xref: /titanic_51/usr/src/uts/common/inet/tcp/tcp.c (revision 3173664e967186de0a5f0e61548c25996fa6d37f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 
61 #include <sys/errno.h>
62 #include <sys/signal.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 #include <sys/isa_defs.h>
66 #include <sys/md5.h>
67 #include <sys/random.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/mi.h>
82 #include <inet/mib2.h>
83 #include <inet/nd.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 #include <inet/tcp_trace.h>
93 
94 #include <inet/ipclassifier.h>
95 #include <inet/ip_ire.h>
96 #include <inet/ip_ftable.h>
97 #include <inet/ip_if.h>
98 #include <inet/ipp_common.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <sys/sdt.h>
105 #include <rpc/pmap_prot.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
129  * squeue_fill). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. ip_tcpopen() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 extern major_t TCP6_MAJ;
237 
238 /*
239  * Values for squeue switch:
240  * 1: squeue_enter_nodrain
241  * 2: squeue_enter
242  * 3: squeue_fill
243  */
244 int tcp_squeue_close = 2;
245 int tcp_squeue_wput = 2;
246 
247 squeue_func_t tcp_squeue_close_proc;
248 squeue_func_t tcp_squeue_wput_proc;
249 
250 /*
251  * This controls how tiny a write must be before we try to copy it
252  * into the the mblk on the tail of the transmit queue.  Not much
253  * speedup is observed for values larger than sixteen.  Zero will
254  * disable the optimisation.
255  */
256 int tcp_tx_pull_len = 16;
257 
258 /*
259  * TCP Statistics.
260  *
261  * How TCP statistics work.
262  *
263  * There are two types of statistics invoked by two macros.
264  *
265  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
266  * supposed to be used in non MT-hot paths of the code.
267  *
268  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
269  * supposed to be used for DEBUG purposes and may be used on a hot path.
270  *
271  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
272  * (use "kstat tcp" to get them).
273  *
274  * There is also additional debugging facility that marks tcp_clean_death()
275  * instances and saves them in tcp_t structure. It is triggered by
276  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
277  * tcp_clean_death() calls that counts the number of times each tag was hit. It
278  * is triggered by TCP_CLD_COUNTERS define.
279  *
280  * How to add new counters.
281  *
282  * 1) Add a field in the tcp_stat structure describing your counter.
283  * 2) Add a line in tcp_statistics with the name of the counter.
284  *
285  *    IMPORTANT!! - make sure that both are in sync !!
286  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
287  *
288  * Please avoid using private counters which are not kstat-exported.
289  *
290  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
291  * in tcp_t structure.
292  *
293  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
294  */
295 
296 #ifndef TCP_DEBUG_COUNTER
297 #ifdef DEBUG
298 #define	TCP_DEBUG_COUNTER 1
299 #else
300 #define	TCP_DEBUG_COUNTER 0
301 #endif
302 #endif
303 
304 #define	TCP_CLD_COUNTERS 0
305 
306 #define	TCP_TAG_CLEAN_DEATH 1
307 #define	TCP_MAX_CLEAN_DEATH_TAG 32
308 
309 #ifdef lint
310 static int _lint_dummy_;
311 #endif
312 
313 #if TCP_CLD_COUNTERS
314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
315 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
316 #elif defined(lint)
317 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
318 #else
319 #define	TCP_CLD_STAT(x)
320 #endif
321 
322 #if TCP_DEBUG_COUNTER
323 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
324 #elif defined(lint)
325 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
326 #else
327 #define	TCP_DBGSTAT(x)
328 #endif
329 
330 tcp_stat_t tcp_statistics = {
331 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
332 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
333 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
334 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
335 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
336 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
337 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
338 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
339 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
340 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
341 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
342 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
343 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
344 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
345 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
346 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
347 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
348 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
349 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
350 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
351 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
352 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
353 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
354 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
355 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
356 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
357 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
358 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
359 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
360 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
361 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
362 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
363 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
364 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
365 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
366 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
367 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
368 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
369 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
370 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
371 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
372 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
373 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
374 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
375 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
376 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
377 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
378 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
379 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
380 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
381 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
382 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
383 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
384 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
385 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
386 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
387 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
388 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
389 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
390 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
391 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
392 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
399 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
400 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
401 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
402 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
403 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
404 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
405 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
406 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
407 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
408 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
409 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
410 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
411 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
412 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
413 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
414 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
415 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
416 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
417 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
418 	{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
419 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
420 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
421 	{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
422 	{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
423 	{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
424 	{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
425 };
426 
427 static kstat_t *tcp_kstat;
428 
429 /*
430  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
431  * tcp write side.
432  */
433 #define	CALL_IP_WPUT(connp, q, mp) {					\
434 	ASSERT(((q)->q_flag & QREADR) == 0);				\
435 	TCP_DBGSTAT(tcp_ip_output);					\
436 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
437 }
438 
439 /* Macros for timestamp comparisons */
440 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
441 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
442 
443 /*
444  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
445  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
446  * by adding three components: a time component which grows by 1 every 4096
447  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
448  * a per-connection component which grows by 125000 for every new connection;
449  * and an "extra" component that grows by a random amount centered
450  * approximately on 64000.  This causes the the ISS generator to cycle every
451  * 4.89 hours if no TCP connections are made, and faster if connections are
452  * made.
453  *
454  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
455  * components: a time component which grows by 250000 every second; and
456  * a per-connection component which grows by 125000 for every new connections.
457  *
458  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
459  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
460  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
461  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
462  * password.
463  */
464 #define	ISS_INCR	250000
465 #define	ISS_NSEC_SHT	12
466 
467 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
468 static kmutex_t tcp_iss_key_lock;
469 static MD5_CTX tcp_iss_key;
470 static sin_t	sin_null;	/* Zero address for quick clears */
471 static sin6_t	sin6_null;	/* Zero address for quick clears */
472 
473 /* Packet dropper for TCP IPsec policy drops. */
474 static ipdropper_t tcp_dropper;
475 
476 /*
477  * This implementation follows the 4.3BSD interpretation of the urgent
478  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
479  * incompatible changes in protocols like telnet and rlogin.
480  */
481 #define	TCP_OLD_URP_INTERPRETATION	1
482 
483 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
484 	(TCP_IS_DETACHED(tcp) && \
485 	    (!(tcp)->tcp_hard_binding))
486 
487 /*
488  * TCP reassembly macros.  We hide starting and ending sequence numbers in
489  * b_next and b_prev of messages on the reassembly queue.  The messages are
490  * chained using b_cont.  These macros are used in tcp_reass() so we don't
491  * have to see the ugly casts and assignments.
492  */
493 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
494 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
495 					(mblk_t *)(uintptr_t)(u))
496 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
497 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
498 					(mblk_t *)(uintptr_t)(u))
499 
500 /*
501  * Implementation of TCP Timers.
502  * =============================
503  *
504  * INTERFACE:
505  *
506  * There are two basic functions dealing with tcp timers:
507  *
508  *	timeout_id_t	tcp_timeout(connp, func, time)
509  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
510  *	TCP_TIMER_RESTART(tcp, intvl)
511  *
512  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
513  * after 'time' ticks passed. The function called by timeout() must adhere to
514  * the same restrictions as a driver soft interrupt handler - it must not sleep
515  * or call other functions that might sleep. The value returned is the opaque
516  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
517  * cancel the request. The call to tcp_timeout() may fail in which case it
518  * returns zero. This is different from the timeout(9F) function which never
519  * fails.
520  *
521  * The call-back function 'func' always receives 'connp' as its single
522  * argument. It is always executed in the squeue corresponding to the tcp
523  * structure. The tcp structure is guaranteed to be present at the time the
524  * call-back is called.
525  *
526  * NOTE: The call-back function 'func' is never called if tcp is in
527  * 	the TCPS_CLOSED state.
528  *
529  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
530  * request. locks acquired by the call-back routine should not be held across
531  * the call to tcp_timeout_cancel() or a deadlock may result.
532  *
533  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
534  * Otherwise, it returns an integer value greater than or equal to 0. In
535  * particular, if the call-back function is already placed on the squeue, it can
536  * not be canceled.
537  *
538  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
539  * 	within squeue context corresponding to the tcp instance. Since the
540  *	call-back is also called via the same squeue, there are no race
541  *	conditions described in untimeout(9F) manual page since all calls are
542  *	strictly serialized.
543  *
544  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
545  *	stored in tcp_timer_tid and starts a new one using
546  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
547  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
548  *	field.
549  *
550  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
551  *	call-back may still be called, so it is possible tcp_timer() will be
552  *	called several times. This should not be a problem since tcp_timer()
553  *	should always check the tcp instance state.
554  *
555  *
556  * IMPLEMENTATION:
557  *
558  * TCP timers are implemented using three-stage process. The call to
559  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
560  * when the timer expires. The tcp_timer_callback() arranges the call of the
561  * tcp_timer_handler() function via squeue corresponding to the tcp
562  * instance. The tcp_timer_handler() calls actual requested timeout call-back
563  * and passes tcp instance as an argument to it. Information is passed between
564  * stages using the tcp_timer_t structure which contains the connp pointer, the
565  * tcp call-back to call and the timeout id returned by the timeout(9F).
566  *
567  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
568  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
569  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
570  * returns the pointer to this mblk.
571  *
572  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
573  * looks like a normal mblk without actual dblk attached to it.
574  *
575  * To optimize performance each tcp instance holds a small cache of timer
576  * mblocks. In the current implementation it caches up to two timer mblocks per
577  * tcp instance. The cache is preserved over tcp frees and is only freed when
578  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
579  * timer processing happens on a corresponding squeue, the cache manipulation
580  * does not require any locks. Experiments show that majority of timer mblocks
581  * allocations are satisfied from the tcp cache and do not involve kmem calls.
582  *
583  * The tcp_timeout() places a refhold on the connp instance which guarantees
584  * that it will be present at the time the call-back function fires. The
585  * tcp_timer_handler() drops the reference after calling the call-back, so the
586  * call-back function does not need to manipulate the references explicitly.
587  */
588 
589 typedef struct tcp_timer_s {
590 	conn_t	*connp;
591 	void 	(*tcpt_proc)(void *);
592 	timeout_id_t   tcpt_tid;
593 } tcp_timer_t;
594 
595 static kmem_cache_t *tcp_timercache;
596 kmem_cache_t	*tcp_sack_info_cache;
597 kmem_cache_t	*tcp_iphc_cache;
598 
599 /*
600  * For scalability, we must not run a timer for every TCP connection
601  * in TIME_WAIT state.  To see why, consider (for time wait interval of
602  * 4 minutes):
603  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
604  *
605  * This list is ordered by time, so you need only delete from the head
606  * until you get to entries which aren't old enough to delete yet.
607  * The list consists of only the detached TIME_WAIT connections.
608  *
609  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
610  * becomes detached TIME_WAIT (either by changing the state and already
611  * being detached or the other way around). This means that the TIME_WAIT
612  * state can be extended (up to doubled) if the connection doesn't become
613  * detached for a long time.
614  *
615  * The list manipulations (including tcp_time_wait_next/prev)
616  * are protected by the tcp_time_wait_lock. The content of the
617  * detached TIME_WAIT connections is protected by the normal perimeters.
618  */
619 
620 typedef struct tcp_squeue_priv_s {
621 	kmutex_t	tcp_time_wait_lock;
622 				/* Protects the next 3 globals */
623 	timeout_id_t	tcp_time_wait_tid;
624 	tcp_t		*tcp_time_wait_head;
625 	tcp_t		*tcp_time_wait_tail;
626 	tcp_t		*tcp_free_list;
627 	uint_t		tcp_free_list_cnt;
628 } tcp_squeue_priv_t;
629 
630 /*
631  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
632  * Running it every 5 seconds seems to give the best results.
633  */
634 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
635 
636 /*
637  * To prevent memory hog, limit the number of entries in tcp_free_list
638  * to 1% of available memory / number of cpus
639  */
640 uint_t tcp_free_list_max_cnt = 0;
641 
642 #define	TCP_XMIT_LOWATER	4096
643 #define	TCP_XMIT_HIWATER	49152
644 #define	TCP_RECV_LOWATER	2048
645 #define	TCP_RECV_HIWATER	49152
646 
647 /*
648  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
649  */
650 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
651 
652 #define	TIDUSZ	4096	/* transport interface data unit size */
653 
654 /*
655  * Bind hash list size and has function.  It has to be a power of 2 for
656  * hashing.
657  */
658 #define	TCP_BIND_FANOUT_SIZE	512
659 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
660 /*
661  * Size of listen and acceptor hash list.  It has to be a power of 2 for
662  * hashing.
663  */
664 #define	TCP_FANOUT_SIZE		256
665 
666 #ifdef	_ILP32
667 #define	TCP_ACCEPTOR_HASH(accid)					\
668 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
669 #else
670 #define	TCP_ACCEPTOR_HASH(accid)					\
671 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
672 #endif	/* _ILP32 */
673 
674 #define	IP_ADDR_CACHE_SIZE	2048
675 #define	IP_ADDR_CACHE_HASH(faddr)					\
676 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
677 
678 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
679 #define	TCP_HSP_HASH_SIZE 256
680 
681 #define	TCP_HSP_HASH(addr)					\
682 	(((addr>>24) ^ (addr >>16) ^			\
683 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
684 
685 /*
686  * TCP options struct returned from tcp_parse_options.
687  */
688 typedef struct tcp_opt_s {
689 	uint32_t	tcp_opt_mss;
690 	uint32_t	tcp_opt_wscale;
691 	uint32_t	tcp_opt_ts_val;
692 	uint32_t	tcp_opt_ts_ecr;
693 	tcp_t		*tcp;
694 } tcp_opt_t;
695 
696 /*
697  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
698  */
699 
700 #ifdef _BIG_ENDIAN
701 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
702 	(TCPOPT_TSTAMP << 8) | 10)
703 #else
704 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
705 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
706 #endif
707 
708 /*
709  * Flags returned from tcp_parse_options.
710  */
711 #define	TCP_OPT_MSS_PRESENT	1
712 #define	TCP_OPT_WSCALE_PRESENT	2
713 #define	TCP_OPT_TSTAMP_PRESENT	4
714 #define	TCP_OPT_SACK_OK_PRESENT	8
715 #define	TCP_OPT_SACK_PRESENT	16
716 
717 /* TCP option length */
718 #define	TCPOPT_NOP_LEN		1
719 #define	TCPOPT_MAXSEG_LEN	4
720 #define	TCPOPT_WS_LEN		3
721 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
722 #define	TCPOPT_TSTAMP_LEN	10
723 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
724 #define	TCPOPT_SACK_OK_LEN	2
725 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
726 #define	TCPOPT_REAL_SACK_LEN	4
727 #define	TCPOPT_MAX_SACK_LEN	36
728 #define	TCPOPT_HEADER_LEN	2
729 
730 /* TCP cwnd burst factor. */
731 #define	TCP_CWND_INFINITE	65535
732 #define	TCP_CWND_SS		3
733 #define	TCP_CWND_NORMAL		5
734 
735 /* Maximum TCP initial cwin (start/restart). */
736 #define	TCP_MAX_INIT_CWND	8
737 
738 /*
739  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
740  * either tcp_slow_start_initial or tcp_slow_start_after idle
741  * depending on the caller.  If the upper layer has not used the
742  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
743  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
744  * If the upper layer has changed set the tcp_init_cwnd, just use
745  * it to calculate the tcp_cwnd.
746  */
747 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
748 {									\
749 	if ((tcp)->tcp_init_cwnd == 0) {				\
750 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
751 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
752 	} else {							\
753 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
754 	}								\
755 	tcp->tcp_cwnd_cnt = 0;						\
756 }
757 
758 /* TCP Timer control structure */
759 typedef struct tcpt_s {
760 	pfv_t	tcpt_pfv;	/* The routine we are to call */
761 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
762 } tcpt_t;
763 
764 /* Host Specific Parameter structure */
765 typedef struct tcp_hsp {
766 	struct tcp_hsp	*tcp_hsp_next;
767 	in6_addr_t	tcp_hsp_addr_v6;
768 	in6_addr_t	tcp_hsp_subnet_v6;
769 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
770 	int32_t		tcp_hsp_sendspace;
771 	int32_t		tcp_hsp_recvspace;
772 	int32_t		tcp_hsp_tstamp;
773 } tcp_hsp_t;
774 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
775 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
776 
777 /*
778  * Functions called directly via squeue having a prototype of edesc_t.
779  */
780 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
781 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
782 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
783 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
784 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
785 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
786 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
787 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
788 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
789 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
790 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
791 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
792 
793 
794 /* Prototype for TCP functions */
795 static void	tcp_random_init(void);
796 int		tcp_random(void);
797 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
798 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
799 		    tcp_t *eager);
800 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
801 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
802     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
803     boolean_t user_specified);
804 static void	tcp_closei_local(tcp_t *tcp);
805 static void	tcp_close_detached(tcp_t *tcp);
806 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
807 			mblk_t *idmp, mblk_t **defermp);
808 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
809 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
810 		    in_port_t dstport, uint_t srcid);
811 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
812 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
813 		    uint32_t scope_id);
814 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
815 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
816 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
817 static char	*tcp_display(tcp_t *tcp, char *, char);
818 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
819 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
820 static void	tcp_eager_unlink(tcp_t *tcp);
821 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
822 		    int unixerr);
823 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
824 		    int tlierr, int unixerr);
825 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
826 		    cred_t *cr);
827 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
828 		    char *value, caddr_t cp, cred_t *cr);
829 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
830 		    char *value, caddr_t cp, cred_t *cr);
831 static int	tcp_tpistate(tcp_t *tcp);
832 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
833     int caller_holds_lock);
834 static void	tcp_bind_hash_remove(tcp_t *tcp);
835 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
836 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
837 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
838 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
839 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
840 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
841 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
842 static int	tcp_header_init_ipv4(tcp_t *tcp);
843 static int	tcp_header_init_ipv6(tcp_t *tcp);
844 int		tcp_init(tcp_t *tcp, queue_t *q);
845 static int	tcp_init_values(tcp_t *tcp);
846 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
847 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
848 		    t_scalar_t addr_length);
849 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
850 static void	tcp_ip_notify(tcp_t *tcp);
851 static mblk_t	*tcp_ire_mp(mblk_t *mp);
852 static void	tcp_iss_init(tcp_t *tcp);
853 static void	tcp_keepalive_killer(void *arg);
854 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
855 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
856 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
857 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
858 static boolean_t tcp_allow_connopt_set(int level, int name);
859 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
860 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
861 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
862 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
863 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
864 		    mblk_t *mblk);
865 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
866 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
867 		    uchar_t *ptr, uint_t len);
868 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
869 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
870 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
871 		    caddr_t cp, cred_t *cr);
872 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
873 		    caddr_t cp, cred_t *cr);
874 static void	tcp_iss_key_init(uint8_t *phrase, int len);
875 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
876 		    caddr_t cp, cred_t *cr);
877 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
878 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
879 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
880 static void	tcp_reinit(tcp_t *tcp);
881 static void	tcp_reinit_values(tcp_t *tcp);
882 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
883 		    tcp_t *thisstream, cred_t *cr);
884 
885 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
886 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
887 static boolean_t tcp_send_rst_chk(void);
888 static void	tcp_ss_rexmit(tcp_t *tcp);
889 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
890 static void	tcp_process_options(tcp_t *, tcph_t *);
891 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
892 static void	tcp_rsrv(queue_t *q);
893 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
894 static int	tcp_snmp_state(tcp_t *tcp);
895 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
896 		    cred_t *cr);
897 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
898 		    cred_t *cr);
899 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
900 		    cred_t *cr);
901 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
902 		    cred_t *cr);
903 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
904 		    cred_t *cr);
905 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
906 		    caddr_t cp, cred_t *cr);
907 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
908 		    caddr_t cp, cred_t *cr);
909 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
910 		    cred_t *cr);
911 static void	tcp_timer(void *arg);
912 static void	tcp_timer_callback(void *);
913 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
914     boolean_t random);
915 static in_port_t tcp_get_next_priv_port(const tcp_t *);
916 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
917 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
918 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
919 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
920 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
921 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
922 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
923 		    const int num_sack_blk, int *usable, uint_t *snxt,
924 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
925 		    const int mdt_thres);
926 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
927 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
928 		    const int num_sack_blk, int *usable, uint_t *snxt,
929 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
930 		    const int mdt_thres);
931 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
932 		    int num_sack_blk);
933 static void	tcp_wsrv(queue_t *q);
934 static int	tcp_xmit_end(tcp_t *tcp);
935 static void	tcp_ack_timer(void *arg);
936 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
937 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
938 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
939 		    zoneid_t zoneid);
940 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
941 		    uint32_t ack, int ctl);
942 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
943 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
944 static int	setmaxps(queue_t *q, int maxpsz);
945 static void	tcp_set_rto(tcp_t *, time_t);
946 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
947 		    boolean_t, boolean_t);
948 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
949 		    boolean_t ipsec_mctl);
950 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
951 		    char *opt, int optlen);
952 static int	tcp_build_hdrs(queue_t *, tcp_t *);
953 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
954 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
955 		    tcph_t *tcph);
956 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
957 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
958 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
959 boolean_t	tcp_reserved_port_check(in_port_t);
960 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
961 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
962 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
963 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
964 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
965 		    const boolean_t, const uint32_t, const uint32_t,
966 		    const uint32_t, const uint32_t);
967 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
968 		    const uint_t, const uint_t, boolean_t *);
969 static mblk_t	*tcp_lso_info_mp(mblk_t *);
970 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
971 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
972 extern mblk_t	*tcp_timermp_alloc(int);
973 extern void	tcp_timermp_free(tcp_t *);
974 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
975 static void	tcp_stop_lingering(tcp_t *tcp);
976 static void	tcp_close_linger_timeout(void *arg);
977 void		tcp_ddi_init(void);
978 void		tcp_ddi_destroy(void);
979 static void	tcp_kstat_init(void);
980 static void	tcp_kstat_fini(void);
981 static int	tcp_kstat_update(kstat_t *kp, int rw);
982 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
983 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
984 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
985 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
986 			tcph_t *tcph, mblk_t *idmp);
987 static squeue_func_t tcp_squeue_switch(int);
988 
989 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
990 static int	tcp_close(queue_t *, int);
991 static int	tcpclose_accept(queue_t *);
992 static int	tcp_modclose(queue_t *);
993 static void	tcp_wput_mod(queue_t *, mblk_t *);
994 
995 static void	tcp_squeue_add(squeue_t *);
996 static boolean_t tcp_zcopy_check(tcp_t *);
997 static void	tcp_zcopy_notify(tcp_t *);
998 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
999 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
1000 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
1001 
1002 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
1003 
1004 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
1005 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
1006 
1007 /*
1008  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
1009  *
1010  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
1011  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
1012  * (defined in tcp.h) needs to be filled in and passed into the kernel
1013  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
1014  * structure contains the four-tuple of a TCP connection and a range of TCP
1015  * states (specified by ac_start and ac_end). The use of wildcard addresses
1016  * and ports is allowed. Connections with a matching four tuple and a state
1017  * within the specified range will be aborted. The valid states for the
1018  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1019  * inclusive.
1020  *
1021  * An application which has its connection aborted by this ioctl will receive
1022  * an error that is dependent on the connection state at the time of the abort.
1023  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1024  * though a RST packet has been received.  If the connection state is equal to
1025  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1026  * and all resources associated with the connection will be freed.
1027  */
1028 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1029 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1030 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1031 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1032 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1033 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1034     boolean_t);
1035 
1036 static struct module_info tcp_rinfo =  {
1037 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1038 };
1039 
1040 static struct module_info tcp_winfo =  {
1041 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1042 };
1043 
1044 /*
1045  * Entry points for TCP as a module. It only allows SNMP requests
1046  * to pass through.
1047  */
1048 struct qinit tcp_mod_rinit = {
1049 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1050 };
1051 
1052 struct qinit tcp_mod_winit = {
1053 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1054 	&tcp_rinfo
1055 };
1056 
1057 /*
1058  * Entry points for TCP as a device. The normal case which supports
1059  * the TCP functionality.
1060  */
1061 struct qinit tcp_rinit = {
1062 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1063 };
1064 
1065 struct qinit tcp_winit = {
1066 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1067 };
1068 
1069 /* Initial entry point for TCP in socket mode. */
1070 struct qinit tcp_sock_winit = {
1071 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1072 };
1073 
1074 /*
1075  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1076  * an accept. Avoid allocating data structures since eager has already
1077  * been created.
1078  */
1079 struct qinit tcp_acceptor_rinit = {
1080 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1081 };
1082 
1083 struct qinit tcp_acceptor_winit = {
1084 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1085 };
1086 
1087 /*
1088  * Entry points for TCP loopback (read side only)
1089  */
1090 struct qinit tcp_loopback_rinit = {
1091 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1092 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1093 };
1094 
1095 struct streamtab tcpinfo = {
1096 	&tcp_rinit, &tcp_winit
1097 };
1098 
1099 extern squeue_func_t tcp_squeue_wput_proc;
1100 extern squeue_func_t tcp_squeue_timer_proc;
1101 
1102 /* Protected by tcp_g_q_lock */
1103 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1104 kmutex_t tcp_g_q_lock;
1105 
1106 /* Protected by tcp_hsp_lock */
1107 /*
1108  * XXX The host param mechanism should go away and instead we should use
1109  * the metrics associated with the routes to determine the default sndspace
1110  * and rcvspace.
1111  */
1112 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1113 krwlock_t tcp_hsp_lock;
1114 
1115 /*
1116  * Extra privileged ports. In host byte order.
1117  * Protected by tcp_epriv_port_lock.
1118  */
1119 #define	TCP_NUM_EPRIV_PORTS	64
1120 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1121 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1122 kmutex_t tcp_epriv_port_lock;
1123 
1124 /*
1125  * The smallest anonymous port in the privileged port range which TCP
1126  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1127  */
1128 static in_port_t tcp_min_anonpriv_port = 512;
1129 
1130 /* Only modified during _init and _fini thus no locking is needed. */
1131 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1132 
1133 /* Hint not protected by any lock */
1134 static uint_t	tcp_next_port_to_try;
1135 
1136 
1137 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1138 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1139 
1140 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1141 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1142 
1143 /*
1144  * TCP has a private interface for other kernel modules to reserve a
1145  * port range for them to use.  Once reserved, TCP will not use any ports
1146  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1147  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1148  * has to be verified.
1149  *
1150  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1151  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1152  * range is [port a, port b] inclusive.  And each port range is between
1153  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1154  *
1155  * Note that the default anonymous port range starts from 32768.  There is
1156  * no port "collision" between that and the reserved port range.  If there
1157  * is port collision (because the default smallest anonymous port is lowered
1158  * or some apps specifically bind to ports in the reserved port range), the
1159  * system may not be able to reserve a port range even there are enough
1160  * unbound ports as a reserved port range contains consecutive ports .
1161  */
1162 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1163 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1164 #define	TCP_SMALLEST_RESERVED_PORT		10240
1165 #define	TCP_LARGEST_RESERVED_PORT		20480
1166 
1167 /* Structure to represent those reserved port ranges. */
1168 typedef struct tcp_rport_s {
1169 	in_port_t	lo_port;
1170 	in_port_t	hi_port;
1171 	tcp_t		**temp_tcp_array;
1172 } tcp_rport_t;
1173 
1174 /* The reserved port array. */
1175 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1176 
1177 /* Locks to protect the tcp_reserved_ports array. */
1178 static krwlock_t tcp_reserved_port_lock;
1179 
1180 /* The number of ranges in the array. */
1181 uint32_t tcp_reserved_port_array_size = 0;
1182 
1183 /*
1184  * MIB-2 stuff for SNMP
1185  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1186  */
1187 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1188 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1189 
1190 boolean_t tcp_icmp_source_quench = B_FALSE;
1191 /*
1192  * Following assumes TPI alignment requirements stay along 32 bit
1193  * boundaries
1194  */
1195 #define	ROUNDUP32(x) \
1196 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1197 
1198 /* Template for response to info request. */
1199 static struct T_info_ack tcp_g_t_info_ack = {
1200 	T_INFO_ACK,		/* PRIM_type */
1201 	0,			/* TSDU_size */
1202 	T_INFINITE,		/* ETSDU_size */
1203 	T_INVALID,		/* CDATA_size */
1204 	T_INVALID,		/* DDATA_size */
1205 	sizeof (sin_t),		/* ADDR_size */
1206 	0,			/* OPT_size - not initialized here */
1207 	TIDUSZ,			/* TIDU_size */
1208 	T_COTS_ORD,		/* SERV_type */
1209 	TCPS_IDLE,		/* CURRENT_state */
1210 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1211 };
1212 
1213 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1214 	T_INFO_ACK,		/* PRIM_type */
1215 	0,			/* TSDU_size */
1216 	T_INFINITE,		/* ETSDU_size */
1217 	T_INVALID,		/* CDATA_size */
1218 	T_INVALID,		/* DDATA_size */
1219 	sizeof (sin6_t),	/* ADDR_size */
1220 	0,			/* OPT_size - not initialized here */
1221 	TIDUSZ,		/* TIDU_size */
1222 	T_COTS_ORD,		/* SERV_type */
1223 	TCPS_IDLE,		/* CURRENT_state */
1224 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1225 };
1226 
1227 #define	MS	1L
1228 #define	SECONDS	(1000 * MS)
1229 #define	MINUTES	(60 * SECONDS)
1230 #define	HOURS	(60 * MINUTES)
1231 #define	DAYS	(24 * HOURS)
1232 
1233 #define	PARAM_MAX (~(uint32_t)0)
1234 
1235 /* Max size IP datagram is 64k - 1 */
1236 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1237 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1238 /* Max of the above */
1239 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1240 
1241 /* Largest TCP port number */
1242 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1243 
1244 /*
1245  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1246  * layer header.  It has to be a multiple of 4.
1247  */
1248 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1249 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1250 
1251 /*
1252  * All of these are alterable, within the min/max values given, at run time.
1253  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1254  * per the TCP spec.
1255  */
1256 /* BEGIN CSTYLED */
1257 tcpparam_t	tcp_param_arr[] = {
1258  /*min		max		value		name */
1259  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1260  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1261  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1262  { 1,		1024,		1,		"tcp_conn_req_min" },
1263  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1264  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1265  { 0,		10,		0,		"tcp_debug" },
1266  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1267  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1268  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1269  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1270  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1271  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1272  { 1,		255,		64,		"tcp_ipv4_ttl"},
1273  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1274  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1275  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1276  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1277  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1278  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1279  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1280  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1281  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1282  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1283  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1284  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1285  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1286  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1287  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1288  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1289  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1290  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1291  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1292  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1293  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1294  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1295  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1296  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1297 /*
1298  * Question:  What default value should I set for tcp_strong_iss?
1299  */
1300  { 0,		2,		1,		"tcp_strong_iss"},
1301  { 0,		65536,		20,		"tcp_rtt_updates"},
1302  { 0,		1,		1,		"tcp_wscale_always"},
1303  { 0,		1,		0,		"tcp_tstamp_always"},
1304  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1305  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1306  { 0,		16,		2,		"tcp_deferred_acks_max"},
1307  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1308  { 1,		4,		4,		"tcp_slow_start_initial"},
1309  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1310  { 0,		2,		2,		"tcp_sack_permitted"},
1311  { 0,		1,		0,		"tcp_trace"},
1312  { 0,		1,		1,		"tcp_compression_enabled"},
1313  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1314  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1315  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1316  { 0,		1,		0,		"tcp_rev_src_routes"},
1317  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1318  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1319  { 0,		16,		8,		"tcp_local_dacks_max"},
1320  { 0,		2,		1,		"tcp_ecn_permitted"},
1321  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1322  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1323  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1324  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1325  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1326 };
1327 /* END CSTYLED */
1328 
1329 /*
1330  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1331  * each header fragment in the header buffer.  Each parameter value has
1332  * to be a multiple of 4 (32-bit aligned).
1333  */
1334 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1335 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1336 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1337 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1338 
1339 /*
1340  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1341  * the maximum number of payload buffers associated per Multidata.
1342  */
1343 static tcpparam_t tcp_mdt_max_pbufs_param =
1344 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1345 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1346 
1347 /* Round up the value to the nearest mss. */
1348 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1349 
1350 /*
1351  * Set ECN capable transport (ECT) code point in IP header.
1352  *
1353  * Note that there are 2 ECT code points '01' and '10', which are called
1354  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1355  * point ECT(0) for TCP as described in RFC 2481.
1356  */
1357 #define	SET_ECT(tcp, iph) \
1358 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1359 		/* We need to clear the code point first. */ \
1360 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1361 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1362 	} else { \
1363 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1364 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1365 	}
1366 
1367 /*
1368  * The format argument to pass to tcp_display().
1369  * DISP_PORT_ONLY means that the returned string has only port info.
1370  * DISP_ADDR_AND_PORT means that the returned string also contains the
1371  * remote and local IP address.
1372  */
1373 #define	DISP_PORT_ONLY		1
1374 #define	DISP_ADDR_AND_PORT	2
1375 
1376 /*
1377  * This controls the rate some ndd info report functions can be used
1378  * by non-privileged users.  It stores the last time such info is
1379  * requested.  When those report functions are called again, this
1380  * is checked with the current time and compare with the ndd param
1381  * tcp_ndd_get_info_interval.
1382  */
1383 static clock_t tcp_last_ndd_get_info_time = 0;
1384 #define	NDD_TOO_QUICK_MSG \
1385 	"ndd get info rate too high for non-privileged users, try again " \
1386 	"later.\n"
1387 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1388 
1389 #define	IS_VMLOANED_MBLK(mp) \
1390 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1391 
1392 /*
1393  * These two variables control the rate for TCP to generate RSTs in
1394  * response to segments not belonging to any connections.  We limit
1395  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1396  * each 1 second interval.  This is to protect TCP against DoS attack.
1397  */
1398 static clock_t tcp_last_rst_intrvl;
1399 static uint32_t tcp_rst_cnt;
1400 
1401 /* The number of RST not sent because of the rate limit. */
1402 static uint32_t tcp_rst_unsent;
1403 
1404 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1405 boolean_t tcp_mdt_chain = B_TRUE;
1406 
1407 /*
1408  * MDT threshold in the form of effective send MSS multiplier; we take
1409  * the MDT path if the amount of unsent data exceeds the threshold value
1410  * (default threshold is 1*SMSS).
1411  */
1412 uint_t tcp_mdt_smss_threshold = 1;
1413 
1414 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1415 
1416 /*
1417  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1418  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1419  * determined dynamically during tcp_adapt_ire(), which is the default.
1420  */
1421 boolean_t tcp_static_maxpsz = B_FALSE;
1422 
1423 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1424 uint32_t tcp_random_anon_port = 1;
1425 
1426 /*
1427  * To reach to an eager in Q0 which can be dropped due to an incoming
1428  * new SYN request when Q0 is full, a new doubly linked list is
1429  * introduced. This list allows to select an eager from Q0 in O(1) time.
1430  * This is needed to avoid spending too much time walking through the
1431  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1432  * this new list has to be a member of Q0.
1433  * This list is headed by listener's tcp_t. When the list is empty,
1434  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1435  * of listener's tcp_t point to listener's tcp_t itself.
1436  *
1437  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1438  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1439  * These macros do not affect the eager's membership to Q0.
1440  */
1441 
1442 
1443 #define	MAKE_DROPPABLE(listener, eager)					\
1444 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1445 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1446 		    = (eager);						\
1447 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1448 		(eager)->tcp_eager_next_drop_q0 =			\
1449 		    (listener)->tcp_eager_next_drop_q0;			\
1450 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1451 	}
1452 
1453 #define	MAKE_UNDROPPABLE(eager)						\
1454 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1455 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1456 		    = (eager)->tcp_eager_prev_drop_q0;			\
1457 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1458 		    = (eager)->tcp_eager_next_drop_q0;			\
1459 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1460 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1461 	}
1462 
1463 /*
1464  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1465  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1466  * data, TCP will not respond with an ACK.  RFC 793 requires that
1467  * TCP responds with an ACK for such a bogus ACK.  By not following
1468  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1469  * an attacker successfully spoofs an acceptable segment to our
1470  * peer; or when our peer is "confused."
1471  */
1472 uint32_t tcp_drop_ack_unsent_cnt = 10;
1473 
1474 /*
1475  * Hook functions to enable cluster networking
1476  * On non-clustered systems these vectors must always be NULL.
1477  */
1478 
1479 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1480 			    uint8_t *laddrp, in_port_t lport) = NULL;
1481 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1482 			    uint8_t *laddrp, in_port_t lport) = NULL;
1483 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1484 			    uint8_t *laddrp, in_port_t lport,
1485 			    uint8_t *faddrp, in_port_t fport) = NULL;
1486 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1487 			    uint8_t *laddrp, in_port_t lport,
1488 			    uint8_t *faddrp, in_port_t fport) = NULL;
1489 
1490 /*
1491  * The following are defined in ip.c
1492  */
1493 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1494 				uint8_t *laddrp);
1495 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1496 				uint8_t *laddrp, uint8_t *faddrp);
1497 
1498 #define	CL_INET_CONNECT(tcp)		{			\
1499 	if (cl_inet_connect != NULL) {				\
1500 		/*						\
1501 		 * Running in cluster mode - register active connection	\
1502 		 * information						\
1503 		 */							\
1504 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1505 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1506 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1507 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1508 				    (in_port_t)(tcp)->tcp_lport,	\
1509 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1510 				    (in_port_t)(tcp)->tcp_fport);	\
1511 			}						\
1512 		} else {						\
1513 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1514 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1515 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1516 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1517 				    (in_port_t)(tcp)->tcp_lport,	\
1518 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1519 				    (in_port_t)(tcp)->tcp_fport);	\
1520 			}						\
1521 		}							\
1522 	}								\
1523 }
1524 
1525 #define	CL_INET_DISCONNECT(tcp)	{				\
1526 	if (cl_inet_disconnect != NULL) {				\
1527 		/*							\
1528 		 * Running in cluster mode - deregister active		\
1529 		 * connection information				\
1530 		 */							\
1531 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1532 			if ((tcp)->tcp_ip_src != 0) {			\
1533 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1534 				    AF_INET,				\
1535 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1536 				    (in_port_t)(tcp)->tcp_lport,	\
1537 				    (uint8_t *)				\
1538 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1539 				    (in_port_t)(tcp)->tcp_fport);	\
1540 			}						\
1541 		} else {						\
1542 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1543 			    &(tcp)->tcp_ip_src_v6)) {			\
1544 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1545 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1546 				    (in_port_t)(tcp)->tcp_lport,	\
1547 				    (uint8_t *)				\
1548 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1549 				    (in_port_t)(tcp)->tcp_fport);	\
1550 			}						\
1551 		}							\
1552 	}								\
1553 }
1554 
1555 /*
1556  * Cluster networking hook for traversing current connection list.
1557  * This routine is used to extract the current list of live connections
1558  * which must continue to to be dispatched to this node.
1559  */
1560 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1561 
1562 /*
1563  * Figure out the value of window scale opton.  Note that the rwnd is
1564  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1565  * We cannot find the scale value and then do a round up of tcp_rwnd
1566  * because the scale value may not be correct after that.
1567  *
1568  * Set the compiler flag to make this function inline.
1569  */
1570 static void
1571 tcp_set_ws_value(tcp_t *tcp)
1572 {
1573 	int i;
1574 	uint32_t rwnd = tcp->tcp_rwnd;
1575 
1576 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1577 	    i++, rwnd >>= 1)
1578 		;
1579 	tcp->tcp_rcv_ws = i;
1580 }
1581 
1582 /*
1583  * Remove a connection from the list of detached TIME_WAIT connections.
1584  * It returns B_FALSE if it can't remove the connection from the list
1585  * as the connection has already been removed from the list due to an
1586  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1587  */
1588 static boolean_t
1589 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1590 {
1591 	boolean_t	locked = B_FALSE;
1592 
1593 	if (tcp_time_wait == NULL) {
1594 		tcp_time_wait = *((tcp_squeue_priv_t **)
1595 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1596 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1597 		locked = B_TRUE;
1598 	}
1599 
1600 	if (tcp->tcp_time_wait_expire == 0) {
1601 		ASSERT(tcp->tcp_time_wait_next == NULL);
1602 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1603 		if (locked)
1604 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1605 		return (B_FALSE);
1606 	}
1607 	ASSERT(TCP_IS_DETACHED(tcp));
1608 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1609 
1610 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1611 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1612 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1613 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1614 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1615 			    NULL;
1616 		} else {
1617 			tcp_time_wait->tcp_time_wait_tail = NULL;
1618 		}
1619 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1620 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1621 		ASSERT(tcp->tcp_time_wait_next == NULL);
1622 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1623 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1624 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1625 	} else {
1626 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1627 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1628 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1629 		    tcp->tcp_time_wait_next;
1630 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1631 		    tcp->tcp_time_wait_prev;
1632 	}
1633 	tcp->tcp_time_wait_next = NULL;
1634 	tcp->tcp_time_wait_prev = NULL;
1635 	tcp->tcp_time_wait_expire = 0;
1636 
1637 	if (locked)
1638 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1639 	return (B_TRUE);
1640 }
1641 
1642 /*
1643  * Add a connection to the list of detached TIME_WAIT connections
1644  * and set its time to expire.
1645  */
1646 static void
1647 tcp_time_wait_append(tcp_t *tcp)
1648 {
1649 	tcp_squeue_priv_t *tcp_time_wait =
1650 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1651 		SQPRIVATE_TCP));
1652 
1653 	tcp_timers_stop(tcp);
1654 
1655 	/* Freed above */
1656 	ASSERT(tcp->tcp_timer_tid == 0);
1657 	ASSERT(tcp->tcp_ack_tid == 0);
1658 
1659 	/* must have happened at the time of detaching the tcp */
1660 	ASSERT(tcp->tcp_ptpahn == NULL);
1661 	ASSERT(tcp->tcp_flow_stopped == 0);
1662 	ASSERT(tcp->tcp_time_wait_next == NULL);
1663 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1664 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1665 	ASSERT(tcp->tcp_listener == NULL);
1666 
1667 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1668 	/*
1669 	 * The value computed below in tcp->tcp_time_wait_expire may
1670 	 * appear negative or wrap around. That is ok since our
1671 	 * interest is only in the difference between the current lbolt
1672 	 * value and tcp->tcp_time_wait_expire. But the value should not
1673 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1674 	 * The corresponding comparison in tcp_time_wait_collector() uses
1675 	 * modular arithmetic.
1676 	 */
1677 	tcp->tcp_time_wait_expire +=
1678 	    drv_usectohz(tcp_time_wait_interval * 1000);
1679 	if (tcp->tcp_time_wait_expire == 0)
1680 		tcp->tcp_time_wait_expire = 1;
1681 
1682 	ASSERT(TCP_IS_DETACHED(tcp));
1683 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1684 	ASSERT(tcp->tcp_time_wait_next == NULL);
1685 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1686 	TCP_DBGSTAT(tcp_time_wait);
1687 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1688 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1689 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1690 		tcp_time_wait->tcp_time_wait_head = tcp;
1691 	} else {
1692 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1693 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1694 		    TCPS_TIME_WAIT);
1695 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1696 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1697 	}
1698 	tcp_time_wait->tcp_time_wait_tail = tcp;
1699 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1700 }
1701 
1702 /* ARGSUSED */
1703 void
1704 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1705 {
1706 	conn_t	*connp = (conn_t *)arg;
1707 	tcp_t	*tcp = connp->conn_tcp;
1708 
1709 	ASSERT(tcp != NULL);
1710 	if (tcp->tcp_state == TCPS_CLOSED) {
1711 		return;
1712 	}
1713 
1714 	ASSERT((tcp->tcp_family == AF_INET &&
1715 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1716 	    (tcp->tcp_family == AF_INET6 &&
1717 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1718 	    tcp->tcp_ipversion == IPV6_VERSION)));
1719 	ASSERT(!tcp->tcp_listener);
1720 
1721 	TCP_STAT(tcp_time_wait_reap);
1722 	ASSERT(TCP_IS_DETACHED(tcp));
1723 
1724 	/*
1725 	 * Because they have no upstream client to rebind or tcp_close()
1726 	 * them later, we axe the connection here and now.
1727 	 */
1728 	tcp_close_detached(tcp);
1729 }
1730 
1731 void
1732 tcp_cleanup(tcp_t *tcp)
1733 {
1734 	mblk_t		*mp;
1735 	char		*tcp_iphc;
1736 	int		tcp_iphc_len;
1737 	int		tcp_hdr_grown;
1738 	tcp_sack_info_t	*tcp_sack_info;
1739 	conn_t		*connp = tcp->tcp_connp;
1740 
1741 	tcp_bind_hash_remove(tcp);
1742 	tcp_free(tcp);
1743 
1744 	/* Release any SSL context */
1745 	if (tcp->tcp_kssl_ent != NULL) {
1746 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1747 		tcp->tcp_kssl_ent = NULL;
1748 	}
1749 
1750 	if (tcp->tcp_kssl_ctx != NULL) {
1751 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1752 		tcp->tcp_kssl_ctx = NULL;
1753 	}
1754 	tcp->tcp_kssl_pending = B_FALSE;
1755 
1756 	conn_delete_ire(connp, NULL);
1757 	if (connp->conn_flags & IPCL_TCPCONN) {
1758 		if (connp->conn_latch != NULL)
1759 			IPLATCH_REFRELE(connp->conn_latch);
1760 		if (connp->conn_policy != NULL)
1761 			IPPH_REFRELE(connp->conn_policy);
1762 	}
1763 
1764 	/*
1765 	 * Since we will bzero the entire structure, we need to
1766 	 * remove it and reinsert it in global hash list. We
1767 	 * know the walkers can't get to this conn because we
1768 	 * had set CONDEMNED flag earlier and checked reference
1769 	 * under conn_lock so walker won't pick it and when we
1770 	 * go the ipcl_globalhash_remove() below, no walker
1771 	 * can get to it.
1772 	 */
1773 	ipcl_globalhash_remove(connp);
1774 
1775 	/* Save some state */
1776 	mp = tcp->tcp_timercache;
1777 
1778 	tcp_sack_info = tcp->tcp_sack_info;
1779 	tcp_iphc = tcp->tcp_iphc;
1780 	tcp_iphc_len = tcp->tcp_iphc_len;
1781 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1782 
1783 	if (connp->conn_cred != NULL)
1784 		crfree(connp->conn_cred);
1785 	if (connp->conn_peercred != NULL)
1786 		crfree(connp->conn_peercred);
1787 	bzero(connp, sizeof (conn_t));
1788 	bzero(tcp, sizeof (tcp_t));
1789 
1790 	/* restore the state */
1791 	tcp->tcp_timercache = mp;
1792 
1793 	tcp->tcp_sack_info = tcp_sack_info;
1794 	tcp->tcp_iphc = tcp_iphc;
1795 	tcp->tcp_iphc_len = tcp_iphc_len;
1796 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1797 
1798 
1799 	tcp->tcp_connp = connp;
1800 
1801 	connp->conn_tcp = tcp;
1802 	connp->conn_flags = IPCL_TCPCONN;
1803 	connp->conn_state_flags = CONN_INCIPIENT;
1804 	connp->conn_ulp = IPPROTO_TCP;
1805 	connp->conn_ref = 1;
1806 
1807 	ipcl_globalhash_insert(connp);
1808 }
1809 
1810 /*
1811  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1812  * is done forwards from the head.
1813  */
1814 /* ARGSUSED */
1815 void
1816 tcp_time_wait_collector(void *arg)
1817 {
1818 	tcp_t *tcp;
1819 	clock_t now;
1820 	mblk_t *mp;
1821 	conn_t *connp;
1822 	kmutex_t *lock;
1823 	boolean_t removed;
1824 
1825 	squeue_t *sqp = (squeue_t *)arg;
1826 	tcp_squeue_priv_t *tcp_time_wait =
1827 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1828 
1829 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1830 	tcp_time_wait->tcp_time_wait_tid = 0;
1831 
1832 	if (tcp_time_wait->tcp_free_list != NULL &&
1833 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1834 		TCP_STAT(tcp_freelist_cleanup);
1835 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1836 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1837 			CONN_DEC_REF(tcp->tcp_connp);
1838 		}
1839 		tcp_time_wait->tcp_free_list_cnt = 0;
1840 	}
1841 
1842 	/*
1843 	 * In order to reap time waits reliably, we should use a
1844 	 * source of time that is not adjustable by the user -- hence
1845 	 * the call to ddi_get_lbolt().
1846 	 */
1847 	now = ddi_get_lbolt();
1848 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1849 		/*
1850 		 * Compare times using modular arithmetic, since
1851 		 * lbolt can wrapover.
1852 		 */
1853 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1854 			break;
1855 		}
1856 
1857 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1858 		ASSERT(removed);
1859 
1860 		connp = tcp->tcp_connp;
1861 		ASSERT(connp->conn_fanout != NULL);
1862 		lock = &connp->conn_fanout->connf_lock;
1863 		/*
1864 		 * This is essentially a TW reclaim fast path optimization for
1865 		 * performance where the timewait collector checks under the
1866 		 * fanout lock (so that no one else can get access to the
1867 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1868 		 * the classifier hash list. If ref count is indeed 2, we can
1869 		 * just remove the conn under the fanout lock and avoid
1870 		 * cleaning up the conn under the squeue, provided that
1871 		 * clustering callbacks are not enabled. If clustering is
1872 		 * enabled, we need to make the clustering callback before
1873 		 * setting the CONDEMNED flag and after dropping all locks and
1874 		 * so we forego this optimization and fall back to the slow
1875 		 * path. Also please see the comments in tcp_closei_local
1876 		 * regarding the refcnt logic.
1877 		 *
1878 		 * Since we are holding the tcp_time_wait_lock, its better
1879 		 * not to block on the fanout_lock because other connections
1880 		 * can't add themselves to time_wait list. So we do a
1881 		 * tryenter instead of mutex_enter.
1882 		 */
1883 		if (mutex_tryenter(lock)) {
1884 			mutex_enter(&connp->conn_lock);
1885 			if ((connp->conn_ref == 2) &&
1886 			    (cl_inet_disconnect == NULL)) {
1887 				ipcl_hash_remove_locked(connp,
1888 				    connp->conn_fanout);
1889 				/*
1890 				 * Set the CONDEMNED flag now itself so that
1891 				 * the refcnt cannot increase due to any
1892 				 * walker. But we have still not cleaned up
1893 				 * conn_ire_cache. This is still ok since
1894 				 * we are going to clean it up in tcp_cleanup
1895 				 * immediately and any interface unplumb
1896 				 * thread will wait till the ire is blown away
1897 				 */
1898 				connp->conn_state_flags |= CONN_CONDEMNED;
1899 				mutex_exit(lock);
1900 				mutex_exit(&connp->conn_lock);
1901 				if (tcp_time_wait->tcp_free_list_cnt <
1902 				    tcp_free_list_max_cnt) {
1903 					/* Add to head of tcp_free_list */
1904 					mutex_exit(
1905 					    &tcp_time_wait->tcp_time_wait_lock);
1906 					tcp_cleanup(tcp);
1907 					mutex_enter(
1908 					    &tcp_time_wait->tcp_time_wait_lock);
1909 					tcp->tcp_time_wait_next =
1910 					    tcp_time_wait->tcp_free_list;
1911 					tcp_time_wait->tcp_free_list = tcp;
1912 					tcp_time_wait->tcp_free_list_cnt++;
1913 					continue;
1914 				} else {
1915 					/* Do not add to tcp_free_list */
1916 					mutex_exit(
1917 					    &tcp_time_wait->tcp_time_wait_lock);
1918 					tcp_bind_hash_remove(tcp);
1919 					conn_delete_ire(tcp->tcp_connp, NULL);
1920 					CONN_DEC_REF(tcp->tcp_connp);
1921 				}
1922 			} else {
1923 				CONN_INC_REF_LOCKED(connp);
1924 				mutex_exit(lock);
1925 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1926 				mutex_exit(&connp->conn_lock);
1927 				/*
1928 				 * We can reuse the closemp here since conn has
1929 				 * detached (otherwise we wouldn't even be in
1930 				 * time_wait list). tcp_closemp_used can safely
1931 				 * be changed without taking a lock as no other
1932 				 * thread can concurrently access it at this
1933 				 * point in the connection lifecycle. We
1934 				 * increment tcp_closemp_used to record any
1935 				 * attempt to reuse tcp_closemp while it is
1936 				 * still in use.
1937 				 */
1938 
1939 				if (tcp->tcp_closemp.b_prev == NULL)
1940 					tcp->tcp_closemp_used = 1;
1941 				else
1942 					tcp->tcp_closemp_used++;
1943 
1944 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1945 				mp = &tcp->tcp_closemp;
1946 				squeue_fill(connp->conn_sqp, mp,
1947 				    tcp_timewait_output, connp,
1948 				    SQTAG_TCP_TIMEWAIT);
1949 			}
1950 		} else {
1951 			mutex_enter(&connp->conn_lock);
1952 			CONN_INC_REF_LOCKED(connp);
1953 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1954 			mutex_exit(&connp->conn_lock);
1955 			/*
1956 			 * We can reuse the closemp here since conn has
1957 			 * detached (otherwise we wouldn't even be in
1958 			 * time_wait list). tcp_closemp_used can safely
1959 			 * be changed without taking a lock as no other
1960 			 * thread can concurrently access it at this
1961 			 * point in the connection lifecycle. We
1962 			 * increment tcp_closemp_used to record any
1963 			 * attempt to reuse tcp_closemp while it is
1964 			 * still in use.
1965 			 */
1966 
1967 			if (tcp->tcp_closemp.b_prev == NULL)
1968 				tcp->tcp_closemp_used = 1;
1969 			else
1970 				tcp->tcp_closemp_used++;
1971 
1972 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1973 			mp = &tcp->tcp_closemp;
1974 			squeue_fill(connp->conn_sqp, mp,
1975 			    tcp_timewait_output, connp, 0);
1976 		}
1977 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1978 	}
1979 
1980 	if (tcp_time_wait->tcp_free_list != NULL)
1981 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1982 
1983 	tcp_time_wait->tcp_time_wait_tid =
1984 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1985 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1986 }
1987 
1988 /*
1989  * Reply to a clients T_CONN_RES TPI message. This function
1990  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1991  * on the acceptor STREAM and processed in tcp_wput_accept().
1992  * Read the block comment on top of tcp_conn_request().
1993  */
1994 static void
1995 tcp_accept(tcp_t *listener, mblk_t *mp)
1996 {
1997 	tcp_t	*acceptor;
1998 	tcp_t	*eager;
1999 	tcp_t   *tcp;
2000 	struct T_conn_res	*tcr;
2001 	t_uscalar_t	acceptor_id;
2002 	t_scalar_t	seqnum;
2003 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
2004 	mblk_t	*ok_mp;
2005 	mblk_t	*mp1;
2006 
2007 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
2008 		tcp_err_ack(listener, mp, TPROTO, 0);
2009 		return;
2010 	}
2011 	tcr = (struct T_conn_res *)mp->b_rptr;
2012 
2013 	/*
2014 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
2015 	 * read side queue of the streams device underneath us i.e. the
2016 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
2017 	 * look it up in the queue_hash.  Under LP64 it sends down the
2018 	 * minor_t of the accepting endpoint.
2019 	 *
2020 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
2021 	 * fanout hash lock is held.
2022 	 * This prevents any thread from entering the acceptor queue from
2023 	 * below (since it has not been hard bound yet i.e. any inbound
2024 	 * packets will arrive on the listener or default tcp queue and
2025 	 * go through tcp_lookup).
2026 	 * The CONN_INC_REF will prevent the acceptor from closing.
2027 	 *
2028 	 * XXX It is still possible for a tli application to send down data
2029 	 * on the accepting stream while another thread calls t_accept.
2030 	 * This should not be a problem for well-behaved applications since
2031 	 * the T_OK_ACK is sent after the queue swapping is completed.
2032 	 *
2033 	 * If the accepting fd is the same as the listening fd, avoid
2034 	 * queue hash lookup since that will return an eager listener in a
2035 	 * already established state.
2036 	 */
2037 	acceptor_id = tcr->ACCEPTOR_id;
2038 	mutex_enter(&listener->tcp_eager_lock);
2039 	if (listener->tcp_acceptor_id == acceptor_id) {
2040 		eager = listener->tcp_eager_next_q;
2041 		/* only count how many T_CONN_INDs so don't count q0 */
2042 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2043 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2044 			mutex_exit(&listener->tcp_eager_lock);
2045 			tcp_err_ack(listener, mp, TBADF, 0);
2046 			return;
2047 		}
2048 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2049 			/* Throw away all the eagers on q0. */
2050 			tcp_eager_cleanup(listener, 1);
2051 		}
2052 		if (listener->tcp_syn_defense) {
2053 			listener->tcp_syn_defense = B_FALSE;
2054 			if (listener->tcp_ip_addr_cache != NULL) {
2055 				kmem_free(listener->tcp_ip_addr_cache,
2056 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2057 				listener->tcp_ip_addr_cache = NULL;
2058 			}
2059 		}
2060 		/*
2061 		 * Transfer tcp_conn_req_max to the eager so that when
2062 		 * a disconnect occurs we can revert the endpoint to the
2063 		 * listen state.
2064 		 */
2065 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2066 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2067 		/*
2068 		 * Get a reference on the acceptor just like the
2069 		 * tcp_acceptor_hash_lookup below.
2070 		 */
2071 		acceptor = listener;
2072 		CONN_INC_REF(acceptor->tcp_connp);
2073 	} else {
2074 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
2075 		if (acceptor == NULL) {
2076 			if (listener->tcp_debug) {
2077 				(void) strlog(TCP_MOD_ID, 0, 1,
2078 				    SL_ERROR|SL_TRACE,
2079 				    "tcp_accept: did not find acceptor 0x%x\n",
2080 				    acceptor_id);
2081 			}
2082 			mutex_exit(&listener->tcp_eager_lock);
2083 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2084 			return;
2085 		}
2086 		/*
2087 		 * Verify acceptor state. The acceptable states for an acceptor
2088 		 * include TCPS_IDLE and TCPS_BOUND.
2089 		 */
2090 		switch (acceptor->tcp_state) {
2091 		case TCPS_IDLE:
2092 			/* FALLTHRU */
2093 		case TCPS_BOUND:
2094 			break;
2095 		default:
2096 			CONN_DEC_REF(acceptor->tcp_connp);
2097 			mutex_exit(&listener->tcp_eager_lock);
2098 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2099 			return;
2100 		}
2101 	}
2102 
2103 	/* The listener must be in TCPS_LISTEN */
2104 	if (listener->tcp_state != TCPS_LISTEN) {
2105 		CONN_DEC_REF(acceptor->tcp_connp);
2106 		mutex_exit(&listener->tcp_eager_lock);
2107 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2108 		return;
2109 	}
2110 
2111 	/*
2112 	 * Rendezvous with an eager connection request packet hanging off
2113 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2114 	 * tcp structure when the connection packet arrived in
2115 	 * tcp_conn_request().
2116 	 */
2117 	seqnum = tcr->SEQ_number;
2118 	eager = listener;
2119 	do {
2120 		eager = eager->tcp_eager_next_q;
2121 		if (eager == NULL) {
2122 			CONN_DEC_REF(acceptor->tcp_connp);
2123 			mutex_exit(&listener->tcp_eager_lock);
2124 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2125 			return;
2126 		}
2127 	} while (eager->tcp_conn_req_seqnum != seqnum);
2128 	mutex_exit(&listener->tcp_eager_lock);
2129 
2130 	/*
2131 	 * At this point, both acceptor and listener have 2 ref
2132 	 * that they begin with. Acceptor has one additional ref
2133 	 * we placed in lookup while listener has 3 additional
2134 	 * ref for being behind the squeue (tcp_accept() is
2135 	 * done on listener's squeue); being in classifier hash;
2136 	 * and eager's ref on listener.
2137 	 */
2138 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2139 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2140 
2141 	/*
2142 	 * The eager at this point is set in its own squeue and
2143 	 * could easily have been killed (tcp_accept_finish will
2144 	 * deal with that) because of a TH_RST so we can only
2145 	 * ASSERT for a single ref.
2146 	 */
2147 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2148 
2149 	/* Pre allocate the stroptions mblk also */
2150 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2151 	if (opt_mp == NULL) {
2152 		CONN_DEC_REF(acceptor->tcp_connp);
2153 		CONN_DEC_REF(eager->tcp_connp);
2154 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2155 		return;
2156 	}
2157 	DB_TYPE(opt_mp) = M_SETOPTS;
2158 	opt_mp->b_wptr += sizeof (struct stroptions);
2159 
2160 	/*
2161 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2162 	 * from listener to acceptor. The message is chained on opt_mp
2163 	 * which will be sent onto eager's squeue.
2164 	 */
2165 	if (listener->tcp_bound_if != 0) {
2166 		/* allocate optmgmt req */
2167 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2168 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2169 		    sizeof (int));
2170 		if (mp1 != NULL)
2171 			linkb(opt_mp, mp1);
2172 	}
2173 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2174 		uint_t on = 1;
2175 
2176 		/* allocate optmgmt req */
2177 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2178 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2179 		if (mp1 != NULL)
2180 			linkb(opt_mp, mp1);
2181 	}
2182 
2183 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2184 	if ((mp1 = copymsg(mp)) == NULL) {
2185 		CONN_DEC_REF(acceptor->tcp_connp);
2186 		CONN_DEC_REF(eager->tcp_connp);
2187 		freemsg(opt_mp);
2188 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2189 		return;
2190 	}
2191 
2192 	tcr = (struct T_conn_res *)mp1->b_rptr;
2193 
2194 	/*
2195 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2196 	 * which allocates a larger mblk and appends the new
2197 	 * local address to the ok_ack.  The address is copied by
2198 	 * soaccept() for getsockname().
2199 	 */
2200 	{
2201 		int extra;
2202 
2203 		extra = (eager->tcp_family == AF_INET) ?
2204 		    sizeof (sin_t) : sizeof (sin6_t);
2205 
2206 		/*
2207 		 * Try to re-use mp, if possible.  Otherwise, allocate
2208 		 * an mblk and return it as ok_mp.  In any case, mp
2209 		 * is no longer usable upon return.
2210 		 */
2211 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2212 			CONN_DEC_REF(acceptor->tcp_connp);
2213 			CONN_DEC_REF(eager->tcp_connp);
2214 			freemsg(opt_mp);
2215 			/* Original mp has been freed by now, so use mp1 */
2216 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2217 			return;
2218 		}
2219 
2220 		mp = NULL;	/* We should never use mp after this point */
2221 
2222 		switch (extra) {
2223 		case sizeof (sin_t): {
2224 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2225 
2226 				ok_mp->b_wptr += extra;
2227 				sin->sin_family = AF_INET;
2228 				sin->sin_port = eager->tcp_lport;
2229 				sin->sin_addr.s_addr =
2230 				    eager->tcp_ipha->ipha_src;
2231 				break;
2232 			}
2233 		case sizeof (sin6_t): {
2234 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2235 
2236 				ok_mp->b_wptr += extra;
2237 				sin6->sin6_family = AF_INET6;
2238 				sin6->sin6_port = eager->tcp_lport;
2239 				if (eager->tcp_ipversion == IPV4_VERSION) {
2240 					sin6->sin6_flowinfo = 0;
2241 					IN6_IPADDR_TO_V4MAPPED(
2242 					    eager->tcp_ipha->ipha_src,
2243 					    &sin6->sin6_addr);
2244 				} else {
2245 					ASSERT(eager->tcp_ip6h != NULL);
2246 					sin6->sin6_flowinfo =
2247 					    eager->tcp_ip6h->ip6_vcf &
2248 					    ~IPV6_VERS_AND_FLOW_MASK;
2249 					sin6->sin6_addr =
2250 					    eager->tcp_ip6h->ip6_src;
2251 				}
2252 				break;
2253 			}
2254 		default:
2255 			break;
2256 		}
2257 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2258 	}
2259 
2260 	/*
2261 	 * If there are no options we know that the T_CONN_RES will
2262 	 * succeed. However, we can't send the T_OK_ACK upstream until
2263 	 * the tcp_accept_swap is done since it would be dangerous to
2264 	 * let the application start using the new fd prior to the swap.
2265 	 */
2266 	tcp_accept_swap(listener, acceptor, eager);
2267 
2268 	/*
2269 	 * tcp_accept_swap unlinks eager from listener but does not drop
2270 	 * the eager's reference on the listener.
2271 	 */
2272 	ASSERT(eager->tcp_listener == NULL);
2273 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2274 
2275 	/*
2276 	 * The eager is now associated with its own queue. Insert in
2277 	 * the hash so that the connection can be reused for a future
2278 	 * T_CONN_RES.
2279 	 */
2280 	tcp_acceptor_hash_insert(acceptor_id, eager);
2281 
2282 	/*
2283 	 * We now do the processing of options with T_CONN_RES.
2284 	 * We delay till now since we wanted to have queue to pass to
2285 	 * option processing routines that points back to the right
2286 	 * instance structure which does not happen until after
2287 	 * tcp_accept_swap().
2288 	 *
2289 	 * Note:
2290 	 * The sanity of the logic here assumes that whatever options
2291 	 * are appropriate to inherit from listner=>eager are done
2292 	 * before this point, and whatever were to be overridden (or not)
2293 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2294 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2295 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2296 	 * This may not be true at this point in time but can be fixed
2297 	 * independently. This option processing code starts with
2298 	 * the instantiated acceptor instance and the final queue at
2299 	 * this point.
2300 	 */
2301 
2302 	if (tcr->OPT_length != 0) {
2303 		/* Options to process */
2304 		int t_error = 0;
2305 		int sys_error = 0;
2306 		int do_disconnect = 0;
2307 
2308 		if (tcp_conprim_opt_process(eager, mp1,
2309 		    &do_disconnect, &t_error, &sys_error) < 0) {
2310 			eager->tcp_accept_error = 1;
2311 			if (do_disconnect) {
2312 				/*
2313 				 * An option failed which does not allow
2314 				 * connection to be accepted.
2315 				 *
2316 				 * We allow T_CONN_RES to succeed and
2317 				 * put a T_DISCON_IND on the eager queue.
2318 				 */
2319 				ASSERT(t_error == 0 && sys_error == 0);
2320 				eager->tcp_send_discon_ind = 1;
2321 			} else {
2322 				ASSERT(t_error != 0);
2323 				freemsg(ok_mp);
2324 				/*
2325 				 * Original mp was either freed or set
2326 				 * to ok_mp above, so use mp1 instead.
2327 				 */
2328 				tcp_err_ack(listener, mp1, t_error, sys_error);
2329 				goto finish;
2330 			}
2331 		}
2332 		/*
2333 		 * Most likely success in setting options (except if
2334 		 * eager->tcp_send_discon_ind set).
2335 		 * mp1 option buffer represented by OPT_length/offset
2336 		 * potentially modified and contains results of setting
2337 		 * options at this point
2338 		 */
2339 	}
2340 
2341 	/* We no longer need mp1, since all options processing has passed */
2342 	freemsg(mp1);
2343 
2344 	putnext(listener->tcp_rq, ok_mp);
2345 
2346 	mutex_enter(&listener->tcp_eager_lock);
2347 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2348 		tcp_t	*tail;
2349 		mblk_t	*conn_ind;
2350 
2351 		/*
2352 		 * This path should not be executed if listener and
2353 		 * acceptor streams are the same.
2354 		 */
2355 		ASSERT(listener != acceptor);
2356 
2357 		tcp = listener->tcp_eager_prev_q0;
2358 		/*
2359 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2360 		 * deferred T_conn_ind queue. We need to get to the head of
2361 		 * the queue in order to send up T_conn_ind the same order as
2362 		 * how the 3WHS is completed.
2363 		 */
2364 		while (tcp != listener) {
2365 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2366 				break;
2367 			else
2368 				tcp = tcp->tcp_eager_prev_q0;
2369 		}
2370 		ASSERT(tcp != listener);
2371 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2372 		ASSERT(conn_ind != NULL);
2373 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2374 
2375 		/* Move from q0 to q */
2376 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2377 		listener->tcp_conn_req_cnt_q0--;
2378 		listener->tcp_conn_req_cnt_q++;
2379 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2380 		    tcp->tcp_eager_prev_q0;
2381 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2382 		    tcp->tcp_eager_next_q0;
2383 		tcp->tcp_eager_prev_q0 = NULL;
2384 		tcp->tcp_eager_next_q0 = NULL;
2385 		tcp->tcp_conn_def_q0 = B_FALSE;
2386 
2387 		/* Make sure the tcp isn't in the list of droppables */
2388 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2389 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2390 
2391 		/*
2392 		 * Insert at end of the queue because sockfs sends
2393 		 * down T_CONN_RES in chronological order. Leaving
2394 		 * the older conn indications at front of the queue
2395 		 * helps reducing search time.
2396 		 */
2397 		tail = listener->tcp_eager_last_q;
2398 		if (tail != NULL)
2399 			tail->tcp_eager_next_q = tcp;
2400 		else
2401 			listener->tcp_eager_next_q = tcp;
2402 		listener->tcp_eager_last_q = tcp;
2403 		tcp->tcp_eager_next_q = NULL;
2404 		mutex_exit(&listener->tcp_eager_lock);
2405 		putnext(tcp->tcp_rq, conn_ind);
2406 	} else {
2407 		mutex_exit(&listener->tcp_eager_lock);
2408 	}
2409 
2410 	/*
2411 	 * Done with the acceptor - free it
2412 	 *
2413 	 * Note: from this point on, no access to listener should be made
2414 	 * as listener can be equal to acceptor.
2415 	 */
2416 finish:
2417 	ASSERT(acceptor->tcp_detached);
2418 	acceptor->tcp_rq = tcp_g_q;
2419 	acceptor->tcp_wq = WR(tcp_g_q);
2420 	(void) tcp_clean_death(acceptor, 0, 2);
2421 	CONN_DEC_REF(acceptor->tcp_connp);
2422 
2423 	/*
2424 	 * In case we already received a FIN we have to make tcp_rput send
2425 	 * the ordrel_ind. This will also send up a window update if the window
2426 	 * has opened up.
2427 	 *
2428 	 * In the normal case of a successful connection acceptance
2429 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2430 	 * indication that this was just accepted. This tells tcp_rput to
2431 	 * pass up any data queued in tcp_rcv_list.
2432 	 *
2433 	 * In the fringe case where options sent with T_CONN_RES failed and
2434 	 * we required, we would be indicating a T_DISCON_IND to blow
2435 	 * away this connection.
2436 	 */
2437 
2438 	/*
2439 	 * XXX: we currently have a problem if XTI application closes the
2440 	 * acceptor stream in between. This problem exists in on10-gate also
2441 	 * and is well know but nothing can be done short of major rewrite
2442 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2443 	 * eager same squeue as listener (we can distinguish non socket
2444 	 * listeners at the time of handling a SYN in tcp_conn_request)
2445 	 * and do most of the work that tcp_accept_finish does here itself
2446 	 * and then get behind the acceptor squeue to access the acceptor
2447 	 * queue.
2448 	 */
2449 	/*
2450 	 * We already have a ref on tcp so no need to do one before squeue_fill
2451 	 */
2452 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2453 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2454 }
2455 
2456 /*
2457  * Swap information between the eager and acceptor for a TLI/XTI client.
2458  * The sockfs accept is done on the acceptor stream and control goes
2459  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2460  * called. In either case, both the eager and listener are in their own
2461  * perimeter (squeue) and the code has to deal with potential race.
2462  *
2463  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2464  */
2465 static void
2466 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2467 {
2468 	conn_t	*econnp, *aconnp;
2469 
2470 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2471 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2472 	ASSERT(!eager->tcp_hard_bound);
2473 	ASSERT(!TCP_IS_SOCKET(acceptor));
2474 	ASSERT(!TCP_IS_SOCKET(eager));
2475 	ASSERT(!TCP_IS_SOCKET(listener));
2476 
2477 	acceptor->tcp_detached = B_TRUE;
2478 	/*
2479 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2480 	 * the acceptor id.
2481 	 */
2482 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2483 
2484 	/* remove eager from listen list... */
2485 	mutex_enter(&listener->tcp_eager_lock);
2486 	tcp_eager_unlink(eager);
2487 	ASSERT(eager->tcp_eager_next_q == NULL &&
2488 	    eager->tcp_eager_last_q == NULL);
2489 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2490 	    eager->tcp_eager_prev_q0 == NULL);
2491 	mutex_exit(&listener->tcp_eager_lock);
2492 	eager->tcp_rq = acceptor->tcp_rq;
2493 	eager->tcp_wq = acceptor->tcp_wq;
2494 
2495 	econnp = eager->tcp_connp;
2496 	aconnp = acceptor->tcp_connp;
2497 
2498 	eager->tcp_rq->q_ptr = econnp;
2499 	eager->tcp_wq->q_ptr = econnp;
2500 
2501 	/*
2502 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2503 	 * which might be a different squeue from our peer TCP instance.
2504 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2505 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2506 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2507 	 * above reach global visibility prior to the clearing of tcp_detached.
2508 	 */
2509 	membar_producer();
2510 	eager->tcp_detached = B_FALSE;
2511 
2512 	ASSERT(eager->tcp_ack_tid == 0);
2513 
2514 	econnp->conn_dev = aconnp->conn_dev;
2515 	if (eager->tcp_cred != NULL)
2516 		crfree(eager->tcp_cred);
2517 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2518 	aconnp->conn_cred = NULL;
2519 
2520 	econnp->conn_zoneid = aconnp->conn_zoneid;
2521 	econnp->conn_allzones = aconnp->conn_allzones;
2522 
2523 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2524 	aconnp->conn_mac_exempt = B_FALSE;
2525 
2526 	ASSERT(aconnp->conn_peercred == NULL);
2527 
2528 	/* Do the IPC initialization */
2529 	CONN_INC_REF(econnp);
2530 
2531 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2532 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2533 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2534 	econnp->conn_ulp = aconnp->conn_ulp;
2535 
2536 	/* Done with old IPC. Drop its ref on its connp */
2537 	CONN_DEC_REF(aconnp);
2538 }
2539 
2540 
2541 /*
2542  * Adapt to the information, such as rtt and rtt_sd, provided from the
2543  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2544  *
2545  * Checks for multicast and broadcast destination address.
2546  * Returns zero on failure; non-zero if ok.
2547  *
2548  * Note that the MSS calculation here is based on the info given in
2549  * the IRE.  We do not do any calculation based on TCP options.  They
2550  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2551  * knows which options to use.
2552  *
2553  * Note on how TCP gets its parameters for a connection.
2554  *
2555  * When a tcp_t structure is allocated, it gets all the default parameters.
2556  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2557  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2558  * default.  But if there is an associated tcp_host_param, it will override
2559  * the metrics.
2560  *
2561  * An incoming SYN with a multicast or broadcast destination address, is dropped
2562  * in 1 of 2 places.
2563  *
2564  * 1. If the packet was received over the wire it is dropped in
2565  * ip_rput_process_broadcast()
2566  *
2567  * 2. If the packet was received through internal IP loopback, i.e. the packet
2568  * was generated and received on the same machine, it is dropped in
2569  * ip_wput_local()
2570  *
2571  * An incoming SYN with a multicast or broadcast source address is always
2572  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2573  * reject an attempt to connect to a broadcast or multicast (destination)
2574  * address.
2575  */
2576 static int
2577 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2578 {
2579 	tcp_hsp_t	*hsp;
2580 	ire_t		*ire;
2581 	ire_t		*sire = NULL;
2582 	iulp_t		*ire_uinfo = NULL;
2583 	uint32_t	mss_max;
2584 	uint32_t	mss;
2585 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2586 	conn_t		*connp = tcp->tcp_connp;
2587 	boolean_t	ire_cacheable = B_FALSE;
2588 	zoneid_t	zoneid = connp->conn_zoneid;
2589 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2590 			    MATCH_IRE_SECATTR;
2591 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2592 	ill_t		*ill = NULL;
2593 	boolean_t	incoming = (ire_mp == NULL);
2594 
2595 	ASSERT(connp->conn_ire_cache == NULL);
2596 
2597 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2598 
2599 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2600 			BUMP_MIB(&ip_mib, ipIfStatsInDiscards);
2601 			return (0);
2602 		}
2603 		/*
2604 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2605 		 * for the destination with the nexthop as gateway.
2606 		 * ire_ctable_lookup() is used because this particular
2607 		 * ire, if it exists, will be marked private.
2608 		 * If that is not available, use the interface ire
2609 		 * for the nexthop.
2610 		 *
2611 		 * TSol: tcp_update_label will detect label mismatches based
2612 		 * only on the destination's label, but that would not
2613 		 * detect label mismatches based on the security attributes
2614 		 * of routes or next hop gateway. Hence we need to pass the
2615 		 * label to ire_ftable_lookup below in order to locate the
2616 		 * right prefix (and/or) ire cache. Similarly we also need
2617 		 * pass the label to the ire_cache_lookup below to locate
2618 		 * the right ire that also matches on the label.
2619 		 */
2620 		if (tcp->tcp_connp->conn_nexthop_set) {
2621 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2622 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2623 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2624 			if (ire == NULL) {
2625 				ire = ire_ftable_lookup(
2626 				    tcp->tcp_connp->conn_nexthop_v4,
2627 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2628 				    tsl, match_flags);
2629 				if (ire == NULL)
2630 					return (0);
2631 			} else {
2632 				ire_uinfo = &ire->ire_uinfo;
2633 			}
2634 		} else {
2635 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2636 			    zoneid, tsl);
2637 			if (ire != NULL) {
2638 				ire_cacheable = B_TRUE;
2639 				ire_uinfo = (ire_mp != NULL) ?
2640 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2641 				    &ire->ire_uinfo;
2642 
2643 			} else {
2644 				if (ire_mp == NULL) {
2645 					ire = ire_ftable_lookup(
2646 					    tcp->tcp_connp->conn_rem,
2647 					    0, 0, 0, NULL, &sire, zoneid, 0,
2648 					    tsl, (MATCH_IRE_RECURSIVE |
2649 					    MATCH_IRE_DEFAULT));
2650 					if (ire == NULL)
2651 						return (0);
2652 					ire_uinfo = (sire != NULL) ?
2653 					    &sire->ire_uinfo :
2654 					    &ire->ire_uinfo;
2655 				} else {
2656 					ire = (ire_t *)ire_mp->b_rptr;
2657 					ire_uinfo =
2658 					    &((ire_t *)
2659 					    ire_mp->b_rptr)->ire_uinfo;
2660 				}
2661 			}
2662 		}
2663 		ASSERT(ire != NULL);
2664 
2665 		if ((ire->ire_src_addr == INADDR_ANY) ||
2666 		    (ire->ire_type & IRE_BROADCAST)) {
2667 			/*
2668 			 * ire->ire_mp is non null when ire_mp passed in is used
2669 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2670 			 */
2671 			if (ire->ire_mp == NULL)
2672 				ire_refrele(ire);
2673 			if (sire != NULL)
2674 				ire_refrele(sire);
2675 			return (0);
2676 		}
2677 
2678 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2679 			ipaddr_t src_addr;
2680 
2681 			/*
2682 			 * ip_bind_connected() has stored the correct source
2683 			 * address in conn_src.
2684 			 */
2685 			src_addr = tcp->tcp_connp->conn_src;
2686 			tcp->tcp_ipha->ipha_src = src_addr;
2687 			/*
2688 			 * Copy of the src addr. in tcp_t is needed
2689 			 * for the lookup funcs.
2690 			 */
2691 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2692 		}
2693 		/*
2694 		 * Set the fragment bit so that IP will tell us if the MTU
2695 		 * should change. IP tells us the latest setting of
2696 		 * ip_path_mtu_discovery through ire_frag_flag.
2697 		 */
2698 		if (ip_path_mtu_discovery) {
2699 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2700 			    htons(IPH_DF);
2701 		}
2702 		/*
2703 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2704 		 * for IP_NEXTHOP. No cache ire has been found for the
2705 		 * destination and we are working with the nexthop's
2706 		 * interface ire. Since we need to forward all packets
2707 		 * to the nexthop first, we "blindly" set tcp_localnet
2708 		 * to false, eventhough the destination may also be
2709 		 * onlink.
2710 		 */
2711 		if (ire_uinfo == NULL)
2712 			tcp->tcp_localnet = 0;
2713 		else
2714 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2715 	} else {
2716 		/*
2717 		 * For incoming connection ire_mp = NULL
2718 		 * For outgoing connection ire_mp != NULL
2719 		 * Technically we should check conn_incoming_ill
2720 		 * when ire_mp is NULL and conn_outgoing_ill when
2721 		 * ire_mp is non-NULL. But this is performance
2722 		 * critical path and for IPV*_BOUND_IF, outgoing
2723 		 * and incoming ill are always set to the same value.
2724 		 */
2725 		ill_t	*dst_ill = NULL;
2726 		ipif_t  *dst_ipif = NULL;
2727 
2728 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2729 
2730 		if (connp->conn_outgoing_ill != NULL) {
2731 			/* Outgoing or incoming path */
2732 			int   err;
2733 
2734 			dst_ill = conn_get_held_ill(connp,
2735 			    &connp->conn_outgoing_ill, &err);
2736 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2737 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2738 				return (0);
2739 			}
2740 			match_flags |= MATCH_IRE_ILL;
2741 			dst_ipif = dst_ill->ill_ipif;
2742 		}
2743 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2744 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2745 
2746 		if (ire != NULL) {
2747 			ire_cacheable = B_TRUE;
2748 			ire_uinfo = (ire_mp != NULL) ?
2749 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2750 			    &ire->ire_uinfo;
2751 		} else {
2752 			if (ire_mp == NULL) {
2753 				ire = ire_ftable_lookup_v6(
2754 				    &tcp->tcp_connp->conn_remv6,
2755 				    0, 0, 0, dst_ipif, &sire, zoneid,
2756 				    0, tsl, match_flags);
2757 				if (ire == NULL) {
2758 					if (dst_ill != NULL)
2759 						ill_refrele(dst_ill);
2760 					return (0);
2761 				}
2762 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2763 				    &ire->ire_uinfo;
2764 			} else {
2765 				ire = (ire_t *)ire_mp->b_rptr;
2766 				ire_uinfo =
2767 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2768 			}
2769 		}
2770 		if (dst_ill != NULL)
2771 			ill_refrele(dst_ill);
2772 
2773 		ASSERT(ire != NULL);
2774 		ASSERT(ire_uinfo != NULL);
2775 
2776 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2777 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2778 			/*
2779 			 * ire->ire_mp is non null when ire_mp passed in is used
2780 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2781 			 */
2782 			if (ire->ire_mp == NULL)
2783 				ire_refrele(ire);
2784 			if (sire != NULL)
2785 				ire_refrele(sire);
2786 			return (0);
2787 		}
2788 
2789 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2790 			in6_addr_t	src_addr;
2791 
2792 			/*
2793 			 * ip_bind_connected_v6() has stored the correct source
2794 			 * address per IPv6 addr. selection policy in
2795 			 * conn_src_v6.
2796 			 */
2797 			src_addr = tcp->tcp_connp->conn_srcv6;
2798 
2799 			tcp->tcp_ip6h->ip6_src = src_addr;
2800 			/*
2801 			 * Copy of the src addr. in tcp_t is needed
2802 			 * for the lookup funcs.
2803 			 */
2804 			tcp->tcp_ip_src_v6 = src_addr;
2805 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2806 			    &connp->conn_srcv6));
2807 		}
2808 		tcp->tcp_localnet =
2809 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2810 	}
2811 
2812 	/*
2813 	 * This allows applications to fail quickly when connections are made
2814 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2815 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2816 	 */
2817 	if ((ire->ire_flags & RTF_REJECT) &&
2818 	    (ire->ire_flags & RTF_PRIVATE))
2819 		goto error;
2820 
2821 	/*
2822 	 * Make use of the cached rtt and rtt_sd values to calculate the
2823 	 * initial RTO.  Note that they are already initialized in
2824 	 * tcp_init_values().
2825 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2826 	 * IP_NEXTHOP, but instead are using the interface ire for the
2827 	 * nexthop, then we do not use the ire_uinfo from that ire to
2828 	 * do any initializations.
2829 	 */
2830 	if (ire_uinfo != NULL) {
2831 		if (ire_uinfo->iulp_rtt != 0) {
2832 			clock_t	rto;
2833 
2834 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2835 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2836 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2837 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2838 
2839 			if (rto > tcp_rexmit_interval_max) {
2840 				tcp->tcp_rto = tcp_rexmit_interval_max;
2841 			} else if (rto < tcp_rexmit_interval_min) {
2842 				tcp->tcp_rto = tcp_rexmit_interval_min;
2843 			} else {
2844 				tcp->tcp_rto = rto;
2845 			}
2846 		}
2847 		if (ire_uinfo->iulp_ssthresh != 0)
2848 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2849 		else
2850 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2851 		if (ire_uinfo->iulp_spipe > 0) {
2852 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2853 			    tcp_max_buf);
2854 			if (tcp_snd_lowat_fraction != 0)
2855 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2856 				    tcp_snd_lowat_fraction;
2857 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2858 		}
2859 		/*
2860 		 * Note that up till now, acceptor always inherits receive
2861 		 * window from the listener.  But if there is a metrics
2862 		 * associated with a host, we should use that instead of
2863 		 * inheriting it from listener. Thus we need to pass this
2864 		 * info back to the caller.
2865 		 */
2866 		if (ire_uinfo->iulp_rpipe > 0) {
2867 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2868 		}
2869 
2870 		if (ire_uinfo->iulp_rtomax > 0) {
2871 			tcp->tcp_second_timer_threshold =
2872 			    ire_uinfo->iulp_rtomax;
2873 		}
2874 
2875 		/*
2876 		 * Use the metric option settings, iulp_tstamp_ok and
2877 		 * iulp_wscale_ok, only for active open. What this means
2878 		 * is that if the other side uses timestamp or window
2879 		 * scale option, TCP will also use those options. That
2880 		 * is for passive open.  If the application sets a
2881 		 * large window, window scale is enabled regardless of
2882 		 * the value in iulp_wscale_ok.  This is the behavior
2883 		 * since 2.6.  So we keep it.
2884 		 * The only case left in passive open processing is the
2885 		 * check for SACK.
2886 		 * For ECN, it should probably be like SACK.  But the
2887 		 * current value is binary, so we treat it like the other
2888 		 * cases.  The metric only controls active open.For passive
2889 		 * open, the ndd param, tcp_ecn_permitted, controls the
2890 		 * behavior.
2891 		 */
2892 		if (!tcp_detached) {
2893 			/*
2894 			 * The if check means that the following can only
2895 			 * be turned on by the metrics only IRE, but not off.
2896 			 */
2897 			if (ire_uinfo->iulp_tstamp_ok)
2898 				tcp->tcp_snd_ts_ok = B_TRUE;
2899 			if (ire_uinfo->iulp_wscale_ok)
2900 				tcp->tcp_snd_ws_ok = B_TRUE;
2901 			if (ire_uinfo->iulp_sack == 2)
2902 				tcp->tcp_snd_sack_ok = B_TRUE;
2903 			if (ire_uinfo->iulp_ecn_ok)
2904 				tcp->tcp_ecn_ok = B_TRUE;
2905 		} else {
2906 			/*
2907 			 * Passive open.
2908 			 *
2909 			 * As above, the if check means that SACK can only be
2910 			 * turned on by the metric only IRE.
2911 			 */
2912 			if (ire_uinfo->iulp_sack > 0) {
2913 				tcp->tcp_snd_sack_ok = B_TRUE;
2914 			}
2915 		}
2916 	}
2917 
2918 
2919 	/*
2920 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2921 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2922 	 * length of all those options exceeds 28 bytes.  But because
2923 	 * of the tcp_mss_min check below, we may not have a problem if
2924 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2925 	 * the negative problem still exists.  And the check defeats PMTUd.
2926 	 * In fact, if PMTUd finds that the MSS should be smaller than
2927 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2928 	 * value.
2929 	 *
2930 	 * We do not deal with that now.  All those problems related to
2931 	 * PMTUd will be fixed later.
2932 	 */
2933 	ASSERT(ire->ire_max_frag != 0);
2934 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2935 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2936 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2937 			mss = MIN(mss, IPV6_MIN_MTU);
2938 		}
2939 	}
2940 
2941 	/* Sanity check for MSS value. */
2942 	if (tcp->tcp_ipversion == IPV4_VERSION)
2943 		mss_max = tcp_mss_max_ipv4;
2944 	else
2945 		mss_max = tcp_mss_max_ipv6;
2946 
2947 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2948 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2949 		/*
2950 		 * After receiving an ICMPv6 "packet too big" message with a
2951 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2952 		 * will insert a 8-byte fragment header in every packet; we
2953 		 * reduce the MSS by that amount here.
2954 		 */
2955 		mss -= sizeof (ip6_frag_t);
2956 	}
2957 
2958 	if (tcp->tcp_ipsec_overhead == 0)
2959 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2960 
2961 	mss -= tcp->tcp_ipsec_overhead;
2962 
2963 	if (mss < tcp_mss_min)
2964 		mss = tcp_mss_min;
2965 	if (mss > mss_max)
2966 		mss = mss_max;
2967 
2968 	/* Note that this is the maximum MSS, excluding all options. */
2969 	tcp->tcp_mss = mss;
2970 
2971 	/*
2972 	 * Initialize the ISS here now that we have the full connection ID.
2973 	 * The RFC 1948 method of initial sequence number generation requires
2974 	 * knowledge of the full connection ID before setting the ISS.
2975 	 */
2976 
2977 	tcp_iss_init(tcp);
2978 
2979 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2980 		tcp->tcp_loopback = B_TRUE;
2981 
2982 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2983 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2984 	} else {
2985 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2986 	}
2987 
2988 	if (hsp != NULL) {
2989 		/* Only modify if we're going to make them bigger */
2990 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2991 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2992 			if (tcp_snd_lowat_fraction != 0)
2993 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2994 					tcp_snd_lowat_fraction;
2995 		}
2996 
2997 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2998 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2999 		}
3000 
3001 		/* Copy timestamp flag only for active open */
3002 		if (!tcp_detached)
3003 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
3004 	}
3005 
3006 	if (sire != NULL)
3007 		IRE_REFRELE(sire);
3008 
3009 	/*
3010 	 * If we got an IRE_CACHE and an ILL, go through their properties;
3011 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
3012 	 */
3013 	if (tcp->tcp_loopback ||
3014 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
3015 		/*
3016 		 * For incoming, see if this tcp may be MDT-capable.  For
3017 		 * outgoing, this process has been taken care of through
3018 		 * tcp_rput_other.
3019 		 */
3020 		tcp_ire_ill_check(tcp, ire, ill, incoming);
3021 		tcp->tcp_ire_ill_check_done = B_TRUE;
3022 	}
3023 
3024 	mutex_enter(&connp->conn_lock);
3025 	/*
3026 	 * Make sure that conn is not marked incipient
3027 	 * for incoming connections. A blind
3028 	 * removal of incipient flag is cheaper than
3029 	 * check and removal.
3030 	 */
3031 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3032 
3033 	/* Must not cache forwarding table routes. */
3034 	if (ire_cacheable) {
3035 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3036 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3037 			connp->conn_ire_cache = ire;
3038 			IRE_UNTRACE_REF(ire);
3039 			rw_exit(&ire->ire_bucket->irb_lock);
3040 			mutex_exit(&connp->conn_lock);
3041 			return (1);
3042 		}
3043 		rw_exit(&ire->ire_bucket->irb_lock);
3044 	}
3045 	mutex_exit(&connp->conn_lock);
3046 
3047 	if (ire->ire_mp == NULL)
3048 		ire_refrele(ire);
3049 	return (1);
3050 
3051 error:
3052 	if (ire->ire_mp == NULL)
3053 		ire_refrele(ire);
3054 	if (sire != NULL)
3055 		ire_refrele(sire);
3056 	return (0);
3057 }
3058 
3059 /*
3060  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
3061  * O_T_BIND_REQ/T_BIND_REQ message.
3062  */
3063 static void
3064 tcp_bind(tcp_t *tcp, mblk_t *mp)
3065 {
3066 	sin_t	*sin;
3067 	sin6_t	*sin6;
3068 	mblk_t	*mp1;
3069 	in_port_t requested_port;
3070 	in_port_t allocated_port;
3071 	struct T_bind_req *tbr;
3072 	boolean_t	bind_to_req_port_only;
3073 	boolean_t	backlog_update = B_FALSE;
3074 	boolean_t	user_specified;
3075 	in6_addr_t	v6addr;
3076 	ipaddr_t	v4addr;
3077 	uint_t	origipversion;
3078 	int	err;
3079 	queue_t *q = tcp->tcp_wq;
3080 	conn_t	*connp;
3081 	mlp_type_t addrtype, mlptype;
3082 	zone_t	*zone;
3083 	cred_t	*cr;
3084 	in_port_t mlp_port;
3085 
3086 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3087 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3088 		if (tcp->tcp_debug) {
3089 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3090 			    "tcp_bind: bad req, len %u",
3091 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3092 		}
3093 		tcp_err_ack(tcp, mp, TPROTO, 0);
3094 		return;
3095 	}
3096 	/* Make sure the largest address fits */
3097 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3098 	if (mp1 == NULL) {
3099 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3100 		return;
3101 	}
3102 	mp = mp1;
3103 	tbr = (struct T_bind_req *)mp->b_rptr;
3104 	if (tcp->tcp_state >= TCPS_BOUND) {
3105 		if ((tcp->tcp_state == TCPS_BOUND ||
3106 		    tcp->tcp_state == TCPS_LISTEN) &&
3107 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3108 		    tbr->CONIND_number > 0) {
3109 			/*
3110 			 * Handle listen() increasing CONIND_number.
3111 			 * This is more "liberal" then what the TPI spec
3112 			 * requires but is needed to avoid a t_unbind
3113 			 * when handling listen() since the port number
3114 			 * might be "stolen" between the unbind and bind.
3115 			 */
3116 			backlog_update = B_TRUE;
3117 			goto do_bind;
3118 		}
3119 		if (tcp->tcp_debug) {
3120 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3121 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3122 		}
3123 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3124 		return;
3125 	}
3126 	origipversion = tcp->tcp_ipversion;
3127 
3128 	switch (tbr->ADDR_length) {
3129 	case 0:			/* request for a generic port */
3130 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3131 		if (tcp->tcp_family == AF_INET) {
3132 			tbr->ADDR_length = sizeof (sin_t);
3133 			sin = (sin_t *)&tbr[1];
3134 			*sin = sin_null;
3135 			sin->sin_family = AF_INET;
3136 			mp->b_wptr = (uchar_t *)&sin[1];
3137 			tcp->tcp_ipversion = IPV4_VERSION;
3138 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3139 		} else {
3140 			ASSERT(tcp->tcp_family == AF_INET6);
3141 			tbr->ADDR_length = sizeof (sin6_t);
3142 			sin6 = (sin6_t *)&tbr[1];
3143 			*sin6 = sin6_null;
3144 			sin6->sin6_family = AF_INET6;
3145 			mp->b_wptr = (uchar_t *)&sin6[1];
3146 			tcp->tcp_ipversion = IPV6_VERSION;
3147 			V6_SET_ZERO(v6addr);
3148 		}
3149 		requested_port = 0;
3150 		break;
3151 
3152 	case sizeof (sin_t):	/* Complete IPv4 address */
3153 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3154 		    sizeof (sin_t));
3155 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3156 			if (tcp->tcp_debug) {
3157 				(void) strlog(TCP_MOD_ID, 0, 1,
3158 				    SL_ERROR|SL_TRACE,
3159 				    "tcp_bind: bad address parameter, "
3160 				    "offset %d, len %d",
3161 				    tbr->ADDR_offset, tbr->ADDR_length);
3162 			}
3163 			tcp_err_ack(tcp, mp, TPROTO, 0);
3164 			return;
3165 		}
3166 		/*
3167 		 * With sockets sockfs will accept bogus sin_family in
3168 		 * bind() and replace it with the family used in the socket
3169 		 * call.
3170 		 */
3171 		if (sin->sin_family != AF_INET ||
3172 		    tcp->tcp_family != AF_INET) {
3173 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3174 			return;
3175 		}
3176 		requested_port = ntohs(sin->sin_port);
3177 		tcp->tcp_ipversion = IPV4_VERSION;
3178 		v4addr = sin->sin_addr.s_addr;
3179 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3180 		break;
3181 
3182 	case sizeof (sin6_t): /* Complete IPv6 address */
3183 		sin6 = (sin6_t *)mi_offset_param(mp,
3184 		    tbr->ADDR_offset, sizeof (sin6_t));
3185 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3186 			if (tcp->tcp_debug) {
3187 				(void) strlog(TCP_MOD_ID, 0, 1,
3188 				    SL_ERROR|SL_TRACE,
3189 				    "tcp_bind: bad IPv6 address parameter, "
3190 				    "offset %d, len %d", tbr->ADDR_offset,
3191 				    tbr->ADDR_length);
3192 			}
3193 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3194 			return;
3195 		}
3196 		if (sin6->sin6_family != AF_INET6 ||
3197 		    tcp->tcp_family != AF_INET6) {
3198 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3199 			return;
3200 		}
3201 		requested_port = ntohs(sin6->sin6_port);
3202 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3203 		    IPV4_VERSION : IPV6_VERSION;
3204 		v6addr = sin6->sin6_addr;
3205 		break;
3206 
3207 	default:
3208 		if (tcp->tcp_debug) {
3209 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3210 			    "tcp_bind: bad address length, %d",
3211 			    tbr->ADDR_length);
3212 		}
3213 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3214 		return;
3215 	}
3216 	tcp->tcp_bound_source_v6 = v6addr;
3217 
3218 	/* Check for change in ipversion */
3219 	if (origipversion != tcp->tcp_ipversion) {
3220 		ASSERT(tcp->tcp_family == AF_INET6);
3221 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3222 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3223 		if (err) {
3224 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3225 			return;
3226 		}
3227 	}
3228 
3229 	/*
3230 	 * Initialize family specific fields. Copy of the src addr.
3231 	 * in tcp_t is needed for the lookup funcs.
3232 	 */
3233 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3234 		tcp->tcp_ip6h->ip6_src = v6addr;
3235 	} else {
3236 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3237 	}
3238 	tcp->tcp_ip_src_v6 = v6addr;
3239 
3240 	/*
3241 	 * For O_T_BIND_REQ:
3242 	 * Verify that the target port/addr is available, or choose
3243 	 * another.
3244 	 * For  T_BIND_REQ:
3245 	 * Verify that the target port/addr is available or fail.
3246 	 * In both cases when it succeeds the tcp is inserted in the
3247 	 * bind hash table. This ensures that the operation is atomic
3248 	 * under the lock on the hash bucket.
3249 	 */
3250 	bind_to_req_port_only = requested_port != 0 &&
3251 	    tbr->PRIM_type != O_T_BIND_REQ;
3252 	/*
3253 	 * Get a valid port (within the anonymous range and should not
3254 	 * be a privileged one) to use if the user has not given a port.
3255 	 * If multiple threads are here, they may all start with
3256 	 * with the same initial port. But, it should be fine as long as
3257 	 * tcp_bindi will ensure that no two threads will be assigned
3258 	 * the same port.
3259 	 *
3260 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3261 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3262 	 * unless TCP_ANONPRIVBIND option is set.
3263 	 */
3264 	mlptype = mlptSingle;
3265 	mlp_port = requested_port;
3266 	if (requested_port == 0) {
3267 		requested_port = tcp->tcp_anon_priv_bind ?
3268 		    tcp_get_next_priv_port(tcp) :
3269 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3270 		if (requested_port == 0) {
3271 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3272 			return;
3273 		}
3274 		user_specified = B_FALSE;
3275 
3276 		/*
3277 		 * If the user went through one of the RPC interfaces to create
3278 		 * this socket and RPC is MLP in this zone, then give him an
3279 		 * anonymous MLP.
3280 		 */
3281 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3282 		connp = tcp->tcp_connp;
3283 		if (connp->conn_anon_mlp && is_system_labeled()) {
3284 			zone = crgetzone(cr);
3285 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3286 			    IPV6_VERSION, &v6addr);
3287 			if (addrtype == mlptSingle) {
3288 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3289 				return;
3290 			}
3291 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3292 			    PMAPPORT, addrtype);
3293 			mlp_port = PMAPPORT;
3294 		}
3295 	} else {
3296 		int i;
3297 		boolean_t priv = B_FALSE;
3298 
3299 		/*
3300 		 * If the requested_port is in the well-known privileged range,
3301 		 * verify that the stream was opened by a privileged user.
3302 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3303 		 * but instead the code relies on:
3304 		 * - the fact that the address of the array and its size never
3305 		 *   changes
3306 		 * - the atomic assignment of the elements of the array
3307 		 */
3308 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3309 		if (requested_port < tcp_smallest_nonpriv_port) {
3310 			priv = B_TRUE;
3311 		} else {
3312 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3313 				if (requested_port ==
3314 				    tcp_g_epriv_ports[i]) {
3315 					priv = B_TRUE;
3316 					break;
3317 				}
3318 			}
3319 		}
3320 		if (priv) {
3321 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3322 				if (tcp->tcp_debug) {
3323 					(void) strlog(TCP_MOD_ID, 0, 1,
3324 					    SL_ERROR|SL_TRACE,
3325 					    "tcp_bind: no priv for port %d",
3326 					    requested_port);
3327 				}
3328 				tcp_err_ack(tcp, mp, TACCES, 0);
3329 				return;
3330 			}
3331 		}
3332 		user_specified = B_TRUE;
3333 
3334 		connp = tcp->tcp_connp;
3335 		if (is_system_labeled()) {
3336 			zone = crgetzone(cr);
3337 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3338 			    IPV6_VERSION, &v6addr);
3339 			if (addrtype == mlptSingle) {
3340 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3341 				return;
3342 			}
3343 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3344 			    requested_port, addrtype);
3345 		}
3346 	}
3347 
3348 	if (mlptype != mlptSingle) {
3349 		if (secpolicy_net_bindmlp(cr) != 0) {
3350 			if (tcp->tcp_debug) {
3351 				(void) strlog(TCP_MOD_ID, 0, 1,
3352 				    SL_ERROR|SL_TRACE,
3353 				    "tcp_bind: no priv for multilevel port %d",
3354 				    requested_port);
3355 			}
3356 			tcp_err_ack(tcp, mp, TACCES, 0);
3357 			return;
3358 		}
3359 
3360 		/*
3361 		 * If we're specifically binding a shared IP address and the
3362 		 * port is MLP on shared addresses, then check to see if this
3363 		 * zone actually owns the MLP.  Reject if not.
3364 		 */
3365 		if (mlptype == mlptShared && addrtype == mlptShared) {
3366 			zoneid_t mlpzone;
3367 
3368 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3369 			    htons(mlp_port));
3370 			if (connp->conn_zoneid != mlpzone) {
3371 				if (tcp->tcp_debug) {
3372 					(void) strlog(TCP_MOD_ID, 0, 1,
3373 					    SL_ERROR|SL_TRACE,
3374 					    "tcp_bind: attempt to bind port "
3375 					    "%d on shared addr in zone %d "
3376 					    "(should be %d)",
3377 					    mlp_port, connp->conn_zoneid,
3378 					    mlpzone);
3379 				}
3380 				tcp_err_ack(tcp, mp, TACCES, 0);
3381 				return;
3382 			}
3383 		}
3384 
3385 		if (!user_specified) {
3386 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3387 			    requested_port, B_TRUE);
3388 			if (err != 0) {
3389 				if (tcp->tcp_debug) {
3390 					(void) strlog(TCP_MOD_ID, 0, 1,
3391 					    SL_ERROR|SL_TRACE,
3392 					    "tcp_bind: cannot establish anon "
3393 					    "MLP for port %d",
3394 					    requested_port);
3395 				}
3396 				tcp_err_ack(tcp, mp, TSYSERR, err);
3397 				return;
3398 			}
3399 			connp->conn_anon_port = B_TRUE;
3400 		}
3401 		connp->conn_mlp_type = mlptype;
3402 	}
3403 
3404 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3405 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3406 
3407 	if (allocated_port == 0) {
3408 		connp->conn_mlp_type = mlptSingle;
3409 		if (connp->conn_anon_port) {
3410 			connp->conn_anon_port = B_FALSE;
3411 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3412 			    requested_port, B_FALSE);
3413 		}
3414 		if (bind_to_req_port_only) {
3415 			if (tcp->tcp_debug) {
3416 				(void) strlog(TCP_MOD_ID, 0, 1,
3417 				    SL_ERROR|SL_TRACE,
3418 				    "tcp_bind: requested addr busy");
3419 			}
3420 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3421 		} else {
3422 			/* If we are out of ports, fail the bind. */
3423 			if (tcp->tcp_debug) {
3424 				(void) strlog(TCP_MOD_ID, 0, 1,
3425 				    SL_ERROR|SL_TRACE,
3426 				    "tcp_bind: out of ports?");
3427 			}
3428 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3429 		}
3430 		return;
3431 	}
3432 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3433 do_bind:
3434 	if (!backlog_update) {
3435 		if (tcp->tcp_family == AF_INET)
3436 			sin->sin_port = htons(allocated_port);
3437 		else
3438 			sin6->sin6_port = htons(allocated_port);
3439 	}
3440 	if (tcp->tcp_family == AF_INET) {
3441 		if (tbr->CONIND_number != 0) {
3442 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3443 			    sizeof (sin_t));
3444 		} else {
3445 			/* Just verify the local IP address */
3446 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3447 		}
3448 	} else {
3449 		if (tbr->CONIND_number != 0) {
3450 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3451 			    sizeof (sin6_t));
3452 		} else {
3453 			/* Just verify the local IP address */
3454 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3455 			    IPV6_ADDR_LEN);
3456 		}
3457 	}
3458 	if (mp1 == NULL) {
3459 		if (connp->conn_anon_port) {
3460 			connp->conn_anon_port = B_FALSE;
3461 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3462 			    requested_port, B_FALSE);
3463 		}
3464 		connp->conn_mlp_type = mlptSingle;
3465 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3466 		return;
3467 	}
3468 
3469 	tbr->PRIM_type = T_BIND_ACK;
3470 	mp->b_datap->db_type = M_PCPROTO;
3471 
3472 	/* Chain in the reply mp for tcp_rput() */
3473 	mp1->b_cont = mp;
3474 	mp = mp1;
3475 
3476 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3477 	if (tcp->tcp_conn_req_max) {
3478 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3479 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3480 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3481 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3482 		/*
3483 		 * If this is a listener, do not reset the eager list
3484 		 * and other stuffs.  Note that we don't check if the
3485 		 * existing eager list meets the new tcp_conn_req_max
3486 		 * requirement.
