1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * This controls how tiny a write must be before we try to copy it 233 * into the mblk on the tail of the transmit queue. Not much 234 * speedup is observed for values larger than sixteen. Zero will 235 * disable the optimisation. 236 */ 237 int tcp_tx_pull_len = 16; 238 239 /* 240 * TCP Statistics. 241 * 242 * How TCP statistics work. 243 * 244 * There are two types of statistics invoked by two macros. 245 * 246 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 247 * supposed to be used in non MT-hot paths of the code. 248 * 249 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 250 * supposed to be used for DEBUG purposes and may be used on a hot path. 251 * 252 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 253 * (use "kstat tcp" to get them). 254 * 255 * There is also additional debugging facility that marks tcp_clean_death() 256 * instances and saves them in tcp_t structure. It is triggered by 257 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 258 * tcp_clean_death() calls that counts the number of times each tag was hit. It 259 * is triggered by TCP_CLD_COUNTERS define. 260 * 261 * How to add new counters. 262 * 263 * 1) Add a field in the tcp_stat structure describing your counter. 264 * 2) Add a line in the template in tcp_kstat2_init() with the name 265 * of the counter. 266 * 267 * IMPORTANT!! - make sure that both are in sync !! 268 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 269 * 270 * Please avoid using private counters which are not kstat-exported. 271 * 272 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 273 * in tcp_t structure. 274 * 275 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 276 */ 277 278 #ifndef TCP_DEBUG_COUNTER 279 #ifdef DEBUG 280 #define TCP_DEBUG_COUNTER 1 281 #else 282 #define TCP_DEBUG_COUNTER 0 283 #endif 284 #endif 285 286 #define TCP_CLD_COUNTERS 0 287 288 #define TCP_TAG_CLEAN_DEATH 1 289 #define TCP_MAX_CLEAN_DEATH_TAG 32 290 291 #ifdef lint 292 static int _lint_dummy_; 293 #endif 294 295 #if TCP_CLD_COUNTERS 296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 297 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 298 #elif defined(lint) 299 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 300 #else 301 #define TCP_CLD_STAT(x) 302 #endif 303 304 #if TCP_DEBUG_COUNTER 305 #define TCP_DBGSTAT(tcps, x) \ 306 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 307 #define TCP_G_DBGSTAT(x) \ 308 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 311 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(tcps, x) 314 #define TCP_G_DBGSTAT(x) 315 #endif 316 317 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 318 319 tcp_g_stat_t tcp_g_statistics; 320 kstat_t *tcp_g_kstat; 321 322 /* Macros for timestamp comparisons */ 323 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 324 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 325 326 /* 327 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 328 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 329 * by adding three components: a time component which grows by 1 every 4096 330 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 331 * a per-connection component which grows by 125000 for every new connection; 332 * and an "extra" component that grows by a random amount centered 333 * approximately on 64000. This causes the ISS generator to cycle every 334 * 4.89 hours if no TCP connections are made, and faster if connections are 335 * made. 336 * 337 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 338 * components: a time component which grows by 250000 every second; and 339 * a per-connection component which grows by 125000 for every new connections. 340 * 341 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 342 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 343 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 344 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 345 * password. 346 */ 347 #define ISS_INCR 250000 348 #define ISS_NSEC_SHT 12 349 350 static sin_t sin_null; /* Zero address for quick clears */ 351 static sin6_t sin6_null; /* Zero address for quick clears */ 352 353 /* 354 * This implementation follows the 4.3BSD interpretation of the urgent 355 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 356 * incompatible changes in protocols like telnet and rlogin. 357 */ 358 #define TCP_OLD_URP_INTERPRETATION 1 359 360 /* 361 * Since tcp_listener is not cleared atomically with tcp_detached 362 * being cleared we need this extra bit to tell a detached connection 363 * apart from one that is in the process of being accepted. 364 */ 365 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 366 (TCP_IS_DETACHED(tcp) && \ 367 (!(tcp)->tcp_hard_binding)) 368 369 /* 370 * TCP reassembly macros. We hide starting and ending sequence numbers in 371 * b_next and b_prev of messages on the reassembly queue. The messages are 372 * chained using b_cont. These macros are used in tcp_reass() so we don't 373 * have to see the ugly casts and assignments. 374 */ 375 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 376 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 377 (mblk_t *)(uintptr_t)(u)) 378 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 379 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 380 (mblk_t *)(uintptr_t)(u)) 381 382 /* 383 * Implementation of TCP Timers. 384 * ============================= 385 * 386 * INTERFACE: 387 * 388 * There are two basic functions dealing with tcp timers: 389 * 390 * timeout_id_t tcp_timeout(connp, func, time) 391 * clock_t tcp_timeout_cancel(connp, timeout_id) 392 * TCP_TIMER_RESTART(tcp, intvl) 393 * 394 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 395 * after 'time' ticks passed. The function called by timeout() must adhere to 396 * the same restrictions as a driver soft interrupt handler - it must not sleep 397 * or call other functions that might sleep. The value returned is the opaque 398 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 399 * cancel the request. The call to tcp_timeout() may fail in which case it 400 * returns zero. This is different from the timeout(9F) function which never 401 * fails. 402 * 403 * The call-back function 'func' always receives 'connp' as its single 404 * argument. It is always executed in the squeue corresponding to the tcp 405 * structure. The tcp structure is guaranteed to be present at the time the 406 * call-back is called. 407 * 408 * NOTE: The call-back function 'func' is never called if tcp is in 409 * the TCPS_CLOSED state. 410 * 411 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 412 * request. locks acquired by the call-back routine should not be held across 413 * the call to tcp_timeout_cancel() or a deadlock may result. 414 * 415 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 416 * Otherwise, it returns an integer value greater than or equal to 0. In 417 * particular, if the call-back function is already placed on the squeue, it can 418 * not be canceled. 419 * 420 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 421 * within squeue context corresponding to the tcp instance. Since the 422 * call-back is also called via the same squeue, there are no race 423 * conditions described in untimeout(9F) manual page since all calls are 424 * strictly serialized. 425 * 426 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 427 * stored in tcp_timer_tid and starts a new one using 428 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 429 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 430 * field. 431 * 432 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 433 * call-back may still be called, so it is possible tcp_timer() will be 434 * called several times. This should not be a problem since tcp_timer() 435 * should always check the tcp instance state. 436 * 437 * 438 * IMPLEMENTATION: 439 * 440 * TCP timers are implemented using three-stage process. The call to 441 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 442 * when the timer expires. The tcp_timer_callback() arranges the call of the 443 * tcp_timer_handler() function via squeue corresponding to the tcp 444 * instance. The tcp_timer_handler() calls actual requested timeout call-back 445 * and passes tcp instance as an argument to it. Information is passed between 446 * stages using the tcp_timer_t structure which contains the connp pointer, the 447 * tcp call-back to call and the timeout id returned by the timeout(9F). 448 * 449 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 450 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 451 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 452 * returns the pointer to this mblk. 453 * 454 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 455 * looks like a normal mblk without actual dblk attached to it. 456 * 457 * To optimize performance each tcp instance holds a small cache of timer 458 * mblocks. In the current implementation it caches up to two timer mblocks per 459 * tcp instance. The cache is preserved over tcp frees and is only freed when 460 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 461 * timer processing happens on a corresponding squeue, the cache manipulation 462 * does not require any locks. Experiments show that majority of timer mblocks 463 * allocations are satisfied from the tcp cache and do not involve kmem calls. 464 * 465 * The tcp_timeout() places a refhold on the connp instance which guarantees 466 * that it will be present at the time the call-back function fires. The 467 * tcp_timer_handler() drops the reference after calling the call-back, so the 468 * call-back function does not need to manipulate the references explicitly. 469 */ 470 471 typedef struct tcp_timer_s { 472 conn_t *connp; 473 void (*tcpt_proc)(void *); 474 callout_id_t tcpt_tid; 475 } tcp_timer_t; 476 477 static kmem_cache_t *tcp_timercache; 478 kmem_cache_t *tcp_sack_info_cache; 479 480 /* 481 * For scalability, we must not run a timer for every TCP connection 482 * in TIME_WAIT state. To see why, consider (for time wait interval of 483 * 4 minutes): 484 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 485 * 486 * This list is ordered by time, so you need only delete from the head 487 * until you get to entries which aren't old enough to delete yet. 488 * The list consists of only the detached TIME_WAIT connections. 489 * 490 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 491 * becomes detached TIME_WAIT (either by changing the state and already 492 * being detached or the other way around). This means that the TIME_WAIT 493 * state can be extended (up to doubled) if the connection doesn't become 494 * detached for a long time. 495 * 496 * The list manipulations (including tcp_time_wait_next/prev) 497 * are protected by the tcp_time_wait_lock. The content of the 498 * detached TIME_WAIT connections is protected by the normal perimeters. 499 * 500 * This list is per squeue and squeues are shared across the tcp_stack_t's. 501 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 502 * and conn_netstack. 503 * The tcp_t's that are added to tcp_free_list are disassociated and 504 * have NULL tcp_tcps and conn_netstack pointers. 505 */ 506 typedef struct tcp_squeue_priv_s { 507 kmutex_t tcp_time_wait_lock; 508 callout_id_t tcp_time_wait_tid; 509 tcp_t *tcp_time_wait_head; 510 tcp_t *tcp_time_wait_tail; 511 tcp_t *tcp_free_list; 512 uint_t tcp_free_list_cnt; 513 } tcp_squeue_priv_t; 514 515 /* 516 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 517 * Running it every 5 seconds seems to give the best results. 518 */ 519 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 520 521 /* 522 * To prevent memory hog, limit the number of entries in tcp_free_list 523 * to 1% of available memory / number of cpus 524 */ 525 uint_t tcp_free_list_max_cnt = 0; 526 527 #define TCP_XMIT_LOWATER 4096 528 #define TCP_XMIT_HIWATER 49152 529 #define TCP_RECV_LOWATER 2048 530 #define TCP_RECV_HIWATER 128000 531 532 /* 533 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 534 */ 535 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 536 537 #define TIDUSZ 4096 /* transport interface data unit size */ 538 539 /* 540 * Bind hash list size and has function. It has to be a power of 2 for 541 * hashing. 542 */ 543 #define TCP_BIND_FANOUT_SIZE 512 544 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 545 546 /* 547 * Size of acceptor hash list. It has to be a power of 2 for hashing. 548 */ 549 #define TCP_ACCEPTOR_FANOUT_SIZE 256 550 551 #ifdef _ILP32 552 #define TCP_ACCEPTOR_HASH(accid) \ 553 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 554 #else 555 #define TCP_ACCEPTOR_HASH(accid) \ 556 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 557 #endif /* _ILP32 */ 558 559 #define IP_ADDR_CACHE_SIZE 2048 560 #define IP_ADDR_CACHE_HASH(faddr) \ 561 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 562 563 /* 564 * If there is a limit set on the number of connections allowed per each 565 * listener, the following struct is used to store that counter. This needs 566 * to be separated from the listener since the listener can go away before 567 * all the connections are gone. When the struct is allocated, tlc_cnt is set 568 * to 1. When the listener goes away, tlc_cnt is decremented by one. And 569 * the last connection (or the listener) which decrements tlc_cnt to zero 570 * frees the struct. 571 * 572 * tlc_max is the threshold value tcps_conn_listen_port. It is set when the 573 * tcp_listen_cnt_t is allocated. 574 * 575 * tlc_report_time stores the time when cmn_err() is called to report that the 576 * max has been exceeeded. Report is done at most once every 577 * TCP_TLC_REPORT_INTERVAL mins for a listener. 578 * 579 * tlc_drop stores the number of connection attempt dropped because the 580 * limit has reached. 581 */ 582 typedef struct tcp_listen_cnt_s { 583 uint32_t tlc_max; 584 uint32_t tlc_cnt; 585 int64_t tlc_report_time; 586 uint32_t tlc_drop; 587 } tcp_listen_cnt_t; 588 589 #define TCP_TLC_REPORT_INTERVAL (1 * MINUTES) 590 591 #define TCP_DECR_LISTEN_CNT(tcp) \ 592 { \ 593 ASSERT((tcp)->tcp_listen_cnt->tlc_cnt > 0); \ 594 if (atomic_add_32_nv(&(tcp)->tcp_listen_cnt->tlc_cnt, -1) == 0) \ 595 kmem_free((tcp)->tcp_listen_cnt, sizeof (tcp_listen_cnt_t)); \ 596 (tcp)->tcp_listen_cnt = NULL; \ 597 } 598 599 /* Minimum number of connections per listener. */ 600 uint32_t tcp_min_conn_listener = 2; 601 602 /* 603 * Linked list struct to store listener connection limit configuration per 604 * IP stack. 605 */ 606 typedef struct tcp_listener_s { 607 in_port_t tl_port; 608 uint32_t tl_ratio; 609 list_node_t tl_link; 610 } tcp_listener_t; 611 612 /* 613 * The shift factor applied to tcp_mss to decide if the peer sends us a 614 * valid initial receive window. By default, if the peer receive window 615 * is smaller than 1 MSS (shift factor is 0), it is considered as invalid. 616 */ 617 uint32_t tcp_init_wnd_shft = 0; 618 619 /* 620 * When the system is under memory pressure, stack variable tcps_reclaim is 621 * true, we shorten the connection timeout abort interval to tcp_early_abort 622 * seconds. 623 */ 624 uint32_t tcp_early_abort = 30; 625 626 /* 627 * TCP options struct returned from tcp_parse_options. 628 */ 629 typedef struct tcp_opt_s { 630 uint32_t tcp_opt_mss; 631 uint32_t tcp_opt_wscale; 632 uint32_t tcp_opt_ts_val; 633 uint32_t tcp_opt_ts_ecr; 634 tcp_t *tcp; 635 } tcp_opt_t; 636 637 /* 638 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 639 */ 640 641 #ifdef _BIG_ENDIAN 642 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 643 (TCPOPT_TSTAMP << 8) | 10) 644 #else 645 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 646 (TCPOPT_NOP << 8) | TCPOPT_NOP) 647 #endif 648 649 /* 650 * Flags returned from tcp_parse_options. 651 */ 652 #define TCP_OPT_MSS_PRESENT 1 653 #define TCP_OPT_WSCALE_PRESENT 2 654 #define TCP_OPT_TSTAMP_PRESENT 4 655 #define TCP_OPT_SACK_OK_PRESENT 8 656 #define TCP_OPT_SACK_PRESENT 16 657 658 /* TCP option length */ 659 #define TCPOPT_NOP_LEN 1 660 #define TCPOPT_MAXSEG_LEN 4 661 #define TCPOPT_WS_LEN 3 662 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 663 #define TCPOPT_TSTAMP_LEN 10 664 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 665 #define TCPOPT_SACK_OK_LEN 2 666 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 667 #define TCPOPT_REAL_SACK_LEN 4 668 #define TCPOPT_MAX_SACK_LEN 36 669 #define TCPOPT_HEADER_LEN 2 670 671 /* TCP cwnd burst factor. */ 672 #define TCP_CWND_INFINITE 65535 673 #define TCP_CWND_SS 3 674 #define TCP_CWND_NORMAL 5 675 676 /* Maximum TCP initial cwin (start/restart). */ 677 #define TCP_MAX_INIT_CWND 8 678 679 /* 680 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 681 * either tcp_slow_start_initial or tcp_slow_start_after idle 682 * depending on the caller. If the upper layer has not used the 683 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 684 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 685 * If the upper layer has changed set the tcp_init_cwnd, just use 686 * it to calculate the tcp_cwnd. 687 */ 688 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 689 { \ 690 if ((tcp)->tcp_init_cwnd == 0) { \ 691 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 692 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 693 } else { \ 694 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 695 } \ 696 tcp->tcp_cwnd_cnt = 0; \ 697 } 698 699 /* TCP Timer control structure */ 700 typedef struct tcpt_s { 701 pfv_t tcpt_pfv; /* The routine we are to call */ 702 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 703 } tcpt_t; 704 705 /* 706 * Functions called directly via squeue having a prototype of edesc_t. 707 */ 708 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 709 ip_recv_attr_t *ira); 710 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 711 ip_recv_attr_t *dummy); 712 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 713 ip_recv_attr_t *dummy); 714 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 715 ip_recv_attr_t *dummy); 716 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 717 ip_recv_attr_t *dummy); 718 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 719 ip_recv_attr_t *ira); 720 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 721 ip_recv_attr_t *dummy); 722 void tcp_output(void *arg, mblk_t *mp, void *arg2, 723 ip_recv_attr_t *dummy); 724 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 725 ip_recv_attr_t *dummy); 726 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 727 ip_recv_attr_t *dummy); 728 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 729 ip_recv_attr_t *dummy); 730 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 731 ip_recv_attr_t *dummy); 732 static void tcp_send_synack(void *arg, mblk_t *mp, void *arg2, 733 ip_recv_attr_t *dummy); 734 735 736 /* Prototype for TCP functions */ 737 static void tcp_random_init(void); 738 int tcp_random(void); 739 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 740 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 741 tcp_t *eager); 742 static int tcp_set_destination(tcp_t *tcp); 743 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 744 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 745 boolean_t user_specified); 746 static void tcp_closei_local(tcp_t *tcp); 747 static void tcp_close_detached(tcp_t *tcp); 748 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 749 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 750 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 751 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 752 in_port_t dstport, uint_t srcid); 753 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 754 in_port_t dstport, uint32_t flowinfo, 755 uint_t srcid, uint32_t scope_id); 756 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 757 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 758 static char *tcp_display(tcp_t *tcp, char *, char); 759 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 760 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 761 static void tcp_eager_unlink(tcp_t *tcp); 762 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 763 int unixerr); 764 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 765 int tlierr, int unixerr); 766 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 767 cred_t *cr); 768 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 769 char *value, caddr_t cp, cred_t *cr); 770 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 771 char *value, caddr_t cp, cred_t *cr); 772 static int tcp_tpistate(tcp_t *tcp); 773 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 774 int caller_holds_lock); 775 static void tcp_bind_hash_remove(tcp_t *tcp); 776 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 777 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 778 static void tcp_acceptor_hash_remove(tcp_t *tcp); 779 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 780 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 781 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 782 static void tcp_init_values(tcp_t *tcp); 783 static void tcp_ip_notify(tcp_t *tcp); 784 static void tcp_iss_init(tcp_t *tcp); 785 static void tcp_keepalive_killer(void *arg); 786 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 787 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 788 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 789 int *do_disconnectp, int *t_errorp, int *sys_errorp); 790 static boolean_t tcp_allow_connopt_set(int level, int name); 791 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 792 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 793 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 794 tcp_stack_t *); 795 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 796 caddr_t cp, cred_t *cr); 797 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 798 caddr_t cp, cred_t *cr); 799 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 800 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 801 caddr_t cp, cred_t *cr); 802 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 803 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 804 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 805 static void tcp_reass_timer(void *arg); 806 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 807 static void tcp_reinit(tcp_t *tcp); 808 static void tcp_reinit_values(tcp_t *tcp); 809 810 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 811 static uint_t tcp_rcv_drain(tcp_t *tcp); 812 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 813 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 814 static void tcp_ss_rexmit(tcp_t *tcp); 815 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 816 ip_recv_attr_t *); 817 static void tcp_process_options(tcp_t *, tcpha_t *); 818 static void tcp_rsrv(queue_t *q); 819 static int tcp_snmp_state(tcp_t *tcp); 820 static void tcp_timer(void *arg); 821 static void tcp_timer_callback(void *); 822 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 823 boolean_t random); 824 static in_port_t tcp_get_next_priv_port(const tcp_t *); 825 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 826 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 827 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 828 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 829 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 830 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 831 static int tcp_send(tcp_t *tcp, const int mss, 832 const int total_hdr_len, const int tcp_hdr_len, 833 const int num_sack_blk, int *usable, uint_t *snxt, 834 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 835 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 836 int num_sack_blk); 837 static void tcp_wsrv(queue_t *q); 838 static int tcp_xmit_end(tcp_t *tcp); 839 static void tcp_ack_timer(void *arg); 840 static mblk_t *tcp_ack_mp(tcp_t *tcp); 841 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 842 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 843 ip_stack_t *, conn_t *); 844 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 845 uint32_t ack, int ctl); 846 static void tcp_set_rto(tcp_t *, time_t); 847 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 848 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 849 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 850 ip_recv_attr_t *); 851 static int tcp_build_hdrs(tcp_t *); 852 static void tcp_time_wait_append(tcp_t *tcp); 853 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 854 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 855 ip_recv_attr_t *ira); 856 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 857 static boolean_t tcp_zcopy_check(tcp_t *); 858 static void tcp_zcopy_notify(tcp_t *); 859 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 860 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 861 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 862 static void tcp_update_zcopy(tcp_t *tcp); 863 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 864 ixa_notify_arg_t); 865 static void tcp_rexmit_after_error(tcp_t *tcp); 866 static void tcp_send_data(tcp_t *, mblk_t *); 867 extern mblk_t *tcp_timermp_alloc(int); 868 extern void tcp_timermp_free(tcp_t *); 869 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 870 static void tcp_stop_lingering(tcp_t *tcp); 871 static void tcp_close_linger_timeout(void *arg); 872 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 873 static void tcp_stack_fini(netstackid_t stackid, void *arg); 874 static void *tcp_g_kstat_init(tcp_g_stat_t *); 875 static void tcp_g_kstat_fini(kstat_t *); 876 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 877 static void tcp_kstat_fini(netstackid_t, kstat_t *); 878 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 879 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 880 static int tcp_kstat_update(kstat_t *kp, int rw); 881 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 882 ip_recv_attr_t *ira); 883 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 884 ip_recv_attr_t *ira); 885 static int tcp_squeue_switch(int); 886 887 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 888 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 889 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 890 static int tcp_tpi_close(queue_t *, int); 891 static int tcp_tpi_close_accept(queue_t *); 892 893 static void tcp_squeue_add(squeue_t *); 894 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 895 896 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 897 898 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 899 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 900 ip_recv_attr_t *dummy); 901 902 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 903 sock_upper_handle_t, cred_t *); 904 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 905 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 906 boolean_t); 907 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 908 cred_t *, pid_t); 909 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 910 boolean_t); 911 static int tcp_do_unbind(conn_t *); 912 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 913 boolean_t); 914 915 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 916 917 static uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t); 918 static int tcp_listener_conf_get(queue_t *, mblk_t *, caddr_t, cred_t *); 919 static int tcp_listener_conf_add(queue_t *, mblk_t *, char *, caddr_t, 920 cred_t *); 921 static int tcp_listener_conf_del(queue_t *, mblk_t *, char *, caddr_t, 922 cred_t *); 923 static void tcp_listener_conf_cleanup(tcp_stack_t *); 924 925 /* 926 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 927 * 928 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 929 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 930 * (defined in tcp.h) needs to be filled in and passed into the kernel 931 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 932 * structure contains the four-tuple of a TCP connection and a range of TCP 933 * states (specified by ac_start and ac_end). The use of wildcard addresses 934 * and ports is allowed. Connections with a matching four tuple and a state 935 * within the specified range will be aborted. The valid states for the 936 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 937 * inclusive. 938 * 939 * An application which has its connection aborted by this ioctl will receive 940 * an error that is dependent on the connection state at the time of the abort. 941 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 942 * though a RST packet has been received. If the connection state is equal to 943 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 944 * and all resources associated with the connection will be freed. 945 */ 946 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 947 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 948 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 949 ip_recv_attr_t *dummy); 950 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 951 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 952 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 953 boolean_t, tcp_stack_t *); 954 955 static struct module_info tcp_rinfo = { 956 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 957 }; 958 959 static struct module_info tcp_winfo = { 960 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 961 }; 962 963 /* 964 * Entry points for TCP as a device. The normal case which supports 965 * the TCP functionality. 966 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 967 */ 968 struct qinit tcp_rinitv4 = { 969 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 970 }; 971 972 struct qinit tcp_rinitv6 = { 973 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 974 }; 975 976 struct qinit tcp_winit = { 977 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 978 }; 979 980 /* Initial entry point for TCP in socket mode. */ 981 struct qinit tcp_sock_winit = { 982 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 983 }; 984 985 /* TCP entry point during fallback */ 986 struct qinit tcp_fallback_sock_winit = { 987 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 988 }; 989 990 /* 991 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 992 * an accept. Avoid allocating data structures since eager has already 993 * been created. 994 */ 995 struct qinit tcp_acceptor_rinit = { 996 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 997 }; 998 999 struct qinit tcp_acceptor_winit = { 1000 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1001 }; 1002 1003 /* For AF_INET aka /dev/tcp */ 1004 struct streamtab tcpinfov4 = { 1005 &tcp_rinitv4, &tcp_winit 1006 }; 1007 1008 /* For AF_INET6 aka /dev/tcp6 */ 1009 struct streamtab tcpinfov6 = { 1010 &tcp_rinitv6, &tcp_winit 1011 }; 1012 1013 sock_downcalls_t sock_tcp_downcalls; 1014 1015 /* Setable only in /etc/system. Move to ndd? */ 1016 boolean_t tcp_icmp_source_quench = B_FALSE; 1017 1018 /* 1019 * Following assumes TPI alignment requirements stay along 32 bit 1020 * boundaries 1021 */ 1022 #define ROUNDUP32(x) \ 1023 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1024 1025 /* Template for response to info request. */ 1026 static struct T_info_ack tcp_g_t_info_ack = { 1027 T_INFO_ACK, /* PRIM_type */ 1028 0, /* TSDU_size */ 1029 T_INFINITE, /* ETSDU_size */ 1030 T_INVALID, /* CDATA_size */ 1031 T_INVALID, /* DDATA_size */ 1032 sizeof (sin_t), /* ADDR_size */ 1033 0, /* OPT_size - not initialized here */ 1034 TIDUSZ, /* TIDU_size */ 1035 T_COTS_ORD, /* SERV_type */ 1036 TCPS_IDLE, /* CURRENT_state */ 1037 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1038 }; 1039 1040 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1041 T_INFO_ACK, /* PRIM_type */ 1042 0, /* TSDU_size */ 1043 T_INFINITE, /* ETSDU_size */ 1044 T_INVALID, /* CDATA_size */ 1045 T_INVALID, /* DDATA_size */ 1046 sizeof (sin6_t), /* ADDR_size */ 1047 0, /* OPT_size - not initialized here */ 1048 TIDUSZ, /* TIDU_size */ 1049 T_COTS_ORD, /* SERV_type */ 1050 TCPS_IDLE, /* CURRENT_state */ 1051 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1052 }; 1053 1054 #define MS 1L 1055 #define SECONDS (1000 * MS) 1056 #define MINUTES (60 * SECONDS) 1057 #define HOURS (60 * MINUTES) 1058 #define DAYS (24 * HOURS) 1059 1060 #define PARAM_MAX (~(uint32_t)0) 1061 1062 /* Max size IP datagram is 64k - 1 */ 1063 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 1064 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 1065 /* Max of the above */ 1066 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1067 1068 /* Largest TCP port number */ 1069 #define TCP_MAX_PORT (64 * 1024 - 1) 1070 1071 /* 1072 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1073 * layer header. It has to be a multiple of 4. 1074 */ 1075 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1076 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1077 1078 #define MB (1024 * 1024) 1079 1080 /* 1081 * All of these are alterable, within the min/max values given, at run time. 1082 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1083 * per the TCP spec. 1084 */ 1085 /* BEGIN CSTYLED */ 1086 static tcpparam_t lcl_tcp_param_arr[] = { 1087 /*min max value name */ 1088 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1089 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1090 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1091 { 1, 1024, 1, "tcp_conn_req_min" }, 1092 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1093 { 128, (1<<30), 1*MB, "tcp_cwnd_max" }, 1094 { 0, 10, 0, "tcp_debug" }, 1095 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1096 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1097 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1098 { 500*MS, PARAM_MAX, 5*MINUTES, "tcp_ip_abort_interval"}, 1099 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1100 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1101 { 1, 255, 64, "tcp_ipv4_ttl"}, 1102 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1103 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1104 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1105 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1106 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1107 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1108 { 1*MS, 20*SECONDS, 1*SECONDS, "tcp_rexmit_interval_initial"}, 1109 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1110 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1111 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1112 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1113 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1114 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1115 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1116 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1117 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1118 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1119 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1120 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1121 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1122 { 8192, (1<<30), 1*MB, "tcp_max_buf"}, 1123 /* 1124 * Question: What default value should I set for tcp_strong_iss? 1125 */ 1126 { 0, 2, 1, "tcp_strong_iss"}, 1127 { 0, 65536, 20, "tcp_rtt_updates"}, 1128 { 0, 1, 1, "tcp_wscale_always"}, 1129 { 0, 1, 0, "tcp_tstamp_always"}, 1130 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1131 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1132 { 0, 16, 2, "tcp_deferred_acks_max"}, 1133 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1134 { 1, 4, 4, "tcp_slow_start_initial"}, 1135 { 0, 2, 2, "tcp_sack_permitted"}, 1136 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1137 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1138 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1139 { 0, 1, 0, "tcp_rev_src_routes"}, 1140 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1141 { 0, 16, 8, "tcp_local_dacks_max"}, 1142 { 0, 2, 1, "tcp_ecn_permitted"}, 1143 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1144 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1145 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1146 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1147 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1148 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1149 { 0, PARAM_MAX, 100*SECONDS, "tcp_reass_timeout"} 1150 }; 1151 /* END CSTYLED */ 1152 1153 /* Round up the value to the nearest mss. */ 1154 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1155 1156 /* 1157 * Set ECN capable transport (ECT) code point in IP header. 1158 * 1159 * Note that there are 2 ECT code points '01' and '10', which are called 1160 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1161 * point ECT(0) for TCP as described in RFC 2481. 1162 */ 1163 #define SET_ECT(tcp, iph) \ 1164 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1165 /* We need to clear the code point first. */ \ 1166 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1167 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1168 } else { \ 1169 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1170 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1171 } 1172 1173 /* 1174 * The format argument to pass to tcp_display(). 1175 * DISP_PORT_ONLY means that the returned string has only port info. 1176 * DISP_ADDR_AND_PORT means that the returned string also contains the 1177 * remote and local IP address. 1178 */ 1179 #define DISP_PORT_ONLY 1 1180 #define DISP_ADDR_AND_PORT 2 1181 1182 #define IS_VMLOANED_MBLK(mp) \ 1183 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1184 1185 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1186 1187 /* 1188 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1189 * tunable settable via NDD. Otherwise, the per-connection behavior is 1190 * determined dynamically during tcp_set_destination(), which is the default. 1191 */ 1192 boolean_t tcp_static_maxpsz = B_FALSE; 1193 1194 /* Setable in /etc/system */ 1195 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1196 uint32_t tcp_random_anon_port = 1; 1197 1198 /* 1199 * To reach to an eager in Q0 which can be dropped due to an incoming 1200 * new SYN request when Q0 is full, a new doubly linked list is 1201 * introduced. This list allows to select an eager from Q0 in O(1) time. 1202 * This is needed to avoid spending too much time walking through the 1203 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1204 * this new list has to be a member of Q0. 1205 * This list is headed by listener's tcp_t. When the list is empty, 1206 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1207 * of listener's tcp_t point to listener's tcp_t itself. 1208 * 1209 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1210 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1211 * These macros do not affect the eager's membership to Q0. 1212 */ 1213 1214 1215 #define MAKE_DROPPABLE(listener, eager) \ 1216 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1217 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1218 = (eager); \ 1219 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1220 (eager)->tcp_eager_next_drop_q0 = \ 1221 (listener)->tcp_eager_next_drop_q0; \ 1222 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1223 } 1224 1225 #define MAKE_UNDROPPABLE(eager) \ 1226 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1227 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1228 = (eager)->tcp_eager_prev_drop_q0; \ 1229 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1230 = (eager)->tcp_eager_next_drop_q0; \ 1231 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1232 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1233 } 1234 1235 /* 1236 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1237 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1238 * data, TCP will not respond with an ACK. RFC 793 requires that 1239 * TCP responds with an ACK for such a bogus ACK. By not following 1240 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1241 * an attacker successfully spoofs an acceptable segment to our 1242 * peer; or when our peer is "confused." 1243 */ 1244 uint32_t tcp_drop_ack_unsent_cnt = 10; 1245 1246 /* 1247 * Hook functions to enable cluster networking 1248 * On non-clustered systems these vectors must always be NULL. 1249 */ 1250 1251 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1252 sa_family_t addr_family, uint8_t *laddrp, 1253 in_port_t lport, void *args) = NULL; 1254 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1255 sa_family_t addr_family, uint8_t *laddrp, 1256 in_port_t lport, void *args) = NULL; 1257 1258 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1259 boolean_t is_outgoing, 1260 sa_family_t addr_family, 1261 uint8_t *laddrp, in_port_t lport, 1262 uint8_t *faddrp, in_port_t fport, 1263 void *args) = NULL; 1264 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1265 sa_family_t addr_family, uint8_t *laddrp, 1266 in_port_t lport, uint8_t *faddrp, 1267 in_port_t fport, void *args) = NULL; 1268 1269 1270 /* 1271 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1272 */ 1273 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1274 (err) = 0; \ 1275 if (cl_inet_connect2 != NULL) { \ 1276 /* \ 1277 * Running in cluster mode - register active connection \ 1278 * information \ 1279 */ \ 1280 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1281 if ((connp)->conn_laddr_v4 != 0) { \ 1282 (err) = (*cl_inet_connect2)( \ 1283 (connp)->conn_netstack->netstack_stackid,\ 1284 IPPROTO_TCP, is_outgoing, AF_INET, \ 1285 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1286 (in_port_t)(connp)->conn_lport, \ 1287 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1288 (in_port_t)(connp)->conn_fport, NULL); \ 1289 } \ 1290 } else { \ 1291 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1292 &(connp)->conn_laddr_v6)) { \ 1293 (err) = (*cl_inet_connect2)( \ 1294 (connp)->conn_netstack->netstack_stackid,\ 1295 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1296 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1297 (in_port_t)(connp)->conn_lport, \ 1298 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1299 (in_port_t)(connp)->conn_fport, NULL); \ 1300 } \ 1301 } \ 1302 } \ 1303 } 1304 1305 #define CL_INET_DISCONNECT(connp) { \ 1306 if (cl_inet_disconnect != NULL) { \ 1307 /* \ 1308 * Running in cluster mode - deregister active \ 1309 * connection information \ 1310 */ \ 1311 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1312 if ((connp)->conn_laddr_v4 != 0) { \ 1313 (*cl_inet_disconnect)( \ 1314 (connp)->conn_netstack->netstack_stackid,\ 1315 IPPROTO_TCP, AF_INET, \ 1316 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1317 (in_port_t)(connp)->conn_lport, \ 1318 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1319 (in_port_t)(connp)->conn_fport, NULL); \ 1320 } \ 1321 } else { \ 1322 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1323 &(connp)->conn_laddr_v6)) { \ 1324 (*cl_inet_disconnect)( \ 1325 (connp)->conn_netstack->netstack_stackid,\ 1326 IPPROTO_TCP, AF_INET6, \ 1327 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1328 (in_port_t)(connp)->conn_lport, \ 1329 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1330 (in_port_t)(connp)->conn_fport, NULL); \ 1331 } \ 1332 } \ 1333 } \ 1334 } 1335 1336 /* 1337 * Steps to do when a tcp_t moves to TIME-WAIT state. 1338 * 1339 * This connection is done, we don't need to account for it. Decrement 1340 * the listener connection counter if needed. 1341 * 1342 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 1343 * connection won't interfere with new ones. 1344 * 1345 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 1346 * the timer is handled within the context of this tcp_t. When the timer 1347 * fires, tcp_clean_death() is called. If upper layer closes the connection 1348 * during this period, tcp_time_wait_append() will be called to add this 1349 * tcp_t to the global TIME-WAIT list. Note that this means that the 1350 * actual wait time in TIME-WAIT state will be longer than the 1351 * tcps_time_wait_interval since the period before upper layer closes the 1352 * connection is not accounted for when tcp_time_wait_append() is called. 1353 * 1354 * If uppser layer has closed the connection, call tcp_time_wait_append() 1355 * directly. 1356 */ 1357 #define SET_TIME_WAIT(tcps, tcp, connp) \ 1358 { \ 1359 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 1360 if ((tcp)->tcp_listen_cnt != NULL) \ 1361 TCP_DECR_LISTEN_CNT(tcp); \ 1362 (connp)->conn_exclbind = 0; \ 1363 if (!TCP_IS_DETACHED(tcp)) { \ 1364 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 1365 } else { \ 1366 tcp_time_wait_append(tcp); \ 1367 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 1368 } \ 1369 } 1370 1371 /* 1372 * Cluster networking hook for traversing current connection list. 1373 * This routine is used to extract the current list of live connections 1374 * which must continue to to be dispatched to this node. 1375 */ 1376 int cl_tcp_walk_list(netstackid_t stack_id, 1377 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1378 1379 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1380 void *arg, tcp_stack_t *tcps); 1381 1382 static void 1383 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1384 { 1385 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1386 1387 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1388 conn_t *connp = tcp->tcp_connp; 1389 struct sock_proto_props sopp; 1390 1391 /* 1392 * only increase rcvthresh upto default_threshold 1393 */ 1394 if (new_rcvthresh > default_threshold) 1395 new_rcvthresh = default_threshold; 1396 1397 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1398 sopp.sopp_rcvthresh = new_rcvthresh; 1399 1400 (*connp->conn_upcalls->su_set_proto_props) 1401 (connp->conn_upper_handle, &sopp); 1402 } 1403 } 1404 /* 1405 * Figure out the value of window scale opton. Note that the rwnd is 1406 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1407 * We cannot find the scale value and then do a round up of tcp_rwnd 1408 * because the scale value may not be correct after that. 1409 * 1410 * Set the compiler flag to make this function inline. 1411 */ 1412 static void 1413 tcp_set_ws_value(tcp_t *tcp) 1414 { 1415 int i; 1416 uint32_t rwnd = tcp->tcp_rwnd; 1417 1418 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1419 i++, rwnd >>= 1) 1420 ; 1421 tcp->tcp_rcv_ws = i; 1422 } 1423 1424 /* 1425 * Remove a connection from the list of detached TIME_WAIT connections. 1426 * It returns B_FALSE if it can't remove the connection from the list 1427 * as the connection has already been removed from the list due to an 1428 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1429 */ 1430 static boolean_t 1431 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1432 { 1433 boolean_t locked = B_FALSE; 1434 1435 if (tcp_time_wait == NULL) { 1436 tcp_time_wait = *((tcp_squeue_priv_t **) 1437 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1438 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1439 locked = B_TRUE; 1440 } else { 1441 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1442 } 1443 1444 if (tcp->tcp_time_wait_expire == 0) { 1445 ASSERT(tcp->tcp_time_wait_next == NULL); 1446 ASSERT(tcp->tcp_time_wait_prev == NULL); 1447 if (locked) 1448 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1449 return (B_FALSE); 1450 } 1451 ASSERT(TCP_IS_DETACHED(tcp)); 1452 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1453 1454 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1455 ASSERT(tcp->tcp_time_wait_prev == NULL); 1456 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1457 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1458 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1459 NULL; 1460 } else { 1461 tcp_time_wait->tcp_time_wait_tail = NULL; 1462 } 1463 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1464 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1465 ASSERT(tcp->tcp_time_wait_next == NULL); 1466 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1467 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1468 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1469 } else { 1470 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1471 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1472 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1473 tcp->tcp_time_wait_next; 1474 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1475 tcp->tcp_time_wait_prev; 1476 } 1477 tcp->tcp_time_wait_next = NULL; 1478 tcp->tcp_time_wait_prev = NULL; 1479 tcp->tcp_time_wait_expire = 0; 1480 1481 if (locked) 1482 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1483 return (B_TRUE); 1484 } 1485 1486 /* 1487 * Add a connection to the list of detached TIME_WAIT connections 1488 * and set its time to expire. 1489 */ 1490 static void 1491 tcp_time_wait_append(tcp_t *tcp) 1492 { 1493 tcp_stack_t *tcps = tcp->tcp_tcps; 1494 tcp_squeue_priv_t *tcp_time_wait = 1495 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1496 SQPRIVATE_TCP)); 1497 1498 tcp_timers_stop(tcp); 1499 1500 /* Freed above */ 1501 ASSERT(tcp->tcp_timer_tid == 0); 1502 ASSERT(tcp->tcp_ack_tid == 0); 1503 1504 /* must have happened at the time of detaching the tcp */ 1505 ASSERT(tcp->tcp_ptpahn == NULL); 1506 ASSERT(tcp->tcp_flow_stopped == 0); 1507 ASSERT(tcp->tcp_time_wait_next == NULL); 1508 ASSERT(tcp->tcp_time_wait_prev == NULL); 1509 ASSERT(tcp->tcp_time_wait_expire == NULL); 1510 ASSERT(tcp->tcp_listener == NULL); 1511 1512 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1513 /* 1514 * The value computed below in tcp->tcp_time_wait_expire may 1515 * appear negative or wrap around. That is ok since our 1516 * interest is only in the difference between the current lbolt 1517 * value and tcp->tcp_time_wait_expire. But the value should not 1518 * be zero, since it means the tcp is not in the TIME_WAIT list. 1519 * The corresponding comparison in tcp_time_wait_collector() uses 1520 * modular arithmetic. 1521 */ 1522 tcp->tcp_time_wait_expire += 1523 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1524 if (tcp->tcp_time_wait_expire == 0) 1525 tcp->tcp_time_wait_expire = 1; 1526 1527 ASSERT(TCP_IS_DETACHED(tcp)); 1528 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1529 ASSERT(tcp->tcp_time_wait_next == NULL); 1530 ASSERT(tcp->tcp_time_wait_prev == NULL); 1531 TCP_DBGSTAT(tcps, tcp_time_wait); 1532 1533 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1534 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1535 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1536 tcp_time_wait->tcp_time_wait_head = tcp; 1537 } else { 1538 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1539 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1540 TCPS_TIME_WAIT); 1541 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1542 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1543 } 1544 tcp_time_wait->tcp_time_wait_tail = tcp; 1545 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1546 } 1547 1548 /* ARGSUSED */ 1549 void 1550 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1551 { 1552 conn_t *connp = (conn_t *)arg; 1553 tcp_t *tcp = connp->conn_tcp; 1554 tcp_stack_t *tcps = tcp->tcp_tcps; 1555 1556 ASSERT(tcp != NULL); 1557 if (tcp->tcp_state == TCPS_CLOSED) { 1558 return; 1559 } 1560 1561 ASSERT((connp->conn_family == AF_INET && 1562 connp->conn_ipversion == IPV4_VERSION) || 1563 (connp->conn_family == AF_INET6 && 1564 (connp->conn_ipversion == IPV4_VERSION || 1565 connp->conn_ipversion == IPV6_VERSION))); 1566 ASSERT(!tcp->tcp_listener); 1567 1568 TCP_STAT(tcps, tcp_time_wait_reap); 1569 ASSERT(TCP_IS_DETACHED(tcp)); 1570 1571 /* 1572 * Because they have no upstream client to rebind or tcp_close() 1573 * them later, we axe the connection here and now. 1574 */ 1575 tcp_close_detached(tcp); 1576 } 1577 1578 /* 1579 * Remove cached/latched IPsec references. 1580 */ 1581 void 1582 tcp_ipsec_cleanup(tcp_t *tcp) 1583 { 1584 conn_t *connp = tcp->tcp_connp; 1585 1586 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1587 1588 if (connp->conn_latch != NULL) { 1589 IPLATCH_REFRELE(connp->conn_latch); 1590 connp->conn_latch = NULL; 1591 } 1592 if (connp->conn_latch_in_policy != NULL) { 1593 IPPOL_REFRELE(connp->conn_latch_in_policy); 1594 connp->conn_latch_in_policy = NULL; 1595 } 1596 if (connp->conn_latch_in_action != NULL) { 1597 IPACT_REFRELE(connp->conn_latch_in_action); 1598 connp->conn_latch_in_action = NULL; 1599 } 1600 if (connp->conn_policy != NULL) { 1601 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1602 connp->conn_policy = NULL; 1603 } 1604 } 1605 1606 /* 1607 * Cleaup before placing on free list. 1608 * Disassociate from the netstack/tcp_stack_t since the freelist 1609 * is per squeue and not per netstack. 1610 */ 1611 void 1612 tcp_cleanup(tcp_t *tcp) 1613 { 1614 mblk_t *mp; 1615 tcp_sack_info_t *tcp_sack_info; 1616 conn_t *connp = tcp->tcp_connp; 1617 tcp_stack_t *tcps = tcp->tcp_tcps; 1618 netstack_t *ns = tcps->tcps_netstack; 1619 mblk_t *tcp_rsrv_mp; 1620 1621 tcp_bind_hash_remove(tcp); 1622 1623 /* Cleanup that which needs the netstack first */ 1624 tcp_ipsec_cleanup(tcp); 1625 ixa_cleanup(connp->conn_ixa); 1626 1627 if (connp->conn_ht_iphc != NULL) { 1628 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1629 connp->conn_ht_iphc = NULL; 1630 connp->conn_ht_iphc_allocated = 0; 1631 connp->conn_ht_iphc_len = 0; 1632 connp->conn_ht_ulp = NULL; 1633 connp->conn_ht_ulp_len = 0; 1634 tcp->tcp_ipha = NULL; 1635 tcp->tcp_ip6h = NULL; 1636 tcp->tcp_tcpha = NULL; 1637 } 1638 1639 /* We clear any IP_OPTIONS and extension headers */ 1640 ip_pkt_free(&connp->conn_xmit_ipp); 1641 1642 tcp_free(tcp); 1643 1644 /* Release any SSL context */ 1645 if (tcp->tcp_kssl_ent != NULL) { 1646 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1647 tcp->tcp_kssl_ent = NULL; 1648 } 1649 1650 if (tcp->tcp_kssl_ctx != NULL) { 1651 kssl_release_ctx(tcp->tcp_kssl_ctx); 1652 tcp->tcp_kssl_ctx = NULL; 1653 } 1654 tcp->tcp_kssl_pending = B_FALSE; 1655 1656 /* 1657 * Since we will bzero the entire structure, we need to 1658 * remove it and reinsert it in global hash list. We 1659 * know the walkers can't get to this conn because we 1660 * had set CONDEMNED flag earlier and checked reference 1661 * under conn_lock so walker won't pick it and when we 1662 * go the ipcl_globalhash_remove() below, no walker 1663 * can get to it. 1664 */ 1665 ipcl_globalhash_remove(connp); 1666 1667 /* Save some state */ 1668 mp = tcp->tcp_timercache; 1669 1670 tcp_sack_info = tcp->tcp_sack_info; 1671 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1672 1673 if (connp->conn_cred != NULL) { 1674 crfree(connp->conn_cred); 1675 connp->conn_cred = NULL; 1676 } 1677 ipcl_conn_cleanup(connp); 1678 connp->conn_flags = IPCL_TCPCONN; 1679 1680 /* 1681 * Now it is safe to decrement the reference counts. 1682 * This might be the last reference on the netstack 1683 * in which case it will cause the freeing of the IP Instance. 1684 */ 1685 connp->conn_netstack = NULL; 1686 connp->conn_ixa->ixa_ipst = NULL; 1687 netstack_rele(ns); 1688 ASSERT(tcps != NULL); 1689 tcp->tcp_tcps = NULL; 1690 1691 bzero(tcp, sizeof (tcp_t)); 1692 1693 /* restore the state */ 1694 tcp->tcp_timercache = mp; 1695 1696 tcp->tcp_sack_info = tcp_sack_info; 1697 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1698 1699 tcp->tcp_connp = connp; 1700 1701 ASSERT(connp->conn_tcp == tcp); 1702 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1703 connp->conn_state_flags = CONN_INCIPIENT; 1704 ASSERT(connp->conn_proto == IPPROTO_TCP); 1705 ASSERT(connp->conn_ref == 1); 1706 } 1707 1708 /* 1709 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1710 * is done forwards from the head. 1711 * This walks all stack instances since 1712 * tcp_time_wait remains global across all stacks. 