1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/strsun.h> 30 #include <sys/strsubr.h> 31 #include <sys/stropts.h> 32 #include <sys/strlog.h> 33 #define _SUN_TPI_VERSION 2 34 #include <sys/tihdr.h> 35 #include <sys/timod.h> 36 #include <sys/ddi.h> 37 #include <sys/sunddi.h> 38 #include <sys/suntpi.h> 39 #include <sys/xti_inet.h> 40 #include <sys/cmn_err.h> 41 #include <sys/debug.h> 42 #include <sys/sdt.h> 43 #include <sys/vtrace.h> 44 #include <sys/kmem.h> 45 #include <sys/ethernet.h> 46 #include <sys/cpuvar.h> 47 #include <sys/dlpi.h> 48 #include <sys/pattr.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/zone.h> 52 #include <sys/sunldi.h> 53 54 #include <sys/errno.h> 55 #include <sys/signal.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/sockio.h> 59 #include <sys/isa_defs.h> 60 #include <sys/md5.h> 61 #include <sys/random.h> 62 #include <sys/uio.h> 63 #include <sys/systm.h> 64 #include <netinet/in.h> 65 #include <netinet/tcp.h> 66 #include <netinet/ip6.h> 67 #include <netinet/icmp6.h> 68 #include <net/if.h> 69 #include <net/route.h> 70 #include <inet/ipsec_impl.h> 71 72 #include <inet/common.h> 73 #include <inet/ip.h> 74 #include <inet/ip_impl.h> 75 #include <inet/ip6.h> 76 #include <inet/ip_ndp.h> 77 #include <inet/proto_set.h> 78 #include <inet/mib2.h> 79 #include <inet/optcom.h> 80 #include <inet/snmpcom.h> 81 #include <inet/kstatcom.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/tcp_cluster.h> 85 #include <inet/udp_impl.h> 86 #include <net/pfkeyv2.h> 87 #include <inet/ipdrop.h> 88 89 #include <inet/ipclassifier.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_if.h> 93 #include <inet/ipp_common.h> 94 #include <inet/ip_rts.h> 95 #include <inet/ip_netinfo.h> 96 #include <sys/squeue_impl.h> 97 #include <sys/squeue.h> 98 #include <sys/tsol/label.h> 99 #include <sys/tsol/tnet.h> 100 #include <rpc/pmap_prot.h> 101 #include <sys/callo.h> 102 103 /* 104 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 105 * 106 * (Read the detailed design doc in PSARC case directory) 107 * 108 * The entire tcp state is contained in tcp_t and conn_t structure 109 * which are allocated in tandem using ipcl_conn_create() and passing 110 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 111 * the references on the tcp_t. The tcp_t structure is never compressed 112 * and packets always land on the correct TCP perimeter from the time 113 * eager is created till the time tcp_t dies (as such the old mentat 114 * TCP global queue is not used for detached state and no IPSEC checking 115 * is required). The global queue is still allocated to send out resets 116 * for connection which have no listeners and IP directly calls 117 * tcp_xmit_listeners_reset() which does any policy check. 118 * 119 * Protection and Synchronisation mechanism: 120 * 121 * The tcp data structure does not use any kind of lock for protecting 122 * its state but instead uses 'squeues' for mutual exclusion from various 123 * read and write side threads. To access a tcp member, the thread should 124 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 125 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 126 * can pass any tcp function having prototype of edesc_t as argument 127 * (different from traditional STREAMs model where packets come in only 128 * designated entry points). The list of functions that can be directly 129 * called via squeue are listed before the usual function prototype. 130 * 131 * Referencing: 132 * 133 * TCP is MT-Hot and we use a reference based scheme to make sure that the 134 * tcp structure doesn't disappear when its needed. When the application 135 * creates an outgoing connection or accepts an incoming connection, we 136 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 137 * The IP reference is just a symbolic reference since ip_tcpclose() 138 * looks at tcp structure after tcp_close_output() returns which could 139 * have dropped the last TCP reference. So as long as the connection is 140 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 141 * conn_t. The classifier puts its own reference when the connection is 142 * inserted in listen or connected hash. Anytime a thread needs to enter 143 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 144 * on write side or by doing a classify on read side and then puts a 145 * reference on the conn before doing squeue_enter/tryenter/fill. For 146 * read side, the classifier itself puts the reference under fanout lock 147 * to make sure that tcp can't disappear before it gets processed. The 148 * squeue will drop this reference automatically so the called function 149 * doesn't have to do a DEC_REF. 150 * 151 * Opening a new connection: 152 * 153 * The outgoing connection open is pretty simple. tcp_open() does the 154 * work in creating the conn/tcp structure and initializing it. The 155 * squeue assignment is done based on the CPU the application 156 * is running on. So for outbound connections, processing is always done 157 * on application CPU which might be different from the incoming CPU 158 * being interrupted by the NIC. An optimal way would be to figure out 159 * the NIC <-> CPU binding at listen time, and assign the outgoing 160 * connection to the squeue attached to the CPU that will be interrupted 161 * for incoming packets (we know the NIC based on the bind IP address). 162 * This might seem like a problem if more data is going out but the 163 * fact is that in most cases the transmit is ACK driven transmit where 164 * the outgoing data normally sits on TCP's xmit queue waiting to be 165 * transmitted. 166 * 167 * Accepting a connection: 168 * 169 * This is a more interesting case because of various races involved in 170 * establishing a eager in its own perimeter. Read the meta comment on 171 * top of tcp_input_listener(). But briefly, the squeue is picked by 172 * ip_fanout based on the ring or the sender (if loopback). 173 * 174 * Closing a connection: 175 * 176 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 177 * via squeue to do the close and mark the tcp as detached if the connection 178 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 179 * reference but tcp_close() drop IP's reference always. So if tcp was 180 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 181 * and 1 because it is in classifier's connected hash. This is the condition 182 * we use to determine that its OK to clean up the tcp outside of squeue 183 * when time wait expires (check the ref under fanout and conn_lock and 184 * if it is 2, remove it from fanout hash and kill it). 185 * 186 * Although close just drops the necessary references and marks the 187 * tcp_detached state, tcp_close needs to know the tcp_detached has been 188 * set (under squeue) before letting the STREAM go away (because a 189 * inbound packet might attempt to go up the STREAM while the close 190 * has happened and tcp_detached is not set). So a special lock and 191 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 192 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 193 * tcp_detached. 194 * 195 * Special provisions and fast paths: 196 * 197 * We make special provisions for sockfs by marking tcp_issocket 198 * whenever we have only sockfs on top of TCP. This allows us to skip 199 * putting the tcp in acceptor hash since a sockfs listener can never 200 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 201 * since eager has already been allocated and the accept now happens 202 * on acceptor STREAM. There is a big blob of comment on top of 203 * tcp_input_listener explaining the new accept. When socket is POP'd, 204 * sockfs sends us an ioctl to mark the fact and we go back to old 205 * behaviour. Once tcp_issocket is unset, its never set for the 206 * life of that connection. 207 * 208 * IPsec notes : 209 * 210 * Since a packet is always executed on the correct TCP perimeter 211 * all IPsec processing is defered to IP including checking new 212 * connections and setting IPSEC policies for new connection. The 213 * only exception is tcp_xmit_listeners_reset() which is called 214 * directly from IP and needs to policy check to see if TH_RST 215 * can be sent out. 216 */ 217 218 /* 219 * Values for squeue switch: 220 * 1: SQ_NODRAIN 221 * 2: SQ_PROCESS 222 * 3: SQ_FILL 223 */ 224 int tcp_squeue_wput = 2; /* /etc/systems */ 225 int tcp_squeue_flag; 226 227 /* 228 * To prevent memory hog, limit the number of entries in tcp_free_list 229 * to 1% of available memory / number of cpus 230 */ 231 uint_t tcp_free_list_max_cnt = 0; 232 233 #define TCP_XMIT_LOWATER 4096 234 #define TCP_XMIT_HIWATER 49152 235 #define TCP_RECV_LOWATER 2048 236 #define TCP_RECV_HIWATER 128000 237 238 #define TIDUSZ 4096 /* transport interface data unit size */ 239 240 /* 241 * Size of acceptor hash list. It has to be a power of 2 for hashing. 242 */ 243 #define TCP_ACCEPTOR_FANOUT_SIZE 256 244 245 #ifdef _ILP32 246 #define TCP_ACCEPTOR_HASH(accid) \ 247 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 248 #else 249 #define TCP_ACCEPTOR_HASH(accid) \ 250 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 251 #endif /* _ILP32 */ 252 253 /* Minimum number of connections per listener. */ 254 static uint32_t tcp_min_conn_listener = 2; 255 256 uint32_t tcp_early_abort = 30; 257 258 /* TCP Timer control structure */ 259 typedef struct tcpt_s { 260 pfv_t tcpt_pfv; /* The routine we are to call */ 261 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 262 } tcpt_t; 263 264 /* 265 * Functions called directly via squeue having a prototype of edesc_t. 266 */ 267 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 268 ip_recv_attr_t *ira); 269 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 270 ip_recv_attr_t *ira); 271 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 272 ip_recv_attr_t *dummy); 273 274 275 /* Prototype for TCP functions */ 276 static void tcp_random_init(void); 277 int tcp_random(void); 278 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 279 in_port_t dstport, uint_t srcid); 280 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 281 in_port_t dstport, uint32_t flowinfo, 282 uint_t srcid, uint32_t scope_id); 283 static void tcp_iss_init(tcp_t *tcp); 284 static void tcp_reinit(tcp_t *tcp); 285 static void tcp_reinit_values(tcp_t *tcp); 286 287 static void tcp_wsrv(queue_t *q); 288 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 289 static void tcp_update_zcopy(tcp_t *tcp); 290 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 291 ixa_notify_arg_t); 292 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 293 static void tcp_stack_fini(netstackid_t stackid, void *arg); 294 295 static int tcp_squeue_switch(int); 296 297 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 298 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 299 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 300 301 static void tcp_squeue_add(squeue_t *); 302 303 struct module_info tcp_rinfo = { 304 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 305 }; 306 307 static struct module_info tcp_winfo = { 308 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 309 }; 310 311 /* 312 * Entry points for TCP as a device. The normal case which supports 313 * the TCP functionality. 314 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 315 */ 316 struct qinit tcp_rinitv4 = { 317 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 318 }; 319 320 struct qinit tcp_rinitv6 = { 321 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 322 }; 323 324 struct qinit tcp_winit = { 325 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 326 }; 327 328 /* Initial entry point for TCP in socket mode. */ 329 struct qinit tcp_sock_winit = { 330 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 331 }; 332 333 /* TCP entry point during fallback */ 334 struct qinit tcp_fallback_sock_winit = { 335 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 336 }; 337 338 /* 339 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 340 * an accept. Avoid allocating data structures since eager has already 341 * been created. 342 */ 343 struct qinit tcp_acceptor_rinit = { 344 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 345 }; 346 347 struct qinit tcp_acceptor_winit = { 348 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 349 }; 350 351 /* For AF_INET aka /dev/tcp */ 352 struct streamtab tcpinfov4 = { 353 &tcp_rinitv4, &tcp_winit 354 }; 355 356 /* For AF_INET6 aka /dev/tcp6 */ 357 struct streamtab tcpinfov6 = { 358 &tcp_rinitv6, &tcp_winit 359 }; 360 361 /* 362 * Following assumes TPI alignment requirements stay along 32 bit 363 * boundaries 364 */ 365 #define ROUNDUP32(x) \ 366 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 367 368 /* Template for response to info request. */ 369 struct T_info_ack tcp_g_t_info_ack = { 370 T_INFO_ACK, /* PRIM_type */ 371 0, /* TSDU_size */ 372 T_INFINITE, /* ETSDU_size */ 373 T_INVALID, /* CDATA_size */ 374 T_INVALID, /* DDATA_size */ 375 sizeof (sin_t), /* ADDR_size */ 376 0, /* OPT_size - not initialized here */ 377 TIDUSZ, /* TIDU_size */ 378 T_COTS_ORD, /* SERV_type */ 379 TCPS_IDLE, /* CURRENT_state */ 380 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 381 }; 382 383 struct T_info_ack tcp_g_t_info_ack_v6 = { 384 T_INFO_ACK, /* PRIM_type */ 385 0, /* TSDU_size */ 386 T_INFINITE, /* ETSDU_size */ 387 T_INVALID, /* CDATA_size */ 388 T_INVALID, /* DDATA_size */ 389 sizeof (sin6_t), /* ADDR_size */ 390 0, /* OPT_size - not initialized here */ 391 TIDUSZ, /* TIDU_size */ 392 T_COTS_ORD, /* SERV_type */ 393 TCPS_IDLE, /* CURRENT_state */ 394 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 395 }; 396 397 /* 398 * TCP tunables related declarations. Definitions are in tcp_tunables.c 399 */ 400 extern mod_prop_info_t tcp_propinfo_tbl[]; 401 extern int tcp_propinfo_count; 402 403 #define MB (1024 * 1024) 404 405 #define IS_VMLOANED_MBLK(mp) \ 406 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 407 408 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 409 410 /* 411 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 412 * tunable settable via NDD. Otherwise, the per-connection behavior is 413 * determined dynamically during tcp_set_destination(), which is the default. 414 */ 415 boolean_t tcp_static_maxpsz = B_FALSE; 416 417 /* 418 * If the receive buffer size is changed, this function is called to update 419 * the upper socket layer on the new delayed receive wake up threshold. 420 */ 421 static void 422 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 423 { 424 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 425 426 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 427 conn_t *connp = tcp->tcp_connp; 428 struct sock_proto_props sopp; 429 430 /* 431 * only increase rcvthresh upto default_threshold 432 */ 433 if (new_rcvthresh > default_threshold) 434 new_rcvthresh = default_threshold; 435 436 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 437 sopp.sopp_rcvthresh = new_rcvthresh; 438 439 (*connp->conn_upcalls->su_set_proto_props) 440 (connp->conn_upper_handle, &sopp); 441 } 442 } 443 444 /* 445 * Figure out the value of window scale opton. Note that the rwnd is 446 * ASSUMED to be rounded up to the nearest MSS before the calculation. 447 * We cannot find the scale value and then do a round up of tcp_rwnd 448 * because the scale value may not be correct after that. 449 * 450 * Set the compiler flag to make this function inline. 451 */ 452 void 453 tcp_set_ws_value(tcp_t *tcp) 454 { 455 int i; 456 uint32_t rwnd = tcp->tcp_rwnd; 457 458 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 459 i++, rwnd >>= 1) 460 ; 461 tcp->tcp_rcv_ws = i; 462 } 463 464 /* 465 * Remove cached/latched IPsec references. 466 */ 467 void 468 tcp_ipsec_cleanup(tcp_t *tcp) 469 { 470 conn_t *connp = tcp->tcp_connp; 471 472 ASSERT(connp->conn_flags & IPCL_TCPCONN); 473 474 if (connp->conn_latch != NULL) { 475 IPLATCH_REFRELE(connp->conn_latch); 476 connp->conn_latch = NULL; 477 } 478 if (connp->conn_latch_in_policy != NULL) { 479 IPPOL_REFRELE(connp->conn_latch_in_policy); 480 connp->conn_latch_in_policy = NULL; 481 } 482 if (connp->conn_latch_in_action != NULL) { 483 IPACT_REFRELE(connp->conn_latch_in_action); 484 connp->conn_latch_in_action = NULL; 485 } 486 if (connp->conn_policy != NULL) { 487 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 488 connp->conn_policy = NULL; 489 } 490 } 491 492 /* 493 * Cleaup before placing on free list. 494 * Disassociate from the netstack/tcp_stack_t since the freelist 495 * is per squeue and not per netstack. 496 */ 497 void 498 tcp_cleanup(tcp_t *tcp) 499 { 500 mblk_t *mp; 501 conn_t *connp = tcp->tcp_connp; 502 tcp_stack_t *tcps = tcp->tcp_tcps; 503 netstack_t *ns = tcps->tcps_netstack; 504 mblk_t *tcp_rsrv_mp; 505 506 tcp_bind_hash_remove(tcp); 507 508 /* Cleanup that which needs the netstack first */ 509 tcp_ipsec_cleanup(tcp); 510 ixa_cleanup(connp->conn_ixa); 511 512 if (connp->conn_ht_iphc != NULL) { 513 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 514 connp->conn_ht_iphc = NULL; 515 connp->conn_ht_iphc_allocated = 0; 516 connp->conn_ht_iphc_len = 0; 517 connp->conn_ht_ulp = NULL; 518 connp->conn_ht_ulp_len = 0; 519 tcp->tcp_ipha = NULL; 520 tcp->tcp_ip6h = NULL; 521 tcp->tcp_tcpha = NULL; 522 } 523 524 /* We clear any IP_OPTIONS and extension headers */ 525 ip_pkt_free(&connp->conn_xmit_ipp); 526 527 tcp_free(tcp); 528 529 /* 530 * Since we will bzero the entire structure, we need to 531 * remove it and reinsert it in global hash list. We 532 * know the walkers can't get to this conn because we 533 * had set CONDEMNED flag earlier and checked reference 534 * under conn_lock so walker won't pick it and when we 535 * go the ipcl_globalhash_remove() below, no walker 536 * can get to it. 537 */ 538 ipcl_globalhash_remove(connp); 539 540 /* Save some state */ 541 mp = tcp->tcp_timercache; 542 543 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 544 545 if (connp->conn_cred != NULL) { 546 crfree(connp->conn_cred); 547 connp->conn_cred = NULL; 548 } 549 ipcl_conn_cleanup(connp); 550 connp->conn_flags = IPCL_TCPCONN; 551 552 /* 553 * Now it is safe to decrement the reference counts. 