1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #define _SUN_TPI_VERSION 2 36 #include <sys/tihdr.h> 37 #include <sys/timod.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/xti_inet.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/sdt.h> 45 #include <sys/vtrace.h> 46 #include <sys/kmem.h> 47 #include <sys/ethernet.h> 48 #include <sys/cpuvar.h> 49 #include <sys/dlpi.h> 50 #include <sys/multidata.h> 51 #include <sys/multidata_impl.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <sys/sodirect.h> 67 #include <sys/uio.h> 68 #include <sys/systm.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/proto_set.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue_impl.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 #include <sys/callo.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 130 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 221 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 222 * directly to the socket (sodirect) and start an asynchronous copyout 223 * to a user-land receive-side buffer (uioa) when a blocking socket read 224 * (e.g. read, recv, ...) is pending. 225 * 226 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 227 * NULL so points to an sodirect_t and if marked enabled then we enqueue 228 * all mblk_t's directly to the socket. 229 * 230 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 231 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 232 * copyout will be started directly to the user-land uio buffer. Also, as we 233 * have a pending read, TCP's push logic can take into account the number of 234 * bytes to be received and only awake the blocked read()er when the uioa_t 235 * byte count has been satisfied. 236 * 237 * IPsec notes : 238 * 239 * Since a packet is always executed on the correct TCP perimeter 240 * all IPsec processing is defered to IP including checking new 241 * connections and setting IPSEC policies for new connection. The 242 * only exception is tcp_xmit_listeners_reset() which is called 243 * directly from IP and needs to policy check to see if TH_RST 244 * can be sent out. 245 * 246 * PFHooks notes : 247 * 248 * For mdt case, one meta buffer contains multiple packets. Mblks for every 249 * packet are assembled and passed to the hooks. When packets are blocked, 250 * or boundary of any packet is changed, the mdt processing is stopped, and 251 * packets of the meta buffer are send to the IP path one by one. 252 */ 253 254 /* 255 * Values for squeue switch: 256 * 1: SQ_NODRAIN 257 * 2: SQ_PROCESS 258 * 3: SQ_FILL 259 */ 260 int tcp_squeue_wput = 2; /* /etc/systems */ 261 int tcp_squeue_flag; 262 263 /* 264 * Macros for sodirect: 265 * 266 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 267 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 268 * if it exists and is enabled, else to NULL. Note, in the current 269 * sodirect implementation the sod_lockp must not be held across any 270 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 271 * will result as sod_lockp is the streamhead stdata.sd_lock. 272 * 273 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 274 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 275 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 276 * being used when sodirect code paths should be. 277 */ 278 279 #define SOD_PTR_ENTER(tcp, sodp) \ 280 (sodp) = (tcp)->tcp_sodirect; \ 281 \ 282 if ((sodp) != NULL) { \ 283 mutex_enter((sodp)->sod_lockp); \ 284 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 285 mutex_exit((sodp)->sod_lockp); \ 286 (sodp) = NULL; \ 287 } \ 288 } 289 290 #define SOD_NOT_ENABLED(tcp) \ 291 ((tcp)->tcp_sodirect == NULL || \ 292 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 293 294 /* 295 * This controls how tiny a write must be before we try to copy it 296 * into the the mblk on the tail of the transmit queue. Not much 297 * speedup is observed for values larger than sixteen. Zero will 298 * disable the optimisation. 299 */ 300 int tcp_tx_pull_len = 16; 301 302 /* 303 * TCP Statistics. 304 * 305 * How TCP statistics work. 306 * 307 * There are two types of statistics invoked by two macros. 308 * 309 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 310 * supposed to be used in non MT-hot paths of the code. 311 * 312 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 313 * supposed to be used for DEBUG purposes and may be used on a hot path. 314 * 315 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 316 * (use "kstat tcp" to get them). 317 * 318 * There is also additional debugging facility that marks tcp_clean_death() 319 * instances and saves them in tcp_t structure. It is triggered by 320 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 321 * tcp_clean_death() calls that counts the number of times each tag was hit. It 322 * is triggered by TCP_CLD_COUNTERS define. 323 * 324 * How to add new counters. 325 * 326 * 1) Add a field in the tcp_stat structure describing your counter. 327 * 2) Add a line in the template in tcp_kstat2_init() with the name 328 * of the counter. 329 * 330 * IMPORTANT!! - make sure that both are in sync !! 331 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 332 * 333 * Please avoid using private counters which are not kstat-exported. 334 * 335 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 336 * in tcp_t structure. 337 * 338 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 339 */ 340 341 #ifndef TCP_DEBUG_COUNTER 342 #ifdef DEBUG 343 #define TCP_DEBUG_COUNTER 1 344 #else 345 #define TCP_DEBUG_COUNTER 0 346 #endif 347 #endif 348 349 #define TCP_CLD_COUNTERS 0 350 351 #define TCP_TAG_CLEAN_DEATH 1 352 #define TCP_MAX_CLEAN_DEATH_TAG 32 353 354 #ifdef lint 355 static int _lint_dummy_; 356 #endif 357 358 #if TCP_CLD_COUNTERS 359 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 360 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 361 #elif defined(lint) 362 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 363 #else 364 #define TCP_CLD_STAT(x) 365 #endif 366 367 #if TCP_DEBUG_COUNTER 368 #define TCP_DBGSTAT(tcps, x) \ 369 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 370 #define TCP_G_DBGSTAT(x) \ 371 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 372 #elif defined(lint) 373 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 374 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 375 #else 376 #define TCP_DBGSTAT(tcps, x) 377 #define TCP_G_DBGSTAT(x) 378 #endif 379 380 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 381 382 tcp_g_stat_t tcp_g_statistics; 383 kstat_t *tcp_g_kstat; 384 385 /* 386 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 387 * tcp write side. 388 */ 389 #define CALL_IP_WPUT(connp, q, mp) { \ 390 ASSERT(((q)->q_flag & QREADR) == 0); \ 391 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 392 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 393 } 394 395 /* Macros for timestamp comparisons */ 396 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 397 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 398 399 /* 400 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 401 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 402 * by adding three components: a time component which grows by 1 every 4096 403 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 404 * a per-connection component which grows by 125000 for every new connection; 405 * and an "extra" component that grows by a random amount centered 406 * approximately on 64000. This causes the the ISS generator to cycle every 407 * 4.89 hours if no TCP connections are made, and faster if connections are 408 * made. 409 * 410 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 411 * components: a time component which grows by 250000 every second; and 412 * a per-connection component which grows by 125000 for every new connections. 413 * 414 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 415 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 416 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 417 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 418 * password. 419 */ 420 #define ISS_INCR 250000 421 #define ISS_NSEC_SHT 12 422 423 static sin_t sin_null; /* Zero address for quick clears */ 424 static sin6_t sin6_null; /* Zero address for quick clears */ 425 426 /* 427 * This implementation follows the 4.3BSD interpretation of the urgent 428 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 429 * incompatible changes in protocols like telnet and rlogin. 430 */ 431 #define TCP_OLD_URP_INTERPRETATION 1 432 433 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 434 (TCP_IS_DETACHED(tcp) && \ 435 (!(tcp)->tcp_hard_binding)) 436 437 /* 438 * TCP reassembly macros. We hide starting and ending sequence numbers in 439 * b_next and b_prev of messages on the reassembly queue. The messages are 440 * chained using b_cont. These macros are used in tcp_reass() so we don't 441 * have to see the ugly casts and assignments. 442 */ 443 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 444 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 445 (mblk_t *)(uintptr_t)(u)) 446 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 447 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 448 (mblk_t *)(uintptr_t)(u)) 449 450 /* 451 * Implementation of TCP Timers. 452 * ============================= 453 * 454 * INTERFACE: 455 * 456 * There are two basic functions dealing with tcp timers: 457 * 458 * timeout_id_t tcp_timeout(connp, func, time) 459 * clock_t tcp_timeout_cancel(connp, timeout_id) 460 * TCP_TIMER_RESTART(tcp, intvl) 461 * 462 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 463 * after 'time' ticks passed. The function called by timeout() must adhere to 464 * the same restrictions as a driver soft interrupt handler - it must not sleep 465 * or call other functions that might sleep. The value returned is the opaque 466 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 467 * cancel the request. The call to tcp_timeout() may fail in which case it 468 * returns zero. This is different from the timeout(9F) function which never 469 * fails. 470 * 471 * The call-back function 'func' always receives 'connp' as its single 472 * argument. It is always executed in the squeue corresponding to the tcp 473 * structure. The tcp structure is guaranteed to be present at the time the 474 * call-back is called. 475 * 476 * NOTE: The call-back function 'func' is never called if tcp is in 477 * the TCPS_CLOSED state. 478 * 479 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 480 * request. locks acquired by the call-back routine should not be held across 481 * the call to tcp_timeout_cancel() or a deadlock may result. 482 * 483 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 484 * Otherwise, it returns an integer value greater than or equal to 0. In 485 * particular, if the call-back function is already placed on the squeue, it can 486 * not be canceled. 487 * 488 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 489 * within squeue context corresponding to the tcp instance. Since the 490 * call-back is also called via the same squeue, there are no race 491 * conditions described in untimeout(9F) manual page since all calls are 492 * strictly serialized. 493 * 494 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 495 * stored in tcp_timer_tid and starts a new one using 496 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 497 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 498 * field. 499 * 500 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 501 * call-back may still be called, so it is possible tcp_timer() will be 502 * called several times. This should not be a problem since tcp_timer() 503 * should always check the tcp instance state. 504 * 505 * 506 * IMPLEMENTATION: 507 * 508 * TCP timers are implemented using three-stage process. The call to 509 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 510 * when the timer expires. The tcp_timer_callback() arranges the call of the 511 * tcp_timer_handler() function via squeue corresponding to the tcp 512 * instance. The tcp_timer_handler() calls actual requested timeout call-back 513 * and passes tcp instance as an argument to it. Information is passed between 514 * stages using the tcp_timer_t structure which contains the connp pointer, the 515 * tcp call-back to call and the timeout id returned by the timeout(9F). 516 * 517 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 518 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 519 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 520 * returns the pointer to this mblk. 521 * 522 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 523 * looks like a normal mblk without actual dblk attached to it. 524 * 525 * To optimize performance each tcp instance holds a small cache of timer 526 * mblocks. In the current implementation it caches up to two timer mblocks per 527 * tcp instance. The cache is preserved over tcp frees and is only freed when 528 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 529 * timer processing happens on a corresponding squeue, the cache manipulation 530 * does not require any locks. Experiments show that majority of timer mblocks 531 * allocations are satisfied from the tcp cache and do not involve kmem calls. 532 * 533 * The tcp_timeout() places a refhold on the connp instance which guarantees 534 * that it will be present at the time the call-back function fires. The 535 * tcp_timer_handler() drops the reference after calling the call-back, so the 536 * call-back function does not need to manipulate the references explicitly. 537 */ 538 539 typedef struct tcp_timer_s { 540 conn_t *connp; 541 void (*tcpt_proc)(void *); 542 callout_id_t tcpt_tid; 543 } tcp_timer_t; 544 545 static kmem_cache_t *tcp_timercache; 546 kmem_cache_t *tcp_sack_info_cache; 547 kmem_cache_t *tcp_iphc_cache; 548 549 /* 550 * For scalability, we must not run a timer for every TCP connection 551 * in TIME_WAIT state. To see why, consider (for time wait interval of 552 * 4 minutes): 553 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 554 * 555 * This list is ordered by time, so you need only delete from the head 556 * until you get to entries which aren't old enough to delete yet. 557 * The list consists of only the detached TIME_WAIT connections. 558 * 559 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 560 * becomes detached TIME_WAIT (either by changing the state and already 561 * being detached or the other way around). This means that the TIME_WAIT 562 * state can be extended (up to doubled) if the connection doesn't become 563 * detached for a long time. 564 * 565 * The list manipulations (including tcp_time_wait_next/prev) 566 * are protected by the tcp_time_wait_lock. The content of the 567 * detached TIME_WAIT connections is protected by the normal perimeters. 568 * 569 * This list is per squeue and squeues are shared across the tcp_stack_t's. 570 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 571 * and conn_netstack. 572 * The tcp_t's that are added to tcp_free_list are disassociated and 573 * have NULL tcp_tcps and conn_netstack pointers. 574 */ 575 typedef struct tcp_squeue_priv_s { 576 kmutex_t tcp_time_wait_lock; 577 callout_id_t tcp_time_wait_tid; 578 tcp_t *tcp_time_wait_head; 579 tcp_t *tcp_time_wait_tail; 580 tcp_t *tcp_free_list; 581 uint_t tcp_free_list_cnt; 582 } tcp_squeue_priv_t; 583 584 /* 585 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 586 * Running it every 5 seconds seems to give the best results. 587 */ 588 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 589 590 /* 591 * To prevent memory hog, limit the number of entries in tcp_free_list 592 * to 1% of available memory / number of cpus 593 */ 594 uint_t tcp_free_list_max_cnt = 0; 595 596 #define TCP_XMIT_LOWATER 4096 597 #define TCP_XMIT_HIWATER 49152 598 #define TCP_RECV_LOWATER 2048 599 #define TCP_RECV_HIWATER 49152 600 601 /* 602 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 603 */ 604 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 605 606 #define TIDUSZ 4096 /* transport interface data unit size */ 607 608 /* 609 * Bind hash list size and has function. It has to be a power of 2 for 610 * hashing. 611 */ 612 #define TCP_BIND_FANOUT_SIZE 512 613 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 614 /* 615 * Size of listen and acceptor hash list. It has to be a power of 2 for 616 * hashing. 617 */ 618 #define TCP_FANOUT_SIZE 256 619 620 #ifdef _ILP32 621 #define TCP_ACCEPTOR_HASH(accid) \ 622 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 623 #else 624 #define TCP_ACCEPTOR_HASH(accid) \ 625 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 626 #endif /* _ILP32 */ 627 628 #define IP_ADDR_CACHE_SIZE 2048 629 #define IP_ADDR_CACHE_HASH(faddr) \ 630 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 631 632 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 633 #define TCP_HSP_HASH_SIZE 256 634 635 #define TCP_HSP_HASH(addr) \ 636 (((addr>>24) ^ (addr >>16) ^ \ 637 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 638 639 /* 640 * TCP options struct returned from tcp_parse_options. 641 */ 642 typedef struct tcp_opt_s { 643 uint32_t tcp_opt_mss; 644 uint32_t tcp_opt_wscale; 645 uint32_t tcp_opt_ts_val; 646 uint32_t tcp_opt_ts_ecr; 647 tcp_t *tcp; 648 } tcp_opt_t; 649 650 /* 651 * TCP option struct passing information b/w lisenter and eager. 652 */ 653 struct tcp_options { 654 uint_t to_flags; 655 ssize_t to_boundif; /* IPV6_BOUND_IF */ 656 sock_upper_handle_t to_handle; 657 }; 658 659 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 660 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 661 #define TCPOPT_UPPERHANDLE 0x00000004 /* set upper handle */ 662 663 /* 664 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 665 */ 666 667 #ifdef _BIG_ENDIAN 668 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 669 (TCPOPT_TSTAMP << 8) | 10) 670 #else 671 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 672 (TCPOPT_NOP << 8) | TCPOPT_NOP) 673 #endif 674 675 /* 676 * Flags returned from tcp_parse_options. 677 */ 678 #define TCP_OPT_MSS_PRESENT 1 679 #define TCP_OPT_WSCALE_PRESENT 2 680 #define TCP_OPT_TSTAMP_PRESENT 4 681 #define TCP_OPT_SACK_OK_PRESENT 8 682 #define TCP_OPT_SACK_PRESENT 16 683 684 /* TCP option length */ 685 #define TCPOPT_NOP_LEN 1 686 #define TCPOPT_MAXSEG_LEN 4 687 #define TCPOPT_WS_LEN 3 688 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 689 #define TCPOPT_TSTAMP_LEN 10 690 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 691 #define TCPOPT_SACK_OK_LEN 2 692 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 693 #define TCPOPT_REAL_SACK_LEN 4 694 #define TCPOPT_MAX_SACK_LEN 36 695 #define TCPOPT_HEADER_LEN 2 696 697 /* TCP cwnd burst factor. */ 698 #define TCP_CWND_INFINITE 65535 699 #define TCP_CWND_SS 3 700 #define TCP_CWND_NORMAL 5 701 702 /* Maximum TCP initial cwin (start/restart). */ 703 #define TCP_MAX_INIT_CWND 8 704 705 /* 706 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 707 * either tcp_slow_start_initial or tcp_slow_start_after idle 708 * depending on the caller. If the upper layer has not used the 709 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 710 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 711 * If the upper layer has changed set the tcp_init_cwnd, just use 712 * it to calculate the tcp_cwnd. 713 */ 714 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 715 { \ 716 if ((tcp)->tcp_init_cwnd == 0) { \ 717 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 718 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 719 } else { \ 720 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 721 } \ 722 tcp->tcp_cwnd_cnt = 0; \ 723 } 724 725 /* TCP Timer control structure */ 726 typedef struct tcpt_s { 727 pfv_t tcpt_pfv; /* The routine we are to call */ 728 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 729 } tcpt_t; 730 731 /* Host Specific Parameter structure */ 732 typedef struct tcp_hsp { 733 struct tcp_hsp *tcp_hsp_next; 734 in6_addr_t tcp_hsp_addr_v6; 735 in6_addr_t tcp_hsp_subnet_v6; 736 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 737 int32_t tcp_hsp_sendspace; 738 int32_t tcp_hsp_recvspace; 739 int32_t tcp_hsp_tstamp; 740 } tcp_hsp_t; 741 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 742 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 743 744 /* 745 * Functions called directly via squeue having a prototype of edesc_t. 746 */ 747 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 748 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 749 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 750 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 751 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 752 void tcp_input(void *arg, mblk_t *mp, void *arg2); 753 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 754 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 755 void tcp_output(void *arg, mblk_t *mp, void *arg2); 756 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 757 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 758 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 759 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 760 761 762 /* Prototype for TCP functions */ 763 static void tcp_random_init(void); 764 int tcp_random(void); 765 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 766 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 767 tcp_t *eager); 768 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 769 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 770 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 771 boolean_t user_specified); 772 static void tcp_closei_local(tcp_t *tcp); 773 static void tcp_close_detached(tcp_t *tcp); 774 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 775 mblk_t *idmp, mblk_t **defermp); 776 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 777 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 778 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 779 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 780 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 781 uint32_t scope_id, cred_t *cr, pid_t pid); 782 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 783 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 784 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 785 static char *tcp_display(tcp_t *tcp, char *, char); 786 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 787 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 788 static void tcp_eager_unlink(tcp_t *tcp); 789 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 790 int unixerr); 791 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 792 int tlierr, int unixerr); 793 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 794 cred_t *cr); 795 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 796 char *value, caddr_t cp, cred_t *cr); 797 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 798 char *value, caddr_t cp, cred_t *cr); 799 static int tcp_tpistate(tcp_t *tcp); 800 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 801 int caller_holds_lock); 802 static void tcp_bind_hash_remove(tcp_t *tcp); 803 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 804 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 805 static void tcp_acceptor_hash_remove(tcp_t *tcp); 806 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 807 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 808 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 809 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 810 void tcp_g_q_setup(tcp_stack_t *); 811 void tcp_g_q_create(tcp_stack_t *); 812 void tcp_g_q_destroy(tcp_stack_t *); 813 static int tcp_header_init_ipv4(tcp_t *tcp); 814 static int tcp_header_init_ipv6(tcp_t *tcp); 815 int tcp_init(tcp_t *tcp, queue_t *q); 816 static int tcp_init_values(tcp_t *tcp); 817 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 818 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 819 static void tcp_ip_notify(tcp_t *tcp); 820 static mblk_t *tcp_ire_mp(mblk_t **mpp); 821 static void tcp_iss_init(tcp_t *tcp); 822 static void tcp_keepalive_killer(void *arg); 823 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 824 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 825 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 826 int *do_disconnectp, int *t_errorp, int *sys_errorp); 827 static boolean_t tcp_allow_connopt_set(int level, int name); 828 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 829 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 830 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 831 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 832 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 833 mblk_t *mblk); 834 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 835 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 836 uchar_t *ptr, uint_t len); 837 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 838 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 839 tcp_stack_t *); 840 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 841 caddr_t cp, cred_t *cr); 842 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 843 caddr_t cp, cred_t *cr); 844 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 845 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 846 caddr_t cp, cred_t *cr); 847 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 848 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 849 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 850 static void tcp_reinit(tcp_t *tcp); 851 static void tcp_reinit_values(tcp_t *tcp); 852 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 853 tcp_t *thisstream, cred_t *cr); 854 855 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 856 static uint_t tcp_rcv_drain(tcp_t *tcp); 857 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 858 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 859 static void tcp_ss_rexmit(tcp_t *tcp); 860 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 861 static void tcp_process_options(tcp_t *, tcph_t *); 862 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 863 static void tcp_rsrv(queue_t *q); 864 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 865 static int tcp_snmp_state(tcp_t *tcp); 866 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 867 cred_t *cr); 868 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 869 cred_t *cr); 870 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 871 cred_t *cr); 872 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 873 cred_t *cr); 874 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 875 cred_t *cr); 876 static void tcp_timer(void *arg); 877 static void tcp_timer_callback(void *); 878 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 879 boolean_t random); 880 static in_port_t tcp_get_next_priv_port(const tcp_t *); 881 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 882 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 883 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 884 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 885 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 886 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 887 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 888 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 889 const int num_sack_blk, int *usable, uint_t *snxt, 890 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 891 const int mdt_thres); 892 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 893 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 894 const int num_sack_blk, int *usable, uint_t *snxt, 895 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 896 const int mdt_thres); 897 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 898 int num_sack_blk); 899 static void tcp_wsrv(queue_t *q); 900 static int tcp_xmit_end(tcp_t *tcp); 901 static void tcp_ack_timer(void *arg); 902 static mblk_t *tcp_ack_mp(tcp_t *tcp); 903 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 904 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 905 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 906 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 907 uint32_t ack, int ctl); 908 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 909 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 910 static int setmaxps(queue_t *q, int maxpsz); 911 static void tcp_set_rto(tcp_t *, time_t); 912 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 913 boolean_t, boolean_t); 914 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 915 boolean_t ipsec_mctl); 916 static int tcp_build_hdrs(tcp_t *); 917 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 918 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 919 tcph_t *tcph); 920 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 921 static mblk_t *tcp_mdt_info_mp(mblk_t *); 922 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 923 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 924 const boolean_t, const uint32_t, const uint32_t, 925 const uint32_t, const uint32_t, tcp_stack_t *); 926 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 927 const uint_t, const uint_t, boolean_t *); 928 static mblk_t *tcp_lso_info_mp(mblk_t *); 929 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 930 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 931 extern mblk_t *tcp_timermp_alloc(int); 932 extern void tcp_timermp_free(tcp_t *); 933 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 934 static void tcp_stop_lingering(tcp_t *tcp); 935 static void tcp_close_linger_timeout(void *arg); 936 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 937 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 938 static void tcp_stack_fini(netstackid_t stackid, void *arg); 939 static void *tcp_g_kstat_init(tcp_g_stat_t *); 940 static void tcp_g_kstat_fini(kstat_t *); 941 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 942 static void tcp_kstat_fini(netstackid_t, kstat_t *); 943 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 944 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 945 static int tcp_kstat_update(kstat_t *kp, int rw); 946 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 947 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 948 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 949 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 950 tcph_t *tcph, mblk_t *idmp); 951 static int tcp_squeue_switch(int); 952 953 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 954 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 955 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 956 static int tcp_tpi_close(queue_t *, int); 957 static int tcpclose_accept(queue_t *); 958 959 static void tcp_squeue_add(squeue_t *); 960 static boolean_t tcp_zcopy_check(tcp_t *); 961 static void tcp_zcopy_notify(tcp_t *); 962 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 963 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 964 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 965 966 extern void tcp_kssl_input(tcp_t *, mblk_t *); 967 968 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 969 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 970 971 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 972 sock_upper_handle_t, cred_t *); 973 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 974 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 975 static int tcp_do_listen(conn_t *, int, cred_t *); 976 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 977 cred_t *, pid_t); 978 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 979 boolean_t); 980 static int tcp_do_unbind(conn_t *); 981 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 982 boolean_t); 983 984 /* 985 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 986 * 987 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 988 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 989 * (defined in tcp.h) needs to be filled in and passed into the kernel 990 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 991 * structure contains the four-tuple of a TCP connection and a range of TCP 992 * states (specified by ac_start and ac_end). The use of wildcard addresses 993 * and ports is allowed. Connections with a matching four tuple and a state 994 * within the specified range will be aborted. The valid states for the 995 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 996 * inclusive. 997 * 998 * An application which has its connection aborted by this ioctl will receive 999 * an error that is dependent on the connection state at the time of the abort. 1000 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1001 * though a RST packet has been received. If the connection state is equal to 1002 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1003 * and all resources associated with the connection will be freed. 1004 */ 1005 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1006 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1007 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1008 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 1009 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1010 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1011 boolean_t, tcp_stack_t *); 1012 1013 static struct module_info tcp_rinfo = { 1014 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1015 }; 1016 1017 static struct module_info tcp_winfo = { 1018 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1019 }; 1020 1021 /* 1022 * Entry points for TCP as a device. The normal case which supports 1023 * the TCP functionality. 1024 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1025 */ 1026 struct qinit tcp_rinitv4 = { 1027 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 1028 }; 1029 1030 struct qinit tcp_rinitv6 = { 1031 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 1032 }; 1033 1034 struct qinit tcp_winit = { 1035 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1036 }; 1037 1038 /* Initial entry point for TCP in socket mode. */ 1039 struct qinit tcp_sock_winit = { 1040 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1041 }; 1042 1043 /* TCP entry point during fallback */ 1044 struct qinit tcp_fallback_sock_winit = { 1045 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 1046 }; 1047 1048 /* 1049 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1050 * an accept. Avoid allocating data structures since eager has already 1051 * been created. 1052 */ 1053 struct qinit tcp_acceptor_rinit = { 1054 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1055 }; 1056 1057 struct qinit tcp_acceptor_winit = { 1058 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1059 }; 1060 1061 /* 1062 * Entry points for TCP loopback (read side only) 1063 * The open routine is only used for reopens, thus no need to 1064 * have a separate one for tcp_openv6. 1065 */ 1066 struct qinit tcp_loopback_rinit = { 1067 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 1068 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1069 }; 1070 1071 /* For AF_INET aka /dev/tcp */ 1072 struct streamtab tcpinfov4 = { 1073 &tcp_rinitv4, &tcp_winit 1074 }; 1075 1076 /* For AF_INET6 aka /dev/tcp6 */ 1077 struct streamtab tcpinfov6 = { 1078 &tcp_rinitv6, &tcp_winit 1079 }; 1080 1081 sock_downcalls_t sock_tcp_downcalls; 1082 1083 /* 1084 * Have to ensure that tcp_g_q_close is not done by an 1085 * interrupt thread. 1086 */ 1087 static taskq_t *tcp_taskq; 1088 1089 /* Setable only in /etc/system. Move to ndd? */ 1090 boolean_t tcp_icmp_source_quench = B_FALSE; 1091 1092 /* 1093 * Following assumes TPI alignment requirements stay along 32 bit 1094 * boundaries 1095 */ 1096 #define ROUNDUP32(x) \ 1097 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1098 1099 /* Template for response to info request. */ 1100 static struct T_info_ack tcp_g_t_info_ack = { 1101 T_INFO_ACK, /* PRIM_type */ 1102 0, /* TSDU_size */ 1103 T_INFINITE, /* ETSDU_size */ 1104 T_INVALID, /* CDATA_size */ 1105 T_INVALID, /* DDATA_size */ 1106 sizeof (sin_t), /* ADDR_size */ 1107 0, /* OPT_size - not initialized here */ 1108 TIDUSZ, /* TIDU_size */ 1109 T_COTS_ORD, /* SERV_type */ 1110 TCPS_IDLE, /* CURRENT_state */ 1111 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1112 }; 1113 1114 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1115 T_INFO_ACK, /* PRIM_type */ 1116 0, /* TSDU_size */ 1117 T_INFINITE, /* ETSDU_size */ 1118 T_INVALID, /* CDATA_size */ 1119 T_INVALID, /* DDATA_size */ 1120 sizeof (sin6_t), /* ADDR_size */ 1121 0, /* OPT_size - not initialized here */ 1122 TIDUSZ, /* TIDU_size */ 1123 T_COTS_ORD, /* SERV_type */ 1124 TCPS_IDLE, /* CURRENT_state */ 1125 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1126 }; 1127 1128 #define MS 1L 1129 #define SECONDS (1000 * MS) 1130 #define MINUTES (60 * SECONDS) 1131 #define HOURS (60 * MINUTES) 1132 #define DAYS (24 * HOURS) 1133 1134 #define PARAM_MAX (~(uint32_t)0) 1135 1136 /* Max size IP datagram is 64k - 1 */ 1137 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1138 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1139 /* Max of the above */ 1140 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1141 1142 /* Largest TCP port number */ 1143 #define TCP_MAX_PORT (64 * 1024 - 1) 1144 1145 /* 1146 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1147 * layer header. It has to be a multiple of 4. 1148 */ 1149 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1150 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1151 1152 /* 1153 * All of these are alterable, within the min/max values given, at run time. 1154 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1155 * per the TCP spec. 1156 */ 1157 /* BEGIN CSTYLED */ 1158 static tcpparam_t lcl_tcp_param_arr[] = { 1159 /*min max value name */ 1160 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1161 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1162 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1163 { 1, 1024, 1, "tcp_conn_req_min" }, 1164 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1165 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1166 { 0, 10, 0, "tcp_debug" }, 1167 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1168 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1169 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1170 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1171 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1172 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1173 { 1, 255, 64, "tcp_ipv4_ttl"}, 1174 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1175 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1176 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1177 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1178 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1179 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1180 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1181 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1182 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1183 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1184 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1185 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1186 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1187 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1188 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1189 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1190 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1191 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1192 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1193 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1194 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1195 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1196 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1197 /* 1198 * Question: What default value should I set for tcp_strong_iss? 1199 */ 1200 { 0, 2, 1, "tcp_strong_iss"}, 1201 { 0, 65536, 20, "tcp_rtt_updates"}, 1202 { 0, 1, 1, "tcp_wscale_always"}, 1203 { 0, 1, 0, "tcp_tstamp_always"}, 1204 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1205 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1206 { 0, 16, 2, "tcp_deferred_acks_max"}, 1207 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1208 { 1, 4, 4, "tcp_slow_start_initial"}, 1209 { 0, 2, 2, "tcp_sack_permitted"}, 1210 { 0, 1, 1, "tcp_compression_enabled"}, 1211 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1212 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1213 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1214 { 0, 1, 0, "tcp_rev_src_routes"}, 1215 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1216 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1217 { 0, 16, 8, "tcp_local_dacks_max"}, 1218 { 0, 2, 1, "tcp_ecn_permitted"}, 1219 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1220 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1221 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1222 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1223 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1224 }; 1225 /* END CSTYLED */ 1226 1227 /* 1228 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1229 * each header fragment in the header buffer. Each parameter value has 1230 * to be a multiple of 4 (32-bit aligned). 1231 */ 1232 static tcpparam_t lcl_tcp_mdt_head_param = 1233 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1234 static tcpparam_t lcl_tcp_mdt_tail_param = 1235 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1236 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1237 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1238 1239 /* 1240 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1241 * the maximum number of payload buffers associated per Multidata. 1242 */ 1243 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1244 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1245 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1246 1247 /* Round up the value to the nearest mss. */ 1248 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1249 1250 /* 1251 * Set ECN capable transport (ECT) code point in IP header. 1252 * 1253 * Note that there are 2 ECT code points '01' and '10', which are called 1254 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1255 * point ECT(0) for TCP as described in RFC 2481. 1256 */ 1257 #define SET_ECT(tcp, iph) \ 1258 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1259 /* We need to clear the code point first. */ \ 1260 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1261 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1262 } else { \ 1263 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1264 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1265 } 1266 1267 /* 1268 * The format argument to pass to tcp_display(). 1269 * DISP_PORT_ONLY means that the returned string has only port info. 1270 * DISP_ADDR_AND_PORT means that the returned string also contains the 1271 * remote and local IP address. 1272 */ 1273 #define DISP_PORT_ONLY 1 1274 #define DISP_ADDR_AND_PORT 2 1275 1276 #define NDD_TOO_QUICK_MSG \ 1277 "ndd get info rate too high for non-privileged users, try again " \ 1278 "later.\n" 1279 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1280 1281 #define IS_VMLOANED_MBLK(mp) \ 1282 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1283 1284 1285 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1286 boolean_t tcp_mdt_chain = B_TRUE; 1287 1288 /* 1289 * MDT threshold in the form of effective send MSS multiplier; we take 1290 * the MDT path if the amount of unsent data exceeds the threshold value 1291 * (default threshold is 1*SMSS). 1292 */ 1293 uint_t tcp_mdt_smss_threshold = 1; 1294 1295 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1296 1297 /* 1298 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1299 * tunable settable via NDD. Otherwise, the per-connection behavior is 1300 * determined dynamically during tcp_adapt_ire(), which is the default. 1301 */ 1302 boolean_t tcp_static_maxpsz = B_FALSE; 1303 1304 /* Setable in /etc/system */ 1305 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1306 uint32_t tcp_random_anon_port = 1; 1307 1308 /* 1309 * To reach to an eager in Q0 which can be dropped due to an incoming 1310 * new SYN request when Q0 is full, a new doubly linked list is 1311 * introduced. This list allows to select an eager from Q0 in O(1) time. 1312 * This is needed to avoid spending too much time walking through the 1313 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1314 * this new list has to be a member of Q0. 1315 * This list is headed by listener's tcp_t. When the list is empty, 1316 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1317 * of listener's tcp_t point to listener's tcp_t itself. 1318 * 1319 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1320 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1321 * These macros do not affect the eager's membership to Q0. 1322 */ 1323 1324 1325 #define MAKE_DROPPABLE(listener, eager) \ 1326 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1327 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1328 = (eager); \ 1329 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1330 (eager)->tcp_eager_next_drop_q0 = \ 1331 (listener)->tcp_eager_next_drop_q0; \ 1332 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1333 } 1334 1335 #define MAKE_UNDROPPABLE(eager) \ 1336 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1337 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1338 = (eager)->tcp_eager_prev_drop_q0; \ 1339 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1340 = (eager)->tcp_eager_next_drop_q0; \ 1341 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1342 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1343 } 1344 1345 /* 1346 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1347 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1348 * data, TCP will not respond with an ACK. RFC 793 requires that 1349 * TCP responds with an ACK for such a bogus ACK. By not following 1350 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1351 * an attacker successfully spoofs an acceptable segment to our 1352 * peer; or when our peer is "confused." 1353 */ 1354 uint32_t tcp_drop_ack_unsent_cnt = 10; 1355 1356 /* 1357 * Hook functions to enable cluster networking 1358 * On non-clustered systems these vectors must always be NULL. 1359 */ 1360 1361 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1362 sa_family_t addr_family, uint8_t *laddrp, 1363 in_port_t lport, void *args) = NULL; 1364 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1365 sa_family_t addr_family, uint8_t *laddrp, 1366 in_port_t lport, void *args) = NULL; 1367 1368 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1369 boolean_t is_outgoing, 1370 sa_family_t addr_family, 1371 uint8_t *laddrp, in_port_t lport, 1372 uint8_t *faddrp, in_port_t fport, 1373 void *args) = NULL; 1374 1375 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1376 sa_family_t addr_family, uint8_t *laddrp, 1377 in_port_t lport, uint8_t *faddrp, 1378 in_port_t fport, void *args) = NULL; 1379 1380 /* 1381 * The following are defined in ip.c 1382 */ 1383 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1384 sa_family_t addr_family, uint8_t *laddrp, 1385 void *args); 1386 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1387 sa_family_t addr_family, uint8_t *laddrp, 1388 uint8_t *faddrp, void *args); 1389 1390 1391 /* 1392 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1393 */ 1394 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1395 (err) = 0; \ 1396 if (cl_inet_connect2 != NULL) { \ 1397 /* \ 1398 * Running in cluster mode - register active connection \ 1399 * information \ 1400 */ \ 1401 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1402 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1403 (err) = (*cl_inet_connect2)( \ 1404 (connp)->conn_netstack->netstack_stackid,\ 1405 IPPROTO_TCP, is_outgoing, AF_INET, \ 1406 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1407 (in_port_t)(tcp)->tcp_lport, \ 1408 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1409 (in_port_t)(tcp)->tcp_fport, NULL); \ 1410 } \ 1411 } else { \ 1412 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1413 &(tcp)->tcp_ip6h->ip6_src)) { \ 1414 (err) = (*cl_inet_connect2)( \ 1415 (connp)->conn_netstack->netstack_stackid,\ 1416 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1417 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1418 (in_port_t)(tcp)->tcp_lport, \ 1419 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1420 (in_port_t)(tcp)->tcp_fport, NULL); \ 1421 } \ 1422 } \ 1423 } \ 1424 } 1425 1426 #define CL_INET_DISCONNECT(connp, tcp) { \ 1427 if (cl_inet_disconnect != NULL) { \ 1428 /* \ 1429 * Running in cluster mode - deregister active \ 1430 * connection information \ 1431 */ \ 1432 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1433 if ((tcp)->tcp_ip_src != 0) { \ 1434 (*cl_inet_disconnect)( \ 1435 (connp)->conn_netstack->netstack_stackid,\ 1436 IPPROTO_TCP, AF_INET, \ 1437 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1438 (in_port_t)(tcp)->tcp_lport, \ 1439 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1440 (in_port_t)(tcp)->tcp_fport, NULL); \ 1441 } \ 1442 } else { \ 1443 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1444 &(tcp)->tcp_ip_src_v6)) { \ 1445 (*cl_inet_disconnect)( \ 1446 (connp)->conn_netstack->netstack_stackid,\ 1447 IPPROTO_TCP, AF_INET6, \ 1448 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1449 (in_port_t)(tcp)->tcp_lport, \ 1450 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1451 (in_port_t)(tcp)->tcp_fport, NULL); \ 1452 } \ 1453 } \ 1454 } \ 1455 } 1456 1457 /* 1458 * Cluster networking hook for traversing current connection list. 1459 * This routine is used to extract the current list of live connections 1460 * which must continue to to be dispatched to this node. 1461 */ 1462 int cl_tcp_walk_list(netstackid_t stack_id, 1463 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1464 1465 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1466 void *arg, tcp_stack_t *tcps); 1467 1468 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1469 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1470 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1471 ip6_t *, ip6h, int, 0); 1472 1473 /* 1474 * Figure out the value of window scale opton. Note that the rwnd is 1475 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1476 * We cannot find the scale value and then do a round up of tcp_rwnd 1477 * because the scale value may not be correct after that. 1478 * 1479 * Set the compiler flag to make this function inline. 1480 */ 1481 static void 1482 tcp_set_ws_value(tcp_t *tcp) 1483 { 1484 int i; 1485 uint32_t rwnd = tcp->tcp_rwnd; 1486 1487 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1488 i++, rwnd >>= 1) 1489 ; 1490 tcp->tcp_rcv_ws = i; 1491 } 1492 1493 /* 1494 * Remove a connection from the list of detached TIME_WAIT connections. 1495 * It returns B_FALSE if it can't remove the connection from the list 1496 * as the connection has already been removed from the list due to an 1497 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1498 */ 1499 static boolean_t 1500 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1501 { 1502 boolean_t locked = B_FALSE; 1503 1504 if (tcp_time_wait == NULL) { 1505 tcp_time_wait = *((tcp_squeue_priv_t **) 1506 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1507 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1508 locked = B_TRUE; 1509 } else { 1510 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1511 } 1512 1513 if (tcp->tcp_time_wait_expire == 0) { 1514 ASSERT(tcp->tcp_time_wait_next == NULL); 1515 ASSERT(tcp->tcp_time_wait_prev == NULL); 1516 if (locked) 1517 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1518 return (B_FALSE); 1519 } 1520 ASSERT(TCP_IS_DETACHED(tcp)); 1521 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1522 1523 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1524 ASSERT(tcp->tcp_time_wait_prev == NULL); 1525 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1526 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1527 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1528 NULL; 1529 } else { 1530 tcp_time_wait->tcp_time_wait_tail = NULL; 1531 } 1532 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1533 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1534 ASSERT(tcp->tcp_time_wait_next == NULL); 1535 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1536 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1537 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1538 } else { 1539 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1540 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1541 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1542 tcp->tcp_time_wait_next; 1543 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1544 tcp->tcp_time_wait_prev; 1545 } 1546 tcp->tcp_time_wait_next = NULL; 1547 tcp->tcp_time_wait_prev = NULL; 1548 tcp->tcp_time_wait_expire = 0; 1549 1550 if (locked) 1551 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1552 return (B_TRUE); 1553 } 1554 1555 /* 1556 * Add a connection to the list of detached TIME_WAIT connections 1557 * and set its time to expire. 1558 */ 1559 static void 1560 tcp_time_wait_append(tcp_t *tcp) 1561 { 1562 tcp_stack_t *tcps = tcp->tcp_tcps; 1563 tcp_squeue_priv_t *tcp_time_wait = 1564 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1565 SQPRIVATE_TCP)); 1566 1567 tcp_timers_stop(tcp); 1568 1569 /* Freed above */ 1570 ASSERT(tcp->tcp_timer_tid == 0); 1571 ASSERT(tcp->tcp_ack_tid == 0); 1572 1573 /* must have happened at the time of detaching the tcp */ 1574 ASSERT(tcp->tcp_ptpahn == NULL); 1575 ASSERT(tcp->tcp_flow_stopped == 0); 1576 ASSERT(tcp->tcp_time_wait_next == NULL); 1577 ASSERT(tcp->tcp_time_wait_prev == NULL); 1578 ASSERT(tcp->tcp_time_wait_expire == NULL); 1579 ASSERT(tcp->tcp_listener == NULL); 1580 1581 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1582 /* 1583 * The value computed below in tcp->tcp_time_wait_expire may 1584 * appear negative or wrap around. That is ok since our 1585 * interest is only in the difference between the current lbolt 1586 * value and tcp->tcp_time_wait_expire. But the value should not 1587 * be zero, since it means the tcp is not in the TIME_WAIT list. 1588 * The corresponding comparison in tcp_time_wait_collector() uses 1589 * modular arithmetic. 1590 */ 1591 tcp->tcp_time_wait_expire += 1592 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1593 if (tcp->tcp_time_wait_expire == 0) 1594 tcp->tcp_time_wait_expire = 1; 1595 1596 ASSERT(TCP_IS_DETACHED(tcp)); 1597 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1598 ASSERT(tcp->tcp_time_wait_next == NULL); 1599 ASSERT(tcp->tcp_time_wait_prev == NULL); 1600 TCP_DBGSTAT(tcps, tcp_time_wait); 1601 1602 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1603 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1604 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1605 tcp_time_wait->tcp_time_wait_head = tcp; 1606 } else { 1607 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1608 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1609 TCPS_TIME_WAIT); 1610 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1611 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1612 } 1613 tcp_time_wait->tcp_time_wait_tail = tcp; 1614 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1615 } 1616 1617 /* ARGSUSED */ 1618 void 1619 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1620 { 1621 conn_t *connp = (conn_t *)arg; 1622 tcp_t *tcp = connp->conn_tcp; 1623 tcp_stack_t *tcps = tcp->tcp_tcps; 1624 1625 ASSERT(tcp != NULL); 1626 if (tcp->tcp_state == TCPS_CLOSED) { 1627 return; 1628 } 1629 1630 ASSERT((tcp->tcp_family == AF_INET && 1631 tcp->tcp_ipversion == IPV4_VERSION) || 1632 (tcp->tcp_family == AF_INET6 && 1633 (tcp->tcp_ipversion == IPV4_VERSION || 1634 tcp->tcp_ipversion == IPV6_VERSION))); 1635 ASSERT(!tcp->tcp_listener); 1636 1637 TCP_STAT(tcps, tcp_time_wait_reap); 1638 ASSERT(TCP_IS_DETACHED(tcp)); 1639 1640 /* 1641 * Because they have no upstream client to rebind or tcp_close() 1642 * them later, we axe the connection here and now. 1643 */ 1644 tcp_close_detached(tcp); 1645 } 1646 1647 /* 1648 * Remove cached/latched IPsec references. 1649 */ 1650 void 1651 tcp_ipsec_cleanup(tcp_t *tcp) 1652 { 1653 conn_t *connp = tcp->tcp_connp; 1654 1655 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1656 1657 if (connp->conn_latch != NULL) { 1658 IPLATCH_REFRELE(connp->conn_latch, 1659 connp->conn_netstack); 1660 connp->conn_latch = NULL; 1661 } 1662 if (connp->conn_policy != NULL) { 1663 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1664 connp->conn_policy = NULL; 1665 } 1666 } 1667 1668 /* 1669 * Cleaup before placing on free list. 1670 * Disassociate from the netstack/tcp_stack_t since the freelist 1671 * is per squeue and not per netstack. 1672 */ 1673 void 1674 tcp_cleanup(tcp_t *tcp) 1675 { 1676 mblk_t *mp; 1677 char *tcp_iphc; 1678 int tcp_iphc_len; 1679 int tcp_hdr_grown; 1680 tcp_sack_info_t *tcp_sack_info; 1681 conn_t *connp = tcp->tcp_connp; 1682 tcp_stack_t *tcps = tcp->tcp_tcps; 1683 netstack_t *ns = tcps->tcps_netstack; 1684 mblk_t *tcp_rsrv_mp; 1685 1686 tcp_bind_hash_remove(tcp); 1687 1688 /* Cleanup that which needs the netstack first */ 1689 tcp_ipsec_cleanup(tcp); 1690 1691 tcp_free(tcp); 1692 1693 /* Release any SSL context */ 1694 if (tcp->tcp_kssl_ent != NULL) { 1695 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1696 tcp->tcp_kssl_ent = NULL; 1697 } 1698 1699 if (tcp->tcp_kssl_ctx != NULL) { 1700 kssl_release_ctx(tcp->tcp_kssl_ctx); 1701 tcp->tcp_kssl_ctx = NULL; 1702 } 1703 tcp->tcp_kssl_pending = B_FALSE; 1704 1705 conn_delete_ire(connp, NULL); 1706 1707 /* 1708 * Since we will bzero the entire structure, we need to 1709 * remove it and reinsert it in global hash list. We 1710 * know the walkers can't get to this conn because we 1711 * had set CONDEMNED flag earlier and checked reference 1712 * under conn_lock so walker won't pick it and when we 1713 * go the ipcl_globalhash_remove() below, no walker 1714 * can get to it. 1715 */ 1716 ipcl_globalhash_remove(connp); 1717 1718 /* 1719 * Now it is safe to decrement the reference counts. 1720 * This might be the last reference on the netstack and TCPS 1721 * in which case it will cause the tcp_g_q_close and 1722 * the freeing of the IP Instance. 1723 */ 1724 connp->conn_netstack = NULL; 1725 netstack_rele(ns); 1726 ASSERT(tcps != NULL); 1727 tcp->tcp_tcps = NULL; 1728 TCPS_REFRELE(tcps); 1729 1730 /* Save some state */ 1731 mp = tcp->tcp_timercache; 1732 1733 tcp_sack_info = tcp->tcp_sack_info; 1734 tcp_iphc = tcp->tcp_iphc; 1735 tcp_iphc_len = tcp->tcp_iphc_len; 1736 tcp_hdr_grown = tcp->tcp_hdr_grown; 1737 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1738 1739 if (connp->conn_cred != NULL) { 1740 crfree(connp->conn_cred); 1741 connp->conn_cred = NULL; 1742 } 1743 if (connp->conn_peercred != NULL) { 1744 crfree(connp->conn_peercred); 1745 connp->conn_peercred = NULL; 1746 } 1747 ipcl_conn_cleanup(connp); 1748 connp->conn_flags = IPCL_TCPCONN; 1749 bzero(tcp, sizeof (tcp_t)); 1750 1751 /* restore the state */ 1752 tcp->tcp_timercache = mp; 1753 1754 tcp->tcp_sack_info = tcp_sack_info; 1755 tcp->tcp_iphc = tcp_iphc; 1756 tcp->tcp_iphc_len = tcp_iphc_len; 1757 tcp->tcp_hdr_grown = tcp_hdr_grown; 1758 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1759 1760 tcp->tcp_connp = connp; 1761 1762 ASSERT(connp->conn_tcp == tcp); 1763 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1764 connp->conn_state_flags = CONN_INCIPIENT; 1765 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1766 ASSERT(connp->conn_ref == 1); 1767 } 1768 1769 /* 1770 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1771 * is done forwards from the head. 1772 * This walks all stack instances since 1773 * tcp_time_wait remains global across all stacks. 1774 */ 1775 /* ARGSUSED */ 1776 void 1777 tcp_time_wait_collector(void *arg) 1778 { 1779 tcp_t *tcp; 1780 clock_t now; 1781 mblk_t *mp; 1782 conn_t *connp; 1783 kmutex_t *lock; 1784 boolean_t removed; 1785 1786 squeue_t *sqp = (squeue_t *)arg; 1787 tcp_squeue_priv_t *tcp_time_wait = 1788 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1789 1790 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1791 tcp_time_wait->tcp_time_wait_tid = 0; 1792 1793 if (tcp_time_wait->tcp_free_list != NULL && 1794 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1795 TCP_G_STAT(tcp_freelist_cleanup); 1796 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1797 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1798 tcp->tcp_time_wait_next = NULL; 1799 tcp_time_wait->tcp_free_list_cnt--; 1800 ASSERT(tcp->tcp_tcps == NULL); 1801 CONN_DEC_REF(tcp->tcp_connp); 1802 } 1803 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1804 } 1805 1806 /* 1807 * In order to reap time waits reliably, we should use a 1808 * source of time that is not adjustable by the user -- hence 1809 * the call to ddi_get_lbolt(). 1810 */ 1811 now = ddi_get_lbolt(); 1812 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1813 /* 1814 * Compare times using modular arithmetic, since 1815 * lbolt can wrapover. 1816 */ 1817 if ((now - tcp->tcp_time_wait_expire) < 0) { 1818 break; 1819 } 1820 1821 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1822 ASSERT(removed); 1823 1824 connp = tcp->tcp_connp; 1825 ASSERT(connp->conn_fanout != NULL); 1826 lock = &connp->conn_fanout->connf_lock; 1827 /* 1828 * This is essentially a TW reclaim fast path optimization for 1829 * performance where the timewait collector checks under the 1830 * fanout lock (so that no one else can get access to the 1831 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1832 * the classifier hash list. If ref count is indeed 2, we can 1833 * just remove the conn under the fanout lock and avoid 1834 * cleaning up the conn under the squeue, provided that 1835 * clustering callbacks are not enabled. If clustering is 1836 * enabled, we need to make the clustering callback before 1837 * setting the CONDEMNED flag and after dropping all locks and 1838 * so we forego this optimization and fall back to the slow 1839 * path. Also please see the comments in tcp_closei_local 1840 * regarding the refcnt logic. 1841 * 1842 * Since we are holding the tcp_time_wait_lock, its better 1843 * not to block on the fanout_lock because other connections 1844 * can't add themselves to time_wait list. So we do a 1845 * tryenter instead of mutex_enter. 1846 */ 1847 if (mutex_tryenter(lock)) { 1848 mutex_enter(&connp->conn_lock); 1849 if ((connp->conn_ref == 2) && 1850 (cl_inet_disconnect == NULL)) { 1851 ipcl_hash_remove_locked(connp, 1852 connp->conn_fanout); 1853 /* 1854 * Set the CONDEMNED flag now itself so that 1855 * the refcnt cannot increase due to any 1856 * walker. But we have still not cleaned up 1857 * conn_ire_cache. This is still ok since 1858 * we are going to clean it up in tcp_cleanup 1859 * immediately and any interface unplumb 1860 * thread will wait till the ire is blown away 1861 */ 1862 connp->conn_state_flags |= CONN_CONDEMNED; 1863 mutex_exit(lock); 1864 mutex_exit(&connp->conn_lock); 1865 if (tcp_time_wait->tcp_free_list_cnt < 1866 tcp_free_list_max_cnt) { 1867 /* Add to head of tcp_free_list */ 1868 mutex_exit( 1869 &tcp_time_wait->tcp_time_wait_lock); 1870 tcp_cleanup(tcp); 1871 ASSERT(connp->conn_latch == NULL); 1872 ASSERT(connp->conn_policy == NULL); 1873 ASSERT(tcp->tcp_tcps == NULL); 1874 ASSERT(connp->conn_netstack == NULL); 1875 1876 mutex_enter( 1877 &tcp_time_wait->tcp_time_wait_lock); 1878 tcp->tcp_time_wait_next = 1879 tcp_time_wait->tcp_free_list; 1880 tcp_time_wait->tcp_free_list = tcp; 1881 tcp_time_wait->tcp_free_list_cnt++; 1882 continue; 1883 } else { 1884 /* Do not add to tcp_free_list */ 1885 mutex_exit( 1886 &tcp_time_wait->tcp_time_wait_lock); 1887 tcp_bind_hash_remove(tcp); 1888 conn_delete_ire(tcp->tcp_connp, NULL); 1889 tcp_ipsec_cleanup(tcp); 1890 CONN_DEC_REF(tcp->tcp_connp); 1891 } 1892 } else { 1893 CONN_INC_REF_LOCKED(connp); 1894 mutex_exit(lock); 1895 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1896 mutex_exit(&connp->conn_lock); 1897 /* 1898 * We can reuse the closemp here since conn has 1899 * detached (otherwise we wouldn't even be in 1900 * time_wait list). tcp_closemp_used can safely 1901 * be changed without taking a lock as no other 1902 * thread can concurrently access it at this 1903 * point in the connection lifecycle. 1904 */ 1905 1906 if (tcp->tcp_closemp.b_prev == NULL) 1907 tcp->tcp_closemp_used = B_TRUE; 1908 else 1909 cmn_err(CE_PANIC, 1910 "tcp_timewait_collector: " 1911 "concurrent use of tcp_closemp: " 1912 "connp %p tcp %p\n", (void *)connp, 1913 (void *)tcp); 1914 1915 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1916 mp = &tcp->tcp_closemp; 1917 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1918 tcp_timewait_output, connp, 1919 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1920 } 1921 } else { 1922 mutex_enter(&connp->conn_lock); 1923 CONN_INC_REF_LOCKED(connp); 1924 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1925 mutex_exit(&connp->conn_lock); 1926 /* 1927 * We can reuse the closemp here since conn has 1928 * detached (otherwise we wouldn't even be in 1929 * time_wait list). tcp_closemp_used can safely 1930 * be changed without taking a lock as no other 1931 * thread can concurrently access it at this 1932 * point in the connection lifecycle. 1933 */ 1934 1935 if (tcp->tcp_closemp.b_prev == NULL) 1936 tcp->tcp_closemp_used = B_TRUE; 1937 else 1938 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1939 "concurrent use of tcp_closemp: " 1940 "connp %p tcp %p\n", (void *)connp, 1941 (void *)tcp); 1942 1943 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1944 mp = &tcp->tcp_closemp; 1945 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1946 tcp_timewait_output, connp, 1947 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1948 } 1949 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1950 } 1951 1952 if (tcp_time_wait->tcp_free_list != NULL) 1953 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1954 1955 tcp_time_wait->tcp_time_wait_tid = 1956 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1957 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1958 CALLOUT_FLAG_ROUNDUP); 1959 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1960 } 1961 1962 /* 1963 * Reply to a clients T_CONN_RES TPI message. This function 1964 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1965 * on the acceptor STREAM and processed in tcp_wput_accept(). 1966 * Read the block comment on top of tcp_conn_request(). 1967 */ 1968 static void 1969 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1970 { 1971 tcp_t *acceptor; 1972 tcp_t *eager; 1973 tcp_t *tcp; 1974 struct T_conn_res *tcr; 1975 t_uscalar_t acceptor_id; 1976 t_scalar_t seqnum; 1977 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1978 struct tcp_options *tcpopt; 1979 mblk_t *ok_mp; 1980 mblk_t *mp1; 1981 tcp_stack_t *tcps = listener->tcp_tcps; 1982 1983 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1984 tcp_err_ack(listener, mp, TPROTO, 0); 1985 return; 1986 } 1987 tcr = (struct T_conn_res *)mp->b_rptr; 1988 1989 /* 1990 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1991 * read side queue of the streams device underneath us i.e. the 1992 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1993 * look it up in the queue_hash. Under LP64 it sends down the 1994 * minor_t of the accepting endpoint. 1995 * 1996 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1997 * fanout hash lock is held. 1998 * This prevents any thread from entering the acceptor queue from 1999 * below (since it has not been hard bound yet i.e. any inbound 2000 * packets will arrive on the listener or default tcp queue and 2001 * go through tcp_lookup). 2002 * The CONN_INC_REF will prevent the acceptor from closing. 2003 * 2004 * XXX It is still possible for a tli application to send down data 2005 * on the accepting stream while another thread calls t_accept. 2006 * This should not be a problem for well-behaved applications since 2007 * the T_OK_ACK is sent after the queue swapping is completed. 2008 * 2009 * If the accepting fd is the same as the listening fd, avoid 2010 * queue hash lookup since that will return an eager listener in a 2011 * already established state. 2012 */ 2013 acceptor_id = tcr->ACCEPTOR_id; 2014 mutex_enter(&listener->tcp_eager_lock); 2015 if (listener->tcp_acceptor_id == acceptor_id) { 2016 eager = listener->tcp_eager_next_q; 2017 /* only count how many T_CONN_INDs so don't count q0 */ 2018 if ((listener->tcp_conn_req_cnt_q != 1) || 2019 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2020 mutex_exit(&listener->tcp_eager_lock); 2021 tcp_err_ack(listener, mp, TBADF, 0); 2022 return; 2023 } 2024 if (listener->tcp_conn_req_cnt_q0 != 0) { 2025 /* Throw away all the eagers on q0. */ 2026 tcp_eager_cleanup(listener, 1); 2027 } 2028 if (listener->tcp_syn_defense) { 2029 listener->tcp_syn_defense = B_FALSE; 2030 if (listener->tcp_ip_addr_cache != NULL) { 2031 kmem_free(listener->tcp_ip_addr_cache, 2032 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2033 listener->tcp_ip_addr_cache = NULL; 2034 } 2035 } 2036 /* 2037 * Transfer tcp_conn_req_max to the eager so that when 2038 * a disconnect occurs we can revert the endpoint to the 2039 * listen state. 2040 */ 2041 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2042 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2043 /* 2044 * Get a reference on the acceptor just like the 2045 * tcp_acceptor_hash_lookup below. 2046 */ 2047 acceptor = listener; 2048 CONN_INC_REF(acceptor->tcp_connp); 2049 } else { 2050 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 2051 if (acceptor == NULL) { 2052 if (listener->tcp_debug) { 2053 (void) strlog(TCP_MOD_ID, 0, 1, 2054 SL_ERROR|SL_TRACE, 2055 "tcp_accept: did not find acceptor 0x%x\n", 2056 acceptor_id); 2057 } 2058 mutex_exit(&listener->tcp_eager_lock); 2059 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2060 return; 2061 } 2062 /* 2063 * Verify acceptor state. The acceptable states for an acceptor 2064 * include TCPS_IDLE and TCPS_BOUND. 2065 */ 2066 switch (acceptor->tcp_state) { 2067 case TCPS_IDLE: 2068 /* FALLTHRU */ 2069 case TCPS_BOUND: 2070 break; 2071 default: 2072 CONN_DEC_REF(acceptor->tcp_connp); 2073 mutex_exit(&listener->tcp_eager_lock); 2074 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2075 return; 2076 } 2077 } 2078 2079 /* The listener must be in TCPS_LISTEN */ 2080 if (listener->tcp_state != TCPS_LISTEN) { 2081 CONN_DEC_REF(acceptor->tcp_connp); 2082 mutex_exit(&listener->tcp_eager_lock); 2083 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2084 return; 2085 } 2086 2087 /* 2088 * Rendezvous with an eager connection request packet hanging off 2089 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2090 * tcp structure when the connection packet arrived in 2091 * tcp_conn_request(). 2092 */ 2093 seqnum = tcr->SEQ_number; 2094 eager = listener; 2095 do { 2096 eager = eager->tcp_eager_next_q; 2097 if (eager == NULL) { 2098 CONN_DEC_REF(acceptor->tcp_connp); 2099 mutex_exit(&listener->tcp_eager_lock); 2100 tcp_err_ack(listener, mp, TBADSEQ, 0); 2101 return; 2102 } 2103 } while (eager->tcp_conn_req_seqnum != seqnum); 2104 mutex_exit(&listener->tcp_eager_lock); 2105 2106 /* 2107 * At this point, both acceptor and listener have 2 ref 2108 * that they begin with. Acceptor has one additional ref 2109 * we placed in lookup while listener has 3 additional 2110 * ref for being behind the squeue (tcp_accept() is 2111 * done on listener's squeue); being in classifier hash; 2112 * and eager's ref on listener. 2113 */ 2114 ASSERT(listener->tcp_connp->conn_ref >= 5); 2115 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2116 2117 /* 2118 * The eager at this point is set in its own squeue and 2119 * could easily have been killed (tcp_accept_finish will 2120 * deal with that) because of a TH_RST so we can only 2121 * ASSERT for a single ref. 2122 */ 2123 ASSERT(eager->tcp_connp->conn_ref >= 1); 2124 2125 /* Pre allocate the stroptions mblk also */ 2126 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2127 sizeof (struct T_conn_res)), BPRI_HI); 2128 if (opt_mp == NULL) { 2129 CONN_DEC_REF(acceptor->tcp_connp); 2130 CONN_DEC_REF(eager->tcp_connp); 2131 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2132 return; 2133 } 2134 DB_TYPE(opt_mp) = M_SETOPTS; 2135 opt_mp->b_wptr += sizeof (struct tcp_options); 2136 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2137 tcpopt->to_flags = 0; 2138 2139 /* 2140 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2141 * from listener to acceptor. 2142 */ 2143 if (listener->tcp_bound_if != 0) { 2144 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2145 tcpopt->to_boundif = listener->tcp_bound_if; 2146 } 2147 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2148 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2149 } 2150 2151 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2152 if ((mp1 = copymsg(mp)) == NULL) { 2153 CONN_DEC_REF(acceptor->tcp_connp); 2154 CONN_DEC_REF(eager->tcp_connp); 2155 freemsg(opt_mp); 2156 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2157 return; 2158 } 2159 2160 tcr = (struct T_conn_res *)mp1->b_rptr; 2161 2162 /* 2163 * This is an expanded version of mi_tpi_ok_ack_alloc() 2164 * which allocates a larger mblk and appends the new 2165 * local address to the ok_ack. The address is copied by 2166 * soaccept() for getsockname(). 2167 */ 2168 { 2169 int extra; 2170 2171 extra = (eager->tcp_family == AF_INET) ? 2172 sizeof (sin_t) : sizeof (sin6_t); 2173 2174 /* 2175 * Try to re-use mp, if possible. Otherwise, allocate 2176 * an mblk and return it as ok_mp. In any case, mp 2177 * is no longer usable upon return. 2178 */ 2179 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2180 CONN_DEC_REF(acceptor->tcp_connp); 2181 CONN_DEC_REF(eager->tcp_connp); 2182 freemsg(opt_mp); 2183 /* Original mp has been freed by now, so use mp1 */ 2184 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2185 return; 2186 } 2187 2188 mp = NULL; /* We should never use mp after this point */ 2189 2190 switch (extra) { 2191 case sizeof (sin_t): { 2192 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2193 2194 ok_mp->b_wptr += extra; 2195 sin->sin_family = AF_INET; 2196 sin->sin_port = eager->tcp_lport; 2197 sin->sin_addr.s_addr = 2198 eager->tcp_ipha->ipha_src; 2199 break; 2200 } 2201 case sizeof (sin6_t): { 2202 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2203 2204 ok_mp->b_wptr += extra; 2205 sin6->sin6_family = AF_INET6; 2206 sin6->sin6_port = eager->tcp_lport; 2207 if (eager->tcp_ipversion == IPV4_VERSION) { 2208 sin6->sin6_flowinfo = 0; 2209 IN6_IPADDR_TO_V4MAPPED( 2210 eager->tcp_ipha->ipha_src, 2211 &sin6->sin6_addr); 2212 } else { 2213 ASSERT(eager->tcp_ip6h != NULL); 2214 sin6->sin6_flowinfo = 2215 eager->tcp_ip6h->ip6_vcf & 2216 ~IPV6_VERS_AND_FLOW_MASK; 2217 sin6->sin6_addr = 2218 eager->tcp_ip6h->ip6_src; 2219 } 2220 sin6->sin6_scope_id = 0; 2221 sin6->__sin6_src_id = 0; 2222 break; 2223 } 2224 default: 2225 break; 2226 } 2227 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2228 } 2229 2230 /* 2231 * If there are no options we know that the T_CONN_RES will 2232 * succeed. However, we can't send the T_OK_ACK upstream until 2233 * the tcp_accept_swap is done since it would be dangerous to 2234 * let the application start using the new fd prior to the swap. 2235 */ 2236 tcp_accept_swap(listener, acceptor, eager); 2237 2238 /* 2239 * tcp_accept_swap unlinks eager from listener but does not drop 2240 * the eager's reference on the listener. 2241 */ 2242 ASSERT(eager->tcp_listener == NULL); 2243 ASSERT(listener->tcp_connp->conn_ref >= 5); 2244 2245 /* 2246 * The eager is now associated with its own queue. Insert in 2247 * the hash so that the connection can be reused for a future 2248 * T_CONN_RES. 2249 */ 2250 tcp_acceptor_hash_insert(acceptor_id, eager); 2251 2252 /* 2253 * We now do the processing of options with T_CONN_RES. 2254 * We delay till now since we wanted to have queue to pass to 2255 * option processing routines that points back to the right 2256 * instance structure which does not happen until after 2257 * tcp_accept_swap(). 2258 * 2259 * Note: 2260 * The sanity of the logic here assumes that whatever options 2261 * are appropriate to inherit from listner=>eager are done 2262 * before this point, and whatever were to be overridden (or not) 2263 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2264 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2265 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2266 * This may not be true at this point in time but can be fixed 2267 * independently. This option processing code starts with 2268 * the instantiated acceptor instance and the final queue at 2269 * this point. 2270 */ 2271 2272 if (tcr->OPT_length != 0) { 2273 /* Options to process */ 2274 int t_error = 0; 2275 int sys_error = 0; 2276 int do_disconnect = 0; 2277 2278 if (tcp_conprim_opt_process(eager, mp1, 2279 &do_disconnect, &t_error, &sys_error) < 0) { 2280 eager->tcp_accept_error = 1; 2281 if (do_disconnect) { 2282 /* 2283 * An option failed which does not allow 2284 * connection to be accepted. 2285 * 2286 * We allow T_CONN_RES to succeed and 2287 * put a T_DISCON_IND on the eager queue. 2288 */ 2289 ASSERT(t_error == 0 && sys_error == 0); 2290 eager->tcp_send_discon_ind = 1; 2291 } else { 2292 ASSERT(t_error != 0); 2293 freemsg(ok_mp); 2294 /* 2295 * Original mp was either freed or set 2296 * to ok_mp above, so use mp1 instead. 2297 */ 2298 tcp_err_ack(listener, mp1, t_error, sys_error); 2299 goto finish; 2300 } 2301 } 2302 /* 2303 * Most likely success in setting options (except if 2304 * eager->tcp_send_discon_ind set). 2305 * mp1 option buffer represented by OPT_length/offset 2306 * potentially modified and contains results of setting 2307 * options at this point 2308 */ 2309 } 2310 2311 /* We no longer need mp1, since all options processing has passed */ 2312 freemsg(mp1); 2313 2314 putnext(listener->tcp_rq, ok_mp); 2315 2316 mutex_enter(&listener->tcp_eager_lock); 2317 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2318 tcp_t *tail; 2319 mblk_t *conn_ind; 2320 2321 /* 2322 * This path should not be executed if listener and 2323 * acceptor streams are the same. 2324 */ 2325 ASSERT(listener != acceptor); 2326 2327 tcp = listener->tcp_eager_prev_q0; 2328 /* 2329 * listener->tcp_eager_prev_q0 points to the TAIL of the 2330 * deferred T_conn_ind queue. We need to get to the head of 2331 * the queue in order to send up T_conn_ind the same order as 2332 * how the 3WHS is completed. 2333 */ 2334 while (tcp != listener) { 2335 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2336 break; 2337 else 2338 tcp = tcp->tcp_eager_prev_q0; 2339 } 2340 ASSERT(tcp != listener); 2341 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2342 ASSERT(conn_ind != NULL); 2343 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2344 2345 /* Move from q0 to q */ 2346 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2347 listener->tcp_conn_req_cnt_q0--; 2348 listener->tcp_conn_req_cnt_q++; 2349 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2350 tcp->tcp_eager_prev_q0; 2351 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2352 tcp->tcp_eager_next_q0; 2353 tcp->tcp_eager_prev_q0 = NULL; 2354 tcp->tcp_eager_next_q0 = NULL; 2355 tcp->tcp_conn_def_q0 = B_FALSE; 2356 2357 /* Make sure the tcp isn't in the list of droppables */ 2358 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2359 tcp->tcp_eager_prev_drop_q0 == NULL); 2360 2361 /* 2362 * Insert at end of the queue because sockfs sends 2363 * down T_CONN_RES in chronological order. Leaving 2364 * the older conn indications at front of the queue 2365 * helps reducing search time. 2366 */ 2367 tail = listener->tcp_eager_last_q; 2368 if (tail != NULL) 2369 tail->tcp_eager_next_q = tcp; 2370 else 2371 listener->tcp_eager_next_q = tcp; 2372 listener->tcp_eager_last_q = tcp; 2373 tcp->tcp_eager_next_q = NULL; 2374 mutex_exit(&listener->tcp_eager_lock); 2375 putnext(tcp->tcp_rq, conn_ind); 2376 } else { 2377 mutex_exit(&listener->tcp_eager_lock); 2378 } 2379 2380 /* 2381 * Done with the acceptor - free it 2382 * 2383 * Note: from this point on, no access to listener should be made 2384 * as listener can be equal to acceptor. 2385 */ 2386 finish: 2387 ASSERT(acceptor->tcp_detached); 2388 ASSERT(tcps->tcps_g_q != NULL); 2389 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2390 acceptor->tcp_rq = tcps->tcps_g_q; 2391 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2392 (void) tcp_clean_death(acceptor, 0, 2); 2393 CONN_DEC_REF(acceptor->tcp_connp); 2394 2395 /* 2396 * In case we already received a FIN we have to make tcp_rput send 2397 * the ordrel_ind. This will also send up a window update if the window 2398 * has opened up. 2399 * 2400 * In the normal case of a successful connection acceptance 2401 * we give the O_T_BIND_REQ to the read side put procedure as an 2402 * indication that this was just accepted. This tells tcp_rput to 2403 * pass up any data queued in tcp_rcv_list. 2404 * 2405 * In the fringe case where options sent with T_CONN_RES failed and 2406 * we required, we would be indicating a T_DISCON_IND to blow 2407 * away this connection. 2408 */ 2409 2410 /* 2411 * XXX: we currently have a problem if XTI application closes the 2412 * acceptor stream in between. This problem exists in on10-gate also 2413 * and is well know but nothing can be done short of major rewrite 2414 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2415 * eager same squeue as listener (we can distinguish non socket 2416 * listeners at the time of handling a SYN in tcp_conn_request) 2417 * and do most of the work that tcp_accept_finish does here itself 2418 * and then get behind the acceptor squeue to access the acceptor 2419 * queue. 2420 */ 2421 /* 2422 * We already have a ref on tcp so no need to do one before squeue_enter 2423 */ 2424 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2425 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2426 } 2427 2428 /* 2429 * Swap information between the eager and acceptor for a TLI/XTI client. 2430 * The sockfs accept is done on the acceptor stream and control goes 2431 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2432 * called. In either case, both the eager and listener are in their own 2433 * perimeter (squeue) and the code has to deal with potential race. 2434 * 2435 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2436 */ 2437 static void 2438 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2439 { 2440 conn_t *econnp, *aconnp; 2441 2442 ASSERT(eager->tcp_rq == listener->tcp_rq); 2443 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2444 ASSERT(!eager->tcp_hard_bound); 2445 ASSERT(!TCP_IS_SOCKET(acceptor)); 2446 ASSERT(!TCP_IS_SOCKET(eager)); 2447 ASSERT(!TCP_IS_SOCKET(listener)); 2448 2449 acceptor->tcp_detached = B_TRUE; 2450 /* 2451 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2452 * the acceptor id. 2453 */ 2454 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2455 2456 /* remove eager from listen list... */ 2457 mutex_enter(&listener->tcp_eager_lock); 2458 tcp_eager_unlink(eager); 2459 ASSERT(eager->tcp_eager_next_q == NULL && 2460 eager->tcp_eager_last_q == NULL); 2461 ASSERT(eager->tcp_eager_next_q0 == NULL && 2462 eager->tcp_eager_prev_q0 == NULL); 2463 mutex_exit(&listener->tcp_eager_lock); 2464 eager->tcp_rq = acceptor->tcp_rq; 2465 eager->tcp_wq = acceptor->tcp_wq; 2466 2467 econnp = eager->tcp_connp; 2468 aconnp = acceptor->tcp_connp; 2469 2470 eager->tcp_rq->q_ptr = econnp; 2471 eager->tcp_wq->q_ptr = econnp; 2472 2473 /* 2474 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2475 * which might be a different squeue from our peer TCP instance. 2476 * For TCP Fusion, the peer expects that whenever tcp_detached is 2477 * clear, our TCP queues point to the acceptor's queues. Thus, use 2478 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2479 * above reach global visibility prior to the clearing of tcp_detached. 2480 */ 2481 membar_producer(); 2482 eager->tcp_detached = B_FALSE; 2483 2484 ASSERT(eager->tcp_ack_tid == 0); 2485 2486 econnp->conn_dev = aconnp->conn_dev; 2487 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2488 ASSERT(econnp->conn_minor_arena != NULL); 2489 if (eager->tcp_cred != NULL) 2490 crfree(eager->tcp_cred); 2491 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2492 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2493 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2494 2495 aconnp->conn_cred = NULL; 2496 2497 econnp->conn_zoneid = aconnp->conn_zoneid; 2498 econnp->conn_allzones = aconnp->conn_allzones; 2499 2500 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2501 aconnp->conn_mac_exempt = B_FALSE; 2502 2503 ASSERT(aconnp->conn_peercred == NULL); 2504 2505 /* Do the IPC initialization */ 2506 CONN_INC_REF(econnp); 2507 2508 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2509 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2510 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2511 2512 /* Done with old IPC. Drop its ref on its connp */ 2513 CONN_DEC_REF(aconnp); 2514 } 2515 2516 2517 /* 2518 * Adapt to the information, such as rtt and rtt_sd, provided from the 2519 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2520 * 2521 * Checks for multicast and broadcast destination address. 2522 * Returns zero on failure; non-zero if ok. 2523 * 2524 * Note that the MSS calculation here is based on the info given in 2525 * the IRE. We do not do any calculation based on TCP options. They 2526 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2527 * knows which options to use. 2528 * 2529 * Note on how TCP gets its parameters for a connection. 2530 * 2531 * When a tcp_t structure is allocated, it gets all the default parameters. 2532 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2533 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2534 * default. 2535 * 2536 * An incoming SYN with a multicast or broadcast destination address, is dropped 2537 * in 1 of 2 places. 2538 * 2539 * 1. If the packet was received over the wire it is dropped in 2540 * ip_rput_process_broadcast() 2541 * 2542 * 2. If the packet was received through internal IP loopback, i.e. the packet 2543 * was generated and received on the same machine, it is dropped in 2544 * ip_wput_local() 2545 * 2546 * An incoming SYN with a multicast or broadcast source address is always 2547 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2548 * reject an attempt to connect to a broadcast or multicast (destination) 2549 * address. 2550 */ 2551 static int 2552 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2553 { 2554 tcp_hsp_t *hsp; 2555 ire_t *ire; 2556 ire_t *sire = NULL; 2557 iulp_t *ire_uinfo = NULL; 2558 uint32_t mss_max; 2559 uint32_t mss; 2560 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2561 conn_t *connp = tcp->tcp_connp; 2562 boolean_t ire_cacheable = B_FALSE; 2563 zoneid_t zoneid = connp->conn_zoneid; 2564 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2565 MATCH_IRE_SECATTR; 2566 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2567 ill_t *ill = NULL; 2568 boolean_t incoming = (ire_mp == NULL); 2569 tcp_stack_t *tcps = tcp->tcp_tcps; 2570 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2571 2572 ASSERT(connp->conn_ire_cache == NULL); 2573 2574 if (tcp->tcp_ipversion == IPV4_VERSION) { 2575 2576 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2577 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2578 return (0); 2579 } 2580 /* 2581 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2582 * for the destination with the nexthop as gateway. 2583 * ire_ctable_lookup() is used because this particular 2584 * ire, if it exists, will be marked private. 2585 * If that is not available, use the interface ire 2586 * for the nexthop. 2587 * 2588 * TSol: tcp_update_label will detect label mismatches based 2589 * only on the destination's label, but that would not 2590 * detect label mismatches based on the security attributes 2591 * of routes or next hop gateway. Hence we need to pass the 2592 * label to ire_ftable_lookup below in order to locate the 2593 * right prefix (and/or) ire cache. Similarly we also need 2594 * pass the label to the ire_cache_lookup below to locate 2595 * the right ire that also matches on the label. 2596 */ 2597 if (tcp->tcp_connp->conn_nexthop_set) { 2598 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2599 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2600 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2601 ipst); 2602 if (ire == NULL) { 2603 ire = ire_ftable_lookup( 2604 tcp->tcp_connp->conn_nexthop_v4, 2605 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2606 tsl, match_flags, ipst); 2607 if (ire == NULL) 2608 return (0); 2609 } else { 2610 ire_uinfo = &ire->ire_uinfo; 2611 } 2612 } else { 2613 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2614 zoneid, tsl, ipst); 2615 if (ire != NULL) { 2616 ire_cacheable = B_TRUE; 2617 ire_uinfo = (ire_mp != NULL) ? 2618 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2619 &ire->ire_uinfo; 2620 2621 } else { 2622 if (ire_mp == NULL) { 2623 ire = ire_ftable_lookup( 2624 tcp->tcp_connp->conn_rem, 2625 0, 0, 0, NULL, &sire, zoneid, 0, 2626 tsl, (MATCH_IRE_RECURSIVE | 2627 MATCH_IRE_DEFAULT), ipst); 2628 if (ire == NULL) 2629 return (0); 2630 ire_uinfo = (sire != NULL) ? 2631 &sire->ire_uinfo : 2632 &ire->ire_uinfo; 2633 } else { 2634 ire = (ire_t *)ire_mp->b_rptr; 2635 ire_uinfo = 2636 &((ire_t *) 2637 ire_mp->b_rptr)->ire_uinfo; 2638 } 2639 } 2640 } 2641 ASSERT(ire != NULL); 2642 2643 if ((ire->ire_src_addr == INADDR_ANY) || 2644 (ire->ire_type & IRE_BROADCAST)) { 2645 /* 2646 * ire->ire_mp is non null when ire_mp passed in is used 2647 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2648 */ 2649 if (ire->ire_mp == NULL) 2650 ire_refrele(ire); 2651 if (sire != NULL) 2652 ire_refrele(sire); 2653 return (0); 2654 } 2655 2656 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2657 ipaddr_t src_addr; 2658 2659 /* 2660 * ip_bind_connected() has stored the correct source 2661 * address in conn_src. 2662 */ 2663 src_addr = tcp->tcp_connp->conn_src; 2664 tcp->tcp_ipha->ipha_src = src_addr; 2665 /* 2666 * Copy of the src addr. in tcp_t is needed 2667 * for the lookup funcs. 2668 */ 2669 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2670 } 2671 /* 2672 * Set the fragment bit so that IP will tell us if the MTU 2673 * should change. IP tells us the latest setting of 2674 * ip_path_mtu_discovery through ire_frag_flag. 2675 */ 2676 if (ipst->ips_ip_path_mtu_discovery) { 2677 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2678 htons(IPH_DF); 2679 } 2680 /* 2681 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2682 * for IP_NEXTHOP. No cache ire has been found for the 2683 * destination and we are working with the nexthop's 2684 * interface ire. Since we need to forward all packets 2685 * to the nexthop first, we "blindly" set tcp_localnet 2686 * to false, eventhough the destination may also be 2687 * onlink. 2688 */ 2689 if (ire_uinfo == NULL) 2690 tcp->tcp_localnet = 0; 2691 else 2692 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2693 } else { 2694 /* 2695 * For incoming connection ire_mp = NULL 2696 * For outgoing connection ire_mp != NULL 2697 * Technically we should check conn_incoming_ill 2698 * when ire_mp is NULL and conn_outgoing_ill when 2699 * ire_mp is non-NULL. But this is performance 2700 * critical path and for IPV*_BOUND_IF, outgoing 2701 * and incoming ill are always set to the same value. 2702 */ 2703 ill_t *dst_ill = NULL; 2704 ipif_t *dst_ipif = NULL; 2705 2706 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2707 2708 if (connp->conn_outgoing_ill != NULL) { 2709 /* Outgoing or incoming path */ 2710 int err; 2711 2712 dst_ill = conn_get_held_ill(connp, 2713 &connp->conn_outgoing_ill, &err); 2714 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2715 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2716 return (0); 2717 } 2718 match_flags |= MATCH_IRE_ILL; 2719 dst_ipif = dst_ill->ill_ipif; 2720 } 2721 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2722 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2723 2724 if (ire != NULL) { 2725 ire_cacheable = B_TRUE; 2726 ire_uinfo = (ire_mp != NULL) ? 2727 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2728 &ire->ire_uinfo; 2729 } else { 2730 if (ire_mp == NULL) { 2731 ire = ire_ftable_lookup_v6( 2732 &tcp->tcp_connp->conn_remv6, 2733 0, 0, 0, dst_ipif, &sire, zoneid, 2734 0, tsl, match_flags, ipst); 2735 if (ire == NULL) { 2736 if (dst_ill != NULL) 2737 ill_refrele(dst_ill); 2738 return (0); 2739 } 2740 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2741 &ire->ire_uinfo; 2742 } else { 2743 ire = (ire_t *)ire_mp->b_rptr; 2744 ire_uinfo = 2745 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2746 } 2747 } 2748 if (dst_ill != NULL) 2749 ill_refrele(dst_ill); 2750 2751 ASSERT(ire != NULL); 2752 ASSERT(ire_uinfo != NULL); 2753 2754 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2755 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2756 /* 2757 * ire->ire_mp is non null when ire_mp passed in is used 2758 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2759 */ 2760 if (ire->ire_mp == NULL) 2761 ire_refrele(ire); 2762 if (sire != NULL) 2763 ire_refrele(sire); 2764 return (0); 2765 } 2766 2767 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2768 in6_addr_t src_addr; 2769 2770 /* 2771 * ip_bind_connected_v6() has stored the correct source 2772 * address per IPv6 addr. selection policy in 2773 * conn_src_v6. 2774 */ 2775 src_addr = tcp->tcp_connp->conn_srcv6; 2776 2777 tcp->tcp_ip6h->ip6_src = src_addr; 2778 /* 2779 * Copy of the src addr. in tcp_t is needed 2780 * for the lookup funcs. 2781 */ 2782 tcp->tcp_ip_src_v6 = src_addr; 2783 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2784 &connp->conn_srcv6)); 2785 } 2786 tcp->tcp_localnet = 2787 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2788 } 2789 2790 /* 2791 * This allows applications to fail quickly when connections are made 2792 * to dead hosts. Hosts can be labeled dead by adding a reject route 2793 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2794 */ 2795 if ((ire->ire_flags & RTF_REJECT) && 2796 (ire->ire_flags & RTF_PRIVATE)) 2797 goto error; 2798 2799 /* 2800 * Make use of the cached rtt and rtt_sd values to calculate the 2801 * initial RTO. Note that they are already initialized in 2802 * tcp_init_values(). 2803 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2804 * IP_NEXTHOP, but instead are using the interface ire for the 2805 * nexthop, then we do not use the ire_uinfo from that ire to 2806 * do any initializations. 2807 */ 2808 if (ire_uinfo != NULL) { 2809 if (ire_uinfo->iulp_rtt != 0) { 2810 clock_t rto; 2811 2812 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2813 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2814 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2815 tcps->tcps_rexmit_interval_extra + 2816 (tcp->tcp_rtt_sa >> 5); 2817 2818 if (rto > tcps->tcps_rexmit_interval_max) { 2819 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2820 } else if (rto < tcps->tcps_rexmit_interval_min) { 2821 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2822 } else { 2823 tcp->tcp_rto = rto; 2824 } 2825 } 2826 if (ire_uinfo->iulp_ssthresh != 0) 2827 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2828 else 2829 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2830 if (ire_uinfo->iulp_spipe > 0) { 2831 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2832 tcps->tcps_max_buf); 2833 if (tcps->tcps_snd_lowat_fraction != 0) 2834 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2835 tcps->tcps_snd_lowat_fraction; 2836 (void) tcp_maxpsz_set(tcp, B_TRUE); 2837 } 2838 /* 2839 * Note that up till now, acceptor always inherits receive 2840 * window from the listener. But if there is a metrics 2841 * associated with a host, we should use that instead of 2842 * inheriting it from listener. Thus we need to pass this 2843 * info back to the caller. 2844 */ 2845 if (ire_uinfo->iulp_rpipe > 0) { 2846 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2847 tcps->tcps_max_buf); 2848 } 2849 2850 if (ire_uinfo->iulp_rtomax > 0) { 2851 tcp->tcp_second_timer_threshold = 2852 ire_uinfo->iulp_rtomax; 2853 } 2854 2855 /* 2856 * Use the metric option settings, iulp_tstamp_ok and 2857 * iulp_wscale_ok, only for active open. What this means 2858 * is that if the other side uses timestamp or window 2859 * scale option, TCP will also use those options. That 2860 * is for passive open. If the application sets a 2861 * large window, window scale is enabled regardless of 2862 * the value in iulp_wscale_ok. This is the behavior 2863 * since 2.6. So we keep it. 2864 * The only case left in passive open processing is the 2865 * check for SACK. 2866 * For ECN, it should probably be like SACK. But the 2867 * current value is binary, so we treat it like the other 2868 * cases. The metric only controls active open.For passive 2869 * open, the ndd param, tcp_ecn_permitted, controls the 2870 * behavior. 2871 */ 2872 if (!tcp_detached) { 2873 /* 2874 * The if check means that the following can only 2875 * be turned on by the metrics only IRE, but not off. 2876 */ 2877 if (ire_uinfo->iulp_tstamp_ok) 2878 tcp->tcp_snd_ts_ok = B_TRUE; 2879 if (ire_uinfo->iulp_wscale_ok) 2880 tcp->tcp_snd_ws_ok = B_TRUE; 2881 if (ire_uinfo->iulp_sack == 2) 2882 tcp->tcp_snd_sack_ok = B_TRUE; 2883 if (ire_uinfo->iulp_ecn_ok) 2884 tcp->tcp_ecn_ok = B_TRUE; 2885 } else { 2886 /* 2887 * Passive open. 2888 * 2889 * As above, the if check means that SACK can only be 2890 * turned on by the metric only IRE. 2891 */ 2892 if (ire_uinfo->iulp_sack > 0) { 2893 tcp->tcp_snd_sack_ok = B_TRUE; 2894 } 2895 } 2896 } 2897 2898 2899 /* 2900 * XXX: Note that currently, ire_max_frag can be as small as 68 2901 * because of PMTUd. So tcp_mss may go to negative if combined 2902 * length of all those options exceeds 28 bytes. But because 2903 * of the tcp_mss_min check below, we may not have a problem if 2904 * tcp_mss_min is of a reasonable value. The default is 1 so 2905 * the negative problem still exists. And the check defeats PMTUd. 2906 * In fact, if PMTUd finds that the MSS should be smaller than 2907 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2908 * value. 2909 * 2910 * We do not deal with that now. All those problems related to 2911 * PMTUd will be fixed later. 2912 */ 2913 ASSERT(ire->ire_max_frag != 0); 2914 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2915 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2916 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2917 mss = MIN(mss, IPV6_MIN_MTU); 2918 } 2919 } 2920 2921 /* Sanity check for MSS value. */ 2922 if (tcp->tcp_ipversion == IPV4_VERSION) 2923 mss_max = tcps->tcps_mss_max_ipv4; 2924 else 2925 mss_max = tcps->tcps_mss_max_ipv6; 2926 2927 if (tcp->tcp_ipversion == IPV6_VERSION && 2928 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2929 /* 2930 * After receiving an ICMPv6 "packet too big" message with a 2931 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2932 * will insert a 8-byte fragment header in every packet; we 2933 * reduce the MSS by that amount here. 2934 */ 2935 mss -= sizeof (ip6_frag_t); 2936 } 2937 2938 if (tcp->tcp_ipsec_overhead == 0) 2939 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2940 2941 mss -= tcp->tcp_ipsec_overhead; 2942 2943 if (mss < tcps->tcps_mss_min) 2944 mss = tcps->tcps_mss_min; 2945 if (mss > mss_max) 2946 mss = mss_max; 2947 2948 /* Note that this is the maximum MSS, excluding all options. */ 2949 tcp->tcp_mss = mss; 2950 2951 /* 2952 * Initialize the ISS here now that we have the full connection ID. 2953 * The RFC 1948 method of initial sequence number generation requires 2954 * knowledge of the full connection ID before setting the ISS. 2955 */ 2956 2957 tcp_iss_init(tcp); 2958 2959 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2960 tcp->tcp_loopback = B_TRUE; 2961 2962 if (tcp->tcp_ipversion == IPV4_VERSION) { 2963 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2964 } else { 2965 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2966 } 2967 2968 if (hsp != NULL) { 2969 /* Only modify if we're going to make them bigger */ 2970 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2971 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2972 if (tcps->tcps_snd_lowat_fraction != 0) 2973 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2974 tcps->tcps_snd_lowat_fraction; 2975 } 2976 2977 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2978 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2979 } 2980 2981 /* Copy timestamp flag only for active open */ 2982 if (!tcp_detached) 2983 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2984 } 2985 2986 if (sire != NULL) 2987 IRE_REFRELE(sire); 2988 2989 /* 2990 * If we got an IRE_CACHE and an ILL, go through their properties; 2991 * otherwise, this is deferred until later when we have an IRE_CACHE. 2992 */ 2993 if (tcp->tcp_loopback || 2994 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2995 /* 2996 * For incoming, see if this tcp may be MDT-capable. For 2997 * outgoing, this process has been taken care of through 2998 * tcp_rput_other. 2999 */ 3000 tcp_ire_ill_check(tcp, ire, ill, incoming); 3001 tcp->tcp_ire_ill_check_done = B_TRUE; 3002 } 3003 3004 mutex_enter(&connp->conn_lock); 3005 /* 3006 * Make sure that conn is not marked incipient 3007 * for incoming connections. A blind 3008 * removal of incipient flag is cheaper than 3009 * check and removal. 3010 */ 3011 connp->conn_state_flags &= ~CONN_INCIPIENT; 3012 3013 /* 3014 * Must not cache forwarding table routes 3015 * or recache an IRE after the conn_t has 3016 * had conn_ire_cache cleared and is flagged 3017 * unusable, (see the CONN_CACHE_IRE() macro). 3018 */ 3019 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 3020 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3021 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3022 connp->conn_ire_cache = ire; 3023 IRE_UNTRACE_REF(ire); 3024 rw_exit(&ire->ire_bucket->irb_lock); 3025 mutex_exit(&connp->conn_lock); 3026 return (1); 3027 } 3028 rw_exit(&ire->ire_bucket->irb_lock); 3029 } 3030 mutex_exit(&connp->conn_lock); 3031 3032 if (ire->ire_mp == NULL) 3033 ire_refrele(ire); 3034 return (1); 3035 3036 error: 3037 if (ire->ire_mp == NULL) 3038 ire_refrele(ire); 3039 if (sire != NULL) 3040 ire_refrele(sire); 3041 return (0); 3042 } 3043 3044 static void 3045 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 3046 { 3047 int error; 3048 conn_t *connp = tcp->tcp_connp; 3049 struct sockaddr *sa; 3050 mblk_t *mp1; 3051 struct T_bind_req *tbr; 3052 int backlog; 3053 socklen_t len; 3054 sin_t *sin; 3055 sin6_t *sin6; 3056 3057 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3058 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3059 if (tcp->tcp_debug) { 3060 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3061 "tcp_tpi_bind: bad req, len %u", 3062 (uint_t)(mp->b_wptr - mp->b_rptr)); 3063 } 3064 tcp_err_ack(tcp, mp, TPROTO, 0); 3065 return; 3066 } 3067 /* Make sure the largest address fits */ 3068 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3069 if (mp1 == NULL) { 3070 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3071 return; 3072 } 3073 mp = mp1; 3074 tbr = (struct T_bind_req *)mp->b_rptr; 3075 3076 backlog = tbr->CONIND_number; 3077 len = tbr->ADDR_length; 3078 3079 switch (len) { 3080 case 0: /* request for a generic port */ 3081 tbr->ADDR_offset = sizeof (struct T_bind_req); 3082 if (tcp->tcp_family == AF_INET) { 3083 tbr->ADDR_length = sizeof (sin_t); 3084 sin = (sin_t *)&tbr[1]; 3085 *sin = sin_null; 3086 sin->sin_family = AF_INET; 3087 sa = (struct sockaddr *)sin; 3088 len = sizeof (sin_t); 3089 mp->b_wptr = (uchar_t *)&sin[1]; 3090 } else { 3091 ASSERT(tcp->tcp_family == AF_INET6); 3092 tbr->ADDR_length = sizeof (sin6_t); 3093 sin6 = (sin6_t *)&tbr[1]; 3094 *sin6 = sin6_null; 3095 sin6->sin6_family = AF_INET6; 3096 sa = (struct sockaddr *)sin6; 3097 len = sizeof (sin6_t); 3098 mp->b_wptr = (uchar_t *)&sin6[1]; 3099 } 3100 break; 3101 3102 case sizeof (sin_t): /* Complete IPv4 address */ 3103 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3104 sizeof (sin_t)); 3105 break; 3106 3107 case sizeof (sin6_t): /* Complete IPv6 address */ 3108 sa = (struct sockaddr *)mi_offset_param(mp, 3109 tbr->ADDR_offset, sizeof (sin6_t)); 3110 break; 3111 3112 default: 3113 if (tcp->tcp_debug) { 3114 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3115 "tcp_tpi_bind: bad address length, %d", 3116 tbr->ADDR_length); 3117 } 3118 tcp_err_ack(tcp, mp, TBADADDR, 0); 3119 return; 3120 } 3121 3122 error = tcp_bind_check(connp, sa, len, DB_CRED(mp), 3123 tbr->PRIM_type != O_T_BIND_REQ); 3124 if (error == 0) { 3125 if (tcp->tcp_family == AF_INET) { 3126 sin = (sin_t *)sa; 3127 sin->sin_port = tcp->tcp_lport; 3128 } else { 3129 sin6 = (sin6_t *)sa; 3130 sin6->sin6_port = tcp->tcp_lport; 3131 } 3132 3133 if (backlog > 0) { 3134 error = tcp_do_listen(connp, backlog, DB_CRED(mp)); 3135 } 3136 } 3137 done: 3138 if (error > 0) { 3139 tcp_err_ack(tcp, mp, TSYSERR, error); 3140 } else if (error < 0) { 3141 tcp_err_ack(tcp, mp, -error, 0); 3142 } else { 3143 mp->b_datap->db_type = M_PCPROTO; 3144 tbr->PRIM_type = T_BIND_ACK; 3145 putnext(tcp->tcp_rq, mp); 3146 } 3147 } 3148 3149 /* 3150 * If the "bind_to_req_port_only" parameter is set, if the requested port 3151 * number is available, return it, If not return 0 3152 * 3153 * If "bind_to_req_port_only" parameter is not set and 3154 * If the requested port number is available, return it. If not, return 3155 * the first anonymous port we happen across. If no anonymous ports are 3156 * available, return 0. addr is the requested local address, if any. 3157 * 3158 * In either case, when succeeding update the tcp_t to record the port number 3159 * and insert it in the bind hash table. 3160 * 3161 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3162 * without setting SO_REUSEADDR. This is needed so that they 3163 * can be viewed as two independent transport protocols. 3164 */ 3165 static in_port_t 3166 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3167 int reuseaddr, boolean_t quick_connect, 3168 boolean_t bind_to_req_port_only, boolean_t user_specified) 3169 { 3170 /* number of times we have run around the loop */ 3171 int count = 0; 3172 /* maximum number of times to run around the loop */ 3173 int loopmax; 3174 conn_t *connp = tcp->tcp_connp; 3175 zoneid_t zoneid = connp->conn_zoneid; 3176 tcp_stack_t *tcps = tcp->tcp_tcps; 3177 3178 /* 3179 * Lookup for free addresses is done in a loop and "loopmax" 3180 * influences how long we spin in the loop 3181 */ 3182 if (bind_to_req_port_only) { 3183 /* 3184 * If the requested port is busy, don't bother to look 3185 * for a new one. Setting loop maximum count to 1 has 3186 * that effect. 3187 */ 3188 loopmax = 1; 3189 } else { 3190 /* 3191 * If the requested port is busy, look for a free one 3192 * in the anonymous port range. 3193 * Set loopmax appropriately so that one does not look 3194 * forever in the case all of the anonymous ports are in use. 3195 */ 3196 if (tcp->tcp_anon_priv_bind) { 3197 /* 3198 * loopmax = 3199 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3200 */ 3201 loopmax = IPPORT_RESERVED - 3202 tcps->tcps_min_anonpriv_port; 3203 } else { 3204 loopmax = (tcps->tcps_largest_anon_port - 3205 tcps->tcps_smallest_anon_port + 1); 3206 } 3207 } 3208 do { 3209 uint16_t lport; 3210 tf_t *tbf; 3211 tcp_t *ltcp; 3212 conn_t *lconnp; 3213 3214 lport = htons(port); 3215 3216 /* 3217 * Ensure that the tcp_t is not currently in the bind hash. 3218 * Hold the lock on the hash bucket to ensure that 3219 * the duplicate check plus the insertion is an atomic 3220 * operation. 3221 * 3222 * This function does an inline lookup on the bind hash list 3223 * Make sure that we access only members of tcp_t 3224 * and that we don't look at tcp_tcp, since we are not 3225 * doing a CONN_INC_REF. 3226 */ 3227 tcp_bind_hash_remove(tcp); 3228 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3229 mutex_enter(&tbf->tf_lock); 3230 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3231 ltcp = ltcp->tcp_bind_hash) { 3232 if (lport == ltcp->tcp_lport) 3233 break; 3234 } 3235 3236 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3237 boolean_t not_socket; 3238 boolean_t exclbind; 3239 3240 lconnp = ltcp->tcp_connp; 3241 3242 /* 3243 * On a labeled system, we must treat bindings to ports 3244 * on shared IP addresses by sockets with MAC exemption 3245 * privilege as being in all zones, as there's 3246 * otherwise no way to identify the right receiver. 3247 */ 3248 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3249 IPCL_ZONE_MATCH(connp, 3250 ltcp->tcp_connp->conn_zoneid)) && 3251 !lconnp->conn_mac_exempt && 3252 !connp->conn_mac_exempt) 3253 continue; 3254 3255 /* 3256 * If TCP_EXCLBIND is set for either the bound or 3257 * binding endpoint, the semantics of bind 3258 * is changed according to the following. 3259 * 3260 * spec = specified address (v4 or v6) 3261 * unspec = unspecified address (v4 or v6) 3262 * A = specified addresses are different for endpoints 3263 * 3264 * bound bind to allowed 3265 * ------------------------------------- 3266 * unspec unspec no 3267 * unspec spec no 3268 * spec unspec no 3269 * spec spec yes if A 3270 * 3271 * For labeled systems, SO_MAC_EXEMPT behaves the same 3272 * as TCP_EXCLBIND, except that zoneid is ignored. 3273 * 3274 * Note: 3275 * 3276 * 1. Because of TLI semantics, an endpoint can go 3277 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3278 * TCPS_BOUND, depending on whether it is originally 3279 * a listener or not. That is why we need to check 3280 * for states greater than or equal to TCPS_BOUND 3281 * here. 3282 * 3283 * 2. Ideally, we should only check for state equals 3284 * to TCPS_LISTEN. And the following check should be 3285 * added. 3286 * 3287 * if (ltcp->tcp_state == TCPS_LISTEN || 3288 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3289 * ... 3290 * } 3291 * 3292 * The semantics will be changed to this. If the 3293 * endpoint on the list is in state not equal to 3294 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3295 * set, let the bind succeed. 3296 * 3297 * Because of (1), we cannot do that for TLI 3298 * endpoints. But we can do that for socket endpoints. 3299 * If in future, we can change this going back 3300 * semantics, we can use the above check for TLI also. 3301 */ 3302 not_socket = !