERT(md_hbuf != NULL); 20399 20400 /* 20401 * Packetize the transmittable portion of the data block; 20402 * each data block is essentially added to the Multidata 20403 * as a payload buffer. We also deal with adding more 20404 * than one payload buffers, which happens when the remaining 20405 * packetized portion of the current payload buffer is less 20406 * than MSS, while the next data block in transmit queue 20407 * has enough data to make up for one. This "spillover" 20408 * case essentially creates a split-packet, where portions 20409 * of the packet's payload fragments may span across two 20410 * virtually discontiguous address blocks. 20411 */ 20412 seg_len = mss; 20413 do { 20414 len = seg_len; 20415 20416 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20417 ipha = NULL; 20418 ip6h = NULL; 20419 20420 ASSERT(len > 0); 20421 ASSERT(max_pld >= 0); 20422 ASSERT(!add_buffer || cur_pld_off == 0); 20423 20424 /* 20425 * First time around for this payload buffer; note 20426 * in the case of a spillover, the following has 20427 * been done prior to adding the split-packet 20428 * descriptor to Multidata, and we don't want to 20429 * repeat the process. 20430 */ 20431 if (add_buffer) { 20432 ASSERT(mmd != NULL); 20433 ASSERT(md_pbuf == NULL); 20434 ASSERT(md_pbuf_nxt == NULL); 20435 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20436 20437 /* 20438 * Have we reached the limit? We'd get to 20439 * this case when we're not chaining the 20440 * Multidata messages together, and since 20441 * we're done, terminate this loop. 20442 */ 20443 if (max_pld == 0) 20444 break; /* done */ 20445 20446 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20447 TCP_STAT(tcps, tcp_mdt_allocfail); 20448 goto legacy_send; /* out_of_mem */ 20449 } 20450 20451 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20452 zc_cap != NULL) { 20453 if (!ip_md_zcopy_attr(mmd, NULL, 20454 zc_cap->ill_zerocopy_flags)) { 20455 freeb(md_pbuf); 20456 TCP_STAT(tcps, 20457 tcp_mdt_allocfail); 20458 /* out_of_mem */ 20459 goto legacy_send; 20460 } 20461 zcopy = B_TRUE; 20462 } 20463 20464 md_pbuf->b_rptr += base_pld_off; 20465 20466 /* 20467 * Add a payload buffer to the Multidata; this 20468 * operation must not fail, or otherwise our 20469 * logic in this routine is broken. There 20470 * is no memory allocation done by the 20471 * routine, so any returned failure simply 20472 * tells us that we've done something wrong. 20473 * 20474 * A failure tells us that either we're adding 20475 * the same payload buffer more than once, or 20476 * we're trying to add more buffers than 20477 * allowed (max_pld calculation is wrong). 20478 * None of the above cases should happen, and 20479 * we panic because either there's horrible 20480 * heap corruption, and/or programming mistake. 20481 */ 20482 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20483 if (pbuf_idx < 0) { 20484 cmn_err(CE_PANIC, "tcp_multisend: " 20485 "payload buffer logic error " 20486 "detected for tcp %p mmd %p " 20487 "pbuf %p (%d)\n", 20488 (void *)tcp, (void *)mmd, 20489 (void *)md_pbuf, pbuf_idx); 20490 } 20491 20492 ASSERT(max_pld > 0); 20493 --max_pld; 20494 add_buffer = B_FALSE; 20495 } 20496 20497 ASSERT(md_mp_head != NULL); 20498 ASSERT(md_pbuf != NULL); 20499 ASSERT(md_pbuf_nxt == NULL); 20500 ASSERT(pbuf_idx != -1); 20501 ASSERT(pbuf_idx_nxt == -1); 20502 ASSERT(*usable > 0); 20503 20504 /* 20505 * We spillover to the next payload buffer only 20506 * if all of the following is true: 20507 * 20508 * 1. There is not enough data on the current 20509 * payload buffer to make up `len', 20510 * 2. We are allowed to send `len', 20511 * 3. The next payload buffer length is large 20512 * enough to accomodate `spill'. 20513 */ 20514 if ((spill = len - *tail_unsent) > 0 && 20515 *usable >= len && 20516 MBLKL((*xmit_tail)->b_cont) >= spill && 20517 max_pld > 0) { 20518 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20519 if (md_pbuf_nxt == NULL) { 20520 TCP_STAT(tcps, tcp_mdt_allocfail); 20521 goto legacy_send; /* out_of_mem */ 20522 } 20523 20524 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20525 zc_cap != NULL) { 20526 if (!ip_md_zcopy_attr(mmd, NULL, 20527 zc_cap->ill_zerocopy_flags)) { 20528 freeb(md_pbuf_nxt); 20529 TCP_STAT(tcps, 20530 tcp_mdt_allocfail); 20531 /* out_of_mem */ 20532 goto legacy_send; 20533 } 20534 zcopy = B_TRUE; 20535 } 20536 20537 /* 20538 * See comments above on the first call to 20539 * mmd_addpldbuf for explanation on the panic. 20540 */ 20541 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20542 if (pbuf_idx_nxt < 0) { 20543 panic("tcp_multisend: " 20544 "next payload buffer logic error " 20545 "detected for tcp %p mmd %p " 20546 "pbuf %p (%d)\n", 20547 (void *)tcp, (void *)mmd, 20548 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20549 } 20550 20551 ASSERT(max_pld > 0); 20552 --max_pld; 20553 } else if (spill > 0) { 20554 /* 20555 * If there's a spillover, but the following 20556 * xmit_tail couldn't give us enough octets 20557 * to reach "len", then stop the current 20558 * Multidata creation and let the legacy 20559 * tcp_send() path take over. We don't want 20560 * to send the tiny segment as part of this 20561 * Multidata for performance reasons; instead, 20562 * we let the legacy path deal with grouping 20563 * it with the subsequent small mblks. 20564 */ 20565 if (*usable >= len && 20566 MBLKL((*xmit_tail)->b_cont) < spill) { 20567 max_pld = 0; 20568 break; /* done */ 20569 } 20570 20571 /* 20572 * We can't spillover, and we are near 20573 * the end of the current payload buffer, 20574 * so send what's left. 20575 */ 20576 ASSERT(*tail_unsent > 0); 20577 len = *tail_unsent; 20578 } 20579 20580 /* tail_unsent is negated if there is a spillover */ 20581 *tail_unsent -= len; 20582 *usable -= len; 20583 ASSERT(*usable >= 0); 20584 20585 if (*usable < mss) 20586 seg_len = *usable; 20587 /* 20588 * Sender SWS avoidance; see comments in tcp_send(); 20589 * everything else is the same, except that we only 20590 * do this here if there is no more data to be sent 20591 * following the current xmit_tail. We don't check 20592 * for 1-byte urgent data because we shouldn't get 20593 * here if TCP_URG_VALID is set. 20594 */ 20595 if (*usable > 0 && *usable < mss && 20596 ((md_pbuf_nxt == NULL && 20597 (*xmit_tail)->b_cont == NULL) || 20598 (md_pbuf_nxt != NULL && 20599 (*xmit_tail)->b_cont->b_cont == NULL)) && 20600 seg_len < (tcp->tcp_max_swnd >> 1) && 20601 (tcp->tcp_unsent - 20602 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20603 !tcp->tcp_zero_win_probe) { 20604 if ((*snxt + len) == tcp->tcp_snxt && 20605 (*snxt + len) == tcp->tcp_suna) { 20606 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20607 } 20608 done = B_TRUE; 20609 } 20610 20611 /* 20612 * Prime pump for IP's checksumming on our behalf; 20613 * include the adjustment for a source route if any. 20614 * Do this only for software/partial hardware checksum 20615 * offload, as this field gets zeroed out later for 20616 * the full hardware checksum offload case. 20617 */ 20618 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20619 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20620 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20621 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20622 } 20623 20624 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20625 *snxt += len; 20626 20627 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20628 /* 20629 * We set the PUSH bit only if TCP has no more buffered 20630 * data to be transmitted (or if sender SWS avoidance 20631 * takes place), as opposed to setting it for every 20632 * last packet in the burst. 20633 */ 20634 if (done || 20635 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20636 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20637 20638 /* 20639 * Set FIN bit if this is our last segment; snxt 20640 * already includes its length, and it will not 20641 * be adjusted after this point. 20642 */ 20643 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20644 *snxt == tcp->tcp_fss) { 20645 if (!tcp->tcp_fin_acked) { 20646 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20647 BUMP_MIB(&tcps->tcps_mib, 20648 tcpOutControl); 20649 } 20650 if (!tcp->tcp_fin_sent) { 20651 tcp->tcp_fin_sent = B_TRUE; 20652 /* 20653 * tcp state must be ESTABLISHED 20654 * in order for us to get here in 20655 * the first place. 20656 */ 20657 tcp->tcp_state = TCPS_FIN_WAIT_1; 20658 20659 /* 20660 * Upon returning from this routine, 20661 * tcp_wput_data() will set tcp_snxt 20662 * to be equal to snxt + tcp_fin_sent. 20663 * This is essentially the same as 20664 * setting it to tcp_fss + 1. 20665 */ 20666 } 20667 } 20668 20669 tcp->tcp_last_sent_len = (ushort_t)len; 20670 20671 len += tcp_hdr_len; 20672 if (tcp->tcp_ipversion == IPV4_VERSION) 20673 tcp->tcp_ipha->ipha_length = htons(len); 20674 else 20675 tcp->tcp_ip6h->ip6_plen = htons(len - 20676 ((char *)&tcp->tcp_ip6h[1] - 20677 tcp->tcp_iphc)); 20678 20679 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20680 20681 /* setup header fragment */ 20682 PDESC_HDR_ADD(pkt_info, 20683 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20684 tcp->tcp_mdt_hdr_head, /* head room */ 20685 tcp_hdr_len, /* len */ 20686 tcp->tcp_mdt_hdr_tail); /* tail room */ 20687 20688 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20689 hdr_frag_sz); 20690 ASSERT(MBLKIN(md_hbuf, 20691 (pkt_info->hdr_base - md_hbuf->b_rptr), 20692 PDESC_HDRSIZE(pkt_info))); 20693 20694 /* setup first payload fragment */ 20695 PDESC_PLD_INIT(pkt_info); 20696 PDESC_PLD_SPAN_ADD(pkt_info, 20697 pbuf_idx, /* index */ 20698 md_pbuf->b_rptr + cur_pld_off, /* start */ 20699 tcp->tcp_last_sent_len); /* len */ 20700 20701 /* create a split-packet in case of a spillover */ 20702 if (md_pbuf_nxt != NULL) { 20703 ASSERT(spill > 0); 20704 ASSERT(pbuf_idx_nxt > pbuf_idx); 20705 ASSERT(!add_buffer); 20706 20707 md_pbuf = md_pbuf_nxt; 20708 md_pbuf_nxt = NULL; 20709 pbuf_idx = pbuf_idx_nxt; 20710 pbuf_idx_nxt = -1; 20711 cur_pld_off = spill; 20712 20713 /* trim out first payload fragment */ 20714 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20715 20716 /* setup second payload fragment */ 20717 PDESC_PLD_SPAN_ADD(pkt_info, 20718 pbuf_idx, /* index */ 20719 md_pbuf->b_rptr, /* start */ 20720 spill); /* len */ 20721 20722 if ((*xmit_tail)->b_next == NULL) { 20723 /* 20724 * Store the lbolt used for RTT 20725 * estimation. We can only record one 20726 * timestamp per mblk so we do it when 20727 * we reach the end of the payload 20728 * buffer. Also we only take a new 20729 * timestamp sample when the previous 20730 * timed data from the same mblk has 20731 * been ack'ed. 20732 */ 20733 (*xmit_tail)->b_prev = local_time; 20734 (*xmit_tail)->b_next = 20735 (mblk_t *)(uintptr_t)first_snxt; 20736 } 20737 20738 first_snxt = *snxt - spill; 20739 20740 /* 20741 * Advance xmit_tail; usable could be 0 by 20742 * the time we got here, but we made sure 20743 * above that we would only spillover to 20744 * the next data block if usable includes 20745 * the spilled-over amount prior to the 20746 * subtraction. Therefore, we are sure 20747 * that xmit_tail->b_cont can't be NULL. 20748 */ 20749 ASSERT((*xmit_tail)->b_cont != NULL); 20750 *xmit_tail = (*xmit_tail)->b_cont; 20751 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20752 (uintptr_t)INT_MAX); 20753 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20754 } else { 20755 cur_pld_off += tcp->tcp_last_sent_len; 20756 } 20757 20758 /* 20759 * Fill in the header using the template header, and 20760 * add options such as time-stamp, ECN and/or SACK, 20761 * as needed. 20762 */ 20763 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20764 (clock_t)local_time, num_sack_blk); 20765 20766 /* take care of some IP header businesses */ 20767 if (af == AF_INET) { 20768 ipha = (ipha_t *)pkt_info->hdr_rptr; 20769 20770 ASSERT(OK_32PTR((uchar_t *)ipha)); 20771 ASSERT(PDESC_HDRL(pkt_info) >= 20772 IP_SIMPLE_HDR_LENGTH); 20773 ASSERT(ipha->ipha_version_and_hdr_length == 20774 IP_SIMPLE_HDR_VERSION); 20775 20776 /* 20777 * Assign ident value for current packet; see 20778 * related comments in ip_wput_ire() about the 20779 * contract private interface with clustering 20780 * group. 20781 */ 20782 clusterwide = B_FALSE; 20783 if (cl_inet_ipident != NULL) { 20784 ASSERT(cl_inet_isclusterwide != NULL); 20785 if ((*cl_inet_isclusterwide)(stack_id, 20786 IPPROTO_IP, AF_INET, 20787 (uint8_t *)(uintptr_t)src, NULL)) { 20788 ipha->ipha_ident = 20789 (*cl_inet_ipident)(stack_id, 20790 IPPROTO_IP, AF_INET, 20791 (uint8_t *)(uintptr_t)src, 20792 (uint8_t *)(uintptr_t)dst, 20793 NULL); 20794 clusterwide = B_TRUE; 20795 } 20796 } 20797 20798 if (!clusterwide) { 20799 ipha->ipha_ident = (uint16_t) 20800 atomic_add_32_nv( 20801 &ire->ire_ident, 1); 20802 } 20803 #ifndef _BIG_ENDIAN 20804 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20805 (ipha->ipha_ident >> 8); 20806 #endif 20807 } else { 20808 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20809 20810 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20811 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20812 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20813 ASSERT(PDESC_HDRL(pkt_info) >= 20814 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20815 TCP_CHECKSUM_SIZE)); 20816 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20817 20818 if (tcp->tcp_ip_forward_progress) { 20819 rconfirm = B_TRUE; 20820 tcp->tcp_ip_forward_progress = B_FALSE; 20821 } 20822 } 20823 20824 /* at least one payload span, and at most two */ 20825 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20826 20827 /* add the packet descriptor to Multidata */ 20828 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20829 KM_NOSLEEP)) == NULL) { 20830 /* 20831 * Any failure other than ENOMEM indicates 20832 * that we have passed in invalid pkt_info 20833 * or parameters to mmd_addpdesc, which must 20834 * not happen. 20835 * 20836 * EINVAL is a result of failure on boundary 20837 * checks against the pkt_info contents. It 20838 * should not happen, and we panic because 20839 * either there's horrible heap corruption, 20840 * and/or programming mistake. 20841 */ 20842 if (err != ENOMEM) { 20843 cmn_err(CE_PANIC, "tcp_multisend: " 20844 "pdesc logic error detected for " 20845 "tcp %p mmd %p pinfo %p (%d)\n", 20846 (void *)tcp, (void *)mmd, 20847 (void *)pkt_info, err); 20848 } 20849 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20850 goto legacy_send; /* out_of_mem */ 20851 } 20852 ASSERT(pkt != NULL); 20853 20854 /* calculate IP header and TCP checksums */ 20855 if (af == AF_INET) { 20856 /* calculate pseudo-header checksum */ 20857 cksum = (dst >> 16) + (dst & 0xFFFF) + 20858 (src >> 16) + (src & 0xFFFF); 20859 20860 /* offset for TCP header checksum */ 20861 up = IPH_TCPH_CHECKSUMP(ipha, 20862 IP_SIMPLE_HDR_LENGTH); 20863 } else { 20864 up = (uint16_t *)&ip6h->ip6_src; 20865 20866 /* calculate pseudo-header checksum */ 20867 cksum = up[0] + up[1] + up[2] + up[3] + 20868 up[4] + up[5] + up[6] + up[7] + 20869 up[8] + up[9] + up[10] + up[11] + 20870 up[12] + up[13] + up[14] + up[15]; 20871 20872 /* Fold the initial sum */ 20873 cksum = (cksum & 0xffff) + (cksum >> 16); 20874 20875 up = (uint16_t *)(((uchar_t *)ip6h) + 20876 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20877 } 20878 20879 if (hwcksum_flags & HCK_FULLCKSUM) { 20880 /* clear checksum field for hardware */ 20881 *up = 0; 20882 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20883 uint32_t sum; 20884 20885 /* pseudo-header checksumming */ 20886 sum = *up + cksum + IP_TCP_CSUM_COMP; 20887 sum = (sum & 0xFFFF) + (sum >> 16); 20888 *up = (sum & 0xFFFF) + (sum >> 16); 20889 } else { 20890 /* software checksumming */ 20891 TCP_STAT(tcps, tcp_out_sw_cksum); 20892 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20893 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20894 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20895 cksum + IP_TCP_CSUM_COMP); 20896 if (*up == 0) 20897 *up = 0xFFFF; 20898 } 20899 20900 /* IPv4 header checksum */ 20901 if (af == AF_INET) { 20902 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20903 ipha->ipha_hdr_checksum = 0; 20904 } else { 20905 IP_HDR_CKSUM(ipha, cksum, 20906 ((uint32_t *)ipha)[0], 20907 ((uint16_t *)ipha)[4]); 20908 } 20909 } 20910 20911 if (af == AF_INET && 20912 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20913 af == AF_INET6 && 20914 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20915 mblk_t *mp, *mp1; 20916 uchar_t *hdr_rptr, *hdr_wptr; 20917 uchar_t *pld_rptr, *pld_wptr; 20918 20919 /* 20920 * We reconstruct a pseudo packet for the hooks 20921 * framework using mmd_transform_link(). 20922 * If it is a split packet we pullup the 20923 * payload. FW_HOOKS expects a pkt comprising 20924 * of two mblks: a header and the payload. 20925 */ 20926 if ((mp = mmd_transform_link(pkt)) == NULL) { 20927 TCP_STAT(tcps, tcp_mdt_allocfail); 20928 goto legacy_send; 20929 } 20930 20931 if (pkt_info->pld_cnt > 1) { 20932 /* split payload, more than one pld */ 20933 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20934 NULL) { 20935 freemsg(mp); 20936 TCP_STAT(tcps, 20937 tcp_mdt_allocfail); 20938 goto legacy_send; 20939 } 20940 freemsg(mp->b_cont); 20941 mp->b_cont = mp1; 20942 } else { 20943 mp1 = mp->b_cont; 20944 } 20945 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20946 20947 /* 20948 * Remember the message offsets. This is so we 20949 * can detect changes when we return from the 20950 * FW_HOOKS callbacks. 20951 */ 20952 hdr_rptr = mp->b_rptr; 20953 hdr_wptr = mp->b_wptr; 20954 pld_rptr = mp->b_cont->b_rptr; 20955 pld_wptr = mp->b_cont->b_wptr; 20956 20957 if (af == AF_INET) { 20958 DTRACE_PROBE4( 20959 ip4__physical__out__start, 20960 ill_t *, NULL, 20961 ill_t *, ill, 20962 ipha_t *, ipha, 20963 mblk_t *, mp); 20964 FW_HOOKS( 20965 ipst->ips_ip4_physical_out_event, 20966 ipst->ips_ipv4firewall_physical_out, 20967 NULL, ill, ipha, mp, mp, 0, ipst); 20968 DTRACE_PROBE1( 20969 ip4__physical__out__end, 20970 mblk_t *, mp); 20971 } else { 20972 DTRACE_PROBE4( 20973 ip6__physical__out_start, 20974 ill_t *, NULL, 20975 ill_t *, ill, 20976 ip6_t *, ip6h, 20977 mblk_t *, mp); 20978 FW_HOOKS6( 20979 ipst->ips_ip6_physical_out_event, 20980 ipst->ips_ipv6firewall_physical_out, 20981 NULL, ill, ip6h, mp, mp, 0, ipst); 20982 DTRACE_PROBE1( 20983 ip6__physical__out__end, 20984 mblk_t *, mp); 20985 } 20986 20987 if (mp == NULL || 20988 (mp1 = mp->b_cont) == NULL || 20989 mp->b_rptr != hdr_rptr || 20990 mp->b_wptr != hdr_wptr || 20991 mp1->b_rptr != pld_rptr || 20992 mp1->b_wptr != pld_wptr || 20993 mp1->b_cont != NULL) { 20994 /* 20995 * We abandon multidata processing and 20996 * return to the normal path, either 20997 * when a packet is blocked, or when 20998 * the boundaries of header buffer or 20999 * payload buffer have been changed by 21000 * FW_HOOKS[6]. 21001 */ 21002 if (mp != NULL) 21003 freemsg(mp); 21004 goto legacy_send; 21005 } 21006 /* Finished with the pseudo packet */ 21007 freemsg(mp); 21008 } 21009 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21010 ill, ipha, ip6h); 21011 /* advance header offset */ 21012 cur_hdr_off += hdr_frag_sz; 21013 21014 obbytes += tcp->tcp_last_sent_len; 21015 ++obsegs; 21016 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21017 *tail_unsent > 0); 21018 21019 if ((*xmit_tail)->b_next == NULL) { 21020 /* 21021 * Store the lbolt used for RTT estimation. We can only 21022 * record one timestamp per mblk so we do it when we 21023 * reach the end of the payload buffer. Also we only 21024 * take a new timestamp sample when the previous timed 21025 * data from the same mblk has been ack'ed. 21026 */ 21027 (*xmit_tail)->b_prev = local_time; 21028 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21029 } 21030 21031 ASSERT(*tail_unsent >= 0); 21032 if (*tail_unsent > 0) { 21033 /* 21034 * We got here because we broke out of the above 21035 * loop due to of one of the following cases: 21036 * 21037 * 1. len < adjusted MSS (i.e. small), 21038 * 2. Sender SWS avoidance, 21039 * 3. max_pld is zero. 21040 * 21041 * We are done for this Multidata, so trim our 21042 * last payload buffer (if any) accordingly. 21043 */ 21044 if (md_pbuf != NULL) 21045 md_pbuf->b_wptr -= *tail_unsent; 21046 } else if (*usable > 0) { 21047 *xmit_tail = (*xmit_tail)->b_cont; 21048 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21049 (uintptr_t)INT_MAX); 21050 *tail_unsent = (int)MBLKL(*xmit_tail); 21051 add_buffer = B_TRUE; 21052 } 21053 } while (!done && *usable > 0 && num_burst_seg > 0 && 21054 (tcp_mdt_chain || max_pld > 0)); 21055 21056 if (md_mp_head != NULL) { 21057 /* send everything down */ 21058 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21059 &rconfirm); 21060 } 21061 21062 #undef PREP_NEW_MULTIDATA 21063 #undef PREP_NEW_PBUF 21064 #undef IPVER 21065 21066 IRE_REFRELE(ire); 21067 return (0); 21068 } 21069 21070 /* 21071 * A wrapper function for sending one or more Multidata messages down to 21072 * the module below ip; this routine does not release the reference of the 21073 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21074 */ 21075 static void 21076 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21077 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21078 { 21079 uint64_t delta; 21080 nce_t *nce; 21081 tcp_stack_t *tcps = tcp->tcp_tcps; 21082 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21083 21084 ASSERT(ire != NULL && ill != NULL); 21085 ASSERT(ire->ire_stq != NULL); 21086 ASSERT(md_mp_head != NULL); 21087 ASSERT(rconfirm != NULL); 21088 21089 /* adjust MIBs and IRE timestamp */ 21090 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 21091 tcp->tcp_obsegs += obsegs; 21092 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21093 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21094 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21095 21096 if (tcp->tcp_ipversion == IPV4_VERSION) { 21097 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21098 } else { 21099 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21100 } 21101 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21102 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21103 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21104 21105 ire->ire_ob_pkt_count += obsegs; 21106 if (ire->ire_ipif != NULL) 21107 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21108 ire->ire_last_used_time = lbolt; 21109 21110 if (ipst->ips_ipobs_enabled) { 21111 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 21112 pdesc_t *dl_pkt; 21113 pdescinfo_t pinfo; 21114 mblk_t *nmp; 21115 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21116 21117 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 21118 (dl_pkt != NULL); 21119 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 21120 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 21121 continue; 21122 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 21123 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 21124 freemsg(nmp); 21125 } 21126 } 21127 21128 /* send it down */ 21129 putnext(ire->ire_stq, md_mp_head); 21130 21131 /* we're done for TCP/IPv4 */ 21132 if (tcp->tcp_ipversion == IPV4_VERSION) 21133 return; 21134 21135 nce = ire->ire_nce; 21136 21137 ASSERT(nce != NULL); 21138 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21139 ASSERT(nce->nce_state != ND_INCOMPLETE); 21140 21141 /* reachability confirmation? */ 21142 if (*rconfirm) { 21143 nce->nce_last = TICK_TO_MSEC(lbolt64); 21144 if (nce->nce_state != ND_REACHABLE) { 21145 mutex_enter(&nce->nce_lock); 21146 nce->nce_state = ND_REACHABLE; 21147 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21148 mutex_exit(&nce->nce_lock); 21149 (void) untimeout(nce->nce_timeout_id); 21150 if (ip_debug > 2) { 21151 /* ip1dbg */ 21152 pr_addr_dbg("tcp_multisend_data: state " 21153 "for %s changed to REACHABLE\n", 21154 AF_INET6, &ire->ire_addr_v6); 21155 } 21156 } 21157 /* reset transport reachability confirmation */ 21158 *rconfirm = B_FALSE; 21159 } 21160 21161 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21162 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21163 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21164 21165 if (delta > (uint64_t)ill->ill_reachable_time) { 21166 mutex_enter(&nce->nce_lock); 21167 switch (nce->nce_state) { 21168 case ND_REACHABLE: 21169 case ND_STALE: 21170 /* 21171 * ND_REACHABLE is identical to ND_STALE in this 21172 * specific case. If reachable time has expired for 21173 * this neighbor (delta is greater than reachable 21174 * time), conceptually, the neighbor cache is no 21175 * longer in REACHABLE state, but already in STALE 21176 * state. So the correct transition here is to 21177 * ND_DELAY. 21178 */ 21179 nce->nce_state = ND_DELAY; 21180 mutex_exit(&nce->nce_lock); 21181 NDP_RESTART_TIMER(nce, 21182 ipst->ips_delay_first_probe_time); 21183 if (ip_debug > 3) { 21184 /* ip2dbg */ 21185 pr_addr_dbg("tcp_multisend_data: state " 21186 "for %s changed to DELAY\n", 21187 AF_INET6, &ire->ire_addr_v6); 21188 } 21189 break; 21190 case ND_DELAY: 21191 case ND_PROBE: 21192 mutex_exit(&nce->nce_lock); 21193 /* Timers have already started */ 21194 break; 21195 case ND_UNREACHABLE: 21196 /* 21197 * ndp timer has detected that this nce is 21198 * unreachable and initiated deleting this nce 21199 * and all its associated IREs. This is a race 21200 * where we found the ire before it was deleted 21201 * and have just sent out a packet using this 21202 * unreachable nce. 21203 */ 21204 mutex_exit(&nce->nce_lock); 21205 break; 21206 default: 21207 ASSERT(0); 21208 } 21209 } 21210 } 21211 21212 /* 21213 * Derived from tcp_send_data(). 21214 */ 21215 static void 21216 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21217 int num_lso_seg) 21218 { 21219 ipha_t *ipha; 21220 mblk_t *ire_fp_mp; 21221 uint_t ire_fp_mp_len; 21222 uint32_t hcksum_txflags = 0; 21223 ipaddr_t src; 21224 ipaddr_t dst; 21225 uint32_t cksum; 21226 uint16_t *up; 21227 tcp_stack_t *tcps = tcp->tcp_tcps; 21228 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21229 21230 ASSERT(DB_TYPE(mp) == M_DATA); 21231 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21232 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21233 ASSERT(tcp->tcp_connp != NULL); 21234 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21235 21236 ipha = (ipha_t *)mp->b_rptr; 21237 src = ipha->ipha_src; 21238 dst = ipha->ipha_dst; 21239 21240 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 21241 21242 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21243 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21244 num_lso_seg); 21245 #ifndef _BIG_ENDIAN 21246 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21247 #endif 21248 if (tcp->tcp_snd_zcopy_aware) { 21249 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21250 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21251 mp = tcp_zcopy_disable(tcp, mp); 21252 } 21253 21254 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21255 ASSERT(ill->ill_hcksum_capab != NULL); 21256 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21257 } 21258 21259 /* 21260 * Since the TCP checksum should be recalculated by h/w, we can just 21261 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21262 * pseudo-header checksum for HCK_PARTIALCKSUM. 21263 * The partial pseudo-header excludes TCP length, that was calculated 21264 * in tcp_send(), so to zero *up before further processing. 21265 */ 21266 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21267 21268 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21269 *up = 0; 21270 21271 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21272 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21273 21274 /* 21275 * Append LSO flags and mss to the mp. 21276 */ 21277 lso_info_set(mp, mss, HW_LSO); 21278 21279 ipha->ipha_fragment_offset_and_flags |= 21280 (uint32_t)htons(ire->ire_frag_flag); 21281 21282 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21283 ire_fp_mp_len = MBLKL(ire_fp_mp); 21284 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21285 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21286 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21287 21288 UPDATE_OB_PKT_COUNT(ire); 21289 ire->ire_last_used_time = lbolt; 21290 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21291 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21292 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21293 ntohs(ipha->ipha_length)); 21294 21295 DTRACE_PROBE4(ip4__physical__out__start, 21296 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 21297 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21298 ipst->ips_ipv4firewall_physical_out, NULL, 21299 ill, ipha, mp, mp, 0, ipst); 21300 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21301 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 21302 21303 if (mp != NULL) { 21304 if (ipst->ips_ipobs_enabled) { 21305 zoneid_t szone; 21306 21307 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 21308 ipst, ALL_ZONES); 21309 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 21310 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 21311 } 21312 21313 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0); 21314 } 21315 } 21316 21317 /* 21318 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21319 * scheme, and returns one of the following: 21320 * 21321 * -1 = failed allocation. 21322 * 0 = success; burst count reached, or usable send window is too small, 21323 * and that we'd rather wait until later before sending again. 21324 * 1 = success; we are called from tcp_multisend(), and both usable send 21325 * window and tail_unsent are greater than the MDT threshold, and thus 21326 * Multidata Transmit should be used instead. 