1713 */ 1714 /* ARGSUSED */ 1715 void 1716 tcp_time_wait_collector(void *arg) 1717 { 1718 tcp_t *tcp; 1719 clock_t now; 1720 mblk_t *mp; 1721 conn_t *connp; 1722 kmutex_t *lock; 1723 boolean_t removed; 1724 1725 squeue_t *sqp = (squeue_t *)arg; 1726 tcp_squeue_priv_t *tcp_time_wait = 1727 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1728 1729 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1730 tcp_time_wait->tcp_time_wait_tid = 0; 1731 1732 if (tcp_time_wait->tcp_free_list != NULL && 1733 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1734 TCP_G_STAT(tcp_freelist_cleanup); 1735 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1736 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1737 tcp->tcp_time_wait_next = NULL; 1738 tcp_time_wait->tcp_free_list_cnt--; 1739 ASSERT(tcp->tcp_tcps == NULL); 1740 CONN_DEC_REF(tcp->tcp_connp); 1741 } 1742 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1743 } 1744 1745 /* 1746 * In order to reap time waits reliably, we should use a 1747 * source of time that is not adjustable by the user -- hence 1748 * the call to ddi_get_lbolt(). 1749 */ 1750 now = ddi_get_lbolt(); 1751 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1752 /* 1753 * Compare times using modular arithmetic, since 1754 * lbolt can wrapover. 1755 */ 1756 if ((now - tcp->tcp_time_wait_expire) < 0) { 1757 break; 1758 } 1759 1760 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1761 ASSERT(removed); 1762 1763 connp = tcp->tcp_connp; 1764 ASSERT(connp->conn_fanout != NULL); 1765 lock = &connp->conn_fanout->connf_lock; 1766 /* 1767 * This is essentially a TW reclaim fast path optimization for 1768 * performance where the timewait collector checks under the 1769 * fanout lock (so that no one else can get access to the 1770 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1771 * the classifier hash list. If ref count is indeed 2, we can 1772 * just remove the conn under the fanout lock and avoid 1773 * cleaning up the conn under the squeue, provided that 1774 * clustering callbacks are not enabled. If clustering is 1775 * enabled, we need to make the clustering callback before 1776 * setting the CONDEMNED flag and after dropping all locks and 1777 * so we forego this optimization and fall back to the slow 1778 * path. Also please see the comments in tcp_closei_local 1779 * regarding the refcnt logic. 1780 * 1781 * Since we are holding the tcp_time_wait_lock, its better 1782 * not to block on the fanout_lock because other connections 1783 * can't add themselves to time_wait list. So we do a 1784 * tryenter instead of mutex_enter. 1785 */ 1786 if (mutex_tryenter(lock)) { 1787 mutex_enter(&connp->conn_lock); 1788 if ((connp->conn_ref == 2) && 1789 (cl_inet_disconnect == NULL)) { 1790 ipcl_hash_remove_locked(connp, 1791 connp->conn_fanout); 1792 /* 1793 * Set the CONDEMNED flag now itself so that 1794 * the refcnt cannot increase due to any 1795 * walker. 1796 */ 1797 connp->conn_state_flags |= CONN_CONDEMNED; 1798 mutex_exit(lock); 1799 mutex_exit(&connp->conn_lock); 1800 if (tcp_time_wait->tcp_free_list_cnt < 1801 tcp_free_list_max_cnt) { 1802 /* Add to head of tcp_free_list */ 1803 mutex_exit( 1804 &tcp_time_wait->tcp_time_wait_lock); 1805 tcp_cleanup(tcp); 1806 ASSERT(connp->conn_latch == NULL); 1807 ASSERT(connp->conn_policy == NULL); 1808 ASSERT(tcp->tcp_tcps == NULL); 1809 ASSERT(connp->conn_netstack == NULL); 1810 1811 mutex_enter( 1812 &tcp_time_wait->tcp_time_wait_lock); 1813 tcp->tcp_time_wait_next = 1814 tcp_time_wait->tcp_free_list; 1815 tcp_time_wait->tcp_free_list = tcp; 1816 tcp_time_wait->tcp_free_list_cnt++; 1817 continue; 1818 } else { 1819 /* Do not add to tcp_free_list */ 1820 mutex_exit( 1821 &tcp_time_wait->tcp_time_wait_lock); 1822 tcp_bind_hash_remove(tcp); 1823 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1824 tcp_ipsec_cleanup(tcp); 1825 CONN_DEC_REF(tcp->tcp_connp); 1826 } 1827 } else { 1828 CONN_INC_REF_LOCKED(connp); 1829 mutex_exit(lock); 1830 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1831 mutex_exit(&connp->conn_lock); 1832 /* 1833 * We can reuse the closemp here since conn has 1834 * detached (otherwise we wouldn't even be in 1835 * time_wait list). tcp_closemp_used can safely 1836 * be changed without taking a lock as no other 1837 * thread can concurrently access it at this 1838 * point in the connection lifecycle. 1839 */ 1840 1841 if (tcp->tcp_closemp.b_prev == NULL) 1842 tcp->tcp_closemp_used = B_TRUE; 1843 else 1844 cmn_err(CE_PANIC, 1845 "tcp_timewait_collector: " 1846 "concurrent use of tcp_closemp: " 1847 "connp %p tcp %p\n", (void *)connp, 1848 (void *)tcp); 1849 1850 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1851 mp = &tcp->tcp_closemp; 1852 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1853 tcp_timewait_output, connp, NULL, 1854 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1855 } 1856 } else { 1857 mutex_enter(&connp->conn_lock); 1858 CONN_INC_REF_LOCKED(connp); 1859 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1860 mutex_exit(&connp->conn_lock); 1861 /* 1862 * We can reuse the closemp here since conn has 1863 * detached (otherwise we wouldn't even be in 1864 * time_wait list). tcp_closemp_used can safely 1865 * be changed without taking a lock as no other 1866 * thread can concurrently access it at this 1867 * point in the connection lifecycle. 1868 */ 1869 1870 if (tcp->tcp_closemp.b_prev == NULL) 1871 tcp->tcp_closemp_used = B_TRUE; 1872 else 1873 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1874 "concurrent use of tcp_closemp: " 1875 "connp %p tcp %p\n", (void *)connp, 1876 (void *)tcp); 1877 1878 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1879 mp = &tcp->tcp_closemp; 1880 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1881 tcp_timewait_output, connp, NULL, 1882 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1883 } 1884 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1885 } 1886 1887 if (tcp_time_wait->tcp_free_list != NULL) 1888 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1889 1890 tcp_time_wait->tcp_time_wait_tid = 1891 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1892 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1893 CALLOUT_FLAG_ROUNDUP); 1894 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1895 } 1896 1897 /* 1898 * Reply to a clients T_CONN_RES TPI message. This function 1899 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1900 * on the acceptor STREAM and processed in tcp_accept_common(). 1901 * Read the block comment on top of tcp_input_listener(). 1902 */ 1903 static void 1904 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1905 { 1906 tcp_t *acceptor; 1907 tcp_t *eager; 1908 tcp_t *tcp; 1909 struct T_conn_res *tcr; 1910 t_uscalar_t acceptor_id; 1911 t_scalar_t seqnum; 1912 mblk_t *discon_mp = NULL; 1913 mblk_t *ok_mp; 1914 mblk_t *mp1; 1915 tcp_stack_t *tcps = listener->tcp_tcps; 1916 conn_t *econnp; 1917 1918 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1919 tcp_err_ack(listener, mp, TPROTO, 0); 1920 return; 1921 } 1922 tcr = (struct T_conn_res *)mp->b_rptr; 1923 1924 /* 1925 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1926 * read side queue of the streams device underneath us i.e. the 1927 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1928 * look it up in the queue_hash. Under LP64 it sends down the 1929 * minor_t of the accepting endpoint. 1930 * 1931 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1932 * fanout hash lock is held. 1933 * This prevents any thread from entering the acceptor queue from 1934 * below (since it has not been hard bound yet i.e. any inbound 1935 * packets will arrive on the listener conn_t and 1936 * go through the classifier). 1937 * The CONN_INC_REF will prevent the acceptor from closing. 1938 * 1939 * XXX It is still possible for a tli application to send down data 1940 * on the accepting stream while another thread calls t_accept. 1941 * This should not be a problem for well-behaved applications since 1942 * the T_OK_ACK is sent after the queue swapping is completed. 1943 * 1944 * If the accepting fd is the same as the listening fd, avoid 1945 * queue hash lookup since that will return an eager listener in a 1946 * already established state. 1947 */ 1948 acceptor_id = tcr->ACCEPTOR_id; 1949 mutex_enter(&listener->tcp_eager_lock); 1950 if (listener->tcp_acceptor_id == acceptor_id) { 1951 eager = listener->tcp_eager_next_q; 1952 /* only count how many T_CONN_INDs so don't count q0 */ 1953 if ((listener->tcp_conn_req_cnt_q != 1) || 1954 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1955 mutex_exit(&listener->tcp_eager_lock); 1956 tcp_err_ack(listener, mp, TBADF, 0); 1957 return; 1958 } 1959 if (listener->tcp_conn_req_cnt_q0 != 0) { 1960 /* Throw away all the eagers on q0. */ 1961 tcp_eager_cleanup(listener, 1); 1962 } 1963 if (listener->tcp_syn_defense) { 1964 listener->tcp_syn_defense = B_FALSE; 1965 if (listener->tcp_ip_addr_cache != NULL) { 1966 kmem_free(listener->tcp_ip_addr_cache, 1967 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1968 listener->tcp_ip_addr_cache = NULL; 1969 } 1970 } 1971 /* 1972 * Transfer tcp_conn_req_max to the eager so that when 1973 * a disconnect occurs we can revert the endpoint to the 1974 * listen state. 1975 */ 1976 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1977 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1978 /* 1979 * Get a reference on the acceptor just like the 1980 * tcp_acceptor_hash_lookup below. 1981 */ 1982 acceptor = listener; 1983 CONN_INC_REF(acceptor->tcp_connp); 1984 } else { 1985 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1986 if (acceptor == NULL) { 1987 if (listener->tcp_connp->conn_debug) { 1988 (void) strlog(TCP_MOD_ID, 0, 1, 1989 SL_ERROR|SL_TRACE, 1990 "tcp_accept: did not find acceptor 0x%x\n", 1991 acceptor_id); 1992 } 1993 mutex_exit(&listener->tcp_eager_lock); 1994 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1995 return; 1996 } 1997 /* 1998 * Verify acceptor state. The acceptable states for an acceptor 1999 * include TCPS_IDLE and TCPS_BOUND. 2000 */ 2001 switch (acceptor->tcp_state) { 2002 case TCPS_IDLE: 2003 /* FALLTHRU */ 2004 case TCPS_BOUND: 2005 break; 2006 default: 2007 CONN_DEC_REF(acceptor->tcp_connp); 2008 mutex_exit(&listener->tcp_eager_lock); 2009 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2010 return; 2011 } 2012 } 2013 2014 /* The listener must be in TCPS_LISTEN */ 2015 if (listener->tcp_state != TCPS_LISTEN) { 2016 CONN_DEC_REF(acceptor->tcp_connp); 2017 mutex_exit(&listener->tcp_eager_lock); 2018 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2019 return; 2020 } 2021 2022 /* 2023 * Rendezvous with an eager connection request packet hanging off 2024 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2025 * tcp structure when the connection packet arrived in 2026 * tcp_input_listener(). 2027 */ 2028 seqnum = tcr->SEQ_number; 2029 eager = listener; 2030 do { 2031 eager = eager->tcp_eager_next_q; 2032 if (eager == NULL) { 2033 CONN_DEC_REF(acceptor->tcp_connp); 2034 mutex_exit(&listener->tcp_eager_lock); 2035 tcp_err_ack(listener, mp, TBADSEQ, 0); 2036 return; 2037 } 2038 } while (eager->tcp_conn_req_seqnum != seqnum); 2039 mutex_exit(&listener->tcp_eager_lock); 2040 2041 /* 2042 * At this point, both acceptor and listener have 2 ref 2043 * that they begin with. Acceptor has one additional ref 2044 * we placed in lookup while listener has 3 additional 2045 * ref for being behind the squeue (tcp_accept() is 2046 * done on listener's squeue); being in classifier hash; 2047 * and eager's ref on listener. 2048 */ 2049 ASSERT(listener->tcp_connp->conn_ref >= 5); 2050 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2051 2052 /* 2053 * The eager at this point is set in its own squeue and 2054 * could easily have been killed (tcp_accept_finish will 2055 * deal with that) because of a TH_RST so we can only 2056 * ASSERT for a single ref. 2057 */ 2058 ASSERT(eager->tcp_connp->conn_ref >= 1); 2059 2060 /* 2061 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 2062 * use it if something failed. 2063 */ 2064 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 2065 sizeof (struct stroptions)), BPRI_HI); 2066 if (discon_mp == NULL) { 2067 CONN_DEC_REF(acceptor->tcp_connp); 2068 CONN_DEC_REF(eager->tcp_connp); 2069 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2070 return; 2071 } 2072 2073 econnp = eager->tcp_connp; 2074 2075 /* Hold a copy of mp, in case reallocb fails */ 2076 if ((mp1 = copymsg(mp)) == NULL) { 2077 CONN_DEC_REF(acceptor->tcp_connp); 2078 CONN_DEC_REF(eager->tcp_connp); 2079 freemsg(discon_mp); 2080 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2081 return; 2082 } 2083 2084 tcr = (struct T_conn_res *)mp1->b_rptr; 2085 2086 /* 2087 * This is an expanded version of mi_tpi_ok_ack_alloc() 2088 * which allocates a larger mblk and appends the new 2089 * local address to the ok_ack. The address is copied by 2090 * soaccept() for getsockname(). 2091 */ 2092 { 2093 int extra; 2094 2095 extra = (econnp->conn_family == AF_INET) ? 2096 sizeof (sin_t) : sizeof (sin6_t); 2097 2098 /* 2099 * Try to re-use mp, if possible. Otherwise, allocate 2100 * an mblk and return it as ok_mp. In any case, mp 2101 * is no longer usable upon return. 2102 */ 2103 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2104 CONN_DEC_REF(acceptor->tcp_connp); 2105 CONN_DEC_REF(eager->tcp_connp); 2106 freemsg(discon_mp); 2107 /* Original mp has been freed by now, so use mp1 */ 2108 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2109 return; 2110 } 2111 2112 mp = NULL; /* We should never use mp after this point */ 2113 2114 switch (extra) { 2115 case sizeof (sin_t): { 2116 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2117 2118 ok_mp->b_wptr += extra; 2119 sin->sin_family = AF_INET; 2120 sin->sin_port = econnp->conn_lport; 2121 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2122 break; 2123 } 2124 case sizeof (sin6_t): { 2125 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2126 2127 ok_mp->b_wptr += extra; 2128 sin6->sin6_family = AF_INET6; 2129 sin6->sin6_port = econnp->conn_lport; 2130 sin6->sin6_addr = econnp->conn_laddr_v6; 2131 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2132 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2133 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2134 sin6->sin6_scope_id = 2135 econnp->conn_ixa->ixa_scopeid; 2136 } else { 2137 sin6->sin6_scope_id = 0; 2138 } 2139 sin6->__sin6_src_id = 0; 2140 break; 2141 } 2142 default: 2143 break; 2144 } 2145 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2146 } 2147 2148 /* 2149 * If there are no options we know that the T_CONN_RES will 2150 * succeed. However, we can't send the T_OK_ACK upstream until 2151 * the tcp_accept_swap is done since it would be dangerous to 2152 * let the application start using the new fd prior to the swap. 2153 */ 2154 tcp_accept_swap(listener, acceptor, eager); 2155 2156 /* 2157 * tcp_accept_swap unlinks eager from listener but does not drop 2158 * the eager's reference on the listener. 2159 */ 2160 ASSERT(eager->tcp_listener == NULL); 2161 ASSERT(listener->tcp_connp->conn_ref >= 5); 2162 2163 /* 2164 * The eager is now associated with its own queue. Insert in 2165 * the hash so that the connection can be reused for a future 2166 * T_CONN_RES. 2167 */ 2168 tcp_acceptor_hash_insert(acceptor_id, eager); 2169 2170 /* 2171 * We now do the processing of options with T_CONN_RES. 2172 * We delay till now since we wanted to have queue to pass to 2173 * option processing routines that points back to the right 2174 * instance structure which does not happen until after 2175 * tcp_accept_swap(). 2176 * 2177 * Note: 2178 * The sanity of the logic here assumes that whatever options 2179 * are appropriate to inherit from listner=>eager are done 2180 * before this point, and whatever were to be overridden (or not) 2181 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2182 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2183 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2184 * This may not be true at this point in time but can be fixed 2185 * independently. This option processing code starts with 2186 * the instantiated acceptor instance and the final queue at 2187 * this point. 2188 */ 2189 2190 if (tcr->OPT_length != 0) { 2191 /* Options to process */ 2192 int t_error = 0; 2193 int sys_error = 0; 2194 int do_disconnect = 0; 2195 2196 if (tcp_conprim_opt_process(eager, mp1, 2197 &do_disconnect, &t_error, &sys_error) < 0) { 2198 eager->tcp_accept_error = 1; 2199 if (do_disconnect) { 2200 /* 2201 * An option failed which does not allow 2202 * connection to be accepted. 2203 * 2204 * We allow T_CONN_RES to succeed and 2205 * put a T_DISCON_IND on the eager queue. 2206 */ 2207 ASSERT(t_error == 0 && sys_error == 0); 2208 eager->tcp_send_discon_ind = 1; 2209 } else { 2210 ASSERT(t_error != 0); 2211 freemsg(ok_mp); 2212 /* 2213 * Original mp was either freed or set 2214 * to ok_mp above, so use mp1 instead. 2215 */ 2216 tcp_err_ack(listener, mp1, t_error, sys_error); 2217 goto finish; 2218 } 2219 } 2220 /* 2221 * Most likely success in setting options (except if 2222 * eager->tcp_send_discon_ind set). 2223 * mp1 option buffer represented by OPT_length/offset 2224 * potentially modified and contains results of setting 2225 * options at this point 2226 */ 2227 } 2228 2229 /* We no longer need mp1, since all options processing has passed */ 2230 freemsg(mp1); 2231 2232 putnext(listener->tcp_connp->conn_rq, ok_mp); 2233 2234 mutex_enter(&listener->tcp_eager_lock); 2235 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2236 tcp_t *tail; 2237 mblk_t *conn_ind; 2238 2239 /* 2240 * This path should not be executed if listener and 2241 * acceptor streams are the same. 2242 */ 2243 ASSERT(listener != acceptor); 2244 2245 tcp = listener->tcp_eager_prev_q0; 2246 /* 2247 * listener->tcp_eager_prev_q0 points to the TAIL of the 2248 * deferred T_conn_ind queue. We need to get to the head of 2249 * the queue in order to send up T_conn_ind the same order as 2250 * how the 3WHS is completed. 2251 */ 2252 while (tcp != listener) { 2253 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2254 break; 2255 else 2256 tcp = tcp->tcp_eager_prev_q0; 2257 } 2258 ASSERT(tcp != listener); 2259 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2260 ASSERT(conn_ind != NULL); 2261 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2262 2263 /* Move from q0 to q */ 2264 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2265 listener->tcp_conn_req_cnt_q0--; 2266 listener->tcp_conn_req_cnt_q++; 2267 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2268 tcp->tcp_eager_prev_q0; 2269 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2270 tcp->tcp_eager_next_q0; 2271 tcp->tcp_eager_prev_q0 = NULL; 2272 tcp->tcp_eager_next_q0 = NULL; 2273 tcp->tcp_conn_def_q0 = B_FALSE; 2274 2275 /* Make sure the tcp isn't in the list of droppables */ 2276 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2277 tcp->tcp_eager_prev_drop_q0 == NULL); 2278 2279 /* 2280 * Insert at end of the queue because sockfs sends 2281 * down T_CONN_RES in chronological order. Leaving 2282 * the older conn indications at front of the queue 2283 * helps reducing search time. 2284 */ 2285 tail = listener->tcp_eager_last_q; 2286 if (tail != NULL) 2287 tail->tcp_eager_next_q = tcp; 2288 else 2289 listener->tcp_eager_next_q = tcp; 2290 listener->tcp_eager_last_q = tcp; 2291 tcp->tcp_eager_next_q = NULL; 2292 mutex_exit(&listener->tcp_eager_lock); 2293 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2294 } else { 2295 mutex_exit(&listener->tcp_eager_lock); 2296 } 2297 2298 /* 2299 * Done with the acceptor - free it 2300 * 2301 * Note: from this point on, no access to listener should be made 2302 * as listener can be equal to acceptor. 2303 */ 2304 finish: 2305 ASSERT(acceptor->tcp_detached); 2306 acceptor->tcp_connp->conn_rq = NULL; 2307 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2308 acceptor->tcp_connp->conn_wq = NULL; 2309 (void) tcp_clean_death(acceptor, 0, 2); 2310 CONN_DEC_REF(acceptor->tcp_connp); 2311 2312 /* 2313 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2314 * 2315 * It will update the setting for sockfs/stream head and also take 2316 * care of any data that arrived before accept() wad called. 2317 * In case we already received a FIN then tcp_accept_finish will send up 2318 * the ordrel. It will also send up a window update if the window 2319 * has opened up. 2320 */ 2321 2322 /* 2323 * XXX: we currently have a problem if XTI application closes the 2324 * acceptor stream in between. This problem exists in on10-gate also 2325 * and is well know but nothing can be done short of major rewrite 2326 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2327 * eager same squeue as listener (we can distinguish non socket 2328 * listeners at the time of handling a SYN in tcp_input_listener) 2329 * and do most of the work that tcp_accept_finish does here itself 2330 * and then get behind the acceptor squeue to access the acceptor 2331 * queue. 2332 */ 2333 /* 2334 * We already have a ref on tcp so no need to do one before squeue_enter 2335 */ 2336 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2337 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2338 SQTAG_TCP_ACCEPT_FINISH); 2339 } 2340 2341 /* 2342 * Swap information between the eager and acceptor for a TLI/XTI client. 2343 * The sockfs accept is done on the acceptor stream and control goes 2344 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2345 * called. In either case, both the eager and listener are in their own 2346 * perimeter (squeue) and the code has to deal with potential race. 2347 * 2348 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2349 */ 2350 static void 2351 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2352 { 2353 conn_t *econnp, *aconnp; 2354 2355 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2356 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2357 ASSERT(!TCP_IS_SOCKET(acceptor)); 2358 ASSERT(!TCP_IS_SOCKET(eager)); 2359 ASSERT(!TCP_IS_SOCKET(listener)); 2360 2361 /* 2362 * Trusted Extensions may need to use a security label that is 2363 * different from the acceptor's label on MLP and MAC-Exempt 2364 * sockets. If this is the case, the required security label 2365 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2366 * acceptor stream refer to econnp we atomatically get that label. 2367 */ 2368 2369 acceptor->tcp_detached = B_TRUE; 2370 /* 2371 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2372 * the acceptor id. 2373 */ 2374 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2375 2376 /* remove eager from listen list... */ 2377 mutex_enter(&listener->tcp_eager_lock); 2378 tcp_eager_unlink(eager); 2379 ASSERT(eager->tcp_eager_next_q == NULL && 2380 eager->tcp_eager_last_q == NULL); 2381 ASSERT(eager->tcp_eager_next_q0 == NULL && 2382 eager->tcp_eager_prev_q0 == NULL); 2383 mutex_exit(&listener->tcp_eager_lock); 2384 2385 econnp = eager->tcp_connp; 2386 aconnp = acceptor->tcp_connp; 2387 econnp->conn_rq = aconnp->conn_rq; 2388 econnp->conn_wq = aconnp->conn_wq; 2389 econnp->conn_rq->q_ptr = econnp; 2390 econnp->conn_wq->q_ptr = econnp; 2391 2392 /* 2393 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2394 * which might be a different squeue from our peer TCP instance. 2395 * For TCP Fusion, the peer expects that whenever tcp_detached is 2396 * clear, our TCP queues point to the acceptor's queues. Thus, use 2397 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2398 * above reach global visibility prior to the clearing of tcp_detached. 2399 */ 2400 membar_producer(); 2401 eager->tcp_detached = B_FALSE; 2402 2403 ASSERT(eager->tcp_ack_tid == 0); 2404 2405 econnp->conn_dev = aconnp->conn_dev; 2406 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2407 2408 ASSERT(econnp->conn_minor_arena != NULL); 2409 if (econnp->conn_cred != NULL) 2410 crfree(econnp->conn_cred); 2411 econnp->conn_cred = aconnp->conn_cred; 2412 aconnp->conn_cred = NULL; 2413 econnp->conn_cpid = aconnp->conn_cpid; 2414 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2415 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2416 2417 econnp->conn_zoneid = aconnp->conn_zoneid; 2418 econnp->conn_allzones = aconnp->conn_allzones; 2419 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2420 2421 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2422 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2423 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2424 2425 /* Do the IPC initialization */ 2426 CONN_INC_REF(econnp); 2427 2428 /* Done with old IPC. Drop its ref on its connp */ 2429 CONN_DEC_REF(aconnp); 2430 } 2431 2432 2433 /* 2434 * Adapt to the information, such as rtt and rtt_sd, provided from the 2435 * DCE and IRE maintained by IP. 2436 * 2437 * Checks for multicast and broadcast destination address. 2438 * Returns zero if ok; an errno on failure. 2439 * 2440 * Note that the MSS calculation here is based on the info given in 2441 * the DCE and IRE. We do not do any calculation based on TCP options. They 2442 * will be handled in tcp_input_data() when TCP knows which options to use. 2443 * 2444 * Note on how TCP gets its parameters for a connection. 2445 * 2446 * When a tcp_t structure is allocated, it gets all the default parameters. 2447 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2448 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2449 * default. 2450 * 2451 * An incoming SYN with a multicast or broadcast destination address is dropped 2452 * in ip_fanout_v4/v6. 2453 * 2454 * An incoming SYN with a multicast or broadcast source address is always 2455 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2456 * conn_connect. 2457 * The same logic in tcp_set_destination also serves to 2458 * reject an attempt to connect to a broadcast or multicast (destination) 2459 * address. 2460 */ 2461 static int 2462 tcp_set_destination(tcp_t *tcp) 2463 { 2464 uint32_t mss_max; 2465 uint32_t mss; 2466 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2467 conn_t *connp = tcp->tcp_connp; 2468 tcp_stack_t *tcps = tcp->tcp_tcps; 2469 iulp_t uinfo; 2470 int error; 2471 uint32_t flags; 2472 2473 flags = IPDF_LSO | IPDF_ZCOPY; 2474 /* 2475 * Make sure we have a dce for the destination to avoid dce_ident 2476 * contention for connected sockets. 2477 */ 2478 flags |= IPDF_UNIQUE_DCE; 2479 2480 if (!tcps->tcps_ignore_path_mtu) 2481 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2482 2483 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2484 mutex_enter(&connp->conn_lock); 2485 error = conn_connect(connp, &uinfo, flags); 2486 mutex_exit(&connp->conn_lock); 2487 if (error != 0) 2488 return (error); 2489 2490 error = tcp_build_hdrs(tcp); 2491 if (error != 0) 2492 return (error); 2493 2494 tcp->tcp_localnet = uinfo.iulp_localnet; 2495 2496 if (uinfo.iulp_rtt != 0) { 2497 clock_t rto; 2498 2499 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2500 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2501 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2502 tcps->tcps_rexmit_interval_extra + 2503 (tcp->tcp_rtt_sa >> 5); 2504 2505 if (rto > tcps->tcps_rexmit_interval_max) { 2506 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2507 } else if (rto < tcps->tcps_rexmit_interval_min) { 2508 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2509 } else { 2510 tcp->tcp_rto = rto; 2511 } 2512 } 2513 if (uinfo.iulp_ssthresh != 0) 2514 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2515 else 2516 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2517 if (uinfo.iulp_spipe > 0) { 2518 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2519 tcps->tcps_max_buf); 2520 if (tcps->tcps_snd_lowat_fraction != 0) { 2521 connp->conn_sndlowat = connp->conn_sndbuf / 2522 tcps->tcps_snd_lowat_fraction; 2523 } 2524 (void) tcp_maxpsz_set(tcp, B_TRUE); 2525 } 2526 /* 2527 * Note that up till now, acceptor always inherits receive 2528 * window from the listener. But if there is a metrics 2529 * associated with a host, we should use that instead of 2530 * inheriting it from listener. Thus we need to pass this 2531 * info back to the caller. 2532 */ 2533 if (uinfo.iulp_rpipe > 0) { 2534 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2535 tcps->tcps_max_buf); 2536 } 2537 2538 if (uinfo.iulp_rtomax > 0) { 2539 tcp->tcp_second_timer_threshold = 2540 uinfo.iulp_rtomax; 2541 } 2542 2543 /* 2544 * Use the metric option settings, iulp_tstamp_ok and 2545 * iulp_wscale_ok, only for active open. What this means 2546 * is that if the other side uses timestamp or window 2547 * scale option, TCP will also use those options. That 2548 * is for passive open. If the application sets a 2549 * large window, window scale is enabled regardless of 2550 * the value in iulp_wscale_ok. This is the behavior 2551 * since 2.6. So we keep it. 2552 * The only case left in passive open processing is the 2553 * check for SACK. 2554 * For ECN, it should probably be like SACK. But the 2555 * current value is binary, so we treat it like the other 2556 * cases. The metric only controls active open.For passive 2557 * open, the ndd param, tcp_ecn_permitted, controls the 2558 * behavior. 2559 */ 2560 if (!tcp_detached) { 2561 /* 2562 * The if check means that the following can only 2563 * be turned on by the metrics only IRE, but not off. 2564 */ 2565 if (uinfo.iulp_tstamp_ok) 2566 tcp->tcp_snd_ts_ok = B_TRUE; 2567 if (uinfo.iulp_wscale_ok) 2568 tcp->tcp_snd_ws_ok = B_TRUE; 2569 if (uinfo.iulp_sack == 2) 2570 tcp->tcp_snd_sack_ok = B_TRUE; 2571 if (uinfo.iulp_ecn_ok) 2572 tcp->tcp_ecn_ok = B_TRUE; 2573 } else { 2574 /* 2575 * Passive open. 2576 * 2577 * As above, the if check means that SACK can only be 2578 * turned on by the metric only IRE. 2579 */ 2580 if (uinfo.iulp_sack > 0) { 2581 tcp->tcp_snd_sack_ok = B_TRUE; 2582 } 2583 } 2584 2585 /* 2586 * XXX Note that currently, iulp_mtu can be as small as 68 2587 * because of PMTUd. So tcp_mss may go to negative if combined 2588 * length of all those options exceeds 28 bytes. But because 2589 * of the tcp_mss_min check below, we may not have a problem if 2590 * tcp_mss_min is of a reasonable value. The default is 1 so 2591 * the negative problem still exists. And the check defeats PMTUd. 2592 * In fact, if PMTUd finds that the MSS should be smaller than 2593 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2594 * value. 2595 * 2596 * We do not deal with that now. All those problems related to 2597 * PMTUd will be fixed later. 2598 */ 2599 ASSERT(uinfo.iulp_mtu != 0); 2600 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2601 2602 /* Sanity check for MSS value. */ 2603 if (connp->conn_ipversion == IPV4_VERSION) 2604 mss_max = tcps->tcps_mss_max_ipv4; 2605 else 2606 mss_max = tcps->tcps_mss_max_ipv6; 2607 2608 if (tcp->tcp_ipsec_overhead == 0) 2609 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2610 2611 mss -= tcp->tcp_ipsec_overhead; 2612 2613 if (mss < tcps->tcps_mss_min) 2614 mss = tcps->tcps_mss_min; 2615 if (mss > mss_max) 2616 mss = mss_max; 2617 2618 /* Note that this is the maximum MSS, excluding all options. */ 2619 tcp->tcp_mss = mss; 2620 2621 /* 2622 * Update the tcp connection with LSO capability. 2623 */ 2624 tcp_update_lso(tcp, connp->conn_ixa); 2625 2626 /* 2627 * Initialize the ISS here now that we have the full connection ID. 2628 * The RFC 1948 method of initial sequence number generation requires 2629 * knowledge of the full connection ID before setting the ISS. 2630 */ 2631 tcp_iss_init(tcp); 2632 2633 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2634 2635 /* 2636 * Make sure that conn is not marked incipient 2637 * for incoming connections. A blind 2638 * removal of incipient flag is cheaper than 2639 * check and removal. 2640 */ 2641 mutex_enter(&connp->conn_lock); 2642 connp->conn_state_flags &= ~CONN_INCIPIENT; 2643 mutex_exit(&connp->conn_lock); 2644 return (0); 2645 } 2646 2647 static void 2648 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2649 { 2650 int error; 2651 conn_t *connp = tcp->tcp_connp; 2652 struct sockaddr *sa; 2653 mblk_t *mp1; 2654 struct T_bind_req *tbr; 2655 int backlog; 2656 socklen_t len; 2657 sin_t *sin; 2658 sin6_t *sin6; 2659 cred_t *cr; 2660 2661 /* 2662 * All Solaris components should pass a db_credp 2663 * for this TPI message, hence we ASSERT. 2664 * But in case there is some other M_PROTO that looks 2665 * like a TPI message sent by some other kernel 2666 * component, we check and return an error. 2667 */ 2668 cr = msg_getcred(mp, NULL); 2669 ASSERT(cr != NULL); 2670 if (cr == NULL) { 2671 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2672 return; 2673 } 2674 2675 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2676 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2677 if (connp->conn_debug) { 2678 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2679 "tcp_tpi_bind: bad req, len %u", 2680 (uint_t)(mp->b_wptr - mp->b_rptr)); 2681 } 2682 tcp_err_ack(tcp, mp, TPROTO, 0); 2683 return; 2684 } 2685 /* Make sure the largest address fits */ 2686 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2687 if (mp1 == NULL) { 2688 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2689 return; 2690 } 2691 mp = mp1; 2692 tbr = (struct T_bind_req *)mp->b_rptr; 2693 2694 backlog = tbr->CONIND_number; 2695 len = tbr->ADDR_length; 2696 2697 switch (len) { 2698 case 0: /* request for a generic port */ 2699 tbr->ADDR_offset = sizeof (struct T_bind_req); 2700 if (connp->conn_family == AF_INET) { 2701 tbr->ADDR_length = sizeof (sin_t); 2702 sin = (sin_t *)&tbr[1]; 2703 *sin = sin_null; 2704 sin->sin_family = AF_INET; 2705 sa = (struct sockaddr *)sin; 2706 len = sizeof (sin_t); 2707 mp->b_wptr = (uchar_t *)&sin[1]; 2708 } else { 2709 ASSERT(connp->conn_family == AF_INET6); 2710 tbr->ADDR_length = sizeof (sin6_t); 2711 sin6 = (sin6_t *)&tbr[1]; 2712 *sin6 = sin6_null; 2713 sin6->sin6_family = AF_INET6; 2714 sa = (struct sockaddr *)sin6; 2715 len = sizeof (sin6_t); 2716 mp->b_wptr = (uchar_t *)&sin6[1]; 2717 } 2718 break; 2719 2720 case sizeof (sin_t): /* Complete IPv4 address */ 2721 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2722 sizeof (sin_t)); 2723 break; 2724 2725 case sizeof (sin6_t): /* Complete IPv6 address */ 2726 sa = (struct sockaddr *)mi_offset_param(mp, 2727 tbr->ADDR_offset, sizeof (sin6_t)); 2728 break; 2729 2730 default: 2731 if (connp->conn_debug) { 2732 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2733 "tcp_tpi_bind: bad address length, %d", 2734 tbr->ADDR_length); 2735 } 2736 tcp_err_ack(tcp, mp, TBADADDR, 0); 2737 return; 2738 } 2739 2740 if (backlog > 0) { 2741 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2742 tbr->PRIM_type != O_T_BIND_REQ); 2743 } else { 2744 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2745 tbr->PRIM_type != O_T_BIND_REQ); 2746 } 2747 done: 2748 if (error > 0) { 2749 tcp_err_ack(tcp, mp, TSYSERR, error); 2750 } else if (error < 0) { 2751 tcp_err_ack(tcp, mp, -error, 0); 2752 } else { 2753 /* 2754 * Update port information as sockfs/tpi needs it for checking 2755 */ 2756 if (connp->conn_family == AF_INET) { 2757 sin = (sin_t *)sa; 2758 sin->sin_port = connp->conn_lport; 2759 } else { 2760 sin6 = (sin6_t *)sa; 2761 sin6->sin6_port = connp->conn_lport; 2762 } 2763 mp->b_datap->db_type = M_PCPROTO; 2764 tbr->PRIM_type = T_BIND_ACK; 2765 putnext(connp->conn_rq, mp); 2766 } 2767 } 2768 2769 /* 2770 * If the "bind_to_req_port_only" parameter is set, if the requested port 2771 * number is available, return it, If not return 0 2772 * 2773 * If "bind_to_req_port_only" parameter is not set and 2774 * If the requested port number is available, return it. If not, return 2775 * the first anonymous port we happen across. If no anonymous ports are 2776 * available, return 0. addr is the requested local address, if any. 2777 * 2778 * In either case, when succeeding update the tcp_t to record the port number 2779 * and insert it in the bind hash table. 2780 * 2781 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2782 * without setting SO_REUSEADDR. This is needed so that they 2783 * can be viewed as two independent transport protocols. 2784 */ 2785 static in_port_t 2786 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2787 int reuseaddr, boolean_t quick_connect, 2788 boolean_t bind_to_req_port_only, boolean_t user_specified) 2789 { 2790 /* number of times we have run around the loop */ 2791 int count = 0; 2792 /* maximum number of times to run around the loop */ 2793 int loopmax; 2794 conn_t *connp = tcp->tcp_connp; 2795 tcp_stack_t *tcps = tcp->tcp_tcps; 2796 2797 /* 2798 * Lookup for free addresses is done in a loop and "loopmax" 2799 * influences how long we spin in the loop 2800 */ 2801 if (bind_to_req_port_only) { 2802 /* 2803 * If the requested port is busy, don't bother to look 2804 * for a new one. Setting loop maximum count to 1 has 2805 * that effect. 2806 */ 2807 loopmax = 1; 2808 } else { 2809 /* 2810 * If the requested port is busy, look for a free one 2811 * in the anonymous port range. 2812 * Set loopmax appropriately so that one does not look 2813 * forever in the case all of the anonymous ports are in use. 2814 */ 2815 if (connp->conn_anon_priv_bind) { 2816 /* 2817 * loopmax = 2818 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2819 */ 2820 loopmax = IPPORT_RESERVED - 2821 tcps->tcps_min_anonpriv_port; 2822 } else { 2823 loopmax = (tcps->tcps_largest_anon_port - 2824 tcps->tcps_smallest_anon_port + 1); 2825 } 2826 } 2827 do { 2828 uint16_t lport; 2829 tf_t *tbf; 2830 tcp_t *ltcp; 2831 conn_t *lconnp; 2832 2833 lport = htons(port); 2834 2835 /* 2836 * Ensure that the tcp_t is not currently in the bind hash. 2837 * Hold the lock on the hash bucket to ensure that 2838 * the duplicate check plus the insertion is an atomic 2839 * operation. 2840 * 2841 * This function does an inline lookup on the bind hash list 2842 * Make sure that we access only members of tcp_t 2843 * and that we don't look at tcp_tcp, since we are not 2844 * doing a CONN_INC_REF. 2845 */ 2846 tcp_bind_hash_remove(tcp); 2847 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2848 mutex_enter(&tbf->tf_lock); 2849 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2850 ltcp = ltcp->tcp_bind_hash) { 2851 if (lport == ltcp->tcp_connp->conn_lport) 2852 break; 2853 } 2854 2855 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2856 boolean_t not_socket; 2857 boolean_t exclbind; 2858 2859 lconnp = ltcp->tcp_connp; 2860 2861 /* 2862 * On a labeled system, we must treat bindings to ports 2863 * on shared IP addresses by sockets with MAC exemption 2864 * privilege as being in all zones, as there's 2865 * otherwise no way to identify the right receiver. 2866 */ 2867 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2868 continue; 2869 2870 /* 2871 * If TCP_EXCLBIND is set for either the bound or 2872 * binding endpoint, the semantics of bind 2873 * is changed according to the following. 2874 * 2875 * spec = specified address (v4 or v6) 2876 * unspec = unspecified address (v4 or v6) 2877 * A = specified addresses are different for endpoints 2878 * 2879 * bound bind to allowed 2880 * ------------------------------------- 2881 * unspec unspec no 2882 * unspec spec no 2883 * spec unspec no 2884 * spec spec yes if A 2885 * 2886 * For labeled systems, SO_MAC_EXEMPT behaves the same 2887 * as TCP_EXCLBIND, except that zoneid is ignored. 2888 * 2889 * Note: 2890 * 2891 * 1. Because of TLI semantics, an endpoint can go 2892 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2893 * TCPS_BOUND, depending on whether it is originally 2894 * a listener or not. That is why we need to check 2895 * for states greater than or equal to TCPS_BOUND 2896 * here. 2897 * 2898 * 2. Ideally, we should only check for state equals 2899 * to TCPS_LISTEN. And the following check should be 2900 * added. 2901 * 2902 * if (ltcp->tcp_state == TCPS_LISTEN || 2903 * !reuseaddr || !lconnp->conn_reuseaddr) { 2904 * ... 2905 * } 2906 * 2907 * The semantics will be changed to this. If the 2908 * endpoint on the list is in state not equal to 2909 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2910 * set, let the bind succeed. 2911 * 2912 * Because of (1), we cannot do that for TLI 2913 * endpoints. But we can do that for socket endpoints. 2914 * If in future, we can change this going back 2915 * semantics, we can use the above check for TLI also. 2916 */ 2917 not_socket = !(TCP_IS_SOCKET(ltcp) && 2918 TCP_IS_SOCKET(tcp)); 2919 exclbind = lconnp->conn_exclbind || 2920 connp->conn_exclbind; 2921 2922 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2923 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2924 (exclbind && (not_socket || 2925 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2926 if (V6_OR_V4_INADDR_ANY( 2927 lconnp->conn_bound_addr_v6) || 2928 V6_OR_V4_INADDR_ANY(*laddr) || 2929 IN6_ARE_ADDR_EQUAL(laddr, 2930 &lconnp->conn_bound_addr_v6)) { 2931 break; 2932 } 2933 continue; 2934 } 2935 2936 /* 2937 * Check ipversion to allow IPv4 and IPv6 sockets to 2938 * have disjoint port number spaces, if *_EXCLBIND 2939 * is not set and only if the application binds to a 2940 * specific port. We use the same autoassigned port 2941 * number space for IPv4 and IPv6 sockets. 2942 */ 2943 if (connp->conn_ipversion != lconnp->conn_ipversion && 2944 bind_to_req_port_only) 2945 continue; 2946 2947 /* 2948 * Ideally, we should make sure that the source 2949 * address, remote address, and remote port in the 2950 * four tuple for this tcp-connection is unique. 2951 * However, trying to find out the local source 2952 * address would require too much code duplication 2953 * with IP, since IP needs needs to have that code 2954 * to support userland TCP implementations. 2955 */ 2956 if (quick_connect && 2957 (ltcp->tcp_state > TCPS_LISTEN) && 2958 ((connp->conn_fport != lconnp->conn_fport) || 2959 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2960 &lconnp->conn_faddr_v6))) 2961 continue; 2962 2963 if (!reuseaddr) { 2964 /* 2965 * No socket option SO_REUSEADDR. 2966 * If existing port is bound to 2967 * a non-wildcard IP address 2968 * and the requesting stream is 2969 * bound to a distinct 2970 * different IP addresses 2971 * (non-wildcard, also), keep 2972 * going. 2973 */ 2974 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2975 !V6_OR_V4_INADDR_ANY( 2976 lconnp->conn_bound_addr_v6) && 2977 !IN6_ARE_ADDR_EQUAL(laddr, 2978 &lconnp->conn_bound_addr_v6)) 2979 continue; 2980 if (ltcp->tcp_state >= TCPS_BOUND) { 2981 /* 2982 * This port is being used and 2983 * its state is >= TCPS_BOUND, 2984 * so we can't bind to it. 2985 */ 2986 break; 2987 } 2988 } else { 2989 /* 2990 * socket option SO_REUSEADDR is set on the 2991 * binding tcp_t. 2992 * 2993 * If two streams are bound to 2994 * same IP address or both addr 2995 * and bound source are wildcards 2996 * (INADDR_ANY), we want to stop 2997 * searching. 2998 * We have found a match of IP source 2999 * address and source port, which is 3000 * refused regardless of the 3001 * SO_REUSEADDR setting, so we break. 3002 */ 3003 if (IN6_ARE_ADDR_EQUAL(laddr, 3004 &lconnp->conn_bound_addr_v6) && 3005 (ltcp->tcp_state == TCPS_LISTEN || 3006 ltcp->tcp_state == TCPS_BOUND)) 3007 break; 3008 } 3009 } 3010 if (ltcp != NULL) { 3011 /* The port number is busy */ 3012 mutex_exit(&tbf->tf_lock); 3013 } else { 3014 /* 3015 * This port is ours. Insert in fanout and mark as 3016 * bound to prevent others from getting the port 3017 * number. 3018 */ 3019 tcp->tcp_state = TCPS_BOUND; 3020 connp->conn_lport = htons(port); 3021 3022 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3023 connp->conn_lport)] == tbf); 3024 tcp_bind_hash_insert(tbf, tcp, 1); 3025 3026 mutex_exit(&tbf->tf_lock); 3027 3028 /* 3029 * We don't want tcp_next_port_to_try to "inherit" 3030 * a port number supplied by the user in a bind. 3031 */ 3032 if (user_specified) 3033 return (port); 3034 3035 /* 3036 * This is the only place where tcp_next_port_to_try 3037 * is updated. After the update, it may or may not 3038 * be in the valid range. 3039 */ 3040 if (!connp->conn_anon_priv_bind) 3041 tcps->tcps_next_port_to_try = port + 1; 3042 return (port); 3043 } 3044 3045 if (connp->conn_anon_priv_bind) { 3046 port = tcp_get_next_priv_port(tcp); 3047 } else { 3048 if (count == 0 && user_specified) { 3049 /* 3050 * We may have to return an anonymous port. So 3051 * get one to start with. 3052 */ 3053 port = 3054 tcp_update_next_port( 3055 tcps->tcps_next_port_to_try, 3056 tcp, B_TRUE); 3057 user_specified = B_FALSE; 3058 } else { 3059 port = tcp_update_next_port(port + 1, tcp, 3060 B_FALSE); 3061 } 3062 } 3063 if (port == 0) 3064 break; 3065 3066 /* 3067 * Don't let this loop run forever in the case where 3068 * all of the anonymous ports are in use. 3069 */ 3070 } while (++count < loopmax); 3071 return (0); 3072 } 3073 3074 /* 3075 * tcp_clean_death / tcp_close_detached must not be called more than once 3076 * on a tcp. Thus every function that potentially calls tcp_clean_death 3077 * must check for the tcp state before calling tcp_clean_death. 3078 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 3079 * tcp_timer_handler, all check for the tcp state. 3080 */ 3081 /* ARGSUSED */ 3082 void 3083 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 3084 ip_recv_attr_t *dummy) 3085 { 3086 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3087 3088 freemsg(mp); 3089 if (tcp->tcp_state > TCPS_BOUND) 3090 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3091 ETIMEDOUT, 5); 3092 } 3093 3094 /* 3095 * We are dying for some reason. Try to do it gracefully. (May be called 3096 * as writer.) 3097 * 3098 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3099 * done by a service procedure). 3100 * TBD - Should the return value distinguish between the tcp_t being 3101 * freed and it being reinitialized? 3102 */ 3103 static int 3104 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3105 { 3106 mblk_t *mp; 3107 queue_t *q; 3108 conn_t *connp = tcp->tcp_connp; 3109 tcp_stack_t *tcps = tcp->tcp_tcps; 3110 3111 TCP_CLD_STAT(tag); 3112 3113 #if TCP_TAG_CLEAN_DEATH 3114 tcp->tcp_cleandeathtag = tag; 3115 #endif 3116 3117 if (tcp->tcp_fused) 3118 tcp_unfuse(tcp); 3119 3120 if (tcp->tcp_linger_tid != 0 && 3121 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3122 tcp_stop_lingering(tcp); 3123 } 3124 3125 ASSERT(tcp != NULL); 3126 ASSERT((connp->conn_family == AF_INET && 3127 connp->conn_ipversion == IPV4_VERSION) || 3128 (connp->conn_family == AF_INET6 && 3129 (connp->conn_ipversion == IPV4_VERSION || 3130 connp->conn_ipversion == IPV6_VERSION))); 3131 3132 if (TCP_IS_DETACHED(tcp)) { 3133 if (tcp->tcp_hard_binding) { 3134 /* 3135 * Its an eager that we are dealing with. We close the 3136 * eager but in case a conn_ind has already gone to the 3137 * listener, let tcp_accept_finish() send a discon_ind 3138 * to the listener and drop the last reference. If the 3139 * listener doesn't even know about the eager i.e. the 3140 * conn_ind hasn't gone up, blow away the eager and drop 3141 * the last reference as well. If the conn_ind has gone 3142 * up, state should be BOUND. tcp_accept_finish 3143 * will figure out that the connection has received a 3144 * RST and will send a DISCON_IND to the application. 3145 */ 3146 tcp_closei_local(tcp); 3147 if (!tcp->tcp_tconnind_started) { 3148 CONN_DEC_REF(connp); 3149 } else { 3150 tcp->tcp_state = TCPS_BOUND; 3151 } 3152 } else { 3153 tcp_close_detached(tcp); 3154 } 3155 return (0); 3156 } 3157 3158 TCP_STAT(tcps, tcp_clean_death_nondetached); 3159 3160 /* 3161 * The connection is dead. Decrement listener connection counter if 3162 * necessary. 3163 */ 3164 if (tcp->tcp_listen_cnt != NULL) 3165 TCP_DECR_LISTEN_CNT(tcp); 3166 3167 q = connp->conn_rq; 3168 3169 /* Trash all inbound data */ 3170 if (!IPCL_IS_NONSTR(connp)) { 3171 ASSERT(q != NULL); 3172 flushq(q, FLUSHALL); 3173 } 3174 3175 /* 3176 * If we are at least part way open and there is error 3177 * (err==0 implies no error) 3178 * notify our client by a T_DISCON_IND. 3179 */ 3180 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3181 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3182 !TCP_IS_SOCKET(tcp)) { 3183 /* 3184 * Send M_FLUSH according to TPI. Because sockets will 3185 * (and must) ignore FLUSHR we do that only for TPI 3186 * endpoints and sockets in STREAMS mode. 3187 */ 3188 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3189 } 3190 if (connp->conn_debug) { 3191 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3192 "tcp_clean_death: discon err %d", err); 3193 } 3194 if (IPCL_IS_NONSTR(connp)) { 3195 /* Direct socket, use upcall */ 3196 (*connp->conn_upcalls->su_disconnected)( 3197 connp->conn_upper_handle, tcp->tcp_connid, err); 3198 } else { 3199 mp = mi_tpi_discon_ind(NULL, err, 0); 3200 if (mp != NULL) { 3201 putnext(q, mp); 3202 } else { 3203 if (connp->conn_debug) { 3204 (void) strlog(TCP_MOD_ID, 0, 1, 3205 SL_ERROR|SL_TRACE, 3206 "tcp_clean_death, sending M_ERROR"); 3207 } 3208 (void) putnextctl1(q, M_ERROR, EPROTO); 3209 } 3210 } 3211 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3212 /* SYN_SENT or SYN_RCVD */ 3213 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3214 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3215 /* ESTABLISHED or CLOSE_WAIT */ 3216 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3217 } 3218 } 3219 3220 tcp_reinit(tcp); 3221 if (IPCL_IS_NONSTR(connp)) 3222 (void) tcp_do_unbind(connp); 3223 3224 return (-1); 3225 } 3226 3227 /* 3228 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3229 * to expire, stop the wait and finish the close. 3230 */ 3231 static void 3232 tcp_stop_lingering(tcp_t *tcp) 3233 { 3234 clock_t delta = 0; 3235 tcp_stack_t *tcps = tcp->tcp_tcps; 3236 conn_t *connp = tcp->tcp_connp; 3237 3238 tcp->tcp_linger_tid = 0; 3239 if (tcp->tcp_state > TCPS_LISTEN) { 3240 tcp_acceptor_hash_remove(tcp); 3241 mutex_enter(&tcp->tcp_non_sq_lock); 3242 if (tcp->tcp_flow_stopped) { 3243 tcp_clrqfull(tcp); 3244 } 3245 mutex_exit(&tcp->tcp_non_sq_lock); 3246 3247 if (tcp->tcp_timer_tid != 0) { 3248 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3249 tcp->tcp_timer_tid = 0; 3250 } 3251 /* 3252 * Need to cancel those timers which will not be used when 3253 * TCP is detached. This has to be done before the conn_wq 3254 * is cleared. 3255 */ 3256 tcp_timers_stop(tcp); 3257 3258 tcp->tcp_detached = B_TRUE; 3259 connp->conn_rq = NULL; 3260 connp->conn_wq = NULL; 3261 3262 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3263 tcp_time_wait_append(tcp); 3264 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3265 goto finish; 3266 } 3267 3268 /* 3269 * If delta is zero the timer event wasn't executed and was 3270 * successfully canceled. In this case we need to restart it 3271 * with the minimal delta possible. 3272 */ 3273 if (delta >= 0) { 3274 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3275 delta ? delta : 1); 3276 } 3277 } else { 3278 tcp_closei_local(tcp); 3279 CONN_DEC_REF(connp); 3280 } 3281 finish: 3282 /* Signal closing thread that it can complete close */ 3283 mutex_enter(&tcp->tcp_closelock); 3284 tcp->tcp_detached = B_TRUE; 3285 connp->conn_rq = NULL; 3286 connp->conn_wq = NULL; 3287 3288 tcp->tcp_closed = 1; 3289 cv_signal(&tcp->tcp_closecv); 3290 mutex_exit(&tcp->tcp_closelock); 3291 } 3292 3293 /* 3294 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3295 * expires. 3296 */ 3297 static void 3298 tcp_close_linger_timeout(void *arg) 3299 { 3300 conn_t *connp = (conn_t *)arg; 3301 tcp_t *tcp = connp->conn_tcp; 3302 3303 tcp->tcp_client_errno = ETIMEDOUT; 3304 tcp_stop_lingering(tcp); 3305 } 3306 3307 static void 3308 tcp_close_common(conn_t *connp, int flags) 3309 { 3310 tcp_t *tcp = connp->conn_tcp; 3311 mblk_t *mp = &tcp->tcp_closemp; 3312 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3313 mblk_t *bp; 3314 3315 ASSERT(connp->conn_ref >= 2); 3316 3317 /* 3318 * Mark the conn as closing. ipsq_pending_mp_add will not 3319 * add any mp to the pending mp list, after this conn has 3320 * started closing. 3321 */ 3322 mutex_enter(&connp->conn_lock); 3323 connp->conn_state_flags |= CONN_CLOSING; 3324 if (connp->conn_oper_pending_ill != NULL) 3325 conn_ioctl_cleanup_reqd = B_TRUE; 3326 CONN_INC_REF_LOCKED(connp); 3327 mutex_exit(&connp->conn_lock); 3328 tcp->tcp_closeflags = (uint8_t)flags; 3329 ASSERT(connp->conn_ref >= 3); 3330 3331 /* 3332 * tcp_closemp_used is used below without any protection of a lock 3333 * as we don't expect any one else to use it concurrently at this 3334 * point otherwise it would be a major defect. 3335 */ 3336 3337 if (mp->b_prev == NULL) 3338 tcp->tcp_closemp_used = B_TRUE; 3339 else 3340 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3341 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3342 3343 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3344 3345 /* 3346 * Cleanup any queued ioctls here. This must be done before the wq/rq 3347 * are re-written by tcp_close_output(). 3348 */ 3349 if (conn_ioctl_cleanup_reqd) 3350 conn_ioctl_cleanup(connp); 3351 3352 /* 3353 * As CONN_CLOSING is set, no further ioctls should be passed down to 3354 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 3355 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 3356 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 3357 * was still in flight at the time, we wait for it here. See comments 3358 * for CONN_INC_IOCTLREF in ip.h for details. 3359 */ 3360 mutex_enter(&connp->conn_lock); 3361 while (connp->conn_ioctlref > 0) 3362 cv_wait(&connp->conn_cv, &connp->conn_lock); 3363 ASSERT(connp->conn_ioctlref == 0); 3364 ASSERT(connp->conn_oper_pending_ill == NULL); 3365 mutex_exit(&connp->conn_lock); 3366 3367 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3368 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3369 3370 mutex_enter(&tcp->tcp_closelock); 3371 while (!tcp->tcp_closed) { 3372 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3373 /* 3374 * The cv_wait_sig() was interrupted. We now do the 3375 * following: 3376 * 3377 * 1) If the endpoint was lingering, we allow this 3378 * to be interrupted by cancelling the linger timeout 3379 * and closing normally. 3380 * 3381 * 2) Revert to calling cv_wait() 3382 * 3383 * We revert to using cv_wait() to avoid an 3384 * infinite loop which can occur if the calling 3385 * thread is higher priority than the squeue worker 3386 * thread and is bound to the same cpu. 3387 */ 3388 if (connp->conn_linger && connp->conn_lingertime > 0) { 3389 mutex_exit(&tcp->tcp_closelock); 3390 /* Entering squeue, bump ref count. */ 3391 CONN_INC_REF(connp); 3392 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3393 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3394 tcp_linger_interrupted, connp, NULL, 3395 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3396 mutex_enter(&tcp->tcp_closelock); 3397 } 3398 break; 3399 } 3400 } 3401 while (!tcp->tcp_closed) 3402 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3403 mutex_exit(&tcp->tcp_closelock); 3404 3405 /* 3406 * In the case of listener streams that have eagers in the q or q0 3407 * we wait for the eagers to drop their reference to us. conn_rq and 3408 * conn_wq of the eagers point to our queues. By waiting for the 3409 * refcnt to drop to 1, we are sure that the eagers have cleaned 3410 * up their queue pointers and also dropped their references to us. 3411 */ 3412 if (tcp->tcp_wait_for_eagers) { 3413 mutex_enter(&connp->conn_lock); 3414 while (connp->conn_ref != 1) { 3415 cv_wait(&connp->conn_cv, &connp->conn_lock); 3416 } 3417 mutex_exit(&connp->conn_lock); 3418 } 3419 3420 connp->conn_cpid = NOPID; 3421 } 3422 3423 static int 3424 tcp_tpi_close(queue_t *q, int flags) 3425 { 3426 conn_t *connp; 3427 3428 ASSERT(WR(q)->q_next == NULL); 3429 3430 if (flags & SO_FALLBACK) { 3431 /* 3432 * stream is being closed while in fallback 3433 * simply free the resources that were allocated 3434 */ 3435 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3436 qprocsoff(q); 3437 goto done; 3438 } 3439 3440 connp = Q_TO_CONN(q); 3441 /* 3442 * We are being closed as /dev/tcp or /dev/tcp6. 