1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 61 #include <sys/errno.h> 62 #include <sys/signal.h> 63 #include <sys/socket.h> 64 #include <sys/sockio.h> 65 #include <sys/isa_defs.h> 66 #include <sys/md5.h> 67 #include <sys/random.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 #include <inet/tcp_trace.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <sys/sdt.h> 105 #include <rpc/pmap_prot.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 129 * squeue_fill). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. ip_tcpopen() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 extern major_t TCP6_MAJ; 237 238 /* 239 * Values for squeue switch: 240 * 1: squeue_enter_nodrain 241 * 2: squeue_enter 242 * 3: squeue_fill 243 */ 244 int tcp_squeue_close = 2; 245 int tcp_squeue_wput = 2; 246 247 squeue_func_t tcp_squeue_close_proc; 248 squeue_func_t tcp_squeue_wput_proc; 249 250 /* 251 * This controls how tiny a write must be before we try to copy it 252 * into the the mblk on the tail of the transmit queue. Not much 253 * speedup is observed for values larger than sixteen. Zero will 254 * disable the optimisation. 255 */ 256 int tcp_tx_pull_len = 16; 257 258 /* 259 * TCP Statistics. 260 * 261 * How TCP statistics work. 262 * 263 * There are two types of statistics invoked by two macros. 264 * 265 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 266 * supposed to be used in non MT-hot paths of the code. 267 * 268 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 269 * supposed to be used for DEBUG purposes and may be used on a hot path. 270 * 271 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 272 * (use "kstat tcp" to get them). 273 * 274 * There is also additional debugging facility that marks tcp_clean_death() 275 * instances and saves them in tcp_t structure. It is triggered by 276 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 277 * tcp_clean_death() calls that counts the number of times each tag was hit. It 278 * is triggered by TCP_CLD_COUNTERS define. 279 * 280 * How to add new counters. 281 * 282 * 1) Add a field in the tcp_stat structure describing your counter. 283 * 2) Add a line in tcp_statistics with the name of the counter. 284 * 285 * IMPORTANT!! - make sure that both are in sync !! 286 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 287 * 288 * Please avoid using private counters which are not kstat-exported. 289 * 290 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 291 * in tcp_t structure. 292 * 293 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 294 */ 295 296 #ifndef TCP_DEBUG_COUNTER 297 #ifdef DEBUG 298 #define TCP_DEBUG_COUNTER 1 299 #else 300 #define TCP_DEBUG_COUNTER 0 301 #endif 302 #endif 303 304 #define TCP_CLD_COUNTERS 0 305 306 #define TCP_TAG_CLEAN_DEATH 1 307 #define TCP_MAX_CLEAN_DEATH_TAG 32 308 309 #ifdef lint 310 static int _lint_dummy_; 311 #endif 312 313 #if TCP_CLD_COUNTERS 314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 315 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 316 #elif defined(lint) 317 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 318 #else 319 #define TCP_CLD_STAT(x) 320 #endif 321 322 #if TCP_DEBUG_COUNTER 323 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 324 #elif defined(lint) 325 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(x) 328 #endif 329 330 tcp_stat_t tcp_statistics = { 331 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 332 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 333 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 334 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 335 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 336 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 337 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 338 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 339 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 340 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 341 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 342 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 343 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 344 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 345 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 346 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 347 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 348 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 349 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 350 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 351 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 352 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 353 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 354 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 356 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 357 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 358 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 359 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 360 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 361 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 362 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 363 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 364 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 365 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 366 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 367 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 368 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 369 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 370 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 371 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 372 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 373 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 374 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 375 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 376 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 377 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 378 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 379 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 380 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 381 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 382 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 383 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 384 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 385 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 386 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 387 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 388 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 389 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 390 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 391 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 392 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 399 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 400 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 401 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 402 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 403 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 404 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 405 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 406 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 407 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 408 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 409 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 410 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 411 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 412 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 413 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 414 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 415 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 416 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 417 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 418 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 419 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 420 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 421 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 422 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 423 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 424 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 425 }; 426 427 static kstat_t *tcp_kstat; 428 429 /* 430 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 431 * tcp write side. 432 */ 433 #define CALL_IP_WPUT(connp, q, mp) { \ 434 ASSERT(((q)->q_flag & QREADR) == 0); \ 435 TCP_DBGSTAT(tcp_ip_output); \ 436 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 437 } 438 439 /* Macros for timestamp comparisons */ 440 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 441 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 442 443 /* 444 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 445 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 446 * by adding three components: a time component which grows by 1 every 4096 447 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 448 * a per-connection component which grows by 125000 for every new connection; 449 * and an "extra" component that grows by a random amount centered 450 * approximately on 64000. This causes the the ISS generator to cycle every 451 * 4.89 hours if no TCP connections are made, and faster if connections are 452 * made. 453 * 454 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 455 * components: a time component which grows by 250000 every second; and 456 * a per-connection component which grows by 125000 for every new connections. 457 * 458 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 459 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 460 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 461 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 462 * password. 463 */ 464 #define ISS_INCR 250000 465 #define ISS_NSEC_SHT 12 466 467 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 468 static kmutex_t tcp_iss_key_lock; 469 static MD5_CTX tcp_iss_key; 470 static sin_t sin_null; /* Zero address for quick clears */ 471 static sin6_t sin6_null; /* Zero address for quick clears */ 472 473 /* Packet dropper for TCP IPsec policy drops. */ 474 static ipdropper_t tcp_dropper; 475 476 /* 477 * This implementation follows the 4.3BSD interpretation of the urgent 478 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 479 * incompatible changes in protocols like telnet and rlogin. 480 */ 481 #define TCP_OLD_URP_INTERPRETATION 1 482 483 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 484 (TCP_IS_DETACHED(tcp) && \ 485 (!(tcp)->tcp_hard_binding)) 486 487 /* 488 * TCP reassembly macros. We hide starting and ending sequence numbers in 489 * b_next and b_prev of messages on the reassembly queue. The messages are 490 * chained using b_cont. These macros are used in tcp_reass() so we don't 491 * have to see the ugly casts and assignments. 492 */ 493 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 494 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 495 (mblk_t *)(uintptr_t)(u)) 496 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 497 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 498 (mblk_t *)(uintptr_t)(u)) 499 500 /* 501 * Implementation of TCP Timers. 502 * ============================= 503 * 504 * INTERFACE: 505 * 506 * There are two basic functions dealing with tcp timers: 507 * 508 * timeout_id_t tcp_timeout(connp, func, time) 509 * clock_t tcp_timeout_cancel(connp, timeout_id) 510 * TCP_TIMER_RESTART(tcp, intvl) 511 * 512 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 513 * after 'time' ticks passed. The function called by timeout() must adhere to 514 * the same restrictions as a driver soft interrupt handler - it must not sleep 515 * or call other functions that might sleep. The value returned is the opaque 516 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 517 * cancel the request. The call to tcp_timeout() may fail in which case it 518 * returns zero. This is different from the timeout(9F) function which never 519 * fails. 520 * 521 * The call-back function 'func' always receives 'connp' as its single 522 * argument. It is always executed in the squeue corresponding to the tcp 523 * structure. The tcp structure is guaranteed to be present at the time the 524 * call-back is called. 525 * 526 * NOTE: The call-back function 'func' is never called if tcp is in 527 * the TCPS_CLOSED state. 528 * 529 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 530 * request. locks acquired by the call-back routine should not be held across 531 * the call to tcp_timeout_cancel() or a deadlock may result. 532 * 533 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 534 * Otherwise, it returns an integer value greater than or equal to 0. In 535 * particular, if the call-back function is already placed on the squeue, it can 536 * not be canceled. 537 * 538 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 539 * within squeue context corresponding to the tcp instance. Since the 540 * call-back is also called via the same squeue, there are no race 541 * conditions described in untimeout(9F) manual page since all calls are 542 * strictly serialized. 543 * 544 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 545 * stored in tcp_timer_tid and starts a new one using 546 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 547 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 548 * field. 549 * 550 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 551 * call-back may still be called, so it is possible tcp_timer() will be 552 * called several times. This should not be a problem since tcp_timer() 553 * should always check the tcp instance state. 554 * 555 * 556 * IMPLEMENTATION: 557 * 558 * TCP timers are implemented using three-stage process. The call to 559 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 560 * when the timer expires. The tcp_timer_callback() arranges the call of the 561 * tcp_timer_handler() function via squeue corresponding to the tcp 562 * instance. The tcp_timer_handler() calls actual requested timeout call-back 563 * and passes tcp instance as an argument to it. Information is passed between 564 * stages using the tcp_timer_t structure which contains the connp pointer, the 565 * tcp call-back to call and the timeout id returned by the timeout(9F). 566 * 567 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 568 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 569 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 570 * returns the pointer to this mblk. 571 * 572 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 573 * looks like a normal mblk without actual dblk attached to it. 574 * 575 * To optimize performance each tcp instance holds a small cache of timer 576 * mblocks. In the current implementation it caches up to two timer mblocks per 577 * tcp instance. The cache is preserved over tcp frees and is only freed when 578 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 579 * timer processing happens on a corresponding squeue, the cache manipulation 580 * does not require any locks. Experiments show that majority of timer mblocks 581 * allocations are satisfied from the tcp cache and do not involve kmem calls. 582 * 583 * The tcp_timeout() places a refhold on the connp instance which guarantees 584 * that it will be present at the time the call-back function fires. The 585 * tcp_timer_handler() drops the reference after calling the call-back, so the 586 * call-back function does not need to manipulate the references explicitly. 587 */ 588 589 typedef struct tcp_timer_s { 590 conn_t *connp; 591 void (*tcpt_proc)(void *); 592 timeout_id_t tcpt_tid; 593 } tcp_timer_t; 594 595 static kmem_cache_t *tcp_timercache; 596 kmem_cache_t *tcp_sack_info_cache; 597 kmem_cache_t *tcp_iphc_cache; 598 599 /* 600 * For scalability, we must not run a timer for every TCP connection 601 * in TIME_WAIT state. To see why, consider (for time wait interval of 602 * 4 minutes): 603 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 604 * 605 * This list is ordered by time, so you need only delete from the head 606 * until you get to entries which aren't old enough to delete yet. 607 * The list consists of only the detached TIME_WAIT connections. 608 * 609 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 610 * becomes detached TIME_WAIT (either by changing the state and already 611 * being detached or the other way around). This means that the TIME_WAIT 612 * state can be extended (up to doubled) if the connection doesn't become 613 * detached for a long time. 614 * 615 * The list manipulations (including tcp_time_wait_next/prev) 616 * are protected by the tcp_time_wait_lock. The content of the 617 * detached TIME_WAIT connections is protected by the normal perimeters. 618 */ 619 620 typedef struct tcp_squeue_priv_s { 621 kmutex_t tcp_time_wait_lock; 622 /* Protects the next 3 globals */ 623 timeout_id_t tcp_time_wait_tid; 624 tcp_t *tcp_time_wait_head; 625 tcp_t *tcp_time_wait_tail; 626 tcp_t *tcp_free_list; 627 uint_t tcp_free_list_cnt; 628 } tcp_squeue_priv_t; 629 630 /* 631 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 632 * Running it every 5 seconds seems to give the best results. 633 */ 634 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 635 636 /* 637 * To prevent memory hog, limit the number of entries in tcp_free_list 638 * to 1% of available memory / number of cpus 639 */ 640 uint_t tcp_free_list_max_cnt = 0; 641 642 #define TCP_XMIT_LOWATER 4096 643 #define TCP_XMIT_HIWATER 49152 644 #define TCP_RECV_LOWATER 2048 645 #define TCP_RECV_HIWATER 49152 646 647 /* 648 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 649 */ 650 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 651 652 #define TIDUSZ 4096 /* transport interface data unit size */ 653 654 /* 655 * Bind hash list size and has function. It has to be a power of 2 for 656 * hashing. 657 */ 658 #define TCP_BIND_FANOUT_SIZE 512 659 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 660 /* 661 * Size of listen and acceptor hash list. It has to be a power of 2 for 662 * hashing. 663 */ 664 #define TCP_FANOUT_SIZE 256 665 666 #ifdef _ILP32 667 #define TCP_ACCEPTOR_HASH(accid) \ 668 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 669 #else 670 #define TCP_ACCEPTOR_HASH(accid) \ 671 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 672 #endif /* _ILP32 */ 673 674 #define IP_ADDR_CACHE_SIZE 2048 675 #define IP_ADDR_CACHE_HASH(faddr) \ 676 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 677 678 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 679 #define TCP_HSP_HASH_SIZE 256 680 681 #define TCP_HSP_HASH(addr) \ 682 (((addr>>24) ^ (addr >>16) ^ \ 683 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 684 685 /* 686 * TCP options struct returned from tcp_parse_options. 687 */ 688 typedef struct tcp_opt_s { 689 uint32_t tcp_opt_mss; 690 uint32_t tcp_opt_wscale; 691 uint32_t tcp_opt_ts_val; 692 uint32_t tcp_opt_ts_ecr; 693 tcp_t *tcp; 694 } tcp_opt_t; 695 696 /* 697 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 698 */ 699 700 #ifdef _BIG_ENDIAN 701 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 702 (TCPOPT_TSTAMP << 8) | 10) 703 #else 704 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 705 (TCPOPT_NOP << 8) | TCPOPT_NOP) 706 #endif 707 708 /* 709 * Flags returned from tcp_parse_options. 710 */ 711 #define TCP_OPT_MSS_PRESENT 1 712 #define TCP_OPT_WSCALE_PRESENT 2 713 #define TCP_OPT_TSTAMP_PRESENT 4 714 #define TCP_OPT_SACK_OK_PRESENT 8 715 #define TCP_OPT_SACK_PRESENT 16 716 717 /* TCP option length */ 718 #define TCPOPT_NOP_LEN 1 719 #define TCPOPT_MAXSEG_LEN 4 720 #define TCPOPT_WS_LEN 3 721 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 722 #define TCPOPT_TSTAMP_LEN 10 723 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 724 #define TCPOPT_SACK_OK_LEN 2 725 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 726 #define TCPOPT_REAL_SACK_LEN 4 727 #define TCPOPT_MAX_SACK_LEN 36 728 #define TCPOPT_HEADER_LEN 2 729 730 /* TCP cwnd burst factor. */ 731 #define TCP_CWND_INFINITE 65535 732 #define TCP_CWND_SS 3 733 #define TCP_CWND_NORMAL 5 734 735 /* Maximum TCP initial cwin (start/restart). */ 736 #define TCP_MAX_INIT_CWND 8 737 738 /* 739 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 740 * either tcp_slow_start_initial or tcp_slow_start_after idle 741 * depending on the caller. If the upper layer has not used the 742 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 743 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 744 * If the upper layer has changed set the tcp_init_cwnd, just use 745 * it to calculate the tcp_cwnd. 746 */ 747 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 748 { \ 749 if ((tcp)->tcp_init_cwnd == 0) { \ 750 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 751 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 752 } else { \ 753 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 754 } \ 755 tcp->tcp_cwnd_cnt = 0; \ 756 } 757 758 /* TCP Timer control structure */ 759 typedef struct tcpt_s { 760 pfv_t tcpt_pfv; /* The routine we are to call */ 761 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 762 } tcpt_t; 763 764 /* Host Specific Parameter structure */ 765 typedef struct tcp_hsp { 766 struct tcp_hsp *tcp_hsp_next; 767 in6_addr_t tcp_hsp_addr_v6; 768 in6_addr_t tcp_hsp_subnet_v6; 769 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 770 int32_t tcp_hsp_sendspace; 771 int32_t tcp_hsp_recvspace; 772 int32_t tcp_hsp_tstamp; 773 } tcp_hsp_t; 774 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 775 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 776 777 /* 778 * Functions called directly via squeue having a prototype of edesc_t. 779 */ 780 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 781 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 782 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 783 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 784 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 785 void tcp_input(void *arg, mblk_t *mp, void *arg2); 786 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 787 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 788 void tcp_output(void *arg, mblk_t *mp, void *arg2); 789 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 790 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 791 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 792 793 794 /* Prototype for TCP functions */ 795 static void tcp_random_init(void); 796 int tcp_random(void); 797 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 798 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 799 tcp_t *eager); 800 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 801 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 802 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 803 boolean_t user_specified); 804 static void tcp_closei_local(tcp_t *tcp); 805 static void tcp_close_detached(tcp_t *tcp); 806 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 807 mblk_t *idmp, mblk_t **defermp); 808 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 809 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 810 in_port_t dstport, uint_t srcid); 811 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 812 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 813 uint32_t scope_id); 814 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 815 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 816 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 817 static char *tcp_display(tcp_t *tcp, char *, char); 818 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 819 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 820 static void tcp_eager_unlink(tcp_t *tcp); 821 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 822 int unixerr); 823 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 824 int tlierr, int unixerr); 825 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 826 cred_t *cr); 827 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 828 char *value, caddr_t cp, cred_t *cr); 829 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 830 char *value, caddr_t cp, cred_t *cr); 831 static int tcp_tpistate(tcp_t *tcp); 832 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 833 int caller_holds_lock); 834 static void tcp_bind_hash_remove(tcp_t *tcp); 835 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 836 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 837 static void tcp_acceptor_hash_remove(tcp_t *tcp); 838 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 839 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 840 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 841 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 842 static int tcp_header_init_ipv4(tcp_t *tcp); 843 static int tcp_header_init_ipv6(tcp_t *tcp); 844 int tcp_init(tcp_t *tcp, queue_t *q); 845 static int tcp_init_values(tcp_t *tcp); 846 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 847 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 848 t_scalar_t addr_length); 849 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 850 static void tcp_ip_notify(tcp_t *tcp); 851 static mblk_t *tcp_ire_mp(mblk_t *mp); 852 static void tcp_iss_init(tcp_t *tcp); 853 static void tcp_keepalive_killer(void *arg); 854 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 855 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 856 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 857 int *do_disconnectp, int *t_errorp, int *sys_errorp); 858 static boolean_t tcp_allow_connopt_set(int level, int name); 859 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 860 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 861 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 862 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 863 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 864 mblk_t *mblk); 865 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 866 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 867 uchar_t *ptr, uint_t len); 868 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 869 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 870 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 871 caddr_t cp, cred_t *cr); 872 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 873 caddr_t cp, cred_t *cr); 874 static void tcp_iss_key_init(uint8_t *phrase, int len); 875 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 876 caddr_t cp, cred_t *cr); 877 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 878 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 879 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 880 static void tcp_reinit(tcp_t *tcp); 881 static void tcp_reinit_values(tcp_t *tcp); 882 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 883 tcp_t *thisstream, cred_t *cr); 884 885 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 886 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 887 static boolean_t tcp_send_rst_chk(void); 888 static void tcp_ss_rexmit(tcp_t *tcp); 889 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 890 static void tcp_process_options(tcp_t *, tcph_t *); 891 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 892 static void tcp_rsrv(queue_t *q); 893 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 894 static int tcp_snmp_state(tcp_t *tcp); 895 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 896 cred_t *cr); 897 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 898 cred_t *cr); 899 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 900 cred_t *cr); 901 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 902 cred_t *cr); 903 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 904 cred_t *cr); 905 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 906 caddr_t cp, cred_t *cr); 907 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 908 caddr_t cp, cred_t *cr); 909 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 910 cred_t *cr); 911 static void tcp_timer(void *arg); 912 static void tcp_timer_callback(void *); 913 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 914 boolean_t random); 915 static in_port_t tcp_get_next_priv_port(const tcp_t *); 916 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 917 void tcp_wput_accept(queue_t *q, mblk_t *mp); 918 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 919 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 920 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 921 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 922 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 923 const int num_sack_blk, int *usable, uint_t *snxt, 924 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 925 const int mdt_thres); 926 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 927 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 928 const int num_sack_blk, int *usable, uint_t *snxt, 929 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 930 const int mdt_thres); 931 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 932 int num_sack_blk); 933 static void tcp_wsrv(queue_t *q); 934 static int tcp_xmit_end(tcp_t *tcp); 935 static void tcp_ack_timer(void *arg); 936 static mblk_t *tcp_ack_mp(tcp_t *tcp); 937 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 938 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 939 zoneid_t zoneid); 940 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 941 uint32_t ack, int ctl); 942 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 943 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 944 static int setmaxps(queue_t *q, int maxpsz); 945 static void tcp_set_rto(tcp_t *, time_t); 946 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 947 boolean_t, boolean_t); 948 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 949 boolean_t ipsec_mctl); 950 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 951 char *opt, int optlen); 952 static int tcp_build_hdrs(queue_t *, tcp_t *); 953 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 954 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 955 tcph_t *tcph); 956 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 957 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 958 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 959 boolean_t tcp_reserved_port_check(in_port_t); 960 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 961 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 962 static mblk_t *tcp_mdt_info_mp(mblk_t *); 963 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 964 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 965 const boolean_t, const uint32_t, const uint32_t, 966 const uint32_t, const uint32_t); 967 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 968 const uint_t, const uint_t, boolean_t *); 969 static mblk_t *tcp_lso_info_mp(mblk_t *); 970 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 971 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 972 extern mblk_t *tcp_timermp_alloc(int); 973 extern void tcp_timermp_free(tcp_t *); 974 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 975 static void tcp_stop_lingering(tcp_t *tcp); 976 static void tcp_close_linger_timeout(void *arg); 977 void tcp_ddi_init(void); 978 void tcp_ddi_destroy(void); 979 static void tcp_kstat_init(void); 980 static void tcp_kstat_fini(void); 981 static int tcp_kstat_update(kstat_t *kp, int rw); 982 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 983 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 984 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 985 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 986 tcph_t *tcph, mblk_t *idmp); 987 static squeue_func_t tcp_squeue_switch(int); 988 989 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 990 static int tcp_close(queue_t *, int); 991 static int tcpclose_accept(queue_t *); 992 static int tcp_modclose(queue_t *); 993 static void tcp_wput_mod(queue_t *, mblk_t *); 994 995 static void tcp_squeue_add(squeue_t *); 996 static boolean_t tcp_zcopy_check(tcp_t *); 997 static void tcp_zcopy_notify(tcp_t *); 998 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 999 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 1000 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 1001 1002 extern void tcp_kssl_input(tcp_t *, mblk_t *); 1003 1004 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 1005 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 1006 1007 /* 1008 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 1009 * 1010 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 1011 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 1012 * (defined in tcp.h) needs to be filled in and passed into the kernel 1013 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 1014 * structure contains the four-tuple of a TCP connection and a range of TCP 1015 * states (specified by ac_start and ac_end). The use of wildcard addresses 1016 * and ports is allowed. Connections with a matching four tuple and a state 1017 * within the specified range will be aborted. The valid states for the 1018 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1019 * inclusive. 1020 * 1021 * An application which has its connection aborted by this ioctl will receive 1022 * an error that is dependent on the connection state at the time of the abort. 1023 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1024 * though a RST packet has been received. If the connection state is equal to 1025 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1026 * and all resources associated with the connection will be freed. 1027 */ 1028 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1029 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1030 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1031 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1032 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1033 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1034 boolean_t); 1035 1036 static struct module_info tcp_rinfo = { 1037 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1038 }; 1039 1040 static struct module_info tcp_winfo = { 1041 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1042 }; 1043 1044 /* 1045 * Entry points for TCP as a module. It only allows SNMP requests 1046 * to pass through. 1047 */ 1048 struct qinit tcp_mod_rinit = { 1049 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1050 }; 1051 1052 struct qinit tcp_mod_winit = { 1053 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1054 &tcp_rinfo 1055 }; 1056 1057 /* 1058 * Entry points for TCP as a device. The normal case which supports 1059 * the TCP functionality. 1060 */ 1061 struct qinit tcp_rinit = { 1062 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1063 }; 1064 1065 struct qinit tcp_winit = { 1066 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1067 }; 1068 1069 /* Initial entry point for TCP in socket mode. */ 1070 struct qinit tcp_sock_winit = { 1071 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1072 }; 1073 1074 /* 1075 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1076 * an accept. Avoid allocating data structures since eager has already 1077 * been created. 1078 */ 1079 struct qinit tcp_acceptor_rinit = { 1080 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1081 }; 1082 1083 struct qinit tcp_acceptor_winit = { 1084 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1085 }; 1086 1087 /* 1088 * Entry points for TCP loopback (read side only) 1089 */ 1090 struct qinit tcp_loopback_rinit = { 1091 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1092 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1093 }; 1094 1095 struct streamtab tcpinfo = { 1096 &tcp_rinit, &tcp_winit 1097 }; 1098 1099 extern squeue_func_t tcp_squeue_wput_proc; 1100 extern squeue_func_t tcp_squeue_timer_proc; 1101 1102 /* Protected by tcp_g_q_lock */ 1103 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1104 kmutex_t tcp_g_q_lock; 1105 1106 /* Protected by tcp_hsp_lock */ 1107 /* 1108 * XXX The host param mechanism should go away and instead we should use 1109 * the metrics associated with the routes to determine the default sndspace 1110 * and rcvspace. 1111 */ 1112 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1113 krwlock_t tcp_hsp_lock; 1114 1115 /* 1116 * Extra privileged ports. In host byte order. 1117 * Protected by tcp_epriv_port_lock. 1118 */ 1119 #define TCP_NUM_EPRIV_PORTS 64 1120 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1121 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1122 kmutex_t tcp_epriv_port_lock; 1123 1124 /* 1125 * The smallest anonymous port in the privileged port range which TCP 1126 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1127 */ 1128 static in_port_t tcp_min_anonpriv_port = 512; 1129 1130 /* Only modified during _init and _fini thus no locking is needed. */ 1131 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1132 1133 /* Hint not protected by any lock */ 1134 static uint_t tcp_next_port_to_try; 1135 1136 1137 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1138 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1139 1140 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1141 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1142 1143 /* 1144 * TCP has a private interface for other kernel modules to reserve a 1145 * port range for them to use. Once reserved, TCP will not use any ports 1146 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1147 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1148 * has to be verified. 1149 * 1150 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1151 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1152 * range is [port a, port b] inclusive. And each port range is between 1153 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1154 * 1155 * Note that the default anonymous port range starts from 32768. There is 1156 * no port "collision" between that and the reserved port range. If there 1157 * is port collision (because the default smallest anonymous port is lowered 1158 * or some apps specifically bind to ports in the reserved port range), the 1159 * system may not be able to reserve a port range even there are enough 1160 * unbound ports as a reserved port range contains consecutive ports . 1161 */ 1162 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1163 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1164 #define TCP_SMALLEST_RESERVED_PORT 10240 1165 #define TCP_LARGEST_RESERVED_PORT 20480 1166 1167 /* Structure to represent those reserved port ranges. */ 1168 typedef struct tcp_rport_s { 1169 in_port_t lo_port; 1170 in_port_t hi_port; 1171 tcp_t **temp_tcp_array; 1172 } tcp_rport_t; 1173 1174 /* The reserved port array. */ 1175 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1176 1177 /* Locks to protect the tcp_reserved_ports array. */ 1178 static krwlock_t tcp_reserved_port_lock; 1179 1180 /* The number of ranges in the array. */ 1181 uint32_t tcp_reserved_port_array_size = 0; 1182 1183 /* 1184 * MIB-2 stuff for SNMP 1185 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1186 */ 1187 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1188 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1189 1190 boolean_t tcp_icmp_source_quench = B_FALSE; 1191 /* 1192 * Following assumes TPI alignment requirements stay along 32 bit 1193 * boundaries 1194 */ 1195 #define ROUNDUP32(x) \ 1196 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1197 1198 /* Template for response to info request. */ 1199 static struct T_info_ack tcp_g_t_info_ack = { 1200 T_INFO_ACK, /* PRIM_type */ 1201 0, /* TSDU_size */ 1202 T_INFINITE, /* ETSDU_size */ 1203 T_INVALID, /* CDATA_size */ 1204 T_INVALID, /* DDATA_size */ 1205 sizeof (sin_t), /* ADDR_size */ 1206 0, /* OPT_size - not initialized here */ 1207 TIDUSZ, /* TIDU_size */ 1208 T_COTS_ORD, /* SERV_type */ 1209 TCPS_IDLE, /* CURRENT_state */ 1210 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1211 }; 1212 1213 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1214 T_INFO_ACK, /* PRIM_type */ 1215 0, /* TSDU_size */ 1216 T_INFINITE, /* ETSDU_size */ 1217 T_INVALID, /* CDATA_size */ 1218 T_INVALID, /* DDATA_size */ 1219 sizeof (sin6_t), /* ADDR_size */ 1220 0, /* OPT_size - not initialized here */ 1221 TIDUSZ, /* TIDU_size */ 1222 T_COTS_ORD, /* SERV_type */ 1223 TCPS_IDLE, /* CURRENT_state */ 1224 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1225 }; 1226 1227 #define MS 1L 1228 #define SECONDS (1000 * MS) 1229 #define MINUTES (60 * SECONDS) 1230 #define HOURS (60 * MINUTES) 1231 #define DAYS (24 * HOURS) 1232 1233 #define PARAM_MAX (~(uint32_t)0) 1234 1235 /* Max size IP datagram is 64k - 1 */ 1236 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1237 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1238 /* Max of the above */ 1239 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1240 1241 /* Largest TCP port number */ 1242 #define TCP_MAX_PORT (64 * 1024 - 1) 1243 1244 /* 1245 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1246 * layer header. It has to be a multiple of 4. 1247 */ 1248 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1249 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1250 1251 /* 1252 * All of these are alterable, within the min/max values given, at run time. 1253 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1254 * per the TCP spec. 1255 */ 1256 /* BEGIN CSTYLED */ 1257 tcpparam_t tcp_param_arr[] = { 1258 /*min max value name */ 1259 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1260 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1261 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1262 { 1, 1024, 1, "tcp_conn_req_min" }, 1263 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1264 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1265 { 0, 10, 0, "tcp_debug" }, 1266 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1267 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1268 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1269 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1270 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1271 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1272 { 1, 255, 64, "tcp_ipv4_ttl"}, 1273 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1274 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1275 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1276 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1277 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1278 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1279 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1280 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1281 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1282 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1283 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1284 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1285 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1286 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1287 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1288 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1289 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1290 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1291 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1292 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1293 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1294 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1295 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1296 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1297 /* 1298 * Question: What default value should I set for tcp_strong_iss? 1299 */ 1300 { 0, 2, 1, "tcp_strong_iss"}, 1301 { 0, 65536, 20, "tcp_rtt_updates"}, 1302 { 0, 1, 1, "tcp_wscale_always"}, 1303 { 0, 1, 0, "tcp_tstamp_always"}, 1304 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1305 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1306 { 0, 16, 2, "tcp_deferred_acks_max"}, 1307 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1308 { 1, 4, 4, "tcp_slow_start_initial"}, 1309 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1310 { 0, 2, 2, "tcp_sack_permitted"}, 1311 { 0, 1, 0, "tcp_trace"}, 1312 { 0, 1, 1, "tcp_compression_enabled"}, 1313 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1314 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1315 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1316 { 0, 1, 0, "tcp_rev_src_routes"}, 1317 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1318 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1319 { 0, 16, 8, "tcp_local_dacks_max"}, 1320 { 0, 2, 1, "tcp_ecn_permitted"}, 1321 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1322 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1323 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1324 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1325 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1326 }; 1327 /* END CSTYLED */ 1328 1329 /* 1330 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1331 * each header fragment in the header buffer. Each parameter value has 1332 * to be a multiple of 4 (32-bit aligned). 1333 */ 1334 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1335 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1336 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1337 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1338 1339 /* 1340 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1341 * the maximum number of payload buffers associated per Multidata. 1342 */ 1343 static tcpparam_t tcp_mdt_max_pbufs_param = 1344 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1345 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1346 1347 /* Round up the value to the nearest mss. */ 1348 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1349 1350 /* 1351 * Set ECN capable transport (ECT) code point in IP header. 1352 * 1353 * Note that there are 2 ECT code points '01' and '10', which are called 1354 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1355 * point ECT(0) for TCP as described in RFC 2481. 1356 */ 1357 #define SET_ECT(tcp, iph) \ 1358 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1359 /* We need to clear the code point first. */ \ 1360 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1361 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1362 } else { \ 1363 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1364 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1365 } 1366 1367 /* 1368 * The format argument to pass to tcp_display(). 1369 * DISP_PORT_ONLY means that the returned string has only port info. 1370 * DISP_ADDR_AND_PORT means that the returned string also contains the 1371 * remote and local IP address. 1372 */ 1373 #define DISP_PORT_ONLY 1 1374 #define DISP_ADDR_AND_PORT 2 1375 1376 /* 1377 * This controls the rate some ndd info report functions can be used 1378 * by non-privileged users. It stores the last time such info is 1379 * requested. When those report functions are called again, this 1380 * is checked with the current time and compare with the ndd param 1381 * tcp_ndd_get_info_interval. 1382 */ 1383 static clock_t tcp_last_ndd_get_info_time = 0; 1384 #define NDD_TOO_QUICK_MSG \ 1385 "ndd get info rate too high for non-privileged users, try again " \ 1386 "later.\n" 1387 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1388 1389 #define IS_VMLOANED_MBLK(mp) \ 1390 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1391 1392 /* 1393 * These two variables control the rate for TCP to generate RSTs in 1394 * response to segments not belonging to any connections. We limit 1395 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1396 * each 1 second interval. This is to protect TCP against DoS attack. 1397 */ 1398 static clock_t tcp_last_rst_intrvl; 1399 static uint32_t tcp_rst_cnt; 1400 1401 /* The number of RST not sent because of the rate limit. */ 1402 static uint32_t tcp_rst_unsent; 1403 1404 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1405 boolean_t tcp_mdt_chain = B_TRUE; 1406 1407 /* 1408 * MDT threshold in the form of effective send MSS multiplier; we take 1409 * the MDT path if the amount of unsent data exceeds the threshold value 1410 * (default threshold is 1*SMSS). 1411 */ 1412 uint_t tcp_mdt_smss_threshold = 1; 1413 1414 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1415 1416 /* 1417 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1418 * tunable settable via NDD. Otherwise, the per-connection behavior is 1419 * determined dynamically during tcp_adapt_ire(), which is the default. 1420 */ 1421 boolean_t tcp_static_maxpsz = B_FALSE; 1422 1423 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1424 uint32_t tcp_random_anon_port = 1; 1425 1426 /* 1427 * To reach to an eager in Q0 which can be dropped due to an incoming 1428 * new SYN request when Q0 is full, a new doubly linked list is 1429 * introduced. This list allows to select an eager from Q0 in O(1) time. 1430 * This is needed to avoid spending too much time walking through the 1431 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1432 * this new list has to be a member of Q0. 1433 * This list is headed by listener's tcp_t. When the list is empty, 1434 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1435 * of listener's tcp_t point to listener's tcp_t itself. 1436 * 1437 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1438 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1439 * These macros do not affect the eager's membership to Q0. 1440 */ 1441 1442 1443 #define MAKE_DROPPABLE(listener, eager) \ 1444 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1445 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1446 = (eager); \ 1447 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1448 (eager)->tcp_eager_next_drop_q0 = \ 1449 (listener)->tcp_eager_next_drop_q0; \ 1450 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1451 } 1452 1453 #define MAKE_UNDROPPABLE(eager) \ 1454 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1455 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1456 = (eager)->tcp_eager_prev_drop_q0; \ 1457 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1458 = (eager)->tcp_eager_next_drop_q0; \ 1459 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1460 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1461 } 1462 1463 /* 1464 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1465 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1466 * data, TCP will not respond with an ACK. RFC 793 requires that 1467 * TCP responds with an ACK for such a bogus ACK. By not following 1468 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1469 * an attacker successfully spoofs an acceptable segment to our 1470 * peer; or when our peer is "confused." 1471 */ 1472 uint32_t tcp_drop_ack_unsent_cnt = 10; 1473 1474 /* 1475 * Hook functions to enable cluster networking 1476 * On non-clustered systems these vectors must always be NULL. 1477 */ 1478 1479 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1480 uint8_t *laddrp, in_port_t lport) = NULL; 1481 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1482 uint8_t *laddrp, in_port_t lport) = NULL; 1483 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1484 uint8_t *laddrp, in_port_t lport, 1485 uint8_t *faddrp, in_port_t fport) = NULL; 1486 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1487 uint8_t *laddrp, in_port_t lport, 1488 uint8_t *faddrp, in_port_t fport) = NULL; 1489 1490 /* 1491 * The following are defined in ip.c 1492 */ 1493 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1494 uint8_t *laddrp); 1495 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1496 uint8_t *laddrp, uint8_t *faddrp); 1497 1498 #define CL_INET_CONNECT(tcp) { \ 1499 if (cl_inet_connect != NULL) { \ 1500 /* \ 1501 * Running in cluster mode - register active connection \ 1502 * information \ 1503 */ \ 1504 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1505 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1506 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1507 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1508 (in_port_t)(tcp)->tcp_lport, \ 1509 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1510 (in_port_t)(tcp)->tcp_fport); \ 1511 } \ 1512 } else { \ 1513 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1514 &(tcp)->tcp_ip6h->ip6_src)) {\ 1515 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1516 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1517 (in_port_t)(tcp)->tcp_lport, \ 1518 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1519 (in_port_t)(tcp)->tcp_fport); \ 1520 } \ 1521 } \ 1522 } \ 1523 } 1524 1525 #define CL_INET_DISCONNECT(tcp) { \ 1526 if (cl_inet_disconnect != NULL) { \ 1527 /* \ 1528 * Running in cluster mode - deregister active \ 1529 * connection information \ 1530 */ \ 1531 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1532 if ((tcp)->tcp_ip_src != 0) { \ 1533 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1534 AF_INET, \ 1535 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1536 (in_port_t)(tcp)->tcp_lport, \ 1537 (uint8_t *) \ 1538 (&((tcp)->tcp_ipha->ipha_dst)),\ 1539 (in_port_t)(tcp)->tcp_fport); \ 1540 } \ 1541 } else { \ 1542 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1543 &(tcp)->tcp_ip_src_v6)) { \ 1544 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1545 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1546 (in_port_t)(tcp)->tcp_lport, \ 1547 (uint8_t *) \ 1548 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1549 (in_port_t)(tcp)->tcp_fport); \ 1550 } \ 1551 } \ 1552 } \ 1553 } 1554 1555 /* 1556 * Cluster networking hook for traversing current connection list. 1557 * This routine is used to extract the current list of live connections 1558 * which must continue to to be dispatched to this node. 1559 */ 1560 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1561 1562 /* 1563 * Figure out the value of window scale opton. Note that the rwnd is 1564 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1565 * We cannot find the scale value and then do a round up of tcp_rwnd 1566 * because the scale value may not be correct after that. 1567 * 1568 * Set the compiler flag to make this function inline. 1569 */ 1570 static void 1571 tcp_set_ws_value(tcp_t *tcp) 1572 { 1573 int i; 1574 uint32_t rwnd = tcp->tcp_rwnd; 1575 1576 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1577 i++, rwnd >>= 1) 1578 ; 1579 tcp->tcp_rcv_ws = i; 1580 } 1581 1582 /* 1583 * Remove a connection from the list of detached TIME_WAIT connections. 1584 * It returns B_FALSE if it can't remove the connection from the list 1585 * as the connection has already been removed from the list due to an 1586 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1587 */ 1588 static boolean_t 1589 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1590 { 1591 boolean_t locked = B_FALSE; 1592 1593 if (tcp_time_wait == NULL) { 1594 tcp_time_wait = *((tcp_squeue_priv_t **) 1595 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1596 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1597 locked = B_TRUE; 1598 } 1599 1600 if (tcp->tcp_time_wait_expire == 0) { 1601 ASSERT(tcp->tcp_time_wait_next == NULL); 1602 ASSERT(tcp->tcp_time_wait_prev == NULL); 1603 if (locked) 1604 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1605 return (B_FALSE); 1606 } 1607 ASSERT(TCP_IS_DETACHED(tcp)); 1608 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1609 1610 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1611 ASSERT(tcp->tcp_time_wait_prev == NULL); 1612 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1613 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1614 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1615 NULL; 1616 } else { 1617 tcp_time_wait->tcp_time_wait_tail = NULL; 1618 } 1619 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1620 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1621 ASSERT(tcp->tcp_time_wait_next == NULL); 1622 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1623 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1624 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1625 } else { 1626 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1627 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1628 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1629 tcp->tcp_time_wait_next; 1630 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1631 tcp->tcp_time_wait_prev; 1632 } 1633 tcp->tcp_time_wait_next = NULL; 1634 tcp->tcp_time_wait_prev = NULL; 1635 tcp->tcp_time_wait_expire = 0; 1636 1637 if (locked) 1638 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1639 return (B_TRUE); 1640 } 1641 1642 /* 1643 * Add a connection to the list of detached TIME_WAIT connections 1644 * and set its time to expire. 1645 */ 1646 static void 1647 tcp_time_wait_append(tcp_t *tcp) 1648 { 1649 tcp_squeue_priv_t *tcp_time_wait = 1650 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1651 SQPRIVATE_TCP)); 1652 1653 tcp_timers_stop(tcp); 1654 1655 /* Freed above */ 1656 ASSERT(tcp->tcp_timer_tid == 0); 1657 ASSERT(tcp->tcp_ack_tid == 0); 1658 1659 /* must have happened at the time of detaching the tcp */ 1660 ASSERT(tcp->tcp_ptpahn == NULL); 1661 ASSERT(tcp->tcp_flow_stopped == 0); 1662 ASSERT(tcp->tcp_time_wait_next == NULL); 1663 ASSERT(tcp->tcp_time_wait_prev == NULL); 1664 ASSERT(tcp->tcp_time_wait_expire == NULL); 1665 ASSERT(tcp->tcp_listener == NULL); 1666 1667 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1668 /* 1669 * The value computed below in tcp->tcp_time_wait_expire may 1670 * appear negative or wrap around. That is ok since our 1671 * interest is only in the difference between the current lbolt 1672 * value and tcp->tcp_time_wait_expire. But the value should not 1673 * be zero, since it means the tcp is not in the TIME_WAIT list. 1674 * The corresponding comparison in tcp_time_wait_collector() uses 1675 * modular arithmetic. 1676 */ 1677 tcp->tcp_time_wait_expire += 1678 drv_usectohz(tcp_time_wait_interval * 1000); 1679 if (tcp->tcp_time_wait_expire == 0) 1680 tcp->tcp_time_wait_expire = 1; 1681 1682 ASSERT(TCP_IS_DETACHED(tcp)); 1683 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1684 ASSERT(tcp->tcp_time_wait_next == NULL); 1685 ASSERT(tcp->tcp_time_wait_prev == NULL); 1686 TCP_DBGSTAT(tcp_time_wait); 1687 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1688 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1689 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1690 tcp_time_wait->tcp_time_wait_head = tcp; 1691 } else { 1692 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1693 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1694 TCPS_TIME_WAIT); 1695 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1696 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1697 } 1698 tcp_time_wait->tcp_time_wait_tail = tcp; 1699 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1700 } 1701 1702 /* ARGSUSED */ 1703 void 1704 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1705 { 1706 conn_t *connp = (conn_t *)arg; 1707 tcp_t *tcp = connp->conn_tcp; 1708 1709 ASSERT(tcp != NULL); 1710 if (tcp->tcp_state == TCPS_CLOSED) { 1711 return; 1712 } 1713 1714 ASSERT((tcp->tcp_family == AF_INET && 1715 tcp->tcp_ipversion == IPV4_VERSION) || 1716 (tcp->tcp_family == AF_INET6 && 1717 (tcp->tcp_ipversion == IPV4_VERSION || 1718 tcp->tcp_ipversion == IPV6_VERSION))); 1719 ASSERT(!tcp->tcp_listener); 1720 1721 TCP_STAT(tcp_time_wait_reap); 1722 ASSERT(TCP_IS_DETACHED(tcp)); 1723 1724 /* 1725 * Because they have no upstream client to rebind or tcp_close() 1726 * them later, we axe the connection here and now. 1727 */ 1728 tcp_close_detached(tcp); 1729 } 1730 1731 void 1732 tcp_cleanup(tcp_t *tcp) 1733 { 1734 mblk_t *mp; 1735 char *tcp_iphc; 1736 int tcp_iphc_len; 1737 int tcp_hdr_grown; 1738 tcp_sack_info_t *tcp_sack_info; 1739 conn_t *connp = tcp->tcp_connp; 1740 1741 tcp_bind_hash_remove(tcp); 1742 tcp_free(tcp); 1743 1744 /* Release any SSL context */ 1745 if (tcp->tcp_kssl_ent != NULL) { 1746 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1747 tcp->tcp_kssl_ent = NULL; 1748 } 1749 1750 if (tcp->tcp_kssl_ctx != NULL) { 1751 kssl_release_ctx(tcp->tcp_kssl_ctx); 1752 tcp->tcp_kssl_ctx = NULL; 1753 } 1754 tcp->tcp_kssl_pending = B_FALSE; 1755 1756 conn_delete_ire(connp, NULL); 1757 if (connp->conn_flags & IPCL_TCPCONN) { 1758 if (connp->conn_latch != NULL) 1759 IPLATCH_REFRELE(connp->conn_latch); 1760 if (connp->conn_policy != NULL) 1761 IPPH_REFRELE(connp->conn_policy); 1762 } 1763 1764 /* 1765 * Since we will bzero the entire structure, we need to 1766 * remove it and reinsert it in global hash list. We 1767 * know the walkers can't get to this conn because we 1768 * had set CONDEMNED flag earlier and checked reference 1769 * under conn_lock so walker won't pick it and when we 1770 * go the ipcl_globalhash_remove() below, no walker 1771 * can get to it. 1772 */ 1773 ipcl_globalhash_remove(connp); 1774 1775 /* Save some state */ 1776 mp = tcp->tcp_timercache; 1777 1778 tcp_sack_info = tcp->tcp_sack_info; 1779 tcp_iphc = tcp->tcp_iphc; 1780 tcp_iphc_len = tcp->tcp_iphc_len; 1781 tcp_hdr_grown = tcp->tcp_hdr_grown; 1782 1783 if (connp->conn_cred != NULL) 1784 crfree(connp->conn_cred); 1785 if (connp->conn_peercred != NULL) 1786 crfree(connp->conn_peercred); 1787 bzero(connp, sizeof (conn_t)); 1788 bzero(tcp, sizeof (tcp_t)); 1789 1790 /* restore the state */ 1791 tcp->tcp_timercache = mp; 1792 1793 tcp->tcp_sack_info = tcp_sack_info; 1794 tcp->tcp_iphc = tcp_iphc; 1795 tcp->tcp_iphc_len = tcp_iphc_len; 1796 tcp->tcp_hdr_grown = tcp_hdr_grown; 1797 1798 1799 tcp->tcp_connp = connp; 1800 1801 connp->conn_tcp = tcp; 1802 connp->conn_flags = IPCL_TCPCONN; 1803 connp->conn_state_flags = CONN_INCIPIENT; 1804 connp->conn_ulp = IPPROTO_TCP; 1805 connp->conn_ref = 1; 1806 1807 ipcl_globalhash_insert(connp); 1808 } 1809 1810 /* 1811 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1812 * is done forwards from the head. 1813 */ 1814 /* ARGSUSED */ 1815 void 1816 tcp_time_wait_collector(void *arg) 1817 { 1818 tcp_t *tcp; 1819 clock_t now; 1820 mblk_t *mp; 1821 conn_t *connp; 1822 kmutex_t *lock; 1823 boolean_t removed; 1824 1825 squeue_t *sqp = (squeue_t *)arg; 1826 tcp_squeue_priv_t *tcp_time_wait = 1827 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1828 1829 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1830 tcp_time_wait->tcp_time_wait_tid = 0; 1831 1832 if (tcp_time_wait->tcp_free_list != NULL && 1833 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1834 TCP_STAT(tcp_freelist_cleanup); 1835 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1836 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1837 CONN_DEC_REF(tcp->tcp_connp); 1838 } 1839 tcp_time_wait->tcp_free_list_cnt = 0; 1840 } 1841 1842 /* 1843 * In order to reap time waits reliably, we should use a 1844 * source of time that is not adjustable by the user -- hence 1845 * the call to ddi_get_lbolt(). 1846 */ 1847 now = ddi_get_lbolt(); 1848 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1849 /* 1850 * Compare times using modular arithmetic, since 1851 * lbolt can wrapover. 1852 */ 1853 if ((now - tcp->tcp_time_wait_expire) < 0) { 1854 break; 1855 } 1856 1857 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1858 ASSERT(removed); 1859 1860 connp = tcp->tcp_connp; 1861 ASSERT(connp->conn_fanout != NULL); 1862 lock = &connp->conn_fanout->connf_lock; 1863 /* 1864 * This is essentially a TW reclaim fast path optimization for 1865 * performance where the timewait collector checks under the 1866 * fanout lock (so that no one else can get access to the 1867 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1868 * the classifier hash list. If ref count is indeed 2, we can 1869 * just remove the conn under the fanout lock and avoid 1870 * cleaning up the conn under the squeue, provided that 1871 * clustering callbacks are not enabled. If clustering is 1872 * enabled, we need to make the clustering callback before 1873 * setting the CONDEMNED flag and after dropping all locks and 1874 * so we forego this optimization and fall back to the slow 1875 * path. Also please see the comments in tcp_closei_local 1876 * regarding the refcnt logic. 1877 * 1878 * Since we are holding the tcp_time_wait_lock, its better 1879 * not to block on the fanout_lock because other connections 1880 * can't add themselves to time_wait list. So we do a 1881 * tryenter instead of mutex_enter. 1882 */ 1883 if (mutex_tryenter(lock)) { 1884 mutex_enter(&connp->conn_lock); 1885 if ((connp->conn_ref == 2) && 1886 (cl_inet_disconnect == NULL)) { 1887 ipcl_hash_remove_locked(connp, 1888 connp->conn_fanout); 1889 /* 1890 * Set the CONDEMNED flag now itself so that 1891 * the refcnt cannot increase due to any 1892 * walker. But we have still not cleaned up 1893 * conn_ire_cache. This is still ok since 1894 * we are going to clean it up in tcp_cleanup 1895 * immediately and any interface unplumb 1896 * thread will wait till the ire is blown away 1897 */ 1898 connp->conn_state_flags |= CONN_CONDEMNED; 1899 mutex_exit(lock); 1900 mutex_exit(&connp->conn_lock); 1901 if (tcp_time_wait->tcp_free_list_cnt < 1902 tcp_free_list_max_cnt) { 1903 /* Add to head of tcp_free_list */ 1904 mutex_exit( 1905 &tcp_time_wait->tcp_time_wait_lock); 1906 tcp_cleanup(tcp); 1907 mutex_enter( 1908 &tcp_time_wait->tcp_time_wait_lock); 1909 tcp->tcp_time_wait_next = 1910 tcp_time_wait->tcp_free_list; 1911 tcp_time_wait->tcp_free_list = tcp; 1912 tcp_time_wait->tcp_free_list_cnt++; 1913 continue; 1914 } else { 1915 /* Do not add to tcp_free_list */ 1916 mutex_exit( 1917 &tcp_time_wait->tcp_time_wait_lock); 1918 tcp_bind_hash_remove(tcp); 1919 conn_delete_ire(tcp->tcp_connp, NULL); 1920 CONN_DEC_REF(tcp->tcp_connp); 1921 } 1922 } else { 1923 CONN_INC_REF_LOCKED(connp); 1924 mutex_exit(lock); 1925 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1926 mutex_exit(&connp->conn_lock); 1927 /* 1928 * We can reuse the closemp here since conn has 1929 * detached (otherwise we wouldn't even be in 1930 * time_wait list). tcp_closemp_used can safely 1931 * be changed without taking a lock as no other 1932 * thread can concurrently access it at this 1933 * point in the connection lifecycle. We 1934 * increment tcp_closemp_used to record any 1935 * attempt to reuse tcp_closemp while it is 1936 * still in use. 1937 */ 1938 1939 if (tcp->tcp_closemp.b_prev == NULL) 1940 tcp->tcp_closemp_used = 1; 1941 else 1942 tcp->tcp_closemp_used++; 1943 1944 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1945 mp = &tcp->tcp_closemp; 1946 squeue_fill(connp->conn_sqp, mp, 1947 tcp_timewait_output, connp, 1948 SQTAG_TCP_TIMEWAIT); 1949 } 1950 } else { 1951 mutex_enter(&connp->conn_lock); 1952 CONN_INC_REF_LOCKED(connp); 1953 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1954 mutex_exit(&connp->conn_lock); 1955 /* 1956 * We can reuse the closemp here since conn has 1957 * detached (otherwise we wouldn't even be in 1958 * time_wait list). tcp_closemp_used can safely 1959 * be changed without taking a lock as no other 1960 * thread can concurrently access it at this 1961 * point in the connection lifecycle. We 1962 * increment tcp_closemp_used to record any 1963 * attempt to reuse tcp_closemp while it is 1964 * still in use. 1965 */ 1966 1967 if (tcp->tcp_closemp.b_prev == NULL) 1968 tcp->tcp_closemp_used = 1; 1969 else 1970 tcp->tcp_closemp_used++; 1971 1972 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1973 mp = &tcp->tcp_closemp; 1974 squeue_fill(connp->conn_sqp, mp, 1975 tcp_timewait_output, connp, 0); 1976 } 1977 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1978 } 1979 1980 if (tcp_time_wait->tcp_free_list != NULL) 1981 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1982 1983 tcp_time_wait->tcp_time_wait_tid = 1984 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1985 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1986 } 1987 1988 /* 1989 * Reply to a clients T_CONN_RES TPI message. This function 1990 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1991 * on the acceptor STREAM and processed in tcp_wput_accept(). 1992 * Read the block comment on top of tcp_conn_request(). 1993 */ 1994 static void 1995 tcp_accept(tcp_t *listener, mblk_t *mp) 1996 { 1997 tcp_t *acceptor; 1998 tcp_t *eager; 1999 tcp_t *tcp; 2000 struct T_conn_res *tcr; 2001 t_uscalar_t acceptor_id; 2002 t_scalar_t seqnum; 2003 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 2004 mblk_t *ok_mp; 2005 mblk_t *mp1; 2006 2007 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 2008 tcp_err_ack(listener, mp, TPROTO, 0); 2009 return; 2010 } 2011 tcr = (struct T_conn_res *)mp->b_rptr; 2012 2013 /* 2014 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 2015 * read side queue of the streams device underneath us i.e. the 2016 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 2017 * look it up in the queue_hash. Under LP64 it sends down the 2018 * minor_t of the accepting endpoint. 2019 * 2020 * Once the acceptor/eager are modified (in tcp_accept_swap) the 2021 * fanout hash lock is held. 2022 * This prevents any thread from entering the acceptor queue from 2023 * below (since it has not been hard bound yet i.e. any inbound 2024 * packets will arrive on the listener or default tcp queue and 2025 * go through tcp_lookup). 2026 * The CONN_INC_REF will prevent the acceptor from closing. 2027 * 2028 * XXX It is still possible for a tli application to send down data 2029 * on the accepting stream while another thread calls t_accept. 2030 * This should not be a problem for well-behaved applications since 2031 * the T_OK_ACK is sent after the queue swapping is completed. 2032 * 2033 * If the accepting fd is the same as the listening fd, avoid 2034 * queue hash lookup since that will return an eager listener in a 2035 * already established state. 2036 */ 2037 acceptor_id = tcr->ACCEPTOR_id; 2038 mutex_enter(&listener->tcp_eager_lock); 2039 if (listener->tcp_acceptor_id == acceptor_id) { 2040 eager = listener->tcp_eager_next_q; 2041 /* only count how many T_CONN_INDs so don't count q0 */ 2042 if ((listener->tcp_conn_req_cnt_q != 1) || 2043 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2044 mutex_exit(&listener->tcp_eager_lock); 2045 tcp_err_ack(listener, mp, TBADF, 0); 2046 return; 2047 } 2048 if (listener->tcp_conn_req_cnt_q0 != 0) { 2049 /* Throw away all the eagers on q0. */ 2050 tcp_eager_cleanup(listener, 1); 2051 } 2052 if (listener->tcp_syn_defense) { 2053 listener->tcp_syn_defense = B_FALSE; 2054 if (listener->tcp_ip_addr_cache != NULL) { 2055 kmem_free(listener->tcp_ip_addr_cache, 2056 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2057 listener->tcp_ip_addr_cache = NULL; 2058 } 2059 } 2060 /* 2061 * Transfer tcp_conn_req_max to the eager so that when 2062 * a disconnect occurs we can revert the endpoint to the 2063 * listen state. 2064 */ 2065 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2066 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2067 /* 2068 * Get a reference on the acceptor just like the 2069 * tcp_acceptor_hash_lookup below. 2070 */ 2071 acceptor = listener; 2072 CONN_INC_REF(acceptor->tcp_connp); 2073 } else { 2074 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 2075 if (acceptor == NULL) { 2076 if (listener->tcp_debug) { 2077 (void) strlog(TCP_MOD_ID, 0, 1, 2078 SL_ERROR|SL_TRACE, 2079 "tcp_accept: did not find acceptor 0x%x\n", 2080 acceptor_id); 2081 } 2082 mutex_exit(&listener->tcp_eager_lock); 2083 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2084 return; 2085 } 2086 /* 2087 * Verify acceptor state. The acceptable states for an acceptor 2088 * include TCPS_IDLE and TCPS_BOUND. 2089 */ 2090 switch (acceptor->tcp_state) { 2091 case TCPS_IDLE: 2092 /* FALLTHRU */ 2093 case TCPS_BOUND: 2094 break; 2095 default: 2096 CONN_DEC_REF(acceptor->tcp_connp); 2097 mutex_exit(&listener->tcp_eager_lock); 2098 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2099 return; 2100 } 2101 } 2102 2103 /* The listener must be in TCPS_LISTEN */ 2104 if (listener->tcp_state != TCPS_LISTEN) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 mutex_exit(&listener->tcp_eager_lock); 2107 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2108 return; 2109 } 2110 2111 /* 2112 * Rendezvous with an eager connection request packet hanging off 2113 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2114 * tcp structure when the connection packet arrived in 2115 * tcp_conn_request(). 2116 */ 2117 seqnum = tcr->SEQ_number; 2118 eager = listener; 2119 do { 2120 eager = eager->tcp_eager_next_q; 2121 if (eager == NULL) { 2122 CONN_DEC_REF(acceptor->tcp_connp); 2123 mutex_exit(&listener->tcp_eager_lock); 2124 tcp_err_ack(listener, mp, TBADSEQ, 0); 2125 return; 2126 } 2127 } while (eager->tcp_conn_req_seqnum != seqnum); 2128 mutex_exit(&listener->tcp_eager_lock); 2129 2130 /* 2131 * At this point, both acceptor and listener have 2 ref 2132 * that they begin with. Acceptor has one additional ref 2133 * we placed in lookup while listener has 3 additional 2134 * ref for being behind the squeue (tcp_accept() is 2135 * done on listener's squeue); being in classifier hash; 2136 * and eager's ref on listener. 2137 */ 2138 ASSERT(listener->tcp_connp->conn_ref >= 5); 2139 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2140 2141 /* 2142 * The eager at this point is set in its own squeue and 2143 * could easily have been killed (tcp_accept_finish will 2144 * deal with that) because of a TH_RST so we can only 2145 * ASSERT for a single ref. 2146 */ 2147 ASSERT(eager->tcp_connp->conn_ref >= 1); 2148 2149 /* Pre allocate the stroptions mblk also */ 2150 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2151 if (opt_mp == NULL) { 2152 CONN_DEC_REF(acceptor->tcp_connp); 2153 CONN_DEC_REF(eager->tcp_connp); 2154 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2155 return; 2156 } 2157 DB_TYPE(opt_mp) = M_SETOPTS; 2158 opt_mp->b_wptr += sizeof (struct stroptions); 2159 2160 /* 2161 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2162 * from listener to acceptor. The message is chained on opt_mp 2163 * which will be sent onto eager's squeue. 2164 */ 2165 if (listener->tcp_bound_if != 0) { 2166 /* allocate optmgmt req */ 2167 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2168 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2169 sizeof (int)); 2170 if (mp1 != NULL) 2171 linkb(opt_mp, mp1); 2172 } 2173 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2174 uint_t on = 1; 2175 2176 /* allocate optmgmt req */ 2177 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2178 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2179 if (mp1 != NULL) 2180 linkb(opt_mp, mp1); 2181 } 2182 2183 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2184 if ((mp1 = copymsg(mp)) == NULL) { 2185 CONN_DEC_REF(acceptor->tcp_connp); 2186 CONN_DEC_REF(eager->tcp_connp); 2187 freemsg(opt_mp); 2188 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2189 return; 2190 } 2191 2192 tcr = (struct T_conn_res *)mp1->b_rptr; 2193 2194 /* 2195 * This is an expanded version of mi_tpi_ok_ack_alloc() 2196 * which allocates a larger mblk and appends the new 2197 * local address to the ok_ack. The address is copied by 2198 * soaccept() for getsockname(). 2199 */ 2200 { 2201 int extra; 2202 2203 extra = (eager->tcp_family == AF_INET) ? 2204 sizeof (sin_t) : sizeof (sin6_t); 2205 2206 /* 2207 * Try to re-use mp, if possible. Otherwise, allocate 2208 * an mblk and return it as ok_mp. In any case, mp 2209 * is no longer usable upon return. 2210 */ 2211 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2212 CONN_DEC_REF(acceptor->tcp_connp); 2213 CONN_DEC_REF(eager->tcp_connp); 2214 freemsg(opt_mp); 2215 /* Original mp has been freed by now, so use mp1 */ 2216 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2217 return; 2218 } 2219 2220 mp = NULL; /* We should never use mp after this point */ 2221 2222 switch (extra) { 2223 case sizeof (sin_t): { 2224 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2225 2226 ok_mp->b_wptr += extra; 2227 sin->sin_family = AF_INET; 2228 sin->sin_port = eager->tcp_lport; 2229 sin->sin_addr.s_addr = 2230 eager->tcp_ipha->ipha_src; 2231 break; 2232 } 2233 case sizeof (sin6_t): { 2234 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2235 2236 ok_mp->b_wptr += extra; 2237 sin6->sin6_family = AF_INET6; 2238 sin6->sin6_port = eager->tcp_lport; 2239 if (eager->tcp_ipversion == IPV4_VERSION) { 2240 sin6->sin6_flowinfo = 0; 2241 IN6_IPADDR_TO_V4MAPPED( 2242 eager->tcp_ipha->ipha_src, 2243 &sin6->sin6_addr); 2244 } else { 2245 ASSERT(eager->tcp_ip6h != NULL); 2246 sin6->sin6_flowinfo = 2247 eager->tcp_ip6h->ip6_vcf & 2248 ~IPV6_VERS_AND_FLOW_MASK; 2249 sin6->sin6_addr = 2250 eager->tcp_ip6h->ip6_src; 2251 } 2252 break; 2253 } 2254 default: 2255 break; 2256 } 2257 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2258 } 2259 2260 /* 2261 * If there are no options we know that the T_CONN_RES will 2262 * succeed. However, we can't send the T_OK_ACK upstream until 2263 * the tcp_accept_swap is done since it would be dangerous to 2264 * let the application start using the new fd prior to the swap. 2265 */ 2266 tcp_accept_swap(listener, acceptor, eager); 2267 2268 /* 2269 * tcp_accept_swap unlinks eager from listener but does not drop 2270 * the eager's reference on the listener. 2271 */ 2272 ASSERT(eager->tcp_listener == NULL); 2273 ASSERT(listener->tcp_connp->conn_ref >= 5); 2274 2275 /* 2276 * The eager is now associated with its own queue. Insert in 2277 * the hash so that the connection can be reused for a future 2278 * T_CONN_RES. 2279 */ 2280 tcp_acceptor_hash_insert(acceptor_id, eager); 2281 2282 /* 2283 * We now do the processing of options with T_CONN_RES. 2284 * We delay till now since we wanted to have queue to pass to 2285 * option processing routines that points back to the right 2286 * instance structure which does not happen until after 2287 * tcp_accept_swap(). 2288 * 2289 * Note: 2290 * The sanity of the logic here assumes that whatever options 2291 * are appropriate to inherit from listner=>eager are done 2292 * before this point, and whatever were to be overridden (or not) 2293 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2294 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2295 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2296 * This may not be true at this point in time but can be fixed 2297 * independently. This option processing code starts with 2298 * the instantiated acceptor instance and the final queue at 2299 * this point. 2300 */ 2301 2302 if (tcr->OPT_length != 0) { 2303 /* Options to process */ 2304 int t_error = 0; 2305 int sys_error = 0; 2306 int do_disconnect = 0; 2307 2308 if (tcp_conprim_opt_process(eager, mp1, 2309 &do_disconnect, &t_error, &sys_error) < 0) { 2310 eager->tcp_accept_error = 1; 2311 if (do_disconnect) { 2312 /* 2313 * An option failed which does not allow 2314 * connection to be accepted. 2315 * 2316 * We allow T_CONN_RES to succeed and 2317 * put a T_DISCON_IND on the eager queue. 2318 */ 2319 ASSERT(t_error == 0 && sys_error == 0); 2320 eager->tcp_send_discon_ind = 1; 2321 } else { 2322 ASSERT(t_error != 0); 2323 freemsg(ok_mp); 2324 /* 2325 * Original mp was either freed or set 2326 * to ok_mp above, so use mp1 instead. 2327 */ 2328 tcp_err_ack(listener, mp1, t_error, sys_error); 2329 goto finish; 2330 } 2331 } 2332 /* 2333 * Most likely success in setting options (except if 2334 * eager->tcp_send_discon_ind set). 2335 * mp1 option buffer represented by OPT_length/offset 2336 * potentially modified and contains results of setting 2337 * options at this point 2338 */ 2339 } 2340 2341 /* We no longer need mp1, since all options processing has passed */ 2342 freemsg(mp1); 2343 2344 putnext(listener->tcp_rq, ok_mp); 2345 2346 mutex_enter(&listener->tcp_eager_lock); 2347 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2348 tcp_t *tail; 2349 mblk_t *conn_ind; 2350 2351 /* 2352 * This path should not be executed if listener and 2353 * acceptor streams are the same. 2354 */ 2355 ASSERT(listener != acceptor); 2356 2357 tcp = listener->tcp_eager_prev_q0; 2358 /* 2359 * listener->tcp_eager_prev_q0 points to the TAIL of the 2360 * deferred T_conn_ind queue. We need to get to the head of 2361 * the queue in order to send up T_conn_ind the same order as 2362 * how the 3WHS is completed. 2363 */ 2364 while (tcp != listener) { 2365 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2366 break; 2367 else 2368 tcp = tcp->tcp_eager_prev_q0; 2369 } 2370 ASSERT(tcp != listener); 2371 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2372 ASSERT(conn_ind != NULL); 2373 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2374 2375 /* Move from q0 to q */ 2376 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2377 listener->tcp_conn_req_cnt_q0--; 2378 listener->tcp_conn_req_cnt_q++; 2379 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2380 tcp->tcp_eager_prev_q0; 2381 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2382 tcp->tcp_eager_next_q0; 2383 tcp->tcp_eager_prev_q0 = NULL; 2384 tcp->tcp_eager_next_q0 = NULL; 2385 tcp->tcp_conn_def_q0 = B_FALSE; 2386 2387 /* Make sure the tcp isn't in the list of droppables */ 2388 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2389 tcp->tcp_eager_prev_drop_q0 == NULL); 2390 2391 /* 2392 * Insert at end of the queue because sockfs sends 2393 * down T_CONN_RES in chronological order. Leaving 2394 * the older conn indications at front of the queue 2395 * helps reducing search time. 2396 */ 2397 tail = listener->tcp_eager_last_q; 2398 if (tail != NULL) 2399 tail->tcp_eager_next_q = tcp; 2400 else 2401 listener->tcp_eager_next_q = tcp; 2402 listener->tcp_eager_last_q = tcp; 2403 tcp->tcp_eager_next_q = NULL; 2404 mutex_exit(&listener->tcp_eager_lock); 2405 putnext(tcp->tcp_rq, conn_ind); 2406 } else { 2407 mutex_exit(&listener->tcp_eager_lock); 2408 } 2409 2410 /* 2411 * Done with the acceptor - free it 2412 * 2413 * Note: from this point on, no access to listener should be made 2414 * as listener can be equal to acceptor. 2415 */ 2416 finish: 2417 ASSERT(acceptor->tcp_detached); 2418 acceptor->tcp_rq = tcp_g_q; 2419 acceptor->tcp_wq = WR(tcp_g_q); 2420 (void) tcp_clean_death(acceptor, 0, 2); 2421 CONN_DEC_REF(acceptor->tcp_connp); 2422 2423 /* 2424 * In case we already received a FIN we have to make tcp_rput send 2425 * the ordrel_ind. This will also send up a window update if the window 2426 * has opened up. 2427 * 2428 * In the normal case of a successful connection acceptance 2429 * we give the O_T_BIND_REQ to the read side put procedure as an 2430 * indication that this was just accepted. This tells tcp_rput to 2431 * pass up any data queued in tcp_rcv_list. 2432 * 2433 * In the fringe case where options sent with T_CONN_RES failed and 2434 * we required, we would be indicating a T_DISCON_IND to blow 2435 * away this connection. 2436 */ 2437 2438 /* 2439 * XXX: we currently have a problem if XTI application closes the 2440 * acceptor stream in between. This problem exists in on10-gate also 2441 * and is well know but nothing can be done short of major rewrite 2442 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2443 * eager same squeue as listener (we can distinguish non socket 2444 * listeners at the time of handling a SYN in tcp_conn_request) 2445 * and do most of the work that tcp_accept_finish does here itself 2446 * and then get behind the acceptor squeue to access the acceptor 2447 * queue. 2448 */ 2449 /* 2450 * We already have a ref on tcp so no need to do one before squeue_fill 2451 */ 2452 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2453 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2454 } 2455 2456 /* 2457 * Swap information between the eager and acceptor for a TLI/XTI client. 2458 * The sockfs accept is done on the acceptor stream and control goes 2459 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2460 * called. In either case, both the eager and listener are in their own 2461 * perimeter (squeue) and the code has to deal with potential race. 2462 * 2463 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2464 */ 2465 static void 2466 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2467 { 2468 conn_t *econnp, *aconnp; 2469 2470 ASSERT(eager->tcp_rq == listener->tcp_rq); 2471 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2472 ASSERT(!eager->tcp_hard_bound); 2473 ASSERT(!TCP_IS_SOCKET(acceptor)); 2474 ASSERT(!TCP_IS_SOCKET(eager)); 2475 ASSERT(!TCP_IS_SOCKET(listener)); 2476 2477 acceptor->tcp_detached = B_TRUE; 2478 /* 2479 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2480 * the acceptor id. 2481 */ 2482 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2483 2484 /* remove eager from listen list... */ 2485 mutex_enter(&listener->tcp_eager_lock); 2486 tcp_eager_unlink(eager); 2487 ASSERT(eager->tcp_eager_next_q == NULL && 2488 eager->tcp_eager_last_q == NULL); 2489 ASSERT(eager->tcp_eager_next_q0 == NULL && 2490 eager->tcp_eager_prev_q0 == NULL); 2491 mutex_exit(&listener->tcp_eager_lock); 2492 eager->tcp_rq = acceptor->tcp_rq; 2493 eager->tcp_wq = acceptor->tcp_wq; 2494 2495 econnp = eager->tcp_connp; 2496 aconnp = acceptor->tcp_connp; 2497 2498 eager->tcp_rq->q_ptr = econnp; 2499 eager->tcp_wq->q_ptr = econnp; 2500 2501 /* 2502 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2503 * which might be a different squeue from our peer TCP instance. 2504 * For TCP Fusion, the peer expects that whenever tcp_detached is 2505 * clear, our TCP queues point to the acceptor's queues. Thus, use 2506 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2507 * above reach global visibility prior to the clearing of tcp_detached. 2508 */ 2509 membar_producer(); 2510 eager->tcp_detached = B_FALSE; 2511 2512 ASSERT(eager->tcp_ack_tid == 0); 2513 2514 econnp->conn_dev = aconnp->conn_dev; 2515 if (eager->tcp_cred != NULL) 2516 crfree(eager->tcp_cred); 2517 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2518 aconnp->conn_cred = NULL; 2519 2520 econnp->conn_zoneid = aconnp->conn_zoneid; 2521 econnp->conn_allzones = aconnp->conn_allzones; 2522 2523 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2524 aconnp->conn_mac_exempt = B_FALSE; 2525 2526 ASSERT(aconnp->conn_peercred == NULL); 2527 2528 /* Do the IPC initialization */ 2529 CONN_INC_REF(econnp); 2530 2531 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2532 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2533 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2534 econnp->conn_ulp = aconnp->conn_ulp; 2535 2536 /* Done with old IPC. Drop its ref on its connp */ 2537 CONN_DEC_REF(aconnp); 2538 } 2539 2540 2541 /* 2542 * Adapt to the information, such as rtt and rtt_sd, provided from the 2543 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2544 * 2545 * Checks for multicast and broadcast destination address. 2546 * Returns zero on failure; non-zero if ok. 2547 * 2548 * Note that the MSS calculation here is based on the info given in 2549 * the IRE. We do not do any calculation based on TCP options. They 2550 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2551 * knows which options to use. 2552 * 2553 * Note on how TCP gets its parameters for a connection. 2554 * 2555 * When a tcp_t structure is allocated, it gets all the default parameters. 2556 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2557 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2558 * default. But if there is an associated tcp_host_param, it will override 2559 * the metrics. 2560 * 2561 * An incoming SYN with a multicast or broadcast destination address, is dropped 2562 * in 1 of 2 places. 2563 * 2564 * 1. If the packet was received over the wire it is dropped in 2565 * ip_rput_process_broadcast() 2566 * 2567 * 2. If the packet was received through internal IP loopback, i.e. the packet 2568 * was generated and received on the same machine, it is dropped in 2569 * ip_wput_local() 2570 * 2571 * An incoming SYN with a multicast or broadcast source address is always 2572 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2573 * reject an attempt to connect to a broadcast or multicast (destination) 2574 * address. 2575 */ 2576 static int 2577 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2578 { 2579 tcp_hsp_t *hsp; 2580 ire_t *ire; 2581 ire_t *sire = NULL; 2582 iulp_t *ire_uinfo = NULL; 2583 uint32_t mss_max; 2584 uint32_t mss; 2585 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2586 conn_t *connp = tcp->tcp_connp; 2587 boolean_t ire_cacheable = B_FALSE; 2588 zoneid_t zoneid = connp->conn_zoneid; 2589 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2590 MATCH_IRE_SECATTR; 2591 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2592 ill_t *ill = NULL; 2593 boolean_t incoming = (ire_mp == NULL); 2594 2595 ASSERT(connp->conn_ire_cache == NULL); 2596 2597 if (tcp->tcp_ipversion == IPV4_VERSION) { 2598 2599 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2600 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 2601 return (0); 2602 } 2603 /* 2604 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2605 * for the destination with the nexthop as gateway. 2606 * ire_ctable_lookup() is used because this particular 2607 * ire, if it exists, will be marked private. 2608 * If that is not available, use the interface ire 2609 * for the nexthop. 2610 * 2611 * TSol: tcp_update_label will detect label mismatches based 2612 * only on the destination's label, but that would not 2613 * detect label mismatches based on the security attributes 2614 * of routes or next hop gateway. Hence we need to pass the 2615 * label to ire_ftable_lookup below in order to locate the 2616 * right prefix (and/or) ire cache. Similarly we also need 2617 * pass the label to the ire_cache_lookup below to locate 2618 * the right ire that also matches on the label. 2619 */ 2620 if (tcp->tcp_connp->conn_nexthop_set) { 2621 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2622 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2623 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2624 if (ire == NULL) { 2625 ire = ire_ftable_lookup( 2626 tcp->tcp_connp->conn_nexthop_v4, 2627 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2628 tsl, match_flags); 2629 if (ire == NULL) 2630 return (0); 2631 } else { 2632 ire_uinfo = &ire->ire_uinfo; 2633 } 2634 } else { 2635 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2636 zoneid, tsl); 2637 if (ire != NULL) { 2638 ire_cacheable = B_TRUE; 2639 ire_uinfo = (ire_mp != NULL) ? 2640 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2641 &ire->ire_uinfo; 2642 2643 } else { 2644 if (ire_mp == NULL) { 2645 ire = ire_ftable_lookup( 2646 tcp->tcp_connp->conn_rem, 2647 0, 0, 0, NULL, &sire, zoneid, 0, 2648 tsl, (MATCH_IRE_RECURSIVE | 2649 MATCH_IRE_DEFAULT)); 2650 if (ire == NULL) 2651 return (0); 2652 ire_uinfo = (sire != NULL) ? 2653 &sire->ire_uinfo : 2654 &ire->ire_uinfo; 2655 } else { 2656 ire = (ire_t *)ire_mp->b_rptr; 2657 ire_uinfo = 2658 &((ire_t *) 2659 ire_mp->b_rptr)->ire_uinfo; 2660 } 2661 } 2662 } 2663 ASSERT(ire != NULL); 2664 2665 if ((ire->ire_src_addr == INADDR_ANY) || 2666 (ire->ire_type & IRE_BROADCAST)) { 2667 /* 2668 * ire->ire_mp is non null when ire_mp passed in is used 2669 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2670 */ 2671 if (ire->ire_mp == NULL) 2672 ire_refrele(ire); 2673 if (sire != NULL) 2674 ire_refrele(sire); 2675 return (0); 2676 } 2677 2678 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2679 ipaddr_t src_addr; 2680 2681 /* 2682 * ip_bind_connected() has stored the correct source 2683 * address in conn_src. 2684 */ 2685 src_addr = tcp->tcp_connp->conn_src; 2686 tcp->tcp_ipha->ipha_src = src_addr; 2687 /* 2688 * Copy of the src addr. in tcp_t is needed 2689 * for the lookup funcs. 2690 */ 2691 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2692 } 2693 /* 2694 * Set the fragment bit so that IP will tell us if the MTU 2695 * should change. IP tells us the latest setting of 2696 * ip_path_mtu_discovery through ire_frag_flag. 2697 */ 2698 if (ip_path_mtu_discovery) { 2699 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2700 htons(IPH_DF); 2701 } 2702 /* 2703 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2704 * for IP_NEXTHOP. No cache ire has been found for the 2705 * destination and we are working with the nexthop's 2706 * interface ire. Since we need to forward all packets 2707 * to the nexthop first, we "blindly" set tcp_localnet 2708 * to false, eventhough the destination may also be 2709 * onlink. 2710 */ 2711 if (ire_uinfo == NULL) 2712 tcp->tcp_localnet = 0; 2713 else 2714 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2715 } else { 2716 /* 2717 * For incoming connection ire_mp = NULL 2718 * For outgoing connection ire_mp != NULL 2719 * Technically we should check conn_incoming_ill 2720 * when ire_mp is NULL and conn_outgoing_ill when 2721 * ire_mp is non-NULL. But this is performance 2722 * critical path and for IPV*_BOUND_IF, outgoing 2723 * and incoming ill are always set to the same value. 2724 */ 2725 ill_t *dst_ill = NULL; 2726 ipif_t *dst_ipif = NULL; 2727 2728 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2729 2730 if (connp->conn_outgoing_ill != NULL) { 2731 /* Outgoing or incoming path */ 2732 int err; 2733 2734 dst_ill = conn_get_held_ill(connp, 2735 &connp->conn_outgoing_ill, &err); 2736 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2737 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2738 return (0); 2739 } 2740 match_flags |= MATCH_IRE_ILL; 2741 dst_ipif = dst_ill->ill_ipif; 2742 } 2743 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2744 0, 0, dst_ipif, zoneid, tsl, match_flags); 2745 2746 if (ire != NULL) { 2747 ire_cacheable = B_TRUE; 2748 ire_uinfo = (ire_mp != NULL) ? 2749 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2750 &ire->ire_uinfo; 2751 } else { 2752 if (ire_mp == NULL) { 2753 ire = ire_ftable_lookup_v6( 2754 &tcp->tcp_connp->conn_remv6, 2755 0, 0, 0, dst_ipif, &sire, zoneid, 2756 0, tsl, match_flags); 2757 if (ire == NULL) { 2758 if (dst_ill != NULL) 2759 ill_refrele(dst_ill); 2760 return (0); 2761 } 2762 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2763 &ire->ire_uinfo; 2764 } else { 2765 ire = (ire_t *)ire_mp->b_rptr; 2766 ire_uinfo = 2767 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2768 } 2769 } 2770 if (dst_ill != NULL) 2771 ill_refrele(dst_ill); 2772 2773 ASSERT(ire != NULL); 2774 ASSERT(ire_uinfo != NULL); 2775 2776 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2777 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2778 /* 2779 * ire->ire_mp is non null when ire_mp passed in is used 2780 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2781 */ 2782 if (ire->ire_mp == NULL) 2783 ire_refrele(ire); 2784 if (sire != NULL) 2785 ire_refrele(sire); 2786 return (0); 2787 } 2788 2789 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2790 in6_addr_t src_addr; 2791 2792 /* 2793 * ip_bind_connected_v6() has stored the correct source 2794 * address per IPv6 addr. selection policy in 2795 * conn_src_v6. 2796 */ 2797 src_addr = tcp->tcp_connp->conn_srcv6; 2798 2799 tcp->tcp_ip6h->ip6_src = src_addr; 2800 /* 2801 * Copy of the src addr. in tcp_t is needed 2802 * for the lookup funcs. 2803 */ 2804 tcp->tcp_ip_src_v6 = src_addr; 2805 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2806 &connp->conn_srcv6)); 2807 } 2808 tcp->tcp_localnet = 2809 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2810 } 2811 2812 /* 2813 * This allows applications to fail quickly when connections are made 2814 * to dead hosts. Hosts can be labeled dead by adding a reject route 2815 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2816 */ 2817 if ((ire->ire_flags & RTF_REJECT) && 2818 (ire->ire_flags & RTF_PRIVATE)) 2819 goto error; 2820 2821 /* 2822 * Make use of the cached rtt and rtt_sd values to calculate the 2823 * initial RTO. Note that they are already initialized in 2824 * tcp_init_values(). 2825 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2826 * IP_NEXTHOP, but instead are using the interface ire for the 2827 * nexthop, then we do not use the ire_uinfo from that ire to 2828 * do any initializations. 2829 */ 2830 if (ire_uinfo != NULL) { 2831 if (ire_uinfo->iulp_rtt != 0) { 2832 clock_t rto; 2833 2834 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2835 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2836 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2837 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2838 2839 if (rto > tcp_rexmit_interval_max) { 2840 tcp->tcp_rto = tcp_rexmit_interval_max; 2841 } else if (rto < tcp_rexmit_interval_min) { 2842 tcp->tcp_rto = tcp_rexmit_interval_min; 2843 } else { 2844 tcp->tcp_rto = rto; 2845 } 2846 } 2847 if (ire_uinfo->iulp_ssthresh != 0) 2848 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2849 else 2850 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2851 if (ire_uinfo->iulp_spipe > 0) { 2852 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2853 tcp_max_buf); 2854 if (tcp_snd_lowat_fraction != 0) 2855 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2856 tcp_snd_lowat_fraction; 2857 (void) tcp_maxpsz_set(tcp, B_TRUE); 2858 } 2859 /* 2860 * Note that up till now, acceptor always inherits receive 2861 * window from the listener. But if there is a metrics 2862 * associated with a host, we should use that instead of 2863 * inheriting it from listener. Thus we need to pass this 2864 * info back to the caller. 2865 */ 2866 if (ire_uinfo->iulp_rpipe > 0) { 2867 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2868 } 2869 2870 if (ire_uinfo->iulp_rtomax > 0) { 2871 tcp->tcp_second_timer_threshold = 2872 ire_uinfo->iulp_rtomax; 2873 } 2874 2875 /* 2876 * Use the metric option settings, iulp_tstamp_ok and 2877 * iulp_wscale_ok, only for active open. What this means 2878 * is that if the other side uses timestamp or window 2879 * scale option, TCP will also use those options. That 2880 * is for passive open. If the application sets a 2881 * large window, window scale is enabled regardless of 2882 * the value in iulp_wscale_ok. This is the behavior 2883 * since 2.6. So we keep it. 2884 * The only case left in passive open processing is the 2885 * check for SACK. 2886 * For ECN, it should probably be like SACK. But the 2887 * current value is binary, so we treat it like the other 2888 * cases. The metric only controls active open.For passive 2889 * open, the ndd param, tcp_ecn_permitted, controls the 2890 * behavior. 2891 */ 2892 if (!tcp_detached) { 2893 /* 2894 * The if check means that the following can only 2895 * be turned on by the metrics only IRE, but not off. 2896 */ 2897 if (ire_uinfo->iulp_tstamp_ok) 2898 tcp->tcp_snd_ts_ok = B_TRUE; 2899 if (ire_uinfo->iulp_wscale_ok) 2900 tcp->tcp_snd_ws_ok = B_TRUE; 2901 if (ire_uinfo->iulp_sack == 2) 2902 tcp->tcp_snd_sack_ok = B_TRUE; 2903 if (ire_uinfo->iulp_ecn_ok) 2904 tcp->tcp_ecn_ok = B_TRUE; 2905 } else { 2906 /* 2907 * Passive open. 2908 * 2909 * As above, the if check means that SACK can only be 2910 * turned on by the metric only IRE. 2911 */ 2912 if (ire_uinfo->iulp_sack > 0) { 2913 tcp->tcp_snd_sack_ok = B_TRUE; 2914 } 2915 } 2916 } 2917 2918 2919 /* 2920 * XXX: Note that currently, ire_max_frag can be as small as 68 2921 * because of PMTUd. So tcp_mss may go to negative if combined 2922 * length of all those options exceeds 28 bytes. But because 2923 * of the tcp_mss_min check below, we may not have a problem if 2924 * tcp_mss_min is of a reasonable value. The default is 1 so 2925 * the negative problem still exists. And the check defeats PMTUd. 2926 * In fact, if PMTUd finds that the MSS should be smaller than 2927 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2928 * value. 2929 * 2930 * We do not deal with that now. All those problems related to 2931 * PMTUd will be fixed later. 2932 */ 2933 ASSERT(ire->ire_max_frag != 0); 2934 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2935 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2936 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2937 mss = MIN(mss, IPV6_MIN_MTU); 2938 } 2939 } 2940 2941 /* Sanity check for MSS value. */ 2942 if (tcp->tcp_ipversion == IPV4_VERSION) 2943 mss_max = tcp_mss_max_ipv4; 2944 else 2945 mss_max = tcp_mss_max_ipv6; 2946 2947 if (tcp->tcp_ipversion == IPV6_VERSION && 2948 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2949 /* 2950 * After receiving an ICMPv6 "packet too big" message with a 2951 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2952 * will insert a 8-byte fragment header in every packet; we 2953 * reduce the MSS by that amount here. 2954 */ 2955 mss -= sizeof (ip6_frag_t); 2956 } 2957 2958 if (tcp->tcp_ipsec_overhead == 0) 2959 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2960 2961 mss -= tcp->tcp_ipsec_overhead; 2962 2963 if (mss < tcp_mss_min) 2964 mss = tcp_mss_min; 2965 if (mss > mss_max) 2966 mss = mss_max; 2967 2968 /* Note that this is the maximum MSS, excluding all options. */ 2969 tcp->tcp_mss = mss; 2970 2971 /* 2972 * Initialize the ISS here now that we have the full connection ID. 2973 * The RFC 1948 method of initial sequence number generation requires 2974 * knowledge of the full connection ID before setting the ISS. 2975 */ 2976 2977 tcp_iss_init(tcp); 2978 2979 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2980 tcp->tcp_loopback = B_TRUE; 2981 2982 if (tcp->tcp_ipversion == IPV4_VERSION) { 2983 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2984 } else { 2985 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2986 } 2987 2988 if (hsp != NULL) { 2989 /* Only modify if we're going to make them bigger */ 2990 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2991 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2992 if (tcp_snd_lowat_fraction != 0) 2993 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2994 tcp_snd_lowat_fraction; 2995 } 2996 2997 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2998 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2999 } 3000 3001 /* Copy timestamp flag only for active open */ 3002 if (!tcp_detached) 3003 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 3004 } 3005 3006 if (sire != NULL) 3007 IRE_REFRELE(sire); 3008 3009 /* 3010 * If we got an IRE_CACHE and an ILL, go through their properties; 3011 * otherwise, this is deferred until later when we have an IRE_CACHE. 