3487 		 */
3488 		if (tcp->tcp_state != TCPS_LISTEN) {
3489 			tcp->tcp_state = TCPS_LISTEN;
3490 			/* Initialize the chain. Don't need the eager_lock */
3491 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3492 			tcp->tcp_eager_next_drop_q0 = tcp;
3493 			tcp->tcp_eager_prev_drop_q0 = tcp;
3494 			tcp->tcp_second_ctimer_threshold =
3495 			    tcp_ip_abort_linterval;
3496 		}
3497 	}
3498 
3499 	/*
3500 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3501 	 * processing continues in tcp_rput_other().
3502 	 */
3503 	if (tcp->tcp_family == AF_INET6) {
3504 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3505 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3506 	} else {
3507 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3508 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3509 	}
3510 	/*
3511 	 * If the bind cannot complete immediately
3512 	 * IP will arrange to call tcp_rput_other
3513 	 * when the bind completes.
3514 	 */
3515 	if (mp != NULL) {
3516 		tcp_rput_other(tcp, mp);
3517 	} else {
3518 		/*
3519 		 * Bind will be resumed later. Need to ensure
3520 		 * that conn doesn't disappear when that happens.
3521 		 * This will be decremented in ip_resume_tcp_bind().
3522 		 */
3523 		CONN_INC_REF(tcp->tcp_connp);
3524 	}
3525 }
3526 
3527 
3528 /*
3529  * If the "bind_to_req_port_only" parameter is set, if the requested port
3530  * number is available, return it, If not return 0
3531  *
3532  * If "bind_to_req_port_only" parameter is not set and
3533  * If the requested port number is available, return it.  If not, return
3534  * the first anonymous port we happen across.  If no anonymous ports are
3535  * available, return 0. addr is the requested local address, if any.
3536  *
3537  * In either case, when succeeding update the tcp_t to record the port number
3538  * and insert it in the bind hash table.
3539  *
3540  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3541  * without setting SO_REUSEADDR. This is needed so that they
3542  * can be viewed as two independent transport protocols.
3543  */
3544 static in_port_t
3545 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3546     int reuseaddr, boolean_t quick_connect,
3547     boolean_t bind_to_req_port_only, boolean_t user_specified)
3548 {
3549 	/* number of times we have run around the loop */
3550 	int count = 0;
3551 	/* maximum number of times to run around the loop */
3552 	int loopmax;
3553 	conn_t *connp = tcp->tcp_connp;
3554 	zoneid_t zoneid = connp->conn_zoneid;
3555 
3556 	/*
3557 	 * Lookup for free addresses is done in a loop and "loopmax"
3558 	 * influences how long we spin in the loop
3559 	 */
3560 	if (bind_to_req_port_only) {
3561 		/*
3562 		 * If the requested port is busy, don't bother to look
3563 		 * for a new one. Setting loop maximum count to 1 has
3564 		 * that effect.
3565 		 */
3566 		loopmax = 1;
3567 	} else {
3568 		/*
3569 		 * If the requested port is busy, look for a free one
3570 		 * in the anonymous port range.
3571 		 * Set loopmax appropriately so that one does not look
3572 		 * forever in the case all of the anonymous ports are in use.
3573 		 */
3574 		if (tcp->tcp_anon_priv_bind) {
3575 			/*
3576 			 * loopmax =
3577 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3578 			 */
3579 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3580 		} else {
3581 			loopmax = (tcp_largest_anon_port -
3582 			    tcp_smallest_anon_port + 1);
3583 		}
3584 	}
3585 	do {
3586 		uint16_t	lport;
3587 		tf_t		*tbf;
3588 		tcp_t		*ltcp;
3589 		conn_t		*lconnp;
3590 
3591 		lport = htons(port);
3592 
3593 		/*
3594 		 * Ensure that the tcp_t is not currently in the bind hash.
3595 		 * Hold the lock on the hash bucket to ensure that
3596 		 * the duplicate check plus the insertion is an atomic
3597 		 * operation.
3598 		 *
3599 		 * This function does an inline lookup on the bind hash list
3600 		 * Make sure that we access only members of tcp_t
3601 		 * and that we don't look at tcp_tcp, since we are not
3602 		 * doing a CONN_INC_REF.
3603 		 */
3604 		tcp_bind_hash_remove(tcp);
3605 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3606 		mutex_enter(&tbf->tf_lock);
3607 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3608 		    ltcp = ltcp->tcp_bind_hash) {
3609 			boolean_t not_socket;
3610 			boolean_t exclbind;
3611 
3612 			if (lport != ltcp->tcp_lport)
3613 				continue;
3614 
3615 			lconnp = ltcp->tcp_connp;
3616 
3617 			/*
3618 			 * On a labeled system, we must treat bindings to ports
3619 			 * on shared IP addresses by sockets with MAC exemption
3620 			 * privilege as being in all zones, as there's
3621 			 * otherwise no way to identify the right receiver.
3622 			 */
3623 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3624 			    !lconnp->conn_mac_exempt &&
3625 			    !connp->conn_mac_exempt)
3626 				continue;
3627 
3628 			/*
3629 			 * If TCP_EXCLBIND is set for either the bound or
3630 			 * binding endpoint, the semantics of bind
3631 			 * is changed according to the following.
3632 			 *
3633 			 * spec = specified address (v4 or v6)
3634 			 * unspec = unspecified address (v4 or v6)
3635 			 * A = specified addresses are different for endpoints
3636 			 *
3637 			 * bound	bind to		allowed
3638 			 * -------------------------------------
3639 			 * unspec	unspec		no
3640 			 * unspec	spec		no
3641 			 * spec		unspec		no
3642 			 * spec		spec		yes if A
3643 			 *
3644 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3645 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3646 			 *
3647 			 * Note:
3648 			 *
3649 			 * 1. Because of TLI semantics, an endpoint can go
3650 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3651 			 * TCPS_BOUND, depending on whether it is originally
3652 			 * a listener or not.  That is why we need to check
3653 			 * for states greater than or equal to TCPS_BOUND
3654 			 * here.
3655 			 *
3656 			 * 2. Ideally, we should only check for state equals
3657 			 * to TCPS_LISTEN. And the following check should be
3658 			 * added.
3659 			 *
3660 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3661 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3662 			 *		...
3663 			 * }
3664 			 *
3665 			 * The semantics will be changed to this.  If the
3666 			 * endpoint on the list is in state not equal to
3667 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3668 			 * set, let the bind succeed.
3669 			 *
3670 			 * Because of (1), we cannot do that for TLI
3671 			 * endpoints.  But we can do that for socket endpoints.
3672 			 * If in future, we can change this going back
3673 			 * semantics, we can use the above check for TLI also.
3674 			 */
3675 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3676 			    TCP_IS_SOCKET(tcp));
3677 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3678 
3679 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3680 			    (exclbind && (not_socket ||
3681 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3682 				if (V6_OR_V4_INADDR_ANY(
3683 				    ltcp->tcp_bound_source_v6) ||
3684 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3685 				    IN6_ARE_ADDR_EQUAL(laddr,
3686 				    &ltcp->tcp_bound_source_v6)) {
3687 					break;
3688 				}
3689 				continue;
3690 			}
3691 
3692 			/*
3693 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3694 			 * have disjoint port number spaces, if *_EXCLBIND
3695 			 * is not set and only if the application binds to a
3696 			 * specific port. We use the same autoassigned port
3697 			 * number space for IPv4 and IPv6 sockets.
3698 			 */
3699 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3700 			    bind_to_req_port_only)
3701 				continue;
3702 
3703 			/*
3704 			 * Ideally, we should make sure that the source
3705 			 * address, remote address, and remote port in the
3706 			 * four tuple for this tcp-connection is unique.
3707 			 * However, trying to find out the local source
3708 			 * address would require too much code duplication
3709 			 * with IP, since IP needs needs to have that code
3710 			 * to support userland TCP implementations.
3711 			 */
3712 			if (quick_connect &&
3713 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3714 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3715 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3716 				    &ltcp->tcp_remote_v6)))
3717 				continue;
3718 
3719 			if (!reuseaddr) {
3720 				/*
3721 				 * No socket option SO_REUSEADDR.
3722 				 * If existing port is bound to
3723 				 * a non-wildcard IP address
3724 				 * and the requesting stream is
3725 				 * bound to a distinct
3726 				 * different IP addresses
3727 				 * (non-wildcard, also), keep
3728 				 * going.
3729 				 */
3730 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3731 				    !V6_OR_V4_INADDR_ANY(
3732 				    ltcp->tcp_bound_source_v6) &&
3733 				    !IN6_ARE_ADDR_EQUAL(laddr,
3734 					&ltcp->tcp_bound_source_v6))
3735 					continue;
3736 				if (ltcp->tcp_state >= TCPS_BOUND) {
3737 					/*
3738 					 * This port is being used and
3739 					 * its state is >= TCPS_BOUND,
3740 					 * so we can't bind to it.
3741 					 */
3742 					break;
3743 				}
3744 			} else {
3745 				/*
3746 				 * socket option SO_REUSEADDR is set on the
3747 				 * binding tcp_t.
3748 				 *
3749 				 * If two streams are bound to
3750 				 * same IP address or both addr
3751 				 * and bound source are wildcards
3752 				 * (INADDR_ANY), we want to stop
3753 				 * searching.
3754 				 * We have found a match of IP source
3755 				 * address and source port, which is
3756 				 * refused regardless of the
3757 				 * SO_REUSEADDR setting, so we break.
3758 				 */
3759 				if (IN6_ARE_ADDR_EQUAL(laddr,
3760 				    &ltcp->tcp_bound_source_v6) &&
3761 				    (ltcp->tcp_state == TCPS_LISTEN ||
3762 					ltcp->tcp_state == TCPS_BOUND))
3763 					break;
3764 			}
3765 		}
3766 		if (ltcp != NULL) {
3767 			/* The port number is busy */
3768 			mutex_exit(&tbf->tf_lock);
3769 		} else {
3770 			/*
3771 			 * This port is ours. Insert in fanout and mark as
3772 			 * bound to prevent others from getting the port
3773 			 * number.
3774 			 */
3775 			tcp->tcp_state = TCPS_BOUND;
3776 			tcp->tcp_lport = htons(port);
3777 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3778 
3779 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3780 			    tcp->tcp_lport)] == tbf);
3781 			tcp_bind_hash_insert(tbf, tcp, 1);
3782 
3783 			mutex_exit(&tbf->tf_lock);
3784 
3785 			/*
3786 			 * We don't want tcp_next_port_to_try to "inherit"
3787 			 * a port number supplied by the user in a bind.
3788 			 */
3789 			if (user_specified)
3790 				return (port);
3791 
3792 			/*
3793 			 * This is the only place where tcp_next_port_to_try
3794 			 * is updated. After the update, it may or may not
3795 			 * be in the valid range.
3796 			 */
3797 			if (!tcp->tcp_anon_priv_bind)
3798 				tcp_next_port_to_try = port + 1;
3799 			return (port);
3800 		}
3801 
3802 		if (tcp->tcp_anon_priv_bind) {
3803 			port = tcp_get_next_priv_port(tcp);
3804 		} else {
3805 			if (count == 0 && user_specified) {
3806 				/*
3807 				 * We may have to return an anonymous port. So
3808 				 * get one to start with.
3809 				 */
3810 				port =
3811 				    tcp_update_next_port(tcp_next_port_to_try,
3812 					tcp, B_TRUE);
3813 				user_specified = B_FALSE;
3814 			} else {
3815 				port = tcp_update_next_port(port + 1, tcp,
3816 				    B_FALSE);
3817 			}
3818 		}
3819 		if (port == 0)
3820 			break;
3821 
3822 		/*
3823 		 * Don't let this loop run forever in the case where
3824 		 * all of the anonymous ports are in use.
3825 		 */
3826 	} while (++count < loopmax);
3827 	return (0);
3828 }
3829 
3830 /*
3831  * tcp_clean_death / tcp_close_detached must not be called more than once
3832  * on a tcp. Thus every function that potentially calls tcp_clean_death
3833  * must check for the tcp state before calling tcp_clean_death.
3834  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3835  * tcp_timer_handler, all check for the tcp state.
3836  */
3837 /* ARGSUSED */
3838 void
3839 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3840 {
3841 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3842 
3843 	freemsg(mp);
3844 	if (tcp->tcp_state > TCPS_BOUND)
3845 	    (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5);
3846 }
3847 
3848 /*
3849  * We are dying for some reason.  Try to do it gracefully.  (May be called
3850  * as writer.)
3851  *
3852  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3853  * done by a service procedure).
3854  * TBD - Should the return value distinguish between the tcp_t being
3855  * freed and it being reinitialized?
3856  */
3857 static int
3858 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3859 {
3860 	mblk_t	*mp;
3861 	queue_t	*q;
3862 
3863 	TCP_CLD_STAT(tag);
3864 
3865 #if TCP_TAG_CLEAN_DEATH
3866 	tcp->tcp_cleandeathtag = tag;
3867 #endif
3868 
3869 	if (tcp->tcp_fused)
3870 		tcp_unfuse(tcp);
3871 
3872 	if (tcp->tcp_linger_tid != 0 &&
3873 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3874 		tcp_stop_lingering(tcp);
3875 	}
3876 
3877 	ASSERT(tcp != NULL);
3878 	ASSERT((tcp->tcp_family == AF_INET &&
3879 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3880 	    (tcp->tcp_family == AF_INET6 &&
3881 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3882 	    tcp->tcp_ipversion == IPV6_VERSION)));
3883 
3884 	if (TCP_IS_DETACHED(tcp)) {
3885 		if (tcp->tcp_hard_binding) {
3886 			/*
3887 			 * Its an eager that we are dealing with. We close the
3888 			 * eager but in case a conn_ind has already gone to the
3889 			 * listener, let tcp_accept_finish() send a discon_ind
3890 			 * to the listener and drop the last reference. If the
3891 			 * listener doesn't even know about the eager i.e. the
3892 			 * conn_ind hasn't gone up, blow away the eager and drop
3893 			 * the last reference as well. If the conn_ind has gone
3894 			 * up, state should be BOUND. tcp_accept_finish
3895 			 * will figure out that the connection has received a
3896 			 * RST and will send a DISCON_IND to the application.
3897 			 */
3898 			tcp_closei_local(tcp);
3899 			if (!tcp->tcp_tconnind_started) {
3900 				CONN_DEC_REF(tcp->tcp_connp);
3901 			} else {
3902 				tcp->tcp_state = TCPS_BOUND;
3903 			}
3904 		} else {
3905 			tcp_close_detached(tcp);
3906 		}
3907 		return (0);
3908 	}
3909 
3910 	TCP_STAT(tcp_clean_death_nondetached);
3911 
3912 	/*
3913 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3914 	 * is run) postpone cleaning up the endpoint until service routine
3915 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3916 	 * client_errno since tcp_close uses the client_errno field.
3917 	 */
3918 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3919 		if (err != 0)
3920 			tcp->tcp_client_errno = err;
3921 
3922 		tcp->tcp_deferred_clean_death = B_TRUE;
3923 		return (-1);
3924 	}
3925 
3926 	q = tcp->tcp_rq;
3927 
3928 	/* Trash all inbound data */
3929 	flushq(q, FLUSHALL);
3930 
3931 	/*
3932 	 * If we are at least part way open and there is error
3933 	 * (err==0 implies no error)
3934 	 * notify our client by a T_DISCON_IND.
3935 	 */
3936 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3937 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3938 		    !TCP_IS_SOCKET(tcp)) {
3939 			/*
3940 			 * Send M_FLUSH according to TPI. Because sockets will
3941 			 * (and must) ignore FLUSHR we do that only for TPI
3942 			 * endpoints and sockets in STREAMS mode.
3943 			 */
3944 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3945 		}
3946 		if (tcp->tcp_debug) {
3947 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3948 			    "tcp_clean_death: discon err %d", err);
3949 		}
3950 		mp = mi_tpi_discon_ind(NULL, err, 0);
3951 		if (mp != NULL) {
3952 			putnext(q, mp);
3953 		} else {
3954 			if (tcp->tcp_debug) {
3955 				(void) strlog(TCP_MOD_ID, 0, 1,
3956 				    SL_ERROR|SL_TRACE,
3957 				    "tcp_clean_death, sending M_ERROR");
3958 			}
3959 			(void) putnextctl1(q, M_ERROR, EPROTO);
3960 		}
3961 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3962 			/* SYN_SENT or SYN_RCVD */
3963 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3964 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3965 			/* ESTABLISHED or CLOSE_WAIT */
3966 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3967 		}
3968 	}
3969 
3970 	tcp_reinit(tcp);
3971 	return (-1);
3972 }
3973 
3974 /*
3975  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3976  * to expire, stop the wait and finish the close.
3977  */
3978 static void
3979 tcp_stop_lingering(tcp_t *tcp)
3980 {
3981 	clock_t	delta = 0;
3982 
3983 	tcp->tcp_linger_tid = 0;
3984 	if (tcp->tcp_state > TCPS_LISTEN) {
3985 		tcp_acceptor_hash_remove(tcp);
3986 		if (tcp->tcp_flow_stopped) {
3987 			tcp_clrqfull(tcp);
3988 		}
3989 
3990 		if (tcp->tcp_timer_tid != 0) {
3991 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3992 			tcp->tcp_timer_tid = 0;
3993 		}
3994 		/*
3995 		 * Need to cancel those timers which will not be used when
3996 		 * TCP is detached.  This has to be done before the tcp_wq
3997 		 * is set to the global queue.
3998 		 */
3999 		tcp_timers_stop(tcp);
4000 
4001 
4002 		tcp->tcp_detached = B_TRUE;
4003 		tcp->tcp_rq = tcp_g_q;
4004 		tcp->tcp_wq = WR(tcp_g_q);
4005 
4006 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4007 			tcp_time_wait_append(tcp);
4008 			TCP_DBGSTAT(tcp_detach_time_wait);
4009 			goto finish;
4010 		}
4011 
4012 		/*
4013 		 * If delta is zero the timer event wasn't executed and was
4014 		 * successfully canceled. In this case we need to restart it
4015 		 * with the minimal delta possible.
4016 		 */
4017 		if (delta >= 0) {
4018 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4019 			    delta ? delta : 1);
4020 		}
4021 	} else {
4022 		tcp_closei_local(tcp);
4023 		CONN_DEC_REF(tcp->tcp_connp);
4024 	}
4025 finish:
4026 	/* Signal closing thread that it can complete close */
4027 	mutex_enter(&tcp->tcp_closelock);
4028 	tcp->tcp_detached = B_TRUE;
4029 	tcp->tcp_rq = tcp_g_q;
4030 	tcp->tcp_wq = WR(tcp_g_q);
4031 	tcp->tcp_closed = 1;
4032 	cv_signal(&tcp->tcp_closecv);
4033 	mutex_exit(&tcp->tcp_closelock);
4034 }
4035 
4036 /*
4037  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
4038  * expires.
4039  */
4040 static void
4041 tcp_close_linger_timeout(void *arg)
4042 {
4043 	conn_t	*connp = (conn_t *)arg;
4044 	tcp_t 	*tcp = connp->conn_tcp;
4045 
4046 	tcp->tcp_client_errno = ETIMEDOUT;
4047 	tcp_stop_lingering(tcp);
4048 }
4049 
4050 static int
4051 tcp_close(queue_t *q, int flags)
4052 {
4053 	conn_t		*connp = Q_TO_CONN(q);
4054 	tcp_t		*tcp = connp->conn_tcp;
4055 	mblk_t 		*mp = &tcp->tcp_closemp;
4056 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4057 	boolean_t	linger_interrupted = B_FALSE;
4058 	mblk_t		*bp;
4059 
4060 	ASSERT(WR(q)->q_next == NULL);
4061 	ASSERT(connp->conn_ref >= 2);
4062 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
4063 
4064 	/*
4065 	 * We are being closed as /dev/tcp or /dev/tcp6.
4066 	 *
4067 	 * Mark the conn as closing. ill_pending_mp_add will not
4068 	 * add any mp to the pending mp list, after this conn has
4069 	 * started closing. Same for sq_pending_mp_add
4070 	 */
4071 	mutex_enter(&connp->conn_lock);
4072 	connp->conn_state_flags |= CONN_CLOSING;
4073 	if (connp->conn_oper_pending_ill != NULL)
4074 		conn_ioctl_cleanup_reqd = B_TRUE;
4075 	CONN_INC_REF_LOCKED(connp);
4076 	mutex_exit(&connp->conn_lock);
4077 	tcp->tcp_closeflags = (uint8_t)flags;
4078 	ASSERT(connp->conn_ref >= 3);
4079 
4080 	/*
4081 	 * tcp_closemp_used is used below without any protection of a lock
4082 	 * as we don't expect any one else to use it concurrently at this
4083 	 * point otherwise it would be a major defect, though we do
4084 	 * increment tcp_closemp_used to record any attempt to reuse
4085 	 * tcp_closemp while it is still in use. This would help debugging.
4086 	 */
4087 
4088 	if (mp->b_prev == NULL) {
4089 		tcp->tcp_closemp_used = 1;
4090 	} else {
4091 		tcp->tcp_closemp_used++;
4092 		ASSERT(mp->b_prev == NULL);
4093 	}
4094 
4095 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4096 
4097 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4098 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4099 
4100 	mutex_enter(&tcp->tcp_closelock);
4101 	while (!tcp->tcp_closed) {
4102 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4103 			/*
4104 			 * We got interrupted. Check if we are lingering,
4105 			 * if yes, post a message to stop and wait until
4106 			 * tcp_closed is set. If we aren't lingering,
4107 			 * just go back around.
4108 			 */
4109 			if (tcp->tcp_linger &&
4110 			    tcp->tcp_lingertime > 0 &&
4111 			    !linger_interrupted) {
4112 				mutex_exit(&tcp->tcp_closelock);
4113 				/* Entering squeue, bump ref count. */
4114 				CONN_INC_REF(connp);
4115 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4116 				squeue_enter(connp->conn_sqp, bp,
4117 				    tcp_linger_interrupted, connp,
4118 				    SQTAG_IP_TCP_CLOSE);
4119 				linger_interrupted = B_TRUE;
4120 				mutex_enter(&tcp->tcp_closelock);
4121 			}
4122 		}
4123 	}
4124 	mutex_exit(&tcp->tcp_closelock);
4125 
4126 	/*
4127 	 * In the case of listener streams that have eagers in the q or q0
4128 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4129 	 * tcp_wq of the eagers point to our queues. By waiting for the
4130 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4131 	 * up their queue pointers and also dropped their references to us.
4132 	 */
4133 	if (tcp->tcp_wait_for_eagers) {
4134 		mutex_enter(&connp->conn_lock);
4135 		while (connp->conn_ref != 1) {
4136 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4137 		}
4138 		mutex_exit(&connp->conn_lock);
4139 	}
4140 	/*
4141 	 * ioctl cleanup. The mp is queued in the
4142 	 * ill_pending_mp or in the sq_pending_mp.
4143 	 */
4144 	if (conn_ioctl_cleanup_reqd)
4145 		conn_ioctl_cleanup(connp);
4146 
4147 	qprocsoff(q);
4148 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4149 
4150 	tcp->tcp_cpid = -1;
4151 
4152 	/*
4153 	 * Drop IP's reference on the conn. This is the last reference
4154 	 * on the connp if the state was less than established. If the
4155 	 * connection has gone into timewait state, then we will have
4156 	 * one ref for the TCP and one more ref (total of two) for the
4157 	 * classifier connected hash list (a timewait connections stays
4158 	 * in connected hash till closed).
4159 	 *
4160 	 * We can't assert the references because there might be other
4161 	 * transient reference places because of some walkers or queued
4162 	 * packets in squeue for the timewait state.
4163 	 */
4164 	CONN_DEC_REF(connp);
4165 	q->q_ptr = WR(q)->q_ptr = NULL;
4166 	return (0);
4167 }
4168 
4169 static int
4170 tcpclose_accept(queue_t *q)
4171 {
4172 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4173 
4174 	/*
4175 	 * We had opened an acceptor STREAM for sockfs which is
4176 	 * now being closed due to some error.
4177 	 */
4178 	qprocsoff(q);
4179 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4180 	q->q_ptr = WR(q)->q_ptr = NULL;
4181 	return (0);
4182 }
4183 
4184 /*
4185  * Called by tcp_close() routine via squeue when lingering is
4186  * interrupted by a signal.
4187  */
4188 
4189 /* ARGSUSED */
4190 static void
4191 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4192 {
4193 	conn_t	*connp = (conn_t *)arg;
4194 	tcp_t	*tcp = connp->conn_tcp;
4195 
4196 	freeb(mp);
4197 	if (tcp->tcp_linger_tid != 0 &&
4198 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4199 		tcp_stop_lingering(tcp);
4200 		tcp->tcp_client_errno = EINTR;
4201 	}
4202 }
4203 
4204 /*
4205  * Called by streams close routine via squeues when our client blows off her
4206  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4207  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4208  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4209  * acked.
4210  *
4211  * NOTE: tcp_close potentially returns error when lingering.
4212  * However, the stream head currently does not pass these errors
4213  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4214  * errors to the application (from tsleep()) and not errors
4215  * like ECONNRESET caused by receiving a reset packet.
4216  */
4217 
4218 /* ARGSUSED */
4219 static void
4220 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4221 {
4222 	char	*msg;
4223 	conn_t	*connp = (conn_t *)arg;
4224 	tcp_t	*tcp = connp->conn_tcp;
4225 	clock_t	delta = 0;
4226 
4227 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4228 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4229 
4230 	/* Cancel any pending timeout */
4231 	if (tcp->tcp_ordrelid != 0) {
4232 		if (tcp->tcp_timeout) {
4233 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4234 		}
4235 		tcp->tcp_ordrelid = 0;
4236 		tcp->tcp_timeout = B_FALSE;
4237 	}
4238 
4239 	mutex_enter(&tcp->tcp_eager_lock);
4240 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4241 		/* Cleanup for listener */
4242 		tcp_eager_cleanup(tcp, 0);
4243 		tcp->tcp_wait_for_eagers = 1;
4244 	}
4245 	mutex_exit(&tcp->tcp_eager_lock);
4246 
4247 	connp->conn_mdt_ok = B_FALSE;
4248 	tcp->tcp_mdt = B_FALSE;
4249 
4250 	connp->conn_lso_ok = B_FALSE;
4251 	tcp->tcp_lso = B_FALSE;
4252 
4253 	msg = NULL;
4254 	switch (tcp->tcp_state) {
4255 	case TCPS_CLOSED:
4256 	case TCPS_IDLE:
4257 	case TCPS_BOUND:
4258 	case TCPS_LISTEN:
4259 		break;
4260 	case TCPS_SYN_SENT:
4261 		msg = "tcp_close, during connect";
4262 		break;
4263 	case TCPS_SYN_RCVD:
4264 		/*
4265 		 * Close during the connect 3-way handshake
4266 		 * but here there may or may not be pending data
4267 		 * already on queue. Process almost same as in
4268 		 * the ESTABLISHED state.
4269 		 */
4270 		/* FALLTHRU */
4271 	default:
4272 		if (tcp->tcp_fused)
4273 			tcp_unfuse(tcp);
4274 
4275 		/*
4276 		 * If SO_LINGER has set a zero linger time, abort the
4277 		 * connection with a reset.
4278 		 */
4279 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4280 			msg = "tcp_close, zero lingertime";
4281 			break;
4282 		}
4283 
4284 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4285 		/*
4286 		 * Abort connection if there is unread data queued.
4287 		 */
4288 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4289 			msg = "tcp_close, unread data";
4290 			break;
4291 		}
4292 		/*
4293 		 * tcp_hard_bound is now cleared thus all packets go through
4294 		 * tcp_lookup. This fact is used by tcp_detach below.
4295 		 *
4296 		 * We have done a qwait() above which could have possibly
4297 		 * drained more messages in turn causing transition to a
4298 		 * different state. Check whether we have to do the rest
4299 		 * of the processing or not.
4300 		 */
4301 		if (tcp->tcp_state <= TCPS_LISTEN)
4302 			break;
4303 
4304 		/*
4305 		 * Transmit the FIN before detaching the tcp_t.
4306 		 * After tcp_detach returns this queue/perimeter
4307 		 * no longer owns the tcp_t thus others can modify it.
4308 		 */
4309 		(void) tcp_xmit_end(tcp);
4310 
4311 		/*
4312 		 * If lingering on close then wait until the fin is acked,
4313 		 * the SO_LINGER time passes, or a reset is sent/received.
4314 		 */
4315 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4316 		    !(tcp->tcp_fin_acked) &&
4317 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4318 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4319 				tcp->tcp_client_errno = EWOULDBLOCK;
4320 			} else if (tcp->tcp_client_errno == 0) {
4321 
4322 				ASSERT(tcp->tcp_linger_tid == 0);
4323 
4324 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4325 				    tcp_close_linger_timeout,
4326 				    tcp->tcp_lingertime * hz);
4327 
4328 				/* tcp_close_linger_timeout will finish close */
4329 				if (tcp->tcp_linger_tid == 0)
4330 					tcp->tcp_client_errno = ENOSR;
4331 				else
4332 					return;
4333 			}
4334 
4335 			/*
4336 			 * Check if we need to detach or just close
4337 			 * the instance.
4338 			 */
4339 			if (tcp->tcp_state <= TCPS_LISTEN)
4340 				break;
4341 		}
4342 
4343 		/*
4344 		 * Make sure that no other thread will access the tcp_rq of
4345 		 * this instance (through lookups etc.) as tcp_rq will go
4346 		 * away shortly.
4347 		 */
4348 		tcp_acceptor_hash_remove(tcp);
4349 
4350 		if (tcp->tcp_flow_stopped) {
4351 			tcp_clrqfull(tcp);
4352 		}
4353 
4354 		if (tcp->tcp_timer_tid != 0) {
4355 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4356 			tcp->tcp_timer_tid = 0;
4357 		}
4358 		/*
4359 		 * Need to cancel those timers which will not be used when
4360 		 * TCP is detached.  This has to be done before the tcp_wq
4361 		 * is set to the global queue.
4362 		 */
4363 		tcp_timers_stop(tcp);
4364 
4365 		tcp->tcp_detached = B_TRUE;
4366 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4367 			tcp_time_wait_append(tcp);
4368 			TCP_DBGSTAT(tcp_detach_time_wait);
4369 			ASSERT(connp->conn_ref >= 3);
4370 			goto finish;
4371 		}
4372 
4373 		/*
4374 		 * If delta is zero the timer event wasn't executed and was
4375 		 * successfully canceled. In this case we need to restart it
4376 		 * with the minimal delta possible.
4377 		 */
4378 		if (delta >= 0)
4379 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4380 			    delta ? delta : 1);
4381 
4382 		ASSERT(connp->conn_ref >= 3);
4383 		goto finish;
4384 	}
4385 
4386 	/* Detach did not complete. Still need to remove q from stream. */
4387 	if (msg) {
4388 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4389 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4390 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4391 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4392 		    tcp->tcp_state == TCPS_SYN_RCVD)
4393 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4394 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4395 	}
4396 
4397 	tcp_closei_local(tcp);
4398 	CONN_DEC_REF(connp);
4399 	ASSERT(connp->conn_ref >= 2);
4400 
4401 finish:
4402 	/*
4403 	 * Although packets are always processed on the correct
4404 	 * tcp's perimeter and access is serialized via squeue's,
4405 	 * IP still needs a queue when sending packets in time_wait
4406 	 * state so use WR(tcp_g_q) till ip_output() can be
4407 	 * changed to deal with just connp. For read side, we
4408 	 * could have set tcp_rq to NULL but there are some cases
4409 	 * in tcp_rput_data() from early days of this code which
4410 	 * do a putnext without checking if tcp is closed. Those
4411 	 * need to be identified before both tcp_rq and tcp_wq
4412 	 * can be set to NULL and tcp_q_q can disappear forever.
4413 	 */
4414 	mutex_enter(&tcp->tcp_closelock);
4415 	/*
4416 	 * Don't change the queues in the case of a listener that has
4417 	 * eagers in its q or q0. It could surprise the eagers.
4418 	 * Instead wait for the eagers outside the squeue.
4419 	 */
4420 	if (!tcp->tcp_wait_for_eagers) {
4421 		tcp->tcp_detached = B_TRUE;
4422 		tcp->tcp_rq = tcp_g_q;
4423 		tcp->tcp_wq = WR(tcp_g_q);
4424 	}
4425 
4426 	/* Signal tcp_close() to finish closing. */
4427 	tcp->tcp_closed = 1;
4428 	cv_signal(&tcp->tcp_closecv);
4429 	mutex_exit(&tcp->tcp_closelock);
4430 }
4431 
4432 
4433 /*
4434  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4435  * Some stream heads get upset if they see these later on as anything but NULL.
4436  */
4437 static void
4438 tcp_close_mpp(mblk_t **mpp)
4439 {
4440 	mblk_t	*mp;
4441 
4442 	if ((mp = *mpp) != NULL) {
4443 		do {
4444 			mp->b_next = NULL;
4445 			mp->b_prev = NULL;
4446 		} while ((mp = mp->b_cont) != NULL);
4447 
4448 		mp = *mpp;
4449 		*mpp = NULL;
4450 		freemsg(mp);
4451 	}
4452 }
4453 
4454 /* Do detached close. */
4455 static void
4456 tcp_close_detached(tcp_t *tcp)
4457 {
4458 	if (tcp->tcp_fused)
4459 		tcp_unfuse(tcp);
4460 
4461 	/*
4462 	 * Clustering code serializes TCP disconnect callbacks and
4463 	 * cluster tcp list walks by blocking a TCP disconnect callback
4464 	 * if a cluster tcp list walk is in progress. This ensures
4465 	 * accurate accounting of TCPs in the cluster code even though
4466 	 * the TCP list walk itself is not atomic.
4467 	 */
4468 	tcp_closei_local(tcp);
4469 	CONN_DEC_REF(tcp->tcp_connp);
4470 }
4471 
4472 /*
4473  * Stop all TCP timers, and free the timer mblks if requested.
4474  */
4475 void
4476 tcp_timers_stop(tcp_t *tcp)
4477 {
4478 	if (tcp->tcp_timer_tid != 0) {
4479 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4480 		tcp->tcp_timer_tid = 0;
4481 	}
4482 	if (tcp->tcp_ka_tid != 0) {
4483 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4484 		tcp->tcp_ka_tid = 0;
4485 	}
4486 	if (tcp->tcp_ack_tid != 0) {
4487 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4488 		tcp->tcp_ack_tid = 0;
4489 	}
4490 	if (tcp->tcp_push_tid != 0) {
4491 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4492 		tcp->tcp_push_tid = 0;
4493 	}
4494 }
4495 
4496 /*
4497  * The tcp_t is going away. Remove it from all lists and set it
4498  * to TCPS_CLOSED. The freeing up of memory is deferred until
4499  * tcp_inactive. This is needed since a thread in tcp_rput might have
4500  * done a CONN_INC_REF on this structure before it was removed from the
4501  * hashes.
4502  */
4503 static void
4504 tcp_closei_local(tcp_t *tcp)
4505 {
4506 	ire_t 	*ire;
4507 	conn_t	*connp = tcp->tcp_connp;
4508 
4509 	if (!TCP_IS_SOCKET(tcp))
4510 		tcp_acceptor_hash_remove(tcp);
4511 
4512 	UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4513 	tcp->tcp_ibsegs = 0;
4514 	UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4515 	tcp->tcp_obsegs = 0;
4516 
4517 	/*
4518 	 * If we are an eager connection hanging off a listener that
4519 	 * hasn't formally accepted the connection yet, get off his
4520 	 * list and blow off any data that we have accumulated.
4521 	 */
4522 	if (tcp->tcp_listener != NULL) {
4523 		tcp_t	*listener = tcp->tcp_listener;
4524 		mutex_enter(&listener->tcp_eager_lock);
4525 		/*
4526 		 * tcp_tconnind_started == B_TRUE means that the
4527 		 * conn_ind has already gone to listener. At
4528 		 * this point, eager will be closed but we
4529 		 * leave it in listeners eager list so that
4530 		 * if listener decides to close without doing
4531 		 * accept, we can clean this up. In tcp_wput_accept
4532 		 * we take care of the case of accept on closed
4533 		 * eager.
4534 		 */
4535 		if (!tcp->tcp_tconnind_started) {
4536 			tcp_eager_unlink(tcp);
4537 			mutex_exit(&listener->tcp_eager_lock);
4538 			/*
4539 			 * We don't want to have any pointers to the
4540 			 * listener queue, after we have released our
4541 			 * reference on the listener
4542 			 */
4543 			tcp->tcp_rq = tcp_g_q;
4544 			tcp->tcp_wq = WR(tcp_g_q);
4545 			CONN_DEC_REF(listener->tcp_connp);
4546 		} else {
4547 			mutex_exit(&listener->tcp_eager_lock);
4548 		}
4549 	}
4550 
4551 	/* Stop all the timers */
4552 	tcp_timers_stop(tcp);
4553 
4554 	if (tcp->tcp_state == TCPS_LISTEN) {
4555 		if (tcp->tcp_ip_addr_cache) {
4556 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4557 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4558 			tcp->tcp_ip_addr_cache = NULL;
4559 		}
4560 	}
4561 	if (tcp->tcp_flow_stopped)
4562 		tcp_clrqfull(tcp);
4563 
4564 	tcp_bind_hash_remove(tcp);
4565 	/*
4566 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4567 	 * is trying to remove this tcp from the time wait list, we will
4568 	 * block in tcp_time_wait_remove while trying to acquire the
4569 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4570 	 * requires the ipcl_hash_remove to be ordered after the
4571 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4572 	 */
4573 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4574 		(void) tcp_time_wait_remove(tcp, NULL);
4575 	CL_INET_DISCONNECT(tcp);
4576 	ipcl_hash_remove(connp);
4577 
4578 	/*
4579 	 * Delete the cached ire in conn_ire_cache and also mark
4580 	 * the conn as CONDEMNED
4581 	 */
4582 	mutex_enter(&connp->conn_lock);
4583 	connp->conn_state_flags |= CONN_CONDEMNED;
4584 	ire = connp->conn_ire_cache;
4585 	connp->conn_ire_cache = NULL;
4586 	mutex_exit(&connp->conn_lock);
4587 	if (ire != NULL)
4588 		IRE_REFRELE_NOTR(ire);
4589 
4590 	/* Need to cleanup any pending ioctls */
4591 	ASSERT(tcp->tcp_time_wait_next == NULL);
4592 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4593 	ASSERT(tcp->tcp_time_wait_expire == 0);
4594 	tcp->tcp_state = TCPS_CLOSED;
4595 
4596 	/* Release any SSL context */
4597 	if (tcp->tcp_kssl_ent != NULL) {
4598 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4599 		tcp->tcp_kssl_ent = NULL;
4600 	}
4601 	if (tcp->tcp_kssl_ctx != NULL) {
4602 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4603 		tcp->tcp_kssl_ctx = NULL;
4604 	}
4605 	tcp->tcp_kssl_pending = B_FALSE;
4606 }
4607 
4608 /*
4609  * tcp is dying (called from ipcl_conn_destroy and error cases).
4610  * Free the tcp_t in either case.
4611  */
4612 void
4613 tcp_free(tcp_t *tcp)
4614 {
4615 	mblk_t	*mp;
4616 	ip6_pkt_t	*ipp;
4617 
4618 	ASSERT(tcp != NULL);
4619 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4620 
4621 	tcp->tcp_rq = NULL;
4622 	tcp->tcp_wq = NULL;
4623 
4624 	tcp_close_mpp(&tcp->tcp_xmit_head);
4625 	tcp_close_mpp(&tcp->tcp_reass_head);
4626 	if (tcp->tcp_rcv_list != NULL) {
4627 		/* Free b_next chain */
4628 		tcp_close_mpp(&tcp->tcp_rcv_list);
4629 	}
4630 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4631 		freemsg(mp);
4632 	}
4633 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4634 		freemsg(mp);
4635 	}
4636 
4637 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4638 		freeb(tcp->tcp_fused_sigurg_mp);
4639 		tcp->tcp_fused_sigurg_mp = NULL;
4640 	}
4641 
4642 	if (tcp->tcp_sack_info != NULL) {
4643 		if (tcp->tcp_notsack_list != NULL) {
4644 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4645 		}
4646 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4647 	}
4648 
4649 	if (tcp->tcp_hopopts != NULL) {
4650 		mi_free(tcp->tcp_hopopts);
4651 		tcp->tcp_hopopts = NULL;
4652 		tcp->tcp_hopoptslen = 0;
4653 	}
4654 	ASSERT(tcp->tcp_hopoptslen == 0);
4655 	if (tcp->tcp_dstopts != NULL) {
4656 		mi_free(tcp->tcp_dstopts);
4657 		tcp->tcp_dstopts = NULL;
4658 		tcp->tcp_dstoptslen = 0;
4659 	}
4660 	ASSERT(tcp->tcp_dstoptslen == 0);
4661 	if (tcp->tcp_rtdstopts != NULL) {
4662 		mi_free(tcp->tcp_rtdstopts);
4663 		tcp->tcp_rtdstopts = NULL;
4664 		tcp->tcp_rtdstoptslen = 0;
4665 	}
4666 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4667 	if (tcp->tcp_rthdr != NULL) {
4668 		mi_free(tcp->tcp_rthdr);
4669 		tcp->tcp_rthdr = NULL;
4670 		tcp->tcp_rthdrlen = 0;
4671 	}
4672 	ASSERT(tcp->tcp_rthdrlen == 0);
4673 
4674 	ipp = &tcp->tcp_sticky_ipp;
4675 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4676 	    IPPF_RTHDR))
4677 		ip6_pkt_free(ipp);
4678 
4679 	/*
4680 	 * Free memory associated with the tcp/ip header template.
4681 	 */
4682 
4683 	if (tcp->tcp_iphc != NULL)
4684 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4685 
4686 	/*
4687 	 * Following is really a blowing away a union.
4688 	 * It happens to have exactly two members of identical size
4689 	 * the following code is enough.
4690 	 */
4691 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4692 
4693 	if (tcp->tcp_tracebuf != NULL) {
4694 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4695 		tcp->tcp_tracebuf = NULL;
4696 	}
4697 }
4698 
4699 
4700 /*
4701  * Put a connection confirmation message upstream built from the
4702  * address information within 'iph' and 'tcph'.  Report our success or failure.
4703  */
4704 static boolean_t
4705 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4706     mblk_t **defermp)
4707 {
4708 	sin_t	sin;
4709 	sin6_t	sin6;
4710 	mblk_t	*mp;
4711 	char	*optp = NULL;
4712 	int	optlen = 0;
4713 	cred_t	*cr;
4714 
4715 	if (defermp != NULL)
4716 		*defermp = NULL;
4717 
4718 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4719 		/*
4720 		 * Return in T_CONN_CON results of option negotiation through
4721 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4722 		 * negotiation, then what is received from remote end needs
4723 		 * to be taken into account but there is no such thing (yet?)
4724 		 * in our TCP/IP.
4725 		 * Note: We do not use mi_offset_param() here as
4726 		 * tcp_opts_conn_req contents do not directly come from
4727 		 * an application and are either generated in kernel or
4728 		 * from user input that was already verified.
4729 		 */
4730 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4731 		optp = (char *)(mp->b_rptr +
4732 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4733 		optlen = (int)
4734 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4735 	}
4736 
4737 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4738 		ipha_t *ipha = (ipha_t *)iphdr;
4739 
4740 		/* packet is IPv4 */
4741 		if (tcp->tcp_family == AF_INET) {
4742 			sin = sin_null;
4743 			sin.sin_addr.s_addr = ipha->ipha_src;
4744 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4745 			sin.sin_family = AF_INET;
4746 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4747 			    (int)sizeof (sin_t), optp, optlen);
4748 		} else {
4749 			sin6 = sin6_null;
4750 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4751 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4752 			sin6.sin6_family = AF_INET6;
4753 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4754 			    (int)sizeof (sin6_t), optp, optlen);
4755 
4756 		}
4757 	} else {
4758 		ip6_t	*ip6h = (ip6_t *)iphdr;
4759 
4760 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4761 		ASSERT(tcp->tcp_family == AF_INET6);
4762 		sin6 = sin6_null;
4763 		sin6.sin6_addr = ip6h->ip6_src;
4764 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4765 		sin6.sin6_family = AF_INET6;
4766 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4767 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4768 		    (int)sizeof (sin6_t), optp, optlen);
4769 	}
4770 
4771 	if (!mp)
4772 		return (B_FALSE);
4773 
4774 	if ((cr = DB_CRED(idmp)) != NULL) {
4775 		mblk_setcred(mp, cr);
4776 		DB_CPID(mp) = DB_CPID(idmp);
4777 	}
4778 
4779 	if (defermp == NULL)
4780 		putnext(tcp->tcp_rq, mp);
4781 	else
4782 		*defermp = mp;
4783 
4784 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4785 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4786 	return (B_TRUE);
4787 }
4788 
4789 /*
4790  * Defense for the SYN attack -
4791  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4792  *    one from the list of droppable eagers. This list is a subset of q0.
4793  *    see comments before the definition of MAKE_DROPPABLE().
4794  * 2. Don't drop a SYN request before its first timeout. This gives every
4795  *    request at least til the first timeout to complete its 3-way handshake.
4796  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4797  *    requests currently on the queue that has timed out. This will be used
4798  *    as an indicator of whether an attack is under way, so that appropriate
4799  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4800  *    either when eager goes into ESTABLISHED, or gets freed up.)
4801  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4802  *    # of timeout drops back to <= q0len/32 => SYN alert off
4803  */
4804 static boolean_t
4805 tcp_drop_q0(tcp_t *tcp)
4806 {
4807 	tcp_t	*eager;
4808 	mblk_t	*mp;
4809 
4810 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4811 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4812 
4813 	/* Pick oldest eager from the list of droppable eagers */
4814 	eager = tcp->tcp_eager_prev_drop_q0;
4815 
4816 	/* If list is empty. return B_FALSE */
4817 	if (eager == tcp) {
4818 		return (B_FALSE);
4819 	}
4820 
4821 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4822 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4823 		return (B_FALSE);
4824 
4825 	/*
4826 	 * Take this eager out from the list of droppable eagers since we are
4827 	 * going to drop it.
4828 	 */
4829 	MAKE_UNDROPPABLE(eager);
4830 
4831 	if (tcp->tcp_debug) {
4832 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4833 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4834 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4835 		    tcp->tcp_conn_req_cnt_q0,
4836 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4837 	}
4838 
4839 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4840 
4841 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4842 	CONN_INC_REF(eager->tcp_connp);
4843 
4844 	/* Mark the IRE created for this SYN request temporary */
4845 	tcp_ip_ire_mark_advice(eager);
4846 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4847 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4848 
4849 	return (B_TRUE);
4850 }
4851 
4852 int
4853 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4854     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4855 {
4856 	tcp_t 		*ltcp = lconnp->conn_tcp;
4857 	tcp_t		*tcp = connp->conn_tcp;
4858 	mblk_t		*tpi_mp;
4859 	ipha_t		*ipha;
4860 	ip6_t		*ip6h;
4861 	sin6_t 		sin6;
4862 	in6_addr_t 	v6dst;
4863 	int		err;
4864 	int		ifindex = 0;
4865 	cred_t		*cr;
4866 
4867 	if (ipvers == IPV4_VERSION) {
4868 		ipha = (ipha_t *)mp->b_rptr;
4869 
4870 		connp->conn_send = ip_output;
4871 		connp->conn_recv = tcp_input;
4872 
4873 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4874 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4875 
4876 		sin6 = sin6_null;
4877 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4878 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4879 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4880 		sin6.sin6_family = AF_INET6;
4881 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4882 		    lconnp->conn_zoneid);
4883 		if (tcp->tcp_recvdstaddr) {
4884 			sin6_t	sin6d;
4885 
4886 			sin6d = sin6_null;
4887 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4888 			    &sin6d.sin6_addr);
4889 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4890 			sin6d.sin6_family = AF_INET;
4891 			tpi_mp = mi_tpi_extconn_ind(NULL,
4892 			    (char *)&sin6d, sizeof (sin6_t),
4893 			    (char *)&tcp,
4894 			    (t_scalar_t)sizeof (intptr_t),
4895 			    (char *)&sin6d, sizeof (sin6_t),
4896 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4897 		} else {
4898 			tpi_mp = mi_tpi_conn_ind(NULL,
4899 			    (char *)&sin6, sizeof (sin6_t),
4900 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4901 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4902 		}
4903 	} else {
4904 		ip6h = (ip6_t *)mp->b_rptr;
4905 
4906 		connp->conn_send = ip_output_v6;
4907 		connp->conn_recv = tcp_input;
4908 
4909 		connp->conn_srcv6 = ip6h->ip6_dst;
4910 		connp->conn_remv6 = ip6h->ip6_src;
4911 
4912 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4913 		ifindex = (int)DB_CKSUMSTUFF(mp);
4914 		DB_CKSUMSTUFF(mp) = 0;
4915 
4916 		sin6 = sin6_null;
4917 		sin6.sin6_addr = ip6h->ip6_src;
4918 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4919 		sin6.sin6_family = AF_INET6;
4920 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4921 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4922 		    lconnp->conn_zoneid);
4923 
4924 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4925 			/* Pass up the scope_id of remote addr */
4926 			sin6.sin6_scope_id = ifindex;
4927 		} else {
4928 			sin6.sin6_scope_id = 0;
4929 		}
4930 		if (tcp->tcp_recvdstaddr) {
4931 			sin6_t	sin6d;
4932 
4933 			sin6d = sin6_null;
4934 			sin6.sin6_addr = ip6h->ip6_dst;
4935 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4936 			sin6d.sin6_family = AF_INET;
4937 			tpi_mp = mi_tpi_extconn_ind(NULL,
4938 			    (char *)&sin6d, sizeof (sin6_t),
4939 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4940 			    (char *)&sin6d, sizeof (sin6_t),
4941 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4942 		} else {
4943 			tpi_mp = mi_tpi_conn_ind(NULL,
4944 			    (char *)&sin6, sizeof (sin6_t),
4945 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4946 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4947 		}
4948 	}
4949 
4950 	if (tpi_mp == NULL)
4951 		return (ENOMEM);
4952 
4953 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4954 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4955 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4956 	connp->conn_fully_bound = B_FALSE;
4957 
4958 	if (tcp_trace)
4959 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4960 
4961 	/* Inherit information from the "parent" */
4962 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4963 	tcp->tcp_family = ltcp->tcp_family;
4964 	tcp->tcp_wq = ltcp->tcp_wq;
4965 	tcp->tcp_rq = ltcp->tcp_rq;
4966 	tcp->tcp_mss = tcp_mss_def_ipv6;
4967 	tcp->tcp_detached = B_TRUE;
4968 	if ((err = tcp_init_values(tcp)) != 0) {
4969 		freemsg(tpi_mp);
4970 		return (err);
4971 	}
4972 
4973 	if (ipvers == IPV4_VERSION) {
4974 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4975 			freemsg(tpi_mp);
4976 			return (err);
4977 		}
4978 		ASSERT(tcp->tcp_ipha != NULL);
4979 	} else {
4980 		/* ifindex must be already set */
4981 		ASSERT(ifindex != 0);
4982 
4983 		if (ltcp->tcp_bound_if != 0) {
4984 			/*
4985 			 * Set newtcp's bound_if equal to
4986 			 * listener's value. If ifindex is
4987 			 * not the same as ltcp->tcp_bound_if,
4988 			 * it must be a packet for the ipmp group
4989 			 * of interfaces
4990 			 */
4991 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4992 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4993 			tcp->tcp_bound_if = ifindex;
4994 		}
4995 
4996 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4997 		tcp->tcp_recvifindex = 0;
4998 		tcp->tcp_recvhops = 0xffffffffU;
4999 		ASSERT(tcp->tcp_ip6h != NULL);
5000 	}
5001 
5002 	tcp->tcp_lport = ltcp->tcp_lport;
5003 
5004 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
5005 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
5006 			/*
5007 			 * Listener had options of some sort; eager inherits.
5008 			 * Free up the eager template and allocate one
5009 			 * of the right size.
5010 			 */
5011 			if (tcp->tcp_hdr_grown) {
5012 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
5013 			} else {
5014 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5015 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
5016 			}
5017 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5018 			    KM_NOSLEEP);
5019 			if (tcp->tcp_iphc == NULL) {
5020 				tcp->tcp_iphc_len = 0;
5021 				freemsg(tpi_mp);
5022 				return (ENOMEM);
5023 			}
5024 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5025 			tcp->tcp_hdr_grown = B_TRUE;
5026 		}
5027 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5028 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5029 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5030 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5031 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5032 
5033 		/*
5034 		 * Copy the IP+TCP header template from listener to eager
5035 		 */
5036 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5037 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5038 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5039 			    IPPROTO_RAW) {
5040 				tcp->tcp_ip6h =
5041 				    (ip6_t *)(tcp->tcp_iphc +
5042 					sizeof (ip6i_t));
5043 			} else {
5044 				tcp->tcp_ip6h =
5045 				    (ip6_t *)(tcp->tcp_iphc);
5046 			}
5047 			tcp->tcp_ipha = NULL;
5048 		} else {
5049 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5050 			tcp->tcp_ip6h = NULL;
5051 		}
5052 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5053 		    tcp->tcp_ip_hdr_len);
5054 	} else {
5055 		/*
5056 		 * only valid case when ipversion of listener and
5057 		 * eager differ is when listener is IPv6 and
5058 		 * eager is IPv4.
5059 		 * Eager header template has been initialized to the
5060 		 * maximum v4 header sizes, which includes space for
5061 		 * TCP and IP options.
5062 		 */
5063 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5064 		    (tcp->tcp_ipversion == IPV4_VERSION));
5065 		ASSERT(tcp->tcp_iphc_len >=
5066 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5067 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5068 		/* copy IP header fields individually */
5069 		tcp->tcp_ipha->ipha_ttl =
5070 		    ltcp->tcp_ip6h->ip6_hops;
5071 		bcopy(ltcp->tcp_tcph->th_lport,
5072 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5073 	}
5074 
5075 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5076 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5077 	    sizeof (in_port_t));
5078 
5079 	if (ltcp->tcp_lport == 0) {
5080 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5081 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5082 		    sizeof (in_port_t));
5083 	}
5084 
5085 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5086 		ASSERT(ipha != NULL);
5087 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5088 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5089 
5090 		/* Source routing option copyover (reverse it) */
5091 		if (tcp_rev_src_routes)
5092 			tcp_opt_reverse(tcp, ipha);
5093 	} else {
5094 		ASSERT(ip6h != NULL);
5095 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5096 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5097 	}
5098 
5099 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5100 	ASSERT(!tcp->tcp_tconnind_started);
5101 	/*
5102 	 * If the SYN contains a credential, it's a loopback packet; attach
5103 	 * the credential to the TPI message.
5104 	 */
5105 	if ((cr = DB_CRED(idmp)) != NULL) {
5106 		mblk_setcred(tpi_mp, cr);
5107 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5108 	}
5109 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5110 
5111 	/* Inherit the listener's SSL protection state */
5112 
5113 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5114 		kssl_hold_ent(tcp->tcp_kssl_ent);
5115 		tcp->tcp_kssl_pending = B_TRUE;
5116 	}
5117 
5118 	return (0);
5119 }
5120 
5121 
5122 int
5123 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5124     tcph_t *tcph, mblk_t *idmp)
5125 {
5126 	tcp_t 		*ltcp = lconnp->conn_tcp;
5127 	tcp_t		*tcp = connp->conn_tcp;
5128 	sin_t		sin;
5129 	mblk_t		*tpi_mp = NULL;
5130 	int		err;
5131 	cred_t		*cr;
5132 
5133 	sin = sin_null;
5134 	sin.sin_addr.s_addr = ipha->ipha_src;
5135 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5136 	sin.sin_family = AF_INET;
5137 	if (ltcp->tcp_recvdstaddr) {
5138 		sin_t	sind;
5139 
5140 		sind = sin_null;
5141 		sind.sin_addr.s_addr = ipha->ipha_dst;
5142 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5143 		sind.sin_family = AF_INET;
5144 		tpi_mp = mi_tpi_extconn_ind(NULL,
5145 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5146 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5147 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5148 	} else {
5149 		tpi_mp = mi_tpi_conn_ind(NULL,
5150 		    (char *)&sin, sizeof (sin_t),
5151 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5152 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5153 	}
5154 
5155 	if (tpi_mp == NULL) {
5156 		return (ENOMEM);
5157 	}
5158 
5159 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5160 	connp->conn_send = ip_output;
5161 	connp->conn_recv = tcp_input;
5162 	connp->conn_fully_bound = B_FALSE;
5163 
5164 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5165 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5166 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5167 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5168 
5169 	if (tcp_trace) {
5170 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5171 	}
5172 
5173 	/* Inherit information from the "parent" */
5174 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5175 	tcp->tcp_family = ltcp->tcp_family;
5176 	tcp->tcp_wq = ltcp->tcp_wq;
5177 	tcp->tcp_rq = ltcp->tcp_rq;
5178 	tcp->tcp_mss = tcp_mss_def_ipv4;
5179 	tcp->tcp_detached = B_TRUE;
5180 	if ((err = tcp_init_values(tcp)) != 0) {
5181 		freemsg(tpi_mp);
5182 		return (err);
5183 	}
5184 
5185 	/*
5186 	 * Let's make sure that eager tcp template has enough space to
5187 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5188 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5189 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5190 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5191 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5192 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5193 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5194 	 */
5195 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5196 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5197 
5198 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5199 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5200 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5201 	tcp->tcp_ttl = ltcp->tcp_ttl;
5202 	tcp->tcp_tos = ltcp->tcp_tos;
5203 
5204 	/* Copy the IP+TCP header template from listener to eager */
5205 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5206 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5207 	tcp->tcp_ip6h = NULL;
5208 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5209 	    tcp->tcp_ip_hdr_len);
5210 
5211 	/* Initialize the IP addresses and Ports */
5212 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5213 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5214 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5215 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5216 
5217 	/* Source routing option copyover (reverse it) */
5218 	if (tcp_rev_src_routes)
5219 		tcp_opt_reverse(tcp, ipha);
5220 
5221 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5222 	ASSERT(!tcp->tcp_tconnind_started);
5223 
5224 	/*
5225 	 * If the SYN contains a credential, it's a loopback packet; attach
5226 	 * the credential to the TPI message.
5227 	 */
5228 	if ((cr = DB_CRED(idmp)) != NULL) {
5229 		mblk_setcred(tpi_mp, cr);
5230 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5231 	}
5232 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5233 
5234 	/* Inherit the listener's SSL protection state */
5235 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5236 		kssl_hold_ent(tcp->tcp_kssl_ent);
5237 		tcp->tcp_kssl_pending = B_TRUE;
5238 	}
5239 
5240 	return (0);
5241 }
5242 
5243 /*
5244  * sets up conn for ipsec.
5245  * if the first mblk is M_CTL it is consumed and mpp is updated.
5246  * in case of error mpp is freed.
5247  */
5248 conn_t *
5249 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5250 {
5251 	conn_t 		*connp = tcp->tcp_connp;
5252 	conn_t 		*econnp;
5253 	squeue_t 	*new_sqp;
5254 	mblk_t 		*first_mp = *mpp;
5255 	mblk_t		*mp = *mpp;
5256 	boolean_t	mctl_present = B_FALSE;
5257 	uint_t		ipvers;
5258 
5259 	econnp = tcp_get_conn(sqp);
5260 	if (econnp == NULL) {
5261 		freemsg(first_mp);
5262 		return (NULL);
5263 	}
5264 	if (DB_TYPE(mp) == M_CTL) {
5265 		if (mp->b_cont == NULL ||
5266 		    mp->b_cont->b_datap->db_type != M_DATA) {
5267 			freemsg(first_mp);
5268 			return (NULL);
5269 		}
5270 		mp = mp->b_cont;
5271 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5272 			freemsg(first_mp);
5273 			return (NULL);
5274 		}
5275 
5276 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5277 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5278 		mctl_present = B_TRUE;
5279 	} else {
5280 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5281 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5282 	}
5283 
5284 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5285 	DB_CKSUMSTART(mp) = 0;
5286 
5287 	ASSERT(OK_32PTR(mp->b_rptr));
5288 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5289 	if (ipvers == IPV4_VERSION) {
5290 		uint16_t  	*up;
5291 		uint32_t	ports;
5292 		ipha_t		*ipha;
5293 
5294 		ipha = (ipha_t *)mp->b_rptr;
5295 		up = (uint16_t *)((uchar_t *)ipha +
5296 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5297 		ports = *(uint32_t *)up;
5298 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5299 		    ipha->ipha_dst, ipha->ipha_src, ports);
5300 	} else {
5301 		uint16_t  	*up;
5302 		uint32_t	ports;
5303 		uint16_t	ip_hdr_len;
5304 		uint8_t		*nexthdrp;
5305 		ip6_t 		*ip6h;
5306 		tcph_t		*tcph;
5307 
5308 		ip6h = (ip6_t *)mp->b_rptr;
5309 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5310 			ip_hdr_len = IPV6_HDR_LEN;
5311 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5312 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5313 			CONN_DEC_REF(econnp);
5314 			freemsg(first_mp);
5315 			return (NULL);
5316 		}
5317 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5318 		up = (uint16_t *)tcph->th_lport;
5319 		ports = *(uint32_t *)up;
5320 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5321 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5322 	}
5323 
5324 	/*
5325 	 * The caller already ensured that there is a sqp present.
5326 	 */
5327 	econnp->conn_sqp = new_sqp;
5328 
5329 	if (connp->conn_policy != NULL) {
5330 		ipsec_in_t *ii;
5331 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5332 		ASSERT(ii->ipsec_in_policy == NULL);
5333 		IPPH_REFHOLD(connp->conn_policy);
5334 		ii->ipsec_in_policy = connp->conn_policy;
5335 
5336 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5337 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5338 			CONN_DEC_REF(econnp);
5339 			freemsg(first_mp);
5340 			return (NULL);
5341 		}
5342 	}
5343 
5344 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5345 		CONN_DEC_REF(econnp);
5346 		freemsg(first_mp);
5347 		return (NULL);
5348 	}
5349 
5350 	/*
5351 	 * If we know we have some policy, pass the "IPSEC"
5352 	 * options size TCP uses this adjust the MSS.
5353 	 */
5354 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5355 	if (mctl_present) {
5356 		freeb(first_mp);
5357 		*mpp = mp;
5358 	}
5359 
5360 	return (econnp);
5361 }
5362 
5363 /*
5364  * tcp_get_conn/tcp_free_conn
5365  *
5366  * tcp_get_conn is used to get a clean tcp connection structure.
5367  * It tries to reuse the connections put on the freelist by the
5368  * time_wait_collector failing which it goes to kmem_cache. This
5369  * way has two benefits compared to just allocating from and
5370  * freeing to kmem_cache.
5371  * 1) The time_wait_collector can free (which includes the cleanup)
5372  * outside the squeue. So when the interrupt comes, we have a clean
5373  * connection sitting in the freelist. Obviously, this buys us
5374  * performance.
5375  *
5376  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5377  * has multiple disadvantages - tying up the squeue during alloc, and the
5378  * fact that IPSec policy initialization has to happen here which
5379  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5380  * But allocating the conn/tcp in IP land is also not the best since
5381  * we can't check the 'q' and 'q0' which are protected by squeue and
5382  * blindly allocate memory which might have to be freed here if we are
5383  * not allowed to accept the connection. By using the freelist and
5384  * putting the conn/tcp back in freelist, we don't pay a penalty for
5385  * allocating memory without checking 'q/q0' and freeing it if we can't
5386  * accept the connection.
5387  *
5388  * Care should be taken to put the conn back in the same squeue's freelist
5389  * from which it was allocated. Best results are obtained if conn is
5390  * allocated from listener's squeue and freed to the same. Time wait
5391  * collector will free up the freelist is the connection ends up sitting
5392  * there for too long.
5393  */
5394 void *
5395 tcp_get_conn(void *arg)
5396 {
5397 	tcp_t			*tcp = NULL;
5398 	conn_t			*connp = NULL;
5399 	squeue_t		*sqp = (squeue_t *)arg;
5400 	tcp_squeue_priv_t 	*tcp_time_wait;
5401 
5402 	tcp_time_wait =
5403 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5404 
5405 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5406 	tcp = tcp_time_wait->tcp_free_list;
5407 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5408 	if (tcp != NULL) {
5409 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5410 		tcp_time_wait->tcp_free_list_cnt--;
5411 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5412 		tcp->tcp_time_wait_next = NULL;
5413 		connp = tcp->tcp_connp;
5414 		connp->conn_flags |= IPCL_REUSED;
5415 		return ((void *)connp);
5416 	}
5417 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5418 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5419 		return (NULL);
5420 	return ((void *)connp);
5421 }
5422 
5423 /*
5424  * Update the cached label for the given tcp_t.  This should be called once per
5425  * connection, and before any packets are sent or tcp_process_options is
5426  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5427  */
5428 static boolean_t
5429 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5430 {
5431 	conn_t *connp = tcp->tcp_connp;
5432 
5433 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5434 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5435 		int added;
5436 
5437 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5438 		    connp->conn_mac_exempt) != 0)
5439 			return (B_FALSE);
5440 
5441 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5442 		if (added == -1)
5443 			return (B_FALSE);
5444 		tcp->tcp_hdr_len += added;
5445 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5446 		tcp->tcp_ip_hdr_len += added;
5447 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5448 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5449 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5450 			    tcp->tcp_hdr_len);
5451 			if (added == -1)
5452 				return (B_FALSE);
5453 			tcp->tcp_hdr_len += added;
5454 			tcp->tcp_tcph = (tcph_t *)
5455 			    ((uchar_t *)tcp->tcp_tcph + added);
5456 			tcp->tcp_ip_hdr_len += added;
5457 		}
5458 	} else {
5459 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5460 
5461 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5462 		    connp->conn_mac_exempt) != 0)
5463 			return (B_FALSE);
5464 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5465 		    &tcp->tcp_label_len, optbuf) != 0)
5466 			return (B_FALSE);
5467 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5468 			return (B_FALSE);
5469 	}
5470 
5471 	connp->conn_ulp_labeled = 1;
5472 
5473 	return (B_TRUE);
5474 }
5475 
5476 /* BEGIN CSTYLED */
5477 /*
5478  *
5479  * The sockfs ACCEPT path:
5480  * =======================
5481  *
5482  * The eager is now established in its own perimeter as soon as SYN is
5483  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5484  * completes the accept processing on the acceptor STREAM. The sending
5485  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5486  * listener but a TLI/XTI listener completes the accept processing
5487  * on the listener perimeter.
5488  *
5489  * Common control flow for 3 way handshake:
5490  * ----------------------------------------
5491  *
5492  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5493  *					-> tcp_conn_request()
5494  *
5495  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5496  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5497  *
5498  * Sockfs ACCEPT Path:
5499  * -------------------
5500  *
5501  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5502  * as STREAM entry point)
5503  *
5504  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5505  *
5506  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5507  * association (we are not behind eager's squeue but sockfs is protecting us
5508  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5509  * is changed to point at tcp_wput().
5510  *
5511  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5512  * listener (done on listener's perimeter).
5513  *
5514  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5515  * accept.
5516  *
5517  * TLI/XTI client ACCEPT path:
5518  * ---------------------------
5519  *
5520  * soaccept() sends T_CONN_RES on the listener STREAM.
5521  *
5522  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5523  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5524  *
5525  * Locks:
5526  * ======
5527  *
5528  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5529  * and listeners->tcp_eager_next_q.
5530  *
5531  * Referencing:
5532  * ============
5533  *
5534  * 1) We start out in tcp_conn_request by eager placing a ref on
5535  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5536  *
5537  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5538  * doing so we place a ref on the eager. This ref is finally dropped at the
5539  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5540  * reference is dropped by the squeue framework.
5541  *
5542  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5543  *
5544  * The reference must be released by the same entity that added the reference
5545  * In the above scheme, the eager is the entity that adds and releases the
5546  * references. Note that tcp_accept_finish executes in the squeue of the eager
5547  * (albeit after it is attached to the acceptor stream). Though 1. executes
5548  * in the listener's squeue, the eager is nascent at this point and the
5549  * reference can be considered to have been added on behalf of the eager.
5550  *
5551  * Eager getting a Reset or listener closing:
5552  * ==========================================
5553  *
5554  * Once the listener and eager are linked, the listener never does the unlink.
5555  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5556  * a message on all eager perimeter. The eager then does the unlink, clears
5557  * any pointers to the listener's queue and drops the reference to the
5558  * listener. The listener waits in tcp_close outside the squeue until its
5559  * refcount has dropped to 1. This ensures that the listener has waited for
5560  * all eagers to clear their association with the listener.
5561  *
5562  * Similarly, if eager decides to go away, it can unlink itself and close.
5563  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5564  * the reference to eager is still valid because of the extra ref we put
5565  * in tcp_send_conn_ind.
5566  *
5567  * Listener can always locate the eager under the protection
5568  * of the listener->tcp_eager_lock, and then do a refhold
5569  * on the eager during the accept processing.
5570  *
5571  * The acceptor stream accesses the eager in the accept processing
5572  * based on the ref placed on eager before sending T_conn_ind.
5573  * The only entity that can negate this refhold is a listener close
5574  * which is mutually exclusive with an active acceptor stream.
5575  *
5576  * Eager's reference on the listener
5577  * ===================================
5578  *
5579  * If the accept happens (even on a closed eager) the eager drops its
5580  * reference on the listener at the start of tcp_accept_finish. If the
5581  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5582  * the reference is dropped in tcp_closei_local. If the listener closes,
5583  * the reference is dropped in tcp_eager_kill. In all cases the reference
5584  * is dropped while executing in the eager's context (squeue).
5585  */
5586 /* END CSTYLED */
5587 
5588 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5589 
5590 /*
5591  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5592  * tcp_rput_data will not see any SYN packets.
5593  */
5594 /* ARGSUSED */
5595 void
5596 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5597 {
5598 	tcph_t		*tcph;
5599 	uint32_t	seg_seq;
5600 	tcp_t		*eager;
5601 	uint_t		ipvers;
5602 	ipha_t		*ipha;
5603 	ip6_t		*ip6h;
5604 	int		err;
5605 	conn_t		*econnp = NULL;
5606 	squeue_t	*new_sqp;
5607 	mblk_t		*mp1;
5608 	uint_t 		ip_hdr_len;
5609 	conn_t		*connp = (conn_t *)arg;
5610 	tcp_t		*tcp = connp->conn_tcp;
5611 	ire_t		*ire;
5612 	cred_t		*credp;
5613 
5614 	if (tcp->tcp_state != TCPS_LISTEN)
5615 		goto error2;
5616 
5617 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5618 
5619 	mutex_enter(&tcp->tcp_eager_lock);
5620 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5621 		mutex_exit(&tcp->tcp_eager_lock);
5622 		TCP_STAT(tcp_listendrop);
5623 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5624 		if (tcp->tcp_debug) {
5625 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5626 			    "tcp_conn_request: listen backlog (max=%d) "
5627 			    "overflow (%d pending) on %s",
5628 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5629 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5630 		}
5631 		goto error2;
5632 	}
5633 
5634 	if (tcp->tcp_conn_req_cnt_q0 >=
5635 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5636 		/*
5637 		 * Q0 is full. Drop a pending half-open req from the queue
5638 		 * to make room for the new SYN req. Also mark the time we
5639 		 * drop a SYN.
5640 		 *
5641 		 * A more aggressive defense against SYN attack will
5642 		 * be to set the "tcp_syn_defense" flag now.
5643 		 */
5644 		TCP_STAT(tcp_listendropq0);
5645 		tcp->tcp_last_rcv_lbolt = lbolt64;
5646 		if (!tcp_drop_q0(tcp)) {
5647 			mutex_exit(&tcp->tcp_eager_lock);
5648 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5649 			if (tcp->tcp_debug) {
5650 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5651 				    "tcp_conn_request: listen half-open queue "
5652 				    "(max=%d) full (%d pending) on %s",
5653 				    tcp_conn_req_max_q0,
5654 				    tcp->tcp_conn_req_cnt_q0,
5655 				    tcp_display(tcp, NULL,
5656 				    DISP_PORT_ONLY));
5657 			}
5658 			goto error2;
5659 		}
5660 	}
5661 	mutex_exit(&tcp->tcp_eager_lock);
5662 
5663 	/*
5664 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5665 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5666 	 * link local address.  If IPSec is enabled, db_struioflag has
5667 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5668 	 * otherwise an error case if neither of them is set.
5669 	 */
5670 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5671 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5672 		DB_CKSUMSTART(mp) = 0;
5673 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5674 		econnp = (conn_t *)tcp_get_conn(arg2);
5675 		if (econnp == NULL)
5676 			goto error2;
5677 		econnp->conn_sqp = new_sqp;
5678 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5679 		/*
5680 		 * mp is updated in tcp_get_ipsec_conn().
5681 		 */
5682 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5683 		if (econnp == NULL) {
5684 			/*
5685 			 * mp freed by tcp_get_ipsec_conn.
5686 			 */
5687 			return;
5688 		}
5689 	} else {
5690 		goto error2;
5691 	}
5692 
5693 	ASSERT(DB_TYPE(mp) == M_DATA);
5694 
5695 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5696 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5697 	ASSERT(OK_32PTR(mp->b_rptr));
5698 	if (ipvers == IPV4_VERSION) {
5699 		ipha = (ipha_t *)mp->b_rptr;
5700 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5701 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5702 	} else {
5703 		ip6h = (ip6_t *)mp->b_rptr;
5704 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5705 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5706 	}
5707 
5708 	if (tcp->tcp_family == AF_INET) {
5709 		ASSERT(ipvers == IPV4_VERSION);
5710 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5711 	} else {
5712 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5713 	}
5714 
5715 	if (err)
5716 		goto error3;
5717 
5718 	eager = econnp->conn_tcp;
5719 
5720 	/* Inherit various TCP parameters from the listener */
5721 	eager->tcp_naglim = tcp->tcp_naglim;
5722 	eager->tcp_first_timer_threshold =
5723 	    tcp->tcp_first_timer_threshold;
5724 	eager->tcp_second_timer_threshold =
5725 	    tcp->tcp_second_timer_threshold;
5726 
5727 	eager->tcp_first_ctimer_threshold =
5728 	    tcp->tcp_first_ctimer_threshold;
5729 	eager->tcp_second_ctimer_threshold =
5730 	    tcp->tcp_second_ctimer_threshold;
5731 
5732 	/*
5733 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5734 	 * If it does not, the eager's receive window will be set to the
5735 	 * listener's receive window later in this function.
5736 	 */
5737 	eager->tcp_rwnd = 0;
5738 
5739 	/*
5740 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5741 	 * calling tcp_process_options() where tcp_mss_set() is called
5742 	 * to set the initial cwnd.
5743 	 */
5744 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5745 
5746 	/*
5747 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5748 	 * zone id before the accept is completed in tcp_wput_accept().
5749 	 */
5750 	econnp->conn_zoneid = connp->conn_zoneid;
5751 	econnp->conn_allzones = connp->conn_allzones;
5752 
5753 	/* Copy nexthop information from listener to eager */
5754 	if (connp->conn_nexthop_set) {
5755 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5756 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5757 	}
5758 
5759 	/*
5760 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5761 	 * eager is accepted
5762 	 */
5763 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5764 	crhold(credp);
5765 
5766 	/*
5767 	 * If the caller has the process-wide flag set, then default to MAC
5768 	 * exempt mode.  This allows read-down to unlabeled hosts.
5769 	 */
5770 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5771 		econnp->conn_mac_exempt = B_TRUE;
5772 
5773 	if (is_system_labeled()) {
5774 		cred_t *cr;
5775 
5776 		if (connp->conn_mlp_type != mlptSingle) {
5777 			cr = econnp->conn_peercred = DB_CRED(mp);
5778 			if (cr != NULL)
5779 				crhold(cr);
5780 			else
5781 				cr = econnp->conn_cred;
5782 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5783 			    econnp, cred_t *, cr)
5784 		} else {
5785 			cr = econnp->conn_cred;
5786 			DTRACE_PROBE2(syn_accept, conn_t *,
5787 			    econnp, cred_t *, cr)
5788 		}
5789 
5790 		if (!tcp_update_label(eager, cr)) {
5791 			DTRACE_PROBE3(
5792 			    tx__ip__log__error__connrequest__tcp,
5793 			    char *, "eager connp(1) label on SYN mp(2) failed",
5794 			    conn_t *, econnp, mblk_t *, mp);
5795 			goto error3;
5796 		}
5797 	}
5798 
5799 	eager->tcp_hard_binding = B_TRUE;
5800 
5801 	tcp_bind_hash_insert(&tcp_bind_fanout[
5802 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5803 
5804 	CL_INET_CONNECT(eager);
5805 
5806 	/*
5807 	 * No need to check for multicast destination since ip will only pass
5808 	 * up multicasts to those that have expressed interest
5809 	 * TODO: what about rejecting broadcasts?
5810 	 * Also check that source is not a multicast or broadcast address.
5811 	 */
5812 	eager->tcp_state = TCPS_SYN_RCVD;
5813 
5814 
5815 	/*
5816 	 * There should be no ire in the mp as we are being called after
5817 	 * receiving the SYN.
5818 	 */
5819 	ASSERT(tcp_ire_mp(mp) == NULL);
5820 
5821 	/*
5822 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5823 	 */
5824 
5825 	if (tcp_adapt_ire(eager, NULL) == 0) {
5826 		/* Undo the bind_hash_insert */
5827 		tcp_bind_hash_remove(eager);
5828 		goto error3;
5829 	}
5830 
5831 	/* Process all TCP options. */
5832 	tcp_process_options(eager, tcph);
5833 
5834 	/* Is the other end ECN capable? */
5835 	if (tcp_ecn_permitted >= 1 &&
5836 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5837 		eager->tcp_ecn_ok = B_TRUE;
5838 	}
5839 
5840 	/*
5841 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5842 	 * window size changed via SO_RCVBUF option.  First round up the
5843 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5844 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5845 	 * setting.
5846 	 *
5847 	 * Note if there is a rpipe metric associated with the remote host,
5848 	 * we should not inherit receive window size from listener.
5849 	 */
5850 	eager->tcp_rwnd = MSS_ROUNDUP(
5851 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5852 	    eager->tcp_rwnd), eager->tcp_mss);
5853 	if (eager->tcp_snd_ws_ok)
5854 		tcp_set_ws_value(eager);
5855 	/*
5856 	 * Note that this is the only place tcp_rwnd_set() is called for
5857 	 * accepting a connection.  We need to call it here instead of
5858 	 * after the 3-way handshake because we need to tell the other
5859 	 * side our rwnd in the SYN-ACK segment.
5860 	 */
5861 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5862 
5863 	/*
5864 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5865 	 * via soaccept()->soinheritoptions() which essentially applies
5866 	 * all the listener options to the new STREAM. The options that we
5867 	 * need to take care of are:
5868 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5869 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5870 	 * SO_SNDBUF, SO_RCVBUF.
5871 	 *
5872 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5873 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5874 	 *		tcp_maxpsz_set() gets called later from
5875 	 *		tcp_accept_finish(), the option takes effect.
5876 	 *
5877 	 */
5878 	/* Set the TCP options */
5879 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5880 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5881 	eager->tcp_oobinline = tcp->tcp_oobinline;
5882 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5883 	eager->tcp_broadcast = tcp->tcp_broadcast;
5884 	eager->tcp_useloopback = tcp->tcp_useloopback;
5885 	eager->tcp_dontroute = tcp->tcp_dontroute;
5886 	eager->tcp_linger = tcp->tcp_linger;
5887 	eager->tcp_lingertime = tcp->tcp_lingertime;
5888 	if (tcp->tcp_ka_enabled)
5889 		eager->tcp_ka_enabled = 1;
5890 
5891 	/* Set the IP options */
5892 	econnp->conn_broadcast = connp->conn_broadcast;
5893 	econnp->conn_loopback = connp->conn_loopback;
5894 	econnp->conn_dontroute = connp->conn_dontroute;
5895 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5896 
5897 	/* Put a ref on the listener for the eager. */
5898 	CONN_INC_REF(connp);
5899 	mutex_enter(&tcp->tcp_eager_lock);
5900 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5901 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5902 	tcp->tcp_eager_next_q0 = eager;
5903 	eager->tcp_eager_prev_q0 = tcp;
5904 
5905 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5906 	eager->tcp_listener = tcp;
5907 	eager->tcp_saved_listener = tcp;
5908 
5909 	/*
5910 	 * Tag this detached tcp vector for later retrieval
5911 	 * by our listener client in tcp_accept().
5912 	 */
5913 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5914 	tcp->tcp_conn_req_cnt_q0++;
5915 	if (++tcp->tcp_conn_req_seqnum == -1) {
5916 		/*
5917 		 * -1 is "special" and defined in TPI as something
5918 		 * that should never be used in T_CONN_IND
5919 		 */
5920 		++tcp->tcp_conn_req_seqnum;
5921 	}
5922 	mutex_exit(&tcp->tcp_eager_lock);
5923 
5924 	if (tcp->tcp_syn_defense) {
5925 		/* Don't drop the SYN that comes from a good IP source */
5926 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5927 		if (addr_cache != NULL && eager->tcp_remote ==
5928 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5929 			eager->tcp_dontdrop = B_TRUE;
5930 		}
5931 	}
5932 
5933 	/*
5934 	 * We need to insert the eager in its own perimeter but as soon
5935 	 * as we do that, we expose the eager to the classifier and
5936 	 * should not touch any field outside the eager's perimeter.
5937 	 * So do all the work necessary before inserting the eager
5938 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5939 	 * will succeed but undo everything if it fails.
5940 	 */
5941 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5942 	eager->tcp_irs = seg_seq;
5943 	eager->tcp_rack = seg_seq;
5944 	eager->tcp_rnxt = seg_seq + 1;
5945 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5946 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5947 	eager->tcp_state = TCPS_SYN_RCVD;
5948 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5949 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5950 	if (mp1 == NULL)
5951 		goto error1;
5952 	DB_CPID(mp1) = tcp->tcp_cpid;
5953 	eager->tcp_cpid = tcp->tcp_cpid;
5954 	eager->tcp_open_time = lbolt64;
5955 
5956 	/*
5957 	 * We need to start the rto timer. In normal case, we start
5958 	 * the timer after sending the packet on the wire (or at
5959 	 * least believing that packet was sent by waiting for
5960 	 * CALL_IP_WPUT() to return). Since this is the first packet
5961 	 * being sent on the wire for the eager, our initial tcp_rto
5962 	 * is at least tcp_rexmit_interval_min which is a fairly
5963 	 * large value to allow the algorithm to adjust slowly to large
5964 	 * fluctuations of RTT during first few transmissions.
5965 	 *
5966 	 * Starting the timer first and then sending the packet in this
5967 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5968 	 * is of the order of several 100ms and starting the timer
5969 	 * first and then sending the packet will result in difference
5970 	 * of few micro seconds.
5971 	 *
5972 	 * Without this optimization, we are forced to hold the fanout
5973 	 * lock across the ipcl_bind_insert() and sending the packet
5974 	 * so that we don't race against an incoming packet (maybe RST)
5975 	 * for this eager.
5976 	 */
5977 
5978 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5979 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5980 
5981 
5982 	/*
5983 	 * Insert the eager in its own perimeter now. We are ready to deal
5984 	 * with any packets on eager.
5985 	 */
5986 	if (eager->tcp_ipversion == IPV4_VERSION) {
5987 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5988 			goto error;
5989 		}
5990 	} else {
5991 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5992 			goto error;
5993 		}
5994 	}
5995 
5996 	/* mark conn as fully-bound */
5997 	econnp->conn_fully_bound = B_TRUE;
5998 
5999 	/* Send the SYN-ACK */
6000 	tcp_send_data(eager, eager->tcp_wq, mp1);
6001 	freemsg(mp);
6002 
6003 	return;
6004 error:
6005 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
6006 	freemsg(mp1);
6007 error1:
6008 	/* Undo what we did above */
6009 	mutex_enter(&tcp->tcp_eager_lock);
6010 	tcp_eager_unlink(eager);
6011 	mutex_exit(&tcp->tcp_eager_lock);
6012 	/* Drop eager's reference on the listener */
6013 	CONN_DEC_REF(connp);
6014 
6015 	/*
6016 	 * Delete the cached ire in conn_ire_cache and also mark
6017 	 * the conn as CONDEMNED
6018 	 */
6019 	mutex_enter(&econnp->conn_lock);
6020 	econnp->conn_state_flags |= CONN_CONDEMNED;
6021 	ire = econnp->conn_ire_cache;
6022 	econnp->conn_ire_cache = NULL;
6023 	mutex_exit(&econnp->conn_lock);
6024 	if (ire != NULL)
6025 		IRE_REFRELE_NOTR(ire);
6026 
6027 	/*
6028 	 * tcp_accept_comm inserts the eager to the bind_hash
6029 	 * we need to remove it from the hash if ipcl_conn_insert
6030 	 * fails.
6031 	 */
6032 	tcp_bind_hash_remove(eager);
6033 	/* Drop the eager ref placed in tcp_open_detached */
6034 	CONN_DEC_REF(econnp);
6035 
6036 	/*
6037 	 * If a connection already exists, send the mp to that connections so
6038 	 * that it can be appropriately dealt with.
6039 	 */
6040 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
6041 		if (!IPCL_IS_CONNECTED(econnp)) {
6042 			/*
6043 			 * Something bad happened. ipcl_conn_insert()
6044 			 * failed because a connection already existed
6045 			 * in connected hash but we can't find it
6046 			 * anymore (someone blew it away). Just
6047 			 * free this message and hopefully remote
6048 			 * will retransmit at which time the SYN can be
6049 			 * treated as a new connection or dealth with
6050 			 * a TH_RST if a connection already exists.
6051 			 */
6052 			CONN_DEC_REF(econnp);
6053 			freemsg(mp);
6054 		} else {
6055 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6056 			    econnp, SQTAG_TCP_CONN_REQ);
6057 		}
6058 	} else {
6059 		/* Nobody wants this packet */
6060 		freemsg(mp);
6061 	}
6062 	return;
6063 error2:
6064 	freemsg(mp);
6065 	return;
6066 error3:
6067 	CONN_DEC_REF(econnp);
6068 	freemsg(mp);
6069 }
6070 
6071 /*
6072  * In an ideal case of vertical partition in NUMA architecture, its
6073  * beneficial to have the listener and all the incoming connections
6074  * tied to the same squeue. The other constraint is that incoming
6075  * connections should be tied to the squeue attached to interrupted
6076  * CPU for obvious locality reason so this leaves the listener to
6077  * be tied to the same squeue. Our only problem is that when listener
6078  * is binding, the CPU that will get interrupted by the NIC whose
6079  * IP address the listener is binding to is not even known. So
6080  * the code below allows us to change that binding at the time the
6081  * CPU is interrupted by virtue of incoming connection's squeue.
6082  *
6083  * This is usefull only in case of a listener bound to a specific IP
6084  * address. For other kind of listeners, they get bound the
6085  * very first time and there is no attempt to rebind them.
6086  */
6087 void
6088 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6089 {
6090 	conn_t		*connp = (conn_t *)arg;
6091 	squeue_t	*sqp = (squeue_t *)arg2;
6092 	squeue_t	*new_sqp;
6093 	uint32_t	conn_flags;
6094 
6095 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6096 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6097 	} else {
6098 		goto done;
6099 	}
6100 
6101 	if (connp->conn_fanout == NULL)
6102 		goto done;
6103 
6104 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6105 		mutex_enter(&connp->conn_fanout->connf_lock);
6106 		mutex_enter(&connp->conn_lock);
6107 		/*
6108 		 * No one from read or write side can access us now
6109 		 * except for already queued packets on this squeue.
6110 		 * But since we haven't changed the squeue yet, they
6111 		 * can't execute. If they are processed after we have
6112 		 * changed the squeue, they are sent back to the
6113 		 * correct squeue down below.
6114 		 * But a listner close can race with processing of
6115 		 * incoming SYN. If incoming SYN processing changes
6116 		 * the squeue then the listener close which is waiting
6117 		 * to enter the squeue would operate on the wrong
6118 		 * squeue. Hence we don't change the squeue here unless
6119 		 * the refcount is exactly the minimum refcount. The
6120 		 * minimum refcount of 4 is counted as - 1 each for
6121 		 * TCP and IP, 1 for being in the classifier hash, and
6122 		 * 1 for the mblk being processed.
6123 		 */
6124 
6125 		if (connp->conn_ref != 4 ||
6126 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6127 			mutex_exit(&connp->conn_lock);
6128 			mutex_exit(&connp->conn_fanout->connf_lock);
6129 			goto done;
6130 		}
6131 		if (connp->conn_sqp != new_sqp) {
6132 			while (connp->conn_sqp != new_sqp)
6133 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6134 		}
6135 
6136 		do {
6137 			conn_flags = connp->conn_flags;
6138 			conn_flags |= IPCL_FULLY_BOUND;
6139 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6140 			    conn_flags);
6141 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6142 
6143 		mutex_exit(&connp->conn_fanout->connf_lock);
6144 		mutex_exit(&connp->conn_lock);
6145 	}
6146 
6147 done:
6148 	if (connp->conn_sqp != sqp) {
6149 		CONN_INC_REF(connp);
6150 		squeue_fill(connp->conn_sqp, mp,
6151 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6152 	} else {
6153 		tcp_conn_request(connp, mp, sqp);
6154 	}
6155 }
6156 
6157 /*
6158  * Successful connect request processing begins when our client passes
6159  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6160  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6161  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6162  *   upstream <- tcp_rput()                <- IP
6163  * After various error checks are completed, tcp_connect() lays
6164  * the target address and port into the composite header template,
6165  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6166  * request followed by an IRE request, and passes the three mblk message
6167  * down to IP looking like this:
6168  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6169  * Processing continues in tcp_rput() when we receive the following message:
6170  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6171  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6172  * to fire off the connection request, and then passes the T_OK_ACK mblk
6173  * upstream that we filled in below.  There are, of course, numerous
6174  * error conditions along the way which truncate the processing described
6175  * above.
6176  */
6177 static void
6178 tcp_connect(tcp_t *tcp, mblk_t *mp)
6179 {
6180 	sin_t		*sin;
6181 	sin6_t		*sin6;
6182 	queue_t		*q = tcp->tcp_wq;
6183 	struct T_conn_req	*tcr;
6184 	ipaddr_t	*dstaddrp;
6185 	in_port_t	dstport;
6186 	uint_t		srcid;
6187 
6188 	tcr = (struct T_conn_req *)mp->b_rptr;
6189 
6190 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6191 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6192 		tcp_err_ack(tcp, mp, TPROTO, 0);
6193 		return;
6194 	}
6195 
6196 	/*
6197 	 * Determine packet type based on type of address passed in
6198 	 * the request should contain an IPv4 or IPv6 address.
6199 	 * Make sure that address family matches the type of
6200 	 * family of the the address passed down
6201 	 */
6202 	switch (tcr->DEST_length) {
6203 	default:
6204 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6205 		return;
6206 
6207 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6208 		/*
6209 		 * XXX: The check for valid DEST_length was not there
6210 		 * in earlier releases and some buggy
6211 		 * TLI apps (e.g Sybase) got away with not feeding
6212 		 * in sin_zero part of address.
6213 		 * We allow that bug to keep those buggy apps humming.
6214 		 * Test suites require the check on DEST_length.
6215 		 * We construct a new mblk with valid DEST_length
6216 		 * free the original so the rest of the code does
6217 		 * not have to keep track of this special shorter
6218 		 * length address case.
6219 		 */
6220 		mblk_t *nmp;
6221 		struct T_conn_req *ntcr;
6222 		sin_t *nsin;
6223 
6224 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6225 		    tcr->OPT_length, BPRI_HI);
6226 		if (nmp == NULL) {
6227 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6228 			return;
6229 		}
6230 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6231 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6232 		ntcr->PRIM_type = T_CONN_REQ;
6233 		ntcr->DEST_length = sizeof (sin_t);
6234 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6235 
6236 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6237 		*nsin = sin_null;
6238 		/* Get pointer to shorter address to copy from original mp */
6239 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6240 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6241 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6242 			freemsg(nmp);
6243 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6244 			return;
6245 		}
6246 		nsin->sin_family = sin->sin_family;
6247 		nsin->sin_port = sin->sin_port;
6248 		nsin->sin_addr = sin->sin_addr;
6249 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6250 		nmp->b_wptr = (uchar_t *)&nsin[1];
6251 		if (tcr->OPT_length != 0) {
6252 			ntcr->OPT_length = tcr->OPT_length;
6253 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6254 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6255 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6256 			    tcr->OPT_length);
6257 			nmp->b_wptr += tcr->OPT_length;
6258 		}
6259 		freemsg(mp);	/* original mp freed */
6260 		mp = nmp;	/* re-initialize original variables */
6261 		tcr = ntcr;
6262 	}
6263 	/* FALLTHRU */
6264 
6265 	case sizeof (sin_t):
6266 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6267 		    sizeof (sin_t));
6268 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6269 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6270 			return;
6271 		}
6272 		if (tcp->tcp_family != AF_INET ||
6273 		    sin->sin_family != AF_INET) {
6274 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6275 			return;
6276 		}
6277 		if (sin->sin_port == 0) {
6278 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6279 			return;
6280 		}
6281 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6282 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6283 			return;
6284 		}
6285 
6286 		break;
6287 
6288 	case sizeof (sin6_t):
6289 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6290 		    sizeof (sin6_t));
6291 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6292 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6293 			return;
6294 		}
6295 		if (tcp->tcp_family != AF_INET6 ||
6296 		    sin6->sin6_family != AF_INET6) {
6297 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6298 			return;
6299 		}
6300 		if (sin6->sin6_port == 0) {
6301 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6302 			return;
6303 		}
6304 		break;
6305 	}
6306 	/*
6307 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6308 	 * should key on their sequence number and cut them loose.
6309 	 */
6310 
6311 	/*
6312 	 * If options passed in, feed it for verification and handling
6313 	 */
6314 	if (tcr->OPT_length != 0) {
6315 		mblk_t	*ok_mp;
6316 		mblk_t	*discon_mp;
6317 		mblk_t  *conn_opts_mp;
6318 		int t_error, sys_error, do_disconnect;
6319 
6320 		conn_opts_mp = NULL;
6321 
6322 		if (tcp_conprim_opt_process(tcp, mp,
6323 			&do_disconnect, &t_error, &sys_error) < 0) {
6324 			if (do_disconnect) {
6325 				ASSERT(t_error == 0 && sys_error == 0);
6326 				discon_mp = mi_tpi_discon_ind(NULL,
6327 				    ECONNREFUSED, 0);
6328 				if (!discon_mp) {
6329 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6330 					    TSYSERR, ENOMEM);
6331 					return;
6332 				}
6333 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6334 				if (!ok_mp) {
6335 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6336 					    TSYSERR, ENOMEM);
6337 					return;
6338 				}
6339 				qreply(q, ok_mp);
6340 				qreply(q, discon_mp); /* no flush! */
6341 			} else {
6342 				ASSERT(t_error != 0);
6343 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6344 				    sys_error);
6345 			}
6346 			return;
6347 		}
6348 		/*
6349 		 * Success in setting options, the mp option buffer represented
6350 		 * by OPT_length/offset has been potentially modified and
6351 		 * contains results of option processing. We copy it in
6352 		 * another mp to save it for potentially influencing returning
6353 		 * it in T_CONN_CONN.
6354 		 */
6355 		if (tcr->OPT_length != 0) { /* there are resulting options */
6356 			conn_opts_mp = copyb(mp);
6357 			if (!conn_opts_mp) {
6358 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6359 				    TSYSERR, ENOMEM);
6360 				return;
6361 			}
6362 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6363 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6364 			/*
6365 			 * Note:
6366 			 * These resulting option negotiation can include any
6367 			 * end-to-end negotiation options but there no such
6368 			 * thing (yet?) in our TCP/IP.
6369 			 */
6370 		}
6371 	}
6372 
6373 	/*
6374 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6375 	 * make sure that the template IP header in the tcp structure is an
6376 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6377 	 * need to this before we call tcp_bindi() so that the port lookup
6378 	 * code will look for ports in the correct port space (IPv4 and
6379 	 * IPv6 have separate port spaces).
6380 	 */
6381 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6382 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6383 		int err = 0;
6384 
6385 		err = tcp_header_init_ipv4(tcp);
6386 		if (err != 0) {
6387 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6388 			goto connect_failed;
6389 		}
6390 		if (tcp->tcp_lport != 0)
6391 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6392 	}
6393 
6394 	switch (tcp->tcp_state) {
6395 	case TCPS_IDLE:
6396 		/*
6397 		 * We support quick connect, refer to comments in
6398 		 * tcp_connect_*()
6399 		 */
6400 		/* FALLTHRU */
6401 	case TCPS_BOUND:
6402 	case TCPS_LISTEN:
6403 		if (tcp->tcp_family == AF_INET6) {
6404 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6405 				tcp_connect_ipv6(tcp, mp,
6406 				    &sin6->sin6_addr,
6407 				    sin6->sin6_port, sin6->sin6_flowinfo,
6408 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6409 				return;
6410 			}
6411 			/*
6412 			 * Destination adress is mapped IPv6 address.
6413 			 * Source bound address should be unspecified or
6414 			 * IPv6 mapped address as well.
6415 			 */
6416 			if (!IN6_IS_ADDR_UNSPECIFIED(
6417 			    &tcp->tcp_bound_source_v6) &&
6418 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6419 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6420 				    EADDRNOTAVAIL);
6421 				break;
6422 			}
6423 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6424 			dstport = sin6->sin6_port;
6425 			srcid = sin6->__sin6_src_id;
6426 		} else {
6427 			dstaddrp = &sin->sin_addr.s_addr;
6428 			dstport = sin->sin_port;
6429 			srcid = 0;
6430 		}
6431 
6432 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6433 		return;
6434 	default:
6435 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6436 		break;
6437 	}
6438 	/*
6439 	 * Note: Code below is the "failure" case
6440 	 */
6441 	/* return error ack and blow away saved option results if any */
6442 connect_failed:
6443 	if (mp != NULL)
6444 		putnext(tcp->tcp_rq, mp);
6445 	else {
6446 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6447 		    TSYSERR, ENOMEM);
6448 	}
6449 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6450 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6451 }
6452 
6453 /*
6454  * Handle connect to IPv4 destinations, including connections for AF_INET6
6455  * sockets connecting to IPv4 mapped IPv6 destinations.
6456  */
6457 static void
6458 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6459     uint_t srcid)
6460 {
6461 	tcph_t	*tcph;
6462 	mblk_t	*mp1;
6463 	ipaddr_t dstaddr = *dstaddrp;
6464 	int32_t	oldstate;
6465 	uint16_t lport;
6466 
6467 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6468 
6469 	/* Check for attempt to connect to INADDR_ANY */
6470 	if (dstaddr == INADDR_ANY)  {
6471 		/*
6472 		 * SunOS 4.x and 4.3 BSD allow an application
6473 		 * to connect a TCP socket to INADDR_ANY.
6474 		 * When they do this, the kernel picks the
6475 		 * address of one interface and uses it
6476 		 * instead.  The kernel usually ends up
6477 		 * picking the address of the loopback
6478 		 * interface.  This is an undocumented feature.
6479 		 * However, we provide the same thing here
6480 		 * in order to have source and binary
6481 		 * compatibility with SunOS 4.x.
6482 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6483 		 * generate the T_CONN_CON.
6484 		 */
6485 		dstaddr = htonl(INADDR_LOOPBACK);
6486 		*dstaddrp = dstaddr;
6487 	}
6488 
6489 	/* Handle __sin6_src_id if socket not bound to an IP address */
6490 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6491 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6492 		    tcp->tcp_connp->conn_zoneid);
6493 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6494 		    tcp->tcp_ipha->ipha_src);
6495 	}
6496 
6497 	/*
6498 	 * Don't let an endpoint connect to itself.  Note that
6499 	 * the test here does not catch the case where the
6500 	 * source IP addr was left unspecified by the user. In
6501 	 * this case, the source addr is set in tcp_adapt_ire()
6502 	 * using the reply to the T_BIND message that we send
6503 	 * down to IP here and the check is repeated in tcp_rput_other.
6504 	 */
6505 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6506 	    dstport == tcp->tcp_lport) {
6507 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6508 		goto failed;
6509 	}
6510 
6511 	tcp->tcp_ipha->ipha_dst = dstaddr;
6512 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6513 
6514 	/*
6515 	 * Massage a source route if any putting the first hop
6516 	 * in iph_dst. Compute a starting value for the checksum which
6517 	 * takes into account that the original iph_dst should be
6518 	 * included in the checksum but that ip will include the
6519 	 * first hop in the source route in the tcp checksum.
6520 	 */
6521 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6522 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6523 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6524 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6525 	if ((int)tcp->tcp_sum < 0)
6526 		tcp->tcp_sum--;
6527 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6528 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6529 	    (tcp->tcp_sum >> 16));
6530 	tcph = tcp->tcp_tcph;
6531 	*(uint16_t *)tcph->th_fport = dstport;
6532 	tcp->tcp_fport = dstport;
6533 
6534 	oldstate = tcp->tcp_state;
6535 	/*
6536 	 * At this point the remote destination address and remote port fields
6537 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6538 	 * have to see which state tcp was in so we can take apropriate action.
6539 	 */
6540 	if (oldstate == TCPS_IDLE) {
6541 		/*
6542 		 * We support a quick connect capability here, allowing
6543 		 * clients to transition directly from IDLE to SYN_SENT
6544 		 * tcp_bindi will pick an unused port, insert the connection
6545 		 * in the bind hash and transition to BOUND state.
6546 		 */
6547 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6548 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6549 		    B_FALSE, B_FALSE);
6550 		if (lport == 0) {
6551 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6552 			goto failed;
6553 		}
6554 	}
6555 	tcp->tcp_state = TCPS_SYN_SENT;
6556 
6557 	/*
6558 	 * TODO: allow data with connect requests
6559 	 * by unlinking M_DATA trailers here and
6560 	 * linking them in behind the T_OK_ACK mblk.
6561 	 * The tcp_rput() bind ack handler would then
6562 	 * feed them to tcp_wput_data() rather than call
6563 	 * tcp_timer().
6564 	 */
6565 	mp = mi_tpi_ok_ack_alloc(mp);
6566 	if (!mp) {
6567 		tcp->tcp_state = oldstate;
6568 		goto failed;
6569 	}
6570 	if (tcp->tcp_family == AF_INET) {
6571 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6572 		    sizeof (ipa_conn_t));
6573 	} else {
6574 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6575 		    sizeof (ipa6_conn_t));
6576 	}
6577 	if (mp1) {
6578 		/* Hang onto the T_OK_ACK for later. */
6579 		linkb(mp1, mp);
6580 		mblk_setcred(mp1, tcp->tcp_cred);
6581 		if (tcp->tcp_family == AF_INET)
6582 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6583 		else {
6584 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6585 			    &tcp->tcp_sticky_ipp);
6586 		}
6587 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6588 		tcp->tcp_active_open = 1;
6589 		/*
6590 		 * If the bind cannot complete immediately
6591 		 * IP will arrange to call tcp_rput_other
6592 		 * when the bind completes.
6593 		 */
6594 		if (mp1 != NULL)
6595 			tcp_rput_other(tcp, mp1);
6596 		return;
6597 	}
6598 	/* Error case */
6599 	tcp->tcp_state = oldstate;
6600 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6601 
6602 failed:
6603 	/* return error ack and blow away saved option results if any */
6604 	if (mp != NULL)
6605 		putnext(tcp->tcp_rq, mp);
6606 	else {
6607 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6608 		    TSYSERR, ENOMEM);
6609 	}
6610 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6611 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6612 
6613 }
6614 
6615 /*
6616  * Handle connect to IPv6 destinations.
6617  */
6618 static void
6619 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6620     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6621 {
6622 	tcph_t	*tcph;
6623 	mblk_t	*mp1;
6624 	ip6_rthdr_t *rth;
6625 	int32_t  oldstate;
6626 	uint16_t lport;
6627 
6628 	ASSERT(tcp->tcp_family == AF_INET6);
6629 
6630 	/*
6631 	 * If we're here, it means that the destination address is a native
6632 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6633 	 * reason why it might not be IPv6 is if the socket was bound to an
6634 	 * IPv4-mapped IPv6 address.
6635 	 */
6636 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6637 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6638 		goto failed;
6639 	}
6640 
6641 	/*
6642 	 * Interpret a zero destination to mean loopback.
6643 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6644 	 * generate the T_CONN_CON.