3443 */ 3444 tcp_close_common(connp, flags); 3445 3446 qprocsoff(q); 3447 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3448 3449 /* 3450 * Drop IP's reference on the conn. This is the last reference 3451 * on the connp if the state was less than established. If the 3452 * connection has gone into timewait state, then we will have 3453 * one ref for the TCP and one more ref (total of two) for the 3454 * classifier connected hash list (a timewait connections stays 3455 * in connected hash till closed). 3456 * 3457 * We can't assert the references because there might be other 3458 * transient reference places because of some walkers or queued 3459 * packets in squeue for the timewait state. 3460 */ 3461 CONN_DEC_REF(connp); 3462 done: 3463 q->q_ptr = WR(q)->q_ptr = NULL; 3464 return (0); 3465 } 3466 3467 static int 3468 tcp_tpi_close_accept(queue_t *q) 3469 { 3470 vmem_t *minor_arena; 3471 dev_t conn_dev; 3472 3473 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3474 3475 /* 3476 * We had opened an acceptor STREAM for sockfs which is 3477 * now being closed due to some error. 3478 */ 3479 qprocsoff(q); 3480 3481 minor_arena = (vmem_t *)WR(q)->q_ptr; 3482 conn_dev = (dev_t)RD(q)->q_ptr; 3483 ASSERT(minor_arena != NULL); 3484 ASSERT(conn_dev != 0); 3485 inet_minor_free(minor_arena, conn_dev); 3486 q->q_ptr = WR(q)->q_ptr = NULL; 3487 return (0); 3488 } 3489 3490 /* 3491 * Called by tcp_close() routine via squeue when lingering is 3492 * interrupted by a signal. 3493 */ 3494 3495 /* ARGSUSED */ 3496 static void 3497 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3498 { 3499 conn_t *connp = (conn_t *)arg; 3500 tcp_t *tcp = connp->conn_tcp; 3501 3502 freeb(mp); 3503 if (tcp->tcp_linger_tid != 0 && 3504 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3505 tcp_stop_lingering(tcp); 3506 tcp->tcp_client_errno = EINTR; 3507 } 3508 } 3509 3510 /* 3511 * Called by streams close routine via squeues when our client blows off her 3512 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3513 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3514 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3515 * acked. 3516 * 3517 * NOTE: tcp_close potentially returns error when lingering. 3518 * However, the stream head currently does not pass these errors 3519 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3520 * errors to the application (from tsleep()) and not errors 3521 * like ECONNRESET caused by receiving a reset packet. 3522 */ 3523 3524 /* ARGSUSED */ 3525 static void 3526 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3527 { 3528 char *msg; 3529 conn_t *connp = (conn_t *)arg; 3530 tcp_t *tcp = connp->conn_tcp; 3531 clock_t delta = 0; 3532 tcp_stack_t *tcps = tcp->tcp_tcps; 3533 3534 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3535 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3536 3537 mutex_enter(&tcp->tcp_eager_lock); 3538 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3539 /* Cleanup for listener */ 3540 tcp_eager_cleanup(tcp, 0); 3541 tcp->tcp_wait_for_eagers = 1; 3542 } 3543 mutex_exit(&tcp->tcp_eager_lock); 3544 3545 tcp->tcp_lso = B_FALSE; 3546 3547 msg = NULL; 3548 switch (tcp->tcp_state) { 3549 case TCPS_CLOSED: 3550 case TCPS_IDLE: 3551 case TCPS_BOUND: 3552 case TCPS_LISTEN: 3553 break; 3554 case TCPS_SYN_SENT: 3555 msg = "tcp_close, during connect"; 3556 break; 3557 case TCPS_SYN_RCVD: 3558 /* 3559 * Close during the connect 3-way handshake 3560 * but here there may or may not be pending data 3561 * already on queue. Process almost same as in 3562 * the ESTABLISHED state. 3563 */ 3564 /* FALLTHRU */ 3565 default: 3566 if (tcp->tcp_fused) 3567 tcp_unfuse(tcp); 3568 3569 /* 3570 * If SO_LINGER has set a zero linger time, abort the 3571 * connection with a reset. 3572 */ 3573 if (connp->conn_linger && connp->conn_lingertime == 0) { 3574 msg = "tcp_close, zero lingertime"; 3575 break; 3576 } 3577 3578 /* 3579 * Abort connection if there is unread data queued. 3580 */ 3581 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3582 msg = "tcp_close, unread data"; 3583 break; 3584 } 3585 /* 3586 * We have done a qwait() above which could have possibly 3587 * drained more messages in turn causing transition to a 3588 * different state. Check whether we have to do the rest 3589 * of the processing or not. 3590 */ 3591 if (tcp->tcp_state <= TCPS_LISTEN) 3592 break; 3593 3594 /* 3595 * Transmit the FIN before detaching the tcp_t. 3596 * After tcp_detach returns this queue/perimeter 3597 * no longer owns the tcp_t thus others can modify it. 3598 */ 3599 (void) tcp_xmit_end(tcp); 3600 3601 /* 3602 * If lingering on close then wait until the fin is acked, 3603 * the SO_LINGER time passes, or a reset is sent/received. 3604 */ 3605 if (connp->conn_linger && connp->conn_lingertime > 0 && 3606 !(tcp->tcp_fin_acked) && 3607 tcp->tcp_state >= TCPS_ESTABLISHED) { 3608 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3609 tcp->tcp_client_errno = EWOULDBLOCK; 3610 } else if (tcp->tcp_client_errno == 0) { 3611 3612 ASSERT(tcp->tcp_linger_tid == 0); 3613 3614 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3615 tcp_close_linger_timeout, 3616 connp->conn_lingertime * hz); 3617 3618 /* tcp_close_linger_timeout will finish close */ 3619 if (tcp->tcp_linger_tid == 0) 3620 tcp->tcp_client_errno = ENOSR; 3621 else 3622 return; 3623 } 3624 3625 /* 3626 * Check if we need to detach or just close 3627 * the instance. 3628 */ 3629 if (tcp->tcp_state <= TCPS_LISTEN) 3630 break; 3631 } 3632 3633 /* 3634 * Make sure that no other thread will access the conn_rq of 3635 * this instance (through lookups etc.) as conn_rq will go 3636 * away shortly. 3637 */ 3638 tcp_acceptor_hash_remove(tcp); 3639 3640 mutex_enter(&tcp->tcp_non_sq_lock); 3641 if (tcp->tcp_flow_stopped) { 3642 tcp_clrqfull(tcp); 3643 } 3644 mutex_exit(&tcp->tcp_non_sq_lock); 3645 3646 if (tcp->tcp_timer_tid != 0) { 3647 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3648 tcp->tcp_timer_tid = 0; 3649 } 3650 /* 3651 * Need to cancel those timers which will not be used when 3652 * TCP is detached. This has to be done before the conn_wq 3653 * is set to NULL. 3654 */ 3655 tcp_timers_stop(tcp); 3656 3657 tcp->tcp_detached = B_TRUE; 3658 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3659 tcp_time_wait_append(tcp); 3660 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3661 ASSERT(connp->conn_ref >= 3); 3662 goto finish; 3663 } 3664 3665 /* 3666 * If delta is zero the timer event wasn't executed and was 3667 * successfully canceled. In this case we need to restart it 3668 * with the minimal delta possible. 3669 */ 3670 if (delta >= 0) 3671 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3672 delta ? delta : 1); 3673 3674 ASSERT(connp->conn_ref >= 3); 3675 goto finish; 3676 } 3677 3678 /* Detach did not complete. Still need to remove q from stream. */ 3679 if (msg) { 3680 if (tcp->tcp_state == TCPS_ESTABLISHED || 3681 tcp->tcp_state == TCPS_CLOSE_WAIT) 3682 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3683 if (tcp->tcp_state == TCPS_SYN_SENT || 3684 tcp->tcp_state == TCPS_SYN_RCVD) 3685 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3686 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3687 } 3688 3689 tcp_closei_local(tcp); 3690 CONN_DEC_REF(connp); 3691 ASSERT(connp->conn_ref >= 2); 3692 3693 finish: 3694 mutex_enter(&tcp->tcp_closelock); 3695 /* 3696 * Don't change the queues in the case of a listener that has 3697 * eagers in its q or q0. It could surprise the eagers. 3698 * Instead wait for the eagers outside the squeue. 3699 */ 3700 if (!tcp->tcp_wait_for_eagers) { 3701 tcp->tcp_detached = B_TRUE; 3702 connp->conn_rq = NULL; 3703 connp->conn_wq = NULL; 3704 } 3705 3706 /* Signal tcp_close() to finish closing. */ 3707 tcp->tcp_closed = 1; 3708 cv_signal(&tcp->tcp_closecv); 3709 mutex_exit(&tcp->tcp_closelock); 3710 } 3711 3712 /* 3713 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3714 * Some stream heads get upset if they see these later on as anything but NULL. 3715 */ 3716 static void 3717 tcp_close_mpp(mblk_t **mpp) 3718 { 3719 mblk_t *mp; 3720 3721 if ((mp = *mpp) != NULL) { 3722 do { 3723 mp->b_next = NULL; 3724 mp->b_prev = NULL; 3725 } while ((mp = mp->b_cont) != NULL); 3726 3727 mp = *mpp; 3728 *mpp = NULL; 3729 freemsg(mp); 3730 } 3731 } 3732 3733 /* Do detached close. */ 3734 static void 3735 tcp_close_detached(tcp_t *tcp) 3736 { 3737 if (tcp->tcp_fused) 3738 tcp_unfuse(tcp); 3739 3740 /* 3741 * Clustering code serializes TCP disconnect callbacks and 3742 * cluster tcp list walks by blocking a TCP disconnect callback 3743 * if a cluster tcp list walk is in progress. This ensures 3744 * accurate accounting of TCPs in the cluster code even though 3745 * the TCP list walk itself is not atomic. 3746 */ 3747 tcp_closei_local(tcp); 3748 CONN_DEC_REF(tcp->tcp_connp); 3749 } 3750 3751 /* 3752 * Stop all TCP timers, and free the timer mblks if requested. 3753 */ 3754 void 3755 tcp_timers_stop(tcp_t *tcp) 3756 { 3757 if (tcp->tcp_timer_tid != 0) { 3758 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3759 tcp->tcp_timer_tid = 0; 3760 } 3761 if (tcp->tcp_ka_tid != 0) { 3762 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3763 tcp->tcp_ka_tid = 0; 3764 } 3765 if (tcp->tcp_ack_tid != 0) { 3766 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3767 tcp->tcp_ack_tid = 0; 3768 } 3769 if (tcp->tcp_push_tid != 0) { 3770 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3771 tcp->tcp_push_tid = 0; 3772 } 3773 if (tcp->tcp_reass_tid != 0) { 3774 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); 3775 tcp->tcp_reass_tid = 0; 3776 } 3777 } 3778 3779 /* 3780 * The tcp_t is going away. Remove it from all lists and set it 3781 * to TCPS_CLOSED. The freeing up of memory is deferred until 3782 * tcp_inactive. This is needed since a thread in tcp_rput might have 3783 * done a CONN_INC_REF on this structure before it was removed from the 3784 * hashes. 3785 */ 3786 static void 3787 tcp_closei_local(tcp_t *tcp) 3788 { 3789 conn_t *connp = tcp->tcp_connp; 3790 tcp_stack_t *tcps = tcp->tcp_tcps; 3791 3792 if (!TCP_IS_SOCKET(tcp)) 3793 tcp_acceptor_hash_remove(tcp); 3794 3795 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3796 tcp->tcp_ibsegs = 0; 3797 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3798 tcp->tcp_obsegs = 0; 3799 3800 /* 3801 * If we are an eager connection hanging off a listener that 3802 * hasn't formally accepted the connection yet, get off his 3803 * list and blow off any data that we have accumulated. 3804 */ 3805 if (tcp->tcp_listener != NULL) { 3806 tcp_t *listener = tcp->tcp_listener; 3807 mutex_enter(&listener->tcp_eager_lock); 3808 /* 3809 * tcp_tconnind_started == B_TRUE means that the 3810 * conn_ind has already gone to listener. At 3811 * this point, eager will be closed but we 3812 * leave it in listeners eager list so that 3813 * if listener decides to close without doing 3814 * accept, we can clean this up. In tcp_tli_accept 3815 * we take care of the case of accept on closed 3816 * eager. 3817 */ 3818 if (!tcp->tcp_tconnind_started) { 3819 tcp_eager_unlink(tcp); 3820 mutex_exit(&listener->tcp_eager_lock); 3821 /* 3822 * We don't want to have any pointers to the 3823 * listener queue, after we have released our 3824 * reference on the listener 3825 */ 3826 ASSERT(tcp->tcp_detached); 3827 connp->conn_rq = NULL; 3828 connp->conn_wq = NULL; 3829 CONN_DEC_REF(listener->tcp_connp); 3830 } else { 3831 mutex_exit(&listener->tcp_eager_lock); 3832 } 3833 } 3834 3835 /* Stop all the timers */ 3836 tcp_timers_stop(tcp); 3837 3838 if (tcp->tcp_state == TCPS_LISTEN) { 3839 if (tcp->tcp_ip_addr_cache) { 3840 kmem_free((void *)tcp->tcp_ip_addr_cache, 3841 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3842 tcp->tcp_ip_addr_cache = NULL; 3843 } 3844 } 3845 3846 /* Decrement listerner connection counter if necessary. */ 3847 if (tcp->tcp_listen_cnt != NULL) 3848 TCP_DECR_LISTEN_CNT(tcp); 3849 3850 mutex_enter(&tcp->tcp_non_sq_lock); 3851 if (tcp->tcp_flow_stopped) 3852 tcp_clrqfull(tcp); 3853 mutex_exit(&tcp->tcp_non_sq_lock); 3854 3855 tcp_bind_hash_remove(tcp); 3856 /* 3857 * If the tcp_time_wait_collector (which runs outside the squeue) 3858 * is trying to remove this tcp from the time wait list, we will 3859 * block in tcp_time_wait_remove while trying to acquire the 3860 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3861 * requires the ipcl_hash_remove to be ordered after the 3862 * tcp_time_wait_remove for the refcnt checks to work correctly. 3863 */ 3864 if (tcp->tcp_state == TCPS_TIME_WAIT) 3865 (void) tcp_time_wait_remove(tcp, NULL); 3866 CL_INET_DISCONNECT(connp); 3867 ipcl_hash_remove(connp); 3868 ixa_cleanup(connp->conn_ixa); 3869 3870 /* 3871 * Mark the conn as CONDEMNED 3872 */ 3873 mutex_enter(&connp->conn_lock); 3874 connp->conn_state_flags |= CONN_CONDEMNED; 3875 mutex_exit(&connp->conn_lock); 3876 3877 ASSERT(tcp->tcp_time_wait_next == NULL); 3878 ASSERT(tcp->tcp_time_wait_prev == NULL); 3879 ASSERT(tcp->tcp_time_wait_expire == 0); 3880 tcp->tcp_state = TCPS_CLOSED; 3881 3882 /* Release any SSL context */ 3883 if (tcp->tcp_kssl_ent != NULL) { 3884 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3885 tcp->tcp_kssl_ent = NULL; 3886 } 3887 if (tcp->tcp_kssl_ctx != NULL) { 3888 kssl_release_ctx(tcp->tcp_kssl_ctx); 3889 tcp->tcp_kssl_ctx = NULL; 3890 } 3891 tcp->tcp_kssl_pending = B_FALSE; 3892 3893 tcp_ipsec_cleanup(tcp); 3894 } 3895 3896 /* 3897 * tcp is dying (called from ipcl_conn_destroy and error cases). 3898 * Free the tcp_t in either case. 3899 */ 3900 void 3901 tcp_free(tcp_t *tcp) 3902 { 3903 mblk_t *mp; 3904 conn_t *connp = tcp->tcp_connp; 3905 3906 ASSERT(tcp != NULL); 3907 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3908 3909 connp->conn_rq = NULL; 3910 connp->conn_wq = NULL; 3911 3912 tcp_close_mpp(&tcp->tcp_xmit_head); 3913 tcp_close_mpp(&tcp->tcp_reass_head); 3914 if (tcp->tcp_rcv_list != NULL) { 3915 /* Free b_next chain */ 3916 tcp_close_mpp(&tcp->tcp_rcv_list); 3917 } 3918 if ((mp = tcp->tcp_urp_mp) != NULL) { 3919 freemsg(mp); 3920 } 3921 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3922 freemsg(mp); 3923 } 3924 3925 if (tcp->tcp_fused_sigurg_mp != NULL) { 3926 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3927 freeb(tcp->tcp_fused_sigurg_mp); 3928 tcp->tcp_fused_sigurg_mp = NULL; 3929 } 3930 3931 if (tcp->tcp_ordrel_mp != NULL) { 3932 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3933 freeb(tcp->tcp_ordrel_mp); 3934 tcp->tcp_ordrel_mp = NULL; 3935 } 3936 3937 if (tcp->tcp_sack_info != NULL) { 3938 if (tcp->tcp_notsack_list != NULL) { 3939 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3940 tcp); 3941 } 3942 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3943 } 3944 3945 if (tcp->tcp_hopopts != NULL) { 3946 mi_free(tcp->tcp_hopopts); 3947 tcp->tcp_hopopts = NULL; 3948 tcp->tcp_hopoptslen = 0; 3949 } 3950 ASSERT(tcp->tcp_hopoptslen == 0); 3951 if (tcp->tcp_dstopts != NULL) { 3952 mi_free(tcp->tcp_dstopts); 3953 tcp->tcp_dstopts = NULL; 3954 tcp->tcp_dstoptslen = 0; 3955 } 3956 ASSERT(tcp->tcp_dstoptslen == 0); 3957 if (tcp->tcp_rthdrdstopts != NULL) { 3958 mi_free(tcp->tcp_rthdrdstopts); 3959 tcp->tcp_rthdrdstopts = NULL; 3960 tcp->tcp_rthdrdstoptslen = 0; 3961 } 3962 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3963 if (tcp->tcp_rthdr != NULL) { 3964 mi_free(tcp->tcp_rthdr); 3965 tcp->tcp_rthdr = NULL; 3966 tcp->tcp_rthdrlen = 0; 3967 } 3968 ASSERT(tcp->tcp_rthdrlen == 0); 3969 3970 /* 3971 * Following is really a blowing away a union. 3972 * It happens to have exactly two members of identical size 3973 * the following code is enough. 3974 */ 3975 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3976 } 3977 3978 3979 /* 3980 * Put a connection confirmation message upstream built from the 3981 * address/flowid information with the conn and iph. Report our success or 3982 * failure. 3983 */ 3984 static boolean_t 3985 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3986 mblk_t **defermp, ip_recv_attr_t *ira) 3987 { 3988 sin_t sin; 3989 sin6_t sin6; 3990 mblk_t *mp; 3991 char *optp = NULL; 3992 int optlen = 0; 3993 conn_t *connp = tcp->tcp_connp; 3994 3995 if (defermp != NULL) 3996 *defermp = NULL; 3997 3998 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 3999 /* 4000 * Return in T_CONN_CON results of option negotiation through 4001 * the T_CONN_REQ. Note: If there is an real end-to-end option 4002 * negotiation, then what is received from remote end needs 4003 * to be taken into account but there is no such thing (yet?) 4004 * in our TCP/IP. 4005 * Note: We do not use mi_offset_param() here as 4006 * tcp_opts_conn_req contents do not directly come from 4007 * an application and are either generated in kernel or 4008 * from user input that was already verified. 4009 */ 4010 mp = tcp->tcp_conn.tcp_opts_conn_req; 4011 optp = (char *)(mp->b_rptr + 4012 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4013 optlen = (int) 4014 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4015 } 4016 4017 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4018 4019 /* packet is IPv4 */ 4020 if (connp->conn_family == AF_INET) { 4021 sin = sin_null; 4022 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4023 sin.sin_port = connp->conn_fport; 4024 sin.sin_family = AF_INET; 4025 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4026 (int)sizeof (sin_t), optp, optlen); 4027 } else { 4028 sin6 = sin6_null; 4029 sin6.sin6_addr = connp->conn_faddr_v6; 4030 sin6.sin6_port = connp->conn_fport; 4031 sin6.sin6_family = AF_INET6; 4032 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4033 (int)sizeof (sin6_t), optp, optlen); 4034 4035 } 4036 } else { 4037 ip6_t *ip6h = (ip6_t *)iphdr; 4038 4039 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4040 ASSERT(connp->conn_family == AF_INET6); 4041 sin6 = sin6_null; 4042 sin6.sin6_addr = connp->conn_faddr_v6; 4043 sin6.sin6_port = connp->conn_fport; 4044 sin6.sin6_family = AF_INET6; 4045 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4046 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4047 (int)sizeof (sin6_t), optp, optlen); 4048 } 4049 4050 if (!mp) 4051 return (B_FALSE); 4052 4053 mblk_copycred(mp, idmp); 4054 4055 if (defermp == NULL) { 4056 conn_t *connp = tcp->tcp_connp; 4057 if (IPCL_IS_NONSTR(connp)) { 4058 (*connp->conn_upcalls->su_connected) 4059 (connp->conn_upper_handle, tcp->tcp_connid, 4060 ira->ira_cred, ira->ira_cpid); 4061 freemsg(mp); 4062 } else { 4063 if (ira->ira_cred != NULL) { 4064 /* So that getpeerucred works for TPI sockfs */ 4065 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 4066 } 4067 putnext(connp->conn_rq, mp); 4068 } 4069 } else { 4070 *defermp = mp; 4071 } 4072 4073 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4074 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4075 return (B_TRUE); 4076 } 4077 4078 /* 4079 * Defense for the SYN attack - 4080 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4081 * one from the list of droppable eagers. This list is a subset of q0. 4082 * see comments before the definition of MAKE_DROPPABLE(). 4083 * 2. Don't drop a SYN request before its first timeout. This gives every 4084 * request at least til the first timeout to complete its 3-way handshake. 4085 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4086 * requests currently on the queue that has timed out. This will be used 4087 * as an indicator of whether an attack is under way, so that appropriate 4088 * actions can be taken. (It's incremented in tcp_timer() and decremented 4089 * either when eager goes into ESTABLISHED, or gets freed up.) 4090 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4091 * # of timeout drops back to <= q0len/32 => SYN alert off 4092 */ 4093 static boolean_t 4094 tcp_drop_q0(tcp_t *tcp) 4095 { 4096 tcp_t *eager; 4097 mblk_t *mp; 4098 tcp_stack_t *tcps = tcp->tcp_tcps; 4099 4100 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4101 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4102 4103 /* Pick oldest eager from the list of droppable eagers */ 4104 eager = tcp->tcp_eager_prev_drop_q0; 4105 4106 /* If list is empty. return B_FALSE */ 4107 if (eager == tcp) { 4108 return (B_FALSE); 4109 } 4110 4111 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4112 if ((mp = allocb(0, BPRI_HI)) == NULL) 4113 return (B_FALSE); 4114 4115 /* 4116 * Take this eager out from the list of droppable eagers since we are 4117 * going to drop it. 4118 */ 4119 MAKE_UNDROPPABLE(eager); 4120 4121 if (tcp->tcp_connp->conn_debug) { 4122 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4123 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4124 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4125 tcp->tcp_conn_req_cnt_q0, 4126 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4127 } 4128 4129 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4130 4131 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4132 CONN_INC_REF(eager->tcp_connp); 4133 4134 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4135 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 4136 SQ_FILL, SQTAG_TCP_DROP_Q0); 4137 4138 return (B_TRUE); 4139 } 4140 4141 /* 4142 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4143 */ 4144 static mblk_t * 4145 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4146 ip_recv_attr_t *ira) 4147 { 4148 tcp_t *ltcp = lconnp->conn_tcp; 4149 tcp_t *tcp = connp->conn_tcp; 4150 mblk_t *tpi_mp; 4151 ipha_t *ipha; 4152 ip6_t *ip6h; 4153 sin6_t sin6; 4154 uint_t ifindex = ira->ira_ruifindex; 4155 tcp_stack_t *tcps = tcp->tcp_tcps; 4156 4157 if (ira->ira_flags & IRAF_IS_IPV4) { 4158 ipha = (ipha_t *)mp->b_rptr; 4159 4160 connp->conn_ipversion = IPV4_VERSION; 4161 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4162 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4163 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4164 4165 sin6 = sin6_null; 4166 sin6.sin6_addr = connp->conn_faddr_v6; 4167 sin6.sin6_port = connp->conn_fport; 4168 sin6.sin6_family = AF_INET6; 4169 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4170 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4171 4172 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4173 sin6_t sin6d; 4174 4175 sin6d = sin6_null; 4176 sin6d.sin6_addr = connp->conn_laddr_v6; 4177 sin6d.sin6_port = connp->conn_lport; 4178 sin6d.sin6_family = AF_INET; 4179 tpi_mp = mi_tpi_extconn_ind(NULL, 4180 (char *)&sin6d, sizeof (sin6_t), 4181 (char *)&tcp, 4182 (t_scalar_t)sizeof (intptr_t), 4183 (char *)&sin6d, sizeof (sin6_t), 4184 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4185 } else { 4186 tpi_mp = mi_tpi_conn_ind(NULL, 4187 (char *)&sin6, sizeof (sin6_t), 4188 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4189 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4190 } 4191 } else { 4192 ip6h = (ip6_t *)mp->b_rptr; 4193 4194 connp->conn_ipversion = IPV6_VERSION; 4195 connp->conn_laddr_v6 = ip6h->ip6_dst; 4196 connp->conn_faddr_v6 = ip6h->ip6_src; 4197 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4198 4199 sin6 = sin6_null; 4200 sin6.sin6_addr = connp->conn_faddr_v6; 4201 sin6.sin6_port = connp->conn_fport; 4202 sin6.sin6_family = AF_INET6; 4203 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4204 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4205 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4206 4207 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4208 /* Pass up the scope_id of remote addr */ 4209 sin6.sin6_scope_id = ifindex; 4210 } else { 4211 sin6.sin6_scope_id = 0; 4212 } 4213 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4214 sin6_t sin6d; 4215 4216 sin6d = sin6_null; 4217 sin6.sin6_addr = connp->conn_laddr_v6; 4218 sin6d.sin6_port = connp->conn_lport; 4219 sin6d.sin6_family = AF_INET6; 4220 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4221 sin6d.sin6_scope_id = ifindex; 4222 4223 tpi_mp = mi_tpi_extconn_ind(NULL, 4224 (char *)&sin6d, sizeof (sin6_t), 4225 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4226 (char *)&sin6d, sizeof (sin6_t), 4227 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4228 } else { 4229 tpi_mp = mi_tpi_conn_ind(NULL, 4230 (char *)&sin6, sizeof (sin6_t), 4231 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4232 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4233 } 4234 } 4235 4236 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4237 return (tpi_mp); 4238 } 4239 4240 /* Handle a SYN on an AF_INET socket */ 4241 mblk_t * 4242 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4243 ip_recv_attr_t *ira) 4244 { 4245 tcp_t *ltcp = lconnp->conn_tcp; 4246 tcp_t *tcp = connp->conn_tcp; 4247 sin_t sin; 4248 mblk_t *tpi_mp = NULL; 4249 tcp_stack_t *tcps = tcp->tcp_tcps; 4250 ipha_t *ipha; 4251 4252 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4253 ipha = (ipha_t *)mp->b_rptr; 4254 4255 connp->conn_ipversion = IPV4_VERSION; 4256 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4257 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4258 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4259 4260 sin = sin_null; 4261 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4262 sin.sin_port = connp->conn_fport; 4263 sin.sin_family = AF_INET; 4264 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4265 sin_t sind; 4266 4267 sind = sin_null; 4268 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4269 sind.sin_port = connp->conn_lport; 4270 sind.sin_family = AF_INET; 4271 tpi_mp = mi_tpi_extconn_ind(NULL, 4272 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4273 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4274 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4275 } else { 4276 tpi_mp = mi_tpi_conn_ind(NULL, 4277 (char *)&sin, sizeof (sin_t), 4278 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4279 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4280 } 4281 4282 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4283 return (tpi_mp); 4284 } 4285 4286 /* 4287 * tcp_get_conn/tcp_free_conn 4288 * 4289 * tcp_get_conn is used to get a clean tcp connection structure. 4290 * It tries to reuse the connections put on the freelist by the 4291 * time_wait_collector failing which it goes to kmem_cache. This 4292 * way has two benefits compared to just allocating from and 4293 * freeing to kmem_cache. 4294 * 1) The time_wait_collector can free (which includes the cleanup) 4295 * outside the squeue. So when the interrupt comes, we have a clean 4296 * connection sitting in the freelist. Obviously, this buys us 4297 * performance. 4298 * 4299 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4300 * has multiple disadvantages - tying up the squeue during alloc. 4301 * But allocating the conn/tcp in IP land is also not the best since 4302 * we can't check the 'q' and 'q0' which are protected by squeue and 4303 * blindly allocate memory which might have to be freed here if we are 4304 * not allowed to accept the connection. By using the freelist and 4305 * putting the conn/tcp back in freelist, we don't pay a penalty for 4306 * allocating memory without checking 'q/q0' and freeing it if we can't 4307 * accept the connection. 4308 * 4309 * Care should be taken to put the conn back in the same squeue's freelist 4310 * from which it was allocated. Best results are obtained if conn is 4311 * allocated from listener's squeue and freed to the same. Time wait 4312 * collector will free up the freelist is the connection ends up sitting 4313 * there for too long. 4314 */ 4315 void * 4316 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4317 { 4318 tcp_t *tcp = NULL; 4319 conn_t *connp = NULL; 4320 squeue_t *sqp = (squeue_t *)arg; 4321 tcp_squeue_priv_t *tcp_time_wait; 4322 netstack_t *ns; 4323 mblk_t *tcp_rsrv_mp = NULL; 4324 4325 tcp_time_wait = 4326 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4327 4328 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4329 tcp = tcp_time_wait->tcp_free_list; 4330 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4331 if (tcp != NULL) { 4332 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4333 tcp_time_wait->tcp_free_list_cnt--; 4334 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4335 tcp->tcp_time_wait_next = NULL; 4336 connp = tcp->tcp_connp; 4337 connp->conn_flags |= IPCL_REUSED; 4338 4339 ASSERT(tcp->tcp_tcps == NULL); 4340 ASSERT(connp->conn_netstack == NULL); 4341 ASSERT(tcp->tcp_rsrv_mp != NULL); 4342 ns = tcps->tcps_netstack; 4343 netstack_hold(ns); 4344 connp->conn_netstack = ns; 4345 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4346 tcp->tcp_tcps = tcps; 4347 ipcl_globalhash_insert(connp); 4348 4349 connp->conn_ixa->ixa_notify_cookie = tcp; 4350 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4351 connp->conn_recv = tcp_input_data; 4352 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4353 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4354 return ((void *)connp); 4355 } 4356 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4357 /* 4358 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4359 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4360 */ 4361 tcp_rsrv_mp = allocb(0, BPRI_HI); 4362 if (tcp_rsrv_mp == NULL) 4363 return (NULL); 4364 4365 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4366 tcps->tcps_netstack)) == NULL) { 4367 freeb(tcp_rsrv_mp); 4368 return (NULL); 4369 } 4370 4371 tcp = connp->conn_tcp; 4372 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4373 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4374 4375 tcp->tcp_tcps = tcps; 4376 4377 connp->conn_recv = tcp_input_data; 4378 connp->conn_recvicmp = tcp_icmp_input; 4379 connp->conn_verifyicmp = tcp_verifyicmp; 4380 4381 /* 4382 * Register tcp_notify to listen to capability changes detected by IP. 4383 * This upcall is made in the context of the call to conn_ip_output 4384 * thus it is inside the squeue. 4385 */ 4386 connp->conn_ixa->ixa_notify = tcp_notify; 4387 connp->conn_ixa->ixa_notify_cookie = tcp; 4388 4389 return ((void *)connp); 4390 } 4391 4392 /* BEGIN CSTYLED */ 4393 /* 4394 * 4395 * The sockfs ACCEPT path: 4396 * ======================= 4397 * 4398 * The eager is now established in its own perimeter as soon as SYN is 4399 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4400 * completes the accept processing on the acceptor STREAM. The sending 4401 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4402 * listener but a TLI/XTI listener completes the accept processing 4403 * on the listener perimeter. 4404 * 4405 * Common control flow for 3 way handshake: 4406 * ---------------------------------------- 4407 * 4408 * incoming SYN (listener perimeter) -> tcp_input_listener() 4409 * 4410 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4411 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4412 * 4413 * Sockfs ACCEPT Path: 4414 * ------------------- 4415 * 4416 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4417 * as STREAM entry point) 4418 * 4419 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4420 * 4421 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4422 * association (we are not behind eager's squeue but sockfs is protecting us 4423 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4424 * is changed to point at tcp_wput(). 4425 * 4426 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4427 * listener (done on listener's perimeter). 4428 * 4429 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4430 * accept. 4431 * 4432 * TLI/XTI client ACCEPT path: 4433 * --------------------------- 4434 * 4435 * soaccept() sends T_CONN_RES on the listener STREAM. 4436 * 4437 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4438 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4439 * 4440 * Locks: 4441 * ====== 4442 * 4443 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4444 * and listeners->tcp_eager_next_q. 4445 * 4446 * Referencing: 4447 * ============ 4448 * 4449 * 1) We start out in tcp_input_listener by eager placing a ref on 4450 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4451 * 4452 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4453 * doing so we place a ref on the eager. This ref is finally dropped at the 4454 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4455 * reference is dropped by the squeue framework. 4456 * 4457 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4458 * 4459 * The reference must be released by the same entity that added the reference 4460 * In the above scheme, the eager is the entity that adds and releases the 4461 * references. Note that tcp_accept_finish executes in the squeue of the eager 4462 * (albeit after it is attached to the acceptor stream). Though 1. executes 4463 * in the listener's squeue, the eager is nascent at this point and the 4464 * reference can be considered to have been added on behalf of the eager. 4465 * 4466 * Eager getting a Reset or listener closing: 4467 * ========================================== 4468 * 4469 * Once the listener and eager are linked, the listener never does the unlink. 4470 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4471 * a message on all eager perimeter. The eager then does the unlink, clears 4472 * any pointers to the listener's queue and drops the reference to the 4473 * listener. The listener waits in tcp_close outside the squeue until its 4474 * refcount has dropped to 1. This ensures that the listener has waited for 4475 * all eagers to clear their association with the listener. 4476 * 4477 * Similarly, if eager decides to go away, it can unlink itself and close. 4478 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4479 * the reference to eager is still valid because of the extra ref we put 4480 * in tcp_send_conn_ind. 4481 * 4482 * Listener can always locate the eager under the protection 4483 * of the listener->tcp_eager_lock, and then do a refhold 4484 * on the eager during the accept processing. 4485 * 4486 * The acceptor stream accesses the eager in the accept processing 4487 * based on the ref placed on eager before sending T_conn_ind. 4488 * The only entity that can negate this refhold is a listener close 4489 * which is mutually exclusive with an active acceptor stream. 4490 * 4491 * Eager's reference on the listener 4492 * =================================== 4493 * 4494 * If the accept happens (even on a closed eager) the eager drops its 4495 * reference on the listener at the start of tcp_accept_finish. If the 4496 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4497 * the reference is dropped in tcp_closei_local. If the listener closes, 4498 * the reference is dropped in tcp_eager_kill. In all cases the reference 4499 * is dropped while executing in the eager's context (squeue). 4500 */ 4501 /* END CSTYLED */ 4502 4503 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4504 4505 /* 4506 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4507 * tcp_input_data will not see any packets for listeners since the listener 4508 * has conn_recv set to tcp_input_listener. 4509 */ 4510 /* ARGSUSED */ 4511 void 4512 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4513 { 4514 tcpha_t *tcpha; 4515 uint32_t seg_seq; 4516 tcp_t *eager; 4517 int err; 4518 conn_t *econnp = NULL; 4519 squeue_t *new_sqp; 4520 mblk_t *mp1; 4521 uint_t ip_hdr_len; 4522 conn_t *lconnp = (conn_t *)arg; 4523 tcp_t *listener = lconnp->conn_tcp; 4524 tcp_stack_t *tcps = listener->tcp_tcps; 4525 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4526 uint_t flags; 4527 mblk_t *tpi_mp; 4528 uint_t ifindex = ira->ira_ruifindex; 4529 boolean_t tlc_set = B_FALSE; 4530 4531 ip_hdr_len = ira->ira_ip_hdr_length; 4532 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4533 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4534 4535 if (!(flags & TH_SYN)) { 4536 if ((flags & TH_RST) || (flags & TH_URG)) { 4537 freemsg(mp); 4538 return; 4539 } 4540 if (flags & TH_ACK) { 4541 /* Note this executes in listener's squeue */ 4542 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4543 return; 4544 } 4545 4546 freemsg(mp); 4547 return; 4548 } 4549 4550 if (listener->tcp_state != TCPS_LISTEN) 4551 goto error2; 4552 4553 ASSERT(IPCL_IS_BOUND(lconnp)); 4554 4555 mutex_enter(&listener->tcp_eager_lock); 4556 4557 /* 4558 * The system is under memory pressure, so we need to do our part 4559 * to relieve the pressure. So we only accept new request if there 4560 * is nothing waiting to be accepted or waiting to complete the 3-way 4561 * handshake. This means that busy listener will not get too many 4562 * new requests which they cannot handle in time while non-busy 4563 * listener is still functioning properly. 4564 */ 4565 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 4566 listener->tcp_conn_req_cnt_q0 > 0)) { 4567 mutex_exit(&listener->tcp_eager_lock); 4568 TCP_STAT(tcps, tcp_listen_mem_drop); 4569 goto error2; 4570 } 4571 4572 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4573 mutex_exit(&listener->tcp_eager_lock); 4574 TCP_STAT(tcps, tcp_listendrop); 4575 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4576 if (lconnp->conn_debug) { 4577 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4578 "tcp_input_listener: listen backlog (max=%d) " 4579 "overflow (%d pending) on %s", 4580 listener->tcp_conn_req_max, 4581 listener->tcp_conn_req_cnt_q, 4582 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4583 } 4584 goto error2; 4585 } 4586 4587 if (listener->tcp_conn_req_cnt_q0 >= 4588 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4589 /* 4590 * Q0 is full. Drop a pending half-open req from the queue 4591 * to make room for the new SYN req. Also mark the time we 4592 * drop a SYN. 4593 * 4594 * A more aggressive defense against SYN attack will 4595 * be to set the "tcp_syn_defense" flag now. 4596 */ 4597 TCP_STAT(tcps, tcp_listendropq0); 4598 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 4599 if (!tcp_drop_q0(listener)) { 4600 mutex_exit(&listener->tcp_eager_lock); 4601 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4602 if (lconnp->conn_debug) { 4603 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4604 "tcp_input_listener: listen half-open " 4605 "queue (max=%d) full (%d pending) on %s", 4606 tcps->tcps_conn_req_max_q0, 4607 listener->tcp_conn_req_cnt_q0, 4608 tcp_display(listener, NULL, 4609 DISP_PORT_ONLY)); 4610 } 4611 goto error2; 4612 } 4613 } 4614 4615 /* 4616 * Enforce the limit set on the number of connections per listener. 4617 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 4618 * for comparison. 4619 */ 4620 if (listener->tcp_listen_cnt != NULL) { 4621 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 4622 int64_t now; 4623 4624 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 4625 mutex_exit(&listener->tcp_eager_lock); 4626 now = ddi_get_lbolt64(); 4627 atomic_add_32(&tlc->tlc_cnt, -1); 4628 TCP_STAT(tcps, tcp_listen_cnt_drop); 4629 tlc->tlc_drop++; 4630 if (now - tlc->tlc_report_time > 4631 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 4632 zcmn_err(lconnp->conn_zoneid, CE_WARN, 4633 "Listener (port %d) connection max (%u) " 4634 "reached: %u attempts dropped total\n", 4635 ntohs(listener->tcp_connp->conn_lport), 4636 tlc->tlc_max, tlc->tlc_drop); 4637 tlc->tlc_report_time = now; 4638 } 4639 goto error2; 4640 } 4641 tlc_set = B_TRUE; 4642 } 4643 4644 mutex_exit(&listener->tcp_eager_lock); 4645 4646 /* 4647 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4648 * or based on the ring (for packets from GLD). Otherwise it is 4649 * set based on lbolt i.e., a somewhat random number. 4650 */ 4651 ASSERT(ira->ira_sqp != NULL); 4652 new_sqp = ira->ira_sqp; 4653 4654 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4655 if (econnp == NULL) 4656 goto error2; 4657 4658 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4659 econnp->conn_sqp = new_sqp; 4660 econnp->conn_initial_sqp = new_sqp; 4661 econnp->conn_ixa->ixa_sqp = new_sqp; 4662 4663 econnp->conn_fport = tcpha->tha_lport; 4664 econnp->conn_lport = tcpha->tha_fport; 4665 4666 err = conn_inherit_parent(lconnp, econnp); 4667 if (err != 0) 4668 goto error3; 4669 4670 /* We already know the laddr of the new connection is ours */ 4671 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 4672 4673 ASSERT(OK_32PTR(mp->b_rptr)); 4674 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4675 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4676 4677 if (lconnp->conn_family == AF_INET) { 4678 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4679 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4680 } else { 4681 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4682 } 4683 4684 if (tpi_mp == NULL) 4685 goto error3; 4686 4687 eager = econnp->conn_tcp; 4688 eager->tcp_detached = B_TRUE; 4689 SOCK_CONNID_INIT(eager->tcp_connid); 4690 4691 tcp_init_values(eager); 4692 4693 ASSERT((econnp->conn_ixa->ixa_flags & 4694 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4695 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4696 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4697 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4698 4699 if (!tcps->tcps_dev_flow_ctl) 4700 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4701 4702 /* Prepare for diffing against previous packets */ 4703 eager->tcp_recvifindex = 0; 4704 eager->tcp_recvhops = 0xffffffffU; 4705 4706 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4707 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4708 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4709 econnp->conn_incoming_ifindex = ifindex; 4710 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4711 econnp->conn_ixa->ixa_scopeid = ifindex; 4712 } 4713 } 4714 4715 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4716 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4717 tcps->tcps_rev_src_routes) { 4718 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4719 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4720 4721 /* Source routing option copyover (reverse it) */ 4722 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4723 if (err != 0) { 4724 freemsg(tpi_mp); 4725 goto error3; 4726 } 4727 ip_pkt_source_route_reverse_v4(ipp); 4728 } 4729 4730 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4731 ASSERT(!eager->tcp_tconnind_started); 4732 /* 4733 * If the SYN came with a credential, it's a loopback packet or a 4734 * labeled packet; attach the credential to the TPI message. 4735 */ 4736 if (ira->ira_cred != NULL) 4737 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4738 4739 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4740 4741 /* Inherit the listener's SSL protection state */ 4742 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4743 kssl_hold_ent(eager->tcp_kssl_ent); 4744 eager->tcp_kssl_pending = B_TRUE; 4745 } 4746 4747 /* Inherit the listener's non-STREAMS flag */ 4748 if (IPCL_IS_NONSTR(lconnp)) { 4749 econnp->conn_flags |= IPCL_NONSTR; 4750 } 4751 4752 ASSERT(eager->tcp_ordrel_mp == NULL); 4753 4754 if (!IPCL_IS_NONSTR(econnp)) { 4755 /* 4756 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4757 * at close time, we will always have that to send up. 4758 * Otherwise, we need to do special handling in case the 4759 * allocation fails at that time. 4760 */ 4761 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4762 goto error3; 4763 } 4764 /* 4765 * Now that the IP addresses and ports are setup in econnp we 4766 * can do the IPsec policy work. 4767 */ 4768 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4769 if (lconnp->conn_policy != NULL) { 4770 /* 4771 * Inherit the policy from the listener; use 4772 * actions from ira 4773 */ 4774 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4775 CONN_DEC_REF(econnp); 4776 freemsg(mp); 4777 goto error3; 4778 } 4779 } 4780 } 4781 4782 /* Inherit various TCP parameters from the listener */ 4783 eager->tcp_naglim = listener->tcp_naglim; 4784 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4785 eager->tcp_second_timer_threshold = 4786 listener->tcp_second_timer_threshold; 4787 eager->tcp_first_ctimer_threshold = 4788 listener->tcp_first_ctimer_threshold; 4789 eager->tcp_second_ctimer_threshold = 4790 listener->tcp_second_ctimer_threshold; 4791 4792 /* 4793 * tcp_set_destination() may set tcp_rwnd according to the route 4794 * metrics. If it does not, the eager's receive window will be set 4795 * to the listener's receive window later in this function. 4796 */ 4797 eager->tcp_rwnd = 0; 4798 4799 /* 4800 * Inherit listener's tcp_init_cwnd. Need to do this before 4801 * calling tcp_process_options() which set the initial cwnd. 4802 */ 4803 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4804 4805 if (is_system_labeled()) { 4806 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4807 4808 ASSERT(ira->ira_tsl != NULL); 4809 /* Discard any old label */ 4810 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4811 ASSERT(ixa->ixa_tsl != NULL); 4812 label_rele(ixa->ixa_tsl); 4813 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4814 ixa->ixa_tsl = NULL; 4815 } 4816 if ((lconnp->conn_mlp_type != mlptSingle || 4817 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4818 ira->ira_tsl != NULL) { 4819 /* 4820 * If this is an MLP connection or a MAC-Exempt 4821 * connection with an unlabeled node, packets are to be 4822 * exchanged using the security label of the received 4823 * SYN packet instead of the server application's label. 4824 * tsol_check_dest called from ip_set_destination 4825 * might later update TSF_UNLABELED by replacing 4826 * ixa_tsl with a new label. 4827 */ 4828 label_hold(ira->ira_tsl); 4829 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4830 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4831 econnp, ts_label_t *, ixa->ixa_tsl) 4832 } else { 4833 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4834 DTRACE_PROBE2(syn_accept, conn_t *, 4835 econnp, ts_label_t *, ixa->ixa_tsl) 4836 } 4837 /* 4838 * conn_connect() called from tcp_set_destination will verify 4839 * the destination is allowed to receive packets at the 4840 * security label of the SYN-ACK we are generating. As part of 4841 * that, tsol_check_dest() may create a new effective label for 4842 * this connection. 4843 * Finally conn_connect() will call conn_update_label. 4844 * All that remains for TCP to do is to call 4845 * conn_build_hdr_template which is done as part of 4846 * tcp_set_destination. 4847 */ 4848 } 4849 4850 /* 4851 * Since we will clear tcp_listener before we clear tcp_detached 4852 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4853 * so we can tell a TCP_DETACHED_NONEAGER apart. 4854 */ 4855 eager->tcp_hard_binding = B_TRUE; 4856 4857 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4858 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4859 4860 CL_INET_CONNECT(econnp, B_FALSE, err); 4861 if (err != 0) { 4862 tcp_bind_hash_remove(eager); 4863 goto error3; 4864 } 4865 4866 /* 4867 * No need to check for multicast destination since ip will only pass 4868 * up multicasts to those that have expressed interest 4869 * TODO: what about rejecting broadcasts? 4870 * Also check that source is not a multicast or broadcast address. 4871 */ 4872 eager->tcp_state = TCPS_SYN_RCVD; 4873 SOCK_CONNID_BUMP(eager->tcp_connid); 4874 4875 /* 4876 * Adapt our mss, ttl, ... based on the remote address. 4877 */ 4878 4879 if (tcp_set_destination(eager) != 0) { 4880 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4881 /* Undo the bind_hash_insert */ 4882 tcp_bind_hash_remove(eager); 4883 goto error3; 4884 } 4885 4886 /* Process all TCP options. */ 4887 tcp_process_options(eager, tcpha); 4888 4889 /* Is the other end ECN capable? */ 4890 if (tcps->tcps_ecn_permitted >= 1 && 4891 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4892 eager->tcp_ecn_ok = B_TRUE; 4893 } 4894 4895 /* 4896 * The listener's conn_rcvbuf should be the default window size or a 4897 * window size changed via SO_RCVBUF option. First round up the 4898 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4899 * scale option value if needed. Call tcp_rwnd_set() to finish the 4900 * setting. 4901 * 4902 * Note if there is a rpipe metric associated with the remote host, 4903 * we should not inherit receive window size from listener. 4904 */ 4905 eager->tcp_rwnd = MSS_ROUNDUP( 4906 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4907 eager->tcp_rwnd), eager->tcp_mss); 4908 if (eager->tcp_snd_ws_ok) 4909 tcp_set_ws_value(eager); 4910 /* 4911 * Note that this is the only place tcp_rwnd_set() is called for 4912 * accepting a connection. We need to call it here instead of 4913 * after the 3-way handshake because we need to tell the other 4914 * side our rwnd in the SYN-ACK segment. 4915 */ 4916 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4917 4918 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4919 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4920 4921 ASSERT(econnp->conn_rcvbuf != 0 && 4922 econnp->conn_rcvbuf == eager->tcp_rwnd); 4923 4924 /* Put a ref on the listener for the eager. */ 4925 CONN_INC_REF(lconnp); 4926 mutex_enter(&listener->tcp_eager_lock); 4927 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4928 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4929 listener->tcp_eager_next_q0 = eager; 4930 eager->tcp_eager_prev_q0 = listener; 4931 4932 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4933 eager->tcp_listener = listener; 4934 eager->tcp_saved_listener = listener; 4935 4936 /* 4937 * Set tcp_listen_cnt so that when the connection is done, the counter 4938 * is decremented. 4939 */ 4940 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 4941 4942 /* 4943 * Tag this detached tcp vector for later retrieval 4944 * by our listener client in tcp_accept(). 4945 */ 4946 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4947 listener->tcp_conn_req_cnt_q0++; 4948 if (++listener->tcp_conn_req_seqnum == -1) { 4949 /* 4950 * -1 is "special" and defined in TPI as something 4951 * that should never be used in T_CONN_IND 4952 */ 4953 ++listener->tcp_conn_req_seqnum; 4954 } 4955 mutex_exit(&listener->tcp_eager_lock); 4956 4957 if (listener->tcp_syn_defense) { 4958 /* Don't drop the SYN that comes from a good IP source */ 4959 ipaddr_t *addr_cache; 4960 4961 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4962 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4963 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4964 eager->tcp_dontdrop = B_TRUE; 4965 } 4966 } 4967 4968 /* 4969 * We need to insert the eager in its own perimeter but as soon 4970 * as we do that, we expose the eager to the classifier and 4971 * should not touch any field outside the eager's perimeter. 4972 * So do all the work necessary before inserting the eager 4973 * in its own perimeter. Be optimistic that conn_connect() 4974 * will succeed but undo everything if it fails. 4975 */ 4976 seg_seq = ntohl(tcpha->tha_seq); 4977 eager->tcp_irs = seg_seq; 4978 eager->tcp_rack = seg_seq; 4979 eager->tcp_rnxt = seg_seq + 1; 4980 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4981 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4982 eager->tcp_state = TCPS_SYN_RCVD; 4983 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4984 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4985 if (mp1 == NULL) { 4986 /* 4987 * Increment the ref count as we are going to 4988 * enqueueing an mp in squeue 4989 */ 4990 CONN_INC_REF(econnp); 4991 goto error; 4992 } 4993 4994 /* 4995 * We need to start the rto timer. In normal case, we start 4996 * the timer after sending the packet on the wire (or at 4997 * least believing that packet was sent by waiting for 4998 * conn_ip_output() to return). Since this is the first packet 4999 * being sent on the wire for the eager, our initial tcp_rto 5000 * is at least tcp_rexmit_interval_min which is a fairly 5001 * large value to allow the algorithm to adjust slowly to large 5002 * fluctuations of RTT during first few transmissions. 5003 * 5004 * Starting the timer first and then sending the packet in this 5005 * case shouldn't make much difference since tcp_rexmit_interval_min 5006 * is of the order of several 100ms and starting the timer 5007 * first and then sending the packet will result in difference 5008 * of few micro seconds. 5009 * 5010 * Without this optimization, we are forced to hold the fanout 5011 * lock across the ipcl_bind_insert() and sending the packet 5012 * so that we don't race against an incoming packet (maybe RST) 5013 * for this eager. 5014 * 5015 * It is necessary to acquire an extra reference on the eager 5016 * at this point and hold it until after tcp_send_data() to 5017 * ensure against an eager close race. 5018 */ 5019 5020 CONN_INC_REF(econnp); 5021 5022 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5023 5024 /* 5025 * Insert the eager in its own perimeter now. We are ready to deal 5026 * with any packets on eager. 5027 */ 5028 if (ipcl_conn_insert(econnp) != 0) 5029 goto error; 5030 5031 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 5032 freemsg(mp); 5033 /* 5034 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 5035 * only used by one thread at a time. 5036 */ 5037 if (econnp->conn_sqp == lconnp->conn_sqp) { 5038 (void) conn_ip_output(mp1, econnp->conn_ixa); 5039 CONN_DEC_REF(econnp); 5040 } else { 5041 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 5042 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 5043 } 5044 return; 5045 error: 5046 freemsg(mp1); 5047 eager->tcp_closemp_used = B_TRUE; 5048 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5049 mp1 = &eager->tcp_closemp; 5050 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5051 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5052 5053 /* 5054 * If a connection already exists, send the mp to that connections so 5055 * that it can be appropriately dealt with. 5056 */ 5057 ipst = tcps->tcps_netstack->netstack_ip; 5058 5059 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 5060 if (!IPCL_IS_CONNECTED(econnp)) { 5061 /* 5062 * Something bad happened. ipcl_conn_insert() 5063 * failed because a connection already existed 5064 * in connected hash but we can't find it 5065 * anymore (someone blew it away). Just 5066 * free this message and hopefully remote 5067 * will retransmit at which time the SYN can be 5068 * treated as a new connection or dealth with 5069 * a TH_RST if a connection already exists. 