3012 */ 3013 if (tcp->tcp_loopback || 3014 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 3015 /* 3016 * For incoming, see if this tcp may be MDT-capable. For 3017 * outgoing, this process has been taken care of through 3018 * tcp_rput_other. 3019 */ 3020 tcp_ire_ill_check(tcp, ire, ill, incoming); 3021 tcp->tcp_ire_ill_check_done = B_TRUE; 3022 } 3023 3024 mutex_enter(&connp->conn_lock); 3025 /* 3026 * Make sure that conn is not marked incipient 3027 * for incoming connections. A blind 3028 * removal of incipient flag is cheaper than 3029 * check and removal. 3030 */ 3031 connp->conn_state_flags &= ~CONN_INCIPIENT; 3032 3033 /* Must not cache forwarding table routes. */ 3034 if (ire_cacheable) { 3035 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3036 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3037 connp->conn_ire_cache = ire; 3038 IRE_UNTRACE_REF(ire); 3039 rw_exit(&ire->ire_bucket->irb_lock); 3040 mutex_exit(&connp->conn_lock); 3041 return (1); 3042 } 3043 rw_exit(&ire->ire_bucket->irb_lock); 3044 } 3045 mutex_exit(&connp->conn_lock); 3046 3047 if (ire->ire_mp == NULL) 3048 ire_refrele(ire); 3049 return (1); 3050 3051 error: 3052 if (ire->ire_mp == NULL) 3053 ire_refrele(ire); 3054 if (sire != NULL) 3055 ire_refrele(sire); 3056 return (0); 3057 } 3058 3059 /* 3060 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3061 * O_T_BIND_REQ/T_BIND_REQ message. 3062 */ 3063 static void 3064 tcp_bind(tcp_t *tcp, mblk_t *mp) 3065 { 3066 sin_t *sin; 3067 sin6_t *sin6; 3068 mblk_t *mp1; 3069 in_port_t requested_port; 3070 in_port_t allocated_port; 3071 struct T_bind_req *tbr; 3072 boolean_t bind_to_req_port_only; 3073 boolean_t backlog_update = B_FALSE; 3074 boolean_t user_specified; 3075 in6_addr_t v6addr; 3076 ipaddr_t v4addr; 3077 uint_t origipversion; 3078 int err; 3079 queue_t *q = tcp->tcp_wq; 3080 conn_t *connp; 3081 mlp_type_t addrtype, mlptype; 3082 zone_t *zone; 3083 cred_t *cr; 3084 in_port_t mlp_port; 3085 3086 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3087 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3088 if (tcp->tcp_debug) { 3089 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3090 "tcp_bind: bad req, len %u", 3091 (uint_t)(mp->b_wptr - mp->b_rptr)); 3092 } 3093 tcp_err_ack(tcp, mp, TPROTO, 0); 3094 return; 3095 } 3096 /* Make sure the largest address fits */ 3097 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3098 if (mp1 == NULL) { 3099 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3100 return; 3101 } 3102 mp = mp1; 3103 tbr = (struct T_bind_req *)mp->b_rptr; 3104 if (tcp->tcp_state >= TCPS_BOUND) { 3105 if ((tcp->tcp_state == TCPS_BOUND || 3106 tcp->tcp_state == TCPS_LISTEN) && 3107 tcp->tcp_conn_req_max != tbr->CONIND_number && 3108 tbr->CONIND_number > 0) { 3109 /* 3110 * Handle listen() increasing CONIND_number. 3111 * This is more "liberal" then what the TPI spec 3112 * requires but is needed to avoid a t_unbind 3113 * when handling listen() since the port number 3114 * might be "stolen" between the unbind and bind. 3115 */ 3116 backlog_update = B_TRUE; 3117 goto do_bind; 3118 } 3119 if (tcp->tcp_debug) { 3120 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3121 "tcp_bind: bad state, %d", tcp->tcp_state); 3122 } 3123 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3124 return; 3125 } 3126 origipversion = tcp->tcp_ipversion; 3127 3128 switch (tbr->ADDR_length) { 3129 case 0: /* request for a generic port */ 3130 tbr->ADDR_offset = sizeof (struct T_bind_req); 3131 if (tcp->tcp_family == AF_INET) { 3132 tbr->ADDR_length = sizeof (sin_t); 3133 sin = (sin_t *)&tbr[1]; 3134 *sin = sin_null; 3135 sin->sin_family = AF_INET; 3136 mp->b_wptr = (uchar_t *)&sin[1]; 3137 tcp->tcp_ipversion = IPV4_VERSION; 3138 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3139 } else { 3140 ASSERT(tcp->tcp_family == AF_INET6); 3141 tbr->ADDR_length = sizeof (sin6_t); 3142 sin6 = (sin6_t *)&tbr[1]; 3143 *sin6 = sin6_null; 3144 sin6->sin6_family = AF_INET6; 3145 mp->b_wptr = (uchar_t *)&sin6[1]; 3146 tcp->tcp_ipversion = IPV6_VERSION; 3147 V6_SET_ZERO(v6addr); 3148 } 3149 requested_port = 0; 3150 break; 3151 3152 case sizeof (sin_t): /* Complete IPv4 address */ 3153 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3154 sizeof (sin_t)); 3155 if (sin == NULL || !OK_32PTR((char *)sin)) { 3156 if (tcp->tcp_debug) { 3157 (void) strlog(TCP_MOD_ID, 0, 1, 3158 SL_ERROR|SL_TRACE, 3159 "tcp_bind: bad address parameter, " 3160 "offset %d, len %d", 3161 tbr->ADDR_offset, tbr->ADDR_length); 3162 } 3163 tcp_err_ack(tcp, mp, TPROTO, 0); 3164 return; 3165 } 3166 /* 3167 * With sockets sockfs will accept bogus sin_family in 3168 * bind() and replace it with the family used in the socket 3169 * call. 3170 */ 3171 if (sin->sin_family != AF_INET || 3172 tcp->tcp_family != AF_INET) { 3173 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3174 return; 3175 } 3176 requested_port = ntohs(sin->sin_port); 3177 tcp->tcp_ipversion = IPV4_VERSION; 3178 v4addr = sin->sin_addr.s_addr; 3179 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3180 break; 3181 3182 case sizeof (sin6_t): /* Complete IPv6 address */ 3183 sin6 = (sin6_t *)mi_offset_param(mp, 3184 tbr->ADDR_offset, sizeof (sin6_t)); 3185 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3186 if (tcp->tcp_debug) { 3187 (void) strlog(TCP_MOD_ID, 0, 1, 3188 SL_ERROR|SL_TRACE, 3189 "tcp_bind: bad IPv6 address parameter, " 3190 "offset %d, len %d", tbr->ADDR_offset, 3191 tbr->ADDR_length); 3192 } 3193 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3194 return; 3195 } 3196 if (sin6->sin6_family != AF_INET6 || 3197 tcp->tcp_family != AF_INET6) { 3198 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3199 return; 3200 } 3201 requested_port = ntohs(sin6->sin6_port); 3202 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3203 IPV4_VERSION : IPV6_VERSION; 3204 v6addr = sin6->sin6_addr; 3205 break; 3206 3207 default: 3208 if (tcp->tcp_debug) { 3209 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3210 "tcp_bind: bad address length, %d", 3211 tbr->ADDR_length); 3212 } 3213 tcp_err_ack(tcp, mp, TBADADDR, 0); 3214 return; 3215 } 3216 tcp->tcp_bound_source_v6 = v6addr; 3217 3218 /* Check for change in ipversion */ 3219 if (origipversion != tcp->tcp_ipversion) { 3220 ASSERT(tcp->tcp_family == AF_INET6); 3221 err = tcp->tcp_ipversion == IPV6_VERSION ? 3222 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3223 if (err) { 3224 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3225 return; 3226 } 3227 } 3228 3229 /* 3230 * Initialize family specific fields. Copy of the src addr. 3231 * in tcp_t is needed for the lookup funcs. 3232 */ 3233 if (tcp->tcp_ipversion == IPV6_VERSION) { 3234 tcp->tcp_ip6h->ip6_src = v6addr; 3235 } else { 3236 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3237 } 3238 tcp->tcp_ip_src_v6 = v6addr; 3239 3240 /* 3241 * For O_T_BIND_REQ: 3242 * Verify that the target port/addr is available, or choose 3243 * another. 3244 * For T_BIND_REQ: 3245 * Verify that the target port/addr is available or fail. 3246 * In both cases when it succeeds the tcp is inserted in the 3247 * bind hash table. This ensures that the operation is atomic 3248 * under the lock on the hash bucket. 3249 */ 3250 bind_to_req_port_only = requested_port != 0 && 3251 tbr->PRIM_type != O_T_BIND_REQ; 3252 /* 3253 * Get a valid port (within the anonymous range and should not 3254 * be a privileged one) to use if the user has not given a port. 3255 * If multiple threads are here, they may all start with 3256 * with the same initial port. But, it should be fine as long as 3257 * tcp_bindi will ensure that no two threads will be assigned 3258 * the same port. 3259 * 3260 * NOTE: XXX If a privileged process asks for an anonymous port, we 3261 * still check for ports only in the range > tcp_smallest_non_priv_port, 3262 * unless TCP_ANONPRIVBIND option is set. 3263 */ 3264 mlptype = mlptSingle; 3265 mlp_port = requested_port; 3266 if (requested_port == 0) { 3267 requested_port = tcp->tcp_anon_priv_bind ? 3268 tcp_get_next_priv_port(tcp) : 3269 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3270 if (requested_port == 0) { 3271 tcp_err_ack(tcp, mp, TNOADDR, 0); 3272 return; 3273 } 3274 user_specified = B_FALSE; 3275 3276 /* 3277 * If the user went through one of the RPC interfaces to create 3278 * this socket and RPC is MLP in this zone, then give him an 3279 * anonymous MLP. 3280 */ 3281 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3282 connp = tcp->tcp_connp; 3283 if (connp->conn_anon_mlp && is_system_labeled()) { 3284 zone = crgetzone(cr); 3285 addrtype = tsol_mlp_addr_type(zone->zone_id, 3286 IPV6_VERSION, &v6addr); 3287 if (addrtype == mlptSingle) { 3288 tcp_err_ack(tcp, mp, TNOADDR, 0); 3289 return; 3290 } 3291 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3292 PMAPPORT, addrtype); 3293 mlp_port = PMAPPORT; 3294 } 3295 } else { 3296 int i; 3297 boolean_t priv = B_FALSE; 3298 3299 /* 3300 * If the requested_port is in the well-known privileged range, 3301 * verify that the stream was opened by a privileged user. 3302 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3303 * but instead the code relies on: 3304 * - the fact that the address of the array and its size never 3305 * changes 3306 * - the atomic assignment of the elements of the array 3307 */ 3308 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3309 if (requested_port < tcp_smallest_nonpriv_port) { 3310 priv = B_TRUE; 3311 } else { 3312 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3313 if (requested_port == 3314 tcp_g_epriv_ports[i]) { 3315 priv = B_TRUE; 3316 break; 3317 } 3318 } 3319 } 3320 if (priv) { 3321 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3322 if (tcp->tcp_debug) { 3323 (void) strlog(TCP_MOD_ID, 0, 1, 3324 SL_ERROR|SL_TRACE, 3325 "tcp_bind: no priv for port %d", 3326 requested_port); 3327 } 3328 tcp_err_ack(tcp, mp, TACCES, 0); 3329 return; 3330 } 3331 } 3332 user_specified = B_TRUE; 3333 3334 connp = tcp->tcp_connp; 3335 if (is_system_labeled()) { 3336 zone = crgetzone(cr); 3337 addrtype = tsol_mlp_addr_type(zone->zone_id, 3338 IPV6_VERSION, &v6addr); 3339 if (addrtype == mlptSingle) { 3340 tcp_err_ack(tcp, mp, TNOADDR, 0); 3341 return; 3342 } 3343 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3344 requested_port, addrtype); 3345 } 3346 } 3347 3348 if (mlptype != mlptSingle) { 3349 if (secpolicy_net_bindmlp(cr) != 0) { 3350 if (tcp->tcp_debug) { 3351 (void) strlog(TCP_MOD_ID, 0, 1, 3352 SL_ERROR|SL_TRACE, 3353 "tcp_bind: no priv for multilevel port %d", 3354 requested_port); 3355 } 3356 tcp_err_ack(tcp, mp, TACCES, 0); 3357 return; 3358 } 3359 3360 /* 3361 * If we're specifically binding a shared IP address and the 3362 * port is MLP on shared addresses, then check to see if this 3363 * zone actually owns the MLP. Reject if not. 3364 */ 3365 if (mlptype == mlptShared && addrtype == mlptShared) { 3366 zoneid_t mlpzone; 3367 3368 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3369 htons(mlp_port)); 3370 if (connp->conn_zoneid != mlpzone) { 3371 if (tcp->tcp_debug) { 3372 (void) strlog(TCP_MOD_ID, 0, 1, 3373 SL_ERROR|SL_TRACE, 3374 "tcp_bind: attempt to bind port " 3375 "%d on shared addr in zone %d " 3376 "(should be %d)", 3377 mlp_port, connp->conn_zoneid, 3378 mlpzone); 3379 } 3380 tcp_err_ack(tcp, mp, TACCES, 0); 3381 return; 3382 } 3383 } 3384 3385 if (!user_specified) { 3386 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3387 requested_port, B_TRUE); 3388 if (err != 0) { 3389 if (tcp->tcp_debug) { 3390 (void) strlog(TCP_MOD_ID, 0, 1, 3391 SL_ERROR|SL_TRACE, 3392 "tcp_bind: cannot establish anon " 3393 "MLP for port %d", 3394 requested_port); 3395 } 3396 tcp_err_ack(tcp, mp, TSYSERR, err); 3397 return; 3398 } 3399 connp->conn_anon_port = B_TRUE; 3400 } 3401 connp->conn_mlp_type = mlptype; 3402 } 3403 3404 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3405 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3406 3407 if (allocated_port == 0) { 3408 connp->conn_mlp_type = mlptSingle; 3409 if (connp->conn_anon_port) { 3410 connp->conn_anon_port = B_FALSE; 3411 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3412 requested_port, B_FALSE); 3413 } 3414 if (bind_to_req_port_only) { 3415 if (tcp->tcp_debug) { 3416 (void) strlog(TCP_MOD_ID, 0, 1, 3417 SL_ERROR|SL_TRACE, 3418 "tcp_bind: requested addr busy"); 3419 } 3420 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3421 } else { 3422 /* If we are out of ports, fail the bind. */ 3423 if (tcp->tcp_debug) { 3424 (void) strlog(TCP_MOD_ID, 0, 1, 3425 SL_ERROR|SL_TRACE, 3426 "tcp_bind: out of ports?"); 3427 } 3428 tcp_err_ack(tcp, mp, TNOADDR, 0); 3429 } 3430 return; 3431 } 3432 ASSERT(tcp->tcp_state == TCPS_BOUND); 3433 do_bind: 3434 if (!backlog_update) { 3435 if (tcp->tcp_family == AF_INET) 3436 sin->sin_port = htons(allocated_port); 3437 else 3438 sin6->sin6_port = htons(allocated_port); 3439 } 3440 if (tcp->tcp_family == AF_INET) { 3441 if (tbr->CONIND_number != 0) { 3442 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3443 sizeof (sin_t)); 3444 } else { 3445 /* Just verify the local IP address */ 3446 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3447 } 3448 } else { 3449 if (tbr->CONIND_number != 0) { 3450 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3451 sizeof (sin6_t)); 3452 } else { 3453 /* Just verify the local IP address */ 3454 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3455 IPV6_ADDR_LEN); 3456 } 3457 } 3458 if (mp1 == NULL) { 3459 if (connp->conn_anon_port) { 3460 connp->conn_anon_port = B_FALSE; 3461 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3462 requested_port, B_FALSE); 3463 } 3464 connp->conn_mlp_type = mlptSingle; 3465 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3466 return; 3467 } 3468 3469 tbr->PRIM_type = T_BIND_ACK; 3470 mp->b_datap->db_type = M_PCPROTO; 3471 3472 /* Chain in the reply mp for tcp_rput() */ 3473 mp1->b_cont = mp; 3474 mp = mp1; 3475 3476 tcp->tcp_conn_req_max = tbr->CONIND_number; 3477 if (tcp->tcp_conn_req_max) { 3478 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3479 tcp->tcp_conn_req_max = tcp_conn_req_min; 3480 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3481 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3482 /* 3483 * If this is a listener, do not reset the eager list 3484 * and other stuffs. Note that we don't check if the 3485 * existing eager list meets the new tcp_conn_req_max 3486 * requirement. 3487 */ 3488 if (tcp->tcp_state != TCPS_LISTEN) { 3489 tcp->tcp_state = TCPS_LISTEN; 3490 /* Initialize the chain. Don't need the eager_lock */ 3491 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3492 tcp->tcp_eager_next_drop_q0 = tcp; 3493 tcp->tcp_eager_prev_drop_q0 = tcp; 3494 tcp->tcp_second_ctimer_threshold = 3495 tcp_ip_abort_linterval; 3496 } 3497 } 3498 3499 /* 3500 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3501 * processing continues in tcp_rput_other(). 3502 */ 3503 if (tcp->tcp_family == AF_INET6) { 3504 ASSERT(tcp->tcp_connp->conn_af_isv6); 3505 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3506 } else { 3507 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3508 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3509 } 3510 /* 3511 * If the bind cannot complete immediately 3512 * IP will arrange to call tcp_rput_other 3513 * when the bind completes. 3514 */ 3515 if (mp != NULL) { 3516 tcp_rput_other(tcp, mp); 3517 } else { 3518 /* 3519 * Bind will be resumed later. Need to ensure 3520 * that conn doesn't disappear when that happens. 3521 * This will be decremented in ip_resume_tcp_bind(). 3522 */ 3523 CONN_INC_REF(tcp->tcp_connp); 3524 } 3525 } 3526 3527 3528 /* 3529 * If the "bind_to_req_port_only" parameter is set, if the requested port 3530 * number is available, return it, If not return 0 3531 * 3532 * If "bind_to_req_port_only" parameter is not set and 3533 * If the requested port number is available, return it. If not, return 3534 * the first anonymous port we happen across. If no anonymous ports are 3535 * available, return 0. addr is the requested local address, if any. 3536 * 3537 * In either case, when succeeding update the tcp_t to record the port number 3538 * and insert it in the bind hash table. 3539 * 3540 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3541 * without setting SO_REUSEADDR. This is needed so that they 3542 * can be viewed as two independent transport protocols. 3543 */ 3544 static in_port_t 3545 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3546 int reuseaddr, boolean_t quick_connect, 3547 boolean_t bind_to_req_port_only, boolean_t user_specified) 3548 { 3549 /* number of times we have run around the loop */ 3550 int count = 0; 3551 /* maximum number of times to run around the loop */ 3552 int loopmax; 3553 conn_t *connp = tcp->tcp_connp; 3554 zoneid_t zoneid = connp->conn_zoneid; 3555 3556 /* 3557 * Lookup for free addresses is done in a loop and "loopmax" 3558 * influences how long we spin in the loop 3559 */ 3560 if (bind_to_req_port_only) { 3561 /* 3562 * If the requested port is busy, don't bother to look 3563 * for a new one. Setting loop maximum count to 1 has 3564 * that effect. 3565 */ 3566 loopmax = 1; 3567 } else { 3568 /* 3569 * If the requested port is busy, look for a free one 3570 * in the anonymous port range. 3571 * Set loopmax appropriately so that one does not look 3572 * forever in the case all of the anonymous ports are in use. 3573 */ 3574 if (tcp->tcp_anon_priv_bind) { 3575 /* 3576 * loopmax = 3577 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3578 */ 3579 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3580 } else { 3581 loopmax = (tcp_largest_anon_port - 3582 tcp_smallest_anon_port + 1); 3583 } 3584 } 3585 do { 3586 uint16_t lport; 3587 tf_t *tbf; 3588 tcp_t *ltcp; 3589 conn_t *lconnp; 3590 3591 lport = htons(port); 3592 3593 /* 3594 * Ensure that the tcp_t is not currently in the bind hash. 3595 * Hold the lock on the hash bucket to ensure that 3596 * the duplicate check plus the insertion is an atomic 3597 * operation. 3598 * 3599 * This function does an inline lookup on the bind hash list 3600 * Make sure that we access only members of tcp_t 3601 * and that we don't look at tcp_tcp, since we are not 3602 * doing a CONN_INC_REF. 3603 */ 3604 tcp_bind_hash_remove(tcp); 3605 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3606 mutex_enter(&tbf->tf_lock); 3607 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3608 ltcp = ltcp->tcp_bind_hash) { 3609 boolean_t not_socket; 3610 boolean_t exclbind; 3611 3612 if (lport != ltcp->tcp_lport) 3613 continue; 3614 3615 lconnp = ltcp->tcp_connp; 3616 3617 /* 3618 * On a labeled system, we must treat bindings to ports 3619 * on shared IP addresses by sockets with MAC exemption 3620 * privilege as being in all zones, as there's 3621 * otherwise no way to identify the right receiver. 3622 */ 3623 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3624 !lconnp->conn_mac_exempt && 3625 !connp->conn_mac_exempt) 3626 continue; 3627 3628 /* 3629 * If TCP_EXCLBIND is set for either the bound or 3630 * binding endpoint, the semantics of bind 3631 * is changed according to the following. 3632 * 3633 * spec = specified address (v4 or v6) 3634 * unspec = unspecified address (v4 or v6) 3635 * A = specified addresses are different for endpoints 3636 * 3637 * bound bind to allowed 3638 * ------------------------------------- 3639 * unspec unspec no 3640 * unspec spec no 3641 * spec unspec no 3642 * spec spec yes if A 3643 * 3644 * For labeled systems, SO_MAC_EXEMPT behaves the same 3645 * as TCP_EXCLBIND, except that zoneid is ignored. 3646 * 3647 * Note: 3648 * 3649 * 1. Because of TLI semantics, an endpoint can go 3650 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3651 * TCPS_BOUND, depending on whether it is originally 3652 * a listener or not. That is why we need to check 3653 * for states greater than or equal to TCPS_BOUND 3654 * here. 3655 * 3656 * 2. Ideally, we should only check for state equals 3657 * to TCPS_LISTEN. And the following check should be 3658 * added. 3659 * 3660 * if (ltcp->tcp_state == TCPS_LISTEN || 3661 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3662 * ... 3663 * } 3664 * 3665 * The semantics will be changed to this. If the 3666 * endpoint on the list is in state not equal to 3667 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3668 * set, let the bind succeed. 3669 * 3670 * Because of (1), we cannot do that for TLI 3671 * endpoints. But we can do that for socket endpoints. 3672 * If in future, we can change this going back 3673 * semantics, we can use the above check for TLI also. 3674 */ 3675 not_socket = !(TCP_IS_SOCKET(ltcp) && 3676 TCP_IS_SOCKET(tcp)); 3677 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3678 3679 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3680 (exclbind && (not_socket || 3681 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3682 if (V6_OR_V4_INADDR_ANY( 3683 ltcp->tcp_bound_source_v6) || 3684 V6_OR_V4_INADDR_ANY(*laddr) || 3685 IN6_ARE_ADDR_EQUAL(laddr, 3686 <cp->tcp_bound_source_v6)) { 3687 break; 3688 } 3689 continue; 3690 } 3691 3692 /* 3693 * Check ipversion to allow IPv4 and IPv6 sockets to 3694 * have disjoint port number spaces, if *_EXCLBIND 3695 * is not set and only if the application binds to a 3696 * specific port. We use the same autoassigned port 3697 * number space for IPv4 and IPv6 sockets. 3698 */ 3699 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3700 bind_to_req_port_only) 3701 continue; 3702 3703 /* 3704 * Ideally, we should make sure that the source 3705 * address, remote address, and remote port in the 3706 * four tuple for this tcp-connection is unique. 3707 * However, trying to find out the local source 3708 * address would require too much code duplication 3709 * with IP, since IP needs needs to have that code 3710 * to support userland TCP implementations. 3711 */ 3712 if (quick_connect && 3713 (ltcp->tcp_state > TCPS_LISTEN) && 3714 ((tcp->tcp_fport != ltcp->tcp_fport) || 3715 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3716 <cp->tcp_remote_v6))) 3717 continue; 3718 3719 if (!reuseaddr) { 3720 /* 3721 * No socket option SO_REUSEADDR. 3722 * If existing port is bound to 3723 * a non-wildcard IP address 3724 * and the requesting stream is 3725 * bound to a distinct 3726 * different IP addresses 3727 * (non-wildcard, also), keep 3728 * going. 3729 */ 3730 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3731 !V6_OR_V4_INADDR_ANY( 3732 ltcp->tcp_bound_source_v6) && 3733 !IN6_ARE_ADDR_EQUAL(laddr, 3734 <cp->tcp_bound_source_v6)) 3735 continue; 3736 if (ltcp->tcp_state >= TCPS_BOUND) { 3737 /* 3738 * This port is being used and 3739 * its state is >= TCPS_BOUND, 3740 * so we can't bind to it. 3741 */ 3742 break; 3743 } 3744 } else { 3745 /* 3746 * socket option SO_REUSEADDR is set on the 3747 * binding tcp_t. 3748 * 3749 * If two streams are bound to 3750 * same IP address or both addr 3751 * and bound source are wildcards 3752 * (INADDR_ANY), we want to stop 3753 * searching. 3754 * We have found a match of IP source 3755 * address and source port, which is 3756 * refused regardless of the 3757 * SO_REUSEADDR setting, so we break. 3758 */ 3759 if (IN6_ARE_ADDR_EQUAL(laddr, 3760 <cp->tcp_bound_source_v6) && 3761 (ltcp->tcp_state == TCPS_LISTEN || 3762 ltcp->tcp_state == TCPS_BOUND)) 3763 break; 3764 } 3765 } 3766 if (ltcp != NULL) { 3767 /* The port number is busy */ 3768 mutex_exit(&tbf->tf_lock); 3769 } else { 3770 /* 3771 * This port is ours. Insert in fanout and mark as 3772 * bound to prevent others from getting the port 3773 * number. 3774 */ 3775 tcp->tcp_state = TCPS_BOUND; 3776 tcp->tcp_lport = htons(port); 3777 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3778 3779 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3780 tcp->tcp_lport)] == tbf); 3781 tcp_bind_hash_insert(tbf, tcp, 1); 3782 3783 mutex_exit(&tbf->tf_lock); 3784 3785 /* 3786 * We don't want tcp_next_port_to_try to "inherit" 3787 * a port number supplied by the user in a bind. 3788 */ 3789 if (user_specified) 3790 return (port); 3791 3792 /* 3793 * This is the only place where tcp_next_port_to_try 3794 * is updated. After the update, it may or may not 3795 * be in the valid range. 3796 */ 3797 if (!tcp->tcp_anon_priv_bind) 3798 tcp_next_port_to_try = port + 1; 3799 return (port); 3800 } 3801 3802 if (tcp->tcp_anon_priv_bind) { 3803 port = tcp_get_next_priv_port(tcp); 3804 } else { 3805 if (count == 0 && user_specified) { 3806 /* 3807 * We may have to return an anonymous port. So 3808 * get one to start with. 3809 */ 3810 port = 3811 tcp_update_next_port(tcp_next_port_to_try, 3812 tcp, B_TRUE); 3813 user_specified = B_FALSE; 3814 } else { 3815 port = tcp_update_next_port(port + 1, tcp, 3816 B_FALSE); 3817 } 3818 } 3819 if (port == 0) 3820 break; 3821 3822 /* 3823 * Don't let this loop run forever in the case where 3824 * all of the anonymous ports are in use. 3825 */ 3826 } while (++count < loopmax); 3827 return (0); 3828 } 3829 3830 /* 3831 * tcp_clean_death / tcp_close_detached must not be called more than once 3832 * on a tcp. Thus every function that potentially calls tcp_clean_death 3833 * must check for the tcp state before calling tcp_clean_death. 3834 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3835 * tcp_timer_handler, all check for the tcp state. 3836 */ 3837 /* ARGSUSED */ 3838 void 3839 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3840 { 3841 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3842 3843 freemsg(mp); 3844 if (tcp->tcp_state > TCPS_BOUND) 3845 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5); 3846 } 3847 3848 /* 3849 * We are dying for some reason. Try to do it gracefully. (May be called 3850 * as writer.) 3851 * 3852 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3853 * done by a service procedure). 3854 * TBD - Should the return value distinguish between the tcp_t being 3855 * freed and it being reinitialized? 3856 */ 3857 static int 3858 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3859 { 3860 mblk_t *mp; 3861 queue_t *q; 3862 3863 TCP_CLD_STAT(tag); 3864 3865 #if TCP_TAG_CLEAN_DEATH 3866 tcp->tcp_cleandeathtag = tag; 3867 #endif 3868 3869 if (tcp->tcp_fused) 3870 tcp_unfuse(tcp); 3871 3872 if (tcp->tcp_linger_tid != 0 && 3873 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3874 tcp_stop_lingering(tcp); 3875 } 3876 3877 ASSERT(tcp != NULL); 3878 ASSERT((tcp->tcp_family == AF_INET && 3879 tcp->tcp_ipversion == IPV4_VERSION) || 3880 (tcp->tcp_family == AF_INET6 && 3881 (tcp->tcp_ipversion == IPV4_VERSION || 3882 tcp->tcp_ipversion == IPV6_VERSION))); 3883 3884 if (TCP_IS_DETACHED(tcp)) { 3885 if (tcp->tcp_hard_binding) { 3886 /* 3887 * Its an eager that we are dealing with. We close the 3888 * eager but in case a conn_ind has already gone to the 3889 * listener, let tcp_accept_finish() send a discon_ind 3890 * to the listener and drop the last reference. If the 3891 * listener doesn't even know about the eager i.e. the 3892 * conn_ind hasn't gone up, blow away the eager and drop 3893 * the last reference as well. If the conn_ind has gone 3894 * up, state should be BOUND. tcp_accept_finish 3895 * will figure out that the connection has received a 3896 * RST and will send a DISCON_IND to the application. 3897 */ 3898 tcp_closei_local(tcp); 3899 if (!tcp->tcp_tconnind_started) { 3900 CONN_DEC_REF(tcp->tcp_connp); 3901 } else { 3902 tcp->tcp_state = TCPS_BOUND; 3903 } 3904 } else { 3905 tcp_close_detached(tcp); 3906 } 3907 return (0); 3908 } 3909 3910 TCP_STAT(tcp_clean_death_nondetached); 3911 3912 /* 3913 * If T_ORDREL_IND has not been sent yet (done when service routine 3914 * is run) postpone cleaning up the endpoint until service routine 3915 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3916 * client_errno since tcp_close uses the client_errno field. 3917 */ 3918 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3919 if (err != 0) 3920 tcp->tcp_client_errno = err; 3921 3922 tcp->tcp_deferred_clean_death = B_TRUE; 3923 return (-1); 3924 } 3925 3926 q = tcp->tcp_rq; 3927 3928 /* Trash all inbound data */ 3929 flushq(q, FLUSHALL); 3930 3931 /* 3932 * If we are at least part way open and there is error 3933 * (err==0 implies no error) 3934 * notify our client by a T_DISCON_IND. 3935 */ 3936 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3937 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3938 !TCP_IS_SOCKET(tcp)) { 3939 /* 3940 * Send M_FLUSH according to TPI. Because sockets will 3941 * (and must) ignore FLUSHR we do that only for TPI 3942 * endpoints and sockets in STREAMS mode. 3943 */ 3944 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3945 } 3946 if (tcp->tcp_debug) { 3947 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3948 "tcp_clean_death: discon err %d", err); 3949 } 3950 mp = mi_tpi_discon_ind(NULL, err, 0); 3951 if (mp != NULL) { 3952 putnext(q, mp); 3953 } else { 3954 if (tcp->tcp_debug) { 3955 (void) strlog(TCP_MOD_ID, 0, 1, 3956 SL_ERROR|SL_TRACE, 3957 "tcp_clean_death, sending M_ERROR"); 3958 } 3959 (void) putnextctl1(q, M_ERROR, EPROTO); 3960 } 3961 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3962 /* SYN_SENT or SYN_RCVD */ 3963 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3964 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3965 /* ESTABLISHED or CLOSE_WAIT */ 3966 BUMP_MIB(&tcp_mib, tcpEstabResets); 3967 } 3968 } 3969 3970 tcp_reinit(tcp); 3971 return (-1); 3972 } 3973 3974 /* 3975 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3976 * to expire, stop the wait and finish the close. 3977 */ 3978 static void 3979 tcp_stop_lingering(tcp_t *tcp) 3980 { 3981 clock_t delta = 0; 3982 3983 tcp->tcp_linger_tid = 0; 3984 if (tcp->tcp_state > TCPS_LISTEN) { 3985 tcp_acceptor_hash_remove(tcp); 3986 if (tcp->tcp_flow_stopped) { 3987 tcp_clrqfull(tcp); 3988 } 3989 3990 if (tcp->tcp_timer_tid != 0) { 3991 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3992 tcp->tcp_timer_tid = 0; 3993 } 3994 /* 3995 * Need to cancel those timers which will not be used when 3996 * TCP is detached. This has to be done before the tcp_wq 3997 * is set to the global queue. 3998 */ 3999 tcp_timers_stop(tcp); 4000 4001 4002 tcp->tcp_detached = B_TRUE; 4003 tcp->tcp_rq = tcp_g_q; 4004 tcp->tcp_wq = WR(tcp_g_q); 4005 4006 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4007 tcp_time_wait_append(tcp); 4008 TCP_DBGSTAT(tcp_detach_time_wait); 4009 goto finish; 4010 } 4011 4012 /* 4013 * If delta is zero the timer event wasn't executed and was 4014 * successfully canceled. In this case we need to restart it 4015 * with the minimal delta possible. 4016 */ 4017 if (delta >= 0) { 4018 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4019 delta ? delta : 1); 4020 } 4021 } else { 4022 tcp_closei_local(tcp); 4023 CONN_DEC_REF(tcp->tcp_connp); 4024 } 4025 finish: 4026 /* Signal closing thread that it can complete close */ 4027 mutex_enter(&tcp->tcp_closelock); 4028 tcp->tcp_detached = B_TRUE; 4029 tcp->tcp_rq = tcp_g_q; 4030 tcp->tcp_wq = WR(tcp_g_q); 4031 tcp->tcp_closed = 1; 4032 cv_signal(&tcp->tcp_closecv); 4033 mutex_exit(&tcp->tcp_closelock); 4034 } 4035 4036 /* 4037 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 4038 * expires. 4039 */ 4040 static void 4041 tcp_close_linger_timeout(void *arg) 4042 { 4043 conn_t *connp = (conn_t *)arg; 4044 tcp_t *tcp = connp->conn_tcp; 4045 4046 tcp->tcp_client_errno = ETIMEDOUT; 4047 tcp_stop_lingering(tcp); 4048 } 4049 4050 static int 4051 tcp_close(queue_t *q, int flags) 4052 { 4053 conn_t *connp = Q_TO_CONN(q); 4054 tcp_t *tcp = connp->conn_tcp; 4055 mblk_t *mp = &tcp->tcp_closemp; 4056 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4057 boolean_t linger_interrupted = B_FALSE; 4058 mblk_t *bp; 4059 4060 ASSERT(WR(q)->q_next == NULL); 4061 ASSERT(connp->conn_ref >= 2); 4062 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4063 4064 /* 4065 * We are being closed as /dev/tcp or /dev/tcp6. 4066 * 4067 * Mark the conn as closing. ill_pending_mp_add will not 4068 * add any mp to the pending mp list, after this conn has 4069 * started closing. Same for sq_pending_mp_add 4070 */ 4071 mutex_enter(&connp->conn_lock); 4072 connp->conn_state_flags |= CONN_CLOSING; 4073 if (connp->conn_oper_pending_ill != NULL) 4074 conn_ioctl_cleanup_reqd = B_TRUE; 4075 CONN_INC_REF_LOCKED(connp); 4076 mutex_exit(&connp->conn_lock); 4077 tcp->tcp_closeflags = (uint8_t)flags; 4078 ASSERT(connp->conn_ref >= 3); 4079 4080 /* 4081 * tcp_closemp_used is used below without any protection of a lock 4082 * as we don't expect any one else to use it concurrently at this 4083 * point otherwise it would be a major defect, though we do 4084 * increment tcp_closemp_used to record any attempt to reuse 4085 * tcp_closemp while it is still in use. This would help debugging. 4086 */ 4087 4088 if (mp->b_prev == NULL) { 4089 tcp->tcp_closemp_used = 1; 4090 } else { 4091 tcp->tcp_closemp_used++; 4092 ASSERT(mp->b_prev == NULL); 4093 } 4094 4095 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4096 4097 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4098 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4099 4100 mutex_enter(&tcp->tcp_closelock); 4101 while (!tcp->tcp_closed) { 4102 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4103 /* 4104 * We got interrupted. Check if we are lingering, 4105 * if yes, post a message to stop and wait until 4106 * tcp_closed is set. If we aren't lingering, 4107 * just go back around. 4108 */ 4109 if (tcp->tcp_linger && 4110 tcp->tcp_lingertime > 0 && 4111 !linger_interrupted) { 4112 mutex_exit(&tcp->tcp_closelock); 4113 /* Entering squeue, bump ref count. */ 4114 CONN_INC_REF(connp); 4115 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4116 squeue_enter(connp->conn_sqp, bp, 4117 tcp_linger_interrupted, connp, 4118 SQTAG_IP_TCP_CLOSE); 4119 linger_interrupted = B_TRUE; 4120 mutex_enter(&tcp->tcp_closelock); 4121 } 4122 } 4123 } 4124 mutex_exit(&tcp->tcp_closelock); 4125 4126 /* 4127 * In the case of listener streams that have eagers in the q or q0 4128 * we wait for the eagers to drop their reference to us. tcp_rq and 4129 * tcp_wq of the eagers point to our queues. By waiting for the 4130 * refcnt to drop to 1, we are sure that the eagers have cleaned 4131 * up their queue pointers and also dropped their references to us. 4132 */ 4133 if (tcp->tcp_wait_for_eagers) { 4134 mutex_enter(&connp->conn_lock); 4135 while (connp->conn_ref != 1) { 4136 cv_wait(&connp->conn_cv, &connp->conn_lock); 4137 } 4138 mutex_exit(&connp->conn_lock); 4139 } 4140 /* 4141 * ioctl cleanup. The mp is queued in the 4142 * ill_pending_mp or in the sq_pending_mp. 4143 */ 4144 if (conn_ioctl_cleanup_reqd) 4145 conn_ioctl_cleanup(connp); 4146 4147 qprocsoff(q); 4148 inet_minor_free(ip_minor_arena, connp->conn_dev); 4149 4150 tcp->tcp_cpid = -1; 4151 4152 /* 4153 * Drop IP's reference on the conn. This is the last reference 4154 * on the connp if the state was less than established. If the 4155 * connection has gone into timewait state, then we will have 4156 * one ref for the TCP and one more ref (total of two) for the 4157 * classifier connected hash list (a timewait connections stays 4158 * in connected hash till closed). 4159 * 4160 * We can't assert the references because there might be other 4161 * transient reference places because of some walkers or queued 4162 * packets in squeue for the timewait state. 4163 */ 4164 CONN_DEC_REF(connp); 4165 q->q_ptr = WR(q)->q_ptr = NULL; 4166 return (0); 4167 } 4168 4169 static int 4170 tcpclose_accept(queue_t *q) 4171 { 4172 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4173 4174 /* 4175 * We had opened an acceptor STREAM for sockfs which is 4176 * now being closed due to some error. 4177 */ 4178 qprocsoff(q); 4179 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4180 q->q_ptr = WR(q)->q_ptr = NULL; 4181 return (0); 4182 } 4183 4184 /* 4185 * Called by tcp_close() routine via squeue when lingering is 4186 * interrupted by a signal. 4187 */ 4188 4189 /* ARGSUSED */ 4190 static void 4191 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4192 { 4193 conn_t *connp = (conn_t *)arg; 4194 tcp_t *tcp = connp->conn_tcp; 4195 4196 freeb(mp); 4197 if (tcp->tcp_linger_tid != 0 && 4198 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4199 tcp_stop_lingering(tcp); 4200 tcp->tcp_client_errno = EINTR; 4201 } 4202 } 4203 4204 /* 4205 * Called by streams close routine via squeues when our client blows off her 4206 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4207 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4208 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4209 * acked. 4210 * 4211 * NOTE: tcp_close potentially returns error when lingering. 4212 * However, the stream head currently does not pass these errors 4213 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4214 * errors to the application (from tsleep()) and not errors 4215 * like ECONNRESET caused by receiving a reset packet. 4216 */ 4217 4218 /* ARGSUSED */ 4219 static void 4220 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4221 { 4222 char *msg; 4223 conn_t *connp = (conn_t *)arg; 4224 tcp_t *tcp = connp->conn_tcp; 4225 clock_t delta = 0; 4226 4227 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4228 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4229 4230 /* Cancel any pending timeout */ 4231 if (tcp->tcp_ordrelid != 0) { 4232 if (tcp->tcp_timeout) { 4233 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4234 } 4235 tcp->tcp_ordrelid = 0; 4236 tcp->tcp_timeout = B_FALSE; 4237 } 4238 4239 mutex_enter(&tcp->tcp_eager_lock); 4240 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4241 /* Cleanup for listener */ 4242 tcp_eager_cleanup(tcp, 0); 4243 tcp->tcp_wait_for_eagers = 1; 4244 } 4245 mutex_exit(&tcp->tcp_eager_lock); 4246 4247 connp->conn_mdt_ok = B_FALSE; 4248 tcp->tcp_mdt = B_FALSE; 4249 4250 connp->conn_lso_ok = B_FALSE; 4251 tcp->tcp_lso = B_FALSE; 4252 4253 msg = NULL; 4254 switch (tcp->tcp_state) { 4255 case TCPS_CLOSED: 4256 case TCPS_IDLE: 4257 case TCPS_BOUND: 4258 case TCPS_LISTEN: 4259 break; 4260 case TCPS_SYN_SENT: 4261 msg = "tcp_close, during connect"; 4262 break; 4263 case TCPS_SYN_RCVD: 4264 /* 4265 * Close during the connect 3-way handshake 4266 * but here there may or may not be pending data 4267 * already on queue. Process almost same as in 4268 * the ESTABLISHED state. 4269 */ 4270 /* FALLTHRU */ 4271 default: 4272 if (tcp->tcp_fused) 4273 tcp_unfuse(tcp); 4274 4275 /* 4276 * If SO_LINGER has set a zero linger time, abort the 4277 * connection with a reset. 4278 */ 4279 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4280 msg = "tcp_close, zero lingertime"; 4281 break; 4282 } 4283 4284 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4285 /* 4286 * Abort connection if there is unread data queued. 4287 */ 4288 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4289 msg = "tcp_close, unread data"; 4290 break; 4291 } 4292 /* 4293 * tcp_hard_bound is now cleared thus all packets go through 4294 * tcp_lookup. This fact is used by tcp_detach below. 4295 * 4296 * We have done a qwait() above which could have possibly 4297 * drained more messages in turn causing transition to a 4298 * different state. Check whether we have to do the rest 4299 * of the processing or not. 4300 */ 4301 if (tcp->tcp_state <= TCPS_LISTEN) 4302 break; 4303 4304 /* 4305 * Transmit the FIN before detaching the tcp_t. 4306 * After tcp_detach returns this queue/perimeter 4307 * no longer owns the tcp_t thus others can modify it. 4308 */ 4309 (void) tcp_xmit_end(tcp); 4310 4311 /* 4312 * If lingering on close then wait until the fin is acked, 4313 * the SO_LINGER time passes, or a reset is sent/received. 4314 */ 4315 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4316 !(tcp->tcp_fin_acked) && 4317 tcp->tcp_state >= TCPS_ESTABLISHED) { 4318 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4319 tcp->tcp_client_errno = EWOULDBLOCK; 4320 } else if (tcp->tcp_client_errno == 0) { 4321 4322 ASSERT(tcp->tcp_linger_tid == 0); 4323 4324 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4325 tcp_close_linger_timeout, 4326 tcp->tcp_lingertime * hz); 4327 4328 /* tcp_close_linger_timeout will finish close */ 4329 if (tcp->tcp_linger_tid == 0) 4330 tcp->tcp_client_errno = ENOSR; 4331 else 4332 return; 4333 } 4334 4335 /* 4336 * Check if we need to detach or just close 4337 * the instance. 4338 */ 4339 if (tcp->tcp_state <= TCPS_LISTEN) 4340 break; 4341 } 4342 4343 /* 4344 * Make sure that no other thread will access the tcp_rq of 4345 * this instance (through lookups etc.) as tcp_rq will go 4346 * away shortly. 4347 */ 4348 tcp_acceptor_hash_remove(tcp); 4349 4350 if (tcp->tcp_flow_stopped) { 4351 tcp_clrqfull(tcp); 4352 } 4353 4354 if (tcp->tcp_timer_tid != 0) { 4355 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4356 tcp->tcp_timer_tid = 0; 4357 } 4358 /* 4359 * Need to cancel those timers which will not be used when 4360 * TCP is detached. This has to be done before the tcp_wq 4361 * is set to the global queue. 4362 */ 4363 tcp_timers_stop(tcp); 4364 4365 tcp->tcp_detached = B_TRUE; 4366 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4367 tcp_time_wait_append(tcp); 4368 TCP_DBGSTAT(tcp_detach_time_wait); 4369 ASSERT(connp->conn_ref >= 3); 4370 goto finish; 4371 } 4372 4373 /* 4374 * If delta is zero the timer event wasn't executed and was 4375 * successfully canceled. In this case we need to restart it 4376 * with the minimal delta possible. 4377 */ 4378 if (delta >= 0) 4379 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4380 delta ? delta : 1); 4381 4382 ASSERT(connp->conn_ref >= 3); 4383 goto finish; 4384 } 4385 4386 /* Detach did not complete. Still need to remove q from stream. */ 4387 if (msg) { 4388 if (tcp->tcp_state == TCPS_ESTABLISHED || 4389 tcp->tcp_state == TCPS_CLOSE_WAIT) 4390 BUMP_MIB(&tcp_mib, tcpEstabResets); 4391 if (tcp->tcp_state == TCPS_SYN_SENT || 4392 tcp->tcp_state == TCPS_SYN_RCVD) 4393 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4394 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4395 } 4396 4397 tcp_closei_local(tcp); 4398 CONN_DEC_REF(connp); 4399 ASSERT(connp->conn_ref >= 2); 4400 4401 finish: 4402 /* 4403 * Although packets are always processed on the correct 4404 * tcp's perimeter and access is serialized via squeue's, 4405 * IP still needs a queue when sending packets in time_wait 4406 * state so use WR(tcp_g_q) till ip_output() can be 4407 * changed to deal with just connp. For read side, we 4408 * could have set tcp_rq to NULL but there are some cases 4409 * in tcp_rput_data() from early days of this code which 4410 * do a putnext without checking if tcp is closed. Those 4411 * need to be identified before both tcp_rq and tcp_wq 4412 * can be set to NULL and tcp_q_q can disappear forever. 4413 */ 4414 mutex_enter(&tcp->tcp_closelock); 4415 /* 4416 * Don't change the queues in the case of a listener that has 4417 * eagers in its q or q0. It could surprise the eagers. 4418 * Instead wait for the eagers outside the squeue. 4419 */ 4420 if (!tcp->tcp_wait_for_eagers) { 4421 tcp->tcp_detached = B_TRUE; 4422 tcp->tcp_rq = tcp_g_q; 4423 tcp->tcp_wq = WR(tcp_g_q); 4424 } 4425 4426 /* Signal tcp_close() to finish closing. */ 4427 tcp->tcp_closed = 1; 4428 cv_signal(&tcp->tcp_closecv); 4429 mutex_exit(&tcp->tcp_closelock); 4430 } 4431 4432 4433 /* 4434 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4435 * Some stream heads get upset if they see these later on as anything but NULL. 4436 */ 4437 static void 4438 tcp_close_mpp(mblk_t **mpp) 4439 { 4440 mblk_t *mp; 4441 4442 if ((mp = *mpp) != NULL) { 4443 do { 4444 mp->b_next = NULL; 4445 mp->b_prev = NULL; 4446 } while ((mp = mp->b_cont) != NULL); 4447 4448 mp = *mpp; 4449 *mpp = NULL; 4450 freemsg(mp); 4451 } 4452 } 4453 4454 /* Do detached close. */ 4455 static void 4456 tcp_close_detached(tcp_t *tcp) 4457 { 4458 if (tcp->tcp_fused) 4459 tcp_unfuse(tcp); 4460 4461 /* 4462 * Clustering code serializes TCP disconnect callbacks and 4463 * cluster tcp list walks by blocking a TCP disconnect callback 4464 * if a cluster tcp list walk is in progress. This ensures 4465 * accurate accounting of TCPs in the cluster code even though 4466 * the TCP list walk itself is not atomic. 4467 */ 4468 tcp_closei_local(tcp); 4469 CONN_DEC_REF(tcp->tcp_connp); 4470 } 4471 4472 /* 4473 * Stop all TCP timers, and free the timer mblks if requested. 4474 */ 4475 void 4476 tcp_timers_stop(tcp_t *tcp) 4477 { 4478 if (tcp->tcp_timer_tid != 0) { 4479 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4480 tcp->tcp_timer_tid = 0; 4481 } 4482 if (tcp->tcp_ka_tid != 0) { 4483 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4484 tcp->tcp_ka_tid = 0; 4485 } 4486 if (tcp->tcp_ack_tid != 0) { 4487 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4488 tcp->tcp_ack_tid = 0; 4489 } 4490 if (tcp->tcp_push_tid != 0) { 4491 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4492 tcp->tcp_push_tid = 0; 4493 } 4494 } 4495 4496 /* 4497 * The tcp_t is going away. Remove it from all lists and set it 4498 * to TCPS_CLOSED. The freeing up of memory is deferred until 4499 * tcp_inactive. This is needed since a thread in tcp_rput might have 4500 * done a CONN_INC_REF on this structure before it was removed from the 4501 * hashes. 4502 */ 4503 static void 4504 tcp_closei_local(tcp_t *tcp) 4505 { 4506 ire_t *ire; 4507 conn_t *connp = tcp->tcp_connp; 4508 4509 if (!TCP_IS_SOCKET(tcp)) 4510 tcp_acceptor_hash_remove(tcp); 4511 4512 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4513 tcp->tcp_ibsegs = 0; 4514 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4515 tcp->tcp_obsegs = 0; 4516 4517 /* 4518 * If we are an eager connection hanging off a listener that 4519 * hasn't formally accepted the connection yet, get off his 4520 * list and blow off any data that we have accumulated. 4521 */ 4522 if (tcp->tcp_listener != NULL) { 4523 tcp_t *listener = tcp->tcp_listener; 4524 mutex_enter(&listener->tcp_eager_lock); 4525 /* 4526 * tcp_tconnind_started == B_TRUE means that the 4527 * conn_ind has already gone to listener. At 4528 * this point, eager will be closed but we 4529 * leave it in listeners eager list so that 4530 * if listener decides to close without doing 4531 * accept, we can clean this up. In tcp_wput_accept 4532 * we take care of the case of accept on closed 4533 * eager. 4534 */ 4535 if (!tcp->tcp_tconnind_started) { 4536 tcp_eager_unlink(tcp); 4537 mutex_exit(&listener->tcp_eager_lock); 4538 /* 4539 * We don't want to have any pointers to the 4540 * listener queue, after we have released our 4541 * reference on the listener 4542 */ 4543 tcp->tcp_rq = tcp_g_q; 4544 tcp->tcp_wq = WR(tcp_g_q); 4545 CONN_DEC_REF(listener->tcp_connp); 4546 } else { 4547 mutex_exit(&listener->tcp_eager_lock); 4548 } 4549 } 4550 4551 /* Stop all the timers */ 4552 tcp_timers_stop(tcp); 4553 4554 if (tcp->tcp_state == TCPS_LISTEN) { 4555 if (tcp->tcp_ip_addr_cache) { 4556 kmem_free((void *)tcp->tcp_ip_addr_cache, 4557 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4558 tcp->tcp_ip_addr_cache = NULL; 4559 } 4560 } 4561 if (tcp->tcp_flow_stopped) 4562 tcp_clrqfull(tcp); 4563 4564 tcp_bind_hash_remove(tcp); 4565 /* 4566 * If the tcp_time_wait_collector (which runs outside the squeue) 4567 * is trying to remove this tcp from the time wait list, we will 4568 * block in tcp_time_wait_remove while trying to acquire the 4569 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4570 * requires the ipcl_hash_remove to be ordered after the 4571 * tcp_time_wait_remove for the refcnt checks to work correctly. 4572 */ 4573 if (tcp->tcp_state == TCPS_TIME_WAIT) 4574 (void) tcp_time_wait_remove(tcp, NULL); 4575 CL_INET_DISCONNECT(tcp); 4576 ipcl_hash_remove(connp); 4577 4578 /* 4579 * Delete the cached ire in conn_ire_cache and also mark 4580 * the conn as CONDEMNED 4581 */ 4582 mutex_enter(&connp->conn_lock); 4583 connp->conn_state_flags |= CONN_CONDEMNED; 4584 ire = connp->conn_ire_cache; 4585 connp->conn_ire_cache = NULL; 4586 mutex_exit(&connp->conn_lock); 4587 if (ire != NULL) 4588 IRE_REFRELE_NOTR(ire); 4589 4590 /* Need to cleanup any pending ioctls */ 4591 ASSERT(tcp->tcp_time_wait_next == NULL); 4592 ASSERT(tcp->tcp_time_wait_prev == NULL); 4593 ASSERT(tcp->tcp_time_wait_expire == 0); 4594 tcp->tcp_state = TCPS_CLOSED; 4595 4596 /* Release any SSL context */ 4597 if (tcp->tcp_kssl_ent != NULL) { 4598 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4599 tcp->tcp_kssl_ent = NULL; 4600 } 4601 if (tcp->tcp_kssl_ctx != NULL) { 4602 kssl_release_ctx(tcp->tcp_kssl_ctx); 4603 tcp->tcp_kssl_ctx = NULL; 4604 } 4605 tcp->tcp_kssl_pending = B_FALSE; 4606 } 4607 4608 /* 4609 * tcp is dying (called from ipcl_conn_destroy and error cases). 4610 * Free the tcp_t in either case. 4611 */ 4612 void 4613 tcp_free(tcp_t *tcp) 4614 { 4615 mblk_t *mp; 4616 ip6_pkt_t *ipp; 4617 4618 ASSERT(tcp != NULL); 4619 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4620 4621 tcp->tcp_rq = NULL; 4622 tcp->tcp_wq = NULL; 4623 4624 tcp_close_mpp(&tcp->tcp_xmit_head); 4625 tcp_close_mpp(&tcp->tcp_reass_head); 4626 if (tcp->tcp_rcv_list != NULL) { 4627 /* Free b_next chain */ 4628 tcp_close_mpp(&tcp->tcp_rcv_list); 4629 } 4630 if ((mp = tcp->tcp_urp_mp) != NULL) { 4631 freemsg(mp); 4632 } 4633 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4634 freemsg(mp); 4635 } 4636 4637 if (tcp->tcp_fused_sigurg_mp != NULL) { 4638 freeb(tcp->tcp_fused_sigurg_mp); 4639 tcp->tcp_fused_sigurg_mp = NULL; 4640 } 4641 4642 if (tcp->tcp_sack_info != NULL) { 4643 if (tcp->tcp_notsack_list != NULL) { 4644 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4645 } 4646 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4647 } 4648 4649 if (tcp->tcp_hopopts != NULL) { 4650 mi_free(tcp->tcp_hopopts); 4651 tcp->tcp_hopopts = NULL; 4652 tcp->tcp_hopoptslen = 0; 4653 } 4654 ASSERT(tcp->tcp_hopoptslen == 0); 4655 if (tcp->tcp_dstopts != NULL) { 4656 mi_free(tcp->tcp_dstopts); 4657 tcp->tcp_dstopts = NULL; 4658 tcp->tcp_dstoptslen = 0; 4659 } 4660 ASSERT(tcp->tcp_dstoptslen == 0); 4661 if (tcp->tcp_rtdstopts != NULL) { 4662 mi_free(tcp->tcp_rtdstopts); 4663 tcp->tcp_rtdstopts = NULL; 4664 tcp->tcp_rtdstoptslen = 0; 4665 } 4666 ASSERT(tcp->tcp_rtdstoptslen == 0); 4667 if (tcp->tcp_rthdr != NULL) { 4668 mi_free(tcp->tcp_rthdr); 4669 tcp->tcp_rthdr = NULL; 4670 tcp->tcp_rthdrlen = 0; 4671 } 4672 ASSERT(tcp->tcp_rthdrlen == 0); 4673 4674 ipp = &tcp->tcp_sticky_ipp; 4675 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4676 IPPF_RTHDR)) 4677 ip6_pkt_free(ipp); 4678 4679 /* 4680 * Free memory associated with the tcp/ip header template. 4681 */ 4682 4683 if (tcp->tcp_iphc != NULL) 4684 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4685 4686 /* 4687 * Following is really a blowing away a union. 4688 * It happens to have exactly two members of identical size 4689 * the following code is enough. 4690 */ 4691 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4692 4693 if (tcp->tcp_tracebuf != NULL) { 4694 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4695 tcp->tcp_tracebuf = NULL; 4696 } 4697 } 4698 4699 4700 /* 4701 * Put a connection confirmation message upstream built from the 4702 * address information within 'iph' and 'tcph'. Report our success or failure. 4703 */ 4704 static boolean_t 4705 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4706 mblk_t **defermp) 4707 { 4708 sin_t sin; 4709 sin6_t sin6; 4710 mblk_t *mp; 4711 char *optp = NULL; 4712 int optlen = 0; 4713 cred_t *cr; 4714 4715 if (defermp != NULL) 4716 *defermp = NULL; 4717 4718 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4719 /* 4720 * Return in T_CONN_CON results of option negotiation through 4721 * the T_CONN_REQ. Note: If there is an real end-to-end option 4722 * negotiation, then what is received from remote end needs 4723 * to be taken into account but there is no such thing (yet?) 4724 * in our TCP/IP. 4725 * Note: We do not use mi_offset_param() here as 4726 * tcp_opts_conn_req contents do not directly come from 4727 * an application and are either generated in kernel or 4728 * from user input that was already verified. 4729 */ 4730 mp = tcp->tcp_conn.tcp_opts_conn_req; 4731 optp = (char *)(mp->b_rptr + 4732 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4733 optlen = (int) 4734 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4735 } 4736 4737 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4738 ipha_t *ipha = (ipha_t *)iphdr; 4739 4740 /* packet is IPv4 */ 4741 if (tcp->tcp_family == AF_INET) { 4742 sin = sin_null; 4743 sin.sin_addr.s_addr = ipha->ipha_src; 4744 sin.sin_port = *(uint16_t *)tcph->th_lport; 4745 sin.sin_family = AF_INET; 4746 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4747 (int)sizeof (sin_t), optp, optlen); 4748 } else { 4749 sin6 = sin6_null; 4750 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4751 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4752 sin6.sin6_family = AF_INET6; 4753 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4754 (int)sizeof (sin6_t), optp, optlen); 4755 4756 } 4757 } else { 4758 ip6_t *ip6h = (ip6_t *)iphdr; 4759 4760 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4761 ASSERT(tcp->tcp_family == AF_INET6); 4762 sin6 = sin6_null; 4763 sin6.sin6_addr = ip6h->ip6_src; 4764 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4765 sin6.sin6_family = AF_INET6; 4766 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4767 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4768 (int)sizeof (sin6_t), optp, optlen); 4769 } 4770 4771 if (!mp) 4772 return (B_FALSE); 4773 4774 if ((cr = DB_CRED(idmp)) != NULL) { 4775 mblk_setcred(mp, cr); 4776 DB_CPID(mp) = DB_CPID(idmp); 4777 } 4778 4779 if (defermp == NULL) 4780 putnext(tcp->tcp_rq, mp); 4781 else 4782 *defermp = mp; 4783 4784 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4785 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4786 return (B_TRUE); 4787 } 4788 4789 /* 4790 * Defense for the SYN attack - 4791 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4792 * one from the list of droppable eagers. This list is a subset of q0. 4793 * see comments before the definition of MAKE_DROPPABLE(). 4794 * 2. Don't drop a SYN request before its first timeout. This gives every 4795 * request at least til the first timeout to complete its 3-way handshake. 4796 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4797 * requests currently on the queue that has timed out. This will be used 4798 * as an indicator of whether an attack is under way, so that appropriate 4799 * actions can be taken. (It's incremented in tcp_timer() and decremented 4800 * either when eager goes into ESTABLISHED, or gets freed up.) 4801 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4802 * # of timeout drops back to <= q0len/32 => SYN alert off 4803 */ 4804 static boolean_t 4805 tcp_drop_q0(tcp_t *tcp) 4806 { 4807 tcp_t *eager; 4808 mblk_t *mp; 4809 4810 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4811 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4812 4813 /* Pick oldest eager from the list of droppable eagers */ 4814 eager = tcp->tcp_eager_prev_drop_q0; 4815 4816 /* If list is empty. return B_FALSE */ 4817 if (eager == tcp) { 4818 return (B_FALSE); 4819 } 4820 4821 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4822 if ((mp = allocb(0, BPRI_HI)) == NULL) 4823 return (B_FALSE); 4824 4825 /* 4826 * Take this eager out from the list of droppable eagers since we are 4827 * going to drop it. 4828 */ 4829 MAKE_UNDROPPABLE(eager); 4830 4831 if (tcp->tcp_debug) { 4832 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4833 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4834 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4835 tcp->tcp_conn_req_cnt_q0, 4836 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4837 } 4838 4839 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4840 4841 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4842 CONN_INC_REF(eager->tcp_connp); 4843 4844 /* Mark the IRE created for this SYN request temporary */ 4845 tcp_ip_ire_mark_advice(eager); 4846 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4847 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4848 4849 return (B_TRUE); 4850 } 4851 4852 int 4853 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4854 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4855 { 4856 tcp_t *ltcp = lconnp->conn_tcp; 4857 tcp_t *tcp = connp->conn_tcp; 4858 mblk_t *tpi_mp; 4859 ipha_t *ipha; 4860 ip6_t *ip6h; 4861 sin6_t sin6; 4862 in6_addr_t v6dst; 4863 int err; 4864 int ifindex = 0; 4865 cred_t *cr; 4866 4867 if (ipvers == IPV4_VERSION) { 4868 ipha = (ipha_t *)mp->b_rptr; 4869 4870 connp->conn_send = ip_output; 4871 connp->conn_recv = tcp_input; 4872 4873 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4874 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4875 4876 sin6 = sin6_null; 4877 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4878 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4879 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4880 sin6.sin6_family = AF_INET6; 4881 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4882 lconnp->conn_zoneid); 4883 if (tcp->tcp_recvdstaddr) { 4884 sin6_t sin6d; 4885 4886 sin6d = sin6_null; 4887 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4888 &sin6d.sin6_addr); 4889 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4890 sin6d.sin6_family = AF_INET; 4891 tpi_mp = mi_tpi_extconn_ind(NULL, 4892 (char *)&sin6d, sizeof (sin6_t), 4893 (char *)&tcp, 4894 (t_scalar_t)sizeof (intptr_t), 4895 (char *)&sin6d, sizeof (sin6_t), 4896 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4897 } else { 4898 tpi_mp = mi_tpi_conn_ind(NULL, 4899 (char *)&sin6, sizeof (sin6_t), 4900 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4901 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4902 } 4903 } else { 4904 ip6h = (ip6_t *)mp->b_rptr; 4905 4906 connp->conn_send = ip_output_v6; 4907 connp->conn_recv = tcp_input; 4908 4909 connp->conn_srcv6 = ip6h->ip6_dst; 4910 connp->conn_remv6 = ip6h->ip6_src; 4911 4912 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4913 ifindex = (int)DB_CKSUMSTUFF(mp); 4914 DB_CKSUMSTUFF(mp) = 0; 4915 4916 sin6 = sin6_null; 4917 sin6.sin6_addr = ip6h->ip6_src; 4918 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4919 sin6.sin6_family = AF_INET6; 4920 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4921 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4922 lconnp->conn_zoneid); 4923 4924 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4925 /* Pass up the scope_id of remote addr */ 4926 sin6.sin6_scope_id = ifindex; 4927 } else { 4928 sin6.sin6_scope_id = 0; 4929 } 4930 if (tcp->tcp_recvdstaddr) { 4931 sin6_t sin6d; 4932 4933 sin6d = sin6_null; 4934 sin6.sin6_addr = ip6h->ip6_dst; 4935 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4936 sin6d.sin6_family = AF_INET; 4937 tpi_mp = mi_tpi_extconn_ind(NULL, 4938 (char *)&sin6d, sizeof (sin6_t), 4939 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4940 (char *)&sin6d, sizeof (sin6_t), 4941 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4942 } else { 4943 tpi_mp = mi_tpi_conn_ind(NULL, 4944 (char *)&sin6, sizeof (sin6_t), 4945 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4946 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4947 } 4948 } 4949 4950 if (tpi_mp == NULL) 4951 return (ENOMEM); 4952 4953 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4954 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4955 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4956 connp->conn_fully_bound = B_FALSE; 4957 4958 if (tcp_trace) 4959 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4960 4961 /* Inherit information from the "parent" */ 4962 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4963 tcp->tcp_family = ltcp->tcp_family; 4964 tcp->tcp_wq = ltcp->tcp_wq; 4965 tcp->tcp_rq = ltcp->tcp_rq; 4966 tcp->tcp_mss = tcp_mss_def_ipv6; 4967 tcp->tcp_detached = B_TRUE; 4968 if ((err = tcp_init_values(tcp)) != 0) { 4969 freemsg(tpi_mp); 4970 return (err); 4971 } 4972 4973 if (ipvers == IPV4_VERSION) { 4974 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4975 freemsg(tpi_mp); 4976 return (err); 4977 } 4978 ASSERT(tcp->tcp_ipha != NULL); 4979 } else { 4980 /* ifindex must be already set */ 4981 ASSERT(ifindex != 0); 4982 4983 if (ltcp->tcp_bound_if != 0) { 4984 /* 4985 * Set newtcp's bound_if equal to 4986 * listener's value. If ifindex is 4987 * not the same as ltcp->tcp_bound_if, 4988 * it must be a packet for the ipmp group 4989 * of interfaces 4990 */ 4991 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4992 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4993 tcp->tcp_bound_if = ifindex; 4994 } 4995 4996 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4997 tcp->tcp_recvifindex = 0; 4998 tcp->tcp_recvhops = 0xffffffffU; 4999 ASSERT(tcp->tcp_ip6h != NULL); 5000 } 5001 5002 tcp->tcp_lport = ltcp->tcp_lport; 5003 5004 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 5005 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 5006 /* 5007 * Listener had options of some sort; eager inherits. 5008 * Free up the eager template and allocate one 5009 * of the right size. 5010 */ 5011 if (tcp->tcp_hdr_grown) { 5012 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 5013 } else { 5014 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5015 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5016 } 5017 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5018 KM_NOSLEEP); 5019 if (tcp->tcp_iphc == NULL) { 5020 tcp->tcp_iphc_len = 0; 5021 freemsg(tpi_mp); 5022 return (ENOMEM); 5023 } 5024 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5025 tcp->tcp_hdr_grown = B_TRUE; 5026 } 5027 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5028 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5029 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5030 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5031 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5032 5033 /* 5034 * Copy the IP+TCP header template from listener to eager 5035 */ 5036 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5037 if (tcp->tcp_ipversion == IPV6_VERSION) { 5038 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5039 IPPROTO_RAW) { 5040 tcp->tcp_ip6h = 5041 (ip6_t *)(tcp->tcp_iphc + 5042 sizeof (ip6i_t)); 5043 } else { 5044 tcp->tcp_ip6h = 5045 (ip6_t *)(tcp->tcp_iphc); 5046 } 5047 tcp->tcp_ipha = NULL; 5048 } else { 5049 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5050 tcp->tcp_ip6h = NULL; 5051 } 5052 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5053 tcp->tcp_ip_hdr_len); 5054 } else { 5055 /* 5056 * only valid case when ipversion of listener and 5057 * eager differ is when listener is IPv6 and 5058 * eager is IPv4. 5059 * Eager header template has been initialized to the 5060 * maximum v4 header sizes, which includes space for 5061 * TCP and IP options. 5062 */ 5063 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5064 (tcp->tcp_ipversion == IPV4_VERSION)); 5065 ASSERT(tcp->tcp_iphc_len >= 5066 TCP_MAX_COMBINED_HEADER_LENGTH); 5067 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5068 /* copy IP header fields individually */ 5069 tcp->tcp_ipha->ipha_ttl = 5070 ltcp->tcp_ip6h->ip6_hops; 5071 bcopy(ltcp->tcp_tcph->th_lport, 5072 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5073 } 5074 5075 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5076 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5077 sizeof (in_port_t)); 5078 5079 if (ltcp->tcp_lport == 0) { 5080 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5081 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5082 sizeof (in_port_t)); 5083 } 5084 5085 if (tcp->tcp_ipversion == IPV4_VERSION) { 5086 ASSERT(ipha != NULL); 5087 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5088 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5089 5090 /* Source routing option copyover (reverse it) */ 5091 if (tcp_rev_src_routes) 5092 tcp_opt_reverse(tcp, ipha); 5093 } else { 5094 ASSERT(ip6h != NULL); 5095 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5096 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5097 } 5098 5099 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5100 ASSERT(!tcp->tcp_tconnind_started); 5101 /* 5102 * If the SYN contains a credential, it's a loopback packet; attach 5103 * the credential to the TPI message. 5104 */ 5105 if ((cr = DB_CRED(idmp)) != NULL) { 5106 mblk_setcred(tpi_mp, cr); 5107 DB_CPID(tpi_mp) = DB_CPID(idmp); 5108 } 5109 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5110 5111 /* Inherit the listener's SSL protection state */ 5112 5113 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5114 kssl_hold_ent(tcp->tcp_kssl_ent); 5115 tcp->tcp_kssl_pending = B_TRUE; 5116 } 5117 5118 return (0); 5119 } 5120 5121 5122 int 5123 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5124 tcph_t *tcph, mblk_t *idmp) 5125 { 5126 tcp_t *ltcp = lconnp->conn_tcp; 5127 tcp_t *tcp = connp->conn_tcp; 5128 sin_t sin; 5129 mblk_t *tpi_mp = NULL; 5130 int err; 5131 cred_t *cr; 5132 5133 sin = sin_null; 5134 sin.sin_addr.s_addr = ipha->ipha_src; 5135 sin.sin_port = *(uint16_t *)tcph->th_lport; 5136 sin.sin_family = AF_INET; 5137 if (ltcp->tcp_recvdstaddr) { 5138 sin_t sind; 5139 5140 sind = sin_null; 5141 sind.sin_addr.s_addr = ipha->ipha_dst; 5142 sind.sin_port = *(uint16_t *)tcph->th_fport; 5143 sind.sin_family = AF_INET; 5144 tpi_mp = mi_tpi_extconn_ind(NULL, 5145 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5146 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5147 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5148 } else { 5149 tpi_mp = mi_tpi_conn_ind(NULL, 5150 (char *)&sin, sizeof (sin_t), 5151 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5152 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5153 } 5154 5155 if (tpi_mp == NULL) { 5156 return (ENOMEM); 5157 } 5158 5159 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5160 connp->conn_send = ip_output; 5161 connp->conn_recv = tcp_input; 5162 connp->conn_fully_bound = B_FALSE; 5163 5164 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5165 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5166 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5167 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5168 5169 if (tcp_trace) { 5170 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5171 } 5172 5173 /* Inherit information from the "parent" */ 5174 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5175 tcp->tcp_family = ltcp->tcp_family; 5176 tcp->tcp_wq = ltcp->tcp_wq; 5177 tcp->tcp_rq = ltcp->tcp_rq; 5178 tcp->tcp_mss = tcp_mss_def_ipv4; 5179 tcp->tcp_detached = B_TRUE; 5180 if ((err = tcp_init_values(tcp)) != 0) { 5181 freemsg(tpi_mp); 5182 return (err); 5183 } 5184 5185 /* 5186 * Let's make sure that eager tcp template has enough space to 5187 * copy IPv4 listener's tcp template. Since the conn_t structure is 5188 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5189 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5190 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5191 * extension headers or with ip6i_t struct). Note that bcopy() below 5192 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5193 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5194 */ 5195 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5196 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5197 5198 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5199 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5200 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5201 tcp->tcp_ttl = ltcp->tcp_ttl; 5202 tcp->tcp_tos = ltcp->tcp_tos; 5203 5204 /* Copy the IP+TCP header template from listener to eager */ 5205 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5206 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5207 tcp->tcp_ip6h = NULL; 5208 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5209 tcp->tcp_ip_hdr_len); 5210 5211 /* Initialize the IP addresses and Ports */ 5212 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5213 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5214 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5215 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5216 5217 /* Source routing option copyover (reverse it) */ 5218 if (tcp_rev_src_routes) 5219 tcp_opt_reverse(tcp, ipha); 5220 5221 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5222 ASSERT(!tcp->tcp_tconnind_started); 5223 5224 /* 5225 * If the SYN contains a credential, it's a loopback packet; attach 5226 * the credential to the TPI message. 5227 */ 5228 if ((cr = DB_CRED(idmp)) != NULL) { 5229 mblk_setcred(tpi_mp, cr); 5230 DB_CPID(tpi_mp) = DB_CPID(idmp); 5231 } 5232 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5233 5234 /* Inherit the listener's SSL protection state */ 5235 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5236 kssl_hold_ent(tcp->tcp_kssl_ent); 5237 tcp->tcp_kssl_pending = B_TRUE; 5238 } 5239 5240 return (0); 5241 } 5242 5243 /* 5244 * sets up conn for ipsec. 5245 * if the first mblk is M_CTL it is consumed and mpp is updated. 5246 * in case of error mpp is freed. 5247 */ 5248 conn_t * 5249 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5250 { 5251 conn_t *connp = tcp->tcp_connp; 5252 conn_t *econnp; 5253 squeue_t *new_sqp; 5254 mblk_t *first_mp = *mpp; 5255 mblk_t *mp = *mpp; 5256 boolean_t mctl_present = B_FALSE; 5257 uint_t ipvers; 5258 5259 econnp = tcp_get_conn(sqp); 5260 if (econnp == NULL) { 5261 freemsg(first_mp); 5262 return (NULL); 5263 } 5264 if (DB_TYPE(mp) == M_CTL) { 5265 if (mp->b_cont == NULL || 5266 mp->b_cont->b_datap->db_type != M_DATA) { 5267 freemsg(first_mp); 5268 return (NULL); 5269 } 5270 mp = mp->b_cont; 5271 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5272 freemsg(first_mp); 5273 return (NULL); 5274 } 5275 5276 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5277 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5278 mctl_present = B_TRUE; 5279 } else { 5280 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5281 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5282 } 5283 5284 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5285 DB_CKSUMSTART(mp) = 0; 5286 5287 ASSERT(OK_32PTR(mp->b_rptr)); 5288 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5289 if (ipvers == IPV4_VERSION) { 5290 uint16_t *up; 5291 uint32_t ports; 5292 ipha_t *ipha; 5293 5294 ipha = (ipha_t *)mp->b_rptr; 5295 up = (uint16_t *)((uchar_t *)ipha + 5296 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5297 ports = *(uint32_t *)up; 5298 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5299 ipha->ipha_dst, ipha->ipha_src, ports); 5300 } else { 5301 uint16_t *up; 5302 uint32_t ports; 5303 uint16_t ip_hdr_len; 5304 uint8_t *nexthdrp; 5305 ip6_t *ip6h; 5306 tcph_t *tcph; 5307 5308 ip6h = (ip6_t *)mp->b_rptr; 5309 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5310 ip_hdr_len = IPV6_HDR_LEN; 5311 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5312 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5313 CONN_DEC_REF(econnp); 5314 freemsg(first_mp); 5315 return (NULL); 5316 } 5317 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5318 up = (uint16_t *)tcph->th_lport; 5319 ports = *(uint32_t *)up; 5320 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5321 ip6h->ip6_dst, ip6h->ip6_src, ports); 5322 } 5323 5324 /* 5325 * The caller already ensured that there is a sqp present. 5326 */ 5327 econnp->conn_sqp = new_sqp; 5328 5329 if (connp->conn_policy != NULL) { 5330 ipsec_in_t *ii; 5331 ii = (ipsec_in_t *)(first_mp->b_rptr); 5332 ASSERT(ii->ipsec_in_policy == NULL); 5333 IPPH_REFHOLD(connp->conn_policy); 5334 ii->ipsec_in_policy = connp->conn_policy; 5335 5336 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5337 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5338 CONN_DEC_REF(econnp); 5339 freemsg(first_mp); 5340 return (NULL); 5341 } 5342 } 5343 5344 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5345 CONN_DEC_REF(econnp); 5346 freemsg(first_mp); 5347 return (NULL); 5348 } 5349 5350 /* 5351 * If we know we have some policy, pass the "IPSEC" 5352 * options size TCP uses this adjust the MSS. 5353 */ 5354 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5355 if (mctl_present) { 5356 freeb(first_mp); 5357 *mpp = mp; 5358 } 5359 5360 return (econnp); 5361 } 5362 5363 /* 5364 * tcp_get_conn/tcp_free_conn 5365 * 5366 * tcp_get_conn is used to get a clean tcp connection structure. 5367 * It tries to reuse the connections put on the freelist by the 5368 * time_wait_collector failing which it goes to kmem_cache. This 5369 * way has two benefits compared to just allocating from and 5370 * freeing to kmem_cache. 5371 * 1) The time_wait_collector can free (which includes the cleanup) 5372 * outside the squeue. So when the interrupt comes, we have a clean 5373 * connection sitting in the freelist. Obviously, this buys us 5374 * performance. 5375 * 5376 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5377 * has multiple disadvantages - tying up the squeue during alloc, and the 5378 * fact that IPSec policy initialization has to happen here which 5379 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5380 * But allocating the conn/tcp in IP land is also not the best since 5381 * we can't check the 'q' and 'q0' which are protected by squeue and 5382 * blindly allocate memory which might have to be freed here if we are 5383 * not allowed to accept the connection. By using the freelist and 5384 * putting the conn/tcp back in freelist, we don't pay a penalty for 5385 * allocating memory without checking 'q/q0' and freeing it if we can't 5386 * accept the connection. 5387 * 5388 * Care should be taken to put the conn back in the same squeue's freelist 5389 * from which it was allocated. Best results are obtained if conn is 5390 * allocated from listener's squeue and freed to the same. Time wait 5391 * collector will free up the freelist is the connection ends up sitting 5392 * there for too long. 5393 */ 5394 void * 5395 tcp_get_conn(void *arg) 5396 { 5397 tcp_t *tcp = NULL; 5398 conn_t *connp = NULL; 5399 squeue_t *sqp = (squeue_t *)arg; 5400 tcp_squeue_priv_t *tcp_time_wait; 5401 5402 tcp_time_wait = 5403 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5404 5405 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5406 tcp = tcp_time_wait->tcp_free_list; 5407 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5408 if (tcp != NULL) { 5409 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5410 tcp_time_wait->tcp_free_list_cnt--; 5411 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5412 tcp->tcp_time_wait_next = NULL; 5413 connp = tcp->tcp_connp; 5414 connp->conn_flags |= IPCL_REUSED; 5415 return ((void *)connp); 5416 } 5417 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5418 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5419 return (NULL); 5420 return ((void *)connp); 5421 } 5422 5423 /* 5424 * Update the cached label for the given tcp_t. This should be called once per 5425 * connection, and before any packets are sent or tcp_process_options is 5426 * invoked. Returns B_FALSE if the correct label could not be constructed. 5427 */ 5428 static boolean_t 5429 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5430 { 5431 conn_t *connp = tcp->tcp_connp; 5432 5433 if (tcp->tcp_ipversion == IPV4_VERSION) { 5434 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5435 int added; 5436 5437 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5438 connp->conn_mac_exempt) != 0) 5439 return (B_FALSE); 5440 5441 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5442 if (added == -1) 5443 return (B_FALSE); 5444 tcp->tcp_hdr_len += added; 5445 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5446 tcp->tcp_ip_hdr_len += added; 5447 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5448 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5449 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5450 tcp->tcp_hdr_len); 5451 if (added == -1) 5452 return (B_FALSE); 5453 tcp->tcp_hdr_len += added; 5454 tcp->tcp_tcph = (tcph_t *) 5455 ((uchar_t *)tcp->tcp_tcph + added); 5456 tcp->tcp_ip_hdr_len += added; 5457 } 5458 } else { 5459 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5460 5461 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5462 connp->conn_mac_exempt) != 0) 5463 return (B_FALSE); 5464 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5465 &tcp->tcp_label_len, optbuf) != 0) 5466 return (B_FALSE); 5467 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5468 return (B_FALSE); 5469 } 5470 5471 connp->conn_ulp_labeled = 1; 5472 5473 return (B_TRUE); 5474 } 5475 5476 /* BEGIN CSTYLED */ 5477 /* 5478 * 5479 * The sockfs ACCEPT path: 5480 * ======================= 5481 * 5482 * The eager is now established in its own perimeter as soon as SYN is 5483 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5484 * completes the accept processing on the acceptor STREAM. The sending 5485 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5486 * listener but a TLI/XTI listener completes the accept processing 5487 * on the listener perimeter. 5488 * 5489 * Common control flow for 3 way handshake: 5490 * ---------------------------------------- 5491 * 5492 * incoming SYN (listener perimeter) -> tcp_rput_data() 5493 * -> tcp_conn_request() 5494 * 5495 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5496 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5497 * 5498 * Sockfs ACCEPT Path: 5499 * ------------------- 5500 * 5501 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5502 * as STREAM entry point) 5503 * 5504 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5505 * 5506 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5507 * association (we are not behind eager's squeue but sockfs is protecting us 5508 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5509 * is changed to point at tcp_wput(). 5510 * 5511 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5512 * listener (done on listener's perimeter). 5513 * 5514 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5515 * accept. 5516 * 5517 * TLI/XTI client ACCEPT path: 5518 * --------------------------- 5519 * 5520 * soaccept() sends T_CONN_RES on the listener STREAM. 5521 * 5522 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5523 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5524 * 5525 * Locks: 5526 * ====== 5527 * 5528 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5529 * and listeners->tcp_eager_next_q. 5530 * 5531 * Referencing: 5532 * ============ 5533 * 5534 * 1) We start out in tcp_conn_request by eager placing a ref on 5535 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5536 * 5537 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5538 * doing so we place a ref on the eager. This ref is finally dropped at the 5539 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5540 * reference is dropped by the squeue framework. 5541 * 5542 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5543 * 5544 * The reference must be released by the same entity that added the reference 5545 * In the above scheme, the eager is the entity that adds and releases the 5546 * references. Note that tcp_accept_finish executes in the squeue of the eager 5547 * (albeit after it is attached to the acceptor stream). Though 1. executes 5548 * in the listener's squeue, the eager is nascent at this point and the 5549 * reference can be considered to have been added on behalf of the eager. 5550 * 5551 * Eager getting a Reset or listener closing: 5552 * ========================================== 5553 * 5554 * Once the listener and eager are linked, the listener never does the unlink. 5555 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5556 * a message on all eager perimeter. The eager then does the unlink, clears 5557 * any pointers to the listener's queue and drops the reference to the 5558 * listener. The listener waits in tcp_close outside the squeue until its 5559 * refcount has dropped to 1. This ensures that the listener has waited for 5560 * all eagers to clear their association with the listener. 5561 * 5562 * Similarly, if eager decides to go away, it can unlink itself and close. 5563 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5564 * the reference to eager is still valid because of the extra ref we put 5565 * in tcp_send_conn_ind. 5566 * 5567 * Listener can always locate the eager under the protection 5568 * of the listener->tcp_eager_lock, and then do a refhold 5569 * on the eager during the accept processing. 5570 * 5571 * The acceptor stream accesses the eager in the accept processing 5572 * based on the ref placed on eager before sending T_conn_ind. 5573 * The only entity that can negate this refhold is a listener close 5574 * which is mutually exclusive with an active acceptor stream. 5575 * 5576 * Eager's reference on the listener 5577 * =================================== 5578 * 5579 * If the accept happens (even on a closed eager) the eager drops its 5580 * reference on the listener at the start of tcp_accept_finish. If the 5581 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5582 * the reference is dropped in tcp_closei_local. If the listener closes, 5583 * the reference is dropped in tcp_eager_kill. In all cases the reference 5584 * is dropped while executing in the eager's context (squeue). 5585 */ 5586 /* END CSTYLED */ 5587 5588 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5589 5590 /* 5591 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5592 * tcp_rput_data will not see any SYN packets. 5593 */ 5594 /* ARGSUSED */ 5595 void 5596 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5597 { 5598 tcph_t *tcph; 5599 uint32_t seg_seq; 5600 tcp_t *eager; 5601 uint_t ipvers; 5602 ipha_t *ipha; 5603 ip6_t *ip6h; 5604 int err; 5605 conn_t *econnp = NULL; 5606 squeue_t *new_sqp; 5607 mblk_t *mp1; 5608 uint_t ip_hdr_len; 5609 conn_t *connp = (conn_t *)arg; 5610 tcp_t *tcp = connp->conn_tcp; 5611 ire_t *ire; 5612 cred_t *credp; 5613 5614 if (tcp->tcp_state != TCPS_LISTEN) 5615 goto error2; 5616 5617 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5618 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5621 mutex_exit(&tcp->tcp_eager_lock); 5622 TCP_STAT(tcp_listendrop); 5623 BUMP_MIB(&tcp_mib, tcpListenDrop); 5624 if (tcp->tcp_debug) { 5625 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5626 "tcp_conn_request: listen backlog (max=%d) " 5627 "overflow (%d pending) on %s", 5628 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 5634 if (tcp->tcp_conn_req_cnt_q0 >= 5635 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5636 /* 5637 * Q0 is full. Drop a pending half-open req from the queue 5638 * to make room for the new SYN req. Also mark the time we 5639 * drop a SYN. 5640 * 5641 * A more aggressive defense against SYN attack will 5642 * be to set the "tcp_syn_defense" flag now. 5643 */ 5644 TCP_STAT(tcp_listendropq0); 5645 tcp->tcp_last_rcv_lbolt = lbolt64; 5646 if (!tcp_drop_q0(tcp)) { 5647 mutex_exit(&tcp->tcp_eager_lock); 5648 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5649 if (tcp->tcp_debug) { 5650 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5651 "tcp_conn_request: listen half-open queue " 5652 "(max=%d) full (%d pending) on %s", 5653 tcp_conn_req_max_q0, 5654 tcp->tcp_conn_req_cnt_q0, 5655 tcp_display(tcp, NULL, 5656 DISP_PORT_ONLY)); 5657 } 5658 goto error2; 5659 } 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 /* 5664 * IP adds STRUIO_EAGER and ensures that the received packet is 5665 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5666 * link local address. If IPSec is enabled, db_struioflag has 5667 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5668 * otherwise an error case if neither of them is set. 5669 */ 5670 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5671 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5672 DB_CKSUMSTART(mp) = 0; 5673 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5674 econnp = (conn_t *)tcp_get_conn(arg2); 5675 if (econnp == NULL) 5676 goto error2; 5677 econnp->conn_sqp = new_sqp; 5678 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5679 /* 5680 * mp is updated in tcp_get_ipsec_conn(). 5681 */ 5682 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5683 if (econnp == NULL) { 5684 /* 5685 * mp freed by tcp_get_ipsec_conn. 5686 */ 5687 return; 5688 } 5689 } else { 5690 goto error2; 5691 } 5692 5693 ASSERT(DB_TYPE(mp) == M_DATA); 5694 5695 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5696 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5697 ASSERT(OK_32PTR(mp->b_rptr)); 5698 if (ipvers == IPV4_VERSION) { 5699 ipha = (ipha_t *)mp->b_rptr; 5700 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5701 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5702 } else { 5703 ip6h = (ip6_t *)mp->b_rptr; 5704 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5705 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5706 } 5707 5708 if (tcp->tcp_family == AF_INET) { 5709 ASSERT(ipvers == IPV4_VERSION); 5710 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5711 } else { 5712 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5713 } 5714 5715 if (err) 5716 goto error3; 5717 5718 eager = econnp->conn_tcp; 5719 5720 /* Inherit various TCP parameters from the listener */ 5721 eager->tcp_naglim = tcp->tcp_naglim; 5722 eager->tcp_first_timer_threshold = 5723 tcp->tcp_first_timer_threshold; 5724 eager->tcp_second_timer_threshold = 5725 tcp->tcp_second_timer_threshold; 5726 5727 eager->tcp_first_ctimer_threshold = 5728 tcp->tcp_first_ctimer_threshold; 5729 eager->tcp_second_ctimer_threshold = 5730 tcp->tcp_second_ctimer_threshold; 5731 5732 /* 5733 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5734 * If it does not, the eager's receive window will be set to the 5735 * listener's receive window later in this function. 5736 */ 5737 eager->tcp_rwnd = 0; 5738 5739 /* 5740 * Inherit listener's tcp_init_cwnd. Need to do this before 5741 * calling tcp_process_options() where tcp_mss_set() is called 5742 * to set the initial cwnd. 5743 */ 5744 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5745 5746 /* 5747 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5748 * zone id before the accept is completed in tcp_wput_accept(). 5749 */ 5750 econnp->conn_zoneid = connp->conn_zoneid; 5751 econnp->conn_allzones = connp->conn_allzones; 5752 5753 /* Copy nexthop information from listener to eager */ 5754 if (connp->conn_nexthop_set) { 5755 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5756 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5757 } 5758 5759 /* 5760 * TSOL: tsol_input_proc() needs the eager's cred before the 5761 * eager is accepted 5762 */ 5763 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5764 crhold(credp); 5765 5766 /* 5767 * If the caller has the process-wide flag set, then default to MAC 5768 * exempt mode. This allows read-down to unlabeled hosts. 5769 */ 5770 if (getpflags(NET_MAC_AWARE, credp) != 0) 5771 econnp->conn_mac_exempt = B_TRUE; 5772 5773 if (is_system_labeled()) { 5774 cred_t *cr; 5775 5776 if (connp->conn_mlp_type != mlptSingle) { 5777 cr = econnp->conn_peercred = DB_CRED(mp); 5778 if (cr != NULL) 5779 crhold(cr); 5780 else 5781 cr = econnp->conn_cred; 5782 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5783 econnp, cred_t *, cr) 5784 } else { 5785 cr = econnp->conn_cred; 5786 DTRACE_PROBE2(syn_accept, conn_t *, 5787 econnp, cred_t *, cr) 5788 } 5789 5790 if (!tcp_update_label(eager, cr)) { 5791 DTRACE_PROBE3( 5792 tx__ip__log__error__connrequest__tcp, 5793 char *, "eager connp(1) label on SYN mp(2) failed", 5794 conn_t *, econnp, mblk_t *, mp); 5795 goto error3; 5796 } 5797 } 5798 5799 eager->tcp_hard_binding = B_TRUE; 5800 5801 tcp_bind_hash_insert(&tcp_bind_fanout[ 5802 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5803 5804 CL_INET_CONNECT(eager); 5805 5806 /* 5807 * No need to check for multicast destination since ip will only pass 5808 * up multicasts to those that have expressed interest 5809 * TODO: what about rejecting broadcasts? 5810 * Also check that source is not a multicast or broadcast address. 5811 */ 5812 eager->tcp_state = TCPS_SYN_RCVD; 5813 5814 5815 /* 5816 * There should be no ire in the mp as we are being called after 5817 * receiving the SYN. 5818 */ 5819 ASSERT(tcp_ire_mp(mp) == NULL); 5820 5821 /* 5822 * Adapt our mss, ttl, ... according to information provided in IRE. 5823 */ 5824 5825 if (tcp_adapt_ire(eager, NULL) == 0) { 5826 /* Undo the bind_hash_insert */ 5827 tcp_bind_hash_remove(eager); 5828 goto error3; 5829 } 5830 5831 /* Process all TCP options. */ 5832 tcp_process_options(eager, tcph); 5833 5834 /* Is the other end ECN capable? */ 5835 if (tcp_ecn_permitted >= 1 && 5836 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5837 eager->tcp_ecn_ok = B_TRUE; 5838 } 5839 5840 /* 5841 * listener->tcp_rq->q_hiwat should be the default window size or a 5842 * window size changed via SO_RCVBUF option. First round up the 5843 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5844 * scale option value if needed. Call tcp_rwnd_set() to finish the 5845 * setting. 5846 * 5847 * Note if there is a rpipe metric associated with the remote host, 5848 * we should not inherit receive window size from listener. 5849 */ 5850 eager->tcp_rwnd = MSS_ROUNDUP( 5851 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5852 eager->tcp_rwnd), eager->tcp_mss); 5853 if (eager->tcp_snd_ws_ok) 5854 tcp_set_ws_value(eager); 5855 /* 5856 * Note that this is the only place tcp_rwnd_set() is called for 5857 * accepting a connection. We need to call it here instead of 5858 * after the 3-way handshake because we need to tell the other 5859 * side our rwnd in the SYN-ACK segment. 5860 */ 5861 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5862 5863 /* 5864 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5865 * via soaccept()->soinheritoptions() which essentially applies 5866 * all the listener options to the new STREAM. The options that we 5867 * need to take care of are: 5868 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5869 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5870 * SO_SNDBUF, SO_RCVBUF. 5871 * 5872 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5873 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5874 * tcp_maxpsz_set() gets called later from 5875 * tcp_accept_finish(), the option takes effect. 5876 * 5877 */ 5878 /* Set the TCP options */ 5879 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5880 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5881 eager->tcp_oobinline = tcp->tcp_oobinline; 5882 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5883 eager->tcp_broadcast = tcp->tcp_broadcast; 5884 eager->tcp_useloopback = tcp->tcp_useloopback; 5885 eager->tcp_dontroute = tcp->tcp_dontroute; 5886 eager->tcp_linger = tcp->tcp_linger; 5887 eager->tcp_lingertime = tcp->tcp_lingertime; 5888 if (tcp->tcp_ka_enabled) 5889 eager->tcp_ka_enabled = 1; 5890 5891 /* Set the IP options */ 5892 econnp->conn_broadcast = connp->conn_broadcast; 5893 econnp->conn_loopback = connp->conn_loopback; 5894 econnp->conn_dontroute = connp->conn_dontroute; 5895 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5896 5897 /* Put a ref on the listener for the eager. */ 5898 CONN_INC_REF(connp); 5899 mutex_enter(&tcp->tcp_eager_lock); 5900 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5901 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5902 tcp->tcp_eager_next_q0 = eager; 5903 eager->tcp_eager_prev_q0 = tcp; 5904 5905 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5906 eager->tcp_listener = tcp; 5907 eager->tcp_saved_listener = tcp; 5908 5909 /* 5910 * Tag this detached tcp vector for later retrieval 5911 * by our listener client in tcp_accept(). 5912 */ 5913 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5914 tcp->tcp_conn_req_cnt_q0++; 5915 if (++tcp->tcp_conn_req_seqnum == -1) { 5916 /* 5917 * -1 is "special" and defined in TPI as something 5918 * that should never be used in T_CONN_IND 5919 */ 5920 ++tcp->tcp_conn_req_seqnum; 5921 } 5922 mutex_exit(&tcp->tcp_eager_lock); 5923 5924 if (tcp->tcp_syn_defense) { 5925 /* Don't drop the SYN that comes from a good IP source */ 5926 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5927 if (addr_cache != NULL && eager->tcp_remote == 5928 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5929 eager->tcp_dontdrop = B_TRUE; 5930 } 5931 } 5932 5933 /* 5934 * We need to insert the eager in its own perimeter but as soon 5935 * as we do that, we expose the eager to the classifier and 5936 * should not touch any field outside the eager's perimeter. 5937 * So do all the work necessary before inserting the eager 5938 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5939 * will succeed but undo everything if it fails. 5940 */ 5941 seg_seq = ABE32_TO_U32(tcph->th_seq); 5942 eager->tcp_irs = seg_seq; 5943 eager->tcp_rack = seg_seq; 5944 eager->tcp_rnxt = seg_seq + 1; 5945 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5946 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5947 eager->tcp_state = TCPS_SYN_RCVD; 5948 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5949 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5950 if (mp1 == NULL) 5951 goto error1; 5952 DB_CPID(mp1) = tcp->tcp_cpid; 5953 eager->tcp_cpid = tcp->tcp_cpid; 5954 eager->tcp_open_time = lbolt64; 5955 5956 /* 5957 * We need to start the rto timer. In normal case, we start 5958 * the timer after sending the packet on the wire (or at 5959 * least believing that packet was sent by waiting for 5960 * CALL_IP_WPUT() to return). Since this is the first packet 5961 * being sent on the wire for the eager, our initial tcp_rto 5962 * is at least tcp_rexmit_interval_min which is a fairly 5963 * large value to allow the algorithm to adjust slowly to large 5964 * fluctuations of RTT during first few transmissions. 5965 * 5966 * Starting the timer first and then sending the packet in this 5967 * case shouldn't make much difference since tcp_rexmit_interval_min 5968 * is of the order of several 100ms and starting the timer 5969 * first and then sending the packet will result in difference 5970 * of few micro seconds. 5971 * 5972 * Without this optimization, we are forced to hold the fanout 5973 * lock across the ipcl_bind_insert() and sending the packet 5974 * so that we don't race against an incoming packet (maybe RST) 5975 * for this eager. 5976 */ 5977 5978 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5979 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5980 5981 5982 /* 5983 * Insert the eager in its own perimeter now. We are ready to deal 5984 * with any packets on eager. 5985 */ 5986 if (eager->tcp_ipversion == IPV4_VERSION) { 5987 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5988 goto error; 5989 } 5990 } else { 5991 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5992 goto error; 5993 } 5994 } 5995 5996 /* mark conn as fully-bound */ 5997 econnp->conn_fully_bound = B_TRUE; 5998 5999 /* Send the SYN-ACK */ 6000 tcp_send_data(eager, eager->tcp_wq, mp1); 6001 freemsg(mp); 6002 6003 return; 6004 error: 6005 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 6006 freemsg(mp1); 6007 error1: 6008 /* Undo what we did above */ 6009 mutex_enter(&tcp->tcp_eager_lock); 6010 tcp_eager_unlink(eager); 6011 mutex_exit(&tcp->tcp_eager_lock); 6012 /* Drop eager's reference on the listener */ 6013 CONN_DEC_REF(connp); 6014 6015 /* 6016 * Delete the cached ire in conn_ire_cache and also mark 6017 * the conn as CONDEMNED 6018 */ 6019 mutex_enter(&econnp->conn_lock); 6020 econnp->conn_state_flags |= CONN_CONDEMNED; 6021 ire = econnp->conn_ire_cache; 6022 econnp->conn_ire_cache = NULL; 6023 mutex_exit(&econnp->conn_lock); 6024 if (ire != NULL) 6025 IRE_REFRELE_NOTR(ire); 6026 6027 /* 6028 * tcp_accept_comm inserts the eager to the bind_hash 6029 * we need to remove it from the hash if ipcl_conn_insert 6030 * fails. 6031 */ 6032 tcp_bind_hash_remove(eager); 6033 /* Drop the eager ref placed in tcp_open_detached */ 6034 CONN_DEC_REF(econnp); 6035 6036 /* 6037 * If a connection already exists, send the mp to that connections so 6038 * that it can be appropriately dealt with. 6039 */ 6040 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 6041 if (!IPCL_IS_CONNECTED(econnp)) { 6042 /* 6043 * Something bad happened. ipcl_conn_insert() 6044 * failed because a connection already existed 6045 * in connected hash but we can't find it 6046 * anymore (someone blew it away). Just 6047 * free this message and hopefully remote 6048 * will retransmit at which time the SYN can be 6049 * treated as a new connection or dealth with 6050 * a TH_RST if a connection already exists. 6051 */ 6052 CONN_DEC_REF(econnp); 6053 freemsg(mp); 6054 } else { 6055 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6056 econnp, SQTAG_TCP_CONN_REQ); 6057 } 6058 } else { 6059 /* Nobody wants this packet */ 6060 freemsg(mp); 6061 } 6062 return; 6063 error2: 6064 freemsg(mp); 6065 return; 6066 error3: 6067 CONN_DEC_REF(econnp); 6068 freemsg(mp); 6069 } 6070 6071 /* 6072 * In an ideal case of vertical partition in NUMA architecture, its 6073 * beneficial to have the listener and all the incoming connections 6074 * tied to the same squeue. The other constraint is that incoming 6075 * connections should be tied to the squeue attached to interrupted 6076 * CPU for obvious locality reason so this leaves the listener to 6077 * be tied to the same squeue. Our only problem is that when listener 6078 * is binding, the CPU that will get interrupted by the NIC whose 6079 * IP address the listener is binding to is not even known. So 6080 * the code below allows us to change that binding at the time the 6081 * CPU is interrupted by virtue of incoming connection's squeue. 6082 * 6083 * This is usefull only in case of a listener bound to a specific IP 6084 * address. For other kind of listeners, they get bound the 6085 * very first time and there is no attempt to rebind them. 6086 */ 6087 void 6088 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6089 { 6090 conn_t *connp = (conn_t *)arg; 6091 squeue_t *sqp = (squeue_t *)arg2; 6092 squeue_t *new_sqp; 6093 uint32_t conn_flags; 6094 6095 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6096 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6097 } else { 6098 goto done; 6099 } 6100 6101 if (connp->conn_fanout == NULL) 6102 goto done; 6103 6104 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6105 mutex_enter(&connp->conn_fanout->connf_lock); 6106 mutex_enter(&connp->conn_lock); 6107 /* 6108 * No one from read or write side can access us now 6109 * except for already queued packets on this squeue. 6110 * But since we haven't changed the squeue yet, they 6111 * can't execute. If they are processed after we have 6112 * changed the squeue, they are sent back to the 6113 * correct squeue down below. 6114 * But a listner close can race with processing of 6115 * incoming SYN. If incoming SYN processing changes 6116 * the squeue then the listener close which is waiting 6117 * to enter the squeue would operate on the wrong 6118 * squeue. Hence we don't change the squeue here unless 6119 * the refcount is exactly the minimum refcount. The 6120 * minimum refcount of 4 is counted as - 1 each for 6121 * TCP and IP, 1 for being in the classifier hash, and 6122 * 1 for the mblk being processed. 6123 */ 6124 6125 if (connp->conn_ref != 4 || 6126 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6127 mutex_exit(&connp->conn_lock); 6128 mutex_exit(&connp->conn_fanout->connf_lock); 6129 goto done; 6130 } 6131 if (connp->conn_sqp != new_sqp) { 6132 while (connp->conn_sqp != new_sqp) 6133 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6134 } 6135 6136 do { 6137 conn_flags = connp->conn_flags; 6138 conn_flags |= IPCL_FULLY_BOUND; 6139 (void) cas32(&connp->conn_flags, connp->conn_flags, 6140 conn_flags); 6141 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6142 6143 mutex_exit(&connp->conn_fanout->connf_lock); 6144 mutex_exit(&connp->conn_lock); 6145 } 6146 6147 done: 6148 if (connp->conn_sqp != sqp) { 6149 CONN_INC_REF(connp); 6150 squeue_fill(connp->conn_sqp, mp, 6151 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6152 } else { 6153 tcp_conn_request(connp, mp, sqp); 6154 } 6155 } 6156 6157 /* 6158 * Successful connect request processing begins when our client passes 6159 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6160 * our T_OK_ACK reply message upstream. The control flow looks like this: 6161 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6162 * upstream <- tcp_rput() <- IP 6163 * After various error checks are completed, tcp_connect() lays 6164 * the target address and port into the composite header template, 6165 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6166 * request followed by an IRE request, and passes the three mblk message 6167 * down to IP looking like this: 6168 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6169 * Processing continues in tcp_rput() when we receive the following message: 6170 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6171 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6172 * to fire off the connection request, and then passes the T_OK_ACK mblk 6173 * upstream that we filled in below. There are, of course, numerous 6174 * error conditions along the way which truncate the processing described 6175 * above. 6176 */ 6177 static void 6178 tcp_connect(tcp_t *tcp, mblk_t *mp) 6179 { 6180 sin_t *sin; 6181 sin6_t *sin6; 6182 queue_t *q = tcp->tcp_wq; 6183 struct T_conn_req *tcr; 6184 ipaddr_t *dstaddrp; 6185 in_port_t dstport; 6186 uint_t srcid; 6187 6188 tcr = (struct T_conn_req *)mp->b_rptr; 6189 6190 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6191 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6192 tcp_err_ack(tcp, mp, TPROTO, 0); 6193 return; 6194 } 6195 6196 /* 6197 * Determine packet type based on type of address passed in 6198 * the request should contain an IPv4 or IPv6 address. 6199 * Make sure that address family matches the type of 6200 * family of the the address passed down 6201 */ 6202 switch (tcr->DEST_length) { 6203 default: 6204 tcp_err_ack(tcp, mp, TBADADDR, 0); 6205 return; 6206 6207 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6208 /* 6209 * XXX: The check for valid DEST_length was not there 6210 * in earlier releases and some buggy 6211 * TLI apps (e.g Sybase) got away with not feeding 6212 * in sin_zero part of address. 