554 * This might be the last reference on the netstack 555 * in which case it will cause the freeing of the IP Instance. 556 */ 557 connp->conn_netstack = NULL; 558 connp->conn_ixa->ixa_ipst = NULL; 559 netstack_rele(ns); 560 ASSERT(tcps != NULL); 561 tcp->tcp_tcps = NULL; 562 563 bzero(tcp, sizeof (tcp_t)); 564 565 /* restore the state */ 566 tcp->tcp_timercache = mp; 567 568 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 569 570 tcp->tcp_connp = connp; 571 572 ASSERT(connp->conn_tcp == tcp); 573 ASSERT(connp->conn_flags & IPCL_TCPCONN); 574 connp->conn_state_flags = CONN_INCIPIENT; 575 ASSERT(connp->conn_proto == IPPROTO_TCP); 576 ASSERT(connp->conn_ref == 1); 577 } 578 579 /* 580 * Adapt to the information, such as rtt and rtt_sd, provided from the 581 * DCE and IRE maintained by IP. 582 * 583 * Checks for multicast and broadcast destination address. 584 * Returns zero if ok; an errno on failure. 585 * 586 * Note that the MSS calculation here is based on the info given in 587 * the DCE and IRE. We do not do any calculation based on TCP options. They 588 * will be handled in tcp_input_data() when TCP knows which options to use. 589 * 590 * Note on how TCP gets its parameters for a connection. 591 * 592 * When a tcp_t structure is allocated, it gets all the default parameters. 593 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 594 * spipe, rpipe, ... from the route metrics. Route metric overrides the 595 * default. 596 * 597 * An incoming SYN with a multicast or broadcast destination address is dropped 598 * in ip_fanout_v4/v6. 599 * 600 * An incoming SYN with a multicast or broadcast source address is always 601 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 602 * conn_connect. 603 * The same logic in tcp_set_destination also serves to 604 * reject an attempt to connect to a broadcast or multicast (destination) 605 * address. 606 */ 607 int 608 tcp_set_destination(tcp_t *tcp) 609 { 610 uint32_t mss_max; 611 uint32_t mss; 612 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 613 conn_t *connp = tcp->tcp_connp; 614 tcp_stack_t *tcps = tcp->tcp_tcps; 615 iulp_t uinfo; 616 int error; 617 uint32_t flags; 618 619 flags = IPDF_LSO | IPDF_ZCOPY; 620 /* 621 * Make sure we have a dce for the destination to avoid dce_ident 622 * contention for connected sockets. 623 */ 624 flags |= IPDF_UNIQUE_DCE; 625 626 if (!tcps->tcps_ignore_path_mtu) 627 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 628 629 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 630 mutex_enter(&connp->conn_lock); 631 error = conn_connect(connp, &uinfo, flags); 632 mutex_exit(&connp->conn_lock); 633 if (error != 0) 634 return (error); 635 636 error = tcp_build_hdrs(tcp); 637 if (error != 0) 638 return (error); 639 640 tcp->tcp_localnet = uinfo.iulp_localnet; 641 642 if (uinfo.iulp_rtt != 0) { 643 clock_t rto; 644 645 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 646 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 647 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 648 tcps->tcps_rexmit_interval_extra + 649 (tcp->tcp_rtt_sa >> 5); 650 651 TCP_SET_RTO(tcp, rto); 652 } 653 if (uinfo.iulp_ssthresh != 0) 654 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 655 else 656 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 657 if (uinfo.iulp_spipe > 0) { 658 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 659 tcps->tcps_max_buf); 660 if (tcps->tcps_snd_lowat_fraction != 0) { 661 connp->conn_sndlowat = connp->conn_sndbuf / 662 tcps->tcps_snd_lowat_fraction; 663 } 664 (void) tcp_maxpsz_set(tcp, B_TRUE); 665 } 666 /* 667 * Note that up till now, acceptor always inherits receive 668 * window from the listener. But if there is a metrics 669 * associated with a host, we should use that instead of 670 * inheriting it from listener. Thus we need to pass this 671 * info back to the caller. 672 */ 673 if (uinfo.iulp_rpipe > 0) { 674 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 675 tcps->tcps_max_buf); 676 } 677 678 if (uinfo.iulp_rtomax > 0) { 679 tcp->tcp_second_timer_threshold = 680 uinfo.iulp_rtomax; 681 } 682 683 /* 684 * Use the metric option settings, iulp_tstamp_ok and 685 * iulp_wscale_ok, only for active open. What this means 686 * is that if the other side uses timestamp or window 687 * scale option, TCP will also use those options. That 688 * is for passive open. If the application sets a 689 * large window, window scale is enabled regardless of 690 * the value in iulp_wscale_ok. This is the behavior 691 * since 2.6. So we keep it. 692 * The only case left in passive open processing is the 693 * check for SACK. 694 * For ECN, it should probably be like SACK. But the 695 * current value is binary, so we treat it like the other 696 * cases. The metric only controls active open.For passive 697 * open, the ndd param, tcp_ecn_permitted, controls the 698 * behavior. 699 */ 700 if (!tcp_detached) { 701 /* 702 * The if check means that the following can only 703 * be turned on by the metrics only IRE, but not off. 704 */ 705 if (uinfo.iulp_tstamp_ok) 706 tcp->tcp_snd_ts_ok = B_TRUE; 707 if (uinfo.iulp_wscale_ok) 708 tcp->tcp_snd_ws_ok = B_TRUE; 709 if (uinfo.iulp_sack == 2) 710 tcp->tcp_snd_sack_ok = B_TRUE; 711 if (uinfo.iulp_ecn_ok) 712 tcp->tcp_ecn_ok = B_TRUE; 713 } else { 714 /* 715 * Passive open. 716 * 717 * As above, the if check means that SACK can only be 718 * turned on by the metric only IRE. 719 */ 720 if (uinfo.iulp_sack > 0) { 721 tcp->tcp_snd_sack_ok = B_TRUE; 722 } 723 } 724 725 /* 726 * XXX Note that currently, iulp_mtu can be as small as 68 727 * because of PMTUd. So tcp_mss may go to negative if combined 728 * length of all those options exceeds 28 bytes. But because 729 * of the tcp_mss_min check below, we may not have a problem if 730 * tcp_mss_min is of a reasonable value. The default is 1 so 731 * the negative problem still exists. And the check defeats PMTUd. 732 * In fact, if PMTUd finds that the MSS should be smaller than 733 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 734 * value. 735 * 736 * We do not deal with that now. All those problems related to 737 * PMTUd will be fixed later. 738 */ 739 ASSERT(uinfo.iulp_mtu != 0); 740 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 741 742 /* Sanity check for MSS value. */ 743 if (connp->conn_ipversion == IPV4_VERSION) 744 mss_max = tcps->tcps_mss_max_ipv4; 745 else 746 mss_max = tcps->tcps_mss_max_ipv6; 747 748 if (tcp->tcp_ipsec_overhead == 0) 749 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 750 751 mss -= tcp->tcp_ipsec_overhead; 752 753 if (mss < tcps->tcps_mss_min) 754 mss = tcps->tcps_mss_min; 755 if (mss > mss_max) 756 mss = mss_max; 757 758 /* Note that this is the maximum MSS, excluding all options. */ 759 tcp->tcp_mss = mss; 760 761 /* 762 * Update the tcp connection with LSO capability. 763 */ 764 tcp_update_lso(tcp, connp->conn_ixa); 765 766 /* 767 * Initialize the ISS here now that we have the full connection ID. 768 * The RFC 1948 method of initial sequence number generation requires 769 * knowledge of the full connection ID before setting the ISS. 770 */ 771 tcp_iss_init(tcp); 772 773 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 774 775 /* 776 * Make sure that conn is not marked incipient 777 * for incoming connections. A blind 778 * removal of incipient flag is cheaper than 779 * check and removal. 780 */ 781 mutex_enter(&connp->conn_lock); 782 connp->conn_state_flags &= ~CONN_INCIPIENT; 783 mutex_exit(&connp->conn_lock); 784 return (0); 785 } 786 787 /* 788 * tcp_clean_death / tcp_close_detached must not be called more than once 789 * on a tcp. Thus every function that potentially calls tcp_clean_death 790 * must check for the tcp state before calling tcp_clean_death. 791 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 792 * tcp_timer_handler, all check for the tcp state. 793 */ 794 /* ARGSUSED */ 795 void 796 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 797 ip_recv_attr_t *dummy) 798 { 799 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 800 801 freemsg(mp); 802 if (tcp->tcp_state > TCPS_BOUND) 803 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 804 } 805 806 /* 807 * We are dying for some reason. Try to do it gracefully. (May be called 808 * as writer.) 809 * 810 * Return -1 if the structure was not cleaned up (if the cleanup had to be 811 * done by a service procedure). 812 * TBD - Should the return value distinguish between the tcp_t being 813 * freed and it being reinitialized? 814 */ 815 int 816 tcp_clean_death(tcp_t *tcp, int err) 817 { 818 mblk_t *mp; 819 queue_t *q; 820 conn_t *connp = tcp->tcp_connp; 821 tcp_stack_t *tcps = tcp->tcp_tcps; 822 823 if (tcp->tcp_fused) 824 tcp_unfuse(tcp); 825 826 if (tcp->tcp_linger_tid != 0 && 827 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 828 tcp_stop_lingering(tcp); 829 } 830 831 ASSERT(tcp != NULL); 832 ASSERT((connp->conn_family == AF_INET && 833 connp->conn_ipversion == IPV4_VERSION) || 834 (connp->conn_family == AF_INET6 && 835 (connp->conn_ipversion == IPV4_VERSION || 836 connp->conn_ipversion == IPV6_VERSION))); 837 838 if (TCP_IS_DETACHED(tcp)) { 839 if (tcp->tcp_hard_binding) { 840 /* 841 * Its an eager that we are dealing with. We close the 842 * eager but in case a conn_ind has already gone to the 843 * listener, let tcp_accept_finish() send a discon_ind 844 * to the listener and drop the last reference. If the 845 * listener doesn't even know about the eager i.e. the 846 * conn_ind hasn't gone up, blow away the eager and drop 847 * the last reference as well. If the conn_ind has gone 848 * up, state should be BOUND. tcp_accept_finish 849 * will figure out that the connection has received a 850 * RST and will send a DISCON_IND to the application. 851 */ 852 tcp_closei_local(tcp); 853 if (!tcp->tcp_tconnind_started) { 854 CONN_DEC_REF(connp); 855 } else { 856 tcp->tcp_state = TCPS_BOUND; 857 DTRACE_TCP6(state__change, void, NULL, 858 ip_xmit_attr_t *, connp->conn_ixa, 859 void, NULL, tcp_t *, tcp, void, NULL, 860 int32_t, TCPS_CLOSED); 861 } 862 } else { 863 tcp_close_detached(tcp); 864 } 865 return (0); 866 } 867 868 TCP_STAT(tcps, tcp_clean_death_nondetached); 869 870 /* 871 * The connection is dead. Decrement listener connection counter if 872 * necessary. 873 */ 874 if (tcp->tcp_listen_cnt != NULL) 875 TCP_DECR_LISTEN_CNT(tcp); 876 877 /* 878 * When a connection is moved to TIME_WAIT state, the connection 879 * counter is already decremented. So no need to decrement here 880 * again. See SET_TIME_WAIT() macro. 881 */ 882 if (tcp->tcp_state >= TCPS_ESTABLISHED && 883 tcp->tcp_state < TCPS_TIME_WAIT) { 884 TCPS_CONN_DEC(tcps); 885 } 886 887 q = connp->conn_rq; 888 889 /* Trash all inbound data */ 890 if (!IPCL_IS_NONSTR(connp)) { 891 ASSERT(q != NULL); 892 flushq(q, FLUSHALL); 893 } 894 895 /* 896 * If we are at least part way open and there is error 897 * (err==0 implies no error) 898 * notify our client by a T_DISCON_IND. 899 */ 900 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 901 if (tcp->tcp_state >= TCPS_ESTABLISHED && 902 !TCP_IS_SOCKET(tcp)) { 903 /* 904 * Send M_FLUSH according to TPI. Because sockets will 905 * (and must) ignore FLUSHR we do that only for TPI 906 * endpoints and sockets in STREAMS mode. 907 */ 908 (void) putnextctl1(q, M_FLUSH, FLUSHR); 909 } 910 if (connp->conn_debug) { 911 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 912 "tcp_clean_death: discon err %d", err); 913 } 914 if (IPCL_IS_NONSTR(connp)) { 915 /* Direct socket, use upcall */ 916 (*connp->conn_upcalls->su_disconnected)( 917 connp->conn_upper_handle, tcp->tcp_connid, err); 918 } else { 919 mp = mi_tpi_discon_ind(NULL, err, 0); 920 if (mp != NULL) { 921 putnext(q, mp); 922 } else { 923 if (connp->conn_debug) { 924 (void) strlog(TCP_MOD_ID, 0, 1, 925 SL_ERROR|SL_TRACE, 926 "tcp_clean_death, sending M_ERROR"); 927 } 928 (void) putnextctl1(q, M_ERROR, EPROTO); 929 } 930 } 931 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 932 /* SYN_SENT or SYN_RCVD */ 933 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 934 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 935 /* ESTABLISHED or CLOSE_WAIT */ 936 TCPS_BUMP_MIB(tcps, tcpEstabResets); 937 } 938 } 939 940 /* 941 * ESTABLISHED non-STREAMS eagers are not 'detached' because 942 * an upper handle is obtained when the SYN-ACK comes in. So it 943 * should receive the 'disconnected' upcall, but tcp_reinit should 944 * not be called since this is an eager. 945 */ 946 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 947 tcp_closei_local(tcp); 948 tcp->tcp_state = TCPS_BOUND; 949 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 950 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 951 int32_t, TCPS_CLOSED); 952 return (0); 953 } 954 955 tcp_reinit(tcp); 956 if (IPCL_IS_NONSTR(connp)) 957 (void) tcp_do_unbind(connp); 958 959 return (-1); 960 } 961 962 /* 963 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 964 * to expire, stop the wait and finish the close. 965 */ 966 void 967 tcp_stop_lingering(tcp_t *tcp) 968 { 969 clock_t delta = 0; 970 tcp_stack_t *tcps = tcp->tcp_tcps; 971 conn_t *connp = tcp->tcp_connp; 972 973 tcp->tcp_linger_tid = 0; 974 if (tcp->tcp_state > TCPS_LISTEN) { 975 tcp_acceptor_hash_remove(tcp); 976 mutex_enter(&tcp->tcp_non_sq_lock); 977 if (tcp->tcp_flow_stopped) { 978 tcp_clrqfull(tcp); 979 } 980 mutex_exit(&tcp->tcp_non_sq_lock); 981 982 if (tcp->tcp_timer_tid != 0) { 983 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 984 tcp->tcp_timer_tid = 0; 985 } 986 /* 987 * Need to cancel those timers which will not be used when 988 * TCP is detached. This has to be done before the conn_wq 989 * is cleared. 990 */ 991 tcp_timers_stop(tcp); 992 993 tcp->tcp_detached = B_TRUE; 994 connp->conn_rq = NULL; 995 connp->conn_wq = NULL; 996 997 if (tcp->tcp_state == TCPS_TIME_WAIT) { 998 tcp_time_wait_append(tcp); 999 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 1000 goto finish; 1001 } 1002 1003 /* 1004 * If delta is zero the timer event wasn't executed and was 1005 * successfully canceled. In this case we need to restart it 1006 * with the minimal delta possible. 1007 */ 1008 if (delta >= 0) { 1009 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1010 delta ? delta : 1); 1011 } 1012 } else { 1013 tcp_closei_local(tcp); 1014 CONN_DEC_REF(connp); 1015 } 1016 finish: 1017 tcp->tcp_detached = B_TRUE; 1018 connp->conn_rq = NULL; 1019 connp->conn_wq = NULL; 1020 1021 /* Signal closing thread that it can complete close */ 1022 mutex_enter(&tcp->tcp_closelock); 1023 tcp->tcp_closed = 1; 1024 cv_signal(&tcp->tcp_closecv); 1025 mutex_exit(&tcp->tcp_closelock); 1026 1027 /* If we have an upper handle (socket), release it */ 1028 if (IPCL_IS_NONSTR(connp)) { 1029 ASSERT(connp->conn_upper_handle != NULL); 1030 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle); 1031 connp->conn_upper_handle = NULL; 1032 connp->conn_upcalls = NULL; 1033 } 1034 } 1035 1036 void 1037 tcp_close_common(conn_t *connp, int flags) 1038 { 1039 tcp_t *tcp = connp->conn_tcp; 1040 mblk_t *mp = &tcp->tcp_closemp; 1041 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1042 mblk_t *bp; 1043 1044 ASSERT(connp->conn_ref >= 2); 1045 1046 /* 1047 * Mark the conn as closing. ipsq_pending_mp_add will not 1048 * add any mp to the pending mp list, after this conn has 1049 * started closing. 1050 */ 1051 mutex_enter(&connp->conn_lock); 1052 connp->conn_state_flags |= CONN_CLOSING; 1053 if (connp->conn_oper_pending_ill != NULL) 1054 conn_ioctl_cleanup_reqd = B_TRUE; 1055 CONN_INC_REF_LOCKED(connp); 1056 mutex_exit(&connp->conn_lock); 1057 tcp->tcp_closeflags = (uint8_t)flags; 1058 ASSERT(connp->conn_ref >= 3); 1059 1060 /* 1061 * tcp_closemp_used is used below without any protection of a lock 1062 * as we don't expect any one else to use it concurrently at this 1063 * point otherwise it would be a major defect. 1064 */ 1065 1066 if (mp->b_prev == NULL) 1067 tcp->tcp_closemp_used = B_TRUE; 1068 else 1069 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1070 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1071 1072 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1073 1074 /* 1075 * Cleanup any queued ioctls here. This must be done before the wq/rq 1076 * are re-written by tcp_close_output(). 1077 */ 1078 if (conn_ioctl_cleanup_reqd) 1079 conn_ioctl_cleanup(connp); 1080 1081 /* 1082 * As CONN_CLOSING is set, no further ioctls should be passed down to 1083 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1084 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1085 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1086 * was still in flight at the time, we wait for it here. See comments 1087 * for CONN_INC_IOCTLREF in ip.h for details. 1088 */ 1089 mutex_enter(&connp->conn_lock); 1090 while (connp->conn_ioctlref > 0) 1091 cv_wait(&connp->conn_cv, &connp->conn_lock); 1092 ASSERT(connp->conn_ioctlref == 0); 1093 ASSERT(connp->conn_oper_pending_ill == NULL); 1094 mutex_exit(&connp->conn_lock); 1095 1096 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1097 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1098 1099 /* 1100 * For non-STREAMS sockets, the normal case is that the conn makes 1101 * an upcall when it's finally closed, so there is no need to wait 1102 * in the protocol. But in case of SO_LINGER the thread sleeps here 1103 * so it can properly deal with the thread being interrupted. 