5070 */ 5071 CONN_DEC_REF(econnp); 5072 freemsg(mp); 5073 } else { 5074 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 5075 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5076 } 5077 } else { 5078 /* Nobody wants this packet */ 5079 freemsg(mp); 5080 } 5081 return; 5082 error3: 5083 CONN_DEC_REF(econnp); 5084 error2: 5085 freemsg(mp); 5086 if (tlc_set) 5087 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 5088 } 5089 5090 /* ARGSUSED2 */ 5091 void 5092 tcp_send_synack(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5093 { 5094 conn_t *econnp = (conn_t *)arg; 5095 tcp_t *tcp = econnp->conn_tcp; 5096 5097 /* Guard against a RST having blown it away while on the squeue */ 5098 if (tcp->tcp_state == TCPS_CLOSED) { 5099 freemsg(mp); 5100 return; 5101 } 5102 5103 (void) conn_ip_output(mp, econnp->conn_ixa); 5104 } 5105 5106 /* 5107 * In an ideal case of vertical partition in NUMA architecture, its 5108 * beneficial to have the listener and all the incoming connections 5109 * tied to the same squeue. The other constraint is that incoming 5110 * connections should be tied to the squeue attached to interrupted 5111 * CPU for obvious locality reason so this leaves the listener to 5112 * be tied to the same squeue. Our only problem is that when listener 5113 * is binding, the CPU that will get interrupted by the NIC whose 5114 * IP address the listener is binding to is not even known. So 5115 * the code below allows us to change that binding at the time the 5116 * CPU is interrupted by virtue of incoming connection's squeue. 5117 * 5118 * This is usefull only in case of a listener bound to a specific IP 5119 * address. For other kind of listeners, they get bound the 5120 * very first time and there is no attempt to rebind them. 5121 */ 5122 void 5123 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 5124 ip_recv_attr_t *ira) 5125 { 5126 conn_t *connp = (conn_t *)arg; 5127 squeue_t *sqp = (squeue_t *)arg2; 5128 squeue_t *new_sqp; 5129 uint32_t conn_flags; 5130 5131 /* 5132 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 5133 * or based on the ring (for packets from GLD). Otherwise it is 5134 * set based on lbolt i.e., a somewhat random number. 5135 */ 5136 ASSERT(ira->ira_sqp != NULL); 5137 new_sqp = ira->ira_sqp; 5138 5139 if (connp->conn_fanout == NULL) 5140 goto done; 5141 5142 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5143 mutex_enter(&connp->conn_fanout->connf_lock); 5144 mutex_enter(&connp->conn_lock); 5145 /* 5146 * No one from read or write side can access us now 5147 * except for already queued packets on this squeue. 5148 * But since we haven't changed the squeue yet, they 5149 * can't execute. If they are processed after we have 5150 * changed the squeue, they are sent back to the 5151 * correct squeue down below. 5152 * But a listner close can race with processing of 5153 * incoming SYN. If incoming SYN processing changes 5154 * the squeue then the listener close which is waiting 5155 * to enter the squeue would operate on the wrong 5156 * squeue. Hence we don't change the squeue here unless 5157 * the refcount is exactly the minimum refcount. The 5158 * minimum refcount of 4 is counted as - 1 each for 5159 * TCP and IP, 1 for being in the classifier hash, and 5160 * 1 for the mblk being processed. 5161 */ 5162 5163 if (connp->conn_ref != 4 || 5164 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5165 mutex_exit(&connp->conn_lock); 5166 mutex_exit(&connp->conn_fanout->connf_lock); 5167 goto done; 5168 } 5169 if (connp->conn_sqp != new_sqp) { 5170 while (connp->conn_sqp != new_sqp) 5171 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5172 /* No special MT issues for outbound ixa_sqp hint */ 5173 connp->conn_ixa->ixa_sqp = new_sqp; 5174 } 5175 5176 do { 5177 conn_flags = connp->conn_flags; 5178 conn_flags |= IPCL_FULLY_BOUND; 5179 (void) cas32(&connp->conn_flags, connp->conn_flags, 5180 conn_flags); 5181 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5182 5183 mutex_exit(&connp->conn_fanout->connf_lock); 5184 mutex_exit(&connp->conn_lock); 5185 5186 /* 5187 * Assume we have picked a good squeue for the listener. Make 5188 * subsequent SYNs not try to change the squeue. 5189 */ 5190 connp->conn_recv = tcp_input_listener; 5191 } 5192 5193 done: 5194 if (connp->conn_sqp != sqp) { 5195 CONN_INC_REF(connp); 5196 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5197 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5198 } else { 5199 tcp_input_listener(connp, mp, sqp, ira); 5200 } 5201 } 5202 5203 /* 5204 * Successful connect request processing begins when our client passes 5205 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 5206 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 5207 * 5208 * After various error checks are completed, tcp_tpi_connect() lays 5209 * the target address and port into the composite header template. 5210 * Then we ask IP for information, including a source address if we didn't 5211 * already have one. Finally we prepare to send the SYN packet, and then 5212 * send up the T_OK_ACK reply message. 5213 */ 5214 static void 5215 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5216 { 5217 sin_t *sin; 5218 struct T_conn_req *tcr; 5219 struct sockaddr *sa; 5220 socklen_t len; 5221 int error; 5222 cred_t *cr; 5223 pid_t cpid; 5224 conn_t *connp = tcp->tcp_connp; 5225 queue_t *q = connp->conn_wq; 5226 5227 /* 5228 * All Solaris components should pass a db_credp 5229 * for this TPI message, hence we ASSERT. 5230 * But in case there is some other M_PROTO that looks 5231 * like a TPI message sent by some other kernel 5232 * component, we check and return an error. 5233 */ 5234 cr = msg_getcred(mp, &cpid); 5235 ASSERT(cr != NULL); 5236 if (cr == NULL) { 5237 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5238 return; 5239 } 5240 5241 tcr = (struct T_conn_req *)mp->b_rptr; 5242 5243 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5244 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5245 tcp_err_ack(tcp, mp, TPROTO, 0); 5246 return; 5247 } 5248 5249 /* 5250 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5251 * will always have that to send up. Otherwise, we need to do 5252 * special handling in case the allocation fails at that time. 5253 * If the end point is TPI, the tcp_t can be reused and the 5254 * tcp_ordrel_mp may be allocated already. 5255 */ 5256 if (tcp->tcp_ordrel_mp == NULL) { 5257 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5258 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5259 return; 5260 } 5261 } 5262 5263 /* 5264 * Determine packet type based on type of address passed in 5265 * the request should contain an IPv4 or IPv6 address. 5266 * Make sure that address family matches the type of 5267 * family of the address passed down. 5268 */ 5269 switch (tcr->DEST_length) { 5270 default: 5271 tcp_err_ack(tcp, mp, TBADADDR, 0); 5272 return; 5273 5274 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5275 /* 5276 * XXX: The check for valid DEST_length was not there 5277 * in earlier releases and some buggy 5278 * TLI apps (e.g Sybase) got away with not feeding 5279 * in sin_zero part of address. 5280 * We allow that bug to keep those buggy apps humming. 5281 * Test suites require the check on DEST_length. 5282 * We construct a new mblk with valid DEST_length 5283 * free the original so the rest of the code does 5284 * not have to keep track of this special shorter 5285 * length address case. 5286 */ 5287 mblk_t *nmp; 5288 struct T_conn_req *ntcr; 5289 sin_t *nsin; 5290 5291 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5292 tcr->OPT_length, BPRI_HI); 5293 if (nmp == NULL) { 5294 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5295 return; 5296 } 5297 ntcr = (struct T_conn_req *)nmp->b_rptr; 5298 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5299 ntcr->PRIM_type = T_CONN_REQ; 5300 ntcr->DEST_length = sizeof (sin_t); 5301 ntcr->DEST_offset = sizeof (struct T_conn_req); 5302 5303 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5304 *nsin = sin_null; 5305 /* Get pointer to shorter address to copy from original mp */ 5306 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5307 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5308 if (sin == NULL || !OK_32PTR((char *)sin)) { 5309 freemsg(nmp); 5310 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5311 return; 5312 } 5313 nsin->sin_family = sin->sin_family; 5314 nsin->sin_port = sin->sin_port; 5315 nsin->sin_addr = sin->sin_addr; 5316 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5317 nmp->b_wptr = (uchar_t *)&nsin[1]; 5318 if (tcr->OPT_length != 0) { 5319 ntcr->OPT_length = tcr->OPT_length; 5320 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5321 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5322 (uchar_t *)ntcr + ntcr->OPT_offset, 5323 tcr->OPT_length); 5324 nmp->b_wptr += tcr->OPT_length; 5325 } 5326 freemsg(mp); /* original mp freed */ 5327 mp = nmp; /* re-initialize original variables */ 5328 tcr = ntcr; 5329 } 5330 /* FALLTHRU */ 5331 5332 case sizeof (sin_t): 5333 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5334 sizeof (sin_t)); 5335 len = sizeof (sin_t); 5336 break; 5337 5338 case sizeof (sin6_t): 5339 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5340 sizeof (sin6_t)); 5341 len = sizeof (sin6_t); 5342 break; 5343 } 5344 5345 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5346 if (error != 0) { 5347 tcp_err_ack(tcp, mp, TSYSERR, error); 5348 return; 5349 } 5350 5351 /* 5352 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5353 * should key on their sequence number and cut them loose. 5354 */ 5355 5356 /* 5357 * If options passed in, feed it for verification and handling 5358 */ 5359 if (tcr->OPT_length != 0) { 5360 mblk_t *ok_mp; 5361 mblk_t *discon_mp; 5362 mblk_t *conn_opts_mp; 5363 int t_error, sys_error, do_disconnect; 5364 5365 conn_opts_mp = NULL; 5366 5367 if (tcp_conprim_opt_process(tcp, mp, 5368 &do_disconnect, &t_error, &sys_error) < 0) { 5369 if (do_disconnect) { 5370 ASSERT(t_error == 0 && sys_error == 0); 5371 discon_mp = mi_tpi_discon_ind(NULL, 5372 ECONNREFUSED, 0); 5373 if (!discon_mp) { 5374 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5375 TSYSERR, ENOMEM); 5376 return; 5377 } 5378 ok_mp = mi_tpi_ok_ack_alloc(mp); 5379 if (!ok_mp) { 5380 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5381 TSYSERR, ENOMEM); 5382 return; 5383 } 5384 qreply(q, ok_mp); 5385 qreply(q, discon_mp); /* no flush! */ 5386 } else { 5387 ASSERT(t_error != 0); 5388 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5389 sys_error); 5390 } 5391 return; 5392 } 5393 /* 5394 * Success in setting options, the mp option buffer represented 5395 * by OPT_length/offset has been potentially modified and 5396 * contains results of option processing. We copy it in 5397 * another mp to save it for potentially influencing returning 5398 * it in T_CONN_CONN. 5399 */ 5400 if (tcr->OPT_length != 0) { /* there are resulting options */ 5401 conn_opts_mp = copyb(mp); 5402 if (!conn_opts_mp) { 5403 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5404 TSYSERR, ENOMEM); 5405 return; 5406 } 5407 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5408 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5409 /* 5410 * Note: 5411 * These resulting option negotiation can include any 5412 * end-to-end negotiation options but there no such 5413 * thing (yet?) in our TCP/IP. 5414 */ 5415 } 5416 } 5417 5418 /* call the non-TPI version */ 5419 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5420 if (error < 0) { 5421 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5422 } else if (error > 0) { 5423 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5424 } else { 5425 mp = mi_tpi_ok_ack_alloc(mp); 5426 } 5427 5428 /* 5429 * Note: Code below is the "failure" case 5430 */ 5431 /* return error ack and blow away saved option results if any */ 5432 connect_failed: 5433 if (mp != NULL) 5434 putnext(connp->conn_rq, mp); 5435 else { 5436 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5437 TSYSERR, ENOMEM); 5438 } 5439 } 5440 5441 /* 5442 * Handle connect to IPv4 destinations, including connections for AF_INET6 5443 * sockets connecting to IPv4 mapped IPv6 destinations. 5444 * Returns zero if OK, a positive errno, or a negative TLI error. 5445 */ 5446 static int 5447 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5448 uint_t srcid) 5449 { 5450 ipaddr_t dstaddr = *dstaddrp; 5451 uint16_t lport; 5452 conn_t *connp = tcp->tcp_connp; 5453 tcp_stack_t *tcps = tcp->tcp_tcps; 5454 int error; 5455 5456 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5457 5458 /* Check for attempt to connect to INADDR_ANY */ 5459 if (dstaddr == INADDR_ANY) { 5460 /* 5461 * SunOS 4.x and 4.3 BSD allow an application 5462 * to connect a TCP socket to INADDR_ANY. 5463 * When they do this, the kernel picks the 5464 * address of one interface and uses it 5465 * instead. The kernel usually ends up 5466 * picking the address of the loopback 5467 * interface. This is an undocumented feature. 5468 * However, we provide the same thing here 5469 * in order to have source and binary 5470 * compatibility with SunOS 4.x. 5471 * Update the T_CONN_REQ (sin/sin6) since it is used to 5472 * generate the T_CONN_CON. 5473 */ 5474 dstaddr = htonl(INADDR_LOOPBACK); 5475 *dstaddrp = dstaddr; 5476 } 5477 5478 /* Handle __sin6_src_id if socket not bound to an IP address */ 5479 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5480 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5481 IPCL_ZONEID(connp), tcps->tcps_netstack); 5482 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5483 } 5484 5485 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5486 connp->conn_fport = dstport; 5487 5488 /* 5489 * At this point the remote destination address and remote port fields 5490 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5491 * have to see which state tcp was in so we can take appropriate action. 5492 */ 5493 if (tcp->tcp_state == TCPS_IDLE) { 5494 /* 5495 * We support a quick connect capability here, allowing 5496 * clients to transition directly from IDLE to SYN_SENT 5497 * tcp_bindi will pick an unused port, insert the connection 5498 * in the bind hash and transition to BOUND state. 5499 */ 5500 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5501 tcp, B_TRUE); 5502 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5503 B_FALSE, B_FALSE); 5504 if (lport == 0) 5505 return (-TNOADDR); 5506 } 5507 5508 /* 5509 * Lookup the route to determine a source address and the uinfo. 5510 * Setup TCP parameters based on the metrics/DCE. 5511 */ 5512 error = tcp_set_destination(tcp); 5513 if (error != 0) 5514 return (error); 5515 5516 /* 5517 * Don't let an endpoint connect to itself. 5518 */ 5519 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5520 connp->conn_fport == connp->conn_lport) 5521 return (-TBADADDR); 5522 5523 tcp->tcp_state = TCPS_SYN_SENT; 5524 5525 return (ipcl_conn_insert_v4(connp)); 5526 } 5527 5528 /* 5529 * Handle connect to IPv6 destinations. 5530 * Returns zero if OK, a positive errno, or a negative TLI error. 5531 */ 5532 static int 5533 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5534 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5535 { 5536 uint16_t lport; 5537 conn_t *connp = tcp->tcp_connp; 5538 tcp_stack_t *tcps = tcp->tcp_tcps; 5539 int error; 5540 5541 ASSERT(connp->conn_family == AF_INET6); 5542 5543 /* 5544 * If we're here, it means that the destination address is a native 5545 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5546 * reason why it might not be IPv6 is if the socket was bound to an 5547 * IPv4-mapped IPv6 address. 5548 */ 5549 if (connp->conn_ipversion != IPV6_VERSION) 5550 return (-TBADADDR); 5551 5552 /* 5553 * Interpret a zero destination to mean loopback. 5554 * Update the T_CONN_REQ (sin/sin6) since it is used to 5555 * generate the T_CONN_CON. 5556 */ 5557 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5558 *dstaddrp = ipv6_loopback; 5559 5560 /* Handle __sin6_src_id if socket not bound to an IP address */ 5561 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5562 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5563 IPCL_ZONEID(connp), tcps->tcps_netstack); 5564 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5565 } 5566 5567 /* 5568 * Take care of the scope_id now. 5569 */ 5570 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5571 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5572 connp->conn_ixa->ixa_scopeid = scope_id; 5573 } else { 5574 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5575 } 5576 5577 connp->conn_flowinfo = flowinfo; 5578 connp->conn_faddr_v6 = *dstaddrp; 5579 connp->conn_fport = dstport; 5580 5581 /* 5582 * At this point the remote destination address and remote port fields 5583 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5584 * have to see which state tcp was in so we can take appropriate action. 5585 */ 5586 if (tcp->tcp_state == TCPS_IDLE) { 5587 /* 5588 * We support a quick connect capability here, allowing 5589 * clients to transition directly from IDLE to SYN_SENT 5590 * tcp_bindi will pick an unused port, insert the connection 5591 * in the bind hash and transition to BOUND state. 5592 */ 5593 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5594 tcp, B_TRUE); 5595 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5596 B_FALSE, B_FALSE); 5597 if (lport == 0) 5598 return (-TNOADDR); 5599 } 5600 5601 /* 5602 * Lookup the route to determine a source address and the uinfo. 5603 * Setup TCP parameters based on the metrics/DCE. 5604 */ 5605 error = tcp_set_destination(tcp); 5606 if (error != 0) 5607 return (error); 5608 5609 /* 5610 * Don't let an endpoint connect to itself. 5611 */ 5612 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5613 connp->conn_fport == connp->conn_lport) 5614 return (-TBADADDR); 5615 5616 tcp->tcp_state = TCPS_SYN_SENT; 5617 5618 return (ipcl_conn_insert_v6(connp)); 5619 } 5620 5621 /* 5622 * Disconnect 5623 * Note that unlike other functions this returns a positive tli error 5624 * when it fails; it never returns an errno. 5625 */ 5626 static int 5627 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5628 { 5629 conn_t *lconnp; 5630 tcp_stack_t *tcps = tcp->tcp_tcps; 5631 conn_t *connp = tcp->tcp_connp; 5632 5633 /* 5634 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5635 * when the stream is in BOUND state. Do not send a reset, 5636 * since the destination IP address is not valid, and it can 5637 * be the initialized value of all zeros (broadcast address). 5638 */ 5639 if (tcp->tcp_state <= TCPS_BOUND) { 5640 if (connp->conn_debug) { 5641 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5642 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5643 } 5644 return (TOUTSTATE); 5645 } 5646 5647 5648 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5649 5650 /* 5651 * According to TPI, for non-listeners, ignore seqnum 5652 * and disconnect. 5653 * Following interpretation of -1 seqnum is historical 5654 * and implied TPI ? (TPI only states that for T_CONN_IND, 5655 * a valid seqnum should not be -1). 5656 * 5657 * -1 means disconnect everything 5658 * regardless even on a listener. 5659 */ 5660 5661 int old_state = tcp->tcp_state; 5662 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5663 5664 /* 5665 * The connection can't be on the tcp_time_wait_head list 5666 * since it is not detached. 5667 */ 5668 ASSERT(tcp->tcp_time_wait_next == NULL); 5669 ASSERT(tcp->tcp_time_wait_prev == NULL); 5670 ASSERT(tcp->tcp_time_wait_expire == 0); 5671 /* 5672 * If it used to be a listener, check to make sure no one else 5673 * has taken the port before switching back to LISTEN state. 5674 */ 5675 if (connp->conn_ipversion == IPV4_VERSION) { 5676 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5677 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5678 } else { 5679 uint_t ifindex = 0; 5680 5681 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5682 ifindex = connp->conn_ixa->ixa_scopeid; 5683 5684 /* Allow conn_bound_if listeners? */ 5685 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5686 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5687 ipst); 5688 } 5689 if (tcp->tcp_conn_req_max && lconnp == NULL) { 5690 tcp->tcp_state = TCPS_LISTEN; 5691 } else if (old_state > TCPS_BOUND) { 5692 tcp->tcp_conn_req_max = 0; 5693 tcp->tcp_state = TCPS_BOUND; 5694 5695 /* 5696 * If this end point is not going to become a listener, 5697 * decrement the listener connection count if 5698 * necessary. Note that we do not do this if it is 5699 * going to be a listner (the above if case) since 5700 * then it may remove the counter struct. 5701 */ 5702 if (tcp->tcp_listen_cnt != NULL) 5703 TCP_DECR_LISTEN_CNT(tcp); 5704 } 5705 if (lconnp != NULL) 5706 CONN_DEC_REF(lconnp); 5707 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5708 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5709 } else if (old_state == TCPS_ESTABLISHED || 5710 old_state == TCPS_CLOSE_WAIT) { 5711 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5712 } 5713 5714 if (tcp->tcp_fused) 5715 tcp_unfuse(tcp); 5716 5717 mutex_enter(&tcp->tcp_eager_lock); 5718 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5719 (tcp->tcp_conn_req_cnt_q != 0)) { 5720 tcp_eager_cleanup(tcp, 0); 5721 } 5722 mutex_exit(&tcp->tcp_eager_lock); 5723 5724 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5725 tcp->tcp_rnxt, TH_RST | TH_ACK); 5726 5727 tcp_reinit(tcp); 5728 5729 return (0); 5730 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5731 return (TBADSEQ); 5732 } 5733 return (0); 5734 } 5735 5736 /* 5737 * Our client hereby directs us to reject the connection request 5738 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5739 * of sending the appropriate RST, not an ICMP error. 5740 */ 5741 static void 5742 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5743 { 5744 t_scalar_t seqnum; 5745 int error; 5746 conn_t *connp = tcp->tcp_connp; 5747 5748 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5749 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5750 tcp_err_ack(tcp, mp, TPROTO, 0); 5751 return; 5752 } 5753 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5754 error = tcp_disconnect_common(tcp, seqnum); 5755 if (error != 0) 5756 tcp_err_ack(tcp, mp, error, 0); 5757 else { 5758 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5759 /* Send M_FLUSH according to TPI */ 5760 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5761 } 5762 mp = mi_tpi_ok_ack_alloc(mp); 5763 if (mp != NULL) 5764 putnext(connp->conn_rq, mp); 5765 } 5766 } 5767 5768 /* 5769 * Diagnostic routine used to return a string associated with the tcp state. 5770 * Note that if the caller does not supply a buffer, it will use an internal 5771 * static string. This means that if multiple threads call this function at 5772 * the same time, output can be corrupted... Note also that this function 5773 * does not check the size of the supplied buffer. The caller has to make 5774 * sure that it is big enough. 5775 */ 5776 static char * 5777 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5778 { 5779 char buf1[30]; 5780 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5781 char *buf; 5782 char *cp; 5783 in6_addr_t local, remote; 5784 char local_addrbuf[INET6_ADDRSTRLEN]; 5785 char remote_addrbuf[INET6_ADDRSTRLEN]; 5786 conn_t *connp; 5787 5788 if (sup_buf != NULL) 5789 buf = sup_buf; 5790 else 5791 buf = priv_buf; 5792 5793 if (tcp == NULL) 5794 return ("NULL_TCP"); 5795 5796 connp = tcp->tcp_connp; 5797 switch (tcp->tcp_state) { 5798 case TCPS_CLOSED: 5799 cp = "TCP_CLOSED"; 5800 break; 5801 case TCPS_IDLE: 5802 cp = "TCP_IDLE"; 5803 break; 5804 case TCPS_BOUND: 5805 cp = "TCP_BOUND"; 5806 break; 5807 case TCPS_LISTEN: 5808 cp = "TCP_LISTEN"; 5809 break; 5810 case TCPS_SYN_SENT: 5811 cp = "TCP_SYN_SENT"; 5812 break; 5813 case TCPS_SYN_RCVD: 5814 cp = "TCP_SYN_RCVD"; 5815 break; 5816 case TCPS_ESTABLISHED: 5817 cp = "TCP_ESTABLISHED"; 5818 break; 5819 case TCPS_CLOSE_WAIT: 5820 cp = "TCP_CLOSE_WAIT"; 5821 break; 5822 case TCPS_FIN_WAIT_1: 5823 cp = "TCP_FIN_WAIT_1"; 5824 break; 5825 case TCPS_CLOSING: 5826 cp = "TCP_CLOSING"; 5827 break; 5828 case TCPS_LAST_ACK: 5829 cp = "TCP_LAST_ACK"; 5830 break; 5831 case TCPS_FIN_WAIT_2: 5832 cp = "TCP_FIN_WAIT_2"; 5833 break; 5834 case TCPS_TIME_WAIT: 5835 cp = "TCP_TIME_WAIT"; 5836 break; 5837 default: 5838 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5839 cp = buf1; 5840 break; 5841 } 5842 switch (format) { 5843 case DISP_ADDR_AND_PORT: 5844 if (connp->conn_ipversion == IPV4_VERSION) { 5845 /* 5846 * Note that we use the remote address in the tcp_b 5847 * structure. This means that it will print out 5848 * the real destination address, not the next hop's 5849 * address if source routing is used. 5850 */ 5851 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5852 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5853 5854 } else { 5855 local = connp->conn_laddr_v6; 5856 remote = connp->conn_faddr_v6; 5857 } 5858 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5859 sizeof (local_addrbuf)); 5860 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5861 sizeof (remote_addrbuf)); 5862 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5863 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5864 ntohs(connp->conn_fport), cp); 5865 break; 5866 case DISP_PORT_ONLY: 5867 default: 5868 (void) mi_sprintf(buf, "[%u, %u] %s", 5869 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5870 break; 5871 } 5872 5873 return (buf); 5874 } 5875 5876 /* 5877 * Called via squeue to get on to eager's perimeter. It sends a 5878 * TH_RST if eager is in the fanout table. The listener wants the 5879 * eager to disappear either by means of tcp_eager_blowoff() or 5880 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5881 * called (via squeue) if the eager cannot be inserted in the 5882 * fanout table in tcp_input_listener(). 5883 */ 5884 /* ARGSUSED */ 5885 void 5886 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5887 { 5888 conn_t *econnp = (conn_t *)arg; 5889 tcp_t *eager = econnp->conn_tcp; 5890 tcp_t *listener = eager->tcp_listener; 5891 5892 /* 5893 * We could be called because listener is closing. Since 5894 * the eager was using listener's queue's, we avoid 5895 * using the listeners queues from now on. 5896 */ 5897 ASSERT(eager->tcp_detached); 5898 econnp->conn_rq = NULL; 5899 econnp->conn_wq = NULL; 5900 5901 /* 5902 * An eager's conn_fanout will be NULL if it's a duplicate 5903 * for an existing 4-tuples in the conn fanout table. 5904 * We don't want to send an RST out in such case. 5905 */ 5906 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5907 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5908 eager, eager->tcp_snxt, 0, TH_RST); 5909 } 5910 5911 /* We are here because listener wants this eager gone */ 5912 if (listener != NULL) { 5913 mutex_enter(&listener->tcp_eager_lock); 5914 tcp_eager_unlink(eager); 5915 if (eager->tcp_tconnind_started) { 5916 /* 5917 * The eager has sent a conn_ind up to the 5918 * listener but listener decides to close 5919 * instead. We need to drop the extra ref 5920 * placed on eager in tcp_input_data() before 5921 * sending the conn_ind to listener. 5922 */ 5923 CONN_DEC_REF(econnp); 5924 } 5925 mutex_exit(&listener->tcp_eager_lock); 5926 CONN_DEC_REF(listener->tcp_connp); 5927 } 5928 5929 if (eager->tcp_state != TCPS_CLOSED) 5930 tcp_close_detached(eager); 5931 } 5932 5933 /* 5934 * Reset any eager connection hanging off this listener marked 5935 * with 'seqnum' and then reclaim it's resources. 5936 */ 5937 static boolean_t 5938 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5939 { 5940 tcp_t *eager; 5941 mblk_t *mp; 5942 tcp_stack_t *tcps = listener->tcp_tcps; 5943 5944 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5945 eager = listener; 5946 mutex_enter(&listener->tcp_eager_lock); 5947 do { 5948 eager = eager->tcp_eager_next_q; 5949 if (eager == NULL) { 5950 mutex_exit(&listener->tcp_eager_lock); 5951 return (B_FALSE); 5952 } 5953 } while (eager->tcp_conn_req_seqnum != seqnum); 5954 5955 if (eager->tcp_closemp_used) { 5956 mutex_exit(&listener->tcp_eager_lock); 5957 return (B_TRUE); 5958 } 5959 eager->tcp_closemp_used = B_TRUE; 5960 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5961 CONN_INC_REF(eager->tcp_connp); 5962 mutex_exit(&listener->tcp_eager_lock); 5963 mp = &eager->tcp_closemp; 5964 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5965 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5966 return (B_TRUE); 5967 } 5968 5969 /* 5970 * Reset any eager connection hanging off this listener 5971 * and then reclaim it's resources. 5972 */ 5973 static void 5974 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5975 { 5976 tcp_t *eager; 5977 mblk_t *mp; 5978 tcp_stack_t *tcps = listener->tcp_tcps; 5979 5980 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5981 5982 if (!q0_only) { 5983 /* First cleanup q */ 5984 TCP_STAT(tcps, tcp_eager_blowoff_q); 5985 eager = listener->tcp_eager_next_q; 5986 while (eager != NULL) { 5987 if (!eager->tcp_closemp_used) { 5988 eager->tcp_closemp_used = B_TRUE; 5989 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5990 CONN_INC_REF(eager->tcp_connp); 5991 mp = &eager->tcp_closemp; 5992 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5993 tcp_eager_kill, eager->tcp_connp, NULL, 5994 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5995 } 5996 eager = eager->tcp_eager_next_q; 5997 } 5998 } 5999 /* Then cleanup q0 */ 6000 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6001 eager = listener->tcp_eager_next_q0; 6002 while (eager != listener) { 6003 if (!eager->tcp_closemp_used) { 6004 eager->tcp_closemp_used = B_TRUE; 6005 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6006 CONN_INC_REF(eager->tcp_connp); 6007 mp = &eager->tcp_closemp; 6008 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6009 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 6010 SQTAG_TCP_EAGER_CLEANUP_Q0); 6011 } 6012 eager = eager->tcp_eager_next_q0; 6013 } 6014 } 6015 6016 /* 6017 * If we are an eager connection hanging off a listener that hasn't 6018 * formally accepted the connection yet, get off his list and blow off 6019 * any data that we have accumulated. 6020 */ 6021 static void 6022 tcp_eager_unlink(tcp_t *tcp) 6023 { 6024 tcp_t *listener = tcp->tcp_listener; 6025 6026 ASSERT(listener != NULL); 6027 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6028 if (tcp->tcp_eager_next_q0 != NULL) { 6029 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6030 6031 /* Remove the eager tcp from q0 */ 6032 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6033 tcp->tcp_eager_prev_q0; 6034 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6035 tcp->tcp_eager_next_q0; 6036 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6037 listener->tcp_conn_req_cnt_q0--; 6038 6039 tcp->tcp_eager_next_q0 = NULL; 6040 tcp->tcp_eager_prev_q0 = NULL; 6041 6042 /* 6043 * Take the eager out, if it is in the list of droppable 6044 * eagers. 6045 */ 6046 MAKE_UNDROPPABLE(tcp); 6047 6048 if (tcp->tcp_syn_rcvd_timeout != 0) { 6049 /* we have timed out before */ 6050 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6051 listener->tcp_syn_rcvd_timeout--; 6052 } 6053 } else { 6054 tcp_t **tcpp = &listener->tcp_eager_next_q; 6055 tcp_t *prev = NULL; 6056 6057 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6058 if (tcpp[0] == tcp) { 6059 if (listener->tcp_eager_last_q == tcp) { 6060 /* 6061 * If we are unlinking the last 6062 * element on the list, adjust 6063 * tail pointer. Set tail pointer 6064 * to nil when list is empty. 6065 */ 6066 ASSERT(tcp->tcp_eager_next_q == NULL); 6067 if (listener->tcp_eager_last_q == 6068 listener->tcp_eager_next_q) { 6069 listener->tcp_eager_last_q = 6070 NULL; 6071 } else { 6072 /* 6073 * We won't get here if there 6074 * is only one eager in the 6075 * list. 6076 */ 6077 ASSERT(prev != NULL); 6078 listener->tcp_eager_last_q = 6079 prev; 6080 } 6081 } 6082 tcpp[0] = tcp->tcp_eager_next_q; 6083 tcp->tcp_eager_next_q = NULL; 6084 tcp->tcp_eager_last_q = NULL; 6085 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6086 listener->tcp_conn_req_cnt_q--; 6087 break; 6088 } 6089 prev = tcpp[0]; 6090 } 6091 } 6092 tcp->tcp_listener = NULL; 6093 } 6094 6095 /* Shorthand to generate and send TPI error acks to our client */ 6096 static void 6097 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6098 { 6099 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6100 putnext(tcp->tcp_connp->conn_rq, mp); 6101 } 6102 6103 /* Shorthand to generate and send TPI error acks to our client */ 6104 static void 6105 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6106 int t_error, int sys_error) 6107 { 6108 struct T_error_ack *teackp; 6109 6110 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6111 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6112 teackp = (struct T_error_ack *)mp->b_rptr; 6113 teackp->ERROR_prim = primitive; 6114 teackp->TLI_error = t_error; 6115 teackp->UNIX_error = sys_error; 6116 putnext(tcp->tcp_connp->conn_rq, mp); 6117 } 6118 } 6119 6120 /* 6121 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6122 * but instead the code relies on: 6123 * - the fact that the address of the array and its size never changes 6124 * - the atomic assignment of the elements of the array 6125 */ 6126 /* ARGSUSED */ 6127 static int 6128 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6129 { 6130 int i; 6131 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6132 6133 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6134 if (tcps->tcps_g_epriv_ports[i] != 0) 6135 (void) mi_mpprintf(mp, "%d ", 6136 tcps->tcps_g_epriv_ports[i]); 6137 } 6138 return (0); 6139 } 6140 6141 /* 6142 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6143 * threads from changing it at the same time. 6144 */ 6145 /* ARGSUSED */ 6146 static int 6147 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6148 cred_t *cr) 6149 { 6150 long new_value; 6151 int i; 6152 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6153 6154 /* 6155 * Fail the request if the new value does not lie within the 6156 * port number limits. 6157 */ 6158 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6159 new_value <= 0 || new_value >= 65536) { 6160 return (EINVAL); 6161 } 6162 6163 mutex_enter(&tcps->tcps_epriv_port_lock); 6164 /* Check if the value is already in the list */ 6165 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6166 if (new_value == tcps->tcps_g_epriv_ports[i]) { 6167 mutex_exit(&tcps->tcps_epriv_port_lock); 6168 return (EEXIST); 6169 } 6170 } 6171 /* Find an empty slot */ 6172 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6173 if (tcps->tcps_g_epriv_ports[i] == 0) 6174 break; 6175 } 6176 if (i == tcps->tcps_g_num_epriv_ports) { 6177 mutex_exit(&tcps->tcps_epriv_port_lock); 6178 return (EOVERFLOW); 6179 } 6180 /* Set the new value */ 6181 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 6182 mutex_exit(&tcps->tcps_epriv_port_lock); 6183 return (0); 6184 } 6185 6186 /* 6187 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6188 * threads from changing it at the same time. 6189 */ 6190 /* ARGSUSED */ 6191 static int 6192 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6193 cred_t *cr) 6194 { 6195 long new_value; 6196 int i; 6197 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6198 6199 /* 6200 * Fail the request if the new value does not lie within the 6201 * port number limits. 6202 */ 6203 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6204 new_value >= 65536) { 6205 return (EINVAL); 6206 } 6207 6208 mutex_enter(&tcps->tcps_epriv_port_lock); 6209 /* Check that the value is already in the list */ 6210 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6211 if (tcps->tcps_g_epriv_ports[i] == new_value) 6212 break; 6213 } 6214 if (i == tcps->tcps_g_num_epriv_ports) { 6215 mutex_exit(&tcps->tcps_epriv_port_lock); 6216 return (ESRCH); 6217 } 6218 /* Clear the value */ 6219 tcps->tcps_g_epriv_ports[i] = 0; 6220 mutex_exit(&tcps->tcps_epriv_port_lock); 6221 return (0); 6222 } 6223 6224 /* Return the TPI/TLI equivalent of our current tcp_state */ 6225 static int 6226 tcp_tpistate(tcp_t *tcp) 6227 { 6228 switch (tcp->tcp_state) { 6229 case TCPS_IDLE: 6230 return (TS_UNBND); 6231 case TCPS_LISTEN: 6232 /* 6233 * Return whether there are outstanding T_CONN_IND waiting 6234 * for the matching T_CONN_RES. Therefore don't count q0. 6235 */ 6236 if (tcp->tcp_conn_req_cnt_q > 0) 6237 return (TS_WRES_CIND); 6238 else 6239 return (TS_IDLE); 6240 case TCPS_BOUND: 6241 return (TS_IDLE); 6242 case TCPS_SYN_SENT: 6243 return (TS_WCON_CREQ); 6244 case TCPS_SYN_RCVD: 6245 /* 6246 * Note: assumption: this has to the active open SYN_RCVD. 6247 * The passive instance is detached in SYN_RCVD stage of 6248 * incoming connection processing so we cannot get request 6249 * for T_info_ack on it. 6250 */ 6251 return (TS_WACK_CRES); 6252 case TCPS_ESTABLISHED: 6253 return (TS_DATA_XFER); 6254 case TCPS_CLOSE_WAIT: 6255 return (TS_WREQ_ORDREL); 6256 case TCPS_FIN_WAIT_1: 6257 return (TS_WIND_ORDREL); 6258 case TCPS_FIN_WAIT_2: 6259 return (TS_WIND_ORDREL); 6260 6261 case TCPS_CLOSING: 6262 case TCPS_LAST_ACK: 6263 case TCPS_TIME_WAIT: 6264 case TCPS_CLOSED: 6265 /* 6266 * Following TS_WACK_DREQ7 is a rendition of "not 6267 * yet TS_IDLE" TPI state. There is no best match to any 6268 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6269 * choose a value chosen that will map to TLI/XTI level 6270 * state of TSTATECHNG (state is process of changing) which 6271 * captures what this dummy state represents. 6272 */ 6273 return (TS_WACK_DREQ7); 6274 default: 6275 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6276 tcp->tcp_state, tcp_display(tcp, NULL, 6277 DISP_PORT_ONLY)); 6278 return (TS_UNBND); 6279 } 6280 } 6281 6282 static void 6283 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6284 { 6285 tcp_stack_t *tcps = tcp->tcp_tcps; 6286 conn_t *connp = tcp->tcp_connp; 6287 6288 if (connp->conn_family == AF_INET6) 6289 *tia = tcp_g_t_info_ack_v6; 6290 else 6291 *tia = tcp_g_t_info_ack; 6292 tia->CURRENT_state = tcp_tpistate(tcp); 6293 tia->OPT_size = tcp_max_optsize; 6294 if (tcp->tcp_mss == 0) { 6295 /* Not yet set - tcp_open does not set mss */ 6296 if (connp->conn_ipversion == IPV4_VERSION) 6297 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6298 else 6299 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6300 } else { 6301 tia->TIDU_size = tcp->tcp_mss; 6302 } 6303 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6304 } 6305 6306 static void 6307 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6308 t_uscalar_t cap_bits1) 6309 { 6310 tcap->CAP_bits1 = 0; 6311 6312 if (cap_bits1 & TC1_INFO) { 6313 tcp_copy_info(&tcap->INFO_ack, tcp); 6314 tcap->CAP_bits1 |= TC1_INFO; 6315 } 6316 6317 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6318 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6319 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6320 } 6321 6322 } 6323 6324 /* 6325 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6326 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6327 * tcp_g_t_info_ack. The current state of the stream is copied from 6328 * tcp_state. 6329 */ 6330 static void 6331 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6332 { 6333 t_uscalar_t cap_bits1; 6334 struct T_capability_ack *tcap; 6335 6336 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6337 freemsg(mp); 6338 return; 6339 } 6340 6341 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6342 6343 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6344 mp->b_datap->db_type, T_CAPABILITY_ACK); 6345 if (mp == NULL) 6346 return; 6347 6348 tcap = (struct T_capability_ack *)mp->b_rptr; 6349 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6350 6351 putnext(tcp->tcp_connp->conn_rq, mp); 6352 } 6353 6354 /* 6355 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6356 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6357 * The current state of the stream is copied from tcp_state. 6358 */ 6359 static void 6360 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6361 { 6362 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6363 T_INFO_ACK); 6364 if (!mp) { 6365 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6366 return; 6367 } 6368 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6369 putnext(tcp->tcp_connp->conn_rq, mp); 6370 } 6371 6372 /* Respond to the TPI addr request */ 6373 static void 6374 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6375 { 6376 struct sockaddr *sa; 6377 mblk_t *ackmp; 6378 struct T_addr_ack *taa; 6379 conn_t *connp = tcp->tcp_connp; 6380 uint_t addrlen; 6381 6382 /* Make it large enough for worst case */ 6383 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6384 2 * sizeof (sin6_t), 1); 6385 if (ackmp == NULL) { 6386 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6387 return; 6388 } 6389 6390 taa = (struct T_addr_ack *)ackmp->b_rptr; 6391 6392 bzero(taa, sizeof (struct T_addr_ack)); 6393 ackmp->b_wptr = (uchar_t *)&taa[1]; 6394 6395 taa->PRIM_type = T_ADDR_ACK; 6396 ackmp->b_datap->db_type = M_PCPROTO; 6397 6398 if (connp->conn_family == AF_INET) 6399 addrlen = sizeof (sin_t); 6400 else 6401 addrlen = sizeof (sin6_t); 6402 6403 /* 6404 * Note: Following code assumes 32 bit alignment of basic 6405 * data structures like sin_t and struct T_addr_ack. 6406 */ 6407 if (tcp->tcp_state >= TCPS_BOUND) { 6408 /* 6409 * Fill in local address first 6410 */ 6411 taa->LOCADDR_offset = sizeof (*taa); 6412 taa->LOCADDR_length = addrlen; 6413 sa = (struct sockaddr *)&taa[1]; 6414 (void) conn_getsockname(connp, sa, &addrlen); 6415 ackmp->b_wptr += addrlen; 6416 } 6417 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6418 /* 6419 * Fill in Remote address 6420 */ 6421 taa->REMADDR_length = addrlen; 6422 /* assumed 32-bit alignment */ 6423 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6424 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6425 (void) conn_getpeername(connp, sa, &addrlen); 6426 ackmp->b_wptr += addrlen; 6427 } 6428 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6429 putnext(tcp->tcp_connp->conn_rq, ackmp); 6430 } 6431 6432 /* 6433 * Handle reinitialization of a tcp structure. 6434 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6435 */ 6436 static void 6437 tcp_reinit(tcp_t *tcp) 6438 { 6439 mblk_t *mp; 6440 tcp_stack_t *tcps = tcp->tcp_tcps; 6441 conn_t *connp = tcp->tcp_connp; 6442 6443 TCP_STAT(tcps, tcp_reinit_calls); 6444 6445 /* tcp_reinit should never be called for detached tcp_t's */ 6446 ASSERT(tcp->tcp_listener == NULL); 6447 ASSERT((connp->conn_family == AF_INET && 6448 connp->conn_ipversion == IPV4_VERSION) || 6449 (connp->conn_family == AF_INET6 && 6450 (connp->conn_ipversion == IPV4_VERSION || 6451 connp->conn_ipversion == IPV6_VERSION))); 6452 6453 /* Cancel outstanding timers */ 6454 tcp_timers_stop(tcp); 6455 6456 /* 6457 * Reset everything in the state vector, after updating global 6458 * MIB data from instance counters. 6459 */ 6460 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6461 tcp->tcp_ibsegs = 0; 6462 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6463 tcp->tcp_obsegs = 0; 6464 6465 tcp_close_mpp(&tcp->tcp_xmit_head); 6466 if (tcp->tcp_snd_zcopy_aware) 6467 tcp_zcopy_notify(tcp); 6468 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6469 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6470 mutex_enter(&tcp->tcp_non_sq_lock); 6471 if (tcp->tcp_flow_stopped && 6472 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6473 tcp_clrqfull(tcp); 6474 } 6475 mutex_exit(&tcp->tcp_non_sq_lock); 6476 tcp_close_mpp(&tcp->tcp_reass_head); 6477 tcp->tcp_reass_tail = NULL; 6478 if (tcp->tcp_rcv_list != NULL) { 6479 /* Free b_next chain */ 6480 tcp_close_mpp(&tcp->tcp_rcv_list); 6481 tcp->tcp_rcv_last_head = NULL; 6482 tcp->tcp_rcv_last_tail = NULL; 6483 tcp->tcp_rcv_cnt = 0; 6484 } 6485 tcp->tcp_rcv_last_tail = NULL; 6486 6487 if ((mp = tcp->tcp_urp_mp) != NULL) { 6488 freemsg(mp); 6489 tcp->tcp_urp_mp = NULL; 6490 } 6491 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6492 freemsg(mp); 6493 tcp->tcp_urp_mark_mp = NULL; 6494 } 6495 if (tcp->tcp_fused_sigurg_mp != NULL) { 6496 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6497 freeb(tcp->tcp_fused_sigurg_mp); 6498 tcp->tcp_fused_sigurg_mp = NULL; 6499 } 6500 if (tcp->tcp_ordrel_mp != NULL) { 6501 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6502 freeb(tcp->tcp_ordrel_mp); 6503 tcp->tcp_ordrel_mp = NULL; 6504 } 6505 6506 /* 6507 * Following is a union with two members which are 6508 * identical types and size so the following cleanup 6509 * is enough. 6510 */ 6511 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6512 6513 CL_INET_DISCONNECT(connp); 6514 6515 /* 6516 * The connection can't be on the tcp_time_wait_head list 6517 * since it is not detached. 6518 */ 6519 ASSERT(tcp->tcp_time_wait_next == NULL); 6520 ASSERT(tcp->tcp_time_wait_prev == NULL); 6521 ASSERT(tcp->tcp_time_wait_expire == 0); 6522 6523 if (tcp->tcp_kssl_pending) { 6524 tcp->tcp_kssl_pending = B_FALSE; 6525 6526 /* Don't reset if the initialized by bind. */ 6527 if (tcp->tcp_kssl_ent != NULL) { 6528 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6529 KSSL_NO_PROXY); 6530 } 6531 } 6532 if (tcp->tcp_kssl_ctx != NULL) { 6533 kssl_release_ctx(tcp->tcp_kssl_ctx); 6534 tcp->tcp_kssl_ctx = NULL; 6535 } 6536 6537 /* 6538 * Reset/preserve other values 6539 */ 6540 tcp_reinit_values(tcp); 6541 ipcl_hash_remove(connp); 6542 ixa_cleanup(connp->conn_ixa); 6543 tcp_ipsec_cleanup(tcp); 6544 6545 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6546 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6547 6548 if (tcp->tcp_conn_req_max != 0) { 6549 /* 6550 * This is the case when a TLI program uses the same 6551 * transport end point to accept a connection. This 6552 * makes the TCP both a listener and acceptor. When 6553 * this connection is closed, we need to set the state 6554 * back to TCPS_LISTEN. Make sure that the eager list 6555 * is reinitialized. 6556 * 6557 * Note that this stream is still bound to the four 6558 * tuples of the previous connection in IP. If a new 6559 * SYN with different foreign address comes in, IP will 6560 * not find it and will send it to the global queue. In 6561 * the global queue, TCP will do a tcp_lookup_listener() 6562 * to find this stream. This works because this stream 6563 * is only removed from connected hash. 6564 * 6565 */ 6566 tcp->tcp_state = TCPS_LISTEN; 6567 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6568 tcp->tcp_eager_next_drop_q0 = tcp; 6569 tcp->tcp_eager_prev_drop_q0 = tcp; 6570 /* 6571 * Initially set conn_recv to tcp_input_listener_unbound to try 6572 * to pick a good squeue for the listener when the first SYN 6573 * arrives. tcp_input_listener_unbound sets it to 6574 * tcp_input_listener on that first SYN. 6575 */ 6576 connp->conn_recv = tcp_input_listener_unbound; 6577 6578 connp->conn_proto = IPPROTO_TCP; 6579 connp->conn_faddr_v6 = ipv6_all_zeros; 6580 connp->conn_fport = 0; 6581 6582 (void) ipcl_bind_insert(connp); 6583 } else { 6584 tcp->tcp_state = TCPS_BOUND; 6585 } 6586 6587 /* 6588 * Initialize to default values 6589 */ 6590 tcp_init_values(tcp); 6591 6592 ASSERT(tcp->tcp_ptpbhn != NULL); 6593 tcp->tcp_rwnd = connp->conn_rcvbuf; 6594 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6595 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6596 } 6597 6598 /* 6599 * Force values to zero that need be zero. 6600 * Do not touch values asociated with the BOUND or LISTEN state 6601 * since the connection will end up in that state after the reinit. 6602 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6603 * structure! 6604 */ 6605 static void 6606 tcp_reinit_values(tcp) 6607 tcp_t *tcp; 6608 { 6609 tcp_stack_t *tcps = tcp->tcp_tcps; 6610 conn_t *connp = tcp->tcp_connp; 6611 6612 #ifndef lint 6613 #define DONTCARE(x) 6614 #define PRESERVE(x) 6615 #else 6616 #define DONTCARE(x) ((x) = (x)) 6617 #define PRESERVE(x) ((x) = (x)) 6618 #endif /* lint */ 6619 6620 PRESERVE(tcp->tcp_bind_hash_port); 6621 PRESERVE(tcp->tcp_bind_hash); 6622 PRESERVE(tcp->tcp_ptpbhn); 6623 PRESERVE(tcp->tcp_acceptor_hash); 6624 PRESERVE(tcp->tcp_ptpahn); 6625 6626 /* Should be ASSERT NULL on these with new code! */ 6627 ASSERT(tcp->tcp_time_wait_next == NULL); 6628 ASSERT(tcp->tcp_time_wait_prev == NULL); 6629 ASSERT(tcp->tcp_time_wait_expire == 0); 6630 PRESERVE(tcp->tcp_state); 6631 PRESERVE(connp->conn_rq); 6632 PRESERVE(connp->conn_wq); 6633 6634 ASSERT(tcp->tcp_xmit_head == NULL); 6635 ASSERT(tcp->tcp_xmit_last == NULL); 6636 ASSERT(tcp->tcp_unsent == 0); 6637 ASSERT(tcp->tcp_xmit_tail == NULL); 6638 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6639 6640 tcp->tcp_snxt = 0; /* Displayed in mib */ 6641 tcp->tcp_suna = 0; /* Displayed in mib */ 6642 tcp->tcp_swnd = 0; 6643 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6644 6645 ASSERT(tcp->tcp_ibsegs == 0); 6646 ASSERT(tcp->tcp_obsegs == 0); 6647 6648 if (connp->conn_ht_iphc != NULL) { 6649 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6650 connp->conn_ht_iphc = NULL; 6651 connp->conn_ht_iphc_allocated = 0; 6652 connp->conn_ht_iphc_len = 0; 6653 connp->conn_ht_ulp = NULL; 6654 connp->conn_ht_ulp_len = 0; 6655 tcp->tcp_ipha = NULL; 6656 tcp->tcp_ip6h = NULL; 6657 tcp->tcp_tcpha = NULL; 6658 } 6659 6660 /* We clear any IP_OPTIONS and extension headers */ 6661 ip_pkt_free(&connp->conn_xmit_ipp); 6662 6663 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6664 DONTCARE(tcp->tcp_ipha); 6665 DONTCARE(tcp->tcp_ip6h); 6666 DONTCARE(tcp->tcp_tcpha); 6667 tcp->tcp_valid_bits = 0; 6668 6669 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6670 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6671 tcp->tcp_last_rcv_lbolt = 0; 6672 6673 tcp->tcp_init_cwnd = 0; 6674 6675 tcp->tcp_urp_last_valid = 0; 6676 tcp->tcp_hard_binding = 0; 6677 6678 tcp->tcp_fin_acked = 0; 6679 tcp->tcp_fin_rcvd = 0; 6680 tcp->tcp_fin_sent = 0; 6681 tcp->tcp_ordrel_done = 0; 6682 6683 tcp->tcp_detached = 0; 6684 6685 tcp->tcp_snd_ws_ok = B_FALSE; 6686 tcp->tcp_snd_ts_ok = B_FALSE; 6687 tcp->tcp_zero_win_probe = 0; 6688 6689 tcp->tcp_loopback = 0; 6690 tcp->tcp_localnet = 0; 6691 tcp->tcp_syn_defense = 0; 6692 tcp->tcp_set_timer = 0; 6693 6694 tcp->tcp_active_open = 0; 6695 tcp->tcp_rexmit = B_FALSE; 6696 tcp->tcp_xmit_zc_clean = B_FALSE; 6697 6698 tcp->tcp_snd_sack_ok = B_FALSE; 6699 tcp->tcp_hwcksum = B_FALSE; 6700 6701 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6702 6703 tcp->tcp_conn_def_q0 = 0; 6704 tcp->tcp_ip_forward_progress = B_FALSE; 6705 tcp->tcp_ecn_ok = B_FALSE; 6706 6707 tcp->tcp_cwr = B_FALSE; 6708 tcp->tcp_ecn_echo_on = B_FALSE; 6709 tcp->tcp_is_wnd_shrnk = B_FALSE; 6710 6711 if (tcp->tcp_sack_info != NULL) { 6712 if (tcp->tcp_notsack_list != NULL) { 6713 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6714 tcp); 6715 } 6716 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6717 tcp->tcp_sack_info = NULL; 6718 } 6719 6720 tcp->tcp_rcv_ws = 0; 6721 tcp->tcp_snd_ws = 0; 6722 tcp->tcp_ts_recent = 0; 6723 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6724 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6725 tcp->tcp_initial_pmtu = 0; 6726 6727 ASSERT(tcp->tcp_reass_head == NULL); 6728 ASSERT(tcp->tcp_reass_tail == NULL); 6729 6730 tcp->tcp_cwnd_cnt = 0; 6731 6732 ASSERT(tcp->tcp_rcv_list == NULL); 6733 ASSERT(tcp->tcp_rcv_last_head == NULL); 6734 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6735 ASSERT(tcp->tcp_rcv_cnt == 0); 6736 6737 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6738 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6739 tcp->tcp_csuna = 0; 6740 6741 tcp->tcp_rto = 0; /* Displayed in MIB */ 6742 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6743 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6744 tcp->tcp_rtt_update = 0; 6745 6746 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6747 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6748 6749 tcp->tcp_rack = 0; /* Displayed in mib */ 6750 tcp->tcp_rack_cnt = 0; 6751 tcp->tcp_rack_cur_max = 0; 6752 tcp->tcp_rack_abs_max = 0; 6753 6754 tcp->tcp_max_swnd = 0; 6755 6756 ASSERT(tcp->tcp_listener == NULL); 6757 6758 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6759 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6760 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6761 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6762 6763 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6764 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6765 PRESERVE(tcp->tcp_conn_req_max); 6766 PRESERVE(tcp->tcp_conn_req_seqnum); 6767 6768 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6769 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6770 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6771 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6772 6773 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6774 ASSERT(tcp->tcp_urp_mp == NULL); 6775 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6776 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6777 6778 ASSERT(tcp->tcp_eager_next_q == NULL); 6779 ASSERT(tcp->tcp_eager_last_q == NULL); 6780 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6781 tcp->tcp_eager_prev_q0 == NULL) || 6782 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6783 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6784 6785 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6786 tcp->tcp_eager_prev_drop_q0 == NULL) || 6787 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6788 6789 tcp->tcp_client_errno = 0; 6790 6791 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6792 6793 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6794 6795 PRESERVE(connp->conn_bound_addr_v6); 6796 tcp->tcp_last_sent_len = 0; 6797 tcp->tcp_dupack_cnt = 0; 6798 6799 connp->conn_fport = 0; /* Displayed in MIB */ 6800 PRESERVE(connp->conn_lport); 6801 6802 PRESERVE(tcp->tcp_acceptor_lockp); 6803 6804 ASSERT(tcp->tcp_ordrel_mp == NULL); 6805 PRESERVE(tcp->tcp_acceptor_id); 6806 DONTCARE(tcp->tcp_ipsec_overhead); 6807 6808 PRESERVE(connp->conn_family); 6809 /* Remove any remnants of mapped address binding */ 6810 if (connp->conn_family == AF_INET6) { 6811 connp->conn_ipversion = IPV6_VERSION; 6812 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6813 } else { 6814 connp->conn_ipversion = IPV4_VERSION; 6815 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6816 } 6817 6818 connp->conn_bound_if = 0; 6819 connp->conn_recv_ancillary.crb_all = 0; 6820 tcp->tcp_recvifindex = 0; 6821 tcp->tcp_recvhops = 0; 6822 tcp->tcp_closed = 0; 6823 tcp->tcp_cleandeathtag = 0; 6824 if (tcp->tcp_hopopts != NULL) { 6825 mi_free(tcp->tcp_hopopts); 6826 tcp->tcp_hopopts = NULL; 6827 tcp->tcp_hopoptslen = 0; 6828 } 6829 ASSERT(tcp->tcp_hopoptslen == 0); 6830 if (tcp->tcp_dstopts != NULL) { 6831 mi_free(tcp->tcp_dstopts); 6832 tcp->tcp_dstopts = NULL; 6833 tcp->tcp_dstoptslen = 0; 6834 } 6835 ASSERT(tcp->tcp_dstoptslen == 0); 6836 if (tcp->tcp_rthdrdstopts != NULL) { 6837 mi_free(tcp->tcp_rthdrdstopts); 6838 tcp->tcp_rthdrdstopts = NULL; 6839 tcp->tcp_rthdrdstoptslen = 0; 6840 } 6841 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6842 if (tcp->tcp_rthdr != NULL) { 6843 mi_free(tcp->tcp_rthdr); 6844 tcp->tcp_rthdr = NULL; 6845 tcp->tcp_rthdrlen = 0; 6846 } 6847 ASSERT(tcp->tcp_rthdrlen == 0); 6848 6849 /* Reset fusion-related fields */ 6850 tcp->tcp_fused = B_FALSE; 6851 tcp->tcp_unfusable = B_FALSE; 6852 tcp->tcp_fused_sigurg = B_FALSE; 6853 tcp->tcp_loopback_peer = NULL; 6854 6855 tcp->tcp_lso = B_FALSE; 6856 6857 tcp->tcp_in_ack_unsent = 0; 6858 tcp->tcp_cork = B_FALSE; 6859 tcp->tcp_tconnind_started = B_FALSE; 6860 6861 PRESERVE(tcp->tcp_squeue_bytes); 6862 6863 ASSERT(tcp->tcp_kssl_ctx == NULL); 6864 ASSERT(!tcp->tcp_kssl_pending); 6865 PRESERVE(tcp->tcp_kssl_ent); 6866 6867 tcp->tcp_closemp_used = B_FALSE; 6868 6869 PRESERVE(tcp->tcp_rsrv_mp); 6870 PRESERVE(tcp->tcp_rsrv_mp_lock); 6871 6872 #ifdef DEBUG 6873 DONTCARE(tcp->tcmp_stk[0]); 6874 #endif 6875 6876 PRESERVE(tcp->tcp_connid); 6877 6878 ASSERT(tcp->tcp_listen_cnt == NULL); 6879 ASSERT(tcp->tcp_reass_tid == 0); 6880 6881 #undef DONTCARE 6882 #undef PRESERVE 6883 } 6884 6885 static void 6886 tcp_init_values(tcp_t *tcp) 6887 { 6888 tcp_stack_t *tcps = tcp->tcp_tcps; 6889 conn_t *connp = tcp->tcp_connp; 6890 6891 ASSERT((connp->conn_family == AF_INET && 6892 connp->conn_ipversion == IPV4_VERSION) || 6893 (connp->conn_family == AF_INET6 && 6894 (connp->conn_ipversion == IPV4_VERSION || 6895 connp->conn_ipversion == IPV6_VERSION))); 6896 6897 /* 6898 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6899 * will be close to tcp_rexmit_interval_initial. By doing this, we 6900 * allow the algorithm to adjust slowly to large fluctuations of RTT 6901 * during first few transmissions of a connection as seen in slow 6902 * links. 