(TCP_IS_SOCKET(ltcp) && 3303 TCP_IS_SOCKET(tcp)); 3304 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3305 3306 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3307 (exclbind && (not_socket || 3308 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3309 if (V6_OR_V4_INADDR_ANY( 3310 ltcp->tcp_bound_source_v6) || 3311 V6_OR_V4_INADDR_ANY(*laddr) || 3312 IN6_ARE_ADDR_EQUAL(laddr, 3313 <cp->tcp_bound_source_v6)) { 3314 break; 3315 } 3316 continue; 3317 } 3318 3319 /* 3320 * Check ipversion to allow IPv4 and IPv6 sockets to 3321 * have disjoint port number spaces, if *_EXCLBIND 3322 * is not set and only if the application binds to a 3323 * specific port. We use the same autoassigned port 3324 * number space for IPv4 and IPv6 sockets. 3325 */ 3326 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3327 bind_to_req_port_only) 3328 continue; 3329 3330 /* 3331 * Ideally, we should make sure that the source 3332 * address, remote address, and remote port in the 3333 * four tuple for this tcp-connection is unique. 3334 * However, trying to find out the local source 3335 * address would require too much code duplication 3336 * with IP, since IP needs needs to have that code 3337 * to support userland TCP implementations. 3338 */ 3339 if (quick_connect && 3340 (ltcp->tcp_state > TCPS_LISTEN) && 3341 ((tcp->tcp_fport != ltcp->tcp_fport) || 3342 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3343 <cp->tcp_remote_v6))) 3344 continue; 3345 3346 if (!reuseaddr) { 3347 /* 3348 * No socket option SO_REUSEADDR. 3349 * If existing port is bound to 3350 * a non-wildcard IP address 3351 * and the requesting stream is 3352 * bound to a distinct 3353 * different IP addresses 3354 * (non-wildcard, also), keep 3355 * going. 3356 */ 3357 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3358 !V6_OR_V4_INADDR_ANY( 3359 ltcp->tcp_bound_source_v6) && 3360 !IN6_ARE_ADDR_EQUAL(laddr, 3361 <cp->tcp_bound_source_v6)) 3362 continue; 3363 if (ltcp->tcp_state >= TCPS_BOUND) { 3364 /* 3365 * This port is being used and 3366 * its state is >= TCPS_BOUND, 3367 * so we can't bind to it. 3368 */ 3369 break; 3370 } 3371 } else { 3372 /* 3373 * socket option SO_REUSEADDR is set on the 3374 * binding tcp_t. 3375 * 3376 * If two streams are bound to 3377 * same IP address or both addr 3378 * and bound source are wildcards 3379 * (INADDR_ANY), we want to stop 3380 * searching. 3381 * We have found a match of IP source 3382 * address and source port, which is 3383 * refused regardless of the 3384 * SO_REUSEADDR setting, so we break. 3385 */ 3386 if (IN6_ARE_ADDR_EQUAL(laddr, 3387 <cp->tcp_bound_source_v6) && 3388 (ltcp->tcp_state == TCPS_LISTEN || 3389 ltcp->tcp_state == TCPS_BOUND)) 3390 break; 3391 } 3392 } 3393 if (ltcp != NULL) { 3394 /* The port number is busy */ 3395 mutex_exit(&tbf->tf_lock); 3396 } else { 3397 /* 3398 * This port is ours. Insert in fanout and mark as 3399 * bound to prevent others from getting the port 3400 * number. 3401 */ 3402 tcp->tcp_state = TCPS_BOUND; 3403 tcp->tcp_lport = htons(port); 3404 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3405 3406 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3407 tcp->tcp_lport)] == tbf); 3408 tcp_bind_hash_insert(tbf, tcp, 1); 3409 3410 mutex_exit(&tbf->tf_lock); 3411 3412 /* 3413 * We don't want tcp_next_port_to_try to "inherit" 3414 * a port number supplied by the user in a bind. 3415 */ 3416 if (user_specified) 3417 return (port); 3418 3419 /* 3420 * This is the only place where tcp_next_port_to_try 3421 * is updated. After the update, it may or may not 3422 * be in the valid range. 3423 */ 3424 if (!tcp->tcp_anon_priv_bind) 3425 tcps->tcps_next_port_to_try = port + 1; 3426 return (port); 3427 } 3428 3429 if (tcp->tcp_anon_priv_bind) { 3430 port = tcp_get_next_priv_port(tcp); 3431 } else { 3432 if (count == 0 && user_specified) { 3433 /* 3434 * We may have to return an anonymous port. So 3435 * get one to start with. 3436 */ 3437 port = 3438 tcp_update_next_port( 3439 tcps->tcps_next_port_to_try, 3440 tcp, B_TRUE); 3441 user_specified = B_FALSE; 3442 } else { 3443 port = tcp_update_next_port(port + 1, tcp, 3444 B_FALSE); 3445 } 3446 } 3447 if (port == 0) 3448 break; 3449 3450 /* 3451 * Don't let this loop run forever in the case where 3452 * all of the anonymous ports are in use. 3453 */ 3454 } while (++count < loopmax); 3455 return (0); 3456 } 3457 3458 /* 3459 * tcp_clean_death / tcp_close_detached must not be called more than once 3460 * on a tcp. Thus every function that potentially calls tcp_clean_death 3461 * must check for the tcp state before calling tcp_clean_death. 3462 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3463 * tcp_timer_handler, all check for the tcp state. 3464 */ 3465 /* ARGSUSED */ 3466 void 3467 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3468 { 3469 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3470 3471 freemsg(mp); 3472 if (tcp->tcp_state > TCPS_BOUND) 3473 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3474 ETIMEDOUT, 5); 3475 } 3476 3477 /* 3478 * We are dying for some reason. Try to do it gracefully. (May be called 3479 * as writer.) 3480 * 3481 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3482 * done by a service procedure). 3483 * TBD - Should the return value distinguish between the tcp_t being 3484 * freed and it being reinitialized? 3485 */ 3486 static int 3487 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3488 { 3489 mblk_t *mp; 3490 queue_t *q; 3491 conn_t *connp = tcp->tcp_connp; 3492 tcp_stack_t *tcps = tcp->tcp_tcps; 3493 sodirect_t *sodp; 3494 3495 TCP_CLD_STAT(tag); 3496 3497 #if TCP_TAG_CLEAN_DEATH 3498 tcp->tcp_cleandeathtag = tag; 3499 #endif 3500 3501 if (tcp->tcp_fused) 3502 tcp_unfuse(tcp); 3503 3504 if (tcp->tcp_linger_tid != 0 && 3505 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3506 tcp_stop_lingering(tcp); 3507 } 3508 3509 ASSERT(tcp != NULL); 3510 ASSERT((tcp->tcp_family == AF_INET && 3511 tcp->tcp_ipversion == IPV4_VERSION) || 3512 (tcp->tcp_family == AF_INET6 && 3513 (tcp->tcp_ipversion == IPV4_VERSION || 3514 tcp->tcp_ipversion == IPV6_VERSION))); 3515 3516 if (TCP_IS_DETACHED(tcp)) { 3517 if (tcp->tcp_hard_binding) { 3518 /* 3519 * Its an eager that we are dealing with. We close the 3520 * eager but in case a conn_ind has already gone to the 3521 * listener, let tcp_accept_finish() send a discon_ind 3522 * to the listener and drop the last reference. If the 3523 * listener doesn't even know about the eager i.e. the 3524 * conn_ind hasn't gone up, blow away the eager and drop 3525 * the last reference as well. If the conn_ind has gone 3526 * up, state should be BOUND. tcp_accept_finish 3527 * will figure out that the connection has received a 3528 * RST and will send a DISCON_IND to the application. 3529 */ 3530 tcp_closei_local(tcp); 3531 if (!tcp->tcp_tconnind_started) { 3532 CONN_DEC_REF(connp); 3533 } else { 3534 tcp->tcp_state = TCPS_BOUND; 3535 } 3536 } else { 3537 tcp_close_detached(tcp); 3538 } 3539 return (0); 3540 } 3541 3542 TCP_STAT(tcps, tcp_clean_death_nondetached); 3543 3544 /* If sodirect, not anymore */ 3545 SOD_PTR_ENTER(tcp, sodp); 3546 if (sodp != NULL) { 3547 tcp->tcp_sodirect = NULL; 3548 mutex_exit(sodp->sod_lockp); 3549 } 3550 3551 q = tcp->tcp_rq; 3552 3553 /* Trash all inbound data */ 3554 if (!IPCL_IS_NONSTR(connp)) { 3555 ASSERT(q != NULL); 3556 flushq(q, FLUSHALL); 3557 } 3558 3559 /* 3560 * If we are at least part way open and there is error 3561 * (err==0 implies no error) 3562 * notify our client by a T_DISCON_IND. 3563 */ 3564 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3565 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3566 !TCP_IS_SOCKET(tcp)) { 3567 /* 3568 * Send M_FLUSH according to TPI. Because sockets will 3569 * (and must) ignore FLUSHR we do that only for TPI 3570 * endpoints and sockets in STREAMS mode. 3571 */ 3572 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3573 } 3574 if (tcp->tcp_debug) { 3575 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3576 "tcp_clean_death: discon err %d", err); 3577 } 3578 if (IPCL_IS_NONSTR(connp)) { 3579 /* Direct socket, use upcall */ 3580 (*connp->conn_upcalls->su_disconnected)( 3581 connp->conn_upper_handle, tcp->tcp_connid, err); 3582 } else { 3583 mp = mi_tpi_discon_ind(NULL, err, 0); 3584 if (mp != NULL) { 3585 putnext(q, mp); 3586 } else { 3587 if (tcp->tcp_debug) { 3588 (void) strlog(TCP_MOD_ID, 0, 1, 3589 SL_ERROR|SL_TRACE, 3590 "tcp_clean_death, sending M_ERROR"); 3591 } 3592 (void) putnextctl1(q, M_ERROR, EPROTO); 3593 } 3594 } 3595 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3596 /* SYN_SENT or SYN_RCVD */ 3597 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3598 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3599 /* ESTABLISHED or CLOSE_WAIT */ 3600 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3601 } 3602 } 3603 3604 tcp_reinit(tcp); 3605 if (IPCL_IS_NONSTR(connp)) 3606 (void) tcp_do_unbind(connp); 3607 3608 return (-1); 3609 } 3610 3611 /* 3612 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3613 * to expire, stop the wait and finish the close. 3614 */ 3615 static void 3616 tcp_stop_lingering(tcp_t *tcp) 3617 { 3618 clock_t delta = 0; 3619 tcp_stack_t *tcps = tcp->tcp_tcps; 3620 3621 tcp->tcp_linger_tid = 0; 3622 if (tcp->tcp_state > TCPS_LISTEN) { 3623 tcp_acceptor_hash_remove(tcp); 3624 mutex_enter(&tcp->tcp_non_sq_lock); 3625 if (tcp->tcp_flow_stopped) { 3626 tcp_clrqfull(tcp); 3627 } 3628 mutex_exit(&tcp->tcp_non_sq_lock); 3629 3630 if (tcp->tcp_timer_tid != 0) { 3631 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3632 tcp->tcp_timer_tid = 0; 3633 } 3634 /* 3635 * Need to cancel those timers which will not be used when 3636 * TCP is detached. This has to be done before the tcp_wq 3637 * is set to the global queue. 3638 */ 3639 tcp_timers_stop(tcp); 3640 3641 tcp->tcp_detached = B_TRUE; 3642 ASSERT(tcps->tcps_g_q != NULL); 3643 tcp->tcp_rq = tcps->tcps_g_q; 3644 tcp->tcp_wq = WR(tcps->tcps_g_q); 3645 3646 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3647 tcp_time_wait_append(tcp); 3648 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3649 goto finish; 3650 } 3651 3652 /* 3653 * If delta is zero the timer event wasn't executed and was 3654 * successfully canceled. In this case we need to restart it 3655 * with the minimal delta possible. 3656 */ 3657 if (delta >= 0) { 3658 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3659 delta ? delta : 1); 3660 } 3661 } else { 3662 tcp_closei_local(tcp); 3663 CONN_DEC_REF(tcp->tcp_connp); 3664 } 3665 finish: 3666 /* Signal closing thread that it can complete close */ 3667 mutex_enter(&tcp->tcp_closelock); 3668 tcp->tcp_detached = B_TRUE; 3669 ASSERT(tcps->tcps_g_q != NULL); 3670 3671 tcp->tcp_rq = tcps->tcps_g_q; 3672 tcp->tcp_wq = WR(tcps->tcps_g_q); 3673 3674 tcp->tcp_closed = 1; 3675 cv_signal(&tcp->tcp_closecv); 3676 mutex_exit(&tcp->tcp_closelock); 3677 } 3678 3679 /* 3680 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3681 * expires. 3682 */ 3683 static void 3684 tcp_close_linger_timeout(void *arg) 3685 { 3686 conn_t *connp = (conn_t *)arg; 3687 tcp_t *tcp = connp->conn_tcp; 3688 3689 tcp->tcp_client_errno = ETIMEDOUT; 3690 tcp_stop_lingering(tcp); 3691 } 3692 3693 static void 3694 tcp_close_common(conn_t *connp, int flags) 3695 { 3696 tcp_t *tcp = connp->conn_tcp; 3697 mblk_t *mp = &tcp->tcp_closemp; 3698 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3699 mblk_t *bp; 3700 3701 ASSERT(connp->conn_ref >= 2); 3702 3703 /* 3704 * Mark the conn as closing. ill_pending_mp_add will not 3705 * add any mp to the pending mp list, after this conn has 3706 * started closing. Same for sq_pending_mp_add 3707 */ 3708 mutex_enter(&connp->conn_lock); 3709 connp->conn_state_flags |= CONN_CLOSING; 3710 if (connp->conn_oper_pending_ill != NULL) 3711 conn_ioctl_cleanup_reqd = B_TRUE; 3712 CONN_INC_REF_LOCKED(connp); 3713 mutex_exit(&connp->conn_lock); 3714 tcp->tcp_closeflags = (uint8_t)flags; 3715 ASSERT(connp->conn_ref >= 3); 3716 3717 /* 3718 * tcp_closemp_used is used below without any protection of a lock 3719 * as we don't expect any one else to use it concurrently at this 3720 * point otherwise it would be a major defect. 3721 */ 3722 3723 if (mp->b_prev == NULL) 3724 tcp->tcp_closemp_used = B_TRUE; 3725 else 3726 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3727 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3728 3729 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3730 3731 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3732 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3733 3734 mutex_enter(&tcp->tcp_closelock); 3735 while (!tcp->tcp_closed) { 3736 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3737 /* 3738 * The cv_wait_sig() was interrupted. We now do the 3739 * following: 3740 * 3741 * 1) If the endpoint was lingering, we allow this 3742 * to be interrupted by cancelling the linger timeout 3743 * and closing normally. 3744 * 3745 * 2) Revert to calling cv_wait() 3746 * 3747 * We revert to using cv_wait() to avoid an 3748 * infinite loop which can occur if the calling 3749 * thread is higher priority than the squeue worker 3750 * thread and is bound to the same cpu. 3751 */ 3752 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3753 mutex_exit(&tcp->tcp_closelock); 3754 /* Entering squeue, bump ref count. */ 3755 CONN_INC_REF(connp); 3756 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3757 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3758 tcp_linger_interrupted, connp, 3759 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3760 mutex_enter(&tcp->tcp_closelock); 3761 } 3762 break; 3763 } 3764 } 3765 while (!tcp->tcp_closed) 3766 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3767 mutex_exit(&tcp->tcp_closelock); 3768 3769 /* 3770 * In the case of listener streams that have eagers in the q or q0 3771 * we wait for the eagers to drop their reference to us. tcp_rq and 3772 * tcp_wq of the eagers point to our queues. By waiting for the 3773 * refcnt to drop to 1, we are sure that the eagers have cleaned 3774 * up their queue pointers and also dropped their references to us. 3775 */ 3776 if (tcp->tcp_wait_for_eagers) { 3777 mutex_enter(&connp->conn_lock); 3778 while (connp->conn_ref != 1) { 3779 cv_wait(&connp->conn_cv, &connp->conn_lock); 3780 } 3781 mutex_exit(&connp->conn_lock); 3782 } 3783 /* 3784 * ioctl cleanup. The mp is queued in the 3785 * ill_pending_mp or in the sq_pending_mp. 3786 */ 3787 if (conn_ioctl_cleanup_reqd) 3788 conn_ioctl_cleanup(connp); 3789 3790 tcp->tcp_cpid = -1; 3791 } 3792 3793 static int 3794 tcp_tpi_close(queue_t *q, int flags) 3795 { 3796 conn_t *connp; 3797 3798 ASSERT(WR(q)->q_next == NULL); 3799 3800 if (flags & SO_FALLBACK) { 3801 /* 3802 * stream is being closed while in fallback 3803 * simply free the resources that were allocated 3804 */ 3805 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3806 qprocsoff(q); 3807 goto done; 3808 } 3809 3810 connp = Q_TO_CONN(q); 3811 /* 3812 * We are being closed as /dev/tcp or /dev/tcp6. 3813 */ 3814 tcp_close_common(connp, flags); 3815 3816 qprocsoff(q); 3817 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3818 3819 /* 3820 * Drop IP's reference on the conn. This is the last reference 3821 * on the connp if the state was less than established. If the 3822 * connection has gone into timewait state, then we will have 3823 * one ref for the TCP and one more ref (total of two) for the 3824 * classifier connected hash list (a timewait connections stays 3825 * in connected hash till closed). 3826 * 3827 * We can't assert the references because there might be other 3828 * transient reference places because of some walkers or queued 3829 * packets in squeue for the timewait state. 3830 */ 3831 CONN_DEC_REF(connp); 3832 done: 3833 q->q_ptr = WR(q)->q_ptr = NULL; 3834 return (0); 3835 } 3836 3837 static int 3838 tcpclose_accept(queue_t *q) 3839 { 3840 vmem_t *minor_arena; 3841 dev_t conn_dev; 3842 3843 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3844 3845 /* 3846 * We had opened an acceptor STREAM for sockfs which is 3847 * now being closed due to some error. 3848 */ 3849 qprocsoff(q); 3850 3851 minor_arena = (vmem_t *)WR(q)->q_ptr; 3852 conn_dev = (dev_t)RD(q)->q_ptr; 3853 ASSERT(minor_arena != NULL); 3854 ASSERT(conn_dev != 0); 3855 inet_minor_free(minor_arena, conn_dev); 3856 q->q_ptr = WR(q)->q_ptr = NULL; 3857 return (0); 3858 } 3859 3860 /* 3861 * Called by tcp_close() routine via squeue when lingering is 3862 * interrupted by a signal. 3863 */ 3864 3865 /* ARGSUSED */ 3866 static void 3867 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3868 { 3869 conn_t *connp = (conn_t *)arg; 3870 tcp_t *tcp = connp->conn_tcp; 3871 3872 freeb(mp); 3873 if (tcp->tcp_linger_tid != 0 && 3874 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3875 tcp_stop_lingering(tcp); 3876 tcp->tcp_client_errno = EINTR; 3877 } 3878 } 3879 3880 /* 3881 * Called by streams close routine via squeues when our client blows off her 3882 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3883 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3884 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3885 * acked. 3886 * 3887 * NOTE: tcp_close potentially returns error when lingering. 3888 * However, the stream head currently does not pass these errors 3889 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3890 * errors to the application (from tsleep()) and not errors 3891 * like ECONNRESET caused by receiving a reset packet. 3892 */ 3893 3894 /* ARGSUSED */ 3895 static void 3896 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3897 { 3898 char *msg; 3899 conn_t *connp = (conn_t *)arg; 3900 tcp_t *tcp = connp->conn_tcp; 3901 clock_t delta = 0; 3902 tcp_stack_t *tcps = tcp->tcp_tcps; 3903 3904 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3905 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3906 3907 mutex_enter(&tcp->tcp_eager_lock); 3908 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3909 /* Cleanup for listener */ 3910 tcp_eager_cleanup(tcp, 0); 3911 tcp->tcp_wait_for_eagers = 1; 3912 } 3913 mutex_exit(&tcp->tcp_eager_lock); 3914 3915 connp->conn_mdt_ok = B_FALSE; 3916 tcp->tcp_mdt = B_FALSE; 3917 3918 connp->conn_lso_ok = B_FALSE; 3919 tcp->tcp_lso = B_FALSE; 3920 3921 msg = NULL; 3922 switch (tcp->tcp_state) { 3923 case TCPS_CLOSED: 3924 case TCPS_IDLE: 3925 case TCPS_BOUND: 3926 case TCPS_LISTEN: 3927 break; 3928 case TCPS_SYN_SENT: 3929 msg = "tcp_close, during connect"; 3930 break; 3931 case TCPS_SYN_RCVD: 3932 /* 3933 * Close during the connect 3-way handshake 3934 * but here there may or may not be pending data 3935 * already on queue. Process almost same as in 3936 * the ESTABLISHED state. 3937 */ 3938 /* FALLTHRU */ 3939 default: 3940 if (tcp->tcp_sodirect != NULL) { 3941 /* Ok, no more sodirect */ 3942 tcp->tcp_sodirect = NULL; 3943 } 3944 3945 if (tcp->tcp_fused) 3946 tcp_unfuse(tcp); 3947 3948 /* 3949 * If SO_LINGER has set a zero linger time, abort the 3950 * connection with a reset. 3951 */ 3952 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3953 msg = "tcp_close, zero lingertime"; 3954 break; 3955 } 3956 3957 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3958 /* 3959 * Abort connection if there is unread data queued. 3960 */ 3961 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3962 msg = "tcp_close, unread data"; 3963 break; 3964 } 3965 /* 3966 * tcp_hard_bound is now cleared thus all packets go through 3967 * tcp_lookup. This fact is used by tcp_detach below. 3968 * 3969 * We have done a qwait() above which could have possibly 3970 * drained more messages in turn causing transition to a 3971 * different state. Check whether we have to do the rest 3972 * of the processing or not. 3973 */ 3974 if (tcp->tcp_state <= TCPS_LISTEN) 3975 break; 3976 3977 /* 3978 * Transmit the FIN before detaching the tcp_t. 3979 * After tcp_detach returns this queue/perimeter 3980 * no longer owns the tcp_t thus others can modify it. 3981 */ 3982 (void) tcp_xmit_end(tcp); 3983 3984 /* 3985 * If lingering on close then wait until the fin is acked, 3986 * the SO_LINGER time passes, or a reset is sent/received. 3987 */ 3988 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3989 !(tcp->tcp_fin_acked) && 3990 tcp->tcp_state >= TCPS_ESTABLISHED) { 3991 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3992 tcp->tcp_client_errno = EWOULDBLOCK; 3993 } else if (tcp->tcp_client_errno == 0) { 3994 3995 ASSERT(tcp->tcp_linger_tid == 0); 3996 3997 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3998 tcp_close_linger_timeout, 3999 tcp->tcp_lingertime * hz); 4000 4001 /* tcp_close_linger_timeout will finish close */ 4002 if (tcp->tcp_linger_tid == 0) 4003 tcp->tcp_client_errno = ENOSR; 4004 else 4005 return; 4006 } 4007 4008 /* 4009 * Check if we need to detach or just close 4010 * the instance. 4011 */ 4012 if (tcp->tcp_state <= TCPS_LISTEN) 4013 break; 4014 } 4015 4016 /* 4017 * Make sure that no other thread will access the tcp_rq of 4018 * this instance (through lookups etc.) as tcp_rq will go 4019 * away shortly. 4020 */ 4021 tcp_acceptor_hash_remove(tcp); 4022 4023 mutex_enter(&tcp->tcp_non_sq_lock); 4024 if (tcp->tcp_flow_stopped) { 4025 tcp_clrqfull(tcp); 4026 } 4027 mutex_exit(&tcp->tcp_non_sq_lock); 4028 4029 if (tcp->tcp_timer_tid != 0) { 4030 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4031 tcp->tcp_timer_tid = 0; 4032 } 4033 /* 4034 * Need to cancel those timers which will not be used when 4035 * TCP is detached. This has to be done before the tcp_wq 4036 * is set to the global queue. 4037 */ 4038 tcp_timers_stop(tcp); 4039 4040 tcp->tcp_detached = B_TRUE; 4041 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4042 tcp_time_wait_append(tcp); 4043 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4044 ASSERT(connp->conn_ref >= 3); 4045 goto finish; 4046 } 4047 4048 /* 4049 * If delta is zero the timer event wasn't executed and was 4050 * successfully canceled. In this case we need to restart it 4051 * with the minimal delta possible. 4052 */ 4053 if (delta >= 0) 4054 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4055 delta ? delta : 1); 4056 4057 ASSERT(connp->conn_ref >= 3); 4058 goto finish; 4059 } 4060 4061 /* Detach did not complete. Still need to remove q from stream. */ 4062 if (msg) { 4063 if (tcp->tcp_state == TCPS_ESTABLISHED || 4064 tcp->tcp_state == TCPS_CLOSE_WAIT) 4065 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4066 if (tcp->tcp_state == TCPS_SYN_SENT || 4067 tcp->tcp_state == TCPS_SYN_RCVD) 4068 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4069 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4070 } 4071 4072 tcp_closei_local(tcp); 4073 CONN_DEC_REF(connp); 4074 ASSERT(connp->conn_ref >= 2); 4075 4076 finish: 4077 /* 4078 * Although packets are always processed on the correct 4079 * tcp's perimeter and access is serialized via squeue's, 4080 * IP still needs a queue when sending packets in time_wait 4081 * state so use WR(tcps_g_q) till ip_output() can be 4082 * changed to deal with just connp. For read side, we 4083 * could have set tcp_rq to NULL but there are some cases 4084 * in tcp_rput_data() from early days of this code which 4085 * do a putnext without checking if tcp is closed. Those 4086 * need to be identified before both tcp_rq and tcp_wq 4087 * can be set to NULL and tcps_g_q can disappear forever. 4088 */ 4089 mutex_enter(&tcp->tcp_closelock); 4090 /* 4091 * Don't change the queues in the case of a listener that has 4092 * eagers in its q or q0. It could surprise the eagers. 4093 * Instead wait for the eagers outside the squeue. 4094 */ 4095 if (!tcp->tcp_wait_for_eagers) { 4096 tcp->tcp_detached = B_TRUE; 4097 /* 4098 * When default queue is closing we set tcps_g_q to NULL 4099 * after the close is done. 4100 */ 4101 ASSERT(tcps->tcps_g_q != NULL); 4102 tcp->tcp_rq = tcps->tcps_g_q; 4103 tcp->tcp_wq = WR(tcps->tcps_g_q); 4104 } 4105 4106 /* Signal tcp_close() to finish closing. */ 4107 tcp->tcp_closed = 1; 4108 cv_signal(&tcp->tcp_closecv); 4109 mutex_exit(&tcp->tcp_closelock); 4110 } 4111 4112 4113 /* 4114 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4115 * Some stream heads get upset if they see these later on as anything but NULL. 4116 */ 4117 static void 4118 tcp_close_mpp(mblk_t **mpp) 4119 { 4120 mblk_t *mp; 4121 4122 if ((mp = *mpp) != NULL) { 4123 do { 4124 mp->b_next = NULL; 4125 mp->b_prev = NULL; 4126 } while ((mp = mp->b_cont) != NULL); 4127 4128 mp = *mpp; 4129 *mpp = NULL; 4130 freemsg(mp); 4131 } 4132 } 4133 4134 /* Do detached close. */ 4135 static void 4136 tcp_close_detached(tcp_t *tcp) 4137 { 4138 if (tcp->tcp_fused) 4139 tcp_unfuse(tcp); 4140 4141 /* 4142 * Clustering code serializes TCP disconnect callbacks and 4143 * cluster tcp list walks by blocking a TCP disconnect callback 4144 * if a cluster tcp list walk is in progress. This ensures 4145 * accurate accounting of TCPs in the cluster code even though 4146 * the TCP list walk itself is not atomic. 4147 */ 4148 tcp_closei_local(tcp); 4149 CONN_DEC_REF(tcp->tcp_connp); 4150 } 4151 4152 /* 4153 * Stop all TCP timers, and free the timer mblks if requested. 4154 */ 4155 void 4156 tcp_timers_stop(tcp_t *tcp) 4157 { 4158 if (tcp->tcp_timer_tid != 0) { 4159 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4160 tcp->tcp_timer_tid = 0; 4161 } 4162 if (tcp->tcp_ka_tid != 0) { 4163 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4164 tcp->tcp_ka_tid = 0; 4165 } 4166 if (tcp->tcp_ack_tid != 0) { 4167 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4168 tcp->tcp_ack_tid = 0; 4169 } 4170 if (tcp->tcp_push_tid != 0) { 4171 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4172 tcp->tcp_push_tid = 0; 4173 } 4174 } 4175 4176 /* 4177 * The tcp_t is going away. Remove it from all lists and set it 4178 * to TCPS_CLOSED. The freeing up of memory is deferred until 4179 * tcp_inactive. This is needed since a thread in tcp_rput might have 4180 * done a CONN_INC_REF on this structure before it was removed from the 4181 * hashes. 4182 */ 4183 static void 4184 tcp_closei_local(tcp_t *tcp) 4185 { 4186 ire_t *ire; 4187 conn_t *connp = tcp->tcp_connp; 4188 tcp_stack_t *tcps = tcp->tcp_tcps; 4189 4190 if (!TCP_IS_SOCKET(tcp)) 4191 tcp_acceptor_hash_remove(tcp); 4192 4193 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4194 tcp->tcp_ibsegs = 0; 4195 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4196 tcp->tcp_obsegs = 0; 4197 4198 /* 4199 * If we are an eager connection hanging off a listener that 4200 * hasn't formally accepted the connection yet, get off his 4201 * list and blow off any data that we have accumulated. 4202 */ 4203 if (tcp->tcp_listener != NULL) { 4204 tcp_t *listener = tcp->tcp_listener; 4205 mutex_enter(&listener->tcp_eager_lock); 4206 /* 4207 * tcp_tconnind_started == B_TRUE means that the 4208 * conn_ind has already gone to listener. At 4209 * this point, eager will be closed but we 4210 * leave it in listeners eager list so that 4211 * if listener decides to close without doing 4212 * accept, we can clean this up. In tcp_wput_accept 4213 * we take care of the case of accept on closed 4214 * eager. 4215 */ 4216 if (!tcp->tcp_tconnind_started) { 4217 tcp_eager_unlink(tcp); 4218 mutex_exit(&listener->tcp_eager_lock); 4219 /* 4220 * We don't want to have any pointers to the 4221 * listener queue, after we have released our 4222 * reference on the listener 4223 */ 4224 ASSERT(tcps->tcps_g_q != NULL); 4225 tcp->tcp_rq = tcps->tcps_g_q; 4226 tcp->tcp_wq = WR(tcps->tcps_g_q); 4227 CONN_DEC_REF(listener->tcp_connp); 4228 } else { 4229 mutex_exit(&listener->tcp_eager_lock); 4230 } 4231 } 4232 4233 /* Stop all the timers */ 4234 tcp_timers_stop(tcp); 4235 4236 if (tcp->tcp_state == TCPS_LISTEN) { 4237 if (tcp->tcp_ip_addr_cache) { 4238 kmem_free((void *)tcp->tcp_ip_addr_cache, 4239 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4240 tcp->tcp_ip_addr_cache = NULL; 4241 } 4242 } 4243 mutex_enter(&tcp->tcp_non_sq_lock); 4244 if (tcp->tcp_flow_stopped) 4245 tcp_clrqfull(tcp); 4246 mutex_exit(&tcp->tcp_non_sq_lock); 4247 4248 tcp_bind_hash_remove(tcp); 4249 /* 4250 * If the tcp_time_wait_collector (which runs outside the squeue) 4251 * is trying to remove this tcp from the time wait list, we will 4252 * block in tcp_time_wait_remove while trying to acquire the 4253 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4254 * requires the ipcl_hash_remove to be ordered after the 4255 * tcp_time_wait_remove for the refcnt checks to work correctly. 4256 */ 4257 if (tcp->tcp_state == TCPS_TIME_WAIT) 4258 (void) tcp_time_wait_remove(tcp, NULL); 4259 CL_INET_DISCONNECT(connp, tcp); 4260 ipcl_hash_remove(connp); 4261 4262 /* 4263 * Delete the cached ire in conn_ire_cache and also mark 4264 * the conn as CONDEMNED 4265 */ 4266 mutex_enter(&connp->conn_lock); 4267 connp->conn_state_flags |= CONN_CONDEMNED; 4268 ire = connp->conn_ire_cache; 4269 connp->conn_ire_cache = NULL; 4270 mutex_exit(&connp->conn_lock); 4271 if (ire != NULL) 4272 IRE_REFRELE_NOTR(ire); 4273 4274 /* Need to cleanup any pending ioctls */ 4275 ASSERT(tcp->tcp_time_wait_next == NULL); 4276 ASSERT(tcp->tcp_time_wait_prev == NULL); 4277 ASSERT(tcp->tcp_time_wait_expire == 0); 4278 tcp->tcp_state = TCPS_CLOSED; 4279 4280 /* Release any SSL context */ 4281 if (tcp->tcp_kssl_ent != NULL) { 4282 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4283 tcp->tcp_kssl_ent = NULL; 4284 } 4285 if (tcp->tcp_kssl_ctx != NULL) { 4286 kssl_release_ctx(tcp->tcp_kssl_ctx); 4287 tcp->tcp_kssl_ctx = NULL; 4288 } 4289 tcp->tcp_kssl_pending = B_FALSE; 4290 4291 tcp_ipsec_cleanup(tcp); 4292 } 4293 4294 /* 4295 * tcp is dying (called from ipcl_conn_destroy and error cases). 4296 * Free the tcp_t in either case. 4297 */ 4298 void 4299 tcp_free(tcp_t *tcp) 4300 { 4301 mblk_t *mp; 4302 ip6_pkt_t *ipp; 4303 4304 ASSERT(tcp != NULL); 4305 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4306 4307 tcp->tcp_rq = NULL; 4308 tcp->tcp_wq = NULL; 4309 4310 tcp_close_mpp(&tcp->tcp_xmit_head); 4311 tcp_close_mpp(&tcp->tcp_reass_head); 4312 if (tcp->tcp_rcv_list != NULL) { 4313 /* Free b_next chain */ 4314 tcp_close_mpp(&tcp->tcp_rcv_list); 4315 } 4316 if ((mp = tcp->tcp_urp_mp) != NULL) { 4317 freemsg(mp); 4318 } 4319 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4320 freemsg(mp); 4321 } 4322 4323 if (tcp->tcp_fused_sigurg_mp != NULL) { 4324 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4325 freeb(tcp->tcp_fused_sigurg_mp); 4326 tcp->tcp_fused_sigurg_mp = NULL; 4327 } 4328 4329 if (tcp->tcp_ordrel_mp != NULL) { 4330 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4331 freeb(tcp->tcp_ordrel_mp); 4332 tcp->tcp_ordrel_mp = NULL; 4333 } 4334 4335 if (tcp->tcp_sack_info != NULL) { 4336 if (tcp->tcp_notsack_list != NULL) { 4337 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4338 } 4339 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4340 } 4341 4342 if (tcp->tcp_hopopts != NULL) { 4343 mi_free(tcp->tcp_hopopts); 4344 tcp->tcp_hopopts = NULL; 4345 tcp->tcp_hopoptslen = 0; 4346 } 4347 ASSERT(tcp->tcp_hopoptslen == 0); 4348 if (tcp->tcp_dstopts != NULL) { 4349 mi_free(tcp->tcp_dstopts); 4350 tcp->tcp_dstopts = NULL; 4351 tcp->tcp_dstoptslen = 0; 4352 } 4353 ASSERT(tcp->tcp_dstoptslen == 0); 4354 if (tcp->tcp_rtdstopts != NULL) { 4355 mi_free(tcp->tcp_rtdstopts); 4356 tcp->tcp_rtdstopts = NULL; 4357 tcp->tcp_rtdstoptslen = 0; 4358 } 4359 ASSERT(tcp->tcp_rtdstoptslen == 0); 4360 if (tcp->tcp_rthdr != NULL) { 4361 mi_free(tcp->tcp_rthdr); 4362 tcp->tcp_rthdr = NULL; 4363 tcp->tcp_rthdrlen = 0; 4364 } 4365 ASSERT(tcp->tcp_rthdrlen == 0); 4366 4367 ipp = &tcp->tcp_sticky_ipp; 4368 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4369 IPPF_RTHDR)) 4370 ip6_pkt_free(ipp); 4371 4372 /* 4373 * Free memory associated with the tcp/ip header template. 4374 */ 4375 4376 if (tcp->tcp_iphc != NULL) 4377 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4378 4379 /* 4380 * Following is really a blowing away a union. 4381 * It happens to have exactly two members of identical size 4382 * the following code is enough. 4383 */ 4384 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4385 } 4386 4387 4388 /* 4389 * Put a connection confirmation message upstream built from the 4390 * address information within 'iph' and 'tcph'. Report our success or failure. 4391 */ 4392 static boolean_t 4393 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4394 mblk_t **defermp) 4395 { 4396 sin_t sin; 4397 sin6_t sin6; 4398 mblk_t *mp; 4399 char *optp = NULL; 4400 int optlen = 0; 4401 cred_t *cr; 4402 4403 if (defermp != NULL) 4404 *defermp = NULL; 4405 4406 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4407 /* 4408 * Return in T_CONN_CON results of option negotiation through 4409 * the T_CONN_REQ. Note: If there is an real end-to-end option 4410 * negotiation, then what is received from remote end needs 4411 * to be taken into account but there is no such thing (yet?) 4412 * in our TCP/IP. 4413 * Note: We do not use mi_offset_param() here as 4414 * tcp_opts_conn_req contents do not directly come from 4415 * an application and are either generated in kernel or 4416 * from user input that was already verified. 4417 */ 4418 mp = tcp->tcp_conn.tcp_opts_conn_req; 4419 optp = (char *)(mp->b_rptr + 4420 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4421 optlen = (int) 4422 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4423 } 4424 4425 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4426 ipha_t *ipha = (ipha_t *)iphdr; 4427 4428 /* packet is IPv4 */ 4429 if (tcp->tcp_family == AF_INET) { 4430 sin = sin_null; 4431 sin.sin_addr.s_addr = ipha->ipha_src; 4432 sin.sin_port = *(uint16_t *)tcph->th_lport; 4433 sin.sin_family = AF_INET; 4434 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4435 (int)sizeof (sin_t), optp, optlen); 4436 } else { 4437 sin6 = sin6_null; 4438 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4439 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4440 sin6.sin6_family = AF_INET6; 4441 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4442 (int)sizeof (sin6_t), optp, optlen); 4443 4444 } 4445 } else { 4446 ip6_t *ip6h = (ip6_t *)iphdr; 4447 4448 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4449 ASSERT(tcp->tcp_family == AF_INET6); 4450 sin6 = sin6_null; 4451 sin6.sin6_addr = ip6h->ip6_src; 4452 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4453 sin6.sin6_family = AF_INET6; 4454 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4455 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4456 (int)sizeof (sin6_t), optp, optlen); 4457 } 4458 4459 if (!mp) 4460 return (B_FALSE); 4461 4462 if ((cr = DB_CRED(idmp)) != NULL) { 4463 mblk_setcred(mp, cr); 4464 DB_CPID(mp) = DB_CPID(idmp); 4465 } 4466 4467 if (defermp == NULL) { 4468 conn_t *connp = tcp->tcp_connp; 4469 if (IPCL_IS_NONSTR(connp)) { 4470 (*connp->conn_upcalls->su_connected) 4471 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4472 DB_CPID(mp)); 4473 freemsg(mp); 4474 } else { 4475 putnext(tcp->tcp_rq, mp); 4476 } 4477 } else { 4478 *defermp = mp; 4479 } 4480 4481 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4482 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4483 return (B_TRUE); 4484 } 4485 4486 /* 4487 * Defense for the SYN attack - 4488 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4489 * one from the list of droppable eagers. This list is a subset of q0. 4490 * see comments before the definition of MAKE_DROPPABLE(). 4491 * 2. Don't drop a SYN request before its first timeout. This gives every 4492 * request at least til the first timeout to complete its 3-way handshake. 4493 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4494 * requests currently on the queue that has timed out. This will be used 4495 * as an indicator of whether an attack is under way, so that appropriate 4496 * actions can be taken. (It's incremented in tcp_timer() and decremented 4497 * either when eager goes into ESTABLISHED, or gets freed up.) 4498 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4499 * # of timeout drops back to <= q0len/32 => SYN alert off 4500 */ 4501 static boolean_t 4502 tcp_drop_q0(tcp_t *tcp) 4503 { 4504 tcp_t *eager; 4505 mblk_t *mp; 4506 tcp_stack_t *tcps = tcp->tcp_tcps; 4507 4508 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4509 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4510 4511 /* Pick oldest eager from the list of droppable eagers */ 4512 eager = tcp->tcp_eager_prev_drop_q0; 4513 4514 /* If list is empty. return B_FALSE */ 4515 if (eager == tcp) { 4516 return (B_FALSE); 4517 } 4518 4519 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4520 if ((mp = allocb(0, BPRI_HI)) == NULL) 4521 return (B_FALSE); 4522 4523 /* 4524 * Take this eager out from the list of droppable eagers since we are 4525 * going to drop it. 4526 */ 4527 MAKE_UNDROPPABLE(eager); 4528 4529 if (tcp->tcp_debug) { 4530 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4531 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4532 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4533 tcp->tcp_conn_req_cnt_q0, 4534 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4535 } 4536 4537 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4538 4539 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4540 CONN_INC_REF(eager->tcp_connp); 4541 4542 /* Mark the IRE created for this SYN request temporary */ 4543 tcp_ip_ire_mark_advice(eager); 4544 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4545 tcp_clean_death_wrapper, eager->tcp_connp, 4546 SQ_FILL, SQTAG_TCP_DROP_Q0); 4547 4548 return (B_TRUE); 4549 } 4550 4551 int 4552 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4553 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4554 { 4555 tcp_t *ltcp = lconnp->conn_tcp; 4556 tcp_t *tcp = connp->conn_tcp; 4557 mblk_t *tpi_mp; 4558 ipha_t *ipha; 4559 ip6_t *ip6h; 4560 sin6_t sin6; 4561 in6_addr_t v6dst; 4562 int err; 4563 int ifindex = 0; 4564 cred_t *cr; 4565 tcp_stack_t *tcps = tcp->tcp_tcps; 4566 4567 if (ipvers == IPV4_VERSION) { 4568 ipha = (ipha_t *)mp->b_rptr; 4569 4570 connp->conn_send = ip_output; 4571 connp->conn_recv = tcp_input; 4572 4573 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4574 &connp->conn_bound_source_v6); 4575 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4576 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4577 4578 sin6 = sin6_null; 4579 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4580 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4581 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4582 sin6.sin6_family = AF_INET6; 4583 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4584 lconnp->conn_zoneid, tcps->tcps_netstack); 4585 if (tcp->tcp_recvdstaddr) { 4586 sin6_t sin6d; 4587 4588 sin6d = sin6_null; 4589 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4590 &sin6d.sin6_addr); 4591 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4592 sin6d.sin6_family = AF_INET; 4593 tpi_mp = mi_tpi_extconn_ind(NULL, 4594 (char *)&sin6d, sizeof (sin6_t), 4595 (char *)&tcp, 4596 (t_scalar_t)sizeof (intptr_t), 4597 (char *)&sin6d, sizeof (sin6_t), 4598 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4599 } else { 4600 tpi_mp = mi_tpi_conn_ind(NULL, 4601 (char *)&sin6, sizeof (sin6_t), 4602 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4603 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4604 } 4605 } else { 4606 ip6h = (ip6_t *)mp->b_rptr; 4607 4608 connp->conn_send = ip_output_v6; 4609 connp->conn_recv = tcp_input; 4610 4611 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4612 connp->conn_srcv6 = ip6h->ip6_dst; 4613 connp->conn_remv6 = ip6h->ip6_src; 4614 4615 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4616 ifindex = (int)DB_CKSUMSTUFF(mp); 4617 DB_CKSUMSTUFF(mp) = 0; 4618 4619 sin6 = sin6_null; 4620 sin6.sin6_addr = ip6h->ip6_src; 4621 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4622 sin6.sin6_family = AF_INET6; 4623 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4624 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4625 lconnp->conn_zoneid, tcps->tcps_netstack); 4626 4627 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4628 /* Pass up the scope_id of remote addr */ 4629 sin6.sin6_scope_id = ifindex; 4630 } else { 4631 sin6.sin6_scope_id = 0; 4632 } 4633 if (tcp->tcp_recvdstaddr) { 4634 sin6_t sin6d; 4635 4636 sin6d = sin6_null; 4637 sin6.sin6_addr = ip6h->ip6_dst; 4638 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4639 sin6d.sin6_family = AF_INET; 4640 tpi_mp = mi_tpi_extconn_ind(NULL, 4641 (char *)&sin6d, sizeof (sin6_t), 4642 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4643 (char *)&sin6d, sizeof (sin6_t), 4644 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4645 } else { 4646 tpi_mp = mi_tpi_conn_ind(NULL, 4647 (char *)&sin6, sizeof (sin6_t), 4648 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4649 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4650 } 4651 } 4652 4653 if (tpi_mp == NULL) 4654 return (ENOMEM); 4655 4656 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4657 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4658 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4659 connp->conn_fully_bound = B_FALSE; 4660 4661 /* Inherit information from the "parent" */ 4662 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4663 tcp->tcp_family = ltcp->tcp_family; 4664 4665 tcp->tcp_wq = ltcp->tcp_wq; 4666 tcp->tcp_rq = ltcp->tcp_rq; 4667 4668 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4669 tcp->tcp_detached = B_TRUE; 4670 SOCK_CONNID_INIT(tcp->tcp_connid); 4671 if ((err = tcp_init_values(tcp)) != 0) { 4672 freemsg(tpi_mp); 4673 return (err); 4674 } 4675 4676 if (ipvers == IPV4_VERSION) { 4677 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4678 freemsg(tpi_mp); 4679 return (err); 4680 } 4681 ASSERT(tcp->tcp_ipha != NULL); 4682 } else { 4683 /* ifindex must be already set */ 4684 ASSERT(ifindex != 0); 4685 4686 if (ltcp->tcp_bound_if != 0) { 4687 /* 4688 * Set newtcp's bound_if equal to 4689 * listener's value. If ifindex is 4690 * not the same as ltcp->tcp_bound_if, 4691 * it must be a packet for the ipmp group 4692 * of interfaces 4693 */ 4694 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4695 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4696 tcp->tcp_bound_if = ifindex; 4697 } 4698 4699 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4700 tcp->tcp_recvifindex = 0; 4701 tcp->tcp_recvhops = 0xffffffffU; 4702 ASSERT(tcp->tcp_ip6h != NULL); 4703 } 4704 4705 tcp->tcp_lport = ltcp->tcp_lport; 4706 4707 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4708 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4709 /* 4710 * Listener had options of some sort; eager inherits. 4711 * Free up the eager template and allocate one 4712 * of the right size. 4713 */ 4714 if (tcp->tcp_hdr_grown) { 4715 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4716 } else { 4717 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4718 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4719 } 4720 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4721 KM_NOSLEEP); 4722 if (tcp->tcp_iphc == NULL) { 4723 tcp->tcp_iphc_len = 0; 4724 freemsg(tpi_mp); 4725 return (ENOMEM); 4726 } 4727 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4728 tcp->tcp_hdr_grown = B_TRUE; 4729 } 4730 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4731 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4732 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4733 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4734 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4735 4736 /* 4737 * Copy the IP+TCP header template from listener to eager 4738 */ 4739 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4740 if (tcp->tcp_ipversion == IPV6_VERSION) { 4741 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4742 IPPROTO_RAW) { 4743 tcp->tcp_ip6h = 4744 (ip6_t *)(tcp->tcp_iphc + 4745 sizeof (ip6i_t)); 4746 } else { 4747 tcp->tcp_ip6h = 4748 (ip6_t *)(tcp->tcp_iphc); 4749 } 4750 tcp->tcp_ipha = NULL; 4751 } else { 4752 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4753 tcp->tcp_ip6h = NULL; 4754 } 4755 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4756 tcp->tcp_ip_hdr_len); 4757 } else { 4758 /* 4759 * only valid case when ipversion of listener and 4760 * eager differ is when listener is IPv6 and 4761 * eager is IPv4. 4762 * Eager header template has been initialized to the 4763 * maximum v4 header sizes, which includes space for 4764 * TCP and IP options. 4765 */ 4766 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4767 (tcp->tcp_ipversion == IPV4_VERSION)); 4768 ASSERT(tcp->tcp_iphc_len >= 4769 TCP_MAX_COMBINED_HEADER_LENGTH); 4770 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4771 /* copy IP header fields individually */ 4772 tcp->tcp_ipha->ipha_ttl = 4773 ltcp->tcp_ip6h->ip6_hops; 4774 bcopy(ltcp->tcp_tcph->th_lport, 4775 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4776 } 4777 4778 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4779 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4780 sizeof (in_port_t)); 4781 4782 if (ltcp->tcp_lport == 0) { 4783 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4784 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4785 sizeof (in_port_t)); 4786 } 4787 4788 if (tcp->tcp_ipversion == IPV4_VERSION) { 4789 ASSERT(ipha != NULL); 4790 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4791 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4792 4793 /* Source routing option copyover (reverse it) */ 4794 if (tcps->tcps_rev_src_routes) 4795 tcp_opt_reverse(tcp, ipha); 4796 } else { 4797 ASSERT(ip6h != NULL); 4798 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4799 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4800 } 4801 4802 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4803 ASSERT(!tcp->tcp_tconnind_started); 4804 /* 4805 * If the SYN contains a credential, it's a loopback packet; attach 4806 * the credential to the TPI message. 4807 */ 4808 if ((cr = DB_CRED(idmp)) != NULL) { 4809 mblk_setcred(tpi_mp, cr); 4810 DB_CPID(tpi_mp) = DB_CPID(idmp); 4811 } 4812 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4813 4814 /* Inherit the listener's SSL protection state */ 4815 4816 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4817 kssl_hold_ent(tcp->tcp_kssl_ent); 4818 tcp->tcp_kssl_pending = B_TRUE; 4819 } 4820 4821 /* Inherit the listener's non-STREAMS flag */ 4822 if (IPCL_IS_NONSTR(lconnp)) { 4823 connp->conn_flags |= IPCL_NONSTR; 4824 connp->conn_upcalls = lconnp->conn_upcalls; 4825 } 4826 4827 return (0); 4828 } 4829 4830 4831 int 4832 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4833 tcph_t *tcph, mblk_t *idmp) 4834 { 4835 tcp_t *ltcp = lconnp->conn_tcp; 4836 tcp_t *tcp = connp->conn_tcp; 4837 sin_t sin; 4838 mblk_t *tpi_mp = NULL; 4839 int err; 4840 cred_t *cr; 4841 tcp_stack_t *tcps = tcp->tcp_tcps; 4842 4843 sin = sin_null; 4844 sin.sin_addr.s_addr = ipha->ipha_src; 4845 sin.sin_port = *(uint16_t *)tcph->th_lport; 4846 sin.sin_family = AF_INET; 4847 if (ltcp->tcp_recvdstaddr) { 4848 sin_t sind; 4849 4850 sind = sin_null; 4851 sind.sin_addr.s_addr = ipha->ipha_dst; 4852 sind.sin_port = *(uint16_t *)tcph->th_fport; 4853 sind.sin_family = AF_INET; 4854 tpi_mp = mi_tpi_extconn_ind(NULL, 4855 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4856 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4857 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4858 } else { 4859 tpi_mp = mi_tpi_conn_ind(NULL, 4860 (char *)&sin, sizeof (sin_t), 4861 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4862 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4863 } 4864 4865 if (tpi_mp == NULL) { 4866 return (ENOMEM); 4867 } 4868 4869 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4870 connp->conn_send = ip_output; 4871 connp->conn_recv = tcp_input; 4872 connp->conn_fully_bound = B_FALSE; 4873 4874 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4875 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4876 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4877 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4878 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4879 4880 /* Inherit information from the "parent" */ 4881 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4882 tcp->tcp_family = ltcp->tcp_family; 4883 tcp->tcp_wq = ltcp->tcp_wq; 4884 tcp->tcp_rq = ltcp->tcp_rq; 4885 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4886 tcp->tcp_detached = B_TRUE; 4887 SOCK_CONNID_INIT(tcp->tcp_connid); 4888 if ((err = tcp_init_values(tcp)) != 0) { 4889 freemsg(tpi_mp); 4890 return (err); 4891 } 4892 4893 /* 4894 * Let's make sure that eager tcp template has enough space to 4895 * copy IPv4 listener's tcp template. Since the conn_t structure is 4896 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4897 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4898 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4899 * extension headers or with ip6i_t struct). Note that bcopy() below 4900 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4901 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4902 */ 4903 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4904 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4905 4906 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4907 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4908 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4909 tcp->tcp_ttl = ltcp->tcp_ttl; 4910 tcp->tcp_tos = ltcp->tcp_tos; 4911 4912 /* Copy the IP+TCP header template from listener to eager */ 4913 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4914 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4915 tcp->tcp_ip6h = NULL; 4916 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4917 tcp->tcp_ip_hdr_len); 4918 4919 /* Initialize the IP addresses and Ports */ 4920 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4921 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4922 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4923 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4924 4925 /* Source routing option copyover (reverse it) */ 4926 if (tcps->tcps_rev_src_routes) 4927 tcp_opt_reverse(tcp, ipha); 4928 4929 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4930 ASSERT(!tcp->tcp_tconnind_started); 4931 4932 /* 4933 * If the SYN contains a credential, it's a loopback packet; attach 4934 * the credential to the TPI message. 4935 */ 4936 if ((cr = DB_CRED(idmp)) != NULL) { 4937 mblk_setcred(tpi_mp, cr); 4938 DB_CPID(tpi_mp) = DB_CPID(idmp); 4939 } 4940 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4941 4942 /* Inherit the listener's SSL protection state */ 4943 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4944 kssl_hold_ent(tcp->tcp_kssl_ent); 4945 tcp->tcp_kssl_pending = B_TRUE; 4946 } 4947 4948 /* Inherit the listener's non-STREAMS flag */ 4949 if (IPCL_IS_NONSTR(lconnp)) { 4950 connp->conn_flags |= IPCL_NONSTR; 4951 connp->conn_upcalls = lconnp->conn_upcalls; 4952 } 4953 4954 return (0); 4955 } 4956 4957 /* 4958 * sets up conn for ipsec. 4959 * if the first mblk is M_CTL it is consumed and mpp is updated. 4960 * in case of error mpp is freed. 4961 */ 4962 conn_t * 4963 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4964 { 4965 conn_t *connp = tcp->tcp_connp; 4966 conn_t *econnp; 4967 squeue_t *new_sqp; 4968 mblk_t *first_mp = *mpp; 4969 mblk_t *mp = *mpp; 4970 boolean_t mctl_present = B_FALSE; 4971 uint_t ipvers; 4972 4973 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4974 if (econnp == NULL) { 4975 freemsg(first_mp); 4976 return (NULL); 4977 } 4978 if (DB_TYPE(mp) == M_CTL) { 4979 if (mp->b_cont == NULL || 4980 mp->b_cont->b_datap->db_type != M_DATA) { 4981 freemsg(first_mp); 4982 return (NULL); 4983 } 4984 mp = mp->b_cont; 4985 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4986 freemsg(first_mp); 4987 return (NULL); 4988 } 4989 4990 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4991 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4992 mctl_present = B_TRUE; 4993 } else { 4994 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4995 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4996 } 4997 4998 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4999 DB_CKSUMSTART(mp) = 0; 5000 5001 ASSERT(OK_32PTR(mp->b_rptr)); 5002 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5003 if (ipvers == IPV4_VERSION) { 5004 uint16_t *up; 5005 uint32_t ports; 5006 ipha_t *ipha; 5007 5008 ipha = (ipha_t *)mp->b_rptr; 5009 up = (uint16_t *)((uchar_t *)ipha + 5010 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5011 ports = *(uint32_t *)up; 5012 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5013 ipha->ipha_dst, ipha->ipha_src, ports); 5014 } else { 5015 uint16_t *up; 5016 uint32_t ports; 5017 uint16_t ip_hdr_len; 5018 uint8_t *nexthdrp; 5019 ip6_t *ip6h; 5020 tcph_t *tcph; 5021 5022 ip6h = (ip6_t *)mp->b_rptr; 5023 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5024 ip_hdr_len = IPV6_HDR_LEN; 5025 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5026 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5027 CONN_DEC_REF(econnp); 5028 freemsg(first_mp); 5029 return (NULL); 5030 } 5031 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5032 up = (uint16_t *)tcph->th_lport; 5033 ports = *(uint32_t *)up; 5034 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5035 ip6h->ip6_dst, ip6h->ip6_src, ports); 5036 } 5037 5038 /* 5039 * The caller already ensured that there is a sqp present. 5040 */ 5041 econnp->conn_sqp = new_sqp; 5042 econnp->conn_initial_sqp = new_sqp; 5043 5044 if (connp->conn_policy != NULL) { 5045 ipsec_in_t *ii; 5046 ii = (ipsec_in_t *)(first_mp->b_rptr); 5047 ASSERT(ii->ipsec_in_policy == NULL); 5048 IPPH_REFHOLD(connp->conn_policy); 5049 ii->ipsec_in_policy = connp->conn_policy; 5050 5051 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5052 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5053 CONN_DEC_REF(econnp); 5054 freemsg(first_mp); 5055 return (NULL); 5056 } 5057 } 5058 5059 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5060 CONN_DEC_REF(econnp); 5061 freemsg(first_mp); 5062 return (NULL); 5063 } 5064 5065 /* 5066 * If we know we have some policy, pass the "IPSEC" 5067 * options size TCP uses this adjust the MSS. 5068 */ 5069 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5070 if (mctl_present) { 5071 freeb(first_mp); 5072 *mpp = mp; 5073 } 5074 5075 return (econnp); 5076 } 5077 5078 /* 5079 * tcp_get_conn/tcp_free_conn 5080 * 5081 * tcp_get_conn is used to get a clean tcp connection structure. 5082 * It tries to reuse the connections put on the freelist by the 5083 * time_wait_collector failing which it goes to kmem_cache. This 5084 * way has two benefits compared to just allocating from and 5085 * freeing to kmem_cache. 5086 * 1) The time_wait_collector can free (which includes the cleanup) 5087 * outside the squeue. So when the interrupt comes, we have a clean 5088 * connection sitting in the freelist. Obviously, this buys us 5089 * performance. 5090 * 5091 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5092 * has multiple disadvantages - tying up the squeue during alloc, and the 5093 * fact that IPSec policy initialization has to happen here which 5094 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5095 * But allocating the conn/tcp in IP land is also not the best since 5096 * we can't check the 'q' and 'q0' which are protected by squeue and 5097 * blindly allocate memory which might have to be freed here if we are 5098 * not allowed to accept the connection. By using the freelist and 5099 * putting the conn/tcp back in freelist, we don't pay a penalty for 5100 * allocating memory without checking 'q/q0' and freeing it if we can't 5101 * accept the connection. 5102 * 5103 * Care should be taken to put the conn back in the same squeue's freelist 5104 * from which it was allocated. Best results are obtained if conn is 5105 * allocated from listener's squeue and freed to the same. Time wait 5106 * collector will free up the freelist is the connection ends up sitting 5107 * there for too long. 5108 */ 5109 void * 5110 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5111 { 5112 tcp_t *tcp = NULL; 5113 conn_t *connp = NULL; 5114 squeue_t *sqp = (squeue_t *)arg; 5115 tcp_squeue_priv_t *tcp_time_wait; 5116 netstack_t *ns; 5117 5118 tcp_time_wait = 5119 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5120 5121 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5122 tcp = tcp_time_wait->tcp_free_list; 5123 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5124 if (tcp != NULL) { 5125 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5126 tcp_time_wait->tcp_free_list_cnt--; 5127 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5128 tcp->tcp_time_wait_next = NULL; 5129 connp = tcp->tcp_connp; 5130 connp->conn_flags |= IPCL_REUSED; 5131 5132 ASSERT(tcp->tcp_tcps == NULL); 5133 ASSERT(connp->conn_netstack == NULL); 5134 ASSERT(tcp->tcp_rsrv_mp != NULL); 5135 ns = tcps->tcps_netstack; 5136 netstack_hold(ns); 5137 connp->conn_netstack = ns; 5138 tcp->tcp_tcps = tcps; 5139 TCPS_REFHOLD(tcps); 5140 ipcl_globalhash_insert(connp); 5141 return ((void *)connp); 5142 } 5143 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5144 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5145 tcps->tcps_netstack)) == NULL) 5146 return (NULL); 5147 tcp = connp->conn_tcp; 5148 /* 5149 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5150 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5151 */ 5152 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5153 ipcl_conn_destroy(connp); 5154 return (NULL); 5155 } 5156 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5157 tcp->tcp_tcps = tcps; 5158 TCPS_REFHOLD(tcps); 5159 5160 return ((void *)connp); 5161 } 5162 5163 /* 5164 * Update the cached label for the given tcp_t. This should be called once per 5165 * connection, and before any packets are sent or tcp_process_options is 5166 * invoked. Returns B_FALSE if the correct label could not be constructed. 5167 */ 5168 static boolean_t 5169 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5170 { 5171 conn_t *connp = tcp->tcp_connp; 5172 5173 if (tcp->tcp_ipversion == IPV4_VERSION) { 5174 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5175 int added; 5176 5177 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5178 connp->conn_mac_exempt, 5179 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5180 return (B_FALSE); 5181 5182 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5183 if (added == -1) 5184 return (B_FALSE); 5185 tcp->tcp_hdr_len += added; 5186 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5187 tcp->tcp_ip_hdr_len += added; 5188 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5189 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5190 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5191 tcp->tcp_hdr_len); 5192 if (added == -1) 5193 return (B_FALSE); 5194 tcp->tcp_hdr_len += added; 5195 tcp->tcp_tcph = (tcph_t *) 5196 ((uchar_t *)tcp->tcp_tcph + added); 5197 tcp->tcp_ip_hdr_len += added; 5198 } 5199 } else { 5200 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5201 5202 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5203 connp->conn_mac_exempt, 5204 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5205 return (B_FALSE); 5206 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5207 &tcp->tcp_label_len, optbuf) != 0) 5208 return (B_FALSE); 5209 if (tcp_build_hdrs(tcp) != 0) 5210 return (B_FALSE); 5211 } 5212 5213 connp->conn_ulp_labeled = 1; 5214 5215 return (B_TRUE); 5216 } 5217 5218 /* BEGIN CSTYLED */ 5219 /* 5220 * 5221 * The sockfs ACCEPT path: 5222 * ======================= 5223 * 5224 * The eager is now established in its own perimeter as soon as SYN is 5225 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5226 * completes the accept processing on the acceptor STREAM. The sending 5227 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5228 * listener but a TLI/XTI listener completes the accept processing 5229 * on the listener perimeter. 5230 * 5231 * Common control flow for 3 way handshake: 5232 * ---------------------------------------- 5233 * 5234 * incoming SYN (listener perimeter) -> tcp_rput_data() 5235 * -> tcp_conn_request() 5236 * 5237 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5238 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5239 * 5240 * Sockfs ACCEPT Path: 5241 * ------------------- 5242 * 5243 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5244 * as STREAM entry point) 5245 * 5246 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5247 * 5248 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5249 * association (we are not behind eager's squeue but sockfs is protecting us 5250 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5251 * is changed to point at tcp_wput(). 5252 * 5253 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5254 * listener (done on listener's perimeter). 5255 * 5256 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5257 * accept. 5258 * 5259 * TLI/XTI client ACCEPT path: 5260 * --------------------------- 5261 * 5262 * soaccept() sends T_CONN_RES on the listener STREAM. 5263 * 5264 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5265 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5266 * 5267 * Locks: 5268 * ====== 5269 * 5270 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5271 * and listeners->tcp_eager_next_q. 5272 * 5273 * Referencing: 5274 * ============ 5275 * 5276 * 1) We start out in tcp_conn_request by eager placing a ref on 5277 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5278 * 5279 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5280 * doing so we place a ref on the eager. This ref is finally dropped at the 5281 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5282 * reference is dropped by the squeue framework. 5283 * 5284 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5285 * 5286 * The reference must be released by the same entity that added the reference 5287 * In the above scheme, the eager is the entity that adds and releases the 5288 * references. Note that tcp_accept_finish executes in the squeue of the eager 5289 * (albeit after it is attached to the acceptor stream). Though 1. executes 5290 * in the listener's squeue, the eager is nascent at this point and the 5291 * reference can be considered to have been added on behalf of the eager. 5292 * 5293 * Eager getting a Reset or listener closing: 5294 * ========================================== 5295 * 5296 * Once the listener and eager are linked, the listener never does the unlink. 5297 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5298 * a message on all eager perimeter. The eager then does the unlink, clears 5299 * any pointers to the listener's queue and drops the reference to the 5300 * listener. The listener waits in tcp_close outside the squeue until its 5301 * refcount has dropped to 1. This ensures that the listener has waited for 5302 * all eagers to clear their association with the listener. 5303 * 5304 * Similarly, if eager decides to go away, it can unlink itself and close. 5305 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5306 * the reference to eager is still valid because of the extra ref we put 5307 * in tcp_send_conn_ind. 5308 * 5309 * Listener can always locate the eager under the protection 5310 * of the listener->tcp_eager_lock, and then do a refhold 5311 * on the eager during the accept processing. 5312 * 5313 * The acceptor stream accesses the eager in the accept processing 5314 * based on the ref placed on eager before sending T_conn_ind. 5315 * The only entity that can negate this refhold is a listener close 5316 * which is mutually exclusive with an active acceptor stream. 5317 * 5318 * Eager's reference on the listener 5319 * =================================== 5320 * 5321 * If the accept happens (even on a closed eager) the eager drops its 5322 * reference on the listener at the start of tcp_accept_finish. If the 5323 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5324 * the reference is dropped in tcp_closei_local. If the listener closes, 5325 * the reference is dropped in tcp_eager_kill. In all cases the reference 5326 * is dropped while executing in the eager's context (squeue). 5327 */ 5328 /* END CSTYLED */ 5329 5330 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5331 5332 /* 5333 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5334 * tcp_rput_data will not see any SYN packets. 5335 */ 5336 /* ARGSUSED */ 5337 void 5338 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5339 { 5340 tcph_t *tcph; 5341 uint32_t seg_seq; 5342 tcp_t *eager; 5343 uint_t ipvers; 5344 ipha_t *ipha; 5345 ip6_t *ip6h; 5346 int err; 5347 conn_t *econnp = NULL; 5348 squeue_t *new_sqp; 5349 mblk_t *mp1; 5350 uint_t ip_hdr_len; 5351 conn_t *connp = (conn_t *)arg; 5352 tcp_t *tcp = connp->conn_tcp; 5353 cred_t *credp; 5354 tcp_stack_t *tcps = tcp->tcp_tcps; 5355 ip_stack_t *ipst; 5356 5357 if (tcp->tcp_state != TCPS_LISTEN) 5358 goto error2; 5359 5360 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5361 5362 mutex_enter(&tcp->tcp_eager_lock); 5363 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5364 mutex_exit(&tcp->tcp_eager_lock); 5365 TCP_STAT(tcps, tcp_listendrop); 5366 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5367 if (tcp->tcp_debug) { 5368 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5369 "tcp_conn_request: listen backlog (max=%d) " 5370 "overflow (%d pending) on %s", 5371 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5372 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5373 } 5374 goto error2; 5375 } 5376 5377 if (tcp->tcp_conn_req_cnt_q0 >= 5378 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5379 /* 5380 * Q0 is full. Drop a pending half-open req from the queue 5381 * to make room for the new SYN req. Also mark the time we 5382 * drop a SYN. 5383 * 5384 * A more aggressive defense against SYN attack will 5385 * be to set the "tcp_syn_defense" flag now. 5386 */ 5387 TCP_STAT(tcps, tcp_listendropq0); 5388 tcp->tcp_last_rcv_lbolt = lbolt64; 5389 if (!tcp_drop_q0(tcp)) { 5390 mutex_exit(&tcp->tcp_eager_lock); 5391 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5392 if (tcp->tcp_debug) { 5393 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5394 "tcp_conn_request: listen half-open queue " 5395 "(max=%d) full (%d pending) on %s", 5396 tcps->tcps_conn_req_max_q0, 5397 tcp->tcp_conn_req_cnt_q0, 5398 tcp_display(tcp, NULL, 5399 DISP_PORT_ONLY)); 5400 } 5401 goto error2; 5402 } 5403 } 5404 mutex_exit(&tcp->tcp_eager_lock); 5405 5406 /* 5407 * IP adds STRUIO_EAGER and ensures that the received packet is 5408 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5409 * link local address. If IPSec is enabled, db_struioflag has 5410 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5411 * otherwise an error case if neither of them is set. 5412 */ 5413 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5414 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5415 DB_CKSUMSTART(mp) = 0; 5416 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5417 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5418 if (econnp == NULL) 5419 goto error2; 5420 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5421 econnp->conn_sqp = new_sqp; 5422 econnp->conn_initial_sqp = new_sqp; 5423 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5424 /* 5425 * mp is updated in tcp_get_ipsec_conn(). 5426 */ 5427 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5428 if (econnp == NULL) { 5429 /* 5430 * mp freed by tcp_get_ipsec_conn. 5431 */ 5432 return; 5433 } 5434 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5435 } else { 5436 goto error2; 5437 } 5438 5439 ASSERT(DB_TYPE(mp) == M_DATA); 5440 5441 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5442 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5443 ASSERT(OK_32PTR(mp->b_rptr)); 5444 if (ipvers == IPV4_VERSION) { 5445 ipha = (ipha_t *)mp->b_rptr; 5446 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5447 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5448 } else { 5449 ip6h = (ip6_t *)mp->b_rptr; 5450 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5451 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5452 } 5453 5454 if (tcp->tcp_family == AF_INET) { 5455 ASSERT(ipvers == IPV4_VERSION); 5456 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5457 } else { 5458 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5459 } 5460 5461 if (err) 5462 goto error3; 5463 5464 eager = econnp->conn_tcp; 5465 5466 /* 5467 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close 5468 * time, we will always have that to send up. Otherwise, we need to do 5469 * special handling in case the allocation fails at that time. 5470 */ 5471 ASSERT(eager->tcp_ordrel_mp == NULL); 5472 if (!IPCL_IS_NONSTR(econnp) && 5473 (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5474 goto error3; 5475 5476 /* Inherit various TCP parameters from the listener */ 5477 eager->tcp_naglim = tcp->tcp_naglim; 5478 eager->tcp_first_timer_threshold = 5479 tcp->tcp_first_timer_threshold; 5480 eager->tcp_second_timer_threshold = 5481 tcp->tcp_second_timer_threshold; 5482 5483 eager->tcp_first_ctimer_threshold = 5484 tcp->tcp_first_ctimer_threshold; 5485 eager->tcp_second_ctimer_threshold = 5486 tcp->tcp_second_ctimer_threshold; 5487 5488 /* 5489 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5490 * If it does not, the eager's receive window will be set to the 5491 * listener's receive window later in this function. 5492 */ 5493 eager->tcp_rwnd = 0; 5494 5495 /* 5496 * Inherit listener's tcp_init_cwnd. Need to do this before 5497 * calling tcp_process_options() where tcp_mss_set() is called 5498 * to set the initial cwnd. 5499 */ 5500 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5501 5502 /* 5503 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5504 * zone id before the accept is completed in tcp_wput_accept(). 5505 */ 5506 econnp->conn_zoneid = connp->conn_zoneid; 5507 econnp->conn_allzones = connp->conn_allzones; 5508 5509 /* Copy nexthop information from listener to eager */ 5510 if (connp->conn_nexthop_set) { 5511 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5512 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5513 } 5514 5515 /* 5516 * TSOL: tsol_input_proc() needs the eager's cred before the 5517 * eager is accepted 5518 */ 5519 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5520 crhold(credp); 5521 5522 /* 5523 * If the caller has the process-wide flag set, then default to MAC 5524 * exempt mode. This allows read-down to unlabeled hosts. 5525 */ 5526 if (getpflags(NET_MAC_AWARE, credp) != 0) 5527 econnp->conn_mac_exempt = B_TRUE; 5528 5529 if (is_system_labeled()) { 5530 cred_t *cr; 5531 5532 if (connp->conn_mlp_type != mlptSingle) { 5533 cr = econnp->conn_peercred = DB_CRED(mp); 5534 if (cr != NULL) 5535 crhold(cr); 5536 else 5537 cr = econnp->conn_cred; 5538 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5539 econnp, cred_t *, cr) 5540 } else { 5541 cr = econnp->conn_cred; 5542 DTRACE_PROBE2(syn_accept, conn_t *, 5543 econnp, cred_t *, cr) 5544 } 5545 5546 if (!tcp_update_label(eager, cr)) { 5547 DTRACE_PROBE3( 5548 tx__ip__log__error__connrequest__tcp, 5549 char *, "eager connp(1) label on SYN mp(2) failed", 5550 conn_t *, econnp, mblk_t *, mp); 5551 goto error3; 5552 } 5553 } 5554 5555 eager->tcp_hard_binding = B_TRUE; 5556 5557 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5558 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5559 5560 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5561 if (err != 0) { 5562 tcp_bind_hash_remove(eager); 5563 goto error3; 5564 } 5565 5566 /* 5567 * No need to check for multicast destination since ip will only pass 5568 * up multicasts to those that have expressed interest 5569 * TODO: what about rejecting broadcasts? 5570 * Also check that source is not a multicast or broadcast address. 5571 */ 5572 eager->tcp_state = TCPS_SYN_RCVD; 5573 5574 5575 /* 5576 * There should be no ire in the mp as we are being called after 5577 * receiving the SYN. 5578 */ 5579 ASSERT(tcp_ire_mp(&mp) == NULL); 5580 5581 /* 5582 * Adapt our mss, ttl, ... according to information provided in IRE. 5583 */ 5584 5585 if (tcp_adapt_ire(eager, NULL) == 0) { 5586 /* Undo the bind_hash_insert */ 5587 tcp_bind_hash_remove(eager); 5588 goto error3; 5589 } 5590 5591 /* Process all TCP options. */ 5592 tcp_process_options(eager, tcph); 5593 5594 /* Is the other end ECN capable? */ 5595 if (tcps->tcps_ecn_permitted >= 1 && 5596 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5597 eager->tcp_ecn_ok = B_TRUE; 5598 } 5599 5600 /* 5601 * listener->tcp_rq->q_hiwat should be the default window size or a 5602 * window size changed via SO_RCVBUF option. First round up the 5603 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5604 * scale option value if needed. Call tcp_rwnd_set() to finish the 5605 * setting. 5606 * 5607 * Note if there is a rpipe metric associated with the remote host, 5608 * we should not inherit receive window size from listener. 5609 */ 5610 eager->tcp_rwnd = MSS_ROUNDUP( 5611 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5612 eager->tcp_rwnd), eager->tcp_mss); 5613 if (eager->tcp_snd_ws_ok) 5614 tcp_set_ws_value(eager); 5615 /* 5616 * Note that this is the only place tcp_rwnd_set() is called for 5617 * accepting a connection. We need to call it here instead of 5618 * after the 3-way handshake because we need to tell the other 5619 * side our rwnd in the SYN-ACK segment. 5620 */ 5621 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5622 5623 /* 5624 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5625 * via soaccept()->soinheritoptions() which essentially applies 5626 * all the listener options to the new STREAM. The options that we 5627 * need to take care of are: 5628 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5629 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5630 * SO_SNDBUF, SO_RCVBUF. 5631 * 5632 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5633 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5634 * tcp_maxpsz_set() gets called later from 5635 * tcp_accept_finish(), the option takes effect. 5636 * 5637 */ 5638 /* Set the TCP options */ 5639 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5640 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5641 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5642 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5643 eager->tcp_oobinline = tcp->tcp_oobinline; 5644 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5645 eager->tcp_broadcast = tcp->tcp_broadcast; 5646 eager->tcp_useloopback = tcp->tcp_useloopback; 5647 eager->tcp_dontroute = tcp->tcp_dontroute; 5648 eager->tcp_debug = tcp->tcp_debug; 5649 eager->tcp_linger = tcp->tcp_linger; 5650 eager->tcp_lingertime = tcp->tcp_lingertime; 5651 if (tcp->tcp_ka_enabled) 5652 eager->tcp_ka_enabled = 1; 5653 5654 /* Set the IP options */ 5655 econnp->conn_broadcast = connp->conn_broadcast; 5656 econnp->conn_loopback = connp->conn_loopback; 5657 econnp->conn_dontroute = connp->conn_dontroute; 5658 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5659 5660 /* Put a ref on the listener for the eager. */ 5661 CONN_INC_REF(connp); 5662 mutex_enter(&tcp->tcp_eager_lock); 5663 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5664 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5665 tcp->tcp_eager_next_q0 = eager; 5666 eager->tcp_eager_prev_q0 = tcp; 5667 5668 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5669 eager->tcp_listener = tcp; 5670 eager->tcp_saved_listener = tcp; 5671 5672 /* 5673 * Tag this detached tcp vector for later retrieval 5674 * by our listener client in tcp_accept(). 5675 */ 5676 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5677 tcp->tcp_conn_req_cnt_q0++; 5678 if (++tcp->tcp_conn_req_seqnum == -1) { 5679 /* 5680 * -1 is "special" and defined in TPI as something 5681 * that should never be used in T_CONN_IND 5682 */ 5683 ++tcp->tcp_conn_req_seqnum; 5684 } 5685 mutex_exit(&tcp->tcp_eager_lock); 5686 5687 if (tcp->tcp_syn_defense) { 5688 /* Don't drop the SYN that comes from a good IP source */ 5689 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5690 if (addr_cache != NULL && eager->tcp_remote == 5691 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5692 eager->tcp_dontdrop = B_TRUE; 5693 } 5694 } 5695 5696 /* 5697 * We need to insert the eager in its own perimeter but as soon 5698 * as we do that, we expose the eager to the classifier and 5699 * should not touch any field outside the eager's perimeter. 5700 * So do all the work necessary before inserting the eager 5701 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5702 * will succeed but undo everything if it fails. 5703 */ 5704 seg_seq = ABE32_TO_U32(tcph->th_seq); 5705 eager->tcp_irs = seg_seq; 5706 eager->tcp_rack = seg_seq; 5707 eager->tcp_rnxt = seg_seq + 1; 5708 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5709 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5710 eager->tcp_state = TCPS_SYN_RCVD; 5711 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5712 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5713 if (mp1 == NULL) { 5714 /* 5715 * Increment the ref count as we are going to 5716 * enqueueing an mp in squeue 5717 */ 5718 CONN_INC_REF(econnp); 5719 goto error; 5720 } 5721 5722 DB_CPID(mp1) = tcp->tcp_cpid; 5723 mblk_setcred(mp1, CONN_CRED(eager->tcp_connp)); 5724 eager->tcp_cpid = tcp->tcp_cpid; 5725 eager->tcp_open_time = lbolt64; 5726 5727 /* 5728 * We need to start the rto timer. In normal case, we start 5729 * the timer after sending the packet on the wire (or at 5730 * least believing that packet was sent by waiting for 5731 * CALL_IP_WPUT() to return). Since this is the first packet 5732 * being sent on the wire for the eager, our initial tcp_rto 5733 * is at least tcp_rexmit_interval_min which is a fairly 5734 * large value to allow the algorithm to adjust slowly to large 5735 * fluctuations of RTT during first few transmissions. 5736 * 5737 * Starting the timer first and then sending the packet in this 5738 * case shouldn't make much difference since tcp_rexmit_interval_min 5739 * is of the order of several 100ms and starting the timer 5740 * first and then sending the packet will result in difference 5741 * of few micro seconds. 5742 * 5743 * Without this optimization, we are forced to hold the fanout 5744 * lock across the ipcl_bind_insert() and sending the packet 5745 * so that we don't race against an incoming packet (maybe RST) 5746 * for this eager. 5747 * 5748 * It is necessary to acquire an extra reference on the eager 5749 * at this point and hold it until after tcp_send_data() to 5750 * ensure against an eager close race. 5751 */ 5752 5753 CONN_INC_REF(eager->tcp_connp); 5754 5755 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5756 5757 /* 5758 * Insert the eager in its own perimeter now. We are ready to deal 5759 * with any packets on eager. 5760 */ 5761 if (eager->tcp_ipversion == IPV4_VERSION) { 5762 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5763 goto error; 5764 } 5765 } else { 5766 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5767 goto error; 5768 } 5769 } 5770 5771 /* mark conn as fully-bound */ 5772 econnp->conn_fully_bound = B_TRUE; 5773 5774 /* Send the SYN-ACK */ 5775 tcp_send_data(eager, eager->tcp_wq, mp1); 5776 CONN_DEC_REF(eager->tcp_connp); 5777 freemsg(mp); 5778 5779 return; 5780 error: 5781 freemsg(mp1); 5782 eager->tcp_closemp_used = B_TRUE; 5783 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5784 mp1 = &eager->tcp_closemp; 5785 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5786 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5787 5788 /* 5789 * If a connection already exists, send the mp to that connections so 5790 * that it can be appropriately dealt with. 5791 */ 5792 ipst = tcps->tcps_netstack->netstack_ip; 5793 5794 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5795 if (!IPCL_IS_CONNECTED(econnp)) { 5796 /* 5797 * Something bad happened. ipcl_conn_insert() 5798 * failed because a connection already existed 5799 * in connected hash but we can't find it 5800 * anymore (someone blew it away). Just 5801 * free this message and hopefully remote 5802 * will retransmit at which time the SYN can be 5803 * treated as a new connection or dealth with 5804 * a TH_RST if a connection already exists. 5805 */ 5806 CONN_DEC_REF(econnp); 5807 freemsg(mp); 5808 } else { 5809 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5810 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5811 } 5812 } else { 5813 /* Nobody wants this packet */ 5814 freemsg(mp); 5815 } 5816 return; 5817 error3: 5818 CONN_DEC_REF(econnp); 5819 error2: 5820 freemsg(mp); 5821 } 5822 5823 /* 5824 * In an ideal case of vertical partition in NUMA architecture, its 5825 * beneficial to have the listener and all the incoming connections 5826 * tied to the same squeue. The other constraint is that incoming 5827 * connections should be tied to the squeue attached to interrupted 5828 * CPU for obvious locality reason so this leaves the listener to 5829 * be tied to the same squeue. Our only problem is that when listener 5830 * is binding, the CPU that will get interrupted by the NIC whose 5831 * IP address the listener is binding to is not even known. So 5832 * the code below allows us to change that binding at the time the 5833 * CPU is interrupted by virtue of incoming connection's squeue. 5834 * 5835 * This is usefull only in case of a listener bound to a specific IP 5836 * address. For other kind of listeners, they get bound the 5837 * very first time and there is no attempt to rebind them. 5838 */ 5839 void 5840 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5841 { 5842 conn_t *connp = (conn_t *)arg; 5843 squeue_t *sqp = (squeue_t *)arg2; 5844 squeue_t *new_sqp; 5845 uint32_t conn_flags; 5846 5847 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5848 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5849 } else { 5850 goto done; 5851 } 5852 5853 if (connp->conn_fanout == NULL) 5854 goto done; 5855 5856 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5857 mutex_enter(&connp->conn_fanout->connf_lock); 5858 mutex_enter(&connp->conn_lock); 5859 /* 5860 * No one from read or write side can access us now 5861 * except for already queued packets on this squeue. 5862 * But since we haven't changed the squeue yet, they 5863 * can't execute. If they are processed after we have 5864 * changed the squeue, they are sent back to the 5865 * correct squeue down below. 5866 * But a listner close can race with processing of 5867 * incoming SYN. If incoming SYN processing changes 5868 * the squeue then the listener close which is waiting 5869 * to enter the squeue would operate on the wrong 5870 * squeue. Hence we don't change the squeue here unless 5871 * the refcount is exactly the minimum refcount. The 5872 * minimum refcount of 4 is counted as - 1 each for 5873 * TCP and IP, 1 for being in the classifier hash, and 5874 * 1 for the mblk being processed. 5875 */ 5876 5877 if (connp->conn_ref != 4 || 5878 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5879 mutex_exit(&connp->conn_lock); 5880 mutex_exit(&connp->conn_fanout->connf_lock); 5881 goto done; 5882 } 5883 if (connp->conn_sqp != new_sqp) { 5884 while (connp->conn_sqp != new_sqp) 5885 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5886 } 5887 5888 do { 5889 conn_flags = connp->conn_flags; 5890 conn_flags |= IPCL_FULLY_BOUND; 5891 (void) cas32(&connp->conn_flags, connp->conn_flags, 5892 conn_flags); 5893 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5894 5895 mutex_exit(&connp->conn_fanout->connf_lock); 5896 mutex_exit(&connp->conn_lock); 5897 } 5898 5899 done: 5900 if (connp->conn_sqp != sqp) { 5901 CONN_INC_REF(connp); 5902 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5903 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5904 } else { 5905 tcp_conn_request(connp, mp, sqp); 5906 } 5907 } 5908 5909 /* 5910 * Successful connect request processing begins when our client passes 5911 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5912 * our T_OK_ACK reply message upstream. The control flow looks like this: 5913 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5914 * upstream <- tcp_rput() <- IP 5915 * After various error checks are completed, tcp_tpi_connect() lays 5916 * the target address and port into the composite header template, 5917 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5918 * request followed by an IRE request, and passes the three mblk message 5919 * down to IP looking like this: 5920 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5921 * Processing continues in tcp_rput() when we receive the following message: 5922 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5923 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5924 * to fire off the connection request, and then passes the T_OK_ACK mblk 5925 * upstream that we filled in below. There are, of course, numerous 5926 * error conditions along the way which truncate the processing described 5927 * above. 5928 */ 5929 static void 5930 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5931 { 5932 sin_t *sin; 5933 queue_t *q = tcp->tcp_wq; 5934 struct T_conn_req *tcr; 5935 struct sockaddr *sa; 5936 socklen_t len; 5937 int error; 5938 5939 tcr = (struct T_conn_req *)mp->b_rptr; 5940 5941 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5942 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5943 tcp_err_ack(tcp, mp, TPROTO, 0); 5944 return; 5945 } 5946 5947 /* 5948 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5949 * will always have that to send up. Otherwise, we need to do 5950 * special handling in case the allocation fails at that time. 5951 * If the end point is TPI, the tcp_t can be reused and the 5952 * tcp_ordrel_mp may be allocated already. 5953 */ 5954 if (tcp->tcp_ordrel_mp == NULL) { 5955 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5956 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5957 return; 5958 } 5959 } 5960 5961 /* 5962 * Determine packet type based on type of address passed in 5963 * the request should contain an IPv4 or IPv6 address. 5964 * Make sure that address family matches the type of 5965 * family of the the address passed down 5966 */ 5967 switch (tcr->DEST_length) { 5968 default: 5969 tcp_err_ack(tcp, mp, TBADADDR, 0); 5970 return; 5971 5972 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5973 /* 5974 * XXX: The check for valid DEST_length was not there 5975 * in earlier releases and some buggy 5976 * TLI apps (e.g Sybase) got away with not feeding 5977 * in sin_zero part of address. 5978 * We allow that bug to keep those buggy apps humming. 5979 * Test suites require the check on DEST_length. 5980 * We construct a new mblk with valid DEST_length 5981 * free the original so the rest of the code does 5982 * not have to keep track of this special shorter 5983 * length address case. 5984 */ 5985 mblk_t *nmp; 5986 struct T_conn_req *ntcr; 5987 sin_t *nsin; 5988 5989 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5990 tcr->OPT_length, BPRI_HI); 5991 if (nmp == NULL) { 5992 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5993 return; 5994 } 5995 ntcr = (struct T_conn_req *)nmp->b_rptr; 5996 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5997 ntcr->PRIM_type = T_CONN_REQ; 5998 ntcr->DEST_length = sizeof (sin_t); 5999 ntcr->DEST_offset = sizeof (struct T_conn_req); 6000 6001 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6002 *nsin = sin_null; 6003 /* Get pointer to shorter address to copy from original mp */ 6004 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6005 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6006 if (sin == NULL || !OK_32PTR((char *)sin)) { 6007 freemsg(nmp); 6008 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6009 return; 6010 } 6011 nsin->sin_family = sin->sin_family; 6012 nsin->sin_port = sin->sin_port; 6013 nsin->sin_addr = sin->sin_addr; 6014 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6015 nmp->b_wptr = (uchar_t *)&nsin[1]; 6016 if (tcr->OPT_length != 0) { 6017 ntcr->OPT_length = tcr->OPT_length; 6018 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6019 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6020 (uchar_t *)ntcr + ntcr->OPT_offset, 6021 tcr->OPT_length); 6022 nmp->b_wptr += tcr->OPT_length; 6023 } 6024 freemsg(mp); /* original mp freed */ 6025 mp = nmp; /* re-initialize original variables */ 6026 tcr = ntcr; 6027 } 6028 /* FALLTHRU */ 6029 6030 case sizeof (sin_t): 6031 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6032 sizeof (sin_t)); 6033 len = sizeof (sin_t); 6034 break; 6035 6036 case sizeof (sin6_t): 6037 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6038 sizeof (sin6_t)); 6039 len = sizeof (sin6_t); 6040 break; 6041 } 6042 6043 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6044 if (error != 0) { 6045 tcp_err_ack(tcp, mp, TSYSERR, error); 6046 return; 6047 } 6048 6049 /* 6050 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6051 * should key on their sequence number and cut them loose. 6052 */ 6053 6054 /* 6055 * If options passed in, feed it for verification and handling 6056 */ 6057 if (tcr->OPT_length != 0) { 6058 mblk_t *ok_mp; 6059 mblk_t *discon_mp; 6060 mblk_t *conn_opts_mp; 6061 int t_error, sys_error, do_disconnect; 6062 6063 conn_opts_mp = NULL; 6064 6065 if (tcp_conprim_opt_process(tcp, mp, 6066 &do_disconnect, &t_error, &sys_error) < 0) { 6067 if (do_disconnect) { 6068 ASSERT(t_error == 0 && sys_error == 0); 6069 discon_mp = mi_tpi_discon_ind(NULL, 6070 ECONNREFUSED, 0); 6071 if (!discon_mp) { 6072 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6073 TSYSERR, ENOMEM); 6074 return; 6075 } 6076 ok_mp = mi_tpi_ok_ack_alloc(mp); 6077 if (!ok_mp) { 6078 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6079 TSYSERR, ENOMEM); 6080 return; 6081 } 6082 qreply(q, ok_mp); 6083 qreply(q, discon_mp); /* no flush! */ 6084 } else { 6085 ASSERT(t_error != 0); 6086 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6087 sys_error); 6088 } 6089 return; 6090 } 6091 /* 6092 * Success in setting options, the mp option buffer represented 6093 * by OPT_length/offset has been potentially modified and 6094 * contains results of option processing. We copy it in 6095 * another mp to save it for potentially influencing returning 6096 * it in T_CONN_CONN. 6097 */ 6098 if (tcr->OPT_length != 0) { /* there are resulting options */ 6099 conn_opts_mp = copyb(mp); 6100 if (!conn_opts_mp) { 6101 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6102 TSYSERR, ENOMEM); 6103 return; 6104 } 6105 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6106 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6107 /* 6108 * Note: 6109 * These resulting option negotiation can include any 6110 * end-to-end negotiation options but there no such 6111 * thing (yet?) in our TCP/IP. 6112 */ 6113 } 6114 } 6115 6116 /* call the non-TPI version */ 6117 error = tcp_do_connect(tcp->tcp_connp, sa, len, DB_CRED(mp), 6118 DB_CPID(mp)); 6119 if (error < 0) { 6120 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6121 } else if (error > 0) { 6122 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6123 } else { 6124 mp = mi_tpi_ok_ack_alloc(mp); 6125 } 6126 6127 /* 6128 * Note: Code below is the "failure" case 6129 */ 6130 /* return error ack and blow away saved option results if any */ 6131 connect_failed: 6132 if (mp != NULL) 6133 putnext(tcp->tcp_rq, mp); 6134 else { 6135 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6136 TSYSERR, ENOMEM); 6137 } 6138 } 6139 6140 /* 6141 * Handle connect to IPv4 destinations, including connections for AF_INET6 6142 * sockets connecting to IPv4 mapped IPv6 destinations. 6143 */ 6144 static int 6145 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6146 uint_t srcid, cred_t *cr, pid_t pid) 6147 { 6148 tcph_t *tcph; 6149 mblk_t *mp; 6150 ipaddr_t dstaddr = *dstaddrp; 6151 int32_t oldstate; 6152 uint16_t lport; 6153 int error = 0; 6154 tcp_stack_t *tcps = tcp->tcp_tcps; 6155 6156 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6157 6158 /* Check for attempt to connect to INADDR_ANY */ 6159 if (dstaddr == INADDR_ANY) { 6160 /* 6161 * SunOS 4.x and 4.3 BSD allow an application 6162 * to connect a TCP socket to INADDR_ANY. 6163 * When they do this, the kernel picks the 6164 * address of one interface and uses it 6165 * instead. The kernel usually ends up 6166 * picking the address of the loopback 6167 * interface. This is an undocumented feature. 6168 * However, we provide the same thing here 6169 * in order to have source and binary 6170 * compatibility with SunOS 4.x. 6171 * Update the T_CONN_REQ (sin/sin6) since it is used to 6172 * generate the T_CONN_CON. 6173 */ 6174 dstaddr = htonl(INADDR_LOOPBACK); 6175 *dstaddrp = dstaddr; 6176 } 6177 6178 /* Handle __sin6_src_id if socket not bound to an IP address */ 6179 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6180 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6181 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6182 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6183 tcp->tcp_ipha->ipha_src); 6184 } 6185 6186 /* 6187 * Don't let an endpoint connect to itself. Note that 6188 * the test here does not catch the case where the 6189 * source IP addr was left unspecified by the user. In 6190 * this case, the source addr is set in tcp_adapt_ire() 6191 * using the reply to the T_BIND message that we send 6192 * down to IP here and the check is repeated in tcp_rput_other. 6193 */ 6194 if (dstaddr == tcp->tcp_ipha->ipha_src && 6195 dstport == tcp->tcp_lport) { 6196 error = -TBADADDR; 6197 goto failed; 6198 } 6199 6200 tcp->tcp_ipha->ipha_dst = dstaddr; 6201 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6202 6203 /* 6204 * Massage a source route if any putting the first hop 6205 * in iph_dst. Compute a starting value for the checksum which 6206 * takes into account that the original iph_dst should be 6207 * included in the checksum but that ip will include the 6208 * first hop in the source route in the tcp checksum. 6209 */ 6210 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6211 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6212 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6213 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6214 if ((int)tcp->tcp_sum < 0) 6215 tcp->tcp_sum--; 6216 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6217 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6218 (tcp->tcp_sum >> 16)); 6219 tcph = tcp->tcp_tcph; 6220 *(uint16_t *)tcph->th_fport = dstport; 6221 tcp->tcp_fport = dstport; 6222 6223 oldstate = tcp->tcp_state; 6224 /* 6225 * At this point the remote destination address and remote port fields 6226 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6227 * have to see which state tcp was in so we can take apropriate action. 6228 */ 6229 if (oldstate == TCPS_IDLE) { 6230 /* 6231 * We support a quick connect capability here, allowing 6232 * clients to transition directly from IDLE to SYN_SENT 6233 * tcp_bindi will pick an unused port, insert the connection 6234 * in the bind hash and transition to BOUND state. 6235 */ 6236 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6237 tcp, B_TRUE); 6238 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6239 B_FALSE, B_FALSE); 6240 if (lport == 0) { 6241 error = -TNOADDR; 6242 goto failed; 6243 } 6244 } 6245 tcp->tcp_state = TCPS_SYN_SENT; 6246 6247 mp = allocb(sizeof (ire_t), BPRI_HI); 6248 if (mp == NULL) { 6249 tcp->tcp_state = oldstate; 6250 error = ENOMEM; 6251 goto failed; 6252 } 6253 6254 mp->b_wptr += sizeof (ire_t); 6255 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6256 tcp->tcp_hard_binding = 1; 6257 6258 /* 6259 * We need to make sure that the conn_recv is set to a non-null 6260 * value before we insert the conn_t into the classifier table. 6261 * This is to avoid a race with an incoming packet which does 6262 * an ipcl_classify(). 6263 */ 6264 tcp->tcp_connp->conn_recv = tcp_input; 6265 6266 if (tcp->tcp_family == AF_INET) { 6267 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6268 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6269 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE); 6270 } else { 6271 in6_addr_t v6src; 6272 if (tcp->tcp_ipversion == IPV4_VERSION) { 6273 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6274 } else { 6275 v6src = tcp->tcp_ip6h->ip6_src; 6276 } 6277 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6278 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6279 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6280 } 6281 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6282 tcp->tcp_active_open = 1; 6283 6284 6285 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6286 failed: 6287 /* return error ack and blow away saved option results if any */ 6288 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6289 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6290 return (error); 6291 } 6292 6293 /* 6294 * Handle connect to IPv6 destinations. 6295 */ 6296 static int 6297 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6298 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6299 { 6300 tcph_t *tcph; 6301 mblk_t *mp; 6302 ip6_rthdr_t *rth; 6303 int32_t oldstate; 6304 uint16_t lport; 6305 tcp_stack_t *tcps = tcp->tcp_tcps; 6306 int error = 0; 6307 conn_t *connp = tcp->tcp_connp; 6308 6309 ASSERT(tcp->tcp_family == AF_INET6); 6310 6311 /* 6312 * If we're here, it means that the destination address is a native 6313 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6314 * reason why it might not be IPv6 is if the socket was bound to an 6315 * IPv4-mapped IPv6 address. 6316 */ 6317 if (tcp->tcp_ipversion != IPV6_VERSION) { 6318 return (-TBADADDR); 6319 } 6320 6321 /* 6322 * Interpret a zero destination to mean loopback. 6323 * Update the T_CONN_REQ (sin/sin6) since it is used to 6324 * generate the T_CONN_CON. 6325 */ 6326 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6327 *dstaddrp = ipv6_loopback; 6328 } 6329 6330 /* Handle __sin6_src_id if socket not bound to an IP address */ 6331 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6332 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6333 connp->conn_zoneid, tcps->tcps_netstack); 6334 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6335 } 6336 6337 /* 6338 * Take care of the scope_id now and add ip6i_t 6339 * if ip6i_t is not already allocated through TCP 6340 * sticky options. At this point tcp_ip6h does not 6341 * have dst info, thus use dstaddrp. 6342 */ 6343 if (scope_id != 0 && 6344 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6345 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6346 ip6i_t *ip6i; 6347 6348 ipp->ipp_ifindex = scope_id; 6349 ip6i = (ip6i_t *)tcp->tcp_iphc; 6350 6351 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6352 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6353 /* Already allocated */ 6354 ip6i->ip6i_flags |= IP6I_IFINDEX; 6355 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6356 ipp->ipp_fields |= IPPF_SCOPE_ID; 6357 } else { 6358 int reterr; 6359 6360 ipp->ipp_fields |= IPPF_SCOPE_ID; 6361 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6362 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6363 reterr = tcp_build_hdrs(tcp); 6364 if (reterr != 0) 6365 goto failed; 6366 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6367 } 6368 } 6369 6370 /* 6371 * Don't let an endpoint connect to itself. Note that 6372 * the test here does not catch the case where the 6373 * source IP addr was left unspecified by the user. In 6374 * this case, the source addr is set in tcp_adapt_ire() 6375 * using the reply to the T_BIND message that we send 6376 * down to IP here and the check is repeated in tcp_rput_other. 6377 */ 6378 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6379 (dstport == tcp->tcp_lport)) { 6380 error = -TBADADDR; 6381 goto failed; 6382 } 6383 6384 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6385 tcp->tcp_remote_v6 = *dstaddrp; 6386 tcp->tcp_ip6h->ip6_vcf = 6387 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6388 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6389 6390 /* 6391 * Massage a routing header (if present) putting the first hop 6392 * in ip6_dst. Compute a starting value for the checksum which 6393 * takes into account that the original ip6_dst should be 6394 * included in the checksum but that ip will include the 6395 * first hop in the source route in the tcp checksum. 6396 */ 6397 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6398 if (rth != NULL) { 6399 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6400 tcps->tcps_netstack); 6401 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6402 (tcp->tcp_sum >> 16)); 6403 } else { 6404 tcp->tcp_sum = 0; 6405 } 6406 6407 tcph = tcp->tcp_tcph; 6408 *(uint16_t *)tcph->th_fport = dstport; 6409 tcp->tcp_fport = dstport; 6410 6411 oldstate = tcp->tcp_state; 6412 /* 6413 * At this point the remote destination address and remote port fields 6414 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6415 * have to see which state tcp was in so we can take apropriate action. 6416 */ 6417 if (oldstate == TCPS_IDLE) { 6418 /* 6419 * We support a quick connect capability here, allowing 6420 * clients to transition directly from IDLE to SYN_SENT 6421 * tcp_bindi will pick an unused port, insert the connection 6422 * in the bind hash and transition to BOUND state. 6423 */ 6424 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6425 tcp, B_TRUE); 6426 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6427 B_FALSE, B_FALSE); 6428 if (lport == 0) { 6429 error = -TNOADDR; 6430 goto failed; 6431 } 6432 } 6433 tcp->tcp_state = TCPS_SYN_SENT; 6434 6435 mp = allocb(sizeof (ire_t), BPRI_HI); 6436 if (mp != NULL) { 6437 in6_addr_t v6src; 6438 6439 mp->b_wptr += sizeof (ire_t); 6440 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6441 6442 tcp->tcp_hard_binding = 1; 6443 6444 /* 6445 * We need to make sure that the conn_recv is set to a non-null 6446 * value before we insert the conn_t into the classifier table. 6447 * This is to avoid a race with an incoming packet which does 6448 * an ipcl_classify(). 6449 */ 6450 tcp->tcp_connp->conn_recv = tcp_input; 6451 6452 if (tcp->tcp_ipversion == IPV4_VERSION) { 6453 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6454 } else { 6455 v6src = tcp->tcp_ip6h->ip6_src; 6456 } 6457 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6458 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6459 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6460 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6461 tcp->tcp_active_open = 1; 6462 6463 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6464 } 6465 /* Error case */ 6466 tcp->tcp_state = oldstate; 6467 error = ENOMEM; 6468 6469 failed: 6470 /* return error ack and blow away saved option results if any */ 6471 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6472 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6473 return (error); 6474 } 6475 6476 /* 6477 * We need a stream q for detached closing tcp connections 6478 * to use. Our client hereby indicates that this q is the 6479 * one to use. 6480 */ 6481 static void 6482 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6483 { 6484 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6485 queue_t *q = tcp->tcp_wq; 6486 tcp_stack_t *tcps = tcp->tcp_tcps; 6487 6488 #ifdef NS_DEBUG 6489 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6490 tcps->tcps_netstack->netstack_stackid); 6491 #endif 6492 mp->b_datap->db_type = M_IOCACK; 6493 iocp->ioc_count = 0; 6494 mutex_enter(&tcps->tcps_g_q_lock); 6495 if (tcps->tcps_g_q != NULL) { 6496 mutex_exit(&tcps->tcps_g_q_lock); 6497 iocp->ioc_error = EALREADY; 6498 } else { 6499 int error = 0; 6500 conn_t *connp = tcp->tcp_connp; 6501 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6502 6503 tcps->tcps_g_q = tcp->tcp_rq; 6504 mutex_exit(&tcps->tcps_g_q_lock); 6505 iocp->ioc_error = 0; 6506 iocp->ioc_rval = 0; 6507 /* 6508 * We are passing tcp_sticky_ipp as NULL 6509 * as it is not useful for tcp_default queue 6510 * 6511 * Set conn_recv just in case. 6512 */ 6513 tcp->tcp_connp->conn_recv = tcp_conn_request; 6514 6515 ASSERT(connp->conn_af_isv6); 6516 connp->conn_ulp = IPPROTO_TCP; 6517 6518 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6519 NULL || connp->conn_mac_exempt) { 6520 error = -TBADADDR; 6521 } else { 6522 connp->conn_srcv6 = ipv6_all_zeros; 6523 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6524 } 6525 6526 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6527 } 6528 qreply(q, mp); 6529 } 6530 6531 static int 6532 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6533 { 6534 tcp_t *ltcp = NULL; 6535 conn_t *connp; 6536 tcp_stack_t *tcps = tcp->tcp_tcps; 6537 6538 /* 6539 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6540 * when the stream is in BOUND state. Do not send a reset, 6541 * since the destination IP address is not valid, and it can 6542 * be the initialized value of all zeros (broadcast address). 6543 * 6544 * XXX There won't be any pending bind request to IP. 6545 */ 6546 if (tcp->tcp_state <= TCPS_BOUND) { 6547 if (tcp->tcp_debug) { 6548 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6549 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6550 } 6551 return (TOUTSTATE); 6552 } 6553 6554 6555 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6556 6557 /* 6558 * According to TPI, for non-listeners, ignore seqnum 6559 * and disconnect. 6560 * Following interpretation of -1 seqnum is historical 6561 * and implied TPI ? (TPI only states that for T_CONN_IND, 6562 * a valid seqnum should not be -1). 6563 * 6564 * -1 means disconnect everything 6565 * regardless even on a listener. 6566 */ 6567 6568 int old_state = tcp->tcp_state; 6569 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6570 6571 /* 6572 * The connection can't be on the tcp_time_wait_head list 6573 * since it is not detached. 6574 */ 6575 ASSERT(tcp->tcp_time_wait_next == NULL); 6576 ASSERT(tcp->tcp_time_wait_prev == NULL); 6577 ASSERT(tcp->tcp_time_wait_expire == 0); 6578 ltcp = NULL; 6579 /* 6580 * If it used to be a listener, check to make sure no one else 6581 * has taken the port before switching back to LISTEN state. 6582 */ 6583 if (tcp->tcp_ipversion == IPV4_VERSION) { 6584 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6585 tcp->tcp_ipha->ipha_src, 6586 tcp->tcp_connp->conn_zoneid, ipst); 6587 if (connp != NULL) 6588 ltcp = connp->conn_tcp; 6589 } else { 6590 /* Allow tcp_bound_if listeners? */ 6591 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6592 &tcp->tcp_ip6h->ip6_src, 0, 6593 tcp->tcp_connp->conn_zoneid, ipst); 6594 if (connp != NULL) 6595 ltcp = connp->conn_tcp; 6596 } 6597 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6598 tcp->tcp_state = TCPS_LISTEN; 6599 } else if (old_state > TCPS_BOUND) { 6600 tcp->tcp_conn_req_max = 0; 6601 tcp->tcp_state = TCPS_BOUND; 6602 } 6603 if (ltcp != NULL) 6604 CONN_DEC_REF(ltcp->tcp_connp); 6605 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6606 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6607 } else if (old_state == TCPS_ESTABLISHED || 6608 old_state == TCPS_CLOSE_WAIT) { 6609 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6610 } 6611 6612 if (tcp->tcp_fused) 6613 tcp_unfuse(tcp); 6614 6615 mutex_enter(&tcp->tcp_eager_lock); 6616 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6617 (tcp->tcp_conn_req_cnt_q != 0)) { 6618 tcp_eager_cleanup(tcp, 0); 6619 } 6620 mutex_exit(&tcp->tcp_eager_lock); 6621 6622 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6623 tcp->tcp_rnxt, TH_RST | TH_ACK); 6624 6625 tcp_reinit(tcp); 6626 6627 return (0); 6628 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6629 return (TBADSEQ); 6630 } 6631 return (0); 6632 } 6633 6634 /* 6635 * Our client hereby directs us to reject the connection request 6636 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6637 * of sending the appropriate RST, not an ICMP error. 6638 */ 6639 static void 6640 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6641 { 6642 t_scalar_t seqnum; 6643 int error; 6644 6645 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6646 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6647 tcp_err_ack(tcp, mp, TPROTO, 0); 6648 return; 6649 } 6650 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6651 error = tcp_disconnect_common(tcp, seqnum); 6652 if (error != 0) 6653 tcp_err_ack(tcp, mp, error, 0); 6654 else { 6655 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6656 /* Send M_FLUSH according to TPI */ 6657 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6658 } 6659 mp = mi_tpi_ok_ack_alloc(mp); 6660 if (mp) 6661 putnext(tcp->tcp_rq, mp); 6662 } 6663 } 6664 6665 /* 6666 * Diagnostic routine used to return a string associated with the tcp state. 6667 * Note that if the caller does not supply a buffer, it will use an internal 6668 * static string. This means that if multiple threads call this function at 6669 * the same time, output can be corrupted... Note also that this function 6670 * does not check the size of the supplied buffer. The caller has to make 6671 * sure that it is big enough. 6672 */ 6673 static char * 6674 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6675 { 6676 char buf1[30]; 6677 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6678 char *buf; 6679 char *cp; 6680 in6_addr_t local, remote; 6681 char local_addrbuf[INET6_ADDRSTRLEN]; 6682 char remote_addrbuf[INET6_ADDRSTRLEN]; 6683 6684 if (sup_buf != NULL) 6685 buf = sup_buf; 6686 else 6687 buf = priv_buf; 6688 6689 if (tcp == NULL) 6690 return ("NULL_TCP"); 6691 switch (tcp->tcp_state) { 6692 case TCPS_CLOSED: 6693 cp = "TCP_CLOSED"; 6694 break; 6695 case TCPS_IDLE: 6696 cp = "TCP_IDLE"; 6697 break; 6698 case TCPS_BOUND: 6699 cp = "TCP_BOUND"; 6700 break; 6701 case TCPS_LISTEN: 6702 cp = "TCP_LISTEN"; 6703 break; 6704 case TCPS_SYN_SENT: 6705 cp = "TCP_SYN_SENT"; 6706 break; 6707 case TCPS_SYN_RCVD: 6708 cp = "TCP_SYN_RCVD"; 6709 break; 6710 case TCPS_ESTABLISHED: 6711 cp = "TCP_ESTABLISHED"; 6712 break; 6713 case TCPS_CLOSE_WAIT: 6714 cp = "TCP_CLOSE_WAIT"; 6715 break; 6716 case TCPS_FIN_WAIT_1: 6717 cp = "TCP_FIN_WAIT_1"; 6718 break; 6719 case TCPS_CLOSING: 6720 cp = "TCP_CLOSING"; 6721 break; 6722 case TCPS_LAST_ACK: 6723 cp = "TCP_LAST_ACK"; 6724 break; 6725 case TCPS_FIN_WAIT_2: 6726 cp = "TCP_FIN_WAIT_2"; 6727 break; 6728 case TCPS_TIME_WAIT: 6729 cp = "TCP_TIME_WAIT"; 6730 break; 6731 default: 6732 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6733 cp = buf1; 6734 break; 6735 } 6736 switch (format) { 6737 case DISP_ADDR_AND_PORT: 6738 if (tcp->tcp_ipversion == IPV4_VERSION) { 6739 /* 6740 * Note that we use the remote address in the tcp_b 6741 * structure. This means that it will print out 6742 * the real destination address, not the next hop's 6743 * address if source routing is used. 6744 */ 6745 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6746 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6747 6748 } else { 6749 local = tcp->tcp_ip_src_v6; 6750 remote = tcp->tcp_remote_v6; 6751 } 6752 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6753 sizeof (local_addrbuf)); 6754 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6755 sizeof (remote_addrbuf)); 6756 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6757 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6758 ntohs(tcp->tcp_fport), cp); 6759 break; 6760 case DISP_PORT_ONLY: 6761 default: 6762 (void) mi_sprintf(buf, "[%u, %u] %s", 6763 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6764 break; 6765 } 6766 6767 return (buf); 6768 } 6769 6770 /* 6771 * Called via squeue to get on to eager's perimeter. It sends a 6772 * TH_RST if eager is in the fanout table. The listener wants the 6773 * eager to disappear either by means of tcp_eager_blowoff() or 6774 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6775 * called (via squeue) if the eager cannot be inserted in the 6776 * fanout table in tcp_conn_request(). 