6213 * We allow that bug to keep those buggy apps humming. 6214 * Test suites require the check on DEST_length. 6215 * We construct a new mblk with valid DEST_length 6216 * free the original so the rest of the code does 6217 * not have to keep track of this special shorter 6218 * length address case. 6219 */ 6220 mblk_t *nmp; 6221 struct T_conn_req *ntcr; 6222 sin_t *nsin; 6223 6224 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6225 tcr->OPT_length, BPRI_HI); 6226 if (nmp == NULL) { 6227 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6228 return; 6229 } 6230 ntcr = (struct T_conn_req *)nmp->b_rptr; 6231 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6232 ntcr->PRIM_type = T_CONN_REQ; 6233 ntcr->DEST_length = sizeof (sin_t); 6234 ntcr->DEST_offset = sizeof (struct T_conn_req); 6235 6236 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6237 *nsin = sin_null; 6238 /* Get pointer to shorter address to copy from original mp */ 6239 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6240 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6241 if (sin == NULL || !OK_32PTR((char *)sin)) { 6242 freemsg(nmp); 6243 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6244 return; 6245 } 6246 nsin->sin_family = sin->sin_family; 6247 nsin->sin_port = sin->sin_port; 6248 nsin->sin_addr = sin->sin_addr; 6249 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6250 nmp->b_wptr = (uchar_t *)&nsin[1]; 6251 if (tcr->OPT_length != 0) { 6252 ntcr->OPT_length = tcr->OPT_length; 6253 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6254 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6255 (uchar_t *)ntcr + ntcr->OPT_offset, 6256 tcr->OPT_length); 6257 nmp->b_wptr += tcr->OPT_length; 6258 } 6259 freemsg(mp); /* original mp freed */ 6260 mp = nmp; /* re-initialize original variables */ 6261 tcr = ntcr; 6262 } 6263 /* FALLTHRU */ 6264 6265 case sizeof (sin_t): 6266 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6267 sizeof (sin_t)); 6268 if (sin == NULL || !OK_32PTR((char *)sin)) { 6269 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6270 return; 6271 } 6272 if (tcp->tcp_family != AF_INET || 6273 sin->sin_family != AF_INET) { 6274 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6275 return; 6276 } 6277 if (sin->sin_port == 0) { 6278 tcp_err_ack(tcp, mp, TBADADDR, 0); 6279 return; 6280 } 6281 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6282 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6283 return; 6284 } 6285 6286 break; 6287 6288 case sizeof (sin6_t): 6289 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6290 sizeof (sin6_t)); 6291 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6292 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6293 return; 6294 } 6295 if (tcp->tcp_family != AF_INET6 || 6296 sin6->sin6_family != AF_INET6) { 6297 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6298 return; 6299 } 6300 if (sin6->sin6_port == 0) { 6301 tcp_err_ack(tcp, mp, TBADADDR, 0); 6302 return; 6303 } 6304 break; 6305 } 6306 /* 6307 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6308 * should key on their sequence number and cut them loose. 6309 */ 6310 6311 /* 6312 * If options passed in, feed it for verification and handling 6313 */ 6314 if (tcr->OPT_length != 0) { 6315 mblk_t *ok_mp; 6316 mblk_t *discon_mp; 6317 mblk_t *conn_opts_mp; 6318 int t_error, sys_error, do_disconnect; 6319 6320 conn_opts_mp = NULL; 6321 6322 if (tcp_conprim_opt_process(tcp, mp, 6323 &do_disconnect, &t_error, &sys_error) < 0) { 6324 if (do_disconnect) { 6325 ASSERT(t_error == 0 && sys_error == 0); 6326 discon_mp = mi_tpi_discon_ind(NULL, 6327 ECONNREFUSED, 0); 6328 if (!discon_mp) { 6329 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6330 TSYSERR, ENOMEM); 6331 return; 6332 } 6333 ok_mp = mi_tpi_ok_ack_alloc(mp); 6334 if (!ok_mp) { 6335 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6336 TSYSERR, ENOMEM); 6337 return; 6338 } 6339 qreply(q, ok_mp); 6340 qreply(q, discon_mp); /* no flush! */ 6341 } else { 6342 ASSERT(t_error != 0); 6343 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6344 sys_error); 6345 } 6346 return; 6347 } 6348 /* 6349 * Success in setting options, the mp option buffer represented 6350 * by OPT_length/offset has been potentially modified and 6351 * contains results of option processing. We copy it in 6352 * another mp to save it for potentially influencing returning 6353 * it in T_CONN_CONN. 6354 */ 6355 if (tcr->OPT_length != 0) { /* there are resulting options */ 6356 conn_opts_mp = copyb(mp); 6357 if (!conn_opts_mp) { 6358 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6359 TSYSERR, ENOMEM); 6360 return; 6361 } 6362 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6363 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6364 /* 6365 * Note: 6366 * These resulting option negotiation can include any 6367 * end-to-end negotiation options but there no such 6368 * thing (yet?) in our TCP/IP. 6369 */ 6370 } 6371 } 6372 6373 /* 6374 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6375 * make sure that the template IP header in the tcp structure is an 6376 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6377 * need to this before we call tcp_bindi() so that the port lookup 6378 * code will look for ports in the correct port space (IPv4 and 6379 * IPv6 have separate port spaces). 6380 */ 6381 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6382 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6383 int err = 0; 6384 6385 err = tcp_header_init_ipv4(tcp); 6386 if (err != 0) { 6387 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6388 goto connect_failed; 6389 } 6390 if (tcp->tcp_lport != 0) 6391 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6392 } 6393 6394 switch (tcp->tcp_state) { 6395 case TCPS_IDLE: 6396 /* 6397 * We support quick connect, refer to comments in 6398 * tcp_connect_*() 6399 */ 6400 /* FALLTHRU */ 6401 case TCPS_BOUND: 6402 case TCPS_LISTEN: 6403 if (tcp->tcp_family == AF_INET6) { 6404 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6405 tcp_connect_ipv6(tcp, mp, 6406 &sin6->sin6_addr, 6407 sin6->sin6_port, sin6->sin6_flowinfo, 6408 sin6->__sin6_src_id, sin6->sin6_scope_id); 6409 return; 6410 } 6411 /* 6412 * Destination adress is mapped IPv6 address. 6413 * Source bound address should be unspecified or 6414 * IPv6 mapped address as well. 6415 */ 6416 if (!IN6_IS_ADDR_UNSPECIFIED( 6417 &tcp->tcp_bound_source_v6) && 6418 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6419 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6420 EADDRNOTAVAIL); 6421 break; 6422 } 6423 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6424 dstport = sin6->sin6_port; 6425 srcid = sin6->__sin6_src_id; 6426 } else { 6427 dstaddrp = &sin->sin_addr.s_addr; 6428 dstport = sin->sin_port; 6429 srcid = 0; 6430 } 6431 6432 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6433 return; 6434 default: 6435 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6436 break; 6437 } 6438 /* 6439 * Note: Code below is the "failure" case 6440 */ 6441 /* return error ack and blow away saved option results if any */ 6442 connect_failed: 6443 if (mp != NULL) 6444 putnext(tcp->tcp_rq, mp); 6445 else { 6446 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6447 TSYSERR, ENOMEM); 6448 } 6449 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6450 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6451 } 6452 6453 /* 6454 * Handle connect to IPv4 destinations, including connections for AF_INET6 6455 * sockets connecting to IPv4 mapped IPv6 destinations. 6456 */ 6457 static void 6458 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6459 uint_t srcid) 6460 { 6461 tcph_t *tcph; 6462 mblk_t *mp1; 6463 ipaddr_t dstaddr = *dstaddrp; 6464 int32_t oldstate; 6465 uint16_t lport; 6466 6467 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6468 6469 /* Check for attempt to connect to INADDR_ANY */ 6470 if (dstaddr == INADDR_ANY) { 6471 /* 6472 * SunOS 4.x and 4.3 BSD allow an application 6473 * to connect a TCP socket to INADDR_ANY. 6474 * When they do this, the kernel picks the 6475 * address of one interface and uses it 6476 * instead. The kernel usually ends up 6477 * picking the address of the loopback 6478 * interface. This is an undocumented feature. 6479 * However, we provide the same thing here 6480 * in order to have source and binary 6481 * compatibility with SunOS 4.x. 6482 * Update the T_CONN_REQ (sin/sin6) since it is used to 6483 * generate the T_CONN_CON. 6484 */ 6485 dstaddr = htonl(INADDR_LOOPBACK); 6486 *dstaddrp = dstaddr; 6487 } 6488 6489 /* Handle __sin6_src_id if socket not bound to an IP address */ 6490 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6491 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6492 tcp->tcp_connp->conn_zoneid); 6493 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6494 tcp->tcp_ipha->ipha_src); 6495 } 6496 6497 /* 6498 * Don't let an endpoint connect to itself. Note that 6499 * the test here does not catch the case where the 6500 * source IP addr was left unspecified by the user. In 6501 * this case, the source addr is set in tcp_adapt_ire() 6502 * using the reply to the T_BIND message that we send 6503 * down to IP here and the check is repeated in tcp_rput_other. 6504 */ 6505 if (dstaddr == tcp->tcp_ipha->ipha_src && 6506 dstport == tcp->tcp_lport) { 6507 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6508 goto failed; 6509 } 6510 6511 tcp->tcp_ipha->ipha_dst = dstaddr; 6512 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6513 6514 /* 6515 * Massage a source route if any putting the first hop 6516 * in iph_dst. Compute a starting value for the checksum which 6517 * takes into account that the original iph_dst should be 6518 * included in the checksum but that ip will include the 6519 * first hop in the source route in the tcp checksum. 6520 */ 6521 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6522 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6523 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6524 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6525 if ((int)tcp->tcp_sum < 0) 6526 tcp->tcp_sum--; 6527 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6528 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6529 (tcp->tcp_sum >> 16)); 6530 tcph = tcp->tcp_tcph; 6531 *(uint16_t *)tcph->th_fport = dstport; 6532 tcp->tcp_fport = dstport; 6533 6534 oldstate = tcp->tcp_state; 6535 /* 6536 * At this point the remote destination address and remote port fields 6537 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6538 * have to see which state tcp was in so we can take apropriate action. 6539 */ 6540 if (oldstate == TCPS_IDLE) { 6541 /* 6542 * We support a quick connect capability here, allowing 6543 * clients to transition directly from IDLE to SYN_SENT 6544 * tcp_bindi will pick an unused port, insert the connection 6545 * in the bind hash and transition to BOUND state. 6546 */ 6547 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6548 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6549 B_FALSE, B_FALSE); 6550 if (lport == 0) { 6551 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6552 goto failed; 6553 } 6554 } 6555 tcp->tcp_state = TCPS_SYN_SENT; 6556 6557 /* 6558 * TODO: allow data with connect requests 6559 * by unlinking M_DATA trailers here and 6560 * linking them in behind the T_OK_ACK mblk. 6561 * The tcp_rput() bind ack handler would then 6562 * feed them to tcp_wput_data() rather than call 6563 * tcp_timer(). 6564 */ 6565 mp = mi_tpi_ok_ack_alloc(mp); 6566 if (!mp) { 6567 tcp->tcp_state = oldstate; 6568 goto failed; 6569 } 6570 if (tcp->tcp_family == AF_INET) { 6571 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6572 sizeof (ipa_conn_t)); 6573 } else { 6574 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6575 sizeof (ipa6_conn_t)); 6576 } 6577 if (mp1) { 6578 /* Hang onto the T_OK_ACK for later. */ 6579 linkb(mp1, mp); 6580 mblk_setcred(mp1, tcp->tcp_cred); 6581 if (tcp->tcp_family == AF_INET) 6582 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6583 else { 6584 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6585 &tcp->tcp_sticky_ipp); 6586 } 6587 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6588 tcp->tcp_active_open = 1; 6589 /* 6590 * If the bind cannot complete immediately 6591 * IP will arrange to call tcp_rput_other 6592 * when the bind completes. 6593 */ 6594 if (mp1 != NULL) 6595 tcp_rput_other(tcp, mp1); 6596 return; 6597 } 6598 /* Error case */ 6599 tcp->tcp_state = oldstate; 6600 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6601 6602 failed: 6603 /* return error ack and blow away saved option results if any */ 6604 if (mp != NULL) 6605 putnext(tcp->tcp_rq, mp); 6606 else { 6607 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6608 TSYSERR, ENOMEM); 6609 } 6610 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6611 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6612 6613 } 6614 6615 /* 6616 * Handle connect to IPv6 destinations. 6617 */ 6618 static void 6619 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6620 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6621 { 6622 tcph_t *tcph; 6623 mblk_t *mp1; 6624 ip6_rthdr_t *rth; 6625 int32_t oldstate; 6626 uint16_t lport; 6627 6628 ASSERT(tcp->tcp_family == AF_INET6); 6629 6630 /* 6631 * If we're here, it means that the destination address is a native 6632 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6633 * reason why it might not be IPv6 is if the socket was bound to an 6634 * IPv4-mapped IPv6 address. 6635 */ 6636 if (tcp->tcp_ipversion != IPV6_VERSION) { 6637 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6638 goto failed; 6639 } 6640 6641 /* 6642 * Interpret a zero destination to mean loopback. 6643 * Update the T_CONN_REQ (sin/sin6) since it is used to 6644 * generate the T_CONN_CON. 6645 */ 6646 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6647 *dstaddrp = ipv6_loopback; 6648 } 6649 6650 /* Handle __sin6_src_id if socket not bound to an IP address */ 6651 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6652 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6653 tcp->tcp_connp->conn_zoneid); 6654 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6655 } 6656 6657 /* 6658 * Take care of the scope_id now and add ip6i_t 6659 * if ip6i_t is not already allocated through TCP 6660 * sticky options. At this point tcp_ip6h does not 6661 * have dst info, thus use dstaddrp. 6662 */ 6663 if (scope_id != 0 && 6664 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6665 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6666 ip6i_t *ip6i; 6667 6668 ipp->ipp_ifindex = scope_id; 6669 ip6i = (ip6i_t *)tcp->tcp_iphc; 6670 6671 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6672 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6673 /* Already allocated */ 6674 ip6i->ip6i_flags |= IP6I_IFINDEX; 6675 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6676 ipp->ipp_fields |= IPPF_SCOPE_ID; 6677 } else { 6678 int reterr; 6679 6680 ipp->ipp_fields |= IPPF_SCOPE_ID; 6681 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6682 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6683 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6684 if (reterr != 0) 6685 goto failed; 6686 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6687 } 6688 } 6689 6690 /* 6691 * Don't let an endpoint connect to itself. Note that 6692 * the test here does not catch the case where the 6693 * source IP addr was left unspecified by the user. In 6694 * this case, the source addr is set in tcp_adapt_ire() 6695 * using the reply to the T_BIND message that we send 6696 * down to IP here and the check is repeated in tcp_rput_other. 6697 */ 6698 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6699 (dstport == tcp->tcp_lport)) { 6700 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6701 goto failed; 6702 } 6703 6704 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6705 tcp->tcp_remote_v6 = *dstaddrp; 6706 tcp->tcp_ip6h->ip6_vcf = 6707 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6708 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6709 6710 6711 /* 6712 * Massage a routing header (if present) putting the first hop 6713 * in ip6_dst. Compute a starting value for the checksum which 6714 * takes into account that the original ip6_dst should be 6715 * included in the checksum but that ip will include the 6716 * first hop in the source route in the tcp checksum. 6717 */ 6718 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6719 if (rth != NULL) { 6720 6721 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6722 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6723 (tcp->tcp_sum >> 16)); 6724 } else { 6725 tcp->tcp_sum = 0; 6726 } 6727 6728 tcph = tcp->tcp_tcph; 6729 *(uint16_t *)tcph->th_fport = dstport; 6730 tcp->tcp_fport = dstport; 6731 6732 oldstate = tcp->tcp_state; 6733 /* 6734 * At this point the remote destination address and remote port fields 6735 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6736 * have to see which state tcp was in so we can take apropriate action. 6737 */ 6738 if (oldstate == TCPS_IDLE) { 6739 /* 6740 * We support a quick connect capability here, allowing 6741 * clients to transition directly from IDLE to SYN_SENT 6742 * tcp_bindi will pick an unused port, insert the connection 6743 * in the bind hash and transition to BOUND state. 6744 */ 6745 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6746 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6747 B_FALSE, B_FALSE); 6748 if (lport == 0) { 6749 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6750 goto failed; 6751 } 6752 } 6753 tcp->tcp_state = TCPS_SYN_SENT; 6754 /* 6755 * TODO: allow data with connect requests 6756 * by unlinking M_DATA trailers here and 6757 * linking them in behind the T_OK_ACK mblk. 6758 * The tcp_rput() bind ack handler would then 6759 * feed them to tcp_wput_data() rather than call 6760 * tcp_timer(). 6761 */ 6762 mp = mi_tpi_ok_ack_alloc(mp); 6763 if (!mp) { 6764 tcp->tcp_state = oldstate; 6765 goto failed; 6766 } 6767 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6768 if (mp1) { 6769 /* Hang onto the T_OK_ACK for later. */ 6770 linkb(mp1, mp); 6771 mblk_setcred(mp1, tcp->tcp_cred); 6772 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6773 &tcp->tcp_sticky_ipp); 6774 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6775 tcp->tcp_active_open = 1; 6776 /* ip_bind_v6() may return ACK or ERROR */ 6777 if (mp1 != NULL) 6778 tcp_rput_other(tcp, mp1); 6779 return; 6780 } 6781 /* Error case */ 6782 tcp->tcp_state = oldstate; 6783 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6784 6785 failed: 6786 /* return error ack and blow away saved option results if any */ 6787 if (mp != NULL) 6788 putnext(tcp->tcp_rq, mp); 6789 else { 6790 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6791 TSYSERR, ENOMEM); 6792 } 6793 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6794 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6795 } 6796 6797 /* 6798 * We need a stream q for detached closing tcp connections 6799 * to use. Our client hereby indicates that this q is the 6800 * one to use. 6801 */ 6802 static void 6803 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6804 { 6805 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6806 queue_t *q = tcp->tcp_wq; 6807 6808 mp->b_datap->db_type = M_IOCACK; 6809 iocp->ioc_count = 0; 6810 mutex_enter(&tcp_g_q_lock); 6811 if (tcp_g_q != NULL) { 6812 mutex_exit(&tcp_g_q_lock); 6813 iocp->ioc_error = EALREADY; 6814 } else { 6815 mblk_t *mp1; 6816 6817 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6818 if (mp1 == NULL) { 6819 mutex_exit(&tcp_g_q_lock); 6820 iocp->ioc_error = ENOMEM; 6821 } else { 6822 tcp_g_q = tcp->tcp_rq; 6823 mutex_exit(&tcp_g_q_lock); 6824 iocp->ioc_error = 0; 6825 iocp->ioc_rval = 0; 6826 /* 6827 * We are passing tcp_sticky_ipp as NULL 6828 * as it is not useful for tcp_default queue 6829 */ 6830 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6831 if (mp1 != NULL) 6832 tcp_rput_other(tcp, mp1); 6833 } 6834 } 6835 qreply(q, mp); 6836 } 6837 6838 /* 6839 * Our client hereby directs us to reject the connection request 6840 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6841 * of sending the appropriate RST, not an ICMP error. 6842 */ 6843 static void 6844 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6845 { 6846 tcp_t *ltcp = NULL; 6847 t_scalar_t seqnum; 6848 conn_t *connp; 6849 6850 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6851 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6852 tcp_err_ack(tcp, mp, TPROTO, 0); 6853 return; 6854 } 6855 6856 /* 6857 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6858 * when the stream is in BOUND state. Do not send a reset, 6859 * since the destination IP address is not valid, and it can 6860 * be the initialized value of all zeros (broadcast address). 6861 * 6862 * If TCP has sent down a bind request to IP and has not 6863 * received the reply, reject the request. Otherwise, TCP 6864 * will be confused. 6865 */ 6866 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6867 if (tcp->tcp_debug) { 6868 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6869 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6870 } 6871 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6872 return; 6873 } 6874 6875 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6876 6877 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6878 6879 /* 6880 * According to TPI, for non-listeners, ignore seqnum 6881 * and disconnect. 6882 * Following interpretation of -1 seqnum is historical 6883 * and implied TPI ? (TPI only states that for T_CONN_IND, 6884 * a valid seqnum should not be -1). 6885 * 6886 * -1 means disconnect everything 6887 * regardless even on a listener. 6888 */ 6889 6890 int old_state = tcp->tcp_state; 6891 6892 /* 6893 * The connection can't be on the tcp_time_wait_head list 6894 * since it is not detached. 6895 */ 6896 ASSERT(tcp->tcp_time_wait_next == NULL); 6897 ASSERT(tcp->tcp_time_wait_prev == NULL); 6898 ASSERT(tcp->tcp_time_wait_expire == 0); 6899 ltcp = NULL; 6900 /* 6901 * If it used to be a listener, check to make sure no one else 6902 * has taken the port before switching back to LISTEN state. 6903 */ 6904 if (tcp->tcp_ipversion == IPV4_VERSION) { 6905 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6906 tcp->tcp_ipha->ipha_src, 6907 tcp->tcp_connp->conn_zoneid); 6908 if (connp != NULL) 6909 ltcp = connp->conn_tcp; 6910 } else { 6911 /* Allow tcp_bound_if listeners? */ 6912 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6913 &tcp->tcp_ip6h->ip6_src, 0, 6914 tcp->tcp_connp->conn_zoneid); 6915 if (connp != NULL) 6916 ltcp = connp->conn_tcp; 6917 } 6918 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6919 tcp->tcp_state = TCPS_LISTEN; 6920 } else if (old_state > TCPS_BOUND) { 6921 tcp->tcp_conn_req_max = 0; 6922 tcp->tcp_state = TCPS_BOUND; 6923 } 6924 if (ltcp != NULL) 6925 CONN_DEC_REF(ltcp->tcp_connp); 6926 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6927 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6928 } else if (old_state == TCPS_ESTABLISHED || 6929 old_state == TCPS_CLOSE_WAIT) { 6930 BUMP_MIB(&tcp_mib, tcpEstabResets); 6931 } 6932 6933 if (tcp->tcp_fused) 6934 tcp_unfuse(tcp); 6935 6936 mutex_enter(&tcp->tcp_eager_lock); 6937 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6938 (tcp->tcp_conn_req_cnt_q != 0)) { 6939 tcp_eager_cleanup(tcp, 0); 6940 } 6941 mutex_exit(&tcp->tcp_eager_lock); 6942 6943 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6944 tcp->tcp_rnxt, TH_RST | TH_ACK); 6945 6946 tcp_reinit(tcp); 6947 6948 if (old_state >= TCPS_ESTABLISHED) { 6949 /* Send M_FLUSH according to TPI */ 6950 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6951 } 6952 mp = mi_tpi_ok_ack_alloc(mp); 6953 if (mp) 6954 putnext(tcp->tcp_rq, mp); 6955 return; 6956 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6957 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6958 return; 6959 } 6960 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6961 /* Send M_FLUSH according to TPI */ 6962 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6963 } 6964 mp = mi_tpi_ok_ack_alloc(mp); 6965 if (mp) 6966 putnext(tcp->tcp_rq, mp); 6967 } 6968 6969 /* 6970 * Diagnostic routine used to return a string associated with the tcp state. 6971 * Note that if the caller does not supply a buffer, it will use an internal 6972 * static string. This means that if multiple threads call this function at 6973 * the same time, output can be corrupted... Note also that this function 6974 * does not check the size of the supplied buffer. The caller has to make 6975 * sure that it is big enough. 6976 */ 6977 static char * 6978 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6979 { 6980 char buf1[30]; 6981 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6982 char *buf; 6983 char *cp; 6984 in6_addr_t local, remote; 6985 char local_addrbuf[INET6_ADDRSTRLEN]; 6986 char remote_addrbuf[INET6_ADDRSTRLEN]; 6987 6988 if (sup_buf != NULL) 6989 buf = sup_buf; 6990 else 6991 buf = priv_buf; 6992 6993 if (tcp == NULL) 6994 return ("NULL_TCP"); 6995 switch (tcp->tcp_state) { 6996 case TCPS_CLOSED: 6997 cp = "TCP_CLOSED"; 6998 break; 6999 case TCPS_IDLE: 7000 cp = "TCP_IDLE"; 7001 break; 7002 case TCPS_BOUND: 7003 cp = "TCP_BOUND"; 7004 break; 7005 case TCPS_LISTEN: 7006 cp = "TCP_LISTEN"; 7007 break; 7008 case TCPS_SYN_SENT: 7009 cp = "TCP_SYN_SENT"; 7010 break; 7011 case TCPS_SYN_RCVD: 7012 cp = "TCP_SYN_RCVD"; 7013 break; 7014 case TCPS_ESTABLISHED: 7015 cp = "TCP_ESTABLISHED"; 7016 break; 7017 case TCPS_CLOSE_WAIT: 7018 cp = "TCP_CLOSE_WAIT"; 7019 break; 7020 case TCPS_FIN_WAIT_1: 7021 cp = "TCP_FIN_WAIT_1"; 7022 break; 7023 case TCPS_CLOSING: 7024 cp = "TCP_CLOSING"; 7025 break; 7026 case TCPS_LAST_ACK: 7027 cp = "TCP_LAST_ACK"; 7028 break; 7029 case TCPS_FIN_WAIT_2: 7030 cp = "TCP_FIN_WAIT_2"; 7031 break; 7032 case TCPS_TIME_WAIT: 7033 cp = "TCP_TIME_WAIT"; 7034 break; 7035 default: 7036 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7037 cp = buf1; 7038 break; 7039 } 7040 switch (format) { 7041 case DISP_ADDR_AND_PORT: 7042 if (tcp->tcp_ipversion == IPV4_VERSION) { 7043 /* 7044 * Note that we use the remote address in the tcp_b 7045 * structure. This means that it will print out 7046 * the real destination address, not the next hop's 7047 * address if source routing is used. 7048 */ 7049 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7050 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7051 7052 } else { 7053 local = tcp->tcp_ip_src_v6; 7054 remote = tcp->tcp_remote_v6; 7055 } 7056 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7057 sizeof (local_addrbuf)); 7058 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7059 sizeof (remote_addrbuf)); 7060 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7061 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7062 ntohs(tcp->tcp_fport), cp); 7063 break; 7064 case DISP_PORT_ONLY: 7065 default: 7066 (void) mi_sprintf(buf, "[%u, %u] %s", 7067 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7068 break; 7069 } 7070 7071 return (buf); 7072 } 7073 7074 /* 7075 * Called via squeue to get on to eager's perimeter to send a 7076 * TH_RST. The listener wants the eager to disappear either 7077 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 7078 * being called. 7079 */ 7080 /* ARGSUSED */ 7081 void 7082 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7083 { 7084 conn_t *econnp = (conn_t *)arg; 7085 tcp_t *eager = econnp->conn_tcp; 7086 tcp_t *listener = eager->tcp_listener; 7087 7088 /* 7089 * We could be called because listener is closing. Since 7090 * the eager is using listener's queue's, its not safe. 7091 * Better use the default queue just to send the TH_RST 7092 * out. 7093 */ 7094 eager->tcp_rq = tcp_g_q; 7095 eager->tcp_wq = WR(tcp_g_q); 7096 7097 if (eager->tcp_state > TCPS_LISTEN) { 7098 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7099 eager, eager->tcp_snxt, 0, TH_RST); 7100 } 7101 7102 /* We are here because listener wants this eager gone */ 7103 if (listener != NULL) { 7104 mutex_enter(&listener->tcp_eager_lock); 7105 tcp_eager_unlink(eager); 7106 if (eager->tcp_tconnind_started) { 7107 /* 7108 * The eager has sent a conn_ind up to the 7109 * listener but listener decides to close 7110 * instead. We need to drop the extra ref 7111 * placed on eager in tcp_rput_data() before 7112 * sending the conn_ind to listener. 7113 */ 7114 CONN_DEC_REF(econnp); 7115 } 7116 mutex_exit(&listener->tcp_eager_lock); 7117 CONN_DEC_REF(listener->tcp_connp); 7118 } 7119 7120 if (eager->tcp_state > TCPS_BOUND) 7121 tcp_close_detached(eager); 7122 } 7123 7124 /* 7125 * Reset any eager connection hanging off this listener marked 7126 * with 'seqnum' and then reclaim it's resources. 7127 */ 7128 static boolean_t 7129 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7130 { 7131 tcp_t *eager; 7132 mblk_t *mp; 7133 7134 TCP_STAT(tcp_eager_blowoff_calls); 7135 eager = listener; 7136 mutex_enter(&listener->tcp_eager_lock); 7137 do { 7138 eager = eager->tcp_eager_next_q; 7139 if (eager == NULL) { 7140 mutex_exit(&listener->tcp_eager_lock); 7141 return (B_FALSE); 7142 } 7143 } while (eager->tcp_conn_req_seqnum != seqnum); 7144 7145 if (eager->tcp_closemp_used > 0) { 7146 mutex_exit(&listener->tcp_eager_lock); 7147 return (B_TRUE); 7148 } 7149 eager->tcp_closemp_used = 1; 7150 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7151 CONN_INC_REF(eager->tcp_connp); 7152 mutex_exit(&listener->tcp_eager_lock); 7153 mp = &eager->tcp_closemp; 7154 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7155 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7156 return (B_TRUE); 7157 } 7158 7159 /* 7160 * Reset any eager connection hanging off this listener 7161 * and then reclaim it's resources. 7162 */ 7163 static void 7164 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7165 { 7166 tcp_t *eager; 7167 mblk_t *mp; 7168 7169 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7170 7171 if (!q0_only) { 7172 /* First cleanup q */ 7173 TCP_STAT(tcp_eager_blowoff_q); 7174 eager = listener->tcp_eager_next_q; 7175 while (eager != NULL) { 7176 if (eager->tcp_closemp_used == 0) { 7177 eager->tcp_closemp_used = 1; 7178 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7179 CONN_INC_REF(eager->tcp_connp); 7180 mp = &eager->tcp_closemp; 7181 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7182 tcp_eager_kill, eager->tcp_connp, 7183 SQTAG_TCP_EAGER_CLEANUP); 7184 } 7185 eager = eager->tcp_eager_next_q; 7186 } 7187 } 7188 /* Then cleanup q0 */ 7189 TCP_STAT(tcp_eager_blowoff_q0); 7190 eager = listener->tcp_eager_next_q0; 7191 while (eager != listener) { 7192 if (eager->tcp_closemp_used == 0) { 7193 eager->tcp_closemp_used = 1; 7194 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7195 CONN_INC_REF(eager->tcp_connp); 7196 mp = &eager->tcp_closemp; 7197 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7198 tcp_eager_kill, eager->tcp_connp, 7199 SQTAG_TCP_EAGER_CLEANUP_Q0); 7200 } 7201 eager = eager->tcp_eager_next_q0; 7202 } 7203 } 7204 7205 /* 7206 * If we are an eager connection hanging off a listener that hasn't 7207 * formally accepted the connection yet, get off his list and blow off 7208 * any data that we have accumulated. 7209 */ 7210 static void 7211 tcp_eager_unlink(tcp_t *tcp) 7212 { 7213 tcp_t *listener = tcp->tcp_listener; 7214 7215 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7216 ASSERT(listener != NULL); 7217 if (tcp->tcp_eager_next_q0 != NULL) { 7218 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7219 7220 /* Remove the eager tcp from q0 */ 7221 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7222 tcp->tcp_eager_prev_q0; 7223 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7224 tcp->tcp_eager_next_q0; 7225 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7226 listener->tcp_conn_req_cnt_q0--; 7227 7228 tcp->tcp_eager_next_q0 = NULL; 7229 tcp->tcp_eager_prev_q0 = NULL; 7230 7231 /* 7232 * Take the eager out, if it is in the list of droppable 7233 * eagers. 7234 */ 7235 MAKE_UNDROPPABLE(tcp); 7236 7237 if (tcp->tcp_syn_rcvd_timeout != 0) { 7238 /* we have timed out before */ 7239 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7240 listener->tcp_syn_rcvd_timeout--; 7241 } 7242 } else { 7243 tcp_t **tcpp = &listener->tcp_eager_next_q; 7244 tcp_t *prev = NULL; 7245 7246 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7247 if (tcpp[0] == tcp) { 7248 if (listener->tcp_eager_last_q == tcp) { 7249 /* 7250 * If we are unlinking the last 7251 * element on the list, adjust 7252 * tail pointer. Set tail pointer 7253 * to nil when list is empty. 7254 */ 7255 ASSERT(tcp->tcp_eager_next_q == NULL); 7256 if (listener->tcp_eager_last_q == 7257 listener->tcp_eager_next_q) { 7258 listener->tcp_eager_last_q = 7259 NULL; 7260 } else { 7261 /* 7262 * We won't get here if there 7263 * is only one eager in the 7264 * list. 7265 */ 7266 ASSERT(prev != NULL); 7267 listener->tcp_eager_last_q = 7268 prev; 7269 } 7270 } 7271 tcpp[0] = tcp->tcp_eager_next_q; 7272 tcp->tcp_eager_next_q = NULL; 7273 tcp->tcp_eager_last_q = NULL; 7274 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7275 listener->tcp_conn_req_cnt_q--; 7276 break; 7277 } 7278 prev = tcpp[0]; 7279 } 7280 } 7281 tcp->tcp_listener = NULL; 7282 } 7283 7284 /* Shorthand to generate and send TPI error acks to our client */ 7285 static void 7286 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7287 { 7288 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7289 putnext(tcp->tcp_rq, mp); 7290 } 7291 7292 /* Shorthand to generate and send TPI error acks to our client */ 7293 static void 7294 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7295 int t_error, int sys_error) 7296 { 7297 struct T_error_ack *teackp; 7298 7299 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7300 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7301 teackp = (struct T_error_ack *)mp->b_rptr; 7302 teackp->ERROR_prim = primitive; 7303 teackp->TLI_error = t_error; 7304 teackp->UNIX_error = sys_error; 7305 putnext(tcp->tcp_rq, mp); 7306 } 7307 } 7308 7309 /* 7310 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7311 * but instead the code relies on: 7312 * - the fact that the address of the array and its size never changes 7313 * - the atomic assignment of the elements of the array 7314 */ 7315 /* ARGSUSED */ 7316 static int 7317 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7318 { 7319 int i; 7320 7321 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7322 if (tcp_g_epriv_ports[i] != 0) 7323 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7324 } 7325 return (0); 7326 } 7327 7328 /* 7329 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7330 * threads from changing it at the same time. 7331 */ 7332 /* ARGSUSED */ 7333 static int 7334 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7335 cred_t *cr) 7336 { 7337 long new_value; 7338 int i; 7339 7340 /* 7341 * Fail the request if the new value does not lie within the 7342 * port number limits. 7343 */ 7344 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7345 new_value <= 0 || new_value >= 65536) { 7346 return (EINVAL); 7347 } 7348 7349 mutex_enter(&tcp_epriv_port_lock); 7350 /* Check if the value is already in the list */ 7351 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7352 if (new_value == tcp_g_epriv_ports[i]) { 7353 mutex_exit(&tcp_epriv_port_lock); 7354 return (EEXIST); 7355 } 7356 } 7357 /* Find an empty slot */ 7358 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7359 if (tcp_g_epriv_ports[i] == 0) 7360 break; 7361 } 7362 if (i == tcp_g_num_epriv_ports) { 7363 mutex_exit(&tcp_epriv_port_lock); 7364 return (EOVERFLOW); 7365 } 7366 /* Set the new value */ 7367 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7368 mutex_exit(&tcp_epriv_port_lock); 7369 return (0); 7370 } 7371 7372 /* 7373 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7374 * threads from changing it at the same time. 7375 */ 7376 /* ARGSUSED */ 7377 static int 7378 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7379 cred_t *cr) 7380 { 7381 long new_value; 7382 int i; 7383 7384 /* 7385 * Fail the request if the new value does not lie within the 7386 * port number limits. 7387 */ 7388 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7389 new_value >= 65536) { 7390 return (EINVAL); 7391 } 7392 7393 mutex_enter(&tcp_epriv_port_lock); 7394 /* Check that the value is already in the list */ 7395 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7396 if (tcp_g_epriv_ports[i] == new_value) 7397 break; 7398 } 7399 if (i == tcp_g_num_epriv_ports) { 7400 mutex_exit(&tcp_epriv_port_lock); 7401 return (ESRCH); 7402 } 7403 /* Clear the value */ 7404 tcp_g_epriv_ports[i] = 0; 7405 mutex_exit(&tcp_epriv_port_lock); 7406 return (0); 7407 } 7408 7409 /* Return the TPI/TLI equivalent of our current tcp_state */ 7410 static int 7411 tcp_tpistate(tcp_t *tcp) 7412 { 7413 switch (tcp->tcp_state) { 7414 case TCPS_IDLE: 7415 return (TS_UNBND); 7416 case TCPS_LISTEN: 7417 /* 7418 * Return whether there are outstanding T_CONN_IND waiting 7419 * for the matching T_CONN_RES. Therefore don't count q0. 7420 */ 7421 if (tcp->tcp_conn_req_cnt_q > 0) 7422 return (TS_WRES_CIND); 7423 else 7424 return (TS_IDLE); 7425 case TCPS_BOUND: 7426 return (TS_IDLE); 7427 case TCPS_SYN_SENT: 7428 return (TS_WCON_CREQ); 7429 case TCPS_SYN_RCVD: 7430 /* 7431 * Note: assumption: this has to the active open SYN_RCVD. 7432 * The passive instance is detached in SYN_RCVD stage of 7433 * incoming connection processing so we cannot get request 7434 * for T_info_ack on it. 7435 */ 7436 return (TS_WACK_CRES); 7437 case TCPS_ESTABLISHED: 7438 return (TS_DATA_XFER); 7439 case TCPS_CLOSE_WAIT: 7440 return (TS_WREQ_ORDREL); 7441 case TCPS_FIN_WAIT_1: 7442 return (TS_WIND_ORDREL); 7443 case TCPS_FIN_WAIT_2: 7444 return (TS_WIND_ORDREL); 7445 7446 case TCPS_CLOSING: 7447 case TCPS_LAST_ACK: 7448 case TCPS_TIME_WAIT: 7449 case TCPS_CLOSED: 7450 /* 7451 * Following TS_WACK_DREQ7 is a rendition of "not 7452 * yet TS_IDLE" TPI state. There is no best match to any 7453 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7454 * choose a value chosen that will map to TLI/XTI level 7455 * state of TSTATECHNG (state is process of changing) which 7456 * captures what this dummy state represents. 7457 */ 7458 return (TS_WACK_DREQ7); 7459 default: 7460 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7461 tcp->tcp_state, tcp_display(tcp, NULL, 7462 DISP_PORT_ONLY)); 7463 return (TS_UNBND); 7464 } 7465 } 7466 7467 static void 7468 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7469 { 7470 if (tcp->tcp_family == AF_INET6) 7471 *tia = tcp_g_t_info_ack_v6; 7472 else 7473 *tia = tcp_g_t_info_ack; 7474 tia->CURRENT_state = tcp_tpistate(tcp); 7475 tia->OPT_size = tcp_max_optsize; 7476 if (tcp->tcp_mss == 0) { 7477 /* Not yet set - tcp_open does not set mss */ 7478 if (tcp->tcp_ipversion == IPV4_VERSION) 7479 tia->TIDU_size = tcp_mss_def_ipv4; 7480 else 7481 tia->TIDU_size = tcp_mss_def_ipv6; 7482 } else { 7483 tia->TIDU_size = tcp->tcp_mss; 7484 } 7485 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7486 } 7487 7488 /* 7489 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7490 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7491 * tcp_g_t_info_ack. The current state of the stream is copied from 7492 * tcp_state. 7493 */ 7494 static void 7495 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7496 { 7497 t_uscalar_t cap_bits1; 7498 struct T_capability_ack *tcap; 7499 7500 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7501 freemsg(mp); 7502 return; 7503 } 7504 7505 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7506 7507 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7508 mp->b_datap->db_type, T_CAPABILITY_ACK); 7509 if (mp == NULL) 7510 return; 7511 7512 tcap = (struct T_capability_ack *)mp->b_rptr; 7513 tcap->CAP_bits1 = 0; 7514 7515 if (cap_bits1 & TC1_INFO) { 7516 tcp_copy_info(&tcap->INFO_ack, tcp); 7517 tcap->CAP_bits1 |= TC1_INFO; 7518 } 7519 7520 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7521 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7522 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7523 } 7524 7525 putnext(tcp->tcp_rq, mp); 7526 } 7527 7528 /* 7529 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7530 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7531 * The current state of the stream is copied from tcp_state. 7532 */ 7533 static void 7534 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7535 { 7536 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7537 T_INFO_ACK); 7538 if (!mp) { 7539 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7540 return; 7541 } 7542 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7543 putnext(tcp->tcp_rq, mp); 7544 } 7545 7546 /* Respond to the TPI addr request */ 7547 static void 7548 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7549 { 7550 sin_t *sin; 7551 mblk_t *ackmp; 7552 struct T_addr_ack *taa; 7553 7554 /* Make it large enough for worst case */ 7555 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7556 2 * sizeof (sin6_t), 1); 7557 if (ackmp == NULL) { 7558 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7559 return; 7560 } 7561 7562 if (tcp->tcp_ipversion == IPV6_VERSION) { 7563 tcp_addr_req_ipv6(tcp, ackmp); 7564 return; 7565 } 7566 taa = (struct T_addr_ack *)ackmp->b_rptr; 7567 7568 bzero(taa, sizeof (struct T_addr_ack)); 7569 ackmp->b_wptr = (uchar_t *)&taa[1]; 7570 7571 taa->PRIM_type = T_ADDR_ACK; 7572 ackmp->b_datap->db_type = M_PCPROTO; 7573 7574 /* 7575 * Note: Following code assumes 32 bit alignment of basic 7576 * data structures like sin_t and struct T_addr_ack. 7577 */ 7578 if (tcp->tcp_state >= TCPS_BOUND) { 7579 /* 7580 * Fill in local address 7581 */ 7582 taa->LOCADDR_length = sizeof (sin_t); 7583 taa->LOCADDR_offset = sizeof (*taa); 7584 7585 sin = (sin_t *)&taa[1]; 7586 7587 /* Fill zeroes and then intialize non-zero fields */ 7588 *sin = sin_null; 7589 7590 sin->sin_family = AF_INET; 7591 7592 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7593 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7594 7595 ackmp->b_wptr = (uchar_t *)&sin[1]; 7596 7597 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7598 /* 7599 * Fill in Remote address 7600 */ 7601 taa->REMADDR_length = sizeof (sin_t); 7602 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7603 taa->LOCADDR_length); 7604 7605 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7606 *sin = sin_null; 7607 sin->sin_family = AF_INET; 7608 sin->sin_addr.s_addr = tcp->tcp_remote; 7609 sin->sin_port = tcp->tcp_fport; 7610 7611 ackmp->b_wptr = (uchar_t *)&sin[1]; 7612 } 7613 } 7614 putnext(tcp->tcp_rq, ackmp); 7615 } 7616 7617 /* Assumes that tcp_addr_req gets enough space and alignment */ 7618 static void 7619 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7620 { 7621 sin6_t *sin6; 7622 struct T_addr_ack *taa; 7623 7624 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7625 ASSERT(OK_32PTR(ackmp->b_rptr)); 7626 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7627 2 * sizeof (sin6_t)); 7628 7629 taa = (struct T_addr_ack *)ackmp->b_rptr; 7630 7631 bzero(taa, sizeof (struct T_addr_ack)); 7632 ackmp->b_wptr = (uchar_t *)&taa[1]; 7633 7634 taa->PRIM_type = T_ADDR_ACK; 7635 ackmp->b_datap->db_type = M_PCPROTO; 7636 7637 /* 7638 * Note: Following code assumes 32 bit alignment of basic 7639 * data structures like sin6_t and struct T_addr_ack. 7640 */ 7641 if (tcp->tcp_state >= TCPS_BOUND) { 7642 /* 7643 * Fill in local address 7644 */ 7645 taa->LOCADDR_length = sizeof (sin6_t); 7646 taa->LOCADDR_offset = sizeof (*taa); 7647 7648 sin6 = (sin6_t *)&taa[1]; 7649 *sin6 = sin6_null; 7650 7651 sin6->sin6_family = AF_INET6; 7652 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7653 sin6->sin6_port = tcp->tcp_lport; 7654 7655 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7656 7657 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7658 /* 7659 * Fill in Remote address 7660 */ 7661 taa->REMADDR_length = sizeof (sin6_t); 7662 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7663 taa->LOCADDR_length); 7664 7665 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7666 *sin6 = sin6_null; 7667 sin6->sin6_family = AF_INET6; 7668 sin6->sin6_flowinfo = 7669 tcp->tcp_ip6h->ip6_vcf & 7670 ~IPV6_VERS_AND_FLOW_MASK; 7671 sin6->sin6_addr = tcp->tcp_remote_v6; 7672 sin6->sin6_port = tcp->tcp_fport; 7673 7674 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7675 } 7676 } 7677 putnext(tcp->tcp_rq, ackmp); 7678 } 7679 7680 /* 7681 * Handle reinitialization of a tcp structure. 7682 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7683 */ 7684 static void 7685 tcp_reinit(tcp_t *tcp) 7686 { 7687 mblk_t *mp; 7688 int err; 7689 7690 TCP_STAT(tcp_reinit_calls); 7691 7692 /* tcp_reinit should never be called for detached tcp_t's */ 7693 ASSERT(tcp->tcp_listener == NULL); 7694 ASSERT((tcp->tcp_family == AF_INET && 7695 tcp->tcp_ipversion == IPV4_VERSION) || 7696 (tcp->tcp_family == AF_INET6 && 7697 (tcp->tcp_ipversion == IPV4_VERSION || 7698 tcp->tcp_ipversion == IPV6_VERSION))); 7699 7700 /* Cancel outstanding timers */ 7701 tcp_timers_stop(tcp); 7702 7703 /* 7704 * Reset everything in the state vector, after updating global 7705 * MIB data from instance counters. 7706 */ 7707 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7708 tcp->tcp_ibsegs = 0; 7709 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7710 tcp->tcp_obsegs = 0; 7711 7712 tcp_close_mpp(&tcp->tcp_xmit_head); 7713 if (tcp->tcp_snd_zcopy_aware) 7714 tcp_zcopy_notify(tcp); 7715 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7716 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7717 if (tcp->tcp_flow_stopped && 7718 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7719 tcp_clrqfull(tcp); 7720 } 7721 tcp_close_mpp(&tcp->tcp_reass_head); 7722 tcp->tcp_reass_tail = NULL; 7723 if (tcp->tcp_rcv_list != NULL) { 7724 /* Free b_next chain */ 7725 tcp_close_mpp(&tcp->tcp_rcv_list); 7726 tcp->tcp_rcv_last_head = NULL; 7727 tcp->tcp_rcv_last_tail = NULL; 7728 tcp->tcp_rcv_cnt = 0; 7729 } 7730 tcp->tcp_rcv_last_tail = NULL; 7731 7732 if ((mp = tcp->tcp_urp_mp) != NULL) { 7733 freemsg(mp); 7734 tcp->tcp_urp_mp = NULL; 7735 } 7736 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7737 freemsg(mp); 7738 tcp->tcp_urp_mark_mp = NULL; 7739 } 7740 if (tcp->tcp_fused_sigurg_mp != NULL) { 7741 freeb(tcp->tcp_fused_sigurg_mp); 7742 tcp->tcp_fused_sigurg_mp = NULL; 7743 } 7744 7745 /* 7746 * Following is a union with two members which are 7747 * identical types and size so the following cleanup 7748 * is enough. 7749 */ 7750 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7751 7752 CL_INET_DISCONNECT(tcp); 7753 7754 /* 7755 * The connection can't be on the tcp_time_wait_head list 7756 * since it is not detached. 7757 */ 7758 ASSERT(tcp->tcp_time_wait_next == NULL); 7759 ASSERT(tcp->tcp_time_wait_prev == NULL); 7760 ASSERT(tcp->tcp_time_wait_expire == 0); 7761 7762 if (tcp->tcp_kssl_pending) { 7763 tcp->tcp_kssl_pending = B_FALSE; 7764 7765 /* Don't reset if the initialized by bind. */ 7766 if (tcp->tcp_kssl_ent != NULL) { 7767 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7768 KSSL_NO_PROXY); 7769 } 7770 } 7771 if (tcp->tcp_kssl_ctx != NULL) { 7772 kssl_release_ctx(tcp->tcp_kssl_ctx); 7773 tcp->tcp_kssl_ctx = NULL; 7774 } 7775 7776 /* 7777 * Reset/preserve other values 7778 */ 7779 tcp_reinit_values(tcp); 7780 ipcl_hash_remove(tcp->tcp_connp); 7781 conn_delete_ire(tcp->tcp_connp, NULL); 7782 7783 if (tcp->tcp_conn_req_max != 0) { 7784 /* 7785 * This is the case when a TLI program uses the same 7786 * transport end point to accept a connection. This 7787 * makes the TCP both a listener and acceptor. When 7788 * this connection is closed, we need to set the state 7789 * back to TCPS_LISTEN. Make sure that the eager list 7790 * is reinitialized. 7791 * 7792 * Note that this stream is still bound to the four 7793 * tuples of the previous connection in IP. If a new 7794 * SYN with different foreign address comes in, IP will 7795 * not find it and will send it to the global queue. In 7796 * the global queue, TCP will do a tcp_lookup_listener() 7797 * to find this stream. This works because this stream 7798 * is only removed from connected hash. 7799 * 7800 */ 7801 tcp->tcp_state = TCPS_LISTEN; 7802 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7803 tcp->tcp_eager_next_drop_q0 = tcp; 7804 tcp->tcp_eager_prev_drop_q0 = tcp; 7805 tcp->tcp_connp->conn_recv = tcp_conn_request; 7806 if (tcp->tcp_family == AF_INET6) { 7807 ASSERT(tcp->tcp_connp->conn_af_isv6); 7808 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7809 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7810 } else { 7811 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7812 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7813 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7814 } 7815 } else { 7816 tcp->tcp_state = TCPS_BOUND; 7817 } 7818 7819 /* 7820 * Initialize to default values 7821 * Can't fail since enough header template space already allocated 7822 * at open(). 7823 */ 7824 err = tcp_init_values(tcp); 7825 ASSERT(err == 0); 7826 /* Restore state in tcp_tcph */ 7827 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7828 if (tcp->tcp_ipversion == IPV4_VERSION) 7829 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7830 else 7831 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7832 /* 7833 * Copy of the src addr. in tcp_t is needed in tcp_t 7834 * since the lookup funcs can only lookup on tcp_t 7835 */ 7836 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7837 7838 ASSERT(tcp->tcp_ptpbhn != NULL); 7839 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7840 tcp->tcp_rwnd = tcp_recv_hiwat; 7841 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7842 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7843 } 7844 7845 /* 7846 * Force values to zero that need be zero. 7847 * Do not touch values asociated with the BOUND or LISTEN state 7848 * since the connection will end up in that state after the reinit. 7849 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7850 * structure! 7851 */ 7852 static void 7853 tcp_reinit_values(tcp) 7854 tcp_t *tcp; 7855 { 7856 #ifndef lint 7857 #define DONTCARE(x) 7858 #define PRESERVE(x) 7859 #else 7860 #define DONTCARE(x) ((x) = (x)) 7861 #define PRESERVE(x) ((x) = (x)) 7862 #endif /* lint */ 7863 7864 PRESERVE(tcp->tcp_bind_hash); 7865 PRESERVE(tcp->tcp_ptpbhn); 7866 PRESERVE(tcp->tcp_acceptor_hash); 7867 PRESERVE(tcp->tcp_ptpahn); 7868 7869 /* Should be ASSERT NULL on these with new code! */ 7870 ASSERT(tcp->tcp_time_wait_next == NULL); 7871 ASSERT(tcp->tcp_time_wait_prev == NULL); 7872 ASSERT(tcp->tcp_time_wait_expire == 0); 7873 PRESERVE(tcp->tcp_state); 7874 PRESERVE(tcp->tcp_rq); 7875 PRESERVE(tcp->tcp_wq); 7876 7877 ASSERT(tcp->tcp_xmit_head == NULL); 7878 ASSERT(tcp->tcp_xmit_last == NULL); 7879 ASSERT(tcp->tcp_unsent == 0); 7880 ASSERT(tcp->tcp_xmit_tail == NULL); 7881 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7882 7883 tcp->tcp_snxt = 0; /* Displayed in mib */ 7884 tcp->tcp_suna = 0; /* Displayed in mib */ 7885 tcp->tcp_swnd = 0; 7886 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7887 7888 ASSERT(tcp->tcp_ibsegs == 0); 7889 ASSERT(tcp->tcp_obsegs == 0); 7890 7891 if (tcp->tcp_iphc != NULL) { 7892 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7893 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7894 } 7895 7896 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7897 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7898 DONTCARE(tcp->tcp_ipha); 7899 DONTCARE(tcp->tcp_ip6h); 7900 DONTCARE(tcp->tcp_ip_hdr_len); 7901 DONTCARE(tcp->tcp_tcph); 7902 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7903 tcp->tcp_valid_bits = 0; 7904 7905 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7906 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7907 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7908 tcp->tcp_last_rcv_lbolt = 0; 7909 7910 tcp->tcp_init_cwnd = 0; 7911 7912 tcp->tcp_urp_last_valid = 0; 7913 tcp->tcp_hard_binding = 0; 7914 tcp->tcp_hard_bound = 0; 7915 PRESERVE(tcp->tcp_cred); 7916 PRESERVE(tcp->tcp_cpid); 7917 PRESERVE(tcp->tcp_open_time); 7918 PRESERVE(tcp->tcp_exclbind); 7919 7920 tcp->tcp_fin_acked = 0; 7921 tcp->tcp_fin_rcvd = 0; 7922 tcp->tcp_fin_sent = 0; 7923 tcp->tcp_ordrel_done = 0; 7924 7925 tcp->tcp_debug = 0; 7926 tcp->tcp_dontroute = 0; 7927 tcp->tcp_broadcast = 0; 7928 7929 tcp->tcp_useloopback = 0; 7930 tcp->tcp_reuseaddr = 0; 7931 tcp->tcp_oobinline = 0; 7932 tcp->tcp_dgram_errind = 0; 7933 7934 tcp->tcp_detached = 0; 7935 tcp->tcp_bind_pending = 0; 7936 tcp->tcp_unbind_pending = 0; 7937 tcp->tcp_deferred_clean_death = 0; 7938 7939 tcp->tcp_snd_ws_ok = B_FALSE; 7940 tcp->tcp_snd_ts_ok = B_FALSE; 7941 tcp->tcp_linger = 0; 7942 tcp->tcp_ka_enabled = 0; 7943 tcp->tcp_zero_win_probe = 0; 7944 7945 tcp->tcp_loopback = 0; 7946 tcp->tcp_localnet = 0; 7947 tcp->tcp_syn_defense = 0; 7948 tcp->tcp_set_timer = 0; 7949 7950 tcp->tcp_active_open = 0; 7951 ASSERT(tcp->tcp_timeout == B_FALSE); 7952 tcp->tcp_rexmit = B_FALSE; 7953 tcp->tcp_xmit_zc_clean = B_FALSE; 7954 7955 tcp->tcp_snd_sack_ok = B_FALSE; 7956 PRESERVE(tcp->tcp_recvdstaddr); 7957 tcp->tcp_hwcksum = B_FALSE; 7958 7959 tcp->tcp_ire_ill_check_done = B_FALSE; 7960 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7961 7962 tcp->tcp_mdt = B_FALSE; 7963 tcp->tcp_mdt_hdr_head = 0; 7964 tcp->tcp_mdt_hdr_tail = 0; 7965 7966 tcp->tcp_conn_def_q0 = 0; 7967 tcp->tcp_ip_forward_progress = B_FALSE; 7968 tcp->tcp_anon_priv_bind = 0; 7969 tcp->tcp_ecn_ok = B_FALSE; 7970 7971 tcp->tcp_cwr = B_FALSE; 7972 tcp->tcp_ecn_echo_on = B_FALSE; 7973 7974 if (tcp->tcp_sack_info != NULL) { 7975 if (tcp->tcp_notsack_list != NULL) { 7976 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7977 } 7978 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7979 tcp->tcp_sack_info = NULL; 7980 } 7981 7982 tcp->tcp_rcv_ws = 0; 7983 tcp->tcp_snd_ws = 0; 7984 tcp->tcp_ts_recent = 0; 7985 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7986 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7987 tcp->tcp_if_mtu = 0; 7988 7989 ASSERT(tcp->tcp_reass_head == NULL); 7990 ASSERT(tcp->tcp_reass_tail == NULL); 7991 7992 tcp->tcp_cwnd_cnt = 0; 7993 7994 ASSERT(tcp->tcp_rcv_list == NULL); 7995 ASSERT(tcp->tcp_rcv_last_head == NULL); 7996 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7997 ASSERT(tcp->tcp_rcv_cnt == 0); 7998 7999 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8000 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8001 tcp->tcp_csuna = 0; 8002 8003 tcp->tcp_rto = 0; /* Displayed in MIB */ 8004 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8005 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8006 tcp->tcp_rtt_update = 0; 8007 8008 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8009 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8010 8011 tcp->tcp_rack = 0; /* Displayed in mib */ 8012 tcp->tcp_rack_cnt = 0; 8013 tcp->tcp_rack_cur_max = 0; 8014 tcp->tcp_rack_abs_max = 0; 8015 8016 tcp->tcp_max_swnd = 0; 8017 8018 ASSERT(tcp->tcp_listener == NULL); 8019 8020 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8021 8022 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8023 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8024 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8025 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8026 8027 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8028 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8029 PRESERVE(tcp->tcp_conn_req_max); 8030 PRESERVE(tcp->tcp_conn_req_seqnum); 8031 8032 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8033 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8034 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8035 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8036 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8037 8038 tcp->tcp_lingertime = 0; 8039 8040 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8041 ASSERT(tcp->tcp_urp_mp == NULL); 8042 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8043 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8044 8045 ASSERT(tcp->tcp_eager_next_q == NULL); 8046 ASSERT(tcp->tcp_eager_last_q == NULL); 8047 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8048 tcp->tcp_eager_prev_q0 == NULL) || 8049 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8050 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8051 8052 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8053 tcp->tcp_eager_prev_drop_q0 == NULL) || 8054 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8055 8056 tcp->tcp_client_errno = 0; 8057 8058 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8059 8060 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8061 8062 PRESERVE(tcp->tcp_bound_source_v6); 8063 tcp->tcp_last_sent_len = 0; 8064 tcp->tcp_dupack_cnt = 0; 8065 8066 tcp->tcp_fport = 0; /* Displayed in MIB */ 8067 PRESERVE(tcp->tcp_lport); 8068 8069 PRESERVE(tcp->tcp_acceptor_lockp); 8070 8071 ASSERT(tcp->tcp_ordrelid == 0); 8072 PRESERVE(tcp->tcp_acceptor_id); 8073 DONTCARE(tcp->tcp_ipsec_overhead); 8074 8075 /* 8076 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8077 * in tcp structure and now tracing), Re-initialize all 8078 * members of tcp_traceinfo. 8079 */ 8080 if (tcp->tcp_tracebuf != NULL) { 8081 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8082 } 8083 8084 PRESERVE(tcp->tcp_family); 8085 if (tcp->tcp_family == AF_INET6) { 8086 tcp->tcp_ipversion = IPV6_VERSION; 8087 tcp->tcp_mss = tcp_mss_def_ipv6; 8088 } else { 8089 tcp->tcp_ipversion = IPV4_VERSION; 8090 tcp->tcp_mss = tcp_mss_def_ipv4; 8091 } 8092 8093 tcp->tcp_bound_if = 0; 8094 tcp->tcp_ipv6_recvancillary = 0; 8095 tcp->tcp_recvifindex = 0; 8096 tcp->tcp_recvhops = 0; 8097 tcp->tcp_closed = 0; 8098 tcp->tcp_cleandeathtag = 0; 8099 if (tcp->tcp_hopopts != NULL) { 8100 mi_free(tcp->tcp_hopopts); 8101 tcp->tcp_hopopts = NULL; 8102 tcp->tcp_hopoptslen = 0; 8103 } 8104 ASSERT(tcp->tcp_hopoptslen == 0); 8105 if (tcp->tcp_dstopts != NULL) { 8106 mi_free(tcp->tcp_dstopts); 8107 tcp->tcp_dstopts = NULL; 8108 tcp->tcp_dstoptslen = 0; 8109 } 8110 ASSERT(tcp->tcp_dstoptslen == 0); 8111 if (tcp->tcp_rtdstopts != NULL) { 8112 mi_free(tcp->tcp_rtdstopts); 8113 tcp->tcp_rtdstopts = NULL; 8114 tcp->tcp_rtdstoptslen = 0; 8115 } 8116 ASSERT(tcp->tcp_rtdstoptslen == 0); 8117 if (tcp->tcp_rthdr != NULL) { 8118 mi_free(tcp->tcp_rthdr); 8119 tcp->tcp_rthdr = NULL; 8120 tcp->tcp_rthdrlen = 0; 8121 } 8122 ASSERT(tcp->tcp_rthdrlen == 0); 8123 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8124 8125 /* Reset fusion-related fields */ 8126 tcp->tcp_fused = B_FALSE; 8127 tcp->tcp_unfusable = B_FALSE; 8128 tcp->tcp_fused_sigurg = B_FALSE; 8129 tcp->tcp_direct_sockfs = B_FALSE; 8130 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8131 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8132 tcp->tcp_loopback_peer = NULL; 8133 tcp->tcp_fuse_rcv_hiwater = 0; 8134 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8135 tcp->tcp_fuse_rcv_unread_cnt = 0; 8136 8137 tcp->tcp_lso = B_FALSE; 8138 8139 tcp->tcp_in_ack_unsent = 0; 8140 tcp->tcp_cork = B_FALSE; 8141 tcp->tcp_tconnind_started = B_FALSE; 8142 8143 PRESERVE(tcp->tcp_squeue_bytes); 8144 8145 ASSERT(tcp->tcp_kssl_ctx == NULL); 8146 ASSERT(!tcp->tcp_kssl_pending); 8147 PRESERVE(tcp->tcp_kssl_ent); 8148 8149 tcp->tcp_closemp_used = 0; 8150 8151 #ifdef DEBUG 8152 DONTCARE(tcp->tcmp_stk[0]); 8153 #endif 8154 8155 8156 #undef DONTCARE 8157 #undef PRESERVE 8158 } 8159 8160 /* 8161 * Allocate necessary resources and initialize state vector. 8162 * Guaranteed not to fail so that when an error is returned, 8163 * the caller doesn't need to do any additional cleanup. 8164 */ 8165 int 8166 tcp_init(tcp_t *tcp, queue_t *q) 8167 { 8168 int err; 8169 8170 tcp->tcp_rq = q; 8171 tcp->tcp_wq = WR(q); 8172 tcp->tcp_state = TCPS_IDLE; 8173 if ((err = tcp_init_values(tcp)) != 0) 8174 tcp_timers_stop(tcp); 8175 return (err); 8176 } 8177 8178 static int 8179 tcp_init_values(tcp_t *tcp) 8180 { 8181 int err; 8182 8183 ASSERT((tcp->tcp_family == AF_INET && 8184 tcp->tcp_ipversion == IPV4_VERSION) || 8185 (tcp->tcp_family == AF_INET6 && 8186 (tcp->tcp_ipversion == IPV4_VERSION || 8187 tcp->tcp_ipversion == IPV6_VERSION))); 8188 8189 /* 8190 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8191 * will be close to tcp_rexmit_interval_initial. By doing this, we 8192 * allow the algorithm to adjust slowly to large fluctuations of RTT 8193 * during first few transmissions of a connection as seen in slow 8194 * links. 8195 */ 8196 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 8197 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 8198 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8199 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8200 tcp_conn_grace_period; 8201 if (tcp->tcp_rto < tcp_rexmit_interval_min) 8202 tcp->tcp_rto = tcp_rexmit_interval_min; 8203 tcp->tcp_timer_backoff = 0; 8204 tcp->tcp_ms_we_have_waited = 0; 8205 tcp->tcp_last_recv_time = lbolt; 8206 tcp->tcp_cwnd_max = tcp_cwnd_max_; 8207 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8208 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8209 8210 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 8211 8212 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 8213 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 8214 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 8215 /* 8216 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8217 * passive open. 8218 */ 8219 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 8220 8221 tcp->tcp_naglim = tcp_naglim_def; 8222 8223 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8224 8225 tcp->tcp_mdt_hdr_head = 0; 8226 tcp->tcp_mdt_hdr_tail = 0; 8227 8228 /* Reset fusion-related fields */ 8229 tcp->tcp_fused = B_FALSE; 8230 tcp->tcp_unfusable = B_FALSE; 8231 tcp->tcp_fused_sigurg = B_FALSE; 8232 tcp->tcp_direct_sockfs = B_FALSE; 8233 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8234 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8235 tcp->tcp_loopback_peer = NULL; 8236 tcp->tcp_fuse_rcv_hiwater = 0; 8237 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8238 tcp->tcp_fuse_rcv_unread_cnt = 0; 8239 8240 /* Initialize the header template */ 8241 if (tcp->tcp_ipversion == IPV4_VERSION) { 8242 err = tcp_header_init_ipv4(tcp); 8243 } else { 8244 err = tcp_header_init_ipv6(tcp); 8245 } 8246 if (err) 8247 return (err); 8248 8249 /* 8250 * Init the window scale to the max so tcp_rwnd_set() won't pare 8251 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8252 */ 8253 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8254 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8255 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8256 8257 tcp->tcp_cork = B_FALSE; 8258 /* 8259 * Init the tcp_debug option. This value determines whether TCP 8260 * calls strlog() to print out debug messages. Doing this 8261 * initialization here means that this value is not inherited thru 8262 * tcp_reinit(). 8263 */ 8264 tcp->tcp_debug = tcp_dbg; 8265 8266 tcp->tcp_ka_interval = tcp_keepalive_interval; 8267 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8268 8269 return (0); 8270 } 8271 8272 /* 8273 * Initialize the IPv4 header. Loses any record of any IP options. 8274 */ 8275 static int 8276 tcp_header_init_ipv4(tcp_t *tcp) 8277 { 8278 tcph_t *tcph; 8279 uint32_t sum; 8280 conn_t *connp; 8281 8282 /* 8283 * This is a simple initialization. If there's 8284 * already a template, it should never be too small, 8285 * so reuse it. Otherwise, allocate space for the new one. 8286 */ 8287 if (tcp->tcp_iphc == NULL) { 8288 ASSERT(tcp->tcp_iphc_len == 0); 8289 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8290 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8291 if (tcp->tcp_iphc == NULL) { 8292 tcp->tcp_iphc_len = 0; 8293 return (ENOMEM); 8294 } 8295 } 8296 8297 /* options are gone; may need a new label */ 8298 connp = tcp->tcp_connp; 8299 connp->conn_mlp_type = mlptSingle; 8300 connp->conn_ulp_labeled = !is_system_labeled(); 8301 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8302 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8303 tcp->tcp_ip6h = NULL; 8304 tcp->tcp_ipversion = IPV4_VERSION; 8305 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8306 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8307 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8308 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8309 tcp->tcp_ipha->ipha_version_and_hdr_length 8310 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8311 tcp->tcp_ipha->ipha_ident = 0; 8312 8313 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8314 tcp->tcp_tos = 0; 8315 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8316 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8317 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8318 8319 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8320 tcp->tcp_tcph = tcph; 8321 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8322 /* 8323 * IP wants our header length in the checksum field to 8324 * allow it to perform a single pseudo-header+checksum 8325 * calculation on behalf of TCP. 8326 * Include the adjustment for a source route once IP_OPTIONS is set. 8327 */ 8328 sum = sizeof (tcph_t) + tcp->tcp_sum; 8329 sum = (sum >> 16) + (sum & 0xFFFF); 8330 U16_TO_ABE16(sum, tcph->th_sum); 8331 return (0); 8332 } 8333 8334 /* 8335 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8336 */ 8337 static int 8338 tcp_header_init_ipv6(tcp_t *tcp) 8339 { 8340 tcph_t *tcph; 8341 uint32_t sum; 8342 conn_t *connp; 8343 8344 /* 8345 * This is a simple initialization. If there's 8346 * already a template, it should never be too small, 8347 * so reuse it. Otherwise, allocate space for the new one. 8348 * Ensure that there is enough space to "downgrade" the tcp_t 8349 * to an IPv4 tcp_t. This requires having space for a full load 8350 * of IPv4 options, as well as a full load of TCP options 8351 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8352 * than a v6 header and a TCP header with a full load of TCP options 8353 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8354 * We want to avoid reallocation in the "downgraded" case when 8355 * processing outbound IPv4 options. 8356 */ 8357 if (tcp->tcp_iphc == NULL) { 8358 ASSERT(tcp->tcp_iphc_len == 0); 8359 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8360 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8361 if (tcp->tcp_iphc == NULL) { 8362 tcp->tcp_iphc_len = 0; 8363 return (ENOMEM); 8364 } 8365 } 8366 8367 /* options are gone; may need a new label */ 8368 connp = tcp->tcp_connp; 8369 connp->conn_mlp_type = mlptSingle; 8370 connp->conn_ulp_labeled = !is_system_labeled(); 8371 8372 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8373 tcp->tcp_ipversion = IPV6_VERSION; 8374 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8375 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8376 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8377 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8378 tcp->tcp_ipha = NULL; 8379 8380 /* Initialize the header template */ 8381 8382 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8383 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8384 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8385 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8386 8387 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8388 tcp->tcp_tcph = tcph; 8389 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8390 /* 8391 * IP wants our header length in the checksum field to 8392 * allow it to perform a single psuedo-header+checksum 8393 * calculation on behalf of TCP. 8394 * Include the adjustment for a source route when IPV6_RTHDR is set. 8395 */ 8396 sum = sizeof (tcph_t) + tcp->tcp_sum; 8397 sum = (sum >> 16) + (sum & 0xFFFF); 8398 U16_TO_ABE16(sum, tcph->th_sum); 8399 return (0); 8400 } 8401 8402 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8403 #define ICMP_MIN_TCP_HDR 8 8404 8405 /* 8406 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8407 * passed up by IP. The message is always received on the correct tcp_t. 8408 * Assumes that IP has pulled up everything up to and including the ICMP header. 8409 */ 8410 void 8411 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8412 { 8413 icmph_t *icmph; 8414 ipha_t *ipha; 8415 int iph_hdr_length; 8416 tcph_t *tcph; 8417 boolean_t ipsec_mctl = B_FALSE; 8418 boolean_t secure; 8419 mblk_t *first_mp = mp; 8420 uint32_t new_mss; 8421 uint32_t ratio; 8422 size_t mp_size = MBLKL(mp); 8423 uint32_t seg_seq; 8424 8425 /* Assume IP provides aligned packets - otherwise toss */ 8426 if (!OK_32PTR(mp->b_rptr)) { 8427 freemsg(mp); 8428 return; 8429 } 8430 8431 /* 8432 * Since ICMP errors are normal data marked with M_CTL when sent 8433 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8434 * packets starting with an ipsec_info_t, see ipsec_info.h. 8435 */ 8436 if ((mp_size == sizeof (ipsec_info_t)) && 8437 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8438 ASSERT(mp->b_cont != NULL); 8439 mp = mp->b_cont; 8440 /* IP should have done this */ 8441 ASSERT(OK_32PTR(mp->b_rptr)); 8442 mp_size = MBLKL(mp); 8443 ipsec_mctl = B_TRUE; 8444 } 8445 8446 /* 8447 * Verify that we have a complete outer IP header. If not, drop it. 8448 */ 8449 if (mp_size < sizeof (ipha_t)) { 8450 noticmpv4: 8451 freemsg(first_mp); 8452 return; 8453 } 8454 8455 ipha = (ipha_t *)mp->b_rptr; 8456 /* 8457 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8458 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8459 */ 8460 switch (IPH_HDR_VERSION(ipha)) { 8461 case IPV6_VERSION: 8462 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8463 return; 8464 case IPV4_VERSION: 8465 break; 8466 default: 8467 goto noticmpv4; 8468 } 8469 8470 /* Skip past the outer IP and ICMP headers */ 8471 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8472 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8473 /* 8474 * If we don't have the correct outer IP header length or if the ULP 8475 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8476 * send it upstream. 8477 */ 8478 if (iph_hdr_length < sizeof (ipha_t) || 8479 ipha->ipha_protocol != IPPROTO_ICMP || 8480 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8481 goto noticmpv4; 8482 } 8483 ipha = (ipha_t *)&icmph[1]; 8484 8485 /* Skip past the inner IP and find the ULP header */ 8486 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8487 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8488 /* 8489 * If we don't have the correct inner IP header length or if the ULP 8490 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8491 * bytes of TCP header, drop it. 8492 */ 8493 if (iph_hdr_length < sizeof (ipha_t) || 8494 ipha->ipha_protocol != IPPROTO_TCP || 8495 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8496 goto noticmpv4; 8497 } 8498 8499 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8500 if (ipsec_mctl) { 8501 secure = ipsec_in_is_secure(first_mp); 8502 } else { 8503 secure = B_FALSE; 8504 } 8505 if (secure) { 8506 /* 8507 * If we are willing to accept this in clear 8508 * we don't have to verify policy. 8509 */ 8510 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8511 if (!tcp_check_policy(tcp, first_mp, 8512 ipha, NULL, secure, ipsec_mctl)) { 8513 /* 8514 * tcp_check_policy called 8515 * ip_drop_packet() on failure. 8516 */ 8517 return; 8518 } 8519 } 8520 } 8521 } else if (ipsec_mctl) { 8522 /* 8523 * This is a hard_bound connection. IP has already 8524 * verified policy. We don't have to do it again. 8525 */ 8526 freeb(first_mp); 8527 first_mp = mp; 8528 ipsec_mctl = B_FALSE; 8529 } 8530 8531 seg_seq = ABE32_TO_U32(tcph->th_seq); 8532 /* 8533 * TCP SHOULD check that the TCP sequence number contained in 8534 * payload of the ICMP error message is within the range 8535 * SND.UNA <= SEG.SEQ < SND.NXT. 8536 */ 8537 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8538 /* 8539 * If the ICMP message is bogus, should we kill the 8540 * connection, or should we just drop the bogus ICMP 8541 * message? It would probably make more sense to just 8542 * drop the message so that if this one managed to get 8543 * in, the real connection should not suffer. 8544 */ 8545 goto noticmpv4; 8546 } 8547 8548 switch (icmph->icmph_type) { 8549 case ICMP_DEST_UNREACHABLE: 8550 switch (icmph->icmph_code) { 8551 case ICMP_FRAGMENTATION_NEEDED: 8552 /* 8553 * Reduce the MSS based on the new MTU. This will 8554 * eliminate any fragmentation locally. 8555 * N.B. There may well be some funny side-effects on 8556 * the local send policy and the remote receive policy. 8557 * Pending further research, we provide 8558 * tcp_ignore_path_mtu just in case this proves 8559 * disastrous somewhere. 8560 * 8561 * After updating the MSS, retransmit part of the 8562 * dropped segment using the new mss by calling 8563 * tcp_wput_data(). Need to adjust all those 8564 * params to make sure tcp_wput_data() work properly. 8565 */ 8566 if (tcp_ignore_path_mtu) 8567 break; 8568 8569 /* 8570 * Decrease the MSS by time stamp options 8571 * IP options and IPSEC options. tcp_hdr_len 8572 * includes time stamp option and IP option 8573 * length. 8574 */ 8575 8576 new_mss = ntohs(icmph->icmph_du_mtu) - 8577 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8578 8579 /* 8580 * Only update the MSS if the new one is 8581 * smaller than the previous one. This is 8582 * to avoid problems when getting multiple 8583 * ICMP errors for the same MTU. 8584 */ 8585 if (new_mss >= tcp->tcp_mss) 8586 break; 8587 8588 /* 8589 * Stop doing PMTU if new_mss is less than 68 8590 * or less than tcp_mss_min. 8591 * The value 68 comes from rfc 1191. 8592 */ 8593 if (new_mss < MAX(68, tcp_mss_min)) 8594 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8595 0; 8596 8597 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8598 ASSERT(ratio >= 1); 8599 tcp_mss_set(tcp, new_mss); 8600 8601 /* 8602 * Make sure we have something to 8603 * send. 8604 */ 8605 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8606 (tcp->tcp_xmit_head != NULL)) { 8607 /* 8608 * Shrink tcp_cwnd in 8609 * proportion to the old MSS/new MSS. 8610 */ 8611 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8612 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8613 (tcp->tcp_unsent == 0)) { 8614 tcp->tcp_rexmit_max = tcp->tcp_fss; 8615 } else { 8616 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8617 } 8618 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8619 tcp->tcp_rexmit = B_TRUE; 8620 tcp->tcp_dupack_cnt = 0; 8621 tcp->tcp_snd_burst = TCP_CWND_SS; 8622 tcp_ss_rexmit(tcp); 8623 } 8624 break; 8625 case ICMP_PORT_UNREACHABLE: 8626 case ICMP_PROTOCOL_UNREACHABLE: 8627 switch (tcp->tcp_state) { 8628 case TCPS_SYN_SENT: 8629 case TCPS_SYN_RCVD: 8630 /* 8631 * ICMP can snipe away incipient 8632 * TCP connections as long as 8633 * seq number is same as initial 8634 * send seq number. 8635 */ 8636 if (seg_seq == tcp->tcp_iss) { 8637 (void) tcp_clean_death(tcp, 8638 ECONNREFUSED, 6); 8639 } 8640 break; 8641 } 8642 break; 8643 case ICMP_HOST_UNREACHABLE: 8644 case ICMP_NET_UNREACHABLE: 8645 /* Record the error in case we finally time out. */ 8646 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8647 tcp->tcp_client_errno = EHOSTUNREACH; 8648 else 8649 tcp->tcp_client_errno = ENETUNREACH; 8650 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8651 if (tcp->tcp_listener != NULL && 8652 tcp->tcp_listener->tcp_syn_defense) { 8653 /* 8654 * Ditch the half-open connection if we 8655 * suspect a SYN attack is under way. 8656 */ 8657 tcp_ip_ire_mark_advice(tcp); 8658 (void) tcp_clean_death(tcp, 8659 tcp->tcp_client_errno, 7); 8660 } 8661 } 8662 break; 8663 default: 8664 break; 8665 } 8666 break; 8667 case ICMP_SOURCE_QUENCH: { 8668 /* 8669 * use a global boolean to control 8670 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8671 * The default is false. 8672 */ 8673 if (tcp_icmp_source_quench) { 8674 /* 8675 * Reduce the sending rate as if we got a 8676 * retransmit timeout 8677 */ 8678 uint32_t npkt; 8679 8680 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8681 tcp->tcp_mss; 8682 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8683 tcp->tcp_cwnd = tcp->tcp_mss; 8684 tcp->tcp_cwnd_cnt = 0; 8685 } 8686 break; 8687 } 8688 } 8689 freemsg(first_mp); 8690 } 8691 8692 /* 8693 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8694 * error messages passed up by IP. 8695 * Assumes that IP has pulled up all the extension headers as well 8696 * as the ICMPv6 header. 8697 */ 8698 static void 8699 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8700 { 8701 icmp6_t *icmp6; 8702 ip6_t *ip6h; 8703 uint16_t iph_hdr_length; 8704 tcpha_t *tcpha; 8705 uint8_t *nexthdrp; 8706 uint32_t new_mss; 8707 uint32_t ratio; 8708 boolean_t secure; 8709 mblk_t *first_mp = mp; 8710 size_t mp_size; 8711 uint32_t seg_seq; 8712 8713 /* 8714 * The caller has determined if this is an IPSEC_IN packet and 8715 * set ipsec_mctl appropriately (see tcp_icmp_error). 8716 */ 8717 if (ipsec_mctl) 8718 mp = mp->b_cont; 8719 8720 mp_size = MBLKL(mp); 8721 8722 /* 8723 * Verify that we have a complete IP header. If not, send it upstream. 8724 */ 8725 if (mp_size < sizeof (ip6_t)) { 8726 noticmpv6: 8727 freemsg(first_mp); 8728 return; 8729 } 8730 8731 /* 8732 * Verify this is an ICMPV6 packet, else send it upstream. 8733 */ 8734 ip6h = (ip6_t *)mp->b_rptr; 8735 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8736 iph_hdr_length = IPV6_HDR_LEN; 8737 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8738 &nexthdrp) || 8739 *nexthdrp != IPPROTO_ICMPV6) { 8740 goto noticmpv6; 8741 } 8742 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8743 ip6h = (ip6_t *)&icmp6[1]; 8744 /* 8745 * Verify if we have a complete ICMP and inner IP header. 8746 */ 8747 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8748 goto noticmpv6; 8749 8750 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8751 goto noticmpv6; 8752 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8753 /* 8754 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8755 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8756 * packet. 8757 */ 8758 if ((*nexthdrp != IPPROTO_TCP) || 8759 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8760 goto noticmpv6; 8761 } 8762 8763 /* 8764 * ICMP errors come on the right queue or come on 8765 * listener/global queue for detached connections and 8766 * get switched to the right queue. If it comes on the 8767 * right queue, policy check has already been done by IP 8768 * and thus free the first_mp without verifying the policy. 8769 * If it has come for a non-hard bound connection, we need 8770 * to verify policy as IP may not have done it. 8771 */ 8772 if (!tcp->tcp_hard_bound) { 8773 if (ipsec_mctl) { 8774 secure = ipsec_in_is_secure(first_mp); 8775 } else { 8776 secure = B_FALSE; 8777 } 8778 if (secure) { 8779 /* 8780 * If we are willing to accept this in clear 8781 * we don't have to verify policy. 8782 */ 8783 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8784 if (!tcp_check_policy(tcp, first_mp, 8785 NULL, ip6h, secure, ipsec_mctl)) { 8786 /* 8787 * tcp_check_policy called 8788 * ip_drop_packet() on failure. 8789 */ 8790 return; 8791 } 8792 } 8793 } 8794 } else if (ipsec_mctl) { 8795 /* 8796 * This is a hard_bound connection. IP has already 8797 * verified policy. We don't have to do it again. 8798 */ 8799 freeb(first_mp); 8800 first_mp = mp; 8801 ipsec_mctl = B_FALSE; 8802 } 8803 8804 seg_seq = ntohl(tcpha->tha_seq); 8805 /* 8806 * TCP SHOULD check that the TCP sequence number contained in 8807 * payload of the ICMP error message is within the range 8808 * SND.UNA <= SEG.SEQ < SND.NXT. 8809 */ 8810 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8811 /* 8812 * If the ICMP message is bogus, should we kill the 8813 * connection, or should we just drop the bogus ICMP 8814 * message? It would probably make more sense to just 8815 * drop the message so that if this one managed to get 8816 * in, the real connection should not suffer. 8817 */ 8818 goto noticmpv6; 8819 } 8820 8821 switch (icmp6->icmp6_type) { 8822 case ICMP6_PACKET_TOO_BIG: 8823 /* 8824 * Reduce the MSS based on the new MTU. This will 8825 * eliminate any fragmentation locally. 8826 * N.B. There may well be some funny side-effects on 8827 * the local send policy and the remote receive policy. 8828 * Pending further research, we provide 8829 * tcp_ignore_path_mtu just in case this proves 8830 * disastrous somewhere. 8831 * 8832 * After updating the MSS, retransmit part of the 8833 * dropped segment using the new mss by calling 8834 * tcp_wput_data(). Need to adjust all those 8835 * params to make sure tcp_wput_data() work properly. 8836 */ 8837 if (tcp_ignore_path_mtu) 8838 break; 8839 8840 /* 8841 * Decrease the MSS by time stamp options 8842 * IP options and IPSEC options. tcp_hdr_len 8843 * includes time stamp option and IP option 8844 * length. 8845 */ 8846 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8847 tcp->tcp_ipsec_overhead; 8848 8849 /* 8850 * Only update the MSS if the new one is 8851 * smaller than the previous one. This is 8852 * to avoid problems when getting multiple 8853 * ICMP errors for the same MTU. 8854 */ 8855 if (new_mss >= tcp->tcp_mss) 8856 break; 8857 8858 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8859 ASSERT(ratio >= 1); 8860 tcp_mss_set(tcp, new_mss); 8861 8862 /* 8863 * Make sure we have something to 8864 * send. 8865 */ 8866 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8867 (tcp->tcp_xmit_head != NULL)) { 8868 /* 8869 * Shrink tcp_cwnd in 8870 * proportion to the old MSS/new MSS. 8871 */ 8872 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8873 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8874 (tcp->tcp_unsent == 0)) { 8875 tcp->tcp_rexmit_max = tcp->tcp_fss; 8876 } else { 8877 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8878 } 8879 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8880 tcp->tcp_rexmit = B_TRUE; 8881 tcp->tcp_dupack_cnt = 0; 8882 tcp->tcp_snd_burst = TCP_CWND_SS; 8883 tcp_ss_rexmit(tcp); 8884 } 8885 break; 8886 8887 case ICMP6_DST_UNREACH: 8888 switch (icmp6->icmp6_code) { 8889 case ICMP6_DST_UNREACH_NOPORT: 8890 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8891 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8892 (seg_seq == tcp->tcp_iss)) { 8893 (void) tcp_clean_death(tcp, 8894 ECONNREFUSED, 8); 8895 } 8896 break; 8897 8898 case ICMP6_DST_UNREACH_ADMIN: 8899 case ICMP6_DST_UNREACH_NOROUTE: 8900 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8901 case ICMP6_DST_UNREACH_ADDR: 8902 /* Record the error in case we finally time out. */ 8903 tcp->tcp_client_errno = EHOSTUNREACH; 8904 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8905 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8906 (seg_seq == tcp->tcp_iss)) { 8907 if (tcp->tcp_listener != NULL && 8908 tcp->tcp_listener->tcp_syn_defense) { 8909 /* 8910 * Ditch the half-open connection if we 8911 * suspect a SYN attack is under way. 8912 */ 8913 tcp_ip_ire_mark_advice(tcp); 8914 (void) tcp_clean_death(tcp, 8915 tcp->tcp_client_errno, 9); 8916 } 8917 } 8918 8919 8920 break; 8921 default: 8922 break; 8923 } 8924 break; 8925 8926 case ICMP6_PARAM_PROB: 8927 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8928 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8929 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8930 (uchar_t *)nexthdrp) { 8931 if (tcp->tcp_state == TCPS_SYN_SENT || 8932 tcp->tcp_state == TCPS_SYN_RCVD) { 8933 (void) tcp_clean_death(tcp, 8934 ECONNREFUSED, 10); 8935 } 8936 break; 8937 } 8938 break; 8939 8940 case ICMP6_TIME_EXCEEDED: 8941 default: 8942 break; 8943 } 8944 freemsg(first_mp); 8945 } 8946 8947 /* 8948 * IP recognizes seven kinds of bind requests: 8949 * 8950 * - A zero-length address binds only to the protocol number. 8951 * 8952 * - A 4-byte address is treated as a request to 8953 * validate that the address is a valid local IPv4 8954 * address, appropriate for an application to bind to. 8955 * IP does the verification, but does not make any note 8956 * of the address at this time. 8957 * 8958 * - A 16-byte address contains is treated as a request 8959 * to validate a local IPv6 address, as the 4-byte 8960 * address case above. 8961 * 8962 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8963 * use it for the inbound fanout of packets. 8964 * 8965 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8966 * use it for the inbound fanout of packets. 8967 * 8968 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8969 * information consisting of local and remote addresses 8970 * and ports. In this case, the addresses are both 8971 * validated as appropriate for this operation, and, if 8972 * so, the information is retained for use in the 8973 * inbound fanout. 8974 * 8975 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8976 * fanout information, like the 12-byte case above. 8977 * 8978 * IP will also fill in the IRE request mblk with information 8979 * regarding our peer. In all cases, we notify IP of our protocol 8980 * type by appending a single protocol byte to the bind request. 8981 */ 8982 static mblk_t * 8983 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8984 { 8985 char *cp; 8986 mblk_t *mp; 8987 struct T_bind_req *tbr; 8988 ipa_conn_t *ac; 8989 ipa6_conn_t *ac6; 8990 sin_t *sin; 8991 sin6_t *sin6; 8992 8993 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8994 ASSERT((tcp->tcp_family == AF_INET && 8995 tcp->tcp_ipversion == IPV4_VERSION) || 8996 (tcp->tcp_family == AF_INET6 && 8997 (tcp->tcp_ipversion == IPV4_VERSION || 8998 tcp->tcp_ipversion == IPV6_VERSION))); 8999 9000 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9001 if (!mp) 9002 return (mp); 9003 mp->b_datap->db_type = M_PROTO; 9004 tbr = (struct T_bind_req *)mp->b_rptr; 9005 tbr->PRIM_type = bind_prim; 9006 tbr->ADDR_offset = sizeof (*tbr); 9007 tbr->CONIND_number = 0; 9008 tbr->ADDR_length = addr_length; 9009 cp = (char *)&tbr[1]; 9010 switch (addr_length) { 9011 case sizeof (ipa_conn_t): 9012 ASSERT(tcp->tcp_family == AF_INET); 9013 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9014 9015 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9016 if (mp->b_cont == NULL) { 9017 freemsg(mp); 9018 return (NULL); 9019 } 9020 mp->b_cont->b_wptr += sizeof (ire_t); 9021 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9022 9023 /* cp known to be 32 bit aligned */ 9024 ac = (ipa_conn_t *)cp; 9025 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9026 ac->ac_faddr = tcp->tcp_remote; 9027 ac->ac_fport = tcp->tcp_fport; 9028 ac->ac_lport = tcp->tcp_lport; 9029 tcp->tcp_hard_binding = 1; 9030 break; 9031 9032 case sizeof (ipa6_conn_t): 9033 ASSERT(tcp->tcp_family == AF_INET6); 9034 9035 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9036 if (mp->b_cont == NULL) { 9037 freemsg(mp); 9038 return (NULL); 9039 } 9040 mp->b_cont->b_wptr += sizeof (ire_t); 9041 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9042 9043 /* cp known to be 32 bit aligned */ 9044 ac6 = (ipa6_conn_t *)cp; 9045 if (tcp->tcp_ipversion == IPV4_VERSION) { 9046 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9047 &ac6->ac6_laddr); 9048 } else { 9049 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9050 } 9051 ac6->ac6_faddr = tcp->tcp_remote_v6; 9052 ac6->ac6_fport = tcp->tcp_fport; 9053 ac6->ac6_lport = tcp->tcp_lport; 9054 tcp->tcp_hard_binding = 1; 9055 break; 9056 9057 case sizeof (sin_t): 9058 /* 9059 * NOTE: IPV6_ADDR_LEN also has same size. 9060 * Use family to discriminate. 9061 */ 9062 if (tcp->tcp_family == AF_INET) { 9063 sin = (sin_t *)cp; 9064 9065 *sin = sin_null; 9066 sin->sin_family = AF_INET; 9067 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9068 sin->sin_port = tcp->tcp_lport; 9069 break; 9070 } else { 9071 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9072 } 9073 break; 9074 9075 case sizeof (sin6_t): 9076 ASSERT(tcp->tcp_family == AF_INET6); 9077 sin6 = (sin6_t *)cp; 9078 9079 *sin6 = sin6_null; 9080 sin6->sin6_family = AF_INET6; 9081 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9082 sin6->sin6_port = tcp->tcp_lport; 9083 break; 9084 9085 case IP_ADDR_LEN: 9086 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9087 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9088 break; 9089 9090 } 9091 /* Add protocol number to end */ 9092 cp[addr_length] = (char)IPPROTO_TCP; 9093 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9094 return (mp); 9095 } 9096 9097 /* 9098 * Notify IP that we are having trouble with this connection. IP should 9099 * blow the IRE away and start over. 9100 */ 9101 static void 9102 tcp_ip_notify(tcp_t *tcp) 9103 { 9104 struct iocblk *iocp; 9105 ipid_t *ipid; 9106 mblk_t *mp; 9107 9108 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9109 if (tcp->tcp_ipversion == IPV6_VERSION) 9110 return; 9111 9112 mp = mkiocb(IP_IOCTL); 9113 if (mp == NULL) 9114 return; 9115 9116 iocp = (struct iocblk *)mp->b_rptr; 9117 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9118 9119 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9120 if (!mp->b_cont) { 9121 freeb(mp); 9122 return; 9123 } 9124 9125 ipid = (ipid_t *)mp->b_cont->b_rptr; 9126 mp->b_cont->b_wptr += iocp->ioc_count; 9127 bzero(ipid, sizeof (*ipid)); 9128 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9129 ipid->ipid_ire_type = IRE_CACHE; 9130 ipid->ipid_addr_offset = sizeof (ipid_t); 9131 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9132 /* 9133 * Note: in the case of source routing we want to blow away the 9134 * route to the first source route hop. 9135 */ 9136 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9137 sizeof (tcp->tcp_ipha->ipha_dst)); 9138 9139 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9140 } 9141 9142 /* Unlink and return any mblk that looks like it contains an ire */ 9143 static mblk_t * 9144 tcp_ire_mp(mblk_t *mp) 9145 { 9146 mblk_t *prev_mp; 9147 9148 for (;;) { 9149 prev_mp = mp; 9150 mp = mp->b_cont; 9151 if (mp == NULL) 9152 break; 9153 switch (DB_TYPE(mp)) { 9154 case IRE_DB_TYPE: 9155 case IRE_DB_REQ_TYPE: 9156 if (prev_mp != NULL) 9157 prev_mp->b_cont = mp->b_cont; 9158 mp->b_cont = NULL; 9159 return (mp); 9160 default: 9161 break; 9162 } 9163 } 9164 return (mp); 9165 } 9166 9167 /* 9168 * Timer callback routine for keepalive probe. We do a fake resend of 9169 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9170 * check to see if we have heard anything from the other end for the last 9171 * RTO period. If we have, set the timer to expire for another 9172 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9173 * RTO << 1 and check again when it expires. Keep exponentially increasing 9174 * the timeout if we have not heard from the other side. If for more than 9175 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9176 * kill the connection unless the keepalive abort threshold is 0. In 9177 * that case, we will probe "forever." 9178 */ 9179 static void 9180 tcp_keepalive_killer(void *arg) 9181 { 9182 mblk_t *mp; 9183 conn_t *connp = (conn_t *)arg; 9184 tcp_t *tcp = connp->conn_tcp; 9185 int32_t firetime; 9186 int32_t idletime; 9187 int32_t ka_intrvl; 9188 9189 tcp->tcp_ka_tid = 0; 9190 9191 if (tcp->tcp_fused) 9192 return; 9193 9194 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 9195 ka_intrvl = tcp->tcp_ka_interval; 9196 9197 /* 9198 * Keepalive probe should only be sent if the application has not 9199 * done a close on the connection. 9200 */ 9201 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9202 return; 9203 } 9204 /* Timer fired too early, restart it. */ 9205 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9206 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9207 MSEC_TO_TICK(ka_intrvl)); 9208 return; 9209 } 9210 9211 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9212 /* 9213 * If we have not heard from the other side for a long 9214 * time, kill the connection unless the keepalive abort 9215 * threshold is 0. In that case, we will probe "forever." 9216 */ 9217 if (tcp->tcp_ka_abort_thres != 0 && 9218 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9219 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 9220 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9221 tcp->tcp_client_errno : ETIMEDOUT, 11); 9222 return; 9223 } 9224 9225 if (tcp->tcp_snxt == tcp->tcp_suna && 9226 idletime >= ka_intrvl) { 9227 /* Fake resend of last ACKed byte. */ 9228 mblk_t *mp1 = allocb(1, BPRI_LO); 9229 9230 if (mp1 != NULL) { 9231 *mp1->b_wptr++ = '\0'; 9232 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9233 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9234 freeb(mp1); 9235 /* 9236 * if allocation failed, fall through to start the 9237 * timer back. 9238 */ 9239 if (mp != NULL) { 9240 TCP_RECORD_TRACE(tcp, mp, 9241 TCP_TRACE_SEND_PKT); 9242 tcp_send_data(tcp, tcp->tcp_wq, mp); 9243 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9244 if (tcp->tcp_ka_last_intrvl != 0) { 9245 /* 9246 * We should probe again at least 9247 * in ka_intrvl, but not more than 9248 * tcp_rexmit_interval_max. 9249 */ 9250 firetime = MIN(ka_intrvl - 1, 9251 tcp->tcp_ka_last_intrvl << 1); 9252 if (firetime > tcp_rexmit_interval_max) 9253 firetime = 9254 tcp_rexmit_interval_max; 9255 } else { 9256 firetime = tcp->tcp_rto; 9257 } 9258 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9259 tcp_keepalive_killer, 9260 MSEC_TO_TICK(firetime)); 9261 tcp->tcp_ka_last_intrvl = firetime; 9262 return; 9263 } 9264 } 9265 } else { 9266 tcp->tcp_ka_last_intrvl = 0; 9267 } 9268 9269 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9270 if ((firetime = ka_intrvl - idletime) < 0) { 9271 firetime = ka_intrvl; 9272 } 9273 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9274 MSEC_TO_TICK(firetime)); 9275 } 9276 9277 int 9278 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9279 { 9280 queue_t *q = tcp->tcp_rq; 9281 int32_t mss = tcp->tcp_mss; 9282 int maxpsz; 9283 9284 if (TCP_IS_DETACHED(tcp)) 9285 return (mss); 9286 9287 if (tcp->tcp_fused) { 9288 maxpsz = tcp_fuse_maxpsz_set(tcp); 9289 mss = INFPSZ; 9290 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9291 /* 9292 * Set the sd_qn_maxpsz according to the socket send buffer 9293 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9294 * instruct the stream head to copyin user data into contiguous 9295 * kernel-allocated buffers without breaking it up into smaller 9296 * chunks. We round up the buffer size to the nearest SMSS. 9297 */ 9298 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9299 if (tcp->tcp_kssl_ctx == NULL) 9300 mss = INFPSZ; 9301 else 9302 mss = SSL3_MAX_RECORD_LEN; 9303 } else { 9304 /* 9305 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9306 * (and a multiple of the mss). This instructs the stream 9307 * head to break down larger than SMSS writes into SMSS- 9308 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9309 */ 9310 maxpsz = tcp->tcp_maxpsz * mss; 9311 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9312 maxpsz = tcp->tcp_xmit_hiwater/2; 9313 /* Round up to nearest mss */ 9314 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9315 } 9316 } 9317 (void) setmaxps(q, maxpsz); 9318 tcp->tcp_wq->q_maxpsz = maxpsz; 9319 9320 if (set_maxblk) 9321 (void) mi_set_sth_maxblk(q, mss); 9322 9323 return (mss); 9324 } 9325 9326 /* 9327 * Extract option values from a tcp header. We put any found values into the 9328 * tcpopt struct and return a bitmask saying which options were found. 9329 */ 9330 static int 9331 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9332 { 9333 uchar_t *endp; 9334 int len; 9335 uint32_t mss; 9336 uchar_t *up = (uchar_t *)tcph; 9337 int found = 0; 9338 int32_t sack_len; 9339 tcp_seq sack_begin, sack_end; 9340 tcp_t *tcp; 9341 9342 endp = up + TCP_HDR_LENGTH(tcph); 9343 up += TCP_MIN_HEADER_LENGTH; 9344 while (up < endp) { 9345 len = endp - up; 9346 switch (*up) { 9347 case TCPOPT_EOL: 9348 break; 9349 9350 case TCPOPT_NOP: 9351 up++; 9352 continue; 9353 9354 case TCPOPT_MAXSEG: 9355 if (len < TCPOPT_MAXSEG_LEN || 9356 up[1] != TCPOPT_MAXSEG_LEN) 9357 break; 9358 9359 mss = BE16_TO_U16(up+2); 9360 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9361 tcpopt->tcp_opt_mss = mss; 9362 found |= TCP_OPT_MSS_PRESENT; 9363 9364 up += TCPOPT_MAXSEG_LEN; 9365 continue; 9366 9367 case TCPOPT_WSCALE: 9368 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9369 break; 9370 9371 if (up[2] > TCP_MAX_WINSHIFT) 9372 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9373 else 9374 tcpopt->tcp_opt_wscale = up[2]; 9375 found |= TCP_OPT_WSCALE_PRESENT; 9376 9377 up += TCPOPT_WS_LEN; 9378 continue; 9379 9380 case TCPOPT_SACK_PERMITTED: 9381 if (len < TCPOPT_SACK_OK_LEN || 9382 up[1] != TCPOPT_SACK_OK_LEN) 9383 break; 9384 found |= TCP_OPT_SACK_OK_PRESENT; 9385 up += TCPOPT_SACK_OK_LEN; 9386 continue; 9387 9388 case TCPOPT_SACK: 9389 if (len <= 2 || up[1] <= 2 || len < up[1]) 9390 break; 9391 9392 /* If TCP is not interested in SACK blks... */ 9393 if ((tcp = tcpopt->tcp) == NULL) { 9394 up += up[1]; 9395 continue; 9396 } 9397 sack_len = up[1] - TCPOPT_HEADER_LEN; 9398 up += TCPOPT_HEADER_LEN; 9399 9400 /* 9401 * If the list is empty, allocate one and assume 9402 * nothing is sack'ed. 9403 */ 9404 ASSERT(tcp->tcp_sack_info != NULL); 9405 if (tcp->tcp_notsack_list == NULL) { 9406 tcp_notsack_update(&(tcp->tcp_notsack_list), 9407 tcp->tcp_suna, tcp->tcp_snxt, 9408 &(tcp->tcp_num_notsack_blk), 9409 &(tcp->tcp_cnt_notsack_list)); 9410 9411 /* 9412 * Make sure tcp_notsack_list is not NULL. 9413 * This happens when kmem_alloc(KM_NOSLEEP) 9414 * returns NULL. 9415 */ 9416 if (tcp->tcp_notsack_list == NULL) { 9417 up += sack_len; 9418 continue; 9419 } 9420 tcp->tcp_fack = tcp->tcp_suna; 9421 } 9422 9423 while (sack_len > 0) { 9424 if (up + 8 > endp) { 9425 up = endp; 9426 break; 9427 } 9428 sack_begin = BE32_TO_U32(up); 9429 up += 4; 9430 sack_end = BE32_TO_U32(up); 9431 up += 4; 9432 sack_len -= 8; 9433 /* 9434 * Bounds checking. Make sure the SACK 9435 * info is within tcp_suna and tcp_snxt. 9436 * If this SACK blk is out of bound, ignore 9437 * it but continue to parse the following 9438 * blks. 9439 */ 9440 if (SEQ_LEQ(sack_end, sack_begin) || 9441 SEQ_LT(sack_begin, tcp->tcp_suna) || 9442 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9443 continue; 9444 } 9445 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9446 sack_begin, sack_end, 9447 &(tcp->tcp_num_notsack_blk), 9448 &(tcp->tcp_cnt_notsack_list)); 9449 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9450 tcp->tcp_fack = sack_end; 9451 } 9452 } 9453 found |= TCP_OPT_SACK_PRESENT; 9454 continue; 9455 9456 case TCPOPT_TSTAMP: 9457 if (len < TCPOPT_TSTAMP_LEN || 9458 up[1] != TCPOPT_TSTAMP_LEN) 9459 break; 9460 9461 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9462 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9463 9464 found |= TCP_OPT_TSTAMP_PRESENT; 9465 9466 up += TCPOPT_TSTAMP_LEN; 9467 continue; 9468 9469 default: 9470 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9471 break; 9472 up += up[1]; 9473 continue; 9474 } 9475 break; 9476 } 9477 return (found); 9478 } 9479 9480 /* 9481 * Set the mss associated with a particular tcp based on its current value, 9482 * and a new one passed in. Observe minimums and maximums, and reset 9483 * other state variables that we want to view as multiples of mss. 9484 * 9485 * This function is called in various places mainly because 9486 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9487 * other side's SYN/SYN-ACK packet arrives. 9488 * 2) PMTUd may get us a new MSS. 9489 * 3) If the other side stops sending us timestamp option, we need to 9490 * increase the MSS size to use the extra bytes available. 9491 */ 9492 static void 9493 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9494 { 9495 uint32_t mss_max; 9496 9497 if (tcp->tcp_ipversion == IPV4_VERSION) 9498 mss_max = tcp_mss_max_ipv4; 9499 else 9500 mss_max = tcp_mss_max_ipv6; 9501 9502 if (mss < tcp_mss_min) 9503 mss = tcp_mss_min; 9504 if (mss > mss_max) 9505 mss = mss_max; 9506 /* 9507 * Unless naglim has been set by our client to 9508 * a non-mss value, force naglim to track mss. 9509 * This can help to aggregate small writes. 9510 */ 9511 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9512 tcp->tcp_naglim = mss; 9513 /* 9514 * TCP should be able to buffer at least 4 MSS data for obvious 9515 * performance reason. 9516 */ 9517 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9518 tcp->tcp_xmit_hiwater = mss << 2; 9519 9520 /* 9521 * Check if we need to apply the tcp_init_cwnd here. If 9522 * it is set and the MSS gets bigger (should not happen 9523 * normally), we need to adjust the resulting tcp_cwnd properly. 9524 * The new tcp_cwnd should not get bigger. 9525 */ 9526 if (tcp->tcp_init_cwnd == 0) { 9527 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9528 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9529 } else { 9530 if (tcp->tcp_mss < mss) { 9531 tcp->tcp_cwnd = MAX(1, 9532 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9533 } else { 9534 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9535 } 9536 } 9537 tcp->tcp_mss = mss; 9538 tcp->tcp_cwnd_cnt = 0; 9539 (void) tcp_maxpsz_set(tcp, B_TRUE); 9540 } 9541 9542 static int 9543 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9544 { 9545 tcp_t *tcp = NULL; 9546 conn_t *connp; 9547 int err; 9548 dev_t conn_dev; 9549 zoneid_t zoneid = getzoneid(); 9550 9551 /* 9552 * Special case for install: miniroot needs to be able to access files 9553 * via NFS as though it were always in the global zone. 9554 */ 9555 if (credp == kcred && nfs_global_client_only != 0) 9556 zoneid = GLOBAL_ZONEID; 9557 9558 if (q->q_ptr != NULL) 9559 return (0); 9560 9561 if (sflag == MODOPEN) { 9562 /* 9563 * This is a special case. The purpose of a modopen 9564 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9565 * through for MIB browsers. Everything else is failed. 