6903 */ 6904 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6905 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6906 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6907 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6908 tcps->tcps_conn_grace_period; 6909 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6910 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6911 tcp->tcp_timer_backoff = 0; 6912 tcp->tcp_ms_we_have_waited = 0; 6913 tcp->tcp_last_recv_time = ddi_get_lbolt(); 6914 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6915 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6916 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6917 6918 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6919 6920 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6921 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6922 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6923 /* 6924 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6925 * passive open. 6926 */ 6927 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6928 6929 tcp->tcp_naglim = tcps->tcps_naglim_def; 6930 6931 /* NOTE: ISS is now set in tcp_set_destination(). */ 6932 6933 /* Reset fusion-related fields */ 6934 tcp->tcp_fused = B_FALSE; 6935 tcp->tcp_unfusable = B_FALSE; 6936 tcp->tcp_fused_sigurg = B_FALSE; 6937 tcp->tcp_loopback_peer = NULL; 6938 6939 /* We rebuild the header template on the next connect/conn_request */ 6940 6941 connp->conn_mlp_type = mlptSingle; 6942 6943 /* 6944 * Init the window scale to the max so tcp_rwnd_set() won't pare 6945 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6946 */ 6947 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6948 tcp->tcp_rwnd = connp->conn_rcvbuf; 6949 6950 tcp->tcp_cork = B_FALSE; 6951 /* 6952 * Init the tcp_debug option if it wasn't already set. This value 6953 * determines whether TCP 6954 * calls strlog() to print out debug messages. Doing this 6955 * initialization here means that this value is not inherited thru 6956 * tcp_reinit(). 6957 */ 6958 if (!connp->conn_debug) 6959 connp->conn_debug = tcps->tcps_dbg; 6960 6961 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6962 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6963 } 6964 6965 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6966 #define ICMP_MIN_TCP_HDR 8 6967 6968 /* 6969 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6970 * passed up by IP. The message is always received on the correct tcp_t. 6971 * Assumes that IP has pulled up everything up to and including the ICMP header. 6972 */ 6973 /* ARGSUSED2 */ 6974 static void 6975 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6976 { 6977 conn_t *connp = (conn_t *)arg1; 6978 icmph_t *icmph; 6979 ipha_t *ipha; 6980 int iph_hdr_length; 6981 tcpha_t *tcpha; 6982 uint32_t seg_seq; 6983 tcp_t *tcp = connp->conn_tcp; 6984 6985 /* Assume IP provides aligned packets */ 6986 ASSERT(OK_32PTR(mp->b_rptr)); 6987 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6988 6989 /* 6990 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6991 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6992 */ 6993 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6994 tcp_icmp_error_ipv6(tcp, mp, ira); 6995 return; 6996 } 6997 6998 /* Skip past the outer IP and ICMP headers */ 6999 iph_hdr_length = ira->ira_ip_hdr_length; 7000 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7001 /* 7002 * If we don't have the correct outer IP header length 7003 * or if we don't have a complete inner IP header 7004 * drop it. 7005 */ 7006 if (iph_hdr_length < sizeof (ipha_t) || 7007 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7008 noticmpv4: 7009 freemsg(mp); 7010 return; 7011 } 7012 ipha = (ipha_t *)&icmph[1]; 7013 7014 /* Skip past the inner IP and find the ULP header */ 7015 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7016 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 7017 /* 7018 * If we don't have the correct inner IP header length or if the ULP 7019 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7020 * bytes of TCP header, drop it. 7021 */ 7022 if (iph_hdr_length < sizeof (ipha_t) || 7023 ipha->ipha_protocol != IPPROTO_TCP || 7024 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7025 goto noticmpv4; 7026 } 7027 7028 seg_seq = ntohl(tcpha->tha_seq); 7029 switch (icmph->icmph_type) { 7030 case ICMP_DEST_UNREACHABLE: 7031 switch (icmph->icmph_code) { 7032 case ICMP_FRAGMENTATION_NEEDED: 7033 /* 7034 * Update Path MTU, then try to send something out. 7035 */ 7036 tcp_update_pmtu(tcp, B_TRUE); 7037 tcp_rexmit_after_error(tcp); 7038 break; 7039 case ICMP_PORT_UNREACHABLE: 7040 case ICMP_PROTOCOL_UNREACHABLE: 7041 switch (tcp->tcp_state) { 7042 case TCPS_SYN_SENT: 7043 case TCPS_SYN_RCVD: 7044 /* 7045 * ICMP can snipe away incipient 7046 * TCP connections as long as 7047 * seq number is same as initial 7048 * send seq number. 7049 */ 7050 if (seg_seq == tcp->tcp_iss) { 7051 (void) tcp_clean_death(tcp, 7052 ECONNREFUSED, 6); 7053 } 7054 break; 7055 } 7056 break; 7057 case ICMP_HOST_UNREACHABLE: 7058 case ICMP_NET_UNREACHABLE: 7059 /* Record the error in case we finally time out. */ 7060 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 7061 tcp->tcp_client_errno = EHOSTUNREACH; 7062 else 7063 tcp->tcp_client_errno = ENETUNREACH; 7064 if (tcp->tcp_state == TCPS_SYN_RCVD) { 7065 if (tcp->tcp_listener != NULL && 7066 tcp->tcp_listener->tcp_syn_defense) { 7067 /* 7068 * Ditch the half-open connection if we 7069 * suspect a SYN attack is under way. 7070 */ 7071 (void) tcp_clean_death(tcp, 7072 tcp->tcp_client_errno, 7); 7073 } 7074 } 7075 break; 7076 default: 7077 break; 7078 } 7079 break; 7080 case ICMP_SOURCE_QUENCH: { 7081 /* 7082 * use a global boolean to control 7083 * whether TCP should respond to ICMP_SOURCE_QUENCH. 7084 * The default is false. 7085 */ 7086 if (tcp_icmp_source_quench) { 7087 /* 7088 * Reduce the sending rate as if we got a 7089 * retransmit timeout 7090 */ 7091 uint32_t npkt; 7092 7093 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 7094 tcp->tcp_mss; 7095 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 7096 tcp->tcp_cwnd = tcp->tcp_mss; 7097 tcp->tcp_cwnd_cnt = 0; 7098 } 7099 break; 7100 } 7101 } 7102 freemsg(mp); 7103 } 7104 7105 /* 7106 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 7107 * change. But it can refer to fields like tcp_suna and tcp_snxt. 7108 * 7109 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 7110 * error messages received by IP. The message is always received on the correct 7111 * tcp_t. 7112 */ 7113 /* ARGSUSED */ 7114 static boolean_t 7115 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 7116 ip_recv_attr_t *ira) 7117 { 7118 tcpha_t *tcpha = (tcpha_t *)arg2; 7119 uint32_t seq = ntohl(tcpha->tha_seq); 7120 tcp_t *tcp = connp->conn_tcp; 7121 7122 /* 7123 * TCP sequence number contained in payload of the ICMP error message 7124 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 7125 * the message is either a stale ICMP error, or an attack from the 7126 * network. Fail the verification. 7127 */ 7128 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 7129 return (B_FALSE); 7130 7131 /* For "too big" we also check the ignore flag */ 7132 if (ira->ira_flags & IRAF_IS_IPV4) { 7133 ASSERT(icmph != NULL); 7134 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 7135 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 7136 tcp->tcp_tcps->tcps_ignore_path_mtu) 7137 return (B_FALSE); 7138 } else { 7139 ASSERT(icmp6 != NULL); 7140 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 7141 tcp->tcp_tcps->tcps_ignore_path_mtu) 7142 return (B_FALSE); 7143 } 7144 return (B_TRUE); 7145 } 7146 7147 /* 7148 * Update the TCP connection according to change of PMTU. 7149 * 7150 * Path MTU might have changed by either increase or decrease, so need to 7151 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 7152 * or negative MSS, since tcp_mss_set() will do it. 7153 */ 7154 static void 7155 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 7156 { 7157 uint32_t pmtu; 7158 int32_t mss; 7159 conn_t *connp = tcp->tcp_connp; 7160 ip_xmit_attr_t *ixa = connp->conn_ixa; 7161 iaflags_t ixaflags; 7162 7163 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 7164 return; 7165 7166 if (tcp->tcp_state < TCPS_ESTABLISHED) 7167 return; 7168 7169 /* 7170 * Always call ip_get_pmtu() to make sure that IP has updated 7171 * ixa_flags properly. 7172 */ 7173 pmtu = ip_get_pmtu(ixa); 7174 ixaflags = ixa->ixa_flags; 7175 7176 /* 7177 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 7178 * IPsec overhead if applied. Make sure to use the most recent 7179 * IPsec information. 7180 */ 7181 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 7182 7183 /* 7184 * Nothing to change, so just return. 7185 */ 7186 if (mss == tcp->tcp_mss) 7187 return; 7188 7189 /* 7190 * Currently, for ICMP errors, only PMTU decrease is handled. 7191 */ 7192 if (mss > tcp->tcp_mss && decrease_only) 7193 return; 7194 7195 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 7196 7197 /* 7198 * Update ixa_fragsize and ixa_pmtu. 7199 */ 7200 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 7201 7202 /* 7203 * Adjust MSS and all relevant variables. 7204 */ 7205 tcp_mss_set(tcp, mss); 7206 7207 /* 7208 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 7209 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 7210 * has a (potentially different) min size we do the same. Make sure to 7211 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 7212 * fragment the packet. 7213 * 7214 * LSO over IPv6 can not be fragmented. So need to disable LSO 7215 * when IPv6 fragmentation is needed. 7216 */ 7217 if (mss < tcp->tcp_tcps->tcps_mss_min) 7218 ixaflags |= IXAF_PMTU_TOO_SMALL; 7219 7220 if (ixaflags & IXAF_PMTU_TOO_SMALL) 7221 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 7222 7223 if ((connp->conn_ipversion == IPV4_VERSION) && 7224 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 7225 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7226 } 7227 ixa->ixa_flags = ixaflags; 7228 } 7229 7230 /* 7231 * Do slow start retransmission after ICMP errors of PMTU changes. 7232 */ 7233 static void 7234 tcp_rexmit_after_error(tcp_t *tcp) 7235 { 7236 /* 7237 * All sent data has been acknowledged or no data left to send, just 7238 * to return. 7239 */ 7240 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7241 (tcp->tcp_xmit_head == NULL)) 7242 return; 7243 7244 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7245 tcp->tcp_rexmit_max = tcp->tcp_fss; 7246 else 7247 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7248 7249 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7250 tcp->tcp_rexmit = B_TRUE; 7251 tcp->tcp_dupack_cnt = 0; 7252 tcp->tcp_snd_burst = TCP_CWND_SS; 7253 tcp_ss_rexmit(tcp); 7254 } 7255 7256 /* 7257 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7258 * error messages passed up by IP. 7259 * Assumes that IP has pulled up all the extension headers as well 7260 * as the ICMPv6 header. 7261 */ 7262 static void 7263 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7264 { 7265 icmp6_t *icmp6; 7266 ip6_t *ip6h; 7267 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7268 tcpha_t *tcpha; 7269 uint8_t *nexthdrp; 7270 uint32_t seg_seq; 7271 7272 /* 7273 * Verify that we have a complete IP header. 7274 */ 7275 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7276 7277 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7278 ip6h = (ip6_t *)&icmp6[1]; 7279 /* 7280 * Verify if we have a complete ICMP and inner IP header. 7281 */ 7282 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7283 noticmpv6: 7284 freemsg(mp); 7285 return; 7286 } 7287 7288 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7289 goto noticmpv6; 7290 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7291 /* 7292 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7293 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7294 * packet. 7295 */ 7296 if ((*nexthdrp != IPPROTO_TCP) || 7297 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7298 goto noticmpv6; 7299 } 7300 7301 seg_seq = ntohl(tcpha->tha_seq); 7302 switch (icmp6->icmp6_type) { 7303 case ICMP6_PACKET_TOO_BIG: 7304 /* 7305 * Update Path MTU, then try to send something out. 7306 */ 7307 tcp_update_pmtu(tcp, B_TRUE); 7308 tcp_rexmit_after_error(tcp); 7309 break; 7310 case ICMP6_DST_UNREACH: 7311 switch (icmp6->icmp6_code) { 7312 case ICMP6_DST_UNREACH_NOPORT: 7313 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7314 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7315 (seg_seq == tcp->tcp_iss)) { 7316 (void) tcp_clean_death(tcp, 7317 ECONNREFUSED, 8); 7318 } 7319 break; 7320 case ICMP6_DST_UNREACH_ADMIN: 7321 case ICMP6_DST_UNREACH_NOROUTE: 7322 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7323 case ICMP6_DST_UNREACH_ADDR: 7324 /* Record the error in case we finally time out. */ 7325 tcp->tcp_client_errno = EHOSTUNREACH; 7326 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7327 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7328 (seg_seq == tcp->tcp_iss)) { 7329 if (tcp->tcp_listener != NULL && 7330 tcp->tcp_listener->tcp_syn_defense) { 7331 /* 7332 * Ditch the half-open connection if we 7333 * suspect a SYN attack is under way. 7334 */ 7335 (void) tcp_clean_death(tcp, 7336 tcp->tcp_client_errno, 9); 7337 } 7338 } 7339 7340 7341 break; 7342 default: 7343 break; 7344 } 7345 break; 7346 case ICMP6_PARAM_PROB: 7347 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7348 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7349 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7350 (uchar_t *)nexthdrp) { 7351 if (tcp->tcp_state == TCPS_SYN_SENT || 7352 tcp->tcp_state == TCPS_SYN_RCVD) { 7353 (void) tcp_clean_death(tcp, 7354 ECONNREFUSED, 10); 7355 } 7356 break; 7357 } 7358 break; 7359 7360 case ICMP6_TIME_EXCEEDED: 7361 default: 7362 break; 7363 } 7364 freemsg(mp); 7365 } 7366 7367 /* 7368 * Notify IP that we are having trouble with this connection. IP should 7369 * make note so it can potentially use a different IRE. 7370 */ 7371 static void 7372 tcp_ip_notify(tcp_t *tcp) 7373 { 7374 conn_t *connp = tcp->tcp_connp; 7375 ire_t *ire; 7376 7377 /* 7378 * Note: in the case of source routing we want to blow away the 7379 * route to the first source route hop. 7380 */ 7381 ire = connp->conn_ixa->ixa_ire; 7382 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7383 if (ire->ire_ipversion == IPV4_VERSION) { 7384 /* 7385 * As per RFC 1122, we send an RTM_LOSING to inform 7386 * routing protocols. 7387 */ 7388 ip_rts_change(RTM_LOSING, ire->ire_addr, 7389 ire->ire_gateway_addr, ire->ire_mask, 7390 connp->conn_laddr_v4, 0, 0, 0, 7391 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7392 ire->ire_ipst); 7393 } 7394 (void) ire_no_good(ire); 7395 } 7396 } 7397 7398 #pragma inline(tcp_send_data) 7399 7400 /* 7401 * Timer callback routine for keepalive probe. We do a fake resend of 7402 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7403 * check to see if we have heard anything from the other end for the last 7404 * RTO period. If we have, set the timer to expire for another 7405 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7406 * RTO << 1 and check again when it expires. Keep exponentially increasing 7407 * the timeout if we have not heard from the other side. If for more than 7408 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7409 * kill the connection unless the keepalive abort threshold is 0. In 7410 * that case, we will probe "forever." 7411 */ 7412 static void 7413 tcp_keepalive_killer(void *arg) 7414 { 7415 mblk_t *mp; 7416 conn_t *connp = (conn_t *)arg; 7417 tcp_t *tcp = connp->conn_tcp; 7418 int32_t firetime; 7419 int32_t idletime; 7420 int32_t ka_intrvl; 7421 tcp_stack_t *tcps = tcp->tcp_tcps; 7422 7423 tcp->tcp_ka_tid = 0; 7424 7425 if (tcp->tcp_fused) 7426 return; 7427 7428 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7429 ka_intrvl = tcp->tcp_ka_interval; 7430 7431 /* 7432 * Keepalive probe should only be sent if the application has not 7433 * done a close on the connection. 7434 */ 7435 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7436 return; 7437 } 7438 /* Timer fired too early, restart it. */ 7439 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7440 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7441 MSEC_TO_TICK(ka_intrvl)); 7442 return; 7443 } 7444 7445 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 7446 /* 7447 * If we have not heard from the other side for a long 7448 * time, kill the connection unless the keepalive abort 7449 * threshold is 0. In that case, we will probe "forever." 7450 */ 7451 if (tcp->tcp_ka_abort_thres != 0 && 7452 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7453 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7454 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7455 tcp->tcp_client_errno : ETIMEDOUT, 11); 7456 return; 7457 } 7458 7459 if (tcp->tcp_snxt == tcp->tcp_suna && 7460 idletime >= ka_intrvl) { 7461 /* Fake resend of last ACKed byte. */ 7462 mblk_t *mp1 = allocb(1, BPRI_LO); 7463 7464 if (mp1 != NULL) { 7465 *mp1->b_wptr++ = '\0'; 7466 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7467 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7468 freeb(mp1); 7469 /* 7470 * if allocation failed, fall through to start the 7471 * timer back. 7472 */ 7473 if (mp != NULL) { 7474 tcp_send_data(tcp, mp); 7475 BUMP_MIB(&tcps->tcps_mib, 7476 tcpTimKeepaliveProbe); 7477 if (tcp->tcp_ka_last_intrvl != 0) { 7478 int max; 7479 /* 7480 * We should probe again at least 7481 * in ka_intrvl, but not more than 7482 * tcp_rexmit_interval_max. 7483 */ 7484 max = tcps->tcps_rexmit_interval_max; 7485 firetime = MIN(ka_intrvl - 1, 7486 tcp->tcp_ka_last_intrvl << 1); 7487 if (firetime > max) 7488 firetime = max; 7489 } else { 7490 firetime = tcp->tcp_rto; 7491 } 7492 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7493 tcp_keepalive_killer, 7494 MSEC_TO_TICK(firetime)); 7495 tcp->tcp_ka_last_intrvl = firetime; 7496 return; 7497 } 7498 } 7499 } else { 7500 tcp->tcp_ka_last_intrvl = 0; 7501 } 7502 7503 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7504 if ((firetime = ka_intrvl - idletime) < 0) { 7505 firetime = ka_intrvl; 7506 } 7507 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7508 MSEC_TO_TICK(firetime)); 7509 } 7510 7511 int 7512 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7513 { 7514 conn_t *connp = tcp->tcp_connp; 7515 queue_t *q = connp->conn_rq; 7516 int32_t mss = tcp->tcp_mss; 7517 int maxpsz; 7518 7519 if (TCP_IS_DETACHED(tcp)) 7520 return (mss); 7521 if (tcp->tcp_fused) { 7522 maxpsz = tcp_fuse_maxpsz(tcp); 7523 mss = INFPSZ; 7524 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7525 /* 7526 * Set the sd_qn_maxpsz according to the socket send buffer 7527 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7528 * instruct the stream head to copyin user data into contiguous 7529 * kernel-allocated buffers without breaking it up into smaller 7530 * chunks. We round up the buffer size to the nearest SMSS. 7531 */ 7532 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7533 if (tcp->tcp_kssl_ctx == NULL) 7534 mss = INFPSZ; 7535 else 7536 mss = SSL3_MAX_RECORD_LEN; 7537 } else { 7538 /* 7539 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7540 * (and a multiple of the mss). This instructs the stream 7541 * head to break down larger than SMSS writes into SMSS- 7542 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7543 */ 7544 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7545 if (maxpsz > connp->conn_sndbuf / 2) { 7546 maxpsz = connp->conn_sndbuf / 2; 7547 /* Round up to nearest mss */ 7548 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7549 } 7550 } 7551 7552 (void) proto_set_maxpsz(q, connp, maxpsz); 7553 if (!(IPCL_IS_NONSTR(connp))) 7554 connp->conn_wq->q_maxpsz = maxpsz; 7555 if (set_maxblk) 7556 (void) proto_set_tx_maxblk(q, connp, mss); 7557 return (mss); 7558 } 7559 7560 /* 7561 * Extract option values from a tcp header. We put any found values into the 7562 * tcpopt struct and return a bitmask saying which options were found. 7563 */ 7564 static int 7565 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7566 { 7567 uchar_t *endp; 7568 int len; 7569 uint32_t mss; 7570 uchar_t *up = (uchar_t *)tcpha; 7571 int found = 0; 7572 int32_t sack_len; 7573 tcp_seq sack_begin, sack_end; 7574 tcp_t *tcp; 7575 7576 endp = up + TCP_HDR_LENGTH(tcpha); 7577 up += TCP_MIN_HEADER_LENGTH; 7578 while (up < endp) { 7579 len = endp - up; 7580 switch (*up) { 7581 case TCPOPT_EOL: 7582 break; 7583 7584 case TCPOPT_NOP: 7585 up++; 7586 continue; 7587 7588 case TCPOPT_MAXSEG: 7589 if (len < TCPOPT_MAXSEG_LEN || 7590 up[1] != TCPOPT_MAXSEG_LEN) 7591 break; 7592 7593 mss = BE16_TO_U16(up+2); 7594 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7595 tcpopt->tcp_opt_mss = mss; 7596 found |= TCP_OPT_MSS_PRESENT; 7597 7598 up += TCPOPT_MAXSEG_LEN; 7599 continue; 7600 7601 case TCPOPT_WSCALE: 7602 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7603 break; 7604 7605 if (up[2] > TCP_MAX_WINSHIFT) 7606 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7607 else 7608 tcpopt->tcp_opt_wscale = up[2]; 7609 found |= TCP_OPT_WSCALE_PRESENT; 7610 7611 up += TCPOPT_WS_LEN; 7612 continue; 7613 7614 case TCPOPT_SACK_PERMITTED: 7615 if (len < TCPOPT_SACK_OK_LEN || 7616 up[1] != TCPOPT_SACK_OK_LEN) 7617 break; 7618 found |= TCP_OPT_SACK_OK_PRESENT; 7619 up += TCPOPT_SACK_OK_LEN; 7620 continue; 7621 7622 case TCPOPT_SACK: 7623 if (len <= 2 || up[1] <= 2 || len < up[1]) 7624 break; 7625 7626 /* If TCP is not interested in SACK blks... */ 7627 if ((tcp = tcpopt->tcp) == NULL) { 7628 up += up[1]; 7629 continue; 7630 } 7631 sack_len = up[1] - TCPOPT_HEADER_LEN; 7632 up += TCPOPT_HEADER_LEN; 7633 7634 /* 7635 * If the list is empty, allocate one and assume 7636 * nothing is sack'ed. 7637 */ 7638 ASSERT(tcp->tcp_sack_info != NULL); 7639 if (tcp->tcp_notsack_list == NULL) { 7640 tcp_notsack_update(&(tcp->tcp_notsack_list), 7641 tcp->tcp_suna, tcp->tcp_snxt, 7642 &(tcp->tcp_num_notsack_blk), 7643 &(tcp->tcp_cnt_notsack_list)); 7644 7645 /* 7646 * Make sure tcp_notsack_list is not NULL. 7647 * This happens when kmem_alloc(KM_NOSLEEP) 7648 * returns NULL. 7649 */ 7650 if (tcp->tcp_notsack_list == NULL) { 7651 up += sack_len; 7652 continue; 7653 } 7654 tcp->tcp_fack = tcp->tcp_suna; 7655 } 7656 7657 while (sack_len > 0) { 7658 if (up + 8 > endp) { 7659 up = endp; 7660 break; 7661 } 7662 sack_begin = BE32_TO_U32(up); 7663 up += 4; 7664 sack_end = BE32_TO_U32(up); 7665 up += 4; 7666 sack_len -= 8; 7667 /* 7668 * Bounds checking. Make sure the SACK 7669 * info is within tcp_suna and tcp_snxt. 7670 * If this SACK blk is out of bound, ignore 7671 * it but continue to parse the following 7672 * blks. 7673 */ 7674 if (SEQ_LEQ(sack_end, sack_begin) || 7675 SEQ_LT(sack_begin, tcp->tcp_suna) || 7676 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7677 continue; 7678 } 7679 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7680 sack_begin, sack_end, 7681 &(tcp->tcp_num_notsack_blk), 7682 &(tcp->tcp_cnt_notsack_list)); 7683 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7684 tcp->tcp_fack = sack_end; 7685 } 7686 } 7687 found |= TCP_OPT_SACK_PRESENT; 7688 continue; 7689 7690 case TCPOPT_TSTAMP: 7691 if (len < TCPOPT_TSTAMP_LEN || 7692 up[1] != TCPOPT_TSTAMP_LEN) 7693 break; 7694 7695 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7696 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7697 7698 found |= TCP_OPT_TSTAMP_PRESENT; 7699 7700 up += TCPOPT_TSTAMP_LEN; 7701 continue; 7702 7703 default: 7704 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7705 break; 7706 up += up[1]; 7707 continue; 7708 } 7709 break; 7710 } 7711 return (found); 7712 } 7713 7714 /* 7715 * Set the MSS associated with a particular tcp based on its current value, 7716 * and a new one passed in. Observe minimums and maximums, and reset other 7717 * state variables that we want to view as multiples of MSS. 7718 * 7719 * The value of MSS could be either increased or descreased. 7720 */ 7721 static void 7722 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7723 { 7724 uint32_t mss_max; 7725 tcp_stack_t *tcps = tcp->tcp_tcps; 7726 conn_t *connp = tcp->tcp_connp; 7727 7728 if (connp->conn_ipversion == IPV4_VERSION) 7729 mss_max = tcps->tcps_mss_max_ipv4; 7730 else 7731 mss_max = tcps->tcps_mss_max_ipv6; 7732 7733 if (mss < tcps->tcps_mss_min) 7734 mss = tcps->tcps_mss_min; 7735 if (mss > mss_max) 7736 mss = mss_max; 7737 /* 7738 * Unless naglim has been set by our client to 7739 * a non-mss value, force naglim to track mss. 7740 * This can help to aggregate small writes. 7741 */ 7742 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7743 tcp->tcp_naglim = mss; 7744 /* 7745 * TCP should be able to buffer at least 4 MSS data for obvious 7746 * performance reason. 7747 */ 7748 if ((mss << 2) > connp->conn_sndbuf) 7749 connp->conn_sndbuf = mss << 2; 7750 7751 /* 7752 * Set the send lowater to at least twice of MSS. 7753 */ 7754 if ((mss << 1) > connp->conn_sndlowat) 7755 connp->conn_sndlowat = mss << 1; 7756 7757 /* 7758 * Update tcp_cwnd according to the new value of MSS. Keep the 7759 * previous ratio to preserve the transmit rate. 7760 */ 7761 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7762 tcp->tcp_cwnd_cnt = 0; 7763 7764 tcp->tcp_mss = mss; 7765 (void) tcp_maxpsz_set(tcp, B_TRUE); 7766 } 7767 7768 /* For /dev/tcp aka AF_INET open */ 7769 static int 7770 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7771 { 7772 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7773 } 7774 7775 /* For /dev/tcp6 aka AF_INET6 open */ 7776 static int 7777 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7778 { 7779 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7780 } 7781 7782 static conn_t * 7783 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7784 int *errorp) 7785 { 7786 tcp_t *tcp = NULL; 7787 conn_t *connp; 7788 zoneid_t zoneid; 7789 tcp_stack_t *tcps; 7790 squeue_t *sqp; 7791 7792 ASSERT(errorp != NULL); 7793 /* 7794 * Find the proper zoneid and netstack. 7795 */ 7796 /* 7797 * Special case for install: miniroot needs to be able to 7798 * access files via NFS as though it were always in the 7799 * global zone. 7800 */ 7801 if (credp == kcred && nfs_global_client_only != 0) { 7802 zoneid = GLOBAL_ZONEID; 7803 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7804 netstack_tcp; 7805 ASSERT(tcps != NULL); 7806 } else { 7807 netstack_t *ns; 7808 int err; 7809 7810 if ((err = secpolicy_basic_net_access(credp)) != 0) { 7811 *errorp = err; 7812 return (NULL); 7813 } 7814 7815 ns = netstack_find_by_cred(credp); 7816 ASSERT(ns != NULL); 7817 tcps = ns->netstack_tcp; 7818 ASSERT(tcps != NULL); 7819 7820 /* 7821 * For exclusive stacks we set the zoneid to zero 7822 * to make TCP operate as if in the global zone. 7823 */ 7824 if (tcps->tcps_netstack->netstack_stackid != 7825 GLOBAL_NETSTACKID) 7826 zoneid = GLOBAL_ZONEID; 7827 else 7828 zoneid = crgetzoneid(credp); 7829 } 7830 7831 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7832 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7833 /* 7834 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7835 * so we drop it by one. 7836 */ 7837 netstack_rele(tcps->tcps_netstack); 7838 if (connp == NULL) { 7839 *errorp = ENOSR; 7840 return (NULL); 7841 } 7842 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7843 7844 connp->conn_sqp = sqp; 7845 connp->conn_initial_sqp = connp->conn_sqp; 7846 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7847 tcp = connp->conn_tcp; 7848 7849 /* 7850 * Besides asking IP to set the checksum for us, have conn_ip_output 7851 * to do the following checks when necessary: 7852 * 7853 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7854 * IXAF_VERIFY_PMTU: verify PMTU changes 7855 * IXAF_VERIFY_LSO: verify LSO capability changes 7856 */ 7857 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7858 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7859 7860 if (!tcps->tcps_dev_flow_ctl) 7861 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7862 7863 if (isv6) { 7864 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7865 connp->conn_ipversion = IPV6_VERSION; 7866 connp->conn_family = AF_INET6; 7867 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7868 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7869 } else { 7870 connp->conn_ipversion = IPV4_VERSION; 7871 connp->conn_family = AF_INET; 7872 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7873 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7874 } 7875 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7876 7877 crhold(credp); 7878 connp->conn_cred = credp; 7879 connp->conn_cpid = curproc->p_pid; 7880 connp->conn_open_time = ddi_get_lbolt64(); 7881 7882 connp->conn_zoneid = zoneid; 7883 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7884 connp->conn_ixa->ixa_zoneid = zoneid; 7885 connp->conn_mlp_type = mlptSingle; 7886 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7887 ASSERT(tcp->tcp_tcps == tcps); 7888 7889 /* 7890 * If the caller has the process-wide flag set, then default to MAC 7891 * exempt mode. This allows read-down to unlabeled hosts. 7892 */ 7893 if (getpflags(NET_MAC_AWARE, credp) != 0) 7894 connp->conn_mac_mode = CONN_MAC_AWARE; 7895 7896 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7897 7898 if (issocket) { 7899 tcp->tcp_issocket = 1; 7900 } 7901 7902 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7903 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7904 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7905 connp->conn_so_type = SOCK_STREAM; 7906 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7907 tcps->tcps_wroff_xtra; 7908 7909 SOCK_CONNID_INIT(tcp->tcp_connid); 7910 tcp->tcp_state = TCPS_IDLE; 7911 tcp_init_values(tcp); 7912 return (connp); 7913 } 7914 7915 static int 7916 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7917 boolean_t isv6) 7918 { 7919 tcp_t *tcp = NULL; 7920 conn_t *connp = NULL; 7921 int err; 7922 vmem_t *minor_arena = NULL; 7923 dev_t conn_dev; 7924 boolean_t issocket; 7925 7926 if (q->q_ptr != NULL) 7927 return (0); 7928 7929 if (sflag == MODOPEN) 7930 return (EINVAL); 7931 7932 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7933 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7934 minor_arena = ip_minor_arena_la; 7935 } else { 7936 /* 7937 * Either minor numbers in the large arena were exhausted 7938 * or a non socket application is doing the open. 7939 * Try to allocate from the small arena. 7940 */ 7941 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7942 return (EBUSY); 7943 } 7944 minor_arena = ip_minor_arena_sa; 7945 } 7946 7947 ASSERT(minor_arena != NULL); 7948 7949 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7950 7951 if (flag & SO_FALLBACK) { 7952 /* 7953 * Non streams socket needs a stream to fallback to 7954 */ 7955 RD(q)->q_ptr = (void *)conn_dev; 7956 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7957 WR(q)->q_ptr = (void *)minor_arena; 7958 qprocson(q); 7959 return (0); 7960 } else if (flag & SO_ACCEPTOR) { 7961 q->q_qinfo = &tcp_acceptor_rinit; 7962 /* 7963 * the conn_dev and minor_arena will be subsequently used by 7964 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7965 * the minor device number for this connection from the q_ptr. 7966 */ 7967 RD(q)->q_ptr = (void *)conn_dev; 7968 WR(q)->q_qinfo = &tcp_acceptor_winit; 7969 WR(q)->q_ptr = (void *)minor_arena; 7970 qprocson(q); 7971 return (0); 7972 } 7973 7974 issocket = flag & SO_SOCKSTR; 7975 connp = tcp_create_common(credp, isv6, issocket, &err); 7976 7977 if (connp == NULL) { 7978 inet_minor_free(minor_arena, conn_dev); 7979 q->q_ptr = WR(q)->q_ptr = NULL; 7980 return (err); 7981 } 7982 7983 connp->conn_rq = q; 7984 connp->conn_wq = WR(q); 7985 q->q_ptr = WR(q)->q_ptr = connp; 7986 7987 connp->conn_dev = conn_dev; 7988 connp->conn_minor_arena = minor_arena; 7989 7990 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 7991 ASSERT(WR(q)->q_qinfo == &tcp_winit); 7992 7993 tcp = connp->conn_tcp; 7994 7995 if (issocket) { 7996 WR(q)->q_qinfo = &tcp_sock_winit; 7997 } else { 7998 #ifdef _ILP32 7999 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 8000 #else 8001 tcp->tcp_acceptor_id = conn_dev; 8002 #endif /* _ILP32 */ 8003 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 8004 } 8005 8006 /* 8007 * Put the ref for TCP. Ref for IP was already put 8008 * by ipcl_conn_create. Also Make the conn_t globally 8009 * visible to walkers 8010 */ 8011 mutex_enter(&connp->conn_lock); 8012 CONN_INC_REF_LOCKED(connp); 8013 ASSERT(connp->conn_ref == 2); 8014 connp->conn_state_flags &= ~CONN_INCIPIENT; 8015 mutex_exit(&connp->conn_lock); 8016 8017 qprocson(q); 8018 return (0); 8019 } 8020 8021 /* 8022 * Some TCP options can be "set" by requesting them in the option 8023 * buffer. This is needed for XTI feature test though we do not 8024 * allow it in general. We interpret that this mechanism is more 8025 * applicable to OSI protocols and need not be allowed in general. 8026 * This routine filters out options for which it is not allowed (most) 8027 * and lets through those (few) for which it is. [ The XTI interface 8028 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 8029 * ever implemented will have to be allowed here ]. 8030 */ 8031 static boolean_t 8032 tcp_allow_connopt_set(int level, int name) 8033 { 8034 8035 switch (level) { 8036 case IPPROTO_TCP: 8037 switch (name) { 8038 case TCP_NODELAY: 8039 return (B_TRUE); 8040 default: 8041 return (B_FALSE); 8042 } 8043 /*NOTREACHED*/ 8044 default: 8045 return (B_FALSE); 8046 } 8047 /*NOTREACHED*/ 8048 } 8049 8050 /* 8051 * This routine gets default values of certain options whose default 8052 * values are maintained by protocol specific code 8053 */ 8054 /* ARGSUSED */ 8055 int 8056 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 8057 { 8058 int32_t *i1 = (int32_t *)ptr; 8059 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 8060 8061 switch (level) { 8062 case IPPROTO_TCP: 8063 switch (name) { 8064 case TCP_NOTIFY_THRESHOLD: 8065 *i1 = tcps->tcps_ip_notify_interval; 8066 break; 8067 case TCP_ABORT_THRESHOLD: 8068 *i1 = tcps->tcps_ip_abort_interval; 8069 break; 8070 case TCP_CONN_NOTIFY_THRESHOLD: 8071 *i1 = tcps->tcps_ip_notify_cinterval; 8072 break; 8073 case TCP_CONN_ABORT_THRESHOLD: 8074 *i1 = tcps->tcps_ip_abort_cinterval; 8075 break; 8076 default: 8077 return (-1); 8078 } 8079 break; 8080 case IPPROTO_IP: 8081 switch (name) { 8082 case IP_TTL: 8083 *i1 = tcps->tcps_ipv4_ttl; 8084 break; 8085 default: 8086 return (-1); 8087 } 8088 break; 8089 case IPPROTO_IPV6: 8090 switch (name) { 8091 case IPV6_UNICAST_HOPS: 8092 *i1 = tcps->tcps_ipv6_hoplimit; 8093 break; 8094 default: 8095 return (-1); 8096 } 8097 break; 8098 default: 8099 return (-1); 8100 } 8101 return (sizeof (int)); 8102 } 8103 8104 /* 8105 * TCP routine to get the values of options. 8106 */ 8107 static int 8108 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 8109 { 8110 int *i1 = (int *)ptr; 8111 tcp_t *tcp = connp->conn_tcp; 8112 conn_opt_arg_t coas; 8113 int retval; 8114 8115 coas.coa_connp = connp; 8116 coas.coa_ixa = connp->conn_ixa; 8117 coas.coa_ipp = &connp->conn_xmit_ipp; 8118 coas.coa_ancillary = B_FALSE; 8119 coas.coa_changed = 0; 8120 8121 switch (level) { 8122 case SOL_SOCKET: 8123 switch (name) { 8124 case SO_SND_COPYAVOID: 8125 *i1 = tcp->tcp_snd_zcopy_on ? 8126 SO_SND_COPYAVOID : 0; 8127 return (sizeof (int)); 8128 case SO_ACCEPTCONN: 8129 *i1 = (tcp->tcp_state == TCPS_LISTEN); 8130 return (sizeof (int)); 8131 } 8132 break; 8133 case IPPROTO_TCP: 8134 switch (name) { 8135 case TCP_NODELAY: 8136 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 8137 return (sizeof (int)); 8138 case TCP_MAXSEG: 8139 *i1 = tcp->tcp_mss; 8140 return (sizeof (int)); 8141 case TCP_NOTIFY_THRESHOLD: 8142 *i1 = (int)tcp->tcp_first_timer_threshold; 8143 return (sizeof (int)); 8144 case TCP_ABORT_THRESHOLD: 8145 *i1 = tcp->tcp_second_timer_threshold; 8146 return (sizeof (int)); 8147 case TCP_CONN_NOTIFY_THRESHOLD: 8148 *i1 = tcp->tcp_first_ctimer_threshold; 8149 return (sizeof (int)); 8150 case TCP_CONN_ABORT_THRESHOLD: 8151 *i1 = tcp->tcp_second_ctimer_threshold; 8152 return (sizeof (int)); 8153 case TCP_INIT_CWND: 8154 *i1 = tcp->tcp_init_cwnd; 8155 return (sizeof (int)); 8156 case TCP_KEEPALIVE_THRESHOLD: 8157 *i1 = tcp->tcp_ka_interval; 8158 return (sizeof (int)); 8159 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8160 *i1 = tcp->tcp_ka_abort_thres; 8161 return (sizeof (int)); 8162 case TCP_CORK: 8163 *i1 = tcp->tcp_cork; 8164 return (sizeof (int)); 8165 } 8166 break; 8167 case IPPROTO_IP: 8168 if (connp->conn_family != AF_INET) 8169 return (-1); 8170 switch (name) { 8171 case IP_OPTIONS: 8172 case T_IP_OPTIONS: 8173 /* Caller ensures enough space */ 8174 return (ip_opt_get_user(connp, ptr)); 8175 default: 8176 break; 8177 } 8178 break; 8179 8180 case IPPROTO_IPV6: 8181 /* 8182 * IPPROTO_IPV6 options are only supported for sockets 8183 * that are using IPv6 on the wire. 8184 */ 8185 if (connp->conn_ipversion != IPV6_VERSION) { 8186 return (-1); 8187 } 8188 switch (name) { 8189 case IPV6_PATHMTU: 8190 if (tcp->tcp_state < TCPS_ESTABLISHED) 8191 return (-1); 8192 break; 8193 } 8194 break; 8195 } 8196 mutex_enter(&connp->conn_lock); 8197 retval = conn_opt_get(&coas, level, name, ptr); 8198 mutex_exit(&connp->conn_lock); 8199 return (retval); 8200 } 8201 8202 /* 8203 * TCP routine to get the values of options. 8204 */ 8205 int 8206 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 8207 { 8208 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 8209 } 8210 8211 /* returns UNIX error, the optlen is a value-result arg */ 8212 int 8213 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8214 void *optvalp, socklen_t *optlen, cred_t *cr) 8215 { 8216 conn_t *connp = (conn_t *)proto_handle; 8217 squeue_t *sqp = connp->conn_sqp; 8218 int error; 8219 t_uscalar_t max_optbuf_len; 8220 void *optvalp_buf; 8221 int len; 8222 8223 ASSERT(connp->conn_upper_handle != NULL); 8224 8225 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 8226 tcp_opt_obj.odb_opt_des_arr, 8227 tcp_opt_obj.odb_opt_arr_cnt, 8228 B_FALSE, B_TRUE, cr); 8229 if (error != 0) { 8230 if (error < 0) { 8231 error = proto_tlitosyserr(-error); 8232 } 8233 return (error); 8234 } 8235 8236 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 8237 8238 error = squeue_synch_enter(sqp, connp, NULL); 8239 if (error == ENOMEM) { 8240 kmem_free(optvalp_buf, max_optbuf_len); 8241 return (ENOMEM); 8242 } 8243 8244 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8245 squeue_synch_exit(sqp, connp); 8246 8247 if (len == -1) { 8248 kmem_free(optvalp_buf, max_optbuf_len); 8249 return (EINVAL); 8250 } 8251 8252 /* 8253 * update optlen and copy option value 8254 */ 8255 t_uscalar_t size = MIN(len, *optlen); 8256 8257 bcopy(optvalp_buf, optvalp, size); 8258 bcopy(&size, optlen, sizeof (size)); 8259 8260 kmem_free(optvalp_buf, max_optbuf_len); 8261 return (0); 8262 } 8263 8264 /* 8265 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8266 * Parameters are assumed to be verified by the caller. 8267 */ 8268 /* ARGSUSED */ 8269 int 8270 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8271 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8272 void *thisdg_attrs, cred_t *cr) 8273 { 8274 tcp_t *tcp = connp->conn_tcp; 8275 int *i1 = (int *)invalp; 8276 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8277 boolean_t checkonly; 8278 int reterr; 8279 tcp_stack_t *tcps = tcp->tcp_tcps; 8280 conn_opt_arg_t coas; 8281 8282 coas.coa_connp = connp; 8283 coas.coa_ixa = connp->conn_ixa; 8284 coas.coa_ipp = &connp->conn_xmit_ipp; 8285 coas.coa_ancillary = B_FALSE; 8286 coas.coa_changed = 0; 8287 8288 switch (optset_context) { 8289 case SETFN_OPTCOM_CHECKONLY: 8290 checkonly = B_TRUE; 8291 /* 8292 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8293 * inlen != 0 implies value supplied and 8294 * we have to "pretend" to set it. 8295 * inlen == 0 implies that there is no 8296 * value part in T_CHECK request and just validation 8297 * done elsewhere should be enough, we just return here. 8298 */ 8299 if (inlen == 0) { 8300 *outlenp = 0; 8301 return (0); 8302 } 8303 break; 8304 case SETFN_OPTCOM_NEGOTIATE: 8305 checkonly = B_FALSE; 8306 break; 8307 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8308 case SETFN_CONN_NEGOTIATE: 8309 checkonly = B_FALSE; 8310 /* 8311 * Negotiating local and "association-related" options 8312 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8313 * primitives is allowed by XTI, but we choose 8314 * to not implement this style negotiation for Internet 8315 * protocols (We interpret it is a must for OSI world but 8316 * optional for Internet protocols) for all options. 8317 * [ Will do only for the few options that enable test 8318 * suites that our XTI implementation of this feature 8319 * works for transports that do allow it ] 8320 */ 8321 if (!tcp_allow_connopt_set(level, name)) { 8322 *outlenp = 0; 8323 return (EINVAL); 8324 } 8325 break; 8326 default: 8327 /* 8328 * We should never get here 8329 */ 8330 *outlenp = 0; 8331 return (EINVAL); 8332 } 8333 8334 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8335 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8336 8337 /* 8338 * For TCP, we should have no ancillary data sent down 8339 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8340 * has to be zero. 8341 */ 8342 ASSERT(thisdg_attrs == NULL); 8343 8344 /* 8345 * For fixed length options, no sanity check 8346 * of passed in length is done. It is assumed *_optcom_req() 8347 * routines do the right thing. 8348 */ 8349 switch (level) { 8350 case SOL_SOCKET: 8351 switch (name) { 8352 case SO_KEEPALIVE: 8353 if (checkonly) { 8354 /* check only case */ 8355 break; 8356 } 8357 8358 if (!onoff) { 8359 if (connp->conn_keepalive) { 8360 if (tcp->tcp_ka_tid != 0) { 8361 (void) TCP_TIMER_CANCEL(tcp, 8362 tcp->tcp_ka_tid); 8363 tcp->tcp_ka_tid = 0; 8364 } 8365 connp->conn_keepalive = 0; 8366 } 8367 break; 8368 } 8369 if (!connp->conn_keepalive) { 8370 /* Crank up the keepalive timer */ 8371 tcp->tcp_ka_last_intrvl = 0; 8372 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8373 tcp_keepalive_killer, 8374 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8375 connp->conn_keepalive = 1; 8376 } 8377 break; 8378 case SO_SNDBUF: { 8379 if (*i1 > tcps->tcps_max_buf) { 8380 *outlenp = 0; 8381 return (ENOBUFS); 8382 } 8383 if (checkonly) 8384 break; 8385 8386 connp->conn_sndbuf = *i1; 8387 if (tcps->tcps_snd_lowat_fraction != 0) { 8388 connp->conn_sndlowat = connp->conn_sndbuf / 8389 tcps->tcps_snd_lowat_fraction; 8390 } 8391 (void) tcp_maxpsz_set(tcp, B_TRUE); 8392 /* 8393 * If we are flow-controlled, recheck the condition. 8394 * There are apps that increase SO_SNDBUF size when 8395 * flow-controlled (EWOULDBLOCK), and expect the flow 8396 * control condition to be lifted right away. 8397 */ 8398 mutex_enter(&tcp->tcp_non_sq_lock); 8399 if (tcp->tcp_flow_stopped && 8400 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8401 tcp_clrqfull(tcp); 8402 } 8403 mutex_exit(&tcp->tcp_non_sq_lock); 8404 *outlenp = inlen; 8405 return (0); 8406 } 8407 case SO_RCVBUF: 8408 if (*i1 > tcps->tcps_max_buf) { 8409 *outlenp = 0; 8410 return (ENOBUFS); 8411 } 8412 /* Silently ignore zero */ 8413 if (!checkonly && *i1 != 0) { 8414 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8415 (void) tcp_rwnd_set(tcp, *i1); 8416 } 8417 /* 8418 * XXX should we return the rwnd here 8419 * and tcp_opt_get ? 8420 */ 8421 *outlenp = inlen; 8422 return (0); 8423 case SO_SND_COPYAVOID: 8424 if (!checkonly) { 8425 if (tcp->tcp_loopback || 8426 (tcp->tcp_kssl_ctx != NULL) || 8427 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8428 *outlenp = 0; 8429 return (EOPNOTSUPP); 8430 } 8431 tcp->tcp_snd_zcopy_aware = 1; 8432 } 8433 *outlenp = inlen; 8434 return (0); 8435 } 8436 break; 8437 case IPPROTO_TCP: 8438 switch (name) { 8439 case TCP_NODELAY: 8440 if (!checkonly) 8441 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8442 break; 8443 case TCP_NOTIFY_THRESHOLD: 8444 if (!checkonly) 8445 tcp->tcp_first_timer_threshold = *i1; 8446 break; 8447 case TCP_ABORT_THRESHOLD: 8448 if (!checkonly) 8449 tcp->tcp_second_timer_threshold = *i1; 8450 break; 8451 case TCP_CONN_NOTIFY_THRESHOLD: 8452 if (!checkonly) 8453 tcp->tcp_first_ctimer_threshold = *i1; 8454 break; 8455 case TCP_CONN_ABORT_THRESHOLD: 8456 if (!checkonly) 8457 tcp->tcp_second_ctimer_threshold = *i1; 8458 break; 8459 case TCP_RECVDSTADDR: 8460 if (tcp->tcp_state > TCPS_LISTEN) { 8461 *outlenp = 0; 8462 return (EOPNOTSUPP); 8463 } 8464 /* Setting done in conn_opt_set */ 8465 break; 8466 case TCP_INIT_CWND: { 8467 uint32_t init_cwnd = *((uint32_t *)invalp); 8468 8469 if (checkonly) 8470 break; 8471 8472 /* 8473 * Only allow socket with network configuration 8474 * privilege to set the initial cwnd to be larger 8475 * than allowed by RFC 3390. 8476 */ 8477 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8478 tcp->tcp_init_cwnd = init_cwnd; 8479 break; 8480 } 8481 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8482 *outlenp = 0; 8483 return (reterr); 8484 } 8485 if (init_cwnd > TCP_MAX_INIT_CWND) { 8486 *outlenp = 0; 8487 return (EINVAL); 8488 } 8489 tcp->tcp_init_cwnd = init_cwnd; 8490 break; 8491 } 8492 case TCP_KEEPALIVE_THRESHOLD: 8493 if (checkonly) 8494 break; 8495 8496 if (*i1 < tcps->tcps_keepalive_interval_low || 8497 *i1 > tcps->tcps_keepalive_interval_high) { 8498 *outlenp = 0; 8499 return (EINVAL); 8500 } 8501 if (*i1 != tcp->tcp_ka_interval) { 8502 tcp->tcp_ka_interval = *i1; 8503 /* 8504 * Check if we need to restart the 8505 * keepalive timer. 8506 */ 8507 if (tcp->tcp_ka_tid != 0) { 8508 ASSERT(connp->conn_keepalive); 8509 (void) TCP_TIMER_CANCEL(tcp, 8510 tcp->tcp_ka_tid); 8511 tcp->tcp_ka_last_intrvl = 0; 8512 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8513 tcp_keepalive_killer, 8514 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8515 } 8516 } 8517 break; 8518 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8519 if (!checkonly) { 8520 if (*i1 < 8521 tcps->tcps_keepalive_abort_interval_low || 8522 *i1 > 8523 tcps->tcps_keepalive_abort_interval_high) { 8524 *outlenp = 0; 8525 return (EINVAL); 8526 } 8527 tcp->tcp_ka_abort_thres = *i1; 8528 } 8529 break; 8530 case TCP_CORK: 8531 if (!checkonly) { 8532 /* 8533 * if tcp->tcp_cork was set and is now 8534 * being unset, we have to make sure that 8535 * the remaining data gets sent out. Also 8536 * unset tcp->tcp_cork so that tcp_wput_data() 8537 * can send data even if it is less than mss 8538 */ 8539 if (tcp->tcp_cork && onoff == 0 && 8540 tcp->tcp_unsent > 0) { 8541 tcp->tcp_cork = B_FALSE; 8542 tcp_wput_data(tcp, NULL, B_FALSE); 8543 } 8544 tcp->tcp_cork = onoff; 8545 } 8546 break; 8547 default: 8548 break; 8549 } 8550 break; 8551 case IPPROTO_IP: 8552 if (connp->conn_family != AF_INET) { 8553 *outlenp = 0; 8554 return (EINVAL); 8555 } 8556 switch (name) { 8557 case IP_SEC_OPT: 8558 /* 8559 * We should not allow policy setting after 8560 * we start listening for connections. 8561 */ 8562 if (tcp->tcp_state == TCPS_LISTEN) { 8563 return (EINVAL); 8564 } 8565 break; 8566 } 8567 break; 8568 case IPPROTO_IPV6: 8569 /* 8570 * IPPROTO_IPV6 options are only supported for sockets 8571 * that are using IPv6 on the wire. 8572 */ 8573 if (connp->conn_ipversion != IPV6_VERSION) { 8574 *outlenp = 0; 8575 return (EINVAL); 8576 } 8577 8578 switch (name) { 8579 case IPV6_RECVPKTINFO: 8580 if (!checkonly) { 8581 /* Force it to be sent up with the next msg */ 8582 tcp->tcp_recvifindex = 0; 8583 } 8584 break; 8585 case IPV6_RECVTCLASS: 8586 if (!checkonly) { 8587 /* Force it to be sent up with the next msg */ 8588 tcp->tcp_recvtclass = 0xffffffffU; 8589 } 8590 break; 8591 case IPV6_RECVHOPLIMIT: 8592 if (!checkonly) { 8593 /* Force it to be sent up with the next msg */ 8594 tcp->tcp_recvhops = 0xffffffffU; 8595 } 8596 break; 8597 case IPV6_PKTINFO: 8598 /* This is an extra check for TCP */ 8599 if (inlen == sizeof (struct in6_pktinfo)) { 8600 struct in6_pktinfo *pkti; 8601 8602 pkti = (struct in6_pktinfo *)invalp; 8603 /* 8604 * RFC 3542 states that ipi6_addr must be 8605 * the unspecified address when setting the 8606 * IPV6_PKTINFO sticky socket option on a 8607 * TCP socket. 8608 */ 8609 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8610 return (EINVAL); 8611 } 8612 break; 8613 case IPV6_SEC_OPT: 8614 /* 8615 * We should not allow policy setting after 8616 * we start listening for connections. 8617 */ 8618 if (tcp->tcp_state == TCPS_LISTEN) { 8619 return (EINVAL); 8620 } 8621 break; 8622 } 8623 break; 8624 } 8625 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8626 checkonly, cr); 8627 if (reterr != 0) { 8628 *outlenp = 0; 8629 return (reterr); 8630 } 8631 8632 /* 8633 * Common case of OK return with outval same as inval 8634 */ 8635 if (invalp != outvalp) { 8636 /* don't trust bcopy for identical src/dst */ 8637 (void) bcopy(invalp, outvalp, inlen); 8638 } 8639 *outlenp = inlen; 8640 8641 if (coas.coa_changed & COA_HEADER_CHANGED) { 8642 /* If we are connected we rebuilt the headers */ 8643 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8644 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8645 reterr = tcp_build_hdrs(tcp); 8646 if (reterr != 0) 8647 return (reterr); 8648 } 8649 } 8650 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8651 in6_addr_t nexthop; 8652 8653 /* 8654 * If we are connected we re-cache the information. 8655 * We ignore errors to preserve BSD behavior. 8656 * Note that we don't redo IPsec policy lookup here 8657 * since the final destination (or source) didn't change. 8658 */ 8659 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8660 &connp->conn_faddr_v6, &nexthop); 8661 8662 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8663 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8664 (void) ip_attr_connect(connp, connp->conn_ixa, 8665 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8666 &nexthop, connp->conn_fport, NULL, NULL, 8667 IPDF_VERIFY_DST); 8668 } 8669 } 8670 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8671 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8672 } 8673 if (coas.coa_changed & COA_WROFF_CHANGED) { 8674 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8675 tcps->tcps_wroff_xtra; 8676 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8677 connp->conn_wroff); 8678 } 8679 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8680 if (IPCL_IS_NONSTR(connp)) 8681 proto_set_rx_oob_opt(connp, onoff); 8682 } 8683 return (0); 8684 } 8685 8686 /* ARGSUSED */ 8687 int 8688 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8689 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8690 void *thisdg_attrs, cred_t *cr) 8691 { 8692 conn_t *connp = Q_TO_CONN(q); 8693 8694 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8695 outlenp, outvalp, thisdg_attrs, cr)); 8696 } 8697 8698 int 8699 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8700 const void *optvalp, socklen_t optlen, cred_t *cr) 8701 { 8702 conn_t *connp = (conn_t *)proto_handle; 8703 squeue_t *sqp = connp->conn_sqp; 8704 int error; 8705 8706 ASSERT(connp->conn_upper_handle != NULL); 8707 /* 8708 * Entering the squeue synchronously can result in a context switch, 8709 * which can cause a rather sever performance degradation. So we try to 8710 * handle whatever options we can without entering the squeue. 8711 */ 8712 if (level == IPPROTO_TCP) { 8713 switch (option_name) { 8714 case TCP_NODELAY: 8715 if (optlen != sizeof (int32_t)) 8716 return (EINVAL); 8717 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8718 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8719 connp->conn_tcp->tcp_mss; 8720 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8721 return (0); 8722 default: 8723 break; 8724 } 8725 } 8726 8727 error = squeue_synch_enter(sqp, connp, NULL); 8728 if (error == ENOMEM) { 8729 return (ENOMEM); 8730 } 8731 8732 error = proto_opt_check(level, option_name, optlen, NULL, 8733 tcp_opt_obj.odb_opt_des_arr, 8734 tcp_opt_obj.odb_opt_arr_cnt, 8735 B_TRUE, B_FALSE, cr); 8736 8737 if (error != 0) { 8738 if (error < 0) { 8739 error = proto_tlitosyserr(-error); 8740 } 8741 squeue_synch_exit(sqp, connp); 8742 return (error); 8743 } 8744 8745 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8746 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8747 NULL, cr); 8748 squeue_synch_exit(sqp, connp); 8749 8750 ASSERT(error >= 0); 8751 8752 return (error); 8753 } 8754 8755 /* 8756 * Build/update the tcp header template (in conn_ht_iphc) based on 8757 * conn_xmit_ipp. The headers include ip6_t, any extension 8758 * headers, and the maximum size tcp header (to avoid reallocation 8759 * on the fly for additional tcp options). 8760 * 8761 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8762 * Returns failure if can't allocate memory. 8763 */ 8764 static int 8765 tcp_build_hdrs(tcp_t *tcp) 8766 { 8767 tcp_stack_t *tcps = tcp->tcp_tcps; 8768 conn_t *connp = tcp->tcp_connp; 8769 char buf[TCP_MAX_HDR_LENGTH]; 8770 uint_t buflen; 8771 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 8772 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 8773 tcpha_t *tcpha; 8774 uint32_t cksum; 8775 int error; 8776 8777 /* 8778 * We might be called after the connection is set up, and we might 8779 * have TS options already in the TCP header. Thus we save any 8780 * existing tcp header. 