6777 */ 6778 /* ARGSUSED */ 6779 void 6780 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6781 { 6782 conn_t *econnp = (conn_t *)arg; 6783 tcp_t *eager = econnp->conn_tcp; 6784 tcp_t *listener = eager->tcp_listener; 6785 tcp_stack_t *tcps = eager->tcp_tcps; 6786 6787 /* 6788 * We could be called because listener is closing. Since 6789 * the eager is using listener's queue's, its not safe. 6790 * Better use the default queue just to send the TH_RST 6791 * out. 6792 */ 6793 ASSERT(tcps->tcps_g_q != NULL); 6794 eager->tcp_rq = tcps->tcps_g_q; 6795 eager->tcp_wq = WR(tcps->tcps_g_q); 6796 6797 /* 6798 * An eager's conn_fanout will be NULL if it's a duplicate 6799 * for an existing 4-tuples in the conn fanout table. 6800 * We don't want to send an RST out in such case. 6801 */ 6802 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6803 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6804 eager, eager->tcp_snxt, 0, TH_RST); 6805 } 6806 6807 /* We are here because listener wants this eager gone */ 6808 if (listener != NULL) { 6809 mutex_enter(&listener->tcp_eager_lock); 6810 tcp_eager_unlink(eager); 6811 if (eager->tcp_tconnind_started) { 6812 /* 6813 * The eager has sent a conn_ind up to the 6814 * listener but listener decides to close 6815 * instead. We need to drop the extra ref 6816 * placed on eager in tcp_rput_data() before 6817 * sending the conn_ind to listener. 6818 */ 6819 CONN_DEC_REF(econnp); 6820 } 6821 mutex_exit(&listener->tcp_eager_lock); 6822 CONN_DEC_REF(listener->tcp_connp); 6823 } 6824 6825 if (eager->tcp_state > TCPS_BOUND) 6826 tcp_close_detached(eager); 6827 } 6828 6829 /* 6830 * Reset any eager connection hanging off this listener marked 6831 * with 'seqnum' and then reclaim it's resources. 6832 */ 6833 static boolean_t 6834 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6835 { 6836 tcp_t *eager; 6837 mblk_t *mp; 6838 tcp_stack_t *tcps = listener->tcp_tcps; 6839 6840 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6841 eager = listener; 6842 mutex_enter(&listener->tcp_eager_lock); 6843 do { 6844 eager = eager->tcp_eager_next_q; 6845 if (eager == NULL) { 6846 mutex_exit(&listener->tcp_eager_lock); 6847 return (B_FALSE); 6848 } 6849 } while (eager->tcp_conn_req_seqnum != seqnum); 6850 6851 if (eager->tcp_closemp_used) { 6852 mutex_exit(&listener->tcp_eager_lock); 6853 return (B_TRUE); 6854 } 6855 eager->tcp_closemp_used = B_TRUE; 6856 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6857 CONN_INC_REF(eager->tcp_connp); 6858 mutex_exit(&listener->tcp_eager_lock); 6859 mp = &eager->tcp_closemp; 6860 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6861 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6862 return (B_TRUE); 6863 } 6864 6865 /* 6866 * Reset any eager connection hanging off this listener 6867 * and then reclaim it's resources. 6868 */ 6869 static void 6870 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6871 { 6872 tcp_t *eager; 6873 mblk_t *mp; 6874 tcp_stack_t *tcps = listener->tcp_tcps; 6875 6876 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6877 6878 if (!q0_only) { 6879 /* First cleanup q */ 6880 TCP_STAT(tcps, tcp_eager_blowoff_q); 6881 eager = listener->tcp_eager_next_q; 6882 while (eager != NULL) { 6883 if (!eager->tcp_closemp_used) { 6884 eager->tcp_closemp_used = B_TRUE; 6885 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6886 CONN_INC_REF(eager->tcp_connp); 6887 mp = &eager->tcp_closemp; 6888 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6889 tcp_eager_kill, eager->tcp_connp, 6890 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6891 } 6892 eager = eager->tcp_eager_next_q; 6893 } 6894 } 6895 /* Then cleanup q0 */ 6896 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6897 eager = listener->tcp_eager_next_q0; 6898 while (eager != listener) { 6899 if (!eager->tcp_closemp_used) { 6900 eager->tcp_closemp_used = B_TRUE; 6901 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6902 CONN_INC_REF(eager->tcp_connp); 6903 mp = &eager->tcp_closemp; 6904 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6905 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6906 SQTAG_TCP_EAGER_CLEANUP_Q0); 6907 } 6908 eager = eager->tcp_eager_next_q0; 6909 } 6910 } 6911 6912 /* 6913 * If we are an eager connection hanging off a listener that hasn't 6914 * formally accepted the connection yet, get off his list and blow off 6915 * any data that we have accumulated. 6916 */ 6917 static void 6918 tcp_eager_unlink(tcp_t *tcp) 6919 { 6920 tcp_t *listener = tcp->tcp_listener; 6921 6922 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6923 ASSERT(listener != NULL); 6924 if (tcp->tcp_eager_next_q0 != NULL) { 6925 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6926 6927 /* Remove the eager tcp from q0 */ 6928 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6929 tcp->tcp_eager_prev_q0; 6930 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6931 tcp->tcp_eager_next_q0; 6932 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6933 listener->tcp_conn_req_cnt_q0--; 6934 6935 tcp->tcp_eager_next_q0 = NULL; 6936 tcp->tcp_eager_prev_q0 = NULL; 6937 6938 /* 6939 * Take the eager out, if it is in the list of droppable 6940 * eagers. 6941 */ 6942 MAKE_UNDROPPABLE(tcp); 6943 6944 if (tcp->tcp_syn_rcvd_timeout != 0) { 6945 /* we have timed out before */ 6946 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6947 listener->tcp_syn_rcvd_timeout--; 6948 } 6949 } else { 6950 tcp_t **tcpp = &listener->tcp_eager_next_q; 6951 tcp_t *prev = NULL; 6952 6953 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6954 if (tcpp[0] == tcp) { 6955 if (listener->tcp_eager_last_q == tcp) { 6956 /* 6957 * If we are unlinking the last 6958 * element on the list, adjust 6959 * tail pointer. Set tail pointer 6960 * to nil when list is empty. 6961 */ 6962 ASSERT(tcp->tcp_eager_next_q == NULL); 6963 if (listener->tcp_eager_last_q == 6964 listener->tcp_eager_next_q) { 6965 listener->tcp_eager_last_q = 6966 NULL; 6967 } else { 6968 /* 6969 * We won't get here if there 6970 * is only one eager in the 6971 * list. 6972 */ 6973 ASSERT(prev != NULL); 6974 listener->tcp_eager_last_q = 6975 prev; 6976 } 6977 } 6978 tcpp[0] = tcp->tcp_eager_next_q; 6979 tcp->tcp_eager_next_q = NULL; 6980 tcp->tcp_eager_last_q = NULL; 6981 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6982 listener->tcp_conn_req_cnt_q--; 6983 break; 6984 } 6985 prev = tcpp[0]; 6986 } 6987 } 6988 tcp->tcp_listener = NULL; 6989 } 6990 6991 /* Shorthand to generate and send TPI error acks to our client */ 6992 static void 6993 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6994 { 6995 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6996 putnext(tcp->tcp_rq, mp); 6997 } 6998 6999 /* Shorthand to generate and send TPI error acks to our client */ 7000 static void 7001 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7002 int t_error, int sys_error) 7003 { 7004 struct T_error_ack *teackp; 7005 7006 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7007 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7008 teackp = (struct T_error_ack *)mp->b_rptr; 7009 teackp->ERROR_prim = primitive; 7010 teackp->TLI_error = t_error; 7011 teackp->UNIX_error = sys_error; 7012 putnext(tcp->tcp_rq, mp); 7013 } 7014 } 7015 7016 /* 7017 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7018 * but instead the code relies on: 7019 * - the fact that the address of the array and its size never changes 7020 * - the atomic assignment of the elements of the array 7021 */ 7022 /* ARGSUSED */ 7023 static int 7024 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7025 { 7026 int i; 7027 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7028 7029 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7030 if (tcps->tcps_g_epriv_ports[i] != 0) 7031 (void) mi_mpprintf(mp, "%d ", 7032 tcps->tcps_g_epriv_ports[i]); 7033 } 7034 return (0); 7035 } 7036 7037 /* 7038 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7039 * threads from changing it at the same time. 7040 */ 7041 /* ARGSUSED */ 7042 static int 7043 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7044 cred_t *cr) 7045 { 7046 long new_value; 7047 int i; 7048 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7049 7050 /* 7051 * Fail the request if the new value does not lie within the 7052 * port number limits. 7053 */ 7054 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7055 new_value <= 0 || new_value >= 65536) { 7056 return (EINVAL); 7057 } 7058 7059 mutex_enter(&tcps->tcps_epriv_port_lock); 7060 /* Check if the value is already in the list */ 7061 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7062 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7063 mutex_exit(&tcps->tcps_epriv_port_lock); 7064 return (EEXIST); 7065 } 7066 } 7067 /* Find an empty slot */ 7068 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7069 if (tcps->tcps_g_epriv_ports[i] == 0) 7070 break; 7071 } 7072 if (i == tcps->tcps_g_num_epriv_ports) { 7073 mutex_exit(&tcps->tcps_epriv_port_lock); 7074 return (EOVERFLOW); 7075 } 7076 /* Set the new value */ 7077 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7078 mutex_exit(&tcps->tcps_epriv_port_lock); 7079 return (0); 7080 } 7081 7082 /* 7083 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7084 * threads from changing it at the same time. 7085 */ 7086 /* ARGSUSED */ 7087 static int 7088 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7089 cred_t *cr) 7090 { 7091 long new_value; 7092 int i; 7093 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7094 7095 /* 7096 * Fail the request if the new value does not lie within the 7097 * port number limits. 7098 */ 7099 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7100 new_value >= 65536) { 7101 return (EINVAL); 7102 } 7103 7104 mutex_enter(&tcps->tcps_epriv_port_lock); 7105 /* Check that the value is already in the list */ 7106 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7107 if (tcps->tcps_g_epriv_ports[i] == new_value) 7108 break; 7109 } 7110 if (i == tcps->tcps_g_num_epriv_ports) { 7111 mutex_exit(&tcps->tcps_epriv_port_lock); 7112 return (ESRCH); 7113 } 7114 /* Clear the value */ 7115 tcps->tcps_g_epriv_ports[i] = 0; 7116 mutex_exit(&tcps->tcps_epriv_port_lock); 7117 return (0); 7118 } 7119 7120 /* Return the TPI/TLI equivalent of our current tcp_state */ 7121 static int 7122 tcp_tpistate(tcp_t *tcp) 7123 { 7124 switch (tcp->tcp_state) { 7125 case TCPS_IDLE: 7126 return (TS_UNBND); 7127 case TCPS_LISTEN: 7128 /* 7129 * Return whether there are outstanding T_CONN_IND waiting 7130 * for the matching T_CONN_RES. Therefore don't count q0. 7131 */ 7132 if (tcp->tcp_conn_req_cnt_q > 0) 7133 return (TS_WRES_CIND); 7134 else 7135 return (TS_IDLE); 7136 case TCPS_BOUND: 7137 return (TS_IDLE); 7138 case TCPS_SYN_SENT: 7139 return (TS_WCON_CREQ); 7140 case TCPS_SYN_RCVD: 7141 /* 7142 * Note: assumption: this has to the active open SYN_RCVD. 7143 * The passive instance is detached in SYN_RCVD stage of 7144 * incoming connection processing so we cannot get request 7145 * for T_info_ack on it. 7146 */ 7147 return (TS_WACK_CRES); 7148 case TCPS_ESTABLISHED: 7149 return (TS_DATA_XFER); 7150 case TCPS_CLOSE_WAIT: 7151 return (TS_WREQ_ORDREL); 7152 case TCPS_FIN_WAIT_1: 7153 return (TS_WIND_ORDREL); 7154 case TCPS_FIN_WAIT_2: 7155 return (TS_WIND_ORDREL); 7156 7157 case TCPS_CLOSING: 7158 case TCPS_LAST_ACK: 7159 case TCPS_TIME_WAIT: 7160 case TCPS_CLOSED: 7161 /* 7162 * Following TS_WACK_DREQ7 is a rendition of "not 7163 * yet TS_IDLE" TPI state. There is no best match to any 7164 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7165 * choose a value chosen that will map to TLI/XTI level 7166 * state of TSTATECHNG (state is process of changing) which 7167 * captures what this dummy state represents. 7168 */ 7169 return (TS_WACK_DREQ7); 7170 default: 7171 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7172 tcp->tcp_state, tcp_display(tcp, NULL, 7173 DISP_PORT_ONLY)); 7174 return (TS_UNBND); 7175 } 7176 } 7177 7178 static void 7179 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7180 { 7181 tcp_stack_t *tcps = tcp->tcp_tcps; 7182 7183 if (tcp->tcp_family == AF_INET6) 7184 *tia = tcp_g_t_info_ack_v6; 7185 else 7186 *tia = tcp_g_t_info_ack; 7187 tia->CURRENT_state = tcp_tpistate(tcp); 7188 tia->OPT_size = tcp_max_optsize; 7189 if (tcp->tcp_mss == 0) { 7190 /* Not yet set - tcp_open does not set mss */ 7191 if (tcp->tcp_ipversion == IPV4_VERSION) 7192 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7193 else 7194 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7195 } else { 7196 tia->TIDU_size = tcp->tcp_mss; 7197 } 7198 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7199 } 7200 7201 static void 7202 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7203 t_uscalar_t cap_bits1) 7204 { 7205 tcap->CAP_bits1 = 0; 7206 7207 if (cap_bits1 & TC1_INFO) { 7208 tcp_copy_info(&tcap->INFO_ack, tcp); 7209 tcap->CAP_bits1 |= TC1_INFO; 7210 } 7211 7212 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7213 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7214 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7215 } 7216 7217 } 7218 7219 /* 7220 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7221 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7222 * tcp_g_t_info_ack. The current state of the stream is copied from 7223 * tcp_state. 7224 */ 7225 static void 7226 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7227 { 7228 t_uscalar_t cap_bits1; 7229 struct T_capability_ack *tcap; 7230 7231 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7232 freemsg(mp); 7233 return; 7234 } 7235 7236 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7237 7238 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7239 mp->b_datap->db_type, T_CAPABILITY_ACK); 7240 if (mp == NULL) 7241 return; 7242 7243 tcap = (struct T_capability_ack *)mp->b_rptr; 7244 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7245 7246 putnext(tcp->tcp_rq, mp); 7247 } 7248 7249 /* 7250 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7251 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7252 * The current state of the stream is copied from tcp_state. 7253 */ 7254 static void 7255 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7256 { 7257 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7258 T_INFO_ACK); 7259 if (!mp) { 7260 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7261 return; 7262 } 7263 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7264 putnext(tcp->tcp_rq, mp); 7265 } 7266 7267 /* Respond to the TPI addr request */ 7268 static void 7269 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7270 { 7271 sin_t *sin; 7272 mblk_t *ackmp; 7273 struct T_addr_ack *taa; 7274 7275 /* Make it large enough for worst case */ 7276 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7277 2 * sizeof (sin6_t), 1); 7278 if (ackmp == NULL) { 7279 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7280 return; 7281 } 7282 7283 if (tcp->tcp_ipversion == IPV6_VERSION) { 7284 tcp_addr_req_ipv6(tcp, ackmp); 7285 return; 7286 } 7287 taa = (struct T_addr_ack *)ackmp->b_rptr; 7288 7289 bzero(taa, sizeof (struct T_addr_ack)); 7290 ackmp->b_wptr = (uchar_t *)&taa[1]; 7291 7292 taa->PRIM_type = T_ADDR_ACK; 7293 ackmp->b_datap->db_type = M_PCPROTO; 7294 7295 /* 7296 * Note: Following code assumes 32 bit alignment of basic 7297 * data structures like sin_t and struct T_addr_ack. 7298 */ 7299 if (tcp->tcp_state >= TCPS_BOUND) { 7300 /* 7301 * Fill in local address 7302 */ 7303 taa->LOCADDR_length = sizeof (sin_t); 7304 taa->LOCADDR_offset = sizeof (*taa); 7305 7306 sin = (sin_t *)&taa[1]; 7307 7308 /* Fill zeroes and then intialize non-zero fields */ 7309 *sin = sin_null; 7310 7311 sin->sin_family = AF_INET; 7312 7313 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7314 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7315 7316 ackmp->b_wptr = (uchar_t *)&sin[1]; 7317 7318 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7319 /* 7320 * Fill in Remote address 7321 */ 7322 taa->REMADDR_length = sizeof (sin_t); 7323 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7324 taa->LOCADDR_length); 7325 7326 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7327 *sin = sin_null; 7328 sin->sin_family = AF_INET; 7329 sin->sin_addr.s_addr = tcp->tcp_remote; 7330 sin->sin_port = tcp->tcp_fport; 7331 7332 ackmp->b_wptr = (uchar_t *)&sin[1]; 7333 } 7334 } 7335 putnext(tcp->tcp_rq, ackmp); 7336 } 7337 7338 /* Assumes that tcp_addr_req gets enough space and alignment */ 7339 static void 7340 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7341 { 7342 sin6_t *sin6; 7343 struct T_addr_ack *taa; 7344 7345 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7346 ASSERT(OK_32PTR(ackmp->b_rptr)); 7347 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7348 2 * sizeof (sin6_t)); 7349 7350 taa = (struct T_addr_ack *)ackmp->b_rptr; 7351 7352 bzero(taa, sizeof (struct T_addr_ack)); 7353 ackmp->b_wptr = (uchar_t *)&taa[1]; 7354 7355 taa->PRIM_type = T_ADDR_ACK; 7356 ackmp->b_datap->db_type = M_PCPROTO; 7357 7358 /* 7359 * Note: Following code assumes 32 bit alignment of basic 7360 * data structures like sin6_t and struct T_addr_ack. 7361 */ 7362 if (tcp->tcp_state >= TCPS_BOUND) { 7363 /* 7364 * Fill in local address 7365 */ 7366 taa->LOCADDR_length = sizeof (sin6_t); 7367 taa->LOCADDR_offset = sizeof (*taa); 7368 7369 sin6 = (sin6_t *)&taa[1]; 7370 *sin6 = sin6_null; 7371 7372 sin6->sin6_family = AF_INET6; 7373 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7374 sin6->sin6_port = tcp->tcp_lport; 7375 7376 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7377 7378 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7379 /* 7380 * Fill in Remote address 7381 */ 7382 taa->REMADDR_length = sizeof (sin6_t); 7383 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7384 taa->LOCADDR_length); 7385 7386 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7387 *sin6 = sin6_null; 7388 sin6->sin6_family = AF_INET6; 7389 sin6->sin6_flowinfo = 7390 tcp->tcp_ip6h->ip6_vcf & 7391 ~IPV6_VERS_AND_FLOW_MASK; 7392 sin6->sin6_addr = tcp->tcp_remote_v6; 7393 sin6->sin6_port = tcp->tcp_fport; 7394 7395 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7396 } 7397 } 7398 putnext(tcp->tcp_rq, ackmp); 7399 } 7400 7401 /* 7402 * Handle reinitialization of a tcp structure. 7403 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7404 */ 7405 static void 7406 tcp_reinit(tcp_t *tcp) 7407 { 7408 mblk_t *mp; 7409 int err; 7410 tcp_stack_t *tcps = tcp->tcp_tcps; 7411 7412 TCP_STAT(tcps, tcp_reinit_calls); 7413 7414 /* tcp_reinit should never be called for detached tcp_t's */ 7415 ASSERT(tcp->tcp_listener == NULL); 7416 ASSERT((tcp->tcp_family == AF_INET && 7417 tcp->tcp_ipversion == IPV4_VERSION) || 7418 (tcp->tcp_family == AF_INET6 && 7419 (tcp->tcp_ipversion == IPV4_VERSION || 7420 tcp->tcp_ipversion == IPV6_VERSION))); 7421 7422 /* Cancel outstanding timers */ 7423 tcp_timers_stop(tcp); 7424 7425 /* 7426 * Reset everything in the state vector, after updating global 7427 * MIB data from instance counters. 7428 */ 7429 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7430 tcp->tcp_ibsegs = 0; 7431 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7432 tcp->tcp_obsegs = 0; 7433 7434 tcp_close_mpp(&tcp->tcp_xmit_head); 7435 if (tcp->tcp_snd_zcopy_aware) 7436 tcp_zcopy_notify(tcp); 7437 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7438 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7439 mutex_enter(&tcp->tcp_non_sq_lock); 7440 if (tcp->tcp_flow_stopped && 7441 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7442 tcp_clrqfull(tcp); 7443 } 7444 mutex_exit(&tcp->tcp_non_sq_lock); 7445 tcp_close_mpp(&tcp->tcp_reass_head); 7446 tcp->tcp_reass_tail = NULL; 7447 if (tcp->tcp_rcv_list != NULL) { 7448 /* Free b_next chain */ 7449 tcp_close_mpp(&tcp->tcp_rcv_list); 7450 tcp->tcp_rcv_last_head = NULL; 7451 tcp->tcp_rcv_last_tail = NULL; 7452 tcp->tcp_rcv_cnt = 0; 7453 } 7454 tcp->tcp_rcv_last_tail = NULL; 7455 7456 if ((mp = tcp->tcp_urp_mp) != NULL) { 7457 freemsg(mp); 7458 tcp->tcp_urp_mp = NULL; 7459 } 7460 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7461 freemsg(mp); 7462 tcp->tcp_urp_mark_mp = NULL; 7463 } 7464 if (tcp->tcp_fused_sigurg_mp != NULL) { 7465 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7466 freeb(tcp->tcp_fused_sigurg_mp); 7467 tcp->tcp_fused_sigurg_mp = NULL; 7468 } 7469 if (tcp->tcp_ordrel_mp != NULL) { 7470 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7471 freeb(tcp->tcp_ordrel_mp); 7472 tcp->tcp_ordrel_mp = NULL; 7473 } 7474 7475 /* 7476 * Following is a union with two members which are 7477 * identical types and size so the following cleanup 7478 * is enough. 7479 */ 7480 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7481 7482 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7483 7484 /* 7485 * The connection can't be on the tcp_time_wait_head list 7486 * since it is not detached. 7487 */ 7488 ASSERT(tcp->tcp_time_wait_next == NULL); 7489 ASSERT(tcp->tcp_time_wait_prev == NULL); 7490 ASSERT(tcp->tcp_time_wait_expire == 0); 7491 7492 if (tcp->tcp_kssl_pending) { 7493 tcp->tcp_kssl_pending = B_FALSE; 7494 7495 /* Don't reset if the initialized by bind. */ 7496 if (tcp->tcp_kssl_ent != NULL) { 7497 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7498 KSSL_NO_PROXY); 7499 } 7500 } 7501 if (tcp->tcp_kssl_ctx != NULL) { 7502 kssl_release_ctx(tcp->tcp_kssl_ctx); 7503 tcp->tcp_kssl_ctx = NULL; 7504 } 7505 7506 /* 7507 * Reset/preserve other values 7508 */ 7509 tcp_reinit_values(tcp); 7510 ipcl_hash_remove(tcp->tcp_connp); 7511 conn_delete_ire(tcp->tcp_connp, NULL); 7512 tcp_ipsec_cleanup(tcp); 7513 7514 if (tcp->tcp_conn_req_max != 0) { 7515 /* 7516 * This is the case when a TLI program uses the same 7517 * transport end point to accept a connection. This 7518 * makes the TCP both a listener and acceptor. When 7519 * this connection is closed, we need to set the state 7520 * back to TCPS_LISTEN. Make sure that the eager list 7521 * is reinitialized. 7522 * 7523 * Note that this stream is still bound to the four 7524 * tuples of the previous connection in IP. If a new 7525 * SYN with different foreign address comes in, IP will 7526 * not find it and will send it to the global queue. In 7527 * the global queue, TCP will do a tcp_lookup_listener() 7528 * to find this stream. This works because this stream 7529 * is only removed from connected hash. 7530 * 7531 */ 7532 tcp->tcp_state = TCPS_LISTEN; 7533 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7534 tcp->tcp_eager_next_drop_q0 = tcp; 7535 tcp->tcp_eager_prev_drop_q0 = tcp; 7536 tcp->tcp_connp->conn_recv = tcp_conn_request; 7537 if (tcp->tcp_family == AF_INET6) { 7538 ASSERT(tcp->tcp_connp->conn_af_isv6); 7539 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7540 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7541 } else { 7542 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7543 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7544 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7545 } 7546 } else { 7547 tcp->tcp_state = TCPS_BOUND; 7548 } 7549 7550 /* 7551 * Initialize to default values 7552 * Can't fail since enough header template space already allocated 7553 * at open(). 7554 */ 7555 err = tcp_init_values(tcp); 7556 ASSERT(err == 0); 7557 /* Restore state in tcp_tcph */ 7558 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7559 if (tcp->tcp_ipversion == IPV4_VERSION) 7560 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7561 else 7562 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7563 /* 7564 * Copy of the src addr. in tcp_t is needed in tcp_t 7565 * since the lookup funcs can only lookup on tcp_t 7566 */ 7567 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7568 7569 ASSERT(tcp->tcp_ptpbhn != NULL); 7570 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7571 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7572 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7573 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7574 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7575 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7576 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7577 } 7578 7579 /* 7580 * Force values to zero that need be zero. 7581 * Do not touch values asociated with the BOUND or LISTEN state 7582 * since the connection will end up in that state after the reinit. 7583 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7584 * structure! 7585 */ 7586 static void 7587 tcp_reinit_values(tcp) 7588 tcp_t *tcp; 7589 { 7590 tcp_stack_t *tcps = tcp->tcp_tcps; 7591 7592 #ifndef lint 7593 #define DONTCARE(x) 7594 #define PRESERVE(x) 7595 #else 7596 #define DONTCARE(x) ((x) = (x)) 7597 #define PRESERVE(x) ((x) = (x)) 7598 #endif /* lint */ 7599 7600 PRESERVE(tcp->tcp_bind_hash_port); 7601 PRESERVE(tcp->tcp_bind_hash); 7602 PRESERVE(tcp->tcp_ptpbhn); 7603 PRESERVE(tcp->tcp_acceptor_hash); 7604 PRESERVE(tcp->tcp_ptpahn); 7605 7606 /* Should be ASSERT NULL on these with new code! */ 7607 ASSERT(tcp->tcp_time_wait_next == NULL); 7608 ASSERT(tcp->tcp_time_wait_prev == NULL); 7609 ASSERT(tcp->tcp_time_wait_expire == 0); 7610 PRESERVE(tcp->tcp_state); 7611 PRESERVE(tcp->tcp_rq); 7612 PRESERVE(tcp->tcp_wq); 7613 7614 ASSERT(tcp->tcp_xmit_head == NULL); 7615 ASSERT(tcp->tcp_xmit_last == NULL); 7616 ASSERT(tcp->tcp_unsent == 0); 7617 ASSERT(tcp->tcp_xmit_tail == NULL); 7618 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7619 7620 tcp->tcp_snxt = 0; /* Displayed in mib */ 7621 tcp->tcp_suna = 0; /* Displayed in mib */ 7622 tcp->tcp_swnd = 0; 7623 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7624 7625 ASSERT(tcp->tcp_ibsegs == 0); 7626 ASSERT(tcp->tcp_obsegs == 0); 7627 7628 if (tcp->tcp_iphc != NULL) { 7629 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7630 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7631 } 7632 7633 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7634 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7635 DONTCARE(tcp->tcp_ipha); 7636 DONTCARE(tcp->tcp_ip6h); 7637 DONTCARE(tcp->tcp_ip_hdr_len); 7638 DONTCARE(tcp->tcp_tcph); 7639 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7640 tcp->tcp_valid_bits = 0; 7641 7642 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7643 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7644 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7645 tcp->tcp_last_rcv_lbolt = 0; 7646 7647 tcp->tcp_init_cwnd = 0; 7648 7649 tcp->tcp_urp_last_valid = 0; 7650 tcp->tcp_hard_binding = 0; 7651 tcp->tcp_hard_bound = 0; 7652 PRESERVE(tcp->tcp_cred); 7653 PRESERVE(tcp->tcp_cpid); 7654 PRESERVE(tcp->tcp_open_time); 7655 PRESERVE(tcp->tcp_exclbind); 7656 7657 tcp->tcp_fin_acked = 0; 7658 tcp->tcp_fin_rcvd = 0; 7659 tcp->tcp_fin_sent = 0; 7660 tcp->tcp_ordrel_done = 0; 7661 7662 tcp->tcp_debug = 0; 7663 tcp->tcp_dontroute = 0; 7664 tcp->tcp_broadcast = 0; 7665 7666 tcp->tcp_useloopback = 0; 7667 tcp->tcp_reuseaddr = 0; 7668 tcp->tcp_oobinline = 0; 7669 tcp->tcp_dgram_errind = 0; 7670 7671 tcp->tcp_detached = 0; 7672 tcp->tcp_bind_pending = 0; 7673 tcp->tcp_unbind_pending = 0; 7674 7675 tcp->tcp_snd_ws_ok = B_FALSE; 7676 tcp->tcp_snd_ts_ok = B_FALSE; 7677 tcp->tcp_linger = 0; 7678 tcp->tcp_ka_enabled = 0; 7679 tcp->tcp_zero_win_probe = 0; 7680 7681 tcp->tcp_loopback = 0; 7682 tcp->tcp_refuse = 0; 7683 tcp->tcp_localnet = 0; 7684 tcp->tcp_syn_defense = 0; 7685 tcp->tcp_set_timer = 0; 7686 7687 tcp->tcp_active_open = 0; 7688 tcp->tcp_rexmit = B_FALSE; 7689 tcp->tcp_xmit_zc_clean = B_FALSE; 7690 7691 tcp->tcp_snd_sack_ok = B_FALSE; 7692 PRESERVE(tcp->tcp_recvdstaddr); 7693 tcp->tcp_hwcksum = B_FALSE; 7694 7695 tcp->tcp_ire_ill_check_done = B_FALSE; 7696 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7697 7698 tcp->tcp_mdt = B_FALSE; 7699 tcp->tcp_mdt_hdr_head = 0; 7700 tcp->tcp_mdt_hdr_tail = 0; 7701 7702 tcp->tcp_conn_def_q0 = 0; 7703 tcp->tcp_ip_forward_progress = B_FALSE; 7704 tcp->tcp_anon_priv_bind = 0; 7705 tcp->tcp_ecn_ok = B_FALSE; 7706 7707 tcp->tcp_cwr = B_FALSE; 7708 tcp->tcp_ecn_echo_on = B_FALSE; 7709 7710 if (tcp->tcp_sack_info != NULL) { 7711 if (tcp->tcp_notsack_list != NULL) { 7712 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7713 } 7714 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7715 tcp->tcp_sack_info = NULL; 7716 } 7717 7718 tcp->tcp_rcv_ws = 0; 7719 tcp->tcp_snd_ws = 0; 7720 tcp->tcp_ts_recent = 0; 7721 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7722 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7723 tcp->tcp_if_mtu = 0; 7724 7725 ASSERT(tcp->tcp_reass_head == NULL); 7726 ASSERT(tcp->tcp_reass_tail == NULL); 7727 7728 tcp->tcp_cwnd_cnt = 0; 7729 7730 ASSERT(tcp->tcp_rcv_list == NULL); 7731 ASSERT(tcp->tcp_rcv_last_head == NULL); 7732 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7733 ASSERT(tcp->tcp_rcv_cnt == 0); 7734 7735 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7736 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7737 tcp->tcp_csuna = 0; 7738 7739 tcp->tcp_rto = 0; /* Displayed in MIB */ 7740 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7741 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7742 tcp->tcp_rtt_update = 0; 7743 7744 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7745 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7746 7747 tcp->tcp_rack = 0; /* Displayed in mib */ 7748 tcp->tcp_rack_cnt = 0; 7749 tcp->tcp_rack_cur_max = 0; 7750 tcp->tcp_rack_abs_max = 0; 7751 7752 tcp->tcp_max_swnd = 0; 7753 7754 ASSERT(tcp->tcp_listener == NULL); 7755 7756 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7757 7758 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7759 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7760 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7761 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7762 7763 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7764 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7765 PRESERVE(tcp->tcp_conn_req_max); 7766 PRESERVE(tcp->tcp_conn_req_seqnum); 7767 7768 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7769 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7770 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7771 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7772 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7773 7774 tcp->tcp_lingertime = 0; 7775 7776 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7777 ASSERT(tcp->tcp_urp_mp == NULL); 7778 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7779 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7780 7781 ASSERT(tcp->tcp_eager_next_q == NULL); 7782 ASSERT(tcp->tcp_eager_last_q == NULL); 7783 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7784 tcp->tcp_eager_prev_q0 == NULL) || 7785 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7786 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7787 7788 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7789 tcp->tcp_eager_prev_drop_q0 == NULL) || 7790 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7791 7792 tcp->tcp_client_errno = 0; 7793 7794 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7795 7796 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7797 7798 PRESERVE(tcp->tcp_bound_source_v6); 7799 tcp->tcp_last_sent_len = 0; 7800 tcp->tcp_dupack_cnt = 0; 7801 7802 tcp->tcp_fport = 0; /* Displayed in MIB */ 7803 PRESERVE(tcp->tcp_lport); 7804 7805 PRESERVE(tcp->tcp_acceptor_lockp); 7806 7807 ASSERT(tcp->tcp_ordrel_mp == NULL); 7808 PRESERVE(tcp->tcp_acceptor_id); 7809 DONTCARE(tcp->tcp_ipsec_overhead); 7810 7811 PRESERVE(tcp->tcp_family); 7812 if (tcp->tcp_family == AF_INET6) { 7813 tcp->tcp_ipversion = IPV6_VERSION; 7814 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7815 } else { 7816 tcp->tcp_ipversion = IPV4_VERSION; 7817 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7818 } 7819 7820 tcp->tcp_bound_if = 0; 7821 tcp->tcp_ipv6_recvancillary = 0; 7822 tcp->tcp_recvifindex = 0; 7823 tcp->tcp_recvhops = 0; 7824 tcp->tcp_closed = 0; 7825 tcp->tcp_cleandeathtag = 0; 7826 if (tcp->tcp_hopopts != NULL) { 7827 mi_free(tcp->tcp_hopopts); 7828 tcp->tcp_hopopts = NULL; 7829 tcp->tcp_hopoptslen = 0; 7830 } 7831 ASSERT(tcp->tcp_hopoptslen == 0); 7832 if (tcp->tcp_dstopts != NULL) { 7833 mi_free(tcp->tcp_dstopts); 7834 tcp->tcp_dstopts = NULL; 7835 tcp->tcp_dstoptslen = 0; 7836 } 7837 ASSERT(tcp->tcp_dstoptslen == 0); 7838 if (tcp->tcp_rtdstopts != NULL) { 7839 mi_free(tcp->tcp_rtdstopts); 7840 tcp->tcp_rtdstopts = NULL; 7841 tcp->tcp_rtdstoptslen = 0; 7842 } 7843 ASSERT(tcp->tcp_rtdstoptslen == 0); 7844 if (tcp->tcp_rthdr != NULL) { 7845 mi_free(tcp->tcp_rthdr); 7846 tcp->tcp_rthdr = NULL; 7847 tcp->tcp_rthdrlen = 0; 7848 } 7849 ASSERT(tcp->tcp_rthdrlen == 0); 7850 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7851 7852 /* Reset fusion-related fields */ 7853 tcp->tcp_fused = B_FALSE; 7854 tcp->tcp_unfusable = B_FALSE; 7855 tcp->tcp_fused_sigurg = B_FALSE; 7856 tcp->tcp_direct_sockfs = B_FALSE; 7857 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7858 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7859 tcp->tcp_loopback_peer = NULL; 7860 tcp->tcp_fuse_rcv_hiwater = 0; 7861 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7862 tcp->tcp_fuse_rcv_unread_cnt = 0; 7863 7864 tcp->tcp_lso = B_FALSE; 7865 7866 tcp->tcp_in_ack_unsent = 0; 7867 tcp->tcp_cork = B_FALSE; 7868 tcp->tcp_tconnind_started = B_FALSE; 7869 7870 PRESERVE(tcp->tcp_squeue_bytes); 7871 7872 ASSERT(tcp->tcp_kssl_ctx == NULL); 7873 ASSERT(!tcp->tcp_kssl_pending); 7874 PRESERVE(tcp->tcp_kssl_ent); 7875 7876 /* Sodirect */ 7877 tcp->tcp_sodirect = NULL; 7878 7879 tcp->tcp_closemp_used = B_FALSE; 7880 7881 PRESERVE(tcp->tcp_rsrv_mp); 7882 PRESERVE(tcp->tcp_rsrv_mp_lock); 7883 7884 #ifdef DEBUG 7885 DONTCARE(tcp->tcmp_stk[0]); 7886 #endif 7887 7888 PRESERVE(tcp->tcp_connid); 7889 7890 7891 #undef DONTCARE 7892 #undef PRESERVE 7893 } 7894 7895 /* 7896 * Allocate necessary resources and initialize state vector. 7897 * Guaranteed not to fail so that when an error is returned, 7898 * the caller doesn't need to do any additional cleanup. 7899 */ 7900 int 7901 tcp_init(tcp_t *tcp, queue_t *q) 7902 { 7903 int err; 7904 7905 tcp->tcp_rq = q; 7906 tcp->tcp_wq = WR(q); 7907 tcp->tcp_state = TCPS_IDLE; 7908 if ((err = tcp_init_values(tcp)) != 0) 7909 tcp_timers_stop(tcp); 7910 return (err); 7911 } 7912 7913 static int 7914 tcp_init_values(tcp_t *tcp) 7915 { 7916 int err; 7917 tcp_stack_t *tcps = tcp->tcp_tcps; 7918 7919 ASSERT((tcp->tcp_family == AF_INET && 7920 tcp->tcp_ipversion == IPV4_VERSION) || 7921 (tcp->tcp_family == AF_INET6 && 7922 (tcp->tcp_ipversion == IPV4_VERSION || 7923 tcp->tcp_ipversion == IPV6_VERSION))); 7924 7925 /* 7926 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7927 * will be close to tcp_rexmit_interval_initial. By doing this, we 7928 * allow the algorithm to adjust slowly to large fluctuations of RTT 7929 * during first few transmissions of a connection as seen in slow 7930 * links. 7931 */ 7932 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7933 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7934 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7935 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7936 tcps->tcps_conn_grace_period; 7937 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7938 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7939 tcp->tcp_timer_backoff = 0; 7940 tcp->tcp_ms_we_have_waited = 0; 7941 tcp->tcp_last_recv_time = lbolt; 7942 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7943 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7944 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7945 7946 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7947 7948 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7949 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7950 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7951 /* 7952 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7953 * passive open. 7954 */ 7955 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7956 7957 tcp->tcp_naglim = tcps->tcps_naglim_def; 7958 7959 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7960 7961 tcp->tcp_mdt_hdr_head = 0; 7962 tcp->tcp_mdt_hdr_tail = 0; 7963 7964 /* Reset fusion-related fields */ 7965 tcp->tcp_fused = B_FALSE; 7966 tcp->tcp_unfusable = B_FALSE; 7967 tcp->tcp_fused_sigurg = B_FALSE; 7968 tcp->tcp_direct_sockfs = B_FALSE; 7969 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7970 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7971 tcp->tcp_loopback_peer = NULL; 7972 tcp->tcp_fuse_rcv_hiwater = 0; 7973 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7974 tcp->tcp_fuse_rcv_unread_cnt = 0; 7975 7976 /* Sodirect */ 7977 tcp->tcp_sodirect = NULL; 7978 7979 /* Initialize the header template */ 7980 if (tcp->tcp_ipversion == IPV4_VERSION) { 7981 err = tcp_header_init_ipv4(tcp); 7982 } else { 7983 err = tcp_header_init_ipv6(tcp); 7984 } 7985 if (err) 7986 return (err); 7987 7988 /* 7989 * Init the window scale to the max so tcp_rwnd_set() won't pare 7990 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7991 */ 7992 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7993 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7994 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7995 7996 tcp->tcp_cork = B_FALSE; 7997 /* 7998 * Init the tcp_debug option. This value determines whether TCP 7999 * calls strlog() to print out debug messages. Doing this 8000 * initialization here means that this value is not inherited thru 8001 * tcp_reinit(). 8002 */ 8003 tcp->tcp_debug = tcps->tcps_dbg; 8004 8005 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8006 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8007 8008 return (0); 8009 } 8010 8011 /* 8012 * Initialize the IPv4 header. Loses any record of any IP options. 8013 */ 8014 static int 8015 tcp_header_init_ipv4(tcp_t *tcp) 8016 { 8017 tcph_t *tcph; 8018 uint32_t sum; 8019 conn_t *connp; 8020 tcp_stack_t *tcps = tcp->tcp_tcps; 8021 8022 /* 8023 * This is a simple initialization. If there's 8024 * already a template, it should never be too small, 8025 * so reuse it. Otherwise, allocate space for the new one. 8026 */ 8027 if (tcp->tcp_iphc == NULL) { 8028 ASSERT(tcp->tcp_iphc_len == 0); 8029 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8030 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8031 if (tcp->tcp_iphc == NULL) { 8032 tcp->tcp_iphc_len = 0; 8033 return (ENOMEM); 8034 } 8035 } 8036 8037 /* options are gone; may need a new label */ 8038 connp = tcp->tcp_connp; 8039 connp->conn_mlp_type = mlptSingle; 8040 connp->conn_ulp_labeled = !is_system_labeled(); 8041 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8042 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8043 tcp->tcp_ip6h = NULL; 8044 tcp->tcp_ipversion = IPV4_VERSION; 8045 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8046 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8047 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8048 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8049 tcp->tcp_ipha->ipha_version_and_hdr_length 8050 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8051 tcp->tcp_ipha->ipha_ident = 0; 8052 8053 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8054 tcp->tcp_tos = 0; 8055 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8056 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8057 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8058 8059 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8060 tcp->tcp_tcph = tcph; 8061 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8062 /* 8063 * IP wants our header length in the checksum field to 8064 * allow it to perform a single pseudo-header+checksum 8065 * calculation on behalf of TCP. 8066 * Include the adjustment for a source route once IP_OPTIONS is set. 8067 */ 8068 sum = sizeof (tcph_t) + tcp->tcp_sum; 8069 sum = (sum >> 16) + (sum & 0xFFFF); 8070 U16_TO_ABE16(sum, tcph->th_sum); 8071 return (0); 8072 } 8073 8074 /* 8075 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8076 */ 8077 static int 8078 tcp_header_init_ipv6(tcp_t *tcp) 8079 { 8080 tcph_t *tcph; 8081 uint32_t sum; 8082 conn_t *connp; 8083 tcp_stack_t *tcps = tcp->tcp_tcps; 8084 8085 /* 8086 * This is a simple initialization. If there's 8087 * already a template, it should never be too small, 8088 * so reuse it. Otherwise, allocate space for the new one. 8089 * Ensure that there is enough space to "downgrade" the tcp_t 8090 * to an IPv4 tcp_t. This requires having space for a full load 8091 * of IPv4 options, as well as a full load of TCP options 8092 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8093 * than a v6 header and a TCP header with a full load of TCP options 8094 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8095 * We want to avoid reallocation in the "downgraded" case when 8096 * processing outbound IPv4 options. 8097 */ 8098 if (tcp->tcp_iphc == NULL) { 8099 ASSERT(tcp->tcp_iphc_len == 0); 8100 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8101 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8102 if (tcp->tcp_iphc == NULL) { 8103 tcp->tcp_iphc_len = 0; 8104 return (ENOMEM); 8105 } 8106 } 8107 8108 /* options are gone; may need a new label */ 8109 connp = tcp->tcp_connp; 8110 connp->conn_mlp_type = mlptSingle; 8111 connp->conn_ulp_labeled = !is_system_labeled(); 8112 8113 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8114 tcp->tcp_ipversion = IPV6_VERSION; 8115 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8116 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8117 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8118 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8119 tcp->tcp_ipha = NULL; 8120 8121 /* Initialize the header template */ 8122 8123 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8124 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8125 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8126 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8127 8128 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8129 tcp->tcp_tcph = tcph; 8130 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8131 /* 8132 * IP wants our header length in the checksum field to 8133 * allow it to perform a single psuedo-header+checksum 8134 * calculation on behalf of TCP. 8135 * Include the adjustment for a source route when IPV6_RTHDR is set. 8136 */ 8137 sum = sizeof (tcph_t) + tcp->tcp_sum; 8138 sum = (sum >> 16) + (sum & 0xFFFF); 8139 U16_TO_ABE16(sum, tcph->th_sum); 8140 return (0); 8141 } 8142 8143 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8144 #define ICMP_MIN_TCP_HDR 8 8145 8146 /* 8147 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8148 * passed up by IP. The message is always received on the correct tcp_t. 8149 * Assumes that IP has pulled up everything up to and including the ICMP header. 8150 */ 8151 void 8152 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8153 { 8154 icmph_t *icmph; 8155 ipha_t *ipha; 8156 int iph_hdr_length; 8157 tcph_t *tcph; 8158 boolean_t ipsec_mctl = B_FALSE; 8159 boolean_t secure; 8160 mblk_t *first_mp = mp; 8161 int32_t new_mss; 8162 uint32_t ratio; 8163 size_t mp_size = MBLKL(mp); 8164 uint32_t seg_seq; 8165 tcp_stack_t *tcps = tcp->tcp_tcps; 8166 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8167 8168 /* Assume IP provides aligned packets - otherwise toss */ 8169 if (!OK_32PTR(mp->b_rptr)) { 8170 freemsg(mp); 8171 return; 8172 } 8173 8174 /* 8175 * Since ICMP errors are normal data marked with M_CTL when sent 8176 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8177 * packets starting with an ipsec_info_t, see ipsec_info.h. 8178 */ 8179 if ((mp_size == sizeof (ipsec_info_t)) && 8180 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8181 ASSERT(mp->b_cont != NULL); 8182 mp = mp->b_cont; 8183 /* IP should have done this */ 8184 ASSERT(OK_32PTR(mp->b_rptr)); 8185 mp_size = MBLKL(mp); 8186 ipsec_mctl = B_TRUE; 8187 } 8188 8189 /* 8190 * Verify that we have a complete outer IP header. If not, drop it. 8191 */ 8192 if (mp_size < sizeof (ipha_t)) { 8193 noticmpv4: 8194 freemsg(first_mp); 8195 return; 8196 } 8197 8198 ipha = (ipha_t *)mp->b_rptr; 8199 /* 8200 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8201 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8202 */ 8203 switch (IPH_HDR_VERSION(ipha)) { 8204 case IPV6_VERSION: 8205 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8206 return; 8207 case IPV4_VERSION: 8208 break; 8209 default: 8210 goto noticmpv4; 8211 } 8212 8213 /* Skip past the outer IP and ICMP headers */ 8214 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8215 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8216 /* 8217 * If we don't have the correct outer IP header length or if the ULP 8218 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8219 * send it upstream. 8220 */ 8221 if (iph_hdr_length < sizeof (ipha_t) || 8222 ipha->ipha_protocol != IPPROTO_ICMP || 8223 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8224 goto noticmpv4; 8225 } 8226 ipha = (ipha_t *)&icmph[1]; 8227 8228 /* Skip past the inner IP and find the ULP header */ 8229 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8230 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8231 /* 8232 * If we don't have the correct inner IP header length or if the ULP 8233 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8234 * bytes of TCP header, drop it. 8235 */ 8236 if (iph_hdr_length < sizeof (ipha_t) || 8237 ipha->ipha_protocol != IPPROTO_TCP || 8238 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8239 goto noticmpv4; 8240 } 8241 8242 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8243 if (ipsec_mctl) { 8244 secure = ipsec_in_is_secure(first_mp); 8245 } else { 8246 secure = B_FALSE; 8247 } 8248 if (secure) { 8249 /* 8250 * If we are willing to accept this in clear 8251 * we don't have to verify policy. 8252 */ 8253 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8254 if (!tcp_check_policy(tcp, first_mp, 8255 ipha, NULL, secure, ipsec_mctl)) { 8256 /* 8257 * tcp_check_policy called 8258 * ip_drop_packet() on failure. 8259 */ 8260 return; 8261 } 8262 } 8263 } 8264 } else if (ipsec_mctl) { 8265 /* 8266 * This is a hard_bound connection. IP has already 8267 * verified policy. We don't have to do it again. 8268 */ 8269 freeb(first_mp); 8270 first_mp = mp; 8271 ipsec_mctl = B_FALSE; 8272 } 8273 8274 seg_seq = ABE32_TO_U32(tcph->th_seq); 8275 /* 8276 * TCP SHOULD check that the TCP sequence number contained in 8277 * payload of the ICMP error message is within the range 8278 * SND.UNA <= SEG.SEQ < SND.NXT. 8279 */ 8280 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8281 /* 8282 * The ICMP message is bogus, just drop it. But if this is 8283 * an ICMP too big message, IP has already changed 8284 * the ire_max_frag to the bogus value. We need to change 8285 * it back. 8286 */ 8287 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8288 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8289 conn_t *connp = tcp->tcp_connp; 8290 ire_t *ire; 8291 int flag; 8292 8293 if (tcp->tcp_ipversion == IPV4_VERSION) { 8294 flag = tcp->tcp_ipha-> 8295 ipha_fragment_offset_and_flags; 8296 } else { 8297 flag = 0; 8298 } 8299 mutex_enter(&connp->conn_lock); 8300 if ((ire = connp->conn_ire_cache) != NULL) { 8301 mutex_enter(&ire->ire_lock); 8302 mutex_exit(&connp->conn_lock); 8303 ire->ire_max_frag = tcp->tcp_if_mtu; 8304 ire->ire_frag_flag |= flag; 8305 mutex_exit(&ire->ire_lock); 8306 } else { 8307 mutex_exit(&connp->conn_lock); 8308 } 8309 } 8310 goto noticmpv4; 8311 } 8312 8313 switch (icmph->icmph_type) { 8314 case ICMP_DEST_UNREACHABLE: 8315 switch (icmph->icmph_code) { 8316 case ICMP_FRAGMENTATION_NEEDED: 8317 /* 8318 * Reduce the MSS based on the new MTU. This will 8319 * eliminate any fragmentation locally. 8320 * N.B. There may well be some funny side-effects on 8321 * the local send policy and the remote receive policy. 8322 * Pending further research, we provide 8323 * tcp_ignore_path_mtu just in case this proves 8324 * disastrous somewhere. 8325 * 8326 * After updating the MSS, retransmit part of the 8327 * dropped segment using the new mss by calling 8328 * tcp_wput_data(). Need to adjust all those 8329 * params to make sure tcp_wput_data() work properly. 8330 */ 8331 if (tcps->tcps_ignore_path_mtu || 8332 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8333 break; 8334 8335 /* 8336 * Decrease the MSS by time stamp options 8337 * IP options and IPSEC options. tcp_hdr_len 8338 * includes time stamp option and IP option 8339 * length. Note that new_mss may be negative 8340 * if tcp_ipsec_overhead is large and the 8341 * icmph_du_mtu is the minimum value, which is 68. 8342 */ 8343 new_mss = ntohs(icmph->icmph_du_mtu) - 8344 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8345 8346 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8347 new_mss); 8348 8349 /* 8350 * Only update the MSS if the new one is 8351 * smaller than the previous one. This is 8352 * to avoid problems when getting multiple 8353 * ICMP errors for the same MTU. 8354 */ 8355 if (new_mss >= tcp->tcp_mss) 8356 break; 8357 8358 /* 8359 * Note that we are using the template header's DF 8360 * bit in the fast path sending. So we need to compare 8361 * the new mss with both tcps_mss_min and ip_pmtu_min. 8362 * And stop doing IPv4 PMTUd if new_mss is less than 8363 * MAX(tcps_mss_min, ip_pmtu_min). 8364 */ 8365 if (new_mss < tcps->tcps_mss_min || 8366 new_mss < ipst->ips_ip_pmtu_min) { 8367 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8368 0; 8369 } 8370 8371 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8372 ASSERT(ratio >= 1); 8373 tcp_mss_set(tcp, new_mss, B_TRUE); 8374 8375 /* 8376 * Make sure we have something to 8377 * send. 8378 */ 8379 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8380 (tcp->tcp_xmit_head != NULL)) { 8381 /* 8382 * Shrink tcp_cwnd in 8383 * proportion to the old MSS/new MSS. 8384 */ 8385 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8386 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8387 (tcp->tcp_unsent == 0)) { 8388 tcp->tcp_rexmit_max = tcp->tcp_fss; 8389 } else { 8390 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8391 } 8392 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8393 tcp->tcp_rexmit = B_TRUE; 8394 tcp->tcp_dupack_cnt = 0; 8395 tcp->tcp_snd_burst = TCP_CWND_SS; 8396 tcp_ss_rexmit(tcp); 8397 } 8398 break; 8399 case ICMP_PORT_UNREACHABLE: 8400 case ICMP_PROTOCOL_UNREACHABLE: 8401 switch (tcp->tcp_state) { 8402 case TCPS_SYN_SENT: 8403 case TCPS_SYN_RCVD: 8404 /* 8405 * ICMP can snipe away incipient 8406 * TCP connections as long as 8407 * seq number is same as initial 8408 * send seq number. 8409 */ 8410 if (seg_seq == tcp->tcp_iss) { 8411 (void) tcp_clean_death(tcp, 8412 ECONNREFUSED, 6); 8413 } 8414 break; 8415 } 8416 break; 8417 case ICMP_HOST_UNREACHABLE: 8418 case ICMP_NET_UNREACHABLE: 8419 /* Record the error in case we finally time out. */ 8420 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8421 tcp->tcp_client_errno = EHOSTUNREACH; 8422 else 8423 tcp->tcp_client_errno = ENETUNREACH; 8424 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8425 if (tcp->tcp_listener != NULL && 8426 tcp->tcp_listener->tcp_syn_defense) { 8427 /* 8428 * Ditch the half-open connection if we 8429 * suspect a SYN attack is under way. 8430 */ 8431 tcp_ip_ire_mark_advice(tcp); 8432 (void) tcp_clean_death(tcp, 8433 tcp->tcp_client_errno, 7); 8434 } 8435 } 8436 break; 8437 default: 8438 break; 8439 } 8440 break; 8441 case ICMP_SOURCE_QUENCH: { 8442 /* 8443 * use a global boolean to control 8444 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8445 * The default is false. 8446 */ 8447 if (tcp_icmp_source_quench) { 8448 /* 8449 * Reduce the sending rate as if we got a 8450 * retransmit timeout 8451 */ 8452 uint32_t npkt; 8453 8454 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8455 tcp->tcp_mss; 8456 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8457 tcp->tcp_cwnd = tcp->tcp_mss; 8458 tcp->tcp_cwnd_cnt = 0; 8459 } 8460 break; 8461 } 8462 } 8463 freemsg(first_mp); 8464 } 8465 8466 /* 8467 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8468 * error messages passed up by IP. 8469 * Assumes that IP has pulled up all the extension headers as well 8470 * as the ICMPv6 header. 8471 */ 8472 static void 8473 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8474 { 8475 icmp6_t *icmp6; 8476 ip6_t *ip6h; 8477 uint16_t iph_hdr_length; 8478 tcpha_t *tcpha; 8479 uint8_t *nexthdrp; 8480 uint32_t new_mss; 8481 uint32_t ratio; 8482 boolean_t secure; 8483 mblk_t *first_mp = mp; 8484 size_t mp_size; 8485 uint32_t seg_seq; 8486 tcp_stack_t *tcps = tcp->tcp_tcps; 8487 8488 /* 8489 * The caller has determined if this is an IPSEC_IN packet and 8490 * set ipsec_mctl appropriately (see tcp_icmp_error). 8491 */ 8492 if (ipsec_mctl) 8493 mp = mp->b_cont; 8494 8495 mp_size = MBLKL(mp); 8496 8497 /* 8498 * Verify that we have a complete IP header. If not, send it upstream. 8499 */ 8500 if (mp_size < sizeof (ip6_t)) { 8501 noticmpv6: 8502 freemsg(first_mp); 8503 return; 8504 } 8505 8506 /* 8507 * Verify this is an ICMPV6 packet, else send it upstream. 8508 */ 8509 ip6h = (ip6_t *)mp->b_rptr; 8510 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8511 iph_hdr_length = IPV6_HDR_LEN; 8512 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8513 &nexthdrp) || 8514 *nexthdrp != IPPROTO_ICMPV6) { 8515 goto noticmpv6; 8516 } 8517 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8518 ip6h = (ip6_t *)&icmp6[1]; 8519 /* 8520 * Verify if we have a complete ICMP and inner IP header. 8521 */ 8522 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8523 goto noticmpv6; 8524 8525 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8526 goto noticmpv6; 8527 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8528 /* 8529 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8530 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8531 * packet. 8532 */ 8533 if ((*nexthdrp != IPPROTO_TCP) || 8534 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8535 goto noticmpv6; 8536 } 8537 8538 /* 8539 * ICMP errors come on the right queue or come on 8540 * listener/global queue for detached connections and 8541 * get switched to the right queue. If it comes on the 8542 * right queue, policy check has already been done by IP 8543 * and thus free the first_mp without verifying the policy. 8544 * If it has come for a non-hard bound connection, we need 8545 * to verify policy as IP may not have done it. 8546 */ 8547 if (!tcp->tcp_hard_bound) { 8548 if (ipsec_mctl) { 8549 secure = ipsec_in_is_secure(first_mp); 8550 } else { 8551 secure = B_FALSE; 8552 } 8553 if (secure) { 8554 /* 8555 * If we are willing to accept this in clear 8556 * we don't have to verify policy. 8557 */ 8558 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8559 if (!tcp_check_policy(tcp, first_mp, 8560 NULL, ip6h, secure, ipsec_mctl)) { 8561 /* 8562 * tcp_check_policy called 8563 * ip_drop_packet() on failure. 8564 */ 8565 return; 8566 } 8567 } 8568 } 8569 } else if (ipsec_mctl) { 8570 /* 8571 * This is a hard_bound connection. IP has already 8572 * verified policy. We don't have to do it again. 8573 */ 8574 freeb(first_mp); 8575 first_mp = mp; 8576 ipsec_mctl = B_FALSE; 8577 } 8578 8579 seg_seq = ntohl(tcpha->tha_seq); 8580 /* 8581 * TCP SHOULD check that the TCP sequence number contained in 8582 * payload of the ICMP error message is within the range 8583 * SND.UNA <= SEG.SEQ < SND.NXT. 8584 */ 8585 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8586 /* 8587 * If the ICMP message is bogus, should we kill the 8588 * connection, or should we just drop the bogus ICMP 8589 * message? It would probably make more sense to just 8590 * drop the message so that if this one managed to get 8591 * in, the real connection should not suffer. 8592 */ 8593 goto noticmpv6; 8594 } 8595 8596 switch (icmp6->icmp6_type) { 8597 case ICMP6_PACKET_TOO_BIG: 8598 /* 8599 * Reduce the MSS based on the new MTU. This will 8600 * eliminate any fragmentation locally. 8601 * N.B. There may well be some funny side-effects on 8602 * the local send policy and the remote receive policy. 8603 * Pending further research, we provide 8604 * tcp_ignore_path_mtu just in case this proves 8605 * disastrous somewhere. 8606 * 8607 * After updating the MSS, retransmit part of the 8608 * dropped segment using the new mss by calling 8609 * tcp_wput_data(). Need to adjust all those 8610 * params to make sure tcp_wput_data() work properly. 8611 */ 8612 if (tcps->tcps_ignore_path_mtu) 8613 break; 8614 8615 /* 8616 * Decrease the MSS by time stamp options 8617 * IP options and IPSEC options. tcp_hdr_len 8618 * includes time stamp option and IP option 8619 * length. 8620 */ 8621 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8622 tcp->tcp_ipsec_overhead; 8623 8624 /* 8625 * Only update the MSS if the new one is 8626 * smaller than the previous one. This is 8627 * to avoid problems when getting multiple 8628 * ICMP errors for the same MTU. 8629 */ 8630 if (new_mss >= tcp->tcp_mss) 8631 break; 8632 8633 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8634 ASSERT(ratio >= 1); 8635 tcp_mss_set(tcp, new_mss, B_TRUE); 8636 8637 /* 8638 * Make sure we have something to 8639 * send. 8640 */ 8641 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8642 (tcp->tcp_xmit_head != NULL)) { 8643 /* 8644 * Shrink tcp_cwnd in 8645 * proportion to the old MSS/new MSS. 8646 */ 8647 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8648 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8649 (tcp->tcp_unsent == 0)) { 8650 tcp->tcp_rexmit_max = tcp->tcp_fss; 8651 } else { 8652 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8653 } 8654 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8655 tcp->tcp_rexmit = B_TRUE; 8656 tcp->tcp_dupack_cnt = 0; 8657 tcp->tcp_snd_burst = TCP_CWND_SS; 8658 tcp_ss_rexmit(tcp); 8659 } 8660 break; 8661 8662 case ICMP6_DST_UNREACH: 8663 switch (icmp6->icmp6_code) { 8664 case ICMP6_DST_UNREACH_NOPORT: 8665 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8666 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8667 (seg_seq == tcp->tcp_iss)) { 8668 (void) tcp_clean_death(tcp, 8669 ECONNREFUSED, 8); 8670 } 8671 break; 8672 8673 case ICMP6_DST_UNREACH_ADMIN: 8674 case ICMP6_DST_UNREACH_NOROUTE: 8675 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8676 case ICMP6_DST_UNREACH_ADDR: 8677 /* Record the error in case we finally time out. */ 8678 tcp->tcp_client_errno = EHOSTUNREACH; 8679 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8680 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8681 (seg_seq == tcp->tcp_iss)) { 8682 if (tcp->tcp_listener != NULL && 8683 tcp->tcp_listener->tcp_syn_defense) { 8684 /* 8685 * Ditch the half-open connection if we 8686 * suspect a SYN attack is under way. 8687 */ 8688 tcp_ip_ire_mark_advice(tcp); 8689 (void) tcp_clean_death(tcp, 8690 tcp->tcp_client_errno, 9); 8691 } 8692 } 8693 8694 8695 break; 8696 default: 8697 break; 8698 } 8699 break; 8700 8701 case ICMP6_PARAM_PROB: 8702 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8703 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8704 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8705 (uchar_t *)nexthdrp) { 8706 if (tcp->tcp_state == TCPS_SYN_SENT || 8707 tcp->tcp_state == TCPS_SYN_RCVD) { 8708 (void) tcp_clean_death(tcp, 8709 ECONNREFUSED, 10); 8710 } 8711 break; 8712 } 8713 break; 8714 8715 case ICMP6_TIME_EXCEEDED: 8716 default: 8717 break; 8718 } 8719 freemsg(first_mp); 8720 } 8721 8722 /* 8723 * Notify IP that we are having trouble with this connection. IP should 8724 * blow the IRE away and start over. 8725 */ 8726 static void 8727 tcp_ip_notify(tcp_t *tcp) 8728 { 8729 struct iocblk *iocp; 8730 ipid_t *ipid; 8731 mblk_t *mp; 8732 8733 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8734 if (tcp->tcp_ipversion == IPV6_VERSION) 8735 return; 8736 8737 mp = mkiocb(IP_IOCTL); 8738 if (mp == NULL) 8739 return; 8740 8741 iocp = (struct iocblk *)mp->b_rptr; 8742 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8743 8744 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8745 if (!mp->b_cont) { 8746 freeb(mp); 8747 return; 8748 } 8749 8750 ipid = (ipid_t *)mp->b_cont->b_rptr; 8751 mp->b_cont->b_wptr += iocp->ioc_count; 8752 bzero(ipid, sizeof (*ipid)); 8753 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8754 ipid->ipid_ire_type = IRE_CACHE; 8755 ipid->ipid_addr_offset = sizeof (ipid_t); 8756 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8757 /* 8758 * Note: in the case of source routing we want to blow away the 8759 * route to the first source route hop. 8760 */ 8761 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8762 sizeof (tcp->tcp_ipha->ipha_dst)); 8763 8764 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8765 } 8766 8767 /* Unlink and return any mblk that looks like it contains an ire */ 8768 static mblk_t * 8769 tcp_ire_mp(mblk_t **mpp) 8770 { 8771 mblk_t *mp = *mpp; 8772 mblk_t *prev_mp = NULL; 8773 8774 for (;;) { 8775 switch (DB_TYPE(mp)) { 8776 case IRE_DB_TYPE: 8777 case IRE_DB_REQ_TYPE: 8778 if (mp == *mpp) { 8779 *mpp = mp->b_cont; 8780 } else { 8781 prev_mp->b_cont = mp->b_cont; 8782 } 8783 mp->b_cont = NULL; 8784 return (mp); 8785 default: 8786 break; 8787 } 8788 prev_mp = mp; 8789 mp = mp->b_cont; 8790 if (mp == NULL) 8791 break; 8792 } 8793 return (mp); 8794 } 8795 8796 /* 8797 * Timer callback routine for keepalive probe. We do a fake resend of 8798 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8799 * check to see if we have heard anything from the other end for the last 8800 * RTO period. If we have, set the timer to expire for another 8801 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8802 * RTO << 1 and check again when it expires. Keep exponentially increasing 8803 * the timeout if we have not heard from the other side. If for more than 8804 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8805 * kill the connection unless the keepalive abort threshold is 0. In 8806 * that case, we will probe "forever." 8807 */ 8808 static void 8809 tcp_keepalive_killer(void *arg) 8810 { 8811 mblk_t *mp; 8812 conn_t *connp = (conn_t *)arg; 8813 tcp_t *tcp = connp->conn_tcp; 8814 int32_t firetime; 8815 int32_t idletime; 8816 int32_t ka_intrvl; 8817 tcp_stack_t *tcps = tcp->tcp_tcps; 8818 8819 tcp->tcp_ka_tid = 0; 8820 8821 if (tcp->tcp_fused) 8822 return; 8823 8824 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8825 ka_intrvl = tcp->tcp_ka_interval; 8826 8827 /* 8828 * Keepalive probe should only be sent if the application has not 8829 * done a close on the connection. 8830 */ 8831 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8832 return; 8833 } 8834 /* Timer fired too early, restart it. */ 8835 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8836 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8837 MSEC_TO_TICK(ka_intrvl)); 8838 return; 8839 } 8840 8841 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8842 /* 8843 * If we have not heard from the other side for a long 8844 * time, kill the connection unless the keepalive abort 8845 * threshold is 0. In that case, we will probe "forever." 8846 */ 8847 if (tcp->tcp_ka_abort_thres != 0 && 8848 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8849 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8850 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8851 tcp->tcp_client_errno : ETIMEDOUT, 11); 8852 return; 8853 } 8854 8855 if (tcp->tcp_snxt == tcp->tcp_suna && 8856 idletime >= ka_intrvl) { 8857 /* Fake resend of last ACKed byte. */ 8858 mblk_t *mp1 = allocb(1, BPRI_LO); 8859 8860 if (mp1 != NULL) { 8861 *mp1->b_wptr++ = '\0'; 8862 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8863 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8864 freeb(mp1); 8865 /* 8866 * if allocation failed, fall through to start the 8867 * timer back. 8868 */ 8869 if (mp != NULL) { 8870 tcp_send_data(tcp, tcp->tcp_wq, mp); 8871 BUMP_MIB(&tcps->tcps_mib, 8872 tcpTimKeepaliveProbe); 8873 if (tcp->tcp_ka_last_intrvl != 0) { 8874 int max; 8875 /* 8876 * We should probe again at least 8877 * in ka_intrvl, but not more than 8878 * tcp_rexmit_interval_max. 8879 */ 8880 max = tcps->tcps_rexmit_interval_max; 8881 firetime = MIN(ka_intrvl - 1, 8882 tcp->tcp_ka_last_intrvl << 1); 8883 if (firetime > max) 8884 firetime = max; 8885 } else { 8886 firetime = tcp->tcp_rto; 8887 } 8888 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8889 tcp_keepalive_killer, 8890 MSEC_TO_TICK(firetime)); 8891 tcp->tcp_ka_last_intrvl = firetime; 8892 return; 8893 } 8894 } 8895 } else { 8896 tcp->tcp_ka_last_intrvl = 0; 8897 } 8898 8899 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8900 if ((firetime = ka_intrvl - idletime) < 0) { 8901 firetime = ka_intrvl; 8902 } 8903 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8904 MSEC_TO_TICK(firetime)); 8905 } 8906 8907 int 8908 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8909 { 8910 queue_t *q = tcp->tcp_rq; 8911 int32_t mss = tcp->tcp_mss; 8912 int maxpsz; 8913 conn_t *connp = tcp->tcp_connp; 8914 8915 if (TCP_IS_DETACHED(tcp)) 8916 return (mss); 8917 if (tcp->tcp_fused) { 8918 maxpsz = tcp_fuse_maxpsz_set(tcp); 8919 mss = INFPSZ; 8920 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8921 /* 8922 * Set the sd_qn_maxpsz according to the socket send buffer 8923 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8924 * instruct the stream head to copyin user data into contiguous 8925 * kernel-allocated buffers without breaking it up into smaller 8926 * chunks. We round up the buffer size to the nearest SMSS. 8927 */ 8928 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8929 if (tcp->tcp_kssl_ctx == NULL) 8930 mss = INFPSZ; 8931 else 8932 mss = SSL3_MAX_RECORD_LEN; 8933 } else { 8934 /* 8935 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8936 * (and a multiple of the mss). This instructs the stream 8937 * head to break down larger than SMSS writes into SMSS- 8938 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8939 */ 8940 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8941 maxpsz = tcp->tcp_maxpsz * mss; 8942 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8943 maxpsz = tcp->tcp_xmit_hiwater/2; 8944 /* Round up to nearest mss */ 8945 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8946 } 8947 } 8948 8949 (void) proto_set_maxpsz(q, connp, maxpsz); 8950 if (!(IPCL_IS_NONSTR(connp))) { 8951 /* XXX do it in set_maxpsz()? */ 8952 tcp->tcp_wq->q_maxpsz = maxpsz; 8953 } 8954 8955 if (set_maxblk) 8956 (void) proto_set_tx_maxblk(q, connp, mss); 8957 return (mss); 8958 } 8959 8960 /* 8961 * Extract option values from a tcp header. We put any found values into the 8962 * tcpopt struct and return a bitmask saying which options were found. 8963 */ 8964 static int 8965 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8966 { 8967 uchar_t *endp; 8968 int len; 8969 uint32_t mss; 8970 uchar_t *up = (uchar_t *)tcph; 8971 int found = 0; 8972 int32_t sack_len; 8973 tcp_seq sack_begin, sack_end; 8974 tcp_t *tcp; 8975 8976 endp = up + TCP_HDR_LENGTH(tcph); 8977 up += TCP_MIN_HEADER_LENGTH; 8978 while (up < endp) { 8979 len = endp - up; 8980 switch (*up) { 8981 case TCPOPT_EOL: 8982 break; 8983 8984 case TCPOPT_NOP: 8985 up++; 8986 continue; 8987 8988 case TCPOPT_MAXSEG: 8989 if (len < TCPOPT_MAXSEG_LEN || 8990 up[1] != TCPOPT_MAXSEG_LEN) 8991 break; 8992 8993 mss = BE16_TO_U16(up+2); 8994 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8995 tcpopt->tcp_opt_mss = mss; 8996 found |= TCP_OPT_MSS_PRESENT; 8997 8998 up += TCPOPT_MAXSEG_LEN; 8999 continue; 9000 9001 case TCPOPT_WSCALE: 9002 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9003 break; 9004 9005 if (up[2] > TCP_MAX_WINSHIFT) 9006 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9007 else 9008 tcpopt->tcp_opt_wscale = up[2]; 9009 found |= TCP_OPT_WSCALE_PRESENT; 9010 9011 up += TCPOPT_WS_LEN; 9012 continue; 9013 9014 case TCPOPT_SACK_PERMITTED: 9015 if (len < TCPOPT_SACK_OK_LEN || 9016 up[1] != TCPOPT_SACK_OK_LEN) 9017 break; 9018 found |= TCP_OPT_SACK_OK_PRESENT; 9019 up += TCPOPT_SACK_OK_LEN; 9020 continue; 9021 9022 case TCPOPT_SACK: 9023 if (len <= 2 || up[1] <= 2 || len < up[1]) 9024 break; 9025 9026 /* If TCP is not interested in SACK blks... */ 9027 if ((tcp = tcpopt->tcp) == NULL) { 9028 up += up[1]; 9029 continue; 9030 } 9031 sack_len = up[1] - TCPOPT_HEADER_LEN; 9032 up += TCPOPT_HEADER_LEN; 9033 9034 /* 9035 * If the list is empty, allocate one and assume 9036 * nothing is sack'ed. 9037 */ 9038 ASSERT(tcp->tcp_sack_info != NULL); 9039 if (tcp->tcp_notsack_list == NULL) { 9040 tcp_notsack_update(&(tcp->tcp_notsack_list), 9041 tcp->tcp_suna, tcp->tcp_snxt, 9042 &(tcp->tcp_num_notsack_blk), 9043 &(tcp->tcp_cnt_notsack_list)); 9044 9045 /* 9046 * Make sure tcp_notsack_list is not NULL. 9047 * This happens when kmem_alloc(KM_NOSLEEP) 9048 * returns NULL. 9049 */ 9050 if (tcp->tcp_notsack_list == NULL) { 9051 up += sack_len; 9052 continue; 9053 } 9054 tcp->tcp_fack = tcp->tcp_suna; 9055 } 9056 9057 while (sack_len > 0) { 9058 if (up + 8 > endp) { 9059 up = endp; 9060 break; 9061 } 9062 sack_begin = BE32_TO_U32(up); 9063 up += 4; 9064 sack_end = BE32_TO_U32(up); 9065 up += 4; 9066 sack_len -= 8; 9067 /* 9068 * Bounds checking. Make sure the SACK 9069 * info is within tcp_suna and tcp_snxt. 9070 * If this SACK blk is out of bound, ignore 9071 * it but continue to parse the following 9072 * blks. 9073 */ 9074 if (SEQ_LEQ(sack_end, sack_begin) || 9075 SEQ_LT(sack_begin, tcp->tcp_suna) || 9076 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9077 continue; 9078 } 9079 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9080 sack_begin, sack_end, 9081 &(tcp->tcp_num_notsack_blk), 9082 &(tcp->tcp_cnt_notsack_list)); 9083 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9084 tcp->tcp_fack = sack_end; 9085 } 9086 } 9087 found |= TCP_OPT_SACK_PRESENT; 9088 continue; 9089 9090 case TCPOPT_TSTAMP: 9091 if (len < TCPOPT_TSTAMP_LEN || 9092 up[1] != TCPOPT_TSTAMP_LEN) 9093 break; 9094 9095 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9096 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9097 9098 found |= TCP_OPT_TSTAMP_PRESENT; 9099 9100 up += TCPOPT_TSTAMP_LEN; 9101 continue; 9102 9103 default: 9104 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9105 break; 9106 up += up[1]; 9107 continue; 9108 } 9109 break; 9110 } 9111 return (found); 9112 } 9113 9114 /* 9115 * Set the mss associated with a particular tcp based on its current value, 9116 * and a new one passed in. Observe minimums and maximums, and reset 9117 * other state variables that we want to view as multiples of mss. 9118 * 9119 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9120 * highwater marks etc. need to be initialized or adjusted. 9121 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9122 * packet arrives. 9123 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9124 * ICMP6_PACKET_TOO_BIG arrives. 9125 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9126 * to increase the MSS to use the extra bytes available. 9127 * 9128 * Callers except tcp_paws_check() ensure that they only reduce mss. 9129 */ 9130 static void 9131 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9132 { 9133 uint32_t mss_max; 9134 tcp_stack_t *tcps = tcp->tcp_tcps; 9135 9136 if (tcp->tcp_ipversion == IPV4_VERSION) 9137 mss_max = tcps->tcps_mss_max_ipv4; 9138 else 9139 mss_max = tcps->tcps_mss_max_ipv6; 9140 9141 if (mss < tcps->tcps_mss_min) 9142 mss = tcps->tcps_mss_min; 9143 if (mss > mss_max) 9144 mss = mss_max; 9145 /* 9146 * Unless naglim has been set by our client to 9147 * a non-mss value, force naglim to track mss. 9148 * This can help to aggregate small writes. 9149 */ 9150 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9151 tcp->tcp_naglim = mss; 9152 /* 9153 * TCP should be able to buffer at least 4 MSS data for obvious 9154 * performance reason. 9155 */ 9156 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9157 tcp->tcp_xmit_hiwater = mss << 2; 9158 9159 if (do_ss) { 9160 /* 9161 * Either the tcp_cwnd is as yet uninitialized, or mss is 9162 * changing due to a reduction in MTU, presumably as a 9163 * result of a new path component, reset cwnd to its 9164 * "initial" value, as a multiple of the new mss. 9165 */ 9166 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9167 } else { 9168 /* 9169 * Called by tcp_paws_check(), the mss increased 9170 * marginally to allow use of space previously taken 9171 * by the timestamp option. It would be inappropriate 9172 * to apply slow start or tcp_init_cwnd values to 9173 * tcp_cwnd, simply adjust to a multiple of the new mss. 9174 */ 9175 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9176 tcp->tcp_cwnd_cnt = 0; 9177 } 9178 tcp->tcp_mss = mss; 9179 (void) tcp_maxpsz_set(tcp, B_TRUE); 9180 } 9181 9182 /* For /dev/tcp aka AF_INET open */ 9183 static int 9184 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9185 { 9186 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9187 } 9188 9189 /* For /dev/tcp6 aka AF_INET6 open */ 9190 static int 9191 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9192 { 9193 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9194 } 9195 9196 static conn_t * 9197 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9198 boolean_t issocket, int *errorp) 9199 { 9200 tcp_t *tcp = NULL; 9201 conn_t *connp; 9202 int err; 9203 zoneid_t zoneid; 9204 tcp_stack_t *tcps; 9205 squeue_t *sqp; 9206 9207 ASSERT(errorp != NULL); 9208 /* 9209 * Find the proper zoneid and netstack. 9210 */ 9211 /* 9212 * Special case for install: miniroot needs to be able to 9213 * access files via NFS as though it were always in the 9214 * global zone. 9215 */ 9216 if (credp == kcred && nfs_global_client_only != 0) { 9217 zoneid = GLOBAL_ZONEID; 9218 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9219 netstack_tcp; 9220 ASSERT(tcps != NULL); 9221 } else { 9222 netstack_t *ns; 9223 9224 ns = netstack_find_by_cred(credp); 9225 ASSERT(ns != NULL); 9226 tcps = ns->netstack_tcp; 9227 ASSERT(tcps != NULL); 9228 9229 /* 9230 * For exclusive stacks we set the zoneid to zero 9231 * to make TCP operate as if in the global zone. 9232 */ 9233 if (tcps->tcps_netstack->netstack_stackid != 9234 GLOBAL_NETSTACKID) 9235 zoneid = GLOBAL_ZONEID; 9236 else 9237 zoneid = crgetzoneid(credp); 9238 } 9239 /* 9240 * For stackid zero this is done from strplumb.c, but 9241 * non-zero stackids are handled here. 9242 */ 9243 if (tcps->tcps_g_q == NULL && 9244 tcps->tcps_netstack->netstack_stackid != 9245 GLOBAL_NETSTACKID) { 9246 tcp_g_q_setup(tcps); 9247 } 9248 9249 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9250 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9251 /* 9252 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9253 * so we drop it by one. 9254 */ 9255 netstack_rele(tcps->tcps_netstack); 9256 if (connp == NULL) { 9257 *errorp = ENOSR; 9258 return (NULL); 9259 } 9260 connp->conn_sqp = sqp; 9261 connp->conn_initial_sqp = connp->conn_sqp; 9262 tcp = connp->conn_tcp; 9263 9264 if (isv6) { 9265 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9266 connp->conn_send = ip_output_v6; 9267 connp->conn_af_isv6 = B_TRUE; 9268 connp->conn_pkt_isv6 = B_TRUE; 9269 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9270 tcp->tcp_ipversion = IPV6_VERSION; 9271 tcp->tcp_family = AF_INET6; 9272 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9273 } else { 9274 connp->conn_flags |= IPCL_TCP4; 9275 connp->conn_send = ip_output; 9276 connp->conn_af_isv6 = B_FALSE; 9277 connp->conn_pkt_isv6 = B_FALSE; 9278 tcp->tcp_ipversion = IPV4_VERSION; 9279 tcp->tcp_family = AF_INET; 9280 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9281 } 9282 9283 /* 9284 * TCP keeps a copy of cred for cache locality reasons but 9285 * we put a reference only once. If connp->conn_cred 9286 * becomes invalid, tcp_cred should also be set to NULL. 9287 */ 9288 tcp->tcp_cred = connp->conn_cred = credp; 9289 crhold(connp->conn_cred); 9290 tcp->tcp_cpid = curproc->p_pid; 9291 tcp->tcp_open_time = lbolt64; 9292 connp->conn_zoneid = zoneid; 9293 connp->conn_mlp_type = mlptSingle; 9294 connp->conn_ulp_labeled = !is_system_labeled(); 9295 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9296 ASSERT(tcp->tcp_tcps == tcps); 9297 9298 /* 9299 * If the caller has the process-wide flag set, then default to MAC 9300 * exempt mode. This allows read-down to unlabeled hosts. 9301 */ 9302 if (getpflags(NET_MAC_AWARE, credp) != 0) 9303 connp->conn_mac_exempt = B_TRUE; 9304 9305 connp->conn_dev = NULL; 9306 if (issocket) { 9307 connp->conn_flags |= IPCL_SOCKET; 9308 tcp->tcp_issocket = 1; 9309 } 9310 9311 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9312 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9313 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9314 9315 /* Non-zero default values */ 9316 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9317 9318 if (q == NULL) { 9319 /* 9320 * Create a helper stream for non-STREAMS socket. 9321 */ 9322 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9323 if (err != 0) { 9324 ip1dbg(("tcp_create_common: create of IP helper stream " 9325 "failed\n")); 9326 CONN_DEC_REF(connp); 9327 *errorp = err; 9328 return (NULL); 9329 } 9330 q = connp->conn_rq; 9331 } else { 9332 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9333 } 9334 9335 SOCK_CONNID_INIT(tcp->tcp_connid); 9336 err = tcp_init(tcp, q); 9337 if (err != 0) { 9338 CONN_DEC_REF(connp); 9339 *errorp = err; 9340 return (NULL); 9341 } 9342 9343 return (connp); 9344 } 9345 9346 static int 9347 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9348 boolean_t isv6) 9349 { 9350 tcp_t *tcp = NULL; 9351 conn_t *connp = NULL; 9352 int err; 9353 vmem_t *minor_arena = NULL; 9354 dev_t conn_dev; 9355 boolean_t issocket; 9356 9357 if (q->q_ptr != NULL) 9358 return (0); 9359 9360 if (sflag == MODOPEN) 9361 return (EINVAL); 9362 9363 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9364 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9365 minor_arena = ip_minor_arena_la; 9366 } else { 9367 /* 9368 * Either minor numbers in the large arena were exhausted 9369 * or a non socket application is doing the open. 9370 * Try to allocate from the small arena. 9371 */ 9372 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9373 return (EBUSY); 9374 } 9375 minor_arena = ip_minor_arena_sa; 9376 } 9377 9378 ASSERT(minor_arena != NULL); 9379 9380 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9381 9382 if (flag & SO_FALLBACK) { 9383 /* 9384 * Non streams socket needs a stream to fallback to 9385 */ 9386 RD(q)->q_ptr = (void *)conn_dev; 9387 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9388 WR(q)->q_ptr = (void *)minor_arena; 9389 qprocson(q); 9390 return (0); 9391 } else if (flag & SO_ACCEPTOR) { 9392 q->q_qinfo = &tcp_acceptor_rinit; 9393 /* 9394 * the conn_dev and minor_arena will be subsequently used by 9395 * tcp_wput_accept() and tcpclose_accept() to figure out the 9396 * minor device number for this connection from the q_ptr. 9397 */ 9398 RD(q)->q_ptr = (void *)conn_dev; 9399 WR(q)->q_qinfo = &tcp_acceptor_winit; 9400 WR(q)->q_ptr = (void *)minor_arena; 9401 qprocson(q); 9402 return (0); 9403 } 9404 9405 issocket = flag & SO_SOCKSTR; 9406 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9407 9408 if (connp == NULL) { 9409 inet_minor_free(minor_arena, conn_dev); 9410 q->q_ptr = WR(q)->q_ptr = NULL; 9411 return (err); 9412 } 9413 9414 q->q_ptr = WR(q)->q_ptr = connp; 9415 9416 connp->conn_dev = conn_dev; 9417 connp->conn_minor_arena = minor_arena; 9418 9419 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9420 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9421 9422 if (issocket) { 9423 WR(q)->q_qinfo = &tcp_sock_winit; 9424 } else { 9425 tcp = connp->conn_tcp; 9426 #ifdef _ILP32 9427 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9428 #else 9429 tcp->tcp_acceptor_id = conn_dev; 9430 #endif /* _ILP32 */ 9431 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9432 } 9433 9434 /* 9435 * Put the ref for TCP. Ref for IP was already put 9436 * by ipcl_conn_create. Also Make the conn_t globally 9437 * visible to walkers 9438 */ 9439 mutex_enter(&connp->conn_lock); 9440 CONN_INC_REF_LOCKED(connp); 9441 ASSERT(connp->conn_ref == 2); 9442 connp->conn_state_flags &= ~CONN_INCIPIENT; 9443 mutex_exit(&connp->conn_lock); 9444 9445 qprocson(q); 9446 return (0); 9447 } 9448 9449 /* 9450 * Some TCP options can be "set" by requesting them in the option 9451 * buffer. This is needed for XTI feature test though we do not 9452 * allow it in general. We interpret that this mechanism is more 9453 * applicable to OSI protocols and need not be allowed in general. 9454 * This routine filters out options for which it is not allowed (most) 9455 * and lets through those (few) for which it is. [ The XTI interface 9456 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9457 * ever implemented will have to be allowed here ]. 9458 */ 9459 static boolean_t 9460 tcp_allow_connopt_set(int level, int name) 9461 { 9462 9463 switch (level) { 9464 case IPPROTO_TCP: 9465 switch (name) { 9466 case TCP_NODELAY: 9467 return (B_TRUE); 9468 default: 9469 return (B_FALSE); 9470 } 9471 /*NOTREACHED*/ 9472 default: 9473 return (B_FALSE); 9474 } 9475 /*NOTREACHED*/ 9476 } 9477 9478 /* 9479 * this routine gets default values of certain options whose default 9480 * values are maintained by protocol specific code 9481 */ 9482 /* ARGSUSED */ 9483 int 9484 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9485 { 9486 int32_t *i1 = (int32_t *)ptr; 9487 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9488 9489 switch (level) { 9490 case IPPROTO_TCP: 9491 switch (name) { 9492 case TCP_NOTIFY_THRESHOLD: 9493 *i1 = tcps->tcps_ip_notify_interval; 9494 break; 9495 case TCP_ABORT_THRESHOLD: 9496 *i1 = tcps->tcps_ip_abort_interval; 9497 break; 9498 case TCP_CONN_NOTIFY_THRESHOLD: 9499 *i1 = tcps->tcps_ip_notify_cinterval; 9500 break; 9501 case TCP_CONN_ABORT_THRESHOLD: 9502 *i1 = tcps->tcps_ip_abort_cinterval; 9503 break; 9504 default: 9505 return (-1); 9506 } 9507 break; 9508 case IPPROTO_IP: 9509 switch (name) { 9510 case IP_TTL: 9511 *i1 = tcps->tcps_ipv4_ttl; 9512 break; 9513 default: 9514 return (-1); 9515 } 9516 break; 9517 case IPPROTO_IPV6: 9518 switch (name) { 9519 case IPV6_UNICAST_HOPS: 9520 *i1 = tcps->tcps_ipv6_hoplimit; 9521 break; 9522 default: 9523 return (-1); 9524 } 9525 break; 9526 default: 9527 return (-1); 9528 } 9529 return (sizeof (int)); 9530 } 9531 9532 static int 9533 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9534 { 9535 int *i1 = (int *)ptr; 9536 tcp_t *tcp = connp->conn_tcp; 9537 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9538 9539 switch (level) { 9540 case SOL_SOCKET: 9541 switch (name) { 9542 case SO_LINGER: { 9543 struct linger *lgr = (struct linger *)ptr; 9544 9545 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9546 lgr->l_linger = tcp->tcp_lingertime; 9547 } 9548 return (sizeof (struct linger)); 9549 case SO_DEBUG: 9550 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9551 break; 9552 case SO_KEEPALIVE: 9553 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9554 break; 9555 case SO_DONTROUTE: 9556 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9557 break; 9558 case SO_USELOOPBACK: 9559 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9560 break; 9561 case SO_BROADCAST: 9562 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9563 break; 9564 case SO_REUSEADDR: 9565 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9566 break; 9567 case SO_OOBINLINE: 9568 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9569 break; 9570 case SO_DGRAM_ERRIND: 9571 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9572 break; 9573 case SO_TYPE: 9574 *i1 = SOCK_STREAM; 9575 break; 9576 case SO_SNDBUF: 9577 *i1 = tcp->tcp_xmit_hiwater; 9578 break; 9579 case SO_RCVBUF: 9580 *i1 = tcp->tcp_recv_hiwater; 9581 break; 9582 case SO_SND_COPYAVOID: 9583 *i1 = tcp->tcp_snd_zcopy_on ? 9584 SO_SND_COPYAVOID : 0; 9585 break; 9586 case SO_ALLZONES: 9587 *i1 = connp->conn_allzones ? 1 : 0; 9588 break; 9589 case SO_ANON_MLP: 9590 *i1 = connp->conn_anon_mlp; 9591 break; 9592 case SO_MAC_EXEMPT: 9593 *i1 = connp->conn_mac_exempt; 9594 break; 9595 case SO_EXCLBIND: 9596 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9597 break; 9598 case SO_PROTOTYPE: 9599 *i1 = IPPROTO_TCP; 9600 break; 9601 case SO_DOMAIN: 9602 *i1 = tcp->tcp_family; 9603 break; 9604 case SO_ACCEPTCONN: 9605 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9606 default: 9607 return (-1); 9608 } 9609 break; 9610 case IPPROTO_TCP: 9611 switch (name) { 9612 case TCP_NODELAY: 9613 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9614 break; 9615 case TCP_MAXSEG: 9616 *i1 = tcp->tcp_mss; 9617 break; 9618 case TCP_NOTIFY_THRESHOLD: 9619 *i1 = (int)tcp->tcp_first_timer_threshold; 9620 break; 9621 case TCP_ABORT_THRESHOLD: 9622 *i1 = tcp->tcp_second_timer_threshold; 9623 break; 9624 case TCP_CONN_NOTIFY_THRESHOLD: 9625 *i1 = tcp->tcp_first_ctimer_threshold; 9626 break; 9627 case TCP_CONN_ABORT_THRESHOLD: 9628 *i1 = tcp->tcp_second_ctimer_threshold; 9629 break; 9630 case TCP_RECVDSTADDR: 9631 *i1 = tcp->tcp_recvdstaddr; 9632 break; 9633 case TCP_ANONPRIVBIND: 9634 *i1 = tcp->tcp_anon_priv_bind; 9635 break; 9636 case TCP_EXCLBIND: 9637 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9638 break; 9639 case TCP_INIT_CWND: 9640 *i1 = tcp->tcp_init_cwnd; 9641 break; 9642 case TCP_KEEPALIVE_THRESHOLD: 9643 *i1 = tcp->tcp_ka_interval; 9644 break; 9645 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9646 *i1 = tcp->tcp_ka_abort_thres; 9647 break; 9648 case TCP_CORK: 9649 *i1 = tcp->tcp_cork; 9650 break; 9651 default: 9652 return (-1); 9653 } 9654 break; 9655 case IPPROTO_IP: 9656 if (tcp->tcp_family != AF_INET) 9657 return (-1); 9658 switch (name) { 9659 case IP_OPTIONS: 9660 case T_IP_OPTIONS: { 9661 /* 9662 * This is compatible with BSD in that in only return 9663 * the reverse source route with the final destination 9664 * as the last entry. The first 4 bytes of the option 9665 * will contain the final destination. 9666 */ 9667 int opt_len; 9668 9669 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9670 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9671 ASSERT(opt_len >= 0); 9672 /* Caller ensures enough space */ 9673 if (opt_len > 0) { 9674 /* 9675 * TODO: Do we have to handle getsockopt on an 9676 * initiator as well? 9677 */ 9678 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9679 } 9680 return (0); 9681 } 9682 case IP_TOS: 9683 case T_IP_TOS: 9684 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9685 break; 9686 case IP_TTL: 9687 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9688 break; 9689 case IP_NEXTHOP: 9690 /* Handled at IP level */ 9691 return (-EINVAL); 9692 default: 9693 return (-1); 9694 } 9695 break; 9696 case IPPROTO_IPV6: 9697 /* 9698 * IPPROTO_IPV6 options are only supported for sockets 9699 * that are using IPv6 on the wire. 9700 */ 9701 if (tcp->tcp_ipversion != IPV6_VERSION) { 9702 return (-1); 9703 } 9704 switch (name) { 9705 case IPV6_UNICAST_HOPS: 9706 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9707 break; /* goto sizeof (int) option return */ 9708 case IPV6_BOUND_IF: 9709 /* Zero if not set */ 9710 *i1 = tcp->tcp_bound_if; 9711 break; /* goto sizeof (int) option return */ 9712 case IPV6_RECVPKTINFO: 9713 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9714 *i1 = 1; 9715 else 9716 *i1 = 0; 9717 break; /* goto sizeof (int) option return */ 9718 case IPV6_RECVTCLASS: 9719 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9720 *i1 = 1; 9721 else 9722 *i1 = 0; 9723 break; /* goto sizeof (int) option return */ 9724 case IPV6_RECVHOPLIMIT: 9725 if (tcp->tcp_ipv6_recvancillary & 9726 TCP_IPV6_RECVHOPLIMIT) 9727 *i1 = 1; 9728 else 9729 *i1 = 0; 9730 break; /* goto sizeof (int) option return */ 9731 case IPV6_RECVHOPOPTS: 9732 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9733 *i1 = 1; 9734 else 9735 *i1 = 0; 9736 break; /* goto sizeof (int) option return */ 9737 case IPV6_RECVDSTOPTS: 9738 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9739 *i1 = 1; 9740 else 9741 *i1 = 0; 9742 break; /* goto sizeof (int) option return */ 9743 case _OLD_IPV6_RECVDSTOPTS: 9744 if (tcp->tcp_ipv6_recvancillary & 9745 TCP_OLD_IPV6_RECVDSTOPTS) 9746 *i1 = 1; 9747 else 9748 *i1 = 0; 9749 break; /* goto sizeof (int) option return */ 9750 case IPV6_RECVRTHDR: 9751 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9752 *i1 = 1; 9753 else 9754 *i1 = 0; 9755 break; /* goto sizeof (int) option return */ 9756 case IPV6_RECVRTHDRDSTOPTS: 9757 if (tcp->tcp_ipv6_recvancillary & 9758 TCP_IPV6_RECVRTDSTOPTS) 9759 *i1 = 1; 9760 else 9761 *i1 = 0; 9762 break; /* goto sizeof (int) option return */ 9763 case IPV6_PKTINFO: { 9764 /* XXX assumes that caller has room for max size! */ 9765 struct in6_pktinfo *pkti; 9766 9767 pkti = (struct in6_pktinfo *)ptr; 9768 if (ipp->ipp_fields & IPPF_IFINDEX) 9769 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9770 else 9771 pkti->ipi6_ifindex = 0; 9772 if (ipp->ipp_fields & IPPF_ADDR) 9773 pkti->ipi6_addr = ipp->ipp_addr; 9774 else 9775 pkti->ipi6_addr = ipv6_all_zeros; 9776 return (sizeof (struct in6_pktinfo)); 9777 } 9778 case IPV6_TCLASS: 9779 if (ipp->ipp_fields & IPPF_TCLASS) 9780 *i1 = ipp->ipp_tclass; 9781 else 9782 *i1 = IPV6_FLOW_TCLASS( 9783 IPV6_DEFAULT_VERS_AND_FLOW); 9784 break; /* goto sizeof (int) option return */ 9785 case IPV6_NEXTHOP: { 9786 sin6_t *sin6 = (sin6_t *)ptr; 9787 9788 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9789 return (0); 9790 *sin6 = sin6_null; 9791 sin6->sin6_family = AF_INET6; 9792 sin6->sin6_addr = ipp->ipp_nexthop; 9793 return (sizeof (sin6_t)); 9794 } 9795 case IPV6_HOPOPTS: 9796 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9797 return (0); 9798 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9799 return (0); 9800 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9801 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9802 if (tcp->tcp_label_len > 0) { 9803 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9804 ptr[1] = (ipp->ipp_hopoptslen - 9805 tcp->tcp_label_len + 7) / 8 - 1; 9806 } 9807 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9808 case IPV6_RTHDRDSTOPTS: 9809 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9810 return (0); 9811 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9812 return (ipp->ipp_rtdstoptslen); 9813 case IPV6_RTHDR: 9814 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9815 return (0); 9816 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9817 return (ipp->ipp_rthdrlen); 9818 case IPV6_DSTOPTS: 9819 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9820 return (0); 9821 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9822 return (ipp->ipp_dstoptslen); 9823 case IPV6_SRC_PREFERENCES: 9824 return (ip6_get_src_preferences(connp, 9825 (uint32_t *)ptr)); 9826 case IPV6_PATHMTU: { 9827 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9828 9829 if (tcp->tcp_state < TCPS_ESTABLISHED) 9830 return (-1); 9831 9832 return (ip_fill_mtuinfo(&connp->conn_remv6, 9833 connp->conn_fport, mtuinfo, 9834 connp->conn_netstack)); 9835 } 9836 default: 9837 return (-1); 9838 } 9839 break; 9840 default: 9841 return (-1); 9842 } 9843 return (sizeof (int)); 9844 } 9845 9846 /* 9847 * TCP routine to get the values of options. 9848 */ 9849 int 9850 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9851 { 9852 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9853 } 9854 9855 /* returns UNIX error, the optlen is a value-result arg */ 9856 int 9857 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9858 void *optvalp, socklen_t *optlen, cred_t *cr) 9859 { 9860 conn_t *connp = (conn_t *)proto_handle; 9861 squeue_t *sqp = connp->conn_sqp; 9862 int error; 9863 t_uscalar_t max_optbuf_len; 9864 void *optvalp_buf; 9865 int len; 9866 9867 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9868 tcp_opt_obj.odb_opt_des_arr, 9869 tcp_opt_obj.odb_opt_arr_cnt, 9870 tcp_opt_obj.odb_topmost_tpiprovider, 9871 B_FALSE, B_TRUE, cr); 9872 if (error != 0) { 9873 if (error < 0) { 9874 error = proto_tlitosyserr(-error); 9875 } 9876 return (error); 9877 } 9878 9879 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9880 9881 error = squeue_synch_enter(sqp, connp, 0); 9882 if (error == ENOMEM) { 9883 return (ENOMEM); 9884 } 9885 9886 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9887 squeue_synch_exit(sqp, connp); 9888 9889 if (len < 0) { 9890 /* 9891 * Pass on to IP 9892 */ 9893 kmem_free(optvalp_buf, max_optbuf_len); 9894 return (ip_get_options(connp, level, option_name, 9895 optvalp, optlen, cr)); 9896 } else { 9897 /* 9898 * update optlen and copy option value 9899 */ 9900 t_uscalar_t size = MIN(len, *optlen); 9901 bcopy(optvalp_buf, optvalp, size); 9902 bcopy(&size, optlen, sizeof (size)); 9903 9904 kmem_free(optvalp_buf, max_optbuf_len); 9905 return (0); 9906 } 9907 } 9908 9909 /* 9910 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9911 * Parameters are assumed to be verified by the caller. 9912 */ 9913 /* ARGSUSED */ 9914 int 9915 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9916 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9917 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9918 { 9919 tcp_t *tcp = connp->conn_tcp; 9920 int *i1 = (int *)invalp; 9921 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9922 boolean_t checkonly; 9923 int reterr; 9924 tcp_stack_t *tcps = tcp->tcp_tcps; 9925 9926 switch (optset_context) { 9927 case SETFN_OPTCOM_CHECKONLY: 9928 checkonly = B_TRUE; 9929 /* 9930 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9931 * inlen != 0 implies value supplied and 9932 * we have to "pretend" to set it. 9933 * inlen == 0 implies that there is no 9934 * value part in T_CHECK request and just validation 9935 * done elsewhere should be enough, we just return here. 9936 */ 9937 if (inlen == 0) { 9938 *outlenp = 0; 9939 return (0); 9940 } 9941 break; 9942 case SETFN_OPTCOM_NEGOTIATE: 9943 checkonly = B_FALSE; 9944 break; 9945 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9946 case SETFN_CONN_NEGOTIATE: 9947 checkonly = B_FALSE; 9948 /* 9949 * Negotiating local and "association-related" options 9950 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9951 * primitives is allowed by XTI, but we choose 9952 * to not implement this style negotiation for Internet 9953 * protocols (We interpret it is a must for OSI world but 9954 * optional for Internet protocols) for all options. 9955 * [ Will do only for the few options that enable test 9956 * suites that our XTI implementation of this feature 9957 * works for transports that do allow it ] 9958 */ 9959 if (!tcp_allow_connopt_set(level, name)) { 9960 *outlenp = 0; 9961 return (EINVAL); 9962 } 9963 break; 9964 default: 9965 /* 9966 * We should never get here 9967 */ 9968 *outlenp = 0; 9969 return (EINVAL); 9970 } 9971 9972 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9973 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9974 9975 /* 9976 * For TCP, we should have no ancillary data sent down 9977 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9978 * has to be zero. 9979 */ 9980 ASSERT(thisdg_attrs == NULL); 9981 9982 /* 9983 * For fixed length options, no sanity check 9984 * of passed in length is done. It is assumed *_optcom_req() 9985 * routines do the right thing. 9986 */ 9987 switch (level) { 9988 case SOL_SOCKET: 9989 switch (name) { 9990 case SO_LINGER: { 9991 struct linger *lgr = (struct linger *)invalp; 9992 9993 if (!checkonly) { 9994 if (lgr->l_onoff) { 9995 tcp->tcp_linger = 1; 9996 tcp->tcp_lingertime = lgr->l_linger; 9997 } else { 9998 tcp->tcp_linger = 0; 9999 tcp->tcp_lingertime = 0; 10000 } 10001 /* struct copy */ 10002 *(struct linger *)outvalp = *lgr; 10003 } else { 10004 if (!lgr->l_onoff) { 10005 ((struct linger *) 10006 outvalp)->l_onoff = 0; 10007 ((struct linger *) 10008 outvalp)->l_linger = 0; 10009 } else { 10010 /* struct copy */ 10011 *(struct linger *)outvalp = *lgr; 10012 } 10013 } 10014 *outlenp = sizeof (struct linger); 10015 return (0); 10016 } 10017 case SO_DEBUG: 10018 if (!checkonly) 10019 tcp->tcp_debug = onoff; 10020 break; 10021 case SO_KEEPALIVE: 10022 if (checkonly) { 10023 /* check only case */ 10024 break; 10025 } 10026 10027 if (!onoff) { 10028 if (tcp->tcp_ka_enabled) { 10029 if (tcp->tcp_ka_tid != 0) { 10030 (void) TCP_TIMER_CANCEL(tcp, 10031 tcp->tcp_ka_tid); 10032 tcp->tcp_ka_tid = 0; 10033 } 10034 tcp->tcp_ka_enabled = 0; 10035 } 10036 break; 10037 } 10038 if (!tcp->tcp_ka_enabled) { 10039 /* Crank up the keepalive timer */ 10040 tcp->tcp_ka_last_intrvl = 0; 10041 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10042 tcp_keepalive_killer, 10043 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10044 tcp->tcp_ka_enabled = 1; 10045 } 10046 break; 10047 case SO_DONTROUTE: 10048 /* 10049 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10050 * only of interest to IP. We track them here only so 10051 * that we can report their current value. 10052 */ 10053 if (!checkonly) { 10054 tcp->tcp_dontroute = onoff; 10055 tcp->tcp_connp->conn_dontroute = onoff; 10056 } 10057 break; 10058 case SO_USELOOPBACK: 10059 if (!checkonly) { 10060 tcp->tcp_useloopback = onoff; 10061 tcp->tcp_connp->conn_loopback = onoff; 10062 } 10063 break; 10064 case SO_BROADCAST: 10065 if (!checkonly) { 10066 tcp->tcp_broadcast = onoff; 10067 tcp->tcp_connp->conn_broadcast = onoff; 10068 } 10069 break; 10070 case SO_REUSEADDR: 10071 if (!checkonly) { 10072 tcp->tcp_reuseaddr = onoff; 10073 tcp->tcp_connp->conn_reuseaddr = onoff; 10074 } 10075 break; 10076 case SO_OOBINLINE: 10077 if (!checkonly) { 10078 tcp->tcp_oobinline = onoff; 10079 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10080 proto_set_rx_oob_opt(connp, onoff); 10081 } 10082 break; 10083 case SO_DGRAM_ERRIND: 10084 if (!checkonly) 10085 tcp->tcp_dgram_errind = onoff; 10086 break; 10087 case SO_SNDBUF: { 10088 if (*i1 > tcps->tcps_max_buf) { 10089 *outlenp = 0; 10090 return (ENOBUFS); 10091 } 10092 if (checkonly) 10093 break; 10094 10095 tcp->tcp_xmit_hiwater = *i1; 10096 if (tcps->tcps_snd_lowat_fraction != 0) 10097 tcp->tcp_xmit_lowater = 10098 tcp->tcp_xmit_hiwater / 10099 tcps->tcps_snd_lowat_fraction; 10100 (void) tcp_maxpsz_set(tcp, B_TRUE); 10101 /* 10102 * If we are flow-controlled, recheck the condition. 10103 * There are apps that increase SO_SNDBUF size when 10104 * flow-controlled (EWOULDBLOCK), and expect the flow 10105 * control condition to be lifted right away. 10106 */ 10107 mutex_enter(&tcp->tcp_non_sq_lock); 10108 if (tcp->tcp_flow_stopped && 10109 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10110 tcp_clrqfull(tcp); 10111 } 10112 mutex_exit(&tcp->tcp_non_sq_lock); 10113 break; 10114 } 10115 case SO_RCVBUF: 10116 if (*i1 > tcps->tcps_max_buf) { 10117 *outlenp = 0; 10118 return (ENOBUFS); 10119 } 10120 /* Silently ignore zero */ 10121 if (!checkonly && *i1 != 0) { 10122 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10123 (void) tcp_rwnd_set(tcp, *i1); 10124 } 10125 /* 10126 * XXX should we return the rwnd here 10127 * and tcp_opt_get ? 10128 */ 10129 break; 10130 case SO_SND_COPYAVOID: 10131 if (!checkonly) { 10132 /* we only allow enable at most once for now */ 10133 if (tcp->tcp_loopback || 10134 (tcp->tcp_kssl_ctx != NULL) || 10135 (!tcp->tcp_snd_zcopy_aware && 10136 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10137 *outlenp = 0; 10138 return (EOPNOTSUPP); 10139 } 10140 tcp->tcp_snd_zcopy_aware = 1; 10141 } 10142 break; 10143 case SO_ALLZONES: 10144 /* Pass option along to IP level for handling */ 10145 return (-EINVAL); 10146 case SO_ANON_MLP: 10147 /* Pass option along to IP level for handling */ 10148 return (-EINVAL); 10149 case SO_MAC_EXEMPT: 10150 /* Pass option along to IP level for handling */ 10151 return (-EINVAL); 10152 case SO_EXCLBIND: 10153 if (!checkonly) 10154 tcp->tcp_exclbind = onoff; 10155 break; 10156 default: 10157 *outlenp = 0; 10158 return (EINVAL); 10159 } 10160 break; 10161 case IPPROTO_TCP: 10162 switch (name) { 10163 case TCP_NODELAY: 10164 if (!checkonly) 10165 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10166 break; 10167 case TCP_NOTIFY_THRESHOLD: 10168 if (!checkonly) 10169 tcp->tcp_first_timer_threshold = *i1; 10170 break; 10171 case TCP_ABORT_THRESHOLD: 10172 if (!checkonly) 10173 tcp->tcp_second_timer_threshold = *i1; 10174 break; 10175 case TCP_CONN_NOTIFY_THRESHOLD: 10176 if (!checkonly) 10177 tcp->tcp_first_ctimer_threshold = *i1; 10178 break; 10179 case TCP_CONN_ABORT_THRESHOLD: 10180 if (!checkonly) 10181 tcp->tcp_second_ctimer_threshold = *i1; 10182 break; 10183 case TCP_RECVDSTADDR: 10184 if (tcp->tcp_state > TCPS_LISTEN) 10185 return (EOPNOTSUPP); 10186 if (!checkonly) 10187 tcp->tcp_recvdstaddr = onoff; 10188 break; 10189 case TCP_ANONPRIVBIND: 10190 if ((reterr = secpolicy_net_privaddr(cr, 0, 10191 IPPROTO_TCP)) != 0) { 10192 *outlenp = 0; 10193 return (reterr); 10194 } 10195 if (!checkonly) { 10196 tcp->tcp_anon_priv_bind = onoff; 10197 } 10198 break; 10199 case TCP_EXCLBIND: 10200 if (!checkonly) 10201 tcp->tcp_exclbind = onoff; 10202 break; /* goto sizeof (int) option return */ 10203 case TCP_INIT_CWND: { 10204 uint32_t init_cwnd = *((uint32_t *)invalp); 10205 10206 if (checkonly) 10207 break; 10208 10209 /* 10210 * Only allow socket with network configuration 10211 * privilege to set the initial cwnd to be larger 10212 * than allowed by RFC 3390. 10213 */ 10214 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10215 tcp->tcp_init_cwnd = init_cwnd; 10216 break; 10217 } 10218 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10219 *outlenp = 0; 10220 return (reterr); 10221 } 10222 if (init_cwnd > TCP_MAX_INIT_CWND) { 10223 *outlenp = 0; 10224 return (EINVAL); 10225 } 10226 tcp->tcp_init_cwnd = init_cwnd; 10227 break; 10228 } 10229 case TCP_KEEPALIVE_THRESHOLD: 10230 if (checkonly) 10231 break; 10232 10233 if (*i1 < tcps->tcps_keepalive_interval_low || 10234 *i1 > tcps->tcps_keepalive_interval_high) { 10235 *outlenp = 0; 10236 return (EINVAL); 10237 } 10238 if (*i1 != tcp->tcp_ka_interval) { 10239 tcp->tcp_ka_interval = *i1; 10240 /* 10241 * Check if we need to restart the 10242 * keepalive timer. 10243 */ 10244 if (tcp->tcp_ka_tid != 0) { 10245 ASSERT(tcp->tcp_ka_enabled); 10246 (void) TCP_TIMER_CANCEL(tcp, 10247 tcp->tcp_ka_tid); 10248 tcp->tcp_ka_last_intrvl = 0; 10249 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10250 tcp_keepalive_killer, 10251 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10252 } 10253 } 10254 break; 10255 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10256 if (!checkonly) { 10257 if (*i1 < 10258 tcps->tcps_keepalive_abort_interval_low || 10259 *i1 > 10260 tcps->tcps_keepalive_abort_interval_high) { 10261 *outlenp = 0; 10262 return (EINVAL); 10263 } 10264 tcp->tcp_ka_abort_thres = *i1; 10265 } 10266 break; 10267 case TCP_CORK: 10268 if (!checkonly) { 10269 /* 10270 * if tcp->tcp_cork was set and is now 10271 * being unset, we have to make sure that 10272 * the remaining data gets sent out. Also 10273 * unset tcp->tcp_cork so that tcp_wput_data() 10274 * can send data even if it is less than mss 10275 */ 10276 if (tcp->tcp_cork && onoff == 0 && 10277 tcp->tcp_unsent > 0) { 10278 tcp->tcp_cork = B_FALSE; 10279 tcp_wput_data(tcp, NULL, B_FALSE); 10280 } 10281 tcp->tcp_cork = onoff; 10282 } 10283 break; 10284 default: 10285 *outlenp = 0; 10286 return (EINVAL); 10287 } 10288 break; 10289 case IPPROTO_IP: 10290 if (tcp->tcp_family != AF_INET) { 10291 *outlenp = 0; 10292 return (ENOPROTOOPT); 10293 } 10294 switch (name) { 10295 case IP_OPTIONS: 10296 case T_IP_OPTIONS: 10297 reterr = tcp_opt_set_header(tcp, checkonly, 10298 invalp, inlen); 10299 if (reterr) { 10300 *outlenp = 0; 10301 return (reterr); 10302 } 10303 /* OK return - copy input buffer into output buffer */ 10304 if (invalp != outvalp) { 10305 /* don't trust bcopy for identical src/dst */ 10306 bcopy(invalp, outvalp, inlen); 10307 } 10308 *outlenp = inlen; 10309 return (0); 10310 case IP_TOS: 10311 case T_IP_TOS: 10312 if (!checkonly) { 10313 tcp->tcp_ipha->ipha_type_of_service = 10314 (uchar_t)*i1; 10315 tcp->tcp_tos = (uchar_t)*i1; 10316 } 10317 break; 10318 case IP_TTL: 10319 if (!checkonly) { 10320 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10321 tcp->tcp_ttl = (uchar_t)*i1; 10322 } 10323 break; 10324 case IP_BOUND_IF: 10325 case IP_NEXTHOP: 10326 /* Handled at the IP level */ 10327 return (-EINVAL); 10328 case IP_SEC_OPT: 10329 /* 10330 * We should not allow policy setting after 10331 * we start listening for connections. 10332 */ 10333 if (tcp->tcp_state == TCPS_LISTEN) { 10334 return (EINVAL); 10335 } else { 10336 /* Handled at the IP level */ 10337 return (-EINVAL); 10338 } 10339 default: 10340 *outlenp = 0; 10341 return (EINVAL); 10342 } 10343 break; 10344 case IPPROTO_IPV6: { 10345 ip6_pkt_t *ipp; 10346 10347 /* 10348 * IPPROTO_IPV6 options are only supported for sockets 10349 * that are using IPv6 on the wire. 10350 */ 10351 if (tcp->tcp_ipversion != IPV6_VERSION) { 10352 *outlenp = 0; 10353 return (ENOPROTOOPT); 10354 } 10355 /* 10356 * Only sticky options; no ancillary data 10357 */ 10358 ipp = &tcp->tcp_sticky_ipp; 10359 10360 switch (name) { 10361 case IPV6_UNICAST_HOPS: 10362 /* -1 means use default */ 10363 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10364 *outlenp = 0; 10365 return (EINVAL); 10366 } 10367 if (!checkonly) { 10368 if (*i1 == -1) { 10369 tcp->tcp_ip6h->ip6_hops = 10370 ipp->ipp_unicast_hops = 10371 (uint8_t)tcps->tcps_ipv6_hoplimit; 10372 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10373 /* Pass modified value to IP. */ 10374 *i1 = tcp->tcp_ip6h->ip6_hops; 10375 } else { 10376 tcp->tcp_ip6h->ip6_hops = 10377 ipp->ipp_unicast_hops = 10378 (uint8_t)*i1; 10379 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10380 } 10381 reterr = tcp_build_hdrs(tcp); 10382 if (reterr != 0) 10383 return (reterr); 10384 } 10385 break; 10386 case IPV6_BOUND_IF: 10387 if (!checkonly) { 10388 tcp->tcp_bound_if = *i1; 10389 PASS_OPT_TO_IP(connp); 10390 } 10391 break; 10392 /* 10393 * Set boolean switches for ancillary data delivery 10394 */ 10395 case IPV6_RECVPKTINFO: 10396 if (!checkonly) { 10397 if (onoff) 10398 tcp->tcp_ipv6_recvancillary |= 10399 TCP_IPV6_RECVPKTINFO; 10400 else 10401 tcp->tcp_ipv6_recvancillary &= 10402 ~TCP_IPV6_RECVPKTINFO; 10403 /* Force it to be sent up with the next msg */ 10404 tcp->tcp_recvifindex = 0; 10405 PASS_OPT_TO_IP(connp); 10406 } 10407 break; 10408 case IPV6_RECVTCLASS: 10409 if (!checkonly) { 10410 if (onoff) 10411 tcp->tcp_ipv6_recvancillary |= 10412 TCP_IPV6_RECVTCLASS; 10413 else 10414 tcp->tcp_ipv6_recvancillary &= 10415 ~TCP_IPV6_RECVTCLASS; 10416 PASS_OPT_TO_IP(connp); 10417 } 10418 break; 10419 case IPV6_RECVHOPLIMIT: 10420 if (!checkonly) { 10421 if (onoff) 10422 tcp->tcp_ipv6_recvancillary |= 10423 TCP_IPV6_RECVHOPLIMIT; 10424 else 10425 tcp->tcp_ipv6_recvancillary &= 10426 ~TCP_IPV6_RECVHOPLIMIT; 10427 /* Force it to be sent up with the next msg */ 10428 tcp->tcp_recvhops = 0xffffffffU; 10429 PASS_OPT_TO_IP(connp); 10430 } 10431 break; 10432 case IPV6_RECVHOPOPTS: 10433 if (!checkonly) { 10434 if (onoff) 10435 tcp->tcp_ipv6_recvancillary |= 10436 TCP_IPV6_RECVHOPOPTS; 10437 else 10438 tcp->tcp_ipv6_recvancillary &= 10439 ~TCP_IPV6_RECVHOPOPTS; 10440 PASS_OPT_TO_IP(connp); 10441 } 10442 break; 10443 case IPV6_RECVDSTOPTS: 10444 if (!checkonly) { 10445 if (onoff) 10446 tcp->tcp_ipv6_recvancillary |= 10447 TCP_IPV6_RECVDSTOPTS; 10448 else 10449 tcp->tcp_ipv6_recvancillary &= 10450 ~TCP_IPV6_RECVDSTOPTS; 10451 PASS_OPT_TO_IP(connp); 10452 } 10453 break; 10454 case _OLD_IPV6_RECVDSTOPTS: 10455 if (!checkonly) { 10456 if (onoff) 10457 tcp->tcp_ipv6_recvancillary |= 10458 TCP_OLD_IPV6_RECVDSTOPTS; 10459 else 10460 tcp->tcp_ipv6_recvancillary &= 10461 ~TCP_OLD_IPV6_RECVDSTOPTS; 10462 } 10463 break; 10464 case IPV6_RECVRTHDR: 10465 if (!checkonly) { 10466 if (onoff) 10467 tcp->tcp_ipv6_recvancillary |= 10468 TCP_IPV6_RECVRTHDR; 10469 else 10470 tcp->tcp_ipv6_recvancillary &= 10471 ~TCP_IPV6_RECVRTHDR; 10472 PASS_OPT_TO_IP(connp); 10473 } 10474 break; 10475 case IPV6_RECVRTHDRDSTOPTS: 10476 if (!checkonly) { 10477 if (onoff) 10478 tcp->tcp_ipv6_recvancillary |= 10479 TCP_IPV6_RECVRTDSTOPTS; 10480 else 10481 tcp->tcp_ipv6_recvancillary &= 10482 ~TCP_IPV6_RECVRTDSTOPTS; 10483 PASS_OPT_TO_IP(connp); 10484 } 10485 break; 10486 case IPV6_PKTINFO: 10487 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10488 return (EINVAL); 10489 if (checkonly) 10490 break; 10491 10492 if (inlen == 0) { 10493 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10494 } else { 10495 struct in6_pktinfo *pkti; 10496 10497 pkti = (struct in6_pktinfo *)invalp; 10498 /* 10499 * RFC 3542 states that ipi6_addr must be 10500 * the unspecified address when setting the 10501 * IPV6_PKTINFO sticky socket option on a 10502 * TCP socket. 10503 */ 10504 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10505 return (EINVAL); 10506 /* 10507 * IP will validate the source address and 10508 * interface index. 10509 */ 10510 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10511 reterr = ip_set_options(tcp->tcp_connp, 10512 level, name, invalp, inlen, cr); 10513 } else { 10514 reterr = ip6_set_pktinfo(cr, 10515 tcp->tcp_connp, pkti, mblk); 10516 } 10517 if (reterr != 0) 10518 return (reterr); 10519 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10520 ipp->ipp_addr = pkti->ipi6_addr; 10521 if (ipp->ipp_ifindex != 0) 10522 ipp->ipp_fields |= IPPF_IFINDEX; 10523 else 10524 ipp->ipp_fields &= ~IPPF_IFINDEX; 10525 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10526 ipp->ipp_fields |= IPPF_ADDR; 10527 else 10528 ipp->ipp_fields &= ~IPPF_ADDR; 10529 } 10530 reterr = tcp_build_hdrs(tcp); 10531 if (reterr != 0) 10532 return (reterr); 10533 break; 10534 case IPV6_TCLASS: 10535 if (inlen != 0 && inlen != sizeof (int)) 10536 return (EINVAL); 10537 if (checkonly) 10538 break; 10539 10540 if (inlen == 0) { 10541 ipp->ipp_fields &= ~IPPF_TCLASS; 10542 } else { 10543 if (*i1 > 255 || *i1 < -1) 10544 return (EINVAL); 10545 if (*i1 == -1) { 10546 ipp->ipp_tclass = 0; 10547 *i1 = 0; 10548 } else { 10549 ipp->ipp_tclass = *i1; 10550 } 10551 ipp->ipp_fields |= IPPF_TCLASS; 10552 } 10553 reterr = tcp_build_hdrs(tcp); 10554 if (reterr != 0) 10555 return (reterr); 10556 break; 10557 case IPV6_NEXTHOP: 10558 /* 10559 * IP will verify that the nexthop is reachable 10560 * and fail for sticky options. 