6645 	 */
6646 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6647 		*dstaddrp = ipv6_loopback;
6648 	}
6649 
6650 	/* Handle __sin6_src_id if socket not bound to an IP address */
6651 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6652 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6653 		    tcp->tcp_connp->conn_zoneid);
6654 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6655 	}
6656 
6657 	/*
6658 	 * Take care of the scope_id now and add ip6i_t
6659 	 * if ip6i_t is not already allocated through TCP
6660 	 * sticky options. At this point tcp_ip6h does not
6661 	 * have dst info, thus use dstaddrp.
6662 	 */
6663 	if (scope_id != 0 &&
6664 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6665 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6666 		ip6i_t  *ip6i;
6667 
6668 		ipp->ipp_ifindex = scope_id;
6669 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6670 
6671 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6672 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6673 			/* Already allocated */
6674 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6675 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6676 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6677 		} else {
6678 			int reterr;
6679 
6680 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6681 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6682 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6683 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6684 			if (reterr != 0)
6685 				goto failed;
6686 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6687 		}
6688 	}
6689 
6690 	/*
6691 	 * Don't let an endpoint connect to itself.  Note that
6692 	 * the test here does not catch the case where the
6693 	 * source IP addr was left unspecified by the user. In
6694 	 * this case, the source addr is set in tcp_adapt_ire()
6695 	 * using the reply to the T_BIND message that we send
6696 	 * down to IP here and the check is repeated in tcp_rput_other.
6697 	 */
6698 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6699 	    (dstport == tcp->tcp_lport)) {
6700 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6701 		goto failed;
6702 	}
6703 
6704 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6705 	tcp->tcp_remote_v6 = *dstaddrp;
6706 	tcp->tcp_ip6h->ip6_vcf =
6707 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6708 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6709 
6710 
6711 	/*
6712 	 * Massage a routing header (if present) putting the first hop
6713 	 * in ip6_dst. Compute a starting value for the checksum which
6714 	 * takes into account that the original ip6_dst should be
6715 	 * included in the checksum but that ip will include the
6716 	 * first hop in the source route in the tcp checksum.
6717 	 */
6718 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6719 	if (rth != NULL) {
6720 
6721 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6722 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6723 		    (tcp->tcp_sum >> 16));
6724 	} else {
6725 		tcp->tcp_sum = 0;
6726 	}
6727 
6728 	tcph = tcp->tcp_tcph;
6729 	*(uint16_t *)tcph->th_fport = dstport;
6730 	tcp->tcp_fport = dstport;
6731 
6732 	oldstate = tcp->tcp_state;
6733 	/*
6734 	 * At this point the remote destination address and remote port fields
6735 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6736 	 * have to see which state tcp was in so we can take apropriate action.
6737 	 */
6738 	if (oldstate == TCPS_IDLE) {
6739 		/*
6740 		 * We support a quick connect capability here, allowing
6741 		 * clients to transition directly from IDLE to SYN_SENT
6742 		 * tcp_bindi will pick an unused port, insert the connection
6743 		 * in the bind hash and transition to BOUND state.
6744 		 */
6745 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6746 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6747 		    B_FALSE, B_FALSE);
6748 		if (lport == 0) {
6749 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6750 			goto failed;
6751 		}
6752 	}
6753 	tcp->tcp_state = TCPS_SYN_SENT;
6754 	/*
6755 	 * TODO: allow data with connect requests
6756 	 * by unlinking M_DATA trailers here and
6757 	 * linking them in behind the T_OK_ACK mblk.
6758 	 * The tcp_rput() bind ack handler would then
6759 	 * feed them to tcp_wput_data() rather than call
6760 	 * tcp_timer().
6761 	 */
6762 	mp = mi_tpi_ok_ack_alloc(mp);
6763 	if (!mp) {
6764 		tcp->tcp_state = oldstate;
6765 		goto failed;
6766 	}
6767 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6768 	if (mp1) {
6769 		/* Hang onto the T_OK_ACK for later. */
6770 		linkb(mp1, mp);
6771 		mblk_setcred(mp1, tcp->tcp_cred);
6772 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6773 		    &tcp->tcp_sticky_ipp);
6774 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6775 		tcp->tcp_active_open = 1;
6776 		/* ip_bind_v6() may return ACK or ERROR */
6777 		if (mp1 != NULL)
6778 			tcp_rput_other(tcp, mp1);
6779 		return;
6780 	}
6781 	/* Error case */
6782 	tcp->tcp_state = oldstate;
6783 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6784 
6785 failed:
6786 	/* return error ack and blow away saved option results if any */
6787 	if (mp != NULL)
6788 		putnext(tcp->tcp_rq, mp);
6789 	else {
6790 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6791 		    TSYSERR, ENOMEM);
6792 	}
6793 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6794 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6795 }
6796 
6797 /*
6798  * We need a stream q for detached closing tcp connections
6799  * to use.  Our client hereby indicates that this q is the
6800  * one to use.
6801  */
6802 static void
6803 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6804 {
6805 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6806 	queue_t	*q = tcp->tcp_wq;
6807 
6808 	mp->b_datap->db_type = M_IOCACK;
6809 	iocp->ioc_count = 0;
6810 	mutex_enter(&tcp_g_q_lock);
6811 	if (tcp_g_q != NULL) {
6812 		mutex_exit(&tcp_g_q_lock);
6813 		iocp->ioc_error = EALREADY;
6814 	} else {
6815 		mblk_t *mp1;
6816 
6817 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6818 		if (mp1 == NULL) {
6819 			mutex_exit(&tcp_g_q_lock);
6820 			iocp->ioc_error = ENOMEM;
6821 		} else {
6822 			tcp_g_q = tcp->tcp_rq;
6823 			mutex_exit(&tcp_g_q_lock);
6824 			iocp->ioc_error = 0;
6825 			iocp->ioc_rval = 0;
6826 			/*
6827 			 * We are passing tcp_sticky_ipp as NULL
6828 			 * as it is not useful for tcp_default queue
6829 			 */
6830 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6831 			if (mp1 != NULL)
6832 				tcp_rput_other(tcp, mp1);
6833 		}
6834 	}
6835 	qreply(q, mp);
6836 }
6837 
6838 /*
6839  * Our client hereby directs us to reject the connection request
6840  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6841  * of sending the appropriate RST, not an ICMP error.
6842  */
6843 static void
6844 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6845 {
6846 	tcp_t	*ltcp = NULL;
6847 	t_scalar_t seqnum;
6848 	conn_t	*connp;
6849 
6850 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6851 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6852 		tcp_err_ack(tcp, mp, TPROTO, 0);
6853 		return;
6854 	}
6855 
6856 	/*
6857 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6858 	 * when the stream is in BOUND state. Do not send a reset,
6859 	 * since the destination IP address is not valid, and it can
6860 	 * be the initialized value of all zeros (broadcast address).
6861 	 *
6862 	 * If TCP has sent down a bind request to IP and has not
6863 	 * received the reply, reject the request.  Otherwise, TCP
6864 	 * will be confused.
6865 	 */
6866 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6867 		if (tcp->tcp_debug) {
6868 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6869 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6870 		}
6871 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6872 		return;
6873 	}
6874 
6875 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6876 
6877 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6878 
6879 		/*
6880 		 * According to TPI, for non-listeners, ignore seqnum
6881 		 * and disconnect.
6882 		 * Following interpretation of -1 seqnum is historical
6883 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6884 		 * a valid seqnum should not be -1).
6885 		 *
6886 		 *	-1 means disconnect everything
6887 		 *	regardless even on a listener.
6888 		 */
6889 
6890 		int old_state = tcp->tcp_state;
6891 
6892 		/*
6893 		 * The connection can't be on the tcp_time_wait_head list
6894 		 * since it is not detached.
6895 		 */
6896 		ASSERT(tcp->tcp_time_wait_next == NULL);
6897 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6898 		ASSERT(tcp->tcp_time_wait_expire == 0);
6899 		ltcp = NULL;
6900 		/*
6901 		 * If it used to be a listener, check to make sure no one else
6902 		 * has taken the port before switching back to LISTEN state.
6903 		 */
6904 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6905 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6906 			    tcp->tcp_ipha->ipha_src,
6907 			    tcp->tcp_connp->conn_zoneid);
6908 			if (connp != NULL)
6909 				ltcp = connp->conn_tcp;
6910 		} else {
6911 			/* Allow tcp_bound_if listeners? */
6912 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6913 			    &tcp->tcp_ip6h->ip6_src, 0,
6914 			    tcp->tcp_connp->conn_zoneid);
6915 			if (connp != NULL)
6916 				ltcp = connp->conn_tcp;
6917 		}
6918 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6919 			tcp->tcp_state = TCPS_LISTEN;
6920 		} else if (old_state > TCPS_BOUND) {
6921 			tcp->tcp_conn_req_max = 0;
6922 			tcp->tcp_state = TCPS_BOUND;
6923 		}
6924 		if (ltcp != NULL)
6925 			CONN_DEC_REF(ltcp->tcp_connp);
6926 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6927 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6928 		} else if (old_state == TCPS_ESTABLISHED ||
6929 		    old_state == TCPS_CLOSE_WAIT) {
6930 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6931 		}
6932 
6933 		if (tcp->tcp_fused)
6934 			tcp_unfuse(tcp);
6935 
6936 		mutex_enter(&tcp->tcp_eager_lock);
6937 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6938 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6939 			tcp_eager_cleanup(tcp, 0);
6940 		}
6941 		mutex_exit(&tcp->tcp_eager_lock);
6942 
6943 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6944 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6945 
6946 		tcp_reinit(tcp);
6947 
6948 		if (old_state >= TCPS_ESTABLISHED) {
6949 			/* Send M_FLUSH according to TPI */
6950 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6951 		}
6952 		mp = mi_tpi_ok_ack_alloc(mp);
6953 		if (mp)
6954 			putnext(tcp->tcp_rq, mp);
6955 		return;
6956 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6957 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6958 		return;
6959 	}
6960 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6961 		/* Send M_FLUSH according to TPI */
6962 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6963 	}
6964 	mp = mi_tpi_ok_ack_alloc(mp);
6965 	if (mp)
6966 		putnext(tcp->tcp_rq, mp);
6967 }
6968 
6969 /*
6970  * Diagnostic routine used to return a string associated with the tcp state.
6971  * Note that if the caller does not supply a buffer, it will use an internal
6972  * static string.  This means that if multiple threads call this function at
6973  * the same time, output can be corrupted...  Note also that this function
6974  * does not check the size of the supplied buffer.  The caller has to make
6975  * sure that it is big enough.
6976  */
6977 static char *
6978 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6979 {
6980 	char		buf1[30];
6981 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6982 	char		*buf;
6983 	char		*cp;
6984 	in6_addr_t	local, remote;
6985 	char		local_addrbuf[INET6_ADDRSTRLEN];
6986 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6987 
6988 	if (sup_buf != NULL)
6989 		buf = sup_buf;
6990 	else
6991 		buf = priv_buf;
6992 
6993 	if (tcp == NULL)
6994 		return ("NULL_TCP");
6995 	switch (tcp->tcp_state) {
6996 	case TCPS_CLOSED:
6997 		cp = "TCP_CLOSED";
6998 		break;
6999 	case TCPS_IDLE:
7000 		cp = "TCP_IDLE";
7001 		break;
7002 	case TCPS_BOUND:
7003 		cp = "TCP_BOUND";
7004 		break;
7005 	case TCPS_LISTEN:
7006 		cp = "TCP_LISTEN";
7007 		break;
7008 	case TCPS_SYN_SENT:
7009 		cp = "TCP_SYN_SENT";
7010 		break;
7011 	case TCPS_SYN_RCVD:
7012 		cp = "TCP_SYN_RCVD";
7013 		break;
7014 	case TCPS_ESTABLISHED:
7015 		cp = "TCP_ESTABLISHED";
7016 		break;
7017 	case TCPS_CLOSE_WAIT:
7018 		cp = "TCP_CLOSE_WAIT";
7019 		break;
7020 	case TCPS_FIN_WAIT_1:
7021 		cp = "TCP_FIN_WAIT_1";
7022 		break;
7023 	case TCPS_CLOSING:
7024 		cp = "TCP_CLOSING";
7025 		break;
7026 	case TCPS_LAST_ACK:
7027 		cp = "TCP_LAST_ACK";
7028 		break;
7029 	case TCPS_FIN_WAIT_2:
7030 		cp = "TCP_FIN_WAIT_2";
7031 		break;
7032 	case TCPS_TIME_WAIT:
7033 		cp = "TCP_TIME_WAIT";
7034 		break;
7035 	default:
7036 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7037 		cp = buf1;
7038 		break;
7039 	}
7040 	switch (format) {
7041 	case DISP_ADDR_AND_PORT:
7042 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7043 			/*
7044 			 * Note that we use the remote address in the tcp_b
7045 			 * structure.  This means that it will print out
7046 			 * the real destination address, not the next hop's
7047 			 * address if source routing is used.
7048 			 */
7049 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7050 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7051 
7052 		} else {
7053 			local = tcp->tcp_ip_src_v6;
7054 			remote = tcp->tcp_remote_v6;
7055 		}
7056 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7057 		    sizeof (local_addrbuf));
7058 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7059 		    sizeof (remote_addrbuf));
7060 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7061 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7062 		    ntohs(tcp->tcp_fport), cp);
7063 		break;
7064 	case DISP_PORT_ONLY:
7065 	default:
7066 		(void) mi_sprintf(buf, "[%u, %u] %s",
7067 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7068 		break;
7069 	}
7070 
7071 	return (buf);
7072 }
7073 
7074 /*
7075  * Called via squeue to get on to eager's perimeter to send a
7076  * TH_RST. The listener wants the eager to disappear either
7077  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
7078  * being called.
7079  */
7080 /* ARGSUSED */
7081 void
7082 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7083 {
7084 	conn_t	*econnp = (conn_t *)arg;
7085 	tcp_t	*eager = econnp->conn_tcp;
7086 	tcp_t	*listener = eager->tcp_listener;
7087 
7088 	/*
7089 	 * We could be called because listener is closing. Since
7090 	 * the eager is using listener's queue's, its not safe.
7091 	 * Better use the default queue just to send the TH_RST
7092 	 * out.
7093 	 */
7094 	eager->tcp_rq = tcp_g_q;
7095 	eager->tcp_wq = WR(tcp_g_q);
7096 
7097 	if (eager->tcp_state > TCPS_LISTEN) {
7098 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7099 		    eager, eager->tcp_snxt, 0, TH_RST);
7100 	}
7101 
7102 	/* We are here because listener wants this eager gone */
7103 	if (listener != NULL) {
7104 		mutex_enter(&listener->tcp_eager_lock);
7105 		tcp_eager_unlink(eager);
7106 		if (eager->tcp_tconnind_started) {
7107 			/*
7108 			 * The eager has sent a conn_ind up to the
7109 			 * listener but listener decides to close
7110 			 * instead. We need to drop the extra ref
7111 			 * placed on eager in tcp_rput_data() before
7112 			 * sending the conn_ind to listener.
7113 			 */
7114 			CONN_DEC_REF(econnp);
7115 		}
7116 		mutex_exit(&listener->tcp_eager_lock);
7117 		CONN_DEC_REF(listener->tcp_connp);
7118 	}
7119 
7120 	if (eager->tcp_state > TCPS_BOUND)
7121 		tcp_close_detached(eager);
7122 }
7123 
7124 /*
7125  * Reset any eager connection hanging off this listener marked
7126  * with 'seqnum' and then reclaim it's resources.
7127  */
7128 static boolean_t
7129 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7130 {
7131 	tcp_t	*eager;
7132 	mblk_t 	*mp;
7133 
7134 	TCP_STAT(tcp_eager_blowoff_calls);
7135 	eager = listener;
7136 	mutex_enter(&listener->tcp_eager_lock);
7137 	do {
7138 		eager = eager->tcp_eager_next_q;
7139 		if (eager == NULL) {
7140 			mutex_exit(&listener->tcp_eager_lock);
7141 			return (B_FALSE);
7142 		}
7143 	} while (eager->tcp_conn_req_seqnum != seqnum);
7144 
7145 	if (eager->tcp_closemp_used > 0) {
7146 		mutex_exit(&listener->tcp_eager_lock);
7147 		return (B_TRUE);
7148 	}
7149 	eager->tcp_closemp_used = 1;
7150 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7151 	CONN_INC_REF(eager->tcp_connp);
7152 	mutex_exit(&listener->tcp_eager_lock);
7153 	mp = &eager->tcp_closemp;
7154 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7155 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7156 	return (B_TRUE);
7157 }
7158 
7159 /*
7160  * Reset any eager connection hanging off this listener
7161  * and then reclaim it's resources.
7162  */
7163 static void
7164 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7165 {
7166 	tcp_t	*eager;
7167 	mblk_t	*mp;
7168 
7169 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7170 
7171 	if (!q0_only) {
7172 		/* First cleanup q */
7173 		TCP_STAT(tcp_eager_blowoff_q);
7174 		eager = listener->tcp_eager_next_q;
7175 		while (eager != NULL) {
7176 			if (eager->tcp_closemp_used == 0) {
7177 				eager->tcp_closemp_used = 1;
7178 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7179 				CONN_INC_REF(eager->tcp_connp);
7180 				mp = &eager->tcp_closemp;
7181 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7182 				    tcp_eager_kill, eager->tcp_connp,
7183 				    SQTAG_TCP_EAGER_CLEANUP);
7184 			}
7185 			eager = eager->tcp_eager_next_q;
7186 		}
7187 	}
7188 	/* Then cleanup q0 */
7189 	TCP_STAT(tcp_eager_blowoff_q0);
7190 	eager = listener->tcp_eager_next_q0;
7191 	while (eager != listener) {
7192 		if (eager->tcp_closemp_used == 0) {
7193 			eager->tcp_closemp_used = 1;
7194 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7195 			CONN_INC_REF(eager->tcp_connp);
7196 			mp = &eager->tcp_closemp;
7197 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7198 			    tcp_eager_kill, eager->tcp_connp,
7199 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7200 		}
7201 		eager = eager->tcp_eager_next_q0;
7202 	}
7203 }
7204 
7205 /*
7206  * If we are an eager connection hanging off a listener that hasn't
7207  * formally accepted the connection yet, get off his list and blow off
7208  * any data that we have accumulated.
7209  */
7210 static void
7211 tcp_eager_unlink(tcp_t *tcp)
7212 {
7213 	tcp_t	*listener = tcp->tcp_listener;
7214 
7215 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7216 	ASSERT(listener != NULL);
7217 	if (tcp->tcp_eager_next_q0 != NULL) {
7218 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7219 
7220 		/* Remove the eager tcp from q0 */
7221 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7222 		    tcp->tcp_eager_prev_q0;
7223 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7224 		    tcp->tcp_eager_next_q0;
7225 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7226 		listener->tcp_conn_req_cnt_q0--;
7227 
7228 		tcp->tcp_eager_next_q0 = NULL;
7229 		tcp->tcp_eager_prev_q0 = NULL;
7230 
7231 		/*
7232 		 * Take the eager out, if it is in the list of droppable
7233 		 * eagers.
7234 		 */
7235 		MAKE_UNDROPPABLE(tcp);
7236 
7237 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7238 			/* we have timed out before */
7239 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7240 			listener->tcp_syn_rcvd_timeout--;
7241 		}
7242 	} else {
7243 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7244 		tcp_t	*prev = NULL;
7245 
7246 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7247 			if (tcpp[0] == tcp) {
7248 				if (listener->tcp_eager_last_q == tcp) {
7249 					/*
7250 					 * If we are unlinking the last
7251 					 * element on the list, adjust
7252 					 * tail pointer. Set tail pointer
7253 					 * to nil when list is empty.
7254 					 */
7255 					ASSERT(tcp->tcp_eager_next_q == NULL);
7256 					if (listener->tcp_eager_last_q ==
7257 					    listener->tcp_eager_next_q) {
7258 						listener->tcp_eager_last_q =
7259 						NULL;
7260 					} else {
7261 						/*
7262 						 * We won't get here if there
7263 						 * is only one eager in the
7264 						 * list.
7265 						 */
7266 						ASSERT(prev != NULL);
7267 						listener->tcp_eager_last_q =
7268 						    prev;
7269 					}
7270 				}
7271 				tcpp[0] = tcp->tcp_eager_next_q;
7272 				tcp->tcp_eager_next_q = NULL;
7273 				tcp->tcp_eager_last_q = NULL;
7274 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7275 				listener->tcp_conn_req_cnt_q--;
7276 				break;
7277 			}
7278 			prev = tcpp[0];
7279 		}
7280 	}
7281 	tcp->tcp_listener = NULL;
7282 }
7283 
7284 /* Shorthand to generate and send TPI error acks to our client */
7285 static void
7286 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7287 {
7288 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7289 		putnext(tcp->tcp_rq, mp);
7290 }
7291 
7292 /* Shorthand to generate and send TPI error acks to our client */
7293 static void
7294 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7295     int t_error, int sys_error)
7296 {
7297 	struct T_error_ack	*teackp;
7298 
7299 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7300 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7301 		teackp = (struct T_error_ack *)mp->b_rptr;
7302 		teackp->ERROR_prim = primitive;
7303 		teackp->TLI_error = t_error;
7304 		teackp->UNIX_error = sys_error;
7305 		putnext(tcp->tcp_rq, mp);
7306 	}
7307 }
7308 
7309 /*
7310  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7311  * but instead the code relies on:
7312  * - the fact that the address of the array and its size never changes
7313  * - the atomic assignment of the elements of the array
7314  */
7315 /* ARGSUSED */
7316 static int
7317 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7318 {
7319 	int i;
7320 
7321 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7322 		if (tcp_g_epriv_ports[i] != 0)
7323 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7324 	}
7325 	return (0);
7326 }
7327 
7328 /*
7329  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7330  * threads from changing it at the same time.
7331  */
7332 /* ARGSUSED */
7333 static int
7334 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7335     cred_t *cr)
7336 {
7337 	long	new_value;
7338 	int	i;
7339 
7340 	/*
7341 	 * Fail the request if the new value does not lie within the
7342 	 * port number limits.
7343 	 */
7344 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7345 	    new_value <= 0 || new_value >= 65536) {
7346 		return (EINVAL);
7347 	}
7348 
7349 	mutex_enter(&tcp_epriv_port_lock);
7350 	/* Check if the value is already in the list */
7351 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7352 		if (new_value == tcp_g_epriv_ports[i]) {
7353 			mutex_exit(&tcp_epriv_port_lock);
7354 			return (EEXIST);
7355 		}
7356 	}
7357 	/* Find an empty slot */
7358 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7359 		if (tcp_g_epriv_ports[i] == 0)
7360 			break;
7361 	}
7362 	if (i == tcp_g_num_epriv_ports) {
7363 		mutex_exit(&tcp_epriv_port_lock);
7364 		return (EOVERFLOW);
7365 	}
7366 	/* Set the new value */
7367 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7368 	mutex_exit(&tcp_epriv_port_lock);
7369 	return (0);
7370 }
7371 
7372 /*
7373  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7374  * threads from changing it at the same time.
7375  */
7376 /* ARGSUSED */
7377 static int
7378 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7379     cred_t *cr)
7380 {
7381 	long	new_value;
7382 	int	i;
7383 
7384 	/*
7385 	 * Fail the request if the new value does not lie within the
7386 	 * port number limits.
7387 	 */
7388 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7389 	    new_value >= 65536) {
7390 		return (EINVAL);
7391 	}
7392 
7393 	mutex_enter(&tcp_epriv_port_lock);
7394 	/* Check that the value is already in the list */
7395 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7396 		if (tcp_g_epriv_ports[i] == new_value)
7397 			break;
7398 	}
7399 	if (i == tcp_g_num_epriv_ports) {
7400 		mutex_exit(&tcp_epriv_port_lock);
7401 		return (ESRCH);
7402 	}
7403 	/* Clear the value */
7404 	tcp_g_epriv_ports[i] = 0;
7405 	mutex_exit(&tcp_epriv_port_lock);
7406 	return (0);
7407 }
7408 
7409 /* Return the TPI/TLI equivalent of our current tcp_state */
7410 static int
7411 tcp_tpistate(tcp_t *tcp)
7412 {
7413 	switch (tcp->tcp_state) {
7414 	case TCPS_IDLE:
7415 		return (TS_UNBND);
7416 	case TCPS_LISTEN:
7417 		/*
7418 		 * Return whether there are outstanding T_CONN_IND waiting
7419 		 * for the matching T_CONN_RES. Therefore don't count q0.
7420 		 */
7421 		if (tcp->tcp_conn_req_cnt_q > 0)
7422 			return (TS_WRES_CIND);
7423 		else
7424 			return (TS_IDLE);
7425 	case TCPS_BOUND:
7426 		return (TS_IDLE);
7427 	case TCPS_SYN_SENT:
7428 		return (TS_WCON_CREQ);
7429 	case TCPS_SYN_RCVD:
7430 		/*
7431 		 * Note: assumption: this has to the active open SYN_RCVD.
7432 		 * The passive instance is detached in SYN_RCVD stage of
7433 		 * incoming connection processing so we cannot get request
7434 		 * for T_info_ack on it.
7435 		 */
7436 		return (TS_WACK_CRES);
7437 	case TCPS_ESTABLISHED:
7438 		return (TS_DATA_XFER);
7439 	case TCPS_CLOSE_WAIT:
7440 		return (TS_WREQ_ORDREL);
7441 	case TCPS_FIN_WAIT_1:
7442 		return (TS_WIND_ORDREL);
7443 	case TCPS_FIN_WAIT_2:
7444 		return (TS_WIND_ORDREL);
7445 
7446 	case TCPS_CLOSING:
7447 	case TCPS_LAST_ACK:
7448 	case TCPS_TIME_WAIT:
7449 	case TCPS_CLOSED:
7450 		/*
7451 		 * Following TS_WACK_DREQ7 is a rendition of "not
7452 		 * yet TS_IDLE" TPI state. There is no best match to any
7453 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7454 		 * choose a value chosen that will map to TLI/XTI level
7455 		 * state of TSTATECHNG (state is process of changing) which
7456 		 * captures what this dummy state represents.
7457 		 */
7458 		return (TS_WACK_DREQ7);
7459 	default:
7460 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7461 		    tcp->tcp_state, tcp_display(tcp, NULL,
7462 		    DISP_PORT_ONLY));
7463 		return (TS_UNBND);
7464 	}
7465 }
7466 
7467 static void
7468 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7469 {
7470 	if (tcp->tcp_family == AF_INET6)
7471 		*tia = tcp_g_t_info_ack_v6;
7472 	else
7473 		*tia = tcp_g_t_info_ack;
7474 	tia->CURRENT_state = tcp_tpistate(tcp);
7475 	tia->OPT_size = tcp_max_optsize;
7476 	if (tcp->tcp_mss == 0) {
7477 		/* Not yet set - tcp_open does not set mss */
7478 		if (tcp->tcp_ipversion == IPV4_VERSION)
7479 			tia->TIDU_size = tcp_mss_def_ipv4;
7480 		else
7481 			tia->TIDU_size = tcp_mss_def_ipv6;
7482 	} else {
7483 		tia->TIDU_size = tcp->tcp_mss;
7484 	}
7485 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7486 }
7487 
7488 /*
7489  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7490  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7491  * tcp_g_t_info_ack.  The current state of the stream is copied from
7492  * tcp_state.
7493  */
7494 static void
7495 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7496 {
7497 	t_uscalar_t		cap_bits1;
7498 	struct T_capability_ack	*tcap;
7499 
7500 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7501 		freemsg(mp);
7502 		return;
7503 	}
7504 
7505 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7506 
7507 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7508 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7509 	if (mp == NULL)
7510 		return;
7511 
7512 	tcap = (struct T_capability_ack *)mp->b_rptr;
7513 	tcap->CAP_bits1 = 0;
7514 
7515 	if (cap_bits1 & TC1_INFO) {
7516 		tcp_copy_info(&tcap->INFO_ack, tcp);
7517 		tcap->CAP_bits1 |= TC1_INFO;
7518 	}
7519 
7520 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7521 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7522 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7523 	}
7524 
7525 	putnext(tcp->tcp_rq, mp);
7526 }
7527 
7528 /*
7529  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7530  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7531  * The current state of the stream is copied from tcp_state.
7532  */
7533 static void
7534 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7535 {
7536 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7537 	    T_INFO_ACK);
7538 	if (!mp) {
7539 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7540 		return;
7541 	}
7542 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7543 	putnext(tcp->tcp_rq, mp);
7544 }
7545 
7546 /* Respond to the TPI addr request */
7547 static void
7548 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7549 {
7550 	sin_t	*sin;
7551 	mblk_t	*ackmp;
7552 	struct T_addr_ack *taa;
7553 
7554 	/* Make it large enough for worst case */
7555 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7556 	    2 * sizeof (sin6_t), 1);
7557 	if (ackmp == NULL) {
7558 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7559 		return;
7560 	}
7561 
7562 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7563 		tcp_addr_req_ipv6(tcp, ackmp);
7564 		return;
7565 	}
7566 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7567 
7568 	bzero(taa, sizeof (struct T_addr_ack));
7569 	ackmp->b_wptr = (uchar_t *)&taa[1];
7570 
7571 	taa->PRIM_type = T_ADDR_ACK;
7572 	ackmp->b_datap->db_type = M_PCPROTO;
7573 
7574 	/*
7575 	 * Note: Following code assumes 32 bit alignment of basic
7576 	 * data structures like sin_t and struct T_addr_ack.
7577 	 */
7578 	if (tcp->tcp_state >= TCPS_BOUND) {
7579 		/*
7580 		 * Fill in local address
7581 		 */
7582 		taa->LOCADDR_length = sizeof (sin_t);
7583 		taa->LOCADDR_offset = sizeof (*taa);
7584 
7585 		sin = (sin_t *)&taa[1];
7586 
7587 		/* Fill zeroes and then intialize non-zero fields */
7588 		*sin = sin_null;
7589 
7590 		sin->sin_family = AF_INET;
7591 
7592 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7593 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7594 
7595 		ackmp->b_wptr = (uchar_t *)&sin[1];
7596 
7597 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7598 			/*
7599 			 * Fill in Remote address
7600 			 */
7601 			taa->REMADDR_length = sizeof (sin_t);
7602 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7603 						taa->LOCADDR_length);
7604 
7605 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7606 			*sin = sin_null;
7607 			sin->sin_family = AF_INET;
7608 			sin->sin_addr.s_addr = tcp->tcp_remote;
7609 			sin->sin_port = tcp->tcp_fport;
7610 
7611 			ackmp->b_wptr = (uchar_t *)&sin[1];
7612 		}
7613 	}
7614 	putnext(tcp->tcp_rq, ackmp);
7615 }
7616 
7617 /* Assumes that tcp_addr_req gets enough space and alignment */
7618 static void
7619 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7620 {
7621 	sin6_t	*sin6;
7622 	struct T_addr_ack *taa;
7623 
7624 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7625 	ASSERT(OK_32PTR(ackmp->b_rptr));
7626 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7627 	    2 * sizeof (sin6_t));
7628 
7629 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7630 
7631 	bzero(taa, sizeof (struct T_addr_ack));
7632 	ackmp->b_wptr = (uchar_t *)&taa[1];
7633 
7634 	taa->PRIM_type = T_ADDR_ACK;
7635 	ackmp->b_datap->db_type = M_PCPROTO;
7636 
7637 	/*
7638 	 * Note: Following code assumes 32 bit alignment of basic
7639 	 * data structures like sin6_t and struct T_addr_ack.
7640 	 */
7641 	if (tcp->tcp_state >= TCPS_BOUND) {
7642 		/*
7643 		 * Fill in local address
7644 		 */
7645 		taa->LOCADDR_length = sizeof (sin6_t);
7646 		taa->LOCADDR_offset = sizeof (*taa);
7647 
7648 		sin6 = (sin6_t *)&taa[1];
7649 		*sin6 = sin6_null;
7650 
7651 		sin6->sin6_family = AF_INET6;
7652 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7653 		sin6->sin6_port = tcp->tcp_lport;
7654 
7655 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7656 
7657 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7658 			/*
7659 			 * Fill in Remote address
7660 			 */
7661 			taa->REMADDR_length = sizeof (sin6_t);
7662 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7663 						taa->LOCADDR_length);
7664 
7665 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7666 			*sin6 = sin6_null;
7667 			sin6->sin6_family = AF_INET6;
7668 			sin6->sin6_flowinfo =
7669 			    tcp->tcp_ip6h->ip6_vcf &
7670 			    ~IPV6_VERS_AND_FLOW_MASK;
7671 			sin6->sin6_addr = tcp->tcp_remote_v6;
7672 			sin6->sin6_port = tcp->tcp_fport;
7673 
7674 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7675 		}
7676 	}
7677 	putnext(tcp->tcp_rq, ackmp);
7678 }
7679 
7680 /*
7681  * Handle reinitialization of a tcp structure.
7682  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7683  */
7684 static void
7685 tcp_reinit(tcp_t *tcp)
7686 {
7687 	mblk_t	*mp;
7688 	int 	err;
7689 
7690 	TCP_STAT(tcp_reinit_calls);
7691 
7692 	/* tcp_reinit should never be called for detached tcp_t's */
7693 	ASSERT(tcp->tcp_listener == NULL);
7694 	ASSERT((tcp->tcp_family == AF_INET &&
7695 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7696 	    (tcp->tcp_family == AF_INET6 &&
7697 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7698 	    tcp->tcp_ipversion == IPV6_VERSION)));
7699 
7700 	/* Cancel outstanding timers */
7701 	tcp_timers_stop(tcp);
7702 
7703 	/*
7704 	 * Reset everything in the state vector, after updating global
7705 	 * MIB data from instance counters.
7706 	 */
7707 	UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7708 	tcp->tcp_ibsegs = 0;
7709 	UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7710 	tcp->tcp_obsegs = 0;
7711 
7712 	tcp_close_mpp(&tcp->tcp_xmit_head);
7713 	if (tcp->tcp_snd_zcopy_aware)
7714 		tcp_zcopy_notify(tcp);
7715 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7716 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7717 	if (tcp->tcp_flow_stopped &&
7718 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7719 		tcp_clrqfull(tcp);
7720 	}
7721 	tcp_close_mpp(&tcp->tcp_reass_head);
7722 	tcp->tcp_reass_tail = NULL;
7723 	if (tcp->tcp_rcv_list != NULL) {
7724 		/* Free b_next chain */
7725 		tcp_close_mpp(&tcp->tcp_rcv_list);
7726 		tcp->tcp_rcv_last_head = NULL;
7727 		tcp->tcp_rcv_last_tail = NULL;
7728 		tcp->tcp_rcv_cnt = 0;
7729 	}
7730 	tcp->tcp_rcv_last_tail = NULL;
7731 
7732 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7733 		freemsg(mp);
7734 		tcp->tcp_urp_mp = NULL;
7735 	}
7736 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7737 		freemsg(mp);
7738 		tcp->tcp_urp_mark_mp = NULL;
7739 	}
7740 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7741 		freeb(tcp->tcp_fused_sigurg_mp);
7742 		tcp->tcp_fused_sigurg_mp = NULL;
7743 	}
7744 
7745 	/*
7746 	 * Following is a union with two members which are
7747 	 * identical types and size so the following cleanup
7748 	 * is enough.
7749 	 */
7750 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7751 
7752 	CL_INET_DISCONNECT(tcp);
7753 
7754 	/*
7755 	 * The connection can't be on the tcp_time_wait_head list
7756 	 * since it is not detached.
7757 	 */
7758 	ASSERT(tcp->tcp_time_wait_next == NULL);
7759 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7760 	ASSERT(tcp->tcp_time_wait_expire == 0);
7761 
7762 	if (tcp->tcp_kssl_pending) {
7763 		tcp->tcp_kssl_pending = B_FALSE;
7764 
7765 		/* Don't reset if the initialized by bind. */
7766 		if (tcp->tcp_kssl_ent != NULL) {
7767 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7768 			    KSSL_NO_PROXY);
7769 		}
7770 	}
7771 	if (tcp->tcp_kssl_ctx != NULL) {
7772 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7773 		tcp->tcp_kssl_ctx = NULL;
7774 	}
7775 
7776 	/*
7777 	 * Reset/preserve other values
7778 	 */
7779 	tcp_reinit_values(tcp);
7780 	ipcl_hash_remove(tcp->tcp_connp);
7781 	conn_delete_ire(tcp->tcp_connp, NULL);
7782 
7783 	if (tcp->tcp_conn_req_max != 0) {
7784 		/*
7785 		 * This is the case when a TLI program uses the same
7786 		 * transport end point to accept a connection.  This
7787 		 * makes the TCP both a listener and acceptor.  When
7788 		 * this connection is closed, we need to set the state
7789 		 * back to TCPS_LISTEN.  Make sure that the eager list
7790 		 * is reinitialized.
7791 		 *
7792 		 * Note that this stream is still bound to the four
7793 		 * tuples of the previous connection in IP.  If a new
7794 		 * SYN with different foreign address comes in, IP will
7795 		 * not find it and will send it to the global queue.  In
7796 		 * the global queue, TCP will do a tcp_lookup_listener()
7797 		 * to find this stream.  This works because this stream
7798 		 * is only removed from connected hash.
7799 		 *
7800 		 */
7801 		tcp->tcp_state = TCPS_LISTEN;
7802 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7803 		tcp->tcp_eager_next_drop_q0 = tcp;
7804 		tcp->tcp_eager_prev_drop_q0 = tcp;
7805 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7806 		if (tcp->tcp_family == AF_INET6) {
7807 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7808 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7809 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7810 		} else {
7811 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7812 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7813 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7814 		}
7815 	} else {
7816 		tcp->tcp_state = TCPS_BOUND;
7817 	}
7818 
7819 	/*
7820 	 * Initialize to default values
7821 	 * Can't fail since enough header template space already allocated
7822 	 * at open().
7823 	 */
7824 	err = tcp_init_values(tcp);
7825 	ASSERT(err == 0);
7826 	/* Restore state in tcp_tcph */
7827 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7828 	if (tcp->tcp_ipversion == IPV4_VERSION)
7829 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7830 	else
7831 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7832 	/*
7833 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7834 	 * since the lookup funcs can only lookup on tcp_t
7835 	 */
7836 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7837 
7838 	ASSERT(tcp->tcp_ptpbhn != NULL);
7839 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7840 	tcp->tcp_rwnd = tcp_recv_hiwat;
7841 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7842 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7843 }
7844 
7845 /*
7846  * Force values to zero that need be zero.
7847  * Do not touch values asociated with the BOUND or LISTEN state
7848  * since the connection will end up in that state after the reinit.
7849  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7850  * structure!
7851  */
7852 static void
7853 tcp_reinit_values(tcp)
7854 	tcp_t *tcp;
7855 {
7856 #ifndef	lint
7857 #define	DONTCARE(x)
7858 #define	PRESERVE(x)
7859 #else
7860 #define	DONTCARE(x)	((x) = (x))
7861 #define	PRESERVE(x)	((x) = (x))
7862 #endif	/* lint */
7863 
7864 	PRESERVE(tcp->tcp_bind_hash);
7865 	PRESERVE(tcp->tcp_ptpbhn);
7866 	PRESERVE(tcp->tcp_acceptor_hash);
7867 	PRESERVE(tcp->tcp_ptpahn);
7868 
7869 	/* Should be ASSERT NULL on these with new code! */
7870 	ASSERT(tcp->tcp_time_wait_next == NULL);
7871 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7872 	ASSERT(tcp->tcp_time_wait_expire == 0);
7873 	PRESERVE(tcp->tcp_state);
7874 	PRESERVE(tcp->tcp_rq);
7875 	PRESERVE(tcp->tcp_wq);
7876 
7877 	ASSERT(tcp->tcp_xmit_head == NULL);
7878 	ASSERT(tcp->tcp_xmit_last == NULL);
7879 	ASSERT(tcp->tcp_unsent == 0);
7880 	ASSERT(tcp->tcp_xmit_tail == NULL);
7881 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7882 
7883 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7884 	tcp->tcp_suna = 0;			/* Displayed in mib */
7885 	tcp->tcp_swnd = 0;
7886 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7887 
7888 	ASSERT(tcp->tcp_ibsegs == 0);
7889 	ASSERT(tcp->tcp_obsegs == 0);
7890 
7891 	if (tcp->tcp_iphc != NULL) {
7892 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7893 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7894 	}
7895 
7896 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7897 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7898 	DONTCARE(tcp->tcp_ipha);
7899 	DONTCARE(tcp->tcp_ip6h);
7900 	DONTCARE(tcp->tcp_ip_hdr_len);
7901 	DONTCARE(tcp->tcp_tcph);
7902 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7903 	tcp->tcp_valid_bits = 0;
7904 
7905 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7906 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7907 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7908 	tcp->tcp_last_rcv_lbolt = 0;
7909 
7910 	tcp->tcp_init_cwnd = 0;
7911 
7912 	tcp->tcp_urp_last_valid = 0;
7913 	tcp->tcp_hard_binding = 0;
7914 	tcp->tcp_hard_bound = 0;
7915 	PRESERVE(tcp->tcp_cred);
7916 	PRESERVE(tcp->tcp_cpid);
7917 	PRESERVE(tcp->tcp_open_time);
7918 	PRESERVE(tcp->tcp_exclbind);
7919 
7920 	tcp->tcp_fin_acked = 0;
7921 	tcp->tcp_fin_rcvd = 0;
7922 	tcp->tcp_fin_sent = 0;
7923 	tcp->tcp_ordrel_done = 0;
7924 
7925 	tcp->tcp_debug = 0;
7926 	tcp->tcp_dontroute = 0;
7927 	tcp->tcp_broadcast = 0;
7928 
7929 	tcp->tcp_useloopback = 0;
7930 	tcp->tcp_reuseaddr = 0;
7931 	tcp->tcp_oobinline = 0;
7932 	tcp->tcp_dgram_errind = 0;
7933 
7934 	tcp->tcp_detached = 0;
7935 	tcp->tcp_bind_pending = 0;
7936 	tcp->tcp_unbind_pending = 0;
7937 	tcp->tcp_deferred_clean_death = 0;
7938 
7939 	tcp->tcp_snd_ws_ok = B_FALSE;
7940 	tcp->tcp_snd_ts_ok = B_FALSE;
7941 	tcp->tcp_linger = 0;
7942 	tcp->tcp_ka_enabled = 0;
7943 	tcp->tcp_zero_win_probe = 0;
7944 
7945 	tcp->tcp_loopback = 0;
7946 	tcp->tcp_localnet = 0;
7947 	tcp->tcp_syn_defense = 0;
7948 	tcp->tcp_set_timer = 0;
7949 
7950 	tcp->tcp_active_open = 0;
7951 	ASSERT(tcp->tcp_timeout == B_FALSE);
7952 	tcp->tcp_rexmit = B_FALSE;
7953 	tcp->tcp_xmit_zc_clean = B_FALSE;
7954 
7955 	tcp->tcp_snd_sack_ok = B_FALSE;
7956 	PRESERVE(tcp->tcp_recvdstaddr);
7957 	tcp->tcp_hwcksum = B_FALSE;
7958 
7959 	tcp->tcp_ire_ill_check_done = B_FALSE;
7960 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7961 
7962 	tcp->tcp_mdt = B_FALSE;
7963 	tcp->tcp_mdt_hdr_head = 0;
7964 	tcp->tcp_mdt_hdr_tail = 0;
7965 
7966 	tcp->tcp_conn_def_q0 = 0;
7967 	tcp->tcp_ip_forward_progress = B_FALSE;
7968 	tcp->tcp_anon_priv_bind = 0;
7969 	tcp->tcp_ecn_ok = B_FALSE;
7970 
7971 	tcp->tcp_cwr = B_FALSE;
7972 	tcp->tcp_ecn_echo_on = B_FALSE;
7973 
7974 	if (tcp->tcp_sack_info != NULL) {
7975 		if (tcp->tcp_notsack_list != NULL) {
7976 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7977 		}
7978 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7979 		tcp->tcp_sack_info = NULL;
7980 	}
7981 
7982 	tcp->tcp_rcv_ws = 0;
7983 	tcp->tcp_snd_ws = 0;
7984 	tcp->tcp_ts_recent = 0;
7985 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7986 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7987 	tcp->tcp_if_mtu = 0;
7988 
7989 	ASSERT(tcp->tcp_reass_head == NULL);
7990 	ASSERT(tcp->tcp_reass_tail == NULL);
7991 
7992 	tcp->tcp_cwnd_cnt = 0;
7993 
7994 	ASSERT(tcp->tcp_rcv_list == NULL);
7995 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7996 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7997 	ASSERT(tcp->tcp_rcv_cnt == 0);
7998 
7999 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8000 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8001 	tcp->tcp_csuna = 0;
8002 
8003 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8004 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8005 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8006 	tcp->tcp_rtt_update = 0;
8007 
8008 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8009 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8010 
8011 	tcp->tcp_rack = 0;			/* Displayed in mib */
8012 	tcp->tcp_rack_cnt = 0;
8013 	tcp->tcp_rack_cur_max = 0;
8014 	tcp->tcp_rack_abs_max = 0;
8015 
8016 	tcp->tcp_max_swnd = 0;
8017 
8018 	ASSERT(tcp->tcp_listener == NULL);
8019 
8020 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8021 
8022 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8023 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8024 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8025 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8026 
8027 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8028 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8029 	PRESERVE(tcp->tcp_conn_req_max);
8030 	PRESERVE(tcp->tcp_conn_req_seqnum);
8031 
8032 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8033 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8034 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8035 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8036 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8037 
8038 	tcp->tcp_lingertime = 0;
8039 
8040 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8041 	ASSERT(tcp->tcp_urp_mp == NULL);
8042 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8043 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8044 
8045 	ASSERT(tcp->tcp_eager_next_q == NULL);
8046 	ASSERT(tcp->tcp_eager_last_q == NULL);
8047 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8048 	    tcp->tcp_eager_prev_q0 == NULL) ||
8049 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8050 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8051 
8052 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8053 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8054 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8055 
8056 	tcp->tcp_client_errno = 0;
8057 
8058 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8059 
8060 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8061 
8062 	PRESERVE(tcp->tcp_bound_source_v6);
8063 	tcp->tcp_last_sent_len = 0;
8064 	tcp->tcp_dupack_cnt = 0;
8065 
8066 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8067 	PRESERVE(tcp->tcp_lport);
8068 
8069 	PRESERVE(tcp->tcp_acceptor_lockp);
8070 
8071 	ASSERT(tcp->tcp_ordrelid == 0);
8072 	PRESERVE(tcp->tcp_acceptor_id);
8073 	DONTCARE(tcp->tcp_ipsec_overhead);
8074 
8075 	/*
8076 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8077 	 * in tcp structure and now tracing), Re-initialize all
8078 	 * members of tcp_traceinfo.
8079 	 */
8080 	if (tcp->tcp_tracebuf != NULL) {
8081 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8082 	}
8083 
8084 	PRESERVE(tcp->tcp_family);
8085 	if (tcp->tcp_family == AF_INET6) {
8086 		tcp->tcp_ipversion = IPV6_VERSION;
8087 		tcp->tcp_mss = tcp_mss_def_ipv6;
8088 	} else {
8089 		tcp->tcp_ipversion = IPV4_VERSION;
8090 		tcp->tcp_mss = tcp_mss_def_ipv4;
8091 	}
8092 
8093 	tcp->tcp_bound_if = 0;
8094 	tcp->tcp_ipv6_recvancillary = 0;
8095 	tcp->tcp_recvifindex = 0;
8096 	tcp->tcp_recvhops = 0;
8097 	tcp->tcp_closed = 0;
8098 	tcp->tcp_cleandeathtag = 0;
8099 	if (tcp->tcp_hopopts != NULL) {
8100 		mi_free(tcp->tcp_hopopts);
8101 		tcp->tcp_hopopts = NULL;
8102 		tcp->tcp_hopoptslen = 0;
8103 	}
8104 	ASSERT(tcp->tcp_hopoptslen == 0);
8105 	if (tcp->tcp_dstopts != NULL) {
8106 		mi_free(tcp->tcp_dstopts);
8107 		tcp->tcp_dstopts = NULL;
8108 		tcp->tcp_dstoptslen = 0;
8109 	}
8110 	ASSERT(tcp->tcp_dstoptslen == 0);
8111 	if (tcp->tcp_rtdstopts != NULL) {
8112 		mi_free(tcp->tcp_rtdstopts);
8113 		tcp->tcp_rtdstopts = NULL;
8114 		tcp->tcp_rtdstoptslen = 0;
8115 	}
8116 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8117 	if (tcp->tcp_rthdr != NULL) {
8118 		mi_free(tcp->tcp_rthdr);
8119 		tcp->tcp_rthdr = NULL;
8120 		tcp->tcp_rthdrlen = 0;
8121 	}
8122 	ASSERT(tcp->tcp_rthdrlen == 0);
8123 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8124 
8125 	/* Reset fusion-related fields */
8126 	tcp->tcp_fused = B_FALSE;
8127 	tcp->tcp_unfusable = B_FALSE;
8128 	tcp->tcp_fused_sigurg = B_FALSE;
8129 	tcp->tcp_direct_sockfs = B_FALSE;
8130 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8131 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8132 	tcp->tcp_loopback_peer = NULL;
8133 	tcp->tcp_fuse_rcv_hiwater = 0;
8134 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8135 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8136 
8137 	tcp->tcp_lso = B_FALSE;
8138 
8139 	tcp->tcp_in_ack_unsent = 0;
8140 	tcp->tcp_cork = B_FALSE;
8141 	tcp->tcp_tconnind_started = B_FALSE;
8142 
8143 	PRESERVE(tcp->tcp_squeue_bytes);
8144 
8145 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8146 	ASSERT(!tcp->tcp_kssl_pending);
8147 	PRESERVE(tcp->tcp_kssl_ent);
8148 
8149 	tcp->tcp_closemp_used = 0;
8150 
8151 #ifdef DEBUG
8152 	DONTCARE(tcp->tcmp_stk[0]);
8153 #endif
8154 
8155 
8156 #undef	DONTCARE
8157 #undef	PRESERVE
8158 }
8159 
8160 /*
8161  * Allocate necessary resources and initialize state vector.
8162  * Guaranteed not to fail so that when an error is returned,
8163  * the caller doesn't need to do any additional cleanup.
8164  */
8165 int
8166 tcp_init(tcp_t *tcp, queue_t *q)
8167 {
8168 	int	err;
8169 
8170 	tcp->tcp_rq = q;
8171 	tcp->tcp_wq = WR(q);
8172 	tcp->tcp_state = TCPS_IDLE;
8173 	if ((err = tcp_init_values(tcp)) != 0)
8174 		tcp_timers_stop(tcp);
8175 	return (err);
8176 }
8177 
8178 static int
8179 tcp_init_values(tcp_t *tcp)
8180 {
8181 	int	err;
8182 
8183 	ASSERT((tcp->tcp_family == AF_INET &&
8184 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8185 	    (tcp->tcp_family == AF_INET6 &&
8186 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8187 	    tcp->tcp_ipversion == IPV6_VERSION)));
8188 
8189 	/*
8190 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8191 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8192 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8193 	 * during first few transmissions of a connection as seen in slow
8194 	 * links.
8195 	 */
8196 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
8197 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
8198 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8199 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8200 	    tcp_conn_grace_period;
8201 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
8202 		tcp->tcp_rto = tcp_rexmit_interval_min;
8203 	tcp->tcp_timer_backoff = 0;
8204 	tcp->tcp_ms_we_have_waited = 0;
8205 	tcp->tcp_last_recv_time = lbolt;
8206 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
8207 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8208 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8209 
8210 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
8211 
8212 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
8213 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
8214 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
8215 	/*
8216 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8217 	 * passive open.
8218 	 */
8219 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
8220 
8221 	tcp->tcp_naglim = tcp_naglim_def;
8222 
8223 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8224 
8225 	tcp->tcp_mdt_hdr_head = 0;
8226 	tcp->tcp_mdt_hdr_tail = 0;
8227 
8228 	/* Reset fusion-related fields */
8229 	tcp->tcp_fused = B_FALSE;
8230 	tcp->tcp_unfusable = B_FALSE;
8231 	tcp->tcp_fused_sigurg = B_FALSE;
8232 	tcp->tcp_direct_sockfs = B_FALSE;
8233 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8234 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8235 	tcp->tcp_loopback_peer = NULL;
8236 	tcp->tcp_fuse_rcv_hiwater = 0;
8237 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8238 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8239 
8240 	/* Initialize the header template */
8241 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8242 		err = tcp_header_init_ipv4(tcp);
8243 	} else {
8244 		err = tcp_header_init_ipv6(tcp);
8245 	}
8246 	if (err)
8247 		return (err);
8248 
8249 	/*
8250 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8251 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8252 	 */
8253 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8254 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8255 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8256 
8257 	tcp->tcp_cork = B_FALSE;
8258 	/*
8259 	 * Init the tcp_debug option.  This value determines whether TCP
8260 	 * calls strlog() to print out debug messages.  Doing this
8261 	 * initialization here means that this value is not inherited thru
8262 	 * tcp_reinit().
8263 	 */
8264 	tcp->tcp_debug = tcp_dbg;
8265 
8266 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8267 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8268 
8269 	return (0);
8270 }
8271 
8272 /*
8273  * Initialize the IPv4 header. Loses any record of any IP options.
8274  */
8275 static int
8276 tcp_header_init_ipv4(tcp_t *tcp)
8277 {
8278 	tcph_t		*tcph;
8279 	uint32_t	sum;
8280 	conn_t		*connp;
8281 
8282 	/*
8283 	 * This is a simple initialization. If there's
8284 	 * already a template, it should never be too small,
8285 	 * so reuse it.  Otherwise, allocate space for the new one.
8286 	 */
8287 	if (tcp->tcp_iphc == NULL) {
8288 		ASSERT(tcp->tcp_iphc_len == 0);
8289 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8290 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8291 		if (tcp->tcp_iphc == NULL) {
8292 			tcp->tcp_iphc_len = 0;
8293 			return (ENOMEM);
8294 		}
8295 	}
8296 
8297 	/* options are gone; may need a new label */
8298 	connp = tcp->tcp_connp;
8299 	connp->conn_mlp_type = mlptSingle;
8300 	connp->conn_ulp_labeled = !is_system_labeled();
8301 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8302 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8303 	tcp->tcp_ip6h = NULL;
8304 	tcp->tcp_ipversion = IPV4_VERSION;
8305 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8306 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8307 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8308 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8309 	tcp->tcp_ipha->ipha_version_and_hdr_length
8310 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8311 	tcp->tcp_ipha->ipha_ident = 0;
8312 
8313 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8314 	tcp->tcp_tos = 0;
8315 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8316 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8317 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8318 
8319 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8320 	tcp->tcp_tcph = tcph;
8321 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8322 	/*
8323 	 * IP wants our header length in the checksum field to
8324 	 * allow it to perform a single pseudo-header+checksum
8325 	 * calculation on behalf of TCP.
8326 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8327 	 */
8328 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8329 	sum = (sum >> 16) + (sum & 0xFFFF);
8330 	U16_TO_ABE16(sum, tcph->th_sum);
8331 	return (0);
8332 }
8333 
8334 /*
8335  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8336  */
8337 static int
8338 tcp_header_init_ipv6(tcp_t *tcp)
8339 {
8340 	tcph_t	*tcph;
8341 	uint32_t	sum;
8342 	conn_t	*connp;
8343 
8344 	/*
8345 	 * This is a simple initialization. If there's
8346 	 * already a template, it should never be too small,
8347 	 * so reuse it. Otherwise, allocate space for the new one.
8348 	 * Ensure that there is enough space to "downgrade" the tcp_t
8349 	 * to an IPv4 tcp_t. This requires having space for a full load
8350 	 * of IPv4 options, as well as a full load of TCP options
8351 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8352 	 * than a v6 header and a TCP header with a full load of TCP options
8353 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8354 	 * We want to avoid reallocation in the "downgraded" case when
8355 	 * processing outbound IPv4 options.
8356 	 */
8357 	if (tcp->tcp_iphc == NULL) {
8358 		ASSERT(tcp->tcp_iphc_len == 0);
8359 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8360 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8361 		if (tcp->tcp_iphc == NULL) {
8362 			tcp->tcp_iphc_len = 0;
8363 			return (ENOMEM);
8364 		}
8365 	}
8366 
8367 	/* options are gone; may need a new label */
8368 	connp = tcp->tcp_connp;
8369 	connp->conn_mlp_type = mlptSingle;
8370 	connp->conn_ulp_labeled = !is_system_labeled();
8371 
8372 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8373 	tcp->tcp_ipversion = IPV6_VERSION;
8374 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8375 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8376 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8377 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8378 	tcp->tcp_ipha = NULL;
8379 
8380 	/* Initialize the header template */
8381 
8382 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8383 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8384 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8385 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8386 
8387 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8388 	tcp->tcp_tcph = tcph;
8389 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8390 	/*
8391 	 * IP wants our header length in the checksum field to
8392 	 * allow it to perform a single psuedo-header+checksum
8393 	 * calculation on behalf of TCP.
8394 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8395 	 */
8396 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8397 	sum = (sum >> 16) + (sum & 0xFFFF);
8398 	U16_TO_ABE16(sum, tcph->th_sum);
8399 	return (0);
8400 }
8401 
8402 /* At minimum we need 8 bytes in the TCP header for the lookup */
8403 #define	ICMP_MIN_TCP_HDR	8
8404 
8405 /*
8406  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8407  * passed up by IP. The message is always received on the correct tcp_t.
8408  * Assumes that IP has pulled up everything up to and including the ICMP header.
8409  */
8410 void
8411 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8412 {
8413 	icmph_t *icmph;
8414 	ipha_t	*ipha;
8415 	int	iph_hdr_length;
8416 	tcph_t	*tcph;
8417 	boolean_t ipsec_mctl = B_FALSE;
8418 	boolean_t secure;
8419 	mblk_t *first_mp = mp;
8420 	uint32_t new_mss;
8421 	uint32_t ratio;
8422 	size_t mp_size = MBLKL(mp);
8423 	uint32_t seg_seq;
8424 
8425 	/* Assume IP provides aligned packets - otherwise toss */
8426 	if (!OK_32PTR(mp->b_rptr)) {
8427 		freemsg(mp);
8428 		return;
8429 	}
8430 
8431 	/*
8432 	 * Since ICMP errors are normal data marked with M_CTL when sent
8433 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8434 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8435 	 */
8436 	if ((mp_size == sizeof (ipsec_info_t)) &&
8437 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8438 		ASSERT(mp->b_cont != NULL);
8439 		mp = mp->b_cont;
8440 		/* IP should have done this */
8441 		ASSERT(OK_32PTR(mp->b_rptr));
8442 		mp_size = MBLKL(mp);
8443 		ipsec_mctl = B_TRUE;
8444 	}
8445 
8446 	/*
8447 	 * Verify that we have a complete outer IP header. If not, drop it.
8448 	 */
8449 	if (mp_size < sizeof (ipha_t)) {
8450 noticmpv4:
8451 		freemsg(first_mp);
8452 		return;
8453 	}
8454 
8455 	ipha = (ipha_t *)mp->b_rptr;
8456 	/*
8457 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8458 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8459 	 */
8460 	switch (IPH_HDR_VERSION(ipha)) {
8461 	case IPV6_VERSION:
8462 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8463 		return;
8464 	case IPV4_VERSION:
8465 		break;
8466 	default:
8467 		goto noticmpv4;
8468 	}
8469 
8470 	/* Skip past the outer IP and ICMP headers */
8471 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8472 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8473 	/*
8474 	 * If we don't have the correct outer IP header length or if the ULP
8475 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8476 	 * send it upstream.
8477 	 */
8478 	if (iph_hdr_length < sizeof (ipha_t) ||
8479 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8480 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8481 		goto noticmpv4;
8482 	}
8483 	ipha = (ipha_t *)&icmph[1];
8484 
8485 	/* Skip past the inner IP and find the ULP header */
8486 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8487 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8488 	/*
8489 	 * If we don't have the correct inner IP header length or if the ULP
8490 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8491 	 * bytes of TCP header, drop it.
8492 	 */
8493 	if (iph_hdr_length < sizeof (ipha_t) ||
8494 	    ipha->ipha_protocol != IPPROTO_TCP ||
8495 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8496 		goto noticmpv4;
8497 	}
8498 
8499 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8500 		if (ipsec_mctl) {
8501 			secure = ipsec_in_is_secure(first_mp);
8502 		} else {
8503 			secure = B_FALSE;
8504 		}
8505 		if (secure) {
8506 			/*
8507 			 * If we are willing to accept this in clear
8508 			 * we don't have to verify policy.
8509 			 */
8510 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8511 				if (!tcp_check_policy(tcp, first_mp,
8512 				    ipha, NULL, secure, ipsec_mctl)) {
8513 					/*
8514 					 * tcp_check_policy called
8515 					 * ip_drop_packet() on failure.
8516 					 */
8517 					return;
8518 				}
8519 			}
8520 		}
8521 	} else if (ipsec_mctl) {
8522 		/*
8523 		 * This is a hard_bound connection. IP has already
8524 		 * verified policy. We don't have to do it again.
8525 		 */
8526 		freeb(first_mp);
8527 		first_mp = mp;
8528 		ipsec_mctl = B_FALSE;
8529 	}
8530 
8531 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8532 	/*
8533 	 * TCP SHOULD check that the TCP sequence number contained in
8534 	 * payload of the ICMP error message is within the range
8535 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8536 	 */
8537 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8538 		/*
8539 		 * If the ICMP message is bogus, should we kill the
8540 		 * connection, or should we just drop the bogus ICMP
8541 		 * message? It would probably make more sense to just
8542 		 * drop the message so that if this one managed to get
8543 		 * in, the real connection should not suffer.
8544 		 */
8545 		goto noticmpv4;
8546 	}
8547 
8548 	switch (icmph->icmph_type) {
8549 	case ICMP_DEST_UNREACHABLE:
8550 		switch (icmph->icmph_code) {
8551 		case ICMP_FRAGMENTATION_NEEDED:
8552 			/*
8553 			 * Reduce the MSS based on the new MTU.  This will
8554 			 * eliminate any fragmentation locally.
8555 			 * N.B.  There may well be some funny side-effects on
8556 			 * the local send policy and the remote receive policy.
8557 			 * Pending further research, we provide
8558 			 * tcp_ignore_path_mtu just in case this proves
8559 			 * disastrous somewhere.
8560 			 *
8561 			 * After updating the MSS, retransmit part of the
8562 			 * dropped segment using the new mss by calling
8563 			 * tcp_wput_data().  Need to adjust all those
8564 			 * params to make sure tcp_wput_data() work properly.
8565 			 */
8566 			if (tcp_ignore_path_mtu)
8567 				break;
8568 
8569 			/*
8570 			 * Decrease the MSS by time stamp options
8571 			 * IP options and IPSEC options. tcp_hdr_len
8572 			 * includes time stamp option and IP option
8573 			 * length.
8574 			 */
8575 
8576 			new_mss = ntohs(icmph->icmph_du_mtu) -
8577 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8578 
8579 			/*
8580 			 * Only update the MSS if the new one is
8581 			 * smaller than the previous one.  This is
8582 			 * to avoid problems when getting multiple
8583 			 * ICMP errors for the same MTU.
8584 			 */
8585 			if (new_mss >= tcp->tcp_mss)
8586 				break;
8587 
8588 			/*
8589 			 * Stop doing PMTU if new_mss is less than 68
8590 			 * or less than tcp_mss_min.
8591 			 * The value 68 comes from rfc 1191.
8592 			 */
8593 			if (new_mss < MAX(68, tcp_mss_min))
8594 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8595 				    0;
8596 
8597 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8598 			ASSERT(ratio >= 1);
8599 			tcp_mss_set(tcp, new_mss);
8600 
8601 			/*
8602 			 * Make sure we have something to
8603 			 * send.
8604 			 */
8605 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8606 			    (tcp->tcp_xmit_head != NULL)) {
8607 				/*
8608 				 * Shrink tcp_cwnd in
8609 				 * proportion to the old MSS/new MSS.
8610 				 */
8611 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8612 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8613 				    (tcp->tcp_unsent == 0)) {
8614 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8615 				} else {
8616 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8617 				}
8618 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8619 				tcp->tcp_rexmit = B_TRUE;
8620 				tcp->tcp_dupack_cnt = 0;
8621 				tcp->tcp_snd_burst = TCP_CWND_SS;
8622 				tcp_ss_rexmit(tcp);
8623 			}
8624 			break;
8625 		case ICMP_PORT_UNREACHABLE:
8626 		case ICMP_PROTOCOL_UNREACHABLE:
8627 			switch (tcp->tcp_state) {
8628 			case TCPS_SYN_SENT:
8629 			case TCPS_SYN_RCVD:
8630 				/*
8631 				 * ICMP can snipe away incipient
8632 				 * TCP connections as long as
8633 				 * seq number is same as initial
8634 				 * send seq number.
8635 				 */
8636 				if (seg_seq == tcp->tcp_iss) {
8637 					(void) tcp_clean_death(tcp,
8638 					    ECONNREFUSED, 6);
8639 				}
8640 				break;
8641 			}
8642 			break;
8643 		case ICMP_HOST_UNREACHABLE:
8644 		case ICMP_NET_UNREACHABLE:
8645 			/* Record the error in case we finally time out. */
8646 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8647 				tcp->tcp_client_errno = EHOSTUNREACH;
8648 			else
8649 				tcp->tcp_client_errno = ENETUNREACH;
8650 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8651 				if (tcp->tcp_listener != NULL &&
8652 				    tcp->tcp_listener->tcp_syn_defense) {
8653 					/*
8654 					 * Ditch the half-open connection if we
8655 					 * suspect a SYN attack is under way.
8656 					 */
8657 					tcp_ip_ire_mark_advice(tcp);
8658 					(void) tcp_clean_death(tcp,
8659 					    tcp->tcp_client_errno, 7);
8660 				}
8661 			}
8662 			break;
8663 		default:
8664 			break;
8665 		}
8666 		break;
8667 	case ICMP_SOURCE_QUENCH: {
8668 		/*
8669 		 * use a global boolean to control
8670 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8671 		 * The default is false.
8672 		 */
8673 		if (tcp_icmp_source_quench) {
8674 			/*
8675 			 * Reduce the sending rate as if we got a
8676 			 * retransmit timeout
8677 			 */
8678 			uint32_t npkt;
8679 
8680 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8681 			    tcp->tcp_mss;
8682 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8683 			tcp->tcp_cwnd = tcp->tcp_mss;
8684 			tcp->tcp_cwnd_cnt = 0;
8685 		}
8686 		break;
8687 	}
8688 	}
8689 	freemsg(first_mp);
8690 }
8691 
8692 /*
8693  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8694  * error messages passed up by IP.
8695  * Assumes that IP has pulled up all the extension headers as well
8696  * as the ICMPv6 header.
8697  */
8698 static void
8699 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8700 {
8701 	icmp6_t *icmp6;
8702 	ip6_t	*ip6h;
8703 	uint16_t	iph_hdr_length;
8704 	tcpha_t	*tcpha;
8705 	uint8_t	*nexthdrp;
8706 	uint32_t new_mss;
8707 	uint32_t ratio;
8708 	boolean_t secure;
8709 	mblk_t *first_mp = mp;
8710 	size_t mp_size;
8711 	uint32_t seg_seq;
8712 
8713 	/*
8714 	 * The caller has determined if this is an IPSEC_IN packet and
8715 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8716 	 */
8717 	if (ipsec_mctl)
8718 		mp = mp->b_cont;
8719 
8720 	mp_size = MBLKL(mp);
8721 
8722 	/*
8723 	 * Verify that we have a complete IP header. If not, send it upstream.
8724 	 */
8725 	if (mp_size < sizeof (ip6_t)) {
8726 noticmpv6:
8727 		freemsg(first_mp);
8728 		return;
8729 	}
8730 
8731 	/*
8732 	 * Verify this is an ICMPV6 packet, else send it upstream.
8733 	 */
8734 	ip6h = (ip6_t *)mp->b_rptr;
8735 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8736 		iph_hdr_length = IPV6_HDR_LEN;
8737 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8738 	    &nexthdrp) ||
8739 	    *nexthdrp != IPPROTO_ICMPV6) {
8740 		goto noticmpv6;
8741 	}
8742 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8743 	ip6h = (ip6_t *)&icmp6[1];
8744 	/*
8745 	 * Verify if we have a complete ICMP and inner IP header.
8746 	 */
8747 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8748 		goto noticmpv6;
8749 
8750 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8751 		goto noticmpv6;
8752 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8753 	/*
8754 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8755 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8756 	 * packet.
8757 	 */
8758 	if ((*nexthdrp != IPPROTO_TCP) ||
8759 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8760 		goto noticmpv6;
8761 	}
8762 
8763 	/*
8764 	 * ICMP errors come on the right queue or come on
8765 	 * listener/global queue for detached connections and
8766 	 * get switched to the right queue. If it comes on the
8767 	 * right queue, policy check has already been done by IP
8768 	 * and thus free the first_mp without verifying the policy.
8769 	 * If it has come for a non-hard bound connection, we need
8770 	 * to verify policy as IP may not have done it.
8771 	 */
8772 	if (!tcp->tcp_hard_bound) {
8773 		if (ipsec_mctl) {
8774 			secure = ipsec_in_is_secure(first_mp);
8775 		} else {
8776 			secure = B_FALSE;
8777 		}
8778 		if (secure) {
8779 			/*
8780 			 * If we are willing to accept this in clear
8781 			 * we don't have to verify policy.
8782 			 */
8783 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8784 				if (!tcp_check_policy(tcp, first_mp,
8785 				    NULL, ip6h, secure, ipsec_mctl)) {
8786 					/*
8787 					 * tcp_check_policy called
8788 					 * ip_drop_packet() on failure.
8789 					 */
8790 					return;
8791 				}
8792 			}
8793 		}
8794 	} else if (ipsec_mctl) {
8795 		/*
8796 		 * This is a hard_bound connection. IP has already
8797 		 * verified policy. We don't have to do it again.
8798 		 */
8799 		freeb(first_mp);
8800 		first_mp = mp;
8801 		ipsec_mctl = B_FALSE;
8802 	}
8803 
8804 	seg_seq = ntohl(tcpha->tha_seq);
8805 	/*
8806 	 * TCP SHOULD check that the TCP sequence number contained in
8807 	 * payload of the ICMP error message is within the range
8808 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8809 	 */
8810 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8811 		/*
8812 		 * If the ICMP message is bogus, should we kill the
8813 		 * connection, or should we just drop the bogus ICMP
8814 		 * message? It would probably make more sense to just
8815 		 * drop the message so that if this one managed to get
8816 		 * in, the real connection should not suffer.
8817 		 */
8818 		goto noticmpv6;
8819 	}
8820 
8821 	switch (icmp6->icmp6_type) {
8822 	case ICMP6_PACKET_TOO_BIG:
8823 		/*
8824 		 * Reduce the MSS based on the new MTU.  This will
8825 		 * eliminate any fragmentation locally.
8826 		 * N.B.  There may well be some funny side-effects on
8827 		 * the local send policy and the remote receive policy.
8828 		 * Pending further research, we provide
8829 		 * tcp_ignore_path_mtu just in case this proves
8830 		 * disastrous somewhere.
8831 		 *
8832 		 * After updating the MSS, retransmit part of the
8833 		 * dropped segment using the new mss by calling
8834 		 * tcp_wput_data().  Need to adjust all those
8835 		 * params to make sure tcp_wput_data() work properly.
8836 		 */
8837 		if (tcp_ignore_path_mtu)
8838 			break;
8839 
8840 		/*
8841 		 * Decrease the MSS by time stamp options
8842 		 * IP options and IPSEC options. tcp_hdr_len
8843 		 * includes time stamp option and IP option
8844 		 * length.
8845 		 */
8846 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8847 			    tcp->tcp_ipsec_overhead;
8848 
8849 		/*
8850 		 * Only update the MSS if the new one is
8851 		 * smaller than the previous one.  This is
8852 		 * to avoid problems when getting multiple
8853 		 * ICMP errors for the same MTU.
8854 		 */
8855 		if (new_mss >= tcp->tcp_mss)
8856 			break;
8857 
8858 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8859 		ASSERT(ratio >= 1);
8860 		tcp_mss_set(tcp, new_mss);
8861 
8862 		/*
8863 		 * Make sure we have something to
8864 		 * send.
8865 		 */
8866 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8867 		    (tcp->tcp_xmit_head != NULL)) {
8868 			/*
8869 			 * Shrink tcp_cwnd in
8870 			 * proportion to the old MSS/new MSS.
8871 			 */
8872 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8873 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8874 			    (tcp->tcp_unsent == 0)) {
8875 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8876 			} else {
8877 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8878 			}
8879 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8880 			tcp->tcp_rexmit = B_TRUE;
8881 			tcp->tcp_dupack_cnt = 0;
8882 			tcp->tcp_snd_burst = TCP_CWND_SS;
8883 			tcp_ss_rexmit(tcp);
8884 		}
8885 		break;
8886 
8887 	case ICMP6_DST_UNREACH:
8888 		switch (icmp6->icmp6_code) {
8889 		case ICMP6_DST_UNREACH_NOPORT:
8890 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8891 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8892 			    (seg_seq == tcp->tcp_iss)) {
8893 				(void) tcp_clean_death(tcp,
8894 				    ECONNREFUSED, 8);
8895 			}
8896 			break;
8897 
8898 		case ICMP6_DST_UNREACH_ADMIN:
8899 		case ICMP6_DST_UNREACH_NOROUTE:
8900 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8901 		case ICMP6_DST_UNREACH_ADDR:
8902 			/* Record the error in case we finally time out. */
8903 			tcp->tcp_client_errno = EHOSTUNREACH;
8904 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8905 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8906 			    (seg_seq == tcp->tcp_iss)) {
8907 				if (tcp->tcp_listener != NULL &&
8908 				    tcp->tcp_listener->tcp_syn_defense) {
8909 					/*
8910 					 * Ditch the half-open connection if we
8911 					 * suspect a SYN attack is under way.
8912 					 */
8913 					tcp_ip_ire_mark_advice(tcp);
8914 					(void) tcp_clean_death(tcp,
8915 					    tcp->tcp_client_errno, 9);
8916 				}
8917 			}
8918 
8919 
8920 			break;
8921 		default:
8922 			break;
8923 		}
8924 		break;
8925 
8926 	case ICMP6_PARAM_PROB:
8927 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8928 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8929 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8930 		    (uchar_t *)nexthdrp) {
8931 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8932 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8933 				(void) tcp_clean_death(tcp,
8934 				    ECONNREFUSED, 10);
8935 			}
8936 			break;
8937 		}
8938 		break;
8939 
8940 	case ICMP6_TIME_EXCEEDED:
8941 	default:
8942 		break;
8943 	}
8944 	freemsg(first_mp);
8945 }
8946 
8947 /*
8948  * IP recognizes seven kinds of bind requests:
8949  *
8950  * - A zero-length address binds only to the protocol number.
8951  *
8952  * - A 4-byte address is treated as a request to
8953  * validate that the address is a valid local IPv4
8954  * address, appropriate for an application to bind to.
8955  * IP does the verification, but does not make any note
8956  * of the address at this time.
8957  *
8958  * - A 16-byte address contains is treated as a request
8959  * to validate a local IPv6 address, as the 4-byte
8960  * address case above.
8961  *
8962  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8963  * use it for the inbound fanout of packets.
8964  *
8965  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8966  * use it for the inbound fanout of packets.
8967  *
8968  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8969  * information consisting of local and remote addresses
8970  * and ports.  In this case, the addresses are both
8971  * validated as appropriate for this operation, and, if
8972  * so, the information is retained for use in the
8973  * inbound fanout.
8974  *
8975  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8976  * fanout information, like the 12-byte case above.
8977  *
8978  * IP will also fill in the IRE request mblk with information
8979  * regarding our peer.  In all cases, we notify IP of our protocol
8980  * type by appending a single protocol byte to the bind request.
8981  */
8982 static mblk_t *
8983 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8984 {
8985 	char	*cp;
8986 	mblk_t	*mp;
8987 	struct T_bind_req *tbr;
8988 	ipa_conn_t	*ac;
8989 	ipa6_conn_t	*ac6;
8990 	sin_t		*sin;
8991 	sin6_t		*sin6;
8992 
8993 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8994 	ASSERT((tcp->tcp_family == AF_INET &&
8995 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8996 	    (tcp->tcp_family == AF_INET6 &&
8997 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8998 	    tcp->tcp_ipversion == IPV6_VERSION)));
8999 
9000 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9001 	if (!mp)
9002 		return (mp);
9003 	mp->b_datap->db_type = M_PROTO;
9004 	tbr = (struct T_bind_req *)mp->b_rptr;
9005 	tbr->PRIM_type = bind_prim;
9006 	tbr->ADDR_offset = sizeof (*tbr);
9007 	tbr->CONIND_number = 0;
9008 	tbr->ADDR_length = addr_length;
9009 	cp = (char *)&tbr[1];
9010 	switch (addr_length) {
9011 	case sizeof (ipa_conn_t):
9012 		ASSERT(tcp->tcp_family == AF_INET);
9013 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9014 
9015 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9016 		if (mp->b_cont == NULL) {
9017 			freemsg(mp);
9018 			return (NULL);
9019 		}
9020 		mp->b_cont->b_wptr += sizeof (ire_t);
9021 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9022 
9023 		/* cp known to be 32 bit aligned */
9024 		ac = (ipa_conn_t *)cp;
9025 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9026 		ac->ac_faddr = tcp->tcp_remote;
9027 		ac->ac_fport = tcp->tcp_fport;
9028 		ac->ac_lport = tcp->tcp_lport;
9029 		tcp->tcp_hard_binding = 1;
9030 		break;
9031 
9032 	case sizeof (ipa6_conn_t):
9033 		ASSERT(tcp->tcp_family == AF_INET6);
9034 
9035 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9036 		if (mp->b_cont == NULL) {
9037 			freemsg(mp);
9038 			return (NULL);
9039 		}
9040 		mp->b_cont->b_wptr += sizeof (ire_t);
9041 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9042 
9043 		/* cp known to be 32 bit aligned */
9044 		ac6 = (ipa6_conn_t *)cp;
9045 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9046 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9047 			    &ac6->ac6_laddr);
9048 		} else {
9049 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9050 		}
9051 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9052 		ac6->ac6_fport = tcp->tcp_fport;
9053 		ac6->ac6_lport = tcp->tcp_lport;
9054 		tcp->tcp_hard_binding = 1;
9055 		break;
9056 
9057 	case sizeof (sin_t):
9058 		/*
9059 		 * NOTE: IPV6_ADDR_LEN also has same size.
9060 		 * Use family to discriminate.
9061 		 */
9062 		if (tcp->tcp_family == AF_INET) {
9063 			sin = (sin_t *)cp;
9064 
9065 			*sin = sin_null;
9066 			sin->sin_family = AF_INET;
9067 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9068 			sin->sin_port = tcp->tcp_lport;
9069 			break;
9070 		} else {
9071 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9072 		}
9073 		break;
9074 
9075 	case sizeof (sin6_t):
9076 		ASSERT(tcp->tcp_family == AF_INET6);
9077 		sin6 = (sin6_t *)cp;
9078 
9079 		*sin6 = sin6_null;
9080 		sin6->sin6_family = AF_INET6;
9081 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9082 		sin6->sin6_port = tcp->tcp_lport;
9083 		break;
9084 
9085 	case IP_ADDR_LEN:
9086 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9087 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9088 		break;
9089 
9090 	}
9091 	/* Add protocol number to end */
9092 	cp[addr_length] = (char)IPPROTO_TCP;
9093 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9094 	return (mp);
9095 }
9096 
9097 /*
9098  * Notify IP that we are having trouble with this connection.  IP should
9099  * blow the IRE away and start over.
9100  */
9101 static void
9102 tcp_ip_notify(tcp_t *tcp)
9103 {
9104 	struct iocblk	*iocp;
9105 	ipid_t	*ipid;
9106 	mblk_t	*mp;
9107 
9108 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9109 	if (tcp->tcp_ipversion == IPV6_VERSION)
9110 		return;
9111 
9112 	mp = mkiocb(IP_IOCTL);
9113 	if (mp == NULL)
9114 		return;
9115 
9116 	iocp = (struct iocblk *)mp->b_rptr;
9117 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9118 
9119 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9120 	if (!mp->b_cont) {
9121 		freeb(mp);
9122 		return;
9123 	}
9124 
9125 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9126 	mp->b_cont->b_wptr += iocp->ioc_count;
9127 	bzero(ipid, sizeof (*ipid));
9128 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9129 	ipid->ipid_ire_type = IRE_CACHE;
9130 	ipid->ipid_addr_offset = sizeof (ipid_t);
9131 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9132 	/*
9133 	 * Note: in the case of source routing we want to blow away the
9134 	 * route to the first source route hop.
9135 	 */
9136 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9137 	    sizeof (tcp->tcp_ipha->ipha_dst));
9138 
9139 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9140 }
9141 
9142 /* Unlink and return any mblk that looks like it contains an ire */
9143 static mblk_t *
9144 tcp_ire_mp(mblk_t *mp)
9145 {
9146 	mblk_t	*prev_mp;
9147 
9148 	for (;;) {
9149 		prev_mp = mp;
9150 		mp = mp->b_cont;
9151 		if (mp == NULL)
9152 			break;
9153 		switch (DB_TYPE(mp)) {
9154 		case IRE_DB_TYPE:
9155 		case IRE_DB_REQ_TYPE:
9156 			if (prev_mp != NULL)
9157 				prev_mp->b_cont = mp->b_cont;
9158 			mp->b_cont = NULL;
9159 			return (mp);
9160 		default:
9161 			break;
9162 		}
9163 	}
9164 	return (mp);
9165 }
9166 
9167 /*
9168  * Timer callback routine for keepalive probe.  We do a fake resend of
9169  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9170  * check to see if we have heard anything from the other end for the last
9171  * RTO period.  If we have, set the timer to expire for another
9172  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9173  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9174  * the timeout if we have not heard from the other side.  If for more than
9175  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9176  * kill the connection unless the keepalive abort threshold is 0.  In
9177  * that case, we will probe "forever."
9178  */
9179 static void
9180 tcp_keepalive_killer(void *arg)
9181 {
9182 	mblk_t	*mp;
9183 	conn_t	*connp = (conn_t *)arg;
9184 	tcp_t  	*tcp = connp->conn_tcp;
9185 	int32_t	firetime;
9186 	int32_t	idletime;
9187 	int32_t	ka_intrvl;
9188 
9189 	tcp->tcp_ka_tid = 0;
9190 
9191 	if (tcp->tcp_fused)
9192 		return;
9193 
9194 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
9195 	ka_intrvl = tcp->tcp_ka_interval;
9196 
9197 	/*
9198 	 * Keepalive probe should only be sent if the application has not
9199 	 * done a close on the connection.
9200 	 */
9201 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9202 		return;
9203 	}
9204 	/* Timer fired too early, restart it. */
9205 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9206 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9207 		    MSEC_TO_TICK(ka_intrvl));
9208 		return;
9209 	}
9210 
9211 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9212 	/*
9213 	 * If we have not heard from the other side for a long
9214 	 * time, kill the connection unless the keepalive abort
9215 	 * threshold is 0.  In that case, we will probe "forever."
9216 	 */
9217 	if (tcp->tcp_ka_abort_thres != 0 &&
9218 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9219 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
9220 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9221 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9222 		return;
9223 	}
9224 
9225 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9226 	    idletime >= ka_intrvl) {
9227 		/* Fake resend of last ACKed byte. */
9228 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9229 
9230 		if (mp1 != NULL) {
9231 			*mp1->b_wptr++ = '\0';
9232 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9233 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9234 			freeb(mp1);
9235 			/*
9236 			 * if allocation failed, fall through to start the
9237 			 * timer back.
9238 			 */
9239 			if (mp != NULL) {
9240 				TCP_RECORD_TRACE(tcp, mp,
9241 				    TCP_TRACE_SEND_PKT);
9242 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9243 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9244 				if (tcp->tcp_ka_last_intrvl != 0) {
9245 					/*
9246 					 * We should probe again at least
9247 					 * in ka_intrvl, but not more than
9248 					 * tcp_rexmit_interval_max.
9249 					 */
9250 					firetime = MIN(ka_intrvl - 1,
9251 					    tcp->tcp_ka_last_intrvl << 1);
9252 					if (firetime > tcp_rexmit_interval_max)
9253 						firetime =
9254 						    tcp_rexmit_interval_max;
9255 				} else {
9256 					firetime = tcp->tcp_rto;
9257 				}
9258 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9259 				    tcp_keepalive_killer,
9260 				    MSEC_TO_TICK(firetime));
9261 				tcp->tcp_ka_last_intrvl = firetime;
9262 				return;
9263 			}
9264 		}
9265 	} else {
9266 		tcp->tcp_ka_last_intrvl = 0;
9267 	}
9268 
9269 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9270 	if ((firetime = ka_intrvl - idletime) < 0) {
9271 		firetime = ka_intrvl;
9272 	}
9273 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9274 	    MSEC_TO_TICK(firetime));
9275 }
9276 
9277 int
9278 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9279 {
9280 	queue_t	*q = tcp->tcp_rq;
9281 	int32_t	mss = tcp->tcp_mss;
9282 	int	maxpsz;
9283 
9284 	if (TCP_IS_DETACHED(tcp))
9285 		return (mss);
9286 
9287 	if (tcp->tcp_fused) {
9288 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9289 		mss = INFPSZ;
9290 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9291 		/*
9292 		 * Set the sd_qn_maxpsz according to the socket send buffer
9293 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9294 		 * instruct the stream head to copyin user data into contiguous
9295 		 * kernel-allocated buffers without breaking it up into smaller
9296 		 * chunks.  We round up the buffer size to the nearest SMSS.
9297 		 */
9298 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9299 		if (tcp->tcp_kssl_ctx == NULL)
9300 			mss = INFPSZ;
9301 		else
9302 			mss = SSL3_MAX_RECORD_LEN;
9303 	} else {
9304 		/*
9305 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9306 		 * (and a multiple of the mss).  This instructs the stream
9307 		 * head to break down larger than SMSS writes into SMSS-
9308 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9309 		 */
9310 		maxpsz = tcp->tcp_maxpsz * mss;
9311 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9312 			maxpsz = tcp->tcp_xmit_hiwater/2;
9313 			/* Round up to nearest mss */
9314 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9315 		}
9316 	}
9317 	(void) setmaxps(q, maxpsz);
9318 	tcp->tcp_wq->q_maxpsz = maxpsz;
9319 
9320 	if (set_maxblk)
9321 		(void) mi_set_sth_maxblk(q, mss);
9322 
9323 	return (mss);
9324 }
9325 
9326 /*
9327  * Extract option values from a tcp header.  We put any found values into the
9328  * tcpopt struct and return a bitmask saying which options were found.
9329  */
9330 static int
9331 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9332 {
9333 	uchar_t		*endp;
9334 	int		len;
9335 	uint32_t	mss;
9336 	uchar_t		*up = (uchar_t *)tcph;
9337 	int		found = 0;
9338 	int32_t		sack_len;
9339 	tcp_seq		sack_begin, sack_end;
9340 	tcp_t		*tcp;
9341 
9342 	endp = up + TCP_HDR_LENGTH(tcph);
9343 	up += TCP_MIN_HEADER_LENGTH;
9344 	while (up < endp) {
9345 		len = endp - up;
9346 		switch (*up) {
9347 		case TCPOPT_EOL:
9348 			break;
9349 
9350 		case TCPOPT_NOP:
9351 			up++;
9352 			continue;
9353 
9354 		case TCPOPT_MAXSEG:
9355 			if (len < TCPOPT_MAXSEG_LEN ||
9356 			    up[1] != TCPOPT_MAXSEG_LEN)
9357 				break;
9358 
9359 			mss = BE16_TO_U16(up+2);
9360 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9361 			tcpopt->tcp_opt_mss = mss;
9362 			found |= TCP_OPT_MSS_PRESENT;
9363 
9364 			up += TCPOPT_MAXSEG_LEN;
9365 			continue;
9366 
9367 		case TCPOPT_WSCALE:
9368 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9369 				break;
9370 
9371 			if (up[2] > TCP_MAX_WINSHIFT)
9372 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9373 			else
9374 				tcpopt->tcp_opt_wscale = up[2];
9375 			found |= TCP_OPT_WSCALE_PRESENT;
9376 
9377 			up += TCPOPT_WS_LEN;
9378 			continue;
9379 
9380 		case TCPOPT_SACK_PERMITTED:
9381 			if (len < TCPOPT_SACK_OK_LEN ||
9382 			    up[1] != TCPOPT_SACK_OK_LEN)
9383 				break;
9384 			found |= TCP_OPT_SACK_OK_PRESENT;
9385 			up += TCPOPT_SACK_OK_LEN;
9386 			continue;
9387 
9388 		case TCPOPT_SACK:
9389 			if (len <= 2 || up[1] <= 2 || len < up[1])
9390 				break;
9391 
9392 			/* If TCP is not interested in SACK blks... */
9393 			if ((tcp = tcpopt->tcp) == NULL) {
9394 				up += up[1];
9395 				continue;
9396 			}
9397 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9398 			up += TCPOPT_HEADER_LEN;
9399 
9400 			/*
9401 			 * If the list is empty, allocate one and assume
9402 			 * nothing is sack'ed.
9403 			 */
9404 			ASSERT(tcp->tcp_sack_info != NULL);
9405 			if (tcp->tcp_notsack_list == NULL) {
9406 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9407 				    tcp->tcp_suna, tcp->tcp_snxt,
9408 				    &(tcp->tcp_num_notsack_blk),
9409 				    &(tcp->tcp_cnt_notsack_list));
9410 
9411 				/*
9412 				 * Make sure tcp_notsack_list is not NULL.
9413 				 * This happens when kmem_alloc(KM_NOSLEEP)
9414 				 * returns NULL.
9415 				 */
9416 				if (tcp->tcp_notsack_list == NULL) {
9417 					up += sack_len;
9418 					continue;
9419 				}
9420 				tcp->tcp_fack = tcp->tcp_suna;
9421 			}
9422 
9423 			while (sack_len > 0) {
9424 				if (up + 8 > endp) {
9425 					up = endp;
9426 					break;
9427 				}
9428 				sack_begin = BE32_TO_U32(up);
9429 				up += 4;
9430 				sack_end = BE32_TO_U32(up);
9431 				up += 4;
9432 				sack_len -= 8;
9433 				/*
9434 				 * Bounds checking.  Make sure the SACK
9435 				 * info is within tcp_suna and tcp_snxt.
9436 				 * If this SACK blk is out of bound, ignore
9437 				 * it but continue to parse the following
9438 				 * blks.
9439 				 */
9440 				if (SEQ_LEQ(sack_end, sack_begin) ||
9441 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9442 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9443 					continue;
9444 				}
9445 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9446 				    sack_begin, sack_end,
9447 				    &(tcp->tcp_num_notsack_blk),
9448 				    &(tcp->tcp_cnt_notsack_list));
9449 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9450 					tcp->tcp_fack = sack_end;
9451 				}
9452 			}
9453 			found |= TCP_OPT_SACK_PRESENT;
9454 			continue;
9455 
9456 		case TCPOPT_TSTAMP:
9457 			if (len < TCPOPT_TSTAMP_LEN ||
9458 			    up[1] != TCPOPT_TSTAMP_LEN)
9459 				break;
9460 
9461 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9462 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9463 
9464 			found |= TCP_OPT_TSTAMP_PRESENT;
9465 
9466 			up += TCPOPT_TSTAMP_LEN;
9467 			continue;
9468 
9469 		default:
9470 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9471 				break;
9472 			up += up[1];
9473 			continue;
9474 		}
9475 		break;
9476 	}
9477 	return (found);
9478 }
9479 
9480 /*
9481  * Set the mss associated with a particular tcp based on its current value,
9482  * and a new one passed in. Observe minimums and maximums, and reset
9483  * other state variables that we want to view as multiples of mss.
9484  *
9485  * This function is called in various places mainly because
9486  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9487  *    other side's SYN/SYN-ACK packet arrives.
9488  * 2) PMTUd may get us a new MSS.
9489  * 3) If the other side stops sending us timestamp option, we need to
9490  *    increase the MSS size to use the extra bytes available.
9491  */
9492 static void
9493 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9494 {
9495 	uint32_t	mss_max;
9496 
9497 	if (tcp->tcp_ipversion == IPV4_VERSION)
9498 		mss_max = tcp_mss_max_ipv4;
9499 	else
9500 		mss_max = tcp_mss_max_ipv6;
9501 
9502 	if (mss < tcp_mss_min)
9503 		mss = tcp_mss_min;
9504 	if (mss > mss_max)
9505 		mss = mss_max;
9506 	/*
9507 	 * Unless naglim has been set by our client to
9508 	 * a non-mss value, force naglim to track mss.
9509 	 * This can help to aggregate small writes.
9510 	 */
9511 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9512 		tcp->tcp_naglim = mss;
9513 	/*
9514 	 * TCP should be able to buffer at least 4 MSS data for obvious
9515 	 * performance reason.
9516 	 */
9517 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9518 		tcp->tcp_xmit_hiwater = mss << 2;
9519 
9520 	/*
9521 	 * Check if we need to apply the tcp_init_cwnd here.  If
9522 	 * it is set and the MSS gets bigger (should not happen
9523 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9524 	 * The new tcp_cwnd should not get bigger.
9525 	 */
9526 	if (tcp->tcp_init_cwnd == 0) {
9527 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9528 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9529 	} else {
9530 		if (tcp->tcp_mss < mss) {
9531 			tcp->tcp_cwnd = MAX(1,
9532 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9533 		} else {
9534 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9535 		}
9536 	}
9537 	tcp->tcp_mss = mss;
9538 	tcp->tcp_cwnd_cnt = 0;
9539 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9540 }
9541 
9542 static int
9543 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9544 {
9545 	tcp_t		*tcp = NULL;
9546 	conn_t		*connp;
9547 	int		err;
9548 	dev_t		conn_dev;
9549 	zoneid_t	zoneid = getzoneid();
9550 
9551 	/*
9552 	 * Special case for install: miniroot needs to be able to access files
9553 	 * via NFS as though it were always in the global zone.
9554 	 */
9555 	if (credp == kcred && nfs_global_client_only != 0)
9556 		zoneid = GLOBAL_ZONEID;
9557 
9558 	if (q->q_ptr != NULL)
9559 		return (0);
9560 
9561 	if (sflag == MODOPEN) {
9562 		/*
9563 		 * This is a special case. The purpose of a modopen
9564 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9565 		 * through for MIB browsers. Everything else is failed.
9566 		 */
9567 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9568 
9569 		if (connp == NULL)
9570 			return (ENOMEM);
9571 
9572 		connp->conn_flags |= IPCL_TCPMOD;
9573 		connp->conn_cred = credp;
9574 		connp->conn_zoneid = zoneid;
9575 		q->q_ptr = WR(q)->q_ptr = connp;
9576 		crhold(credp);
9577 		q->q_qinfo = &tcp_mod_rinit;
9578 		WR(q)->q_qinfo = &tcp_mod_winit;
9579 		qprocson(q);
9580 		return (0);
9581 	}
9582 
9583 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9584 		return (EBUSY);
9585 
9586 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9587 
9588 	if (flag & SO_ACCEPTOR) {
9589 		q->q_qinfo = &tcp_acceptor_rinit;
9590 		q->q_ptr = (void *)conn_dev;
9591 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9592 		WR(q)->q_ptr = (void *)conn_dev;
9593 		qprocson(q);
9594 		return (0);
9595 	}
9596 
9597 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9598 	if (connp == NULL) {
9599 		inet_minor_free(ip_minor_arena, conn_dev);
9600 		q->q_ptr = NULL;
9601 		return (ENOSR);
9602 	}
9603 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9604 	tcp = connp->conn_tcp;
9605 
9606 	q->q_ptr = WR(q)->q_ptr = connp;
9607 	if (getmajor(*devp) == TCP6_MAJ) {
9608 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9609 		connp->conn_send = ip_output_v6;
9610 		connp->conn_af_isv6 = B_TRUE;
9611 		connp->conn_pkt_isv6 = B_TRUE;
9612 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9613 		tcp->tcp_ipversion = IPV6_VERSION;
9614 		tcp->tcp_family = AF_INET6;
9615 		tcp->tcp_mss = tcp_mss_def_ipv6;
9616 	} else {
9617 		connp->conn_flags |= IPCL_TCP4;
9618 		connp->conn_send = ip_output;
9619 		connp->conn_af_isv6 = B_FALSE;
9620 		connp->conn_pkt_isv6 = B_FALSE;
9621 		tcp->tcp_ipversion = IPV4_VERSION;
9622 		tcp->tcp_family = AF_INET;
9623 		tcp->tcp_mss = tcp_mss_def_ipv4;
9624 	}
9625 
9626 	/*
9627 	 * TCP keeps a copy of cred for cache locality reasons but
9628 	 * we put a reference only once. If connp->conn_cred
9629 	 * becomes invalid, tcp_cred should also be set to NULL.
9630 	 */
9631 	tcp->tcp_cred = connp->conn_cred = credp;
9632 	crhold(connp->conn_cred);
9633 	tcp->tcp_cpid = curproc->p_pid;
9634 	tcp->tcp_open_time = lbolt64;
9635 	connp->conn_zoneid = zoneid;
9636 	connp->conn_mlp_type = mlptSingle;
9637 	connp->conn_ulp_labeled = !is_system_labeled();
9638 
9639 	/*
9640 	 * If the caller has the process-wide flag set, then default to MAC
9641 	 * exempt mode.  This allows read-down to unlabeled hosts.
9642 	 */
9643 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9644 		connp->conn_mac_exempt = B_TRUE;
9645 
9646 	connp->conn_dev = conn_dev;
9647 
9648 	ASSERT(q->q_qinfo == &tcp_rinit);
9649 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9650 
9651 	if (flag & SO_SOCKSTR) {
9652 		/*
9653 		 * No need to insert a socket in tcp acceptor hash.
9654 		 * If it was a socket acceptor stream, we dealt with
9655 		 * it above. A socket listener can never accept a
9656 		 * connection and doesn't need acceptor_id.
9657 		 */
9658 		connp->conn_flags |= IPCL_SOCKET;
9659 		tcp->tcp_issocket = 1;
9660 		WR(q)->q_qinfo = &tcp_sock_winit;
9661 	} else {
9662 #ifdef	_ILP32
9663 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9664 #else
9665 		tcp->tcp_acceptor_id = conn_dev;
9666 #endif	/* _ILP32 */
9667 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9668 	}
9669 
9670 	if (tcp_trace)
9671 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9672 
9673 	err = tcp_init(tcp, q);
9674 	if (err != 0) {
9675 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9676 		tcp_acceptor_hash_remove(tcp);
9677 		CONN_DEC_REF(connp);
9678 		q->q_ptr = WR(q)->q_ptr = NULL;
9679 		return (err);
9680 	}
9681 
9682 	RD(q)->q_hiwat = tcp_recv_hiwat;
9683 	tcp->tcp_rwnd = tcp_recv_hiwat;
9684 
9685 	/* Non-zero default values */
9686 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9687 	/*
9688 	 * Put the ref for TCP. Ref for IP was already put
9689 	 * by ipcl_conn_create. Also Make the conn_t globally
9690 	 * visible to walkers
9691 	 */
9692 	mutex_enter(&connp->conn_lock);
9693 	CONN_INC_REF_LOCKED(connp);
9694 	ASSERT(connp->conn_ref == 2);
9695 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9696 	mutex_exit(&connp->conn_lock);
9697 
9698 	qprocson(q);
9699 	return (0);
9700 }
9701 
9702 /*
9703  * Some TCP options can be "set" by requesting them in the option
9704  * buffer. This is needed for XTI feature test though we do not
9705  * allow it in general. We interpret that this mechanism is more
9706  * applicable to OSI protocols and need not be allowed in general.
9707  * This routine filters out options for which it is not allowed (most)
9708  * and lets through those (few) for which it is. [ The XTI interface
9709  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9710  * ever implemented will have to be allowed here ].
9711  */
9712 static boolean_t
9713 tcp_allow_connopt_set(int level, int name)
9714 {
9715 
9716 	switch (level) {
9717 	case IPPROTO_TCP:
9718 		switch (name) {
9719 		case TCP_NODELAY:
9720 			return (B_TRUE);
9721 		default:
9722 			return (B_FALSE);
9723 		}
9724 		/*NOTREACHED*/
9725 	default:
9726 		return (B_FALSE);
9727 	}
9728 	/*NOTREACHED*/
9729 }
9730 
9731 /*
9732  * This routine gets default values of certain options whose default
9733  * values are maintained by protocol specific code
9734  */
9735 /* ARGSUSED */
9736 int
9737 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9738 {
9739 	int32_t	*i1 = (int32_t *)ptr;
9740 
9741 	switch (level) {
9742 	case IPPROTO_TCP:
9743 		switch (name) {
9744 		case TCP_NOTIFY_THRESHOLD:
9745 			*i1 = tcp_ip_notify_interval;
9746 			break;
9747 		case TCP_ABORT_THRESHOLD:
9748 			*i1 = tcp_ip_abort_interval;
9749 			break;
9750 		case TCP_CONN_NOTIFY_THRESHOLD:
9751 			*i1 = tcp_ip_notify_cinterval;
9752 			break;
9753 		case TCP_CONN_ABORT_THRESHOLD:
9754 			*i1 = tcp_ip_abort_cinterval;
9755 			break;
9756 		default:
9757 			return (-1);
9758 		}
9759 		break;
9760 	case IPPROTO_IP:
9761 		switch (name) {
9762 		case IP_TTL:
9763 			*i1 = tcp_ipv4_ttl;
9764 			break;
9765 		default:
9766 			return (-1);
9767 		}
9768 		break;
9769 	case IPPROTO_IPV6:
9770 		switch (name) {
9771 		case IPV6_UNICAST_HOPS:
9772 			*i1 = tcp_ipv6_hoplimit;
9773 			break;
9774 		default:
9775 			return (-1);
9776 		}
9777 		break;
9778 	default:
9779 		return (-1);
9780 	}
9781 	return (sizeof (int));
9782 }
9783 
9784 
9785 /*
9786  * TCP routine to get the values of options.
9787  */
9788 int
9789 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9790 {
9791 	int		*i1 = (int *)ptr;
9792 	conn_t		*connp = Q_TO_CONN(q);
9793 	tcp_t		*tcp = connp->conn_tcp;
9794 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9795 
9796 	switch (level) {
9797 	case SOL_SOCKET:
9798 		switch (name) {
9799 		case SO_LINGER:	{
9800 			struct linger *lgr = (struct linger *)ptr;
9801 
9802 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9803 			lgr->l_linger = tcp->tcp_lingertime;
9804 			}
9805 			return (sizeof (struct linger));
9806 		case SO_DEBUG:
9807 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9808 			break;
9809 		case SO_KEEPALIVE:
9810 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9811 			break;
9812 		case SO_DONTROUTE:
9813 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9814 			break;
9815 		case SO_USELOOPBACK:
9816 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9817 			break;
9818 		case SO_BROADCAST:
9819 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9820 			break;
9821 		case SO_REUSEADDR:
9822 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9823 			break;
9824 		case SO_OOBINLINE:
9825 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9826 			break;
9827 		case SO_DGRAM_ERRIND:
9828 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9829 			break;
9830 		case SO_TYPE:
9831 			*i1 = SOCK_STREAM;
9832 			break;
9833 		case SO_SNDBUF:
9834 			*i1 = tcp->tcp_xmit_hiwater;
9835 			break;
9836 		case SO_RCVBUF:
9837 			*i1 = RD(q)->q_hiwat;
9838 			break;
9839 		case SO_SND_COPYAVOID:
9840 			*i1 = tcp->tcp_snd_zcopy_on ?
9841 			    SO_SND_COPYAVOID : 0;
9842 			break;
9843 		case SO_ALLZONES:
9844 			*i1 = connp->conn_allzones ? 1 : 0;
9845 			break;
9846 		case SO_ANON_MLP:
9847 			*i1 = connp->conn_anon_mlp;
9848 			break;
9849 		case SO_MAC_EXEMPT:
9850 			*i1 = connp->conn_mac_exempt;
9851 			break;
9852 		case SO_EXCLBIND:
9853 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9854 			break;
9855 		default:
9856 			return (-1);
9857 		}
9858 		break;
9859 	case IPPROTO_TCP:
9860 		switch (name) {
9861 		case TCP_NODELAY:
9862 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9863 			break;
9864 		case TCP_MAXSEG:
9865 			*i1 = tcp->tcp_mss;
9866 			break;
9867 		case TCP_NOTIFY_THRESHOLD:
9868 			*i1 = (int)tcp->tcp_first_timer_threshold;
9869 			break;
9870 		case TCP_ABORT_THRESHOLD:
9871 			*i1 = tcp->tcp_second_timer_threshold;
9872 			break;
9873 		case TCP_CONN_NOTIFY_THRESHOLD:
9874 			*i1 = tcp->tcp_first_ctimer_threshold;
9875 			break;
9876 		case TCP_CONN_ABORT_THRESHOLD:
9877 			*i1 = tcp->tcp_second_ctimer_threshold;
9878 			break;
9879 		case TCP_RECVDSTADDR:
9880 			*i1 = tcp->tcp_recvdstaddr;
9881 			break;
9882 		case TCP_ANONPRIVBIND:
9883 			*i1 = tcp->tcp_anon_priv_bind;
9884 			break;
9885 		case TCP_EXCLBIND:
9886 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9887 			break;
9888 		case TCP_INIT_CWND:
9889 			*i1 = tcp->tcp_init_cwnd;
9890 			break;
9891 		case TCP_KEEPALIVE_THRESHOLD:
9892 			*i1 = tcp->tcp_ka_interval;
9893 			break;
9894 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9895 			*i1 = tcp->tcp_ka_abort_thres;
9896 			break;
9897 		case TCP_CORK:
9898 			*i1 = tcp->tcp_cork;
9899 			break;
9900 		default:
9901 			return (-1);
9902 		}
9903 		break;
9904 	case IPPROTO_IP:
9905 		if (tcp->tcp_family != AF_INET)
9906 			return (-1);
9907 		switch (name) {
9908 		case IP_OPTIONS:
9909 		case T_IP_OPTIONS: {
9910 			/*
9911 			 * This is compatible with BSD in that in only return
9912 			 * the reverse source route with the final destination
9913 			 * as the last entry. The first 4 bytes of the option
9914 			 * will contain the final destination.