8781 */ 8782 buflen = connp->conn_ht_ulp_len; 8783 if (buflen != 0) { 8784 bcopy(connp->conn_ht_ulp, buf, buflen); 8785 extralen -= buflen - ulplen; 8786 ulplen = buflen; 8787 } 8788 8789 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8790 mutex_enter(&connp->conn_lock); 8791 error = conn_build_hdr_template(connp, ulplen, extralen, 8792 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 8793 mutex_exit(&connp->conn_lock); 8794 if (error != 0) 8795 return (error); 8796 8797 /* 8798 * Any routing header/option has been massaged. The checksum difference 8799 * is stored in conn_sum for later use. 8800 */ 8801 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8802 tcp->tcp_tcpha = tcpha; 8803 8804 /* restore any old tcp header */ 8805 if (buflen != 0) { 8806 bcopy(buf, connp->conn_ht_ulp, buflen); 8807 } else { 8808 tcpha->tha_sum = 0; 8809 tcpha->tha_urp = 0; 8810 tcpha->tha_ack = 0; 8811 tcpha->tha_offset_and_reserved = (5 << 4); 8812 tcpha->tha_lport = connp->conn_lport; 8813 tcpha->tha_fport = connp->conn_fport; 8814 } 8815 8816 /* 8817 * IP wants our header length in the checksum field to 8818 * allow it to perform a single pseudo-header+checksum 8819 * calculation on behalf of TCP. 8820 * Include the adjustment for a source route once IP_OPTIONS is set. 8821 */ 8822 cksum = sizeof (tcpha_t) + connp->conn_sum; 8823 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8824 ASSERT(cksum < 0x10000); 8825 tcpha->tha_sum = htons(cksum); 8826 8827 if (connp->conn_ipversion == IPV4_VERSION) 8828 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8829 else 8830 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8831 8832 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8833 connp->conn_wroff) { 8834 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8835 tcps->tcps_wroff_xtra; 8836 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8837 connp->conn_wroff); 8838 } 8839 return (0); 8840 } 8841 8842 /* Get callback routine passed to nd_load by tcp_param_register */ 8843 /* ARGSUSED */ 8844 static int 8845 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8846 { 8847 tcpparam_t *tcppa = (tcpparam_t *)cp; 8848 8849 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8850 return (0); 8851 } 8852 8853 /* 8854 * Walk through the param array specified registering each element with the 8855 * named dispatch handler. 8856 */ 8857 static boolean_t 8858 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8859 { 8860 for (; cnt-- > 0; tcppa++) { 8861 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8862 if (!nd_load(ndp, tcppa->tcp_param_name, 8863 tcp_param_get, tcp_param_set, 8864 (caddr_t)tcppa)) { 8865 nd_free(ndp); 8866 return (B_FALSE); 8867 } 8868 } 8869 } 8870 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8871 KM_SLEEP); 8872 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8873 sizeof (tcpparam_t)); 8874 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8875 tcp_param_get, tcp_param_set_aligned, 8876 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8877 nd_free(ndp); 8878 return (B_FALSE); 8879 } 8880 if (!nd_load(ndp, "tcp_extra_priv_ports", 8881 tcp_extra_priv_ports_get, NULL, NULL)) { 8882 nd_free(ndp); 8883 return (B_FALSE); 8884 } 8885 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8886 NULL, tcp_extra_priv_ports_add, NULL)) { 8887 nd_free(ndp); 8888 return (B_FALSE); 8889 } 8890 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8891 NULL, tcp_extra_priv_ports_del, NULL)) { 8892 nd_free(ndp); 8893 return (B_FALSE); 8894 } 8895 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8896 tcp_1948_phrase_set, NULL)) { 8897 nd_free(ndp); 8898 return (B_FALSE); 8899 } 8900 8901 8902 if (!nd_load(ndp, "tcp_listener_limit_conf", 8903 tcp_listener_conf_get, NULL, NULL)) { 8904 nd_free(ndp); 8905 return (B_FALSE); 8906 } 8907 if (!nd_load(ndp, "tcp_listener_limit_conf_add", 8908 NULL, tcp_listener_conf_add, NULL)) { 8909 nd_free(ndp); 8910 return (B_FALSE); 8911 } 8912 if (!nd_load(ndp, "tcp_listener_limit_conf_del", 8913 NULL, tcp_listener_conf_del, NULL)) { 8914 nd_free(ndp); 8915 return (B_FALSE); 8916 } 8917 8918 /* 8919 * Dummy ndd variables - only to convey obsolescence information 8920 * through printing of their name (no get or set routines) 8921 * XXX Remove in future releases ? 8922 */ 8923 if (!nd_load(ndp, 8924 "tcp_close_wait_interval(obsoleted - " 8925 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8926 nd_free(ndp); 8927 return (B_FALSE); 8928 } 8929 return (B_TRUE); 8930 } 8931 8932 /* ndd set routine for tcp_wroff_xtra. */ 8933 /* ARGSUSED */ 8934 static int 8935 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8936 cred_t *cr) 8937 { 8938 long new_value; 8939 tcpparam_t *tcppa = (tcpparam_t *)cp; 8940 8941 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8942 new_value < tcppa->tcp_param_min || 8943 new_value > tcppa->tcp_param_max) { 8944 return (EINVAL); 8945 } 8946 /* 8947 * Need to make sure new_value is a multiple of 4. If it is not, 8948 * round it up. For future 64 bit requirement, we actually make it 8949 * a multiple of 8. 8950 */ 8951 if (new_value & 0x7) { 8952 new_value = (new_value & ~0x7) + 0x8; 8953 } 8954 tcppa->tcp_param_val = new_value; 8955 return (0); 8956 } 8957 8958 /* Set callback routine passed to nd_load by tcp_param_register */ 8959 /* ARGSUSED */ 8960 static int 8961 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8962 { 8963 long new_value; 8964 tcpparam_t *tcppa = (tcpparam_t *)cp; 8965 8966 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8967 new_value < tcppa->tcp_param_min || 8968 new_value > tcppa->tcp_param_max) { 8969 return (EINVAL); 8970 } 8971 tcppa->tcp_param_val = new_value; 8972 return (0); 8973 } 8974 8975 static void 8976 tcp_reass_timer(void *arg) 8977 { 8978 conn_t *connp = (conn_t *)arg; 8979 tcp_t *tcp = connp->conn_tcp; 8980 8981 tcp->tcp_reass_tid = 0; 8982 if (tcp->tcp_reass_head == NULL) 8983 return; 8984 ASSERT(tcp->tcp_reass_tail != NULL); 8985 tcp_sack_remove(tcp->tcp_sack_list, TCP_REASS_END(tcp->tcp_reass_tail), 8986 &tcp->tcp_num_sack_blk); 8987 tcp_close_mpp(&tcp->tcp_reass_head); 8988 tcp->tcp_reass_tail = NULL; 8989 } 8990 8991 /* 8992 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 8993 * is filled, return as much as we can. The message passed in may be 8994 * multi-part, chained using b_cont. "start" is the starting sequence 8995 * number for this piece. 8996 */ 8997 static mblk_t * 8998 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 8999 { 9000 uint32_t end; 9001 mblk_t *mp1; 9002 mblk_t *mp2; 9003 mblk_t *next_mp; 9004 uint32_t u1; 9005 tcp_stack_t *tcps = tcp->tcp_tcps; 9006 9007 9008 /* Walk through all the new pieces. */ 9009 do { 9010 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 9011 (uintptr_t)INT_MAX); 9012 end = start + (int)(mp->b_wptr - mp->b_rptr); 9013 next_mp = mp->b_cont; 9014 if (start == end) { 9015 /* Empty. Blast it. */ 9016 freeb(mp); 9017 continue; 9018 } 9019 mp->b_cont = NULL; 9020 TCP_REASS_SET_SEQ(mp, start); 9021 TCP_REASS_SET_END(mp, end); 9022 mp1 = tcp->tcp_reass_tail; 9023 if (!mp1) { 9024 tcp->tcp_reass_tail = mp; 9025 tcp->tcp_reass_head = mp; 9026 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9027 UPDATE_MIB(&tcps->tcps_mib, 9028 tcpInDataUnorderBytes, end - start); 9029 continue; 9030 } 9031 /* New stuff completely beyond tail? */ 9032 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 9033 /* Link it on end. */ 9034 mp1->b_cont = mp; 9035 tcp->tcp_reass_tail = mp; 9036 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9037 UPDATE_MIB(&tcps->tcps_mib, 9038 tcpInDataUnorderBytes, end - start); 9039 continue; 9040 } 9041 mp1 = tcp->tcp_reass_head; 9042 u1 = TCP_REASS_SEQ(mp1); 9043 /* New stuff at the front? */ 9044 if (SEQ_LT(start, u1)) { 9045 /* Yes... Check for overlap. */ 9046 mp->b_cont = mp1; 9047 tcp->tcp_reass_head = mp; 9048 tcp_reass_elim_overlap(tcp, mp); 9049 continue; 9050 } 9051 /* 9052 * The new piece fits somewhere between the head and tail. 9053 * We find our slot, where mp1 precedes us and mp2 trails. 9054 */ 9055 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 9056 u1 = TCP_REASS_SEQ(mp2); 9057 if (SEQ_LEQ(start, u1)) 9058 break; 9059 } 9060 /* Link ourselves in */ 9061 mp->b_cont = mp2; 9062 mp1->b_cont = mp; 9063 9064 /* Trim overlap with following mblk(s) first */ 9065 tcp_reass_elim_overlap(tcp, mp); 9066 9067 /* Trim overlap with preceding mblk */ 9068 tcp_reass_elim_overlap(tcp, mp1); 9069 9070 } while (start = end, mp = next_mp); 9071 mp1 = tcp->tcp_reass_head; 9072 /* Anything ready to go? */ 9073 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 9074 return (NULL); 9075 /* Eat what we can off the queue */ 9076 for (;;) { 9077 mp = mp1->b_cont; 9078 end = TCP_REASS_END(mp1); 9079 TCP_REASS_SET_SEQ(mp1, 0); 9080 TCP_REASS_SET_END(mp1, 0); 9081 if (!mp) { 9082 tcp->tcp_reass_tail = NULL; 9083 break; 9084 } 9085 if (end != TCP_REASS_SEQ(mp)) { 9086 mp1->b_cont = NULL; 9087 break; 9088 } 9089 mp1 = mp; 9090 } 9091 mp1 = tcp->tcp_reass_head; 9092 tcp->tcp_reass_head = mp; 9093 return (mp1); 9094 } 9095 9096 /* Eliminate any overlap that mp may have over later mblks */ 9097 static void 9098 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 9099 { 9100 uint32_t end; 9101 mblk_t *mp1; 9102 uint32_t u1; 9103 tcp_stack_t *tcps = tcp->tcp_tcps; 9104 9105 end = TCP_REASS_END(mp); 9106 while ((mp1 = mp->b_cont) != NULL) { 9107 u1 = TCP_REASS_SEQ(mp1); 9108 if (!SEQ_GT(end, u1)) 9109 break; 9110 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 9111 mp->b_wptr -= end - u1; 9112 TCP_REASS_SET_END(mp, u1); 9113 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 9114 UPDATE_MIB(&tcps->tcps_mib, 9115 tcpInDataPartDupBytes, end - u1); 9116 break; 9117 } 9118 mp->b_cont = mp1->b_cont; 9119 TCP_REASS_SET_SEQ(mp1, 0); 9120 TCP_REASS_SET_END(mp1, 0); 9121 freeb(mp1); 9122 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 9123 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 9124 } 9125 if (!mp1) 9126 tcp->tcp_reass_tail = mp; 9127 } 9128 9129 static uint_t 9130 tcp_rwnd_reopen(tcp_t *tcp) 9131 { 9132 uint_t ret = 0; 9133 uint_t thwin; 9134 conn_t *connp = tcp->tcp_connp; 9135 9136 /* Learn the latest rwnd information that we sent to the other side. */ 9137 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 9138 << tcp->tcp_rcv_ws; 9139 /* This is peer's calculated send window (our receive window). */ 9140 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 9141 /* 9142 * Increase the receive window to max. But we need to do receiver 9143 * SWS avoidance. This means that we need to check the increase of 9144 * of receive window is at least 1 MSS. 9145 */ 9146 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 9147 /* 9148 * If the window that the other side knows is less than max 9149 * deferred acks segments, send an update immediately. 9150 */ 9151 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 9152 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 9153 ret = TH_ACK_NEEDED; 9154 } 9155 tcp->tcp_rwnd = connp->conn_rcvbuf; 9156 } 9157 return (ret); 9158 } 9159 9160 /* 9161 * Send up all messages queued on tcp_rcv_list. 9162 */ 9163 static uint_t 9164 tcp_rcv_drain(tcp_t *tcp) 9165 { 9166 mblk_t *mp; 9167 uint_t ret = 0; 9168 #ifdef DEBUG 9169 uint_t cnt = 0; 9170 #endif 9171 queue_t *q = tcp->tcp_connp->conn_rq; 9172 9173 /* Can't drain on an eager connection */ 9174 if (tcp->tcp_listener != NULL) 9175 return (ret); 9176 9177 /* Can't be a non-STREAMS connection */ 9178 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 9179 9180 /* No need for the push timer now. */ 9181 if (tcp->tcp_push_tid != 0) { 9182 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 9183 tcp->tcp_push_tid = 0; 9184 } 9185 9186 /* 9187 * Handle two cases here: we are currently fused or we were 9188 * previously fused and have some urgent data to be delivered 9189 * upstream. The latter happens because we either ran out of 9190 * memory or were detached and therefore sending the SIGURG was 9191 * deferred until this point. In either case we pass control 9192 * over to tcp_fuse_rcv_drain() since it may need to complete 9193 * some work. 9194 */ 9195 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 9196 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 9197 tcp->tcp_fused_sigurg_mp != NULL); 9198 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 9199 &tcp->tcp_fused_sigurg_mp)) 9200 return (ret); 9201 } 9202 9203 while ((mp = tcp->tcp_rcv_list) != NULL) { 9204 tcp->tcp_rcv_list = mp->b_next; 9205 mp->b_next = NULL; 9206 #ifdef DEBUG 9207 cnt += msgdsize(mp); 9208 #endif 9209 /* Does this need SSL processing first? */ 9210 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 9211 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 9212 mblk_t *, mp); 9213 tcp_kssl_input(tcp, mp, NULL); 9214 continue; 9215 } 9216 putnext(q, mp); 9217 } 9218 #ifdef DEBUG 9219 ASSERT(cnt == tcp->tcp_rcv_cnt); 9220 #endif 9221 tcp->tcp_rcv_last_head = NULL; 9222 tcp->tcp_rcv_last_tail = NULL; 9223 tcp->tcp_rcv_cnt = 0; 9224 9225 if (canputnext(q)) 9226 return (tcp_rwnd_reopen(tcp)); 9227 9228 return (ret); 9229 } 9230 9231 /* 9232 * Queue data on tcp_rcv_list which is a b_next chain. 9233 * tcp_rcv_last_head/tail is the last element of this chain. 9234 * Each element of the chain is a b_cont chain. 9235 * 9236 * M_DATA messages are added to the current element. 9237 * Other messages are added as new (b_next) elements. 9238 */ 9239 void 9240 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 9241 { 9242 ASSERT(seg_len == msgdsize(mp)); 9243 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 9244 9245 if (is_system_labeled()) { 9246 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 9247 /* 9248 * Provide for protocols above TCP such as RPC. NOPID leaves 9249 * db_cpid unchanged. 9250 * The cred could have already been set. 9251 */ 9252 if (cr != NULL) 9253 mblk_setcred(mp, cr, NOPID); 9254 } 9255 9256 if (tcp->tcp_rcv_list == NULL) { 9257 ASSERT(tcp->tcp_rcv_last_head == NULL); 9258 tcp->tcp_rcv_list = mp; 9259 tcp->tcp_rcv_last_head = mp; 9260 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 9261 tcp->tcp_rcv_last_tail->b_cont = mp; 9262 } else { 9263 tcp->tcp_rcv_last_head->b_next = mp; 9264 tcp->tcp_rcv_last_head = mp; 9265 } 9266 9267 while (mp->b_cont) 9268 mp = mp->b_cont; 9269 9270 tcp->tcp_rcv_last_tail = mp; 9271 tcp->tcp_rcv_cnt += seg_len; 9272 tcp->tcp_rwnd -= seg_len; 9273 } 9274 9275 /* The minimum of smoothed mean deviation in RTO calculation. */ 9276 #define TCP_SD_MIN 400 9277 9278 /* 9279 * Set RTO for this connection. The formula is from Jacobson and Karels' 9280 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 9281 * are the same as those in Appendix A.2 of that paper. 9282 * 9283 * m = new measurement 9284 * sa = smoothed RTT average (8 * average estimates). 9285 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 9286 */ 9287 static void 9288 tcp_set_rto(tcp_t *tcp, clock_t rtt) 9289 { 9290 long m = TICK_TO_MSEC(rtt); 9291 clock_t sa = tcp->tcp_rtt_sa; 9292 clock_t sv = tcp->tcp_rtt_sd; 9293 clock_t rto; 9294 tcp_stack_t *tcps = tcp->tcp_tcps; 9295 9296 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9297 tcp->tcp_rtt_update++; 9298 9299 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9300 if (sa != 0) { 9301 /* 9302 * Update average estimator: 9303 * new rtt = 7/8 old rtt + 1/8 Error 9304 */ 9305 9306 /* m is now Error in estimate. */ 9307 m -= sa >> 3; 9308 if ((sa += m) <= 0) { 9309 /* 9310 * Don't allow the smoothed average to be negative. 9311 * We use 0 to denote reinitialization of the 9312 * variables. 9313 */ 9314 sa = 1; 9315 } 9316 9317 /* 9318 * Update deviation estimator: 9319 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9320 */ 9321 if (m < 0) 9322 m = -m; 9323 m -= sv >> 2; 9324 sv += m; 9325 } else { 9326 /* 9327 * This follows BSD's implementation. So the reinitialized 9328 * RTO is 3 * m. We cannot go less than 2 because if the 9329 * link is bandwidth dominated, doubling the window size 9330 * during slow start means doubling the RTT. We want to be 9331 * more conservative when we reinitialize our estimates. 3 9332 * is just a convenient number. 9333 */ 9334 sa = m << 3; 9335 sv = m << 1; 9336 } 9337 if (sv < TCP_SD_MIN) { 9338 /* 9339 * We do not know that if sa captures the delay ACK 9340 * effect as in a long train of segments, a receiver 9341 * does not delay its ACKs. So set the minimum of sv 9342 * to be TCP_SD_MIN, which is default to 400 ms, twice 9343 * of BSD DATO. That means the minimum of mean 9344 * deviation is 100 ms. 9345 * 9346 */ 9347 sv = TCP_SD_MIN; 9348 } 9349 tcp->tcp_rtt_sa = sa; 9350 tcp->tcp_rtt_sd = sv; 9351 /* 9352 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9353 * 9354 * Add tcp_rexmit_interval extra in case of extreme environment 9355 * where the algorithm fails to work. The default value of 9356 * tcp_rexmit_interval_extra should be 0. 9357 * 9358 * As we use a finer grained clock than BSD and update 9359 * RTO for every ACKs, add in another .25 of RTT to the 9360 * deviation of RTO to accomodate burstiness of 1/4 of 9361 * window size. 9362 */ 9363 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9364 9365 if (rto > tcps->tcps_rexmit_interval_max) { 9366 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9367 } else if (rto < tcps->tcps_rexmit_interval_min) { 9368 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9369 } else { 9370 tcp->tcp_rto = rto; 9371 } 9372 9373 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9374 tcp->tcp_timer_backoff = 0; 9375 } 9376 9377 /* 9378 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9379 * send queue which starts at the given sequence number. If the given 9380 * sequence number is equal to last valid sequence number (tcp_snxt), the 9381 * returned mblk is the last valid mblk, and off is set to the length of 9382 * that mblk. 9383 * 9384 * send queue which starts at the given seq. no. 9385 * 9386 * Parameters: 9387 * tcp_t *tcp: the tcp instance pointer. 9388 * uint32_t seq: the starting seq. no of the requested segment. 9389 * int32_t *off: after the execution, *off will be the offset to 9390 * the returned mblk which points to the requested seq no. 9391 * It is the caller's responsibility to send in a non-null off. 9392 * 9393 * Return: 9394 * A mblk_t pointer pointing to the requested segment in send queue. 9395 */ 9396 static mblk_t * 9397 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9398 { 9399 int32_t cnt; 9400 mblk_t *mp; 9401 9402 /* Defensive coding. Make sure we don't send incorrect data. */ 9403 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9404 return (NULL); 9405 9406 cnt = seq - tcp->tcp_suna; 9407 mp = tcp->tcp_xmit_head; 9408 while (cnt > 0 && mp != NULL) { 9409 cnt -= mp->b_wptr - mp->b_rptr; 9410 if (cnt <= 0) { 9411 cnt += mp->b_wptr - mp->b_rptr; 9412 break; 9413 } 9414 mp = mp->b_cont; 9415 } 9416 ASSERT(mp != NULL); 9417 *off = cnt; 9418 return (mp); 9419 } 9420 9421 /* 9422 * This function handles all retransmissions if SACK is enabled for this 9423 * connection. First it calculates how many segments can be retransmitted 9424 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9425 * segments. A segment is eligible if sack_cnt for that segment is greater 9426 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9427 * all eligible segments, it checks to see if TCP can send some new segments 9428 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9429 * 9430 * Parameters: 9431 * tcp_t *tcp: the tcp structure of the connection. 9432 * uint_t *flags: in return, appropriate value will be set for 9433 * tcp_input_data(). 9434 */ 9435 static void 9436 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9437 { 9438 notsack_blk_t *notsack_blk; 9439 int32_t usable_swnd; 9440 int32_t mss; 9441 uint32_t seg_len; 9442 mblk_t *xmit_mp; 9443 tcp_stack_t *tcps = tcp->tcp_tcps; 9444 9445 ASSERT(tcp->tcp_sack_info != NULL); 9446 ASSERT(tcp->tcp_notsack_list != NULL); 9447 ASSERT(tcp->tcp_rexmit == B_FALSE); 9448 9449 /* Defensive coding in case there is a bug... */ 9450 if (tcp->tcp_notsack_list == NULL) { 9451 return; 9452 } 9453 notsack_blk = tcp->tcp_notsack_list; 9454 mss = tcp->tcp_mss; 9455 9456 /* 9457 * Limit the num of outstanding data in the network to be 9458 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9459 */ 9460 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9461 9462 /* At least retransmit 1 MSS of data. */ 9463 if (usable_swnd <= 0) { 9464 usable_swnd = mss; 9465 } 9466 9467 /* Make sure no new RTT samples will be taken. */ 9468 tcp->tcp_csuna = tcp->tcp_snxt; 9469 9470 notsack_blk = tcp->tcp_notsack_list; 9471 while (usable_swnd > 0) { 9472 mblk_t *snxt_mp, *tmp_mp; 9473 tcp_seq begin = tcp->tcp_sack_snxt; 9474 tcp_seq end; 9475 int32_t off; 9476 9477 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9478 if (SEQ_GT(notsack_blk->end, begin) && 9479 (notsack_blk->sack_cnt >= 9480 tcps->tcps_dupack_fast_retransmit)) { 9481 end = notsack_blk->end; 9482 if (SEQ_LT(begin, notsack_blk->begin)) { 9483 begin = notsack_blk->begin; 9484 } 9485 break; 9486 } 9487 } 9488 /* 9489 * All holes are filled. Manipulate tcp_cwnd to send more 9490 * if we can. Note that after the SACK recovery, tcp_cwnd is 9491 * set to tcp_cwnd_ssthresh. 9492 */ 9493 if (notsack_blk == NULL) { 9494 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9495 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9496 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9497 ASSERT(tcp->tcp_cwnd > 0); 9498 return; 9499 } else { 9500 usable_swnd = usable_swnd / mss; 9501 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9502 MAX(usable_swnd * mss, mss); 9503 *flags |= TH_XMIT_NEEDED; 9504 return; 9505 } 9506 } 9507 9508 /* 9509 * Note that we may send more than usable_swnd allows here 9510 * because of round off, but no more than 1 MSS of data. 9511 */ 9512 seg_len = end - begin; 9513 if (seg_len > mss) 9514 seg_len = mss; 9515 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9516 ASSERT(snxt_mp != NULL); 9517 /* This should not happen. Defensive coding again... */ 9518 if (snxt_mp == NULL) { 9519 return; 9520 } 9521 9522 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9523 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9524 if (xmit_mp == NULL) 9525 return; 9526 9527 usable_swnd -= seg_len; 9528 tcp->tcp_pipe += seg_len; 9529 tcp->tcp_sack_snxt = begin + seg_len; 9530 9531 tcp_send_data(tcp, xmit_mp); 9532 9533 /* 9534 * Update the send timestamp to avoid false retransmission. 9535 */ 9536 snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9537 9538 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9539 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9540 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9541 /* 9542 * Update tcp_rexmit_max to extend this SACK recovery phase. 9543 * This happens when new data sent during fast recovery is 9544 * also lost. If TCP retransmits those new data, it needs 9545 * to extend SACK recover phase to avoid starting another 9546 * fast retransmit/recovery unnecessarily. 9547 */ 9548 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9549 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9550 } 9551 } 9552 } 9553 9554 /* 9555 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9556 * or ICMP errors. 9557 * 9558 * To limit the number of duplicate segments, we limit the number of segment 9559 * to be sent in one time to tcp_snd_burst, the burst variable. 9560 */ 9561 static void 9562 tcp_ss_rexmit(tcp_t *tcp) 9563 { 9564 uint32_t snxt; 9565 uint32_t smax; 9566 int32_t win; 9567 int32_t mss; 9568 int32_t off; 9569 int32_t burst = tcp->tcp_snd_burst; 9570 mblk_t *snxt_mp; 9571 tcp_stack_t *tcps = tcp->tcp_tcps; 9572 9573 /* 9574 * Note that tcp_rexmit can be set even though TCP has retransmitted 9575 * all unack'ed segments. 9576 */ 9577 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9578 smax = tcp->tcp_rexmit_max; 9579 snxt = tcp->tcp_rexmit_nxt; 9580 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9581 snxt = tcp->tcp_suna; 9582 } 9583 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9584 win -= snxt - tcp->tcp_suna; 9585 mss = tcp->tcp_mss; 9586 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9587 9588 while (SEQ_LT(snxt, smax) && (win > 0) && 9589 (burst > 0) && (snxt_mp != NULL)) { 9590 mblk_t *xmit_mp; 9591 mblk_t *old_snxt_mp = snxt_mp; 9592 uint32_t cnt = mss; 9593 9594 if (win < cnt) { 9595 cnt = win; 9596 } 9597 if (SEQ_GT(snxt + cnt, smax)) { 9598 cnt = smax - snxt; 9599 } 9600 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9601 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9602 if (xmit_mp == NULL) 9603 return; 9604 9605 tcp_send_data(tcp, xmit_mp); 9606 9607 snxt += cnt; 9608 win -= cnt; 9609 /* 9610 * Update the send timestamp to avoid false 9611 * retransmission. 9612 */ 9613 old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9614 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9615 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9616 9617 tcp->tcp_rexmit_nxt = snxt; 9618 burst--; 9619 } 9620 /* 9621 * If we have transmitted all we have at the time 9622 * we started the retranmission, we can leave 9623 * the rest of the job to tcp_wput_data(). But we 9624 * need to check the send window first. If the 9625 * win is not 0, go on with tcp_wput_data(). 9626 */ 9627 if (SEQ_LT(snxt, smax) || win == 0) { 9628 return; 9629 } 9630 } 9631 /* Only call tcp_wput_data() if there is data to be sent. */ 9632 if (tcp->tcp_unsent) { 9633 tcp_wput_data(tcp, NULL, B_FALSE); 9634 } 9635 } 9636 9637 /* 9638 * Process all TCP option in SYN segment. Note that this function should 9639 * be called after tcp_set_destination() is called so that the necessary info 9640 * from IRE is already set in the tcp structure. 9641 * 9642 * This function sets up the correct tcp_mss value according to the 9643 * MSS option value and our header size. It also sets up the window scale 9644 * and timestamp values, and initialize SACK info blocks. But it does not 9645 * change receive window size after setting the tcp_mss value. The caller 9646 * should do the appropriate change. 9647 */ 9648 void 9649 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9650 { 9651 int options; 9652 tcp_opt_t tcpopt; 9653 uint32_t mss_max; 9654 char *tmp_tcph; 9655 tcp_stack_t *tcps = tcp->tcp_tcps; 9656 conn_t *connp = tcp->tcp_connp; 9657 9658 tcpopt.tcp = NULL; 9659 options = tcp_parse_options(tcpha, &tcpopt); 9660 9661 /* 9662 * Process MSS option. Note that MSS option value does not account 9663 * for IP or TCP options. This means that it is equal to MTU - minimum 9664 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9665 * IPv6. 9666 */ 9667 if (!(options & TCP_OPT_MSS_PRESENT)) { 9668 if (connp->conn_ipversion == IPV4_VERSION) 9669 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9670 else 9671 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9672 } else { 9673 if (connp->conn_ipversion == IPV4_VERSION) 9674 mss_max = tcps->tcps_mss_max_ipv4; 9675 else 9676 mss_max = tcps->tcps_mss_max_ipv6; 9677 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9678 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9679 else if (tcpopt.tcp_opt_mss > mss_max) 9680 tcpopt.tcp_opt_mss = mss_max; 9681 } 9682 9683 /* Process Window Scale option. */ 9684 if (options & TCP_OPT_WSCALE_PRESENT) { 9685 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9686 tcp->tcp_snd_ws_ok = B_TRUE; 9687 } else { 9688 tcp->tcp_snd_ws = B_FALSE; 9689 tcp->tcp_snd_ws_ok = B_FALSE; 9690 tcp->tcp_rcv_ws = B_FALSE; 9691 } 9692 9693 /* Process Timestamp option. */ 9694 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9695 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9696 tmp_tcph = (char *)tcp->tcp_tcpha; 9697 9698 tcp->tcp_snd_ts_ok = B_TRUE; 9699 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9700 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 9701 ASSERT(OK_32PTR(tmp_tcph)); 9702 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9703 9704 /* Fill in our template header with basic timestamp option. */ 9705 tmp_tcph += connp->conn_ht_ulp_len; 9706 tmp_tcph[0] = TCPOPT_NOP; 9707 tmp_tcph[1] = TCPOPT_NOP; 9708 tmp_tcph[2] = TCPOPT_TSTAMP; 9709 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9710 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9711 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9712 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9713 } else { 9714 tcp->tcp_snd_ts_ok = B_FALSE; 9715 } 9716 9717 /* 9718 * Process SACK options. If SACK is enabled for this connection, 9719 * then allocate the SACK info structure. Note the following ways 9720 * when tcp_snd_sack_ok is set to true. 9721 * 9722 * For active connection: in tcp_set_destination() called in 9723 * tcp_connect(). 9724 * 9725 * For passive connection: in tcp_set_destination() called in 9726 * tcp_input_listener(). 9727 * 9728 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9729 * That check makes sure that if we did not send a SACK OK option, 9730 * we will not enable SACK for this connection even though the other 9731 * side sends us SACK OK option. For active connection, the SACK 9732 * info structure has already been allocated. So we need to free 9733 * it if SACK is disabled. 9734 */ 9735 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9736 (tcp->tcp_snd_sack_ok || 9737 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9738 /* This should be true only in the passive case. */ 9739 if (tcp->tcp_sack_info == NULL) { 9740 ASSERT(TCP_IS_DETACHED(tcp)); 9741 tcp->tcp_sack_info = 9742 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9743 } 9744 if (tcp->tcp_sack_info == NULL) { 9745 tcp->tcp_snd_sack_ok = B_FALSE; 9746 } else { 9747 tcp->tcp_snd_sack_ok = B_TRUE; 9748 if (tcp->tcp_snd_ts_ok) { 9749 tcp->tcp_max_sack_blk = 3; 9750 } else { 9751 tcp->tcp_max_sack_blk = 4; 9752 } 9753 } 9754 } else { 9755 /* 9756 * Resetting tcp_snd_sack_ok to B_FALSE so that 9757 * no SACK info will be used for this 9758 * connection. This assumes that SACK usage 9759 * permission is negotiated. This may need 9760 * to be changed once this is clarified. 9761 */ 9762 if (tcp->tcp_sack_info != NULL) { 9763 ASSERT(tcp->tcp_notsack_list == NULL); 9764 kmem_cache_free(tcp_sack_info_cache, 9765 tcp->tcp_sack_info); 9766 tcp->tcp_sack_info = NULL; 9767 } 9768 tcp->tcp_snd_sack_ok = B_FALSE; 9769 } 9770 9771 /* 9772 * Now we know the exact TCP/IP header length, subtract 9773 * that from tcp_mss to get our side's MSS. 9774 */ 9775 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9776 9777 /* 9778 * Here we assume that the other side's header size will be equal to 9779 * our header size. We calculate the real MSS accordingly. Need to 9780 * take into additional stuffs IPsec puts in. 9781 * 9782 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9783 */ 9784 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9785 tcp->tcp_ipsec_overhead - 9786 ((connp->conn_ipversion == IPV4_VERSION ? 9787 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9788 9789 /* 9790 * Set MSS to the smaller one of both ends of the connection. 9791 * We should not have called tcp_mss_set() before, but our 9792 * side of the MSS should have been set to a proper value 9793 * by tcp_set_destination(). tcp_mss_set() will also set up the 9794 * STREAM head parameters properly. 9795 * 9796 * If we have a larger-than-16-bit window but the other side 9797 * didn't want to do window scale, tcp_rwnd_set() will take 9798 * care of that. 9799 */ 9800 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9801 9802 /* 9803 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9804 * updated properly. 9805 */ 9806 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9807 } 9808 9809 /* 9810 * Sends the T_CONN_IND to the listener. The caller calls this 9811 * functions via squeue to get inside the listener's perimeter 9812 * once the 3 way hand shake is done a T_CONN_IND needs to be 9813 * sent. As an optimization, the caller can call this directly 9814 * if listener's perimeter is same as eager's. 9815 */ 9816 /* ARGSUSED */ 9817 void 9818 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9819 { 9820 conn_t *lconnp = (conn_t *)arg; 9821 tcp_t *listener = lconnp->conn_tcp; 9822 tcp_t *tcp; 9823 struct T_conn_ind *conn_ind; 9824 ipaddr_t *addr_cache; 9825 boolean_t need_send_conn_ind = B_FALSE; 9826 tcp_stack_t *tcps = listener->tcp_tcps; 9827 9828 /* retrieve the eager */ 9829 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9830 ASSERT(conn_ind->OPT_offset != 0 && 9831 conn_ind->OPT_length == sizeof (intptr_t)); 9832 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9833 conn_ind->OPT_length); 9834 9835 /* 9836 * TLI/XTI applications will get confused by 9837 * sending eager as an option since it violates 9838 * the option semantics. So remove the eager as 9839 * option since TLI/XTI app doesn't need it anyway. 9840 */ 9841 if (!TCP_IS_SOCKET(listener)) { 9842 conn_ind->OPT_length = 0; 9843 conn_ind->OPT_offset = 0; 9844 } 9845 if (listener->tcp_state != TCPS_LISTEN) { 9846 /* 9847 * If listener has closed, it would have caused a 9848 * a cleanup/blowoff to happen for the eager. We 9849 * just need to return. 9850 */ 9851 freemsg(mp); 9852 return; 9853 } 9854 9855 9856 /* 9857 * if the conn_req_q is full defer passing up the 9858 * T_CONN_IND until space is availabe after t_accept() 9859 * processing 9860 */ 9861 mutex_enter(&listener->tcp_eager_lock); 9862 9863 /* 9864 * Take the eager out, if it is in the list of droppable eagers 9865 * as we are here because the 3W handshake is over. 9866 */ 9867 MAKE_UNDROPPABLE(tcp); 9868 9869 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9870 tcp_t *tail; 9871 9872 /* 9873 * The eager already has an extra ref put in tcp_input_data 9874 * so that it stays till accept comes back even though it 9875 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9876 */ 9877 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9878 listener->tcp_conn_req_cnt_q0--; 9879 listener->tcp_conn_req_cnt_q++; 9880 9881 /* Move from SYN_RCVD to ESTABLISHED list */ 9882 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9883 tcp->tcp_eager_prev_q0; 9884 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9885 tcp->tcp_eager_next_q0; 9886 tcp->tcp_eager_prev_q0 = NULL; 9887 tcp->tcp_eager_next_q0 = NULL; 9888 9889 /* 9890 * Insert at end of the queue because sockfs 9891 * sends down T_CONN_RES in chronological 9892 * order. Leaving the older conn indications 9893 * at front of the queue helps reducing search 9894 * time. 9895 */ 9896 tail = listener->tcp_eager_last_q; 9897 if (tail != NULL) 9898 tail->tcp_eager_next_q = tcp; 9899 else 9900 listener->tcp_eager_next_q = tcp; 9901 listener->tcp_eager_last_q = tcp; 9902 tcp->tcp_eager_next_q = NULL; 9903 /* 9904 * Delay sending up the T_conn_ind until we are 9905 * done with the eager. Once we have have sent up 9906 * the T_conn_ind, the accept can potentially complete 9907 * any time and release the refhold we have on the eager. 9908 */ 9909 need_send_conn_ind = B_TRUE; 9910 } else { 9911 /* 9912 * Defer connection on q0 and set deferred 9913 * connection bit true 9914 */ 9915 tcp->tcp_conn_def_q0 = B_TRUE; 9916 9917 /* take tcp out of q0 ... */ 9918 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9919 tcp->tcp_eager_next_q0; 9920 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9921 tcp->tcp_eager_prev_q0; 9922 9923 /* ... and place it at the end of q0 */ 9924 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9925 tcp->tcp_eager_next_q0 = listener; 9926 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9927 listener->tcp_eager_prev_q0 = tcp; 9928 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9929 } 9930 9931 /* we have timed out before */ 9932 if (tcp->tcp_syn_rcvd_timeout != 0) { 9933 tcp->tcp_syn_rcvd_timeout = 0; 9934 listener->tcp_syn_rcvd_timeout--; 9935 if (listener->tcp_syn_defense && 9936 listener->tcp_syn_rcvd_timeout <= 9937 (tcps->tcps_conn_req_max_q0 >> 5) && 9938 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - 9939 listener->tcp_last_rcv_lbolt)) { 9940 /* 9941 * Turn off the defense mode if we 9942 * believe the SYN attack is over. 9943 */ 9944 listener->tcp_syn_defense = B_FALSE; 9945 if (listener->tcp_ip_addr_cache) { 9946 kmem_free((void *)listener->tcp_ip_addr_cache, 9947 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9948 listener->tcp_ip_addr_cache = NULL; 9949 } 9950 } 9951 } 9952 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9953 if (addr_cache != NULL) { 9954 /* 9955 * We have finished a 3-way handshake with this 9956 * remote host. This proves the IP addr is good. 9957 * Cache it! 9958 */ 9959 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9960 tcp->tcp_connp->conn_faddr_v4; 9961 } 9962 mutex_exit(&listener->tcp_eager_lock); 9963 if (need_send_conn_ind) 9964 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9965 } 9966 9967 /* 9968 * Send the newconn notification to ulp. The eager is blown off if the 9969 * notification fails. 9970 */ 9971 static void 9972 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9973 { 9974 if (IPCL_IS_NONSTR(lconnp)) { 9975 cred_t *cr; 9976 pid_t cpid = NOPID; 9977 9978 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9979 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9980 lconnp->conn_tcp); 9981 9982 cr = msg_getcred(mp, &cpid); 9983 9984 /* Keep the message around in case of a fallback to TPI */ 9985 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9986 /* 9987 * Notify the ULP about the newconn. It is guaranteed that no 9988 * tcp_accept() call will be made for the eager if the 9989 * notification fails, so it's safe to blow it off in that 9990 * case. 9991 * 9992 * The upper handle will be assigned when tcp_accept() is 9993 * called. 9994 */ 9995 if ((*lconnp->conn_upcalls->su_newconn) 9996 (lconnp->conn_upper_handle, 9997 (sock_lower_handle_t)econnp, 9998 &sock_tcp_downcalls, cr, cpid, 9999 &econnp->conn_upcalls) == NULL) { 10000 /* Failed to allocate a socket */ 10001 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 10002 tcpEstabResets); 10003 (void) tcp_eager_blowoff(lconnp->conn_tcp, 10004 econnp->conn_tcp->tcp_conn_req_seqnum); 10005 } 10006 } else { 10007 putnext(lconnp->conn_rq, mp); 10008 } 10009 } 10010 10011 /* 10012 * Handle a packet that has been reclassified by TCP. 10013 * This function drops the ref on connp that the caller had. 10014 */ 10015 static void 10016 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 10017 { 10018 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 10019 10020 if (connp->conn_incoming_ifindex != 0 && 10021 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 10022 freemsg(mp); 10023 CONN_DEC_REF(connp); 10024 return; 10025 } 10026 10027 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 10028 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 10029 ip6_t *ip6h; 10030 ipha_t *ipha; 10031 10032 if (ira->ira_flags & IRAF_IS_IPV4) { 10033 ipha = (ipha_t *)mp->b_rptr; 10034 ip6h = NULL; 10035 } else { 10036 ipha = NULL; 10037 ip6h = (ip6_t *)mp->b_rptr; 10038 } 10039 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 10040 if (mp == NULL) { 10041 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 10042 /* Note that mp is NULL */ 10043 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 10044 CONN_DEC_REF(connp); 10045 return; 10046 } 10047 } 10048 10049 if (IPCL_IS_TCP(connp)) { 10050 /* 10051 * do not drain, certain use cases can blow 10052 * the stack 10053 */ 10054 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10055 connp->conn_recv, connp, ira, 10056 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 10057 } else { 10058 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 10059 (connp->conn_recv)(connp, mp, NULL, 10060 ira); 10061 CONN_DEC_REF(connp); 10062 } 10063 10064 } 10065 10066 boolean_t tcp_outbound_squeue_switch = B_FALSE; 10067 10068 /* 10069 * Handle M_DATA messages from IP. Its called directly from IP via 10070 * squeue for received IP packets. 10071 * 10072 * The first argument is always the connp/tcp to which the mp belongs. 10073 * There are no exceptions to this rule. The caller has already put 10074 * a reference on this connp/tcp and once tcp_input_data() returns, 10075 * the squeue will do the refrele. 10076 * 10077 * The TH_SYN for the listener directly go to tcp_input_listener via 10078 * squeue. ICMP errors go directly to tcp_icmp_input(). 10079 * 10080 * sqp: NULL = recursive, sqp != NULL means called from squeue 10081 */ 10082 void 10083 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 10084 { 10085 int32_t bytes_acked; 10086 int32_t gap; 10087 mblk_t *mp1; 10088 uint_t flags; 10089 uint32_t new_swnd = 0; 10090 uchar_t *iphdr; 10091 uchar_t *rptr; 10092 int32_t rgap; 10093 uint32_t seg_ack; 10094 int seg_len; 10095 uint_t ip_hdr_len; 10096 uint32_t seg_seq; 10097 tcpha_t *tcpha; 10098 int urp; 10099 tcp_opt_t tcpopt; 10100 ip_pkt_t ipp; 10101 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 10102 uint32_t cwnd; 10103 uint32_t add; 10104 int npkt; 10105 int mss; 10106 conn_t *connp = (conn_t *)arg; 10107 squeue_t *sqp = (squeue_t *)arg2; 10108 tcp_t *tcp = connp->conn_tcp; 10109 tcp_stack_t *tcps = tcp->tcp_tcps; 10110 10111 /* 10112 * RST from fused tcp loopback peer should trigger an unfuse. 10113 */ 10114 if (tcp->tcp_fused) { 10115 TCP_STAT(tcps, tcp_fusion_aborted); 10116 tcp_unfuse(tcp); 10117 } 10118 10119 iphdr = mp->b_rptr; 10120 rptr = mp->b_rptr; 10121 ASSERT(OK_32PTR(rptr)); 10122 10123 ip_hdr_len = ira->ira_ip_hdr_length; 10124 if (connp->conn_recv_ancillary.crb_all != 0) { 10125 /* 10126 * Record packet information in the ip_pkt_t 10127 */ 10128 ipp.ipp_fields = 0; 10129 if (ira->ira_flags & IRAF_IS_IPV4) { 10130 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 10131 B_FALSE); 10132 } else { 10133 uint8_t nexthdrp; 10134 10135 /* 10136 * IPv6 packets can only be received by applications 10137 * that are prepared to receive IPv6 addresses. 10138 * The IP fanout must ensure this. 10139 */ 10140 ASSERT(connp->conn_family == AF_INET6); 10141 10142 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 10143 &nexthdrp); 10144 ASSERT(nexthdrp == IPPROTO_TCP); 10145 10146 /* Could have caused a pullup? */ 10147 iphdr = mp->b_rptr; 10148 rptr = mp->b_rptr; 10149 } 10150 } 10151 ASSERT(DB_TYPE(mp) == M_DATA); 10152 ASSERT(mp->b_next == NULL); 10153 10154 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10155 seg_seq = ntohl(tcpha->tha_seq); 10156 seg_ack = ntohl(tcpha->tha_ack); 10157 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 10158 seg_len = (int)(mp->b_wptr - rptr) - 10159 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 10160 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 10161 do { 10162 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 10163 (uintptr_t)INT_MAX); 10164 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 10165 } while ((mp1 = mp1->b_cont) != NULL && 10166 mp1->b_datap->db_type == M_DATA); 10167 } 10168 10169 if (tcp->tcp_state == TCPS_TIME_WAIT) { 10170 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 10171 seg_len, tcpha, ira); 10172 return; 10173 } 10174 10175 if (sqp != NULL) { 10176 /* 10177 * This is the correct place to update tcp_last_recv_time. Note 10178 * that it is also updated for tcp structure that belongs to 10179 * global and listener queues which do not really need updating. 10180 * But that should not cause any harm. And it is updated for 10181 * all kinds of incoming segments, not only for data segments. 10182 */ 10183 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 10184 } 10185 10186 flags = (unsigned int)tcpha->tha_flags & 0xFF; 10187 10188 BUMP_LOCAL(tcp->tcp_ibsegs); 10189 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10190 10191 if ((flags & TH_URG) && sqp != NULL) { 10192 /* 10193 * TCP can't handle urgent pointers that arrive before 10194 * the connection has been accept()ed since it can't 10195 * buffer OOB data. Discard segment if this happens. 10196 * 10197 * We can't just rely on a non-null tcp_listener to indicate 10198 * that the accept() has completed since unlinking of the 10199 * eager and completion of the accept are not atomic. 10200 * tcp_detached, when it is not set (B_FALSE) indicates 10201 * that the accept() has completed. 10202 * 10203 * Nor can it reassemble urgent pointers, so discard 10204 * if it's not the next segment expected. 10205 * 10206 * Otherwise, collapse chain into one mblk (discard if 10207 * that fails). This makes sure the headers, retransmitted 10208 * data, and new data all are in the same mblk. 10209 */ 10210 ASSERT(mp != NULL); 10211 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 10212 freemsg(mp); 10213 return; 10214 } 10215 /* Update pointers into message */ 10216 iphdr = rptr = mp->b_rptr; 10217 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10218 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 10219 /* 10220 * Since we can't handle any data with this urgent 10221 * pointer that is out of sequence, we expunge 10222 * the data. This allows us to still register 10223 * the urgent mark and generate the M_PCSIG, 10224 * which we can do. 10225 */ 10226 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10227 seg_len = 0; 10228 } 10229 } 10230 10231 switch (tcp->tcp_state) { 10232 case TCPS_SYN_SENT: 10233 if (connp->conn_final_sqp == NULL && 10234 tcp_outbound_squeue_switch && sqp != NULL) { 10235 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 10236 connp->conn_final_sqp = sqp; 10237 if (connp->conn_final_sqp != connp->conn_sqp) { 10238 DTRACE_PROBE1(conn__final__sqp__switch, 10239 conn_t *, connp); 10240 CONN_INC_REF(connp); 10241 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 10242 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10243 tcp_input_data, connp, ira, ip_squeue_flag, 10244 SQTAG_CONNECT_FINISH); 10245 return; 10246 } 10247 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 10248 } 10249 if (flags & TH_ACK) { 10250 /* 10251 * Note that our stack cannot send data before a 10252 * connection is established, therefore the 10253 * following check is valid. Otherwise, it has 10254 * to be changed. 10255 */ 10256 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 10257 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10258 freemsg(mp); 10259 if (flags & TH_RST) 10260 return; 10261 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 10262 tcp, seg_ack, 0, TH_RST); 10263 return; 10264 } 10265 ASSERT(tcp->tcp_suna + 1 == seg_ack); 10266 } 10267 if (flags & TH_RST) { 10268 freemsg(mp); 10269 if (flags & TH_ACK) 10270 (void) tcp_clean_death(tcp, 10271 ECONNREFUSED, 13); 10272 return; 10273 } 10274 if (!(flags & TH_SYN)) { 10275 freemsg(mp); 10276 return; 10277 } 10278 10279 /* Process all TCP options. */ 10280 tcp_process_options(tcp, tcpha); 10281 /* 10282 * The following changes our rwnd to be a multiple of the 10283 * MIN(peer MSS, our MSS) for performance reason. 10284 */ 10285 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 10286 tcp->tcp_mss)); 10287 10288 /* Is the other end ECN capable? */ 10289 if (tcp->tcp_ecn_ok) { 10290 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 10291 tcp->tcp_ecn_ok = B_FALSE; 10292 } 10293 } 10294 /* 10295 * Clear ECN flags because it may interfere with later 10296 * processing. 10297 */ 10298 flags &= ~(TH_ECE|TH_CWR); 10299 10300 tcp->tcp_irs = seg_seq; 10301 tcp->tcp_rack = seg_seq; 10302 tcp->tcp_rnxt = seg_seq + 1; 10303 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10304 if (!TCP_IS_DETACHED(tcp)) { 10305 /* Allocate room for SACK options if needed. */ 10306 connp->conn_wroff = connp->conn_ht_iphc_len; 10307 if (tcp->tcp_snd_sack_ok) 10308 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10309 if (!tcp->tcp_loopback) 10310 connp->conn_wroff += tcps->tcps_wroff_xtra; 10311 10312 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10313 connp->conn_wroff); 10314 } 10315 if (flags & TH_ACK) { 10316 /* 10317 * If we can't get the confirmation upstream, pretend 10318 * we didn't even see this one. 10319 * 10320 * XXX: how can we pretend we didn't see it if we 10321 * have updated rnxt et. al. 10322 * 10323 * For loopback we defer sending up the T_CONN_CON 10324 * until after some checks below. 10325 */ 10326 mp1 = NULL; 10327 /* 10328 * tcp_sendmsg() checks tcp_state without entering 10329 * the squeue so tcp_state should be updated before 10330 * sending up connection confirmation 10331 */ 10332 tcp->tcp_state = TCPS_ESTABLISHED; 10333 if (!tcp_conn_con(tcp, iphdr, mp, 10334 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10335 tcp->tcp_state = TCPS_SYN_SENT; 10336 freemsg(mp); 10337 return; 10338 } 10339 /* SYN was acked - making progress */ 10340 tcp->tcp_ip_forward_progress = B_TRUE; 10341 10342 /* One for the SYN */ 10343 tcp->tcp_suna = tcp->tcp_iss + 1; 10344 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10345 10346 /* 10347 * If SYN was retransmitted, need to reset all 10348 * retransmission info. This is because this 10349 * segment will be treated as a dup ACK. 10350 */ 10351 if (tcp->tcp_rexmit) { 10352 tcp->tcp_rexmit = B_FALSE; 10353 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10354 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10355 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10356 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10357 tcp->tcp_ms_we_have_waited = 0; 10358 10359 /* 10360 * Set tcp_cwnd back to 1 MSS, per 10361 * recommendation from 10362 * draft-floyd-incr-init-win-01.txt, 10363 * Increasing TCP's Initial Window. 10364 */ 10365 tcp->tcp_cwnd = tcp->tcp_mss; 10366 } 10367 10368 tcp->tcp_swl1 = seg_seq; 10369 tcp->tcp_swl2 = seg_ack; 10370 10371 new_swnd = ntohs(tcpha->tha_win); 10372 tcp->tcp_swnd = new_swnd; 10373 if (new_swnd > tcp->tcp_max_swnd) 10374 tcp->tcp_max_swnd = new_swnd; 10375 10376 /* 10377 * Always send the three-way handshake ack immediately 10378 * in order to make the connection complete as soon as 10379 * possible on the accepting host. 10380 */ 10381 flags |= TH_ACK_NEEDED; 10382 10383 /* 10384 * Special case for loopback. At this point we have 10385 * received SYN-ACK from the remote endpoint. In 10386 * order to ensure that both endpoints reach the 10387 * fused state prior to any data exchange, the final 10388 * ACK needs to be sent before we indicate T_CONN_CON 10389 * to the module upstream. 10390 */ 10391 if (tcp->tcp_loopback) { 10392 mblk_t *ack_mp; 10393 10394 ASSERT(!tcp->tcp_unfusable); 10395 ASSERT(mp1 != NULL); 10396 /* 10397 * For loopback, we always get a pure SYN-ACK 10398 * and only need to send back the final ACK 10399 * with no data (this is because the other 10400 * tcp is ours and we don't do T/TCP). This 10401 * final ACK triggers the passive side to 10402 * perform fusion in ESTABLISHED state. 10403 */ 10404 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10405 if (tcp->tcp_ack_tid != 0) { 10406 (void) TCP_TIMER_CANCEL(tcp, 10407 tcp->tcp_ack_tid); 10408 tcp->tcp_ack_tid = 0; 10409 } 10410 tcp_send_data(tcp, ack_mp); 10411 BUMP_LOCAL(tcp->tcp_obsegs); 10412 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10413 10414 if (!IPCL_IS_NONSTR(connp)) { 10415 /* Send up T_CONN_CON */ 10416 if (ira->ira_cred != NULL) { 10417 mblk_setcred(mp1, 10418 ira->ira_cred, 10419 ira->ira_cpid); 10420 } 10421 putnext(connp->conn_rq, mp1); 10422 } else { 10423 (*connp->conn_upcalls-> 10424 su_connected) 10425 (connp->conn_upper_handle, 10426 tcp->tcp_connid, 10427 ira->ira_cred, 10428 ira->ira_cpid); 10429 freemsg(mp1); 10430 } 10431 10432 freemsg(mp); 10433 return; 10434 } 10435 /* 10436 * Forget fusion; we need to handle more 10437 * complex cases below. Send the deferred 10438 * T_CONN_CON message upstream and proceed 10439 * as usual. Mark this tcp as not capable 10440 * of fusion. 10441 */ 10442 TCP_STAT(tcps, tcp_fusion_unfusable); 10443 tcp->tcp_unfusable = B_TRUE; 10444 if (!IPCL_IS_NONSTR(connp)) { 10445 if (ira->ira_cred != NULL) { 10446 mblk_setcred(mp1, ira->ira_cred, 10447 ira->ira_cpid); 10448 } 10449 putnext(connp->conn_rq, mp1); 10450 } else { 10451 (*connp->conn_upcalls->su_connected) 10452 (connp->conn_upper_handle, 10453 tcp->tcp_connid, ira->ira_cred, 10454 ira->ira_cpid); 10455 freemsg(mp1); 10456 } 10457 } 10458 10459 /* 10460 * Check to see if there is data to be sent. If 10461 * yes, set the transmit flag. Then check to see 10462 * if received data processing needs to be done. 10463 * If not, go straight to xmit_check. This short 10464 * cut is OK as we don't support T/TCP. 10465 */ 10466 if (tcp->tcp_unsent) 10467 flags |= TH_XMIT_NEEDED; 10468 10469 if (seg_len == 0 && !(flags & TH_URG)) { 10470 freemsg(mp); 10471 goto xmit_check; 10472 } 10473 10474 flags &= ~TH_SYN; 10475 seg_seq++; 10476 break; 10477 } 10478 tcp->tcp_state = TCPS_SYN_RCVD; 10479 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10480 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10481 if (mp1 != NULL) { 10482 tcp_send_data(tcp, mp1); 10483 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10484 } 10485 freemsg(mp); 10486 return; 10487 case TCPS_SYN_RCVD: 10488 if (flags & TH_ACK) { 10489 /* 10490 * In this state, a SYN|ACK packet is either bogus 10491 * because the other side must be ACKing our SYN which 10492 * indicates it has seen the ACK for their SYN and 10493 * shouldn't retransmit it or we're crossing SYNs 10494 * on active open. 10495 */ 10496 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10497 freemsg(mp); 10498 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10499 tcp, seg_ack, 0, TH_RST); 10500 return; 10501 } 10502 /* 10503 * NOTE: RFC 793 pg. 72 says this should be 10504 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10505 * but that would mean we have an ack that ignored 10506 * our SYN. 10507 */ 10508 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10509 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10510 freemsg(mp); 10511 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10512 tcp, seg_ack, 0, TH_RST); 10513 return; 10514 } 10515 /* 10516 * No sane TCP stack will send such a small window 10517 * without receiving any data. Just drop this invalid 10518 * ACK. We also shorten the abort timeout in case 10519 * this is an attack. 10520 */ 10521 if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) < 10522 (tcp->tcp_mss >> tcp_init_wnd_shft)) { 10523 freemsg(mp); 10524 TCP_STAT(tcps, tcp_zwin_ack_syn); 10525 tcp->tcp_second_ctimer_threshold = 10526 tcp_early_abort * SECONDS; 10527 return; 10528 } 10529 } 10530 break; 10531 case TCPS_LISTEN: 10532 /* 10533 * Only a TLI listener can come through this path when a 10534 * acceptor is going back to be a listener and a packet 10535 * for the acceptor hits the classifier. For a socket 10536 * listener, this can never happen because a listener 10537 * can never accept connection on itself and hence a 10538 * socket acceptor can not go back to being a listener. 10539 */ 10540 ASSERT(!TCP_IS_SOCKET(tcp)); 10541 /*FALLTHRU*/ 10542 case TCPS_CLOSED: 10543 case TCPS_BOUND: { 10544 conn_t *new_connp; 10545 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10546 10547 /* 10548 * Don't accept any input on a closed tcp as this TCP logically 10549 * does not exist on the system. Don't proceed further with 10550 * this TCP. For instance, this packet could trigger another 10551 * close of this tcp which would be disastrous for tcp_refcnt. 10552 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10553 * be called at most once on a TCP. In this case we need to 10554 * refeed the packet into the classifier and figure out where 10555 * the packet should go. 10556 */ 10557 new_connp = ipcl_classify(mp, ira, ipst); 10558 if (new_connp != NULL) { 10559 /* Drops ref on new_connp */ 10560 tcp_reinput(new_connp, mp, ira, ipst); 10561 return; 10562 } 10563 /* We failed to classify. For now just drop the packet */ 10564 freemsg(mp); 10565 return; 10566 } 10567 case TCPS_IDLE: 10568 /* 10569 * Handle the case where the tcp_clean_death() has happened 10570 * on a connection (application hasn't closed yet) but a packet 10571 * was already queued on squeue before tcp_clean_death() 10572 * was processed. Calling tcp_clean_death() twice on same 10573 * connection can result in weird behaviour. 10574 */ 10575 freemsg(mp); 10576 return; 10577 default: 10578 break; 10579 } 10580 10581 /* 10582 * Already on the correct queue/perimeter. 