10561 */ 10562 if (inlen != 0 && inlen != sizeof (sin6_t)) 10563 return (EINVAL); 10564 if (checkonly) 10565 break; 10566 10567 if (inlen == 0) { 10568 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10569 } else { 10570 sin6_t *sin6 = (sin6_t *)invalp; 10571 10572 if (sin6->sin6_family != AF_INET6) 10573 return (EAFNOSUPPORT); 10574 if (IN6_IS_ADDR_V4MAPPED( 10575 &sin6->sin6_addr)) 10576 return (EADDRNOTAVAIL); 10577 ipp->ipp_nexthop = sin6->sin6_addr; 10578 if (!IN6_IS_ADDR_UNSPECIFIED( 10579 &ipp->ipp_nexthop)) 10580 ipp->ipp_fields |= IPPF_NEXTHOP; 10581 else 10582 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10583 } 10584 reterr = tcp_build_hdrs(tcp); 10585 if (reterr != 0) 10586 return (reterr); 10587 PASS_OPT_TO_IP(connp); 10588 break; 10589 case IPV6_HOPOPTS: { 10590 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10591 10592 /* 10593 * Sanity checks - minimum size, size a multiple of 10594 * eight bytes, and matching size passed in. 10595 */ 10596 if (inlen != 0 && 10597 inlen != (8 * (hopts->ip6h_len + 1))) 10598 return (EINVAL); 10599 10600 if (checkonly) 10601 break; 10602 10603 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10604 (uchar_t **)&ipp->ipp_hopopts, 10605 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10606 if (reterr != 0) 10607 return (reterr); 10608 if (ipp->ipp_hopoptslen == 0) 10609 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10610 else 10611 ipp->ipp_fields |= IPPF_HOPOPTS; 10612 reterr = tcp_build_hdrs(tcp); 10613 if (reterr != 0) 10614 return (reterr); 10615 break; 10616 } 10617 case IPV6_RTHDRDSTOPTS: { 10618 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10619 10620 /* 10621 * Sanity checks - minimum size, size a multiple of 10622 * eight bytes, and matching size passed in. 10623 */ 10624 if (inlen != 0 && 10625 inlen != (8 * (dopts->ip6d_len + 1))) 10626 return (EINVAL); 10627 10628 if (checkonly) 10629 break; 10630 10631 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10632 (uchar_t **)&ipp->ipp_rtdstopts, 10633 &ipp->ipp_rtdstoptslen, 0); 10634 if (reterr != 0) 10635 return (reterr); 10636 if (ipp->ipp_rtdstoptslen == 0) 10637 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10638 else 10639 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10640 reterr = tcp_build_hdrs(tcp); 10641 if (reterr != 0) 10642 return (reterr); 10643 break; 10644 } 10645 case IPV6_DSTOPTS: { 10646 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10647 10648 /* 10649 * Sanity checks - minimum size, size a multiple of 10650 * eight bytes, and matching size passed in. 10651 */ 10652 if (inlen != 0 && 10653 inlen != (8 * (dopts->ip6d_len + 1))) 10654 return (EINVAL); 10655 10656 if (checkonly) 10657 break; 10658 10659 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10660 (uchar_t **)&ipp->ipp_dstopts, 10661 &ipp->ipp_dstoptslen, 0); 10662 if (reterr != 0) 10663 return (reterr); 10664 if (ipp->ipp_dstoptslen == 0) 10665 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10666 else 10667 ipp->ipp_fields |= IPPF_DSTOPTS; 10668 reterr = tcp_build_hdrs(tcp); 10669 if (reterr != 0) 10670 return (reterr); 10671 break; 10672 } 10673 case IPV6_RTHDR: { 10674 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10675 10676 /* 10677 * Sanity checks - minimum size, size a multiple of 10678 * eight bytes, and matching size passed in. 10679 */ 10680 if (inlen != 0 && 10681 inlen != (8 * (rt->ip6r_len + 1))) 10682 return (EINVAL); 10683 10684 if (checkonly) 10685 break; 10686 10687 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10688 (uchar_t **)&ipp->ipp_rthdr, 10689 &ipp->ipp_rthdrlen, 0); 10690 if (reterr != 0) 10691 return (reterr); 10692 if (ipp->ipp_rthdrlen == 0) 10693 ipp->ipp_fields &= ~IPPF_RTHDR; 10694 else 10695 ipp->ipp_fields |= IPPF_RTHDR; 10696 reterr = tcp_build_hdrs(tcp); 10697 if (reterr != 0) 10698 return (reterr); 10699 break; 10700 } 10701 case IPV6_V6ONLY: 10702 if (!checkonly) { 10703 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10704 } 10705 break; 10706 case IPV6_USE_MIN_MTU: 10707 if (inlen != sizeof (int)) 10708 return (EINVAL); 10709 10710 if (*i1 < -1 || *i1 > 1) 10711 return (EINVAL); 10712 10713 if (checkonly) 10714 break; 10715 10716 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10717 ipp->ipp_use_min_mtu = *i1; 10718 break; 10719 case IPV6_BOUND_PIF: 10720 /* Handled at the IP level */ 10721 return (-EINVAL); 10722 case IPV6_SEC_OPT: 10723 /* 10724 * We should not allow policy setting after 10725 * we start listening for connections. 10726 */ 10727 if (tcp->tcp_state == TCPS_LISTEN) { 10728 return (EINVAL); 10729 } else { 10730 /* Handled at the IP level */ 10731 return (-EINVAL); 10732 } 10733 case IPV6_SRC_PREFERENCES: 10734 if (inlen != sizeof (uint32_t)) 10735 return (EINVAL); 10736 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10737 *(uint32_t *)invalp); 10738 if (reterr != 0) { 10739 *outlenp = 0; 10740 return (reterr); 10741 } 10742 break; 10743 default: 10744 *outlenp = 0; 10745 return (EINVAL); 10746 } 10747 break; 10748 } /* end IPPROTO_IPV6 */ 10749 default: 10750 *outlenp = 0; 10751 return (EINVAL); 10752 } 10753 /* 10754 * Common case of OK return with outval same as inval 10755 */ 10756 if (invalp != outvalp) { 10757 /* don't trust bcopy for identical src/dst */ 10758 (void) bcopy(invalp, outvalp, inlen); 10759 } 10760 *outlenp = inlen; 10761 return (0); 10762 } 10763 10764 /* ARGSUSED */ 10765 int 10766 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10767 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10768 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10769 { 10770 conn_t *connp = Q_TO_CONN(q); 10771 10772 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10773 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10774 } 10775 10776 int 10777 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10778 const void *optvalp, socklen_t optlen, cred_t *cr) 10779 { 10780 conn_t *connp = (conn_t *)proto_handle; 10781 squeue_t *sqp = connp->conn_sqp; 10782 int error; 10783 10784 /* 10785 * Entering the squeue synchronously can result in a context switch, 10786 * which can cause a rather sever performance degradation. So we try to 10787 * handle whatever options we can without entering the squeue. 10788 */ 10789 if (level == IPPROTO_TCP) { 10790 switch (option_name) { 10791 case TCP_NODELAY: 10792 if (optlen != sizeof (int32_t)) 10793 return (EINVAL); 10794 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10795 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10796 connp->conn_tcp->tcp_mss; 10797 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10798 return (0); 10799 default: 10800 break; 10801 } 10802 } 10803 10804 error = squeue_synch_enter(sqp, connp, 0); 10805 if (error == ENOMEM) { 10806 return (ENOMEM); 10807 } 10808 10809 error = proto_opt_check(level, option_name, optlen, NULL, 10810 tcp_opt_obj.odb_opt_des_arr, 10811 tcp_opt_obj.odb_opt_arr_cnt, 10812 tcp_opt_obj.odb_topmost_tpiprovider, 10813 B_TRUE, B_FALSE, cr); 10814 10815 if (error != 0) { 10816 if (error < 0) { 10817 error = proto_tlitosyserr(-error); 10818 } 10819 squeue_synch_exit(sqp, connp); 10820 return (error); 10821 } 10822 10823 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10824 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10825 NULL, cr, NULL); 10826 squeue_synch_exit(sqp, connp); 10827 10828 if (error < 0) { 10829 /* 10830 * Pass on to ip 10831 */ 10832 error = ip_set_options(connp, level, option_name, optvalp, 10833 optlen, cr); 10834 } 10835 return (error); 10836 } 10837 10838 /* 10839 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10840 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10841 * headers, and the maximum size tcp header (to avoid reallocation 10842 * on the fly for additional tcp options). 10843 * Returns failure if can't allocate memory. 10844 */ 10845 static int 10846 tcp_build_hdrs(tcp_t *tcp) 10847 { 10848 char *hdrs; 10849 uint_t hdrs_len; 10850 ip6i_t *ip6i; 10851 char buf[TCP_MAX_HDR_LENGTH]; 10852 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10853 in6_addr_t src, dst; 10854 tcp_stack_t *tcps = tcp->tcp_tcps; 10855 conn_t *connp = tcp->tcp_connp; 10856 10857 /* 10858 * save the existing tcp header and source/dest IP addresses 10859 */ 10860 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10861 src = tcp->tcp_ip6h->ip6_src; 10862 dst = tcp->tcp_ip6h->ip6_dst; 10863 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10864 ASSERT(hdrs_len != 0); 10865 if (hdrs_len > tcp->tcp_iphc_len) { 10866 /* Need to reallocate */ 10867 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10868 if (hdrs == NULL) 10869 return (ENOMEM); 10870 if (tcp->tcp_iphc != NULL) { 10871 if (tcp->tcp_hdr_grown) { 10872 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10873 } else { 10874 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10875 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10876 } 10877 tcp->tcp_iphc_len = 0; 10878 } 10879 ASSERT(tcp->tcp_iphc_len == 0); 10880 tcp->tcp_iphc = hdrs; 10881 tcp->tcp_iphc_len = hdrs_len; 10882 tcp->tcp_hdr_grown = B_TRUE; 10883 } 10884 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10885 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10886 10887 /* Set header fields not in ipp */ 10888 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10889 ip6i = (ip6i_t *)tcp->tcp_iphc; 10890 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10891 } else { 10892 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10893 } 10894 /* 10895 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10896 * 10897 * tcp->tcp_tcp_hdr_len doesn't change here. 10898 */ 10899 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10900 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10901 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10902 10903 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10904 10905 tcp->tcp_ip6h->ip6_src = src; 10906 tcp->tcp_ip6h->ip6_dst = dst; 10907 10908 /* 10909 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10910 * the default value for TCP. 10911 */ 10912 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10913 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10914 10915 /* 10916 * If we're setting extension headers after a connection 10917 * has been established, and if we have a routing header 10918 * among the extension headers, call ip_massage_options_v6 to 10919 * manipulate the routing header/ip6_dst set the checksum 10920 * difference in the tcp header template. 10921 * (This happens in tcp_connect_ipv6 if the routing header 10922 * is set prior to the connect.) 10923 * Set the tcp_sum to zero first in case we've cleared a 10924 * routing header or don't have one at all. 10925 */ 10926 tcp->tcp_sum = 0; 10927 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10928 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10929 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10930 (uint8_t *)tcp->tcp_tcph); 10931 if (rth != NULL) { 10932 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10933 rth, tcps->tcps_netstack); 10934 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10935 (tcp->tcp_sum >> 16)); 10936 } 10937 } 10938 10939 /* Try to get everything in a single mblk */ 10940 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10941 hdrs_len + tcps->tcps_wroff_xtra); 10942 return (0); 10943 } 10944 10945 /* 10946 * Transfer any source route option from ipha to buf/dst in reversed form. 10947 */ 10948 static int 10949 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10950 { 10951 ipoptp_t opts; 10952 uchar_t *opt; 10953 uint8_t optval; 10954 uint8_t optlen; 10955 uint32_t len = 0; 10956 10957 for (optval = ipoptp_first(&opts, ipha); 10958 optval != IPOPT_EOL; 10959 optval = ipoptp_next(&opts)) { 10960 opt = opts.ipoptp_cur; 10961 optlen = opts.ipoptp_len; 10962 switch (optval) { 10963 int off1, off2; 10964 case IPOPT_SSRR: 10965 case IPOPT_LSRR: 10966 10967 /* Reverse source route */ 10968 /* 10969 * First entry should be the next to last one in the 10970 * current source route (the last entry is our 10971 * address.) 10972 * The last entry should be the final destination. 10973 */ 10974 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10975 buf[IPOPT_OLEN] = (uint8_t)optlen; 10976 off1 = IPOPT_MINOFF_SR - 1; 10977 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10978 if (off2 < 0) { 10979 /* No entries in source route */ 10980 break; 10981 } 10982 bcopy(opt + off2, dst, IP_ADDR_LEN); 10983 /* 10984 * Note: use src since ipha has not had its src 10985 * and dst reversed (it is in the state it was 10986 * received. 10987 */ 10988 bcopy(&ipha->ipha_src, buf + off2, 10989 IP_ADDR_LEN); 10990 off2 -= IP_ADDR_LEN; 10991 10992 while (off2 > 0) { 10993 bcopy(opt + off2, buf + off1, 10994 IP_ADDR_LEN); 10995 off1 += IP_ADDR_LEN; 10996 off2 -= IP_ADDR_LEN; 10997 } 10998 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10999 buf += optlen; 11000 len += optlen; 11001 break; 11002 } 11003 } 11004 done: 11005 /* Pad the resulting options */ 11006 while (len & 0x3) { 11007 *buf++ = IPOPT_EOL; 11008 len++; 11009 } 11010 return (len); 11011 } 11012 11013 11014 /* 11015 * Extract and revert a source route from ipha (if any) 11016 * and then update the relevant fields in both tcp_t and the standard header. 11017 */ 11018 static void 11019 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11020 { 11021 char buf[TCP_MAX_HDR_LENGTH]; 11022 uint_t tcph_len; 11023 int len; 11024 11025 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11026 len = IPH_HDR_LENGTH(ipha); 11027 if (len == IP_SIMPLE_HDR_LENGTH) 11028 /* Nothing to do */ 11029 return; 11030 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11031 (len & 0x3)) 11032 return; 11033 11034 tcph_len = tcp->tcp_tcp_hdr_len; 11035 bcopy(tcp->tcp_tcph, buf, tcph_len); 11036 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11037 (tcp->tcp_ipha->ipha_dst & 0xffff); 11038 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11039 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11040 len += IP_SIMPLE_HDR_LENGTH; 11041 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11042 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11043 if ((int)tcp->tcp_sum < 0) 11044 tcp->tcp_sum--; 11045 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11046 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11047 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11048 bcopy(buf, tcp->tcp_tcph, tcph_len); 11049 tcp->tcp_ip_hdr_len = len; 11050 tcp->tcp_ipha->ipha_version_and_hdr_length = 11051 (IP_VERSION << 4) | (len >> 2); 11052 len += tcph_len; 11053 tcp->tcp_hdr_len = len; 11054 } 11055 11056 /* 11057 * Copy the standard header into its new location, 11058 * lay in the new options and then update the relevant 11059 * fields in both tcp_t and the standard header. 11060 */ 11061 static int 11062 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11063 { 11064 uint_t tcph_len; 11065 uint8_t *ip_optp; 11066 tcph_t *new_tcph; 11067 tcp_stack_t *tcps = tcp->tcp_tcps; 11068 conn_t *connp = tcp->tcp_connp; 11069 11070 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11071 return (EINVAL); 11072 11073 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11074 return (EINVAL); 11075 11076 if (checkonly) { 11077 /* 11078 * do not really set, just pretend to - T_CHECK 11079 */ 11080 return (0); 11081 } 11082 11083 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11084 if (tcp->tcp_label_len > 0) { 11085 int padlen; 11086 uint8_t opt; 11087 11088 /* convert list termination to no-ops */ 11089 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11090 ip_optp += ip_optp[IPOPT_OLEN]; 11091 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11092 while (--padlen >= 0) 11093 *ip_optp++ = opt; 11094 } 11095 tcph_len = tcp->tcp_tcp_hdr_len; 11096 new_tcph = (tcph_t *)(ip_optp + len); 11097 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11098 tcp->tcp_tcph = new_tcph; 11099 bcopy(ptr, ip_optp, len); 11100 11101 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11102 11103 tcp->tcp_ip_hdr_len = len; 11104 tcp->tcp_ipha->ipha_version_and_hdr_length = 11105 (IP_VERSION << 4) | (len >> 2); 11106 tcp->tcp_hdr_len = len + tcph_len; 11107 if (!TCP_IS_DETACHED(tcp)) { 11108 /* Always allocate room for all options. */ 11109 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11110 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11111 } 11112 return (0); 11113 } 11114 11115 /* Get callback routine passed to nd_load by tcp_param_register */ 11116 /* ARGSUSED */ 11117 static int 11118 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11119 { 11120 tcpparam_t *tcppa = (tcpparam_t *)cp; 11121 11122 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11123 return (0); 11124 } 11125 11126 /* 11127 * Walk through the param array specified registering each element with the 11128 * named dispatch handler. 11129 */ 11130 static boolean_t 11131 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11132 { 11133 for (; cnt-- > 0; tcppa++) { 11134 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11135 if (!nd_load(ndp, tcppa->tcp_param_name, 11136 tcp_param_get, tcp_param_set, 11137 (caddr_t)tcppa)) { 11138 nd_free(ndp); 11139 return (B_FALSE); 11140 } 11141 } 11142 } 11143 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11144 KM_SLEEP); 11145 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11146 sizeof (tcpparam_t)); 11147 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11148 tcp_param_get, tcp_param_set_aligned, 11149 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11150 nd_free(ndp); 11151 return (B_FALSE); 11152 } 11153 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11154 KM_SLEEP); 11155 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11156 sizeof (tcpparam_t)); 11157 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11158 tcp_param_get, tcp_param_set_aligned, 11159 (caddr_t)tcps->tcps_mdt_head_param)) { 11160 nd_free(ndp); 11161 return (B_FALSE); 11162 } 11163 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11164 KM_SLEEP); 11165 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11166 sizeof (tcpparam_t)); 11167 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11168 tcp_param_get, tcp_param_set_aligned, 11169 (caddr_t)tcps->tcps_mdt_tail_param)) { 11170 nd_free(ndp); 11171 return (B_FALSE); 11172 } 11173 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11174 KM_SLEEP); 11175 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11176 sizeof (tcpparam_t)); 11177 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11178 tcp_param_get, tcp_param_set_aligned, 11179 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11180 nd_free(ndp); 11181 return (B_FALSE); 11182 } 11183 if (!nd_load(ndp, "tcp_extra_priv_ports", 11184 tcp_extra_priv_ports_get, NULL, NULL)) { 11185 nd_free(ndp); 11186 return (B_FALSE); 11187 } 11188 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11189 NULL, tcp_extra_priv_ports_add, NULL)) { 11190 nd_free(ndp); 11191 return (B_FALSE); 11192 } 11193 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11194 NULL, tcp_extra_priv_ports_del, NULL)) { 11195 nd_free(ndp); 11196 return (B_FALSE); 11197 } 11198 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11199 NULL)) { 11200 nd_free(ndp); 11201 return (B_FALSE); 11202 } 11203 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11204 NULL, NULL)) { 11205 nd_free(ndp); 11206 return (B_FALSE); 11207 } 11208 if (!nd_load(ndp, "tcp_listen_hash", 11209 tcp_listen_hash_report, NULL, NULL)) { 11210 nd_free(ndp); 11211 return (B_FALSE); 11212 } 11213 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11214 NULL, NULL)) { 11215 nd_free(ndp); 11216 return (B_FALSE); 11217 } 11218 if (!nd_load(ndp, "tcp_acceptor_hash", 11219 tcp_acceptor_hash_report, NULL, NULL)) { 11220 nd_free(ndp); 11221 return (B_FALSE); 11222 } 11223 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11224 tcp_1948_phrase_set, NULL)) { 11225 nd_free(ndp); 11226 return (B_FALSE); 11227 } 11228 /* 11229 * Dummy ndd variables - only to convey obsolescence information 11230 * through printing of their name (no get or set routines) 11231 * XXX Remove in future releases ? 11232 */ 11233 if (!nd_load(ndp, 11234 "tcp_close_wait_interval(obsoleted - " 11235 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11236 nd_free(ndp); 11237 return (B_FALSE); 11238 } 11239 return (B_TRUE); 11240 } 11241 11242 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11243 /* ARGSUSED */ 11244 static int 11245 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11246 cred_t *cr) 11247 { 11248 long new_value; 11249 tcpparam_t *tcppa = (tcpparam_t *)cp; 11250 11251 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11252 new_value < tcppa->tcp_param_min || 11253 new_value > tcppa->tcp_param_max) { 11254 return (EINVAL); 11255 } 11256 /* 11257 * Need to make sure new_value is a multiple of 4. If it is not, 11258 * round it up. For future 64 bit requirement, we actually make it 11259 * a multiple of 8. 11260 */ 11261 if (new_value & 0x7) { 11262 new_value = (new_value & ~0x7) + 0x8; 11263 } 11264 tcppa->tcp_param_val = new_value; 11265 return (0); 11266 } 11267 11268 /* Set callback routine passed to nd_load by tcp_param_register */ 11269 /* ARGSUSED */ 11270 static int 11271 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11272 { 11273 long new_value; 11274 tcpparam_t *tcppa = (tcpparam_t *)cp; 11275 11276 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11277 new_value < tcppa->tcp_param_min || 11278 new_value > tcppa->tcp_param_max) { 11279 return (EINVAL); 11280 } 11281 tcppa->tcp_param_val = new_value; 11282 return (0); 11283 } 11284 11285 /* 11286 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11287 * is filled, return as much as we can. The message passed in may be 11288 * multi-part, chained using b_cont. "start" is the starting sequence 11289 * number for this piece. 11290 */ 11291 static mblk_t * 11292 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11293 { 11294 uint32_t end; 11295 mblk_t *mp1; 11296 mblk_t *mp2; 11297 mblk_t *next_mp; 11298 uint32_t u1; 11299 tcp_stack_t *tcps = tcp->tcp_tcps; 11300 11301 /* Walk through all the new pieces. */ 11302 do { 11303 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11304 (uintptr_t)INT_MAX); 11305 end = start + (int)(mp->b_wptr - mp->b_rptr); 11306 next_mp = mp->b_cont; 11307 if (start == end) { 11308 /* Empty. Blast it. */ 11309 freeb(mp); 11310 continue; 11311 } 11312 mp->b_cont = NULL; 11313 TCP_REASS_SET_SEQ(mp, start); 11314 TCP_REASS_SET_END(mp, end); 11315 mp1 = tcp->tcp_reass_tail; 11316 if (!mp1) { 11317 tcp->tcp_reass_tail = mp; 11318 tcp->tcp_reass_head = mp; 11319 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11320 UPDATE_MIB(&tcps->tcps_mib, 11321 tcpInDataUnorderBytes, end - start); 11322 continue; 11323 } 11324 /* New stuff completely beyond tail? */ 11325 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11326 /* Link it on end. */ 11327 mp1->b_cont = mp; 11328 tcp->tcp_reass_tail = mp; 11329 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11330 UPDATE_MIB(&tcps->tcps_mib, 11331 tcpInDataUnorderBytes, end - start); 11332 continue; 11333 } 11334 mp1 = tcp->tcp_reass_head; 11335 u1 = TCP_REASS_SEQ(mp1); 11336 /* New stuff at the front? */ 11337 if (SEQ_LT(start, u1)) { 11338 /* Yes... Check for overlap. */ 11339 mp->b_cont = mp1; 11340 tcp->tcp_reass_head = mp; 11341 tcp_reass_elim_overlap(tcp, mp); 11342 continue; 11343 } 11344 /* 11345 * The new piece fits somewhere between the head and tail. 11346 * We find our slot, where mp1 precedes us and mp2 trails. 11347 */ 11348 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11349 u1 = TCP_REASS_SEQ(mp2); 11350 if (SEQ_LEQ(start, u1)) 11351 break; 11352 } 11353 /* Link ourselves in */ 11354 mp->b_cont = mp2; 11355 mp1->b_cont = mp; 11356 11357 /* Trim overlap with following mblk(s) first */ 11358 tcp_reass_elim_overlap(tcp, mp); 11359 11360 /* Trim overlap with preceding mblk */ 11361 tcp_reass_elim_overlap(tcp, mp1); 11362 11363 } while (start = end, mp = next_mp); 11364 mp1 = tcp->tcp_reass_head; 11365 /* Anything ready to go? */ 11366 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11367 return (NULL); 11368 /* Eat what we can off the queue */ 11369 for (;;) { 11370 mp = mp1->b_cont; 11371 end = TCP_REASS_END(mp1); 11372 TCP_REASS_SET_SEQ(mp1, 0); 11373 TCP_REASS_SET_END(mp1, 0); 11374 if (!mp) { 11375 tcp->tcp_reass_tail = NULL; 11376 break; 11377 } 11378 if (end != TCP_REASS_SEQ(mp)) { 11379 mp1->b_cont = NULL; 11380 break; 11381 } 11382 mp1 = mp; 11383 } 11384 mp1 = tcp->tcp_reass_head; 11385 tcp->tcp_reass_head = mp; 11386 return (mp1); 11387 } 11388 11389 /* Eliminate any overlap that mp may have over later mblks */ 11390 static void 11391 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11392 { 11393 uint32_t end; 11394 mblk_t *mp1; 11395 uint32_t u1; 11396 tcp_stack_t *tcps = tcp->tcp_tcps; 11397 11398 end = TCP_REASS_END(mp); 11399 while ((mp1 = mp->b_cont) != NULL) { 11400 u1 = TCP_REASS_SEQ(mp1); 11401 if (!SEQ_GT(end, u1)) 11402 break; 11403 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11404 mp->b_wptr -= end - u1; 11405 TCP_REASS_SET_END(mp, u1); 11406 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11407 UPDATE_MIB(&tcps->tcps_mib, 11408 tcpInDataPartDupBytes, end - u1); 11409 break; 11410 } 11411 mp->b_cont = mp1->b_cont; 11412 TCP_REASS_SET_SEQ(mp1, 0); 11413 TCP_REASS_SET_END(mp1, 0); 11414 freeb(mp1); 11415 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11416 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11417 } 11418 if (!mp1) 11419 tcp->tcp_reass_tail = mp; 11420 } 11421 11422 static uint_t 11423 tcp_rwnd_reopen(tcp_t *tcp) 11424 { 11425 uint_t ret = 0; 11426 uint_t thwin; 11427 11428 /* Learn the latest rwnd information that we sent to the other side. */ 11429 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11430 << tcp->tcp_rcv_ws; 11431 /* This is peer's calculated send window (our receive window). */ 11432 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11433 /* 11434 * Increase the receive window to max. But we need to do receiver 11435 * SWS avoidance. This means that we need to check the increase of 11436 * of receive window is at least 1 MSS. 11437 */ 11438 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11439 /* 11440 * If the window that the other side knows is less than max 11441 * deferred acks segments, send an update immediately. 11442 */ 11443 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11444 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11445 ret = TH_ACK_NEEDED; 11446 } 11447 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11448 } 11449 return (ret); 11450 } 11451 11452 /* 11453 * Send up all messages queued on tcp_rcv_list. 11454 */ 11455 static uint_t 11456 tcp_rcv_drain(tcp_t *tcp) 11457 { 11458 mblk_t *mp; 11459 uint_t ret = 0; 11460 #ifdef DEBUG 11461 uint_t cnt = 0; 11462 #endif 11463 queue_t *q = tcp->tcp_rq; 11464 11465 /* Can't drain on an eager connection */ 11466 if (tcp->tcp_listener != NULL) 11467 return (ret); 11468 11469 /* Can't be a non-STREAMS connection or sodirect enabled */ 11470 ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp)); 11471 11472 /* No need for the push timer now. */ 11473 if (tcp->tcp_push_tid != 0) { 11474 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11475 tcp->tcp_push_tid = 0; 11476 } 11477 11478 /* 11479 * Handle two cases here: we are currently fused or we were 11480 * previously fused and have some urgent data to be delivered 11481 * upstream. The latter happens because we either ran out of 11482 * memory or were detached and therefore sending the SIGURG was 11483 * deferred until this point. In either case we pass control 11484 * over to tcp_fuse_rcv_drain() since it may need to complete 11485 * some work. 11486 */ 11487 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11488 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11489 tcp->tcp_fused_sigurg_mp != NULL); 11490 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11491 &tcp->tcp_fused_sigurg_mp)) 11492 return (ret); 11493 } 11494 11495 while ((mp = tcp->tcp_rcv_list) != NULL) { 11496 tcp->tcp_rcv_list = mp->b_next; 11497 mp->b_next = NULL; 11498 #ifdef DEBUG 11499 cnt += msgdsize(mp); 11500 #endif 11501 /* Does this need SSL processing first? */ 11502 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11503 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11504 mblk_t *, mp); 11505 tcp_kssl_input(tcp, mp); 11506 continue; 11507 } 11508 putnext(q, mp); 11509 } 11510 #ifdef DEBUG 11511 ASSERT(cnt == tcp->tcp_rcv_cnt); 11512 #endif 11513 tcp->tcp_rcv_last_head = NULL; 11514 tcp->tcp_rcv_last_tail = NULL; 11515 tcp->tcp_rcv_cnt = 0; 11516 11517 if (canputnext(q)) 11518 return (tcp_rwnd_reopen(tcp)); 11519 11520 return (ret); 11521 } 11522 11523 /* 11524 * Queue data on tcp_rcv_list which is a b_next chain. 11525 * tcp_rcv_last_head/tail is the last element of this chain. 11526 * Each element of the chain is a b_cont chain. 11527 * 11528 * M_DATA messages are added to the current element. 11529 * Other messages are added as new (b_next) elements. 11530 */ 11531 void 11532 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11533 { 11534 ASSERT(seg_len == msgdsize(mp)); 11535 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11536 11537 if (tcp->tcp_rcv_list == NULL) { 11538 ASSERT(tcp->tcp_rcv_last_head == NULL); 11539 tcp->tcp_rcv_list = mp; 11540 tcp->tcp_rcv_last_head = mp; 11541 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11542 tcp->tcp_rcv_last_tail->b_cont = mp; 11543 } else { 11544 tcp->tcp_rcv_last_head->b_next = mp; 11545 tcp->tcp_rcv_last_head = mp; 11546 } 11547 11548 while (mp->b_cont) 11549 mp = mp->b_cont; 11550 11551 tcp->tcp_rcv_last_tail = mp; 11552 tcp->tcp_rcv_cnt += seg_len; 11553 tcp->tcp_rwnd -= seg_len; 11554 } 11555 11556 /* 11557 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11558 * above, in addition when uioa is enabled schedule an asynchronous uio 11559 * prior to enqueuing. They implement the combinhed semantics of the 11560 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11561 * canputnext(), i.e. flow-control with backenable. 11562 * 11563 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11564 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11565 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11566 * 11567 * Must be called with sodp->sod_lockp held and will return with the lock 11568 * released. 11569 */ 11570 static uint_t 11571 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11572 { 11573 queue_t *q = tcp->tcp_rq; 11574 uint_t thwin; 11575 tcp_stack_t *tcps = tcp->tcp_tcps; 11576 uint_t ret = 0; 11577 11578 /* Can't be an eager connection */ 11579 ASSERT(tcp->tcp_listener == NULL); 11580 11581 /* Caller must have lock held */ 11582 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11583 11584 /* Sodirect mode so must not be a tcp_rcv_list */ 11585 ASSERT(tcp->tcp_rcv_list == NULL); 11586 11587 if (SOD_QFULL(sodp)) { 11588 /* Q is full, mark Q for need backenable */ 11589 SOD_QSETBE(sodp); 11590 } 11591 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11592 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11593 << tcp->tcp_rcv_ws; 11594 /* This is peer's calculated send window (our available rwnd). */ 11595 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11596 /* 11597 * Increase the receive window to max. But we need to do receiver 11598 * SWS avoidance. This means that we need to check the increase of 11599 * of receive window is at least 1 MSS. 11600 */ 11601 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11602 /* 11603 * If the window that the other side knows is less than max 11604 * deferred acks segments, send an update immediately. 11605 */ 11606 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11607 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11608 ret = TH_ACK_NEEDED; 11609 } 11610 tcp->tcp_rwnd = q->q_hiwat; 11611 } 11612 11613 if (!SOD_QEMPTY(sodp)) { 11614 /* Wakeup to socket */ 11615 sodp->sod_state &= SOD_WAKE_CLR; 11616 sodp->sod_state |= SOD_WAKE_DONE; 11617 (sodp->sod_wakeup)(sodp); 11618 /* wakeup() does the mutex_ext() */ 11619 } else { 11620 /* Q is empty, no need to wake */ 11621 sodp->sod_state &= SOD_WAKE_CLR; 11622 sodp->sod_state |= SOD_WAKE_NOT; 11623 mutex_exit(sodp->sod_lockp); 11624 } 11625 11626 /* No need for the push timer now. */ 11627 if (tcp->tcp_push_tid != 0) { 11628 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11629 tcp->tcp_push_tid = 0; 11630 } 11631 11632 return (ret); 11633 } 11634 11635 /* 11636 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11637 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11638 * to the user-land buffer and flag the mblk_t as such. 11639 * 11640 * Also, handle tcp_rwnd. 11641 */ 11642 uint_t 11643 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11644 { 11645 uioa_t *uioap = &sodp->sod_uioa; 11646 boolean_t qfull; 11647 uint_t thwin; 11648 11649 /* Can't be an eager connection */ 11650 ASSERT(tcp->tcp_listener == NULL); 11651 11652 /* Caller must have lock held */ 11653 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11654 11655 /* Sodirect mode so must not be a tcp_rcv_list */ 11656 ASSERT(tcp->tcp_rcv_list == NULL); 11657 11658 /* Passed in segment length must be equal to mblk_t chain data size */ 11659 ASSERT(seg_len == msgdsize(mp)); 11660 11661 if (DB_TYPE(mp) != M_DATA) { 11662 /* Only process M_DATA mblk_t's */ 11663 goto enq; 11664 } 11665 if (uioap->uioa_state & UIOA_ENABLED) { 11666 /* Uioa is enabled */ 11667 mblk_t *mp1 = mp; 11668 mblk_t *lmp = NULL; 11669 11670 if (seg_len > uioap->uio_resid) { 11671 /* 11672 * There isn't enough uio space for the mblk_t chain 11673 * so disable uioa such that this and any additional 11674 * mblk_t data is handled by the socket and schedule 11675 * the socket for wakeup to finish this uioa. 11676 */ 11677 uioap->uioa_state &= UIOA_CLR; 11678 uioap->uioa_state |= UIOA_FINI; 11679 if (sodp->sod_state & SOD_WAKE_NOT) { 11680 sodp->sod_state &= SOD_WAKE_CLR; 11681 sodp->sod_state |= SOD_WAKE_NEED; 11682 } 11683 goto enq; 11684 } 11685 do { 11686 uint32_t len = MBLKL(mp1); 11687 11688 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11689 /* Scheduled, mark dblk_t as such */ 11690 DB_FLAGS(mp1) |= DBLK_UIOA; 11691 } else { 11692 /* Error, turn off async processing */ 11693 uioap->uioa_state &= UIOA_CLR; 11694 uioap->uioa_state |= UIOA_FINI; 11695 break; 11696 } 11697 lmp = mp1; 11698 } while ((mp1 = mp1->b_cont) != NULL); 11699 11700 if (mp1 != NULL || uioap->uio_resid == 0) { 11701 /* 11702 * Not all mblk_t(s) uioamoved (error) or all uio 11703 * space has been consumed so schedule the socket 11704 * for wakeup to finish this uio. 11705 */ 11706 sodp->sod_state &= SOD_WAKE_CLR; 11707 sodp->sod_state |= SOD_WAKE_NEED; 11708 11709 /* Break the mblk chain if neccessary. */ 11710 if (mp1 != NULL && lmp != NULL) { 11711 mp->b_next = mp1; 11712 lmp->b_cont = NULL; 11713 } 11714 } 11715 } else if (uioap->uioa_state & UIOA_FINI) { 11716 /* 11717 * Post UIO_ENABLED waiting for socket to finish processing 11718 * so just enqueue and update tcp_rwnd. 11719 */ 11720 if (SOD_QFULL(sodp)) 11721 tcp->tcp_rwnd -= seg_len; 11722 } else if (sodp->sod_want > 0) { 11723 /* 11724 * Uioa isn't enabled but sodirect has a pending read(). 11725 */ 11726 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11727 if (sodp->sod_state & SOD_WAKE_NOT) { 11728 /* Schedule socket for wakeup */ 11729 sodp->sod_state &= SOD_WAKE_CLR; 11730 sodp->sod_state |= SOD_WAKE_NEED; 11731 } 11732 tcp->tcp_rwnd -= seg_len; 11733 } 11734 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 11735 /* 11736 * No pending sodirect read() so used the default 11737 * TCP push logic to guess that a push is needed. 11738 */ 11739 if (sodp->sod_state & SOD_WAKE_NOT) { 11740 /* Schedule socket for wakeup */ 11741 sodp->sod_state &= SOD_WAKE_CLR; 11742 sodp->sod_state |= SOD_WAKE_NEED; 11743 } 11744 tcp->tcp_rwnd -= seg_len; 11745 } else { 11746 /* Just update tcp_rwnd */ 11747 tcp->tcp_rwnd -= seg_len; 11748 } 11749 enq: 11750 qfull = SOD_QFULL(sodp); 11751 11752 (sodp->sod_enqueue)(sodp, mp); 11753 11754 if (! qfull && SOD_QFULL(sodp)) { 11755 /* Wasn't QFULL, now QFULL, need back-enable */ 11756 SOD_QSETBE(sodp); 11757 } 11758 11759 /* 11760 * Check to see if remote avail swnd < mss due to delayed ACK, 11761 * first get advertised rwnd. 11762 */ 11763 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 11764 /* Minus delayed ACK count */ 11765 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11766 if (thwin < tcp->tcp_mss) { 11767 /* Remote avail swnd < mss, need ACK now */ 11768 return (TH_ACK_NEEDED); 11769 } 11770 11771 return (0); 11772 } 11773 11774 /* 11775 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11776 * 11777 * This is the default entry function into TCP on the read side. TCP is 11778 * always entered via squeue i.e. using squeue's for mutual exclusion. 11779 * When classifier does a lookup to find the tcp, it also puts a reference 11780 * on the conn structure associated so the tcp is guaranteed to exist 11781 * when we come here. We still need to check the state because it might 11782 * as well has been closed. The squeue processing function i.e. squeue_enter, 11783 * is responsible for doing the CONN_DEC_REF. 11784 * 11785 * Apart from the default entry point, IP also sends packets directly to 11786 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11787 * connections. 11788 */ 11789 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11790 void 11791 tcp_input(void *arg, mblk_t *mp, void *arg2) 11792 { 11793 conn_t *connp = (conn_t *)arg; 11794 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11795 11796 /* arg2 is the sqp */ 11797 ASSERT(arg2 != NULL); 11798 ASSERT(mp != NULL); 11799 11800 /* 11801 * Don't accept any input on a closed tcp as this TCP logically does 11802 * not exist on the system. Don't proceed further with this TCP. 11803 * For eg. this packet could trigger another close of this tcp 11804 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11805 * tcp_clean_death / tcp_closei_local must be called at most once 11806 * on a TCP. In this case we need to refeed the packet into the 11807 * classifier and figure out where the packet should go. Need to 11808 * preserve the recv_ill somehow. Until we figure that out, for 11809 * now just drop the packet if we can't classify the packet. 11810 */ 11811 if (tcp->tcp_state == TCPS_CLOSED || 11812 tcp->tcp_state == TCPS_BOUND) { 11813 conn_t *new_connp; 11814 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11815 11816 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11817 if (new_connp != NULL) { 11818 tcp_reinput(new_connp, mp, arg2); 11819 return; 11820 } 11821 /* We failed to classify. For now just drop the packet */ 11822 freemsg(mp); 11823 return; 11824 } 11825 11826 if (DB_TYPE(mp) != M_DATA) { 11827 tcp_rput_common(tcp, mp); 11828 return; 11829 } 11830 11831 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11832 squeue_t *final_sqp; 11833 11834 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11835 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11836 DB_CKSUMSTART(mp) = 0; 11837 if (tcp->tcp_state == TCPS_SYN_SENT && 11838 connp->conn_final_sqp == NULL && 11839 tcp_outbound_squeue_switch) { 11840 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11841 connp->conn_final_sqp = final_sqp; 11842 if (connp->conn_final_sqp != connp->conn_sqp) { 11843 CONN_INC_REF(connp); 11844 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11845 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11846 tcp_rput_data, connp, ip_squeue_flag, 11847 SQTAG_CONNECT_FINISH); 11848 return; 11849 } 11850 } 11851 } 11852 tcp_rput_data(connp, mp, arg2); 11853 } 11854 11855 /* 11856 * The read side put procedure. 11857 * The packets passed up by ip are assume to be aligned according to 11858 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11859 */ 11860 static void 11861 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11862 { 11863 /* 11864 * tcp_rput_data() does not expect M_CTL except for the case 11865 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11866 * type. Need to make sure that any other M_CTLs don't make 11867 * it to tcp_rput_data since it is not expecting any and doesn't 11868 * check for it. 11869 */ 11870 if (DB_TYPE(mp) == M_CTL) { 11871 switch (*(uint32_t *)(mp->b_rptr)) { 11872 case TCP_IOC_ABORT_CONN: 11873 /* 11874 * Handle connection abort request. 11875 */ 11876 tcp_ioctl_abort_handler(tcp, mp); 11877 return; 11878 case IPSEC_IN: 11879 /* 11880 * Only secure icmp arrive in TCP and they 11881 * don't go through data path. 11882 */ 11883 tcp_icmp_error(tcp, mp); 11884 return; 11885 case IN_PKTINFO: 11886 /* 11887 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11888 * sockets that are receiving IPv4 traffic. tcp 11889 */ 11890 ASSERT(tcp->tcp_family == AF_INET6); 11891 ASSERT(tcp->tcp_ipv6_recvancillary & 11892 TCP_IPV6_RECVPKTINFO); 11893 tcp_rput_data(tcp->tcp_connp, mp, 11894 tcp->tcp_connp->conn_sqp); 11895 return; 11896 case MDT_IOC_INFO_UPDATE: 11897 /* 11898 * Handle Multidata information update; the 11899 * following routine will free the message. 11900 */ 11901 if (tcp->tcp_connp->conn_mdt_ok) { 11902 tcp_mdt_update(tcp, 11903 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11904 B_FALSE); 11905 } 11906 freemsg(mp); 11907 return; 11908 case LSO_IOC_INFO_UPDATE: 11909 /* 11910 * Handle LSO information update; the following 11911 * routine will free the message. 11912 */ 11913 if (tcp->tcp_connp->conn_lso_ok) { 11914 tcp_lso_update(tcp, 11915 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11916 } 11917 freemsg(mp); 11918 return; 11919 default: 11920 /* 11921 * tcp_icmp_err() will process the M_CTL packets. 11922 * Non-ICMP packets, if any, will be discarded in 11923 * tcp_icmp_err(). We will process the ICMP packet 11924 * even if we are TCP_IS_DETACHED_NONEAGER as the 11925 * incoming ICMP packet may result in changing 11926 * the tcp_mss, which we would need if we have 11927 * packets to retransmit. 11928 */ 11929 tcp_icmp_error(tcp, mp); 11930 return; 11931 } 11932 } 11933 11934 /* No point processing the message if tcp is already closed */ 11935 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11936 freemsg(mp); 11937 return; 11938 } 11939 11940 tcp_rput_other(tcp, mp); 11941 } 11942 11943 11944 /* The minimum of smoothed mean deviation in RTO calculation. */ 11945 #define TCP_SD_MIN 400 11946 11947 /* 11948 * Set RTO for this connection. The formula is from Jacobson and Karels' 11949 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11950 * are the same as those in Appendix A.2 of that paper. 11951 * 11952 * m = new measurement 11953 * sa = smoothed RTT average (8 * average estimates). 11954 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11955 */ 11956 static void 11957 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11958 { 11959 long m = TICK_TO_MSEC(rtt); 11960 clock_t sa = tcp->tcp_rtt_sa; 11961 clock_t sv = tcp->tcp_rtt_sd; 11962 clock_t rto; 11963 tcp_stack_t *tcps = tcp->tcp_tcps; 11964 11965 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11966 tcp->tcp_rtt_update++; 11967 11968 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11969 if (sa != 0) { 11970 /* 11971 * Update average estimator: 11972 * new rtt = 7/8 old rtt + 1/8 Error 11973 */ 11974 11975 /* m is now Error in estimate. */ 11976 m -= sa >> 3; 11977 if ((sa += m) <= 0) { 11978 /* 11979 * Don't allow the smoothed average to be negative. 11980 * We use 0 to denote reinitialization of the 11981 * variables. 11982 */ 11983 sa = 1; 11984 } 11985 11986 /* 11987 * Update deviation estimator: 11988 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11989 */ 11990 if (m < 0) 11991 m = -m; 11992 m -= sv >> 2; 11993 sv += m; 11994 } else { 11995 /* 11996 * This follows BSD's implementation. So the reinitialized 11997 * RTO is 3 * m. We cannot go less than 2 because if the 11998 * link is bandwidth dominated, doubling the window size 11999 * during slow start means doubling the RTT. We want to be 12000 * more conservative when we reinitialize our estimates. 3 12001 * is just a convenient number. 12002 */ 12003 sa = m << 3; 12004 sv = m << 1; 12005 } 12006 if (sv < TCP_SD_MIN) { 12007 /* 12008 * We do not know that if sa captures the delay ACK 12009 * effect as in a long train of segments, a receiver 12010 * does not delay its ACKs. So set the minimum of sv 12011 * to be TCP_SD_MIN, which is default to 400 ms, twice 12012 * of BSD DATO. That means the minimum of mean 12013 * deviation is 100 ms. 12014 * 12015 */ 12016 sv = TCP_SD_MIN; 12017 } 12018 tcp->tcp_rtt_sa = sa; 12019 tcp->tcp_rtt_sd = sv; 12020 /* 12021 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12022 * 12023 * Add tcp_rexmit_interval extra in case of extreme environment 12024 * where the algorithm fails to work. The default value of 12025 * tcp_rexmit_interval_extra should be 0. 12026 * 12027 * As we use a finer grained clock than BSD and update 12028 * RTO for every ACKs, add in another .25 of RTT to the 12029 * deviation of RTO to accomodate burstiness of 1/4 of 12030 * window size. 12031 */ 12032 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12033 12034 if (rto > tcps->tcps_rexmit_interval_max) { 12035 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12036 } else if (rto < tcps->tcps_rexmit_interval_min) { 12037 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12038 } else { 12039 tcp->tcp_rto = rto; 12040 } 12041 12042 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12043 tcp->tcp_timer_backoff = 0; 12044 } 12045 12046 /* 12047 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12048 * send queue which starts at the given seq. no. 12049 * 12050 * Parameters: 12051 * tcp_t *tcp: the tcp instance pointer. 12052 * uint32_t seq: the starting seq. no of the requested segment. 12053 * int32_t *off: after the execution, *off will be the offset to 12054 * the returned mblk which points to the requested seq no. 12055 * It is the caller's responsibility to send in a non-null off. 12056 * 12057 * Return: 12058 * A mblk_t pointer pointing to the requested segment in send queue. 12059 */ 12060 static mblk_t * 12061 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12062 { 12063 int32_t cnt; 12064 mblk_t *mp; 12065 12066 /* Defensive coding. Make sure we don't send incorrect data. */ 12067 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12068 return (NULL); 12069 12070 cnt = seq - tcp->tcp_suna; 12071 mp = tcp->tcp_xmit_head; 12072 while (cnt > 0 && mp != NULL) { 12073 cnt -= mp->b_wptr - mp->b_rptr; 12074 if (cnt < 0) { 12075 cnt += mp->b_wptr - mp->b_rptr; 12076 break; 12077 } 12078 mp = mp->b_cont; 12079 } 12080 ASSERT(mp != NULL); 12081 *off = cnt; 12082 return (mp); 12083 } 12084 12085 /* 12086 * This function handles all retransmissions if SACK is enabled for this 12087 * connection. First it calculates how many segments can be retransmitted 12088 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12089 * segments. A segment is eligible if sack_cnt for that segment is greater 12090 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12091 * all eligible segments, it checks to see if TCP can send some new segments 12092 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12093 * 12094 * Parameters: 12095 * tcp_t *tcp: the tcp structure of the connection. 12096 * uint_t *flags: in return, appropriate value will be set for 12097 * tcp_rput_data(). 12098 */ 12099 static void 12100 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12101 { 12102 notsack_blk_t *notsack_blk; 12103 int32_t usable_swnd; 12104 int32_t mss; 12105 uint32_t seg_len; 12106 mblk_t *xmit_mp; 12107 tcp_stack_t *tcps = tcp->tcp_tcps; 12108 12109 ASSERT(tcp->tcp_sack_info != NULL); 12110 ASSERT(tcp->tcp_notsack_list != NULL); 12111 ASSERT(tcp->tcp_rexmit == B_FALSE); 12112 12113 /* Defensive coding in case there is a bug... */ 12114 if (tcp->tcp_notsack_list == NULL) { 12115 return; 12116 } 12117 notsack_blk = tcp->tcp_notsack_list; 12118 mss = tcp->tcp_mss; 12119 12120 /* 12121 * Limit the num of outstanding data in the network to be 12122 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12123 */ 12124 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12125 12126 /* At least retransmit 1 MSS of data. */ 12127 if (usable_swnd <= 0) { 12128 usable_swnd = mss; 12129 } 12130 12131 /* Make sure no new RTT samples will be taken. */ 12132 tcp->tcp_csuna = tcp->tcp_snxt; 12133 12134 notsack_blk = tcp->tcp_notsack_list; 12135 while (usable_swnd > 0) { 12136 mblk_t *snxt_mp, *tmp_mp; 12137 tcp_seq begin = tcp->tcp_sack_snxt; 12138 tcp_seq end; 12139 int32_t off; 12140 12141 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12142 if (SEQ_GT(notsack_blk->end, begin) && 12143 (notsack_blk->sack_cnt >= 12144 tcps->tcps_dupack_fast_retransmit)) { 12145 end = notsack_blk->end; 12146 if (SEQ_LT(begin, notsack_blk->begin)) { 12147 begin = notsack_blk->begin; 12148 } 12149 break; 12150 } 12151 } 12152 /* 12153 * All holes are filled. Manipulate tcp_cwnd to send more 12154 * if we can. Note that after the SACK recovery, tcp_cwnd is 12155 * set to tcp_cwnd_ssthresh. 12156 */ 12157 if (notsack_blk == NULL) { 12158 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12159 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12160 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12161 ASSERT(tcp->tcp_cwnd > 0); 12162 return; 12163 } else { 12164 usable_swnd = usable_swnd / mss; 12165 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12166 MAX(usable_swnd * mss, mss); 12167 *flags |= TH_XMIT_NEEDED; 12168 return; 12169 } 12170 } 12171 12172 /* 12173 * Note that we may send more than usable_swnd allows here 12174 * because of round off, but no more than 1 MSS of data. 12175 */ 12176 seg_len = end - begin; 12177 if (seg_len > mss) 12178 seg_len = mss; 12179 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12180 ASSERT(snxt_mp != NULL); 12181 /* This should not happen. Defensive coding again... */ 12182 if (snxt_mp == NULL) { 12183 return; 12184 } 12185 12186 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12187 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12188 if (xmit_mp == NULL) 12189 return; 12190 12191 usable_swnd -= seg_len; 12192 tcp->tcp_pipe += seg_len; 12193 tcp->tcp_sack_snxt = begin + seg_len; 12194 12195 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12196 12197 /* 12198 * Update the send timestamp to avoid false retransmission. 12199 */ 12200 snxt_mp->b_prev = (mblk_t *)lbolt; 12201 12202 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12203 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12204 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12205 /* 12206 * Update tcp_rexmit_max to extend this SACK recovery phase. 12207 * This happens when new data sent during fast recovery is 12208 * also lost. If TCP retransmits those new data, it needs 12209 * to extend SACK recover phase to avoid starting another 12210 * fast retransmit/recovery unnecessarily. 12211 */ 12212 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12213 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12214 } 12215 } 12216 } 12217 12218 /* 12219 * This function handles policy checking at TCP level for non-hard_bound/ 12220 * detached connections. 12221 */ 12222 static boolean_t 12223 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12224 boolean_t secure, boolean_t mctl_present) 12225 { 12226 ipsec_latch_t *ipl = NULL; 12227 ipsec_action_t *act = NULL; 12228 mblk_t *data_mp; 12229 ipsec_in_t *ii; 12230 const char *reason; 12231 kstat_named_t *counter; 12232 tcp_stack_t *tcps = tcp->tcp_tcps; 12233 ipsec_stack_t *ipss; 12234 ip_stack_t *ipst; 12235 12236 ASSERT(mctl_present || !secure); 12237 12238 ASSERT((ipha == NULL && ip6h != NULL) || 12239 (ip6h == NULL && ipha != NULL)); 12240 12241 /* 12242 * We don't necessarily have an ipsec_in_act action to verify 12243 * policy because of assymetrical policy where we have only 12244 * outbound policy and no inbound policy (possible with global 12245 * policy). 12246 */ 12247 if (!secure) { 12248 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12249 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12250 return (B_TRUE); 12251 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12252 "tcp_check_policy", ipha, ip6h, secure, 12253 tcps->tcps_netstack); 12254 ipss = tcps->tcps_netstack->netstack_ipsec; 12255 12256 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12257 DROPPER(ipss, ipds_tcp_clear), 12258 &tcps->tcps_dropper); 12259 return (B_FALSE); 12260 } 12261 12262 /* 12263 * We have a secure packet. 12264 */ 12265 if (act == NULL) { 12266 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12267 "tcp_check_policy", ipha, ip6h, secure, 12268 tcps->tcps_netstack); 12269 ipss = tcps->tcps_netstack->netstack_ipsec; 12270 12271 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12272 DROPPER(ipss, ipds_tcp_secure), 12273 &tcps->tcps_dropper); 12274 return (B_FALSE); 12275 } 12276 12277 /* 12278 * XXX This whole routine is currently incorrect. ipl should 12279 * be set to the latch pointer, but is currently not set, so 12280 * we initialize it to NULL to avoid picking up random garbage. 12281 */ 12282 if (ipl == NULL) 12283 return (B_TRUE); 12284 12285 data_mp = first_mp->b_cont; 12286 12287 ii = (ipsec_in_t *)first_mp->b_rptr; 12288 12289 ipst = tcps->tcps_netstack->netstack_ip; 12290 12291 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12292 &counter, tcp->tcp_connp)) { 12293 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12294 return (B_TRUE); 12295 } 12296 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12297 "tcp inbound policy mismatch: %s, packet dropped\n", 12298 reason); 12299 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12300 12301 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12302 &tcps->tcps_dropper); 12303 return (B_FALSE); 12304 } 12305 12306 /* 12307 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12308 * retransmission after a timeout. 12309 * 12310 * To limit the number of duplicate segments, we limit the number of segment 12311 * to be sent in one time to tcp_snd_burst, the burst variable. 12312 */ 12313 static void 12314 tcp_ss_rexmit(tcp_t *tcp) 12315 { 12316 uint32_t snxt; 12317 uint32_t smax; 12318 int32_t win; 12319 int32_t mss; 12320 int32_t off; 12321 int32_t burst = tcp->tcp_snd_burst; 12322 mblk_t *snxt_mp; 12323 tcp_stack_t *tcps = tcp->tcp_tcps; 12324 12325 /* 12326 * Note that tcp_rexmit can be set even though TCP has retransmitted 12327 * all unack'ed segments. 12328 */ 12329 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12330 smax = tcp->tcp_rexmit_max; 12331 snxt = tcp->tcp_rexmit_nxt; 12332 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12333 snxt = tcp->tcp_suna; 12334 } 12335 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12336 win -= snxt - tcp->tcp_suna; 12337 mss = tcp->tcp_mss; 12338 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12339 12340 while (SEQ_LT(snxt, smax) && (win > 0) && 12341 (burst > 0) && (snxt_mp != NULL)) { 12342 mblk_t *xmit_mp; 12343 mblk_t *old_snxt_mp = snxt_mp; 12344 uint32_t cnt = mss; 12345 12346 if (win < cnt) { 12347 cnt = win; 12348 } 12349 if (SEQ_GT(snxt + cnt, smax)) { 12350 cnt = smax - snxt; 12351 } 12352 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12353 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12354 if (xmit_mp == NULL) 12355 return; 12356 12357 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12358 12359 snxt += cnt; 12360 win -= cnt; 12361 /* 12362 * Update the send timestamp to avoid false 12363 * retransmission. 12364 */ 12365 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12366 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12367 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12368 12369 tcp->tcp_rexmit_nxt = snxt; 12370 burst--; 12371 } 12372 /* 12373 * If we have transmitted all we have at the time 12374 * we started the retranmission, we can leave 12375 * the rest of the job to tcp_wput_data(). But we 12376 * need to check the send window first. If the 12377 * win is not 0, go on with tcp_wput_data(). 12378 */ 12379 if (SEQ_LT(snxt, smax) || win == 0) { 12380 return; 12381 } 12382 } 12383 /* Only call tcp_wput_data() if there is data to be sent. */ 12384 if (tcp->tcp_unsent) { 12385 tcp_wput_data(tcp, NULL, B_FALSE); 12386 } 12387 } 12388 12389 /* 12390 * Process all TCP option in SYN segment. Note that this function should 12391 * be called after tcp_adapt_ire() is called so that the necessary info 12392 * from IRE is already set in the tcp structure. 12393 * 12394 * This function sets up the correct tcp_mss value according to the 12395 * MSS option value and our header size. It also sets up the window scale 12396 * and timestamp values, and initialize SACK info blocks. But it does not 12397 * change receive window size after setting the tcp_mss value. The caller 12398 * should do the appropriate change. 12399 */ 12400 void 12401 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12402 { 12403 int options; 12404 tcp_opt_t tcpopt; 12405 uint32_t mss_max; 12406 char *tmp_tcph; 12407 tcp_stack_t *tcps = tcp->tcp_tcps; 12408 12409 tcpopt.tcp = NULL; 12410 options = tcp_parse_options(tcph, &tcpopt); 12411 12412 /* 12413 * Process MSS option. Note that MSS option value does not account 12414 * for IP or TCP options. This means that it is equal to MTU - minimum 12415 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12416 * IPv6. 12417 */ 12418 if (!(options & TCP_OPT_MSS_PRESENT)) { 12419 if (tcp->tcp_ipversion == IPV4_VERSION) 12420 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12421 else 12422 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12423 } else { 12424 if (tcp->tcp_ipversion == IPV4_VERSION) 12425 mss_max = tcps->tcps_mss_max_ipv4; 12426 else 12427 mss_max = tcps->tcps_mss_max_ipv6; 12428 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12429 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12430 else if (tcpopt.tcp_opt_mss > mss_max) 12431 tcpopt.tcp_opt_mss = mss_max; 12432 } 12433 12434 /* Process Window Scale option. */ 12435 if (options & TCP_OPT_WSCALE_PRESENT) { 12436 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12437 tcp->tcp_snd_ws_ok = B_TRUE; 12438 } else { 12439 tcp->tcp_snd_ws = B_FALSE; 12440 tcp->tcp_snd_ws_ok = B_FALSE; 12441 tcp->tcp_rcv_ws = B_FALSE; 12442 } 12443 12444 /* Process Timestamp option. */ 12445 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12446 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12447 tmp_tcph = (char *)tcp->tcp_tcph; 12448 12449 tcp->tcp_snd_ts_ok = B_TRUE; 12450 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12451 tcp->tcp_last_rcv_lbolt = lbolt64; 12452 ASSERT(OK_32PTR(tmp_tcph)); 12453 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12454 12455 /* Fill in our template header with basic timestamp option. */ 12456 tmp_tcph += tcp->tcp_tcp_hdr_len; 12457 tmp_tcph[0] = TCPOPT_NOP; 12458 tmp_tcph[1] = TCPOPT_NOP; 12459 tmp_tcph[2] = TCPOPT_TSTAMP; 12460 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12461 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12462 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12463 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12464 } else { 12465 tcp->tcp_snd_ts_ok = B_FALSE; 12466 } 12467 12468 /* 12469 * Process SACK options. If SACK is enabled for this connection, 12470 * then allocate the SACK info structure. Note the following ways 12471 * when tcp_snd_sack_ok is set to true. 12472 * 12473 * For active connection: in tcp_adapt_ire() called in 12474 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12475 * is checked. 12476 * 12477 * For passive connection: in tcp_adapt_ire() called in 12478 * tcp_accept_comm(). 12479 * 12480 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12481 * That check makes sure that if we did not send a SACK OK option, 12482 * we will not enable SACK for this connection even though the other 12483 * side sends us SACK OK option. For active connection, the SACK 12484 * info structure has already been allocated. So we need to free 12485 * it if SACK is disabled. 12486 */ 12487 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12488 (tcp->tcp_snd_sack_ok || 12489 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12490 /* This should be true only in the passive case. */ 12491 if (tcp->tcp_sack_info == NULL) { 12492 ASSERT(TCP_IS_DETACHED(tcp)); 12493 tcp->tcp_sack_info = 12494 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12495 } 12496 if (tcp->tcp_sack_info == NULL) { 12497 tcp->tcp_snd_sack_ok = B_FALSE; 12498 } else { 12499 tcp->tcp_snd_sack_ok = B_TRUE; 12500 if (tcp->tcp_snd_ts_ok) { 12501 tcp->tcp_max_sack_blk = 3; 12502 } else { 12503 tcp->tcp_max_sack_blk = 4; 12504 } 12505 } 12506 } else { 12507 /* 12508 * Resetting tcp_snd_sack_ok to B_FALSE so that 12509 * no SACK info will be used for this 12510 * connection. This assumes that SACK usage 12511 * permission is negotiated. This may need 12512 * to be changed once this is clarified. 12513 */ 12514 if (tcp->tcp_sack_info != NULL) { 12515 ASSERT(tcp->tcp_notsack_list == NULL); 12516 kmem_cache_free(tcp_sack_info_cache, 12517 tcp->tcp_sack_info); 12518 tcp->tcp_sack_info = NULL; 12519 } 12520 tcp->tcp_snd_sack_ok = B_FALSE; 12521 } 12522 12523 /* 12524 * Now we know the exact TCP/IP header length, subtract 12525 * that from tcp_mss to get our side's MSS. 12526 */ 12527 tcp->tcp_mss -= tcp->tcp_hdr_len; 12528 /* 12529 * Here we assume that the other side's header size will be equal to 12530 * our header size. We calculate the real MSS accordingly. Need to 12531 * take into additional stuffs IPsec puts in. 12532 * 12533 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12534 */ 12535 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12536 ((tcp->tcp_ipversion == IPV4_VERSION ? 12537 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12538 12539 /* 12540 * Set MSS to the smaller one of both ends of the connection. 12541 * We should not have called tcp_mss_set() before, but our 12542 * side of the MSS should have been set to a proper value 12543 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12544 * STREAM head parameters properly. 12545 * 12546 * If we have a larger-than-16-bit window but the other side 12547 * didn't want to do window scale, tcp_rwnd_set() will take 12548 * care of that. 12549 */ 12550 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12551 } 12552 12553 /* 12554 * Sends the T_CONN_IND to the listener. The caller calls this 12555 * functions via squeue to get inside the listener's perimeter 12556 * once the 3 way hand shake is done a T_CONN_IND needs to be 12557 * sent. As an optimization, the caller can call this directly 12558 * if listener's perimeter is same as eager's. 12559 */ 12560 /* ARGSUSED */ 12561 void 12562 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12563 { 12564 conn_t *lconnp = (conn_t *)arg; 12565 tcp_t *listener = lconnp->conn_tcp; 12566 tcp_t *tcp; 12567 struct T_conn_ind *conn_ind; 12568 ipaddr_t *addr_cache; 12569 boolean_t need_send_conn_ind = B_FALSE; 12570 tcp_stack_t *tcps = listener->tcp_tcps; 12571 12572 /* retrieve the eager */ 12573 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12574 ASSERT(conn_ind->OPT_offset != 0 && 12575 conn_ind->OPT_length == sizeof (intptr_t)); 12576 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12577 conn_ind->OPT_length); 12578 12579 /* 12580 * TLI/XTI applications will get confused by 12581 * sending eager as an option since it violates 12582 * the option semantics. So remove the eager as 12583 * option since TLI/XTI app doesn't need it anyway. 12584 */ 12585 if (!TCP_IS_SOCKET(listener)) { 12586 conn_ind->OPT_length = 0; 12587 conn_ind->OPT_offset = 0; 12588 } 12589 if (listener->tcp_state == TCPS_CLOSED || 12590 TCP_IS_DETACHED(listener)) { 12591 /* 12592 * If listener has closed, it would have caused a 12593 * a cleanup/blowoff to happen for the eager. We 12594 * just need to return. 12595 */ 12596 freemsg(mp); 12597 return; 12598 } 12599 12600 12601 /* 12602 * if the conn_req_q is full defer passing up the 12603 * T_CONN_IND until space is availabe after t_accept() 12604 * processing 12605 */ 12606 mutex_enter(&listener->tcp_eager_lock); 12607 12608 /* 12609 * Take the eager out, if it is in the list of droppable eagers 12610 * as we are here because the 3W handshake is over. 12611 */ 12612 MAKE_UNDROPPABLE(tcp); 12613 12614 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12615 tcp_t *tail; 12616 12617 /* 12618 * The eager already has an extra ref put in tcp_rput_data 12619 * so that it stays till accept comes back even though it 12620 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12621 */ 12622 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12623 listener->tcp_conn_req_cnt_q0--; 12624 listener->tcp_conn_req_cnt_q++; 12625 12626 /* Move from SYN_RCVD to ESTABLISHED list */ 12627 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12628 tcp->tcp_eager_prev_q0; 12629 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12630 tcp->tcp_eager_next_q0; 12631 tcp->tcp_eager_prev_q0 = NULL; 12632 tcp->tcp_eager_next_q0 = NULL; 12633 12634 /* 12635 * Insert at end of the queue because sockfs 12636 * sends down T_CONN_RES in chronological 12637 * order. Leaving the older conn indications 12638 * at front of the queue helps reducing search 12639 * time. 12640 */ 12641 tail = listener->tcp_eager_last_q; 12642 if (tail != NULL) 12643 tail->tcp_eager_next_q = tcp; 12644 else 12645 listener->tcp_eager_next_q = tcp; 12646 listener->tcp_eager_last_q = tcp; 12647 tcp->tcp_eager_next_q = NULL; 12648 /* 12649 * Delay sending up the T_conn_ind until we are 12650 * done with the eager. Once we have have sent up 12651 * the T_conn_ind, the accept can potentially complete 12652 * any time and release the refhold we have on the eager. 12653 */ 12654 need_send_conn_ind = B_TRUE; 12655 } else { 12656 /* 12657 * Defer connection on q0 and set deferred 12658 * connection bit true 12659 */ 12660 tcp->tcp_conn_def_q0 = B_TRUE; 12661 12662 /* take tcp out of q0 ... */ 12663 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12664 tcp->tcp_eager_next_q0; 12665 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12666 tcp->tcp_eager_prev_q0; 12667 12668 /* ... and place it at the end of q0 */ 12669 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12670 tcp->tcp_eager_next_q0 = listener; 12671 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12672 listener->tcp_eager_prev_q0 = tcp; 12673 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12674 } 12675 12676 /* we have timed out before */ 12677 if (tcp->tcp_syn_rcvd_timeout != 0) { 12678 tcp->tcp_syn_rcvd_timeout = 0; 12679 listener->tcp_syn_rcvd_timeout--; 12680 if (listener->tcp_syn_defense && 12681 listener->tcp_syn_rcvd_timeout <= 12682 (tcps->tcps_conn_req_max_q0 >> 5) && 12683 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12684 listener->tcp_last_rcv_lbolt)) { 12685 /* 12686 * Turn off the defense mode if we 12687 * believe the SYN attack is over. 12688 */ 12689 listener->tcp_syn_defense = B_FALSE; 12690 if (listener->tcp_ip_addr_cache) { 12691 kmem_free((void *)listener->tcp_ip_addr_cache, 12692 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12693 listener->tcp_ip_addr_cache = NULL; 12694 } 12695 } 12696 } 12697 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12698 if (addr_cache != NULL) { 12699 /* 12700 * We have finished a 3-way handshake with this 12701 * remote host. This proves the IP addr is good. 12702 * Cache it! 12703 */ 12704 addr_cache[IP_ADDR_CACHE_HASH( 12705 tcp->tcp_remote)] = tcp->tcp_remote; 12706 } 12707 mutex_exit(&listener->tcp_eager_lock); 12708 if (need_send_conn_ind) { 12709 if (IPCL_IS_NONSTR(lconnp)) { 12710 ASSERT(tcp->tcp_listener == listener); 12711 ASSERT(tcp->tcp_saved_listener == listener); 12712 if ((*lconnp->conn_upcalls->su_newconn) 12713 (lconnp->conn_upper_handle, 12714 (sock_lower_handle_t)tcp->tcp_connp, 12715 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 12716 &tcp->tcp_connp->conn_upcalls) != NULL) { 12717 /* 12718 * Keep the message around 12719 * in case of fallback 12720 */ 12721 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12722 } else { 12723 freemsg(mp); 12724 } 12725 } else { 12726 putnext(listener->tcp_rq, mp); 12727 } 12728 } 12729 } 12730 12731 mblk_t * 12732 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12733 uint_t *ifindexp, ip6_pkt_t *ippp) 12734 { 12735 ip_pktinfo_t *pinfo; 12736 ip6_t *ip6h; 12737 uchar_t *rptr; 12738 mblk_t *first_mp = mp; 12739 boolean_t mctl_present = B_FALSE; 12740 uint_t ifindex = 0; 12741 ip6_pkt_t ipp; 12742 uint_t ipvers; 12743 uint_t ip_hdr_len; 12744 tcp_stack_t *tcps = tcp->tcp_tcps; 12745 12746 rptr = mp->b_rptr; 12747 ASSERT(OK_32PTR(rptr)); 12748 ASSERT(tcp != NULL); 12749 ipp.ipp_fields = 0; 12750 12751 switch DB_TYPE(mp) { 12752 case M_CTL: 12753 mp = mp->b_cont; 12754 if (mp == NULL) { 12755 freemsg(first_mp); 12756 return (NULL); 12757 } 12758 if (DB_TYPE(mp) != M_DATA) { 12759 freemsg(first_mp); 12760 return (NULL); 12761 } 12762 mctl_present = B_TRUE; 12763 break; 12764 case M_DATA: 12765 break; 12766 default: 12767 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12768 freemsg(mp); 12769 return (NULL); 12770 } 12771 ipvers = IPH_HDR_VERSION(rptr); 12772 if (ipvers == IPV4_VERSION) { 12773 if (tcp == NULL) { 12774 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12775 goto done; 12776 } 12777 12778 ipp.ipp_fields |= IPPF_HOPLIMIT; 12779 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12780 12781 /* 12782 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12783 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12784 */ 12785 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12786 mctl_present) { 12787 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12788 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12789 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12790 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12791 ipp.ipp_fields |= IPPF_IFINDEX; 12792 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12793 ifindex = pinfo->ip_pkt_ifindex; 12794 } 12795 freeb(first_mp); 12796 mctl_present = B_FALSE; 12797 } 12798 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12799 } else { 12800 ip6h = (ip6_t *)rptr; 12801 12802 ASSERT(ipvers == IPV6_VERSION); 12803 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12804 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12805 ipp.ipp_hoplimit = ip6h->ip6_hops; 12806 12807 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12808 uint8_t nexthdrp; 12809 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12810 12811 /* Look for ifindex information */ 12812 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12813 ip6i_t *ip6i = (ip6i_t *)ip6h; 12814 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12815 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12816 freemsg(first_mp); 12817 return (NULL); 12818 } 12819 12820 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12821 ASSERT(ip6i->ip6i_ifindex != 0); 12822 ipp.ipp_fields |= IPPF_IFINDEX; 12823 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12824 ifindex = ip6i->ip6i_ifindex; 12825 } 12826 rptr = (uchar_t *)&ip6i[1]; 12827 mp->b_rptr = rptr; 12828 if (rptr == mp->b_wptr) { 12829 mblk_t *mp1; 12830 mp1 = mp->b_cont; 12831 freeb(mp); 12832 mp = mp1; 12833 rptr = mp->b_rptr; 12834 } 12835 if (MBLKL(mp) < IPV6_HDR_LEN + 12836 sizeof (tcph_t)) { 12837 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12838 freemsg(first_mp); 12839 return (NULL); 12840 } 12841 ip6h = (ip6_t *)rptr; 12842 } 12843 12844 /* 12845 * Find any potentially interesting extension headers 12846 * as well as the length of the IPv6 + extension 12847 * headers. 12848 */ 12849 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12850 /* Verify if this is a TCP packet */ 12851 if (nexthdrp != IPPROTO_TCP) { 12852 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12853 freemsg(first_mp); 12854 return (NULL); 12855 } 12856 } else { 12857 ip_hdr_len = IPV6_HDR_LEN; 12858 } 12859 } 12860 12861 done: 12862 if (ipversp != NULL) 12863 *ipversp = ipvers; 12864 if (ip_hdr_lenp != NULL) 12865 *ip_hdr_lenp = ip_hdr_len; 12866 if (ippp != NULL) 12867 *ippp = ipp; 12868 if (ifindexp != NULL) 12869 *ifindexp = ifindex; 12870 if (mctl_present) { 12871 freeb(first_mp); 12872 } 12873 return (mp); 12874 } 12875 12876 /* 12877 * Handle M_DATA messages from IP. Its called directly from IP via 12878 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12879 * in this path. 12880 * 12881 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12882 * v4 and v6), we are called through tcp_input() and a M_CTL can 12883 * be present for options but tcp_find_pktinfo() deals with it. We 12884 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12885 * 12886 * The first argument is always the connp/tcp to which the mp belongs. 12887 * There are no exceptions to this rule. The caller has already put 12888 * a reference on this connp/tcp and once tcp_rput_data() returns, 12889 * the squeue will do the refrele. 12890 * 12891 * The TH_SYN for the listener directly go to tcp_conn_request via 12892 * squeue. 12893 * 12894 * sqp: NULL = recursive, sqp != NULL means called from squeue 12895 */ 12896 void 12897 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12898 { 12899 int32_t bytes_acked; 12900 int32_t gap; 12901 mblk_t *mp1; 12902 uint_t flags; 12903 uint32_t new_swnd = 0; 12904 uchar_t *iphdr; 12905 uchar_t *rptr; 12906 int32_t rgap; 12907 uint32_t seg_ack; 12908 int seg_len; 12909 uint_t ip_hdr_len; 12910 uint32_t seg_seq; 12911 tcph_t *tcph; 12912 int urp; 12913 tcp_opt_t tcpopt; 12914 uint_t ipvers; 12915 ip6_pkt_t ipp; 12916 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12917 uint32_t cwnd; 12918 uint32_t add; 12919 int npkt; 12920 int mss; 12921 conn_t *connp = (conn_t *)arg; 12922 squeue_t *sqp = (squeue_t *)arg2; 12923 tcp_t *tcp = connp->conn_tcp; 12924 tcp_stack_t *tcps = tcp->tcp_tcps; 12925 12926 /* 12927 * RST from fused tcp loopback peer should trigger an unfuse. 12928 */ 12929 if (tcp->tcp_fused) { 12930 TCP_STAT(tcps, tcp_fusion_aborted); 12931 tcp_unfuse(tcp); 12932 } 12933 12934 iphdr = mp->b_rptr; 12935 rptr = mp->b_rptr; 12936 ASSERT(OK_32PTR(rptr)); 12937 12938 /* 12939 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12940 * processing here. For rest call tcp_find_pktinfo to fill up the 12941 * necessary information. 12942 */ 12943 if (IPCL_IS_TCP4(connp)) { 12944 ipvers = IPV4_VERSION; 12945 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12946 } else { 12947 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12948 NULL, &ipp); 12949 if (mp == NULL) { 12950 TCP_STAT(tcps, tcp_rput_v6_error); 12951 return; 12952 } 12953 iphdr = mp->b_rptr; 12954 rptr = mp->b_rptr; 12955 } 12956 ASSERT(DB_TYPE(mp) == M_DATA); 12957 ASSERT(mp->b_next == NULL); 12958 12959 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12960 seg_seq = ABE32_TO_U32(tcph->th_seq); 12961 seg_ack = ABE32_TO_U32(tcph->th_ack); 12962 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12963 seg_len = (int)(mp->b_wptr - rptr) - 12964 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12965 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12966 do { 12967 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12968 (uintptr_t)INT_MAX); 12969 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12970 } while ((mp1 = mp1->b_cont) != NULL && 12971 mp1->b_datap->db_type == M_DATA); 12972 } 12973 12974 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12975 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12976 seg_len, tcph); 12977 return; 12978 } 12979 12980 if (sqp != NULL) { 12981 /* 12982 * This is the correct place to update tcp_last_recv_time. Note 12983 * that it is also updated for tcp structure that belongs to 12984 * global and listener queues which do not really need updating. 12985 * But that should not cause any harm. And it is updated for 12986 * all kinds of incoming segments, not only for data segments. 12987 */ 12988 tcp->tcp_last_recv_time = lbolt; 12989 } 12990 12991 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12992 12993 BUMP_LOCAL(tcp->tcp_ibsegs); 12994 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12995 12996 if ((flags & TH_URG) && sqp != NULL) { 12997 /* 12998 * TCP can't handle urgent pointers that arrive before 12999 * the connection has been accept()ed since it can't 13000 * buffer OOB data. Discard segment if this happens. 13001 * 13002 * We can't just rely on a non-null tcp_listener to indicate 13003 * that the accept() has completed since unlinking of the 13004 * eager and completion of the accept are not atomic. 13005 * tcp_detached, when it is not set (B_FALSE) indicates 13006 * that the accept() has completed. 13007 * 13008 * Nor can it reassemble urgent pointers, so discard 13009 * if it's not the next segment expected. 13010 * 13011 * Otherwise, collapse chain into one mblk (discard if 13012 * that fails). This makes sure the headers, retransmitted 13013 * data, and new data all are in the same mblk. 13014 */ 13015 ASSERT(mp != NULL); 13016 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 13017 freemsg(mp); 13018 return; 13019 } 13020 /* Update pointers into message */ 13021 iphdr = rptr = mp->b_rptr; 13022 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13023 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13024 /* 13025 * Since we can't handle any data with this urgent 13026 * pointer that is out of sequence, we expunge 13027 * the data. This allows us to still register 13028 * the urgent mark and generate the M_PCSIG, 13029 * which we can do. 13030 */ 13031 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13032 seg_len = 0; 13033 } 13034 } 13035 13036 switch (tcp->tcp_state) { 13037 case TCPS_SYN_SENT: 13038 if (flags & TH_ACK) { 13039 /* 13040 * Note that our stack cannot send data before a 13041 * connection is established, therefore the 13042 * following check is valid. Otherwise, it has 13043 * to be changed. 13044 */ 13045 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13046 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13047 freemsg(mp); 13048 if (flags & TH_RST) 13049 return; 13050 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13051 tcp, seg_ack, 0, TH_RST); 13052 return; 13053 } 13054 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13055 } 13056 if (flags & TH_RST) { 13057 freemsg(mp); 13058 if (flags & TH_ACK) 13059 (void) tcp_clean_death(tcp, 13060 ECONNREFUSED, 13); 13061 return; 13062 } 13063 if (!(flags & TH_SYN)) { 13064 freemsg(mp); 13065 return; 13066 } 13067 13068 /* Process all TCP options. */ 13069 tcp_process_options(tcp, tcph); 13070 /* 13071 * The following changes our rwnd to be a multiple of the 13072 * MIN(peer MSS, our MSS) for performance reason. 13073 */ 13074 (void) tcp_rwnd_set(tcp, 13075 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 13076 13077 /* Is the other end ECN capable? */ 13078 if (tcp->tcp_ecn_ok) { 13079 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13080 tcp->tcp_ecn_ok = B_FALSE; 13081 } 13082 } 13083 /* 13084 * Clear ECN flags because it may interfere with later 13085 * processing. 13086 */ 13087 flags &= ~(TH_ECE|TH_CWR); 13088 13089 tcp->tcp_irs = seg_seq; 13090 tcp->tcp_rack = seg_seq; 13091 tcp->tcp_rnxt = seg_seq + 1; 13092 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13093 if (!TCP_IS_DETACHED(tcp)) { 13094 /* Allocate room for SACK options if needed. */ 13095 if (tcp->tcp_snd_sack_ok) { 13096 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13097 tcp->tcp_hdr_len + 13098 TCPOPT_MAX_SACK_LEN + 13099 (tcp->tcp_loopback ? 0 : 13100 tcps->tcps_wroff_xtra)); 13101 } else { 13102 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13103 tcp->tcp_hdr_len + 13104 (tcp->tcp_loopback ? 0 : 13105 tcps->tcps_wroff_xtra)); 13106 } 13107 } 13108 if (flags & TH_ACK) { 13109 /* 13110 * If we can't get the confirmation upstream, pretend 13111 * we didn't even see this one. 13112 * 13113 * XXX: how can we pretend we didn't see it if we 13114 * have updated rnxt et. al. 13115 * 13116 * For loopback we defer sending up the T_CONN_CON 13117 * until after some checks below. 13118 */ 13119 mp1 = NULL; 13120 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13121 tcp->tcp_loopback ? &mp1 : NULL)) { 13122 freemsg(mp); 13123 return; 13124 } 13125 /* SYN was acked - making progress */ 13126 if (tcp->tcp_ipversion == IPV6_VERSION) 13127 tcp->tcp_ip_forward_progress = B_TRUE; 13128 13129 /* One for the SYN */ 13130 tcp->tcp_suna = tcp->tcp_iss + 1; 13131 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13132 tcp->tcp_state = TCPS_ESTABLISHED; 13133 13134 /* 13135 * If SYN was retransmitted, need to reset all 13136 * retransmission info. This is because this 13137 * segment will be treated as a dup ACK. 13138 */ 13139 if (tcp->tcp_rexmit) { 13140 tcp->tcp_rexmit = B_FALSE; 13141 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13142 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13143 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13144 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13145 tcp->tcp_ms_we_have_waited = 0; 13146 13147 /* 13148 * Set tcp_cwnd back to 1 MSS, per 13149 * recommendation from 13150 * draft-floyd-incr-init-win-01.txt, 13151 * Increasing TCP's Initial Window. 13152 */ 13153 tcp->tcp_cwnd = tcp->tcp_mss; 13154 } 13155 13156 tcp->tcp_swl1 = seg_seq; 13157 tcp->tcp_swl2 = seg_ack; 13158 13159 new_swnd = BE16_TO_U16(tcph->th_win); 13160 tcp->tcp_swnd = new_swnd; 13161 if (new_swnd > tcp->tcp_max_swnd) 13162 tcp->tcp_max_swnd = new_swnd; 13163 13164 /* 13165 * Always send the three-way handshake ack immediately 13166 * in order to make the connection complete as soon as 13167 * possible on the accepting host. 13168 */ 13169 flags |= TH_ACK_NEEDED; 13170 13171 /* 13172 * Special case for loopback. At this point we have 13173 * received SYN-ACK from the remote endpoint. In 13174 * order to ensure that both endpoints reach the 13175 * fused state prior to any data exchange, the final 13176 * ACK needs to be sent before we indicate T_CONN_CON 13177 * to the module upstream. 13178 */ 13179 if (tcp->tcp_loopback) { 13180 mblk_t *ack_mp; 13181 13182 ASSERT(!tcp->tcp_unfusable); 13183 ASSERT(mp1 != NULL); 13184 /* 13185 * For loopback, we always get a pure SYN-ACK 13186 * and only need to send back the final ACK 13187 * with no data (this is because the other 13188 * tcp is ours and we don't do T/TCP). This 13189 * final ACK triggers the passive side to 13190 * perform fusion in ESTABLISHED state. 13191 */ 13192 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13193 if (tcp->tcp_ack_tid != 0) { 13194 (void) TCP_TIMER_CANCEL(tcp, 13195 tcp->tcp_ack_tid); 13196 tcp->tcp_ack_tid = 0; 13197 } 13198 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13199 BUMP_LOCAL(tcp->tcp_obsegs); 13200 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13201 13202 if (!IPCL_IS_NONSTR(connp)) { 13203 /* Send up T_CONN_CON */ 13204 putnext(tcp->tcp_rq, mp1); 13205 } else { 13206 (*connp->conn_upcalls-> 13207 su_connected) 13208 (connp->conn_upper_handle, 13209 tcp->tcp_connid, 13210 DB_CRED(mp1), 13211 DB_CPID(mp1)); 13212 freemsg(mp1); 13213 } 13214 13215 freemsg(mp); 13216 return; 13217 } 13218 /* 13219 * Forget fusion; we need to handle more 13220 * complex cases below. Send the deferred 13221 * T_CONN_CON message upstream and proceed 13222 * as usual. Mark this tcp as not capable 13223 * of fusion. 13224 */ 13225 TCP_STAT(tcps, tcp_fusion_unfusable); 13226 tcp->tcp_unfusable = B_TRUE; 13227 if (!IPCL_IS_NONSTR(connp)) { 13228 putnext(tcp->tcp_rq, mp1); 13229 } else { 13230 (*connp->conn_upcalls->su_connected) 13231 (connp->conn_upper_handle, 13232 tcp->tcp_connid, DB_CRED(mp1), 13233 DB_CPID(mp1)); 13234 freemsg(mp1); 13235 } 13236 } 13237 13238 /* 13239 * Check to see if there is data to be sent. If 13240 * yes, set the transmit flag. Then check to see 13241 * if received data processing needs to be done. 13242 * If not, go straight to xmit_check. This short 13243 * cut is OK as we don't support T/TCP. 13244 */ 13245 if (tcp->tcp_unsent) 13246 flags |= TH_XMIT_NEEDED; 13247 13248 if (seg_len == 0 && !(flags & TH_URG)) { 13249 freemsg(mp); 13250 goto xmit_check; 13251 } 13252 13253 flags &= ~TH_SYN; 13254 seg_seq++; 13255 break; 13256 } 13257 tcp->tcp_state = TCPS_SYN_RCVD; 13258 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13259 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13260 if (mp1) { 13261 DB_CPID(mp1) = tcp->tcp_cpid; 13262 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13263 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13264 } 13265 freemsg(mp); 13266 return; 13267 case TCPS_SYN_RCVD: 13268 if (flags & TH_ACK) { 13269 /* 13270 * In this state, a SYN|ACK packet is either bogus 13271 * because the other side must be ACKing our SYN which 13272 * indicates it has seen the ACK for their SYN and 13273 * shouldn't retransmit it or we're crossing SYNs 13274 * on active open. 13275 */ 13276 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13277 freemsg(mp); 13278 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13279 tcp, seg_ack, 0, TH_RST); 13280 return; 13281 } 13282 /* 13283 * NOTE: RFC 793 pg. 72 says this should be 13284 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13285 * but that would mean we have an ack that ignored 13286 * our SYN. 13287 */ 13288 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13289 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13290 freemsg(mp); 13291 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13292 tcp, seg_ack, 0, TH_RST); 13293 return; 13294 } 13295 } 13296 break; 13297 case TCPS_LISTEN: 13298 /* 13299 * Only a TLI listener can come through this path when a 13300 * acceptor is going back to be a listener and a packet 13301 * for the acceptor hits the classifier. For a socket 13302 * listener, this can never happen because a listener 13303 * can never accept connection on itself and hence a 13304 * socket acceptor can not go back to being a listener. 13305 */ 13306 ASSERT(!TCP_IS_SOCKET(tcp)); 13307 /*FALLTHRU*/ 13308 case TCPS_CLOSED: 13309 case TCPS_BOUND: { 13310 conn_t *new_connp; 13311 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13312 13313 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13314 if (new_connp != NULL) { 13315 tcp_reinput(new_connp, mp, connp->conn_sqp); 13316 return; 13317 } 13318 /* We failed to classify. For now just drop the packet */ 13319 freemsg(mp); 13320 return; 13321 } 13322 case TCPS_IDLE: 13323 /* 13324 * Handle the case where the tcp_clean_death() has happened 13325 * on a connection (application hasn't closed yet) but a packet 13326 * was already queued on squeue before tcp_clean_death() 13327 * was processed. Calling tcp_clean_death() twice on same 13328 * connection can result in weird behaviour. 13329 */ 13330 freemsg(mp); 13331 return; 13332 default: 13333 break; 13334 } 13335 13336 /* 13337 * Already on the correct queue/perimeter. 13338 * If this is a detached connection and not an eager 13339 * connection hanging off a listener then new data 13340 * (past the FIN) will cause a reset. 13341 * We do a special check here where it 13342 * is out of the main line, rather than check 13343 * if we are detached every time we see new 13344 * data down below. 13345 */ 13346 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13347 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13348 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13349 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13350 13351 freemsg(mp); 13352 /* 13353 * This could be an SSL closure alert. We're detached so just 13354 * acknowledge it this last time. 13355 */ 13356 if (tcp->tcp_kssl_ctx != NULL) { 13357 kssl_release_ctx(tcp->tcp_kssl_ctx); 13358 tcp->tcp_kssl_ctx = NULL; 13359 13360 tcp->tcp_rnxt += seg_len; 13361 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13362 flags |= TH_ACK_NEEDED; 13363 goto ack_check; 13364 } 13365 13366 tcp_xmit_ctl("new data when detached", tcp, 13367 tcp->tcp_snxt, 0, TH_RST); 13368 (void) tcp_clean_death(tcp, EPROTO, 12); 13369 return; 13370 } 13371 13372 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13373 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13374 new_swnd = BE16_TO_U16(tcph->th_win) << 13375 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13376 13377 if (tcp->tcp_snd_ts_ok) { 13378 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13379 /* 13380 * This segment is not acceptable. 13381 * Drop it and send back an ACK. 13382 */ 13383 freemsg(mp); 13384 flags |= TH_ACK_NEEDED; 13385 goto ack_check; 13386 } 13387 } else if (tcp->tcp_snd_sack_ok) { 13388 ASSERT(tcp->tcp_sack_info != NULL); 13389 tcpopt.tcp = tcp; 13390 /* 13391 * SACK info in already updated in tcp_parse_options. Ignore 13392 * all other TCP options... 13393 */ 13394 (void) tcp_parse_options(tcph, &tcpopt); 13395 } 13396 try_again:; 13397 mss = tcp->tcp_mss; 13398 gap = seg_seq - tcp->tcp_rnxt; 13399 rgap = tcp->tcp_rwnd - (gap + seg_len); 13400 /* 13401 * gap is the amount of sequence space between what we expect to see 13402 * and what we got for seg_seq. A positive value for gap means 13403 * something got lost. A negative value means we got some old stuff. 13404 */ 13405 if (gap < 0) { 13406 /* Old stuff present. Is the SYN in there? */ 13407 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13408 (seg_len != 0)) { 13409 flags &= ~TH_SYN; 13410 seg_seq++; 13411 urp--; 13412 /* Recompute the gaps after noting the SYN. */ 13413 goto try_again; 13414 } 13415 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13416 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13417 (seg_len > -gap ? -gap : seg_len)); 13418 /* Remove the old stuff from seg_len. */ 13419 seg_len += gap; 13420 /* 13421 * Anything left? 13422 * Make sure to check for unack'd FIN when rest of data 13423 * has been previously ack'd. 13424 */ 13425 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13426 /* 13427 * Resets are only valid if they lie within our offered 13428 * window. If the RST bit is set, we just ignore this 13429 * segment. 13430 */ 13431 if (flags & TH_RST) { 13432 freemsg(mp); 13433 return; 13434 } 13435 13436 /* 13437 * The arriving of dup data packets indicate that we 13438 * may have postponed an ack for too long, or the other 13439 * side's RTT estimate is out of shape. Start acking 13440 * more often. 13441 */ 13442 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13443 tcp->tcp_rack_cnt >= 1 && 13444 tcp->tcp_rack_abs_max > 2) { 13445 tcp->tcp_rack_abs_max--; 13446 } 13447 tcp->tcp_rack_cur_max = 1; 13448 13449 /* 13450 * This segment is "unacceptable". None of its 13451 * sequence space lies within our advertized window. 13452 * 13453 * Adjust seg_len to the original value for tracing. 13454 */ 13455 seg_len -= gap; 13456 if (tcp->tcp_debug) { 13457 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13458 "tcp_rput: unacceptable, gap %d, rgap %d, " 13459 "flags 0x%x, seg_seq %u, seg_ack %u, " 13460 "seg_len %d, rnxt %u, snxt %u, %s", 13461 gap, rgap, flags, seg_seq, seg_ack, 13462 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13463 tcp_display(tcp, NULL, 13464 DISP_ADDR_AND_PORT)); 13465 } 13466 13467 /* 13468 * Arrange to send an ACK in response to the 13469 * unacceptable segment per RFC 793 page 69. There 13470 * is only one small difference between ours and the 13471 * acceptability test in the RFC - we accept ACK-only 13472 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13473 * will be generated. 13474 * 13475 * Note that we have to ACK an ACK-only packet at least 13476 * for stacks that send 0-length keep-alives with 13477 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13478 * section 4.2.3.6. As long as we don't ever generate 13479 * an unacceptable packet in response to an incoming 13480 * packet that is unacceptable, it should not cause 13481 * "ACK wars". 13482 */ 13483 flags |= TH_ACK_NEEDED; 13484 13485 /* 13486 * Continue processing this segment in order to use the 13487 * ACK information it contains, but skip all other 13488 * sequence-number processing. Processing the ACK 13489 * information is necessary in order to 13490 * re-synchronize connections that may have lost 13491 * synchronization. 13492 * 13493 * We clear seg_len and flag fields related to 13494 * sequence number processing as they are not 13495 * to be trusted for an unacceptable segment. 13496 */ 13497 seg_len = 0; 13498 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13499 goto process_ack; 13500 } 13501 13502 /* Fix seg_seq, and chew the gap off the front. */ 13503 seg_seq = tcp->tcp_rnxt; 13504 urp += gap; 13505 do { 13506 mblk_t *mp2; 13507 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13508 (uintptr_t)UINT_MAX); 13509 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13510 if (gap > 0) { 13511 mp->b_rptr = mp->b_wptr - gap; 13512 break; 13513 } 13514 mp2 = mp; 13515 mp = mp->b_cont; 13516 freeb(mp2); 13517 } while (gap < 0); 13518 /* 13519 * If the urgent data has already been acknowledged, we 13520 * should ignore TH_URG below 13521 */ 13522 if (urp < 0) 13523 flags &= ~TH_URG; 13524 } 13525 /* 13526 * rgap is the amount of stuff received out of window. A negative 13527 * value is the amount out of window. 13528 */ 13529 if (rgap < 0) { 13530 mblk_t *mp2; 13531 13532 if (tcp->tcp_rwnd == 0) { 13533 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13534 } else { 13535 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13536 UPDATE_MIB(&tcps->tcps_mib, 13537 tcpInDataPastWinBytes, -rgap); 13538 } 13539 13540 /* 13541 * seg_len does not include the FIN, so if more than 13542 * just the FIN is out of window, we act like we don't 13543 * see it. (If just the FIN is out of window, rgap 13544 * will be zero and we will go ahead and acknowledge 13545 * the FIN.) 13546 */ 13547 flags &= ~TH_FIN; 13548 13549 /* Fix seg_len and make sure there is something left. */ 13550 seg_len += rgap; 13551 if (seg_len <= 0) { 13552 /* 13553 * Resets are only valid if they lie within our offered 13554 * window. If the RST bit is set, we just ignore this 13555 * segment. 13556 */ 13557 if (flags & TH_RST) { 13558 freemsg(mp); 13559 return; 13560 } 13561 13562 /* Per RFC 793, we need to send back an ACK. */ 13563 flags |= TH_ACK_NEEDED; 13564 13565 /* 13566 * Send SIGURG as soon as possible i.e. even 13567 * if the TH_URG was delivered in a window probe 13568 * packet (which will be unacceptable). 13569 * 13570 * We generate a signal if none has been generated 13571 * for this connection or if this is a new urgent 13572 * byte. Also send a zero-length "unmarked" message 13573 * to inform SIOCATMARK that this is not the mark. 13574 * 13575 * tcp_urp_last_valid is cleared when the T_exdata_ind 13576 * is sent up. This plus the check for old data 13577 * (gap >= 0) handles the wraparound of the sequence 13578 * number space without having to always track the 13579 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13580 * this max in its rcv_up variable). 13581 * 13582 * This prevents duplicate SIGURGS due to a "late" 13583 * zero-window probe when the T_EXDATA_IND has already 13584 * been sent up. 13585 */ 13586 if ((flags & TH_URG) && 13587 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13588 tcp->tcp_urp_last))) { 13589 if (IPCL_IS_NONSTR(connp)) { 13590 if (!TCP_IS_DETACHED(tcp)) { 13591 (*connp->conn_upcalls-> 13592 su_signal_oob) 13593 (connp->conn_upper_handle, 13594 urp); 13595 } 13596 } else { 13597 mp1 = allocb(0, BPRI_MED); 13598 if (mp1 == NULL) { 13599 freemsg(mp); 13600 return; 13601 } 13602 if (!TCP_IS_DETACHED(tcp) && 13603 !putnextctl1(tcp->tcp_rq, 13604 M_PCSIG, SIGURG)) { 13605 /* Try again on the rexmit. */ 13606 freemsg(mp1); 13607 freemsg(mp); 13608 return; 13609 } 13610 /* 13611 * If the next byte would be the mark 13612 * then mark with MARKNEXT else mark 13613 * with NOTMARKNEXT. 13614 */ 13615 if (gap == 0 && urp == 0) 13616 mp1->b_flag |= MSGMARKNEXT; 13617 else 13618 mp1->b_flag |= MSGNOTMARKNEXT; 13619 freemsg(tcp->tcp_urp_mark_mp); 13620 tcp->tcp_urp_mark_mp = mp1; 13621 flags |= TH_SEND_URP_MARK; 13622 } 13623 tcp->tcp_urp_last_valid = B_TRUE; 13624 tcp->tcp_urp_last = urp + seg_seq; 13625 } 13626 /* 13627 * If this is a zero window probe, continue to 13628 * process the ACK part. But we need to set seg_len 13629 * to 0 to avoid data processing. Otherwise just 13630 * drop the segment and send back an ACK. 13631 */ 13632 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13633 flags &= ~(TH_SYN | TH_URG); 13634 seg_len = 0; 13635 goto process_ack; 13636 } else { 13637 freemsg(mp); 13638 goto ack_check; 13639 } 13640 } 13641 /* Pitch out of window stuff off the end. */ 13642 rgap = seg_len; 13643 mp2 = mp; 13644 do { 13645 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13646 (uintptr_t)INT_MAX); 13647 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13648 if (rgap < 0) { 13649 mp2->b_wptr += rgap; 13650 if ((mp1 = mp2->b_cont) != NULL) { 13651 mp2->b_cont = NULL; 13652 freemsg(mp1); 13653 } 13654 break; 13655 } 13656 } while ((mp2 = mp2->b_cont) != NULL); 13657 } 13658 ok:; 13659 /* 13660 * TCP should check ECN info for segments inside the window only. 13661 * Therefore the check should be done here. 13662 */ 13663 if (tcp->tcp_ecn_ok) { 13664 if (flags & TH_CWR) { 13665 tcp->tcp_ecn_echo_on = B_FALSE; 13666 } 13667 /* 13668 * Note that both ECN_CE and CWR can be set in the 13669 * same segment. In this case, we once again turn 13670 * on ECN_ECHO. 13671 */ 13672 if (tcp->tcp_ipversion == IPV4_VERSION) { 13673 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13674 13675 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13676 tcp->tcp_ecn_echo_on = B_TRUE; 13677 } 13678 } else { 13679 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13680 13681 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13682 htonl(IPH_ECN_CE << 20)) { 13683 tcp->tcp_ecn_echo_on = B_TRUE; 13684 } 13685 } 13686 } 13687 13688 /* 13689 * Check whether we can update tcp_ts_recent. This test is 13690 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13691 * Extensions for High Performance: An Update", Internet Draft. 13692 */ 13693 if (tcp->tcp_snd_ts_ok && 13694 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13695 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13696 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13697 tcp->tcp_last_rcv_lbolt = lbolt64; 13698 } 13699 13700 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13701 /* 13702 * FIN in an out of order segment. We record this in 13703 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13704 * Clear the FIN so that any check on FIN flag will fail. 13705 * Remember that FIN also counts in the sequence number 13706 * space. So we need to ack out of order FIN only segments. 13707 */ 13708 if (flags & TH_FIN) { 13709 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13710 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13711 flags &= ~TH_FIN; 13712 flags |= TH_ACK_NEEDED; 13713 } 13714 if (seg_len > 0) { 13715 /* Fill in the SACK blk list. */ 13716 if (tcp->tcp_snd_sack_ok) { 13717 ASSERT(tcp->tcp_sack_info != NULL); 13718 tcp_sack_insert(tcp->tcp_sack_list, 13719 seg_seq, seg_seq + seg_len, 13720 &(tcp->tcp_num_sack_blk)); 13721 } 13722 13723 /* 13724 * Attempt reassembly and see if we have something 13725 * ready to go. 13726 */ 13727 mp = tcp_reass(tcp, mp, seg_seq); 13728 /* Always ack out of order packets */ 13729 flags |= TH_ACK_NEEDED | TH_PUSH; 13730 if (mp) { 13731 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13732 (uintptr_t)INT_MAX); 13733 seg_len = mp->b_cont ? msgdsize(mp) : 13734 (int)(mp->b_wptr - mp->b_rptr); 13735 seg_seq = tcp->tcp_rnxt; 13736 /* 13737 * A gap is filled and the seq num and len 13738 * of the gap match that of a previously 13739 * received FIN, put the FIN flag back in. 13740 */ 13741 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13742 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13743 flags |= TH_FIN; 13744 tcp->tcp_valid_bits &= 13745 ~TCP_OFO_FIN_VALID; 13746 } 13747 } else { 13748 /* 13749 * Keep going even with NULL mp. 13750 * There may be a useful ACK or something else 13751 * we don't want to miss. 13752 * 13753 * But TCP should not perform fast retransmit 13754 * because of the ack number. TCP uses 13755 * seg_len == 0 to determine if it is a pure 13756 * ACK. And this is not a pure ACK. 13757 */ 13758 seg_len = 0; 13759 ofo_seg = B_TRUE; 13760 } 13761 } 13762 } else if (seg_len > 0) { 13763 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13764 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13765 /* 13766 * If an out of order FIN was received before, and the seq 13767 * num and len of the new segment match that of the FIN, 13768 * put the FIN flag back in. 13769 */ 13770 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13771 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13772 flags |= TH_FIN; 13773 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13774 } 13775 } 13776 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13777 if (flags & TH_RST) { 13778 freemsg(mp); 13779 switch (tcp->tcp_state) { 13780 case TCPS_SYN_RCVD: 13781 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13782 break; 13783 case TCPS_ESTABLISHED: 13784 case TCPS_FIN_WAIT_1: 13785 case TCPS_FIN_WAIT_2: 13786 case TCPS_CLOSE_WAIT: 13787 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13788 break; 13789 case TCPS_CLOSING: 13790 case TCPS_LAST_ACK: 13791 (void) tcp_clean_death(tcp, 0, 16); 13792 break; 13793 default: 13794 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13795 (void) tcp_clean_death(tcp, ENXIO, 17); 13796 break; 13797 } 13798 return; 13799 } 13800 if (flags & TH_SYN) { 13801 /* 13802 * See RFC 793, Page 71 13803 * 13804 * The seq number must be in the window as it should 13805 * be "fixed" above. If it is outside window, it should 13806 * be already rejected. Note that we allow seg_seq to be 13807 * rnxt + rwnd because we want to accept 0 window probe. 13808 */ 13809 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13810 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13811 freemsg(mp); 13812 /* 13813 * If the ACK flag is not set, just use our snxt as the 13814 * seq number of the RST segment. 13815 */ 13816 if (!(flags & TH_ACK)) { 13817 seg_ack = tcp->tcp_snxt; 13818 } 13819 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13820 TH_RST|TH_ACK); 13821 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13822 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13823 return; 13824 } 13825 /* 13826 * urp could be -1 when the urp field in the packet is 0 13827 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13828 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13829 */ 13830 if (flags & TH_URG && urp >= 0) { 13831 if (!tcp->tcp_urp_last_valid || 13832 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13833 if (IPCL_IS_NONSTR(connp)) { 13834 if (!TCP_IS_DETACHED(tcp)) { 13835 (*connp->conn_upcalls->su_signal_oob) 13836 (connp->conn_upper_handle, urp); 13837 } 13838 } else { 13839 /* 13840 * If we haven't generated the signal yet for 13841 * this urgent pointer value, do it now. Also, 13842 * send up a zero-length M_DATA indicating 13843 * whether or not this is the mark. The latter 13844 * is not needed when a T_EXDATA_IND is sent up. 13845 * However, if there are allocation failures 13846 * this code relies on the sender retransmitting 13847 * and the socket code for determining the mark 13848 * should not block waiting for the peer to 13849 * transmit. Thus, for simplicity we always 13850 * send up the mark indication. 13851 */ 13852 mp1 = allocb(0, BPRI_MED); 13853 if (mp1 == NULL) { 13854 freemsg(mp); 13855 return; 13856 } 13857 if (!TCP_IS_DETACHED(tcp) && 13858 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13859 SIGURG)) { 13860 /* Try again on the rexmit. */ 13861 freemsg(mp1); 13862 freemsg(mp); 13863 return; 13864 } 13865 /* 13866 * Mark with NOTMARKNEXT for now. 13867 * The code below will change this to MARKNEXT 13868 * if we are at the mark. 13869 * 13870 * If there are allocation failures (e.g. in 13871 * dupmsg below) the next time tcp_rput_data 13872 * sees the urgent segment it will send up the 13873 * MSGMARKNEXT message. 13874 */ 13875 mp1->b_flag |= MSGNOTMARKNEXT; 13876 freemsg(tcp->tcp_urp_mark_mp); 13877 tcp->tcp_urp_mark_mp = mp1; 13878 flags |= TH_SEND_URP_MARK; 13879 #ifdef DEBUG 13880 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13881 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13882 "last %x, %s", 13883 seg_seq, urp, tcp->tcp_urp_last, 13884 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13885 #endif /* DEBUG */ 13886 } 13887 tcp->tcp_urp_last_valid = B_TRUE; 13888 tcp->tcp_urp_last = urp + seg_seq; 13889 } else if (tcp->tcp_urp_mark_mp != NULL) { 13890 /* 13891 * An allocation failure prevented the previous 13892 * tcp_rput_data from sending up the allocated 13893 * MSG*MARKNEXT message - send it up this time 13894 * around. 13895 */ 13896 flags |= TH_SEND_URP_MARK; 13897 } 13898 13899 /* 13900 * If the urgent byte is in this segment, make sure that it is 13901 * all by itself. This makes it much easier to deal with the 13902 * possibility of an allocation failure on the T_exdata_ind. 13903 * Note that seg_len is the number of bytes in the segment, and 13904 * urp is the offset into the segment of the urgent byte. 13905 * urp < seg_len means that the urgent byte is in this segment. 13906 */ 13907 if (urp < seg_len) { 13908 if (seg_len != 1) { 13909 uint32_t tmp_rnxt; 13910 /* 13911 * Break it up and feed it back in. 13912 * Re-attach the IP header. 13913 */ 13914 mp->b_rptr = iphdr; 13915 if (urp > 0) { 13916 /* 13917 * There is stuff before the urgent 13918 * byte. 13919 */ 13920 mp1 = dupmsg(mp); 13921 if (!mp1) { 13922 /* 13923 * Trim from urgent byte on. 13924 * The rest will come back. 13925 */ 13926 (void) adjmsg(mp, 13927 urp - seg_len); 13928 tcp_rput_data(connp, 13929 mp, NULL); 13930 return; 13931 } 13932 (void) adjmsg(mp1, urp - seg_len); 13933 /* Feed this piece back in. */ 13934 tmp_rnxt = tcp->tcp_rnxt; 13935 tcp_rput_data(connp, mp1, NULL); 13936 /* 13937 * If the data passed back in was not 13938 * processed (ie: bad ACK) sending 13939 * the remainder back in will cause a 13940 * loop. In this case, drop the 13941 * packet and let the sender try 13942 * sending a good packet. 13943 */ 13944 if (tmp_rnxt == tcp->tcp_rnxt) { 13945 freemsg(mp); 13946 return; 13947 } 13948 } 13949 if (urp != seg_len - 1) { 13950 uint32_t tmp_rnxt; 13951 /* 13952 * There is stuff after the urgent 13953 * byte. 13954 */ 13955 mp1 = dupmsg(mp); 13956 if (!mp1) { 13957 /* 13958 * Trim everything beyond the 13959 * urgent byte. The rest will 13960 * come back. 13961 */ 13962 (void) adjmsg(mp, 13963 urp + 1 - seg_len); 13964 tcp_rput_data(connp, 13965 mp, NULL); 13966 return; 13967 } 13968 (void) adjmsg(mp1, urp + 1 - seg_len); 13969 tmp_rnxt = tcp->tcp_rnxt; 13970 tcp_rput_data(connp, mp1, NULL); 13971 /* 13972 * If the data passed back in was not 13973 * processed (ie: bad ACK) sending 13974 * the remainder back in will cause a 13975 * loop. In this case, drop the 13976 * packet and let the sender try 13977 * sending a good packet. 13978 */ 13979 if (tmp_rnxt == tcp->tcp_rnxt) { 13980 freemsg(mp); 13981 return; 13982 } 13983 } 13984 tcp_rput_data(connp, mp, NULL); 13985 return; 13986 } 13987 /* 13988 * This segment contains only the urgent byte. We 13989 * have to allocate the T_exdata_ind, if we can. 13990 */ 13991 if (IPCL_IS_NONSTR(connp)) { 13992 int error; 13993 13994 (*connp->conn_upcalls->su_recv) 13995 (connp->conn_upper_handle, mp, seg_len, 13996 MSG_OOB, &error, NULL); 13997 mp = NULL; 13998 goto update_ack; 13999 } else if (!tcp->tcp_urp_mp) { 14000 struct T_exdata_ind *tei; 14001 mp1 = allocb(sizeof (struct T_exdata_ind), 14002 BPRI_MED); 14003 if (!mp1) { 14004 /* 14005 * Sigh... It'll be back. 14006 * Generate any MSG*MARK message now. 14007 */ 14008 freemsg(mp); 14009 seg_len = 0; 14010 if (flags & TH_SEND_URP_MARK) { 14011 14012 14013 ASSERT(tcp->tcp_urp_mark_mp); 14014 tcp->tcp_urp_mark_mp->b_flag &= 14015 ~MSGNOTMARKNEXT; 14016 tcp->tcp_urp_mark_mp->b_flag |= 14017 MSGMARKNEXT; 14018 } 14019 goto ack_check; 14020 } 14021 mp1->b_datap->db_type = M_PROTO; 14022 tei = (struct T_exdata_ind *)mp1->b_rptr; 14023 tei->PRIM_type = T_EXDATA_IND; 14024 tei->MORE_flag = 0; 14025 mp1->b_wptr = (uchar_t *)&tei[1]; 14026 tcp->tcp_urp_mp = mp1; 14027 #ifdef DEBUG 14028 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14029 "tcp_rput: allocated exdata_ind %s", 14030 tcp_display(tcp, NULL, 14031 DISP_PORT_ONLY)); 14032 #endif /* DEBUG */ 14033 /* 14034 * There is no need to send a separate MSG*MARK 14035 * message since the T_EXDATA_IND will be sent 14036 * now. 14037 */ 14038 flags &= ~TH_SEND_URP_MARK; 14039 freemsg(tcp->tcp_urp_mark_mp); 14040 tcp->tcp_urp_mark_mp = NULL; 14041 } 14042 /* 14043 * Now we are all set. On the next putnext upstream, 14044 * tcp_urp_mp will be non-NULL and will get prepended 14045 * to what has to be this piece containing the urgent 14046 * byte. If for any reason we abort this segment below, 14047 * if it comes back, we will have this ready, or it 14048 * will get blown off in close. 14049 */ 14050 } else if (urp == seg_len) { 14051 /* 14052 * The urgent byte is the next byte after this sequence 14053 * number. If there is data it is marked with 14054 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14055 * since it is not needed. Otherwise, if the code 14056 * above just allocated a zero-length tcp_urp_mark_mp 14057 * message, that message is tagged with MSGMARKNEXT. 14058 * Sending up these MSGMARKNEXT messages makes 14059 * SIOCATMARK work correctly even though 14060 * the T_EXDATA_IND will not be sent up until the 14061 * urgent byte arrives. 14062 */ 14063 if (seg_len != 0) { 14064 flags |= TH_MARKNEXT_NEEDED; 14065 freemsg(tcp->tcp_urp_mark_mp); 14066 tcp->tcp_urp_mark_mp = NULL; 14067 flags &= ~TH_SEND_URP_MARK; 14068 } else if (tcp->tcp_urp_mark_mp != NULL) { 14069 flags |= TH_SEND_URP_MARK; 14070 tcp->tcp_urp_mark_mp->b_flag &= 14071 ~MSGNOTMARKNEXT; 14072 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14073 } 14074 #ifdef DEBUG 14075 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14076 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14077 seg_len, flags, 14078 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14079 #endif /* DEBUG */ 14080 } 14081 #ifdef DEBUG 14082 else { 14083 /* Data left until we hit mark */ 14084 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14085 "tcp_rput: URP %d bytes left, %s", 14086 urp - seg_len, tcp_display(tcp, NULL, 14087 DISP_PORT_ONLY)); 14088 } 14089 #endif /* DEBUG */ 14090 } 14091 14092 process_ack: 14093 if (!