21327 */ 21328 static int 21329 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21330 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21331 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21332 const int mdt_thres) 21333 { 21334 int num_burst_seg = tcp->tcp_snd_burst; 21335 ire_t *ire = NULL; 21336 ill_t *ill = NULL; 21337 mblk_t *ire_fp_mp = NULL; 21338 uint_t ire_fp_mp_len = 0; 21339 int num_lso_seg = 1; 21340 uint_t lso_usable; 21341 boolean_t do_lso_send = B_FALSE; 21342 tcp_stack_t *tcps = tcp->tcp_tcps; 21343 21344 /* 21345 * Check LSO capability before any further work. And the similar check 21346 * need to be done in for(;;) loop. 21347 * LSO will be deployed when therer is more than one mss of available 21348 * data and a burst transmission is allowed. 21349 */ 21350 if (tcp->tcp_lso && 21351 (tcp->tcp_valid_bits == 0 || 21352 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21353 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21354 /* 21355 * Try to find usable IRE/ILL and do basic check to the ILL. 21356 */ 21357 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21358 /* 21359 * Enable LSO with this transmission. 21360 * Since IRE has been hold in 21361 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21362 * should be called before return. 21363 */ 21364 do_lso_send = B_TRUE; 21365 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21366 ire_fp_mp_len = MBLKL(ire_fp_mp); 21367 /* Round up to multiple of 4 */ 21368 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21369 } else { 21370 do_lso_send = B_FALSE; 21371 ill = NULL; 21372 } 21373 } 21374 21375 for (;;) { 21376 struct datab *db; 21377 tcph_t *tcph; 21378 uint32_t sum; 21379 mblk_t *mp, *mp1; 21380 uchar_t *rptr; 21381 int len; 21382 21383 /* 21384 * If we're called by tcp_multisend(), and the amount of 21385 * sendable data as well as the size of current xmit_tail 21386 * is beyond the MDT threshold, return to the caller and 21387 * let the large data transmit be done using MDT. 21388 */ 21389 if (*usable > 0 && *usable > mdt_thres && 21390 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21391 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21392 ASSERT(tcp->tcp_mdt); 21393 return (1); /* success; do large send */ 21394 } 21395 21396 if (num_burst_seg == 0) 21397 break; /* success; burst count reached */ 21398 21399 /* 21400 * Calculate the maximum payload length we can send in *one* 21401 * time. 21402 */ 21403 if (do_lso_send) { 21404 /* 21405 * Check whether need to do LSO any more. 21406 */ 21407 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21408 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21409 lso_usable = MIN(lso_usable, 21410 num_burst_seg * mss); 21411 21412 num_lso_seg = lso_usable / mss; 21413 if (lso_usable % mss) { 21414 num_lso_seg++; 21415 tcp->tcp_last_sent_len = (ushort_t) 21416 (lso_usable % mss); 21417 } else { 21418 tcp->tcp_last_sent_len = (ushort_t)mss; 21419 } 21420 } else { 21421 do_lso_send = B_FALSE; 21422 num_lso_seg = 1; 21423 lso_usable = mss; 21424 } 21425 } 21426 21427 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21428 21429 /* 21430 * Adjust num_burst_seg here. 21431 */ 21432 num_burst_seg -= num_lso_seg; 21433 21434 len = mss; 21435 if (len > *usable) { 21436 ASSERT(do_lso_send == B_FALSE); 21437 21438 len = *usable; 21439 if (len <= 0) { 21440 /* Terminate the loop */ 21441 break; /* success; too small */ 21442 } 21443 /* 21444 * Sender silly-window avoidance. 21445 * Ignore this if we are going to send a 21446 * zero window probe out. 21447 * 21448 * TODO: force data into microscopic window? 21449 * ==> (!pushed || (unsent > usable)) 21450 */ 21451 if (len < (tcp->tcp_max_swnd >> 1) && 21452 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21453 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21454 len == 1) && (! tcp->tcp_zero_win_probe)) { 21455 /* 21456 * If the retransmit timer is not running 21457 * we start it so that we will retransmit 21458 * in the case when the the receiver has 21459 * decremented the window. 21460 */ 21461 if (*snxt == tcp->tcp_snxt && 21462 *snxt == tcp->tcp_suna) { 21463 /* 21464 * We are not supposed to send 21465 * anything. So let's wait a little 21466 * bit longer before breaking SWS 21467 * avoidance. 21468 * 21469 * What should the value be? 21470 * Suggestion: MAX(init rexmit time, 21471 * tcp->tcp_rto) 21472 */ 21473 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21474 } 21475 break; /* success; too small */ 21476 } 21477 } 21478 21479 tcph = tcp->tcp_tcph; 21480 21481 /* 21482 * The reason to adjust len here is that we need to set flags 21483 * and calculate checksum. 21484 */ 21485 if (do_lso_send) 21486 len = lso_usable; 21487 21488 *usable -= len; /* Approximate - can be adjusted later */ 21489 if (*usable > 0) 21490 tcph->th_flags[0] = TH_ACK; 21491 else 21492 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21493 21494 /* 21495 * Prime pump for IP's checksumming on our behalf 21496 * Include the adjustment for a source route if any. 21497 */ 21498 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21499 sum = (sum >> 16) + (sum & 0xFFFF); 21500 U16_TO_ABE16(sum, tcph->th_sum); 21501 21502 U32_TO_ABE32(*snxt, tcph->th_seq); 21503 21504 /* 21505 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21506 * set. For the case when TCP_FSS_VALID is the only valid 21507 * bit (normal active close), branch off only when we think 21508 * that the FIN flag needs to be set. Note for this case, 21509 * that (snxt + len) may not reflect the actual seg_len, 21510 * as len may be further reduced in tcp_xmit_mp(). If len 21511 * gets modified, we will end up here again. 21512 */ 21513 if (tcp->tcp_valid_bits != 0 && 21514 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21515 ((*snxt + len) == tcp->tcp_fss))) { 21516 uchar_t *prev_rptr; 21517 uint32_t prev_snxt = tcp->tcp_snxt; 21518 21519 if (*tail_unsent == 0) { 21520 ASSERT((*xmit_tail)->b_cont != NULL); 21521 *xmit_tail = (*xmit_tail)->b_cont; 21522 prev_rptr = (*xmit_tail)->b_rptr; 21523 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21524 (*xmit_tail)->b_rptr); 21525 } else { 21526 prev_rptr = (*xmit_tail)->b_rptr; 21527 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21528 *tail_unsent; 21529 } 21530 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21531 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21532 /* Restore tcp_snxt so we get amount sent right. */ 21533 tcp->tcp_snxt = prev_snxt; 21534 if (prev_rptr == (*xmit_tail)->b_rptr) { 21535 /* 21536 * If the previous timestamp is still in use, 21537 * don't stomp on it. 21538 */ 21539 if ((*xmit_tail)->b_next == NULL) { 21540 (*xmit_tail)->b_prev = local_time; 21541 (*xmit_tail)->b_next = 21542 (mblk_t *)(uintptr_t)(*snxt); 21543 } 21544 } else 21545 (*xmit_tail)->b_rptr = prev_rptr; 21546 21547 if (mp == NULL) { 21548 if (ire != NULL) 21549 IRE_REFRELE(ire); 21550 return (-1); 21551 } 21552 mp1 = mp->b_cont; 21553 21554 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21555 tcp->tcp_last_sent_len = (ushort_t)len; 21556 while (mp1->b_cont) { 21557 *xmit_tail = (*xmit_tail)->b_cont; 21558 (*xmit_tail)->b_prev = local_time; 21559 (*xmit_tail)->b_next = 21560 (mblk_t *)(uintptr_t)(*snxt); 21561 mp1 = mp1->b_cont; 21562 } 21563 *snxt += len; 21564 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21565 BUMP_LOCAL(tcp->tcp_obsegs); 21566 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21567 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21568 tcp_send_data(tcp, q, mp); 21569 continue; 21570 } 21571 21572 *snxt += len; /* Adjust later if we don't send all of len */ 21573 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21574 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21575 21576 if (*tail_unsent) { 21577 /* Are the bytes above us in flight? */ 21578 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21579 if (rptr != (*xmit_tail)->b_rptr) { 21580 *tail_unsent -= len; 21581 if (len <= mss) /* LSO is unusable */ 21582 tcp->tcp_last_sent_len = (ushort_t)len; 21583 len += tcp_hdr_len; 21584 if (tcp->tcp_ipversion == IPV4_VERSION) 21585 tcp->tcp_ipha->ipha_length = htons(len); 21586 else 21587 tcp->tcp_ip6h->ip6_plen = 21588 htons(len - 21589 ((char *)&tcp->tcp_ip6h[1] - 21590 tcp->tcp_iphc)); 21591 mp = dupb(*xmit_tail); 21592 if (mp == NULL) { 21593 if (ire != NULL) 21594 IRE_REFRELE(ire); 21595 return (-1); /* out_of_mem */ 21596 } 21597 mp->b_rptr = rptr; 21598 /* 21599 * If the old timestamp is no longer in use, 21600 * sample a new timestamp now. 21601 */ 21602 if ((*xmit_tail)->b_next == NULL) { 21603 (*xmit_tail)->b_prev = local_time; 21604 (*xmit_tail)->b_next = 21605 (mblk_t *)(uintptr_t)(*snxt-len); 21606 } 21607 goto must_alloc; 21608 } 21609 } else { 21610 *xmit_tail = (*xmit_tail)->b_cont; 21611 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21612 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21613 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21614 (*xmit_tail)->b_rptr); 21615 } 21616 21617 (*xmit_tail)->b_prev = local_time; 21618 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21619 21620 *tail_unsent -= len; 21621 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21622 tcp->tcp_last_sent_len = (ushort_t)len; 21623 21624 len += tcp_hdr_len; 21625 if (tcp->tcp_ipversion == IPV4_VERSION) 21626 tcp->tcp_ipha->ipha_length = htons(len); 21627 else 21628 tcp->tcp_ip6h->ip6_plen = htons(len - 21629 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21630 21631 mp = dupb(*xmit_tail); 21632 if (mp == NULL) { 21633 if (ire != NULL) 21634 IRE_REFRELE(ire); 21635 return (-1); /* out_of_mem */ 21636 } 21637 21638 len = tcp_hdr_len; 21639 /* 21640 * There are four reasons to allocate a new hdr mblk: 21641 * 1) The bytes above us are in use by another packet 21642 * 2) We don't have good alignment 21643 * 3) The mblk is being shared 21644 * 4) We don't have enough room for a header 21645 */ 21646 rptr = mp->b_rptr - len; 21647 if (!OK_32PTR(rptr) || 21648 ((db = mp->b_datap), db->db_ref != 2) || 21649 rptr < db->db_base + ire_fp_mp_len) { 21650 /* NOTE: we assume allocb returns an OK_32PTR */ 21651 21652 must_alloc:; 21653 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21654 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21655 if (mp1 == NULL) { 21656 freemsg(mp); 21657 if (ire != NULL) 21658 IRE_REFRELE(ire); 21659 return (-1); /* out_of_mem */ 21660 } 21661 mp1->b_cont = mp; 21662 mp = mp1; 21663 /* Leave room for Link Level header */ 21664 len = tcp_hdr_len; 21665 rptr = 21666 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21667 mp->b_wptr = &rptr[len]; 21668 } 21669 21670 /* 21671 * Fill in the header using the template header, and add 21672 * options such as time-stamp, ECN and/or SACK, as needed. 21673 */ 21674 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21675 21676 mp->b_rptr = rptr; 21677 21678 if (*tail_unsent) { 21679 int spill = *tail_unsent; 21680 21681 mp1 = mp->b_cont; 21682 if (mp1 == NULL) 21683 mp1 = mp; 21684 21685 /* 21686 * If we're a little short, tack on more mblks until 21687 * there is no more spillover. 21688 */ 21689 while (spill < 0) { 21690 mblk_t *nmp; 21691 int nmpsz; 21692 21693 nmp = (*xmit_tail)->b_cont; 21694 nmpsz = MBLKL(nmp); 21695 21696 /* 21697 * Excess data in mblk; can we split it? 21698 * If MDT is enabled for the connection, 21699 * keep on splitting as this is a transient 21700 * send path. 21701 */ 21702 if (!do_lso_send && !tcp->tcp_mdt && 21703 (spill + nmpsz > 0)) { 21704 /* 21705 * Don't split if stream head was 21706 * told to break up larger writes 21707 * into smaller ones. 21708 */ 21709 if (tcp->tcp_maxpsz > 0) 21710 break; 21711 21712 /* 21713 * Next mblk is less than SMSS/2 21714 * rounded up to nearest 64-byte; 21715 * let it get sent as part of the 21716 * next segment. 21717 */ 21718 if (tcp->tcp_localnet && 21719 !tcp->tcp_cork && 21720 (nmpsz < roundup((mss >> 1), 64))) 21721 break; 21722 } 21723 21724 *xmit_tail = nmp; 21725 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21726 /* Stash for rtt use later */ 21727 (*xmit_tail)->b_prev = local_time; 21728 (*xmit_tail)->b_next = 21729 (mblk_t *)(uintptr_t)(*snxt - len); 21730 mp1->b_cont = dupb(*xmit_tail); 21731 mp1 = mp1->b_cont; 21732 21733 spill += nmpsz; 21734 if (mp1 == NULL) { 21735 *tail_unsent = spill; 21736 freemsg(mp); 21737 if (ire != NULL) 21738 IRE_REFRELE(ire); 21739 return (-1); /* out_of_mem */ 21740 } 21741 } 21742 21743 /* Trim back any surplus on the last mblk */ 21744 if (spill >= 0) { 21745 mp1->b_wptr -= spill; 21746 *tail_unsent = spill; 21747 } else { 21748 /* 21749 * We did not send everything we could in 21750 * order to remain within the b_cont limit. 21751 */ 21752 *usable -= spill; 21753 *snxt += spill; 21754 tcp->tcp_last_sent_len += spill; 21755 UPDATE_MIB(&tcps->tcps_mib, 21756 tcpOutDataBytes, spill); 21757 /* 21758 * Adjust the checksum 21759 */ 21760 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21761 sum += spill; 21762 sum = (sum >> 16) + (sum & 0xFFFF); 21763 U16_TO_ABE16(sum, tcph->th_sum); 21764 if (tcp->tcp_ipversion == IPV4_VERSION) { 21765 sum = ntohs( 21766 ((ipha_t *)rptr)->ipha_length) + 21767 spill; 21768 ((ipha_t *)rptr)->ipha_length = 21769 htons(sum); 21770 } else { 21771 sum = ntohs( 21772 ((ip6_t *)rptr)->ip6_plen) + 21773 spill; 21774 ((ip6_t *)rptr)->ip6_plen = 21775 htons(sum); 21776 } 21777 *tail_unsent = 0; 21778 } 21779 } 21780 if (tcp->tcp_ip_forward_progress) { 21781 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21782 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21783 tcp->tcp_ip_forward_progress = B_FALSE; 21784 } 21785 21786 if (do_lso_send) { 21787 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21788 num_lso_seg); 21789 tcp->tcp_obsegs += num_lso_seg; 21790 21791 TCP_STAT(tcps, tcp_lso_times); 21792 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21793 } else { 21794 tcp_send_data(tcp, q, mp); 21795 BUMP_LOCAL(tcp->tcp_obsegs); 21796 } 21797 } 21798 21799 if (ire != NULL) 21800 IRE_REFRELE(ire); 21801 return (0); 21802 } 21803 21804 /* Unlink and return any mblk that looks like it contains a MDT info */ 21805 static mblk_t * 21806 tcp_mdt_info_mp(mblk_t *mp) 21807 { 21808 mblk_t *prev_mp; 21809 21810 for (;;) { 21811 prev_mp = mp; 21812 /* no more to process? */ 21813 if ((mp = mp->b_cont) == NULL) 21814 break; 21815 21816 switch (DB_TYPE(mp)) { 21817 case M_CTL: 21818 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21819 continue; 21820 ASSERT(prev_mp != NULL); 21821 prev_mp->b_cont = mp->b_cont; 21822 mp->b_cont = NULL; 21823 return (mp); 21824 default: 21825 break; 21826 } 21827 } 21828 return (mp); 21829 } 21830 21831 /* MDT info update routine, called when IP notifies us about MDT */ 21832 static void 21833 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21834 { 21835 boolean_t prev_state; 21836 tcp_stack_t *tcps = tcp->tcp_tcps; 21837 21838 /* 21839 * IP is telling us to abort MDT on this connection? We know 21840 * this because the capability is only turned off when IP 21841 * encounters some pathological cases, e.g. link-layer change 21842 * where the new driver doesn't support MDT, or in situation 21843 * where MDT usage on the link-layer has been switched off. 21844 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21845 * if the link-layer doesn't support MDT, and if it does, it 21846 * will indicate that the feature is to be turned on. 21847 */ 21848 prev_state = tcp->tcp_mdt; 21849 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21850 if (!tcp->tcp_mdt && !first) { 21851 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21852 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21853 (void *)tcp->tcp_connp)); 21854 } 21855 21856 /* 21857 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21858 * so disable MDT otherwise. The checks are done here 21859 * and in tcp_wput_data(). 21860 */ 21861 if (tcp->tcp_mdt && 21862 (tcp->tcp_ipversion == IPV4_VERSION && 21863 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21864 (tcp->tcp_ipversion == IPV6_VERSION && 21865 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21866 tcp->tcp_mdt = B_FALSE; 21867 21868 if (tcp->tcp_mdt) { 21869 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21870 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21871 "version (%d), expected version is %d", 21872 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21873 tcp->tcp_mdt = B_FALSE; 21874 return; 21875 } 21876 21877 /* 21878 * We need the driver to be able to handle at least three 21879 * spans per packet in order for tcp MDT to be utilized. 21880 * The first is for the header portion, while the rest are 21881 * needed to handle a packet that straddles across two 21882 * virtually non-contiguous buffers; a typical tcp packet 21883 * therefore consists of only two spans. Note that we take 21884 * a zero as "don't care". 21885 */ 21886 if (mdt_capab->ill_mdt_span_limit > 0 && 21887 mdt_capab->ill_mdt_span_limit < 3) { 21888 tcp->tcp_mdt = B_FALSE; 21889 return; 21890 } 21891 21892 /* a zero means driver wants default value */ 21893 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21894 tcps->tcps_mdt_max_pbufs); 21895 if (tcp->tcp_mdt_max_pld == 0) 21896 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21897 21898 /* ensure 32-bit alignment */ 21899 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21900 mdt_capab->ill_mdt_hdr_head), 4); 21901 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21902 mdt_capab->ill_mdt_hdr_tail), 4); 21903 21904 if (!first && !prev_state) { 21905 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21906 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21907 (void *)tcp->tcp_connp)); 21908 } 21909 } 21910 } 21911 21912 /* Unlink and return any mblk that looks like it contains a LSO info */ 21913 static mblk_t * 21914 tcp_lso_info_mp(mblk_t *mp) 21915 { 21916 mblk_t *prev_mp; 21917 21918 for (;;) { 21919 prev_mp = mp; 21920 /* no more to process? */ 21921 if ((mp = mp->b_cont) == NULL) 21922 break; 21923 21924 switch (DB_TYPE(mp)) { 21925 case M_CTL: 21926 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21927 continue; 21928 ASSERT(prev_mp != NULL); 21929 prev_mp->b_cont = mp->b_cont; 21930 mp->b_cont = NULL; 21931 return (mp); 21932 default: 21933 break; 21934 } 21935 } 21936 21937 return (mp); 21938 } 21939 21940 /* LSO info update routine, called when IP notifies us about LSO */ 21941 static void 21942 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21943 { 21944 tcp_stack_t *tcps = tcp->tcp_tcps; 21945 21946 /* 21947 * IP is telling us to abort LSO on this connection? We know 21948 * this because the capability is only turned off when IP 21949 * encounters some pathological cases, e.g. link-layer change 21950 * where the new NIC/driver doesn't support LSO, or in situation 21951 * where LSO usage on the link-layer has been switched off. 21952 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21953 * if the link-layer doesn't support LSO, and if it does, it 21954 * will indicate that the feature is to be turned on. 21955 */ 21956 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21957 TCP_STAT(tcps, tcp_lso_enabled); 21958 21959 /* 21960 * We currently only support LSO on simple TCP/IPv4, 21961 * so disable LSO otherwise. The checks are done here 21962 * and in tcp_wput_data(). 21963 */ 21964 if (tcp->tcp_lso && 21965 (tcp->tcp_ipversion == IPV4_VERSION && 21966 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21967 (tcp->tcp_ipversion == IPV6_VERSION)) { 21968 tcp->tcp_lso = B_FALSE; 21969 TCP_STAT(tcps, tcp_lso_disabled); 21970 } else { 21971 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21972 lso_capab->ill_lso_max); 21973 } 21974 } 21975 21976 static void 21977 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21978 { 21979 conn_t *connp = tcp->tcp_connp; 21980 tcp_stack_t *tcps = tcp->tcp_tcps; 21981 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21982 21983 ASSERT(ire != NULL); 21984 21985 /* 21986 * We may be in the fastpath here, and although we essentially do 21987 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21988 * we try to keep things as brief as possible. After all, these 21989 * are only best-effort checks, and we do more thorough ones prior 21990 * to calling tcp_send()/tcp_multisend(). 21991 */ 21992 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21993 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21994 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21995 !(ire->ire_flags & RTF_MULTIRT) && 21996 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21997 CONN_IS_LSO_MD_FASTPATH(connp)) { 21998 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21999 /* Cache the result */ 22000 connp->conn_lso_ok = B_TRUE; 22001 22002 ASSERT(ill->ill_lso_capab != NULL); 22003 if (!ill->ill_lso_capab->ill_lso_on) { 22004 ill->ill_lso_capab->ill_lso_on = 1; 22005 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22006 "LSO for interface %s\n", (void *)connp, 22007 ill->ill_name)); 22008 } 22009 tcp_lso_update(tcp, ill->ill_lso_capab); 22010 } else if (ipst->ips_ip_multidata_outbound && 22011 ILL_MDT_CAPABLE(ill)) { 22012 /* Cache the result */ 22013 connp->conn_mdt_ok = B_TRUE; 22014 22015 ASSERT(ill->ill_mdt_capab != NULL); 22016 if (!ill->ill_mdt_capab->ill_mdt_on) { 22017 ill->ill_mdt_capab->ill_mdt_on = 1; 22018 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22019 "MDT for interface %s\n", (void *)connp, 22020 ill->ill_name)); 22021 } 22022 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22023 } 22024 } 22025 22026 /* 22027 * The goal is to reduce the number of generated tcp segments by 22028 * setting the maxpsz multiplier to 0; this will have an affect on 22029 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22030 * into each packet, up to SMSS bytes. Doing this reduces the number 22031 * of outbound segments and incoming ACKs, thus allowing for better 22032 * network and system performance. In contrast the legacy behavior 22033 * may result in sending less than SMSS size, because the last mblk 22034 * for some packets may have more data than needed to make up SMSS, 22035 * and the legacy code refused to "split" it. 22036 * 22037 * We apply the new behavior on following situations: 22038 * 22039 * 1) Loopback connections, 22040 * 2) Connections in which the remote peer is not on local subnet, 22041 * 3) Local subnet connections over the bge interface (see below). 22042 * 22043 * Ideally, we would like this behavior to apply for interfaces other 22044 * than bge. However, doing so would negatively impact drivers which 22045 * perform dynamic mapping and unmapping of DMA resources, which are 22046 * increased by setting the maxpsz multiplier to 0 (more mblks per 22047 * packet will be generated by tcp). The bge driver does not suffer 22048 * from this, as it copies the mblks into pre-mapped buffers, and 22049 * therefore does not require more I/O resources than before. 22050 * 22051 * Otherwise, this behavior is present on all network interfaces when 22052 * the destination endpoint is non-local, since reducing the number 22053 * of packets in general is good for the network. 22054 * 22055 * TODO We need to remove this hard-coded conditional for bge once 22056 * a better "self-tuning" mechanism, or a way to comprehend 22057 * the driver transmit strategy is devised. Until the solution 22058 * is found and well understood, we live with this hack. 22059 */ 22060 if (!tcp_static_maxpsz && 22061 (tcp->tcp_loopback || !tcp->tcp_localnet || 22062 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22063 /* override the default value */ 22064 tcp->tcp_maxpsz = 0; 22065 22066 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22067 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22068 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22069 } 22070 22071 /* set the stream head parameters accordingly */ 22072 (void) tcp_maxpsz_set(tcp, B_TRUE); 22073 } 22074 22075 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22076 static void 22077 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22078 { 22079 uchar_t fval = *mp->b_rptr; 22080 mblk_t *tail; 22081 queue_t *q = tcp->tcp_wq; 22082 22083 /* TODO: How should flush interact with urgent data? */ 22084 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22085 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22086 /* 22087 * Flush only data that has not yet been put on the wire. If 22088 * we flush data that we have already transmitted, life, as we 22089 * know it, may come to an end. 22090 */ 22091 tail = tcp->tcp_xmit_tail; 22092 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22093 tcp->tcp_xmit_tail_unsent = 0; 22094 tcp->tcp_unsent = 0; 22095 if (tail->b_wptr != tail->b_rptr) 22096 tail = tail->b_cont; 22097 if (tail) { 22098 mblk_t **excess = &tcp->tcp_xmit_head; 22099 for (;;) { 22100 mblk_t *mp1 = *excess; 22101 if (mp1 == tail) 22102 break; 22103 tcp->tcp_xmit_tail = mp1; 22104 tcp->tcp_xmit_last = mp1; 22105 excess = &mp1->b_cont; 22106 } 22107 *excess = NULL; 22108 tcp_close_mpp(&tail); 22109 if (tcp->tcp_snd_zcopy_aware) 22110 tcp_zcopy_notify(tcp); 22111 } 22112 /* 22113 * We have no unsent data, so unsent must be less than 22114 * tcp_xmit_lowater, so re-enable flow. 22115 */ 22116 mutex_enter(&tcp->tcp_non_sq_lock); 22117 if (tcp->tcp_flow_stopped) { 22118 tcp_clrqfull(tcp); 22119 } 22120 mutex_exit(&tcp->tcp_non_sq_lock); 22121 } 22122 /* 22123 * TODO: you can't just flush these, you have to increase rwnd for one 22124 * thing. For another, how should urgent data interact? 22125 */ 22126 if (fval & FLUSHR) { 22127 *mp->b_rptr = fval & ~FLUSHW; 22128 /* XXX */ 22129 qreply(q, mp); 22130 return; 22131 } 22132 freemsg(mp); 22133 } 22134 22135 /* 22136 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22137 * messages. 22138 */ 22139 static void 22140 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22141 { 22142 mblk_t *mp1; 22143 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22144 STRUCT_HANDLE(strbuf, sb); 22145 queue_t *q = tcp->tcp_wq; 22146 int error; 22147 uint_t addrlen; 22148 22149 /* Make sure it is one of ours. */ 22150 switch (iocp->ioc_cmd) { 22151 case TI_GETMYNAME: 22152 case TI_GETPEERNAME: 22153 break; 22154 default: 22155 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22156 return; 22157 } 22158 switch (mi_copy_state(q, mp, &mp1)) { 22159 case -1: 22160 return; 22161 case MI_COPY_CASE(MI_COPY_IN, 1): 22162 break; 22163 case MI_COPY_CASE(MI_COPY_OUT, 1): 22164 /* Copy out the strbuf. */ 22165 mi_copyout(q, mp); 22166 return; 22167 case MI_COPY_CASE(MI_COPY_OUT, 2): 22168 /* All done. */ 22169 mi_copy_done(q, mp, 0); 22170 return; 22171 default: 22172 mi_copy_done(q, mp, EPROTO); 22173 return; 22174 } 22175 /* Check alignment of the strbuf */ 22176 if (!OK_32PTR(mp1->b_rptr)) { 22177 mi_copy_done(q, mp, EINVAL); 22178 return; 22179 } 22180 22181 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22182 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22183 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22184 mi_copy_done(q, mp, EINVAL); 22185 return; 22186 } 22187 22188 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22189 if (mp1 == NULL) 22190 return; 22191 22192 switch (iocp->ioc_cmd) { 22193 case TI_GETMYNAME: 22194 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22195 break; 22196 case TI_GETPEERNAME: 22197 error = i_tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22198 break; 22199 } 22200 22201 if (error != 0) { 22202 mi_copy_done(q, mp, error); 22203 } else { 22204 mp1->b_wptr += addrlen; 22205 STRUCT_FSET(sb, len, addrlen); 22206 22207 /* Copy out the address */ 22208 mi_copyout(q, mp); 22209 } 22210 } 22211 22212 static void 22213 tcp_disable_direct_sockfs(tcp_t *tcp) 22214 { 22215 #ifdef _ILP32 22216 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 22217 #else 22218 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22219 #endif 22220 /* 22221 * Insert this socket into the acceptor hash. 22222 * We might need it for T_CONN_RES message 22223 */ 22224 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22225 22226 if (tcp->tcp_fused) { 22227 /* 22228 * This is a fused loopback tcp; disable 22229 * read-side synchronous streams interface 22230 * and drain any queued data. It is okay 22231 * to do this for non-synchronous streams 22232 * fused tcp as well. 22233 */ 22234 tcp_fuse_disable_pair(tcp, B_FALSE); 22235 } 22236 tcp->tcp_issocket = B_FALSE; 22237 tcp->tcp_sodirect = NULL; 22238 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 22239 } 22240 22241 /* 22242 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22243 * messages. 22244 */ 22245 /* ARGSUSED */ 22246 static void 22247 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22248 { 22249 conn_t *connp = (conn_t *)arg; 22250 tcp_t *tcp = connp->conn_tcp; 22251 queue_t *q = tcp->tcp_wq; 22252 struct iocblk *iocp; 22253 22254 ASSERT(DB_TYPE(mp) == M_IOCTL); 22255 /* 22256 * Try and ASSERT the minimum possible references on the 22257 * conn early enough. Since we are executing on write side, 22258 * the connection is obviously not detached and that means 22259 * there is a ref each for TCP and IP. Since we are behind 22260 * the squeue, the minimum references needed are 3. If the 22261 * conn is in classifier hash list, there should be an 22262 * extra ref for that (we check both the possibilities). 