1104 */ 1105 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1106 goto nowait; 1107 1108 mutex_enter(&tcp->tcp_closelock); 1109 while (!tcp->tcp_closed) { 1110 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1111 /* 1112 * The cv_wait_sig() was interrupted. We now do the 1113 * following: 1114 * 1115 * 1) If the endpoint was lingering, we allow this 1116 * to be interrupted by cancelling the linger timeout 1117 * and closing normally. 1118 * 1119 * 2) Revert to calling cv_wait() 1120 * 1121 * We revert to using cv_wait() to avoid an 1122 * infinite loop which can occur if the calling 1123 * thread is higher priority than the squeue worker 1124 * thread and is bound to the same cpu. 1125 */ 1126 if (connp->conn_linger && connp->conn_lingertime > 0) { 1127 mutex_exit(&tcp->tcp_closelock); 1128 /* Entering squeue, bump ref count. */ 1129 CONN_INC_REF(connp); 1130 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1131 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1132 tcp_linger_interrupted, connp, NULL, 1133 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1134 mutex_enter(&tcp->tcp_closelock); 1135 } 1136 break; 1137 } 1138 } 1139 while (!tcp->tcp_closed) 1140 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1141 mutex_exit(&tcp->tcp_closelock); 1142 1143 /* 1144 * In the case of listener streams that have eagers in the q or q0 1145 * we wait for the eagers to drop their reference to us. conn_rq and 1146 * conn_wq of the eagers point to our queues. By waiting for the 1147 * refcnt to drop to 1, we are sure that the eagers have cleaned 1148 * up their queue pointers and also dropped their references to us. 1149 * 1150 * For non-STREAMS sockets we do not have to wait here; the 1151 * listener will instead make a su_closed upcall when the last 1152 * reference is dropped. 1153 */ 1154 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1155 mutex_enter(&connp->conn_lock); 1156 while (connp->conn_ref != 1) { 1157 cv_wait(&connp->conn_cv, &connp->conn_lock); 1158 } 1159 mutex_exit(&connp->conn_lock); 1160 } 1161 1162 nowait: 1163 connp->conn_cpid = NOPID; 1164 } 1165 1166 /* 1167 * Called by tcp_close() routine via squeue when lingering is 1168 * interrupted by a signal. 1169 */ 1170 1171 /* ARGSUSED */ 1172 static void 1173 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1174 { 1175 conn_t *connp = (conn_t *)arg; 1176 tcp_t *tcp = connp->conn_tcp; 1177 1178 freeb(mp); 1179 if (tcp->tcp_linger_tid != 0 && 1180 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1181 tcp_stop_lingering(tcp); 1182 tcp->tcp_client_errno = EINTR; 1183 } 1184 } 1185 1186 /* 1187 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1188 * Some stream heads get upset if they see these later on as anything but NULL. 1189 */ 1190 void 1191 tcp_close_mpp(mblk_t **mpp) 1192 { 1193 mblk_t *mp; 1194 1195 if ((mp = *mpp) != NULL) { 1196 do { 1197 mp->b_next = NULL; 1198 mp->b_prev = NULL; 1199 } while ((mp = mp->b_cont) != NULL); 1200 1201 mp = *mpp; 1202 *mpp = NULL; 1203 freemsg(mp); 1204 } 1205 } 1206 1207 /* Do detached close. */ 1208 void 1209 tcp_close_detached(tcp_t *tcp) 1210 { 1211 if (tcp->tcp_fused) 1212 tcp_unfuse(tcp); 1213 1214 /* 1215 * Clustering code serializes TCP disconnect callbacks and 1216 * cluster tcp list walks by blocking a TCP disconnect callback 1217 * if a cluster tcp list walk is in progress. This ensures 1218 * accurate accounting of TCPs in the cluster code even though 1219 * the TCP list walk itself is not atomic. 1220 */ 1221 tcp_closei_local(tcp); 1222 CONN_DEC_REF(tcp->tcp_connp); 1223 } 1224 1225 /* 1226 * The tcp_t is going away. Remove it from all lists and set it 1227 * to TCPS_CLOSED. The freeing up of memory is deferred until 1228 * tcp_inactive. This is needed since a thread in tcp_rput might have 1229 * done a CONN_INC_REF on this structure before it was removed from the 1230 * hashes. 1231 */ 1232 void 1233 tcp_closei_local(tcp_t *tcp) 1234 { 1235 conn_t *connp = tcp->tcp_connp; 1236 tcp_stack_t *tcps = tcp->tcp_tcps; 1237 int32_t oldstate; 1238 1239 if (!TCP_IS_SOCKET(tcp)) 1240 tcp_acceptor_hash_remove(tcp); 1241 1242 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1243 tcp->tcp_ibsegs = 0; 1244 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1245 tcp->tcp_obsegs = 0; 1246 1247 /* 1248 * This can be called via tcp_time_wait_processing() if TCP gets a 1249 * SYN with sequence number outside the TIME-WAIT connection's 1250 * window. So we need to check for TIME-WAIT state here as the 1251 * connection counter is already decremented. See SET_TIME_WAIT() 1252 * macro 1253 */ 1254 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1255 tcp->tcp_state < TCPS_TIME_WAIT) { 1256 TCPS_CONN_DEC(tcps); 1257 } 1258 1259 /* 1260 * If we are an eager connection hanging off a listener that 1261 * hasn't formally accepted the connection yet, get off his 1262 * list and blow off any data that we have accumulated. 1263 */ 1264 if (tcp->tcp_listener != NULL) { 1265 tcp_t *listener = tcp->tcp_listener; 1266 mutex_enter(&listener->tcp_eager_lock); 1267 /* 1268 * tcp_tconnind_started == B_TRUE means that the 1269 * conn_ind has already gone to listener. At 1270 * this point, eager will be closed but we 1271 * leave it in listeners eager list so that 1272 * if listener decides to close without doing 1273 * accept, we can clean this up. In tcp_tli_accept 1274 * we take care of the case of accept on closed 1275 * eager. 1276 */ 1277 if (!tcp->tcp_tconnind_started) { 1278 tcp_eager_unlink(tcp); 1279 mutex_exit(&listener->tcp_eager_lock); 1280 /* 1281 * We don't want to have any pointers to the 1282 * listener queue, after we have released our 1283 * reference on the listener 1284 */ 1285 ASSERT(tcp->tcp_detached); 1286 connp->conn_rq = NULL; 1287 connp->conn_wq = NULL; 1288 CONN_DEC_REF(listener->tcp_connp); 1289 } else { 1290 mutex_exit(&listener->tcp_eager_lock); 1291 } 1292 } 1293 1294 /* Stop all the timers */ 1295 tcp_timers_stop(tcp); 1296 1297 if (tcp->tcp_state == TCPS_LISTEN) { 1298 if (tcp->tcp_ip_addr_cache) { 1299 kmem_free((void *)tcp->tcp_ip_addr_cache, 1300 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1301 tcp->tcp_ip_addr_cache = NULL; 1302 } 1303 } 1304 1305 /* Decrement listerner connection counter if necessary. */ 1306 if (tcp->tcp_listen_cnt != NULL) 1307 TCP_DECR_LISTEN_CNT(tcp); 1308 1309 mutex_enter(&tcp->tcp_non_sq_lock); 1310 if (tcp->tcp_flow_stopped) 1311 tcp_clrqfull(tcp); 1312 mutex_exit(&tcp->tcp_non_sq_lock); 1313 1314 tcp_bind_hash_remove(tcp); 1315 /* 1316 * If the tcp_time_wait_collector (which runs outside the squeue) 1317 * is trying to remove this tcp from the time wait list, we will 1318 * block in tcp_time_wait_remove while trying to acquire the 1319 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1320 * requires the ipcl_hash_remove to be ordered after the 1321 * tcp_time_wait_remove for the refcnt checks to work correctly. 1322 */ 1323 if (tcp->tcp_state == TCPS_TIME_WAIT) 1324 (void) tcp_time_wait_remove(tcp, NULL); 1325 CL_INET_DISCONNECT(connp); 1326 ipcl_hash_remove(connp); 1327 oldstate = tcp->tcp_state; 1328 tcp->tcp_state = TCPS_CLOSED; 1329 /* Need to probe before ixa_cleanup() is called */ 1330 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1331 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1332 int32_t, oldstate); 1333 ixa_cleanup(connp->conn_ixa); 1334 1335 /* 1336 * Mark the conn as CONDEMNED 1337 */ 1338 mutex_enter(&connp->conn_lock); 1339 connp->conn_state_flags |= CONN_CONDEMNED; 1340 mutex_exit(&connp->conn_lock); 1341 1342 ASSERT(tcp->tcp_time_wait_next == NULL); 1343 ASSERT(tcp->tcp_time_wait_prev == NULL); 1344 ASSERT(tcp->tcp_time_wait_expire == 0); 1345 1346 tcp_ipsec_cleanup(tcp); 1347 } 1348 1349 /* 1350 * tcp is dying (called from ipcl_conn_destroy and error cases). 1351 * Free the tcp_t in either case. 1352 */ 1353 void 1354 tcp_free(tcp_t *tcp) 1355 { 1356 mblk_t *mp; 1357 conn_t *connp = tcp->tcp_connp; 1358 1359 ASSERT(tcp != NULL); 1360 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1361 1362 connp->conn_rq = NULL; 1363 connp->conn_wq = NULL; 1364 1365 tcp_close_mpp(&tcp->tcp_xmit_head); 1366 tcp_close_mpp(&tcp->tcp_reass_head); 1367 if (tcp->tcp_rcv_list != NULL) { 1368 /* Free b_next chain */ 1369 tcp_close_mpp(&tcp->tcp_rcv_list); 1370 } 1371 if ((mp = tcp->tcp_urp_mp) != NULL) { 1372 freemsg(mp); 1373 } 1374 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1375 freemsg(mp); 1376 } 1377 1378 if (tcp->tcp_fused_sigurg_mp != NULL) { 1379 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1380 freeb(tcp->tcp_fused_sigurg_mp); 1381 tcp->tcp_fused_sigurg_mp = NULL; 1382 } 1383 1384 if (tcp->tcp_ordrel_mp != NULL) { 1385 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1386 freeb(tcp->tcp_ordrel_mp); 1387 tcp->tcp_ordrel_mp = NULL; 1388 } 1389 1390 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1391 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1392 1393 if (tcp->tcp_hopopts != NULL) { 1394 mi_free(tcp->tcp_hopopts); 1395 tcp->tcp_hopopts = NULL; 1396 tcp->tcp_hopoptslen = 0; 1397 } 1398 ASSERT(tcp->tcp_hopoptslen == 0); 1399 if (tcp->tcp_dstopts != NULL) { 1400 mi_free(tcp->tcp_dstopts); 1401 tcp->tcp_dstopts = NULL; 1402 tcp->tcp_dstoptslen = 0; 1403 } 1404 ASSERT(tcp->tcp_dstoptslen == 0); 1405 if (tcp->tcp_rthdrdstopts != NULL) { 1406 mi_free(tcp->tcp_rthdrdstopts); 1407 tcp->tcp_rthdrdstopts = NULL; 1408 tcp->tcp_rthdrdstoptslen = 0; 1409 } 1410 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1411 if (tcp->tcp_rthdr != NULL) { 1412 mi_free(tcp->tcp_rthdr); 1413 tcp->tcp_rthdr = NULL; 1414 tcp->tcp_rthdrlen = 0; 1415 } 1416 ASSERT(tcp->tcp_rthdrlen == 0); 1417 1418 /* 1419 * Following is really a blowing away a union. 1420 * It happens to have exactly two members of identical size 1421 * the following code is enough. 1422 */ 1423 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1424 1425 /* 1426 * If this is a non-STREAM socket still holding on to an upper 1427 * handle, release it. As a result of fallback we might also see 1428 * STREAMS based conns with upper handles, in which case there is 1429 * nothing to do other than clearing the field. 1430 */ 1431 if (connp->conn_upper_handle != NULL) { 1432 if (IPCL_IS_NONSTR(connp)) { 1433 (*connp->conn_upcalls->su_closed)( 1434 connp->conn_upper_handle); 1435 tcp->tcp_detached = B_TRUE; 1436 } 1437 connp->conn_upper_handle = NULL; 1438 connp->conn_upcalls = NULL; 1439 } 1440 } 1441 1442 /* 1443 * tcp_get_conn/tcp_free_conn 1444 * 1445 * tcp_get_conn is used to get a clean tcp connection structure. 1446 * It tries to reuse the connections put on the freelist by the 1447 * time_wait_collector failing which it goes to kmem_cache. This 1448 * way has two benefits compared to just allocating from and 1449 * freeing to kmem_cache. 1450 * 1) The time_wait_collector can free (which includes the cleanup) 1451 * outside the squeue. So when the interrupt comes, we have a clean 1452 * connection sitting in the freelist. Obviously, this buys us 1453 * performance. 1454 * 1455 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1456 * has multiple disadvantages - tying up the squeue during alloc. 1457 * But allocating the conn/tcp in IP land is also not the best since 1458 * we can't check the 'q' and 'q0' which are protected by squeue and 1459 * blindly allocate memory which might have to be freed here if we are 1460 * not allowed to accept the connection. By using the freelist and 1461 * putting the conn/tcp back in freelist, we don't pay a penalty for 1462 * allocating memory without checking 'q/q0' and freeing it if we can't 1463 * accept the connection. 1464 * 1465 * Care should be taken to put the conn back in the same squeue's freelist 1466 * from which it was allocated. Best results are obtained if conn is 1467 * allocated from listener's squeue and freed to the same. Time wait 1468 * collector will free up the freelist is the connection ends up sitting 1469 * there for too long. 1470 */ 1471 void * 1472 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1473 { 1474 tcp_t *tcp = NULL; 1475 conn_t *connp = NULL; 1476 squeue_t *sqp = (squeue_t *)arg; 1477 tcp_squeue_priv_t *tcp_time_wait; 1478 netstack_t *ns; 1479 mblk_t *tcp_rsrv_mp = NULL; 1480 1481 tcp_time_wait = 1482 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1483 1484 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1485 tcp = tcp_time_wait->tcp_free_list; 1486 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1487 if (tcp != NULL) { 1488 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1489 tcp_time_wait->tcp_free_list_cnt--; 1490 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1491 tcp->tcp_time_wait_next = NULL; 1492 connp = tcp->tcp_connp; 1493 connp->conn_flags |= IPCL_REUSED; 1494 1495 ASSERT(tcp->tcp_tcps == NULL); 1496 ASSERT(connp->conn_netstack == NULL); 1497 ASSERT(tcp->tcp_rsrv_mp != NULL); 1498 ns = tcps->tcps_netstack; 1499 netstack_hold(ns); 1500 connp->conn_netstack = ns; 1501 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1502 tcp->tcp_tcps = tcps; 1503 ipcl_globalhash_insert(connp); 1504 1505 connp->conn_ixa->ixa_notify_cookie = tcp; 1506 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1507 connp->conn_recv = tcp_input_data; 1508 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1509 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1510 return ((void *)connp); 1511 } 1512 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1513 /* 1514 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1515 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1516 */ 1517 tcp_rsrv_mp = allocb(0, BPRI_HI); 1518 if (tcp_rsrv_mp == NULL) 1519 return (NULL); 1520 1521 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1522 tcps->tcps_netstack)) == NULL) { 1523 freeb(tcp_rsrv_mp); 1524 return (NULL); 1525 } 1526 1527 tcp = connp->conn_tcp; 1528 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1529 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1530 1531 tcp->tcp_tcps = tcps; 1532 1533 connp->conn_recv = tcp_input_data; 1534 connp->conn_recvicmp = tcp_icmp_input; 1535 connp->conn_verifyicmp = tcp_verifyicmp; 1536 1537 /* 1538 * Register tcp_notify to listen to capability changes detected by IP. 1539 * This upcall is made in the context of the call to conn_ip_output 1540 * thus it is inside the squeue. 1541 */ 1542 connp->conn_ixa->ixa_notify = tcp_notify; 1543 connp->conn_ixa->ixa_notify_cookie = tcp; 1544 1545 return ((void *)connp); 1546 } 1547 1548 /* 1549 * Handle connect to IPv4 destinations, including connections for AF_INET6 1550 * sockets connecting to IPv4 mapped IPv6 destinations. 1551 * Returns zero if OK, a positive errno, or a negative TLI error. 1552 */ 1553 static int 1554 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1555 uint_t srcid) 1556 { 1557 ipaddr_t dstaddr = *dstaddrp; 1558 uint16_t lport; 1559 conn_t *connp = tcp->tcp_connp; 1560 tcp_stack_t *tcps = tcp->tcp_tcps; 1561 int error; 1562 1563 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1564 1565 /* Check for attempt to connect to INADDR_ANY */ 1566 if (dstaddr == INADDR_ANY) { 1567 /* 1568 * SunOS 4.x and 4.3 BSD allow an application 1569 * to connect a TCP socket to INADDR_ANY. 1570 * When they do this, the kernel picks the 1571 * address of one interface and uses it 1572 * instead. The kernel usually ends up 1573 * picking the address of the loopback 1574 * interface. This is an undocumented feature. 1575 * However, we provide the same thing here 1576 * in order to have source and binary 1577 * compatibility with SunOS 4.x. 1578 * Update the T_CONN_REQ (sin/sin6) since it is used to 1579 * generate the T_CONN_CON. 1580 */ 1581 dstaddr = htonl(INADDR_LOOPBACK); 1582 *dstaddrp = dstaddr; 1583 } 1584 1585 /* Handle __sin6_src_id if socket not bound to an IP address */ 1586 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1587 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1588 IPCL_ZONEID(connp), tcps->tcps_netstack); 1589 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1590 } 1591 1592 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1593 connp->conn_fport = dstport; 1594 1595 /* 1596 * At this point the remote destination address and remote port fields 1597 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1598 * have to see which state tcp was in so we can take appropriate action. 1599 */ 1600 if (tcp->tcp_state == TCPS_IDLE) { 1601 /* 1602 * We support a quick connect capability here, allowing 1603 * clients to transition directly from IDLE to SYN_SENT 1604 * tcp_bindi will pick an unused port, insert the connection 1605 * in the bind hash and transition to BOUND state. 1606 */ 1607 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1608 tcp, B_TRUE); 1609 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1610 B_FALSE, B_FALSE); 1611 if (lport == 0) 1612 return (-TNOADDR); 1613 } 1614 1615 /* 1616 * Lookup the route to determine a source address and the uinfo. 1617 * Setup TCP parameters based on the metrics/DCE. 1618 */ 1619 error = tcp_set_destination(tcp); 1620 if (error != 0) 1621 return (error); 1622 1623 /* 1624 * Don't let an endpoint connect to itself. 