9915 			 */
9916 			int	opt_len;
9917 
9918 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9919 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9920 			ASSERT(opt_len >= 0);
9921 			/* Caller ensures enough space */
9922 			if (opt_len > 0) {
9923 				/*
9924 				 * TODO: Do we have to handle getsockopt on an
9925 				 * initiator as well?
9926 				 */
9927 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9928 			}
9929 			return (0);
9930 			}
9931 		case IP_TOS:
9932 		case T_IP_TOS:
9933 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9934 			break;
9935 		case IP_TTL:
9936 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9937 			break;
9938 		case IP_NEXTHOP:
9939 			/* Handled at IP level */
9940 			return (-EINVAL);
9941 		default:
9942 			return (-1);
9943 		}
9944 		break;
9945 	case IPPROTO_IPV6:
9946 		/*
9947 		 * IPPROTO_IPV6 options are only supported for sockets
9948 		 * that are using IPv6 on the wire.
9949 		 */
9950 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9951 			return (-1);
9952 		}
9953 		switch (name) {
9954 		case IPV6_UNICAST_HOPS:
9955 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9956 			break;	/* goto sizeof (int) option return */
9957 		case IPV6_BOUND_IF:
9958 			/* Zero if not set */
9959 			*i1 = tcp->tcp_bound_if;
9960 			break;	/* goto sizeof (int) option return */
9961 		case IPV6_RECVPKTINFO:
9962 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9963 				*i1 = 1;
9964 			else
9965 				*i1 = 0;
9966 			break;	/* goto sizeof (int) option return */
9967 		case IPV6_RECVTCLASS:
9968 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9969 				*i1 = 1;
9970 			else
9971 				*i1 = 0;
9972 			break;	/* goto sizeof (int) option return */
9973 		case IPV6_RECVHOPLIMIT:
9974 			if (tcp->tcp_ipv6_recvancillary &
9975 			    TCP_IPV6_RECVHOPLIMIT)
9976 				*i1 = 1;
9977 			else
9978 				*i1 = 0;
9979 			break;	/* goto sizeof (int) option return */
9980 		case IPV6_RECVHOPOPTS:
9981 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9982 				*i1 = 1;
9983 			else
9984 				*i1 = 0;
9985 			break;	/* goto sizeof (int) option return */
9986 		case IPV6_RECVDSTOPTS:
9987 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9988 				*i1 = 1;
9989 			else
9990 				*i1 = 0;
9991 			break;	/* goto sizeof (int) option return */
9992 		case _OLD_IPV6_RECVDSTOPTS:
9993 			if (tcp->tcp_ipv6_recvancillary &
9994 			    TCP_OLD_IPV6_RECVDSTOPTS)
9995 				*i1 = 1;
9996 			else
9997 				*i1 = 0;
9998 			break;	/* goto sizeof (int) option return */
9999 		case IPV6_RECVRTHDR:
10000 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10001 				*i1 = 1;
10002 			else
10003 				*i1 = 0;
10004 			break;	/* goto sizeof (int) option return */
10005 		case IPV6_RECVRTHDRDSTOPTS:
10006 			if (tcp->tcp_ipv6_recvancillary &
10007 			    TCP_IPV6_RECVRTDSTOPTS)
10008 				*i1 = 1;
10009 			else
10010 				*i1 = 0;
10011 			break;	/* goto sizeof (int) option return */
10012 		case IPV6_PKTINFO: {
10013 			/* XXX assumes that caller has room for max size! */
10014 			struct in6_pktinfo *pkti;
10015 
10016 			pkti = (struct in6_pktinfo *)ptr;
10017 			if (ipp->ipp_fields & IPPF_IFINDEX)
10018 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10019 			else
10020 				pkti->ipi6_ifindex = 0;
10021 			if (ipp->ipp_fields & IPPF_ADDR)
10022 				pkti->ipi6_addr = ipp->ipp_addr;
10023 			else
10024 				pkti->ipi6_addr = ipv6_all_zeros;
10025 			return (sizeof (struct in6_pktinfo));
10026 		}
10027 		case IPV6_TCLASS:
10028 			if (ipp->ipp_fields & IPPF_TCLASS)
10029 				*i1 = ipp->ipp_tclass;
10030 			else
10031 				*i1 = IPV6_FLOW_TCLASS(
10032 				    IPV6_DEFAULT_VERS_AND_FLOW);
10033 			break;	/* goto sizeof (int) option return */
10034 		case IPV6_NEXTHOP: {
10035 			sin6_t *sin6 = (sin6_t *)ptr;
10036 
10037 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10038 				return (0);
10039 			*sin6 = sin6_null;
10040 			sin6->sin6_family = AF_INET6;
10041 			sin6->sin6_addr = ipp->ipp_nexthop;
10042 			return (sizeof (sin6_t));
10043 		}
10044 		case IPV6_HOPOPTS:
10045 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10046 				return (0);
10047 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10048 				return (0);
10049 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10050 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10051 			if (tcp->tcp_label_len > 0) {
10052 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10053 				ptr[1] = (ipp->ipp_hopoptslen -
10054 				    tcp->tcp_label_len + 7) / 8 - 1;
10055 			}
10056 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10057 		case IPV6_RTHDRDSTOPTS:
10058 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10059 				return (0);
10060 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10061 			return (ipp->ipp_rtdstoptslen);
10062 		case IPV6_RTHDR:
10063 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10064 				return (0);
10065 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10066 			return (ipp->ipp_rthdrlen);
10067 		case IPV6_DSTOPTS:
10068 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10069 				return (0);
10070 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10071 			return (ipp->ipp_dstoptslen);
10072 		case IPV6_SRC_PREFERENCES:
10073 			return (ip6_get_src_preferences(connp,
10074 			    (uint32_t *)ptr));
10075 		case IPV6_PATHMTU: {
10076 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10077 
10078 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10079 				return (-1);
10080 
10081 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10082 				connp->conn_fport, mtuinfo));
10083 		}
10084 		default:
10085 			return (-1);
10086 		}
10087 		break;
10088 	default:
10089 		return (-1);
10090 	}
10091 	return (sizeof (int));
10092 }
10093 
10094 /*
10095  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10096  * Parameters are assumed to be verified by the caller.
10097  */
10098 /* ARGSUSED */
10099 int
10100 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10101     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10102     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10103 {
10104 	conn_t	*connp = Q_TO_CONN(q);
10105 	tcp_t	*tcp = connp->conn_tcp;
10106 	int	*i1 = (int *)invalp;
10107 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10108 	boolean_t checkonly;
10109 	int	reterr;
10110 
10111 	switch (optset_context) {
10112 	case SETFN_OPTCOM_CHECKONLY:
10113 		checkonly = B_TRUE;
10114 		/*
10115 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10116 		 * inlen != 0 implies value supplied and
10117 		 * 	we have to "pretend" to set it.
10118 		 * inlen == 0 implies that there is no
10119 		 * 	value part in T_CHECK request and just validation
10120 		 * done elsewhere should be enough, we just return here.
10121 		 */
10122 		if (inlen == 0) {
10123 			*outlenp = 0;
10124 			return (0);
10125 		}
10126 		break;
10127 	case SETFN_OPTCOM_NEGOTIATE:
10128 		checkonly = B_FALSE;
10129 		break;
10130 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10131 	case SETFN_CONN_NEGOTIATE:
10132 		checkonly = B_FALSE;
10133 		/*
10134 		 * Negotiating local and "association-related" options
10135 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10136 		 * primitives is allowed by XTI, but we choose
10137 		 * to not implement this style negotiation for Internet
10138 		 * protocols (We interpret it is a must for OSI world but
10139 		 * optional for Internet protocols) for all options.
10140 		 * [ Will do only for the few options that enable test
10141 		 * suites that our XTI implementation of this feature
10142 		 * works for transports that do allow it ]
10143 		 */
10144 		if (!tcp_allow_connopt_set(level, name)) {
10145 			*outlenp = 0;
10146 			return (EINVAL);
10147 		}
10148 		break;
10149 	default:
10150 		/*
10151 		 * We should never get here
10152 		 */
10153 		*outlenp = 0;
10154 		return (EINVAL);
10155 	}
10156 
10157 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10158 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10159 
10160 	/*
10161 	 * For TCP, we should have no ancillary data sent down
10162 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10163 	 * has to be zero.
10164 	 */
10165 	ASSERT(thisdg_attrs == NULL);
10166 
10167 	/*
10168 	 * For fixed length options, no sanity check
10169 	 * of passed in length is done. It is assumed *_optcom_req()
10170 	 * routines do the right thing.
10171 	 */
10172 
10173 	switch (level) {
10174 	case SOL_SOCKET:
10175 		switch (name) {
10176 		case SO_LINGER: {
10177 			struct linger *lgr = (struct linger *)invalp;
10178 
10179 			if (!checkonly) {
10180 				if (lgr->l_onoff) {
10181 					tcp->tcp_linger = 1;
10182 					tcp->tcp_lingertime = lgr->l_linger;
10183 				} else {
10184 					tcp->tcp_linger = 0;
10185 					tcp->tcp_lingertime = 0;
10186 				}
10187 				/* struct copy */
10188 				*(struct linger *)outvalp = *lgr;
10189 			} else {
10190 				if (!lgr->l_onoff) {
10191 				    ((struct linger *)outvalp)->l_onoff = 0;
10192 				    ((struct linger *)outvalp)->l_linger = 0;
10193 				} else {
10194 				    /* struct copy */
10195 				    *(struct linger *)outvalp = *lgr;
10196 				}
10197 			}
10198 			*outlenp = sizeof (struct linger);
10199 			return (0);
10200 		}
10201 		case SO_DEBUG:
10202 			if (!checkonly)
10203 				tcp->tcp_debug = onoff;
10204 			break;
10205 		case SO_KEEPALIVE:
10206 			if (checkonly) {
10207 				/* T_CHECK case */
10208 				break;
10209 			}
10210 
10211 			if (!onoff) {
10212 				if (tcp->tcp_ka_enabled) {
10213 					if (tcp->tcp_ka_tid != 0) {
10214 						(void) TCP_TIMER_CANCEL(tcp,
10215 						    tcp->tcp_ka_tid);
10216 						tcp->tcp_ka_tid = 0;
10217 					}
10218 					tcp->tcp_ka_enabled = 0;
10219 				}
10220 				break;
10221 			}
10222 			if (!tcp->tcp_ka_enabled) {
10223 				/* Crank up the keepalive timer */
10224 				tcp->tcp_ka_last_intrvl = 0;
10225 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10226 				    tcp_keepalive_killer,
10227 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10228 				tcp->tcp_ka_enabled = 1;
10229 			}
10230 			break;
10231 		case SO_DONTROUTE:
10232 			/*
10233 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10234 			 * only of interest to IP.  We track them here only so
10235 			 * that we can report their current value.
10236 			 */
10237 			if (!checkonly) {
10238 				tcp->tcp_dontroute = onoff;
10239 				tcp->tcp_connp->conn_dontroute = onoff;
10240 			}
10241 			break;
10242 		case SO_USELOOPBACK:
10243 			if (!checkonly) {
10244 				tcp->tcp_useloopback = onoff;
10245 				tcp->tcp_connp->conn_loopback = onoff;
10246 			}
10247 			break;
10248 		case SO_BROADCAST:
10249 			if (!checkonly) {
10250 				tcp->tcp_broadcast = onoff;
10251 				tcp->tcp_connp->conn_broadcast = onoff;
10252 			}
10253 			break;
10254 		case SO_REUSEADDR:
10255 			if (!checkonly) {
10256 				tcp->tcp_reuseaddr = onoff;
10257 				tcp->tcp_connp->conn_reuseaddr = onoff;
10258 			}
10259 			break;
10260 		case SO_OOBINLINE:
10261 			if (!checkonly)
10262 				tcp->tcp_oobinline = onoff;
10263 			break;
10264 		case SO_DGRAM_ERRIND:
10265 			if (!checkonly)
10266 				tcp->tcp_dgram_errind = onoff;
10267 			break;
10268 		case SO_SNDBUF: {
10269 			tcp_t *peer_tcp;
10270 
10271 			if (*i1 > tcp_max_buf) {
10272 				*outlenp = 0;
10273 				return (ENOBUFS);
10274 			}
10275 			if (checkonly)
10276 				break;
10277 
10278 			tcp->tcp_xmit_hiwater = *i1;
10279 			if (tcp_snd_lowat_fraction != 0)
10280 				tcp->tcp_xmit_lowater =
10281 				    tcp->tcp_xmit_hiwater /
10282 				    tcp_snd_lowat_fraction;
10283 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10284 			/*
10285 			 * If we are flow-controlled, recheck the condition.
10286 			 * There are apps that increase SO_SNDBUF size when
10287 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10288 			 * control condition to be lifted right away.
10289 			 *
10290 			 * For the fused tcp loopback case, in order to avoid
10291 			 * a race with the peer's tcp_fuse_rrw() we need to
10292 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10293 			 */
10294 			peer_tcp = tcp->tcp_loopback_peer;
10295 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10296 			if (tcp->tcp_fused)
10297 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10298 
10299 			if (tcp->tcp_flow_stopped &&
10300 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10301 				tcp_clrqfull(tcp);
10302 			}
10303 			if (tcp->tcp_fused)
10304 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10305 			break;
10306 		}
10307 		case SO_RCVBUF:
10308 			if (*i1 > tcp_max_buf) {
10309 				*outlenp = 0;
10310 				return (ENOBUFS);
10311 			}
10312 			/* Silently ignore zero */
10313 			if (!checkonly && *i1 != 0) {
10314 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10315 				(void) tcp_rwnd_set(tcp, *i1);
10316 			}
10317 			/*
10318 			 * XXX should we return the rwnd here
10319 			 * and tcp_opt_get ?
10320 			 */
10321 			break;
10322 		case SO_SND_COPYAVOID:
10323 			if (!checkonly) {
10324 				/* we only allow enable at most once for now */
10325 				if (tcp->tcp_loopback ||
10326 				    (!tcp->tcp_snd_zcopy_aware &&
10327 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10328 					*outlenp = 0;
10329 					return (EOPNOTSUPP);
10330 				}
10331 				tcp->tcp_snd_zcopy_aware = 1;
10332 			}
10333 			break;
10334 		case SO_ALLZONES:
10335 			/* Handled at the IP level */
10336 			return (-EINVAL);
10337 		case SO_ANON_MLP:
10338 			if (!checkonly) {
10339 				mutex_enter(&connp->conn_lock);
10340 				connp->conn_anon_mlp = onoff;
10341 				mutex_exit(&connp->conn_lock);
10342 			}
10343 			break;
10344 		case SO_MAC_EXEMPT:
10345 			if (secpolicy_net_mac_aware(cr) != 0 ||
10346 			    IPCL_IS_BOUND(connp))
10347 				return (EACCES);
10348 			if (!checkonly) {
10349 				mutex_enter(&connp->conn_lock);
10350 				connp->conn_mac_exempt = onoff;
10351 				mutex_exit(&connp->conn_lock);
10352 			}
10353 			break;
10354 		case SO_EXCLBIND:
10355 			if (!checkonly)
10356 				tcp->tcp_exclbind = onoff;
10357 			break;
10358 		default:
10359 			*outlenp = 0;
10360 			return (EINVAL);
10361 		}
10362 		break;
10363 	case IPPROTO_TCP:
10364 		switch (name) {
10365 		case TCP_NODELAY:
10366 			if (!checkonly)
10367 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10368 			break;
10369 		case TCP_NOTIFY_THRESHOLD:
10370 			if (!checkonly)
10371 				tcp->tcp_first_timer_threshold = *i1;
10372 			break;
10373 		case TCP_ABORT_THRESHOLD:
10374 			if (!checkonly)
10375 				tcp->tcp_second_timer_threshold = *i1;
10376 			break;
10377 		case TCP_CONN_NOTIFY_THRESHOLD:
10378 			if (!checkonly)
10379 				tcp->tcp_first_ctimer_threshold = *i1;
10380 			break;
10381 		case TCP_CONN_ABORT_THRESHOLD:
10382 			if (!checkonly)
10383 				tcp->tcp_second_ctimer_threshold = *i1;
10384 			break;
10385 		case TCP_RECVDSTADDR:
10386 			if (tcp->tcp_state > TCPS_LISTEN)
10387 				return (EOPNOTSUPP);
10388 			if (!checkonly)
10389 				tcp->tcp_recvdstaddr = onoff;
10390 			break;
10391 		case TCP_ANONPRIVBIND:
10392 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10393 				*outlenp = 0;
10394 				return (reterr);
10395 			}
10396 			if (!checkonly) {
10397 				tcp->tcp_anon_priv_bind = onoff;
10398 			}
10399 			break;
10400 		case TCP_EXCLBIND:
10401 			if (!checkonly)
10402 				tcp->tcp_exclbind = onoff;
10403 			break;	/* goto sizeof (int) option return */
10404 		case TCP_INIT_CWND: {
10405 			uint32_t init_cwnd = *((uint32_t *)invalp);
10406 
10407 			if (checkonly)
10408 				break;
10409 
10410 			/*
10411 			 * Only allow socket with network configuration
10412 			 * privilege to set the initial cwnd to be larger
10413 			 * than allowed by RFC 3390.
10414 			 */
10415 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10416 				tcp->tcp_init_cwnd = init_cwnd;
10417 				break;
10418 			}
10419 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10420 				*outlenp = 0;
10421 				return (reterr);
10422 			}
10423 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10424 				*outlenp = 0;
10425 				return (EINVAL);
10426 			}
10427 			tcp->tcp_init_cwnd = init_cwnd;
10428 			break;
10429 		}
10430 		case TCP_KEEPALIVE_THRESHOLD:
10431 			if (checkonly)
10432 				break;
10433 
10434 			if (*i1 < tcp_keepalive_interval_low ||
10435 			    *i1 > tcp_keepalive_interval_high) {
10436 				*outlenp = 0;
10437 				return (EINVAL);
10438 			}
10439 			if (*i1 != tcp->tcp_ka_interval) {
10440 				tcp->tcp_ka_interval = *i1;
10441 				/*
10442 				 * Check if we need to restart the
10443 				 * keepalive timer.
10444 				 */
10445 				if (tcp->tcp_ka_tid != 0) {
10446 					ASSERT(tcp->tcp_ka_enabled);
10447 					(void) TCP_TIMER_CANCEL(tcp,
10448 					    tcp->tcp_ka_tid);
10449 					tcp->tcp_ka_last_intrvl = 0;
10450 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10451 					    tcp_keepalive_killer,
10452 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10453 				}
10454 			}
10455 			break;
10456 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10457 			if (!checkonly) {
10458 				if (*i1 < tcp_keepalive_abort_interval_low ||
10459 				    *i1 > tcp_keepalive_abort_interval_high) {
10460 					*outlenp = 0;
10461 					return (EINVAL);
10462 				}
10463 				tcp->tcp_ka_abort_thres = *i1;
10464 			}
10465 			break;
10466 		case TCP_CORK:
10467 			if (!checkonly) {
10468 				/*
10469 				 * if tcp->tcp_cork was set and is now
10470 				 * being unset, we have to make sure that
10471 				 * the remaining data gets sent out. Also
10472 				 * unset tcp->tcp_cork so that tcp_wput_data()
10473 				 * can send data even if it is less than mss
10474 				 */
10475 				if (tcp->tcp_cork && onoff == 0 &&
10476 				    tcp->tcp_unsent > 0) {
10477 					tcp->tcp_cork = B_FALSE;
10478 					tcp_wput_data(tcp, NULL, B_FALSE);
10479 				}
10480 				tcp->tcp_cork = onoff;
10481 			}
10482 			break;
10483 		default:
10484 			*outlenp = 0;
10485 			return (EINVAL);
10486 		}
10487 		break;
10488 	case IPPROTO_IP:
10489 		if (tcp->tcp_family != AF_INET) {
10490 			*outlenp = 0;
10491 			return (ENOPROTOOPT);
10492 		}
10493 		switch (name) {
10494 		case IP_OPTIONS:
10495 		case T_IP_OPTIONS:
10496 			reterr = tcp_opt_set_header(tcp, checkonly,
10497 			    invalp, inlen);
10498 			if (reterr) {
10499 				*outlenp = 0;
10500 				return (reterr);
10501 			}
10502 			/* OK return - copy input buffer into output buffer */
10503 			if (invalp != outvalp) {
10504 				/* don't trust bcopy for identical src/dst */
10505 				bcopy(invalp, outvalp, inlen);
10506 			}
10507 			*outlenp = inlen;
10508 			return (0);
10509 		case IP_TOS:
10510 		case T_IP_TOS:
10511 			if (!checkonly) {
10512 				tcp->tcp_ipha->ipha_type_of_service =
10513 				    (uchar_t)*i1;
10514 				tcp->tcp_tos = (uchar_t)*i1;
10515 			}
10516 			break;
10517 		case IP_TTL:
10518 			if (!checkonly) {
10519 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10520 				tcp->tcp_ttl = (uchar_t)*i1;
10521 			}
10522 			break;
10523 		case IP_BOUND_IF:
10524 		case IP_NEXTHOP:
10525 			/* Handled at the IP level */
10526 			return (-EINVAL);
10527 		case IP_SEC_OPT:
10528 			/*
10529 			 * We should not allow policy setting after
10530 			 * we start listening for connections.
10531 			 */
10532 			if (tcp->tcp_state == TCPS_LISTEN) {
10533 				return (EINVAL);
10534 			} else {
10535 				/* Handled at the IP level */
10536 				return (-EINVAL);
10537 			}
10538 		default:
10539 			*outlenp = 0;
10540 			return (EINVAL);
10541 		}
10542 		break;
10543 	case IPPROTO_IPV6: {
10544 		ip6_pkt_t		*ipp;
10545 
10546 		/*
10547 		 * IPPROTO_IPV6 options are only supported for sockets
10548 		 * that are using IPv6 on the wire.
10549 		 */
10550 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10551 			*outlenp = 0;
10552 			return (ENOPROTOOPT);
10553 		}
10554 		/*
10555 		 * Only sticky options; no ancillary data
10556 		 */
10557 		ASSERT(thisdg_attrs == NULL);
10558 		ipp = &tcp->tcp_sticky_ipp;
10559 
10560 		switch (name) {
10561 		case IPV6_UNICAST_HOPS:
10562 			/* -1 means use default */
10563 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10564 				*outlenp = 0;
10565 				return (EINVAL);
10566 			}
10567 			if (!checkonly) {
10568 				if (*i1 == -1) {
10569 					tcp->tcp_ip6h->ip6_hops =
10570 					    ipp->ipp_unicast_hops =
10571 					    (uint8_t)tcp_ipv6_hoplimit;
10572 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10573 					/* Pass modified value to IP. */
10574 					*i1 = tcp->tcp_ip6h->ip6_hops;
10575 				} else {
10576 					tcp->tcp_ip6h->ip6_hops =
10577 					    ipp->ipp_unicast_hops =
10578 					    (uint8_t)*i1;
10579 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10580 				}
10581 				reterr = tcp_build_hdrs(q, tcp);
10582 				if (reterr != 0)
10583 					return (reterr);
10584 			}
10585 			break;
10586 		case IPV6_BOUND_IF:
10587 			if (!checkonly) {
10588 				int error = 0;
10589 
10590 				tcp->tcp_bound_if = *i1;
10591 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10592 				    B_TRUE, checkonly, level, name, mblk);
10593 				if (error != 0) {
10594 					*outlenp = 0;
10595 					return (error);
10596 				}
10597 			}
10598 			break;
10599 		/*
10600 		 * Set boolean switches for ancillary data delivery
10601 		 */
10602 		case IPV6_RECVPKTINFO:
10603 			if (!checkonly) {
10604 				if (onoff)
10605 					tcp->tcp_ipv6_recvancillary |=
10606 					    TCP_IPV6_RECVPKTINFO;
10607 				else
10608 					tcp->tcp_ipv6_recvancillary &=
10609 					    ~TCP_IPV6_RECVPKTINFO;
10610 				/* Force it to be sent up with the next msg */
10611 				tcp->tcp_recvifindex = 0;
10612 			}
10613 			break;
10614 		case IPV6_RECVTCLASS:
10615 			if (!checkonly) {
10616 				if (onoff)
10617 					tcp->tcp_ipv6_recvancillary |=
10618 					    TCP_IPV6_RECVTCLASS;
10619 				else
10620 					tcp->tcp_ipv6_recvancillary &=
10621 					    ~TCP_IPV6_RECVTCLASS;
10622 			}
10623 			break;
10624 		case IPV6_RECVHOPLIMIT:
10625 			if (!checkonly) {
10626 				if (onoff)
10627 					tcp->tcp_ipv6_recvancillary |=
10628 					    TCP_IPV6_RECVHOPLIMIT;
10629 				else
10630 					tcp->tcp_ipv6_recvancillary &=
10631 					    ~TCP_IPV6_RECVHOPLIMIT;
10632 				/* Force it to be sent up with the next msg */
10633 				tcp->tcp_recvhops = 0xffffffffU;
10634 			}
10635 			break;
10636 		case IPV6_RECVHOPOPTS:
10637 			if (!checkonly) {
10638 				if (onoff)
10639 					tcp->tcp_ipv6_recvancillary |=
10640 					    TCP_IPV6_RECVHOPOPTS;
10641 				else
10642 					tcp->tcp_ipv6_recvancillary &=
10643 					    ~TCP_IPV6_RECVHOPOPTS;
10644 			}
10645 			break;
10646 		case IPV6_RECVDSTOPTS:
10647 			if (!checkonly) {
10648 				if (onoff)
10649 					tcp->tcp_ipv6_recvancillary |=
10650 					    TCP_IPV6_RECVDSTOPTS;
10651 				else
10652 					tcp->tcp_ipv6_recvancillary &=
10653 					    ~TCP_IPV6_RECVDSTOPTS;
10654 			}
10655 			break;
10656 		case _OLD_IPV6_RECVDSTOPTS:
10657 			if (!checkonly) {
10658 				if (onoff)
10659 					tcp->tcp_ipv6_recvancillary |=
10660 					    TCP_OLD_IPV6_RECVDSTOPTS;
10661 				else
10662 					tcp->tcp_ipv6_recvancillary &=
10663 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10664 			}
10665 			break;
10666 		case IPV6_RECVRTHDR:
10667 			if (!checkonly) {
10668 				if (onoff)
10669 					tcp->tcp_ipv6_recvancillary |=
10670 					    TCP_IPV6_RECVRTHDR;
10671 				else
10672 					tcp->tcp_ipv6_recvancillary &=
10673 					    ~TCP_IPV6_RECVRTHDR;
10674 			}
10675 			break;
10676 		case IPV6_RECVRTHDRDSTOPTS:
10677 			if (!checkonly) {
10678 				if (onoff)
10679 					tcp->tcp_ipv6_recvancillary |=
10680 					    TCP_IPV6_RECVRTDSTOPTS;
10681 				else
10682 					tcp->tcp_ipv6_recvancillary &=
10683 					    ~TCP_IPV6_RECVRTDSTOPTS;
10684 			}
10685 			break;
10686 		case IPV6_PKTINFO:
10687 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10688 				return (EINVAL);
10689 			if (checkonly)
10690 				break;
10691 
10692 			if (inlen == 0) {
10693 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10694 			} else {
10695 				struct in6_pktinfo *pkti;
10696 
10697 				pkti = (struct in6_pktinfo *)invalp;
10698 				/*
10699 				 * RFC 3542 states that ipi6_addr must be
10700 				 * the unspecified address when setting the
10701 				 * IPV6_PKTINFO sticky socket option on a
10702 				 * TCP socket.
10703 				 */
10704 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10705 					return (EINVAL);
10706 				/*
10707 				 * ip6_set_pktinfo() validates the source
10708 				 * address and interface index.
10709 				 */
10710 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10711 				    pkti, mblk);
10712 				if (reterr != 0)
10713 					return (reterr);
10714 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10715 				ipp->ipp_addr = pkti->ipi6_addr;
10716 				if (ipp->ipp_ifindex != 0)
10717 					ipp->ipp_fields |= IPPF_IFINDEX;
10718 				else
10719 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10720 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10721 					ipp->ipp_fields |= IPPF_ADDR;
10722 				else
10723 					ipp->ipp_fields &= ~IPPF_ADDR;
10724 			}
10725 			reterr = tcp_build_hdrs(q, tcp);
10726 			if (reterr != 0)
10727 				return (reterr);
10728 			break;
10729 		case IPV6_TCLASS:
10730 			if (inlen != 0 && inlen != sizeof (int))
10731 				return (EINVAL);
10732 			if (checkonly)
10733 				break;
10734 
10735 			if (inlen == 0) {
10736 				ipp->ipp_fields &= ~IPPF_TCLASS;
10737 			} else {
10738 				if (*i1 > 255 || *i1 < -1)
10739 					return (EINVAL);
10740 				if (*i1 == -1) {
10741 					ipp->ipp_tclass = 0;
10742 					*i1 = 0;
10743 				} else {
10744 					ipp->ipp_tclass = *i1;
10745 				}
10746 				ipp->ipp_fields |= IPPF_TCLASS;
10747 			}
10748 			reterr = tcp_build_hdrs(q, tcp);
10749 			if (reterr != 0)
10750 				return (reterr);
10751 			break;
10752 		case IPV6_NEXTHOP:
10753 			/*
10754 			 * IP will verify that the nexthop is reachable
10755 			 * and fail for sticky options.
10756 			 */
10757 			if (inlen != 0 && inlen != sizeof (sin6_t))
10758 				return (EINVAL);
10759 			if (checkonly)
10760 				break;
10761 
10762 			if (inlen == 0) {
10763 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10764 			} else {
10765 				sin6_t *sin6 = (sin6_t *)invalp;
10766 
10767 				if (sin6->sin6_family != AF_INET6)
10768 					return (EAFNOSUPPORT);
10769 				if (IN6_IS_ADDR_V4MAPPED(
10770 				    &sin6->sin6_addr))
10771 					return (EADDRNOTAVAIL);
10772 				ipp->ipp_nexthop = sin6->sin6_addr;
10773 				if (!IN6_IS_ADDR_UNSPECIFIED(
10774 				    &ipp->ipp_nexthop))
10775 					ipp->ipp_fields |= IPPF_NEXTHOP;
10776 				else
10777 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10778 			}
10779 			reterr = tcp_build_hdrs(q, tcp);
10780 			if (reterr != 0)
10781 				return (reterr);
10782 			break;
10783 		case IPV6_HOPOPTS: {
10784 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10785 
10786 			/*
10787 			 * Sanity checks - minimum size, size a multiple of
10788 			 * eight bytes, and matching size passed in.
10789 			 */
10790 			if (inlen != 0 &&
10791 			    inlen != (8 * (hopts->ip6h_len + 1)))
10792 				return (EINVAL);
10793 
10794 			if (checkonly)
10795 				break;
10796 
10797 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10798 			    (uchar_t **)&ipp->ipp_hopopts,
10799 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10800 			if (reterr != 0)
10801 				return (reterr);
10802 			if (ipp->ipp_hopoptslen == 0)
10803 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10804 			else
10805 				ipp->ipp_fields |= IPPF_HOPOPTS;
10806 			reterr = tcp_build_hdrs(q, tcp);
10807 			if (reterr != 0)
10808 				return (reterr);
10809 			break;
10810 		}
10811 		case IPV6_RTHDRDSTOPTS: {
10812 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10813 
10814 			/*
10815 			 * Sanity checks - minimum size, size a multiple of
10816 			 * eight bytes, and matching size passed in.
10817 			 */
10818 			if (inlen != 0 &&
10819 			    inlen != (8 * (dopts->ip6d_len + 1)))
10820 				return (EINVAL);
10821 
10822 			if (checkonly)
10823 				break;
10824 
10825 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10826 			    (uchar_t **)&ipp->ipp_rtdstopts,
10827 			    &ipp->ipp_rtdstoptslen, 0);
10828 			if (reterr != 0)
10829 				return (reterr);
10830 			if (ipp->ipp_rtdstoptslen == 0)
10831 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10832 			else
10833 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10834 			reterr = tcp_build_hdrs(q, tcp);
10835 			if (reterr != 0)
10836 				return (reterr);
10837 			break;
10838 		}
10839 		case IPV6_DSTOPTS: {
10840 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10841 
10842 			/*
10843 			 * Sanity checks - minimum size, size a multiple of
10844 			 * eight bytes, and matching size passed in.
10845 			 */
10846 			if (inlen != 0 &&
10847 			    inlen != (8 * (dopts->ip6d_len + 1)))
10848 				return (EINVAL);
10849 
10850 			if (checkonly)
10851 				break;
10852 
10853 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10854 			    (uchar_t **)&ipp->ipp_dstopts,
10855 			    &ipp->ipp_dstoptslen, 0);
10856 			if (reterr != 0)
10857 				return (reterr);
10858 			if (ipp->ipp_dstoptslen == 0)
10859 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10860 			else
10861 				ipp->ipp_fields |= IPPF_DSTOPTS;
10862 			reterr = tcp_build_hdrs(q, tcp);
10863 			if (reterr != 0)
10864 				return (reterr);
10865 			break;
10866 		}
10867 		case IPV6_RTHDR: {
10868 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10869 
10870 			/*
10871 			 * Sanity checks - minimum size, size a multiple of
10872 			 * eight bytes, and matching size passed in.
10873 			 */
10874 			if (inlen != 0 &&
10875 			    inlen != (8 * (rt->ip6r_len + 1)))
10876 				return (EINVAL);
10877 
10878 			if (checkonly)
10879 				break;
10880 
10881 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10882 			    (uchar_t **)&ipp->ipp_rthdr,
10883 			    &ipp->ipp_rthdrlen, 0);
10884 			if (reterr != 0)
10885 				return (reterr);
10886 			if (ipp->ipp_rthdrlen == 0)
10887 				ipp->ipp_fields &= ~IPPF_RTHDR;
10888 			else
10889 				ipp->ipp_fields |= IPPF_RTHDR;
10890 			reterr = tcp_build_hdrs(q, tcp);
10891 			if (reterr != 0)
10892 				return (reterr);
10893 			break;
10894 		}
10895 		case IPV6_V6ONLY:
10896 			if (!checkonly)
10897 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10898 			break;
10899 		case IPV6_USE_MIN_MTU:
10900 			if (inlen != sizeof (int))
10901 				return (EINVAL);
10902 
10903 			if (*i1 < -1 || *i1 > 1)
10904 				return (EINVAL);
10905 
10906 			if (checkonly)
10907 				break;
10908 
10909 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10910 			ipp->ipp_use_min_mtu = *i1;
10911 			break;
10912 		case IPV6_BOUND_PIF:
10913 			/* Handled at the IP level */
10914 			return (-EINVAL);
10915 		case IPV6_SEC_OPT:
10916 			/*
10917 			 * We should not allow policy setting after
10918 			 * we start listening for connections.
10919 			 */
10920 			if (tcp->tcp_state == TCPS_LISTEN) {
10921 				return (EINVAL);
10922 			} else {
10923 				/* Handled at the IP level */
10924 				return (-EINVAL);
10925 			}
10926 		case IPV6_SRC_PREFERENCES:
10927 			if (inlen != sizeof (uint32_t))
10928 				return (EINVAL);
10929 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10930 			    *(uint32_t *)invalp);
10931 			if (reterr != 0) {
10932 				*outlenp = 0;
10933 				return (reterr);
10934 			}
10935 			break;
10936 		default:
10937 			*outlenp = 0;
10938 			return (EINVAL);
10939 		}
10940 		break;
10941 	}		/* end IPPROTO_IPV6 */
10942 	default:
10943 		*outlenp = 0;
10944 		return (EINVAL);
10945 	}
10946 	/*
10947 	 * Common case of OK return with outval same as inval
10948 	 */
10949 	if (invalp != outvalp) {
10950 		/* don't trust bcopy for identical src/dst */
10951 		(void) bcopy(invalp, outvalp, inlen);
10952 	}
10953 	*outlenp = inlen;
10954 	return (0);
10955 }
10956 
10957 /*
10958  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10959  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10960  * headers, and the maximum size tcp header (to avoid reallocation
10961  * on the fly for additional tcp options).
10962  * Returns failure if can't allocate memory.
10963  */
10964 static int
10965 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10966 {
10967 	char	*hdrs;
10968 	uint_t	hdrs_len;
10969 	ip6i_t	*ip6i;
10970 	char	buf[TCP_MAX_HDR_LENGTH];
10971 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10972 	in6_addr_t src, dst;
10973 
10974 	/*
10975 	 * save the existing tcp header and source/dest IP addresses
10976 	 */
10977 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10978 	src = tcp->tcp_ip6h->ip6_src;
10979 	dst = tcp->tcp_ip6h->ip6_dst;
10980 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10981 	ASSERT(hdrs_len != 0);
10982 	if (hdrs_len > tcp->tcp_iphc_len) {
10983 		/* Need to reallocate */
10984 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10985 		if (hdrs == NULL)
10986 			return (ENOMEM);
10987 		if (tcp->tcp_iphc != NULL) {
10988 			if (tcp->tcp_hdr_grown) {
10989 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10990 			} else {
10991 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10992 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10993 			}
10994 			tcp->tcp_iphc_len = 0;
10995 		}
10996 		ASSERT(tcp->tcp_iphc_len == 0);
10997 		tcp->tcp_iphc = hdrs;
10998 		tcp->tcp_iphc_len = hdrs_len;
10999 		tcp->tcp_hdr_grown = B_TRUE;
11000 	}
11001 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11002 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11003 
11004 	/* Set header fields not in ipp */
11005 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11006 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11007 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11008 	} else {
11009 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11010 	}
11011 	/*
11012 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11013 	 *
11014 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11015 	 */
11016 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11017 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11018 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11019 
11020 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11021 
11022 	tcp->tcp_ip6h->ip6_src = src;
11023 	tcp->tcp_ip6h->ip6_dst = dst;
11024 
11025 	/*
11026 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11027 	 * the default value for TCP.
11028 	 */
11029 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11030 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
11031 
11032 	/*
11033 	 * If we're setting extension headers after a connection
11034 	 * has been established, and if we have a routing header
11035 	 * among the extension headers, call ip_massage_options_v6 to
11036 	 * manipulate the routing header/ip6_dst set the checksum
11037 	 * difference in the tcp header template.
11038 	 * (This happens in tcp_connect_ipv6 if the routing header
11039 	 * is set prior to the connect.)
11040 	 * Set the tcp_sum to zero first in case we've cleared a
11041 	 * routing header or don't have one at all.
11042 	 */
11043 	tcp->tcp_sum = 0;
11044 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11045 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11046 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11047 		    (uint8_t *)tcp->tcp_tcph);
11048 		if (rth != NULL) {
11049 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11050 			    rth);
11051 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11052 			    (tcp->tcp_sum >> 16));
11053 		}
11054 	}
11055 
11056 	/* Try to get everything in a single mblk */
11057 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
11058 	return (0);
11059 }
11060 
11061 /*
11062  * Transfer any source route option from ipha to buf/dst in reversed form.
11063  */
11064 static int
11065 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11066 {
11067 	ipoptp_t	opts;
11068 	uchar_t		*opt;
11069 	uint8_t		optval;
11070 	uint8_t		optlen;
11071 	uint32_t	len = 0;
11072 
11073 	for (optval = ipoptp_first(&opts, ipha);
11074 	    optval != IPOPT_EOL;
11075 	    optval = ipoptp_next(&opts)) {
11076 		opt = opts.ipoptp_cur;
11077 		optlen = opts.ipoptp_len;
11078 		switch (optval) {
11079 			int	off1, off2;
11080 		case IPOPT_SSRR:
11081 		case IPOPT_LSRR:
11082 
11083 			/* Reverse source route */
11084 			/*
11085 			 * First entry should be the next to last one in the
11086 			 * current source route (the last entry is our
11087 			 * address.)
11088 			 * The last entry should be the final destination.
11089 			 */
11090 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11091 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11092 			off1 = IPOPT_MINOFF_SR - 1;
11093 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11094 			if (off2 < 0) {
11095 				/* No entries in source route */
11096 				break;
11097 			}
11098 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11099 			/*
11100 			 * Note: use src since ipha has not had its src
11101 			 * and dst reversed (it is in the state it was
11102 			 * received.
11103 			 */
11104 			bcopy(&ipha->ipha_src, buf + off2,
11105 			    IP_ADDR_LEN);
11106 			off2 -= IP_ADDR_LEN;
11107 
11108 			while (off2 > 0) {
11109 				bcopy(opt + off2, buf + off1,
11110 				    IP_ADDR_LEN);
11111 				off1 += IP_ADDR_LEN;
11112 				off2 -= IP_ADDR_LEN;
11113 			}
11114 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11115 			buf += optlen;
11116 			len += optlen;
11117 			break;
11118 		}
11119 	}
11120 done:
11121 	/* Pad the resulting options */
11122 	while (len & 0x3) {
11123 		*buf++ = IPOPT_EOL;
11124 		len++;
11125 	}
11126 	return (len);
11127 }
11128 
11129 
11130 /*
11131  * Extract and revert a source route from ipha (if any)
11132  * and then update the relevant fields in both tcp_t and the standard header.
11133  */
11134 static void
11135 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11136 {
11137 	char	buf[TCP_MAX_HDR_LENGTH];
11138 	uint_t	tcph_len;
11139 	int	len;
11140 
11141 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11142 	len = IPH_HDR_LENGTH(ipha);
11143 	if (len == IP_SIMPLE_HDR_LENGTH)
11144 		/* Nothing to do */
11145 		return;
11146 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11147 	    (len & 0x3))
11148 		return;
11149 
11150 	tcph_len = tcp->tcp_tcp_hdr_len;
11151 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11152 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11153 		(tcp->tcp_ipha->ipha_dst & 0xffff);
11154 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11155 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11156 	len += IP_SIMPLE_HDR_LENGTH;
11157 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11158 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11159 	if ((int)tcp->tcp_sum < 0)
11160 		tcp->tcp_sum--;
11161 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11162 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11163 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11164 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11165 	tcp->tcp_ip_hdr_len = len;
11166 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11167 	    (IP_VERSION << 4) | (len >> 2);
11168 	len += tcph_len;
11169 	tcp->tcp_hdr_len = len;
11170 }
11171 
11172 /*
11173  * Copy the standard header into its new location,
11174  * lay in the new options and then update the relevant
11175  * fields in both tcp_t and the standard header.
11176  */
11177 static int
11178 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11179 {
11180 	uint_t	tcph_len;
11181 	uint8_t	*ip_optp;
11182 	tcph_t	*new_tcph;
11183 
11184 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11185 		return (EINVAL);
11186 
11187 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11188 		return (EINVAL);
11189 
11190 	if (checkonly) {
11191 		/*
11192 		 * do not really set, just pretend to - T_CHECK
11193 		 */
11194 		return (0);
11195 	}
11196 
11197 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11198 	if (tcp->tcp_label_len > 0) {
11199 		int padlen;
11200 		uint8_t opt;
11201 
11202 		/* convert list termination to no-ops */
11203 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11204 		ip_optp += ip_optp[IPOPT_OLEN];
11205 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11206 		while (--padlen >= 0)
11207 			*ip_optp++ = opt;
11208 	}
11209 	tcph_len = tcp->tcp_tcp_hdr_len;
11210 	new_tcph = (tcph_t *)(ip_optp + len);
11211 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11212 	tcp->tcp_tcph = new_tcph;
11213 	bcopy(ptr, ip_optp, len);
11214 
11215 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11216 
11217 	tcp->tcp_ip_hdr_len = len;
11218 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11219 	    (IP_VERSION << 4) | (len >> 2);
11220 	tcp->tcp_hdr_len = len + tcph_len;
11221 	if (!TCP_IS_DETACHED(tcp)) {
11222 		/* Always allocate room for all options. */
11223 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11224 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
11225 	}
11226 	return (0);
11227 }
11228 
11229 /* Get callback routine passed to nd_load by tcp_param_register */
11230 /* ARGSUSED */
11231 static int
11232 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11233 {
11234 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11235 
11236 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11237 	return (0);
11238 }
11239 
11240 /*
11241  * Walk through the param array specified registering each element with the
11242  * named dispatch handler.
11243  */
11244 static boolean_t
11245 tcp_param_register(tcpparam_t *tcppa, int cnt)
11246 {
11247 	for (; cnt-- > 0; tcppa++) {
11248 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11249 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11250 			    tcp_param_get, tcp_param_set,
11251 			    (caddr_t)tcppa)) {
11252 				nd_free(&tcp_g_nd);
11253 				return (B_FALSE);
11254 			}
11255 		}
11256 	}
11257 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11258 	    tcp_param_get, tcp_param_set_aligned,
11259 	    (caddr_t)&tcp_wroff_xtra_param)) {
11260 		nd_free(&tcp_g_nd);
11261 		return (B_FALSE);
11262 	}
11263 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11264 	    tcp_param_get, tcp_param_set_aligned,
11265 	    (caddr_t)&tcp_mdt_head_param)) {
11266 		nd_free(&tcp_g_nd);
11267 		return (B_FALSE);
11268 	}
11269 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11270 	    tcp_param_get, tcp_param_set_aligned,
11271 	    (caddr_t)&tcp_mdt_tail_param)) {
11272 		nd_free(&tcp_g_nd);
11273 		return (B_FALSE);
11274 	}
11275 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11276 	    tcp_param_get, tcp_param_set,
11277 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11278 		nd_free(&tcp_g_nd);
11279 		return (B_FALSE);
11280 	}
11281 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11282 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11283 		nd_free(&tcp_g_nd);
11284 		return (B_FALSE);
11285 	}
11286 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11287 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11288 		nd_free(&tcp_g_nd);
11289 		return (B_FALSE);
11290 	}
11291 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11292 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11293 		nd_free(&tcp_g_nd);
11294 		return (B_FALSE);
11295 	}
11296 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11297 	    NULL)) {
11298 		nd_free(&tcp_g_nd);
11299 		return (B_FALSE);
11300 	}
11301 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11302 	    NULL, NULL)) {
11303 		nd_free(&tcp_g_nd);
11304 		return (B_FALSE);
11305 	}
11306 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11307 	    NULL, NULL)) {
11308 		nd_free(&tcp_g_nd);
11309 		return (B_FALSE);
11310 	}
11311 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11312 	    NULL, NULL)) {
11313 		nd_free(&tcp_g_nd);
11314 		return (B_FALSE);
11315 	}
11316 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11317 	    NULL, NULL)) {
11318 		nd_free(&tcp_g_nd);
11319 		return (B_FALSE);
11320 	}
11321 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11322 	    tcp_host_param_set, NULL)) {
11323 		nd_free(&tcp_g_nd);
11324 		return (B_FALSE);
11325 	}
11326 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11327 	    tcp_host_param_set_ipv6, NULL)) {
11328 		nd_free(&tcp_g_nd);
11329 		return (B_FALSE);
11330 	}
11331 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11332 	    NULL)) {
11333 		nd_free(&tcp_g_nd);
11334 		return (B_FALSE);
11335 	}
11336 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11337 	    tcp_reserved_port_list, NULL, NULL)) {
11338 		nd_free(&tcp_g_nd);
11339 		return (B_FALSE);
11340 	}
11341 	/*
11342 	 * Dummy ndd variables - only to convey obsolescence information
11343 	 * through printing of their name (no get or set routines)
11344 	 * XXX Remove in future releases ?
11345 	 */
11346 	if (!nd_load(&tcp_g_nd,
11347 	    "tcp_close_wait_interval(obsoleted - "
11348 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11349 		nd_free(&tcp_g_nd);
11350 		return (B_FALSE);
11351 	}
11352 	return (B_TRUE);
11353 }
11354 
11355 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11356 /* ARGSUSED */
11357 static int
11358 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11359     cred_t *cr)
11360 {
11361 	long new_value;
11362 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11363 
11364 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11365 	    new_value < tcppa->tcp_param_min ||
11366 	    new_value > tcppa->tcp_param_max) {
11367 		return (EINVAL);
11368 	}
11369 	/*
11370 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11371 	 * round it up.  For future 64 bit requirement, we actually make it
11372 	 * a multiple of 8.
11373 	 */
11374 	if (new_value & 0x7) {
11375 		new_value = (new_value & ~0x7) + 0x8;
11376 	}
11377 	tcppa->tcp_param_val = new_value;
11378 	return (0);
11379 }
11380 
11381 /* Set callback routine passed to nd_load by tcp_param_register */
11382 /* ARGSUSED */
11383 static int
11384 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11385 {
11386 	long	new_value;
11387 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11388 
11389 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11390 	    new_value < tcppa->tcp_param_min ||
11391 	    new_value > tcppa->tcp_param_max) {
11392 		return (EINVAL);
11393 	}
11394 	tcppa->tcp_param_val = new_value;
11395 	return (0);
11396 }
11397 
11398 /*
11399  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11400  * is filled, return as much as we can.  The message passed in may be
11401  * multi-part, chained using b_cont.  "start" is the starting sequence
11402  * number for this piece.
11403  */
11404 static mblk_t *
11405 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11406 {
11407 	uint32_t	end;
11408 	mblk_t		*mp1;
11409 	mblk_t		*mp2;
11410 	mblk_t		*next_mp;
11411 	uint32_t	u1;
11412 
11413 	/* Walk through all the new pieces. */
11414 	do {
11415 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11416 		    (uintptr_t)INT_MAX);
11417 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11418 		next_mp = mp->b_cont;
11419 		if (start == end) {
11420 			/* Empty.  Blast it. */
11421 			freeb(mp);
11422 			continue;
11423 		}
11424 		mp->b_cont = NULL;
11425 		TCP_REASS_SET_SEQ(mp, start);
11426 		TCP_REASS_SET_END(mp, end);
11427 		mp1 = tcp->tcp_reass_tail;
11428 		if (!mp1) {
11429 			tcp->tcp_reass_tail = mp;
11430 			tcp->tcp_reass_head = mp;
11431 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11432 			UPDATE_MIB(&tcp_mib,
11433 			    tcpInDataUnorderBytes, end - start);
11434 			continue;
11435 		}
11436 		/* New stuff completely beyond tail? */
11437 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11438 			/* Link it on end. */
11439 			mp1->b_cont = mp;
11440 			tcp->tcp_reass_tail = mp;
11441 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11442 			UPDATE_MIB(&tcp_mib,
11443 			    tcpInDataUnorderBytes, end - start);
11444 			continue;
11445 		}
11446 		mp1 = tcp->tcp_reass_head;
11447 		u1 = TCP_REASS_SEQ(mp1);
11448 		/* New stuff at the front? */
11449 		if (SEQ_LT(start, u1)) {
11450 			/* Yes... Check for overlap. */
11451 			mp->b_cont = mp1;
11452 			tcp->tcp_reass_head = mp;
11453 			tcp_reass_elim_overlap(tcp, mp);
11454 			continue;
11455 		}
11456 		/*
11457 		 * The new piece fits somewhere between the head and tail.
11458 		 * We find our slot, where mp1 precedes us and mp2 trails.
11459 		 */
11460 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11461 			u1 = TCP_REASS_SEQ(mp2);
11462 			if (SEQ_LEQ(start, u1))
11463 				break;
11464 		}
11465 		/* Link ourselves in */
11466 		mp->b_cont = mp2;
11467 		mp1->b_cont = mp;
11468 
11469 		/* Trim overlap with following mblk(s) first */
11470 		tcp_reass_elim_overlap(tcp, mp);
11471 
11472 		/* Trim overlap with preceding mblk */
11473 		tcp_reass_elim_overlap(tcp, mp1);
11474 
11475 	} while (start = end, mp = next_mp);
11476 	mp1 = tcp->tcp_reass_head;
11477 	/* Anything ready to go? */
11478 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11479 		return (NULL);
11480 	/* Eat what we can off the queue */
11481 	for (;;) {
11482 		mp = mp1->b_cont;
11483 		end = TCP_REASS_END(mp1);
11484 		TCP_REASS_SET_SEQ(mp1, 0);
11485 		TCP_REASS_SET_END(mp1, 0);
11486 		if (!mp) {
11487 			tcp->tcp_reass_tail = NULL;
11488 			break;
11489 		}
11490 		if (end != TCP_REASS_SEQ(mp)) {
11491 			mp1->b_cont = NULL;
11492 			break;
11493 		}
11494 		mp1 = mp;
11495 	}
11496 	mp1 = tcp->tcp_reass_head;
11497 	tcp->tcp_reass_head = mp;
11498 	return (mp1);
11499 }
11500 
11501 /* Eliminate any overlap that mp may have over later mblks */
11502 static void
11503 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11504 {
11505 	uint32_t	end;
11506 	mblk_t		*mp1;
11507 	uint32_t	u1;
11508 
11509 	end = TCP_REASS_END(mp);
11510 	while ((mp1 = mp->b_cont) != NULL) {
11511 		u1 = TCP_REASS_SEQ(mp1);
11512 		if (!SEQ_GT(end, u1))
11513 			break;
11514 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11515 			mp->b_wptr -= end - u1;
11516 			TCP_REASS_SET_END(mp, u1);
11517 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11518 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11519 			break;
11520 		}
11521 		mp->b_cont = mp1->b_cont;
11522 		TCP_REASS_SET_SEQ(mp1, 0);
11523 		TCP_REASS_SET_END(mp1, 0);
11524 		freeb(mp1);
11525 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11526 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11527 	}
11528 	if (!mp1)
11529 		tcp->tcp_reass_tail = mp;
11530 }
11531 
11532 /*
11533  * Send up all messages queued on tcp_rcv_list.
11534  */
11535 static uint_t
11536 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11537 {
11538 	mblk_t *mp;
11539 	uint_t ret = 0;
11540 	uint_t thwin;
11541 #ifdef DEBUG
11542 	uint_t cnt = 0;
11543 #endif
11544 	/* Can't drain on an eager connection */
11545 	if (tcp->tcp_listener != NULL)
11546 		return (ret);
11547 
11548 	/*
11549 	 * Handle two cases here: we are currently fused or we were
11550 	 * previously fused and have some urgent data to be delivered
11551 	 * upstream.  The latter happens because we either ran out of
11552 	 * memory or were detached and therefore sending the SIGURG was
11553 	 * deferred until this point.  In either case we pass control
11554 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11555 	 * some work.
11556 	 */
11557 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11558 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11559 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11560 		    &tcp->tcp_fused_sigurg_mp))
11561 			return (ret);
11562 	}
11563 
11564 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11565 		tcp->tcp_rcv_list = mp->b_next;
11566 		mp->b_next = NULL;
11567 #ifdef DEBUG
11568 		cnt += msgdsize(mp);
11569 #endif
11570 		/* Does this need SSL processing first? */
11571 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11572 			tcp_kssl_input(tcp, mp);
11573 			continue;
11574 		}
11575 		putnext(q, mp);
11576 	}
11577 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11578 	tcp->tcp_rcv_last_head = NULL;
11579 	tcp->tcp_rcv_last_tail = NULL;
11580 	tcp->tcp_rcv_cnt = 0;
11581 
11582 	/* Learn the latest rwnd information that we sent to the other side. */
11583 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11584 	    << tcp->tcp_rcv_ws;
11585 	/* This is peer's calculated send window (our receive window). */
11586 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11587 	/*
11588 	 * Increase the receive window to max.  But we need to do receiver
11589 	 * SWS avoidance.  This means that we need to check the increase of
11590 	 * of receive window is at least 1 MSS.
11591 	 */
11592 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11593 		/*
11594 		 * If the window that the other side knows is less than max
11595 		 * deferred acks segments, send an update immediately.
11596 		 */
11597 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11598 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11599 			ret = TH_ACK_NEEDED;
11600 		}
11601 		tcp->tcp_rwnd = q->q_hiwat;
11602 	}
11603 	/* No need for the push timer now. */
11604 	if (tcp->tcp_push_tid != 0) {
11605 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11606 		tcp->tcp_push_tid = 0;
11607 	}
11608 	return (ret);
11609 }
11610 
11611 /*
11612  * Queue data on tcp_rcv_list which is a b_next chain.
11613  * tcp_rcv_last_head/tail is the last element of this chain.
11614  * Each element of the chain is a b_cont chain.
11615  *
11616  * M_DATA messages are added to the current element.
11617  * Other messages are added as new (b_next) elements.
11618  */
11619 void
11620 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11621 {
11622 	ASSERT(seg_len == msgdsize(mp));
11623 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11624 
11625 	if (tcp->tcp_rcv_list == NULL) {
11626 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11627 		tcp->tcp_rcv_list = mp;
11628 		tcp->tcp_rcv_last_head = mp;
11629 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11630 		tcp->tcp_rcv_last_tail->b_cont = mp;
11631 	} else {
11632 		tcp->tcp_rcv_last_head->b_next = mp;
11633 		tcp->tcp_rcv_last_head = mp;
11634 	}
11635 
11636 	while (mp->b_cont)
11637 		mp = mp->b_cont;
11638 
11639 	tcp->tcp_rcv_last_tail = mp;
11640 	tcp->tcp_rcv_cnt += seg_len;
11641 	tcp->tcp_rwnd -= seg_len;
11642 }
11643 
11644 /*
11645  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11646  *
11647  * This is the default entry function into TCP on the read side. TCP is
11648  * always entered via squeue i.e. using squeue's for mutual exclusion.
11649  * When classifier does a lookup to find the tcp, it also puts a reference
11650  * on the conn structure associated so the tcp is guaranteed to exist
11651  * when we come here. We still need to check the state because it might
11652  * as well has been closed. The squeue processing function i.e. squeue_enter,
11653  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11654  * CONN_DEC_REF.
11655  *
11656  * Apart from the default entry point, IP also sends packets directly to
11657  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11658  * connections.
11659  */
11660 void
11661 tcp_input(void *arg, mblk_t *mp, void *arg2)
11662 {
11663 	conn_t	*connp = (conn_t *)arg;
11664 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11665 
11666 	/* arg2 is the sqp */
11667 	ASSERT(arg2 != NULL);
11668 	ASSERT(mp != NULL);
11669 
11670 	/*
11671 	 * Don't accept any input on a closed tcp as this TCP logically does
11672 	 * not exist on the system. Don't proceed further with this TCP.
11673 	 * For eg. this packet could trigger another close of this tcp
11674 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11675 	 * tcp_clean_death / tcp_closei_local must be called at most once
11676 	 * on a TCP. In this case we need to refeed the packet into the
11677 	 * classifier and figure out where the packet should go. Need to
11678 	 * preserve the recv_ill somehow. Until we figure that out, for
11679 	 * now just drop the packet if we can't classify the packet.
11680 	 */
11681 	if (tcp->tcp_state == TCPS_CLOSED ||
11682 	    tcp->tcp_state == TCPS_BOUND) {
11683 		conn_t	*new_connp;
11684 
11685 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11686 		if (new_connp != NULL) {
11687 			tcp_reinput(new_connp, mp, arg2);
11688 			return;
11689 		}
11690 		/* We failed to classify. For now just drop the packet */
11691 		freemsg(mp);
11692 		return;
11693 	}
11694 
11695 	if (DB_TYPE(mp) == M_DATA)
11696 		tcp_rput_data(connp, mp, arg2);
11697 	else
11698 		tcp_rput_common(tcp, mp);
11699 }
11700 
11701 /*
11702  * The read side put procedure.
11703  * The packets passed up by ip are assume to be aligned according to
11704  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11705  */
11706 static void
11707 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11708 {
11709 	/*
11710 	 * tcp_rput_data() does not expect M_CTL except for the case
11711 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11712 	 * type. Need to make sure that any other M_CTLs don't make
11713 	 * it to tcp_rput_data since it is not expecting any and doesn't
11714 	 * check for it.
11715 	 */
11716 	if (DB_TYPE(mp) == M_CTL) {
11717 		switch (*(uint32_t *)(mp->b_rptr)) {
11718 		case TCP_IOC_ABORT_CONN:
11719 			/*
11720 			 * Handle connection abort request.
11721 			 */
11722 			tcp_ioctl_abort_handler(tcp, mp);
11723 			return;
11724 		case IPSEC_IN:
11725 			/*
11726 			 * Only secure icmp arrive in TCP and they
11727 			 * don't go through data path.
11728 			 */
11729 			tcp_icmp_error(tcp, mp);
11730 			return;
11731 		case IN_PKTINFO:
11732 			/*
11733 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11734 			 * sockets that are receiving IPv4 traffic. tcp
11735 			 */
11736 			ASSERT(tcp->tcp_family == AF_INET6);
11737 			ASSERT(tcp->tcp_ipv6_recvancillary &
11738 			    TCP_IPV6_RECVPKTINFO);
11739 			tcp_rput_data(tcp->tcp_connp, mp,
11740 			    tcp->tcp_connp->conn_sqp);
11741 			return;
11742 		case MDT_IOC_INFO_UPDATE:
11743 			/*
11744 			 * Handle Multidata information update; the
11745 			 * following routine will free the message.
11746 			 */
11747 			if (tcp->tcp_connp->conn_mdt_ok) {
11748 				tcp_mdt_update(tcp,
11749 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11750 				    B_FALSE);
11751 			}
11752 			freemsg(mp);
11753 			return;
11754 		case LSO_IOC_INFO_UPDATE:
11755 			/*
11756 			 * Handle LSO information update; the following
11757 			 * routine will free the message.
11758 			 */
11759 			if (tcp->tcp_connp->conn_lso_ok) {
11760 				tcp_lso_update(tcp,
11761 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11762 			}
11763 			freemsg(mp);
11764 			return;
11765 		default:
11766 			/*
11767 			 * tcp_icmp_err() will process the M_CTL packets.
11768 			 * Non-ICMP packets, if any, will be discarded in
11769 			 * tcp_icmp_err(). We will process the ICMP packet
11770 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11771 			 * incoming ICMP packet may result in changing
11772 			 * the tcp_mss, which we would need if we have
11773 			 * packets to retransmit.
11774 			 */
11775 			tcp_icmp_error(tcp, mp);
11776 			return;
11777 		}
11778 	}
11779 
11780 	/* No point processing the message if tcp is already closed */
11781 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11782 		freemsg(mp);
11783 		return;
11784 	}
11785 
11786 	tcp_rput_other(tcp, mp);
11787 }
11788 
11789 
11790 /* The minimum of smoothed mean deviation in RTO calculation. */
11791 #define	TCP_SD_MIN	400
11792 
11793 /*
11794  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11795  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11796  * are the same as those in Appendix A.2 of that paper.
11797  *
11798  * m = new measurement
11799  * sa = smoothed RTT average (8 * average estimates).
11800  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11801  */
11802 static void
11803 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11804 {
11805 	long m = TICK_TO_MSEC(rtt);
11806 	clock_t sa = tcp->tcp_rtt_sa;
11807 	clock_t sv = tcp->tcp_rtt_sd;
11808 	clock_t rto;
11809 
11810 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11811 	tcp->tcp_rtt_update++;
11812 
11813 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11814 	if (sa != 0) {
11815 		/*
11816 		 * Update average estimator:
11817 		 *	new rtt = 7/8 old rtt + 1/8 Error
11818 		 */
11819 
11820 		/* m is now Error in estimate. */
11821 		m -= sa >> 3;
11822 		if ((sa += m) <= 0) {
11823 			/*
11824 			 * Don't allow the smoothed average to be negative.
11825 			 * We use 0 to denote reinitialization of the
11826 			 * variables.
11827 			 */
11828 			sa = 1;
11829 		}
11830 
11831 		/*
11832 		 * Update deviation estimator:
11833 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11834 		 */
11835 		if (m < 0)
11836 			m = -m;
11837 		m -= sv >> 2;
11838 		sv += m;
11839 	} else {
11840 		/*
11841 		 * This follows BSD's implementation.  So the reinitialized
11842 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11843 		 * link is bandwidth dominated, doubling the window size
11844 		 * during slow start means doubling the RTT.  We want to be
11845 		 * more conservative when we reinitialize our estimates.  3
11846 		 * is just a convenient number.
11847 		 */
11848 		sa = m << 3;
11849 		sv = m << 1;
11850 	}
11851 	if (sv < TCP_SD_MIN) {
11852 		/*
11853 		 * We do not know that if sa captures the delay ACK
11854 		 * effect as in a long train of segments, a receiver
11855 		 * does not delay its ACKs.  So set the minimum of sv
11856 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11857 		 * of BSD DATO.  That means the minimum of mean
11858 		 * deviation is 100 ms.
11859 		 *
11860 		 */
11861 		sv = TCP_SD_MIN;
11862 	}
11863 	tcp->tcp_rtt_sa = sa;
11864 	tcp->tcp_rtt_sd = sv;
11865 	/*
11866 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11867 	 *
11868 	 * Add tcp_rexmit_interval extra in case of extreme environment
11869 	 * where the algorithm fails to work.  The default value of
11870 	 * tcp_rexmit_interval_extra should be 0.
11871 	 *
11872 	 * As we use a finer grained clock than BSD and update
11873 	 * RTO for every ACKs, add in another .25 of RTT to the
11874 	 * deviation of RTO to accomodate burstiness of 1/4 of
11875 	 * window size.
11876 	 */
11877 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11878 
11879 	if (rto > tcp_rexmit_interval_max) {
11880 		tcp->tcp_rto = tcp_rexmit_interval_max;
11881 	} else if (rto < tcp_rexmit_interval_min) {
11882 		tcp->tcp_rto = tcp_rexmit_interval_min;
11883 	} else {
11884 		tcp->tcp_rto = rto;
11885 	}
11886 
11887 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11888 	tcp->tcp_timer_backoff = 0;
11889 }
11890 
11891 /*
11892  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11893  * send queue which starts at the given seq. no.
11894  *
11895  * Parameters:
11896  *	tcp_t *tcp: the tcp instance pointer.
11897  *	uint32_t seq: the starting seq. no of the requested segment.
11898  *	int32_t *off: after the execution, *off will be the offset to
11899  *		the returned mblk which points to the requested seq no.
11900  *		It is the caller's responsibility to send in a non-null off.
11901  *
11902  * Return:
11903  *	A mblk_t pointer pointing to the requested segment in send queue.
11904  */
11905 static mblk_t *
11906 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11907 {
11908 	int32_t	cnt;
11909 	mblk_t	*mp;
11910 
11911 	/* Defensive coding.  Make sure we don't send incorrect data. */
11912 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11913 		return (NULL);
11914 
11915 	cnt = seq - tcp->tcp_suna;
11916 	mp = tcp->tcp_xmit_head;
11917 	while (cnt > 0 && mp != NULL) {
11918 		cnt -= mp->b_wptr - mp->b_rptr;
11919 		if (cnt < 0) {
11920 			cnt += mp->b_wptr - mp->b_rptr;
11921 			break;
11922 		}
11923 		mp = mp->b_cont;
11924 	}
11925 	ASSERT(mp != NULL);
11926 	*off = cnt;
11927 	return (mp);
11928 }
11929 
11930 /*
11931  * This function handles all retransmissions if SACK is enabled for this
11932  * connection.  First it calculates how many segments can be retransmitted
11933  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11934  * segments.  A segment is eligible if sack_cnt for that segment is greater
11935  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11936  * all eligible segments, it checks to see if TCP can send some new segments
11937  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11938  *
11939  * Parameters:
11940  *	tcp_t *tcp: the tcp structure of the connection.
11941  *	uint_t *flags: in return, appropriate value will be set for
11942  *	tcp_rput_data().
11943  */
11944 static void
11945 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11946 {
11947 	notsack_blk_t	*notsack_blk;
11948 	int32_t		usable_swnd;
11949 	int32_t		mss;
11950 	uint32_t	seg_len;
11951 	mblk_t		*xmit_mp;
11952 
11953 	ASSERT(tcp->tcp_sack_info != NULL);
11954 	ASSERT(tcp->tcp_notsack_list != NULL);
11955 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11956 
11957 	/* Defensive coding in case there is a bug... */
11958 	if (tcp->tcp_notsack_list == NULL) {
11959 		return;
11960 	}
11961 	notsack_blk = tcp->tcp_notsack_list;
11962 	mss = tcp->tcp_mss;
11963 
11964 	/*
11965 	 * Limit the num of outstanding data in the network to be
11966 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11967 	 */
11968 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11969 
11970 	/* At least retransmit 1 MSS of data. */
11971 	if (usable_swnd <= 0) {
11972 		usable_swnd = mss;
11973 	}
11974 
11975 	/* Make sure no new RTT samples will be taken. */
11976 	tcp->tcp_csuna = tcp->tcp_snxt;
11977 
11978 	notsack_blk = tcp->tcp_notsack_list;
11979 	while (usable_swnd > 0) {
11980 		mblk_t		*snxt_mp, *tmp_mp;
11981 		tcp_seq		begin = tcp->tcp_sack_snxt;
11982 		tcp_seq		end;
11983 		int32_t		off;
11984 
11985 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11986 			if (SEQ_GT(notsack_blk->end, begin) &&
11987 			    (notsack_blk->sack_cnt >=
11988 			    tcp_dupack_fast_retransmit)) {
11989 				end = notsack_blk->end;
11990 				if (SEQ_LT(begin, notsack_blk->begin)) {
11991 					begin = notsack_blk->begin;
11992 				}
11993 				break;
11994 			}
11995 		}
11996 		/*
11997 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11998 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11999 		 * set to tcp_cwnd_ssthresh.
12000 		 */
12001 		if (notsack_blk == NULL) {
12002 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12003 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12004 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12005 				ASSERT(tcp->tcp_cwnd > 0);
12006 				return;
12007 			} else {
12008 				usable_swnd = usable_swnd / mss;
12009 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12010 				    MAX(usable_swnd * mss, mss);
12011 				*flags |= TH_XMIT_NEEDED;
12012 				return;
12013 			}
12014 		}
12015 
12016 		/*
12017 		 * Note that we may send more than usable_swnd allows here
12018 		 * because of round off, but no more than 1 MSS of data.
12019 		 */
12020 		seg_len = end - begin;
12021 		if (seg_len > mss)
12022 			seg_len = mss;
12023 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12024 		ASSERT(snxt_mp != NULL);
12025 		/* This should not happen.  Defensive coding again... */
12026 		if (snxt_mp == NULL) {
12027 			return;
12028 		}
12029 
12030 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12031 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12032 		if (xmit_mp == NULL)
12033 			return;
12034 
12035 		usable_swnd -= seg_len;
12036 		tcp->tcp_pipe += seg_len;
12037 		tcp->tcp_sack_snxt = begin + seg_len;
12038 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12039 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12040 
12041 		/*
12042 		 * Update the send timestamp to avoid false retransmission.
12043 		 */
12044 		snxt_mp->b_prev = (mblk_t *)lbolt;
12045 
12046 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
12047 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
12048 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
12049 		/*
12050 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12051 		 * This happens when new data sent during fast recovery is
12052 		 * also lost.  If TCP retransmits those new data, it needs
12053 		 * to extend SACK recover phase to avoid starting another
12054 		 * fast retransmit/recovery unnecessarily.
12055 		 */
12056 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12057 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12058 		}
12059 	}
12060 }
12061 
12062 /*
12063  * This function handles policy checking at TCP level for non-hard_bound/
12064  * detached connections.
12065  */
12066 static boolean_t
12067 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12068     boolean_t secure, boolean_t mctl_present)
12069 {
12070 	ipsec_latch_t *ipl = NULL;
12071 	ipsec_action_t *act = NULL;
12072 	mblk_t *data_mp;
12073 	ipsec_in_t *ii;
12074 	const char *reason;
12075 	kstat_named_t *counter;
12076 
12077 	ASSERT(mctl_present || !secure);
12078 
12079 	ASSERT((ipha == NULL && ip6h != NULL) ||
12080 	    (ip6h == NULL && ipha != NULL));
12081 
12082 	/*
12083 	 * We don't necessarily have an ipsec_in_act action to verify
12084 	 * policy because of assymetrical policy where we have only
12085 	 * outbound policy and no inbound policy (possible with global
12086 	 * policy).
12087 	 */
12088 	if (!secure) {
12089 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12090 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12091 			return (B_TRUE);
12092 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12093 		    "tcp_check_policy", ipha, ip6h, secure);
12094 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12095 		    &ipdrops_tcp_clear, &tcp_dropper);
12096 		return (B_FALSE);
12097 	}
12098 
12099 	/*
12100 	 * We have a secure packet.
12101 	 */
12102 	if (act == NULL) {
12103 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12104 		    "tcp_check_policy", ipha, ip6h, secure);
12105 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12106 		    &ipdrops_tcp_secure, &tcp_dropper);
12107 		return (B_FALSE);
12108 	}
12109 
12110 	/*
12111 	 * XXX This whole routine is currently incorrect.  ipl should
12112 	 * be set to the latch pointer, but is currently not set, so
12113 	 * we initialize it to NULL to avoid picking up random garbage.
12114 	 */
12115 	if (ipl == NULL)
12116 		return (B_TRUE);
12117 
12118 	data_mp = first_mp->b_cont;
12119 
12120 	ii = (ipsec_in_t *)first_mp->b_rptr;
12121 
12122 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12123 	    &counter, tcp->tcp_connp)) {
12124 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
12125 		return (B_TRUE);
12126 	}
12127 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12128 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12129 	    reason);
12130 	BUMP_MIB(&ip_mib, ipsecInFailed);
12131 
12132 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
12133 	return (B_FALSE);
12134 }
12135 
12136 /*
12137  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12138  * retransmission after a timeout.
12139  *
12140  * To limit the number of duplicate segments, we limit the number of segment
12141  * to be sent in one time to tcp_snd_burst, the burst variable.
12142  */
12143 static void
12144 tcp_ss_rexmit(tcp_t *tcp)
12145 {
12146 	uint32_t	snxt;
12147 	uint32_t	smax;
12148 	int32_t		win;
12149 	int32_t		mss;
12150 	int32_t		off;
12151 	int32_t		burst = tcp->tcp_snd_burst;
12152 	mblk_t		*snxt_mp;
12153 
12154 	/*
12155 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12156 	 * all unack'ed segments.
12157 	 */
12158 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12159 		smax = tcp->tcp_rexmit_max;
12160 		snxt = tcp->tcp_rexmit_nxt;
12161 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12162 			snxt = tcp->tcp_suna;
12163 		}
12164 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12165 		win -= snxt - tcp->tcp_suna;
12166 		mss = tcp->tcp_mss;
12167 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12168 
12169 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12170 		    (burst > 0) && (snxt_mp != NULL)) {
12171 			mblk_t	*xmit_mp;
12172 			mblk_t	*old_snxt_mp = snxt_mp;
12173 			uint32_t cnt = mss;
12174 
12175 			if (win < cnt) {
12176 				cnt = win;
12177 			}
12178 			if (SEQ_GT(snxt + cnt, smax)) {
12179 				cnt = smax - snxt;
12180 			}
12181 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12182 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12183 			if (xmit_mp == NULL)
12184 				return;
12185 
12186 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12187 
12188 			snxt += cnt;
12189 			win -= cnt;
12190 			/*
12191 			 * Update the send timestamp to avoid false
12192 			 * retransmission.
12193 			 */
12194 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12195 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
12196 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
12197 
12198 			tcp->tcp_rexmit_nxt = snxt;
12199 			burst--;
12200 		}
12201 		/*
12202 		 * If we have transmitted all we have at the time
12203 		 * we started the retranmission, we can leave
12204 		 * the rest of the job to tcp_wput_data().  But we
12205 		 * need to check the send window first.  If the
12206 		 * win is not 0, go on with tcp_wput_data().
12207 		 */
12208 		if (SEQ_LT(snxt, smax) || win == 0) {
12209 			return;
12210 		}
12211 	}
12212 	/* Only call tcp_wput_data() if there is data to be sent. */
12213 	if (tcp->tcp_unsent) {
12214 		tcp_wput_data(tcp, NULL, B_FALSE);
12215 	}
12216 }
12217 
12218 /*
12219  * Process all TCP option in SYN segment.  Note that this function should
12220  * be called after tcp_adapt_ire() is called so that the necessary info
12221  * from IRE is already set in the tcp structure.
12222  *
12223  * This function sets up the correct tcp_mss value according to the
12224  * MSS option value and our header size.  It also sets up the window scale
12225  * and timestamp values, and initialize SACK info blocks.  But it does not
12226  * change receive window size after setting the tcp_mss value.  The caller
12227  * should do the appropriate change.
12228  */
12229 void
12230 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12231 {
12232 	int options;
12233 	tcp_opt_t tcpopt;
12234 	uint32_t mss_max;
12235 	char *tmp_tcph;
12236 
12237 	tcpopt.tcp = NULL;
12238 	options = tcp_parse_options(tcph, &tcpopt);
12239 
12240 	/*
12241 	 * Process MSS option.  Note that MSS option value does not account
12242 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12243 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12244 	 * IPv6.
12245 	 */
12246 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12247 		if (tcp->tcp_ipversion == IPV4_VERSION)
12248 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
12249 		else
12250 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12251 	} else {
12252 		if (tcp->tcp_ipversion == IPV4_VERSION)
12253 			mss_max = tcp_mss_max_ipv4;
12254 		else
12255 			mss_max = tcp_mss_max_ipv6;
12256 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12257 			tcpopt.tcp_opt_mss = tcp_mss_min;
12258 		else if (tcpopt.tcp_opt_mss > mss_max)
12259 			tcpopt.tcp_opt_mss = mss_max;
12260 	}
12261 
12262 	/* Process Window Scale option. */
12263 	if (options & TCP_OPT_WSCALE_PRESENT) {
12264 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12265 		tcp->tcp_snd_ws_ok = B_TRUE;
12266 	} else {
12267 		tcp->tcp_snd_ws = B_FALSE;
12268 		tcp->tcp_snd_ws_ok = B_FALSE;
12269 		tcp->tcp_rcv_ws = B_FALSE;
12270 	}
12271 
12272 	/* Process Timestamp option. */
12273 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12274 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12275 		tmp_tcph = (char *)tcp->tcp_tcph;
12276 
12277 		tcp->tcp_snd_ts_ok = B_TRUE;
12278 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12279 		tcp->tcp_last_rcv_lbolt = lbolt64;
12280 		ASSERT(OK_32PTR(tmp_tcph));
12281 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12282 
12283 		/* Fill in our template header with basic timestamp option. */
12284 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12285 		tmp_tcph[0] = TCPOPT_NOP;
12286 		tmp_tcph[1] = TCPOPT_NOP;
12287 		tmp_tcph[2] = TCPOPT_TSTAMP;
12288 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12289 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12290 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12291 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12292 	} else {
12293 		tcp->tcp_snd_ts_ok = B_FALSE;
12294 	}
12295 
12296 	/*
12297 	 * Process SACK options.  If SACK is enabled for this connection,
12298 	 * then allocate the SACK info structure.  Note the following ways
12299 	 * when tcp_snd_sack_ok is set to true.
12300 	 *
12301 	 * For active connection: in tcp_adapt_ire() called in
12302 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12303 	 * is checked.
12304 	 *
12305 	 * For passive connection: in tcp_adapt_ire() called in
12306 	 * tcp_accept_comm().
12307 	 *
12308 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12309 	 * That check makes sure that if we did not send a SACK OK option,
12310 	 * we will not enable SACK for this connection even though the other
12311 	 * side sends us SACK OK option.  For active connection, the SACK
12312 	 * info structure has already been allocated.  So we need to free
12313 	 * it if SACK is disabled.
12314 	 */
12315 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12316 	    (tcp->tcp_snd_sack_ok ||
12317 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12318 		/* This should be true only in the passive case. */
12319 		if (tcp->tcp_sack_info == NULL) {
12320 			ASSERT(TCP_IS_DETACHED(tcp));
12321 			tcp->tcp_sack_info =
12322 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12323 		}
12324 		if (tcp->tcp_sack_info == NULL) {
12325 			tcp->tcp_snd_sack_ok = B_FALSE;
12326 		} else {
12327 			tcp->tcp_snd_sack_ok = B_TRUE;
12328 			if (tcp->tcp_snd_ts_ok) {
12329 				tcp->tcp_max_sack_blk = 3;
12330 			} else {
12331 				tcp->tcp_max_sack_blk = 4;
12332 			}
12333 		}
12334 	} else {
12335 		/*
12336 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12337 		 * no SACK info will be used for this
12338 		 * connection.  This assumes that SACK usage
12339 		 * permission is negotiated.  This may need
12340 		 * to be changed once this is clarified.
12341 		 */
12342 		if (tcp->tcp_sack_info != NULL) {
12343 			ASSERT(tcp->tcp_notsack_list == NULL);
12344 			kmem_cache_free(tcp_sack_info_cache,
12345 			    tcp->tcp_sack_info);
12346 			tcp->tcp_sack_info = NULL;
12347 		}
12348 		tcp->tcp_snd_sack_ok = B_FALSE;
12349 	}
12350 
12351 	/*
12352 	 * Now we know the exact TCP/IP header length, subtract
12353 	 * that from tcp_mss to get our side's MSS.
12354 	 */
12355 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12356 	/*
12357 	 * Here we assume that the other side's header size will be equal to
12358 	 * our header size.  We calculate the real MSS accordingly.  Need to
12359 	 * take into additional stuffs IPsec puts in.
12360 	 *
12361 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12362 	 */
12363 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12364 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12365 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12366 
12367 	/*
12368 	 * Set MSS to the smaller one of both ends of the connection.
12369 	 * We should not have called tcp_mss_set() before, but our
12370 	 * side of the MSS should have been set to a proper value
12371 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12372 	 * STREAM head parameters properly.
12373 	 *
12374 	 * If we have a larger-than-16-bit window but the other side
12375 	 * didn't want to do window scale, tcp_rwnd_set() will take
12376 	 * care of that.
12377 	 */
12378 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12379 }
12380 
12381 /*
12382  * Sends the T_CONN_IND to the listener. The caller calls this
12383  * functions via squeue to get inside the listener's perimeter
12384  * once the 3 way hand shake is done a T_CONN_IND needs to be
12385  * sent. As an optimization, the caller can call this directly
12386  * if listener's perimeter is same as eager's.
12387  */
12388 /* ARGSUSED */
12389 void
12390 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12391 {
12392 	conn_t			*lconnp = (conn_t *)arg;
12393 	tcp_t			*listener = lconnp->conn_tcp;
12394 	tcp_t			*tcp;
12395 	struct T_conn_ind	*conn_ind;
12396 	ipaddr_t 		*addr_cache;
12397 	boolean_t		need_send_conn_ind = B_FALSE;
12398 
12399 	/* retrieve the eager */
12400 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12401 	ASSERT(conn_ind->OPT_offset != 0 &&
12402 	    conn_ind->OPT_length == sizeof (intptr_t));
12403 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12404 		conn_ind->OPT_length);
12405 
12406 	/*
12407 	 * TLI/XTI applications will get confused by
12408 	 * sending eager as an option since it violates
12409 	 * the option semantics. So remove the eager as
12410 	 * option since TLI/XTI app doesn't need it anyway.
12411 	 */
12412 	if (!TCP_IS_SOCKET(listener)) {
12413 		conn_ind->OPT_length = 0;
12414 		conn_ind->OPT_offset = 0;
12415 	}
12416 	if (listener->tcp_state == TCPS_CLOSED ||
12417 	    TCP_IS_DETACHED(listener)) {
12418 		/*
12419 		 * If listener has closed, it would have caused a
12420 		 * a cleanup/blowoff to happen for the eager. We
12421 		 * just need to return.
12422 		 */
12423 		freemsg(mp);
12424 		return;
12425 	}
12426 
12427 
12428 	/*
12429 	 * if the conn_req_q is full defer passing up the
12430 	 * T_CONN_IND until space is availabe after t_accept()
12431 	 * processing
12432 	 */
12433 	mutex_enter(&listener->tcp_eager_lock);
12434 
12435 	/*
12436 	 * Take the eager out, if it is in the list of droppable eagers
12437 	 * as we are here because the 3W handshake is over.
12438 	 */
12439 	MAKE_UNDROPPABLE(tcp);
12440 
12441 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12442 		tcp_t *tail;
12443 
12444 		/*
12445 		 * The eager already has an extra ref put in tcp_rput_data
12446 		 * so that it stays till accept comes back even though it
12447 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12448 		 */
12449 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12450 		listener->tcp_conn_req_cnt_q0--;
12451 		listener->tcp_conn_req_cnt_q++;
12452 
12453 		/* Move from SYN_RCVD to ESTABLISHED list  */
12454 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12455 		    tcp->tcp_eager_prev_q0;
12456 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12457 		    tcp->tcp_eager_next_q0;
12458 		tcp->tcp_eager_prev_q0 = NULL;
12459 		tcp->tcp_eager_next_q0 = NULL;
12460 
12461 		/*
12462 		 * Insert at end of the queue because sockfs
12463 		 * sends down T_CONN_RES in chronological
12464 		 * order. Leaving the older conn indications
12465 		 * at front of the queue helps reducing search
12466 		 * time.
12467 		 */
12468 		tail = listener->tcp_eager_last_q;
12469 		if (tail != NULL)
12470 			tail->tcp_eager_next_q = tcp;
12471 		else
12472 			listener->tcp_eager_next_q = tcp;
12473 		listener->tcp_eager_last_q = tcp;
12474 		tcp->tcp_eager_next_q = NULL;
12475 		/*
12476 		 * Delay sending up the T_conn_ind until we are
12477 		 * done with the eager. Once we have have sent up
12478 		 * the T_conn_ind, the accept can potentially complete
12479 		 * any time and release the refhold we have on the eager.
12480 		 */
12481 		need_send_conn_ind = B_TRUE;
12482 	} else {
12483 		/*
12484 		 * Defer connection on q0 and set deferred
12485 		 * connection bit true
12486 		 */
12487 		tcp->tcp_conn_def_q0 = B_TRUE;
12488 
12489 		/* take tcp out of q0 ... */
12490 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12491 		    tcp->tcp_eager_next_q0;
12492 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12493 		    tcp->tcp_eager_prev_q0;
12494 
12495 		/* ... and place it at the end of q0 */
12496 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12497 		tcp->tcp_eager_next_q0 = listener;
12498 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12499 		listener->tcp_eager_prev_q0 = tcp;
12500 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12501 	}
12502 
12503 	/* we have timed out before */
12504 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12505 		tcp->tcp_syn_rcvd_timeout = 0;
12506 		listener->tcp_syn_rcvd_timeout--;
12507 		if (listener->tcp_syn_defense &&
12508 		    listener->tcp_syn_rcvd_timeout <=
12509 		    (tcp_conn_req_max_q0 >> 5) &&
12510 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12511 			listener->tcp_last_rcv_lbolt)) {
12512 			/*
12513 			 * Turn off the defense mode if we
12514 			 * believe the SYN attack is over.
12515 			 */
12516 			listener->tcp_syn_defense = B_FALSE;
12517 			if (listener->tcp_ip_addr_cache) {
12518 				kmem_free((void *)listener->tcp_ip_addr_cache,
12519 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12520 				listener->tcp_ip_addr_cache = NULL;
12521 			}
12522 		}
12523 	}
12524 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12525 	if (addr_cache != NULL) {
12526 		/*
12527 		 * We have finished a 3-way handshake with this
12528 		 * remote host. This proves the IP addr is good.
12529 		 * Cache it!
12530 		 */
12531 		addr_cache[IP_ADDR_CACHE_HASH(
12532 			tcp->tcp_remote)] = tcp->tcp_remote;
12533 	}
12534 	mutex_exit(&listener->tcp_eager_lock);
12535 	if (need_send_conn_ind)
12536 		putnext(listener->tcp_rq, mp);
12537 }
12538 
12539 mblk_t *
12540 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12541     uint_t *ifindexp, ip6_pkt_t *ippp)
12542 {
12543 	in_pktinfo_t	*pinfo;
12544 	ip6_t		*ip6h;
12545 	uchar_t		*rptr;
12546 	mblk_t		*first_mp = mp;
12547 	boolean_t	mctl_present = B_FALSE;
12548 	uint_t 		ifindex = 0;
12549 	ip6_pkt_t	ipp;
12550 	uint_t		ipvers;
12551 	uint_t		ip_hdr_len;
12552 
12553 	rptr = mp->b_rptr;
12554 	ASSERT(OK_32PTR(rptr));
12555 	ASSERT(tcp != NULL);
12556 	ipp.ipp_fields = 0;
12557 
12558 	switch DB_TYPE(mp) {
12559 	case M_CTL:
12560 		mp = mp->b_cont;
12561 		if (mp == NULL) {
12562 			freemsg(first_mp);
12563 			return (NULL);
12564 		}
12565 		if (DB_TYPE(mp) != M_DATA) {
12566 			freemsg(first_mp);
12567 			return (NULL);
12568 		}
12569 		mctl_present = B_TRUE;
12570 		break;
12571 	case M_DATA:
12572 		break;
12573 	default:
12574 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12575 		freemsg(mp);
12576 		return (NULL);
12577 	}
12578 	ipvers = IPH_HDR_VERSION(rptr);
12579 	if (ipvers == IPV4_VERSION) {
12580 		if (tcp == NULL) {
12581 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12582 			goto done;
12583 		}
12584 
12585 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12586 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12587 
12588 		/*
12589 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12590 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12591 		 */
12592 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12593 		    mctl_present) {
12594 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12595 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12596 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12597 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12598 				ipp.ipp_fields |= IPPF_IFINDEX;
12599 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12600 				ifindex = pinfo->in_pkt_ifindex;
12601 			}
12602 			freeb(first_mp);
12603 			mctl_present = B_FALSE;
12604 		}
12605 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12606 	} else {
12607 		ip6h = (ip6_t *)rptr;
12608 
12609 		ASSERT(ipvers == IPV6_VERSION);
12610 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12611 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12612 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12613 
12614 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12615 			uint8_t	nexthdrp;
12616 
12617 			/* Look for ifindex information */
12618 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12619 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12620 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12621 					BUMP_MIB(&ip_mib, tcpInErrs);
12622 					freemsg(first_mp);
12623 					return (NULL);
12624 				}
12625 
12626 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12627 					ASSERT(ip6i->ip6i_ifindex != 0);
12628 					ipp.ipp_fields |= IPPF_IFINDEX;
12629 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12630 					ifindex = ip6i->ip6i_ifindex;
12631 				}
12632 				rptr = (uchar_t *)&ip6i[1];
12633 				mp->b_rptr = rptr;
12634 				if (rptr == mp->b_wptr) {
12635 					mblk_t *mp1;
12636 					mp1 = mp->b_cont;
12637 					freeb(mp);
12638 					mp = mp1;
12639 					rptr = mp->b_rptr;
12640 				}
12641 				if (MBLKL(mp) < IPV6_HDR_LEN +
12642 				    sizeof (tcph_t)) {
12643 					BUMP_MIB(&ip_mib, tcpInErrs);
12644 					freemsg(first_mp);
12645 					return (NULL);
12646 				}
12647 				ip6h = (ip6_t *)rptr;
12648 			}
12649 
12650 			/*
12651 			 * Find any potentially interesting extension headers
12652 			 * as well as the length of the IPv6 + extension
12653 			 * headers.
12654 			 */
12655 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12656 			/* Verify if this is a TCP packet */
12657 			if (nexthdrp != IPPROTO_TCP) {
12658 				BUMP_MIB(&ip_mib, tcpInErrs);
12659 				freemsg(first_mp);
12660 				return (NULL);
12661 			}
12662 		} else {
12663 			ip_hdr_len = IPV6_HDR_LEN;
12664 		}
12665 	}
12666 
12667 done:
12668 	if (ipversp != NULL)
12669 		*ipversp = ipvers;
12670 	if (ip_hdr_lenp != NULL)
12671 		*ip_hdr_lenp = ip_hdr_len;
12672 	if (ippp != NULL)
12673 		*ippp = ipp;
12674 	if (ifindexp != NULL)
12675 		*ifindexp = ifindex;
12676 	if (mctl_present) {
12677 		freeb(first_mp);
12678 	}
12679 	return (mp);
12680 }
12681 
12682 /*
12683  * Handle M_DATA messages from IP. Its called directly from IP via
12684  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12685  * in this path.
12686  *
12687  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12688  * v4 and v6), we are called through tcp_input() and a M_CTL can
12689  * be present for options but tcp_find_pktinfo() deals with it. We
12690  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12691  *
12692  * The first argument is always the connp/tcp to which the mp belongs.
12693  * There are no exceptions to this rule. The caller has already put
12694  * a reference on this connp/tcp and once tcp_rput_data() returns,
12695  * the squeue will do the refrele.
12696  *
12697  * The TH_SYN for the listener directly go to tcp_conn_request via
12698  * squeue.
12699  *
12700  * sqp: NULL = recursive, sqp != NULL means called from squeue
12701  */
12702 void
12703 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12704 {
12705 	int32_t		bytes_acked;
12706 	int32_t		gap;
12707 	mblk_t		*mp1;
12708 	uint_t		flags;
12709 	uint32_t	new_swnd = 0;
12710 	uchar_t		*iphdr;
12711 	uchar_t		*rptr;
12712 	int32_t		rgap;
12713 	uint32_t	seg_ack;
12714 	int		seg_len;
12715 	uint_t		ip_hdr_len;
12716 	uint32_t	seg_seq;
12717 	tcph_t		*tcph;
12718 	int		urp;
12719 	tcp_opt_t	tcpopt;
12720 	uint_t		ipvers;
12721 	ip6_pkt_t	ipp;
12722 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12723 	uint32_t	cwnd;
12724 	uint32_t	add;
12725 	int		npkt;
12726 	int		mss;
12727 	conn_t		*connp = (conn_t *)arg;
12728 	squeue_t	*sqp = (squeue_t *)arg2;
12729 	tcp_t		*tcp = connp->conn_tcp;
12730 
12731 	/*
12732 	 * RST from fused tcp loopback peer should trigger an unfuse.
12733 	 */
12734 	if (tcp->tcp_fused) {
12735 		TCP_STAT(tcp_fusion_aborted);
12736 		tcp_unfuse(tcp);
12737 	}
12738 
12739 	iphdr = mp->b_rptr;
12740 	rptr = mp->b_rptr;
12741 	ASSERT(OK_32PTR(rptr));
12742 
12743 	/*
12744 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12745 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12746 	 * necessary information.
12747 	 */
12748 	if (IPCL_IS_TCP4(connp)) {
12749 		ipvers = IPV4_VERSION;
12750 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12751 	} else {
12752 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12753 		    NULL, &ipp);
12754 		if (mp == NULL) {
12755 			TCP_STAT(tcp_rput_v6_error);
12756 			return;
12757 		}
12758 		iphdr = mp->b_rptr;
12759 		rptr = mp->b_rptr;
12760 	}
12761 	ASSERT(DB_TYPE(mp) == M_DATA);
12762 
12763 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12764 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12765 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12766 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12767 	seg_len = (int)(mp->b_wptr - rptr) -
12768 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12769 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12770 		do {
12771 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12772 			    (uintptr_t)INT_MAX);
12773 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12774 		} while ((mp1 = mp1->b_cont) != NULL &&
12775 		    mp1->b_datap->db_type == M_DATA);
12776 	}
12777 
12778 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12779 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12780 		    seg_len, tcph);
12781 		return;
12782 	}
12783 
12784 	if (sqp != NULL) {
12785 		/*
12786 		 * This is the correct place to update tcp_last_recv_time. Note
12787 		 * that it is also updated for tcp structure that belongs to
12788 		 * global and listener queues which do not really need updating.
12789 		 * But that should not cause any harm.  And it is updated for
12790 		 * all kinds of incoming segments, not only for data segments.
12791 		 */
12792 		tcp->tcp_last_recv_time = lbolt;
12793 	}
12794 
12795 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12796 
12797 	BUMP_LOCAL(tcp->tcp_ibsegs);
12798 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12799 
12800 	if ((flags & TH_URG) && sqp != NULL) {
12801 		/*
12802 		 * TCP can't handle urgent pointers that arrive before
12803 		 * the connection has been accept()ed since it can't
12804 		 * buffer OOB data.  Discard segment if this happens.
12805 		 *
12806 		 * Nor can it reassemble urgent pointers, so discard
12807 		 * if it's not the next segment expected.
12808 		 *
12809 		 * Otherwise, collapse chain into one mblk (discard if
12810 		 * that fails).  This makes sure the headers, retransmitted
12811 		 * data, and new data all are in the same mblk.
12812 		 */
12813 		ASSERT(mp != NULL);
12814 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12815 			freemsg(mp);
12816 			return;
12817 		}
12818 		/* Update pointers into message */
12819 		iphdr = rptr = mp->b_rptr;
12820 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12821 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12822 			/*
12823 			 * Since we can't handle any data with this urgent
12824 			 * pointer that is out of sequence, we expunge
12825 			 * the data.  This allows us to still register
12826 			 * the urgent mark and generate the M_PCSIG,
12827 			 * which we can do.
12828 			 */
12829 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12830 			seg_len = 0;
12831 		}
12832 	}
12833 
12834 	switch (tcp->tcp_state) {
12835 	case TCPS_SYN_SENT:
12836 		if (flags & TH_ACK) {
12837 			/*
12838 			 * Note that our stack cannot send data before a
12839 			 * connection is established, therefore the
12840 			 * following check is valid.  Otherwise, it has
12841 			 * to be changed.
12842 			 */
12843 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12844 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12845 				freemsg(mp);
12846 				if (flags & TH_RST)
12847 					return;
12848 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12849 				    tcp, seg_ack, 0, TH_RST);
12850 				return;
12851 			}
12852 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12853 		}
12854 		if (flags & TH_RST) {
12855 			freemsg(mp);
12856 			if (flags & TH_ACK)
12857 				(void) tcp_clean_death(tcp,
12858 				    ECONNREFUSED, 13);
12859 			return;
12860 		}
12861 		if (!(flags & TH_SYN)) {
12862 			freemsg(mp);
12863 			return;
12864 		}
12865 
12866 		/* Process all TCP options. */
12867 		tcp_process_options(tcp, tcph);
12868 		/*
12869 		 * The following changes our rwnd to be a multiple of the
12870 		 * MIN(peer MSS, our MSS) for performance reason.
12871 		 */
12872 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12873 		    tcp->tcp_mss));
12874 
12875 		/* Is the other end ECN capable? */
12876 		if (tcp->tcp_ecn_ok) {
12877 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12878 				tcp->tcp_ecn_ok = B_FALSE;
12879 			}
12880 		}
12881 		/*
12882 		 * Clear ECN flags because it may interfere with later
12883 		 * processing.
12884 		 */
12885 		flags &= ~(TH_ECE|TH_CWR);
12886 
12887 		tcp->tcp_irs = seg_seq;
12888 		tcp->tcp_rack = seg_seq;
12889 		tcp->tcp_rnxt = seg_seq + 1;
12890 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12891 		if (!TCP_IS_DETACHED(tcp)) {
12892 			/* Allocate room for SACK options if needed. */
12893 			if (tcp->tcp_snd_sack_ok) {
12894 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12895 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12896 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12897 			} else {
12898 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12899 				    tcp->tcp_hdr_len +
12900 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12901 			}
12902 		}
12903 		if (flags & TH_ACK) {
12904 			/*
12905 			 * If we can't get the confirmation upstream, pretend
12906 			 * we didn't even see this one.
12907 			 *
12908 			 * XXX: how can we pretend we didn't see it if we
12909 			 * have updated rnxt et. al.
12910 			 *
12911 			 * For loopback we defer sending up the T_CONN_CON
12912 			 * until after some checks below.
12913 			 */
12914 			mp1 = NULL;
12915 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12916 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12917 				freemsg(mp);
12918 				return;
12919 			}
12920 			/* SYN was acked - making progress */
12921 			if (tcp->tcp_ipversion == IPV6_VERSION)
12922 				tcp->tcp_ip_forward_progress = B_TRUE;
12923 
12924 			/* One for the SYN */
12925 			tcp->tcp_suna = tcp->tcp_iss + 1;
12926 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12927 			tcp->tcp_state = TCPS_ESTABLISHED;
12928 
12929 			/*
12930 			 * If SYN was retransmitted, need to reset all
12931 			 * retransmission info.  This is because this
12932 			 * segment will be treated as a dup ACK.
12933 			 */
12934 			if (tcp->tcp_rexmit) {
12935 				tcp->tcp_rexmit = B_FALSE;
12936 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12937 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12938 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12939 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12940 				tcp->tcp_ms_we_have_waited = 0;
12941 
12942 				/*
12943 				 * Set tcp_cwnd back to 1 MSS, per
12944 				 * recommendation from
12945 				 * draft-floyd-incr-init-win-01.txt,
12946 				 * Increasing TCP's Initial Window.
12947 				 */
12948 				tcp->tcp_cwnd = tcp->tcp_mss;
12949 			}
12950 
12951 			tcp->tcp_swl1 = seg_seq;
12952 			tcp->tcp_swl2 = seg_ack;
12953 
12954 			new_swnd = BE16_TO_U16(tcph->th_win);
12955 			tcp->tcp_swnd = new_swnd;
12956 			if (new_swnd > tcp->tcp_max_swnd)
12957 				tcp->tcp_max_swnd = new_swnd;
12958 
12959 			/*
12960 			 * Always send the three-way handshake ack immediately
12961 			 * in order to make the connection complete as soon as
12962 			 * possible on the accepting host.
12963 			 */
12964 			flags |= TH_ACK_NEEDED;
12965 
12966 			/*
12967 			 * Special case for loopback.  At this point we have
12968 			 * received SYN-ACK from the remote endpoint.  In
12969 			 * order to ensure that both endpoints reach the
12970 			 * fused state prior to any data exchange, the final
12971 			 * ACK needs to be sent before we indicate T_CONN_CON
12972 			 * to the module upstream.
12973 			 */
12974 			if (tcp->tcp_loopback) {
12975 				mblk_t *ack_mp;
12976 
12977 				ASSERT(!tcp->tcp_unfusable);
12978 				ASSERT(mp1 != NULL);
12979 				/*
12980 				 * For loopback, we always get a pure SYN-ACK
12981 				 * and only need to send back the final ACK
12982 				 * with no data (this is because the other
12983 				 * tcp is ours and we don't do T/TCP).  This
12984 				 * final ACK triggers the passive side to
12985 				 * perform fusion in ESTABLISHED state.
12986 				 */
12987 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12988 					if (tcp->tcp_ack_tid != 0) {
12989 						(void) TCP_TIMER_CANCEL(tcp,
12990 						    tcp->tcp_ack_tid);
12991 						tcp->tcp_ack_tid = 0;
12992 					}
12993 					TCP_RECORD_TRACE(tcp, ack_mp,
12994 					    TCP_TRACE_SEND_PKT);
12995 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12996 					BUMP_LOCAL(tcp->tcp_obsegs);
12997 					BUMP_MIB(&tcp_mib, tcpOutAck);
12998 
12999 					/* Send up T_CONN_CON */
13000 					putnext(tcp->tcp_rq, mp1);
13001 
13002 					freemsg(mp);
13003 					return;
13004 				}
13005 				/*
13006 				 * Forget fusion; we need to handle more
13007 				 * complex cases below.  Send the deferred
13008 				 * T_CONN_CON message upstream and proceed
13009 				 * as usual.  Mark this tcp as not capable
13010 				 * of fusion.
13011 				 */
13012 				TCP_STAT(tcp_fusion_unfusable);
13013 				tcp->tcp_unfusable = B_TRUE;
13014 				putnext(tcp->tcp_rq, mp1);
13015 			}
13016 
13017 			/*
13018 			 * Check to see if there is data to be sent.  If
13019 			 * yes, set the transmit flag.  Then check to see
13020 			 * if received data processing needs to be done.
13021 			 * If not, go straight to xmit_check.  This short
13022 			 * cut is OK as we don't support T/TCP.
13023 			 */
13024 			if (tcp->tcp_unsent)
13025 				flags |= TH_XMIT_NEEDED;
13026 
13027 			if (seg_len == 0 && !(flags & TH_URG)) {
13028 				freemsg(mp);
13029 				goto xmit_check;
13030 			}
13031 
13032 			flags &= ~TH_SYN;
13033 			seg_seq++;
13034 			break;
13035 		}
13036 		tcp->tcp_state = TCPS_SYN_RCVD;
13037 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13038 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13039 		if (mp1) {
13040 			DB_CPID(mp1) = tcp->tcp_cpid;
13041 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13042 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13043 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13044 		}
13045 		freemsg(mp);
13046 		return;
13047 	case TCPS_SYN_RCVD:
13048 		if (flags & TH_ACK) {
13049 			/*
13050 			 * In this state, a SYN|ACK packet is either bogus
13051 			 * because the other side must be ACKing our SYN which
13052 			 * indicates it has seen the ACK for their SYN and
13053 			 * shouldn't retransmit it or we're crossing SYNs
13054 			 * on active open.
13055 			 */
13056 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13057 				freemsg(mp);
13058 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13059 				    tcp, seg_ack, 0, TH_RST);
13060 				return;
13061 			}
13062 			/*
13063 			 * NOTE: RFC 793 pg. 72 says this should be
13064 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13065 			 * but that would mean we have an ack that ignored
13066 			 * our SYN.