22263 */ 22264 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22265 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22266 22267 iocp = (struct iocblk *)mp->b_rptr; 22268 switch (iocp->ioc_cmd) { 22269 case TCP_IOC_DEFAULT_Q: 22270 /* Wants to be the default wq. */ 22271 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22272 iocp->ioc_error = EPERM; 22273 iocp->ioc_count = 0; 22274 mp->b_datap->db_type = M_IOCACK; 22275 qreply(q, mp); 22276 return; 22277 } 22278 tcp_def_q_set(tcp, mp); 22279 return; 22280 case _SIOCSOCKFALLBACK: 22281 /* 22282 * Either sockmod is about to be popped and the socket 22283 * would now be treated as a plain stream, or a module 22284 * is about to be pushed so we could no longer use read- 22285 * side synchronous streams for fused loopback tcp. 22286 * Drain any queued data and disable direct sockfs 22287 * interface from now on. 22288 */ 22289 if (!tcp->tcp_issocket) { 22290 DB_TYPE(mp) = M_IOCNAK; 22291 iocp->ioc_error = EINVAL; 22292 } else { 22293 tcp_disable_direct_sockfs(tcp); 22294 DB_TYPE(mp) = M_IOCACK; 22295 iocp->ioc_error = 0; 22296 } 22297 iocp->ioc_count = 0; 22298 iocp->ioc_rval = 0; 22299 qreply(q, mp); 22300 return; 22301 } 22302 CALL_IP_WPUT(connp, q, mp); 22303 } 22304 22305 /* 22306 * This routine is called by tcp_wput() to handle all TPI requests. 22307 */ 22308 /* ARGSUSED */ 22309 static void 22310 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22311 { 22312 conn_t *connp = (conn_t *)arg; 22313 tcp_t *tcp = connp->conn_tcp; 22314 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22315 uchar_t *rptr; 22316 t_scalar_t type; 22317 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22318 22319 /* 22320 * Try and ASSERT the minimum possible references on the 22321 * conn early enough. Since we are executing on write side, 22322 * the connection is obviously not detached and that means 22323 * there is a ref each for TCP and IP. Since we are behind 22324 * the squeue, the minimum references needed are 3. If the 22325 * conn is in classifier hash list, there should be an 22326 * extra ref for that (we check both the possibilities). 22327 */ 22328 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22329 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22330 22331 rptr = mp->b_rptr; 22332 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22333 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22334 type = ((union T_primitives *)rptr)->type; 22335 if (type == T_EXDATA_REQ) { 22336 tcp_output_urgent(connp, mp->b_cont, arg2); 22337 freeb(mp); 22338 } else if (type != T_DATA_REQ) { 22339 goto non_urgent_data; 22340 } else { 22341 /* TODO: options, flags, ... from user */ 22342 /* Set length to zero for reclamation below */ 22343 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22344 freeb(mp); 22345 } 22346 return; 22347 } else { 22348 if (tcp->tcp_debug) { 22349 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22350 "tcp_wput_proto, dropping one..."); 22351 } 22352 freemsg(mp); 22353 return; 22354 } 22355 22356 non_urgent_data: 22357 22358 switch ((int)tprim->type) { 22359 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22360 /* 22361 * save the kssl_ent_t from the next block, and convert this 22362 * back to a normal bind_req. 22363 */ 22364 if (mp->b_cont != NULL) { 22365 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22366 22367 if (tcp->tcp_kssl_ent != NULL) { 22368 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22369 KSSL_NO_PROXY); 22370 tcp->tcp_kssl_ent = NULL; 22371 } 22372 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22373 sizeof (kssl_ent_t)); 22374 kssl_hold_ent(tcp->tcp_kssl_ent); 22375 freemsg(mp->b_cont); 22376 mp->b_cont = NULL; 22377 } 22378 tprim->type = T_BIND_REQ; 22379 22380 /* FALLTHROUGH */ 22381 case O_T_BIND_REQ: /* bind request */ 22382 case T_BIND_REQ: /* new semantics bind request */ 22383 tcp_tpi_bind(tcp, mp); 22384 break; 22385 case T_UNBIND_REQ: /* unbind request */ 22386 tcp_tpi_unbind(tcp, mp); 22387 break; 22388 case O_T_CONN_RES: /* old connection response XXX */ 22389 case T_CONN_RES: /* connection response */ 22390 tcp_tli_accept(tcp, mp); 22391 break; 22392 case T_CONN_REQ: /* connection request */ 22393 tcp_tpi_connect(tcp, mp); 22394 break; 22395 case T_DISCON_REQ: /* disconnect request */ 22396 tcp_disconnect(tcp, mp); 22397 break; 22398 case T_CAPABILITY_REQ: 22399 tcp_capability_req(tcp, mp); /* capability request */ 22400 break; 22401 case T_INFO_REQ: /* information request */ 22402 tcp_info_req(tcp, mp); 22403 break; 22404 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22405 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22406 &tcp_opt_obj, B_TRUE); 22407 break; 22408 case T_OPTMGMT_REQ: 22409 /* 22410 * Note: no support for snmpcom_req() through new 22411 * T_OPTMGMT_REQ. See comments in ip.c 22412 */ 22413 /* Only IP is allowed to return meaningful value */ 22414 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22415 B_TRUE); 22416 break; 22417 22418 case T_UNITDATA_REQ: /* unitdata request */ 22419 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22420 break; 22421 case T_ORDREL_REQ: /* orderly release req */ 22422 freemsg(mp); 22423 22424 if (tcp->tcp_fused) 22425 tcp_unfuse(tcp); 22426 22427 if (tcp_xmit_end(tcp) != 0) { 22428 /* 22429 * We were crossing FINs and got a reset from 22430 * the other side. Just ignore it. 22431 */ 22432 if (tcp->tcp_debug) { 22433 (void) strlog(TCP_MOD_ID, 0, 1, 22434 SL_ERROR|SL_TRACE, 22435 "tcp_wput_proto, T_ORDREL_REQ out of " 22436 "state %s", 22437 tcp_display(tcp, NULL, 22438 DISP_ADDR_AND_PORT)); 22439 } 22440 } 22441 break; 22442 case T_ADDR_REQ: 22443 tcp_addr_req(tcp, mp); 22444 break; 22445 default: 22446 if (tcp->tcp_debug) { 22447 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22448 "tcp_wput_proto, bogus TPI msg, type %d", 22449 tprim->type); 22450 } 22451 /* 22452 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22453 * to recover. 22454 */ 22455 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22456 break; 22457 } 22458 } 22459 22460 /* 22461 * The TCP write service routine should never be called... 22462 */ 22463 /* ARGSUSED */ 22464 static void 22465 tcp_wsrv(queue_t *q) 22466 { 22467 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22468 22469 TCP_STAT(tcps, tcp_wsrv_called); 22470 } 22471 22472 /* Non overlapping byte exchanger */ 22473 static void 22474 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22475 { 22476 uchar_t uch; 22477 22478 while (len-- > 0) { 22479 uch = a[len]; 22480 a[len] = b[len]; 22481 b[len] = uch; 22482 } 22483 } 22484 22485 /* 22486 * Send out a control packet on the tcp connection specified. This routine 22487 * is typically called where we need a simple ACK or RST generated. 22488 */ 22489 static void 22490 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22491 { 22492 uchar_t *rptr; 22493 tcph_t *tcph; 22494 ipha_t *ipha = NULL; 22495 ip6_t *ip6h = NULL; 22496 uint32_t sum; 22497 int tcp_hdr_len; 22498 int tcp_ip_hdr_len; 22499 mblk_t *mp; 22500 tcp_stack_t *tcps = tcp->tcp_tcps; 22501 22502 /* 22503 * Save sum for use in source route later. 22504 */ 22505 ASSERT(tcp != NULL); 22506 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22507 tcp_hdr_len = tcp->tcp_hdr_len; 22508 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22509 22510 /* If a text string is passed in with the request, pass it to strlog. */ 22511 if (str != NULL && tcp->tcp_debug) { 22512 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22513 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22514 str, seq, ack, ctl); 22515 } 22516 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22517 BPRI_MED); 22518 if (mp == NULL) { 22519 return; 22520 } 22521 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22522 mp->b_rptr = rptr; 22523 mp->b_wptr = &rptr[tcp_hdr_len]; 22524 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22525 22526 if (tcp->tcp_ipversion == IPV4_VERSION) { 22527 ipha = (ipha_t *)rptr; 22528 ipha->ipha_length = htons(tcp_hdr_len); 22529 } else { 22530 ip6h = (ip6_t *)rptr; 22531 ASSERT(tcp != NULL); 22532 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22533 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22534 } 22535 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22536 tcph->th_flags[0] = (uint8_t)ctl; 22537 if (ctl & TH_RST) { 22538 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22539 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22540 /* 22541 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22542 */ 22543 if (tcp->tcp_snd_ts_ok && 22544 tcp->tcp_state > TCPS_SYN_SENT) { 22545 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22546 *(mp->b_wptr) = TCPOPT_EOL; 22547 if (tcp->tcp_ipversion == IPV4_VERSION) { 22548 ipha->ipha_length = htons(tcp_hdr_len - 22549 TCPOPT_REAL_TS_LEN); 22550 } else { 22551 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22552 TCPOPT_REAL_TS_LEN); 22553 } 22554 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22555 sum -= TCPOPT_REAL_TS_LEN; 22556 } 22557 } 22558 if (ctl & TH_ACK) { 22559 if (tcp->tcp_snd_ts_ok) { 22560 U32_TO_BE32(lbolt, 22561 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22562 U32_TO_BE32(tcp->tcp_ts_recent, 22563 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22564 } 22565 22566 /* Update the latest receive window size in TCP header. */ 22567 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22568 tcph->th_win); 22569 tcp->tcp_rack = ack; 22570 tcp->tcp_rack_cnt = 0; 22571 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22572 } 22573 BUMP_LOCAL(tcp->tcp_obsegs); 22574 U32_TO_BE32(seq, tcph->th_seq); 22575 U32_TO_BE32(ack, tcph->th_ack); 22576 /* 22577 * Include the adjustment for a source route if any. 22578 */ 22579 sum = (sum >> 16) + (sum & 0xFFFF); 22580 U16_TO_BE16(sum, tcph->th_sum); 22581 tcp_send_data(tcp, tcp->tcp_wq, mp); 22582 } 22583 22584 /* 22585 * If this routine returns B_TRUE, TCP can generate a RST in response 22586 * to a segment. If it returns B_FALSE, TCP should not respond. 22587 */ 22588 static boolean_t 22589 tcp_send_rst_chk(tcp_stack_t *tcps) 22590 { 22591 clock_t now; 22592 22593 /* 22594 * TCP needs to protect itself from generating too many RSTs. 22595 * This can be a DoS attack by sending us random segments 22596 * soliciting RSTs. 22597 * 22598 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22599 * in each 1 second interval. In this way, TCP still generate 22600 * RSTs in normal cases but when under attack, the impact is 22601 * limited. 22602 */ 22603 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22604 now = lbolt; 22605 /* lbolt can wrap around. */ 22606 if ((tcps->tcps_last_rst_intrvl > now) || 22607 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22608 1*SECONDS)) { 22609 tcps->tcps_last_rst_intrvl = now; 22610 tcps->tcps_rst_cnt = 1; 22611 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22612 return (B_FALSE); 22613 } 22614 } 22615 return (B_TRUE); 22616 } 22617 22618 /* 22619 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22620 */ 22621 static void 22622 tcp_ip_ire_mark_advice(tcp_t *tcp) 22623 { 22624 mblk_t *mp; 22625 ipic_t *ipic; 22626 22627 if (tcp->tcp_ipversion == IPV4_VERSION) { 22628 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22629 &ipic); 22630 } else { 22631 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22632 &ipic); 22633 } 22634 if (mp == NULL) 22635 return; 22636 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22637 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22638 } 22639 22640 /* 22641 * Return an IP advice ioctl mblk and set ipic to be the pointer 22642 * to the advice structure. 22643 */ 22644 static mblk_t * 22645 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22646 { 22647 struct iocblk *ioc; 22648 mblk_t *mp, *mp1; 22649 22650 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22651 if (mp == NULL) 22652 return (NULL); 22653 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22654 *ipic = (ipic_t *)mp->b_rptr; 22655 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22656 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22657 22658 bcopy(addr, *ipic + 1, addr_len); 22659 22660 (*ipic)->ipic_addr_length = addr_len; 22661 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22662 22663 mp1 = mkiocb(IP_IOCTL); 22664 if (mp1 == NULL) { 22665 freemsg(mp); 22666 return (NULL); 22667 } 22668 mp1->b_cont = mp; 22669 ioc = (struct iocblk *)mp1->b_rptr; 22670 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22671 22672 return (mp1); 22673 } 22674 22675 /* 22676 * Generate a reset based on an inbound packet, connp is set by caller 22677 * when RST is in response to an unexpected inbound packet for which 22678 * there is active tcp state in the system. 22679 * 22680 * IPSEC NOTE : Try to send the reply with the same protection as it came 22681 * in. We still have the ipsec_mp that the packet was attached to. Thus 22682 * the packet will go out at the same level of protection as it came in by 22683 * converting the IPSEC_IN to IPSEC_OUT. 22684 */ 22685 static void 22686 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22687 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22688 tcp_stack_t *tcps, conn_t *connp) 22689 { 22690 ipha_t *ipha = NULL; 22691 ip6_t *ip6h = NULL; 22692 ushort_t len; 22693 tcph_t *tcph; 22694 int i; 22695 mblk_t *ipsec_mp; 22696 boolean_t mctl_present; 22697 ipic_t *ipic; 22698 ipaddr_t v4addr; 22699 in6_addr_t v6addr; 22700 int addr_len; 22701 void *addr; 22702 queue_t *q = tcps->tcps_g_q; 22703 tcp_t *tcp; 22704 cred_t *cr; 22705 mblk_t *nmp; 22706 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22707 22708 if (tcps->tcps_g_q == NULL) { 22709 /* 22710 * For non-zero stackids the default queue isn't created 22711 * until the first open, thus there can be a need to send 22712 * a reset before then. But we can't do that, hence we just 22713 * drop the packet. Later during boot, when the default queue 22714 * has been setup, a retransmitted packet from the peer 22715 * will result in a reset. 22716 */ 22717 ASSERT(tcps->tcps_netstack->netstack_stackid != 22718 GLOBAL_NETSTACKID); 22719 freemsg(mp); 22720 return; 22721 } 22722 22723 if (connp != NULL) 22724 tcp = connp->conn_tcp; 22725 else 22726 tcp = Q_TO_TCP(q); 22727 22728 if (!tcp_send_rst_chk(tcps)) { 22729 tcps->tcps_rst_unsent++; 22730 freemsg(mp); 22731 return; 22732 } 22733 22734 if (mp->b_datap->db_type == M_CTL) { 22735 ipsec_mp = mp; 22736 mp = mp->b_cont; 22737 mctl_present = B_TRUE; 22738 } else { 22739 ipsec_mp = mp; 22740 mctl_present = B_FALSE; 22741 } 22742 22743 if (str && q && tcps->tcps_dbg) { 22744 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22745 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22746 "flags 0x%x", 22747 str, seq, ack, ctl); 22748 } 22749 if (mp->b_datap->db_ref != 1) { 22750 mblk_t *mp1 = copyb(mp); 22751 freemsg(mp); 22752 mp = mp1; 22753 if (!mp) { 22754 if (mctl_present) 22755 freeb(ipsec_mp); 22756 return; 22757 } else { 22758 if (mctl_present) { 22759 ipsec_mp->b_cont = mp; 22760 } else { 22761 ipsec_mp = mp; 22762 } 22763 } 22764 } else if (mp->b_cont) { 22765 freemsg(mp->b_cont); 22766 mp->b_cont = NULL; 22767 } 22768 /* 22769 * We skip reversing source route here. 22770 * (for now we replace all IP options with EOL) 22771 */ 22772 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22773 ipha = (ipha_t *)mp->b_rptr; 22774 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22775 mp->b_rptr[i] = IPOPT_EOL; 22776 /* 22777 * Make sure that src address isn't flagrantly invalid. 22778 * Not all broadcast address checking for the src address 22779 * is possible, since we don't know the netmask of the src 22780 * addr. No check for destination address is done, since 22781 * IP will not pass up a packet with a broadcast dest 22782 * address to TCP. Similar checks are done below for IPv6. 22783 */ 22784 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22785 CLASSD(ipha->ipha_src)) { 22786 freemsg(ipsec_mp); 22787 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22788 return; 22789 } 22790 } else { 22791 ip6h = (ip6_t *)mp->b_rptr; 22792 22793 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22794 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22795 freemsg(ipsec_mp); 22796 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22797 return; 22798 } 22799 22800 /* Remove any extension headers assuming partial overlay */ 22801 if (ip_hdr_len > IPV6_HDR_LEN) { 22802 uint8_t *to; 22803 22804 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22805 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22806 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22807 ip_hdr_len = IPV6_HDR_LEN; 22808 ip6h = (ip6_t *)mp->b_rptr; 22809 ip6h->ip6_nxt = IPPROTO_TCP; 22810 } 22811 } 22812 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22813 if (tcph->th_flags[0] & TH_RST) { 22814 freemsg(ipsec_mp); 22815 return; 22816 } 22817 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22818 len = ip_hdr_len + sizeof (tcph_t); 22819 mp->b_wptr = &mp->b_rptr[len]; 22820 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22821 ipha->ipha_length = htons(len); 22822 /* Swap addresses */ 22823 v4addr = ipha->ipha_src; 22824 ipha->ipha_src = ipha->ipha_dst; 22825 ipha->ipha_dst = v4addr; 22826 ipha->ipha_ident = 0; 22827 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22828 addr_len = IP_ADDR_LEN; 22829 addr = &v4addr; 22830 } else { 22831 /* No ip6i_t in this case */ 22832 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22833 /* Swap addresses */ 22834 v6addr = ip6h->ip6_src; 22835 ip6h->ip6_src = ip6h->ip6_dst; 22836 ip6h->ip6_dst = v6addr; 22837 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22838 addr_len = IPV6_ADDR_LEN; 22839 addr = &v6addr; 22840 } 22841 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22842 U32_TO_BE32(ack, tcph->th_ack); 22843 U32_TO_BE32(seq, tcph->th_seq); 22844 U16_TO_BE16(0, tcph->th_win); 22845 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22846 tcph->th_flags[0] = (uint8_t)ctl; 22847 if (ctl & TH_RST) { 22848 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22849 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22850 } 22851 22852 /* IP trusts us to set up labels when required. */ 22853 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22854 crgetlabel(cr) != NULL) { 22855 int err; 22856 22857 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22858 err = tsol_check_label(cr, &mp, 22859 tcp->tcp_connp->conn_mac_exempt, 22860 tcps->tcps_netstack->netstack_ip); 22861 else 22862 err = tsol_check_label_v6(cr, &mp, 22863 tcp->tcp_connp->conn_mac_exempt, 22864 tcps->tcps_netstack->netstack_ip); 22865 if (mctl_present) 22866 ipsec_mp->b_cont = mp; 22867 else 22868 ipsec_mp = mp; 22869 if (err != 0) { 22870 freemsg(ipsec_mp); 22871 return; 22872 } 22873 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22874 ipha = (ipha_t *)mp->b_rptr; 22875 } else { 22876 ip6h = (ip6_t *)mp->b_rptr; 22877 } 22878 } 22879 22880 if (mctl_present) { 22881 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22882 22883 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22884 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22885 return; 22886 } 22887 } 22888 if (zoneid == ALL_ZONES) 22889 zoneid = GLOBAL_ZONEID; 22890 22891 /* Add the zoneid so ip_output routes it properly */ 22892 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22893 freemsg(ipsec_mp); 22894 return; 22895 } 22896 ipsec_mp = nmp; 22897 22898 /* 22899 * NOTE: one might consider tracing a TCP packet here, but 22900 * this function has no active TCP state and no tcp structure 22901 * that has a trace buffer. If we traced here, we would have 22902 * to keep a local trace buffer in tcp_record_trace(). 22903 * 22904 * TSol note: The mblk that contains the incoming packet was 22905 * reused by tcp_xmit_listener_reset, so it already contains 22906 * the right credentials and we don't need to call mblk_setcred. 22907 * Also the conn's cred is not right since it is associated 22908 * with tcps_g_q. 22909 */ 22910 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22911 22912 /* 22913 * Tell IP to mark the IRE used for this destination temporary. 22914 * This way, we can limit our exposure to DoS attack because IP 22915 * creates an IRE for each destination. If there are too many, 22916 * the time to do any routing lookup will be extremely long. And 22917 * the lookup can be in interrupt context. 22918 * 22919 * Note that in normal circumstances, this marking should not 22920 * affect anything. It would be nice if only 1 message is 22921 * needed to inform IP that the IRE created for this RST should 22922 * not be added to the cache table. But there is currently 22923 * not such communication mechanism between TCP and IP. So 22924 * the best we can do now is to send the advice ioctl to IP 22925 * to mark the IRE temporary. 22926 */ 22927 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22928 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22929 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22930 } 22931 } 22932 22933 /* 22934 * Initiate closedown sequence on an active connection. (May be called as 22935 * writer.) Return value zero for OK return, non-zero for error return. 22936 */ 22937 static int 22938 tcp_xmit_end(tcp_t *tcp) 22939 { 22940 ipic_t *ipic; 22941 mblk_t *mp; 22942 tcp_stack_t *tcps = tcp->tcp_tcps; 22943 22944 if (tcp->tcp_state < TCPS_SYN_RCVD || 22945 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22946 /* 22947 * Invalid state, only states TCPS_SYN_RCVD, 22948 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22949 */ 22950 return (-1); 22951 } 22952 22953 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22954 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22955 /* 22956 * If there is nothing more unsent, send the FIN now. 22957 * Otherwise, it will go out with the last segment. 22958 */ 22959 if (tcp->tcp_unsent == 0) { 22960 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22961 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22962 22963 if (mp) { 22964 tcp_send_data(tcp, tcp->tcp_wq, mp); 22965 } else { 22966 /* 22967 * Couldn't allocate msg. Pretend we got it out. 22968 * Wait for rexmit timeout. 22969 */ 22970 tcp->tcp_snxt = tcp->tcp_fss + 1; 22971 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22972 } 22973 22974 /* 22975 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22976 * changed. 22977 */ 22978 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22979 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22980 } 22981 } else { 22982 /* 22983 * If tcp->tcp_cork is set, then the data will not get sent, 22984 * so we have to check that and unset it first. 22985 */ 22986 if (tcp->tcp_cork) 22987 tcp->tcp_cork = B_FALSE; 22988 tcp_wput_data(tcp, NULL, B_FALSE); 22989 } 22990 22991 /* 22992 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22993 * is 0, don't update the cache. 22994 */ 22995 if (tcps->tcps_rtt_updates == 0 || 22996 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22997 return (0); 22998 22999 /* 23000 * NOTE: should not update if source routes i.e. if tcp_remote if 23001 * different from the destination. 23002 */ 23003 if (tcp->tcp_ipversion == IPV4_VERSION) { 23004 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23005 return (0); 23006 } 23007 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23008 &ipic); 23009 } else { 23010 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23011 &tcp->tcp_ip6h->ip6_dst))) { 23012 return (0); 23013 } 23014 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23015 &ipic); 23016 } 23017 23018 /* Record route attributes in the IRE for use by future connections. */ 23019 if (mp == NULL) 23020 return (0); 23021 23022 /* 23023 * We do not have a good algorithm to update ssthresh at this time. 23024 * So don't do any update. 23025 */ 23026 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23027 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23028 23029 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23030 23031 return (0); 23032 } 23033 23034 /* 23035 * Generate a "no listener here" RST in response to an "unknown" segment. 23036 * connp is set by caller when RST is in response to an unexpected 23037 * inbound packet for which there is active tcp state in the system. 23038 * Note that we are reusing the incoming mp to construct the outgoing RST. 23039 */ 23040 void 23041 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23042 tcp_stack_t *tcps, conn_t *connp) 23043 { 23044 uchar_t *rptr; 23045 uint32_t seg_len; 23046 tcph_t *tcph; 23047 uint32_t seg_seq; 23048 uint32_t seg_ack; 23049 uint_t flags; 23050 mblk_t *ipsec_mp; 23051 ipha_t *ipha; 23052 ip6_t *ip6h; 23053 boolean_t mctl_present = B_FALSE; 23054 boolean_t check = B_TRUE; 23055 boolean_t policy_present; 23056 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23057 23058 TCP_STAT(tcps, tcp_no_listener); 23059 23060 ipsec_mp = mp; 23061 23062 if (mp->b_datap->db_type == M_CTL) { 23063 ipsec_in_t *ii; 23064 23065 mctl_present = B_TRUE; 23066 mp = mp->b_cont; 23067 23068 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23069 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23070 if (ii->ipsec_in_dont_check) { 23071 check = B_FALSE; 23072 if (!ii->ipsec_in_secure) { 23073 freeb(ipsec_mp); 23074 mctl_present = B_FALSE; 23075 ipsec_mp = mp; 23076 } 23077 } 23078 } 23079 23080 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23081 policy_present = ipss->ipsec_inbound_v4_policy_present; 23082 ipha = (ipha_t *)mp->b_rptr; 23083 ip6h = NULL; 23084 } else { 23085 policy_present = ipss->ipsec_inbound_v6_policy_present; 23086 ipha = NULL; 23087 ip6h = (ip6_t *)mp->b_rptr; 23088 } 23089 23090 if (check && policy_present) { 23091 /* 23092 * The conn_t parameter is NULL because we already know 23093 * nobody's home. 23094 */ 23095 ipsec_mp = ipsec_check_global_policy( 23096 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23097 tcps->tcps_netstack); 23098 if (ipsec_mp == NULL) 23099 return; 23100 } 23101 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23102 DTRACE_PROBE2( 23103 tx__ip__log__error__nolistener__tcp, 23104 char *, "Could not reply with RST to mp(1)", 23105 mblk_t *, mp); 23106 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23107 freemsg(ipsec_mp); 23108 return; 23109 } 23110 23111 rptr = mp->b_rptr; 23112 23113 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23114 seg_seq = BE32_TO_U32(tcph->th_seq); 23115 seg_ack = BE32_TO_U32(tcph->th_ack); 23116 flags = tcph->th_flags[0]; 23117 23118 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23119 if (flags & TH_RST) { 23120 freemsg(ipsec_mp); 23121 } else if (flags & TH_ACK) { 23122 tcp_xmit_early_reset("no tcp, reset", 23123 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23124 connp); 23125 } else { 23126 if (flags & TH_SYN) { 23127 seg_len++; 23128 } else { 23129 /* 23130 * Here we violate the RFC. Note that a normal 23131 * TCP will never send a segment without the ACK 23132 * flag, except for RST or SYN segment. This 23133 * segment is neither. Just drop it on the 23134 * floor. 23135 */ 23136 freemsg(ipsec_mp); 23137 tcps->tcps_rst_unsent++; 23138 return; 23139 } 23140 23141 tcp_xmit_early_reset("no tcp, reset/ack", 23142 ipsec_mp, 0, seg_seq + seg_len, 23143 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23144 } 23145 } 23146 23147 /* 23148 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23149 * ip and tcp header ready to pass down to IP. If the mp passed in is 23150 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23151 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23152 * otherwise it will dup partial mblks.) 23153 * Otherwise, an appropriate ACK packet will be generated. This 23154 * routine is not usually called to send new data for the first time. It 23155 * is mostly called out of the timer for retransmits, and to generate ACKs. 23156 * 23157 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23158 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23159 * of the original mblk chain will be returned in *offset and *end_mp. 23160 */ 23161 mblk_t * 23162 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23163 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23164 boolean_t rexmit) 23165 { 23166 int data_length; 23167 int32_t off = 0; 23168 uint_t flags; 23169 mblk_t *mp1; 23170 mblk_t *mp2; 23171 uchar_t *rptr; 23172 tcph_t *tcph; 23173 int32_t num_sack_blk = 0; 23174 int32_t sack_opt_len = 0; 23175 tcp_stack_t *tcps = tcp->tcp_tcps; 23176 23177 /* Allocate for our maximum TCP header + link-level */ 23178 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23179 tcps->tcps_wroff_xtra, BPRI_MED); 23180 if (!mp1) 23181 return (NULL); 23182 data_length = 0; 23183 23184 /* 23185 * Note that tcp_mss has been adjusted to take into account the 23186 * timestamp option if applicable. Because SACK options do not 23187 * appear in every TCP segments and they are of variable lengths, 23188 * they cannot be included in tcp_mss. Thus we need to calculate 23189 * the actual segment length when we need to send a segment which 23190 * includes SACK options. 23191 */ 23192 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23193 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23194 tcp->tcp_num_sack_blk); 23195 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23196 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23197 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23198 max_to_send -= sack_opt_len; 23199 } 23200 23201 if (offset != NULL) { 23202 off = *offset; 23203 /* We use offset as an indicator that end_mp is not NULL. */ 23204 *end_mp = NULL; 23205 } 23206 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23207 /* This could be faster with cooperation from downstream */ 23208 if (mp2 != mp1 && !sendall && 23209 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23210 max_to_send) 23211 /* 23212 * Don't send the next mblk since the whole mblk 23213 * does not fit. 23214 */ 23215 break; 23216 mp2->b_cont = dupb(mp); 23217 mp2 = mp2->b_cont; 23218 if (!mp2) { 23219 freemsg(mp1); 23220 return (NULL); 23221 } 23222 mp2->b_rptr += off; 23223 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23224 (uintptr_t)INT_MAX); 23225 23226 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23227 if (data_length > max_to_send) { 23228 mp2->b_wptr -= data_length - max_to_send; 23229 data_length = max_to_send; 23230 off = mp2->b_wptr - mp->b_rptr; 23231 break; 23232 } else { 23233 off = 0; 23234 } 23235 } 23236 if (offset != NULL) { 23237 *offset = off; 23238 *end_mp = mp; 23239 } 23240 if (seg_len != NULL) { 23241 *seg_len = data_length; 23242 } 23243 23244 /* Update the latest receive window size in TCP header. */ 23245 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23246 tcp->tcp_tcph->th_win); 23247 23248 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23249 mp1->b_rptr = rptr; 23250 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23251 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23252 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23253 U32_TO_ABE32(seq, tcph->th_seq); 23254 23255 /* 23256 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23257 * that this function was called from tcp_wput_data. Thus, when called 23258 * to retransmit data the setting of the PUSH bit may appear some 23259 * what random in that it might get set when it should not. This 23260 * should not pose any performance issues. 