(flags & TH_ACK)) { 14094 freemsg(mp); 14095 goto xmit_check; 14096 } 14097 } 14098 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14099 14100 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14101 tcp->tcp_ip_forward_progress = B_TRUE; 14102 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14103 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14104 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14105 /* 3-way handshake complete - pass up the T_CONN_IND */ 14106 tcp_t *listener = tcp->tcp_listener; 14107 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14108 14109 tcp->tcp_tconnind_started = B_TRUE; 14110 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14111 /* 14112 * We are here means eager is fine but it can 14113 * get a TH_RST at any point between now and till 14114 * accept completes and disappear. We need to 14115 * ensure that reference to eager is valid after 14116 * we get out of eager's perimeter. So we do 14117 * an extra refhold. 14118 */ 14119 CONN_INC_REF(connp); 14120 14121 /* 14122 * The listener also exists because of the refhold 14123 * done in tcp_conn_request. Its possible that it 14124 * might have closed. We will check that once we 14125 * get inside listeners context. 14126 */ 14127 CONN_INC_REF(listener->tcp_connp); 14128 if (listener->tcp_connp->conn_sqp == 14129 connp->conn_sqp) { 14130 /* 14131 * We optimize by not calling an SQUEUE_ENTER 14132 * on the listener since we know that the 14133 * listener and eager squeues are the same. 14134 * We are able to make this check safely only 14135 * because neither the eager nor the listener 14136 * can change its squeue. Only an active connect 14137 * can change its squeue 14138 */ 14139 tcp_send_conn_ind(listener->tcp_connp, mp, 14140 listener->tcp_connp->conn_sqp); 14141 CONN_DEC_REF(listener->tcp_connp); 14142 } else if (!tcp->tcp_loopback) { 14143 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14144 mp, tcp_send_conn_ind, 14145 listener->tcp_connp, SQ_FILL, 14146 SQTAG_TCP_CONN_IND); 14147 } else { 14148 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14149 mp, tcp_send_conn_ind, 14150 listener->tcp_connp, SQ_PROCESS, 14151 SQTAG_TCP_CONN_IND); 14152 } 14153 } 14154 14155 if (tcp->tcp_active_open) { 14156 /* 14157 * We are seeing the final ack in the three way 14158 * hand shake of a active open'ed connection 14159 * so we must send up a T_CONN_CON 14160 */ 14161 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14162 freemsg(mp); 14163 return; 14164 } 14165 /* 14166 * Don't fuse the loopback endpoints for 14167 * simultaneous active opens. 14168 */ 14169 if (tcp->tcp_loopback) { 14170 TCP_STAT(tcps, tcp_fusion_unfusable); 14171 tcp->tcp_unfusable = B_TRUE; 14172 } 14173 } 14174 14175 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14176 bytes_acked--; 14177 /* SYN was acked - making progress */ 14178 if (tcp->tcp_ipversion == IPV6_VERSION) 14179 tcp->tcp_ip_forward_progress = B_TRUE; 14180 14181 /* 14182 * If SYN was retransmitted, need to reset all 14183 * retransmission info as this segment will be 14184 * treated as a dup ACK. 14185 */ 14186 if (tcp->tcp_rexmit) { 14187 tcp->tcp_rexmit = B_FALSE; 14188 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14189 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14190 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14191 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14192 tcp->tcp_ms_we_have_waited = 0; 14193 tcp->tcp_cwnd = mss; 14194 } 14195 14196 /* 14197 * We set the send window to zero here. 14198 * This is needed if there is data to be 14199 * processed already on the queue. 14200 * Later (at swnd_update label), the 14201 * "new_swnd > tcp_swnd" condition is satisfied 14202 * the XMIT_NEEDED flag is set in the current 14203 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14204 * called if there is already data on queue in 14205 * this state. 14206 */ 14207 tcp->tcp_swnd = 0; 14208 14209 if (new_swnd > tcp->tcp_max_swnd) 14210 tcp->tcp_max_swnd = new_swnd; 14211 tcp->tcp_swl1 = seg_seq; 14212 tcp->tcp_swl2 = seg_ack; 14213 tcp->tcp_state = TCPS_ESTABLISHED; 14214 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14215 14216 /* Fuse when both sides are in ESTABLISHED state */ 14217 if (tcp->tcp_loopback && do_tcp_fusion) 14218 tcp_fuse(tcp, iphdr, tcph); 14219 14220 } 14221 /* This code follows 4.4BSD-Lite2 mostly. */ 14222 if (bytes_acked < 0) 14223 goto est; 14224 14225 /* 14226 * If TCP is ECN capable and the congestion experience bit is 14227 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14228 * done once per window (or more loosely, per RTT). 14229 */ 14230 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14231 tcp->tcp_cwr = B_FALSE; 14232 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14233 if (!tcp->tcp_cwr) { 14234 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14235 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14236 tcp->tcp_cwnd = npkt * mss; 14237 /* 14238 * If the cwnd is 0, use the timer to clock out 14239 * new segments. This is required by the ECN spec. 14240 */ 14241 if (npkt == 0) { 14242 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14243 /* 14244 * This makes sure that when the ACK comes 14245 * back, we will increase tcp_cwnd by 1 MSS. 14246 */ 14247 tcp->tcp_cwnd_cnt = 0; 14248 } 14249 tcp->tcp_cwr = B_TRUE; 14250 /* 14251 * This marks the end of the current window of in 14252 * flight data. That is why we don't use 14253 * tcp_suna + tcp_swnd. Only data in flight can 14254 * provide ECN info. 14255 */ 14256 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14257 tcp->tcp_ecn_cwr_sent = B_FALSE; 14258 } 14259 } 14260 14261 mp1 = tcp->tcp_xmit_head; 14262 if (bytes_acked == 0) { 14263 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14264 int dupack_cnt; 14265 14266 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14267 /* 14268 * Fast retransmit. When we have seen exactly three 14269 * identical ACKs while we have unacked data 14270 * outstanding we take it as a hint that our peer 14271 * dropped something. 14272 * 14273 * If TCP is retransmitting, don't do fast retransmit. 14274 */ 14275 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14276 ! tcp->tcp_rexmit) { 14277 /* Do Limited Transmit */ 14278 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14279 tcps->tcps_dupack_fast_retransmit) { 14280 /* 14281 * RFC 3042 14282 * 14283 * What we need to do is temporarily 14284 * increase tcp_cwnd so that new 14285 * data can be sent if it is allowed 14286 * by the receive window (tcp_rwnd). 14287 * tcp_wput_data() will take care of 14288 * the rest. 14289 * 14290 * If the connection is SACK capable, 14291 * only do limited xmit when there 14292 * is SACK info. 14293 * 14294 * Note how tcp_cwnd is incremented. 14295 * The first dup ACK will increase 14296 * it by 1 MSS. The second dup ACK 14297 * will increase it by 2 MSS. This 14298 * means that only 1 new segment will 14299 * be sent for each dup ACK. 14300 */ 14301 if (tcp->tcp_unsent > 0 && 14302 (!tcp->tcp_snd_sack_ok || 14303 (tcp->tcp_snd_sack_ok && 14304 tcp->tcp_notsack_list != NULL))) { 14305 tcp->tcp_cwnd += mss << 14306 (tcp->tcp_dupack_cnt - 1); 14307 flags |= TH_LIMIT_XMIT; 14308 } 14309 } else if (dupack_cnt == 14310 tcps->tcps_dupack_fast_retransmit) { 14311 14312 /* 14313 * If we have reduced tcp_ssthresh 14314 * because of ECN, do not reduce it again 14315 * unless it is already one window of data 14316 * away. After one window of data, tcp_cwr 14317 * should then be cleared. Note that 14318 * for non ECN capable connection, tcp_cwr 14319 * should always be false. 14320 * 14321 * Adjust cwnd since the duplicate 14322 * ack indicates that a packet was 14323 * dropped (due to congestion.) 14324 */ 14325 if (!tcp->tcp_cwr) { 14326 npkt = ((tcp->tcp_snxt - 14327 tcp->tcp_suna) >> 1) / mss; 14328 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14329 mss; 14330 tcp->tcp_cwnd = (npkt + 14331 tcp->tcp_dupack_cnt) * mss; 14332 } 14333 if (tcp->tcp_ecn_ok) { 14334 tcp->tcp_cwr = B_TRUE; 14335 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14336 tcp->tcp_ecn_cwr_sent = B_FALSE; 14337 } 14338 14339 /* 14340 * We do Hoe's algorithm. Refer to her 14341 * paper "Improving the Start-up Behavior 14342 * of a Congestion Control Scheme for TCP," 14343 * appeared in SIGCOMM'96. 14344 * 14345 * Save highest seq no we have sent so far. 14346 * Be careful about the invisible FIN byte. 14347 */ 14348 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14349 (tcp->tcp_unsent == 0)) { 14350 tcp->tcp_rexmit_max = tcp->tcp_fss; 14351 } else { 14352 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14353 } 14354 14355 /* 14356 * Do not allow bursty traffic during. 14357 * fast recovery. Refer to Fall and Floyd's 14358 * paper "Simulation-based Comparisons of 14359 * Tahoe, Reno and SACK TCP" (in CCR?) 14360 * This is a best current practise. 14361 */ 14362 tcp->tcp_snd_burst = TCP_CWND_SS; 14363 14364 /* 14365 * For SACK: 14366 * Calculate tcp_pipe, which is the 14367 * estimated number of bytes in 14368 * network. 14369 * 14370 * tcp_fack is the highest sack'ed seq num 14371 * TCP has received. 14372 * 14373 * tcp_pipe is explained in the above quoted 14374 * Fall and Floyd's paper. tcp_fack is 14375 * explained in Mathis and Mahdavi's 14376 * "Forward Acknowledgment: Refining TCP 14377 * Congestion Control" in SIGCOMM '96. 14378 */ 14379 if (tcp->tcp_snd_sack_ok) { 14380 ASSERT(tcp->tcp_sack_info != NULL); 14381 if (tcp->tcp_notsack_list != NULL) { 14382 tcp->tcp_pipe = tcp->tcp_snxt - 14383 tcp->tcp_fack; 14384 tcp->tcp_sack_snxt = seg_ack; 14385 flags |= TH_NEED_SACK_REXMIT; 14386 } else { 14387 /* 14388 * Always initialize tcp_pipe 14389 * even though we don't have 14390 * any SACK info. If later 14391 * we get SACK info and 14392 * tcp_pipe is not initialized, 14393 * funny things will happen. 14394 */ 14395 tcp->tcp_pipe = 14396 tcp->tcp_cwnd_ssthresh; 14397 } 14398 } else { 14399 flags |= TH_REXMIT_NEEDED; 14400 } /* tcp_snd_sack_ok */ 14401 14402 } else { 14403 /* 14404 * Here we perform congestion 14405 * avoidance, but NOT slow start. 14406 * This is known as the Fast 14407 * Recovery Algorithm. 14408 */ 14409 if (tcp->tcp_snd_sack_ok && 14410 tcp->tcp_notsack_list != NULL) { 14411 flags |= TH_NEED_SACK_REXMIT; 14412 tcp->tcp_pipe -= mss; 14413 if (tcp->tcp_pipe < 0) 14414 tcp->tcp_pipe = 0; 14415 } else { 14416 /* 14417 * We know that one more packet has 14418 * left the pipe thus we can update 14419 * cwnd. 14420 */ 14421 cwnd = tcp->tcp_cwnd + mss; 14422 if (cwnd > tcp->tcp_cwnd_max) 14423 cwnd = tcp->tcp_cwnd_max; 14424 tcp->tcp_cwnd = cwnd; 14425 if (tcp->tcp_unsent > 0) 14426 flags |= TH_XMIT_NEEDED; 14427 } 14428 } 14429 } 14430 } else if (tcp->tcp_zero_win_probe) { 14431 /* 14432 * If the window has opened, need to arrange 14433 * to send additional data. 14434 */ 14435 if (new_swnd != 0) { 14436 /* tcp_suna != tcp_snxt */ 14437 /* Packet contains a window update */ 14438 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14439 tcp->tcp_zero_win_probe = 0; 14440 tcp->tcp_timer_backoff = 0; 14441 tcp->tcp_ms_we_have_waited = 0; 14442 14443 /* 14444 * Transmit starting with tcp_suna since 14445 * the one byte probe is not ack'ed. 14446 * If TCP has sent more than one identical 14447 * probe, tcp_rexmit will be set. That means 14448 * tcp_ss_rexmit() will send out the one 14449 * byte along with new data. Otherwise, 14450 * fake the retransmission. 14451 */ 14452 flags |= TH_XMIT_NEEDED; 14453 if (!tcp->tcp_rexmit) { 14454 tcp->tcp_rexmit = B_TRUE; 14455 tcp->tcp_dupack_cnt = 0; 14456 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14457 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14458 } 14459 } 14460 } 14461 goto swnd_update; 14462 } 14463 14464 /* 14465 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14466 * If the ACK value acks something that we have not yet sent, it might 14467 * be an old duplicate segment. Send an ACK to re-synchronize the 14468 * other side. 14469 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14470 * state is handled above, so we can always just drop the segment and 14471 * send an ACK here. 14472 * 14473 * Should we send ACKs in response to ACK only segments? 14474 */ 14475 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14476 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14477 /* drop the received segment */ 14478 freemsg(mp); 14479 14480 /* 14481 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14482 * greater than 0, check if the number of such 14483 * bogus ACks is greater than that count. If yes, 14484 * don't send back any ACK. This prevents TCP from 14485 * getting into an ACK storm if somehow an attacker 14486 * successfully spoofs an acceptable segment to our 14487 * peer. 14488 */ 14489 if (tcp_drop_ack_unsent_cnt > 0 && 14490 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14491 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14492 return; 14493 } 14494 mp = tcp_ack_mp(tcp); 14495 if (mp != NULL) { 14496 BUMP_LOCAL(tcp->tcp_obsegs); 14497 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14498 tcp_send_data(tcp, tcp->tcp_wq, mp); 14499 } 14500 return; 14501 } 14502 14503 /* 14504 * TCP gets a new ACK, update the notsack'ed list to delete those 14505 * blocks that are covered by this ACK. 14506 */ 14507 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14508 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14509 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14510 } 14511 14512 /* 14513 * If we got an ACK after fast retransmit, check to see 14514 * if it is a partial ACK. If it is not and the congestion 14515 * window was inflated to account for the other side's 14516 * cached packets, retract it. If it is, do Hoe's algorithm. 14517 */ 14518 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14519 ASSERT(tcp->tcp_rexmit == B_FALSE); 14520 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14521 tcp->tcp_dupack_cnt = 0; 14522 /* 14523 * Restore the orig tcp_cwnd_ssthresh after 14524 * fast retransmit phase. 14525 */ 14526 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14527 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14528 } 14529 tcp->tcp_rexmit_max = seg_ack; 14530 tcp->tcp_cwnd_cnt = 0; 14531 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14532 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14533 14534 /* 14535 * Remove all notsack info to avoid confusion with 14536 * the next fast retrasnmit/recovery phase. 14537 */ 14538 if (tcp->tcp_snd_sack_ok && 14539 tcp->tcp_notsack_list != NULL) { 14540 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14541 } 14542 } else { 14543 if (tcp->tcp_snd_sack_ok && 14544 tcp->tcp_notsack_list != NULL) { 14545 flags |= TH_NEED_SACK_REXMIT; 14546 tcp->tcp_pipe -= mss; 14547 if (tcp->tcp_pipe < 0) 14548 tcp->tcp_pipe = 0; 14549 } else { 14550 /* 14551 * Hoe's algorithm: 14552 * 14553 * Retransmit the unack'ed segment and 14554 * restart fast recovery. Note that we 14555 * need to scale back tcp_cwnd to the 14556 * original value when we started fast 14557 * recovery. This is to prevent overly 14558 * aggressive behaviour in sending new 14559 * segments. 14560 */ 14561 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14562 tcps->tcps_dupack_fast_retransmit * mss; 14563 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14564 flags |= TH_REXMIT_NEEDED; 14565 } 14566 } 14567 } else { 14568 tcp->tcp_dupack_cnt = 0; 14569 if (tcp->tcp_rexmit) { 14570 /* 14571 * TCP is retranmitting. If the ACK ack's all 14572 * outstanding data, update tcp_rexmit_max and 14573 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14574 * to the correct value. 14575 * 14576 * Note that SEQ_LEQ() is used. This is to avoid 14577 * unnecessary fast retransmit caused by dup ACKs 14578 * received when TCP does slow start retransmission 14579 * after a time out. During this phase, TCP may 14580 * send out segments which are already received. 14581 * This causes dup ACKs to be sent back. 14582 */ 14583 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14584 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14585 tcp->tcp_rexmit_nxt = seg_ack; 14586 } 14587 if (seg_ack != tcp->tcp_rexmit_max) { 14588 flags |= TH_XMIT_NEEDED; 14589 } 14590 } else { 14591 tcp->tcp_rexmit = B_FALSE; 14592 tcp->tcp_xmit_zc_clean = B_FALSE; 14593 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14594 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14595 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14596 } 14597 tcp->tcp_ms_we_have_waited = 0; 14598 } 14599 } 14600 14601 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14602 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14603 tcp->tcp_suna = seg_ack; 14604 if (tcp->tcp_zero_win_probe != 0) { 14605 tcp->tcp_zero_win_probe = 0; 14606 tcp->tcp_timer_backoff = 0; 14607 } 14608 14609 /* 14610 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14611 * Note that it cannot be the SYN being ack'ed. The code flow 14612 * will not reach here. 14613 */ 14614 if (mp1 == NULL) { 14615 goto fin_acked; 14616 } 14617 14618 /* 14619 * Update the congestion window. 14620 * 14621 * If TCP is not ECN capable or TCP is ECN capable but the 14622 * congestion experience bit is not set, increase the tcp_cwnd as 14623 * usual. 14624 */ 14625 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14626 cwnd = tcp->tcp_cwnd; 14627 add = mss; 14628 14629 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14630 /* 14631 * This is to prevent an increase of less than 1 MSS of 14632 * tcp_cwnd. With partial increase, tcp_wput_data() 14633 * may send out tinygrams in order to preserve mblk 14634 * boundaries. 14635 * 14636 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14637 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14638 * increased by 1 MSS for every RTTs. 14639 */ 14640 if (tcp->tcp_cwnd_cnt <= 0) { 14641 tcp->tcp_cwnd_cnt = cwnd + add; 14642 } else { 14643 tcp->tcp_cwnd_cnt -= add; 14644 add = 0; 14645 } 14646 } 14647 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14648 } 14649 14650 /* See if the latest urgent data has been acknowledged */ 14651 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14652 SEQ_GT(seg_ack, tcp->tcp_urg)) 14653 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14654 14655 /* Can we update the RTT estimates? */ 14656 if (tcp->tcp_snd_ts_ok) { 14657 /* Ignore zero timestamp echo-reply. */ 14658 if (tcpopt.tcp_opt_ts_ecr != 0) { 14659 tcp_set_rto(tcp, (int32_t)lbolt - 14660 (int32_t)tcpopt.tcp_opt_ts_ecr); 14661 } 14662 14663 /* If needed, restart the timer. */ 14664 if (tcp->tcp_set_timer == 1) { 14665 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14666 tcp->tcp_set_timer = 0; 14667 } 14668 /* 14669 * Update tcp_csuna in case the other side stops sending 14670 * us timestamps. 14671 */ 14672 tcp->tcp_csuna = tcp->tcp_snxt; 14673 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14674 /* 14675 * An ACK sequence we haven't seen before, so get the RTT 14676 * and update the RTO. But first check if the timestamp is 14677 * valid to use. 14678 */ 14679 if ((mp1->b_next != NULL) && 14680 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14681 tcp_set_rto(tcp, (int32_t)lbolt - 14682 (int32_t)(intptr_t)mp1->b_prev); 14683 else 14684 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14685 14686 /* Remeber the last sequence to be ACKed */ 14687 tcp->tcp_csuna = seg_ack; 14688 if (tcp->tcp_set_timer == 1) { 14689 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14690 tcp->tcp_set_timer = 0; 14691 } 14692 } else { 14693 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14694 } 14695 14696 /* Eat acknowledged bytes off the xmit queue. */ 14697 for (;;) { 14698 mblk_t *mp2; 14699 uchar_t *wptr; 14700 14701 wptr = mp1->b_wptr; 14702 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14703 bytes_acked -= (int)(wptr - mp1->b_rptr); 14704 if (bytes_acked < 0) { 14705 mp1->b_rptr = wptr + bytes_acked; 14706 /* 14707 * Set a new timestamp if all the bytes timed by the 14708 * old timestamp have been ack'ed. 14709 */ 14710 if (SEQ_GT(seg_ack, 14711 (uint32_t)(uintptr_t)(mp1->b_next))) { 14712 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14713 mp1->b_next = NULL; 14714 } 14715 break; 14716 } 14717 mp1->b_next = NULL; 14718 mp1->b_prev = NULL; 14719 mp2 = mp1; 14720 mp1 = mp1->b_cont; 14721 14722 /* 14723 * This notification is required for some zero-copy 14724 * clients to maintain a copy semantic. After the data 14725 * is ack'ed, client is safe to modify or reuse the buffer. 14726 */ 14727 if (tcp->tcp_snd_zcopy_aware && 14728 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14729 tcp_zcopy_notify(tcp); 14730 freeb(mp2); 14731 if (bytes_acked == 0) { 14732 if (mp1 == NULL) { 14733 /* Everything is ack'ed, clear the tail. */ 14734 tcp->tcp_xmit_tail = NULL; 14735 /* 14736 * Cancel the timer unless we are still 14737 * waiting for an ACK for the FIN packet. 14738 */ 14739 if (tcp->tcp_timer_tid != 0 && 14740 tcp->tcp_snxt == tcp->tcp_suna) { 14741 (void) TCP_TIMER_CANCEL(tcp, 14742 tcp->tcp_timer_tid); 14743 tcp->tcp_timer_tid = 0; 14744 } 14745 goto pre_swnd_update; 14746 } 14747 if (mp2 != tcp->tcp_xmit_tail) 14748 break; 14749 tcp->tcp_xmit_tail = mp1; 14750 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14751 (uintptr_t)INT_MAX); 14752 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14753 mp1->b_rptr); 14754 break; 14755 } 14756 if (mp1 == NULL) { 14757 /* 14758 * More was acked but there is nothing more 14759 * outstanding. This means that the FIN was 14760 * just acked or that we're talking to a clown. 14761 */ 14762 fin_acked: 14763 ASSERT(tcp->tcp_fin_sent); 14764 tcp->tcp_xmit_tail = NULL; 14765 if (tcp->tcp_fin_sent) { 14766 /* FIN was acked - making progress */ 14767 if (tcp->tcp_ipversion == IPV6_VERSION && 14768 !tcp->tcp_fin_acked) 14769 tcp->tcp_ip_forward_progress = B_TRUE; 14770 tcp->tcp_fin_acked = B_TRUE; 14771 if (tcp->tcp_linger_tid != 0 && 14772 TCP_TIMER_CANCEL(tcp, 14773 tcp->tcp_linger_tid) >= 0) { 14774 tcp_stop_lingering(tcp); 14775 freemsg(mp); 14776 mp = NULL; 14777 } 14778 } else { 14779 /* 14780 * We should never get here because 14781 * we have already checked that the 14782 * number of bytes ack'ed should be 14783 * smaller than or equal to what we 14784 * have sent so far (it is the 14785 * acceptability check of the ACK). 14786 * We can only get here if the send 14787 * queue is corrupted. 14788 * 14789 * Terminate the connection and 14790 * panic the system. It is better 14791 * for us to panic instead of 14792 * continuing to avoid other disaster. 14793 */ 14794 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14795 tcp->tcp_rnxt, TH_RST|TH_ACK); 14796 panic("Memory corruption " 14797 "detected for connection %s.", 14798 tcp_display(tcp, NULL, 14799 DISP_ADDR_AND_PORT)); 14800 /*NOTREACHED*/ 14801 } 14802 goto pre_swnd_update; 14803 } 14804 ASSERT(mp2 != tcp->tcp_xmit_tail); 14805 } 14806 if (tcp->tcp_unsent) { 14807 flags |= TH_XMIT_NEEDED; 14808 } 14809 pre_swnd_update: 14810 tcp->tcp_xmit_head = mp1; 14811 swnd_update: 14812 /* 14813 * The following check is different from most other implementations. 14814 * For bi-directional transfer, when segments are dropped, the 14815 * "normal" check will not accept a window update in those 14816 * retransmitted segemnts. Failing to do that, TCP may send out 14817 * segments which are outside receiver's window. As TCP accepts 14818 * the ack in those retransmitted segments, if the window update in 14819 * the same segment is not accepted, TCP will incorrectly calculates 14820 * that it can send more segments. This can create a deadlock 14821 * with the receiver if its window becomes zero. 14822 */ 14823 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14824 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14825 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14826 /* 14827 * The criteria for update is: 14828 * 14829 * 1. the segment acknowledges some data. Or 14830 * 2. the segment is new, i.e. it has a higher seq num. Or 14831 * 3. the segment is not old and the advertised window is 14832 * larger than the previous advertised window. 14833 */ 14834 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14835 flags |= TH_XMIT_NEEDED; 14836 tcp->tcp_swnd = new_swnd; 14837 if (new_swnd > tcp->tcp_max_swnd) 14838 tcp->tcp_max_swnd = new_swnd; 14839 tcp->tcp_swl1 = seg_seq; 14840 tcp->tcp_swl2 = seg_ack; 14841 } 14842 est: 14843 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14844 14845 switch (tcp->tcp_state) { 14846 case TCPS_FIN_WAIT_1: 14847 if (tcp->tcp_fin_acked) { 14848 tcp->tcp_state = TCPS_FIN_WAIT_2; 14849 /* 14850 * We implement the non-standard BSD/SunOS 14851 * FIN_WAIT_2 flushing algorithm. 14852 * If there is no user attached to this 14853 * TCP endpoint, then this TCP struct 14854 * could hang around forever in FIN_WAIT_2 14855 * state if the peer forgets to send us 14856 * a FIN. To prevent this, we wait only 14857 * 2*MSL (a convenient time value) for 14858 * the FIN to arrive. If it doesn't show up, 14859 * we flush the TCP endpoint. This algorithm, 14860 * though a violation of RFC-793, has worked 14861 * for over 10 years in BSD systems. 14862 * Note: SunOS 4.x waits 675 seconds before 14863 * flushing the FIN_WAIT_2 connection. 14864 */ 14865 TCP_TIMER_RESTART(tcp, 14866 tcps->tcps_fin_wait_2_flush_interval); 14867 } 14868 break; 14869 case TCPS_FIN_WAIT_2: 14870 break; /* Shutdown hook? */ 14871 case TCPS_LAST_ACK: 14872 freemsg(mp); 14873 if (tcp->tcp_fin_acked) { 14874 (void) tcp_clean_death(tcp, 0, 19); 14875 return; 14876 } 14877 goto xmit_check; 14878 case TCPS_CLOSING: 14879 if (tcp->tcp_fin_acked) { 14880 tcp->tcp_state = TCPS_TIME_WAIT; 14881 /* 14882 * Unconditionally clear the exclusive binding 14883 * bit so this TIME-WAIT connection won't 14884 * interfere with new ones. 14885 */ 14886 tcp->tcp_exclbind = 0; 14887 if (!TCP_IS_DETACHED(tcp)) { 14888 TCP_TIMER_RESTART(tcp, 14889 tcps->tcps_time_wait_interval); 14890 } else { 14891 tcp_time_wait_append(tcp); 14892 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14893 } 14894 } 14895 /*FALLTHRU*/ 14896 case TCPS_CLOSE_WAIT: 14897 freemsg(mp); 14898 goto xmit_check; 14899 default: 14900 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14901 break; 14902 } 14903 } 14904 if (flags & TH_FIN) { 14905 /* Make sure we ack the fin */ 14906 flags |= TH_ACK_NEEDED; 14907 if (!tcp->tcp_fin_rcvd) { 14908 tcp->tcp_fin_rcvd = B_TRUE; 14909 tcp->tcp_rnxt++; 14910 tcph = tcp->tcp_tcph; 14911 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14912 14913 /* 14914 * Generate the ordrel_ind at the end unless we 14915 * are an eager guy. 14916 * In the eager case tcp_rsrv will do this when run 14917 * after tcp_accept is done. 14918 */ 14919 if (tcp->tcp_listener == NULL && 14920 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14921 flags |= TH_ORDREL_NEEDED; 14922 switch (tcp->tcp_state) { 14923 case TCPS_SYN_RCVD: 14924 case TCPS_ESTABLISHED: 14925 tcp->tcp_state = TCPS_CLOSE_WAIT; 14926 /* Keepalive? */ 14927 break; 14928 case TCPS_FIN_WAIT_1: 14929 if (!tcp->tcp_fin_acked) { 14930 tcp->tcp_state = TCPS_CLOSING; 14931 break; 14932 } 14933 /* FALLTHRU */ 14934 case TCPS_FIN_WAIT_2: 14935 tcp->tcp_state = TCPS_TIME_WAIT; 14936 /* 14937 * Unconditionally clear the exclusive binding 14938 * bit so this TIME-WAIT connection won't 14939 * interfere with new ones. 14940 */ 14941 tcp->tcp_exclbind = 0; 14942 if (!TCP_IS_DETACHED(tcp)) { 14943 TCP_TIMER_RESTART(tcp, 14944 tcps->tcps_time_wait_interval); 14945 } else { 14946 tcp_time_wait_append(tcp); 14947 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14948 } 14949 if (seg_len) { 14950 /* 14951 * implies data piggybacked on FIN. 14952 * break to handle data. 14953 */ 14954 break; 14955 } 14956 freemsg(mp); 14957 goto ack_check; 14958 } 14959 } 14960 } 14961 if (mp == NULL) 14962 goto xmit_check; 14963 if (seg_len == 0) { 14964 freemsg(mp); 14965 goto xmit_check; 14966 } 14967 if (mp->b_rptr == mp->b_wptr) { 14968 /* 14969 * The header has been consumed, so we remove the 14970 * zero-length mblk here. 14971 */ 14972 mp1 = mp; 14973 mp = mp->b_cont; 14974 freeb(mp1); 14975 } 14976 update_ack: 14977 tcph = tcp->tcp_tcph; 14978 tcp->tcp_rack_cnt++; 14979 { 14980 uint32_t cur_max; 14981 14982 cur_max = tcp->tcp_rack_cur_max; 14983 if (tcp->tcp_rack_cnt >= cur_max) { 14984 /* 14985 * We have more unacked data than we should - send 14986 * an ACK now. 14987 */ 14988 flags |= TH_ACK_NEEDED; 14989 cur_max++; 14990 if (cur_max > tcp->tcp_rack_abs_max) 14991 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14992 else 14993 tcp->tcp_rack_cur_max = cur_max; 14994 } else if (TCP_IS_DETACHED(tcp)) { 14995 /* We don't have an ACK timer for detached TCP. */ 14996 flags |= TH_ACK_NEEDED; 14997 } else if (seg_len < mss) { 14998 /* 14999 * If we get a segment that is less than an mss, and we 15000 * already have unacknowledged data, and the amount 15001 * unacknowledged is not a multiple of mss, then we 15002 * better generate an ACK now. Otherwise, this may be 15003 * the tail piece of a transaction, and we would rather 15004 * wait for the response. 15005 */ 15006 uint32_t udif; 15007 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 15008 (uintptr_t)INT_MAX); 15009 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 15010 if (udif && (udif % mss)) 15011 flags |= TH_ACK_NEEDED; 15012 else 15013 flags |= TH_ACK_TIMER_NEEDED; 15014 } else { 15015 /* Start delayed ack timer */ 15016 flags |= TH_ACK_TIMER_NEEDED; 15017 } 15018 } 15019 tcp->tcp_rnxt += seg_len; 15020 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15021 15022 if (mp == NULL) 15023 goto xmit_check; 15024 15025 /* Update SACK list */ 15026 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15027 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15028 &(tcp->tcp_num_sack_blk)); 15029 } 15030 15031 if (tcp->tcp_urp_mp) { 15032 tcp->tcp_urp_mp->b_cont = mp; 15033 mp = tcp->tcp_urp_mp; 15034 tcp->tcp_urp_mp = NULL; 15035 /* Ready for a new signal. */ 15036 tcp->tcp_urp_last_valid = B_FALSE; 15037 #ifdef DEBUG 15038 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15039 "tcp_rput: sending exdata_ind %s", 15040 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15041 #endif /* DEBUG */ 15042 } 15043 15044 /* 15045 * Check for ancillary data changes compared to last segment. 15046 */ 15047 if (tcp->tcp_ipv6_recvancillary != 0) { 15048 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15049 ASSERT(mp != NULL); 15050 } 15051 15052 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15053 /* 15054 * Side queue inbound data until the accept happens. 15055 * tcp_accept/tcp_rput drains this when the accept happens. 15056 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15057 * T_EXDATA_IND) it is queued on b_next. 15058 * XXX Make urgent data use this. Requires: 15059 * Removing tcp_listener check for TH_URG 15060 * Making M_PCPROTO and MARK messages skip the eager case 15061 */ 15062 15063 if (tcp->tcp_kssl_pending) { 15064 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15065 mblk_t *, mp); 15066 tcp_kssl_input(tcp, mp); 15067 } else { 15068 tcp_rcv_enqueue(tcp, mp, seg_len); 15069 } 15070 } else { 15071 sodirect_t *sodp = tcp->tcp_sodirect; 15072 15073 /* 15074 * If an sodirect connection and an enabled sodirect_t then 15075 * sodp will be set to point to the tcp_t/sonode_t shared 15076 * sodirect_t and the sodirect_t's lock will be held. 15077 */ 15078 if (sodp != NULL) { 15079 mutex_enter(sodp->sod_lockp); 15080 if (!(sodp->sod_state & SOD_ENABLED) || 15081 (tcp->tcp_kssl_ctx != NULL && 15082 DB_TYPE(mp) == M_DATA)) { 15083 sodp = NULL; 15084 } 15085 mutex_exit(sodp->sod_lockp); 15086 } 15087 if (mp->b_datap->db_type != M_DATA || 15088 (flags & TH_MARKNEXT_NEEDED)) { 15089 if (IPCL_IS_NONSTR(connp)) { 15090 int error; 15091 15092 if ((*connp->conn_upcalls->su_recv) 15093 (connp->conn_upper_handle, mp, 15094 seg_len, 0, &error, NULL) <= 0) { 15095 if (error == ENOSPC) { 15096 tcp->tcp_rwnd -= seg_len; 15097 } else if (error == EOPNOTSUPP) { 15098 tcp_rcv_enqueue(tcp, mp, 15099 seg_len); 15100 } 15101 } 15102 } else if (sodp != NULL) { 15103 mutex_enter(sodp->sod_lockp); 15104 SOD_UIOAFINI(sodp); 15105 if (!SOD_QEMPTY(sodp) && 15106 (sodp->sod_state & SOD_WAKE_NOT)) { 15107 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15108 /* sod_wakeup() did the mutex_exit() */ 15109 } else { 15110 mutex_exit(sodp->sod_lockp); 15111 } 15112 } else if (tcp->tcp_rcv_list != NULL) { 15113 flags |= tcp_rcv_drain(tcp); 15114 } 15115 ASSERT(tcp->tcp_rcv_list == NULL || 15116 tcp->tcp_fused_sigurg); 15117 15118 if (flags & TH_MARKNEXT_NEEDED) { 15119 #ifdef DEBUG 15120 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15121 "tcp_rput: sending MSGMARKNEXT %s", 15122 tcp_display(tcp, NULL, 15123 DISP_PORT_ONLY)); 15124 #endif /* DEBUG */ 15125 mp->b_flag |= MSGMARKNEXT; 15126 flags &= ~TH_MARKNEXT_NEEDED; 15127 } 15128 15129 /* Does this need SSL processing first? */ 15130 if ((tcp->tcp_kssl_ctx != NULL) && 15131 (DB_TYPE(mp) == M_DATA)) { 15132 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15133 mblk_t *, mp); 15134 tcp_kssl_input(tcp, mp); 15135 } else if (!IPCL_IS_NONSTR(connp)) { 15136 /* Already handled non-STREAMS case. */ 15137 putnext(tcp->tcp_rq, mp); 15138 if (!canputnext(tcp->tcp_rq)) 15139 tcp->tcp_rwnd -= seg_len; 15140 } 15141 } else if ((tcp->tcp_kssl_ctx != NULL) && 15142 (DB_TYPE(mp) == M_DATA)) { 15143 /* Does this need SSL processing first? */ 15144 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15145 tcp_kssl_input(tcp, mp); 15146 } else if (IPCL_IS_NONSTR(connp)) { 15147 /* Non-STREAMS socket */ 15148 boolean_t push = flags & (TH_PUSH|TH_FIN); 15149 int error; 15150 15151 if ((*connp->conn_upcalls->su_recv)( 15152 connp->conn_upper_handle, 15153 mp, seg_len, 0, &error, &push) <= 0) { 15154 if (error == ENOSPC) { 15155 tcp->tcp_rwnd -= seg_len; 15156 } else if (error == EOPNOTSUPP) { 15157 tcp_rcv_enqueue(tcp, mp, seg_len); 15158 } 15159 } else if (push) { 15160 /* 15161 * PUSH bit set and sockfs is not 15162 * flow controlled 15163 */ 15164 flags |= tcp_rwnd_reopen(tcp); 15165 } 15166 } else if (sodp != NULL) { 15167 /* 15168 * Sodirect so all mblk_t's are queued on the 15169 * socket directly, check for wakeup of blocked 15170 * reader (if any), and last if flow-controled. 15171 */ 15172 mutex_enter(sodp->sod_lockp); 15173 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15174 if ((sodp->sod_state & SOD_WAKE_NEED) || 15175 (flags & (TH_PUSH|TH_FIN))) { 15176 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15177 /* sod_wakeup() did the mutex_exit() */ 15178 } else { 15179 if (SOD_QFULL(sodp)) { 15180 /* Q is full, need backenable */ 15181 SOD_QSETBE(sodp); 15182 } 15183 mutex_exit(sodp->sod_lockp); 15184 } 15185 } else if ((flags & (TH_PUSH|TH_FIN)) || 15186 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15187 if (tcp->tcp_rcv_list != NULL) { 15188 /* 15189 * Enqueue the new segment first and then 15190 * call tcp_rcv_drain() to send all data 15191 * up. The other way to do this is to 15192 * send all queued data up and then call 15193 * putnext() to send the new segment up. 15194 * This way can remove the else part later 15195 * on. 15196 * 15197 * We don't do this to avoid one more call to 15198 * canputnext() as tcp_rcv_drain() needs to 15199 * call canputnext(). 15200 */ 15201 tcp_rcv_enqueue(tcp, mp, seg_len); 15202 flags |= tcp_rcv_drain(tcp); 15203 } else { 15204 putnext(tcp->tcp_rq, mp); 15205 if (!canputnext(tcp->tcp_rq)) 15206 tcp->tcp_rwnd -= seg_len; 15207 } 15208 } else { 15209 /* 15210 * Enqueue all packets when processing an mblk 15211 * from the co queue and also enqueue normal packets. 15212 * For packets which belong to SSL stream do SSL 15213 * processing first. 15214 */ 15215 tcp_rcv_enqueue(tcp, mp, seg_len); 15216 } 15217 /* 15218 * Make sure the timer is running if we have data waiting 15219 * for a push bit. This provides resiliency against 15220 * implementations that do not correctly generate push bits. 15221 * 15222 * Note, for sodirect if Q isn't empty and there's not a 15223 * pending wakeup then we need a timer. Also note that sodp 15224 * is assumed to be still valid after exit()ing the sod_lockp 15225 * above and while the SOD state can change it can only change 15226 * such that the Q is empty now even though data was added 15227 * above. 15228 */ 15229 if (!IPCL_IS_NONSTR(connp) && 15230 ((sodp != NULL && !SOD_QEMPTY(sodp) && 15231 (sodp->sod_state & SOD_WAKE_NOT)) || 15232 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15233 tcp->tcp_push_tid == 0) { 15234 /* 15235 * The connection may be closed at this point, so don't 15236 * do anything for a detached tcp. 15237 */ 15238 if (!TCP_IS_DETACHED(tcp)) 15239 tcp->tcp_push_tid = TCP_TIMER(tcp, 15240 tcp_push_timer, 15241 MSEC_TO_TICK( 15242 tcps->tcps_push_timer_interval)); 15243 } 15244 } 15245 15246 xmit_check: 15247 /* Is there anything left to do? */ 15248 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15249 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15250 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15251 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15252 goto done; 15253 15254 /* Any transmit work to do and a non-zero window? */ 15255 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15256 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15257 if (flags & TH_REXMIT_NEEDED) { 15258 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15259 15260 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15261 if (snd_size > mss) 15262 snd_size = mss; 15263 if (snd_size > tcp->tcp_swnd) 15264 snd_size = tcp->tcp_swnd; 15265 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15266 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15267 B_TRUE); 15268 15269 if (mp1 != NULL) { 15270 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15271 tcp->tcp_csuna = tcp->tcp_snxt; 15272 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15273 UPDATE_MIB(&tcps->tcps_mib, 15274 tcpRetransBytes, snd_size); 15275 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15276 } 15277 } 15278 if (flags & TH_NEED_SACK_REXMIT) { 15279 tcp_sack_rxmit(tcp, &flags); 15280 } 15281 /* 15282 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15283 * out new segment. Note that tcp_rexmit should not be 15284 * set, otherwise TH_LIMIT_XMIT should not be set. 15285 */ 15286 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15287 if (!tcp->tcp_rexmit) { 15288 tcp_wput_data(tcp, NULL, B_FALSE); 15289 } else { 15290 tcp_ss_rexmit(tcp); 15291 } 15292 } 15293 /* 15294 * Adjust tcp_cwnd back to normal value after sending 15295 * new data segments. 15296 */ 15297 if (flags & TH_LIMIT_XMIT) { 15298 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15299 /* 15300 * This will restart the timer. Restarting the 15301 * timer is used to avoid a timeout before the 15302 * limited transmitted segment's ACK gets back. 15303 */ 15304 if (tcp->tcp_xmit_head != NULL) 15305 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15306 } 15307 15308 /* Anything more to do? */ 15309 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15310 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15311 goto done; 15312 } 15313 ack_check: 15314 if (flags & TH_SEND_URP_MARK) { 15315 ASSERT(tcp->tcp_urp_mark_mp); 15316 ASSERT(!IPCL_IS_NONSTR(connp)); 15317 /* 15318 * Send up any queued data and then send the mark message 15319 */ 15320 sodirect_t *sodp; 15321 15322 SOD_PTR_ENTER(tcp, sodp); 15323 15324 mp1 = tcp->tcp_urp_mark_mp; 15325 tcp->tcp_urp_mark_mp = NULL; 15326 if (sodp != NULL) { 15327 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15328 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15329 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15330 } 15331 ASSERT(tcp->tcp_rcv_list == NULL); 15332 15333 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15334 /* sod_wakeup() does the mutex_exit() */ 15335 } else if (tcp->tcp_rcv_list != NULL) { 15336 flags |= tcp_rcv_drain(tcp); 15337 15338 ASSERT(tcp->tcp_rcv_list == NULL || 15339 tcp->tcp_fused_sigurg); 15340 15341 } 15342 putnext(tcp->tcp_rq, mp1); 15343 #ifdef DEBUG 15344 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15345 "tcp_rput: sending zero-length %s %s", 15346 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15347 "MSGNOTMARKNEXT"), 15348 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15349 #endif /* DEBUG */ 15350 flags &= ~TH_SEND_URP_MARK; 15351 } 15352 if (flags & TH_ACK_NEEDED) { 15353 /* 15354 * Time to send an ack for some reason. 15355 */ 15356 mp1 = tcp_ack_mp(tcp); 15357 15358 if (mp1 != NULL) { 15359 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15360 BUMP_LOCAL(tcp->tcp_obsegs); 15361 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15362 } 15363 if (tcp->tcp_ack_tid != 0) { 15364 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15365 tcp->tcp_ack_tid = 0; 15366 } 15367 } 15368 if (flags & TH_ACK_TIMER_NEEDED) { 15369 /* 15370 * Arrange for deferred ACK or push wait timeout. 15371 * Start timer if it is not already running. 15372 */ 15373 if (tcp->tcp_ack_tid == 0) { 15374 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15375 MSEC_TO_TICK(tcp->tcp_localnet ? 15376 (clock_t)tcps->tcps_local_dack_interval : 15377 (clock_t)tcps->tcps_deferred_ack_interval)); 15378 } 15379 } 15380 if (flags & TH_ORDREL_NEEDED) { 15381 /* 15382 * Send up the ordrel_ind unless we are an eager guy. 15383 * In the eager case tcp_rsrv will do this when run 15384 * after tcp_accept is done. 15385 */ 15386 sodirect_t *sodp; 15387 15388 ASSERT(tcp->tcp_listener == NULL); 15389 15390 if (IPCL_IS_NONSTR(connp)) { 15391 ASSERT(tcp->tcp_ordrel_mp == NULL); 15392 tcp->tcp_ordrel_done = B_TRUE; 15393 (*connp->conn_upcalls->su_opctl) 15394 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15395 goto done; 15396 } 15397 15398 SOD_PTR_ENTER(tcp, sodp); 15399 if (sodp != NULL) { 15400 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15401 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15402 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15403 } 15404 /* No more sodirect */ 15405 tcp->tcp_sodirect = NULL; 15406 if (!SOD_QEMPTY(sodp)) { 15407 /* Mblk(s) to process, notify */ 15408 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15409 /* sod_wakeup() does the mutex_exit() */ 15410 } else { 15411 /* Nothing to process */ 15412 mutex_exit(sodp->sod_lockp); 15413 } 15414 } else if (tcp->tcp_rcv_list != NULL) { 15415 /* 15416 * Push any mblk(s) enqueued from co processing. 15417 */ 15418 flags |= tcp_rcv_drain(tcp); 15419 15420 ASSERT(tcp->tcp_rcv_list == NULL || 15421 tcp->tcp_fused_sigurg); 15422 } 15423 15424 mp1 = tcp->tcp_ordrel_mp; 15425 tcp->tcp_ordrel_mp = NULL; 15426 tcp->tcp_ordrel_done = B_TRUE; 15427 putnext(tcp->tcp_rq, mp1); 15428 } 15429 done: 15430 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15431 } 15432 15433 /* 15434 * This function does PAWS protection check. Returns B_TRUE if the 15435 * segment passes the PAWS test, else returns B_FALSE. 15436 */ 15437 boolean_t 15438 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15439 { 15440 uint8_t flags; 15441 int options; 15442 uint8_t *up; 15443 15444 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15445 /* 15446 * If timestamp option is aligned nicely, get values inline, 15447 * otherwise call general routine to parse. Only do that 15448 * if timestamp is the only option. 15449 */ 15450 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15451 TCPOPT_REAL_TS_LEN && 15452 OK_32PTR((up = ((uint8_t *)tcph) + 15453 TCP_MIN_HEADER_LENGTH)) && 15454 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15455 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15456 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15457 15458 options = TCP_OPT_TSTAMP_PRESENT; 15459 } else { 15460 if (tcp->tcp_snd_sack_ok) { 15461 tcpoptp->tcp = tcp; 15462 } else { 15463 tcpoptp->tcp = NULL; 15464 } 15465 options = tcp_parse_options(tcph, tcpoptp); 15466 } 15467 15468 if (options & TCP_OPT_TSTAMP_PRESENT) { 15469 /* 15470 * Do PAWS per RFC 1323 section 4.2. Accept RST 15471 * regardless of the timestamp, page 18 RFC 1323.bis. 15472 */ 15473 if ((flags & TH_RST) == 0 && 15474 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15475 tcp->tcp_ts_recent)) { 15476 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15477 PAWS_TIMEOUT)) { 15478 /* This segment is not acceptable. */ 15479 return (B_FALSE); 15480 } else { 15481 /* 15482 * Connection has been idle for 15483 * too long. Reset the timestamp 15484 * and assume the segment is valid. 15485 */ 15486 tcp->tcp_ts_recent = 15487 tcpoptp->tcp_opt_ts_val; 15488 } 15489 } 15490 } else { 15491 /* 15492 * If we don't get a timestamp on every packet, we 15493 * figure we can't really trust 'em, so we stop sending 15494 * and parsing them. 15495 */ 15496 tcp->tcp_snd_ts_ok = B_FALSE; 15497 15498 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15499 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15500 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15501 /* 15502 * Adjust the tcp_mss accordingly. We also need to 15503 * adjust tcp_cwnd here in accordance with the new mss. 15504 * But we avoid doing a slow start here so as to not 15505 * to lose on the transfer rate built up so far. 15506 */ 15507 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15508 if (tcp->tcp_snd_sack_ok) { 15509 ASSERT(tcp->tcp_sack_info != NULL); 15510 tcp->tcp_max_sack_blk = 4; 15511 } 15512 } 15513 return (B_TRUE); 15514 } 15515 15516 /* 15517 * Attach ancillary data to a received TCP segments for the 15518 * ancillary pieces requested by the application that are 15519 * different than they were in the previous data segment. 15520 * 15521 * Save the "current" values once memory allocation is ok so that 15522 * when memory allocation fails we can just wait for the next data segment. 15523 */ 15524 static mblk_t * 15525 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15526 { 15527 struct T_optdata_ind *todi; 15528 int optlen; 15529 uchar_t *optptr; 15530 struct T_opthdr *toh; 15531 uint_t addflag; /* Which pieces to add */ 15532 mblk_t *mp1; 15533 15534 optlen = 0; 15535 addflag = 0; 15536 /* If app asked for pktinfo and the index has changed ... */ 15537 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15538 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15539 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15540 optlen += sizeof (struct T_opthdr) + 15541 sizeof (struct in6_pktinfo); 15542 addflag |= TCP_IPV6_RECVPKTINFO; 15543 } 15544 /* If app asked for hoplimit and it has changed ... */ 15545 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15546 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15547 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15548 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15549 addflag |= TCP_IPV6_RECVHOPLIMIT; 15550 } 15551 /* If app asked for tclass and it has changed ... */ 15552 if ((ipp->ipp_fields & IPPF_TCLASS) && 15553 ipp->ipp_tclass != tcp->tcp_recvtclass && 15554 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15555 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15556 addflag |= TCP_IPV6_RECVTCLASS; 15557 } 15558 /* 15559 * If app asked for hopbyhop headers and it has changed ... 15560 * For security labels, note that (1) security labels can't change on 15561 * a connected socket at all, (2) we're connected to at most one peer, 15562 * (3) if anything changes, then it must be some other extra option. 15563 */ 15564 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15565 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15566 (ipp->ipp_fields & IPPF_HOPOPTS), 15567 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15568 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15569 tcp->tcp_label_len; 15570 addflag |= TCP_IPV6_RECVHOPOPTS; 15571 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15572 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15573 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15574 return (mp); 15575 } 15576 /* If app asked for dst headers before routing headers ... */ 15577 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15578 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15579 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15580 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15581 optlen += sizeof (struct T_opthdr) + 15582 ipp->ipp_rtdstoptslen; 15583 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15584 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15585 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15586 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15587 return (mp); 15588 } 15589 /* If app asked for routing headers and it has changed ... */ 15590 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15591 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15592 (ipp->ipp_fields & IPPF_RTHDR), 15593 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15594 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15595 addflag |= TCP_IPV6_RECVRTHDR; 15596 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15597 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15598 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15599 return (mp); 15600 } 15601 /* If app asked for dest headers and it has changed ... */ 15602 if ((tcp->tcp_ipv6_recvancillary & 15603 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15604 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15605 (ipp->ipp_fields & IPPF_DSTOPTS), 15606 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15607 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15608 addflag |= TCP_IPV6_RECVDSTOPTS; 15609 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15610 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15611 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15612 return (mp); 15613 } 15614 15615 if (optlen == 0) { 15616 /* Nothing to add */ 15617 return (mp); 15618 } 15619 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15620 if (mp1 == NULL) { 15621 /* 15622 * Defer sending ancillary data until the next TCP segment 15623 * arrives. 15624 */ 15625 return (mp); 15626 } 15627 mp1->b_cont = mp; 15628 mp = mp1; 15629 mp->b_wptr += sizeof (*todi) + optlen; 15630 mp->b_datap->db_type = M_PROTO; 15631 todi = (struct T_optdata_ind *)mp->b_rptr; 15632 todi->PRIM_type = T_OPTDATA_IND; 15633 todi->DATA_flag = 1; /* MORE data */ 15634 todi->OPT_length = optlen; 15635 todi->OPT_offset = sizeof (*todi); 15636 optptr = (uchar_t *)&todi[1]; 15637 /* 15638 * If app asked for pktinfo and the index has changed ... 15639 * Note that the local address never changes for the connection. 15640 */ 15641 if (addflag & TCP_IPV6_RECVPKTINFO) { 15642 struct in6_pktinfo *pkti; 15643 15644 toh = (struct T_opthdr *)optptr; 15645 toh->level = IPPROTO_IPV6; 15646 toh->name = IPV6_PKTINFO; 15647 toh->len = sizeof (*toh) + sizeof (*pkti); 15648 toh->status = 0; 15649 optptr += sizeof (*toh); 15650 pkti = (struct in6_pktinfo *)optptr; 15651 if (tcp->tcp_ipversion == IPV6_VERSION) 15652 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15653 else 15654 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15655 &pkti->ipi6_addr); 15656 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15657 optptr += sizeof (*pkti); 15658 ASSERT(OK_32PTR(optptr)); 15659 /* Save as "last" value */ 15660 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15661 } 15662 /* If app asked for hoplimit and it has changed ... */ 15663 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15664 toh = (struct T_opthdr *)optptr; 15665 toh->level = IPPROTO_IPV6; 15666 toh->name = IPV6_HOPLIMIT; 15667 toh->len = sizeof (*toh) + sizeof (uint_t); 15668 toh->status = 0; 15669 optptr += sizeof (*toh); 15670 *(uint_t *)optptr = ipp->ipp_hoplimit; 15671 optptr += sizeof (uint_t); 15672 ASSERT(OK_32PTR(optptr)); 15673 /* Save as "last" value */ 15674 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15675 } 15676 /* If app asked for tclass and it has changed ... */ 15677 if (addflag & TCP_IPV6_RECVTCLASS) { 15678 toh = (struct T_opthdr *)optptr; 15679 toh->level = IPPROTO_IPV6; 15680 toh->name = IPV6_TCLASS; 15681 toh->len = sizeof (*toh) + sizeof (uint_t); 15682 toh->status = 0; 15683 optptr += sizeof (*toh); 15684 *(uint_t *)optptr = ipp->ipp_tclass; 15685 optptr += sizeof (uint_t); 15686 ASSERT(OK_32PTR(optptr)); 15687 /* Save as "last" value */ 15688 tcp->tcp_recvtclass = ipp->ipp_tclass; 15689 } 15690 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15691 toh = (struct T_opthdr *)optptr; 15692 toh->level = IPPROTO_IPV6; 15693 toh->name = IPV6_HOPOPTS; 15694 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15695 tcp->tcp_label_len; 15696 toh->status = 0; 15697 optptr += sizeof (*toh); 15698 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15699 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15700 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15701 ASSERT(OK_32PTR(optptr)); 15702 /* Save as last value */ 15703 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15704 (ipp->ipp_fields & IPPF_HOPOPTS), 15705 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15706 } 15707 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15708 toh = (struct T_opthdr *)optptr; 15709 toh->level = IPPROTO_IPV6; 15710 toh->name = IPV6_RTHDRDSTOPTS; 15711 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15712 toh->status = 0; 15713 optptr += sizeof (*toh); 15714 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15715 optptr += ipp->ipp_rtdstoptslen; 15716 ASSERT(OK_32PTR(optptr)); 15717 /* Save as last value */ 15718 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15719 &tcp->tcp_rtdstoptslen, 15720 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15721 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15722 } 15723 if (addflag & TCP_IPV6_RECVRTHDR) { 15724 toh = (struct T_opthdr *)optptr; 15725 toh->level = IPPROTO_IPV6; 15726 toh->name = IPV6_RTHDR; 15727 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15728 toh->status = 0; 15729 optptr += sizeof (*toh); 15730 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15731 optptr += ipp->ipp_rthdrlen; 15732 ASSERT(OK_32PTR(optptr)); 15733 /* Save as last value */ 15734 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15735 (ipp->ipp_fields & IPPF_RTHDR), 15736 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15737 } 15738 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15739 toh = (struct T_opthdr *)optptr; 15740 toh->level = IPPROTO_IPV6; 15741 toh->name = IPV6_DSTOPTS; 15742 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15743 toh->status = 0; 15744 optptr += sizeof (*toh); 15745 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15746 optptr += ipp->ipp_dstoptslen; 15747 ASSERT(OK_32PTR(optptr)); 15748 /* Save as last value */ 15749 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15750 (ipp->ipp_fields & IPPF_DSTOPTS), 15751 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15752 } 15753 ASSERT(optptr == mp->b_wptr); 15754 return (mp); 15755 } 15756 15757 /* 15758 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15759 * messages. 15760 */ 15761 void 15762 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15763 { 15764 uchar_t *rptr = mp->b_rptr; 15765 queue_t *q = tcp->tcp_rq; 15766 struct T_error_ack *tea; 15767 15768 switch (mp->b_datap->db_type) { 15769 case M_PROTO: 15770 case M_PCPROTO: 15771 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15772 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15773 break; 15774 tea = (struct T_error_ack *)rptr; 15775 ASSERT(tea->PRIM_type != T_BIND_ACK); 15776 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15777 tea->ERROR_prim != T_BIND_REQ); 15778 switch (tea->PRIM_type) { 15779 case T_ERROR_ACK: 15780 if (tcp->tcp_debug) { 15781 (void) strlog(TCP_MOD_ID, 0, 1, 15782 SL_TRACE|SL_ERROR, 15783 "tcp_rput_other: case T_ERROR_ACK, " 15784 "ERROR_prim == %d", 15785 tea->ERROR_prim); 15786 } 15787 switch (tea->ERROR_prim) { 15788 case T_SVR4_OPTMGMT_REQ: 15789 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15790 /* T_OPTMGMT_REQ generated by TCP */ 15791 printf("T_SVR4_OPTMGMT_REQ failed " 15792 "%d/%d - dropped (cnt %d)\n", 15793 tea->TLI_error, tea->UNIX_error, 15794 tcp->tcp_drop_opt_ack_cnt); 15795 freemsg(mp); 15796 tcp->tcp_drop_opt_ack_cnt--; 15797 return; 15798 } 15799 break; 15800 } 15801 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15802 tcp->tcp_drop_opt_ack_cnt > 0) { 15803 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15804 "- dropped (cnt %d)\n", 15805 tea->TLI_error, tea->UNIX_error, 15806 tcp->tcp_drop_opt_ack_cnt); 15807 freemsg(mp); 15808 tcp->tcp_drop_opt_ack_cnt--; 15809 return; 15810 } 15811 break; 15812 case T_OPTMGMT_ACK: 15813 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15814 /* T_OPTMGMT_REQ generated by TCP */ 15815 freemsg(mp); 15816 tcp->tcp_drop_opt_ack_cnt--; 15817 return; 15818 } 15819 break; 15820 default: 15821 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15822 break; 15823 } 15824 break; 15825 case M_FLUSH: 15826 if (*rptr & FLUSHR) 15827 flushq(q, FLUSHDATA); 15828 break; 15829 default: 15830 /* M_CTL will be directly sent to tcp_icmp_error() */ 15831 ASSERT(DB_TYPE(mp) != M_CTL); 15832 break; 15833 } 15834 /* 15835 * Make sure we set this bit before sending the ACK for 15836 * bind. Otherwise accept could possibly run and free 15837 * this tcp struct. 15838 */ 15839 ASSERT(q != NULL); 15840 putnext(q, mp); 15841 } 15842 15843 /* ARGSUSED */ 15844 static void 15845 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15846 { 15847 conn_t *connp = (conn_t *)arg; 15848 tcp_t *tcp = connp->conn_tcp; 15849 queue_t *q = tcp->tcp_rq; 15850 uint_t thwin; 15851 tcp_stack_t *tcps = tcp->tcp_tcps; 15852 sodirect_t *sodp; 15853 boolean_t fc; 15854 15855 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15856 tcp->tcp_rsrv_mp = mp; 15857 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15858 15859 TCP_STAT(tcps, tcp_rsrv_calls); 15860 15861 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15862 return; 15863 } 15864 15865 if (tcp->tcp_fused) { 15866 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15867 15868 ASSERT(tcp->tcp_fused); 15869 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15870 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15871 ASSERT(!TCP_IS_DETACHED(tcp)); 15872 ASSERT(tcp->tcp_connp->conn_sqp == 15873 peer_tcp->tcp_connp->conn_sqp); 15874 15875 /* 15876 * Normally we would not get backenabled in synchronous 15877 * streams mode, but in case this happens, we need to plug 15878 * synchronous streams during our drain to prevent a race 15879 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15880 */ 15881 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15882 if (tcp->tcp_rcv_list != NULL) 15883 (void) tcp_rcv_drain(tcp); 15884 15885 if (peer_tcp > tcp) { 15886 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15887 mutex_enter(&tcp->tcp_non_sq_lock); 15888 } else { 15889 mutex_enter(&tcp->tcp_non_sq_lock); 15890 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15891 } 15892 15893 if (peer_tcp->tcp_flow_stopped && 15894 (TCP_UNSENT_BYTES(peer_tcp) <= 15895 peer_tcp->tcp_xmit_lowater)) { 15896 tcp_clrqfull(peer_tcp); 15897 } 15898 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15899 mutex_exit(&tcp->tcp_non_sq_lock); 15900 15901 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15902 TCP_STAT(tcps, tcp_fusion_backenabled); 15903 return; 15904 } 15905 15906 SOD_PTR_ENTER(tcp, sodp); 15907 if (sodp != NULL) { 15908 /* An sodirect connection */ 15909 if (SOD_QFULL(sodp)) { 15910 /* Flow-controlled, need another back-enable */ 15911 fc = B_TRUE; 15912 SOD_QSETBE(sodp); 15913 } else { 15914 /* Not flow-controlled */ 15915 fc = B_FALSE; 15916 } 15917 mutex_exit(sodp->sod_lockp); 15918 } else if (canputnext(q)) { 15919 /* STREAMS, not flow-controlled */ 15920 fc = B_FALSE; 15921 } else { 15922 /* STREAMS, flow-controlled */ 15923 fc = B_TRUE; 15924 } 15925 if (!fc) { 15926 /* Not flow-controlled, open rwnd */ 15927 tcp->tcp_rwnd = q->q_hiwat; 15928 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15929 << tcp->tcp_rcv_ws; 15930 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15931 /* 15932 * Send back a window update immediately if TCP is above 15933 * ESTABLISHED state and the increase of the rcv window 15934 * that the other side knows is at least 1 MSS after flow 15935 * control is lifted. 15936 */ 15937 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15938 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15939 tcp_xmit_ctl(NULL, tcp, 15940 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15941 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15942 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 15943 } 15944 } 15945 } 15946 15947 /* 15948 * The read side service routine is called mostly when we get back-enabled as a 15949 * result of flow control relief. Since we don't actually queue anything in 15950 * TCP, we have no data to send out of here. What we do is clear the receive 15951 * window, and send out a window update. 15952 */ 15953 static void 15954 tcp_rsrv(queue_t *q) 15955 { 15956 conn_t *connp = Q_TO_CONN(q); 15957 tcp_t *tcp = connp->conn_tcp; 15958 mblk_t *mp; 15959 tcp_stack_t *tcps = tcp->tcp_tcps; 15960 15961 /* No code does a putq on the read side */ 15962 ASSERT(q->q_first == NULL); 15963 15964 /* Nothing to do for the default queue */ 15965 if (q == tcps->tcps_g_q) { 15966 return; 15967 } 15968 15969 /* 15970 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15971 * been run. So just return. 15972 */ 15973 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15974 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15975 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15976 return; 15977 } 15978 tcp->tcp_rsrv_mp = NULL; 15979 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15980 15981 CONN_INC_REF(connp); 15982 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15983 SQ_PROCESS, SQTAG_TCP_RSRV); 15984 } 15985 15986 /* 15987 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15988 * We do not allow the receive window to shrink. After setting rwnd, 15989 * set the flow control hiwat of the stream. 15990 * 15991 * This function is called in 2 cases: 15992 * 15993 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15994 * connection (passive open) and in tcp_rput_data() for active connect. 15995 * This is called after tcp_mss_set() when the desired MSS value is known. 15996 * This makes sure that our window size is a mutiple of the other side's 15997 * MSS. 15998 * 2) Handling SO_RCVBUF option. 15999 * 16000 * It is ASSUMED that the requested size is a multiple of the current MSS. 16001 * 16002 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16003 * user requests so. 16004 */ 16005 static int 16006 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16007 { 16008 uint32_t mss = tcp->tcp_mss; 16009 uint32_t old_max_rwnd; 16010 uint32_t max_transmittable_rwnd; 16011 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16012 tcp_stack_t *tcps = tcp->tcp_tcps; 16013 16014 if (tcp->tcp_fused) { 16015 size_t sth_hiwat; 16016 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16017 16018 ASSERT(peer_tcp != NULL); 16019 /* 16020 * Record the stream head's high water mark for 16021 * this endpoint; this is used for flow-control 16022 * purposes in tcp_fuse_output(). 16023 */ 16024 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16025 if (!tcp_detached) { 16026 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16027 sth_hiwat); 16028 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 16029 conn_t *connp = tcp->tcp_connp; 16030 struct sock_proto_props sopp; 16031 16032 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 16033 sopp.sopp_rcvthresh = sth_hiwat >> 3; 16034 16035 (*connp->conn_upcalls->su_set_proto_props) 16036 (connp->conn_upper_handle, &sopp); 16037 } 16038 } 16039 16040 /* 16041 * In the fusion case, the maxpsz stream head value of 16042 * our peer is set according to its send buffer size 16043 * and our receive buffer size; since the latter may 16044 * have changed we need to update the peer's maxpsz. 16045 */ 16046 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16047 return (rwnd); 16048 } 16049 16050 if (tcp_detached) { 16051 old_max_rwnd = tcp->tcp_rwnd; 16052 } else { 16053 old_max_rwnd = tcp->tcp_recv_hiwater; 16054 } 16055 16056 /* 16057 * Insist on a receive window that is at least 16058 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16059 * funny TCP interactions of Nagle algorithm, SWS avoidance 16060 * and delayed acknowledgement. 16061 */ 16062 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16063 16064 /* 16065 * If window size info has already been exchanged, TCP should not 16066 * shrink the window. Shrinking window is doable if done carefully. 16067 * We may add that support later. But so far there is not a real 16068 * need to do that. 16069 */ 16070 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16071 /* MSS may have changed, do a round up again. */ 16072 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16073 } 16074 16075 /* 16076 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16077 * can be applied even before the window scale option is decided. 16078 */ 16079 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16080 if (rwnd > max_transmittable_rwnd) { 16081 rwnd = max_transmittable_rwnd - 16082 (max_transmittable_rwnd % mss); 16083 if (rwnd < mss) 16084 rwnd = max_transmittable_rwnd; 16085 /* 16086 * If we're over the limit we may have to back down tcp_rwnd. 16087 * The increment below won't work for us. So we set all three 16088 * here and the increment below will have no effect. 16089 */ 16090 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16091 } 16092 if (tcp->tcp_localnet) { 16093 tcp->tcp_rack_abs_max = 16094 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16095 } else { 16096 /* 16097 * For a remote host on a different subnet (through a router), 16098 * we ack every other packet to be conforming to RFC1122. 16099 * tcp_deferred_acks_max is default to 2. 16100 */ 16101 tcp->tcp_rack_abs_max = 16102 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16103 } 16104 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16105 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16106 else 16107 tcp->tcp_rack_cur_max = 0; 16108 /* 16109 * Increment the current rwnd by the amount the maximum grew (we 16110 * can not overwrite it since we might be in the middle of a 16111 * connection.) 16112 */ 16113 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16114 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16115 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16116 tcp->tcp_cwnd_max = rwnd; 16117 16118 if (tcp_detached) 16119 return (rwnd); 16120 /* 16121 * We set the maximum receive window into rq->q_hiwat if it is 16122 * a STREAMS socket. 16123 * This is not actually used for flow control. 16124 */ 16125 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 16126 tcp->tcp_rq->q_hiwat = rwnd; 16127 tcp->tcp_recv_hiwater = rwnd; 16128 /* 16129 * Set the STREAM head high water mark. This doesn't have to be 16130 * here, since we are simply using default values, but we would 16131 * prefer to choose these values algorithmically, with a likely 16132 * relationship to rwnd. 16133 */ 16134 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16135 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16136 return (rwnd); 16137 } 16138 16139 /* 16140 * Return SNMP stuff in buffer in mpdata. 16141 */ 16142 mblk_t * 16143 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16144 { 16145 mblk_t *mpdata; 16146 mblk_t *mp_conn_ctl = NULL; 16147 mblk_t *mp_conn_tail; 16148 mblk_t *mp_attr_ctl = NULL; 16149 mblk_t *mp_attr_tail; 16150 mblk_t *mp6_conn_ctl = NULL; 16151 mblk_t *mp6_conn_tail; 16152 mblk_t *mp6_attr_ctl = NULL; 16153 mblk_t *mp6_attr_tail; 16154 struct opthdr *optp; 16155 mib2_tcpConnEntry_t tce; 16156 mib2_tcp6ConnEntry_t tce6; 16157 mib2_transportMLPEntry_t mlp; 16158 connf_t *connfp; 16159 int i; 16160 boolean_t ispriv; 16161 zoneid_t zoneid; 16162 int v4_conn_idx; 16163 int v6_conn_idx; 16164 conn_t *connp = Q_TO_CONN(q); 16165 tcp_stack_t *tcps; 16166 ip_stack_t *ipst; 16167 mblk_t *mp2ctl; 16168 16169 /* 16170 * make a copy of the original message 16171 */ 16172 mp2ctl = copymsg(mpctl); 16173 16174 if (mpctl == NULL || 16175 (mpdata = mpctl->b_cont) == NULL || 16176 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16177 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16178 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16179 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16180 freemsg(mp_conn_ctl); 16181 freemsg(mp_attr_ctl); 16182 freemsg(mp6_conn_ctl); 16183 freemsg(mp6_attr_ctl); 16184 freemsg(mpctl); 16185 freemsg(mp2ctl); 16186 return (NULL); 16187 } 16188 16189 ipst = connp->conn_netstack->netstack_ip; 16190 tcps = connp->conn_netstack->netstack_tcp; 16191 16192 /* build table of connections -- need count in fixed part */ 16193 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16194 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16195 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16196 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16197 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16198 16199 ispriv = 16200 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16201 zoneid = Q_TO_CONN(q)->conn_zoneid; 16202 16203 v4_conn_idx = v6_conn_idx = 0; 16204 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16205 16206 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16207 ipst = tcps->tcps_netstack->netstack_ip; 16208 16209 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16210 16211 connp = NULL; 16212 16213 while ((connp = 16214 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16215 tcp_t *tcp; 16216 boolean_t needattr; 16217 16218 if (connp->conn_zoneid != zoneid) 16219 continue; /* not in this zone */ 16220 16221 tcp = connp->conn_tcp; 16222 UPDATE_MIB(&tcps->tcps_mib, 16223 tcpHCInSegs, tcp->tcp_ibsegs); 16224 tcp->tcp_ibsegs = 0; 16225 UPDATE_MIB(&tcps->tcps_mib, 16226 tcpHCOutSegs, tcp->tcp_obsegs); 16227 tcp->tcp_obsegs = 0; 16228 16229 tce6.tcp6ConnState = tce.tcpConnState = 16230 tcp_snmp_state(tcp); 16231 if (tce.tcpConnState == MIB2_TCP_established || 16232 tce.tcpConnState == MIB2_TCP_closeWait) 16233 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16234 16235 needattr = B_FALSE; 16236 bzero(&mlp, sizeof (mlp)); 16237 if (connp->conn_mlp_type != mlptSingle) { 16238 if (connp->conn_mlp_type == mlptShared || 16239 connp->conn_mlp_type == mlptBoth) 16240 mlp.tme_flags |= MIB2_TMEF_SHARED; 16241 if (connp->conn_mlp_type == mlptPrivate || 16242 connp->conn_mlp_type == mlptBoth) 16243 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16244 needattr = B_TRUE; 16245 } 16246 if (connp->conn_peercred != NULL) { 16247 ts_label_t *tsl; 16248 16249 tsl = crgetlabel(connp->conn_peercred); 16250 mlp.tme_doi = label2doi(tsl); 16251 mlp.tme_label = *label2bslabel(tsl); 16252 needattr = B_TRUE; 16253 } 16254 16255 /* Create a message to report on IPv6 entries */ 16256 if (tcp->tcp_ipversion == IPV6_VERSION) { 16257 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16258 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16259 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16260 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16261 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16262 /* Don't want just anybody seeing these... */ 16263 if (ispriv) { 16264 tce6.tcp6ConnEntryInfo.ce_snxt = 16265 tcp->tcp_snxt; 16266 tce6.tcp6ConnEntryInfo.ce_suna = 16267 tcp->tcp_suna; 16268 tce6.tcp6ConnEntryInfo.ce_rnxt = 16269 tcp->tcp_rnxt; 16270 tce6.tcp6ConnEntryInfo.ce_rack = 16271 tcp->tcp_rack; 16272 } else { 16273 /* 16274 * Netstat, unfortunately, uses this to 16275 * get send/receive queue sizes. How to fix? 16276 * Why not compute the difference only? 16277 */ 16278 tce6.tcp6ConnEntryInfo.ce_snxt = 16279 tcp->tcp_snxt - tcp->tcp_suna; 16280 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16281 tce6.tcp6ConnEntryInfo.ce_rnxt = 16282 tcp->tcp_rnxt - tcp->tcp_rack; 16283 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16284 } 16285 16286 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16287 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16288 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16289 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16290 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16291 16292 tce6.tcp6ConnCreationProcess = 16293 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16294 tcp->tcp_cpid; 16295 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16296 16297 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16298 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16299 16300 mlp.tme_connidx = v6_conn_idx++; 16301 if (needattr) 16302 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16303 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16304 } 16305 /* 16306 * Create an IPv4 table entry for IPv4 entries and also 16307 * for IPv6 entries which are bound to in6addr_any 16308 * but don't have IPV6_V6ONLY set. 16309 * (i.e. anything an IPv4 peer could connect to) 16310 */ 16311 if (tcp->tcp_ipversion == IPV4_VERSION || 16312 (tcp->tcp_state <= TCPS_LISTEN && 16313 !tcp->tcp_connp->conn_ipv6_v6only && 16314 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16315 if (tcp->tcp_ipversion == IPV6_VERSION) { 16316 tce.tcpConnRemAddress = INADDR_ANY; 16317 tce.tcpConnLocalAddress = INADDR_ANY; 16318 } else { 16319 tce.tcpConnRemAddress = 16320 tcp->tcp_remote; 16321 tce.tcpConnLocalAddress = 16322 tcp->tcp_ip_src; 16323 } 16324 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16325 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16326 /* Don't want just anybody seeing these... */ 16327 if (ispriv) { 16328 tce.tcpConnEntryInfo.ce_snxt = 16329 tcp->tcp_snxt; 16330 tce.tcpConnEntryInfo.ce_suna = 16331 tcp->tcp_suna; 16332 tce.tcpConnEntryInfo.ce_rnxt = 16333 tcp->tcp_rnxt; 16334 tce.tcpConnEntryInfo.ce_rack = 16335 tcp->tcp_rack; 16336 } else { 16337 /* 16338 * Netstat, unfortunately, uses this to 16339 * get send/receive queue sizes. How 16340 * to fix? 16341 * Why not compute the difference only? 16342 */ 16343 tce.tcpConnEntryInfo.ce_snxt = 16344 tcp->tcp_snxt - tcp->tcp_suna; 16345 tce.tcpConnEntryInfo.ce_suna = 0; 16346 tce.tcpConnEntryInfo.ce_rnxt = 16347 tcp->tcp_rnxt - tcp->tcp_rack; 16348 tce.tcpConnEntryInfo.ce_rack = 0; 16349 } 16350 16351 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16352 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16353 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16354 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16355 tce.tcpConnEntryInfo.ce_state = 16356 tcp->tcp_state; 16357 16358 tce.tcpConnCreationProcess = 16359 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16360 tcp->tcp_cpid; 16361 tce.tcpConnCreationTime = tcp->tcp_open_time; 16362 16363 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16364 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16365 16366 mlp.tme_connidx = v4_conn_idx++; 16367 if (needattr) 16368 (void) snmp_append_data2( 16369 mp_attr_ctl->b_cont, 16370 &mp_attr_tail, (char *)&mlp, 16371 sizeof (mlp)); 16372 } 16373 } 16374 } 16375 16376 /* fixed length structure for IPv4 and IPv6 counters */ 16377 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16378 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16379 sizeof (mib2_tcp6ConnEntry_t)); 16380 /* synchronize 32- and 64-bit counters */ 16381 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16382 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16383 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16384 optp->level = MIB2_TCP; 16385 optp->name = 0; 16386 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16387 sizeof (tcps->tcps_mib)); 16388 optp->len = msgdsize(mpdata); 16389 qreply(q, mpctl); 16390 16391 /* table of connections... */ 16392 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16393 sizeof (struct T_optmgmt_ack)]; 16394 optp->level = MIB2_TCP; 16395 optp->name = MIB2_TCP_CONN; 16396 optp->len = msgdsize(mp_conn_ctl->b_cont); 16397 qreply(q, mp_conn_ctl); 16398 16399 /* table of MLP attributes... */ 16400 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16401 sizeof (struct T_optmgmt_ack)]; 16402 optp->level = MIB2_TCP; 16403 optp->name = EXPER_XPORT_MLP; 16404 optp->len = msgdsize(mp_attr_ctl->b_cont); 16405 if (optp->len == 0) 16406 freemsg(mp_attr_ctl); 16407 else 16408 qreply(q, mp_attr_ctl); 16409 16410 /* table of IPv6 connections... */ 16411 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16412 sizeof (struct T_optmgmt_ack)]; 16413 optp->level = MIB2_TCP6; 16414 optp->name = MIB2_TCP6_CONN; 16415 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16416 qreply(q, mp6_conn_ctl); 16417 16418 /* table of IPv6 MLP attributes... */ 16419 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16420 sizeof (struct T_optmgmt_ack)]; 16421 optp->level = MIB2_TCP6; 16422 optp->name = EXPER_XPORT_MLP; 16423 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16424 if (optp->len == 0) 16425 freemsg(mp6_attr_ctl); 16426 else 16427 qreply(q, mp6_attr_ctl); 16428 return (mp2ctl); 16429 } 16430 16431 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16432 /* ARGSUSED */ 16433 int 16434 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16435 { 16436 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16437 16438 switch (level) { 16439 case MIB2_TCP: 16440 switch (name) { 16441 case 13: 16442 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16443 return (0); 16444 /* TODO: delete entry defined by tce */ 16445 return (1); 16446 default: 16447 return (0); 16448 } 16449 default: 16450 return (1); 16451 } 16452 } 16453 16454 /* Translate TCP state to MIB2 TCP state. */ 16455 static int 16456 tcp_snmp_state(tcp_t *tcp) 16457 { 16458 if (tcp == NULL) 16459 return (0); 16460 16461 switch (tcp->tcp_state) { 16462 case TCPS_CLOSED: 16463 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16464 case TCPS_BOUND: 16465 return (MIB2_TCP_closed); 16466 case TCPS_LISTEN: 16467 return (MIB2_TCP_listen); 16468 case TCPS_SYN_SENT: 16469 return (MIB2_TCP_synSent); 16470 case TCPS_SYN_RCVD: 16471 return (MIB2_TCP_synReceived); 16472 case TCPS_ESTABLISHED: 16473 return (MIB2_TCP_established); 16474 case TCPS_CLOSE_WAIT: 16475 return (MIB2_TCP_closeWait); 16476 case TCPS_FIN_WAIT_1: 16477 return (MIB2_TCP_finWait1); 16478 case TCPS_CLOSING: 16479 return (MIB2_TCP_closing); 16480 case TCPS_LAST_ACK: 16481 return (MIB2_TCP_lastAck); 16482 case TCPS_FIN_WAIT_2: 16483 return (MIB2_TCP_finWait2); 16484 case TCPS_TIME_WAIT: 16485 return (MIB2_TCP_timeWait); 16486 default: 16487 return (0); 16488 } 16489 } 16490 16491 static char tcp_report_header[] = 16492 "TCP " MI_COL_HDRPAD_STR 16493 "zone dest snxt suna " 16494 "swnd rnxt rack rwnd rto mss w sw rw t " 16495 "recent [lport,fport] state"; 16496 16497 /* 16498 * TCP status report triggered via the Named Dispatch mechanism. 16499 */ 16500 /* ARGSUSED */ 16501 static void 16502 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16503 cred_t *cr) 16504 { 16505 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16506 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16507 char cflag; 16508 in6_addr_t v6dst; 16509 char buf[80]; 16510 uint_t print_len, buf_len; 16511 16512 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16513 if (buf_len <= 0) 16514 return; 16515 16516 if (hashval >= 0) 16517 (void) sprintf(hash, "%03d ", hashval); 16518 else 16519 hash[0] = '\0'; 16520 16521 /* 16522 * Note that we use the remote address in the tcp_b structure. 16523 * This means that it will print out the real destination address, 16524 * not the next hop's address if source routing is used. This 16525 * avoid the confusion on the output because user may not 16526 * know that source routing is used for a connection. 16527 */ 16528 if (tcp->tcp_ipversion == IPV4_VERSION) { 16529 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16530 } else { 16531 v6dst = tcp->tcp_remote_v6; 16532 } 16533 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16534 /* 16535 * the ispriv checks are so that normal users cannot determine 16536 * sequence number information using NDD. 16537 */ 16538 16539 if (TCP_IS_DETACHED(tcp)) 16540 cflag = '*'; 16541 else 16542 cflag = ' '; 16543 print_len = snprintf((char *)mp->b_wptr, buf_len, 16544 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16545 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16546 hash, 16547 (void *)tcp, 16548 tcp->tcp_connp->conn_zoneid, 16549 addrbuf, 16550 (ispriv) ? tcp->tcp_snxt : 0, 16551 (ispriv) ? tcp->tcp_suna : 0, 16552 tcp->tcp_swnd, 16553 (ispriv) ? tcp->tcp_rnxt : 0, 16554 (ispriv) ? tcp->tcp_rack : 0, 16555 tcp->tcp_rwnd, 16556 tcp->tcp_rto, 16557 tcp->tcp_mss, 16558 tcp->tcp_snd_ws_ok, 16559 tcp->tcp_snd_ws, 16560 tcp->tcp_rcv_ws, 16561 tcp->tcp_snd_ts_ok, 16562 tcp->tcp_ts_recent, 16563 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16564 if (print_len < buf_len) { 16565 ((mblk_t *)mp)->b_wptr += print_len; 16566 } else { 16567 ((mblk_t *)mp)->b_wptr += buf_len; 16568 } 16569 } 16570 16571 /* 16572 * TCP status report (for listeners only) triggered via the Named Dispatch 16573 * mechanism. 16574 */ 16575 /* ARGSUSED */ 16576 static void 16577 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16578 { 16579 char addrbuf[INET6_ADDRSTRLEN]; 16580 in6_addr_t v6dst; 16581 uint_t print_len, buf_len; 16582 16583 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16584 if (buf_len <= 0) 16585 return; 16586 16587 if (tcp->tcp_ipversion == IPV4_VERSION) { 16588 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16589 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16590 } else { 16591 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16592 addrbuf, sizeof (addrbuf)); 16593 } 16594 print_len = snprintf((char *)mp->b_wptr, buf_len, 16595 "%03d " 16596 MI_COL_PTRFMT_STR 16597 "%d %s %05u %08u %d/%d/%d%c\n", 16598 hashval, (void *)tcp, 16599 tcp->tcp_connp->conn_zoneid, 16600 addrbuf, 16601 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16602 tcp->tcp_conn_req_seqnum, 16603 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16604 tcp->tcp_conn_req_max, 16605 tcp->tcp_syn_defense ? '*' : ' '); 16606 if (print_len < buf_len) { 16607 ((mblk_t *)mp)->b_wptr += print_len; 16608 } else { 16609 ((mblk_t *)mp)->b_wptr += buf_len; 16610 } 16611 } 16612 16613 /* TCP status report triggered via the Named Dispatch mechanism. */ 16614 /* ARGSUSED */ 16615 static int 16616 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16617 { 16618 tcp_t *tcp; 16619 int i; 16620 conn_t *connp; 16621 connf_t *connfp; 16622 zoneid_t zoneid; 16623 tcp_stack_t *tcps; 16624 ip_stack_t *ipst; 16625 16626 zoneid = Q_TO_CONN(q)->conn_zoneid; 16627 tcps = Q_TO_TCP(q)->tcp_tcps; 16628 16629 /* 16630 * Because of the ndd constraint, at most we can have 64K buffer 16631 * to put in all TCP info. So to be more efficient, just 16632 * allocate a 64K buffer here, assuming we need that large buffer. 16633 * This may be a problem as any user can read tcp_status. Therefore 16634 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16635 * This should be OK as normal users should not do this too often. 16636 */ 16637 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16638 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16639 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16640 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16641 return (0); 16642 } 16643 } 16644 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16645 /* The following may work even if we cannot get a large buf. */ 16646 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16647 return (0); 16648 } 16649 16650 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16651 16652 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16653 16654 ipst = tcps->tcps_netstack->netstack_ip; 16655 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16656 16657 connp = NULL; 16658 16659 while ((connp = 16660 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16661 tcp = connp->conn_tcp; 16662 if (zoneid != GLOBAL_ZONEID && 16663 zoneid != connp->conn_zoneid) 16664 continue; 16665 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16666 cr); 16667 } 16668 16669 } 16670 16671 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16672 return (0); 16673 } 16674 16675 /* TCP status report triggered via the Named Dispatch mechanism. */ 16676 /* ARGSUSED */ 16677 static int 16678 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16679 { 16680 tf_t *tbf; 16681 tcp_t *tcp, *ltcp; 16682 int i; 16683 zoneid_t zoneid; 16684 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16685 16686 zoneid = Q_TO_CONN(q)->conn_zoneid; 16687 16688 /* Refer to comments in tcp_status_report(). */ 16689 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16690 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16691 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16692 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16693 return (0); 16694 } 16695 } 16696 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16697 /* The following may work even if we cannot get a large buf. */ 16698 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16699 return (0); 16700 } 16701 16702 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16703 16704 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16705 tbf = &tcps->tcps_bind_fanout[i]; 16706 mutex_enter(&tbf->tf_lock); 16707 for (ltcp = tbf->tf_tcp; ltcp != NULL; 16708 ltcp = ltcp->tcp_bind_hash) { 16709 for (tcp = ltcp; tcp != NULL; 16710 tcp = tcp->tcp_bind_hash_port) { 16711 if (zoneid != GLOBAL_ZONEID && 16712 zoneid != tcp->tcp_connp->conn_zoneid) 16713 continue; 16714 CONN_INC_REF(tcp->tcp_connp); 16715 tcp_report_item(mp->b_cont, tcp, i, 16716 Q_TO_TCP(q), cr); 16717 CONN_DEC_REF(tcp->tcp_connp); 16718 } 16719 } 16720 mutex_exit(&tbf->tf_lock); 16721 } 16722 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16723 return (0); 16724 } 16725 16726 /* TCP status report triggered via the Named Dispatch mechanism. */ 16727 /* ARGSUSED */ 16728 static int 16729 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16730 { 16731 connf_t *connfp; 16732 conn_t *connp; 16733 tcp_t *tcp; 16734 int i; 16735 zoneid_t zoneid; 16736 tcp_stack_t *tcps; 16737 ip_stack_t *ipst; 16738 16739 zoneid = Q_TO_CONN(q)->conn_zoneid; 16740 tcps = Q_TO_TCP(q)->tcp_tcps; 16741 16742 /* Refer to comments in tcp_status_report(). */ 16743 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16744 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16745 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16746 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16747 return (0); 16748 } 16749 } 16750 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16751 /* The following may work even if we cannot get a large buf. */ 16752 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16753 return (0); 16754 } 16755 16756 (void) mi_mpprintf(mp, 16757 " TCP " MI_COL_HDRPAD_STR 16758 "zone IP addr port seqnum backlog (q0/q/max)"); 16759 16760 ipst = tcps->tcps_netstack->netstack_ip; 16761 16762 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16763 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16764 connp = NULL; 16765 while ((connp = 16766 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16767 tcp = connp->conn_tcp; 16768 if (zoneid != GLOBAL_ZONEID && 16769 zoneid != connp->conn_zoneid) 16770 continue; 16771 tcp_report_listener(mp->b_cont, tcp, i); 16772 } 16773 } 16774 16775 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16776 return (0); 16777 } 16778 16779 /* TCP status report triggered via the Named Dispatch mechanism. */ 16780 /* ARGSUSED */ 16781 static int 16782 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16783 { 16784 connf_t *connfp; 16785 conn_t *connp; 16786 tcp_t *tcp; 16787 int i; 16788 zoneid_t zoneid; 16789 tcp_stack_t *tcps; 16790 ip_stack_t *ipst; 16791 16792 zoneid = Q_TO_CONN(q)->conn_zoneid; 16793 tcps = Q_TO_TCP(q)->tcp_tcps; 16794 ipst = tcps->tcps_netstack->netstack_ip; 16795 16796 /* Refer to comments in tcp_status_report(). */ 16797 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16798 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16799 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16800 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16801 return (0); 16802 } 16803 } 16804 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16805 /* The following may work even if we cannot get a large buf. */ 16806 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16807 return (0); 16808 } 16809 16810 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16811 ipst->ips_ipcl_conn_fanout_size); 16812 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16813 16814 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16815 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16816 connp = NULL; 16817 while ((connp = 16818 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16819 tcp = connp->conn_tcp; 16820 if (zoneid != GLOBAL_ZONEID && 16821 zoneid != connp->conn_zoneid) 16822 continue; 16823 tcp_report_item(mp->b_cont, tcp, i, 16824 Q_TO_TCP(q), cr); 16825 } 16826 } 16827 16828 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16829 return (0); 16830 } 16831 16832 /* TCP status report triggered via the Named Dispatch mechanism. */ 16833 /* ARGSUSED */ 16834 static int 16835 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16836 { 16837 tf_t *tf; 16838 tcp_t *tcp; 16839 int i; 16840 zoneid_t zoneid; 16841 tcp_stack_t *tcps; 16842 16843 zoneid = Q_TO_CONN(q)->conn_zoneid; 16844 tcps = Q_TO_TCP(q)->tcp_tcps; 16845 16846 /* Refer to comments in tcp_status_report(). */ 16847 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16848 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16849 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16850 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16851 return (0); 16852 } 16853 } 16854 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16855 /* The following may work even if we cannot get a large buf. */ 16856 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16857 return (0); 16858 } 16859 16860 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16861 16862 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16863 tf = &tcps->tcps_acceptor_fanout[i]; 16864 mutex_enter(&tf->tf_lock); 16865 for (tcp = tf->tf_tcp; tcp != NULL; 16866 tcp = tcp->tcp_acceptor_hash) { 16867 if (zoneid != GLOBAL_ZONEID && 16868 zoneid != tcp->tcp_connp->conn_zoneid) 16869 continue; 16870 tcp_report_item(mp->b_cont, tcp, i, 16871 Q_TO_TCP(q), cr); 16872 } 16873 mutex_exit(&tf->tf_lock); 16874 } 16875 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16876 return (0); 16877 } 16878 16879 /* 16880 * tcp_timer is the timer service routine. It handles the retransmission, 16881 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16882 * from the state of the tcp instance what kind of action needs to be done 16883 * at the time it is called. 16884 */ 16885 static void 16886 tcp_timer(void *arg) 16887 { 16888 mblk_t *mp; 16889 clock_t first_threshold; 16890 clock_t second_threshold; 16891 clock_t ms; 16892 uint32_t mss; 16893 conn_t *connp = (conn_t *)arg; 16894 tcp_t *tcp = connp->conn_tcp; 16895 tcp_stack_t *tcps = tcp->tcp_tcps; 16896 16897 tcp->tcp_timer_tid = 0; 16898 16899 if (tcp->tcp_fused) 16900 return; 16901 16902 first_threshold = tcp->tcp_first_timer_threshold; 16903 second_threshold = tcp->tcp_second_timer_threshold; 16904 switch (tcp->tcp_state) { 16905 case TCPS_IDLE: 16906 case TCPS_BOUND: 16907 case TCPS_LISTEN: 16908 return; 16909 case TCPS_SYN_RCVD: { 16910 tcp_t *listener = tcp->tcp_listener; 16911 16912 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16913 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16914 /* it's our first timeout */ 16915 tcp->tcp_syn_rcvd_timeout = 1; 16916 mutex_enter(&listener->tcp_eager_lock); 16917 listener->tcp_syn_rcvd_timeout++; 16918 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16919 /* 16920 * Make this eager available for drop if we 16921 * need to drop one to accomodate a new 16922 * incoming SYN request. 16923 */ 16924 MAKE_DROPPABLE(listener, tcp); 16925 } 16926 if (!listener->tcp_syn_defense && 16927 (listener->tcp_syn_rcvd_timeout > 16928 (tcps->tcps_conn_req_max_q0 >> 2)) && 16929 (tcps->tcps_conn_req_max_q0 > 200)) { 16930 /* We may be under attack. Put on a defense. */ 16931 listener->tcp_syn_defense = B_TRUE; 16932 cmn_err(CE_WARN, "High TCP connect timeout " 16933 "rate! System (port %d) may be under a " 16934 "SYN flood attack!", 16935 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16936 16937 listener->tcp_ip_addr_cache = kmem_zalloc( 16938 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16939 KM_NOSLEEP); 16940 } 16941 mutex_exit(&listener->tcp_eager_lock); 16942 } else if (listener != NULL) { 16943 mutex_enter(&listener->tcp_eager_lock); 16944 tcp->tcp_syn_rcvd_timeout++; 16945 if (tcp->tcp_syn_rcvd_timeout > 1 && 16946 !tcp->tcp_closemp_used) { 16947 /* 16948 * This is our second timeout. Put the tcp in 16949 * the list of droppable eagers to allow it to 16950 * be dropped, if needed. We don't check 16951 * whether tcp_dontdrop is set or not to 16952 * protect ourselve from a SYN attack where a 16953 * remote host can spoof itself as one of the 16954 * good IP source and continue to hold 16955 * resources too long. 16956 */ 16957 MAKE_DROPPABLE(listener, tcp); 16958 } 16959 mutex_exit(&listener->tcp_eager_lock); 16960 } 16961 } 16962 /* FALLTHRU */ 16963 case TCPS_SYN_SENT: 16964 first_threshold = tcp->tcp_first_ctimer_threshold; 16965 second_threshold = tcp->tcp_second_ctimer_threshold; 16966 break; 16967 case TCPS_ESTABLISHED: 16968 case TCPS_FIN_WAIT_1: 16969 case TCPS_CLOSING: 16970 case TCPS_CLOSE_WAIT: 16971 case TCPS_LAST_ACK: 16972 /* If we have data to rexmit */ 16973 if (tcp->tcp_suna != tcp->tcp_snxt) { 16974 clock_t time_to_wait; 16975 16976 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16977 if (!tcp->tcp_xmit_head) 16978 break; 16979 time_to_wait = lbolt - 16980 (clock_t)tcp->tcp_xmit_head->b_prev; 16981 time_to_wait = tcp->tcp_rto - 16982 TICK_TO_MSEC(time_to_wait); 16983 /* 16984 * If the timer fires too early, 1 clock tick earlier, 16985 * restart the timer. 16986 */ 16987 if (time_to_wait > msec_per_tick) { 16988 TCP_STAT(tcps, tcp_timer_fire_early); 16989 TCP_TIMER_RESTART(tcp, time_to_wait); 16990 return; 16991 } 16992 /* 16993 * When we probe zero windows, we force the swnd open. 16994 * If our peer acks with a closed window swnd will be 16995 * set to zero by tcp_rput(). As long as we are 16996 * receiving acks tcp_rput will 16997 * reset 'tcp_ms_we_have_waited' so as not to trip the 16998 * first and second interval actions. NOTE: the timer 16999 * interval is allowed to continue its exponential 17000 * backoff. 17001 */ 17002 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17003 if (tcp->tcp_debug) { 17004 (void) strlog(TCP_MOD_ID, 0, 1, 17005 SL_TRACE, "tcp_timer: zero win"); 17006 } 17007 } else { 17008 /* 17009 * After retransmission, we need to do 17010 * slow start. Set the ssthresh to one 17011 * half of current effective window and 17012 * cwnd to one MSS. Also reset 17013 * tcp_cwnd_cnt. 17014 * 17015 * Note that if tcp_ssthresh is reduced because 17016 * of ECN, do not reduce it again unless it is 17017 * already one window of data away (tcp_cwr 17018 * should then be cleared) or this is a 17019 * timeout for a retransmitted segment. 17020 */ 17021 uint32_t npkt; 17022 17023 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17024 npkt = ((tcp->tcp_timer_backoff ? 17025 tcp->tcp_cwnd_ssthresh : 17026 tcp->tcp_snxt - 17027 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17028 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17029 tcp->tcp_mss; 17030 } 17031 tcp->tcp_cwnd = tcp->tcp_mss; 17032 tcp->tcp_cwnd_cnt = 0; 17033 if (tcp->tcp_ecn_ok) { 17034 tcp->tcp_cwr = B_TRUE; 17035 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17036 tcp->tcp_ecn_cwr_sent = B_FALSE; 17037 } 17038 } 17039 break; 17040 } 17041 /* 17042 * We have something to send yet we cannot send. The 17043 * reason can be: 17044 * 17045 * 1. Zero send window: we need to do zero window probe. 17046 * 2. Zero cwnd: because of ECN, we need to "clock out 17047 * segments. 17048 * 3. SWS avoidance: receiver may have shrunk window, 17049 * reset our knowledge. 17050 * 17051 * Note that condition 2 can happen with either 1 or 17052 * 3. But 1 and 3 are exclusive. 17053 */ 17054 if (tcp->tcp_unsent != 0) { 17055 if (tcp->tcp_cwnd == 0) { 17056 /* 17057 * Set tcp_cwnd to 1 MSS so that a 17058 * new segment can be sent out. We 17059 * are "clocking out" new data when 17060 * the network is really congested. 17061 */ 17062 ASSERT(tcp->tcp_ecn_ok); 17063 tcp->tcp_cwnd = tcp->tcp_mss; 17064 } 17065 if (tcp->tcp_swnd == 0) { 17066 /* Extend window for zero window probe */ 17067 tcp->tcp_swnd++; 17068 tcp->tcp_zero_win_probe = B_TRUE; 17069 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17070 } else { 17071 /* 17072 * Handle timeout from sender SWS avoidance. 17073 * Reset our knowledge of the max send window 17074 * since the receiver might have reduced its 17075 * receive buffer. Avoid setting tcp_max_swnd 17076 * to one since that will essentially disable 17077 * the SWS checks. 17078 * 17079 * Note that since we don't have a SWS 17080 * state variable, if the timeout is set 17081 * for ECN but not for SWS, this 17082 * code will also be executed. This is 17083 * fine as tcp_max_swnd is updated 17084 * constantly and it will not affect 17085 * anything. 17086 */ 17087 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17088 } 17089 tcp_wput_data(tcp, NULL, B_FALSE); 17090 return; 17091 } 17092 /* Is there a FIN that needs to be to re retransmitted? */ 17093 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17094 !tcp->tcp_fin_acked) 17095 break; 17096 /* Nothing to do, return without restarting timer. */ 17097 TCP_STAT(tcps, tcp_timer_fire_miss); 17098 return; 17099 case TCPS_FIN_WAIT_2: 17100 /* 17101 * User closed the TCP endpoint and peer ACK'ed our FIN. 17102 * We waited some time for for peer's FIN, but it hasn't 17103 * arrived. We flush the connection now to avoid 17104 * case where the peer has rebooted. 17105 */ 17106 if (TCP_IS_DETACHED(tcp)) { 17107 (void) tcp_clean_death(tcp, 0, 23); 17108 } else { 17109 TCP_TIMER_RESTART(tcp, 17110 tcps->tcps_fin_wait_2_flush_interval); 17111 } 17112 return; 17113 case TCPS_TIME_WAIT: 17114 (void) tcp_clean_death(tcp, 0, 24); 17115 return; 17116 default: 17117 if (tcp->tcp_debug) { 17118 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17119 "tcp_timer: strange state (%d) %s", 17120 tcp->tcp_state, tcp_display(tcp, NULL, 17121 DISP_PORT_ONLY)); 17122 } 17123 return; 17124 } 17125 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17126 /* 17127 * For zero window probe, we need to send indefinitely, 17128 * unless we have not heard from the other side for some 17129 * time... 17130 */ 17131 if ((tcp->tcp_zero_win_probe == 0) || 17132 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17133 second_threshold)) { 17134 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17135 /* 17136 * If TCP is in SYN_RCVD state, send back a 17137 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17138 * should be zero in TCPS_SYN_RCVD state. 17139 */ 17140 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17141 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17142 "in SYN_RCVD", 17143 tcp, tcp->tcp_snxt, 17144 tcp->tcp_rnxt, TH_RST | TH_ACK); 17145 } 17146 (void) tcp_clean_death(tcp, 17147 tcp->tcp_client_errno ? 17148 tcp->tcp_client_errno : ETIMEDOUT, 25); 17149 return; 17150 } else { 17151 /* 17152 * Set tcp_ms_we_have_waited to second_threshold 17153 * so that in next timeout, we will do the above 17154 * check (lbolt - tcp_last_recv_time). This is 17155 * also to avoid overflow. 17156 * 17157 * We don't need to decrement tcp_timer_backoff 17158 * to avoid overflow because it will be decremented 17159 * later if new timeout value is greater than 17160 * tcp_rexmit_interval_max. In the case when 17161 * tcp_rexmit_interval_max is greater than 17162 * second_threshold, it means that we will wait 17163 * longer than second_threshold to send the next 17164 * window probe. 17165 */ 17166 tcp->tcp_ms_we_have_waited = second_threshold; 17167 } 17168 } else if (ms > first_threshold) { 17169 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17170 tcp->tcp_xmit_head != NULL) { 17171 tcp->tcp_xmit_head = 17172 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17173 } 17174 /* 17175 * We have been retransmitting for too long... The RTT 17176 * we calculated is probably incorrect. Reinitialize it. 17177 * Need to compensate for 0 tcp_rtt_sa. Reset 17178 * tcp_rtt_update so that we won't accidentally cache a 17179 * bad value. But only do this if this is not a zero 17180 * window probe. 17181 */ 17182 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17183 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17184 (tcp->tcp_rtt_sa >> 5); 17185 tcp->tcp_rtt_sa = 0; 17186 tcp_ip_notify(tcp); 17187 tcp->tcp_rtt_update = 0; 17188 } 17189 } 17190 tcp->tcp_timer_backoff++; 17191 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17192 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17193 tcps->tcps_rexmit_interval_min) { 17194 /* 17195 * This means the original RTO is tcp_rexmit_interval_min. 17196 * So we will use tcp_rexmit_interval_min as the RTO value 17197 * and do the backoff. 17198 */ 17199 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17200 } else { 17201 ms <<= tcp->tcp_timer_backoff; 17202 } 17203 if (ms > tcps->tcps_rexmit_interval_max) { 17204 ms = tcps->tcps_rexmit_interval_max; 17205 /* 17206 * ms is at max, decrement tcp_timer_backoff to avoid 17207 * overflow. 17208 */ 17209 tcp->tcp_timer_backoff--; 17210 } 17211 tcp->tcp_ms_we_have_waited += ms; 17212 if (tcp->tcp_zero_win_probe == 0) { 17213 tcp->tcp_rto = ms; 17214 } 17215 TCP_TIMER_RESTART(tcp, ms); 17216 /* 17217 * This is after a timeout and tcp_rto is backed off. Set 17218 * tcp_set_timer to 1 so that next time RTO is updated, we will 17219 * restart the timer with a correct value. 17220 */ 17221 tcp->tcp_set_timer = 1; 17222 mss = tcp->tcp_snxt - tcp->tcp_suna; 17223 if (mss > tcp->tcp_mss) 17224 mss = tcp->tcp_mss; 17225 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17226 mss = tcp->tcp_swnd; 17227 17228 if ((mp = tcp->tcp_xmit_head) != NULL) 17229 mp->b_prev = (mblk_t *)lbolt; 17230 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17231 B_TRUE); 17232 17233 /* 17234 * When slow start after retransmission begins, start with 17235 * this seq no. tcp_rexmit_max marks the end of special slow 17236 * start phase. tcp_snd_burst controls how many segments 17237 * can be sent because of an ack. 17238 */ 17239 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17240 tcp->tcp_snd_burst = TCP_CWND_SS; 17241 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17242 (tcp->tcp_unsent == 0)) { 17243 tcp->tcp_rexmit_max = tcp->tcp_fss; 17244 } else { 17245 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17246 } 17247 tcp->tcp_rexmit = B_TRUE; 17248 tcp->tcp_dupack_cnt = 0; 17249 17250 /* 17251 * Remove all rexmit SACK blk to start from fresh. 17252 */ 17253 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17254 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17255 tcp->tcp_num_notsack_blk = 0; 17256 tcp->tcp_cnt_notsack_list = 0; 17257 } 17258 if (mp == NULL) { 17259 return; 17260 } 17261 /* Attach credentials to retransmitted initial SYNs. */ 17262 if (tcp->tcp_state == TCPS_SYN_SENT) { 17263 mblk_setcred(mp, tcp->tcp_cred); 17264 DB_CPID(mp) = tcp->tcp_cpid; 17265 } 17266 17267 tcp->tcp_csuna = tcp->tcp_snxt; 17268 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17269 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17270 tcp_send_data(tcp, tcp->tcp_wq, mp); 17271 17272 } 17273 17274 static int 17275 tcp_do_unbind(conn_t *connp) 17276 { 17277 tcp_t *tcp = connp->conn_tcp; 17278 int error = 0; 17279 17280 switch (tcp->tcp_state) { 17281 case TCPS_BOUND: 17282 case TCPS_LISTEN: 17283 break; 17284 default: 17285 return (-TOUTSTATE); 17286 } 17287 17288 /* 17289 * Need to clean up all the eagers since after the unbind, segments 17290 * will no longer be delivered to this listener stream. 17291 */ 17292 mutex_enter(&tcp->tcp_eager_lock); 17293 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17294 tcp_eager_cleanup(tcp, 0); 17295 } 17296 mutex_exit(&tcp->tcp_eager_lock); 17297 17298 if (tcp->tcp_ipversion == IPV4_VERSION) { 17299 tcp->tcp_ipha->ipha_src = 0; 17300 } else { 17301 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17302 } 17303 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17304 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17305 tcp_bind_hash_remove(tcp); 17306 tcp->tcp_state = TCPS_IDLE; 17307 tcp->tcp_mdt = B_FALSE; 17308 17309 connp = tcp->tcp_connp; 17310 connp->conn_mdt_ok = B_FALSE; 17311 ipcl_hash_remove(connp); 17312 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17313 17314 return (error); 17315 } 17316 17317 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17318 static void 17319 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 17320 { 17321 int error = tcp_do_unbind(tcp->tcp_connp); 17322 17323 if (error > 0) { 17324 tcp_err_ack(tcp, mp, TSYSERR, error); 17325 } else if (error < 0) { 17326 tcp_err_ack(tcp, mp, -error, 0); 17327 } else { 17328 /* Send M_FLUSH according to TPI */ 17329 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17330 17331 mp = mi_tpi_ok_ack_alloc(mp); 17332 putnext(tcp->tcp_rq, mp); 17333 } 17334 } 17335 17336 /* 17337 * Don't let port fall into the privileged range. 17338 * Since the extra privileged ports can be arbitrary we also 17339 * ensure that we exclude those from consideration. 17340 * tcp_g_epriv_ports is not sorted thus we loop over it until 17341 * there are no changes. 17342 * 17343 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17344 * but instead the code relies on: 17345 * - the fact that the address of the array and its size never changes 17346 * - the atomic assignment of the elements of the array 17347 * 17348 * Returns 0 if there are no more ports available. 17349 * 17350 * TS note: skip multilevel ports. 17351 */ 17352 static in_port_t 17353 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17354 { 17355 int i; 17356 boolean_t restart = B_FALSE; 17357 tcp_stack_t *tcps = tcp->tcp_tcps; 17358 17359 if (random && tcp_random_anon_port != 0) { 17360 (void) random_get_pseudo_bytes((uint8_t *)&port, 17361 sizeof (in_port_t)); 17362 /* 17363 * Unless changed by a sys admin, the smallest anon port 17364 * is 32768 and the largest anon port is 65535. It is 17365 * very likely (50%) for the random port to be smaller 17366 * than the smallest anon port. When that happens, 17367 * add port % (anon port range) to the smallest anon 17368 * port to get the random port. It should fall into the 17369 * valid anon port range. 17370 */ 17371 if (port < tcps->tcps_smallest_anon_port) { 17372 port = tcps->tcps_smallest_anon_port + 17373 port % (tcps->tcps_largest_anon_port - 17374 tcps->tcps_smallest_anon_port); 17375 } 17376 } 17377 17378 retry: 17379 if (port < tcps->tcps_smallest_anon_port) 17380 port = (in_port_t)tcps->tcps_smallest_anon_port; 17381 17382 if (port > tcps->tcps_largest_anon_port) { 17383 if (restart) 17384 return (0); 17385 restart = B_TRUE; 17386 port = (in_port_t)tcps->tcps_smallest_anon_port; 17387 } 17388 17389 if (port < tcps->tcps_smallest_nonpriv_port) 17390 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17391 17392 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17393 if (port == tcps->tcps_g_epriv_ports[i]) { 17394 port++; 17395 /* 17396 * Make sure whether the port is in the 17397 * valid range. 17398 */ 17399 goto retry; 17400 } 17401 } 17402 if (is_system_labeled() && 17403 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17404 IPPROTO_TCP, B_TRUE)) != 0) { 17405 port = i; 17406 goto retry; 17407 } 17408 return (port); 17409 } 17410 17411 /* 17412 * Return the next anonymous port in the privileged port range for 17413 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17414 * downwards. This is the same behavior as documented in the userland 17415 * library call rresvport(3N). 17416 * 17417 * TS note: skip multilevel ports. 17418 */ 17419 static in_port_t 17420 tcp_get_next_priv_port(const tcp_t *tcp) 17421 { 17422 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17423 in_port_t nextport; 17424 boolean_t restart = B_FALSE; 17425 tcp_stack_t *tcps = tcp->tcp_tcps; 17426 retry: 17427 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17428 next_priv_port >= IPPORT_RESERVED) { 17429 next_priv_port = IPPORT_RESERVED - 1; 17430 if (restart) 17431 return (0); 17432 restart = B_TRUE; 17433 } 17434 if (is_system_labeled() && 17435 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17436 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17437 next_priv_port = nextport; 17438 goto retry; 17439 } 17440 return (next_priv_port--); 17441 } 17442 17443 /* The write side r/w procedure. */ 17444 17445 #if CCS_STATS 17446 struct { 17447 struct { 17448 int64_t count, bytes; 17449 } tot, hit; 17450 } wrw_stats; 17451 #endif 17452 17453 /* 17454 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17455 * messages. 17456 */ 17457 /* ARGSUSED */ 17458 static void 17459 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17460 { 17461 conn_t *connp = (conn_t *)arg; 17462 tcp_t *tcp = connp->conn_tcp; 17463 queue_t *q = tcp->tcp_wq; 17464 17465 ASSERT(DB_TYPE(mp) != M_IOCTL); 17466 /* 17467 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17468 * Once the close starts, streamhead and sockfs will not let any data 17469 * packets come down (close ensures that there are no threads using the 17470 * queue and no new threads will come down) but since qprocsoff() 17471 * hasn't happened yet, a M_FLUSH or some non data message might 17472 * get reflected back (in response to our own FLUSHRW) and get 17473 * processed after tcp_close() is done. The conn would still be valid 17474 * because a ref would have added but we need to check the state 17475 * before actually processing the packet. 