1625 */ 1626 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1627 connp->conn_fport == connp->conn_lport) 1628 return (-TBADADDR); 1629 1630 tcp->tcp_state = TCPS_SYN_SENT; 1631 1632 return (ipcl_conn_insert_v4(connp)); 1633 } 1634 1635 /* 1636 * Handle connect to IPv6 destinations. 1637 * Returns zero if OK, a positive errno, or a negative TLI error. 1638 */ 1639 static int 1640 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1641 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1642 { 1643 uint16_t lport; 1644 conn_t *connp = tcp->tcp_connp; 1645 tcp_stack_t *tcps = tcp->tcp_tcps; 1646 int error; 1647 1648 ASSERT(connp->conn_family == AF_INET6); 1649 1650 /* 1651 * If we're here, it means that the destination address is a native 1652 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1653 * reason why it might not be IPv6 is if the socket was bound to an 1654 * IPv4-mapped IPv6 address. 1655 */ 1656 if (connp->conn_ipversion != IPV6_VERSION) 1657 return (-TBADADDR); 1658 1659 /* 1660 * Interpret a zero destination to mean loopback. 1661 * Update the T_CONN_REQ (sin/sin6) since it is used to 1662 * generate the T_CONN_CON. 1663 */ 1664 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1665 *dstaddrp = ipv6_loopback; 1666 1667 /* Handle __sin6_src_id if socket not bound to an IP address */ 1668 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1669 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1670 IPCL_ZONEID(connp), tcps->tcps_netstack); 1671 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1672 } 1673 1674 /* 1675 * Take care of the scope_id now. 1676 */ 1677 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1678 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1679 connp->conn_ixa->ixa_scopeid = scope_id; 1680 } else { 1681 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1682 } 1683 1684 connp->conn_flowinfo = flowinfo; 1685 connp->conn_faddr_v6 = *dstaddrp; 1686 connp->conn_fport = dstport; 1687 1688 /* 1689 * At this point the remote destination address and remote port fields 1690 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1691 * have to see which state tcp was in so we can take appropriate action. 1692 */ 1693 if (tcp->tcp_state == TCPS_IDLE) { 1694 /* 1695 * We support a quick connect capability here, allowing 1696 * clients to transition directly from IDLE to SYN_SENT 1697 * tcp_bindi will pick an unused port, insert the connection 1698 * in the bind hash and transition to BOUND state. 1699 */ 1700 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1701 tcp, B_TRUE); 1702 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1703 B_FALSE, B_FALSE); 1704 if (lport == 0) 1705 return (-TNOADDR); 1706 } 1707 1708 /* 1709 * Lookup the route to determine a source address and the uinfo. 1710 * Setup TCP parameters based on the metrics/DCE. 1711 */ 1712 error = tcp_set_destination(tcp); 1713 if (error != 0) 1714 return (error); 1715 1716 /* 1717 * Don't let an endpoint connect to itself. 1718 */ 1719 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1720 connp->conn_fport == connp->conn_lport) 1721 return (-TBADADDR); 1722 1723 tcp->tcp_state = TCPS_SYN_SENT; 1724 1725 return (ipcl_conn_insert_v6(connp)); 1726 } 1727 1728 /* 1729 * Disconnect 1730 * Note that unlike other functions this returns a positive tli error 1731 * when it fails; it never returns an errno. 1732 */ 1733 static int 1734 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1735 { 1736 conn_t *lconnp; 1737 tcp_stack_t *tcps = tcp->tcp_tcps; 1738 conn_t *connp = tcp->tcp_connp; 1739 1740 /* 1741 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1742 * when the stream is in BOUND state. Do not send a reset, 1743 * since the destination IP address is not valid, and it can 1744 * be the initialized value of all zeros (broadcast address). 1745 */ 1746 if (tcp->tcp_state <= TCPS_BOUND) { 1747 if (connp->conn_debug) { 1748 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1749 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1750 } 1751 return (TOUTSTATE); 1752 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1753 TCPS_CONN_DEC(tcps); 1754 } 1755 1756 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1757 1758 /* 1759 * According to TPI, for non-listeners, ignore seqnum 1760 * and disconnect. 1761 * Following interpretation of -1 seqnum is historical 1762 * and implied TPI ? (TPI only states that for T_CONN_IND, 1763 * a valid seqnum should not be -1). 1764 * 1765 * -1 means disconnect everything 1766 * regardless even on a listener. 1767 */ 1768 1769 int old_state = tcp->tcp_state; 1770 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1771 1772 /* 1773 * The connection can't be on the tcp_time_wait_head list 1774 * since it is not detached. 1775 */ 1776 ASSERT(tcp->tcp_time_wait_next == NULL); 1777 ASSERT(tcp->tcp_time_wait_prev == NULL); 1778 ASSERT(tcp->tcp_time_wait_expire == 0); 1779 /* 1780 * If it used to be a listener, check to make sure no one else 1781 * has taken the port before switching back to LISTEN state. 1782 */ 1783 if (connp->conn_ipversion == IPV4_VERSION) { 1784 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1785 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1786 } else { 1787 uint_t ifindex = 0; 1788 1789 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1790 ifindex = connp->conn_ixa->ixa_scopeid; 1791 1792 /* Allow conn_bound_if listeners? */ 1793 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1794 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1795 ipst); 1796 } 1797 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1798 tcp->tcp_state = TCPS_LISTEN; 1799 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1800 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1801 NULL, int32_t, old_state); 1802 } else if (old_state > TCPS_BOUND) { 1803 tcp->tcp_conn_req_max = 0; 1804 tcp->tcp_state = TCPS_BOUND; 1805 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1806 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1807 NULL, int32_t, old_state); 1808 1809 /* 1810 * If this end point is not going to become a listener, 1811 * decrement the listener connection count if 1812 * necessary. Note that we do not do this if it is 1813 * going to be a listner (the above if case) since 1814 * then it may remove the counter struct. 1815 */ 1816 if (tcp->tcp_listen_cnt != NULL) 1817 TCP_DECR_LISTEN_CNT(tcp); 1818 } 1819 if (lconnp != NULL) 1820 CONN_DEC_REF(lconnp); 1821 switch (old_state) { 1822 case TCPS_SYN_SENT: 1823 case TCPS_SYN_RCVD: 1824 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1825 break; 1826 case TCPS_ESTABLISHED: 1827 case TCPS_CLOSE_WAIT: 1828 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1829 break; 1830 } 1831 1832 if (tcp->tcp_fused) 1833 tcp_unfuse(tcp); 1834 1835 mutex_enter(&tcp->tcp_eager_lock); 1836 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1837 (tcp->tcp_conn_req_cnt_q != 0)) { 1838 tcp_eager_cleanup(tcp, 0); 1839 } 1840 mutex_exit(&tcp->tcp_eager_lock); 1841 1842 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1843 tcp->tcp_rnxt, TH_RST | TH_ACK); 1844 1845 tcp_reinit(tcp); 1846 1847 return (0); 1848 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1849 return (TBADSEQ); 1850 } 1851 return (0); 1852 } 1853 1854 /* 1855 * Our client hereby directs us to reject the connection request 1856 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1857 * of sending the appropriate RST, not an ICMP error. 1858 */ 1859 void 1860 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1861 { 1862 t_scalar_t seqnum; 1863 int error; 1864 conn_t *connp = tcp->tcp_connp; 1865 1866 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1867 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1868 tcp_err_ack(tcp, mp, TPROTO, 0); 1869 return; 1870 } 1871 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1872 error = tcp_disconnect_common(tcp, seqnum); 1873 if (error != 0) 1874 tcp_err_ack(tcp, mp, error, 0); 1875 else { 1876 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1877 /* Send M_FLUSH according to TPI */ 1878 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1879 } 1880 mp = mi_tpi_ok_ack_alloc(mp); 1881 if (mp != NULL) 1882 putnext(connp->conn_rq, mp); 1883 } 1884 } 1885 1886 /* 1887 * Handle reinitialization of a tcp structure. 1888 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1889 */ 1890 static void 1891 tcp_reinit(tcp_t *tcp) 1892 { 1893 mblk_t *mp; 1894 tcp_stack_t *tcps = tcp->tcp_tcps; 1895 conn_t *connp = tcp->tcp_connp; 1896 int32_t oldstate; 1897 1898 /* tcp_reinit should never be called for detached tcp_t's */ 1899 ASSERT(tcp->tcp_listener == NULL); 1900 ASSERT((connp->conn_family == AF_INET && 1901 connp->conn_ipversion == IPV4_VERSION) || 1902 (connp->conn_family == AF_INET6 && 1903 (connp->conn_ipversion == IPV4_VERSION || 1904 connp->conn_ipversion == IPV6_VERSION))); 1905 1906 /* Cancel outstanding timers */ 1907 tcp_timers_stop(tcp); 1908 1909 /* 1910 * Reset everything in the state vector, after updating global 1911 * MIB data from instance counters. 1912 */ 1913 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1914 tcp->tcp_ibsegs = 0; 1915 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1916 tcp->tcp_obsegs = 0; 1917 1918 tcp_close_mpp(&tcp->tcp_xmit_head); 1919 if (tcp->tcp_snd_zcopy_aware) 1920 tcp_zcopy_notify(tcp); 1921 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1922 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1923 mutex_enter(&tcp->tcp_non_sq_lock); 1924 if (tcp->tcp_flow_stopped && 1925 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1926 tcp_clrqfull(tcp); 1927 } 1928 mutex_exit(&tcp->tcp_non_sq_lock); 1929 tcp_close_mpp(&tcp->tcp_reass_head); 1930 tcp->tcp_reass_tail = NULL; 1931 if (tcp->tcp_rcv_list != NULL) { 1932 /* Free b_next chain */ 1933 tcp_close_mpp(&tcp->tcp_rcv_list); 1934 tcp->tcp_rcv_last_head = NULL; 1935 tcp->tcp_rcv_last_tail = NULL; 1936 tcp->tcp_rcv_cnt = 0; 1937 } 1938 tcp->tcp_rcv_last_tail = NULL; 1939 1940 if ((mp = tcp->tcp_urp_mp) != NULL) { 1941 freemsg(mp); 1942 tcp->tcp_urp_mp = NULL; 1943 } 1944 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1945 freemsg(mp); 1946 tcp->tcp_urp_mark_mp = NULL; 1947 } 1948 if (tcp->tcp_fused_sigurg_mp != NULL) { 1949 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1950 freeb(tcp->tcp_fused_sigurg_mp); 1951 tcp->tcp_fused_sigurg_mp = NULL; 1952 } 1953 if (tcp->tcp_ordrel_mp != NULL) { 1954 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1955 freeb(tcp->tcp_ordrel_mp); 1956 tcp->tcp_ordrel_mp = NULL; 1957 } 1958 1959 /* 1960 * Following is a union with two members which are 1961 * identical types and size so the following cleanup 1962 * is enough. 1963 */ 1964 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1965 1966 CL_INET_DISCONNECT(connp); 1967 1968 /* 1969 * The connection can't be on the tcp_time_wait_head list 1970 * since it is not detached. 1971 */ 1972 ASSERT(tcp->tcp_time_wait_next == NULL); 1973 ASSERT(tcp->tcp_time_wait_prev == NULL); 1974 ASSERT(tcp->tcp_time_wait_expire == 0); 1975 1976 /* 1977 * Reset/preserve other values 1978 */ 1979 tcp_reinit_values(tcp); 1980 ipcl_hash_remove(connp); 1981 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1982 ixa_cleanup(connp->conn_ixa); 1983 tcp_ipsec_cleanup(tcp); 1984 1985 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1986 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1987 oldstate = tcp->tcp_state; 1988 1989 if (tcp->tcp_conn_req_max != 0) { 1990 /* 1991 * This is the case when a TLI program uses the same 1992 * transport end point to accept a connection. This 1993 * makes the TCP both a listener and acceptor. When 1994 * this connection is closed, we need to set the state 1995 * back to TCPS_LISTEN. Make sure that the eager list 1996 * is reinitialized. 1997 * 1998 * Note that this stream is still bound to the four 1999 * tuples of the previous connection in IP. If a new 2000 * SYN with different foreign address comes in, IP will 2001 * not find it and will send it to the global queue. In 2002 * the global queue, TCP will do a tcp_lookup_listener() 2003 * to find this stream. This works because this stream 2004 * is only removed from connected hash. 2005 * 2006 */ 2007 tcp->tcp_state = TCPS_LISTEN; 2008 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2009 tcp->tcp_eager_next_drop_q0 = tcp; 2010 tcp->tcp_eager_prev_drop_q0 = tcp; 2011 /* 2012 * Initially set conn_recv to tcp_input_listener_unbound to try 2013 * to pick a good squeue for the listener when the first SYN 2014 * arrives. tcp_input_listener_unbound sets it to 2015 * tcp_input_listener on that first SYN. 2016 */ 2017 connp->conn_recv = tcp_input_listener_unbound; 2018 2019 connp->conn_proto = IPPROTO_TCP; 2020 connp->conn_faddr_v6 = ipv6_all_zeros; 2021 connp->conn_fport = 0; 2022 2023 (void) ipcl_bind_insert(connp); 2024 } else { 2025 tcp->tcp_state = TCPS_BOUND; 2026 } 2027 2028 /* 2029 * Initialize to default values 2030 */ 2031 tcp_init_values(tcp, NULL); 2032 2033 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2034 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2035 int32_t, oldstate); 2036 2037 ASSERT(tcp->tcp_ptpbhn != NULL); 2038 tcp->tcp_rwnd = connp->conn_rcvbuf; 2039 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2040 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2041 } 2042 2043 /* 2044 * Force values to zero that need be zero. 2045 * Do not touch values asociated with the BOUND or LISTEN state 2046 * since the connection will end up in that state after the reinit. 2047 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2048 * structure! 2049 */ 2050 static void 2051 tcp_reinit_values(tcp) 2052 tcp_t *tcp; 2053 { 2054 tcp_stack_t *tcps = tcp->tcp_tcps; 2055 conn_t *connp = tcp->tcp_connp; 2056 2057 #ifndef lint 2058 #define DONTCARE(x) 2059 #define PRESERVE(x) 2060 #else 2061 #define DONTCARE(x) ((x) = (x)) 2062 #define PRESERVE(x) ((x) = (x)) 2063 #endif /* lint */ 2064 2065 PRESERVE(tcp->tcp_bind_hash_port); 2066 PRESERVE(tcp->tcp_bind_hash); 2067 PRESERVE(tcp->tcp_ptpbhn); 2068 PRESERVE(tcp->tcp_acceptor_hash); 2069 PRESERVE(tcp->tcp_ptpahn); 2070 2071 /* Should be ASSERT NULL on these with new code! */ 2072 ASSERT(tcp->tcp_time_wait_next == NULL); 2073 ASSERT(tcp->tcp_time_wait_prev == NULL); 2074 ASSERT(tcp->tcp_time_wait_expire == 0); 2075 PRESERVE(tcp->tcp_state); 2076 PRESERVE(connp->conn_rq); 2077 PRESERVE(connp->conn_wq); 2078 2079 ASSERT(tcp->tcp_xmit_head == NULL); 2080 ASSERT(tcp->tcp_xmit_last == NULL); 2081 ASSERT(tcp->tcp_unsent == 0); 2082 ASSERT(tcp->tcp_xmit_tail == NULL); 2083 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2084 2085 tcp->tcp_snxt = 0; /* Displayed in mib */ 2086 tcp->tcp_suna = 0; /* Displayed in mib */ 2087 tcp->tcp_swnd = 0; 2088 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2089 2090 ASSERT(tcp->tcp_ibsegs == 0); 2091 ASSERT(tcp->tcp_obsegs == 0); 2092 2093 if (connp->conn_ht_iphc != NULL) { 2094 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2095 connp->conn_ht_iphc = NULL; 2096 connp->conn_ht_iphc_allocated = 0; 2097 connp->conn_ht_iphc_len = 0; 2098 connp->conn_ht_ulp = NULL; 2099 connp->conn_ht_ulp_len = 0; 2100 tcp->tcp_ipha = NULL; 2101 tcp->tcp_ip6h = NULL; 2102 tcp->tcp_tcpha = NULL; 2103 } 2104 2105 /* We clear any IP_OPTIONS and extension headers */ 2106 ip_pkt_free(&connp->conn_xmit_ipp); 2107 2108 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2109 DONTCARE(tcp->tcp_ipha); 2110 DONTCARE(tcp->tcp_ip6h); 2111 DONTCARE(tcp->tcp_tcpha); 2112 tcp->tcp_valid_bits = 0; 2113 2114 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2115 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2116 tcp->tcp_last_rcv_lbolt = 0; 2117 2118 tcp->tcp_init_cwnd = 0; 2119 2120 tcp->tcp_urp_last_valid = 0; 2121 tcp->tcp_hard_binding = 0; 2122 2123 tcp->tcp_fin_acked = 0; 2124 tcp->tcp_fin_rcvd = 0; 2125 tcp->tcp_fin_sent = 0; 2126 tcp->tcp_ordrel_done = 0; 2127 2128 tcp->tcp_detached = 0; 2129 2130 tcp->tcp_snd_ws_ok = B_FALSE; 2131 tcp->tcp_snd_ts_ok = B_FALSE; 2132 tcp->tcp_zero_win_probe = 0; 2133 2134 tcp->tcp_loopback = 0; 2135 tcp->tcp_localnet = 0; 2136 tcp->tcp_syn_defense = 0; 2137 tcp->tcp_set_timer = 0; 2138 2139 tcp->tcp_active_open = 0; 2140 tcp->tcp_rexmit = B_FALSE; 2141 tcp->tcp_xmit_zc_clean = B_FALSE; 2142 2143 tcp->tcp_snd_sack_ok = B_FALSE; 2144 tcp->tcp_hwcksum = B_FALSE; 2145 2146 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2147 2148 tcp->tcp_conn_def_q0 = 0; 2149 tcp->tcp_ip_forward_progress = B_FALSE; 2150 tcp->tcp_ecn_ok = B_FALSE; 2151 2152 tcp->tcp_cwr = B_FALSE; 2153 tcp->tcp_ecn_echo_on = B_FALSE; 2154 tcp->tcp_is_wnd_shrnk = B_FALSE; 2155 2156 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2157 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2158 2159 tcp->tcp_rcv_ws = 0; 2160 tcp->tcp_snd_ws = 0; 2161 tcp->tcp_ts_recent = 0; 2162 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2163 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2164 tcp->tcp_initial_pmtu = 0; 2165 2166 ASSERT(tcp->tcp_reass_head == NULL); 2167 ASSERT(tcp->tcp_reass_tail == NULL); 2168 2169 tcp->tcp_cwnd_cnt = 0; 2170 2171 ASSERT(tcp->tcp_rcv_list == NULL); 2172 ASSERT(tcp->tcp_rcv_last_head == NULL); 2173 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2174 ASSERT(tcp->tcp_rcv_cnt == 0); 2175 2176 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2177 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2178 tcp->tcp_csuna = 0; 2179 2180 tcp->tcp_rto = 0; /* Displayed in MIB */ 2181 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2182 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2183 tcp->tcp_rtt_update = 0; 2184 2185 