13067 			 */
13068 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13069 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13070 				freemsg(mp);
13071 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13072 				    tcp, seg_ack, 0, TH_RST);
13073 				return;
13074 			}
13075 		}
13076 		break;
13077 	case TCPS_LISTEN:
13078 		/*
13079 		 * Only a TLI listener can come through this path when a
13080 		 * acceptor is going back to be a listener and a packet
13081 		 * for the acceptor hits the classifier. For a socket
13082 		 * listener, this can never happen because a listener
13083 		 * can never accept connection on itself and hence a
13084 		 * socket acceptor can not go back to being a listener.
13085 		 */
13086 		ASSERT(!TCP_IS_SOCKET(tcp));
13087 		/*FALLTHRU*/
13088 	case TCPS_CLOSED:
13089 	case TCPS_BOUND: {
13090 		conn_t	*new_connp;
13091 
13092 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
13093 		if (new_connp != NULL) {
13094 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13095 			return;
13096 		}
13097 		/* We failed to classify. For now just drop the packet */
13098 		freemsg(mp);
13099 		return;
13100 	}
13101 	case TCPS_IDLE:
13102 		/*
13103 		 * Handle the case where the tcp_clean_death() has happened
13104 		 * on a connection (application hasn't closed yet) but a packet
13105 		 * was already queued on squeue before tcp_clean_death()
13106 		 * was processed. Calling tcp_clean_death() twice on same
13107 		 * connection can result in weird behaviour.
13108 		 */
13109 		freemsg(mp);
13110 		return;
13111 	default:
13112 		break;
13113 	}
13114 
13115 	/*
13116 	 * Already on the correct queue/perimeter.
13117 	 * If this is a detached connection and not an eager
13118 	 * connection hanging off a listener then new data
13119 	 * (past the FIN) will cause a reset.
13120 	 * We do a special check here where it
13121 	 * is out of the main line, rather than check
13122 	 * if we are detached every time we see new
13123 	 * data down below.
13124 	 */
13125 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13126 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13127 		BUMP_MIB(&tcp_mib, tcpInClosed);
13128 		TCP_RECORD_TRACE(tcp,
13129 		    mp, TCP_TRACE_RECV_PKT);
13130 
13131 		freemsg(mp);
13132 		/*
13133 		 * This could be an SSL closure alert. We're detached so just
13134 		 * acknowledge it this last time.
13135 		 */
13136 		if (tcp->tcp_kssl_ctx != NULL) {
13137 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13138 			tcp->tcp_kssl_ctx = NULL;
13139 
13140 			tcp->tcp_rnxt += seg_len;
13141 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13142 			flags |= TH_ACK_NEEDED;
13143 			goto ack_check;
13144 		}
13145 
13146 		tcp_xmit_ctl("new data when detached", tcp,
13147 		    tcp->tcp_snxt, 0, TH_RST);
13148 		(void) tcp_clean_death(tcp, EPROTO, 12);
13149 		return;
13150 	}
13151 
13152 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13153 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13154 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13155 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13156 	mss = tcp->tcp_mss;
13157 
13158 	if (tcp->tcp_snd_ts_ok) {
13159 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13160 			/*
13161 			 * This segment is not acceptable.
13162 			 * Drop it and send back an ACK.
13163 			 */
13164 			freemsg(mp);
13165 			flags |= TH_ACK_NEEDED;
13166 			goto ack_check;
13167 		}
13168 	} else if (tcp->tcp_snd_sack_ok) {
13169 		ASSERT(tcp->tcp_sack_info != NULL);
13170 		tcpopt.tcp = tcp;
13171 		/*
13172 		 * SACK info in already updated in tcp_parse_options.  Ignore
13173 		 * all other TCP options...
13174 		 */
13175 		(void) tcp_parse_options(tcph, &tcpopt);
13176 	}
13177 try_again:;
13178 	gap = seg_seq - tcp->tcp_rnxt;
13179 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13180 	/*
13181 	 * gap is the amount of sequence space between what we expect to see
13182 	 * and what we got for seg_seq.  A positive value for gap means
13183 	 * something got lost.  A negative value means we got some old stuff.
13184 	 */
13185 	if (gap < 0) {
13186 		/* Old stuff present.  Is the SYN in there? */
13187 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13188 		    (seg_len != 0)) {
13189 			flags &= ~TH_SYN;
13190 			seg_seq++;
13191 			urp--;
13192 			/* Recompute the gaps after noting the SYN. */
13193 			goto try_again;
13194 		}
13195 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
13196 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
13197 		    (seg_len > -gap ? -gap : seg_len));
13198 		/* Remove the old stuff from seg_len. */
13199 		seg_len += gap;
13200 		/*
13201 		 * Anything left?
13202 		 * Make sure to check for unack'd FIN when rest of data
13203 		 * has been previously ack'd.
13204 		 */
13205 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13206 			/*
13207 			 * Resets are only valid if they lie within our offered
13208 			 * window.  If the RST bit is set, we just ignore this
13209 			 * segment.
13210 			 */
13211 			if (flags & TH_RST) {
13212 				freemsg(mp);
13213 				return;
13214 			}
13215 
13216 			/*
13217 			 * The arriving of dup data packets indicate that we
13218 			 * may have postponed an ack for too long, or the other
13219 			 * side's RTT estimate is out of shape. Start acking
13220 			 * more often.
13221 			 */
13222 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13223 			    tcp->tcp_rack_cnt >= 1 &&
13224 			    tcp->tcp_rack_abs_max > 2) {
13225 				tcp->tcp_rack_abs_max--;
13226 			}
13227 			tcp->tcp_rack_cur_max = 1;
13228 
13229 			/*
13230 			 * This segment is "unacceptable".  None of its
13231 			 * sequence space lies within our advertized window.
13232 			 *
13233 			 * Adjust seg_len to the original value for tracing.
13234 			 */
13235 			seg_len -= gap;
13236 			if (tcp->tcp_debug) {
13237 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13238 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13239 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13240 				    "seg_len %d, rnxt %u, snxt %u, %s",
13241 				    gap, rgap, flags, seg_seq, seg_ack,
13242 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13243 				    tcp_display(tcp, NULL,
13244 				    DISP_ADDR_AND_PORT));
13245 			}
13246 
13247 			/*
13248 			 * Arrange to send an ACK in response to the
13249 			 * unacceptable segment per RFC 793 page 69. There
13250 			 * is only one small difference between ours and the
13251 			 * acceptability test in the RFC - we accept ACK-only
13252 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13253 			 * will be generated.
13254 			 *
13255 			 * Note that we have to ACK an ACK-only packet at least
13256 			 * for stacks that send 0-length keep-alives with
13257 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13258 			 * section 4.2.3.6. As long as we don't ever generate
13259 			 * an unacceptable packet in response to an incoming
13260 			 * packet that is unacceptable, it should not cause
13261 			 * "ACK wars".
13262 			 */
13263 			flags |=  TH_ACK_NEEDED;
13264 
13265 			/*
13266 			 * Continue processing this segment in order to use the
13267 			 * ACK information it contains, but skip all other
13268 			 * sequence-number processing.	Processing the ACK
13269 			 * information is necessary in order to
13270 			 * re-synchronize connections that may have lost
13271 			 * synchronization.
13272 			 *
13273 			 * We clear seg_len and flag fields related to
13274 			 * sequence number processing as they are not
13275 			 * to be trusted for an unacceptable segment.
13276 			 */
13277 			seg_len = 0;
13278 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13279 			goto process_ack;
13280 		}
13281 
13282 		/* Fix seg_seq, and chew the gap off the front. */
13283 		seg_seq = tcp->tcp_rnxt;
13284 		urp += gap;
13285 		do {
13286 			mblk_t	*mp2;
13287 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13288 			    (uintptr_t)UINT_MAX);
13289 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13290 			if (gap > 0) {
13291 				mp->b_rptr = mp->b_wptr - gap;
13292 				break;
13293 			}
13294 			mp2 = mp;
13295 			mp = mp->b_cont;
13296 			freeb(mp2);
13297 		} while (gap < 0);
13298 		/*
13299 		 * If the urgent data has already been acknowledged, we
13300 		 * should ignore TH_URG below
13301 		 */
13302 		if (urp < 0)
13303 			flags &= ~TH_URG;
13304 	}
13305 	/*
13306 	 * rgap is the amount of stuff received out of window.  A negative
13307 	 * value is the amount out of window.
13308 	 */
13309 	if (rgap < 0) {
13310 		mblk_t	*mp2;
13311 
13312 		if (tcp->tcp_rwnd == 0) {
13313 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13314 		} else {
13315 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13316 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13317 		}
13318 
13319 		/*
13320 		 * seg_len does not include the FIN, so if more than
13321 		 * just the FIN is out of window, we act like we don't
13322 		 * see it.  (If just the FIN is out of window, rgap
13323 		 * will be zero and we will go ahead and acknowledge
13324 		 * the FIN.)
13325 		 */
13326 		flags &= ~TH_FIN;
13327 
13328 		/* Fix seg_len and make sure there is something left. */
13329 		seg_len += rgap;
13330 		if (seg_len <= 0) {
13331 			/*
13332 			 * Resets are only valid if they lie within our offered
13333 			 * window.  If the RST bit is set, we just ignore this
13334 			 * segment.
13335 			 */
13336 			if (flags & TH_RST) {
13337 				freemsg(mp);
13338 				return;
13339 			}
13340 
13341 			/* Per RFC 793, we need to send back an ACK. */
13342 			flags |= TH_ACK_NEEDED;
13343 
13344 			/*
13345 			 * Send SIGURG as soon as possible i.e. even
13346 			 * if the TH_URG was delivered in a window probe
13347 			 * packet (which will be unacceptable).
13348 			 *
13349 			 * We generate a signal if none has been generated
13350 			 * for this connection or if this is a new urgent
13351 			 * byte. Also send a zero-length "unmarked" message
13352 			 * to inform SIOCATMARK that this is not the mark.
13353 			 *
13354 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13355 			 * is sent up. This plus the check for old data
13356 			 * (gap >= 0) handles the wraparound of the sequence
13357 			 * number space without having to always track the
13358 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13359 			 * this max in its rcv_up variable).
13360 			 *
13361 			 * This prevents duplicate SIGURGS due to a "late"
13362 			 * zero-window probe when the T_EXDATA_IND has already
13363 			 * been sent up.
13364 			 */
13365 			if ((flags & TH_URG) &&
13366 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13367 			    tcp->tcp_urp_last))) {
13368 				mp1 = allocb(0, BPRI_MED);
13369 				if (mp1 == NULL) {
13370 					freemsg(mp);
13371 					return;
13372 				}
13373 				if (!TCP_IS_DETACHED(tcp) &&
13374 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13375 				    SIGURG)) {
13376 					/* Try again on the rexmit. */
13377 					freemsg(mp1);
13378 					freemsg(mp);
13379 					return;
13380 				}
13381 				/*
13382 				 * If the next byte would be the mark
13383 				 * then mark with MARKNEXT else mark
13384 				 * with NOTMARKNEXT.
13385 				 */
13386 				if (gap == 0 && urp == 0)
13387 					mp1->b_flag |= MSGMARKNEXT;
13388 				else
13389 					mp1->b_flag |= MSGNOTMARKNEXT;
13390 				freemsg(tcp->tcp_urp_mark_mp);
13391 				tcp->tcp_urp_mark_mp = mp1;
13392 				flags |= TH_SEND_URP_MARK;
13393 				tcp->tcp_urp_last_valid = B_TRUE;
13394 				tcp->tcp_urp_last = urp + seg_seq;
13395 			}
13396 			/*
13397 			 * If this is a zero window probe, continue to
13398 			 * process the ACK part.  But we need to set seg_len
13399 			 * to 0 to avoid data processing.  Otherwise just
13400 			 * drop the segment and send back an ACK.
13401 			 */
13402 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13403 				flags &= ~(TH_SYN | TH_URG);
13404 				seg_len = 0;
13405 				goto process_ack;
13406 			} else {
13407 				freemsg(mp);
13408 				goto ack_check;
13409 			}
13410 		}
13411 		/* Pitch out of window stuff off the end. */
13412 		rgap = seg_len;
13413 		mp2 = mp;
13414 		do {
13415 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13416 			    (uintptr_t)INT_MAX);
13417 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13418 			if (rgap < 0) {
13419 				mp2->b_wptr += rgap;
13420 				if ((mp1 = mp2->b_cont) != NULL) {
13421 					mp2->b_cont = NULL;
13422 					freemsg(mp1);
13423 				}
13424 				break;
13425 			}
13426 		} while ((mp2 = mp2->b_cont) != NULL);
13427 	}
13428 ok:;
13429 	/*
13430 	 * TCP should check ECN info for segments inside the window only.
13431 	 * Therefore the check should be done here.
13432 	 */
13433 	if (tcp->tcp_ecn_ok) {
13434 		if (flags & TH_CWR) {
13435 			tcp->tcp_ecn_echo_on = B_FALSE;
13436 		}
13437 		/*
13438 		 * Note that both ECN_CE and CWR can be set in the
13439 		 * same segment.  In this case, we once again turn
13440 		 * on ECN_ECHO.
13441 		 */
13442 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13443 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13444 
13445 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13446 				tcp->tcp_ecn_echo_on = B_TRUE;
13447 			}
13448 		} else {
13449 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13450 
13451 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13452 			    htonl(IPH_ECN_CE << 20)) {
13453 				tcp->tcp_ecn_echo_on = B_TRUE;
13454 			}
13455 		}
13456 	}
13457 
13458 	/*
13459 	 * Check whether we can update tcp_ts_recent.  This test is
13460 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13461 	 * Extensions for High Performance: An Update", Internet Draft.
13462 	 */
13463 	if (tcp->tcp_snd_ts_ok &&
13464 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13465 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13466 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13467 		tcp->tcp_last_rcv_lbolt = lbolt64;
13468 	}
13469 
13470 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13471 		/*
13472 		 * FIN in an out of order segment.  We record this in
13473 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13474 		 * Clear the FIN so that any check on FIN flag will fail.
13475 		 * Remember that FIN also counts in the sequence number
13476 		 * space.  So we need to ack out of order FIN only segments.
13477 		 */
13478 		if (flags & TH_FIN) {
13479 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13480 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13481 			flags &= ~TH_FIN;
13482 			flags |= TH_ACK_NEEDED;
13483 		}
13484 		if (seg_len > 0) {
13485 			/* Fill in the SACK blk list. */
13486 			if (tcp->tcp_snd_sack_ok) {
13487 				ASSERT(tcp->tcp_sack_info != NULL);
13488 				tcp_sack_insert(tcp->tcp_sack_list,
13489 				    seg_seq, seg_seq + seg_len,
13490 				    &(tcp->tcp_num_sack_blk));
13491 			}
13492 
13493 			/*
13494 			 * Attempt reassembly and see if we have something
13495 			 * ready to go.
13496 			 */
13497 			mp = tcp_reass(tcp, mp, seg_seq);
13498 			/* Always ack out of order packets */
13499 			flags |= TH_ACK_NEEDED | TH_PUSH;
13500 			if (mp) {
13501 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13502 				    (uintptr_t)INT_MAX);
13503 				seg_len = mp->b_cont ? msgdsize(mp) :
13504 					(int)(mp->b_wptr - mp->b_rptr);
13505 				seg_seq = tcp->tcp_rnxt;
13506 				/*
13507 				 * A gap is filled and the seq num and len
13508 				 * of the gap match that of a previously
13509 				 * received FIN, put the FIN flag back in.
13510 				 */
13511 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13512 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13513 					flags |= TH_FIN;
13514 					tcp->tcp_valid_bits &=
13515 					    ~TCP_OFO_FIN_VALID;
13516 				}
13517 			} else {
13518 				/*
13519 				 * Keep going even with NULL mp.
13520 				 * There may be a useful ACK or something else
13521 				 * we don't want to miss.
13522 				 *
13523 				 * But TCP should not perform fast retransmit
13524 				 * because of the ack number.  TCP uses
13525 				 * seg_len == 0 to determine if it is a pure
13526 				 * ACK.  And this is not a pure ACK.
13527 				 */
13528 				seg_len = 0;
13529 				ofo_seg = B_TRUE;
13530 			}
13531 		}
13532 	} else if (seg_len > 0) {
13533 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13534 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13535 		/*
13536 		 * If an out of order FIN was received before, and the seq
13537 		 * num and len of the new segment match that of the FIN,
13538 		 * put the FIN flag back in.
13539 		 */
13540 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13541 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13542 			flags |= TH_FIN;
13543 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13544 		}
13545 	}
13546 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13547 	if (flags & TH_RST) {
13548 		freemsg(mp);
13549 		switch (tcp->tcp_state) {
13550 		case TCPS_SYN_RCVD:
13551 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13552 			break;
13553 		case TCPS_ESTABLISHED:
13554 		case TCPS_FIN_WAIT_1:
13555 		case TCPS_FIN_WAIT_2:
13556 		case TCPS_CLOSE_WAIT:
13557 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13558 			break;
13559 		case TCPS_CLOSING:
13560 		case TCPS_LAST_ACK:
13561 			(void) tcp_clean_death(tcp, 0, 16);
13562 			break;
13563 		default:
13564 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13565 			(void) tcp_clean_death(tcp, ENXIO, 17);
13566 			break;
13567 		}
13568 		return;
13569 	}
13570 	if (flags & TH_SYN) {
13571 		/*
13572 		 * See RFC 793, Page 71
13573 		 *
13574 		 * The seq number must be in the window as it should
13575 		 * be "fixed" above.  If it is outside window, it should
13576 		 * be already rejected.  Note that we allow seg_seq to be
13577 		 * rnxt + rwnd because we want to accept 0 window probe.
13578 		 */
13579 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13580 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13581 		freemsg(mp);
13582 		/*
13583 		 * If the ACK flag is not set, just use our snxt as the
13584 		 * seq number of the RST segment.
13585 		 */
13586 		if (!(flags & TH_ACK)) {
13587 			seg_ack = tcp->tcp_snxt;
13588 		}
13589 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13590 		    TH_RST|TH_ACK);
13591 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13592 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13593 		return;
13594 	}
13595 	/*
13596 	 * urp could be -1 when the urp field in the packet is 0
13597 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13598 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13599 	 */
13600 	if (flags & TH_URG && urp >= 0) {
13601 		if (!tcp->tcp_urp_last_valid ||
13602 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13603 			/*
13604 			 * If we haven't generated the signal yet for this
13605 			 * urgent pointer value, do it now.  Also, send up a
13606 			 * zero-length M_DATA indicating whether or not this is
13607 			 * the mark. The latter is not needed when a
13608 			 * T_EXDATA_IND is sent up. However, if there are
13609 			 * allocation failures this code relies on the sender
13610 			 * retransmitting and the socket code for determining
13611 			 * the mark should not block waiting for the peer to
13612 			 * transmit. Thus, for simplicity we always send up the
13613 			 * mark indication.
13614 			 */
13615 			mp1 = allocb(0, BPRI_MED);
13616 			if (mp1 == NULL) {
13617 				freemsg(mp);
13618 				return;
13619 			}
13620 			if (!TCP_IS_DETACHED(tcp) &&
13621 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13622 				/* Try again on the rexmit. */
13623 				freemsg(mp1);
13624 				freemsg(mp);
13625 				return;
13626 			}
13627 			/*
13628 			 * Mark with NOTMARKNEXT for now.
13629 			 * The code below will change this to MARKNEXT
13630 			 * if we are at the mark.
13631 			 *
13632 			 * If there are allocation failures (e.g. in dupmsg
13633 			 * below) the next time tcp_rput_data sees the urgent
13634 			 * segment it will send up the MSG*MARKNEXT message.
13635 			 */
13636 			mp1->b_flag |= MSGNOTMARKNEXT;
13637 			freemsg(tcp->tcp_urp_mark_mp);
13638 			tcp->tcp_urp_mark_mp = mp1;
13639 			flags |= TH_SEND_URP_MARK;
13640 #ifdef DEBUG
13641 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13642 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13643 			    "last %x, %s",
13644 			    seg_seq, urp, tcp->tcp_urp_last,
13645 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13646 #endif /* DEBUG */
13647 			tcp->tcp_urp_last_valid = B_TRUE;
13648 			tcp->tcp_urp_last = urp + seg_seq;
13649 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13650 			/*
13651 			 * An allocation failure prevented the previous
13652 			 * tcp_rput_data from sending up the allocated
13653 			 * MSG*MARKNEXT message - send it up this time
13654 			 * around.
13655 			 */
13656 			flags |= TH_SEND_URP_MARK;
13657 		}
13658 
13659 		/*
13660 		 * If the urgent byte is in this segment, make sure that it is
13661 		 * all by itself.  This makes it much easier to deal with the
13662 		 * possibility of an allocation failure on the T_exdata_ind.
13663 		 * Note that seg_len is the number of bytes in the segment, and
13664 		 * urp is the offset into the segment of the urgent byte.
13665 		 * urp < seg_len means that the urgent byte is in this segment.
13666 		 */
13667 		if (urp < seg_len) {
13668 			if (seg_len != 1) {
13669 				uint32_t  tmp_rnxt;
13670 				/*
13671 				 * Break it up and feed it back in.
13672 				 * Re-attach the IP header.
13673 				 */
13674 				mp->b_rptr = iphdr;
13675 				if (urp > 0) {
13676 					/*
13677 					 * There is stuff before the urgent
13678 					 * byte.
13679 					 */
13680 					mp1 = dupmsg(mp);
13681 					if (!mp1) {
13682 						/*
13683 						 * Trim from urgent byte on.
13684 						 * The rest will come back.
13685 						 */
13686 						(void) adjmsg(mp,
13687 						    urp - seg_len);
13688 						tcp_rput_data(connp,
13689 						    mp, NULL);
13690 						return;
13691 					}
13692 					(void) adjmsg(mp1, urp - seg_len);
13693 					/* Feed this piece back in. */
13694 					tmp_rnxt = tcp->tcp_rnxt;
13695 					tcp_rput_data(connp, mp1, NULL);
13696 					/*
13697 					 * If the data passed back in was not
13698 					 * processed (ie: bad ACK) sending
13699 					 * the remainder back in will cause a
13700 					 * loop. In this case, drop the
13701 					 * packet and let the sender try
13702 					 * sending a good packet.
13703 					 */
13704 					if (tmp_rnxt == tcp->tcp_rnxt) {
13705 						freemsg(mp);
13706 						return;
13707 					}
13708 				}
13709 				if (urp != seg_len - 1) {
13710 					uint32_t  tmp_rnxt;
13711 					/*
13712 					 * There is stuff after the urgent
13713 					 * byte.
13714 					 */
13715 					mp1 = dupmsg(mp);
13716 					if (!mp1) {
13717 						/*
13718 						 * Trim everything beyond the
13719 						 * urgent byte.  The rest will
13720 						 * come back.
13721 						 */
13722 						(void) adjmsg(mp,
13723 						    urp + 1 - seg_len);
13724 						tcp_rput_data(connp,
13725 						    mp, NULL);
13726 						return;
13727 					}
13728 					(void) adjmsg(mp1, urp + 1 - seg_len);
13729 					tmp_rnxt = tcp->tcp_rnxt;
13730 					tcp_rput_data(connp, mp1, NULL);
13731 					/*
13732 					 * If the data passed back in was not
13733 					 * processed (ie: bad ACK) sending
13734 					 * the remainder back in will cause a
13735 					 * loop. In this case, drop the
13736 					 * packet and let the sender try
13737 					 * sending a good packet.
13738 					 */
13739 					if (tmp_rnxt == tcp->tcp_rnxt) {
13740 						freemsg(mp);
13741 						return;
13742 					}
13743 				}
13744 				tcp_rput_data(connp, mp, NULL);
13745 				return;
13746 			}
13747 			/*
13748 			 * This segment contains only the urgent byte.  We
13749 			 * have to allocate the T_exdata_ind, if we can.
13750 			 */
13751 			if (!tcp->tcp_urp_mp) {
13752 				struct T_exdata_ind *tei;
13753 				mp1 = allocb(sizeof (struct T_exdata_ind),
13754 				    BPRI_MED);
13755 				if (!mp1) {
13756 					/*
13757 					 * Sigh... It'll be back.
13758 					 * Generate any MSG*MARK message now.
13759 					 */
13760 					freemsg(mp);
13761 					seg_len = 0;
13762 					if (flags & TH_SEND_URP_MARK) {
13763 
13764 
13765 						ASSERT(tcp->tcp_urp_mark_mp);
13766 						tcp->tcp_urp_mark_mp->b_flag &=
13767 							~MSGNOTMARKNEXT;
13768 						tcp->tcp_urp_mark_mp->b_flag |=
13769 							MSGMARKNEXT;
13770 					}
13771 					goto ack_check;
13772 				}
13773 				mp1->b_datap->db_type = M_PROTO;
13774 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13775 				tei->PRIM_type = T_EXDATA_IND;
13776 				tei->MORE_flag = 0;
13777 				mp1->b_wptr = (uchar_t *)&tei[1];
13778 				tcp->tcp_urp_mp = mp1;
13779 #ifdef DEBUG
13780 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13781 				    "tcp_rput: allocated exdata_ind %s",
13782 				    tcp_display(tcp, NULL,
13783 				    DISP_PORT_ONLY));
13784 #endif /* DEBUG */
13785 				/*
13786 				 * There is no need to send a separate MSG*MARK
13787 				 * message since the T_EXDATA_IND will be sent
13788 				 * now.
13789 				 */
13790 				flags &= ~TH_SEND_URP_MARK;
13791 				freemsg(tcp->tcp_urp_mark_mp);
13792 				tcp->tcp_urp_mark_mp = NULL;
13793 			}
13794 			/*
13795 			 * Now we are all set.  On the next putnext upstream,
13796 			 * tcp_urp_mp will be non-NULL and will get prepended
13797 			 * to what has to be this piece containing the urgent
13798 			 * byte.  If for any reason we abort this segment below,
13799 			 * if it comes back, we will have this ready, or it
13800 			 * will get blown off in close.
13801 			 */
13802 		} else if (urp == seg_len) {
13803 			/*
13804 			 * The urgent byte is the next byte after this sequence
13805 			 * number. If there is data it is marked with
13806 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13807 			 * since it is not needed. Otherwise, if the code
13808 			 * above just allocated a zero-length tcp_urp_mark_mp
13809 			 * message, that message is tagged with MSGMARKNEXT.
13810 			 * Sending up these MSGMARKNEXT messages makes
13811 			 * SIOCATMARK work correctly even though
13812 			 * the T_EXDATA_IND will not be sent up until the
13813 			 * urgent byte arrives.
13814 			 */
13815 			if (seg_len != 0) {
13816 				flags |= TH_MARKNEXT_NEEDED;
13817 				freemsg(tcp->tcp_urp_mark_mp);
13818 				tcp->tcp_urp_mark_mp = NULL;
13819 				flags &= ~TH_SEND_URP_MARK;
13820 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13821 				flags |= TH_SEND_URP_MARK;
13822 				tcp->tcp_urp_mark_mp->b_flag &=
13823 					~MSGNOTMARKNEXT;
13824 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13825 			}
13826 #ifdef DEBUG
13827 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13828 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13829 			    seg_len, flags,
13830 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13831 #endif /* DEBUG */
13832 		} else {
13833 			/* Data left until we hit mark */
13834 #ifdef DEBUG
13835 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13836 			    "tcp_rput: URP %d bytes left, %s",
13837 			    urp - seg_len, tcp_display(tcp, NULL,
13838 			    DISP_PORT_ONLY));
13839 #endif /* DEBUG */
13840 		}
13841 	}
13842 
13843 process_ack:
13844 	if (!(flags & TH_ACK)) {
13845 		freemsg(mp);
13846 		goto xmit_check;
13847 	}
13848 	}
13849 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13850 
13851 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13852 		tcp->tcp_ip_forward_progress = B_TRUE;
13853 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13854 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13855 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13856 			/* 3-way handshake complete - pass up the T_CONN_IND */
13857 			tcp_t	*listener = tcp->tcp_listener;
13858 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13859 
13860 			tcp->tcp_tconnind_started = B_TRUE;
13861 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13862 			/*
13863 			 * We are here means eager is fine but it can
13864 			 * get a TH_RST at any point between now and till
13865 			 * accept completes and disappear. We need to
13866 			 * ensure that reference to eager is valid after
13867 			 * we get out of eager's perimeter. So we do
13868 			 * an extra refhold.
13869 			 */
13870 			CONN_INC_REF(connp);
13871 
13872 			/*
13873 			 * The listener also exists because of the refhold
13874 			 * done in tcp_conn_request. Its possible that it
13875 			 * might have closed. We will check that once we
13876 			 * get inside listeners context.
13877 			 */
13878 			CONN_INC_REF(listener->tcp_connp);
13879 			if (listener->tcp_connp->conn_sqp ==
13880 			    connp->conn_sqp) {
13881 				tcp_send_conn_ind(listener->tcp_connp, mp,
13882 				    listener->tcp_connp->conn_sqp);
13883 				CONN_DEC_REF(listener->tcp_connp);
13884 			} else if (!tcp->tcp_loopback) {
13885 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13886 				    tcp_send_conn_ind,
13887 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13888 			} else {
13889 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13890 				    tcp_send_conn_ind, listener->tcp_connp,
13891 				    SQTAG_TCP_CONN_IND);
13892 			}
13893 		}
13894 
13895 		if (tcp->tcp_active_open) {
13896 			/*
13897 			 * We are seeing the final ack in the three way
13898 			 * hand shake of a active open'ed connection
13899 			 * so we must send up a T_CONN_CON
13900 			 */
13901 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13902 				freemsg(mp);
13903 				return;
13904 			}
13905 			/*
13906 			 * Don't fuse the loopback endpoints for
13907 			 * simultaneous active opens.
13908 			 */
13909 			if (tcp->tcp_loopback) {
13910 				TCP_STAT(tcp_fusion_unfusable);
13911 				tcp->tcp_unfusable = B_TRUE;
13912 			}
13913 		}
13914 
13915 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13916 		bytes_acked--;
13917 		/* SYN was acked - making progress */
13918 		if (tcp->tcp_ipversion == IPV6_VERSION)
13919 			tcp->tcp_ip_forward_progress = B_TRUE;
13920 
13921 		/*
13922 		 * If SYN was retransmitted, need to reset all
13923 		 * retransmission info as this segment will be
13924 		 * treated as a dup ACK.
13925 		 */
13926 		if (tcp->tcp_rexmit) {
13927 			tcp->tcp_rexmit = B_FALSE;
13928 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13929 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13930 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13931 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13932 			tcp->tcp_ms_we_have_waited = 0;
13933 			tcp->tcp_cwnd = mss;
13934 		}
13935 
13936 		/*
13937 		 * We set the send window to zero here.
13938 		 * This is needed if there is data to be
13939 		 * processed already on the queue.
13940 		 * Later (at swnd_update label), the
13941 		 * "new_swnd > tcp_swnd" condition is satisfied
13942 		 * the XMIT_NEEDED flag is set in the current
13943 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13944 		 * called if there is already data on queue in
13945 		 * this state.
13946 		 */
13947 		tcp->tcp_swnd = 0;
13948 
13949 		if (new_swnd > tcp->tcp_max_swnd)
13950 			tcp->tcp_max_swnd = new_swnd;
13951 		tcp->tcp_swl1 = seg_seq;
13952 		tcp->tcp_swl2 = seg_ack;
13953 		tcp->tcp_state = TCPS_ESTABLISHED;
13954 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13955 
13956 		/* Fuse when both sides are in ESTABLISHED state */
13957 		if (tcp->tcp_loopback && do_tcp_fusion)
13958 			tcp_fuse(tcp, iphdr, tcph);
13959 
13960 	}
13961 	/* This code follows 4.4BSD-Lite2 mostly. */
13962 	if (bytes_acked < 0)
13963 		goto est;
13964 
13965 	/*
13966 	 * If TCP is ECN capable and the congestion experience bit is
13967 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13968 	 * done once per window (or more loosely, per RTT).
13969 	 */
13970 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13971 		tcp->tcp_cwr = B_FALSE;
13972 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13973 		if (!tcp->tcp_cwr) {
13974 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13975 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13976 			tcp->tcp_cwnd = npkt * mss;
13977 			/*
13978 			 * If the cwnd is 0, use the timer to clock out
13979 			 * new segments.  This is required by the ECN spec.
13980 			 */
13981 			if (npkt == 0) {
13982 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13983 				/*
13984 				 * This makes sure that when the ACK comes
13985 				 * back, we will increase tcp_cwnd by 1 MSS.
13986 				 */
13987 				tcp->tcp_cwnd_cnt = 0;
13988 			}
13989 			tcp->tcp_cwr = B_TRUE;
13990 			/*
13991 			 * This marks the end of the current window of in
13992 			 * flight data.  That is why we don't use
13993 			 * tcp_suna + tcp_swnd.  Only data in flight can
13994 			 * provide ECN info.
13995 			 */
13996 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13997 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13998 		}
13999 	}
14000 
14001 	mp1 = tcp->tcp_xmit_head;
14002 	if (bytes_acked == 0) {
14003 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14004 			int dupack_cnt;
14005 
14006 			BUMP_MIB(&tcp_mib, tcpInDupAck);
14007 			/*
14008 			 * Fast retransmit.  When we have seen exactly three
14009 			 * identical ACKs while we have unacked data
14010 			 * outstanding we take it as a hint that our peer
14011 			 * dropped something.
14012 			 *
14013 			 * If TCP is retransmitting, don't do fast retransmit.
14014 			 */
14015 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14016 			    ! tcp->tcp_rexmit) {
14017 				/* Do Limited Transmit */
14018 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14019 				    tcp_dupack_fast_retransmit) {
14020 					/*
14021 					 * RFC 3042
14022 					 *
14023 					 * What we need to do is temporarily
14024 					 * increase tcp_cwnd so that new
14025 					 * data can be sent if it is allowed
14026 					 * by the receive window (tcp_rwnd).
14027 					 * tcp_wput_data() will take care of
14028 					 * the rest.
14029 					 *
14030 					 * If the connection is SACK capable,
14031 					 * only do limited xmit when there
14032 					 * is SACK info.
14033 					 *
14034 					 * Note how tcp_cwnd is incremented.
14035 					 * The first dup ACK will increase
14036 					 * it by 1 MSS.  The second dup ACK
14037 					 * will increase it by 2 MSS.  This
14038 					 * means that only 1 new segment will
14039 					 * be sent for each dup ACK.
14040 					 */
14041 					if (tcp->tcp_unsent > 0 &&
14042 					    (!tcp->tcp_snd_sack_ok ||
14043 					    (tcp->tcp_snd_sack_ok &&
14044 					    tcp->tcp_notsack_list != NULL))) {
14045 						tcp->tcp_cwnd += mss <<
14046 						    (tcp->tcp_dupack_cnt - 1);
14047 						flags |= TH_LIMIT_XMIT;
14048 					}
14049 				} else if (dupack_cnt ==
14050 				    tcp_dupack_fast_retransmit) {
14051 
14052 				/*
14053 				 * If we have reduced tcp_ssthresh
14054 				 * because of ECN, do not reduce it again
14055 				 * unless it is already one window of data
14056 				 * away.  After one window of data, tcp_cwr
14057 				 * should then be cleared.  Note that
14058 				 * for non ECN capable connection, tcp_cwr
14059 				 * should always be false.
14060 				 *
14061 				 * Adjust cwnd since the duplicate
14062 				 * ack indicates that a packet was
14063 				 * dropped (due to congestion.)
14064 				 */
14065 				if (!tcp->tcp_cwr) {
14066 					npkt = ((tcp->tcp_snxt -
14067 					    tcp->tcp_suna) >> 1) / mss;
14068 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14069 					    mss;
14070 					tcp->tcp_cwnd = (npkt +
14071 					    tcp->tcp_dupack_cnt) * mss;
14072 				}
14073 				if (tcp->tcp_ecn_ok) {
14074 					tcp->tcp_cwr = B_TRUE;
14075 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14076 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14077 				}
14078 
14079 				/*
14080 				 * We do Hoe's algorithm.  Refer to her
14081 				 * paper "Improving the Start-up Behavior
14082 				 * of a Congestion Control Scheme for TCP,"
14083 				 * appeared in SIGCOMM'96.
14084 				 *
14085 				 * Save highest seq no we have sent so far.
14086 				 * Be careful about the invisible FIN byte.
14087 				 */
14088 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14089 				    (tcp->tcp_unsent == 0)) {
14090 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14091 				} else {
14092 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14093 				}
14094 
14095 				/*
14096 				 * Do not allow bursty traffic during.
14097 				 * fast recovery.  Refer to Fall and Floyd's
14098 				 * paper "Simulation-based Comparisons of
14099 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14100 				 * This is a best current practise.
14101 				 */
14102 				tcp->tcp_snd_burst = TCP_CWND_SS;
14103 
14104 				/*
14105 				 * For SACK:
14106 				 * Calculate tcp_pipe, which is the
14107 				 * estimated number of bytes in
14108 				 * network.
14109 				 *
14110 				 * tcp_fack is the highest sack'ed seq num
14111 				 * TCP has received.
14112 				 *
14113 				 * tcp_pipe is explained in the above quoted
14114 				 * Fall and Floyd's paper.  tcp_fack is
14115 				 * explained in Mathis and Mahdavi's
14116 				 * "Forward Acknowledgment: Refining TCP
14117 				 * Congestion Control" in SIGCOMM '96.
14118 				 */
14119 				if (tcp->tcp_snd_sack_ok) {
14120 					ASSERT(tcp->tcp_sack_info != NULL);
14121 					if (tcp->tcp_notsack_list != NULL) {
14122 						tcp->tcp_pipe = tcp->tcp_snxt -
14123 						    tcp->tcp_fack;
14124 						tcp->tcp_sack_snxt = seg_ack;
14125 						flags |= TH_NEED_SACK_REXMIT;
14126 					} else {
14127 						/*
14128 						 * Always initialize tcp_pipe
14129 						 * even though we don't have
14130 						 * any SACK info.  If later
14131 						 * we get SACK info and
14132 						 * tcp_pipe is not initialized,
14133 						 * funny things will happen.
14134 						 */
14135 						tcp->tcp_pipe =
14136 						    tcp->tcp_cwnd_ssthresh;
14137 					}
14138 				} else {
14139 					flags |= TH_REXMIT_NEEDED;
14140 				} /* tcp_snd_sack_ok */
14141 
14142 				} else {
14143 					/*
14144 					 * Here we perform congestion
14145 					 * avoidance, but NOT slow start.
14146 					 * This is known as the Fast
14147 					 * Recovery Algorithm.
14148 					 */
14149 					if (tcp->tcp_snd_sack_ok &&
14150 					    tcp->tcp_notsack_list != NULL) {
14151 						flags |= TH_NEED_SACK_REXMIT;
14152 						tcp->tcp_pipe -= mss;
14153 						if (tcp->tcp_pipe < 0)
14154 							tcp->tcp_pipe = 0;
14155 					} else {
14156 					/*
14157 					 * We know that one more packet has
14158 					 * left the pipe thus we can update
14159 					 * cwnd.
14160 					 */
14161 					cwnd = tcp->tcp_cwnd + mss;
14162 					if (cwnd > tcp->tcp_cwnd_max)
14163 						cwnd = tcp->tcp_cwnd_max;
14164 					tcp->tcp_cwnd = cwnd;
14165 					if (tcp->tcp_unsent > 0)
14166 						flags |= TH_XMIT_NEEDED;
14167 					}
14168 				}
14169 			}
14170 		} else if (tcp->tcp_zero_win_probe) {
14171 			/*
14172 			 * If the window has opened, need to arrange
14173 			 * to send additional data.
14174 			 */
14175 			if (new_swnd != 0) {
14176 				/* tcp_suna != tcp_snxt */
14177 				/* Packet contains a window update */
14178 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
14179 				tcp->tcp_zero_win_probe = 0;
14180 				tcp->tcp_timer_backoff = 0;
14181 				tcp->tcp_ms_we_have_waited = 0;
14182 
14183 				/*
14184 				 * Transmit starting with tcp_suna since
14185 				 * the one byte probe is not ack'ed.
14186 				 * If TCP has sent more than one identical
14187 				 * probe, tcp_rexmit will be set.  That means
14188 				 * tcp_ss_rexmit() will send out the one
14189 				 * byte along with new data.  Otherwise,
14190 				 * fake the retransmission.
14191 				 */
14192 				flags |= TH_XMIT_NEEDED;
14193 				if (!tcp->tcp_rexmit) {
14194 					tcp->tcp_rexmit = B_TRUE;
14195 					tcp->tcp_dupack_cnt = 0;
14196 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14197 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14198 				}
14199 			}
14200 		}
14201 		goto swnd_update;
14202 	}
14203 
14204 	/*
14205 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14206 	 * If the ACK value acks something that we have not yet sent, it might
14207 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14208 	 * other side.
14209 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14210 	 * state is handled above, so we can always just drop the segment and
14211 	 * send an ACK here.
14212 	 *
14213 	 * Should we send ACKs in response to ACK only segments?
14214 	 */
14215 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14216 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
14217 		/* drop the received segment */
14218 		freemsg(mp);
14219 
14220 		/*
14221 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14222 		 * greater than 0, check if the number of such
14223 		 * bogus ACks is greater than that count.  If yes,
14224 		 * don't send back any ACK.  This prevents TCP from
14225 		 * getting into an ACK storm if somehow an attacker
14226 		 * successfully spoofs an acceptable segment to our
14227 		 * peer.
14228 		 */
14229 		if (tcp_drop_ack_unsent_cnt > 0 &&
14230 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14231 			TCP_STAT(tcp_in_ack_unsent_drop);
14232 			return;
14233 		}
14234 		mp = tcp_ack_mp(tcp);
14235 		if (mp != NULL) {
14236 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14237 			BUMP_LOCAL(tcp->tcp_obsegs);
14238 			BUMP_MIB(&tcp_mib, tcpOutAck);
14239 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14240 		}
14241 		return;
14242 	}
14243 
14244 	/*
14245 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14246 	 * blocks that are covered by this ACK.
14247 	 */
14248 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14249 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14250 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14251 	}
14252 
14253 	/*
14254 	 * If we got an ACK after fast retransmit, check to see
14255 	 * if it is a partial ACK.  If it is not and the congestion
14256 	 * window was inflated to account for the other side's
14257 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14258 	 */
14259 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14260 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14261 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14262 			tcp->tcp_dupack_cnt = 0;
14263 			/*
14264 			 * Restore the orig tcp_cwnd_ssthresh after
14265 			 * fast retransmit phase.
14266 			 */
14267 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14268 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14269 			}
14270 			tcp->tcp_rexmit_max = seg_ack;
14271 			tcp->tcp_cwnd_cnt = 0;
14272 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14273 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14274 
14275 			/*
14276 			 * Remove all notsack info to avoid confusion with
14277 			 * the next fast retrasnmit/recovery phase.
14278 			 */
14279 			if (tcp->tcp_snd_sack_ok &&
14280 			    tcp->tcp_notsack_list != NULL) {
14281 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14282 			}
14283 		} else {
14284 			if (tcp->tcp_snd_sack_ok &&
14285 			    tcp->tcp_notsack_list != NULL) {
14286 				flags |= TH_NEED_SACK_REXMIT;
14287 				tcp->tcp_pipe -= mss;
14288 				if (tcp->tcp_pipe < 0)
14289 					tcp->tcp_pipe = 0;
14290 			} else {
14291 				/*
14292 				 * Hoe's algorithm:
14293 				 *
14294 				 * Retransmit the unack'ed segment and
14295 				 * restart fast recovery.  Note that we
14296 				 * need to scale back tcp_cwnd to the
14297 				 * original value when we started fast
14298 				 * recovery.  This is to prevent overly
14299 				 * aggressive behaviour in sending new
14300 				 * segments.
14301 				 */
14302 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14303 					tcp_dupack_fast_retransmit * mss;
14304 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14305 				flags |= TH_REXMIT_NEEDED;
14306 			}
14307 		}
14308 	} else {
14309 		tcp->tcp_dupack_cnt = 0;
14310 		if (tcp->tcp_rexmit) {
14311 			/*
14312 			 * TCP is retranmitting.  If the ACK ack's all
14313 			 * outstanding data, update tcp_rexmit_max and
14314 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14315 			 * to the correct value.
14316 			 *
14317 			 * Note that SEQ_LEQ() is used.  This is to avoid
14318 			 * unnecessary fast retransmit caused by dup ACKs
14319 			 * received when TCP does slow start retransmission
14320 			 * after a time out.  During this phase, TCP may
14321 			 * send out segments which are already received.
14322 			 * This causes dup ACKs to be sent back.
14323 			 */
14324 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14325 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14326 					tcp->tcp_rexmit_nxt = seg_ack;
14327 				}
14328 				if (seg_ack != tcp->tcp_rexmit_max) {
14329 					flags |= TH_XMIT_NEEDED;
14330 				}
14331 			} else {
14332 				tcp->tcp_rexmit = B_FALSE;
14333 				tcp->tcp_xmit_zc_clean = B_FALSE;
14334 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14335 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14336 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14337 			}
14338 			tcp->tcp_ms_we_have_waited = 0;
14339 		}
14340 	}
14341 
14342 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14343 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14344 	tcp->tcp_suna = seg_ack;
14345 	if (tcp->tcp_zero_win_probe != 0) {
14346 		tcp->tcp_zero_win_probe = 0;
14347 		tcp->tcp_timer_backoff = 0;
14348 	}
14349 
14350 	/*
14351 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14352 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14353 	 * will not reach here.
14354 	 */
14355 	if (mp1 == NULL) {
14356 		goto fin_acked;
14357 	}
14358 
14359 	/*
14360 	 * Update the congestion window.
14361 	 *
14362 	 * If TCP is not ECN capable or TCP is ECN capable but the
14363 	 * congestion experience bit is not set, increase the tcp_cwnd as
14364 	 * usual.
14365 	 */
14366 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14367 		cwnd = tcp->tcp_cwnd;
14368 		add = mss;
14369 
14370 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14371 			/*
14372 			 * This is to prevent an increase of less than 1 MSS of
14373 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14374 			 * may send out tinygrams in order to preserve mblk
14375 			 * boundaries.
14376 			 *
14377 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14378 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14379 			 * increased by 1 MSS for every RTTs.
14380 			 */
14381 			if (tcp->tcp_cwnd_cnt <= 0) {
14382 				tcp->tcp_cwnd_cnt = cwnd + add;
14383 			} else {
14384 				tcp->tcp_cwnd_cnt -= add;
14385 				add = 0;
14386 			}
14387 		}
14388 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14389 	}
14390 
14391 	/* See if the latest urgent data has been acknowledged */
14392 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14393 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14394 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14395 
14396 	/* Can we update the RTT estimates? */
14397 	if (tcp->tcp_snd_ts_ok) {
14398 		/* Ignore zero timestamp echo-reply. */
14399 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14400 			tcp_set_rto(tcp, (int32_t)lbolt -
14401 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14402 		}
14403 
14404 		/* If needed, restart the timer. */
14405 		if (tcp->tcp_set_timer == 1) {
14406 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14407 			tcp->tcp_set_timer = 0;
14408 		}
14409 		/*
14410 		 * Update tcp_csuna in case the other side stops sending
14411 		 * us timestamps.
14412 		 */
14413 		tcp->tcp_csuna = tcp->tcp_snxt;
14414 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14415 		/*
14416 		 * An ACK sequence we haven't seen before, so get the RTT
14417 		 * and update the RTO. But first check if the timestamp is
14418 		 * valid to use.
14419 		 */
14420 		if ((mp1->b_next != NULL) &&
14421 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14422 			tcp_set_rto(tcp, (int32_t)lbolt -
14423 			    (int32_t)(intptr_t)mp1->b_prev);
14424 		else
14425 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14426 
14427 		/* Remeber the last sequence to be ACKed */
14428 		tcp->tcp_csuna = seg_ack;
14429 		if (tcp->tcp_set_timer == 1) {
14430 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14431 			tcp->tcp_set_timer = 0;
14432 		}
14433 	} else {
14434 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14435 	}
14436 
14437 	/* Eat acknowledged bytes off the xmit queue. */
14438 	for (;;) {
14439 		mblk_t	*mp2;
14440 		uchar_t	*wptr;
14441 
14442 		wptr = mp1->b_wptr;
14443 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14444 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14445 		if (bytes_acked < 0) {
14446 			mp1->b_rptr = wptr + bytes_acked;
14447 			/*
14448 			 * Set a new timestamp if all the bytes timed by the
14449 			 * old timestamp have been ack'ed.
14450 			 */
14451 			if (SEQ_GT(seg_ack,
14452 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14453 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14454 				mp1->b_next = NULL;
14455 			}
14456 			break;
14457 		}
14458 		mp1->b_next = NULL;
14459 		mp1->b_prev = NULL;
14460 		mp2 = mp1;
14461 		mp1 = mp1->b_cont;
14462 
14463 		/*
14464 		 * This notification is required for some zero-copy
14465 		 * clients to maintain a copy semantic. After the data
14466 		 * is ack'ed, client is safe to modify or reuse the buffer.
14467 		 */
14468 		if (tcp->tcp_snd_zcopy_aware &&
14469 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14470 			tcp_zcopy_notify(tcp);
14471 		freeb(mp2);
14472 		if (bytes_acked == 0) {
14473 			if (mp1 == NULL) {
14474 				/* Everything is ack'ed, clear the tail. */
14475 				tcp->tcp_xmit_tail = NULL;
14476 				/*
14477 				 * Cancel the timer unless we are still
14478 				 * waiting for an ACK for the FIN packet.
14479 				 */
14480 				if (tcp->tcp_timer_tid != 0 &&
14481 				    tcp->tcp_snxt == tcp->tcp_suna) {
14482 					(void) TCP_TIMER_CANCEL(tcp,
14483 					    tcp->tcp_timer_tid);
14484 					tcp->tcp_timer_tid = 0;
14485 				}
14486 				goto pre_swnd_update;
14487 			}
14488 			if (mp2 != tcp->tcp_xmit_tail)
14489 				break;
14490 			tcp->tcp_xmit_tail = mp1;
14491 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14492 			    (uintptr_t)INT_MAX);
14493 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14494 			    mp1->b_rptr);
14495 			break;
14496 		}
14497 		if (mp1 == NULL) {
14498 			/*
14499 			 * More was acked but there is nothing more
14500 			 * outstanding.  This means that the FIN was
14501 			 * just acked or that we're talking to a clown.
14502 			 */
14503 fin_acked:
14504 			ASSERT(tcp->tcp_fin_sent);
14505 			tcp->tcp_xmit_tail = NULL;
14506 			if (tcp->tcp_fin_sent) {
14507 				/* FIN was acked - making progress */
14508 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14509 				    !tcp->tcp_fin_acked)
14510 					tcp->tcp_ip_forward_progress = B_TRUE;
14511 				tcp->tcp_fin_acked = B_TRUE;
14512 				if (tcp->tcp_linger_tid != 0 &&
14513 				    TCP_TIMER_CANCEL(tcp,
14514 					tcp->tcp_linger_tid) >= 0) {
14515 					tcp_stop_lingering(tcp);
14516 				}
14517 			} else {
14518 				/*
14519 				 * We should never get here because
14520 				 * we have already checked that the
14521 				 * number of bytes ack'ed should be
14522 				 * smaller than or equal to what we
14523 				 * have sent so far (it is the
14524 				 * acceptability check of the ACK).
14525 				 * We can only get here if the send
14526 				 * queue is corrupted.
14527 				 *
14528 				 * Terminate the connection and
14529 				 * panic the system.  It is better
14530 				 * for us to panic instead of
14531 				 * continuing to avoid other disaster.
14532 				 */
14533 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14534 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14535 				panic("Memory corruption "
14536 				    "detected for connection %s.",
14537 				    tcp_display(tcp, NULL,
14538 					DISP_ADDR_AND_PORT));
14539 				/*NOTREACHED*/
14540 			}
14541 			goto pre_swnd_update;
14542 		}
14543 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14544 	}
14545 	if (tcp->tcp_unsent) {
14546 		flags |= TH_XMIT_NEEDED;
14547 	}
14548 pre_swnd_update:
14549 	tcp->tcp_xmit_head = mp1;
14550 swnd_update:
14551 	/*
14552 	 * The following check is different from most other implementations.
14553 	 * For bi-directional transfer, when segments are dropped, the
14554 	 * "normal" check will not accept a window update in those
14555 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14556 	 * segments which are outside receiver's window.  As TCP accepts
14557 	 * the ack in those retransmitted segments, if the window update in
14558 	 * the same segment is not accepted, TCP will incorrectly calculates
14559 	 * that it can send more segments.  This can create a deadlock
14560 	 * with the receiver if its window becomes zero.
14561 	 */
14562 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14563 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14564 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14565 		/*
14566 		 * The criteria for update is:
14567 		 *
14568 		 * 1. the segment acknowledges some data.  Or
14569 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14570 		 * 3. the segment is not old and the advertised window is
14571 		 * larger than the previous advertised window.
14572 		 */
14573 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14574 			flags |= TH_XMIT_NEEDED;
14575 		tcp->tcp_swnd = new_swnd;
14576 		if (new_swnd > tcp->tcp_max_swnd)
14577 			tcp->tcp_max_swnd = new_swnd;
14578 		tcp->tcp_swl1 = seg_seq;
14579 		tcp->tcp_swl2 = seg_ack;
14580 	}
14581 est:
14582 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14583 
14584 		switch (tcp->tcp_state) {
14585 		case TCPS_FIN_WAIT_1:
14586 			if (tcp->tcp_fin_acked) {
14587 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14588 				/*
14589 				 * We implement the non-standard BSD/SunOS
14590 				 * FIN_WAIT_2 flushing algorithm.
14591 				 * If there is no user attached to this
14592 				 * TCP endpoint, then this TCP struct
14593 				 * could hang around forever in FIN_WAIT_2
14594 				 * state if the peer forgets to send us
14595 				 * a FIN.  To prevent this, we wait only
14596 				 * 2*MSL (a convenient time value) for
14597 				 * the FIN to arrive.  If it doesn't show up,
14598 				 * we flush the TCP endpoint.  This algorithm,
14599 				 * though a violation of RFC-793, has worked
14600 				 * for over 10 years in BSD systems.
14601 				 * Note: SunOS 4.x waits 675 seconds before
14602 				 * flushing the FIN_WAIT_2 connection.
14603 				 */
14604 				TCP_TIMER_RESTART(tcp,
14605 				    tcp_fin_wait_2_flush_interval);
14606 			}
14607 			break;
14608 		case TCPS_FIN_WAIT_2:
14609 			break;	/* Shutdown hook? */
14610 		case TCPS_LAST_ACK:
14611 			freemsg(mp);
14612 			if (tcp->tcp_fin_acked) {
14613 				(void) tcp_clean_death(tcp, 0, 19);
14614 				return;
14615 			}
14616 			goto xmit_check;
14617 		case TCPS_CLOSING:
14618 			if (tcp->tcp_fin_acked) {
14619 				tcp->tcp_state = TCPS_TIME_WAIT;
14620 				/*
14621 				 * Unconditionally clear the exclusive binding
14622 				 * bit so this TIME-WAIT connection won't
14623 				 * interfere with new ones.
14624 				 */
14625 				tcp->tcp_exclbind = 0;
14626 				if (!TCP_IS_DETACHED(tcp)) {
14627 					TCP_TIMER_RESTART(tcp,
14628 					    tcp_time_wait_interval);
14629 				} else {
14630 					tcp_time_wait_append(tcp);
14631 					TCP_DBGSTAT(tcp_rput_time_wait);
14632 				}
14633 			}
14634 			/*FALLTHRU*/
14635 		case TCPS_CLOSE_WAIT:
14636 			freemsg(mp);
14637 			goto xmit_check;
14638 		default:
14639 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14640 			break;
14641 		}
14642 	}
14643 	if (flags & TH_FIN) {
14644 		/* Make sure we ack the fin */
14645 		flags |= TH_ACK_NEEDED;
14646 		if (!tcp->tcp_fin_rcvd) {
14647 			tcp->tcp_fin_rcvd = B_TRUE;
14648 			tcp->tcp_rnxt++;
14649 			tcph = tcp->tcp_tcph;
14650 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14651 
14652 			/*
14653 			 * Generate the ordrel_ind at the end unless we
14654 			 * are an eager guy.
14655 			 * In the eager case tcp_rsrv will do this when run
14656 			 * after tcp_accept is done.
14657 			 */
14658 			if (tcp->tcp_listener == NULL &&
14659 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14660 				flags |= TH_ORDREL_NEEDED;
14661 			switch (tcp->tcp_state) {
14662 			case TCPS_SYN_RCVD:
14663 			case TCPS_ESTABLISHED:
14664 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14665 				/* Keepalive? */
14666 				break;
14667 			case TCPS_FIN_WAIT_1:
14668 				if (!tcp->tcp_fin_acked) {
14669 					tcp->tcp_state = TCPS_CLOSING;
14670 					break;
14671 				}
14672 				/* FALLTHRU */
14673 			case TCPS_FIN_WAIT_2:
14674 				tcp->tcp_state = TCPS_TIME_WAIT;
14675 				/*
14676 				 * Unconditionally clear the exclusive binding
14677 				 * bit so this TIME-WAIT connection won't
14678 				 * interfere with new ones.
14679 				 */
14680 				tcp->tcp_exclbind = 0;
14681 				if (!TCP_IS_DETACHED(tcp)) {
14682 					TCP_TIMER_RESTART(tcp,
14683 					    tcp_time_wait_interval);
14684 				} else {
14685 					tcp_time_wait_append(tcp);
14686 					TCP_DBGSTAT(tcp_rput_time_wait);
14687 				}
14688 				if (seg_len) {
14689 					/*
14690 					 * implies data piggybacked on FIN.
14691 					 * break to handle data.
14692 					 */
14693 					break;
14694 				}
14695 				freemsg(mp);
14696 				goto ack_check;
14697 			}
14698 		}
14699 	}
14700 	if (mp == NULL)
14701 		goto xmit_check;
14702 	if (seg_len == 0) {
14703 		freemsg(mp);
14704 		goto xmit_check;
14705 	}
14706 	if (mp->b_rptr == mp->b_wptr) {
14707 		/*
14708 		 * The header has been consumed, so we remove the
14709 		 * zero-length mblk here.
14710 		 */
14711 		mp1 = mp;
14712 		mp = mp->b_cont;
14713 		freeb(mp1);
14714 	}
14715 	tcph = tcp->tcp_tcph;
14716 	tcp->tcp_rack_cnt++;
14717 	{
14718 		uint32_t cur_max;
14719 
14720 		cur_max = tcp->tcp_rack_cur_max;
14721 		if (tcp->tcp_rack_cnt >= cur_max) {
14722 			/*
14723 			 * We have more unacked data than we should - send
14724 			 * an ACK now.
14725 			 */
14726 			flags |= TH_ACK_NEEDED;
14727 			cur_max++;
14728 			if (cur_max > tcp->tcp_rack_abs_max)
14729 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14730 			else
14731 				tcp->tcp_rack_cur_max = cur_max;
14732 		} else if (TCP_IS_DETACHED(tcp)) {
14733 			/* We don't have an ACK timer for detached TCP. */
14734 			flags |= TH_ACK_NEEDED;
14735 		} else if (seg_len < mss) {
14736 			/*
14737 			 * If we get a segment that is less than an mss, and we
14738 			 * already have unacknowledged data, and the amount
14739 			 * unacknowledged is not a multiple of mss, then we
14740 			 * better generate an ACK now.  Otherwise, this may be
14741 			 * the tail piece of a transaction, and we would rather
14742 			 * wait for the response.
14743 			 */
14744 			uint32_t udif;
14745 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14746 			    (uintptr_t)INT_MAX);
14747 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14748 			if (udif && (udif % mss))
14749 				flags |= TH_ACK_NEEDED;
14750 			else
14751 				flags |= TH_ACK_TIMER_NEEDED;
14752 		} else {
14753 			/* Start delayed ack timer */
14754 			flags |= TH_ACK_TIMER_NEEDED;
14755 		}
14756 	}
14757 	tcp->tcp_rnxt += seg_len;
14758 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14759 
14760 	/* Update SACK list */
14761 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14762 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14763 		    &(tcp->tcp_num_sack_blk));
14764 	}
14765 
14766 	if (tcp->tcp_urp_mp) {
14767 		tcp->tcp_urp_mp->b_cont = mp;
14768 		mp = tcp->tcp_urp_mp;
14769 		tcp->tcp_urp_mp = NULL;
14770 		/* Ready for a new signal. */
14771 		tcp->tcp_urp_last_valid = B_FALSE;
14772 #ifdef DEBUG
14773 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14774 		    "tcp_rput: sending exdata_ind %s",
14775 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14776 #endif /* DEBUG */
14777 	}
14778 
14779 	/*
14780 	 * Check for ancillary data changes compared to last segment.
14781 	 */
14782 	if (tcp->tcp_ipv6_recvancillary != 0) {
14783 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14784 		if (mp == NULL)
14785 			return;
14786 	}
14787 
14788 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14789 		/*
14790 		 * Side queue inbound data until the accept happens.
14791 		 * tcp_accept/tcp_rput drains this when the accept happens.
14792 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14793 		 * T_EXDATA_IND) it is queued on b_next.
14794 		 * XXX Make urgent data use this. Requires:
14795 		 *	Removing tcp_listener check for TH_URG
14796 		 *	Making M_PCPROTO and MARK messages skip the eager case
14797 		 */
14798 
14799 		if (tcp->tcp_kssl_pending) {
14800 			tcp_kssl_input(tcp, mp);
14801 		} else {
14802 			tcp_rcv_enqueue(tcp, mp, seg_len);
14803 		}
14804 	} else {
14805 		if (mp->b_datap->db_type != M_DATA ||
14806 		    (flags & TH_MARKNEXT_NEEDED)) {
14807 			if (tcp->tcp_rcv_list != NULL) {
14808 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14809 			}
14810 			ASSERT(tcp->tcp_rcv_list == NULL ||
14811 			    tcp->tcp_fused_sigurg);
14812 			if (flags & TH_MARKNEXT_NEEDED) {
14813 #ifdef DEBUG
14814 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14815 				    "tcp_rput: sending MSGMARKNEXT %s",
14816 				    tcp_display(tcp, NULL,
14817 				    DISP_PORT_ONLY));
14818 #endif /* DEBUG */
14819 				mp->b_flag |= MSGMARKNEXT;
14820 				flags &= ~TH_MARKNEXT_NEEDED;
14821 			}
14822 
14823 			/* Does this need SSL processing first? */
14824 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14825 			    (DB_TYPE(mp) == M_DATA)) {
14826 				tcp_kssl_input(tcp, mp);
14827 			} else {
14828 				putnext(tcp->tcp_rq, mp);
14829 				if (!canputnext(tcp->tcp_rq))
14830 					tcp->tcp_rwnd -= seg_len;
14831 			}
14832 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14833 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14834 			if (tcp->tcp_rcv_list != NULL) {
14835 				/*
14836 				 * Enqueue the new segment first and then
14837 				 * call tcp_rcv_drain() to send all data
14838 				 * up.  The other way to do this is to
14839 				 * send all queued data up and then call
14840 				 * putnext() to send the new segment up.
14841 				 * This way can remove the else part later
14842 				 * on.
14843 				 *
14844 				 * We don't this to avoid one more call to
14845 				 * canputnext() as tcp_rcv_drain() needs to
14846 				 * call canputnext().
14847 				 */
14848 				tcp_rcv_enqueue(tcp, mp, seg_len);
14849 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14850 			} else {
14851 				/* Does this need SSL processing first? */
14852 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14853 				    (DB_TYPE(mp) == M_DATA)) {
14854 					tcp_kssl_input(tcp, mp);
14855 				} else {
14856 					putnext(tcp->tcp_rq, mp);
14857 					if (!canputnext(tcp->tcp_rq))
14858 						tcp->tcp_rwnd -= seg_len;
14859 				}
14860 			}
14861 		} else {
14862 			/*
14863 			 * Enqueue all packets when processing an mblk
14864 			 * from the co queue and also enqueue normal packets.
14865 			 */
14866 			tcp_rcv_enqueue(tcp, mp, seg_len);
14867 		}
14868 		/*
14869 		 * Make sure the timer is running if we have data waiting
14870 		 * for a push bit. This provides resiliency against
14871 		 * implementations that do not correctly generate push bits.
14872 		 */
14873 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14874 			/*
14875 			 * The connection may be closed at this point, so don't
14876 			 * do anything for a detached tcp.
14877 			 */
14878 			if (!TCP_IS_DETACHED(tcp))
14879 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14880 				    tcp_push_timer,
14881 				    MSEC_TO_TICK(tcp_push_timer_interval));
14882 		}
14883 	}
14884 xmit_check:
14885 	/* Is there anything left to do? */
14886 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14887 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14888 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14889 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14890 		goto done;
14891 
14892 	/* Any transmit work to do and a non-zero window? */
14893 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14894 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14895 		if (flags & TH_REXMIT_NEEDED) {
14896 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14897 
14898 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14899 			if (snd_size > mss)
14900 				snd_size = mss;
14901 			if (snd_size > tcp->tcp_swnd)
14902 				snd_size = tcp->tcp_swnd;
14903 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14904 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14905 			    B_TRUE);
14906 
14907 			if (mp1 != NULL) {
14908 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14909 				tcp->tcp_csuna = tcp->tcp_snxt;
14910 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14911 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14912 				TCP_RECORD_TRACE(tcp, mp1,
14913 				    TCP_TRACE_SEND_PKT);
14914 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14915 			}
14916 		}
14917 		if (flags & TH_NEED_SACK_REXMIT) {
14918 			tcp_sack_rxmit(tcp, &flags);
14919 		}
14920 		/*
14921 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14922 		 * out new segment.  Note that tcp_rexmit should not be
14923 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14924 		 */
14925 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14926 			if (!tcp->tcp_rexmit) {
14927 				tcp_wput_data(tcp, NULL, B_FALSE);
14928 			} else {
14929 				tcp_ss_rexmit(tcp);
14930 			}
14931 		}
14932 		/*
14933 		 * Adjust tcp_cwnd back to normal value after sending
14934 		 * new data segments.
14935 		 */
14936 		if (flags & TH_LIMIT_XMIT) {
14937 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14938 			/*
14939 			 * This will restart the timer.  Restarting the
14940 			 * timer is used to avoid a timeout before the
14941 			 * limited transmitted segment's ACK gets back.
14942 			 */
14943 			if (tcp->tcp_xmit_head != NULL)
14944 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14945 		}
14946 
14947 		/* Anything more to do? */
14948 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14949 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14950 			goto done;
14951 	}
14952 ack_check:
14953 	if (flags & TH_SEND_URP_MARK) {
14954 		ASSERT(tcp->tcp_urp_mark_mp);
14955 		/*
14956 		 * Send up any queued data and then send the mark message
14957 		 */
14958 		if (tcp->tcp_rcv_list != NULL) {
14959 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14960 		}
14961 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14962 
14963 		mp1 = tcp->tcp_urp_mark_mp;
14964 		tcp->tcp_urp_mark_mp = NULL;
14965 #ifdef DEBUG
14966 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14967 		    "tcp_rput: sending zero-length %s %s",
14968 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14969 		    "MSGNOTMARKNEXT"),
14970 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14971 #endif /* DEBUG */
14972 		putnext(tcp->tcp_rq, mp1);
14973 		flags &= ~TH_SEND_URP_MARK;
14974 	}
14975 	if (flags & TH_ACK_NEEDED) {
14976 		/*
14977 		 * Time to send an ack for some reason.
14978 		 */
14979 		mp1 = tcp_ack_mp(tcp);
14980 
14981 		if (mp1 != NULL) {
14982 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14983 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14984 			BUMP_LOCAL(tcp->tcp_obsegs);
14985 			BUMP_MIB(&tcp_mib, tcpOutAck);
14986 		}
14987 		if (tcp->tcp_ack_tid != 0) {
14988 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14989 			tcp->tcp_ack_tid = 0;
14990 		}
14991 	}
14992 	if (flags & TH_ACK_TIMER_NEEDED) {
14993 		/*
14994 		 * Arrange for deferred ACK or push wait timeout.
14995 		 * Start timer if it is not already running.
14996 		 */
14997 		if (tcp->tcp_ack_tid == 0) {
14998 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14999 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15000 			    (clock_t)tcp_local_dack_interval :
15001 			    (clock_t)tcp_deferred_ack_interval));
15002 		}
15003 	}
15004 	if (flags & TH_ORDREL_NEEDED) {
15005 		/*
15006 		 * Send up the ordrel_ind unless we are an eager guy.
15007 		 * In the eager case tcp_rsrv will do this when run
15008 		 * after tcp_accept is done.
15009 		 */
15010 		ASSERT(tcp->tcp_listener == NULL);
15011 		if (tcp->tcp_rcv_list != NULL) {
15012 			/*
15013 			 * Push any mblk(s) enqueued from co processing.
15014 			 */
15015 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15016 		}
15017 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15018 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15019 			tcp->tcp_ordrel_done = B_TRUE;
15020 			putnext(tcp->tcp_rq, mp1);
15021 			if (tcp->tcp_deferred_clean_death) {
15022 				/*
15023 				 * tcp_clean_death was deferred
15024 				 * for T_ORDREL_IND - do it now
15025 				 */
15026 				(void) tcp_clean_death(tcp,
15027 				    tcp->tcp_client_errno, 20);
15028 				tcp->tcp_deferred_clean_death =	B_FALSE;
15029 			}
15030 		} else {
15031 			/*
15032 			 * Run the orderly release in the
15033 			 * service routine.
15034 			 */
15035 			qenable(tcp->tcp_rq);
15036 			/*
15037 			 * Caveat(XXX): The machine may be so
15038 			 * overloaded that tcp_rsrv() is not scheduled
15039 			 * until after the endpoint has transitioned
15040 			 * to TCPS_TIME_WAIT
15041 			 * and tcp_time_wait_interval expires. Then
15042 			 * tcp_timer() will blow away state in tcp_t
15043 			 * and T_ORDREL_IND will never be delivered
15044 			 * upstream. Unlikely but potentially
15045 			 * a problem.
15046 			 */
15047 		}
15048 	}
15049 done:
15050 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15051 }
15052 
15053 /*
15054  * This function does PAWS protection check. Returns B_TRUE if the
15055  * segment passes the PAWS test, else returns B_FALSE.
15056  */
15057 boolean_t
15058 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15059 {
15060 	uint8_t	flags;
15061 	int	options;
15062 	uint8_t *up;
15063 
15064 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15065 	/*
15066 	 * If timestamp option is aligned nicely, get values inline,
15067 	 * otherwise call general routine to parse.  Only do that
15068 	 * if timestamp is the only option.
15069 	 */
15070 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15071 	    TCPOPT_REAL_TS_LEN &&
15072 	    OK_32PTR((up = ((uint8_t *)tcph) +
15073 	    TCP_MIN_HEADER_LENGTH)) &&
15074 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15075 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15076 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15077 
15078 		options = TCP_OPT_TSTAMP_PRESENT;
15079 	} else {
15080 		if (tcp->tcp_snd_sack_ok) {
15081 			tcpoptp->tcp = tcp;
15082 		} else {
15083 			tcpoptp->tcp = NULL;
15084 		}
15085 		options = tcp_parse_options(tcph, tcpoptp);
15086 	}
15087 
15088 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15089 		/*
15090 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15091 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15092 		 */
15093 		if ((flags & TH_RST) == 0 &&
15094 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15095 		    tcp->tcp_ts_recent)) {
15096 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15097 			    PAWS_TIMEOUT)) {
15098 				/* This segment is not acceptable. */
15099 				return (B_FALSE);
15100 			} else {
15101 				/*
15102 				 * Connection has been idle for
15103 				 * too long.  Reset the timestamp
15104 				 * and assume the segment is valid.
15105 				 */
15106 				tcp->tcp_ts_recent =
15107 				    tcpoptp->tcp_opt_ts_val;
15108 			}
15109 		}
15110 	} else {
15111 		/*
15112 		 * If we don't get a timestamp on every packet, we
15113 		 * figure we can't really trust 'em, so we stop sending
15114 		 * and parsing them.
15115 		 */
15116 		tcp->tcp_snd_ts_ok = B_FALSE;
15117 
15118 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15119 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15120 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15121 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
15122 		if (tcp->tcp_snd_sack_ok) {
15123 			ASSERT(tcp->tcp_sack_info != NULL);
15124 			tcp->tcp_max_sack_blk = 4;
15125 		}
15126 	}
15127 	return (B_TRUE);
15128 }
15129 
15130 /*
15131  * Attach ancillary data to a received TCP segments for the
15132  * ancillary pieces requested by the application that are
15133  * different than they were in the previous data segment.
15134  *
15135  * Save the "current" values once memory allocation is ok so that
15136  * when memory allocation fails we can just wait for the next data segment.
15137  */
15138 static mblk_t *
15139 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15140 {
15141 	struct T_optdata_ind *todi;
15142 	int optlen;
15143 	uchar_t *optptr;
15144 	struct T_opthdr *toh;
15145 	uint_t addflag;	/* Which pieces to add */
15146 	mblk_t *mp1;
15147 
15148 	optlen = 0;
15149 	addflag = 0;
15150 	/* If app asked for pktinfo and the index has changed ... */
15151 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15152 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15153 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15154 		optlen += sizeof (struct T_opthdr) +
15155 		    sizeof (struct in6_pktinfo);
15156 		addflag |= TCP_IPV6_RECVPKTINFO;
15157 	}
15158 	/* If app asked for hoplimit and it has changed ... */
15159 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15160 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15161 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15162 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15163 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15164 	}
15165 	/* If app asked for tclass and it has changed ... */
15166 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15167 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15168 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15169 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15170 		addflag |= TCP_IPV6_RECVTCLASS;
15171 	}
15172 	/*
15173 	 * If app asked for hopbyhop headers and it has changed ...
15174 	 * For security labels, note that (1) security labels can't change on
15175 	 * a connected socket at all, (2) we're connected to at most one peer,
15176 	 * (3) if anything changes, then it must be some other extra option.
15177 	 */
15178 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15179 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15180 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15181 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15182 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15183 		    tcp->tcp_label_len;
15184 		addflag |= TCP_IPV6_RECVHOPOPTS;
15185 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15186 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15187 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15188 			return (mp);
15189 	}
15190 	/* If app asked for dst headers before routing headers ... */
15191 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15192 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15193 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
15194 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15195 		optlen += sizeof (struct T_opthdr) +
15196 		    ipp->ipp_rtdstoptslen;
15197 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15198 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15199 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15200 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15201 			return (mp);
15202 	}
15203 	/* If app asked for routing headers and it has changed ... */
15204 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15205 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15206 	    (ipp->ipp_fields & IPPF_RTHDR),
15207 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15208 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15209 		addflag |= TCP_IPV6_RECVRTHDR;
15210 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15211 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15212 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15213 			return (mp);
15214 	}
15215 	/* If app asked for dest headers and it has changed ... */
15216 	if ((tcp->tcp_ipv6_recvancillary &
15217 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15218 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15219 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15220 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15221 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15222 		addflag |= TCP_IPV6_RECVDSTOPTS;
15223 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15224 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15225 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15226 			return (mp);
15227 	}
15228 
15229 	if (optlen == 0) {
15230 		/* Nothing to add */
15231 		return (mp);
15232 	}
15233 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15234 	if (mp1 == NULL) {
15235 		/*
15236 		 * Defer sending ancillary data until the next TCP segment
15237 		 * arrives.
15238 		 */
15239 		return (mp);
15240 	}
15241 	mp1->b_cont = mp;
15242 	mp = mp1;
15243 	mp->b_wptr += sizeof (*todi) + optlen;
15244 	mp->b_datap->db_type = M_PROTO;
15245 	todi = (struct T_optdata_ind *)mp->b_rptr;
15246 	todi->PRIM_type = T_OPTDATA_IND;
15247 	todi->DATA_flag = 1;	/* MORE data */
15248 	todi->OPT_length = optlen;
15249 	todi->OPT_offset = sizeof (*todi);
15250 	optptr = (uchar_t *)&todi[1];
15251 	/*
15252 	 * If app asked for pktinfo and the index has changed ...
15253 	 * Note that the local address never changes for the connection.
15254 	 */
15255 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15256 		struct in6_pktinfo *pkti;
15257 
15258 		toh = (struct T_opthdr *)optptr;
15259 		toh->level = IPPROTO_IPV6;
15260 		toh->name = IPV6_PKTINFO;
15261 		toh->len = sizeof (*toh) + sizeof (*pkti);
15262 		toh->status = 0;
15263 		optptr += sizeof (*toh);
15264 		pkti = (struct in6_pktinfo *)optptr;
15265 		if (tcp->tcp_ipversion == IPV6_VERSION)
15266 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15267 		else
15268 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15269 			    &pkti->ipi6_addr);
15270 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15271 		optptr += sizeof (*pkti);
15272 		ASSERT(OK_32PTR(optptr));
15273 		/* Save as "last" value */
15274 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15275 	}
15276 	/* If app asked for hoplimit and it has changed ... */
15277 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15278 		toh = (struct T_opthdr *)optptr;
15279 		toh->level = IPPROTO_IPV6;
15280 		toh->name = IPV6_HOPLIMIT;
15281 		toh->len = sizeof (*toh) + sizeof (uint_t);
15282 		toh->status = 0;
15283 		optptr += sizeof (*toh);
15284 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15285 		optptr += sizeof (uint_t);
15286 		ASSERT(OK_32PTR(optptr));
15287 		/* Save as "last" value */
15288 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15289 	}
15290 	/* If app asked for tclass and it has changed ... */
15291 	if (addflag & TCP_IPV6_RECVTCLASS) {
15292 		toh = (struct T_opthdr *)optptr;
15293 		toh->level = IPPROTO_IPV6;
15294 		toh->name = IPV6_TCLASS;
15295 		toh->len = sizeof (*toh) + sizeof (uint_t);
15296 		toh->status = 0;
15297 		optptr += sizeof (*toh);
15298 		*(uint_t *)optptr = ipp->ipp_tclass;
15299 		optptr += sizeof (uint_t);
15300 		ASSERT(OK_32PTR(optptr));
15301 		/* Save as "last" value */
15302 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15303 	}
15304 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15305 		toh = (struct T_opthdr *)optptr;
15306 		toh->level = IPPROTO_IPV6;
15307 		toh->name = IPV6_HOPOPTS;
15308 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15309 		    tcp->tcp_label_len;
15310 		toh->status = 0;
15311 		optptr += sizeof (*toh);
15312 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15313 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15314 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15315 		ASSERT(OK_32PTR(optptr));
15316 		/* Save as last value */
15317 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15318 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15319 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15320 	}
15321 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15322 		toh = (struct T_opthdr *)optptr;
15323 		toh->level = IPPROTO_IPV6;
15324 		toh->name = IPV6_RTHDRDSTOPTS;
15325 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15326 		toh->status = 0;
15327 		optptr += sizeof (*toh);
15328 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15329 		optptr += ipp->ipp_rtdstoptslen;
15330 		ASSERT(OK_32PTR(optptr));
15331 		/* Save as last value */
15332 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15333 		    &tcp->tcp_rtdstoptslen,
15334 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15335 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15336 	}
15337 	if (addflag & TCP_IPV6_RECVRTHDR) {
15338 		toh = (struct T_opthdr *)optptr;
15339 		toh->level = IPPROTO_IPV6;
15340 		toh->name = IPV6_RTHDR;
15341 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15342 		toh->status = 0;
15343 		optptr += sizeof (*toh);
15344 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15345 		optptr += ipp->ipp_rthdrlen;
15346 		ASSERT(OK_32PTR(optptr));
15347 		/* Save as last value */
15348 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15349 		    (ipp->ipp_fields & IPPF_RTHDR),
15350 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15351 	}
15352 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15353 		toh = (struct T_opthdr *)optptr;
15354 		toh->level = IPPROTO_IPV6;
15355 		toh->name = IPV6_DSTOPTS;
15356 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15357 		toh->status = 0;
15358 		optptr += sizeof (*toh);
15359 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15360 		optptr += ipp->ipp_dstoptslen;
15361 		ASSERT(OK_32PTR(optptr));
15362 		/* Save as last value */
15363 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15364 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15365 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15366 	}
15367 	ASSERT(optptr == mp->b_wptr);
15368 	return (mp);
15369 }
15370 
15371 
15372 /*
15373  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15374  * or a "bad" IRE detected by tcp_adapt_ire.
15375  * We can't tell if the failure was due to the laddr or the faddr
15376  * thus we clear out all addresses and ports.
15377  */
15378 static void
15379 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15380 {
15381 	queue_t	*q = tcp->tcp_rq;
15382 	tcph_t	*tcph;
15383 	struct T_error_ack *tea;
15384 	conn_t	*connp = tcp->tcp_connp;
15385 
15386 
15387 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15388 
15389 	if (mp->b_cont) {
15390 		freemsg(mp->b_cont);
15391 		mp->b_cont = NULL;
15392 	}
15393 	tea = (struct T_error_ack *)mp->b_rptr;
15394 	switch (tea->PRIM_type) {
15395 	case T_BIND_ACK:
15396 		/*
15397 		 * Need to unbind with classifier since we were just told that
15398 		 * our bind succeeded.
15399 		 */
15400 		tcp->tcp_hard_bound = B_FALSE;
15401 		tcp->tcp_hard_binding = B_FALSE;
15402 
15403 		ipcl_hash_remove(connp);
15404 		/* Reuse the mblk if possible */
15405 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15406 			sizeof (*tea));
15407 		mp->b_rptr = mp->b_datap->db_base;
15408 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15409 		tea = (struct T_error_ack *)mp->b_rptr;
15410 		tea->PRIM_type = T_ERROR_ACK;
15411 		tea->TLI_error = TSYSERR;
15412 		tea->UNIX_error = error;
15413 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15414 			tea->ERROR_prim = T_CONN_REQ;
15415 		} else {
15416 			tea->ERROR_prim = O_T_BIND_REQ;
15417 		}
15418 		break;
15419 
15420 	case T_ERROR_ACK:
15421 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15422 			tea->ERROR_prim = T_CONN_REQ;
15423 		break;
15424 	default:
15425 		panic("tcp_bind_failed: unexpected TPI type");
15426 		/*NOTREACHED*/
15427 	}
15428 
15429 	tcp->tcp_state = TCPS_IDLE;
15430 	if (tcp->tcp_ipversion == IPV4_VERSION)
15431 		tcp->tcp_ipha->ipha_src = 0;
15432 	else
15433 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15434 	/*
15435 	 * Copy of the src addr. in tcp_t is needed since
15436 	 * the lookup funcs. can only look at tcp_t
15437 	 */
15438 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15439 
15440 	tcph = tcp->tcp_tcph;
15441 	tcph->th_lport[0] = 0;
15442 	tcph->th_lport[1] = 0;
15443 	tcp_bind_hash_remove(tcp);
15444 	bzero(&connp->u_port, sizeof (connp->u_port));
15445 	/* blow away saved option results if any */
15446 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15447 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15448 
15449 	conn_delete_ire(tcp->tcp_connp, NULL);
15450 	putnext(q, mp);
15451 }
15452 
15453 /*
15454  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15455  * messages.
15456  */
15457 void
15458 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15459 {
15460 	mblk_t	*mp1;
15461 	uchar_t	*rptr = mp->b_rptr;
15462 	queue_t	*q = tcp->tcp_rq;
15463 	struct T_error_ack *tea;
15464 	uint32_t mss;
15465 	mblk_t *syn_mp;
15466 	mblk_t *mdti;
15467 	mblk_t *lsoi;
15468 	int	retval;
15469 	mblk_t *ire_mp;
15470 
15471 	switch (mp->b_datap->db_type) {
15472 	case M_PROTO:
15473 	case M_PCPROTO:
15474 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15475 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15476 			break;
15477 		tea = (struct T_error_ack *)rptr;
15478 		switch (tea->PRIM_type) {
15479 		case T_BIND_ACK:
15480 			/*
15481 			 * Adapt Multidata information, if any.  The
15482 			 * following tcp_mdt_update routine will free
15483 			 * the message.
15484 			 */
15485 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15486 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15487 				    b_rptr)->mdt_capab, B_TRUE);
15488 				freemsg(mdti);
15489 			}
15490 
15491 			/*
15492 			 * Check to update LSO information with tcp, and
15493 			 * tcp_lso_update routine will free the message.
15494 			 */
15495 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15496 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15497 				    b_rptr)->lso_capab);
15498 				freemsg(lsoi);
15499 			}
15500 
15501 			/* Get the IRE, if we had requested for it */
15502 			ire_mp = tcp_ire_mp(mp);
15503 
15504 			if (tcp->tcp_hard_binding) {
15505 				tcp->tcp_hard_binding = B_FALSE;
15506 				tcp->tcp_hard_bound = B_TRUE;
15507 				CL_INET_CONNECT(tcp);
15508 			} else {
15509 				if (ire_mp != NULL)
15510 					freeb(ire_mp);
15511 				goto after_syn_sent;
15512 			}
15513 
15514 			retval = tcp_adapt_ire(tcp, ire_mp);
15515 			if (ire_mp != NULL)
15516 				freeb(ire_mp);
15517 			if (retval == 0) {
15518 				tcp_bind_failed(tcp, mp,
15519 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15520 				    ENETUNREACH : EADDRNOTAVAIL));
15521 				return;
15522 			}
15523 			/*
15524 			 * Don't let an endpoint connect to itself.
15525 			 * Also checked in tcp_connect() but that
15526 			 * check can't handle the case when the
15527 			 * local IP address is INADDR_ANY.
15528 			 */
15529 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15530 				if ((tcp->tcp_ipha->ipha_dst ==
15531 				    tcp->tcp_ipha->ipha_src) &&
15532 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15533 				    tcp->tcp_tcph->th_fport))) {
15534 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15535 					return;
15536 				}
15537 			} else {
15538 				if (IN6_ARE_ADDR_EQUAL(
15539 				    &tcp->tcp_ip6h->ip6_dst,
15540 				    &tcp->tcp_ip6h->ip6_src) &&
15541 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15542 				    tcp->tcp_tcph->th_fport))) {
15543 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15544 					return;
15545 				}
15546 			}
15547 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15548 			/*
15549 			 * This should not be possible!  Just for
15550 			 * defensive coding...
15551 			 */
15552 			if (tcp->tcp_state != TCPS_SYN_SENT)
15553 				goto after_syn_sent;
15554 
15555 			if (is_system_labeled() &&
15556 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15557 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15558 				return;
15559 			}
15560 
15561 			ASSERT(q == tcp->tcp_rq);
15562 			/*
15563 			 * tcp_adapt_ire() does not adjust
15564 			 * for TCP/IP header length.
15565 			 */
15566 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15567 
15568 			/*
15569 			 * Just make sure our rwnd is at
15570 			 * least tcp_recv_hiwat_mss * MSS
15571 			 * large, and round up to the nearest
15572 			 * MSS.
15573 			 *
15574 			 * We do the round up here because
15575 			 * we need to get the interface
15576 			 * MTU first before we can do the
15577 			 * round up.
15578 			 */
15579 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15580 			    tcp_recv_hiwat_minmss * mss);
15581 			q->q_hiwat = tcp->tcp_rwnd;
15582 			tcp_set_ws_value(tcp);
15583 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15584 			    tcp->tcp_tcph->th_win);
15585 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15586 				tcp->tcp_snd_ws_ok = B_TRUE;
15587 
15588 			/*
15589 			 * Set tcp_snd_ts_ok to true
15590 			 * so that tcp_xmit_mp will
15591 			 * include the timestamp
15592 			 * option in the SYN segment.
15593 			 */
15594 			if (tcp_tstamp_always ||
15595 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15596 				tcp->tcp_snd_ts_ok = B_TRUE;
15597 			}
15598 
15599 			/*
15600 			 * tcp_snd_sack_ok can be set in
15601 			 * tcp_adapt_ire() if the sack metric
15602 			 * is set.  So check it here also.
15603 			 */
15604 			if (tcp_sack_permitted == 2 ||
15605 			    tcp->tcp_snd_sack_ok) {
15606 				if (tcp->tcp_sack_info == NULL) {
15607 					tcp->tcp_sack_info =
15608 					kmem_cache_alloc(tcp_sack_info_cache,
15609 					    KM_SLEEP);
15610 				}
15611 				tcp->tcp_snd_sack_ok = B_TRUE;
15612 			}
15613 
15614 			/*
15615 			 * Should we use ECN?  Note that the current
15616 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15617 			 * is 1.  The reason for doing this is that there
15618 			 * are equipments out there that will drop ECN
15619 			 * enabled IP packets.  Setting it to 1 avoids
15620 			 * compatibility problems.
15621 			 */
15622 			if (tcp_ecn_permitted == 2)
15623 				tcp->tcp_ecn_ok = B_TRUE;
15624 
15625 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15626 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15627 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15628 			if (syn_mp) {
15629 				cred_t *cr;
15630 				pid_t pid;
15631 
15632 				/*
15633 				 * Obtain the credential from the
15634 				 * thread calling connect(); the credential
15635 				 * lives on in the second mblk which
15636 				 * originated from T_CONN_REQ and is echoed
15637 				 * with the T_BIND_ACK from ip.  If none
15638 				 * can be found, default to the creator
15639 				 * of the socket.
15640 				 */
15641 				if (mp->b_cont == NULL ||
15642 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15643 					cr = tcp->tcp_cred;
15644 					pid = tcp->tcp_cpid;
15645 				} else {
15646 					pid = DB_CPID(mp->b_cont);
15647 				}
15648 
15649 				TCP_RECORD_TRACE(tcp, syn_mp,
15650 				    TCP_TRACE_SEND_PKT);
15651 				mblk_setcred(syn_mp, cr);
15652 				DB_CPID(syn_mp) = pid;
15653 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15654 			}
15655 		after_syn_sent:
15656 			/*
15657 			 * A trailer mblk indicates a waiting client upstream.
15658 			 * We complete here the processing begun in
15659 			 * either tcp_bind() or tcp_connect() by passing
15660 			 * upstream the reply message they supplied.
15661 			 */
15662 			mp1 = mp;
15663 			mp = mp->b_cont;
15664 			freeb(mp1);
15665 			if (mp)
15666 				break;
15667 			return;
15668 		case T_ERROR_ACK:
15669 			if (tcp->tcp_debug) {
15670 				(void) strlog(TCP_MOD_ID, 0, 1,
15671 				    SL_TRACE|SL_ERROR,
15672 				    "tcp_rput_other: case T_ERROR_ACK, "
15673 				    "ERROR_prim == %d",
15674 				    tea->ERROR_prim);
15675 			}
15676 			switch (tea->ERROR_prim) {
15677 			case O_T_BIND_REQ:
15678 			case T_BIND_REQ:
15679 				tcp_bind_failed(tcp, mp,
15680 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15681 				    ENETUNREACH : EADDRNOTAVAIL));
15682 				return;
15683 			case T_UNBIND_REQ:
15684 				tcp->tcp_hard_binding = B_FALSE;
15685 				tcp->tcp_hard_bound = B_FALSE;
15686 				if (mp->b_cont) {
15687 					freemsg(mp->b_cont);
15688 					mp->b_cont = NULL;
15689 				}
15690 				if (tcp->tcp_unbind_pending)
15691 					tcp->tcp_unbind_pending = 0;
15692 				else {
15693 					/* From tcp_ip_unbind() - free */
15694 					freemsg(mp);
15695 					return;
15696 				}
15697 				break;
15698 			case T_SVR4_OPTMGMT_REQ:
15699 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15700 					/* T_OPTMGMT_REQ generated by TCP */
15701 					printf("T_SVR4_OPTMGMT_REQ failed "
15702 					    "%d/%d - dropped (cnt %d)\n",
15703 					    tea->TLI_error, tea->UNIX_error,
15704 					    tcp->tcp_drop_opt_ack_cnt);
15705 					freemsg(mp);
15706 					tcp->tcp_drop_opt_ack_cnt--;
15707 					return;
15708 				}
15709 				break;
15710 			}
15711 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15712 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15713 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15714 				    "- dropped (cnt %d)\n",
15715 				    tea->TLI_error, tea->UNIX_error,
15716 				    tcp->tcp_drop_opt_ack_cnt);
15717 				freemsg(mp);
15718 				tcp->tcp_drop_opt_ack_cnt--;
15719 				return;
15720 			}
15721 			break;
15722 		case T_OPTMGMT_ACK:
15723 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15724 				/* T_OPTMGMT_REQ generated by TCP */
15725 				freemsg(mp);
15726 				tcp->tcp_drop_opt_ack_cnt--;
15727 				return;
15728 			}
15729 			break;
15730 		default:
15731 			break;
15732 		}
15733 		break;
15734 	case M_FLUSH:
15735 		if (*rptr & FLUSHR)
15736 			flushq(q, FLUSHDATA);
15737 		break;
15738 	default:
15739 		/* M_CTL will be directly sent to tcp_icmp_error() */
15740 		ASSERT(DB_TYPE(mp) != M_CTL);
15741 		break;
15742 	}
15743 	/*
15744 	 * Make sure we set this bit before sending the ACK for
15745 	 * bind. Otherwise accept could possibly run and free
15746 	 * this tcp struct.
15747 	 */
15748 	putnext(q, mp);
15749 }
15750 
15751 /*
15752  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15753  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15754  * tcp_rsrv() try again.
15755  */
15756 static void
15757 tcp_ordrel_kick(void *arg)
15758 {
15759 	conn_t 	*connp = (conn_t *)arg;
15760 	tcp_t	*tcp = connp->conn_tcp;
15761 
15762 	tcp->tcp_ordrelid = 0;
15763 	tcp->tcp_timeout = B_FALSE;
15764 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15765 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15766 		qenable(tcp->tcp_rq);
15767 	}
15768 }
15769 
15770 /* ARGSUSED */
15771 static void
15772 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15773 {
15774 	conn_t	*connp = (conn_t *)arg;
15775 	tcp_t	*tcp = connp->conn_tcp;
15776 	queue_t	*q = tcp->tcp_rq;
15777 	uint_t	thwin;
15778 
15779 	freeb(mp);
15780 
15781 	TCP_STAT(tcp_rsrv_calls);
15782 
15783 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15784 		return;
15785 	}
15786 
15787 	if (tcp->tcp_fused) {
15788 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15789 
15790 		ASSERT(tcp->tcp_fused);
15791 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15792 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15793 		ASSERT(!TCP_IS_DETACHED(tcp));
15794 		ASSERT(tcp->tcp_connp->conn_sqp ==
15795 		    peer_tcp->tcp_connp->conn_sqp);
15796 
15797 		/*
15798 		 * Normally we would not get backenabled in synchronous
15799 		 * streams mode, but in case this happens, we need to plug
15800 		 * synchronous streams during our drain to prevent a race
15801 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15802 		 */
15803 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15804 		if (tcp->tcp_rcv_list != NULL)
15805 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15806 
15807 		tcp_clrqfull(peer_tcp);
15808 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15809 		TCP_STAT(tcp_fusion_backenabled);
15810 		return;
15811 	}
15812 
15813 	if (canputnext(q)) {
15814 		tcp->tcp_rwnd = q->q_hiwat;
15815 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15816 		    << tcp->tcp_rcv_ws;
15817 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15818 		/*
15819 		 * Send back a window update immediately if TCP is above
15820 		 * ESTABLISHED state and the increase of the rcv window
15821 		 * that the other side knows is at least 1 MSS after flow
15822 		 * control is lifted.
15823 		 */
15824 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15825 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15826 			tcp_xmit_ctl(NULL, tcp,
15827 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15828 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15829 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15830 		}
15831 	}
15832 	/* Handle a failure to allocate a T_ORDREL_IND here */
15833 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15834 		ASSERT(tcp->tcp_listener == NULL);
15835 		if (tcp->tcp_rcv_list != NULL) {
15836 			(void) tcp_rcv_drain(q, tcp);
15837 		}
15838 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15839 		mp = mi_tpi_ordrel_ind();
15840 		if (mp) {
15841 			tcp->tcp_ordrel_done = B_TRUE;
15842 			putnext(q, mp);
15843 			if (tcp->tcp_deferred_clean_death) {
15844 				/*
15845 				 * tcp_clean_death was deferred for
15846 				 * T_ORDREL_IND - do it now
15847 				 */
15848 				tcp->tcp_deferred_clean_death = B_FALSE;
15849 				(void) tcp_clean_death(tcp,
15850 				    tcp->tcp_client_errno, 22);
15851 			}
15852 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15853 			/*
15854 			 * If there isn't already a timer running
15855 			 * start one.  Use a 4 second
15856 			 * timer as a fallback since it can't fail.
15857 			 */
15858 			tcp->tcp_timeout = B_TRUE;
15859 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15860 			    MSEC_TO_TICK(4000));
15861 		}
15862 	}
15863 }
15864 
15865 /*
15866  * The read side service routine is called mostly when we get back-enabled as a
15867  * result of flow control relief.  Since we don't actually queue anything in
15868  * TCP, we have no data to send out of here.  What we do is clear the receive
15869  * window, and send out a window update.
15870  * This routine is also called to drive an orderly release message upstream
15871  * if the attempt in tcp_rput failed.
15872  */
15873 static void
15874 tcp_rsrv(queue_t *q)
15875 {
15876 	conn_t *connp = Q_TO_CONN(q);
15877 	tcp_t	*tcp = connp->conn_tcp;
15878 	mblk_t	*mp;
15879 
15880 	/* No code does a putq on the read side */
15881 	ASSERT(q->q_first == NULL);
15882 
15883 	/* Nothing to do for the default queue */
15884 	if (q == tcp_g_q) {
15885 		return;
15886 	}
15887 
15888 	mp = allocb(0, BPRI_HI);
15889 	if (mp == NULL) {
15890 		/*
15891 		 * We are under memory pressure. Return for now and we
15892 		 * we will be called again later.
15893 		 */
15894 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15895 			/*
15896 			 * If there isn't already a timer running
15897 			 * start one.  Use a 4 second
15898 			 * timer as a fallback since it can't fail.
15899 			 */
15900 			tcp->tcp_timeout = B_TRUE;
15901 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15902 			    MSEC_TO_TICK(4000));
15903 		}
15904 		return;
15905 	}
15906 	CONN_INC_REF(connp);
15907 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15908 	    SQTAG_TCP_RSRV);
15909 }
15910 
15911 /*
15912  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15913  * We do not allow the receive window to shrink.  After setting rwnd,
15914  * set the flow control hiwat of the stream.
15915  *
15916  * This function is called in 2 cases:
15917  *
15918  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15919  *    connection (passive open) and in tcp_rput_data() for active connect.
15920  *    This is called after tcp_mss_set() when the desired MSS value is known.
15921  *    This makes sure that our window size is a mutiple of the other side's
15922  *    MSS.
15923  * 2) Handling SO_RCVBUF option.
15924  *
15925  * It is ASSUMED that the requested size is a multiple of the current MSS.
15926  *
15927  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15928  * user requests so.
15929  */
15930 static int
15931 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15932 {
15933 	uint32_t	mss = tcp->tcp_mss;
15934 	uint32_t	old_max_rwnd;
15935 	uint32_t	max_transmittable_rwnd;
15936 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15937 
15938 	if (tcp->tcp_fused) {
15939 		size_t sth_hiwat;
15940 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15941 
15942 		ASSERT(peer_tcp != NULL);
15943 		/*
15944 		 * Record the stream head's high water mark for
15945 		 * this endpoint; this is used for flow-control
15946 		 * purposes in tcp_fuse_output().
15947 		 */
15948 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15949 		if (!tcp_detached)
15950 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15951 
15952 		/*
15953 		 * In the fusion case, the maxpsz stream head value of
15954 		 * our peer is set according to its send buffer size
15955 		 * and our receive buffer size; since the latter may
15956 		 * have changed we need to update the peer's maxpsz.
15957 		 */
15958 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15959 		return (rwnd);
15960 	}
15961 
15962 	if (tcp_detached)
15963 		old_max_rwnd = tcp->tcp_rwnd;
15964 	else
15965 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15966 
15967 	/*
15968 	 * Insist on a receive window that is at least
15969 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15970 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15971 	 * and delayed acknowledgement.
15972 	 */
15973 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15974 
15975 	/*
15976 	 * If window size info has already been exchanged, TCP should not
15977 	 * shrink the window.  Shrinking window is doable if done carefully.
15978 	 * We may add that support later.  But so far there is not a real
15979 	 * need to do that.
15980 	 */
15981 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15982 		/* MSS may have changed, do a round up again. */
15983 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15984 	}
15985 
15986 	/*
15987 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15988 	 * can be applied even before the window scale option is decided.
15989 	 */
15990 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15991 	if (rwnd > max_transmittable_rwnd) {
15992 		rwnd = max_transmittable_rwnd -
15993 		    (max_transmittable_rwnd % mss);
15994 		if (rwnd < mss)
15995 			rwnd = max_transmittable_rwnd;
15996 		/*
15997 		 * If we're over the limit we may have to back down tcp_rwnd.
15998 		 * The increment below won't work for us. So we set all three
15999 		 * here and the increment below will have no effect.
16000 		 */
16001 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16002 	}
16003 	if (tcp->tcp_localnet) {
16004 		tcp->tcp_rack_abs_max =
16005 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
16006 	} else {
16007 		/*
16008 		 * For a remote host on a different subnet (through a router),
16009 		 * we ack every other packet to be conforming to RFC1122.
16010 		 * tcp_deferred_acks_max is default to 2.
16011 		 */
16012 		tcp->tcp_rack_abs_max =
16013 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
16014 	}
16015 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16016 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16017 	else
16018 		tcp->tcp_rack_cur_max = 0;
16019 	/*
16020 	 * Increment the current rwnd by the amount the maximum grew (we
16021 	 * can not overwrite it since we might be in the middle of a
16022 	 * connection.)
16023 	 */
16024 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16025 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16026 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16027 		tcp->tcp_cwnd_max = rwnd;
16028 
16029 	if (tcp_detached)
16030 		return (rwnd);
16031 	/*
16032 	 * We set the maximum receive window into rq->q_hiwat.
16033 	 * This is not actually used for flow control.
16034 	 */
16035 	tcp->tcp_rq->q_hiwat = rwnd;
16036 	/*
16037 	 * Set the Stream head high water mark. This doesn't have to be
16038 	 * here, since we are simply using default values, but we would
16039 	 * prefer to choose these values algorithmically, with a likely
16040 	 * relationship to rwnd.
16041 	 */
16042 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
16043 	return (rwnd);
16044 }
16045 
16046 /*
16047  * Return SNMP stuff in buffer in mpdata.
16048  */
16049 int
16050 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16051 {
16052 	mblk_t			*mpdata;
16053 	mblk_t			*mp_conn_ctl = NULL;
16054 	mblk_t			*mp_conn_tail;
16055 	mblk_t			*mp_attr_ctl = NULL;
16056 	mblk_t			*mp_attr_tail;
16057 	mblk_t			*mp6_conn_ctl = NULL;
16058 	mblk_t			*mp6_conn_tail;
16059 	mblk_t			*mp6_attr_ctl = NULL;
16060 	mblk_t			*mp6_attr_tail;
16061 	struct opthdr		*optp;
16062 	mib2_tcpConnEntry_t	tce;
16063 	mib2_tcp6ConnEntry_t	tce6;
16064 	mib2_transportMLPEntry_t mlp;
16065 	connf_t			*connfp;
16066 	conn_t			*connp;
16067 	int			i;
16068 	boolean_t 		ispriv;
16069 	zoneid_t 		zoneid;
16070 	int			v4_conn_idx;
16071 	int			v6_conn_idx;
16072 
16073 	if (mpctl == NULL ||
16074 	    (mpdata = mpctl->b_cont) == NULL ||
16075 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16076 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16077 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16078 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16079 		freemsg(mp_conn_ctl);
16080 		freemsg(mp_attr_ctl);
16081 		freemsg(mp6_conn_ctl);
16082 		freemsg(mp6_attr_ctl);
16083 		return (0);
16084 	}
16085 
16086 	/* build table of connections -- need count in fixed part */
16087 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
16088 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
16089 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
16090 	SET_MIB(tcp_mib.tcpMaxConn, -1);
16091 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
16092 
16093 	ispriv =
16094 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16095 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16096 
16097 	v4_conn_idx = v6_conn_idx = 0;
16098 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16099 
16100 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16101 
16102 		connfp = &ipcl_globalhash_fanout[i];
16103 
16104 		connp = NULL;
16105 
16106 		while ((connp =
16107 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16108 			tcp_t *tcp;
16109 			boolean_t needattr;
16110 
16111 			if (connp->conn_zoneid != zoneid)
16112 				continue;	/* not in this zone */
16113 
16114 			tcp = connp->conn_tcp;
16115 			UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs);
16116 			tcp->tcp_ibsegs = 0;
16117 			UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs);
16118 			tcp->tcp_obsegs = 0;
16119 
16120 			tce6.tcp6ConnState = tce.tcpConnState =
16121 			    tcp_snmp_state(tcp);
16122 			if (tce.tcpConnState == MIB2_TCP_established ||
16123 			    tce.tcpConnState == MIB2_TCP_closeWait)
16124 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
16125 
16126 			needattr = B_FALSE;
16127 			bzero(&mlp, sizeof (mlp));
16128 			if (connp->conn_mlp_type != mlptSingle) {
16129 				if (connp->conn_mlp_type == mlptShared ||
16130 				    connp->conn_mlp_type == mlptBoth)
16131 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16132 				if (connp->conn_mlp_type == mlptPrivate ||
16133 				    connp->conn_mlp_type == mlptBoth)
16134 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16135 				needattr = B_TRUE;
16136 			}
16137 			if (connp->conn_peercred != NULL) {
16138 				ts_label_t *tsl;
16139 
16140 				tsl = crgetlabel(connp->conn_peercred);
16141 				mlp.tme_doi = label2doi(tsl);
16142 				mlp.tme_label = *label2bslabel(tsl);
16143 				needattr = B_TRUE;
16144 			}
16145 
16146 			/* Create a message to report on IPv6 entries */
16147 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16148 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16149 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16150 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16151 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16152 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16153 			/* Don't want just anybody seeing these... */
16154 			if (ispriv) {
16155 				tce6.tcp6ConnEntryInfo.ce_snxt =
16156 				    tcp->tcp_snxt;
16157 				tce6.tcp6ConnEntryInfo.ce_suna =
16158 				    tcp->tcp_suna;
16159 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16160 				    tcp->tcp_rnxt;
16161 				tce6.tcp6ConnEntryInfo.ce_rack =
16162 				    tcp->tcp_rack;
16163 			} else {
16164 				/*
16165 				 * Netstat, unfortunately, uses this to
16166 				 * get send/receive queue sizes.  How to fix?