23261 */ 23262 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23263 tcp->tcp_unsent == data_length)) { 23264 flags = TH_ACK | TH_PUSH; 23265 } else { 23266 flags = TH_ACK; 23267 } 23268 23269 if (tcp->tcp_ecn_ok) { 23270 if (tcp->tcp_ecn_echo_on) 23271 flags |= TH_ECE; 23272 23273 /* 23274 * Only set ECT bit and ECN_CWR if a segment contains new data. 23275 * There is no TCP flow control for non-data segments, and 23276 * only data segment is transmitted reliably. 23277 */ 23278 if (data_length > 0 && !rexmit) { 23279 SET_ECT(tcp, rptr); 23280 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23281 flags |= TH_CWR; 23282 tcp->tcp_ecn_cwr_sent = B_TRUE; 23283 } 23284 } 23285 } 23286 23287 if (tcp->tcp_valid_bits) { 23288 uint32_t u1; 23289 23290 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23291 seq == tcp->tcp_iss) { 23292 uchar_t *wptr; 23293 23294 /* 23295 * If TCP_ISS_VALID and the seq number is tcp_iss, 23296 * TCP can only be in SYN-SENT, SYN-RCVD or 23297 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23298 * our SYN is not ack'ed but the app closes this 23299 * TCP connection. 23300 */ 23301 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23302 tcp->tcp_state == TCPS_SYN_RCVD || 23303 tcp->tcp_state == TCPS_FIN_WAIT_1); 23304 23305 /* 23306 * Tack on the MSS option. It is always needed 23307 * for both active and passive open. 23308 * 23309 * MSS option value should be interface MTU - MIN 23310 * TCP/IP header according to RFC 793 as it means 23311 * the maximum segment size TCP can receive. But 23312 * to get around some broken middle boxes/end hosts 23313 * out there, we allow the option value to be the 23314 * same as the MSS option size on the peer side. 23315 * In this way, the other side will not send 23316 * anything larger than they can receive. 23317 * 23318 * Note that for SYN_SENT state, the ndd param 23319 * tcp_use_smss_as_mss_opt has no effect as we 23320 * don't know the peer's MSS option value. So 23321 * the only case we need to take care of is in 23322 * SYN_RCVD state, which is done later. 23323 */ 23324 wptr = mp1->b_wptr; 23325 wptr[0] = TCPOPT_MAXSEG; 23326 wptr[1] = TCPOPT_MAXSEG_LEN; 23327 wptr += 2; 23328 u1 = tcp->tcp_if_mtu - 23329 (tcp->tcp_ipversion == IPV4_VERSION ? 23330 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23331 TCP_MIN_HEADER_LENGTH; 23332 U16_TO_BE16(u1, wptr); 23333 mp1->b_wptr = wptr + 2; 23334 /* Update the offset to cover the additional word */ 23335 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23336 23337 /* 23338 * Note that the following way of filling in 23339 * TCP options are not optimal. Some NOPs can 23340 * be saved. But there is no need at this time 23341 * to optimize it. When it is needed, we will 23342 * do it. 23343 */ 23344 switch (tcp->tcp_state) { 23345 case TCPS_SYN_SENT: 23346 flags = TH_SYN; 23347 23348 if (tcp->tcp_snd_ts_ok) { 23349 uint32_t llbolt = (uint32_t)lbolt; 23350 23351 wptr = mp1->b_wptr; 23352 wptr[0] = TCPOPT_NOP; 23353 wptr[1] = TCPOPT_NOP; 23354 wptr[2] = TCPOPT_TSTAMP; 23355 wptr[3] = TCPOPT_TSTAMP_LEN; 23356 wptr += 4; 23357 U32_TO_BE32(llbolt, wptr); 23358 wptr += 4; 23359 ASSERT(tcp->tcp_ts_recent == 0); 23360 U32_TO_BE32(0L, wptr); 23361 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23362 tcph->th_offset_and_rsrvd[0] += 23363 (3 << 4); 23364 } 23365 23366 /* 23367 * Set up all the bits to tell other side 23368 * we are ECN capable. 23369 */ 23370 if (tcp->tcp_ecn_ok) { 23371 flags |= (TH_ECE | TH_CWR); 23372 } 23373 break; 23374 case TCPS_SYN_RCVD: 23375 flags |= TH_SYN; 23376 23377 /* 23378 * Reset the MSS option value to be SMSS 23379 * We should probably add back the bytes 23380 * for timestamp option and IPsec. We 23381 * don't do that as this is a workaround 23382 * for broken middle boxes/end hosts, it 23383 * is better for us to be more cautious. 23384 * They may not take these things into 23385 * account in their SMSS calculation. Thus 23386 * the peer's calculated SMSS may be smaller 23387 * than what it can be. This should be OK. 23388 */ 23389 if (tcps->tcps_use_smss_as_mss_opt) { 23390 u1 = tcp->tcp_mss; 23391 U16_TO_BE16(u1, wptr); 23392 } 23393 23394 /* 23395 * If the other side is ECN capable, reply 23396 * that we are also ECN capable. 23397 */ 23398 if (tcp->tcp_ecn_ok) 23399 flags |= TH_ECE; 23400 break; 23401 default: 23402 /* 23403 * The above ASSERT() makes sure that this 23404 * must be FIN-WAIT-1 state. Our SYN has 23405 * not been ack'ed so retransmit it. 23406 */ 23407 flags |= TH_SYN; 23408 break; 23409 } 23410 23411 if (tcp->tcp_snd_ws_ok) { 23412 wptr = mp1->b_wptr; 23413 wptr[0] = TCPOPT_NOP; 23414 wptr[1] = TCPOPT_WSCALE; 23415 wptr[2] = TCPOPT_WS_LEN; 23416 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23417 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23418 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23419 } 23420 23421 if (tcp->tcp_snd_sack_ok) { 23422 wptr = mp1->b_wptr; 23423 wptr[0] = TCPOPT_NOP; 23424 wptr[1] = TCPOPT_NOP; 23425 wptr[2] = TCPOPT_SACK_PERMITTED; 23426 wptr[3] = TCPOPT_SACK_OK_LEN; 23427 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23428 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23429 } 23430 23431 /* allocb() of adequate mblk assures space */ 23432 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23433 (uintptr_t)INT_MAX); 23434 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23435 /* 23436 * Get IP set to checksum on our behalf 23437 * Include the adjustment for a source route if any. 23438 */ 23439 u1 += tcp->tcp_sum; 23440 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23441 U16_TO_BE16(u1, tcph->th_sum); 23442 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23443 } 23444 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23445 (seq + data_length) == tcp->tcp_fss) { 23446 if (!tcp->tcp_fin_acked) { 23447 flags |= TH_FIN; 23448 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23449 } 23450 if (!tcp->tcp_fin_sent) { 23451 tcp->tcp_fin_sent = B_TRUE; 23452 switch (tcp->tcp_state) { 23453 case TCPS_SYN_RCVD: 23454 case TCPS_ESTABLISHED: 23455 tcp->tcp_state = TCPS_FIN_WAIT_1; 23456 break; 23457 case TCPS_CLOSE_WAIT: 23458 tcp->tcp_state = TCPS_LAST_ACK; 23459 break; 23460 } 23461 if (tcp->tcp_suna == tcp->tcp_snxt) 23462 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23463 tcp->tcp_snxt = tcp->tcp_fss + 1; 23464 } 23465 } 23466 /* 23467 * Note the trick here. u1 is unsigned. When tcp_urg 23468 * is smaller than seq, u1 will become a very huge value. 23469 * So the comparison will fail. Also note that tcp_urp 23470 * should be positive, see RFC 793 page 17. 23471 */ 23472 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23473 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23474 u1 < (uint32_t)(64 * 1024)) { 23475 flags |= TH_URG; 23476 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23477 U32_TO_ABE16(u1, tcph->th_urp); 23478 } 23479 } 23480 tcph->th_flags[0] = (uchar_t)flags; 23481 tcp->tcp_rack = tcp->tcp_rnxt; 23482 tcp->tcp_rack_cnt = 0; 23483 23484 if (tcp->tcp_snd_ts_ok) { 23485 if (tcp->tcp_state != TCPS_SYN_SENT) { 23486 uint32_t llbolt = (uint32_t)lbolt; 23487 23488 U32_TO_BE32(llbolt, 23489 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23490 U32_TO_BE32(tcp->tcp_ts_recent, 23491 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23492 } 23493 } 23494 23495 if (num_sack_blk > 0) { 23496 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23497 sack_blk_t *tmp; 23498 int32_t i; 23499 23500 wptr[0] = TCPOPT_NOP; 23501 wptr[1] = TCPOPT_NOP; 23502 wptr[2] = TCPOPT_SACK; 23503 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23504 sizeof (sack_blk_t); 23505 wptr += TCPOPT_REAL_SACK_LEN; 23506 23507 tmp = tcp->tcp_sack_list; 23508 for (i = 0; i < num_sack_blk; i++) { 23509 U32_TO_BE32(tmp[i].begin, wptr); 23510 wptr += sizeof (tcp_seq); 23511 U32_TO_BE32(tmp[i].end, wptr); 23512 wptr += sizeof (tcp_seq); 23513 } 23514 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23515 } 23516 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23517 data_length += (int)(mp1->b_wptr - rptr); 23518 if (tcp->tcp_ipversion == IPV4_VERSION) { 23519 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23520 } else { 23521 ip6_t *ip6 = (ip6_t *)(rptr + 23522 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23523 sizeof (ip6i_t) : 0)); 23524 23525 ip6->ip6_plen = htons(data_length - 23526 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23527 } 23528 23529 /* 23530 * Prime pump for IP 23531 * Include the adjustment for a source route if any. 23532 */ 23533 data_length -= tcp->tcp_ip_hdr_len; 23534 data_length += tcp->tcp_sum; 23535 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23536 U16_TO_ABE16(data_length, tcph->th_sum); 23537 if (tcp->tcp_ip_forward_progress) { 23538 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23539 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23540 tcp->tcp_ip_forward_progress = B_FALSE; 23541 } 23542 return (mp1); 23543 } 23544 23545 /* This function handles the push timeout. */ 23546 void 23547 tcp_push_timer(void *arg) 23548 { 23549 conn_t *connp = (conn_t *)arg; 23550 tcp_t *tcp = connp->conn_tcp; 23551 uint_t flags; 23552 sodirect_t *sodp; 23553 23554 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 23555 23556 ASSERT(tcp->tcp_listener == NULL); 23557 23558 ASSERT(!IPCL_IS_NONSTR(connp)); 23559 23560 /* 23561 * We need to plug synchronous streams during our drain to prevent 23562 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23563 */ 23564 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23565 tcp->tcp_push_tid = 0; 23566 23567 SOD_PTR_ENTER(tcp, sodp); 23568 if (sodp != NULL) { 23569 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23570 /* sod_wakeup() does the mutex_exit() */ 23571 } else if (tcp->tcp_rcv_list != NULL) { 23572 flags = tcp_rcv_drain(tcp); 23573 } 23574 if (flags == TH_ACK_NEEDED) 23575 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23576 23577 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23578 } 23579 23580 /* 23581 * This function handles delayed ACK timeout. 23582 */ 23583 static void 23584 tcp_ack_timer(void *arg) 23585 { 23586 conn_t *connp = (conn_t *)arg; 23587 tcp_t *tcp = connp->conn_tcp; 23588 mblk_t *mp; 23589 tcp_stack_t *tcps = tcp->tcp_tcps; 23590 23591 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23592 23593 tcp->tcp_ack_tid = 0; 23594 23595 if (tcp->tcp_fused) 23596 return; 23597 23598 /* 23599 * Do not send ACK if there is no outstanding unack'ed data. 23600 */ 23601 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23602 return; 23603 } 23604 23605 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23606 /* 23607 * Make sure we don't allow deferred ACKs to result in 23608 * timer-based ACKing. If we have held off an ACK 23609 * when there was more than an mss here, and the timer 23610 * goes off, we have to worry about the possibility 23611 * that the sender isn't doing slow-start, or is out 23612 * of step with us for some other reason. We fall 23613 * permanently back in the direction of 23614 * ACK-every-other-packet as suggested in RFC 1122. 23615 */ 23616 if (tcp->tcp_rack_abs_max > 2) 23617 tcp->tcp_rack_abs_max--; 23618 tcp->tcp_rack_cur_max = 2; 23619 } 23620 mp = tcp_ack_mp(tcp); 23621 23622 if (mp != NULL) { 23623 BUMP_LOCAL(tcp->tcp_obsegs); 23624 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23625 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23626 tcp_send_data(tcp, tcp->tcp_wq, mp); 23627 } 23628 } 23629 23630 23631 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23632 static mblk_t * 23633 tcp_ack_mp(tcp_t *tcp) 23634 { 23635 uint32_t seq_no; 23636 tcp_stack_t *tcps = tcp->tcp_tcps; 23637 23638 /* 23639 * There are a few cases to be considered while setting the sequence no. 23640 * Essentially, we can come here while processing an unacceptable pkt 23641 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23642 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23643 * If we are here for a zero window probe, stick with suna. In all 23644 * other cases, we check if suna + swnd encompasses snxt and set 23645 * the sequence number to snxt, if so. If snxt falls outside the 23646 * window (the receiver probably shrunk its window), we will go with 23647 * suna + swnd, otherwise the sequence no will be unacceptable to the 23648 * receiver. 23649 */ 23650 if (tcp->tcp_zero_win_probe) { 23651 seq_no = tcp->tcp_suna; 23652 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23653 ASSERT(tcp->tcp_swnd == 0); 23654 seq_no = tcp->tcp_snxt; 23655 } else { 23656 seq_no = SEQ_GT(tcp->tcp_snxt, 23657 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23658 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23659 } 23660 23661 if (tcp->tcp_valid_bits) { 23662 /* 23663 * For the complex case where we have to send some 23664 * controls (FIN or SYN), let tcp_xmit_mp do it. 23665 */ 23666 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23667 NULL, B_FALSE)); 23668 } else { 23669 /* Generate a simple ACK */ 23670 int data_length; 23671 uchar_t *rptr; 23672 tcph_t *tcph; 23673 mblk_t *mp1; 23674 int32_t tcp_hdr_len; 23675 int32_t tcp_tcp_hdr_len; 23676 int32_t num_sack_blk = 0; 23677 int32_t sack_opt_len; 23678 23679 /* 23680 * Allocate space for TCP + IP headers 23681 * and link-level header 23682 */ 23683 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23684 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23685 tcp->tcp_num_sack_blk); 23686 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23687 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23688 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23689 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23690 } else { 23691 tcp_hdr_len = tcp->tcp_hdr_len; 23692 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23693 } 23694 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23695 if (!mp1) 23696 return (NULL); 23697 23698 /* Update the latest receive window size in TCP header. */ 23699 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23700 tcp->tcp_tcph->th_win); 23701 /* copy in prototype TCP + IP header */ 23702 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23703 mp1->b_rptr = rptr; 23704 mp1->b_wptr = rptr + tcp_hdr_len; 23705 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23706 23707 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23708 23709 /* Set the TCP sequence number. */ 23710 U32_TO_ABE32(seq_no, tcph->th_seq); 23711 23712 /* Set up the TCP flag field. */ 23713 tcph->th_flags[0] = (uchar_t)TH_ACK; 23714 if (tcp->tcp_ecn_echo_on) 23715 tcph->th_flags[0] |= TH_ECE; 23716 23717 tcp->tcp_rack = tcp->tcp_rnxt; 23718 tcp->tcp_rack_cnt = 0; 23719 23720 /* fill in timestamp option if in use */ 23721 if (tcp->tcp_snd_ts_ok) { 23722 uint32_t llbolt = (uint32_t)lbolt; 23723 23724 U32_TO_BE32(llbolt, 23725 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23726 U32_TO_BE32(tcp->tcp_ts_recent, 23727 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23728 } 23729 23730 /* Fill in SACK options */ 23731 if (num_sack_blk > 0) { 23732 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23733 sack_blk_t *tmp; 23734 int32_t i; 23735 23736 wptr[0] = TCPOPT_NOP; 23737 wptr[1] = TCPOPT_NOP; 23738 wptr[2] = TCPOPT_SACK; 23739 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23740 sizeof (sack_blk_t); 23741 wptr += TCPOPT_REAL_SACK_LEN; 23742 23743 tmp = tcp->tcp_sack_list; 23744 for (i = 0; i < num_sack_blk; i++) { 23745 U32_TO_BE32(tmp[i].begin, wptr); 23746 wptr += sizeof (tcp_seq); 23747 U32_TO_BE32(tmp[i].end, wptr); 23748 wptr += sizeof (tcp_seq); 23749 } 23750 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23751 << 4); 23752 } 23753 23754 if (tcp->tcp_ipversion == IPV4_VERSION) { 23755 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23756 } else { 23757 /* Check for ip6i_t header in sticky hdrs */ 23758 ip6_t *ip6 = (ip6_t *)(rptr + 23759 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23760 sizeof (ip6i_t) : 0)); 23761 23762 ip6->ip6_plen = htons(tcp_hdr_len - 23763 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23764 } 23765 23766 /* 23767 * Prime pump for checksum calculation in IP. Include the 23768 * adjustment for a source route if any. 23769 */ 23770 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23771 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23772 U16_TO_ABE16(data_length, tcph->th_sum); 23773 23774 if (tcp->tcp_ip_forward_progress) { 23775 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23776 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23777 tcp->tcp_ip_forward_progress = B_FALSE; 23778 } 23779 return (mp1); 23780 } 23781 } 23782 23783 /* 23784 * Hash list insertion routine for tcp_t structures. Each hash bucket 23785 * contains a list of tcp_t entries, and each entry is bound to a unique 23786 * port. If there are multiple tcp_t's that are bound to the same port, then 23787 * one of them will be linked into the hash bucket list, and the rest will 23788 * hang off of that one entry. For each port, entries bound to a specific IP 23789 * address will be inserted before those those bound to INADDR_ANY. 23790 */ 23791 static void 23792 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23793 { 23794 tcp_t **tcpp; 23795 tcp_t *tcpnext; 23796 tcp_t *tcphash; 23797 23798 if (tcp->tcp_ptpbhn != NULL) { 23799 ASSERT(!caller_holds_lock); 23800 tcp_bind_hash_remove(tcp); 23801 } 23802 tcpp = &tbf->tf_tcp; 23803 if (!caller_holds_lock) { 23804 mutex_enter(&tbf->tf_lock); 23805 } else { 23806 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23807 } 23808 tcphash = tcpp[0]; 23809 tcpnext = NULL; 23810 if (tcphash != NULL) { 23811 /* Look for an entry using the same port */ 23812 while ((tcphash = tcpp[0]) != NULL && 23813 tcp->tcp_lport != tcphash->tcp_lport) 23814 tcpp = &(tcphash->tcp_bind_hash); 23815 23816 /* The port was not found, just add to the end */ 23817 if (tcphash == NULL) 23818 goto insert; 23819 23820 /* 23821 * OK, there already exists an entry bound to the 23822 * same port. 23823 * 23824 * If the new tcp bound to the INADDR_ANY address 23825 * and the first one in the list is not bound to 23826 * INADDR_ANY we skip all entries until we find the 23827 * first one bound to INADDR_ANY. 23828 * This makes sure that applications binding to a 23829 * specific address get preference over those binding to 23830 * INADDR_ANY. 23831 */ 23832 tcpnext = tcphash; 23833 tcphash = NULL; 23834 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23835 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23836 while ((tcpnext = tcpp[0]) != NULL && 23837 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23838 tcpp = &(tcpnext->tcp_bind_hash_port); 23839 23840 if (tcpnext) { 23841 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23842 tcphash = tcpnext->tcp_bind_hash; 23843 if (tcphash != NULL) { 23844 tcphash->tcp_ptpbhn = 23845 &(tcp->tcp_bind_hash); 23846 tcpnext->tcp_bind_hash = NULL; 23847 } 23848 } 23849 } else { 23850 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23851 tcphash = tcpnext->tcp_bind_hash; 23852 if (tcphash != NULL) { 23853 tcphash->tcp_ptpbhn = 23854 &(tcp->tcp_bind_hash); 23855 tcpnext->tcp_bind_hash = NULL; 23856 } 23857 } 23858 } 23859 insert: 23860 tcp->tcp_bind_hash_port = tcpnext; 23861 tcp->tcp_bind_hash = tcphash; 23862 tcp->tcp_ptpbhn = tcpp; 23863 tcpp[0] = tcp; 23864 if (!caller_holds_lock) 23865 mutex_exit(&tbf->tf_lock); 23866 } 23867 23868 /* 23869 * Hash list removal routine for tcp_t structures. 23870 */ 23871 static void 23872 tcp_bind_hash_remove(tcp_t *tcp) 23873 { 23874 tcp_t *tcpnext; 23875 kmutex_t *lockp; 23876 tcp_stack_t *tcps = tcp->tcp_tcps; 23877 23878 if (tcp->tcp_ptpbhn == NULL) 23879 return; 23880 23881 /* 23882 * Extract the lock pointer in case there are concurrent 23883 * hash_remove's for this instance. 23884 */ 23885 ASSERT(tcp->tcp_lport != 0); 23886 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23887 23888 ASSERT(lockp != NULL); 23889 mutex_enter(lockp); 23890 if (tcp->tcp_ptpbhn) { 23891 tcpnext = tcp->tcp_bind_hash_port; 23892 if (tcpnext != NULL) { 23893 tcp->tcp_bind_hash_port = NULL; 23894 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23895 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23896 if (tcpnext->tcp_bind_hash != NULL) { 23897 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23898 &(tcpnext->tcp_bind_hash); 23899 tcp->tcp_bind_hash = NULL; 23900 } 23901 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23902 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23903 tcp->tcp_bind_hash = NULL; 23904 } 23905 *tcp->tcp_ptpbhn = tcpnext; 23906 tcp->tcp_ptpbhn = NULL; 23907 } 23908 mutex_exit(lockp); 23909 } 23910 23911 23912 /* 23913 * Hash list lookup routine for tcp_t structures. 23914 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23915 */ 23916 static tcp_t * 23917 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23918 { 23919 tf_t *tf; 23920 tcp_t *tcp; 23921 23922 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23923 mutex_enter(&tf->tf_lock); 23924 for (tcp = tf->tf_tcp; tcp != NULL; 23925 tcp = tcp->tcp_acceptor_hash) { 23926 if (tcp->tcp_acceptor_id == id) { 23927 CONN_INC_REF(tcp->tcp_connp); 23928 mutex_exit(&tf->tf_lock); 23929 return (tcp); 23930 } 23931 } 23932 mutex_exit(&tf->tf_lock); 23933 return (NULL); 23934 } 23935 23936 23937 /* 23938 * Hash list insertion routine for tcp_t structures. 23939 */ 23940 void 23941 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23942 { 23943 tf_t *tf; 23944 tcp_t **tcpp; 23945 tcp_t *tcpnext; 23946 tcp_stack_t *tcps = tcp->tcp_tcps; 23947 23948 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23949 23950 if (tcp->tcp_ptpahn != NULL) 23951 tcp_acceptor_hash_remove(tcp); 23952 tcpp = &tf->tf_tcp; 23953 mutex_enter(&tf->tf_lock); 23954 tcpnext = tcpp[0]; 23955 if (tcpnext) 23956 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23957 tcp->tcp_acceptor_hash = tcpnext; 23958 tcp->tcp_ptpahn = tcpp; 23959 tcpp[0] = tcp; 23960 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23961 mutex_exit(&tf->tf_lock); 23962 } 23963 23964 /* 23965 * Hash list removal routine for tcp_t structures. 23966 */ 23967 static void 23968 tcp_acceptor_hash_remove(tcp_t *tcp) 23969 { 23970 tcp_t *tcpnext; 23971 kmutex_t *lockp; 23972 23973 /* 23974 * Extract the lock pointer in case there are concurrent 23975 * hash_remove's for this instance. 23976 */ 23977 lockp = tcp->tcp_acceptor_lockp; 23978 23979 if (tcp->tcp_ptpahn == NULL) 23980 return; 23981 23982 ASSERT(lockp != NULL); 23983 mutex_enter(lockp); 23984 if (tcp->tcp_ptpahn) { 23985 tcpnext = tcp->tcp_acceptor_hash; 23986 if (tcpnext) { 23987 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23988 tcp->tcp_acceptor_hash = NULL; 23989 } 23990 *tcp->tcp_ptpahn = tcpnext; 23991 tcp->tcp_ptpahn = NULL; 23992 } 23993 mutex_exit(lockp); 23994 tcp->tcp_acceptor_lockp = NULL; 23995 } 23996 23997 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23998 23999 static ipaddr_t netmasks[] = { 24000 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24001 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24002 }; 24003 24004 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24005 24006 /* 24007 * XXX This routine should go away and instead we should use the metrics 24008 * associated with the routes to determine the default sndspace and rcvspace. 24009 */ 24010 static tcp_hsp_t * 24011 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24012 { 24013 tcp_hsp_t *hsp = NULL; 24014 24015 /* Quick check without acquiring the lock. */ 24016 if (tcps->tcps_hsp_hash == NULL) 24017 return (NULL); 24018 24019 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24020 24021 /* This routine finds the best-matching HSP for address addr. */ 24022 24023 if (tcps->tcps_hsp_hash) { 24024 int i; 24025 ipaddr_t srchaddr; 24026 tcp_hsp_t *hsp_net; 24027 24028 /* We do three passes: host, network, and subnet. */ 24029 24030 srchaddr = addr; 24031 24032 for (i = 1; i <= 3; i++) { 24033 /* Look for exact match on srchaddr */ 24034 24035 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24036 while (hsp) { 24037 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24038 hsp->tcp_hsp_addr == srchaddr) 24039 break; 24040 hsp = hsp->tcp_hsp_next; 24041 } 24042 ASSERT(hsp == NULL || 24043 hsp->tcp_hsp_vers == IPV4_VERSION); 24044 24045 /* 24046 * If this is the first pass: 24047 * If we found a match, great, return it. 24048 * If not, search for the network on the second pass. 24049 */ 24050 24051 if (i == 1) 24052 if (hsp) 24053 break; 24054 else 24055 { 24056 srchaddr = addr & netmask(addr); 24057 continue; 24058 } 24059 24060 /* 24061 * If this is the second pass: 24062 * If we found a match, but there's a subnet mask, 24063 * save the match but try again using the subnet 24064 * mask on the third pass. 24065 * Otherwise, return whatever we found. 24066 */ 24067 24068 if (i == 2) { 24069 if (hsp && hsp->tcp_hsp_subnet) { 24070 hsp_net = hsp; 24071 srchaddr = addr & hsp->tcp_hsp_subnet; 24072 continue; 24073 } else { 24074 break; 24075 } 24076 } 24077 24078 /* 24079 * This must be the third pass. If we didn't find 24080 * anything, return the saved network HSP instead. 24081 */ 24082 24083 if (!hsp) 24084 hsp = hsp_net; 24085 } 24086 } 24087 24088 rw_exit(&tcps->tcps_hsp_lock); 24089 return (hsp); 24090 } 24091 24092 /* 24093 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24094 * match lookup. 24095 */ 24096 static tcp_hsp_t * 24097 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24098 { 24099 tcp_hsp_t *hsp = NULL; 24100 24101 /* Quick check without acquiring the lock. */ 24102 if (tcps->tcps_hsp_hash == NULL) 24103 return (NULL); 24104 24105 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24106 24107 /* This routine finds the best-matching HSP for address addr. */ 24108 24109 if (tcps->tcps_hsp_hash) { 24110 int i; 24111 in6_addr_t v6srchaddr; 24112 tcp_hsp_t *hsp_net; 24113 24114 /* We do three passes: host, network, and subnet. */ 24115 24116 v6srchaddr = *v6addr; 24117 24118 for (i = 1; i <= 3; i++) { 24119 /* Look for exact match on srchaddr */ 24120 24121 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24122 V4_PART_OF_V6(v6srchaddr))]; 24123 while (hsp) { 24124 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24125 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24126 &v6srchaddr)) 24127 break; 24128 hsp = hsp->tcp_hsp_next; 24129 } 24130 24131 /* 24132 * If this is the first pass: 24133 * If we found a match, great, return it. 24134 * If not, search for the network on the second pass. 24135 */ 24136 24137 if (i == 1) 24138 if (hsp) 24139 break; 24140 else { 24141 /* Assume a 64 bit mask */ 24142 v6srchaddr.s6_addr32[0] = 24143 v6addr->s6_addr32[0]; 24144 v6srchaddr.s6_addr32[1] = 24145 v6addr->s6_addr32[1]; 24146 v6srchaddr.s6_addr32[2] = 0; 24147 v6srchaddr.s6_addr32[3] = 0; 24148 continue; 24149 } 24150 24151 /* 24152 * If this is the second pass: 24153 * If we found a match, but there's a subnet mask, 24154 * save the match but try again using the subnet 24155 * mask on the third pass. 24156 * Otherwise, return whatever we found. 24157 */ 24158 24159 if (i == 2) { 24160 ASSERT(hsp == NULL || 24161 hsp->tcp_hsp_vers == IPV6_VERSION); 24162 if (hsp && 24163 !IN6_IS_ADDR_UNSPECIFIED( 24164 &hsp->tcp_hsp_subnet_v6)) { 24165 hsp_net = hsp; 24166 V6_MASK_COPY(*v6addr, 24167 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24168 continue; 24169 } else { 24170 break; 24171 } 24172 } 24173 24174 /* 24175 * This must be the third pass. If we didn't find 24176 * anything, return the saved network HSP instead. 24177 */ 24178 24179 if (!hsp) 24180 hsp = hsp_net; 24181 } 24182 } 24183 24184 rw_exit(&tcps->tcps_hsp_lock); 24185 return (hsp); 24186 } 24187 24188 /* 24189 * Type three generator adapted from the random() function in 4.4 BSD: 24190 */ 24191 24192 /* 24193 * Copyright (c) 1983, 1993 24194 * The Regents of the University of California. All rights reserved. 24195 * 24196 * Redistribution and use in source and binary forms, with or without 24197 * modification, are permitted provided that the following conditions 24198 * are met: 24199 * 1. Redistributions of source code must retain the above copyright 24200 * notice, this list of conditions and the following disclaimer. 24201 * 2. Redistributions in binary form must reproduce the above copyright 24202 * notice, this list of conditions and the following disclaimer in the 24203 * documentation and/or other materials provided with the distribution. 24204 * 3. All advertising materials mentioning features or use of this software 24205 * must display the following acknowledgement: 24206 * This product includes software developed by the University of 24207 * California, Berkeley and its contributors. 24208 * 4. Neither the name of the University nor the names of its contributors 24209 * may be used to endorse or promote products derived from this software 24210 * without specific prior written permission. 