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2186 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2187 2188 tcp->tcp_rack = 0; /* Displayed in mib */ 2189 tcp->tcp_rack_cnt = 0; 2190 tcp->tcp_rack_cur_max = 0; 2191 tcp->tcp_rack_abs_max = 0; 2192 2193 tcp->tcp_max_swnd = 0; 2194 2195 ASSERT(tcp->tcp_listener == NULL); 2196 2197 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2198 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2199 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2200 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2201 2202 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2203 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2204 PRESERVE(tcp->tcp_conn_req_max); 2205 PRESERVE(tcp->tcp_conn_req_seqnum); 2206 2207 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2208 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2209 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2210 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2211 2212 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2213 ASSERT(tcp->tcp_urp_mp == NULL); 2214 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2215 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2216 2217 ASSERT(tcp->tcp_eager_next_q == NULL); 2218 ASSERT(tcp->tcp_eager_last_q == NULL); 2219 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2220 tcp->tcp_eager_prev_q0 == NULL) || 2221 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2222 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2223 2224 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2225 tcp->tcp_eager_prev_drop_q0 == NULL) || 2226 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2227 2228 tcp->tcp_client_errno = 0; 2229 2230 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2231 2232 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2233 2234 PRESERVE(connp->conn_bound_addr_v6); 2235 tcp->tcp_last_sent_len = 0; 2236 tcp->tcp_dupack_cnt = 0; 2237 2238 connp->conn_fport = 0; /* Displayed in MIB */ 2239 PRESERVE(connp->conn_lport); 2240 2241 PRESERVE(tcp->tcp_acceptor_lockp); 2242 2243 ASSERT(tcp->tcp_ordrel_mp == NULL); 2244 PRESERVE(tcp->tcp_acceptor_id); 2245 DONTCARE(tcp->tcp_ipsec_overhead); 2246 2247 PRESERVE(connp->conn_family); 2248 /* Remove any remnants of mapped address binding */ 2249 if (connp->conn_family == AF_INET6) { 2250 connp->conn_ipversion = IPV6_VERSION; 2251 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2252 } else { 2253 connp->conn_ipversion = IPV4_VERSION; 2254 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2255 } 2256 2257 connp->conn_bound_if = 0; 2258 connp->conn_recv_ancillary.crb_all = 0; 2259 tcp->tcp_recvifindex = 0; 2260 tcp->tcp_recvhops = 0; 2261 tcp->tcp_closed = 0; 2262 if (tcp->tcp_hopopts != NULL) { 2263 mi_free(tcp->tcp_hopopts); 2264 tcp->tcp_hopopts = NULL; 2265 tcp->tcp_hopoptslen = 0; 2266 } 2267 ASSERT(tcp->tcp_hopoptslen == 0); 2268 if (tcp->tcp_dstopts != NULL) { 2269 mi_free(tcp->tcp_dstopts); 2270 tcp->tcp_dstopts = NULL; 2271 tcp->tcp_dstoptslen = 0; 2272 } 2273 ASSERT(tcp->tcp_dstoptslen == 0); 2274 if (tcp->tcp_rthdrdstopts != NULL) { 2275 mi_free(tcp->tcp_rthdrdstopts); 2276 tcp->tcp_rthdrdstopts = NULL; 2277 tcp->tcp_rthdrdstoptslen = 0; 2278 } 2279 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2280 if (tcp->tcp_rthdr != NULL) { 2281 mi_free(tcp->tcp_rthdr); 2282 tcp->tcp_rthdr = NULL; 2283 tcp->tcp_rthdrlen = 0; 2284 } 2285 ASSERT(tcp->tcp_rthdrlen == 0); 2286 2287 /* Reset fusion-related fields */ 2288 tcp->tcp_fused = B_FALSE; 2289 tcp->tcp_unfusable = B_FALSE; 2290 tcp->tcp_fused_sigurg = B_FALSE; 2291 tcp->tcp_loopback_peer = NULL; 2292 2293 tcp->tcp_lso = B_FALSE; 2294 2295 tcp->tcp_in_ack_unsent = 0; 2296 tcp->tcp_cork = B_FALSE; 2297 tcp->tcp_tconnind_started = B_FALSE; 2298 2299 PRESERVE(tcp->tcp_squeue_bytes); 2300 2301 tcp->tcp_closemp_used = B_FALSE; 2302 2303 PRESERVE(tcp->tcp_rsrv_mp); 2304 PRESERVE(tcp->tcp_rsrv_mp_lock); 2305 2306 #ifdef DEBUG 2307 DONTCARE(tcp->tcmp_stk[0]); 2308 #endif 2309 2310 PRESERVE(tcp->tcp_connid); 2311 2312 ASSERT(tcp->tcp_listen_cnt == NULL); 2313 ASSERT(tcp->tcp_reass_tid == 0); 2314 2315 #undef DONTCARE 2316 #undef PRESERVE 2317 } 2318 2319 /* 2320 * Initialize the various fields in tcp_t. If parent (the listener) is non 2321 * NULL, certain values will be inheritted from it. 2322 */ 2323 void 2324 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2325 { 2326 tcp_stack_t *tcps = tcp->tcp_tcps; 2327 conn_t *connp = tcp->tcp_connp; 2328 clock_t rto; 2329 2330 ASSERT((connp->conn_family == AF_INET && 2331 connp->conn_ipversion == IPV4_VERSION) || 2332 (connp->conn_family == AF_INET6 && 2333 (connp->conn_ipversion == IPV4_VERSION || 2334 connp->conn_ipversion == IPV6_VERSION))); 2335 2336 if (parent == NULL) { 2337 tcp->tcp_naglim = tcps->tcps_naglim_def; 2338 2339 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2340 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2341 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2342 2343 tcp->tcp_first_ctimer_threshold = 2344 tcps->tcps_ip_notify_cinterval; 2345 tcp->tcp_second_ctimer_threshold = 2346 tcps->tcps_ip_abort_cinterval; 2347 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2348 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2349 2350 tcp->tcp_fin_wait_2_flush_interval = 2351 tcps->tcps_fin_wait_2_flush_interval; 2352 2353 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2354 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2355 2356 /* 2357 * Default value of tcp_init_cwnd is 0, so no need to set here 2358 * if parent is NULL. But we need to inherit it from parent. 2359 */ 2360 } else { 2361 /* Inherit various TCP parameters from the parent. */ 2362 tcp->tcp_naglim = parent->tcp_naglim; 2363 2364 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2365 tcp->tcp_rto_min = parent->tcp_rto_min; 2366 tcp->tcp_rto_max = parent->tcp_rto_max; 2367 2368 tcp->tcp_first_ctimer_threshold = 2369 parent->tcp_first_ctimer_threshold; 2370 tcp->tcp_second_ctimer_threshold = 2371 parent->tcp_second_ctimer_threshold; 2372 tcp->tcp_first_timer_threshold = 2373 parent->tcp_first_timer_threshold; 2374 tcp->tcp_second_timer_threshold = 2375 parent->tcp_second_timer_threshold; 2376 2377 tcp->tcp_fin_wait_2_flush_interval = 2378 parent->tcp_fin_wait_2_flush_interval; 2379 2380 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2381 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2382 2383 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2384 } 2385 2386 /* 2387 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2388 * will be close to tcp_rexmit_interval_initial. By doing this, we 2389 * allow the algorithm to adjust slowly to large fluctuations of RTT 2390 * during first few transmissions of a connection as seen in slow 2391 * links. 2392 */ 2393 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2; 2394 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1; 2395 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2396 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2397 tcps->tcps_conn_grace_period; 2398 TCP_SET_RTO(tcp, rto); 2399 2400 tcp->tcp_timer_backoff = 0; 2401 tcp->tcp_ms_we_have_waited = 0; 2402 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2403 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2404 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2405 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 2406 2407 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2408 2409 /* NOTE: ISS is now set in tcp_set_destination(). */ 2410 2411 /* Reset fusion-related fields */ 2412 tcp->tcp_fused = B_FALSE; 2413 tcp->tcp_unfusable = B_FALSE; 2414 tcp->tcp_fused_sigurg = B_FALSE; 2415 tcp->tcp_loopback_peer = NULL; 2416 2417 /* We rebuild the header template on the next connect/conn_request */ 2418 2419 connp->conn_mlp_type = mlptSingle; 2420 2421 /* 2422 * Init the window scale to the max so tcp_rwnd_set() won't pare 2423 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2424 */ 2425 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2426 tcp->tcp_rwnd = connp->conn_rcvbuf; 2427 2428 tcp->tcp_cork = B_FALSE; 2429 /* 2430 * Init the tcp_debug option if it wasn't already set. This value 2431 * determines whether TCP 2432 * calls strlog() to print out debug messages. Doing this 2433 * initialization here means that this value is not inherited thru 2434 * tcp_reinit(). 2435 */ 2436 if (!connp->conn_debug) 2437 connp->conn_debug = tcps->tcps_dbg; 2438 } 2439 2440 /* 2441 * Update the TCP connection according to change of PMTU. 2442 * 2443 * Path MTU might have changed by either increase or decrease, so need to 2444 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2445 * or negative MSS, since tcp_mss_set() will do it. 2446 */ 2447 void 2448 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2449 { 2450 uint32_t pmtu; 2451 int32_t mss; 2452 conn_t *connp = tcp->tcp_connp; 2453 ip_xmit_attr_t *ixa = connp->conn_ixa; 2454 iaflags_t ixaflags; 2455 2456 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2457 return; 2458 2459 if (tcp->tcp_state < TCPS_ESTABLISHED) 2460 return; 2461 2462 /* 2463 * Always call ip_get_pmtu() to make sure that IP has updated 2464 * ixa_flags properly. 2465 */ 2466 pmtu = ip_get_pmtu(ixa); 2467 ixaflags = ixa->ixa_flags; 2468 2469 /* 2470 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2471 * IPsec overhead if applied. Make sure to use the most recent 2472 * IPsec information. 2473 */ 2474 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2475 2476 /* 2477 * Nothing to change, so just return. 2478 */ 2479 if (mss == tcp->tcp_mss) 2480 return; 2481 2482 /* 2483 * Currently, for ICMP errors, only PMTU decrease is handled. 2484 */ 2485 if (mss > tcp->tcp_mss && decrease_only) 2486 return; 2487 2488 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2489 2490 /* 2491 * Update ixa_fragsize and ixa_pmtu. 2492 */ 2493 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2494 2495 /* 2496 * Adjust MSS and all relevant variables. 2497 */ 2498 tcp_mss_set(tcp, mss); 2499 2500 /* 2501 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2502 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2503 * has a (potentially different) min size we do the same. Make sure to 2504 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2505 * fragment the packet. 2506 * 2507 * LSO over IPv6 can not be fragmented. So need to disable LSO 2508 * when IPv6 fragmentation is needed. 2509 */ 2510 if (mss < tcp->tcp_tcps->tcps_mss_min) 2511 ixaflags |= IXAF_PMTU_TOO_SMALL; 2512 2513 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2514 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2515 2516 if ((connp->conn_ipversion == IPV4_VERSION) && 2517 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2518 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2519 } 2520 ixa->ixa_flags = ixaflags; 2521 } 2522 2523 int 2524 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2525 { 2526 conn_t *connp = tcp->tcp_connp; 2527 queue_t *q = connp->conn_rq; 2528 int32_t mss = tcp->tcp_mss; 2529 int maxpsz; 2530 2531 if (TCP_IS_DETACHED(tcp)) 2532 return (mss); 2533 if (tcp->tcp_fused) { 2534 maxpsz = tcp_fuse_maxpsz(tcp); 2535 mss = INFPSZ; 2536 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2537 /* 2538 * Set the sd_qn_maxpsz according to the socket send buffer 2539 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2540 * instruct the stream head to copyin user data into contiguous 2541 * kernel-allocated buffers without breaking it up into smaller 2542 * chunks. We round up the buffer size to the nearest SMSS. 2543 */ 2544 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2545 mss = INFPSZ; 2546 } else { 2547 /* 2548 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2549 * (and a multiple of the mss). This instructs the stream 2550 * head to break down larger than SMSS writes into SMSS- 2551 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2552 */ 2553 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2554 if (maxpsz > connp->conn_sndbuf / 2) { 2555 maxpsz = connp->conn_sndbuf / 2; 2556 /* Round up to nearest mss */ 2557 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2558 } 2559 } 2560 2561 (void) proto_set_maxpsz(q, connp, maxpsz); 2562 if (!(IPCL_IS_NONSTR(connp))) 2563 connp->conn_wq->q_maxpsz = maxpsz; 2564 if (set_maxblk) 2565 (void) proto_set_tx_maxblk(q, connp, mss); 2566 return (mss); 2567 } 2568 2569 /* For /dev/tcp aka AF_INET open */ 2570 static int 2571 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2572 { 2573 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2574 } 2575 2576 /* For /dev/tcp6 aka AF_INET6 open */ 2577 static int 2578 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2579 { 2580 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2581 } 2582 2583 conn_t * 2584 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2585 int *errorp) 2586 { 2587 tcp_t *tcp = NULL; 2588 conn_t *connp; 2589 zoneid_t zoneid; 2590 tcp_stack_t *tcps; 2591 squeue_t *sqp; 2592 2593 ASSERT(errorp != NULL); 2594 /* 2595 * Find the proper zoneid and netstack. 2596 */ 2597 /* 2598 * Special case for install: miniroot needs to be able to 2599 * access files via NFS as though it were always in the 2600 * global zone. 2601 */ 2602 if (credp == kcred && nfs_global_client_only != 0) { 2603 zoneid = GLOBAL_ZONEID; 2604 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2605 netstack_tcp; 2606 ASSERT(tcps != NULL); 2607 } else { 2608 netstack_t *ns; 2609 int err; 2610 2611 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2612 *errorp = err; 2613 return (NULL); 2614 } 2615 2616 ns = netstack_find_by_cred(credp); 2617 ASSERT(ns != NULL); 2618 tcps = ns->netstack_tcp; 2619 ASSERT(tcps != NULL); 2620 2621 /* 2622 * For exclusive stacks we set the zoneid to zero 2623 * to make TCP operate as if in the global zone. 2624 */ 2625 if (tcps->tcps_netstack->netstack_stackid != 2626 GLOBAL_NETSTACKID) 2627 zoneid = GLOBAL_ZONEID; 2628 else 2629 zoneid = crgetzoneid(credp); 2630 } 2631 2632 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2633 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2634 /* 2635 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2636 * so we drop it by one. 2637 */ 2638 netstack_rele(tcps->tcps_netstack); 2639 if (connp == NULL) { 2640 *errorp = ENOSR; 2641 return (NULL); 2642 } 2643 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2644 2645 connp->conn_sqp = sqp; 2646 connp->conn_initial_sqp = connp->conn_sqp; 2647 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2648 tcp = connp->conn_tcp; 2649 2650 /* 2651 * Besides asking IP to set the checksum for us, have conn_ip_output 2652 * to do the following checks when necessary: 2653 * 2654 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2655 * IXAF_VERIFY_PMTU: verify PMTU changes 2656 * IXAF_VERIFY_LSO: verify LSO capability changes 2657 */ 2658 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2659 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2660 2661 if (!tcps->tcps_dev_flow_ctl) 2662 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2663 2664 if (isv6) { 2665 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2666 connp->conn_ipversion = IPV6_VERSION; 2667 connp->conn_family = AF_INET6; 2668 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2669 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2670 } else { 2671 connp->conn_ipversion = IPV4_VERSION; 2672 connp->conn_family = AF_INET; 2673 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2674 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2675 } 2676 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2677 2678 crhold(credp); 2679 connp->conn_cred = credp; 2680 connp->conn_cpid = curproc->p_pid; 2681 connp->conn_open_time = ddi_get_lbolt64(); 2682 2683 /* Cache things in the ixa without any refhold */ 2684 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2685 connp->conn_ixa->ixa_cred = credp; 2686 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2687 2688 connp->conn_zoneid = zoneid; 2689 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2690 connp->conn_ixa->ixa_zoneid = zoneid; 2691 connp->conn_mlp_type = mlptSingle; 2692 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2693 ASSERT(tcp->tcp_tcps == tcps); 2694 2695 /* 2696 * If the caller has the process-wide flag set, then default to MAC 2697 * exempt mode. This allows read-down to unlabeled hosts. 2698 */ 2699 if (getpflags(NET_MAC_AWARE, credp) != 0) 2700 connp->conn_mac_mode = CONN_MAC_AWARE; 2701 2702 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2703 2704 if (issocket) { 2705 tcp->tcp_issocket = 1; 2706 } 2707 2708 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2709 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2710 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2711 connp->conn_so_type = SOCK_STREAM; 2712 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2713 tcps->tcps_wroff_xtra; 2714 2715 SOCK_CONNID_INIT(tcp->tcp_connid); 2716 /* DTrace ignores this - it isn't a tcp:::state-change */ 2717 tcp->tcp_state = TCPS_IDLE; 2718 tcp_init_values(tcp, NULL); 2719 return (connp); 2720 } 2721 2722 static int 2723 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2724 boolean_t isv6) 2725 { 2726 tcp_t *tcp = NULL; 2727 conn_t *connp = NULL; 2728 int err; 2729 vmem_t *minor_arena = NULL; 2730 dev_t conn_dev; 2731 boolean_t issocket; 2732 2733 if (q->q_ptr != NULL) 2734 return (0); 2735 2736 if (sflag == MODOPEN) 2737 return (EINVAL); 2738 2739 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2740 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2741 minor_arena = ip_minor_arena_la; 2742 } else { 2743 /* 2744 * Either minor numbers in the large arena were exhausted 2745 * or a non socket application is doing the open. 2746 * Try to allocate from the small arena. 