10583 * If this is a detached connection and not an eager 10584 * connection hanging off a listener then new data 10585 * (past the FIN) will cause a reset. 10586 * We do a special check here where it 10587 * is out of the main line, rather than check 10588 * if we are detached every time we see new 10589 * data down below. 10590 */ 10591 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10592 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10593 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10594 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10595 10596 freemsg(mp); 10597 /* 10598 * This could be an SSL closure alert. We're detached so just 10599 * acknowledge it this last time. 10600 */ 10601 if (tcp->tcp_kssl_ctx != NULL) { 10602 kssl_release_ctx(tcp->tcp_kssl_ctx); 10603 tcp->tcp_kssl_ctx = NULL; 10604 10605 tcp->tcp_rnxt += seg_len; 10606 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10607 flags |= TH_ACK_NEEDED; 10608 goto ack_check; 10609 } 10610 10611 tcp_xmit_ctl("new data when detached", tcp, 10612 tcp->tcp_snxt, 0, TH_RST); 10613 (void) tcp_clean_death(tcp, EPROTO, 12); 10614 return; 10615 } 10616 10617 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10618 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10619 new_swnd = ntohs(tcpha->tha_win) << 10620 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10621 10622 if (tcp->tcp_snd_ts_ok) { 10623 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10624 /* 10625 * This segment is not acceptable. 10626 * Drop it and send back an ACK. 10627 */ 10628 freemsg(mp); 10629 flags |= TH_ACK_NEEDED; 10630 goto ack_check; 10631 } 10632 } else if (tcp->tcp_snd_sack_ok) { 10633 ASSERT(tcp->tcp_sack_info != NULL); 10634 tcpopt.tcp = tcp; 10635 /* 10636 * SACK info in already updated in tcp_parse_options. Ignore 10637 * all other TCP options... 10638 */ 10639 (void) tcp_parse_options(tcpha, &tcpopt); 10640 } 10641 try_again:; 10642 mss = tcp->tcp_mss; 10643 gap = seg_seq - tcp->tcp_rnxt; 10644 rgap = tcp->tcp_rwnd - (gap + seg_len); 10645 /* 10646 * gap is the amount of sequence space between what we expect to see 10647 * and what we got for seg_seq. A positive value for gap means 10648 * something got lost. A negative value means we got some old stuff. 10649 */ 10650 if (gap < 0) { 10651 /* Old stuff present. Is the SYN in there? */ 10652 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10653 (seg_len != 0)) { 10654 flags &= ~TH_SYN; 10655 seg_seq++; 10656 urp--; 10657 /* Recompute the gaps after noting the SYN. */ 10658 goto try_again; 10659 } 10660 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10661 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10662 (seg_len > -gap ? -gap : seg_len)); 10663 /* Remove the old stuff from seg_len. */ 10664 seg_len += gap; 10665 /* 10666 * Anything left? 10667 * Make sure to check for unack'd FIN when rest of data 10668 * has been previously ack'd. 10669 */ 10670 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10671 /* 10672 * Resets are only valid if they lie within our offered 10673 * window. If the RST bit is set, we just ignore this 10674 * segment. 10675 */ 10676 if (flags & TH_RST) { 10677 freemsg(mp); 10678 return; 10679 } 10680 10681 /* 10682 * The arriving of dup data packets indicate that we 10683 * may have postponed an ack for too long, or the other 10684 * side's RTT estimate is out of shape. Start acking 10685 * more often. 10686 */ 10687 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10688 tcp->tcp_rack_cnt >= 1 && 10689 tcp->tcp_rack_abs_max > 2) { 10690 tcp->tcp_rack_abs_max--; 10691 } 10692 tcp->tcp_rack_cur_max = 1; 10693 10694 /* 10695 * This segment is "unacceptable". None of its 10696 * sequence space lies within our advertized window. 10697 * 10698 * Adjust seg_len to the original value for tracing. 10699 */ 10700 seg_len -= gap; 10701 if (connp->conn_debug) { 10702 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10703 "tcp_rput: unacceptable, gap %d, rgap %d, " 10704 "flags 0x%x, seg_seq %u, seg_ack %u, " 10705 "seg_len %d, rnxt %u, snxt %u, %s", 10706 gap, rgap, flags, seg_seq, seg_ack, 10707 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10708 tcp_display(tcp, NULL, 10709 DISP_ADDR_AND_PORT)); 10710 } 10711 10712 /* 10713 * Arrange to send an ACK in response to the 10714 * unacceptable segment per RFC 793 page 69. There 10715 * is only one small difference between ours and the 10716 * acceptability test in the RFC - we accept ACK-only 10717 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10718 * will be generated. 10719 * 10720 * Note that we have to ACK an ACK-only packet at least 10721 * for stacks that send 0-length keep-alives with 10722 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10723 * section 4.2.3.6. As long as we don't ever generate 10724 * an unacceptable packet in response to an incoming 10725 * packet that is unacceptable, it should not cause 10726 * "ACK wars". 10727 */ 10728 flags |= TH_ACK_NEEDED; 10729 10730 /* 10731 * Continue processing this segment in order to use the 10732 * ACK information it contains, but skip all other 10733 * sequence-number processing. Processing the ACK 10734 * information is necessary in order to 10735 * re-synchronize connections that may have lost 10736 * synchronization. 10737 * 10738 * We clear seg_len and flag fields related to 10739 * sequence number processing as they are not 10740 * to be trusted for an unacceptable segment. 10741 */ 10742 seg_len = 0; 10743 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10744 goto process_ack; 10745 } 10746 10747 /* Fix seg_seq, and chew the gap off the front. */ 10748 seg_seq = tcp->tcp_rnxt; 10749 urp += gap; 10750 do { 10751 mblk_t *mp2; 10752 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10753 (uintptr_t)UINT_MAX); 10754 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10755 if (gap > 0) { 10756 mp->b_rptr = mp->b_wptr - gap; 10757 break; 10758 } 10759 mp2 = mp; 10760 mp = mp->b_cont; 10761 freeb(mp2); 10762 } while (gap < 0); 10763 /* 10764 * If the urgent data has already been acknowledged, we 10765 * should ignore TH_URG below 10766 */ 10767 if (urp < 0) 10768 flags &= ~TH_URG; 10769 } 10770 /* 10771 * rgap is the amount of stuff received out of window. A negative 10772 * value is the amount out of window. 10773 */ 10774 if (rgap < 0) { 10775 mblk_t *mp2; 10776 10777 if (tcp->tcp_rwnd == 0) { 10778 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10779 } else { 10780 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10781 UPDATE_MIB(&tcps->tcps_mib, 10782 tcpInDataPastWinBytes, -rgap); 10783 } 10784 10785 /* 10786 * seg_len does not include the FIN, so if more than 10787 * just the FIN is out of window, we act like we don't 10788 * see it. (If just the FIN is out of window, rgap 10789 * will be zero and we will go ahead and acknowledge 10790 * the FIN.) 10791 */ 10792 flags &= ~TH_FIN; 10793 10794 /* Fix seg_len and make sure there is something left. */ 10795 seg_len += rgap; 10796 if (seg_len <= 0) { 10797 /* 10798 * Resets are only valid if they lie within our offered 10799 * window. If the RST bit is set, we just ignore this 10800 * segment. 10801 */ 10802 if (flags & TH_RST) { 10803 freemsg(mp); 10804 return; 10805 } 10806 10807 /* Per RFC 793, we need to send back an ACK. */ 10808 flags |= TH_ACK_NEEDED; 10809 10810 /* 10811 * Send SIGURG as soon as possible i.e. even 10812 * if the TH_URG was delivered in a window probe 10813 * packet (which will be unacceptable). 10814 * 10815 * We generate a signal if none has been generated 10816 * for this connection or if this is a new urgent 10817 * byte. Also send a zero-length "unmarked" message 10818 * to inform SIOCATMARK that this is not the mark. 10819 * 10820 * tcp_urp_last_valid is cleared when the T_exdata_ind 10821 * is sent up. This plus the check for old data 10822 * (gap >= 0) handles the wraparound of the sequence 10823 * number space without having to always track the 10824 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10825 * this max in its rcv_up variable). 10826 * 10827 * This prevents duplicate SIGURGS due to a "late" 10828 * zero-window probe when the T_EXDATA_IND has already 10829 * been sent up. 10830 */ 10831 if ((flags & TH_URG) && 10832 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10833 tcp->tcp_urp_last))) { 10834 if (IPCL_IS_NONSTR(connp)) { 10835 if (!TCP_IS_DETACHED(tcp)) { 10836 (*connp->conn_upcalls-> 10837 su_signal_oob) 10838 (connp->conn_upper_handle, 10839 urp); 10840 } 10841 } else { 10842 mp1 = allocb(0, BPRI_MED); 10843 if (mp1 == NULL) { 10844 freemsg(mp); 10845 return; 10846 } 10847 if (!TCP_IS_DETACHED(tcp) && 10848 !putnextctl1(connp->conn_rq, 10849 M_PCSIG, SIGURG)) { 10850 /* Try again on the rexmit. */ 10851 freemsg(mp1); 10852 freemsg(mp); 10853 return; 10854 } 10855 /* 10856 * If the next byte would be the mark 10857 * then mark with MARKNEXT else mark 10858 * with NOTMARKNEXT. 10859 */ 10860 if (gap == 0 && urp == 0) 10861 mp1->b_flag |= MSGMARKNEXT; 10862 else 10863 mp1->b_flag |= MSGNOTMARKNEXT; 10864 freemsg(tcp->tcp_urp_mark_mp); 10865 tcp->tcp_urp_mark_mp = mp1; 10866 flags |= TH_SEND_URP_MARK; 10867 } 10868 tcp->tcp_urp_last_valid = B_TRUE; 10869 tcp->tcp_urp_last = urp + seg_seq; 10870 } 10871 /* 10872 * If this is a zero window probe, continue to 10873 * process the ACK part. But we need to set seg_len 10874 * to 0 to avoid data processing. Otherwise just 10875 * drop the segment and send back an ACK. 10876 */ 10877 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10878 flags &= ~(TH_SYN | TH_URG); 10879 seg_len = 0; 10880 goto process_ack; 10881 } else { 10882 freemsg(mp); 10883 goto ack_check; 10884 } 10885 } 10886 /* Pitch out of window stuff off the end. */ 10887 rgap = seg_len; 10888 mp2 = mp; 10889 do { 10890 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10891 (uintptr_t)INT_MAX); 10892 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10893 if (rgap < 0) { 10894 mp2->b_wptr += rgap; 10895 if ((mp1 = mp2->b_cont) != NULL) { 10896 mp2->b_cont = NULL; 10897 freemsg(mp1); 10898 } 10899 break; 10900 } 10901 } while ((mp2 = mp2->b_cont) != NULL); 10902 } 10903 ok:; 10904 /* 10905 * TCP should check ECN info for segments inside the window only. 10906 * Therefore the check should be done here. 10907 */ 10908 if (tcp->tcp_ecn_ok) { 10909 if (flags & TH_CWR) { 10910 tcp->tcp_ecn_echo_on = B_FALSE; 10911 } 10912 /* 10913 * Note that both ECN_CE and CWR can be set in the 10914 * same segment. In this case, we once again turn 10915 * on ECN_ECHO. 10916 */ 10917 if (connp->conn_ipversion == IPV4_VERSION) { 10918 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10919 10920 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10921 tcp->tcp_ecn_echo_on = B_TRUE; 10922 } 10923 } else { 10924 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10925 10926 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10927 htonl(IPH_ECN_CE << 20)) { 10928 tcp->tcp_ecn_echo_on = B_TRUE; 10929 } 10930 } 10931 } 10932 10933 /* 10934 * Check whether we can update tcp_ts_recent. This test is 10935 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10936 * Extensions for High Performance: An Update", Internet Draft. 10937 */ 10938 if (tcp->tcp_snd_ts_ok && 10939 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10940 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10941 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10942 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 10943 } 10944 10945 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10946 /* 10947 * FIN in an out of order segment. We record this in 10948 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10949 * Clear the FIN so that any check on FIN flag will fail. 10950 * Remember that FIN also counts in the sequence number 10951 * space. So we need to ack out of order FIN only segments. 10952 */ 10953 if (flags & TH_FIN) { 10954 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10955 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10956 flags &= ~TH_FIN; 10957 flags |= TH_ACK_NEEDED; 10958 } 10959 if (seg_len > 0) { 10960 /* Fill in the SACK blk list. */ 10961 if (tcp->tcp_snd_sack_ok) { 10962 ASSERT(tcp->tcp_sack_info != NULL); 10963 tcp_sack_insert(tcp->tcp_sack_list, 10964 seg_seq, seg_seq + seg_len, 10965 &(tcp->tcp_num_sack_blk)); 10966 } 10967 10968 /* 10969 * Attempt reassembly and see if we have something 10970 * ready to go. 10971 */ 10972 mp = tcp_reass(tcp, mp, seg_seq); 10973 /* Always ack out of order packets */ 10974 flags |= TH_ACK_NEEDED | TH_PUSH; 10975 if (mp) { 10976 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10977 (uintptr_t)INT_MAX); 10978 seg_len = mp->b_cont ? msgdsize(mp) : 10979 (int)(mp->b_wptr - mp->b_rptr); 10980 seg_seq = tcp->tcp_rnxt; 10981 /* 10982 * A gap is filled and the seq num and len 10983 * of the gap match that of a previously 10984 * received FIN, put the FIN flag back in. 10985 */ 10986 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10987 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10988 flags |= TH_FIN; 10989 tcp->tcp_valid_bits &= 10990 ~TCP_OFO_FIN_VALID; 10991 } 10992 if (tcp->tcp_reass_tid != 0) { 10993 (void) TCP_TIMER_CANCEL(tcp, 10994 tcp->tcp_reass_tid); 10995 /* 10996 * Restart the timer if there is still 10997 * data in the reassembly queue. 10998 */ 10999 if (tcp->tcp_reass_head != NULL) { 11000 tcp->tcp_reass_tid = TCP_TIMER( 11001 tcp, tcp_reass_timer, 11002 MSEC_TO_TICK( 11003 tcps->tcps_reass_timeout)); 11004 } else { 11005 tcp->tcp_reass_tid = 0; 11006 } 11007 } 11008 } else { 11009 /* 11010 * Keep going even with NULL mp. 11011 * There may be a useful ACK or something else 11012 * we don't want to miss. 11013 * 11014 * But TCP should not perform fast retransmit 11015 * because of the ack number. TCP uses 11016 * seg_len == 0 to determine if it is a pure 11017 * ACK. And this is not a pure ACK. 11018 */ 11019 seg_len = 0; 11020 ofo_seg = B_TRUE; 11021 11022 if (tcps->tcps_reass_timeout != 0 && 11023 tcp->tcp_reass_tid == 0) { 11024 tcp->tcp_reass_tid = TCP_TIMER(tcp, 11025 tcp_reass_timer, MSEC_TO_TICK( 11026 tcps->tcps_reass_timeout)); 11027 } 11028 } 11029 } 11030 } else if (seg_len > 0) { 11031 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 11032 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 11033 /* 11034 * If an out of order FIN was received before, and the seq 11035 * num and len of the new segment match that of the FIN, 11036 * put the FIN flag back in. 11037 */ 11038 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 11039 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 11040 flags |= TH_FIN; 11041 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 11042 } 11043 } 11044 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 11045 if (flags & TH_RST) { 11046 freemsg(mp); 11047 switch (tcp->tcp_state) { 11048 case TCPS_SYN_RCVD: 11049 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 11050 break; 11051 case TCPS_ESTABLISHED: 11052 case TCPS_FIN_WAIT_1: 11053 case TCPS_FIN_WAIT_2: 11054 case TCPS_CLOSE_WAIT: 11055 (void) tcp_clean_death(tcp, ECONNRESET, 15); 11056 break; 11057 case TCPS_CLOSING: 11058 case TCPS_LAST_ACK: 11059 (void) tcp_clean_death(tcp, 0, 16); 11060 break; 11061 default: 11062 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11063 (void) tcp_clean_death(tcp, ENXIO, 17); 11064 break; 11065 } 11066 return; 11067 } 11068 if (flags & TH_SYN) { 11069 /* 11070 * See RFC 793, Page 71 11071 * 11072 * The seq number must be in the window as it should 11073 * be "fixed" above. If it is outside window, it should 11074 * be already rejected. Note that we allow seg_seq to be 11075 * rnxt + rwnd because we want to accept 0 window probe. 11076 */ 11077 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 11078 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 11079 freemsg(mp); 11080 /* 11081 * If the ACK flag is not set, just use our snxt as the 11082 * seq number of the RST segment. 11083 */ 11084 if (!(flags & TH_ACK)) { 11085 seg_ack = tcp->tcp_snxt; 11086 } 11087 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 11088 TH_RST|TH_ACK); 11089 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11090 (void) tcp_clean_death(tcp, ECONNRESET, 18); 11091 return; 11092 } 11093 /* 11094 * urp could be -1 when the urp field in the packet is 0 11095 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 11096 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 11097 */ 11098 if (flags & TH_URG && urp >= 0) { 11099 if (!tcp->tcp_urp_last_valid || 11100 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 11101 /* 11102 * Non-STREAMS sockets handle the urgent data a litte 11103 * differently from STREAMS based sockets. There is no 11104 * need to mark any mblks with the MSG{NOT,}MARKNEXT 11105 * flags to keep SIOCATMARK happy. Instead a 11106 * su_signal_oob upcall is made to update the mark. 11107 * Neither is a T_EXDATA_IND mblk needed to be 11108 * prepended to the urgent data. The urgent data is 11109 * delivered using the su_recv upcall, where we set 11110 * the MSG_OOB flag to indicate that it is urg data. 11111 * 11112 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 11113 * are used by non-STREAMS sockets. 11114 */ 11115 if (IPCL_IS_NONSTR(connp)) { 11116 if (!TCP_IS_DETACHED(tcp)) { 11117 (*connp->conn_upcalls->su_signal_oob) 11118 (connp->conn_upper_handle, urp); 11119 } 11120 } else { 11121 /* 11122 * If we haven't generated the signal yet for 11123 * this urgent pointer value, do it now. Also, 11124 * send up a zero-length M_DATA indicating 11125 * whether or not this is the mark. The latter 11126 * is not needed when a T_EXDATA_IND is sent up. 11127 * However, if there are allocation failures 11128 * this code relies on the sender retransmitting 11129 * and the socket code for determining the mark 11130 * should not block waiting for the peer to 11131 * transmit. Thus, for simplicity we always 11132 * send up the mark indication. 11133 */ 11134 mp1 = allocb(0, BPRI_MED); 11135 if (mp1 == NULL) { 11136 freemsg(mp); 11137 return; 11138 } 11139 if (!TCP_IS_DETACHED(tcp) && 11140 !putnextctl1(connp->conn_rq, M_PCSIG, 11141 SIGURG)) { 11142 /* Try again on the rexmit. */ 11143 freemsg(mp1); 11144 freemsg(mp); 11145 return; 11146 } 11147 /* 11148 * Mark with NOTMARKNEXT for now. 11149 * The code below will change this to MARKNEXT 11150 * if we are at the mark. 11151 * 11152 * If there are allocation failures (e.g. in 11153 * dupmsg below) the next time tcp_input_data 11154 * sees the urgent segment it will send up the 11155 * MSGMARKNEXT message. 11156 */ 11157 mp1->b_flag |= MSGNOTMARKNEXT; 11158 freemsg(tcp->tcp_urp_mark_mp); 11159 tcp->tcp_urp_mark_mp = mp1; 11160 flags |= TH_SEND_URP_MARK; 11161 #ifdef DEBUG 11162 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11163 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 11164 "last %x, %s", 11165 seg_seq, urp, tcp->tcp_urp_last, 11166 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11167 #endif /* DEBUG */ 11168 } 11169 tcp->tcp_urp_last_valid = B_TRUE; 11170 tcp->tcp_urp_last = urp + seg_seq; 11171 } else if (tcp->tcp_urp_mark_mp != NULL) { 11172 /* 11173 * An allocation failure prevented the previous 11174 * tcp_input_data from sending up the allocated 11175 * MSG*MARKNEXT message - send it up this time 11176 * around. 11177 */ 11178 flags |= TH_SEND_URP_MARK; 11179 } 11180 11181 /* 11182 * If the urgent byte is in this segment, make sure that it is 11183 * all by itself. This makes it much easier to deal with the 11184 * possibility of an allocation failure on the T_exdata_ind. 11185 * Note that seg_len is the number of bytes in the segment, and 11186 * urp is the offset into the segment of the urgent byte. 11187 * urp < seg_len means that the urgent byte is in this segment. 11188 */ 11189 if (urp < seg_len) { 11190 if (seg_len != 1) { 11191 uint32_t tmp_rnxt; 11192 /* 11193 * Break it up and feed it back in. 11194 * Re-attach the IP header. 11195 */ 11196 mp->b_rptr = iphdr; 11197 if (urp > 0) { 11198 /* 11199 * There is stuff before the urgent 11200 * byte. 11201 */ 11202 mp1 = dupmsg(mp); 11203 if (!mp1) { 11204 /* 11205 * Trim from urgent byte on. 11206 * The rest will come back. 11207 */ 11208 (void) adjmsg(mp, 11209 urp - seg_len); 11210 tcp_input_data(connp, 11211 mp, NULL, ira); 11212 return; 11213 } 11214 (void) adjmsg(mp1, urp - seg_len); 11215 /* Feed this piece back in. */ 11216 tmp_rnxt = tcp->tcp_rnxt; 11217 tcp_input_data(connp, mp1, NULL, ira); 11218 /* 11219 * If the data passed back in was not 11220 * processed (ie: bad ACK) sending 11221 * the remainder back in will cause a 11222 * loop. In this case, drop the 11223 * packet and let the sender try 11224 * sending a good packet. 11225 */ 11226 if (tmp_rnxt == tcp->tcp_rnxt) { 11227 freemsg(mp); 11228 return; 11229 } 11230 } 11231 if (urp != seg_len - 1) { 11232 uint32_t tmp_rnxt; 11233 /* 11234 * There is stuff after the urgent 11235 * byte. 11236 */ 11237 mp1 = dupmsg(mp); 11238 if (!mp1) { 11239 /* 11240 * Trim everything beyond the 11241 * urgent byte. The rest will 11242 * come back. 11243 */ 11244 (void) adjmsg(mp, 11245 urp + 1 - seg_len); 11246 tcp_input_data(connp, 11247 mp, NULL, ira); 11248 return; 11249 } 11250 (void) adjmsg(mp1, urp + 1 - seg_len); 11251 tmp_rnxt = tcp->tcp_rnxt; 11252 tcp_input_data(connp, mp1, NULL, ira); 11253 /* 11254 * If the data passed back in was not 11255 * processed (ie: bad ACK) sending 11256 * the remainder back in will cause a 11257 * loop. In this case, drop the 11258 * packet and let the sender try 11259 * sending a good packet. 11260 */ 11261 if (tmp_rnxt == tcp->tcp_rnxt) { 11262 freemsg(mp); 11263 return; 11264 } 11265 } 11266 tcp_input_data(connp, mp, NULL, ira); 11267 return; 11268 } 11269 /* 11270 * This segment contains only the urgent byte. We 11271 * have to allocate the T_exdata_ind, if we can. 11272 */ 11273 if (IPCL_IS_NONSTR(connp)) { 11274 int error; 11275 11276 (*connp->conn_upcalls->su_recv) 11277 (connp->conn_upper_handle, mp, seg_len, 11278 MSG_OOB, &error, NULL); 11279 /* 11280 * We should never be in middle of a 11281 * fallback, the squeue guarantees that. 11282 */ 11283 ASSERT(error != EOPNOTSUPP); 11284 mp = NULL; 11285 goto update_ack; 11286 } else if (!tcp->tcp_urp_mp) { 11287 struct T_exdata_ind *tei; 11288 mp1 = allocb(sizeof (struct T_exdata_ind), 11289 BPRI_MED); 11290 if (!mp1) { 11291 /* 11292 * Sigh... It'll be back. 11293 * Generate any MSG*MARK message now. 11294 */ 11295 freemsg(mp); 11296 seg_len = 0; 11297 if (flags & TH_SEND_URP_MARK) { 11298 11299 11300 ASSERT(tcp->tcp_urp_mark_mp); 11301 tcp->tcp_urp_mark_mp->b_flag &= 11302 ~MSGNOTMARKNEXT; 11303 tcp->tcp_urp_mark_mp->b_flag |= 11304 MSGMARKNEXT; 11305 } 11306 goto ack_check; 11307 } 11308 mp1->b_datap->db_type = M_PROTO; 11309 tei = (struct T_exdata_ind *)mp1->b_rptr; 11310 tei->PRIM_type = T_EXDATA_IND; 11311 tei->MORE_flag = 0; 11312 mp1->b_wptr = (uchar_t *)&tei[1]; 11313 tcp->tcp_urp_mp = mp1; 11314 #ifdef DEBUG 11315 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11316 "tcp_rput: allocated exdata_ind %s", 11317 tcp_display(tcp, NULL, 11318 DISP_PORT_ONLY)); 11319 #endif /* DEBUG */ 11320 /* 11321 * There is no need to send a separate MSG*MARK 11322 * message since the T_EXDATA_IND will be sent 11323 * now. 11324 */ 11325 flags &= ~TH_SEND_URP_MARK; 11326 freemsg(tcp->tcp_urp_mark_mp); 11327 tcp->tcp_urp_mark_mp = NULL; 11328 } 11329 /* 11330 * Now we are all set. On the next putnext upstream, 11331 * tcp_urp_mp will be non-NULL and will get prepended 11332 * to what has to be this piece containing the urgent 11333 * byte. If for any reason we abort this segment below, 11334 * if it comes back, we will have this ready, or it 11335 * will get blown off in close. 11336 */ 11337 } else if (urp == seg_len) { 11338 /* 11339 * The urgent byte is the next byte after this sequence 11340 * number. If this endpoint is non-STREAMS, then there 11341 * is nothing to do here since the socket has already 11342 * been notified about the urg pointer by the 11343 * su_signal_oob call above. 11344 * 11345 * In case of STREAMS, some more work might be needed. 11346 * If there is data it is marked with MSGMARKNEXT and 11347 * and any tcp_urp_mark_mp is discarded since it is not 11348 * needed. Otherwise, if the code above just allocated 11349 * a zero-length tcp_urp_mark_mp message, that message 11350 * is tagged with MSGMARKNEXT. Sending up these 11351 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11352 * even though the T_EXDATA_IND will not be sent up 11353 * until the urgent byte arrives. 11354 */ 11355 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11356 if (seg_len != 0) { 11357 flags |= TH_MARKNEXT_NEEDED; 11358 freemsg(tcp->tcp_urp_mark_mp); 11359 tcp->tcp_urp_mark_mp = NULL; 11360 flags &= ~TH_SEND_URP_MARK; 11361 } else if (tcp->tcp_urp_mark_mp != NULL) { 11362 flags |= TH_SEND_URP_MARK; 11363 tcp->tcp_urp_mark_mp->b_flag &= 11364 ~MSGNOTMARKNEXT; 11365 tcp->tcp_urp_mark_mp->b_flag |= 11366 MSGMARKNEXT; 11367 } 11368 } 11369 #ifdef DEBUG 11370 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11371 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11372 seg_len, flags, 11373 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11374 #endif /* DEBUG */ 11375 } 11376 #ifdef DEBUG 11377 else { 11378 /* Data left until we hit mark */ 11379 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11380 "tcp_rput: URP %d bytes left, %s", 11381 urp - seg_len, tcp_display(tcp, NULL, 11382 DISP_PORT_ONLY)); 11383 } 11384 #endif /* DEBUG */ 11385 } 11386 11387 process_ack: 11388 if (!(flags & TH_ACK)) { 11389 freemsg(mp); 11390 goto xmit_check; 11391 } 11392 } 11393 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11394 11395 if (bytes_acked > 0) 11396 tcp->tcp_ip_forward_progress = B_TRUE; 11397 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11398 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11399 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11400 /* 3-way handshake complete - pass up the T_CONN_IND */ 11401 tcp_t *listener = tcp->tcp_listener; 11402 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11403 11404 tcp->tcp_tconnind_started = B_TRUE; 11405 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11406 /* 11407 * We are here means eager is fine but it can 11408 * get a TH_RST at any point between now and till 11409 * accept completes and disappear. We need to 11410 * ensure that reference to eager is valid after 11411 * we get out of eager's perimeter. So we do 11412 * an extra refhold. 11413 */ 11414 CONN_INC_REF(connp); 11415 11416 /* 11417 * The listener also exists because of the refhold 11418 * done in tcp_input_listener. Its possible that it 11419 * might have closed. We will check that once we 11420 * get inside listeners context. 11421 */ 11422 CONN_INC_REF(listener->tcp_connp); 11423 if (listener->tcp_connp->conn_sqp == 11424 connp->conn_sqp) { 11425 /* 11426 * We optimize by not calling an SQUEUE_ENTER 11427 * on the listener since we know that the 11428 * listener and eager squeues are the same. 11429 * We are able to make this check safely only 11430 * because neither the eager nor the listener 11431 * can change its squeue. Only an active connect 11432 * can change its squeue 11433 */ 11434 tcp_send_conn_ind(listener->tcp_connp, mp, 11435 listener->tcp_connp->conn_sqp); 11436 CONN_DEC_REF(listener->tcp_connp); 11437 } else if (!tcp->tcp_loopback) { 11438 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11439 mp, tcp_send_conn_ind, 11440 listener->tcp_connp, NULL, SQ_FILL, 11441 SQTAG_TCP_CONN_IND); 11442 } else { 11443 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11444 mp, tcp_send_conn_ind, 11445 listener->tcp_connp, NULL, SQ_PROCESS, 11446 SQTAG_TCP_CONN_IND); 11447 } 11448 } 11449 11450 /* 11451 * We are seeing the final ack in the three way 11452 * hand shake of a active open'ed connection 11453 * so we must send up a T_CONN_CON 11454 * 11455 * tcp_sendmsg() checks tcp_state without entering 11456 * the squeue so tcp_state should be updated before 11457 * sending up connection confirmation. 11458 */ 11459 tcp->tcp_state = TCPS_ESTABLISHED; 11460 if (tcp->tcp_active_open) { 11461 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11462 freemsg(mp); 11463 tcp->tcp_state = TCPS_SYN_RCVD; 11464 return; 11465 } 11466 /* 11467 * Don't fuse the loopback endpoints for 11468 * simultaneous active opens. 11469 */ 11470 if (tcp->tcp_loopback) { 11471 TCP_STAT(tcps, tcp_fusion_unfusable); 11472 tcp->tcp_unfusable = B_TRUE; 11473 } 11474 } 11475 11476 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11477 bytes_acked--; 11478 /* SYN was acked - making progress */ 11479 tcp->tcp_ip_forward_progress = B_TRUE; 11480 11481 /* 11482 * If SYN was retransmitted, need to reset all 11483 * retransmission info as this segment will be 11484 * treated as a dup ACK. 11485 */ 11486 if (tcp->tcp_rexmit) { 11487 tcp->tcp_rexmit = B_FALSE; 11488 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11489 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11490 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11491 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11492 tcp->tcp_ms_we_have_waited = 0; 11493 tcp->tcp_cwnd = mss; 11494 } 11495 11496 /* 11497 * We set the send window to zero here. 11498 * This is needed if there is data to be 11499 * processed already on the queue. 11500 * Later (at swnd_update label), the 11501 * "new_swnd > tcp_swnd" condition is satisfied 11502 * the XMIT_NEEDED flag is set in the current 11503 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11504 * called if there is already data on queue in 11505 * this state. 11506 */ 11507 tcp->tcp_swnd = 0; 11508 11509 if (new_swnd > tcp->tcp_max_swnd) 11510 tcp->tcp_max_swnd = new_swnd; 11511 tcp->tcp_swl1 = seg_seq; 11512 tcp->tcp_swl2 = seg_ack; 11513 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11514 11515 /* Fuse when both sides are in ESTABLISHED state */ 11516 if (tcp->tcp_loopback && do_tcp_fusion) 11517 tcp_fuse(tcp, iphdr, tcpha); 11518 11519 } 11520 /* This code follows 4.4BSD-Lite2 mostly. */ 11521 if (bytes_acked < 0) 11522 goto est; 11523 11524 /* 11525 * If TCP is ECN capable and the congestion experience bit is 11526 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11527 * done once per window (or more loosely, per RTT). 11528 */ 11529 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11530 tcp->tcp_cwr = B_FALSE; 11531 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11532 if (!tcp->tcp_cwr) { 11533 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11534 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11535 tcp->tcp_cwnd = npkt * mss; 11536 /* 11537 * If the cwnd is 0, use the timer to clock out 11538 * new segments. This is required by the ECN spec. 11539 */ 11540 if (npkt == 0) { 11541 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11542 /* 11543 * This makes sure that when the ACK comes 11544 * back, we will increase tcp_cwnd by 1 MSS. 11545 */ 11546 tcp->tcp_cwnd_cnt = 0; 11547 } 11548 tcp->tcp_cwr = B_TRUE; 11549 /* 11550 * This marks the end of the current window of in 11551 * flight data. That is why we don't use 11552 * tcp_suna + tcp_swnd. Only data in flight can 11553 * provide ECN info. 11554 */ 11555 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11556 tcp->tcp_ecn_cwr_sent = B_FALSE; 11557 } 11558 } 11559 11560 mp1 = tcp->tcp_xmit_head; 11561 if (bytes_acked == 0) { 11562 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11563 int dupack_cnt; 11564 11565 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11566 /* 11567 * Fast retransmit. When we have seen exactly three 11568 * identical ACKs while we have unacked data 11569 * outstanding we take it as a hint that our peer 11570 * dropped something. 11571 * 11572 * If TCP is retransmitting, don't do fast retransmit. 11573 */ 11574 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11575 ! tcp->tcp_rexmit) { 11576 /* Do Limited Transmit */ 11577 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11578 tcps->tcps_dupack_fast_retransmit) { 11579 /* 11580 * RFC 3042 11581 * 11582 * What we need to do is temporarily 11583 * increase tcp_cwnd so that new 11584 * data can be sent if it is allowed 11585 * by the receive window (tcp_rwnd). 11586 * tcp_wput_data() will take care of 11587 * the rest. 11588 * 11589 * If the connection is SACK capable, 11590 * only do limited xmit when there 11591 * is SACK info. 11592 * 11593 * Note how tcp_cwnd is incremented. 11594 * The first dup ACK will increase 11595 * it by 1 MSS. The second dup ACK 11596 * will increase it by 2 MSS. This 11597 * means that only 1 new segment will 11598 * be sent for each dup ACK. 11599 */ 11600 if (tcp->tcp_unsent > 0 && 11601 (!tcp->tcp_snd_sack_ok || 11602 (tcp->tcp_snd_sack_ok && 11603 tcp->tcp_notsack_list != NULL))) { 11604 tcp->tcp_cwnd += mss << 11605 (tcp->tcp_dupack_cnt - 1); 11606 flags |= TH_LIMIT_XMIT; 11607 } 11608 } else if (dupack_cnt == 11609 tcps->tcps_dupack_fast_retransmit) { 11610 11611 /* 11612 * If we have reduced tcp_ssthresh 11613 * because of ECN, do not reduce it again 11614 * unless it is already one window of data 11615 * away. After one window of data, tcp_cwr 11616 * should then be cleared. Note that 11617 * for non ECN capable connection, tcp_cwr 11618 * should always be false. 11619 * 11620 * Adjust cwnd since the duplicate 11621 * ack indicates that a packet was 11622 * dropped (due to congestion.) 11623 */ 11624 if (!tcp->tcp_cwr) { 11625 npkt = ((tcp->tcp_snxt - 11626 tcp->tcp_suna) >> 1) / mss; 11627 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11628 mss; 11629 tcp->tcp_cwnd = (npkt + 11630 tcp->tcp_dupack_cnt) * mss; 11631 } 11632 if (tcp->tcp_ecn_ok) { 11633 tcp->tcp_cwr = B_TRUE; 11634 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11635 tcp->tcp_ecn_cwr_sent = B_FALSE; 11636 } 11637 11638 /* 11639 * We do Hoe's algorithm. Refer to her 11640 * paper "Improving the Start-up Behavior 11641 * of a Congestion Control Scheme for TCP," 11642 * appeared in SIGCOMM'96. 11643 * 11644 * Save highest seq no we have sent so far. 11645 * Be careful about the invisible FIN byte. 11646 */ 11647 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11648 (tcp->tcp_unsent == 0)) { 11649 tcp->tcp_rexmit_max = tcp->tcp_fss; 11650 } else { 11651 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11652 } 11653 11654 /* 11655 * Do not allow bursty traffic during. 11656 * fast recovery. Refer to Fall and Floyd's 11657 * paper "Simulation-based Comparisons of 11658 * Tahoe, Reno and SACK TCP" (in CCR?) 11659 * This is a best current practise. 11660 */ 11661 tcp->tcp_snd_burst = TCP_CWND_SS; 11662 11663 /* 11664 * For SACK: 11665 * Calculate tcp_pipe, which is the 11666 * estimated number of bytes in 11667 * network. 11668 * 11669 * tcp_fack is the highest sack'ed seq num 11670 * TCP has received. 11671 * 11672 * tcp_pipe is explained in the above quoted 11673 * Fall and Floyd's paper. tcp_fack is 11674 * explained in Mathis and Mahdavi's 11675 * "Forward Acknowledgment: Refining TCP 11676 * Congestion Control" in SIGCOMM '96. 11677 */ 11678 if (tcp->tcp_snd_sack_ok) { 11679 ASSERT(tcp->tcp_sack_info != NULL); 11680 if (tcp->tcp_notsack_list != NULL) { 11681 tcp->tcp_pipe = tcp->tcp_snxt - 11682 tcp->tcp_fack; 11683 tcp->tcp_sack_snxt = seg_ack; 11684 flags |= TH_NEED_SACK_REXMIT; 11685 } else { 11686 /* 11687 * Always initialize tcp_pipe 11688 * even though we don't have 11689 * any SACK info. If later 11690 * we get SACK info and 11691 * tcp_pipe is not initialized, 11692 * funny things will happen. 11693 */ 11694 tcp->tcp_pipe = 11695 tcp->tcp_cwnd_ssthresh; 11696 } 11697 } else { 11698 flags |= TH_REXMIT_NEEDED; 11699 } /* tcp_snd_sack_ok */ 11700 11701 } else { 11702 /* 11703 * Here we perform congestion 11704 * avoidance, but NOT slow start. 11705 * This is known as the Fast 11706 * Recovery Algorithm. 11707 */ 11708 if (tcp->tcp_snd_sack_ok && 11709 tcp->tcp_notsack_list != NULL) { 11710 flags |= TH_NEED_SACK_REXMIT; 11711 tcp->tcp_pipe -= mss; 11712 if (tcp->tcp_pipe < 0) 11713 tcp->tcp_pipe = 0; 11714 } else { 11715 /* 11716 * We know that one more packet has 11717 * left the pipe thus we can update 11718 * cwnd. 11719 */ 11720 cwnd = tcp->tcp_cwnd + mss; 11721 if (cwnd > tcp->tcp_cwnd_max) 11722 cwnd = tcp->tcp_cwnd_max; 11723 tcp->tcp_cwnd = cwnd; 11724 if (tcp->tcp_unsent > 0) 11725 flags |= TH_XMIT_NEEDED; 11726 } 11727 } 11728 } 11729 } else if (tcp->tcp_zero_win_probe) { 11730 /* 11731 * If the window has opened, need to arrange 11732 * to send additional data. 11733 */ 11734 if (new_swnd != 0) { 11735 /* tcp_suna != tcp_snxt */ 11736 /* Packet contains a window update */ 11737 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11738 tcp->tcp_zero_win_probe = 0; 11739 tcp->tcp_timer_backoff = 0; 11740 tcp->tcp_ms_we_have_waited = 0; 11741 11742 /* 11743 * Transmit starting with tcp_suna since 11744 * the one byte probe is not ack'ed. 11745 * If TCP has sent more than one identical 11746 * probe, tcp_rexmit will be set. That means 11747 * tcp_ss_rexmit() will send out the one 11748 * byte along with new data. Otherwise, 11749 * fake the retransmission. 11750 */ 11751 flags |= TH_XMIT_NEEDED; 11752 if (!tcp->tcp_rexmit) { 11753 tcp->tcp_rexmit = B_TRUE; 11754 tcp->tcp_dupack_cnt = 0; 11755 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11756 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11757 } 11758 } 11759 } 11760 goto swnd_update; 11761 } 11762 11763 /* 11764 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11765 * If the ACK value acks something that we have not yet sent, it might 11766 * be an old duplicate segment. Send an ACK to re-synchronize the 11767 * other side. 11768 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11769 * state is handled above, so we can always just drop the segment and 11770 * send an ACK here. 11771 * 11772 * In the case where the peer shrinks the window, we see the new window 11773 * update, but all the data sent previously is queued up by the peer. 11774 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11775 * number, which was already sent, and within window, is recorded. 11776 * tcp_snxt is then updated. 11777 * 11778 * If the window has previously shrunk, and an ACK for data not yet 11779 * sent, according to tcp_snxt is recieved, it may still be valid. If 11780 * the ACK is for data within the window at the time the window was 11781 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11782 * the sequence number ACK'ed. 11783 * 11784 * If the ACK covers all the data sent at the time the window was 11785 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11786 * 11787 * Should we send ACKs in response to ACK only segments? 11788 */ 11789 11790 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11791 if ((tcp->tcp_is_wnd_shrnk) && 11792 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11793 uint32_t data_acked_ahead_snxt; 11794 11795 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11796 tcp_update_xmit_tail(tcp, seg_ack); 11797 tcp->tcp_unsent -= data_acked_ahead_snxt; 11798 } else { 11799 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11800 /* drop the received segment */ 11801 freemsg(mp); 11802 11803 /* 11804 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11805 * greater than 0, check if the number of such 11806 * bogus ACks is greater than that count. If yes, 11807 * don't send back any ACK. This prevents TCP from 11808 * getting into an ACK storm if somehow an attacker 11809 * successfully spoofs an acceptable segment to our 11810 * peer. If this continues (count > 2 X threshold), 11811 * we should abort this connection. 11812 */ 11813 if (tcp_drop_ack_unsent_cnt > 0 && 11814 ++tcp->tcp_in_ack_unsent > 11815 tcp_drop_ack_unsent_cnt) { 11816 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11817 if (tcp->tcp_in_ack_unsent > 2 * 11818 tcp_drop_ack_unsent_cnt) { 11819 (void) tcp_clean_death(tcp, EPROTO, 20); 11820 } 11821 return; 11822 } 11823 mp = tcp_ack_mp(tcp); 11824 if (mp != NULL) { 11825 BUMP_LOCAL(tcp->tcp_obsegs); 11826 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11827 tcp_send_data(tcp, mp); 11828 } 11829 return; 11830 } 11831 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11832 tcp->tcp_snxt_shrunk)) { 11833 tcp->tcp_is_wnd_shrnk = B_FALSE; 11834 } 11835 11836 /* 11837 * TCP gets a new ACK, update the notsack'ed list to delete those 11838 * blocks that are covered by this ACK. 11839 */ 11840 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11841 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11842 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11843 } 11844 11845 /* 11846 * If we got an ACK after fast retransmit, check to see 11847 * if it is a partial ACK. If it is not and the congestion 11848 * window was inflated to account for the other side's 11849 * cached packets, retract it. If it is, do Hoe's algorithm. 11850 */ 11851 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11852 ASSERT(tcp->tcp_rexmit == B_FALSE); 11853 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11854 tcp->tcp_dupack_cnt = 0; 11855 /* 11856 * Restore the orig tcp_cwnd_ssthresh after 11857 * fast retransmit phase. 11858 */ 11859 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11860 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11861 } 11862 tcp->tcp_rexmit_max = seg_ack; 11863 tcp->tcp_cwnd_cnt = 0; 11864 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11865 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11866 11867 /* 11868 * Remove all notsack info to avoid confusion with 11869 * the next fast retrasnmit/recovery phase. 11870 */ 11871 if (tcp->tcp_snd_sack_ok && 11872 tcp->tcp_notsack_list != NULL) { 11873 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11874 tcp); 11875 } 11876 } else { 11877 if (tcp->tcp_snd_sack_ok && 11878 tcp->tcp_notsack_list != NULL) { 11879 flags |= TH_NEED_SACK_REXMIT; 11880 tcp->tcp_pipe -= mss; 11881 if (tcp->tcp_pipe < 0) 11882 tcp->tcp_pipe = 0; 11883 } else { 11884 /* 11885 * Hoe's algorithm: 11886 * 11887 * Retransmit the unack'ed segment and 11888 * restart fast recovery. Note that we 11889 * need to scale back tcp_cwnd to the 11890 * original value when we started fast 11891 * recovery. This is to prevent overly 11892 * aggressive behaviour in sending new 11893 * segments. 11894 */ 11895 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11896 tcps->tcps_dupack_fast_retransmit * mss; 11897 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11898 flags |= TH_REXMIT_NEEDED; 11899 } 11900 } 11901 } else { 11902 tcp->tcp_dupack_cnt = 0; 11903 if (tcp->tcp_rexmit) { 11904 /* 11905 * TCP is retranmitting. If the ACK ack's all 11906 * outstanding data, update tcp_rexmit_max and 11907 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11908 * to the correct value. 11909 * 11910 * Note that SEQ_LEQ() is used. This is to avoid 11911 * unnecessary fast retransmit caused by dup ACKs 11912 * received when TCP does slow start retransmission 11913 * after a time out. During this phase, TCP may 11914 * send out segments which are already received. 11915 * This causes dup ACKs to be sent back. 11916 */ 11917 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11918 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11919 tcp->tcp_rexmit_nxt = seg_ack; 11920 } 11921 if (seg_ack != tcp->tcp_rexmit_max) { 11922 flags |= TH_XMIT_NEEDED; 11923 } 11924 } else { 11925 tcp->tcp_rexmit = B_FALSE; 11926 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11927 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11928 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11929 } 11930 tcp->tcp_ms_we_have_waited = 0; 11931 } 11932 } 11933 11934 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11935 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11936 tcp->tcp_suna = seg_ack; 11937 if (tcp->tcp_zero_win_probe != 0) { 11938 tcp->tcp_zero_win_probe = 0; 11939 tcp->tcp_timer_backoff = 0; 11940 } 11941 11942 /* 11943 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11944 * Note that it cannot be the SYN being ack'ed. The code flow 11945 * will not reach here. 11946 */ 11947 if (mp1 == NULL) { 11948 goto fin_acked; 11949 } 11950 11951 /* 11952 * Update the congestion window. 11953 * 11954 * If TCP is not ECN capable or TCP is ECN capable but the 11955 * congestion experience bit is not set, increase the tcp_cwnd as 11956 * usual. 11957 */ 11958 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11959 cwnd = tcp->tcp_cwnd; 11960 add = mss; 11961 11962 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11963 /* 11964 * This is to prevent an increase of less than 1 MSS of 11965 * tcp_cwnd. With partial increase, tcp_wput_data() 11966 * may send out tinygrams in order to preserve mblk 11967 * boundaries. 11968 * 11969 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11970 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11971 * increased by 1 MSS for every RTTs. 11972 */ 11973 if (tcp->tcp_cwnd_cnt <= 0) { 11974 tcp->tcp_cwnd_cnt = cwnd + add; 11975 } else { 11976 tcp->tcp_cwnd_cnt -= add; 11977 add = 0; 11978 } 11979 } 11980 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11981 } 11982 11983 /* See if the latest urgent data has been acknowledged */ 11984 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11985 SEQ_GT(seg_ack, tcp->tcp_urg)) 11986 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11987 11988 /* Can we update the RTT estimates? */ 11989 if (tcp->tcp_snd_ts_ok) { 11990 /* Ignore zero timestamp echo-reply. */ 11991 if (tcpopt.tcp_opt_ts_ecr != 0) { 11992 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11993 (int32_t)tcpopt.tcp_opt_ts_ecr); 11994 } 11995 11996 /* If needed, restart the timer. */ 11997 if (tcp->tcp_set_timer == 1) { 11998 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11999 tcp->tcp_set_timer = 0; 12000 } 12001 /* 12002 * Update tcp_csuna in case the other side stops sending 12003 * us timestamps. 12004 */ 12005 tcp->tcp_csuna = tcp->tcp_snxt; 12006 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 12007 /* 12008 * An ACK sequence we haven't seen before, so get the RTT 12009 * and update the RTO. But first check if the timestamp is 12010 * valid to use. 12011 */ 12012 if ((mp1->b_next != NULL) && 12013 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 12014 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 12015 (int32_t)(intptr_t)mp1->b_prev); 12016 else 12017 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12018 12019 /* Remeber the last sequence to be ACKed */ 12020 tcp->tcp_csuna = seg_ack; 12021 if (tcp->tcp_set_timer == 1) { 12022 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12023 tcp->tcp_set_timer = 0; 12024 } 12025 } else { 12026 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12027 } 12028 12029 /* Eat acknowledged bytes off the xmit queue. */ 12030 for (;;) { 12031 mblk_t *mp2; 12032 uchar_t *wptr; 12033 12034 wptr = mp1->b_wptr; 12035 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 12036 bytes_acked -= (int)(wptr - mp1->b_rptr); 12037 if (bytes_acked < 0) { 12038 mp1->b_rptr = wptr + bytes_acked; 12039 /* 12040 * Set a new timestamp if all the bytes timed by the 12041 * old timestamp have been ack'ed. 12042 */ 12043 if (SEQ_GT(seg_ack, 12044 (uint32_t)(uintptr_t)(mp1->b_next))) { 12045 mp1->b_prev = 12046 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 12047 mp1->b_next = NULL; 12048 } 12049 break; 12050 } 12051 mp1->b_next = NULL; 12052 mp1->b_prev = NULL; 12053 mp2 = mp1; 12054 mp1 = mp1->b_cont; 12055 12056 /* 12057 * This notification is required for some zero-copy 12058 * clients to maintain a copy semantic. After the data 12059 * is ack'ed, client is safe to modify or reuse the buffer. 12060 */ 12061 if (tcp->tcp_snd_zcopy_aware && 12062 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 12063 tcp_zcopy_notify(tcp); 12064 freeb(mp2); 12065 if (bytes_acked == 0) { 12066 if (mp1 == NULL) { 12067 /* Everything is ack'ed, clear the tail. */ 12068 tcp->tcp_xmit_tail = NULL; 12069 /* 12070 * Cancel the timer unless we are still 12071 * waiting for an ACK for the FIN packet. 12072 */ 12073 if (tcp->tcp_timer_tid != 0 && 12074 tcp->tcp_snxt == tcp->tcp_suna) { 12075 (void) TCP_TIMER_CANCEL(tcp, 12076 tcp->tcp_timer_tid); 12077 tcp->tcp_timer_tid = 0; 12078 } 12079 goto pre_swnd_update; 12080 } 12081 if (mp2 != tcp->tcp_xmit_tail) 12082 break; 12083 tcp->tcp_xmit_tail = mp1; 12084 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12085 (uintptr_t)INT_MAX); 12086 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 12087 mp1->b_rptr); 12088 break; 12089 } 12090 if (mp1 == NULL) { 12091 /* 12092 * More was acked but there is nothing more 12093 * outstanding. This means that the FIN was 12094 * just acked or that we're talking to a clown. 12095 */ 12096 fin_acked: 12097 ASSERT(tcp->tcp_fin_sent); 12098 tcp->tcp_xmit_tail = NULL; 12099 if (tcp->tcp_fin_sent) { 12100 /* FIN was acked - making progress */ 12101 if (!tcp->tcp_fin_acked) 12102 tcp->tcp_ip_forward_progress = B_TRUE; 12103 tcp->tcp_fin_acked = B_TRUE; 12104 if (tcp->tcp_linger_tid != 0 && 12105 TCP_TIMER_CANCEL(tcp, 12106 tcp->tcp_linger_tid) >= 0) { 12107 tcp_stop_lingering(tcp); 12108 freemsg(mp); 12109 mp = NULL; 12110 } 12111 } else { 12112 /* 12113 * We should never get here because 12114 * we have already checked that the 12115 * number of bytes ack'ed should be 12116 * smaller than or equal to what we 12117 * have sent so far (it is the 12118 * acceptability check of the ACK). 12119 * We can only get here if the send 12120 * queue is corrupted. 12121 * 12122 * Terminate the connection and 12123 * panic the system. It is better 12124 * for us to panic instead of 12125 * continuing to avoid other disaster. 12126 */ 12127 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 12128 tcp->tcp_rnxt, TH_RST|TH_ACK); 12129 panic("Memory corruption " 12130 "detected for connection %s.", 12131 tcp_display(tcp, NULL, 12132 DISP_ADDR_AND_PORT)); 12133 /*NOTREACHED*/ 12134 } 12135 goto pre_swnd_update; 12136 } 12137 ASSERT(mp2 != tcp->tcp_xmit_tail); 12138 } 12139 if (tcp->tcp_unsent) { 12140 flags |= TH_XMIT_NEEDED; 12141 } 12142 pre_swnd_update: 12143 tcp->tcp_xmit_head = mp1; 12144 swnd_update: 12145 /* 12146 * The following check is different from most other implementations. 12147 * For bi-directional transfer, when segments are dropped, the 12148 * "normal" check will not accept a window update in those 12149 * retransmitted segemnts. Failing to do that, TCP may send out 12150 * segments which are outside receiver's window. As TCP accepts 12151 * the ack in those retransmitted segments, if the window update in 12152 * the same segment is not accepted, TCP will incorrectly calculates 12153 * that it can send more segments. This can create a deadlock 12154 * with the receiver if its window becomes zero. 12155 */ 12156 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 12157 SEQ_LT(tcp->tcp_swl1, seg_seq) || 12158 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 12159 /* 12160 * The criteria for update is: 12161 * 12162 * 1. the segment acknowledges some data. Or 12163 * 2. the segment is new, i.e. it has a higher seq num. Or 12164 * 3. the segment is not old and the advertised window is 12165 * larger than the previous advertised window. 12166 */ 12167 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 12168 flags |= TH_XMIT_NEEDED; 12169 tcp->tcp_swnd = new_swnd; 12170 if (new_swnd > tcp->tcp_max_swnd) 12171 tcp->tcp_max_swnd = new_swnd; 12172 tcp->tcp_swl1 = seg_seq; 12173 tcp->tcp_swl2 = seg_ack; 12174 } 12175 est: 12176 if (tcp->tcp_state > TCPS_ESTABLISHED) { 12177 12178 switch (tcp->tcp_state) { 12179 case TCPS_FIN_WAIT_1: 12180 if (tcp->tcp_fin_acked) { 12181 tcp->tcp_state = TCPS_FIN_WAIT_2; 12182 /* 12183 * We implement the non-standard BSD/SunOS 12184 * FIN_WAIT_2 flushing algorithm. 12185 * If there is no user attached to this 12186 * TCP endpoint, then this TCP struct 12187 * could hang around forever in FIN_WAIT_2 12188 * state if the peer forgets to send us 12189 * a FIN. To prevent this, we wait only 12190 * 2*MSL (a convenient time value) for 12191 * the FIN to arrive. If it doesn't show up, 12192 * we flush the TCP endpoint. This algorithm, 12193 * though a violation of RFC-793, has worked 12194 * for over 10 years in BSD systems. 12195 * Note: SunOS 4.x waits 675 seconds before 12196 * flushing the FIN_WAIT_2 connection. 12197 */ 12198 TCP_TIMER_RESTART(tcp, 12199 tcps->tcps_fin_wait_2_flush_interval); 12200 } 12201 break; 12202 case TCPS_FIN_WAIT_2: 12203 break; /* Shutdown hook? */ 12204 case TCPS_LAST_ACK: 12205 freemsg(mp); 12206 if (tcp->tcp_fin_acked) { 12207 (void) tcp_clean_death(tcp, 0, 19); 12208 return; 12209 } 12210 goto xmit_check; 12211 case TCPS_CLOSING: 12212 if (tcp->tcp_fin_acked) 12213 SET_TIME_WAIT(tcps, tcp, connp); 12214 /*FALLTHRU*/ 12215 case TCPS_CLOSE_WAIT: 12216 freemsg(mp); 12217 goto xmit_check; 12218 default: 12219 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12220 break; 12221 } 12222 } 12223 if (flags & TH_FIN) { 12224 /* Make sure we ack the fin */ 12225 flags |= TH_ACK_NEEDED; 12226 if (!tcp->tcp_fin_rcvd) { 12227 tcp->tcp_fin_rcvd = B_TRUE; 12228 tcp->tcp_rnxt++; 12229 tcpha = tcp->tcp_tcpha; 12230 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12231 12232 /* 12233 * Generate the ordrel_ind at the end unless we 12234 * are an eager guy. 12235 * In the eager case tcp_rsrv will do this when run 12236 * after tcp_accept is done. 12237 */ 12238 if (tcp->tcp_listener == NULL && 12239 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 12240 flags |= TH_ORDREL_NEEDED; 12241 switch (tcp->tcp_state) { 12242 case TCPS_SYN_RCVD: 12243 case TCPS_ESTABLISHED: 12244 tcp->tcp_state = TCPS_CLOSE_WAIT; 12245 /* Keepalive? */ 12246 break; 12247 case TCPS_FIN_WAIT_1: 12248 if (!tcp->tcp_fin_acked) { 12249 tcp->tcp_state = TCPS_CLOSING; 12250 break; 12251 } 12252 /* FALLTHRU */ 12253 case TCPS_FIN_WAIT_2: 12254 SET_TIME_WAIT(tcps, tcp, connp); 12255 if (seg_len) { 12256 /* 12257 * implies data piggybacked on FIN. 12258 * break to handle data. 12259 */ 12260 break; 12261 } 12262 freemsg(mp); 12263 goto ack_check; 12264 } 12265 } 12266 } 12267 if (mp == NULL) 12268 goto xmit_check; 12269 if (seg_len == 0) { 12270 freemsg(mp); 12271 goto xmit_check; 12272 } 12273 if (mp->b_rptr == mp->b_wptr) { 12274 /* 12275 * The header has been consumed, so we remove the 12276 * zero-length mblk here. 12277 */ 12278 mp1 = mp; 12279 mp = mp->b_cont; 12280 freeb(mp1); 12281 } 12282 update_ack: 12283 tcpha = tcp->tcp_tcpha; 12284 tcp->tcp_rack_cnt++; 12285 { 12286 uint32_t cur_max; 12287 12288 cur_max = tcp->tcp_rack_cur_max; 12289 if (tcp->tcp_rack_cnt >= cur_max) { 12290 /* 12291 * We have more unacked data than we should - send 12292 * an ACK now. 12293 */ 12294 flags |= TH_ACK_NEEDED; 12295 cur_max++; 12296 if (cur_max > tcp->tcp_rack_abs_max) 12297 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12298 else 12299 tcp->tcp_rack_cur_max = cur_max; 12300 } else if (TCP_IS_DETACHED(tcp)) { 12301 /* We don't have an ACK timer for detached TCP. */ 12302 flags |= TH_ACK_NEEDED; 12303 } else if (seg_len < mss) { 12304 /* 12305 * If we get a segment that is less than an mss, and we 12306 * already have unacknowledged data, and the amount 12307 * unacknowledged is not a multiple of mss, then we 12308 * better generate an ACK now. Otherwise, this may be 12309 * the tail piece of a transaction, and we would rather 12310 * wait for the response. 