24211 * 24212 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24213 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24214 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24215 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24216 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24217 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24218 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24219 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24220 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24221 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24222 * SUCH DAMAGE. 24223 */ 24224 24225 /* Type 3 -- x**31 + x**3 + 1 */ 24226 #define DEG_3 31 24227 #define SEP_3 3 24228 24229 24230 /* Protected by tcp_random_lock */ 24231 static int tcp_randtbl[DEG_3 + 1]; 24232 24233 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24234 static int *tcp_random_rptr = &tcp_randtbl[1]; 24235 24236 static int *tcp_random_state = &tcp_randtbl[1]; 24237 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24238 24239 kmutex_t tcp_random_lock; 24240 24241 void 24242 tcp_random_init(void) 24243 { 24244 int i; 24245 hrtime_t hrt; 24246 time_t wallclock; 24247 uint64_t result; 24248 24249 /* 24250 * Use high-res timer and current time for seed. Gethrtime() returns 24251 * a longlong, which may contain resolution down to nanoseconds. 24252 * The current time will either be a 32-bit or a 64-bit quantity. 24253 * XOR the two together in a 64-bit result variable. 24254 * Convert the result to a 32-bit value by multiplying the high-order 24255 * 32-bits by the low-order 32-bits. 24256 */ 24257 24258 hrt = gethrtime(); 24259 (void) drv_getparm(TIME, &wallclock); 24260 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24261 mutex_enter(&tcp_random_lock); 24262 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24263 (result & 0xffffffff); 24264 24265 for (i = 1; i < DEG_3; i++) 24266 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24267 + 12345; 24268 tcp_random_fptr = &tcp_random_state[SEP_3]; 24269 tcp_random_rptr = &tcp_random_state[0]; 24270 mutex_exit(&tcp_random_lock); 24271 for (i = 0; i < 10 * DEG_3; i++) 24272 (void) tcp_random(); 24273 } 24274 24275 /* 24276 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24277 * This range is selected to be approximately centered on TCP_ISS / 2, 24278 * and easy to compute. We get this value by generating a 32-bit random 24279 * number, selecting out the high-order 17 bits, and then adding one so 24280 * that we never return zero. 24281 */ 24282 int 24283 tcp_random(void) 24284 { 24285 int i; 24286 24287 mutex_enter(&tcp_random_lock); 24288 *tcp_random_fptr += *tcp_random_rptr; 24289 24290 /* 24291 * The high-order bits are more random than the low-order bits, 24292 * so we select out the high-order 17 bits and add one so that 24293 * we never return zero. 24294 */ 24295 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24296 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24297 tcp_random_fptr = tcp_random_state; 24298 ++tcp_random_rptr; 24299 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24300 tcp_random_rptr = tcp_random_state; 24301 24302 mutex_exit(&tcp_random_lock); 24303 return (i); 24304 } 24305 24306 static int 24307 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24308 int *t_errorp, int *sys_errorp) 24309 { 24310 int error; 24311 int is_absreq_failure; 24312 t_scalar_t *opt_lenp; 24313 t_scalar_t opt_offset; 24314 int prim_type; 24315 struct T_conn_req *tcreqp; 24316 struct T_conn_res *tcresp; 24317 cred_t *cr; 24318 24319 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24320 24321 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24322 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24323 prim_type == T_CONN_RES); 24324 24325 switch (prim_type) { 24326 case T_CONN_REQ: 24327 tcreqp = (struct T_conn_req *)mp->b_rptr; 24328 opt_offset = tcreqp->OPT_offset; 24329 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24330 break; 24331 case O_T_CONN_RES: 24332 case T_CONN_RES: 24333 tcresp = (struct T_conn_res *)mp->b_rptr; 24334 opt_offset = tcresp->OPT_offset; 24335 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24336 break; 24337 } 24338 24339 *t_errorp = 0; 24340 *sys_errorp = 0; 24341 *do_disconnectp = 0; 24342 24343 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24344 opt_offset, cr, &tcp_opt_obj, 24345 NULL, &is_absreq_failure); 24346 24347 switch (error) { 24348 case 0: /* no error */ 24349 ASSERT(is_absreq_failure == 0); 24350 return (0); 24351 case ENOPROTOOPT: 24352 *t_errorp = TBADOPT; 24353 break; 24354 case EACCES: 24355 *t_errorp = TACCES; 24356 break; 24357 default: 24358 *t_errorp = TSYSERR; *sys_errorp = error; 24359 break; 24360 } 24361 if (is_absreq_failure != 0) { 24362 /* 24363 * The connection request should get the local ack 24364 * T_OK_ACK and then a T_DISCON_IND. 24365 */ 24366 *do_disconnectp = 1; 24367 } 24368 return (-1); 24369 } 24370 24371 /* 24372 * Split this function out so that if the secret changes, I'm okay. 24373 * 24374 * Initialize the tcp_iss_cookie and tcp_iss_key. 24375 */ 24376 24377 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24378 24379 static void 24380 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24381 { 24382 struct { 24383 int32_t current_time; 24384 uint32_t randnum; 24385 uint16_t pad; 24386 uint8_t ether[6]; 24387 uint8_t passwd[PASSWD_SIZE]; 24388 } tcp_iss_cookie; 24389 time_t t; 24390 24391 /* 24392 * Start with the current absolute time. 24393 */ 24394 (void) drv_getparm(TIME, &t); 24395 tcp_iss_cookie.current_time = t; 24396 24397 /* 24398 * XXX - Need a more random number per RFC 1750, not this crap. 24399 * OTOH, if what follows is pretty random, then I'm in better shape. 24400 */ 24401 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24402 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24403 24404 /* 24405 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24406 * as a good template. 24407 */ 24408 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24409 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24410 24411 /* 24412 * The pass-phrase. Normally this is supplied by user-called NDD. 24413 */ 24414 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24415 24416 /* 24417 * See 4010593 if this section becomes a problem again, 24418 * but the local ethernet address is useful here. 24419 */ 24420 (void) localetheraddr(NULL, 24421 (struct ether_addr *)&tcp_iss_cookie.ether); 24422 24423 /* 24424 * Hash 'em all together. The MD5Final is called per-connection. 24425 */ 24426 mutex_enter(&tcps->tcps_iss_key_lock); 24427 MD5Init(&tcps->tcps_iss_key); 24428 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24429 sizeof (tcp_iss_cookie)); 24430 mutex_exit(&tcps->tcps_iss_key_lock); 24431 } 24432 24433 /* 24434 * Set the RFC 1948 pass phrase 24435 */ 24436 /* ARGSUSED */ 24437 static int 24438 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24439 cred_t *cr) 24440 { 24441 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24442 24443 /* 24444 * Basically, value contains a new pass phrase. Pass it along! 24445 */ 24446 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24447 return (0); 24448 } 24449 24450 /* ARGSUSED */ 24451 static int 24452 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24453 { 24454 bzero(buf, sizeof (tcp_sack_info_t)); 24455 return (0); 24456 } 24457 24458 /* ARGSUSED */ 24459 static int 24460 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24461 { 24462 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24463 return (0); 24464 } 24465 24466 /* 24467 * Make sure we wait until the default queue is setup, yet allow 24468 * tcp_g_q_create() to open a TCP stream. 24469 * We need to allow tcp_g_q_create() do do an open 24470 * of tcp, hence we compare curhread. 24471 * All others have to wait until the tcps_g_q has been 24472 * setup. 24473 */ 24474 void 24475 tcp_g_q_setup(tcp_stack_t *tcps) 24476 { 24477 mutex_enter(&tcps->tcps_g_q_lock); 24478 if (tcps->tcps_g_q != NULL) { 24479 mutex_exit(&tcps->tcps_g_q_lock); 24480 return; 24481 } 24482 if (tcps->tcps_g_q_creator == NULL) { 24483 /* This thread will set it up */ 24484 tcps->tcps_g_q_creator = curthread; 24485 mutex_exit(&tcps->tcps_g_q_lock); 24486 tcp_g_q_create(tcps); 24487 mutex_enter(&tcps->tcps_g_q_lock); 24488 ASSERT(tcps->tcps_g_q_creator == curthread); 24489 tcps->tcps_g_q_creator = NULL; 24490 cv_signal(&tcps->tcps_g_q_cv); 24491 ASSERT(tcps->tcps_g_q != NULL); 24492 mutex_exit(&tcps->tcps_g_q_lock); 24493 return; 24494 } 24495 /* Everybody but the creator has to wait */ 24496 if (tcps->tcps_g_q_creator != curthread) { 24497 while (tcps->tcps_g_q == NULL) 24498 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24499 } 24500 mutex_exit(&tcps->tcps_g_q_lock); 24501 } 24502 24503 #define IP "ip" 24504 24505 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24506 24507 /* 24508 * Create a default tcp queue here instead of in strplumb 24509 */ 24510 void 24511 tcp_g_q_create(tcp_stack_t *tcps) 24512 { 24513 int error; 24514 ldi_handle_t lh = NULL; 24515 ldi_ident_t li = NULL; 24516 int rval; 24517 cred_t *cr; 24518 major_t IP_MAJ; 24519 24520 #ifdef NS_DEBUG 24521 (void) printf("tcp_g_q_create()\n"); 24522 #endif 24523 24524 IP_MAJ = ddi_name_to_major(IP); 24525 24526 ASSERT(tcps->tcps_g_q_creator == curthread); 24527 24528 error = ldi_ident_from_major(IP_MAJ, &li); 24529 if (error) { 24530 #ifdef DEBUG 24531 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24532 error); 24533 #endif 24534 return; 24535 } 24536 24537 cr = zone_get_kcred(netstackid_to_zoneid( 24538 tcps->tcps_netstack->netstack_stackid)); 24539 ASSERT(cr != NULL); 24540 /* 24541 * We set the tcp default queue to IPv6 because IPv4 falls 24542 * back to IPv6 when it can't find a client, but 24543 * IPv6 does not fall back to IPv4. 24544 */ 24545 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24546 if (error) { 24547 #ifdef DEBUG 24548 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24549 error); 24550 #endif 24551 goto out; 24552 } 24553 24554 /* 24555 * This ioctl causes the tcp framework to cache a pointer to 24556 * this stream, so we don't want to close the stream after 24557 * this operation. 24558 * Use the kernel credentials that are for the zone we're in. 24559 */ 24560 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24561 (intptr_t)0, FKIOCTL, cr, &rval); 24562 if (error) { 24563 #ifdef DEBUG 24564 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24565 "error %d\n", error); 24566 #endif 24567 goto out; 24568 } 24569 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24570 lh = NULL; 24571 out: 24572 /* Close layered handles */ 24573 if (li) 24574 ldi_ident_release(li); 24575 /* Keep cred around until _inactive needs it */ 24576 tcps->tcps_g_q_cr = cr; 24577 } 24578 24579 /* 24580 * We keep tcp_g_q set until all other tcp_t's in the zone 24581 * has gone away, and then when tcp_g_q_inactive() is called 24582 * we clear it. 24583 */ 24584 void 24585 tcp_g_q_destroy(tcp_stack_t *tcps) 24586 { 24587 #ifdef NS_DEBUG 24588 (void) printf("tcp_g_q_destroy()for stack %d\n", 24589 tcps->tcps_netstack->netstack_stackid); 24590 #endif 24591 24592 if (tcps->tcps_g_q == NULL) { 24593 return; /* Nothing to cleanup */ 24594 } 24595 /* 24596 * Drop reference corresponding to the default queue. 24597 * This reference was added from tcp_open when the default queue 24598 * was created, hence we compensate for this extra drop in 24599 * tcp_g_q_close. If the refcnt drops to zero here it means 24600 * the default queue was the last one to be open, in which 24601 * case, then tcp_g_q_inactive will be 24602 * called as a result of the refrele. 24603 */ 24604 TCPS_REFRELE(tcps); 24605 } 24606 24607 /* 24608 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24609 * Run by tcp_q_q_inactive using a taskq. 24610 */ 24611 static void 24612 tcp_g_q_close(void *arg) 24613 { 24614 tcp_stack_t *tcps = arg; 24615 int error; 24616 ldi_handle_t lh = NULL; 24617 ldi_ident_t li = NULL; 24618 cred_t *cr; 24619 major_t IP_MAJ; 24620 24621 IP_MAJ = ddi_name_to_major(IP); 24622 24623 #ifdef NS_DEBUG 24624 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24625 tcps->tcps_netstack->netstack_stackid, 24626 tcps->tcps_netstack->netstack_refcnt); 24627 #endif 24628 lh = tcps->tcps_g_q_lh; 24629 if (lh == NULL) 24630 return; /* Nothing to cleanup */ 24631 24632 ASSERT(tcps->tcps_refcnt == 1); 24633 ASSERT(tcps->tcps_g_q != NULL); 24634 24635 error = ldi_ident_from_major(IP_MAJ, &li); 24636 if (error) { 24637 #ifdef DEBUG 24638 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24639 error); 24640 #endif 24641 return; 24642 } 24643 24644 cr = tcps->tcps_g_q_cr; 24645 tcps->tcps_g_q_cr = NULL; 24646 ASSERT(cr != NULL); 24647 24648 /* 24649 * Make sure we can break the recursion when tcp_close decrements 24650 * the reference count causing g_q_inactive to be called again. 24651 */ 24652 tcps->tcps_g_q_lh = NULL; 24653 24654 /* close the default queue */ 24655 (void) ldi_close(lh, FREAD|FWRITE, cr); 24656 /* 24657 * At this point in time tcps and the rest of netstack_t might 24658 * have been deleted. 24659 */ 24660 tcps = NULL; 24661 24662 /* Close layered handles */ 24663 ldi_ident_release(li); 24664 crfree(cr); 24665 } 24666 24667 /* 24668 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24669 * 24670 * Have to ensure that the ldi routines are not used by an 24671 * interrupt thread by using a taskq. 24672 */ 24673 void 24674 tcp_g_q_inactive(tcp_stack_t *tcps) 24675 { 24676 if (tcps->tcps_g_q_lh == NULL) 24677 return; /* Nothing to cleanup */ 24678 24679 ASSERT(tcps->tcps_refcnt == 0); 24680 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24681 24682 if (servicing_interrupt()) { 24683 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24684 (void *) tcps, TQ_SLEEP); 24685 } else { 24686 tcp_g_q_close(tcps); 24687 } 24688 } 24689 24690 /* 24691 * Called by IP when IP is loaded into the kernel 24692 */ 24693 void 24694 tcp_ddi_g_init(void) 24695 { 24696 tcp_timercache = kmem_cache_create("tcp_timercache", 24697 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24698 NULL, NULL, NULL, NULL, NULL, 0); 24699 24700 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24701 sizeof (tcp_sack_info_t), 0, 24702 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24703 24704 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24705 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24706 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24707 24708 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24709 24710 /* Initialize the random number generator */ 24711 tcp_random_init(); 24712 24713 /* A single callback independently of how many netstacks we have */ 24714 ip_squeue_init(tcp_squeue_add); 24715 24716 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24717 24718 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24719 TASKQ_PREPOPULATE); 24720 24721 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 24722 24723 /* 24724 * We want to be informed each time a stack is created or 24725 * destroyed in the kernel, so we can maintain the 24726 * set of tcp_stack_t's. 24727 */ 24728 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24729 tcp_stack_fini); 24730 } 24731 24732 24733 #define INET_NAME "ip" 24734 24735 /* 24736 * Initialize the TCP stack instance. 24737 */ 24738 static void * 24739 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24740 { 24741 tcp_stack_t *tcps; 24742 tcpparam_t *pa; 24743 int i; 24744 int error = 0; 24745 major_t major; 24746 24747 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24748 tcps->tcps_netstack = ns; 24749 24750 /* Initialize locks */ 24751 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 24752 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24753 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24754 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24755 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24756 24757 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24758 tcps->tcps_g_epriv_ports[0] = 2049; 24759 tcps->tcps_g_epriv_ports[1] = 4045; 24760 tcps->tcps_min_anonpriv_port = 512; 24761 24762 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24763 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24764 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24765 TCP_FANOUT_SIZE, KM_SLEEP); 24766 24767 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24768 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24769 MUTEX_DEFAULT, NULL); 24770 } 24771 24772 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24773 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24774 MUTEX_DEFAULT, NULL); 24775 } 24776 24777 /* TCP's IPsec code calls the packet dropper. */ 24778 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24779 24780 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24781 tcps->tcps_params = pa; 24782 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24783 24784 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24785 A_CNT(lcl_tcp_param_arr), tcps); 24786 24787 /* 24788 * Note: To really walk the device tree you need the devinfo 24789 * pointer to your device which is only available after probe/attach. 24790 * The following is safe only because it uses ddi_root_node() 24791 */ 24792 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24793 tcp_opt_obj.odb_opt_arr_cnt); 24794 24795 /* 24796 * Initialize RFC 1948 secret values. This will probably be reset once 24797 * by the boot scripts. 24798 * 24799 * Use NULL name, as the name is caught by the new lockstats. 24800 * 24801 * Initialize with some random, non-guessable string, like the global 24802 * T_INFO_ACK. 24803 */ 24804 24805 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24806 sizeof (tcp_g_t_info_ack), tcps); 24807 24808 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24809 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24810 24811 major = mod_name_to_major(INET_NAME); 24812 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24813 ASSERT(error == 0); 24814 return (tcps); 24815 } 24816 24817 /* 24818 * Called when the IP module is about to be unloaded. 24819 */ 24820 void 24821 tcp_ddi_g_destroy(void) 24822 { 24823 tcp_g_kstat_fini(tcp_g_kstat); 24824 tcp_g_kstat = NULL; 24825 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24826 24827 mutex_destroy(&tcp_random_lock); 24828 24829 kmem_cache_destroy(tcp_timercache); 24830 kmem_cache_destroy(tcp_sack_info_cache); 24831 kmem_cache_destroy(tcp_iphc_cache); 24832 24833 netstack_unregister(NS_TCP); 24834 taskq_destroy(tcp_taskq); 24835 } 24836 24837 /* 24838 * Shut down the TCP stack instance. 24839 */ 24840 /* ARGSUSED */ 24841 static void 24842 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24843 { 24844 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24845 24846 tcp_g_q_destroy(tcps); 24847 } 24848 24849 /* 24850 * Free the TCP stack instance. 24851 */ 24852 static void 24853 tcp_stack_fini(netstackid_t stackid, void *arg) 24854 { 24855 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24856 int i; 24857 24858 nd_free(&tcps->tcps_g_nd); 24859 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24860 tcps->tcps_params = NULL; 24861 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24862 tcps->tcps_wroff_xtra_param = NULL; 24863 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24864 tcps->tcps_mdt_head_param = NULL; 24865 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24866 tcps->tcps_mdt_tail_param = NULL; 24867 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24868 tcps->tcps_mdt_max_pbufs_param = NULL; 24869 24870 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24871 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24872 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24873 } 24874 24875 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24876 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24877 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24878 } 24879 24880 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24881 tcps->tcps_bind_fanout = NULL; 24882 24883 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24884 tcps->tcps_acceptor_fanout = NULL; 24885 24886 mutex_destroy(&tcps->tcps_iss_key_lock); 24887 rw_destroy(&tcps->tcps_hsp_lock); 24888 mutex_destroy(&tcps->tcps_g_q_lock); 24889 cv_destroy(&tcps->tcps_g_q_cv); 24890 mutex_destroy(&tcps->tcps_epriv_port_lock); 24891 24892 ip_drop_unregister(&tcps->tcps_dropper); 24893 24894 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24895 tcps->tcps_kstat = NULL; 24896 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24897 24898 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24899 tcps->tcps_mibkp = NULL; 24900 24901 ldi_ident_release(tcps->tcps_ldi_ident); 24902 kmem_free(tcps, sizeof (*tcps)); 24903 } 24904 24905 /* 24906 * Generate ISS, taking into account NDD changes may happen halfway through. 24907 * (If the iss is not zero, set it.) 24908 */ 24909 24910 static void 24911 tcp_iss_init(tcp_t *tcp) 24912 { 24913 MD5_CTX context; 24914 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24915 uint32_t answer[4]; 24916 tcp_stack_t *tcps = tcp->tcp_tcps; 24917 24918 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24919 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24920 switch (tcps->tcps_strong_iss) { 24921 case 2: 24922 mutex_enter(&tcps->tcps_iss_key_lock); 24923 context = tcps->tcps_iss_key; 24924 mutex_exit(&tcps->tcps_iss_key_lock); 24925 arg.ports = tcp->tcp_ports; 24926 if (tcp->tcp_ipversion == IPV4_VERSION) { 24927 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24928 &arg.src); 24929 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24930 &arg.dst); 24931 } else { 24932 arg.src = tcp->tcp_ip6h->ip6_src; 24933 arg.dst = tcp->tcp_ip6h->ip6_dst; 24934 } 24935 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24936 MD5Final((uchar_t *)answer, &context); 24937 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24938 /* 24939 * Now that we've hashed into a unique per-connection sequence 24940 * space, add a random increment per strong_iss == 1. So I 24941 * guess we'll have to... 24942 */ 24943 /* FALLTHRU */ 24944 case 1: 24945 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24946 break; 24947 default: 24948 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24949 break; 24950 } 24951 tcp->tcp_valid_bits = TCP_ISS_VALID; 24952 tcp->tcp_fss = tcp->tcp_iss - 1; 24953 tcp->tcp_suna = tcp->tcp_iss; 24954 tcp->tcp_snxt = tcp->tcp_iss + 1; 24955 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24956 tcp->tcp_csuna = tcp->tcp_snxt; 24957 } 24958 24959 /* 24960 * Exported routine for extracting active tcp connection status. 24961 * 24962 * This is used by the Solaris Cluster Networking software to 24963 * gather a list of connections that need to be forwarded to 24964 * specific nodes in the cluster when configuration changes occur. 24965 * 24966 * The callback is invoked for each tcp_t structure from all netstacks, 24967 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24968 * from the netstack with the specified stack_id. Returning 24969 * non-zero from the callback routine terminates the search. 24970 */ 24971 int 24972 cl_tcp_walk_list(netstackid_t stack_id, 24973 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24974 { 24975 netstack_handle_t nh; 24976 netstack_t *ns; 24977 int ret = 0; 24978 24979 if (stack_id >= 0) { 24980 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24981 return (EINVAL); 24982 24983 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24984 ns->netstack_tcp); 24985 netstack_rele(ns); 24986 return (ret); 24987 } 24988 24989 netstack_next_init(&nh); 24990 while ((ns = netstack_next(&nh)) != NULL) { 24991 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24992 ns->netstack_tcp); 24993 netstack_rele(ns); 24994 } 24995 netstack_next_fini(&nh); 24996 return (ret); 24997 } 24998 24999 static int 25000 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25001 tcp_stack_t *tcps) 25002 { 25003 tcp_t *tcp; 25004 cl_tcp_info_t cl_tcpi; 25005 connf_t *connfp; 25006 conn_t *connp; 25007 int i; 25008 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25009 25010 ASSERT(callback != NULL); 25011 25012 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25013 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25014 connp = NULL; 25015 25016 while ((connp = 25017 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25018 25019 tcp = connp->conn_tcp; 25020 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25021 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25022 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25023 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25024 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25025 /* 25026 * The macros tcp_laddr and tcp_faddr give the IPv4 25027 * addresses. They are copied implicitly below as 25028 * mapped addresses. 25029 */ 25030 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25031 if (tcp->tcp_ipversion == IPV4_VERSION) { 25032 cl_tcpi.cl_tcpi_faddr = 25033 tcp->tcp_ipha->ipha_dst; 25034 } else { 25035 cl_tcpi.cl_tcpi_faddr_v6 = 25036 tcp->tcp_ip6h->ip6_dst; 25037 } 25038 25039 /* 25040 * If the callback returns non-zero 25041 * we terminate the traversal. 25042 */ 25043 if ((*callback)(&cl_tcpi, arg) != 0) { 25044 CONN_DEC_REF(tcp->tcp_connp); 25045 return (1); 25046 } 25047 } 25048 } 25049 25050 return (0); 25051 } 25052 25053 /* 25054 * Macros used for accessing the different types of sockaddr 25055 * structures inside a tcp_ioc_abort_conn_t. 25056 */ 25057 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25058 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25059 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25060 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25061 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25062 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25063 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25064 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25065 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25066 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25067 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25068 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25069 25070 /* 25071 * Return the correct error code to mimic the behavior 25072 * of a connection reset. 25073 */ 25074 #define TCP_AC_GET_ERRCODE(state, err) { \ 25075 switch ((state)) { \ 25076 case TCPS_SYN_SENT: \ 25077 case TCPS_SYN_RCVD: \ 25078 (err) = ECONNREFUSED; \ 25079 break; \ 25080 case TCPS_ESTABLISHED: \ 25081 case TCPS_FIN_WAIT_1: \ 25082 case TCPS_FIN_WAIT_2: \ 25083 case TCPS_CLOSE_WAIT: \ 25084 (err) = ECONNRESET; \ 25085 break; \ 25086 case TCPS_CLOSING: \ 25087 case TCPS_LAST_ACK: \ 25088 case TCPS_TIME_WAIT: \ 25089 (err) = 0; \ 25090 break; \ 25091 default: \ 25092 (err) = ENXIO; \ 25093 } \ 25094 } 25095 25096 /* 25097 * Check if a tcp structure matches the info in acp. 25098 */ 25099 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25100 (((acp)->ac_local.ss_family == AF_INET) ? \ 25101 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25102 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25103 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25104 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25105 (TCP_AC_V4LPORT((acp)) == 0 || \ 25106 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25107 (TCP_AC_V4RPORT((acp)) == 0 || \ 25108 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25109 (acp)->ac_start <= (tcp)->tcp_state && \ 25110 (acp)->ac_end >= (tcp)->tcp_state) : \ 25111 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25112 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25113 &(tcp)->tcp_ip_src_v6)) && \ 25114 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25115 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25116 &(tcp)->tcp_remote_v6)) && \ 25117 (TCP_AC_V6LPORT((acp)) == 0 || \ 25118 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25119 (TCP_AC_V6RPORT((acp)) == 0 || \ 25120 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25121 (acp)->ac_start <= (tcp)->tcp_state && \ 25122 (acp)->ac_end >= (tcp)->tcp_state)) 25123 25124 #define TCP_AC_MATCH(acp, tcp) \ 25125 (((acp)->ac_zoneid == ALL_ZONES || \ 25126 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25127 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25128 25129 /* 25130 * Build a message containing a tcp_ioc_abort_conn_t structure 25131 * which is filled in with information from acp and tp. 25132 */ 25133 static mblk_t * 25134 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25135 { 25136 mblk_t *mp; 25137 tcp_ioc_abort_conn_t *tacp; 25138 25139 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25140 if (mp == NULL) 25141 return (NULL); 25142 25143 mp->b_datap->db_type = M_CTL; 25144 25145 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25146 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25147 sizeof (uint32_t)); 25148 25149 tacp->ac_start = acp->ac_start; 25150 tacp->ac_end = acp->ac_end; 25151 tacp->ac_zoneid = acp->ac_zoneid; 25152 25153 if (acp->ac_local.ss_family == AF_INET) { 25154 tacp->ac_local.ss_family = AF_INET; 25155 tacp->ac_remote.ss_family = AF_INET; 25156 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25157 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25158 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25159 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25160 } else { 25161 tacp->ac_local.ss_family = AF_INET6; 25162 tacp->ac_remote.ss_family = AF_INET6; 25163 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25164 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25165 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25166 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25167 } 25168 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25169 return (mp); 25170 } 25171 25172 /* 25173 * Print a tcp_ioc_abort_conn_t structure. 