2747 */ 2748 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2749 return (EBUSY); 2750 } 2751 minor_arena = ip_minor_arena_sa; 2752 } 2753 2754 ASSERT(minor_arena != NULL); 2755 2756 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2757 2758 if (flag & SO_FALLBACK) { 2759 /* 2760 * Non streams socket needs a stream to fallback to 2761 */ 2762 RD(q)->q_ptr = (void *)conn_dev; 2763 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2764 WR(q)->q_ptr = (void *)minor_arena; 2765 qprocson(q); 2766 return (0); 2767 } else if (flag & SO_ACCEPTOR) { 2768 q->q_qinfo = &tcp_acceptor_rinit; 2769 /* 2770 * the conn_dev and minor_arena will be subsequently used by 2771 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2772 * the minor device number for this connection from the q_ptr. 2773 */ 2774 RD(q)->q_ptr = (void *)conn_dev; 2775 WR(q)->q_qinfo = &tcp_acceptor_winit; 2776 WR(q)->q_ptr = (void *)minor_arena; 2777 qprocson(q); 2778 return (0); 2779 } 2780 2781 issocket = flag & SO_SOCKSTR; 2782 connp = tcp_create_common(credp, isv6, issocket, &err); 2783 2784 if (connp == NULL) { 2785 inet_minor_free(minor_arena, conn_dev); 2786 q->q_ptr = WR(q)->q_ptr = NULL; 2787 return (err); 2788 } 2789 2790 connp->conn_rq = q; 2791 connp->conn_wq = WR(q); 2792 q->q_ptr = WR(q)->q_ptr = connp; 2793 2794 connp->conn_dev = conn_dev; 2795 connp->conn_minor_arena = minor_arena; 2796 2797 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2798 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2799 2800 tcp = connp->conn_tcp; 2801 2802 if (issocket) { 2803 WR(q)->q_qinfo = &tcp_sock_winit; 2804 } else { 2805 #ifdef _ILP32 2806 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2807 #else 2808 tcp->tcp_acceptor_id = conn_dev; 2809 #endif /* _ILP32 */ 2810 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2811 } 2812 2813 /* 2814 * Put the ref for TCP. Ref for IP was already put 2815 * by ipcl_conn_create. Also Make the conn_t globally 2816 * visible to walkers 2817 */ 2818 mutex_enter(&connp->conn_lock); 2819 CONN_INC_REF_LOCKED(connp); 2820 ASSERT(connp->conn_ref == 2); 2821 connp->conn_state_flags &= ~CONN_INCIPIENT; 2822 mutex_exit(&connp->conn_lock); 2823 2824 qprocson(q); 2825 return (0); 2826 } 2827 2828 /* 2829 * Build/update the tcp header template (in conn_ht_iphc) based on 2830 * conn_xmit_ipp. The headers include ip6_t, any extension 2831 * headers, and the maximum size tcp header (to avoid reallocation 2832 * on the fly for additional tcp options). 2833 * 2834 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2835 * Returns failure if can't allocate memory. 2836 */ 2837 int 2838 tcp_build_hdrs(tcp_t *tcp) 2839 { 2840 tcp_stack_t *tcps = tcp->tcp_tcps; 2841 conn_t *connp = tcp->tcp_connp; 2842 char buf[TCP_MAX_HDR_LENGTH]; 2843 uint_t buflen; 2844 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2845 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2846 tcpha_t *tcpha; 2847 uint32_t cksum; 2848 int error; 2849 2850 /* 2851 * We might be called after the connection is set up, and we might 2852 * have TS options already in the TCP header. Thus we save any 2853 * existing tcp header. 2854 */ 2855 buflen = connp->conn_ht_ulp_len; 2856 if (buflen != 0) { 2857 bcopy(connp->conn_ht_ulp, buf, buflen); 2858 extralen -= buflen - ulplen; 2859 ulplen = buflen; 2860 } 2861 2862 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2863 mutex_enter(&connp->conn_lock); 2864 error = conn_build_hdr_template(connp, ulplen, extralen, 2865 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2866 mutex_exit(&connp->conn_lock); 2867 if (error != 0) 2868 return (error); 2869 2870 /* 2871 * Any routing header/option has been massaged. The checksum difference 2872 * is stored in conn_sum for later use. 2873 */ 2874 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2875 tcp->tcp_tcpha = tcpha; 2876 2877 /* restore any old tcp header */ 2878 if (buflen != 0) { 2879 bcopy(buf, connp->conn_ht_ulp, buflen); 2880 } else { 2881 tcpha->tha_sum = 0; 2882 tcpha->tha_urp = 0; 2883 tcpha->tha_ack = 0; 2884 tcpha->tha_offset_and_reserved = (5 << 4); 2885 tcpha->tha_lport = connp->conn_lport; 2886 tcpha->tha_fport = connp->conn_fport; 2887 } 2888 2889 /* 2890 * IP wants our header length in the checksum field to 2891 * allow it to perform a single pseudo-header+checksum 2892 * calculation on behalf of TCP. 2893 * Include the adjustment for a source route once IP_OPTIONS is set. 2894 */ 2895 cksum = sizeof (tcpha_t) + connp->conn_sum; 2896 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2897 ASSERT(cksum < 0x10000); 2898 tcpha->tha_sum = htons(cksum); 2899 2900 if (connp->conn_ipversion == IPV4_VERSION) 2901 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2902 else 2903 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2904 2905 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2906 connp->conn_wroff) { 2907 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2908 tcps->tcps_wroff_xtra; 2909 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2910 connp->conn_wroff); 2911 } 2912 return (0); 2913 } 2914 2915 /* 2916 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2917 * We do not allow the receive window to shrink. After setting rwnd, 2918 * set the flow control hiwat of the stream. 2919 * 2920 * This function is called in 2 cases: 2921 * 2922 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2923 * connection (passive open) and in tcp_input_data() for active connect. 2924 * This is called after tcp_mss_set() when the desired MSS value is known. 2925 * This makes sure that our window size is a mutiple of the other side's 2926 * MSS. 2927 * 2) Handling SO_RCVBUF option. 2928 * 2929 * It is ASSUMED that the requested size is a multiple of the current MSS. 2930 * 2931 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2932 * user requests so. 2933 */ 2934 int 2935 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2936 { 2937 uint32_t mss = tcp->tcp_mss; 2938 uint32_t old_max_rwnd; 2939 uint32_t max_transmittable_rwnd; 2940 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2941 tcp_stack_t *tcps = tcp->tcp_tcps; 2942 conn_t *connp = tcp->tcp_connp; 2943 2944 /* 2945 * Insist on a receive window that is at least 2946 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2947 * funny TCP interactions of Nagle algorithm, SWS avoidance 2948 * and delayed acknowledgement. 2949 */ 2950 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2951 2952 if (tcp->tcp_fused) { 2953 size_t sth_hiwat; 2954 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2955 2956 ASSERT(peer_tcp != NULL); 2957 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2958 if (!tcp_detached) { 2959 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2960 sth_hiwat); 2961 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2962 } 2963 2964 /* Caller could have changed tcp_rwnd; update tha_win */ 2965 if (tcp->tcp_tcpha != NULL) { 2966 tcp->tcp_tcpha->tha_win = 2967 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2968 } 2969 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2970 tcp->tcp_cwnd_max = rwnd; 2971 2972 /* 2973 * In the fusion case, the maxpsz stream head value of 2974 * our peer is set according to its send buffer size 2975 * and our receive buffer size; since the latter may 2976 * have changed we need to update the peer's maxpsz. 2977 */ 2978 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2979 return (sth_hiwat); 2980 } 2981 2982 if (tcp_detached) 2983 old_max_rwnd = tcp->tcp_rwnd; 2984 else 2985 old_max_rwnd = connp->conn_rcvbuf; 2986 2987 2988 /* 2989 * If window size info has already been exchanged, TCP should not 2990 * shrink the window. Shrinking window is doable if done carefully. 2991 * We may add that support later. But so far there is not a real 2992 * need to do that. 2993 */ 2994 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 2995 /* MSS may have changed, do a round up again. */ 2996 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 2997 } 2998 2999 /* 3000 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3001 * can be applied even before the window scale option is decided. 3002 */ 3003 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3004 if (rwnd > max_transmittable_rwnd) { 3005 rwnd = max_transmittable_rwnd - 3006 (max_transmittable_rwnd % mss); 3007 if (rwnd < mss) 3008 rwnd = max_transmittable_rwnd; 3009 /* 3010 * If we're over the limit we may have to back down tcp_rwnd. 3011 * The increment below won't work for us. So we set all three 3012 * here and the increment below will have no effect. 3013 */ 3014 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3015 } 3016 if (tcp->tcp_localnet) { 3017 tcp->tcp_rack_abs_max = 3018 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3019 } else { 3020 /* 3021 * For a remote host on a different subnet (through a router), 3022 * we ack every other packet to be conforming to RFC1122. 3023 * tcp_deferred_acks_max is default to 2. 3024 */ 3025 tcp->tcp_rack_abs_max = 3026 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3027 } 3028 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3029 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3030 else 3031 tcp->tcp_rack_cur_max = 0; 3032 /* 3033 * Increment the current rwnd by the amount the maximum grew (we 3034 * can not overwrite it since we might be in the middle of a 3035 * connection.) 3036 */ 3037 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3038 connp->conn_rcvbuf = rwnd; 3039 3040 /* Are we already connected? */ 3041 if (tcp->tcp_tcpha != NULL) { 3042 tcp->tcp_tcpha->tha_win = 3043 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3044 } 3045 3046 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3047 tcp->tcp_cwnd_max = rwnd; 3048 3049 if (tcp_detached) 3050 return (rwnd); 3051 3052 tcp_set_recv_threshold(tcp, rwnd >> 3); 3053 3054 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3055 return (rwnd); 3056 } 3057 3058 int 3059 tcp_do_unbind(conn_t *connp) 3060 { 3061 tcp_t *tcp = connp->conn_tcp; 3062 int32_t oldstate; 3063 3064 switch (tcp->tcp_state) { 3065 case TCPS_BOUND: 3066 case TCPS_LISTEN: 3067 break; 3068 default: 3069 return (-TOUTSTATE); 3070 } 3071 3072 /* 3073 * Need to clean up all the eagers since after the unbind, segments 3074 * will no longer be delivered to this listener stream. 3075 */ 3076 mutex_enter(&tcp->tcp_eager_lock); 3077 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3078 tcp_eager_cleanup(tcp, 0); 3079 } 3080 mutex_exit(&tcp->tcp_eager_lock); 3081 3082 /* Clean up the listener connection counter if necessary. */ 3083 if (tcp->tcp_listen_cnt != NULL) 3084 TCP_DECR_LISTEN_CNT(tcp); 3085 connp->conn_laddr_v6 = ipv6_all_zeros; 3086 connp->conn_saddr_v6 = ipv6_all_zeros; 3087 tcp_bind_hash_remove(tcp); 3088 oldstate = tcp->tcp_state; 3089 tcp->tcp_state = TCPS_IDLE; 3090 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3091 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3092 int32_t, oldstate); 3093 3094 ip_unbind(connp); 3095 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3096 3097 return (0); 3098 } 3099 3100 /* 3101 * Collect protocol properties to send to the upper handle. 3102 */ 3103 void 3104 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3105 { 3106 conn_t *connp = tcp->tcp_connp; 3107 3108 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3109 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3110 3111 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3112 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3113 connp->conn_rcvbuf; 3114 /* 3115 * Determine what write offset value to use depending on SACK and 3116 * whether the endpoint is fused or not. 3117 */ 3118 if (tcp->tcp_fused) { 3119 ASSERT(tcp->tcp_loopback); 3120 ASSERT(tcp->tcp_loopback_peer != NULL); 3121 /* 3122 * For fused tcp loopback, set the stream head's write 3123 * offset value to zero since we won't be needing any room 3124 * for TCP/IP headers. This would also improve performance 3125 * since it would reduce the amount of work done by kmem. 3126 * Non-fused tcp loopback case is handled separately below. 3127 */ 3128 sopp->sopp_wroff = 0; 3129 /* 3130 * Update the peer's transmit parameters according to 3131 * our recently calculated high water mark value. 3132 */ 3133 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3134 } else if (tcp->tcp_snd_sack_ok) { 3135 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3136 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3137 } else { 3138 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3139 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3140 } 3141 3142 if (tcp->tcp_loopback) { 3143 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3144 sopp->sopp_loopback = B_TRUE; 3145 } 3146 } 3147 3148 /* 3149 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3150 */ 3151 boolean_t 3152 tcp_zcopy_check(tcp_t *tcp) 3153 { 3154 conn_t *connp = tcp->tcp_connp; 3155 ip_xmit_attr_t *ixa = connp->conn_ixa; 3156 boolean_t zc_enabled = B_FALSE; 3157 tcp_stack_t *tcps = tcp->tcp_tcps; 3158 3159 if (do_tcpzcopy == 2) 3160 zc_enabled = B_TRUE; 3161 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3162 zc_enabled = B_TRUE; 3163 3164 tcp->tcp_snd_zcopy_on = zc_enabled; 3165 if (!TCP_IS_DETACHED(tcp)) { 3166 if (zc_enabled) { 3167 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3168 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3169 ZCVMSAFE); 3170 TCP_STAT(tcps, tcp_zcopy_on); 3171 } else { 3172 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3173 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3174 ZCVMUNSAFE); 3175 TCP_STAT(tcps, tcp_zcopy_off); 3176 } 3177 } 3178 return (zc_enabled); 3179 } 3180 3181 /* 3182 * Backoff from a zero-copy message by copying data to a new allocated 3183 * message and freeing the original desballoca'ed segmapped message. 3184 * 3185 * This function is called by following two callers: 3186 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3187 * the origial desballoca'ed message and notify sockfs. This is in re- 3188 * transmit state. 3189 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3190 * to be copied to new message. 3191 */ 3192 mblk_t * 3193 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3194 { 3195 mblk_t *nbp; 3196 mblk_t *head = NULL; 3197 mblk_t *tail = NULL; 3198 tcp_stack_t *tcps = tcp->tcp_tcps; 3199 3200 ASSERT(bp != NULL); 3201 while (bp != NULL) { 3202 if (IS_VMLOANED_MBLK(bp)) { 3203 TCP_STAT(tcps, tcp_zcopy_backoff); 3204 if ((nbp = copyb(bp)) == NULL) { 3205 tcp->tcp_xmit_zc_clean = B_FALSE; 3206 if (tail != NULL) 3207 tail->b_cont = bp; 3208 return ((head == NULL) ? bp : head); 3209 } 3210 3211 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3212 if (fix_xmitlist) 3213 tcp_zcopy_notify(tcp); 3214 else 3215 nbp->b_datap->db_struioflag |= 3216 STRUIO_ZCNOTIFY; 3217 } 3218 nbp->b_cont = bp->b_cont; 3219 3220 /* 3221 * Copy saved information and adjust tcp_xmit_tail 3222 * if needed. 3223 */ 3224 if (fix_xmitlist) { 3225 nbp->b_prev = bp->b_prev; 3226 nbp->b_next = bp->b_next; 3227 3228 if (tcp->tcp_xmit_tail == bp) 3229 tcp->tcp_xmit_tail = nbp; 3230 } 3231 3232 /* Free the original message. */ 3233 bp->b_prev = NULL; 3234 bp->b_next = NULL; 3235 freeb(bp); 3236 3237 bp = nbp; 3238 } 3239 3240 if (head == NULL) { 3241 head = bp; 3242 } 3243 if (tail == NULL) { 3244 tail = bp; 3245 } else { 3246 tail->b_cont = bp; 3247 tail = bp; 3248 } 3249 3250 /* Move forward. */ 3251 bp = bp->b_cont; 3252 } 3253 3254 if (fix_xmitlist) { 3255 tcp->tcp_xmit_last = tail; 3256 tcp->tcp_xmit_zc_clean = B_TRUE; 3257 } 3258 3259 return (head); 3260 } 3261 3262 void 3263 tcp_zcopy_notify(tcp_t *tcp) 3264 { 3265 struct stdata *stp; 3266 conn_t *connp; 3267 3268 if (tcp->tcp_detached) 3269 return; 3270 connp = tcp->tcp_connp; 3271 if (IPCL_IS_NONSTR(connp)) { 3272 (*connp->conn_upcalls->su_zcopy_notify) 3273 (connp->conn_upper_handle); 3274 return; 3275 } 3276 stp = STREAM(connp->conn_rq); 3277 mutex_enter(&stp->sd_lock); 3278 stp->sd_flag |= STZCNOTIFY; 3279 cv_broadcast(&stp->sd_zcopy_wait); 3280 mutex_exit(&stp->sd_lock); 3281 } 3282 3283 /* 3284 * Update the TCP connection according to change of LSO capability. 3285 */ 3286 static void 3287 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3288 { 3289 /* 3290 * We check against IPv4 header length to preserve the old behavior 3291 * of only enabling LSO when there are no IP options. 3292 * But this restriction might not be necessary at all. Before removing 3293 * it, need to verify how LSO is handled for source routing case, with 3294 * which IP does software checksum. 3295 * 3296 * For IPv6, whenever any extension header is needed, LSO is supressed. 3297 */ 3298 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3299 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3300 return; 3301 3302 /* 3303 * Either the LSO capability newly became usable, or it has changed. 3304 */ 3305 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3306 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3307 3308 ASSERT(lsoc->ill_lso_max > 0); 3309 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3310 3311 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3312 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3313 3314 /* 3315 * If LSO to be enabled, notify the STREAM header with larger 3316 * data block. 