9566 */ 9567 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9568 9569 if (connp == NULL) 9570 return (ENOMEM); 9571 9572 connp->conn_flags |= IPCL_TCPMOD; 9573 connp->conn_cred = credp; 9574 connp->conn_zoneid = zoneid; 9575 q->q_ptr = WR(q)->q_ptr = connp; 9576 crhold(credp); 9577 q->q_qinfo = &tcp_mod_rinit; 9578 WR(q)->q_qinfo = &tcp_mod_winit; 9579 qprocson(q); 9580 return (0); 9581 } 9582 9583 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9584 return (EBUSY); 9585 9586 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9587 9588 if (flag & SO_ACCEPTOR) { 9589 q->q_qinfo = &tcp_acceptor_rinit; 9590 q->q_ptr = (void *)conn_dev; 9591 WR(q)->q_qinfo = &tcp_acceptor_winit; 9592 WR(q)->q_ptr = (void *)conn_dev; 9593 qprocson(q); 9594 return (0); 9595 } 9596 9597 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9598 if (connp == NULL) { 9599 inet_minor_free(ip_minor_arena, conn_dev); 9600 q->q_ptr = NULL; 9601 return (ENOSR); 9602 } 9603 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9604 tcp = connp->conn_tcp; 9605 9606 q->q_ptr = WR(q)->q_ptr = connp; 9607 if (getmajor(*devp) == TCP6_MAJ) { 9608 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9609 connp->conn_send = ip_output_v6; 9610 connp->conn_af_isv6 = B_TRUE; 9611 connp->conn_pkt_isv6 = B_TRUE; 9612 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9613 tcp->tcp_ipversion = IPV6_VERSION; 9614 tcp->tcp_family = AF_INET6; 9615 tcp->tcp_mss = tcp_mss_def_ipv6; 9616 } else { 9617 connp->conn_flags |= IPCL_TCP4; 9618 connp->conn_send = ip_output; 9619 connp->conn_af_isv6 = B_FALSE; 9620 connp->conn_pkt_isv6 = B_FALSE; 9621 tcp->tcp_ipversion = IPV4_VERSION; 9622 tcp->tcp_family = AF_INET; 9623 tcp->tcp_mss = tcp_mss_def_ipv4; 9624 } 9625 9626 /* 9627 * TCP keeps a copy of cred for cache locality reasons but 9628 * we put a reference only once. If connp->conn_cred 9629 * becomes invalid, tcp_cred should also be set to NULL. 9630 */ 9631 tcp->tcp_cred = connp->conn_cred = credp; 9632 crhold(connp->conn_cred); 9633 tcp->tcp_cpid = curproc->p_pid; 9634 tcp->tcp_open_time = lbolt64; 9635 connp->conn_zoneid = zoneid; 9636 connp->conn_mlp_type = mlptSingle; 9637 connp->conn_ulp_labeled = !is_system_labeled(); 9638 9639 /* 9640 * If the caller has the process-wide flag set, then default to MAC 9641 * exempt mode. This allows read-down to unlabeled hosts. 9642 */ 9643 if (getpflags(NET_MAC_AWARE, credp) != 0) 9644 connp->conn_mac_exempt = B_TRUE; 9645 9646 connp->conn_dev = conn_dev; 9647 9648 ASSERT(q->q_qinfo == &tcp_rinit); 9649 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9650 9651 if (flag & SO_SOCKSTR) { 9652 /* 9653 * No need to insert a socket in tcp acceptor hash. 9654 * If it was a socket acceptor stream, we dealt with 9655 * it above. A socket listener can never accept a 9656 * connection and doesn't need acceptor_id. 9657 */ 9658 connp->conn_flags |= IPCL_SOCKET; 9659 tcp->tcp_issocket = 1; 9660 WR(q)->q_qinfo = &tcp_sock_winit; 9661 } else { 9662 #ifdef _ILP32 9663 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9664 #else 9665 tcp->tcp_acceptor_id = conn_dev; 9666 #endif /* _ILP32 */ 9667 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9668 } 9669 9670 if (tcp_trace) 9671 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9672 9673 err = tcp_init(tcp, q); 9674 if (err != 0) { 9675 inet_minor_free(ip_minor_arena, connp->conn_dev); 9676 tcp_acceptor_hash_remove(tcp); 9677 CONN_DEC_REF(connp); 9678 q->q_ptr = WR(q)->q_ptr = NULL; 9679 return (err); 9680 } 9681 9682 RD(q)->q_hiwat = tcp_recv_hiwat; 9683 tcp->tcp_rwnd = tcp_recv_hiwat; 9684 9685 /* Non-zero default values */ 9686 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9687 /* 9688 * Put the ref for TCP. Ref for IP was already put 9689 * by ipcl_conn_create. Also Make the conn_t globally 9690 * visible to walkers 9691 */ 9692 mutex_enter(&connp->conn_lock); 9693 CONN_INC_REF_LOCKED(connp); 9694 ASSERT(connp->conn_ref == 2); 9695 connp->conn_state_flags &= ~CONN_INCIPIENT; 9696 mutex_exit(&connp->conn_lock); 9697 9698 qprocson(q); 9699 return (0); 9700 } 9701 9702 /* 9703 * Some TCP options can be "set" by requesting them in the option 9704 * buffer. This is needed for XTI feature test though we do not 9705 * allow it in general. We interpret that this mechanism is more 9706 * applicable to OSI protocols and need not be allowed in general. 9707 * This routine filters out options for which it is not allowed (most) 9708 * and lets through those (few) for which it is. [ The XTI interface 9709 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9710 * ever implemented will have to be allowed here ]. 9711 */ 9712 static boolean_t 9713 tcp_allow_connopt_set(int level, int name) 9714 { 9715 9716 switch (level) { 9717 case IPPROTO_TCP: 9718 switch (name) { 9719 case TCP_NODELAY: 9720 return (B_TRUE); 9721 default: 9722 return (B_FALSE); 9723 } 9724 /*NOTREACHED*/ 9725 default: 9726 return (B_FALSE); 9727 } 9728 /*NOTREACHED*/ 9729 } 9730 9731 /* 9732 * This routine gets default values of certain options whose default 9733 * values are maintained by protocol specific code 9734 */ 9735 /* ARGSUSED */ 9736 int 9737 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9738 { 9739 int32_t *i1 = (int32_t *)ptr; 9740 9741 switch (level) { 9742 case IPPROTO_TCP: 9743 switch (name) { 9744 case TCP_NOTIFY_THRESHOLD: 9745 *i1 = tcp_ip_notify_interval; 9746 break; 9747 case TCP_ABORT_THRESHOLD: 9748 *i1 = tcp_ip_abort_interval; 9749 break; 9750 case TCP_CONN_NOTIFY_THRESHOLD: 9751 *i1 = tcp_ip_notify_cinterval; 9752 break; 9753 case TCP_CONN_ABORT_THRESHOLD: 9754 *i1 = tcp_ip_abort_cinterval; 9755 break; 9756 default: 9757 return (-1); 9758 } 9759 break; 9760 case IPPROTO_IP: 9761 switch (name) { 9762 case IP_TTL: 9763 *i1 = tcp_ipv4_ttl; 9764 break; 9765 default: 9766 return (-1); 9767 } 9768 break; 9769 case IPPROTO_IPV6: 9770 switch (name) { 9771 case IPV6_UNICAST_HOPS: 9772 *i1 = tcp_ipv6_hoplimit; 9773 break; 9774 default: 9775 return (-1); 9776 } 9777 break; 9778 default: 9779 return (-1); 9780 } 9781 return (sizeof (int)); 9782 } 9783 9784 9785 /* 9786 * TCP routine to get the values of options. 9787 */ 9788 int 9789 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9790 { 9791 int *i1 = (int *)ptr; 9792 conn_t *connp = Q_TO_CONN(q); 9793 tcp_t *tcp = connp->conn_tcp; 9794 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9795 9796 switch (level) { 9797 case SOL_SOCKET: 9798 switch (name) { 9799 case SO_LINGER: { 9800 struct linger *lgr = (struct linger *)ptr; 9801 9802 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9803 lgr->l_linger = tcp->tcp_lingertime; 9804 } 9805 return (sizeof (struct linger)); 9806 case SO_DEBUG: 9807 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9808 break; 9809 case SO_KEEPALIVE: 9810 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9811 break; 9812 case SO_DONTROUTE: 9813 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9814 break; 9815 case SO_USELOOPBACK: 9816 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9817 break; 9818 case SO_BROADCAST: 9819 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9820 break; 9821 case SO_REUSEADDR: 9822 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9823 break; 9824 case SO_OOBINLINE: 9825 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9826 break; 9827 case SO_DGRAM_ERRIND: 9828 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9829 break; 9830 case SO_TYPE: 9831 *i1 = SOCK_STREAM; 9832 break; 9833 case SO_SNDBUF: 9834 *i1 = tcp->tcp_xmit_hiwater; 9835 break; 9836 case SO_RCVBUF: 9837 *i1 = RD(q)->q_hiwat; 9838 break; 9839 case SO_SND_COPYAVOID: 9840 *i1 = tcp->tcp_snd_zcopy_on ? 9841 SO_SND_COPYAVOID : 0; 9842 break; 9843 case SO_ALLZONES: 9844 *i1 = connp->conn_allzones ? 1 : 0; 9845 break; 9846 case SO_ANON_MLP: 9847 *i1 = connp->conn_anon_mlp; 9848 break; 9849 case SO_MAC_EXEMPT: 9850 *i1 = connp->conn_mac_exempt; 9851 break; 9852 case SO_EXCLBIND: 9853 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9854 break; 9855 default: 9856 return (-1); 9857 } 9858 break; 9859 case IPPROTO_TCP: 9860 switch (name) { 9861 case TCP_NODELAY: 9862 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9863 break; 9864 case TCP_MAXSEG: 9865 *i1 = tcp->tcp_mss; 9866 break; 9867 case TCP_NOTIFY_THRESHOLD: 9868 *i1 = (int)tcp->tcp_first_timer_threshold; 9869 break; 9870 case TCP_ABORT_THRESHOLD: 9871 *i1 = tcp->tcp_second_timer_threshold; 9872 break; 9873 case TCP_CONN_NOTIFY_THRESHOLD: 9874 *i1 = tcp->tcp_first_ctimer_threshold; 9875 break; 9876 case TCP_CONN_ABORT_THRESHOLD: 9877 *i1 = tcp->tcp_second_ctimer_threshold; 9878 break; 9879 case TCP_RECVDSTADDR: 9880 *i1 = tcp->tcp_recvdstaddr; 9881 break; 9882 case TCP_ANONPRIVBIND: 9883 *i1 = tcp->tcp_anon_priv_bind; 9884 break; 9885 case TCP_EXCLBIND: 9886 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9887 break; 9888 case TCP_INIT_CWND: 9889 *i1 = tcp->tcp_init_cwnd; 9890 break; 9891 case TCP_KEEPALIVE_THRESHOLD: 9892 *i1 = tcp->tcp_ka_interval; 9893 break; 9894 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9895 *i1 = tcp->tcp_ka_abort_thres; 9896 break; 9897 case TCP_CORK: 9898 *i1 = tcp->tcp_cork; 9899 break; 9900 default: 9901 return (-1); 9902 } 9903 break; 9904 case IPPROTO_IP: 9905 if (tcp->tcp_family != AF_INET) 9906 return (-1); 9907 switch (name) { 9908 case IP_OPTIONS: 9909 case T_IP_OPTIONS: { 9910 /* 9911 * This is compatible with BSD in that in only return 9912 * the reverse source route with the final destination 9913 * as the last entry. The first 4 bytes of the option 9914 * will contain the final destination. 9915 */ 9916 int opt_len; 9917 9918 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9919 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9920 ASSERT(opt_len >= 0); 9921 /* Caller ensures enough space */ 9922 if (opt_len > 0) { 9923 /* 9924 * TODO: Do we have to handle getsockopt on an 9925 * initiator as well? 9926 */ 9927 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9928 } 9929 return (0); 9930 } 9931 case IP_TOS: 9932 case T_IP_TOS: 9933 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9934 break; 9935 case IP_TTL: 9936 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9937 break; 9938 case IP_NEXTHOP: 9939 /* Handled at IP level */ 9940 return (-EINVAL); 9941 default: 9942 return (-1); 9943 } 9944 break; 9945 case IPPROTO_IPV6: 9946 /* 9947 * IPPROTO_IPV6 options are only supported for sockets 9948 * that are using IPv6 on the wire. 9949 */ 9950 if (tcp->tcp_ipversion != IPV6_VERSION) { 9951 return (-1); 9952 } 9953 switch (name) { 9954 case IPV6_UNICAST_HOPS: 9955 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9956 break; /* goto sizeof (int) option return */ 9957 case IPV6_BOUND_IF: 9958 /* Zero if not set */ 9959 *i1 = tcp->tcp_bound_if; 9960 break; /* goto sizeof (int) option return */ 9961 case IPV6_RECVPKTINFO: 9962 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9963 *i1 = 1; 9964 else 9965 *i1 = 0; 9966 break; /* goto sizeof (int) option return */ 9967 case IPV6_RECVTCLASS: 9968 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9969 *i1 = 1; 9970 else 9971 *i1 = 0; 9972 break; /* goto sizeof (int) option return */ 9973 case IPV6_RECVHOPLIMIT: 9974 if (tcp->tcp_ipv6_recvancillary & 9975 TCP_IPV6_RECVHOPLIMIT) 9976 *i1 = 1; 9977 else 9978 *i1 = 0; 9979 break; /* goto sizeof (int) option return */ 9980 case IPV6_RECVHOPOPTS: 9981 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9982 *i1 = 1; 9983 else 9984 *i1 = 0; 9985 break; /* goto sizeof (int) option return */ 9986 case IPV6_RECVDSTOPTS: 9987 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9988 *i1 = 1; 9989 else 9990 *i1 = 0; 9991 break; /* goto sizeof (int) option return */ 9992 case _OLD_IPV6_RECVDSTOPTS: 9993 if (tcp->tcp_ipv6_recvancillary & 9994 TCP_OLD_IPV6_RECVDSTOPTS) 9995 *i1 = 1; 9996 else 9997 *i1 = 0; 9998 break; /* goto sizeof (int) option return */ 9999 case IPV6_RECVRTHDR: 10000 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10001 *i1 = 1; 10002 else 10003 *i1 = 0; 10004 break; /* goto sizeof (int) option return */ 10005 case IPV6_RECVRTHDRDSTOPTS: 10006 if (tcp->tcp_ipv6_recvancillary & 10007 TCP_IPV6_RECVRTDSTOPTS) 10008 *i1 = 1; 10009 else 10010 *i1 = 0; 10011 break; /* goto sizeof (int) option return */ 10012 case IPV6_PKTINFO: { 10013 /* XXX assumes that caller has room for max size! */ 10014 struct in6_pktinfo *pkti; 10015 10016 pkti = (struct in6_pktinfo *)ptr; 10017 if (ipp->ipp_fields & IPPF_IFINDEX) 10018 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10019 else 10020 pkti->ipi6_ifindex = 0; 10021 if (ipp->ipp_fields & IPPF_ADDR) 10022 pkti->ipi6_addr = ipp->ipp_addr; 10023 else 10024 pkti->ipi6_addr = ipv6_all_zeros; 10025 return (sizeof (struct in6_pktinfo)); 10026 } 10027 case IPV6_TCLASS: 10028 if (ipp->ipp_fields & IPPF_TCLASS) 10029 *i1 = ipp->ipp_tclass; 10030 else 10031 *i1 = IPV6_FLOW_TCLASS( 10032 IPV6_DEFAULT_VERS_AND_FLOW); 10033 break; /* goto sizeof (int) option return */ 10034 case IPV6_NEXTHOP: { 10035 sin6_t *sin6 = (sin6_t *)ptr; 10036 10037 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10038 return (0); 10039 *sin6 = sin6_null; 10040 sin6->sin6_family = AF_INET6; 10041 sin6->sin6_addr = ipp->ipp_nexthop; 10042 return (sizeof (sin6_t)); 10043 } 10044 case IPV6_HOPOPTS: 10045 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10046 return (0); 10047 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10048 return (0); 10049 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10050 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10051 if (tcp->tcp_label_len > 0) { 10052 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10053 ptr[1] = (ipp->ipp_hopoptslen - 10054 tcp->tcp_label_len + 7) / 8 - 1; 10055 } 10056 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10057 case IPV6_RTHDRDSTOPTS: 10058 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10059 return (0); 10060 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10061 return (ipp->ipp_rtdstoptslen); 10062 case IPV6_RTHDR: 10063 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10064 return (0); 10065 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10066 return (ipp->ipp_rthdrlen); 10067 case IPV6_DSTOPTS: 10068 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10069 return (0); 10070 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10071 return (ipp->ipp_dstoptslen); 10072 case IPV6_SRC_PREFERENCES: 10073 return (ip6_get_src_preferences(connp, 10074 (uint32_t *)ptr)); 10075 case IPV6_PATHMTU: { 10076 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10077 10078 if (tcp->tcp_state < TCPS_ESTABLISHED) 10079 return (-1); 10080 10081 return (ip_fill_mtuinfo(&connp->conn_remv6, 10082 connp->conn_fport, mtuinfo)); 10083 } 10084 default: 10085 return (-1); 10086 } 10087 break; 10088 default: 10089 return (-1); 10090 } 10091 return (sizeof (int)); 10092 } 10093 10094 /* 10095 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10096 * Parameters are assumed to be verified by the caller. 10097 */ 10098 /* ARGSUSED */ 10099 int 10100 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10101 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10102 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10103 { 10104 conn_t *connp = Q_TO_CONN(q); 10105 tcp_t *tcp = connp->conn_tcp; 10106 int *i1 = (int *)invalp; 10107 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10108 boolean_t checkonly; 10109 int reterr; 10110 10111 switch (optset_context) { 10112 case SETFN_OPTCOM_CHECKONLY: 10113 checkonly = B_TRUE; 10114 /* 10115 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10116 * inlen != 0 implies value supplied and 10117 * we have to "pretend" to set it. 10118 * inlen == 0 implies that there is no 10119 * value part in T_CHECK request and just validation 10120 * done elsewhere should be enough, we just return here. 10121 */ 10122 if (inlen == 0) { 10123 *outlenp = 0; 10124 return (0); 10125 } 10126 break; 10127 case SETFN_OPTCOM_NEGOTIATE: 10128 checkonly = B_FALSE; 10129 break; 10130 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10131 case SETFN_CONN_NEGOTIATE: 10132 checkonly = B_FALSE; 10133 /* 10134 * Negotiating local and "association-related" options 10135 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10136 * primitives is allowed by XTI, but we choose 10137 * to not implement this style negotiation for Internet 10138 * protocols (We interpret it is a must for OSI world but 10139 * optional for Internet protocols) for all options. 10140 * [ Will do only for the few options that enable test 10141 * suites that our XTI implementation of this feature 10142 * works for transports that do allow it ] 10143 */ 10144 if (!tcp_allow_connopt_set(level, name)) { 10145 *outlenp = 0; 10146 return (EINVAL); 10147 } 10148 break; 10149 default: 10150 /* 10151 * We should never get here 10152 */ 10153 *outlenp = 0; 10154 return (EINVAL); 10155 } 10156 10157 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10158 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10159 10160 /* 10161 * For TCP, we should have no ancillary data sent down 10162 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10163 * has to be zero. 10164 */ 10165 ASSERT(thisdg_attrs == NULL); 10166 10167 /* 10168 * For fixed length options, no sanity check 10169 * of passed in length is done. It is assumed *_optcom_req() 10170 * routines do the right thing. 10171 */ 10172 10173 switch (level) { 10174 case SOL_SOCKET: 10175 switch (name) { 10176 case SO_LINGER: { 10177 struct linger *lgr = (struct linger *)invalp; 10178 10179 if (!checkonly) { 10180 if (lgr->l_onoff) { 10181 tcp->tcp_linger = 1; 10182 tcp->tcp_lingertime = lgr->l_linger; 10183 } else { 10184 tcp->tcp_linger = 0; 10185 tcp->tcp_lingertime = 0; 10186 } 10187 /* struct copy */ 10188 *(struct linger *)outvalp = *lgr; 10189 } else { 10190 if (!lgr->l_onoff) { 10191 ((struct linger *)outvalp)->l_onoff = 0; 10192 ((struct linger *)outvalp)->l_linger = 0; 10193 } else { 10194 /* struct copy */ 10195 *(struct linger *)outvalp = *lgr; 10196 } 10197 } 10198 *outlenp = sizeof (struct linger); 10199 return (0); 10200 } 10201 case SO_DEBUG: 10202 if (!checkonly) 10203 tcp->tcp_debug = onoff; 10204 break; 10205 case SO_KEEPALIVE: 10206 if (checkonly) { 10207 /* T_CHECK case */ 10208 break; 10209 } 10210 10211 if (!onoff) { 10212 if (tcp->tcp_ka_enabled) { 10213 if (tcp->tcp_ka_tid != 0) { 10214 (void) TCP_TIMER_CANCEL(tcp, 10215 tcp->tcp_ka_tid); 10216 tcp->tcp_ka_tid = 0; 10217 } 10218 tcp->tcp_ka_enabled = 0; 10219 } 10220 break; 10221 } 10222 if (!tcp->tcp_ka_enabled) { 10223 /* Crank up the keepalive timer */ 10224 tcp->tcp_ka_last_intrvl = 0; 10225 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10226 tcp_keepalive_killer, 10227 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10228 tcp->tcp_ka_enabled = 1; 10229 } 10230 break; 10231 case SO_DONTROUTE: 10232 /* 10233 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10234 * only of interest to IP. We track them here only so 10235 * that we can report their current value. 10236 */ 10237 if (!checkonly) { 10238 tcp->tcp_dontroute = onoff; 10239 tcp->tcp_connp->conn_dontroute = onoff; 10240 } 10241 break; 10242 case SO_USELOOPBACK: 10243 if (!checkonly) { 10244 tcp->tcp_useloopback = onoff; 10245 tcp->tcp_connp->conn_loopback = onoff; 10246 } 10247 break; 10248 case SO_BROADCAST: 10249 if (!checkonly) { 10250 tcp->tcp_broadcast = onoff; 10251 tcp->tcp_connp->conn_broadcast = onoff; 10252 } 10253 break; 10254 case SO_REUSEADDR: 10255 if (!checkonly) { 10256 tcp->tcp_reuseaddr = onoff; 10257 tcp->tcp_connp->conn_reuseaddr = onoff; 10258 } 10259 break; 10260 case SO_OOBINLINE: 10261 if (!checkonly) 10262 tcp->tcp_oobinline = onoff; 10263 break; 10264 case SO_DGRAM_ERRIND: 10265 if (!checkonly) 10266 tcp->tcp_dgram_errind = onoff; 10267 break; 10268 case SO_SNDBUF: { 10269 tcp_t *peer_tcp; 10270 10271 if (*i1 > tcp_max_buf) { 10272 *outlenp = 0; 10273 return (ENOBUFS); 10274 } 10275 if (checkonly) 10276 break; 10277 10278 tcp->tcp_xmit_hiwater = *i1; 10279 if (tcp_snd_lowat_fraction != 0) 10280 tcp->tcp_xmit_lowater = 10281 tcp->tcp_xmit_hiwater / 10282 tcp_snd_lowat_fraction; 10283 (void) tcp_maxpsz_set(tcp, B_TRUE); 10284 /* 10285 * If we are flow-controlled, recheck the condition. 10286 * There are apps that increase SO_SNDBUF size when 10287 * flow-controlled (EWOULDBLOCK), and expect the flow 10288 * control condition to be lifted right away. 10289 * 10290 * For the fused tcp loopback case, in order to avoid 10291 * a race with the peer's tcp_fuse_rrw() we need to 10292 * hold its fuse_lock while accessing tcp_flow_stopped. 10293 */ 10294 peer_tcp = tcp->tcp_loopback_peer; 10295 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 10296 if (tcp->tcp_fused) 10297 mutex_enter(&peer_tcp->tcp_fuse_lock); 10298 10299 if (tcp->tcp_flow_stopped && 10300 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10301 tcp_clrqfull(tcp); 10302 } 10303 if (tcp->tcp_fused) 10304 mutex_exit(&peer_tcp->tcp_fuse_lock); 10305 break; 10306 } 10307 case SO_RCVBUF: 10308 if (*i1 > tcp_max_buf) { 10309 *outlenp = 0; 10310 return (ENOBUFS); 10311 } 10312 /* Silently ignore zero */ 10313 if (!checkonly && *i1 != 0) { 10314 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10315 (void) tcp_rwnd_set(tcp, *i1); 10316 } 10317 /* 10318 * XXX should we return the rwnd here 10319 * and tcp_opt_get ? 10320 */ 10321 break; 10322 case SO_SND_COPYAVOID: 10323 if (!checkonly) { 10324 /* we only allow enable at most once for now */ 10325 if (tcp->tcp_loopback || 10326 (!tcp->tcp_snd_zcopy_aware && 10327 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10328 *outlenp = 0; 10329 return (EOPNOTSUPP); 10330 } 10331 tcp->tcp_snd_zcopy_aware = 1; 10332 } 10333 break; 10334 case SO_ALLZONES: 10335 /* Handled at the IP level */ 10336 return (-EINVAL); 10337 case SO_ANON_MLP: 10338 if (!checkonly) { 10339 mutex_enter(&connp->conn_lock); 10340 connp->conn_anon_mlp = onoff; 10341 mutex_exit(&connp->conn_lock); 10342 } 10343 break; 10344 case SO_MAC_EXEMPT: 10345 if (secpolicy_net_mac_aware(cr) != 0 || 10346 IPCL_IS_BOUND(connp)) 10347 return (EACCES); 10348 if (!checkonly) { 10349 mutex_enter(&connp->conn_lock); 10350 connp->conn_mac_exempt = onoff; 10351 mutex_exit(&connp->conn_lock); 10352 } 10353 break; 10354 case SO_EXCLBIND: 10355 if (!checkonly) 10356 tcp->tcp_exclbind = onoff; 10357 break; 10358 default: 10359 *outlenp = 0; 10360 return (EINVAL); 10361 } 10362 break; 10363 case IPPROTO_TCP: 10364 switch (name) { 10365 case TCP_NODELAY: 10366 if (!checkonly) 10367 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10368 break; 10369 case TCP_NOTIFY_THRESHOLD: 10370 if (!checkonly) 10371 tcp->tcp_first_timer_threshold = *i1; 10372 break; 10373 case TCP_ABORT_THRESHOLD: 10374 if (!checkonly) 10375 tcp->tcp_second_timer_threshold = *i1; 10376 break; 10377 case TCP_CONN_NOTIFY_THRESHOLD: 10378 if (!checkonly) 10379 tcp->tcp_first_ctimer_threshold = *i1; 10380 break; 10381 case TCP_CONN_ABORT_THRESHOLD: 10382 if (!checkonly) 10383 tcp->tcp_second_ctimer_threshold = *i1; 10384 break; 10385 case TCP_RECVDSTADDR: 10386 if (tcp->tcp_state > TCPS_LISTEN) 10387 return (EOPNOTSUPP); 10388 if (!checkonly) 10389 tcp->tcp_recvdstaddr = onoff; 10390 break; 10391 case TCP_ANONPRIVBIND: 10392 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10393 *outlenp = 0; 10394 return (reterr); 10395 } 10396 if (!checkonly) { 10397 tcp->tcp_anon_priv_bind = onoff; 10398 } 10399 break; 10400 case TCP_EXCLBIND: 10401 if (!checkonly) 10402 tcp->tcp_exclbind = onoff; 10403 break; /* goto sizeof (int) option return */ 10404 case TCP_INIT_CWND: { 10405 uint32_t init_cwnd = *((uint32_t *)invalp); 10406 10407 if (checkonly) 10408 break; 10409 10410 /* 10411 * Only allow socket with network configuration 10412 * privilege to set the initial cwnd to be larger 10413 * than allowed by RFC 3390. 10414 */ 10415 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10416 tcp->tcp_init_cwnd = init_cwnd; 10417 break; 10418 } 10419 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10420 *outlenp = 0; 10421 return (reterr); 10422 } 10423 if (init_cwnd > TCP_MAX_INIT_CWND) { 10424 *outlenp = 0; 10425 return (EINVAL); 10426 } 10427 tcp->tcp_init_cwnd = init_cwnd; 10428 break; 10429 } 10430 case TCP_KEEPALIVE_THRESHOLD: 10431 if (checkonly) 10432 break; 10433 10434 if (*i1 < tcp_keepalive_interval_low || 10435 *i1 > tcp_keepalive_interval_high) { 10436 *outlenp = 0; 10437 return (EINVAL); 10438 } 10439 if (*i1 != tcp->tcp_ka_interval) { 10440 tcp->tcp_ka_interval = *i1; 10441 /* 10442 * Check if we need to restart the 10443 * keepalive timer. 10444 */ 10445 if (tcp->tcp_ka_tid != 0) { 10446 ASSERT(tcp->tcp_ka_enabled); 10447 (void) TCP_TIMER_CANCEL(tcp, 10448 tcp->tcp_ka_tid); 10449 tcp->tcp_ka_last_intrvl = 0; 10450 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10451 tcp_keepalive_killer, 10452 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10453 } 10454 } 10455 break; 10456 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10457 if (!checkonly) { 10458 if (*i1 < tcp_keepalive_abort_interval_low || 10459 *i1 > tcp_keepalive_abort_interval_high) { 10460 *outlenp = 0; 10461 return (EINVAL); 10462 } 10463 tcp->tcp_ka_abort_thres = *i1; 10464 } 10465 break; 10466 case TCP_CORK: 10467 if (!checkonly) { 10468 /* 10469 * if tcp->tcp_cork was set and is now 10470 * being unset, we have to make sure that 10471 * the remaining data gets sent out. Also 10472 * unset tcp->tcp_cork so that tcp_wput_data() 10473 * can send data even if it is less than mss 10474 */ 10475 if (tcp->tcp_cork && onoff == 0 && 10476 tcp->tcp_unsent > 0) { 10477 tcp->tcp_cork = B_FALSE; 10478 tcp_wput_data(tcp, NULL, B_FALSE); 10479 } 10480 tcp->tcp_cork = onoff; 10481 } 10482 break; 10483 default: 10484 *outlenp = 0; 10485 return (EINVAL); 10486 } 10487 break; 10488 case IPPROTO_IP: 10489 if (tcp->tcp_family != AF_INET) { 10490 *outlenp = 0; 10491 return (ENOPROTOOPT); 10492 } 10493 switch (name) { 10494 case IP_OPTIONS: 10495 case T_IP_OPTIONS: 10496 reterr = tcp_opt_set_header(tcp, checkonly, 10497 invalp, inlen); 10498 if (reterr) { 10499 *outlenp = 0; 10500 return (reterr); 10501 } 10502 /* OK return - copy input buffer into output buffer */ 10503 if (invalp != outvalp) { 10504 /* don't trust bcopy for identical src/dst */ 10505 bcopy(invalp, outvalp, inlen); 10506 } 10507 *outlenp = inlen; 10508 return (0); 10509 case IP_TOS: 10510 case T_IP_TOS: 10511 if (!checkonly) { 10512 tcp->tcp_ipha->ipha_type_of_service = 10513 (uchar_t)*i1; 10514 tcp->tcp_tos = (uchar_t)*i1; 10515 } 10516 break; 10517 case IP_TTL: 10518 if (!checkonly) { 10519 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10520 tcp->tcp_ttl = (uchar_t)*i1; 10521 } 10522 break; 10523 case IP_BOUND_IF: 10524 case IP_NEXTHOP: 10525 /* Handled at the IP level */ 10526 return (-EINVAL); 10527 case IP_SEC_OPT: 10528 /* 10529 * We should not allow policy setting after 10530 * we start listening for connections. 10531 */ 10532 if (tcp->tcp_state == TCPS_LISTEN) { 10533 return (EINVAL); 10534 } else { 10535 /* Handled at the IP level */ 10536 return (-EINVAL); 10537 } 10538 default: 10539 *outlenp = 0; 10540 return (EINVAL); 10541 } 10542 break; 10543 case IPPROTO_IPV6: { 10544 ip6_pkt_t *ipp; 10545 10546 /* 10547 * IPPROTO_IPV6 options are only supported for sockets 10548 * that are using IPv6 on the wire. 10549 */ 10550 if (tcp->tcp_ipversion != IPV6_VERSION) { 10551 *outlenp = 0; 10552 return (ENOPROTOOPT); 10553 } 10554 /* 10555 * Only sticky options; no ancillary data 10556 */ 10557 ASSERT(thisdg_attrs == NULL); 10558 ipp = &tcp->tcp_sticky_ipp; 10559 10560 switch (name) { 10561 case IPV6_UNICAST_HOPS: 10562 /* -1 means use default */ 10563 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10564 *outlenp = 0; 10565 return (EINVAL); 10566 } 10567 if (!checkonly) { 10568 if (*i1 == -1) { 10569 tcp->tcp_ip6h->ip6_hops = 10570 ipp->ipp_unicast_hops = 10571 (uint8_t)tcp_ipv6_hoplimit; 10572 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10573 /* Pass modified value to IP. */ 10574 *i1 = tcp->tcp_ip6h->ip6_hops; 10575 } else { 10576 tcp->tcp_ip6h->ip6_hops = 10577 ipp->ipp_unicast_hops = 10578 (uint8_t)*i1; 10579 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10580 } 10581 reterr = tcp_build_hdrs(q, tcp); 10582 if (reterr != 0) 10583 return (reterr); 10584 } 10585 break; 10586 case IPV6_BOUND_IF: 10587 if (!checkonly) { 10588 int error = 0; 10589 10590 tcp->tcp_bound_if = *i1; 10591 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10592 B_TRUE, checkonly, level, name, mblk); 10593 if (error != 0) { 10594 *outlenp = 0; 10595 return (error); 10596 } 10597 } 10598 break; 10599 /* 10600 * Set boolean switches for ancillary data delivery 10601 */ 10602 case IPV6_RECVPKTINFO: 10603 if (!checkonly) { 10604 if (onoff) 10605 tcp->tcp_ipv6_recvancillary |= 10606 TCP_IPV6_RECVPKTINFO; 10607 else 10608 tcp->tcp_ipv6_recvancillary &= 10609 ~TCP_IPV6_RECVPKTINFO; 10610 /* Force it to be sent up with the next msg */ 10611 tcp->tcp_recvifindex = 0; 10612 } 10613 break; 10614 case IPV6_RECVTCLASS: 10615 if (!checkonly) { 10616 if (onoff) 10617 tcp->tcp_ipv6_recvancillary |= 10618 TCP_IPV6_RECVTCLASS; 10619 else 10620 tcp->tcp_ipv6_recvancillary &= 10621 ~TCP_IPV6_RECVTCLASS; 10622 } 10623 break; 10624 case IPV6_RECVHOPLIMIT: 10625 if (!checkonly) { 10626 if (onoff) 10627 tcp->tcp_ipv6_recvancillary |= 10628 TCP_IPV6_RECVHOPLIMIT; 10629 else 10630 tcp->tcp_ipv6_recvancillary &= 10631 ~TCP_IPV6_RECVHOPLIMIT; 10632 /* Force it to be sent up with the next msg */ 10633 tcp->tcp_recvhops = 0xffffffffU; 10634 } 10635 break; 10636 case IPV6_RECVHOPOPTS: 10637 if (!checkonly) { 10638 if (onoff) 10639 tcp->tcp_ipv6_recvancillary |= 10640 TCP_IPV6_RECVHOPOPTS; 10641 else 10642 tcp->tcp_ipv6_recvancillary &= 10643 ~TCP_IPV6_RECVHOPOPTS; 10644 } 10645 break; 10646 case IPV6_RECVDSTOPTS: 10647 if (!checkonly) { 10648 if (onoff) 10649 tcp->tcp_ipv6_recvancillary |= 10650 TCP_IPV6_RECVDSTOPTS; 10651 else 10652 tcp->tcp_ipv6_recvancillary &= 10653 ~TCP_IPV6_RECVDSTOPTS; 10654 } 10655 break; 10656 case _OLD_IPV6_RECVDSTOPTS: 10657 if (!checkonly) { 10658 if (onoff) 10659 tcp->tcp_ipv6_recvancillary |= 10660 TCP_OLD_IPV6_RECVDSTOPTS; 10661 else 10662 tcp->tcp_ipv6_recvancillary &= 10663 ~TCP_OLD_IPV6_RECVDSTOPTS; 10664 } 10665 break; 10666 case IPV6_RECVRTHDR: 10667 if (!checkonly) { 10668 if (onoff) 10669 tcp->tcp_ipv6_recvancillary |= 10670 TCP_IPV6_RECVRTHDR; 10671 else 10672 tcp->tcp_ipv6_recvancillary &= 10673 ~TCP_IPV6_RECVRTHDR; 10674 } 10675 break; 10676 case IPV6_RECVRTHDRDSTOPTS: 10677 if (!checkonly) { 10678 if (onoff) 10679 tcp->tcp_ipv6_recvancillary |= 10680 TCP_IPV6_RECVRTDSTOPTS; 10681 else 10682 tcp->tcp_ipv6_recvancillary &= 10683 ~TCP_IPV6_RECVRTDSTOPTS; 10684 } 10685 break; 10686 case IPV6_PKTINFO: 10687 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10688 return (EINVAL); 10689 if (checkonly) 10690 break; 10691 10692 if (inlen == 0) { 10693 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10694 } else { 10695 struct in6_pktinfo *pkti; 10696 10697 pkti = (struct in6_pktinfo *)invalp; 10698 /* 10699 * RFC 3542 states that ipi6_addr must be 10700 * the unspecified address when setting the 10701 * IPV6_PKTINFO sticky socket option on a 10702 * TCP socket. 10703 */ 10704 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10705 return (EINVAL); 10706 /* 10707 * ip6_set_pktinfo() validates the source 10708 * address and interface index. 10709 */ 10710 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10711 pkti, mblk); 10712 if (reterr != 0) 10713 return (reterr); 10714 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10715 ipp->ipp_addr = pkti->ipi6_addr; 10716 if (ipp->ipp_ifindex != 0) 10717 ipp->ipp_fields |= IPPF_IFINDEX; 10718 else 10719 ipp->ipp_fields &= ~IPPF_IFINDEX; 10720 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10721 ipp->ipp_fields |= IPPF_ADDR; 10722 else 10723 ipp->ipp_fields &= ~IPPF_ADDR; 10724 } 10725 reterr = tcp_build_hdrs(q, tcp); 10726 if (reterr != 0) 10727 return (reterr); 10728 break; 10729 case IPV6_TCLASS: 10730 if (inlen != 0 && inlen != sizeof (int)) 10731 return (EINVAL); 10732 if (checkonly) 10733 break; 10734 10735 if (inlen == 0) { 10736 ipp->ipp_fields &= ~IPPF_TCLASS; 10737 } else { 10738 if (*i1 > 255 || *i1 < -1) 10739 return (EINVAL); 10740 if (*i1 == -1) { 10741 ipp->ipp_tclass = 0; 10742 *i1 = 0; 10743 } else { 10744 ipp->ipp_tclass = *i1; 10745 } 10746 ipp->ipp_fields |= IPPF_TCLASS; 10747 } 10748 reterr = tcp_build_hdrs(q, tcp); 10749 if (reterr != 0) 10750 return (reterr); 10751 break; 10752 case IPV6_NEXTHOP: 10753 /* 10754 * IP will verify that the nexthop is reachable 10755 * and fail for sticky options. 10756 */ 10757 if (inlen != 0 && inlen != sizeof (sin6_t)) 10758 return (EINVAL); 10759 if (checkonly) 10760 break; 10761 10762 if (inlen == 0) { 10763 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10764 } else { 10765 sin6_t *sin6 = (sin6_t *)invalp; 10766 10767 if (sin6->sin6_family != AF_INET6) 10768 return (EAFNOSUPPORT); 10769 if (IN6_IS_ADDR_V4MAPPED( 10770 &sin6->sin6_addr)) 10771 return (EADDRNOTAVAIL); 10772 ipp->ipp_nexthop = sin6->sin6_addr; 10773 if (!IN6_IS_ADDR_UNSPECIFIED( 10774 &ipp->ipp_nexthop)) 10775 ipp->ipp_fields |= IPPF_NEXTHOP; 10776 else 10777 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10778 } 10779 reterr = tcp_build_hdrs(q, tcp); 10780 if (reterr != 0) 10781 return (reterr); 10782 break; 10783 case IPV6_HOPOPTS: { 10784 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10785 10786 /* 10787 * Sanity checks - minimum size, size a multiple of 10788 * eight bytes, and matching size passed in. 10789 */ 10790 if (inlen != 0 && 10791 inlen != (8 * (hopts->ip6h_len + 1))) 10792 return (EINVAL); 10793 10794 if (checkonly) 10795 break; 10796 10797 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10798 (uchar_t **)&ipp->ipp_hopopts, 10799 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10800 if (reterr != 0) 10801 return (reterr); 10802 if (ipp->ipp_hopoptslen == 0) 10803 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10804 else 10805 ipp->ipp_fields |= IPPF_HOPOPTS; 10806 reterr = tcp_build_hdrs(q, tcp); 10807 if (reterr != 0) 10808 return (reterr); 10809 break; 10810 } 10811 case IPV6_RTHDRDSTOPTS: { 10812 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10813 10814 /* 10815 * Sanity checks - minimum size, size a multiple of 10816 * eight bytes, and matching size passed in. 10817 */ 10818 if (inlen != 0 && 10819 inlen != (8 * (dopts->ip6d_len + 1))) 10820 return (EINVAL); 10821 10822 if (checkonly) 10823 break; 10824 10825 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10826 (uchar_t **)&ipp->ipp_rtdstopts, 10827 &ipp->ipp_rtdstoptslen, 0); 10828 if (reterr != 0) 10829 return (reterr); 10830 if (ipp->ipp_rtdstoptslen == 0) 10831 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10832 else 10833 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10834 reterr = tcp_build_hdrs(q, tcp); 10835 if (reterr != 0) 10836 return (reterr); 10837 break; 10838 } 10839 case IPV6_DSTOPTS: { 10840 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10841 10842 /* 10843 * Sanity checks - minimum size, size a multiple of 10844 * eight bytes, and matching size passed in. 10845 */ 10846 if (inlen != 0 && 10847 inlen != (8 * (dopts->ip6d_len + 1))) 10848 return (EINVAL); 10849 10850 if (checkonly) 10851 break; 10852 10853 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10854 (uchar_t **)&ipp->ipp_dstopts, 10855 &ipp->ipp_dstoptslen, 0); 10856 if (reterr != 0) 10857 return (reterr); 10858 if (ipp->ipp_dstoptslen == 0) 10859 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10860 else 10861 ipp->ipp_fields |= IPPF_DSTOPTS; 10862 reterr = tcp_build_hdrs(q, tcp); 10863 if (reterr != 0) 10864 return (reterr); 10865 break; 10866 } 10867 case IPV6_RTHDR: { 10868 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10869 10870 /* 10871 * Sanity checks - minimum size, size a multiple of 10872 * eight bytes, and matching size passed in. 10873 */ 10874 if (inlen != 0 && 10875 inlen != (8 * (rt->ip6r_len + 1))) 10876 return (EINVAL); 10877 10878 if (checkonly) 10879 break; 10880 10881 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10882 (uchar_t **)&ipp->ipp_rthdr, 10883 &ipp->ipp_rthdrlen, 0); 10884 if (reterr != 0) 10885 return (reterr); 10886 if (ipp->ipp_rthdrlen == 0) 10887 ipp->ipp_fields &= ~IPPF_RTHDR; 10888 else 10889 ipp->ipp_fields |= IPPF_RTHDR; 10890 reterr = tcp_build_hdrs(q, tcp); 10891 if (reterr != 0) 10892 return (reterr); 10893 break; 10894 } 10895 case IPV6_V6ONLY: 10896 if (!checkonly) 10897 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10898 break; 10899 case IPV6_USE_MIN_MTU: 10900 if (inlen != sizeof (int)) 10901 return (EINVAL); 10902 10903 if (*i1 < -1 || *i1 > 1) 10904 return (EINVAL); 10905 10906 if (checkonly) 10907 break; 10908 10909 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10910 ipp->ipp_use_min_mtu = *i1; 10911 break; 10912 case IPV6_BOUND_PIF: 10913 /* Handled at the IP level */ 10914 return (-EINVAL); 10915 case IPV6_SEC_OPT: 10916 /* 10917 * We should not allow policy setting after 10918 * we start listening for connections. 10919 */ 10920 if (tcp->tcp_state == TCPS_LISTEN) { 10921 return (EINVAL); 10922 } else { 10923 /* Handled at the IP level */ 10924 return (-EINVAL); 10925 } 10926 case IPV6_SRC_PREFERENCES: 10927 if (inlen != sizeof (uint32_t)) 10928 return (EINVAL); 10929 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10930 *(uint32_t *)invalp); 10931 if (reterr != 0) { 10932 *outlenp = 0; 10933 return (reterr); 10934 } 10935 break; 10936 default: 10937 *outlenp = 0; 10938 return (EINVAL); 10939 } 10940 break; 10941 } /* end IPPROTO_IPV6 */ 10942 default: 10943 *outlenp = 0; 10944 return (EINVAL); 10945 } 10946 /* 10947 * Common case of OK return with outval same as inval 10948 */ 10949 if (invalp != outvalp) { 10950 /* don't trust bcopy for identical src/dst */ 10951 (void) bcopy(invalp, outvalp, inlen); 10952 } 10953 *outlenp = inlen; 10954 return (0); 10955 } 10956 10957 /* 10958 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10959 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10960 * headers, and the maximum size tcp header (to avoid reallocation 10961 * on the fly for additional tcp options). 10962 * Returns failure if can't allocate memory. 10963 */ 10964 static int 10965 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10966 { 10967 char *hdrs; 10968 uint_t hdrs_len; 10969 ip6i_t *ip6i; 10970 char buf[TCP_MAX_HDR_LENGTH]; 10971 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10972 in6_addr_t src, dst; 10973 10974 /* 10975 * save the existing tcp header and source/dest IP addresses 10976 */ 10977 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10978 src = tcp->tcp_ip6h->ip6_src; 10979 dst = tcp->tcp_ip6h->ip6_dst; 10980 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10981 ASSERT(hdrs_len != 0); 10982 if (hdrs_len > tcp->tcp_iphc_len) { 10983 /* Need to reallocate */ 10984 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10985 if (hdrs == NULL) 10986 return (ENOMEM); 10987 if (tcp->tcp_iphc != NULL) { 10988 if (tcp->tcp_hdr_grown) { 10989 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10990 } else { 10991 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10992 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10993 } 10994 tcp->tcp_iphc_len = 0; 10995 } 10996 ASSERT(tcp->tcp_iphc_len == 0); 10997 tcp->tcp_iphc = hdrs; 10998 tcp->tcp_iphc_len = hdrs_len; 10999 tcp->tcp_hdr_grown = B_TRUE; 11000 } 11001 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11002 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11003 11004 /* Set header fields not in ipp */ 11005 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11006 ip6i = (ip6i_t *)tcp->tcp_iphc; 11007 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11008 } else { 11009 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11010 } 11011 /* 11012 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11013 * 11014 * tcp->tcp_tcp_hdr_len doesn't change here. 11015 */ 11016 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11017 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11018 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11019 11020 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11021 11022 tcp->tcp_ip6h->ip6_src = src; 11023 tcp->tcp_ip6h->ip6_dst = dst; 11024 11025 /* 11026 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11027 * the default value for TCP. 11028 */ 11029 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11030 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 11031 11032 /* 11033 * If we're setting extension headers after a connection 11034 * has been established, and if we have a routing header 11035 * among the extension headers, call ip_massage_options_v6 to 11036 * manipulate the routing header/ip6_dst set the checksum 11037 * difference in the tcp header template. 11038 * (This happens in tcp_connect_ipv6 if the routing header 11039 * is set prior to the connect.) 11040 * Set the tcp_sum to zero first in case we've cleared a 11041 * routing header or don't have one at all. 11042 */ 11043 tcp->tcp_sum = 0; 11044 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11045 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11046 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11047 (uint8_t *)tcp->tcp_tcph); 11048 if (rth != NULL) { 11049 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11050 rth); 11051 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11052 (tcp->tcp_sum >> 16)); 11053 } 11054 } 11055 11056 /* Try to get everything in a single mblk */ 11057 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 11058 return (0); 11059 } 11060 11061 /* 11062 * Transfer any source route option from ipha to buf/dst in reversed form. 11063 */ 11064 static int 11065 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11066 { 11067 ipoptp_t opts; 11068 uchar_t *opt; 11069 uint8_t optval; 11070 uint8_t optlen; 11071 uint32_t len = 0; 11072 11073 for (optval = ipoptp_first(&opts, ipha); 11074 optval != IPOPT_EOL; 11075 optval = ipoptp_next(&opts)) { 11076 opt = opts.ipoptp_cur; 11077 optlen = opts.ipoptp_len; 11078 switch (optval) { 11079 int off1, off2; 11080 case IPOPT_SSRR: 11081 case IPOPT_LSRR: 11082 11083 /* Reverse source route */ 11084 /* 11085 * First entry should be the next to last one in the 11086 * current source route (the last entry is our 11087 * address.) 11088 * The last entry should be the final destination. 11089 */ 11090 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11091 buf[IPOPT_OLEN] = (uint8_t)optlen; 11092 off1 = IPOPT_MINOFF_SR - 1; 11093 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11094 if (off2 < 0) { 11095 /* No entries in source route */ 11096 break; 11097 } 11098 bcopy(opt + off2, dst, IP_ADDR_LEN); 11099 /* 11100 * Note: use src since ipha has not had its src 11101 * and dst reversed (it is in the state it was 11102 * received. 11103 */ 11104 bcopy(&ipha->ipha_src, buf + off2, 11105 IP_ADDR_LEN); 11106 off2 -= IP_ADDR_LEN; 11107 11108 while (off2 > 0) { 11109 bcopy(opt + off2, buf + off1, 11110 IP_ADDR_LEN); 11111 off1 += IP_ADDR_LEN; 11112 off2 -= IP_ADDR_LEN; 11113 } 11114 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11115 buf += optlen; 11116 len += optlen; 11117 break; 11118 } 11119 } 11120 done: 11121 /* Pad the resulting options */ 11122 while (len & 0x3) { 11123 *buf++ = IPOPT_EOL; 11124 len++; 11125 } 11126 return (len); 11127 } 11128 11129 11130 /* 11131 * Extract and revert a source route from ipha (if any) 11132 * and then update the relevant fields in both tcp_t and the standard header. 11133 */ 11134 static void 11135 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11136 { 11137 char buf[TCP_MAX_HDR_LENGTH]; 11138 uint_t tcph_len; 11139 int len; 11140 11141 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11142 len = IPH_HDR_LENGTH(ipha); 11143 if (len == IP_SIMPLE_HDR_LENGTH) 11144 /* Nothing to do */ 11145 return; 11146 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11147 (len & 0x3)) 11148 return; 11149 11150 tcph_len = tcp->tcp_tcp_hdr_len; 11151 bcopy(tcp->tcp_tcph, buf, tcph_len); 11152 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11153 (tcp->tcp_ipha->ipha_dst & 0xffff); 11154 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11155 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11156 len += IP_SIMPLE_HDR_LENGTH; 11157 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11158 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11159 if ((int)tcp->tcp_sum < 0) 11160 tcp->tcp_sum--; 11161 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11162 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11163 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11164 bcopy(buf, tcp->tcp_tcph, tcph_len); 11165 tcp->tcp_ip_hdr_len = len; 11166 tcp->tcp_ipha->ipha_version_and_hdr_length = 11167 (IP_VERSION << 4) | (len >> 2); 11168 len += tcph_len; 11169 tcp->tcp_hdr_len = len; 11170 } 11171 11172 /* 11173 * Copy the standard header into its new location, 11174 * lay in the new options and then update the relevant 11175 * fields in both tcp_t and the standard header. 11176 */ 11177 static int 11178 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11179 { 11180 uint_t tcph_len; 11181 uint8_t *ip_optp; 11182 tcph_t *new_tcph; 11183 11184 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11185 return (EINVAL); 11186 11187 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11188 return (EINVAL); 11189 11190 if (checkonly) { 11191 /* 11192 * do not really set, just pretend to - T_CHECK 11193 */ 11194 return (0); 11195 } 11196 11197 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11198 if (tcp->tcp_label_len > 0) { 11199 int padlen; 11200 uint8_t opt; 11201 11202 /* convert list termination to no-ops */ 11203 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11204 ip_optp += ip_optp[IPOPT_OLEN]; 11205 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11206 while (--padlen >= 0) 11207 *ip_optp++ = opt; 11208 } 11209 tcph_len = tcp->tcp_tcp_hdr_len; 11210 new_tcph = (tcph_t *)(ip_optp + len); 11211 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11212 tcp->tcp_tcph = new_tcph; 11213 bcopy(ptr, ip_optp, len); 11214 11215 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11216 11217 tcp->tcp_ip_hdr_len = len; 11218 tcp->tcp_ipha->ipha_version_and_hdr_length = 11219 (IP_VERSION << 4) | (len >> 2); 11220 tcp->tcp_hdr_len = len + tcph_len; 11221 if (!TCP_IS_DETACHED(tcp)) { 11222 /* Always allocate room for all options. */ 11223 (void) mi_set_sth_wroff(tcp->tcp_rq, 11224 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 11225 } 11226 return (0); 11227 } 11228 11229 /* Get callback routine passed to nd_load by tcp_param_register */ 11230 /* ARGSUSED */ 11231 static int 11232 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11233 { 11234 tcpparam_t *tcppa = (tcpparam_t *)cp; 11235 11236 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11237 return (0); 11238 } 11239 11240 /* 11241 * Walk through the param array specified registering each element with the 11242 * named dispatch handler. 11243 */ 11244 static boolean_t 11245 tcp_param_register(tcpparam_t *tcppa, int cnt) 11246 { 11247 for (; cnt-- > 0; tcppa++) { 11248 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11249 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11250 tcp_param_get, tcp_param_set, 11251 (caddr_t)tcppa)) { 11252 nd_free(&tcp_g_nd); 11253 return (B_FALSE); 11254 } 11255 } 11256 } 11257 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11258 tcp_param_get, tcp_param_set_aligned, 11259 (caddr_t)&tcp_wroff_xtra_param)) { 11260 nd_free(&tcp_g_nd); 11261 return (B_FALSE); 11262 } 11263 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11264 tcp_param_get, tcp_param_set_aligned, 11265 (caddr_t)&tcp_mdt_head_param)) { 11266 nd_free(&tcp_g_nd); 11267 return (B_FALSE); 11268 } 11269 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11270 tcp_param_get, tcp_param_set_aligned, 11271 (caddr_t)&tcp_mdt_tail_param)) { 11272 nd_free(&tcp_g_nd); 11273 return (B_FALSE); 11274 } 11275 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11276 tcp_param_get, tcp_param_set, 11277 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11278 nd_free(&tcp_g_nd); 11279 return (B_FALSE); 11280 } 11281 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11282 tcp_extra_priv_ports_get, NULL, NULL)) { 11283 nd_free(&tcp_g_nd); 11284 return (B_FALSE); 11285 } 11286 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11287 NULL, tcp_extra_priv_ports_add, NULL)) { 11288 nd_free(&tcp_g_nd); 11289 return (B_FALSE); 11290 } 11291 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11292 NULL, tcp_extra_priv_ports_del, NULL)) { 11293 nd_free(&tcp_g_nd); 11294 return (B_FALSE); 11295 } 11296 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11297 NULL)) { 11298 nd_free(&tcp_g_nd); 11299 return (B_FALSE); 11300 } 11301 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11302 NULL, NULL)) { 11303 nd_free(&tcp_g_nd); 11304 return (B_FALSE); 11305 } 11306 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11307 NULL, NULL)) { 11308 nd_free(&tcp_g_nd); 11309 return (B_FALSE); 11310 } 11311 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11312 NULL, NULL)) { 11313 nd_free(&tcp_g_nd); 11314 return (B_FALSE); 11315 } 11316 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11317 NULL, NULL)) { 11318 nd_free(&tcp_g_nd); 11319 return (B_FALSE); 11320 } 11321 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11322 tcp_host_param_set, NULL)) { 11323 nd_free(&tcp_g_nd); 11324 return (B_FALSE); 11325 } 11326 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11327 tcp_host_param_set_ipv6, NULL)) { 11328 nd_free(&tcp_g_nd); 11329 return (B_FALSE); 11330 } 11331 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11332 NULL)) { 11333 nd_free(&tcp_g_nd); 11334 return (B_FALSE); 11335 } 11336 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11337 tcp_reserved_port_list, NULL, NULL)) { 11338 nd_free(&tcp_g_nd); 11339 return (B_FALSE); 11340 } 11341 /* 11342 * Dummy ndd variables - only to convey obsolescence information 11343 * through printing of their name (no get or set routines) 11344 * XXX Remove in future releases ? 11345 */ 11346 if (!nd_load(&tcp_g_nd, 11347 "tcp_close_wait_interval(obsoleted - " 11348 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11349 nd_free(&tcp_g_nd); 11350 return (B_FALSE); 11351 } 11352 return (B_TRUE); 11353 } 11354 11355 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11356 /* ARGSUSED */ 11357 static int 11358 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11359 cred_t *cr) 11360 { 11361 long new_value; 11362 tcpparam_t *tcppa = (tcpparam_t *)cp; 11363 11364 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11365 new_value < tcppa->tcp_param_min || 11366 new_value > tcppa->tcp_param_max) { 11367 return (EINVAL); 11368 } 11369 /* 11370 * Need to make sure new_value is a multiple of 4. If it is not, 11371 * round it up. For future 64 bit requirement, we actually make it 11372 * a multiple of 8. 11373 */ 11374 if (new_value & 0x7) { 11375 new_value = (new_value & ~0x7) + 0x8; 11376 } 11377 tcppa->tcp_param_val = new_value; 11378 return (0); 11379 } 11380 11381 /* Set callback routine passed to nd_load by tcp_param_register */ 11382 /* ARGSUSED */ 11383 static int 11384 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11385 { 11386 long new_value; 11387 tcpparam_t *tcppa = (tcpparam_t *)cp; 11388 11389 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11390 new_value < tcppa->tcp_param_min || 11391 new_value > tcppa->tcp_param_max) { 11392 return (EINVAL); 11393 } 11394 tcppa->tcp_param_val = new_value; 11395 return (0); 11396 } 11397 11398 /* 11399 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11400 * is filled, return as much as we can. The message passed in may be 11401 * multi-part, chained using b_cont. "start" is the starting sequence 11402 * number for this piece. 11403 */ 11404 static mblk_t * 11405 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11406 { 11407 uint32_t end; 11408 mblk_t *mp1; 11409 mblk_t *mp2; 11410 mblk_t *next_mp; 11411 uint32_t u1; 11412 11413 /* Walk through all the new pieces. */ 11414 do { 11415 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11416 (uintptr_t)INT_MAX); 11417 end = start + (int)(mp->b_wptr - mp->b_rptr); 11418 next_mp = mp->b_cont; 11419 if (start == end) { 11420 /* Empty. Blast it. */ 11421 freeb(mp); 11422 continue; 11423 } 11424 mp->b_cont = NULL; 11425 TCP_REASS_SET_SEQ(mp, start); 11426 TCP_REASS_SET_END(mp, end); 11427 mp1 = tcp->tcp_reass_tail; 11428 if (!mp1) { 11429 tcp->tcp_reass_tail = mp; 11430 tcp->tcp_reass_head = mp; 11431 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11432 UPDATE_MIB(&tcp_mib, 11433 tcpInDataUnorderBytes, end - start); 11434 continue; 11435 } 11436 /* New stuff completely beyond tail? */ 11437 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11438 /* Link it on end. */ 11439 mp1->b_cont = mp; 11440 tcp->tcp_reass_tail = mp; 11441 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11442 UPDATE_MIB(&tcp_mib, 11443 tcpInDataUnorderBytes, end - start); 11444 continue; 11445 } 11446 mp1 = tcp->tcp_reass_head; 11447 u1 = TCP_REASS_SEQ(mp1); 11448 /* New stuff at the front? */ 11449 if (SEQ_LT(start, u1)) { 11450 /* Yes... Check for overlap. */ 11451 mp->b_cont = mp1; 11452 tcp->tcp_reass_head = mp; 11453 tcp_reass_elim_overlap(tcp, mp); 11454 continue; 11455 } 11456 /* 11457 * The new piece fits somewhere between the head and tail. 11458 * We find our slot, where mp1 precedes us and mp2 trails. 11459 */ 11460 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11461 u1 = TCP_REASS_SEQ(mp2); 11462 if (SEQ_LEQ(start, u1)) 11463 break; 11464 } 11465 /* Link ourselves in */ 11466 mp->b_cont = mp2; 11467 mp1->b_cont = mp; 11468 11469 /* Trim overlap with following mblk(s) first */ 11470 tcp_reass_elim_overlap(tcp, mp); 11471 11472 /* Trim overlap with preceding mblk */ 11473 tcp_reass_elim_overlap(tcp, mp1); 11474 11475 } while (start = end, mp = next_mp); 11476 mp1 = tcp->tcp_reass_head; 11477 /* Anything ready to go? */ 11478 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11479 return (NULL); 11480 /* Eat what we can off the queue */ 11481 for (;;) { 11482 mp = mp1->b_cont; 11483 end = TCP_REASS_END(mp1); 11484 TCP_REASS_SET_SEQ(mp1, 0); 11485 TCP_REASS_SET_END(mp1, 0); 11486 if (!mp) { 11487 tcp->tcp_reass_tail = NULL; 11488 break; 11489 } 11490 if (end != TCP_REASS_SEQ(mp)) { 11491 mp1->b_cont = NULL; 11492 break; 11493 } 11494 mp1 = mp; 11495 } 11496 mp1 = tcp->tcp_reass_head; 11497 tcp->tcp_reass_head = mp; 11498 return (mp1); 11499 } 11500 11501 /* Eliminate any overlap that mp may have over later mblks */ 11502 static void 11503 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11504 { 11505 uint32_t end; 11506 mblk_t *mp1; 11507 uint32_t u1; 11508 11509 end = TCP_REASS_END(mp); 11510 while ((mp1 = mp->b_cont) != NULL) { 11511 u1 = TCP_REASS_SEQ(mp1); 11512 if (!SEQ_GT(end, u1)) 11513 break; 11514 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11515 mp->b_wptr -= end - u1; 11516 TCP_REASS_SET_END(mp, u1); 11517 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11518 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11519 break; 11520 } 11521 mp->b_cont = mp1->b_cont; 11522 TCP_REASS_SET_SEQ(mp1, 0); 11523 TCP_REASS_SET_END(mp1, 0); 11524 freeb(mp1); 11525 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11526 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11527 } 11528 if (!mp1) 11529 tcp->tcp_reass_tail = mp; 11530 } 11531 11532 /* 11533 * Send up all messages queued on tcp_rcv_list. 11534 */ 11535 static uint_t 11536 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11537 { 11538 mblk_t *mp; 11539 uint_t ret = 0; 11540 uint_t thwin; 11541 #ifdef DEBUG 11542 uint_t cnt = 0; 11543 #endif 11544 /* Can't drain on an eager connection */ 11545 if (tcp->tcp_listener != NULL) 11546 return (ret); 11547 11548 /* 11549 * Handle two cases here: we are currently fused or we were 11550 * previously fused and have some urgent data to be delivered 11551 * upstream. The latter happens because we either ran out of 11552 * memory or were detached and therefore sending the SIGURG was 11553 * deferred until this point. In either case we pass control 11554 * over to tcp_fuse_rcv_drain() since it may need to complete 11555 * some work. 11556 */ 11557 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11558 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11559 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11560 &tcp->tcp_fused_sigurg_mp)) 11561 return (ret); 11562 } 11563 11564 while ((mp = tcp->tcp_rcv_list) != NULL) { 11565 tcp->tcp_rcv_list = mp->b_next; 11566 mp->b_next = NULL; 11567 #ifdef DEBUG 11568 cnt += msgdsize(mp); 11569 #endif 11570 /* Does this need SSL processing first? */ 11571 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11572 tcp_kssl_input(tcp, mp); 11573 continue; 11574 } 11575 putnext(q, mp); 11576 } 11577 ASSERT(cnt == tcp->tcp_rcv_cnt); 11578 tcp->tcp_rcv_last_head = NULL; 11579 tcp->tcp_rcv_last_tail = NULL; 11580 tcp->tcp_rcv_cnt = 0; 11581 11582 /* Learn the latest rwnd information that we sent to the other side. */ 11583 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11584 << tcp->tcp_rcv_ws; 11585 /* This is peer's calculated send window (our receive window). */ 11586 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11587 /* 11588 * Increase the receive window to max. But we need to do receiver 11589 * SWS avoidance. This means that we need to check the increase of 11590 * of receive window is at least 1 MSS. 11591 */ 11592 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11593 /* 11594 * If the window that the other side knows is less than max 11595 * deferred acks segments, send an update immediately. 11596 */ 11597 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11598 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11599 ret = TH_ACK_NEEDED; 11600 } 11601 tcp->tcp_rwnd = q->q_hiwat; 11602 } 11603 /* No need for the push timer now. */ 11604 if (tcp->tcp_push_tid != 0) { 11605 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11606 tcp->tcp_push_tid = 0; 11607 } 11608 return (ret); 11609 } 11610 11611 /* 11612 * Queue data on tcp_rcv_list which is a b_next chain. 11613 * tcp_rcv_last_head/tail is the last element of this chain. 11614 * Each element of the chain is a b_cont chain. 11615 * 11616 * M_DATA messages are added to the current element. 11617 * Other messages are added as new (b_next) elements. 11618 */ 11619 void 11620 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11621 { 11622 ASSERT(seg_len == msgdsize(mp)); 11623 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11624 11625 if (tcp->tcp_rcv_list == NULL) { 11626 ASSERT(tcp->tcp_rcv_last_head == NULL); 11627 tcp->tcp_rcv_list = mp; 11628 tcp->tcp_rcv_last_head = mp; 11629 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11630 tcp->tcp_rcv_last_tail->b_cont = mp; 11631 } else { 11632 tcp->tcp_rcv_last_head->b_next = mp; 11633 tcp->tcp_rcv_last_head = mp; 11634 } 11635 11636 while (mp->b_cont) 11637 mp = mp->b_cont; 11638 11639 tcp->tcp_rcv_last_tail = mp; 11640 tcp->tcp_rcv_cnt += seg_len; 11641 tcp->tcp_rwnd -= seg_len; 11642 } 11643 11644 /* 11645 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11646 * 11647 * This is the default entry function into TCP on the read side. TCP is 11648 * always entered via squeue i.e. using squeue's for mutual exclusion. 11649 * When classifier does a lookup to find the tcp, it also puts a reference 11650 * on the conn structure associated so the tcp is guaranteed to exist 11651 * when we come here. We still need to check the state because it might 11652 * as well has been closed. The squeue processing function i.e. squeue_enter, 11653 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11654 * CONN_DEC_REF. 11655 * 11656 * Apart from the default entry point, IP also sends packets directly to 11657 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11658 * connections. 11659 */ 11660 void 11661 tcp_input(void *arg, mblk_t *mp, void *arg2) 11662 { 11663 conn_t *connp = (conn_t *)arg; 11664 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11665 11666 /* arg2 is the sqp */ 11667 ASSERT(arg2 != NULL); 11668 ASSERT(mp != NULL); 11669 11670 /* 11671 * Don't accept any input on a closed tcp as this TCP logically does 11672 * not exist on the system. Don't proceed further with this TCP. 11673 * For eg. this packet could trigger another close of this tcp 11674 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11675 * tcp_clean_death / tcp_closei_local must be called at most once 11676 * on a TCP. In this case we need to refeed the packet into the 11677 * classifier and figure out where the packet should go. Need to 11678 * preserve the recv_ill somehow. Until we figure that out, for 11679 * now just drop the packet if we can't classify the packet. 11680 */ 11681 if (tcp->tcp_state == TCPS_CLOSED || 11682 tcp->tcp_state == TCPS_BOUND) { 11683 conn_t *new_connp; 11684 11685 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11686 if (new_connp != NULL) { 11687 tcp_reinput(new_connp, mp, arg2); 11688 return; 11689 } 11690 /* We failed to classify. For now just drop the packet */ 11691 freemsg(mp); 11692 return; 11693 } 11694 11695 if (DB_TYPE(mp) == M_DATA) 11696 tcp_rput_data(connp, mp, arg2); 11697 else 11698 tcp_rput_common(tcp, mp); 11699 } 11700 11701 /* 11702 * The read side put procedure. 11703 * The packets passed up by ip are assume to be aligned according to 11704 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11705 */ 11706 static void 11707 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11708 { 11709 /* 11710 * tcp_rput_data() does not expect M_CTL except for the case 11711 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11712 * type. Need to make sure that any other M_CTLs don't make 11713 * it to tcp_rput_data since it is not expecting any and doesn't 11714 * check for it. 11715 */ 11716 if (DB_TYPE(mp) == M_CTL) { 11717 switch (*(uint32_t *)(mp->b_rptr)) { 11718 case TCP_IOC_ABORT_CONN: 11719 /* 11720 * Handle connection abort request. 11721 */ 11722 tcp_ioctl_abort_handler(tcp, mp); 11723 return; 11724 case IPSEC_IN: 11725 /* 11726 * Only secure icmp arrive in TCP and they 11727 * don't go through data path. 11728 */ 11729 tcp_icmp_error(tcp, mp); 11730 return; 11731 case IN_PKTINFO: 11732 /* 11733 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11734 * sockets that are receiving IPv4 traffic. tcp 11735 */ 11736 ASSERT(tcp->tcp_family == AF_INET6); 11737 ASSERT(tcp->tcp_ipv6_recvancillary & 11738 TCP_IPV6_RECVPKTINFO); 11739 tcp_rput_data(tcp->tcp_connp, mp, 11740 tcp->tcp_connp->conn_sqp); 11741 return; 11742 case MDT_IOC_INFO_UPDATE: 11743 /* 11744 * Handle Multidata information update; the 11745 * following routine will free the message. 11746 */ 11747 if (tcp->tcp_connp->conn_mdt_ok) { 11748 tcp_mdt_update(tcp, 11749 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11750 B_FALSE); 11751 } 11752 freemsg(mp); 11753 return; 11754 case LSO_IOC_INFO_UPDATE: 11755 /* 11756 * Handle LSO information update; the following 11757 * routine will free the message. 11758 */ 11759 if (tcp->tcp_connp->conn_lso_ok) { 11760 tcp_lso_update(tcp, 11761 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11762 } 11763 freemsg(mp); 11764 return; 11765 default: 11766 /* 11767 * tcp_icmp_err() will process the M_CTL packets. 11768 * Non-ICMP packets, if any, will be discarded in 11769 * tcp_icmp_err(). We will process the ICMP packet 11770 * even if we are TCP_IS_DETACHED_NONEAGER as the 11771 * incoming ICMP packet may result in changing 11772 * the tcp_mss, which we would need if we have 11773 * packets to retransmit. 11774 */ 11775 tcp_icmp_error(tcp, mp); 11776 return; 11777 } 11778 } 11779 11780 /* No point processing the message if tcp is already closed */ 11781 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11782 freemsg(mp); 11783 return; 11784 } 11785 11786 tcp_rput_other(tcp, mp); 11787 } 11788 11789 11790 /* The minimum of smoothed mean deviation in RTO calculation. */ 11791 #define TCP_SD_MIN 400 11792 11793 /* 11794 * Set RTO for this connection. The formula is from Jacobson and Karels' 11795 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11796 * are the same as those in Appendix A.2 of that paper. 11797 * 11798 * m = new measurement 11799 * sa = smoothed RTT average (8 * average estimates). 11800 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11801 */ 11802 static void 11803 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11804 { 11805 long m = TICK_TO_MSEC(rtt); 11806 clock_t sa = tcp->tcp_rtt_sa; 11807 clock_t sv = tcp->tcp_rtt_sd; 11808 clock_t rto; 11809 11810 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11811 tcp->tcp_rtt_update++; 11812 11813 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11814 if (sa != 0) { 11815 /* 11816 * Update average estimator: 11817 * new rtt = 7/8 old rtt + 1/8 Error 11818 */ 11819 11820 /* m is now Error in estimate. */ 11821 m -= sa >> 3; 11822 if ((sa += m) <= 0) { 11823 /* 11824 * Don't allow the smoothed average to be negative. 11825 * We use 0 to denote reinitialization of the 11826 * variables. 11827 */ 11828 sa = 1; 11829 } 11830 11831 /* 11832 * Update deviation estimator: 11833 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11834 */ 11835 if (m < 0) 11836 m = -m; 11837 m -= sv >> 2; 11838 sv += m; 11839 } else { 11840 /* 11841 * This follows BSD's implementation. So the reinitialized 11842 * RTO is 3 * m. We cannot go less than 2 because if the 11843 * link is bandwidth dominated, doubling the window size 11844 * during slow start means doubling the RTT. We want to be 11845 * more conservative when we reinitialize our estimates. 3 11846 * is just a convenient number. 11847 */ 11848 sa = m << 3; 11849 sv = m << 1; 11850 } 11851 if (sv < TCP_SD_MIN) { 11852 /* 11853 * We do not know that if sa captures the delay ACK 11854 * effect as in a long train of segments, a receiver 11855 * does not delay its ACKs. So set the minimum of sv 11856 * to be TCP_SD_MIN, which is default to 400 ms, twice 11857 * of BSD DATO. That means the minimum of mean 11858 * deviation is 100 ms. 11859 * 11860 */ 11861 sv = TCP_SD_MIN; 11862 } 11863 tcp->tcp_rtt_sa = sa; 11864 tcp->tcp_rtt_sd = sv; 11865 /* 11866 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11867 * 11868 * Add tcp_rexmit_interval extra in case of extreme environment 11869 * where the algorithm fails to work. The default value of 11870 * tcp_rexmit_interval_extra should be 0. 11871 * 11872 * As we use a finer grained clock than BSD and update 11873 * RTO for every ACKs, add in another .25 of RTT to the 11874 * deviation of RTO to accomodate burstiness of 1/4 of 11875 * window size. 11876 */ 11877 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11878 11879 if (rto > tcp_rexmit_interval_max) { 11880 tcp->tcp_rto = tcp_rexmit_interval_max; 11881 } else if (rto < tcp_rexmit_interval_min) { 11882 tcp->tcp_rto = tcp_rexmit_interval_min; 11883 } else { 11884 tcp->tcp_rto = rto; 11885 } 11886 11887 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11888 tcp->tcp_timer_backoff = 0; 11889 } 11890 11891 /* 11892 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11893 * send queue which starts at the given seq. no. 11894 * 11895 * Parameters: 11896 * tcp_t *tcp: the tcp instance pointer. 11897 * uint32_t seq: the starting seq. no of the requested segment. 11898 * int32_t *off: after the execution, *off will be the offset to 11899 * the returned mblk which points to the requested seq no. 11900 * It is the caller's responsibility to send in a non-null off. 11901 * 11902 * Return: 11903 * A mblk_t pointer pointing to the requested segment in send queue. 11904 */ 11905 static mblk_t * 11906 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11907 { 11908 int32_t cnt; 11909 mblk_t *mp; 11910 11911 /* Defensive coding. Make sure we don't send incorrect data. */ 11912 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11913 return (NULL); 11914 11915 cnt = seq - tcp->tcp_suna; 11916 mp = tcp->tcp_xmit_head; 11917 while (cnt > 0 && mp != NULL) { 11918 cnt -= mp->b_wptr - mp->b_rptr; 11919 if (cnt < 0) { 11920 cnt += mp->b_wptr - mp->b_rptr; 11921 break; 11922 } 11923 mp = mp->b_cont; 11924 } 11925 ASSERT(mp != NULL); 11926 *off = cnt; 11927 return (mp); 11928 } 11929 11930 /* 11931 * This function handles all retransmissions if SACK is enabled for this 11932 * connection. First it calculates how many segments can be retransmitted 11933 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11934 * segments. A segment is eligible if sack_cnt for that segment is greater 11935 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11936 * all eligible segments, it checks to see if TCP can send some new segments 11937 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11938 * 11939 * Parameters: 11940 * tcp_t *tcp: the tcp structure of the connection. 11941 * uint_t *flags: in return, appropriate value will be set for 11942 * tcp_rput_data(). 11943 */ 11944 static void 11945 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11946 { 11947 notsack_blk_t *notsack_blk; 11948 int32_t usable_swnd; 11949 int32_t mss; 11950 uint32_t seg_len; 11951 mblk_t *xmit_mp; 11952 11953 ASSERT(tcp->tcp_sack_info != NULL); 11954 ASSERT(tcp->tcp_notsack_list != NULL); 11955 ASSERT(tcp->tcp_rexmit == B_FALSE); 11956 11957 /* Defensive coding in case there is a bug... */ 11958 if (tcp->tcp_notsack_list == NULL) { 11959 return; 11960 } 11961 notsack_blk = tcp->tcp_notsack_list; 11962 mss = tcp->tcp_mss; 11963 11964 /* 11965 * Limit the num of outstanding data in the network to be 11966 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11967 */ 11968 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11969 11970 /* At least retransmit 1 MSS of data. */ 11971 if (usable_swnd <= 0) { 11972 usable_swnd = mss; 11973 } 11974 11975 /* Make sure no new RTT samples will be taken. */ 11976 tcp->tcp_csuna = tcp->tcp_snxt; 11977 11978 notsack_blk = tcp->tcp_notsack_list; 11979 while (usable_swnd > 0) { 11980 mblk_t *snxt_mp, *tmp_mp; 11981 tcp_seq begin = tcp->tcp_sack_snxt; 11982 tcp_seq end; 11983 int32_t off; 11984 11985 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11986 if (SEQ_GT(notsack_blk->end, begin) && 11987 (notsack_blk->sack_cnt >= 11988 tcp_dupack_fast_retransmit)) { 11989 end = notsack_blk->end; 11990 if (SEQ_LT(begin, notsack_blk->begin)) { 11991 begin = notsack_blk->begin; 11992 } 11993 break; 11994 } 11995 } 11996 /* 11997 * All holes are filled. Manipulate tcp_cwnd to send more 11998 * if we can. Note that after the SACK recovery, tcp_cwnd is 11999 * set to tcp_cwnd_ssthresh. 12000 */ 12001 if (notsack_blk == NULL) { 12002 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12003 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12004 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12005 ASSERT(tcp->tcp_cwnd > 0); 12006 return; 12007 } else { 12008 usable_swnd = usable_swnd / mss; 12009 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12010 MAX(usable_swnd * mss, mss); 12011 *flags |= TH_XMIT_NEEDED; 12012 return; 12013 } 12014 } 12015 12016 /* 12017 * Note that we may send more than usable_swnd allows here 12018 * because of round off, but no more than 1 MSS of data. 12019 */ 12020 seg_len = end - begin; 12021 if (seg_len > mss) 12022 seg_len = mss; 12023 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12024 ASSERT(snxt_mp != NULL); 12025 /* This should not happen. Defensive coding again... */ 12026 if (snxt_mp == NULL) { 12027 return; 12028 } 12029 12030 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12031 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12032 if (xmit_mp == NULL) 12033 return; 12034 12035 usable_swnd -= seg_len; 12036 tcp->tcp_pipe += seg_len; 12037 tcp->tcp_sack_snxt = begin + seg_len; 12038 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12039 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12040 12041 /* 12042 * Update the send timestamp to avoid false retransmission. 12043 */ 12044 snxt_mp->b_prev = (mblk_t *)lbolt; 12045 12046 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12047 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 12048 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 12049 /* 12050 * Update tcp_rexmit_max to extend this SACK recovery phase. 12051 * This happens when new data sent during fast recovery is 12052 * also lost. If TCP retransmits those new data, it needs 12053 * to extend SACK recover phase to avoid starting another 12054 * fast retransmit/recovery unnecessarily. 12055 */ 12056 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12057 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12058 } 12059 } 12060 } 12061 12062 /* 12063 * This function handles policy checking at TCP level for non-hard_bound/ 12064 * detached connections. 12065 */ 12066 static boolean_t 12067 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12068 boolean_t secure, boolean_t mctl_present) 12069 { 12070 ipsec_latch_t *ipl = NULL; 12071 ipsec_action_t *act = NULL; 12072 mblk_t *data_mp; 12073 ipsec_in_t *ii; 12074 const char *reason; 12075 kstat_named_t *counter; 12076 12077 ASSERT(mctl_present || !secure); 12078 12079 ASSERT((ipha == NULL && ip6h != NULL) || 12080 (ip6h == NULL && ipha != NULL)); 12081 12082 /* 12083 * We don't necessarily have an ipsec_in_act action to verify 12084 * policy because of assymetrical policy where we have only 12085 * outbound policy and no inbound policy (possible with global 12086 * policy). 12087 */ 12088 if (!secure) { 12089 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12090 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12091 return (B_TRUE); 12092 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12093 "tcp_check_policy", ipha, ip6h, secure); 12094 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12095 &ipdrops_tcp_clear, &tcp_dropper); 12096 return (B_FALSE); 12097 } 12098 12099 /* 12100 * We have a secure packet. 12101 */ 12102 if (act == NULL) { 12103 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12104 "tcp_check_policy", ipha, ip6h, secure); 12105 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12106 &ipdrops_tcp_secure, &tcp_dropper); 12107 return (B_FALSE); 12108 } 12109 12110 /* 12111 * XXX This whole routine is currently incorrect. ipl should 12112 * be set to the latch pointer, but is currently not set, so 12113 * we initialize it to NULL to avoid picking up random garbage. 12114 */ 12115 if (ipl == NULL) 12116 return (B_TRUE); 12117 12118 data_mp = first_mp->b_cont; 12119 12120 ii = (ipsec_in_t *)first_mp->b_rptr; 12121 12122 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12123 &counter, tcp->tcp_connp)) { 12124 BUMP_MIB(&ip_mib, ipsecInSucceeded); 12125 return (B_TRUE); 12126 } 12127 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12128 "tcp inbound policy mismatch: %s, packet dropped\n", 12129 reason); 12130 BUMP_MIB(&ip_mib, ipsecInFailed); 12131 12132 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 12133 return (B_FALSE); 12134 } 12135 12136 /* 12137 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12138 * retransmission after a timeout. 12139 * 12140 * To limit the number of duplicate segments, we limit the number of segment 12141 * to be sent in one time to tcp_snd_burst, the burst variable. 12142 */ 12143 static void 12144 tcp_ss_rexmit(tcp_t *tcp) 12145 { 12146 uint32_t snxt; 12147 uint32_t smax; 12148 int32_t win; 12149 int32_t mss; 12150 int32_t off; 12151 int32_t burst = tcp->tcp_snd_burst; 12152 mblk_t *snxt_mp; 12153 12154 /* 12155 * Note that tcp_rexmit can be set even though TCP has retransmitted 12156 * all unack'ed segments. 12157 */ 12158 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12159 smax = tcp->tcp_rexmit_max; 12160 snxt = tcp->tcp_rexmit_nxt; 12161 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12162 snxt = tcp->tcp_suna; 12163 } 12164 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12165 win -= snxt - tcp->tcp_suna; 12166 mss = tcp->tcp_mss; 12167 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12168 12169 while (SEQ_LT(snxt, smax) && (win > 0) && 12170 (burst > 0) && (snxt_mp != NULL)) { 12171 mblk_t *xmit_mp; 12172 mblk_t *old_snxt_mp = snxt_mp; 12173 uint32_t cnt = mss; 12174 12175 if (win < cnt) { 12176 cnt = win; 12177 } 12178 if (SEQ_GT(snxt + cnt, smax)) { 12179 cnt = smax - snxt; 12180 } 12181 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12182 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12183 if (xmit_mp == NULL) 12184 return; 12185 12186 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12187 12188 snxt += cnt; 12189 win -= cnt; 12190 /* 12191 * Update the send timestamp to avoid false 12192 * retransmission. 12193 */ 12194 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12195 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12196 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 12197 12198 tcp->tcp_rexmit_nxt = snxt; 12199 burst--; 12200 } 12201 /* 12202 * If we have transmitted all we have at the time 12203 * we started the retranmission, we can leave 12204 * the rest of the job to tcp_wput_data(). But we 12205 * need to check the send window first. If the 12206 * win is not 0, go on with tcp_wput_data(). 12207 */ 12208 if (SEQ_LT(snxt, smax) || win == 0) { 12209 return; 12210 } 12211 } 12212 /* Only call tcp_wput_data() if there is data to be sent. */ 12213 if (tcp->tcp_unsent) { 12214 tcp_wput_data(tcp, NULL, B_FALSE); 12215 } 12216 } 12217 12218 /* 12219 * Process all TCP option in SYN segment. Note that this function should 12220 * be called after tcp_adapt_ire() is called so that the necessary info 12221 * from IRE is already set in the tcp structure. 12222 * 12223 * This function sets up the correct tcp_mss value according to the 12224 * MSS option value and our header size. It also sets up the window scale 12225 * and timestamp values, and initialize SACK info blocks. But it does not 12226 * change receive window size after setting the tcp_mss value. The caller 12227 * should do the appropriate change. 12228 */ 12229 void 12230 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12231 { 12232 int options; 12233 tcp_opt_t tcpopt; 12234 uint32_t mss_max; 12235 char *tmp_tcph; 12236 12237 tcpopt.tcp = NULL; 12238 options = tcp_parse_options(tcph, &tcpopt); 12239 12240 /* 12241 * Process MSS option. Note that MSS option value does not account 12242 * for IP or TCP options. This means that it is equal to MTU - minimum 12243 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12244 * IPv6. 12245 */ 12246 if (!(options & TCP_OPT_MSS_PRESENT)) { 12247 if (tcp->tcp_ipversion == IPV4_VERSION) 12248 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 12249 else 12250 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12251 } else { 12252 if (tcp->tcp_ipversion == IPV4_VERSION) 12253 mss_max = tcp_mss_max_ipv4; 12254 else 12255 mss_max = tcp_mss_max_ipv6; 12256 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12257 tcpopt.tcp_opt_mss = tcp_mss_min; 12258 else if (tcpopt.tcp_opt_mss > mss_max) 12259 tcpopt.tcp_opt_mss = mss_max; 12260 } 12261 12262 /* Process Window Scale option. */ 12263 if (options & TCP_OPT_WSCALE_PRESENT) { 12264 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12265 tcp->tcp_snd_ws_ok = B_TRUE; 12266 } else { 12267 tcp->tcp_snd_ws = B_FALSE; 12268 tcp->tcp_snd_ws_ok = B_FALSE; 12269 tcp->tcp_rcv_ws = B_FALSE; 12270 } 12271 12272 /* Process Timestamp option. */ 12273 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12274 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12275 tmp_tcph = (char *)tcp->tcp_tcph; 12276 12277 tcp->tcp_snd_ts_ok = B_TRUE; 12278 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12279 tcp->tcp_last_rcv_lbolt = lbolt64; 12280 ASSERT(OK_32PTR(tmp_tcph)); 12281 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12282 12283 /* Fill in our template header with basic timestamp option. */ 12284 tmp_tcph += tcp->tcp_tcp_hdr_len; 12285 tmp_tcph[0] = TCPOPT_NOP; 12286 tmp_tcph[1] = TCPOPT_NOP; 12287 tmp_tcph[2] = TCPOPT_TSTAMP; 12288 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12289 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12290 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12291 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12292 } else { 12293 tcp->tcp_snd_ts_ok = B_FALSE; 12294 } 12295 12296 /* 12297 * Process SACK options. If SACK is enabled for this connection, 12298 * then allocate the SACK info structure. Note the following ways 12299 * when tcp_snd_sack_ok is set to true. 12300 * 12301 * For active connection: in tcp_adapt_ire() called in 12302 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12303 * is checked. 12304 * 12305 * For passive connection: in tcp_adapt_ire() called in 12306 * tcp_accept_comm(). 12307 * 12308 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12309 * That check makes sure that if we did not send a SACK OK option, 12310 * we will not enable SACK for this connection even though the other 12311 * side sends us SACK OK option. For active connection, the SACK 12312 * info structure has already been allocated. So we need to free 12313 * it if SACK is disabled. 12314 */ 12315 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12316 (tcp->tcp_snd_sack_ok || 12317 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12318 /* This should be true only in the passive case. */ 12319 if (tcp->tcp_sack_info == NULL) { 12320 ASSERT(TCP_IS_DETACHED(tcp)); 12321 tcp->tcp_sack_info = 12322 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12323 } 12324 if (tcp->tcp_sack_info == NULL) { 12325 tcp->tcp_snd_sack_ok = B_FALSE; 12326 } else { 12327 tcp->tcp_snd_sack_ok = B_TRUE; 12328 if (tcp->tcp_snd_ts_ok) { 12329 tcp->tcp_max_sack_blk = 3; 12330 } else { 12331 tcp->tcp_max_sack_blk = 4; 12332 } 12333 } 12334 } else { 12335 /* 12336 * Resetting tcp_snd_sack_ok to B_FALSE so that 12337 * no SACK info will be used for this 12338 * connection. This assumes that SACK usage 12339 * permission is negotiated. This may need 12340 * to be changed once this is clarified. 12341 */ 12342 if (tcp->tcp_sack_info != NULL) { 12343 ASSERT(tcp->tcp_notsack_list == NULL); 12344 kmem_cache_free(tcp_sack_info_cache, 12345 tcp->tcp_sack_info); 12346 tcp->tcp_sack_info = NULL; 12347 } 12348 tcp->tcp_snd_sack_ok = B_FALSE; 12349 } 12350 12351 /* 12352 * Now we know the exact TCP/IP header length, subtract 12353 * that from tcp_mss to get our side's MSS. 12354 */ 12355 tcp->tcp_mss -= tcp->tcp_hdr_len; 12356 /* 12357 * Here we assume that the other side's header size will be equal to 12358 * our header size. We calculate the real MSS accordingly. Need to 12359 * take into additional stuffs IPsec puts in. 12360 * 12361 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12362 */ 12363 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12364 ((tcp->tcp_ipversion == IPV4_VERSION ? 12365 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12366 12367 /* 12368 * Set MSS to the smaller one of both ends of the connection. 12369 * We should not have called tcp_mss_set() before, but our 12370 * side of the MSS should have been set to a proper value 12371 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12372 * STREAM head parameters properly. 12373 * 12374 * If we have a larger-than-16-bit window but the other side 12375 * didn't want to do window scale, tcp_rwnd_set() will take 12376 * care of that. 12377 */ 12378 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12379 } 12380 12381 /* 12382 * Sends the T_CONN_IND to the listener. The caller calls this 12383 * functions via squeue to get inside the listener's perimeter 12384 * once the 3 way hand shake is done a T_CONN_IND needs to be 12385 * sent. As an optimization, the caller can call this directly 12386 * if listener's perimeter is same as eager's. 12387 */ 12388 /* ARGSUSED */ 12389 void 12390 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12391 { 12392 conn_t *lconnp = (conn_t *)arg; 12393 tcp_t *listener = lconnp->conn_tcp; 12394 tcp_t *tcp; 12395 struct T_conn_ind *conn_ind; 12396 ipaddr_t *addr_cache; 12397 boolean_t need_send_conn_ind = B_FALSE; 12398 12399 /* retrieve the eager */ 12400 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12401 ASSERT(conn_ind->OPT_offset != 0 && 12402 conn_ind->OPT_length == sizeof (intptr_t)); 12403 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12404 conn_ind->OPT_length); 12405 12406 /* 12407 * TLI/XTI applications will get confused by 12408 * sending eager as an option since it violates 12409 * the option semantics. So remove the eager as 12410 * option since TLI/XTI app doesn't need it anyway. 12411 */ 12412 if (!TCP_IS_SOCKET(listener)) { 12413 conn_ind->OPT_length = 0; 12414 conn_ind->OPT_offset = 0; 12415 } 12416 if (listener->tcp_state == TCPS_CLOSED || 12417 TCP_IS_DETACHED(listener)) { 12418 /* 12419 * If listener has closed, it would have caused a 12420 * a cleanup/blowoff to happen for the eager. We 12421 * just need to return. 12422 */ 12423 freemsg(mp); 12424 return; 12425 } 12426 12427 12428 /* 12429 * if the conn_req_q is full defer passing up the 12430 * T_CONN_IND until space is availabe after t_accept() 12431 * processing 12432 */ 12433 mutex_enter(&listener->tcp_eager_lock); 12434 12435 /* 12436 * Take the eager out, if it is in the list of droppable eagers 12437 * as we are here because the 3W handshake is over. 12438 */ 12439 MAKE_UNDROPPABLE(tcp); 12440 12441 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12442 tcp_t *tail; 12443 12444 /* 12445 * The eager already has an extra ref put in tcp_rput_data 12446 * so that it stays till accept comes back even though it 12447 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12448 */ 12449 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12450 listener->tcp_conn_req_cnt_q0--; 12451 listener->tcp_conn_req_cnt_q++; 12452 12453 /* Move from SYN_RCVD to ESTABLISHED list */ 12454 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12455 tcp->tcp_eager_prev_q0; 12456 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12457 tcp->tcp_eager_next_q0; 12458 tcp->tcp_eager_prev_q0 = NULL; 12459 tcp->tcp_eager_next_q0 = NULL; 12460 12461 /* 12462 * Insert at end of the queue because sockfs 12463 * sends down T_CONN_RES in chronological 12464 * order. Leaving the older conn indications 12465 * at front of the queue helps reducing search 12466 * time. 12467 */ 12468 tail = listener->tcp_eager_last_q; 12469 if (tail != NULL) 12470 tail->tcp_eager_next_q = tcp; 12471 else 12472 listener->tcp_eager_next_q = tcp; 12473 listener->tcp_eager_last_q = tcp; 12474 tcp->tcp_eager_next_q = NULL; 12475 /* 12476 * Delay sending up the T_conn_ind until we are 12477 * done with the eager. Once we have have sent up 12478 * the T_conn_ind, the accept can potentially complete 12479 * any time and release the refhold we have on the eager. 12480 */ 12481 need_send_conn_ind = B_TRUE; 12482 } else { 12483 /* 12484 * Defer connection on q0 and set deferred 12485 * connection bit true 12486 */ 12487 tcp->tcp_conn_def_q0 = B_TRUE; 12488 12489 /* take tcp out of q0 ... */ 12490 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12491 tcp->tcp_eager_next_q0; 12492 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12493 tcp->tcp_eager_prev_q0; 12494 12495 /* ... and place it at the end of q0 */ 12496 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12497 tcp->tcp_eager_next_q0 = listener; 12498 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12499 listener->tcp_eager_prev_q0 = tcp; 12500 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12501 } 12502 12503 /* we have timed out before */ 12504 if (tcp->tcp_syn_rcvd_timeout != 0) { 12505 tcp->tcp_syn_rcvd_timeout = 0; 12506 listener->tcp_syn_rcvd_timeout--; 12507 if (listener->tcp_syn_defense && 12508 listener->tcp_syn_rcvd_timeout <= 12509 (tcp_conn_req_max_q0 >> 5) && 12510 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12511 listener->tcp_last_rcv_lbolt)) { 12512 /* 12513 * Turn off the defense mode if we 12514 * believe the SYN attack is over. 12515 */ 12516 listener->tcp_syn_defense = B_FALSE; 12517 if (listener->tcp_ip_addr_cache) { 12518 kmem_free((void *)listener->tcp_ip_addr_cache, 12519 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12520 listener->tcp_ip_addr_cache = NULL; 12521 } 12522 } 12523 } 12524 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12525 if (addr_cache != NULL) { 12526 /* 12527 * We have finished a 3-way handshake with this 12528 * remote host. This proves the IP addr is good. 12529 * Cache it! 12530 */ 12531 addr_cache[IP_ADDR_CACHE_HASH( 12532 tcp->tcp_remote)] = tcp->tcp_remote; 12533 } 12534 mutex_exit(&listener->tcp_eager_lock); 12535 if (need_send_conn_ind) 12536 putnext(listener->tcp_rq, mp); 12537 } 12538 12539 mblk_t * 12540 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12541 uint_t *ifindexp, ip6_pkt_t *ippp) 12542 { 12543 in_pktinfo_t *pinfo; 12544 ip6_t *ip6h; 12545 uchar_t *rptr; 12546 mblk_t *first_mp = mp; 12547 boolean_t mctl_present = B_FALSE; 12548 uint_t ifindex = 0; 12549 ip6_pkt_t ipp; 12550 uint_t ipvers; 12551 uint_t ip_hdr_len; 12552 12553 rptr = mp->b_rptr; 12554 ASSERT(OK_32PTR(rptr)); 12555 ASSERT(tcp != NULL); 12556 ipp.ipp_fields = 0; 12557 12558 switch DB_TYPE(mp) { 12559 case M_CTL: 12560 mp = mp->b_cont; 12561 if (mp == NULL) { 12562 freemsg(first_mp); 12563 return (NULL); 12564 } 12565 if (DB_TYPE(mp) != M_DATA) { 12566 freemsg(first_mp); 12567 return (NULL); 12568 } 12569 mctl_present = B_TRUE; 12570 break; 12571 case M_DATA: 12572 break; 12573 default: 12574 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12575 freemsg(mp); 12576 return (NULL); 12577 } 12578 ipvers = IPH_HDR_VERSION(rptr); 12579 if (ipvers == IPV4_VERSION) { 12580 if (tcp == NULL) { 12581 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12582 goto done; 12583 } 12584 12585 ipp.ipp_fields |= IPPF_HOPLIMIT; 12586 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12587 12588 /* 12589 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12590 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12591 */ 12592 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12593 mctl_present) { 12594 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12595 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12596 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12597 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12598 ipp.ipp_fields |= IPPF_IFINDEX; 12599 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12600 ifindex = pinfo->in_pkt_ifindex; 12601 } 12602 freeb(first_mp); 12603 mctl_present = B_FALSE; 12604 } 12605 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12606 } else { 12607 ip6h = (ip6_t *)rptr; 12608 12609 ASSERT(ipvers == IPV6_VERSION); 12610 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12611 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12612 ipp.ipp_hoplimit = ip6h->ip6_hops; 12613 12614 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12615 uint8_t nexthdrp; 12616 12617 /* Look for ifindex information */ 12618 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12619 ip6i_t *ip6i = (ip6i_t *)ip6h; 12620 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12621 BUMP_MIB(&ip_mib, tcpInErrs); 12622 freemsg(first_mp); 12623 return (NULL); 12624 } 12625 12626 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12627 ASSERT(ip6i->ip6i_ifindex != 0); 12628 ipp.ipp_fields |= IPPF_IFINDEX; 12629 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12630 ifindex = ip6i->ip6i_ifindex; 12631 } 12632 rptr = (uchar_t *)&ip6i[1]; 12633 mp->b_rptr = rptr; 12634 if (rptr == mp->b_wptr) { 12635 mblk_t *mp1; 12636 mp1 = mp->b_cont; 12637 freeb(mp); 12638 mp = mp1; 12639 rptr = mp->b_rptr; 12640 } 12641 if (MBLKL(mp) < IPV6_HDR_LEN + 12642 sizeof (tcph_t)) { 12643 BUMP_MIB(&ip_mib, tcpInErrs); 12644 freemsg(first_mp); 12645 return (NULL); 12646 } 12647 ip6h = (ip6_t *)rptr; 12648 } 12649 12650 /* 12651 * Find any potentially interesting extension headers 12652 * as well as the length of the IPv6 + extension 12653 * headers. 12654 */ 12655 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12656 /* Verify if this is a TCP packet */ 12657 if (nexthdrp != IPPROTO_TCP) { 12658 BUMP_MIB(&ip_mib, tcpInErrs); 12659 freemsg(first_mp); 12660 return (NULL); 12661 } 12662 } else { 12663 ip_hdr_len = IPV6_HDR_LEN; 12664 } 12665 } 12666 12667 done: 12668 if (ipversp != NULL) 12669 *ipversp = ipvers; 12670 if (ip_hdr_lenp != NULL) 12671 *ip_hdr_lenp = ip_hdr_len; 12672 if (ippp != NULL) 12673 *ippp = ipp; 12674 if (ifindexp != NULL) 12675 *ifindexp = ifindex; 12676 if (mctl_present) { 12677 freeb(first_mp); 12678 } 12679 return (mp); 12680 } 12681 12682 /* 12683 * Handle M_DATA messages from IP. Its called directly from IP via 12684 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12685 * in this path. 12686 * 12687 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12688 * v4 and v6), we are called through tcp_input() and a M_CTL can 12689 * be present for options but tcp_find_pktinfo() deals with it. We 12690 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12691 * 12692 * The first argument is always the connp/tcp to which the mp belongs. 12693 * There are no exceptions to this rule. The caller has already put 12694 * a reference on this connp/tcp and once tcp_rput_data() returns, 12695 * the squeue will do the refrele. 12696 * 12697 * The TH_SYN for the listener directly go to tcp_conn_request via 12698 * squeue. 12699 * 12700 * sqp: NULL = recursive, sqp != NULL means called from squeue 12701 */ 12702 void 12703 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12704 { 12705 int32_t bytes_acked; 12706 int32_t gap; 12707 mblk_t *mp1; 12708 uint_t flags; 12709 uint32_t new_swnd = 0; 12710 uchar_t *iphdr; 12711 uchar_t *rptr; 12712 int32_t rgap; 12713 uint32_t seg_ack; 12714 int seg_len; 12715 uint_t ip_hdr_len; 12716 uint32_t seg_seq; 12717 tcph_t *tcph; 12718 int urp; 12719 tcp_opt_t tcpopt; 12720 uint_t ipvers; 12721 ip6_pkt_t ipp; 12722 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12723 uint32_t cwnd; 12724 uint32_t add; 12725 int npkt; 12726 int mss; 12727 conn_t *connp = (conn_t *)arg; 12728 squeue_t *sqp = (squeue_t *)arg2; 12729 tcp_t *tcp = connp->conn_tcp; 12730 12731 /* 12732 * RST from fused tcp loopback peer should trigger an unfuse. 12733 */ 12734 if (tcp->tcp_fused) { 12735 TCP_STAT(tcp_fusion_aborted); 12736 tcp_unfuse(tcp); 12737 } 12738 12739 iphdr = mp->b_rptr; 12740 rptr = mp->b_rptr; 12741 ASSERT(OK_32PTR(rptr)); 12742 12743 /* 12744 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12745 * processing here. For rest call tcp_find_pktinfo to fill up the 12746 * necessary information. 12747 */ 12748 if (IPCL_IS_TCP4(connp)) { 12749 ipvers = IPV4_VERSION; 12750 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12751 } else { 12752 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12753 NULL, &ipp); 12754 if (mp == NULL) { 12755 TCP_STAT(tcp_rput_v6_error); 12756 return; 12757 } 12758 iphdr = mp->b_rptr; 12759 rptr = mp->b_rptr; 12760 } 12761 ASSERT(DB_TYPE(mp) == M_DATA); 12762 12763 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12764 seg_seq = ABE32_TO_U32(tcph->th_seq); 12765 seg_ack = ABE32_TO_U32(tcph->th_ack); 12766 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12767 seg_len = (int)(mp->b_wptr - rptr) - 12768 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12769 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12770 do { 12771 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12772 (uintptr_t)INT_MAX); 12773 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12774 } while ((mp1 = mp1->b_cont) != NULL && 12775 mp1->b_datap->db_type == M_DATA); 12776 } 12777 12778 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12779 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12780 seg_len, tcph); 12781 return; 12782 } 12783 12784 if (sqp != NULL) { 12785 /* 12786 * This is the correct place to update tcp_last_recv_time. Note 12787 * that it is also updated for tcp structure that belongs to 12788 * global and listener queues which do not really need updating. 12789 * But that should not cause any harm. And it is updated for 12790 * all kinds of incoming segments, not only for data segments. 12791 */ 12792 tcp->tcp_last_recv_time = lbolt; 12793 } 12794 12795 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12796 12797 BUMP_LOCAL(tcp->tcp_ibsegs); 12798 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12799 12800 if ((flags & TH_URG) && sqp != NULL) { 12801 /* 12802 * TCP can't handle urgent pointers that arrive before 12803 * the connection has been accept()ed since it can't 12804 * buffer OOB data. Discard segment if this happens. 12805 * 12806 * Nor can it reassemble urgent pointers, so discard 12807 * if it's not the next segment expected. 12808 * 12809 * Otherwise, collapse chain into one mblk (discard if 12810 * that fails). This makes sure the headers, retransmitted 12811 * data, and new data all are in the same mblk. 12812 */ 12813 ASSERT(mp != NULL); 12814 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12815 freemsg(mp); 12816 return; 12817 } 12818 /* Update pointers into message */ 12819 iphdr = rptr = mp->b_rptr; 12820 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12821 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12822 /* 12823 * Since we can't handle any data with this urgent 12824 * pointer that is out of sequence, we expunge 12825 * the data. This allows us to still register 12826 * the urgent mark and generate the M_PCSIG, 12827 * which we can do. 12828 */ 12829 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12830 seg_len = 0; 12831 } 12832 } 12833 12834 switch (tcp->tcp_state) { 12835 case TCPS_SYN_SENT: 12836 if (flags & TH_ACK) { 12837 /* 12838 * Note that our stack cannot send data before a 12839 * connection is established, therefore the 12840 * following check is valid. Otherwise, it has 12841 * to be changed. 12842 */ 12843 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12844 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12845 freemsg(mp); 12846 if (flags & TH_RST) 12847 return; 12848 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12849 tcp, seg_ack, 0, TH_RST); 12850 return; 12851 } 12852 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12853 } 12854 if (flags & TH_RST) { 12855 freemsg(mp); 12856 if (flags & TH_ACK) 12857 (void) tcp_clean_death(tcp, 12858 ECONNREFUSED, 13); 12859 return; 12860 } 12861 if (!(flags & TH_SYN)) { 12862 freemsg(mp); 12863 return; 12864 } 12865 12866 /* Process all TCP options. */ 12867 tcp_process_options(tcp, tcph); 12868 /* 12869 * The following changes our rwnd to be a multiple of the 12870 * MIN(peer MSS, our MSS) for performance reason. 12871 */ 12872 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12873 tcp->tcp_mss)); 12874 12875 /* Is the other end ECN capable? */ 12876 if (tcp->tcp_ecn_ok) { 12877 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12878 tcp->tcp_ecn_ok = B_FALSE; 12879 } 12880 } 12881 /* 12882 * Clear ECN flags because it may interfere with later 12883 * processing. 12884 */ 12885 flags &= ~(TH_ECE|TH_CWR); 12886 12887 tcp->tcp_irs = seg_seq; 12888 tcp->tcp_rack = seg_seq; 12889 tcp->tcp_rnxt = seg_seq + 1; 12890 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12891 if (!TCP_IS_DETACHED(tcp)) { 12892 /* Allocate room for SACK options if needed. */ 12893 if (tcp->tcp_snd_sack_ok) { 12894 (void) mi_set_sth_wroff(tcp->tcp_rq, 12895 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12896 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12897 } else { 12898 (void) mi_set_sth_wroff(tcp->tcp_rq, 12899 tcp->tcp_hdr_len + 12900 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12901 } 12902 } 12903 if (flags & TH_ACK) { 12904 /* 12905 * If we can't get the confirmation upstream, pretend 12906 * we didn't even see this one. 12907 * 12908 * XXX: how can we pretend we didn't see it if we 12909 * have updated rnxt et. al. 12910 * 12911 * For loopback we defer sending up the T_CONN_CON 12912 * until after some checks below. 12913 */ 12914 mp1 = NULL; 12915 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12916 tcp->tcp_loopback ? &mp1 : NULL)) { 12917 freemsg(mp); 12918 return; 12919 } 12920 /* SYN was acked - making progress */ 12921 if (tcp->tcp_ipversion == IPV6_VERSION) 12922 tcp->tcp_ip_forward_progress = B_TRUE; 12923 12924 /* One for the SYN */ 12925 tcp->tcp_suna = tcp->tcp_iss + 1; 12926 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12927 tcp->tcp_state = TCPS_ESTABLISHED; 12928 12929 /* 12930 * If SYN was retransmitted, need to reset all 12931 * retransmission info. This is because this 12932 * segment will be treated as a dup ACK. 12933 */ 12934 if (tcp->tcp_rexmit) { 12935 tcp->tcp_rexmit = B_FALSE; 12936 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12937 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12938 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12939 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12940 tcp->tcp_ms_we_have_waited = 0; 12941 12942 /* 12943 * Set tcp_cwnd back to 1 MSS, per 12944 * recommendation from 12945 * draft-floyd-incr-init-win-01.txt, 12946 * Increasing TCP's Initial Window. 12947 */ 12948 tcp->tcp_cwnd = tcp->tcp_mss; 12949 } 12950 12951 tcp->tcp_swl1 = seg_seq; 12952 tcp->tcp_swl2 = seg_ack; 12953 12954 new_swnd = BE16_TO_U16(tcph->th_win); 12955 tcp->tcp_swnd = new_swnd; 12956 if (new_swnd > tcp->tcp_max_swnd) 12957 tcp->tcp_max_swnd = new_swnd; 12958 12959 /* 12960 * Always send the three-way handshake ack immediately 12961 * in order to make the connection complete as soon as 12962 * possible on the accepting host. 12963 */ 12964 flags |= TH_ACK_NEEDED; 12965 12966 /* 12967 * Special case for loopback. At this point we have 12968 * received SYN-ACK from the remote endpoint. In 12969 * order to ensure that both endpoints reach the 12970 * fused state prior to any data exchange, the final 12971 * ACK needs to be sent before we indicate T_CONN_CON 12972 * to the module upstream. 