25174 */ 25175 static void 25176 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25177 { 25178 char lbuf[128]; 25179 char rbuf[128]; 25180 sa_family_t af; 25181 in_port_t lport, rport; 25182 ushort_t logflags; 25183 25184 af = acp->ac_local.ss_family; 25185 25186 if (af == AF_INET) { 25187 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25188 lbuf, 128); 25189 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25190 rbuf, 128); 25191 lport = ntohs(TCP_AC_V4LPORT(acp)); 25192 rport = ntohs(TCP_AC_V4RPORT(acp)); 25193 } else { 25194 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25195 lbuf, 128); 25196 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25197 rbuf, 128); 25198 lport = ntohs(TCP_AC_V6LPORT(acp)); 25199 rport = ntohs(TCP_AC_V6RPORT(acp)); 25200 } 25201 25202 logflags = SL_TRACE | SL_NOTE; 25203 /* 25204 * Don't print this message to the console if the operation was done 25205 * to a non-global zone. 25206 */ 25207 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25208 logflags |= SL_CONSOLE; 25209 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25210 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25211 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25212 acp->ac_start, acp->ac_end); 25213 } 25214 25215 /* 25216 * Called inside tcp_rput when a message built using 25217 * tcp_ioctl_abort_build_msg is put into a queue. 25218 * Note that when we get here there is no wildcard in acp any more. 25219 */ 25220 static void 25221 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25222 { 25223 tcp_ioc_abort_conn_t *acp; 25224 25225 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25226 if (tcp->tcp_state <= acp->ac_end) { 25227 /* 25228 * If we get here, we are already on the correct 25229 * squeue. This ioctl follows the following path 25230 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25231 * ->tcp_ioctl_abort->squeue_enter (if on a 25232 * different squeue) 25233 */ 25234 int errcode; 25235 25236 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25237 (void) tcp_clean_death(tcp, errcode, 26); 25238 } 25239 freemsg(mp); 25240 } 25241 25242 /* 25243 * Abort all matching connections on a hash chain. 25244 */ 25245 static int 25246 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25247 boolean_t exact, tcp_stack_t *tcps) 25248 { 25249 int nmatch, err = 0; 25250 tcp_t *tcp; 25251 MBLKP mp, last, listhead = NULL; 25252 conn_t *tconnp; 25253 connf_t *connfp; 25254 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25255 25256 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25257 25258 startover: 25259 nmatch = 0; 25260 25261 mutex_enter(&connfp->connf_lock); 25262 for (tconnp = connfp->connf_head; tconnp != NULL; 25263 tconnp = tconnp->conn_next) { 25264 tcp = tconnp->conn_tcp; 25265 if (TCP_AC_MATCH(acp, tcp)) { 25266 CONN_INC_REF(tcp->tcp_connp); 25267 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25268 if (mp == NULL) { 25269 err = ENOMEM; 25270 CONN_DEC_REF(tcp->tcp_connp); 25271 break; 25272 } 25273 mp->b_prev = (mblk_t *)tcp; 25274 25275 if (listhead == NULL) { 25276 listhead = mp; 25277 last = mp; 25278 } else { 25279 last->b_next = mp; 25280 last = mp; 25281 } 25282 nmatch++; 25283 if (exact) 25284 break; 25285 } 25286 25287 /* Avoid holding lock for too long. */ 25288 if (nmatch >= 500) 25289 break; 25290 } 25291 mutex_exit(&connfp->connf_lock); 25292 25293 /* Pass mp into the correct tcp */ 25294 while ((mp = listhead) != NULL) { 25295 listhead = listhead->b_next; 25296 tcp = (tcp_t *)mp->b_prev; 25297 mp->b_next = mp->b_prev = NULL; 25298 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 25299 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 25300 } 25301 25302 *count += nmatch; 25303 if (nmatch >= 500 && err == 0) 25304 goto startover; 25305 return (err); 25306 } 25307 25308 /* 25309 * Abort all connections that matches the attributes specified in acp. 25310 */ 25311 static int 25312 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25313 { 25314 sa_family_t af; 25315 uint32_t ports; 25316 uint16_t *pports; 25317 int err = 0, count = 0; 25318 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25319 int index = -1; 25320 ushort_t logflags; 25321 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25322 25323 af = acp->ac_local.ss_family; 25324 25325 if (af == AF_INET) { 25326 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25327 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25328 pports = (uint16_t *)&ports; 25329 pports[1] = TCP_AC_V4LPORT(acp); 25330 pports[0] = TCP_AC_V4RPORT(acp); 25331 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25332 } 25333 } else { 25334 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25335 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25336 pports = (uint16_t *)&ports; 25337 pports[1] = TCP_AC_V6LPORT(acp); 25338 pports[0] = TCP_AC_V6RPORT(acp); 25339 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25340 } 25341 } 25342 25343 /* 25344 * For cases where remote addr, local port, and remote port are non- 25345 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25346 */ 25347 if (index != -1) { 25348 err = tcp_ioctl_abort_bucket(acp, index, 25349 &count, exact, tcps); 25350 } else { 25351 /* 25352 * loop through all entries for wildcard case 25353 */ 25354 for (index = 0; 25355 index < ipst->ips_ipcl_conn_fanout_size; 25356 index++) { 25357 err = tcp_ioctl_abort_bucket(acp, index, 25358 &count, exact, tcps); 25359 if (err != 0) 25360 break; 25361 } 25362 } 25363 25364 logflags = SL_TRACE | SL_NOTE; 25365 /* 25366 * Don't print this message to the console if the operation was done 25367 * to a non-global zone. 25368 */ 25369 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25370 logflags |= SL_CONSOLE; 25371 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25372 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25373 if (err == 0 && count == 0) 25374 err = ENOENT; 25375 return (err); 25376 } 25377 25378 /* 25379 * Process the TCP_IOC_ABORT_CONN ioctl request. 25380 */ 25381 static void 25382 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25383 { 25384 int err; 25385 IOCP iocp; 25386 MBLKP mp1; 25387 sa_family_t laf, raf; 25388 tcp_ioc_abort_conn_t *acp; 25389 zone_t *zptr; 25390 conn_t *connp = Q_TO_CONN(q); 25391 zoneid_t zoneid = connp->conn_zoneid; 25392 tcp_t *tcp = connp->conn_tcp; 25393 tcp_stack_t *tcps = tcp->tcp_tcps; 25394 25395 iocp = (IOCP)mp->b_rptr; 25396 25397 if ((mp1 = mp->b_cont) == NULL || 25398 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25399 err = EINVAL; 25400 goto out; 25401 } 25402 25403 /* check permissions */ 25404 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25405 err = EPERM; 25406 goto out; 25407 } 25408 25409 if (mp1->b_cont != NULL) { 25410 freemsg(mp1->b_cont); 25411 mp1->b_cont = NULL; 25412 } 25413 25414 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25415 laf = acp->ac_local.ss_family; 25416 raf = acp->ac_remote.ss_family; 25417 25418 /* check that a zone with the supplied zoneid exists */ 25419 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25420 zptr = zone_find_by_id(zoneid); 25421 if (zptr != NULL) { 25422 zone_rele(zptr); 25423 } else { 25424 err = EINVAL; 25425 goto out; 25426 } 25427 } 25428 25429 /* 25430 * For exclusive stacks we set the zoneid to zero 25431 * to make TCP operate as if in the global zone. 25432 */ 25433 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25434 acp->ac_zoneid = GLOBAL_ZONEID; 25435 25436 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25437 acp->ac_start > acp->ac_end || laf != raf || 25438 (laf != AF_INET && laf != AF_INET6)) { 25439 err = EINVAL; 25440 goto out; 25441 } 25442 25443 tcp_ioctl_abort_dump(acp); 25444 err = tcp_ioctl_abort(acp, tcps); 25445 25446 out: 25447 if (mp1 != NULL) { 25448 freemsg(mp1); 25449 mp->b_cont = NULL; 25450 } 25451 25452 if (err != 0) 25453 miocnak(q, mp, 0, err); 25454 else 25455 miocack(q, mp, 0, 0); 25456 } 25457 25458 /* 25459 * tcp_time_wait_processing() handles processing of incoming packets when 25460 * the tcp is in the TIME_WAIT state. 25461 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25462 * on the time wait list. 25463 */ 25464 void 25465 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25466 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25467 { 25468 int32_t bytes_acked; 25469 int32_t gap; 25470 int32_t rgap; 25471 tcp_opt_t tcpopt; 25472 uint_t flags; 25473 uint32_t new_swnd = 0; 25474 conn_t *connp; 25475 tcp_stack_t *tcps = tcp->tcp_tcps; 25476 25477 BUMP_LOCAL(tcp->tcp_ibsegs); 25478 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 25479 25480 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25481 new_swnd = BE16_TO_U16(tcph->th_win) << 25482 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25483 if (tcp->tcp_snd_ts_ok) { 25484 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25485 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25486 tcp->tcp_rnxt, TH_ACK); 25487 goto done; 25488 } 25489 } 25490 gap = seg_seq - tcp->tcp_rnxt; 25491 rgap = tcp->tcp_rwnd - (gap + seg_len); 25492 if (gap < 0) { 25493 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25494 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25495 (seg_len > -gap ? -gap : seg_len)); 25496 seg_len += gap; 25497 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25498 if (flags & TH_RST) { 25499 goto done; 25500 } 25501 if ((flags & TH_FIN) && seg_len == -1) { 25502 /* 25503 * When TCP receives a duplicate FIN in 25504 * TIME_WAIT state, restart the 2 MSL timer. 25505 * See page 73 in RFC 793. Make sure this TCP 25506 * is already on the TIME_WAIT list. If not, 25507 * just restart the timer. 25508 */ 25509 if (TCP_IS_DETACHED(tcp)) { 25510 if (tcp_time_wait_remove(tcp, NULL) == 25511 B_TRUE) { 25512 tcp_time_wait_append(tcp); 25513 TCP_DBGSTAT(tcps, 25514 tcp_rput_time_wait); 25515 } 25516 } else { 25517 ASSERT(tcp != NULL); 25518 TCP_TIMER_RESTART(tcp, 25519 tcps->tcps_time_wait_interval); 25520 } 25521 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25522 tcp->tcp_rnxt, TH_ACK); 25523 goto done; 25524 } 25525 flags |= TH_ACK_NEEDED; 25526 seg_len = 0; 25527 goto process_ack; 25528 } 25529 25530 /* Fix seg_seq, and chew the gap off the front. */ 25531 seg_seq = tcp->tcp_rnxt; 25532 } 25533 25534 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25535 /* 25536 * Make sure that when we accept the connection, pick 25537 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25538 * old connection. 25539 * 25540 * The next ISS generated is equal to tcp_iss_incr_extra 25541 * + ISS_INCR/2 + other components depending on the 25542 * value of tcp_strong_iss. We pre-calculate the new 25543 * ISS here and compare with tcp_snxt to determine if 25544 * we need to make adjustment to tcp_iss_incr_extra. 25545 * 25546 * The above calculation is ugly and is a 25547 * waste of CPU cycles... 25548 */ 25549 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25550 int32_t adj; 25551 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25552 25553 switch (tcps->tcps_strong_iss) { 25554 case 2: { 25555 /* Add time and MD5 components. */ 25556 uint32_t answer[4]; 25557 struct { 25558 uint32_t ports; 25559 in6_addr_t src; 25560 in6_addr_t dst; 25561 } arg; 25562 MD5_CTX context; 25563 25564 mutex_enter(&tcps->tcps_iss_key_lock); 25565 context = tcps->tcps_iss_key; 25566 mutex_exit(&tcps->tcps_iss_key_lock); 25567 arg.ports = tcp->tcp_ports; 25568 /* We use MAPPED addresses in tcp_iss_init */ 25569 arg.src = tcp->tcp_ip_src_v6; 25570 if (tcp->tcp_ipversion == IPV4_VERSION) { 25571 IN6_IPADDR_TO_V4MAPPED( 25572 tcp->tcp_ipha->ipha_dst, 25573 &arg.dst); 25574 } else { 25575 arg.dst = 25576 tcp->tcp_ip6h->ip6_dst; 25577 } 25578 MD5Update(&context, (uchar_t *)&arg, 25579 sizeof (arg)); 25580 MD5Final((uchar_t *)answer, &context); 25581 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25582 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25583 break; 25584 } 25585 case 1: 25586 /* Add time component and min random (i.e. 1). */ 25587 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25588 break; 25589 default: 25590 /* Add only time component. */ 25591 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25592 break; 25593 } 25594 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25595 /* 25596 * New ISS not guaranteed to be ISS_INCR/2 25597 * ahead of the current tcp_snxt, so add the 25598 * difference to tcp_iss_incr_extra. 25599 */ 25600 tcps->tcps_iss_incr_extra += adj; 25601 } 25602 /* 25603 * If tcp_clean_death() can not perform the task now, 25604 * drop the SYN packet and let the other side re-xmit. 25605 * Otherwise pass the SYN packet back in, since the 25606 * old tcp state has been cleaned up or freed. 25607 */ 25608 if (tcp_clean_death(tcp, 0, 27) == -1) 25609 goto done; 25610 /* 25611 * We will come back to tcp_rput_data 25612 * on the global queue. Packets destined 25613 * for the global queue will be checked 25614 * with global policy. But the policy for 25615 * this packet has already been checked as 25616 * this was destined for the detached 25617 * connection. We need to bypass policy 25618 * check this time by attaching a dummy 25619 * ipsec_in with ipsec_in_dont_check set. 25620 */ 25621 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25622 if (connp != NULL) { 25623 TCP_STAT(tcps, tcp_time_wait_syn_success); 25624 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25625 return; 25626 } 25627 goto done; 25628 } 25629 25630 /* 25631 * rgap is the amount of stuff received out of window. A negative 25632 * value is the amount out of window. 25633 */ 25634 if (rgap < 0) { 25635 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25636 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25637 /* Fix seg_len and make sure there is something left. */ 25638 seg_len += rgap; 25639 if (seg_len <= 0) { 25640 if (flags & TH_RST) { 25641 goto done; 25642 } 25643 flags |= TH_ACK_NEEDED; 25644 seg_len = 0; 25645 goto process_ack; 25646 } 25647 } 25648 /* 25649 * Check whether we can update tcp_ts_recent. This test is 25650 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25651 * Extensions for High Performance: An Update", Internet Draft. 25652 */ 25653 if (tcp->tcp_snd_ts_ok && 25654 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25655 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25656 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25657 tcp->tcp_last_rcv_lbolt = lbolt64; 25658 } 25659 25660 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25661 /* Always ack out of order packets */ 25662 flags |= TH_ACK_NEEDED; 25663 seg_len = 0; 25664 } else if (seg_len > 0) { 25665 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25666 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25667 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25668 } 25669 if (flags & TH_RST) { 25670 (void) tcp_clean_death(tcp, 0, 28); 25671 goto done; 25672 } 25673 if (flags & TH_SYN) { 25674 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25675 TH_RST|TH_ACK); 25676 /* 25677 * Do not delete the TCP structure if it is in 25678 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25679 */ 25680 goto done; 25681 } 25682 process_ack: 25683 if (flags & TH_ACK) { 25684 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25685 if (bytes_acked <= 0) { 25686 if (bytes_acked == 0 && seg_len == 0 && 25687 new_swnd == tcp->tcp_swnd) 25688 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25689 } else { 25690 /* Acks something not sent */ 25691 flags |= TH_ACK_NEEDED; 25692 } 25693 } 25694 if (flags & TH_ACK_NEEDED) { 25695 /* 25696 * Time to send an ack for some reason. 25697 */ 25698 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25699 tcp->tcp_rnxt, TH_ACK); 25700 } 25701 done: 25702 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25703 DB_CKSUMSTART(mp) = 0; 25704 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25705 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25706 } 25707 freemsg(mp); 25708 } 25709 25710 /* 25711 * TCP Timers Implementation. 25712 */ 25713 timeout_id_t 25714 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25715 { 25716 mblk_t *mp; 25717 tcp_timer_t *tcpt; 25718 tcp_t *tcp = connp->conn_tcp; 25719 25720 ASSERT(connp->conn_sqp != NULL); 25721 25722 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 25723 25724 if (tcp->tcp_timercache == NULL) { 25725 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25726 } else { 25727 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 25728 mp = tcp->tcp_timercache; 25729 tcp->tcp_timercache = mp->b_next; 25730 mp->b_next = NULL; 25731 ASSERT(mp->b_wptr == NULL); 25732 } 25733 25734 CONN_INC_REF(connp); 25735 tcpt = (tcp_timer_t *)mp->b_rptr; 25736 tcpt->connp = connp; 25737 tcpt->tcpt_proc = f; 25738 /* 25739 * TCP timers are normal timeouts. Plus, they do not require more than 25740 * a 10 millisecond resolution. By choosing a coarser resolution and by 25741 * rounding up the expiration to the next resolution boundary, we can 25742 * batch timers in the callout subsystem to make TCP timers more 25743 * efficient. The roundup also protects short timers from expiring too 25744 * early before they have a chance to be cancelled. 25745 */ 25746 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25747 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25748 25749 return ((timeout_id_t)mp); 25750 } 25751 25752 static void 25753 tcp_timer_callback(void *arg) 25754 { 25755 mblk_t *mp = (mblk_t *)arg; 25756 tcp_timer_t *tcpt; 25757 conn_t *connp; 25758 25759 tcpt = (tcp_timer_t *)mp->b_rptr; 25760 connp = tcpt->connp; 25761 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 25762 SQ_FILL, SQTAG_TCP_TIMER); 25763 } 25764 25765 static void 25766 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25767 { 25768 tcp_timer_t *tcpt; 25769 conn_t *connp = (conn_t *)arg; 25770 tcp_t *tcp = connp->conn_tcp; 25771 25772 tcpt = (tcp_timer_t *)mp->b_rptr; 25773 ASSERT(connp == tcpt->connp); 25774 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25775 25776 /* 25777 * If the TCP has reached the closed state, don't proceed any 25778 * further. This TCP logically does not exist on the system. 25779 * tcpt_proc could for example access queues, that have already 25780 * been qprocoff'ed off. Also see comments at the start of tcp_input 25781 */ 25782 if (tcp->tcp_state != TCPS_CLOSED) { 25783 (*tcpt->tcpt_proc)(connp); 25784 } else { 25785 tcp->tcp_timer_tid = 0; 25786 } 25787 tcp_timer_free(connp->conn_tcp, mp); 25788 } 25789 25790 /* 25791 * There is potential race with untimeout and the handler firing at the same 25792 * time. The mblock may be freed by the handler while we are trying to use 25793 * it. But since both should execute on the same squeue, this race should not 25794 * occur. 25795 */ 25796 clock_t 25797 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25798 { 25799 mblk_t *mp = (mblk_t *)id; 25800 tcp_timer_t *tcpt; 25801 clock_t delta; 25802 25803 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25804 25805 if (mp == NULL) 25806 return (-1); 25807 25808 tcpt = (tcp_timer_t *)mp->b_rptr; 25809 ASSERT(tcpt->connp == connp); 25810 25811 delta = untimeout_default(tcpt->tcpt_tid, 0); 25812 25813 if (delta >= 0) { 25814 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25815 tcp_timer_free(connp->conn_tcp, mp); 25816 CONN_DEC_REF(connp); 25817 } 25818 25819 return (delta); 25820 } 25821 25822 /* 25823 * Allocate space for the timer event. The allocation looks like mblk, but it is 25824 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25825 * 25826 * Dealing with failures: If we can't allocate from the timer cache we try 25827 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25828 * points to b_rptr. 25829 * If we can't allocate anything using allocb_tryhard(), we perform a last 25830 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25831 * save the actual allocation size in b_datap. 25832 */ 25833 mblk_t * 25834 tcp_timermp_alloc(int kmflags) 25835 { 25836 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25837 kmflags & ~KM_PANIC); 25838 25839 if (mp != NULL) { 25840 mp->b_next = mp->b_prev = NULL; 25841 mp->b_rptr = (uchar_t *)(&mp[1]); 25842 mp->b_wptr = NULL; 25843 mp->b_datap = NULL; 25844 mp->b_queue = NULL; 25845 mp->b_cont = NULL; 25846 } else if (kmflags & KM_PANIC) { 25847 /* 25848 * Failed to allocate memory for the timer. Try allocating from 25849 * dblock caches. 25850 */ 25851 /* ipclassifier calls this from a constructor - hence no tcps */ 25852 TCP_G_STAT(tcp_timermp_allocfail); 25853 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25854 if (mp == NULL) { 25855 size_t size = 0; 25856 /* 25857 * Memory is really low. Try tryhard allocation. 25858 * 25859 * ipclassifier calls this from a constructor - 25860 * hence no tcps 25861 */ 25862 TCP_G_STAT(tcp_timermp_allocdblfail); 25863 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25864 sizeof (tcp_timer_t), &size, kmflags); 25865 mp->b_rptr = (uchar_t *)(&mp[1]); 25866 mp->b_next = mp->b_prev = NULL; 25867 mp->b_wptr = (uchar_t *)-1; 25868 mp->b_datap = (dblk_t *)size; 25869 mp->b_queue = NULL; 25870 mp->b_cont = NULL; 25871 } 25872 ASSERT(mp->b_wptr != NULL); 25873 } 25874 /* ipclassifier calls this from a constructor - hence no tcps */ 25875 TCP_G_DBGSTAT(tcp_timermp_alloced); 25876 25877 return (mp); 25878 } 25879 25880 /* 25881 * Free per-tcp timer cache. 25882 * It can only contain entries from tcp_timercache. 25883 */ 25884 void 25885 tcp_timermp_free(tcp_t *tcp) 25886 { 25887 mblk_t *mp; 25888 25889 while ((mp = tcp->tcp_timercache) != NULL) { 25890 ASSERT(mp->b_wptr == NULL); 25891 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25892 kmem_cache_free(tcp_timercache, mp); 25893 } 25894 } 25895 25896 /* 25897 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25898 * events there already (currently at most two events are cached). 25899 * If the event is not allocated from the timer cache, free it right away. 25900 */ 25901 static void 25902 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25903 { 25904 mblk_t *mp1 = tcp->tcp_timercache; 25905 25906 if (mp->b_wptr != NULL) { 25907 /* 25908 * This allocation is not from a timer cache, free it right 25909 * away. 25910 */ 25911 if (mp->b_wptr != (uchar_t *)-1) 25912 freeb(mp); 25913 else 25914 kmem_free(mp, (size_t)mp->b_datap); 25915 } else if (mp1 == NULL || mp1->b_next == NULL) { 25916 /* Cache this timer block for future allocations */ 25917 mp->b_rptr = (uchar_t *)(&mp[1]); 25918 mp->b_next = mp1; 25919 tcp->tcp_timercache = mp; 25920 } else { 25921 kmem_cache_free(tcp_timercache, mp); 25922 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25923 } 25924 } 25925 25926 /* 25927 * End of TCP Timers implementation. 25928 */ 25929 25930 /* 25931 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25932 * on the specified backing STREAMS q. Note, the caller may make the 25933 * decision to call based on the tcp_t.tcp_flow_stopped value which 25934 * when check outside the q's lock is only an advisory check ... 25935 */ 25936 void 25937 tcp_setqfull(tcp_t *tcp) 25938 { 25939 tcp_stack_t *tcps = tcp->tcp_tcps; 25940 conn_t *connp = tcp->tcp_connp; 25941 25942 if (tcp->tcp_closed) 25943 return; 25944 25945 if (IPCL_IS_NONSTR(connp)) { 25946 (*connp->conn_upcalls->su_txq_full) 25947 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25948 tcp->tcp_flow_stopped = B_TRUE; 25949 } else { 25950 queue_t *q = tcp->tcp_wq; 25951 25952 if (!(q->q_flag & QFULL)) { 25953 mutex_enter(QLOCK(q)); 25954 if (!(q->q_flag & QFULL)) { 25955 /* still need to set QFULL */ 25956 q->q_flag |= QFULL; 25957 tcp->tcp_flow_stopped = B_TRUE; 25958 mutex_exit(QLOCK(q)); 25959 TCP_STAT(tcps, tcp_flwctl_on); 25960 } else { 25961 mutex_exit(QLOCK(q)); 25962 } 25963 } 25964 } 25965 } 25966 25967 void 25968 tcp_clrqfull(tcp_t *tcp) 25969 { 25970 conn_t *connp = tcp->tcp_connp; 25971 25972 if (tcp->tcp_closed) 25973 return; 25974 25975 if (IPCL_IS_NONSTR(connp)) { 25976 (*connp->conn_upcalls->su_txq_full) 25977 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25978 tcp->tcp_flow_stopped = B_FALSE; 25979 } else { 25980 queue_t *q = tcp->tcp_wq; 25981 25982 if (q->q_flag & QFULL) { 25983 mutex_enter(QLOCK(q)); 25984 if (q->q_flag & QFULL) { 25985 q->q_flag &= ~QFULL; 25986 tcp->tcp_flow_stopped = B_FALSE; 25987 mutex_exit(QLOCK(q)); 25988 if (q->q_flag & QWANTW) 25989 qbackenable(q, 0); 25990 } else { 25991 mutex_exit(QLOCK(q)); 25992 } 25993 } 25994 } 25995 } 25996 25997 /* 25998 * kstats related to squeues i.e. not per IP instance 25999 */ 26000 static void * 26001 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26002 { 26003 kstat_t *ksp; 26004 26005 tcp_g_stat_t template = { 26006 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26007 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26008 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26009 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26010 }; 26011 26012 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26013 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26014 KSTAT_FLAG_VIRTUAL); 26015 26016 if (ksp == NULL) 26017 return (NULL); 26018 26019 bcopy(&template, tcp_g_statp, sizeof (template)); 26020 ksp->ks_data = (void *)tcp_g_statp; 26021 26022 kstat_install(ksp); 26023 return (ksp); 26024 } 26025 26026 static void 26027 tcp_g_kstat_fini(kstat_t *ksp) 26028 { 26029 if (ksp != NULL) { 26030 kstat_delete(ksp); 26031 } 26032 } 26033 26034 26035 static void * 26036 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26037 { 26038 kstat_t *ksp; 26039 26040 tcp_stat_t template = { 26041 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26042 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26043 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26044 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26045 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26046 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26047 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26048 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26049 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26050 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26051 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26052 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26053 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26054 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26055 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26056 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26057 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26058 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26059 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26060 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26061 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26062 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26063 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26064 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26065 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26066 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26067 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26068 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26069 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26070 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26071 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26072 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26073 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26074 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26075 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26076 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26077 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26078 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26079 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26080 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26081 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26082 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26083 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26084 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26085 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26086 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26087 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26088 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26089 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26090 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26091 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26092 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26093 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26094 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26095 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26096 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26097 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26098 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26099 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26100 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26101 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26102 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26103 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26104 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26105 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26106 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26107 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26108 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26109 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26110 