17476 */ 17477 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17478 freemsg(mp); 17479 return; 17480 } 17481 17482 switch (DB_TYPE(mp)) { 17483 case M_IOCDATA: 17484 tcp_wput_iocdata(tcp, mp); 17485 break; 17486 case M_FLUSH: 17487 tcp_wput_flush(tcp, mp); 17488 break; 17489 default: 17490 CALL_IP_WPUT(connp, q, mp); 17491 break; 17492 } 17493 } 17494 17495 /* 17496 * The TCP fast path write put procedure. 17497 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17498 */ 17499 /* ARGSUSED */ 17500 void 17501 tcp_output(void *arg, mblk_t *mp, void *arg2) 17502 { 17503 int len; 17504 int hdrlen; 17505 int plen; 17506 mblk_t *mp1; 17507 uchar_t *rptr; 17508 uint32_t snxt; 17509 tcph_t *tcph; 17510 struct datab *db; 17511 uint32_t suna; 17512 uint32_t mss; 17513 ipaddr_t *dst; 17514 ipaddr_t *src; 17515 uint32_t sum; 17516 int usable; 17517 conn_t *connp = (conn_t *)arg; 17518 tcp_t *tcp = connp->conn_tcp; 17519 uint32_t msize; 17520 tcp_stack_t *tcps = tcp->tcp_tcps; 17521 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17522 17523 /* 17524 * Try and ASSERT the minimum possible references on the 17525 * conn early enough. Since we are executing on write side, 17526 * the connection is obviously not detached and that means 17527 * there is a ref each for TCP and IP. Since we are behind 17528 * the squeue, the minimum references needed are 3. If the 17529 * conn is in classifier hash list, there should be an 17530 * extra ref for that (we check both the possibilities). 17531 */ 17532 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17533 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17534 17535 ASSERT(DB_TYPE(mp) == M_DATA); 17536 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17537 17538 mutex_enter(&tcp->tcp_non_sq_lock); 17539 tcp->tcp_squeue_bytes -= msize; 17540 mutex_exit(&tcp->tcp_non_sq_lock); 17541 17542 /* Check to see if this connection wants to be re-fused. */ 17543 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17544 if (tcp->tcp_ipversion == IPV4_VERSION) { 17545 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17546 &tcp->tcp_saved_tcph); 17547 } else { 17548 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17549 &tcp->tcp_saved_tcph); 17550 } 17551 } 17552 /* Bypass tcp protocol for fused tcp loopback */ 17553 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17554 return; 17555 17556 mss = tcp->tcp_mss; 17557 if (tcp->tcp_xmit_zc_clean) 17558 mp = tcp_zcopy_backoff(tcp, mp, 0); 17559 17560 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17561 len = (int)(mp->b_wptr - mp->b_rptr); 17562 17563 /* 17564 * Criteria for fast path: 17565 * 17566 * 1. no unsent data 17567 * 2. single mblk in request 17568 * 3. connection established 17569 * 4. data in mblk 17570 * 5. len <= mss 17571 * 6. no tcp_valid bits 17572 */ 17573 if ((tcp->tcp_unsent != 0) || 17574 (tcp->tcp_cork) || 17575 (mp->b_cont != NULL) || 17576 (tcp->tcp_state != TCPS_ESTABLISHED) || 17577 (len == 0) || 17578 (len > mss) || 17579 (tcp->tcp_valid_bits != 0)) { 17580 tcp_wput_data(tcp, mp, B_FALSE); 17581 return; 17582 } 17583 17584 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17585 ASSERT(tcp->tcp_fin_sent == 0); 17586 17587 /* queue new packet onto retransmission queue */ 17588 if (tcp->tcp_xmit_head == NULL) { 17589 tcp->tcp_xmit_head = mp; 17590 } else { 17591 tcp->tcp_xmit_last->b_cont = mp; 17592 } 17593 tcp->tcp_xmit_last = mp; 17594 tcp->tcp_xmit_tail = mp; 17595 17596 /* find out how much we can send */ 17597 /* BEGIN CSTYLED */ 17598 /* 17599 * un-acked usable 17600 * |--------------|-----------------| 17601 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17602 */ 17603 /* END CSTYLED */ 17604 17605 /* start sending from tcp_snxt */ 17606 snxt = tcp->tcp_snxt; 17607 17608 /* 17609 * Check to see if this connection has been idled for some 17610 * time and no ACK is expected. If it is, we need to slow 17611 * start again to get back the connection's "self-clock" as 17612 * described in VJ's paper. 17613 * 17614 * Refer to the comment in tcp_mss_set() for the calculation 17615 * of tcp_cwnd after idle. 17616 */ 17617 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17618 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17619 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17620 } 17621 17622 usable = tcp->tcp_swnd; /* tcp window size */ 17623 if (usable > tcp->tcp_cwnd) 17624 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17625 usable -= snxt; /* subtract stuff already sent */ 17626 suna = tcp->tcp_suna; 17627 usable += suna; 17628 /* usable can be < 0 if the congestion window is smaller */ 17629 if (len > usable) { 17630 /* Can't send complete M_DATA in one shot */ 17631 goto slow; 17632 } 17633 17634 mutex_enter(&tcp->tcp_non_sq_lock); 17635 if (tcp->tcp_flow_stopped && 17636 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17637 tcp_clrqfull(tcp); 17638 } 17639 mutex_exit(&tcp->tcp_non_sq_lock); 17640 17641 /* 17642 * determine if anything to send (Nagle). 17643 * 17644 * 1. len < tcp_mss (i.e. small) 17645 * 2. unacknowledged data present 17646 * 3. len < nagle limit 17647 * 4. last packet sent < nagle limit (previous packet sent) 17648 */ 17649 if ((len < mss) && (snxt != suna) && 17650 (len < (int)tcp->tcp_naglim) && 17651 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17652 /* 17653 * This was the first unsent packet and normally 17654 * mss < xmit_hiwater so there is no need to worry 17655 * about flow control. The next packet will go 17656 * through the flow control check in tcp_wput_data(). 17657 */ 17658 /* leftover work from above */ 17659 tcp->tcp_unsent = len; 17660 tcp->tcp_xmit_tail_unsent = len; 17661 17662 return; 17663 } 17664 17665 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17666 17667 if (snxt == suna) { 17668 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17669 } 17670 17671 /* we have always sent something */ 17672 tcp->tcp_rack_cnt = 0; 17673 17674 tcp->tcp_snxt = snxt + len; 17675 tcp->tcp_rack = tcp->tcp_rnxt; 17676 17677 if ((mp1 = dupb(mp)) == 0) 17678 goto no_memory; 17679 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17680 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17681 17682 /* adjust tcp header information */ 17683 tcph = tcp->tcp_tcph; 17684 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17685 17686 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17687 sum = (sum >> 16) + (sum & 0xFFFF); 17688 U16_TO_ABE16(sum, tcph->th_sum); 17689 17690 U32_TO_ABE32(snxt, tcph->th_seq); 17691 17692 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17693 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17694 BUMP_LOCAL(tcp->tcp_obsegs); 17695 17696 /* Update the latest receive window size in TCP header. */ 17697 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17698 tcph->th_win); 17699 17700 tcp->tcp_last_sent_len = (ushort_t)len; 17701 17702 plen = len + tcp->tcp_hdr_len; 17703 17704 if (tcp->tcp_ipversion == IPV4_VERSION) { 17705 tcp->tcp_ipha->ipha_length = htons(plen); 17706 } else { 17707 tcp->tcp_ip6h->ip6_plen = htons(plen - 17708 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17709 } 17710 17711 /* see if we need to allocate a mblk for the headers */ 17712 hdrlen = tcp->tcp_hdr_len; 17713 rptr = mp1->b_rptr - hdrlen; 17714 db = mp1->b_datap; 17715 if ((db->db_ref != 2) || rptr < db->db_base || 17716 (!OK_32PTR(rptr))) { 17717 /* NOTE: we assume allocb returns an OK_32PTR */ 17718 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17719 tcps->tcps_wroff_xtra, BPRI_MED); 17720 if (!mp) { 17721 freemsg(mp1); 17722 goto no_memory; 17723 } 17724 mp->b_cont = mp1; 17725 mp1 = mp; 17726 /* Leave room for Link Level header */ 17727 /* hdrlen = tcp->tcp_hdr_len; */ 17728 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17729 mp1->b_wptr = &rptr[hdrlen]; 17730 } 17731 mp1->b_rptr = rptr; 17732 17733 /* Fill in the timestamp option. */ 17734 if (tcp->tcp_snd_ts_ok) { 17735 U32_TO_BE32((uint32_t)lbolt, 17736 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17737 U32_TO_BE32(tcp->tcp_ts_recent, 17738 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17739 } else { 17740 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17741 } 17742 17743 /* copy header into outgoing packet */ 17744 dst = (ipaddr_t *)rptr; 17745 src = (ipaddr_t *)tcp->tcp_iphc; 17746 dst[0] = src[0]; 17747 dst[1] = src[1]; 17748 dst[2] = src[2]; 17749 dst[3] = src[3]; 17750 dst[4] = src[4]; 17751 dst[5] = src[5]; 17752 dst[6] = src[6]; 17753 dst[7] = src[7]; 17754 dst[8] = src[8]; 17755 dst[9] = src[9]; 17756 if (hdrlen -= 40) { 17757 hdrlen >>= 2; 17758 dst += 10; 17759 src += 10; 17760 do { 17761 *dst++ = *src++; 17762 } while (--hdrlen); 17763 } 17764 17765 /* 17766 * Set the ECN info in the TCP header. Note that this 17767 * is not the template header. 17768 */ 17769 if (tcp->tcp_ecn_ok) { 17770 SET_ECT(tcp, rptr); 17771 17772 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17773 if (tcp->tcp_ecn_echo_on) 17774 tcph->th_flags[0] |= TH_ECE; 17775 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17776 tcph->th_flags[0] |= TH_CWR; 17777 tcp->tcp_ecn_cwr_sent = B_TRUE; 17778 } 17779 } 17780 17781 if (tcp->tcp_ip_forward_progress) { 17782 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17783 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17784 tcp->tcp_ip_forward_progress = B_FALSE; 17785 } 17786 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17787 return; 17788 17789 /* 17790 * If we ran out of memory, we pretend to have sent the packet 17791 * and that it was lost on the wire. 17792 */ 17793 no_memory: 17794 return; 17795 17796 slow: 17797 /* leftover work from above */ 17798 tcp->tcp_unsent = len; 17799 tcp->tcp_xmit_tail_unsent = len; 17800 tcp_wput_data(tcp, NULL, B_FALSE); 17801 } 17802 17803 /* ARGSUSED */ 17804 void 17805 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17806 { 17807 conn_t *connp = (conn_t *)arg; 17808 tcp_t *tcp = connp->conn_tcp; 17809 queue_t *q = tcp->tcp_rq; 17810 struct tcp_options *tcpopt; 17811 tcp_stack_t *tcps = tcp->tcp_tcps; 17812 17813 /* socket options */ 17814 uint_t sopp_flags; 17815 ssize_t sopp_rxhiwat; 17816 ssize_t sopp_maxblk; 17817 ushort_t sopp_wroff; 17818 ushort_t sopp_tail; 17819 ushort_t sopp_copyopt; 17820 17821 tcpopt = (struct tcp_options *)mp->b_rptr; 17822 17823 /* 17824 * Drop the eager's ref on the listener, that was placed when 17825 * this eager began life in tcp_conn_request. 17826 */ 17827 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17828 if (IPCL_IS_NONSTR(connp)) { 17829 /* Safe to free conn_ind message */ 17830 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17831 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17832 17833 /* The listener tells us which upper handle to use */ 17834 ASSERT(tcpopt->to_flags & TCPOPT_UPPERHANDLE); 17835 connp->conn_upper_handle = tcpopt->to_handle; 17836 } 17837 17838 tcp->tcp_detached = B_FALSE; 17839 17840 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17841 /* 17842 * Someone blewoff the eager before we could finish 17843 * the accept. 17844 * 17845 * The only reason eager exists it because we put in 17846 * a ref on it when conn ind went up. We need to send 17847 * a disconnect indication up while the last reference 17848 * on the eager will be dropped by the squeue when we 17849 * return. 17850 */ 17851 ASSERT(tcp->tcp_listener == NULL); 17852 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17853 if (IPCL_IS_NONSTR(connp)) { 17854 ASSERT(tcp->tcp_issocket); 17855 (*connp->conn_upcalls->su_disconnected)( 17856 connp->conn_upper_handle, tcp->tcp_connid, 17857 ECONNREFUSED); 17858 freemsg(mp); 17859 } else { 17860 struct T_discon_ind *tdi; 17861 17862 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17863 /* 17864 * Let us reuse the incoming mblk to avoid 17865 * memory allocation failure problems. We know 17866 * that the size of the incoming mblk i.e. 17867 * stroptions is greater than sizeof 17868 * T_discon_ind. So the reallocb below can't 17869 * fail. 17870 */ 17871 freemsg(mp->b_cont); 17872 mp->b_cont = NULL; 17873 ASSERT(DB_REF(mp) == 1); 17874 mp = reallocb(mp, sizeof (struct T_discon_ind), 17875 B_FALSE); 17876 ASSERT(mp != NULL); 17877 DB_TYPE(mp) = M_PROTO; 17878 ((union T_primitives *)mp->b_rptr)->type = 17879 T_DISCON_IND; 17880 tdi = (struct T_discon_ind *)mp->b_rptr; 17881 if (tcp->tcp_issocket) { 17882 tdi->DISCON_reason = ECONNREFUSED; 17883 tdi->SEQ_number = 0; 17884 } else { 17885 tdi->DISCON_reason = ENOPROTOOPT; 17886 tdi->SEQ_number = 17887 tcp->tcp_conn_req_seqnum; 17888 } 17889 mp->b_wptr = mp->b_rptr + 17890 sizeof (struct T_discon_ind); 17891 putnext(q, mp); 17892 return; 17893 } 17894 } 17895 if (tcp->tcp_hard_binding) { 17896 tcp->tcp_hard_binding = B_FALSE; 17897 tcp->tcp_hard_bound = B_TRUE; 17898 } 17899 return; 17900 } 17901 17902 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17903 int boundif = tcpopt->to_boundif; 17904 uint_t len = sizeof (int); 17905 17906 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17907 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17908 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17909 } 17910 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17911 uint_t on = 1; 17912 uint_t len = sizeof (uint_t); 17913 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17914 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17915 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17916 } 17917 17918 /* 17919 * For a loopback connection with tcp_direct_sockfs on, note that 17920 * we don't have to protect tcp_rcv_list yet because synchronous 17921 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17922 * possibly race with us. 17923 */ 17924 17925 /* 17926 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17927 * properly. This is the first time we know of the acceptor' 17928 * queue. So we do it here. 17929 * 17930 * XXX 17931 */ 17932 if (tcp->tcp_rcv_list == NULL) { 17933 /* 17934 * Recv queue is empty, tcp_rwnd should not have changed. 17935 * That means it should be equal to the listener's tcp_rwnd. 17936 */ 17937 if (!IPCL_IS_NONSTR(connp)) 17938 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17939 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17940 } else { 17941 #ifdef DEBUG 17942 mblk_t *tmp; 17943 mblk_t *mp1; 17944 uint_t cnt = 0; 17945 17946 mp1 = tcp->tcp_rcv_list; 17947 while ((tmp = mp1) != NULL) { 17948 mp1 = tmp->b_next; 17949 cnt += msgdsize(tmp); 17950 } 17951 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17952 #endif 17953 /* There is some data, add them back to get the max. */ 17954 if (!IPCL_IS_NONSTR(connp)) 17955 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17956 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17957 } 17958 /* 17959 * This is the first time we run on the correct 17960 * queue after tcp_accept. So fix all the q parameters 17961 * here. 17962 */ 17963 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17964 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17965 17966 /* 17967 * Record the stream head's high water mark for this endpoint; 17968 * this is used for flow-control purposes. 17969 */ 17970 sopp_rxhiwat = tcp->tcp_fused ? 17971 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17972 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17973 17974 /* 17975 * Determine what write offset value to use depending on SACK and 17976 * whether the endpoint is fused or not. 17977 */ 17978 if (tcp->tcp_fused) { 17979 ASSERT(tcp->tcp_loopback); 17980 ASSERT(tcp->tcp_loopback_peer != NULL); 17981 /* 17982 * For fused tcp loopback, set the stream head's write 17983 * offset value to zero since we won't be needing any room 17984 * for TCP/IP headers. This would also improve performance 17985 * since it would reduce the amount of work done by kmem. 17986 * Non-fused tcp loopback case is handled separately below. 17987 */ 17988 sopp_wroff = 0; 17989 /* 17990 * Update the peer's transmit parameters according to 17991 * our recently calculated high water mark value. 17992 */ 17993 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17994 } else if (tcp->tcp_snd_sack_ok) { 17995 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17996 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17997 } else { 17998 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17999 tcps->tcps_wroff_xtra); 18000 } 18001 18002 /* 18003 * If this is endpoint is handling SSL, then reserve extra 18004 * offset and space at the end. 18005 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18006 * overriding the previous setting. The extra cost of signing and 18007 * encrypting multiple MSS-size records (12 of them with Ethernet), 18008 * instead of a single contiguous one by the stream head 18009 * largely outweighs the statistical reduction of ACKs, when 18010 * applicable. The peer will also save on decryption and verification 18011 * costs. 18012 */ 18013 if (tcp->tcp_kssl_ctx != NULL) { 18014 sopp_wroff += SSL3_WROFFSET; 18015 18016 sopp_flags |= SOCKOPT_TAIL; 18017 sopp_tail = SSL3_MAX_TAIL_LEN; 18018 18019 sopp_flags |= SOCKOPT_ZCOPY; 18020 sopp_copyopt = ZCVMUNSAFE; 18021 18022 sopp_maxblk = SSL3_MAX_RECORD_LEN; 18023 } 18024 18025 /* Send the options up */ 18026 if (IPCL_IS_NONSTR(connp)) { 18027 struct sock_proto_props sopp; 18028 18029 sopp.sopp_flags = sopp_flags; 18030 sopp.sopp_wroff = sopp_wroff; 18031 sopp.sopp_maxblk = sopp_maxblk; 18032 sopp.sopp_rxhiwat = sopp_rxhiwat; 18033 if (sopp_flags & SOCKOPT_TAIL) { 18034 ASSERT(tcp->tcp_kssl_ctx != NULL); 18035 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 18036 sopp.sopp_tail = sopp_tail; 18037 sopp.sopp_zcopyflag = sopp_copyopt; 18038 } 18039 (*connp->conn_upcalls->su_set_proto_props) 18040 (connp->conn_upper_handle, &sopp); 18041 } else { 18042 struct stroptions *stropt; 18043 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18044 if (stropt_mp == NULL) { 18045 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 18046 return; 18047 } 18048 DB_TYPE(stropt_mp) = M_SETOPTS; 18049 stropt = (struct stroptions *)stropt_mp->b_rptr; 18050 stropt_mp->b_wptr += sizeof (struct stroptions); 18051 stropt = (struct stroptions *)stropt_mp->b_rptr; 18052 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 18053 stropt->so_hiwat = sopp_rxhiwat; 18054 stropt->so_wroff = sopp_wroff; 18055 stropt->so_maxblk = sopp_maxblk; 18056 18057 if (sopp_flags & SOCKOPT_TAIL) { 18058 ASSERT(tcp->tcp_kssl_ctx != NULL); 18059 18060 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 18061 stropt->so_tail = sopp_tail; 18062 stropt->so_copyopt = sopp_copyopt; 18063 } 18064 18065 /* Send the options up */ 18066 putnext(q, stropt_mp); 18067 } 18068 18069 freemsg(mp); 18070 /* 18071 * Pass up any data and/or a fin that has been received. 18072 * 18073 * Adjust receive window in case it had decreased 18074 * (because there is data <=> tcp_rcv_list != NULL) 18075 * while the connection was detached. Note that 18076 * in case the eager was flow-controlled, w/o this 18077 * code, the rwnd may never open up again! 18078 */ 18079 if (tcp->tcp_rcv_list != NULL) { 18080 if (IPCL_IS_NONSTR(connp)) { 18081 mblk_t *mp; 18082 int space_left; 18083 int error; 18084 boolean_t push = B_TRUE; 18085 18086 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 18087 (connp->conn_upper_handle, NULL, 0, 0, &error, 18088 &push) >= 0) { 18089 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 18090 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18091 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18092 tcp_xmit_ctl(NULL, 18093 tcp, (tcp->tcp_swnd == 0) ? 18094 tcp->tcp_suna : tcp->tcp_snxt, 18095 tcp->tcp_rnxt, TH_ACK); 18096 } 18097 } 18098 while ((mp = tcp->tcp_rcv_list) != NULL) { 18099 push = B_TRUE; 18100 tcp->tcp_rcv_list = mp->b_next; 18101 mp->b_next = NULL; 18102 space_left = (*connp->conn_upcalls->su_recv) 18103 (connp->conn_upper_handle, mp, msgdsize(mp), 18104 0, &error, &push); 18105 if (space_left < 0) { 18106 /* 18107 * At this point the eager is not 18108 * visible to anyone, so fallback 18109 * can not happen. 18110 */ 18111 ASSERT(error != EOPNOTSUPP); 18112 } 18113 } 18114 tcp->tcp_rcv_last_head = NULL; 18115 tcp->tcp_rcv_last_tail = NULL; 18116 tcp->tcp_rcv_cnt = 0; 18117 } else { 18118 /* We drain directly in case of fused tcp loopback */ 18119 sodirect_t *sodp; 18120 18121 if (!tcp->tcp_fused && canputnext(q)) { 18122 tcp->tcp_rwnd = q->q_hiwat; 18123 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18124 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18125 tcp_xmit_ctl(NULL, 18126 tcp, (tcp->tcp_swnd == 0) ? 18127 tcp->tcp_suna : tcp->tcp_snxt, 18128 tcp->tcp_rnxt, TH_ACK); 18129 } 18130 } 18131 18132 SOD_PTR_ENTER(tcp, sodp); 18133 if (sodp != NULL) { 18134 /* Sodirect, move from rcv_list */ 18135 ASSERT(!tcp->tcp_fused); 18136 while ((mp = tcp->tcp_rcv_list) != NULL) { 18137 tcp->tcp_rcv_list = mp->b_next; 18138 mp->b_next = NULL; 18139 (void) tcp_rcv_sod_enqueue(tcp, sodp, 18140 mp, msgdsize(mp)); 18141 } 18142 tcp->tcp_rcv_last_head = NULL; 18143 tcp->tcp_rcv_last_tail = NULL; 18144 tcp->tcp_rcv_cnt = 0; 18145 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18146 /* sod_wakeup() did the mutex_exit() */ 18147 } else { 18148 /* Not sodirect, drain */ 18149 (void) tcp_rcv_drain(tcp); 18150 } 18151 } 18152 18153 /* 18154 * For fused tcp loopback, back-enable peer endpoint 18155 * if it's currently flow-controlled. 18156 */ 18157 if (tcp->tcp_fused) { 18158 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18159 18160 ASSERT(peer_tcp != NULL); 18161 ASSERT(peer_tcp->tcp_fused); 18162 /* 18163 * In order to change the peer's tcp_flow_stopped, 18164 * we need to take locks for both end points. The 18165 * highest address is taken first. 18166 */ 18167 if (peer_tcp > tcp) { 18168 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18169 mutex_enter(&tcp->tcp_non_sq_lock); 18170 } else { 18171 mutex_enter(&tcp->tcp_non_sq_lock); 18172 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18173 } 18174 if (peer_tcp->tcp_flow_stopped) { 18175 tcp_clrqfull(peer_tcp); 18176 TCP_STAT(tcps, tcp_fusion_backenabled); 18177 } 18178 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18179 mutex_exit(&tcp->tcp_non_sq_lock); 18180 } 18181 } 18182 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18183 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18184 tcp->tcp_ordrel_done = B_TRUE; 18185 if (IPCL_IS_NONSTR(connp)) { 18186 ASSERT(tcp->tcp_ordrel_mp == NULL); 18187 (*connp->conn_upcalls->su_opctl)( 18188 connp->conn_upper_handle, 18189 SOCK_OPCTL_SHUT_RECV, 0); 18190 } else { 18191 mp = tcp->tcp_ordrel_mp; 18192 tcp->tcp_ordrel_mp = NULL; 18193 putnext(q, mp); 18194 } 18195 } 18196 if (tcp->tcp_hard_binding) { 18197 tcp->tcp_hard_binding = B_FALSE; 18198 tcp->tcp_hard_bound = B_TRUE; 18199 } 18200 18201 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 18202 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 18203 tcp->tcp_loopback_peer != NULL && 18204 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 18205 tcp_fuse_syncstr_enable_pair(tcp); 18206 } 18207 18208 if (tcp->tcp_ka_enabled) { 18209 tcp->tcp_ka_last_intrvl = 0; 18210 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18211 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18212 } 18213 18214 /* 18215 * At this point, eager is fully established and will 18216 * have the following references - 18217 * 18218 * 2 references for connection to exist (1 for TCP and 1 for IP). 18219 * 1 reference for the squeue which will be dropped by the squeue as 18220 * soon as this function returns. 18221 * There will be 1 additonal reference for being in classifier 18222 * hash list provided something bad hasn't happened. 18223 */ 18224 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18225 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18226 } 18227 18228 /* 18229 * The function called through squeue to get behind listener's perimeter to 18230 * send a deffered conn_ind. 18231 */ 18232 /* ARGSUSED */ 18233 void 18234 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18235 { 18236 conn_t *connp = (conn_t *)arg; 18237 tcp_t *listener = connp->conn_tcp; 18238 struct T_conn_ind *conn_ind; 18239 tcp_t *tcp; 18240 18241 if (listener->tcp_state == TCPS_CLOSED || 18242 TCP_IS_DETACHED(listener)) { 18243 /* 18244 * If listener has closed, it would have caused a 18245 * a cleanup/blowoff to happen for the eager. 18246 */ 18247 18248 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18249 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18250 conn_ind->OPT_length); 18251 /* 18252 * We need to drop the ref on eager that was put 18253 * tcp_rput_data() before trying to send the conn_ind 18254 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18255 * and tcp_wput_accept() is sending this deferred conn_ind but 18256 * listener is closed so we drop the ref. 18257 */ 18258 CONN_DEC_REF(tcp->tcp_connp); 18259 freemsg(mp); 18260 return; 18261 } 18262 if (IPCL_IS_NONSTR(connp)) { 18263 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18264 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18265 conn_ind->OPT_length); 18266 18267 if ((*connp->conn_upcalls->su_newconn) 18268 (connp->conn_upper_handle, 18269 (sock_lower_handle_t)tcp->tcp_connp, 18270 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 18271 &tcp->tcp_connp->conn_upcalls) != NULL) { 18272 /* Keep the message around in case of fallback */ 18273 tcp->tcp_conn.tcp_eager_conn_ind = mp; 18274 } else { 18275 freemsg(mp); 18276 } 18277 } else { 18278 putnext(listener->tcp_rq, mp); 18279 } 18280 } 18281 18282 /* ARGSUSED */ 18283 static int 18284 tcp_accept_common(conn_t *lconnp, conn_t *econnp, 18285 sock_upper_handle_t sock_handle, cred_t *cr) 18286 { 18287 tcp_t *listener, *eager; 18288 mblk_t *opt_mp; 18289 struct tcp_options *tcpopt; 18290 18291 listener = lconnp->conn_tcp; 18292 ASSERT(listener->tcp_state == TCPS_LISTEN); 18293 eager = econnp->conn_tcp; 18294 ASSERT(eager->tcp_listener != NULL); 18295 18296 ASSERT(eager->tcp_rq != NULL); 18297 18298 /* If tcp_fused and sodirect enabled disable it */ 18299 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18300 /* Fused, disable sodirect */ 18301 mutex_enter(eager->tcp_sodirect->sod_lockp); 18302 SOD_DISABLE(eager->tcp_sodirect); 18303 mutex_exit(eager->tcp_sodirect->sod_lockp); 18304 eager->tcp_sodirect = NULL; 18305 } 18306 18307 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 18308 if (opt_mp == NULL) { 18309 return (-TPROTO); 18310 } 18311 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 18312 eager->tcp_issocket = B_TRUE; 18313 18314 econnp->conn_upcalls = lconnp->conn_upcalls; 18315 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18316 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18317 ASSERT(econnp->conn_netstack == 18318 listener->tcp_connp->conn_netstack); 18319 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18320 18321 /* Put the ref for IP */ 18322 CONN_INC_REF(econnp); 18323 18324 /* 18325 * We should have minimum of 3 references on the conn 18326 * at this point. One each for TCP and IP and one for 18327 * the T_conn_ind that was sent up when the 3-way handshake 18328 * completed. In the normal case we would also have another 18329 * reference (making a total of 4) for the conn being in the 18330 * classifier hash list. However the eager could have received 18331 * an RST subsequently and tcp_closei_local could have removed 18332 * the eager from the classifier hash list, hence we can't 18333 * assert that reference. 18334 */ 18335 ASSERT(econnp->conn_ref >= 3); 18336 18337 opt_mp->b_datap->db_type = M_SETOPTS; 18338 opt_mp->b_wptr += sizeof (struct tcp_options); 18339 18340 /* 18341 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18342 * from listener to acceptor. In case of non-STREAMS sockets, 18343 * we also need to pass the upper handle along. 18344 */ 18345 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 18346 tcpopt->to_flags = 0; 18347 18348 if (IPCL_IS_NONSTR(econnp)) { 18349 ASSERT(sock_handle != NULL); 18350 tcpopt->to_flags |= TCPOPT_UPPERHANDLE; 18351 tcpopt->to_handle = sock_handle; 18352 } 18353 if (listener->tcp_bound_if != 0) { 18354 tcpopt->to_flags |= TCPOPT_BOUNDIF; 18355 tcpopt->to_boundif = listener->tcp_bound_if; 18356 } 18357 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18358 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 18359 } 18360 18361 mutex_enter(&listener->tcp_eager_lock); 18362 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18363 18364 tcp_t *tail; 18365 tcp_t *tcp; 18366 mblk_t *mp1; 18367 18368 tcp = listener->tcp_eager_prev_q0; 18369 /* 18370 * listener->tcp_eager_prev_q0 points to the TAIL of the 18371 * deferred T_conn_ind queue. We need to get to the head 18372 * of the queue in order to send up T_conn_ind the same 18373 * order as how the 3WHS is completed. 18374 */ 18375 while (tcp != listener) { 18376 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18377 !tcp->tcp_kssl_pending) 18378 break; 18379 else 18380 tcp = tcp->tcp_eager_prev_q0; 18381 } 18382 /* None of the pending eagers can be sent up now */ 18383 if (tcp == listener) 18384 goto no_more_eagers; 18385 18386 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18387 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18388 /* Move from q0 to q */ 18389 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18390 listener->tcp_conn_req_cnt_q0--; 18391 listener->tcp_conn_req_cnt_q++; 18392 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18393 tcp->tcp_eager_prev_q0; 18394 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18395 tcp->tcp_eager_next_q0; 18396 tcp->tcp_eager_prev_q0 = NULL; 18397 tcp->tcp_eager_next_q0 = NULL; 18398 tcp->tcp_conn_def_q0 = B_FALSE; 18399 18400 /* Make sure the tcp isn't in the list of droppables */ 18401 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18402 tcp->tcp_eager_prev_drop_q0 == NULL); 18403 18404 /* 18405 * Insert at end of the queue because sockfs sends 18406 * down T_CONN_RES in chronological order. Leaving 18407 * the older conn indications at front of the queue 18408 * helps reducing search time. 18409 */ 18410 tail = listener->tcp_eager_last_q; 18411 if (tail != NULL) { 18412 tail->tcp_eager_next_q = tcp; 18413 } else { 18414 listener->tcp_eager_next_q = tcp; 18415 } 18416 listener->tcp_eager_last_q = tcp; 18417 tcp->tcp_eager_next_q = NULL; 18418 18419 /* Need to get inside the listener perimeter */ 18420 CONN_INC_REF(listener->tcp_connp); 18421 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 18422 tcp_send_pending, listener->tcp_connp, SQ_FILL, 18423 SQTAG_TCP_SEND_PENDING); 18424 } 18425 no_more_eagers: 18426 tcp_eager_unlink(eager); 18427 mutex_exit(&listener->tcp_eager_lock); 18428 18429 /* 18430 * At this point, the eager is detached from the listener 18431 * but we still have an extra refs on eager (apart from the 18432 * usual tcp references). The ref was placed in tcp_rput_data 18433 * before sending the conn_ind in tcp_send_conn_ind. 18434 * The ref will be dropped in tcp_accept_finish(). 18435 */ 18436 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 18437 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 18438 return (0); 18439 } 18440 18441 int 18442 tcp_accept(sock_lower_handle_t lproto_handle, 18443 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 18444 cred_t *cr) 18445 { 18446 conn_t *lconnp, *econnp; 18447 tcp_t *listener, *eager; 18448 tcp_stack_t *tcps; 18449 18450 lconnp = (conn_t *)lproto_handle; 18451 listener = lconnp->conn_tcp; 18452 ASSERT(listener->tcp_state == TCPS_LISTEN); 18453 econnp = (conn_t *)eproto_handle; 18454 eager = econnp->conn_tcp; 18455 ASSERT(eager->tcp_listener != NULL); 18456 tcps = eager->tcp_tcps; 18457 18458 ASSERT(IPCL_IS_NONSTR(econnp)); 18459 /* 18460 * Create helper stream if it is a non-TPI TCP connection. 18461 */ 18462 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 18463 ip1dbg(("tcp_accept: create of IP helper stream" 18464 " failed\n")); 18465 return (EPROTO); 18466 } 18467 eager->tcp_rq = econnp->conn_rq; 18468 eager->tcp_wq = econnp->conn_wq; 18469 18470 ASSERT(eager->tcp_rq != NULL); 18471 18472 eager->tcp_sodirect = SOD_SOTOSODP(sock_handle); 18473 return (tcp_accept_common(lconnp, econnp, sock_handle, cr)); 18474 } 18475 18476 18477 /* 18478 * This is the STREAMS entry point for T_CONN_RES coming down on 18479 * Acceptor STREAM when sockfs listener does accept processing. 18480 * Read the block comment on top of tcp_conn_request(). 18481 */ 18482 void 18483 tcp_tpi_accept(queue_t *q, mblk_t *mp) 18484 { 18485 queue_t *rq = RD(q); 18486 struct T_conn_res *conn_res; 18487 tcp_t *eager; 18488 tcp_t *listener; 18489 struct T_ok_ack *ok; 18490 t_scalar_t PRIM_type; 18491 conn_t *econnp; 18492 18493 ASSERT(DB_TYPE(mp) == M_PROTO); 18494 18495 conn_res = (struct T_conn_res *)mp->b_rptr; 18496 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18497 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18498 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18499 if (mp != NULL) 18500 putnext(rq, mp); 18501 return; 18502 } 18503 switch (conn_res->PRIM_type) { 18504 case O_T_CONN_RES: 18505 case T_CONN_RES: 18506 /* 18507 * We pass up an err ack if allocb fails. This will 18508 * cause sockfs to issue a T_DISCON_REQ which will cause 18509 * tcp_eager_blowoff to be called. sockfs will then call 18510 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18511 * we need to do the allocb up here because we have to 18512 * make sure rq->q_qinfo->qi_qclose still points to the 18513 * correct function (tcpclose_accept) in case allocb 18514 * fails. 18515 */ 18516 bcopy(mp->b_rptr + conn_res->OPT_offset, 18517 &eager, conn_res->OPT_length); 18518 PRIM_type = conn_res->PRIM_type; 18519 mp->b_datap->db_type = M_PCPROTO; 18520 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18521 ok = (struct T_ok_ack *)mp->b_rptr; 18522 ok->PRIM_type = T_OK_ACK; 18523 ok->CORRECT_prim = PRIM_type; 18524 econnp = eager->tcp_connp; 18525 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18526 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18527 eager->tcp_rq = rq; 18528 eager->tcp_wq = q; 18529 rq->q_ptr = econnp; 18530 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18531 q->q_ptr = econnp; 18532 q->q_qinfo = &tcp_winit; 18533 listener = eager->tcp_listener; 18534 18535 /* 18536 * TCP is _D_SODIRECT and sockfs is directly above so 18537 * save shared sodirect_t pointer (if any). 18538 */ 18539 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18540 if (tcp_accept_common(listener->tcp_connp, 18541 econnp, NULL, CRED()) < 0) { 18542 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18543 if (mp != NULL) 18544 putnext(rq, mp); 18545 return; 18546 } 18547 18548 /* 18549 * Send the new local address also up to sockfs. There 18550 * should already be enough space in the mp that came 18551 * down from soaccept(). 18552 */ 18553 if (eager->tcp_family == AF_INET) { 18554 sin_t *sin; 18555 18556 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18557 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18558 sin = (sin_t *)mp->b_wptr; 18559 mp->b_wptr += sizeof (sin_t); 18560 sin->sin_family = AF_INET; 18561 sin->sin_port = eager->tcp_lport; 18562 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18563 } else { 18564 sin6_t *sin6; 18565 18566 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18567 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18568 sin6 = (sin6_t *)mp->b_wptr; 18569 mp->b_wptr += sizeof (sin6_t); 18570 sin6->sin6_family = AF_INET6; 18571 sin6->sin6_port = eager->tcp_lport; 18572 if (eager->tcp_ipversion == IPV4_VERSION) { 18573 sin6->sin6_flowinfo = 0; 18574 IN6_IPADDR_TO_V4MAPPED( 18575 eager->tcp_ipha->ipha_src, 18576 &sin6->sin6_addr); 18577 } else { 18578 ASSERT(eager->tcp_ip6h != NULL); 18579 sin6->sin6_flowinfo = 18580 eager->tcp_ip6h->ip6_vcf & 18581 ~IPV6_VERS_AND_FLOW_MASK; 18582 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18583 } 18584 sin6->sin6_scope_id = 0; 18585 sin6->__sin6_src_id = 0; 18586 } 18587 18588 putnext(rq, mp); 18589 return; 18590 default: 18591 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18592 if (mp != NULL) 18593 putnext(rq, mp); 18594 return; 18595 } 18596 } 18597 18598 static int 18599 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18600 { 18601 sin_t *sin = (sin_t *)sa; 18602 sin6_t *sin6 = (sin6_t *)sa; 18603 18604 switch (tcp->tcp_family) { 18605 case AF_INET: 18606 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18607 18608 if (*salenp < sizeof (sin_t)) 18609 return (EINVAL); 18610 18611 *sin = sin_null; 18612 sin->sin_family = AF_INET; 18613 sin->sin_port = tcp->tcp_lport; 18614 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18615 break; 18616 18617 case AF_INET6: 18618 if (*salenp < sizeof (sin6_t)) 18619 return (EINVAL); 18620 18621 *sin6 = sin6_null; 18622 sin6->sin6_family = AF_INET6; 18623 sin6->sin6_port = tcp->tcp_lport; 18624 if (tcp->tcp_ipversion == IPV4_VERSION) { 18625 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18626 &sin6->sin6_addr); 18627 } else { 18628 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18629 } 18630 break; 18631 } 18632 18633 return (0); 18634 } 18635 18636 static int 18637 i_tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18638 { 18639 sin_t *sin = (sin_t *)sa; 18640 sin6_t *sin6 = (sin6_t *)sa; 18641 18642 if (tcp->tcp_state < TCPS_SYN_RCVD) 18643 return (ENOTCONN); 18644 18645 switch (tcp->tcp_family) { 18646 case AF_INET: 18647 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18648 18649 if (*salenp < sizeof (sin_t)) 18650 return (EINVAL); 18651 18652 *sin = sin_null; 18653 sin->sin_family = AF_INET; 18654 sin->sin_port = tcp->tcp_fport; 18655 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18656 sin->sin_addr.s_addr); 18657 *salenp = sizeof (sin_t); 18658 break; 18659 18660 case AF_INET6: 18661 if (*salenp < sizeof (sin6_t)) 18662 return (EINVAL); 18663 18664 *sin6 = sin6_null; 18665 sin6->sin6_family = AF_INET6; 18666 sin6->sin6_port = tcp->tcp_fport; 18667 sin6->sin6_addr = tcp->tcp_remote_v6; 18668 if (tcp->tcp_ipversion == IPV6_VERSION) { 18669 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18670 ~IPV6_VERS_AND_FLOW_MASK; 18671 } 18672 *salenp = sizeof (sin6_t); 18673 break; 18674 } 18675 18676 return (0); 18677 } 18678 18679 /* 18680 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18681 */ 18682 static void 18683 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18684 { 18685 void *data; 18686 mblk_t *datamp = mp->b_cont; 18687 tcp_t *tcp = Q_TO_TCP(q); 18688 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18689 18690 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18691 cmdp->cb_error = EPROTO; 18692 qreply(q, mp); 18693 return; 18694 } 18695 18696 data = datamp->b_rptr; 18697 18698 switch (cmdp->cb_cmd) { 18699 case TI_GETPEERNAME: 18700 cmdp->cb_error = i_tcp_getpeername(tcp, data, &cmdp->cb_len); 18701 break; 18702 case TI_GETMYNAME: 18703 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 18704 break; 18705 default: 18706 cmdp->cb_error = EINVAL; 18707 break; 18708 } 18709 18710 qreply(q, mp); 18711 } 18712 18713 void 18714 tcp_wput(queue_t *q, mblk_t *mp) 18715 { 18716 conn_t *connp = Q_TO_CONN(q); 18717 tcp_t *tcp; 18718 void (*output_proc)(); 18719 t_scalar_t type; 18720 uchar_t *rptr; 18721 struct iocblk *iocp; 18722 size_t size; 18723 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18724 18725 ASSERT(connp->conn_ref >= 2); 18726 18727 switch (DB_TYPE(mp)) { 18728 case M_DATA: 18729 tcp = connp->conn_tcp; 18730 ASSERT(tcp != NULL); 18731 18732 size = msgdsize(mp); 18733 18734 mutex_enter(&tcp->tcp_non_sq_lock); 18735 tcp->tcp_squeue_bytes += size; 18736 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18737 tcp_setqfull(tcp); 18738 } 18739 mutex_exit(&tcp->tcp_non_sq_lock); 18740 18741 CONN_INC_REF(connp); 18742 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18743 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18744 return; 18745 18746 case M_CMD: 18747 tcp_wput_cmdblk(q, mp); 18748 return; 18749 18750 case M_PROTO: 18751 case M_PCPROTO: 18752 /* 18753 * if it is a snmp message, don't get behind the squeue 18754 */ 18755 tcp = connp->conn_tcp; 18756 rptr = mp->b_rptr; 18757 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18758 type = ((union T_primitives *)rptr)->type; 18759 } else { 18760 if (tcp->tcp_debug) { 18761 (void) strlog(TCP_MOD_ID, 0, 1, 18762 SL_ERROR|SL_TRACE, 18763 "tcp_wput_proto, dropping one..."); 18764 } 18765 freemsg(mp); 18766 return; 18767 } 18768 if (type == T_SVR4_OPTMGMT_REQ) { 18769 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18770 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18771 cr)) { 18772 /* 18773 * This was a SNMP request 18774 */ 18775 return; 18776 } else { 18777 output_proc = tcp_wput_proto; 18778 } 18779 } else { 18780 output_proc = tcp_wput_proto; 18781 } 18782 break; 18783 case M_IOCTL: 18784 /* 18785 * Most ioctls can be processed right away without going via 18786 * squeues - process them right here. Those that do require 18787 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18788 * are processed by tcp_wput_ioctl(). 18789 */ 18790 iocp = (struct iocblk *)mp->b_rptr; 18791 tcp = connp->conn_tcp; 18792 18793 switch (iocp->ioc_cmd) { 18794 case TCP_IOC_ABORT_CONN: 18795 tcp_ioctl_abort_conn(q, mp); 18796 return; 18797 case TI_GETPEERNAME: 18798 case TI_GETMYNAME: 18799 mi_copyin(q, mp, NULL, 18800 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18801 return; 18802 case ND_SET: 18803 /* nd_getset does the necessary checks */ 18804 case ND_GET: 18805 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18806 CALL_IP_WPUT(connp, q, mp); 18807 return; 18808 } 18809 qreply(q, mp); 18810 return; 18811 case TCP_IOC_DEFAULT_Q: 18812 /* 18813 * Wants to be the default wq. Check the credentials 18814 * first, the rest is executed via squeue. 18815 */ 18816 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18817 iocp->ioc_error = EPERM; 18818 iocp->ioc_count = 0; 18819 mp->b_datap->db_type = M_IOCACK; 18820 qreply(q, mp); 18821 return; 18822 } 18823 output_proc = tcp_wput_ioctl; 18824 break; 18825 default: 18826 output_proc = tcp_wput_ioctl; 18827 break; 18828 } 18829 break; 18830 default: 18831 output_proc = tcp_wput_nondata; 18832 break; 18833 } 18834 18835 CONN_INC_REF(connp); 18836 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18837 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18838 } 18839 18840 /* 18841 * Initial STREAMS write side put() procedure for sockets. It tries to 18842 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18843 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18844 * are handled by tcp_wput() as usual. 18845 * 18846 * All further messages will also be handled by tcp_wput() because we cannot 18847 * be sure that the above short cut is safe later. 18848 */ 18849 static void 18850 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18851 { 18852 conn_t *connp = Q_TO_CONN(wq); 18853 tcp_t *tcp = connp->conn_tcp; 18854 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18855 18856 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18857 wq->q_qinfo = &tcp_winit; 18858 18859 ASSERT(IPCL_IS_TCP(connp)); 18860 ASSERT(TCP_IS_SOCKET(tcp)); 18861 18862 if (DB_TYPE(mp) == M_PCPROTO && 18863 MBLKL(mp) == sizeof (struct T_capability_req) && 18864 car->PRIM_type == T_CAPABILITY_REQ) { 18865 tcp_capability_req(tcp, mp); 18866 return; 18867 } 18868 18869 tcp_wput(wq, mp); 18870 } 18871 18872 /* ARGSUSED */ 18873 static void 18874 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18875 { 18876 #ifdef DEBUG 18877 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18878 #endif 18879 freemsg(mp); 18880 } 18881 18882 static boolean_t 18883 tcp_zcopy_check(tcp_t *tcp) 18884 { 18885 conn_t *connp = tcp->tcp_connp; 18886 ire_t *ire; 18887 boolean_t zc_enabled = B_FALSE; 18888 tcp_stack_t *tcps = tcp->tcp_tcps; 18889 18890 if (do_tcpzcopy == 2) 18891 zc_enabled = B_TRUE; 18892 else if (tcp->tcp_ipversion == IPV4_VERSION && 18893 IPCL_IS_CONNECTED(connp) && 18894 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18895 connp->conn_dontroute == 0 && 18896 !connp->conn_nexthop_set && 18897 connp->conn_outgoing_ill == NULL && 18898 connp->conn_nofailover_ill == NULL && 18899 do_tcpzcopy == 1) { 18900 /* 18901 * the checks above closely resemble the fast path checks 18902 * in tcp_send_data(). 18903 */ 18904 mutex_enter(&connp->conn_lock); 18905 ire = connp->conn_ire_cache; 18906 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18907 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18908 IRE_REFHOLD(ire); 18909 if (ire->ire_stq != NULL) { 18910 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18911 18912 zc_enabled = ill && (ill->ill_capabilities & 18913 ILL_CAPAB_ZEROCOPY) && 18914 (ill->ill_zerocopy_capab-> 18915 ill_zerocopy_flags != 0); 18916 } 18917 IRE_REFRELE(ire); 18918 } 18919 mutex_exit(&connp->conn_lock); 18920 } 18921 tcp->tcp_snd_zcopy_on = zc_enabled; 18922 if (!TCP_IS_DETACHED(tcp)) { 18923 if (zc_enabled) { 18924 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18925 ZCVMSAFE); 18926 TCP_STAT(tcps, tcp_zcopy_on); 18927 } else { 18928 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18929 ZCVMUNSAFE); 18930 TCP_STAT(tcps, tcp_zcopy_off); 18931 } 18932 } 18933 return (zc_enabled); 18934 } 18935 18936 static mblk_t * 18937 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18938 { 18939 tcp_stack_t *tcps = tcp->tcp_tcps; 18940 18941 if (do_tcpzcopy == 2) 18942 return (bp); 18943 else if (tcp->tcp_snd_zcopy_on) { 18944 tcp->tcp_snd_zcopy_on = B_FALSE; 18945 if (!TCP_IS_DETACHED(tcp)) { 18946 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18947 ZCVMUNSAFE); 18948 TCP_STAT(tcps, tcp_zcopy_disable); 18949 } 18950 } 18951 return (tcp_zcopy_backoff(tcp, bp, 0)); 18952 } 18953 18954 /* 18955 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18956 * the original desballoca'ed segmapped mblk. 18957 */ 18958 static mblk_t * 18959 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18960 { 18961 mblk_t *head, *tail, *nbp; 18962 tcp_stack_t *tcps = tcp->tcp_tcps; 18963 18964 if (IS_VMLOANED_MBLK(bp)) { 18965 TCP_STAT(tcps, tcp_zcopy_backoff); 18966 if ((head = copyb(bp)) == NULL) { 18967 /* fail to backoff; leave it for the next backoff */ 18968 tcp->tcp_xmit_zc_clean = B_FALSE; 18969 return (bp); 18970 } 18971 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18972 if (fix_xmitlist) 18973 tcp_zcopy_notify(tcp); 18974 else 18975 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18976 } 18977 nbp = bp->b_cont; 18978 if (fix_xmitlist) { 18979 head->b_prev = bp->b_prev; 18980 head->b_next = bp->b_next; 18981 if (tcp->tcp_xmit_tail == bp) 18982 tcp->tcp_xmit_tail = head; 18983 } 18984 bp->b_next = NULL; 18985 bp->b_prev = NULL; 18986 freeb(bp); 18987 } else { 18988 head = bp; 18989 nbp = bp->b_cont; 18990 } 18991 tail = head; 18992 while (nbp) { 18993 if (IS_VMLOANED_MBLK(nbp)) { 18994 TCP_STAT(tcps, tcp_zcopy_backoff); 18995 if ((tail->b_cont = copyb(nbp)) == NULL) { 18996 tcp->tcp_xmit_zc_clean = B_FALSE; 18997 tail->b_cont = nbp; 18998 return (head); 18999 } 19000 tail = tail->b_cont; 19001 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19002 if (fix_xmitlist) 19003 tcp_zcopy_notify(tcp); 19004 else 19005 tail->b_datap->db_struioflag |= 19006 STRUIO_ZCNOTIFY; 19007 } 19008 bp = nbp; 19009 nbp = nbp->b_cont; 19010 if (fix_xmitlist) { 19011 tail->b_prev = bp->b_prev; 19012 tail->b_next = bp->b_next; 19013 if (tcp->tcp_xmit_tail == bp) 19014 tcp->tcp_xmit_tail = tail; 19015 } 19016 bp->b_next = NULL; 19017 bp->b_prev = NULL; 19018 freeb(bp); 19019 } else { 19020 tail->b_cont = nbp; 19021 tail = nbp; 19022 nbp = nbp->b_cont; 19023 } 19024 } 19025 if (fix_xmitlist) { 19026 tcp->tcp_xmit_last = tail; 19027 tcp->tcp_xmit_zc_clean = B_TRUE; 19028 } 19029 return (head); 19030 } 19031 19032 static void 19033 tcp_zcopy_notify(tcp_t *tcp) 19034 { 19035 struct stdata *stp; 19036 conn_t *connp; 19037 19038 if (tcp->tcp_detached) 19039 return; 19040 connp = tcp->tcp_connp; 19041 if (IPCL_IS_NONSTR(connp)) { 19042 (*connp->conn_upcalls->su_zcopy_notify) 19043 (connp->conn_upper_handle); 19044 return; 19045 } 19046 stp = STREAM(tcp->tcp_rq); 19047 mutex_enter(&stp->sd_lock); 19048 stp->sd_flag |= STZCNOTIFY; 19049 cv_broadcast(&stp->sd_zcopy_wait); 19050 mutex_exit(&stp->sd_lock); 19051 } 19052 19053 static boolean_t 19054 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19055 { 19056 ire_t *ire; 19057 conn_t *connp = tcp->tcp_connp; 19058 tcp_stack_t *tcps = tcp->tcp_tcps; 19059 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19060 19061 mutex_enter(&connp->conn_lock); 19062 ire = connp->conn_ire_cache; 19063 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19064 19065 if ((ire != NULL) && 19066 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19067 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19068 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19069 IRE_REFHOLD(ire); 19070 mutex_exit(&connp->conn_lock); 19071 } else { 19072 boolean_t cached = B_FALSE; 19073 ts_label_t *tsl; 19074 19075 /* force a recheck later on */ 19076 tcp->tcp_ire_ill_check_done = B_FALSE; 19077 19078 TCP_DBGSTAT(tcps, tcp_ire_null1); 19079 connp->conn_ire_cache = NULL; 19080 mutex_exit(&connp->conn_lock); 19081 19082 if (ire != NULL) 19083 IRE_REFRELE_NOTR(ire); 19084 19085 tsl = crgetlabel(CONN_CRED(connp)); 19086 ire = (dst ? 19087 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19088 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19089 connp->conn_zoneid, tsl, ipst)); 19090 19091 if (ire == NULL) { 19092 TCP_STAT(tcps, tcp_ire_null); 19093 return (B_FALSE); 19094 } 19095 19096 IRE_REFHOLD_NOTR(ire); 19097 19098 mutex_enter(&connp->conn_lock); 19099 if (CONN_CACHE_IRE(connp)) { 19100 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19101 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19102 TCP_CHECK_IREINFO(tcp, ire); 19103 connp->conn_ire_cache = ire; 19104 cached = B_TRUE; 19105 } 19106 rw_exit(&ire->ire_bucket->irb_lock); 19107 } 19108 mutex_exit(&connp->conn_lock); 19109 19110 /* 19111 * We can continue to use the ire but since it was 19112 * not cached, we should drop the extra reference. 19113 */ 19114 if (!cached) 19115 IRE_REFRELE_NOTR(ire); 19116 19117 /* 19118 * Rampart note: no need to select a new label here, since 19119 * labels are not allowed to change during the life of a TCP 19120 * connection. 19121 */ 19122 } 19123 19124 *irep = ire; 19125 19126 return (B_TRUE); 19127 } 19128 19129 /* 19130 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19131 * 19132 * 0 = success; 19133 * 1 = failed to find ire and ill. 19134 */ 19135 static boolean_t 19136 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19137 { 19138 ipha_t *ipha; 19139 ipaddr_t dst; 19140 ire_t *ire; 19141 ill_t *ill; 19142 conn_t *connp = tcp->tcp_connp; 19143 mblk_t *ire_fp_mp; 19144 tcp_stack_t *tcps = tcp->tcp_tcps; 19145 19146 if (mp != NULL) 19147 ipha = (ipha_t *)mp->b_rptr; 19148 else 19149 ipha = tcp->tcp_ipha; 19150 dst = ipha->ipha_dst; 19151 19152 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19153 return (B_FALSE); 19154 19155 if ((ire->ire_flags & RTF_MULTIRT) || 19156 (ire->ire_stq == NULL) || 19157 (ire->ire_nce == NULL) || 19158 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19159 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19160 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19161 TCP_STAT(tcps, tcp_ip_ire_send); 19162 IRE_REFRELE(ire); 19163 return (B_FALSE); 19164 } 19165 19166 ill = ire_to_ill(ire); 19167 if (connp->conn_outgoing_ill != NULL) { 19168 ill_t *conn_outgoing_ill = NULL; 19169 /* 19170 * Choose a good ill in the group to send the packets on. 19171 */ 19172 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 19173 ill = ire_to_ill(ire); 19174 } 19175 ASSERT(ill != NULL); 19176 19177 if (!tcp->tcp_ire_ill_check_done) { 19178 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19179 tcp->tcp_ire_ill_check_done = B_TRUE; 19180 } 19181 19182 *irep = ire; 19183 *illp = ill; 19184 19185 return (B_TRUE); 19186 } 19187 19188 static void 19189 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19190 { 19191 ipha_t *ipha; 19192 ipaddr_t src; 19193 ipaddr_t dst; 19194 uint32_t cksum; 19195 ire_t *ire; 19196 uint16_t *up; 19197 ill_t *ill; 19198 conn_t *connp = tcp->tcp_connp; 19199 uint32_t hcksum_txflags = 0; 19200 mblk_t *ire_fp_mp; 19201 uint_t ire_fp_mp_len; 19202 tcp_stack_t *tcps = tcp->tcp_tcps; 19203 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19204 19205 ASSERT(DB_TYPE(mp) == M_DATA); 19206 19207 if (is_system_labeled() && DB_CRED(mp) == NULL) 19208 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp)); 19209 19210 ipha = (ipha_t *)mp->b_rptr; 19211 src = ipha->ipha_src; 19212 dst = ipha->ipha_dst; 19213 19214 ASSERT(q != NULL); 19215 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 19216 19217 /* 19218 * Drop off fast path for IPv6 and also if options are present or 19219 * we need to resolve a TS label. 19220 */ 19221 if (tcp->tcp_ipversion != IPV4_VERSION || 19222 !IPCL_IS_CONNECTED(connp) || 19223 !CONN_IS_LSO_MD_FASTPATH(connp) || 19224 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19225 !connp->conn_ulp_labeled || 19226 ipha->ipha_ident == IP_HDR_INCLUDED || 19227 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19228 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19229 if (tcp->tcp_snd_zcopy_aware) 19230 mp = tcp_zcopy_disable(tcp, mp); 19231 TCP_STAT(tcps, tcp_ip_send); 19232 CALL_IP_WPUT(connp, q, mp); 19233 return; 19234 } 19235 19236 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19237 if (tcp->tcp_snd_zcopy_aware) 19238 mp = tcp_zcopy_backoff(tcp, mp, 0); 19239 CALL_IP_WPUT(connp, q, mp); 19240 return; 19241 } 19242 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19243 ire_fp_mp_len = MBLKL(ire_fp_mp); 19244 19245 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19246 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19247 #ifndef _BIG_ENDIAN 19248 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19249 #endif 19250 19251 /* 19252 * Check to see if we need to re-enable LSO/MDT for this connection 19253 * because it was previously disabled due to changes in the ill; 19254 * note that by doing it here, this re-enabling only applies when 19255 * the packet is not dispatched through CALL_IP_WPUT(). 19256 * 19257 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19258 * case, since that's how we ended up here. For IPv6, we do the 19259 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19260 */ 19261 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19262 /* 19263 * Restore LSO for this connection, so that next time around 19264 * it is eligible to go through tcp_lsosend() path again. 19265 */ 19266 TCP_STAT(tcps, tcp_lso_enabled); 19267 tcp->tcp_lso = B_TRUE; 19268 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19269 "interface %s\n", (void *)connp, ill->ill_name)); 19270 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19271 /* 19272 * Restore MDT for this connection, so that next time around 19273 * it is eligible to go through tcp_multisend() path again. 19274 */ 19275 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19276 tcp->tcp_mdt = B_TRUE; 19277 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19278 "interface %s\n", (void *)connp, ill->ill_name)); 19279 } 19280 19281 if (tcp->tcp_snd_zcopy_aware) { 19282 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19283 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19284 mp = tcp_zcopy_disable(tcp, mp); 19285 /* 19286 * we shouldn't need to reset ipha as the mp containing 19287 * ipha should never be a zero-copy mp. 19288 */ 19289 } 19290 19291 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19292 ASSERT(ill->ill_hcksum_capab != NULL); 19293 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19294 } 19295 19296 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19297 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19298 19299 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19300 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19301 19302 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19303 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19304 19305 /* Software checksum? */ 19306 if (DB_CKSUMFLAGS(mp) == 0) { 19307 TCP_STAT(tcps, tcp_out_sw_cksum); 19308 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19309 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19310 } 19311 19312 /* Calculate IP header checksum if hardware isn't capable */ 19313 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19314 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19315 ((uint16_t *)ipha)[4]); 19316 } 19317 19318 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19319 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19320 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19321 19322 UPDATE_OB_PKT_COUNT(ire); 19323 ire->ire_last_used_time = lbolt; 19324 19325 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19327 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19328 ntohs(ipha->ipha_length)); 19329 19330 DTRACE_PROBE4(ip4__physical__out__start, 19331 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 19332 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19333 ipst->ips_ipv4firewall_physical_out, 19334 NULL, ill, ipha, mp, mp, 0, ipst); 19335 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19336 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 19337 19338 if (mp != NULL) { 19339 if (ipst->ips_ipobs_enabled) { 19340 zoneid_t szone; 19341 19342 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 19343 ipst, ALL_ZONES); 19344 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 19345 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 19346 } 19347 19348 ILL_SEND_TX(ill, ire, connp, mp, 0); 19349 } 19350 19351 IRE_REFRELE(ire); 19352 } 19353 19354 /* 19355 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19356 * if the receiver shrinks the window, i.e. moves the right window to the 19357 * left, the we should not send new data, but should retransmit normally the 19358 * old unacked data between suna and suna + swnd. We might has sent data 19359 * that is now outside the new window, pretend that we didn't send it. 19360 */ 19361 static void 19362 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19363 { 19364 uint32_t snxt = tcp->tcp_snxt; 19365 mblk_t *xmit_tail; 19366 int32_t offset; 19367 19368 ASSERT(shrunk_count > 0); 19369 19370 /* Pretend we didn't send the data outside the window */ 19371 snxt -= shrunk_count; 19372 19373 /* Get the mblk and the offset in it per the shrunk window */ 19374 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19375 19376 ASSERT(xmit_tail != NULL); 19377 19378 /* Reset all the values per the now shrunk window */ 19379 tcp->tcp_snxt = snxt; 19380 tcp->tcp_xmit_tail = xmit_tail; 19381 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19382 offset; 19383 tcp->tcp_unsent += shrunk_count; 19384 19385 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19386 /* 19387 * Make sure the timer is running so that we will probe a zero 19388 * window. 19389 */ 19390 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19391 } 19392 19393 19394 /* 19395 * The TCP normal data output path. 19396 * NOTE: the logic of the fast path is duplicated from this function. 19397 */ 19398 static void 19399 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19400 { 19401 int len; 19402 mblk_t *local_time; 19403 mblk_t *mp1; 19404 uint32_t snxt; 19405 int tail_unsent; 19406 int tcpstate; 19407 int usable = 0; 19408 mblk_t *xmit_tail; 19409 queue_t *q = tcp->tcp_wq; 19410 int32_t mss; 19411 int32_t num_sack_blk = 0; 19412 int32_t tcp_hdr_len; 19413 int32_t tcp_tcp_hdr_len; 19414 int mdt_thres; 19415 int rc; 19416 tcp_stack_t *tcps = tcp->tcp_tcps; 19417 ip_stack_t *ipst; 19418 19419 tcpstate = tcp->tcp_state; 19420 if (mp == NULL) { 19421 /* 19422 * tcp_wput_data() with NULL mp should only be called when 19423 * there is unsent data. 19424 */ 19425 ASSERT(tcp->tcp_unsent > 0); 19426 /* Really tacky... but we need this for detached closes. */ 19427 len = tcp->tcp_unsent; 19428 goto data_null; 19429 } 19430 19431 #if CCS_STATS 19432 wrw_stats.tot.count++; 19433 wrw_stats.tot.bytes += msgdsize(mp); 19434 #endif 19435 ASSERT(mp->b_datap->db_type == M_DATA); 19436 /* 19437 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19438 * or before a connection attempt has begun. 19439 */ 19440 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19441 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19442 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19443 #ifdef DEBUG 19444 cmn_err(CE_WARN, 19445 "tcp_wput_data: data after ordrel, %s", 19446 tcp_display(tcp, NULL, 19447 DISP_ADDR_AND_PORT)); 19448 #else 19449 if (tcp->tcp_debug) { 19450 (void) strlog(TCP_MOD_ID, 0, 1, 19451 SL_TRACE|SL_ERROR, 19452 "tcp_wput_data: data after ordrel, %s\n", 19453 tcp_display(tcp, NULL, 19454 DISP_ADDR_AND_PORT)); 19455 } 19456 #endif /* DEBUG */ 19457 } 19458 if (tcp->tcp_snd_zcopy_aware && 19459 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19460 tcp_zcopy_notify(tcp); 19461 freemsg(mp); 19462 mutex_enter(&tcp->tcp_non_sq_lock); 19463 if (tcp->tcp_flow_stopped && 19464 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19465 tcp_clrqfull(tcp); 19466 } 19467 mutex_exit(&tcp->tcp_non_sq_lock); 19468 return; 19469 } 19470 19471 /* Strip empties */ 19472 for (;;) { 19473 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19474 (uintptr_t)INT_MAX); 19475 len = (int)(mp->b_wptr - mp->b_rptr); 19476 if (len > 0) 19477 break; 19478 mp1 = mp; 19479 mp = mp->b_cont; 19480 freeb(mp1); 19481 if (!mp) { 19482 return; 19483 } 19484 } 19485 19486 /* If we are the first on the list ... */ 19487 if (tcp->tcp_xmit_head == NULL) { 19488 tcp->tcp_xmit_head = mp; 19489 tcp->tcp_xmit_tail = mp; 19490 tcp->tcp_xmit_tail_unsent = len; 19491 } else { 19492 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19493 struct datab *dp; 19494 19495 mp1 = tcp->tcp_xmit_last; 19496 if (len < tcp_tx_pull_len && 19497 (dp = mp1->b_datap)->db_ref == 1 && 19498 dp->db_lim - mp1->b_wptr >= len) { 19499 ASSERT(len > 0); 19500 ASSERT(!mp1->b_cont); 19501 if (len == 1) { 19502 *mp1->b_wptr++ = *mp->b_rptr; 19503 } else { 19504 bcopy(mp->b_rptr, mp1->b_wptr, len); 19505 mp1->b_wptr += len; 19506 } 19507 if (mp1 == tcp->tcp_xmit_tail) 19508 tcp->tcp_xmit_tail_unsent += len; 19509 mp1->b_cont = mp->b_cont; 19510 if (tcp->tcp_snd_zcopy_aware && 19511 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19512 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19513 freeb(mp); 19514 mp = mp1; 19515 } else { 19516 tcp->tcp_xmit_last->b_cont = mp; 19517 } 19518 len += tcp->tcp_unsent; 19519 } 19520 19521 /* Tack on however many more positive length mblks we have */ 19522 if ((mp1 = mp->b_cont) != NULL) { 19523 do { 19524 int tlen; 19525 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19526 (uintptr_t)INT_MAX); 19527 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19528 if (tlen <= 0) { 19529 mp->b_cont = mp1->b_cont; 19530 freeb(mp1); 19531 } else { 19532 len += tlen; 19533 mp = mp1; 19534 } 19535 } while ((mp1 = mp->b_cont) != NULL); 19536 } 19537 tcp->tcp_xmit_last = mp; 19538 tcp->tcp_unsent = len; 19539 19540 if (urgent) 19541 usable = 1; 19542 19543 data_null: 19544 snxt = tcp->tcp_snxt; 19545 xmit_tail = tcp->tcp_xmit_tail; 19546 tail_unsent = tcp->tcp_xmit_tail_unsent; 19547 19548 /* 19549 * Note that tcp_mss has been adjusted to take into account the 19550 * timestamp option if applicable. Because SACK options do not 19551 * appear in every TCP segments and they are of variable lengths, 19552 * they cannot be included in tcp_mss. Thus we need to calculate 19553 * the actual segment length when we need to send a segment which 19554 * includes SACK options. 19555 */ 19556 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19557 int32_t opt_len; 19558 19559 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19560 tcp->tcp_num_sack_blk); 19561 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19562 2 + TCPOPT_HEADER_LEN; 19563 mss = tcp->tcp_mss - opt_len; 19564 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19565 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19566 } else { 19567 mss = tcp->tcp_mss; 19568 tcp_hdr_len = tcp->tcp_hdr_len; 19569 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19570 } 19571 19572 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19573 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19574 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19575 } 19576 if (tcpstate == TCPS_SYN_RCVD) { 19577 /* 19578 * The three-way connection establishment handshake is not 19579 * complete yet. We want to queue the data for transmission 19580 * after entering ESTABLISHED state (RFC793). A jump to 19581 * "done" label effectively leaves data on the queue. 19582 */ 19583 goto done; 19584 } else { 19585 int usable_r; 19586 19587 /* 19588 * In the special case when cwnd is zero, which can only 19589 * happen if the connection is ECN capable, return now. 19590 * New segments is sent using tcp_timer(). The timer 19591 * is set in tcp_rput_data(). 19592 */ 19593 if (tcp->tcp_cwnd == 0) { 19594 /* 19595 * Note that tcp_cwnd is 0 before 3-way handshake is 19596 * finished. 19597 */ 19598 ASSERT(tcp->tcp_ecn_ok || 19599 tcp->tcp_state < TCPS_ESTABLISHED); 19600 return; 19601 } 19602 19603 /* NOTE: trouble if xmitting while SYN not acked? */ 19604 usable_r = snxt - tcp->tcp_suna; 19605 usable_r = tcp->tcp_swnd - usable_r; 19606 19607 /* 19608 * Check if the receiver has shrunk the window. If 19609 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19610 * cannot be set as there is unsent data, so FIN cannot 19611 * be sent out. Otherwise, we need to take into account 19612 * of FIN as it consumes an "invisible" sequence number. 19613 */ 19614 ASSERT(tcp->tcp_fin_sent == 0); 19615 if (usable_r < 0) { 19616 /* 19617 * The receiver has shrunk the window and we have sent 19618 * -usable_r date beyond the window, re-adjust. 19619 * 19620 * If TCP window scaling is enabled, there can be 19621 * round down error as the advertised receive window 19622 * is actually right shifted n bits. This means that 19623 * the lower n bits info is wiped out. It will look 19624 * like the window is shrunk. Do a check here to 19625 * see if the shrunk amount is actually within the 19626 * error in window calculation. If it is, just 19627 * return. Note that this check is inside the 19628 * shrunk window check. This makes sure that even 19629 * though tcp_process_shrunk_swnd() is not called, 19630 * we will stop further processing. 19631 */ 19632 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19633 tcp_process_shrunk_swnd(tcp, -usable_r); 19634 } 19635 return; 19636 } 19637 19638 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19639 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19640 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19641 19642 /* usable = MIN(usable, unsent) */ 19643 if (usable_r > len) 19644 usable_r = len; 19645 19646 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19647 if (usable_r > 0) { 19648 usable = usable_r; 19649 } else { 19650 /* Bypass all other unnecessary processing. */ 19651 goto done; 19652 } 19653 } 19654 19655 local_time = (mblk_t *)lbolt; 19656 19657 /* 19658 * "Our" Nagle Algorithm. This is not the same as in the old 19659 * BSD. This is more in line with the true intent of Nagle. 19660 * 19661 * The conditions are: 19662 * 1. The amount of unsent data (or amount of data which can be 19663 * sent, whichever is smaller) is less than Nagle limit. 19664 * 2. The last sent size is also less than Nagle limit. 19665 * 3. There is unack'ed data. 19666 * 4. Urgent pointer is not set. Send urgent data ignoring the 19667 * Nagle algorithm. This reduces the probability that urgent 19668 * bytes get "merged" together. 19669 * 5. The app has not closed the connection. This eliminates the 19670 * wait time of the receiving side waiting for the last piece of 19671 * (small) data. 19672 * 19673 * If all are satisified, exit without sending anything. Note 19674 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19675 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19676 * 4095). 19677 */ 19678 if (usable < (int)tcp->tcp_naglim && 19679 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19680 snxt != tcp->tcp_suna && 19681 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19682 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19683 goto done; 19684 } 19685 19686 if (tcp->tcp_cork) { 19687 /* 19688 * if the tcp->tcp_cork option is set, then we have to force 19689 * TCP not to send partial segment (smaller than MSS bytes). 19690 * We are calculating the usable now based on full mss and 19691 * will save the rest of remaining data for later. 19692 */ 19693 if (usable < mss) 19694 goto done; 19695 usable = (usable / mss) * mss; 19696 } 19697 19698 /* Update the latest receive window size in TCP header. */ 19699 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19700 tcp->tcp_tcph->th_win); 19701 19702 /* 19703 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19704 * 19705 * 1. Simple TCP/IP{v4,v6} (no options). 19706 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19707 * 3. If the TCP connection is in ESTABLISHED state. 19708 * 4. The TCP is not detached. 19709 * 19710 * If any of the above conditions have changed during the 19711 * connection, stop using LSO/MDT and restore the stream head 19712 * parameters accordingly. 19713 */ 19714 ipst = tcps->tcps_netstack->netstack_ip; 19715 19716 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19717 ((tcp->tcp_ipversion == IPV4_VERSION && 19718 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19719 (tcp->tcp_ipversion == IPV6_VERSION && 19720 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19721 tcp->tcp_state != TCPS_ESTABLISHED || 19722 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19723 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19724 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19725 if (tcp->tcp_lso) { 19726 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19727 tcp->tcp_lso = B_FALSE; 19728 } else { 19729 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19730 tcp->tcp_mdt = B_FALSE; 19731 } 19732 19733 /* Anything other than detached is considered pathological */ 19734 if (!TCP_IS_DETACHED(tcp)) { 19735 if (tcp->tcp_lso) 19736 TCP_STAT(tcps, tcp_lso_disabled); 19737 else 19738 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19739 (void) tcp_maxpsz_set(tcp, B_TRUE); 19740 } 19741 } 19742 19743 /* Use MDT if sendable amount is greater than the threshold */ 19744 if (tcp->tcp_mdt && 19745 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19746 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19747 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19748 (tcp->tcp_valid_bits == 0 || 19749 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19750 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19751 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19752 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19753 local_time, mdt_thres); 19754 } else { 19755 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19756 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19757 local_time, INT_MAX); 19758 } 19759 19760 /* Pretend that all we were trying to send really got sent */ 19761 if (rc < 0 && tail_unsent < 0) { 19762 do { 19763 xmit_tail = xmit_tail->b_cont; 19764 xmit_tail->b_prev = local_time; 19765 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19766 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19767 tail_unsent += (int)(xmit_tail->b_wptr - 19768 xmit_tail->b_rptr); 19769 } while (tail_unsent < 0); 19770 } 19771 done:; 19772 tcp->tcp_xmit_tail = xmit_tail; 19773 tcp->tcp_xmit_tail_unsent = tail_unsent; 19774 len = tcp->tcp_snxt - snxt; 19775 if (len) { 19776 /* 19777 * If new data was sent, need to update the notsack 19778 * list, which is, afterall, data blocks that have 19779 * not been sack'ed by the receiver. New data is 19780 * not sack'ed. 19781 */ 19782 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19783 /* len is a negative value. */ 19784 tcp->tcp_pipe -= len; 19785 tcp_notsack_update(&(tcp->tcp_notsack_list), 19786 tcp->tcp_snxt, snxt, 19787 &(tcp->tcp_num_notsack_blk), 19788 &(tcp->tcp_cnt_notsack_list)); 19789 } 19790 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19791 tcp->tcp_rack = tcp->tcp_rnxt; 19792 tcp->tcp_rack_cnt = 0; 19793 if ((snxt + len) == tcp->tcp_suna) { 19794 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19795 } 19796 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19797 /* 19798 * Didn't send anything. Make sure the timer is running 19799 * so that we will probe a zero window. 19800 */ 19801 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19802 } 19803 /* Note that len is the amount we just sent but with a negative sign */ 19804 tcp->tcp_unsent += len; 19805 mutex_enter(&tcp->tcp_non_sq_lock); 19806 if (tcp->tcp_flow_stopped) { 19807 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19808 tcp_clrqfull(tcp); 19809 } 19810 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19811 tcp_setqfull(tcp); 19812 } 19813 mutex_exit(&tcp->tcp_non_sq_lock); 19814 } 19815 19816 /* 19817 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19818 * outgoing TCP header with the template header, as well as other 19819 * options such as time-stamp, ECN and/or SACK. 19820 */ 19821 static void 19822 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19823 { 19824 tcph_t *tcp_tmpl, *tcp_h; 19825 uint32_t *dst, *src; 19826 int hdrlen; 19827 19828 ASSERT(OK_32PTR(rptr)); 19829 19830 /* Template header */ 19831 tcp_tmpl = tcp->tcp_tcph; 19832 19833 /* Header of outgoing packet */ 19834 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19835 19836 /* dst and src are opaque 32-bit fields, used for copying */ 19837 dst = (uint32_t *)rptr; 19838 src = (uint32_t *)tcp->tcp_iphc; 19839 hdrlen = tcp->tcp_hdr_len; 19840 19841 /* Fill time-stamp option if needed */ 19842 if (tcp->tcp_snd_ts_ok) { 19843 U32_TO_BE32((uint32_t)now, 19844 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19845 U32_TO_BE32(tcp->tcp_ts_recent, 19846 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19847 } else { 19848 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19849 } 19850 19851 /* 19852 * Copy the template header; is this really more efficient than 19853 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19854 * but perhaps not for other scenarios. 19855 */ 19856 dst[0] = src[0]; 19857 dst[1] = src[1]; 19858 dst[2] = src[2]; 19859 dst[3] = src[3]; 19860 dst[4] = src[4]; 19861 dst[5] = src[5]; 19862 dst[6] = src[6]; 19863 dst[7] = src[7]; 19864 dst[8] = src[8]; 19865 dst[9] = src[9]; 19866 if (hdrlen -= 40) { 19867 hdrlen >>= 2; 19868 dst += 10; 19869 src += 10; 19870 do { 19871 *dst++ = *src++; 19872 } while (--hdrlen); 19873 } 19874 19875 /* 19876 * Set the ECN info in the TCP header if it is not a zero 19877 * window probe. Zero window probe is only sent in 19878 * tcp_wput_data() and tcp_timer(). 19879 */ 19880 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19881 SET_ECT(tcp, rptr); 19882 19883 if (tcp->tcp_ecn_echo_on) 19884 tcp_h->th_flags[0] |= TH_ECE; 19885 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19886 tcp_h->th_flags[0] |= TH_CWR; 19887 tcp->tcp_ecn_cwr_sent = B_TRUE; 19888 } 19889 } 19890 19891 /* Fill in SACK options */ 19892 if (num_sack_blk > 0) { 19893 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19894 sack_blk_t *tmp; 19895 int32_t i; 19896 19897 wptr[0] = TCPOPT_NOP; 19898 wptr[1] = TCPOPT_NOP; 19899 wptr[2] = TCPOPT_SACK; 19900 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19901 sizeof (sack_blk_t); 19902 wptr += TCPOPT_REAL_SACK_LEN; 19903 19904 tmp = tcp->tcp_sack_list; 19905 for (i = 0; i < num_sack_blk; i++) { 19906 U32_TO_BE32(tmp[i].begin, wptr); 19907 wptr += sizeof (tcp_seq); 19908 U32_TO_BE32(tmp[i].end, wptr); 19909 wptr += sizeof (tcp_seq); 19910 } 19911 tcp_h->th_offset_and_rsrvd[0] += 19912 ((num_sack_blk * 2 + 1) << 4); 19913 } 19914 } 19915 19916 /* 19917 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19918 * the destination address and SAP attribute, and if necessary, the 19919 * hardware checksum offload attribute to a Multidata message. 19920 */ 19921 static int 19922 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19923 const uint32_t start, const uint32_t stuff, const uint32_t end, 19924 const uint32_t flags, tcp_stack_t *tcps) 19925 { 19926 /* Add global destination address & SAP attribute */ 19927 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19928 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19929 "destination address+SAP\n")); 19930 19931 if (dlmp != NULL) 19932 TCP_STAT(tcps, tcp_mdt_allocfail); 19933 return (-1); 19934 } 19935 19936 /* Add global hwcksum attribute */ 19937 if (hwcksum && 19938 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19939 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19940 "checksum attribute\n")); 19941 19942 TCP_STAT(tcps, tcp_mdt_allocfail); 19943 return (-1); 19944 } 19945 19946 return (0); 19947 } 19948 19949 /* 19950 * Smaller and private version of pdescinfo_t used specifically for TCP, 19951 * which allows for only two payload spans per packet. 19952 */ 19953 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19954 19955 /* 19956 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19957 * scheme, and returns one the following: 19958 * 19959 * -1 = failed allocation. 19960 * 0 = success; burst count reached, or usable send window is too small, 19961 * and that we'd rather wait until later before sending again. 19962 */ 19963 static int 19964 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19965 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19966 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19967 const int mdt_thres) 19968 { 19969 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19970 multidata_t *mmd; 19971 uint_t obsegs, obbytes, hdr_frag_sz; 19972 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19973 int num_burst_seg, max_pld; 19974 pdesc_t *pkt; 19975 tcp_pdescinfo_t tcp_pkt_info; 19976 pdescinfo_t *pkt_info; 19977 int pbuf_idx, pbuf_idx_nxt; 19978 int seg_len, len, spill, af; 19979 boolean_t add_buffer, zcopy, clusterwide; 19980 boolean_t rconfirm = B_FALSE; 19981 boolean_t done = B_FALSE; 19982 uint32_t cksum; 19983 uint32_t hwcksum_flags; 19984 ire_t *ire = NULL; 19985 ill_t *ill; 19986 ipha_t *ipha; 19987 ip6_t *ip6h; 19988 ipaddr_t src, dst; 19989 ill_zerocopy_capab_t *zc_cap = NULL; 19990 uint16_t *up; 19991 int err; 19992 conn_t *connp; 19993 tcp_stack_t *tcps = tcp->tcp_tcps; 19994 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19995 int usable_mmd, tail_unsent_mmd; 19996 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19997 mblk_t *xmit_tail_mmd; 19998 netstackid_t stack_id; 19999 20000 #ifdef _BIG_ENDIAN 20001 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 20002 #else 20003 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 20004 #endif 20005 20006 #define PREP_NEW_MULTIDATA() { \ 20007 mmd = NULL; \ 20008 md_mp = md_hbuf = NULL; \ 20009 cur_hdr_off = 0; \ 20010 max_pld = tcp->tcp_mdt_max_pld; \ 20011 pbuf_idx = pbuf_idx_nxt = -1; \ 20012 add_buffer = B_TRUE; \ 20013 zcopy = B_FALSE; \ 20014 } 20015 20016 #define PREP_NEW_PBUF() { \ 20017 md_pbuf = md_pbuf_nxt = NULL; \ 20018 pbuf_idx = pbuf_idx_nxt = -1; \ 20019 cur_pld_off = 0; \ 20020 first_snxt = *snxt; \ 20021 ASSERT(*tail_unsent > 0); \ 20022 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20023 } 20024 20025 ASSERT(mdt_thres >= mss); 20026 ASSERT(*usable > 0 && *usable > mdt_thres); 20027 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20028 ASSERT(!TCP_IS_DETACHED(tcp)); 20029 ASSERT(tcp->tcp_valid_bits == 0 || 20030 tcp->tcp_valid_bits == TCP_FSS_VALID); 20031 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20032 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20033 (tcp->tcp_ipversion == IPV6_VERSION && 20034 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20035 20036 connp = tcp->tcp_connp; 20037 ASSERT(connp != NULL); 20038 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20039 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20040 20041 stack_id = connp->conn_netstack->netstack_stackid; 20042 20043 usable_mmd = tail_unsent_mmd = 0; 20044 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 20045 xmit_tail_mmd = NULL; 20046 /* 20047 * Note that tcp will only declare at most 2 payload spans per 20048 * packet, which is much lower than the maximum allowable number 20049 * of packet spans per Multidata. For this reason, we use the 20050 * privately declared and smaller descriptor info structure, in 20051 * order to save some stack space. 20052 */ 20053 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20054 20055 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20056 if (af == AF_INET) { 20057 dst = tcp->tcp_ipha->ipha_dst; 20058 src = tcp->tcp_ipha->ipha_src; 20059 ASSERT(!CLASSD(dst)); 20060 } 20061 ASSERT(af == AF_INET || 20062 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20063 20064 obsegs = obbytes = 0; 20065 num_burst_seg = tcp->tcp_snd_burst; 20066 md_mp_head = NULL; 20067 PREP_NEW_MULTIDATA(); 20068 20069 /* 20070 * Before we go on further, make sure there is an IRE that we can 20071 * use, and that the ILL supports MDT. Otherwise, there's no point 20072 * in proceeding any further, and we should just hand everything 20073 * off to the legacy path. 20074 */ 20075 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20076 goto legacy_send_no_md; 20077 20078 ASSERT(ire != NULL); 20079 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20080 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20081 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20082 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20083 /* 20084 * If we do support loopback for MDT (which requires modifications 20085 * to the receiving paths), the following assertions should go away, 20086 * and we would be sending the Multidata to loopback conn later on. 20087 */ 20088 ASSERT(!IRE_IS_LOCAL(ire)); 20089 ASSERT(ire->ire_stq != NULL); 20090 20091 ill = ire_to_ill(ire); 20092 ASSERT(ill != NULL); 20093 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20094 20095 if (!tcp->tcp_ire_ill_check_done) { 20096 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20097 tcp->tcp_ire_ill_check_done = B_TRUE; 20098 } 20099 20100 /* 20101 * If the underlying interface conditions have changed, or if the 20102 * new interface does not support MDT, go back to legacy path. 20103 */ 20104 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20105 /* don't go through this path anymore for this connection */ 20106 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20107 tcp->tcp_mdt = B_FALSE; 20108 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20109 "interface %s\n", (void *)connp, ill->ill_name)); 20110 /* IRE will be released prior to returning */ 20111 goto legacy_send_no_md; 20112 } 20113 20114 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20115 zc_cap = ill->ill_zerocopy_capab; 20116 20117 /* 20118 * Check if we can take tcp fast-path. Note that "incomplete" 20119 * ire's (where the link-layer for next hop is not resolved 20120 * or where the fast-path header in nce_fp_mp is not available 20121 * yet) are sent down the legacy (slow) path. 20122 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20123 */ 20124 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20125 /* IRE will be released prior to returning */ 20126 goto legacy_send_no_md; 20127 } 20128 20129 /* go to legacy path if interface doesn't support zerocopy */ 20130 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20131 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20132 /* IRE will be released prior to returning */ 20133 goto legacy_send_no_md; 20134 } 20135 20136 /* does the interface support hardware checksum offload? */ 20137 hwcksum_flags = 0; 20138 if (ILL_HCKSUM_CAPABLE(ill) && 20139 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20140 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20141 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20142 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20143 HCKSUM_IPHDRCKSUM) 20144 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20145 20146 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20147 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20148 hwcksum_flags |= HCK_FULLCKSUM; 20149 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20150 HCKSUM_INET_PARTIAL) 20151 hwcksum_flags |= HCK_PARTIALCKSUM; 20152 } 20153 20154 /* 20155 * Each header fragment consists of the leading extra space, 20156 * followed by the TCP/IP header, and the trailing extra space. 20157 * We make sure that each header fragment begins on a 32-bit 20158 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20159 * aligned in tcp_mdt_update). 20160 */ 20161 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20162 tcp->tcp_mdt_hdr_tail), 4); 20163 20164 /* are we starting from the beginning of data block? */ 20165 if (*tail_unsent == 0) { 20166 *xmit_tail = (*xmit_tail)->b_cont; 20167 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20168 *tail_unsent = (int)MBLKL(*xmit_tail); 20169 } 20170 20171 /* 20172 * Here we create one or more Multidata messages, each made up of 20173 * one header buffer and up to N payload buffers. This entire 20174 * operation is done within two loops: 20175 * 20176 * The outer loop mostly deals with creating the Multidata message, 20177 * as well as the header buffer that gets added to it. It also 20178 * links the Multidata messages together such that all of them can 20179 * be sent down to the lower layer in a single putnext call; this 20180 * linking behavior depends on the tcp_mdt_chain tunable. 20181 * 20182 * The inner loop takes an existing Multidata message, and adds 20183 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20184 * packetizes those buffers by filling up the corresponding header 20185 * buffer fragments with the proper IP and TCP headers, and by 20186 * describing the layout of each packet in the packet descriptors 20187 * that get added to the Multidata. 20188 */ 20189 do { 20190 /* 20191 * If usable send window is too small, or data blocks in 20192 * transmit list are smaller than our threshold (i.e. app 20193 * performs large writes followed by small ones), we hand 20194 * off the control over to the legacy path. Note that we'll 20195 * get back the control once it encounters a large block. 20196 */ 20197 if (*usable < mss || (*tail_unsent <= mdt_thres && 20198 (*xmit_tail)->b_cont != NULL && 20199 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20200 /* send down what we've got so far */ 20201 if (md_mp_head != NULL) { 20202 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20203 obsegs, obbytes, &rconfirm); 20204 } 20205 /* 20206 * Pass control over to tcp_send(), but tell it to 20207 * return to us once a large-size transmission is 20208 * possible. 20209 */ 20210 TCP_STAT(tcps, tcp_mdt_legacy_small); 20211 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20212 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20213 tail_unsent, xmit_tail, local_time, 20214 mdt_thres)) <= 0) { 20215 /* burst count reached, or alloc failed */ 20216 IRE_REFRELE(ire); 20217 return (err); 20218 } 20219 20220 /* tcp_send() may have sent everything, so check */ 20221 if (*usable <= 0) { 20222 IRE_REFRELE(ire); 20223 return (0); 20224 } 20225 20226 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20227 /* 20228 * We may have delivered the Multidata, so make sure 20229 * to re-initialize before the next round. 20230 */ 20231 md_mp_head = NULL; 20232 obsegs = obbytes = 0; 20233 num_burst_seg = tcp->tcp_snd_burst; 20234 PREP_NEW_MULTIDATA(); 20235 20236 /* are we starting from the beginning of data block? */ 20237 if (*tail_unsent == 0) { 20238 *xmit_tail = (*xmit_tail)->b_cont; 20239 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20240 (uintptr_t)INT_MAX); 20241 *tail_unsent = (int)MBLKL(*xmit_tail); 20242 } 20243 } 20244 /* 20245 * Record current values for parameters we may need to pass 20246 * to tcp_send() or tcp_multisend_data(). We checkpoint at 20247 * each iteration of the outer loop (each multidata message 20248 * creation). If we have a failure in the inner loop, we send 20249 * any complete multidata messages we have before reverting 20250 * to using the traditional non-md path. 20251 */ 20252 snxt_mmd = *snxt; 20253 usable_mmd = *usable; 20254 xmit_tail_mmd = *xmit_tail; 20255 tail_unsent_mmd = *tail_unsent; 20256 obsegs_mmd = obsegs; 20257 obbytes_mmd = obbytes; 20258 20259 /* 20260 * max_pld limits the number of mblks in tcp's transmit 20261 * queue that can be added to a Multidata message. Once 20262 * this counter reaches zero, no more additional mblks 20263 * can be added to it. What happens afterwards depends 20264 * on whether or not we are set to chain the Multidata 20265 * messages. If we are to link them together, reset 20266 * max_pld to its original value (tcp_mdt_max_pld) and 20267 * prepare to create a new Multidata message which will 20268 * get linked to md_mp_head. Else, leave it alone and 20269 * let the inner loop break on its own. 20270 */ 20271 if (tcp_mdt_chain && max_pld == 0) 20272 PREP_NEW_MULTIDATA(); 20273 20274 /* adding a payload buffer; re-initialize values */ 20275 if (add_buffer) 20276 PREP_NEW_PBUF(); 20277 20278 /* 20279 * If we don't have a Multidata, either because we just 20280 * (re)entered this outer loop, or after we branched off 20281 * to tcp_send above, setup the Multidata and header 20282 * buffer to be used. 20283 */ 20284 if (md_mp == NULL) { 20285 int md_hbuflen; 20286 uint32_t start, stuff; 20287 20288 /* 20289 * Calculate Multidata header buffer size large enough 20290 * to hold all of the headers that can possibly be 20291 * sent at this moment. We'd rather over-estimate 20292 * the size than running out of space; this is okay 20293 * since this buffer is small anyway. 20294 */ 20295 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20296 20297 /* 20298 * Start and stuff offset for partial hardware 20299 * checksum offload; these are currently for IPv4. 20300 * For full checksum offload, they are set to zero. 20301 */ 20302 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20303 if (af == AF_INET) { 20304 start = IP_SIMPLE_HDR_LENGTH; 20305 stuff = IP_SIMPLE_HDR_LENGTH + 20306 TCP_CHECKSUM_OFFSET; 20307 } else { 20308 start = IPV6_HDR_LEN; 20309 stuff = IPV6_HDR_LEN + 20310 TCP_CHECKSUM_OFFSET; 20311 } 20312 } else { 20313 start = stuff = 0; 20314 } 20315 20316 /* 20317 * Create the header buffer, Multidata, as well as 20318 * any necessary attributes (destination address, 20319 * SAP and hardware checksum offload) that should 20320 * be associated with the Multidata message. 20321 */ 20322 ASSERT(cur_hdr_off == 0); 20323 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20324 ((md_hbuf->b_wptr += md_hbuflen), 20325 (mmd = mmd_alloc(md_hbuf, &md_mp, 20326 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20327 /* fastpath mblk */ 20328 ire->ire_nce->nce_res_mp, 20329 /* hardware checksum enabled */ 20330 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20331 /* hardware checksum offsets */ 20332 start, stuff, 0, 20333 /* hardware checksum flag */ 20334 hwcksum_flags, tcps) != 0)) { 20335 legacy_send: 20336 /* 20337 * We arrive here from a failure within the 20338 * inner (packetizer) loop or we fail one of 20339 * the conditionals above. We restore the 20340 * previously checkpointed values for: 20341 * xmit_tail 20342 * usable 20343 * tail_unsent 20344 * snxt 20345 * obbytes 20346 * obsegs 20347 * We should then be able to dispatch any 20348 * complete multidata before reverting to the 20349 * traditional path with consistent parameters 20350 * (the inner loop updates these as it 20351 * iterates). 20352 */ 20353 *xmit_tail = xmit_tail_mmd; 20354 *usable = usable_mmd; 20355 *tail_unsent = tail_unsent_mmd; 20356 *snxt = snxt_mmd; 20357 obbytes = obbytes_mmd; 20358 obsegs = obsegs_mmd; 20359 if (md_mp != NULL) { 20360 /* Unlink message from the chain */ 20361 if (md_mp_head != NULL) { 20362 err = (intptr_t)rmvb(md_mp_head, 20363 md_mp); 20364 /* 20365 * We can't assert that rmvb 20366 * did not return -1, since we 20367 * may get here before linkb 20368 * happens. We do, however, 20369 * check if we just removed the 20370 * only element in the list. 20371 */ 20372 if (err == 0) 20373 md_mp_head = NULL; 20374 } 20375 /* md_hbuf gets freed automatically */ 20376 TCP_STAT(tcps, tcp_mdt_discarded); 20377 freeb(md_mp); 20378 } else { 20379 /* Either allocb or mmd_alloc failed */ 20380 TCP_STAT(tcps, tcp_mdt_allocfail); 20381 if (md_hbuf != NULL) 20382 freeb(md_hbuf); 20383 } 20384 20385 /* send down what we've got so far */ 20386 if (md_mp_head != NULL) { 20387 tcp_multisend_data(tcp, ire, ill, 20388 md_mp_head, obsegs, obbytes, 20389 &rconfirm); 20390 } 20391 legacy_send_no_md: 20392 if (ire != NULL) 20393 IRE_REFRELE(ire); 20394 /* 20395 * Too bad; let the legacy path handle this. 20396 * We specify INT_MAX for the threshold, since 20397 * we gave up with the Multidata processings 20398 * and let the old path have it all. 20399 */ 20400 TCP_STAT(tcps, tcp_mdt_legacy_all); 20401 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20402 tcp_tcp_hdr_len, num_sack_blk, usable, 20403 snxt, tail_unsent, xmit_tail, local_time, 20404 INT_MAX)); 20405 } 20406 20407 /* link to any existing ones, if applicable */ 20408 TCP_STAT(tcps, tcp_mdt_allocd); 20409 if (md_mp_head == NULL) { 20410 md_mp_head = md_mp; 20411 } else if (tcp_mdt_chain) { 20412 TCP_STAT(tcps, tcp_mdt_linked); 20413 linkb(md_mp_head, md_mp); 20414 } 20415 } 20416 20417 ASSERT(md_mp_head != NULL); 20418 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20419 ASSERT(md_mp != NULL && mmd != NULL); 20420 ASSERT(md_hbuf != NULL); 20421 20422 /* 20423 * Packetize the transmittable portion of the data block; 20424 * each data block is essentially added to the Multidata 20425 * as a payload buffer. We also deal with adding more 20426 * than one payload buffers, which happens when the remaining 20427 * packetized portion of the current payload buffer is less 20428 * than MSS, while the next data block in transmit queue 20429 * has enough data to make up for one. This "spillover" 20430 * case essentially creates a split-packet, where portions 20431 * of the packet's payload fragments may span across two 20432 * virtually discontiguous address blocks. 20433 */ 20434 seg_len = mss; 20435 do { 20436 len = seg_len; 20437 20438 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20439 ipha = NULL; 20440 ip6h = NULL; 20441 20442 ASSERT(len > 0); 20443 ASSERT(max_pld >= 0); 20444 ASSERT(!add_buffer || cur_pld_off == 0); 20445 20446 /* 20447 * First time around for this payload buffer; note 20448 * in the case of a spillover, the following has 20449 * been done prior to adding the split-packet 20450 * descriptor to Multidata, and we don't want to 20451 * repeat the process. 20452 */ 20453 if (add_buffer) { 20454 ASSERT(mmd != NULL); 20455 ASSERT(md_pbuf == NULL); 20456 ASSERT(md_pbuf_nxt == NULL); 20457 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20458 20459 /* 20460 * Have we reached the limit? We'd get to 20461 * this case when we're not chaining the 20462 * Multidata messages together, and since 20463 * we're done, terminate this loop. 20464 */ 20465 if (max_pld == 0) 20466 break; /* done */ 20467 20468 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20469 TCP_STAT(tcps, tcp_mdt_allocfail); 20470 goto legacy_send; /* out_of_mem */ 20471 } 20472 20473 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20474 zc_cap != NULL) { 20475 if (!ip_md_zcopy_attr(mmd, NULL, 20476 zc_cap->ill_zerocopy_flags)) { 20477 freeb(md_pbuf); 20478 TCP_STAT(tcps, 20479 tcp_mdt_allocfail); 20480 /* out_of_mem */ 20481 goto legacy_send; 20482 } 20483 zcopy = B_TRUE; 20484 } 20485 20486 md_pbuf->b_rptr += base_pld_off; 20487 20488 /* 20489 * Add a payload buffer to the Multidata; this 20490 * operation must not fail, or otherwise our 20491 * logic in this routine is broken. There 20492 * is no memory allocation done by the 20493 * routine, so any returned failure simply 20494 * tells us that we've done something wrong. 20495 * 20496 * A failure tells us that either we're adding 20497 * the same payload buffer more than once, or 20498 * we're trying to add more buffers than 20499 * allowed (max_pld calculation is wrong). 20500 * None of the above cases should happen, and 20501 * we panic because either there's horrible 20502 * heap corruption, and/or programming mistake. 20503 */ 20504 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20505 if (pbuf_idx < 0) { 20506 cmn_err(CE_PANIC, "tcp_multisend: " 20507 "payload buffer logic error " 20508 "detected for tcp %p mmd %p " 20509 "pbuf %p (%d)\n", 20510 (void *)tcp, (void *)mmd, 20511 (void *)md_pbuf, pbuf_idx); 20512 } 20513 20514 ASSERT(max_pld > 0); 20515 --max_pld; 20516 add_buffer = B_FALSE; 20517 } 20518 20519 ASSERT(md_mp_head != NULL); 20520 ASSERT(md_pbuf != NULL); 20521 ASSERT(md_pbuf_nxt == NULL); 20522 ASSERT(pbuf_idx != -1); 20523 ASSERT(pbuf_idx_nxt == -1); 20524 ASSERT(*usable > 0); 20525 20526 /* 20527 * We spillover to the next payload buffer only 20528 * if all of the following is true: 20529 * 20530 * 1. There is not enough data on the current 20531 * payload buffer to make up `len', 20532 * 2. We are allowed to send `len', 20533 * 3. The next payload buffer length is large 20534 * enough to accomodate `spill'. 20535 */ 20536 if ((spill = len - *tail_unsent) > 0 && 20537 *usable >= len && 20538 MBLKL((*xmit_tail)->b_cont) >= spill && 20539 max_pld > 0) { 20540 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20541 if (md_pbuf_nxt == NULL) { 20542 TCP_STAT(tcps, tcp_mdt_allocfail); 20543 goto legacy_send; /* out_of_mem */ 20544 } 20545 20546 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20547 zc_cap != NULL) { 20548 if (!ip_md_zcopy_attr(mmd, NULL, 20549 zc_cap->ill_zerocopy_flags)) { 20550 freeb(md_pbuf_nxt); 20551 TCP_STAT(tcps, 20552 tcp_mdt_allocfail); 20553 /* out_of_mem */ 20554 goto legacy_send; 20555 } 20556 zcopy = B_TRUE; 20557 } 20558 20559 /* 20560 * See comments above on the first call to 20561 * mmd_addpldbuf for explanation on the panic. 20562 */ 20563 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20564 if (pbuf_idx_nxt < 0) { 20565 panic("tcp_multisend: " 20566 "next payload buffer logic error " 20567 "detected for tcp %p mmd %p " 20568 "pbuf %p (%d)\n", 20569 (void *)tcp, (void *)mmd, 20570 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20571 } 20572 20573 ASSERT(max_pld > 0); 20574 --max_pld; 20575 } else if (spill > 0) { 20576 /* 20577 * If there's a spillover, but the following 20578 * xmit_tail couldn't give us enough octets 20579 * to reach "len", then stop the current 20580 * Multidata creation and let the legacy 20581 * tcp_send() path take over. We don't want 20582 * to send the tiny segment as part of this 20583 * Multidata for performance reasons; instead, 20584 * we let the legacy path deal with grouping 20585 * it with the subsequent small mblks. 20586 */ 20587 if (*usable >= len && 20588 MBLKL((*xmit_tail)->b_cont) < spill) { 20589 max_pld = 0; 20590 break; /* done */ 20591 } 20592 20593 /* 20594 * We can't spillover, and we are near 20595 * the end of the current payload buffer, 20596 * so send what's left. 20597 */ 20598 ASSERT(*tail_unsent > 0); 20599 len = *tail_unsent; 20600 } 20601 20602 /* tail_unsent is negated if there is a spillover */ 20603 *tail_unsent -= len; 20604 *usable -= len; 20605 ASSERT(*usable >= 0); 20606 20607 if (*usable < mss) 20608 seg_len = *usable; 20609 /* 20610 * Sender SWS avoidance; see comments in tcp_send(); 20611 * everything else is the same, except that we only 20612 * do this here if there is no more data to be sent 20613 * following the current xmit_tail. We don't check 20614 * for 1-byte urgent data because we shouldn't get 20615 * here if TCP_URG_VALID is set. 20616 */ 20617 if (*usable > 0 && *usable < mss && 20618 ((md_pbuf_nxt == NULL && 20619 (*xmit_tail)->b_cont == NULL) || 20620 (md_pbuf_nxt != NULL && 20621 (*xmit_tail)->b_cont->b_cont == NULL)) && 20622 seg_len < (tcp->tcp_max_swnd >> 1) && 20623 (tcp->tcp_unsent - 20624 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20625 !tcp->tcp_zero_win_probe) { 20626 if ((*snxt + len) == tcp->tcp_snxt && 20627 (*snxt + len) == tcp->tcp_suna) { 20628 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20629 } 20630 done = B_TRUE; 20631 } 20632 20633 /* 20634 * Prime pump for IP's checksumming on our behalf; 20635 * include the adjustment for a source route if any. 20636 * Do this only for software/partial hardware checksum 20637 * offload, as this field gets zeroed out later for 20638 * the full hardware checksum offload case. 20639 */ 20640 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20641 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20642 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20643 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20644 } 20645 20646 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20647 *snxt += len; 20648 20649 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20650 /* 20651 * We set the PUSH bit only if TCP has no more buffered 20652 * data to be transmitted (or if sender SWS avoidance 20653 * takes place), as opposed to setting it for every 20654 * last packet in the burst. 20655 */ 20656 if (done || 20657 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20658 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20659 20660 /* 20661 * Set FIN bit if this is our last segment; snxt 20662 * already includes its length, and it will not 20663 * be adjusted after this point. 20664 */ 20665 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20666 *snxt == tcp->tcp_fss) { 20667 if (!tcp->tcp_fin_acked) { 20668 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20669 BUMP_MIB(&tcps->tcps_mib, 20670 tcpOutControl); 20671 } 20672 if (!tcp->tcp_fin_sent) { 20673 tcp->tcp_fin_sent = B_TRUE; 20674 /* 20675 * tcp state must be ESTABLISHED 20676 * in order for us to get here in 20677 * the first place. 20678 */ 20679 tcp->tcp_state = TCPS_FIN_WAIT_1; 20680 20681 /* 20682 * Upon returning from this routine, 20683 * tcp_wput_data() will set tcp_snxt 20684 * to be equal to snxt + tcp_fin_sent. 20685 * This is essentially the same as 20686 * setting it to tcp_fss + 1. 20687 */ 20688 } 20689 } 20690 20691 tcp->tcp_last_sent_len = (ushort_t)len; 20692 20693 len += tcp_hdr_len; 20694 if (tcp->tcp_ipversion == IPV4_VERSION) 20695 tcp->tcp_ipha->ipha_length = htons(len); 20696 else 20697 tcp->tcp_ip6h->ip6_plen = htons(len - 20698 ((char *)&tcp->tcp_ip6h[1] - 20699 tcp->tcp_iphc)); 20700 20701 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20702 20703 /* setup header fragment */ 20704 PDESC_HDR_ADD(pkt_info, 20705 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20706 tcp->tcp_mdt_hdr_head, /* head room */ 20707 tcp_hdr_len, /* len */ 20708 tcp->tcp_mdt_hdr_tail); /* tail room */ 20709 20710 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20711 hdr_frag_sz); 20712 ASSERT(MBLKIN(md_hbuf, 20713 (pkt_info->hdr_base - md_hbuf->b_rptr), 20714 PDESC_HDRSIZE(pkt_info))); 20715 20716 /* setup first payload fragment */ 20717 PDESC_PLD_INIT(pkt_info); 20718 PDESC_PLD_SPAN_ADD(pkt_info, 20719 pbuf_idx, /* index */ 20720 md_pbuf->b_rptr + cur_pld_off, /* start */ 20721 tcp->tcp_last_sent_len); /* len */ 20722 20723 /* create a split-packet in case of a spillover */ 20724 if (md_pbuf_nxt != NULL) { 20725 ASSERT(spill > 0); 20726 ASSERT(pbuf_idx_nxt > pbuf_idx); 20727 ASSERT(!add_buffer); 20728 20729 md_pbuf = md_pbuf_nxt; 20730 md_pbuf_nxt = NULL; 20731 pbuf_idx = pbuf_idx_nxt; 20732 pbuf_idx_nxt = -1; 20733 cur_pld_off = spill; 20734 20735 /* trim out first payload fragment */ 20736 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20737 20738 /* setup second payload fragment */ 20739 PDESC_PLD_SPAN_ADD(pkt_info, 20740 pbuf_idx, /* index */ 20741 md_pbuf->b_rptr, /* start */ 20742 spill); /* len */ 20743 20744 if ((*xmit_tail)->b_next == NULL) { 20745 /* 20746 * Store the lbolt used for RTT 20747 * estimation. We can only record one 20748 * timestamp per mblk so we do it when 20749 * we reach the end of the payload 20750 * buffer. Also we only take a new 20751 * timestamp sample when the previous 20752 * timed data from the same mblk has 20753 * been ack'ed. 20754 */ 20755 (*xmit_tail)->b_prev = local_time; 20756 (*xmit_tail)->b_next = 20757 (mblk_t *)(uintptr_t)first_snxt; 20758 } 20759 20760 first_snxt = *snxt - spill; 20761 20762 /* 20763 * Advance xmit_tail; usable could be 0 by 20764 * the time we got here, but we made sure 20765 * above that we would only spillover to 20766 * the next data block if usable includes 20767 * the spilled-over amount prior to the 20768 * subtraction. Therefore, we are sure 20769 * that xmit_tail->b_cont can't be NULL. 20770 */ 20771 ASSERT((*xmit_tail)->b_cont != NULL); 20772 *xmit_tail = (*xmit_tail)->b_cont; 20773 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20774 (uintptr_t)INT_MAX); 20775 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20776 } else { 20777 cur_pld_off += tcp->tcp_last_sent_len; 20778 } 20779 20780 /* 20781 * Fill in the header using the template header, and 20782 * add options such as time-stamp, ECN and/or SACK, 20783 * as needed. 20784 */ 20785 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20786 (clock_t)local_time, num_sack_blk); 20787 20788 /* take care of some IP header businesses */ 20789 if (af == AF_INET) { 20790 ipha = (ipha_t *)pkt_info->hdr_rptr; 20791 20792 ASSERT(OK_32PTR((uchar_t *)ipha)); 20793 ASSERT(PDESC_HDRL(pkt_info) >= 20794 IP_SIMPLE_HDR_LENGTH); 20795 ASSERT(ipha->ipha_version_and_hdr_length == 20796 IP_SIMPLE_HDR_VERSION); 20797 20798 /* 20799 * Assign ident value for current packet; see 20800 * related comments in ip_wput_ire() about the 20801 * contract private interface with clustering 20802 * group. 20803 */ 20804 clusterwide = B_FALSE; 20805 if (cl_inet_ipident != NULL) { 20806 ASSERT(cl_inet_isclusterwide != NULL); 20807 if ((*cl_inet_isclusterwide)(stack_id, 20808 IPPROTO_IP, AF_INET, 20809 (uint8_t *)(uintptr_t)src, NULL)) { 20810 ipha->ipha_ident = 20811 (*cl_inet_ipident)(stack_id, 20812 IPPROTO_IP, AF_INET, 20813 (uint8_t *)(uintptr_t)src, 20814 (uint8_t *)(uintptr_t)dst, 20815 NULL); 20816 clusterwide = B_TRUE; 20817 } 20818 } 20819 20820 if (!clusterwide) { 20821 ipha->ipha_ident = (uint16_t) 20822 atomic_add_32_nv( 20823 &ire->ire_ident, 1); 20824 } 20825 #ifndef _BIG_ENDIAN 20826 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20827 (ipha->ipha_ident >> 8); 20828 #endif 20829 } else { 20830 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20831 20832 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20833 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20834 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20835 ASSERT(PDESC_HDRL(pkt_info) >= 20836 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20837 TCP_CHECKSUM_SIZE)); 20838 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20839 20840 if (tcp->tcp_ip_forward_progress) { 20841 rconfirm = B_TRUE; 20842 tcp->tcp_ip_forward_progress = B_FALSE; 20843 } 20844 } 20845 20846 /* at least one payload span, and at most two */ 20847 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20848 20849 /* add the packet descriptor to Multidata */ 20850 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20851 KM_NOSLEEP)) == NULL) { 20852 /* 20853 * Any failure other than ENOMEM indicates 20854 * that we have passed in invalid pkt_info 20855 * or parameters to mmd_addpdesc, which must 20856 * not happen. 20857 * 20858 * EINVAL is a result of failure on boundary 20859 * checks against the pkt_info contents. It 20860 * should not happen, and we panic because 20861 * either there's horrible heap corruption, 20862 * and/or programming mistake. 20863 */ 20864 if (err != ENOMEM) { 20865 cmn_err(CE_PANIC, "tcp_multisend: " 20866 "pdesc logic error detected for " 20867 "tcp %p mmd %p pinfo %p (%d)\n", 20868 (void *)tcp, (void *)mmd, 20869 (void *)pkt_info, err); 20870 } 20871 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20872 goto legacy_send; /* out_of_mem */ 20873 } 20874 ASSERT(pkt != NULL); 20875 20876 /* calculate IP header and TCP checksums */ 20877 if (af == AF_INET) { 20878 /* calculate pseudo-header checksum */ 20879 cksum = (dst >> 16) + (dst & 0xFFFF) + 20880 (src >> 16) + (src & 0xFFFF); 20881 20882 /* offset for TCP header checksum */ 20883 up = IPH_TCPH_CHECKSUMP(ipha, 20884 IP_SIMPLE_HDR_LENGTH); 20885 } else { 20886 up = (uint16_t *)&ip6h->ip6_src; 20887 20888 /* calculate pseudo-header checksum */ 20889 cksum = up[0] + up[1] + up[2] + up[3] + 20890 up[4] + up[5] + up[6] + up[7] + 20891 up[8] + up[9] + up[10] + up[11] + 20892 up[12] + up[13] + up[14] + up[15]; 20893 20894 /* Fold the initial sum */ 20895 cksum = (cksum & 0xffff) + (cksum >> 16); 20896 20897 up = (uint16_t *)(((uchar_t *)ip6h) + 20898 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20899 } 20900 20901 if (hwcksum_flags & HCK_FULLCKSUM) { 20902 /* clear checksum field for hardware */ 20903 *up = 0; 20904 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20905 uint32_t sum; 20906 20907 /* pseudo-header checksumming */ 20908 sum = *up + cksum + IP_TCP_CSUM_COMP; 20909 sum = (sum & 0xFFFF) + (sum >> 16); 20910 *up = (sum & 0xFFFF) + (sum >> 16); 20911 } else { 20912 /* software checksumming */ 20913 TCP_STAT(tcps, tcp_out_sw_cksum); 20914 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20915 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20916 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20917 cksum + IP_TCP_CSUM_COMP); 20918 if (*up == 0) 20919 *up = 0xFFFF; 20920 } 20921 20922 /* IPv4 header checksum */ 20923 if (af == AF_INET) { 20924 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20925 ipha->ipha_hdr_checksum = 0; 20926 } else { 20927 IP_HDR_CKSUM(ipha, cksum, 20928 ((uint32_t *)ipha)[0], 20929 ((uint16_t *)ipha)[4]); 20930 } 20931 } 20932 20933 if (af == AF_INET && 20934 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20935 af == AF_INET6 && 20936 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20937 mblk_t *mp, *mp1; 20938 uchar_t *hdr_rptr, *hdr_wptr; 20939 uchar_t *pld_rptr, *pld_wptr; 20940 20941 /* 20942 * We reconstruct a pseudo packet for the hooks 20943 * framework using mmd_transform_link(). 20944 * If it is a split packet we pullup the 20945 * payload. FW_HOOKS expects a pkt comprising 20946 * of two mblks: a header and the payload. 