3317 */ 3318 if (!tcp->tcp_lso) 3319 tcp->tcp_maxpsz_multiplier = 0; 3320 3321 tcp->tcp_lso = B_TRUE; 3322 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3323 } else { /* LSO capability is not usable any more. */ 3324 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3325 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3326 3327 /* 3328 * If LSO to be disabled, notify the STREAM header with smaller 3329 * data block. And need to restore fragsize to PMTU. 3330 */ 3331 if (tcp->tcp_lso) { 3332 tcp->tcp_maxpsz_multiplier = 3333 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3334 ixa->ixa_fragsize = ixa->ixa_pmtu; 3335 tcp->tcp_lso = B_FALSE; 3336 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3337 } 3338 } 3339 3340 (void) tcp_maxpsz_set(tcp, B_TRUE); 3341 } 3342 3343 /* 3344 * Update the TCP connection according to change of ZEROCOPY capability. 3345 */ 3346 static void 3347 tcp_update_zcopy(tcp_t *tcp) 3348 { 3349 conn_t *connp = tcp->tcp_connp; 3350 tcp_stack_t *tcps = tcp->tcp_tcps; 3351 3352 if (tcp->tcp_snd_zcopy_on) { 3353 tcp->tcp_snd_zcopy_on = B_FALSE; 3354 if (!TCP_IS_DETACHED(tcp)) { 3355 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3356 ZCVMUNSAFE); 3357 TCP_STAT(tcps, tcp_zcopy_off); 3358 } 3359 } else { 3360 tcp->tcp_snd_zcopy_on = B_TRUE; 3361 if (!TCP_IS_DETACHED(tcp)) { 3362 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3363 ZCVMSAFE); 3364 TCP_STAT(tcps, tcp_zcopy_on); 3365 } 3366 } 3367 } 3368 3369 /* 3370 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3371 * so it's safe to update the TCP connection. 3372 */ 3373 /* ARGSUSED1 */ 3374 static void 3375 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3376 ixa_notify_arg_t narg) 3377 { 3378 tcp_t *tcp = (tcp_t *)arg; 3379 conn_t *connp = tcp->tcp_connp; 3380 3381 switch (ntype) { 3382 case IXAN_LSO: 3383 tcp_update_lso(tcp, connp->conn_ixa); 3384 break; 3385 case IXAN_PMTU: 3386 tcp_update_pmtu(tcp, B_FALSE); 3387 break; 3388 case IXAN_ZCOPY: 3389 tcp_update_zcopy(tcp); 3390 break; 3391 default: 3392 break; 3393 } 3394 } 3395 3396 /* 3397 * The TCP write service routine should never be called... 3398 */ 3399 /* ARGSUSED */ 3400 static void 3401 tcp_wsrv(queue_t *q) 3402 { 3403 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3404 3405 TCP_STAT(tcps, tcp_wsrv_called); 3406 } 3407 3408 /* 3409 * Hash list lookup routine for tcp_t structures. 3410 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3411 */ 3412 tcp_t * 3413 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3414 { 3415 tf_t *tf; 3416 tcp_t *tcp; 3417 3418 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3419 mutex_enter(&tf->tf_lock); 3420 for (tcp = tf->tf_tcp; tcp != NULL; 3421 tcp = tcp->tcp_acceptor_hash) { 3422 if (tcp->tcp_acceptor_id == id) { 3423 CONN_INC_REF(tcp->tcp_connp); 3424 mutex_exit(&tf->tf_lock); 3425 return (tcp); 3426 } 3427 } 3428 mutex_exit(&tf->tf_lock); 3429 return (NULL); 3430 } 3431 3432 /* 3433 * Hash list insertion routine for tcp_t structures. 3434 */ 3435 void 3436 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3437 { 3438 tf_t *tf; 3439 tcp_t **tcpp; 3440 tcp_t *tcpnext; 3441 tcp_stack_t *tcps = tcp->tcp_tcps; 3442 3443 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3444 3445 if (tcp->tcp_ptpahn != NULL) 3446 tcp_acceptor_hash_remove(tcp); 3447 tcpp = &tf->tf_tcp; 3448 mutex_enter(&tf->tf_lock); 3449 tcpnext = tcpp[0]; 3450 if (tcpnext) 3451 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3452 tcp->tcp_acceptor_hash = tcpnext; 3453 tcp->tcp_ptpahn = tcpp; 3454 tcpp[0] = tcp; 3455 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3456 mutex_exit(&tf->tf_lock); 3457 } 3458 3459 /* 3460 * Hash list removal routine for tcp_t structures. 3461 */ 3462 void 3463 tcp_acceptor_hash_remove(tcp_t *tcp) 3464 { 3465 tcp_t *tcpnext; 3466 kmutex_t *lockp; 3467 3468 /* 3469 * Extract the lock pointer in case there are concurrent 3470 * hash_remove's for this instance. 3471 */ 3472 lockp = tcp->tcp_acceptor_lockp; 3473 3474 if (tcp->tcp_ptpahn == NULL) 3475 return; 3476 3477 ASSERT(lockp != NULL); 3478 mutex_enter(lockp); 3479 if (tcp->tcp_ptpahn) { 3480 tcpnext = tcp->tcp_acceptor_hash; 3481 if (tcpnext) { 3482 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3483 tcp->tcp_acceptor_hash = NULL; 3484 } 3485 *tcp->tcp_ptpahn = tcpnext; 3486 tcp->tcp_ptpahn = NULL; 3487 } 3488 mutex_exit(lockp); 3489 tcp->tcp_acceptor_lockp = NULL; 3490 } 3491 3492 /* 3493 * Type three generator adapted from the random() function in 4.4 BSD: 3494 */ 3495 3496 /* 3497 * Copyright (c) 1983, 1993 3498 * The Regents of the University of California. All rights reserved. 3499 * 3500 * Redistribution and use in source and binary forms, with or without 3501 * modification, are permitted provided that the following conditions 3502 * are met: 3503 * 1. Redistributions of source code must retain the above copyright 3504 * notice, this list of conditions and the following disclaimer. 3505 * 2. Redistributions in binary form must reproduce the above copyright 3506 * notice, this list of conditions and the following disclaimer in the 3507 * documentation and/or other materials provided with the distribution. 3508 * 3. All advertising materials mentioning features or use of this software 3509 * must display the following acknowledgement: 3510 * This product includes software developed by the University of 3511 * California, Berkeley and its contributors. 3512 * 4. Neither the name of the University nor the names of its contributors 3513 * may be used to endorse or promote products derived from this software 3514 * without specific prior written permission. 3515 * 3516 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3517 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3518 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3519 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3520 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3521 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3522 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3523 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3524 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3525 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3526 * SUCH DAMAGE. 3527 */ 3528 3529 /* Type 3 -- x**31 + x**3 + 1 */ 3530 #define DEG_3 31 3531 #define SEP_3 3 3532 3533 3534 /* Protected by tcp_random_lock */ 3535 static int tcp_randtbl[DEG_3 + 1]; 3536 3537 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3538 static int *tcp_random_rptr = &tcp_randtbl[1]; 3539 3540 static int *tcp_random_state = &tcp_randtbl[1]; 3541 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3542 3543 kmutex_t tcp_random_lock; 3544 3545 void 3546 tcp_random_init(void) 3547 { 3548 int i; 3549 hrtime_t hrt; 3550 time_t wallclock; 3551 uint64_t result; 3552 3553 /* 3554 * Use high-res timer and current time for seed. Gethrtime() returns 3555 * a longlong, which may contain resolution down to nanoseconds. 3556 * The current time will either be a 32-bit or a 64-bit quantity. 3557 * XOR the two together in a 64-bit result variable. 3558 * Convert the result to a 32-bit value by multiplying the high-order 3559 * 32-bits by the low-order 32-bits. 3560 */ 3561 3562 hrt = gethrtime(); 3563 (void) drv_getparm(TIME, &wallclock); 3564 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3565 mutex_enter(&tcp_random_lock); 3566 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3567 (result & 0xffffffff); 3568 3569 for (i = 1; i < DEG_3; i++) 3570 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3571 + 12345; 3572 tcp_random_fptr = &tcp_random_state[SEP_3]; 3573 tcp_random_rptr = &tcp_random_state[0]; 3574 mutex_exit(&tcp_random_lock); 3575 for (i = 0; i < 10 * DEG_3; i++) 3576 (void) tcp_random(); 3577 } 3578 3579 /* 3580 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3581 * This range is selected to be approximately centered on TCP_ISS / 2, 3582 * and easy to compute. We get this value by generating a 32-bit random 3583 * number, selecting out the high-order 17 bits, and then adding one so 3584 * that we never return zero. 3585 */ 3586 int 3587 tcp_random(void) 3588 { 3589 int i; 3590 3591 mutex_enter(&tcp_random_lock); 3592 *tcp_random_fptr += *tcp_random_rptr; 3593 3594 /* 3595 * The high-order bits are more random than the low-order bits, 3596 * so we select out the high-order 17 bits and add one so that 3597 * we never return zero. 3598 */ 3599 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3600 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3601 tcp_random_fptr = tcp_random_state; 3602 ++tcp_random_rptr; 3603 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3604 tcp_random_rptr = tcp_random_state; 3605 3606 mutex_exit(&tcp_random_lock); 3607 return (i); 3608 } 3609 3610 /* 3611 * Split this function out so that if the secret changes, I'm okay. 3612 * 3613 * Initialize the tcp_iss_cookie and tcp_iss_key. 3614 */ 3615 3616 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3617 3618 void 3619 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3620 { 3621 struct { 3622 int32_t current_time; 3623 uint32_t randnum; 3624 uint16_t pad; 3625 uint8_t ether[6]; 3626 uint8_t passwd[PASSWD_SIZE]; 3627 } tcp_iss_cookie; 3628 time_t t; 3629 3630 /* 3631 * Start with the current absolute time. 3632 */ 3633 (void) drv_getparm(TIME, &t); 3634 tcp_iss_cookie.current_time = t; 3635 3636 /* 3637 * XXX - Need a more random number per RFC 1750, not this crap. 3638 * OTOH, if what follows is pretty random, then I'm in better shape. 3639 */ 3640 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3641 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3642 3643 /* 3644 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3645 * as a good template. 3646 */ 3647 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3648 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3649 3650 /* 3651 * The pass-phrase. Normally this is supplied by user-called NDD. 3652 */ 3653 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3654 3655 /* 3656 * See 4010593 if this section becomes a problem again, 3657 * but the local ethernet address is useful here. 3658 */ 3659 (void) localetheraddr(NULL, 3660 (struct ether_addr *)&tcp_iss_cookie.ether); 3661 3662 /* 3663 * Hash 'em all together. The MD5Final is called per-connection. 3664 */ 3665 mutex_enter(&tcps->tcps_iss_key_lock); 3666 MD5Init(&tcps->tcps_iss_key); 3667 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3668 sizeof (tcp_iss_cookie)); 3669 mutex_exit(&tcps->tcps_iss_key_lock); 3670 } 3671 3672 /* 3673 * Called by IP when IP is loaded into the kernel 3674 */ 3675 void 3676 tcp_ddi_g_init(void) 3677 { 3678 tcp_timercache = kmem_cache_create("tcp_timercache", 3679 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3680 NULL, NULL, NULL, NULL, NULL, 0); 3681 3682 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3683 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3684 3685 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3686 3687 /* Initialize the random number generator */ 3688 tcp_random_init(); 3689 3690 /* A single callback independently of how many netstacks we have */ 3691 ip_squeue_init(tcp_squeue_add); 3692 3693 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3694 3695 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3696 3697 /* 3698 * We want to be informed each time a stack is created or 3699 * destroyed in the kernel, so we can maintain the 3700 * set of tcp_stack_t's. 3701 */ 3702 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3703 3704 mutex_enter(&cpu_lock); 3705 register_cpu_setup_func(tcp_cpu_update, NULL); 3706 mutex_exit(&cpu_lock); 3707 } 3708 3709 3710 #define INET_NAME "ip" 3711 3712 /* 3713 * Initialize the TCP stack instance. 3714 */ 3715 static void * 3716 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3717 { 3718 tcp_stack_t *tcps; 3719 int i; 3720 int error = 0; 3721 major_t major; 3722 size_t arrsz; 3723 3724 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3725 tcps->tcps_netstack = ns; 3726 3727 /* Initialize locks */ 3728 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3729 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3730 3731 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3732 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3733 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3734 tcps->tcps_min_anonpriv_port = 512; 3735 3736 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3737 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3738 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3739 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3740 3741 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3742 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3743 MUTEX_DEFAULT, NULL); 3744 } 3745 3746 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3747 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3748 MUTEX_DEFAULT, NULL); 3749 } 3750 3751 /* TCP's IPsec code calls the packet dropper. */ 3752 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3753 3754 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3755 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3756 KM_SLEEP); 3757 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3758 3759 /* 3760 * Note: To really walk the device tree you need the devinfo 3761 * pointer to your device which is only available after probe/attach. 3762 * The following is safe only because it uses ddi_root_node() 3763 */ 3764 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3765 tcp_opt_obj.odb_opt_arr_cnt); 3766 3767 /* 3768 * Initialize RFC 1948 secret values. This will probably be reset once 3769 * by the boot scripts. 3770 * 3771 * Use NULL name, as the name is caught by the new lockstats. 3772 * 3773 * Initialize with some random, non-guessable string, like the global 3774 * T_INFO_ACK. 3775 */ 3776 3777 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3778 sizeof (tcp_g_t_info_ack), tcps); 3779 3780 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3781 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3782 3783 major = mod_name_to_major(INET_NAME); 3784 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3785 ASSERT(error == 0); 3786 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3787 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3788 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 3789 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3790 3791 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3792 tcps->tcps_reclaim = B_FALSE; 3793 tcps->tcps_reclaim_tid = 0; 3794 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3795 3796 /* 3797 * ncpus is the current number of CPUs, which can be bigger than 3798 * boot_ncpus. But we don't want to use ncpus to allocate all the 3799 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3800 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3801 * there are many CPUs as we will be adding them 1 by 1. 3802 * 3803 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3804 * are not freed until the stack is going away. So there is no need 3805 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3806 */ 3807 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3808 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3809 KM_SLEEP); 3810 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3811 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3812 KM_SLEEP); 3813 } 3814 3815 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3816 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3817 offsetof(tcp_listener_t, tl_link)); 3818 3819 return (tcps); 3820 } 3821 3822 /* 3823 * Called when the IP module is about to be unloaded. 3824 */ 3825 void 3826 tcp_ddi_g_destroy(void) 3827 { 3828 mutex_enter(&cpu_lock); 3829 unregister_cpu_setup_func(tcp_cpu_update, NULL); 3830 mutex_exit(&cpu_lock); 3831 3832 tcp_g_kstat_fini(tcp_g_kstat); 3833 tcp_g_kstat = NULL; 3834 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3835 3836 mutex_destroy(&tcp_random_lock); 3837 3838 kmem_cache_destroy(tcp_timercache); 3839 kmem_cache_destroy(tcp_notsack_blk_cache); 3840 3841 netstack_unregister(NS_TCP); 3842 } 3843 3844 /* 3845 * Free the TCP stack instance. 3846 */ 3847 static void 3848 tcp_stack_fini(netstackid_t stackid, void *arg) 3849 { 3850 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3851 int i; 3852 3853 freeb(tcps->tcps_ixa_cleanup_mp); 3854 tcps->tcps_ixa_cleanup_mp = NULL; 3855 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 3856 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3857 3858 /* 3859 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3860 * the timer. 