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26111 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26112 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26113 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26114 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26115 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26116 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26117 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26118 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26119 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26120 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26121 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26122 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26123 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26124 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26125 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26126 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26127 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26128 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26129 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26130 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26131 }; 26132 26133 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26134 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26135 KSTAT_FLAG_VIRTUAL, stackid); 26136 26137 if (ksp == NULL) 26138 return (NULL); 26139 26140 bcopy(&template, tcps_statisticsp, sizeof (template)); 26141 ksp->ks_data = (void *)tcps_statisticsp; 26142 ksp->ks_private = (void *)(uintptr_t)stackid; 26143 26144 kstat_install(ksp); 26145 return (ksp); 26146 } 26147 26148 static void 26149 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26150 { 26151 if (ksp != NULL) { 26152 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26153 kstat_delete_netstack(ksp, stackid); 26154 } 26155 } 26156 26157 /* 26158 * TCP Kstats implementation 26159 */ 26160 static void * 26161 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26162 { 26163 kstat_t *ksp; 26164 26165 tcp_named_kstat_t template = { 26166 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26167 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26168 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26169 { "maxConn", KSTAT_DATA_INT32, 0 }, 26170 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26171 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26172 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26173 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26174 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26175 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26176 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26177 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26178 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26179 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26180 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26181 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26182 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26183 { "outAck", KSTAT_DATA_UINT32, 0 }, 26184 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26185 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26186 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26187 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26188 { "outControl", KSTAT_DATA_UINT32, 0 }, 26189 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26190 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26191 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26192 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26193 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26194 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26195 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26196 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26197 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26198 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26199 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26200 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26201 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26202 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26203 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26204 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26205 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26206 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26207 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26208 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26209 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26210 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26211 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26212 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26213 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26214 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26215 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26216 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26217 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26218 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26219 }; 26220 26221 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26222 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26223 26224 if (ksp == NULL) 26225 return (NULL); 26226 26227 template.rtoAlgorithm.value.ui32 = 4; 26228 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26229 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26230 template.maxConn.value.i32 = -1; 26231 26232 bcopy(&template, ksp->ks_data, sizeof (template)); 26233 ksp->ks_update = tcp_kstat_update; 26234 ksp->ks_private = (void *)(uintptr_t)stackid; 26235 26236 kstat_install(ksp); 26237 return (ksp); 26238 } 26239 26240 static void 26241 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26242 { 26243 if (ksp != NULL) { 26244 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26245 kstat_delete_netstack(ksp, stackid); 26246 } 26247 } 26248 26249 static int 26250 tcp_kstat_update(kstat_t *kp, int rw) 26251 { 26252 tcp_named_kstat_t *tcpkp; 26253 tcp_t *tcp; 26254 connf_t *connfp; 26255 conn_t *connp; 26256 int i; 26257 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26258 netstack_t *ns; 26259 tcp_stack_t *tcps; 26260 ip_stack_t *ipst; 26261 26262 if ((kp == NULL) || (kp->ks_data == NULL)) 26263 return (EIO); 26264 26265 if (rw == KSTAT_WRITE) 26266 return (EACCES); 26267 26268 ns = netstack_find_by_stackid(stackid); 26269 if (ns == NULL) 26270 return (-1); 26271 tcps = ns->netstack_tcp; 26272 if (tcps == NULL) { 26273 netstack_rele(ns); 26274 return (-1); 26275 } 26276 26277 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26278 26279 tcpkp->currEstab.value.ui32 = 0; 26280 26281 ipst = ns->netstack_ip; 26282 26283 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26284 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26285 connp = NULL; 26286 while ((connp = 26287 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26288 tcp = connp->conn_tcp; 26289 switch (tcp_snmp_state(tcp)) { 26290 case MIB2_TCP_established: 26291 case MIB2_TCP_closeWait: 26292 tcpkp->currEstab.value.ui32++; 26293 break; 26294 } 26295 } 26296 } 26297 26298 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26299 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26300 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26301 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26302 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26303 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26304 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26305 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26306 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26307 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26308 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26309 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26310 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26311 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26312 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26313 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26314 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26315 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26316 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26317 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26318 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26319 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26320 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26321 tcpkp->inDataInorderSegs.value.ui32 = 26322 tcps->tcps_mib.tcpInDataInorderSegs; 26323 tcpkp->inDataInorderBytes.value.ui32 = 26324 tcps->tcps_mib.tcpInDataInorderBytes; 26325 tcpkp->inDataUnorderSegs.value.ui32 = 26326 tcps->tcps_mib.tcpInDataUnorderSegs; 26327 tcpkp->inDataUnorderBytes.value.ui32 = 26328 tcps->tcps_mib.tcpInDataUnorderBytes; 26329 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26330 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26331 tcpkp->inDataPartDupSegs.value.ui32 = 26332 tcps->tcps_mib.tcpInDataPartDupSegs; 26333 tcpkp->inDataPartDupBytes.value.ui32 = 26334 tcps->tcps_mib.tcpInDataPartDupBytes; 26335 tcpkp->inDataPastWinSegs.value.ui32 = 26336 tcps->tcps_mib.tcpInDataPastWinSegs; 26337 tcpkp->inDataPastWinBytes.value.ui32 = 26338 tcps->tcps_mib.tcpInDataPastWinBytes; 26339 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26340 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26341 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26342 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26343 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26344 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26345 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26346 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26347 tcpkp->timKeepaliveProbe.value.ui32 = 26348 tcps->tcps_mib.tcpTimKeepaliveProbe; 26349 tcpkp->timKeepaliveDrop.value.ui32 = 26350 tcps->tcps_mib.tcpTimKeepaliveDrop; 26351 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26352 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26353 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26354 tcpkp->outSackRetransSegs.value.ui32 = 26355 tcps->tcps_mib.tcpOutSackRetransSegs; 26356 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26357 26358 netstack_rele(ns); 26359 return (0); 26360 } 26361 26362 void 26363 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26364 { 26365 uint16_t hdr_len; 26366 ipha_t *ipha; 26367 uint8_t *nexthdrp; 26368 tcph_t *tcph; 26369 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26370 26371 /* Already has an eager */ 26372 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26373 TCP_STAT(tcps, tcp_reinput_syn); 26374 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26375 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 26376 return; 26377 } 26378 26379 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26380 case IPV4_VERSION: 26381 ipha = (ipha_t *)mp->b_rptr; 26382 hdr_len = IPH_HDR_LENGTH(ipha); 26383 break; 26384 case IPV6_VERSION: 26385 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26386 &hdr_len, &nexthdrp)) { 26387 CONN_DEC_REF(connp); 26388 freemsg(mp); 26389 return; 26390 } 26391 break; 26392 } 26393 26394 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26395 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26396 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26397 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26398 } 26399 26400 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26401 SQ_FILL, SQTAG_TCP_REINPUT); 26402 } 26403 26404 static int 26405 tcp_squeue_switch(int val) 26406 { 26407 int rval = SQ_FILL; 26408 26409 switch (val) { 26410 case 1: 26411 rval = SQ_NODRAIN; 26412 break; 26413 case 2: 26414 rval = SQ_PROCESS; 26415 break; 26416 default: 26417 break; 26418 } 26419 return (rval); 26420 } 26421 26422 /* 26423 * This is called once for each squeue - globally for all stack 26424 * instances. 26425 */ 26426 static void 26427 tcp_squeue_add(squeue_t *sqp) 26428 { 26429 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26430 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26431 26432 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26433 tcp_time_wait->tcp_time_wait_tid = 26434 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 26435 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 26436 CALLOUT_FLAG_ROUNDUP); 26437 if (tcp_free_list_max_cnt == 0) { 26438 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26439 max_ncpus : boot_max_ncpus); 26440 26441 /* 26442 * Limit number of entries to 1% of availble memory / tcp_ncpus 26443 */ 26444 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26445 (tcp_ncpus * sizeof (tcp_t) * 100); 26446 } 26447 tcp_time_wait->tcp_free_list_cnt = 0; 26448 } 26449 26450 static int 26451 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 26452 { 26453 mblk_t *ire_mp = NULL; 26454 mblk_t *syn_mp; 26455 mblk_t *mdti; 26456 mblk_t *lsoi; 26457 int retval; 26458 tcph_t *tcph; 26459 uint32_t mss; 26460 queue_t *q = tcp->tcp_rq; 26461 conn_t *connp = tcp->tcp_connp; 26462 tcp_stack_t *tcps = tcp->tcp_tcps; 26463 26464 if (error == 0) { 26465 /* 26466 * Adapt Multidata information, if any. The 26467 * following tcp_mdt_update routine will free 26468 * the message. 26469 */ 26470 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 26471 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 26472 b_rptr)->mdt_capab, B_TRUE); 26473 freemsg(mdti); 26474 } 26475 26476 /* 26477 * Check to update LSO information with tcp, and 26478 * tcp_lso_update routine will free the message. 26479 */ 26480 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 26481 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 26482 b_rptr)->lso_capab); 26483 freemsg(lsoi); 26484 } 26485 26486 /* Get the IRE, if we had requested for it */ 26487 if (mp != NULL) 26488 ire_mp = tcp_ire_mp(&mp); 26489 26490 if (tcp->tcp_hard_binding) { 26491 tcp->tcp_hard_binding = B_FALSE; 26492 tcp->tcp_hard_bound = B_TRUE; 26493 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 26494 if (retval != 0) { 26495 error = EADDRINUSE; 26496 goto bind_failed; 26497 } 26498 } else { 26499 if (ire_mp != NULL) 26500 freeb(ire_mp); 26501 goto after_syn_sent; 26502 } 26503 26504 retval = tcp_adapt_ire(tcp, ire_mp); 26505 if (ire_mp != NULL) 26506 freeb(ire_mp); 26507 if (retval == 0) { 26508 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 26509 ENETUNREACH : EADDRNOTAVAIL); 26510 goto ipcl_rm; 26511 } 26512 /* 26513 * Don't let an endpoint connect to itself. 26514 * Also checked in tcp_connect() but that 26515 * check can't handle the case when the 26516 * local IP address is INADDR_ANY. 26517 */ 26518 if (tcp->tcp_ipversion == IPV4_VERSION) { 26519 if ((tcp->tcp_ipha->ipha_dst == 26520 tcp->tcp_ipha->ipha_src) && 26521 (BE16_EQL(tcp->tcp_tcph->th_lport, 26522 tcp->tcp_tcph->th_fport))) { 26523 error = EADDRNOTAVAIL; 26524 goto ipcl_rm; 26525 } 26526 } else { 26527 if (IN6_ARE_ADDR_EQUAL( 26528 &tcp->tcp_ip6h->ip6_dst, 26529 &tcp->tcp_ip6h->ip6_src) && 26530 (BE16_EQL(tcp->tcp_tcph->th_lport, 26531 tcp->tcp_tcph->th_fport))) { 26532 error = EADDRNOTAVAIL; 26533 goto ipcl_rm; 26534 } 26535 } 26536 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 26537 /* 26538 * This should not be possible! Just for 26539 * defensive coding... 26540 */ 26541 if (tcp->tcp_state != TCPS_SYN_SENT) 26542 goto after_syn_sent; 26543 26544 if (is_system_labeled() && 26545 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 26546 error = EHOSTUNREACH; 26547 goto ipcl_rm; 26548 } 26549 26550 /* 26551 * tcp_adapt_ire() does not adjust 26552 * for TCP/IP header length. 26553 */ 26554 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 26555 26556 /* 26557 * Just make sure our rwnd is at 26558 * least tcp_recv_hiwat_mss * MSS 26559 * large, and round up to the nearest 26560 * MSS. 26561 * 26562 * We do the round up here because 26563 * we need to get the interface 26564 * MTU first before we can do the 26565 * round up. 26566 */ 26567 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 26568 tcps->tcps_recv_hiwat_minmss * mss); 26569 if (!IPCL_IS_NONSTR(connp)) 26570 q->q_hiwat = tcp->tcp_rwnd; 26571 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 26572 tcp_set_ws_value(tcp); 26573 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 26574 tcp->tcp_tcph->th_win); 26575 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 26576 tcp->tcp_snd_ws_ok = B_TRUE; 26577 26578 /* 26579 * Set tcp_snd_ts_ok to true 26580 * so that tcp_xmit_mp will 26581 * include the timestamp 26582 * option in the SYN segment. 26583 */ 26584 if (tcps->tcps_tstamp_always || 26585 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 26586 tcp->tcp_snd_ts_ok = B_TRUE; 26587 } 26588 26589 /* 26590 * tcp_snd_sack_ok can be set in 26591 * tcp_adapt_ire() if the sack metric 26592 * is set. So check it here also. 26593 */ 26594 if (tcps->tcps_sack_permitted == 2 || 26595 tcp->tcp_snd_sack_ok) { 26596 if (tcp->tcp_sack_info == NULL) { 26597 tcp->tcp_sack_info = 26598 kmem_cache_alloc(tcp_sack_info_cache, 26599 KM_SLEEP); 26600 } 26601 tcp->tcp_snd_sack_ok = B_TRUE; 26602 } 26603 26604 /* 26605 * Should we use ECN? Note that the current 26606 * default value (SunOS 5.9) of tcp_ecn_permitted 26607 * is 1. The reason for doing this is that there 26608 * are equipments out there that will drop ECN 26609 * enabled IP packets. Setting it to 1 avoids 26610 * compatibility problems. 26611 */ 26612 if (tcps->tcps_ecn_permitted == 2) 26613 tcp->tcp_ecn_ok = B_TRUE; 26614 26615 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 26616 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 26617 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 26618 if (syn_mp) { 26619 if (cr == NULL) { 26620 cr = tcp->tcp_cred; 26621 pid = tcp->tcp_cpid; 26622 } 26623 mblk_setcred(syn_mp, cr); 26624 DB_CPID(syn_mp) = pid; 26625 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 26626 } 26627 after_syn_sent: 26628 if (mp != NULL) { 26629 ASSERT(mp->b_cont == NULL); 26630 freeb(mp); 26631 } 26632 return (error); 26633 } else { 26634 /* error */ 26635 if (tcp->tcp_debug) { 26636 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 26637 "tcp_post_ip_bind: error == %d", error); 26638 } 26639 if (mp != NULL) { 26640 freeb(mp); 26641 } 26642 } 26643 26644 ipcl_rm: 26645 /* 26646 * Need to unbind with classifier since we were just 26647 * told that our bind succeeded. a.k.a error == 0 at the entry. 26648 */ 26649 tcp->tcp_hard_bound = B_FALSE; 26650 tcp->tcp_hard_binding = B_FALSE; 26651 26652 ipcl_hash_remove(connp); 26653 26654 bind_failed: 26655 tcp->tcp_state = TCPS_IDLE; 26656 if (tcp->tcp_ipversion == IPV4_VERSION) 26657 tcp->tcp_ipha->ipha_src = 0; 26658 else 26659 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 26660 /* 26661 * Copy of the src addr. in tcp_t is needed since 26662 * the lookup funcs. can only look at tcp_t 26663 */ 26664 V6_SET_ZERO(tcp->tcp_ip_src_v6); 26665 26666 tcph = tcp->tcp_tcph; 26667 tcph->th_lport[0] = 0; 26668 tcph->th_lport[1] = 0; 26669 tcp_bind_hash_remove(tcp); 26670 bzero(&connp->u_port, sizeof (connp->u_port)); 26671 /* blow away saved option results if any */ 26672 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26673 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26674 26675 conn_delete_ire(tcp->tcp_connp, NULL); 26676 26677 return (error); 26678 } 26679 26680 static int 26681 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 26682 boolean_t bind_to_req_port_only, cred_t *cr) 26683 { 26684 in_port_t mlp_port; 26685 mlp_type_t addrtype, mlptype; 26686 boolean_t user_specified; 26687 in_port_t allocated_port; 26688 in_port_t requested_port = *requested_port_ptr; 26689 conn_t *connp; 26690 zone_t *zone; 26691 tcp_stack_t *tcps = tcp->tcp_tcps; 26692 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 26693 26694 /* 26695 * XXX It's up to the caller to specify bind_to_req_port_only or not. 26696 */ 26697 if (cr == NULL) 26698 cr = tcp->tcp_cred; 26699 /* 26700 * Get a valid port (within the anonymous range and should not 26701 * be a privileged one) to use if the user has not given a port. 26702 * If multiple threads are here, they may all start with 26703 * with the same initial port. But, it should be fine as long as 26704 * tcp_bindi will ensure that no two threads will be assigned 26705 * the same port. 26706 * 26707 * NOTE: XXX If a privileged process asks for an anonymous port, we 26708 * still check for ports only in the range > tcp_smallest_non_priv_port, 26709 * unless TCP_ANONPRIVBIND option is set. 26710 */ 26711 mlptype = mlptSingle; 26712 mlp_port = requested_port; 26713 if (requested_port == 0) { 26714 requested_port = tcp->tcp_anon_priv_bind ? 26715 tcp_get_next_priv_port(tcp) : 26716 tcp_update_next_port(tcps->tcps_next_port_to_try, 26717 tcp, B_TRUE); 26718 if (requested_port == 0) { 26719 return (-TNOADDR); 26720 } 26721 user_specified = B_FALSE; 26722 26723 /* 26724 * If the user went through one of the RPC interfaces to create 26725 * this socket and RPC is MLP in this zone, then give him an 26726 * anonymous MLP. 26727 */ 26728 connp = tcp->tcp_connp; 26729 if (connp->conn_anon_mlp && is_system_labeled()) { 26730 zone = crgetzone(cr); 26731 addrtype = tsol_mlp_addr_type(zone->zone_id, 26732 IPV6_VERSION, &v6addr, 26733 tcps->tcps_netstack->netstack_ip); 26734 if (addrtype == mlptSingle) { 26735 return (-TNOADDR); 26736 } 26737 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26738 PMAPPORT, addrtype); 26739 mlp_port = PMAPPORT; 26740 } 26741 } else { 26742 int i; 26743 boolean_t priv = B_FALSE; 26744 26745 /* 26746 * If the requested_port is in the well-known privileged range, 26747 * verify that the stream was opened by a privileged user. 26748 * Note: No locks are held when inspecting tcp_g_*epriv_ports 26749 * but instead the code relies on: 26750 * - the fact that the address of the array and its size never 26751 * changes 26752 * - the atomic assignment of the elements of the array 26753 */ 26754 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 26755 priv = B_TRUE; 26756 } else { 26757 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 26758 if (requested_port == 26759 tcps->tcps_g_epriv_ports[i]) { 26760 priv = B_TRUE; 26761 break; 26762 } 26763 } 26764 } 26765 if (priv) { 26766 if (secpolicy_net_privaddr(cr, requested_port, 26767 IPPROTO_TCP) != 0) { 26768 if (tcp->tcp_debug) { 26769 (void) strlog(TCP_MOD_ID, 0, 1, 26770 SL_ERROR|SL_TRACE, 26771 "tcp_bind: no priv for port %d", 26772 requested_port); 26773 } 26774 return (-TACCES); 26775 } 26776 } 26777 user_specified = B_TRUE; 26778 26779 connp = tcp->tcp_connp; 26780 if (is_system_labeled()) { 26781 zone = crgetzone(cr); 26782 addrtype = tsol_mlp_addr_type(zone->zone_id, 26783 IPV6_VERSION, &v6addr, 26784 tcps->tcps_netstack->netstack_ip); 26785 if (addrtype == mlptSingle) { 26786 return (-TNOADDR); 26787 } 26788 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26789 requested_port, addrtype); 26790 } 26791 } 26792 26793 if (mlptype != mlptSingle) { 26794 if (secpolicy_net_bindmlp(cr) != 0) { 26795 if (tcp->tcp_debug) { 26796 (void) strlog(TCP_MOD_ID, 0, 1, 26797 SL_ERROR|SL_TRACE, 26798 "tcp_bind: no priv for multilevel port %d", 26799 requested_port); 26800 } 26801 return (-TACCES); 26802 } 26803 26804 /* 26805 * If we're specifically binding a shared IP address and the 26806 * port is MLP on shared addresses, then check to see if this 26807 * zone actually owns the MLP. Reject if not. 26808 */ 26809 if (mlptype == mlptShared && addrtype == mlptShared) { 26810 /* 26811 * No need to handle exclusive-stack zones since 26812 * ALL_ZONES only applies to the shared stack. 26813 */ 26814 zoneid_t mlpzone; 26815 26816 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26817 htons(mlp_port)); 26818 if (connp->conn_zoneid != mlpzone) { 26819 if (tcp->tcp_debug) { 26820 (void) strlog(TCP_MOD_ID, 0, 1, 26821 SL_ERROR|SL_TRACE, 26822 "tcp_bind: attempt to bind port " 26823 "%d on shared addr in zone %d " 26824 "(should be %d)", 26825 mlp_port, connp->conn_zoneid, 26826 mlpzone); 26827 } 26828 return (-TACCES); 26829 } 26830 } 26831 26832 if (!user_specified) { 26833 int err; 26834 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26835 requested_port, B_TRUE); 26836 if (err != 0) { 26837 if (tcp->tcp_debug) { 26838 (void) strlog(TCP_MOD_ID, 0, 1, 26839 SL_ERROR|SL_TRACE, 26840 "tcp_bind: cannot establish anon " 26841 "MLP for port %d", 26842 requested_port); 26843 } 26844 return (err); 26845 } 26846 connp->conn_anon_port = B_TRUE; 26847 } 26848 connp->conn_mlp_type = mlptype; 26849 } 26850 26851 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26852 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26853 26854 if (allocated_port == 0) { 26855 connp->conn_mlp_type = mlptSingle; 26856 if (connp->conn_anon_port) { 26857 connp->conn_anon_port = B_FALSE; 26858 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26859 requested_port, B_FALSE); 26860 } 26861 if (bind_to_req_port_only) { 26862 if (tcp->tcp_debug) { 26863 (void) strlog(TCP_MOD_ID, 0, 1, 26864 SL_ERROR|SL_TRACE, 26865 "tcp_bind: requested addr busy"); 26866 } 26867 return (-TADDRBUSY); 26868 } else { 26869 /* If we are out of ports, fail the bind. */ 26870 if (tcp->tcp_debug) { 26871 (void) strlog(TCP_MOD_ID, 0, 1, 26872 SL_ERROR|SL_TRACE, 26873 "tcp_bind: out of ports?"); 26874 } 26875 return (-TNOADDR); 26876 } 26877 } 26878 26879 /* Pass the allocated port back */ 26880 *requested_port_ptr = allocated_port; 26881 return (0); 26882 } 26883 26884 static int 26885 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26886 boolean_t bind_to_req_port_only) 26887 { 26888 tcp_t *tcp = connp->conn_tcp; 26889 26890 sin_t *sin; 26891 sin6_t *sin6; 26892 sin6_t sin6addr; 26893 in_port_t requested_port; 26894 ipaddr_t v4addr; 26895 in6_addr_t v6addr; 26896 uint_t origipversion; 26897 int error = 0; 26898 26899 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26900 26901 if (tcp->tcp_state == TCPS_BOUND) { 26902 return (0); 26903 } else if (tcp->tcp_state > TCPS_BOUND) { 26904 if (tcp->tcp_debug) { 26905 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26906 "tcp_bind: bad state, %d", tcp->tcp_state); 26907 } 26908 return (-TOUTSTATE); 26909 } 26910 origipversion = tcp->tcp_ipversion; 26911 26912 if (sa != NULL && !OK_32PTR((char *)sa)) { 26913 if (tcp->tcp_debug) { 26914 (void) strlog(TCP_MOD_ID, 0, 1, 26915 SL_ERROR|SL_TRACE, 26916 "tcp_bind: bad address parameter, " 26917 "address %p, len %d", 26918 (void *)sa, len); 26919 } 26920 return (-TPROTO); 26921 } 26922 26923 switch (len) { 26924 case 0: /* request for a generic port */ 26925 if (tcp->tcp_family == AF_INET) { 26926 sin = (sin_t *)&sin6addr; 26927 *sin = sin_null; 26928 sin->sin_family = AF_INET; 26929 tcp->tcp_ipversion = IPV4_VERSION; 26930 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 26931 } else { 26932 ASSERT(tcp->tcp_family == AF_INET6); 26933 sin6 = (sin6_t *)&sin6addr; 26934 *sin6 = sin6_null; 26935 sin6->sin6_family = AF_INET6; 26936 tcp->tcp_ipversion = IPV6_VERSION; 26937 V6_SET_ZERO(v6addr); 26938 } 26939 requested_port = 0; 26940 break; 26941 26942 case sizeof (sin_t): /* Complete IPv4 address */ 26943 sin = (sin_t *)sa; 26944 /* 26945 * With sockets sockfs will accept bogus sin_family in 26946 * bind() and replace it with the family used in the socket 26947 * call. 26948 */ 26949 if (sin->sin_family != AF_INET || 26950 tcp->tcp_family != AF_INET) { 26951 return (EAFNOSUPPORT); 26952 } 26953 requested_port = ntohs(sin->sin_port); 26954 tcp->tcp_ipversion = IPV4_VERSION; 26955 v4addr = sin->sin_addr.s_addr; 26956 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26957 break; 26958 26959 case sizeof (sin6_t): /* Complete IPv6 address */ 26960 sin6 = (sin6_t *)sa; 26961 if (sin6->sin6_family != AF_INET6 || 26962 tcp->tcp_family != AF_INET6) { 26963 return (EAFNOSUPPORT); 26964 } 26965 requested_port = ntohs(sin6->sin6_port); 26966 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26967 IPV4_VERSION : IPV6_VERSION; 26968 v6addr = sin6->sin6_addr; 26969 break; 26970 26971 default: 26972 if (tcp->tcp_debug) { 26973 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26974 "tcp_bind: bad address length, %d", len); 26975 } 26976 return (EAFNOSUPPORT); 26977 /* return (-TBADADDR); */ 26978 } 26979 26980 tcp->tcp_bound_source_v6 = v6addr; 26981 26982 /* Check for change in ipversion */ 26983 if (origipversion != tcp->tcp_ipversion) { 26984 ASSERT(tcp->tcp_family == AF_INET6); 26985 error = tcp->tcp_ipversion == IPV6_VERSION ? 26986 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26987 if (error) { 26988 return (ENOMEM); 26989 } 26990 } 26991 26992 /* 26993 * Initialize family specific fields. Copy of the src addr. 26994 * in tcp_t is needed for the lookup funcs. 26995 */ 26996 if (tcp->tcp_ipversion == IPV6_VERSION) { 26997 tcp->tcp_ip6h->ip6_src = v6addr; 26998 } else { 26999 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 27000 } 27001 tcp->tcp_ip_src_v6 = v6addr; 27002 27003 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 27004 27005 error = tcp_bind_select_lport(tcp, &requested_port, 27006 bind_to_req_port_only, cr); 27007 27008 return (error); 27009 } 27010 27011 /* 27012 * Return unix error is tli error is TSYSERR, otherwise return a negative 27013 * tli error. 27014 */ 27015 int 27016 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 27017 boolean_t bind_to_req_port_only) 27018 { 27019 int error; 27020 tcp_t *tcp = connp->conn_tcp; 27021 27022 if (tcp->tcp_state >= TCPS_BOUND) { 27023 if (tcp->tcp_debug) { 27024 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27025 "tcp_bind: bad state, %d", tcp->tcp_state); 27026 } 27027 return (-TOUTSTATE); 27028 } 27029 27030 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 27031 if (error != 0) 27032 return (error); 27033 27034 ASSERT(tcp->tcp_state == TCPS_BOUND); 27035 27036 tcp->tcp_conn_req_max = 0; 27037 27038 /* 27039 * We need to make sure that the conn_recv is set to a non-null 27040 * value before we insert the conn into the classifier table. 