20947 */ 20948 if ((mp = mmd_transform_link(pkt)) == NULL) { 20949 TCP_STAT(tcps, tcp_mdt_allocfail); 20950 goto legacy_send; 20951 } 20952 20953 if (pkt_info->pld_cnt > 1) { 20954 /* split payload, more than one pld */ 20955 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20956 NULL) { 20957 freemsg(mp); 20958 TCP_STAT(tcps, 20959 tcp_mdt_allocfail); 20960 goto legacy_send; 20961 } 20962 freemsg(mp->b_cont); 20963 mp->b_cont = mp1; 20964 } else { 20965 mp1 = mp->b_cont; 20966 } 20967 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20968 20969 /* 20970 * Remember the message offsets. This is so we 20971 * can detect changes when we return from the 20972 * FW_HOOKS callbacks. 20973 */ 20974 hdr_rptr = mp->b_rptr; 20975 hdr_wptr = mp->b_wptr; 20976 pld_rptr = mp->b_cont->b_rptr; 20977 pld_wptr = mp->b_cont->b_wptr; 20978 20979 if (af == AF_INET) { 20980 DTRACE_PROBE4( 20981 ip4__physical__out__start, 20982 ill_t *, NULL, 20983 ill_t *, ill, 20984 ipha_t *, ipha, 20985 mblk_t *, mp); 20986 FW_HOOKS( 20987 ipst->ips_ip4_physical_out_event, 20988 ipst->ips_ipv4firewall_physical_out, 20989 NULL, ill, ipha, mp, mp, 0, ipst); 20990 DTRACE_PROBE1( 20991 ip4__physical__out__end, 20992 mblk_t *, mp); 20993 } else { 20994 DTRACE_PROBE4( 20995 ip6__physical__out_start, 20996 ill_t *, NULL, 20997 ill_t *, ill, 20998 ip6_t *, ip6h, 20999 mblk_t *, mp); 21000 FW_HOOKS6( 21001 ipst->ips_ip6_physical_out_event, 21002 ipst->ips_ipv6firewall_physical_out, 21003 NULL, ill, ip6h, mp, mp, 0, ipst); 21004 DTRACE_PROBE1( 21005 ip6__physical__out__end, 21006 mblk_t *, mp); 21007 } 21008 21009 if (mp == NULL || 21010 (mp1 = mp->b_cont) == NULL || 21011 mp->b_rptr != hdr_rptr || 21012 mp->b_wptr != hdr_wptr || 21013 mp1->b_rptr != pld_rptr || 21014 mp1->b_wptr != pld_wptr || 21015 mp1->b_cont != NULL) { 21016 /* 21017 * We abandon multidata processing and 21018 * return to the normal path, either 21019 * when a packet is blocked, or when 21020 * the boundaries of header buffer or 21021 * payload buffer have been changed by 21022 * FW_HOOKS[6]. 21023 */ 21024 if (mp != NULL) 21025 freemsg(mp); 21026 goto legacy_send; 21027 } 21028 /* Finished with the pseudo packet */ 21029 freemsg(mp); 21030 } 21031 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21032 ill, ipha, ip6h); 21033 /* advance header offset */ 21034 cur_hdr_off += hdr_frag_sz; 21035 21036 obbytes += tcp->tcp_last_sent_len; 21037 ++obsegs; 21038 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21039 *tail_unsent > 0); 21040 21041 if ((*xmit_tail)->b_next == NULL) { 21042 /* 21043 * Store the lbolt used for RTT estimation. We can only 21044 * record one timestamp per mblk so we do it when we 21045 * reach the end of the payload buffer. Also we only 21046 * take a new timestamp sample when the previous timed 21047 * data from the same mblk has been ack'ed. 21048 */ 21049 (*xmit_tail)->b_prev = local_time; 21050 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21051 } 21052 21053 ASSERT(*tail_unsent >= 0); 21054 if (*tail_unsent > 0) { 21055 /* 21056 * We got here because we broke out of the above 21057 * loop due to of one of the following cases: 21058 * 21059 * 1. len < adjusted MSS (i.e. small), 21060 * 2. Sender SWS avoidance, 21061 * 3. max_pld is zero. 21062 * 21063 * We are done for this Multidata, so trim our 21064 * last payload buffer (if any) accordingly. 21065 */ 21066 if (md_pbuf != NULL) 21067 md_pbuf->b_wptr -= *tail_unsent; 21068 } else if (*usable > 0) { 21069 *xmit_tail = (*xmit_tail)->b_cont; 21070 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21071 (uintptr_t)INT_MAX); 21072 *tail_unsent = (int)MBLKL(*xmit_tail); 21073 add_buffer = B_TRUE; 21074 } 21075 } while (!done && *usable > 0 && num_burst_seg > 0 && 21076 (tcp_mdt_chain || max_pld > 0)); 21077 21078 if (md_mp_head != NULL) { 21079 /* send everything down */ 21080 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21081 &rconfirm); 21082 } 21083 21084 #undef PREP_NEW_MULTIDATA 21085 #undef PREP_NEW_PBUF 21086 #undef IPVER 21087 21088 IRE_REFRELE(ire); 21089 return (0); 21090 } 21091 21092 /* 21093 * A wrapper function for sending one or more Multidata messages down to 21094 * the module below ip; this routine does not release the reference of the 21095 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21096 */ 21097 static void 21098 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21099 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21100 { 21101 uint64_t delta; 21102 nce_t *nce; 21103 tcp_stack_t *tcps = tcp->tcp_tcps; 21104 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21105 21106 ASSERT(ire != NULL && ill != NULL); 21107 ASSERT(ire->ire_stq != NULL); 21108 ASSERT(md_mp_head != NULL); 21109 ASSERT(rconfirm != NULL); 21110 21111 /* adjust MIBs and IRE timestamp */ 21112 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 21113 tcp->tcp_obsegs += obsegs; 21114 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21115 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21116 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21117 21118 if (tcp->tcp_ipversion == IPV4_VERSION) { 21119 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21120 } else { 21121 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21122 } 21123 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21124 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21125 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21126 21127 ire->ire_ob_pkt_count += obsegs; 21128 if (ire->ire_ipif != NULL) 21129 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21130 ire->ire_last_used_time = lbolt; 21131 21132 if (ipst->ips_ipobs_enabled) { 21133 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 21134 pdesc_t *dl_pkt; 21135 pdescinfo_t pinfo; 21136 mblk_t *nmp; 21137 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21138 21139 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 21140 (dl_pkt != NULL); 21141 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 21142 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 21143 continue; 21144 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 21145 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 21146 freemsg(nmp); 21147 } 21148 } 21149 21150 /* send it down */ 21151 putnext(ire->ire_stq, md_mp_head); 21152 21153 /* we're done for TCP/IPv4 */ 21154 if (tcp->tcp_ipversion == IPV4_VERSION) 21155 return; 21156 21157 nce = ire->ire_nce; 21158 21159 ASSERT(nce != NULL); 21160 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21161 ASSERT(nce->nce_state != ND_INCOMPLETE); 21162 21163 /* reachability confirmation? */ 21164 if (*rconfirm) { 21165 nce->nce_last = TICK_TO_MSEC(lbolt64); 21166 if (nce->nce_state != ND_REACHABLE) { 21167 mutex_enter(&nce->nce_lock); 21168 nce->nce_state = ND_REACHABLE; 21169 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21170 mutex_exit(&nce->nce_lock); 21171 (void) untimeout(nce->nce_timeout_id); 21172 if (ip_debug > 2) { 21173 /* ip1dbg */ 21174 pr_addr_dbg("tcp_multisend_data: state " 21175 "for %s changed to REACHABLE\n", 21176 AF_INET6, &ire->ire_addr_v6); 21177 } 21178 } 21179 /* reset transport reachability confirmation */ 21180 *rconfirm = B_FALSE; 21181 } 21182 21183 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21184 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21185 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21186 21187 if (delta > (uint64_t)ill->ill_reachable_time) { 21188 mutex_enter(&nce->nce_lock); 21189 switch (nce->nce_state) { 21190 case ND_REACHABLE: 21191 case ND_STALE: 21192 /* 21193 * ND_REACHABLE is identical to ND_STALE in this 21194 * specific case. If reachable time has expired for 21195 * this neighbor (delta is greater than reachable 21196 * time), conceptually, the neighbor cache is no 21197 * longer in REACHABLE state, but already in STALE 21198 * state. So the correct transition here is to 21199 * ND_DELAY. 21200 */ 21201 nce->nce_state = ND_DELAY; 21202 mutex_exit(&nce->nce_lock); 21203 NDP_RESTART_TIMER(nce, 21204 ipst->ips_delay_first_probe_time); 21205 if (ip_debug > 3) { 21206 /* ip2dbg */ 21207 pr_addr_dbg("tcp_multisend_data: state " 21208 "for %s changed to DELAY\n", 21209 AF_INET6, &ire->ire_addr_v6); 21210 } 21211 break; 21212 case ND_DELAY: 21213 case ND_PROBE: 21214 mutex_exit(&nce->nce_lock); 21215 /* Timers have already started */ 21216 break; 21217 case ND_UNREACHABLE: 21218 /* 21219 * ndp timer has detected that this nce is 21220 * unreachable and initiated deleting this nce 21221 * and all its associated IREs. This is a race 21222 * where we found the ire before it was deleted 21223 * and have just sent out a packet using this 21224 * unreachable nce. 21225 */ 21226 mutex_exit(&nce->nce_lock); 21227 break; 21228 default: 21229 ASSERT(0); 21230 } 21231 } 21232 } 21233 21234 /* 21235 * Derived from tcp_send_data(). 21236 */ 21237 static void 21238 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21239 int num_lso_seg) 21240 { 21241 ipha_t *ipha; 21242 mblk_t *ire_fp_mp; 21243 uint_t ire_fp_mp_len; 21244 uint32_t hcksum_txflags = 0; 21245 ipaddr_t src; 21246 ipaddr_t dst; 21247 uint32_t cksum; 21248 uint16_t *up; 21249 tcp_stack_t *tcps = tcp->tcp_tcps; 21250 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21251 21252 ASSERT(DB_TYPE(mp) == M_DATA); 21253 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21254 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21255 ASSERT(tcp->tcp_connp != NULL); 21256 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21257 21258 ipha = (ipha_t *)mp->b_rptr; 21259 src = ipha->ipha_src; 21260 dst = ipha->ipha_dst; 21261 21262 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 21263 21264 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21265 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21266 num_lso_seg); 21267 #ifndef _BIG_ENDIAN 21268 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21269 #endif 21270 if (tcp->tcp_snd_zcopy_aware) { 21271 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21272 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21273 mp = tcp_zcopy_disable(tcp, mp); 21274 } 21275 21276 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21277 ASSERT(ill->ill_hcksum_capab != NULL); 21278 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21279 } 21280 21281 /* 21282 * Since the TCP checksum should be recalculated by h/w, we can just 21283 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21284 * pseudo-header checksum for HCK_PARTIALCKSUM. 21285 * The partial pseudo-header excludes TCP length, that was calculated 21286 * in tcp_send(), so to zero *up before further processing. 21287 */ 21288 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21289 21290 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21291 *up = 0; 21292 21293 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21294 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21295 21296 /* 21297 * Append LSO flags and mss to the mp. 21298 */ 21299 lso_info_set(mp, mss, HW_LSO); 21300 21301 ipha->ipha_fragment_offset_and_flags |= 21302 (uint32_t)htons(ire->ire_frag_flag); 21303 21304 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21305 ire_fp_mp_len = MBLKL(ire_fp_mp); 21306 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21307 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21308 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21309 21310 UPDATE_OB_PKT_COUNT(ire); 21311 ire->ire_last_used_time = lbolt; 21312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21314 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21315 ntohs(ipha->ipha_length)); 21316 21317 DTRACE_PROBE4(ip4__physical__out__start, 21318 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 21319 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21320 ipst->ips_ipv4firewall_physical_out, NULL, 21321 ill, ipha, mp, mp, 0, ipst); 21322 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21323 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 21324 21325 if (mp != NULL) { 21326 if (ipst->ips_ipobs_enabled) { 21327 zoneid_t szone; 21328 21329 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 21330 ipst, ALL_ZONES); 21331 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 21332 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 21333 } 21334 21335 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0); 21336 } 21337 } 21338 21339 /* 21340 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21341 * scheme, and returns one of the following: 21342 * 21343 * -1 = failed allocation. 21344 * 0 = success; burst count reached, or usable send window is too small, 21345 * and that we'd rather wait until later before sending again. 21346 * 1 = success; we are called from tcp_multisend(), and both usable send 21347 * window and tail_unsent are greater than the MDT threshold, and thus 21348 * Multidata Transmit should be used instead. 21349 */ 21350 static int 21351 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21352 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21353 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21354 const int mdt_thres) 21355 { 21356 int num_burst_seg = tcp->tcp_snd_burst; 21357 ire_t *ire = NULL; 21358 ill_t *ill = NULL; 21359 mblk_t *ire_fp_mp = NULL; 21360 uint_t ire_fp_mp_len = 0; 21361 int num_lso_seg = 1; 21362 uint_t lso_usable; 21363 boolean_t do_lso_send = B_FALSE; 21364 tcp_stack_t *tcps = tcp->tcp_tcps; 21365 21366 /* 21367 * Check LSO capability before any further work. And the similar check 21368 * need to be done in for(;;) loop. 21369 * LSO will be deployed when therer is more than one mss of available 21370 * data and a burst transmission is allowed. 21371 */ 21372 if (tcp->tcp_lso && 21373 (tcp->tcp_valid_bits == 0 || 21374 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21375 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21376 /* 21377 * Try to find usable IRE/ILL and do basic check to the ILL. 21378 */ 21379 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21380 /* 21381 * Enable LSO with this transmission. 21382 * Since IRE has been hold in 21383 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21384 * should be called before return. 21385 */ 21386 do_lso_send = B_TRUE; 21387 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21388 ire_fp_mp_len = MBLKL(ire_fp_mp); 21389 /* Round up to multiple of 4 */ 21390 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21391 } else { 21392 do_lso_send = B_FALSE; 21393 ill = NULL; 21394 } 21395 } 21396 21397 for (;;) { 21398 struct datab *db; 21399 tcph_t *tcph; 21400 uint32_t sum; 21401 mblk_t *mp, *mp1; 21402 uchar_t *rptr; 21403 int len; 21404 21405 /* 21406 * If we're called by tcp_multisend(), and the amount of 21407 * sendable data as well as the size of current xmit_tail 21408 * is beyond the MDT threshold, return to the caller and 21409 * let the large data transmit be done using MDT. 21410 */ 21411 if (*usable > 0 && *usable > mdt_thres && 21412 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21413 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21414 ASSERT(tcp->tcp_mdt); 21415 return (1); /* success; do large send */ 21416 } 21417 21418 if (num_burst_seg == 0) 21419 break; /* success; burst count reached */ 21420 21421 /* 21422 * Calculate the maximum payload length we can send in *one* 21423 * time. 21424 */ 21425 if (do_lso_send) { 21426 /* 21427 * Check whether need to do LSO any more. 21428 */ 21429 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21430 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21431 lso_usable = MIN(lso_usable, 21432 num_burst_seg * mss); 21433 21434 num_lso_seg = lso_usable / mss; 21435 if (lso_usable % mss) { 21436 num_lso_seg++; 21437 tcp->tcp_last_sent_len = (ushort_t) 21438 (lso_usable % mss); 21439 } else { 21440 tcp->tcp_last_sent_len = (ushort_t)mss; 21441 } 21442 } else { 21443 do_lso_send = B_FALSE; 21444 num_lso_seg = 1; 21445 lso_usable = mss; 21446 } 21447 } 21448 21449 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21450 21451 /* 21452 * Adjust num_burst_seg here. 21453 */ 21454 num_burst_seg -= num_lso_seg; 21455 21456 len = mss; 21457 if (len > *usable) { 21458 ASSERT(do_lso_send == B_FALSE); 21459 21460 len = *usable; 21461 if (len <= 0) { 21462 /* Terminate the loop */ 21463 break; /* success; too small */ 21464 } 21465 /* 21466 * Sender silly-window avoidance. 21467 * Ignore this if we are going to send a 21468 * zero window probe out. 21469 * 21470 * TODO: force data into microscopic window? 21471 * ==> (!pushed || (unsent > usable)) 21472 */ 21473 if (len < (tcp->tcp_max_swnd >> 1) && 21474 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21475 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21476 len == 1) && (! tcp->tcp_zero_win_probe)) { 21477 /* 21478 * If the retransmit timer is not running 21479 * we start it so that we will retransmit 21480 * in the case when the the receiver has 21481 * decremented the window. 21482 */ 21483 if (*snxt == tcp->tcp_snxt && 21484 *snxt == tcp->tcp_suna) { 21485 /* 21486 * We are not supposed to send 21487 * anything. So let's wait a little 21488 * bit longer before breaking SWS 21489 * avoidance. 21490 * 21491 * What should the value be? 21492 * Suggestion: MAX(init rexmit time, 21493 * tcp->tcp_rto) 21494 */ 21495 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21496 } 21497 break; /* success; too small */ 21498 } 21499 } 21500 21501 tcph = tcp->tcp_tcph; 21502 21503 /* 21504 * The reason to adjust len here is that we need to set flags 21505 * and calculate checksum. 21506 */ 21507 if (do_lso_send) 21508 len = lso_usable; 21509 21510 *usable -= len; /* Approximate - can be adjusted later */ 21511 if (*usable > 0) 21512 tcph->th_flags[0] = TH_ACK; 21513 else 21514 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21515 21516 /* 21517 * Prime pump for IP's checksumming on our behalf 21518 * Include the adjustment for a source route if any. 21519 */ 21520 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21521 sum = (sum >> 16) + (sum & 0xFFFF); 21522 U16_TO_ABE16(sum, tcph->th_sum); 21523 21524 U32_TO_ABE32(*snxt, tcph->th_seq); 21525 21526 /* 21527 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21528 * set. For the case when TCP_FSS_VALID is the only valid 21529 * bit (normal active close), branch off only when we think 21530 * that the FIN flag needs to be set. Note for this case, 21531 * that (snxt + len) may not reflect the actual seg_len, 21532 * as len may be further reduced in tcp_xmit_mp(). If len 21533 * gets modified, we will end up here again. 21534 */ 21535 if (tcp->tcp_valid_bits != 0 && 21536 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21537 ((*snxt + len) == tcp->tcp_fss))) { 21538 uchar_t *prev_rptr; 21539 uint32_t prev_snxt = tcp->tcp_snxt; 21540 21541 if (*tail_unsent == 0) { 21542 ASSERT((*xmit_tail)->b_cont != NULL); 21543 *xmit_tail = (*xmit_tail)->b_cont; 21544 prev_rptr = (*xmit_tail)->b_rptr; 21545 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21546 (*xmit_tail)->b_rptr); 21547 } else { 21548 prev_rptr = (*xmit_tail)->b_rptr; 21549 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21550 *tail_unsent; 21551 } 21552 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21553 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21554 /* Restore tcp_snxt so we get amount sent right. */ 21555 tcp->tcp_snxt = prev_snxt; 21556 if (prev_rptr == (*xmit_tail)->b_rptr) { 21557 /* 21558 * If the previous timestamp is still in use, 21559 * don't stomp on it. 21560 */ 21561 if ((*xmit_tail)->b_next == NULL) { 21562 (*xmit_tail)->b_prev = local_time; 21563 (*xmit_tail)->b_next = 21564 (mblk_t *)(uintptr_t)(*snxt); 21565 } 21566 } else 21567 (*xmit_tail)->b_rptr = prev_rptr; 21568 21569 if (mp == NULL) { 21570 if (ire != NULL) 21571 IRE_REFRELE(ire); 21572 return (-1); 21573 } 21574 mp1 = mp->b_cont; 21575 21576 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21577 tcp->tcp_last_sent_len = (ushort_t)len; 21578 while (mp1->b_cont) { 21579 *xmit_tail = (*xmit_tail)->b_cont; 21580 (*xmit_tail)->b_prev = local_time; 21581 (*xmit_tail)->b_next = 21582 (mblk_t *)(uintptr_t)(*snxt); 21583 mp1 = mp1->b_cont; 21584 } 21585 *snxt += len; 21586 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21587 BUMP_LOCAL(tcp->tcp_obsegs); 21588 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21589 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21590 tcp_send_data(tcp, q, mp); 21591 continue; 21592 } 21593 21594 *snxt += len; /* Adjust later if we don't send all of len */ 21595 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21596 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21597 21598 if (*tail_unsent) { 21599 /* Are the bytes above us in flight? */ 21600 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21601 if (rptr != (*xmit_tail)->b_rptr) { 21602 *tail_unsent -= len; 21603 if (len <= mss) /* LSO is unusable */ 21604 tcp->tcp_last_sent_len = (ushort_t)len; 21605 len += tcp_hdr_len; 21606 if (tcp->tcp_ipversion == IPV4_VERSION) 21607 tcp->tcp_ipha->ipha_length = htons(len); 21608 else 21609 tcp->tcp_ip6h->ip6_plen = 21610 htons(len - 21611 ((char *)&tcp->tcp_ip6h[1] - 21612 tcp->tcp_iphc)); 21613 mp = dupb(*xmit_tail); 21614 if (mp == NULL) { 21615 if (ire != NULL) 21616 IRE_REFRELE(ire); 21617 return (-1); /* out_of_mem */ 21618 } 21619 mp->b_rptr = rptr; 21620 /* 21621 * If the old timestamp is no longer in use, 21622 * sample a new timestamp now. 21623 */ 21624 if ((*xmit_tail)->b_next == NULL) { 21625 (*xmit_tail)->b_prev = local_time; 21626 (*xmit_tail)->b_next = 21627 (mblk_t *)(uintptr_t)(*snxt-len); 21628 } 21629 goto must_alloc; 21630 } 21631 } else { 21632 *xmit_tail = (*xmit_tail)->b_cont; 21633 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21634 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21635 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21636 (*xmit_tail)->b_rptr); 21637 } 21638 21639 (*xmit_tail)->b_prev = local_time; 21640 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21641 21642 *tail_unsent -= len; 21643 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21644 tcp->tcp_last_sent_len = (ushort_t)len; 21645 21646 len += tcp_hdr_len; 21647 if (tcp->tcp_ipversion == IPV4_VERSION) 21648 tcp->tcp_ipha->ipha_length = htons(len); 21649 else 21650 tcp->tcp_ip6h->ip6_plen = htons(len - 21651 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21652 21653 mp = dupb(*xmit_tail); 21654 if (mp == NULL) { 21655 if (ire != NULL) 21656 IRE_REFRELE(ire); 21657 return (-1); /* out_of_mem */ 21658 } 21659 21660 len = tcp_hdr_len; 21661 /* 21662 * There are four reasons to allocate a new hdr mblk: 21663 * 1) The bytes above us are in use by another packet 21664 * 2) We don't have good alignment 21665 * 3) The mblk is being shared 21666 * 4) We don't have enough room for a header 21667 */ 21668 rptr = mp->b_rptr - len; 21669 if (!OK_32PTR(rptr) || 21670 ((db = mp->b_datap), db->db_ref != 2) || 21671 rptr < db->db_base + ire_fp_mp_len) { 21672 /* NOTE: we assume allocb returns an OK_32PTR */ 21673 21674 must_alloc:; 21675 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21676 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21677 if (mp1 == NULL) { 21678 freemsg(mp); 21679 if (ire != NULL) 21680 IRE_REFRELE(ire); 21681 return (-1); /* out_of_mem */ 21682 } 21683 mp1->b_cont = mp; 21684 mp = mp1; 21685 /* Leave room for Link Level header */ 21686 len = tcp_hdr_len; 21687 rptr = 21688 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21689 mp->b_wptr = &rptr[len]; 21690 } 21691 21692 /* 21693 * Fill in the header using the template header, and add 21694 * options such as time-stamp, ECN and/or SACK, as needed. 21695 */ 21696 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21697 21698 mp->b_rptr = rptr; 21699 21700 if (*tail_unsent) { 21701 int spill = *tail_unsent; 21702 21703 mp1 = mp->b_cont; 21704 if (mp1 == NULL) 21705 mp1 = mp; 21706 21707 /* 21708 * If we're a little short, tack on more mblks until 21709 * there is no more spillover. 21710 */ 21711 while (spill < 0) { 21712 mblk_t *nmp; 21713 int nmpsz; 21714 21715 nmp = (*xmit_tail)->b_cont; 21716 nmpsz = MBLKL(nmp); 21717 21718 /* 21719 * Excess data in mblk; can we split it? 21720 * If MDT is enabled for the connection, 21721 * keep on splitting as this is a transient 21722 * send path. 21723 */ 21724 if (!do_lso_send && !tcp->tcp_mdt && 21725 (spill + nmpsz > 0)) { 21726 /* 21727 * Don't split if stream head was 21728 * told to break up larger writes 21729 * into smaller ones. 21730 */ 21731 if (tcp->tcp_maxpsz > 0) 21732 break; 21733 21734 /* 21735 * Next mblk is less than SMSS/2 21736 * rounded up to nearest 64-byte; 21737 * let it get sent as part of the 21738 * next segment. 21739 */ 21740 if (tcp->tcp_localnet && 21741 !tcp->tcp_cork && 21742 (nmpsz < roundup((mss >> 1), 64))) 21743 break; 21744 } 21745 21746 *xmit_tail = nmp; 21747 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21748 /* Stash for rtt use later */ 21749 (*xmit_tail)->b_prev = local_time; 21750 (*xmit_tail)->b_next = 21751 (mblk_t *)(uintptr_t)(*snxt - len); 21752 mp1->b_cont = dupb(*xmit_tail); 21753 mp1 = mp1->b_cont; 21754 21755 spill += nmpsz; 21756 if (mp1 == NULL) { 21757 *tail_unsent = spill; 21758 freemsg(mp); 21759 if (ire != NULL) 21760 IRE_REFRELE(ire); 21761 return (-1); /* out_of_mem */ 21762 } 21763 } 21764 21765 /* Trim back any surplus on the last mblk */ 21766 if (spill >= 0) { 21767 mp1->b_wptr -= spill; 21768 *tail_unsent = spill; 21769 } else { 21770 /* 21771 * We did not send everything we could in 21772 * order to remain within the b_cont limit. 21773 */ 21774 *usable -= spill; 21775 *snxt += spill; 21776 tcp->tcp_last_sent_len += spill; 21777 UPDATE_MIB(&tcps->tcps_mib, 21778 tcpOutDataBytes, spill); 21779 /* 21780 * Adjust the checksum 21781 */ 21782 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21783 sum += spill; 21784 sum = (sum >> 16) + (sum & 0xFFFF); 21785 U16_TO_ABE16(sum, tcph->th_sum); 21786 if (tcp->tcp_ipversion == IPV4_VERSION) { 21787 sum = ntohs( 21788 ((ipha_t *)rptr)->ipha_length) + 21789 spill; 21790 ((ipha_t *)rptr)->ipha_length = 21791 htons(sum); 21792 } else { 21793 sum = ntohs( 21794 ((ip6_t *)rptr)->ip6_plen) + 21795 spill; 21796 ((ip6_t *)rptr)->ip6_plen = 21797 htons(sum); 21798 } 21799 *tail_unsent = 0; 21800 } 21801 } 21802 if (tcp->tcp_ip_forward_progress) { 21803 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21804 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21805 tcp->tcp_ip_forward_progress = B_FALSE; 21806 } 21807 21808 if (do_lso_send) { 21809 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21810 num_lso_seg); 21811 tcp->tcp_obsegs += num_lso_seg; 21812 21813 TCP_STAT(tcps, tcp_lso_times); 21814 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21815 } else { 21816 tcp_send_data(tcp, q, mp); 21817 BUMP_LOCAL(tcp->tcp_obsegs); 21818 } 21819 } 21820 21821 if (ire != NULL) 21822 IRE_REFRELE(ire); 21823 return (0); 21824 } 21825 21826 /* Unlink and return any mblk that looks like it contains a MDT info */ 21827 static mblk_t * 21828 tcp_mdt_info_mp(mblk_t *mp) 21829 { 21830 mblk_t *prev_mp; 21831 21832 for (;;) { 21833 prev_mp = mp; 21834 /* no more to process? */ 21835 if ((mp = mp->b_cont) == NULL) 21836 break; 21837 21838 switch (DB_TYPE(mp)) { 21839 case M_CTL: 21840 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21841 continue; 21842 ASSERT(prev_mp != NULL); 21843 prev_mp->b_cont = mp->b_cont; 21844 mp->b_cont = NULL; 21845 return (mp); 21846 default: 21847 break; 21848 } 21849 } 21850 return (mp); 21851 } 21852 21853 /* MDT info update routine, called when IP notifies us about MDT */ 21854 static void 21855 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21856 { 21857 boolean_t prev_state; 21858 tcp_stack_t *tcps = tcp->tcp_tcps; 21859 21860 /* 21861 * IP is telling us to abort MDT on this connection? We know 21862 * this because the capability is only turned off when IP 21863 * encounters some pathological cases, e.g. link-layer change 21864 * where the new driver doesn't support MDT, or in situation 21865 * where MDT usage on the link-layer has been switched off. 21866 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21867 * if the link-layer doesn't support MDT, and if it does, it 21868 * will indicate that the feature is to be turned on. 21869 */ 21870 prev_state = tcp->tcp_mdt; 21871 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21872 if (!tcp->tcp_mdt && !first) { 21873 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21874 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21875 (void *)tcp->tcp_connp)); 21876 } 21877 21878 /* 21879 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21880 * so disable MDT otherwise. The checks are done here 21881 * and in tcp_wput_data(). 21882 */ 21883 if (tcp->tcp_mdt && 21884 (tcp->tcp_ipversion == IPV4_VERSION && 21885 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21886 (tcp->tcp_ipversion == IPV6_VERSION && 21887 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21888 tcp->tcp_mdt = B_FALSE; 21889 21890 if (tcp->tcp_mdt) { 21891 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21892 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21893 "version (%d), expected version is %d", 21894 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21895 tcp->tcp_mdt = B_FALSE; 21896 return; 21897 } 21898 21899 /* 21900 * We need the driver to be able to handle at least three 21901 * spans per packet in order for tcp MDT to be utilized. 21902 * The first is for the header portion, while the rest are 21903 * needed to handle a packet that straddles across two 21904 * virtually non-contiguous buffers; a typical tcp packet 21905 * therefore consists of only two spans. Note that we take 21906 * a zero as "don't care". 21907 */ 21908 if (mdt_capab->ill_mdt_span_limit > 0 && 21909 mdt_capab->ill_mdt_span_limit < 3) { 21910 tcp->tcp_mdt = B_FALSE; 21911 return; 21912 } 21913 21914 /* a zero means driver wants default value */ 21915 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21916 tcps->tcps_mdt_max_pbufs); 21917 if (tcp->tcp_mdt_max_pld == 0) 21918 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21919 21920 /* ensure 32-bit alignment */ 21921 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21922 mdt_capab->ill_mdt_hdr_head), 4); 21923 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21924 mdt_capab->ill_mdt_hdr_tail), 4); 21925 21926 if (!first && !prev_state) { 21927 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21928 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21929 (void *)tcp->tcp_connp)); 21930 } 21931 } 21932 } 21933 21934 /* Unlink and return any mblk that looks like it contains a LSO info */ 21935 static mblk_t * 21936 tcp_lso_info_mp(mblk_t *mp) 21937 { 21938 mblk_t *prev_mp; 21939 21940 for (;;) { 21941 prev_mp = mp; 21942 /* no more to process? */ 21943 if ((mp = mp->b_cont) == NULL) 21944 break; 21945 21946 switch (DB_TYPE(mp)) { 21947 case M_CTL: 21948 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21949 continue; 21950 ASSERT(prev_mp != NULL); 21951 prev_mp->b_cont = mp->b_cont; 21952 mp->b_cont = NULL; 21953 return (mp); 21954 default: 21955 break; 21956 } 21957 } 21958 21959 return (mp); 21960 } 21961 21962 /* LSO info update routine, called when IP notifies us about LSO */ 21963 static void 21964 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21965 { 21966 tcp_stack_t *tcps = tcp->tcp_tcps; 21967 21968 /* 21969 * IP is telling us to abort LSO on this connection? We know 21970 * this because the capability is only turned off when IP 21971 * encounters some pathological cases, e.g. link-layer change 21972 * where the new NIC/driver doesn't support LSO, or in situation 21973 * where LSO usage on the link-layer has been switched off. 21974 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21975 * if the link-layer doesn't support LSO, and if it does, it 21976 * will indicate that the feature is to be turned on. 21977 */ 21978 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21979 TCP_STAT(tcps, tcp_lso_enabled); 21980 21981 /* 21982 * We currently only support LSO on simple TCP/IPv4, 21983 * so disable LSO otherwise. The checks are done here 21984 * and in tcp_wput_data(). 21985 */ 21986 if (tcp->tcp_lso && 21987 (tcp->tcp_ipversion == IPV4_VERSION && 21988 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21989 (tcp->tcp_ipversion == IPV6_VERSION)) { 21990 tcp->tcp_lso = B_FALSE; 21991 TCP_STAT(tcps, tcp_lso_disabled); 21992 } else { 21993 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21994 lso_capab->ill_lso_max); 21995 } 21996 } 21997 21998 static void 21999 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 22000 { 22001 conn_t *connp = tcp->tcp_connp; 22002 tcp_stack_t *tcps = tcp->tcp_tcps; 22003 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22004 22005 ASSERT(ire != NULL); 22006 22007 /* 22008 * We may be in the fastpath here, and although we essentially do 22009 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 22010 * we try to keep things as brief as possible. After all, these 22011 * are only best-effort checks, and we do more thorough ones prior 22012 * to calling tcp_send()/tcp_multisend(). 22013 */ 22014 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 22015 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 22016 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 22017 !(ire->ire_flags & RTF_MULTIRT) && 22018 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 22019 CONN_IS_LSO_MD_FASTPATH(connp)) { 22020 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 22021 /* Cache the result */ 22022 connp->conn_lso_ok = B_TRUE; 22023 22024 ASSERT(ill->ill_lso_capab != NULL); 22025 if (!ill->ill_lso_capab->ill_lso_on) { 22026 ill->ill_lso_capab->ill_lso_on = 1; 22027 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22028 "LSO for interface %s\n", (void *)connp, 22029 ill->ill_name)); 22030 } 22031 tcp_lso_update(tcp, ill->ill_lso_capab); 22032 } else if (ipst->ips_ip_multidata_outbound && 22033 ILL_MDT_CAPABLE(ill)) { 22034 /* Cache the result */ 22035 connp->conn_mdt_ok = B_TRUE; 22036 22037 ASSERT(ill->ill_mdt_capab != NULL); 22038 if (!ill->ill_mdt_capab->ill_mdt_on) { 22039 ill->ill_mdt_capab->ill_mdt_on = 1; 22040 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22041 "MDT for interface %s\n", (void *)connp, 22042 ill->ill_name)); 22043 } 22044 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22045 } 22046 } 22047 22048 /* 22049 * The goal is to reduce the number of generated tcp segments by 22050 * setting the maxpsz multiplier to 0; this will have an affect on 22051 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22052 * into each packet, up to SMSS bytes. Doing this reduces the number 22053 * of outbound segments and incoming ACKs, thus allowing for better 22054 * network and system performance. In contrast the legacy behavior 22055 * may result in sending less than SMSS size, because the last mblk 22056 * for some packets may have more data than needed to make up SMSS, 22057 * and the legacy code refused to "split" it. 22058 * 22059 * We apply the new behavior on following situations: 22060 * 22061 * 1) Loopback connections, 22062 * 2) Connections in which the remote peer is not on local subnet, 22063 * 3) Local subnet connections over the bge interface (see below). 22064 * 22065 * Ideally, we would like this behavior to apply for interfaces other 22066 * than bge. However, doing so would negatively impact drivers which 22067 * perform dynamic mapping and unmapping of DMA resources, which are 22068 * increased by setting the maxpsz multiplier to 0 (more mblks per 22069 * packet will be generated by tcp). The bge driver does not suffer 22070 * from this, as it copies the mblks into pre-mapped buffers, and 22071 * therefore does not require more I/O resources than before. 22072 * 22073 * Otherwise, this behavior is present on all network interfaces when 22074 * the destination endpoint is non-local, since reducing the number 22075 * of packets in general is good for the network. 22076 * 22077 * TODO We need to remove this hard-coded conditional for bge once 22078 * a better "self-tuning" mechanism, or a way to comprehend 22079 * the driver transmit strategy is devised. Until the solution 22080 * is found and well understood, we live with this hack. 22081 */ 22082 if (!tcp_static_maxpsz && 22083 (tcp->tcp_loopback || !tcp->tcp_localnet || 22084 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22085 /* override the default value */ 22086 tcp->tcp_maxpsz = 0; 22087 22088 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22089 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22090 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22091 } 22092 22093 /* set the stream head parameters accordingly */ 22094 (void) tcp_maxpsz_set(tcp, B_TRUE); 22095 } 22096 22097 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22098 static void 22099 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22100 { 22101 uchar_t fval = *mp->b_rptr; 22102 mblk_t *tail; 22103 queue_t *q = tcp->tcp_wq; 22104 22105 /* TODO: How should flush interact with urgent data? */ 22106 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22107 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22108 /* 22109 * Flush only data that has not yet been put on the wire. If 22110 * we flush data that we have already transmitted, life, as we 22111 * know it, may come to an end. 22112 */ 22113 tail = tcp->tcp_xmit_tail; 22114 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22115 tcp->tcp_xmit_tail_unsent = 0; 22116 tcp->tcp_unsent = 0; 22117 if (tail->b_wptr != tail->b_rptr) 22118 tail = tail->b_cont; 22119 if (tail) { 22120 mblk_t **excess = &tcp->tcp_xmit_head; 22121 for (;;) { 22122 mblk_t *mp1 = *excess; 22123 if (mp1 == tail) 22124 break; 22125 tcp->tcp_xmit_tail = mp1; 22126 tcp->tcp_xmit_last = mp1; 22127 excess = &mp1->b_cont; 22128 } 22129 *excess = NULL; 22130 tcp_close_mpp(&tail); 22131 if (tcp->tcp_snd_zcopy_aware) 22132 tcp_zcopy_notify(tcp); 22133 } 22134 /* 22135 * We have no unsent data, so unsent must be less than 22136 * tcp_xmit_lowater, so re-enable flow. 22137 */ 22138 mutex_enter(&tcp->tcp_non_sq_lock); 22139 if (tcp->tcp_flow_stopped) { 22140 tcp_clrqfull(tcp); 22141 } 22142 mutex_exit(&tcp->tcp_non_sq_lock); 22143 } 22144 /* 22145 * TODO: you can't just flush these, you have to increase rwnd for one 22146 * thing. For another, how should urgent data interact? 22147 */ 22148 if (fval & FLUSHR) { 22149 *mp->b_rptr = fval & ~FLUSHW; 22150 /* XXX */ 22151 qreply(q, mp); 22152 return; 22153 } 22154 freemsg(mp); 22155 } 22156 22157 /* 22158 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22159 * messages. 22160 */ 22161 static void 22162 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22163 { 22164 mblk_t *mp1; 22165 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22166 STRUCT_HANDLE(strbuf, sb); 22167 queue_t *q = tcp->tcp_wq; 22168 int error; 22169 uint_t addrlen; 22170 22171 /* Make sure it is one of ours. */ 22172 switch (iocp->ioc_cmd) { 22173 case TI_GETMYNAME: 22174 case TI_GETPEERNAME: 22175 break; 22176 default: 22177 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22178 return; 22179 } 22180 switch (mi_copy_state(q, mp, &mp1)) { 22181 case -1: 22182 return; 22183 case MI_COPY_CASE(MI_COPY_IN, 1): 22184 break; 22185 case MI_COPY_CASE(MI_COPY_OUT, 1): 22186 /* Copy out the strbuf. */ 22187 mi_copyout(q, mp); 22188 return; 22189 case MI_COPY_CASE(MI_COPY_OUT, 2): 22190 /* All done. */ 22191 mi_copy_done(q, mp, 0); 22192 return; 22193 default: 22194 mi_copy_done(q, mp, EPROTO); 22195 return; 22196 } 22197 /* Check alignment of the strbuf */ 22198 if (!OK_32PTR(mp1->b_rptr)) { 22199 mi_copy_done(q, mp, EINVAL); 22200 return; 22201 } 22202 22203 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22204 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22205 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22206 mi_copy_done(q, mp, EINVAL); 22207 return; 22208 } 22209 22210 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22211 if (mp1 == NULL) 22212 return; 22213 22214 switch (iocp->ioc_cmd) { 22215 case TI_GETMYNAME: 22216 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22217 break; 22218 case TI_GETPEERNAME: 22219 error = i_tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22220 break; 22221 } 22222 22223 if (error != 0) { 22224 mi_copy_done(q, mp, error); 22225 } else { 22226 mp1->b_wptr += addrlen; 22227 STRUCT_FSET(sb, len, addrlen); 22228 22229 /* Copy out the address */ 22230 mi_copyout(q, mp); 22231 } 22232 } 22233 22234 static void 22235 tcp_disable_direct_sockfs(tcp_t *tcp) 22236 { 22237 #ifdef _ILP32 22238 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 22239 #else 22240 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22241 #endif 22242 /* 22243 * Insert this socket into the acceptor hash. 22244 * We might need it for T_CONN_RES message 22245 */ 22246 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22247 22248 if (tcp->tcp_fused) { 22249 /* 22250 * This is a fused loopback tcp; disable 22251 * read-side synchronous streams interface 22252 * and drain any queued data. It is okay 22253 * to do this for non-synchronous streams 22254 * fused tcp as well. 22255 */ 22256 tcp_fuse_disable_pair(tcp, B_FALSE); 22257 } 22258 tcp->tcp_issocket = B_FALSE; 22259 tcp->tcp_sodirect = NULL; 22260 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 22261 } 22262 22263 /* 22264 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22265 * messages. 22266 */ 22267 /* ARGSUSED */ 22268 static void 22269 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22270 { 22271 conn_t *connp = (conn_t *)arg; 22272 tcp_t *tcp = connp->conn_tcp; 22273 queue_t *q = tcp->tcp_wq; 22274 struct iocblk *iocp; 22275 22276 ASSERT(DB_TYPE(mp) == M_IOCTL); 22277 /* 22278 * Try and ASSERT the minimum possible references on the 22279 * conn early enough. Since we are executing on write side, 22280 * the connection is obviously not detached and that means 22281 * there is a ref each for TCP and IP. Since we are behind 22282 * the squeue, the minimum references needed are 3. If the 22283 * conn is in classifier hash list, there should be an 22284 * extra ref for that (we check both the possibilities). 22285 */ 22286 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22287 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22288 22289 iocp = (struct iocblk *)mp->b_rptr; 22290 switch (iocp->ioc_cmd) { 22291 case TCP_IOC_DEFAULT_Q: 22292 /* Wants to be the default wq. */ 22293 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22294 iocp->ioc_error = EPERM; 22295 iocp->ioc_count = 0; 22296 mp->b_datap->db_type = M_IOCACK; 22297 qreply(q, mp); 22298 return; 22299 } 22300 tcp_def_q_set(tcp, mp); 22301 return; 22302 case _SIOCSOCKFALLBACK: 22303 /* 22304 * Either sockmod is about to be popped and the socket 22305 * would now be treated as a plain stream, or a module 22306 * is about to be pushed so we could no longer use read- 22307 * side synchronous streams for fused loopback tcp. 22308 * Drain any queued data and disable direct sockfs 22309 * interface from now on. 22310 */ 22311 if (!tcp->tcp_issocket) { 22312 DB_TYPE(mp) = M_IOCNAK; 22313 iocp->ioc_error = EINVAL; 22314 } else { 22315 tcp_disable_direct_sockfs(tcp); 22316 DB_TYPE(mp) = M_IOCACK; 22317 iocp->ioc_error = 0; 22318 } 22319 iocp->ioc_count = 0; 22320 iocp->ioc_rval = 0; 22321 qreply(q, mp); 22322 return; 22323 } 22324 CALL_IP_WPUT(connp, q, mp); 22325 } 22326 22327 /* 22328 * This routine is called by tcp_wput() to handle all TPI requests. 22329 */ 22330 /* ARGSUSED */ 22331 static void 22332 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22333 { 22334 conn_t *connp = (conn_t *)arg; 22335 tcp_t *tcp = connp->conn_tcp; 22336 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22337 uchar_t *rptr; 22338 t_scalar_t type; 22339 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22340 22341 /* 22342 * Try and ASSERT the minimum possible references on the 22343 * conn early enough. Since we are executing on write side, 22344 * the connection is obviously not detached and that means 22345 * there is a ref each for TCP and IP. Since we are behind 22346 * the squeue, the minimum references needed are 3. If the 22347 * conn is in classifier hash list, there should be an 22348 * extra ref for that (we check both the possibilities). 22349 */ 22350 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22351 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22352 22353 rptr = mp->b_rptr; 22354 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22355 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22356 type = ((union T_primitives *)rptr)->type; 22357 if (type == T_EXDATA_REQ) { 22358 tcp_output_urgent(connp, mp->b_cont, arg2); 22359 freeb(mp); 22360 } else if (type != T_DATA_REQ) { 22361 goto non_urgent_data; 22362 } else { 22363 /* TODO: options, flags, ... from user */ 22364 /* Set length to zero for reclamation below */ 22365 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22366 freeb(mp); 22367 } 22368 return; 22369 } else { 22370 if (tcp->tcp_debug) { 22371 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22372 "tcp_wput_proto, dropping one..."); 22373 } 22374 freemsg(mp); 22375 return; 22376 } 22377 22378 non_urgent_data: 22379 22380 switch ((int)tprim->type) { 22381 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22382 /* 22383 * save the kssl_ent_t from the next block, and convert this 22384 * back to a normal bind_req. 22385 */ 22386 if (mp->b_cont != NULL) { 22387 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22388 22389 if (tcp->tcp_kssl_ent != NULL) { 22390 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22391 KSSL_NO_PROXY); 22392 tcp->tcp_kssl_ent = NULL; 22393 } 22394 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22395 sizeof (kssl_ent_t)); 22396 kssl_hold_ent(tcp->tcp_kssl_ent); 22397 freemsg(mp->b_cont); 22398 mp->b_cont = NULL; 22399 } 22400 tprim->type = T_BIND_REQ; 22401 22402 /* FALLTHROUGH */ 22403 case O_T_BIND_REQ: /* bind request */ 22404 case T_BIND_REQ: /* new semantics bind request */ 22405 tcp_tpi_bind(tcp, mp); 22406 break; 22407 case T_UNBIND_REQ: /* unbind request */ 22408 tcp_tpi_unbind(tcp, mp); 22409 break; 22410 case O_T_CONN_RES: /* old connection response XXX */ 22411 case T_CONN_RES: /* connection response */ 22412 tcp_tli_accept(tcp, mp); 22413 break; 22414 case T_CONN_REQ: /* connection request */ 22415 tcp_tpi_connect(tcp, mp); 22416 break; 22417 case T_DISCON_REQ: /* disconnect request */ 22418 tcp_disconnect(tcp, mp); 22419 break; 22420 case T_CAPABILITY_REQ: 22421 tcp_capability_req(tcp, mp); /* capability request */ 22422 break; 22423 case T_INFO_REQ: /* information request */ 22424 tcp_info_req(tcp, mp); 22425 break; 22426 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22427 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22428 &tcp_opt_obj, B_TRUE); 22429 break; 22430 case T_OPTMGMT_REQ: 22431 /* 22432 * Note: no support for snmpcom_req() through new 22433 * T_OPTMGMT_REQ. See comments in ip.c 22434 */ 22435 /* Only IP is allowed to return meaningful value */ 22436 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22437 B_TRUE); 22438 break; 22439 22440 case T_UNITDATA_REQ: /* unitdata request */ 22441 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22442 break; 22443 case T_ORDREL_REQ: /* orderly release req */ 22444 freemsg(mp); 22445 22446 if (tcp->tcp_fused) 22447 tcp_unfuse(tcp); 22448 22449 if (tcp_xmit_end(tcp) != 0) { 22450 /* 22451 * We were crossing FINs and got a reset from 22452 * the other side. Just ignore it. 22453 */ 22454 if (tcp->tcp_debug) { 22455 (void) strlog(TCP_MOD_ID, 0, 1, 22456 SL_ERROR|SL_TRACE, 22457 "tcp_wput_proto, T_ORDREL_REQ out of " 22458 "state %s", 22459 tcp_display(tcp, NULL, 22460 DISP_ADDR_AND_PORT)); 22461 } 22462 } 22463 break; 22464 case T_ADDR_REQ: 22465 tcp_addr_req(tcp, mp); 22466 break; 22467 default: 22468 if (tcp->tcp_debug) { 22469 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22470 "tcp_wput_proto, bogus TPI msg, type %d", 22471 tprim->type); 22472 } 22473 /* 22474 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22475 * to recover. 22476 */ 22477 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22478 break; 22479 } 22480 } 22481 22482 /* 22483 * The TCP write service routine should never be called... 22484 */ 22485 /* ARGSUSED */ 22486 static void 22487 tcp_wsrv(queue_t *q) 22488 { 22489 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22490 22491 TCP_STAT(tcps, tcp_wsrv_called); 22492 } 22493 22494 /* Non overlapping byte exchanger */ 22495 static void 22496 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22497 { 22498 uchar_t uch; 22499 22500 while (len-- > 0) { 22501 uch = a[len]; 22502 a[len] = b[len]; 22503 b[len] = uch; 22504 } 22505 } 22506 22507 /* 22508 * Send out a control packet on the tcp connection specified. This routine 22509 * is typically called where we need a simple ACK or RST generated. 22510 */ 22511 static void 22512 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22513 { 22514 uchar_t *rptr; 22515 tcph_t *tcph; 22516 ipha_t *ipha = NULL; 22517 ip6_t *ip6h = NULL; 22518 uint32_t sum; 22519 int tcp_hdr_len; 22520 int tcp_ip_hdr_len; 22521 mblk_t *mp; 22522 tcp_stack_t *tcps = tcp->tcp_tcps; 22523 22524 /* 22525 * Save sum for use in source route later. 22526 */ 22527 ASSERT(tcp != NULL); 22528 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22529 tcp_hdr_len = tcp->tcp_hdr_len; 22530 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22531 22532 /* If a text string is passed in with the request, pass it to strlog. */ 22533 if (str != NULL && tcp->tcp_debug) { 22534 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22535 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22536 str, seq, ack, ctl); 22537 } 22538 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22539 BPRI_MED); 22540 if (mp == NULL) { 22541 return; 22542 } 22543 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22544 mp->b_rptr = rptr; 22545 mp->b_wptr = &rptr[tcp_hdr_len]; 22546 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22547 22548 if (tcp->tcp_ipversion == IPV4_VERSION) { 22549 ipha = (ipha_t *)rptr; 22550 ipha->ipha_length = htons(tcp_hdr_len); 22551 } else { 22552 ip6h = (ip6_t *)rptr; 22553 ASSERT(tcp != NULL); 22554 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22555 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22556 } 22557 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22558 tcph->th_flags[0] = (uint8_t)ctl; 22559 if (ctl & TH_RST) { 22560 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22561 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22562 /* 22563 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22564 */ 22565 if (tcp->tcp_snd_ts_ok && 22566 tcp->tcp_state > TCPS_SYN_SENT) { 22567 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22568 *(mp->b_wptr) = TCPOPT_EOL; 22569 if (tcp->tcp_ipversion == IPV4_VERSION) { 22570 ipha->ipha_length = htons(tcp_hdr_len - 22571 TCPOPT_REAL_TS_LEN); 22572 } else { 22573 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22574 TCPOPT_REAL_TS_LEN); 22575 } 22576 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22577 sum -= TCPOPT_REAL_TS_LEN; 22578 } 22579 } 22580 if (ctl & TH_ACK) { 22581 if (tcp->tcp_snd_ts_ok) { 22582 U32_TO_BE32(lbolt, 22583 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22584 U32_TO_BE32(tcp->tcp_ts_recent, 22585 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22586 } 22587 22588 /* Update the latest receive window size in TCP header. */ 22589 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22590 tcph->th_win); 22591 tcp->tcp_rack = ack; 22592 tcp->tcp_rack_cnt = 0; 22593 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22594 } 22595 BUMP_LOCAL(tcp->tcp_obsegs); 22596 U32_TO_BE32(seq, tcph->th_seq); 22597 U32_TO_BE32(ack, tcph->th_ack); 22598 /* 22599 * Include the adjustment for a source route if any. 22600 */ 22601 sum = (sum >> 16) + (sum & 0xFFFF); 22602 U16_TO_BE16(sum, tcph->th_sum); 22603 tcp_send_data(tcp, tcp->tcp_wq, mp); 22604 } 22605 22606 /* 22607 * If this routine returns B_TRUE, TCP can generate a RST in response 22608 * to a segment. If it returns B_FALSE, TCP should not respond. 22609 */ 22610 static boolean_t 22611 tcp_send_rst_chk(tcp_stack_t *tcps) 22612 { 22613 clock_t now; 22614 22615 /* 22616 * TCP needs to protect itself from generating too many RSTs. 22617 * This can be a DoS attack by sending us random segments 22618 * soliciting RSTs. 22619 * 22620 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22621 * in each 1 second interval. In this way, TCP still generate 22622 * RSTs in normal cases but when under attack, the impact is 22623 * limited. 22624 */ 22625 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22626 now = lbolt; 22627 /* lbolt can wrap around. */ 22628 if ((tcps->tcps_last_rst_intrvl > now) || 22629 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22630 1*SECONDS)) { 22631 tcps->tcps_last_rst_intrvl = now; 22632 tcps->tcps_rst_cnt = 1; 22633 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22634 return (B_FALSE); 22635 } 22636 } 22637 return (B_TRUE); 22638 } 22639 22640 /* 22641 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22642 */ 22643 static void 22644 tcp_ip_ire_mark_advice(tcp_t *tcp) 22645 { 22646 mblk_t *mp; 22647 ipic_t *ipic; 22648 22649 if (tcp->tcp_ipversion == IPV4_VERSION) { 22650 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22651 &ipic); 22652 } else { 22653 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22654 &ipic); 22655 } 22656 if (mp == NULL) 22657 return; 22658 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22659 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22660 } 22661 22662 /* 22663 * Return an IP advice ioctl mblk and set ipic to be the pointer 22664 * to the advice structure. 22665 */ 22666 static mblk_t * 22667 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22668 { 22669 struct iocblk *ioc; 22670 mblk_t *mp, *mp1; 22671 22672 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22673 if (mp == NULL) 22674 return (NULL); 22675 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22676 *ipic = (ipic_t *)mp->b_rptr; 22677 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22678 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22679 22680 bcopy(addr, *ipic + 1, addr_len); 22681 22682 (*ipic)->ipic_addr_length = addr_len; 22683 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22684 22685 mp1 = mkiocb(IP_IOCTL); 22686 if (mp1 == NULL) { 22687 freemsg(mp); 22688 return (NULL); 22689 } 22690 mp1->b_cont = mp; 22691 ioc = (struct iocblk *)mp1->b_rptr; 22692 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22693 22694 return (mp1); 22695 } 22696 22697 /* 22698 * Generate a reset based on an inbound packet, connp is set by caller 22699 * when RST is in response to an unexpected inbound packet for which 22700 * there is active tcp state in the system. 22701 * 22702 * IPSEC NOTE : Try to send the reply with the same protection as it came 22703 * in. We still have the ipsec_mp that the packet was attached to. Thus 22704 * the packet will go out at the same level of protection as it came in by 22705 * converting the IPSEC_IN to IPSEC_OUT. 22706 */ 22707 static void 22708 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22709 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22710 tcp_stack_t *tcps, conn_t *connp) 22711 { 22712 ipha_t *ipha = NULL; 22713 ip6_t *ip6h = NULL; 22714 ushort_t len; 22715 tcph_t *tcph; 22716 int i; 22717 mblk_t *ipsec_mp; 22718 boolean_t mctl_present; 22719 ipic_t *ipic; 22720 ipaddr_t v4addr; 22721 in6_addr_t v6addr; 22722 int addr_len; 22723 void *addr; 22724 queue_t *q = tcps->tcps_g_q; 22725 tcp_t *tcp; 22726 cred_t *cr; 22727 mblk_t *nmp; 22728 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22729 22730 if (tcps->tcps_g_q == NULL) { 22731 /* 22732 * For non-zero stackids the default queue isn't created 22733 * until the first open, thus there can be a need to send 22734 * a reset before then. But we can't do that, hence we just 22735 * drop the packet. Later during boot, when the default queue 22736 * has been setup, a retransmitted packet from the peer 22737 * will result in a reset. 22738 */ 22739 ASSERT(tcps->tcps_netstack->netstack_stackid != 22740 GLOBAL_NETSTACKID); 22741 freemsg(mp); 22742 return; 22743 } 22744 22745 if (connp != NULL) 22746 tcp = connp->conn_tcp; 22747 else 22748 tcp = Q_TO_TCP(q); 22749 22750 if (!tcp_send_rst_chk(tcps)) { 22751 tcps->tcps_rst_unsent++; 22752 freemsg(mp); 22753 return; 22754 } 22755 22756 if (mp->b_datap->db_type == M_CTL) { 22757 ipsec_mp = mp; 22758 mp = mp->b_cont; 22759 mctl_present = B_TRUE; 22760 } else { 22761 ipsec_mp = mp; 22762 mctl_present = B_FALSE; 22763 } 22764 22765 if (str && q && tcps->tcps_dbg) { 22766 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22767 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22768 "flags 0x%x", 22769 str, seq, ack, ctl); 22770 } 22771 if (mp->b_datap->db_ref != 1) { 22772 mblk_t *mp1 = copyb(mp); 22773 freemsg(mp); 22774 mp = mp1; 22775 if (!mp) { 22776 if (mctl_present) 22777 freeb(ipsec_mp); 22778 return; 22779 } else { 22780 if (mctl_present) { 22781 ipsec_mp->b_cont = mp; 22782 } else { 22783 ipsec_mp = mp; 22784 } 22785 } 22786 } else if (mp->b_cont) { 22787 freemsg(mp->b_cont); 22788 mp->b_cont = NULL; 22789 } 22790 /* 22791 * We skip reversing source route here. 22792 * (for now we replace all IP options with EOL) 22793 */ 22794 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22795 ipha = (ipha_t *)mp->b_rptr; 22796 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22797 mp->b_rptr[i] = IPOPT_EOL; 22798 /* 22799 * Make sure that src address isn't flagrantly invalid. 22800 * Not all broadcast address checking for the src address 22801 * is possible, since we don't know the netmask of the src 22802 * addr. No check for destination address is done, since 22803 * IP will not pass up a packet with a broadcast dest 22804 * address to TCP. Similar checks are done below for IPv6. 22805 */ 22806 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22807 CLASSD(ipha->ipha_src)) { 22808 freemsg(ipsec_mp); 22809 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22810 return; 22811 } 22812 } else { 22813 ip6h = (ip6_t *)mp->b_rptr; 22814 22815 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22816 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22817 freemsg(ipsec_mp); 22818 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22819 return; 22820 } 22821 22822 /* Remove any extension headers assuming partial overlay */ 22823 if (ip_hdr_len > IPV6_HDR_LEN) { 22824 uint8_t *to; 22825 22826 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22827 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22828 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22829 ip_hdr_len = IPV6_HDR_LEN; 22830 ip6h = (ip6_t *)mp->b_rptr; 22831 ip6h->ip6_nxt = IPPROTO_TCP; 22832 } 22833 } 22834 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22835 if (tcph->th_flags[0] & TH_RST) { 22836 freemsg(ipsec_mp); 22837 return; 22838 } 22839 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22840 len = ip_hdr_len + sizeof (tcph_t); 22841 mp->b_wptr = &mp->b_rptr[len]; 22842 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22843 ipha->ipha_length = htons(len); 22844 /* Swap addresses */ 22845 v4addr = ipha->ipha_src; 22846 ipha->ipha_src = ipha->ipha_dst; 22847 ipha->ipha_dst = v4addr; 22848 ipha->ipha_ident = 0; 22849 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22850 addr_len = IP_ADDR_LEN; 22851 addr = &v4addr; 22852 } else { 22853 /* No ip6i_t in this case */ 22854 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22855 /* Swap addresses */ 22856 v6addr = ip6h->ip6_src; 22857 ip6h->ip6_src = ip6h->ip6_dst; 22858 ip6h->ip6_dst = v6addr; 22859 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22860 addr_len = IPV6_ADDR_LEN; 22861 addr = &v6addr; 22862 } 22863 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22864 U32_TO_BE32(ack, tcph->th_ack); 22865 U32_TO_BE32(seq, tcph->th_seq); 22866 U16_TO_BE16(0, tcph->th_win); 22867 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22868 tcph->th_flags[0] = (uint8_t)ctl; 22869 if (ctl & TH_RST) { 22870 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22871 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22872 } 22873 22874 /* IP trusts us to set up labels when required. */ 22875 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22876 crgetlabel(cr) != NULL) { 22877 int err; 22878 22879 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22880 err = tsol_check_label(cr, &mp, 22881 tcp->tcp_connp->conn_mac_exempt, 22882 tcps->tcps_netstack->netstack_ip); 22883 else 22884 err = tsol_check_label_v6(cr, &mp, 22885 tcp->tcp_connp->conn_mac_exempt, 22886 tcps->tcps_netstack->netstack_ip); 22887 if (mctl_present) 22888 ipsec_mp->b_cont = mp; 22889 else 22890 ipsec_mp = mp; 22891 if (err != 0) { 22892 freemsg(ipsec_mp); 22893 return; 22894 } 22895 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22896 ipha = (ipha_t *)mp->b_rptr; 22897 } else { 22898 ip6h = (ip6_t *)mp->b_rptr; 22899 } 22900 } 22901 22902 if (mctl_present) { 22903 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22904 22905 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22906 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22907 return; 22908 } 22909 } 22910 if (zoneid == ALL_ZONES) 22911 zoneid = GLOBAL_ZONEID; 22912 22913 /* Add the zoneid so ip_output routes it properly */ 22914 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22915 freemsg(ipsec_mp); 22916 return; 22917 } 22918 ipsec_mp = nmp; 22919 22920 /* 22921 * NOTE: one might consider tracing a TCP packet here, but 22922 * this function has no active TCP state and no tcp structure 22923 * that has a trace buffer. If we traced here, we would have 22924 * to keep a local trace buffer in tcp_record_trace(). 22925 * 22926 * TSol note: The mblk that contains the incoming packet was 22927 * reused by tcp_xmit_listener_reset, so it already contains 22928 * the right credentials and we don't need to call mblk_setcred. 22929 * Also the conn's cred is not right since it is associated 22930 * with tcps_g_q. 22931 */ 22932 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22933 22934 /* 22935 * Tell IP to mark the IRE used for this destination temporary. 22936 * This way, we can limit our exposure to DoS attack because IP 22937 * creates an IRE for each destination. If there are too many, 22938 * the time to do any routing lookup will be extremely long. And 22939 * the lookup can be in interrupt context. 22940 * 22941 * Note that in normal circumstances, this marking should not 22942 * affect anything. It would be nice if only 1 message is 22943 * needed to inform IP that the IRE created for this RST should 22944 * not be added to the cache table. But there is currently 22945 * not such communication mechanism between TCP and IP. So 22946 * the best we can do now is to send the advice ioctl to IP 22947 * to mark the IRE temporary. 22948 */ 22949 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22950 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22951 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22952 } 22953 } 22954 22955 /* 22956 * Initiate closedown sequence on an active connection. (May be called as 22957 * writer.) Return value zero for OK return, non-zero for error return. 22958 */ 22959 static int 22960 tcp_xmit_end(tcp_t *tcp) 22961 { 22962 ipic_t *ipic; 22963 mblk_t *mp; 22964 tcp_stack_t *tcps = tcp->tcp_tcps; 22965 22966 if (tcp->tcp_state < TCPS_SYN_RCVD || 22967 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22968 /* 22969 * Invalid state, only states TCPS_SYN_RCVD, 22970 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22971 */ 22972 return (-1); 22973 } 22974 22975 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22976 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22977 /* 22978 * If there is nothing more unsent, send the FIN now. 22979 * Otherwise, it will go out with the last segment. 22980 */ 22981 if (tcp->tcp_unsent == 0) { 22982 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22983 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22984 22985 if (mp) { 22986 tcp_send_data(tcp, tcp->tcp_wq, mp); 22987 } else { 22988 /* 22989 * Couldn't allocate msg. Pretend we got it out. 22990 * Wait for rexmit timeout. 22991 */ 22992 tcp->tcp_snxt = tcp->tcp_fss + 1; 22993 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22994 } 22995 22996 /* 22997 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22998 * changed. 22999 */ 23000 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 23001 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23002 } 23003 } else { 23004 /* 23005 * If tcp->tcp_cork is set, then the data will not get sent, 23006 * so we have to check that and unset it first. 23007 */ 23008 if (tcp->tcp_cork) 23009 tcp->tcp_cork = B_FALSE; 23010 tcp_wput_data(tcp, NULL, B_FALSE); 23011 } 23012 23013 /* 23014 * If TCP does not get enough samples of RTT or tcp_rtt_updates 23015 * is 0, don't update the cache. 23016 */ 23017 if (tcps->tcps_rtt_updates == 0 || 23018 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 23019 return (0); 23020 23021 /* 23022 * NOTE: should not update if source routes i.e. if tcp_remote if 23023 * different from the destination. 23024 */ 23025 if (tcp->tcp_ipversion == IPV4_VERSION) { 23026 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23027 return (0); 23028 } 23029 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23030 &ipic); 23031 } else { 23032 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23033 &tcp->tcp_ip6h->ip6_dst))) { 23034 return (0); 23035 } 23036 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23037 &ipic); 23038 } 23039 23040 /* Record route attributes in the IRE for use by future connections. */ 23041 if (mp == NULL) 23042 return (0); 23043 23044 /* 23045 * We do not have a good algorithm to update ssthresh at this time. 23046 * So don't do any update. 23047 */ 23048 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23049 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23050 23051 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23052 23053 return (0); 23054 } 23055 23056 /* 23057 * Generate a "no listener here" RST in response to an "unknown" segment. 23058 * connp is set by caller when RST is in response to an unexpected 23059 * inbound packet for which there is active tcp state in the system. 23060 * Note that we are reusing the incoming mp to construct the outgoing RST. 23061 */ 23062 void 23063 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23064 tcp_stack_t *tcps, conn_t *connp) 23065 { 23066 uchar_t *rptr; 23067 uint32_t seg_len; 23068 tcph_t *tcph; 23069 uint32_t seg_seq; 23070 uint32_t seg_ack; 23071 uint_t flags; 23072 mblk_t *ipsec_mp; 23073 ipha_t *ipha; 23074 ip6_t *ip6h; 23075 boolean_t mctl_present = B_FALSE; 23076 boolean_t check = B_TRUE; 23077 boolean_t policy_present; 23078 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23079 23080 TCP_STAT(tcps, tcp_no_listener); 23081 23082 ipsec_mp = mp; 23083 23084 if (mp->b_datap->db_type == M_CTL) { 23085 ipsec_in_t *ii; 23086 23087 mctl_present = B_TRUE; 23088 mp = mp->b_cont; 23089 23090 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23091 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23092 if (ii->ipsec_in_dont_check) { 23093 check = B_FALSE; 23094 if (!ii->ipsec_in_secure) { 23095 freeb(ipsec_mp); 23096 mctl_present = B_FALSE; 23097 ipsec_mp = mp; 23098 } 23099 } 23100 } 23101 23102 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23103 policy_present = ipss->ipsec_inbound_v4_policy_present; 23104 ipha = (ipha_t *)mp->b_rptr; 23105 ip6h = NULL; 23106 } else { 23107 policy_present = ipss->ipsec_inbound_v6_policy_present; 23108 ipha = NULL; 23109 ip6h = (ip6_t *)mp->b_rptr; 23110 } 23111 23112 if (check && policy_present) { 23113 /* 23114 * The conn_t parameter is NULL because we already know 23115 * nobody's home. 23116 */ 23117 ipsec_mp = ipsec_check_global_policy( 23118 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23119 tcps->tcps_netstack); 23120 if (ipsec_mp == NULL) 23121 return; 23122 } 23123 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23124 DTRACE_PROBE2( 23125 tx__ip__log__error__nolistener__tcp, 23126 char *, "Could not reply with RST to mp(1)", 23127 mblk_t *, mp); 23128 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23129 freemsg(ipsec_mp); 23130 return; 23131 } 23132 23133 rptr = mp->b_rptr; 23134 23135 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23136 seg_seq = BE32_TO_U32(tcph->th_seq); 23137 seg_ack = BE32_TO_U32(tcph->th_ack); 23138 flags = tcph->th_flags[0]; 23139 23140 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23141 if (flags & TH_RST) { 23142 freemsg(ipsec_mp); 23143 } else if (flags & TH_ACK) { 23144 tcp_xmit_early_reset("no tcp, reset", 23145 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23146 connp); 23147 } else { 23148 if (flags & TH_SYN) { 23149 seg_len++; 23150 } else { 23151 /* 23152 * Here we violate the RFC. Note that a normal 23153 * TCP will never send a segment without the ACK 23154 * flag, except for RST or SYN segment. This 23155 * segment is neither. Just drop it on the 23156 * floor. 23157 */ 23158 freemsg(ipsec_mp); 23159 tcps->tcps_rst_unsent++; 23160 return; 23161 } 23162 23163 tcp_xmit_early_reset("no tcp, reset/ack", 23164 ipsec_mp, 0, seg_seq + seg_len, 23165 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23166 } 23167 } 23168 23169 /* 23170 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23171 * ip and tcp header ready to pass down to IP. If the mp passed in is 23172 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23173 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23174 * otherwise it will dup partial mblks.) 23175 * Otherwise, an appropriate ACK packet will be generated. This 23176 * routine is not usually called to send new data for the first time. It 23177 * is mostly called out of the timer for retransmits, and to generate ACKs. 23178 * 23179 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23180 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23181 * of the original mblk chain will be returned in *offset and *end_mp. 23182 */ 23183 mblk_t * 23184 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23185 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23186 boolean_t rexmit) 23187 { 23188 int data_length; 23189 int32_t off = 0; 23190 uint_t flags; 23191 mblk_t *mp1; 23192 mblk_t *mp2; 23193 uchar_t *rptr; 23194 tcph_t *tcph; 23195 int32_t num_sack_blk = 0; 23196 int32_t sack_opt_len = 0; 23197 tcp_stack_t *tcps = tcp->tcp_tcps; 23198 23199 /* Allocate for our maximum TCP header + link-level */ 23200 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23201 tcps->tcps_wroff_xtra, BPRI_MED); 23202 if (!mp1) 23203 return (NULL); 23204 data_length = 0; 23205 23206 /* 23207 * Note that tcp_mss has been adjusted to take into account the 23208 * timestamp option if applicable. Because SACK options do not 23209 * appear in every TCP segments and they are of variable lengths, 23210 * they cannot be included in tcp_mss. Thus we need to calculate 23211 * the actual segment length when we need to send a segment which 23212 * includes SACK options. 23213 */ 23214 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23215 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23216 tcp->tcp_num_sack_blk); 23217 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23218 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23219 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23220 max_to_send -= sack_opt_len; 23221 } 23222 23223 if (offset != NULL) { 23224 off = *offset; 23225 /* We use offset as an indicator that end_mp is not NULL. */ 23226 *end_mp = NULL; 23227 } 23228 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23229 /* This could be faster with cooperation from downstream */ 23230 if (mp2 != mp1 && !sendall && 23231 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23232 max_to_send) 23233 /* 23234 * Don't send the next mblk since the whole mblk 23235 * does not fit. 23236 */ 23237 break; 23238 mp2->b_cont = dupb(mp); 23239 mp2 = mp2->b_cont; 23240 if (!mp2) { 23241 freemsg(mp1); 23242 return (NULL); 23243 } 23244 mp2->b_rptr += off; 23245 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23246 (uintptr_t)INT_MAX); 23247 23248 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23249 if (data_length > max_to_send) { 23250 mp2->b_wptr -= data_length - max_to_send; 23251 data_length = max_to_send; 23252 off = mp2->b_wptr - mp->b_rptr; 23253 break; 23254 } else { 23255 off = 0; 23256 } 23257 } 23258 if (offset != NULL) { 23259 *offset = off; 23260 *end_mp = mp; 23261 } 23262 if (seg_len != NULL) { 23263 *seg_len = data_length; 23264 } 23265 23266 /* Update the latest receive window size in TCP header. */ 23267 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23268 tcp->tcp_tcph->th_win); 23269 23270 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23271 mp1->b_rptr = rptr; 23272 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23273 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23274 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23275 U32_TO_ABE32(seq, tcph->th_seq); 23276 23277 /* 23278 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23279 * that this function was called from tcp_wput_data. Thus, when called 23280 * to retransmit data the setting of the PUSH bit may appear some 23281 * what random in that it might get set when it should not. This 23282 * should not pose any performance issues. 23283 */ 23284 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23285 tcp->tcp_unsent == data_length)) { 23286 flags = TH_ACK | TH_PUSH; 23287 } else { 23288 flags = TH_ACK; 23289 } 23290 23291 if (tcp->tcp_ecn_ok) { 23292 if (tcp->tcp_ecn_echo_on) 23293 flags |= TH_ECE; 23294 23295 /* 23296 * Only set ECT bit and ECN_CWR if a segment contains new data. 23297 * There is no TCP flow control for non-data segments, and 23298 * only data segment is transmitted reliably. 23299 */ 23300 if (data_length > 0 && !rexmit) { 23301 SET_ECT(tcp, rptr); 23302 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23303 flags |= TH_CWR; 23304 tcp->tcp_ecn_cwr_sent = B_TRUE; 23305 } 23306 } 23307 } 23308 23309 if (tcp->tcp_valid_bits) { 23310 uint32_t u1; 23311 23312 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23313 seq == tcp->tcp_iss) { 23314 uchar_t *wptr; 23315 23316 /* 23317 * If TCP_ISS_VALID and the seq number is tcp_iss, 23318 * TCP can only be in SYN-SENT, SYN-RCVD or 23319 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23320 * our SYN is not ack'ed but the app closes this 23321 * TCP connection. 23322 */ 23323 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23324 tcp->tcp_state == TCPS_SYN_RCVD || 23325 tcp->tcp_state == TCPS_FIN_WAIT_1); 23326 23327 /* 23328 * Tack on the MSS option. It is always needed 23329 * for both active and passive open. 23330 * 23331 * MSS option value should be interface MTU - MIN 23332 * TCP/IP header according to RFC 793 as it means 23333 * the maximum segment size TCP can receive. But 23334 * to get around some broken middle boxes/end hosts 23335 * out there, we allow the option value to be the 23336 * same as the MSS option size on the peer side. 23337 * In this way, the other side will not send 23338 * anything larger than they can receive. 23339 * 23340 * Note that for SYN_SENT state, the ndd param 23341 * tcp_use_smss_as_mss_opt has no effect as we 23342 * don't know the peer's MSS option value. So 23343 * the only case we need to take care of is in 23344 * SYN_RCVD state, which is done later. 23345 */ 23346 wptr = mp1->b_wptr; 23347 wptr[0] = TCPOPT_MAXSEG; 23348 wptr[1] = TCPOPT_MAXSEG_LEN; 23349 wptr += 2; 23350 u1 = tcp->tcp_if_mtu - 23351 (tcp->tcp_ipversion == IPV4_VERSION ? 23352 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23353 TCP_MIN_HEADER_LENGTH; 23354 U16_TO_BE16(u1, wptr); 23355 mp1->b_wptr = wptr + 2; 23356 /* Update the offset to cover the additional word */ 23357 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23358 23359 /* 23360 * Note that the following way of filling in 23361 * TCP options are not optimal. Some NOPs can 23362 * be saved. But there is no need at this time 23363 * to optimize it. When it is needed, we will 23364 * do it. 23365 */ 23366 switch (tcp->tcp_state) { 23367 case TCPS_SYN_SENT: 23368 flags = TH_SYN; 23369 23370 if (tcp->tcp_snd_ts_ok) { 23371 uint32_t llbolt = (uint32_t)lbolt; 23372 23373 wptr = mp1->b_wptr; 23374 wptr[0] = TCPOPT_NOP; 23375 wptr[1] = TCPOPT_NOP; 23376 wptr[2] = TCPOPT_TSTAMP; 23377 wptr[3] = TCPOPT_TSTAMP_LEN; 23378 wptr += 4; 23379 U32_TO_BE32(llbolt, wptr); 23380 wptr += 4; 23381 ASSERT(tcp->tcp_ts_recent == 0); 23382 U32_TO_BE32(0L, wptr); 23383 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23384 tcph->th_offset_and_rsrvd[0] += 23385 (3 << 4); 23386 } 23387 23388 /* 23389 * Set up all the bits to tell other side 23390 * we are ECN capable. 23391 */ 23392 if (tcp->tcp_ecn_ok) { 23393 flags |= (TH_ECE | TH_CWR); 23394 } 23395 break; 23396 case TCPS_SYN_RCVD: 23397 flags |= TH_SYN; 23398 23399 /* 23400 * Reset the MSS option value to be SMSS 23401 * We should probably add back the bytes 23402 * for timestamp option and IPsec. We 23403 * don't do that as this is a workaround 23404 * for broken middle boxes/end hosts, it 23405 * is better for us to be more cautious. 23406 * They may not take these things into 23407 * account in their SMSS calculation. Thus 23408 * the peer's calculated SMSS may be smaller 23409 * than what it can be. This should be OK. 23410 */ 23411 if (tcps->tcps_use_smss_as_mss_opt) { 23412 u1 = tcp->tcp_mss; 23413 U16_TO_BE16(u1, wptr); 23414 } 23415 23416 /* 23417 * If the other side is ECN capable, reply 23418 * that we are also ECN capable. 23419 */ 23420 if (tcp->tcp_ecn_ok) 23421 flags |= TH_ECE; 23422 break; 23423 default: 23424 /* 23425 * The above ASSERT() makes sure that this 23426 * must be FIN-WAIT-1 state. Our SYN has 23427 * not been ack'ed so retransmit it. 23428 */ 23429 flags |= TH_SYN; 23430 break; 23431 } 23432 23433 if (tcp->tcp_snd_ws_ok) { 23434 wptr = mp1->b_wptr; 23435 wptr[0] = TCPOPT_NOP; 23436 wptr[1] = TCPOPT_WSCALE; 23437 wptr[2] = TCPOPT_WS_LEN; 23438 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23439 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23440 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23441 } 23442 23443 if (tcp->tcp_snd_sack_ok) { 23444 wptr = mp1->b_wptr; 23445 wptr[0] = TCPOPT_NOP; 23446 wptr[1] = TCPOPT_NOP; 23447 wptr[2] = TCPOPT_SACK_PERMITTED; 23448 wptr[3] = TCPOPT_SACK_OK_LEN; 23449 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23450 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23451 } 23452 23453 /* allocb() of adequate mblk assures space */ 23454 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23455 (uintptr_t)INT_MAX); 23456 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23457 /* 23458 * Get IP set to checksum on our behalf 23459 * Include the adjustment for a source route if any. 23460 */ 23461 u1 += tcp->tcp_sum; 23462 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23463 U16_TO_BE16(u1, tcph->th_sum); 23464 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23465 } 23466 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23467 (seq + data_length) == tcp->tcp_fss) { 23468 if (!tcp->tcp_fin_acked) { 23469 flags |= TH_FIN; 23470 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23471 } 23472 if (!tcp->tcp_fin_sent) { 23473 tcp->tcp_fin_sent = B_TRUE; 23474 switch (tcp->tcp_state) { 23475 case TCPS_SYN_RCVD: 23476 case TCPS_ESTABLISHED: 23477 tcp->tcp_state = TCPS_FIN_WAIT_1; 23478 break; 23479 case TCPS_CLOSE_WAIT: 23480 tcp->tcp_state = TCPS_LAST_ACK; 23481 break; 23482 } 23483 if (tcp->tcp_suna == tcp->tcp_snxt) 23484 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23485 tcp->tcp_snxt = tcp->tcp_fss + 1; 23486 } 23487 } 23488 /* 23489 * Note the trick here. u1 is unsigned. When tcp_urg 23490 * is smaller than seq, u1 will become a very huge value. 23491 * So the comparison will fail. Also note that tcp_urp 23492 * should be positive, see RFC 793 page 17. 23493 */ 23494 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23495 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23496 u1 < (uint32_t)(64 * 1024)) { 23497 flags |= TH_URG; 23498 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23499 U32_TO_ABE16(u1, tcph->th_urp); 23500 } 23501 } 23502 tcph->th_flags[0] = (uchar_t)flags; 23503 tcp->tcp_rack = tcp->tcp_rnxt; 23504 tcp->tcp_rack_cnt = 0; 23505 23506 if (tcp->tcp_snd_ts_ok) { 23507 if (tcp->tcp_state != TCPS_SYN_SENT) { 23508 uint32_t llbolt = (uint32_t)lbolt; 23509 23510 U32_TO_BE32(llbolt, 23511 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23512 U32_TO_BE32(tcp->tcp_ts_recent, 23513 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23514 } 23515 } 23516 23517 if (num_sack_blk > 0) { 23518 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23519 sack_blk_t *tmp; 23520 int32_t i; 23521 23522 wptr[0] = TCPOPT_NOP; 23523 wptr[1] = TCPOPT_NOP; 23524 wptr[2] = TCPOPT_SACK; 23525 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23526 sizeof (sack_blk_t); 23527 wptr += TCPOPT_REAL_SACK_LEN; 23528 23529 tmp = tcp->tcp_sack_list; 23530 for (i = 0; i < num_sack_blk; i++) { 23531 U32_TO_BE32(tmp[i].begin, wptr); 23532 wptr += sizeof (tcp_seq); 23533 U32_TO_BE32(tmp[i].end, wptr); 23534 wptr += sizeof (tcp_seq); 23535 } 23536 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23537 } 23538 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23539 data_length += (int)(mp1->b_wptr - rptr); 23540 if (tcp->tcp_ipversion == IPV4_VERSION) { 23541 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23542 } else { 23543 ip6_t *ip6 = (ip6_t *)(rptr + 23544 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23545 sizeof (ip6i_t) : 0)); 23546 23547 ip6->ip6_plen = htons(data_length - 23548 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23549 } 23550 23551 /* 23552 * Prime pump for IP 23553 * Include the adjustment for a source route if any. 23554 */ 23555 data_length -= tcp->tcp_ip_hdr_len; 23556 data_length += tcp->tcp_sum; 23557 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23558 U16_TO_ABE16(data_length, tcph->th_sum); 23559 if (tcp->tcp_ip_forward_progress) { 23560 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23561 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23562 tcp->tcp_ip_forward_progress = B_FALSE; 23563 } 23564 return (mp1); 23565 } 23566 23567 /* This function handles the push timeout. */ 23568 void 23569 tcp_push_timer(void *arg) 23570 { 23571 conn_t *connp = (conn_t *)arg; 23572 tcp_t *tcp = connp->conn_tcp; 23573 uint_t flags; 23574 sodirect_t *sodp; 23575 23576 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 23577 23578 ASSERT(tcp->tcp_listener == NULL); 23579 23580 ASSERT(!IPCL_IS_NONSTR(connp)); 23581 23582 /* 23583 * We need to plug synchronous streams during our drain to prevent 23584 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23585 */ 23586 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23587 tcp->tcp_push_tid = 0; 23588 23589 SOD_PTR_ENTER(tcp, sodp); 23590 if (sodp != NULL) { 23591 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23592 /* sod_wakeup() does the mutex_exit() */ 23593 } else if (tcp->tcp_rcv_list != NULL) { 23594 flags = tcp_rcv_drain(tcp); 23595 } 23596 if (flags == TH_ACK_NEEDED) 23597 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23598 23599 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23600 } 23601 23602 /* 23603 * This function handles delayed ACK timeout. 23604 */ 23605 static void 23606 tcp_ack_timer(void *arg) 23607 { 23608 conn_t *connp = (conn_t *)arg; 23609 tcp_t *tcp = connp->conn_tcp; 23610 mblk_t *mp; 23611 tcp_stack_t *tcps = tcp->tcp_tcps; 23612 23613 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23614 23615 tcp->tcp_ack_tid = 0; 23616 23617 if (tcp->tcp_fused) 23618 return; 23619 23620 /* 23621 * Do not send ACK if there is no outstanding unack'ed data. 23622 */ 23623 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23624 return; 23625 } 23626 23627 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23628 /* 23629 * Make sure we don't allow deferred ACKs to result in 23630 * timer-based ACKing. If we have held off an ACK 23631 * when there was more than an mss here, and the timer 23632 * goes off, we have to worry about the possibility 23633 * that the sender isn't doing slow-start, or is out 23634 * of step with us for some other reason. We fall 23635 * permanently back in the direction of 23636 * ACK-every-other-packet as suggested in RFC 1122. 23637 */ 23638 if (tcp->tcp_rack_abs_max > 2) 23639 tcp->tcp_rack_abs_max--; 23640 tcp->tcp_rack_cur_max = 2; 23641 } 23642 mp = tcp_ack_mp(tcp); 23643 23644 if (mp != NULL) { 23645 BUMP_LOCAL(tcp->tcp_obsegs); 23646 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23647 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23648 tcp_send_data(tcp, tcp->tcp_wq, mp); 23649 } 23650 } 23651 23652 23653 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23654 static mblk_t * 23655 tcp_ack_mp(tcp_t *tcp) 23656 { 23657 uint32_t seq_no; 23658 tcp_stack_t *tcps = tcp->tcp_tcps; 23659 23660 /* 23661 * There are a few cases to be considered while setting the sequence no. 23662 * Essentially, we can come here while processing an unacceptable pkt 23663 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23664 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23665 * If we are here for a zero window probe, stick with suna. In all 23666 * other cases, we check if suna + swnd encompasses snxt and set 23667 * the sequence number to snxt, if so. If snxt falls outside the 23668 * window (the receiver probably shrunk its window), we will go with 23669 * suna + swnd, otherwise the sequence no will be unacceptable to the 23670 * receiver. 23671 */ 23672 if (tcp->tcp_zero_win_probe) { 23673 seq_no = tcp->tcp_suna; 23674 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23675 ASSERT(tcp->tcp_swnd == 0); 23676 seq_no = tcp->tcp_snxt; 23677 } else { 23678 seq_no = SEQ_GT(tcp->tcp_snxt, 23679 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23680 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23681 } 23682 23683 if (tcp->tcp_valid_bits) { 23684 /* 23685 * For the complex case where we have to send some 23686 * controls (FIN or SYN), let tcp_xmit_mp do it. 23687 */ 23688 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23689 NULL, B_FALSE)); 23690 } else { 23691 /* Generate a simple ACK */ 23692 int data_length; 23693 uchar_t *rptr; 23694 tcph_t *tcph; 23695 mblk_t *mp1; 23696 int32_t tcp_hdr_len; 23697 int32_t tcp_tcp_hdr_len; 23698 int32_t num_sack_blk = 0; 23699 int32_t sack_opt_len; 23700 23701 /* 23702 * Allocate space for TCP + IP headers 23703 * and link-level header 23704 */ 23705 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23706 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23707 tcp->tcp_num_sack_blk); 23708 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23709 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23710 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23711 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23712 } else { 23713 tcp_hdr_len = tcp->tcp_hdr_len; 23714 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23715 } 23716 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23717 if (!mp1) 23718 return (NULL); 23719 23720 /* Update the latest receive window size in TCP header. */ 23721 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23722 tcp->tcp_tcph->th_win); 23723 /* copy in prototype TCP + IP header */ 23724 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23725 mp1->b_rptr = rptr; 23726 mp1->b_wptr = rptr + tcp_hdr_len; 23727 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23728 23729 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23730 23731 /* Set the TCP sequence number. */ 23732 U32_TO_ABE32(seq_no, tcph->th_seq); 23733 23734 /* Set up the TCP flag field. */ 23735 tcph->th_flags[0] = (uchar_t)TH_ACK; 23736 if (tcp->tcp_ecn_echo_on) 23737 tcph->th_flags[0] |= TH_ECE; 23738 23739 tcp->tcp_rack = tcp->tcp_rnxt; 23740 tcp->tcp_rack_cnt = 0; 23741 23742 /* fill in timestamp option if in use */ 23743 if (tcp->tcp_snd_ts_ok) { 23744 uint32_t llbolt = (uint32_t)lbolt; 23745 23746 U32_TO_BE32(llbolt, 23747 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23748 U32_TO_BE32(tcp->tcp_ts_recent, 23749 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23750 } 23751 23752 /* Fill in SACK options */ 23753 if (num_sack_blk > 0) { 23754 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23755 sack_blk_t *tmp; 23756 int32_t i; 23757 23758 wptr[0] = TCPOPT_NOP; 23759 wptr[1] = TCPOPT_NOP; 23760 wptr[2] = TCPOPT_SACK; 23761 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23762 sizeof (sack_blk_t); 23763 wptr += TCPOPT_REAL_SACK_LEN; 23764 23765 tmp = tcp->tcp_sack_list; 23766 for (i = 0; i < num_sack_blk; i++) { 23767 U32_TO_BE32(tmp[i].begin, wptr); 23768 wptr += sizeof (tcp_seq); 23769 U32_TO_BE32(tmp[i].end, wptr); 23770 wptr += sizeof (tcp_seq); 23771 } 23772 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23773 << 4); 23774 } 23775 23776 if (tcp->tcp_ipversion == IPV4_VERSION) { 23777 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23778 } else { 23779 /* Check for ip6i_t header in sticky hdrs */ 23780 ip6_t *ip6 = (ip6_t *)(rptr + 23781 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23782 sizeof (ip6i_t) : 0)); 23783 23784 ip6->ip6_plen = htons(tcp_hdr_len - 23785 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23786 } 23787 23788 /* 23789 * Prime pump for checksum calculation in IP. Include the 23790 * adjustment for a source route if any. 23791 */ 23792 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23793 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23794 U16_TO_ABE16(data_length, tcph->th_sum); 23795 23796 if (tcp->tcp_ip_forward_progress) { 23797 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23798 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23799 tcp->tcp_ip_forward_progress = B_FALSE; 23800 } 23801 return (mp1); 23802 } 23803 } 23804 23805 /* 23806 * Hash list insertion routine for tcp_t structures. Each hash bucket 23807 * contains a list of tcp_t entries, and each entry is bound to a unique 23808 * port. If there are multiple tcp_t's that are bound to the same port, then 23809 * one of them will be linked into the hash bucket list, and the rest will 23810 * hang off of that one entry. For each port, entries bound to a specific IP 23811 * address will be inserted before those those bound to INADDR_ANY. 23812 */ 23813 static void 23814 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23815 { 23816 tcp_t **tcpp; 23817 tcp_t *tcpnext; 23818 tcp_t *tcphash; 23819 23820 if (tcp->tcp_ptpbhn != NULL) { 23821 ASSERT(!caller_holds_lock); 23822 tcp_bind_hash_remove(tcp); 23823 } 23824 tcpp = &tbf->tf_tcp; 23825 if (!caller_holds_lock) { 23826 mutex_enter(&tbf->tf_lock); 23827 } else { 23828 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23829 } 23830 tcphash = tcpp[0]; 23831 tcpnext = NULL; 23832 if (tcphash != NULL) { 23833 /* Look for an entry using the same port */ 23834 while ((tcphash = tcpp[0]) != NULL && 23835 tcp->tcp_lport != tcphash->tcp_lport) 23836 tcpp = &(tcphash->tcp_bind_hash); 23837 23838 /* The port was not found, just add to the end */ 23839 if (tcphash == NULL) 23840 goto insert; 23841 23842 /* 23843 * OK, there already exists an entry bound to the 23844 * same port. 23845 * 23846 * If the new tcp bound to the INADDR_ANY address 23847 * and the first one in the list is not bound to 23848 * INADDR_ANY we skip all entries until we find the 23849 * first one bound to INADDR_ANY. 23850 * This makes sure that applications binding to a 23851 * specific address get preference over those binding to 23852 * INADDR_ANY. 23853 */ 23854 tcpnext = tcphash; 23855 tcphash = NULL; 23856 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23857 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23858 while ((tcpnext = tcpp[0]) != NULL && 23859 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23860 tcpp = &(tcpnext->tcp_bind_hash_port); 23861 23862 if (tcpnext) { 23863 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23864 tcphash = tcpnext->tcp_bind_hash; 23865 if (tcphash != NULL) { 23866 tcphash->tcp_ptpbhn = 23867 &(tcp->tcp_bind_hash); 23868 tcpnext->tcp_bind_hash = NULL; 23869 } 23870 } 23871 } else { 23872 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23873 tcphash = tcpnext->tcp_bind_hash; 23874 if (tcphash != NULL) { 23875 tcphash->tcp_ptpbhn = 23876 &(tcp->tcp_bind_hash); 23877 tcpnext->tcp_bind_hash = NULL; 23878 } 23879 } 23880 } 23881 insert: 23882 tcp->tcp_bind_hash_port = tcpnext; 23883 tcp->tcp_bind_hash = tcphash; 23884 tcp->tcp_ptpbhn = tcpp; 23885 tcpp[0] = tcp; 23886 if (!caller_holds_lock) 23887 mutex_exit(&tbf->tf_lock); 23888 } 23889 23890 /* 23891 * Hash list removal routine for tcp_t structures. 23892 */ 23893 static void 23894 tcp_bind_hash_remove(tcp_t *tcp) 23895 { 23896 tcp_t *tcpnext; 23897 kmutex_t *lockp; 23898 tcp_stack_t *tcps = tcp->tcp_tcps; 23899 23900 if (tcp->tcp_ptpbhn == NULL) 23901 return; 23902 23903 /* 23904 * Extract the lock pointer in case there are concurrent 23905 * hash_remove's for this instance. 23906 */ 23907 ASSERT(tcp->tcp_lport != 0); 23908 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23909 23910 ASSERT(lockp != NULL); 23911 mutex_enter(lockp); 23912 if (tcp->tcp_ptpbhn) { 23913 tcpnext = tcp->tcp_bind_hash_port; 23914 if (tcpnext != NULL) { 23915 tcp->tcp_bind_hash_port = NULL; 23916 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23917 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23918 if (tcpnext->tcp_bind_hash != NULL) { 23919 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23920 &(tcpnext->tcp_bind_hash); 23921 tcp->tcp_bind_hash = NULL; 23922 } 23923 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23924 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23925 tcp->tcp_bind_hash = NULL; 23926 } 23927 *tcp->tcp_ptpbhn = tcpnext; 23928 tcp->tcp_ptpbhn = NULL; 23929 } 23930 mutex_exit(lockp); 23931 } 23932 23933 23934 /* 23935 * Hash list lookup routine for tcp_t structures. 23936 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23937 */ 23938 static tcp_t * 23939 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23940 { 23941 tf_t *tf; 23942 tcp_t *tcp; 23943 23944 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23945 mutex_enter(&tf->tf_lock); 23946 for (tcp = tf->tf_tcp; tcp != NULL; 23947 tcp = tcp->tcp_acceptor_hash) { 23948 if (tcp->tcp_acceptor_id == id) { 23949 CONN_INC_REF(tcp->tcp_connp); 23950 mutex_exit(&tf->tf_lock); 23951 return (tcp); 23952 } 23953 } 23954 mutex_exit(&tf->tf_lock); 23955 return (NULL); 23956 } 23957 23958 23959 /* 23960 * Hash list insertion routine for tcp_t structures. 23961 */ 23962 void 23963 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23964 { 23965 tf_t *tf; 23966 tcp_t **tcpp; 23967 tcp_t *tcpnext; 23968 tcp_stack_t *tcps = tcp->tcp_tcps; 23969 23970 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23971 23972 if (tcp->tcp_ptpahn != NULL) 23973 tcp_acceptor_hash_remove(tcp); 23974 tcpp = &tf->tf_tcp; 23975 mutex_enter(&tf->tf_lock); 23976 tcpnext = tcpp[0]; 23977 if (tcpnext) 23978 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23979 tcp->tcp_acceptor_hash = tcpnext; 23980 tcp->tcp_ptpahn = tcpp; 23981 tcpp[0] = tcp; 23982 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23983 mutex_exit(&tf->tf_lock); 23984 } 23985 23986 /* 23987 * Hash list removal routine for tcp_t structures. 23988 */ 23989 static void 23990 tcp_acceptor_hash_remove(tcp_t *tcp) 23991 { 23992 tcp_t *tcpnext; 23993 kmutex_t *lockp; 23994 23995 /* 23996 * Extract the lock pointer in case there are concurrent 23997 * hash_remove's for this instance. 23998 */ 23999 lockp = tcp->tcp_acceptor_lockp; 24000 24001 if (tcp->tcp_ptpahn == NULL) 24002 return; 24003 24004 ASSERT(lockp != NULL); 24005 mutex_enter(lockp); 24006 if (tcp->tcp_ptpahn) { 24007 tcpnext = tcp->tcp_acceptor_hash; 24008 if (tcpnext) { 24009 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24010 tcp->tcp_acceptor_hash = NULL; 24011 } 24012 *tcp->tcp_ptpahn = tcpnext; 24013 tcp->tcp_ptpahn = NULL; 24014 } 24015 mutex_exit(lockp); 24016 tcp->tcp_acceptor_lockp = NULL; 24017 } 24018 24019 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24020 24021 static ipaddr_t netmasks[] = { 24022 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24023 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24024 }; 24025 24026 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24027 24028 /* 24029 * XXX This routine should go away and instead we should use the metrics 24030 * associated with the routes to determine the default sndspace and rcvspace. 24031 */ 24032 static tcp_hsp_t * 24033 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24034 { 24035 tcp_hsp_t *hsp = NULL; 24036 24037 /* Quick check without acquiring the lock. */ 24038 if (tcps->tcps_hsp_hash == NULL) 24039 return (NULL); 24040 24041 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24042 24043 /* This routine finds the best-matching HSP for address addr. */ 24044 24045 if (tcps->tcps_hsp_hash) { 24046 int i; 24047 ipaddr_t srchaddr; 24048 tcp_hsp_t *hsp_net; 24049 24050 /* We do three passes: host, network, and subnet. */ 24051 24052 srchaddr = addr; 24053 24054 for (i = 1; i <= 3; i++) { 24055 /* Look for exact match on srchaddr */ 24056 24057 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24058 while (hsp) { 24059 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24060 hsp->tcp_hsp_addr == srchaddr) 24061 break; 24062 hsp = hsp->tcp_hsp_next; 24063 } 24064 ASSERT(hsp == NULL || 24065 hsp->tcp_hsp_vers == IPV4_VERSION); 24066 24067 /* 24068 * If this is the first pass: 24069 * If we found a match, great, return it. 24070 * If not, search for the network on the second pass. 24071 */ 24072 24073 if (i == 1) 24074 if (hsp) 24075 break; 24076 else 24077 { 24078 srchaddr = addr & netmask(addr); 24079 continue; 24080 } 24081 24082 /* 24083 * If this is the second pass: 24084 * If we found a match, but there's a subnet mask, 24085 * save the match but try again using the subnet 24086 * mask on the third pass. 24087 * Otherwise, return whatever we found. 24088 */ 24089 24090 if (i == 2) { 24091 if (hsp && hsp->tcp_hsp_subnet) { 24092 hsp_net = hsp; 24093 srchaddr = addr & hsp->tcp_hsp_subnet; 24094 continue; 24095 } else { 24096 break; 24097 } 24098 } 24099 24100 /* 24101 * This must be the third pass. If we didn't find 24102 * anything, return the saved network HSP instead. 24103 */ 24104 24105 if (!hsp) 24106 hsp = hsp_net; 24107 } 24108 } 24109 24110 rw_exit(&tcps->tcps_hsp_lock); 24111 return (hsp); 24112 } 24113 24114 /* 24115 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24116 * match lookup. 24117 */ 24118 static tcp_hsp_t * 24119 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24120 { 24121 tcp_hsp_t *hsp = NULL; 24122 24123 /* Quick check without acquiring the lock. */ 24124 if (tcps->tcps_hsp_hash == NULL) 24125 return (NULL); 24126 24127 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24128 24129 /* This routine finds the best-matching HSP for address addr. */ 24130 24131 if (tcps->tcps_hsp_hash) { 24132 int i; 24133 in6_addr_t v6srchaddr; 24134 tcp_hsp_t *hsp_net; 24135 24136 /* We do three passes: host, network, and subnet. */ 24137 24138 v6srchaddr = *v6addr; 24139 24140 for (i = 1; i <= 3; i++) { 24141 /* Look for exact match on srchaddr */ 24142 24143 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24144 V4_PART_OF_V6(v6srchaddr))]; 24145 while (hsp) { 24146 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24147 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24148 &v6srchaddr)) 24149 break; 24150 hsp = hsp->tcp_hsp_next; 24151 } 24152 24153 /* 24154 * If this is the first pass: 24155 * If we found a match, great, return it. 24156 * If not, search for the network on the second pass. 24157 */ 24158 24159 if (i == 1) 24160 if (hsp) 24161 break; 24162 else { 24163 /* Assume a 64 bit mask */ 24164 v6srchaddr.s6_addr32[0] = 24165 v6addr->s6_addr32[0]; 24166 v6srchaddr.s6_addr32[1] = 24167 v6addr->s6_addr32[1]; 24168 v6srchaddr.s6_addr32[2] = 0; 24169 v6srchaddr.s6_addr32[3] = 0; 24170 continue; 24171 } 24172 24173 /* 24174 * If this is the second pass: 24175 * If we found a match, but there's a subnet mask, 24176 * save the match but try again using the subnet 24177 * mask on the third pass. 24178 * Otherwise, return whatever we found. 24179 */ 24180 24181 if (i == 2) { 24182 ASSERT(hsp == NULL || 24183 hsp->tcp_hsp_vers == IPV6_VERSION); 24184 if (hsp && 24185 !IN6_IS_ADDR_UNSPECIFIED( 24186 &hsp->tcp_hsp_subnet_v6)) { 24187 hsp_net = hsp; 24188 V6_MASK_COPY(*v6addr, 24189 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24190 continue; 24191 } else { 24192 break; 24193 } 24194 } 24195 24196 /* 24197 * This must be the third pass. If we didn't find 24198 * anything, return the saved network HSP instead. 24199 */ 24200 24201 if (!hsp) 24202 hsp = hsp_net; 24203 } 24204 } 24205 24206 rw_exit(&tcps->tcps_hsp_lock); 24207 return (hsp); 24208 } 24209 24210 /* 24211 * Type three generator adapted from the random() function in 4.4 BSD: 24212 */ 24213 24214 /* 24215 * Copyright (c) 1983, 1993 24216 * The Regents of the University of California. All rights reserved. 24217 * 24218 * Redistribution and use in source and binary forms, with or without 24219 * modification, are permitted provided that the following conditions 24220 * are met: 24221 * 1. Redistributions of source code must retain the above copyright 24222 * notice, this list of conditions and the following disclaimer. 24223 * 2. Redistributions in binary form must reproduce the above copyright 24224 * notice, this list of conditions and the following disclaimer in the 24225 * documentation and/or other materials provided with the distribution. 24226 * 3. All advertising materials mentioning features or use of this software 24227 * must display the following acknowledgement: 24228 * This product includes software developed by the University of 24229 * California, Berkeley and its contributors. 24230 * 4. Neither the name of the University nor the names of its contributors 24231 * may be used to endorse or promote products derived from this software 24232 * without specific prior written permission. 24233 * 24234 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24235 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24236 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24237 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24238 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24239 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24240 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24241 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24242 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24243 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24244 * SUCH DAMAGE. 24245 */ 24246 24247 /* Type 3 -- x**31 + x**3 + 1 */ 24248 #define DEG_3 31 24249 #define SEP_3 3 24250 24251 24252 /* Protected by tcp_random_lock */ 24253 static int tcp_randtbl[DEG_3 + 1]; 24254 24255 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24256 static int *tcp_random_rptr = &tcp_randtbl[1]; 24257 24258 static int *tcp_random_state = &tcp_randtbl[1]; 24259 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24260 24261 kmutex_t tcp_random_lock; 24262 24263 void 24264 tcp_random_init(void) 24265 { 24266 int i; 24267 hrtime_t hrt; 24268 time_t wallclock; 24269 uint64_t result; 24270 24271 /* 24272 * Use high-res timer and current time for seed. Gethrtime() returns 24273 * a longlong, which may contain resolution down to nanoseconds. 24274 * The current time will either be a 32-bit or a 64-bit quantity. 24275 * XOR the two together in a 64-bit result variable. 24276 * Convert the result to a 32-bit value by multiplying the high-order 24277 * 32-bits by the low-order 32-bits. 24278 */ 24279 24280 hrt = gethrtime(); 24281 (void) drv_getparm(TIME, &wallclock); 24282 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24283 mutex_enter(&tcp_random_lock); 24284 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24285 (result & 0xffffffff); 24286 24287 for (i = 1; i < DEG_3; i++) 24288 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24289 + 12345; 24290 tcp_random_fptr = &tcp_random_state[SEP_3]; 24291 tcp_random_rptr = &tcp_random_state[0]; 24292 mutex_exit(&tcp_random_lock); 24293 for (i = 0; i < 10 * DEG_3; i++) 24294 (void) tcp_random(); 24295 } 24296 24297 /* 24298 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24299 * This range is selected to be approximately centered on TCP_ISS / 2, 24300 * and easy to compute. We get this value by generating a 32-bit random 24301 * number, selecting out the high-order 17 bits, and then adding one so 24302 * that we never return zero. 24303 */ 24304 int 24305 tcp_random(void) 24306 { 24307 int i; 24308 24309 mutex_enter(&tcp_random_lock); 24310 *tcp_random_fptr += *tcp_random_rptr; 24311 24312 /* 24313 * The high-order bits are more random than the low-order bits, 24314 * so we select out the high-order 17 bits and add one so that 24315 * we never return zero. 24316 */ 24317 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24318 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24319 tcp_random_fptr = tcp_random_state; 24320 ++tcp_random_rptr; 24321 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24322 tcp_random_rptr = tcp_random_state; 24323 24324 mutex_exit(&tcp_random_lock); 24325 return (i); 24326 } 24327 24328 static int 24329 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24330 int *t_errorp, int *sys_errorp) 24331 { 24332 int error; 24333 int is_absreq_failure; 24334 t_scalar_t *opt_lenp; 24335 t_scalar_t opt_offset; 24336 int prim_type; 24337 struct T_conn_req *tcreqp; 24338 struct T_conn_res *tcresp; 24339 cred_t *cr; 24340 24341 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24342 24343 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24344 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24345 prim_type == T_CONN_RES); 24346 24347 switch (prim_type) { 24348 case T_CONN_REQ: 24349 tcreqp = (struct T_conn_req *)mp->b_rptr; 24350 opt_offset = tcreqp->OPT_offset; 24351 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24352 break; 24353 case O_T_CONN_RES: 24354 case T_CONN_RES: 24355 tcresp = (struct T_conn_res *)mp->b_rptr; 24356 opt_offset = tcresp->OPT_offset; 24357 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24358 break; 24359 } 24360 24361 *t_errorp = 0; 24362 *sys_errorp = 0; 24363 *do_disconnectp = 0; 24364 24365 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24366 opt_offset, cr, &tcp_opt_obj, 24367 NULL, &is_absreq_failure); 24368 24369 switch (error) { 24370 case 0: /* no error */ 24371 ASSERT(is_absreq_failure == 0); 24372 return (0); 24373 case ENOPROTOOPT: 24374 *t_errorp = TBADOPT; 24375 break; 24376 case EACCES: 24377 *t_errorp = TACCES; 24378 break; 24379 default: 24380 *t_errorp = TSYSERR; *sys_errorp = error; 24381 break; 24382 } 24383 if (is_absreq_failure != 0) { 24384 /* 24385 * The connection request should get the local ack 24386 * T_OK_ACK and then a T_DISCON_IND. 24387 */ 24388 *do_disconnectp = 1; 24389 } 24390 return (-1); 24391 } 24392 24393 /* 24394 * Split this function out so that if the secret changes, I'm okay. 24395 * 24396 * Initialize the tcp_iss_cookie and tcp_iss_key. 24397 */ 24398 24399 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24400 24401 static void 24402 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24403 { 24404 struct { 24405 int32_t current_time; 24406 uint32_t randnum; 24407 uint16_t pad; 24408 uint8_t ether[6]; 24409 uint8_t passwd[PASSWD_SIZE]; 24410 } tcp_iss_cookie; 24411 time_t t; 24412 24413 /* 24414 * Start with the current absolute time. 24415 */ 24416 (void) drv_getparm(TIME, &t); 24417 tcp_iss_cookie.current_time = t; 24418 24419 /* 24420 * XXX - Need a more random number per RFC 1750, not this crap. 24421 * OTOH, if what follows is pretty random, then I'm in better shape. 24422 */ 24423 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24424 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24425 24426 /* 24427 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24428 * as a good template. 24429 */ 24430 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24431 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24432 24433 /* 24434 * The pass-phrase. Normally this is supplied by user-called NDD. 24435 */ 24436 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24437 24438 /* 24439 * See 4010593 if this section becomes a problem again, 24440 * but the local ethernet address is useful here. 24441 */ 24442 (void) localetheraddr(NULL, 24443 (struct ether_addr *)&tcp_iss_cookie.ether); 24444 24445 /* 24446 * Hash 'em all together. The MD5Final is called per-connection. 24447 */ 24448 mutex_enter(&tcps->tcps_iss_key_lock); 24449 MD5Init(&tcps->tcps_iss_key); 24450 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24451 sizeof (tcp_iss_cookie)); 24452 mutex_exit(&tcps->tcps_iss_key_lock); 24453 } 24454 24455 /* 24456 * Set the RFC 1948 pass phrase 24457 */ 24458 /* ARGSUSED */ 24459 static int 24460 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24461 cred_t *cr) 24462 { 24463 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24464 24465 /* 24466 * Basically, value contains a new pass phrase. Pass it along! 24467 */ 24468 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24469 return (0); 24470 } 24471 24472 /* ARGSUSED */ 24473 static int 24474 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24475 { 24476 bzero(buf, sizeof (tcp_sack_info_t)); 24477 return (0); 24478 } 24479 24480 /* ARGSUSED */ 24481 static int 24482 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24483 { 24484 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24485 return (0); 24486 } 24487 24488 /* 24489 * Make sure we wait until the default queue is setup, yet allow 24490 * tcp_g_q_create() to open a TCP stream. 24491 * We need to allow tcp_g_q_create() do do an open 24492 * of tcp, hence we compare curhread. 24493 * All others have to wait until the tcps_g_q has been 24494 * setup. 