16167 				 * Why not compute the difference only?
16168 				 */
16169 				tce6.tcp6ConnEntryInfo.ce_snxt =
16170 				    tcp->tcp_snxt - tcp->tcp_suna;
16171 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16172 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16173 				    tcp->tcp_rnxt - tcp->tcp_rack;
16174 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16175 			}
16176 
16177 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16178 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16179 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16180 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16181 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16182 
16183 			tce6.tcp6ConnCreationProcess =
16184 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16185 			    tcp->tcp_cpid;
16186 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16187 
16188 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16189 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16190 
16191 			mlp.tme_connidx = v6_conn_idx++;
16192 			if (needattr)
16193 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16194 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16195 			}
16196 			/*
16197 			 * Create an IPv4 table entry for IPv4 entries and also
16198 			 * for IPv6 entries which are bound to in6addr_any
16199 			 * but don't have IPV6_V6ONLY set.
16200 			 * (i.e. anything an IPv4 peer could connect to)
16201 			 */
16202 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16203 			    (tcp->tcp_state <= TCPS_LISTEN &&
16204 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16205 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16206 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16207 					tce.tcpConnRemAddress = INADDR_ANY;
16208 					tce.tcpConnLocalAddress = INADDR_ANY;
16209 				} else {
16210 					tce.tcpConnRemAddress =
16211 					    tcp->tcp_remote;
16212 					tce.tcpConnLocalAddress =
16213 					    tcp->tcp_ip_src;
16214 				}
16215 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16216 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16217 				/* Don't want just anybody seeing these... */
16218 				if (ispriv) {
16219 					tce.tcpConnEntryInfo.ce_snxt =
16220 					    tcp->tcp_snxt;
16221 					tce.tcpConnEntryInfo.ce_suna =
16222 					    tcp->tcp_suna;
16223 					tce.tcpConnEntryInfo.ce_rnxt =
16224 					    tcp->tcp_rnxt;
16225 					tce.tcpConnEntryInfo.ce_rack =
16226 					    tcp->tcp_rack;
16227 				} else {
16228 					/*
16229 					 * Netstat, unfortunately, uses this to
16230 					 * get send/receive queue sizes.  How
16231 					 * to fix?
16232 					 * Why not compute the difference only?
16233 					 */
16234 					tce.tcpConnEntryInfo.ce_snxt =
16235 					    tcp->tcp_snxt - tcp->tcp_suna;
16236 					tce.tcpConnEntryInfo.ce_suna = 0;
16237 					tce.tcpConnEntryInfo.ce_rnxt =
16238 					    tcp->tcp_rnxt - tcp->tcp_rack;
16239 					tce.tcpConnEntryInfo.ce_rack = 0;
16240 				}
16241 
16242 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16243 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16244 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16245 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16246 				tce.tcpConnEntryInfo.ce_state =
16247 				    tcp->tcp_state;
16248 
16249 				tce.tcpConnCreationProcess =
16250 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16251 				    tcp->tcp_cpid;
16252 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16253 
16254 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16255 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16256 
16257 				mlp.tme_connidx = v4_conn_idx++;
16258 				if (needattr)
16259 					(void) snmp_append_data2(
16260 					    mp_attr_ctl->b_cont,
16261 					    &mp_attr_tail, (char *)&mlp,
16262 					    sizeof (mlp));
16263 			}
16264 		}
16265 	}
16266 
16267 	/* fixed length structure for IPv4 and IPv6 counters */
16268 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16269 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
16270 	/* synchronize 32- and 64-bit counters */
16271 	SYNC32_MIB(&tcp_mib, tcpInSegs, tcpHCInSegs);
16272 	SYNC32_MIB(&tcp_mib, tcpOutSegs, tcpHCOutSegs);
16273 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16274 	optp->level = MIB2_TCP;
16275 	optp->name = 0;
16276 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16277 	optp->len = msgdsize(mpdata);
16278 	qreply(q, mpctl);
16279 
16280 	/* table of connections... */
16281 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16282 	    sizeof (struct T_optmgmt_ack)];
16283 	optp->level = MIB2_TCP;
16284 	optp->name = MIB2_TCP_CONN;
16285 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16286 	qreply(q, mp_conn_ctl);
16287 
16288 	/* table of MLP attributes... */
16289 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16290 	    sizeof (struct T_optmgmt_ack)];
16291 	optp->level = MIB2_TCP;
16292 	optp->name = EXPER_XPORT_MLP;
16293 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16294 	if (optp->len == 0)
16295 		freemsg(mp_attr_ctl);
16296 	else
16297 		qreply(q, mp_attr_ctl);
16298 
16299 	/* table of IPv6 connections... */
16300 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16301 	    sizeof (struct T_optmgmt_ack)];
16302 	optp->level = MIB2_TCP6;
16303 	optp->name = MIB2_TCP6_CONN;
16304 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16305 	qreply(q, mp6_conn_ctl);
16306 
16307 	/* table of IPv6 MLP attributes... */
16308 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16309 	    sizeof (struct T_optmgmt_ack)];
16310 	optp->level = MIB2_TCP6;
16311 	optp->name = EXPER_XPORT_MLP;
16312 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16313 	if (optp->len == 0)
16314 		freemsg(mp6_attr_ctl);
16315 	else
16316 		qreply(q, mp6_attr_ctl);
16317 	return (1);
16318 }
16319 
16320 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16321 /* ARGSUSED */
16322 int
16323 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16324 {
16325 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16326 
16327 	switch (level) {
16328 	case MIB2_TCP:
16329 		switch (name) {
16330 		case 13:
16331 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16332 				return (0);
16333 			/* TODO: delete entry defined by tce */
16334 			return (1);
16335 		default:
16336 			return (0);
16337 		}
16338 	default:
16339 		return (1);
16340 	}
16341 }
16342 
16343 /* Translate TCP state to MIB2 TCP state. */
16344 static int
16345 tcp_snmp_state(tcp_t *tcp)
16346 {
16347 	if (tcp == NULL)
16348 		return (0);
16349 
16350 	switch (tcp->tcp_state) {
16351 	case TCPS_CLOSED:
16352 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16353 	case TCPS_BOUND:
16354 		return (MIB2_TCP_closed);
16355 	case TCPS_LISTEN:
16356 		return (MIB2_TCP_listen);
16357 	case TCPS_SYN_SENT:
16358 		return (MIB2_TCP_synSent);
16359 	case TCPS_SYN_RCVD:
16360 		return (MIB2_TCP_synReceived);
16361 	case TCPS_ESTABLISHED:
16362 		return (MIB2_TCP_established);
16363 	case TCPS_CLOSE_WAIT:
16364 		return (MIB2_TCP_closeWait);
16365 	case TCPS_FIN_WAIT_1:
16366 		return (MIB2_TCP_finWait1);
16367 	case TCPS_CLOSING:
16368 		return (MIB2_TCP_closing);
16369 	case TCPS_LAST_ACK:
16370 		return (MIB2_TCP_lastAck);
16371 	case TCPS_FIN_WAIT_2:
16372 		return (MIB2_TCP_finWait2);
16373 	case TCPS_TIME_WAIT:
16374 		return (MIB2_TCP_timeWait);
16375 	default:
16376 		return (0);
16377 	}
16378 }
16379 
16380 static char tcp_report_header[] =
16381 	"TCP     " MI_COL_HDRPAD_STR
16382 	"zone dest            snxt     suna     "
16383 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16384 	"recent   [lport,fport] state";
16385 
16386 /*
16387  * TCP status report triggered via the Named Dispatch mechanism.
16388  */
16389 /* ARGSUSED */
16390 static void
16391 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16392     cred_t *cr)
16393 {
16394 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16395 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16396 	char cflag;
16397 	in6_addr_t	v6dst;
16398 	char buf[80];
16399 	uint_t print_len, buf_len;
16400 
16401 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16402 	if (buf_len <= 0)
16403 		return;
16404 
16405 	if (hashval >= 0)
16406 		(void) sprintf(hash, "%03d ", hashval);
16407 	else
16408 		hash[0] = '\0';
16409 
16410 	/*
16411 	 * Note that we use the remote address in the tcp_b  structure.
16412 	 * This means that it will print out the real destination address,
16413 	 * not the next hop's address if source routing is used.  This
16414 	 * avoid the confusion on the output because user may not
16415 	 * know that source routing is used for a connection.
16416 	 */
16417 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16418 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16419 	} else {
16420 		v6dst = tcp->tcp_remote_v6;
16421 	}
16422 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16423 	/*
16424 	 * the ispriv checks are so that normal users cannot determine
16425 	 * sequence number information using NDD.
16426 	 */
16427 
16428 	if (TCP_IS_DETACHED(tcp))
16429 		cflag = '*';
16430 	else
16431 		cflag = ' ';
16432 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16433 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16434 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16435 	    hash,
16436 	    (void *)tcp,
16437 	    tcp->tcp_connp->conn_zoneid,
16438 	    addrbuf,
16439 	    (ispriv) ? tcp->tcp_snxt : 0,
16440 	    (ispriv) ? tcp->tcp_suna : 0,
16441 	    tcp->tcp_swnd,
16442 	    (ispriv) ? tcp->tcp_rnxt : 0,
16443 	    (ispriv) ? tcp->tcp_rack : 0,
16444 	    tcp->tcp_rwnd,
16445 	    tcp->tcp_rto,
16446 	    tcp->tcp_mss,
16447 	    tcp->tcp_snd_ws_ok,
16448 	    tcp->tcp_snd_ws,
16449 	    tcp->tcp_rcv_ws,
16450 	    tcp->tcp_snd_ts_ok,
16451 	    tcp->tcp_ts_recent,
16452 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16453 	if (print_len < buf_len) {
16454 		((mblk_t *)mp)->b_wptr += print_len;
16455 	} else {
16456 		((mblk_t *)mp)->b_wptr += buf_len;
16457 	}
16458 }
16459 
16460 /*
16461  * TCP status report (for listeners only) triggered via the Named Dispatch
16462  * mechanism.
16463  */
16464 /* ARGSUSED */
16465 static void
16466 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16467 {
16468 	char addrbuf[INET6_ADDRSTRLEN];
16469 	in6_addr_t	v6dst;
16470 	uint_t print_len, buf_len;
16471 
16472 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16473 	if (buf_len <= 0)
16474 		return;
16475 
16476 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16477 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16478 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16479 	} else {
16480 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16481 		    addrbuf, sizeof (addrbuf));
16482 	}
16483 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16484 	    "%03d "
16485 	    MI_COL_PTRFMT_STR
16486 	    "%d %s %05u %08u %d/%d/%d%c\n",
16487 	    hashval, (void *)tcp,
16488 	    tcp->tcp_connp->conn_zoneid,
16489 	    addrbuf,
16490 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16491 	    tcp->tcp_conn_req_seqnum,
16492 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16493 	    tcp->tcp_conn_req_max,
16494 	    tcp->tcp_syn_defense ? '*' : ' ');
16495 	if (print_len < buf_len) {
16496 		((mblk_t *)mp)->b_wptr += print_len;
16497 	} else {
16498 		((mblk_t *)mp)->b_wptr += buf_len;
16499 	}
16500 }
16501 
16502 /* TCP status report triggered via the Named Dispatch mechanism. */
16503 /* ARGSUSED */
16504 static int
16505 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16506 {
16507 	tcp_t	*tcp;
16508 	int	i;
16509 	conn_t	*connp;
16510 	connf_t	*connfp;
16511 	zoneid_t zoneid;
16512 
16513 	/*
16514 	 * Because of the ndd constraint, at most we can have 64K buffer
16515 	 * to put in all TCP info.  So to be more efficient, just
16516 	 * allocate a 64K buffer here, assuming we need that large buffer.
16517 	 * This may be a problem as any user can read tcp_status.  Therefore
16518 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16519 	 * This should be OK as normal users should not do this too often.
16520 	 */
16521 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16522 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16523 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16524 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16525 			return (0);
16526 		}
16527 	}
16528 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16529 		/* The following may work even if we cannot get a large buf. */
16530 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16531 		return (0);
16532 	}
16533 
16534 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16535 
16536 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16537 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16538 
16539 		connfp = &ipcl_globalhash_fanout[i];
16540 
16541 		connp = NULL;
16542 
16543 		while ((connp =
16544 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16545 			tcp = connp->conn_tcp;
16546 			if (zoneid != GLOBAL_ZONEID &&
16547 			    zoneid != connp->conn_zoneid)
16548 				continue;
16549 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16550 			    cr);
16551 		}
16552 
16553 	}
16554 
16555 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16556 	return (0);
16557 }
16558 
16559 /* TCP status report triggered via the Named Dispatch mechanism. */
16560 /* ARGSUSED */
16561 static int
16562 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16563 {
16564 	tf_t	*tbf;
16565 	tcp_t	*tcp;
16566 	int	i;
16567 	zoneid_t zoneid;
16568 
16569 	/* Refer to comments in tcp_status_report(). */
16570 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16571 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16572 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16573 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16574 			return (0);
16575 		}
16576 	}
16577 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16578 		/* The following may work even if we cannot get a large buf. */
16579 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16580 		return (0);
16581 	}
16582 
16583 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16584 
16585 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16586 
16587 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16588 		tbf = &tcp_bind_fanout[i];
16589 		mutex_enter(&tbf->tf_lock);
16590 		for (tcp = tbf->tf_tcp; tcp != NULL;
16591 		    tcp = tcp->tcp_bind_hash) {
16592 			if (zoneid != GLOBAL_ZONEID &&
16593 			    zoneid != tcp->tcp_connp->conn_zoneid)
16594 				continue;
16595 			CONN_INC_REF(tcp->tcp_connp);
16596 			tcp_report_item(mp->b_cont, tcp, i,
16597 			    Q_TO_TCP(q), cr);
16598 			CONN_DEC_REF(tcp->tcp_connp);
16599 		}
16600 		mutex_exit(&tbf->tf_lock);
16601 	}
16602 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16603 	return (0);
16604 }
16605 
16606 /* TCP status report triggered via the Named Dispatch mechanism. */
16607 /* ARGSUSED */
16608 static int
16609 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16610 {
16611 	connf_t	*connfp;
16612 	conn_t	*connp;
16613 	tcp_t	*tcp;
16614 	int	i;
16615 	zoneid_t zoneid;
16616 
16617 	/* Refer to comments in tcp_status_report(). */
16618 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16619 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16620 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16621 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16622 			return (0);
16623 		}
16624 	}
16625 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16626 		/* The following may work even if we cannot get a large buf. */
16627 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16628 		return (0);
16629 	}
16630 
16631 	(void) mi_mpprintf(mp,
16632 	    "    TCP    " MI_COL_HDRPAD_STR
16633 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16634 
16635 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16636 
16637 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16638 		connfp =  &ipcl_bind_fanout[i];
16639 		connp = NULL;
16640 		while ((connp =
16641 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16642 			tcp = connp->conn_tcp;
16643 			if (zoneid != GLOBAL_ZONEID &&
16644 			    zoneid != connp->conn_zoneid)
16645 				continue;
16646 			tcp_report_listener(mp->b_cont, tcp, i);
16647 		}
16648 	}
16649 
16650 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16651 	return (0);
16652 }
16653 
16654 /* TCP status report triggered via the Named Dispatch mechanism. */
16655 /* ARGSUSED */
16656 static int
16657 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16658 {
16659 	connf_t	*connfp;
16660 	conn_t	*connp;
16661 	tcp_t	*tcp;
16662 	int	i;
16663 	zoneid_t zoneid;
16664 
16665 	/* Refer to comments in tcp_status_report(). */
16666 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16667 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16668 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16669 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16670 			return (0);
16671 		}
16672 	}
16673 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16674 		/* The following may work even if we cannot get a large buf. */
16675 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16676 		return (0);
16677 	}
16678 
16679 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16680 	    ipcl_conn_fanout_size);
16681 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16682 
16683 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16684 
16685 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16686 		connfp =  &ipcl_conn_fanout[i];
16687 		connp = NULL;
16688 		while ((connp =
16689 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16690 			tcp = connp->conn_tcp;
16691 			if (zoneid != GLOBAL_ZONEID &&
16692 			    zoneid != connp->conn_zoneid)
16693 				continue;
16694 			tcp_report_item(mp->b_cont, tcp, i,
16695 			    Q_TO_TCP(q), cr);
16696 		}
16697 	}
16698 
16699 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16700 	return (0);
16701 }
16702 
16703 /* TCP status report triggered via the Named Dispatch mechanism. */
16704 /* ARGSUSED */
16705 static int
16706 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16707 {
16708 	tf_t	*tf;
16709 	tcp_t	*tcp;
16710 	int	i;
16711 	zoneid_t zoneid;
16712 
16713 	/* Refer to comments in tcp_status_report(). */
16714 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16715 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16716 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16717 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16718 			return (0);
16719 		}
16720 	}
16721 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16722 		/* The following may work even if we cannot get a large buf. */
16723 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16724 		return (0);
16725 	}
16726 
16727 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16728 
16729 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16730 
16731 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16732 		tf = &tcp_acceptor_fanout[i];
16733 		mutex_enter(&tf->tf_lock);
16734 		for (tcp = tf->tf_tcp; tcp != NULL;
16735 		    tcp = tcp->tcp_acceptor_hash) {
16736 			if (zoneid != GLOBAL_ZONEID &&
16737 			    zoneid != tcp->tcp_connp->conn_zoneid)
16738 				continue;
16739 			tcp_report_item(mp->b_cont, tcp, i,
16740 			    Q_TO_TCP(q), cr);
16741 		}
16742 		mutex_exit(&tf->tf_lock);
16743 	}
16744 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16745 	return (0);
16746 }
16747 
16748 /*
16749  * tcp_timer is the timer service routine.  It handles the retransmission,
16750  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16751  * from the state of the tcp instance what kind of action needs to be done
16752  * at the time it is called.
16753  */
16754 static void
16755 tcp_timer(void *arg)
16756 {
16757 	mblk_t		*mp;
16758 	clock_t		first_threshold;
16759 	clock_t		second_threshold;
16760 	clock_t		ms;
16761 	uint32_t	mss;
16762 	conn_t		*connp = (conn_t *)arg;
16763 	tcp_t		*tcp = connp->conn_tcp;
16764 
16765 	tcp->tcp_timer_tid = 0;
16766 
16767 	if (tcp->tcp_fused)
16768 		return;
16769 
16770 	first_threshold =  tcp->tcp_first_timer_threshold;
16771 	second_threshold = tcp->tcp_second_timer_threshold;
16772 	switch (tcp->tcp_state) {
16773 	case TCPS_IDLE:
16774 	case TCPS_BOUND:
16775 	case TCPS_LISTEN:
16776 		return;
16777 	case TCPS_SYN_RCVD: {
16778 		tcp_t	*listener = tcp->tcp_listener;
16779 
16780 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16781 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16782 			/* it's our first timeout */
16783 			tcp->tcp_syn_rcvd_timeout = 1;
16784 			mutex_enter(&listener->tcp_eager_lock);
16785 			listener->tcp_syn_rcvd_timeout++;
16786 			if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) {
16787 				/*
16788 				 * Make this eager available for drop if we
16789 				 * need to drop one to accomodate a new
16790 				 * incoming SYN request.
16791 				 */
16792 				MAKE_DROPPABLE(listener, tcp);
16793 			}
16794 			if (!listener->tcp_syn_defense &&
16795 			    (listener->tcp_syn_rcvd_timeout >
16796 			    (tcp_conn_req_max_q0 >> 2)) &&
16797 			    (tcp_conn_req_max_q0 > 200)) {
16798 				/* We may be under attack. Put on a defense. */
16799 				listener->tcp_syn_defense = B_TRUE;
16800 				cmn_err(CE_WARN, "High TCP connect timeout "
16801 				    "rate! System (port %d) may be under a "
16802 				    "SYN flood attack!",
16803 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16804 
16805 				listener->tcp_ip_addr_cache = kmem_zalloc(
16806 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16807 				    KM_NOSLEEP);
16808 			}
16809 			mutex_exit(&listener->tcp_eager_lock);
16810 		} else if (listener != NULL) {
16811 			mutex_enter(&listener->tcp_eager_lock);
16812 			tcp->tcp_syn_rcvd_timeout++;
16813 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16814 			    tcp->tcp_closemp_used == 0) {
16815 				/*
16816 				 * This is our second timeout. Put the tcp in
16817 				 * the list of droppable eagers to allow it to
16818 				 * be dropped, if needed. We don't check
16819 				 * whether tcp_dontdrop is set or not to
16820 				 * protect ourselve from a SYN attack where a
16821 				 * remote host can spoof itself as one of the
16822 				 * good IP source and continue to hold
16823 				 * resources too long.
16824 				 */
16825 				MAKE_DROPPABLE(listener, tcp);
16826 			}
16827 			mutex_exit(&listener->tcp_eager_lock);
16828 		}
16829 	}
16830 		/* FALLTHRU */
16831 	case TCPS_SYN_SENT:
16832 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16833 		second_threshold = tcp->tcp_second_ctimer_threshold;
16834 		break;
16835 	case TCPS_ESTABLISHED:
16836 	case TCPS_FIN_WAIT_1:
16837 	case TCPS_CLOSING:
16838 	case TCPS_CLOSE_WAIT:
16839 	case TCPS_LAST_ACK:
16840 		/* If we have data to rexmit */
16841 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16842 			clock_t	time_to_wait;
16843 
16844 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16845 			if (!tcp->tcp_xmit_head)
16846 				break;
16847 			time_to_wait = lbolt -
16848 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16849 			time_to_wait = tcp->tcp_rto -
16850 			    TICK_TO_MSEC(time_to_wait);
16851 			/*
16852 			 * If the timer fires too early, 1 clock tick earlier,
16853 			 * restart the timer.
16854 			 */
16855 			if (time_to_wait > msec_per_tick) {
16856 				TCP_STAT(tcp_timer_fire_early);
16857 				TCP_TIMER_RESTART(tcp, time_to_wait);
16858 				return;
16859 			}
16860 			/*
16861 			 * When we probe zero windows, we force the swnd open.
16862 			 * If our peer acks with a closed window swnd will be
16863 			 * set to zero by tcp_rput(). As long as we are
16864 			 * receiving acks tcp_rput will
16865 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16866 			 * first and second interval actions.  NOTE: the timer
16867 			 * interval is allowed to continue its exponential
16868 			 * backoff.
16869 			 */
16870 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16871 				if (tcp->tcp_debug) {
16872 					(void) strlog(TCP_MOD_ID, 0, 1,
16873 					    SL_TRACE, "tcp_timer: zero win");
16874 				}
16875 			} else {
16876 				/*
16877 				 * After retransmission, we need to do
16878 				 * slow start.  Set the ssthresh to one
16879 				 * half of current effective window and
16880 				 * cwnd to one MSS.  Also reset
16881 				 * tcp_cwnd_cnt.
16882 				 *
16883 				 * Note that if tcp_ssthresh is reduced because
16884 				 * of ECN, do not reduce it again unless it is
16885 				 * already one window of data away (tcp_cwr
16886 				 * should then be cleared) or this is a
16887 				 * timeout for a retransmitted segment.
16888 				 */
16889 				uint32_t npkt;
16890 
16891 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16892 					npkt = ((tcp->tcp_timer_backoff ?
16893 					    tcp->tcp_cwnd_ssthresh :
16894 					    tcp->tcp_snxt -
16895 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16896 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16897 					    tcp->tcp_mss;
16898 				}
16899 				tcp->tcp_cwnd = tcp->tcp_mss;
16900 				tcp->tcp_cwnd_cnt = 0;
16901 				if (tcp->tcp_ecn_ok) {
16902 					tcp->tcp_cwr = B_TRUE;
16903 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16904 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16905 				}
16906 			}
16907 			break;
16908 		}
16909 		/*
16910 		 * We have something to send yet we cannot send.  The
16911 		 * reason can be:
16912 		 *
16913 		 * 1. Zero send window: we need to do zero window probe.
16914 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16915 		 * segments.
16916 		 * 3. SWS avoidance: receiver may have shrunk window,
16917 		 * reset our knowledge.
16918 		 *
16919 		 * Note that condition 2 can happen with either 1 or
16920 		 * 3.  But 1 and 3 are exclusive.
16921 		 */
16922 		if (tcp->tcp_unsent != 0) {
16923 			if (tcp->tcp_cwnd == 0) {
16924 				/*
16925 				 * Set tcp_cwnd to 1 MSS so that a
16926 				 * new segment can be sent out.  We
16927 				 * are "clocking out" new data when
16928 				 * the network is really congested.
16929 				 */
16930 				ASSERT(tcp->tcp_ecn_ok);
16931 				tcp->tcp_cwnd = tcp->tcp_mss;
16932 			}
16933 			if (tcp->tcp_swnd == 0) {
16934 				/* Extend window for zero window probe */
16935 				tcp->tcp_swnd++;
16936 				tcp->tcp_zero_win_probe = B_TRUE;
16937 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16938 			} else {
16939 				/*
16940 				 * Handle timeout from sender SWS avoidance.
16941 				 * Reset our knowledge of the max send window
16942 				 * since the receiver might have reduced its
16943 				 * receive buffer.  Avoid setting tcp_max_swnd
16944 				 * to one since that will essentially disable
16945 				 * the SWS checks.
16946 				 *
16947 				 * Note that since we don't have a SWS
16948 				 * state variable, if the timeout is set
16949 				 * for ECN but not for SWS, this
16950 				 * code will also be executed.  This is
16951 				 * fine as tcp_max_swnd is updated
16952 				 * constantly and it will not affect
16953 				 * anything.
16954 				 */
16955 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16956 			}
16957 			tcp_wput_data(tcp, NULL, B_FALSE);
16958 			return;
16959 		}
16960 		/* Is there a FIN that needs to be to re retransmitted? */
16961 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16962 		    !tcp->tcp_fin_acked)
16963 			break;
16964 		/* Nothing to do, return without restarting timer. */
16965 		TCP_STAT(tcp_timer_fire_miss);
16966 		return;
16967 	case TCPS_FIN_WAIT_2:
16968 		/*
16969 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16970 		 * We waited some time for for peer's FIN, but it hasn't
16971 		 * arrived.  We flush the connection now to avoid
16972 		 * case where the peer has rebooted.
16973 		 */
16974 		if (TCP_IS_DETACHED(tcp)) {
16975 			(void) tcp_clean_death(tcp, 0, 23);
16976 		} else {
16977 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16978 		}
16979 		return;
16980 	case TCPS_TIME_WAIT:
16981 		(void) tcp_clean_death(tcp, 0, 24);
16982 		return;
16983 	default:
16984 		if (tcp->tcp_debug) {
16985 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16986 			    "tcp_timer: strange state (%d) %s",
16987 			    tcp->tcp_state, tcp_display(tcp, NULL,
16988 			    DISP_PORT_ONLY));
16989 		}
16990 		return;
16991 	}
16992 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16993 		/*
16994 		 * For zero window probe, we need to send indefinitely,
16995 		 * unless we have not heard from the other side for some
16996 		 * time...
16997 		 */
16998 		if ((tcp->tcp_zero_win_probe == 0) ||
16999 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17000 		    second_threshold)) {
17001 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
17002 			/*
17003 			 * If TCP is in SYN_RCVD state, send back a
17004 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17005 			 * should be zero in TCPS_SYN_RCVD state.
17006 			 */
17007 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17008 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17009 				    "in SYN_RCVD",
17010 				    tcp, tcp->tcp_snxt,
17011 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17012 			}
17013 			(void) tcp_clean_death(tcp,
17014 			    tcp->tcp_client_errno ?
17015 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17016 			return;
17017 		} else {
17018 			/*
17019 			 * Set tcp_ms_we_have_waited to second_threshold
17020 			 * so that in next timeout, we will do the above
17021 			 * check (lbolt - tcp_last_recv_time).  This is
17022 			 * also to avoid overflow.
17023 			 *
17024 			 * We don't need to decrement tcp_timer_backoff
17025 			 * to avoid overflow because it will be decremented
17026 			 * later if new timeout value is greater than
17027 			 * tcp_rexmit_interval_max.  In the case when
17028 			 * tcp_rexmit_interval_max is greater than
17029 			 * second_threshold, it means that we will wait
17030 			 * longer than second_threshold to send the next
17031 			 * window probe.
17032 			 */
17033 			tcp->tcp_ms_we_have_waited = second_threshold;
17034 		}
17035 	} else if (ms > first_threshold) {
17036 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17037 		    tcp->tcp_xmit_head != NULL) {
17038 			tcp->tcp_xmit_head =
17039 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17040 		}
17041 		/*
17042 		 * We have been retransmitting for too long...  The RTT
17043 		 * we calculated is probably incorrect.  Reinitialize it.
17044 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17045 		 * tcp_rtt_update so that we won't accidentally cache a
17046 		 * bad value.  But only do this if this is not a zero
17047 		 * window probe.
17048 		 */
17049 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17050 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17051 			    (tcp->tcp_rtt_sa >> 5);
17052 			tcp->tcp_rtt_sa = 0;
17053 			tcp_ip_notify(tcp);
17054 			tcp->tcp_rtt_update = 0;
17055 		}
17056 	}
17057 	tcp->tcp_timer_backoff++;
17058 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17059 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17060 	    tcp_rexmit_interval_min) {
17061 		/*
17062 		 * This means the original RTO is tcp_rexmit_interval_min.
17063 		 * So we will use tcp_rexmit_interval_min as the RTO value
17064 		 * and do the backoff.
17065 		 */
17066 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
17067 	} else {
17068 		ms <<= tcp->tcp_timer_backoff;
17069 	}
17070 	if (ms > tcp_rexmit_interval_max) {
17071 		ms = tcp_rexmit_interval_max;
17072 		/*
17073 		 * ms is at max, decrement tcp_timer_backoff to avoid
17074 		 * overflow.
17075 		 */
17076 		tcp->tcp_timer_backoff--;
17077 	}
17078 	tcp->tcp_ms_we_have_waited += ms;
17079 	if (tcp->tcp_zero_win_probe == 0) {
17080 		tcp->tcp_rto = ms;
17081 	}
17082 	TCP_TIMER_RESTART(tcp, ms);
17083 	/*
17084 	 * This is after a timeout and tcp_rto is backed off.  Set
17085 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17086 	 * restart the timer with a correct value.
17087 	 */
17088 	tcp->tcp_set_timer = 1;
17089 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17090 	if (mss > tcp->tcp_mss)
17091 		mss = tcp->tcp_mss;
17092 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17093 		mss = tcp->tcp_swnd;
17094 
17095 	if ((mp = tcp->tcp_xmit_head) != NULL)
17096 		mp->b_prev = (mblk_t *)lbolt;
17097 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17098 	    B_TRUE);
17099 
17100 	/*
17101 	 * When slow start after retransmission begins, start with
17102 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17103 	 * start phase.  tcp_snd_burst controls how many segments
17104 	 * can be sent because of an ack.
17105 	 */
17106 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17107 	tcp->tcp_snd_burst = TCP_CWND_SS;
17108 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17109 	    (tcp->tcp_unsent == 0)) {
17110 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17111 	} else {
17112 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17113 	}
17114 	tcp->tcp_rexmit = B_TRUE;
17115 	tcp->tcp_dupack_cnt = 0;
17116 
17117 	/*
17118 	 * Remove all rexmit SACK blk to start from fresh.
17119 	 */
17120 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17121 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17122 		tcp->tcp_num_notsack_blk = 0;
17123 		tcp->tcp_cnt_notsack_list = 0;
17124 	}
17125 	if (mp == NULL) {
17126 		return;
17127 	}
17128 	/* Attach credentials to retransmitted initial SYNs. */
17129 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17130 		mblk_setcred(mp, tcp->tcp_cred);
17131 		DB_CPID(mp) = tcp->tcp_cpid;
17132 	}
17133 
17134 	tcp->tcp_csuna = tcp->tcp_snxt;
17135 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
17136 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
17137 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17138 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17139 
17140 }
17141 
17142 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17143 static void
17144 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17145 {
17146 	conn_t	*connp;
17147 
17148 	switch (tcp->tcp_state) {
17149 	case TCPS_BOUND:
17150 	case TCPS_LISTEN:
17151 		break;
17152 	default:
17153 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17154 		return;
17155 	}
17156 
17157 	/*
17158 	 * Need to clean up all the eagers since after the unbind, segments
17159 	 * will no longer be delivered to this listener stream.
17160 	 */
17161 	mutex_enter(&tcp->tcp_eager_lock);
17162 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17163 		tcp_eager_cleanup(tcp, 0);
17164 	}
17165 	mutex_exit(&tcp->tcp_eager_lock);
17166 
17167 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17168 		tcp->tcp_ipha->ipha_src = 0;
17169 	} else {
17170 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17171 	}
17172 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17173 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17174 	tcp_bind_hash_remove(tcp);
17175 	tcp->tcp_state = TCPS_IDLE;
17176 	tcp->tcp_mdt = B_FALSE;
17177 	/* Send M_FLUSH according to TPI */
17178 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17179 	connp = tcp->tcp_connp;
17180 	connp->conn_mdt_ok = B_FALSE;
17181 	ipcl_hash_remove(connp);
17182 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17183 	mp = mi_tpi_ok_ack_alloc(mp);
17184 	putnext(tcp->tcp_rq, mp);
17185 }
17186 
17187 /*
17188  * Don't let port fall into the privileged range.
17189  * Since the extra privileged ports can be arbitrary we also
17190  * ensure that we exclude those from consideration.
17191  * tcp_g_epriv_ports is not sorted thus we loop over it until
17192  * there are no changes.
17193  *
17194  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17195  * but instead the code relies on:
17196  * - the fact that the address of the array and its size never changes
17197  * - the atomic assignment of the elements of the array
17198  *
17199  * Returns 0 if there are no more ports available.
17200  *
17201  * TS note: skip multilevel ports.
17202  */
17203 static in_port_t
17204 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17205 {
17206 	int i;
17207 	boolean_t restart = B_FALSE;
17208 
17209 	if (random && tcp_random_anon_port != 0) {
17210 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17211 		    sizeof (in_port_t));
17212 		/*
17213 		 * Unless changed by a sys admin, the smallest anon port
17214 		 * is 32768 and the largest anon port is 65535.  It is
17215 		 * very likely (50%) for the random port to be smaller
17216 		 * than the smallest anon port.  When that happens,
17217 		 * add port % (anon port range) to the smallest anon
17218 		 * port to get the random port.  It should fall into the
17219 		 * valid anon port range.
17220 		 */
17221 		if (port < tcp_smallest_anon_port) {
17222 			port = tcp_smallest_anon_port +
17223 			    port % (tcp_largest_anon_port -
17224 				tcp_smallest_anon_port);
17225 		}
17226 	}
17227 
17228 retry:
17229 	if (port < tcp_smallest_anon_port)
17230 		port = (in_port_t)tcp_smallest_anon_port;
17231 
17232 	if (port > tcp_largest_anon_port) {
17233 		if (restart)
17234 			return (0);
17235 		restart = B_TRUE;
17236 		port = (in_port_t)tcp_smallest_anon_port;
17237 	}
17238 
17239 	if (port < tcp_smallest_nonpriv_port)
17240 		port = (in_port_t)tcp_smallest_nonpriv_port;
17241 
17242 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
17243 		if (port == tcp_g_epriv_ports[i]) {
17244 			port++;
17245 			/*
17246 			 * Make sure whether the port is in the
17247 			 * valid range.
17248 			 */
17249 			goto retry;
17250 		}
17251 	}
17252 	if (is_system_labeled() &&
17253 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17254 	    IPPROTO_TCP, B_TRUE)) != 0) {
17255 		port = i;
17256 		goto retry;
17257 	}
17258 	return (port);
17259 }
17260 
17261 /*
17262  * Return the next anonymous port in the privileged port range for
17263  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17264  * downwards.  This is the same behavior as documented in the userland
17265  * library call rresvport(3N).
17266  *
17267  * TS note: skip multilevel ports.
17268  */
17269 static in_port_t
17270 tcp_get_next_priv_port(const tcp_t *tcp)
17271 {
17272 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17273 	in_port_t nextport;
17274 	boolean_t restart = B_FALSE;
17275 
17276 retry:
17277 	if (next_priv_port < tcp_min_anonpriv_port ||
17278 	    next_priv_port >= IPPORT_RESERVED) {
17279 		next_priv_port = IPPORT_RESERVED - 1;
17280 		if (restart)
17281 			return (0);
17282 		restart = B_TRUE;
17283 	}
17284 	if (is_system_labeled() &&
17285 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17286 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17287 		next_priv_port = nextport;
17288 		goto retry;
17289 	}
17290 	return (next_priv_port--);
17291 }
17292 
17293 /* The write side r/w procedure. */
17294 
17295 #if CCS_STATS
17296 struct {
17297 	struct {
17298 		int64_t count, bytes;
17299 	} tot, hit;
17300 } wrw_stats;
17301 #endif
17302 
17303 /*
17304  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17305  * messages.
17306  */
17307 /* ARGSUSED */
17308 static void
17309 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17310 {
17311 	conn_t	*connp = (conn_t *)arg;
17312 	tcp_t	*tcp = connp->conn_tcp;
17313 	queue_t	*q = tcp->tcp_wq;
17314 
17315 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17316 	/*
17317 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17318 	 * Once the close starts, streamhead and sockfs will not let any data
17319 	 * packets come down (close ensures that there are no threads using the
17320 	 * queue and no new threads will come down) but since qprocsoff()
17321 	 * hasn't happened yet, a M_FLUSH or some non data message might
17322 	 * get reflected back (in response to our own FLUSHRW) and get
17323 	 * processed after tcp_close() is done. The conn would still be valid
17324 	 * because a ref would have added but we need to check the state
17325 	 * before actually processing the packet.
17326 	 */
17327 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17328 		freemsg(mp);
17329 		return;
17330 	}
17331 
17332 	switch (DB_TYPE(mp)) {
17333 	case M_IOCDATA:
17334 		tcp_wput_iocdata(tcp, mp);
17335 		break;
17336 	case M_FLUSH:
17337 		tcp_wput_flush(tcp, mp);
17338 		break;
17339 	default:
17340 		CALL_IP_WPUT(connp, q, mp);
17341 		break;
17342 	}
17343 }
17344 
17345 /*
17346  * The TCP fast path write put procedure.
17347  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17348  */
17349 /* ARGSUSED */
17350 void
17351 tcp_output(void *arg, mblk_t *mp, void *arg2)
17352 {
17353 	int		len;
17354 	int		hdrlen;
17355 	int		plen;
17356 	mblk_t		*mp1;
17357 	uchar_t		*rptr;
17358 	uint32_t	snxt;
17359 	tcph_t		*tcph;
17360 	struct datab	*db;
17361 	uint32_t	suna;
17362 	uint32_t	mss;
17363 	ipaddr_t	*dst;
17364 	ipaddr_t	*src;
17365 	uint32_t	sum;
17366 	int		usable;
17367 	conn_t		*connp = (conn_t *)arg;
17368 	tcp_t		*tcp = connp->conn_tcp;
17369 	uint32_t	msize;
17370 
17371 	/*
17372 	 * Try and ASSERT the minimum possible references on the
17373 	 * conn early enough. Since we are executing on write side,
17374 	 * the connection is obviously not detached and that means
17375 	 * there is a ref each for TCP and IP. Since we are behind
17376 	 * the squeue, the minimum references needed are 3. If the
17377 	 * conn is in classifier hash list, there should be an
17378 	 * extra ref for that (we check both the possibilities).
17379 	 */
17380 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17381 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17382 
17383 	ASSERT(DB_TYPE(mp) == M_DATA);
17384 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17385 
17386 	mutex_enter(&connp->conn_lock);
17387 	tcp->tcp_squeue_bytes -= msize;
17388 	mutex_exit(&connp->conn_lock);
17389 
17390 	/* Bypass tcp protocol for fused tcp loopback */
17391 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17392 		return;
17393 
17394 	mss = tcp->tcp_mss;
17395 	if (tcp->tcp_xmit_zc_clean)
17396 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17397 
17398 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17399 	len = (int)(mp->b_wptr - mp->b_rptr);
17400 
17401 	/*
17402 	 * Criteria for fast path:
17403 	 *
17404 	 *   1. no unsent data
17405 	 *   2. single mblk in request
17406 	 *   3. connection established
17407 	 *   4. data in mblk
17408 	 *   5. len <= mss
17409 	 *   6. no tcp_valid bits
17410 	 */
17411 	if ((tcp->tcp_unsent != 0) ||
17412 	    (tcp->tcp_cork) ||
17413 	    (mp->b_cont != NULL) ||
17414 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17415 	    (len == 0) ||
17416 	    (len > mss) ||
17417 	    (tcp->tcp_valid_bits != 0)) {
17418 		tcp_wput_data(tcp, mp, B_FALSE);
17419 		return;
17420 	}
17421 
17422 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17423 	ASSERT(tcp->tcp_fin_sent == 0);
17424 
17425 	/* queue new packet onto retransmission queue */
17426 	if (tcp->tcp_xmit_head == NULL) {
17427 		tcp->tcp_xmit_head = mp;
17428 	} else {
17429 		tcp->tcp_xmit_last->b_cont = mp;
17430 	}
17431 	tcp->tcp_xmit_last = mp;
17432 	tcp->tcp_xmit_tail = mp;
17433 
17434 	/* find out how much we can send */
17435 	/* BEGIN CSTYLED */
17436 	/*
17437 	 *    un-acked           usable
17438 	 *  |--------------|-----------------|
17439 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17440 	 */
17441 	/* END CSTYLED */
17442 
17443 	/* start sending from tcp_snxt */
17444 	snxt = tcp->tcp_snxt;
17445 
17446 	/*
17447 	 * Check to see if this connection has been idled for some
17448 	 * time and no ACK is expected.  If it is, we need to slow
17449 	 * start again to get back the connection's "self-clock" as
17450 	 * described in VJ's paper.
17451 	 *
17452 	 * Refer to the comment in tcp_mss_set() for the calculation
17453 	 * of tcp_cwnd after idle.
17454 	 */
17455 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17456 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17457 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17458 	}
17459 
17460 	usable = tcp->tcp_swnd;		/* tcp window size */
17461 	if (usable > tcp->tcp_cwnd)
17462 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17463 	usable -= snxt;		/* subtract stuff already sent */
17464 	suna = tcp->tcp_suna;
17465 	usable += suna;
17466 	/* usable can be < 0 if the congestion window is smaller */
17467 	if (len > usable) {
17468 		/* Can't send complete M_DATA in one shot */
17469 		goto slow;
17470 	}
17471 
17472 	if (tcp->tcp_flow_stopped &&
17473 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17474 		tcp_clrqfull(tcp);
17475 	}
17476 
17477 	/*
17478 	 * determine if anything to send (Nagle).
17479 	 *
17480 	 *   1. len < tcp_mss (i.e. small)
17481 	 *   2. unacknowledged data present
17482 	 *   3. len < nagle limit
17483 	 *   4. last packet sent < nagle limit (previous packet sent)
17484 	 */
17485 	if ((len < mss) && (snxt != suna) &&
17486 	    (len < (int)tcp->tcp_naglim) &&
17487 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17488 		/*
17489 		 * This was the first unsent packet and normally
17490 		 * mss < xmit_hiwater so there is no need to worry
17491 		 * about flow control. The next packet will go
17492 		 * through the flow control check in tcp_wput_data().
17493 		 */
17494 		/* leftover work from above */
17495 		tcp->tcp_unsent = len;
17496 		tcp->tcp_xmit_tail_unsent = len;
17497 
17498 		return;
17499 	}
17500 
17501 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17502 
17503 	if (snxt == suna) {
17504 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17505 	}
17506 
17507 	/* we have always sent something */
17508 	tcp->tcp_rack_cnt = 0;
17509 
17510 	tcp->tcp_snxt = snxt + len;
17511 	tcp->tcp_rack = tcp->tcp_rnxt;
17512 
17513 	if ((mp1 = dupb(mp)) == 0)
17514 		goto no_memory;
17515 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17516 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17517 
17518 	/* adjust tcp header information */
17519 	tcph = tcp->tcp_tcph;
17520 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17521 
17522 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17523 	sum = (sum >> 16) + (sum & 0xFFFF);
17524 	U16_TO_ABE16(sum, tcph->th_sum);
17525 
17526 	U32_TO_ABE32(snxt, tcph->th_seq);
17527 
17528 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17529 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17530 	BUMP_LOCAL(tcp->tcp_obsegs);
17531 
17532 	/* Update the latest receive window size in TCP header. */
17533 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17534 	    tcph->th_win);
17535 
17536 	tcp->tcp_last_sent_len = (ushort_t)len;
17537 
17538 	plen = len + tcp->tcp_hdr_len;
17539 
17540 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17541 		tcp->tcp_ipha->ipha_length = htons(plen);
17542 	} else {
17543 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17544 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17545 	}
17546 
17547 	/* see if we need to allocate a mblk for the headers */
17548 	hdrlen = tcp->tcp_hdr_len;
17549 	rptr = mp1->b_rptr - hdrlen;
17550 	db = mp1->b_datap;
17551 	if ((db->db_ref != 2) || rptr < db->db_base ||
17552 	    (!OK_32PTR(rptr))) {
17553 		/* NOTE: we assume allocb returns an OK_32PTR */
17554 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17555 		    tcp_wroff_xtra, BPRI_MED);
17556 		if (!mp) {
17557 			freemsg(mp1);
17558 			goto no_memory;
17559 		}
17560 		mp->b_cont = mp1;
17561 		mp1 = mp;
17562 		/* Leave room for Link Level header */
17563 		/* hdrlen = tcp->tcp_hdr_len; */
17564 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17565 		mp1->b_wptr = &rptr[hdrlen];
17566 	}
17567 	mp1->b_rptr = rptr;
17568 
17569 	/* Fill in the timestamp option. */
17570 	if (tcp->tcp_snd_ts_ok) {
17571 		U32_TO_BE32((uint32_t)lbolt,
17572 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17573 		U32_TO_BE32(tcp->tcp_ts_recent,
17574 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17575 	} else {
17576 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17577 	}
17578 
17579 	/* copy header into outgoing packet */
17580 	dst = (ipaddr_t *)rptr;
17581 	src = (ipaddr_t *)tcp->tcp_iphc;
17582 	dst[0] = src[0];
17583 	dst[1] = src[1];
17584 	dst[2] = src[2];
17585 	dst[3] = src[3];
17586 	dst[4] = src[4];
17587 	dst[5] = src[5];
17588 	dst[6] = src[6];
17589 	dst[7] = src[7];
17590 	dst[8] = src[8];
17591 	dst[9] = src[9];
17592 	if (hdrlen -= 40) {
17593 		hdrlen >>= 2;
17594 		dst += 10;
17595 		src += 10;
17596 		do {
17597 			*dst++ = *src++;
17598 		} while (--hdrlen);
17599 	}
17600 
17601 	/*
17602 	 * Set the ECN info in the TCP header.  Note that this
17603 	 * is not the template header.
17604 	 */
17605 	if (tcp->tcp_ecn_ok) {
17606 		SET_ECT(tcp, rptr);
17607 
17608 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17609 		if (tcp->tcp_ecn_echo_on)
17610 			tcph->th_flags[0] |= TH_ECE;
17611 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17612 			tcph->th_flags[0] |= TH_CWR;
17613 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17614 		}
17615 	}
17616 
17617 	if (tcp->tcp_ip_forward_progress) {
17618 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17619 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17620 		tcp->tcp_ip_forward_progress = B_FALSE;
17621 	}
17622 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17623 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17624 	return;
17625 
17626 	/*
17627 	 * If we ran out of memory, we pretend to have sent the packet
17628 	 * and that it was lost on the wire.
17629 	 */
17630 no_memory:
17631 	return;
17632 
17633 slow:
17634 	/* leftover work from above */
17635 	tcp->tcp_unsent = len;
17636 	tcp->tcp_xmit_tail_unsent = len;
17637 	tcp_wput_data(tcp, NULL, B_FALSE);
17638 }
17639 
17640 /*
17641  * The function called through squeue to get behind eager's perimeter to
17642  * finish the accept processing.
17643  */
17644 /* ARGSUSED */
17645 void
17646 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17647 {
17648 	conn_t			*connp = (conn_t *)arg;
17649 	tcp_t			*tcp = connp->conn_tcp;
17650 	queue_t			*q = tcp->tcp_rq;
17651 	mblk_t			*mp1;
17652 	mblk_t			*stropt_mp = mp;
17653 	struct  stroptions	*stropt;
17654 	uint_t			thwin;
17655 
17656 	/*
17657 	 * Drop the eager's ref on the listener, that was placed when
17658 	 * this eager began life in tcp_conn_request.
17659 	 */
17660 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17661 
17662 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17663 		/*
17664 		 * Someone blewoff the eager before we could finish
17665 		 * the accept.
17666 		 *
17667 		 * The only reason eager exists it because we put in
17668 		 * a ref on it when conn ind went up. We need to send
17669 		 * a disconnect indication up while the last reference
17670 		 * on the eager will be dropped by the squeue when we
17671 		 * return.
17672 		 */
17673 		ASSERT(tcp->tcp_listener == NULL);
17674 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17675 			struct	T_discon_ind	*tdi;
17676 
17677 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17678 			/*
17679 			 * Let us reuse the incoming mblk to avoid memory
17680 			 * allocation failure problems. We know that the
17681 			 * size of the incoming mblk i.e. stroptions is greater
17682 			 * than sizeof T_discon_ind. So the reallocb below
17683 			 * can't fail.
17684 			 */
17685 			freemsg(mp->b_cont);
17686 			mp->b_cont = NULL;
17687 			ASSERT(DB_REF(mp) == 1);
17688 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17689 			    B_FALSE);
17690 			ASSERT(mp != NULL);
17691 			DB_TYPE(mp) = M_PROTO;
17692 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17693 			tdi = (struct T_discon_ind *)mp->b_rptr;
17694 			if (tcp->tcp_issocket) {
17695 				tdi->DISCON_reason = ECONNREFUSED;
17696 				tdi->SEQ_number = 0;
17697 			} else {
17698 				tdi->DISCON_reason = ENOPROTOOPT;
17699 				tdi->SEQ_number =
17700 				    tcp->tcp_conn_req_seqnum;
17701 			}
17702 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17703 			putnext(q, mp);
17704 		} else {
17705 			freemsg(mp);
17706 		}
17707 		if (tcp->tcp_hard_binding) {
17708 			tcp->tcp_hard_binding = B_FALSE;
17709 			tcp->tcp_hard_bound = B_TRUE;
17710 		}
17711 		tcp->tcp_detached = B_FALSE;
17712 		return;
17713 	}
17714 
17715 	mp1 = stropt_mp->b_cont;
17716 	stropt_mp->b_cont = NULL;
17717 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17718 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17719 
17720 	while (mp1 != NULL) {
17721 		mp = mp1;
17722 		mp1 = mp1->b_cont;
17723 		mp->b_cont = NULL;
17724 		tcp->tcp_drop_opt_ack_cnt++;
17725 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17726 	}
17727 	mp = NULL;
17728 
17729 	/*
17730 	 * For a loopback connection with tcp_direct_sockfs on, note that
17731 	 * we don't have to protect tcp_rcv_list yet because synchronous
17732 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17733 	 * possibly race with us.
17734 	 */
17735 
17736 	/*
17737 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17738 	 * properly.  This is the first time we know of the acceptor'
17739 	 * queue.  So we do it here.
17740 	 */
17741 	if (tcp->tcp_rcv_list == NULL) {
17742 		/*
17743 		 * Recv queue is empty, tcp_rwnd should not have changed.
17744 		 * That means it should be equal to the listener's tcp_rwnd.
17745 		 */
17746 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17747 	} else {
17748 #ifdef DEBUG
17749 		uint_t cnt = 0;
17750 
17751 		mp1 = tcp->tcp_rcv_list;
17752 		while ((mp = mp1) != NULL) {
17753 			mp1 = mp->b_next;
17754 			cnt += msgdsize(mp);
17755 		}
17756 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17757 #endif
17758 		/* There is some data, add them back to get the max. */
17759 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17760 	}
17761 
17762 	stropt->so_flags = SO_HIWAT;
17763 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17764 
17765 	stropt->so_flags |= SO_MAXBLK;
17766 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17767 
17768 	/*
17769 	 * This is the first time we run on the correct
17770 	 * queue after tcp_accept. So fix all the q parameters
17771 	 * here.
17772 	 */
17773 	/* Allocate room for SACK options if needed. */
17774 	stropt->so_flags |= SO_WROFF;
17775 	if (tcp->tcp_fused) {
17776 		ASSERT(tcp->tcp_loopback);
17777 		ASSERT(tcp->tcp_loopback_peer != NULL);
17778 		/*
17779 		 * For fused tcp loopback, set the stream head's write
17780 		 * offset value to zero since we won't be needing any room
17781 		 * for TCP/IP headers.  This would also improve performance
17782 		 * since it would reduce the amount of work done by kmem.
17783 		 * Non-fused tcp loopback case is handled separately below.
17784 		 */
17785 		stropt->so_wroff = 0;
17786 		/*
17787 		 * Record the stream head's high water mark for this endpoint;
17788 		 * this is used for flow-control purposes in tcp_fuse_output().
17789 		 */
17790 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17791 		/*
17792 		 * Update the peer's transmit parameters according to
17793 		 * our recently calculated high water mark value.
17794 		 */
17795 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17796 	} else if (tcp->tcp_snd_sack_ok) {
17797 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17798 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17799 	} else {
17800 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17801 		    tcp_wroff_xtra);
17802 	}
17803 
17804 	/*
17805 	 * If this is endpoint is handling SSL, then reserve extra
17806 	 * offset and space at the end.
17807 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17808 	 * overriding the previous setting. The extra cost of signing and
17809 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17810 	 * instead of a single contiguous one by the stream head
17811 	 * largely outweighs the statistical reduction of ACKs, when
17812 	 * applicable. The peer will also save on decyption and verification
17813 	 * costs.
17814 	 */
17815 	if (tcp->tcp_kssl_ctx != NULL) {
17816 		stropt->so_wroff += SSL3_WROFFSET;
17817 
17818 		stropt->so_flags |= SO_TAIL;
17819 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17820 
17821 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17822 	}
17823 
17824 	/* Send the options up */
17825 	putnext(q, stropt_mp);
17826 
17827 	/*
17828 	 * Pass up any data and/or a fin that has been received.
17829 	 *
17830 	 * Adjust receive window in case it had decreased
17831 	 * (because there is data <=> tcp_rcv_list != NULL)
17832 	 * while the connection was detached. Note that
17833 	 * in case the eager was flow-controlled, w/o this
17834 	 * code, the rwnd may never open up again!
17835 	 */
17836 	if (tcp->tcp_rcv_list != NULL) {
17837 		/* We drain directly in case of fused tcp loopback */
17838 		if (!tcp->tcp_fused && canputnext(q)) {
17839 			tcp->tcp_rwnd = q->q_hiwat;
17840 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17841 			    << tcp->tcp_rcv_ws;
17842 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17843 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17844 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17845 				tcp_xmit_ctl(NULL,
17846 				    tcp, (tcp->tcp_swnd == 0) ?
17847 				    tcp->tcp_suna : tcp->tcp_snxt,
17848 				    tcp->tcp_rnxt, TH_ACK);
17849 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17850 			}
17851 
17852 		}
17853 		(void) tcp_rcv_drain(q, tcp);
17854 
17855 		/*
17856 		 * For fused tcp loopback, back-enable peer endpoint
17857 		 * if it's currently flow-controlled.
17858 		 */
17859 		if (tcp->tcp_fused &&
17860 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17861 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17862 
17863 			ASSERT(peer_tcp != NULL);
17864 			ASSERT(peer_tcp->tcp_fused);
17865 
17866 			tcp_clrqfull(peer_tcp);
17867 			TCP_STAT(tcp_fusion_backenabled);
17868 		}
17869 	}
17870 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17871 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17872 		mp = mi_tpi_ordrel_ind();
17873 		if (mp) {
17874 			tcp->tcp_ordrel_done = B_TRUE;
17875 			putnext(q, mp);
17876 			if (tcp->tcp_deferred_clean_death) {
17877 				/*
17878 				 * tcp_clean_death was deferred
17879 				 * for T_ORDREL_IND - do it now
17880 				 */
17881 				(void) tcp_clean_death(tcp,
17882 				    tcp->tcp_client_errno, 21);
17883 				tcp->tcp_deferred_clean_death = B_FALSE;
17884 			}
17885 		} else {
17886 			/*
17887 			 * Run the orderly release in the
17888 			 * service routine.
17889 			 */
17890 			qenable(q);
17891 		}
17892 	}
17893 	if (tcp->tcp_hard_binding) {
17894 		tcp->tcp_hard_binding = B_FALSE;
17895 		tcp->tcp_hard_bound = B_TRUE;
17896 	}
17897 
17898 	tcp->tcp_detached = B_FALSE;
17899 
17900 	/* We can enable synchronous streams now */
17901 	if (tcp->tcp_fused) {
17902 		tcp_fuse_syncstr_enable_pair(tcp);
17903 	}
17904 
17905 	if (tcp->tcp_ka_enabled) {
17906 		tcp->tcp_ka_last_intrvl = 0;
17907 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17908 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17909 	}
17910 
17911 	/*
17912 	 * At this point, eager is fully established and will
17913 	 * have the following references -
17914 	 *
17915 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17916 	 * 1 reference for the squeue which will be dropped by the squeue as
17917 	 *	soon as this function returns.
17918 	 * There will be 1 additonal reference for being in classifier
17919 	 *	hash list provided something bad hasn't happened.
17920 	 */
17921 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17922 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17923 }
17924 
17925 /*
17926  * The function called through squeue to get behind listener's perimeter to
17927  * send a deffered conn_ind.
17928  */
17929 /* ARGSUSED */
17930 void
17931 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17932 {
17933 	conn_t	*connp = (conn_t *)arg;
17934 	tcp_t *listener = connp->conn_tcp;
17935 
17936 	if (listener->tcp_state == TCPS_CLOSED ||
17937 	    TCP_IS_DETACHED(listener)) {
17938 		/*
17939 		 * If listener has closed, it would have caused a
17940 		 * a cleanup/blowoff to happen for the eager.
17941 		 */
17942 		tcp_t *tcp;
17943 		struct T_conn_ind	*conn_ind;
17944 
17945 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17946 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17947 		    conn_ind->OPT_length);
17948 		/*
17949 		 * We need to drop the ref on eager that was put
17950 		 * tcp_rput_data() before trying to send the conn_ind
17951 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17952 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17953 		 * listener is closed so we drop the ref.
17954 		 */
17955 		CONN_DEC_REF(tcp->tcp_connp);
17956 		freemsg(mp);
17957 		return;
17958 	}
17959 	putnext(listener->tcp_rq, mp);
17960 }
17961 
17962 
17963 /*
17964  * This is the STREAMS entry point for T_CONN_RES coming down on
17965  * Acceptor STREAM when  sockfs listener does accept processing.
17966  * Read the block comment on top pf tcp_conn_request().
17967  */
17968 void
17969 tcp_wput_accept(queue_t *q, mblk_t *mp)
17970 {
17971 	queue_t *rq = RD(q);
17972 	struct T_conn_res *conn_res;
17973 	tcp_t *eager;
17974 	tcp_t *listener;
17975 	struct T_ok_ack *ok;
17976 	t_scalar_t PRIM_type;
17977 	mblk_t *opt_mp;
17978 	conn_t *econnp;
17979 
17980 	ASSERT(DB_TYPE(mp) == M_PROTO);
17981 
17982 	conn_res = (struct T_conn_res *)mp->b_rptr;
17983 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17984 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17985 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17986 		if (mp != NULL)
17987 			putnext(rq, mp);
17988 		return;
17989 	}
17990 	switch (conn_res->PRIM_type) {
17991 	case O_T_CONN_RES:
17992 	case T_CONN_RES:
17993 		/*
17994 		 * We pass up an err ack if allocb fails. This will
17995 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17996 		 * tcp_eager_blowoff to be called. sockfs will then call
17997 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17998 		 * we need to do the allocb up here because we have to
17999 		 * make sure rq->q_qinfo->qi_qclose still points to the
18000 		 * correct function (tcpclose_accept) in case allocb
18001 		 * fails.
18002 		 */
18003 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18004 		if (opt_mp == NULL) {
18005 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18006 			if (mp != NULL)
18007 				putnext(rq, mp);
18008 			return;
18009 		}
18010 
18011 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18012 		    &eager, conn_res->OPT_length);
18013 		PRIM_type = conn_res->PRIM_type;
18014 		mp->b_datap->db_type = M_PCPROTO;
18015 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18016 		ok = (struct T_ok_ack *)mp->b_rptr;
18017 		ok->PRIM_type = T_OK_ACK;
18018 		ok->CORRECT_prim = PRIM_type;
18019 		econnp = eager->tcp_connp;
18020 		econnp->conn_dev = (dev_t)q->q_ptr;
18021 		eager->tcp_rq = rq;
18022 		eager->tcp_wq = q;
18023 		rq->q_ptr = econnp;
18024 		rq->q_qinfo = &tcp_rinit;
18025 		q->q_ptr = econnp;
18026 		q->q_qinfo = &tcp_winit;
18027 		listener = eager->tcp_listener;
18028 		eager->tcp_issocket = B_TRUE;
18029 
18030 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18031 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18032 
18033 		/* Put the ref for IP */
18034 		CONN_INC_REF(econnp);
18035 
18036 		/*
18037 		 * We should have minimum of 3 references on the conn
18038 		 * at this point. One each for TCP and IP and one for
18039 		 * the T_conn_ind that was sent up when the 3-way handshake
18040 		 * completed. In the normal case we would also have another
18041 		 * reference (making a total of 4) for the conn being in the
18042 		 * classifier hash list. However the eager could have received
18043 		 * an RST subsequently and tcp_closei_local could have removed
18044 		 * the eager from the classifier hash list, hence we can't
18045 		 * assert that reference.
18046 		 */
18047 		ASSERT(econnp->conn_ref >= 3);
18048 
18049 		/*
18050 		 * Send the new local address also up to sockfs. There
18051 		 * should already be enough space in the mp that came
18052 		 * down from soaccept().
18053 		 */
18054 		if (eager->tcp_family == AF_INET) {
18055 			sin_t *sin;
18056 
18057 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18058 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18059 			sin = (sin_t *)mp->b_wptr;
18060 			mp->b_wptr += sizeof (sin_t);
18061 			sin->sin_family = AF_INET;
18062 			sin->sin_port = eager->tcp_lport;
18063 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18064 		} else {
18065 			sin6_t *sin6;
18066 
18067 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18068 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18069 			sin6 = (sin6_t *)mp->b_wptr;
18070 			mp->b_wptr += sizeof (sin6_t);
18071 			sin6->sin6_family = AF_INET6;
18072 			sin6->sin6_port = eager->tcp_lport;
18073 			if (eager->tcp_ipversion == IPV4_VERSION) {
18074 				sin6->sin6_flowinfo = 0;
18075 				IN6_IPADDR_TO_V4MAPPED(
18076 					eager->tcp_ipha->ipha_src,
18077 					    &sin6->sin6_addr);
18078 			} else {
18079 				ASSERT(eager->tcp_ip6h != NULL);
18080 				sin6->sin6_flowinfo =
18081 				    eager->tcp_ip6h->ip6_vcf &
18082 				    ~IPV6_VERS_AND_FLOW_MASK;
18083 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18084 			}
18085 			sin6->sin6_scope_id = 0;
18086 			sin6->__sin6_src_id = 0;
18087 		}
18088 
18089 		putnext(rq, mp);
18090 
18091 		opt_mp->b_datap->db_type = M_SETOPTS;
18092 		opt_mp->b_wptr += sizeof (struct stroptions);
18093 
18094 		/*
18095 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18096 		 * from listener to acceptor. The message is chained on the
18097 		 * bind_mp which tcp_rput_other will send down to IP.
18098 		 */
18099 		if (listener->tcp_bound_if != 0) {
18100 			/* allocate optmgmt req */
18101 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18102 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18103 			    sizeof (int));
18104 			if (mp != NULL)
18105 				linkb(opt_mp, mp);
18106 		}
18107 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18108 			uint_t on = 1;
18109 
18110 			/* allocate optmgmt req */
18111 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18112 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18113 			if (mp != NULL)
18114 				linkb(opt_mp, mp);
18115 		}
18116 
18117 
18118 		mutex_enter(&listener->tcp_eager_lock);
18119 
18120 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18121 
18122 			tcp_t *tail;
18123 			tcp_t *tcp;
18124 			mblk_t *mp1;
18125 
18126 			tcp = listener->tcp_eager_prev_q0;
18127 			/*
18128 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18129 			 * deferred T_conn_ind queue. We need to get to the head
18130 			 * of the queue in order to send up T_conn_ind the same
18131 			 * order as how the 3WHS is completed.
18132 			 */
18133 			while (tcp != listener) {
18134 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18135 				    !tcp->tcp_kssl_pending)
18136 					break;
18137 				else
18138 					tcp = tcp->tcp_eager_prev_q0;
18139 			}
18140 			/* None of the pending eagers can be sent up now */
18141 			if (tcp == listener)
18142 				goto no_more_eagers;
18143 
18144 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18145 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18146 			/* Move from q0 to q */
18147 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18148 			listener->tcp_conn_req_cnt_q0--;
18149 			listener->tcp_conn_req_cnt_q++;
18150 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18151 			    tcp->tcp_eager_prev_q0;
18152 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18153 			    tcp->tcp_eager_next_q0;
18154 			tcp->tcp_eager_prev_q0 = NULL;
18155 			tcp->tcp_eager_next_q0 = NULL;
18156 			tcp->tcp_conn_def_q0 = B_FALSE;
18157 
18158 			/* Make sure the tcp isn't in the list of droppables */
18159 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18160 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18161 
18162 			/*
18163 			 * Insert at end of the queue because sockfs sends
18164 			 * down T_CONN_RES in chronological order. Leaving
18165 			 * the older conn indications at front of the queue
18166 			 * helps reducing search time.
18167 			 */
18168 			tail = listener->tcp_eager_last_q;
18169 			if (tail != NULL) {
18170 				tail->tcp_eager_next_q = tcp;
18171 			} else {
18172 				listener->tcp_eager_next_q = tcp;
18173 			}
18174 			listener->tcp_eager_last_q = tcp;
18175 			tcp->tcp_eager_next_q = NULL;
18176 
18177 			/* Need to get inside the listener perimeter */
18178 			CONN_INC_REF(listener->tcp_connp);
18179 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18180 			    tcp_send_pending, listener->tcp_connp,
18181 			    SQTAG_TCP_SEND_PENDING);
18182 		}
18183 no_more_eagers:
18184 		tcp_eager_unlink(eager);
18185 		mutex_exit(&listener->tcp_eager_lock);
18186 
18187 		/*
18188 		 * At this point, the eager is detached from the listener
18189 		 * but we still have an extra refs on eager (apart from the
18190 		 * usual tcp references). The ref was placed in tcp_rput_data
18191 		 * before sending the conn_ind in tcp_send_conn_ind.
18192 		 * The ref will be dropped in tcp_accept_finish().
18193 		 */
18194 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18195 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18196 		return;
18197 	default:
18198 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18199 		if (mp != NULL)
18200 			putnext(rq, mp);
18201 		return;
18202 	}
18203 }
18204 
18205 void
18206 tcp_wput(queue_t *q, mblk_t *mp)
18207 {
18208 	conn_t	*connp = Q_TO_CONN(q);
18209 	tcp_t	*tcp;
18210 	void (*output_proc)();
18211 	t_scalar_t type;
18212 	uchar_t *rptr;
18213 	struct iocblk	*iocp;
18214 	uint32_t	msize;
18215 
18216 	ASSERT(connp->conn_ref >= 2);
18217 
18218 	switch (DB_TYPE(mp)) {
18219 	case M_DATA:
18220 		tcp = connp->conn_tcp;
18221 		ASSERT(tcp != NULL);
18222 
18223 		msize = msgdsize(mp);
18224 
18225 		mutex_enter(&connp->conn_lock);
18226 		CONN_INC_REF_LOCKED(connp);
18227 
18228 		tcp->tcp_squeue_bytes += msize;
18229 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18230 			mutex_exit(&connp->conn_lock);
18231 			tcp_setqfull(tcp);
18232 		} else
18233 			mutex_exit(&connp->conn_lock);
18234 
18235 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18236 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18237 		return;
18238 	case M_PROTO:
18239 	case M_PCPROTO:
18240 		/*
18241 		 * if it is a snmp message, don't get behind the squeue
18242 		 */
18243 		tcp = connp->conn_tcp;
18244 		rptr = mp->b_rptr;
18245 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18246 			type = ((union T_primitives *)rptr)->type;
18247 		} else {
18248 			if (tcp->tcp_debug) {
18249 				(void) strlog(TCP_MOD_ID, 0, 1,
18250 				    SL_ERROR|SL_TRACE,
18251 				    "tcp_wput_proto, dropping one...");
18252 			}
18253 			freemsg(mp);
18254 			return;
18255 		}
18256 		if (type == T_SVR4_OPTMGMT_REQ) {
18257 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18258 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18259 			    cr)) {
18260 				/*
18261 				 * This was a SNMP request
18262 				 */
18263 				return;
18264 			} else {
18265 				output_proc = tcp_wput_proto;
18266 			}
18267 		} else {
18268 			output_proc = tcp_wput_proto;
18269 		}
18270 		break;
18271 	case M_IOCTL:
18272 		/*
18273 		 * Most ioctls can be processed right away without going via
18274 		 * squeues - process them right here. Those that do require
18275 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18276 		 * are processed by tcp_wput_ioctl().
18277 		 */
18278 		iocp = (struct iocblk *)mp->b_rptr;
18279 		tcp = connp->conn_tcp;
18280 
18281 		switch (iocp->ioc_cmd) {
18282 		case TCP_IOC_ABORT_CONN:
18283 			tcp_ioctl_abort_conn(q, mp);
18284 			return;
18285 		case TI_GETPEERNAME:
18286 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18287 				iocp->ioc_error = ENOTCONN;
18288 				iocp->ioc_count = 0;
18289 				mp->b_datap->db_type = M_IOCACK;
18290 				qreply(q, mp);
18291 				return;
18292 			}
18293 			/* FALLTHRU */
18294 		case TI_GETMYNAME:
18295 			mi_copyin(q, mp, NULL,
18296 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18297 			return;
18298 		case ND_SET:
18299 			/* nd_getset does the necessary checks */
18300 		case ND_GET:
18301 			if (!nd_getset(q, tcp_g_nd, mp)) {
18302 				CALL_IP_WPUT(connp, q, mp);
18303 				return;
18304 			}
18305 			qreply(q, mp);
18306 			return;
18307 		case TCP_IOC_DEFAULT_Q:
18308 			/*
18309 			 * Wants to be the default wq. Check the credentials
18310 			 * first, the rest is executed via squeue.
18311 			 */
18312 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18313 				iocp->ioc_error = EPERM;
18314 				iocp->ioc_count = 0;
18315 				mp->b_datap->db_type = M_IOCACK;
18316 				qreply(q, mp);
18317 				return;
18318 			}
18319 			output_proc = tcp_wput_ioctl;
18320 			break;
18321 		default:
18322 			output_proc = tcp_wput_ioctl;
18323 			break;
18324 		}
18325 		break;
18326 	default:
18327 		output_proc = tcp_wput_nondata;
18328 		break;
18329 	}
18330 
18331 	CONN_INC_REF(connp);
18332 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18333 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18334 }
18335 
18336 /*
18337  * Initial STREAMS write side put() procedure for sockets. It tries to
18338  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18339  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18340  * are handled by tcp_wput() as usual.
18341  *
18342  * All further messages will also be handled by tcp_wput() because we cannot
18343  * be sure that the above short cut is safe later.
18344  */
18345 static void
18346 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18347 {
18348 	conn_t			*connp = Q_TO_CONN(wq);
18349 	tcp_t			*tcp = connp->conn_tcp;
18350 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18351 
18352 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18353 	wq->q_qinfo = &tcp_winit;
18354 
18355 	ASSERT(IPCL_IS_TCP(connp));
18356 	ASSERT(TCP_IS_SOCKET(tcp));
18357 
18358 	if (DB_TYPE(mp) == M_PCPROTO &&
18359 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18360 	    car->PRIM_type == T_CAPABILITY_REQ) {
18361 		tcp_capability_req(tcp, mp);
18362 		return;
18363 	}
18364 
18365 	tcp_wput(wq, mp);
18366 }
18367 
18368 static boolean_t
18369 tcp_zcopy_check(tcp_t *tcp)
18370 {
18371 	conn_t	*connp = tcp->tcp_connp;
18372 	ire_t	*ire;
18373 	boolean_t	zc_enabled = B_FALSE;
18374 
18375 	if (do_tcpzcopy == 2)
18376 		zc_enabled = B_TRUE;
18377 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18378 	    IPCL_IS_CONNECTED(connp) &&
18379 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18380 	    connp->conn_dontroute == 0 &&
18381 	    !connp->conn_nexthop_set &&
18382 	    connp->conn_xmit_if_ill == NULL &&
18383 	    connp->conn_nofailover_ill == NULL &&
18384 	    do_tcpzcopy == 1) {
18385 		/*
18386 		 * the checks above  closely resemble the fast path checks
18387 		 * in tcp_send_data().
18388 		 */
18389 		mutex_enter(&connp->conn_lock);
18390 		ire = connp->conn_ire_cache;
18391 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18392 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18393 			IRE_REFHOLD(ire);
18394 			if (ire->ire_stq != NULL) {
18395 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18396 
18397 				zc_enabled = ill && (ill->ill_capabilities &
18398 				    ILL_CAPAB_ZEROCOPY) &&
18399 				    (ill->ill_zerocopy_capab->
18400 				    ill_zerocopy_flags != 0);
18401 			}
18402 			IRE_REFRELE(ire);
18403 		}
18404 		mutex_exit(&connp->conn_lock);
18405 	}
18406 	tcp->tcp_snd_zcopy_on = zc_enabled;
18407 	if (!TCP_IS_DETACHED(tcp)) {
18408 		if (zc_enabled) {
18409 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18410 			TCP_STAT(tcp_zcopy_on);
18411 		} else {
18412 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18413 			TCP_STAT(tcp_zcopy_off);
18414 		}
18415 	}
18416 	return (zc_enabled);
18417 }
18418 
18419 static mblk_t *
18420 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18421 {
18422 	if (do_tcpzcopy == 2)
18423 		return (bp);
18424 	else if (tcp->tcp_snd_zcopy_on) {
18425 		tcp->tcp_snd_zcopy_on = B_FALSE;
18426 		if (!TCP_IS_DETACHED(tcp)) {
18427 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18428 			TCP_STAT(tcp_zcopy_disable);
18429 		}
18430 	}
18431 	return (tcp_zcopy_backoff(tcp, bp, 0));
18432 }
18433 
18434 /*
18435  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18436  * the original desballoca'ed segmapped mblk.
18437  */
18438 static mblk_t *
18439 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18440 {
18441 	mblk_t *head, *tail, *nbp;
18442 	if (IS_VMLOANED_MBLK(bp)) {
18443 		TCP_STAT(tcp_zcopy_backoff);
18444 		if ((head = copyb(bp)) == NULL) {
18445 			/* fail to backoff; leave it for the next backoff */
18446 			tcp->tcp_xmit_zc_clean = B_FALSE;
18447 			return (bp);
18448 		}
18449 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18450 			if (fix_xmitlist)
18451 				tcp_zcopy_notify(tcp);
18452 			else
18453 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18454 		}
18455 		nbp = bp->b_cont;
18456 		if (fix_xmitlist) {
18457 			head->b_prev = bp->b_prev;
18458 			head->b_next = bp->b_next;
18459 			if (tcp->tcp_xmit_tail == bp)
18460 				tcp->tcp_xmit_tail = head;
18461 		}
18462 		bp->b_next = NULL;
18463 		bp->b_prev = NULL;
18464 		freeb(bp);
18465 	} else {
18466 		head = bp;
18467 		nbp = bp->b_cont;
18468 	}
18469 	tail = head;
18470 	while (nbp) {
18471 		if (IS_VMLOANED_MBLK(nbp)) {
18472 			TCP_STAT(tcp_zcopy_backoff);
18473 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18474 				tcp->tcp_xmit_zc_clean = B_FALSE;
18475 				tail->b_cont = nbp;
18476 				return (head);
18477 			}
18478 			tail = tail->b_cont;
18479 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18480 				if (fix_xmitlist)
18481 					tcp_zcopy_notify(tcp);
18482 				else
18483 					tail->b_datap->db_struioflag |=
18484 					    STRUIO_ZCNOTIFY;
18485 			}
18486 			bp = nbp;
18487 			nbp = nbp->b_cont;
18488 			if (fix_xmitlist) {
18489 				tail->b_prev = bp->b_prev;
18490 				tail->b_next = bp->b_next;
18491 				if (tcp->tcp_xmit_tail == bp)
18492 					tcp->tcp_xmit_tail = tail;
18493 			}
18494 			bp->b_next = NULL;
18495 			bp->b_prev = NULL;
18496 			freeb(bp);
18497 		} else {
18498 			tail->b_cont = nbp;
18499 			tail = nbp;
18500 			nbp = nbp->b_cont;
18501 		}
18502 	}
18503 	if (fix_xmitlist) {
18504 		tcp->tcp_xmit_last = tail;
18505 		tcp->tcp_xmit_zc_clean = B_TRUE;
18506 	}
18507 	return (head);
18508 }
18509 
18510 static void
18511 tcp_zcopy_notify(tcp_t *tcp)
18512 {
18513 	struct stdata	*stp;
18514 
18515 	if (tcp->tcp_detached)
18516 		return;
18517 	stp = STREAM(tcp->tcp_rq);
18518 	mutex_enter(&stp->sd_lock);
18519 	stp->sd_flag |= STZCNOTIFY;
18520 	cv_broadcast(&stp->sd_zcopy_wait);
18521 	mutex_exit(&stp->sd_lock);
18522 }
18523 
18524 static boolean_t
18525 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18526 {
18527 	ire_t *ire;
18528 	conn_t *connp = tcp->tcp_connp;
18529 
18530 
18531 	mutex_enter(&connp->conn_lock);
18532 	ire = connp->conn_ire_cache;
18533 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18534 
18535 	if ((ire != NULL) &&
18536 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18537 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18538 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18539 		IRE_REFHOLD(ire);
18540 		mutex_exit(&connp->conn_lock);
18541 	} else {
18542 		boolean_t cached = B_FALSE;
18543 		ts_label_t *tsl;
18544 
18545 		/* force a recheck later on */
18546 		tcp->tcp_ire_ill_check_done = B_FALSE;
18547 
18548 		TCP_DBGSTAT(tcp_ire_null1);
18549 		connp->conn_ire_cache = NULL;
18550 		mutex_exit(&connp->conn_lock);
18551 
18552 		if (ire != NULL)
18553 			IRE_REFRELE_NOTR(ire);
18554 
18555 		tsl = crgetlabel(CONN_CRED(connp));
18556 		ire = (dst ? ire_cache_lookup(*dst, connp->conn_zoneid, tsl) :
18557 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18558 		    connp->conn_zoneid, tsl));
18559 
18560 		if (ire == NULL) {
18561 			TCP_STAT(tcp_ire_null);
18562 			return (B_FALSE);
18563 		}
18564 
18565 		IRE_REFHOLD_NOTR(ire);
18566 		/*
18567 		 * Since we are inside the squeue, there cannot be another
18568 		 * thread in TCP trying to set the conn_ire_cache now.  The
18569 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18570 		 * unplumb thread has not yet started cleaning up the conns.
18571 		 * Hence we don't need to grab the conn lock.
18572 		 */
18573 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18574 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18575 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18576 				connp->conn_ire_cache = ire;
18577 				cached = B_TRUE;
18578 			}
18579 			rw_exit(&ire->ire_bucket->irb_lock);
18580 		}
18581 
18582 		/*
18583 		 * We can continue to use the ire but since it was
18584 		 * not cached, we should drop the extra reference.
18585 		 */
18586 		if (!cached)
18587 			IRE_REFRELE_NOTR(ire);
18588 
18589 		/*
18590 		 * Rampart note: no need to select a new label here, since
18591 		 * labels are not allowed to change during the life of a TCP
18592 		 * connection.
18593 		 */
18594 	}
18595 
18596 	*irep = ire;
18597 
18598 	return (B_TRUE);
18599 }
18600 
18601 /*
18602  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18603  *
18604  * 0 = success;
18605  * 1 = failed to find ire and ill.
18606  */
18607 static boolean_t
18608 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18609 {
18610 	ipha_t		*ipha;
18611 	ipaddr_t	dst;
18612 	ire_t		*ire;
18613 	ill_t		*ill;
18614 	conn_t		*connp = tcp->tcp_connp;
18615 	mblk_t		*ire_fp_mp;
18616 
18617 	if (mp != NULL)
18618 		ipha = (ipha_t *)mp->b_rptr;
18619 	else
18620 		ipha = tcp->tcp_ipha;
18621 	dst = ipha->ipha_dst;
18622 
18623 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18624 		return (B_FALSE);
18625 
18626 	if ((ire->ire_flags & RTF_MULTIRT) ||
18627 	    (ire->ire_stq == NULL) ||
18628 	    (ire->ire_nce == NULL) ||
18629 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18630 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18631 		MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18632 		TCP_STAT(tcp_ip_ire_send);
18633 		IRE_REFRELE(ire);
18634 		return (B_FALSE);
18635 	}
18636 
18637 	ill = ire_to_ill(ire);
18638 	if (connp->conn_outgoing_ill != NULL) {
18639 		ill_t *conn_outgoing_ill = NULL;
18640 		/*
18641 		 * Choose a good ill in the group to send the packets on.
18642 		 */
18643 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18644 		ill = ire_to_ill(ire);
18645 	}
18646 	ASSERT(ill != NULL);
18647 
18648 	if (!tcp->tcp_ire_ill_check_done) {
18649 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18650 		tcp->tcp_ire_ill_check_done = B_TRUE;
18651 	}
18652 
18653 	*irep = ire;
18654 	*illp = ill;
18655 
18656 	return (B_TRUE);
18657 }
18658 
18659 static void
18660 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18661 {
18662 	ipha_t		*ipha;
18663 	ipaddr_t	src;
18664 	ipaddr_t	dst;
18665 	uint32_t	cksum;
18666 	ire_t		*ire;
18667 	uint16_t	*up;
18668 	ill_t		*ill;
18669 	conn_t		*connp = tcp->tcp_connp;
18670 	uint32_t	hcksum_txflags = 0;
18671 	mblk_t		*ire_fp_mp;
18672 	uint_t		ire_fp_mp_len;
18673 
18674 	ASSERT(DB_TYPE(mp) == M_DATA);
18675 
18676 	if (DB_CRED(mp) == NULL)
18677 		mblk_setcred(mp, CONN_CRED(connp));
18678 
18679 	ipha = (ipha_t *)mp->b_rptr;
18680 	src = ipha->ipha_src;
18681 	dst = ipha->ipha_dst;
18682 
18683 	/*
18684 	 * Drop off fast path for IPv6 and also if options are present or
18685 	 * we need to resolve a TS label.
18686 	 */
18687 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18688 	    !IPCL_IS_CONNECTED(connp) ||
18689 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18690 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18691 	    !connp->conn_ulp_labeled ||
18692 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18693 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18694 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18695 		if (tcp->tcp_snd_zcopy_aware)
18696 			mp = tcp_zcopy_disable(tcp, mp);
18697 		TCP_STAT(tcp_ip_send);
18698 		CALL_IP_WPUT(connp, q, mp);
18699 		return;
18700 	}
18701 
18702 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18703 		if (tcp->tcp_snd_zcopy_aware)
18704 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18705 		CALL_IP_WPUT(connp, q, mp);
18706 		return;
18707 	}
18708 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18709 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18710 
18711 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18712 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18713 #ifndef _BIG_ENDIAN
18714 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18715 #endif
18716 
18717 	/*
18718 	 * Check to see if we need to re-enable LSO/MDT for this connection
18719 	 * because it was previously disabled due to changes in the ill;
18720 	 * note that by doing it here, this re-enabling only applies when
18721 	 * the packet is not dispatched through CALL_IP_WPUT().
18722 	 *
18723 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18724 	 * case, since that's how we ended up here.  For IPv6, we do the
18725 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18726 	 */
18727 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18728 		/*
18729 		 * Restore LSO for this connection, so that next time around
18730 		 * it is eligible to go through tcp_lsosend() path again.
18731 		 */
18732 		TCP_STAT(tcp_lso_enabled);
18733 		tcp->tcp_lso = B_TRUE;
18734 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18735 		    "interface %s\n", (void *)connp, ill->ill_name));
18736 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18737 		/*
18738 		 * Restore MDT for this connection, so that next time around
18739 		 * it is eligible to go through tcp_multisend() path again.
18740 		 */
18741 		TCP_STAT(tcp_mdt_conn_resumed1);
18742 		tcp->tcp_mdt = B_TRUE;
18743 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18744 		    "interface %s\n", (void *)connp, ill->ill_name));
18745 	}
18746 
18747 	if (tcp->tcp_snd_zcopy_aware) {
18748 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18749 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18750 			mp = tcp_zcopy_disable(tcp, mp);
18751 		/*
18752 		 * we shouldn't need to reset ipha as the mp containing
18753 		 * ipha should never be a zero-copy mp.
18754 		 */
18755 	}
18756 
18757 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18758 		ASSERT(ill->ill_hcksum_capab != NULL);
18759 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18760 	}
18761 
18762 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18763 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18764 
18765 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18766 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18767 
18768 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18769 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18770 
18771 	/* Software checksum? */
18772 	if (DB_CKSUMFLAGS(mp) == 0) {
18773 		TCP_STAT(tcp_out_sw_cksum);
18774 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18775 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18776 	}
18777 
18778 	ipha->ipha_fragment_offset_and_flags |=
18779 	    (uint32_t)htons(ire->ire_frag_flag);
18780 
18781 	/* Calculate IP header checksum if hardware isn't capable */
18782 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18783 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18784 		    ((uint16_t *)ipha)[4]);
18785 	}
18786 
18787 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18788 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18789 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18790 
18791 	UPDATE_OB_PKT_COUNT(ire);
18792 	ire->ire_last_used_time = lbolt;
18793 
18794 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
18795 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
18796 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
18797 	    ntohs(ipha->ipha_length));
18798 
18799 	if (ILL_DLS_CAPABLE(ill)) {
18800 		/*
18801 		 * Send the packet directly to DLD, where it may be queued
18802 		 * depending on the availability of transmit resources at
18803 		 * the media layer.
18804 		 */
18805 		IP_DLS_ILL_TX(ill, ipha, mp);
18806 	} else {
18807 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
18808 		DTRACE_PROBE4(ip4__physical__out__start,
18809 		    ill_t *, NULL, ill_t *, out_ill,
18810 		    ipha_t *, ipha, mblk_t *, mp);
18811 		FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
18812 		    NULL, out_ill, ipha, mp, mp);
18813 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18814 		if (mp != NULL)
18815 			putnext(ire->ire_stq, mp);
18816 	}
18817 	IRE_REFRELE(ire);
18818 }
18819 
18820 /*
18821  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18822  * if the receiver shrinks the window, i.e. moves the right window to the
18823  * left, the we should not send new data, but should retransmit normally the
18824  * old unacked data between suna and suna + swnd. We might has sent data
18825  * that is now outside the new window, pretend that we didn't send  it.
18826  */
18827 static void
18828 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18829 {
18830 	uint32_t	snxt = tcp->tcp_snxt;
18831 	mblk_t		*xmit_tail;
18832 	int32_t		offset;
18833 
18834 	ASSERT(shrunk_count > 0);
18835 
18836 	/* Pretend we didn't send the data outside the window */
18837 	snxt -= shrunk_count;
18838 
18839 	/* Get the mblk and the offset in it per the shrunk window */
18840 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18841 
18842 	ASSERT(xmit_tail != NULL);
18843 
18844 	/* Reset all the values per the now shrunk window */
18845 	tcp->tcp_snxt = snxt;
18846 	tcp->tcp_xmit_tail = xmit_tail;
18847 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18848 	    offset;
18849 	tcp->tcp_unsent += shrunk_count;
18850 
18851 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18852 		/*
18853 		 * Make sure the timer is running so that we will probe a zero
18854 		 * window.
18855 		 */
18856 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18857 }
18858 
18859 
18860 /*
18861  * The TCP normal data output path.
18862  * NOTE: the logic of the fast path is duplicated from this function.
18863  */
18864 static void
18865 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18866 {
18867 	int		len;
18868 	mblk_t		*local_time;
18869 	mblk_t		*mp1;
18870 	uint32_t	snxt;
18871 	int		tail_unsent;
18872 	int		tcpstate;
18873 	int		usable = 0;
18874 	mblk_t		*xmit_tail;
18875 	queue_t		*q = tcp->tcp_wq;
18876 	int32_t		mss;
18877 	int32_t		num_sack_blk = 0;
18878 	int32_t		tcp_hdr_len;
18879 	int32_t		tcp_tcp_hdr_len;
18880 	int		mdt_thres;
18881 	int		rc;
18882 
18883 	tcpstate = tcp->tcp_state;
18884 	if (mp == NULL) {
18885 		/*
18886 		 * tcp_wput_data() with NULL mp should only be called when
18887 		 * there is unsent data.
18888 		 */
18889 		ASSERT(tcp->tcp_unsent > 0);
18890 		/* Really tacky... but we need this for detached closes. */
18891 		len = tcp->tcp_unsent;
18892 		goto data_null;
18893 	}
18894 
18895 #if CCS_STATS
18896 	wrw_stats.tot.count++;
18897 	wrw_stats.tot.bytes += msgdsize(mp);
18898 #endif
18899 	ASSERT(mp->b_datap->db_type == M_DATA);
18900 	/*
18901 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18902 	 * or before a connection attempt has begun.
18903 	 */
18904 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18905 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18906 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18907 #ifdef DEBUG
18908 			cmn_err(CE_WARN,
18909 			    "tcp_wput_data: data after ordrel, %s",
18910 			    tcp_display(tcp, NULL,
18911 			    DISP_ADDR_AND_PORT));
18912 #else
18913 			if (tcp->tcp_debug) {
18914 				(void) strlog(TCP_MOD_ID, 0, 1,
18915 				    SL_TRACE|SL_ERROR,
18916 				    "tcp_wput_data: data after ordrel, %s\n",
18917 				    tcp_display(tcp, NULL,
18918 				    DISP_ADDR_AND_PORT));
18919 			}
18920 #endif /* DEBUG */
18921 		}
18922 		if (tcp->tcp_snd_zcopy_aware &&
18923 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18924 			tcp_zcopy_notify(tcp);
18925 		freemsg(mp);
18926 		if (tcp->tcp_flow_stopped &&
18927 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18928 			tcp_clrqfull(tcp);
18929 		}
18930 		return;
18931 	}
18932 
18933 	/* Strip empties */
18934 	for (;;) {
18935 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18936 		    (uintptr_t)INT_MAX);
18937 		len = (int)(mp->b_wptr - mp->b_rptr);
18938 		if (len > 0)
18939 			break;
18940 		mp1 = mp;
18941 		mp = mp->b_cont;
18942 		freeb(mp1);
18943 		if (!mp) {
18944 			return;
18945 		}
18946 	}
18947 
18948 	/* If we are the first on the list ... */
18949 	if (tcp->tcp_xmit_head == NULL) {
18950 		tcp->tcp_xmit_head = mp;
18951 		tcp->tcp_xmit_tail = mp;
18952 		tcp->tcp_xmit_tail_unsent = len;
18953 	} else {
18954 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18955 		struct datab *dp;
18956 
18957 		mp1 = tcp->tcp_xmit_last;
18958 		if (len < tcp_tx_pull_len &&
18959 		    (dp = mp1->b_datap)->db_ref == 1 &&
18960 		    dp->db_lim - mp1->b_wptr >= len) {
18961 			ASSERT(len > 0);
18962 			ASSERT(!mp1->b_cont);
18963 			if (len == 1) {
18964 				*mp1->b_wptr++ = *mp->b_rptr;
18965 			} else {
18966 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18967 				mp1->b_wptr += len;
18968 			}
18969 			if (mp1 == tcp->tcp_xmit_tail)
18970 				tcp->tcp_xmit_tail_unsent += len;
18971 			mp1->b_cont = mp->b_cont;
18972 			if (tcp->tcp_snd_zcopy_aware &&
18973 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18974 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18975 			freeb(mp);
18976 			mp = mp1;
18977 		} else {
18978 			tcp->tcp_xmit_last->b_cont = mp;
18979 		}
18980 		len += tcp->tcp_unsent;
18981 	}
18982 
18983 	/* Tack on however many more positive length mblks we have */
18984 	if ((mp1 = mp->b_cont) != NULL) {
18985 		do {
18986 			int tlen;
18987 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18988 			    (uintptr_t)INT_MAX);
18989 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18990 			if (tlen <= 0) {
18991 				mp->b_cont = mp1->b_cont;
18992 				freeb(mp1);
18993 			} else {
18994 				len += tlen;
18995 				mp = mp1;
18996 			}
18997 		} while ((mp1 = mp->b_cont) != NULL);
18998 	}
18999 	tcp->tcp_xmit_last = mp;
19000 	tcp->tcp_unsent = len;
19001 
19002 	if (urgent)
19003 		usable = 1;
19004 
19005 data_null:
19006 	snxt = tcp->tcp_snxt;
19007 	xmit_tail = tcp->tcp_xmit_tail;
19008 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19009 
19010 	/*
19011 	 * Note that tcp_mss has been adjusted to take into account the
19012 	 * timestamp option if applicable.  Because SACK options do not
19013 	 * appear in every TCP segments and they are of variable lengths,
19014 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19015 	 * the actual segment length when we need to send a segment which
19016 	 * includes SACK options.
19017 	 */
19018 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19019 		int32_t	opt_len;
19020 
19021 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19022 		    tcp->tcp_num_sack_blk);
19023 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19024 		    2 + TCPOPT_HEADER_LEN;
19025 		mss = tcp->tcp_mss - opt_len;
19026 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19027 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19028 	} else {
19029 		mss = tcp->tcp_mss;
19030 		tcp_hdr_len = tcp->tcp_hdr_len;
19031 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19032 	}
19033 
19034 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19035 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19036 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
19037 	}
19038 	if (tcpstate == TCPS_SYN_RCVD) {
19039 		/*
19040 		 * The three-way connection establishment handshake is not
19041 		 * complete yet. We want to queue the data for transmission
19042 		 * after entering ESTABLISHED state (RFC793). A jump to
19043 		 * "done" label effectively leaves data on the queue.
19044 		 */
19045 		goto done;
19046 	} else {
19047 		int usable_r;
19048 
19049 		/*
19050 		 * In the special case when cwnd is zero, which can only
19051 		 * happen if the connection is ECN capable, return now.
19052 		 * New segments is sent using tcp_timer().  The timer
19053 		 * is set in tcp_rput_data().
19054 		 */
19055 		if (tcp->tcp_cwnd == 0) {
19056 			/*
19057 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19058 			 * finished.
19059 			 */
19060 			ASSERT(tcp->tcp_ecn_ok ||
19061 			    tcp->tcp_state < TCPS_ESTABLISHED);
19062 			return;
19063 		}
19064 
19065 		/* NOTE: trouble if xmitting while SYN not acked? */
19066 		usable_r = snxt - tcp->tcp_suna;
19067 		usable_r = tcp->tcp_swnd - usable_r;
19068 
19069 		/*
19070 		 * Check if the receiver has shrunk the window.  If
19071 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19072 		 * cannot be set as there is unsent data, so FIN cannot
19073 		 * be sent out.  Otherwise, we need to take into account
19074 		 * of FIN as it consumes an "invisible" sequence number.
19075 		 */
19076 		ASSERT(tcp->tcp_fin_sent == 0);
19077 		if (usable_r < 0) {
19078 			/*
19079 			 * The receiver has shrunk the window and we have sent
19080 			 * -usable_r date beyond the window, re-adjust.
19081 			 *
19082 			 * If TCP window scaling is enabled, there can be
19083 			 * round down error as the advertised receive window
19084 			 * is actually right shifted n bits.  This means that
19085 			 * the lower n bits info is wiped out.  It will look
19086 			 * like the window is shrunk.  Do a check here to
19087 			 * see if the shrunk amount is actually within the
19088 			 * error in window calculation.  If it is, just
19089 			 * return.  Note that this check is inside the
19090 			 * shrunk window check.  This makes sure that even
19091 			 * though tcp_process_shrunk_swnd() is not called,
19092 			 * we will stop further processing.
19093 			 */
19094 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19095 				tcp_process_shrunk_swnd(tcp, -usable_r);
19096 			}
19097 			return;
19098 		}
19099 
19100 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19101 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19102 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19103 
19104 		/* usable = MIN(usable, unsent) */
19105 		if (usable_r > len)
19106 			usable_r = len;
19107 
19108 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19109 		if (usable_r > 0) {
19110 			usable = usable_r;
19111 		} else {
19112 			/* Bypass all other unnecessary processing. */
19113 			goto done;
19114 		}
19115 	}
19116 
19117 	local_time = (mblk_t *)lbolt;
19118 
19119 	/*
19120 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19121 	 * BSD.  This is more in line with the true intent of Nagle.
19122 	 *
19123 	 * The conditions are:
19124 	 * 1. The amount of unsent data (or amount of data which can be
19125 	 *    sent, whichever is smaller) is less than Nagle limit.
19126 	 * 2. The last sent size is also less than Nagle limit.
19127 	 * 3. There is unack'ed data.
19128 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19129 	 *    Nagle algorithm.  This reduces the probability that urgent
19130 	 *    bytes get "merged" together.
19131 	 * 5. The app has not closed the connection.  This eliminates the
19132 	 *    wait time of the receiving side waiting for the last piece of
19133 	 *    (small) data.
19134 	 *
19135 	 * If all are satisified, exit without sending anything.  Note
19136 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19137 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19138 	 * 4095).
19139 	 */
19140 	if (usable < (int)tcp->tcp_naglim &&
19141 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19142 	    snxt != tcp->tcp_suna &&
19143 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19144 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19145 		goto done;
19146 	}
19147 
19148 	if (tcp->tcp_cork) {
19149 		/*
19150 		 * if the tcp->tcp_cork option is set, then we have to force
19151 		 * TCP not to send partial segment (smaller than MSS bytes).
19152 		 * We are calculating the usable now based on full mss and
19153 		 * will save the rest of remaining data for later.
19154 		 */
19155 		if (usable < mss)
19156 			goto done;
19157 		usable = (usable / mss) * mss;
19158 	}
19159 
19160 	/* Update the latest receive window size in TCP header. */
19161 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19162 	    tcp->tcp_tcph->th_win);
19163 
19164 	/*
19165 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19166 	 *
19167 	 * 1. Simple TCP/IP{v4,v6} (no options).
19168 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19169 	 * 3. If the TCP connection is in ESTABLISHED state.
19170 	 * 4. The TCP is not detached.
19171 	 *
19172 	 * If any of the above conditions have changed during the
19173 	 * connection, stop using LSO/MDT and restore the stream head
19174 	 * parameters accordingly.
19175 	 */
19176 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19177 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19178 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19179 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19180 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19181 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19182 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19183 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19184 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
19185 		if (tcp->tcp_lso) {
19186 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19187 			tcp->tcp_lso = B_FALSE;
19188 		} else {
19189 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19190 			tcp->tcp_mdt = B_FALSE;
19191 		}
19192 
19193 		/* Anything other than detached is considered pathological */
19194 		if (!TCP_IS_DETACHED(tcp)) {
19195 			if (tcp->tcp_lso)
19196 				TCP_STAT(tcp_lso_disabled);
19197 			else
19198 				TCP_STAT(tcp_mdt_conn_halted1);
19199 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19200 		}
19201 	}
19202 
19203 	/* Use MDT if sendable amount is greater than the threshold */
19204 	if (tcp->tcp_mdt &&
19205 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19206 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19207 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19208 	    (tcp->tcp_valid_bits == 0 ||
19209 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19210 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19211 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19212 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19213 		    local_time, mdt_thres);
19214 	} else {
19215 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19216 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19217 		    local_time, INT_MAX);
19218 	}
19219 
19220 	/* Pretend that all we were trying to send really got sent */
19221 	if (rc < 0 && tail_unsent < 0) {
19222 		do {
19223 			xmit_tail = xmit_tail->b_cont;
19224 			xmit_tail->b_prev = local_time;
19225 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19226 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19227 			tail_unsent += (int)(xmit_tail->b_wptr -
19228 			    xmit_tail->b_rptr);
19229 		} while (tail_unsent < 0);
19230 	}
19231 done:;
19232 	tcp->tcp_xmit_tail = xmit_tail;
19233 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19234 	len = tcp->tcp_snxt - snxt;
19235 	if (len) {
19236 		/*
19237 		 * If new data was sent, need to update the notsack
19238 		 * list, which is, afterall, data blocks that have
19239 		 * not been sack'ed by the receiver.  New data is
19240 		 * not sack'ed.
19241 		 */
19242 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19243 			/* len is a negative value. */
19244 			tcp->tcp_pipe -= len;
19245 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19246 			    tcp->tcp_snxt, snxt,
19247 			    &(tcp->tcp_num_notsack_blk),
19248 			    &(tcp->tcp_cnt_notsack_list));
19249 		}
19250 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19251 		tcp->tcp_rack = tcp->tcp_rnxt;
19252 		tcp->tcp_rack_cnt = 0;
19253 		if ((snxt + len) == tcp->tcp_suna) {
19254 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19255 		}
19256 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19257 		/*
19258 		 * Didn't send anything. Make sure the timer is running
19259 		 * so that we will probe a zero window.
19260 		 */
19261 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19262 	}
19263 	/* Note that len is the amount we just sent but with a negative sign */
19264 	tcp->tcp_unsent += len;
19265 	if (tcp->tcp_flow_stopped) {
19266 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19267 			tcp_clrqfull(tcp);
19268 		}
19269 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19270 		tcp_setqfull(tcp);
19271 	}
19272 }
19273 
19274 /*
19275  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19276  * outgoing TCP header with the template header, as well as other
19277  * options such as time-stamp, ECN and/or SACK.
19278  */
19279 static void
19280 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19281 {
19282 	tcph_t *tcp_tmpl, *tcp_h;
19283 	uint32_t *dst, *src;
19284 	int hdrlen;
19285 
19286 	ASSERT(OK_32PTR(rptr));
19287 
19288 	/* Template header */
19289 	tcp_tmpl = tcp->tcp_tcph;
19290 
19291 	/* Header of outgoing packet */
19292 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19293 
19294 	/* dst and src are opaque 32-bit fields, used for copying */
19295 	dst = (uint32_t *)rptr;
19296 	src = (uint32_t *)tcp->tcp_iphc;
19297 	hdrlen = tcp->tcp_hdr_len;
19298 
19299 	/* Fill time-stamp option if needed */
19300 	if (tcp->tcp_snd_ts_ok) {
19301 		U32_TO_BE32((uint32_t)now,
19302 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19303 		U32_TO_BE32(tcp->tcp_ts_recent,
19304 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19305 	} else {
19306 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19307 	}
19308 
19309 	/*
19310 	 * Copy the template header; is this really more efficient than
19311 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19312 	 * but perhaps not for other scenarios.
19313 	 */
19314 	dst[0] = src[0];
19315 	dst[1] = src[1];
19316 	dst[2] = src[2];
19317 	dst[3] = src[3];
19318 	dst[4] = src[4];
19319 	dst[5] = src[5];
19320 	dst[6] = src[6];
19321 	dst[7] = src[7];
19322 	dst[8] = src[8];
19323 	dst[9] = src[9];
19324 	if (hdrlen -= 40) {
19325 		hdrlen >>= 2;
19326 		dst += 10;
19327 		src += 10;
19328 		do {
19329 			*dst++ = *src++;
19330 		} while (--hdrlen);
19331 	}
19332 
19333 	/*
19334 	 * Set the ECN info in the TCP header if it is not a zero
19335 	 * window probe.  Zero window probe is only sent in
19336 	 * tcp_wput_data() and tcp_timer().