3861 */ 3862 mutex_enter(&tcps->tcps_reclaim_lock); 3863 tcps->tcps_reclaim = B_FALSE; 3864 mutex_exit(&tcps->tcps_reclaim_lock); 3865 if (tcps->tcps_reclaim_tid != 0) 3866 (void) untimeout(tcps->tcps_reclaim_tid); 3867 mutex_destroy(&tcps->tcps_reclaim_lock); 3868 3869 tcp_listener_conf_cleanup(tcps); 3870 3871 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3872 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3873 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3874 3875 kmem_free(tcps->tcps_propinfo_tbl, 3876 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3877 tcps->tcps_propinfo_tbl = NULL; 3878 3879 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3880 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3881 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3882 } 3883 3884 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3885 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3886 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3887 } 3888 3889 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3890 tcps->tcps_bind_fanout = NULL; 3891 3892 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3893 TCP_ACCEPTOR_FANOUT_SIZE); 3894 tcps->tcps_acceptor_fanout = NULL; 3895 3896 mutex_destroy(&tcps->tcps_iss_key_lock); 3897 mutex_destroy(&tcps->tcps_epriv_port_lock); 3898 3899 ip_drop_unregister(&tcps->tcps_dropper); 3900 3901 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3902 tcps->tcps_kstat = NULL; 3903 3904 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3905 tcps->tcps_mibkp = NULL; 3906 3907 ldi_ident_release(tcps->tcps_ldi_ident); 3908 kmem_free(tcps, sizeof (*tcps)); 3909 } 3910 3911 /* 3912 * Generate ISS, taking into account NDD changes may happen halfway through. 3913 * (If the iss is not zero, set it.) 3914 */ 3915 3916 static void 3917 tcp_iss_init(tcp_t *tcp) 3918 { 3919 MD5_CTX context; 3920 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3921 uint32_t answer[4]; 3922 tcp_stack_t *tcps = tcp->tcp_tcps; 3923 conn_t *connp = tcp->tcp_connp; 3924 3925 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 3926 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3927 switch (tcps->tcps_strong_iss) { 3928 case 2: 3929 mutex_enter(&tcps->tcps_iss_key_lock); 3930 context = tcps->tcps_iss_key; 3931 mutex_exit(&tcps->tcps_iss_key_lock); 3932 arg.ports = connp->conn_ports; 3933 arg.src = connp->conn_laddr_v6; 3934 arg.dst = connp->conn_faddr_v6; 3935 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3936 MD5Final((uchar_t *)answer, &context); 3937 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3938 /* 3939 * Now that we've hashed into a unique per-connection sequence 3940 * space, add a random increment per strong_iss == 1. So I 3941 * guess we'll have to... 3942 */ 3943 /* FALLTHRU */ 3944 case 1: 3945 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3946 break; 3947 default: 3948 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 3949 break; 3950 } 3951 tcp->tcp_valid_bits = TCP_ISS_VALID; 3952 tcp->tcp_fss = tcp->tcp_iss - 1; 3953 tcp->tcp_suna = tcp->tcp_iss; 3954 tcp->tcp_snxt = tcp->tcp_iss + 1; 3955 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3956 tcp->tcp_csuna = tcp->tcp_snxt; 3957 } 3958 3959 /* 3960 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 3961 * on the specified backing STREAMS q. Note, the caller may make the 3962 * decision to call based on the tcp_t.tcp_flow_stopped value which 3963 * when check outside the q's lock is only an advisory check ... 3964 */ 3965 void 3966 tcp_setqfull(tcp_t *tcp) 3967 { 3968 tcp_stack_t *tcps = tcp->tcp_tcps; 3969 conn_t *connp = tcp->tcp_connp; 3970 3971 if (tcp->tcp_closed) 3972 return; 3973 3974 conn_setqfull(connp, &tcp->tcp_flow_stopped); 3975 if (tcp->tcp_flow_stopped) 3976 TCP_STAT(tcps, tcp_flwctl_on); 3977 } 3978 3979 void 3980 tcp_clrqfull(tcp_t *tcp) 3981 { 3982 conn_t *connp = tcp->tcp_connp; 3983 3984 if (tcp->tcp_closed) 3985 return; 3986 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 3987 } 3988 3989 static int 3990 tcp_squeue_switch(int val) 3991 { 3992 int rval = SQ_FILL; 3993 3994 switch (val) { 3995 case 1: 3996 rval = SQ_NODRAIN; 3997 break; 3998 case 2: 3999 rval = SQ_PROCESS; 4000 break; 4001 default: 4002 break; 4003 } 4004 return (rval); 4005 } 4006 4007 /* 4008 * This is called once for each squeue - globally for all stack 4009 * instances. 4010 */ 4011 static void 4012 tcp_squeue_add(squeue_t *sqp) 4013 { 4014 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4015 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4016 4017 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4018 if (tcp_free_list_max_cnt == 0) { 4019 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4020 max_ncpus : boot_max_ncpus); 4021 4022 /* 4023 * Limit number of entries to 1% of availble memory / tcp_ncpus 4024 */ 4025 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4026 (tcp_ncpus * sizeof (tcp_t) * 100); 4027 } 4028 tcp_time_wait->tcp_free_list_cnt = 0; 4029 } 4030 /* 4031 * Return unix error is tli error is TSYSERR, otherwise return a negative 4032 * tli error. 4033 */ 4034 int 4035 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4036 boolean_t bind_to_req_port_only) 4037 { 4038 int error; 4039 tcp_t *tcp = connp->conn_tcp; 4040 4041 if (tcp->tcp_state >= TCPS_BOUND) { 4042 if (connp->conn_debug) { 4043 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4044 "tcp_bind: bad state, %d", tcp->tcp_state); 4045 } 4046 return (-TOUTSTATE); 4047 } 4048 4049 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4050 if (error != 0) 4051 return (error); 4052 4053 ASSERT(tcp->tcp_state == TCPS_BOUND); 4054 tcp->tcp_conn_req_max = 0; 4055 return (0); 4056 } 4057 4058 /* 4059 * If the return value from this function is positive, it's a UNIX error. 4060 * Otherwise, if it's negative, then the absolute value is a TLI error. 4061 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4062 */ 4063 int 4064 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4065 cred_t *cr, pid_t pid) 4066 { 4067 tcp_t *tcp = connp->conn_tcp; 4068 sin_t *sin = (sin_t *)sa; 4069 sin6_t *sin6 = (sin6_t *)sa; 4070 ipaddr_t *dstaddrp; 4071 in_port_t dstport; 4072 uint_t srcid; 4073 int error; 4074 uint32_t mss; 4075 mblk_t *syn_mp; 4076 tcp_stack_t *tcps = tcp->tcp_tcps; 4077 int32_t oldstate; 4078 ip_xmit_attr_t *ixa = connp->conn_ixa; 4079 4080 oldstate = tcp->tcp_state; 4081 4082 switch (len) { 4083 default: 4084 /* 4085 * Should never happen 4086 */ 4087 return (EINVAL); 4088 4089 case sizeof (sin_t): 4090 sin = (sin_t *)sa; 4091 if (sin->sin_port == 0) { 4092 return (-TBADADDR); 4093 } 4094 if (connp->conn_ipv6_v6only) { 4095 return (EAFNOSUPPORT); 4096 } 4097 break; 4098 4099 case sizeof (sin6_t): 4100 sin6 = (sin6_t *)sa; 4101 if (sin6->sin6_port == 0) { 4102 return (-TBADADDR); 4103 } 4104 break; 4105 } 4106 /* 4107 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4108 * make sure that the conn_ipversion is IPV4_VERSION. We 4109 * need to this before we call tcp_bindi() so that the port lookup 4110 * code will look for ports in the correct port space (IPv4 and 4111 * IPv6 have separate port spaces). 4112 */ 4113 if (connp->conn_family == AF_INET6 && 4114 connp->conn_ipversion == IPV6_VERSION && 4115 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4116 if (connp->conn_ipv6_v6only) 4117 return (EADDRNOTAVAIL); 4118 4119 connp->conn_ipversion = IPV4_VERSION; 4120 } 4121 4122 switch (tcp->tcp_state) { 4123 case TCPS_LISTEN: 4124 /* 4125 * Listening sockets are not allowed to issue connect(). 4126 */ 4127 if (IPCL_IS_NONSTR(connp)) 4128 return (EOPNOTSUPP); 4129 /* FALLTHRU */ 4130 case TCPS_IDLE: 4131 /* 4132 * We support quick connect, refer to comments in 4133 * tcp_connect_*() 4134 */ 4135 /* FALLTHRU */ 4136 case TCPS_BOUND: 4137 break; 4138 default: 4139 return (-TOUTSTATE); 4140 } 4141 4142 /* 4143 * We update our cred/cpid based on the caller of connect 4144 */ 4145 if (connp->conn_cred != cr) { 4146 crhold(cr); 4147 crfree(connp->conn_cred); 4148 connp->conn_cred = cr; 4149 } 4150 connp->conn_cpid = pid; 4151 4152 /* Cache things in the ixa without any refhold */ 4153 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4154 ixa->ixa_cred = cr; 4155 ixa->ixa_cpid = pid; 4156 if (is_system_labeled()) { 4157 /* We need to restart with a label based on the cred */ 4158 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4159 } 4160 4161 if (connp->conn_family == AF_INET6) { 4162 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4163 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4164 sin6->sin6_port, sin6->sin6_flowinfo, 4165 sin6->__sin6_src_id, sin6->sin6_scope_id); 4166 } else { 4167 /* 4168 * Destination adress is mapped IPv6 address. 4169 * Source bound address should be unspecified or 4170 * IPv6 mapped address as well. 4171 */ 4172 if (!IN6_IS_ADDR_UNSPECIFIED( 4173 &connp->conn_bound_addr_v6) && 4174 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4175 return (EADDRNOTAVAIL); 4176 } 4177 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4178 dstport = sin6->sin6_port; 4179 srcid = sin6->__sin6_src_id; 4180 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4181 srcid); 4182 } 4183 } else { 4184 dstaddrp = &sin->sin_addr.s_addr; 4185 dstport = sin->sin_port; 4186 srcid = 0; 4187 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4188 } 4189 4190 if (error != 0) 4191 goto connect_failed; 4192 4193 CL_INET_CONNECT(connp, B_TRUE, error); 4194 if (error != 0) 4195 goto connect_failed; 4196 4197 /* connect succeeded */ 4198 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4199 tcp->tcp_active_open = 1; 4200 4201 /* 4202 * tcp_set_destination() does not adjust for TCP/IP header length. 4203 */ 4204 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4205 4206 /* 4207 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4208 * to the nearest MSS. 4209 * 4210 * We do the round up here because we need to get the interface MTU 4211 * first before we can do the round up. 4212 */ 4213 tcp->tcp_rwnd = connp->conn_rcvbuf; 4214 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4215 tcps->tcps_recv_hiwat_minmss * mss); 4216 connp->conn_rcvbuf = tcp->tcp_rwnd; 4217 tcp_set_ws_value(tcp); 4218 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4219 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4220 tcp->tcp_snd_ws_ok = B_TRUE; 4221 4222 /* 4223 * Set tcp_snd_ts_ok to true 4224 * so that tcp_xmit_mp will 4225 * include the timestamp 4226 * option in the SYN segment. 4227 */ 4228 if (tcps->tcps_tstamp_always || 4229 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4230 tcp->tcp_snd_ts_ok = B_TRUE; 4231 } 4232 4233 /* 4234 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4235 * the SACK metric is set. So here we just check the per stack SACK 4236 * permitted param. 4237 */ 4238 if (tcps->tcps_sack_permitted == 2) { 4239 ASSERT(tcp->tcp_num_sack_blk == 0); 4240 ASSERT(tcp->tcp_notsack_list == NULL); 4241 tcp->tcp_snd_sack_ok = B_TRUE; 4242 } 4243 4244 /* 4245 * Should we use ECN? Note that the current 4246 * default value (SunOS 5.9) of tcp_ecn_permitted 4247 * is 1. The reason for doing this is that there 4248 * are equipments out there that will drop ECN 4249 * enabled IP packets. Setting it to 1 avoids 4250 * compatibility problems. 4251 */ 4252 if (tcps->tcps_ecn_permitted == 2) 4253 tcp->tcp_ecn_ok = B_TRUE; 4254 4255 /* Trace change from BOUND -> SYN_SENT here */ 4256 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4257 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4258 int32_t, TCPS_BOUND); 4259 4260 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4261 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4262 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4263 if (syn_mp != NULL) { 4264 /* 4265 * We must bump the generation before sending the syn 4266 * to ensure that we use the right generation in case 4267 * this thread issues a "connected" up call. 4268 */ 4269 SOCK_CONNID_BUMP(tcp->tcp_connid); 4270 /* 4271 * DTrace sending the first SYN as a 4272 * tcp:::connect-request event. 4273 */ 4274 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4275 ip_xmit_attr_t *, connp->conn_ixa, 4276 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4277 tcph_t *, 4278 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4279 tcp_send_data(tcp, syn_mp); 4280 } 4281 4282 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4283 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4284 return (0); 4285 4286 connect_failed: 4287 connp->conn_faddr_v6 = ipv6_all_zeros; 4288 connp->conn_fport = 0; 4289 tcp->tcp_state = oldstate; 4290 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4291 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4292 return (error); 4293 } 4294 4295 int 4296 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4297 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4298 { 4299 tcp_t *tcp = connp->conn_tcp; 4300 int error = 0; 4301 tcp_stack_t *tcps = tcp->tcp_tcps; 4302 int32_t oldstate; 4303 4304 /* All Solaris components should pass a cred for this operation. */ 4305 ASSERT(cr != NULL); 4306 4307 if (tcp->tcp_state >= TCPS_BOUND) { 4308 if ((tcp->tcp_state == TCPS_BOUND || 4309 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4310 /* 4311 * Handle listen() increasing backlog. 4312 * This is more "liberal" then what the TPI spec 4313 * requires but is needed to avoid a t_unbind 4314 * when handling listen() since the port number 4315 * might be "stolen" between the unbind and bind. 4316 */ 4317 goto do_listen; 4318 } 4319 if (connp->conn_debug) { 4320 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4321 "tcp_listen: bad state, %d", tcp->tcp_state); 4322 } 4323 return (-TOUTSTATE); 4324 } else { 4325 if (sa == NULL) { 4326 sin6_t addr; 4327 sin_t *sin; 4328 sin6_t *sin6; 4329 4330 ASSERT(IPCL_IS_NONSTR(connp)); 4331 /* Do an implicit bind: Request for a generic port. */ 4332 if (connp->conn_family == AF_INET) { 4333 len = sizeof (sin_t); 4334 sin = (sin_t *)&addr; 4335 *sin = sin_null; 4336 sin->sin_family = AF_INET; 4337 } else { 4338 ASSERT(connp->conn_family == AF_INET6); 4339 len = sizeof (sin6_t); 4340 sin6 = (sin6_t *)&addr; 4341 *sin6 = sin6_null; 4342 sin6->sin6_family = AF_INET6; 4343 } 4344 sa = (struct sockaddr *)&addr; 4345 } 4346 4347 error = tcp_bind_check(connp, sa, len, cr, 4348 bind_to_req_port_only); 4349 if (error) 4350 return (error); 4351 /* Fall through and do the fanout insertion */ 4352 } 4353 4354 do_listen: 4355 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4356 tcp->tcp_conn_req_max = backlog; 4357 if (tcp->tcp_conn_req_max) { 4358 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4359 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4360 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4361 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4362 /* 4363 * If this is a listener, do not reset the eager list 4364 * and other stuffs. Note that we don't check if the 4365 * existing eager list meets the new tcp_conn_req_max 4366 * requirement. 4367 */ 4368 if (tcp->tcp_state != TCPS_LISTEN) { 4369 tcp->tcp_state = TCPS_LISTEN; 4370 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4371 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4372 void, NULL, int32_t, TCPS_BOUND); 4373 /* Initialize the chain. Don't need the eager_lock */ 4374 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4375 tcp->tcp_eager_next_drop_q0 = tcp; 4376 tcp->tcp_eager_prev_drop_q0 = tcp; 4377 tcp->tcp_second_ctimer_threshold = 4378 tcps->tcps_ip_abort_linterval; 4379 } 4380 } 4381 4382 /* 4383 * We need to make sure that the conn_recv is set to a non-null 4384 * value before we insert the conn into the classifier table. 4385 * This is to avoid a race with an incoming packet which does an 4386 * ipcl_classify(). 4387 * We initially set it to tcp_input_listener_unbound to try to 4388 * pick a good squeue for the listener when the first SYN arrives. 4389 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4390 * first SYN. 4391 */ 4392 connp->conn_recv = tcp_input_listener_unbound; 4393 4394 /* Insert the listener in the classifier table */ 4395 error = ip_laddr_fanout_insert(connp); 4396 if (error != 0) { 4397 /* Undo the bind - release the port number */ 4398 oldstate = tcp->tcp_state; 4399 tcp->tcp_state = TCPS_IDLE; 4400 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4401 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4402 int32_t, oldstate); 4403 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4404 4405 connp->conn_laddr_v6 = ipv6_all_zeros; 4406 connp->conn_saddr_v6 = ipv6_all_zeros; 4407 connp->conn_ports = 0; 4408 4409 if (connp->conn_anon_port) { 4410 zone_t *zone; 4411 4412 zone = crgetzone(cr); 4413 connp->conn_anon_port = B_FALSE; 4414 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4415 connp->conn_proto, connp->conn_lport, B_FALSE); 4416 } 4417 connp->conn_mlp_type = mlptSingle; 4418 4419 tcp_bind_hash_remove(tcp); 4420 return (error); 4421 } else { 4422 /* 4423 * If there is a connection limit, allocate and initialize 4424 * the counter struct. Note that since listen can be called 4425 * multiple times, the struct may have been allready allocated. 4426 */ 4427 if (!list_is_empty(&tcps->tcps_listener_conf) && 4428 tcp->tcp_listen_cnt == NULL) { 4429 tcp_listen_cnt_t *tlc; 4430 uint32_t ratio; 4431 4432 ratio = tcp_find_listener_conf(tcps, 4433 ntohs(connp->conn_lport)); 4434 if (ratio != 0) { 4435 uint32_t mem_ratio, tot_buf; 4436 4437 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4438 KM_SLEEP); 4439 /* 4440 * Calculate the connection limit based on 4441 * the configured ratio and maxusers. Maxusers 4442 * are calculated based on memory size, 4443 * ~ 1 user per MB. Note that the conn_rcvbuf 4444 * and conn_sndbuf may change after a 4445 * connection is accepted. So what we have 4446 * is only an approximation. 4447 */ 4448 if ((tot_buf = connp->conn_rcvbuf + 4449 connp->conn_sndbuf) < MB) { 4450 mem_ratio = MB / tot_buf; 4451 tlc->tlc_max = maxusers / ratio * 4452 mem_ratio; 4453 } else { 4454 mem_ratio = tot_buf / MB; 4455 tlc->tlc_max = maxusers / ratio / 4456 mem_ratio; 4457 } 4458 /* At least we should allow two connections! */ 4459 if (tlc->tlc_max <= tcp_min_conn_listener) 4460 tlc->tlc_max = tcp_min_conn_listener; 4461 tlc->tlc_cnt = 1; 4462 tlc->tlc_drop = 0; 4463 tcp->tcp_listen_cnt = tlc; 4464 } 4465 } 4466 } 4467 return (error); 4468 } 4469