12973 */ 12974 if (tcp->tcp_loopback) { 12975 mblk_t *ack_mp; 12976 12977 ASSERT(!tcp->tcp_unfusable); 12978 ASSERT(mp1 != NULL); 12979 /* 12980 * For loopback, we always get a pure SYN-ACK 12981 * and only need to send back the final ACK 12982 * with no data (this is because the other 12983 * tcp is ours and we don't do T/TCP). This 12984 * final ACK triggers the passive side to 12985 * perform fusion in ESTABLISHED state. 12986 */ 12987 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12988 if (tcp->tcp_ack_tid != 0) { 12989 (void) TCP_TIMER_CANCEL(tcp, 12990 tcp->tcp_ack_tid); 12991 tcp->tcp_ack_tid = 0; 12992 } 12993 TCP_RECORD_TRACE(tcp, ack_mp, 12994 TCP_TRACE_SEND_PKT); 12995 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12996 BUMP_LOCAL(tcp->tcp_obsegs); 12997 BUMP_MIB(&tcp_mib, tcpOutAck); 12998 12999 /* Send up T_CONN_CON */ 13000 putnext(tcp->tcp_rq, mp1); 13001 13002 freemsg(mp); 13003 return; 13004 } 13005 /* 13006 * Forget fusion; we need to handle more 13007 * complex cases below. Send the deferred 13008 * T_CONN_CON message upstream and proceed 13009 * as usual. Mark this tcp as not capable 13010 * of fusion. 13011 */ 13012 TCP_STAT(tcp_fusion_unfusable); 13013 tcp->tcp_unfusable = B_TRUE; 13014 putnext(tcp->tcp_rq, mp1); 13015 } 13016 13017 /* 13018 * Check to see if there is data to be sent. If 13019 * yes, set the transmit flag. Then check to see 13020 * if received data processing needs to be done. 13021 * If not, go straight to xmit_check. This short 13022 * cut is OK as we don't support T/TCP. 13023 */ 13024 if (tcp->tcp_unsent) 13025 flags |= TH_XMIT_NEEDED; 13026 13027 if (seg_len == 0 && !(flags & TH_URG)) { 13028 freemsg(mp); 13029 goto xmit_check; 13030 } 13031 13032 flags &= ~TH_SYN; 13033 seg_seq++; 13034 break; 13035 } 13036 tcp->tcp_state = TCPS_SYN_RCVD; 13037 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13038 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13039 if (mp1) { 13040 DB_CPID(mp1) = tcp->tcp_cpid; 13041 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13042 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13043 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13044 } 13045 freemsg(mp); 13046 return; 13047 case TCPS_SYN_RCVD: 13048 if (flags & TH_ACK) { 13049 /* 13050 * In this state, a SYN|ACK packet is either bogus 13051 * because the other side must be ACKing our SYN which 13052 * indicates it has seen the ACK for their SYN and 13053 * shouldn't retransmit it or we're crossing SYNs 13054 * on active open. 13055 */ 13056 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13057 freemsg(mp); 13058 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13059 tcp, seg_ack, 0, TH_RST); 13060 return; 13061 } 13062 /* 13063 * NOTE: RFC 793 pg. 72 says this should be 13064 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13065 * but that would mean we have an ack that ignored 13066 * our SYN. 13067 */ 13068 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13069 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13070 freemsg(mp); 13071 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13072 tcp, seg_ack, 0, TH_RST); 13073 return; 13074 } 13075 } 13076 break; 13077 case TCPS_LISTEN: 13078 /* 13079 * Only a TLI listener can come through this path when a 13080 * acceptor is going back to be a listener and a packet 13081 * for the acceptor hits the classifier. For a socket 13082 * listener, this can never happen because a listener 13083 * can never accept connection on itself and hence a 13084 * socket acceptor can not go back to being a listener. 13085 */ 13086 ASSERT(!TCP_IS_SOCKET(tcp)); 13087 /*FALLTHRU*/ 13088 case TCPS_CLOSED: 13089 case TCPS_BOUND: { 13090 conn_t *new_connp; 13091 13092 new_connp = ipcl_classify(mp, connp->conn_zoneid); 13093 if (new_connp != NULL) { 13094 tcp_reinput(new_connp, mp, connp->conn_sqp); 13095 return; 13096 } 13097 /* We failed to classify. For now just drop the packet */ 13098 freemsg(mp); 13099 return; 13100 } 13101 case TCPS_IDLE: 13102 /* 13103 * Handle the case where the tcp_clean_death() has happened 13104 * on a connection (application hasn't closed yet) but a packet 13105 * was already queued on squeue before tcp_clean_death() 13106 * was processed. Calling tcp_clean_death() twice on same 13107 * connection can result in weird behaviour. 13108 */ 13109 freemsg(mp); 13110 return; 13111 default: 13112 break; 13113 } 13114 13115 /* 13116 * Already on the correct queue/perimeter. 13117 * If this is a detached connection and not an eager 13118 * connection hanging off a listener then new data 13119 * (past the FIN) will cause a reset. 13120 * We do a special check here where it 13121 * is out of the main line, rather than check 13122 * if we are detached every time we see new 13123 * data down below. 13124 */ 13125 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13126 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13127 BUMP_MIB(&tcp_mib, tcpInClosed); 13128 TCP_RECORD_TRACE(tcp, 13129 mp, TCP_TRACE_RECV_PKT); 13130 13131 freemsg(mp); 13132 /* 13133 * This could be an SSL closure alert. We're detached so just 13134 * acknowledge it this last time. 13135 */ 13136 if (tcp->tcp_kssl_ctx != NULL) { 13137 kssl_release_ctx(tcp->tcp_kssl_ctx); 13138 tcp->tcp_kssl_ctx = NULL; 13139 13140 tcp->tcp_rnxt += seg_len; 13141 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13142 flags |= TH_ACK_NEEDED; 13143 goto ack_check; 13144 } 13145 13146 tcp_xmit_ctl("new data when detached", tcp, 13147 tcp->tcp_snxt, 0, TH_RST); 13148 (void) tcp_clean_death(tcp, EPROTO, 12); 13149 return; 13150 } 13151 13152 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13153 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13154 new_swnd = BE16_TO_U16(tcph->th_win) << 13155 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13156 mss = tcp->tcp_mss; 13157 13158 if (tcp->tcp_snd_ts_ok) { 13159 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13160 /* 13161 * This segment is not acceptable. 13162 * Drop it and send back an ACK. 13163 */ 13164 freemsg(mp); 13165 flags |= TH_ACK_NEEDED; 13166 goto ack_check; 13167 } 13168 } else if (tcp->tcp_snd_sack_ok) { 13169 ASSERT(tcp->tcp_sack_info != NULL); 13170 tcpopt.tcp = tcp; 13171 /* 13172 * SACK info in already updated in tcp_parse_options. Ignore 13173 * all other TCP options... 13174 */ 13175 (void) tcp_parse_options(tcph, &tcpopt); 13176 } 13177 try_again:; 13178 gap = seg_seq - tcp->tcp_rnxt; 13179 rgap = tcp->tcp_rwnd - (gap + seg_len); 13180 /* 13181 * gap is the amount of sequence space between what we expect to see 13182 * and what we got for seg_seq. A positive value for gap means 13183 * something got lost. A negative value means we got some old stuff. 13184 */ 13185 if (gap < 0) { 13186 /* Old stuff present. Is the SYN in there? */ 13187 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13188 (seg_len != 0)) { 13189 flags &= ~TH_SYN; 13190 seg_seq++; 13191 urp--; 13192 /* Recompute the gaps after noting the SYN. */ 13193 goto try_again; 13194 } 13195 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 13196 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 13197 (seg_len > -gap ? -gap : seg_len)); 13198 /* Remove the old stuff from seg_len. */ 13199 seg_len += gap; 13200 /* 13201 * Anything left? 13202 * Make sure to check for unack'd FIN when rest of data 13203 * has been previously ack'd. 13204 */ 13205 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13206 /* 13207 * Resets are only valid if they lie within our offered 13208 * window. If the RST bit is set, we just ignore this 13209 * segment. 13210 */ 13211 if (flags & TH_RST) { 13212 freemsg(mp); 13213 return; 13214 } 13215 13216 /* 13217 * The arriving of dup data packets indicate that we 13218 * may have postponed an ack for too long, or the other 13219 * side's RTT estimate is out of shape. Start acking 13220 * more often. 13221 */ 13222 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13223 tcp->tcp_rack_cnt >= 1 && 13224 tcp->tcp_rack_abs_max > 2) { 13225 tcp->tcp_rack_abs_max--; 13226 } 13227 tcp->tcp_rack_cur_max = 1; 13228 13229 /* 13230 * This segment is "unacceptable". None of its 13231 * sequence space lies within our advertized window. 13232 * 13233 * Adjust seg_len to the original value for tracing. 13234 */ 13235 seg_len -= gap; 13236 if (tcp->tcp_debug) { 13237 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13238 "tcp_rput: unacceptable, gap %d, rgap %d, " 13239 "flags 0x%x, seg_seq %u, seg_ack %u, " 13240 "seg_len %d, rnxt %u, snxt %u, %s", 13241 gap, rgap, flags, seg_seq, seg_ack, 13242 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13243 tcp_display(tcp, NULL, 13244 DISP_ADDR_AND_PORT)); 13245 } 13246 13247 /* 13248 * Arrange to send an ACK in response to the 13249 * unacceptable segment per RFC 793 page 69. There 13250 * is only one small difference between ours and the 13251 * acceptability test in the RFC - we accept ACK-only 13252 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13253 * will be generated. 13254 * 13255 * Note that we have to ACK an ACK-only packet at least 13256 * for stacks that send 0-length keep-alives with 13257 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13258 * section 4.2.3.6. As long as we don't ever generate 13259 * an unacceptable packet in response to an incoming 13260 * packet that is unacceptable, it should not cause 13261 * "ACK wars". 13262 */ 13263 flags |= TH_ACK_NEEDED; 13264 13265 /* 13266 * Continue processing this segment in order to use the 13267 * ACK information it contains, but skip all other 13268 * sequence-number processing. Processing the ACK 13269 * information is necessary in order to 13270 * re-synchronize connections that may have lost 13271 * synchronization. 13272 * 13273 * We clear seg_len and flag fields related to 13274 * sequence number processing as they are not 13275 * to be trusted for an unacceptable segment. 13276 */ 13277 seg_len = 0; 13278 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13279 goto process_ack; 13280 } 13281 13282 /* Fix seg_seq, and chew the gap off the front. */ 13283 seg_seq = tcp->tcp_rnxt; 13284 urp += gap; 13285 do { 13286 mblk_t *mp2; 13287 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13288 (uintptr_t)UINT_MAX); 13289 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13290 if (gap > 0) { 13291 mp->b_rptr = mp->b_wptr - gap; 13292 break; 13293 } 13294 mp2 = mp; 13295 mp = mp->b_cont; 13296 freeb(mp2); 13297 } while (gap < 0); 13298 /* 13299 * If the urgent data has already been acknowledged, we 13300 * should ignore TH_URG below 13301 */ 13302 if (urp < 0) 13303 flags &= ~TH_URG; 13304 } 13305 /* 13306 * rgap is the amount of stuff received out of window. A negative 13307 * value is the amount out of window. 13308 */ 13309 if (rgap < 0) { 13310 mblk_t *mp2; 13311 13312 if (tcp->tcp_rwnd == 0) { 13313 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13314 } else { 13315 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13316 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13317 } 13318 13319 /* 13320 * seg_len does not include the FIN, so if more than 13321 * just the FIN is out of window, we act like we don't 13322 * see it. (If just the FIN is out of window, rgap 13323 * will be zero and we will go ahead and acknowledge 13324 * the FIN.) 13325 */ 13326 flags &= ~TH_FIN; 13327 13328 /* Fix seg_len and make sure there is something left. */ 13329 seg_len += rgap; 13330 if (seg_len <= 0) { 13331 /* 13332 * Resets are only valid if they lie within our offered 13333 * window. If the RST bit is set, we just ignore this 13334 * segment. 13335 */ 13336 if (flags & TH_RST) { 13337 freemsg(mp); 13338 return; 13339 } 13340 13341 /* Per RFC 793, we need to send back an ACK. */ 13342 flags |= TH_ACK_NEEDED; 13343 13344 /* 13345 * Send SIGURG as soon as possible i.e. even 13346 * if the TH_URG was delivered in a window probe 13347 * packet (which will be unacceptable). 13348 * 13349 * We generate a signal if none has been generated 13350 * for this connection or if this is a new urgent 13351 * byte. Also send a zero-length "unmarked" message 13352 * to inform SIOCATMARK that this is not the mark. 13353 * 13354 * tcp_urp_last_valid is cleared when the T_exdata_ind 13355 * is sent up. This plus the check for old data 13356 * (gap >= 0) handles the wraparound of the sequence 13357 * number space without having to always track the 13358 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13359 * this max in its rcv_up variable). 13360 * 13361 * This prevents duplicate SIGURGS due to a "late" 13362 * zero-window probe when the T_EXDATA_IND has already 13363 * been sent up. 13364 */ 13365 if ((flags & TH_URG) && 13366 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13367 tcp->tcp_urp_last))) { 13368 mp1 = allocb(0, BPRI_MED); 13369 if (mp1 == NULL) { 13370 freemsg(mp); 13371 return; 13372 } 13373 if (!TCP_IS_DETACHED(tcp) && 13374 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13375 SIGURG)) { 13376 /* Try again on the rexmit. */ 13377 freemsg(mp1); 13378 freemsg(mp); 13379 return; 13380 } 13381 /* 13382 * If the next byte would be the mark 13383 * then mark with MARKNEXT else mark 13384 * with NOTMARKNEXT. 13385 */ 13386 if (gap == 0 && urp == 0) 13387 mp1->b_flag |= MSGMARKNEXT; 13388 else 13389 mp1->b_flag |= MSGNOTMARKNEXT; 13390 freemsg(tcp->tcp_urp_mark_mp); 13391 tcp->tcp_urp_mark_mp = mp1; 13392 flags |= TH_SEND_URP_MARK; 13393 tcp->tcp_urp_last_valid = B_TRUE; 13394 tcp->tcp_urp_last = urp + seg_seq; 13395 } 13396 /* 13397 * If this is a zero window probe, continue to 13398 * process the ACK part. But we need to set seg_len 13399 * to 0 to avoid data processing. Otherwise just 13400 * drop the segment and send back an ACK. 13401 */ 13402 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13403 flags &= ~(TH_SYN | TH_URG); 13404 seg_len = 0; 13405 goto process_ack; 13406 } else { 13407 freemsg(mp); 13408 goto ack_check; 13409 } 13410 } 13411 /* Pitch out of window stuff off the end. */ 13412 rgap = seg_len; 13413 mp2 = mp; 13414 do { 13415 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13416 (uintptr_t)INT_MAX); 13417 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13418 if (rgap < 0) { 13419 mp2->b_wptr += rgap; 13420 if ((mp1 = mp2->b_cont) != NULL) { 13421 mp2->b_cont = NULL; 13422 freemsg(mp1); 13423 } 13424 break; 13425 } 13426 } while ((mp2 = mp2->b_cont) != NULL); 13427 } 13428 ok:; 13429 /* 13430 * TCP should check ECN info for segments inside the window only. 13431 * Therefore the check should be done here. 13432 */ 13433 if (tcp->tcp_ecn_ok) { 13434 if (flags & TH_CWR) { 13435 tcp->tcp_ecn_echo_on = B_FALSE; 13436 } 13437 /* 13438 * Note that both ECN_CE and CWR can be set in the 13439 * same segment. In this case, we once again turn 13440 * on ECN_ECHO. 13441 */ 13442 if (tcp->tcp_ipversion == IPV4_VERSION) { 13443 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13444 13445 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13446 tcp->tcp_ecn_echo_on = B_TRUE; 13447 } 13448 } else { 13449 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13450 13451 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13452 htonl(IPH_ECN_CE << 20)) { 13453 tcp->tcp_ecn_echo_on = B_TRUE; 13454 } 13455 } 13456 } 13457 13458 /* 13459 * Check whether we can update tcp_ts_recent. This test is 13460 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13461 * Extensions for High Performance: An Update", Internet Draft. 13462 */ 13463 if (tcp->tcp_snd_ts_ok && 13464 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13465 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13466 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13467 tcp->tcp_last_rcv_lbolt = lbolt64; 13468 } 13469 13470 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13471 /* 13472 * FIN in an out of order segment. We record this in 13473 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13474 * Clear the FIN so that any check on FIN flag will fail. 13475 * Remember that FIN also counts in the sequence number 13476 * space. So we need to ack out of order FIN only segments. 13477 */ 13478 if (flags & TH_FIN) { 13479 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13480 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13481 flags &= ~TH_FIN; 13482 flags |= TH_ACK_NEEDED; 13483 } 13484 if (seg_len > 0) { 13485 /* Fill in the SACK blk list. */ 13486 if (tcp->tcp_snd_sack_ok) { 13487 ASSERT(tcp->tcp_sack_info != NULL); 13488 tcp_sack_insert(tcp->tcp_sack_list, 13489 seg_seq, seg_seq + seg_len, 13490 &(tcp->tcp_num_sack_blk)); 13491 } 13492 13493 /* 13494 * Attempt reassembly and see if we have something 13495 * ready to go. 13496 */ 13497 mp = tcp_reass(tcp, mp, seg_seq); 13498 /* Always ack out of order packets */ 13499 flags |= TH_ACK_NEEDED | TH_PUSH; 13500 if (mp) { 13501 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13502 (uintptr_t)INT_MAX); 13503 seg_len = mp->b_cont ? msgdsize(mp) : 13504 (int)(mp->b_wptr - mp->b_rptr); 13505 seg_seq = tcp->tcp_rnxt; 13506 /* 13507 * A gap is filled and the seq num and len 13508 * of the gap match that of a previously 13509 * received FIN, put the FIN flag back in. 13510 */ 13511 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13512 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13513 flags |= TH_FIN; 13514 tcp->tcp_valid_bits &= 13515 ~TCP_OFO_FIN_VALID; 13516 } 13517 } else { 13518 /* 13519 * Keep going even with NULL mp. 13520 * There may be a useful ACK or something else 13521 * we don't want to miss. 13522 * 13523 * But TCP should not perform fast retransmit 13524 * because of the ack number. TCP uses 13525 * seg_len == 0 to determine if it is a pure 13526 * ACK. And this is not a pure ACK. 13527 */ 13528 seg_len = 0; 13529 ofo_seg = B_TRUE; 13530 } 13531 } 13532 } else if (seg_len > 0) { 13533 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13534 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13535 /* 13536 * If an out of order FIN was received before, and the seq 13537 * num and len of the new segment match that of the FIN, 13538 * put the FIN flag back in. 13539 */ 13540 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13541 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13542 flags |= TH_FIN; 13543 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13544 } 13545 } 13546 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13547 if (flags & TH_RST) { 13548 freemsg(mp); 13549 switch (tcp->tcp_state) { 13550 case TCPS_SYN_RCVD: 13551 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13552 break; 13553 case TCPS_ESTABLISHED: 13554 case TCPS_FIN_WAIT_1: 13555 case TCPS_FIN_WAIT_2: 13556 case TCPS_CLOSE_WAIT: 13557 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13558 break; 13559 case TCPS_CLOSING: 13560 case TCPS_LAST_ACK: 13561 (void) tcp_clean_death(tcp, 0, 16); 13562 break; 13563 default: 13564 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13565 (void) tcp_clean_death(tcp, ENXIO, 17); 13566 break; 13567 } 13568 return; 13569 } 13570 if (flags & TH_SYN) { 13571 /* 13572 * See RFC 793, Page 71 13573 * 13574 * The seq number must be in the window as it should 13575 * be "fixed" above. If it is outside window, it should 13576 * be already rejected. Note that we allow seg_seq to be 13577 * rnxt + rwnd because we want to accept 0 window probe. 13578 */ 13579 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13580 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13581 freemsg(mp); 13582 /* 13583 * If the ACK flag is not set, just use our snxt as the 13584 * seq number of the RST segment. 13585 */ 13586 if (!(flags & TH_ACK)) { 13587 seg_ack = tcp->tcp_snxt; 13588 } 13589 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13590 TH_RST|TH_ACK); 13591 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13592 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13593 return; 13594 } 13595 /* 13596 * urp could be -1 when the urp field in the packet is 0 13597 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13598 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13599 */ 13600 if (flags & TH_URG && urp >= 0) { 13601 if (!tcp->tcp_urp_last_valid || 13602 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13603 /* 13604 * If we haven't generated the signal yet for this 13605 * urgent pointer value, do it now. Also, send up a 13606 * zero-length M_DATA indicating whether or not this is 13607 * the mark. The latter is not needed when a 13608 * T_EXDATA_IND is sent up. However, if there are 13609 * allocation failures this code relies on the sender 13610 * retransmitting and the socket code for determining 13611 * the mark should not block waiting for the peer to 13612 * transmit. Thus, for simplicity we always send up the 13613 * mark indication. 13614 */ 13615 mp1 = allocb(0, BPRI_MED); 13616 if (mp1 == NULL) { 13617 freemsg(mp); 13618 return; 13619 } 13620 if (!TCP_IS_DETACHED(tcp) && 13621 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13622 /* Try again on the rexmit. */ 13623 freemsg(mp1); 13624 freemsg(mp); 13625 return; 13626 } 13627 /* 13628 * Mark with NOTMARKNEXT for now. 13629 * The code below will change this to MARKNEXT 13630 * if we are at the mark. 13631 * 13632 * If there are allocation failures (e.g. in dupmsg 13633 * below) the next time tcp_rput_data sees the urgent 13634 * segment it will send up the MSG*MARKNEXT message. 13635 */ 13636 mp1->b_flag |= MSGNOTMARKNEXT; 13637 freemsg(tcp->tcp_urp_mark_mp); 13638 tcp->tcp_urp_mark_mp = mp1; 13639 flags |= TH_SEND_URP_MARK; 13640 #ifdef DEBUG 13641 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13642 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13643 "last %x, %s", 13644 seg_seq, urp, tcp->tcp_urp_last, 13645 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13646 #endif /* DEBUG */ 13647 tcp->tcp_urp_last_valid = B_TRUE; 13648 tcp->tcp_urp_last = urp + seg_seq; 13649 } else if (tcp->tcp_urp_mark_mp != NULL) { 13650 /* 13651 * An allocation failure prevented the previous 13652 * tcp_rput_data from sending up the allocated 13653 * MSG*MARKNEXT message - send it up this time 13654 * around. 13655 */ 13656 flags |= TH_SEND_URP_MARK; 13657 } 13658 13659 /* 13660 * If the urgent byte is in this segment, make sure that it is 13661 * all by itself. This makes it much easier to deal with the 13662 * possibility of an allocation failure on the T_exdata_ind. 13663 * Note that seg_len is the number of bytes in the segment, and 13664 * urp is the offset into the segment of the urgent byte. 13665 * urp < seg_len means that the urgent byte is in this segment. 13666 */ 13667 if (urp < seg_len) { 13668 if (seg_len != 1) { 13669 uint32_t tmp_rnxt; 13670 /* 13671 * Break it up and feed it back in. 13672 * Re-attach the IP header. 13673 */ 13674 mp->b_rptr = iphdr; 13675 if (urp > 0) { 13676 /* 13677 * There is stuff before the urgent 13678 * byte. 13679 */ 13680 mp1 = dupmsg(mp); 13681 if (!mp1) { 13682 /* 13683 * Trim from urgent byte on. 13684 * The rest will come back. 13685 */ 13686 (void) adjmsg(mp, 13687 urp - seg_len); 13688 tcp_rput_data(connp, 13689 mp, NULL); 13690 return; 13691 } 13692 (void) adjmsg(mp1, urp - seg_len); 13693 /* Feed this piece back in. */ 13694 tmp_rnxt = tcp->tcp_rnxt; 13695 tcp_rput_data(connp, mp1, NULL); 13696 /* 13697 * If the data passed back in was not 13698 * processed (ie: bad ACK) sending 13699 * the remainder back in will cause a 13700 * loop. In this case, drop the 13701 * packet and let the sender try 13702 * sending a good packet. 13703 */ 13704 if (tmp_rnxt == tcp->tcp_rnxt) { 13705 freemsg(mp); 13706 return; 13707 } 13708 } 13709 if (urp != seg_len - 1) { 13710 uint32_t tmp_rnxt; 13711 /* 13712 * There is stuff after the urgent 13713 * byte. 13714 */ 13715 mp1 = dupmsg(mp); 13716 if (!mp1) { 13717 /* 13718 * Trim everything beyond the 13719 * urgent byte. The rest will 13720 * come back. 13721 */ 13722 (void) adjmsg(mp, 13723 urp + 1 - seg_len); 13724 tcp_rput_data(connp, 13725 mp, NULL); 13726 return; 13727 } 13728 (void) adjmsg(mp1, urp + 1 - seg_len); 13729 tmp_rnxt = tcp->tcp_rnxt; 13730 tcp_rput_data(connp, mp1, NULL); 13731 /* 13732 * If the data passed back in was not 13733 * processed (ie: bad ACK) sending 13734 * the remainder back in will cause a 13735 * loop. In this case, drop the 13736 * packet and let the sender try 13737 * sending a good packet. 13738 */ 13739 if (tmp_rnxt == tcp->tcp_rnxt) { 13740 freemsg(mp); 13741 return; 13742 } 13743 } 13744 tcp_rput_data(connp, mp, NULL); 13745 return; 13746 } 13747 /* 13748 * This segment contains only the urgent byte. We 13749 * have to allocate the T_exdata_ind, if we can. 13750 */ 13751 if (!tcp->tcp_urp_mp) { 13752 struct T_exdata_ind *tei; 13753 mp1 = allocb(sizeof (struct T_exdata_ind), 13754 BPRI_MED); 13755 if (!mp1) { 13756 /* 13757 * Sigh... It'll be back. 13758 * Generate any MSG*MARK message now. 13759 */ 13760 freemsg(mp); 13761 seg_len = 0; 13762 if (flags & TH_SEND_URP_MARK) { 13763 13764 13765 ASSERT(tcp->tcp_urp_mark_mp); 13766 tcp->tcp_urp_mark_mp->b_flag &= 13767 ~MSGNOTMARKNEXT; 13768 tcp->tcp_urp_mark_mp->b_flag |= 13769 MSGMARKNEXT; 13770 } 13771 goto ack_check; 13772 } 13773 mp1->b_datap->db_type = M_PROTO; 13774 tei = (struct T_exdata_ind *)mp1->b_rptr; 13775 tei->PRIM_type = T_EXDATA_IND; 13776 tei->MORE_flag = 0; 13777 mp1->b_wptr = (uchar_t *)&tei[1]; 13778 tcp->tcp_urp_mp = mp1; 13779 #ifdef DEBUG 13780 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13781 "tcp_rput: allocated exdata_ind %s", 13782 tcp_display(tcp, NULL, 13783 DISP_PORT_ONLY)); 13784 #endif /* DEBUG */ 13785 /* 13786 * There is no need to send a separate MSG*MARK 13787 * message since the T_EXDATA_IND will be sent 13788 * now. 13789 */ 13790 flags &= ~TH_SEND_URP_MARK; 13791 freemsg(tcp->tcp_urp_mark_mp); 13792 tcp->tcp_urp_mark_mp = NULL; 13793 } 13794 /* 13795 * Now we are all set. On the next putnext upstream, 13796 * tcp_urp_mp will be non-NULL and will get prepended 13797 * to what has to be this piece containing the urgent 13798 * byte. If for any reason we abort this segment below, 13799 * if it comes back, we will have this ready, or it 13800 * will get blown off in close. 13801 */ 13802 } else if (urp == seg_len) { 13803 /* 13804 * The urgent byte is the next byte after this sequence 13805 * number. If there is data it is marked with 13806 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13807 * since it is not needed. Otherwise, if the code 13808 * above just allocated a zero-length tcp_urp_mark_mp 13809 * message, that message is tagged with MSGMARKNEXT. 13810 * Sending up these MSGMARKNEXT messages makes 13811 * SIOCATMARK work correctly even though 13812 * the T_EXDATA_IND will not be sent up until the 13813 * urgent byte arrives. 13814 */ 13815 if (seg_len != 0) { 13816 flags |= TH_MARKNEXT_NEEDED; 13817 freemsg(tcp->tcp_urp_mark_mp); 13818 tcp->tcp_urp_mark_mp = NULL; 13819 flags &= ~TH_SEND_URP_MARK; 13820 } else if (tcp->tcp_urp_mark_mp != NULL) { 13821 flags |= TH_SEND_URP_MARK; 13822 tcp->tcp_urp_mark_mp->b_flag &= 13823 ~MSGNOTMARKNEXT; 13824 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13825 } 13826 #ifdef DEBUG 13827 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13828 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13829 seg_len, flags, 13830 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13831 #endif /* DEBUG */ 13832 } else { 13833 /* Data left until we hit mark */ 13834 #ifdef DEBUG 13835 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13836 "tcp_rput: URP %d bytes left, %s", 13837 urp - seg_len, tcp_display(tcp, NULL, 13838 DISP_PORT_ONLY)); 13839 #endif /* DEBUG */ 13840 } 13841 } 13842 13843 process_ack: 13844 if (!(flags & TH_ACK)) { 13845 freemsg(mp); 13846 goto xmit_check; 13847 } 13848 } 13849 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13850 13851 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13852 tcp->tcp_ip_forward_progress = B_TRUE; 13853 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13854 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13855 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13856 /* 3-way handshake complete - pass up the T_CONN_IND */ 13857 tcp_t *listener = tcp->tcp_listener; 13858 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13859 13860 tcp->tcp_tconnind_started = B_TRUE; 13861 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13862 /* 13863 * We are here means eager is fine but it can 13864 * get a TH_RST at any point between now and till 13865 * accept completes and disappear. We need to 13866 * ensure that reference to eager is valid after 13867 * we get out of eager's perimeter. So we do 13868 * an extra refhold. 13869 */ 13870 CONN_INC_REF(connp); 13871 13872 /* 13873 * The listener also exists because of the refhold 13874 * done in tcp_conn_request. Its possible that it 13875 * might have closed. We will check that once we 13876 * get inside listeners context. 13877 */ 13878 CONN_INC_REF(listener->tcp_connp); 13879 if (listener->tcp_connp->conn_sqp == 13880 connp->conn_sqp) { 13881 tcp_send_conn_ind(listener->tcp_connp, mp, 13882 listener->tcp_connp->conn_sqp); 13883 CONN_DEC_REF(listener->tcp_connp); 13884 } else if (!tcp->tcp_loopback) { 13885 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13886 tcp_send_conn_ind, 13887 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13888 } else { 13889 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13890 tcp_send_conn_ind, listener->tcp_connp, 13891 SQTAG_TCP_CONN_IND); 13892 } 13893 } 13894 13895 if (tcp->tcp_active_open) { 13896 /* 13897 * We are seeing the final ack in the three way 13898 * hand shake of a active open'ed connection 13899 * so we must send up a T_CONN_CON 13900 */ 13901 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13902 freemsg(mp); 13903 return; 13904 } 13905 /* 13906 * Don't fuse the loopback endpoints for 13907 * simultaneous active opens. 13908 */ 13909 if (tcp->tcp_loopback) { 13910 TCP_STAT(tcp_fusion_unfusable); 13911 tcp->tcp_unfusable = B_TRUE; 13912 } 13913 } 13914 13915 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13916 bytes_acked--; 13917 /* SYN was acked - making progress */ 13918 if (tcp->tcp_ipversion == IPV6_VERSION) 13919 tcp->tcp_ip_forward_progress = B_TRUE; 13920 13921 /* 13922 * If SYN was retransmitted, need to reset all 13923 * retransmission info as this segment will be 13924 * treated as a dup ACK. 13925 */ 13926 if (tcp->tcp_rexmit) { 13927 tcp->tcp_rexmit = B_FALSE; 13928 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13929 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13930 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13931 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13932 tcp->tcp_ms_we_have_waited = 0; 13933 tcp->tcp_cwnd = mss; 13934 } 13935 13936 /* 13937 * We set the send window to zero here. 13938 * This is needed if there is data to be 13939 * processed already on the queue. 13940 * Later (at swnd_update label), the 13941 * "new_swnd > tcp_swnd" condition is satisfied 13942 * the XMIT_NEEDED flag is set in the current 13943 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13944 * called if there is already data on queue in 13945 * this state. 13946 */ 13947 tcp->tcp_swnd = 0; 13948 13949 if (new_swnd > tcp->tcp_max_swnd) 13950 tcp->tcp_max_swnd = new_swnd; 13951 tcp->tcp_swl1 = seg_seq; 13952 tcp->tcp_swl2 = seg_ack; 13953 tcp->tcp_state = TCPS_ESTABLISHED; 13954 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13955 13956 /* Fuse when both sides are in ESTABLISHED state */ 13957 if (tcp->tcp_loopback && do_tcp_fusion) 13958 tcp_fuse(tcp, iphdr, tcph); 13959 13960 } 13961 /* This code follows 4.4BSD-Lite2 mostly. */ 13962 if (bytes_acked < 0) 13963 goto est; 13964 13965 /* 13966 * If TCP is ECN capable and the congestion experience bit is 13967 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13968 * done once per window (or more loosely, per RTT). 13969 */ 13970 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13971 tcp->tcp_cwr = B_FALSE; 13972 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13973 if (!tcp->tcp_cwr) { 13974 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13975 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13976 tcp->tcp_cwnd = npkt * mss; 13977 /* 13978 * If the cwnd is 0, use the timer to clock out 13979 * new segments. This is required by the ECN spec. 13980 */ 13981 if (npkt == 0) { 13982 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13983 /* 13984 * This makes sure that when the ACK comes 13985 * back, we will increase tcp_cwnd by 1 MSS. 13986 */ 13987 tcp->tcp_cwnd_cnt = 0; 13988 } 13989 tcp->tcp_cwr = B_TRUE; 13990 /* 13991 * This marks the end of the current window of in 13992 * flight data. That is why we don't use 13993 * tcp_suna + tcp_swnd. Only data in flight can 13994 * provide ECN info. 13995 */ 13996 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13997 tcp->tcp_ecn_cwr_sent = B_FALSE; 13998 } 13999 } 14000 14001 mp1 = tcp->tcp_xmit_head; 14002 if (bytes_acked == 0) { 14003 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14004 int dupack_cnt; 14005 14006 BUMP_MIB(&tcp_mib, tcpInDupAck); 14007 /* 14008 * Fast retransmit. When we have seen exactly three 14009 * identical ACKs while we have unacked data 14010 * outstanding we take it as a hint that our peer 14011 * dropped something. 14012 * 14013 * If TCP is retransmitting, don't do fast retransmit. 14014 */ 14015 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14016 ! tcp->tcp_rexmit) { 14017 /* Do Limited Transmit */ 14018 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14019 tcp_dupack_fast_retransmit) { 14020 /* 14021 * RFC 3042 14022 * 14023 * What we need to do is temporarily 14024 * increase tcp_cwnd so that new 14025 * data can be sent if it is allowed 14026 * by the receive window (tcp_rwnd). 14027 * tcp_wput_data() will take care of 14028 * the rest. 14029 * 14030 * If the connection is SACK capable, 14031 * only do limited xmit when there 14032 * is SACK info. 14033 * 14034 * Note how tcp_cwnd is incremented. 14035 * The first dup ACK will increase 14036 * it by 1 MSS. The second dup ACK 14037 * will increase it by 2 MSS. This 14038 * means that only 1 new segment will 14039 * be sent for each dup ACK. 14040 */ 14041 if (tcp->tcp_unsent > 0 && 14042 (!tcp->tcp_snd_sack_ok || 14043 (tcp->tcp_snd_sack_ok && 14044 tcp->tcp_notsack_list != NULL))) { 14045 tcp->tcp_cwnd += mss << 14046 (tcp->tcp_dupack_cnt - 1); 14047 flags |= TH_LIMIT_XMIT; 14048 } 14049 } else if (dupack_cnt == 14050 tcp_dupack_fast_retransmit) { 14051 14052 /* 14053 * If we have reduced tcp_ssthresh 14054 * because of ECN, do not reduce it again 14055 * unless it is already one window of data 14056 * away. After one window of data, tcp_cwr 14057 * should then be cleared. Note that 14058 * for non ECN capable connection, tcp_cwr 14059 * should always be false. 14060 * 14061 * Adjust cwnd since the duplicate 14062 * ack indicates that a packet was 14063 * dropped (due to congestion.) 14064 */ 14065 if (!tcp->tcp_cwr) { 14066 npkt = ((tcp->tcp_snxt - 14067 tcp->tcp_suna) >> 1) / mss; 14068 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14069 mss; 14070 tcp->tcp_cwnd = (npkt + 14071 tcp->tcp_dupack_cnt) * mss; 14072 } 14073 if (tcp->tcp_ecn_ok) { 14074 tcp->tcp_cwr = B_TRUE; 14075 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14076 tcp->tcp_ecn_cwr_sent = B_FALSE; 14077 } 14078 14079 /* 14080 * We do Hoe's algorithm. Refer to her 14081 * paper "Improving the Start-up Behavior 14082 * of a Congestion Control Scheme for TCP," 14083 * appeared in SIGCOMM'96. 14084 * 14085 * Save highest seq no we have sent so far. 14086 * Be careful about the invisible FIN byte. 14087 */ 14088 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14089 (tcp->tcp_unsent == 0)) { 14090 tcp->tcp_rexmit_max = tcp->tcp_fss; 14091 } else { 14092 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14093 } 14094 14095 /* 14096 * Do not allow bursty traffic during. 14097 * fast recovery. Refer to Fall and Floyd's 14098 * paper "Simulation-based Comparisons of 14099 * Tahoe, Reno and SACK TCP" (in CCR?) 14100 * This is a best current practise. 14101 */ 14102 tcp->tcp_snd_burst = TCP_CWND_SS; 14103 14104 /* 14105 * For SACK: 14106 * Calculate tcp_pipe, which is the 14107 * estimated number of bytes in 14108 * network. 14109 * 14110 * tcp_fack is the highest sack'ed seq num 14111 * TCP has received. 14112 * 14113 * tcp_pipe is explained in the above quoted 14114 * Fall and Floyd's paper. tcp_fack is 14115 * explained in Mathis and Mahdavi's 14116 * "Forward Acknowledgment: Refining TCP 14117 * Congestion Control" in SIGCOMM '96. 14118 */ 14119 if (tcp->tcp_snd_sack_ok) { 14120 ASSERT(tcp->tcp_sack_info != NULL); 14121 if (tcp->tcp_notsack_list != NULL) { 14122 tcp->tcp_pipe = tcp->tcp_snxt - 14123 tcp->tcp_fack; 14124 tcp->tcp_sack_snxt = seg_ack; 14125 flags |= TH_NEED_SACK_REXMIT; 14126 } else { 14127 /* 14128 * Always initialize tcp_pipe 14129 * even though we don't have 14130 * any SACK info. If later 14131 * we get SACK info and 14132 * tcp_pipe is not initialized, 14133 * funny things will happen. 14134 */ 14135 tcp->tcp_pipe = 14136 tcp->tcp_cwnd_ssthresh; 14137 } 14138 } else { 14139 flags |= TH_REXMIT_NEEDED; 14140 } /* tcp_snd_sack_ok */ 14141 14142 } else { 14143 /* 14144 * Here we perform congestion 14145 * avoidance, but NOT slow start. 14146 * This is known as the Fast 14147 * Recovery Algorithm. 14148 */ 14149 if (tcp->tcp_snd_sack_ok && 14150 tcp->tcp_notsack_list != NULL) { 14151 flags |= TH_NEED_SACK_REXMIT; 14152 tcp->tcp_pipe -= mss; 14153 if (tcp->tcp_pipe < 0) 14154 tcp->tcp_pipe = 0; 14155 } else { 14156 /* 14157 * We know that one more packet has 14158 * left the pipe thus we can update 14159 * cwnd. 14160 */ 14161 cwnd = tcp->tcp_cwnd + mss; 14162 if (cwnd > tcp->tcp_cwnd_max) 14163 cwnd = tcp->tcp_cwnd_max; 14164 tcp->tcp_cwnd = cwnd; 14165 if (tcp->tcp_unsent > 0) 14166 flags |= TH_XMIT_NEEDED; 14167 } 14168 } 14169 } 14170 } else if (tcp->tcp_zero_win_probe) { 14171 /* 14172 * If the window has opened, need to arrange 14173 * to send additional data. 14174 */ 14175 if (new_swnd != 0) { 14176 /* tcp_suna != tcp_snxt */ 14177 /* Packet contains a window update */ 14178 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 14179 tcp->tcp_zero_win_probe = 0; 14180 tcp->tcp_timer_backoff = 0; 14181 tcp->tcp_ms_we_have_waited = 0; 14182 14183 /* 14184 * Transmit starting with tcp_suna since 14185 * the one byte probe is not ack'ed. 14186 * If TCP has sent more than one identical 14187 * probe, tcp_rexmit will be set. That means 14188 * tcp_ss_rexmit() will send out the one 14189 * byte along with new data. Otherwise, 14190 * fake the retransmission. 14191 */ 14192 flags |= TH_XMIT_NEEDED; 14193 if (!tcp->tcp_rexmit) { 14194 tcp->tcp_rexmit = B_TRUE; 14195 tcp->tcp_dupack_cnt = 0; 14196 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14197 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14198 } 14199 } 14200 } 14201 goto swnd_update; 14202 } 14203 14204 /* 14205 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14206 * If the ACK value acks something that we have not yet sent, it might 14207 * be an old duplicate segment. Send an ACK to re-synchronize the 14208 * other side. 14209 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14210 * state is handled above, so we can always just drop the segment and 14211 * send an ACK here. 14212 * 14213 * Should we send ACKs in response to ACK only segments? 14214 */ 14215 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14216 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 14217 /* drop the received segment */ 14218 freemsg(mp); 14219 14220 /* 14221 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14222 * greater than 0, check if the number of such 14223 * bogus ACks is greater than that count. If yes, 14224 * don't send back any ACK. This prevents TCP from 14225 * getting into an ACK storm if somehow an attacker 14226 * successfully spoofs an acceptable segment to our 14227 * peer. 14228 */ 14229 if (tcp_drop_ack_unsent_cnt > 0 && 14230 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14231 TCP_STAT(tcp_in_ack_unsent_drop); 14232 return; 14233 } 14234 mp = tcp_ack_mp(tcp); 14235 if (mp != NULL) { 14236 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14237 BUMP_LOCAL(tcp->tcp_obsegs); 14238 BUMP_MIB(&tcp_mib, tcpOutAck); 14239 tcp_send_data(tcp, tcp->tcp_wq, mp); 14240 } 14241 return; 14242 } 14243 14244 /* 14245 * TCP gets a new ACK, update the notsack'ed list to delete those 14246 * blocks that are covered by this ACK. 14247 */ 14248 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14249 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14250 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14251 } 14252 14253 /* 14254 * If we got an ACK after fast retransmit, check to see 14255 * if it is a partial ACK. If it is not and the congestion 14256 * window was inflated to account for the other side's 14257 * cached packets, retract it. If it is, do Hoe's algorithm. 14258 */ 14259 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14260 ASSERT(tcp->tcp_rexmit == B_FALSE); 14261 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14262 tcp->tcp_dupack_cnt = 0; 14263 /* 14264 * Restore the orig tcp_cwnd_ssthresh after 14265 * fast retransmit phase. 14266 */ 14267 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14268 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14269 } 14270 tcp->tcp_rexmit_max = seg_ack; 14271 tcp->tcp_cwnd_cnt = 0; 14272 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14273 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14274 14275 /* 14276 * Remove all notsack info to avoid confusion with 14277 * the next fast retrasnmit/recovery phase. 14278 */ 14279 if (tcp->tcp_snd_sack_ok && 14280 tcp->tcp_notsack_list != NULL) { 14281 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14282 } 14283 } else { 14284 if (tcp->tcp_snd_sack_ok && 14285 tcp->tcp_notsack_list != NULL) { 14286 flags |= TH_NEED_SACK_REXMIT; 14287 tcp->tcp_pipe -= mss; 14288 if (tcp->tcp_pipe < 0) 14289 tcp->tcp_pipe = 0; 14290 } else { 14291 /* 14292 * Hoe's algorithm: 14293 * 14294 * Retransmit the unack'ed segment and 14295 * restart fast recovery. Note that we 14296 * need to scale back tcp_cwnd to the 14297 * original value when we started fast 14298 * recovery. This is to prevent overly 14299 * aggressive behaviour in sending new 14300 * segments. 14301 */ 14302 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14303 tcp_dupack_fast_retransmit * mss; 14304 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14305 flags |= TH_REXMIT_NEEDED; 14306 } 14307 } 14308 } else { 14309 tcp->tcp_dupack_cnt = 0; 14310 if (tcp->tcp_rexmit) { 14311 /* 14312 * TCP is retranmitting. If the ACK ack's all 14313 * outstanding data, update tcp_rexmit_max and 14314 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14315 * to the correct value. 14316 * 14317 * Note that SEQ_LEQ() is used. This is to avoid 14318 * unnecessary fast retransmit caused by dup ACKs 14319 * received when TCP does slow start retransmission 14320 * after a time out. During this phase, TCP may 14321 * send out segments which are already received. 14322 * This causes dup ACKs to be sent back. 14323 */ 14324 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14325 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14326 tcp->tcp_rexmit_nxt = seg_ack; 14327 } 14328 if (seg_ack != tcp->tcp_rexmit_max) { 14329 flags |= TH_XMIT_NEEDED; 14330 } 14331 } else { 14332 tcp->tcp_rexmit = B_FALSE; 14333 tcp->tcp_xmit_zc_clean = B_FALSE; 14334 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14335 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14336 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14337 } 14338 tcp->tcp_ms_we_have_waited = 0; 14339 } 14340 } 14341 14342 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14343 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14344 tcp->tcp_suna = seg_ack; 14345 if (tcp->tcp_zero_win_probe != 0) { 14346 tcp->tcp_zero_win_probe = 0; 14347 tcp->tcp_timer_backoff = 0; 14348 } 14349 14350 /* 14351 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14352 * Note that it cannot be the SYN being ack'ed. The code flow 14353 * will not reach here. 14354 */ 14355 if (mp1 == NULL) { 14356 goto fin_acked; 14357 } 14358 14359 /* 14360 * Update the congestion window. 14361 * 14362 * If TCP is not ECN capable or TCP is ECN capable but the 14363 * congestion experience bit is not set, increase the tcp_cwnd as 14364 * usual. 14365 */ 14366 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14367 cwnd = tcp->tcp_cwnd; 14368 add = mss; 14369 14370 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14371 /* 14372 * This is to prevent an increase of less than 1 MSS of 14373 * tcp_cwnd. With partial increase, tcp_wput_data() 14374 * may send out tinygrams in order to preserve mblk 14375 * boundaries. 14376 * 14377 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14378 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14379 * increased by 1 MSS for every RTTs. 14380 */ 14381 if (tcp->tcp_cwnd_cnt <= 0) { 14382 tcp->tcp_cwnd_cnt = cwnd + add; 14383 } else { 14384 tcp->tcp_cwnd_cnt -= add; 14385 add = 0; 14386 } 14387 } 14388 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14389 } 14390 14391 /* See if the latest urgent data has been acknowledged */ 14392 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14393 SEQ_GT(seg_ack, tcp->tcp_urg)) 14394 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14395 14396 /* Can we update the RTT estimates? */ 14397 if (tcp->tcp_snd_ts_ok) { 14398 /* Ignore zero timestamp echo-reply. */ 14399 if (tcpopt.tcp_opt_ts_ecr != 0) { 14400 tcp_set_rto(tcp, (int32_t)lbolt - 14401 (int32_t)tcpopt.tcp_opt_ts_ecr); 14402 } 14403 14404 /* If needed, restart the timer. */ 14405 if (tcp->tcp_set_timer == 1) { 14406 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14407 tcp->tcp_set_timer = 0; 14408 } 14409 /* 14410 * Update tcp_csuna in case the other side stops sending 14411 * us timestamps. 14412 */ 14413 tcp->tcp_csuna = tcp->tcp_snxt; 14414 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14415 /* 14416 * An ACK sequence we haven't seen before, so get the RTT 14417 * and update the RTO. But first check if the timestamp is 14418 * valid to use. 14419 */ 14420 if ((mp1->b_next != NULL) && 14421 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14422 tcp_set_rto(tcp, (int32_t)lbolt - 14423 (int32_t)(intptr_t)mp1->b_prev); 14424 else 14425 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14426 14427 /* Remeber the last sequence to be ACKed */ 14428 tcp->tcp_csuna = seg_ack; 14429 if (tcp->tcp_set_timer == 1) { 14430 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14431 tcp->tcp_set_timer = 0; 14432 } 14433 } else { 14434 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14435 } 14436 14437 /* Eat acknowledged bytes off the xmit queue. */ 14438 for (;;) { 14439 mblk_t *mp2; 14440 uchar_t *wptr; 14441 14442 wptr = mp1->b_wptr; 14443 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14444 bytes_acked -= (int)(wptr - mp1->b_rptr); 14445 if (bytes_acked < 0) { 14446 mp1->b_rptr = wptr + bytes_acked; 14447 /* 14448 * Set a new timestamp if all the bytes timed by the 14449 * old timestamp have been ack'ed. 14450 */ 14451 if (SEQ_GT(seg_ack, 14452 (uint32_t)(uintptr_t)(mp1->b_next))) { 14453 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14454 mp1->b_next = NULL; 14455 } 14456 break; 14457 } 14458 mp1->b_next = NULL; 14459 mp1->b_prev = NULL; 14460 mp2 = mp1; 14461 mp1 = mp1->b_cont; 14462 14463 /* 14464 * This notification is required for some zero-copy 14465 * clients to maintain a copy semantic. After the data 14466 * is ack'ed, client is safe to modify or reuse the buffer. 14467 */ 14468 if (tcp->tcp_snd_zcopy_aware && 14469 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14470 tcp_zcopy_notify(tcp); 14471 freeb(mp2); 14472 if (bytes_acked == 0) { 14473 if (mp1 == NULL) { 14474 /* Everything is ack'ed, clear the tail. */ 14475 tcp->tcp_xmit_tail = NULL; 14476 /* 14477 * Cancel the timer unless we are still 14478 * waiting for an ACK for the FIN packet. 14479 */ 14480 if (tcp->tcp_timer_tid != 0 && 14481 tcp->tcp_snxt == tcp->tcp_suna) { 14482 (void) TCP_TIMER_CANCEL(tcp, 14483 tcp->tcp_timer_tid); 14484 tcp->tcp_timer_tid = 0; 14485 } 14486 goto pre_swnd_update; 14487 } 14488 if (mp2 != tcp->tcp_xmit_tail) 14489 break; 14490 tcp->tcp_xmit_tail = mp1; 14491 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14492 (uintptr_t)INT_MAX); 14493 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14494 mp1->b_rptr); 14495 break; 14496 } 14497 if (mp1 == NULL) { 14498 /* 14499 * More was acked but there is nothing more 14500 * outstanding. This means that the FIN was 14501 * just acked or that we're talking to a clown. 14502 */ 14503 fin_acked: 14504 ASSERT(tcp->tcp_fin_sent); 14505 tcp->tcp_xmit_tail = NULL; 14506 if (tcp->tcp_fin_sent) { 14507 /* FIN was acked - making progress */ 14508 if (tcp->tcp_ipversion == IPV6_VERSION && 14509 !tcp->tcp_fin_acked) 14510 tcp->tcp_ip_forward_progress = B_TRUE; 14511 tcp->tcp_fin_acked = B_TRUE; 14512 if (tcp->tcp_linger_tid != 0 && 14513 TCP_TIMER_CANCEL(tcp, 14514 tcp->tcp_linger_tid) >= 0) { 14515 tcp_stop_lingering(tcp); 14516 } 14517 } else { 14518 /* 14519 * We should never get here because 14520 * we have already checked that the 14521 * number of bytes ack'ed should be 14522 * smaller than or equal to what we 14523 * have sent so far (it is the 14524 * acceptability check of the ACK). 14525 * We can only get here if the send 14526 * queue is corrupted. 14527 * 14528 * Terminate the connection and 14529 * panic the system. It is better 14530 * for us to panic instead of 14531 * continuing to avoid other disaster. 14532 */ 14533 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14534 tcp->tcp_rnxt, TH_RST|TH_ACK); 14535 panic("Memory corruption " 14536 "detected for connection %s.", 14537 tcp_display(tcp, NULL, 14538 DISP_ADDR_AND_PORT)); 14539 /*NOTREACHED*/ 14540 } 14541 goto pre_swnd_update; 14542 } 14543 ASSERT(mp2 != tcp->tcp_xmit_tail); 14544 } 14545 if (tcp->tcp_unsent) { 14546 flags |= TH_XMIT_NEEDED; 14547 } 14548 pre_swnd_update: 14549 tcp->tcp_xmit_head = mp1; 14550 swnd_update: 14551 /* 14552 * The following check is different from most other implementations. 14553 * For bi-directional transfer, when segments are dropped, the 14554 * "normal" check will not accept a window update in those 14555 * retransmitted segemnts. Failing to do that, TCP may send out 14556 * segments which are outside receiver's window. As TCP accepts 14557 * the ack in those retransmitted segments, if the window update in 14558 * the same segment is not accepted, TCP will incorrectly calculates 14559 * that it can send more segments. This can create a deadlock 14560 * with the receiver if its window becomes zero. 14561 */ 14562 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14563 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14564 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14565 /* 14566 * The criteria for update is: 14567 * 14568 * 1. the segment acknowledges some data. Or 14569 * 2. the segment is new, i.e. it has a higher seq num. Or 14570 * 3. the segment is not old and the advertised window is 14571 * larger than the previous advertised window. 14572 */ 14573 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14574 flags |= TH_XMIT_NEEDED; 14575 tcp->tcp_swnd = new_swnd; 14576 if (new_swnd > tcp->tcp_max_swnd) 14577 tcp->tcp_max_swnd = new_swnd; 14578 tcp->tcp_swl1 = seg_seq; 14579 tcp->tcp_swl2 = seg_ack; 14580 } 14581 est: 14582 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14583 14584 switch (tcp->tcp_state) { 14585 case TCPS_FIN_WAIT_1: 14586 if (tcp->tcp_fin_acked) { 14587 tcp->tcp_state = TCPS_FIN_WAIT_2; 14588 /* 14589 * We implement the non-standard BSD/SunOS 14590 * FIN_WAIT_2 flushing algorithm. 14591 * If there is no user attached to this 14592 * TCP endpoint, then this TCP struct 14593 * could hang around forever in FIN_WAIT_2 14594 * state if the peer forgets to send us 14595 * a FIN. To prevent this, we wait only 14596 * 2*MSL (a convenient time value) for 14597 * the FIN to arrive. If it doesn't show up, 14598 * we flush the TCP endpoint. This algorithm, 14599 * though a violation of RFC-793, has worked 14600 * for over 10 years in BSD systems. 14601 * Note: SunOS 4.x waits 675 seconds before 14602 * flushing the FIN_WAIT_2 connection. 14603 */ 14604 TCP_TIMER_RESTART(tcp, 14605 tcp_fin_wait_2_flush_interval); 14606 } 14607 break; 14608 case TCPS_FIN_WAIT_2: 14609 break; /* Shutdown hook? */ 14610 case TCPS_LAST_ACK: 14611 freemsg(mp); 14612 if (tcp->tcp_fin_acked) { 14613 (void) tcp_clean_death(tcp, 0, 19); 14614 return; 14615 } 14616 goto xmit_check; 14617 case TCPS_CLOSING: 14618 if (tcp->tcp_fin_acked) { 14619 tcp->tcp_state = TCPS_TIME_WAIT; 14620 /* 14621 * Unconditionally clear the exclusive binding 14622 * bit so this TIME-WAIT connection won't 14623 * interfere with new ones. 14624 */ 14625 tcp->tcp_exclbind = 0; 14626 if (!TCP_IS_DETACHED(tcp)) { 14627 TCP_TIMER_RESTART(tcp, 14628 tcp_time_wait_interval); 14629 } else { 14630 tcp_time_wait_append(tcp); 14631 TCP_DBGSTAT(tcp_rput_time_wait); 14632 } 14633 } 14634 /*FALLTHRU*/ 14635 case TCPS_CLOSE_WAIT: 14636 freemsg(mp); 14637 goto xmit_check; 14638 default: 14639 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14640 break; 14641 } 14642 } 14643 if (flags & TH_FIN) { 14644 /* Make sure we ack the fin */ 14645 flags |= TH_ACK_NEEDED; 14646 if (!tcp->tcp_fin_rcvd) { 14647 tcp->tcp_fin_rcvd = B_TRUE; 14648 tcp->tcp_rnxt++; 14649 tcph = tcp->tcp_tcph; 14650 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14651 14652 /* 14653 * Generate the ordrel_ind at the end unless we 14654 * are an eager guy. 14655 * In the eager case tcp_rsrv will do this when run 14656 * after tcp_accept is done. 14657 */ 14658 if (tcp->tcp_listener == NULL && 14659 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14660 flags |= TH_ORDREL_NEEDED; 14661 switch (tcp->tcp_state) { 14662 case TCPS_SYN_RCVD: 14663 case TCPS_ESTABLISHED: 14664 tcp->tcp_state = TCPS_CLOSE_WAIT; 14665 /* Keepalive? */ 14666 break; 14667 case TCPS_FIN_WAIT_1: 14668 if (!tcp->tcp_fin_acked) { 14669 tcp->tcp_state = TCPS_CLOSING; 14670 break; 14671 } 14672 /* FALLTHRU */ 14673 case TCPS_FIN_WAIT_2: 14674 tcp->tcp_state = TCPS_TIME_WAIT; 14675 /* 14676 * Unconditionally clear the exclusive binding 14677 * bit so this TIME-WAIT connection won't 14678 * interfere with new ones. 14679 */ 14680 tcp->tcp_exclbind = 0; 14681 if (!TCP_IS_DETACHED(tcp)) { 14682 TCP_TIMER_RESTART(tcp, 14683 tcp_time_wait_interval); 14684 } else { 14685 tcp_time_wait_append(tcp); 14686 TCP_DBGSTAT(tcp_rput_time_wait); 14687 } 14688 if (seg_len) { 14689 /* 14690 * implies data piggybacked on FIN. 14691 * break to handle data. 14692 */ 14693 break; 14694 } 14695 freemsg(mp); 14696 goto ack_check; 14697 } 14698 } 14699 } 14700 if (mp == NULL) 14701 goto xmit_check; 14702 if (seg_len == 0) { 14703 freemsg(mp); 14704 goto xmit_check; 14705 } 14706 if (mp->b_rptr == mp->b_wptr) { 14707 /* 14708 * The header has been consumed, so we remove the 14709 * zero-length mblk here. 14710 */ 14711 mp1 = mp; 14712 mp = mp->b_cont; 14713 freeb(mp1); 14714 } 14715 tcph = tcp->tcp_tcph; 14716 tcp->tcp_rack_cnt++; 14717 { 14718 uint32_t cur_max; 14719 14720 cur_max = tcp->tcp_rack_cur_max; 14721 if (tcp->tcp_rack_cnt >= cur_max) { 14722 /* 14723 * We have more unacked data than we should - send 14724 * an ACK now. 14725 */ 14726 flags |= TH_ACK_NEEDED; 14727 cur_max++; 14728 if (cur_max > tcp->tcp_rack_abs_max) 14729 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14730 else 14731 tcp->tcp_rack_cur_max = cur_max; 14732 } else if (TCP_IS_DETACHED(tcp)) { 14733 /* We don't have an ACK timer for detached TCP. */ 14734 flags |= TH_ACK_NEEDED; 14735 } else if (seg_len < mss) { 14736 /* 14737 * If we get a segment that is less than an mss, and we 14738 * already have unacknowledged data, and the amount 14739 * unacknowledged is not a multiple of mss, then we 14740 * better generate an ACK now. Otherwise, this may be 14741 * the tail piece of a transaction, and we would rather 14742 * wait for the response. 14743 */ 14744 uint32_t udif; 14745 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14746 (uintptr_t)INT_MAX); 14747 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14748 if (udif && (udif % mss)) 14749 flags |= TH_ACK_NEEDED; 14750 else 14751 flags |= TH_ACK_TIMER_NEEDED; 14752 } else { 14753 /* Start delayed ack timer */ 14754 flags |= TH_ACK_TIMER_NEEDED; 14755 } 14756 } 14757 tcp->tcp_rnxt += seg_len; 14758 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14759 14760 /* Update SACK list */ 14761 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14762 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14763 &(tcp->tcp_num_sack_blk)); 14764 } 14765 14766 if (tcp->tcp_urp_mp) { 14767 tcp->tcp_urp_mp->b_cont = mp; 14768 mp = tcp->tcp_urp_mp; 14769 tcp->tcp_urp_mp = NULL; 14770 /* Ready for a new signal. */ 14771 tcp->tcp_urp_last_valid = B_FALSE; 14772 #ifdef DEBUG 14773 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14774 "tcp_rput: sending exdata_ind %s", 14775 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14776 #endif /* DEBUG */ 14777 } 14778 14779 /* 14780 * Check for ancillary data changes compared to last segment. 14781 */ 14782 if (tcp->tcp_ipv6_recvancillary != 0) { 14783 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14784 if (mp == NULL) 14785 return; 14786 } 14787 14788 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14789 /* 14790 * Side queue inbound data until the accept happens. 14791 * tcp_accept/tcp_rput drains this when the accept happens. 14792 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14793 * T_EXDATA_IND) it is queued on b_next. 14794 * XXX Make urgent data use this. Requires: 14795 * Removing tcp_listener check for TH_URG 14796 * Making M_PCPROTO and MARK messages skip the eager case 14797 */ 14798 14799 if (tcp->tcp_kssl_pending) { 14800 tcp_kssl_input(tcp, mp); 14801 } else { 14802 tcp_rcv_enqueue(tcp, mp, seg_len); 14803 } 14804 } else { 14805 if (mp->b_datap->db_type != M_DATA || 14806 (flags & TH_MARKNEXT_NEEDED)) { 14807 if (tcp->tcp_rcv_list != NULL) { 14808 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14809 } 14810 ASSERT(tcp->tcp_rcv_list == NULL || 14811 tcp->tcp_fused_sigurg); 14812 if (flags & TH_MARKNEXT_NEEDED) { 14813 #ifdef DEBUG 14814 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14815 "tcp_rput: sending MSGMARKNEXT %s", 14816 tcp_display(tcp, NULL, 14817 DISP_PORT_ONLY)); 14818 #endif /* DEBUG */ 14819 mp->b_flag |= MSGMARKNEXT; 14820 flags &= ~TH_MARKNEXT_NEEDED; 14821 } 14822 14823 /* Does this need SSL processing first? */ 14824 if ((tcp->tcp_kssl_ctx != NULL) && 14825 (DB_TYPE(mp) == M_DATA)) { 14826 tcp_kssl_input(tcp, mp); 14827 } else { 14828 putnext(tcp->tcp_rq, mp); 14829 if (!canputnext(tcp->tcp_rq)) 14830 tcp->tcp_rwnd -= seg_len; 14831 } 14832 } else if ((flags & (TH_PUSH|TH_FIN)) || 14833 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14834 if (tcp->tcp_rcv_list != NULL) { 14835 /* 14836 * Enqueue the new segment first and then 14837 * call tcp_rcv_drain() to send all data 14838 * up. The other way to do this is to 14839 * send all queued data up and then call 14840 * putnext() to send the new segment up. 14841 * This way can remove the else part later 14842 * on. 14843 * 14844 * We don't this to avoid one more call to 14845 * canputnext() as tcp_rcv_drain() needs to 14846 * call canputnext(). 14847 */ 14848 tcp_rcv_enqueue(tcp, mp, seg_len); 14849 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14850 } else { 14851 /* Does this need SSL processing first? */ 14852 if ((tcp->tcp_kssl_ctx != NULL) && 14853 (DB_TYPE(mp) == M_DATA)) { 14854 tcp_kssl_input(tcp, mp); 14855 } else { 14856 putnext(tcp->tcp_rq, mp); 14857 if (!canputnext(tcp->tcp_rq)) 14858 tcp->tcp_rwnd -= seg_len; 14859 } 14860 } 14861 } else { 14862 /* 14863 * Enqueue all packets when processing an mblk 14864 * from the co queue and also enqueue normal packets. 14865 */ 14866 tcp_rcv_enqueue(tcp, mp, seg_len); 14867 } 14868 /* 14869 * Make sure the timer is running if we have data waiting 14870 * for a push bit. This provides resiliency against 14871 * implementations that do not correctly generate push bits. 14872 */ 14873 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14874 /* 14875 * The connection may be closed at this point, so don't 14876 * do anything for a detached tcp. 14877 */ 14878 if (!TCP_IS_DETACHED(tcp)) 14879 tcp->tcp_push_tid = TCP_TIMER(tcp, 14880 tcp_push_timer, 14881 MSEC_TO_TICK(tcp_push_timer_interval)); 14882 } 14883 } 14884 xmit_check: 14885 /* Is there anything left to do? */ 14886 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14887 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14888 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14889 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14890 goto done; 14891 14892 /* Any transmit work to do and a non-zero window? */ 14893 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14894 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14895 if (flags & TH_REXMIT_NEEDED) { 14896 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14897 14898 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14899 if (snd_size > mss) 14900 snd_size = mss; 14901 if (snd_size > tcp->tcp_swnd) 14902 snd_size = tcp->tcp_swnd; 14903 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14904 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14905 B_TRUE); 14906 14907 if (mp1 != NULL) { 14908 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14909 tcp->tcp_csuna = tcp->tcp_snxt; 14910 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14911 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14912 TCP_RECORD_TRACE(tcp, mp1, 14913 TCP_TRACE_SEND_PKT); 14914 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14915 } 14916 } 14917 if (flags & TH_NEED_SACK_REXMIT) { 14918 tcp_sack_rxmit(tcp, &flags); 14919 } 14920 /* 14921 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14922 * out new segment. Note that tcp_rexmit should not be 14923 * set, otherwise TH_LIMIT_XMIT should not be set. 14924 */ 14925 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14926 if (!tcp->tcp_rexmit) { 14927 tcp_wput_data(tcp, NULL, B_FALSE); 14928 } else { 14929 tcp_ss_rexmit(tcp); 14930 } 14931 } 14932 /* 14933 * Adjust tcp_cwnd back to normal value after sending 14934 * new data segments. 14935 */ 14936 if (flags & TH_LIMIT_XMIT) { 14937 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14938 /* 14939 * This will restart the timer. Restarting the 14940 * timer is used to avoid a timeout before the 14941 * limited transmitted segment's ACK gets back. 14942 */ 14943 if (tcp->tcp_xmit_head != NULL) 14944 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14945 } 14946 14947 /* Anything more to do? */ 14948 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14949 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14950 goto done; 14951 } 14952 ack_check: 14953 if (flags & TH_SEND_URP_MARK) { 14954 ASSERT(tcp->tcp_urp_mark_mp); 14955 /* 14956 * Send up any queued data and then send the mark message 14957 */ 14958 if (tcp->tcp_rcv_list != NULL) { 14959 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14960 } 14961 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14962 14963 mp1 = tcp->tcp_urp_mark_mp; 14964 tcp->tcp_urp_mark_mp = NULL; 14965 #ifdef DEBUG 14966 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14967 "tcp_rput: sending zero-length %s %s", 14968 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14969 "MSGNOTMARKNEXT"), 14970 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14971 #endif /* DEBUG */ 14972 putnext(tcp->tcp_rq, mp1); 14973 flags &= ~TH_SEND_URP_MARK; 14974 } 14975 if (flags & TH_ACK_NEEDED) { 14976 /* 14977 * Time to send an ack for some reason. 14978 */ 14979 mp1 = tcp_ack_mp(tcp); 14980 14981 if (mp1 != NULL) { 14982 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14983 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14984 BUMP_LOCAL(tcp->tcp_obsegs); 14985 BUMP_MIB(&tcp_mib, tcpOutAck); 14986 } 14987 if (tcp->tcp_ack_tid != 0) { 14988 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14989 tcp->tcp_ack_tid = 0; 14990 } 14991 } 14992 if (flags & TH_ACK_TIMER_NEEDED) { 14993 /* 14994 * Arrange for deferred ACK or push wait timeout. 14995 * Start timer if it is not already running. 14996 */ 14997 if (tcp->tcp_ack_tid == 0) { 14998 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14999 MSEC_TO_TICK(tcp->tcp_localnet ? 15000 (clock_t)tcp_local_dack_interval : 15001 (clock_t)tcp_deferred_ack_interval)); 15002 } 15003 } 15004 if (flags & TH_ORDREL_NEEDED) { 15005 /* 15006 * Send up the ordrel_ind unless we are an eager guy. 15007 * In the eager case tcp_rsrv will do this when run 15008 * after tcp_accept is done. 15009 */ 15010 ASSERT(tcp->tcp_listener == NULL); 15011 if (tcp->tcp_rcv_list != NULL) { 15012 /* 15013 * Push any mblk(s) enqueued from co processing. 15014 */ 15015 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15016 } 15017 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15018 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15019 tcp->tcp_ordrel_done = B_TRUE; 15020 putnext(tcp->tcp_rq, mp1); 15021 if (tcp->tcp_deferred_clean_death) { 15022 /* 15023 * tcp_clean_death was deferred 15024 * for T_ORDREL_IND - do it now 15025 */ 15026 (void) tcp_clean_death(tcp, 15027 tcp->tcp_client_errno, 20); 15028 tcp->tcp_deferred_clean_death = B_FALSE; 15029 } 15030 } else { 15031 /* 15032 * Run the orderly release in the 15033 * service routine. 15034 */ 15035 qenable(tcp->tcp_rq); 15036 /* 15037 * Caveat(XXX): The machine may be so 15038 * overloaded that tcp_rsrv() is not scheduled 15039 * until after the endpoint has transitioned 15040 * to TCPS_TIME_WAIT 15041 * and tcp_time_wait_interval expires. Then 15042 * tcp_timer() will blow away state in tcp_t 15043 * and T_ORDREL_IND will never be delivered 15044 * upstream. Unlikely but potentially 15045 * a problem. 15046 */ 15047 } 15048 } 15049 done: 15050 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15051 } 15052 15053 /* 15054 * This function does PAWS protection check. Returns B_TRUE if the 15055 * segment passes the PAWS test, else returns B_FALSE. 15056 */ 15057 boolean_t 15058 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15059 { 15060 uint8_t flags; 15061 int options; 15062 uint8_t *up; 15063 15064 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15065 /* 15066 * If timestamp option is aligned nicely, get values inline, 15067 * otherwise call general routine to parse. Only do that 15068 * if timestamp is the only option. 15069 */ 15070 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15071 TCPOPT_REAL_TS_LEN && 15072 OK_32PTR((up = ((uint8_t *)tcph) + 15073 TCP_MIN_HEADER_LENGTH)) && 15074 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15075 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15076 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15077 15078 options = TCP_OPT_TSTAMP_PRESENT; 15079 } else { 15080 if (tcp->tcp_snd_sack_ok) { 15081 tcpoptp->tcp = tcp; 15082 } else { 15083 tcpoptp->tcp = NULL; 15084 } 15085 options = tcp_parse_options(tcph, tcpoptp); 15086 } 15087 15088 if (options & TCP_OPT_TSTAMP_PRESENT) { 15089 /* 15090 * Do PAWS per RFC 1323 section 4.2. Accept RST 15091 * regardless of the timestamp, page 18 RFC 1323.bis. 15092 */ 15093 if ((flags & TH_RST) == 0 && 15094 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15095 tcp->tcp_ts_recent)) { 15096 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15097 PAWS_TIMEOUT)) { 15098 /* This segment is not acceptable. */ 15099 return (B_FALSE); 15100 } else { 15101 /* 15102 * Connection has been idle for 15103 * too long. Reset the timestamp 15104 * and assume the segment is valid. 15105 */ 15106 tcp->tcp_ts_recent = 15107 tcpoptp->tcp_opt_ts_val; 15108 } 15109 } 15110 } else { 15111 /* 15112 * If we don't get a timestamp on every packet, we 15113 * figure we can't really trust 'em, so we stop sending 15114 * and parsing them. 15115 */ 15116 tcp->tcp_snd_ts_ok = B_FALSE; 15117 15118 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15119 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15120 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15121 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 15122 if (tcp->tcp_snd_sack_ok) { 15123 ASSERT(tcp->tcp_sack_info != NULL); 15124 tcp->tcp_max_sack_blk = 4; 15125 } 15126 } 15127 return (B_TRUE); 15128 } 15129 15130 /* 15131 * Attach ancillary data to a received TCP segments for the 15132 * ancillary pieces requested by the application that are 15133 * different than they were in the previous data segment. 15134 * 15135 * Save the "current" values once memory allocation is ok so that 15136 * when memory allocation fails we can just wait for the next data segment. 15137 */ 15138 static mblk_t * 15139 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15140 { 15141 struct T_optdata_ind *todi; 15142 int optlen; 15143 uchar_t *optptr; 15144 struct T_opthdr *toh; 15145 uint_t addflag; /* Which pieces to add */ 15146 mblk_t *mp1; 15147 15148 optlen = 0; 15149 addflag = 0; 15150 /* If app asked for pktinfo and the index has changed ... */ 15151 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15152 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15153 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15154 optlen += sizeof (struct T_opthdr) + 15155 sizeof (struct in6_pktinfo); 15156 addflag |= TCP_IPV6_RECVPKTINFO; 15157 } 15158 /* If app asked for hoplimit and it has changed ... */ 15159 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15160 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15161 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15162 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15163 addflag |= TCP_IPV6_RECVHOPLIMIT; 15164 } 15165 /* If app asked for tclass and it has changed ... */ 15166 if ((ipp->ipp_fields & IPPF_TCLASS) && 15167 ipp->ipp_tclass != tcp->tcp_recvtclass && 15168 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15169 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15170 addflag |= TCP_IPV6_RECVTCLASS; 15171 } 15172 /* 15173 * If app asked for hopbyhop headers and it has changed ... 15174 * For security labels, note that (1) security labels can't change on 15175 * a connected socket at all, (2) we're connected to at most one peer, 15176 * (3) if anything changes, then it must be some other extra option. 15177 */ 15178 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15179 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15180 (ipp->ipp_fields & IPPF_HOPOPTS), 15181 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15182 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15183 tcp->tcp_label_len; 15184 addflag |= TCP_IPV6_RECVHOPOPTS; 15185 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15186 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15187 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15188 return (mp); 15189 } 15190 /* If app asked for dst headers before routing headers ... */ 15191 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15192 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15193 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15194 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15195 optlen += sizeof (struct T_opthdr) + 15196 ipp->ipp_rtdstoptslen; 15197 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15198 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15199 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15200 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15201 return (mp); 15202 } 15203 /* If app asked for routing headers and it has changed ... */ 15204 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15205 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15206 (ipp->ipp_fields & IPPF_RTHDR), 15207 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15208 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15209 addflag |= TCP_IPV6_RECVRTHDR; 15210 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15211 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15212 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15213 return (mp); 15214 } 15215 /* If app asked for dest headers and it has changed ... */ 15216 if ((tcp->tcp_ipv6_recvancillary & 15217 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15218 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15219 (ipp->ipp_fields & IPPF_DSTOPTS), 15220 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15221 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15222 addflag |= TCP_IPV6_RECVDSTOPTS; 15223 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15224 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15225 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15226 return (mp); 15227 } 15228 15229 if (optlen == 0) { 15230 /* Nothing to add */ 15231 return (mp); 15232 } 15233 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15234 if (mp1 == NULL) { 15235 /* 15236 * Defer sending ancillary data until the next TCP segment 15237 * arrives. 15238 */ 15239 return (mp); 15240 } 15241 mp1->b_cont = mp; 15242 mp = mp1; 15243 mp->b_wptr += sizeof (*todi) + optlen; 15244 mp->b_datap->db_type = M_PROTO; 15245 todi = (struct T_optdata_ind *)mp->b_rptr; 15246 todi->PRIM_type = T_OPTDATA_IND; 15247 todi->DATA_flag = 1; /* MORE data */ 15248 todi->OPT_length = optlen; 15249 todi->OPT_offset = sizeof (*todi); 15250 optptr = (uchar_t *)&todi[1]; 15251 /* 15252 * If app asked for pktinfo and the index has changed ... 15253 * Note that the local address never changes for the connection. 15254 */ 15255 if (addflag & TCP_IPV6_RECVPKTINFO) { 15256 struct in6_pktinfo *pkti; 15257 15258 toh = (struct T_opthdr *)optptr; 15259 toh->level = IPPROTO_IPV6; 15260 toh->name = IPV6_PKTINFO; 15261 toh->len = sizeof (*toh) + sizeof (*pkti); 15262 toh->status = 0; 15263 optptr += sizeof (*toh); 15264 pkti = (struct in6_pktinfo *)optptr; 15265 if (tcp->tcp_ipversion == IPV6_VERSION) 15266 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15267 else 15268 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15269 &pkti->ipi6_addr); 15270 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15271 optptr += sizeof (*pkti); 15272 ASSERT(OK_32PTR(optptr)); 15273 /* Save as "last" value */ 15274 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15275 } 15276 /* If app asked for hoplimit and it has changed ... */ 15277 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15278 toh = (struct T_opthdr *)optptr; 15279 toh->level = IPPROTO_IPV6; 15280 toh->name = IPV6_HOPLIMIT; 15281 toh->len = sizeof (*toh) + sizeof (uint_t); 15282 toh->status = 0; 15283 optptr += sizeof (*toh); 15284 *(uint_t *)optptr = ipp->ipp_hoplimit; 15285 optptr += sizeof (uint_t); 15286 ASSERT(OK_32PTR(optptr)); 15287 /* Save as "last" value */ 15288 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15289 } 15290 /* If app asked for tclass and it has changed ... */ 15291 if (addflag & TCP_IPV6_RECVTCLASS) { 15292 toh = (struct T_opthdr *)optptr; 15293 toh->level = IPPROTO_IPV6; 15294 toh->name = IPV6_TCLASS; 15295 toh->len = sizeof (*toh) + sizeof (uint_t); 15296 toh->status = 0; 15297 optptr += sizeof (*toh); 15298 *(uint_t *)optptr = ipp->ipp_tclass; 15299 optptr += sizeof (uint_t); 15300 ASSERT(OK_32PTR(optptr)); 15301 /* Save as "last" value */ 15302 tcp->tcp_recvtclass = ipp->ipp_tclass; 15303 } 15304 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15305 toh = (struct T_opthdr *)optptr; 15306 toh->level = IPPROTO_IPV6; 15307 toh->name = IPV6_HOPOPTS; 15308 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15309 tcp->tcp_label_len; 15310 toh->status = 0; 15311 optptr += sizeof (*toh); 15312 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15313 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15314 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15315 ASSERT(OK_32PTR(optptr)); 15316 /* Save as last value */ 15317 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15318 (ipp->ipp_fields & IPPF_HOPOPTS), 15319 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15320 } 15321 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15322 toh = (struct T_opthdr *)optptr; 15323 toh->level = IPPROTO_IPV6; 15324 toh->name = IPV6_RTHDRDSTOPTS; 15325 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15326 toh->status = 0; 15327 optptr += sizeof (*toh); 15328 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15329 optptr += ipp->ipp_rtdstoptslen; 15330 ASSERT(OK_32PTR(optptr)); 15331 /* Save as last value */ 15332 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15333 &tcp->tcp_rtdstoptslen, 15334 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15335 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15336 } 15337 if (addflag & TCP_IPV6_RECVRTHDR) { 15338 toh = (struct T_opthdr *)optptr; 15339 toh->level = IPPROTO_IPV6; 15340 toh->name = IPV6_RTHDR; 15341 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15342 toh->status = 0; 15343 optptr += sizeof (*toh); 15344 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15345 optptr += ipp->ipp_rthdrlen; 15346 ASSERT(OK_32PTR(optptr)); 15347 /* Save as last value */ 15348 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15349 (ipp->ipp_fields & IPPF_RTHDR), 15350 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15351 } 15352 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15353 toh = (struct T_opthdr *)optptr; 15354 toh->level = IPPROTO_IPV6; 15355 toh->name = IPV6_DSTOPTS; 15356 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15357 toh->status = 0; 15358 optptr += sizeof (*toh); 15359 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15360 optptr += ipp->ipp_dstoptslen; 15361 ASSERT(OK_32PTR(optptr)); 15362 /* Save as last value */ 15363 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15364 (ipp->ipp_fields & IPPF_DSTOPTS), 15365 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15366 } 15367 ASSERT(optptr == mp->b_wptr); 15368 return (mp); 15369 } 15370 15371 15372 /* 15373 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15374 * or a "bad" IRE detected by tcp_adapt_ire. 15375 * We can't tell if the failure was due to the laddr or the faddr 15376 * thus we clear out all addresses and ports. 15377 */ 15378 static void 15379 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15380 { 15381 queue_t *q = tcp->tcp_rq; 15382 tcph_t *tcph; 15383 struct T_error_ack *tea; 15384 conn_t *connp = tcp->tcp_connp; 15385 15386 15387 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15388 15389 if (mp->b_cont) { 15390 freemsg(mp->b_cont); 15391 mp->b_cont = NULL; 15392 } 15393 tea = (struct T_error_ack *)mp->b_rptr; 15394 switch (tea->PRIM_type) { 15395 case T_BIND_ACK: 15396 /* 15397 * Need to unbind with classifier since we were just told that 15398 * our bind succeeded. 15399 */ 15400 tcp->tcp_hard_bound = B_FALSE; 15401 tcp->tcp_hard_binding = B_FALSE; 15402 15403 ipcl_hash_remove(connp); 15404 /* Reuse the mblk if possible */ 15405 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15406 sizeof (*tea)); 15407 mp->b_rptr = mp->b_datap->db_base; 15408 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15409 tea = (struct T_error_ack *)mp->b_rptr; 15410 tea->PRIM_type = T_ERROR_ACK; 15411 tea->TLI_error = TSYSERR; 15412 tea->UNIX_error = error; 15413 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15414 tea->ERROR_prim = T_CONN_REQ; 15415 } else { 15416 tea->ERROR_prim = O_T_BIND_REQ; 15417 } 15418 break; 15419 15420 case T_ERROR_ACK: 15421 if (tcp->tcp_state >= TCPS_SYN_SENT) 15422 tea->ERROR_prim = T_CONN_REQ; 15423 break; 15424 default: 15425 panic("tcp_bind_failed: unexpected TPI type"); 15426 /*NOTREACHED*/ 15427 } 15428 15429 tcp->tcp_state = TCPS_IDLE; 15430 if (tcp->tcp_ipversion == IPV4_VERSION) 15431 tcp->tcp_ipha->ipha_src = 0; 15432 else 15433 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15434 /* 15435 * Copy of the src addr. in tcp_t is needed since 15436 * the lookup funcs. can only look at tcp_t 15437 */ 15438 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15439 15440 tcph = tcp->tcp_tcph; 15441 tcph->th_lport[0] = 0; 15442 tcph->th_lport[1] = 0; 15443 tcp_bind_hash_remove(tcp); 15444 bzero(&connp->u_port, sizeof (connp->u_port)); 15445 /* blow away saved option results if any */ 15446 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15447 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15448 15449 conn_delete_ire(tcp->tcp_connp, NULL); 15450 putnext(q, mp); 15451 } 15452 15453 /* 15454 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15455 * messages. 15456 */ 15457 void 15458 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15459 { 15460 mblk_t *mp1; 15461 uchar_t *rptr = mp->b_rptr; 15462 queue_t *q = tcp->tcp_rq; 15463 struct T_error_ack *tea; 15464 uint32_t mss; 15465 mblk_t *syn_mp; 15466 mblk_t *mdti; 15467 mblk_t *lsoi; 15468 int retval; 15469 mblk_t *ire_mp; 15470 15471 switch (mp->b_datap->db_type) { 15472 case M_PROTO: 15473 case M_PCPROTO: 15474 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15475 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15476 break; 15477 tea = (struct T_error_ack *)rptr; 15478 switch (tea->PRIM_type) { 15479 case T_BIND_ACK: 15480 /* 15481 * Adapt Multidata information, if any. The 15482 * following tcp_mdt_update routine will free 15483 * the message. 15484 */ 15485 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15486 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15487 b_rptr)->mdt_capab, B_TRUE); 15488 freemsg(mdti); 15489 } 15490 15491 /* 15492 * Check to update LSO information with tcp, and 15493 * tcp_lso_update routine will free the message. 15494 */ 15495 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15496 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15497 b_rptr)->lso_capab); 15498 freemsg(lsoi); 15499 } 15500 15501 /* Get the IRE, if we had requested for it */ 15502 ire_mp = tcp_ire_mp(mp); 15503 15504 if (tcp->tcp_hard_binding) { 15505 tcp->tcp_hard_binding = B_FALSE; 15506 tcp->tcp_hard_bound = B_TRUE; 15507 CL_INET_CONNECT(tcp); 15508 } else { 15509 if (ire_mp != NULL) 15510 freeb(ire_mp); 15511 goto after_syn_sent; 15512 } 15513 15514 retval = tcp_adapt_ire(tcp, ire_mp); 15515 if (ire_mp != NULL) 15516 freeb(ire_mp); 15517 if (retval == 0) { 15518 tcp_bind_failed(tcp, mp, 15519 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15520 ENETUNREACH : EADDRNOTAVAIL)); 15521 return; 15522 } 15523 /* 15524 * Don't let an endpoint connect to itself. 15525 * Also checked in tcp_connect() but that 15526 * check can't handle the case when the 15527 * local IP address is INADDR_ANY. 15528 */ 15529 if (tcp->tcp_ipversion == IPV4_VERSION) { 15530 if ((tcp->tcp_ipha->ipha_dst == 15531 tcp->tcp_ipha->ipha_src) && 15532 (BE16_EQL(tcp->tcp_tcph->th_lport, 15533 tcp->tcp_tcph->th_fport))) { 15534 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15535 return; 15536 } 15537 } else { 15538 if (IN6_ARE_ADDR_EQUAL( 15539 &tcp->tcp_ip6h->ip6_dst, 15540 &tcp->tcp_ip6h->ip6_src) && 15541 (BE16_EQL(tcp->tcp_tcph->th_lport, 15542 tcp->tcp_tcph->th_fport))) { 15543 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15544 return; 15545 } 15546 } 15547 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15548 /* 15549 * This should not be possible! Just for 15550 * defensive coding... 15551 */ 15552 if (tcp->tcp_state != TCPS_SYN_SENT) 15553 goto after_syn_sent; 15554 15555 if (is_system_labeled() && 15556 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15557 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15558 return; 15559 } 15560 15561 ASSERT(q == tcp->tcp_rq); 15562 /* 15563 * tcp_adapt_ire() does not adjust 15564 * for TCP/IP header length. 15565 */ 15566 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15567 15568 /* 15569 * Just make sure our rwnd is at 15570 * least tcp_recv_hiwat_mss * MSS 15571 * large, and round up to the nearest 15572 * MSS. 15573 * 15574 * We do the round up here because 15575 * we need to get the interface 15576 * MTU first before we can do the 15577 * round up. 15578 */ 15579 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15580 tcp_recv_hiwat_minmss * mss); 15581 q->q_hiwat = tcp->tcp_rwnd; 15582 tcp_set_ws_value(tcp); 15583 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15584 tcp->tcp_tcph->th_win); 15585 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15586 tcp->tcp_snd_ws_ok = B_TRUE; 15587 15588 /* 15589 * Set tcp_snd_ts_ok to true 15590 * so that tcp_xmit_mp will 15591 * include the timestamp 15592 * option in the SYN segment. 15593 */ 15594 if (tcp_tstamp_always || 15595 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15596 tcp->tcp_snd_ts_ok = B_TRUE; 15597 } 15598 15599 /* 15600 * tcp_snd_sack_ok can be set in 15601 * tcp_adapt_ire() if the sack metric 15602 * is set. So check it here also. 15603 */ 15604 if (tcp_sack_permitted == 2 || 15605 tcp->tcp_snd_sack_ok) { 15606 if (tcp->tcp_sack_info == NULL) { 15607 tcp->tcp_sack_info = 15608 kmem_cache_alloc(tcp_sack_info_cache, 15609 KM_SLEEP); 15610 } 15611 tcp->tcp_snd_sack_ok = B_TRUE; 15612 } 15613 15614 /* 15615 * Should we use ECN? Note that the current 15616 * default value (SunOS 5.9) of tcp_ecn_permitted 15617 * is 1. The reason for doing this is that there 15618 * are equipments out there that will drop ECN 15619 * enabled IP packets. Setting it to 1 avoids 15620 * compatibility problems. 15621 */ 15622 if (tcp_ecn_permitted == 2) 15623 tcp->tcp_ecn_ok = B_TRUE; 15624 15625 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15626 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15627 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15628 if (syn_mp) { 15629 cred_t *cr; 15630 pid_t pid; 15631 15632 /* 15633 * Obtain the credential from the 15634 * thread calling connect(); the credential 15635 * lives on in the second mblk which 15636 * originated from T_CONN_REQ and is echoed 15637 * with the T_BIND_ACK from ip. If none 15638 * can be found, default to the creator 15639 * of the socket. 15640 */ 15641 if (mp->b_cont == NULL || 15642 (cr = DB_CRED(mp->b_cont)) == NULL) { 15643 cr = tcp->tcp_cred; 15644 pid = tcp->tcp_cpid; 15645 } else { 15646 pid = DB_CPID(mp->b_cont); 15647 } 15648 15649 TCP_RECORD_TRACE(tcp, syn_mp, 15650 TCP_TRACE_SEND_PKT); 15651 mblk_setcred(syn_mp, cr); 15652 DB_CPID(syn_mp) = pid; 15653 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15654 } 15655 after_syn_sent: 15656 /* 15657 * A trailer mblk indicates a waiting client upstream. 15658 * We complete here the processing begun in 15659 * either tcp_bind() or tcp_connect() by passing 15660 * upstream the reply message they supplied. 15661 */ 15662 mp1 = mp; 15663 mp = mp->b_cont; 15664 freeb(mp1); 15665 if (mp) 15666 break; 15667 return; 15668 case T_ERROR_ACK: 15669 if (tcp->tcp_debug) { 15670 (void) strlog(TCP_MOD_ID, 0, 1, 15671 SL_TRACE|SL_ERROR, 15672 "tcp_rput_other: case T_ERROR_ACK, " 15673 "ERROR_prim == %d", 15674 tea->ERROR_prim); 15675 } 15676 switch (tea->ERROR_prim) { 15677 case O_T_BIND_REQ: 15678 case T_BIND_REQ: 15679 tcp_bind_failed(tcp, mp, 15680 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15681 ENETUNREACH : EADDRNOTAVAIL)); 15682 return; 15683 case T_UNBIND_REQ: 15684 tcp->tcp_hard_binding = B_FALSE; 15685 tcp->tcp_hard_bound = B_FALSE; 15686 if (mp->b_cont) { 15687 freemsg(mp->b_cont); 15688 mp->b_cont = NULL; 15689 } 15690 if (tcp->tcp_unbind_pending) 15691 tcp->tcp_unbind_pending = 0; 15692 else { 15693 /* From tcp_ip_unbind() - free */ 15694 freemsg(mp); 15695 return; 15696 } 15697 break; 15698 case T_SVR4_OPTMGMT_REQ: 15699 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15700 /* T_OPTMGMT_REQ generated by TCP */ 15701 printf("T_SVR4_OPTMGMT_REQ failed " 15702 "%d/%d - dropped (cnt %d)\n", 15703 tea->TLI_error, tea->UNIX_error, 15704 tcp->tcp_drop_opt_ack_cnt); 15705 freemsg(mp); 15706 tcp->tcp_drop_opt_ack_cnt--; 15707 return; 15708 } 15709 break; 15710 } 15711 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15712 tcp->tcp_drop_opt_ack_cnt > 0) { 15713 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15714 "- dropped (cnt %d)\n", 15715 tea->TLI_error, tea->UNIX_error, 15716 tcp->tcp_drop_opt_ack_cnt); 15717 freemsg(mp); 15718 tcp->tcp_drop_opt_ack_cnt--; 15719 return; 15720 } 15721 break; 15722 case T_OPTMGMT_ACK: 15723 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15724 /* T_OPTMGMT_REQ generated by TCP */ 15725 freemsg(mp); 15726 tcp->tcp_drop_opt_ack_cnt--; 15727 return; 15728 } 15729 break; 15730 default: 15731 break; 15732 } 15733 break; 15734 case M_FLUSH: 15735 if (*rptr & FLUSHR) 15736 flushq(q, FLUSHDATA); 15737 break; 15738 default: 15739 /* M_CTL will be directly sent to tcp_icmp_error() */ 15740 ASSERT(DB_TYPE(mp) != M_CTL); 15741 break; 15742 } 15743 /* 15744 * Make sure we set this bit before sending the ACK for 15745 * bind. Otherwise accept could possibly run and free 15746 * this tcp struct. 15747 */ 15748 putnext(q, mp); 15749 } 15750 15751 /* 15752 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15753 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15754 * tcp_rsrv() try again. 15755 */ 15756 static void 15757 tcp_ordrel_kick(void *arg) 15758 { 15759 conn_t *connp = (conn_t *)arg; 15760 tcp_t *tcp = connp->conn_tcp; 15761 15762 tcp->tcp_ordrelid = 0; 15763 tcp->tcp_timeout = B_FALSE; 15764 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15765 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15766 qenable(tcp->tcp_rq); 15767 } 15768 } 15769 15770 /* ARGSUSED */ 15771 static void 15772 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15773 { 15774 conn_t *connp = (conn_t *)arg; 15775 tcp_t *tcp = connp->conn_tcp; 15776 queue_t *q = tcp->tcp_rq; 15777 uint_t thwin; 15778 15779 freeb(mp); 15780 15781 TCP_STAT(tcp_rsrv_calls); 15782 15783 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15784 return; 15785 } 15786 15787 if (tcp->tcp_fused) { 15788 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15789 15790 ASSERT(tcp->tcp_fused); 15791 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15792 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15793 ASSERT(!TCP_IS_DETACHED(tcp)); 15794 ASSERT(tcp->tcp_connp->conn_sqp == 15795 peer_tcp->tcp_connp->conn_sqp); 15796 15797 /* 15798 * Normally we would not get backenabled in synchronous 15799 * streams mode, but in case this happens, we need to plug 15800 * synchronous streams during our drain to prevent a race 15801 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15802 */ 15803 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15804 if (tcp->tcp_rcv_list != NULL) 15805 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15806 15807 tcp_clrqfull(peer_tcp); 15808 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15809 TCP_STAT(tcp_fusion_backenabled); 15810 return; 15811 } 15812 15813 if (canputnext(q)) { 15814 tcp->tcp_rwnd = q->q_hiwat; 15815 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15816 << tcp->tcp_rcv_ws; 15817 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15818 /* 15819 * Send back a window update immediately if TCP is above 15820 * ESTABLISHED state and the increase of the rcv window 15821 * that the other side knows is at least 1 MSS after flow 15822 * control is lifted. 15823 */ 15824 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15825 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15826 tcp_xmit_ctl(NULL, tcp, 15827 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15828 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15829 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15830 } 15831 } 15832 /* Handle a failure to allocate a T_ORDREL_IND here */ 15833 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15834 ASSERT(tcp->tcp_listener == NULL); 15835 if (tcp->tcp_rcv_list != NULL) { 15836 (void) tcp_rcv_drain(q, tcp); 15837 } 15838 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15839 mp = mi_tpi_ordrel_ind(); 15840 if (mp) { 15841 tcp->tcp_ordrel_done = B_TRUE; 15842 putnext(q, mp); 15843 if (tcp->tcp_deferred_clean_death) { 15844 /* 15845 * tcp_clean_death was deferred for 15846 * T_ORDREL_IND - do it now 15847 */ 15848 tcp->tcp_deferred_clean_death = B_FALSE; 15849 (void) tcp_clean_death(tcp, 15850 tcp->tcp_client_errno, 22); 15851 } 15852 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15853 /* 15854 * If there isn't already a timer running 15855 * start one. Use a 4 second 15856 * timer as a fallback since it can't fail. 15857 */ 15858 tcp->tcp_timeout = B_TRUE; 15859 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15860 MSEC_TO_TICK(4000)); 15861 } 15862 } 15863 } 15864 15865 /* 15866 * The read side service routine is called mostly when we get back-enabled as a 15867 * result of flow control relief. Since we don't actually queue anything in 15868 * TCP, we have no data to send out of here. What we do is clear the receive 15869 * window, and send out a window update. 15870 * This routine is also called to drive an orderly release message upstream 15871 * if the attempt in tcp_rput failed. 15872 */ 15873 static void 15874 tcp_rsrv(queue_t *q) 15875 { 15876 conn_t *connp = Q_TO_CONN(q); 15877 tcp_t *tcp = connp->conn_tcp; 15878 mblk_t *mp; 15879 15880 /* No code does a putq on the read side */ 15881 ASSERT(q->q_first == NULL); 15882 15883 /* Nothing to do for the default queue */ 15884 if (q == tcp_g_q) { 15885 return; 15886 } 15887 15888 mp = allocb(0, BPRI_HI); 15889 if (mp == NULL) { 15890 /* 15891 * We are under memory pressure. Return for now and we 15892 * we will be called again later. 15893 */ 15894 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15895 /* 15896 * If there isn't already a timer running 15897 * start one. Use a 4 second 15898 * timer as a fallback since it can't fail. 15899 */ 15900 tcp->tcp_timeout = B_TRUE; 15901 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15902 MSEC_TO_TICK(4000)); 15903 } 15904 return; 15905 } 15906 CONN_INC_REF(connp); 15907 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15908 SQTAG_TCP_RSRV); 15909 } 15910 15911 /* 15912 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15913 * We do not allow the receive window to shrink. After setting rwnd, 15914 * set the flow control hiwat of the stream. 15915 * 15916 * This function is called in 2 cases: 15917 * 15918 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15919 * connection (passive open) and in tcp_rput_data() for active connect. 15920 * This is called after tcp_mss_set() when the desired MSS value is known. 15921 * This makes sure that our window size is a mutiple of the other side's 15922 * MSS. 15923 * 2) Handling SO_RCVBUF option. 15924 * 15925 * It is ASSUMED that the requested size is a multiple of the current MSS. 15926 * 15927 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15928 * user requests so. 15929 */ 15930 static int 15931 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15932 { 15933 uint32_t mss = tcp->tcp_mss; 15934 uint32_t old_max_rwnd; 15935 uint32_t max_transmittable_rwnd; 15936 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15937 15938 if (tcp->tcp_fused) { 15939 size_t sth_hiwat; 15940 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15941 15942 ASSERT(peer_tcp != NULL); 15943 /* 15944 * Record the stream head's high water mark for 15945 * this endpoint; this is used for flow-control 15946 * purposes in tcp_fuse_output(). 15947 */ 15948 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15949 if (!tcp_detached) 15950 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15951 15952 /* 15953 * In the fusion case, the maxpsz stream head value of 15954 * our peer is set according to its send buffer size 15955 * and our receive buffer size; since the latter may 15956 * have changed we need to update the peer's maxpsz. 15957 */ 15958 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15959 return (rwnd); 15960 } 15961 15962 if (tcp_detached) 15963 old_max_rwnd = tcp->tcp_rwnd; 15964 else 15965 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15966 15967 /* 15968 * Insist on a receive window that is at least 15969 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15970 * funny TCP interactions of Nagle algorithm, SWS avoidance 15971 * and delayed acknowledgement. 15972 */ 15973 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15974 15975 /* 15976 * If window size info has already been exchanged, TCP should not 15977 * shrink the window. Shrinking window is doable if done carefully. 15978 * We may add that support later. But so far there is not a real 15979 * need to do that. 15980 */ 15981 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15982 /* MSS may have changed, do a round up again. */ 15983 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15984 } 15985 15986 /* 15987 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15988 * can be applied even before the window scale option is decided. 15989 */ 15990 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15991 if (rwnd > max_transmittable_rwnd) { 15992 rwnd = max_transmittable_rwnd - 15993 (max_transmittable_rwnd % mss); 15994 if (rwnd < mss) 15995 rwnd = max_transmittable_rwnd; 15996 /* 15997 * If we're over the limit we may have to back down tcp_rwnd. 15998 * The increment below won't work for us. So we set all three 15999 * here and the increment below will have no effect. 16000 */ 16001 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16002 } 16003 if (tcp->tcp_localnet) { 16004 tcp->tcp_rack_abs_max = 16005 MIN(tcp_local_dacks_max, rwnd / mss / 2); 16006 } else { 16007 /* 16008 * For a remote host on a different subnet (through a router), 16009 * we ack every other packet to be conforming to RFC1122. 16010 * tcp_deferred_acks_max is default to 2. 16011 */ 16012 tcp->tcp_rack_abs_max = 16013 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 16014 } 16015 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16016 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16017 else 16018 tcp->tcp_rack_cur_max = 0; 16019 /* 16020 * Increment the current rwnd by the amount the maximum grew (we 16021 * can not overwrite it since we might be in the middle of a 16022 * connection.) 16023 */ 16024 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16025 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16026 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16027 tcp->tcp_cwnd_max = rwnd; 16028 16029 if (tcp_detached) 16030 return (rwnd); 16031 /* 16032 * We set the maximum receive window into rq->q_hiwat. 16033 * This is not actually used for flow control. 16034 */ 16035 tcp->tcp_rq->q_hiwat = rwnd; 16036 /* 16037 * Set the Stream head high water mark. This doesn't have to be 16038 * here, since we are simply using default values, but we would 16039 * prefer to choose these values algorithmically, with a likely 16040 * relationship to rwnd. 16041 */ 16042 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 16043 return (rwnd); 16044 } 16045 16046 /* 16047 * Return SNMP stuff in buffer in mpdata. 