19337 	 */
19338 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19339 		SET_ECT(tcp, rptr);
19340 
19341 		if (tcp->tcp_ecn_echo_on)
19342 			tcp_h->th_flags[0] |= TH_ECE;
19343 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19344 			tcp_h->th_flags[0] |= TH_CWR;
19345 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19346 		}
19347 	}
19348 
19349 	/* Fill in SACK options */
19350 	if (num_sack_blk > 0) {
19351 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19352 		sack_blk_t *tmp;
19353 		int32_t	i;
19354 
19355 		wptr[0] = TCPOPT_NOP;
19356 		wptr[1] = TCPOPT_NOP;
19357 		wptr[2] = TCPOPT_SACK;
19358 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19359 		    sizeof (sack_blk_t);
19360 		wptr += TCPOPT_REAL_SACK_LEN;
19361 
19362 		tmp = tcp->tcp_sack_list;
19363 		for (i = 0; i < num_sack_blk; i++) {
19364 			U32_TO_BE32(tmp[i].begin, wptr);
19365 			wptr += sizeof (tcp_seq);
19366 			U32_TO_BE32(tmp[i].end, wptr);
19367 			wptr += sizeof (tcp_seq);
19368 		}
19369 		tcp_h->th_offset_and_rsrvd[0] +=
19370 		    ((num_sack_blk * 2 + 1) << 4);
19371 	}
19372 }
19373 
19374 /*
19375  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19376  * the destination address and SAP attribute, and if necessary, the
19377  * hardware checksum offload attribute to a Multidata message.
19378  */
19379 static int
19380 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19381     const uint32_t start, const uint32_t stuff, const uint32_t end,
19382     const uint32_t flags)
19383 {
19384 	/* Add global destination address & SAP attribute */
19385 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19386 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19387 		    "destination address+SAP\n"));
19388 
19389 		if (dlmp != NULL)
19390 			TCP_STAT(tcp_mdt_allocfail);
19391 		return (-1);
19392 	}
19393 
19394 	/* Add global hwcksum attribute */
19395 	if (hwcksum &&
19396 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19397 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19398 		    "checksum attribute\n"));
19399 
19400 		TCP_STAT(tcp_mdt_allocfail);
19401 		return (-1);
19402 	}
19403 
19404 	return (0);
19405 }
19406 
19407 /*
19408  * Smaller and private version of pdescinfo_t used specifically for TCP,
19409  * which allows for only two payload spans per packet.
19410  */
19411 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19412 
19413 /*
19414  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19415  * scheme, and returns one the following:
19416  *
19417  * -1 = failed allocation.
19418  *  0 = success; burst count reached, or usable send window is too small,
19419  *      and that we'd rather wait until later before sending again.
19420  */
19421 static int
19422 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19423     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19424     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19425     const int mdt_thres)
19426 {
19427 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19428 	multidata_t	*mmd;
19429 	uint_t		obsegs, obbytes, hdr_frag_sz;
19430 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19431 	int		num_burst_seg, max_pld;
19432 	pdesc_t		*pkt;
19433 	tcp_pdescinfo_t	tcp_pkt_info;
19434 	pdescinfo_t	*pkt_info;
19435 	int		pbuf_idx, pbuf_idx_nxt;
19436 	int		seg_len, len, spill, af;
19437 	boolean_t	add_buffer, zcopy, clusterwide;
19438 	boolean_t	buf_trunked = B_FALSE;
19439 	boolean_t	rconfirm = B_FALSE;
19440 	boolean_t	done = B_FALSE;
19441 	uint32_t	cksum;
19442 	uint32_t	hwcksum_flags;
19443 	ire_t		*ire = NULL;
19444 	ill_t		*ill;
19445 	ipha_t		*ipha;
19446 	ip6_t		*ip6h;
19447 	ipaddr_t	src, dst;
19448 	ill_zerocopy_capab_t *zc_cap = NULL;
19449 	uint16_t	*up;
19450 	int		err;
19451 	conn_t		*connp;
19452 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19453 	uchar_t		*pld_start;
19454 
19455 #ifdef	_BIG_ENDIAN
19456 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19457 #else
19458 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19459 #endif
19460 
19461 #define	PREP_NEW_MULTIDATA() {			\
19462 	mmd = NULL;				\
19463 	md_mp = md_hbuf = NULL;			\
19464 	cur_hdr_off = 0;			\
19465 	max_pld = tcp->tcp_mdt_max_pld;		\
19466 	pbuf_idx = pbuf_idx_nxt = -1;		\
19467 	add_buffer = B_TRUE;			\
19468 	zcopy = B_FALSE;			\
19469 }
19470 
19471 #define	PREP_NEW_PBUF() {			\
19472 	md_pbuf = md_pbuf_nxt = NULL;		\
19473 	pbuf_idx = pbuf_idx_nxt = -1;		\
19474 	cur_pld_off = 0;			\
19475 	first_snxt = *snxt;			\
19476 	ASSERT(*tail_unsent > 0);		\
19477 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19478 }
19479 
19480 	ASSERT(mdt_thres >= mss);
19481 	ASSERT(*usable > 0 && *usable > mdt_thres);
19482 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19483 	ASSERT(!TCP_IS_DETACHED(tcp));
19484 	ASSERT(tcp->tcp_valid_bits == 0 ||
19485 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19486 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19487 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19488 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19489 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19490 
19491 	connp = tcp->tcp_connp;
19492 	ASSERT(connp != NULL);
19493 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19494 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19495 
19496 	/*
19497 	 * Note that tcp will only declare at most 2 payload spans per
19498 	 * packet, which is much lower than the maximum allowable number
19499 	 * of packet spans per Multidata.  For this reason, we use the
19500 	 * privately declared and smaller descriptor info structure, in
19501 	 * order to save some stack space.
19502 	 */
19503 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19504 
19505 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19506 	if (af == AF_INET) {
19507 		dst = tcp->tcp_ipha->ipha_dst;
19508 		src = tcp->tcp_ipha->ipha_src;
19509 		ASSERT(!CLASSD(dst));
19510 	}
19511 	ASSERT(af == AF_INET ||
19512 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19513 
19514 	obsegs = obbytes = 0;
19515 	num_burst_seg = tcp->tcp_snd_burst;
19516 	md_mp_head = NULL;
19517 	PREP_NEW_MULTIDATA();
19518 
19519 	/*
19520 	 * Before we go on further, make sure there is an IRE that we can
19521 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19522 	 * in proceeding any further, and we should just hand everything
19523 	 * off to the legacy path.
19524 	 */
19525 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19526 		goto legacy_send_no_md;
19527 
19528 	ASSERT(ire != NULL);
19529 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19530 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19531 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19532 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19533 	/*
19534 	 * If we do support loopback for MDT (which requires modifications
19535 	 * to the receiving paths), the following assertions should go away,
19536 	 * and we would be sending the Multidata to loopback conn later on.
19537 	 */
19538 	ASSERT(!IRE_IS_LOCAL(ire));
19539 	ASSERT(ire->ire_stq != NULL);
19540 
19541 	ill = ire_to_ill(ire);
19542 	ASSERT(ill != NULL);
19543 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19544 
19545 	if (!tcp->tcp_ire_ill_check_done) {
19546 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19547 		tcp->tcp_ire_ill_check_done = B_TRUE;
19548 	}
19549 
19550 	/*
19551 	 * If the underlying interface conditions have changed, or if the
19552 	 * new interface does not support MDT, go back to legacy path.
19553 	 */
19554 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19555 		/* don't go through this path anymore for this connection */
19556 		TCP_STAT(tcp_mdt_conn_halted2);
19557 		tcp->tcp_mdt = B_FALSE;
19558 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19559 		    "interface %s\n", (void *)connp, ill->ill_name));
19560 		/* IRE will be released prior to returning */
19561 		goto legacy_send_no_md;
19562 	}
19563 
19564 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19565 		zc_cap = ill->ill_zerocopy_capab;
19566 
19567 	/*
19568 	 * Check if we can take tcp fast-path. Note that "incomplete"
19569 	 * ire's (where the link-layer for next hop is not resolved
19570 	 * or where the fast-path header in nce_fp_mp is not available
19571 	 * yet) are sent down the legacy (slow) path.
19572 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19573 	 */
19574 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19575 		/* IRE will be released prior to returning */
19576 		goto legacy_send_no_md;
19577 	}
19578 
19579 	/* go to legacy path if interface doesn't support zerocopy */
19580 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19581 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19582 		/* IRE will be released prior to returning */
19583 		goto legacy_send_no_md;
19584 	}
19585 
19586 	/* does the interface support hardware checksum offload? */
19587 	hwcksum_flags = 0;
19588 	if (ILL_HCKSUM_CAPABLE(ill) &&
19589 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19590 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19591 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19592 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19593 		    HCKSUM_IPHDRCKSUM)
19594 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19595 
19596 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19597 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19598 			hwcksum_flags |= HCK_FULLCKSUM;
19599 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19600 		    HCKSUM_INET_PARTIAL)
19601 			hwcksum_flags |= HCK_PARTIALCKSUM;
19602 	}
19603 
19604 	/*
19605 	 * Each header fragment consists of the leading extra space,
19606 	 * followed by the TCP/IP header, and the trailing extra space.
19607 	 * We make sure that each header fragment begins on a 32-bit
19608 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19609 	 * aligned in tcp_mdt_update).
19610 	 */
19611 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19612 	    tcp->tcp_mdt_hdr_tail), 4);
19613 
19614 	/* are we starting from the beginning of data block? */
19615 	if (*tail_unsent == 0) {
19616 		*xmit_tail = (*xmit_tail)->b_cont;
19617 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19618 		*tail_unsent = (int)MBLKL(*xmit_tail);
19619 	}
19620 
19621 	/*
19622 	 * Here we create one or more Multidata messages, each made up of
19623 	 * one header buffer and up to N payload buffers.  This entire
19624 	 * operation is done within two loops:
19625 	 *
19626 	 * The outer loop mostly deals with creating the Multidata message,
19627 	 * as well as the header buffer that gets added to it.  It also
19628 	 * links the Multidata messages together such that all of them can
19629 	 * be sent down to the lower layer in a single putnext call; this
19630 	 * linking behavior depends on the tcp_mdt_chain tunable.
19631 	 *
19632 	 * The inner loop takes an existing Multidata message, and adds
19633 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19634 	 * packetizes those buffers by filling up the corresponding header
19635 	 * buffer fragments with the proper IP and TCP headers, and by
19636 	 * describing the layout of each packet in the packet descriptors
19637 	 * that get added to the Multidata.
19638 	 */
19639 	do {
19640 		/*
19641 		 * If usable send window is too small, or data blocks in
19642 		 * transmit list are smaller than our threshold (i.e. app
19643 		 * performs large writes followed by small ones), we hand
19644 		 * off the control over to the legacy path.  Note that we'll
19645 		 * get back the control once it encounters a large block.
19646 		 */
19647 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19648 		    (*xmit_tail)->b_cont != NULL &&
19649 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19650 			/* send down what we've got so far */
19651 			if (md_mp_head != NULL) {
19652 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19653 				    obsegs, obbytes, &rconfirm);
19654 			}
19655 			/*
19656 			 * Pass control over to tcp_send(), but tell it to
19657 			 * return to us once a large-size transmission is
19658 			 * possible.
19659 			 */
19660 			TCP_STAT(tcp_mdt_legacy_small);
19661 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19662 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19663 			    tail_unsent, xmit_tail, local_time,
19664 			    mdt_thres)) <= 0) {
19665 				/* burst count reached, or alloc failed */
19666 				IRE_REFRELE(ire);
19667 				return (err);
19668 			}
19669 
19670 			/* tcp_send() may have sent everything, so check */
19671 			if (*usable <= 0) {
19672 				IRE_REFRELE(ire);
19673 				return (0);
19674 			}
19675 
19676 			TCP_STAT(tcp_mdt_legacy_ret);
19677 			/*
19678 			 * We may have delivered the Multidata, so make sure
19679 			 * to re-initialize before the next round.
19680 			 */
19681 			md_mp_head = NULL;
19682 			obsegs = obbytes = 0;
19683 			num_burst_seg = tcp->tcp_snd_burst;
19684 			PREP_NEW_MULTIDATA();
19685 
19686 			/* are we starting from the beginning of data block? */
19687 			if (*tail_unsent == 0) {
19688 				*xmit_tail = (*xmit_tail)->b_cont;
19689 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19690 				    (uintptr_t)INT_MAX);
19691 				*tail_unsent = (int)MBLKL(*xmit_tail);
19692 			}
19693 		}
19694 
19695 		/*
19696 		 * max_pld limits the number of mblks in tcp's transmit
19697 		 * queue that can be added to a Multidata message.  Once
19698 		 * this counter reaches zero, no more additional mblks
19699 		 * can be added to it.  What happens afterwards depends
19700 		 * on whether or not we are set to chain the Multidata
19701 		 * messages.  If we are to link them together, reset
19702 		 * max_pld to its original value (tcp_mdt_max_pld) and
19703 		 * prepare to create a new Multidata message which will
19704 		 * get linked to md_mp_head.  Else, leave it alone and
19705 		 * let the inner loop break on its own.
19706 		 */
19707 		if (tcp_mdt_chain && max_pld == 0)
19708 			PREP_NEW_MULTIDATA();
19709 
19710 		/* adding a payload buffer; re-initialize values */
19711 		if (add_buffer)
19712 			PREP_NEW_PBUF();
19713 
19714 		/*
19715 		 * If we don't have a Multidata, either because we just
19716 		 * (re)entered this outer loop, or after we branched off
19717 		 * to tcp_send above, setup the Multidata and header
19718 		 * buffer to be used.
19719 		 */
19720 		if (md_mp == NULL) {
19721 			int md_hbuflen;
19722 			uint32_t start, stuff;
19723 
19724 			/*
19725 			 * Calculate Multidata header buffer size large enough
19726 			 * to hold all of the headers that can possibly be
19727 			 * sent at this moment.  We'd rather over-estimate
19728 			 * the size than running out of space; this is okay
19729 			 * since this buffer is small anyway.
19730 			 */
19731 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19732 
19733 			/*
19734 			 * Start and stuff offset for partial hardware
19735 			 * checksum offload; these are currently for IPv4.
19736 			 * For full checksum offload, they are set to zero.
19737 			 */
19738 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19739 				if (af == AF_INET) {
19740 					start = IP_SIMPLE_HDR_LENGTH;
19741 					stuff = IP_SIMPLE_HDR_LENGTH +
19742 					    TCP_CHECKSUM_OFFSET;
19743 				} else {
19744 					start = IPV6_HDR_LEN;
19745 					stuff = IPV6_HDR_LEN +
19746 					    TCP_CHECKSUM_OFFSET;
19747 				}
19748 			} else {
19749 				start = stuff = 0;
19750 			}
19751 
19752 			/*
19753 			 * Create the header buffer, Multidata, as well as
19754 			 * any necessary attributes (destination address,
19755 			 * SAP and hardware checksum offload) that should
19756 			 * be associated with the Multidata message.
19757 			 */
19758 			ASSERT(cur_hdr_off == 0);
19759 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19760 			    ((md_hbuf->b_wptr += md_hbuflen),
19761 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19762 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19763 			    /* fastpath mblk */
19764 			    ire->ire_nce->nce_res_mp,
19765 			    /* hardware checksum enabled */
19766 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19767 			    /* hardware checksum offsets */
19768 			    start, stuff, 0,
19769 			    /* hardware checksum flag */
19770 			    hwcksum_flags) != 0)) {
19771 legacy_send:
19772 				if (md_mp != NULL) {
19773 					/* Unlink message from the chain */
19774 					if (md_mp_head != NULL) {
19775 						err = (intptr_t)rmvb(md_mp_head,
19776 						    md_mp);
19777 						/*
19778 						 * We can't assert that rmvb
19779 						 * did not return -1, since we
19780 						 * may get here before linkb
19781 						 * happens.  We do, however,
19782 						 * check if we just removed the
19783 						 * only element in the list.
19784 						 */
19785 						if (err == 0)
19786 							md_mp_head = NULL;
19787 					}
19788 					/* md_hbuf gets freed automatically */
19789 					TCP_STAT(tcp_mdt_discarded);
19790 					freeb(md_mp);
19791 				} else {
19792 					/* Either allocb or mmd_alloc failed */
19793 					TCP_STAT(tcp_mdt_allocfail);
19794 					if (md_hbuf != NULL)
19795 						freeb(md_hbuf);
19796 				}
19797 
19798 				/* send down what we've got so far */
19799 				if (md_mp_head != NULL) {
19800 					tcp_multisend_data(tcp, ire, ill,
19801 					    md_mp_head, obsegs, obbytes,
19802 					    &rconfirm);
19803 				}
19804 legacy_send_no_md:
19805 				if (ire != NULL)
19806 					IRE_REFRELE(ire);
19807 				/*
19808 				 * Too bad; let the legacy path handle this.
19809 				 * We specify INT_MAX for the threshold, since
19810 				 * we gave up with the Multidata processings
19811 				 * and let the old path have it all.
19812 				 */
19813 				TCP_STAT(tcp_mdt_legacy_all);
19814 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19815 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19816 				    snxt, tail_unsent, xmit_tail, local_time,
19817 				    INT_MAX));
19818 			}
19819 
19820 			/* link to any existing ones, if applicable */
19821 			TCP_STAT(tcp_mdt_allocd);
19822 			if (md_mp_head == NULL) {
19823 				md_mp_head = md_mp;
19824 			} else if (tcp_mdt_chain) {
19825 				TCP_STAT(tcp_mdt_linked);
19826 				linkb(md_mp_head, md_mp);
19827 			}
19828 		}
19829 
19830 		ASSERT(md_mp_head != NULL);
19831 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19832 		ASSERT(md_mp != NULL && mmd != NULL);
19833 		ASSERT(md_hbuf != NULL);
19834 
19835 		/*
19836 		 * Packetize the transmittable portion of the data block;
19837 		 * each data block is essentially added to the Multidata
19838 		 * as a payload buffer.  We also deal with adding more
19839 		 * than one payload buffers, which happens when the remaining
19840 		 * packetized portion of the current payload buffer is less
19841 		 * than MSS, while the next data block in transmit queue
19842 		 * has enough data to make up for one.  This "spillover"
19843 		 * case essentially creates a split-packet, where portions
19844 		 * of the packet's payload fragments may span across two
19845 		 * virtually discontiguous address blocks.
19846 		 */
19847 		seg_len = mss;
19848 		do {
19849 			len = seg_len;
19850 
19851 			ASSERT(len > 0);
19852 			ASSERT(max_pld >= 0);
19853 			ASSERT(!add_buffer || cur_pld_off == 0);
19854 
19855 			/*
19856 			 * First time around for this payload buffer; note
19857 			 * in the case of a spillover, the following has
19858 			 * been done prior to adding the split-packet
19859 			 * descriptor to Multidata, and we don't want to
19860 			 * repeat the process.
19861 			 */
19862 			if (add_buffer) {
19863 				ASSERT(mmd != NULL);
19864 				ASSERT(md_pbuf == NULL);
19865 				ASSERT(md_pbuf_nxt == NULL);
19866 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19867 
19868 				/*
19869 				 * Have we reached the limit?  We'd get to
19870 				 * this case when we're not chaining the
19871 				 * Multidata messages together, and since
19872 				 * we're done, terminate this loop.
19873 				 */
19874 				if (max_pld == 0)
19875 					break; /* done */
19876 
19877 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19878 					TCP_STAT(tcp_mdt_allocfail);
19879 					goto legacy_send; /* out_of_mem */
19880 				}
19881 
19882 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19883 				    zc_cap != NULL) {
19884 					if (!ip_md_zcopy_attr(mmd, NULL,
19885 					    zc_cap->ill_zerocopy_flags)) {
19886 						freeb(md_pbuf);
19887 						TCP_STAT(tcp_mdt_allocfail);
19888 						/* out_of_mem */
19889 						goto legacy_send;
19890 					}
19891 					zcopy = B_TRUE;
19892 				}
19893 
19894 				md_pbuf->b_rptr += base_pld_off;
19895 
19896 				/*
19897 				 * Add a payload buffer to the Multidata; this
19898 				 * operation must not fail, or otherwise our
19899 				 * logic in this routine is broken.  There
19900 				 * is no memory allocation done by the
19901 				 * routine, so any returned failure simply
19902 				 * tells us that we've done something wrong.
19903 				 *
19904 				 * A failure tells us that either we're adding
19905 				 * the same payload buffer more than once, or
19906 				 * we're trying to add more buffers than
19907 				 * allowed (max_pld calculation is wrong).
19908 				 * None of the above cases should happen, and
19909 				 * we panic because either there's horrible
19910 				 * heap corruption, and/or programming mistake.
19911 				 */
19912 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19913 				if (pbuf_idx < 0) {
19914 					cmn_err(CE_PANIC, "tcp_multisend: "
19915 					    "payload buffer logic error "
19916 					    "detected for tcp %p mmd %p "
19917 					    "pbuf %p (%d)\n",
19918 					    (void *)tcp, (void *)mmd,
19919 					    (void *)md_pbuf, pbuf_idx);
19920 				}
19921 
19922 				ASSERT(max_pld > 0);
19923 				--max_pld;
19924 				add_buffer = B_FALSE;
19925 			}
19926 
19927 			ASSERT(md_mp_head != NULL);
19928 			ASSERT(md_pbuf != NULL);
19929 			ASSERT(md_pbuf_nxt == NULL);
19930 			ASSERT(pbuf_idx != -1);
19931 			ASSERT(pbuf_idx_nxt == -1);
19932 			ASSERT(*usable > 0);
19933 
19934 			/*
19935 			 * We spillover to the next payload buffer only
19936 			 * if all of the following is true:
19937 			 *
19938 			 *   1. There is not enough data on the current
19939 			 *	payload buffer to make up `len',
19940 			 *   2. We are allowed to send `len',
19941 			 *   3. The next payload buffer length is large
19942 			 *	enough to accomodate `spill'.
19943 			 */
19944 			if ((spill = len - *tail_unsent) > 0 &&
19945 			    *usable >= len &&
19946 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19947 			    max_pld > 0) {
19948 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19949 				if (md_pbuf_nxt == NULL) {
19950 					TCP_STAT(tcp_mdt_allocfail);
19951 					goto legacy_send; /* out_of_mem */
19952 				}
19953 
19954 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19955 				    zc_cap != NULL) {
19956 					if (!ip_md_zcopy_attr(mmd, NULL,
19957 					    zc_cap->ill_zerocopy_flags)) {
19958 						freeb(md_pbuf_nxt);
19959 						TCP_STAT(tcp_mdt_allocfail);
19960 						/* out_of_mem */
19961 						goto legacy_send;
19962 					}
19963 					zcopy = B_TRUE;
19964 				}
19965 
19966 				/*
19967 				 * See comments above on the first call to
19968 				 * mmd_addpldbuf for explanation on the panic.
19969 				 */
19970 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19971 				if (pbuf_idx_nxt < 0) {
19972 					panic("tcp_multisend: "
19973 					    "next payload buffer logic error "
19974 					    "detected for tcp %p mmd %p "
19975 					    "pbuf %p (%d)\n",
19976 					    (void *)tcp, (void *)mmd,
19977 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19978 				}
19979 
19980 				ASSERT(max_pld > 0);
19981 				--max_pld;
19982 			} else if (spill > 0) {
19983 				/*
19984 				 * If there's a spillover, but the following
19985 				 * xmit_tail couldn't give us enough octets
19986 				 * to reach "len", then stop the current
19987 				 * Multidata creation and let the legacy
19988 				 * tcp_send() path take over.  We don't want
19989 				 * to send the tiny segment as part of this
19990 				 * Multidata for performance reasons; instead,
19991 				 * we let the legacy path deal with grouping
19992 				 * it with the subsequent small mblks.
19993 				 */
19994 				if (*usable >= len &&
19995 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19996 					max_pld = 0;
19997 					break;	/* done */
19998 				}
19999 
20000 				/*
20001 				 * We can't spillover, and we are near
20002 				 * the end of the current payload buffer,
20003 				 * so send what's left.
20004 				 */
20005 				ASSERT(*tail_unsent > 0);
20006 				len = *tail_unsent;
20007 			}
20008 
20009 			/* tail_unsent is negated if there is a spillover */
20010 			*tail_unsent -= len;
20011 			*usable -= len;
20012 			ASSERT(*usable >= 0);
20013 
20014 			if (*usable < mss)
20015 				seg_len = *usable;
20016 			/*
20017 			 * Sender SWS avoidance; see comments in tcp_send();
20018 			 * everything else is the same, except that we only
20019 			 * do this here if there is no more data to be sent
20020 			 * following the current xmit_tail.  We don't check
20021 			 * for 1-byte urgent data because we shouldn't get
20022 			 * here if TCP_URG_VALID is set.
20023 			 */
20024 			if (*usable > 0 && *usable < mss &&
20025 			    ((md_pbuf_nxt == NULL &&
20026 			    (*xmit_tail)->b_cont == NULL) ||
20027 			    (md_pbuf_nxt != NULL &&
20028 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20029 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20030 			    (tcp->tcp_unsent -
20031 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20032 			    !tcp->tcp_zero_win_probe) {
20033 				if ((*snxt + len) == tcp->tcp_snxt &&
20034 				    (*snxt + len) == tcp->tcp_suna) {
20035 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20036 				}
20037 				done = B_TRUE;
20038 			}
20039 
20040 			/*
20041 			 * Prime pump for IP's checksumming on our behalf;
20042 			 * include the adjustment for a source route if any.
20043 			 * Do this only for software/partial hardware checksum
20044 			 * offload, as this field gets zeroed out later for
20045 			 * the full hardware checksum offload case.
20046 			 */
20047 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20048 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20049 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20050 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20051 			}
20052 
20053 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20054 			*snxt += len;
20055 
20056 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20057 			/*
20058 			 * We set the PUSH bit only if TCP has no more buffered
20059 			 * data to be transmitted (or if sender SWS avoidance
20060 			 * takes place), as opposed to setting it for every
20061 			 * last packet in the burst.
20062 			 */
20063 			if (done ||
20064 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20065 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20066 
20067 			/*
20068 			 * Set FIN bit if this is our last segment; snxt
20069 			 * already includes its length, and it will not
20070 			 * be adjusted after this point.
20071 			 */
20072 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20073 			    *snxt == tcp->tcp_fss) {
20074 				if (!tcp->tcp_fin_acked) {
20075 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20076 					BUMP_MIB(&tcp_mib, tcpOutControl);
20077 				}
20078 				if (!tcp->tcp_fin_sent) {
20079 					tcp->tcp_fin_sent = B_TRUE;
20080 					/*
20081 					 * tcp state must be ESTABLISHED
20082 					 * in order for us to get here in
20083 					 * the first place.
20084 					 */
20085 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20086 
20087 					/*
20088 					 * Upon returning from this routine,
20089 					 * tcp_wput_data() will set tcp_snxt
20090 					 * to be equal to snxt + tcp_fin_sent.
20091 					 * This is essentially the same as
20092 					 * setting it to tcp_fss + 1.
20093 					 */
20094 				}
20095 			}
20096 
20097 			tcp->tcp_last_sent_len = (ushort_t)len;
20098 
20099 			len += tcp_hdr_len;
20100 			if (tcp->tcp_ipversion == IPV4_VERSION)
20101 				tcp->tcp_ipha->ipha_length = htons(len);
20102 			else
20103 				tcp->tcp_ip6h->ip6_plen = htons(len -
20104 				    ((char *)&tcp->tcp_ip6h[1] -
20105 				    tcp->tcp_iphc));
20106 
20107 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20108 
20109 			/* setup header fragment */
20110 			PDESC_HDR_ADD(pkt_info,
20111 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20112 			    tcp->tcp_mdt_hdr_head,		/* head room */
20113 			    tcp_hdr_len,			/* len */
20114 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20115 
20116 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20117 			    hdr_frag_sz);
20118 			ASSERT(MBLKIN(md_hbuf,
20119 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20120 			    PDESC_HDRSIZE(pkt_info)));
20121 
20122 			/* setup first payload fragment */
20123 			PDESC_PLD_INIT(pkt_info);
20124 			PDESC_PLD_SPAN_ADD(pkt_info,
20125 			    pbuf_idx,				/* index */
20126 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20127 			    tcp->tcp_last_sent_len);		/* len */
20128 
20129 			/* create a split-packet in case of a spillover */
20130 			if (md_pbuf_nxt != NULL) {
20131 				ASSERT(spill > 0);
20132 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20133 				ASSERT(!add_buffer);
20134 
20135 				md_pbuf = md_pbuf_nxt;
20136 				md_pbuf_nxt = NULL;
20137 				pbuf_idx = pbuf_idx_nxt;
20138 				pbuf_idx_nxt = -1;
20139 				cur_pld_off = spill;
20140 
20141 				/* trim out first payload fragment */
20142 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20143 
20144 				/* setup second payload fragment */
20145 				PDESC_PLD_SPAN_ADD(pkt_info,
20146 				    pbuf_idx,			/* index */
20147 				    md_pbuf->b_rptr,		/* start */
20148 				    spill);			/* len */
20149 
20150 				if ((*xmit_tail)->b_next == NULL) {
20151 					/*
20152 					 * Store the lbolt used for RTT
20153 					 * estimation. We can only record one
20154 					 * timestamp per mblk so we do it when
20155 					 * we reach the end of the payload
20156 					 * buffer.  Also we only take a new
20157 					 * timestamp sample when the previous
20158 					 * timed data from the same mblk has
20159 					 * been ack'ed.
20160 					 */
20161 					(*xmit_tail)->b_prev = local_time;
20162 					(*xmit_tail)->b_next =
20163 					    (mblk_t *)(uintptr_t)first_snxt;
20164 				}
20165 
20166 				first_snxt = *snxt - spill;
20167 
20168 				/*
20169 				 * Advance xmit_tail; usable could be 0 by
20170 				 * the time we got here, but we made sure
20171 				 * above that we would only spillover to
20172 				 * the next data block if usable includes
20173 				 * the spilled-over amount prior to the
20174 				 * subtraction.  Therefore, we are sure
20175 				 * that xmit_tail->b_cont can't be NULL.
20176 				 */
20177 				ASSERT((*xmit_tail)->b_cont != NULL);
20178 				*xmit_tail = (*xmit_tail)->b_cont;
20179 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20180 				    (uintptr_t)INT_MAX);
20181 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20182 			} else {
20183 				cur_pld_off += tcp->tcp_last_sent_len;
20184 			}
20185 
20186 			/*
20187 			 * Fill in the header using the template header, and
20188 			 * add options such as time-stamp, ECN and/or SACK,
20189 			 * as needed.
20190 			 */
20191 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20192 			    (clock_t)local_time, num_sack_blk);
20193 
20194 			/* take care of some IP header businesses */
20195 			if (af == AF_INET) {
20196 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20197 
20198 				ASSERT(OK_32PTR((uchar_t *)ipha));
20199 				ASSERT(PDESC_HDRL(pkt_info) >=
20200 				    IP_SIMPLE_HDR_LENGTH);
20201 				ASSERT(ipha->ipha_version_and_hdr_length ==
20202 				    IP_SIMPLE_HDR_VERSION);
20203 
20204 				/*
20205 				 * Assign ident value for current packet; see
20206 				 * related comments in ip_wput_ire() about the
20207 				 * contract private interface with clustering
20208 				 * group.
20209 				 */
20210 				clusterwide = B_FALSE;
20211 				if (cl_inet_ipident != NULL) {
20212 					ASSERT(cl_inet_isclusterwide != NULL);
20213 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20214 					    AF_INET,
20215 					    (uint8_t *)(uintptr_t)src)) {
20216 						ipha->ipha_ident =
20217 						    (*cl_inet_ipident)
20218 						    (IPPROTO_IP, AF_INET,
20219 						    (uint8_t *)(uintptr_t)src,
20220 						    (uint8_t *)(uintptr_t)dst);
20221 						clusterwide = B_TRUE;
20222 					}
20223 				}
20224 
20225 				if (!clusterwide) {
20226 					ipha->ipha_ident = (uint16_t)
20227 					    atomic_add_32_nv(
20228 						&ire->ire_ident, 1);
20229 				}
20230 #ifndef _BIG_ENDIAN
20231 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20232 				    (ipha->ipha_ident >> 8);
20233 #endif
20234 			} else {
20235 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20236 
20237 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20238 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20239 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20240 				ASSERT(PDESC_HDRL(pkt_info) >=
20241 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20242 				    TCP_CHECKSUM_SIZE));
20243 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20244 
20245 				if (tcp->tcp_ip_forward_progress) {
20246 					rconfirm = B_TRUE;
20247 					tcp->tcp_ip_forward_progress = B_FALSE;
20248 				}
20249 			}
20250 
20251 			/* at least one payload span, and at most two */
20252 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20253 
20254 			/* add the packet descriptor to Multidata */
20255 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20256 			    KM_NOSLEEP)) == NULL) {
20257 				/*
20258 				 * Any failure other than ENOMEM indicates
20259 				 * that we have passed in invalid pkt_info
20260 				 * or parameters to mmd_addpdesc, which must
20261 				 * not happen.
20262 				 *
20263 				 * EINVAL is a result of failure on boundary
20264 				 * checks against the pkt_info contents.  It
20265 				 * should not happen, and we panic because
20266 				 * either there's horrible heap corruption,
20267 				 * and/or programming mistake.
20268 				 */
20269 				if (err != ENOMEM) {
20270 					cmn_err(CE_PANIC, "tcp_multisend: "
20271 					    "pdesc logic error detected for "
20272 					    "tcp %p mmd %p pinfo %p (%d)\n",
20273 					    (void *)tcp, (void *)mmd,
20274 					    (void *)pkt_info, err);
20275 				}
20276 				TCP_STAT(tcp_mdt_addpdescfail);
20277 				goto legacy_send; /* out_of_mem */
20278 			}
20279 			ASSERT(pkt != NULL);
20280 
20281 			/* calculate IP header and TCP checksums */
20282 			if (af == AF_INET) {
20283 				/* calculate pseudo-header checksum */
20284 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20285 				    (src >> 16) + (src & 0xFFFF);
20286 
20287 				/* offset for TCP header checksum */
20288 				up = IPH_TCPH_CHECKSUMP(ipha,
20289 				    IP_SIMPLE_HDR_LENGTH);
20290 			} else {
20291 				up = (uint16_t *)&ip6h->ip6_src;
20292 
20293 				/* calculate pseudo-header checksum */
20294 				cksum = up[0] + up[1] + up[2] + up[3] +
20295 				    up[4] + up[5] + up[6] + up[7] +
20296 				    up[8] + up[9] + up[10] + up[11] +
20297 				    up[12] + up[13] + up[14] + up[15];
20298 
20299 				/* Fold the initial sum */
20300 				cksum = (cksum & 0xffff) + (cksum >> 16);
20301 
20302 				up = (uint16_t *)(((uchar_t *)ip6h) +
20303 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20304 			}
20305 
20306 			if (hwcksum_flags & HCK_FULLCKSUM) {
20307 				/* clear checksum field for hardware */
20308 				*up = 0;
20309 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20310 				uint32_t sum;
20311 
20312 				/* pseudo-header checksumming */
20313 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20314 				sum = (sum & 0xFFFF) + (sum >> 16);
20315 				*up = (sum & 0xFFFF) + (sum >> 16);
20316 			} else {
20317 				/* software checksumming */
20318 				TCP_STAT(tcp_out_sw_cksum);
20319 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
20320 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20321 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20322 				    cksum + IP_TCP_CSUM_COMP);
20323 				if (*up == 0)
20324 					*up = 0xFFFF;
20325 			}
20326 
20327 			/* IPv4 header checksum */
20328 			if (af == AF_INET) {
20329 				ipha->ipha_fragment_offset_and_flags |=
20330 				    (uint32_t)htons(ire->ire_frag_flag);
20331 
20332 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20333 					ipha->ipha_hdr_checksum = 0;
20334 				} else {
20335 					IP_HDR_CKSUM(ipha, cksum,
20336 					    ((uint32_t *)ipha)[0],
20337 					    ((uint16_t *)ipha)[4]);
20338 				}
20339 			}
20340 
20341 			if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT||
20342 			    af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) {
20343 				/* build header(IP/TCP) mblk for this segment */
20344 				if ((mp = dupb(md_hbuf)) == NULL)
20345 					goto legacy_send;
20346 
20347 				mp->b_rptr = pkt_info->hdr_rptr;
20348 				mp->b_wptr = pkt_info->hdr_wptr;
20349 
20350 				/* build payload mblk for this segment */
20351 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20352 					freemsg(mp);
20353 					goto legacy_send;
20354 				}
20355 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20356 				mp1->b_rptr = mp1->b_wptr -
20357 				    tcp->tcp_last_sent_len;
20358 				linkb(mp, mp1);
20359 
20360 				pld_start = mp1->b_rptr;
20361 
20362 				if (af == AF_INET) {
20363 					DTRACE_PROBE4(
20364 					    ip4__physical__out__start,
20365 					    ill_t *, NULL,
20366 					    ill_t *, ill,
20367 					    ipha_t *, ipha,
20368 					    mblk_t *, mp);
20369 					FW_HOOKS(ip4_physical_out_event,
20370 					    ipv4firewall_physical_out,
20371 					    NULL, ill, ipha, mp, mp);
20372 					DTRACE_PROBE1(
20373 					    ip4__physical__out__end,
20374 					    mblk_t *, mp);
20375 				} else {
20376 					DTRACE_PROBE4(
20377 					    ip6__physical__out_start,
20378 					    ill_t *, NULL,
20379 					    ill_t *, ill,
20380 					    ip6_t *, ip6h,
20381 					    mblk_t *, mp);
20382 					FW_HOOKS6(ip6_physical_out_event,
20383 					    ipv6firewall_physical_out,
20384 					    NULL, ill, ip6h, mp, mp);
20385 					DTRACE_PROBE1(
20386 					    ip6__physical__out__end,
20387 					    mblk_t *, mp);
20388 				}
20389 
20390 				if (buf_trunked && mp != NULL) {
20391 					/*
20392 					 * Need to pass it to normal path.
20393 					 */
20394 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20395 				} else if (mp == NULL ||
20396 				    mp->b_rptr != pkt_info->hdr_rptr ||
20397 				    mp->b_wptr != pkt_info->hdr_wptr ||
20398 				    (mp1 = mp->b_cont) == NULL ||
20399 				    mp1->b_rptr != pld_start ||
20400 				    mp1->b_wptr != pld_start +
20401 				    tcp->tcp_last_sent_len ||
20402 				    mp1->b_cont != NULL) {
20403 					/*
20404 					 * Need to pass all packets of this
20405 					 * buffer to normal path, either when
20406 					 * packet is blocked, or when boundary
20407 					 * of header buffer or payload buffer
20408 					 * has been changed by FW_HOOKS[6].
20409 					 */
20410 					buf_trunked = B_TRUE;
20411 					if (md_mp_head != NULL) {
20412 						err = (intptr_t)rmvb(md_mp_head,
20413 						    md_mp);
20414 						if (err == 0)
20415 							md_mp_head = NULL;
20416 					}
20417 
20418 					/* send down what we've got so far */
20419 					if (md_mp_head != NULL) {
20420 						tcp_multisend_data(tcp, ire,
20421 						    ill, md_mp_head, obsegs,
20422 						    obbytes, &rconfirm);
20423 					}
20424 					md_mp_head = NULL;
20425 
20426 					if (mp != NULL)
20427 						CALL_IP_WPUT(tcp->tcp_connp,
20428 						    q, mp);
20429 
20430 					mp1 = fw_mp_head;
20431 					do {
20432 						mp = mp1;
20433 						mp1 = mp1->b_next;
20434 						mp->b_next = NULL;
20435 						mp->b_prev = NULL;
20436 						CALL_IP_WPUT(tcp->tcp_connp,
20437 						    q, mp);
20438 					} while (mp1 != NULL);
20439 
20440 					fw_mp_head = NULL;
20441 				} else {
20442 					if (fw_mp_head == NULL)
20443 						fw_mp_head = mp;
20444 					else
20445 						fw_mp_head->b_prev->b_next = mp;
20446 					fw_mp_head->b_prev = mp;
20447 				}
20448 			}
20449 
20450 			/* advance header offset */
20451 			cur_hdr_off += hdr_frag_sz;
20452 
20453 			obbytes += tcp->tcp_last_sent_len;
20454 			++obsegs;
20455 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20456 		    *tail_unsent > 0);
20457 
20458 		if ((*xmit_tail)->b_next == NULL) {
20459 			/*
20460 			 * Store the lbolt used for RTT estimation. We can only
20461 			 * record one timestamp per mblk so we do it when we
20462 			 * reach the end of the payload buffer. Also we only
20463 			 * take a new timestamp sample when the previous timed
20464 			 * data from the same mblk has been ack'ed.
20465 			 */
20466 			(*xmit_tail)->b_prev = local_time;
20467 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20468 		}
20469 
20470 		ASSERT(*tail_unsent >= 0);
20471 		if (*tail_unsent > 0) {
20472 			/*
20473 			 * We got here because we broke out of the above
20474 			 * loop due to of one of the following cases:
20475 			 *
20476 			 *   1. len < adjusted MSS (i.e. small),
20477 			 *   2. Sender SWS avoidance,
20478 			 *   3. max_pld is zero.
20479 			 *
20480 			 * We are done for this Multidata, so trim our
20481 			 * last payload buffer (if any) accordingly.
20482 			 */
20483 			if (md_pbuf != NULL)
20484 				md_pbuf->b_wptr -= *tail_unsent;
20485 		} else if (*usable > 0) {
20486 			*xmit_tail = (*xmit_tail)->b_cont;
20487 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20488 			    (uintptr_t)INT_MAX);
20489 			*tail_unsent = (int)MBLKL(*xmit_tail);
20490 			add_buffer = B_TRUE;
20491 		}
20492 
20493 		while (fw_mp_head) {
20494 			mp = fw_mp_head;
20495 			fw_mp_head = fw_mp_head->b_next;
20496 			mp->b_prev = mp->b_next = NULL;
20497 			freemsg(mp);
20498 		}
20499 		if (buf_trunked) {
20500 			TCP_STAT(tcp_mdt_discarded);
20501 			freeb(md_mp);
20502 			buf_trunked = B_FALSE;
20503 		}
20504 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20505 	    (tcp_mdt_chain || max_pld > 0));
20506 
20507 	if (md_mp_head != NULL) {
20508 		/* send everything down */
20509 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20510 		    &rconfirm);
20511 	}
20512 
20513 #undef PREP_NEW_MULTIDATA
20514 #undef PREP_NEW_PBUF
20515 #undef IPVER
20516 
20517 	IRE_REFRELE(ire);
20518 	return (0);
20519 }
20520 
20521 /*
20522  * A wrapper function for sending one or more Multidata messages down to
20523  * the module below ip; this routine does not release the reference of the
20524  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20525  */
20526 static void
20527 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20528     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20529 {
20530 	uint64_t delta;
20531 	nce_t *nce;
20532 
20533 	ASSERT(ire != NULL && ill != NULL);
20534 	ASSERT(ire->ire_stq != NULL);
20535 	ASSERT(md_mp_head != NULL);
20536 	ASSERT(rconfirm != NULL);
20537 
20538 	/* adjust MIBs and IRE timestamp */
20539 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20540 	tcp->tcp_obsegs += obsegs;
20541 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20542 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20543 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20544 
20545 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20546 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20547 	} else {
20548 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20549 	}
20550 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20551 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20552 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20553 
20554 	ire->ire_ob_pkt_count += obsegs;
20555 	if (ire->ire_ipif != NULL)
20556 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20557 	ire->ire_last_used_time = lbolt;
20558 
20559 	/* send it down */
20560 	putnext(ire->ire_stq, md_mp_head);
20561 
20562 	/* we're done for TCP/IPv4 */
20563 	if (tcp->tcp_ipversion == IPV4_VERSION)
20564 		return;
20565 
20566 	nce = ire->ire_nce;
20567 
20568 	ASSERT(nce != NULL);
20569 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20570 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20571 
20572 	/* reachability confirmation? */
20573 	if (*rconfirm) {
20574 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20575 		if (nce->nce_state != ND_REACHABLE) {
20576 			mutex_enter(&nce->nce_lock);
20577 			nce->nce_state = ND_REACHABLE;
20578 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20579 			mutex_exit(&nce->nce_lock);
20580 			(void) untimeout(nce->nce_timeout_id);
20581 			if (ip_debug > 2) {
20582 				/* ip1dbg */
20583 				pr_addr_dbg("tcp_multisend_data: state "
20584 				    "for %s changed to REACHABLE\n",
20585 				    AF_INET6, &ire->ire_addr_v6);
20586 			}
20587 		}
20588 		/* reset transport reachability confirmation */
20589 		*rconfirm = B_FALSE;
20590 	}
20591 
20592 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20593 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20594 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20595 
20596 	if (delta > (uint64_t)ill->ill_reachable_time) {
20597 		mutex_enter(&nce->nce_lock);
20598 		switch (nce->nce_state) {
20599 		case ND_REACHABLE:
20600 		case ND_STALE:
20601 			/*
20602 			 * ND_REACHABLE is identical to ND_STALE in this
20603 			 * specific case. If reachable time has expired for
20604 			 * this neighbor (delta is greater than reachable
20605 			 * time), conceptually, the neighbor cache is no
20606 			 * longer in REACHABLE state, but already in STALE
20607 			 * state.  So the correct transition here is to
20608 			 * ND_DELAY.
20609 			 */
20610 			nce->nce_state = ND_DELAY;
20611 			mutex_exit(&nce->nce_lock);
20612 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20613 			if (ip_debug > 3) {
20614 				/* ip2dbg */
20615 				pr_addr_dbg("tcp_multisend_data: state "
20616 				    "for %s changed to DELAY\n",
20617 				    AF_INET6, &ire->ire_addr_v6);
20618 			}
20619 			break;
20620 		case ND_DELAY:
20621 		case ND_PROBE:
20622 			mutex_exit(&nce->nce_lock);
20623 			/* Timers have already started */
20624 			break;
20625 		case ND_UNREACHABLE:
20626 			/*
20627 			 * ndp timer has detected that this nce is
20628 			 * unreachable and initiated deleting this nce
20629 			 * and all its associated IREs. This is a race
20630 			 * where we found the ire before it was deleted
20631 			 * and have just sent out a packet using this
20632 			 * unreachable nce.
20633 			 */
20634 			mutex_exit(&nce->nce_lock);
20635 			break;
20636 		default:
20637 			ASSERT(0);
20638 		}
20639 	}
20640 }
20641 
20642 /*
20643  * Derived from tcp_send_data().
20644  */
20645 static void
20646 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20647     int num_lso_seg)
20648 {
20649 	ipha_t		*ipha;
20650 	mblk_t		*ire_fp_mp;
20651 	uint_t		ire_fp_mp_len;
20652 	uint32_t	hcksum_txflags = 0;
20653 	ipaddr_t	src;
20654 	ipaddr_t	dst;
20655 	uint32_t	cksum;
20656 	uint16_t	*up;
20657 
20658 	ASSERT(DB_TYPE(mp) == M_DATA);
20659 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20660 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20661 	ASSERT(tcp->tcp_connp != NULL);
20662 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20663 
20664 	ipha = (ipha_t *)mp->b_rptr;
20665 	src = ipha->ipha_src;
20666 	dst = ipha->ipha_dst;
20667 
20668 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20669 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20670 	    num_lso_seg);
20671 #ifndef _BIG_ENDIAN
20672 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20673 #endif
20674 	if (tcp->tcp_snd_zcopy_aware) {
20675 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20676 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20677 			mp = tcp_zcopy_disable(tcp, mp);
20678 	}
20679 
20680 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20681 		ASSERT(ill->ill_hcksum_capab != NULL);
20682 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20683 	}
20684 
20685 	/*
20686 	 * Since the TCP checksum should be recalculated by h/w, we can just
20687 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20688 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20689 	 * The partial pseudo-header excludes TCP length, that was calculated
20690 	 * in tcp_send(), so to zero *up before further processing.
20691 	 */
20692 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20693 
20694 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20695 	*up = 0;
20696 
20697 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20698 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20699 
20700 	/*
20701 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
20702 	 */
20703 	DB_LSOFLAGS(mp) |= HW_LSO;
20704 	DB_LSOMSS(mp) = mss;
20705 
20706 	ipha->ipha_fragment_offset_and_flags |=
20707 	    (uint32_t)htons(ire->ire_frag_flag);
20708 
20709 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20710 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20711 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20712 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20713 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20714 
20715 	UPDATE_OB_PKT_COUNT(ire);
20716 	ire->ire_last_used_time = lbolt;
20717 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20718 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20719 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20720 	    ntohs(ipha->ipha_length));
20721 
20722 	if (ILL_DLS_CAPABLE(ill)) {
20723 		/*
20724 		 * Send the packet directly to DLD, where it may be queued
20725 		 * depending on the availability of transmit resources at
20726 		 * the media layer.
20727 		 */
20728 		IP_DLS_ILL_TX(ill, ipha, mp);
20729 	} else {
20730 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
20731 		DTRACE_PROBE4(ip4__physical__out__start,
20732 		    ill_t *, NULL, ill_t *, out_ill,
20733 		    ipha_t *, ipha, mblk_t *, mp);
20734 		FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
20735 		    NULL, out_ill, ipha, mp, mp);
20736 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20737 		if (mp != NULL)
20738 			putnext(ire->ire_stq, mp);
20739 	}
20740 }
20741 
20742 /*
20743  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20744  * scheme, and returns one of the following:
20745  *
20746  * -1 = failed allocation.
20747  *  0 = success; burst count reached, or usable send window is too small,
20748  *      and that we'd rather wait until later before sending again.
20749  *  1 = success; we are called from tcp_multisend(), and both usable send
20750  *      window and tail_unsent are greater than the MDT threshold, and thus
20751  *      Multidata Transmit should be used instead.
20752  */
20753 static int
20754 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20755     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20756     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20757     const int mdt_thres)
20758 {
20759 	int num_burst_seg = tcp->tcp_snd_burst;
20760 	ire_t		*ire = NULL;
20761 	ill_t		*ill = NULL;
20762 	mblk_t		*ire_fp_mp = NULL;
20763 	uint_t		ire_fp_mp_len = 0;
20764 	int		num_lso_seg = 1;
20765 	uint_t		lso_usable;
20766 	boolean_t	do_lso_send = B_FALSE;
20767 
20768 	/*
20769 	 * Check LSO capability before any further work. And the similar check
20770 	 * need to be done in for(;;) loop.
20771 	 * LSO will be deployed when therer is more than one mss of available
20772 	 * data and a burst transmission is allowed.
20773 	 */
20774 	if (tcp->tcp_lso &&
20775 	    (tcp->tcp_valid_bits == 0 ||
20776 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20777 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20778 		/*
20779 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20780 		 */
20781 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
20782 			/*
20783 			 * Enable LSO with this transmission.
20784 			 * Since IRE has been hold in
20785 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
20786 			 * should be called before return.
20787 			 */
20788 			do_lso_send = B_TRUE;
20789 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
20790 			ire_fp_mp_len = MBLKL(ire_fp_mp);
20791 			/* Round up to multiple of 4 */
20792 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
20793 		} else {
20794 			do_lso_send = B_FALSE;
20795 			ill = NULL;
20796 		}
20797 	}
20798 
20799 	for (;;) {
20800 		struct datab	*db;
20801 		tcph_t		*tcph;
20802 		uint32_t	sum;
20803 		mblk_t		*mp, *mp1;
20804 		uchar_t		*rptr;
20805 		int		len;
20806 
20807 		/*
20808 		 * If we're called by tcp_multisend(), and the amount of
20809 		 * sendable data as well as the size of current xmit_tail
20810 		 * is beyond the MDT threshold, return to the caller and
20811 		 * let the large data transmit be done using MDT.
20812 		 */
20813 		if (*usable > 0 && *usable > mdt_thres &&
20814 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20815 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20816 			ASSERT(tcp->tcp_mdt);
20817 			return (1);	/* success; do large send */
20818 		}
20819 
20820 		if (num_burst_seg == 0)
20821 			break;		/* success; burst count reached */
20822 
20823 		/*
20824 		 * Calculate the maximum payload length we can send in *one*
20825 		 * time.
20826 		 */
20827 		if (do_lso_send) {
20828 			/*
20829 			 * Check whether need to do LSO any more.
20830 			 */
20831 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20832 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
20833 				lso_usable = MIN(lso_usable,
20834 				    num_burst_seg * mss);
20835 
20836 				num_lso_seg = lso_usable / mss;
20837 				if (lso_usable % mss) {
20838 					num_lso_seg++;
20839 					tcp->tcp_last_sent_len = (ushort_t)
20840 					    (lso_usable % mss);
20841 				} else {
20842 					tcp->tcp_last_sent_len = (ushort_t)mss;
20843 				}
20844 			} else {
20845 				do_lso_send = B_FALSE;
20846 				num_lso_seg = 1;
20847 				lso_usable = mss;
20848 			}
20849 		}
20850 
20851 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
20852 
20853 		/*
20854 		 * Adjust num_burst_seg here.
20855 		 */
20856 		num_burst_seg -= num_lso_seg;
20857 
20858 		len = mss;
20859 		if (len > *usable) {
20860 			ASSERT(do_lso_send == B_FALSE);
20861 
20862 			len = *usable;
20863 			if (len <= 0) {
20864 				/* Terminate the loop */
20865 				break;	/* success; too small */
20866 			}
20867 			/*
20868 			 * Sender silly-window avoidance.
20869 			 * Ignore this if we are going to send a
20870 			 * zero window probe out.
20871 			 *
20872 			 * TODO: force data into microscopic window?
20873 			 *	==> (!pushed || (unsent > usable))
20874 			 */
20875 			if (len < (tcp->tcp_max_swnd >> 1) &&
20876 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20877 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20878 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20879 				/*
20880 				 * If the retransmit timer is not running
20881 				 * we start it so that we will retransmit
20882 				 * in the case when the the receiver has
20883 				 * decremented the window.
20884 				 */
20885 				if (*snxt == tcp->tcp_snxt &&
20886 				    *snxt == tcp->tcp_suna) {
20887 					/*
20888 					 * We are not supposed to send
20889 					 * anything.  So let's wait a little
20890 					 * bit longer before breaking SWS
20891 					 * avoidance.
20892 					 *
20893 					 * What should the value be?
20894 					 * Suggestion: MAX(init rexmit time,
20895 					 * tcp->tcp_rto)
20896 					 */
20897 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20898 				}
20899 				break;	/* success; too small */
20900 			}
20901 		}
20902 
20903 		tcph = tcp->tcp_tcph;
20904 
20905 		/*
20906 		 * The reason to adjust len here is that we need to set flags
20907 		 * and calculate checksum.
20908 		 */
20909 		if (do_lso_send)
20910 			len = lso_usable;
20911 
20912 		*usable -= len; /* Approximate - can be adjusted later */
20913 		if (*usable > 0)
20914 			tcph->th_flags[0] = TH_ACK;
20915 		else
20916 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20917 
20918 		/*
20919 		 * Prime pump for IP's checksumming on our behalf
20920 		 * Include the adjustment for a source route if any.
20921 		 */
20922 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20923 		sum = (sum >> 16) + (sum & 0xFFFF);
20924 		U16_TO_ABE16(sum, tcph->th_sum);
20925 
20926 		U32_TO_ABE32(*snxt, tcph->th_seq);
20927 
20928 		/*
20929 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20930 		 * set.  For the case when TCP_FSS_VALID is the only valid
20931 		 * bit (normal active close), branch off only when we think
20932 		 * that the FIN flag needs to be set.  Note for this case,
20933 		 * that (snxt + len) may not reflect the actual seg_len,
20934 		 * as len may be further reduced in tcp_xmit_mp().  If len
20935 		 * gets modified, we will end up here again.
20936 		 */
20937 		if (tcp->tcp_valid_bits != 0 &&
20938 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20939 		    ((*snxt + len) == tcp->tcp_fss))) {
20940 			uchar_t		*prev_rptr;
20941 			uint32_t	prev_snxt = tcp->tcp_snxt;
20942 
20943 			if (*tail_unsent == 0) {
20944 				ASSERT((*xmit_tail)->b_cont != NULL);
20945 				*xmit_tail = (*xmit_tail)->b_cont;
20946 				prev_rptr = (*xmit_tail)->b_rptr;
20947 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20948 				    (*xmit_tail)->b_rptr);
20949 			} else {
20950 				prev_rptr = (*xmit_tail)->b_rptr;
20951 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20952 				    *tail_unsent;
20953 			}
20954 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20955 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20956 			/* Restore tcp_snxt so we get amount sent right. */
20957 			tcp->tcp_snxt = prev_snxt;
20958 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20959 				/*
20960 				 * If the previous timestamp is still in use,
20961 				 * don't stomp on it.
20962 				 */
20963 				if ((*xmit_tail)->b_next == NULL) {
20964 					(*xmit_tail)->b_prev = local_time;
20965 					(*xmit_tail)->b_next =
20966 					    (mblk_t *)(uintptr_t)(*snxt);
20967 				}
20968 			} else
20969 				(*xmit_tail)->b_rptr = prev_rptr;
20970 
20971 			if (mp == NULL) {
20972 				if (ire != NULL)
20973 					IRE_REFRELE(ire);
20974 				return (-1);
20975 			}
20976 			mp1 = mp->b_cont;
20977 
20978 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
20979 				tcp->tcp_last_sent_len = (ushort_t)len;
20980 			while (mp1->b_cont) {
20981 				*xmit_tail = (*xmit_tail)->b_cont;
20982 				(*xmit_tail)->b_prev = local_time;
20983 				(*xmit_tail)->b_next =
20984 				    (mblk_t *)(uintptr_t)(*snxt);
20985 				mp1 = mp1->b_cont;
20986 			}
20987 			*snxt += len;
20988 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20989 			BUMP_LOCAL(tcp->tcp_obsegs);
20990 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20991 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20992 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20993 			tcp_send_data(tcp, q, mp);
20994 			continue;
20995 		}
20996 
20997 		*snxt += len;	/* Adjust later if we don't send all of len */
20998 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20999 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
21000 
21001 		if (*tail_unsent) {
21002 			/* Are the bytes above us in flight? */
21003 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21004 			if (rptr != (*xmit_tail)->b_rptr) {
21005 				*tail_unsent -= len;
21006 				if (len <= mss) /* LSO is unusable */
21007 					tcp->tcp_last_sent_len = (ushort_t)len;
21008 				len += tcp_hdr_len;
21009 				if (tcp->tcp_ipversion == IPV4_VERSION)
21010 					tcp->tcp_ipha->ipha_length = htons(len);
21011 				else
21012 					tcp->tcp_ip6h->ip6_plen =
21013 					    htons(len -
21014 					    ((char *)&tcp->tcp_ip6h[1] -
21015 					    tcp->tcp_iphc));
21016 				mp = dupb(*xmit_tail);
21017 				if (mp == NULL) {
21018 					if (ire != NULL)
21019 						IRE_REFRELE(ire);
21020 					return (-1);	/* out_of_mem */
21021 				}
21022 				mp->b_rptr = rptr;
21023 				/*
21024 				 * If the old timestamp is no longer in use,
21025 				 * sample a new timestamp now.
21026 				 */
21027 				if ((*xmit_tail)->b_next == NULL) {
21028 					(*xmit_tail)->b_prev = local_time;
21029 					(*xmit_tail)->b_next =
21030 					    (mblk_t *)(uintptr_t)(*snxt-len);
21031 				}
21032 				goto must_alloc;
21033 			}
21034 		} else {
21035 			*xmit_tail = (*xmit_tail)->b_cont;
21036 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21037 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21038 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21039 			    (*xmit_tail)->b_rptr);
21040 		}
21041 
21042 		(*xmit_tail)->b_prev = local_time;
21043 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21044 
21045 		*tail_unsent -= len;
21046 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21047 			tcp->tcp_last_sent_len = (ushort_t)len;
21048 
21049 		len += tcp_hdr_len;
21050 		if (tcp->tcp_ipversion == IPV4_VERSION)
21051 			tcp->tcp_ipha->ipha_length = htons(len);
21052 		else
21053 			tcp->tcp_ip6h->ip6_plen = htons(len -
21054 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21055 
21056 		mp = dupb(*xmit_tail);
21057 		if (mp == NULL) {
21058 			if (ire != NULL)
21059 				IRE_REFRELE(ire);
21060 			return (-1);	/* out_of_mem */
21061 		}
21062 
21063 		len = tcp_hdr_len;
21064 		/*
21065 		 * There are four reasons to allocate a new hdr mblk:
21066 		 *  1) The bytes above us are in use by another packet
21067 		 *  2) We don't have good alignment
21068 		 *  3) The mblk is being shared
21069 		 *  4) We don't have enough room for a header
21070 		 */
21071 		rptr = mp->b_rptr - len;
21072 		if (!OK_32PTR(rptr) ||
21073 		    ((db = mp->b_datap), db->db_ref != 2) ||
21074 		    rptr < db->db_base + ire_fp_mp_len) {
21075 			/* NOTE: we assume allocb returns an OK_32PTR */
21076 
21077 		must_alloc:;
21078 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21079 			    tcp_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21080 			if (mp1 == NULL) {
21081 				freemsg(mp);
21082 				if (ire != NULL)
21083 					IRE_REFRELE(ire);
21084 				return (-1);	/* out_of_mem */
21085 			}
21086 			mp1->b_cont = mp;
21087 			mp = mp1;
21088 			/* Leave room for Link Level header */
21089 			len = tcp_hdr_len;
21090 			rptr = &mp->b_rptr[tcp_wroff_xtra + ire_fp_mp_len];
21091 			mp->b_wptr = &rptr[len];
21092 		}
21093 
21094 		/*
21095 		 * Fill in the header using the template header, and add
21096 		 * options such as time-stamp, ECN and/or SACK, as needed.
21097 		 */
21098 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21099 
21100 		mp->b_rptr = rptr;
21101 
21102 		if (*tail_unsent) {
21103 			int spill = *tail_unsent;
21104 
21105 			mp1 = mp->b_cont;
21106 			if (mp1 == NULL)
21107 				mp1 = mp;
21108 
21109 			/*
21110 			 * If we're a little short, tack on more mblks until
21111 			 * there is no more spillover.
21112 			 */
21113 			while (spill < 0) {
21114 				mblk_t *nmp;
21115 				int nmpsz;
21116 
21117 				nmp = (*xmit_tail)->b_cont;
21118 				nmpsz = MBLKL(nmp);
21119 
21120 				/*
21121 				 * Excess data in mblk; can we split it?
21122 				 * If MDT is enabled for the connection,
21123 				 * keep on splitting as this is a transient
21124 				 * send path.
21125 				 */
21126 				if (!do_lso_send && !tcp->tcp_mdt &&
21127 				    (spill + nmpsz > 0)) {
21128 					/*
21129 					 * Don't split if stream head was
21130 					 * told to break up larger writes
21131 					 * into smaller ones.
21132 					 */
21133 					if (tcp->tcp_maxpsz > 0)
21134 						break;
21135 
21136 					/*
21137 					 * Next mblk is less than SMSS/2
21138 					 * rounded up to nearest 64-byte;
21139 					 * let it get sent as part of the
21140 					 * next segment.
21141 					 */
21142 					if (tcp->tcp_localnet &&
21143 					    !tcp->tcp_cork &&
21144 					    (nmpsz < roundup((mss >> 1), 64)))
21145 						break;
21146 				}
21147 
21148 				*xmit_tail = nmp;
21149 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21150 				/* Stash for rtt use later */
21151 				(*xmit_tail)->b_prev = local_time;
21152 				(*xmit_tail)->b_next =
21153 				    (mblk_t *)(uintptr_t)(*snxt - len);
21154 				mp1->b_cont = dupb(*xmit_tail);
21155 				mp1 = mp1->b_cont;
21156 
21157 				spill += nmpsz;
21158 				if (mp1 == NULL) {
21159 					*tail_unsent = spill;
21160 					freemsg(mp);
21161 					if (ire != NULL)
21162 						IRE_REFRELE(ire);
21163 					return (-1);	/* out_of_mem */
21164 				}
21165 			}
21166 
21167 			/* Trim back any surplus on the last mblk */
21168 			if (spill >= 0) {
21169 				mp1->b_wptr -= spill;
21170 				*tail_unsent = spill;
21171 			} else {
21172 				/*
21173 				 * We did not send everything we could in
21174 				 * order to remain within the b_cont limit.
21175 				 */
21176 				*usable -= spill;
21177 				*snxt += spill;
21178 				tcp->tcp_last_sent_len += spill;
21179 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
21180 				/*
21181 				 * Adjust the checksum
21182 				 */
21183 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21184 				sum += spill;
21185 				sum = (sum >> 16) + (sum & 0xFFFF);
21186 				U16_TO_ABE16(sum, tcph->th_sum);
21187 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21188 					sum = ntohs(
21189 					    ((ipha_t *)rptr)->ipha_length) +
21190 					    spill;
21191 					((ipha_t *)rptr)->ipha_length =
21192 					    htons(sum);
21193 				} else {
21194 					sum = ntohs(
21195 					    ((ip6_t *)rptr)->ip6_plen) +
21196 					    spill;
21197 					((ip6_t *)rptr)->ip6_plen =
21198 					    htons(sum);
21199 				}
21200 				*tail_unsent = 0;
21201 			}
21202 		}
21203 		if (tcp->tcp_ip_forward_progress) {
21204 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21205 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21206 			tcp->tcp_ip_forward_progress = B_FALSE;
21207 		}
21208 
21209 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21210 		if (do_lso_send) {
21211 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21212 			    num_lso_seg);
21213 			tcp->tcp_obsegs += num_lso_seg;
21214 
21215 			TCP_STAT(tcp_lso_times);
21216 			TCP_STAT_UPDATE(tcp_lso_pkt_out, num_lso_seg);
21217 		} else {
21218 			tcp_send_data(tcp, q, mp);
21219 			BUMP_LOCAL(tcp->tcp_obsegs);
21220 		}
21221 	}
21222 
21223 	if (ire != NULL)
21224 		IRE_REFRELE(ire);
21225 	return (0);
21226 }
21227 
21228 /* Unlink and return any mblk that looks like it contains a MDT info */
21229 static mblk_t *
21230 tcp_mdt_info_mp(mblk_t *mp)
21231 {
21232 	mblk_t	*prev_mp;
21233 
21234 	for (;;) {
21235 		prev_mp = mp;
21236 		/* no more to process? */
21237 		if ((mp = mp->b_cont) == NULL)
21238 			break;
21239 
21240 		switch (DB_TYPE(mp)) {
21241 		case M_CTL:
21242 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21243 				continue;
21244 			ASSERT(prev_mp != NULL);
21245 			prev_mp->b_cont = mp->b_cont;
21246 			mp->b_cont = NULL;
21247 			return (mp);
21248 		default:
21249 			break;
21250 		}
21251 	}
21252 	return (mp);
21253 }
21254 
21255 /* MDT info update routine, called when IP notifies us about MDT */
21256 static void
21257 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21258 {
21259 	boolean_t prev_state;
21260 
21261 	/*
21262 	 * IP is telling us to abort MDT on this connection?  We know
21263 	 * this because the capability is only turned off when IP
21264 	 * encounters some pathological cases, e.g. link-layer change
21265 	 * where the new driver doesn't support MDT, or in situation
21266 	 * where MDT usage on the link-layer has been switched off.
21267 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21268 	 * if the link-layer doesn't support MDT, and if it does, it
21269 	 * will indicate that the feature is to be turned on.
21270 	 */
21271 	prev_state = tcp->tcp_mdt;
21272 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21273 	if (!tcp->tcp_mdt && !first) {
21274 		TCP_STAT(tcp_mdt_conn_halted3);
21275 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21276 		    (void *)tcp->tcp_connp));
21277 	}
21278 
21279 	/*
21280 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21281 	 * so disable MDT otherwise.  The checks are done here
21282 	 * and in tcp_wput_data().
21283 	 */
21284 	if (tcp->tcp_mdt &&
21285 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21286 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21287 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21288 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21289 		tcp->tcp_mdt = B_FALSE;
21290 
21291 	if (tcp->tcp_mdt) {
21292 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21293 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21294 			    "version (%d), expected version is %d",
21295 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21296 			tcp->tcp_mdt = B_FALSE;
21297 			return;
21298 		}
21299 
21300 		/*
21301 		 * We need the driver to be able to handle at least three
21302 		 * spans per packet in order for tcp MDT to be utilized.
21303 		 * The first is for the header portion, while the rest are
21304 		 * needed to handle a packet that straddles across two
21305 		 * virtually non-contiguous buffers; a typical tcp packet
21306 		 * therefore consists of only two spans.  Note that we take
21307 		 * a zero as "don't care".
21308 		 */
21309 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21310 		    mdt_capab->ill_mdt_span_limit < 3) {
21311 			tcp->tcp_mdt = B_FALSE;
21312 			return;
21313 		}
21314 
21315 		/* a zero means driver wants default value */
21316 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21317 		    tcp_mdt_max_pbufs);
21318 		if (tcp->tcp_mdt_max_pld == 0)
21319 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
21320 
21321 		/* ensure 32-bit alignment */
21322 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
21323 		    mdt_capab->ill_mdt_hdr_head), 4);
21324 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
21325 		    mdt_capab->ill_mdt_hdr_tail), 4);
21326 
21327 		if (!first && !prev_state) {
21328 			TCP_STAT(tcp_mdt_conn_resumed2);
21329 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21330 			    (void *)tcp->tcp_connp));
21331 		}
21332 	}
21333 }
21334 
21335 /* Unlink and return any mblk that looks like it contains a LSO info */
21336 static mblk_t *
21337 tcp_lso_info_mp(mblk_t *mp)
21338 {
21339 	mblk_t	*prev_mp;
21340 
21341 	for (;;) {
21342 		prev_mp = mp;
21343 		/* no more to process? */
21344 		if ((mp = mp->b_cont) == NULL)
21345 			break;
21346 
21347 		switch (DB_TYPE(mp)) {
21348 		case M_CTL:
21349 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21350 				continue;
21351 			ASSERT(prev_mp != NULL);
21352 			prev_mp->b_cont = mp->b_cont;
21353 			mp->b_cont = NULL;
21354 			return (mp);
21355 		default:
21356 			break;
21357 		}
21358 	}
21359 
21360 	return (mp);
21361 }
21362 
21363 /* LSO info update routine, called when IP notifies us about LSO */
21364 static void
21365 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21366 {
21367 	/*
21368 	 * IP is telling us to abort LSO on this connection?  We know
21369 	 * this because the capability is only turned off when IP
21370 	 * encounters some pathological cases, e.g. link-layer change
21371 	 * where the new NIC/driver doesn't support LSO, or in situation
21372 	 * where LSO usage on the link-layer has been switched off.
21373 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21374 	 * if the link-layer doesn't support LSO, and if it does, it
21375 	 * will indicate that the feature is to be turned on.
21376 	 */
21377 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21378 	TCP_STAT(tcp_lso_enabled);
21379 
21380 	/*
21381 	 * We currently only support LSO on simple TCP/IPv4,
21382 	 * so disable LSO otherwise.  The checks are done here
21383 	 * and in tcp_wput_data().
21384 	 */
21385 	if (tcp->tcp_lso &&
21386 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21387 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21388 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21389 		tcp->tcp_lso = B_FALSE;
21390 		TCP_STAT(tcp_lso_disabled);
21391 	} else {
21392 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21393 		    lso_capab->ill_lso_max);
21394 	}
21395 }
21396 
21397 static void
21398 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21399 {
21400 	conn_t *connp = tcp->tcp_connp;
21401 
21402 	ASSERT(ire != NULL);
21403 
21404 	/*
21405 	 * We may be in the fastpath here, and although we essentially do
21406 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21407 	 * we try to keep things as brief as possible.  After all, these
21408 	 * are only best-effort checks, and we do more thorough ones prior
21409 	 * to calling tcp_send()/tcp_multisend().
21410 	 */
21411 	if ((ip_lso_outbound || ip_multidata_outbound) && check_lso_mdt &&
21412 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21413 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21414 	    !(ire->ire_flags & RTF_MULTIRT) &&
21415 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
21416 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21417 		if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21418 			/* Cache the result */
21419 			connp->conn_lso_ok = B_TRUE;
21420 
21421 			ASSERT(ill->ill_lso_capab != NULL);
21422 			if (!ill->ill_lso_capab->ill_lso_on) {
21423 				ill->ill_lso_capab->ill_lso_on = 1;
21424 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21425 				    "LSO for interface %s\n", (void *)connp,
21426 				    ill->ill_name));
21427 			}
21428 			tcp_lso_update(tcp, ill->ill_lso_capab);
21429 		} else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) {
21430 			/* Cache the result */
21431 			connp->conn_mdt_ok = B_TRUE;
21432 
21433 			ASSERT(ill->ill_mdt_capab != NULL);
21434 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21435 				ill->ill_mdt_capab->ill_mdt_on = 1;
21436 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21437 				    "MDT for interface %s\n", (void *)connp,
21438 				    ill->ill_name));
21439 			}
21440 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21441 		}
21442 	}
21443 
21444 	/*
21445 	 * The goal is to reduce the number of generated tcp segments by
21446 	 * setting the maxpsz multiplier to 0; this will have an affect on
21447 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21448 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21449 	 * of outbound segments and incoming ACKs, thus allowing for better
21450 	 * network and system performance.  In contrast the legacy behavior
21451 	 * may result in sending less than SMSS size, because the last mblk
21452 	 * for some packets may have more data than needed to make up SMSS,
21453 	 * and the legacy code refused to "split" it.
21454 	 *
21455 	 * We apply the new behavior on following situations:
21456 	 *
21457 	 *   1) Loopback connections,
21458 	 *   2) Connections in which the remote peer is not on local subnet,
21459 	 *   3) Local subnet connections over the bge interface (see below).
21460 	 *
21461 	 * Ideally, we would like this behavior to apply for interfaces other
21462 	 * than bge.  However, doing so would negatively impact drivers which
21463 	 * perform dynamic mapping and unmapping of DMA resources, which are
21464 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21465 	 * packet will be generated by tcp).  The bge driver does not suffer
21466 	 * from this, as it copies the mblks into pre-mapped buffers, and
21467 	 * therefore does not require more I/O resources than before.
21468 	 *
21469 	 * Otherwise, this behavior is present on all network interfaces when
21470 	 * the destination endpoint is non-local, since reducing the number
21471 	 * of packets in general is good for the network.
21472 	 *
21473 	 * TODO We need to remove this hard-coded conditional for bge once
21474 	 *	a better "self-tuning" mechanism, or a way to comprehend
21475 	 *	the driver transmit strategy is devised.  Until the solution
21476 	 *	is found and well understood, we live with this hack.
21477 	 */
21478 	if (!tcp_static_maxpsz &&
21479 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21480 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21481 		/* override the default value */
21482 		tcp->tcp_maxpsz = 0;
21483 
21484 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21485 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21486 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21487 	}
21488 
21489 	/* set the stream head parameters accordingly */
21490 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21491 }
21492 
21493 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21494 static void
21495 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21496 {
21497 	uchar_t	fval = *mp->b_rptr;
21498 	mblk_t	*tail;
21499 	queue_t	*q = tcp->tcp_wq;
21500 
21501 	/* TODO: How should flush interact with urgent data? */
21502 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21503 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21504 		/*
21505 		 * Flush only data that has not yet been put on the wire.  If
21506 		 * we flush data that we have already transmitted, life, as we
21507 		 * know it, may come to an end.
21508 		 */
21509 		tail = tcp->tcp_xmit_tail;
21510 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21511 		tcp->tcp_xmit_tail_unsent = 0;
21512 		tcp->tcp_unsent = 0;
21513 		if (tail->b_wptr != tail->b_rptr)
21514 			tail = tail->b_cont;
21515 		if (tail) {
21516 			mblk_t **excess = &tcp->tcp_xmit_head;
21517 			for (;;) {
21518 				mblk_t *mp1 = *excess;
21519 				if (mp1 == tail)
21520 					break;
21521 				tcp->tcp_xmit_tail = mp1;
21522 				tcp->tcp_xmit_last = mp1;
21523 				excess = &mp1->b_cont;
21524 			}
21525 			*excess = NULL;
21526 			tcp_close_mpp(&tail);
21527 			if (tcp->tcp_snd_zcopy_aware)
21528 				tcp_zcopy_notify(tcp);
21529 		}
21530 		/*
21531 		 * We have no unsent data, so unsent must be less than
21532 		 * tcp_xmit_lowater, so re-enable flow.
21533 		 */
21534 		if (tcp->tcp_flow_stopped) {
21535 			tcp_clrqfull(tcp);
21536 		}
21537 	}
21538 	/*
21539 	 * TODO: you can't just flush these, you have to increase rwnd for one
21540 	 * thing.  For another, how should urgent data interact?
21541 	 */
21542 	if (fval & FLUSHR) {
21543 		*mp->b_rptr = fval & ~FLUSHW;
21544 		/* XXX */
21545 		qreply(q, mp);
21546 		return;
21547 	}
21548 	freemsg(mp);
21549 }
21550 
21551 /*
21552  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21553  * messages.
21554  */
21555 static void
21556 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21557 {
21558 	mblk_t	*mp1;
21559 	STRUCT_HANDLE(strbuf, sb);
21560 	uint16_t port;
21561 	queue_t 	*q = tcp->tcp_wq;
21562 	in6_addr_t	v6addr;
21563 	ipaddr_t	v4addr;
21564 	uint32_t	flowinfo = 0;
21565 	int		addrlen;
21566 
21567 	/* Make sure it is one of ours. */
21568 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21569 	case TI_GETMYNAME:
21570 	case TI_GETPEERNAME:
21571 		break;
21572 	default:
21573 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21574 		return;
21575 	}
21576 	switch (mi_copy_state(q, mp, &mp1)) {
21577 	case -1:
21578 		return;
21579 	case MI_COPY_CASE(MI_COPY_IN, 1):
21580 		break;
21581 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21582 		/* Copy out the strbuf. */
21583 		mi_copyout(q, mp);
21584 		return;
21585 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21586 		/* All done. */
21587 		mi_copy_done(q, mp, 0);
21588 		return;
21589 	default:
21590 		mi_copy_done(q, mp, EPROTO);
21591 		return;
21592 	}
21593 	/* Check alignment of the strbuf */
21594 	if (!OK_32PTR(mp1->b_rptr)) {
21595 		mi_copy_done(q, mp, EINVAL);
21596 		return;
21597 	}
21598 
21599 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21600 	    (void *)mp1->b_rptr);
21601 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21602 
21603 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21604 		mi_copy_done(q, mp, EINVAL);
21605 		return;
21606 	}
21607 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21608 	case TI_GETMYNAME:
21609 		if (tcp->tcp_family == AF_INET) {
21610 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21611 				v4addr = tcp->tcp_ipha->ipha_src;
21612 			} else {
21613 				/* can't return an address in this case */
21614 				v4addr = 0;
21615 			}
21616 		} else {
21617 			/* tcp->tcp_family == AF_INET6 */
21618 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21619 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21620 				    &v6addr);
21621 			} else {
21622 				v6addr = tcp->tcp_ip6h->ip6_src;
21623 			}
21624 		}
21625 		port = tcp->tcp_lport;
21626 		break;
21627 	case TI_GETPEERNAME:
21628 		if (tcp->tcp_family == AF_INET) {
21629 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21630 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21631 				    v4addr);
21632 			} else {
21633 				/* can't return an address in this case */
21634 				v4addr = 0;
21635 			}
21636 		} else {
21637 			/* tcp->tcp_family == AF_INET6) */
21638 			v6addr = tcp->tcp_remote_v6;
21639 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21640 				/*
21641 				 * No flowinfo if tcp->tcp_ipversion is v4.
21642 				 *
21643 				 * flowinfo was already initialized to zero
21644 				 * where it was declared above, so only
21645 				 * set it if ipversion is v6.
21646 				 */
21647 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21648 				    ~IPV6_VERS_AND_FLOW_MASK;
21649 			}
21650 		}
21651 		port = tcp->tcp_fport;
21652 		break;
21653 	default:
21654 		mi_copy_done(q, mp, EPROTO);
21655 		return;
21656 	}
21657 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21658 	if (!mp1)
21659 		return;
21660 
21661 	if (tcp->tcp_family == AF_INET) {
21662 		sin_t *sin;
21663 
21664 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21665 		sin = (sin_t *)mp1->b_rptr;
21666 		mp1->b_wptr = (uchar_t *)&sin[1];
21667 		*sin = sin_null;
21668 		sin->sin_family = AF_INET;
21669 		sin->sin_addr.s_addr = v4addr;
21670 		sin->sin_port = port;
21671 	} else {
21672 		/* tcp->tcp_family == AF_INET6 */
21673 		sin6_t *sin6;
21674 
21675 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21676 		sin6 = (sin6_t *)mp1->b_rptr;
21677 		mp1->b_wptr = (uchar_t *)&sin6[1];
21678 		*sin6 = sin6_null;
21679 		sin6->sin6_family = AF_INET6;
21680 		sin6->sin6_flowinfo = flowinfo;
21681 		sin6->sin6_addr = v6addr;
21682 		sin6->sin6_port = port;
21683 	}
21684 	/* Copy out the address */
21685 	mi_copyout(q, mp);
21686 }
21687 
21688 /*
21689  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21690  * messages.
21691  */
21692 /* ARGSUSED */
21693 static void
21694 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21695 {
21696 	conn_t 	*connp = (conn_t *)arg;
21697 	tcp_t	*tcp = connp->conn_tcp;
21698 	queue_t	*q = tcp->tcp_wq;
21699 	struct iocblk	*iocp;
21700 
21701 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21702 	/*
21703 	 * Try and ASSERT the minimum possible references on the
21704 	 * conn early enough. Since we are executing on write side,
21705 	 * the connection is obviously not detached and that means
21706 	 * there is a ref each for TCP and IP. Since we are behind
21707 	 * the squeue, the minimum references needed are 3. If the
21708 	 * conn is in classifier hash list, there should be an
21709 	 * extra ref for that (we check both the possibilities).
21710 	 */
21711 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21712 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21713 
21714 	iocp = (struct iocblk *)mp->b_rptr;
21715 	switch (iocp->ioc_cmd) {
21716 	case TCP_IOC_DEFAULT_Q:
21717 		/* Wants to be the default wq. */
21718 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
21719 			iocp->ioc_error = EPERM;
21720 			iocp->ioc_count = 0;
21721 			mp->b_datap->db_type = M_IOCACK;
21722 			qreply(q, mp);
21723 			return;
21724 		}
21725 		tcp_def_q_set(tcp, mp);
21726 		return;
21727 	case _SIOCSOCKFALLBACK:
21728 		/*
21729 		 * Either sockmod is about to be popped and the socket
21730 		 * would now be treated as a plain stream, or a module
21731 		 * is about to be pushed so we could no longer use read-
21732 		 * side synchronous streams for fused loopback tcp.
21733 		 * Drain any queued data and disable direct sockfs
21734 		 * interface from now on.
21735 		 */
21736 		if (!tcp->tcp_issocket) {
21737 			DB_TYPE(mp) = M_IOCNAK;
21738 			iocp->ioc_error = EINVAL;
21739 		} else {
21740 #ifdef	_ILP32
21741 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21742 #else
21743 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21744 #endif
21745 			/*
21746 			 * Insert this socket into the acceptor hash.
21747 			 * We might need it for T_CONN_RES message
21748 			 */
21749 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21750 
21751 			if (tcp->tcp_fused) {
21752 				/*
21753 				 * This is a fused loopback tcp; disable
21754 				 * read-side synchronous streams interface
21755 				 * and drain any queued data.  It is okay
21756 				 * to do this for non-synchronous streams
21757 				 * fused tcp as well.
21758 				 */
21759 				tcp_fuse_disable_pair(tcp, B_FALSE);
21760 			}
21761 			tcp->tcp_issocket = B_FALSE;
21762 			TCP_STAT(tcp_sock_fallback);
21763 
21764 			DB_TYPE(mp) = M_IOCACK;
21765 			iocp->ioc_error = 0;
21766 		}
21767 		iocp->ioc_count = 0;
21768 		iocp->ioc_rval = 0;
21769 		qreply(q, mp);
21770 		return;
21771 	}
21772 	CALL_IP_WPUT(connp, q, mp);
21773 }
21774 
21775 /*
21776  * This routine is called by tcp_wput() to handle all TPI requests.
21777  */
21778 /* ARGSUSED */
21779 static void
21780 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21781 {
21782 	conn_t 	*connp = (conn_t *)arg;
21783 	tcp_t	*tcp = connp->conn_tcp;
21784 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21785 	uchar_t *rptr;
21786 	t_scalar_t type;
21787 	int len;
21788 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21789 
21790 	/*
21791 	 * Try and ASSERT the minimum possible references on the
21792 	 * conn early enough. Since we are executing on write side,
21793 	 * the connection is obviously not detached and that means
21794 	 * there is a ref each for TCP and IP. Since we are behind
21795 	 * the squeue, the minimum references needed are 3. If the
21796 	 * conn is in classifier hash list, there should be an
21797 	 * extra ref for that (we check both the possibilities).
21798 	 */
21799 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21800 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21801 
21802 	rptr = mp->b_rptr;
21803 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21804 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21805 		type = ((union T_primitives *)rptr)->type;
21806 		if (type == T_EXDATA_REQ) {
21807 			uint32_t msize = msgdsize(mp->b_cont);
21808 
21809 			len = msize - 1;
21810 			if (len < 0) {
21811 				freemsg(mp);
21812 				return;
21813 			}
21814 			/*
21815 			 * Try to force urgent data out on the wire.
21816 			 * Even if we have unsent data this will
21817 			 * at least send the urgent flag.
21818 			 * XXX does not handle more flag correctly.
21819 			 */
21820 			len += tcp->tcp_unsent;
21821 			len += tcp->tcp_snxt;
21822 			tcp->tcp_urg = len;
21823 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21824 
21825 			/* Bypass tcp protocol for fused tcp loopback */
21826 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21827 				return;
21828 		} else if (type != T_DATA_REQ) {
21829 			goto non_urgent_data;
21830 		}
21831 		/* TODO: options, flags, ... from user */
21832 		/* Set length to zero for reclamation below */
21833 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21834 		freeb(mp);
21835 		return;
21836 	} else {
21837 		if (tcp->tcp_debug) {
21838 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21839 			    "tcp_wput_proto, dropping one...");
21840 		}
21841 		freemsg(mp);
21842 		return;
21843 	}
21844 
21845 non_urgent_data:
21846 
21847 	switch ((int)tprim->type) {
21848 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21849 		/*
21850 		 * save the kssl_ent_t from the next block, and convert this
21851 		 * back to a normal bind_req.
21852 		 */
21853 		if (mp->b_cont != NULL) {
21854 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21855 
21856 			if (tcp->tcp_kssl_ent != NULL) {
21857 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21858 				    KSSL_NO_PROXY);
21859 				tcp->tcp_kssl_ent = NULL;
21860 			}
21861 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21862 			    sizeof (kssl_ent_t));
21863 			kssl_hold_ent(tcp->tcp_kssl_ent);
21864 			freemsg(mp->b_cont);
21865 			mp->b_cont = NULL;
21866 		}
21867 		tprim->type = T_BIND_REQ;
21868 
21869 	/* FALLTHROUGH */
21870 	case O_T_BIND_REQ:	/* bind request */
21871 	case T_BIND_REQ:	/* new semantics bind request */
21872 		tcp_bind(tcp, mp);
21873 		break;
21874 	case T_UNBIND_REQ:	/* unbind request */
21875 		tcp_unbind(tcp, mp);
21876 		break;
21877 	case O_T_CONN_RES:	/* old connection response XXX */
21878 	case T_CONN_RES:	/* connection response */
21879 		tcp_accept(tcp, mp);
21880 		break;
21881 	case T_CONN_REQ:	/* connection request */
21882 		tcp_connect(tcp, mp);
21883 		break;
21884 	case T_DISCON_REQ:	/* disconnect request */
21885 		tcp_disconnect(tcp, mp);
21886 		break;
21887 	case T_CAPABILITY_REQ:
21888 		tcp_capability_req(tcp, mp);	/* capability request */
21889 		break;
21890 	case T_INFO_REQ:	/* information request */
21891 		tcp_info_req(tcp, mp);
21892 		break;
21893 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21894 		/* Only IP is allowed to return meaningful value */
21895 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21896 		break;
21897 	case T_OPTMGMT_REQ:
21898 		/*
21899 		 * Note:  no support for snmpcom_req() through new
21900 		 * T_OPTMGMT_REQ. See comments in ip.c
21901 		 */
21902 		/* Only IP is allowed to return meaningful value */
21903 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21904 		break;
21905 
21906 	case T_UNITDATA_REQ:	/* unitdata request */
21907 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21908 		break;
21909 	case T_ORDREL_REQ:	/* orderly release req */
21910 		freemsg(mp);
21911 
21912 		if (tcp->tcp_fused)
21913 			tcp_unfuse(tcp);
21914 
21915 		if (tcp_xmit_end(tcp) != 0) {
21916 			/*
21917 			 * We were crossing FINs and got a reset from
21918 			 * the other side. Just ignore it.
21919 			 */
21920 			if (tcp->tcp_debug) {
21921 				(void) strlog(TCP_MOD_ID, 0, 1,
21922 				    SL_ERROR|SL_TRACE,
21923 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21924 				    "state %s",
21925 				    tcp_display(tcp, NULL,
21926 				    DISP_ADDR_AND_PORT));
21927 			}
21928 		}
21929 		break;
21930 	case T_ADDR_REQ:
21931 		tcp_addr_req(tcp, mp);
21932 		break;
21933 	default:
21934 		if (tcp->tcp_debug) {
21935 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21936 			    "tcp_wput_proto, bogus TPI msg, type %d",
21937 			    tprim->type);
21938 		}
21939 		/*
21940 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21941 		 * to recover.
21942 		 */
21943 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21944 		break;
21945 	}
21946 }
21947 
21948 /*
21949  * The TCP write service routine should never be called...
21950  */
21951 /* ARGSUSED */
21952 static void
21953 tcp_wsrv(queue_t *q)
21954 {
21955 	TCP_STAT(tcp_wsrv_called);
21956 }
21957 
21958 /* Non overlapping byte exchanger */
21959 static void
21960 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21961 {
21962 	uchar_t	uch;
21963 
21964 	while (len-- > 0) {
21965 		uch = a[len];
21966 		a[len] = b[len];
21967 		b[len] = uch;
21968 	}
21969 }
21970 
21971 /*
21972  * Send out a control packet on the tcp connection specified.  This routine
21973  * is typically called where we need a simple ACK or RST generated.
21974  */
21975 static void
21976 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21977 {
21978 	uchar_t		*rptr;
21979 	tcph_t		*tcph;
21980 	ipha_t		*ipha = NULL;
21981 	ip6_t		*ip6h = NULL;
21982 	uint32_t	sum;
21983 	int		tcp_hdr_len;
21984 	int		tcp_ip_hdr_len;
21985 	mblk_t		*mp;
21986 
21987 	/*
21988 	 * Save sum for use in source route later.
21989 	 */
21990 	ASSERT(tcp != NULL);
21991 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21992 	tcp_hdr_len = tcp->tcp_hdr_len;
21993 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21994 
21995 	/* If a text string is passed in with the request, pass it to strlog. */
21996 	if (str != NULL && tcp->tcp_debug) {
21997 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21998 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21999 		    str, seq, ack, ctl);
22000 	}
22001 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
22002 	    BPRI_MED);
22003 	if (mp == NULL) {
22004 		return;
22005 	}
22006 	rptr = &mp->b_rptr[tcp_wroff_xtra];
22007 	mp->b_rptr = rptr;
22008 	mp->b_wptr = &rptr[tcp_hdr_len];
22009 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22010 
22011 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22012 		ipha = (ipha_t *)rptr;
22013 		ipha->ipha_length = htons(tcp_hdr_len);
22014 	} else {
22015 		ip6h = (ip6_t *)rptr;
22016 		ASSERT(tcp != NULL);
22017 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22018 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22019 	}
22020 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22021 	tcph->th_flags[0] = (uint8_t)ctl;
22022 	if (ctl & TH_RST) {
22023 		BUMP_MIB(&tcp_mib, tcpOutRsts);
22024 		BUMP_MIB(&tcp_mib, tcpOutControl);
22025 		/*
22026 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22027 		 */
22028 		if (tcp->tcp_snd_ts_ok &&
22029 		    tcp->tcp_state > TCPS_SYN_SENT) {
22030 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22031 			*(mp->b_wptr) = TCPOPT_EOL;
22032 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22033 				ipha->ipha_length = htons(tcp_hdr_len -
22034 				    TCPOPT_REAL_TS_LEN);
22035 			} else {
22036 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22037 				    TCPOPT_REAL_TS_LEN);
22038 			}
22039 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22040 			sum -= TCPOPT_REAL_TS_LEN;
22041 		}
22042 	}
22043 	if (ctl & TH_ACK) {
22044 		if (tcp->tcp_snd_ts_ok) {
22045 			U32_TO_BE32(lbolt,
22046 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22047 			U32_TO_BE32(tcp->tcp_ts_recent,
22048 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22049 		}
22050 
22051 		/* Update the latest receive window size in TCP header. */
22052 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22053 		    tcph->th_win);
22054 		tcp->tcp_rack = ack;
22055 		tcp->tcp_rack_cnt = 0;
22056 		BUMP_MIB(&tcp_mib, tcpOutAck);
22057 	}
22058 	BUMP_LOCAL(tcp->tcp_obsegs);
22059 	U32_TO_BE32(seq, tcph->th_seq);
22060 	U32_TO_BE32(ack, tcph->th_ack);
22061 	/*
22062 	 * Include the adjustment for a source route if any.
22063 	 */
22064 	sum = (sum >> 16) + (sum & 0xFFFF);
22065 	U16_TO_BE16(sum, tcph->th_sum);
22066 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22067 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22068 }
22069 
22070 /*
22071  * If this routine returns B_TRUE, TCP can generate a RST in response
22072  * to a segment.  If it returns B_FALSE, TCP should not respond.
22073  */
22074 static boolean_t
22075 tcp_send_rst_chk(void)
22076 {
22077 	clock_t	now;
22078 
22079 	/*
22080 	 * TCP needs to protect itself from generating too many RSTs.
22081 	 * This can be a DoS attack by sending us random segments
22082 	 * soliciting RSTs.
22083 	 *
22084 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22085 	 * in each 1 second interval.  In this way, TCP still generate
22086 	 * RSTs in normal cases but when under attack, the impact is
22087 	 * limited.
22088 	 */
22089 	if (tcp_rst_sent_rate_enabled != 0) {
22090 		now = lbolt;
22091 		/* lbolt can wrap around. */
22092 		if ((tcp_last_rst_intrvl > now) ||
22093 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
22094 			tcp_last_rst_intrvl = now;
22095 			tcp_rst_cnt = 1;
22096 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
22097 			return (B_FALSE);
22098 		}
22099 	}
22100 	return (B_TRUE);
22101 }
22102 
22103 /*
22104  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22105  */
22106 static void
22107 tcp_ip_ire_mark_advice(tcp_t *tcp)
22108 {
22109 	mblk_t *mp;
22110 	ipic_t *ipic;
22111 
22112 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22113 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22114 		    &ipic);
22115 	} else {
22116 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22117 		    &ipic);
22118 	}
22119 	if (mp == NULL)
22120 		return;
22121 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22122 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22123 }
22124 
22125 /*
22126  * Return an IP advice ioctl mblk and set ipic to be the pointer
22127  * to the advice structure.
22128  */
22129 static mblk_t *
22130 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22131 {
22132 	struct iocblk *ioc;
22133 	mblk_t *mp, *mp1;
22134 
22135 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22136 	if (mp == NULL)
22137 		return (NULL);
22138 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22139 	*ipic = (ipic_t *)mp->b_rptr;
22140 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22141 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22142 
22143 	bcopy(addr, *ipic + 1, addr_len);
22144 
22145 	(*ipic)->ipic_addr_length = addr_len;
22146 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22147 
22148 	mp1 = mkiocb(IP_IOCTL);
22149 	if (mp1 == NULL) {
22150 		freemsg(mp);
22151 		return (NULL);
22152 	}
22153 	mp1->b_cont = mp;
22154 	ioc = (struct iocblk *)mp1->b_rptr;
22155 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22156 
22157 	return (mp1);
22158 }
22159 
22160 /*
22161  * Generate a reset based on an inbound packet for which there is no active
22162  * tcp state that we can find.
22163  *
22164  * IPSEC NOTE : Try to send the reply with the same protection as it came
22165  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22166  * the packet will go out at the same level of protection as it came in by
22167  * converting the IPSEC_IN to IPSEC_OUT.
22168  */
22169 static void
22170 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22171     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid)
22172 {
22173 	ipha_t		*ipha = NULL;
22174 	ip6_t		*ip6h = NULL;
22175 	ushort_t	len;
22176 	tcph_t		*tcph;
22177 	int		i;
22178 	mblk_t		*ipsec_mp;
22179 	boolean_t	mctl_present;
22180 	ipic_t		*ipic;
22181 	ipaddr_t	v4addr;
22182 	in6_addr_t	v6addr;
22183 	int		addr_len;
22184 	void		*addr;
22185 	queue_t		*q = tcp_g_q;
22186 	tcp_t		*tcp = Q_TO_TCP(q);
22187 	cred_t		*cr;
22188 	mblk_t		*nmp;
22189 
22190 	if (!tcp_send_rst_chk()) {
22191 		tcp_rst_unsent++;
22192 		freemsg(mp);
22193 		return;
22194 	}
22195 
22196 	if (mp->b_datap->db_type == M_CTL) {
22197 		ipsec_mp = mp;
22198 		mp = mp->b_cont;
22199 		mctl_present = B_TRUE;
22200 	} else {
22201 		ipsec_mp = mp;
22202 		mctl_present = B_FALSE;
22203 	}
22204 
22205 	if (str && q && tcp_dbg) {
22206 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22207 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22208 		    "flags 0x%x",
22209 		    str, seq, ack, ctl);
22210 	}
22211 	if (mp->b_datap->db_ref != 1) {
22212 		mblk_t *mp1 = copyb(mp);
22213 		freemsg(mp);
22214 		mp = mp1;
22215 		if (!mp) {
22216 			if (mctl_present)
22217 				freeb(ipsec_mp);
22218 			return;
22219 		} else {
22220 			if (mctl_present) {
22221 				ipsec_mp->b_cont = mp;
22222 			} else {
22223 				ipsec_mp = mp;
22224 			}
22225 		}
22226 	} else if (mp->b_cont) {
22227 		freemsg(mp->b_cont);
22228 		mp->b_cont = NULL;
22229 	}
22230 	/*
22231 	 * We skip reversing source route here.
22232 	 * (for now we replace all IP options with EOL)
22233 	 */
22234 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22235 		ipha = (ipha_t *)mp->b_rptr;
22236 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22237 			mp->b_rptr[i] = IPOPT_EOL;
22238 		/*
22239 		 * Make sure that src address isn't flagrantly invalid.
22240 		 * Not all broadcast address checking for the src address
22241 		 * is possible, since we don't know the netmask of the src
22242 		 * addr.  No check for destination address is done, since
22243 		 * IP will not pass up a packet with a broadcast dest
22244 		 * address to TCP.  Similar checks are done below for IPv6.
22245 		 */
22246 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22247 		    CLASSD(ipha->ipha_src)) {
22248 			freemsg(ipsec_mp);
22249 			BUMP_MIB(&ip_mib, ipIfStatsInDiscards);
22250 			return;
22251 		}
22252 	} else {
22253 		ip6h = (ip6_t *)mp->b_rptr;
22254 
22255 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22256 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22257 			freemsg(ipsec_mp);
22258 			BUMP_MIB(&ip6_mib, ipIfStatsInDiscards);
22259 			return;
22260 		}
22261 
22262 		/* Remove any extension headers assuming partial overlay */
22263 		if (ip_hdr_len > IPV6_HDR_LEN) {
22264 			uint8_t *to;
22265 
22266 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22267 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22268 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22269 			ip_hdr_len = IPV6_HDR_LEN;
22270 			ip6h = (ip6_t *)mp->b_rptr;
22271 			ip6h->ip6_nxt = IPPROTO_TCP;
22272 		}
22273 	}
22274 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22275 	if (tcph->th_flags[0] & TH_RST) {
22276 		freemsg(ipsec_mp);
22277 		return;
22278 	}
22279 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22280 	len = ip_hdr_len + sizeof (tcph_t);
22281 	mp->b_wptr = &mp->b_rptr[len];
22282 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22283 		ipha->ipha_length = htons(len);
22284 		/* Swap addresses */
22285 		v4addr = ipha->ipha_src;
22286 		ipha->ipha_src = ipha->ipha_dst;
22287 		ipha->ipha_dst = v4addr;
22288 		ipha->ipha_ident = 0;
22289 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
22290 		addr_len = IP_ADDR_LEN;
22291 		addr = &v4addr;
22292 	} else {
22293 		/* No ip6i_t in this case */
22294 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22295 		/* Swap addresses */
22296 		v6addr = ip6h->ip6_src;
22297 		ip6h->ip6_src = ip6h->ip6_dst;
22298 		ip6h->ip6_dst = v6addr;
22299 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
22300 		addr_len = IPV6_ADDR_LEN;
22301 		addr = &v6addr;
22302 	}
22303 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22304 	U32_TO_BE32(ack, tcph->th_ack);
22305 	U32_TO_BE32(seq, tcph->th_seq);
22306 	U16_TO_BE16(0, tcph->th_win);
22307 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22308 	tcph->th_flags[0] = (uint8_t)ctl;
22309 	if (ctl & TH_RST) {
22310 		BUMP_MIB(&tcp_mib, tcpOutRsts);
22311 		BUMP_MIB(&tcp_mib, tcpOutControl);
22312 	}
22313 
22314 	/* IP trusts us to set up labels when required. */
22315 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22316 	    crgetlabel(cr) != NULL) {
22317 		int err, adjust;
22318 
22319 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22320 			err = tsol_check_label(cr, &mp, &adjust,
22321 			    tcp->tcp_connp->conn_mac_exempt);
22322 		else
22323 			err = tsol_check_label_v6(cr, &mp, &adjust,
22324 			    tcp->tcp_connp->conn_mac_exempt);
22325 		if (mctl_present)
22326 			ipsec_mp->b_cont = mp;
22327 		else
22328 			ipsec_mp = mp;
22329 		if (err != 0) {
22330 			freemsg(ipsec_mp);
22331 			return;
22332 		}
22333 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22334 			ipha = (ipha_t *)mp->b_rptr;
22335 			adjust += ntohs(ipha->ipha_length);
22336 			ipha->ipha_length = htons(adjust);
22337 		} else {
22338 			ip6h = (ip6_t *)mp->b_rptr;
22339 		}
22340 	}
22341 
22342 	if (mctl_present) {
22343 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22344 
22345 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22346 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22347 			return;
22348 		}
22349 	}
22350 	if (zoneid == ALL_ZONES)
22351 		zoneid = GLOBAL_ZONEID;
22352 
22353 	/* Add the zoneid so ip_output routes it properly */
22354 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) {
22355 		freemsg(ipsec_mp);
22356 		return;
22357 	}
22358 	ipsec_mp = nmp;
22359 
22360 	/*
22361 	 * NOTE:  one might consider tracing a TCP packet here, but
22362 	 * this function has no active TCP state and no tcp structure
22363 	 * that has a trace buffer.  If we traced here, we would have
22364 	 * to keep a local trace buffer in tcp_record_trace().
22365 	 *
22366 	 * TSol note: The mblk that contains the incoming packet was
22367 	 * reused by tcp_xmit_listener_reset, so it already contains
22368 	 * the right credentials and we don't need to call mblk_setcred.
22369 	 * Also the conn's cred is not right since it is associated
22370 	 * with tcp_g_q.
22371 	 */
22372 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22373 
22374 	/*
22375 	 * Tell IP to mark the IRE used for this destination temporary.
22376 	 * This way, we can limit our exposure to DoS attack because IP
22377 	 * creates an IRE for each destination.  If there are too many,
22378 	 * the time to do any routing lookup will be extremely long.  And
22379 	 * the lookup can be in interrupt context.
22380 	 *
22381 	 * Note that in normal circumstances, this marking should not
22382 	 * affect anything.  It would be nice if only 1 message is
22383 	 * needed to inform IP that the IRE created for this RST should
22384 	 * not be added to the cache table.  But there is currently
22385 	 * not such communication mechanism between TCP and IP.  So
22386 	 * the best we can do now is to send the advice ioctl to IP
22387 	 * to mark the IRE temporary.
22388 	 */
22389 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22390 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22391 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22392 	}
22393 }
22394 
22395 /*
22396  * Initiate closedown sequence on an active connection.  (May be called as
22397  * writer.)  Return value zero for OK return, non-zero for error return.
22398  */
22399 static int
22400 tcp_xmit_end(tcp_t *tcp)
22401 {
22402 	ipic_t	*ipic;
22403 	mblk_t	*mp;
22404 
22405 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22406 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22407 		/*
22408 		 * Invalid state, only states TCPS_SYN_RCVD,
22409 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22410 		 */
22411 		return (-1);
22412 	}
22413 
22414 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22415 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22416 	/*
22417 	 * If there is nothing more unsent, send the FIN now.
22418 	 * Otherwise, it will go out with the last segment.
22419 	 */
22420 	if (tcp->tcp_unsent == 0) {
22421 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22422 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22423 
22424 		if (mp) {
22425 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22426 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22427 		} else {
22428 			/*
22429 			 * Couldn't allocate msg.  Pretend we got it out.
22430 			 * Wait for rexmit timeout.
22431 			 */
22432 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22433 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22434 		}
22435 
22436 		/*
22437 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22438 		 * changed.
22439 		 */
22440 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22441 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22442 		}
22443 	} else {
22444 		/*
22445 		 * If tcp->tcp_cork is set, then the data will not get sent,
22446 		 * so we have to check that and unset it first.
22447 		 */
22448 		if (tcp->tcp_cork)
22449 			tcp->tcp_cork = B_FALSE;
22450 		tcp_wput_data(tcp, NULL, B_FALSE);
22451 	}
22452 
22453 	/*
22454 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22455 	 * is 0, don't update the cache.