27041 * This is to avoid a race with an incoming packet which does an 27042 * ipcl_classify(). 27043 */ 27044 connp->conn_recv = tcp_conn_request; 27045 27046 if (tcp->tcp_family == AF_INET6) { 27047 ASSERT(tcp->tcp_connp->conn_af_isv6); 27048 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27049 &tcp->tcp_bound_source_v6, 0, B_FALSE); 27050 } else { 27051 ASSERT(!tcp->tcp_connp->conn_af_isv6); 27052 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 27053 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 27054 } 27055 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27056 } 27057 27058 int 27059 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 27060 socklen_t len, cred_t *cr) 27061 { 27062 int error; 27063 conn_t *connp = (conn_t *)proto_handle; 27064 squeue_t *sqp = connp->conn_sqp; 27065 27066 ASSERT(sqp != NULL); 27067 27068 error = squeue_synch_enter(sqp, connp, 0); 27069 if (error != 0) { 27070 /* failed to enter */ 27071 return (ENOSR); 27072 } 27073 27074 /* binding to a NULL address really means unbind */ 27075 if (sa == NULL) { 27076 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 27077 error = tcp_do_unbind(connp); 27078 else 27079 error = EINVAL; 27080 } else { 27081 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 27082 } 27083 27084 squeue_synch_exit(sqp, connp); 27085 27086 if (error < 0) { 27087 if (error == -TOUTSTATE) 27088 error = EINVAL; 27089 else 27090 error = proto_tlitosyserr(-error); 27091 } 27092 27093 return (error); 27094 } 27095 27096 /* 27097 * If the return value from this function is positive, it's a UNIX error. 27098 * Otherwise, if it's negative, then the absolute value is a TLI error. 27099 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 27100 */ 27101 int 27102 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 27103 cred_t *cr, pid_t pid) 27104 { 27105 tcp_t *tcp = connp->conn_tcp; 27106 sin_t *sin = (sin_t *)sa; 27107 sin6_t *sin6 = (sin6_t *)sa; 27108 ipaddr_t *dstaddrp; 27109 in_port_t dstport; 27110 uint_t srcid; 27111 int error = 0; 27112 27113 switch (len) { 27114 default: 27115 /* 27116 * Should never happen 27117 */ 27118 return (EINVAL); 27119 27120 case sizeof (sin_t): 27121 sin = (sin_t *)sa; 27122 if (sin->sin_port == 0) { 27123 return (-TBADADDR); 27124 } 27125 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 27126 return (EAFNOSUPPORT); 27127 } 27128 break; 27129 27130 case sizeof (sin6_t): 27131 sin6 = (sin6_t *)sa; 27132 if (sin6->sin6_port == 0) { 27133 return (-TBADADDR); 27134 } 27135 break; 27136 } 27137 /* 27138 * If we're connecting to an IPv4-mapped IPv6 address, we need to 27139 * make sure that the template IP header in the tcp structure is an 27140 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 27141 * need to this before we call tcp_bindi() so that the port lookup 27142 * code will look for ports in the correct port space (IPv4 and 27143 * IPv6 have separate port spaces). 27144 */ 27145 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 27146 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27147 int err = 0; 27148 27149 err = tcp_header_init_ipv4(tcp); 27150 if (err != 0) { 27151 error = ENOMEM; 27152 goto connect_failed; 27153 } 27154 if (tcp->tcp_lport != 0) 27155 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 27156 } 27157 27158 switch (tcp->tcp_state) { 27159 case TCPS_LISTEN: 27160 /* 27161 * Listening sockets are not allowed to issue connect(). 27162 */ 27163 if (IPCL_IS_NONSTR(connp)) 27164 return (EOPNOTSUPP); 27165 /* FALLTHRU */ 27166 case TCPS_IDLE: 27167 /* 27168 * We support quick connect, refer to comments in 27169 * tcp_connect_*() 27170 */ 27171 /* FALLTHRU */ 27172 case TCPS_BOUND: 27173 /* 27174 * We must bump the generation before the operation start. 27175 * This is done to ensure that any upcall made later on sends 27176 * up the right generation to the socket. 27177 */ 27178 SOCK_CONNID_BUMP(tcp->tcp_connid); 27179 27180 if (tcp->tcp_family == AF_INET6) { 27181 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27182 return (tcp_connect_ipv6(tcp, 27183 &sin6->sin6_addr, 27184 sin6->sin6_port, sin6->sin6_flowinfo, 27185 sin6->__sin6_src_id, sin6->sin6_scope_id, 27186 cr, pid)); 27187 } 27188 /* 27189 * Destination adress is mapped IPv6 address. 27190 * Source bound address should be unspecified or 27191 * IPv6 mapped address as well. 27192 */ 27193 if (!IN6_IS_ADDR_UNSPECIFIED( 27194 &tcp->tcp_bound_source_v6) && 27195 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 27196 return (EADDRNOTAVAIL); 27197 } 27198 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 27199 dstport = sin6->sin6_port; 27200 srcid = sin6->__sin6_src_id; 27201 } else { 27202 dstaddrp = &sin->sin_addr.s_addr; 27203 dstport = sin->sin_port; 27204 srcid = 0; 27205 } 27206 27207 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 27208 pid); 27209 break; 27210 default: 27211 return (-TOUTSTATE); 27212 } 27213 /* 27214 * Note: Code below is the "failure" case 27215 */ 27216 connect_failed: 27217 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 27218 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 27219 return (error); 27220 } 27221 27222 int 27223 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 27224 socklen_t len, sock_connid_t *id, cred_t *cr) 27225 { 27226 conn_t *connp = (conn_t *)proto_handle; 27227 tcp_t *tcp = connp->conn_tcp; 27228 squeue_t *sqp = connp->conn_sqp; 27229 int error; 27230 27231 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 27232 if (error != 0) { 27233 return (error); 27234 } 27235 27236 error = squeue_synch_enter(sqp, connp, 0); 27237 if (error != 0) { 27238 /* failed to enter */ 27239 return (ENOSR); 27240 } 27241 27242 /* 27243 * TCP supports quick connect, so no need to do an implicit bind 27244 */ 27245 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 27246 if (error == 0) { 27247 *id = connp->conn_tcp->tcp_connid; 27248 } else if (error < 0) { 27249 if (error == -TOUTSTATE) { 27250 switch (connp->conn_tcp->tcp_state) { 27251 case TCPS_SYN_SENT: 27252 error = EALREADY; 27253 break; 27254 case TCPS_ESTABLISHED: 27255 error = EISCONN; 27256 break; 27257 case TCPS_LISTEN: 27258 error = EOPNOTSUPP; 27259 break; 27260 default: 27261 error = EINVAL; 27262 break; 27263 } 27264 } else { 27265 error = proto_tlitosyserr(-error); 27266 } 27267 } 27268 done: 27269 squeue_synch_exit(sqp, connp); 27270 27271 return ((error == 0) ? EINPROGRESS : error); 27272 } 27273 27274 /* ARGSUSED */ 27275 sock_lower_handle_t 27276 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 27277 uint_t *smodep, int *errorp, int flags, cred_t *credp) 27278 { 27279 conn_t *connp; 27280 boolean_t isv6 = family == AF_INET6; 27281 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 27282 (proto != 0 && proto != IPPROTO_TCP)) { 27283 *errorp = EPROTONOSUPPORT; 27284 return (NULL); 27285 } 27286 27287 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 27288 if (connp == NULL) { 27289 return (NULL); 27290 } 27291 27292 /* 27293 * Put the ref for TCP. Ref for IP was already put 27294 * by ipcl_conn_create. Also Make the conn_t globally 27295 * visible to walkers 27296 */ 27297 mutex_enter(&connp->conn_lock); 27298 CONN_INC_REF_LOCKED(connp); 27299 ASSERT(connp->conn_ref == 2); 27300 connp->conn_state_flags &= ~CONN_INCIPIENT; 27301 27302 connp->conn_flags |= IPCL_NONSTR; 27303 mutex_exit(&connp->conn_lock); 27304 27305 ASSERT(errorp != NULL); 27306 *errorp = 0; 27307 *sock_downcalls = &sock_tcp_downcalls; 27308 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 27309 SM_SENDFILESUPP; 27310 27311 return ((sock_lower_handle_t)connp); 27312 } 27313 27314 /* ARGSUSED */ 27315 void 27316 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 27317 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 27318 { 27319 conn_t *connp = (conn_t *)proto_handle; 27320 struct sock_proto_props sopp; 27321 27322 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 27323 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 27324 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 27325 27326 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 27327 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 27328 sopp.sopp_maxpsz = INFPSZ; 27329 sopp.sopp_maxblk = INFPSZ; 27330 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 27331 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 27332 sopp.sopp_maxaddrlen = sizeof (sin6_t); 27333 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 27334 tcp_rinfo.mi_minpsz; 27335 27336 connp->conn_upcalls = sock_upcalls; 27337 connp->conn_upper_handle = sock_handle; 27338 27339 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 27340 } 27341 27342 /* ARGSUSED */ 27343 int 27344 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 27345 { 27346 conn_t *connp = (conn_t *)proto_handle; 27347 27348 tcp_close_common(connp, flags); 27349 27350 ip_free_helper_stream(connp); 27351 27352 /* 27353 * Drop IP's reference on the conn. This is the last reference 27354 * on the connp if the state was less than established. If the 27355 * connection has gone into timewait state, then we will have 27356 * one ref for the TCP and one more ref (total of two) for the 27357 * classifier connected hash list (a timewait connections stays 27358 * in connected hash till closed). 27359 * 27360 * We can't assert the references because there might be other 27361 * transient reference places because of some walkers or queued 27362 * packets in squeue for the timewait state. 27363 */ 27364 CONN_DEC_REF(connp); 27365 return (0); 27366 } 27367 27368 /* ARGSUSED */ 27369 int 27370 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 27371 cred_t *cr) 27372 { 27373 tcp_t *tcp; 27374 uint32_t msize; 27375 conn_t *connp = (conn_t *)proto_handle; 27376 int32_t tcpstate; 27377 27378 ASSERT(connp->conn_ref >= 2); 27379 27380 if (msg->msg_controllen != 0) { 27381 return (EOPNOTSUPP); 27382 27383 } 27384 switch (DB_TYPE(mp)) { 27385 case M_DATA: 27386 tcp = connp->conn_tcp; 27387 ASSERT(tcp != NULL); 27388 27389 tcpstate = tcp->tcp_state; 27390 if (tcpstate < TCPS_ESTABLISHED) { 27391 freemsg(mp); 27392 return (ENOTCONN); 27393 } else if (tcpstate > TCPS_CLOSE_WAIT) { 27394 freemsg(mp); 27395 return (EPIPE); 27396 } 27397 27398 msize = msgdsize(mp); 27399 27400 mutex_enter(&tcp->tcp_non_sq_lock); 27401 tcp->tcp_squeue_bytes += msize; 27402 /* 27403 * Squeue Flow Control 27404 */ 27405 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 27406 tcp_setqfull(tcp); 27407 } 27408 mutex_exit(&tcp->tcp_non_sq_lock); 27409 27410 /* 27411 * The application may pass in an address in the msghdr, but 27412 * we ignore the address on connection-oriented sockets. 27413 * Just like BSD this code does not generate an error for 27414 * TCP (a CONNREQUIRED socket) when sending to an address 27415 * passed in with sendto/sendmsg. Instead the data is 27416 * delivered on the connection as if no address had been 27417 * supplied. 27418 */ 27419 CONN_INC_REF(connp); 27420 27421 if (msg != NULL && msg->msg_flags & MSG_OOB) { 27422 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 27423 tcp_output_urgent, connp, tcp_squeue_flag, 27424 SQTAG_TCP_OUTPUT); 27425 } else { 27426 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 27427 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 27428 } 27429 27430 return (0); 27431 27432 default: 27433 ASSERT(0); 27434 } 27435 27436 freemsg(mp); 27437 return (0); 27438 } 27439 27440 /* ARGSUSED */ 27441 void 27442 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 27443 { 27444 int len; 27445 uint32_t msize; 27446 conn_t *connp = (conn_t *)arg; 27447 tcp_t *tcp = connp->conn_tcp; 27448 27449 msize = msgdsize(mp); 27450 27451 len = msize - 1; 27452 if (len < 0) { 27453 freemsg(mp); 27454 return; 27455 } 27456 27457 /* 27458 * Try to force urgent data out on the wire. 27459 * Even if we have unsent data this will 27460 * at least send the urgent flag. 27461 * XXX does not handle more flag correctly. 27462 */ 27463 len += tcp->tcp_unsent; 27464 len += tcp->tcp_snxt; 27465 tcp->tcp_urg = len; 27466 tcp->tcp_valid_bits |= TCP_URG_VALID; 27467 27468 /* Bypass tcp protocol for fused tcp loopback */ 27469 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 27470 return; 27471 tcp_wput_data(tcp, mp, B_TRUE); 27472 } 27473 27474 /* ARGSUSED */ 27475 int 27476 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27477 socklen_t *addrlen, cred_t *cr) 27478 { 27479 sin_t *sin; 27480 sin6_t *sin6; 27481 conn_t *connp = (conn_t *)proto_handle; 27482 tcp_t *tcp = connp->conn_tcp; 27483 27484 ASSERT(tcp != NULL); 27485 if (tcp->tcp_state < TCPS_SYN_RCVD) 27486 return (ENOTCONN); 27487 27488 addr->sa_family = tcp->tcp_family; 27489 switch (tcp->tcp_family) { 27490 case AF_INET: 27491 if (*addrlen < sizeof (sin_t)) 27492 return (EINVAL); 27493 27494 sin = (sin_t *)addr; 27495 *sin = sin_null; 27496 sin->sin_family = AF_INET; 27497 if (tcp->tcp_ipversion == IPV4_VERSION) { 27498 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 27499 sin->sin_addr.s_addr); 27500 } 27501 sin->sin_port = tcp->tcp_fport; 27502 *addrlen = sizeof (struct sockaddr_in); 27503 break; 27504 case AF_INET6: 27505 sin6 = (sin6_t *)addr; 27506 *sin6 = sin6_null; 27507 sin6->sin6_family = AF_INET6; 27508 27509 if (*addrlen < sizeof (struct sockaddr_in6)) 27510 return (EINVAL); 27511 27512 if (tcp->tcp_ipversion == IPV6_VERSION) { 27513 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 27514 ~IPV6_VERS_AND_FLOW_MASK; 27515 } 27516 27517 sin6->sin6_addr = tcp->tcp_remote_v6; 27518 sin6->sin6_port = tcp->tcp_fport; 27519 *addrlen = sizeof (struct sockaddr_in6); 27520 break; 27521 } 27522 return (0); 27523 } 27524 27525 /* ARGSUSED */ 27526 int 27527 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27528 socklen_t *addrlenp, cred_t *cr) 27529 { 27530 sin_t *sin; 27531 sin6_t *sin6; 27532 conn_t *connp = (conn_t *)proto_handle; 27533 tcp_t *tcp = connp->conn_tcp; 27534 27535 switch (tcp->tcp_family) { 27536 case AF_INET: 27537 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 27538 if (*addrlenp < sizeof (sin_t)) 27539 return (EINVAL); 27540 sin = (sin_t *)addr; 27541 *sin = sin_null; 27542 sin->sin_family = AF_INET; 27543 *addrlenp = sizeof (sin_t); 27544 if (tcp->tcp_state >= TCPS_BOUND) { 27545 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 27546 sin->sin_port = tcp->tcp_lport; 27547 } 27548 break; 27549 27550 case AF_INET6: 27551 if (*addrlenp < sizeof (sin6_t)) 27552 return (EINVAL); 27553 sin6 = (sin6_t *)addr; 27554 *sin6 = sin6_null; 27555 sin6->sin6_family = AF_INET6; 27556 *addrlenp = sizeof (sin6_t); 27557 if (tcp->tcp_state >= TCPS_BOUND) { 27558 sin6->sin6_port = tcp->tcp_lport; 27559 if (tcp->tcp_ipversion == IPV4_VERSION) { 27560 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 27561 &sin6->sin6_addr); 27562 } else { 27563 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 27564 } 27565 } 27566 break; 27567 } 27568 return (0); 27569 } 27570 27571 /* 27572 * tcp_fallback 27573 * 27574 * A direct socket is falling back to using STREAMS. Hanging 27575 * off of the queue is a temporary tcp_t, which was created using 27576 * tcp_open(). The tcp_open() was called as part of the regular 27577 * sockfs create path, i.e., the SO_SOCKSTR flag is passed down, 27578 * and therefore the temporary tcp_t is marked to be a socket 27579 * (i.e., IPCL_SOCKET, tcp_issocket). So the optimizations 27580 * introduced by FireEngine will be used. 27581 * 27582 * The tcp_t associated with the socket falling back will 27583 * still be marked as a socket, although the direct socket flag 27584 * (IPCL_NONSTR) is removed. A fall back to true TPI semantics 27585 * will not take place until a _SIOCSOCKFALLBACK ioctl is issued. 27586 * 27587 * If the above mentioned behavior, i.e., the tmp tcp_t is created 27588 * as a STREAMS/TPI endpoint, then we will need to do more work here. 27589 * Such as inserting the direct socket into the acceptor hash. 27590 */ 27591 void 27592 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 27593 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27594 { 27595 tcp_t *tcp, *eager; 27596 conn_t *connp = (conn_t *)proto_handle; 27597 int error; 27598 struct T_capability_ack tca; 27599 struct sockaddr_in6 laddr, faddr; 27600 socklen_t laddrlen, faddrlen; 27601 short opts; 27602 struct stroptions *stropt; 27603 mblk_t *stropt_mp; 27604 mblk_t *mp; 27605 mblk_t *conn_ind_head = NULL; 27606 mblk_t *conn_ind_tail = NULL; 27607 mblk_t *ordrel_mp; 27608 mblk_t *fused_sigurp_mp; 27609 27610 tcp = connp->conn_tcp; 27611 /* 27612 * No support for acceptor fallback 27613 */ 27614 ASSERT(q->q_qinfo != &tcp_acceptor_rinit); 27615 27616 stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL); 27617 27618 /* Pre-allocate the T_ordrel_ind mblk. */ 27619 ASSERT(tcp->tcp_ordrel_mp == NULL); 27620 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 27621 STR_NOSIG, NULL); 27622 ordrel_mp->b_datap->db_type = M_PROTO; 27623 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 27624 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 27625 27626 /* Pre-allocate the M_PCSIG anyway */ 27627 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 27628 27629 /* 27630 * Enter the squeue so that no new packets can come in 27631 */ 27632 error = squeue_synch_enter(connp->conn_sqp, connp, 0); 27633 if (error != 0) { 27634 /* failed to enter, free all the pre-allocated messages. */ 27635 freeb(stropt_mp); 27636 freeb(ordrel_mp); 27637 freeb(fused_sigurp_mp); 27638 return; 27639 } 27640 27641 /* Disable I/OAT during fallback */ 27642 tcp->tcp_sodirect = NULL; 27643 27644 connp->conn_dev = (dev_t)RD(q)->q_ptr; 27645 connp->conn_minor_arena = WR(q)->q_ptr; 27646 27647 RD(q)->q_ptr = WR(q)->q_ptr = connp; 27648 27649 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 27650 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 27651 27652 WR(q)->q_qinfo = &tcp_sock_winit; 27653 27654 if (!direct_sockfs) 27655 tcp_disable_direct_sockfs(tcp); 27656 27657 /* 27658 * free the helper stream 27659 */ 27660 ip_free_helper_stream(connp); 27661 27662 /* 27663 * Notify the STREAM head about options 27664 */ 27665 DB_TYPE(stropt_mp) = M_SETOPTS; 27666 stropt = (struct stroptions *)stropt_mp->b_rptr; 27667 stropt_mp->b_wptr += sizeof (struct stroptions); 27668 stropt = (struct stroptions *)stropt_mp->b_rptr; 27669 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 27670 27671 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 27672 tcp->tcp_tcps->tcps_wroff_xtra); 27673 if (tcp->tcp_snd_sack_ok) 27674 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 27675 stropt->so_hiwat = tcp->tcp_fused ? 27676 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 27677 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 27678 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 27679 27680 putnext(RD(q), stropt_mp); 27681 27682 /* 27683 * Collect the information needed to sync with the sonode 27684 */ 27685 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 27686 27687 laddrlen = faddrlen = sizeof (sin6_t); 27688 (void) tcp_getsockname(proto_handle, (struct sockaddr *)&laddr, 27689 &laddrlen, CRED()); 27690 error = tcp_getpeername(proto_handle, (struct sockaddr *)&faddr, 27691 &faddrlen, CRED()); 27692 if (error != 0) 27693 faddrlen = 0; 27694 27695 opts = 0; 27696 if (tcp->tcp_oobinline) 27697 opts |= SO_OOBINLINE; 27698 if (tcp->tcp_dontroute) 27699 opts |= SO_DONTROUTE; 27700 27701 /* 27702 * Notify the socket that the protocol is now quiescent, 27703 * and it's therefore safe move data from the socket 27704 * to the stream head. 27705 */ 27706 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 27707 (struct sockaddr *)&laddr, laddrlen, 27708 (struct sockaddr *)&faddr, faddrlen, opts); 27709 27710 while ((mp = tcp->tcp_rcv_list) != NULL) { 27711 tcp->tcp_rcv_list = mp->b_next; 27712 mp->b_next = NULL; 27713 putnext(q, mp); 27714 } 27715 tcp->tcp_rcv_last_head = NULL; 27716 tcp->tcp_rcv_last_tail = NULL; 27717 tcp->tcp_rcv_cnt = 0; 27718 27719 /* 27720 * No longer a direct socket 27721 */ 27722 connp->conn_flags &= ~IPCL_NONSTR; 27723 27724 tcp->tcp_ordrel_mp = ordrel_mp; 27725 27726 if (tcp->tcp_fused) { 27727 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 27728 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 27729 } else { 27730 freeb(fused_sigurp_mp); 27731 } 27732 27733 /* 27734 * Send T_CONN_IND messages for all ESTABLISHED connections. 27735 */ 27736 mutex_enter(&tcp->tcp_eager_lock); 27737 for (eager = tcp->tcp_eager_next_q; eager != NULL; 27738 eager = eager->tcp_eager_next_q) { 27739 mp = eager->tcp_conn.tcp_eager_conn_ind; 27740 27741 eager->tcp_conn.tcp_eager_conn_ind = NULL; 27742 ASSERT(mp != NULL); 27743 /* 27744 * TLI/XTI applications will get confused by 27745 * sending eager as an option since it violates 27746 * the option semantics. So remove the eager as 27747 * option since TLI/XTI app doesn't need it anyway. 27748 */ 27749 if (!TCP_IS_SOCKET(tcp)) { 27750 struct T_conn_ind *conn_ind; 27751 27752 conn_ind = (struct T_conn_ind *)mp->b_rptr; 27753 conn_ind->OPT_length = 0; 27754 conn_ind->OPT_offset = 0; 27755 } 27756 if (conn_ind_head == NULL) { 27757 conn_ind_head = mp; 27758 } else { 27759 conn_ind_tail->b_next = mp; 27760 } 27761 conn_ind_tail = mp; 27762 } 27763 mutex_exit(&tcp->tcp_eager_lock); 27764 27765 mp = conn_ind_head; 27766 while (mp != NULL) { 27767 mblk_t *nmp = mp->b_next; 27768 mp->b_next = NULL; 27769 27770 putnext(tcp->tcp_rq, mp); 27771 mp = nmp; 27772 } 27773 27774 /* 27775 * There should be atleast two ref's (IP + TCP) 27776 */ 27777 ASSERT(connp->conn_ref >= 2); 27778 squeue_synch_exit(connp->conn_sqp, connp); 27779 } 27780 27781 /* ARGSUSED */ 27782 static void 27783 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 27784 { 27785 conn_t *connp = (conn_t *)arg; 27786 tcp_t *tcp = connp->conn_tcp; 27787 27788 freemsg(mp); 27789 27790 if (tcp->tcp_fused) 27791 tcp_unfuse(tcp); 27792 27793 if (tcp_xmit_end(tcp) != 0) { 27794 /* 27795 * We were crossing FINs and got a reset from 27796 * the other side. Just ignore it. 27797 */ 27798 if (tcp->tcp_debug) { 27799 (void) strlog(TCP_MOD_ID, 0, 1, 27800 SL_ERROR|SL_TRACE, 27801 "tcp_shutdown_output() out of state %s", 27802 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 27803 } 27804 } 27805 } 27806 27807 /* ARGSUSED */ 27808 int 27809 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27810 { 27811 conn_t *connp = (conn_t *)proto_handle; 27812 tcp_t *tcp = connp->conn_tcp; 27813 27814 /* 27815 * X/Open requires that we check the connected state. 27816 */ 27817 if (tcp->tcp_state < TCPS_SYN_SENT) 27818 return (ENOTCONN); 27819 27820 /* shutdown the send side */ 27821 if (how != SHUT_RD) { 27822 mblk_t *bp; 27823 27824 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27825 CONN_INC_REF(connp); 27826 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27827 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27828 27829 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27830 SOCK_OPCTL_SHUT_SEND, 0); 27831 } 27832 27833 /* shutdown the recv side */ 27834 if (how != SHUT_WR) 27835 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27836 SOCK_OPCTL_SHUT_RECV, 0); 27837 27838 return (0); 27839 } 27840 27841 /* 27842 * SOP_LISTEN() calls into tcp_listen(). 27843 */ 27844 /* ARGSUSED */ 27845 int 27846 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27847 { 27848 conn_t *connp = (conn_t *)proto_handle; 27849 int error; 27850 squeue_t *sqp = connp->conn_sqp; 27851 27852 error = squeue_synch_enter(sqp, connp, 0); 27853 if (error != 0) { 27854 /* failed to enter */ 27855 return (ENOBUFS); 27856 } 27857 27858 error = tcp_do_listen(connp, backlog, cr); 27859 if (error == 0) { 27860 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27861 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27862 } else if (error < 0) { 27863 if (error == -TOUTSTATE) 27864 error = EINVAL; 27865 else 27866 error = proto_tlitosyserr(-error); 27867 } 27868 squeue_synch_exit(sqp, connp); 27869 return (error); 27870 } 27871 27872 static int 27873 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr) 27874 { 27875 tcp_t *tcp = connp->conn_tcp; 27876 sin_t *sin; 27877 sin6_t *sin6; 27878 int error = 0; 27879 tcp_stack_t *tcps = tcp->tcp_tcps; 27880 27881 if (tcp->tcp_state >= TCPS_BOUND) { 27882 if ((tcp->tcp_state == TCPS_BOUND || 27883 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27884 /* 27885 * Handle listen() increasing backlog. 27886 * This is more "liberal" then what the TPI spec 27887 * requires but is needed to avoid a t_unbind 27888 * when handling listen() since the port number 27889 * might be "stolen" between the unbind and bind. 27890 */ 27891 goto do_listen; 27892 } 27893 if (tcp->tcp_debug) { 27894 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27895 "tcp_listen: bad state, %d", tcp->tcp_state); 27896 } 27897 return (-TOUTSTATE); 27898 } else { 27899 int32_t len; 27900 sin6_t addr; 27901 27902 /* Do an implicit bind: Request for a generic port. */ 27903 if (tcp->tcp_family == AF_INET) { 27904 len = sizeof (sin_t); 27905 sin = (sin_t *)&addr; 27906 *sin = sin_null; 27907 sin->sin_family = AF_INET; 27908 tcp->tcp_ipversion = IPV4_VERSION; 27909 } else { 27910 ASSERT(tcp->tcp_family == AF_INET6); 27911 len = sizeof (sin6_t); 27912 sin6 = (sin6_t *)&addr; 27913 *sin6 = sin6_null; 27914 sin6->sin6_family = AF_INET6; 27915 tcp->tcp_ipversion = IPV6_VERSION; 27916 } 27917 27918 error = tcp_bind_check(connp, (struct sockaddr *)&addr, len, 27919 cr, B_FALSE); 27920 if (error) 27921 return (error); 27922 /* Fall through and do the fanout insertion */ 27923 } 27924 27925 do_listen: 27926 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27927 tcp->tcp_conn_req_max = backlog; 27928 if (tcp->tcp_conn_req_max) { 27929 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27930 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27931 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27932 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27933 /* 27934 * If this is a listener, do not reset the eager list 27935 * and other stuffs. Note that we don't check if the 27936 * existing eager list meets the new tcp_conn_req_max 27937 * requirement. 27938 */ 27939 if (tcp->tcp_state != TCPS_LISTEN) { 27940 tcp->tcp_state = TCPS_LISTEN; 27941 /* Initialize the chain. Don't need the eager_lock */ 27942 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27943 tcp->tcp_eager_next_drop_q0 = tcp; 27944 tcp->tcp_eager_prev_drop_q0 = tcp; 27945 tcp->tcp_second_ctimer_threshold = 27946 tcps->tcps_ip_abort_linterval; 27947 } 27948 } 27949 27950 /* 27951 * We can call ip_bind directly, the processing continues 27952 * in tcp_post_ip_bind(). 27953 * 27954 * We need to make sure that the conn_recv is set to a non-null 27955 * value before we insert the conn into the classifier table. 27956 * This is to avoid a race with an incoming packet which does an 27957 * ipcl_classify(). 27958 */ 27959 connp->conn_recv = tcp_conn_request; 27960 if (tcp->tcp_family == AF_INET) { 27961 error = ip_proto_bind_laddr_v4(connp, NULL, 27962 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27963 } else { 27964 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27965 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27966 } 27967 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27968 } 27969 27970 void 27971 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27972 { 27973 conn_t *connp = (conn_t *)proto_handle; 27974 tcp_t *tcp = connp->conn_tcp; 27975 tcp_stack_t *tcps = tcp->tcp_tcps; 27976 uint_t thwin; 27977 27978 (void) squeue_synch_enter(connp->conn_sqp, connp, 0); 27979 27980 /* Flow control condition has been removed. */ 27981 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27982 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 27983 << tcp->tcp_rcv_ws; 27984 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 27985 /* 27986 * Send back a window update immediately if TCP is above 27987 * ESTABLISHED state and the increase of the rcv window 27988 * that the other side knows is at least 1 MSS after flow 27989 * control is lifted. 27990 */ 27991 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27992 (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) { 27993 tcp_xmit_ctl(NULL, tcp, 27994 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27995 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27996 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 27997 } 27998 27999 squeue_synch_exit(connp->conn_sqp, connp); 28000 } 28001 28002 /* ARGSUSED */ 28003 int 28004 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 28005 int mode, int32_t *rvalp, cred_t *cr) 28006 { 28007 conn_t *connp = (conn_t *)proto_handle; 28008 int error; 28009 28010 switch (cmd) { 28011 case ND_SET: 28012 case ND_GET: 28013 case TCP_IOC_DEFAULT_Q: 28014 case _SIOCSOCKFALLBACK: 28015 case TCP_IOC_ABORT_CONN: 28016 case TI_GETPEERNAME: 28017 case TI_GETMYNAME: 28018 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 28019 cmd)); 28020 error = EINVAL; 28021 break; 28022 default: 28023 /* 28024 * Pass on to IP using helper stream 28025 */ 28026 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 28027 cmd, arg, mode, cr, rvalp); 28028 break; 28029 } 28030 return (error); 28031 } 28032 28033 sock_downcalls_t sock_tcp_downcalls = { 28034 tcp_activate, 28035 tcp_accept, 28036 tcp_bind, 28037 tcp_listen, 28038 tcp_connect, 28039 tcp_getpeername, 28040 tcp_getsockname, 28041 tcp_getsockopt, 28042 tcp_setsockopt, 28043 tcp_sendmsg, 28044 NULL, 28045 NULL, 28046 NULL, 28047 tcp_shutdown, 28048 tcp_clr_flowctrl, 28049 tcp_ioctl, 28050 tcp_close, 28051 }; 28052