16048 */ 16049 int 16050 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16051 { 16052 mblk_t *mpdata; 16053 mblk_t *mp_conn_ctl = NULL; 16054 mblk_t *mp_conn_tail; 16055 mblk_t *mp_attr_ctl = NULL; 16056 mblk_t *mp_attr_tail; 16057 mblk_t *mp6_conn_ctl = NULL; 16058 mblk_t *mp6_conn_tail; 16059 mblk_t *mp6_attr_ctl = NULL; 16060 mblk_t *mp6_attr_tail; 16061 struct opthdr *optp; 16062 mib2_tcpConnEntry_t tce; 16063 mib2_tcp6ConnEntry_t tce6; 16064 mib2_transportMLPEntry_t mlp; 16065 connf_t *connfp; 16066 conn_t *connp; 16067 int i; 16068 boolean_t ispriv; 16069 zoneid_t zoneid; 16070 int v4_conn_idx; 16071 int v6_conn_idx; 16072 16073 if (mpctl == NULL || 16074 (mpdata = mpctl->b_cont) == NULL || 16075 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16076 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16077 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16078 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16079 freemsg(mp_conn_ctl); 16080 freemsg(mp_attr_ctl); 16081 freemsg(mp6_conn_ctl); 16082 freemsg(mp6_attr_ctl); 16083 return (0); 16084 } 16085 16086 /* build table of connections -- need count in fixed part */ 16087 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 16088 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 16089 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 16090 SET_MIB(tcp_mib.tcpMaxConn, -1); 16091 SET_MIB(tcp_mib.tcpCurrEstab, 0); 16092 16093 ispriv = 16094 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16095 zoneid = Q_TO_CONN(q)->conn_zoneid; 16096 16097 v4_conn_idx = v6_conn_idx = 0; 16098 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16099 16100 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16101 16102 connfp = &ipcl_globalhash_fanout[i]; 16103 16104 connp = NULL; 16105 16106 while ((connp = 16107 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16108 tcp_t *tcp; 16109 boolean_t needattr; 16110 16111 if (connp->conn_zoneid != zoneid) 16112 continue; /* not in this zone */ 16113 16114 tcp = connp->conn_tcp; 16115 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 16116 tcp->tcp_ibsegs = 0; 16117 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 16118 tcp->tcp_obsegs = 0; 16119 16120 tce6.tcp6ConnState = tce.tcpConnState = 16121 tcp_snmp_state(tcp); 16122 if (tce.tcpConnState == MIB2_TCP_established || 16123 tce.tcpConnState == MIB2_TCP_closeWait) 16124 BUMP_MIB(&tcp_mib, tcpCurrEstab); 16125 16126 needattr = B_FALSE; 16127 bzero(&mlp, sizeof (mlp)); 16128 if (connp->conn_mlp_type != mlptSingle) { 16129 if (connp->conn_mlp_type == mlptShared || 16130 connp->conn_mlp_type == mlptBoth) 16131 mlp.tme_flags |= MIB2_TMEF_SHARED; 16132 if (connp->conn_mlp_type == mlptPrivate || 16133 connp->conn_mlp_type == mlptBoth) 16134 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16135 needattr = B_TRUE; 16136 } 16137 if (connp->conn_peercred != NULL) { 16138 ts_label_t *tsl; 16139 16140 tsl = crgetlabel(connp->conn_peercred); 16141 mlp.tme_doi = label2doi(tsl); 16142 mlp.tme_label = *label2bslabel(tsl); 16143 needattr = B_TRUE; 16144 } 16145 16146 /* Create a message to report on IPv6 entries */ 16147 if (tcp->tcp_ipversion == IPV6_VERSION) { 16148 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16149 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16150 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16151 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16152 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16153 /* Don't want just anybody seeing these... */ 16154 if (ispriv) { 16155 tce6.tcp6ConnEntryInfo.ce_snxt = 16156 tcp->tcp_snxt; 16157 tce6.tcp6ConnEntryInfo.ce_suna = 16158 tcp->tcp_suna; 16159 tce6.tcp6ConnEntryInfo.ce_rnxt = 16160 tcp->tcp_rnxt; 16161 tce6.tcp6ConnEntryInfo.ce_rack = 16162 tcp->tcp_rack; 16163 } else { 16164 /* 16165 * Netstat, unfortunately, uses this to 16166 * get send/receive queue sizes. How to fix? 16167 * Why not compute the difference only? 16168 */ 16169 tce6.tcp6ConnEntryInfo.ce_snxt = 16170 tcp->tcp_snxt - tcp->tcp_suna; 16171 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16172 tce6.tcp6ConnEntryInfo.ce_rnxt = 16173 tcp->tcp_rnxt - tcp->tcp_rack; 16174 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16175 } 16176 16177 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16178 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16179 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16180 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16181 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16182 16183 tce6.tcp6ConnCreationProcess = 16184 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16185 tcp->tcp_cpid; 16186 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16187 16188 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16189 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16190 16191 mlp.tme_connidx = v6_conn_idx++; 16192 if (needattr) 16193 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16194 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16195 } 16196 /* 16197 * Create an IPv4 table entry for IPv4 entries and also 16198 * for IPv6 entries which are bound to in6addr_any 16199 * but don't have IPV6_V6ONLY set. 16200 * (i.e. anything an IPv4 peer could connect to) 16201 */ 16202 if (tcp->tcp_ipversion == IPV4_VERSION || 16203 (tcp->tcp_state <= TCPS_LISTEN && 16204 !tcp->tcp_connp->conn_ipv6_v6only && 16205 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16206 if (tcp->tcp_ipversion == IPV6_VERSION) { 16207 tce.tcpConnRemAddress = INADDR_ANY; 16208 tce.tcpConnLocalAddress = INADDR_ANY; 16209 } else { 16210 tce.tcpConnRemAddress = 16211 tcp->tcp_remote; 16212 tce.tcpConnLocalAddress = 16213 tcp->tcp_ip_src; 16214 } 16215 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16216 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16217 /* Don't want just anybody seeing these... */ 16218 if (ispriv) { 16219 tce.tcpConnEntryInfo.ce_snxt = 16220 tcp->tcp_snxt; 16221 tce.tcpConnEntryInfo.ce_suna = 16222 tcp->tcp_suna; 16223 tce.tcpConnEntryInfo.ce_rnxt = 16224 tcp->tcp_rnxt; 16225 tce.tcpConnEntryInfo.ce_rack = 16226 tcp->tcp_rack; 16227 } else { 16228 /* 16229 * Netstat, unfortunately, uses this to 16230 * get send/receive queue sizes. How 16231 * to fix? 16232 * Why not compute the difference only? 16233 */ 16234 tce.tcpConnEntryInfo.ce_snxt = 16235 tcp->tcp_snxt - tcp->tcp_suna; 16236 tce.tcpConnEntryInfo.ce_suna = 0; 16237 tce.tcpConnEntryInfo.ce_rnxt = 16238 tcp->tcp_rnxt - tcp->tcp_rack; 16239 tce.tcpConnEntryInfo.ce_rack = 0; 16240 } 16241 16242 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16243 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16244 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16245 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16246 tce.tcpConnEntryInfo.ce_state = 16247 tcp->tcp_state; 16248 16249 tce.tcpConnCreationProcess = 16250 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16251 tcp->tcp_cpid; 16252 tce.tcpConnCreationTime = tcp->tcp_open_time; 16253 16254 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16255 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16256 16257 mlp.tme_connidx = v4_conn_idx++; 16258 if (needattr) 16259 (void) snmp_append_data2( 16260 mp_attr_ctl->b_cont, 16261 &mp_attr_tail, (char *)&mlp, 16262 sizeof (mlp)); 16263 } 16264 } 16265 } 16266 16267 /* fixed length structure for IPv4 and IPv6 counters */ 16268 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16269 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 16270 /* synchronize 32- and 64-bit counters */ 16271 SYNC32_MIB(&tcp_mib, tcpInSegs, tcpHCInSegs); 16272 SYNC32_MIB(&tcp_mib, tcpOutSegs, tcpHCOutSegs); 16273 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16274 optp->level = MIB2_TCP; 16275 optp->name = 0; 16276 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16277 optp->len = msgdsize(mpdata); 16278 qreply(q, mpctl); 16279 16280 /* table of connections... */ 16281 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16282 sizeof (struct T_optmgmt_ack)]; 16283 optp->level = MIB2_TCP; 16284 optp->name = MIB2_TCP_CONN; 16285 optp->len = msgdsize(mp_conn_ctl->b_cont); 16286 qreply(q, mp_conn_ctl); 16287 16288 /* table of MLP attributes... */ 16289 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16290 sizeof (struct T_optmgmt_ack)]; 16291 optp->level = MIB2_TCP; 16292 optp->name = EXPER_XPORT_MLP; 16293 optp->len = msgdsize(mp_attr_ctl->b_cont); 16294 if (optp->len == 0) 16295 freemsg(mp_attr_ctl); 16296 else 16297 qreply(q, mp_attr_ctl); 16298 16299 /* table of IPv6 connections... */ 16300 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16301 sizeof (struct T_optmgmt_ack)]; 16302 optp->level = MIB2_TCP6; 16303 optp->name = MIB2_TCP6_CONN; 16304 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16305 qreply(q, mp6_conn_ctl); 16306 16307 /* table of IPv6 MLP attributes... */ 16308 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16309 sizeof (struct T_optmgmt_ack)]; 16310 optp->level = MIB2_TCP6; 16311 optp->name = EXPER_XPORT_MLP; 16312 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16313 if (optp->len == 0) 16314 freemsg(mp6_attr_ctl); 16315 else 16316 qreply(q, mp6_attr_ctl); 16317 return (1); 16318 } 16319 16320 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16321 /* ARGSUSED */ 16322 int 16323 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16324 { 16325 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16326 16327 switch (level) { 16328 case MIB2_TCP: 16329 switch (name) { 16330 case 13: 16331 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16332 return (0); 16333 /* TODO: delete entry defined by tce */ 16334 return (1); 16335 default: 16336 return (0); 16337 } 16338 default: 16339 return (1); 16340 } 16341 } 16342 16343 /* Translate TCP state to MIB2 TCP state. */ 16344 static int 16345 tcp_snmp_state(tcp_t *tcp) 16346 { 16347 if (tcp == NULL) 16348 return (0); 16349 16350 switch (tcp->tcp_state) { 16351 case TCPS_CLOSED: 16352 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16353 case TCPS_BOUND: 16354 return (MIB2_TCP_closed); 16355 case TCPS_LISTEN: 16356 return (MIB2_TCP_listen); 16357 case TCPS_SYN_SENT: 16358 return (MIB2_TCP_synSent); 16359 case TCPS_SYN_RCVD: 16360 return (MIB2_TCP_synReceived); 16361 case TCPS_ESTABLISHED: 16362 return (MIB2_TCP_established); 16363 case TCPS_CLOSE_WAIT: 16364 return (MIB2_TCP_closeWait); 16365 case TCPS_FIN_WAIT_1: 16366 return (MIB2_TCP_finWait1); 16367 case TCPS_CLOSING: 16368 return (MIB2_TCP_closing); 16369 case TCPS_LAST_ACK: 16370 return (MIB2_TCP_lastAck); 16371 case TCPS_FIN_WAIT_2: 16372 return (MIB2_TCP_finWait2); 16373 case TCPS_TIME_WAIT: 16374 return (MIB2_TCP_timeWait); 16375 default: 16376 return (0); 16377 } 16378 } 16379 16380 static char tcp_report_header[] = 16381 "TCP " MI_COL_HDRPAD_STR 16382 "zone dest snxt suna " 16383 "swnd rnxt rack rwnd rto mss w sw rw t " 16384 "recent [lport,fport] state"; 16385 16386 /* 16387 * TCP status report triggered via the Named Dispatch mechanism. 16388 */ 16389 /* ARGSUSED */ 16390 static void 16391 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16392 cred_t *cr) 16393 { 16394 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16395 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16396 char cflag; 16397 in6_addr_t v6dst; 16398 char buf[80]; 16399 uint_t print_len, buf_len; 16400 16401 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16402 if (buf_len <= 0) 16403 return; 16404 16405 if (hashval >= 0) 16406 (void) sprintf(hash, "%03d ", hashval); 16407 else 16408 hash[0] = '\0'; 16409 16410 /* 16411 * Note that we use the remote address in the tcp_b structure. 16412 * This means that it will print out the real destination address, 16413 * not the next hop's address if source routing is used. This 16414 * avoid the confusion on the output because user may not 16415 * know that source routing is used for a connection. 16416 */ 16417 if (tcp->tcp_ipversion == IPV4_VERSION) { 16418 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16419 } else { 16420 v6dst = tcp->tcp_remote_v6; 16421 } 16422 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16423 /* 16424 * the ispriv checks are so that normal users cannot determine 16425 * sequence number information using NDD. 16426 */ 16427 16428 if (TCP_IS_DETACHED(tcp)) 16429 cflag = '*'; 16430 else 16431 cflag = ' '; 16432 print_len = snprintf((char *)mp->b_wptr, buf_len, 16433 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16434 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16435 hash, 16436 (void *)tcp, 16437 tcp->tcp_connp->conn_zoneid, 16438 addrbuf, 16439 (ispriv) ? tcp->tcp_snxt : 0, 16440 (ispriv) ? tcp->tcp_suna : 0, 16441 tcp->tcp_swnd, 16442 (ispriv) ? tcp->tcp_rnxt : 0, 16443 (ispriv) ? tcp->tcp_rack : 0, 16444 tcp->tcp_rwnd, 16445 tcp->tcp_rto, 16446 tcp->tcp_mss, 16447 tcp->tcp_snd_ws_ok, 16448 tcp->tcp_snd_ws, 16449 tcp->tcp_rcv_ws, 16450 tcp->tcp_snd_ts_ok, 16451 tcp->tcp_ts_recent, 16452 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16453 if (print_len < buf_len) { 16454 ((mblk_t *)mp)->b_wptr += print_len; 16455 } else { 16456 ((mblk_t *)mp)->b_wptr += buf_len; 16457 } 16458 } 16459 16460 /* 16461 * TCP status report (for listeners only) triggered via the Named Dispatch 16462 * mechanism. 16463 */ 16464 /* ARGSUSED */ 16465 static void 16466 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16467 { 16468 char addrbuf[INET6_ADDRSTRLEN]; 16469 in6_addr_t v6dst; 16470 uint_t print_len, buf_len; 16471 16472 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16473 if (buf_len <= 0) 16474 return; 16475 16476 if (tcp->tcp_ipversion == IPV4_VERSION) { 16477 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16478 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16479 } else { 16480 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16481 addrbuf, sizeof (addrbuf)); 16482 } 16483 print_len = snprintf((char *)mp->b_wptr, buf_len, 16484 "%03d " 16485 MI_COL_PTRFMT_STR 16486 "%d %s %05u %08u %d/%d/%d%c\n", 16487 hashval, (void *)tcp, 16488 tcp->tcp_connp->conn_zoneid, 16489 addrbuf, 16490 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16491 tcp->tcp_conn_req_seqnum, 16492 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16493 tcp->tcp_conn_req_max, 16494 tcp->tcp_syn_defense ? '*' : ' '); 16495 if (print_len < buf_len) { 16496 ((mblk_t *)mp)->b_wptr += print_len; 16497 } else { 16498 ((mblk_t *)mp)->b_wptr += buf_len; 16499 } 16500 } 16501 16502 /* TCP status report triggered via the Named Dispatch mechanism. */ 16503 /* ARGSUSED */ 16504 static int 16505 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16506 { 16507 tcp_t *tcp; 16508 int i; 16509 conn_t *connp; 16510 connf_t *connfp; 16511 zoneid_t zoneid; 16512 16513 /* 16514 * Because of the ndd constraint, at most we can have 64K buffer 16515 * to put in all TCP info. So to be more efficient, just 16516 * allocate a 64K buffer here, assuming we need that large buffer. 16517 * This may be a problem as any user can read tcp_status. Therefore 16518 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16519 * This should be OK as normal users should not do this too often. 16520 */ 16521 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16522 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16523 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16524 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16525 return (0); 16526 } 16527 } 16528 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16529 /* The following may work even if we cannot get a large buf. */ 16530 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16531 return (0); 16532 } 16533 16534 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16535 16536 zoneid = Q_TO_CONN(q)->conn_zoneid; 16537 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16538 16539 connfp = &ipcl_globalhash_fanout[i]; 16540 16541 connp = NULL; 16542 16543 while ((connp = 16544 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16545 tcp = connp->conn_tcp; 16546 if (zoneid != GLOBAL_ZONEID && 16547 zoneid != connp->conn_zoneid) 16548 continue; 16549 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16550 cr); 16551 } 16552 16553 } 16554 16555 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16556 return (0); 16557 } 16558 16559 /* TCP status report triggered via the Named Dispatch mechanism. */ 16560 /* ARGSUSED */ 16561 static int 16562 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16563 { 16564 tf_t *tbf; 16565 tcp_t *tcp; 16566 int i; 16567 zoneid_t zoneid; 16568 16569 /* Refer to comments in tcp_status_report(). */ 16570 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16571 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16572 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16573 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16574 return (0); 16575 } 16576 } 16577 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16578 /* The following may work even if we cannot get a large buf. */ 16579 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16580 return (0); 16581 } 16582 16583 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16584 16585 zoneid = Q_TO_CONN(q)->conn_zoneid; 16586 16587 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16588 tbf = &tcp_bind_fanout[i]; 16589 mutex_enter(&tbf->tf_lock); 16590 for (tcp = tbf->tf_tcp; tcp != NULL; 16591 tcp = tcp->tcp_bind_hash) { 16592 if (zoneid != GLOBAL_ZONEID && 16593 zoneid != tcp->tcp_connp->conn_zoneid) 16594 continue; 16595 CONN_INC_REF(tcp->tcp_connp); 16596 tcp_report_item(mp->b_cont, tcp, i, 16597 Q_TO_TCP(q), cr); 16598 CONN_DEC_REF(tcp->tcp_connp); 16599 } 16600 mutex_exit(&tbf->tf_lock); 16601 } 16602 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16603 return (0); 16604 } 16605 16606 /* TCP status report triggered via the Named Dispatch mechanism. */ 16607 /* ARGSUSED */ 16608 static int 16609 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16610 { 16611 connf_t *connfp; 16612 conn_t *connp; 16613 tcp_t *tcp; 16614 int i; 16615 zoneid_t zoneid; 16616 16617 /* Refer to comments in tcp_status_report(). */ 16618 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16619 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16620 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16621 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16622 return (0); 16623 } 16624 } 16625 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16626 /* The following may work even if we cannot get a large buf. */ 16627 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16628 return (0); 16629 } 16630 16631 (void) mi_mpprintf(mp, 16632 " TCP " MI_COL_HDRPAD_STR 16633 "zone IP addr port seqnum backlog (q0/q/max)"); 16634 16635 zoneid = Q_TO_CONN(q)->conn_zoneid; 16636 16637 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16638 connfp = &ipcl_bind_fanout[i]; 16639 connp = NULL; 16640 while ((connp = 16641 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16642 tcp = connp->conn_tcp; 16643 if (zoneid != GLOBAL_ZONEID && 16644 zoneid != connp->conn_zoneid) 16645 continue; 16646 tcp_report_listener(mp->b_cont, tcp, i); 16647 } 16648 } 16649 16650 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16651 return (0); 16652 } 16653 16654 /* TCP status report triggered via the Named Dispatch mechanism. */ 16655 /* ARGSUSED */ 16656 static int 16657 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16658 { 16659 connf_t *connfp; 16660 conn_t *connp; 16661 tcp_t *tcp; 16662 int i; 16663 zoneid_t zoneid; 16664 16665 /* Refer to comments in tcp_status_report(). */ 16666 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16667 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16668 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16669 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16670 return (0); 16671 } 16672 } 16673 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16674 /* The following may work even if we cannot get a large buf. */ 16675 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16676 return (0); 16677 } 16678 16679 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16680 ipcl_conn_fanout_size); 16681 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16682 16683 zoneid = Q_TO_CONN(q)->conn_zoneid; 16684 16685 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16686 connfp = &ipcl_conn_fanout[i]; 16687 connp = NULL; 16688 while ((connp = 16689 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16690 tcp = connp->conn_tcp; 16691 if (zoneid != GLOBAL_ZONEID && 16692 zoneid != connp->conn_zoneid) 16693 continue; 16694 tcp_report_item(mp->b_cont, tcp, i, 16695 Q_TO_TCP(q), cr); 16696 } 16697 } 16698 16699 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16700 return (0); 16701 } 16702 16703 /* TCP status report triggered via the Named Dispatch mechanism. */ 16704 /* ARGSUSED */ 16705 static int 16706 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16707 { 16708 tf_t *tf; 16709 tcp_t *tcp; 16710 int i; 16711 zoneid_t zoneid; 16712 16713 /* Refer to comments in tcp_status_report(). */ 16714 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16715 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16716 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16717 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16718 return (0); 16719 } 16720 } 16721 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16722 /* The following may work even if we cannot get a large buf. */ 16723 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16724 return (0); 16725 } 16726 16727 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16728 16729 zoneid = Q_TO_CONN(q)->conn_zoneid; 16730 16731 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16732 tf = &tcp_acceptor_fanout[i]; 16733 mutex_enter(&tf->tf_lock); 16734 for (tcp = tf->tf_tcp; tcp != NULL; 16735 tcp = tcp->tcp_acceptor_hash) { 16736 if (zoneid != GLOBAL_ZONEID && 16737 zoneid != tcp->tcp_connp->conn_zoneid) 16738 continue; 16739 tcp_report_item(mp->b_cont, tcp, i, 16740 Q_TO_TCP(q), cr); 16741 } 16742 mutex_exit(&tf->tf_lock); 16743 } 16744 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16745 return (0); 16746 } 16747 16748 /* 16749 * tcp_timer is the timer service routine. It handles the retransmission, 16750 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16751 * from the state of the tcp instance what kind of action needs to be done 16752 * at the time it is called. 16753 */ 16754 static void 16755 tcp_timer(void *arg) 16756 { 16757 mblk_t *mp; 16758 clock_t first_threshold; 16759 clock_t second_threshold; 16760 clock_t ms; 16761 uint32_t mss; 16762 conn_t *connp = (conn_t *)arg; 16763 tcp_t *tcp = connp->conn_tcp; 16764 16765 tcp->tcp_timer_tid = 0; 16766 16767 if (tcp->tcp_fused) 16768 return; 16769 16770 first_threshold = tcp->tcp_first_timer_threshold; 16771 second_threshold = tcp->tcp_second_timer_threshold; 16772 switch (tcp->tcp_state) { 16773 case TCPS_IDLE: 16774 case TCPS_BOUND: 16775 case TCPS_LISTEN: 16776 return; 16777 case TCPS_SYN_RCVD: { 16778 tcp_t *listener = tcp->tcp_listener; 16779 16780 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16781 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16782 /* it's our first timeout */ 16783 tcp->tcp_syn_rcvd_timeout = 1; 16784 mutex_enter(&listener->tcp_eager_lock); 16785 listener->tcp_syn_rcvd_timeout++; 16786 if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) { 16787 /* 16788 * Make this eager available for drop if we 16789 * need to drop one to accomodate a new 16790 * incoming SYN request. 16791 */ 16792 MAKE_DROPPABLE(listener, tcp); 16793 } 16794 if (!listener->tcp_syn_defense && 16795 (listener->tcp_syn_rcvd_timeout > 16796 (tcp_conn_req_max_q0 >> 2)) && 16797 (tcp_conn_req_max_q0 > 200)) { 16798 /* We may be under attack. Put on a defense. */ 16799 listener->tcp_syn_defense = B_TRUE; 16800 cmn_err(CE_WARN, "High TCP connect timeout " 16801 "rate! System (port %d) may be under a " 16802 "SYN flood attack!", 16803 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16804 16805 listener->tcp_ip_addr_cache = kmem_zalloc( 16806 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16807 KM_NOSLEEP); 16808 } 16809 mutex_exit(&listener->tcp_eager_lock); 16810 } else if (listener != NULL) { 16811 mutex_enter(&listener->tcp_eager_lock); 16812 tcp->tcp_syn_rcvd_timeout++; 16813 if (tcp->tcp_syn_rcvd_timeout > 1 && 16814 tcp->tcp_closemp_used == 0) { 16815 /* 16816 * This is our second timeout. Put the tcp in 16817 * the list of droppable eagers to allow it to 16818 * be dropped, if needed. We don't check 16819 * whether tcp_dontdrop is set or not to 16820 * protect ourselve from a SYN attack where a 16821 * remote host can spoof itself as one of the 16822 * good IP source and continue to hold 16823 * resources too long. 16824 */ 16825 MAKE_DROPPABLE(listener, tcp); 16826 } 16827 mutex_exit(&listener->tcp_eager_lock); 16828 } 16829 } 16830 /* FALLTHRU */ 16831 case TCPS_SYN_SENT: 16832 first_threshold = tcp->tcp_first_ctimer_threshold; 16833 second_threshold = tcp->tcp_second_ctimer_threshold; 16834 break; 16835 case TCPS_ESTABLISHED: 16836 case TCPS_FIN_WAIT_1: 16837 case TCPS_CLOSING: 16838 case TCPS_CLOSE_WAIT: 16839 case TCPS_LAST_ACK: 16840 /* If we have data to rexmit */ 16841 if (tcp->tcp_suna != tcp->tcp_snxt) { 16842 clock_t time_to_wait; 16843 16844 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16845 if (!tcp->tcp_xmit_head) 16846 break; 16847 time_to_wait = lbolt - 16848 (clock_t)tcp->tcp_xmit_head->b_prev; 16849 time_to_wait = tcp->tcp_rto - 16850 TICK_TO_MSEC(time_to_wait); 16851 /* 16852 * If the timer fires too early, 1 clock tick earlier, 16853 * restart the timer. 16854 */ 16855 if (time_to_wait > msec_per_tick) { 16856 TCP_STAT(tcp_timer_fire_early); 16857 TCP_TIMER_RESTART(tcp, time_to_wait); 16858 return; 16859 } 16860 /* 16861 * When we probe zero windows, we force the swnd open. 16862 * If our peer acks with a closed window swnd will be 16863 * set to zero by tcp_rput(). As long as we are 16864 * receiving acks tcp_rput will 16865 * reset 'tcp_ms_we_have_waited' so as not to trip the 16866 * first and second interval actions. NOTE: the timer 16867 * interval is allowed to continue its exponential 16868 * backoff. 16869 */ 16870 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16871 if (tcp->tcp_debug) { 16872 (void) strlog(TCP_MOD_ID, 0, 1, 16873 SL_TRACE, "tcp_timer: zero win"); 16874 } 16875 } else { 16876 /* 16877 * After retransmission, we need to do 16878 * slow start. Set the ssthresh to one 16879 * half of current effective window and 16880 * cwnd to one MSS. Also reset 16881 * tcp_cwnd_cnt. 16882 * 16883 * Note that if tcp_ssthresh is reduced because 16884 * of ECN, do not reduce it again unless it is 16885 * already one window of data away (tcp_cwr 16886 * should then be cleared) or this is a 16887 * timeout for a retransmitted segment. 16888 */ 16889 uint32_t npkt; 16890 16891 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16892 npkt = ((tcp->tcp_timer_backoff ? 16893 tcp->tcp_cwnd_ssthresh : 16894 tcp->tcp_snxt - 16895 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16896 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16897 tcp->tcp_mss; 16898 } 16899 tcp->tcp_cwnd = tcp->tcp_mss; 16900 tcp->tcp_cwnd_cnt = 0; 16901 if (tcp->tcp_ecn_ok) { 16902 tcp->tcp_cwr = B_TRUE; 16903 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16904 tcp->tcp_ecn_cwr_sent = B_FALSE; 16905 } 16906 } 16907 break; 16908 } 16909 /* 16910 * We have something to send yet we cannot send. The 16911 * reason can be: 16912 * 16913 * 1. Zero send window: we need to do zero window probe. 16914 * 2. Zero cwnd: because of ECN, we need to "clock out 16915 * segments. 16916 * 3. SWS avoidance: receiver may have shrunk window, 16917 * reset our knowledge. 16918 * 16919 * Note that condition 2 can happen with either 1 or 16920 * 3. But 1 and 3 are exclusive. 16921 */ 16922 if (tcp->tcp_unsent != 0) { 16923 if (tcp->tcp_cwnd == 0) { 16924 /* 16925 * Set tcp_cwnd to 1 MSS so that a 16926 * new segment can be sent out. We 16927 * are "clocking out" new data when 16928 * the network is really congested. 16929 */ 16930 ASSERT(tcp->tcp_ecn_ok); 16931 tcp->tcp_cwnd = tcp->tcp_mss; 16932 } 16933 if (tcp->tcp_swnd == 0) { 16934 /* Extend window for zero window probe */ 16935 tcp->tcp_swnd++; 16936 tcp->tcp_zero_win_probe = B_TRUE; 16937 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16938 } else { 16939 /* 16940 * Handle timeout from sender SWS avoidance. 16941 * Reset our knowledge of the max send window 16942 * since the receiver might have reduced its 16943 * receive buffer. Avoid setting tcp_max_swnd 16944 * to one since that will essentially disable 16945 * the SWS checks. 16946 * 16947 * Note that since we don't have a SWS 16948 * state variable, if the timeout is set 16949 * for ECN but not for SWS, this 16950 * code will also be executed. This is 16951 * fine as tcp_max_swnd is updated 16952 * constantly and it will not affect 16953 * anything. 16954 */ 16955 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16956 } 16957 tcp_wput_data(tcp, NULL, B_FALSE); 16958 return; 16959 } 16960 /* Is there a FIN that needs to be to re retransmitted? */ 16961 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16962 !tcp->tcp_fin_acked) 16963 break; 16964 /* Nothing to do, return without restarting timer. */ 16965 TCP_STAT(tcp_timer_fire_miss); 16966 return; 16967 case TCPS_FIN_WAIT_2: 16968 /* 16969 * User closed the TCP endpoint and peer ACK'ed our FIN. 16970 * We waited some time for for peer's FIN, but it hasn't 16971 * arrived. We flush the connection now to avoid 16972 * case where the peer has rebooted. 16973 */ 16974 if (TCP_IS_DETACHED(tcp)) { 16975 (void) tcp_clean_death(tcp, 0, 23); 16976 } else { 16977 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16978 } 16979 return; 16980 case TCPS_TIME_WAIT: 16981 (void) tcp_clean_death(tcp, 0, 24); 16982 return; 16983 default: 16984 if (tcp->tcp_debug) { 16985 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16986 "tcp_timer: strange state (%d) %s", 16987 tcp->tcp_state, tcp_display(tcp, NULL, 16988 DISP_PORT_ONLY)); 16989 } 16990 return; 16991 } 16992 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16993 /* 16994 * For zero window probe, we need to send indefinitely, 16995 * unless we have not heard from the other side for some 16996 * time... 16997 */ 16998 if ((tcp->tcp_zero_win_probe == 0) || 16999 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17000 second_threshold)) { 17001 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 17002 /* 17003 * If TCP is in SYN_RCVD state, send back a 17004 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17005 * should be zero in TCPS_SYN_RCVD state. 17006 */ 17007 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17008 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17009 "in SYN_RCVD", 17010 tcp, tcp->tcp_snxt, 17011 tcp->tcp_rnxt, TH_RST | TH_ACK); 17012 } 17013 (void) tcp_clean_death(tcp, 17014 tcp->tcp_client_errno ? 17015 tcp->tcp_client_errno : ETIMEDOUT, 25); 17016 return; 17017 } else { 17018 /* 17019 * Set tcp_ms_we_have_waited to second_threshold 17020 * so that in next timeout, we will do the above 17021 * check (lbolt - tcp_last_recv_time). This is 17022 * also to avoid overflow. 17023 * 17024 * We don't need to decrement tcp_timer_backoff 17025 * to avoid overflow because it will be decremented 17026 * later if new timeout value is greater than 17027 * tcp_rexmit_interval_max. In the case when 17028 * tcp_rexmit_interval_max is greater than 17029 * second_threshold, it means that we will wait 17030 * longer than second_threshold to send the next 17031 * window probe. 17032 */ 17033 tcp->tcp_ms_we_have_waited = second_threshold; 17034 } 17035 } else if (ms > first_threshold) { 17036 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17037 tcp->tcp_xmit_head != NULL) { 17038 tcp->tcp_xmit_head = 17039 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17040 } 17041 /* 17042 * We have been retransmitting for too long... The RTT 17043 * we calculated is probably incorrect. Reinitialize it. 17044 * Need to compensate for 0 tcp_rtt_sa. Reset 17045 * tcp_rtt_update so that we won't accidentally cache a 17046 * bad value. But only do this if this is not a zero 17047 * window probe. 17048 */ 17049 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17050 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17051 (tcp->tcp_rtt_sa >> 5); 17052 tcp->tcp_rtt_sa = 0; 17053 tcp_ip_notify(tcp); 17054 tcp->tcp_rtt_update = 0; 17055 } 17056 } 17057 tcp->tcp_timer_backoff++; 17058 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17059 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17060 tcp_rexmit_interval_min) { 17061 /* 17062 * This means the original RTO is tcp_rexmit_interval_min. 17063 * So we will use tcp_rexmit_interval_min as the RTO value 17064 * and do the backoff. 17065 */ 17066 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 17067 } else { 17068 ms <<= tcp->tcp_timer_backoff; 17069 } 17070 if (ms > tcp_rexmit_interval_max) { 17071 ms = tcp_rexmit_interval_max; 17072 /* 17073 * ms is at max, decrement tcp_timer_backoff to avoid 17074 * overflow. 17075 */ 17076 tcp->tcp_timer_backoff--; 17077 } 17078 tcp->tcp_ms_we_have_waited += ms; 17079 if (tcp->tcp_zero_win_probe == 0) { 17080 tcp->tcp_rto = ms; 17081 } 17082 TCP_TIMER_RESTART(tcp, ms); 17083 /* 17084 * This is after a timeout and tcp_rto is backed off. Set 17085 * tcp_set_timer to 1 so that next time RTO is updated, we will 17086 * restart the timer with a correct value. 17087 */ 17088 tcp->tcp_set_timer = 1; 17089 mss = tcp->tcp_snxt - tcp->tcp_suna; 17090 if (mss > tcp->tcp_mss) 17091 mss = tcp->tcp_mss; 17092 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17093 mss = tcp->tcp_swnd; 17094 17095 if ((mp = tcp->tcp_xmit_head) != NULL) 17096 mp->b_prev = (mblk_t *)lbolt; 17097 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17098 B_TRUE); 17099 17100 /* 17101 * When slow start after retransmission begins, start with 17102 * this seq no. tcp_rexmit_max marks the end of special slow 17103 * start phase. tcp_snd_burst controls how many segments 17104 * can be sent because of an ack. 17105 */ 17106 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17107 tcp->tcp_snd_burst = TCP_CWND_SS; 17108 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17109 (tcp->tcp_unsent == 0)) { 17110 tcp->tcp_rexmit_max = tcp->tcp_fss; 17111 } else { 17112 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17113 } 17114 tcp->tcp_rexmit = B_TRUE; 17115 tcp->tcp_dupack_cnt = 0; 17116 17117 /* 17118 * Remove all rexmit SACK blk to start from fresh. 17119 */ 17120 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17121 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17122 tcp->tcp_num_notsack_blk = 0; 17123 tcp->tcp_cnt_notsack_list = 0; 17124 } 17125 if (mp == NULL) { 17126 return; 17127 } 17128 /* Attach credentials to retransmitted initial SYNs. */ 17129 if (tcp->tcp_state == TCPS_SYN_SENT) { 17130 mblk_setcred(mp, tcp->tcp_cred); 17131 DB_CPID(mp) = tcp->tcp_cpid; 17132 } 17133 17134 tcp->tcp_csuna = tcp->tcp_snxt; 17135 BUMP_MIB(&tcp_mib, tcpRetransSegs); 17136 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 17137 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17138 tcp_send_data(tcp, tcp->tcp_wq, mp); 17139 17140 } 17141 17142 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17143 static void 17144 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17145 { 17146 conn_t *connp; 17147 17148 switch (tcp->tcp_state) { 17149 case TCPS_BOUND: 17150 case TCPS_LISTEN: 17151 break; 17152 default: 17153 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17154 return; 17155 } 17156 17157 /* 17158 * Need to clean up all the eagers since after the unbind, segments 17159 * will no longer be delivered to this listener stream. 17160 */ 17161 mutex_enter(&tcp->tcp_eager_lock); 17162 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17163 tcp_eager_cleanup(tcp, 0); 17164 } 17165 mutex_exit(&tcp->tcp_eager_lock); 17166 17167 if (tcp->tcp_ipversion == IPV4_VERSION) { 17168 tcp->tcp_ipha->ipha_src = 0; 17169 } else { 17170 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17171 } 17172 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17173 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17174 tcp_bind_hash_remove(tcp); 17175 tcp->tcp_state = TCPS_IDLE; 17176 tcp->tcp_mdt = B_FALSE; 17177 /* Send M_FLUSH according to TPI */ 17178 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17179 connp = tcp->tcp_connp; 17180 connp->conn_mdt_ok = B_FALSE; 17181 ipcl_hash_remove(connp); 17182 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17183 mp = mi_tpi_ok_ack_alloc(mp); 17184 putnext(tcp->tcp_rq, mp); 17185 } 17186 17187 /* 17188 * Don't let port fall into the privileged range. 17189 * Since the extra privileged ports can be arbitrary we also 17190 * ensure that we exclude those from consideration. 17191 * tcp_g_epriv_ports is not sorted thus we loop over it until 17192 * there are no changes. 17193 * 17194 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17195 * but instead the code relies on: 17196 * - the fact that the address of the array and its size never changes 17197 * - the atomic assignment of the elements of the array 17198 * 17199 * Returns 0 if there are no more ports available. 17200 * 17201 * TS note: skip multilevel ports. 17202 */ 17203 static in_port_t 17204 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17205 { 17206 int i; 17207 boolean_t restart = B_FALSE; 17208 17209 if (random && tcp_random_anon_port != 0) { 17210 (void) random_get_pseudo_bytes((uint8_t *)&port, 17211 sizeof (in_port_t)); 17212 /* 17213 * Unless changed by a sys admin, the smallest anon port 17214 * is 32768 and the largest anon port is 65535. It is 17215 * very likely (50%) for the random port to be smaller 17216 * than the smallest anon port. When that happens, 17217 * add port % (anon port range) to the smallest anon 17218 * port to get the random port. It should fall into the 17219 * valid anon port range. 17220 */ 17221 if (port < tcp_smallest_anon_port) { 17222 port = tcp_smallest_anon_port + 17223 port % (tcp_largest_anon_port - 17224 tcp_smallest_anon_port); 17225 } 17226 } 17227 17228 retry: 17229 if (port < tcp_smallest_anon_port) 17230 port = (in_port_t)tcp_smallest_anon_port; 17231 17232 if (port > tcp_largest_anon_port) { 17233 if (restart) 17234 return (0); 17235 restart = B_TRUE; 17236 port = (in_port_t)tcp_smallest_anon_port; 17237 } 17238 17239 if (port < tcp_smallest_nonpriv_port) 17240 port = (in_port_t)tcp_smallest_nonpriv_port; 17241 17242 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 17243 if (port == tcp_g_epriv_ports[i]) { 17244 port++; 17245 /* 17246 * Make sure whether the port is in the 17247 * valid range. 17248 */ 17249 goto retry; 17250 } 17251 } 17252 if (is_system_labeled() && 17253 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17254 IPPROTO_TCP, B_TRUE)) != 0) { 17255 port = i; 17256 goto retry; 17257 } 17258 return (port); 17259 } 17260 17261 /* 17262 * Return the next anonymous port in the privileged port range for 17263 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17264 * downwards. This is the same behavior as documented in the userland 17265 * library call rresvport(3N). 17266 * 17267 * TS note: skip multilevel ports. 17268 */ 17269 static in_port_t 17270 tcp_get_next_priv_port(const tcp_t *tcp) 17271 { 17272 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17273 in_port_t nextport; 17274 boolean_t restart = B_FALSE; 17275 17276 retry: 17277 if (next_priv_port < tcp_min_anonpriv_port || 17278 next_priv_port >= IPPORT_RESERVED) { 17279 next_priv_port = IPPORT_RESERVED - 1; 17280 if (restart) 17281 return (0); 17282 restart = B_TRUE; 17283 } 17284 if (is_system_labeled() && 17285 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17286 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17287 next_priv_port = nextport; 17288 goto retry; 17289 } 17290 return (next_priv_port--); 17291 } 17292 17293 /* The write side r/w procedure. */ 17294 17295 #if CCS_STATS 17296 struct { 17297 struct { 17298 int64_t count, bytes; 17299 } tot, hit; 17300 } wrw_stats; 17301 #endif 17302 17303 /* 17304 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17305 * messages. 17306 */ 17307 /* ARGSUSED */ 17308 static void 17309 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17310 { 17311 conn_t *connp = (conn_t *)arg; 17312 tcp_t *tcp = connp->conn_tcp; 17313 queue_t *q = tcp->tcp_wq; 17314 17315 ASSERT(DB_TYPE(mp) != M_IOCTL); 17316 /* 17317 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17318 * Once the close starts, streamhead and sockfs will not let any data 17319 * packets come down (close ensures that there are no threads using the 17320 * queue and no new threads will come down) but since qprocsoff() 17321 * hasn't happened yet, a M_FLUSH or some non data message might 17322 * get reflected back (in response to our own FLUSHRW) and get 17323 * processed after tcp_close() is done. The conn would still be valid 17324 * because a ref would have added but we need to check the state 17325 * before actually processing the packet. 17326 */ 17327 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17328 freemsg(mp); 17329 return; 17330 } 17331 17332 switch (DB_TYPE(mp)) { 17333 case M_IOCDATA: 17334 tcp_wput_iocdata(tcp, mp); 17335 break; 17336 case M_FLUSH: 17337 tcp_wput_flush(tcp, mp); 17338 break; 17339 default: 17340 CALL_IP_WPUT(connp, q, mp); 17341 break; 17342 } 17343 } 17344 17345 /* 17346 * The TCP fast path write put procedure. 17347 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17348 */ 17349 /* ARGSUSED */ 17350 void 17351 tcp_output(void *arg, mblk_t *mp, void *arg2) 17352 { 17353 int len; 17354 int hdrlen; 17355 int plen; 17356 mblk_t *mp1; 17357 uchar_t *rptr; 17358 uint32_t snxt; 17359 tcph_t *tcph; 17360 struct datab *db; 17361 uint32_t suna; 17362 uint32_t mss; 17363 ipaddr_t *dst; 17364 ipaddr_t *src; 17365 uint32_t sum; 17366 int usable; 17367 conn_t *connp = (conn_t *)arg; 17368 tcp_t *tcp = connp->conn_tcp; 17369 uint32_t msize; 17370 17371 /* 17372 * Try and ASSERT the minimum possible references on the 17373 * conn early enough. Since we are executing on write side, 17374 * the connection is obviously not detached and that means 17375 * there is a ref each for TCP and IP. Since we are behind 17376 * the squeue, the minimum references needed are 3. If the 17377 * conn is in classifier hash list, there should be an 17378 * extra ref for that (we check both the possibilities). 17379 */ 17380 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17381 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17382 17383 ASSERT(DB_TYPE(mp) == M_DATA); 17384 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17385 17386 mutex_enter(&connp->conn_lock); 17387 tcp->tcp_squeue_bytes -= msize; 17388 mutex_exit(&connp->conn_lock); 17389 17390 /* Bypass tcp protocol for fused tcp loopback */ 17391 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17392 return; 17393 17394 mss = tcp->tcp_mss; 17395 if (tcp->tcp_xmit_zc_clean) 17396 mp = tcp_zcopy_backoff(tcp, mp, 0); 17397 17398 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17399 len = (int)(mp->b_wptr - mp->b_rptr); 17400 17401 /* 17402 * Criteria for fast path: 17403 * 17404 * 1. no unsent data 17405 * 2. single mblk in request 17406 * 3. connection established 17407 * 4. data in mblk 17408 * 5. len <= mss 17409 * 6. no tcp_valid bits 17410 */ 17411 if ((tcp->tcp_unsent != 0) || 17412 (tcp->tcp_cork) || 17413 (mp->b_cont != NULL) || 17414 (tcp->tcp_state != TCPS_ESTABLISHED) || 17415 (len == 0) || 17416 (len > mss) || 17417 (tcp->tcp_valid_bits != 0)) { 17418 tcp_wput_data(tcp, mp, B_FALSE); 17419 return; 17420 } 17421 17422 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17423 ASSERT(tcp->tcp_fin_sent == 0); 17424 17425 /* queue new packet onto retransmission queue */ 17426 if (tcp->tcp_xmit_head == NULL) { 17427 tcp->tcp_xmit_head = mp; 17428 } else { 17429 tcp->tcp_xmit_last->b_cont = mp; 17430 } 17431 tcp->tcp_xmit_last = mp; 17432 tcp->tcp_xmit_tail = mp; 17433 17434 /* find out how much we can send */ 17435 /* BEGIN CSTYLED */ 17436 /* 17437 * un-acked usable 17438 * |--------------|-----------------| 17439 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17440 */ 17441 /* END CSTYLED */ 17442 17443 /* start sending from tcp_snxt */ 17444 snxt = tcp->tcp_snxt; 17445 17446 /* 17447 * Check to see if this connection has been idled for some 17448 * time and no ACK is expected. If it is, we need to slow 17449 * start again to get back the connection's "self-clock" as 17450 * described in VJ's paper. 17451 * 17452 * Refer to the comment in tcp_mss_set() for the calculation 17453 * of tcp_cwnd after idle. 17454 */ 17455 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17456 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17457 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17458 } 17459 17460 usable = tcp->tcp_swnd; /* tcp window size */ 17461 if (usable > tcp->tcp_cwnd) 17462 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17463 usable -= snxt; /* subtract stuff already sent */ 17464 suna = tcp->tcp_suna; 17465 usable += suna; 17466 /* usable can be < 0 if the congestion window is smaller */ 17467 if (len > usable) { 17468 /* Can't send complete M_DATA in one shot */ 17469 goto slow; 17470 } 17471 17472 if (tcp->tcp_flow_stopped && 17473 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17474 tcp_clrqfull(tcp); 17475 } 17476 17477 /* 17478 * determine if anything to send (Nagle). 17479 * 17480 * 1. len < tcp_mss (i.e. small) 17481 * 2. unacknowledged data present 17482 * 3. len < nagle limit 17483 * 4. last packet sent < nagle limit (previous packet sent) 17484 */ 17485 if ((len < mss) && (snxt != suna) && 17486 (len < (int)tcp->tcp_naglim) && 17487 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17488 /* 17489 * This was the first unsent packet and normally 17490 * mss < xmit_hiwater so there is no need to worry 17491 * about flow control. The next packet will go 17492 * through the flow control check in tcp_wput_data(). 17493 */ 17494 /* leftover work from above */ 17495 tcp->tcp_unsent = len; 17496 tcp->tcp_xmit_tail_unsent = len; 17497 17498 return; 17499 } 17500 17501 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17502 17503 if (snxt == suna) { 17504 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17505 } 17506 17507 /* we have always sent something */ 17508 tcp->tcp_rack_cnt = 0; 17509 17510 tcp->tcp_snxt = snxt + len; 17511 tcp->tcp_rack = tcp->tcp_rnxt; 17512 17513 if ((mp1 = dupb(mp)) == 0) 17514 goto no_memory; 17515 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17516 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17517 17518 /* adjust tcp header information */ 17519 tcph = tcp->tcp_tcph; 17520 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17521 17522 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17523 sum = (sum >> 16) + (sum & 0xFFFF); 17524 U16_TO_ABE16(sum, tcph->th_sum); 17525 17526 U32_TO_ABE32(snxt, tcph->th_seq); 17527 17528 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17529 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17530 BUMP_LOCAL(tcp->tcp_obsegs); 17531 17532 /* Update the latest receive window size in TCP header. */ 17533 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17534 tcph->th_win); 17535 17536 tcp->tcp_last_sent_len = (ushort_t)len; 17537 17538 plen = len + tcp->tcp_hdr_len; 17539 17540 if (tcp->tcp_ipversion == IPV4_VERSION) { 17541 tcp->tcp_ipha->ipha_length = htons(plen); 17542 } else { 17543 tcp->tcp_ip6h->ip6_plen = htons(plen - 17544 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17545 } 17546 17547 /* see if we need to allocate a mblk for the headers */ 17548 hdrlen = tcp->tcp_hdr_len; 17549 rptr = mp1->b_rptr - hdrlen; 17550 db = mp1->b_datap; 17551 if ((db->db_ref != 2) || rptr < db->db_base || 17552 (!OK_32PTR(rptr))) { 17553 /* NOTE: we assume allocb returns an OK_32PTR */ 17554 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17555 tcp_wroff_xtra, BPRI_MED); 17556 if (!mp) { 17557 freemsg(mp1); 17558 goto no_memory; 17559 } 17560 mp->b_cont = mp1; 17561 mp1 = mp; 17562 /* Leave room for Link Level header */ 17563 /* hdrlen = tcp->tcp_hdr_len; */ 17564 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17565 mp1->b_wptr = &rptr[hdrlen]; 17566 } 17567 mp1->b_rptr = rptr; 17568 17569 /* Fill in the timestamp option. */ 17570 if (tcp->tcp_snd_ts_ok) { 17571 U32_TO_BE32((uint32_t)lbolt, 17572 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17573 U32_TO_BE32(tcp->tcp_ts_recent, 17574 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17575 } else { 17576 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17577 } 17578 17579 /* copy header into outgoing packet */ 17580 dst = (ipaddr_t *)rptr; 17581 src = (ipaddr_t *)tcp->tcp_iphc; 17582 dst[0] = src[0]; 17583 dst[1] = src[1]; 17584 dst[2] = src[2]; 17585 dst[3] = src[3]; 17586 dst[4] = src[4]; 17587 dst[5] = src[5]; 17588 dst[6] = src[6]; 17589 dst[7] = src[7]; 17590 dst[8] = src[8]; 17591 dst[9] = src[9]; 17592 if (hdrlen -= 40) { 17593 hdrlen >>= 2; 17594 dst += 10; 17595 src += 10; 17596 do { 17597 *dst++ = *src++; 17598 } while (--hdrlen); 17599 } 17600 17601 /* 17602 * Set the ECN info in the TCP header. Note that this 17603 * is not the template header. 17604 */ 17605 if (tcp->tcp_ecn_ok) { 17606 SET_ECT(tcp, rptr); 17607 17608 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17609 if (tcp->tcp_ecn_echo_on) 17610 tcph->th_flags[0] |= TH_ECE; 17611 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17612 tcph->th_flags[0] |= TH_CWR; 17613 tcp->tcp_ecn_cwr_sent = B_TRUE; 17614 } 17615 } 17616 17617 if (tcp->tcp_ip_forward_progress) { 17618 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17619 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17620 tcp->tcp_ip_forward_progress = B_FALSE; 17621 } 17622 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17623 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17624 return; 17625 17626 /* 17627 * If we ran out of memory, we pretend to have sent the packet 17628 * and that it was lost on the wire. 17629 */ 17630 no_memory: 17631 return; 17632 17633 slow: 17634 /* leftover work from above */ 17635 tcp->tcp_unsent = len; 17636 tcp->tcp_xmit_tail_unsent = len; 17637 tcp_wput_data(tcp, NULL, B_FALSE); 17638 } 17639 17640 /* 17641 * The function called through squeue to get behind eager's perimeter to 17642 * finish the accept processing. 17643 */ 17644 /* ARGSUSED */ 17645 void 17646 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17647 { 17648 conn_t *connp = (conn_t *)arg; 17649 tcp_t *tcp = connp->conn_tcp; 17650 queue_t *q = tcp->tcp_rq; 17651 mblk_t *mp1; 17652 mblk_t *stropt_mp = mp; 17653 struct stroptions *stropt; 17654 uint_t thwin; 17655 17656 /* 17657 * Drop the eager's ref on the listener, that was placed when 17658 * this eager began life in tcp_conn_request. 17659 */ 17660 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17661 17662 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17663 /* 17664 * Someone blewoff the eager before we could finish 17665 * the accept. 17666 * 17667 * The only reason eager exists it because we put in 17668 * a ref on it when conn ind went up. We need to send 17669 * a disconnect indication up while the last reference 17670 * on the eager will be dropped by the squeue when we 17671 * return. 17672 */ 17673 ASSERT(tcp->tcp_listener == NULL); 17674 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17675 struct T_discon_ind *tdi; 17676 17677 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17678 /* 17679 * Let us reuse the incoming mblk to avoid memory 17680 * allocation failure problems. We know that the 17681 * size of the incoming mblk i.e. stroptions is greater 17682 * than sizeof T_discon_ind. So the reallocb below 17683 * can't fail. 17684 */ 17685 freemsg(mp->b_cont); 17686 mp->b_cont = NULL; 17687 ASSERT(DB_REF(mp) == 1); 17688 mp = reallocb(mp, sizeof (struct T_discon_ind), 17689 B_FALSE); 17690 ASSERT(mp != NULL); 17691 DB_TYPE(mp) = M_PROTO; 17692 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17693 tdi = (struct T_discon_ind *)mp->b_rptr; 17694 if (tcp->tcp_issocket) { 17695 tdi->DISCON_reason = ECONNREFUSED; 17696 tdi->SEQ_number = 0; 17697 } else { 17698 tdi->DISCON_reason = ENOPROTOOPT; 17699 tdi->SEQ_number = 17700 tcp->tcp_conn_req_seqnum; 17701 } 17702 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17703 putnext(q, mp); 17704 } else { 17705 freemsg(mp); 17706 } 17707 if (tcp->tcp_hard_binding) { 17708 tcp->tcp_hard_binding = B_FALSE; 17709 tcp->tcp_hard_bound = B_TRUE; 17710 } 17711 tcp->tcp_detached = B_FALSE; 17712 return; 17713 } 17714 17715 mp1 = stropt_mp->b_cont; 17716 stropt_mp->b_cont = NULL; 17717 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17718 stropt = (struct stroptions *)stropt_mp->b_rptr; 17719 17720 while (mp1 != NULL) { 17721 mp = mp1; 17722 mp1 = mp1->b_cont; 17723 mp->b_cont = NULL; 17724 tcp->tcp_drop_opt_ack_cnt++; 17725 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17726 } 17727 mp = NULL; 17728 17729 /* 17730 * For a loopback connection with tcp_direct_sockfs on, note that 17731 * we don't have to protect tcp_rcv_list yet because synchronous 17732 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17733 * possibly race with us. 17734 */ 17735 17736 /* 17737 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17738 * properly. This is the first time we know of the acceptor' 17739 * queue. So we do it here. 17740 */ 17741 if (tcp->tcp_rcv_list == NULL) { 17742 /* 17743 * Recv queue is empty, tcp_rwnd should not have changed. 17744 * That means it should be equal to the listener's tcp_rwnd. 17745 */ 17746 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17747 } else { 17748 #ifdef DEBUG 17749 uint_t cnt = 0; 17750 17751 mp1 = tcp->tcp_rcv_list; 17752 while ((mp = mp1) != NULL) { 17753 mp1 = mp->b_next; 17754 cnt += msgdsize(mp); 17755 } 17756 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17757 #endif 17758 /* There is some data, add them back to get the max. */ 17759 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17760 } 17761 17762 stropt->so_flags = SO_HIWAT; 17763 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17764 17765 stropt->so_flags |= SO_MAXBLK; 17766 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17767 17768 /* 17769 * This is the first time we run on the correct 17770 * queue after tcp_accept. So fix all the q parameters 17771 * here. 17772 */ 17773 /* Allocate room for SACK options if needed. */ 17774 stropt->so_flags |= SO_WROFF; 17775 if (tcp->tcp_fused) { 17776 ASSERT(tcp->tcp_loopback); 17777 ASSERT(tcp->tcp_loopback_peer != NULL); 17778 /* 17779 * For fused tcp loopback, set the stream head's write 17780 * offset value to zero since we won't be needing any room 17781 * for TCP/IP headers. This would also improve performance 17782 * since it would reduce the amount of work done by kmem. 17783 * Non-fused tcp loopback case is handled separately below. 17784 */ 17785 stropt->so_wroff = 0; 17786 /* 17787 * Record the stream head's high water mark for this endpoint; 17788 * this is used for flow-control purposes in tcp_fuse_output(). 17789 */ 17790 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17791 /* 17792 * Update the peer's transmit parameters according to 17793 * our recently calculated high water mark value. 17794 */ 17795 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17796 } else if (tcp->tcp_snd_sack_ok) { 17797 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17798 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17799 } else { 17800 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17801 tcp_wroff_xtra); 17802 } 17803 17804 /* 17805 * If this is endpoint is handling SSL, then reserve extra 17806 * offset and space at the end. 17807 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17808 * overriding the previous setting. The extra cost of signing and 17809 * encrypting multiple MSS-size records (12 of them with Ethernet), 17810 * instead of a single contiguous one by the stream head 17811 * largely outweighs the statistical reduction of ACKs, when 17812 * applicable. The peer will also save on decyption and verification 17813 * costs. 17814 */ 17815 if (tcp->tcp_kssl_ctx != NULL) { 17816 stropt->so_wroff += SSL3_WROFFSET; 17817 17818 stropt->so_flags |= SO_TAIL; 17819 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17820 17821 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17822 } 17823 17824 /* Send the options up */ 17825 putnext(q, stropt_mp); 17826 17827 /* 17828 * Pass up any data and/or a fin that has been received. 17829 * 17830 * Adjust receive window in case it had decreased 17831 * (because there is data <=> tcp_rcv_list != NULL) 17832 * while the connection was detached. Note that 17833 * in case the eager was flow-controlled, w/o this 17834 * code, the rwnd may never open up again! 17835 */ 17836 if (tcp->tcp_rcv_list != NULL) { 17837 /* We drain directly in case of fused tcp loopback */ 17838 if (!tcp->tcp_fused && canputnext(q)) { 17839 tcp->tcp_rwnd = q->q_hiwat; 17840 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17841 << tcp->tcp_rcv_ws; 17842 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17843 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17844 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17845 tcp_xmit_ctl(NULL, 17846 tcp, (tcp->tcp_swnd == 0) ? 17847 tcp->tcp_suna : tcp->tcp_snxt, 17848 tcp->tcp_rnxt, TH_ACK); 17849 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17850 } 17851 17852 } 17853 (void) tcp_rcv_drain(q, tcp); 17854 17855 /* 17856 * For fused tcp loopback, back-enable peer endpoint 17857 * if it's currently flow-controlled. 17858 */ 17859 if (tcp->tcp_fused && 17860 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17861 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17862 17863 ASSERT(peer_tcp != NULL); 17864 ASSERT(peer_tcp->tcp_fused); 17865 17866 tcp_clrqfull(peer_tcp); 17867 TCP_STAT(tcp_fusion_backenabled); 17868 } 17869 } 17870 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17871 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17872 mp = mi_tpi_ordrel_ind(); 17873 if (mp) { 17874 tcp->tcp_ordrel_done = B_TRUE; 17875 putnext(q, mp); 17876 if (tcp->tcp_deferred_clean_death) { 17877 /* 17878 * tcp_clean_death was deferred 17879 * for T_ORDREL_IND - do it now 17880 */ 17881 (void) tcp_clean_death(tcp, 17882 tcp->tcp_client_errno, 21); 17883 tcp->tcp_deferred_clean_death = B_FALSE; 17884 } 17885 } else { 17886 /* 17887 * Run the orderly release in the 17888 * service routine. 17889 */ 17890 qenable(q); 17891 } 17892 } 17893 if (tcp->tcp_hard_binding) { 17894 tcp->tcp_hard_binding = B_FALSE; 17895 tcp->tcp_hard_bound = B_TRUE; 17896 } 17897 17898 tcp->tcp_detached = B_FALSE; 17899 17900 /* We can enable synchronous streams now */ 17901 if (tcp->tcp_fused) { 17902 tcp_fuse_syncstr_enable_pair(tcp); 17903 } 17904 17905 if (tcp->tcp_ka_enabled) { 17906 tcp->tcp_ka_last_intrvl = 0; 17907 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17908 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17909 } 17910 17911 /* 17912 * At this point, eager is fully established and will 17913 * have the following references - 17914 * 17915 * 2 references for connection to exist (1 for TCP and 1 for IP). 17916 * 1 reference for the squeue which will be dropped by the squeue as 17917 * soon as this function returns. 17918 * There will be 1 additonal reference for being in classifier 17919 * hash list provided something bad hasn't happened. 17920 */ 17921 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17922 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17923 } 17924 17925 /* 17926 * The function called through squeue to get behind listener's perimeter to 17927 * send a deffered conn_ind. 17928 */ 17929 /* ARGSUSED */ 17930 void 17931 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17932 { 17933 conn_t *connp = (conn_t *)arg; 17934 tcp_t *listener = connp->conn_tcp; 17935 17936 if (listener->tcp_state == TCPS_CLOSED || 17937 TCP_IS_DETACHED(listener)) { 17938 /* 17939 * If listener has closed, it would have caused a 17940 * a cleanup/blowoff to happen for the eager. 17941 */ 17942 tcp_t *tcp; 17943 struct T_conn_ind *conn_ind; 17944 17945 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17946 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17947 conn_ind->OPT_length); 17948 /* 17949 * We need to drop the ref on eager that was put 17950 * tcp_rput_data() before trying to send the conn_ind 17951 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17952 * and tcp_wput_accept() is sending this deferred conn_ind but 17953 * listener is closed so we drop the ref. 17954 */ 17955 CONN_DEC_REF(tcp->tcp_connp); 17956 freemsg(mp); 17957 return; 17958 } 17959 putnext(listener->tcp_rq, mp); 17960 } 17961 17962 17963 /* 17964 * This is the STREAMS entry point for T_CONN_RES coming down on 17965 * Acceptor STREAM when sockfs listener does accept processing. 17966 * Read the block comment on top pf tcp_conn_request(). 17967 */ 17968 void 17969 tcp_wput_accept(queue_t *q, mblk_t *mp) 17970 { 17971 queue_t *rq = RD(q); 17972 struct T_conn_res *conn_res; 17973 tcp_t *eager; 17974 tcp_t *listener; 17975 struct T_ok_ack *ok; 17976 t_scalar_t PRIM_type; 17977 mblk_t *opt_mp; 17978 conn_t *econnp; 17979 17980 ASSERT(DB_TYPE(mp) == M_PROTO); 17981 17982 conn_res = (struct T_conn_res *)mp->b_rptr; 17983 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17984 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17985 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17986 if (mp != NULL) 17987 putnext(rq, mp); 17988 return; 17989 } 17990 switch (conn_res->PRIM_type) { 17991 case O_T_CONN_RES: 17992 case T_CONN_RES: 17993 /* 17994 * We pass up an err ack if allocb fails. This will 17995 * cause sockfs to issue a T_DISCON_REQ which will cause 17996 * tcp_eager_blowoff to be called. sockfs will then call 17997 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17998 * we need to do the allocb up here because we have to 17999 * make sure rq->q_qinfo->qi_qclose still points to the 18000 * correct function (tcpclose_accept) in case allocb 18001 * fails. 18002 */ 18003 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18004 if (opt_mp == NULL) { 18005 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18006 if (mp != NULL) 18007 putnext(rq, mp); 18008 return; 18009 } 18010 18011 bcopy(mp->b_rptr + conn_res->OPT_offset, 18012 &eager, conn_res->OPT_length); 18013 PRIM_type = conn_res->PRIM_type; 18014 mp->b_datap->db_type = M_PCPROTO; 18015 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18016 ok = (struct T_ok_ack *)mp->b_rptr; 18017 ok->PRIM_type = T_OK_ACK; 18018 ok->CORRECT_prim = PRIM_type; 18019 econnp = eager->tcp_connp; 18020 econnp->conn_dev = (dev_t)q->q_ptr; 18021 eager->tcp_rq = rq; 18022 eager->tcp_wq = q; 18023 rq->q_ptr = econnp; 18024 rq->q_qinfo = &tcp_rinit; 18025 q->q_ptr = econnp; 18026 q->q_qinfo = &tcp_winit; 18027 listener = eager->tcp_listener; 18028 eager->tcp_issocket = B_TRUE; 18029 18030 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18031 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18032 18033 /* Put the ref for IP */ 18034 CONN_INC_REF(econnp); 18035 18036 /* 18037 * We should have minimum of 3 references on the conn 18038 * at this point. One each for TCP and IP and one for 18039 * the T_conn_ind that was sent up when the 3-way handshake 18040 * completed. In the normal case we would also have another 18041 * reference (making a total of 4) for the conn being in the 18042 * classifier hash list. However the eager could have received 18043 * an RST subsequently and tcp_closei_local could have removed 18044 * the eager from the classifier hash list, hence we can't 18045 * assert that reference. 18046 */ 18047 ASSERT(econnp->conn_ref >= 3); 18048 18049 /* 18050 * Send the new local address also up to sockfs. There 18051 * should already be enough space in the mp that came 18052 * down from soaccept(). 18053 */ 18054 if (eager->tcp_family == AF_INET) { 18055 sin_t *sin; 18056 18057 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18058 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18059 sin = (sin_t *)mp->b_wptr; 18060 mp->b_wptr += sizeof (sin_t); 18061 sin->sin_family = AF_INET; 18062 sin->sin_port = eager->tcp_lport; 18063 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18064 } else { 18065 sin6_t *sin6; 18066 18067 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18068 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18069 sin6 = (sin6_t *)mp->b_wptr; 18070 mp->b_wptr += sizeof (sin6_t); 18071 sin6->sin6_family = AF_INET6; 18072 sin6->sin6_port = eager->tcp_lport; 18073 if (eager->tcp_ipversion == IPV4_VERSION) { 18074 sin6->sin6_flowinfo = 0; 18075 IN6_IPADDR_TO_V4MAPPED( 18076 eager->tcp_ipha->ipha_src, 18077 &sin6->sin6_addr); 18078 } else { 18079 ASSERT(eager->tcp_ip6h != NULL); 18080 sin6->sin6_flowinfo = 18081 eager->tcp_ip6h->ip6_vcf & 18082 ~IPV6_VERS_AND_FLOW_MASK; 18083 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18084 } 18085 sin6->sin6_scope_id = 0; 18086 sin6->__sin6_src_id = 0; 18087 } 18088 18089 putnext(rq, mp); 18090 18091 opt_mp->b_datap->db_type = M_SETOPTS; 18092 opt_mp->b_wptr += sizeof (struct stroptions); 18093 18094 /* 18095 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18096 * from listener to acceptor. The message is chained on the 18097 * bind_mp which tcp_rput_other will send down to IP. 18098 */ 18099 if (listener->tcp_bound_if != 0) { 18100 /* allocate optmgmt req */ 18101 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18102 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18103 sizeof (int)); 18104 if (mp != NULL) 18105 linkb(opt_mp, mp); 18106 } 18107 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18108 uint_t on = 1; 18109 18110 /* allocate optmgmt req */ 18111 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18112 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18113 if (mp != NULL) 18114 linkb(opt_mp, mp); 18115 } 18116 18117 18118 mutex_enter(&listener->tcp_eager_lock); 18119 18120 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18121 18122 tcp_t *tail; 18123 tcp_t *tcp; 18124 mblk_t *mp1; 18125 18126 tcp = listener->tcp_eager_prev_q0; 18127 /* 18128 * listener->tcp_eager_prev_q0 points to the TAIL of the 18129 * deferred T_conn_ind queue. We need to get to the head 18130 * of the queue in order to send up T_conn_ind the same 18131 * order as how the 3WHS is completed. 18132 */ 18133 while (tcp != listener) { 18134 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18135 !tcp->tcp_kssl_pending) 18136 break; 18137 else 18138 tcp = tcp->tcp_eager_prev_q0; 18139 } 18140 /* None of the pending eagers can be sent up now */ 18141 if (tcp == listener) 18142 goto no_more_eagers; 18143 18144 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18145 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18146 /* Move from q0 to q */ 18147 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18148 listener->tcp_conn_req_cnt_q0--; 18149 listener->tcp_conn_req_cnt_q++; 18150 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18151 tcp->tcp_eager_prev_q0; 18152 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18153 tcp->tcp_eager_next_q0; 18154 tcp->tcp_eager_prev_q0 = NULL; 18155 tcp->tcp_eager_next_q0 = NULL; 18156 tcp->tcp_conn_def_q0 = B_FALSE; 18157 18158 /* Make sure the tcp isn't in the list of droppables */ 18159 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18160 tcp->tcp_eager_prev_drop_q0 == NULL); 18161 18162 /* 18163 * Insert at end of the queue because sockfs sends 18164 * down T_CONN_RES in chronological order. Leaving 18165 * the older conn indications at front of the queue 18166 * helps reducing search time. 18167 */ 18168 tail = listener->tcp_eager_last_q; 18169 if (tail != NULL) { 18170 tail->tcp_eager_next_q = tcp; 18171 } else { 18172 listener->tcp_eager_next_q = tcp; 18173 } 18174 listener->tcp_eager_last_q = tcp; 18175 tcp->tcp_eager_next_q = NULL; 18176 18177 /* Need to get inside the listener perimeter */ 18178 CONN_INC_REF(listener->tcp_connp); 18179 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18180 tcp_send_pending, listener->tcp_connp, 18181 SQTAG_TCP_SEND_PENDING); 18182 } 18183 no_more_eagers: 18184 tcp_eager_unlink(eager); 18185 mutex_exit(&listener->tcp_eager_lock); 18186 18187 /* 18188 * At this point, the eager is detached from the listener 18189 * but we still have an extra refs on eager (apart from the 18190 * usual tcp references). The ref was placed in tcp_rput_data 18191 * before sending the conn_ind in tcp_send_conn_ind. 18192 * The ref will be dropped in tcp_accept_finish(). 18193 */ 18194 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18195 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18196 return; 18197 default: 18198 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18199 if (mp != NULL) 18200 putnext(rq, mp); 18201 return; 18202 } 18203 } 18204 18205 void 18206 tcp_wput(queue_t *q, mblk_t *mp) 18207 { 18208 conn_t *connp = Q_TO_CONN(q); 18209 tcp_t *tcp; 18210 void (*output_proc)(); 18211 t_scalar_t type; 18212 uchar_t *rptr; 18213 struct iocblk *iocp; 18214 uint32_t msize; 18215 18216 ASSERT(connp->conn_ref >= 2); 18217 18218 switch (DB_TYPE(mp)) { 18219 case M_DATA: 18220 tcp = connp->conn_tcp; 18221 ASSERT(tcp != NULL); 18222 18223 msize = msgdsize(mp); 18224 18225 mutex_enter(&connp->conn_lock); 18226 CONN_INC_REF_LOCKED(connp); 18227 18228 tcp->tcp_squeue_bytes += msize; 18229 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18230 mutex_exit(&connp->conn_lock); 18231 tcp_setqfull(tcp); 18232 } else 18233 mutex_exit(&connp->conn_lock); 18234 18235 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18236 tcp_output, connp, SQTAG_TCP_OUTPUT); 18237 return; 18238 case M_PROTO: 18239 case M_PCPROTO: 18240 /* 18241 * if it is a snmp message, don't get behind the squeue 18242 */ 18243 tcp = connp->conn_tcp; 18244 rptr = mp->b_rptr; 18245 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18246 type = ((union T_primitives *)rptr)->type; 18247 } else { 18248 if (tcp->tcp_debug) { 18249 (void) strlog(TCP_MOD_ID, 0, 1, 18250 SL_ERROR|SL_TRACE, 18251 "tcp_wput_proto, dropping one..."); 18252 } 18253 freemsg(mp); 18254 return; 18255 } 18256 if (type == T_SVR4_OPTMGMT_REQ) { 18257 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18258 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18259 cr)) { 18260 /* 18261 * This was a SNMP request 18262 */ 18263 return; 18264 } else { 18265 output_proc = tcp_wput_proto; 18266 } 18267 } else { 18268 output_proc = tcp_wput_proto; 18269 } 18270 break; 18271 case M_IOCTL: 18272 /* 18273 * Most ioctls can be processed right away without going via 18274 * squeues - process them right here. Those that do require 18275 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18276 * are processed by tcp_wput_ioctl(). 18277 */ 18278 iocp = (struct iocblk *)mp->b_rptr; 18279 tcp = connp->conn_tcp; 18280 18281 switch (iocp->ioc_cmd) { 18282 case TCP_IOC_ABORT_CONN: 18283 tcp_ioctl_abort_conn(q, mp); 18284 return; 18285 case TI_GETPEERNAME: 18286 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18287 iocp->ioc_error = ENOTCONN; 18288 iocp->ioc_count = 0; 18289 mp->b_datap->db_type = M_IOCACK; 18290 qreply(q, mp); 18291 return; 18292 } 18293 /* FALLTHRU */ 18294 case TI_GETMYNAME: 18295 mi_copyin(q, mp, NULL, 18296 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18297 return; 18298 case ND_SET: 18299 /* nd_getset does the necessary checks */ 18300 case ND_GET: 18301 if (!nd_getset(q, tcp_g_nd, mp)) { 18302 CALL_IP_WPUT(connp, q, mp); 18303 return; 18304 } 18305 qreply(q, mp); 18306 return; 18307 case TCP_IOC_DEFAULT_Q: 18308 /* 18309 * Wants to be the default wq. Check the credentials 18310 * first, the rest is executed via squeue. 18311 */ 18312 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18313 iocp->ioc_error = EPERM; 18314 iocp->ioc_count = 0; 18315 mp->b_datap->db_type = M_IOCACK; 18316 qreply(q, mp); 18317 return; 18318 } 18319 output_proc = tcp_wput_ioctl; 18320 break; 18321 default: 18322 output_proc = tcp_wput_ioctl; 18323 break; 18324 } 18325 break; 18326 default: 18327 output_proc = tcp_wput_nondata; 18328 break; 18329 } 18330 18331 CONN_INC_REF(connp); 18332 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18333 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18334 } 18335 18336 /* 18337 * Initial STREAMS write side put() procedure for sockets. It tries to 18338 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18339 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18340 * are handled by tcp_wput() as usual. 18341 * 18342 * All further messages will also be handled by tcp_wput() because we cannot 18343 * be sure that the above short cut is safe later. 18344 */ 18345 static void 18346 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18347 { 18348 conn_t *connp = Q_TO_CONN(wq); 18349 tcp_t *tcp = connp->conn_tcp; 18350 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18351 18352 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18353 wq->q_qinfo = &tcp_winit; 18354 18355 ASSERT(IPCL_IS_TCP(connp)); 18356 ASSERT(TCP_IS_SOCKET(tcp)); 18357 18358 if (DB_TYPE(mp) == M_PCPROTO && 18359 MBLKL(mp) == sizeof (struct T_capability_req) && 18360 car->PRIM_type == T_CAPABILITY_REQ) { 18361 tcp_capability_req(tcp, mp); 18362 return; 18363 } 18364 18365 tcp_wput(wq, mp); 18366 } 18367 18368 static boolean_t 18369 tcp_zcopy_check(tcp_t *tcp) 18370 { 18371 conn_t *connp = tcp->tcp_connp; 18372 ire_t *ire; 18373 boolean_t zc_enabled = B_FALSE; 18374 18375 if (do_tcpzcopy == 2) 18376 zc_enabled = B_TRUE; 18377 else if (tcp->tcp_ipversion == IPV4_VERSION && 18378 IPCL_IS_CONNECTED(connp) && 18379 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18380 connp->conn_dontroute == 0 && 18381 !connp->conn_nexthop_set && 18382 connp->conn_xmit_if_ill == NULL && 18383 connp->conn_nofailover_ill == NULL && 18384 do_tcpzcopy == 1) { 18385 /* 18386 * the checks above closely resemble the fast path checks 18387 * in tcp_send_data(). 18388 */ 18389 mutex_enter(&connp->conn_lock); 18390 ire = connp->conn_ire_cache; 18391 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18392 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18393 IRE_REFHOLD(ire); 18394 if (ire->ire_stq != NULL) { 18395 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18396 18397 zc_enabled = ill && (ill->ill_capabilities & 18398 ILL_CAPAB_ZEROCOPY) && 18399 (ill->ill_zerocopy_capab-> 18400 ill_zerocopy_flags != 0); 18401 } 18402 IRE_REFRELE(ire); 18403 } 18404 mutex_exit(&connp->conn_lock); 18405 } 18406 tcp->tcp_snd_zcopy_on = zc_enabled; 18407 if (!TCP_IS_DETACHED(tcp)) { 18408 if (zc_enabled) { 18409 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18410 TCP_STAT(tcp_zcopy_on); 18411 } else { 18412 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18413 TCP_STAT(tcp_zcopy_off); 18414 } 18415 } 18416 return (zc_enabled); 18417 } 18418 18419 static mblk_t * 18420 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18421 { 18422 if (do_tcpzcopy == 2) 18423 return (bp); 18424 else if (tcp->tcp_snd_zcopy_on) { 18425 tcp->tcp_snd_zcopy_on = B_FALSE; 18426 if (!TCP_IS_DETACHED(tcp)) { 18427 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18428 TCP_STAT(tcp_zcopy_disable); 18429 } 18430 } 18431 return (tcp_zcopy_backoff(tcp, bp, 0)); 18432 } 18433 18434 /* 18435 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18436 * the original desballoca'ed segmapped mblk. 18437 */ 18438 static mblk_t * 18439 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18440 { 18441 mblk_t *head, *tail, *nbp; 18442 if (IS_VMLOANED_MBLK(bp)) { 18443 TCP_STAT(tcp_zcopy_backoff); 18444 if ((head = copyb(bp)) == NULL) { 18445 /* fail to backoff; leave it for the next backoff */ 18446 tcp->tcp_xmit_zc_clean = B_FALSE; 18447 return (bp); 18448 } 18449 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18450 if (fix_xmitlist) 18451 tcp_zcopy_notify(tcp); 18452 else 18453 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18454 } 18455 nbp = bp->b_cont; 18456 if (fix_xmitlist) { 18457 head->b_prev = bp->b_prev; 18458 head->b_next = bp->b_next; 18459 if (tcp->tcp_xmit_tail == bp) 18460 tcp->tcp_xmit_tail = head; 18461 } 18462 bp->b_next = NULL; 18463 bp->b_prev = NULL; 18464 freeb(bp); 18465 } else { 18466 head = bp; 18467 nbp = bp->b_cont; 18468 } 18469 tail = head; 18470 while (nbp) { 18471 if (IS_VMLOANED_MBLK(nbp)) { 18472 TCP_STAT(tcp_zcopy_backoff); 18473 if ((tail->b_cont = copyb(nbp)) == NULL) { 18474 tcp->tcp_xmit_zc_clean = B_FALSE; 18475 tail->b_cont = nbp; 18476 return (head); 18477 } 18478 tail = tail->b_cont; 18479 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18480 if (fix_xmitlist) 18481 tcp_zcopy_notify(tcp); 18482 else 18483 tail->b_datap->db_struioflag |= 18484 STRUIO_ZCNOTIFY; 18485 } 18486 bp = nbp; 18487 nbp = nbp->b_cont; 18488 if (fix_xmitlist) { 18489 tail->b_prev = bp->b_prev; 18490 tail->b_next = bp->b_next; 18491 if (tcp->tcp_xmit_tail == bp) 18492 tcp->tcp_xmit_tail = tail; 18493 } 18494 bp->b_next = NULL; 18495 bp->b_prev = NULL; 18496 freeb(bp); 18497 } else { 18498 tail->b_cont = nbp; 18499 tail = nbp; 18500 nbp = nbp->b_cont; 18501 } 18502 } 18503 if (fix_xmitlist) { 18504 tcp->tcp_xmit_last = tail; 18505 tcp->tcp_xmit_zc_clean = B_TRUE; 18506 } 18507 return (head); 18508 } 18509 18510 static void 18511 tcp_zcopy_notify(tcp_t *tcp) 18512 { 18513 struct stdata *stp; 18514 18515 if (tcp->tcp_detached) 18516 return; 18517 stp = STREAM(tcp->tcp_rq); 18518 mutex_enter(&stp->sd_lock); 18519 stp->sd_flag |= STZCNOTIFY; 18520 cv_broadcast(&stp->sd_zcopy_wait); 18521 mutex_exit(&stp->sd_lock); 18522 } 18523 18524 static boolean_t 18525 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18526 { 18527 ire_t *ire; 18528 conn_t *connp = tcp->tcp_connp; 18529 18530 18531 mutex_enter(&connp->conn_lock); 18532 ire = connp->conn_ire_cache; 18533 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18534 18535 if ((ire != NULL) && 18536 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18537 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18538 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18539 IRE_REFHOLD(ire); 18540 mutex_exit(&connp->conn_lock); 18541 } else { 18542 boolean_t cached = B_FALSE; 18543 ts_label_t *tsl; 18544 18545 /* force a recheck later on */ 18546 tcp->tcp_ire_ill_check_done = B_FALSE; 18547 18548 TCP_DBGSTAT(tcp_ire_null1); 18549 connp->conn_ire_cache = NULL; 18550 mutex_exit(&connp->conn_lock); 18551 18552 if (ire != NULL) 18553 IRE_REFRELE_NOTR(ire); 18554 18555 tsl = crgetlabel(CONN_CRED(connp)); 18556 ire = (dst ? ire_cache_lookup(*dst, connp->conn_zoneid, tsl) : 18557 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18558 connp->conn_zoneid, tsl)); 18559 18560 if (ire == NULL) { 18561 TCP_STAT(tcp_ire_null); 18562 return (B_FALSE); 18563 } 18564 18565 IRE_REFHOLD_NOTR(ire); 18566 /* 18567 * Since we are inside the squeue, there cannot be another 18568 * thread in TCP trying to set the conn_ire_cache now. The 18569 * check for IRE_MARK_CONDEMNED ensures that an interface 18570 * unplumb thread has not yet started cleaning up the conns. 18571 * Hence we don't need to grab the conn lock. 18572 */ 18573 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18574 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18575 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18576 connp->conn_ire_cache = ire; 18577 cached = B_TRUE; 18578 } 18579 rw_exit(&ire->ire_bucket->irb_lock); 18580 } 18581 18582 /* 18583 * We can continue to use the ire but since it was 18584 * not cached, we should drop the extra reference. 18585 */ 18586 if (!cached) 18587 IRE_REFRELE_NOTR(ire); 18588 18589 /* 18590 * Rampart note: no need to select a new label here, since 18591 * labels are not allowed to change during the life of a TCP 18592 * connection. 18593 */ 18594 } 18595 18596 *irep = ire; 18597 18598 return (B_TRUE); 18599 } 18600 18601 /* 18602 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18603 * 18604 * 0 = success; 18605 * 1 = failed to find ire and ill. 18606 */ 18607 static boolean_t 18608 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18609 { 18610 ipha_t *ipha; 18611 ipaddr_t dst; 18612 ire_t *ire; 18613 ill_t *ill; 18614 conn_t *connp = tcp->tcp_connp; 18615 mblk_t *ire_fp_mp; 18616 18617 if (mp != NULL) 18618 ipha = (ipha_t *)mp->b_rptr; 18619 else 18620 ipha = tcp->tcp_ipha; 18621 dst = ipha->ipha_dst; 18622 18623 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18624 return (B_FALSE); 18625 18626 if ((ire->ire_flags & RTF_MULTIRT) || 18627 (ire->ire_stq == NULL) || 18628 (ire->ire_nce == NULL) || 18629 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18630 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18631 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18632 TCP_STAT(tcp_ip_ire_send); 18633 IRE_REFRELE(ire); 18634 return (B_FALSE); 18635 } 18636 18637 ill = ire_to_ill(ire); 18638 if (connp->conn_outgoing_ill != NULL) { 18639 ill_t *conn_outgoing_ill = NULL; 18640 /* 18641 * Choose a good ill in the group to send the packets on. 18642 */ 18643 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18644 ill = ire_to_ill(ire); 18645 } 18646 ASSERT(ill != NULL); 18647 18648 if (!tcp->tcp_ire_ill_check_done) { 18649 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18650 tcp->tcp_ire_ill_check_done = B_TRUE; 18651 } 18652 18653 *irep = ire; 18654 *illp = ill; 18655 18656 return (B_TRUE); 18657 } 18658 18659 static void 18660 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18661 { 18662 ipha_t *ipha; 18663 ipaddr_t src; 18664 ipaddr_t dst; 18665 uint32_t cksum; 18666 ire_t *ire; 18667 uint16_t *up; 18668 ill_t *ill; 18669 conn_t *connp = tcp->tcp_connp; 18670 uint32_t hcksum_txflags = 0; 18671 mblk_t *ire_fp_mp; 18672 uint_t ire_fp_mp_len; 18673 18674 ASSERT(DB_TYPE(mp) == M_DATA); 18675 18676 if (DB_CRED(mp) == NULL) 18677 mblk_setcred(mp, CONN_CRED(connp)); 18678 18679 ipha = (ipha_t *)mp->b_rptr; 18680 src = ipha->ipha_src; 18681 dst = ipha->ipha_dst; 18682 18683 /* 18684 * Drop off fast path for IPv6 and also if options are present or 18685 * we need to resolve a TS label. 18686 */ 18687 if (tcp->tcp_ipversion != IPV4_VERSION || 18688 !IPCL_IS_CONNECTED(connp) || 18689 !CONN_IS_LSO_MD_FASTPATH(connp) || 18690 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18691 !connp->conn_ulp_labeled || 18692 ipha->ipha_ident == IP_HDR_INCLUDED || 18693 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18694 IPP_ENABLED(IPP_LOCAL_OUT)) { 18695 if (tcp->tcp_snd_zcopy_aware) 18696 mp = tcp_zcopy_disable(tcp, mp); 18697 TCP_STAT(tcp_ip_send); 18698 CALL_IP_WPUT(connp, q, mp); 18699 return; 18700 } 18701 18702 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18703 if (tcp->tcp_snd_zcopy_aware) 18704 mp = tcp_zcopy_backoff(tcp, mp, 0); 18705 CALL_IP_WPUT(connp, q, mp); 18706 return; 18707 } 18708 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18709 ire_fp_mp_len = MBLKL(ire_fp_mp); 18710 18711 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18712 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18713 #ifndef _BIG_ENDIAN 18714 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18715 #endif 18716 18717 /* 18718 * Check to see if we need to re-enable LSO/MDT for this connection 18719 * because it was previously disabled due to changes in the ill; 18720 * note that by doing it here, this re-enabling only applies when 18721 * the packet is not dispatched through CALL_IP_WPUT(). 18722 * 18723 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18724 * case, since that's how we ended up here. For IPv6, we do the 18725 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18726 */ 18727 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18728 /* 18729 * Restore LSO for this connection, so that next time around 18730 * it is eligible to go through tcp_lsosend() path again. 18731 */ 18732 TCP_STAT(tcp_lso_enabled); 18733 tcp->tcp_lso = B_TRUE; 18734 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18735 "interface %s\n", (void *)connp, ill->ill_name)); 18736 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18737 /* 18738 * Restore MDT for this connection, so that next time around 18739 * it is eligible to go through tcp_multisend() path again. 18740 */ 18741 TCP_STAT(tcp_mdt_conn_resumed1); 18742 tcp->tcp_mdt = B_TRUE; 18743 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18744 "interface %s\n", (void *)connp, ill->ill_name)); 18745 } 18746 18747 if (tcp->tcp_snd_zcopy_aware) { 18748 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18749 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18750 mp = tcp_zcopy_disable(tcp, mp); 18751 /* 18752 * we shouldn't need to reset ipha as the mp containing 18753 * ipha should never be a zero-copy mp. 18754 */ 18755 } 18756 18757 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18758 ASSERT(ill->ill_hcksum_capab != NULL); 18759 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18760 } 18761 18762 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18763 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18764 18765 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18766 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18767 18768 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18769 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18770 18771 /* Software checksum? */ 18772 if (DB_CKSUMFLAGS(mp) == 0) { 18773 TCP_STAT(tcp_out_sw_cksum); 18774 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18775 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18776 } 18777 18778 ipha->ipha_fragment_offset_and_flags |= 18779 (uint32_t)htons(ire->ire_frag_flag); 18780 18781 /* Calculate IP header checksum if hardware isn't capable */ 18782 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18783 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18784 ((uint16_t *)ipha)[4]); 18785 } 18786 18787 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18788 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18789 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18790 18791 UPDATE_OB_PKT_COUNT(ire); 18792 ire->ire_last_used_time = lbolt; 18793 18794 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18795 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18796 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18797 ntohs(ipha->ipha_length)); 18798 18799 if (ILL_DLS_CAPABLE(ill)) { 18800 /* 18801 * Send the packet directly to DLD, where it may be queued 18802 * depending on the availability of transmit resources at 18803 * the media layer. 18804 */ 18805 IP_DLS_ILL_TX(ill, ipha, mp); 18806 } else { 18807 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 18808 DTRACE_PROBE4(ip4__physical__out__start, 18809 ill_t *, NULL, ill_t *, out_ill, 18810 ipha_t *, ipha, mblk_t *, mp); 18811 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 18812 NULL, out_ill, ipha, mp, mp); 18813 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18814 if (mp != NULL) 18815 putnext(ire->ire_stq, mp); 18816 } 18817 IRE_REFRELE(ire); 18818 } 18819 18820 /* 18821 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18822 * if the receiver shrinks the window, i.e. moves the right window to the 18823 * left, the we should not send new data, but should retransmit normally the 18824 * old unacked data between suna and suna + swnd. We might has sent data 18825 * that is now outside the new window, pretend that we didn't send it. 18826 */ 18827 static void 18828 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18829 { 18830 uint32_t snxt = tcp->tcp_snxt; 18831 mblk_t *xmit_tail; 18832 int32_t offset; 18833 18834 ASSERT(shrunk_count > 0); 18835 18836 /* Pretend we didn't send the data outside the window */ 18837 snxt -= shrunk_count; 18838 18839 /* Get the mblk and the offset in it per the shrunk window */ 18840 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18841 18842 ASSERT(xmit_tail != NULL); 18843 18844 /* Reset all the values per the now shrunk window */ 18845 tcp->tcp_snxt = snxt; 18846 tcp->tcp_xmit_tail = xmit_tail; 18847 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18848 offset; 18849 tcp->tcp_unsent += shrunk_count; 18850 18851 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18852 /* 18853 * Make sure the timer is running so that we will probe a zero 18854 * window. 18855 */ 18856 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18857 } 18858 18859 18860 /* 18861 * The TCP normal data output path. 18862 * NOTE: the logic of the fast path is duplicated from this function. 18863 */ 18864 static void 18865 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18866 { 18867 int len; 18868 mblk_t *local_time; 18869 mblk_t *mp1; 18870 uint32_t snxt; 18871 int tail_unsent; 18872 int tcpstate; 18873 int usable = 0; 18874 mblk_t *xmit_tail; 18875 queue_t *q = tcp->tcp_wq; 18876 int32_t mss; 18877 int32_t num_sack_blk = 0; 18878 int32_t tcp_hdr_len; 18879 int32_t tcp_tcp_hdr_len; 18880 int mdt_thres; 18881 int rc; 18882 18883 tcpstate = tcp->tcp_state; 18884 if (mp == NULL) { 18885 /* 18886 * tcp_wput_data() with NULL mp should only be called when 18887 * there is unsent data. 18888 */ 18889 ASSERT(tcp->tcp_unsent > 0); 18890 /* Really tacky... but we need this for detached closes. */ 18891 len = tcp->tcp_unsent; 18892 goto data_null; 18893 } 18894 18895 #if CCS_STATS 18896 wrw_stats.tot.count++; 18897 wrw_stats.tot.bytes += msgdsize(mp); 18898 #endif 18899 ASSERT(mp->b_datap->db_type == M_DATA); 18900 /* 18901 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18902 * or before a connection attempt has begun. 18903 */ 18904 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18905 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18906 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18907 #ifdef DEBUG 18908 cmn_err(CE_WARN, 18909 "tcp_wput_data: data after ordrel, %s", 18910 tcp_display(tcp, NULL, 18911 DISP_ADDR_AND_PORT)); 18912 #else 18913 if (tcp->tcp_debug) { 18914 (void) strlog(TCP_MOD_ID, 0, 1, 18915 SL_TRACE|SL_ERROR, 18916 "tcp_wput_data: data after ordrel, %s\n", 18917 tcp_display(tcp, NULL, 18918 DISP_ADDR_AND_PORT)); 18919 } 18920 #endif /* DEBUG */ 18921 } 18922 if (tcp->tcp_snd_zcopy_aware && 18923 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18924 tcp_zcopy_notify(tcp); 18925 freemsg(mp); 18926 if (tcp->tcp_flow_stopped && 18927 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18928 tcp_clrqfull(tcp); 18929 } 18930 return; 18931 } 18932 18933 /* Strip empties */ 18934 for (;;) { 18935 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18936 (uintptr_t)INT_MAX); 18937 len = (int)(mp->b_wptr - mp->b_rptr); 18938 if (len > 0) 18939 break; 18940 mp1 = mp; 18941 mp = mp->b_cont; 18942 freeb(mp1); 18943 if (!mp) { 18944 return; 18945 } 18946 } 18947 18948 /* If we are the first on the list ... */ 18949 if (tcp->tcp_xmit_head == NULL) { 18950 tcp->tcp_xmit_head = mp; 18951 tcp->tcp_xmit_tail = mp; 18952 tcp->tcp_xmit_tail_unsent = len; 18953 } else { 18954 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18955 struct datab *dp; 18956 18957 mp1 = tcp->tcp_xmit_last; 18958 if (len < tcp_tx_pull_len && 18959 (dp = mp1->b_datap)->db_ref == 1 && 18960 dp->db_lim - mp1->b_wptr >= len) { 18961 ASSERT(len > 0); 18962 ASSERT(!mp1->b_cont); 18963 if (len == 1) { 18964 *mp1->b_wptr++ = *mp->b_rptr; 18965 } else { 18966 bcopy(mp->b_rptr, mp1->b_wptr, len); 18967 mp1->b_wptr += len; 18968 } 18969 if (mp1 == tcp->tcp_xmit_tail) 18970 tcp->tcp_xmit_tail_unsent += len; 18971 mp1->b_cont = mp->b_cont; 18972 if (tcp->tcp_snd_zcopy_aware && 18973 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18974 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18975 freeb(mp); 18976 mp = mp1; 18977 } else { 18978 tcp->tcp_xmit_last->b_cont = mp; 18979 } 18980 len += tcp->tcp_unsent; 18981 } 18982 18983 /* Tack on however many more positive length mblks we have */ 18984 if ((mp1 = mp->b_cont) != NULL) { 18985 do { 18986 int tlen; 18987 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18988 (uintptr_t)INT_MAX); 18989 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18990 if (tlen <= 0) { 18991 mp->b_cont = mp1->b_cont; 18992 freeb(mp1); 18993 } else { 18994 len += tlen; 18995 mp = mp1; 18996 } 18997 } while ((mp1 = mp->b_cont) != NULL); 18998 } 18999 tcp->tcp_xmit_last = mp; 19000 tcp->tcp_unsent = len; 19001 19002 if (urgent) 19003 usable = 1; 19004 19005 data_null: 19006 snxt = tcp->tcp_snxt; 19007 xmit_tail = tcp->tcp_xmit_tail; 19008 tail_unsent = tcp->tcp_xmit_tail_unsent; 19009 19010 /* 19011 * Note that tcp_mss has been adjusted to take into account the 19012 * timestamp option if applicable. Because SACK options do not 19013 * appear in every TCP segments and they are of variable lengths, 19014 * they cannot be included in tcp_mss. Thus we need to calculate 19015 * the actual segment length when we need to send a segment which 19016 * includes SACK options. 19017 */ 19018 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19019 int32_t opt_len; 19020 19021 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19022 tcp->tcp_num_sack_blk); 19023 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19024 2 + TCPOPT_HEADER_LEN; 19025 mss = tcp->tcp_mss - opt_len; 19026 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19027 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19028 } else { 19029 mss = tcp->tcp_mss; 19030 tcp_hdr_len = tcp->tcp_hdr_len; 19031 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19032 } 19033 19034 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19035 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19036 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 19037 } 19038 if (tcpstate == TCPS_SYN_RCVD) { 19039 /* 19040 * The three-way connection establishment handshake is not 19041 * complete yet. We want to queue the data for transmission 19042 * after entering ESTABLISHED state (RFC793). A jump to 19043 * "done" label effectively leaves data on the queue. 19044 */ 19045 goto done; 19046 } else { 19047 int usable_r; 19048 19049 /* 19050 * In the special case when cwnd is zero, which can only 19051 * happen if the connection is ECN capable, return now. 19052 * New segments is sent using tcp_timer(). The timer 19053 * is set in tcp_rput_data(). 19054 */ 19055 if (tcp->tcp_cwnd == 0) { 19056 /* 19057 * Note that tcp_cwnd is 0 before 3-way handshake is 19058 * finished. 19059 */ 19060 ASSERT(tcp->tcp_ecn_ok || 19061 tcp->tcp_state < TCPS_ESTABLISHED); 19062 return; 19063 } 19064 19065 /* NOTE: trouble if xmitting while SYN not acked? */ 19066 usable_r = snxt - tcp->tcp_suna; 19067 usable_r = tcp->tcp_swnd - usable_r; 19068 19069 /* 19070 * Check if the receiver has shrunk the window. If 19071 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19072 * cannot be set as there is unsent data, so FIN cannot 19073 * be sent out. Otherwise, we need to take into account 19074 * of FIN as it consumes an "invisible" sequence number. 19075 */ 19076 ASSERT(tcp->tcp_fin_sent == 0); 19077 if (usable_r < 0) { 19078 /* 19079 * The receiver has shrunk the window and we have sent 19080 * -usable_r date beyond the window, re-adjust. 19081 * 19082 * If TCP window scaling is enabled, there can be 19083 * round down error as the advertised receive window 19084 * is actually right shifted n bits. This means that 19085 * the lower n bits info is wiped out. It will look 19086 * like the window is shrunk. Do a check here to 19087 * see if the shrunk amount is actually within the 19088 * error in window calculation. If it is, just 19089 * return. Note that this check is inside the 19090 * shrunk window check. This makes sure that even 19091 * though tcp_process_shrunk_swnd() is not called, 19092 * we will stop further processing. 19093 */ 19094 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19095 tcp_process_shrunk_swnd(tcp, -usable_r); 19096 } 19097 return; 19098 } 19099 19100 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19101 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19102 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19103 19104 /* usable = MIN(usable, unsent) */ 19105 if (usable_r > len) 19106 usable_r = len; 19107 19108 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19109 if (usable_r > 0) { 19110 usable = usable_r; 19111 } else { 19112 /* Bypass all other unnecessary processing. */ 19113 goto done; 19114 } 19115 } 19116 19117 local_time = (mblk_t *)lbolt; 19118 19119 /* 19120 * "Our" Nagle Algorithm. This is not the same as in the old 19121 * BSD. This is more in line with the true intent of Nagle. 19122 * 19123 * The conditions are: 19124 * 1. The amount of unsent data (or amount of data which can be 19125 * sent, whichever is smaller) is less than Nagle limit. 19126 * 2. The last sent size is also less than Nagle limit. 19127 * 3. There is unack'ed data. 19128 * 4. Urgent pointer is not set. Send urgent data ignoring the 19129 * Nagle algorithm. This reduces the probability that urgent 19130 * bytes get "merged" together. 19131 * 5. The app has not closed the connection. This eliminates the 19132 * wait time of the receiving side waiting for the last piece of 19133 * (small) data. 19134 * 19135 * If all are satisified, exit without sending anything. Note 19136 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19137 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19138 * 4095). 19139 */ 19140 if (usable < (int)tcp->tcp_naglim && 19141 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19142 snxt != tcp->tcp_suna && 19143 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19144 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19145 goto done; 19146 } 19147 19148 if (tcp->tcp_cork) { 19149 /* 19150 * if the tcp->tcp_cork option is set, then we have to force 19151 * TCP not to send partial segment (smaller than MSS bytes). 19152 * We are calculating the usable now based on full mss and 19153 * will save the rest of remaining data for later. 19154 */ 19155 if (usable < mss) 19156 goto done; 19157 usable = (usable / mss) * mss; 19158 } 19159 19160 /* Update the latest receive window size in TCP header. */ 19161 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19162 tcp->tcp_tcph->th_win); 19163 19164 /* 19165 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19166 * 19167 * 1. Simple TCP/IP{v4,v6} (no options). 19168 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19169 * 3. If the TCP connection is in ESTABLISHED state. 19170 * 4. The TCP is not detached. 19171 * 19172 * If any of the above conditions have changed during the 19173 * connection, stop using LSO/MDT and restore the stream head 19174 * parameters accordingly. 19175 */ 19176 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19177 ((tcp->tcp_ipversion == IPV4_VERSION && 19178 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19179 (tcp->tcp_ipversion == IPV6_VERSION && 19180 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19181 tcp->tcp_state != TCPS_ESTABLISHED || 19182 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19183 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19184 IPP_ENABLED(IPP_LOCAL_OUT))) { 19185 if (tcp->tcp_lso) { 19186 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19187 tcp->tcp_lso = B_FALSE; 19188 } else { 19189 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19190 tcp->tcp_mdt = B_FALSE; 19191 } 19192 19193 /* Anything other than detached is considered pathological */ 19194 if (!TCP_IS_DETACHED(tcp)) { 19195 if (tcp->tcp_lso) 19196 TCP_STAT(tcp_lso_disabled); 19197 else 19198 TCP_STAT(tcp_mdt_conn_halted1); 19199 (void) tcp_maxpsz_set(tcp, B_TRUE); 19200 } 19201 } 19202 19203 /* Use MDT if sendable amount is greater than the threshold */ 19204 if (tcp->tcp_mdt && 19205 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19206 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19207 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19208 (tcp->tcp_valid_bits == 0 || 19209 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19210 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19211 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19212 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19213 local_time, mdt_thres); 19214 } else { 19215 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19216 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19217 local_time, INT_MAX); 19218 } 19219 19220 /* Pretend that all we were trying to send really got sent */ 19221 if (rc < 0 && tail_unsent < 0) { 19222 do { 19223 xmit_tail = xmit_tail->b_cont; 19224 xmit_tail->b_prev = local_time; 19225 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19226 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19227 tail_unsent += (int)(xmit_tail->b_wptr - 19228 xmit_tail->b_rptr); 19229 } while (tail_unsent < 0); 19230 } 19231 done:; 19232 tcp->tcp_xmit_tail = xmit_tail; 19233 tcp->tcp_xmit_tail_unsent = tail_unsent; 19234 len = tcp->tcp_snxt - snxt; 19235 if (len) { 19236 /* 19237 * If new data was sent, need to update the notsack 19238 * list, which is, afterall, data blocks that have 19239 * not been sack'ed by the receiver. New data is 19240 * not sack'ed. 19241 */ 19242 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19243 /* len is a negative value. */ 19244 tcp->tcp_pipe -= len; 19245 tcp_notsack_update(&(tcp->tcp_notsack_list), 19246 tcp->tcp_snxt, snxt, 19247 &(tcp->tcp_num_notsack_blk), 19248 &(tcp->tcp_cnt_notsack_list)); 19249 } 19250 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19251 tcp->tcp_rack = tcp->tcp_rnxt; 19252 tcp->tcp_rack_cnt = 0; 19253 if ((snxt + len) == tcp->tcp_suna) { 19254 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19255 } 19256 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19257 /* 19258 * Didn't send anything. Make sure the timer is running 19259 * so that we will probe a zero window. 19260 */ 19261 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19262 } 19263 /* Note that len is the amount we just sent but with a negative sign */ 19264 tcp->tcp_unsent += len; 19265 if (tcp->tcp_flow_stopped) { 19266 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19267 tcp_clrqfull(tcp); 19268 } 19269 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19270 tcp_setqfull(tcp); 19271 } 19272 } 19273 19274 /* 19275 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19276 * outgoing TCP header with the template header, as well as other 19277 * options such as time-stamp, ECN and/or SACK. 19278 */ 19279 static void 19280 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19281 { 19282 tcph_t *tcp_tmpl, *tcp_h; 19283 uint32_t *dst, *src; 19284 int hdrlen; 19285 19286 ASSERT(OK_32PTR(rptr)); 19287 19288 /* Template header */ 19289 tcp_tmpl = tcp->tcp_tcph; 19290 19291 /* Header of outgoing packet */ 19292 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19293 19294 /* dst and src are opaque 32-bit fields, used for copying */ 19295 dst = (uint32_t *)rptr; 19296 src = (uint32_t *)tcp->tcp_iphc; 19297 hdrlen = tcp->tcp_hdr_len; 19298 19299 /* Fill time-stamp option if needed */ 19300 if (tcp->tcp_snd_ts_ok) { 19301 U32_TO_BE32((uint32_t)now, 19302 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19303 U32_TO_BE32(tcp->tcp_ts_recent, 19304 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19305 } else { 19306 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19307 } 19308 19309 /* 19310 * Copy the template header; is this really more efficient than 19311 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19312 * but perhaps not for other scenarios. 19313 */ 19314 dst[0] = src[0]; 19315 dst[1] = src[1]; 19316 dst[2] = src[2]; 19317 dst[3] = src[3]; 19318 dst[4] = src[4]; 19319 dst[5] = src[5]; 19320 dst[6] = src[6]; 19321 dst[7] = src[7]; 19322 dst[8] = src[8]; 19323 dst[9] = src[9]; 19324 if (hdrlen -= 40) { 19325 hdrlen >>= 2; 19326 dst += 10; 19327 src += 10; 19328 do { 19329 *dst++ = *src++; 19330 } while (--hdrlen); 19331 } 19332 19333 /* 19334 * Set the ECN info in the TCP header if it is not a zero 19335 * window probe. Zero window probe is only sent in 19336 * tcp_wput_data() and tcp_timer(). 19337 */ 19338 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19339 SET_ECT(tcp, rptr); 19340 19341 if (tcp->tcp_ecn_echo_on) 19342 tcp_h->th_flags[0] |= TH_ECE; 19343 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19344 tcp_h->th_flags[0] |= TH_CWR; 19345 tcp->tcp_ecn_cwr_sent = B_TRUE; 19346 } 19347 } 19348 19349 /* Fill in SACK options */ 19350 if (num_sack_blk > 0) { 19351 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19352 sack_blk_t *tmp; 19353 int32_t i; 19354 19355 wptr[0] = TCPOPT_NOP; 19356 wptr[1] = TCPOPT_NOP; 19357 wptr[2] = TCPOPT_SACK; 19358 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19359 sizeof (sack_blk_t); 19360 wptr += TCPOPT_REAL_SACK_LEN; 19361 19362 tmp = tcp->tcp_sack_list; 19363 for (i = 0; i < num_sack_blk; i++) { 19364 U32_TO_BE32(tmp[i].begin, wptr); 19365 wptr += sizeof (tcp_seq); 19366 U32_TO_BE32(tmp[i].end, wptr); 19367 wptr += sizeof (tcp_seq); 19368 } 19369 tcp_h->th_offset_and_rsrvd[0] += 19370 ((num_sack_blk * 2 + 1) << 4); 19371 } 19372 } 19373 19374 /* 19375 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19376 * the destination address and SAP attribute, and if necessary, the 19377 * hardware checksum offload attribute to a Multidata message. 