24495 */ 24496 void 24497 tcp_g_q_setup(tcp_stack_t *tcps) 24498 { 24499 mutex_enter(&tcps->tcps_g_q_lock); 24500 if (tcps->tcps_g_q != NULL) { 24501 mutex_exit(&tcps->tcps_g_q_lock); 24502 return; 24503 } 24504 if (tcps->tcps_g_q_creator == NULL) { 24505 /* This thread will set it up */ 24506 tcps->tcps_g_q_creator = curthread; 24507 mutex_exit(&tcps->tcps_g_q_lock); 24508 tcp_g_q_create(tcps); 24509 mutex_enter(&tcps->tcps_g_q_lock); 24510 ASSERT(tcps->tcps_g_q_creator == curthread); 24511 tcps->tcps_g_q_creator = NULL; 24512 cv_signal(&tcps->tcps_g_q_cv); 24513 ASSERT(tcps->tcps_g_q != NULL); 24514 mutex_exit(&tcps->tcps_g_q_lock); 24515 return; 24516 } 24517 /* Everybody but the creator has to wait */ 24518 if (tcps->tcps_g_q_creator != curthread) { 24519 while (tcps->tcps_g_q == NULL) 24520 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24521 } 24522 mutex_exit(&tcps->tcps_g_q_lock); 24523 } 24524 24525 #define IP "ip" 24526 24527 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24528 24529 /* 24530 * Create a default tcp queue here instead of in strplumb 24531 */ 24532 void 24533 tcp_g_q_create(tcp_stack_t *tcps) 24534 { 24535 int error; 24536 ldi_handle_t lh = NULL; 24537 ldi_ident_t li = NULL; 24538 int rval; 24539 cred_t *cr; 24540 major_t IP_MAJ; 24541 24542 #ifdef NS_DEBUG 24543 (void) printf("tcp_g_q_create()\n"); 24544 #endif 24545 24546 IP_MAJ = ddi_name_to_major(IP); 24547 24548 ASSERT(tcps->tcps_g_q_creator == curthread); 24549 24550 error = ldi_ident_from_major(IP_MAJ, &li); 24551 if (error) { 24552 #ifdef DEBUG 24553 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24554 error); 24555 #endif 24556 return; 24557 } 24558 24559 cr = zone_get_kcred(netstackid_to_zoneid( 24560 tcps->tcps_netstack->netstack_stackid)); 24561 ASSERT(cr != NULL); 24562 /* 24563 * We set the tcp default queue to IPv6 because IPv4 falls 24564 * back to IPv6 when it can't find a client, but 24565 * IPv6 does not fall back to IPv4. 24566 */ 24567 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24568 if (error) { 24569 #ifdef DEBUG 24570 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24571 error); 24572 #endif 24573 goto out; 24574 } 24575 24576 /* 24577 * This ioctl causes the tcp framework to cache a pointer to 24578 * this stream, so we don't want to close the stream after 24579 * this operation. 24580 * Use the kernel credentials that are for the zone we're in. 24581 */ 24582 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24583 (intptr_t)0, FKIOCTL, cr, &rval); 24584 if (error) { 24585 #ifdef DEBUG 24586 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24587 "error %d\n", error); 24588 #endif 24589 goto out; 24590 } 24591 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24592 lh = NULL; 24593 out: 24594 /* Close layered handles */ 24595 if (li) 24596 ldi_ident_release(li); 24597 /* Keep cred around until _inactive needs it */ 24598 tcps->tcps_g_q_cr = cr; 24599 } 24600 24601 /* 24602 * We keep tcp_g_q set until all other tcp_t's in the zone 24603 * has gone away, and then when tcp_g_q_inactive() is called 24604 * we clear it. 24605 */ 24606 void 24607 tcp_g_q_destroy(tcp_stack_t *tcps) 24608 { 24609 #ifdef NS_DEBUG 24610 (void) printf("tcp_g_q_destroy()for stack %d\n", 24611 tcps->tcps_netstack->netstack_stackid); 24612 #endif 24613 24614 if (tcps->tcps_g_q == NULL) { 24615 return; /* Nothing to cleanup */ 24616 } 24617 /* 24618 * Drop reference corresponding to the default queue. 24619 * This reference was added from tcp_open when the default queue 24620 * was created, hence we compensate for this extra drop in 24621 * tcp_g_q_close. If the refcnt drops to zero here it means 24622 * the default queue was the last one to be open, in which 24623 * case, then tcp_g_q_inactive will be 24624 * called as a result of the refrele. 24625 */ 24626 TCPS_REFRELE(tcps); 24627 } 24628 24629 /* 24630 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24631 * Run by tcp_q_q_inactive using a taskq. 24632 */ 24633 static void 24634 tcp_g_q_close(void *arg) 24635 { 24636 tcp_stack_t *tcps = arg; 24637 int error; 24638 ldi_handle_t lh = NULL; 24639 ldi_ident_t li = NULL; 24640 cred_t *cr; 24641 major_t IP_MAJ; 24642 24643 IP_MAJ = ddi_name_to_major(IP); 24644 24645 #ifdef NS_DEBUG 24646 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24647 tcps->tcps_netstack->netstack_stackid, 24648 tcps->tcps_netstack->netstack_refcnt); 24649 #endif 24650 lh = tcps->tcps_g_q_lh; 24651 if (lh == NULL) 24652 return; /* Nothing to cleanup */ 24653 24654 ASSERT(tcps->tcps_refcnt == 1); 24655 ASSERT(tcps->tcps_g_q != NULL); 24656 24657 error = ldi_ident_from_major(IP_MAJ, &li); 24658 if (error) { 24659 #ifdef DEBUG 24660 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24661 error); 24662 #endif 24663 return; 24664 } 24665 24666 cr = tcps->tcps_g_q_cr; 24667 tcps->tcps_g_q_cr = NULL; 24668 ASSERT(cr != NULL); 24669 24670 /* 24671 * Make sure we can break the recursion when tcp_close decrements 24672 * the reference count causing g_q_inactive to be called again. 24673 */ 24674 tcps->tcps_g_q_lh = NULL; 24675 24676 /* close the default queue */ 24677 (void) ldi_close(lh, FREAD|FWRITE, cr); 24678 /* 24679 * At this point in time tcps and the rest of netstack_t might 24680 * have been deleted. 24681 */ 24682 tcps = NULL; 24683 24684 /* Close layered handles */ 24685 ldi_ident_release(li); 24686 crfree(cr); 24687 } 24688 24689 /* 24690 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24691 * 24692 * Have to ensure that the ldi routines are not used by an 24693 * interrupt thread by using a taskq. 24694 */ 24695 void 24696 tcp_g_q_inactive(tcp_stack_t *tcps) 24697 { 24698 if (tcps->tcps_g_q_lh == NULL) 24699 return; /* Nothing to cleanup */ 24700 24701 ASSERT(tcps->tcps_refcnt == 0); 24702 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24703 24704 if (servicing_interrupt()) { 24705 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24706 (void *) tcps, TQ_SLEEP); 24707 } else { 24708 tcp_g_q_close(tcps); 24709 } 24710 } 24711 24712 /* 24713 * Called by IP when IP is loaded into the kernel 24714 */ 24715 void 24716 tcp_ddi_g_init(void) 24717 { 24718 tcp_timercache = kmem_cache_create("tcp_timercache", 24719 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24720 NULL, NULL, NULL, NULL, NULL, 0); 24721 24722 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24723 sizeof (tcp_sack_info_t), 0, 24724 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24725 24726 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24727 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24728 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24729 24730 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24731 24732 /* Initialize the random number generator */ 24733 tcp_random_init(); 24734 24735 /* A single callback independently of how many netstacks we have */ 24736 ip_squeue_init(tcp_squeue_add); 24737 24738 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24739 24740 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24741 TASKQ_PREPOPULATE); 24742 24743 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 24744 24745 /* 24746 * We want to be informed each time a stack is created or 24747 * destroyed in the kernel, so we can maintain the 24748 * set of tcp_stack_t's. 24749 */ 24750 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24751 tcp_stack_fini); 24752 } 24753 24754 24755 #define INET_NAME "ip" 24756 24757 /* 24758 * Initialize the TCP stack instance. 24759 */ 24760 static void * 24761 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24762 { 24763 tcp_stack_t *tcps; 24764 tcpparam_t *pa; 24765 int i; 24766 int error = 0; 24767 major_t major; 24768 24769 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24770 tcps->tcps_netstack = ns; 24771 24772 /* Initialize locks */ 24773 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 24774 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24775 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24776 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24777 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24778 24779 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24780 tcps->tcps_g_epriv_ports[0] = 2049; 24781 tcps->tcps_g_epriv_ports[1] = 4045; 24782 tcps->tcps_min_anonpriv_port = 512; 24783 24784 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24785 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24786 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24787 TCP_FANOUT_SIZE, KM_SLEEP); 24788 24789 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24790 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24791 MUTEX_DEFAULT, NULL); 24792 } 24793 24794 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24795 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24796 MUTEX_DEFAULT, NULL); 24797 } 24798 24799 /* TCP's IPsec code calls the packet dropper. */ 24800 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24801 24802 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24803 tcps->tcps_params = pa; 24804 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24805 24806 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24807 A_CNT(lcl_tcp_param_arr), tcps); 24808 24809 /* 24810 * Note: To really walk the device tree you need the devinfo 24811 * pointer to your device which is only available after probe/attach. 24812 * The following is safe only because it uses ddi_root_node() 24813 */ 24814 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24815 tcp_opt_obj.odb_opt_arr_cnt); 24816 24817 /* 24818 * Initialize RFC 1948 secret values. This will probably be reset once 24819 * by the boot scripts. 24820 * 24821 * Use NULL name, as the name is caught by the new lockstats. 24822 * 24823 * Initialize with some random, non-guessable string, like the global 24824 * T_INFO_ACK. 24825 */ 24826 24827 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24828 sizeof (tcp_g_t_info_ack), tcps); 24829 24830 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24831 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24832 24833 major = mod_name_to_major(INET_NAME); 24834 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24835 ASSERT(error == 0); 24836 return (tcps); 24837 } 24838 24839 /* 24840 * Called when the IP module is about to be unloaded. 24841 */ 24842 void 24843 tcp_ddi_g_destroy(void) 24844 { 24845 tcp_g_kstat_fini(tcp_g_kstat); 24846 tcp_g_kstat = NULL; 24847 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24848 24849 mutex_destroy(&tcp_random_lock); 24850 24851 kmem_cache_destroy(tcp_timercache); 24852 kmem_cache_destroy(tcp_sack_info_cache); 24853 kmem_cache_destroy(tcp_iphc_cache); 24854 24855 netstack_unregister(NS_TCP); 24856 taskq_destroy(tcp_taskq); 24857 } 24858 24859 /* 24860 * Shut down the TCP stack instance. 24861 */ 24862 /* ARGSUSED */ 24863 static void 24864 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24865 { 24866 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24867 24868 tcp_g_q_destroy(tcps); 24869 } 24870 24871 /* 24872 * Free the TCP stack instance. 24873 */ 24874 static void 24875 tcp_stack_fini(netstackid_t stackid, void *arg) 24876 { 24877 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24878 int i; 24879 24880 nd_free(&tcps->tcps_g_nd); 24881 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24882 tcps->tcps_params = NULL; 24883 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24884 tcps->tcps_wroff_xtra_param = NULL; 24885 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24886 tcps->tcps_mdt_head_param = NULL; 24887 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24888 tcps->tcps_mdt_tail_param = NULL; 24889 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24890 tcps->tcps_mdt_max_pbufs_param = NULL; 24891 24892 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24893 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24894 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24895 } 24896 24897 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24898 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24899 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24900 } 24901 24902 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24903 tcps->tcps_bind_fanout = NULL; 24904 24905 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24906 tcps->tcps_acceptor_fanout = NULL; 24907 24908 mutex_destroy(&tcps->tcps_iss_key_lock); 24909 rw_destroy(&tcps->tcps_hsp_lock); 24910 mutex_destroy(&tcps->tcps_g_q_lock); 24911 cv_destroy(&tcps->tcps_g_q_cv); 24912 mutex_destroy(&tcps->tcps_epriv_port_lock); 24913 24914 ip_drop_unregister(&tcps->tcps_dropper); 24915 24916 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24917 tcps->tcps_kstat = NULL; 24918 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24919 24920 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24921 tcps->tcps_mibkp = NULL; 24922 24923 ldi_ident_release(tcps->tcps_ldi_ident); 24924 kmem_free(tcps, sizeof (*tcps)); 24925 } 24926 24927 /* 24928 * Generate ISS, taking into account NDD changes may happen halfway through. 24929 * (If the iss is not zero, set it.) 24930 */ 24931 24932 static void 24933 tcp_iss_init(tcp_t *tcp) 24934 { 24935 MD5_CTX context; 24936 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24937 uint32_t answer[4]; 24938 tcp_stack_t *tcps = tcp->tcp_tcps; 24939 24940 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24941 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24942 switch (tcps->tcps_strong_iss) { 24943 case 2: 24944 mutex_enter(&tcps->tcps_iss_key_lock); 24945 context = tcps->tcps_iss_key; 24946 mutex_exit(&tcps->tcps_iss_key_lock); 24947 arg.ports = tcp->tcp_ports; 24948 if (tcp->tcp_ipversion == IPV4_VERSION) { 24949 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24950 &arg.src); 24951 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24952 &arg.dst); 24953 } else { 24954 arg.src = tcp->tcp_ip6h->ip6_src; 24955 arg.dst = tcp->tcp_ip6h->ip6_dst; 24956 } 24957 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24958 MD5Final((uchar_t *)answer, &context); 24959 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24960 /* 24961 * Now that we've hashed into a unique per-connection sequence 24962 * space, add a random increment per strong_iss == 1. So I 24963 * guess we'll have to... 24964 */ 24965 /* FALLTHRU */ 24966 case 1: 24967 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24968 break; 24969 default: 24970 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24971 break; 24972 } 24973 tcp->tcp_valid_bits = TCP_ISS_VALID; 24974 tcp->tcp_fss = tcp->tcp_iss - 1; 24975 tcp->tcp_suna = tcp->tcp_iss; 24976 tcp->tcp_snxt = tcp->tcp_iss + 1; 24977 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24978 tcp->tcp_csuna = tcp->tcp_snxt; 24979 } 24980 24981 /* 24982 * Exported routine for extracting active tcp connection status. 24983 * 24984 * This is used by the Solaris Cluster Networking software to 24985 * gather a list of connections that need to be forwarded to 24986 * specific nodes in the cluster when configuration changes occur. 24987 * 24988 * The callback is invoked for each tcp_t structure from all netstacks, 24989 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24990 * from the netstack with the specified stack_id. Returning 24991 * non-zero from the callback routine terminates the search. 24992 */ 24993 int 24994 cl_tcp_walk_list(netstackid_t stack_id, 24995 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24996 { 24997 netstack_handle_t nh; 24998 netstack_t *ns; 24999 int ret = 0; 25000 25001 if (stack_id >= 0) { 25002 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 25003 return (EINVAL); 25004 25005 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25006 ns->netstack_tcp); 25007 netstack_rele(ns); 25008 return (ret); 25009 } 25010 25011 netstack_next_init(&nh); 25012 while ((ns = netstack_next(&nh)) != NULL) { 25013 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25014 ns->netstack_tcp); 25015 netstack_rele(ns); 25016 } 25017 netstack_next_fini(&nh); 25018 return (ret); 25019 } 25020 25021 static int 25022 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25023 tcp_stack_t *tcps) 25024 { 25025 tcp_t *tcp; 25026 cl_tcp_info_t cl_tcpi; 25027 connf_t *connfp; 25028 conn_t *connp; 25029 int i; 25030 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25031 25032 ASSERT(callback != NULL); 25033 25034 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25035 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25036 connp = NULL; 25037 25038 while ((connp = 25039 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25040 25041 tcp = connp->conn_tcp; 25042 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25043 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25044 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25045 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25046 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25047 /* 25048 * The macros tcp_laddr and tcp_faddr give the IPv4 25049 * addresses. They are copied implicitly below as 25050 * mapped addresses. 25051 */ 25052 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25053 if (tcp->tcp_ipversion == IPV4_VERSION) { 25054 cl_tcpi.cl_tcpi_faddr = 25055 tcp->tcp_ipha->ipha_dst; 25056 } else { 25057 cl_tcpi.cl_tcpi_faddr_v6 = 25058 tcp->tcp_ip6h->ip6_dst; 25059 } 25060 25061 /* 25062 * If the callback returns non-zero 25063 * we terminate the traversal. 25064 */ 25065 if ((*callback)(&cl_tcpi, arg) != 0) { 25066 CONN_DEC_REF(tcp->tcp_connp); 25067 return (1); 25068 } 25069 } 25070 } 25071 25072 return (0); 25073 } 25074 25075 /* 25076 * Macros used for accessing the different types of sockaddr 25077 * structures inside a tcp_ioc_abort_conn_t. 25078 */ 25079 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25080 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25081 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25082 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25083 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25084 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25085 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25086 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25087 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25088 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25089 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25090 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25091 25092 /* 25093 * Return the correct error code to mimic the behavior 25094 * of a connection reset. 25095 */ 25096 #define TCP_AC_GET_ERRCODE(state, err) { \ 25097 switch ((state)) { \ 25098 case TCPS_SYN_SENT: \ 25099 case TCPS_SYN_RCVD: \ 25100 (err) = ECONNREFUSED; \ 25101 break; \ 25102 case TCPS_ESTABLISHED: \ 25103 case TCPS_FIN_WAIT_1: \ 25104 case TCPS_FIN_WAIT_2: \ 25105 case TCPS_CLOSE_WAIT: \ 25106 (err) = ECONNRESET; \ 25107 break; \ 25108 case TCPS_CLOSING: \ 25109 case TCPS_LAST_ACK: \ 25110 case TCPS_TIME_WAIT: \ 25111 (err) = 0; \ 25112 break; \ 25113 default: \ 25114 (err) = ENXIO; \ 25115 } \ 25116 } 25117 25118 /* 25119 * Check if a tcp structure matches the info in acp. 25120 */ 25121 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25122 (((acp)->ac_local.ss_family == AF_INET) ? \ 25123 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25124 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25125 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25126 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25127 (TCP_AC_V4LPORT((acp)) == 0 || \ 25128 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25129 (TCP_AC_V4RPORT((acp)) == 0 || \ 25130 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25131 (acp)->ac_start <= (tcp)->tcp_state && \ 25132 (acp)->ac_end >= (tcp)->tcp_state) : \ 25133 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25134 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25135 &(tcp)->tcp_ip_src_v6)) && \ 25136 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25137 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25138 &(tcp)->tcp_remote_v6)) && \ 25139 (TCP_AC_V6LPORT((acp)) == 0 || \ 25140 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25141 (TCP_AC_V6RPORT((acp)) == 0 || \ 25142 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25143 (acp)->ac_start <= (tcp)->tcp_state && \ 25144 (acp)->ac_end >= (tcp)->tcp_state)) 25145 25146 #define TCP_AC_MATCH(acp, tcp) \ 25147 (((acp)->ac_zoneid == ALL_ZONES || \ 25148 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25149 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25150 25151 /* 25152 * Build a message containing a tcp_ioc_abort_conn_t structure 25153 * which is filled in with information from acp and tp. 25154 */ 25155 static mblk_t * 25156 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25157 { 25158 mblk_t *mp; 25159 tcp_ioc_abort_conn_t *tacp; 25160 25161 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25162 if (mp == NULL) 25163 return (NULL); 25164 25165 mp->b_datap->db_type = M_CTL; 25166 25167 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25168 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25169 sizeof (uint32_t)); 25170 25171 tacp->ac_start = acp->ac_start; 25172 tacp->ac_end = acp->ac_end; 25173 tacp->ac_zoneid = acp->ac_zoneid; 25174 25175 if (acp->ac_local.ss_family == AF_INET) { 25176 tacp->ac_local.ss_family = AF_INET; 25177 tacp->ac_remote.ss_family = AF_INET; 25178 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25179 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25180 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25181 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25182 } else { 25183 tacp->ac_local.ss_family = AF_INET6; 25184 tacp->ac_remote.ss_family = AF_INET6; 25185 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25186 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25187 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25188 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25189 } 25190 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25191 return (mp); 25192 } 25193 25194 /* 25195 * Print a tcp_ioc_abort_conn_t structure. 25196 */ 25197 static void 25198 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25199 { 25200 char lbuf[128]; 25201 char rbuf[128]; 25202 sa_family_t af; 25203 in_port_t lport, rport; 25204 ushort_t logflags; 25205 25206 af = acp->ac_local.ss_family; 25207 25208 if (af == AF_INET) { 25209 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25210 lbuf, 128); 25211 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25212 rbuf, 128); 25213 lport = ntohs(TCP_AC_V4LPORT(acp)); 25214 rport = ntohs(TCP_AC_V4RPORT(acp)); 25215 } else { 25216 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25217 lbuf, 128); 25218 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25219 rbuf, 128); 25220 lport = ntohs(TCP_AC_V6LPORT(acp)); 25221 rport = ntohs(TCP_AC_V6RPORT(acp)); 25222 } 25223 25224 logflags = SL_TRACE | SL_NOTE; 25225 /* 25226 * Don't print this message to the console if the operation was done 25227 * to a non-global zone. 25228 */ 25229 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25230 logflags |= SL_CONSOLE; 25231 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25232 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25233 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25234 acp->ac_start, acp->ac_end); 25235 } 25236 25237 /* 25238 * Called inside tcp_rput when a message built using 25239 * tcp_ioctl_abort_build_msg is put into a queue. 25240 * Note that when we get here there is no wildcard in acp any more. 25241 */ 25242 static void 25243 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25244 { 25245 tcp_ioc_abort_conn_t *acp; 25246 25247 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25248 if (tcp->tcp_state <= acp->ac_end) { 25249 /* 25250 * If we get here, we are already on the correct 25251 * squeue. This ioctl follows the following path 25252 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25253 * ->tcp_ioctl_abort->squeue_enter (if on a 25254 * different squeue) 25255 */ 25256 int errcode; 25257 25258 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25259 (void) tcp_clean_death(tcp, errcode, 26); 25260 } 25261 freemsg(mp); 25262 } 25263 25264 /* 25265 * Abort all matching connections on a hash chain. 25266 */ 25267 static int 25268 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25269 boolean_t exact, tcp_stack_t *tcps) 25270 { 25271 int nmatch, err = 0; 25272 tcp_t *tcp; 25273 MBLKP mp, last, listhead = NULL; 25274 conn_t *tconnp; 25275 connf_t *connfp; 25276 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25277 25278 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25279 25280 startover: 25281 nmatch = 0; 25282 25283 mutex_enter(&connfp->connf_lock); 25284 for (tconnp = connfp->connf_head; tconnp != NULL; 25285 tconnp = tconnp->conn_next) { 25286 tcp = tconnp->conn_tcp; 25287 if (TCP_AC_MATCH(acp, tcp)) { 25288 CONN_INC_REF(tcp->tcp_connp); 25289 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25290 if (mp == NULL) { 25291 err = ENOMEM; 25292 CONN_DEC_REF(tcp->tcp_connp); 25293 break; 25294 } 25295 mp->b_prev = (mblk_t *)tcp; 25296 25297 if (listhead == NULL) { 25298 listhead = mp; 25299 last = mp; 25300 } else { 25301 last->b_next = mp; 25302 last = mp; 25303 } 25304 nmatch++; 25305 if (exact) 25306 break; 25307 } 25308 25309 /* Avoid holding lock for too long. */ 25310 if (nmatch >= 500) 25311 break; 25312 } 25313 mutex_exit(&connfp->connf_lock); 25314 25315 /* Pass mp into the correct tcp */ 25316 while ((mp = listhead) != NULL) { 25317 listhead = listhead->b_next; 25318 tcp = (tcp_t *)mp->b_prev; 25319 mp->b_next = mp->b_prev = NULL; 25320 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 25321 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 25322 } 25323 25324 *count += nmatch; 25325 if (nmatch >= 500 && err == 0) 25326 goto startover; 25327 return (err); 25328 } 25329 25330 /* 25331 * Abort all connections that matches the attributes specified in acp. 25332 */ 25333 static int 25334 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25335 { 25336 sa_family_t af; 25337 uint32_t ports; 25338 uint16_t *pports; 25339 int err = 0, count = 0; 25340 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25341 int index = -1; 25342 ushort_t logflags; 25343 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25344 25345 af = acp->ac_local.ss_family; 25346 25347 if (af == AF_INET) { 25348 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25349 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25350 pports = (uint16_t *)&ports; 25351 pports[1] = TCP_AC_V4LPORT(acp); 25352 pports[0] = TCP_AC_V4RPORT(acp); 25353 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25354 } 25355 } else { 25356 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25357 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25358 pports = (uint16_t *)&ports; 25359 pports[1] = TCP_AC_V6LPORT(acp); 25360 pports[0] = TCP_AC_V6RPORT(acp); 25361 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25362 } 25363 } 25364 25365 /* 25366 * For cases where remote addr, local port, and remote port are non- 25367 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25368 */ 25369 if (index != -1) { 25370 err = tcp_ioctl_abort_bucket(acp, index, 25371 &count, exact, tcps); 25372 } else { 25373 /* 25374 * loop through all entries for wildcard case 25375 */ 25376 for (index = 0; 25377 index < ipst->ips_ipcl_conn_fanout_size; 25378 index++) { 25379 err = tcp_ioctl_abort_bucket(acp, index, 25380 &count, exact, tcps); 25381 if (err != 0) 25382 break; 25383 } 25384 } 25385 25386 logflags = SL_TRACE | SL_NOTE; 25387 /* 25388 * Don't print this message to the console if the operation was done 25389 * to a non-global zone. 25390 */ 25391 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25392 logflags |= SL_CONSOLE; 25393 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25394 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25395 if (err == 0 && count == 0) 25396 err = ENOENT; 25397 return (err); 25398 } 25399 25400 /* 25401 * Process the TCP_IOC_ABORT_CONN ioctl request. 25402 */ 25403 static void 25404 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25405 { 25406 int err; 25407 IOCP iocp; 25408 MBLKP mp1; 25409 sa_family_t laf, raf; 25410 tcp_ioc_abort_conn_t *acp; 25411 zone_t *zptr; 25412 conn_t *connp = Q_TO_CONN(q); 25413 zoneid_t zoneid = connp->conn_zoneid; 25414 tcp_t *tcp = connp->conn_tcp; 25415 tcp_stack_t *tcps = tcp->tcp_tcps; 25416 25417 iocp = (IOCP)mp->b_rptr; 25418 25419 if ((mp1 = mp->b_cont) == NULL || 25420 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25421 err = EINVAL; 25422 goto out; 25423 } 25424 25425 /* check permissions */ 25426 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25427 err = EPERM; 25428 goto out; 25429 } 25430 25431 if (mp1->b_cont != NULL) { 25432 freemsg(mp1->b_cont); 25433 mp1->b_cont = NULL; 25434 } 25435 25436 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25437 laf = acp->ac_local.ss_family; 25438 raf = acp->ac_remote.ss_family; 25439 25440 /* check that a zone with the supplied zoneid exists */ 25441 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25442 zptr = zone_find_by_id(zoneid); 25443 if (zptr != NULL) { 25444 zone_rele(zptr); 25445 } else { 25446 err = EINVAL; 25447 goto out; 25448 } 25449 } 25450 25451 /* 25452 * For exclusive stacks we set the zoneid to zero 25453 * to make TCP operate as if in the global zone. 25454 */ 25455 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25456 acp->ac_zoneid = GLOBAL_ZONEID; 25457 25458 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25459 acp->ac_start > acp->ac_end || laf != raf || 25460 (laf != AF_INET && laf != AF_INET6)) { 25461 err = EINVAL; 25462 goto out; 25463 } 25464 25465 tcp_ioctl_abort_dump(acp); 25466 err = tcp_ioctl_abort(acp, tcps); 25467 25468 out: 25469 if (mp1 != NULL) { 25470 freemsg(mp1); 25471 mp->b_cont = NULL; 25472 } 25473 25474 if (err != 0) 25475 miocnak(q, mp, 0, err); 25476 else 25477 miocack(q, mp, 0, 0); 25478 } 25479 25480 /* 25481 * tcp_time_wait_processing() handles processing of incoming packets when 25482 * the tcp is in the TIME_WAIT state. 25483 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25484 * on the time wait list. 25485 */ 25486 void 25487 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25488 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25489 { 25490 int32_t bytes_acked; 25491 int32_t gap; 25492 int32_t rgap; 25493 tcp_opt_t tcpopt; 25494 uint_t flags; 25495 uint32_t new_swnd = 0; 25496 conn_t *connp; 25497 tcp_stack_t *tcps = tcp->tcp_tcps; 25498 25499 BUMP_LOCAL(tcp->tcp_ibsegs); 25500 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 25501 25502 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25503 new_swnd = BE16_TO_U16(tcph->th_win) << 25504 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25505 if (tcp->tcp_snd_ts_ok) { 25506 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25507 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25508 tcp->tcp_rnxt, TH_ACK); 25509 goto done; 25510 } 25511 } 25512 gap = seg_seq - tcp->tcp_rnxt; 25513 rgap = tcp->tcp_rwnd - (gap + seg_len); 25514 if (gap < 0) { 25515 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25516 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25517 (seg_len > -gap ? -gap : seg_len)); 25518 seg_len += gap; 25519 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25520 if (flags & TH_RST) { 25521 goto done; 25522 } 25523 if ((flags & TH_FIN) && seg_len == -1) { 25524 /* 25525 * When TCP receives a duplicate FIN in 25526 * TIME_WAIT state, restart the 2 MSL timer. 25527 * See page 73 in RFC 793. Make sure this TCP 25528 * is already on the TIME_WAIT list. If not, 25529 * just restart the timer. 25530 */ 25531 if (TCP_IS_DETACHED(tcp)) { 25532 if (tcp_time_wait_remove(tcp, NULL) == 25533 B_TRUE) { 25534 tcp_time_wait_append(tcp); 25535 TCP_DBGSTAT(tcps, 25536 tcp_rput_time_wait); 25537 } 25538 } else { 25539 ASSERT(tcp != NULL); 25540 TCP_TIMER_RESTART(tcp, 25541 tcps->tcps_time_wait_interval); 25542 } 25543 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25544 tcp->tcp_rnxt, TH_ACK); 25545 goto done; 25546 } 25547 flags |= TH_ACK_NEEDED; 25548 seg_len = 0; 25549 goto process_ack; 25550 } 25551 25552 /* Fix seg_seq, and chew the gap off the front. */ 25553 seg_seq = tcp->tcp_rnxt; 25554 } 25555 25556 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25557 /* 25558 * Make sure that when we accept the connection, pick 25559 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25560 * old connection. 25561 * 25562 * The next ISS generated is equal to tcp_iss_incr_extra 25563 * + ISS_INCR/2 + other components depending on the 25564 * value of tcp_strong_iss. We pre-calculate the new 25565 * ISS here and compare with tcp_snxt to determine if 25566 * we need to make adjustment to tcp_iss_incr_extra. 25567 * 25568 * The above calculation is ugly and is a 25569 * waste of CPU cycles... 25570 */ 25571 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25572 int32_t adj; 25573 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25574 25575 switch (tcps->tcps_strong_iss) { 25576 case 2: { 25577 /* Add time and MD5 components. */ 25578 uint32_t answer[4]; 25579 struct { 25580 uint32_t ports; 25581 in6_addr_t src; 25582 in6_addr_t dst; 25583 } arg; 25584 MD5_CTX context; 25585 25586 mutex_enter(&tcps->tcps_iss_key_lock); 25587 context = tcps->tcps_iss_key; 25588 mutex_exit(&tcps->tcps_iss_key_lock); 25589 arg.ports = tcp->tcp_ports; 25590 /* We use MAPPED addresses in tcp_iss_init */ 25591 arg.src = tcp->tcp_ip_src_v6; 25592 if (tcp->tcp_ipversion == IPV4_VERSION) { 25593 IN6_IPADDR_TO_V4MAPPED( 25594 tcp->tcp_ipha->ipha_dst, 25595 &arg.dst); 25596 } else { 25597 arg.dst = 25598 tcp->tcp_ip6h->ip6_dst; 25599 } 25600 MD5Update(&context, (uchar_t *)&arg, 25601 sizeof (arg)); 25602 MD5Final((uchar_t *)answer, &context); 25603 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25604 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25605 break; 25606 } 25607 case 1: 25608 /* Add time component and min random (i.e. 1). */ 25609 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25610 break; 25611 default: 25612 /* Add only time component. */ 25613 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25614 break; 25615 } 25616 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25617 /* 25618 * New ISS not guaranteed to be ISS_INCR/2 25619 * ahead of the current tcp_snxt, so add the 25620 * difference to tcp_iss_incr_extra. 25621 */ 25622 tcps->tcps_iss_incr_extra += adj; 25623 } 25624 /* 25625 * If tcp_clean_death() can not perform the task now, 25626 * drop the SYN packet and let the other side re-xmit. 25627 * Otherwise pass the SYN packet back in, since the 25628 * old tcp state has been cleaned up or freed. 25629 */ 25630 if (tcp_clean_death(tcp, 0, 27) == -1) 25631 goto done; 25632 /* 25633 * We will come back to tcp_rput_data 25634 * on the global queue. Packets destined 25635 * for the global queue will be checked 25636 * with global policy. But the policy for 25637 * this packet has already been checked as 25638 * this was destined for the detached 25639 * connection. We need to bypass policy 25640 * check this time by attaching a dummy 25641 * ipsec_in with ipsec_in_dont_check set. 25642 */ 25643 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25644 if (connp != NULL) { 25645 TCP_STAT(tcps, tcp_time_wait_syn_success); 25646 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25647 return; 25648 } 25649 goto done; 25650 } 25651 25652 /* 25653 * rgap is the amount of stuff received out of window. A negative 25654 * value is the amount out of window. 25655 */ 25656 if (rgap < 0) { 25657 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25658 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25659 /* Fix seg_len and make sure there is something left. */ 25660 seg_len += rgap; 25661 if (seg_len <= 0) { 25662 if (flags & TH_RST) { 25663 goto done; 25664 } 25665 flags |= TH_ACK_NEEDED; 25666 seg_len = 0; 25667 goto process_ack; 25668 } 25669 } 25670 /* 25671 * Check whether we can update tcp_ts_recent. This test is 25672 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25673 * Extensions for High Performance: An Update", Internet Draft. 25674 */ 25675 if (tcp->tcp_snd_ts_ok && 25676 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25677 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25678 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25679 tcp->tcp_last_rcv_lbolt = lbolt64; 25680 } 25681 25682 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25683 /* Always ack out of order packets */ 25684 flags |= TH_ACK_NEEDED; 25685 seg_len = 0; 25686 } else if (seg_len > 0) { 25687 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25688 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25689 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25690 } 25691 if (flags & TH_RST) { 25692 (void) tcp_clean_death(tcp, 0, 28); 25693 goto done; 25694 } 25695 if (flags & TH_SYN) { 25696 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25697 TH_RST|TH_ACK); 25698 /* 25699 * Do not delete the TCP structure if it is in 25700 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25701 */ 25702 goto done; 25703 } 25704 process_ack: 25705 if (flags & TH_ACK) { 25706 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25707 if (bytes_acked <= 0) { 25708 if (bytes_acked == 0 && seg_len == 0 && 25709 new_swnd == tcp->tcp_swnd) 25710 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25711 } else { 25712 /* Acks something not sent */ 25713 flags |= TH_ACK_NEEDED; 25714 } 25715 } 25716 if (flags & TH_ACK_NEEDED) { 25717 /* 25718 * Time to send an ack for some reason. 25719 */ 25720 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25721 tcp->tcp_rnxt, TH_ACK); 25722 } 25723 done: 25724 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25725 DB_CKSUMSTART(mp) = 0; 25726 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25727 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25728 } 25729 freemsg(mp); 25730 } 25731 25732 /* 25733 * TCP Timers Implementation. 25734 */ 25735 timeout_id_t 25736 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25737 { 25738 mblk_t *mp; 25739 tcp_timer_t *tcpt; 25740 tcp_t *tcp = connp->conn_tcp; 25741 25742 ASSERT(connp->conn_sqp != NULL); 25743 25744 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 25745 25746 if (tcp->tcp_timercache == NULL) { 25747 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25748 } else { 25749 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 25750 mp = tcp->tcp_timercache; 25751 tcp->tcp_timercache = mp->b_next; 25752 mp->b_next = NULL; 25753 ASSERT(mp->b_wptr == NULL); 25754 } 25755 25756 CONN_INC_REF(connp); 25757 tcpt = (tcp_timer_t *)mp->b_rptr; 25758 tcpt->connp = connp; 25759 tcpt->tcpt_proc = f; 25760 /* 25761 * TCP timers are normal timeouts. Plus, they do not require more than 25762 * a 10 millisecond resolution. By choosing a coarser resolution and by 25763 * rounding up the expiration to the next resolution boundary, we can 25764 * batch timers in the callout subsystem to make TCP timers more 25765 * efficient. The roundup also protects short timers from expiring too 25766 * early before they have a chance to be cancelled. 25767 */ 25768 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25769 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25770 25771 return ((timeout_id_t)mp); 25772 } 25773 25774 static void 25775 tcp_timer_callback(void *arg) 25776 { 25777 mblk_t *mp = (mblk_t *)arg; 25778 tcp_timer_t *tcpt; 25779 conn_t *connp; 25780 25781 tcpt = (tcp_timer_t *)mp->b_rptr; 25782 connp = tcpt->connp; 25783 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 25784 SQ_FILL, SQTAG_TCP_TIMER); 25785 } 25786 25787 static void 25788 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25789 { 25790 tcp_timer_t *tcpt; 25791 conn_t *connp = (conn_t *)arg; 25792 tcp_t *tcp = connp->conn_tcp; 25793 25794 tcpt = (tcp_timer_t *)mp->b_rptr; 25795 ASSERT(connp == tcpt->connp); 25796 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25797 25798 /* 25799 * If the TCP has reached the closed state, don't proceed any 25800 * further. This TCP logically does not exist on the system. 25801 * tcpt_proc could for example access queues, that have already 25802 * been qprocoff'ed off. Also see comments at the start of tcp_input 25803 */ 25804 if (tcp->tcp_state != TCPS_CLOSED) { 25805 (*tcpt->tcpt_proc)(connp); 25806 } else { 25807 tcp->tcp_timer_tid = 0; 25808 } 25809 tcp_timer_free(connp->conn_tcp, mp); 25810 } 25811 25812 /* 25813 * There is potential race with untimeout and the handler firing at the same 25814 * time. The mblock may be freed by the handler while we are trying to use 25815 * it. But since both should execute on the same squeue, this race should not 25816 * occur. 25817 */ 25818 clock_t 25819 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25820 { 25821 mblk_t *mp = (mblk_t *)id; 25822 tcp_timer_t *tcpt; 25823 clock_t delta; 25824 25825 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25826 25827 if (mp == NULL) 25828 return (-1); 25829 25830 tcpt = (tcp_timer_t *)mp->b_rptr; 25831 ASSERT(tcpt->connp == connp); 25832 25833 delta = untimeout_default(tcpt->tcpt_tid, 0); 25834 25835 if (delta >= 0) { 25836 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25837 tcp_timer_free(connp->conn_tcp, mp); 25838 CONN_DEC_REF(connp); 25839 } 25840 25841 return (delta); 25842 } 25843 25844 /* 25845 * Allocate space for the timer event. The allocation looks like mblk, but it is 25846 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25847 * 25848 * Dealing with failures: If we can't allocate from the timer cache we try 25849 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25850 * points to b_rptr. 25851 * If we can't allocate anything using allocb_tryhard(), we perform a last 25852 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25853 * save the actual allocation size in b_datap. 25854 */ 25855 mblk_t * 25856 tcp_timermp_alloc(int kmflags) 25857 { 25858 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25859 kmflags & ~KM_PANIC); 25860 25861 if (mp != NULL) { 25862 mp->b_next = mp->b_prev = NULL; 25863 mp->b_rptr = (uchar_t *)(&mp[1]); 25864 mp->b_wptr = NULL; 25865 mp->b_datap = NULL; 25866 mp->b_queue = NULL; 25867 mp->b_cont = NULL; 25868 } else if (kmflags & KM_PANIC) { 25869 /* 25870 * Failed to allocate memory for the timer. Try allocating from 25871 * dblock caches. 25872 */ 25873 /* ipclassifier calls this from a constructor - hence no tcps */ 25874 TCP_G_STAT(tcp_timermp_allocfail); 25875 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25876 if (mp == NULL) { 25877 size_t size = 0; 25878 /* 25879 * Memory is really low. Try tryhard allocation. 25880 * 25881 * ipclassifier calls this from a constructor - 25882 * hence no tcps 25883 */ 25884 TCP_G_STAT(tcp_timermp_allocdblfail); 25885 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25886 sizeof (tcp_timer_t), &size, kmflags); 25887 mp->b_rptr = (uchar_t *)(&mp[1]); 25888 mp->b_next = mp->b_prev = NULL; 25889 mp->b_wptr = (uchar_t *)-1; 25890 mp->b_datap = (dblk_t *)size; 25891 mp->b_queue = NULL; 25892 mp->b_cont = NULL; 25893 } 25894 ASSERT(mp->b_wptr != NULL); 25895 } 25896 /* ipclassifier calls this from a constructor - hence no tcps */ 25897 TCP_G_DBGSTAT(tcp_timermp_alloced); 25898 25899 return (mp); 25900 } 25901 25902 /* 25903 * Free per-tcp timer cache. 25904 * It can only contain entries from tcp_timercache. 25905 */ 25906 void 25907 tcp_timermp_free(tcp_t *tcp) 25908 { 25909 mblk_t *mp; 25910 25911 while ((mp = tcp->tcp_timercache) != NULL) { 25912 ASSERT(mp->b_wptr == NULL); 25913 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25914 kmem_cache_free(tcp_timercache, mp); 25915 } 25916 } 25917 25918 /* 25919 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25920 * events there already (currently at most two events are cached). 25921 * If the event is not allocated from the timer cache, free it right away. 25922 */ 25923 static void 25924 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25925 { 25926 mblk_t *mp1 = tcp->tcp_timercache; 25927 25928 if (mp->b_wptr != NULL) { 25929 /* 25930 * This allocation is not from a timer cache, free it right 25931 * away. 25932 */ 25933 if (mp->b_wptr != (uchar_t *)-1) 25934 freeb(mp); 25935 else 25936 kmem_free(mp, (size_t)mp->b_datap); 25937 } else if (mp1 == NULL || mp1->b_next == NULL) { 25938 /* Cache this timer block for future allocations */ 25939 mp->b_rptr = (uchar_t *)(&mp[1]); 25940 mp->b_next = mp1; 25941 tcp->tcp_timercache = mp; 25942 } else { 25943 kmem_cache_free(tcp_timercache, mp); 25944 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25945 } 25946 } 25947 25948 /* 25949 * End of TCP Timers implementation. 25950 */ 25951 25952 /* 25953 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25954 * on the specified backing STREAMS q. Note, the caller may make the 25955 * decision to call based on the tcp_t.tcp_flow_stopped value which 25956 * when check outside the q's lock is only an advisory check ... 25957 */ 25958 void 25959 tcp_setqfull(tcp_t *tcp) 25960 { 25961 tcp_stack_t *tcps = tcp->tcp_tcps; 25962 conn_t *connp = tcp->tcp_connp; 25963 25964 if (tcp->tcp_closed) 25965 return; 25966 25967 if (IPCL_IS_NONSTR(connp)) { 25968 (*connp->conn_upcalls->su_txq_full) 25969 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25970 tcp->tcp_flow_stopped = B_TRUE; 25971 } else { 25972 queue_t *q = tcp->tcp_wq; 25973 25974 if (!(q->q_flag & QFULL)) { 25975 mutex_enter(QLOCK(q)); 25976 if (!(q->q_flag & QFULL)) { 25977 /* still need to set QFULL */ 25978 q->q_flag |= QFULL; 25979 tcp->tcp_flow_stopped = B_TRUE; 25980 mutex_exit(QLOCK(q)); 25981 TCP_STAT(tcps, tcp_flwctl_on); 25982 } else { 25983 mutex_exit(QLOCK(q)); 25984 } 25985 } 25986 } 25987 } 25988 25989 void 25990 tcp_clrqfull(tcp_t *tcp) 25991 { 25992 conn_t *connp = tcp->tcp_connp; 25993 25994 if (tcp->tcp_closed) 25995 return; 25996 25997 if (IPCL_IS_NONSTR(connp)) { 25998 (*connp->conn_upcalls->su_txq_full) 25999 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 26000 tcp->tcp_flow_stopped = B_FALSE; 26001 } else { 26002 queue_t *q = tcp->tcp_wq; 26003 26004 if (q->q_flag & QFULL) { 26005 mutex_enter(QLOCK(q)); 26006 if (q->q_flag & QFULL) { 26007 q->q_flag &= ~QFULL; 26008 tcp->tcp_flow_stopped = B_FALSE; 26009 mutex_exit(QLOCK(q)); 26010 if (q->q_flag & QWANTW) 26011 qbackenable(q, 0); 26012 } else { 26013 mutex_exit(QLOCK(q)); 26014 } 26015 } 26016 } 26017 } 26018 26019 /* 26020 * kstats related to squeues i.e. not per IP instance 26021 */ 26022 static void * 26023 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26024 { 26025 kstat_t *ksp; 26026 26027 tcp_g_stat_t template = { 26028 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26029 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26030 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26031 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26032 }; 26033 26034 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26035 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26036 KSTAT_FLAG_VIRTUAL); 26037 26038 if (ksp == NULL) 26039 return (NULL); 26040 26041 bcopy(&template, tcp_g_statp, sizeof (template)); 26042 ksp->ks_data = (void *)tcp_g_statp; 26043 26044 kstat_install(ksp); 26045 return (ksp); 26046 } 26047 26048 static void 26049 tcp_g_kstat_fini(kstat_t *ksp) 26050 { 26051 if (ksp != NULL) { 26052 kstat_delete(ksp); 26053 } 26054 } 26055 26056 26057 static void * 26058 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26059 { 26060 kstat_t *ksp; 26061 26062 tcp_stat_t template = { 26063 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26064 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26065 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26066 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26067 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26068 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26069 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26070 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26071 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26072 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26073 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26074 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26075 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26076 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26077 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26078 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26079 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26080 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26081 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26082 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26083 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26084 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26085 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26086 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26087 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26088 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26089 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26090 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26091 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26092 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26093 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26094 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26095 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26096 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26097 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26098 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26099 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26100 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26101 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26102 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26103 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26104 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26105 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26106 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26107 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26108 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26109 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26110 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26111 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26112 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26113 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26114 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26115 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26116 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26117 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26118 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26119 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26120 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26121 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26122 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26123 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26124 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26125 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26126 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26127 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26128 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26129 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26130 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26131 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26132 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26133 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26134 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26135 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26136 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26137 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26138 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26139 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26140 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26141 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26142 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26143 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26144 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26145 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26146 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26147 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26148 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26149 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26150 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26151 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26152 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26153 }; 26154 26155 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26156 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26157 KSTAT_FLAG_VIRTUAL, stackid); 26158 26159 if (ksp == NULL) 26160 return (NULL); 26161 26162 bcopy(&template, tcps_statisticsp, sizeof (template)); 26163 ksp->ks_data = (void *)tcps_statisticsp; 26164 ksp->ks_private = (void *)(uintptr_t)stackid; 26165 26166 kstat_install(ksp); 26167 return (ksp); 26168 } 26169 26170 static void 26171 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26172 { 26173 if (ksp != NULL) { 26174 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26175 kstat_delete_netstack(ksp, stackid); 26176 } 26177 } 26178 26179 /* 26180 * TCP Kstats implementation 26181 */ 26182 static void * 26183 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26184 { 26185 kstat_t *ksp; 26186 26187 tcp_named_kstat_t template = { 26188 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26189 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26190 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26191 { "maxConn", KSTAT_DATA_INT32, 0 }, 26192 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26193 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26194 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26195 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26196 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26197 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26198 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26199 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26200 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26201 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26202 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26203 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26204 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26205 { "outAck", KSTAT_DATA_UINT32, 0 }, 26206 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26207 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26208 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26209 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26210 { "outControl", KSTAT_DATA_UINT32, 0 }, 26211 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26212 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26213 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26214 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26215 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26216 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26217 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26218 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26219 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26220 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26221 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26222 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26223 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26224 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26225 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26226 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26227 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26228 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26229 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26230 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26231 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26232 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26233 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26234 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26235 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26236 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26237 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26238 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26239 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26240 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26241 }; 26242 26243 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26244 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26245 26246 if (ksp == NULL) 26247 return (NULL); 26248 26249 template.rtoAlgorithm.value.ui32 = 4; 26250 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26251 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26252 template.maxConn.value.i32 = -1; 26253 26254 bcopy(&template, ksp->ks_data, sizeof (template)); 26255 ksp->ks_update = tcp_kstat_update; 26256 ksp->ks_private = (void *)(uintptr_t)stackid; 26257 26258 kstat_install(ksp); 26259 return (ksp); 26260 } 26261 26262 static void 26263 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26264 { 26265 if (ksp != NULL) { 26266 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26267 kstat_delete_netstack(ksp, stackid); 26268 } 26269 } 26270 26271 static int 26272 tcp_kstat_update(kstat_t *kp, int rw) 26273 { 26274 tcp_named_kstat_t *tcpkp; 26275 tcp_t *tcp; 26276 connf_t *connfp; 26277 conn_t *connp; 26278 int i; 26279 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26280 netstack_t *ns; 26281 tcp_stack_t *tcps; 26282 ip_stack_t *ipst; 26283 26284 if ((kp == NULL) || (kp->ks_data == NULL)) 26285 return (EIO); 26286 26287 if (rw == KSTAT_WRITE) 26288 return (EACCES); 26289 26290 ns = netstack_find_by_stackid(stackid); 26291 if (ns == NULL) 26292 return (-1); 26293 tcps = ns->netstack_tcp; 26294 if (tcps == NULL) { 26295 netstack_rele(ns); 26296 return (-1); 26297 } 26298 26299 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26300 26301 tcpkp->currEstab.value.ui32 = 0; 26302 26303 ipst = ns->netstack_ip; 26304 26305 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26306 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26307 connp = NULL; 26308 while ((connp = 26309 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26310 tcp = connp->conn_tcp; 26311 switch (tcp_snmp_state(tcp)) { 26312 case MIB2_TCP_established: 26313 case MIB2_TCP_closeWait: 26314 tcpkp->currEstab.value.ui32++; 26315 break; 26316 } 26317 } 26318 } 26319 26320 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26321 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26322 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26323 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26324 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26325 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26326 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26327 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26328 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26329 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26330 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26331 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26332 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26333 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26334 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26335 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26336 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26337 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26338 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26339 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26340 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26341 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26342 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26343 tcpkp->inDataInorderSegs.value.ui32 = 26344 tcps->tcps_mib.tcpInDataInorderSegs; 26345 tcpkp->inDataInorderBytes.value.ui32 = 26346 tcps->tcps_mib.tcpInDataInorderBytes; 26347 tcpkp->inDataUnorderSegs.value.ui32 = 26348 tcps->tcps_mib.tcpInDataUnorderSegs; 26349 tcpkp->inDataUnorderBytes.value.ui32 = 26350 tcps->tcps_mib.tcpInDataUnorderBytes; 26351 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26352 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26353 tcpkp->inDataPartDupSegs.value.ui32 = 26354 tcps->tcps_mib.tcpInDataPartDupSegs; 26355 tcpkp->inDataPartDupBytes.value.ui32 = 26356 tcps->tcps_mib.tcpInDataPartDupBytes; 26357 tcpkp->inDataPastWinSegs.value.ui32 = 26358 tcps->tcps_mib.tcpInDataPastWinSegs; 26359 tcpkp->inDataPastWinBytes.value.ui32 = 26360 tcps->tcps_mib.tcpInDataPastWinBytes; 26361 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26362 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26363 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26364 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26365 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26366 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26367 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26368 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26369 tcpkp->timKeepaliveProbe.value.ui32 = 26370 tcps->tcps_mib.tcpTimKeepaliveProbe; 26371 tcpkp->timKeepaliveDrop.value.ui32 = 26372 tcps->tcps_mib.tcpTimKeepaliveDrop; 26373 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26374 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26375 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26376 tcpkp->outSackRetransSegs.value.ui32 = 26377 tcps->tcps_mib.tcpOutSackRetransSegs; 26378 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26379 26380 netstack_rele(ns); 26381 return (0); 26382 } 26383 26384 void 26385 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26386 { 26387 uint16_t hdr_len; 26388 ipha_t *ipha; 26389 uint8_t *nexthdrp; 26390 tcph_t *tcph; 26391 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26392 26393 /* Already has an eager */ 26394 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26395 TCP_STAT(tcps, tcp_reinput_syn); 26396 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26397 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 26398 return; 26399 } 26400 26401 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26402 case IPV4_VERSION: 26403 ipha = (ipha_t *)mp->b_rptr; 26404 hdr_len = IPH_HDR_LENGTH(ipha); 26405 break; 26406 case IPV6_VERSION: 26407 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26408 &hdr_len, &nexthdrp)) { 26409 CONN_DEC_REF(connp); 26410 freemsg(mp); 26411 return; 26412 } 26413 break; 26414 } 26415 26416 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26417 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26418 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26419 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26420 } 26421 26422 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26423 SQ_FILL, SQTAG_TCP_REINPUT); 26424 } 26425 26426 static int 26427 tcp_squeue_switch(int val) 26428 { 26429 int rval = SQ_FILL; 26430 26431 switch (val) { 26432 case 1: 26433 rval = SQ_NODRAIN; 26434 break; 26435 case 2: 26436 rval = SQ_PROCESS; 26437 break; 26438 default: 26439 break; 26440 } 26441 return (rval); 26442 } 26443 26444 /* 26445 * This is called once for each squeue - globally for all stack 26446 * instances. 26447 */ 26448 static void 26449 tcp_squeue_add(squeue_t *sqp) 26450 { 26451 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26452 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26453 26454 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26455 tcp_time_wait->tcp_time_wait_tid = 26456 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 26457 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 26458 CALLOUT_FLAG_ROUNDUP); 26459 if (tcp_free_list_max_cnt == 0) { 26460 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26461 max_ncpus : boot_max_ncpus); 26462 26463 /* 26464 * Limit number of entries to 1% of availble memory / tcp_ncpus 26465 */ 26466 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26467 (tcp_ncpus * sizeof (tcp_t) * 100); 26468 } 26469 tcp_time_wait->tcp_free_list_cnt = 0; 26470 } 26471 26472 static int 26473 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 26474 { 26475 mblk_t *ire_mp = NULL; 26476 mblk_t *syn_mp; 26477 mblk_t *mdti; 26478 mblk_t *lsoi; 26479 int retval; 26480 tcph_t *tcph; 26481 uint32_t mss; 26482 queue_t *q = tcp->tcp_rq; 26483 conn_t *connp = tcp->tcp_connp; 26484 tcp_stack_t *tcps = tcp->tcp_tcps; 26485 26486 if (error == 0) { 26487 /* 26488 * Adapt Multidata information, if any. The 26489 * following tcp_mdt_update routine will free 26490 * the message. 26491 */ 26492 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 26493 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 26494 b_rptr)->mdt_capab, B_TRUE); 26495 freemsg(mdti); 26496 } 26497 26498 /* 26499 * Check to update LSO information with tcp, and 26500 * tcp_lso_update routine will free the message. 26501 */ 26502 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 26503 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 26504 b_rptr)->lso_capab); 26505 freemsg(lsoi); 26506 } 26507 26508 /* Get the IRE, if we had requested for it */ 26509 if (mp != NULL) 26510 ire_mp = tcp_ire_mp(&mp); 26511 26512 if (tcp->tcp_hard_binding) { 26513 tcp->tcp_hard_binding = B_FALSE; 26514 tcp->tcp_hard_bound = B_TRUE; 26515 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 26516 if (retval != 0) { 26517 error = EADDRINUSE; 26518 goto bind_failed; 26519 } 26520 } else { 26521 if (ire_mp != NULL) 26522 freeb(ire_mp); 26523 goto after_syn_sent; 26524 } 26525 26526 retval = tcp_adapt_ire(tcp, ire_mp); 26527 if (ire_mp != NULL) 26528 freeb(ire_mp); 26529 if (retval == 0) { 26530 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 26531 ENETUNREACH : EADDRNOTAVAIL); 26532 goto ipcl_rm; 26533 } 26534 /* 26535 * Don't let an endpoint connect to itself. 26536 * Also checked in tcp_connect() but that 26537 * check can't handle the case when the 26538 * local IP address is INADDR_ANY. 26539 */ 26540 if (tcp->tcp_ipversion == IPV4_VERSION) { 26541 if ((tcp->tcp_ipha->ipha_dst == 26542 tcp->tcp_ipha->ipha_src) && 26543 (BE16_EQL(tcp->tcp_tcph->th_lport, 26544 tcp->tcp_tcph->th_fport))) { 26545 error = EADDRNOTAVAIL; 26546 goto ipcl_rm; 26547 } 26548 } else { 26549 if (IN6_ARE_ADDR_EQUAL( 26550 &tcp->tcp_ip6h->ip6_dst, 26551 &tcp->tcp_ip6h->ip6_src) && 26552 (BE16_EQL(tcp->tcp_tcph->th_lport, 26553 tcp->tcp_tcph->th_fport))) { 26554 error = EADDRNOTAVAIL; 26555 goto ipcl_rm; 26556 } 26557 } 26558 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 26559 /* 26560 * This should not be possible! Just for 26561 * defensive coding... 26562 */ 26563 if (tcp->tcp_state != TCPS_SYN_SENT) 26564 goto after_syn_sent; 26565 26566 if (is_system_labeled() && 26567 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 26568 error = EHOSTUNREACH; 26569 goto ipcl_rm; 26570 } 26571 26572 /* 26573 * tcp_adapt_ire() does not adjust 26574 * for TCP/IP header length. 26575 */ 26576 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 26577 26578 /* 26579 * Just make sure our rwnd is at 26580 * least tcp_recv_hiwat_mss * MSS 26581 * large, and round up to the nearest 26582 * MSS. 26583 * 26584 * We do the round up here because 26585 * we need to get the interface 26586 * MTU first before we can do the 26587 * round up. 26588 */ 26589 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 26590 tcps->tcps_recv_hiwat_minmss * mss); 26591 if (!IPCL_IS_NONSTR(connp)) 26592 q->q_hiwat = tcp->tcp_rwnd; 26593 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 26594 tcp_set_ws_value(tcp); 26595 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 26596 tcp->tcp_tcph->th_win); 26597 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 26598 tcp->tcp_snd_ws_ok = B_TRUE; 26599 26600 /* 26601 * Set tcp_snd_ts_ok to true 26602 * so that tcp_xmit_mp will 26603 * include the timestamp 26604 * option in the SYN segment. 26605 */ 26606 if (tcps->tcps_tstamp_always || 26607 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 26608 tcp->tcp_snd_ts_ok = B_TRUE; 26609 } 26610 26611 /* 26612 * tcp_snd_sack_ok can be set in 26613 * tcp_adapt_ire() if the sack metric 26614 * is set. So check it here also. 26615 */ 26616 if (tcps->tcps_sack_permitted == 2 || 26617 tcp->tcp_snd_sack_ok) { 26618 if (tcp->tcp_sack_info == NULL) { 26619 tcp->tcp_sack_info = 26620 kmem_cache_alloc(tcp_sack_info_cache, 26621 KM_SLEEP); 26622 } 26623 tcp->tcp_snd_sack_ok = B_TRUE; 26624 } 26625 26626 /* 26627 * Should we use ECN? Note that the current 26628 * default value (SunOS 5.9) of tcp_ecn_permitted 26629 * is 1. The reason for doing this is that there 26630 * are equipments out there that will drop ECN 26631 * enabled IP packets. Setting it to 1 avoids 26632 * compatibility problems. 26633 */ 26634 if (tcps->tcps_ecn_permitted == 2) 26635 tcp->tcp_ecn_ok = B_TRUE; 26636 26637 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 26638 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 26639 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 26640 if (syn_mp) { 26641 if (cr == NULL) { 26642 cr = tcp->tcp_cred; 26643 pid = tcp->tcp_cpid; 26644 } 26645 mblk_setcred(syn_mp, cr); 26646 DB_CPID(syn_mp) = pid; 26647 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 26648 } 26649 after_syn_sent: 26650 if (mp != NULL) { 26651 ASSERT(mp->b_cont == NULL); 26652 freeb(mp); 26653 } 26654 return (error); 26655 } else { 26656 /* error */ 26657 if (tcp->tcp_debug) { 26658 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 26659 "tcp_post_ip_bind: error == %d", error); 26660 } 26661 if (mp != NULL) { 26662 freeb(mp); 26663 } 26664 } 26665 26666 ipcl_rm: 26667 /* 26668 * Need to unbind with classifier since we were just 26669 * told that our bind succeeded. a.k.a error == 0 at the entry. 26670 */ 26671 tcp->tcp_hard_bound = B_FALSE; 26672 tcp->tcp_hard_binding = B_FALSE; 26673 26674 ipcl_hash_remove(connp); 26675 26676 bind_failed: 26677 tcp->tcp_state = TCPS_IDLE; 26678 if (tcp->tcp_ipversion == IPV4_VERSION) 26679 tcp->tcp_ipha->ipha_src = 0; 26680 else 26681 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 26682 /* 26683 * Copy of the src addr. in tcp_t is needed since 26684 * the lookup funcs. can only look at tcp_t 26685 */ 26686 V6_SET_ZERO(tcp->tcp_ip_src_v6); 26687 26688 tcph = tcp->tcp_tcph; 26689 tcph->th_lport[0] = 0; 26690 tcph->th_lport[1] = 0; 26691 tcp_bind_hash_remove(tcp); 26692 bzero(&connp->u_port, sizeof (connp->u_port)); 26693 /* blow away saved option results if any */ 26694 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26695 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26696 26697 conn_delete_ire(tcp->tcp_connp, NULL); 26698 26699 return (error); 26700 } 26701 26702 static int 26703 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 26704 boolean_t bind_to_req_port_only, cred_t *cr) 26705 { 26706 in_port_t mlp_port; 26707 mlp_type_t addrtype, mlptype; 26708 boolean_t user_specified; 26709 in_port_t allocated_port; 26710 in_port_t requested_port = *requested_port_ptr; 26711 conn_t *connp; 26712 zone_t *zone; 26713 tcp_stack_t *tcps = tcp->tcp_tcps; 26714 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 26715 26716 /* 26717 * XXX It's up to the caller to specify bind_to_req_port_only or not. 26718 */ 26719 if (cr == NULL) 26720 cr = tcp->tcp_cred; 26721 /* 26722 * Get a valid port (within the anonymous range and should not 26723 * be a privileged one) to use if the user has not given a port. 26724 * If multiple threads are here, they may all start with 26725 * with the same initial port. But, it should be fine as long as 26726 * tcp_bindi will ensure that no two threads will be assigned 26727 * the same port. 26728 * 26729 * NOTE: XXX If a privileged process asks for an anonymous port, we 26730 * still check for ports only in the range > tcp_smallest_non_priv_port, 26731 * unless TCP_ANONPRIVBIND option is set. 26732 */ 26733 mlptype = mlptSingle; 26734 mlp_port = requested_port; 26735 if (requested_port == 0) { 26736 requested_port = tcp->tcp_anon_priv_bind ? 26737 tcp_get_next_priv_port(tcp) : 26738 tcp_update_next_port(tcps->tcps_next_port_to_try, 26739 tcp, B_TRUE); 26740 if (requested_port == 0) { 26741 return (-TNOADDR); 26742 } 26743 user_specified = B_FALSE; 26744 26745 /* 26746 * If the user went through one of the RPC interfaces to create 26747 * this socket and RPC is MLP in this zone, then give him an 26748 * anonymous MLP. 26749 */ 26750 connp = tcp->tcp_connp; 26751 if (connp->conn_anon_mlp && is_system_labeled()) { 26752 zone = crgetzone(cr); 26753 addrtype = tsol_mlp_addr_type(zone->zone_id, 26754 IPV6_VERSION, &v6addr, 26755 tcps->tcps_netstack->netstack_ip); 26756 if (addrtype == mlptSingle) { 26757 return (-TNOADDR); 26758 } 26759 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26760 PMAPPORT, addrtype); 26761 mlp_port = PMAPPORT; 26762 } 26763 } else { 26764 int i; 26765 boolean_t priv = B_FALSE; 26766 26767 /* 26768 * If the requested_port is in the well-known privileged range, 26769 * verify that the stream was opened by a privileged user. 26770 * Note: No locks are held when inspecting tcp_g_*epriv_ports 26771 * but instead the code relies on: 26772 * - the fact that the address of the array and its size never 26773 * changes 26774 * - the atomic assignment of the elements of the array 26775 */ 26776 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 26777 priv = B_TRUE; 26778 } else { 26779 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 26780 if (requested_port == 26781 tcps->tcps_g_epriv_ports[i]) { 26782 priv = B_TRUE; 26783 break; 26784 } 26785 } 26786 } 26787 if (priv) { 26788 if (secpolicy_net_privaddr(cr, requested_port, 26789 IPPROTO_TCP) != 0) { 26790 if (tcp->tcp_debug) { 26791 (void) strlog(TCP_MOD_ID, 0, 1, 26792 SL_ERROR|SL_TRACE, 26793 "tcp_bind: no priv for port %d", 26794 requested_port); 26795 } 26796 return (-TACCES); 26797 } 26798 } 26799 user_specified = B_TRUE; 26800 26801 connp = tcp->tcp_connp; 26802 if (is_system_labeled()) { 26803 zone = crgetzone(cr); 26804 addrtype = tsol_mlp_addr_type(zone->zone_id, 26805 IPV6_VERSION, &v6addr, 26806 tcps->tcps_netstack->netstack_ip); 26807 if (addrtype == mlptSingle) { 26808 return (-TNOADDR); 26809 } 26810 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26811 requested_port, addrtype); 26812 } 26813 } 26814 26815 if (mlptype != mlptSingle) { 26816 if (secpolicy_net_bindmlp(cr) != 0) { 26817 if (tcp->tcp_debug) { 26818 (void) strlog(TCP_MOD_ID, 0, 1, 26819 SL_ERROR|SL_TRACE, 26820 "tcp_bind: no priv for multilevel port %d", 26821 requested_port); 26822 } 26823 return (-TACCES); 26824 } 26825 26826 /* 26827 * If we're specifically binding a shared IP address and the 26828 * port is MLP on shared addresses, then check to see if this 26829 * zone actually owns the MLP. Reject if not. 26830 */ 26831 if (mlptype == mlptShared && addrtype == mlptShared) { 26832 /* 26833 * No need to handle exclusive-stack zones since 26834 * ALL_ZONES only applies to the shared stack. 26835 */ 26836 zoneid_t mlpzone; 26837 26838 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26839 htons(mlp_port)); 26840 if (connp->conn_zoneid != mlpzone) { 26841 if (tcp->tcp_debug) { 26842 (void) strlog(TCP_MOD_ID, 0, 1, 26843 SL_ERROR|SL_TRACE, 26844 "tcp_bind: attempt to bind port " 26845 "%d on shared addr in zone %d " 26846 "(should be %d)", 26847 mlp_port, connp->conn_zoneid, 26848 mlpzone); 26849 } 26850 return (-TACCES); 26851 } 26852 } 26853 26854 if (!user_specified) { 26855 int err; 26856 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26857 requested_port, B_TRUE); 26858 if (err != 0) { 26859 if (tcp->tcp_debug) { 26860 (void) strlog(TCP_MOD_ID, 0, 1, 26861 SL_ERROR|SL_TRACE, 26862 "tcp_bind: cannot establish anon " 26863 "MLP for port %d", 26864 requested_port); 26865 } 26866 return (err); 26867 } 26868 connp->conn_anon_port = B_TRUE; 26869 } 26870 connp->conn_mlp_type = mlptype; 26871 } 26872 26873 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26874 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26875 26876 if (allocated_port == 0) { 26877 connp->conn_mlp_type = mlptSingle; 26878 if (connp->conn_anon_port) { 26879 connp->conn_anon_port = B_FALSE; 26880 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26881 requested_port, B_FALSE); 26882 } 26883 if (bind_to_req_port_only) { 26884 if (tcp->tcp_debug) { 26885 (void) strlog(TCP_MOD_ID, 0, 1, 26886 SL_ERROR|SL_TRACE, 26887 "tcp_bind: requested addr busy"); 26888 } 26889 return (-TADDRBUSY); 26890 } else { 26891 /* If we are out of ports, fail the bind. */ 26892 if (tcp->tcp_debug) { 26893 (void) strlog(TCP_MOD_ID, 0, 1, 26894 SL_ERROR|SL_TRACE, 26895 "tcp_bind: out of ports?"); 26896 } 26897 return (-TNOADDR); 26898 } 26899 } 26900 26901 /* Pass the allocated port back */ 26902 *requested_port_ptr = allocated_port; 26903 return (0); 26904 } 26905 26906 static int 26907 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26908 boolean_t bind_to_req_port_only) 26909 { 26910 tcp_t *tcp = connp->conn_tcp; 26911 26912 sin_t *sin; 26913 sin6_t *sin6; 26914 sin6_t sin6addr; 26915 in_port_t requested_port; 26916 ipaddr_t v4addr; 26917 in6_addr_t v6addr; 26918 uint_t origipversion; 26919 int error = 0; 26920 26921 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26922 26923 if (tcp->tcp_state == TCPS_BOUND) { 26924 return (0); 26925 } else if (tcp->tcp_state > TCPS_BOUND) { 26926 if (tcp->tcp_debug) { 26927 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26928 "tcp_bind: bad state, %d", tcp->tcp_state); 26929 } 26930 return (-TOUTSTATE); 26931 } 26932 origipversion = tcp->tcp_ipversion; 26933 26934 if (sa != NULL && !OK_32PTR((char *)sa)) { 26935 if (tcp->tcp_debug) { 26936 (void) strlog(TCP_MOD_ID, 0, 1, 26937 SL_ERROR|SL_TRACE, 26938 "tcp_bind: bad address parameter, " 26939 "address %p, len %d", 26940 (void *)sa, len); 26941 } 26942 return (-TPROTO); 26943 } 26944 26945 switch (len) { 26946 case 0: /* request for a generic port */ 26947 if (tcp->tcp_family == AF_INET) { 26948 sin = (sin_t *)&sin6addr; 26949 *sin = sin_null; 26950 sin->sin_family = AF_INET; 26951 tcp->tcp_ipversion = IPV4_VERSION; 26952 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 26953 } else { 26954 ASSERT(tcp->tcp_family == AF_INET6); 26955 sin6 = (sin6_t *)&sin6addr; 26956 *sin6 = sin6_null; 26957 sin6->sin6_family = AF_INET6; 26958 tcp->tcp_ipversion = IPV6_VERSION; 26959 V6_SET_ZERO(v6addr); 26960 } 26961 requested_port = 0; 26962 break; 26963 26964 case sizeof (sin_t): /* Complete IPv4 address */ 26965 sin = (sin_t *)sa; 26966 /* 26967 * With sockets sockfs will accept bogus sin_family in 26968 * bind() and replace it with the family used in the socket 26969 * call. 26970 */ 26971 if (sin->sin_family != AF_INET || 26972 tcp->tcp_family != AF_INET) { 26973 return (EAFNOSUPPORT); 26974 } 26975 requested_port = ntohs(sin->sin_port); 26976 tcp->tcp_ipversion = IPV4_VERSION; 26977 v4addr = sin->sin_addr.s_addr; 26978 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26979 break; 26980 26981 case sizeof (sin6_t): /* Complete IPv6 address */ 26982 sin6 = (sin6_t *)sa; 26983 if (sin6->sin6_family != AF_INET6 || 26984 tcp->tcp_family != AF_INET6) { 26985 return (EAFNOSUPPORT); 26986 } 26987 requested_port = ntohs(sin6->sin6_port); 26988 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26989 IPV4_VERSION : IPV6_VERSION; 26990 v6addr = sin6->sin6_addr; 26991 break; 26992 26993 default: 26994 if (tcp->tcp_debug) { 26995 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26996 "tcp_bind: bad address length, %d", len); 26997 } 26998 return (EAFNOSUPPORT); 26999 /* return (-TBADADDR); */ 27000 } 27001 27002 tcp->tcp_bound_source_v6 = v6addr; 27003 27004 /* Check for change in ipversion */ 27005 if (origipversion != tcp->tcp_ipversion) { 27006 ASSERT(tcp->tcp_family == AF_INET6); 27007 error = tcp->tcp_ipversion == IPV6_VERSION ? 27008 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 27009 if (error) { 27010 return (ENOMEM); 27011 } 27012 } 27013 27014 /* 27015 * Initialize family specific fields. Copy of the src addr. 27016 * in tcp_t is needed for the lookup funcs. 27017 */ 27018 if (tcp->tcp_ipversion == IPV6_VERSION) { 27019 tcp->tcp_ip6h->ip6_src = v6addr; 27020 } else { 27021 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 27022 } 27023 tcp->tcp_ip_src_v6 = v6addr; 27024 27025 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 27026 27027 error = tcp_bind_select_lport(tcp, &requested_port, 27028 bind_to_req_port_only, cr); 27029 27030 return (error); 27031 } 27032 27033 /* 27034 * Return unix error is tli error is TSYSERR, otherwise return a negative 27035 * tli error. 27036 */ 27037 int 27038 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 27039 boolean_t bind_to_req_port_only) 27040 { 27041 int error; 27042 tcp_t *tcp = connp->conn_tcp; 27043 27044 if (tcp->tcp_state >= TCPS_BOUND) { 27045 if (tcp->tcp_debug) { 27046 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27047 "tcp_bind: bad state, %d", tcp->tcp_state); 27048 } 27049 return (-TOUTSTATE); 27050 } 27051 27052 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 27053 if (error != 0) 27054 return (error); 27055 27056 ASSERT(tcp->tcp_state == TCPS_BOUND); 27057 27058 tcp->tcp_conn_req_max = 0; 27059 27060 /* 27061 * We need to make sure that the conn_recv is set to a non-null 27062 * value before we insert the conn into the classifier table. 27063 * This is to avoid a race with an incoming packet which does an 27064 * ipcl_classify(). 27065 */ 27066 connp->conn_recv = tcp_conn_request; 27067 27068 if (tcp->tcp_family == AF_INET6) { 27069 ASSERT(tcp->tcp_connp->conn_af_isv6); 27070 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27071 &tcp->tcp_bound_source_v6, 0, B_FALSE); 27072 } else { 27073 ASSERT(!tcp->tcp_connp->conn_af_isv6); 27074 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 27075 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 27076 } 27077 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27078 } 27079 27080 int 27081 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 27082 socklen_t len, cred_t *cr) 27083 { 27084 int error; 27085 conn_t *connp = (conn_t *)proto_handle; 27086 squeue_t *sqp = connp->conn_sqp; 27087 27088 ASSERT(sqp != NULL); 27089 27090 error = squeue_synch_enter(sqp, connp, 0); 27091 if (error != 0) { 27092 /* failed to enter */ 27093 return (ENOSR); 27094 } 27095 27096 /* binding to a NULL address really means unbind */ 27097 if (sa == NULL) { 27098 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 27099 error = tcp_do_unbind(connp); 27100 else 27101 error = EINVAL; 27102 } else { 27103 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 27104 } 27105 27106 squeue_synch_exit(sqp, connp); 27107 27108 if (error < 0) { 27109 if (error == -TOUTSTATE) 27110 error = EINVAL; 27111 else 27112 error = proto_tlitosyserr(-error); 27113 } 27114 27115 return (error); 27116 } 27117 27118 /* 27119 * If the return value from this function is positive, it's a UNIX error. 27120 * Otherwise, if it's negative, then the absolute value is a TLI error. 27121 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 27122 */ 27123 int 27124 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 27125 cred_t *cr, pid_t pid) 27126 { 27127 tcp_t *tcp = connp->conn_tcp; 27128 sin_t *sin = (sin_t *)sa; 27129 sin6_t *sin6 = (sin6_t *)sa; 27130 ipaddr_t *dstaddrp; 27131 in_port_t dstport; 27132 uint_t srcid; 27133 int error = 0; 27134 27135 switch (len) { 27136 default: 27137 /* 27138 * Should never happen 27139 */ 27140 return (EINVAL); 27141 27142 case sizeof (sin_t): 27143 sin = (sin_t *)sa; 27144 if (sin->sin_port == 0) { 27145 return (-TBADADDR); 27146 } 27147 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 27148 return (EAFNOSUPPORT); 27149 } 27150 break; 27151 27152 case sizeof (sin6_t): 27153 sin6 = (sin6_t *)sa; 27154 if (sin6->sin6_port == 0) { 27155 return (-TBADADDR); 27156 } 27157 break; 27158 } 27159 /* 27160 * If we're connecting to an IPv4-mapped IPv6 address, we need to 27161 * make sure that the template IP header in the tcp structure is an 27162 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 27163 * need to this before we call tcp_bindi() so that the port lookup 27164 * code will look for ports in the correct port space (IPv4 and 27165 * IPv6 have separate port spaces). 27166 */ 27167 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 27168 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27169 int err = 0; 27170 27171 err = tcp_header_init_ipv4(tcp); 27172 if (err != 0) { 27173 error = ENOMEM; 27174 goto connect_failed; 27175 } 27176 if (tcp->tcp_lport != 0) 27177 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 27178 } 27179 27180 switch (tcp->tcp_state) { 27181 case TCPS_LISTEN: 27182 /* 27183 * Listening sockets are not allowed to issue connect(). 27184 */ 27185 if (IPCL_IS_NONSTR(connp)) 27186 return (EOPNOTSUPP); 27187 /* FALLTHRU */ 27188 case TCPS_IDLE: 27189 /* 27190 * We support quick connect, refer to comments in 27191 * tcp_connect_*() 27192 */ 27193 /* FALLTHRU */ 27194 case TCPS_BOUND: 27195 /* 27196 * We must bump the generation before the operation start. 27197 * This is done to ensure that any upcall made later on sends 27198 * up the right generation to the socket. 27199 */ 27200 SOCK_CONNID_BUMP(tcp->tcp_connid); 27201 27202 if (tcp->tcp_family == AF_INET6) { 27203 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27204 return (tcp_connect_ipv6(tcp, 27205 &sin6->sin6_addr, 27206 sin6->sin6_port, sin6->sin6_flowinfo, 27207 sin6->__sin6_src_id, sin6->sin6_scope_id, 27208 cr, pid)); 27209 } 27210 /* 27211 * Destination adress is mapped IPv6 address. 27212 * Source bound address should be unspecified or 27213 * IPv6 mapped address as well. 27214 */ 27215 if (!IN6_IS_ADDR_UNSPECIFIED( 27216 &tcp->tcp_bound_source_v6) && 27217 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 27218 return (EADDRNOTAVAIL); 27219 } 27220 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 27221 dstport = sin6->sin6_port; 27222 srcid = sin6->__sin6_src_id; 27223 } else { 27224 dstaddrp = &sin->sin_addr.s_addr; 27225 dstport = sin->sin_port; 27226 srcid = 0; 27227 } 27228 27229 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 27230 pid); 27231 break; 27232 default: 27233 return (-TOUTSTATE); 27234 } 27235 /* 27236 * Note: Code below is the "failure" case 27237 */ 27238 connect_failed: 27239 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 27240 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 27241 return (error); 27242 } 27243 27244 int 27245 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 27246 socklen_t len, sock_connid_t *id, cred_t *cr) 27247 { 27248 conn_t *connp = (conn_t *)proto_handle; 27249 tcp_t *tcp = connp->conn_tcp; 27250 squeue_t *sqp = connp->conn_sqp; 27251 int error; 27252 27253 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 27254 if (error != 0) { 27255 return (error); 27256 } 27257 27258 error = squeue_synch_enter(sqp, connp, 0); 27259 if (error != 0) { 27260 /* failed to enter */ 27261 return (ENOSR); 27262 } 27263 27264 /* 27265 * TCP supports quick connect, so no need to do an implicit bind 27266 */ 27267 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 27268 if (error == 0) { 27269 *id = connp->conn_tcp->tcp_connid; 27270 } else if (error < 0) { 27271 if (error == -TOUTSTATE) { 27272 switch (connp->conn_tcp->tcp_state) { 27273 case TCPS_SYN_SENT: 27274 error = EALREADY; 27275 break; 27276 case TCPS_ESTABLISHED: 27277 error = EISCONN; 27278 break; 27279 case TCPS_LISTEN: 27280 error = EOPNOTSUPP; 27281 break; 27282 default: 27283 error = EINVAL; 27284 break; 27285 } 27286 } else { 27287 error = proto_tlitosyserr(-error); 27288 } 27289 } 27290 done: 27291 squeue_synch_exit(sqp, connp); 27292 27293 return ((error == 0) ? EINPROGRESS : error); 27294 } 27295 27296 /* ARGSUSED */ 27297 sock_lower_handle_t 27298 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 27299 uint_t *smodep, int *errorp, int flags, cred_t *credp) 27300 { 27301 conn_t *connp; 27302 boolean_t isv6 = family == AF_INET6; 27303 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 27304 (proto != 0 && proto != IPPROTO_TCP)) { 27305 *errorp = EPROTONOSUPPORT; 27306 return (NULL); 27307 } 27308 27309 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 27310 if (connp == NULL) { 27311 return (NULL); 27312 } 27313 27314 /* 27315 * Put the ref for TCP. Ref for IP was already put 27316 * by ipcl_conn_create. Also Make the conn_t globally 27317 * visible to walkers 27318 */ 27319 mutex_enter(&connp->conn_lock); 27320 CONN_INC_REF_LOCKED(connp); 27321 ASSERT(connp->conn_ref == 2); 27322 connp->conn_state_flags &= ~CONN_INCIPIENT; 27323 27324 connp->conn_flags |= IPCL_NONSTR; 27325 mutex_exit(&connp->conn_lock); 27326 27327 ASSERT(errorp != NULL); 27328 *errorp = 0; 27329 *sock_downcalls = &sock_tcp_downcalls; 27330 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 27331 SM_SENDFILESUPP; 27332 27333 return ((sock_lower_handle_t)connp); 27334 } 27335 27336 /* ARGSUSED */ 27337 void 27338 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 27339 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 27340 { 27341 conn_t *connp = (conn_t *)proto_handle; 27342 struct sock_proto_props sopp; 27343 27344 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 27345 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 27346 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 27347 27348 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 27349 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 27350 sopp.sopp_maxpsz = INFPSZ; 27351 sopp.sopp_maxblk = INFPSZ; 27352 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 27353 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 27354 sopp.sopp_maxaddrlen = sizeof (sin6_t); 27355 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 27356 tcp_rinfo.mi_minpsz; 27357 27358 connp->conn_upcalls = sock_upcalls; 27359 connp->conn_upper_handle = sock_handle; 27360 27361 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 27362 } 27363 27364 /* ARGSUSED */ 27365 int 27366 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 27367 { 27368 conn_t *connp = (conn_t *)proto_handle; 27369 27370 tcp_close_common(connp, flags); 27371 27372 ip_close_helper_stream(connp); 27373 27374 /* 27375 * Drop IP's reference on the conn. This is the last reference 27376 * on the connp if the state was less than established. If the 27377 * connection has gone into timewait state, then we will have 27378 * one ref for the TCP and one more ref (total of two) for the 27379 * classifier connected hash list (a timewait connections stays 27380 * in connected hash till closed). 27381 * 27382 * We can't assert the references because there might be other 27383 * transient reference places because of some walkers or queued 27384 * packets in squeue for the timewait state. 27385 */ 27386 CONN_DEC_REF(connp); 27387 return (0); 27388 } 27389 27390 /* ARGSUSED */ 27391 int 27392 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 27393 cred_t *cr) 27394 { 27395 tcp_t *tcp; 27396 uint32_t msize; 27397 conn_t *connp = (conn_t *)proto_handle; 27398 int32_t tcpstate; 27399 27400 ASSERT(connp->conn_ref >= 2); 27401 27402 if (msg->msg_controllen != 0) { 27403 return (EOPNOTSUPP); 27404 27405 } 27406 switch (DB_TYPE(mp)) { 27407 case M_DATA: 27408 tcp = connp->conn_tcp; 27409 ASSERT(tcp != NULL); 27410 27411 tcpstate = tcp->tcp_state; 27412 if (tcpstate < TCPS_ESTABLISHED) { 27413 freemsg(mp); 27414 return (ENOTCONN); 27415 } else if (tcpstate > TCPS_CLOSE_WAIT) { 27416 freemsg(mp); 27417 return (EPIPE); 27418 } 27419 27420 msize = msgdsize(mp); 27421 27422 mutex_enter(&tcp->tcp_non_sq_lock); 27423 tcp->tcp_squeue_bytes += msize; 27424 /* 27425 * Squeue Flow Control 27426 */ 27427 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 27428 tcp_setqfull(tcp); 27429 } 27430 mutex_exit(&tcp->tcp_non_sq_lock); 27431 27432 /* 27433 * The application may pass in an address in the msghdr, but 27434 * we ignore the address on connection-oriented sockets. 27435 * Just like BSD this code does not generate an error for 27436 * TCP (a CONNREQUIRED socket) when sending to an address 27437 * passed in with sendto/sendmsg. Instead the data is 27438 * delivered on the connection as if no address had been 27439 * supplied. 27440 */ 27441 CONN_INC_REF(connp); 27442 27443 if (msg != NULL && msg->msg_flags & MSG_OOB) { 27444 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 27445 tcp_output_urgent, connp, tcp_squeue_flag, 27446 SQTAG_TCP_OUTPUT); 27447 } else { 27448 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 27449 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 27450 } 27451 27452 return (0); 27453 27454 default: 27455 ASSERT(0); 27456 } 27457 27458 freemsg(mp); 27459 return (0); 27460 } 27461 27462 /* ARGSUSED */ 27463 void 27464 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 27465 { 27466 int len; 27467 uint32_t msize; 27468 conn_t *connp = (conn_t *)arg; 27469 tcp_t *tcp = connp->conn_tcp; 27470 27471 msize = msgdsize(mp); 27472 27473 len = msize - 1; 27474 if (len < 0) { 27475 freemsg(mp); 27476 return; 27477 } 27478 27479 /* 27480 * Try to force urgent data out on the wire. 27481 * Even if we have unsent data this will 27482 * at least send the urgent flag. 27483 * XXX does not handle more flag correctly. 27484 */ 27485 len += tcp->tcp_unsent; 27486 len += tcp->tcp_snxt; 27487 tcp->tcp_urg = len; 27488 tcp->tcp_valid_bits |= TCP_URG_VALID; 27489 27490 /* Bypass tcp protocol for fused tcp loopback */ 27491 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 27492 return; 27493 tcp_wput_data(tcp, mp, B_TRUE); 27494 } 27495 27496 /* ARGSUSED */ 27497 int 27498 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27499 socklen_t *addrlen, cred_t *cr) 27500 { 27501 sin_t *sin; 27502 sin6_t *sin6; 27503 conn_t *connp = (conn_t *)proto_handle; 27504 tcp_t *tcp = connp->conn_tcp; 27505 27506 ASSERT(tcp != NULL); 27507 if (tcp->tcp_state < TCPS_SYN_RCVD) 27508 return (ENOTCONN); 27509 27510 addr->sa_family = tcp->tcp_family; 27511 switch (tcp->tcp_family) { 27512 case AF_INET: 27513 if (*addrlen < sizeof (sin_t)) 27514 return (EINVAL); 27515 27516 sin = (sin_t *)addr; 27517 *sin = sin_null; 27518 sin->sin_family = AF_INET; 27519 if (tcp->tcp_ipversion == IPV4_VERSION) { 27520 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 27521 sin->sin_addr.s_addr); 27522 } 27523 sin->sin_port = tcp->tcp_fport; 27524 *addrlen = sizeof (struct sockaddr_in); 27525 break; 27526 case AF_INET6: 27527 sin6 = (sin6_t *)addr; 27528 *sin6 = sin6_null; 27529 sin6->sin6_family = AF_INET6; 27530 27531 if (*addrlen < sizeof (struct sockaddr_in6)) 27532 return (EINVAL); 27533 27534 if (tcp->tcp_ipversion == IPV6_VERSION) { 27535 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 27536 ~IPV6_VERS_AND_FLOW_MASK; 27537 } 27538 27539 sin6->sin6_addr = tcp->tcp_remote_v6; 27540 sin6->sin6_port = tcp->tcp_fport; 27541 *addrlen = sizeof (struct sockaddr_in6); 27542 break; 27543 } 27544 return (0); 27545 } 27546 27547 /* ARGSUSED */ 27548 int 27549 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27550 socklen_t *addrlenp, cred_t *cr) 27551 { 27552 sin_t *sin; 27553 sin6_t *sin6; 27554 conn_t *connp = (conn_t *)proto_handle; 27555 tcp_t *tcp = connp->conn_tcp; 27556 27557 switch (tcp->tcp_family) { 27558 case AF_INET: 27559 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 27560 if (*addrlenp < sizeof (sin_t)) 27561 return (EINVAL); 27562 sin = (sin_t *)addr; 27563 *sin = sin_null; 27564 sin->sin_family = AF_INET; 27565 *addrlenp = sizeof (sin_t); 27566 if (tcp->tcp_state >= TCPS_BOUND) { 27567 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 27568 sin->sin_port = tcp->tcp_lport; 27569 } 27570 break; 27571 27572 case AF_INET6: 27573 if (*addrlenp < sizeof (sin6_t)) 27574 return (EINVAL); 27575 sin6 = (sin6_t *)addr; 27576 *sin6 = sin6_null; 27577 sin6->sin6_family = AF_INET6; 27578 *addrlenp = sizeof (sin6_t); 27579 if (tcp->tcp_state >= TCPS_BOUND) { 27580 sin6->sin6_port = tcp->tcp_lport; 27581 if (tcp->tcp_ipversion == IPV4_VERSION) { 27582 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 27583 &sin6->sin6_addr); 27584 } else { 27585 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 27586 } 27587 } 27588 break; 27589 } 27590 return (0); 27591 } 27592 27593 /* 27594 * tcp_fallback 27595 * 27596 * A direct socket is falling back to using STREAMS. Hanging 27597 * off of the queue is a temporary tcp_t, which was created using 27598 * tcp_open(). The tcp_open() was called as part of the regular 27599 * sockfs create path, i.e., the SO_SOCKSTR flag is passed down, 27600 * and therefore the temporary tcp_t is marked to be a socket 27601 * (i.e., IPCL_SOCKET, tcp_issocket). So the optimizations 27602 * introduced by FireEngine will be used. 27603 * 27604 * The tcp_t associated with the socket falling back will 27605 * still be marked as a socket, although the direct socket flag 27606 * (IPCL_NONSTR) is removed. A fall back to true TPI semantics 27607 * will not take place until a _SIOCSOCKFALLBACK ioctl is issued. 27608 * 27609 * If the above mentioned behavior, i.e., the tmp tcp_t is created 27610 * as a STREAMS/TPI endpoint, then we will need to do more work here. 27611 * Such as inserting the direct socket into the acceptor hash. 27612 */ 27613 void 27614 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 27615 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27616 { 27617 tcp_t *tcp, *eager; 27618 conn_t *connp = (conn_t *)proto_handle; 27619 int error; 27620 struct T_capability_ack tca; 27621 struct sockaddr_in6 laddr, faddr; 27622 socklen_t laddrlen, faddrlen; 27623 short opts; 27624 struct stroptions *stropt; 27625 mblk_t *stropt_mp; 27626 mblk_t *mp; 27627 mblk_t *conn_ind_head = NULL; 27628 mblk_t *conn_ind_tail = NULL; 27629 mblk_t *ordrel_mp; 27630 mblk_t *fused_sigurp_mp; 27631 27632 tcp = connp->conn_tcp; 27633 /* 27634 * No support for acceptor fallback 27635 */ 27636 ASSERT(q->q_qinfo != &tcp_acceptor_rinit); 27637 27638 stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL); 27639 27640 /* Pre-allocate the T_ordrel_ind mblk. */ 27641 ASSERT(tcp->tcp_ordrel_mp == NULL); 27642 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 27643 STR_NOSIG, NULL); 27644 ordrel_mp->b_datap->db_type = M_PROTO; 27645 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 27646 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 27647 27648 /* Pre-allocate the M_PCSIG anyway */ 27649 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 27650 27651 /* 27652 * Enter the squeue so that no new packets can come in 27653 */ 27654 error = squeue_synch_enter(connp->conn_sqp, connp, 0); 27655 if (error != 0) { 27656 /* failed to enter, free all the pre-allocated messages. */ 27657 freeb(stropt_mp); 27658 freeb(ordrel_mp); 27659 freeb(fused_sigurp_mp); 27660 return; 27661 } 27662 27663 /* Disable I/OAT during fallback */ 27664 tcp->tcp_sodirect = NULL; 27665 27666 connp->conn_dev = (dev_t)RD(q)->q_ptr; 27667 connp->conn_minor_arena = WR(q)->q_ptr; 27668 27669 RD(q)->q_ptr = WR(q)->q_ptr = connp; 27670 27671 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 27672 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 27673 27674 WR(q)->q_qinfo = &tcp_sock_winit; 27675 27676 if (!direct_sockfs) 27677 tcp_disable_direct_sockfs(tcp); 27678 27679 /* 27680 * free the helper stream 27681 */ 27682 ip_close_helper_stream(connp); 27683 27684 /* 27685 * Notify the STREAM head about options 27686 */ 27687 DB_TYPE(stropt_mp) = M_SETOPTS; 27688 stropt = (struct stroptions *)stropt_mp->b_rptr; 27689 stropt_mp->b_wptr += sizeof (struct stroptions); 27690 stropt = (struct stroptions *)stropt_mp->b_rptr; 27691 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 27692 27693 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 27694 tcp->tcp_tcps->tcps_wroff_xtra); 27695 if (tcp->tcp_snd_sack_ok) 27696 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 27697 stropt->so_hiwat = tcp->tcp_fused ? 27698 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 27699 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 27700 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 27701 27702 putnext(RD(q), stropt_mp); 27703 27704 /* 27705 * Collect the information needed to sync with the sonode 27706 */ 27707 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 27708 27709 laddrlen = faddrlen = sizeof (sin6_t); 27710 (void) tcp_getsockname(proto_handle, (struct sockaddr *)&laddr, 27711 &laddrlen, CRED()); 27712 error = tcp_getpeername(proto_handle, (struct sockaddr *)&faddr, 27713 &faddrlen, CRED()); 27714 if (error != 0) 27715 faddrlen = 0; 27716 27717 opts = 0; 27718 if (tcp->tcp_oobinline) 27719 opts |= SO_OOBINLINE; 27720 if (tcp->tcp_dontroute) 27721 opts |= SO_DONTROUTE; 27722 27723 /* 27724 * Notify the socket that the protocol is now quiescent, 27725 * and it's therefore safe move data from the socket 27726 * to the stream head. 27727 */ 27728 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 27729 (struct sockaddr *)&laddr, laddrlen, 27730 (struct sockaddr *)&faddr, faddrlen, opts); 27731 27732 while ((mp = tcp->tcp_rcv_list) != NULL) { 27733 tcp->tcp_rcv_list = mp->b_next; 27734 mp->b_next = NULL; 27735 putnext(q, mp); 27736 } 27737 tcp->tcp_rcv_last_head = NULL; 27738 tcp->tcp_rcv_last_tail = NULL; 27739 tcp->tcp_rcv_cnt = 0; 27740 27741 /* 27742 * No longer a direct socket 27743 */ 27744 connp->conn_flags &= ~IPCL_NONSTR; 27745 27746 tcp->tcp_ordrel_mp = ordrel_mp; 27747 27748 if (tcp->tcp_fused) { 27749 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 27750 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 27751 } else { 27752 freeb(fused_sigurp_mp); 27753 } 27754 27755 /* 27756 * Send T_CONN_IND messages for all ESTABLISHED connections. 27757 */ 27758 mutex_enter(&tcp->tcp_eager_lock); 27759 for (eager = tcp->tcp_eager_next_q; eager != NULL; 27760 eager = eager->tcp_eager_next_q) { 27761 mp = eager->tcp_conn.tcp_eager_conn_ind; 27762 27763 eager->tcp_conn.tcp_eager_conn_ind = NULL; 27764 ASSERT(mp != NULL); 27765 /* 27766 * TLI/XTI applications will get confused by 27767 * sending eager as an option since it violates 27768 * the option semantics. So remove the eager as 27769 * option since TLI/XTI app doesn't need it anyway. 27770 */ 27771 if (!TCP_IS_SOCKET(tcp)) { 27772 struct T_conn_ind *conn_ind; 27773 27774 conn_ind = (struct T_conn_ind *)mp->b_rptr; 27775 conn_ind->OPT_length = 0; 27776 conn_ind->OPT_offset = 0; 27777 } 27778 if (conn_ind_head == NULL) { 27779 conn_ind_head = mp; 27780 } else { 27781 conn_ind_tail->b_next = mp; 27782 } 27783 conn_ind_tail = mp; 27784 } 27785 mutex_exit(&tcp->tcp_eager_lock); 27786 27787 mp = conn_ind_head; 27788 while (mp != NULL) { 27789 mblk_t *nmp = mp->b_next; 27790 mp->b_next = NULL; 27791 27792 putnext(tcp->tcp_rq, mp); 27793 mp = nmp; 27794 } 27795 27796 /* 27797 * There should be atleast two ref's (IP + TCP) 27798 */ 27799 ASSERT(connp->conn_ref >= 2); 27800 squeue_synch_exit(connp->conn_sqp, connp); 27801 } 27802 27803 /* ARGSUSED */ 27804 static void 27805 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 27806 { 27807 conn_t *connp = (conn_t *)arg; 27808 tcp_t *tcp = connp->conn_tcp; 27809 27810 freemsg(mp); 27811 27812 if (tcp->tcp_fused) 27813 tcp_unfuse(tcp); 27814 27815 if (tcp_xmit_end(tcp) != 0) { 27816 /* 27817 * We were crossing FINs and got a reset from 27818 * the other side. Just ignore it. 27819 */ 27820 if (tcp->tcp_debug) { 27821 (void) strlog(TCP_MOD_ID, 0, 1, 27822 SL_ERROR|SL_TRACE, 27823 "tcp_shutdown_output() out of state %s", 27824 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 27825 } 27826 } 27827 } 27828 27829 /* ARGSUSED */ 27830 int 27831 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27832 { 27833 conn_t *connp = (conn_t *)proto_handle; 27834 tcp_t *tcp = connp->conn_tcp; 27835 27836 /* 27837 * X/Open requires that we check the connected state. 27838 */ 27839 if (tcp->tcp_state < TCPS_SYN_SENT) 27840 return (ENOTCONN); 27841 27842 /* shutdown the send side */ 27843 if (how != SHUT_RD) { 27844 mblk_t *bp; 27845 27846 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27847 CONN_INC_REF(connp); 27848 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27849 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27850 27851 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27852 SOCK_OPCTL_SHUT_SEND, 0); 27853 } 27854 27855 /* shutdown the recv side */ 27856 if (how != SHUT_WR) 27857 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27858 SOCK_OPCTL_SHUT_RECV, 0); 27859 27860 return (0); 27861 } 27862 27863 /* 27864 * SOP_LISTEN() calls into tcp_listen(). 27865 */ 27866 /* ARGSUSED */ 27867 int 27868 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27869 { 27870 conn_t *connp = (conn_t *)proto_handle; 27871 int error; 27872 squeue_t *sqp = connp->conn_sqp; 27873 27874 error = squeue_synch_enter(sqp, connp, 0); 27875 if (error != 0) { 27876 /* failed to enter */ 27877 return (ENOBUFS); 27878 } 27879 27880 error = tcp_do_listen(connp, backlog, cr); 27881 if (error == 0) { 27882 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27883 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27884 } else if (error < 0) { 27885 if (error == -TOUTSTATE) 27886 error = EINVAL; 27887 else 27888 error = proto_tlitosyserr(-error); 27889 } 27890 squeue_synch_exit(sqp, connp); 27891 return (error); 27892 } 27893 27894 static int 27895 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr) 27896 { 27897 tcp_t *tcp = connp->conn_tcp; 27898 sin_t *sin; 27899 sin6_t *sin6; 27900 int error = 0; 27901 tcp_stack_t *tcps = tcp->tcp_tcps; 27902 27903 if (tcp->tcp_state >= TCPS_BOUND) { 27904 if ((tcp->tcp_state == TCPS_BOUND || 27905 tcp->tcp_state == TCPS_LISTEN) && 27906 backlog > 0) { 27907 /* 27908 * Handle listen() increasing backlog. 27909 * This is more "liberal" then what the TPI spec 27910 * requires but is needed to avoid a t_unbind 27911 * when handling listen() since the port number 27912 * might be "stolen" between the unbind and bind. 27913 */ 27914 goto do_listen; 27915 } 27916 if (tcp->tcp_debug) { 27917 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27918 "tcp_bind: bad state, %d", tcp->tcp_state); 27919 } 27920 return (-TOUTSTATE); 27921 } else { 27922 int32_t len; 27923 sin6_t addr; 27924 27925 /* Do an implicit bind: Request for a generic port. */ 27926 if (tcp->tcp_family == AF_INET) { 27927 len = sizeof (sin_t); 27928 sin = (sin_t *)&addr; 27929 *sin = sin_null; 27930 sin->sin_family = AF_INET; 27931 tcp->tcp_ipversion = IPV4_VERSION; 27932 } else { 27933 ASSERT(tcp->tcp_family == AF_INET6); 27934 len = sizeof (sin6_t); 27935 sin6 = (sin6_t *)&addr; 27936 *sin6 = sin6_null; 27937 sin6->sin6_family = AF_INET6; 27938 tcp->tcp_ipversion = IPV6_VERSION; 27939 } 27940 27941 error = tcp_bind_check(connp, (struct sockaddr *)&addr, len, 27942 cr, B_FALSE); 27943 if (error) 27944 return (error); 27945 /* Fall through and do the fanout insertion */ 27946 } 27947 27948 do_listen: 27949 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27950 tcp->tcp_conn_req_max = backlog; 27951 if (tcp->tcp_conn_req_max) { 27952 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27953 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27954 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27955 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27956 /* 27957 * If this is a listener, do not reset the eager list 27958 * and other stuffs. Note that we don't check if the 27959 * existing eager list meets the new tcp_conn_req_max 27960 * requirement. 27961 */ 27962 if (tcp->tcp_state != TCPS_LISTEN) { 27963 tcp->tcp_state = TCPS_LISTEN; 27964 /* Initialize the chain. Don't need the eager_lock */ 27965 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27966 tcp->tcp_eager_next_drop_q0 = tcp; 27967 tcp->tcp_eager_prev_drop_q0 = tcp; 27968 tcp->tcp_second_ctimer_threshold = 27969 tcps->tcps_ip_abort_linterval; 27970 } 27971 } 27972 27973 /* 27974 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 27975 * processing continues in tcp_rput_other(). 27976 * 27977 * We need to make sure that the conn_recv is set to a non-null 27978 * value before we insert the conn into the classifier table. 27979 * This is to avoid a race with an incoming packet which does an 27980 * ipcl_classify(). 27981 */ 27982 connp->conn_recv = tcp_conn_request; 27983 if (tcp->tcp_family == AF_INET) { 27984 error = ip_proto_bind_laddr_v4(connp, NULL, 27985 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27986 } else { 27987 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27988 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27989 } 27990 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27991 } 27992 27993 void 27994 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27995 { 27996 conn_t *connp = (conn_t *)proto_handle; 27997 tcp_t *tcp = connp->conn_tcp; 27998 tcp_stack_t *tcps = tcp->tcp_tcps; 27999 uint_t thwin; 28000 28001 (void) squeue_synch_enter(connp->conn_sqp, connp, 0); 28002 28003 /* Flow control condition has been removed. */ 28004 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 28005 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 28006 << tcp->tcp_rcv_ws; 28007 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 28008 /* 28009 * Send back a window update immediately if TCP is above 28010 * ESTABLISHED state and the increase of the rcv window 28011 * that the other side knows is at least 1 MSS after flow 28012 * control is lifted. 28013 */ 28014 if (tcp->tcp_state >= TCPS_ESTABLISHED && 28015 (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) { 28016 tcp_xmit_ctl(NULL, tcp, 28017 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 28018 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 28019 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 28020 } 28021 28022 squeue_synch_exit(connp->conn_sqp, connp); 28023 } 28024 28025 /* ARGSUSED */ 28026 int 28027 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 28028 int mode, int32_t *rvalp, cred_t *cr) 28029 { 28030 conn_t *connp = (conn_t *)proto_handle; 28031 int error; 28032 28033 switch (cmd) { 28034 case ND_SET: 28035 case ND_GET: 28036 case TCP_IOC_DEFAULT_Q: 28037 case _SIOCSOCKFALLBACK: 28038 case TCP_IOC_ABORT_CONN: 28039 case TI_GETPEERNAME: 28040 case TI_GETMYNAME: 28041 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 28042 cmd)); 28043 error = EINVAL; 28044 break; 28045 default: 28046 /* 28047 * Pass on to IP using helper stream 28048 */ 28049 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 28050 cmd, arg, mode, cr, rvalp); 28051 break; 28052 } 28053 return (error); 28054 } 28055 28056 sock_downcalls_t sock_tcp_downcalls = { 28057 tcp_activate, 28058 tcp_accept, 28059 tcp_bind, 28060 tcp_listen, 28061 tcp_connect, 28062 tcp_getpeername, 28063 tcp_getsockname, 28064 tcp_getsockopt, 28065 tcp_setsockopt, 28066 tcp_sendmsg, 28067 NULL, 28068 NULL, 28069 NULL, 28070 tcp_shutdown, 28071 tcp_clr_flowctrl, 28072 tcp_ioctl, 28073 tcp_close, 28074 }; 28075