22456 	 */
22457 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
22458 		return (0);
22459 
22460 	/*
22461 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22462 	 * different from the destination.
22463 	 */
22464 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22465 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22466 			return (0);
22467 		}
22468 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22469 		    &ipic);
22470 	} else {
22471 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22472 		    &tcp->tcp_ip6h->ip6_dst))) {
22473 			return (0);
22474 		}
22475 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22476 		    &ipic);
22477 	}
22478 
22479 	/* Record route attributes in the IRE for use by future connections. */
22480 	if (mp == NULL)
22481 		return (0);
22482 
22483 	/*
22484 	 * We do not have a good algorithm to update ssthresh at this time.
22485 	 * So don't do any update.
22486 	 */
22487 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22488 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22489 
22490 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22491 	return (0);
22492 }
22493 
22494 /*
22495  * Generate a "no listener here" RST in response to an "unknown" segment.
22496  * Note that we are reusing the incoming mp to construct the outgoing
22497  * RST.
22498  */
22499 void
22500 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid)
22501 {
22502 	uchar_t		*rptr;
22503 	uint32_t	seg_len;
22504 	tcph_t		*tcph;
22505 	uint32_t	seg_seq;
22506 	uint32_t	seg_ack;
22507 	uint_t		flags;
22508 	mblk_t		*ipsec_mp;
22509 	ipha_t 		*ipha;
22510 	ip6_t 		*ip6h;
22511 	boolean_t	mctl_present = B_FALSE;
22512 	boolean_t	check = B_TRUE;
22513 	boolean_t	policy_present;
22514 
22515 	TCP_STAT(tcp_no_listener);
22516 
22517 	ipsec_mp = mp;
22518 
22519 	if (mp->b_datap->db_type == M_CTL) {
22520 		ipsec_in_t *ii;
22521 
22522 		mctl_present = B_TRUE;
22523 		mp = mp->b_cont;
22524 
22525 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22526 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22527 		if (ii->ipsec_in_dont_check) {
22528 			check = B_FALSE;
22529 			if (!ii->ipsec_in_secure) {
22530 				freeb(ipsec_mp);
22531 				mctl_present = B_FALSE;
22532 				ipsec_mp = mp;
22533 			}
22534 		}
22535 	}
22536 
22537 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22538 		policy_present = ipsec_inbound_v4_policy_present;
22539 		ipha = (ipha_t *)mp->b_rptr;
22540 		ip6h = NULL;
22541 	} else {
22542 		policy_present = ipsec_inbound_v6_policy_present;
22543 		ipha = NULL;
22544 		ip6h = (ip6_t *)mp->b_rptr;
22545 	}
22546 
22547 	if (check && policy_present) {
22548 		/*
22549 		 * The conn_t parameter is NULL because we already know
22550 		 * nobody's home.
22551 		 */
22552 		ipsec_mp = ipsec_check_global_policy(
22553 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
22554 		if (ipsec_mp == NULL)
22555 			return;
22556 	}
22557 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22558 		DTRACE_PROBE2(
22559 		    tx__ip__log__error__nolistener__tcp,
22560 		    char *, "Could not reply with RST to mp(1)",
22561 		    mblk_t *, mp);
22562 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22563 		freemsg(ipsec_mp);
22564 		return;
22565 	}
22566 
22567 	rptr = mp->b_rptr;
22568 
22569 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22570 	seg_seq = BE32_TO_U32(tcph->th_seq);
22571 	seg_ack = BE32_TO_U32(tcph->th_ack);
22572 	flags = tcph->th_flags[0];
22573 
22574 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22575 	if (flags & TH_RST) {
22576 		freemsg(ipsec_mp);
22577 	} else if (flags & TH_ACK) {
22578 		tcp_xmit_early_reset("no tcp, reset",
22579 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid);
22580 	} else {
22581 		if (flags & TH_SYN) {
22582 			seg_len++;
22583 		} else {
22584 			/*
22585 			 * Here we violate the RFC.  Note that a normal
22586 			 * TCP will never send a segment without the ACK
22587 			 * flag, except for RST or SYN segment.  This
22588 			 * segment is neither.  Just drop it on the
22589 			 * floor.
22590 			 */
22591 			freemsg(ipsec_mp);
22592 			tcp_rst_unsent++;
22593 			return;
22594 		}
22595 
22596 		tcp_xmit_early_reset("no tcp, reset/ack",
22597 		    ipsec_mp, 0, seg_seq + seg_len,
22598 		    TH_RST | TH_ACK, ip_hdr_len, zoneid);
22599 	}
22600 }
22601 
22602 /*
22603  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22604  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22605  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22606  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22607  * otherwise it will dup partial mblks.)
22608  * Otherwise, an appropriate ACK packet will be generated.  This
22609  * routine is not usually called to send new data for the first time.  It
22610  * is mostly called out of the timer for retransmits, and to generate ACKs.
22611  *
22612  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22613  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22614  * of the original mblk chain will be returned in *offset and *end_mp.
22615  */
22616 mblk_t *
22617 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22618     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22619     boolean_t rexmit)
22620 {
22621 	int	data_length;
22622 	int32_t	off = 0;
22623 	uint_t	flags;
22624 	mblk_t	*mp1;
22625 	mblk_t	*mp2;
22626 	uchar_t	*rptr;
22627 	tcph_t	*tcph;
22628 	int32_t	num_sack_blk = 0;
22629 	int32_t	sack_opt_len = 0;
22630 
22631 	/* Allocate for our maximum TCP header + link-level */
22632 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
22633 	    BPRI_MED);
22634 	if (!mp1)
22635 		return (NULL);
22636 	data_length = 0;
22637 
22638 	/*
22639 	 * Note that tcp_mss has been adjusted to take into account the
22640 	 * timestamp option if applicable.  Because SACK options do not
22641 	 * appear in every TCP segments and they are of variable lengths,
22642 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22643 	 * the actual segment length when we need to send a segment which
22644 	 * includes SACK options.
22645 	 */
22646 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22647 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22648 		    tcp->tcp_num_sack_blk);
22649 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22650 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22651 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22652 			max_to_send -= sack_opt_len;
22653 	}
22654 
22655 	if (offset != NULL) {
22656 		off = *offset;
22657 		/* We use offset as an indicator that end_mp is not NULL. */
22658 		*end_mp = NULL;
22659 	}
22660 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22661 		/* This could be faster with cooperation from downstream */
22662 		if (mp2 != mp1 && !sendall &&
22663 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22664 		    max_to_send)
22665 			/*
22666 			 * Don't send the next mblk since the whole mblk
22667 			 * does not fit.
22668 			 */
22669 			break;
22670 		mp2->b_cont = dupb(mp);
22671 		mp2 = mp2->b_cont;
22672 		if (!mp2) {
22673 			freemsg(mp1);
22674 			return (NULL);
22675 		}
22676 		mp2->b_rptr += off;
22677 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22678 		    (uintptr_t)INT_MAX);
22679 
22680 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22681 		if (data_length > max_to_send) {
22682 			mp2->b_wptr -= data_length - max_to_send;
22683 			data_length = max_to_send;
22684 			off = mp2->b_wptr - mp->b_rptr;
22685 			break;
22686 		} else {
22687 			off = 0;
22688 		}
22689 	}
22690 	if (offset != NULL) {
22691 		*offset = off;
22692 		*end_mp = mp;
22693 	}
22694 	if (seg_len != NULL) {
22695 		*seg_len = data_length;
22696 	}
22697 
22698 	/* Update the latest receive window size in TCP header. */
22699 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22700 	    tcp->tcp_tcph->th_win);
22701 
22702 	rptr = mp1->b_rptr + tcp_wroff_xtra;
22703 	mp1->b_rptr = rptr;
22704 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22705 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22706 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22707 	U32_TO_ABE32(seq, tcph->th_seq);
22708 
22709 	/*
22710 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22711 	 * that this function was called from tcp_wput_data. Thus, when called
22712 	 * to retransmit data the setting of the PUSH bit may appear some
22713 	 * what random in that it might get set when it should not. This
22714 	 * should not pose any performance issues.
22715 	 */
22716 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22717 	    tcp->tcp_unsent == data_length)) {
22718 		flags = TH_ACK | TH_PUSH;
22719 	} else {
22720 		flags = TH_ACK;
22721 	}
22722 
22723 	if (tcp->tcp_ecn_ok) {
22724 		if (tcp->tcp_ecn_echo_on)
22725 			flags |= TH_ECE;
22726 
22727 		/*
22728 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22729 		 * There is no TCP flow control for non-data segments, and
22730 		 * only data segment is transmitted reliably.
22731 		 */
22732 		if (data_length > 0 && !rexmit) {
22733 			SET_ECT(tcp, rptr);
22734 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22735 				flags |= TH_CWR;
22736 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22737 			}
22738 		}
22739 	}
22740 
22741 	if (tcp->tcp_valid_bits) {
22742 		uint32_t u1;
22743 
22744 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22745 		    seq == tcp->tcp_iss) {
22746 			uchar_t	*wptr;
22747 
22748 			/*
22749 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22750 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22751 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22752 			 * our SYN is not ack'ed but the app closes this
22753 			 * TCP connection.
22754 			 */
22755 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22756 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22757 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22758 
22759 			/*
22760 			 * Tack on the MSS option.  It is always needed
22761 			 * for both active and passive open.
22762 			 *
22763 			 * MSS option value should be interface MTU - MIN
22764 			 * TCP/IP header according to RFC 793 as it means
22765 			 * the maximum segment size TCP can receive.  But
22766 			 * to get around some broken middle boxes/end hosts
22767 			 * out there, we allow the option value to be the
22768 			 * same as the MSS option size on the peer side.
22769 			 * In this way, the other side will not send
22770 			 * anything larger than they can receive.
22771 			 *
22772 			 * Note that for SYN_SENT state, the ndd param
22773 			 * tcp_use_smss_as_mss_opt has no effect as we
22774 			 * don't know the peer's MSS option value. So
22775 			 * the only case we need to take care of is in
22776 			 * SYN_RCVD state, which is done later.
22777 			 */
22778 			wptr = mp1->b_wptr;
22779 			wptr[0] = TCPOPT_MAXSEG;
22780 			wptr[1] = TCPOPT_MAXSEG_LEN;
22781 			wptr += 2;
22782 			u1 = tcp->tcp_if_mtu -
22783 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22784 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22785 			    TCP_MIN_HEADER_LENGTH;
22786 			U16_TO_BE16(u1, wptr);
22787 			mp1->b_wptr = wptr + 2;
22788 			/* Update the offset to cover the additional word */
22789 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22790 
22791 			/*
22792 			 * Note that the following way of filling in
22793 			 * TCP options are not optimal.  Some NOPs can
22794 			 * be saved.  But there is no need at this time
22795 			 * to optimize it.  When it is needed, we will
22796 			 * do it.
22797 			 */
22798 			switch (tcp->tcp_state) {
22799 			case TCPS_SYN_SENT:
22800 				flags = TH_SYN;
22801 
22802 				if (tcp->tcp_snd_ts_ok) {
22803 					uint32_t llbolt = (uint32_t)lbolt;
22804 
22805 					wptr = mp1->b_wptr;
22806 					wptr[0] = TCPOPT_NOP;
22807 					wptr[1] = TCPOPT_NOP;
22808 					wptr[2] = TCPOPT_TSTAMP;
22809 					wptr[3] = TCPOPT_TSTAMP_LEN;
22810 					wptr += 4;
22811 					U32_TO_BE32(llbolt, wptr);
22812 					wptr += 4;
22813 					ASSERT(tcp->tcp_ts_recent == 0);
22814 					U32_TO_BE32(0L, wptr);
22815 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22816 					tcph->th_offset_and_rsrvd[0] +=
22817 					    (3 << 4);
22818 				}
22819 
22820 				/*
22821 				 * Set up all the bits to tell other side
22822 				 * we are ECN capable.
22823 				 */
22824 				if (tcp->tcp_ecn_ok) {
22825 					flags |= (TH_ECE | TH_CWR);
22826 				}
22827 				break;
22828 			case TCPS_SYN_RCVD:
22829 				flags |= TH_SYN;
22830 
22831 				/*
22832 				 * Reset the MSS option value to be SMSS
22833 				 * We should probably add back the bytes
22834 				 * for timestamp option and IPsec.  We
22835 				 * don't do that as this is a workaround
22836 				 * for broken middle boxes/end hosts, it
22837 				 * is better for us to be more cautious.
22838 				 * They may not take these things into
22839 				 * account in their SMSS calculation.  Thus
22840 				 * the peer's calculated SMSS may be smaller
22841 				 * than what it can be.  This should be OK.
22842 				 */
22843 				if (tcp_use_smss_as_mss_opt) {
22844 					u1 = tcp->tcp_mss;
22845 					U16_TO_BE16(u1, wptr);
22846 				}
22847 
22848 				/*
22849 				 * If the other side is ECN capable, reply
22850 				 * that we are also ECN capable.
22851 				 */
22852 				if (tcp->tcp_ecn_ok)
22853 					flags |= TH_ECE;
22854 				break;
22855 			default:
22856 				/*
22857 				 * The above ASSERT() makes sure that this
22858 				 * must be FIN-WAIT-1 state.  Our SYN has
22859 				 * not been ack'ed so retransmit it.
22860 				 */
22861 				flags |= TH_SYN;
22862 				break;
22863 			}
22864 
22865 			if (tcp->tcp_snd_ws_ok) {
22866 				wptr = mp1->b_wptr;
22867 				wptr[0] =  TCPOPT_NOP;
22868 				wptr[1] =  TCPOPT_WSCALE;
22869 				wptr[2] =  TCPOPT_WS_LEN;
22870 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22871 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22872 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22873 			}
22874 
22875 			if (tcp->tcp_snd_sack_ok) {
22876 				wptr = mp1->b_wptr;
22877 				wptr[0] = TCPOPT_NOP;
22878 				wptr[1] = TCPOPT_NOP;
22879 				wptr[2] = TCPOPT_SACK_PERMITTED;
22880 				wptr[3] = TCPOPT_SACK_OK_LEN;
22881 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22882 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22883 			}
22884 
22885 			/* allocb() of adequate mblk assures space */
22886 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22887 			    (uintptr_t)INT_MAX);
22888 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22889 			/*
22890 			 * Get IP set to checksum on our behalf
22891 			 * Include the adjustment for a source route if any.
22892 			 */
22893 			u1 += tcp->tcp_sum;
22894 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22895 			U16_TO_BE16(u1, tcph->th_sum);
22896 			BUMP_MIB(&tcp_mib, tcpOutControl);
22897 		}
22898 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22899 		    (seq + data_length) == tcp->tcp_fss) {
22900 			if (!tcp->tcp_fin_acked) {
22901 				flags |= TH_FIN;
22902 				BUMP_MIB(&tcp_mib, tcpOutControl);
22903 			}
22904 			if (!tcp->tcp_fin_sent) {
22905 				tcp->tcp_fin_sent = B_TRUE;
22906 				switch (tcp->tcp_state) {
22907 				case TCPS_SYN_RCVD:
22908 				case TCPS_ESTABLISHED:
22909 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22910 					break;
22911 				case TCPS_CLOSE_WAIT:
22912 					tcp->tcp_state = TCPS_LAST_ACK;
22913 					break;
22914 				}
22915 				if (tcp->tcp_suna == tcp->tcp_snxt)
22916 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22917 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22918 			}
22919 		}
22920 		/*
22921 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22922 		 * is smaller than seq, u1 will become a very huge value.
22923 		 * So the comparison will fail.  Also note that tcp_urp
22924 		 * should be positive, see RFC 793 page 17.
22925 		 */
22926 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22927 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22928 		    u1 < (uint32_t)(64 * 1024)) {
22929 			flags |= TH_URG;
22930 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22931 			U32_TO_ABE16(u1, tcph->th_urp);
22932 		}
22933 	}
22934 	tcph->th_flags[0] = (uchar_t)flags;
22935 	tcp->tcp_rack = tcp->tcp_rnxt;
22936 	tcp->tcp_rack_cnt = 0;
22937 
22938 	if (tcp->tcp_snd_ts_ok) {
22939 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22940 			uint32_t llbolt = (uint32_t)lbolt;
22941 
22942 			U32_TO_BE32(llbolt,
22943 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22944 			U32_TO_BE32(tcp->tcp_ts_recent,
22945 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22946 		}
22947 	}
22948 
22949 	if (num_sack_blk > 0) {
22950 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22951 		sack_blk_t *tmp;
22952 		int32_t	i;
22953 
22954 		wptr[0] = TCPOPT_NOP;
22955 		wptr[1] = TCPOPT_NOP;
22956 		wptr[2] = TCPOPT_SACK;
22957 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22958 		    sizeof (sack_blk_t);
22959 		wptr += TCPOPT_REAL_SACK_LEN;
22960 
22961 		tmp = tcp->tcp_sack_list;
22962 		for (i = 0; i < num_sack_blk; i++) {
22963 			U32_TO_BE32(tmp[i].begin, wptr);
22964 			wptr += sizeof (tcp_seq);
22965 			U32_TO_BE32(tmp[i].end, wptr);
22966 			wptr += sizeof (tcp_seq);
22967 		}
22968 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22969 	}
22970 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22971 	data_length += (int)(mp1->b_wptr - rptr);
22972 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22973 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22974 	} else {
22975 		ip6_t *ip6 = (ip6_t *)(rptr +
22976 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22977 		    sizeof (ip6i_t) : 0));
22978 
22979 		ip6->ip6_plen = htons(data_length -
22980 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22981 	}
22982 
22983 	/*
22984 	 * Prime pump for IP
22985 	 * Include the adjustment for a source route if any.
22986 	 */
22987 	data_length -= tcp->tcp_ip_hdr_len;
22988 	data_length += tcp->tcp_sum;
22989 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22990 	U16_TO_ABE16(data_length, tcph->th_sum);
22991 	if (tcp->tcp_ip_forward_progress) {
22992 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22993 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22994 		tcp->tcp_ip_forward_progress = B_FALSE;
22995 	}
22996 	return (mp1);
22997 }
22998 
22999 /* This function handles the push timeout. */
23000 void
23001 tcp_push_timer(void *arg)
23002 {
23003 	conn_t	*connp = (conn_t *)arg;
23004 	tcp_t *tcp = connp->conn_tcp;
23005 
23006 	TCP_DBGSTAT(tcp_push_timer_cnt);
23007 
23008 	ASSERT(tcp->tcp_listener == NULL);
23009 
23010 	/*
23011 	 * We need to plug synchronous streams during our drain to prevent
23012 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23013 	 */
23014 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23015 	tcp->tcp_push_tid = 0;
23016 	if ((tcp->tcp_rcv_list != NULL) &&
23017 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23018 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23019 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23020 }
23021 
23022 /*
23023  * This function handles delayed ACK timeout.
23024  */
23025 static void
23026 tcp_ack_timer(void *arg)
23027 {
23028 	conn_t	*connp = (conn_t *)arg;
23029 	tcp_t *tcp = connp->conn_tcp;
23030 	mblk_t *mp;
23031 
23032 	TCP_DBGSTAT(tcp_ack_timer_cnt);
23033 
23034 	tcp->tcp_ack_tid = 0;
23035 
23036 	if (tcp->tcp_fused)
23037 		return;
23038 
23039 	/*
23040 	 * Do not send ACK if there is no outstanding unack'ed data.
23041 	 */
23042 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23043 		return;
23044 	}
23045 
23046 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23047 		/*
23048 		 * Make sure we don't allow deferred ACKs to result in
23049 		 * timer-based ACKing.  If we have held off an ACK
23050 		 * when there was more than an mss here, and the timer
23051 		 * goes off, we have to worry about the possibility
23052 		 * that the sender isn't doing slow-start, or is out
23053 		 * of step with us for some other reason.  We fall
23054 		 * permanently back in the direction of
23055 		 * ACK-every-other-packet as suggested in RFC 1122.
23056 		 */
23057 		if (tcp->tcp_rack_abs_max > 2)
23058 			tcp->tcp_rack_abs_max--;
23059 		tcp->tcp_rack_cur_max = 2;
23060 	}
23061 	mp = tcp_ack_mp(tcp);
23062 
23063 	if (mp != NULL) {
23064 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23065 		BUMP_LOCAL(tcp->tcp_obsegs);
23066 		BUMP_MIB(&tcp_mib, tcpOutAck);
23067 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
23068 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23069 	}
23070 }
23071 
23072 
23073 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23074 static mblk_t *
23075 tcp_ack_mp(tcp_t *tcp)
23076 {
23077 	uint32_t	seq_no;
23078 
23079 	/*
23080 	 * There are a few cases to be considered while setting the sequence no.
23081 	 * Essentially, we can come here while processing an unacceptable pkt
23082 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23083 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23084 	 * If we are here for a zero window probe, stick with suna. In all
23085 	 * other cases, we check if suna + swnd encompasses snxt and set
23086 	 * the sequence number to snxt, if so. If snxt falls outside the
23087 	 * window (the receiver probably shrunk its window), we will go with
23088 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23089 	 * receiver.
23090 	 */
23091 	if (tcp->tcp_zero_win_probe) {
23092 		seq_no = tcp->tcp_suna;
23093 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23094 		ASSERT(tcp->tcp_swnd == 0);
23095 		seq_no = tcp->tcp_snxt;
23096 	} else {
23097 		seq_no = SEQ_GT(tcp->tcp_snxt,
23098 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23099 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23100 	}
23101 
23102 	if (tcp->tcp_valid_bits) {
23103 		/*
23104 		 * For the complex case where we have to send some
23105 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23106 		 */
23107 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23108 		    NULL, B_FALSE));
23109 	} else {
23110 		/* Generate a simple ACK */
23111 		int	data_length;
23112 		uchar_t	*rptr;
23113 		tcph_t	*tcph;
23114 		mblk_t	*mp1;
23115 		int32_t	tcp_hdr_len;
23116 		int32_t	tcp_tcp_hdr_len;
23117 		int32_t	num_sack_blk = 0;
23118 		int32_t sack_opt_len;
23119 
23120 		/*
23121 		 * Allocate space for TCP + IP headers
23122 		 * and link-level header
23123 		 */
23124 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23125 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23126 			    tcp->tcp_num_sack_blk);
23127 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23128 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23129 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23130 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23131 		} else {
23132 			tcp_hdr_len = tcp->tcp_hdr_len;
23133 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23134 		}
23135 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
23136 		if (!mp1)
23137 			return (NULL);
23138 
23139 		/* Update the latest receive window size in TCP header. */
23140 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23141 		    tcp->tcp_tcph->th_win);
23142 		/* copy in prototype TCP + IP header */
23143 		rptr = mp1->b_rptr + tcp_wroff_xtra;
23144 		mp1->b_rptr = rptr;
23145 		mp1->b_wptr = rptr + tcp_hdr_len;
23146 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23147 
23148 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23149 
23150 		/* Set the TCP sequence number. */
23151 		U32_TO_ABE32(seq_no, tcph->th_seq);
23152 
23153 		/* Set up the TCP flag field. */
23154 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23155 		if (tcp->tcp_ecn_echo_on)
23156 			tcph->th_flags[0] |= TH_ECE;
23157 
23158 		tcp->tcp_rack = tcp->tcp_rnxt;
23159 		tcp->tcp_rack_cnt = 0;
23160 
23161 		/* fill in timestamp option if in use */
23162 		if (tcp->tcp_snd_ts_ok) {
23163 			uint32_t llbolt = (uint32_t)lbolt;
23164 
23165 			U32_TO_BE32(llbolt,
23166 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23167 			U32_TO_BE32(tcp->tcp_ts_recent,
23168 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23169 		}
23170 
23171 		/* Fill in SACK options */
23172 		if (num_sack_blk > 0) {
23173 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23174 			sack_blk_t *tmp;
23175 			int32_t	i;
23176 
23177 			wptr[0] = TCPOPT_NOP;
23178 			wptr[1] = TCPOPT_NOP;
23179 			wptr[2] = TCPOPT_SACK;
23180 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23181 			    sizeof (sack_blk_t);
23182 			wptr += TCPOPT_REAL_SACK_LEN;
23183 
23184 			tmp = tcp->tcp_sack_list;
23185 			for (i = 0; i < num_sack_blk; i++) {
23186 				U32_TO_BE32(tmp[i].begin, wptr);
23187 				wptr += sizeof (tcp_seq);
23188 				U32_TO_BE32(tmp[i].end, wptr);
23189 				wptr += sizeof (tcp_seq);
23190 			}
23191 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23192 			    << 4);
23193 		}
23194 
23195 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23196 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23197 		} else {
23198 			/* Check for ip6i_t header in sticky hdrs */
23199 			ip6_t *ip6 = (ip6_t *)(rptr +
23200 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23201 			    sizeof (ip6i_t) : 0));
23202 
23203 			ip6->ip6_plen = htons(tcp_hdr_len -
23204 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23205 		}
23206 
23207 		/*
23208 		 * Prime pump for checksum calculation in IP.  Include the
23209 		 * adjustment for a source route if any.
23210 		 */
23211 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23212 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23213 		U16_TO_ABE16(data_length, tcph->th_sum);
23214 
23215 		if (tcp->tcp_ip_forward_progress) {
23216 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23217 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23218 			tcp->tcp_ip_forward_progress = B_FALSE;
23219 		}
23220 		return (mp1);
23221 	}
23222 }
23223 
23224 /*
23225  * To create a temporary tcp structure for inserting into bind hash list.
23226  * The parameter is assumed to be in network byte order, ready for use.
23227  */
23228 /* ARGSUSED */
23229 static tcp_t *
23230 tcp_alloc_temp_tcp(in_port_t port)
23231 {
23232 	conn_t	*connp;
23233 	tcp_t	*tcp;
23234 
23235 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
23236 	if (connp == NULL)
23237 		return (NULL);
23238 
23239 	tcp = connp->conn_tcp;
23240 
23241 	/*
23242 	 * Only initialize the necessary info in those structures.  Note
23243 	 * that since INADDR_ANY is all 0, we do not need to set
23244 	 * tcp_bound_source to INADDR_ANY here.
23245 	 */
23246 	tcp->tcp_state = TCPS_BOUND;
23247 	tcp->tcp_lport = port;
23248 	tcp->tcp_exclbind = 1;
23249 	tcp->tcp_reserved_port = 1;
23250 
23251 	/* Just for place holding... */
23252 	tcp->tcp_ipversion = IPV4_VERSION;
23253 
23254 	return (tcp);
23255 }
23256 
23257 /*
23258  * To remove a port range specified by lo_port and hi_port from the
23259  * reserved port ranges.  This is one of the three public functions of
23260  * the reserved port interface.  Note that a port range has to be removed
23261  * as a whole.  Ports in a range cannot be removed individually.
23262  *
23263  * Params:
23264  *	in_port_t lo_port: the beginning port of the reserved port range to
23265  *		be deleted.
23266  *	in_port_t hi_port: the ending port of the reserved port range to
23267  *		be deleted.
23268  *
23269  * Return:
23270  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23271  */
23272 boolean_t
23273 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23274 {
23275 	int	i, j;
23276 	int	size;
23277 	tcp_t	**temp_tcp_array;
23278 	tcp_t	*tcp;
23279 
23280 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
23281 
23282 	/* First make sure that the port ranage is indeed reserved. */
23283 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23284 		if (tcp_reserved_port[i].lo_port == lo_port) {
23285 			hi_port = tcp_reserved_port[i].hi_port;
23286 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
23287 			break;
23288 		}
23289 	}
23290 	if (i == tcp_reserved_port_array_size) {
23291 		rw_exit(&tcp_reserved_port_lock);
23292 		return (B_FALSE);
23293 	}
23294 
23295 	/*
23296 	 * Remove the range from the array.  This simple loop is possible
23297 	 * because port ranges are inserted in ascending order.
23298 	 */
23299 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
23300 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
23301 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
23302 		tcp_reserved_port[j].temp_tcp_array =
23303 		    tcp_reserved_port[j+1].temp_tcp_array;
23304 	}
23305 
23306 	/* Remove all the temporary tcp structures. */
23307 	size = hi_port - lo_port + 1;
23308 	while (size > 0) {
23309 		tcp = temp_tcp_array[size - 1];
23310 		ASSERT(tcp != NULL);
23311 		tcp_bind_hash_remove(tcp);
23312 		CONN_DEC_REF(tcp->tcp_connp);
23313 		size--;
23314 	}
23315 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23316 	tcp_reserved_port_array_size--;
23317 	rw_exit(&tcp_reserved_port_lock);
23318 	return (B_TRUE);
23319 }
23320 
23321 /*
23322  * Macro to remove temporary tcp structure from the bind hash list.  The
23323  * first parameter is the list of tcp to be removed.  The second parameter
23324  * is the number of tcps in the array.
23325  */
23326 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
23327 { \
23328 	while ((num) > 0) { \
23329 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23330 		tf_t *tbf; \
23331 		tcp_t *tcpnext; \
23332 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23333 		mutex_enter(&tbf->tf_lock); \
23334 		tcpnext = tcp->tcp_bind_hash; \
23335 		if (tcpnext) { \
23336 			tcpnext->tcp_ptpbhn = \
23337 				tcp->tcp_ptpbhn; \
23338 		} \
23339 		*tcp->tcp_ptpbhn = tcpnext; \
23340 		mutex_exit(&tbf->tf_lock); \
23341 		kmem_free(tcp, sizeof (tcp_t)); \
23342 		(tcp_array)[(num) - 1] = NULL; \
23343 		(num)--; \
23344 	} \
23345 }
23346 
23347 /*
23348  * The public interface for other modules to call to reserve a port range
23349  * in TCP.  The caller passes in how large a port range it wants.  TCP
23350  * will try to find a range and return it via lo_port and hi_port.  This is
23351  * used by NCA's nca_conn_init.
23352  * NCA can only be used in the global zone so this only affects the global
23353  * zone's ports.
23354  *
23355  * Params:
23356  *	int size: the size of the port range to be reserved.
23357  *	in_port_t *lo_port (referenced): returns the beginning port of the
23358  *		reserved port range added.
23359  *	in_port_t *hi_port (referenced): returns the ending port of the
23360  *		reserved port range added.
23361  *
23362  * Return:
23363  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23364  */
23365 boolean_t
23366 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23367 {
23368 	tcp_t		*tcp;
23369 	tcp_t		*tmp_tcp;
23370 	tcp_t		**temp_tcp_array;
23371 	tf_t		*tbf;
23372 	in_port_t	net_port;
23373 	in_port_t	port;
23374 	int32_t		cur_size;
23375 	int		i, j;
23376 	boolean_t	used;
23377 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23378 	zoneid_t	zoneid = GLOBAL_ZONEID;
23379 
23380 	/* Sanity check. */
23381 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23382 		return (B_FALSE);
23383 	}
23384 
23385 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
23386 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23387 		rw_exit(&tcp_reserved_port_lock);
23388 		return (B_FALSE);
23389 	}
23390 
23391 	/*
23392 	 * Find the starting port to try.  Since the port ranges are ordered
23393 	 * in the reserved port array, we can do a simple search here.
23394 	 */
23395 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23396 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23397 	for (i = 0; i < tcp_reserved_port_array_size;
23398 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
23399 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
23400 			*hi_port = tcp_reserved_port[i].lo_port - 1;
23401 			break;
23402 		}
23403 	}
23404 	/* No available port range. */
23405 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
23406 		rw_exit(&tcp_reserved_port_lock);
23407 		return (B_FALSE);
23408 	}
23409 
23410 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23411 	if (temp_tcp_array == NULL) {
23412 		rw_exit(&tcp_reserved_port_lock);
23413 		return (B_FALSE);
23414 	}
23415 
23416 	/* Go thru the port range to see if some ports are already bound. */
23417 	for (port = *lo_port, cur_size = 0;
23418 	    cur_size < size && port <= *hi_port;
23419 	    cur_size++, port++) {
23420 		used = B_FALSE;
23421 		net_port = htons(port);
23422 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
23423 		mutex_enter(&tbf->tf_lock);
23424 		for (tcp = tbf->tf_tcp; tcp != NULL;
23425 		    tcp = tcp->tcp_bind_hash) {
23426 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23427 			    net_port == tcp->tcp_lport) {
23428 				/*
23429 				 * A port is already bound.  Search again
23430 				 * starting from port + 1.  Release all
23431 				 * temporary tcps.
23432 				 */
23433 				mutex_exit(&tbf->tf_lock);
23434 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23435 				*lo_port = port + 1;
23436 				cur_size = -1;
23437 				used = B_TRUE;
23438 				break;
23439 			}
23440 		}
23441 		if (!used) {
23442 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
23443 				/*
23444 				 * Allocation failure.  Just fail the request.
23445 				 * Need to remove all those temporary tcp
23446 				 * structures.
23447 				 */
23448 				mutex_exit(&tbf->tf_lock);
23449 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23450 				rw_exit(&tcp_reserved_port_lock);
23451 				kmem_free(temp_tcp_array,
23452 				    (hi_port - lo_port + 1) *
23453 				    sizeof (tcp_t *));
23454 				return (B_FALSE);
23455 			}
23456 			temp_tcp_array[cur_size] = tmp_tcp;
23457 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23458 			mutex_exit(&tbf->tf_lock);
23459 		}
23460 	}
23461 
23462 	/*
23463 	 * The current range is not large enough.  We can actually do another
23464 	 * search if this search is done between 2 reserved port ranges.  But
23465 	 * for first release, we just stop here and return saying that no port
23466 	 * range is available.
23467 	 */
23468 	if (cur_size < size) {
23469 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23470 		rw_exit(&tcp_reserved_port_lock);
23471 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23472 		return (B_FALSE);
23473 	}
23474 	*hi_port = port - 1;
23475 
23476 	/*
23477 	 * Insert range into array in ascending order.  Since this function
23478 	 * must not be called often, we choose to use the simplest method.
23479 	 * The above array should not consume excessive stack space as
23480 	 * the size must be very small.  If in future releases, we find
23481 	 * that we should provide more reserved port ranges, this function
23482 	 * has to be modified to be more efficient.
23483 	 */
23484 	if (tcp_reserved_port_array_size == 0) {
23485 		tcp_reserved_port[0].lo_port = *lo_port;
23486 		tcp_reserved_port[0].hi_port = *hi_port;
23487 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
23488 	} else {
23489 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
23490 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
23491 				tmp_ports[j].lo_port = *lo_port;
23492 				tmp_ports[j].hi_port = *hi_port;
23493 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23494 				j++;
23495 			}
23496 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
23497 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
23498 			tmp_ports[j].temp_tcp_array =
23499 			    tcp_reserved_port[i].temp_tcp_array;
23500 		}
23501 		if (j == i) {
23502 			tmp_ports[j].lo_port = *lo_port;
23503 			tmp_ports[j].hi_port = *hi_port;
23504 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23505 		}
23506 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
23507 	}
23508 	tcp_reserved_port_array_size++;
23509 	rw_exit(&tcp_reserved_port_lock);
23510 	return (B_TRUE);
23511 }
23512 
23513 /*
23514  * Check to see if a port is in any reserved port range.
23515  *
23516  * Params:
23517  *	in_port_t port: the port to be verified.
23518  *
23519  * Return:
23520  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23521  */
23522 boolean_t
23523 tcp_reserved_port_check(in_port_t port)
23524 {
23525 	int i;
23526 
23527 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23528 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23529 		if (port >= tcp_reserved_port[i].lo_port ||
23530 		    port <= tcp_reserved_port[i].hi_port) {
23531 			rw_exit(&tcp_reserved_port_lock);
23532 			return (B_TRUE);
23533 		}
23534 	}
23535 	rw_exit(&tcp_reserved_port_lock);
23536 	return (B_FALSE);
23537 }
23538 
23539 /*
23540  * To list all reserved port ranges.  This is the function to handle
23541  * ndd tcp_reserved_port_list.
23542  */
23543 /* ARGSUSED */
23544 static int
23545 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23546 {
23547 	int i;
23548 
23549 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23550 	if (tcp_reserved_port_array_size > 0)
23551 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23552 	else
23553 		(void) mi_mpprintf(mp, "No port is reserved.");
23554 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23555 		(void) mi_mpprintf(mp, "%d-%d",
23556 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
23557 	}
23558 	rw_exit(&tcp_reserved_port_lock);
23559 	return (0);
23560 }
23561 
23562 /*
23563  * Hash list insertion routine for tcp_t structures.
23564  * Inserts entries with the ones bound to a specific IP address first
23565  * followed by those bound to INADDR_ANY.
23566  */
23567 static void
23568 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23569 {
23570 	tcp_t	**tcpp;
23571 	tcp_t	*tcpnext;
23572 
23573 	if (tcp->tcp_ptpbhn != NULL) {
23574 		ASSERT(!caller_holds_lock);
23575 		tcp_bind_hash_remove(tcp);
23576 	}
23577 	tcpp = &tbf->tf_tcp;
23578 	if (!caller_holds_lock) {
23579 		mutex_enter(&tbf->tf_lock);
23580 	} else {
23581 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23582 	}
23583 	tcpnext = tcpp[0];
23584 	if (tcpnext) {
23585 		/*
23586 		 * If the new tcp bound to the INADDR_ANY address
23587 		 * and the first one in the list is not bound to
23588 		 * INADDR_ANY we skip all entries until we find the
23589 		 * first one bound to INADDR_ANY.
23590 		 * This makes sure that applications binding to a
23591 		 * specific address get preference over those binding to
23592 		 * INADDR_ANY.
23593 		 */
23594 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23595 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23596 			while ((tcpnext = tcpp[0]) != NULL &&
23597 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23598 				tcpp = &(tcpnext->tcp_bind_hash);
23599 			if (tcpnext)
23600 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23601 		} else
23602 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23603 	}
23604 	tcp->tcp_bind_hash = tcpnext;
23605 	tcp->tcp_ptpbhn = tcpp;
23606 	tcpp[0] = tcp;
23607 	if (!caller_holds_lock)
23608 		mutex_exit(&tbf->tf_lock);
23609 }
23610 
23611 /*
23612  * Hash list removal routine for tcp_t structures.
23613  */
23614 static void
23615 tcp_bind_hash_remove(tcp_t *tcp)
23616 {
23617 	tcp_t	*tcpnext;
23618 	kmutex_t *lockp;
23619 
23620 	if (tcp->tcp_ptpbhn == NULL)
23621 		return;
23622 
23623 	/*
23624 	 * Extract the lock pointer in case there are concurrent
23625 	 * hash_remove's for this instance.
23626 	 */
23627 	ASSERT(tcp->tcp_lport != 0);
23628 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23629 
23630 	ASSERT(lockp != NULL);
23631 	mutex_enter(lockp);
23632 	if (tcp->tcp_ptpbhn) {
23633 		tcpnext = tcp->tcp_bind_hash;
23634 		if (tcpnext) {
23635 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23636 			tcp->tcp_bind_hash = NULL;
23637 		}
23638 		*tcp->tcp_ptpbhn = tcpnext;
23639 		tcp->tcp_ptpbhn = NULL;
23640 	}
23641 	mutex_exit(lockp);
23642 }
23643 
23644 
23645 /*
23646  * Hash list lookup routine for tcp_t structures.
23647  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23648  */
23649 static tcp_t *
23650 tcp_acceptor_hash_lookup(t_uscalar_t id)
23651 {
23652 	tf_t	*tf;
23653 	tcp_t	*tcp;
23654 
23655 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23656 	mutex_enter(&tf->tf_lock);
23657 	for (tcp = tf->tf_tcp; tcp != NULL;
23658 	    tcp = tcp->tcp_acceptor_hash) {
23659 		if (tcp->tcp_acceptor_id == id) {
23660 			CONN_INC_REF(tcp->tcp_connp);
23661 			mutex_exit(&tf->tf_lock);
23662 			return (tcp);
23663 		}
23664 	}
23665 	mutex_exit(&tf->tf_lock);
23666 	return (NULL);
23667 }
23668 
23669 
23670 /*
23671  * Hash list insertion routine for tcp_t structures.
23672  */
23673 void
23674 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23675 {
23676 	tf_t	*tf;
23677 	tcp_t	**tcpp;
23678 	tcp_t	*tcpnext;
23679 
23680 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23681 
23682 	if (tcp->tcp_ptpahn != NULL)
23683 		tcp_acceptor_hash_remove(tcp);
23684 	tcpp = &tf->tf_tcp;
23685 	mutex_enter(&tf->tf_lock);
23686 	tcpnext = tcpp[0];
23687 	if (tcpnext)
23688 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23689 	tcp->tcp_acceptor_hash = tcpnext;
23690 	tcp->tcp_ptpahn = tcpp;
23691 	tcpp[0] = tcp;
23692 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23693 	mutex_exit(&tf->tf_lock);
23694 }
23695 
23696 /*
23697  * Hash list removal routine for tcp_t structures.
23698  */
23699 static void
23700 tcp_acceptor_hash_remove(tcp_t *tcp)
23701 {
23702 	tcp_t	*tcpnext;
23703 	kmutex_t *lockp;
23704 
23705 	/*
23706 	 * Extract the lock pointer in case there are concurrent
23707 	 * hash_remove's for this instance.
23708 	 */
23709 	lockp = tcp->tcp_acceptor_lockp;
23710 
23711 	if (tcp->tcp_ptpahn == NULL)
23712 		return;
23713 
23714 	ASSERT(lockp != NULL);
23715 	mutex_enter(lockp);
23716 	if (tcp->tcp_ptpahn) {
23717 		tcpnext = tcp->tcp_acceptor_hash;
23718 		if (tcpnext) {
23719 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23720 			tcp->tcp_acceptor_hash = NULL;
23721 		}
23722 		*tcp->tcp_ptpahn = tcpnext;
23723 		tcp->tcp_ptpahn = NULL;
23724 	}
23725 	mutex_exit(lockp);
23726 	tcp->tcp_acceptor_lockp = NULL;
23727 }
23728 
23729 /* ARGSUSED */
23730 static int
23731 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
23732 {
23733 	int error = 0;
23734 	int retval;
23735 	char *end;
23736 
23737 	tcp_hsp_t *hsp;
23738 	tcp_hsp_t *hspprev;
23739 
23740 	ipaddr_t addr = 0;		/* Address we're looking for */
23741 	in6_addr_t v6addr;		/* Address we're looking for */
23742 	uint32_t hash;			/* Hash of that address */
23743 
23744 	/*
23745 	 * If the following variables are still zero after parsing the input
23746 	 * string, the user didn't specify them and we don't change them in
23747 	 * the HSP.
23748 	 */
23749 
23750 	ipaddr_t mask = 0;		/* Subnet mask */
23751 	in6_addr_t v6mask;
23752 	long sendspace = 0;		/* Send buffer size */
23753 	long recvspace = 0;		/* Receive buffer size */
23754 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
23755 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
23756 
23757 	rw_enter(&tcp_hsp_lock, RW_WRITER);
23758 
23759 	/* Parse and validate address */
23760 	if (af == AF_INET) {
23761 		retval = inet_pton(af, value, &addr);
23762 		if (retval == 1)
23763 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23764 	} else if (af == AF_INET6) {
23765 		retval = inet_pton(af, value, &v6addr);
23766 	} else {
23767 		error = EINVAL;
23768 		goto done;
23769 	}
23770 	if (retval == 0) {
23771 		error = EINVAL;
23772 		goto done;
23773 	}
23774 
23775 	while ((*value) && *value != ' ')
23776 		value++;
23777 
23778 	/* Parse individual keywords, set variables if found */
23779 	while (*value) {
23780 		/* Skip leading blanks */
23781 
23782 		while (*value == ' ' || *value == '\t')
23783 			value++;
23784 
23785 		/* If at end of string, we're done */
23786 
23787 		if (!*value)
23788 			break;
23789 
23790 		/* We have a word, figure out what it is */
23791 
23792 		if (strncmp("mask", value, 4) == 0) {
23793 			value += 4;
23794 			while (*value == ' ' || *value == '\t')
23795 				value++;
23796 			/* Parse subnet mask */
23797 			if (af == AF_INET) {
23798 				retval = inet_pton(af, value, &mask);
23799 				if (retval == 1) {
23800 					V4MASK_TO_V6(mask, v6mask);
23801 				}
23802 			} else if (af == AF_INET6) {
23803 				retval = inet_pton(af, value, &v6mask);
23804 			}
23805 			if (retval != 1) {
23806 				error = EINVAL;
23807 				goto done;
23808 			}
23809 			while ((*value) && *value != ' ')
23810 				value++;
23811 		} else if (strncmp("sendspace", value, 9) == 0) {
23812 			value += 9;
23813 
23814 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23815 			    sendspace < TCP_XMIT_HIWATER ||
23816 			    sendspace >= (1L<<30)) {
23817 				error = EINVAL;
23818 				goto done;
23819 			}
23820 			value = end;
23821 		} else if (strncmp("recvspace", value, 9) == 0) {
23822 			value += 9;
23823 
23824 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23825 			    recvspace < TCP_RECV_HIWATER ||
23826 			    recvspace >= (1L<<30)) {
23827 				error = EINVAL;
23828 				goto done;
23829 			}
23830 			value = end;
23831 		} else if (strncmp("timestamp", value, 9) == 0) {
23832 			value += 9;
23833 
23834 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23835 			    timestamp < 0 || timestamp > 1) {
23836 				error = EINVAL;
23837 				goto done;
23838 			}
23839 
23840 			/*
23841 			 * We increment timestamp so we know it's been set;
23842 			 * this is undone when we put it in the HSP
23843 			 */
23844 			timestamp++;
23845 			value = end;
23846 		} else if (strncmp("delete", value, 6) == 0) {
23847 			value += 6;
23848 			delete = B_TRUE;
23849 		} else {
23850 			error = EINVAL;
23851 			goto done;
23852 		}
23853 	}
23854 
23855 	/* Hash address for lookup */
23856 
23857 	hash = TCP_HSP_HASH(addr);
23858 
23859 	if (delete) {
23860 		/*
23861 		 * Note that deletes don't return an error if the thing
23862 		 * we're trying to delete isn't there.
23863 		 */
23864 		if (tcp_hsp_hash == NULL)
23865 			goto done;
23866 		hsp = tcp_hsp_hash[hash];
23867 
23868 		if (hsp) {
23869 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23870 			    &v6addr)) {
23871 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23872 				mi_free((char *)hsp);
23873 			} else {
23874 				hspprev = hsp;
23875 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23876 					if (IN6_ARE_ADDR_EQUAL(
23877 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23878 						hspprev->tcp_hsp_next =
23879 						    hsp->tcp_hsp_next;
23880 						mi_free((char *)hsp);
23881 						break;
23882 					}
23883 					hspprev = hsp;
23884 				}
23885 			}
23886 		}
23887 	} else {
23888 		/*
23889 		 * We're adding/modifying an HSP.  If we haven't already done
23890 		 * so, allocate the hash table.
23891 		 */
23892 
23893 		if (!tcp_hsp_hash) {
23894 			tcp_hsp_hash = (tcp_hsp_t **)
23895 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23896 			if (!tcp_hsp_hash) {
23897 				error = EINVAL;
23898 				goto done;
23899 			}
23900 		}
23901 
23902 		/* Get head of hash chain */
23903 
23904 		hsp = tcp_hsp_hash[hash];
23905 
23906 		/* Try to find pre-existing hsp on hash chain */
23907 		/* Doesn't handle CIDR prefixes. */
23908 		while (hsp) {
23909 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23910 				break;
23911 			hsp = hsp->tcp_hsp_next;
23912 		}
23913 
23914 		/*
23915 		 * If we didn't, create one with default values and put it
23916 		 * at head of hash chain
23917 		 */
23918 
23919 		if (!hsp) {
23920 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23921 			if (!hsp) {
23922 				error = EINVAL;
23923 				goto done;
23924 			}
23925 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23926 			tcp_hsp_hash[hash] = hsp;
23927 		}
23928 
23929 		/* Set values that the user asked us to change */
23930 
23931 		hsp->tcp_hsp_addr_v6 = v6addr;
23932 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23933 			hsp->tcp_hsp_vers = IPV4_VERSION;
23934 		else
23935 			hsp->tcp_hsp_vers = IPV6_VERSION;
23936 		hsp->tcp_hsp_subnet_v6 = v6mask;
23937 		if (sendspace > 0)
23938 			hsp->tcp_hsp_sendspace = sendspace;
23939 		if (recvspace > 0)
23940 			hsp->tcp_hsp_recvspace = recvspace;
23941 		if (timestamp > 0)
23942 			hsp->tcp_hsp_tstamp = timestamp - 1;
23943 	}
23944 
23945 done:
23946 	rw_exit(&tcp_hsp_lock);
23947 	return (error);
23948 }
23949 
23950 /* Set callback routine passed to nd_load by tcp_param_register. */
23951 /* ARGSUSED */
23952 static int
23953 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23954 {
23955 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23956 }
23957 /* ARGSUSED */
23958 static int
23959 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23960     cred_t *cr)
23961 {
23962 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23963 }
23964 
23965 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23966 /* ARGSUSED */
23967 static int
23968 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23969 {
23970 	tcp_hsp_t *hsp;
23971 	int i;
23972 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23973 
23974 	rw_enter(&tcp_hsp_lock, RW_READER);
23975 	(void) mi_mpprintf(mp,
23976 	    "Hash HSP     " MI_COL_HDRPAD_STR
23977 	    "Address         Subnet Mask     Send       Receive    TStamp");
23978 	if (tcp_hsp_hash) {
23979 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23980 			hsp = tcp_hsp_hash[i];
23981 			while (hsp) {
23982 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23983 					(void) inet_ntop(AF_INET,
23984 					    &hsp->tcp_hsp_addr,
23985 					    addrbuf, sizeof (addrbuf));
23986 					(void) inet_ntop(AF_INET,
23987 					    &hsp->tcp_hsp_subnet,
23988 					    subnetbuf, sizeof (subnetbuf));
23989 				} else {
23990 					(void) inet_ntop(AF_INET6,
23991 					    &hsp->tcp_hsp_addr_v6,
23992 					    addrbuf, sizeof (addrbuf));
23993 					(void) inet_ntop(AF_INET6,
23994 					    &hsp->tcp_hsp_subnet_v6,
23995 					    subnetbuf, sizeof (subnetbuf));
23996 				}
23997 				(void) mi_mpprintf(mp,
23998 				    " %03d " MI_COL_PTRFMT_STR
23999 				    "%s %s %010d %010d      %d",
24000 				    i,
24001 				    (void *)hsp,
24002 				    addrbuf,
24003 				    subnetbuf,
24004 				    hsp->tcp_hsp_sendspace,
24005 				    hsp->tcp_hsp_recvspace,
24006 				    hsp->tcp_hsp_tstamp);
24007 
24008 				hsp = hsp->tcp_hsp_next;
24009 			}
24010 		}
24011 	}
24012 	rw_exit(&tcp_hsp_lock);
24013 	return (0);
24014 }
24015 
24016 
24017 /* Data for fast netmask macro used by tcp_hsp_lookup */
24018 
24019 static ipaddr_t netmasks[] = {
24020 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24021 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24022 };
24023 
24024 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24025 
24026 /*
24027  * XXX This routine should go away and instead we should use the metrics
24028  * associated with the routes to determine the default sndspace and rcvspace.
24029  */
24030 static tcp_hsp_t *
24031 tcp_hsp_lookup(ipaddr_t addr)
24032 {
24033 	tcp_hsp_t *hsp = NULL;
24034 
24035 	/* Quick check without acquiring the lock. */
24036 	if (tcp_hsp_hash == NULL)
24037 		return (NULL);
24038 
24039 	rw_enter(&tcp_hsp_lock, RW_READER);
24040 
24041 	/* This routine finds the best-matching HSP for address addr. */
24042 
24043 	if (tcp_hsp_hash) {
24044 		int i;
24045 		ipaddr_t srchaddr;
24046 		tcp_hsp_t *hsp_net;
24047 
24048 		/* We do three passes: host, network, and subnet. */
24049 
24050 		srchaddr = addr;
24051 
24052 		for (i = 1; i <= 3; i++) {
24053 			/* Look for exact match on srchaddr */
24054 
24055 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
24056 			while (hsp) {
24057 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24058 				    hsp->tcp_hsp_addr == srchaddr)
24059 					break;
24060 				hsp = hsp->tcp_hsp_next;
24061 			}
24062 			ASSERT(hsp == NULL ||
24063 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24064 
24065 			/*
24066 			 * If this is the first pass:
24067 			 *   If we found a match, great, return it.
24068 			 *   If not, search for the network on the second pass.
24069 			 */
24070 
24071 			if (i == 1)
24072 				if (hsp)
24073 					break;
24074 				else
24075 				{
24076 					srchaddr = addr & netmask(addr);
24077 					continue;
24078 				}
24079 
24080 			/*
24081 			 * If this is the second pass:
24082 			 *   If we found a match, but there's a subnet mask,
24083 			 *    save the match but try again using the subnet
24084 			 *    mask on the third pass.
24085 			 *   Otherwise, return whatever we found.
24086 			 */
24087 
24088 			if (i == 2) {
24089 				if (hsp && hsp->tcp_hsp_subnet) {
24090 					hsp_net = hsp;
24091 					srchaddr = addr & hsp->tcp_hsp_subnet;
24092 					continue;
24093 				} else {
24094 					break;
24095 				}
24096 			}
24097 
24098 			/*
24099 			 * This must be the third pass.  If we didn't find
24100 			 * anything, return the saved network HSP instead.
24101 			 */
24102 
24103 			if (!hsp)
24104 				hsp = hsp_net;
24105 		}
24106 	}
24107 
24108 	rw_exit(&tcp_hsp_lock);
24109 	return (hsp);
24110 }
24111 
24112 /*
24113  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24114  * match lookup.
24115  */
24116 static tcp_hsp_t *
24117 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
24118 {
24119 	tcp_hsp_t *hsp = NULL;
24120 
24121 	/* Quick check without acquiring the lock. */
24122 	if (tcp_hsp_hash == NULL)
24123 		return (NULL);
24124 
24125 	rw_enter(&tcp_hsp_lock, RW_READER);
24126 
24127 	/* This routine finds the best-matching HSP for address addr. */
24128 
24129 	if (tcp_hsp_hash) {
24130 		int i;
24131 		in6_addr_t v6srchaddr;
24132 		tcp_hsp_t *hsp_net;
24133 
24134 		/* We do three passes: host, network, and subnet. */
24135 
24136 		v6srchaddr = *v6addr;
24137 
24138 		for (i = 1; i <= 3; i++) {
24139 			/* Look for exact match on srchaddr */
24140 
24141 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
24142 			    V4_PART_OF_V6(v6srchaddr))];
24143 			while (hsp) {
24144 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24145 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24146 				    &v6srchaddr))
24147 					break;
24148 				hsp = hsp->tcp_hsp_next;
24149 			}
24150 
24151 			/*
24152 			 * If this is the first pass:
24153 			 *   If we found a match, great, return it.
24154 			 *   If not, search for the network on the second pass.
24155 			 */
24156 
24157 			if (i == 1)
24158 				if (hsp)
24159 					break;
24160 				else {
24161 					/* Assume a 64 bit mask */
24162 					v6srchaddr.s6_addr32[0] =
24163 					    v6addr->s6_addr32[0];
24164 					v6srchaddr.s6_addr32[1] =
24165 					    v6addr->s6_addr32[1];
24166 					v6srchaddr.s6_addr32[2] = 0;
24167 					v6srchaddr.s6_addr32[3] = 0;
24168 					continue;
24169 				}
24170 
24171 			/*
24172 			 * If this is the second pass:
24173 			 *   If we found a match, but there's a subnet mask,
24174 			 *    save the match but try again using the subnet
24175 			 *    mask on the third pass.
24176 			 *   Otherwise, return whatever we found.
24177 			 */
24178 
24179 			if (i == 2) {
24180 				ASSERT(hsp == NULL ||
24181 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24182 				if (hsp &&
24183 				    !IN6_IS_ADDR_UNSPECIFIED(
24184 				    &hsp->tcp_hsp_subnet_v6)) {
24185 					hsp_net = hsp;
24186 					V6_MASK_COPY(*v6addr,
24187 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24188 					continue;
24189 				} else {
24190 					break;
24191 				}
24192 			}
24193 
24194 			/*
24195 			 * This must be the third pass.  If we didn't find
24196 			 * anything, return the saved network HSP instead.
24197 			 */
24198 
24199 			if (!hsp)
24200 				hsp = hsp_net;
24201 		}
24202 	}
24203 
24204 	rw_exit(&tcp_hsp_lock);
24205 	return (hsp);
24206 }
24207 
24208 /*
24209  * Type three generator adapted from the random() function in 4.4 BSD:
24210  */
24211 
24212 /*
24213  * Copyright (c) 1983, 1993
24214  *	The Regents of the University of California.  All rights reserved.
24215  *
24216  * Redistribution and use in source and binary forms, with or without
24217  * modification, are permitted provided that the following conditions
24218  * are met:
24219  * 1. Redistributions of source code must retain the above copyright
24220  *    notice, this list of conditions and the following disclaimer.
24221  * 2. Redistributions in binary form must reproduce the above copyright
24222  *    notice, this list of conditions and the following disclaimer in the
24223  *    documentation and/or other materials provided with the distribution.
24224  * 3. All advertising materials mentioning features or use of this software
24225  *    must display the following acknowledgement:
24226  *	This product includes software developed by the University of
24227  *	California, Berkeley and its contributors.
24228  * 4. Neither the name of the University nor the names of its contributors
24229  *    may be used to endorse or promote products derived from this software
24230  *    without specific prior written permission.
24231  *
24232  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24233  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24234  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24235  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24236  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24237  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24238  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24239  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24240  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24241  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24242  * SUCH DAMAGE.
24243  */
24244 
24245 /* Type 3 -- x**31 + x**3 + 1 */
24246 #define	DEG_3		31
24247 #define	SEP_3		3
24248 
24249 
24250 /* Protected by tcp_random_lock */
24251 static int tcp_randtbl[DEG_3 + 1];
24252 
24253 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24254 static int *tcp_random_rptr = &tcp_randtbl[1];
24255 
24256 static int *tcp_random_state = &tcp_randtbl[1];
24257 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24258 
24259 kmutex_t tcp_random_lock;
24260 
24261 void
24262 tcp_random_init(void)
24263 {
24264 	int i;
24265 	hrtime_t hrt;
24266 	time_t wallclock;
24267 	uint64_t result;
24268 
24269 	/*
24270 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24271 	 * a longlong, which may contain resolution down to nanoseconds.
24272 	 * The current time will either be a 32-bit or a 64-bit quantity.
24273 	 * XOR the two together in a 64-bit result variable.
24274 	 * Convert the result to a 32-bit value by multiplying the high-order
24275 	 * 32-bits by the low-order 32-bits.
24276 	 */
24277 
24278 	hrt = gethrtime();
24279 	(void) drv_getparm(TIME, &wallclock);
24280 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24281 	mutex_enter(&tcp_random_lock);
24282 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24283 	    (result & 0xffffffff);
24284 
24285 	for (i = 1; i < DEG_3; i++)
24286 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24287 			+ 12345;
24288 	tcp_random_fptr = &tcp_random_state[SEP_3];
24289 	tcp_random_rptr = &tcp_random_state[0];
24290 	mutex_exit(&tcp_random_lock);
24291 	for (i = 0; i < 10 * DEG_3; i++)
24292 		(void) tcp_random();
24293 }
24294 
24295 /*
24296  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24297  * This range is selected to be approximately centered on TCP_ISS / 2,
24298  * and easy to compute. We get this value by generating a 32-bit random
24299  * number, selecting out the high-order 17 bits, and then adding one so
24300  * that we never return zero.
24301  */
24302 int
24303 tcp_random(void)
24304 {
24305 	int i;
24306 
24307 	mutex_enter(&tcp_random_lock);
24308 	*tcp_random_fptr += *tcp_random_rptr;
24309 
24310 	/*
24311 	 * The high-order bits are more random than the low-order bits,
24312 	 * so we select out the high-order 17 bits and add one so that
24313 	 * we never return zero.
24314 	 */
24315 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24316 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24317 		tcp_random_fptr = tcp_random_state;
24318 		++tcp_random_rptr;
24319 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24320 		tcp_random_rptr = tcp_random_state;
24321 
24322 	mutex_exit(&tcp_random_lock);
24323 	return (i);
24324 }
24325 
24326 /*
24327  * XXX This will go away when TPI is extended to send
24328  * info reqs to sockfs/timod .....
24329  * Given a queue, set the max packet size for the write
24330  * side of the queue below stream head.  This value is
24331  * cached on the stream head.
24332  * Returns 1 on success, 0 otherwise.
24333  */
24334 static int
24335 setmaxps(queue_t *q, int maxpsz)
24336 {
24337 	struct stdata	*stp;
24338 	queue_t		*wq;
24339 	stp = STREAM(q);
24340 
24341 	/*
24342 	 * At this point change of a queue parameter is not allowed
24343 	 * when a multiplexor is sitting on top.
24344 	 */
24345 	if (stp->sd_flag & STPLEX)
24346 		return (0);
24347 
24348 	claimstr(stp->sd_wrq);
24349 	wq = stp->sd_wrq->q_next;
24350 	ASSERT(wq != NULL);
24351 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24352 	releasestr(stp->sd_wrq);
24353 	return (1);
24354 }
24355 
24356 static int
24357 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24358     int *t_errorp, int *sys_errorp)
24359 {
24360 	int error;
24361 	int is_absreq_failure;
24362 	t_scalar_t *opt_lenp;
24363 	t_scalar_t opt_offset;
24364 	int prim_type;
24365 	struct T_conn_req *tcreqp;
24366 	struct T_conn_res *tcresp;
24367 	cred_t *cr;
24368 
24369 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24370 
24371 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24372 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24373 	    prim_type == T_CONN_RES);
24374 
24375 	switch (prim_type) {
24376 	case T_CONN_REQ:
24377 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24378 		opt_offset = tcreqp->OPT_offset;
24379 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24380 		break;
24381 	case O_T_CONN_RES:
24382 	case T_CONN_RES:
24383 		tcresp = (struct T_conn_res *)mp->b_rptr;
24384 		opt_offset = tcresp->OPT_offset;
24385 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24386 		break;
24387 	}
24388 
24389 	*t_errorp = 0;
24390 	*sys_errorp = 0;
24391 	*do_disconnectp = 0;
24392 
24393 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24394 	    opt_offset, cr, &tcp_opt_obj,
24395 	    NULL, &is_absreq_failure);
24396 
24397 	switch (error) {
24398 	case  0:		/* no error */
24399 		ASSERT(is_absreq_failure == 0);
24400 		return (0);
24401 	case ENOPROTOOPT:
24402 		*t_errorp = TBADOPT;
24403 		break;
24404 	case EACCES:
24405 		*t_errorp = TACCES;
24406 		break;
24407 	default:
24408 		*t_errorp = TSYSERR; *sys_errorp = error;
24409 		break;
24410 	}
24411 	if (is_absreq_failure != 0) {
24412 		/*
24413 		 * The connection request should get the local ack
24414 		 * T_OK_ACK and then a T_DISCON_IND.
24415 		 */
24416 		*do_disconnectp = 1;
24417 	}
24418 	return (-1);
24419 }
24420 
24421 /*
24422  * Split this function out so that if the secret changes, I'm okay.
24423  *
24424  * Initialize the tcp_iss_cookie and tcp_iss_key.
24425  */
24426 
24427 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24428 
24429 static void
24430 tcp_iss_key_init(uint8_t *phrase, int len)
24431 {
24432 	struct {
24433 		int32_t current_time;
24434 		uint32_t randnum;
24435 		uint16_t pad;
24436 		uint8_t ether[6];
24437 		uint8_t passwd[PASSWD_SIZE];
24438 	} tcp_iss_cookie;
24439 	time_t t;
24440 
24441 	/*
24442 	 * Start with the current absolute time.
24443 	 */
24444 	(void) drv_getparm(TIME, &t);
24445 	tcp_iss_cookie.current_time = t;
24446 
24447 	/*
24448 	 * XXX - Need a more random number per RFC 1750, not this crap.
24449 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24450 	 */
24451 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24452 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24453 
24454 	/*
24455 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24456 	 * as a good template.
24457 	 */
24458 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24459 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24460 
24461 	/*
24462 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24463 	 */
24464 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24465 
24466 	/*
24467 	 * See 4010593 if this section becomes a problem again,
24468 	 * but the local ethernet address is useful here.
24469 	 */
24470 	(void) localetheraddr(NULL,
24471 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24472 
24473 	/*
24474 	 * Hash 'em all together.  The MD5Final is called per-connection.
24475 	 */
24476 	mutex_enter(&tcp_iss_key_lock);
24477 	MD5Init(&tcp_iss_key);
24478 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
24479 	    sizeof (tcp_iss_cookie));
24480 	mutex_exit(&tcp_iss_key_lock);
24481 }
24482 
24483 /*
24484  * Set the RFC 1948 pass phrase
24485  */
24486 /* ARGSUSED */
24487 static int
24488 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24489     cred_t *cr)
24490 {
24491 	/*
24492 	 * Basically, value contains a new pass phrase.  Pass it along!
24493 	 */
24494 	tcp_iss_key_init((uint8_t *)value, strlen(value));
24495 	return (0);
24496 }
24497 
24498 /* ARGSUSED */
24499 static int
24500 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24501 {
24502 	bzero(buf, sizeof (tcp_sack_info_t));
24503 	return (0);
24504 }
24505 
24506 /* ARGSUSED */
24507 static int
24508 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24509 {
24510 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24511 	return (0);
24512 }
24513 
24514 void
24515 tcp_ddi_init(void)
24516 {
24517 	int i;
24518 
24519 	/* Initialize locks */
24520 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
24521 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24522 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24523 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24524 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24525 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
24526 
24527 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24528 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
24529 		    MUTEX_DEFAULT, NULL);
24530 	}
24531 
24532 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24533 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
24534 		    MUTEX_DEFAULT, NULL);
24535 	}
24536 
24537 	/* TCP's IPsec code calls the packet dropper. */
24538 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
24539 
24540 	if (!tcp_g_nd) {
24541 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
24542 			nd_free(&tcp_g_nd);
24543 		}
24544 	}
24545 
24546 	/*
24547 	 * Note: To really walk the device tree you need the devinfo
24548 	 * pointer to your device which is only available after probe/attach.
24549 	 * The following is safe only because it uses ddi_root_node()
24550 	 */
24551 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24552 	    tcp_opt_obj.odb_opt_arr_cnt);
24553 
24554 	tcp_timercache = kmem_cache_create("tcp_timercache",
24555 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24556 	    NULL, NULL, NULL, NULL, NULL, 0);
24557 
24558 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24559 	    sizeof (tcp_sack_info_t), 0,
24560 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24561 
24562 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24563 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24564 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24565 
24566 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24567 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24568 
24569 	ip_squeue_init(tcp_squeue_add);
24570 
24571 	/* Initialize the random number generator */
24572 	tcp_random_init();
24573 
24574 	/*
24575 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24576 	 * by the boot scripts.
24577 	 *
24578 	 * Use NULL name, as the name is caught by the new lockstats.
24579 	 *
24580 	 * Initialize with some random, non-guessable string, like the global
24581 	 * T_INFO_ACK.
24582 	 */
24583 
24584 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24585 	    sizeof (tcp_g_t_info_ack));
24586 
24587 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
24588 		"net", KSTAT_TYPE_NAMED,
24589 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
24590 		KSTAT_FLAG_VIRTUAL)) != NULL) {
24591 		tcp_kstat->ks_data = &tcp_statistics;
24592 		kstat_install(tcp_kstat);
24593 	}
24594 
24595 	tcp_kstat_init();
24596 }
24597 
24598 void
24599 tcp_ddi_destroy(void)
24600 {
24601 	int i;
24602 
24603 	nd_free(&tcp_g_nd);
24604 
24605 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24606 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
24607 	}
24608 
24609 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24610 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
24611 	}
24612 
24613 	mutex_destroy(&tcp_iss_key_lock);
24614 	rw_destroy(&tcp_hsp_lock);
24615 	mutex_destroy(&tcp_g_q_lock);
24616 	mutex_destroy(&tcp_random_lock);
24617 	mutex_destroy(&tcp_epriv_port_lock);
24618 	rw_destroy(&tcp_reserved_port_lock);
24619 
24620 	ip_drop_unregister(&tcp_dropper);
24621 
24622 	kmem_cache_destroy(tcp_timercache);
24623 	kmem_cache_destroy(tcp_sack_info_cache);
24624 	kmem_cache_destroy(tcp_iphc_cache);
24625 
24626 	tcp_kstat_fini();
24627 }
24628 
24629 /*
24630  * Generate ISS, taking into account NDD changes may happen halfway through.
24631  * (If the iss is not zero, set it.)
24632  */
24633 
24634 static void
24635 tcp_iss_init(tcp_t *tcp)
24636 {
24637 	MD5_CTX context;
24638 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24639 	uint32_t answer[4];
24640 
24641 	tcp_iss_incr_extra += (ISS_INCR >> 1);
24642 	tcp->tcp_iss = tcp_iss_incr_extra;
24643 	switch (tcp_strong_iss) {
24644 	case 2:
24645 		mutex_enter(&tcp_iss_key_lock);
24646 		context = tcp_iss_key;
24647 		mutex_exit(&tcp_iss_key_lock);
24648 		arg.ports = tcp->tcp_ports;
24649 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24650 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24651 			    &arg.src);
24652 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24653 			    &arg.dst);
24654 		} else {
24655 			arg.src = tcp->tcp_ip6h->ip6_src;
24656 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24657 		}
24658 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24659 		MD5Final((uchar_t *)answer, &context);
24660 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24661 		/*
24662 		 * Now that we've hashed into a unique per-connection sequence
24663 		 * space, add a random increment per strong_iss == 1.  So I
24664 		 * guess we'll have to...
24665 		 */
24666 		/* FALLTHRU */
24667 	case 1:
24668 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24669 		break;
24670 	default:
24671 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24672 		break;
24673 	}
24674 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24675 	tcp->tcp_fss = tcp->tcp_iss - 1;
24676 	tcp->tcp_suna = tcp->tcp_iss;
24677 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24678 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24679 	tcp->tcp_csuna = tcp->tcp_snxt;
24680 }
24681 
24682 /*
24683  * Exported routine for extracting active tcp connection status.
24684  *
24685  * This is used by the Solaris Cluster Networking software to
24686  * gather a list of connections that need to be forwarded to
24687  * specific nodes in the cluster when configuration changes occur.
24688  *
24689  * The callback is invoked for each tcp_t structure. Returning
24690  * non-zero from the callback routine terminates the search.
24691  */
24692 int
24693 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
24694 {
24695 	tcp_t *tcp;
24696 	cl_tcp_info_t	cl_tcpi;
24697 	connf_t	*connfp;
24698 	conn_t	*connp;
24699 	int	i;
24700 
24701 	ASSERT(callback != NULL);
24702 
24703 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24704 
24705 		connfp = &ipcl_globalhash_fanout[i];
24706 		connp = NULL;
24707 
24708 		while ((connp =
24709 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24710 
24711 			tcp = connp->conn_tcp;
24712 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24713 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24714 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24715 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24716 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24717 			/*
24718 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24719 			 * addresses. They are copied implicitly below as
24720 			 * mapped addresses.
24721 			 */
24722 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24723 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24724 				cl_tcpi.cl_tcpi_faddr =
24725 				    tcp->tcp_ipha->ipha_dst;
24726 			} else {
24727 				cl_tcpi.cl_tcpi_faddr_v6 =
24728 				    tcp->tcp_ip6h->ip6_dst;
24729 			}
24730 
24731 			/*
24732 			 * If the callback returns non-zero
24733 			 * we terminate the traversal.
24734 			 */
24735 			if ((*callback)(&cl_tcpi, arg) != 0) {
24736 				CONN_DEC_REF(tcp->tcp_connp);
24737 				return (1);
24738 			}
24739 		}
24740 	}
24741 
24742 	return (0);
24743 }
24744 
24745 /*
24746  * Macros used for accessing the different types of sockaddr
24747  * structures inside a tcp_ioc_abort_conn_t.
24748  */
24749 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24750 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24751 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24752 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24753 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24754 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24755 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24756 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24757 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24758 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24759 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24760 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24761 
24762 /*
24763  * Return the correct error code to mimic the behavior
24764  * of a connection reset.
24765  */
24766 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24767 		switch ((state)) {		\
24768 		case TCPS_SYN_SENT:		\
24769 		case TCPS_SYN_RCVD:		\
24770 			(err) = ECONNREFUSED;	\
24771 			break;			\
24772 		case TCPS_ESTABLISHED:		\
24773 		case TCPS_FIN_WAIT_1:		\
24774 		case TCPS_FIN_WAIT_2:		\
24775 		case TCPS_CLOSE_WAIT:		\
24776 			(err) = ECONNRESET;	\
24777 			break;			\
24778 		case TCPS_CLOSING:		\
24779 		case TCPS_LAST_ACK:		\
24780 		case TCPS_TIME_WAIT:		\
24781 			(err) = 0;		\
24782 			break;			\
24783 		default:			\
24784 			(err) = ENXIO;		\
24785 		}				\
24786 	}
24787 
24788 /*
24789  * Check if a tcp structure matches the info in acp.
24790  */
24791 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24792 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24793 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24794 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24795 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24796 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24797 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24798 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24799 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24800 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24801 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24802 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24803 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24804 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24805 	&(tcp)->tcp_ip_src_v6)) &&				\
24806 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24807 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24808 	&(tcp)->tcp_remote_v6)) &&				\
24809 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24810 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24811 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24812 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24813 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24814 	(acp)->ac_end >= (tcp)->tcp_state))
24815 
24816 #define	TCP_AC_MATCH(acp, tcp)					\
24817 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24818 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24819 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24820 
24821 /*
24822  * Build a message containing a tcp_ioc_abort_conn_t structure
24823  * which is filled in with information from acp and tp.
24824  */
24825 static mblk_t *
24826 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24827 {
24828 	mblk_t *mp;
24829 	tcp_ioc_abort_conn_t *tacp;
24830 
24831 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24832 	if (mp == NULL)
24833 		return (NULL);
24834 
24835 	mp->b_datap->db_type = M_CTL;
24836 
24837 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24838 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24839 		sizeof (uint32_t));
24840 
24841 	tacp->ac_start = acp->ac_start;
24842 	tacp->ac_end = acp->ac_end;
24843 	tacp->ac_zoneid = acp->ac_zoneid;
24844 
24845 	if (acp->ac_local.ss_family == AF_INET) {
24846 		tacp->ac_local.ss_family = AF_INET;
24847 		tacp->ac_remote.ss_family = AF_INET;
24848 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24849 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24850 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24851 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24852 	} else {
24853 		tacp->ac_local.ss_family = AF_INET6;
24854 		tacp->ac_remote.ss_family = AF_INET6;
24855 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24856 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24857 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24858 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24859 	}
24860 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24861 	return (mp);
24862 }
24863 
24864 /*
24865  * Print a tcp_ioc_abort_conn_t structure.
24866  */
24867 static void
24868 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24869 {
24870 	char lbuf[128];
24871 	char rbuf[128];
24872 	sa_family_t af;
24873 	in_port_t lport, rport;
24874 	ushort_t logflags;
24875 
24876 	af = acp->ac_local.ss_family;
24877 
24878 	if (af == AF_INET) {
24879 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24880 				lbuf, 128);
24881 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24882 				rbuf, 128);
24883 		lport = ntohs(TCP_AC_V4LPORT(acp));
24884 		rport = ntohs(TCP_AC_V4RPORT(acp));
24885 	} else {
24886 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24887 				lbuf, 128);
24888 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24889 				rbuf, 128);
24890 		lport = ntohs(TCP_AC_V6LPORT(acp));
24891 		rport = ntohs(TCP_AC_V6RPORT(acp));
24892 	}
24893 
24894 	logflags = SL_TRACE | SL_NOTE;
24895 	/*
24896 	 * Don't print this message to the console if the operation was done
24897 	 * to a non-global zone.
24898 	 */
24899 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24900 		logflags |= SL_CONSOLE;
24901 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24902 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24903 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24904 		acp->ac_start, acp->ac_end);
24905 }
24906 
24907 /*
24908  * Called inside tcp_rput when a message built using
24909  * tcp_ioctl_abort_build_msg is put into a queue.
24910  * Note that when we get here there is no wildcard in acp any more.
24911  */
24912 static void
24913 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24914 {
24915 	tcp_ioc_abort_conn_t *acp;
24916 
24917 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24918 	if (tcp->tcp_state <= acp->ac_end) {
24919 		/*
24920 		 * If we get here, we are already on the correct
24921 		 * squeue. This ioctl follows the following path
24922 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24923 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24924 		 * different squeue)
24925 		 */
24926 		int errcode;
24927 
24928 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24929 		(void) tcp_clean_death(tcp, errcode, 26);
24930 	}
24931 	freemsg(mp);
24932 }
24933 
24934 /*
24935  * Abort all matching connections on a hash chain.
24936  */
24937 static int
24938 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24939     boolean_t exact)
24940 {
24941 	int nmatch, err = 0;
24942 	tcp_t *tcp;
24943 	MBLKP mp, last, listhead = NULL;
24944 	conn_t	*tconnp;
24945 	connf_t	*connfp = &ipcl_conn_fanout[index];
24946 
24947 startover:
24948 	nmatch = 0;
24949 
24950 	mutex_enter(&connfp->connf_lock);
24951 	for (tconnp = connfp->connf_head; tconnp != NULL;
24952 	    tconnp = tconnp->conn_next) {
24953 		tcp = tconnp->conn_tcp;
24954 		if (TCP_AC_MATCH(acp, tcp)) {
24955 			CONN_INC_REF(tcp->tcp_connp);
24956 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24957 			if (mp == NULL) {
24958 				err = ENOMEM;
24959 				CONN_DEC_REF(tcp->tcp_connp);
24960 				break;
24961 			}
24962 			mp->b_prev = (mblk_t *)tcp;
24963 
24964 			if (listhead == NULL) {
24965 				listhead = mp;
24966 				last = mp;
24967 			} else {
24968 				last->b_next = mp;
24969 				last = mp;
24970 			}
24971 			nmatch++;
24972 			if (exact)
24973 				break;
24974 		}
24975 
24976 		/* Avoid holding lock for too long. */
24977 		if (nmatch >= 500)
24978 			break;
24979 	}
24980 	mutex_exit(&connfp->connf_lock);
24981 
24982 	/* Pass mp into the correct tcp */
24983 	while ((mp = listhead) != NULL) {
24984 		listhead = listhead->b_next;
24985 		tcp = (tcp_t *)mp->b_prev;
24986 		mp->b_next = mp->b_prev = NULL;
24987 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24988 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24989 	}
24990 
24991 	*count += nmatch;
24992 	if (nmatch >= 500 && err == 0)
24993 		goto startover;
24994 	return (err);
24995 }
24996 
24997 /*
24998  * Abort all connections that matches the attributes specified in acp.
24999  */
25000 static int
25001 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
25002 {
25003 	sa_family_t af;
25004 	uint32_t  ports;
25005 	uint16_t *pports;
25006 	int err = 0, count = 0;
25007 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25008 	int index = -1;
25009 	ushort_t logflags;
25010 
25011 	af = acp->ac_local.ss_family;
25012 
25013 	if (af == AF_INET) {
25014 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25015 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25016 			pports = (uint16_t *)&ports;
25017 			pports[1] = TCP_AC_V4LPORT(acp);
25018 			pports[0] = TCP_AC_V4RPORT(acp);
25019 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25020 		}
25021 	} else {
25022 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25023 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25024 			pports = (uint16_t *)&ports;
25025 			pports[1] = TCP_AC_V6LPORT(acp);
25026 			pports[0] = TCP_AC_V6RPORT(acp);
25027 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25028 		}
25029 	}
25030 
25031 	/*
25032 	 * For cases where remote addr, local port, and remote port are non-
25033 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25034 	 */
25035 	if (index != -1) {
25036 		err = tcp_ioctl_abort_bucket(acp, index,
25037 			    &count, exact);
25038 	} else {
25039 		/*
25040 		 * loop through all entries for wildcard case
25041 		 */
25042 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
25043 			err = tcp_ioctl_abort_bucket(acp, index,
25044 			    &count, exact);
25045 			if (err != 0)
25046 				break;
25047 		}
25048 	}
25049 
25050 	logflags = SL_TRACE | SL_NOTE;
25051 	/*
25052 	 * Don't print this message to the console if the operation was done
25053 	 * to a non-global zone.
25054 	 */
25055 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25056 		logflags |= SL_CONSOLE;
25057 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25058 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25059 	if (err == 0 && count == 0)
25060 		err = ENOENT;
25061 	return (err);
25062 }
25063 
25064 /*
25065  * Process the TCP_IOC_ABORT_CONN ioctl request.
25066  */
25067 static void
25068 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25069 {
25070 	int	err;
25071 	IOCP    iocp;
25072 	MBLKP   mp1;
25073 	sa_family_t laf, raf;
25074 	tcp_ioc_abort_conn_t *acp;
25075 	zone_t *zptr;
25076 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
25077 
25078 	iocp = (IOCP)mp->b_rptr;
25079 
25080 	if ((mp1 = mp->b_cont) == NULL ||
25081 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25082 		err = EINVAL;
25083 		goto out;
25084 	}
25085 
25086 	/* check permissions */
25087 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
25088 		err = EPERM;
25089 		goto out;
25090 	}
25091 
25092 	if (mp1->b_cont != NULL) {
25093 		freemsg(mp1->b_cont);
25094 		mp1->b_cont = NULL;
25095 	}
25096 
25097 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25098 	laf = acp->ac_local.ss_family;
25099 	raf = acp->ac_remote.ss_family;
25100 
25101 	/* check that a zone with the supplied zoneid exists */
25102 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25103 		zptr = zone_find_by_id(zoneid);
25104 		if (zptr != NULL) {
25105 			zone_rele(zptr);
25106 		} else {
25107 			err = EINVAL;
25108 			goto out;
25109 		}
25110 	}
25111 
25112 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25113 	    acp->ac_start > acp->ac_end || laf != raf ||
25114 	    (laf != AF_INET && laf != AF_INET6)) {
25115 		err = EINVAL;
25116 		goto out;
25117 	}
25118 
25119 	tcp_ioctl_abort_dump(acp);
25120 	err = tcp_ioctl_abort(acp);
25121 
25122 out:
25123 	if (mp1 != NULL) {
25124 		freemsg(mp1);
25125 		mp->b_cont = NULL;
25126 	}
25127 
25128 	if (err != 0)
25129 		miocnak(q, mp, 0, err);
25130 	else
25131 		miocack(q, mp, 0, 0);
25132 }
25133 
25134 /*
25135  * tcp_time_wait_processing() handles processing of incoming packets when
25136  * the tcp is in the TIME_WAIT state.
25137  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25138  * on the time wait list.
25139  */
25140 void
25141 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25142     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25143 {
25144 	int32_t		bytes_acked;
25145 	int32_t		gap;
25146 	int32_t		rgap;
25147 	tcp_opt_t	tcpopt;
25148 	uint_t		flags;
25149 	uint32_t	new_swnd = 0;
25150 	conn_t		*connp;
25151 
25152 	BUMP_LOCAL(tcp->tcp_ibsegs);
25153 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25154 
25155 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25156 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25157 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25158 	if (tcp->tcp_snd_ts_ok) {
25159 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25160 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25161 			    tcp->tcp_rnxt, TH_ACK);
25162 			goto done;
25163 		}
25164 	}
25165 	gap = seg_seq - tcp->tcp_rnxt;
25166 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25167 	if (gap < 0) {
25168 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
25169 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
25170 		    (seg_len > -gap ? -gap : seg_len));
25171 		seg_len += gap;
25172 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25173 			if (flags & TH_RST) {
25174 				goto done;
25175 			}
25176 			if ((flags & TH_FIN) && seg_len == -1) {
25177 				/*
25178 				 * When TCP receives a duplicate FIN in
25179 				 * TIME_WAIT state, restart the 2 MSL timer.
25180 				 * See page 73 in RFC 793. Make sure this TCP
25181 				 * is already on the TIME_WAIT list. If not,
25182 				 * just restart the timer.
25183 				 */
25184 				if (TCP_IS_DETACHED(tcp)) {
25185 					if (tcp_time_wait_remove(tcp, NULL) ==
25186 					    B_TRUE) {
25187 						tcp_time_wait_append(tcp);
25188 						TCP_DBGSTAT(tcp_rput_time_wait);
25189 					}
25190 				} else {
25191 					ASSERT(tcp != NULL);
25192 					TCP_TIMER_RESTART(tcp,
25193 					    tcp_time_wait_interval);
25194 				}
25195 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25196 				    tcp->tcp_rnxt, TH_ACK);
25197 				goto done;
25198 			}
25199 			flags |=  TH_ACK_NEEDED;
25200 			seg_len = 0;
25201 			goto process_ack;
25202 		}
25203 
25204 		/* Fix seg_seq, and chew the gap off the front. */
25205 		seg_seq = tcp->tcp_rnxt;
25206 	}
25207 
25208 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25209 		/*
25210 		 * Make sure that when we accept the connection, pick
25211 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25212 		 * old connection.
25213 		 *
25214 		 * The next ISS generated is equal to tcp_iss_incr_extra
25215 		 * + ISS_INCR/2 + other components depending on the
25216 		 * value of tcp_strong_iss.  We pre-calculate the new
25217 		 * ISS here and compare with tcp_snxt to determine if
25218 		 * we need to make adjustment to tcp_iss_incr_extra.
25219 		 *
25220 		 * The above calculation is ugly and is a
25221 		 * waste of CPU cycles...
25222 		 */
25223 		uint32_t new_iss = tcp_iss_incr_extra;
25224 		int32_t adj;
25225 
25226 		switch (tcp_strong_iss) {
25227 		case 2: {
25228 			/* Add time and MD5 components. */
25229 			uint32_t answer[4];
25230 			struct {
25231 				uint32_t ports;
25232 				in6_addr_t src;
25233 				in6_addr_t dst;
25234 			} arg;
25235 			MD5_CTX context;
25236 
25237 			mutex_enter(&tcp_iss_key_lock);
25238 			context = tcp_iss_key;
25239 			mutex_exit(&tcp_iss_key_lock);
25240 			arg.ports = tcp->tcp_ports;
25241 			/* We use MAPPED addresses in tcp_iss_init */
25242 			arg.src = tcp->tcp_ip_src_v6;
25243 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25244 				IN6_IPADDR_TO_V4MAPPED(
25245 					tcp->tcp_ipha->ipha_dst,
25246 					    &arg.dst);
25247 			} else {
25248 				arg.dst =
25249 				    tcp->tcp_ip6h->ip6_dst;
25250 			}
25251 			MD5Update(&context, (uchar_t *)&arg,
25252 			    sizeof (arg));
25253 			MD5Final((uchar_t *)answer, &context);
25254 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25255 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25256 			break;
25257 		}
25258 		case 1:
25259 			/* Add time component and min random (i.e. 1). */
25260 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25261 			break;
25262 		default:
25263 			/* Add only time component. */
25264 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25265 			break;
25266 		}
25267 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25268 			/*
25269 			 * New ISS not guaranteed to be ISS_INCR/2
25270 			 * ahead of the current tcp_snxt, so add the
25271 			 * difference to tcp_iss_incr_extra.
25272 			 */
25273 			tcp_iss_incr_extra += adj;
25274 		}
25275 		/*
25276 		 * If tcp_clean_death() can not perform the task now,
25277 		 * drop the SYN packet and let the other side re-xmit.
25278 		 * Otherwise pass the SYN packet back in, since the
25279 		 * old tcp state has been cleaned up or freed.
25280 		 */
25281 		if (tcp_clean_death(tcp, 0, 27) == -1)
25282 			goto done;
25283 		/*
25284 		 * We will come back to tcp_rput_data
25285 		 * on the global queue. Packets destined
25286 		 * for the global queue will be checked
25287 		 * with global policy. But the policy for
25288 		 * this packet has already been checked as
25289 		 * this was destined for the detached
25290 		 * connection. We need to bypass policy
25291 		 * check this time by attaching a dummy
25292 		 * ipsec_in with ipsec_in_dont_check set.
25293 		 */
25294 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
25295 		    NULL) {
25296 			TCP_STAT(tcp_time_wait_syn_success);
25297 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25298 			return;
25299 		}
25300 		goto done;
25301 	}
25302 
25303 	/*
25304 	 * rgap is the amount of stuff received out of window.  A negative
25305 	 * value is the amount out of window.
25306 	 */
25307 	if (rgap < 0) {
25308 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
25309 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
25310 		/* Fix seg_len and make sure there is something left. */
25311 		seg_len += rgap;
25312 		if (seg_len <= 0) {
25313 			if (flags & TH_RST) {
25314 				goto done;
25315 			}
25316 			flags |=  TH_ACK_NEEDED;
25317 			seg_len = 0;
25318 			goto process_ack;
25319 		}
25320 	}
25321 	/*
25322 	 * Check whether we can update tcp_ts_recent.  This test is
25323 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25324 	 * Extensions for High Performance: An Update", Internet Draft.
25325 	 */
25326 	if (tcp->tcp_snd_ts_ok &&
25327 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25328 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25329 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25330 		tcp->tcp_last_rcv_lbolt = lbolt64;
25331 	}
25332 
25333 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25334 		/* Always ack out of order packets */
25335 		flags |= TH_ACK_NEEDED;
25336 		seg_len = 0;
25337 	} else if (seg_len > 0) {
25338 		BUMP_MIB(&tcp_mib, tcpInClosed);
25339 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
25340 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
25341 	}
25342 	if (flags & TH_RST) {
25343 		(void) tcp_clean_death(tcp, 0, 28);
25344 		goto done;
25345 	}
25346 	if (flags & TH_SYN) {
25347 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25348 		    TH_RST|TH_ACK);
25349 		/*
25350 		 * Do not delete the TCP structure if it is in
25351 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25352 		 */
25353 		goto done;
25354 	}
25355 process_ack:
25356 	if (flags & TH_ACK) {
25357 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25358 		if (bytes_acked <= 0) {
25359 			if (bytes_acked == 0 && seg_len == 0 &&
25360 			    new_swnd == tcp->tcp_swnd)
25361 				BUMP_MIB(&tcp_mib, tcpInDupAck);
25362 		} else {
25363 			/* Acks something not sent */
25364 			flags |= TH_ACK_NEEDED;
25365 		}
25366 	}
25367 	if (flags & TH_ACK_NEEDED) {
25368 		/*
25369 		 * Time to send an ack for some reason.
25370 		 */
25371 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25372 		    tcp->tcp_rnxt, TH_ACK);
25373 	}
25374 done:
25375 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25376 		DB_CKSUMSTART(mp) = 0;
25377 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25378 		TCP_STAT(tcp_time_wait_syn_fail);
25379 	}
25380 	freemsg(mp);
25381 }
25382 
25383 /*
25384  * Allocate a T_SVR4_OPTMGMT_REQ.
25385  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
25386  * that tcp_rput_other can drop the acks.
25387  */
25388 static mblk_t *
25389 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
25390 {
25391 	mblk_t *mp;
25392 	struct T_optmgmt_req *tor;
25393 	struct opthdr *oh;
25394 	uint_t size;
25395 	char *optptr;
25396 
25397 	size = sizeof (*tor) + sizeof (*oh) + optlen;
25398 	mp = allocb(size, BPRI_MED);
25399 	if (mp == NULL)
25400 		return (NULL);
25401 
25402 	mp->b_wptr += size;
25403 	mp->b_datap->db_type = M_PROTO;
25404 	tor = (struct T_optmgmt_req *)mp->b_rptr;
25405 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
25406 	tor->MGMT_flags = T_NEGOTIATE;
25407 	tor->OPT_length = sizeof (*oh) + optlen;
25408 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
25409 
25410 	oh = (struct opthdr *)&tor[1];
25411 	oh->level = level;
25412 	oh->name = cmd;
25413 	oh->len = optlen;
25414 	if (optlen != 0) {
25415 		optptr = (char *)&oh[1];
25416 		bcopy(opt, optptr, optlen);
25417 	}
25418 	return (mp);
25419 }
25420 
25421 /*
25422  * TCP Timers Implementation.
25423  */
25424 timeout_id_t
25425 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25426 {
25427 	mblk_t *mp;
25428 	tcp_timer_t *tcpt;
25429 	tcp_t *tcp = connp->conn_tcp;
25430 
25431 	ASSERT(connp->conn_sqp != NULL);
25432 
25433 	TCP_DBGSTAT(tcp_timeout_calls);
25434 
25435 	if (tcp->tcp_timercache == NULL) {
25436 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25437 	} else {
25438 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
25439 		mp = tcp->tcp_timercache;
25440 		tcp->tcp_timercache = mp->b_next;
25441 		mp->b_next = NULL;
25442 		ASSERT(mp->b_wptr == NULL);
25443 	}
25444 
25445 	CONN_INC_REF(connp);
25446 	tcpt = (tcp_timer_t *)mp->b_rptr;
25447 	tcpt->connp = connp;
25448 	tcpt->tcpt_proc = f;
25449 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
25450 	return ((timeout_id_t)mp);
25451 }
25452 
25453 static void
25454 tcp_timer_callback(void *arg)
25455 {
25456 	mblk_t *mp = (mblk_t *)arg;
25457 	tcp_timer_t *tcpt;
25458 	conn_t	*connp;
25459 
25460 	tcpt = (tcp_timer_t *)mp->b_rptr;
25461 	connp = tcpt->connp;
25462 	squeue_fill(connp->conn_sqp, mp,
25463 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
25464 }
25465 
25466 static void
25467 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25468 {
25469 	tcp_timer_t *tcpt;
25470 	conn_t *connp = (conn_t *)arg;
25471 	tcp_t *tcp = connp->conn_tcp;
25472 
25473 	tcpt = (tcp_timer_t *)mp->b_rptr;
25474 	ASSERT(connp == tcpt->connp);
25475 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25476 
25477 	/*
25478 	 * If the TCP has reached the closed state, don't proceed any
25479 	 * further. This TCP logically does not exist on the system.
25480 	 * tcpt_proc could for example access queues, that have already
25481 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25482 	 */
25483 	if (tcp->tcp_state != TCPS_CLOSED) {
25484 		(*tcpt->tcpt_proc)(connp);
25485 	} else {
25486 		tcp->tcp_timer_tid = 0;
25487 	}
25488 	tcp_timer_free(connp->conn_tcp, mp);
25489 }
25490 
25491 /*
25492  * There is potential race with untimeout and the handler firing at the same
25493  * time. The mblock may be freed by the handler while we are trying to use
25494  * it. But since both should execute on the same squeue, this race should not
25495  * occur.
25496  */
25497 clock_t
25498 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25499 {
25500 	mblk_t	*mp = (mblk_t *)id;
25501 	tcp_timer_t *tcpt;
25502 	clock_t delta;
25503 
25504 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
25505 
25506 	if (mp == NULL)
25507 		return (-1);
25508 
25509 	tcpt = (tcp_timer_t *)mp->b_rptr;
25510 	ASSERT(tcpt->connp == connp);
25511 
25512 	delta = untimeout(tcpt->tcpt_tid);
25513 
25514 	if (delta >= 0) {
25515 		TCP_DBGSTAT(tcp_timeout_canceled);
25516 		tcp_timer_free(connp->conn_tcp, mp);
25517 		CONN_DEC_REF(connp);
25518 	}
25519 
25520 	return (delta);
25521 }
25522 
25523 /*
25524  * Allocate space for the timer event. The allocation looks like mblk, but it is
25525  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25526  *
25527  * Dealing with failures: If we can't allocate from the timer cache we try
25528  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25529  * points to b_rptr.
25530  * If we can't allocate anything using allocb_tryhard(), we perform a last
25531  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25532  * save the actual allocation size in b_datap.
25533  */
25534 mblk_t *
25535 tcp_timermp_alloc(int kmflags)
25536 {
25537 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25538 	    kmflags & ~KM_PANIC);
25539 
25540 	if (mp != NULL) {
25541 		mp->b_next = mp->b_prev = NULL;
25542 		mp->b_rptr = (uchar_t *)(&mp[1]);
25543 		mp->b_wptr = NULL;
25544 		mp->b_datap = NULL;
25545 		mp->b_queue = NULL;
25546 	} else if (kmflags & KM_PANIC) {
25547 		/*
25548 		 * Failed to allocate memory for the timer. Try allocating from
25549 		 * dblock caches.
25550 		 */
25551 		TCP_STAT(tcp_timermp_allocfail);
25552 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25553 		if (mp == NULL) {
25554 			size_t size = 0;
25555 			/*
25556 			 * Memory is really low. Try tryhard allocation.
25557 			 */
25558 			TCP_STAT(tcp_timermp_allocdblfail);
25559 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25560 			    sizeof (tcp_timer_t), &size, kmflags);
25561 			mp->b_rptr = (uchar_t *)(&mp[1]);
25562 			mp->b_next = mp->b_prev = NULL;
25563 			mp->b_wptr = (uchar_t *)-1;
25564 			mp->b_datap = (dblk_t *)size;
25565 			mp->b_queue = NULL;
25566 		}
25567 		ASSERT(mp->b_wptr != NULL);
25568 	}
25569 	TCP_DBGSTAT(tcp_timermp_alloced);
25570 
25571 	return (mp);
25572 }
25573 
25574 /*
25575  * Free per-tcp timer cache.
25576  * It can only contain entries from tcp_timercache.
25577  */
25578 void
25579 tcp_timermp_free(tcp_t *tcp)
25580 {
25581 	mblk_t *mp;
25582 
25583 	while ((mp = tcp->tcp_timercache) != NULL) {
25584 		ASSERT(mp->b_wptr == NULL);
25585 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
25586 		kmem_cache_free(tcp_timercache, mp);
25587 	}
25588 }
25589 
25590 /*
25591  * Free timer event. Put it on the per-tcp timer cache if there is not too many
25592  * events there already (currently at most two events are cached).
25593  * If the event is not allocated from the timer cache, free it right away.
25594  */
25595 static void
25596 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25597 {
25598 	mblk_t *mp1 = tcp->tcp_timercache;
25599 
25600 	if (mp->b_wptr != NULL) {
25601 		/*
25602 		 * This allocation is not from a timer cache, free it right
25603 		 * away.
25604 		 */
25605 		if (mp->b_wptr != (uchar_t *)-1)
25606 			freeb(mp);
25607 		else
25608 			kmem_free(mp, (size_t)mp->b_datap);
25609 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25610 		/* Cache this timer block for future allocations */
25611 		mp->b_rptr = (uchar_t *)(&mp[1]);
25612 		mp->b_next = mp1;
25613 		tcp->tcp_timercache = mp;
25614 	} else {
25615 		kmem_cache_free(tcp_timercache, mp);
25616 		TCP_DBGSTAT(tcp_timermp_freed);
25617 	}
25618 }
25619 
25620 /*
25621  * End of TCP Timers implementation.
25622  */
25623 
25624 /*
25625  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
25626  * on the specified backing STREAMS q. Note, the caller may make the
25627  * decision to call based on the tcp_t.tcp_flow_stopped value which
25628  * when check outside the q's lock is only an advisory check ...
25629  */
25630 
25631 void
25632 tcp_setqfull(tcp_t *tcp)
25633 {
25634 	queue_t *q = tcp->tcp_wq;
25635 
25636 	if (!(q->q_flag & QFULL)) {
25637 		mutex_enter(QLOCK(q));
25638 		if (!(q->q_flag & QFULL)) {
25639 			/* still need to set QFULL */
25640 			q->q_flag |= QFULL;
25641 			tcp->tcp_flow_stopped = B_TRUE;
25642 			mutex_exit(QLOCK(q));
25643 			TCP_STAT(tcp_flwctl_on);
25644 		} else {
25645 			mutex_exit(QLOCK(q));
25646 		}
25647 	}
25648 }
25649 
25650 void
25651 tcp_clrqfull(tcp_t *tcp)
25652 {
25653 	queue_t *q = tcp->tcp_wq;
25654 
25655 	if (q->q_flag & QFULL) {
25656 		mutex_enter(QLOCK(q));
25657 		if (q->q_flag & QFULL) {
25658 			q->q_flag &= ~QFULL;
25659 			tcp->tcp_flow_stopped = B_FALSE;
25660 			mutex_exit(QLOCK(q));
25661 			if (q->q_flag & QWANTW)
25662 				qbackenable(q, 0);
25663 		} else {
25664 			mutex_exit(QLOCK(q));
25665 		}
25666 	}
25667 }
25668 
25669 /*
25670  * TCP Kstats implementation
25671  */
25672 static void
25673 tcp_kstat_init(void)
25674 {
25675 	tcp_named_kstat_t template = {
25676 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25677 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25678 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25679 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25680 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25681 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25682 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25683 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25684 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25685 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
25686 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
25687 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25688 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25689 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25690 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25691 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25692 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25693 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25694 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25695 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25696 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25697 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25698 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25699 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25700 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25701 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25702 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25703 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25704 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25705 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25706 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25707 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25708 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25709 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25710 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25711 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25712 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25713 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25714 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25715 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25716 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25717 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25718 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25719 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25720 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25721 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25722 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25723 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25724 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25725 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25726 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25727 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25728 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25729 	};
25730 
25731 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
25732 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
25733 
25734 	if (tcp_mibkp == NULL)
25735 		return;
25736 
25737 	template.rtoAlgorithm.value.ui32 = 4;
25738 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
25739 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
25740 	template.maxConn.value.i32 = -1;
25741 
25742 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
25743 
25744 	tcp_mibkp->ks_update = tcp_kstat_update;
25745 
25746 	kstat_install(tcp_mibkp);
25747 }
25748 
25749 static void
25750 tcp_kstat_fini(void)
25751 {
25752 
25753 	if (tcp_mibkp != NULL) {
25754 		kstat_delete(tcp_mibkp);
25755 		tcp_mibkp = NULL;
25756 	}
25757 }
25758 
25759 static int
25760 tcp_kstat_update(kstat_t *kp, int rw)
25761 {
25762 	tcp_named_kstat_t	*tcpkp;
25763 	tcp_t			*tcp;
25764 	connf_t			*connfp;
25765 	conn_t			*connp;
25766 	int 			i;
25767 
25768 	if (!kp || !kp->ks_data)
25769 		return (EIO);
25770 
25771 	if (rw == KSTAT_WRITE)
25772 		return (EACCES);
25773 
25774 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25775 
25776 	tcpkp->currEstab.value.ui32 = 0;
25777 
25778 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25779 		connfp = &ipcl_globalhash_fanout[i];
25780 		connp = NULL;
25781 		while ((connp =
25782 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25783 			tcp = connp->conn_tcp;
25784 			switch (tcp_snmp_state(tcp)) {
25785 			case MIB2_TCP_established:
25786 			case MIB2_TCP_closeWait:
25787 				tcpkp->currEstab.value.ui32++;
25788 				break;
25789 			}
25790 		}
25791 	}
25792 
25793 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25794 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25795 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25796 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25797 	tcpkp->inSegs.value.ui64 = tcp_mib.tcpHCInSegs;
25798 	tcpkp->outSegs.value.ui64 = tcp_mib.tcpHCOutSegs;
25799 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25800 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25801 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25802 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25803 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25804 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25805 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25806 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25807 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25808 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25809 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25810 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25811 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25812 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25813 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25814 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25815 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25816 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25817 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25818 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25819 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25820 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25821 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25822 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25823 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25824 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25825 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25826 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25827 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25828 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25829 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25830 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25831 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25832 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25833 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25834 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25835 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25836 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25837 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25838 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25839 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25840 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25841 
25842 	return (0);
25843 }
25844 
25845 void
25846 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25847 {
25848 	uint16_t	hdr_len;
25849 	ipha_t		*ipha;
25850 	uint8_t		*nexthdrp;
25851 	tcph_t		*tcph;
25852 
25853 	/* Already has an eager */
25854 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25855 		TCP_STAT(tcp_reinput_syn);
25856 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25857 		    connp, SQTAG_TCP_REINPUT_EAGER);
25858 		return;
25859 	}
25860 
25861 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25862 	case IPV4_VERSION:
25863 		ipha = (ipha_t *)mp->b_rptr;
25864 		hdr_len = IPH_HDR_LENGTH(ipha);
25865 		break;
25866 	case IPV6_VERSION:
25867 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25868 		    &hdr_len, &nexthdrp)) {
25869 			CONN_DEC_REF(connp);
25870 			freemsg(mp);
25871 			return;
25872 		}
25873 		break;
25874 	}
25875 
25876 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25877 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25878 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25879 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25880 	}
25881 
25882 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25883 	    SQTAG_TCP_REINPUT);
25884 }
25885 
25886 static squeue_func_t
25887 tcp_squeue_switch(int val)
25888 {
25889 	squeue_func_t rval = squeue_fill;
25890 
25891 	switch (val) {
25892 	case 1:
25893 		rval = squeue_enter_nodrain;
25894 		break;
25895 	case 2:
25896 		rval = squeue_enter;
25897 		break;
25898 	default:
25899 		break;
25900 	}
25901 	return (rval);
25902 }
25903 
25904 static void
25905 tcp_squeue_add(squeue_t *sqp)
25906 {
25907 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25908 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25909 
25910 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25911 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25912 	    sqp, TCP_TIME_WAIT_DELAY);
25913 	if (tcp_free_list_max_cnt == 0) {
25914 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25915 			max_ncpus : boot_max_ncpus);
25916 
25917 		/*
25918 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25919 		 */
25920 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25921 			(tcp_ncpus * sizeof (tcp_t) * 100);
25922 	}
25923 	tcp_time_wait->tcp_free_list_cnt = 0;
25924 }
25925