19378 */ 19379 static int 19380 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19381 const uint32_t start, const uint32_t stuff, const uint32_t end, 19382 const uint32_t flags) 19383 { 19384 /* Add global destination address & SAP attribute */ 19385 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19386 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19387 "destination address+SAP\n")); 19388 19389 if (dlmp != NULL) 19390 TCP_STAT(tcp_mdt_allocfail); 19391 return (-1); 19392 } 19393 19394 /* Add global hwcksum attribute */ 19395 if (hwcksum && 19396 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19397 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19398 "checksum attribute\n")); 19399 19400 TCP_STAT(tcp_mdt_allocfail); 19401 return (-1); 19402 } 19403 19404 return (0); 19405 } 19406 19407 /* 19408 * Smaller and private version of pdescinfo_t used specifically for TCP, 19409 * which allows for only two payload spans per packet. 19410 */ 19411 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19412 19413 /* 19414 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19415 * scheme, and returns one the following: 19416 * 19417 * -1 = failed allocation. 19418 * 0 = success; burst count reached, or usable send window is too small, 19419 * and that we'd rather wait until later before sending again. 19420 */ 19421 static int 19422 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19423 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19424 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19425 const int mdt_thres) 19426 { 19427 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19428 multidata_t *mmd; 19429 uint_t obsegs, obbytes, hdr_frag_sz; 19430 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19431 int num_burst_seg, max_pld; 19432 pdesc_t *pkt; 19433 tcp_pdescinfo_t tcp_pkt_info; 19434 pdescinfo_t *pkt_info; 19435 int pbuf_idx, pbuf_idx_nxt; 19436 int seg_len, len, spill, af; 19437 boolean_t add_buffer, zcopy, clusterwide; 19438 boolean_t buf_trunked = B_FALSE; 19439 boolean_t rconfirm = B_FALSE; 19440 boolean_t done = B_FALSE; 19441 uint32_t cksum; 19442 uint32_t hwcksum_flags; 19443 ire_t *ire = NULL; 19444 ill_t *ill; 19445 ipha_t *ipha; 19446 ip6_t *ip6h; 19447 ipaddr_t src, dst; 19448 ill_zerocopy_capab_t *zc_cap = NULL; 19449 uint16_t *up; 19450 int err; 19451 conn_t *connp; 19452 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19453 uchar_t *pld_start; 19454 19455 #ifdef _BIG_ENDIAN 19456 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19457 #else 19458 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19459 #endif 19460 19461 #define PREP_NEW_MULTIDATA() { \ 19462 mmd = NULL; \ 19463 md_mp = md_hbuf = NULL; \ 19464 cur_hdr_off = 0; \ 19465 max_pld = tcp->tcp_mdt_max_pld; \ 19466 pbuf_idx = pbuf_idx_nxt = -1; \ 19467 add_buffer = B_TRUE; \ 19468 zcopy = B_FALSE; \ 19469 } 19470 19471 #define PREP_NEW_PBUF() { \ 19472 md_pbuf = md_pbuf_nxt = NULL; \ 19473 pbuf_idx = pbuf_idx_nxt = -1; \ 19474 cur_pld_off = 0; \ 19475 first_snxt = *snxt; \ 19476 ASSERT(*tail_unsent > 0); \ 19477 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19478 } 19479 19480 ASSERT(mdt_thres >= mss); 19481 ASSERT(*usable > 0 && *usable > mdt_thres); 19482 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19483 ASSERT(!TCP_IS_DETACHED(tcp)); 19484 ASSERT(tcp->tcp_valid_bits == 0 || 19485 tcp->tcp_valid_bits == TCP_FSS_VALID); 19486 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19487 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19488 (tcp->tcp_ipversion == IPV6_VERSION && 19489 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19490 19491 connp = tcp->tcp_connp; 19492 ASSERT(connp != NULL); 19493 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19494 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19495 19496 /* 19497 * Note that tcp will only declare at most 2 payload spans per 19498 * packet, which is much lower than the maximum allowable number 19499 * of packet spans per Multidata. For this reason, we use the 19500 * privately declared and smaller descriptor info structure, in 19501 * order to save some stack space. 19502 */ 19503 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19504 19505 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19506 if (af == AF_INET) { 19507 dst = tcp->tcp_ipha->ipha_dst; 19508 src = tcp->tcp_ipha->ipha_src; 19509 ASSERT(!CLASSD(dst)); 19510 } 19511 ASSERT(af == AF_INET || 19512 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19513 19514 obsegs = obbytes = 0; 19515 num_burst_seg = tcp->tcp_snd_burst; 19516 md_mp_head = NULL; 19517 PREP_NEW_MULTIDATA(); 19518 19519 /* 19520 * Before we go on further, make sure there is an IRE that we can 19521 * use, and that the ILL supports MDT. Otherwise, there's no point 19522 * in proceeding any further, and we should just hand everything 19523 * off to the legacy path. 19524 */ 19525 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19526 goto legacy_send_no_md; 19527 19528 ASSERT(ire != NULL); 19529 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19530 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19531 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19532 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19533 /* 19534 * If we do support loopback for MDT (which requires modifications 19535 * to the receiving paths), the following assertions should go away, 19536 * and we would be sending the Multidata to loopback conn later on. 19537 */ 19538 ASSERT(!IRE_IS_LOCAL(ire)); 19539 ASSERT(ire->ire_stq != NULL); 19540 19541 ill = ire_to_ill(ire); 19542 ASSERT(ill != NULL); 19543 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19544 19545 if (!tcp->tcp_ire_ill_check_done) { 19546 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19547 tcp->tcp_ire_ill_check_done = B_TRUE; 19548 } 19549 19550 /* 19551 * If the underlying interface conditions have changed, or if the 19552 * new interface does not support MDT, go back to legacy path. 19553 */ 19554 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19555 /* don't go through this path anymore for this connection */ 19556 TCP_STAT(tcp_mdt_conn_halted2); 19557 tcp->tcp_mdt = B_FALSE; 19558 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19559 "interface %s\n", (void *)connp, ill->ill_name)); 19560 /* IRE will be released prior to returning */ 19561 goto legacy_send_no_md; 19562 } 19563 19564 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19565 zc_cap = ill->ill_zerocopy_capab; 19566 19567 /* 19568 * Check if we can take tcp fast-path. Note that "incomplete" 19569 * ire's (where the link-layer for next hop is not resolved 19570 * or where the fast-path header in nce_fp_mp is not available 19571 * yet) are sent down the legacy (slow) path. 19572 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19573 */ 19574 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19575 /* IRE will be released prior to returning */ 19576 goto legacy_send_no_md; 19577 } 19578 19579 /* go to legacy path if interface doesn't support zerocopy */ 19580 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19581 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19582 /* IRE will be released prior to returning */ 19583 goto legacy_send_no_md; 19584 } 19585 19586 /* does the interface support hardware checksum offload? */ 19587 hwcksum_flags = 0; 19588 if (ILL_HCKSUM_CAPABLE(ill) && 19589 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19590 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19591 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19592 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19593 HCKSUM_IPHDRCKSUM) 19594 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19595 19596 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19597 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19598 hwcksum_flags |= HCK_FULLCKSUM; 19599 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19600 HCKSUM_INET_PARTIAL) 19601 hwcksum_flags |= HCK_PARTIALCKSUM; 19602 } 19603 19604 /* 19605 * Each header fragment consists of the leading extra space, 19606 * followed by the TCP/IP header, and the trailing extra space. 19607 * We make sure that each header fragment begins on a 32-bit 19608 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19609 * aligned in tcp_mdt_update). 19610 */ 19611 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19612 tcp->tcp_mdt_hdr_tail), 4); 19613 19614 /* are we starting from the beginning of data block? */ 19615 if (*tail_unsent == 0) { 19616 *xmit_tail = (*xmit_tail)->b_cont; 19617 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19618 *tail_unsent = (int)MBLKL(*xmit_tail); 19619 } 19620 19621 /* 19622 * Here we create one or more Multidata messages, each made up of 19623 * one header buffer and up to N payload buffers. This entire 19624 * operation is done within two loops: 19625 * 19626 * The outer loop mostly deals with creating the Multidata message, 19627 * as well as the header buffer that gets added to it. It also 19628 * links the Multidata messages together such that all of them can 19629 * be sent down to the lower layer in a single putnext call; this 19630 * linking behavior depends on the tcp_mdt_chain tunable. 19631 * 19632 * The inner loop takes an existing Multidata message, and adds 19633 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19634 * packetizes those buffers by filling up the corresponding header 19635 * buffer fragments with the proper IP and TCP headers, and by 19636 * describing the layout of each packet in the packet descriptors 19637 * that get added to the Multidata. 19638 */ 19639 do { 19640 /* 19641 * If usable send window is too small, or data blocks in 19642 * transmit list are smaller than our threshold (i.e. app 19643 * performs large writes followed by small ones), we hand 19644 * off the control over to the legacy path. Note that we'll 19645 * get back the control once it encounters a large block. 19646 */ 19647 if (*usable < mss || (*tail_unsent <= mdt_thres && 19648 (*xmit_tail)->b_cont != NULL && 19649 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19650 /* send down what we've got so far */ 19651 if (md_mp_head != NULL) { 19652 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19653 obsegs, obbytes, &rconfirm); 19654 } 19655 /* 19656 * Pass control over to tcp_send(), but tell it to 19657 * return to us once a large-size transmission is 19658 * possible. 19659 */ 19660 TCP_STAT(tcp_mdt_legacy_small); 19661 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19662 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19663 tail_unsent, xmit_tail, local_time, 19664 mdt_thres)) <= 0) { 19665 /* burst count reached, or alloc failed */ 19666 IRE_REFRELE(ire); 19667 return (err); 19668 } 19669 19670 /* tcp_send() may have sent everything, so check */ 19671 if (*usable <= 0) { 19672 IRE_REFRELE(ire); 19673 return (0); 19674 } 19675 19676 TCP_STAT(tcp_mdt_legacy_ret); 19677 /* 19678 * We may have delivered the Multidata, so make sure 19679 * to re-initialize before the next round. 19680 */ 19681 md_mp_head = NULL; 19682 obsegs = obbytes = 0; 19683 num_burst_seg = tcp->tcp_snd_burst; 19684 PREP_NEW_MULTIDATA(); 19685 19686 /* are we starting from the beginning of data block? */ 19687 if (*tail_unsent == 0) { 19688 *xmit_tail = (*xmit_tail)->b_cont; 19689 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19690 (uintptr_t)INT_MAX); 19691 *tail_unsent = (int)MBLKL(*xmit_tail); 19692 } 19693 } 19694 19695 /* 19696 * max_pld limits the number of mblks in tcp's transmit 19697 * queue that can be added to a Multidata message. Once 19698 * this counter reaches zero, no more additional mblks 19699 * can be added to it. What happens afterwards depends 19700 * on whether or not we are set to chain the Multidata 19701 * messages. If we are to link them together, reset 19702 * max_pld to its original value (tcp_mdt_max_pld) and 19703 * prepare to create a new Multidata message which will 19704 * get linked to md_mp_head. Else, leave it alone and 19705 * let the inner loop break on its own. 19706 */ 19707 if (tcp_mdt_chain && max_pld == 0) 19708 PREP_NEW_MULTIDATA(); 19709 19710 /* adding a payload buffer; re-initialize values */ 19711 if (add_buffer) 19712 PREP_NEW_PBUF(); 19713 19714 /* 19715 * If we don't have a Multidata, either because we just 19716 * (re)entered this outer loop, or after we branched off 19717 * to tcp_send above, setup the Multidata and header 19718 * buffer to be used. 19719 */ 19720 if (md_mp == NULL) { 19721 int md_hbuflen; 19722 uint32_t start, stuff; 19723 19724 /* 19725 * Calculate Multidata header buffer size large enough 19726 * to hold all of the headers that can possibly be 19727 * sent at this moment. We'd rather over-estimate 19728 * the size than running out of space; this is okay 19729 * since this buffer is small anyway. 19730 */ 19731 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19732 19733 /* 19734 * Start and stuff offset for partial hardware 19735 * checksum offload; these are currently for IPv4. 19736 * For full checksum offload, they are set to zero. 19737 */ 19738 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19739 if (af == AF_INET) { 19740 start = IP_SIMPLE_HDR_LENGTH; 19741 stuff = IP_SIMPLE_HDR_LENGTH + 19742 TCP_CHECKSUM_OFFSET; 19743 } else { 19744 start = IPV6_HDR_LEN; 19745 stuff = IPV6_HDR_LEN + 19746 TCP_CHECKSUM_OFFSET; 19747 } 19748 } else { 19749 start = stuff = 0; 19750 } 19751 19752 /* 19753 * Create the header buffer, Multidata, as well as 19754 * any necessary attributes (destination address, 19755 * SAP and hardware checksum offload) that should 19756 * be associated with the Multidata message. 19757 */ 19758 ASSERT(cur_hdr_off == 0); 19759 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19760 ((md_hbuf->b_wptr += md_hbuflen), 19761 (mmd = mmd_alloc(md_hbuf, &md_mp, 19762 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19763 /* fastpath mblk */ 19764 ire->ire_nce->nce_res_mp, 19765 /* hardware checksum enabled */ 19766 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19767 /* hardware checksum offsets */ 19768 start, stuff, 0, 19769 /* hardware checksum flag */ 19770 hwcksum_flags) != 0)) { 19771 legacy_send: 19772 if (md_mp != NULL) { 19773 /* Unlink message from the chain */ 19774 if (md_mp_head != NULL) { 19775 err = (intptr_t)rmvb(md_mp_head, 19776 md_mp); 19777 /* 19778 * We can't assert that rmvb 19779 * did not return -1, since we 19780 * may get here before linkb 19781 * happens. We do, however, 19782 * check if we just removed the 19783 * only element in the list. 19784 */ 19785 if (err == 0) 19786 md_mp_head = NULL; 19787 } 19788 /* md_hbuf gets freed automatically */ 19789 TCP_STAT(tcp_mdt_discarded); 19790 freeb(md_mp); 19791 } else { 19792 /* Either allocb or mmd_alloc failed */ 19793 TCP_STAT(tcp_mdt_allocfail); 19794 if (md_hbuf != NULL) 19795 freeb(md_hbuf); 19796 } 19797 19798 /* send down what we've got so far */ 19799 if (md_mp_head != NULL) { 19800 tcp_multisend_data(tcp, ire, ill, 19801 md_mp_head, obsegs, obbytes, 19802 &rconfirm); 19803 } 19804 legacy_send_no_md: 19805 if (ire != NULL) 19806 IRE_REFRELE(ire); 19807 /* 19808 * Too bad; let the legacy path handle this. 19809 * We specify INT_MAX for the threshold, since 19810 * we gave up with the Multidata processings 19811 * and let the old path have it all. 19812 */ 19813 TCP_STAT(tcp_mdt_legacy_all); 19814 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19815 tcp_tcp_hdr_len, num_sack_blk, usable, 19816 snxt, tail_unsent, xmit_tail, local_time, 19817 INT_MAX)); 19818 } 19819 19820 /* link to any existing ones, if applicable */ 19821 TCP_STAT(tcp_mdt_allocd); 19822 if (md_mp_head == NULL) { 19823 md_mp_head = md_mp; 19824 } else if (tcp_mdt_chain) { 19825 TCP_STAT(tcp_mdt_linked); 19826 linkb(md_mp_head, md_mp); 19827 } 19828 } 19829 19830 ASSERT(md_mp_head != NULL); 19831 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19832 ASSERT(md_mp != NULL && mmd != NULL); 19833 ASSERT(md_hbuf != NULL); 19834 19835 /* 19836 * Packetize the transmittable portion of the data block; 19837 * each data block is essentially added to the Multidata 19838 * as a payload buffer. We also deal with adding more 19839 * than one payload buffers, which happens when the remaining 19840 * packetized portion of the current payload buffer is less 19841 * than MSS, while the next data block in transmit queue 19842 * has enough data to make up for one. This "spillover" 19843 * case essentially creates a split-packet, where portions 19844 * of the packet's payload fragments may span across two 19845 * virtually discontiguous address blocks. 19846 */ 19847 seg_len = mss; 19848 do { 19849 len = seg_len; 19850 19851 ASSERT(len > 0); 19852 ASSERT(max_pld >= 0); 19853 ASSERT(!add_buffer || cur_pld_off == 0); 19854 19855 /* 19856 * First time around for this payload buffer; note 19857 * in the case of a spillover, the following has 19858 * been done prior to adding the split-packet 19859 * descriptor to Multidata, and we don't want to 19860 * repeat the process. 19861 */ 19862 if (add_buffer) { 19863 ASSERT(mmd != NULL); 19864 ASSERT(md_pbuf == NULL); 19865 ASSERT(md_pbuf_nxt == NULL); 19866 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19867 19868 /* 19869 * Have we reached the limit? We'd get to 19870 * this case when we're not chaining the 19871 * Multidata messages together, and since 19872 * we're done, terminate this loop. 19873 */ 19874 if (max_pld == 0) 19875 break; /* done */ 19876 19877 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19878 TCP_STAT(tcp_mdt_allocfail); 19879 goto legacy_send; /* out_of_mem */ 19880 } 19881 19882 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19883 zc_cap != NULL) { 19884 if (!ip_md_zcopy_attr(mmd, NULL, 19885 zc_cap->ill_zerocopy_flags)) { 19886 freeb(md_pbuf); 19887 TCP_STAT(tcp_mdt_allocfail); 19888 /* out_of_mem */ 19889 goto legacy_send; 19890 } 19891 zcopy = B_TRUE; 19892 } 19893 19894 md_pbuf->b_rptr += base_pld_off; 19895 19896 /* 19897 * Add a payload buffer to the Multidata; this 19898 * operation must not fail, or otherwise our 19899 * logic in this routine is broken. There 19900 * is no memory allocation done by the 19901 * routine, so any returned failure simply 19902 * tells us that we've done something wrong. 19903 * 19904 * A failure tells us that either we're adding 19905 * the same payload buffer more than once, or 19906 * we're trying to add more buffers than 19907 * allowed (max_pld calculation is wrong). 19908 * None of the above cases should happen, and 19909 * we panic because either there's horrible 19910 * heap corruption, and/or programming mistake. 19911 */ 19912 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19913 if (pbuf_idx < 0) { 19914 cmn_err(CE_PANIC, "tcp_multisend: " 19915 "payload buffer logic error " 19916 "detected for tcp %p mmd %p " 19917 "pbuf %p (%d)\n", 19918 (void *)tcp, (void *)mmd, 19919 (void *)md_pbuf, pbuf_idx); 19920 } 19921 19922 ASSERT(max_pld > 0); 19923 --max_pld; 19924 add_buffer = B_FALSE; 19925 } 19926 19927 ASSERT(md_mp_head != NULL); 19928 ASSERT(md_pbuf != NULL); 19929 ASSERT(md_pbuf_nxt == NULL); 19930 ASSERT(pbuf_idx != -1); 19931 ASSERT(pbuf_idx_nxt == -1); 19932 ASSERT(*usable > 0); 19933 19934 /* 19935 * We spillover to the next payload buffer only 19936 * if all of the following is true: 19937 * 19938 * 1. There is not enough data on the current 19939 * payload buffer to make up `len', 19940 * 2. We are allowed to send `len', 19941 * 3. The next payload buffer length is large 19942 * enough to accomodate `spill'. 19943 */ 19944 if ((spill = len - *tail_unsent) > 0 && 19945 *usable >= len && 19946 MBLKL((*xmit_tail)->b_cont) >= spill && 19947 max_pld > 0) { 19948 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19949 if (md_pbuf_nxt == NULL) { 19950 TCP_STAT(tcp_mdt_allocfail); 19951 goto legacy_send; /* out_of_mem */ 19952 } 19953 19954 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19955 zc_cap != NULL) { 19956 if (!ip_md_zcopy_attr(mmd, NULL, 19957 zc_cap->ill_zerocopy_flags)) { 19958 freeb(md_pbuf_nxt); 19959 TCP_STAT(tcp_mdt_allocfail); 19960 /* out_of_mem */ 19961 goto legacy_send; 19962 } 19963 zcopy = B_TRUE; 19964 } 19965 19966 /* 19967 * See comments above on the first call to 19968 * mmd_addpldbuf for explanation on the panic. 19969 */ 19970 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19971 if (pbuf_idx_nxt < 0) { 19972 panic("tcp_multisend: " 19973 "next payload buffer logic error " 19974 "detected for tcp %p mmd %p " 19975 "pbuf %p (%d)\n", 19976 (void *)tcp, (void *)mmd, 19977 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19978 } 19979 19980 ASSERT(max_pld > 0); 19981 --max_pld; 19982 } else if (spill > 0) { 19983 /* 19984 * If there's a spillover, but the following 19985 * xmit_tail couldn't give us enough octets 19986 * to reach "len", then stop the current 19987 * Multidata creation and let the legacy 19988 * tcp_send() path take over. We don't want 19989 * to send the tiny segment as part of this 19990 * Multidata for performance reasons; instead, 19991 * we let the legacy path deal with grouping 19992 * it with the subsequent small mblks. 19993 */ 19994 if (*usable >= len && 19995 MBLKL((*xmit_tail)->b_cont) < spill) { 19996 max_pld = 0; 19997 break; /* done */ 19998 } 19999 20000 /* 20001 * We can't spillover, and we are near 20002 * the end of the current payload buffer, 20003 * so send what's left. 20004 */ 20005 ASSERT(*tail_unsent > 0); 20006 len = *tail_unsent; 20007 } 20008 20009 /* tail_unsent is negated if there is a spillover */ 20010 *tail_unsent -= len; 20011 *usable -= len; 20012 ASSERT(*usable >= 0); 20013 20014 if (*usable < mss) 20015 seg_len = *usable; 20016 /* 20017 * Sender SWS avoidance; see comments in tcp_send(); 20018 * everything else is the same, except that we only 20019 * do this here if there is no more data to be sent 20020 * following the current xmit_tail. We don't check 20021 * for 1-byte urgent data because we shouldn't get 20022 * here if TCP_URG_VALID is set. 20023 */ 20024 if (*usable > 0 && *usable < mss && 20025 ((md_pbuf_nxt == NULL && 20026 (*xmit_tail)->b_cont == NULL) || 20027 (md_pbuf_nxt != NULL && 20028 (*xmit_tail)->b_cont->b_cont == NULL)) && 20029 seg_len < (tcp->tcp_max_swnd >> 1) && 20030 (tcp->tcp_unsent - 20031 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20032 !tcp->tcp_zero_win_probe) { 20033 if ((*snxt + len) == tcp->tcp_snxt && 20034 (*snxt + len) == tcp->tcp_suna) { 20035 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20036 } 20037 done = B_TRUE; 20038 } 20039 20040 /* 20041 * Prime pump for IP's checksumming on our behalf; 20042 * include the adjustment for a source route if any. 20043 * Do this only for software/partial hardware checksum 20044 * offload, as this field gets zeroed out later for 20045 * the full hardware checksum offload case. 20046 */ 20047 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20048 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20049 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20050 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20051 } 20052 20053 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20054 *snxt += len; 20055 20056 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20057 /* 20058 * We set the PUSH bit only if TCP has no more buffered 20059 * data to be transmitted (or if sender SWS avoidance 20060 * takes place), as opposed to setting it for every 20061 * last packet in the burst. 20062 */ 20063 if (done || 20064 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20065 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20066 20067 /* 20068 * Set FIN bit if this is our last segment; snxt 20069 * already includes its length, and it will not 20070 * be adjusted after this point. 20071 */ 20072 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20073 *snxt == tcp->tcp_fss) { 20074 if (!tcp->tcp_fin_acked) { 20075 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20076 BUMP_MIB(&tcp_mib, tcpOutControl); 20077 } 20078 if (!tcp->tcp_fin_sent) { 20079 tcp->tcp_fin_sent = B_TRUE; 20080 /* 20081 * tcp state must be ESTABLISHED 20082 * in order for us to get here in 20083 * the first place. 20084 */ 20085 tcp->tcp_state = TCPS_FIN_WAIT_1; 20086 20087 /* 20088 * Upon returning from this routine, 20089 * tcp_wput_data() will set tcp_snxt 20090 * to be equal to snxt + tcp_fin_sent. 20091 * This is essentially the same as 20092 * setting it to tcp_fss + 1. 20093 */ 20094 } 20095 } 20096 20097 tcp->tcp_last_sent_len = (ushort_t)len; 20098 20099 len += tcp_hdr_len; 20100 if (tcp->tcp_ipversion == IPV4_VERSION) 20101 tcp->tcp_ipha->ipha_length = htons(len); 20102 else 20103 tcp->tcp_ip6h->ip6_plen = htons(len - 20104 ((char *)&tcp->tcp_ip6h[1] - 20105 tcp->tcp_iphc)); 20106 20107 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20108 20109 /* setup header fragment */ 20110 PDESC_HDR_ADD(pkt_info, 20111 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20112 tcp->tcp_mdt_hdr_head, /* head room */ 20113 tcp_hdr_len, /* len */ 20114 tcp->tcp_mdt_hdr_tail); /* tail room */ 20115 20116 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20117 hdr_frag_sz); 20118 ASSERT(MBLKIN(md_hbuf, 20119 (pkt_info->hdr_base - md_hbuf->b_rptr), 20120 PDESC_HDRSIZE(pkt_info))); 20121 20122 /* setup first payload fragment */ 20123 PDESC_PLD_INIT(pkt_info); 20124 PDESC_PLD_SPAN_ADD(pkt_info, 20125 pbuf_idx, /* index */ 20126 md_pbuf->b_rptr + cur_pld_off, /* start */ 20127 tcp->tcp_last_sent_len); /* len */ 20128 20129 /* create a split-packet in case of a spillover */ 20130 if (md_pbuf_nxt != NULL) { 20131 ASSERT(spill > 0); 20132 ASSERT(pbuf_idx_nxt > pbuf_idx); 20133 ASSERT(!add_buffer); 20134 20135 md_pbuf = md_pbuf_nxt; 20136 md_pbuf_nxt = NULL; 20137 pbuf_idx = pbuf_idx_nxt; 20138 pbuf_idx_nxt = -1; 20139 cur_pld_off = spill; 20140 20141 /* trim out first payload fragment */ 20142 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20143 20144 /* setup second payload fragment */ 20145 PDESC_PLD_SPAN_ADD(pkt_info, 20146 pbuf_idx, /* index */ 20147 md_pbuf->b_rptr, /* start */ 20148 spill); /* len */ 20149 20150 if ((*xmit_tail)->b_next == NULL) { 20151 /* 20152 * Store the lbolt used for RTT 20153 * estimation. We can only record one 20154 * timestamp per mblk so we do it when 20155 * we reach the end of the payload 20156 * buffer. Also we only take a new 20157 * timestamp sample when the previous 20158 * timed data from the same mblk has 20159 * been ack'ed. 20160 */ 20161 (*xmit_tail)->b_prev = local_time; 20162 (*xmit_tail)->b_next = 20163 (mblk_t *)(uintptr_t)first_snxt; 20164 } 20165 20166 first_snxt = *snxt - spill; 20167 20168 /* 20169 * Advance xmit_tail; usable could be 0 by 20170 * the time we got here, but we made sure 20171 * above that we would only spillover to 20172 * the next data block if usable includes 20173 * the spilled-over amount prior to the 20174 * subtraction. Therefore, we are sure 20175 * that xmit_tail->b_cont can't be NULL. 20176 */ 20177 ASSERT((*xmit_tail)->b_cont != NULL); 20178 *xmit_tail = (*xmit_tail)->b_cont; 20179 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20180 (uintptr_t)INT_MAX); 20181 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20182 } else { 20183 cur_pld_off += tcp->tcp_last_sent_len; 20184 } 20185 20186 /* 20187 * Fill in the header using the template header, and 20188 * add options such as time-stamp, ECN and/or SACK, 20189 * as needed. 20190 */ 20191 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20192 (clock_t)local_time, num_sack_blk); 20193 20194 /* take care of some IP header businesses */ 20195 if (af == AF_INET) { 20196 ipha = (ipha_t *)pkt_info->hdr_rptr; 20197 20198 ASSERT(OK_32PTR((uchar_t *)ipha)); 20199 ASSERT(PDESC_HDRL(pkt_info) >= 20200 IP_SIMPLE_HDR_LENGTH); 20201 ASSERT(ipha->ipha_version_and_hdr_length == 20202 IP_SIMPLE_HDR_VERSION); 20203 20204 /* 20205 * Assign ident value for current packet; see 20206 * related comments in ip_wput_ire() about the 20207 * contract private interface with clustering 20208 * group. 20209 */ 20210 clusterwide = B_FALSE; 20211 if (cl_inet_ipident != NULL) { 20212 ASSERT(cl_inet_isclusterwide != NULL); 20213 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20214 AF_INET, 20215 (uint8_t *)(uintptr_t)src)) { 20216 ipha->ipha_ident = 20217 (*cl_inet_ipident) 20218 (IPPROTO_IP, AF_INET, 20219 (uint8_t *)(uintptr_t)src, 20220 (uint8_t *)(uintptr_t)dst); 20221 clusterwide = B_TRUE; 20222 } 20223 } 20224 20225 if (!clusterwide) { 20226 ipha->ipha_ident = (uint16_t) 20227 atomic_add_32_nv( 20228 &ire->ire_ident, 1); 20229 } 20230 #ifndef _BIG_ENDIAN 20231 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20232 (ipha->ipha_ident >> 8); 20233 #endif 20234 } else { 20235 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20236 20237 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20238 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20239 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20240 ASSERT(PDESC_HDRL(pkt_info) >= 20241 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20242 TCP_CHECKSUM_SIZE)); 20243 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20244 20245 if (tcp->tcp_ip_forward_progress) { 20246 rconfirm = B_TRUE; 20247 tcp->tcp_ip_forward_progress = B_FALSE; 20248 } 20249 } 20250 20251 /* at least one payload span, and at most two */ 20252 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20253 20254 /* add the packet descriptor to Multidata */ 20255 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20256 KM_NOSLEEP)) == NULL) { 20257 /* 20258 * Any failure other than ENOMEM indicates 20259 * that we have passed in invalid pkt_info 20260 * or parameters to mmd_addpdesc, which must 20261 * not happen. 20262 * 20263 * EINVAL is a result of failure on boundary 20264 * checks against the pkt_info contents. It 20265 * should not happen, and we panic because 20266 * either there's horrible heap corruption, 20267 * and/or programming mistake. 20268 */ 20269 if (err != ENOMEM) { 20270 cmn_err(CE_PANIC, "tcp_multisend: " 20271 "pdesc logic error detected for " 20272 "tcp %p mmd %p pinfo %p (%d)\n", 20273 (void *)tcp, (void *)mmd, 20274 (void *)pkt_info, err); 20275 } 20276 TCP_STAT(tcp_mdt_addpdescfail); 20277 goto legacy_send; /* out_of_mem */ 20278 } 20279 ASSERT(pkt != NULL); 20280 20281 /* calculate IP header and TCP checksums */ 20282 if (af == AF_INET) { 20283 /* calculate pseudo-header checksum */ 20284 cksum = (dst >> 16) + (dst & 0xFFFF) + 20285 (src >> 16) + (src & 0xFFFF); 20286 20287 /* offset for TCP header checksum */ 20288 up = IPH_TCPH_CHECKSUMP(ipha, 20289 IP_SIMPLE_HDR_LENGTH); 20290 } else { 20291 up = (uint16_t *)&ip6h->ip6_src; 20292 20293 /* calculate pseudo-header checksum */ 20294 cksum = up[0] + up[1] + up[2] + up[3] + 20295 up[4] + up[5] + up[6] + up[7] + 20296 up[8] + up[9] + up[10] + up[11] + 20297 up[12] + up[13] + up[14] + up[15]; 20298 20299 /* Fold the initial sum */ 20300 cksum = (cksum & 0xffff) + (cksum >> 16); 20301 20302 up = (uint16_t *)(((uchar_t *)ip6h) + 20303 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20304 } 20305 20306 if (hwcksum_flags & HCK_FULLCKSUM) { 20307 /* clear checksum field for hardware */ 20308 *up = 0; 20309 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20310 uint32_t sum; 20311 20312 /* pseudo-header checksumming */ 20313 sum = *up + cksum + IP_TCP_CSUM_COMP; 20314 sum = (sum & 0xFFFF) + (sum >> 16); 20315 *up = (sum & 0xFFFF) + (sum >> 16); 20316 } else { 20317 /* software checksumming */ 20318 TCP_STAT(tcp_out_sw_cksum); 20319 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 20320 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20321 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20322 cksum + IP_TCP_CSUM_COMP); 20323 if (*up == 0) 20324 *up = 0xFFFF; 20325 } 20326 20327 /* IPv4 header checksum */ 20328 if (af == AF_INET) { 20329 ipha->ipha_fragment_offset_and_flags |= 20330 (uint32_t)htons(ire->ire_frag_flag); 20331 20332 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20333 ipha->ipha_hdr_checksum = 0; 20334 } else { 20335 IP_HDR_CKSUM(ipha, cksum, 20336 ((uint32_t *)ipha)[0], 20337 ((uint16_t *)ipha)[4]); 20338 } 20339 } 20340 20341 if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT|| 20342 af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) { 20343 /* build header(IP/TCP) mblk for this segment */ 20344 if ((mp = dupb(md_hbuf)) == NULL) 20345 goto legacy_send; 20346 20347 mp->b_rptr = pkt_info->hdr_rptr; 20348 mp->b_wptr = pkt_info->hdr_wptr; 20349 20350 /* build payload mblk for this segment */ 20351 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20352 freemsg(mp); 20353 goto legacy_send; 20354 } 20355 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20356 mp1->b_rptr = mp1->b_wptr - 20357 tcp->tcp_last_sent_len; 20358 linkb(mp, mp1); 20359 20360 pld_start = mp1->b_rptr; 20361 20362 if (af == AF_INET) { 20363 DTRACE_PROBE4( 20364 ip4__physical__out__start, 20365 ill_t *, NULL, 20366 ill_t *, ill, 20367 ipha_t *, ipha, 20368 mblk_t *, mp); 20369 FW_HOOKS(ip4_physical_out_event, 20370 ipv4firewall_physical_out, 20371 NULL, ill, ipha, mp, mp); 20372 DTRACE_PROBE1( 20373 ip4__physical__out__end, 20374 mblk_t *, mp); 20375 } else { 20376 DTRACE_PROBE4( 20377 ip6__physical__out_start, 20378 ill_t *, NULL, 20379 ill_t *, ill, 20380 ip6_t *, ip6h, 20381 mblk_t *, mp); 20382 FW_HOOKS6(ip6_physical_out_event, 20383 ipv6firewall_physical_out, 20384 NULL, ill, ip6h, mp, mp); 20385 DTRACE_PROBE1( 20386 ip6__physical__out__end, 20387 mblk_t *, mp); 20388 } 20389 20390 if (buf_trunked && mp != NULL) { 20391 /* 20392 * Need to pass it to normal path. 20393 */ 20394 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20395 } else if (mp == NULL || 20396 mp->b_rptr != pkt_info->hdr_rptr || 20397 mp->b_wptr != pkt_info->hdr_wptr || 20398 (mp1 = mp->b_cont) == NULL || 20399 mp1->b_rptr != pld_start || 20400 mp1->b_wptr != pld_start + 20401 tcp->tcp_last_sent_len || 20402 mp1->b_cont != NULL) { 20403 /* 20404 * Need to pass all packets of this 20405 * buffer to normal path, either when 20406 * packet is blocked, or when boundary 20407 * of header buffer or payload buffer 20408 * has been changed by FW_HOOKS[6]. 20409 */ 20410 buf_trunked = B_TRUE; 20411 if (md_mp_head != NULL) { 20412 err = (intptr_t)rmvb(md_mp_head, 20413 md_mp); 20414 if (err == 0) 20415 md_mp_head = NULL; 20416 } 20417 20418 /* send down what we've got so far */ 20419 if (md_mp_head != NULL) { 20420 tcp_multisend_data(tcp, ire, 20421 ill, md_mp_head, obsegs, 20422 obbytes, &rconfirm); 20423 } 20424 md_mp_head = NULL; 20425 20426 if (mp != NULL) 20427 CALL_IP_WPUT(tcp->tcp_connp, 20428 q, mp); 20429 20430 mp1 = fw_mp_head; 20431 do { 20432 mp = mp1; 20433 mp1 = mp1->b_next; 20434 mp->b_next = NULL; 20435 mp->b_prev = NULL; 20436 CALL_IP_WPUT(tcp->tcp_connp, 20437 q, mp); 20438 } while (mp1 != NULL); 20439 20440 fw_mp_head = NULL; 20441 } else { 20442 if (fw_mp_head == NULL) 20443 fw_mp_head = mp; 20444 else 20445 fw_mp_head->b_prev->b_next = mp; 20446 fw_mp_head->b_prev = mp; 20447 } 20448 } 20449 20450 /* advance header offset */ 20451 cur_hdr_off += hdr_frag_sz; 20452 20453 obbytes += tcp->tcp_last_sent_len; 20454 ++obsegs; 20455 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20456 *tail_unsent > 0); 20457 20458 if ((*xmit_tail)->b_next == NULL) { 20459 /* 20460 * Store the lbolt used for RTT estimation. We can only 20461 * record one timestamp per mblk so we do it when we 20462 * reach the end of the payload buffer. Also we only 20463 * take a new timestamp sample when the previous timed 20464 * data from the same mblk has been ack'ed. 20465 */ 20466 (*xmit_tail)->b_prev = local_time; 20467 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20468 } 20469 20470 ASSERT(*tail_unsent >= 0); 20471 if (*tail_unsent > 0) { 20472 /* 20473 * We got here because we broke out of the above 20474 * loop due to of one of the following cases: 20475 * 20476 * 1. len < adjusted MSS (i.e. small), 20477 * 2. Sender SWS avoidance, 20478 * 3. max_pld is zero. 20479 * 20480 * We are done for this Multidata, so trim our 20481 * last payload buffer (if any) accordingly. 20482 */ 20483 if (md_pbuf != NULL) 20484 md_pbuf->b_wptr -= *tail_unsent; 20485 } else if (*usable > 0) { 20486 *xmit_tail = (*xmit_tail)->b_cont; 20487 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20488 (uintptr_t)INT_MAX); 20489 *tail_unsent = (int)MBLKL(*xmit_tail); 20490 add_buffer = B_TRUE; 20491 } 20492 20493 while (fw_mp_head) { 20494 mp = fw_mp_head; 20495 fw_mp_head = fw_mp_head->b_next; 20496 mp->b_prev = mp->b_next = NULL; 20497 freemsg(mp); 20498 } 20499 if (buf_trunked) { 20500 TCP_STAT(tcp_mdt_discarded); 20501 freeb(md_mp); 20502 buf_trunked = B_FALSE; 20503 } 20504 } while (!done && *usable > 0 && num_burst_seg > 0 && 20505 (tcp_mdt_chain || max_pld > 0)); 20506 20507 if (md_mp_head != NULL) { 20508 /* send everything down */ 20509 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20510 &rconfirm); 20511 } 20512 20513 #undef PREP_NEW_MULTIDATA 20514 #undef PREP_NEW_PBUF 20515 #undef IPVER 20516 20517 IRE_REFRELE(ire); 20518 return (0); 20519 } 20520 20521 /* 20522 * A wrapper function for sending one or more Multidata messages down to 20523 * the module below ip; this routine does not release the reference of the 20524 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20525 */ 20526 static void 20527 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20528 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20529 { 20530 uint64_t delta; 20531 nce_t *nce; 20532 20533 ASSERT(ire != NULL && ill != NULL); 20534 ASSERT(ire->ire_stq != NULL); 20535 ASSERT(md_mp_head != NULL); 20536 ASSERT(rconfirm != NULL); 20537 20538 /* adjust MIBs and IRE timestamp */ 20539 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20540 tcp->tcp_obsegs += obsegs; 20541 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20542 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20543 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20544 20545 if (tcp->tcp_ipversion == IPV4_VERSION) { 20546 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20547 } else { 20548 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20549 } 20550 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20551 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20552 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20553 20554 ire->ire_ob_pkt_count += obsegs; 20555 if (ire->ire_ipif != NULL) 20556 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20557 ire->ire_last_used_time = lbolt; 20558 20559 /* send it down */ 20560 putnext(ire->ire_stq, md_mp_head); 20561 20562 /* we're done for TCP/IPv4 */ 20563 if (tcp->tcp_ipversion == IPV4_VERSION) 20564 return; 20565 20566 nce = ire->ire_nce; 20567 20568 ASSERT(nce != NULL); 20569 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20570 ASSERT(nce->nce_state != ND_INCOMPLETE); 20571 20572 /* reachability confirmation? */ 20573 if (*rconfirm) { 20574 nce->nce_last = TICK_TO_MSEC(lbolt64); 20575 if (nce->nce_state != ND_REACHABLE) { 20576 mutex_enter(&nce->nce_lock); 20577 nce->nce_state = ND_REACHABLE; 20578 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20579 mutex_exit(&nce->nce_lock); 20580 (void) untimeout(nce->nce_timeout_id); 20581 if (ip_debug > 2) { 20582 /* ip1dbg */ 20583 pr_addr_dbg("tcp_multisend_data: state " 20584 "for %s changed to REACHABLE\n", 20585 AF_INET6, &ire->ire_addr_v6); 20586 } 20587 } 20588 /* reset transport reachability confirmation */ 20589 *rconfirm = B_FALSE; 20590 } 20591 20592 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20593 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20594 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20595 20596 if (delta > (uint64_t)ill->ill_reachable_time) { 20597 mutex_enter(&nce->nce_lock); 20598 switch (nce->nce_state) { 20599 case ND_REACHABLE: 20600 case ND_STALE: 20601 /* 20602 * ND_REACHABLE is identical to ND_STALE in this 20603 * specific case. If reachable time has expired for 20604 * this neighbor (delta is greater than reachable 20605 * time), conceptually, the neighbor cache is no 20606 * longer in REACHABLE state, but already in STALE 20607 * state. So the correct transition here is to 20608 * ND_DELAY. 20609 */ 20610 nce->nce_state = ND_DELAY; 20611 mutex_exit(&nce->nce_lock); 20612 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20613 if (ip_debug > 3) { 20614 /* ip2dbg */ 20615 pr_addr_dbg("tcp_multisend_data: state " 20616 "for %s changed to DELAY\n", 20617 AF_INET6, &ire->ire_addr_v6); 20618 } 20619 break; 20620 case ND_DELAY: 20621 case ND_PROBE: 20622 mutex_exit(&nce->nce_lock); 20623 /* Timers have already started */ 20624 break; 20625 case ND_UNREACHABLE: 20626 /* 20627 * ndp timer has detected that this nce is 20628 * unreachable and initiated deleting this nce 20629 * and all its associated IREs. This is a race 20630 * where we found the ire before it was deleted 20631 * and have just sent out a packet using this 20632 * unreachable nce. 20633 */ 20634 mutex_exit(&nce->nce_lock); 20635 break; 20636 default: 20637 ASSERT(0); 20638 } 20639 } 20640 } 20641 20642 /* 20643 * Derived from tcp_send_data(). 20644 */ 20645 static void 20646 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20647 int num_lso_seg) 20648 { 20649 ipha_t *ipha; 20650 mblk_t *ire_fp_mp; 20651 uint_t ire_fp_mp_len; 20652 uint32_t hcksum_txflags = 0; 20653 ipaddr_t src; 20654 ipaddr_t dst; 20655 uint32_t cksum; 20656 uint16_t *up; 20657 20658 ASSERT(DB_TYPE(mp) == M_DATA); 20659 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20660 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20661 ASSERT(tcp->tcp_connp != NULL); 20662 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20663 20664 ipha = (ipha_t *)mp->b_rptr; 20665 src = ipha->ipha_src; 20666 dst = ipha->ipha_dst; 20667 20668 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20669 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20670 num_lso_seg); 20671 #ifndef _BIG_ENDIAN 20672 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20673 #endif 20674 if (tcp->tcp_snd_zcopy_aware) { 20675 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20676 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20677 mp = tcp_zcopy_disable(tcp, mp); 20678 } 20679 20680 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20681 ASSERT(ill->ill_hcksum_capab != NULL); 20682 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20683 } 20684 20685 /* 20686 * Since the TCP checksum should be recalculated by h/w, we can just 20687 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20688 * pseudo-header checksum for HCK_PARTIALCKSUM. 20689 * The partial pseudo-header excludes TCP length, that was calculated 20690 * in tcp_send(), so to zero *up before further processing. 20691 */ 20692 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20693 20694 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20695 *up = 0; 20696 20697 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20698 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20699 20700 /* 20701 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 20702 */ 20703 DB_LSOFLAGS(mp) |= HW_LSO; 20704 DB_LSOMSS(mp) = mss; 20705 20706 ipha->ipha_fragment_offset_and_flags |= 20707 (uint32_t)htons(ire->ire_frag_flag); 20708 20709 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20710 ire_fp_mp_len = MBLKL(ire_fp_mp); 20711 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20712 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20713 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20714 20715 UPDATE_OB_PKT_COUNT(ire); 20716 ire->ire_last_used_time = lbolt; 20717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20719 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20720 ntohs(ipha->ipha_length)); 20721 20722 if (ILL_DLS_CAPABLE(ill)) { 20723 /* 20724 * Send the packet directly to DLD, where it may be queued 20725 * depending on the availability of transmit resources at 20726 * the media layer. 20727 */ 20728 IP_DLS_ILL_TX(ill, ipha, mp); 20729 } else { 20730 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 20731 DTRACE_PROBE4(ip4__physical__out__start, 20732 ill_t *, NULL, ill_t *, out_ill, 20733 ipha_t *, ipha, mblk_t *, mp); 20734 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 20735 NULL, out_ill, ipha, mp, mp); 20736 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20737 if (mp != NULL) 20738 putnext(ire->ire_stq, mp); 20739 } 20740 } 20741 20742 /* 20743 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20744 * scheme, and returns one of the following: 20745 * 20746 * -1 = failed allocation. 20747 * 0 = success; burst count reached, or usable send window is too small, 20748 * and that we'd rather wait until later before sending again. 20749 * 1 = success; we are called from tcp_multisend(), and both usable send 20750 * window and tail_unsent are greater than the MDT threshold, and thus 20751 * Multidata Transmit should be used instead. 20752 */ 20753 static int 20754 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20755 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20756 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20757 const int mdt_thres) 20758 { 20759 int num_burst_seg = tcp->tcp_snd_burst; 20760 ire_t *ire = NULL; 20761 ill_t *ill = NULL; 20762 mblk_t *ire_fp_mp = NULL; 20763 uint_t ire_fp_mp_len = 0; 20764 int num_lso_seg = 1; 20765 uint_t lso_usable; 20766 boolean_t do_lso_send = B_FALSE; 20767 20768 /* 20769 * Check LSO capability before any further work. And the similar check 20770 * need to be done in for(;;) loop. 20771 * LSO will be deployed when therer is more than one mss of available 20772 * data and a burst transmission is allowed. 20773 */ 20774 if (tcp->tcp_lso && 20775 (tcp->tcp_valid_bits == 0 || 20776 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20777 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20778 /* 20779 * Try to find usable IRE/ILL and do basic check to the ILL. 20780 */ 20781 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 20782 /* 20783 * Enable LSO with this transmission. 20784 * Since IRE has been hold in 20785 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 20786 * should be called before return. 20787 */ 20788 do_lso_send = B_TRUE; 20789 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20790 ire_fp_mp_len = MBLKL(ire_fp_mp); 20791 /* Round up to multiple of 4 */ 20792 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20793 } else { 20794 do_lso_send = B_FALSE; 20795 ill = NULL; 20796 } 20797 } 20798 20799 for (;;) { 20800 struct datab *db; 20801 tcph_t *tcph; 20802 uint32_t sum; 20803 mblk_t *mp, *mp1; 20804 uchar_t *rptr; 20805 int len; 20806 20807 /* 20808 * If we're called by tcp_multisend(), and the amount of 20809 * sendable data as well as the size of current xmit_tail 20810 * is beyond the MDT threshold, return to the caller and 20811 * let the large data transmit be done using MDT. 20812 */ 20813 if (*usable > 0 && *usable > mdt_thres && 20814 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20815 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20816 ASSERT(tcp->tcp_mdt); 20817 return (1); /* success; do large send */ 20818 } 20819 20820 if (num_burst_seg == 0) 20821 break; /* success; burst count reached */ 20822 20823 /* 20824 * Calculate the maximum payload length we can send in *one* 20825 * time. 20826 */ 20827 if (do_lso_send) { 20828 /* 20829 * Check whether need to do LSO any more. 20830 */ 20831 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20832 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20833 lso_usable = MIN(lso_usable, 20834 num_burst_seg * mss); 20835 20836 num_lso_seg = lso_usable / mss; 20837 if (lso_usable % mss) { 20838 num_lso_seg++; 20839 tcp->tcp_last_sent_len = (ushort_t) 20840 (lso_usable % mss); 20841 } else { 20842 tcp->tcp_last_sent_len = (ushort_t)mss; 20843 } 20844 } else { 20845 do_lso_send = B_FALSE; 20846 num_lso_seg = 1; 20847 lso_usable = mss; 20848 } 20849 } 20850 20851 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20852 20853 /* 20854 * Adjust num_burst_seg here. 20855 */ 20856 num_burst_seg -= num_lso_seg; 20857 20858 len = mss; 20859 if (len > *usable) { 20860 ASSERT(do_lso_send == B_FALSE); 20861 20862 len = *usable; 20863 if (len <= 0) { 20864 /* Terminate the loop */ 20865 break; /* success; too small */ 20866 } 20867 /* 20868 * Sender silly-window avoidance. 20869 * Ignore this if we are going to send a 20870 * zero window probe out. 20871 * 20872 * TODO: force data into microscopic window? 20873 * ==> (!pushed || (unsent > usable)) 20874 */ 20875 if (len < (tcp->tcp_max_swnd >> 1) && 20876 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20877 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20878 len == 1) && (! tcp->tcp_zero_win_probe)) { 20879 /* 20880 * If the retransmit timer is not running 20881 * we start it so that we will retransmit 20882 * in the case when the the receiver has 20883 * decremented the window. 20884 */ 20885 if (*snxt == tcp->tcp_snxt && 20886 *snxt == tcp->tcp_suna) { 20887 /* 20888 * We are not supposed to send 20889 * anything. So let's wait a little 20890 * bit longer before breaking SWS 20891 * avoidance. 20892 * 20893 * What should the value be? 20894 * Suggestion: MAX(init rexmit time, 20895 * tcp->tcp_rto) 20896 */ 20897 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20898 } 20899 break; /* success; too small */ 20900 } 20901 } 20902 20903 tcph = tcp->tcp_tcph; 20904 20905 /* 20906 * The reason to adjust len here is that we need to set flags 20907 * and calculate checksum. 20908 */ 20909 if (do_lso_send) 20910 len = lso_usable; 20911 20912 *usable -= len; /* Approximate - can be adjusted later */ 20913 if (*usable > 0) 20914 tcph->th_flags[0] = TH_ACK; 20915 else 20916 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20917 20918 /* 20919 * Prime pump for IP's checksumming on our behalf 20920 * Include the adjustment for a source route if any. 20921 */ 20922 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20923 sum = (sum >> 16) + (sum & 0xFFFF); 20924 U16_TO_ABE16(sum, tcph->th_sum); 20925 20926 U32_TO_ABE32(*snxt, tcph->th_seq); 20927 20928 /* 20929 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20930 * set. For the case when TCP_FSS_VALID is the only valid 20931 * bit (normal active close), branch off only when we think 20932 * that the FIN flag needs to be set. Note for this case, 20933 * that (snxt + len) may not reflect the actual seg_len, 20934 * as len may be further reduced in tcp_xmit_mp(). If len 20935 * gets modified, we will end up here again. 20936 */ 20937 if (tcp->tcp_valid_bits != 0 && 20938 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20939 ((*snxt + len) == tcp->tcp_fss))) { 20940 uchar_t *prev_rptr; 20941 uint32_t prev_snxt = tcp->tcp_snxt; 20942 20943 if (*tail_unsent == 0) { 20944 ASSERT((*xmit_tail)->b_cont != NULL); 20945 *xmit_tail = (*xmit_tail)->b_cont; 20946 prev_rptr = (*xmit_tail)->b_rptr; 20947 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20948 (*xmit_tail)->b_rptr); 20949 } else { 20950 prev_rptr = (*xmit_tail)->b_rptr; 20951 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20952 *tail_unsent; 20953 } 20954 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20955 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20956 /* Restore tcp_snxt so we get amount sent right. */ 20957 tcp->tcp_snxt = prev_snxt; 20958 if (prev_rptr == (*xmit_tail)->b_rptr) { 20959 /* 20960 * If the previous timestamp is still in use, 20961 * don't stomp on it. 20962 */ 20963 if ((*xmit_tail)->b_next == NULL) { 20964 (*xmit_tail)->b_prev = local_time; 20965 (*xmit_tail)->b_next = 20966 (mblk_t *)(uintptr_t)(*snxt); 20967 } 20968 } else 20969 (*xmit_tail)->b_rptr = prev_rptr; 20970 20971 if (mp == NULL) { 20972 if (ire != NULL) 20973 IRE_REFRELE(ire); 20974 return (-1); 20975 } 20976 mp1 = mp->b_cont; 20977 20978 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20979 tcp->tcp_last_sent_len = (ushort_t)len; 20980 while (mp1->b_cont) { 20981 *xmit_tail = (*xmit_tail)->b_cont; 20982 (*xmit_tail)->b_prev = local_time; 20983 (*xmit_tail)->b_next = 20984 (mblk_t *)(uintptr_t)(*snxt); 20985 mp1 = mp1->b_cont; 20986 } 20987 *snxt += len; 20988 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20989 BUMP_LOCAL(tcp->tcp_obsegs); 20990 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20991 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20992 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20993 tcp_send_data(tcp, q, mp); 20994 continue; 20995 } 20996 20997 *snxt += len; /* Adjust later if we don't send all of len */ 20998 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20999 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 21000 21001 if (*tail_unsent) { 21002 /* Are the bytes above us in flight? */ 21003 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21004 if (rptr != (*xmit_tail)->b_rptr) { 21005 *tail_unsent -= len; 21006 if (len <= mss) /* LSO is unusable */ 21007 tcp->tcp_last_sent_len = (ushort_t)len; 21008 len += tcp_hdr_len; 21009 if (tcp->tcp_ipversion == IPV4_VERSION) 21010 tcp->tcp_ipha->ipha_length = htons(len); 21011 else 21012 tcp->tcp_ip6h->ip6_plen = 21013 htons(len - 21014 ((char *)&tcp->tcp_ip6h[1] - 21015 tcp->tcp_iphc)); 21016 mp = dupb(*xmit_tail); 21017 if (mp == NULL) { 21018 if (ire != NULL) 21019 IRE_REFRELE(ire); 21020 return (-1); /* out_of_mem */ 21021 } 21022 mp->b_rptr = rptr; 21023 /* 21024 * If the old timestamp is no longer in use, 21025 * sample a new timestamp now. 21026 */ 21027 if ((*xmit_tail)->b_next == NULL) { 21028 (*xmit_tail)->b_prev = local_time; 21029 (*xmit_tail)->b_next = 21030 (mblk_t *)(uintptr_t)(*snxt-len); 21031 } 21032 goto must_alloc; 21033 } 21034 } else { 21035 *xmit_tail = (*xmit_tail)->b_cont; 21036 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21037 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21038 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21039 (*xmit_tail)->b_rptr); 21040 } 21041 21042 (*xmit_tail)->b_prev = local_time; 21043 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21044 21045 *tail_unsent -= len; 21046 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21047 tcp->tcp_last_sent_len = (ushort_t)len; 21048 21049 len += tcp_hdr_len; 21050 if (tcp->tcp_ipversion == IPV4_VERSION) 21051 tcp->tcp_ipha->ipha_length = htons(len); 21052 else 21053 tcp->tcp_ip6h->ip6_plen = htons(len - 21054 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21055 21056 mp = dupb(*xmit_tail); 21057 if (mp == NULL) { 21058 if (ire != NULL) 21059 IRE_REFRELE(ire); 21060 return (-1); /* out_of_mem */ 21061 } 21062 21063 len = tcp_hdr_len; 21064 /* 21065 * There are four reasons to allocate a new hdr mblk: 21066 * 1) The bytes above us are in use by another packet 21067 * 2) We don't have good alignment 21068 * 3) The mblk is being shared 21069 * 4) We don't have enough room for a header 21070 */ 21071 rptr = mp->b_rptr - len; 21072 if (!OK_32PTR(rptr) || 21073 ((db = mp->b_datap), db->db_ref != 2) || 21074 rptr < db->db_base + ire_fp_mp_len) { 21075 /* NOTE: we assume allocb returns an OK_32PTR */ 21076 21077 must_alloc:; 21078 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21079 tcp_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21080 if (mp1 == NULL) { 21081 freemsg(mp); 21082 if (ire != NULL) 21083 IRE_REFRELE(ire); 21084 return (-1); /* out_of_mem */ 21085 } 21086 mp1->b_cont = mp; 21087 mp = mp1; 21088 /* Leave room for Link Level header */ 21089 len = tcp_hdr_len; 21090 rptr = &mp->b_rptr[tcp_wroff_xtra + ire_fp_mp_len]; 21091 mp->b_wptr = &rptr[len]; 21092 } 21093 21094 /* 21095 * Fill in the header using the template header, and add 21096 * options such as time-stamp, ECN and/or SACK, as needed. 21097 */ 21098 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21099 21100 mp->b_rptr = rptr; 21101 21102 if (*tail_unsent) { 21103 int spill = *tail_unsent; 21104 21105 mp1 = mp->b_cont; 21106 if (mp1 == NULL) 21107 mp1 = mp; 21108 21109 /* 21110 * If we're a little short, tack on more mblks until 21111 * there is no more spillover. 21112 */ 21113 while (spill < 0) { 21114 mblk_t *nmp; 21115 int nmpsz; 21116 21117 nmp = (*xmit_tail)->b_cont; 21118 nmpsz = MBLKL(nmp); 21119 21120 /* 21121 * Excess data in mblk; can we split it? 21122 * If MDT is enabled for the connection, 21123 * keep on splitting as this is a transient 21124 * send path. 21125 */ 21126 if (!do_lso_send && !tcp->tcp_mdt && 21127 (spill + nmpsz > 0)) { 21128 /* 21129 * Don't split if stream head was 21130 * told to break up larger writes 21131 * into smaller ones. 21132 */ 21133 if (tcp->tcp_maxpsz > 0) 21134 break; 21135 21136 /* 21137 * Next mblk is less than SMSS/2 21138 * rounded up to nearest 64-byte; 21139 * let it get sent as part of the 21140 * next segment. 21141 */ 21142 if (tcp->tcp_localnet && 21143 !tcp->tcp_cork && 21144 (nmpsz < roundup((mss >> 1), 64))) 21145 break; 21146 } 21147 21148 *xmit_tail = nmp; 21149 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21150 /* Stash for rtt use later */ 21151 (*xmit_tail)->b_prev = local_time; 21152 (*xmit_tail)->b_next = 21153 (mblk_t *)(uintptr_t)(*snxt - len); 21154 mp1->b_cont = dupb(*xmit_tail); 21155 mp1 = mp1->b_cont; 21156 21157 spill += nmpsz; 21158 if (mp1 == NULL) { 21159 *tail_unsent = spill; 21160 freemsg(mp); 21161 if (ire != NULL) 21162 IRE_REFRELE(ire); 21163 return (-1); /* out_of_mem */ 21164 } 21165 } 21166 21167 /* Trim back any surplus on the last mblk */ 21168 if (spill >= 0) { 21169 mp1->b_wptr -= spill; 21170 *tail_unsent = spill; 21171 } else { 21172 /* 21173 * We did not send everything we could in 21174 * order to remain within the b_cont limit. 21175 */ 21176 *usable -= spill; 21177 *snxt += spill; 21178 tcp->tcp_last_sent_len += spill; 21179 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 21180 /* 21181 * Adjust the checksum 21182 */ 21183 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21184 sum += spill; 21185 sum = (sum >> 16) + (sum & 0xFFFF); 21186 U16_TO_ABE16(sum, tcph->th_sum); 21187 if (tcp->tcp_ipversion == IPV4_VERSION) { 21188 sum = ntohs( 21189 ((ipha_t *)rptr)->ipha_length) + 21190 spill; 21191 ((ipha_t *)rptr)->ipha_length = 21192 htons(sum); 21193 } else { 21194 sum = ntohs( 21195 ((ip6_t *)rptr)->ip6_plen) + 21196 spill; 21197 ((ip6_t *)rptr)->ip6_plen = 21198 htons(sum); 21199 } 21200 *tail_unsent = 0; 21201 } 21202 } 21203 if (tcp->tcp_ip_forward_progress) { 21204 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21205 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21206 tcp->tcp_ip_forward_progress = B_FALSE; 21207 } 21208 21209 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21210 if (do_lso_send) { 21211 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21212 num_lso_seg); 21213 tcp->tcp_obsegs += num_lso_seg; 21214 21215 TCP_STAT(tcp_lso_times); 21216 TCP_STAT_UPDATE(tcp_lso_pkt_out, num_lso_seg); 21217 } else { 21218 tcp_send_data(tcp, q, mp); 21219 BUMP_LOCAL(tcp->tcp_obsegs); 21220 } 21221 } 21222 21223 if (ire != NULL) 21224 IRE_REFRELE(ire); 21225 return (0); 21226 } 21227 21228 /* Unlink and return any mblk that looks like it contains a MDT info */ 21229 static mblk_t * 21230 tcp_mdt_info_mp(mblk_t *mp) 21231 { 21232 mblk_t *prev_mp; 21233 21234 for (;;) { 21235 prev_mp = mp; 21236 /* no more to process? */ 21237 if ((mp = mp->b_cont) == NULL) 21238 break; 21239 21240 switch (DB_TYPE(mp)) { 21241 case M_CTL: 21242 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21243 continue; 21244 ASSERT(prev_mp != NULL); 21245 prev_mp->b_cont = mp->b_cont; 21246 mp->b_cont = NULL; 21247 return (mp); 21248 default: 21249 break; 21250 } 21251 } 21252 return (mp); 21253 } 21254 21255 /* MDT info update routine, called when IP notifies us about MDT */ 21256 static void 21257 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21258 { 21259 boolean_t prev_state; 21260 21261 /* 21262 * IP is telling us to abort MDT on this connection? We know 21263 * this because the capability is only turned off when IP 21264 * encounters some pathological cases, e.g. link-layer change 21265 * where the new driver doesn't support MDT, or in situation 21266 * where MDT usage on the link-layer has been switched off. 21267 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21268 * if the link-layer doesn't support MDT, and if it does, it 21269 * will indicate that the feature is to be turned on. 21270 */ 21271 prev_state = tcp->tcp_mdt; 21272 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21273 if (!tcp->tcp_mdt && !first) { 21274 TCP_STAT(tcp_mdt_conn_halted3); 21275 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21276 (void *)tcp->tcp_connp)); 21277 } 21278 21279 /* 21280 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21281 * so disable MDT otherwise. The checks are done here 21282 * and in tcp_wput_data(). 21283 */ 21284 if (tcp->tcp_mdt && 21285 (tcp->tcp_ipversion == IPV4_VERSION && 21286 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21287 (tcp->tcp_ipversion == IPV6_VERSION && 21288 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21289 tcp->tcp_mdt = B_FALSE; 21290 21291 if (tcp->tcp_mdt) { 21292 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21293 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21294 "version (%d), expected version is %d", 21295 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21296 tcp->tcp_mdt = B_FALSE; 21297 return; 21298 } 21299 21300 /* 21301 * We need the driver to be able to handle at least three 21302 * spans per packet in order for tcp MDT to be utilized. 21303 * The first is for the header portion, while the rest are 21304 * needed to handle a packet that straddles across two 21305 * virtually non-contiguous buffers; a typical tcp packet 21306 * therefore consists of only two spans. Note that we take 21307 * a zero as "don't care". 21308 */ 21309 if (mdt_capab->ill_mdt_span_limit > 0 && 21310 mdt_capab->ill_mdt_span_limit < 3) { 21311 tcp->tcp_mdt = B_FALSE; 21312 return; 21313 } 21314 21315 /* a zero means driver wants default value */ 21316 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21317 tcp_mdt_max_pbufs); 21318 if (tcp->tcp_mdt_max_pld == 0) 21319 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 21320 21321 /* ensure 32-bit alignment */ 21322 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 21323 mdt_capab->ill_mdt_hdr_head), 4); 21324 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 21325 mdt_capab->ill_mdt_hdr_tail), 4); 21326 21327 if (!first && !prev_state) { 21328 TCP_STAT(tcp_mdt_conn_resumed2); 21329 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21330 (void *)tcp->tcp_connp)); 21331 } 21332 } 21333 } 21334 21335 /* Unlink and return any mblk that looks like it contains a LSO info */ 21336 static mblk_t * 21337 tcp_lso_info_mp(mblk_t *mp) 21338 { 21339 mblk_t *prev_mp; 21340 21341 for (;;) { 21342 prev_mp = mp; 21343 /* no more to process? */ 21344 if ((mp = mp->b_cont) == NULL) 21345 break; 21346 21347 switch (DB_TYPE(mp)) { 21348 case M_CTL: 21349 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21350 continue; 21351 ASSERT(prev_mp != NULL); 21352 prev_mp->b_cont = mp->b_cont; 21353 mp->b_cont = NULL; 21354 return (mp); 21355 default: 21356 break; 21357 } 21358 } 21359 21360 return (mp); 21361 } 21362 21363 /* LSO info update routine, called when IP notifies us about LSO */ 21364 static void 21365 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21366 { 21367 /* 21368 * IP is telling us to abort LSO on this connection? We know 21369 * this because the capability is only turned off when IP 21370 * encounters some pathological cases, e.g. link-layer change 21371 * where the new NIC/driver doesn't support LSO, or in situation 21372 * where LSO usage on the link-layer has been switched off. 21373 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21374 * if the link-layer doesn't support LSO, and if it does, it 21375 * will indicate that the feature is to be turned on. 21376 */ 21377 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21378 TCP_STAT(tcp_lso_enabled); 21379 21380 /* 21381 * We currently only support LSO on simple TCP/IPv4, 21382 * so disable LSO otherwise. The checks are done here 21383 * and in tcp_wput_data(). 21384 */ 21385 if (tcp->tcp_lso && 21386 (tcp->tcp_ipversion == IPV4_VERSION && 21387 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21388 (tcp->tcp_ipversion == IPV6_VERSION)) { 21389 tcp->tcp_lso = B_FALSE; 21390 TCP_STAT(tcp_lso_disabled); 21391 } else { 21392 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21393 lso_capab->ill_lso_max); 21394 } 21395 } 21396 21397 static void 21398 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21399 { 21400 conn_t *connp = tcp->tcp_connp; 21401 21402 ASSERT(ire != NULL); 21403 21404 /* 21405 * We may be in the fastpath here, and although we essentially do 21406 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21407 * we try to keep things as brief as possible. After all, these 21408 * are only best-effort checks, and we do more thorough ones prior 21409 * to calling tcp_send()/tcp_multisend(). 21410 */ 21411 if ((ip_lso_outbound || ip_multidata_outbound) && check_lso_mdt && 21412 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21413 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21414 !(ire->ire_flags & RTF_MULTIRT) && 21415 !IPP_ENABLED(IPP_LOCAL_OUT) && 21416 CONN_IS_LSO_MD_FASTPATH(connp)) { 21417 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21418 /* Cache the result */ 21419 connp->conn_lso_ok = B_TRUE; 21420 21421 ASSERT(ill->ill_lso_capab != NULL); 21422 if (!ill->ill_lso_capab->ill_lso_on) { 21423 ill->ill_lso_capab->ill_lso_on = 1; 21424 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21425 "LSO for interface %s\n", (void *)connp, 21426 ill->ill_name)); 21427 } 21428 tcp_lso_update(tcp, ill->ill_lso_capab); 21429 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 21430 /* Cache the result */ 21431 connp->conn_mdt_ok = B_TRUE; 21432 21433 ASSERT(ill->ill_mdt_capab != NULL); 21434 if (!ill->ill_mdt_capab->ill_mdt_on) { 21435 ill->ill_mdt_capab->ill_mdt_on = 1; 21436 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21437 "MDT for interface %s\n", (void *)connp, 21438 ill->ill_name)); 21439 } 21440 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21441 } 21442 } 21443 21444 /* 21445 * The goal is to reduce the number of generated tcp segments by 21446 * setting the maxpsz multiplier to 0; this will have an affect on 21447 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21448 * into each packet, up to SMSS bytes. Doing this reduces the number 21449 * of outbound segments and incoming ACKs, thus allowing for better 21450 * network and system performance. In contrast the legacy behavior 21451 * may result in sending less than SMSS size, because the last mblk 21452 * for some packets may have more data than needed to make up SMSS, 21453 * and the legacy code refused to "split" it. 21454 * 21455 * We apply the new behavior on following situations: 21456 * 21457 * 1) Loopback connections, 21458 * 2) Connections in which the remote peer is not on local subnet, 21459 * 3) Local subnet connections over the bge interface (see below). 21460 * 21461 * Ideally, we would like this behavior to apply for interfaces other 21462 * than bge. However, doing so would negatively impact drivers which 21463 * perform dynamic mapping and unmapping of DMA resources, which are 21464 * increased by setting the maxpsz multiplier to 0 (more mblks per 21465 * packet will be generated by tcp). The bge driver does not suffer 21466 * from this, as it copies the mblks into pre-mapped buffers, and 21467 * therefore does not require more I/O resources than before. 21468 * 21469 * Otherwise, this behavior is present on all network interfaces when 21470 * the destination endpoint is non-local, since reducing the number 21471 * of packets in general is good for the network. 21472 * 21473 * TODO We need to remove this hard-coded conditional for bge once 21474 * a better "self-tuning" mechanism, or a way to comprehend 21475 * the driver transmit strategy is devised. Until the solution 21476 * is found and well understood, we live with this hack. 21477 */ 21478 if (!tcp_static_maxpsz && 21479 (tcp->tcp_loopback || !tcp->tcp_localnet || 21480 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21481 /* override the default value */ 21482 tcp->tcp_maxpsz = 0; 21483 21484 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21485 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21486 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21487 } 21488 21489 /* set the stream head parameters accordingly */ 21490 (void) tcp_maxpsz_set(tcp, B_TRUE); 21491 } 21492 21493 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21494 static void 21495 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21496 { 21497 uchar_t fval = *mp->b_rptr; 21498 mblk_t *tail; 21499 queue_t *q = tcp->tcp_wq; 21500 21501 /* TODO: How should flush interact with urgent data? */ 21502 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21503 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21504 /* 21505 * Flush only data that has not yet been put on the wire. If 21506 * we flush data that we have already transmitted, life, as we 21507 * know it, may come to an end. 21508 */ 21509 tail = tcp->tcp_xmit_tail; 21510 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21511 tcp->tcp_xmit_tail_unsent = 0; 21512 tcp->tcp_unsent = 0; 21513 if (tail->b_wptr != tail->b_rptr) 21514 tail = tail->b_cont; 21515 if (tail) { 21516 mblk_t **excess = &tcp->tcp_xmit_head; 21517 for (;;) { 21518 mblk_t *mp1 = *excess; 21519 if (mp1 == tail) 21520 break; 21521 tcp->tcp_xmit_tail = mp1; 21522 tcp->tcp_xmit_last = mp1; 21523 excess = &mp1->b_cont; 21524 } 21525 *excess = NULL; 21526 tcp_close_mpp(&tail); 21527 if (tcp->tcp_snd_zcopy_aware) 21528 tcp_zcopy_notify(tcp); 21529 } 21530 /* 21531 * We have no unsent data, so unsent must be less than 21532 * tcp_xmit_lowater, so re-enable flow. 21533 */ 21534 if (tcp->tcp_flow_stopped) { 21535 tcp_clrqfull(tcp); 21536 } 21537 } 21538 /* 21539 * TODO: you can't just flush these, you have to increase rwnd for one 21540 * thing. For another, how should urgent data interact? 21541 */ 21542 if (fval & FLUSHR) { 21543 *mp->b_rptr = fval & ~FLUSHW; 21544 /* XXX */ 21545 qreply(q, mp); 21546 return; 21547 } 21548 freemsg(mp); 21549 } 21550 21551 /* 21552 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21553 * messages. 21554 */ 21555 static void 21556 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21557 { 21558 mblk_t *mp1; 21559 STRUCT_HANDLE(strbuf, sb); 21560 uint16_t port; 21561 queue_t *q = tcp->tcp_wq; 21562 in6_addr_t v6addr; 21563 ipaddr_t v4addr; 21564 uint32_t flowinfo = 0; 21565 int addrlen; 21566 21567 /* Make sure it is one of ours. */ 21568 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21569 case TI_GETMYNAME: 21570 case TI_GETPEERNAME: 21571 break; 21572 default: 21573 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21574 return; 21575 } 21576 switch (mi_copy_state(q, mp, &mp1)) { 21577 case -1: 21578 return; 21579 case MI_COPY_CASE(MI_COPY_IN, 1): 21580 break; 21581 case MI_COPY_CASE(MI_COPY_OUT, 1): 21582 /* Copy out the strbuf. */ 21583 mi_copyout(q, mp); 21584 return; 21585 case MI_COPY_CASE(MI_COPY_OUT, 2): 21586 /* All done. */ 21587 mi_copy_done(q, mp, 0); 21588 return; 21589 default: 21590 mi_copy_done(q, mp, EPROTO); 21591 return; 21592 } 21593 /* Check alignment of the strbuf */ 21594 if (!OK_32PTR(mp1->b_rptr)) { 21595 mi_copy_done(q, mp, EINVAL); 21596 return; 21597 } 21598 21599 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21600 (void *)mp1->b_rptr); 21601 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21602 21603 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21604 mi_copy_done(q, mp, EINVAL); 21605 return; 21606 } 21607 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21608 case TI_GETMYNAME: 21609 if (tcp->tcp_family == AF_INET) { 21610 if (tcp->tcp_ipversion == IPV4_VERSION) { 21611 v4addr = tcp->tcp_ipha->ipha_src; 21612 } else { 21613 /* can't return an address in this case */ 21614 v4addr = 0; 21615 } 21616 } else { 21617 /* tcp->tcp_family == AF_INET6 */ 21618 if (tcp->tcp_ipversion == IPV4_VERSION) { 21619 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21620 &v6addr); 21621 } else { 21622 v6addr = tcp->tcp_ip6h->ip6_src; 21623 } 21624 } 21625 port = tcp->tcp_lport; 21626 break; 21627 case TI_GETPEERNAME: 21628 if (tcp->tcp_family == AF_INET) { 21629 if (tcp->tcp_ipversion == IPV4_VERSION) { 21630 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21631 v4addr); 21632 } else { 21633 /* can't return an address in this case */ 21634 v4addr = 0; 21635 } 21636 } else { 21637 /* tcp->tcp_family == AF_INET6) */ 21638 v6addr = tcp->tcp_remote_v6; 21639 if (tcp->tcp_ipversion == IPV6_VERSION) { 21640 /* 21641 * No flowinfo if tcp->tcp_ipversion is v4. 21642 * 21643 * flowinfo was already initialized to zero 21644 * where it was declared above, so only 21645 * set it if ipversion is v6. 21646 */ 21647 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21648 ~IPV6_VERS_AND_FLOW_MASK; 21649 } 21650 } 21651 port = tcp->tcp_fport; 21652 break; 21653 default: 21654 mi_copy_done(q, mp, EPROTO); 21655 return; 21656 } 21657 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21658 if (!mp1) 21659 return; 21660 21661 if (tcp->tcp_family == AF_INET) { 21662 sin_t *sin; 21663 21664 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21665 sin = (sin_t *)mp1->b_rptr; 21666 mp1->b_wptr = (uchar_t *)&sin[1]; 21667 *sin = sin_null; 21668 sin->sin_family = AF_INET; 21669 sin->sin_addr.s_addr = v4addr; 21670 sin->sin_port = port; 21671 } else { 21672 /* tcp->tcp_family == AF_INET6 */ 21673 sin6_t *sin6; 21674 21675 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21676 sin6 = (sin6_t *)mp1->b_rptr; 21677 mp1->b_wptr = (uchar_t *)&sin6[1]; 21678 *sin6 = sin6_null; 21679 sin6->sin6_family = AF_INET6; 21680 sin6->sin6_flowinfo = flowinfo; 21681 sin6->sin6_addr = v6addr; 21682 sin6->sin6_port = port; 21683 } 21684 /* Copy out the address */ 21685 mi_copyout(q, mp); 21686 } 21687 21688 /* 21689 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21690 * messages. 21691 */ 21692 /* ARGSUSED */ 21693 static void 21694 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21695 { 21696 conn_t *connp = (conn_t *)arg; 21697 tcp_t *tcp = connp->conn_tcp; 21698 queue_t *q = tcp->tcp_wq; 21699 struct iocblk *iocp; 21700 21701 ASSERT(DB_TYPE(mp) == M_IOCTL); 21702 /* 21703 * Try and ASSERT the minimum possible references on the 21704 * conn early enough. Since we are executing on write side, 21705 * the connection is obviously not detached and that means 21706 * there is a ref each for TCP and IP. Since we are behind 21707 * the squeue, the minimum references needed are 3. If the 21708 * conn is in classifier hash list, there should be an 21709 * extra ref for that (we check both the possibilities). 21710 */ 21711 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21712 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21713 21714 iocp = (struct iocblk *)mp->b_rptr; 21715 switch (iocp->ioc_cmd) { 21716 case TCP_IOC_DEFAULT_Q: 21717 /* Wants to be the default wq. */ 21718 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 21719 iocp->ioc_error = EPERM; 21720 iocp->ioc_count = 0; 21721 mp->b_datap->db_type = M_IOCACK; 21722 qreply(q, mp); 21723 return; 21724 } 21725 tcp_def_q_set(tcp, mp); 21726 return; 21727 case _SIOCSOCKFALLBACK: 21728 /* 21729 * Either sockmod is about to be popped and the socket 21730 * would now be treated as a plain stream, or a module 21731 * is about to be pushed so we could no longer use read- 21732 * side synchronous streams for fused loopback tcp. 21733 * Drain any queued data and disable direct sockfs 21734 * interface from now on. 21735 */ 21736 if (!tcp->tcp_issocket) { 21737 DB_TYPE(mp) = M_IOCNAK; 21738 iocp->ioc_error = EINVAL; 21739 } else { 21740 #ifdef _ILP32 21741 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21742 #else 21743 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21744 #endif 21745 /* 21746 * Insert this socket into the acceptor hash. 21747 * We might need it for T_CONN_RES message 21748 */ 21749 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21750 21751 if (tcp->tcp_fused) { 21752 /* 21753 * This is a fused loopback tcp; disable 21754 * read-side synchronous streams interface 21755 * and drain any queued data. It is okay 21756 * to do this for non-synchronous streams 21757 * fused tcp as well. 21758 */ 21759 tcp_fuse_disable_pair(tcp, B_FALSE); 21760 } 21761 tcp->tcp_issocket = B_FALSE; 21762 TCP_STAT(tcp_sock_fallback); 21763 21764 DB_TYPE(mp) = M_IOCACK; 21765 iocp->ioc_error = 0; 21766 } 21767 iocp->ioc_count = 0; 21768 iocp->ioc_rval = 0; 21769 qreply(q, mp); 21770 return; 21771 } 21772 CALL_IP_WPUT(connp, q, mp); 21773 } 21774 21775 /* 21776 * This routine is called by tcp_wput() to handle all TPI requests. 21777 */ 21778 /* ARGSUSED */ 21779 static void 21780 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21781 { 21782 conn_t *connp = (conn_t *)arg; 21783 tcp_t *tcp = connp->conn_tcp; 21784 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21785 uchar_t *rptr; 21786 t_scalar_t type; 21787 int len; 21788 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21789 21790 /* 21791 * Try and ASSERT the minimum possible references on the 21792 * conn early enough. Since we are executing on write side, 21793 * the connection is obviously not detached and that means 21794 * there is a ref each for TCP and IP. Since we are behind 21795 * the squeue, the minimum references needed are 3. If the 21796 * conn is in classifier hash list, there should be an 21797 * extra ref for that (we check both the possibilities). 21798 */ 21799 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21800 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21801 21802 rptr = mp->b_rptr; 21803 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21804 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21805 type = ((union T_primitives *)rptr)->type; 21806 if (type == T_EXDATA_REQ) { 21807 uint32_t msize = msgdsize(mp->b_cont); 21808 21809 len = msize - 1; 21810 if (len < 0) { 21811 freemsg(mp); 21812 return; 21813 } 21814 /* 21815 * Try to force urgent data out on the wire. 21816 * Even if we have unsent data this will 21817 * at least send the urgent flag. 21818 * XXX does not handle more flag correctly. 21819 */ 21820 len += tcp->tcp_unsent; 21821 len += tcp->tcp_snxt; 21822 tcp->tcp_urg = len; 21823 tcp->tcp_valid_bits |= TCP_URG_VALID; 21824 21825 /* Bypass tcp protocol for fused tcp loopback */ 21826 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21827 return; 21828 } else if (type != T_DATA_REQ) { 21829 goto non_urgent_data; 21830 } 21831 /* TODO: options, flags, ... from user */ 21832 /* Set length to zero for reclamation below */ 21833 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21834 freeb(mp); 21835 return; 21836 } else { 21837 if (tcp->tcp_debug) { 21838 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21839 "tcp_wput_proto, dropping one..."); 21840 } 21841 freemsg(mp); 21842 return; 21843 } 21844 21845 non_urgent_data: 21846 21847 switch ((int)tprim->type) { 21848 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21849 /* 21850 * save the kssl_ent_t from the next block, and convert this 21851 * back to a normal bind_req. 21852 */ 21853 if (mp->b_cont != NULL) { 21854 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21855 21856 if (tcp->tcp_kssl_ent != NULL) { 21857 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21858 KSSL_NO_PROXY); 21859 tcp->tcp_kssl_ent = NULL; 21860 } 21861 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21862 sizeof (kssl_ent_t)); 21863 kssl_hold_ent(tcp->tcp_kssl_ent); 21864 freemsg(mp->b_cont); 21865 mp->b_cont = NULL; 21866 } 21867 tprim->type = T_BIND_REQ; 21868 21869 /* FALLTHROUGH */ 21870 case O_T_BIND_REQ: /* bind request */ 21871 case T_BIND_REQ: /* new semantics bind request */ 21872 tcp_bind(tcp, mp); 21873 break; 21874 case T_UNBIND_REQ: /* unbind request */ 21875 tcp_unbind(tcp, mp); 21876 break; 21877 case O_T_CONN_RES: /* old connection response XXX */ 21878 case T_CONN_RES: /* connection response */ 21879 tcp_accept(tcp, mp); 21880 break; 21881 case T_CONN_REQ: /* connection request */ 21882 tcp_connect(tcp, mp); 21883 break; 21884 case T_DISCON_REQ: /* disconnect request */ 21885 tcp_disconnect(tcp, mp); 21886 break; 21887 case T_CAPABILITY_REQ: 21888 tcp_capability_req(tcp, mp); /* capability request */ 21889 break; 21890 case T_INFO_REQ: /* information request */ 21891 tcp_info_req(tcp, mp); 21892 break; 21893 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21894 /* Only IP is allowed to return meaningful value */ 21895 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21896 break; 21897 case T_OPTMGMT_REQ: 21898 /* 21899 * Note: no support for snmpcom_req() through new 21900 * T_OPTMGMT_REQ. See comments in ip.c 21901 */ 21902 /* Only IP is allowed to return meaningful value */ 21903 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21904 break; 21905 21906 case T_UNITDATA_REQ: /* unitdata request */ 21907 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21908 break; 21909 case T_ORDREL_REQ: /* orderly release req */ 21910 freemsg(mp); 21911 21912 if (tcp->tcp_fused) 21913 tcp_unfuse(tcp); 21914 21915 if (tcp_xmit_end(tcp) != 0) { 21916 /* 21917 * We were crossing FINs and got a reset from 21918 * the other side. Just ignore it. 21919 */ 21920 if (tcp->tcp_debug) { 21921 (void) strlog(TCP_MOD_ID, 0, 1, 21922 SL_ERROR|SL_TRACE, 21923 "tcp_wput_proto, T_ORDREL_REQ out of " 21924 "state %s", 21925 tcp_display(tcp, NULL, 21926 DISP_ADDR_AND_PORT)); 21927 } 21928 } 21929 break; 21930 case T_ADDR_REQ: 21931 tcp_addr_req(tcp, mp); 21932 break; 21933 default: 21934 if (tcp->tcp_debug) { 21935 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21936 "tcp_wput_proto, bogus TPI msg, type %d", 21937 tprim->type); 21938 } 21939 /* 21940 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21941 * to recover. 21942 */ 21943 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21944 break; 21945 } 21946 } 21947 21948 /* 21949 * The TCP write service routine should never be called... 21950 */ 21951 /* ARGSUSED */ 21952 static void 21953 tcp_wsrv(queue_t *q) 21954 { 21955 TCP_STAT(tcp_wsrv_called); 21956 } 21957 21958 /* Non overlapping byte exchanger */ 21959 static void 21960 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21961 { 21962 uchar_t uch; 21963 21964 while (len-- > 0) { 21965 uch = a[len]; 21966 a[len] = b[len]; 21967 b[len] = uch; 21968 } 21969 } 21970 21971 /* 21972 * Send out a control packet on the tcp connection specified. This routine 21973 * is typically called where we need a simple ACK or RST generated. 21974 */ 21975 static void 21976 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21977 { 21978 uchar_t *rptr; 21979 tcph_t *tcph; 21980 ipha_t *ipha = NULL; 21981 ip6_t *ip6h = NULL; 21982 uint32_t sum; 21983 int tcp_hdr_len; 21984 int tcp_ip_hdr_len; 21985 mblk_t *mp; 21986 21987 /* 21988 * Save sum for use in source route later. 21989 */ 21990 ASSERT(tcp != NULL); 21991 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21992 tcp_hdr_len = tcp->tcp_hdr_len; 21993 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21994 21995 /* If a text string is passed in with the request, pass it to strlog. */ 21996 if (str != NULL && tcp->tcp_debug) { 21997 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21998 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21999 str, seq, ack, ctl); 22000 } 22001 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22002 BPRI_MED); 22003 if (mp == NULL) { 22004 return; 22005 } 22006 rptr = &mp->b_rptr[tcp_wroff_xtra]; 22007 mp->b_rptr = rptr; 22008 mp->b_wptr = &rptr[tcp_hdr_len]; 22009 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22010 22011 if (tcp->tcp_ipversion == IPV4_VERSION) { 22012 ipha = (ipha_t *)rptr; 22013 ipha->ipha_length = htons(tcp_hdr_len); 22014 } else { 22015 ip6h = (ip6_t *)rptr; 22016 ASSERT(tcp != NULL); 22017 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22018 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22019 } 22020 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22021 tcph->th_flags[0] = (uint8_t)ctl; 22022 if (ctl & TH_RST) { 22023 BUMP_MIB(&tcp_mib, tcpOutRsts); 22024 BUMP_MIB(&tcp_mib, tcpOutControl); 22025 /* 22026 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22027 */ 22028 if (tcp->tcp_snd_ts_ok && 22029 tcp->tcp_state > TCPS_SYN_SENT) { 22030 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22031 *(mp->b_wptr) = TCPOPT_EOL; 22032 if (tcp->tcp_ipversion == IPV4_VERSION) { 22033 ipha->ipha_length = htons(tcp_hdr_len - 22034 TCPOPT_REAL_TS_LEN); 22035 } else { 22036 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22037 TCPOPT_REAL_TS_LEN); 22038 } 22039 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22040 sum -= TCPOPT_REAL_TS_LEN; 22041 } 22042 } 22043 if (ctl & TH_ACK) { 22044 if (tcp->tcp_snd_ts_ok) { 22045 U32_TO_BE32(lbolt, 22046 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22047 U32_TO_BE32(tcp->tcp_ts_recent, 22048 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22049 } 22050 22051 /* Update the latest receive window size in TCP header. */ 22052 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22053 tcph->th_win); 22054 tcp->tcp_rack = ack; 22055 tcp->tcp_rack_cnt = 0; 22056 BUMP_MIB(&tcp_mib, tcpOutAck); 22057 } 22058 BUMP_LOCAL(tcp->tcp_obsegs); 22059 U32_TO_BE32(seq, tcph->th_seq); 22060 U32_TO_BE32(ack, tcph->th_ack); 22061 /* 22062 * Include the adjustment for a source route if any. 22063 */ 22064 sum = (sum >> 16) + (sum & 0xFFFF); 22065 U16_TO_BE16(sum, tcph->th_sum); 22066 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22067 tcp_send_data(tcp, tcp->tcp_wq, mp); 22068 } 22069 22070 /* 22071 * If this routine returns B_TRUE, TCP can generate a RST in response 22072 * to a segment. If it returns B_FALSE, TCP should not respond. 22073 */ 22074 static boolean_t 22075 tcp_send_rst_chk(void) 22076 { 22077 clock_t now; 22078 22079 /* 22080 * TCP needs to protect itself from generating too many RSTs. 22081 * This can be a DoS attack by sending us random segments 22082 * soliciting RSTs. 22083 * 22084 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22085 * in each 1 second interval. In this way, TCP still generate 22086 * RSTs in normal cases but when under attack, the impact is 22087 * limited. 22088 */ 22089 if (tcp_rst_sent_rate_enabled != 0) { 22090 now = lbolt; 22091 /* lbolt can wrap around. */ 22092 if ((tcp_last_rst_intrvl > now) || 22093 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 22094 tcp_last_rst_intrvl = now; 22095 tcp_rst_cnt = 1; 22096 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 22097 return (B_FALSE); 22098 } 22099 } 22100 return (B_TRUE); 22101 } 22102 22103 /* 22104 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22105 */ 22106 static void 22107 tcp_ip_ire_mark_advice(tcp_t *tcp) 22108 { 22109 mblk_t *mp; 22110 ipic_t *ipic; 22111 22112 if (tcp->tcp_ipversion == IPV4_VERSION) { 22113 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22114 &ipic); 22115 } else { 22116 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22117 &ipic); 22118 } 22119 if (mp == NULL) 22120 return; 22121 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22122 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22123 } 22124 22125 /* 22126 * Return an IP advice ioctl mblk and set ipic to be the pointer 22127 * to the advice structure. 22128 */ 22129 static mblk_t * 22130 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22131 { 22132 struct iocblk *ioc; 22133 mblk_t *mp, *mp1; 22134 22135 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22136 if (mp == NULL) 22137 return (NULL); 22138 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22139 *ipic = (ipic_t *)mp->b_rptr; 22140 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22141 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22142 22143 bcopy(addr, *ipic + 1, addr_len); 22144 22145 (*ipic)->ipic_addr_length = addr_len; 22146 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22147 22148 mp1 = mkiocb(IP_IOCTL); 22149 if (mp1 == NULL) { 22150 freemsg(mp); 22151 return (NULL); 22152 } 22153 mp1->b_cont = mp; 22154 ioc = (struct iocblk *)mp1->b_rptr; 22155 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22156 22157 return (mp1); 22158 } 22159 22160 /* 22161 * Generate a reset based on an inbound packet for which there is no active 22162 * tcp state that we can find. 22163 * 22164 * IPSEC NOTE : Try to send the reply with the same protection as it came 22165 * in. We still have the ipsec_mp that the packet was attached to. Thus 22166 * the packet will go out at the same level of protection as it came in by 22167 * converting the IPSEC_IN to IPSEC_OUT. 22168 */ 22169 static void 22170 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22171 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid) 22172 { 22173 ipha_t *ipha = NULL; 22174 ip6_t *ip6h = NULL; 22175 ushort_t len; 22176 tcph_t *tcph; 22177 int i; 22178 mblk_t *ipsec_mp; 22179 boolean_t mctl_present; 22180 ipic_t *ipic; 22181 ipaddr_t v4addr; 22182 in6_addr_t v6addr; 22183 int addr_len; 22184 void *addr; 22185 queue_t *q = tcp_g_q; 22186 tcp_t *tcp = Q_TO_TCP(q); 22187 cred_t *cr; 22188 mblk_t *nmp; 22189 22190 if (!tcp_send_rst_chk()) { 22191 tcp_rst_unsent++; 22192 freemsg(mp); 22193 return; 22194 } 22195 22196 if (mp->b_datap->db_type == M_CTL) { 22197 ipsec_mp = mp; 22198 mp = mp->b_cont; 22199 mctl_present = B_TRUE; 22200 } else { 22201 ipsec_mp = mp; 22202 mctl_present = B_FALSE; 22203 } 22204 22205 if (str && q && tcp_dbg) { 22206 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22207 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22208 "flags 0x%x", 22209 str, seq, ack, ctl); 22210 } 22211 if (mp->b_datap->db_ref != 1) { 22212 mblk_t *mp1 = copyb(mp); 22213 freemsg(mp); 22214 mp = mp1; 22215 if (!mp) { 22216 if (mctl_present) 22217 freeb(ipsec_mp); 22218 return; 22219 } else { 22220 if (mctl_present) { 22221 ipsec_mp->b_cont = mp; 22222 } else { 22223 ipsec_mp = mp; 22224 } 22225 } 22226 } else if (mp->b_cont) { 22227 freemsg(mp->b_cont); 22228 mp->b_cont = NULL; 22229 } 22230 /* 22231 * We skip reversing source route here. 22232 * (for now we replace all IP options with EOL) 22233 */ 22234 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22235 ipha = (ipha_t *)mp->b_rptr; 22236 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22237 mp->b_rptr[i] = IPOPT_EOL; 22238 /* 22239 * Make sure that src address isn't flagrantly invalid. 22240 * Not all broadcast address checking for the src address 22241 * is possible, since we don't know the netmask of the src 22242 * addr. No check for destination address is done, since 22243 * IP will not pass up a packet with a broadcast dest 22244 * address to TCP. Similar checks are done below for IPv6. 22245 */ 22246 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22247 CLASSD(ipha->ipha_src)) { 22248 freemsg(ipsec_mp); 22249 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 22250 return; 22251 } 22252 } else { 22253 ip6h = (ip6_t *)mp->b_rptr; 22254 22255 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22256 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22257 freemsg(ipsec_mp); 22258 BUMP_MIB(&ip6_mib, ipIfStatsInDiscards); 22259 return; 22260 } 22261 22262 /* Remove any extension headers assuming partial overlay */ 22263 if (ip_hdr_len > IPV6_HDR_LEN) { 22264 uint8_t *to; 22265 22266 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22267 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22268 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22269 ip_hdr_len = IPV6_HDR_LEN; 22270 ip6h = (ip6_t *)mp->b_rptr; 22271 ip6h->ip6_nxt = IPPROTO_TCP; 22272 } 22273 } 22274 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22275 if (tcph->th_flags[0] & TH_RST) { 22276 freemsg(ipsec_mp); 22277 return; 22278 } 22279 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22280 len = ip_hdr_len + sizeof (tcph_t); 22281 mp->b_wptr = &mp->b_rptr[len]; 22282 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22283 ipha->ipha_length = htons(len); 22284 /* Swap addresses */ 22285 v4addr = ipha->ipha_src; 22286 ipha->ipha_src = ipha->ipha_dst; 22287 ipha->ipha_dst = v4addr; 22288 ipha->ipha_ident = 0; 22289 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 22290 addr_len = IP_ADDR_LEN; 22291 addr = &v4addr; 22292 } else { 22293 /* No ip6i_t in this case */ 22294 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22295 /* Swap addresses */ 22296 v6addr = ip6h->ip6_src; 22297 ip6h->ip6_src = ip6h->ip6_dst; 22298 ip6h->ip6_dst = v6addr; 22299 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 22300 addr_len = IPV6_ADDR_LEN; 22301 addr = &v6addr; 22302 } 22303 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22304 U32_TO_BE32(ack, tcph->th_ack); 22305 U32_TO_BE32(seq, tcph->th_seq); 22306 U16_TO_BE16(0, tcph->th_win); 22307 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22308 tcph->th_flags[0] = (uint8_t)ctl; 22309 if (ctl & TH_RST) { 22310 BUMP_MIB(&tcp_mib, tcpOutRsts); 22311 BUMP_MIB(&tcp_mib, tcpOutControl); 22312 } 22313 22314 /* IP trusts us to set up labels when required. */ 22315 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22316 crgetlabel(cr) != NULL) { 22317 int err, adjust; 22318 22319 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22320 err = tsol_check_label(cr, &mp, &adjust, 22321 tcp->tcp_connp->conn_mac_exempt); 22322 else 22323 err = tsol_check_label_v6(cr, &mp, &adjust, 22324 tcp->tcp_connp->conn_mac_exempt); 22325 if (mctl_present) 22326 ipsec_mp->b_cont = mp; 22327 else 22328 ipsec_mp = mp; 22329 if (err != 0) { 22330 freemsg(ipsec_mp); 22331 return; 22332 } 22333 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22334 ipha = (ipha_t *)mp->b_rptr; 22335 adjust += ntohs(ipha->ipha_length); 22336 ipha->ipha_length = htons(adjust); 22337 } else { 22338 ip6h = (ip6_t *)mp->b_rptr; 22339 } 22340 } 22341 22342 if (mctl_present) { 22343 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22344 22345 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22346 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22347 return; 22348 } 22349 } 22350 if (zoneid == ALL_ZONES) 22351 zoneid = GLOBAL_ZONEID; 22352 22353 /* Add the zoneid so ip_output routes it properly */ 22354 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) { 22355 freemsg(ipsec_mp); 22356 return; 22357 } 22358 ipsec_mp = nmp; 22359 22360 /* 22361 * NOTE: one might consider tracing a TCP packet here, but 22362 * this function has no active TCP state and no tcp structure 22363 * that has a trace buffer. If we traced here, we would have 22364 * to keep a local trace buffer in tcp_record_trace(). 22365 * 22366 * TSol note: The mblk that contains the incoming packet was 22367 * reused by tcp_xmit_listener_reset, so it already contains 22368 * the right credentials and we don't need to call mblk_setcred. 22369 * Also the conn's cred is not right since it is associated 22370 * with tcp_g_q. 22371 */ 22372 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22373 22374 /* 22375 * Tell IP to mark the IRE used for this destination temporary. 22376 * This way, we can limit our exposure to DoS attack because IP 22377 * creates an IRE for each destination. If there are too many, 22378 * the time to do any routing lookup will be extremely long. And 22379 * the lookup can be in interrupt context. 22380 * 22381 * Note that in normal circumstances, this marking should not 22382 * affect anything. It would be nice if only 1 message is 22383 * needed to inform IP that the IRE created for this RST should 22384 * not be added to the cache table. But there is currently 22385 * not such communication mechanism between TCP and IP. So 22386 * the best we can do now is to send the advice ioctl to IP 22387 * to mark the IRE temporary. 22388 */ 22389 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22390 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22391 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22392 } 22393 } 22394 22395 /* 22396 * Initiate closedown sequence on an active connection. (May be called as 22397 * writer.) Return value zero for OK return, non-zero for error return. 22398 */ 22399 static int 22400 tcp_xmit_end(tcp_t *tcp) 22401 { 22402 ipic_t *ipic; 22403 mblk_t *mp; 22404 22405 if (tcp->tcp_state < TCPS_SYN_RCVD || 22406 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22407 /* 22408 * Invalid state, only states TCPS_SYN_RCVD, 22409 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22410 */ 22411 return (-1); 22412 } 22413 22414 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22415 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22416 /* 22417 * If there is nothing more unsent, send the FIN now. 22418 * Otherwise, it will go out with the last segment. 22419 */ 22420 if (tcp->tcp_unsent == 0) { 22421 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22422 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22423 22424 if (mp) { 22425 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22426 tcp_send_data(tcp, tcp->tcp_wq, mp); 22427 } else { 22428 /* 22429 * Couldn't allocate msg. Pretend we got it out. 22430 * Wait for rexmit timeout. 22431 */ 22432 tcp->tcp_snxt = tcp->tcp_fss + 1; 22433 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22434 } 22435 22436 /* 22437 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22438 * changed. 22439 */ 22440 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22441 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22442 } 22443 } else { 22444 /* 22445 * If tcp->tcp_cork is set, then the data will not get sent, 22446 * so we have to check that and unset it first. 22447 */ 22448 if (tcp->tcp_cork) 22449 tcp->tcp_cork = B_FALSE; 22450 tcp_wput_data(tcp, NULL, B_FALSE); 22451 } 22452 22453 /* 22454 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22455 * is 0, don't update the cache. 22456 */ 22457 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 22458 return (0); 22459 22460 /* 22461 * NOTE: should not update if source routes i.e. if tcp_remote if 22462 * different from the destination. 22463 */ 22464 if (tcp->tcp_ipversion == IPV4_VERSION) { 22465 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22466 return (0); 22467 } 22468 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22469 &ipic); 22470 } else { 22471 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22472 &tcp->tcp_ip6h->ip6_dst))) { 22473 return (0); 22474 } 22475 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22476 &ipic); 22477 } 22478 22479 /* Record route attributes in the IRE for use by future connections. */ 22480 if (mp == NULL) 22481 return (0); 22482 22483 /* 22484 * We do not have a good algorithm to update ssthresh at this time. 22485 * So don't do any update. 22486 */ 22487 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22488 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22489 22490 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22491 return (0); 22492 } 22493 22494 /* 22495 * Generate a "no listener here" RST in response to an "unknown" segment. 22496 * Note that we are reusing the incoming mp to construct the outgoing 22497 * RST. 22498 */ 22499 void 22500 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid) 22501 { 22502 uchar_t *rptr; 22503 uint32_t seg_len; 22504 tcph_t *tcph; 22505 uint32_t seg_seq; 22506 uint32_t seg_ack; 22507 uint_t flags; 22508 mblk_t *ipsec_mp; 22509 ipha_t *ipha; 22510 ip6_t *ip6h; 22511 boolean_t mctl_present = B_FALSE; 22512 boolean_t check = B_TRUE; 22513 boolean_t policy_present; 22514 22515 TCP_STAT(tcp_no_listener); 22516 22517 ipsec_mp = mp; 22518 22519 if (mp->b_datap->db_type == M_CTL) { 22520 ipsec_in_t *ii; 22521 22522 mctl_present = B_TRUE; 22523 mp = mp->b_cont; 22524 22525 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22526 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22527 if (ii->ipsec_in_dont_check) { 22528 check = B_FALSE; 22529 if (!ii->ipsec_in_secure) { 22530 freeb(ipsec_mp); 22531 mctl_present = B_FALSE; 22532 ipsec_mp = mp; 22533 } 22534 } 22535 } 22536 22537 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22538 policy_present = ipsec_inbound_v4_policy_present; 22539 ipha = (ipha_t *)mp->b_rptr; 22540 ip6h = NULL; 22541 } else { 22542 policy_present = ipsec_inbound_v6_policy_present; 22543 ipha = NULL; 22544 ip6h = (ip6_t *)mp->b_rptr; 22545 } 22546 22547 if (check && policy_present) { 22548 /* 22549 * The conn_t parameter is NULL because we already know 22550 * nobody's home. 22551 */ 22552 ipsec_mp = ipsec_check_global_policy( 22553 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 22554 if (ipsec_mp == NULL) 22555 return; 22556 } 22557 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22558 DTRACE_PROBE2( 22559 tx__ip__log__error__nolistener__tcp, 22560 char *, "Could not reply with RST to mp(1)", 22561 mblk_t *, mp); 22562 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22563 freemsg(ipsec_mp); 22564 return; 22565 } 22566 22567 rptr = mp->b_rptr; 22568 22569 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22570 seg_seq = BE32_TO_U32(tcph->th_seq); 22571 seg_ack = BE32_TO_U32(tcph->th_ack); 22572 flags = tcph->th_flags[0]; 22573 22574 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22575 if (flags & TH_RST) { 22576 freemsg(ipsec_mp); 22577 } else if (flags & TH_ACK) { 22578 tcp_xmit_early_reset("no tcp, reset", 22579 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid); 22580 } else { 22581 if (flags & TH_SYN) { 22582 seg_len++; 22583 } else { 22584 /* 22585 * Here we violate the RFC. Note that a normal 22586 * TCP will never send a segment without the ACK 22587 * flag, except for RST or SYN segment. This 22588 * segment is neither. Just drop it on the 22589 * floor. 22590 */ 22591 freemsg(ipsec_mp); 22592 tcp_rst_unsent++; 22593 return; 22594 } 22595 22596 tcp_xmit_early_reset("no tcp, reset/ack", 22597 ipsec_mp, 0, seg_seq + seg_len, 22598 TH_RST | TH_ACK, ip_hdr_len, zoneid); 22599 } 22600 } 22601 22602 /* 22603 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22604 * ip and tcp header ready to pass down to IP. If the mp passed in is 22605 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22606 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22607 * otherwise it will dup partial mblks.) 22608 * Otherwise, an appropriate ACK packet will be generated. This 22609 * routine is not usually called to send new data for the first time. It 22610 * is mostly called out of the timer for retransmits, and to generate ACKs. 22611 * 22612 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22613 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22614 * of the original mblk chain will be returned in *offset and *end_mp. 22615 */ 22616 mblk_t * 22617 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22618 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22619 boolean_t rexmit) 22620 { 22621 int data_length; 22622 int32_t off = 0; 22623 uint_t flags; 22624 mblk_t *mp1; 22625 mblk_t *mp2; 22626 uchar_t *rptr; 22627 tcph_t *tcph; 22628 int32_t num_sack_blk = 0; 22629 int32_t sack_opt_len = 0; 22630 22631 /* Allocate for our maximum TCP header + link-level */ 22632 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22633 BPRI_MED); 22634 if (!mp1) 22635 return (NULL); 22636 data_length = 0; 22637 22638 /* 22639 * Note that tcp_mss has been adjusted to take into account the 22640 * timestamp option if applicable. Because SACK options do not 22641 * appear in every TCP segments and they are of variable lengths, 22642 * they cannot be included in tcp_mss. Thus we need to calculate 22643 * the actual segment length when we need to send a segment which 22644 * includes SACK options. 22645 */ 22646 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22647 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22648 tcp->tcp_num_sack_blk); 22649 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22650 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22651 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22652 max_to_send -= sack_opt_len; 22653 } 22654 22655 if (offset != NULL) { 22656 off = *offset; 22657 /* We use offset as an indicator that end_mp is not NULL. */ 22658 *end_mp = NULL; 22659 } 22660 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22661 /* This could be faster with cooperation from downstream */ 22662 if (mp2 != mp1 && !sendall && 22663 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22664 max_to_send) 22665 /* 22666 * Don't send the next mblk since the whole mblk 22667 * does not fit. 22668 */ 22669 break; 22670 mp2->b_cont = dupb(mp); 22671 mp2 = mp2->b_cont; 22672 if (!mp2) { 22673 freemsg(mp1); 22674 return (NULL); 22675 } 22676 mp2->b_rptr += off; 22677 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22678 (uintptr_t)INT_MAX); 22679 22680 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22681 if (data_length > max_to_send) { 22682 mp2->b_wptr -= data_length - max_to_send; 22683 data_length = max_to_send; 22684 off = mp2->b_wptr - mp->b_rptr; 22685 break; 22686 } else { 22687 off = 0; 22688 } 22689 } 22690 if (offset != NULL) { 22691 *offset = off; 22692 *end_mp = mp; 22693 } 22694 if (seg_len != NULL) { 22695 *seg_len = data_length; 22696 } 22697 22698 /* Update the latest receive window size in TCP header. */ 22699 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22700 tcp->tcp_tcph->th_win); 22701 22702 rptr = mp1->b_rptr + tcp_wroff_xtra; 22703 mp1->b_rptr = rptr; 22704 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22705 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22706 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22707 U32_TO_ABE32(seq, tcph->th_seq); 22708 22709 /* 22710 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22711 * that this function was called from tcp_wput_data. Thus, when called 22712 * to retransmit data the setting of the PUSH bit may appear some 22713 * what random in that it might get set when it should not. This 22714 * should not pose any performance issues. 22715 */ 22716 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22717 tcp->tcp_unsent == data_length)) { 22718 flags = TH_ACK | TH_PUSH; 22719 } else { 22720 flags = TH_ACK; 22721 } 22722 22723 if (tcp->tcp_ecn_ok) { 22724 if (tcp->tcp_ecn_echo_on) 22725 flags |= TH_ECE; 22726 22727 /* 22728 * Only set ECT bit and ECN_CWR if a segment contains new data. 22729 * There is no TCP flow control for non-data segments, and 22730 * only data segment is transmitted reliably. 22731 */ 22732 if (data_length > 0 && !rexmit) { 22733 SET_ECT(tcp, rptr); 22734 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22735 flags |= TH_CWR; 22736 tcp->tcp_ecn_cwr_sent = B_TRUE; 22737 } 22738 } 22739 } 22740 22741 if (tcp->tcp_valid_bits) { 22742 uint32_t u1; 22743 22744 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22745 seq == tcp->tcp_iss) { 22746 uchar_t *wptr; 22747 22748 /* 22749 * If TCP_ISS_VALID and the seq number is tcp_iss, 22750 * TCP can only be in SYN-SENT, SYN-RCVD or 22751 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22752 * our SYN is not ack'ed but the app closes this 22753 * TCP connection. 22754 */ 22755 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22756 tcp->tcp_state == TCPS_SYN_RCVD || 22757 tcp->tcp_state == TCPS_FIN_WAIT_1); 22758 22759 /* 22760 * Tack on the MSS option. It is always needed 22761 * for both active and passive open. 22762 * 22763 * MSS option value should be interface MTU - MIN 22764 * TCP/IP header according to RFC 793 as it means 22765 * the maximum segment size TCP can receive. But 22766 * to get around some broken middle boxes/end hosts 22767 * out there, we allow the option value to be the 22768 * same as the MSS option size on the peer side. 22769 * In this way, the other side will not send 22770 * anything larger than they can receive. 22771 * 22772 * Note that for SYN_SENT state, the ndd param 22773 * tcp_use_smss_as_mss_opt has no effect as we 22774 * don't know the peer's MSS option value. So 22775 * the only case we need to take care of is in 22776 * SYN_RCVD state, which is done later. 22777 */ 22778 wptr = mp1->b_wptr; 22779 wptr[0] = TCPOPT_MAXSEG; 22780 wptr[1] = TCPOPT_MAXSEG_LEN; 22781 wptr += 2; 22782 u1 = tcp->tcp_if_mtu - 22783 (tcp->tcp_ipversion == IPV4_VERSION ? 22784 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22785 TCP_MIN_HEADER_LENGTH; 22786 U16_TO_BE16(u1, wptr); 22787 mp1->b_wptr = wptr + 2; 22788 /* Update the offset to cover the additional word */ 22789 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22790 22791 /* 22792 * Note that the following way of filling in 22793 * TCP options are not optimal. Some NOPs can 22794 * be saved. But there is no need at this time 22795 * to optimize it. When it is needed, we will 22796 * do it. 22797 */ 22798 switch (tcp->tcp_state) { 22799 case TCPS_SYN_SENT: 22800 flags = TH_SYN; 22801 22802 if (tcp->tcp_snd_ts_ok) { 22803 uint32_t llbolt = (uint32_t)lbolt; 22804 22805 wptr = mp1->b_wptr; 22806 wptr[0] = TCPOPT_NOP; 22807 wptr[1] = TCPOPT_NOP; 22808 wptr[2] = TCPOPT_TSTAMP; 22809 wptr[3] = TCPOPT_TSTAMP_LEN; 22810 wptr += 4; 22811 U32_TO_BE32(llbolt, wptr); 22812 wptr += 4; 22813 ASSERT(tcp->tcp_ts_recent == 0); 22814 U32_TO_BE32(0L, wptr); 22815 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22816 tcph->th_offset_and_rsrvd[0] += 22817 (3 << 4); 22818 } 22819 22820 /* 22821 * Set up all the bits to tell other side 22822 * we are ECN capable. 22823 */ 22824 if (tcp->tcp_ecn_ok) { 22825 flags |= (TH_ECE | TH_CWR); 22826 } 22827 break; 22828 case TCPS_SYN_RCVD: 22829 flags |= TH_SYN; 22830 22831 /* 22832 * Reset the MSS option value to be SMSS 22833 * We should probably add back the bytes 22834 * for timestamp option and IPsec. We 22835 * don't do that as this is a workaround 22836 * for broken middle boxes/end hosts, it 22837 * is better for us to be more cautious. 22838 * They may not take these things into 22839 * account in their SMSS calculation. Thus 22840 * the peer's calculated SMSS may be smaller 22841 * than what it can be. This should be OK. 22842 */ 22843 if (tcp_use_smss_as_mss_opt) { 22844 u1 = tcp->tcp_mss; 22845 U16_TO_BE16(u1, wptr); 22846 } 22847 22848 /* 22849 * If the other side is ECN capable, reply 22850 * that we are also ECN capable. 22851 */ 22852 if (tcp->tcp_ecn_ok) 22853 flags |= TH_ECE; 22854 break; 22855 default: 22856 /* 22857 * The above ASSERT() makes sure that this 22858 * must be FIN-WAIT-1 state. Our SYN has 22859 * not been ack'ed so retransmit it. 22860 */ 22861 flags |= TH_SYN; 22862 break; 22863 } 22864 22865 if (tcp->tcp_snd_ws_ok) { 22866 wptr = mp1->b_wptr; 22867 wptr[0] = TCPOPT_NOP; 22868 wptr[1] = TCPOPT_WSCALE; 22869 wptr[2] = TCPOPT_WS_LEN; 22870 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22871 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22872 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22873 } 22874 22875 if (tcp->tcp_snd_sack_ok) { 22876 wptr = mp1->b_wptr; 22877 wptr[0] = TCPOPT_NOP; 22878 wptr[1] = TCPOPT_NOP; 22879 wptr[2] = TCPOPT_SACK_PERMITTED; 22880 wptr[3] = TCPOPT_SACK_OK_LEN; 22881 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22882 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22883 } 22884 22885 /* allocb() of adequate mblk assures space */ 22886 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22887 (uintptr_t)INT_MAX); 22888 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22889 /* 22890 * Get IP set to checksum on our behalf 22891 * Include the adjustment for a source route if any. 22892 */ 22893 u1 += tcp->tcp_sum; 22894 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22895 U16_TO_BE16(u1, tcph->th_sum); 22896 BUMP_MIB(&tcp_mib, tcpOutControl); 22897 } 22898 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22899 (seq + data_length) == tcp->tcp_fss) { 22900 if (!tcp->tcp_fin_acked) { 22901 flags |= TH_FIN; 22902 BUMP_MIB(&tcp_mib, tcpOutControl); 22903 } 22904 if (!tcp->tcp_fin_sent) { 22905 tcp->tcp_fin_sent = B_TRUE; 22906 switch (tcp->tcp_state) { 22907 case TCPS_SYN_RCVD: 22908 case TCPS_ESTABLISHED: 22909 tcp->tcp_state = TCPS_FIN_WAIT_1; 22910 break; 22911 case TCPS_CLOSE_WAIT: 22912 tcp->tcp_state = TCPS_LAST_ACK; 22913 break; 22914 } 22915 if (tcp->tcp_suna == tcp->tcp_snxt) 22916 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22917 tcp->tcp_snxt = tcp->tcp_fss + 1; 22918 } 22919 } 22920 /* 22921 * Note the trick here. u1 is unsigned. When tcp_urg 22922 * is smaller than seq, u1 will become a very huge value. 22923 * So the comparison will fail. Also note that tcp_urp 22924 * should be positive, see RFC 793 page 17. 22925 */ 22926 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22927 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22928 u1 < (uint32_t)(64 * 1024)) { 22929 flags |= TH_URG; 22930 BUMP_MIB(&tcp_mib, tcpOutUrg); 22931 U32_TO_ABE16(u1, tcph->th_urp); 22932 } 22933 } 22934 tcph->th_flags[0] = (uchar_t)flags; 22935 tcp->tcp_rack = tcp->tcp_rnxt; 22936 tcp->tcp_rack_cnt = 0; 22937 22938 if (tcp->tcp_snd_ts_ok) { 22939 if (tcp->tcp_state != TCPS_SYN_SENT) { 22940 uint32_t llbolt = (uint32_t)lbolt; 22941 22942 U32_TO_BE32(llbolt, 22943 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22944 U32_TO_BE32(tcp->tcp_ts_recent, 22945 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22946 } 22947 } 22948 22949 if (num_sack_blk > 0) { 22950 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22951 sack_blk_t *tmp; 22952 int32_t i; 22953 22954 wptr[0] = TCPOPT_NOP; 22955 wptr[1] = TCPOPT_NOP; 22956 wptr[2] = TCPOPT_SACK; 22957 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22958 sizeof (sack_blk_t); 22959 wptr += TCPOPT_REAL_SACK_LEN; 22960 22961 tmp = tcp->tcp_sack_list; 22962 for (i = 0; i < num_sack_blk; i++) { 22963 U32_TO_BE32(tmp[i].begin, wptr); 22964 wptr += sizeof (tcp_seq); 22965 U32_TO_BE32(tmp[i].end, wptr); 22966 wptr += sizeof (tcp_seq); 22967 } 22968 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22969 } 22970 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22971 data_length += (int)(mp1->b_wptr - rptr); 22972 if (tcp->tcp_ipversion == IPV4_VERSION) { 22973 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22974 } else { 22975 ip6_t *ip6 = (ip6_t *)(rptr + 22976 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22977 sizeof (ip6i_t) : 0)); 22978 22979 ip6->ip6_plen = htons(data_length - 22980 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22981 } 22982 22983 /* 22984 * Prime pump for IP 22985 * Include the adjustment for a source route if any. 22986 */ 22987 data_length -= tcp->tcp_ip_hdr_len; 22988 data_length += tcp->tcp_sum; 22989 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22990 U16_TO_ABE16(data_length, tcph->th_sum); 22991 if (tcp->tcp_ip_forward_progress) { 22992 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22993 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22994 tcp->tcp_ip_forward_progress = B_FALSE; 22995 } 22996 return (mp1); 22997 } 22998 22999 /* This function handles the push timeout. */ 23000 void 23001 tcp_push_timer(void *arg) 23002 { 23003 conn_t *connp = (conn_t *)arg; 23004 tcp_t *tcp = connp->conn_tcp; 23005 23006 TCP_DBGSTAT(tcp_push_timer_cnt); 23007 23008 ASSERT(tcp->tcp_listener == NULL); 23009 23010 /* 23011 * We need to plug synchronous streams during our drain to prevent 23012 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23013 */ 23014 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23015 tcp->tcp_push_tid = 0; 23016 if ((tcp->tcp_rcv_list != NULL) && 23017 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23018 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23019 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23020 } 23021 23022 /* 23023 * This function handles delayed ACK timeout. 23024 */ 23025 static void 23026 tcp_ack_timer(void *arg) 23027 { 23028 conn_t *connp = (conn_t *)arg; 23029 tcp_t *tcp = connp->conn_tcp; 23030 mblk_t *mp; 23031 23032 TCP_DBGSTAT(tcp_ack_timer_cnt); 23033 23034 tcp->tcp_ack_tid = 0; 23035 23036 if (tcp->tcp_fused) 23037 return; 23038 23039 /* 23040 * Do not send ACK if there is no outstanding unack'ed data. 23041 */ 23042 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23043 return; 23044 } 23045 23046 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23047 /* 23048 * Make sure we don't allow deferred ACKs to result in 23049 * timer-based ACKing. If we have held off an ACK 23050 * when there was more than an mss here, and the timer 23051 * goes off, we have to worry about the possibility 23052 * that the sender isn't doing slow-start, or is out 23053 * of step with us for some other reason. We fall 23054 * permanently back in the direction of 23055 * ACK-every-other-packet as suggested in RFC 1122. 23056 */ 23057 if (tcp->tcp_rack_abs_max > 2) 23058 tcp->tcp_rack_abs_max--; 23059 tcp->tcp_rack_cur_max = 2; 23060 } 23061 mp = tcp_ack_mp(tcp); 23062 23063 if (mp != NULL) { 23064 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23065 BUMP_LOCAL(tcp->tcp_obsegs); 23066 BUMP_MIB(&tcp_mib, tcpOutAck); 23067 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 23068 tcp_send_data(tcp, tcp->tcp_wq, mp); 23069 } 23070 } 23071 23072 23073 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23074 static mblk_t * 23075 tcp_ack_mp(tcp_t *tcp) 23076 { 23077 uint32_t seq_no; 23078 23079 /* 23080 * There are a few cases to be considered while setting the sequence no. 23081 * Essentially, we can come here while processing an unacceptable pkt 23082 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23083 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23084 * If we are here for a zero window probe, stick with suna. In all 23085 * other cases, we check if suna + swnd encompasses snxt and set 23086 * the sequence number to snxt, if so. If snxt falls outside the 23087 * window (the receiver probably shrunk its window), we will go with 23088 * suna + swnd, otherwise the sequence no will be unacceptable to the 23089 * receiver. 23090 */ 23091 if (tcp->tcp_zero_win_probe) { 23092 seq_no = tcp->tcp_suna; 23093 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23094 ASSERT(tcp->tcp_swnd == 0); 23095 seq_no = tcp->tcp_snxt; 23096 } else { 23097 seq_no = SEQ_GT(tcp->tcp_snxt, 23098 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23099 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23100 } 23101 23102 if (tcp->tcp_valid_bits) { 23103 /* 23104 * For the complex case where we have to send some 23105 * controls (FIN or SYN), let tcp_xmit_mp do it. 23106 */ 23107 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23108 NULL, B_FALSE)); 23109 } else { 23110 /* Generate a simple ACK */ 23111 int data_length; 23112 uchar_t *rptr; 23113 tcph_t *tcph; 23114 mblk_t *mp1; 23115 int32_t tcp_hdr_len; 23116 int32_t tcp_tcp_hdr_len; 23117 int32_t num_sack_blk = 0; 23118 int32_t sack_opt_len; 23119 23120 /* 23121 * Allocate space for TCP + IP headers 23122 * and link-level header 23123 */ 23124 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23125 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23126 tcp->tcp_num_sack_blk); 23127 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23128 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23129 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23130 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23131 } else { 23132 tcp_hdr_len = tcp->tcp_hdr_len; 23133 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23134 } 23135 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 23136 if (!mp1) 23137 return (NULL); 23138 23139 /* Update the latest receive window size in TCP header. */ 23140 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23141 tcp->tcp_tcph->th_win); 23142 /* copy in prototype TCP + IP header */ 23143 rptr = mp1->b_rptr + tcp_wroff_xtra; 23144 mp1->b_rptr = rptr; 23145 mp1->b_wptr = rptr + tcp_hdr_len; 23146 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23147 23148 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23149 23150 /* Set the TCP sequence number. */ 23151 U32_TO_ABE32(seq_no, tcph->th_seq); 23152 23153 /* Set up the TCP flag field. */ 23154 tcph->th_flags[0] = (uchar_t)TH_ACK; 23155 if (tcp->tcp_ecn_echo_on) 23156 tcph->th_flags[0] |= TH_ECE; 23157 23158 tcp->tcp_rack = tcp->tcp_rnxt; 23159 tcp->tcp_rack_cnt = 0; 23160 23161 /* fill in timestamp option if in use */ 23162 if (tcp->tcp_snd_ts_ok) { 23163 uint32_t llbolt = (uint32_t)lbolt; 23164 23165 U32_TO_BE32(llbolt, 23166 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23167 U32_TO_BE32(tcp->tcp_ts_recent, 23168 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23169 } 23170 23171 /* Fill in SACK options */ 23172 if (num_sack_blk > 0) { 23173 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23174 sack_blk_t *tmp; 23175 int32_t i; 23176 23177 wptr[0] = TCPOPT_NOP; 23178 wptr[1] = TCPOPT_NOP; 23179 wptr[2] = TCPOPT_SACK; 23180 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23181 sizeof (sack_blk_t); 23182 wptr += TCPOPT_REAL_SACK_LEN; 23183 23184 tmp = tcp->tcp_sack_list; 23185 for (i = 0; i < num_sack_blk; i++) { 23186 U32_TO_BE32(tmp[i].begin, wptr); 23187 wptr += sizeof (tcp_seq); 23188 U32_TO_BE32(tmp[i].end, wptr); 23189 wptr += sizeof (tcp_seq); 23190 } 23191 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23192 << 4); 23193 } 23194 23195 if (tcp->tcp_ipversion == IPV4_VERSION) { 23196 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23197 } else { 23198 /* Check for ip6i_t header in sticky hdrs */ 23199 ip6_t *ip6 = (ip6_t *)(rptr + 23200 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23201 sizeof (ip6i_t) : 0)); 23202 23203 ip6->ip6_plen = htons(tcp_hdr_len - 23204 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23205 } 23206 23207 /* 23208 * Prime pump for checksum calculation in IP. Include the 23209 * adjustment for a source route if any. 23210 */ 23211 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23212 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23213 U16_TO_ABE16(data_length, tcph->th_sum); 23214 23215 if (tcp->tcp_ip_forward_progress) { 23216 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23217 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23218 tcp->tcp_ip_forward_progress = B_FALSE; 23219 } 23220 return (mp1); 23221 } 23222 } 23223 23224 /* 23225 * To create a temporary tcp structure for inserting into bind hash list. 23226 * The parameter is assumed to be in network byte order, ready for use. 23227 */ 23228 /* ARGSUSED */ 23229 static tcp_t * 23230 tcp_alloc_temp_tcp(in_port_t port) 23231 { 23232 conn_t *connp; 23233 tcp_t *tcp; 23234 23235 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 23236 if (connp == NULL) 23237 return (NULL); 23238 23239 tcp = connp->conn_tcp; 23240 23241 /* 23242 * Only initialize the necessary info in those structures. Note 23243 * that since INADDR_ANY is all 0, we do not need to set 23244 * tcp_bound_source to INADDR_ANY here. 23245 */ 23246 tcp->tcp_state = TCPS_BOUND; 23247 tcp->tcp_lport = port; 23248 tcp->tcp_exclbind = 1; 23249 tcp->tcp_reserved_port = 1; 23250 23251 /* Just for place holding... */ 23252 tcp->tcp_ipversion = IPV4_VERSION; 23253 23254 return (tcp); 23255 } 23256 23257 /* 23258 * To remove a port range specified by lo_port and hi_port from the 23259 * reserved port ranges. This is one of the three public functions of 23260 * the reserved port interface. Note that a port range has to be removed 23261 * as a whole. Ports in a range cannot be removed individually. 23262 * 23263 * Params: 23264 * in_port_t lo_port: the beginning port of the reserved port range to 23265 * be deleted. 23266 * in_port_t hi_port: the ending port of the reserved port range to 23267 * be deleted. 23268 * 23269 * Return: 23270 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23271 */ 23272 boolean_t 23273 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23274 { 23275 int i, j; 23276 int size; 23277 tcp_t **temp_tcp_array; 23278 tcp_t *tcp; 23279 23280 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23281 23282 /* First make sure that the port ranage is indeed reserved. */ 23283 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23284 if (tcp_reserved_port[i].lo_port == lo_port) { 23285 hi_port = tcp_reserved_port[i].hi_port; 23286 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 23287 break; 23288 } 23289 } 23290 if (i == tcp_reserved_port_array_size) { 23291 rw_exit(&tcp_reserved_port_lock); 23292 return (B_FALSE); 23293 } 23294 23295 /* 23296 * Remove the range from the array. This simple loop is possible 23297 * because port ranges are inserted in ascending order. 23298 */ 23299 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 23300 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 23301 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 23302 tcp_reserved_port[j].temp_tcp_array = 23303 tcp_reserved_port[j+1].temp_tcp_array; 23304 } 23305 23306 /* Remove all the temporary tcp structures. */ 23307 size = hi_port - lo_port + 1; 23308 while (size > 0) { 23309 tcp = temp_tcp_array[size - 1]; 23310 ASSERT(tcp != NULL); 23311 tcp_bind_hash_remove(tcp); 23312 CONN_DEC_REF(tcp->tcp_connp); 23313 size--; 23314 } 23315 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23316 tcp_reserved_port_array_size--; 23317 rw_exit(&tcp_reserved_port_lock); 23318 return (B_TRUE); 23319 } 23320 23321 /* 23322 * Macro to remove temporary tcp structure from the bind hash list. The 23323 * first parameter is the list of tcp to be removed. The second parameter 23324 * is the number of tcps in the array. 23325 */ 23326 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 23327 { \ 23328 while ((num) > 0) { \ 23329 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23330 tf_t *tbf; \ 23331 tcp_t *tcpnext; \ 23332 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23333 mutex_enter(&tbf->tf_lock); \ 23334 tcpnext = tcp->tcp_bind_hash; \ 23335 if (tcpnext) { \ 23336 tcpnext->tcp_ptpbhn = \ 23337 tcp->tcp_ptpbhn; \ 23338 } \ 23339 *tcp->tcp_ptpbhn = tcpnext; \ 23340 mutex_exit(&tbf->tf_lock); \ 23341 kmem_free(tcp, sizeof (tcp_t)); \ 23342 (tcp_array)[(num) - 1] = NULL; \ 23343 (num)--; \ 23344 } \ 23345 } 23346 23347 /* 23348 * The public interface for other modules to call to reserve a port range 23349 * in TCP. The caller passes in how large a port range it wants. TCP 23350 * will try to find a range and return it via lo_port and hi_port. This is 23351 * used by NCA's nca_conn_init. 23352 * NCA can only be used in the global zone so this only affects the global 23353 * zone's ports. 23354 * 23355 * Params: 23356 * int size: the size of the port range to be reserved. 23357 * in_port_t *lo_port (referenced): returns the beginning port of the 23358 * reserved port range added. 23359 * in_port_t *hi_port (referenced): returns the ending port of the 23360 * reserved port range added. 23361 * 23362 * Return: 23363 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23364 */ 23365 boolean_t 23366 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23367 { 23368 tcp_t *tcp; 23369 tcp_t *tmp_tcp; 23370 tcp_t **temp_tcp_array; 23371 tf_t *tbf; 23372 in_port_t net_port; 23373 in_port_t port; 23374 int32_t cur_size; 23375 int i, j; 23376 boolean_t used; 23377 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23378 zoneid_t zoneid = GLOBAL_ZONEID; 23379 23380 /* Sanity check. */ 23381 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23382 return (B_FALSE); 23383 } 23384 23385 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23386 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23387 rw_exit(&tcp_reserved_port_lock); 23388 return (B_FALSE); 23389 } 23390 23391 /* 23392 * Find the starting port to try. Since the port ranges are ordered 23393 * in the reserved port array, we can do a simple search here. 23394 */ 23395 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23396 *hi_port = TCP_LARGEST_RESERVED_PORT; 23397 for (i = 0; i < tcp_reserved_port_array_size; 23398 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 23399 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 23400 *hi_port = tcp_reserved_port[i].lo_port - 1; 23401 break; 23402 } 23403 } 23404 /* No available port range. */ 23405 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 23406 rw_exit(&tcp_reserved_port_lock); 23407 return (B_FALSE); 23408 } 23409 23410 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23411 if (temp_tcp_array == NULL) { 23412 rw_exit(&tcp_reserved_port_lock); 23413 return (B_FALSE); 23414 } 23415 23416 /* Go thru the port range to see if some ports are already bound. */ 23417 for (port = *lo_port, cur_size = 0; 23418 cur_size < size && port <= *hi_port; 23419 cur_size++, port++) { 23420 used = B_FALSE; 23421 net_port = htons(port); 23422 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 23423 mutex_enter(&tbf->tf_lock); 23424 for (tcp = tbf->tf_tcp; tcp != NULL; 23425 tcp = tcp->tcp_bind_hash) { 23426 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23427 net_port == tcp->tcp_lport) { 23428 /* 23429 * A port is already bound. Search again 23430 * starting from port + 1. Release all 23431 * temporary tcps. 23432 */ 23433 mutex_exit(&tbf->tf_lock); 23434 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23435 *lo_port = port + 1; 23436 cur_size = -1; 23437 used = B_TRUE; 23438 break; 23439 } 23440 } 23441 if (!used) { 23442 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 23443 /* 23444 * Allocation failure. Just fail the request. 23445 * Need to remove all those temporary tcp 23446 * structures. 23447 */ 23448 mutex_exit(&tbf->tf_lock); 23449 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23450 rw_exit(&tcp_reserved_port_lock); 23451 kmem_free(temp_tcp_array, 23452 (hi_port - lo_port + 1) * 23453 sizeof (tcp_t *)); 23454 return (B_FALSE); 23455 } 23456 temp_tcp_array[cur_size] = tmp_tcp; 23457 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23458 mutex_exit(&tbf->tf_lock); 23459 } 23460 } 23461 23462 /* 23463 * The current range is not large enough. We can actually do another 23464 * search if this search is done between 2 reserved port ranges. But 23465 * for first release, we just stop here and return saying that no port 23466 * range is available. 23467 */ 23468 if (cur_size < size) { 23469 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23470 rw_exit(&tcp_reserved_port_lock); 23471 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23472 return (B_FALSE); 23473 } 23474 *hi_port = port - 1; 23475 23476 /* 23477 * Insert range into array in ascending order. Since this function 23478 * must not be called often, we choose to use the simplest method. 23479 * The above array should not consume excessive stack space as 23480 * the size must be very small. If in future releases, we find 23481 * that we should provide more reserved port ranges, this function 23482 * has to be modified to be more efficient. 23483 */ 23484 if (tcp_reserved_port_array_size == 0) { 23485 tcp_reserved_port[0].lo_port = *lo_port; 23486 tcp_reserved_port[0].hi_port = *hi_port; 23487 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 23488 } else { 23489 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 23490 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 23491 tmp_ports[j].lo_port = *lo_port; 23492 tmp_ports[j].hi_port = *hi_port; 23493 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23494 j++; 23495 } 23496 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 23497 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 23498 tmp_ports[j].temp_tcp_array = 23499 tcp_reserved_port[i].temp_tcp_array; 23500 } 23501 if (j == i) { 23502 tmp_ports[j].lo_port = *lo_port; 23503 tmp_ports[j].hi_port = *hi_port; 23504 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23505 } 23506 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 23507 } 23508 tcp_reserved_port_array_size++; 23509 rw_exit(&tcp_reserved_port_lock); 23510 return (B_TRUE); 23511 } 23512 23513 /* 23514 * Check to see if a port is in any reserved port range. 23515 * 23516 * Params: 23517 * in_port_t port: the port to be verified. 23518 * 23519 * Return: 23520 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23521 */ 23522 boolean_t 23523 tcp_reserved_port_check(in_port_t port) 23524 { 23525 int i; 23526 23527 rw_enter(&tcp_reserved_port_lock, RW_READER); 23528 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23529 if (port >= tcp_reserved_port[i].lo_port || 23530 port <= tcp_reserved_port[i].hi_port) { 23531 rw_exit(&tcp_reserved_port_lock); 23532 return (B_TRUE); 23533 } 23534 } 23535 rw_exit(&tcp_reserved_port_lock); 23536 return (B_FALSE); 23537 } 23538 23539 /* 23540 * To list all reserved port ranges. This is the function to handle 23541 * ndd tcp_reserved_port_list. 23542 */ 23543 /* ARGSUSED */ 23544 static int 23545 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23546 { 23547 int i; 23548 23549 rw_enter(&tcp_reserved_port_lock, RW_READER); 23550 if (tcp_reserved_port_array_size > 0) 23551 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23552 else 23553 (void) mi_mpprintf(mp, "No port is reserved."); 23554 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23555 (void) mi_mpprintf(mp, "%d-%d", 23556 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 23557 } 23558 rw_exit(&tcp_reserved_port_lock); 23559 return (0); 23560 } 23561 23562 /* 23563 * Hash list insertion routine for tcp_t structures. 23564 * Inserts entries with the ones bound to a specific IP address first 23565 * followed by those bound to INADDR_ANY. 23566 */ 23567 static void 23568 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23569 { 23570 tcp_t **tcpp; 23571 tcp_t *tcpnext; 23572 23573 if (tcp->tcp_ptpbhn != NULL) { 23574 ASSERT(!caller_holds_lock); 23575 tcp_bind_hash_remove(tcp); 23576 } 23577 tcpp = &tbf->tf_tcp; 23578 if (!caller_holds_lock) { 23579 mutex_enter(&tbf->tf_lock); 23580 } else { 23581 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23582 } 23583 tcpnext = tcpp[0]; 23584 if (tcpnext) { 23585 /* 23586 * If the new tcp bound to the INADDR_ANY address 23587 * and the first one in the list is not bound to 23588 * INADDR_ANY we skip all entries until we find the 23589 * first one bound to INADDR_ANY. 23590 * This makes sure that applications binding to a 23591 * specific address get preference over those binding to 23592 * INADDR_ANY. 23593 */ 23594 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23595 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23596 while ((tcpnext = tcpp[0]) != NULL && 23597 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23598 tcpp = &(tcpnext->tcp_bind_hash); 23599 if (tcpnext) 23600 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23601 } else 23602 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23603 } 23604 tcp->tcp_bind_hash = tcpnext; 23605 tcp->tcp_ptpbhn = tcpp; 23606 tcpp[0] = tcp; 23607 if (!caller_holds_lock) 23608 mutex_exit(&tbf->tf_lock); 23609 } 23610 23611 /* 23612 * Hash list removal routine for tcp_t structures. 23613 */ 23614 static void 23615 tcp_bind_hash_remove(tcp_t *tcp) 23616 { 23617 tcp_t *tcpnext; 23618 kmutex_t *lockp; 23619 23620 if (tcp->tcp_ptpbhn == NULL) 23621 return; 23622 23623 /* 23624 * Extract the lock pointer in case there are concurrent 23625 * hash_remove's for this instance. 23626 */ 23627 ASSERT(tcp->tcp_lport != 0); 23628 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23629 23630 ASSERT(lockp != NULL); 23631 mutex_enter(lockp); 23632 if (tcp->tcp_ptpbhn) { 23633 tcpnext = tcp->tcp_bind_hash; 23634 if (tcpnext) { 23635 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23636 tcp->tcp_bind_hash = NULL; 23637 } 23638 *tcp->tcp_ptpbhn = tcpnext; 23639 tcp->tcp_ptpbhn = NULL; 23640 } 23641 mutex_exit(lockp); 23642 } 23643 23644 23645 /* 23646 * Hash list lookup routine for tcp_t structures. 23647 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23648 */ 23649 static tcp_t * 23650 tcp_acceptor_hash_lookup(t_uscalar_t id) 23651 { 23652 tf_t *tf; 23653 tcp_t *tcp; 23654 23655 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23656 mutex_enter(&tf->tf_lock); 23657 for (tcp = tf->tf_tcp; tcp != NULL; 23658 tcp = tcp->tcp_acceptor_hash) { 23659 if (tcp->tcp_acceptor_id == id) { 23660 CONN_INC_REF(tcp->tcp_connp); 23661 mutex_exit(&tf->tf_lock); 23662 return (tcp); 23663 } 23664 } 23665 mutex_exit(&tf->tf_lock); 23666 return (NULL); 23667 } 23668 23669 23670 /* 23671 * Hash list insertion routine for tcp_t structures. 23672 */ 23673 void 23674 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23675 { 23676 tf_t *tf; 23677 tcp_t **tcpp; 23678 tcp_t *tcpnext; 23679 23680 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23681 23682 if (tcp->tcp_ptpahn != NULL) 23683 tcp_acceptor_hash_remove(tcp); 23684 tcpp = &tf->tf_tcp; 23685 mutex_enter(&tf->tf_lock); 23686 tcpnext = tcpp[0]; 23687 if (tcpnext) 23688 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23689 tcp->tcp_acceptor_hash = tcpnext; 23690 tcp->tcp_ptpahn = tcpp; 23691 tcpp[0] = tcp; 23692 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23693 mutex_exit(&tf->tf_lock); 23694 } 23695 23696 /* 23697 * Hash list removal routine for tcp_t structures. 23698 */ 23699 static void 23700 tcp_acceptor_hash_remove(tcp_t *tcp) 23701 { 23702 tcp_t *tcpnext; 23703 kmutex_t *lockp; 23704 23705 /* 23706 * Extract the lock pointer in case there are concurrent 23707 * hash_remove's for this instance. 23708 */ 23709 lockp = tcp->tcp_acceptor_lockp; 23710 23711 if (tcp->tcp_ptpahn == NULL) 23712 return; 23713 23714 ASSERT(lockp != NULL); 23715 mutex_enter(lockp); 23716 if (tcp->tcp_ptpahn) { 23717 tcpnext = tcp->tcp_acceptor_hash; 23718 if (tcpnext) { 23719 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23720 tcp->tcp_acceptor_hash = NULL; 23721 } 23722 *tcp->tcp_ptpahn = tcpnext; 23723 tcp->tcp_ptpahn = NULL; 23724 } 23725 mutex_exit(lockp); 23726 tcp->tcp_acceptor_lockp = NULL; 23727 } 23728 23729 /* ARGSUSED */ 23730 static int 23731 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 23732 { 23733 int error = 0; 23734 int retval; 23735 char *end; 23736 23737 tcp_hsp_t *hsp; 23738 tcp_hsp_t *hspprev; 23739 23740 ipaddr_t addr = 0; /* Address we're looking for */ 23741 in6_addr_t v6addr; /* Address we're looking for */ 23742 uint32_t hash; /* Hash of that address */ 23743 23744 /* 23745 * If the following variables are still zero after parsing the input 23746 * string, the user didn't specify them and we don't change them in 23747 * the HSP. 23748 */ 23749 23750 ipaddr_t mask = 0; /* Subnet mask */ 23751 in6_addr_t v6mask; 23752 long sendspace = 0; /* Send buffer size */ 23753 long recvspace = 0; /* Receive buffer size */ 23754 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23755 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23756 23757 rw_enter(&tcp_hsp_lock, RW_WRITER); 23758 23759 /* Parse and validate address */ 23760 if (af == AF_INET) { 23761 retval = inet_pton(af, value, &addr); 23762 if (retval == 1) 23763 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23764 } else if (af == AF_INET6) { 23765 retval = inet_pton(af, value, &v6addr); 23766 } else { 23767 error = EINVAL; 23768 goto done; 23769 } 23770 if (retval == 0) { 23771 error = EINVAL; 23772 goto done; 23773 } 23774 23775 while ((*value) && *value != ' ') 23776 value++; 23777 23778 /* Parse individual keywords, set variables if found */ 23779 while (*value) { 23780 /* Skip leading blanks */ 23781 23782 while (*value == ' ' || *value == '\t') 23783 value++; 23784 23785 /* If at end of string, we're done */ 23786 23787 if (!*value) 23788 break; 23789 23790 /* We have a word, figure out what it is */ 23791 23792 if (strncmp("mask", value, 4) == 0) { 23793 value += 4; 23794 while (*value == ' ' || *value == '\t') 23795 value++; 23796 /* Parse subnet mask */ 23797 if (af == AF_INET) { 23798 retval = inet_pton(af, value, &mask); 23799 if (retval == 1) { 23800 V4MASK_TO_V6(mask, v6mask); 23801 } 23802 } else if (af == AF_INET6) { 23803 retval = inet_pton(af, value, &v6mask); 23804 } 23805 if (retval != 1) { 23806 error = EINVAL; 23807 goto done; 23808 } 23809 while ((*value) && *value != ' ') 23810 value++; 23811 } else if (strncmp("sendspace", value, 9) == 0) { 23812 value += 9; 23813 23814 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23815 sendspace < TCP_XMIT_HIWATER || 23816 sendspace >= (1L<<30)) { 23817 error = EINVAL; 23818 goto done; 23819 } 23820 value = end; 23821 } else if (strncmp("recvspace", value, 9) == 0) { 23822 value += 9; 23823 23824 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23825 recvspace < TCP_RECV_HIWATER || 23826 recvspace >= (1L<<30)) { 23827 error = EINVAL; 23828 goto done; 23829 } 23830 value = end; 23831 } else if (strncmp("timestamp", value, 9) == 0) { 23832 value += 9; 23833 23834 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23835 timestamp < 0 || timestamp > 1) { 23836 error = EINVAL; 23837 goto done; 23838 } 23839 23840 /* 23841 * We increment timestamp so we know it's been set; 23842 * this is undone when we put it in the HSP 23843 */ 23844 timestamp++; 23845 value = end; 23846 } else if (strncmp("delete", value, 6) == 0) { 23847 value += 6; 23848 delete = B_TRUE; 23849 } else { 23850 error = EINVAL; 23851 goto done; 23852 } 23853 } 23854 23855 /* Hash address for lookup */ 23856 23857 hash = TCP_HSP_HASH(addr); 23858 23859 if (delete) { 23860 /* 23861 * Note that deletes don't return an error if the thing 23862 * we're trying to delete isn't there. 23863 */ 23864 if (tcp_hsp_hash == NULL) 23865 goto done; 23866 hsp = tcp_hsp_hash[hash]; 23867 23868 if (hsp) { 23869 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23870 &v6addr)) { 23871 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23872 mi_free((char *)hsp); 23873 } else { 23874 hspprev = hsp; 23875 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23876 if (IN6_ARE_ADDR_EQUAL( 23877 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23878 hspprev->tcp_hsp_next = 23879 hsp->tcp_hsp_next; 23880 mi_free((char *)hsp); 23881 break; 23882 } 23883 hspprev = hsp; 23884 } 23885 } 23886 } 23887 } else { 23888 /* 23889 * We're adding/modifying an HSP. If we haven't already done 23890 * so, allocate the hash table. 23891 */ 23892 23893 if (!tcp_hsp_hash) { 23894 tcp_hsp_hash = (tcp_hsp_t **) 23895 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23896 if (!tcp_hsp_hash) { 23897 error = EINVAL; 23898 goto done; 23899 } 23900 } 23901 23902 /* Get head of hash chain */ 23903 23904 hsp = tcp_hsp_hash[hash]; 23905 23906 /* Try to find pre-existing hsp on hash chain */ 23907 /* Doesn't handle CIDR prefixes. */ 23908 while (hsp) { 23909 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23910 break; 23911 hsp = hsp->tcp_hsp_next; 23912 } 23913 23914 /* 23915 * If we didn't, create one with default values and put it 23916 * at head of hash chain 23917 */ 23918 23919 if (!hsp) { 23920 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23921 if (!hsp) { 23922 error = EINVAL; 23923 goto done; 23924 } 23925 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23926 tcp_hsp_hash[hash] = hsp; 23927 } 23928 23929 /* Set values that the user asked us to change */ 23930 23931 hsp->tcp_hsp_addr_v6 = v6addr; 23932 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23933 hsp->tcp_hsp_vers = IPV4_VERSION; 23934 else 23935 hsp->tcp_hsp_vers = IPV6_VERSION; 23936 hsp->tcp_hsp_subnet_v6 = v6mask; 23937 if (sendspace > 0) 23938 hsp->tcp_hsp_sendspace = sendspace; 23939 if (recvspace > 0) 23940 hsp->tcp_hsp_recvspace = recvspace; 23941 if (timestamp > 0) 23942 hsp->tcp_hsp_tstamp = timestamp - 1; 23943 } 23944 23945 done: 23946 rw_exit(&tcp_hsp_lock); 23947 return (error); 23948 } 23949 23950 /* Set callback routine passed to nd_load by tcp_param_register. */ 23951 /* ARGSUSED */ 23952 static int 23953 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23954 { 23955 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23956 } 23957 /* ARGSUSED */ 23958 static int 23959 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23960 cred_t *cr) 23961 { 23962 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23963 } 23964 23965 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23966 /* ARGSUSED */ 23967 static int 23968 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23969 { 23970 tcp_hsp_t *hsp; 23971 int i; 23972 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23973 23974 rw_enter(&tcp_hsp_lock, RW_READER); 23975 (void) mi_mpprintf(mp, 23976 "Hash HSP " MI_COL_HDRPAD_STR 23977 "Address Subnet Mask Send Receive TStamp"); 23978 if (tcp_hsp_hash) { 23979 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23980 hsp = tcp_hsp_hash[i]; 23981 while (hsp) { 23982 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23983 (void) inet_ntop(AF_INET, 23984 &hsp->tcp_hsp_addr, 23985 addrbuf, sizeof (addrbuf)); 23986 (void) inet_ntop(AF_INET, 23987 &hsp->tcp_hsp_subnet, 23988 subnetbuf, sizeof (subnetbuf)); 23989 } else { 23990 (void) inet_ntop(AF_INET6, 23991 &hsp->tcp_hsp_addr_v6, 23992 addrbuf, sizeof (addrbuf)); 23993 (void) inet_ntop(AF_INET6, 23994 &hsp->tcp_hsp_subnet_v6, 23995 subnetbuf, sizeof (subnetbuf)); 23996 } 23997 (void) mi_mpprintf(mp, 23998 " %03d " MI_COL_PTRFMT_STR 23999 "%s %s %010d %010d %d", 24000 i, 24001 (void *)hsp, 24002 addrbuf, 24003 subnetbuf, 24004 hsp->tcp_hsp_sendspace, 24005 hsp->tcp_hsp_recvspace, 24006 hsp->tcp_hsp_tstamp); 24007 24008 hsp = hsp->tcp_hsp_next; 24009 } 24010 } 24011 } 24012 rw_exit(&tcp_hsp_lock); 24013 return (0); 24014 } 24015 24016 24017 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24018 24019 static ipaddr_t netmasks[] = { 24020 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24021 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24022 }; 24023 24024 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24025 24026 /* 24027 * XXX This routine should go away and instead we should use the metrics 24028 * associated with the routes to determine the default sndspace and rcvspace. 24029 */ 24030 static tcp_hsp_t * 24031 tcp_hsp_lookup(ipaddr_t addr) 24032 { 24033 tcp_hsp_t *hsp = NULL; 24034 24035 /* Quick check without acquiring the lock. */ 24036 if (tcp_hsp_hash == NULL) 24037 return (NULL); 24038 24039 rw_enter(&tcp_hsp_lock, RW_READER); 24040 24041 /* This routine finds the best-matching HSP for address addr. */ 24042 24043 if (tcp_hsp_hash) { 24044 int i; 24045 ipaddr_t srchaddr; 24046 tcp_hsp_t *hsp_net; 24047 24048 /* We do three passes: host, network, and subnet. */ 24049 24050 srchaddr = addr; 24051 24052 for (i = 1; i <= 3; i++) { 24053 /* Look for exact match on srchaddr */ 24054 24055 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24056 while (hsp) { 24057 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24058 hsp->tcp_hsp_addr == srchaddr) 24059 break; 24060 hsp = hsp->tcp_hsp_next; 24061 } 24062 ASSERT(hsp == NULL || 24063 hsp->tcp_hsp_vers == IPV4_VERSION); 24064 24065 /* 24066 * If this is the first pass: 24067 * If we found a match, great, return it. 24068 * If not, search for the network on the second pass. 24069 */ 24070 24071 if (i == 1) 24072 if (hsp) 24073 break; 24074 else 24075 { 24076 srchaddr = addr & netmask(addr); 24077 continue; 24078 } 24079 24080 /* 24081 * If this is the second pass: 24082 * If we found a match, but there's a subnet mask, 24083 * save the match but try again using the subnet 24084 * mask on the third pass. 24085 * Otherwise, return whatever we found. 24086 */ 24087 24088 if (i == 2) { 24089 if (hsp && hsp->tcp_hsp_subnet) { 24090 hsp_net = hsp; 24091 srchaddr = addr & hsp->tcp_hsp_subnet; 24092 continue; 24093 } else { 24094 break; 24095 } 24096 } 24097 24098 /* 24099 * This must be the third pass. If we didn't find 24100 * anything, return the saved network HSP instead. 24101 */ 24102 24103 if (!hsp) 24104 hsp = hsp_net; 24105 } 24106 } 24107 24108 rw_exit(&tcp_hsp_lock); 24109 return (hsp); 24110 } 24111 24112 /* 24113 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24114 * match lookup. 24115 */ 24116 static tcp_hsp_t * 24117 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 24118 { 24119 tcp_hsp_t *hsp = NULL; 24120 24121 /* Quick check without acquiring the lock. */ 24122 if (tcp_hsp_hash == NULL) 24123 return (NULL); 24124 24125 rw_enter(&tcp_hsp_lock, RW_READER); 24126 24127 /* This routine finds the best-matching HSP for address addr. */ 24128 24129 if (tcp_hsp_hash) { 24130 int i; 24131 in6_addr_t v6srchaddr; 24132 tcp_hsp_t *hsp_net; 24133 24134 /* We do three passes: host, network, and subnet. */ 24135 24136 v6srchaddr = *v6addr; 24137 24138 for (i = 1; i <= 3; i++) { 24139 /* Look for exact match on srchaddr */ 24140 24141 hsp = tcp_hsp_hash[TCP_HSP_HASH( 24142 V4_PART_OF_V6(v6srchaddr))]; 24143 while (hsp) { 24144 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24145 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24146 &v6srchaddr)) 24147 break; 24148 hsp = hsp->tcp_hsp_next; 24149 } 24150 24151 /* 24152 * If this is the first pass: 24153 * If we found a match, great, return it. 24154 * If not, search for the network on the second pass. 24155 */ 24156 24157 if (i == 1) 24158 if (hsp) 24159 break; 24160 else { 24161 /* Assume a 64 bit mask */ 24162 v6srchaddr.s6_addr32[0] = 24163 v6addr->s6_addr32[0]; 24164 v6srchaddr.s6_addr32[1] = 24165 v6addr->s6_addr32[1]; 24166 v6srchaddr.s6_addr32[2] = 0; 24167 v6srchaddr.s6_addr32[3] = 0; 24168 continue; 24169 } 24170 24171 /* 24172 * If this is the second pass: 24173 * If we found a match, but there's a subnet mask, 24174 * save the match but try again using the subnet 24175 * mask on the third pass. 24176 * Otherwise, return whatever we found. 24177 */ 24178 24179 if (i == 2) { 24180 ASSERT(hsp == NULL || 24181 hsp->tcp_hsp_vers == IPV6_VERSION); 24182 if (hsp && 24183 !IN6_IS_ADDR_UNSPECIFIED( 24184 &hsp->tcp_hsp_subnet_v6)) { 24185 hsp_net = hsp; 24186 V6_MASK_COPY(*v6addr, 24187 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24188 continue; 24189 } else { 24190 break; 24191 } 24192 } 24193 24194 /* 24195 * This must be the third pass. If we didn't find 24196 * anything, return the saved network HSP instead. 24197 */ 24198 24199 if (!hsp) 24200 hsp = hsp_net; 24201 } 24202 } 24203 24204 rw_exit(&tcp_hsp_lock); 24205 return (hsp); 24206 } 24207 24208 /* 24209 * Type three generator adapted from the random() function in 4.4 BSD: 24210 */ 24211 24212 /* 24213 * Copyright (c) 1983, 1993 24214 * The Regents of the University of California. All rights reserved. 24215 * 24216 * Redistribution and use in source and binary forms, with or without 24217 * modification, are permitted provided that the following conditions 24218 * are met: 24219 * 1. Redistributions of source code must retain the above copyright 24220 * notice, this list of conditions and the following disclaimer. 24221 * 2. Redistributions in binary form must reproduce the above copyright 24222 * notice, this list of conditions and the following disclaimer in the 24223 * documentation and/or other materials provided with the distribution. 24224 * 3. All advertising materials mentioning features or use of this software 24225 * must display the following acknowledgement: 24226 * This product includes software developed by the University of 24227 * California, Berkeley and its contributors. 24228 * 4. Neither the name of the University nor the names of its contributors 24229 * may be used to endorse or promote products derived from this software 24230 * without specific prior written permission. 24231 * 24232 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24233 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24234 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24235 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24236 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24237 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24238 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24239 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24240 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24241 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24242 * SUCH DAMAGE. 24243 */ 24244 24245 /* Type 3 -- x**31 + x**3 + 1 */ 24246 #define DEG_3 31 24247 #define SEP_3 3 24248 24249 24250 /* Protected by tcp_random_lock */ 24251 static int tcp_randtbl[DEG_3 + 1]; 24252 24253 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24254 static int *tcp_random_rptr = &tcp_randtbl[1]; 24255 24256 static int *tcp_random_state = &tcp_randtbl[1]; 24257 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24258 24259 kmutex_t tcp_random_lock; 24260 24261 void 24262 tcp_random_init(void) 24263 { 24264 int i; 24265 hrtime_t hrt; 24266 time_t wallclock; 24267 uint64_t result; 24268 24269 /* 24270 * Use high-res timer and current time for seed. Gethrtime() returns 24271 * a longlong, which may contain resolution down to nanoseconds. 24272 * The current time will either be a 32-bit or a 64-bit quantity. 24273 * XOR the two together in a 64-bit result variable. 24274 * Convert the result to a 32-bit value by multiplying the high-order 24275 * 32-bits by the low-order 32-bits. 24276 */ 24277 24278 hrt = gethrtime(); 24279 (void) drv_getparm(TIME, &wallclock); 24280 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24281 mutex_enter(&tcp_random_lock); 24282 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24283 (result & 0xffffffff); 24284 24285 for (i = 1; i < DEG_3; i++) 24286 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24287 + 12345; 24288 tcp_random_fptr = &tcp_random_state[SEP_3]; 24289 tcp_random_rptr = &tcp_random_state[0]; 24290 mutex_exit(&tcp_random_lock); 24291 for (i = 0; i < 10 * DEG_3; i++) 24292 (void) tcp_random(); 24293 } 24294 24295 /* 24296 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24297 * This range is selected to be approximately centered on TCP_ISS / 2, 24298 * and easy to compute. We get this value by generating a 32-bit random 24299 * number, selecting out the high-order 17 bits, and then adding one so 24300 * that we never return zero. 24301 */ 24302 int 24303 tcp_random(void) 24304 { 24305 int i; 24306 24307 mutex_enter(&tcp_random_lock); 24308 *tcp_random_fptr += *tcp_random_rptr; 24309 24310 /* 24311 * The high-order bits are more random than the low-order bits, 24312 * so we select out the high-order 17 bits and add one so that 24313 * we never return zero. 24314 */ 24315 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24316 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24317 tcp_random_fptr = tcp_random_state; 24318 ++tcp_random_rptr; 24319 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24320 tcp_random_rptr = tcp_random_state; 24321 24322 mutex_exit(&tcp_random_lock); 24323 return (i); 24324 } 24325 24326 /* 24327 * XXX This will go away when TPI is extended to send 24328 * info reqs to sockfs/timod ..... 24329 * Given a queue, set the max packet size for the write 24330 * side of the queue below stream head. This value is 24331 * cached on the stream head. 24332 * Returns 1 on success, 0 otherwise. 24333 */ 24334 static int 24335 setmaxps(queue_t *q, int maxpsz) 24336 { 24337 struct stdata *stp; 24338 queue_t *wq; 24339 stp = STREAM(q); 24340 24341 /* 24342 * At this point change of a queue parameter is not allowed 24343 * when a multiplexor is sitting on top. 24344 */ 24345 if (stp->sd_flag & STPLEX) 24346 return (0); 24347 24348 claimstr(stp->sd_wrq); 24349 wq = stp->sd_wrq->q_next; 24350 ASSERT(wq != NULL); 24351 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24352 releasestr(stp->sd_wrq); 24353 return (1); 24354 } 24355 24356 static int 24357 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24358 int *t_errorp, int *sys_errorp) 24359 { 24360 int error; 24361 int is_absreq_failure; 24362 t_scalar_t *opt_lenp; 24363 t_scalar_t opt_offset; 24364 int prim_type; 24365 struct T_conn_req *tcreqp; 24366 struct T_conn_res *tcresp; 24367 cred_t *cr; 24368 24369 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24370 24371 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24372 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24373 prim_type == T_CONN_RES); 24374 24375 switch (prim_type) { 24376 case T_CONN_REQ: 24377 tcreqp = (struct T_conn_req *)mp->b_rptr; 24378 opt_offset = tcreqp->OPT_offset; 24379 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24380 break; 24381 case O_T_CONN_RES: 24382 case T_CONN_RES: 24383 tcresp = (struct T_conn_res *)mp->b_rptr; 24384 opt_offset = tcresp->OPT_offset; 24385 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24386 break; 24387 } 24388 24389 *t_errorp = 0; 24390 *sys_errorp = 0; 24391 *do_disconnectp = 0; 24392 24393 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24394 opt_offset, cr, &tcp_opt_obj, 24395 NULL, &is_absreq_failure); 24396 24397 switch (error) { 24398 case 0: /* no error */ 24399 ASSERT(is_absreq_failure == 0); 24400 return (0); 24401 case ENOPROTOOPT: 24402 *t_errorp = TBADOPT; 24403 break; 24404 case EACCES: 24405 *t_errorp = TACCES; 24406 break; 24407 default: 24408 *t_errorp = TSYSERR; *sys_errorp = error; 24409 break; 24410 } 24411 if (is_absreq_failure != 0) { 24412 /* 24413 * The connection request should get the local ack 24414 * T_OK_ACK and then a T_DISCON_IND. 24415 */ 24416 *do_disconnectp = 1; 24417 } 24418 return (-1); 24419 } 24420 24421 /* 24422 * Split this function out so that if the secret changes, I'm okay. 24423 * 24424 * Initialize the tcp_iss_cookie and tcp_iss_key. 24425 */ 24426 24427 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24428 24429 static void 24430 tcp_iss_key_init(uint8_t *phrase, int len) 24431 { 24432 struct { 24433 int32_t current_time; 24434 uint32_t randnum; 24435 uint16_t pad; 24436 uint8_t ether[6]; 24437 uint8_t passwd[PASSWD_SIZE]; 24438 } tcp_iss_cookie; 24439 time_t t; 24440 24441 /* 24442 * Start with the current absolute time. 24443 */ 24444 (void) drv_getparm(TIME, &t); 24445 tcp_iss_cookie.current_time = t; 24446 24447 /* 24448 * XXX - Need a more random number per RFC 1750, not this crap. 24449 * OTOH, if what follows is pretty random, then I'm in better shape. 24450 */ 24451 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24452 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24453 24454 /* 24455 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24456 * as a good template. 24457 */ 24458 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24459 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24460 24461 /* 24462 * The pass-phrase. Normally this is supplied by user-called NDD. 24463 */ 24464 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24465 24466 /* 24467 * See 4010593 if this section becomes a problem again, 24468 * but the local ethernet address is useful here. 24469 */ 24470 (void) localetheraddr(NULL, 24471 (struct ether_addr *)&tcp_iss_cookie.ether); 24472 24473 /* 24474 * Hash 'em all together. The MD5Final is called per-connection. 24475 */ 24476 mutex_enter(&tcp_iss_key_lock); 24477 MD5Init(&tcp_iss_key); 24478 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 24479 sizeof (tcp_iss_cookie)); 24480 mutex_exit(&tcp_iss_key_lock); 24481 } 24482 24483 /* 24484 * Set the RFC 1948 pass phrase 24485 */ 24486 /* ARGSUSED */ 24487 static int 24488 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24489 cred_t *cr) 24490 { 24491 /* 24492 * Basically, value contains a new pass phrase. Pass it along! 24493 */ 24494 tcp_iss_key_init((uint8_t *)value, strlen(value)); 24495 return (0); 24496 } 24497 24498 /* ARGSUSED */ 24499 static int 24500 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24501 { 24502 bzero(buf, sizeof (tcp_sack_info_t)); 24503 return (0); 24504 } 24505 24506 /* ARGSUSED */ 24507 static int 24508 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24509 { 24510 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24511 return (0); 24512 } 24513 24514 void 24515 tcp_ddi_init(void) 24516 { 24517 int i; 24518 24519 /* Initialize locks */ 24520 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 24521 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24522 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24523 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24524 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24525 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 24526 24527 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24528 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 24529 MUTEX_DEFAULT, NULL); 24530 } 24531 24532 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24533 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 24534 MUTEX_DEFAULT, NULL); 24535 } 24536 24537 /* TCP's IPsec code calls the packet dropper. */ 24538 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 24539 24540 if (!tcp_g_nd) { 24541 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 24542 nd_free(&tcp_g_nd); 24543 } 24544 } 24545 24546 /* 24547 * Note: To really walk the device tree you need the devinfo 24548 * pointer to your device which is only available after probe/attach. 24549 * The following is safe only because it uses ddi_root_node() 24550 */ 24551 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24552 tcp_opt_obj.odb_opt_arr_cnt); 24553 24554 tcp_timercache = kmem_cache_create("tcp_timercache", 24555 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24556 NULL, NULL, NULL, NULL, NULL, 0); 24557 24558 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24559 sizeof (tcp_sack_info_t), 0, 24560 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24561 24562 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24563 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24564 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24565 24566 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24567 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24568 24569 ip_squeue_init(tcp_squeue_add); 24570 24571 /* Initialize the random number generator */ 24572 tcp_random_init(); 24573 24574 /* 24575 * Initialize RFC 1948 secret values. This will probably be reset once 24576 * by the boot scripts. 24577 * 24578 * Use NULL name, as the name is caught by the new lockstats. 24579 * 24580 * Initialize with some random, non-guessable string, like the global 24581 * T_INFO_ACK. 24582 */ 24583 24584 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24585 sizeof (tcp_g_t_info_ack)); 24586 24587 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 24588 "net", KSTAT_TYPE_NAMED, 24589 sizeof (tcp_statistics) / sizeof (kstat_named_t), 24590 KSTAT_FLAG_VIRTUAL)) != NULL) { 24591 tcp_kstat->ks_data = &tcp_statistics; 24592 kstat_install(tcp_kstat); 24593 } 24594 24595 tcp_kstat_init(); 24596 } 24597 24598 void 24599 tcp_ddi_destroy(void) 24600 { 24601 int i; 24602 24603 nd_free(&tcp_g_nd); 24604 24605 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24606 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 24607 } 24608 24609 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24610 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 24611 } 24612 24613 mutex_destroy(&tcp_iss_key_lock); 24614 rw_destroy(&tcp_hsp_lock); 24615 mutex_destroy(&tcp_g_q_lock); 24616 mutex_destroy(&tcp_random_lock); 24617 mutex_destroy(&tcp_epriv_port_lock); 24618 rw_destroy(&tcp_reserved_port_lock); 24619 24620 ip_drop_unregister(&tcp_dropper); 24621 24622 kmem_cache_destroy(tcp_timercache); 24623 kmem_cache_destroy(tcp_sack_info_cache); 24624 kmem_cache_destroy(tcp_iphc_cache); 24625 24626 tcp_kstat_fini(); 24627 } 24628 24629 /* 24630 * Generate ISS, taking into account NDD changes may happen halfway through. 24631 * (If the iss is not zero, set it.) 24632 */ 24633 24634 static void 24635 tcp_iss_init(tcp_t *tcp) 24636 { 24637 MD5_CTX context; 24638 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24639 uint32_t answer[4]; 24640 24641 tcp_iss_incr_extra += (ISS_INCR >> 1); 24642 tcp->tcp_iss = tcp_iss_incr_extra; 24643 switch (tcp_strong_iss) { 24644 case 2: 24645 mutex_enter(&tcp_iss_key_lock); 24646 context = tcp_iss_key; 24647 mutex_exit(&tcp_iss_key_lock); 24648 arg.ports = tcp->tcp_ports; 24649 if (tcp->tcp_ipversion == IPV4_VERSION) { 24650 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24651 &arg.src); 24652 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24653 &arg.dst); 24654 } else { 24655 arg.src = tcp->tcp_ip6h->ip6_src; 24656 arg.dst = tcp->tcp_ip6h->ip6_dst; 24657 } 24658 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24659 MD5Final((uchar_t *)answer, &context); 24660 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24661 /* 24662 * Now that we've hashed into a unique per-connection sequence 24663 * space, add a random increment per strong_iss == 1. So I 24664 * guess we'll have to... 24665 */ 24666 /* FALLTHRU */ 24667 case 1: 24668 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24669 break; 24670 default: 24671 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24672 break; 24673 } 24674 tcp->tcp_valid_bits = TCP_ISS_VALID; 24675 tcp->tcp_fss = tcp->tcp_iss - 1; 24676 tcp->tcp_suna = tcp->tcp_iss; 24677 tcp->tcp_snxt = tcp->tcp_iss + 1; 24678 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24679 tcp->tcp_csuna = tcp->tcp_snxt; 24680 } 24681 24682 /* 24683 * Exported routine for extracting active tcp connection status. 24684 * 24685 * This is used by the Solaris Cluster Networking software to 24686 * gather a list of connections that need to be forwarded to 24687 * specific nodes in the cluster when configuration changes occur. 24688 * 24689 * The callback is invoked for each tcp_t structure. Returning 24690 * non-zero from the callback routine terminates the search. 24691 */ 24692 int 24693 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 24694 { 24695 tcp_t *tcp; 24696 cl_tcp_info_t cl_tcpi; 24697 connf_t *connfp; 24698 conn_t *connp; 24699 int i; 24700 24701 ASSERT(callback != NULL); 24702 24703 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24704 24705 connfp = &ipcl_globalhash_fanout[i]; 24706 connp = NULL; 24707 24708 while ((connp = 24709 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24710 24711 tcp = connp->conn_tcp; 24712 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24713 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24714 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24715 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24716 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24717 /* 24718 * The macros tcp_laddr and tcp_faddr give the IPv4 24719 * addresses. They are copied implicitly below as 24720 * mapped addresses. 24721 */ 24722 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24723 if (tcp->tcp_ipversion == IPV4_VERSION) { 24724 cl_tcpi.cl_tcpi_faddr = 24725 tcp->tcp_ipha->ipha_dst; 24726 } else { 24727 cl_tcpi.cl_tcpi_faddr_v6 = 24728 tcp->tcp_ip6h->ip6_dst; 24729 } 24730 24731 /* 24732 * If the callback returns non-zero 24733 * we terminate the traversal. 24734 */ 24735 if ((*callback)(&cl_tcpi, arg) != 0) { 24736 CONN_DEC_REF(tcp->tcp_connp); 24737 return (1); 24738 } 24739 } 24740 } 24741 24742 return (0); 24743 } 24744 24745 /* 24746 * Macros used for accessing the different types of sockaddr 24747 * structures inside a tcp_ioc_abort_conn_t. 24748 */ 24749 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24750 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24751 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24752 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24753 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24754 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24755 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24756 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24757 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24758 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24759 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24760 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24761 24762 /* 24763 * Return the correct error code to mimic the behavior 24764 * of a connection reset. 24765 */ 24766 #define TCP_AC_GET_ERRCODE(state, err) { \ 24767 switch ((state)) { \ 24768 case TCPS_SYN_SENT: \ 24769 case TCPS_SYN_RCVD: \ 24770 (err) = ECONNREFUSED; \ 24771 break; \ 24772 case TCPS_ESTABLISHED: \ 24773 case TCPS_FIN_WAIT_1: \ 24774 case TCPS_FIN_WAIT_2: \ 24775 case TCPS_CLOSE_WAIT: \ 24776 (err) = ECONNRESET; \ 24777 break; \ 24778 case TCPS_CLOSING: \ 24779 case TCPS_LAST_ACK: \ 24780 case TCPS_TIME_WAIT: \ 24781 (err) = 0; \ 24782 break; \ 24783 default: \ 24784 (err) = ENXIO; \ 24785 } \ 24786 } 24787 24788 /* 24789 * Check if a tcp structure matches the info in acp. 24790 */ 24791 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24792 (((acp)->ac_local.ss_family == AF_INET) ? \ 24793 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24794 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24795 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24796 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24797 (TCP_AC_V4LPORT((acp)) == 0 || \ 24798 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24799 (TCP_AC_V4RPORT((acp)) == 0 || \ 24800 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24801 (acp)->ac_start <= (tcp)->tcp_state && \ 24802 (acp)->ac_end >= (tcp)->tcp_state) : \ 24803 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24804 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24805 &(tcp)->tcp_ip_src_v6)) && \ 24806 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24807 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24808 &(tcp)->tcp_remote_v6)) && \ 24809 (TCP_AC_V6LPORT((acp)) == 0 || \ 24810 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24811 (TCP_AC_V6RPORT((acp)) == 0 || \ 24812 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24813 (acp)->ac_start <= (tcp)->tcp_state && \ 24814 (acp)->ac_end >= (tcp)->tcp_state)) 24815 24816 #define TCP_AC_MATCH(acp, tcp) \ 24817 (((acp)->ac_zoneid == ALL_ZONES || \ 24818 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24819 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24820 24821 /* 24822 * Build a message containing a tcp_ioc_abort_conn_t structure 24823 * which is filled in with information from acp and tp. 24824 */ 24825 static mblk_t * 24826 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24827 { 24828 mblk_t *mp; 24829 tcp_ioc_abort_conn_t *tacp; 24830 24831 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24832 if (mp == NULL) 24833 return (NULL); 24834 24835 mp->b_datap->db_type = M_CTL; 24836 24837 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24838 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24839 sizeof (uint32_t)); 24840 24841 tacp->ac_start = acp->ac_start; 24842 tacp->ac_end = acp->ac_end; 24843 tacp->ac_zoneid = acp->ac_zoneid; 24844 24845 if (acp->ac_local.ss_family == AF_INET) { 24846 tacp->ac_local.ss_family = AF_INET; 24847 tacp->ac_remote.ss_family = AF_INET; 24848 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24849 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24850 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24851 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24852 } else { 24853 tacp->ac_local.ss_family = AF_INET6; 24854 tacp->ac_remote.ss_family = AF_INET6; 24855 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24856 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24857 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24858 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24859 } 24860 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24861 return (mp); 24862 } 24863 24864 /* 24865 * Print a tcp_ioc_abort_conn_t structure. 24866 */ 24867 static void 24868 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24869 { 24870 char lbuf[128]; 24871 char rbuf[128]; 24872 sa_family_t af; 24873 in_port_t lport, rport; 24874 ushort_t logflags; 24875 24876 af = acp->ac_local.ss_family; 24877 24878 if (af == AF_INET) { 24879 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24880 lbuf, 128); 24881 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24882 rbuf, 128); 24883 lport = ntohs(TCP_AC_V4LPORT(acp)); 24884 rport = ntohs(TCP_AC_V4RPORT(acp)); 24885 } else { 24886 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24887 lbuf, 128); 24888 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24889 rbuf, 128); 24890 lport = ntohs(TCP_AC_V6LPORT(acp)); 24891 rport = ntohs(TCP_AC_V6RPORT(acp)); 24892 } 24893 24894 logflags = SL_TRACE | SL_NOTE; 24895 /* 24896 * Don't print this message to the console if the operation was done 24897 * to a non-global zone. 24898 */ 24899 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24900 logflags |= SL_CONSOLE; 24901 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24902 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24903 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24904 acp->ac_start, acp->ac_end); 24905 } 24906 24907 /* 24908 * Called inside tcp_rput when a message built using 24909 * tcp_ioctl_abort_build_msg is put into a queue. 24910 * Note that when we get here there is no wildcard in acp any more. 24911 */ 24912 static void 24913 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24914 { 24915 tcp_ioc_abort_conn_t *acp; 24916 24917 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24918 if (tcp->tcp_state <= acp->ac_end) { 24919 /* 24920 * If we get here, we are already on the correct 24921 * squeue. This ioctl follows the following path 24922 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24923 * ->tcp_ioctl_abort->squeue_fill (if on a 24924 * different squeue) 24925 */ 24926 int errcode; 24927 24928 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24929 (void) tcp_clean_death(tcp, errcode, 26); 24930 } 24931 freemsg(mp); 24932 } 24933 24934 /* 24935 * Abort all matching connections on a hash chain. 24936 */ 24937 static int 24938 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24939 boolean_t exact) 24940 { 24941 int nmatch, err = 0; 24942 tcp_t *tcp; 24943 MBLKP mp, last, listhead = NULL; 24944 conn_t *tconnp; 24945 connf_t *connfp = &ipcl_conn_fanout[index]; 24946 24947 startover: 24948 nmatch = 0; 24949 24950 mutex_enter(&connfp->connf_lock); 24951 for (tconnp = connfp->connf_head; tconnp != NULL; 24952 tconnp = tconnp->conn_next) { 24953 tcp = tconnp->conn_tcp; 24954 if (TCP_AC_MATCH(acp, tcp)) { 24955 CONN_INC_REF(tcp->tcp_connp); 24956 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24957 if (mp == NULL) { 24958 err = ENOMEM; 24959 CONN_DEC_REF(tcp->tcp_connp); 24960 break; 24961 } 24962 mp->b_prev = (mblk_t *)tcp; 24963 24964 if (listhead == NULL) { 24965 listhead = mp; 24966 last = mp; 24967 } else { 24968 last->b_next = mp; 24969 last = mp; 24970 } 24971 nmatch++; 24972 if (exact) 24973 break; 24974 } 24975 24976 /* Avoid holding lock for too long. */ 24977 if (nmatch >= 500) 24978 break; 24979 } 24980 mutex_exit(&connfp->connf_lock); 24981 24982 /* Pass mp into the correct tcp */ 24983 while ((mp = listhead) != NULL) { 24984 listhead = listhead->b_next; 24985 tcp = (tcp_t *)mp->b_prev; 24986 mp->b_next = mp->b_prev = NULL; 24987 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24988 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24989 } 24990 24991 *count += nmatch; 24992 if (nmatch >= 500 && err == 0) 24993 goto startover; 24994 return (err); 24995 } 24996 24997 /* 24998 * Abort all connections that matches the attributes specified in acp. 24999 */ 25000 static int 25001 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 25002 { 25003 sa_family_t af; 25004 uint32_t ports; 25005 uint16_t *pports; 25006 int err = 0, count = 0; 25007 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25008 int index = -1; 25009 ushort_t logflags; 25010 25011 af = acp->ac_local.ss_family; 25012 25013 if (af == AF_INET) { 25014 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25015 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25016 pports = (uint16_t *)&ports; 25017 pports[1] = TCP_AC_V4LPORT(acp); 25018 pports[0] = TCP_AC_V4RPORT(acp); 25019 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25020 } 25021 } else { 25022 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25023 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25024 pports = (uint16_t *)&ports; 25025 pports[1] = TCP_AC_V6LPORT(acp); 25026 pports[0] = TCP_AC_V6RPORT(acp); 25027 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25028 } 25029 } 25030 25031 /* 25032 * For cases where remote addr, local port, and remote port are non- 25033 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25034 */ 25035 if (index != -1) { 25036 err = tcp_ioctl_abort_bucket(acp, index, 25037 &count, exact); 25038 } else { 25039 /* 25040 * loop through all entries for wildcard case 25041 */ 25042 for (index = 0; index < ipcl_conn_fanout_size; index++) { 25043 err = tcp_ioctl_abort_bucket(acp, index, 25044 &count, exact); 25045 if (err != 0) 25046 break; 25047 } 25048 } 25049 25050 logflags = SL_TRACE | SL_NOTE; 25051 /* 25052 * Don't print this message to the console if the operation was done 25053 * to a non-global zone. 25054 */ 25055 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25056 logflags |= SL_CONSOLE; 25057 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25058 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25059 if (err == 0 && count == 0) 25060 err = ENOENT; 25061 return (err); 25062 } 25063 25064 /* 25065 * Process the TCP_IOC_ABORT_CONN ioctl request. 25066 */ 25067 static void 25068 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25069 { 25070 int err; 25071 IOCP iocp; 25072 MBLKP mp1; 25073 sa_family_t laf, raf; 25074 tcp_ioc_abort_conn_t *acp; 25075 zone_t *zptr; 25076 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 25077 25078 iocp = (IOCP)mp->b_rptr; 25079 25080 if ((mp1 = mp->b_cont) == NULL || 25081 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25082 err = EINVAL; 25083 goto out; 25084 } 25085 25086 /* check permissions */ 25087 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 25088 err = EPERM; 25089 goto out; 25090 } 25091 25092 if (mp1->b_cont != NULL) { 25093 freemsg(mp1->b_cont); 25094 mp1->b_cont = NULL; 25095 } 25096 25097 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25098 laf = acp->ac_local.ss_family; 25099 raf = acp->ac_remote.ss_family; 25100 25101 /* check that a zone with the supplied zoneid exists */ 25102 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25103 zptr = zone_find_by_id(zoneid); 25104 if (zptr != NULL) { 25105 zone_rele(zptr); 25106 } else { 25107 err = EINVAL; 25108 goto out; 25109 } 25110 } 25111 25112 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25113 acp->ac_start > acp->ac_end || laf != raf || 25114 (laf != AF_INET && laf != AF_INET6)) { 25115 err = EINVAL; 25116 goto out; 25117 } 25118 25119 tcp_ioctl_abort_dump(acp); 25120 err = tcp_ioctl_abort(acp); 25121 25122 out: 25123 if (mp1 != NULL) { 25124 freemsg(mp1); 25125 mp->b_cont = NULL; 25126 } 25127 25128 if (err != 0) 25129 miocnak(q, mp, 0, err); 25130 else 25131 miocack(q, mp, 0, 0); 25132 } 25133 25134 /* 25135 * tcp_time_wait_processing() handles processing of incoming packets when 25136 * the tcp is in the TIME_WAIT state. 25137 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25138 * on the time wait list. 25139 */ 25140 void 25141 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25142 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25143 { 25144 int32_t bytes_acked; 25145 int32_t gap; 25146 int32_t rgap; 25147 tcp_opt_t tcpopt; 25148 uint_t flags; 25149 uint32_t new_swnd = 0; 25150 conn_t *connp; 25151 25152 BUMP_LOCAL(tcp->tcp_ibsegs); 25153 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25154 25155 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25156 new_swnd = BE16_TO_U16(tcph->th_win) << 25157 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25158 if (tcp->tcp_snd_ts_ok) { 25159 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25160 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25161 tcp->tcp_rnxt, TH_ACK); 25162 goto done; 25163 } 25164 } 25165 gap = seg_seq - tcp->tcp_rnxt; 25166 rgap = tcp->tcp_rwnd - (gap + seg_len); 25167 if (gap < 0) { 25168 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 25169 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 25170 (seg_len > -gap ? -gap : seg_len)); 25171 seg_len += gap; 25172 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25173 if (flags & TH_RST) { 25174 goto done; 25175 } 25176 if ((flags & TH_FIN) && seg_len == -1) { 25177 /* 25178 * When TCP receives a duplicate FIN in 25179 * TIME_WAIT state, restart the 2 MSL timer. 25180 * See page 73 in RFC 793. Make sure this TCP 25181 * is already on the TIME_WAIT list. If not, 25182 * just restart the timer. 25183 */ 25184 if (TCP_IS_DETACHED(tcp)) { 25185 if (tcp_time_wait_remove(tcp, NULL) == 25186 B_TRUE) { 25187 tcp_time_wait_append(tcp); 25188 TCP_DBGSTAT(tcp_rput_time_wait); 25189 } 25190 } else { 25191 ASSERT(tcp != NULL); 25192 TCP_TIMER_RESTART(tcp, 25193 tcp_time_wait_interval); 25194 } 25195 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25196 tcp->tcp_rnxt, TH_ACK); 25197 goto done; 25198 } 25199 flags |= TH_ACK_NEEDED; 25200 seg_len = 0; 25201 goto process_ack; 25202 } 25203 25204 /* Fix seg_seq, and chew the gap off the front. */ 25205 seg_seq = tcp->tcp_rnxt; 25206 } 25207 25208 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25209 /* 25210 * Make sure that when we accept the connection, pick 25211 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25212 * old connection. 25213 * 25214 * The next ISS generated is equal to tcp_iss_incr_extra 25215 * + ISS_INCR/2 + other components depending on the 25216 * value of tcp_strong_iss. We pre-calculate the new 25217 * ISS here and compare with tcp_snxt to determine if 25218 * we need to make adjustment to tcp_iss_incr_extra. 25219 * 25220 * The above calculation is ugly and is a 25221 * waste of CPU cycles... 25222 */ 25223 uint32_t new_iss = tcp_iss_incr_extra; 25224 int32_t adj; 25225 25226 switch (tcp_strong_iss) { 25227 case 2: { 25228 /* Add time and MD5 components. */ 25229 uint32_t answer[4]; 25230 struct { 25231 uint32_t ports; 25232 in6_addr_t src; 25233 in6_addr_t dst; 25234 } arg; 25235 MD5_CTX context; 25236 25237 mutex_enter(&tcp_iss_key_lock); 25238 context = tcp_iss_key; 25239 mutex_exit(&tcp_iss_key_lock); 25240 arg.ports = tcp->tcp_ports; 25241 /* We use MAPPED addresses in tcp_iss_init */ 25242 arg.src = tcp->tcp_ip_src_v6; 25243 if (tcp->tcp_ipversion == IPV4_VERSION) { 25244 IN6_IPADDR_TO_V4MAPPED( 25245 tcp->tcp_ipha->ipha_dst, 25246 &arg.dst); 25247 } else { 25248 arg.dst = 25249 tcp->tcp_ip6h->ip6_dst; 25250 } 25251 MD5Update(&context, (uchar_t *)&arg, 25252 sizeof (arg)); 25253 MD5Final((uchar_t *)answer, &context); 25254 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25255 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25256 break; 25257 } 25258 case 1: 25259 /* Add time component and min random (i.e. 1). */ 25260 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25261 break; 25262 default: 25263 /* Add only time component. */ 25264 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25265 break; 25266 } 25267 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25268 /* 25269 * New ISS not guaranteed to be ISS_INCR/2 25270 * ahead of the current tcp_snxt, so add the 25271 * difference to tcp_iss_incr_extra. 25272 */ 25273 tcp_iss_incr_extra += adj; 25274 } 25275 /* 25276 * If tcp_clean_death() can not perform the task now, 25277 * drop the SYN packet and let the other side re-xmit. 25278 * Otherwise pass the SYN packet back in, since the 25279 * old tcp state has been cleaned up or freed. 25280 */ 25281 if (tcp_clean_death(tcp, 0, 27) == -1) 25282 goto done; 25283 /* 25284 * We will come back to tcp_rput_data 25285 * on the global queue. Packets destined 25286 * for the global queue will be checked 25287 * with global policy. But the policy for 25288 * this packet has already been checked as 25289 * this was destined for the detached 25290 * connection. We need to bypass policy 25291 * check this time by attaching a dummy 25292 * ipsec_in with ipsec_in_dont_check set. 25293 */ 25294 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 25295 NULL) { 25296 TCP_STAT(tcp_time_wait_syn_success); 25297 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25298 return; 25299 } 25300 goto done; 25301 } 25302 25303 /* 25304 * rgap is the amount of stuff received out of window. A negative 25305 * value is the amount out of window. 25306 */ 25307 if (rgap < 0) { 25308 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 25309 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 25310 /* Fix seg_len and make sure there is something left. */ 25311 seg_len += rgap; 25312 if (seg_len <= 0) { 25313 if (flags & TH_RST) { 25314 goto done; 25315 } 25316 flags |= TH_ACK_NEEDED; 25317 seg_len = 0; 25318 goto process_ack; 25319 } 25320 } 25321 /* 25322 * Check whether we can update tcp_ts_recent. This test is 25323 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25324 * Extensions for High Performance: An Update", Internet Draft. 25325 */ 25326 if (tcp->tcp_snd_ts_ok && 25327 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25328 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25329 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25330 tcp->tcp_last_rcv_lbolt = lbolt64; 25331 } 25332 25333 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25334 /* Always ack out of order packets */ 25335 flags |= TH_ACK_NEEDED; 25336 seg_len = 0; 25337 } else if (seg_len > 0) { 25338 BUMP_MIB(&tcp_mib, tcpInClosed); 25339 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 25340 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 25341 } 25342 if (flags & TH_RST) { 25343 (void) tcp_clean_death(tcp, 0, 28); 25344 goto done; 25345 } 25346 if (flags & TH_SYN) { 25347 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25348 TH_RST|TH_ACK); 25349 /* 25350 * Do not delete the TCP structure if it is in 25351 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25352 */ 25353 goto done; 25354 } 25355 process_ack: 25356 if (flags & TH_ACK) { 25357 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25358 if (bytes_acked <= 0) { 25359 if (bytes_acked == 0 && seg_len == 0 && 25360 new_swnd == tcp->tcp_swnd) 25361 BUMP_MIB(&tcp_mib, tcpInDupAck); 25362 } else { 25363 /* Acks something not sent */ 25364 flags |= TH_ACK_NEEDED; 25365 } 25366 } 25367 if (flags & TH_ACK_NEEDED) { 25368 /* 25369 * Time to send an ack for some reason. 25370 */ 25371 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25372 tcp->tcp_rnxt, TH_ACK); 25373 } 25374 done: 25375 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25376 DB_CKSUMSTART(mp) = 0; 25377 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25378 TCP_STAT(tcp_time_wait_syn_fail); 25379 } 25380 freemsg(mp); 25381 } 25382 25383 /* 25384 * Allocate a T_SVR4_OPTMGMT_REQ. 25385 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 25386 * that tcp_rput_other can drop the acks. 25387 */ 25388 static mblk_t * 25389 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 25390 { 25391 mblk_t *mp; 25392 struct T_optmgmt_req *tor; 25393 struct opthdr *oh; 25394 uint_t size; 25395 char *optptr; 25396 25397 size = sizeof (*tor) + sizeof (*oh) + optlen; 25398 mp = allocb(size, BPRI_MED); 25399 if (mp == NULL) 25400 return (NULL); 25401 25402 mp->b_wptr += size; 25403 mp->b_datap->db_type = M_PROTO; 25404 tor = (struct T_optmgmt_req *)mp->b_rptr; 25405 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25406 tor->MGMT_flags = T_NEGOTIATE; 25407 tor->OPT_length = sizeof (*oh) + optlen; 25408 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25409 25410 oh = (struct opthdr *)&tor[1]; 25411 oh->level = level; 25412 oh->name = cmd; 25413 oh->len = optlen; 25414 if (optlen != 0) { 25415 optptr = (char *)&oh[1]; 25416 bcopy(opt, optptr, optlen); 25417 } 25418 return (mp); 25419 } 25420 25421 /* 25422 * TCP Timers Implementation. 25423 */ 25424 timeout_id_t 25425 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25426 { 25427 mblk_t *mp; 25428 tcp_timer_t *tcpt; 25429 tcp_t *tcp = connp->conn_tcp; 25430 25431 ASSERT(connp->conn_sqp != NULL); 25432 25433 TCP_DBGSTAT(tcp_timeout_calls); 25434 25435 if (tcp->tcp_timercache == NULL) { 25436 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25437 } else { 25438 TCP_DBGSTAT(tcp_timeout_cached_alloc); 25439 mp = tcp->tcp_timercache; 25440 tcp->tcp_timercache = mp->b_next; 25441 mp->b_next = NULL; 25442 ASSERT(mp->b_wptr == NULL); 25443 } 25444 25445 CONN_INC_REF(connp); 25446 tcpt = (tcp_timer_t *)mp->b_rptr; 25447 tcpt->connp = connp; 25448 tcpt->tcpt_proc = f; 25449 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 25450 return ((timeout_id_t)mp); 25451 } 25452 25453 static void 25454 tcp_timer_callback(void *arg) 25455 { 25456 mblk_t *mp = (mblk_t *)arg; 25457 tcp_timer_t *tcpt; 25458 conn_t *connp; 25459 25460 tcpt = (tcp_timer_t *)mp->b_rptr; 25461 connp = tcpt->connp; 25462 squeue_fill(connp->conn_sqp, mp, 25463 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25464 } 25465 25466 static void 25467 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25468 { 25469 tcp_timer_t *tcpt; 25470 conn_t *connp = (conn_t *)arg; 25471 tcp_t *tcp = connp->conn_tcp; 25472 25473 tcpt = (tcp_timer_t *)mp->b_rptr; 25474 ASSERT(connp == tcpt->connp); 25475 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25476 25477 /* 25478 * If the TCP has reached the closed state, don't proceed any 25479 * further. This TCP logically does not exist on the system. 25480 * tcpt_proc could for example access queues, that have already 25481 * been qprocoff'ed off. Also see comments at the start of tcp_input 25482 */ 25483 if (tcp->tcp_state != TCPS_CLOSED) { 25484 (*tcpt->tcpt_proc)(connp); 25485 } else { 25486 tcp->tcp_timer_tid = 0; 25487 } 25488 tcp_timer_free(connp->conn_tcp, mp); 25489 } 25490 25491 /* 25492 * There is potential race with untimeout and the handler firing at the same 25493 * time. The mblock may be freed by the handler while we are trying to use 25494 * it. But since both should execute on the same squeue, this race should not 25495 * occur. 25496 */ 25497 clock_t 25498 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25499 { 25500 mblk_t *mp = (mblk_t *)id; 25501 tcp_timer_t *tcpt; 25502 clock_t delta; 25503 25504 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 25505 25506 if (mp == NULL) 25507 return (-1); 25508 25509 tcpt = (tcp_timer_t *)mp->b_rptr; 25510 ASSERT(tcpt->connp == connp); 25511 25512 delta = untimeout(tcpt->tcpt_tid); 25513 25514 if (delta >= 0) { 25515 TCP_DBGSTAT(tcp_timeout_canceled); 25516 tcp_timer_free(connp->conn_tcp, mp); 25517 CONN_DEC_REF(connp); 25518 } 25519 25520 return (delta); 25521 } 25522 25523 /* 25524 * Allocate space for the timer event. The allocation looks like mblk, but it is 25525 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25526 * 25527 * Dealing with failures: If we can't allocate from the timer cache we try 25528 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25529 * points to b_rptr. 25530 * If we can't allocate anything using allocb_tryhard(), we perform a last 25531 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25532 * save the actual allocation size in b_datap. 25533 */ 25534 mblk_t * 25535 tcp_timermp_alloc(int kmflags) 25536 { 25537 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25538 kmflags & ~KM_PANIC); 25539 25540 if (mp != NULL) { 25541 mp->b_next = mp->b_prev = NULL; 25542 mp->b_rptr = (uchar_t *)(&mp[1]); 25543 mp->b_wptr = NULL; 25544 mp->b_datap = NULL; 25545 mp->b_queue = NULL; 25546 } else if (kmflags & KM_PANIC) { 25547 /* 25548 * Failed to allocate memory for the timer. Try allocating from 25549 * dblock caches. 25550 */ 25551 TCP_STAT(tcp_timermp_allocfail); 25552 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25553 if (mp == NULL) { 25554 size_t size = 0; 25555 /* 25556 * Memory is really low. Try tryhard allocation. 25557 */ 25558 TCP_STAT(tcp_timermp_allocdblfail); 25559 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25560 sizeof (tcp_timer_t), &size, kmflags); 25561 mp->b_rptr = (uchar_t *)(&mp[1]); 25562 mp->b_next = mp->b_prev = NULL; 25563 mp->b_wptr = (uchar_t *)-1; 25564 mp->b_datap = (dblk_t *)size; 25565 mp->b_queue = NULL; 25566 } 25567 ASSERT(mp->b_wptr != NULL); 25568 } 25569 TCP_DBGSTAT(tcp_timermp_alloced); 25570 25571 return (mp); 25572 } 25573 25574 /* 25575 * Free per-tcp timer cache. 25576 * It can only contain entries from tcp_timercache. 25577 */ 25578 void 25579 tcp_timermp_free(tcp_t *tcp) 25580 { 25581 mblk_t *mp; 25582 25583 while ((mp = tcp->tcp_timercache) != NULL) { 25584 ASSERT(mp->b_wptr == NULL); 25585 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25586 kmem_cache_free(tcp_timercache, mp); 25587 } 25588 } 25589 25590 /* 25591 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25592 * events there already (currently at most two events are cached). 25593 * If the event is not allocated from the timer cache, free it right away. 25594 */ 25595 static void 25596 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25597 { 25598 mblk_t *mp1 = tcp->tcp_timercache; 25599 25600 if (mp->b_wptr != NULL) { 25601 /* 25602 * This allocation is not from a timer cache, free it right 25603 * away. 25604 */ 25605 if (mp->b_wptr != (uchar_t *)-1) 25606 freeb(mp); 25607 else 25608 kmem_free(mp, (size_t)mp->b_datap); 25609 } else if (mp1 == NULL || mp1->b_next == NULL) { 25610 /* Cache this timer block for future allocations */ 25611 mp->b_rptr = (uchar_t *)(&mp[1]); 25612 mp->b_next = mp1; 25613 tcp->tcp_timercache = mp; 25614 } else { 25615 kmem_cache_free(tcp_timercache, mp); 25616 TCP_DBGSTAT(tcp_timermp_freed); 25617 } 25618 } 25619 25620 /* 25621 * End of TCP Timers implementation. 25622 */ 25623 25624 /* 25625 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25626 * on the specified backing STREAMS q. Note, the caller may make the 25627 * decision to call based on the tcp_t.tcp_flow_stopped value which 25628 * when check outside the q's lock is only an advisory check ... 25629 */ 25630 25631 void 25632 tcp_setqfull(tcp_t *tcp) 25633 { 25634 queue_t *q = tcp->tcp_wq; 25635 25636 if (!(q->q_flag & QFULL)) { 25637 mutex_enter(QLOCK(q)); 25638 if (!(q->q_flag & QFULL)) { 25639 /* still need to set QFULL */ 25640 q->q_flag |= QFULL; 25641 tcp->tcp_flow_stopped = B_TRUE; 25642 mutex_exit(QLOCK(q)); 25643 TCP_STAT(tcp_flwctl_on); 25644 } else { 25645 mutex_exit(QLOCK(q)); 25646 } 25647 } 25648 } 25649 25650 void 25651 tcp_clrqfull(tcp_t *tcp) 25652 { 25653 queue_t *q = tcp->tcp_wq; 25654 25655 if (q->q_flag & QFULL) { 25656 mutex_enter(QLOCK(q)); 25657 if (q->q_flag & QFULL) { 25658 q->q_flag &= ~QFULL; 25659 tcp->tcp_flow_stopped = B_FALSE; 25660 mutex_exit(QLOCK(q)); 25661 if (q->q_flag & QWANTW) 25662 qbackenable(q, 0); 25663 } else { 25664 mutex_exit(QLOCK(q)); 25665 } 25666 } 25667 } 25668 25669 /* 25670 * TCP Kstats implementation 25671 */ 25672 static void 25673 tcp_kstat_init(void) 25674 { 25675 tcp_named_kstat_t template = { 25676 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25677 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25678 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25679 { "maxConn", KSTAT_DATA_INT32, 0 }, 25680 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25681 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25682 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25683 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25684 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25685 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25686 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25687 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25688 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25689 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25690 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25691 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25692 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25693 { "outAck", KSTAT_DATA_UINT32, 0 }, 25694 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25695 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25696 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25697 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25698 { "outControl", KSTAT_DATA_UINT32, 0 }, 25699 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25700 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25701 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25702 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25703 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25704 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25705 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25706 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25707 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25708 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25709 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25710 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25711 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25712 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25713 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25714 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25715 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25716 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25717 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25718 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25719 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25720 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25721 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25722 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25723 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25724 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25725 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25726 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25727 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25728 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25729 }; 25730 25731 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 25732 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 25733 25734 if (tcp_mibkp == NULL) 25735 return; 25736 25737 template.rtoAlgorithm.value.ui32 = 4; 25738 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 25739 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 25740 template.maxConn.value.i32 = -1; 25741 25742 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 25743 25744 tcp_mibkp->ks_update = tcp_kstat_update; 25745 25746 kstat_install(tcp_mibkp); 25747 } 25748 25749 static void 25750 tcp_kstat_fini(void) 25751 { 25752 25753 if (tcp_mibkp != NULL) { 25754 kstat_delete(tcp_mibkp); 25755 tcp_mibkp = NULL; 25756 } 25757 } 25758 25759 static int 25760 tcp_kstat_update(kstat_t *kp, int rw) 25761 { 25762 tcp_named_kstat_t *tcpkp; 25763 tcp_t *tcp; 25764 connf_t *connfp; 25765 conn_t *connp; 25766 int i; 25767 25768 if (!kp || !kp->ks_data) 25769 return (EIO); 25770 25771 if (rw == KSTAT_WRITE) 25772 return (EACCES); 25773 25774 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25775 25776 tcpkp->currEstab.value.ui32 = 0; 25777 25778 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25779 connfp = &ipcl_globalhash_fanout[i]; 25780 connp = NULL; 25781 while ((connp = 25782 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25783 tcp = connp->conn_tcp; 25784 switch (tcp_snmp_state(tcp)) { 25785 case MIB2_TCP_established: 25786 case MIB2_TCP_closeWait: 25787 tcpkp->currEstab.value.ui32++; 25788 break; 25789 } 25790 } 25791 } 25792 25793 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25794 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25795 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25796 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25797 tcpkp->inSegs.value.ui64 = tcp_mib.tcpHCInSegs; 25798 tcpkp->outSegs.value.ui64 = tcp_mib.tcpHCOutSegs; 25799 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25800 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25801 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25802 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25803 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25804 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25805 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25806 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25807 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25808 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25809 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25810 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25811 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25812 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25813 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25814 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25815 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25816 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25817 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25818 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25819 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25820 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25821 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25822 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25823 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25824 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25825 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25826 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25827 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25828 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25829 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25830 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25831 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25832 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25833 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25834 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25835 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25836 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25837 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25838 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25839 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25840 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25841 25842 return (0); 25843 } 25844 25845 void 25846 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25847 { 25848 uint16_t hdr_len; 25849 ipha_t *ipha; 25850 uint8_t *nexthdrp; 25851 tcph_t *tcph; 25852 25853 /* Already has an eager */ 25854 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25855 TCP_STAT(tcp_reinput_syn); 25856 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25857 connp, SQTAG_TCP_REINPUT_EAGER); 25858 return; 25859 } 25860 25861 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25862 case IPV4_VERSION: 25863 ipha = (ipha_t *)mp->b_rptr; 25864 hdr_len = IPH_HDR_LENGTH(ipha); 25865 break; 25866 case IPV6_VERSION: 25867 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25868 &hdr_len, &nexthdrp)) { 25869 CONN_DEC_REF(connp); 25870 freemsg(mp); 25871 return; 25872 } 25873 break; 25874 } 25875 25876 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25877 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25878 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25879 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25880 } 25881 25882 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25883 SQTAG_TCP_REINPUT); 25884 } 25885 25886 static squeue_func_t 25887 tcp_squeue_switch(int val) 25888 { 25889 squeue_func_t rval = squeue_fill; 25890 25891 switch (val) { 25892 case 1: 25893 rval = squeue_enter_nodrain; 25894 break; 25895 case 2: 25896 rval = squeue_enter; 25897 break; 25898 default: 25899 break; 25900 } 25901 return (rval); 25902 } 25903 25904 static void 25905 tcp_squeue_add(squeue_t *sqp) 25906 { 25907 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25908 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25909 25910 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25911 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25912 sqp, TCP_TIME_WAIT_DELAY); 25913 if (tcp_free_list_max_cnt == 0) { 25914 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25915 max_ncpus : boot_max_ncpus); 25916 25917 /* 25918 * Limit number of entries to 1% of availble memory / tcp_ncpus 25919 */ 25920 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25921 (tcp_ncpus * sizeof (tcp_t) * 100); 25922 } 25923 tcp_time_wait->tcp_free_list_cnt = 0; 25924 } 25925