12311 */ 12312 uint32_t udif; 12313 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12314 (uintptr_t)INT_MAX); 12315 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12316 if (udif && (udif % mss)) 12317 flags |= TH_ACK_NEEDED; 12318 else 12319 flags |= TH_ACK_TIMER_NEEDED; 12320 } else { 12321 /* Start delayed ack timer */ 12322 flags |= TH_ACK_TIMER_NEEDED; 12323 } 12324 } 12325 tcp->tcp_rnxt += seg_len; 12326 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12327 12328 if (mp == NULL) 12329 goto xmit_check; 12330 12331 /* Update SACK list */ 12332 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12333 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12334 &(tcp->tcp_num_sack_blk)); 12335 } 12336 12337 if (tcp->tcp_urp_mp) { 12338 tcp->tcp_urp_mp->b_cont = mp; 12339 mp = tcp->tcp_urp_mp; 12340 tcp->tcp_urp_mp = NULL; 12341 /* Ready for a new signal. */ 12342 tcp->tcp_urp_last_valid = B_FALSE; 12343 #ifdef DEBUG 12344 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12345 "tcp_rput: sending exdata_ind %s", 12346 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12347 #endif /* DEBUG */ 12348 } 12349 12350 /* 12351 * Check for ancillary data changes compared to last segment. 12352 */ 12353 if (connp->conn_recv_ancillary.crb_all != 0) { 12354 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12355 if (mp == NULL) 12356 return; 12357 } 12358 12359 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12360 /* 12361 * Side queue inbound data until the accept happens. 12362 * tcp_accept/tcp_rput drains this when the accept happens. 12363 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12364 * T_EXDATA_IND) it is queued on b_next. 12365 * XXX Make urgent data use this. Requires: 12366 * Removing tcp_listener check for TH_URG 12367 * Making M_PCPROTO and MARK messages skip the eager case 12368 */ 12369 12370 if (tcp->tcp_kssl_pending) { 12371 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12372 mblk_t *, mp); 12373 tcp_kssl_input(tcp, mp, ira->ira_cred); 12374 } else { 12375 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12376 } 12377 } else if (IPCL_IS_NONSTR(connp)) { 12378 /* 12379 * Non-STREAMS socket 12380 * 12381 * Note that no KSSL processing is done here, because 12382 * KSSL is not supported for non-STREAMS sockets. 12383 */ 12384 boolean_t push = flags & (TH_PUSH|TH_FIN); 12385 int error; 12386 12387 if ((*connp->conn_upcalls->su_recv)( 12388 connp->conn_upper_handle, 12389 mp, seg_len, 0, &error, &push) <= 0) { 12390 /* 12391 * We should never be in middle of a 12392 * fallback, the squeue guarantees that. 12393 */ 12394 ASSERT(error != EOPNOTSUPP); 12395 if (error == ENOSPC) 12396 tcp->tcp_rwnd -= seg_len; 12397 } else if (push) { 12398 /* PUSH bit set and sockfs is not flow controlled */ 12399 flags |= tcp_rwnd_reopen(tcp); 12400 } 12401 } else { 12402 /* STREAMS socket */ 12403 if (mp->b_datap->db_type != M_DATA || 12404 (flags & TH_MARKNEXT_NEEDED)) { 12405 if (tcp->tcp_rcv_list != NULL) { 12406 flags |= tcp_rcv_drain(tcp); 12407 } 12408 ASSERT(tcp->tcp_rcv_list == NULL || 12409 tcp->tcp_fused_sigurg); 12410 12411 if (flags & TH_MARKNEXT_NEEDED) { 12412 #ifdef DEBUG 12413 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12414 "tcp_rput: sending MSGMARKNEXT %s", 12415 tcp_display(tcp, NULL, 12416 DISP_PORT_ONLY)); 12417 #endif /* DEBUG */ 12418 mp->b_flag |= MSGMARKNEXT; 12419 flags &= ~TH_MARKNEXT_NEEDED; 12420 } 12421 12422 /* Does this need SSL processing first? */ 12423 if ((tcp->tcp_kssl_ctx != NULL) && 12424 (DB_TYPE(mp) == M_DATA)) { 12425 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12426 mblk_t *, mp); 12427 tcp_kssl_input(tcp, mp, ira->ira_cred); 12428 } else { 12429 if (is_system_labeled()) 12430 tcp_setcred_data(mp, ira); 12431 12432 putnext(connp->conn_rq, mp); 12433 if (!canputnext(connp->conn_rq)) 12434 tcp->tcp_rwnd -= seg_len; 12435 } 12436 } else if ((tcp->tcp_kssl_ctx != NULL) && 12437 (DB_TYPE(mp) == M_DATA)) { 12438 /* Does this need SSL processing first? */ 12439 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12440 tcp_kssl_input(tcp, mp, ira->ira_cred); 12441 } else if ((flags & (TH_PUSH|TH_FIN)) || 12442 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12443 if (tcp->tcp_rcv_list != NULL) { 12444 /* 12445 * Enqueue the new segment first and then 12446 * call tcp_rcv_drain() to send all data 12447 * up. The other way to do this is to 12448 * send all queued data up and then call 12449 * putnext() to send the new segment up. 12450 * This way can remove the else part later 12451 * on. 12452 * 12453 * We don't do this to avoid one more call to 12454 * canputnext() as tcp_rcv_drain() needs to 12455 * call canputnext(). 12456 */ 12457 tcp_rcv_enqueue(tcp, mp, seg_len, 12458 ira->ira_cred); 12459 flags |= tcp_rcv_drain(tcp); 12460 } else { 12461 if (is_system_labeled()) 12462 tcp_setcred_data(mp, ira); 12463 12464 putnext(connp->conn_rq, mp); 12465 if (!canputnext(connp->conn_rq)) 12466 tcp->tcp_rwnd -= seg_len; 12467 } 12468 } else { 12469 /* 12470 * Enqueue all packets when processing an mblk 12471 * from the co queue and also enqueue normal packets. 12472 */ 12473 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12474 } 12475 /* 12476 * Make sure the timer is running if we have data waiting 12477 * for a push bit. This provides resiliency against 12478 * implementations that do not correctly generate push bits. 12479 */ 12480 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12481 /* 12482 * The connection may be closed at this point, so don't 12483 * do anything for a detached tcp. 12484 */ 12485 if (!TCP_IS_DETACHED(tcp)) 12486 tcp->tcp_push_tid = TCP_TIMER(tcp, 12487 tcp_push_timer, 12488 MSEC_TO_TICK( 12489 tcps->tcps_push_timer_interval)); 12490 } 12491 } 12492 12493 xmit_check: 12494 /* Is there anything left to do? */ 12495 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12496 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12497 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12498 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12499 goto done; 12500 12501 /* Any transmit work to do and a non-zero window? */ 12502 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12503 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12504 if (flags & TH_REXMIT_NEEDED) { 12505 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12506 12507 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12508 if (snd_size > mss) 12509 snd_size = mss; 12510 if (snd_size > tcp->tcp_swnd) 12511 snd_size = tcp->tcp_swnd; 12512 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12513 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12514 B_TRUE); 12515 12516 if (mp1 != NULL) { 12517 tcp->tcp_xmit_head->b_prev = 12518 (mblk_t *)LBOLT_FASTPATH; 12519 tcp->tcp_csuna = tcp->tcp_snxt; 12520 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12521 UPDATE_MIB(&tcps->tcps_mib, 12522 tcpRetransBytes, snd_size); 12523 tcp_send_data(tcp, mp1); 12524 } 12525 } 12526 if (flags & TH_NEED_SACK_REXMIT) { 12527 tcp_sack_rxmit(tcp, &flags); 12528 } 12529 /* 12530 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12531 * out new segment. Note that tcp_rexmit should not be 12532 * set, otherwise TH_LIMIT_XMIT should not be set. 12533 */ 12534 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12535 if (!tcp->tcp_rexmit) { 12536 tcp_wput_data(tcp, NULL, B_FALSE); 12537 } else { 12538 tcp_ss_rexmit(tcp); 12539 } 12540 } 12541 /* 12542 * Adjust tcp_cwnd back to normal value after sending 12543 * new data segments. 12544 */ 12545 if (flags & TH_LIMIT_XMIT) { 12546 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12547 /* 12548 * This will restart the timer. Restarting the 12549 * timer is used to avoid a timeout before the 12550 * limited transmitted segment's ACK gets back. 12551 */ 12552 if (tcp->tcp_xmit_head != NULL) 12553 tcp->tcp_xmit_head->b_prev = 12554 (mblk_t *)LBOLT_FASTPATH; 12555 } 12556 12557 /* Anything more to do? */ 12558 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12559 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12560 goto done; 12561 } 12562 ack_check: 12563 if (flags & TH_SEND_URP_MARK) { 12564 ASSERT(tcp->tcp_urp_mark_mp); 12565 ASSERT(!IPCL_IS_NONSTR(connp)); 12566 /* 12567 * Send up any queued data and then send the mark message 12568 */ 12569 if (tcp->tcp_rcv_list != NULL) { 12570 flags |= tcp_rcv_drain(tcp); 12571 12572 } 12573 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12574 mp1 = tcp->tcp_urp_mark_mp; 12575 tcp->tcp_urp_mark_mp = NULL; 12576 if (is_system_labeled()) 12577 tcp_setcred_data(mp1, ira); 12578 12579 putnext(connp->conn_rq, mp1); 12580 #ifdef DEBUG 12581 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12582 "tcp_rput: sending zero-length %s %s", 12583 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12584 "MSGNOTMARKNEXT"), 12585 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12586 #endif /* DEBUG */ 12587 flags &= ~TH_SEND_URP_MARK; 12588 } 12589 if (flags & TH_ACK_NEEDED) { 12590 /* 12591 * Time to send an ack for some reason. 12592 */ 12593 mp1 = tcp_ack_mp(tcp); 12594 12595 if (mp1 != NULL) { 12596 tcp_send_data(tcp, mp1); 12597 BUMP_LOCAL(tcp->tcp_obsegs); 12598 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12599 } 12600 if (tcp->tcp_ack_tid != 0) { 12601 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12602 tcp->tcp_ack_tid = 0; 12603 } 12604 } 12605 if (flags & TH_ACK_TIMER_NEEDED) { 12606 /* 12607 * Arrange for deferred ACK or push wait timeout. 12608 * Start timer if it is not already running. 12609 */ 12610 if (tcp->tcp_ack_tid == 0) { 12611 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12612 MSEC_TO_TICK(tcp->tcp_localnet ? 12613 (clock_t)tcps->tcps_local_dack_interval : 12614 (clock_t)tcps->tcps_deferred_ack_interval)); 12615 } 12616 } 12617 if (flags & TH_ORDREL_NEEDED) { 12618 /* 12619 * Send up the ordrel_ind unless we are an eager guy. 12620 * In the eager case tcp_rsrv will do this when run 12621 * after tcp_accept is done. 12622 */ 12623 ASSERT(tcp->tcp_listener == NULL); 12624 ASSERT(!tcp->tcp_detached); 12625 12626 if (IPCL_IS_NONSTR(connp)) { 12627 ASSERT(tcp->tcp_ordrel_mp == NULL); 12628 tcp->tcp_ordrel_done = B_TRUE; 12629 (*connp->conn_upcalls->su_opctl) 12630 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12631 goto done; 12632 } 12633 12634 if (tcp->tcp_rcv_list != NULL) { 12635 /* 12636 * Push any mblk(s) enqueued from co processing. 12637 */ 12638 flags |= tcp_rcv_drain(tcp); 12639 } 12640 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12641 12642 mp1 = tcp->tcp_ordrel_mp; 12643 tcp->tcp_ordrel_mp = NULL; 12644 tcp->tcp_ordrel_done = B_TRUE; 12645 putnext(connp->conn_rq, mp1); 12646 } 12647 done: 12648 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12649 } 12650 12651 /* 12652 * This routine adjusts next-to-send sequence number variables, in the 12653 * case where the reciever has shrunk it's window. 12654 */ 12655 static void 12656 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12657 { 12658 mblk_t *xmit_tail; 12659 int32_t offset; 12660 12661 tcp->tcp_snxt = snxt; 12662 12663 /* Get the mblk, and the offset in it, as per the shrunk window */ 12664 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12665 ASSERT(xmit_tail != NULL); 12666 tcp->tcp_xmit_tail = xmit_tail; 12667 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12668 xmit_tail->b_rptr - offset; 12669 } 12670 12671 /* 12672 * This function does PAWS protection check. Returns B_TRUE if the 12673 * segment passes the PAWS test, else returns B_FALSE. 12674 */ 12675 boolean_t 12676 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12677 { 12678 uint8_t flags; 12679 int options; 12680 uint8_t *up; 12681 conn_t *connp = tcp->tcp_connp; 12682 12683 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12684 /* 12685 * If timestamp option is aligned nicely, get values inline, 12686 * otherwise call general routine to parse. Only do that 12687 * if timestamp is the only option. 12688 */ 12689 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12690 TCPOPT_REAL_TS_LEN && 12691 OK_32PTR((up = ((uint8_t *)tcpha) + 12692 TCP_MIN_HEADER_LENGTH)) && 12693 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12694 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12695 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12696 12697 options = TCP_OPT_TSTAMP_PRESENT; 12698 } else { 12699 if (tcp->tcp_snd_sack_ok) { 12700 tcpoptp->tcp = tcp; 12701 } else { 12702 tcpoptp->tcp = NULL; 12703 } 12704 options = tcp_parse_options(tcpha, tcpoptp); 12705 } 12706 12707 if (options & TCP_OPT_TSTAMP_PRESENT) { 12708 /* 12709 * Do PAWS per RFC 1323 section 4.2. Accept RST 12710 * regardless of the timestamp, page 18 RFC 1323.bis. 12711 */ 12712 if ((flags & TH_RST) == 0 && 12713 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12714 tcp->tcp_ts_recent)) { 12715 if (TSTMP_LT(LBOLT_FASTPATH64, 12716 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 12717 /* This segment is not acceptable. */ 12718 return (B_FALSE); 12719 } else { 12720 /* 12721 * Connection has been idle for 12722 * too long. Reset the timestamp 12723 * and assume the segment is valid. 12724 */ 12725 tcp->tcp_ts_recent = 12726 tcpoptp->tcp_opt_ts_val; 12727 } 12728 } 12729 } else { 12730 /* 12731 * If we don't get a timestamp on every packet, we 12732 * figure we can't really trust 'em, so we stop sending 12733 * and parsing them. 12734 */ 12735 tcp->tcp_snd_ts_ok = B_FALSE; 12736 12737 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12738 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12739 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12740 /* 12741 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12742 * doing a slow start here so as to not to lose on the 12743 * transfer rate built up so far. 12744 */ 12745 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12746 if (tcp->tcp_snd_sack_ok) { 12747 ASSERT(tcp->tcp_sack_info != NULL); 12748 tcp->tcp_max_sack_blk = 4; 12749 } 12750 } 12751 return (B_TRUE); 12752 } 12753 12754 /* 12755 * Attach ancillary data to a received TCP segments for the 12756 * ancillary pieces requested by the application that are 12757 * different than they were in the previous data segment. 12758 * 12759 * Save the "current" values once memory allocation is ok so that 12760 * when memory allocation fails we can just wait for the next data segment. 12761 */ 12762 static mblk_t * 12763 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12764 ip_recv_attr_t *ira) 12765 { 12766 struct T_optdata_ind *todi; 12767 int optlen; 12768 uchar_t *optptr; 12769 struct T_opthdr *toh; 12770 crb_t addflag; /* Which pieces to add */ 12771 mblk_t *mp1; 12772 conn_t *connp = tcp->tcp_connp; 12773 12774 optlen = 0; 12775 addflag.crb_all = 0; 12776 /* If app asked for pktinfo and the index has changed ... */ 12777 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12778 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12779 optlen += sizeof (struct T_opthdr) + 12780 sizeof (struct in6_pktinfo); 12781 addflag.crb_ip_recvpktinfo = 1; 12782 } 12783 /* If app asked for hoplimit and it has changed ... */ 12784 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12785 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12786 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12787 addflag.crb_ipv6_recvhoplimit = 1; 12788 } 12789 /* If app asked for tclass and it has changed ... */ 12790 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12791 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12792 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12793 addflag.crb_ipv6_recvtclass = 1; 12794 } 12795 /* 12796 * If app asked for hopbyhop headers and it has changed ... 12797 * For security labels, note that (1) security labels can't change on 12798 * a connected socket at all, (2) we're connected to at most one peer, 12799 * (3) if anything changes, then it must be some other extra option. 12800 */ 12801 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12802 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12803 (ipp->ipp_fields & IPPF_HOPOPTS), 12804 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12805 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12806 addflag.crb_ipv6_recvhopopts = 1; 12807 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12808 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12809 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12810 return (mp); 12811 } 12812 /* If app asked for dst headers before routing headers ... */ 12813 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12814 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12815 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12816 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12817 optlen += sizeof (struct T_opthdr) + 12818 ipp->ipp_rthdrdstoptslen; 12819 addflag.crb_ipv6_recvrthdrdstopts = 1; 12820 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12821 &tcp->tcp_rthdrdstoptslen, 12822 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12823 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12824 return (mp); 12825 } 12826 /* If app asked for routing headers and it has changed ... */ 12827 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12828 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12829 (ipp->ipp_fields & IPPF_RTHDR), 12830 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12831 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12832 addflag.crb_ipv6_recvrthdr = 1; 12833 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12834 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12835 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12836 return (mp); 12837 } 12838 /* If app asked for dest headers and it has changed ... */ 12839 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12840 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12841 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12842 (ipp->ipp_fields & IPPF_DSTOPTS), 12843 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12844 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12845 addflag.crb_ipv6_recvdstopts = 1; 12846 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12847 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12848 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12849 return (mp); 12850 } 12851 12852 if (optlen == 0) { 12853 /* Nothing to add */ 12854 return (mp); 12855 } 12856 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12857 if (mp1 == NULL) { 12858 /* 12859 * Defer sending ancillary data until the next TCP segment 12860 * arrives. 12861 */ 12862 return (mp); 12863 } 12864 mp1->b_cont = mp; 12865 mp = mp1; 12866 mp->b_wptr += sizeof (*todi) + optlen; 12867 mp->b_datap->db_type = M_PROTO; 12868 todi = (struct T_optdata_ind *)mp->b_rptr; 12869 todi->PRIM_type = T_OPTDATA_IND; 12870 todi->DATA_flag = 1; /* MORE data */ 12871 todi->OPT_length = optlen; 12872 todi->OPT_offset = sizeof (*todi); 12873 optptr = (uchar_t *)&todi[1]; 12874 /* 12875 * If app asked for pktinfo and the index has changed ... 12876 * Note that the local address never changes for the connection. 12877 */ 12878 if (addflag.crb_ip_recvpktinfo) { 12879 struct in6_pktinfo *pkti; 12880 uint_t ifindex; 12881 12882 ifindex = ira->ira_ruifindex; 12883 toh = (struct T_opthdr *)optptr; 12884 toh->level = IPPROTO_IPV6; 12885 toh->name = IPV6_PKTINFO; 12886 toh->len = sizeof (*toh) + sizeof (*pkti); 12887 toh->status = 0; 12888 optptr += sizeof (*toh); 12889 pkti = (struct in6_pktinfo *)optptr; 12890 pkti->ipi6_addr = connp->conn_laddr_v6; 12891 pkti->ipi6_ifindex = ifindex; 12892 optptr += sizeof (*pkti); 12893 ASSERT(OK_32PTR(optptr)); 12894 /* Save as "last" value */ 12895 tcp->tcp_recvifindex = ifindex; 12896 } 12897 /* If app asked for hoplimit and it has changed ... */ 12898 if (addflag.crb_ipv6_recvhoplimit) { 12899 toh = (struct T_opthdr *)optptr; 12900 toh->level = IPPROTO_IPV6; 12901 toh->name = IPV6_HOPLIMIT; 12902 toh->len = sizeof (*toh) + sizeof (uint_t); 12903 toh->status = 0; 12904 optptr += sizeof (*toh); 12905 *(uint_t *)optptr = ipp->ipp_hoplimit; 12906 optptr += sizeof (uint_t); 12907 ASSERT(OK_32PTR(optptr)); 12908 /* Save as "last" value */ 12909 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12910 } 12911 /* If app asked for tclass and it has changed ... */ 12912 if (addflag.crb_ipv6_recvtclass) { 12913 toh = (struct T_opthdr *)optptr; 12914 toh->level = IPPROTO_IPV6; 12915 toh->name = IPV6_TCLASS; 12916 toh->len = sizeof (*toh) + sizeof (uint_t); 12917 toh->status = 0; 12918 optptr += sizeof (*toh); 12919 *(uint_t *)optptr = ipp->ipp_tclass; 12920 optptr += sizeof (uint_t); 12921 ASSERT(OK_32PTR(optptr)); 12922 /* Save as "last" value */ 12923 tcp->tcp_recvtclass = ipp->ipp_tclass; 12924 } 12925 if (addflag.crb_ipv6_recvhopopts) { 12926 toh = (struct T_opthdr *)optptr; 12927 toh->level = IPPROTO_IPV6; 12928 toh->name = IPV6_HOPOPTS; 12929 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12930 toh->status = 0; 12931 optptr += sizeof (*toh); 12932 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12933 optptr += ipp->ipp_hopoptslen; 12934 ASSERT(OK_32PTR(optptr)); 12935 /* Save as last value */ 12936 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12937 (ipp->ipp_fields & IPPF_HOPOPTS), 12938 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12939 } 12940 if (addflag.crb_ipv6_recvrthdrdstopts) { 12941 toh = (struct T_opthdr *)optptr; 12942 toh->level = IPPROTO_IPV6; 12943 toh->name = IPV6_RTHDRDSTOPTS; 12944 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12945 toh->status = 0; 12946 optptr += sizeof (*toh); 12947 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12948 optptr += ipp->ipp_rthdrdstoptslen; 12949 ASSERT(OK_32PTR(optptr)); 12950 /* Save as last value */ 12951 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12952 &tcp->tcp_rthdrdstoptslen, 12953 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12954 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12955 } 12956 if (addflag.crb_ipv6_recvrthdr) { 12957 toh = (struct T_opthdr *)optptr; 12958 toh->level = IPPROTO_IPV6; 12959 toh->name = IPV6_RTHDR; 12960 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12961 toh->status = 0; 12962 optptr += sizeof (*toh); 12963 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12964 optptr += ipp->ipp_rthdrlen; 12965 ASSERT(OK_32PTR(optptr)); 12966 /* Save as last value */ 12967 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12968 (ipp->ipp_fields & IPPF_RTHDR), 12969 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12970 } 12971 if (addflag.crb_ipv6_recvdstopts) { 12972 toh = (struct T_opthdr *)optptr; 12973 toh->level = IPPROTO_IPV6; 12974 toh->name = IPV6_DSTOPTS; 12975 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12976 toh->status = 0; 12977 optptr += sizeof (*toh); 12978 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12979 optptr += ipp->ipp_dstoptslen; 12980 ASSERT(OK_32PTR(optptr)); 12981 /* Save as last value */ 12982 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12983 (ipp->ipp_fields & IPPF_DSTOPTS), 12984 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12985 } 12986 ASSERT(optptr == mp->b_wptr); 12987 return (mp); 12988 } 12989 12990 /* ARGSUSED */ 12991 static void 12992 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 12993 { 12994 conn_t *connp = (conn_t *)arg; 12995 tcp_t *tcp = connp->conn_tcp; 12996 queue_t *q = connp->conn_rq; 12997 tcp_stack_t *tcps = tcp->tcp_tcps; 12998 12999 ASSERT(!IPCL_IS_NONSTR(connp)); 13000 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13001 tcp->tcp_rsrv_mp = mp; 13002 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13003 13004 TCP_STAT(tcps, tcp_rsrv_calls); 13005 13006 if (TCP_IS_DETACHED(tcp) || q == NULL) { 13007 return; 13008 } 13009 13010 if (tcp->tcp_fused) { 13011 tcp_fuse_backenable(tcp); 13012 return; 13013 } 13014 13015 if (canputnext(q)) { 13016 /* Not flow-controlled, open rwnd */ 13017 tcp->tcp_rwnd = connp->conn_rcvbuf; 13018 13019 /* 13020 * Send back a window update immediately if TCP is above 13021 * ESTABLISHED state and the increase of the rcv window 13022 * that the other side knows is at least 1 MSS after flow 13023 * control is lifted. 13024 */ 13025 if (tcp->tcp_state >= TCPS_ESTABLISHED && 13026 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 13027 tcp_xmit_ctl(NULL, tcp, 13028 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 13029 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 13030 } 13031 } 13032 } 13033 13034 /* 13035 * The read side service routine is called mostly when we get back-enabled as a 13036 * result of flow control relief. Since we don't actually queue anything in 13037 * TCP, we have no data to send out of here. What we do is clear the receive 13038 * window, and send out a window update. 13039 */ 13040 static void 13041 tcp_rsrv(queue_t *q) 13042 { 13043 conn_t *connp = Q_TO_CONN(q); 13044 tcp_t *tcp = connp->conn_tcp; 13045 mblk_t *mp; 13046 13047 /* No code does a putq on the read side */ 13048 ASSERT(q->q_first == NULL); 13049 13050 /* 13051 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 13052 * been run. So just return. 13053 */ 13054 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13055 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 13056 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13057 return; 13058 } 13059 tcp->tcp_rsrv_mp = NULL; 13060 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13061 13062 CONN_INC_REF(connp); 13063 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 13064 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 13065 } 13066 13067 /* 13068 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 13069 * We do not allow the receive window to shrink. After setting rwnd, 13070 * set the flow control hiwat of the stream. 13071 * 13072 * This function is called in 2 cases: 13073 * 13074 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 13075 * connection (passive open) and in tcp_input_data() for active connect. 13076 * This is called after tcp_mss_set() when the desired MSS value is known. 13077 * This makes sure that our window size is a mutiple of the other side's 13078 * MSS. 13079 * 2) Handling SO_RCVBUF option. 13080 * 13081 * It is ASSUMED that the requested size is a multiple of the current MSS. 13082 * 13083 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 13084 * user requests so. 13085 */ 13086 int 13087 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 13088 { 13089 uint32_t mss = tcp->tcp_mss; 13090 uint32_t old_max_rwnd; 13091 uint32_t max_transmittable_rwnd; 13092 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 13093 tcp_stack_t *tcps = tcp->tcp_tcps; 13094 conn_t *connp = tcp->tcp_connp; 13095 13096 /* 13097 * Insist on a receive window that is at least 13098 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 13099 * funny TCP interactions of Nagle algorithm, SWS avoidance 13100 * and delayed acknowledgement. 13101 */ 13102 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 13103 13104 if (tcp->tcp_fused) { 13105 size_t sth_hiwat; 13106 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 13107 13108 ASSERT(peer_tcp != NULL); 13109 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 13110 if (!tcp_detached) { 13111 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 13112 sth_hiwat); 13113 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 13114 } 13115 13116 /* Caller could have changed tcp_rwnd; update tha_win */ 13117 if (tcp->tcp_tcpha != NULL) { 13118 tcp->tcp_tcpha->tha_win = 13119 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13120 } 13121 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13122 tcp->tcp_cwnd_max = rwnd; 13123 13124 /* 13125 * In the fusion case, the maxpsz stream head value of 13126 * our peer is set according to its send buffer size 13127 * and our receive buffer size; since the latter may 13128 * have changed we need to update the peer's maxpsz. 13129 */ 13130 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 13131 return (sth_hiwat); 13132 } 13133 13134 if (tcp_detached) 13135 old_max_rwnd = tcp->tcp_rwnd; 13136 else 13137 old_max_rwnd = connp->conn_rcvbuf; 13138 13139 13140 /* 13141 * If window size info has already been exchanged, TCP should not 13142 * shrink the window. Shrinking window is doable if done carefully. 13143 * We may add that support later. But so far there is not a real 13144 * need to do that. 13145 */ 13146 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 13147 /* MSS may have changed, do a round up again. */ 13148 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 13149 } 13150 13151 /* 13152 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 13153 * can be applied even before the window scale option is decided. 13154 */ 13155 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 13156 if (rwnd > max_transmittable_rwnd) { 13157 rwnd = max_transmittable_rwnd - 13158 (max_transmittable_rwnd % mss); 13159 if (rwnd < mss) 13160 rwnd = max_transmittable_rwnd; 13161 /* 13162 * If we're over the limit we may have to back down tcp_rwnd. 13163 * The increment below won't work for us. So we set all three 13164 * here and the increment below will have no effect. 13165 */ 13166 tcp->tcp_rwnd = old_max_rwnd = rwnd; 13167 } 13168 if (tcp->tcp_localnet) { 13169 tcp->tcp_rack_abs_max = 13170 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 13171 } else { 13172 /* 13173 * For a remote host on a different subnet (through a router), 13174 * we ack every other packet to be conforming to RFC1122. 13175 * tcp_deferred_acks_max is default to 2. 13176 */ 13177 tcp->tcp_rack_abs_max = 13178 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 13179 } 13180 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 13181 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 13182 else 13183 tcp->tcp_rack_cur_max = 0; 13184 /* 13185 * Increment the current rwnd by the amount the maximum grew (we 13186 * can not overwrite it since we might be in the middle of a 13187 * connection.) 13188 */ 13189 tcp->tcp_rwnd += rwnd - old_max_rwnd; 13190 connp->conn_rcvbuf = rwnd; 13191 13192 /* Are we already connected? */ 13193 if (tcp->tcp_tcpha != NULL) { 13194 tcp->tcp_tcpha->tha_win = 13195 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13196 } 13197 13198 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13199 tcp->tcp_cwnd_max = rwnd; 13200 13201 if (tcp_detached) 13202 return (rwnd); 13203 13204 tcp_set_recv_threshold(tcp, rwnd >> 3); 13205 13206 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 13207 return (rwnd); 13208 } 13209 13210 /* 13211 * Return SNMP stuff in buffer in mpdata. 13212 */ 13213 mblk_t * 13214 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 13215 { 13216 mblk_t *mpdata; 13217 mblk_t *mp_conn_ctl = NULL; 13218 mblk_t *mp_conn_tail; 13219 mblk_t *mp_attr_ctl = NULL; 13220 mblk_t *mp_attr_tail; 13221 mblk_t *mp6_conn_ctl = NULL; 13222 mblk_t *mp6_conn_tail; 13223 mblk_t *mp6_attr_ctl = NULL; 13224 mblk_t *mp6_attr_tail; 13225 struct opthdr *optp; 13226 mib2_tcpConnEntry_t tce; 13227 mib2_tcp6ConnEntry_t tce6; 13228 mib2_transportMLPEntry_t mlp; 13229 connf_t *connfp; 13230 int i; 13231 boolean_t ispriv; 13232 zoneid_t zoneid; 13233 int v4_conn_idx; 13234 int v6_conn_idx; 13235 conn_t *connp = Q_TO_CONN(q); 13236 tcp_stack_t *tcps; 13237 ip_stack_t *ipst; 13238 mblk_t *mp2ctl; 13239 13240 /* 13241 * make a copy of the original message 13242 */ 13243 mp2ctl = copymsg(mpctl); 13244 13245 if (mpctl == NULL || 13246 (mpdata = mpctl->b_cont) == NULL || 13247 (mp_conn_ctl = copymsg(mpctl)) == NULL || 13248 (mp_attr_ctl = copymsg(mpctl)) == NULL || 13249 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 13250 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 13251 freemsg(mp_conn_ctl); 13252 freemsg(mp_attr_ctl); 13253 freemsg(mp6_conn_ctl); 13254 freemsg(mp6_attr_ctl); 13255 freemsg(mpctl); 13256 freemsg(mp2ctl); 13257 return (NULL); 13258 } 13259 13260 ipst = connp->conn_netstack->netstack_ip; 13261 tcps = connp->conn_netstack->netstack_tcp; 13262 13263 /* build table of connections -- need count in fixed part */ 13264 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 13265 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 13266 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 13267 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 13268 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 13269 13270 ispriv = 13271 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 13272 zoneid = Q_TO_CONN(q)->conn_zoneid; 13273 13274 v4_conn_idx = v6_conn_idx = 0; 13275 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 13276 13277 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 13278 ipst = tcps->tcps_netstack->netstack_ip; 13279 13280 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 13281 13282 connp = NULL; 13283 13284 while ((connp = 13285 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 13286 tcp_t *tcp; 13287 boolean_t needattr; 13288 13289 if (connp->conn_zoneid != zoneid) 13290 continue; /* not in this zone */ 13291 13292 tcp = connp->conn_tcp; 13293 UPDATE_MIB(&tcps->tcps_mib, 13294 tcpHCInSegs, tcp->tcp_ibsegs); 13295 tcp->tcp_ibsegs = 0; 13296 UPDATE_MIB(&tcps->tcps_mib, 13297 tcpHCOutSegs, tcp->tcp_obsegs); 13298 tcp->tcp_obsegs = 0; 13299 13300 tce6.tcp6ConnState = tce.tcpConnState = 13301 tcp_snmp_state(tcp); 13302 if (tce.tcpConnState == MIB2_TCP_established || 13303 tce.tcpConnState == MIB2_TCP_closeWait) 13304 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 13305 13306 needattr = B_FALSE; 13307 bzero(&mlp, sizeof (mlp)); 13308 if (connp->conn_mlp_type != mlptSingle) { 13309 if (connp->conn_mlp_type == mlptShared || 13310 connp->conn_mlp_type == mlptBoth) 13311 mlp.tme_flags |= MIB2_TMEF_SHARED; 13312 if (connp->conn_mlp_type == mlptPrivate || 13313 connp->conn_mlp_type == mlptBoth) 13314 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 13315 needattr = B_TRUE; 13316 } 13317 if (connp->conn_anon_mlp) { 13318 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13319 needattr = B_TRUE; 13320 } 13321 switch (connp->conn_mac_mode) { 13322 case CONN_MAC_DEFAULT: 13323 break; 13324 case CONN_MAC_AWARE: 13325 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13326 needattr = B_TRUE; 13327 break; 13328 case CONN_MAC_IMPLICIT: 13329 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13330 needattr = B_TRUE; 13331 break; 13332 } 13333 if (connp->conn_ixa->ixa_tsl != NULL) { 13334 ts_label_t *tsl; 13335 13336 tsl = connp->conn_ixa->ixa_tsl; 13337 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13338 mlp.tme_doi = label2doi(tsl); 13339 mlp.tme_label = *label2bslabel(tsl); 13340 needattr = B_TRUE; 13341 } 13342 13343 /* Create a message to report on IPv6 entries */ 13344 if (connp->conn_ipversion == IPV6_VERSION) { 13345 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13346 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13347 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13348 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13349 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13350 tce6.tcp6ConnIfIndex = 13351 connp->conn_ixa->ixa_scopeid; 13352 } else { 13353 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13354 } 13355 /* Don't want just anybody seeing these... */ 13356 if (ispriv) { 13357 tce6.tcp6ConnEntryInfo.ce_snxt = 13358 tcp->tcp_snxt; 13359 tce6.tcp6ConnEntryInfo.ce_suna = 13360 tcp->tcp_suna; 13361 tce6.tcp6ConnEntryInfo.ce_rnxt = 13362 tcp->tcp_rnxt; 13363 tce6.tcp6ConnEntryInfo.ce_rack = 13364 tcp->tcp_rack; 13365 } else { 13366 /* 13367 * Netstat, unfortunately, uses this to 13368 * get send/receive queue sizes. How to fix? 13369 * Why not compute the difference only? 13370 */ 13371 tce6.tcp6ConnEntryInfo.ce_snxt = 13372 tcp->tcp_snxt - tcp->tcp_suna; 13373 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13374 tce6.tcp6ConnEntryInfo.ce_rnxt = 13375 tcp->tcp_rnxt - tcp->tcp_rack; 13376 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13377 } 13378 13379 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13380 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13381 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13382 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13383 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13384 13385 tce6.tcp6ConnCreationProcess = 13386 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13387 connp->conn_cpid; 13388 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13389 13390 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13391 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13392 13393 mlp.tme_connidx = v6_conn_idx++; 13394 if (needattr) 13395 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13396 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13397 } 13398 /* 13399 * Create an IPv4 table entry for IPv4 entries and also 13400 * for IPv6 entries which are bound to in6addr_any 13401 * but don't have IPV6_V6ONLY set. 13402 * (i.e. anything an IPv4 peer could connect to) 13403 */ 13404 if (connp->conn_ipversion == IPV4_VERSION || 13405 (tcp->tcp_state <= TCPS_LISTEN && 13406 !connp->conn_ipv6_v6only && 13407 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13408 if (connp->conn_ipversion == IPV6_VERSION) { 13409 tce.tcpConnRemAddress = INADDR_ANY; 13410 tce.tcpConnLocalAddress = INADDR_ANY; 13411 } else { 13412 tce.tcpConnRemAddress = 13413 connp->conn_faddr_v4; 13414 tce.tcpConnLocalAddress = 13415 connp->conn_laddr_v4; 13416 } 13417 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13418 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13419 /* Don't want just anybody seeing these... */ 13420 if (ispriv) { 13421 tce.tcpConnEntryInfo.ce_snxt = 13422 tcp->tcp_snxt; 13423 tce.tcpConnEntryInfo.ce_suna = 13424 tcp->tcp_suna; 13425 tce.tcpConnEntryInfo.ce_rnxt = 13426 tcp->tcp_rnxt; 13427 tce.tcpConnEntryInfo.ce_rack = 13428 tcp->tcp_rack; 13429 } else { 13430 /* 13431 * Netstat, unfortunately, uses this to 13432 * get send/receive queue sizes. How 13433 * to fix? 13434 * Why not compute the difference only? 13435 */ 13436 tce.tcpConnEntryInfo.ce_snxt = 13437 tcp->tcp_snxt - tcp->tcp_suna; 13438 tce.tcpConnEntryInfo.ce_suna = 0; 13439 tce.tcpConnEntryInfo.ce_rnxt = 13440 tcp->tcp_rnxt - tcp->tcp_rack; 13441 tce.tcpConnEntryInfo.ce_rack = 0; 13442 } 13443 13444 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13445 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13446 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13447 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13448 tce.tcpConnEntryInfo.ce_state = 13449 tcp->tcp_state; 13450 13451 tce.tcpConnCreationProcess = 13452 (connp->conn_cpid < 0) ? 13453 MIB2_UNKNOWN_PROCESS : 13454 connp->conn_cpid; 13455 tce.tcpConnCreationTime = connp->conn_open_time; 13456 13457 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13458 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13459 13460 mlp.tme_connidx = v4_conn_idx++; 13461 if (needattr) 13462 (void) snmp_append_data2( 13463 mp_attr_ctl->b_cont, 13464 &mp_attr_tail, (char *)&mlp, 13465 sizeof (mlp)); 13466 } 13467 } 13468 } 13469 13470 /* fixed length structure for IPv4 and IPv6 counters */ 13471 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13472 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13473 sizeof (mib2_tcp6ConnEntry_t)); 13474 /* synchronize 32- and 64-bit counters */ 13475 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13476 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13477 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13478 optp->level = MIB2_TCP; 13479 optp->name = 0; 13480 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13481 sizeof (tcps->tcps_mib)); 13482 optp->len = msgdsize(mpdata); 13483 qreply(q, mpctl); 13484 13485 /* table of connections... */ 13486 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13487 sizeof (struct T_optmgmt_ack)]; 13488 optp->level = MIB2_TCP; 13489 optp->name = MIB2_TCP_CONN; 13490 optp->len = msgdsize(mp_conn_ctl->b_cont); 13491 qreply(q, mp_conn_ctl); 13492 13493 /* table of MLP attributes... */ 13494 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13495 sizeof (struct T_optmgmt_ack)]; 13496 optp->level = MIB2_TCP; 13497 optp->name = EXPER_XPORT_MLP; 13498 optp->len = msgdsize(mp_attr_ctl->b_cont); 13499 if (optp->len == 0) 13500 freemsg(mp_attr_ctl); 13501 else 13502 qreply(q, mp_attr_ctl); 13503 13504 /* table of IPv6 connections... */ 13505 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13506 sizeof (struct T_optmgmt_ack)]; 13507 optp->level = MIB2_TCP6; 13508 optp->name = MIB2_TCP6_CONN; 13509 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13510 qreply(q, mp6_conn_ctl); 13511 13512 /* table of IPv6 MLP attributes... */ 13513 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13514 sizeof (struct T_optmgmt_ack)]; 13515 optp->level = MIB2_TCP6; 13516 optp->name = EXPER_XPORT_MLP; 13517 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13518 if (optp->len == 0) 13519 freemsg(mp6_attr_ctl); 13520 else 13521 qreply(q, mp6_attr_ctl); 13522 return (mp2ctl); 13523 } 13524 13525 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13526 /* ARGSUSED */ 13527 int 13528 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13529 { 13530 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13531 13532 switch (level) { 13533 case MIB2_TCP: 13534 switch (name) { 13535 case 13: 13536 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13537 return (0); 13538 /* TODO: delete entry defined by tce */ 13539 return (1); 13540 default: 13541 return (0); 13542 } 13543 default: 13544 return (1); 13545 } 13546 } 13547 13548 /* Translate TCP state to MIB2 TCP state. */ 13549 static int 13550 tcp_snmp_state(tcp_t *tcp) 13551 { 13552 if (tcp == NULL) 13553 return (0); 13554 13555 switch (tcp->tcp_state) { 13556 case TCPS_CLOSED: 13557 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13558 case TCPS_BOUND: 13559 return (MIB2_TCP_closed); 13560 case TCPS_LISTEN: 13561 return (MIB2_TCP_listen); 13562 case TCPS_SYN_SENT: 13563 return (MIB2_TCP_synSent); 13564 case TCPS_SYN_RCVD: 13565 return (MIB2_TCP_synReceived); 13566 case TCPS_ESTABLISHED: 13567 return (MIB2_TCP_established); 13568 case TCPS_CLOSE_WAIT: 13569 return (MIB2_TCP_closeWait); 13570 case TCPS_FIN_WAIT_1: 13571 return (MIB2_TCP_finWait1); 13572 case TCPS_CLOSING: 13573 return (MIB2_TCP_closing); 13574 case TCPS_LAST_ACK: 13575 return (MIB2_TCP_lastAck); 13576 case TCPS_FIN_WAIT_2: 13577 return (MIB2_TCP_finWait2); 13578 case TCPS_TIME_WAIT: 13579 return (MIB2_TCP_timeWait); 13580 default: 13581 return (0); 13582 } 13583 } 13584 13585 /* 13586 * tcp_timer is the timer service routine. It handles the retransmission, 13587 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13588 * from the state of the tcp instance what kind of action needs to be done 13589 * at the time it is called. 13590 */ 13591 static void 13592 tcp_timer(void *arg) 13593 { 13594 mblk_t *mp; 13595 clock_t first_threshold; 13596 clock_t second_threshold; 13597 clock_t ms; 13598 uint32_t mss; 13599 conn_t *connp = (conn_t *)arg; 13600 tcp_t *tcp = connp->conn_tcp; 13601 tcp_stack_t *tcps = tcp->tcp_tcps; 13602 13603 tcp->tcp_timer_tid = 0; 13604 13605 if (tcp->tcp_fused) 13606 return; 13607 13608 first_threshold = tcp->tcp_first_timer_threshold; 13609 second_threshold = tcp->tcp_second_timer_threshold; 13610 switch (tcp->tcp_state) { 13611 case TCPS_IDLE: 13612 case TCPS_BOUND: 13613 case TCPS_LISTEN: 13614 return; 13615 case TCPS_SYN_RCVD: { 13616 tcp_t *listener = tcp->tcp_listener; 13617 13618 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13619 /* it's our first timeout */ 13620 tcp->tcp_syn_rcvd_timeout = 1; 13621 mutex_enter(&listener->tcp_eager_lock); 13622 listener->tcp_syn_rcvd_timeout++; 13623 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13624 /* 13625 * Make this eager available for drop if we 13626 * need to drop one to accomodate a new 13627 * incoming SYN request. 13628 */ 13629 MAKE_DROPPABLE(listener, tcp); 13630 } 13631 if (!listener->tcp_syn_defense && 13632 (listener->tcp_syn_rcvd_timeout > 13633 (tcps->tcps_conn_req_max_q0 >> 2)) && 13634 (tcps->tcps_conn_req_max_q0 > 200)) { 13635 /* We may be under attack. Put on a defense. */ 13636 listener->tcp_syn_defense = B_TRUE; 13637 cmn_err(CE_WARN, "High TCP connect timeout " 13638 "rate! System (port %d) may be under a " 13639 "SYN flood attack!", 13640 ntohs(listener->tcp_connp->conn_lport)); 13641 13642 listener->tcp_ip_addr_cache = kmem_zalloc( 13643 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13644 KM_NOSLEEP); 13645 } 13646 mutex_exit(&listener->tcp_eager_lock); 13647 } else if (listener != NULL) { 13648 mutex_enter(&listener->tcp_eager_lock); 13649 tcp->tcp_syn_rcvd_timeout++; 13650 if (tcp->tcp_syn_rcvd_timeout > 1 && 13651 !tcp->tcp_closemp_used) { 13652 /* 13653 * This is our second timeout. Put the tcp in 13654 * the list of droppable eagers to allow it to 13655 * be dropped, if needed. We don't check 13656 * whether tcp_dontdrop is set or not to 13657 * protect ourselve from a SYN attack where a 13658 * remote host can spoof itself as one of the 13659 * good IP source and continue to hold 13660 * resources too long. 13661 */ 13662 MAKE_DROPPABLE(listener, tcp); 13663 } 13664 mutex_exit(&listener->tcp_eager_lock); 13665 } 13666 } 13667 /* FALLTHRU */ 13668 case TCPS_SYN_SENT: 13669 first_threshold = tcp->tcp_first_ctimer_threshold; 13670 second_threshold = tcp->tcp_second_ctimer_threshold; 13671 break; 13672 case TCPS_ESTABLISHED: 13673 case TCPS_FIN_WAIT_1: 13674 case TCPS_CLOSING: 13675 case TCPS_CLOSE_WAIT: 13676 case TCPS_LAST_ACK: 13677 /* If we have data to rexmit */ 13678 if (tcp->tcp_suna != tcp->tcp_snxt) { 13679 clock_t time_to_wait; 13680 13681 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13682 if (!tcp->tcp_xmit_head) 13683 break; 13684 time_to_wait = ddi_get_lbolt() - 13685 (clock_t)tcp->tcp_xmit_head->b_prev; 13686 time_to_wait = tcp->tcp_rto - 13687 TICK_TO_MSEC(time_to_wait); 13688 /* 13689 * If the timer fires too early, 1 clock tick earlier, 13690 * restart the timer. 13691 */ 13692 if (time_to_wait > msec_per_tick) { 13693 TCP_STAT(tcps, tcp_timer_fire_early); 13694 TCP_TIMER_RESTART(tcp, time_to_wait); 13695 return; 13696 } 13697 /* 13698 * When we probe zero windows, we force the swnd open. 13699 * If our peer acks with a closed window swnd will be 13700 * set to zero by tcp_rput(). As long as we are 13701 * receiving acks tcp_rput will 13702 * reset 'tcp_ms_we_have_waited' so as not to trip the 13703 * first and second interval actions. NOTE: the timer 13704 * interval is allowed to continue its exponential 13705 * backoff. 13706 */ 13707 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13708 if (connp->conn_debug) { 13709 (void) strlog(TCP_MOD_ID, 0, 1, 13710 SL_TRACE, "tcp_timer: zero win"); 13711 } 13712 } else { 13713 /* 13714 * After retransmission, we need to do 13715 * slow start. Set the ssthresh to one 13716 * half of current effective window and 13717 * cwnd to one MSS. Also reset 13718 * tcp_cwnd_cnt. 13719 * 13720 * Note that if tcp_ssthresh is reduced because 13721 * of ECN, do not reduce it again unless it is 13722 * already one window of data away (tcp_cwr 13723 * should then be cleared) or this is a 13724 * timeout for a retransmitted segment. 13725 */ 13726 uint32_t npkt; 13727 13728 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13729 npkt = ((tcp->tcp_timer_backoff ? 13730 tcp->tcp_cwnd_ssthresh : 13731 tcp->tcp_snxt - 13732 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13733 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13734 tcp->tcp_mss; 13735 } 13736 tcp->tcp_cwnd = tcp->tcp_mss; 13737 tcp->tcp_cwnd_cnt = 0; 13738 if (tcp->tcp_ecn_ok) { 13739 tcp->tcp_cwr = B_TRUE; 13740 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13741 tcp->tcp_ecn_cwr_sent = B_FALSE; 13742 } 13743 } 13744 break; 13745 } 13746 /* 13747 * We have something to send yet we cannot send. The 13748 * reason can be: 13749 * 13750 * 1. Zero send window: we need to do zero window probe. 13751 * 2. Zero cwnd: because of ECN, we need to "clock out 13752 * segments. 13753 * 3. SWS avoidance: receiver may have shrunk window, 13754 * reset our knowledge. 13755 * 13756 * Note that condition 2 can happen with either 1 or 13757 * 3. But 1 and 3 are exclusive. 13758 */ 13759 if (tcp->tcp_unsent != 0) { 13760 /* 13761 * Should not hold the zero-copy messages for too long. 13762 */ 13763 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13764 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13765 tcp->tcp_xmit_head, B_TRUE); 13766 13767 if (tcp->tcp_cwnd == 0) { 13768 /* 13769 * Set tcp_cwnd to 1 MSS so that a 13770 * new segment can be sent out. We 13771 * are "clocking out" new data when 13772 * the network is really congested. 13773 */ 13774 ASSERT(tcp->tcp_ecn_ok); 13775 tcp->tcp_cwnd = tcp->tcp_mss; 13776 } 13777 if (tcp->tcp_swnd == 0) { 13778 /* Extend window for zero window probe */ 13779 tcp->tcp_swnd++; 13780 tcp->tcp_zero_win_probe = B_TRUE; 13781 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13782 } else { 13783 /* 13784 * Handle timeout from sender SWS avoidance. 13785 * Reset our knowledge of the max send window 13786 * since the receiver might have reduced its 13787 * receive buffer. Avoid setting tcp_max_swnd 13788 * to one since that will essentially disable 13789 * the SWS checks. 13790 * 13791 * Note that since we don't have a SWS 13792 * state variable, if the timeout is set 13793 * for ECN but not for SWS, this 13794 * code will also be executed. This is 13795 * fine as tcp_max_swnd is updated 13796 * constantly and it will not affect 13797 * anything. 13798 */ 13799 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13800 } 13801 tcp_wput_data(tcp, NULL, B_FALSE); 13802 return; 13803 } 13804 /* Is there a FIN that needs to be to re retransmitted? */ 13805 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13806 !tcp->tcp_fin_acked) 13807 break; 13808 /* Nothing to do, return without restarting timer. */ 13809 TCP_STAT(tcps, tcp_timer_fire_miss); 13810 return; 13811 case TCPS_FIN_WAIT_2: 13812 /* 13813 * User closed the TCP endpoint and peer ACK'ed our FIN. 13814 * We waited some time for for peer's FIN, but it hasn't 13815 * arrived. We flush the connection now to avoid 13816 * case where the peer has rebooted. 13817 */ 13818 if (TCP_IS_DETACHED(tcp)) { 13819 (void) tcp_clean_death(tcp, 0, 23); 13820 } else { 13821 TCP_TIMER_RESTART(tcp, 13822 tcps->tcps_fin_wait_2_flush_interval); 13823 } 13824 return; 13825 case TCPS_TIME_WAIT: 13826 (void) tcp_clean_death(tcp, 0, 24); 13827 return; 13828 default: 13829 if (connp->conn_debug) { 13830 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13831 "tcp_timer: strange state (%d) %s", 13832 tcp->tcp_state, tcp_display(tcp, NULL, 13833 DISP_PORT_ONLY)); 13834 } 13835 return; 13836 } 13837 13838 /* 13839 * If the system is under memory pressure or the max number of 13840 * connections have been established for the listener, be more 13841 * aggressive in aborting connections. 13842 */ 13843 if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL && 13844 tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) { 13845 second_threshold = tcp_early_abort * SECONDS; 13846 } 13847 13848 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13849 /* 13850 * Should not hold the zero-copy messages for too long. 13851 */ 13852 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13853 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13854 tcp->tcp_xmit_head, B_TRUE); 13855 13856 /* 13857 * For zero window probe, we need to send indefinitely, 13858 * unless we have not heard from the other side for some 13859 * time... 13860 */ 13861 if ((tcp->tcp_zero_win_probe == 0) || 13862 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 13863 second_threshold)) { 13864 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13865 /* 13866 * If TCP is in SYN_RCVD state, send back a 13867 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13868 * should be zero in TCPS_SYN_RCVD state. 13869 */ 13870 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13871 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13872 "in SYN_RCVD", 13873 tcp, tcp->tcp_snxt, 13874 tcp->tcp_rnxt, TH_RST | TH_ACK); 13875 } 13876 (void) tcp_clean_death(tcp, 13877 tcp->tcp_client_errno ? 13878 tcp->tcp_client_errno : ETIMEDOUT, 25); 13879 return; 13880 } else { 13881 /* 13882 * If the system is under memory pressure, we also 13883 * abort connection in zero window probing. 13884 */ 13885 if (tcps->tcps_reclaim) { 13886 (void) tcp_clean_death(tcp, 13887 tcp->tcp_client_errno ? 13888 tcp->tcp_client_errno : ETIMEDOUT, 25); 13889 return; 13890 } 13891 /* 13892 * Set tcp_ms_we_have_waited to second_threshold 13893 * so that in next timeout, we will do the above 13894 * check (ddi_get_lbolt() - tcp_last_recv_time). 13895 * This is also to avoid overflow. 13896 * 13897 * We don't need to decrement tcp_timer_backoff 13898 * to avoid overflow because it will be decremented 13899 * later if new timeout value is greater than 13900 * tcp_rexmit_interval_max. In the case when 13901 * tcp_rexmit_interval_max is greater than 13902 * second_threshold, it means that we will wait 13903 * longer than second_threshold to send the next 13904 * window probe. 13905 */ 13906 tcp->tcp_ms_we_have_waited = second_threshold; 13907 } 13908 } else if (ms > first_threshold) { 13909 /* 13910 * Should not hold the zero-copy messages for too long. 13911 */ 13912 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13913 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13914 tcp->tcp_xmit_head, B_TRUE); 13915 13916 /* 13917 * We have been retransmitting for too long... The RTT 13918 * we calculated is probably incorrect. Reinitialize it. 13919 * Need to compensate for 0 tcp_rtt_sa. Reset 13920 * tcp_rtt_update so that we won't accidentally cache a 13921 * bad value. But only do this if this is not a zero 13922 * window probe. 13923 */ 13924 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13925 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13926 (tcp->tcp_rtt_sa >> 5); 13927 tcp->tcp_rtt_sa = 0; 13928 tcp_ip_notify(tcp); 13929 tcp->tcp_rtt_update = 0; 13930 } 13931 } 13932 tcp->tcp_timer_backoff++; 13933 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13934 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13935 tcps->tcps_rexmit_interval_min) { 13936 /* 13937 * This means the original RTO is tcp_rexmit_interval_min. 13938 * So we will use tcp_rexmit_interval_min as the RTO value 13939 * and do the backoff. 13940 */ 13941 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13942 } else { 13943 ms <<= tcp->tcp_timer_backoff; 13944 } 13945 if (ms > tcps->tcps_rexmit_interval_max) { 13946 ms = tcps->tcps_rexmit_interval_max; 13947 /* 13948 * ms is at max, decrement tcp_timer_backoff to avoid 13949 * overflow. 13950 */ 13951 tcp->tcp_timer_backoff--; 13952 } 13953 tcp->tcp_ms_we_have_waited += ms; 13954 if (tcp->tcp_zero_win_probe == 0) { 13955 tcp->tcp_rto = ms; 13956 } 13957 TCP_TIMER_RESTART(tcp, ms); 13958 /* 13959 * This is after a timeout and tcp_rto is backed off. Set 13960 * tcp_set_timer to 1 so that next time RTO is updated, we will 13961 * restart the timer with a correct value. 13962 */ 13963 tcp->tcp_set_timer = 1; 13964 mss = tcp->tcp_snxt - tcp->tcp_suna; 13965 if (mss > tcp->tcp_mss) 13966 mss = tcp->tcp_mss; 13967 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13968 mss = tcp->tcp_swnd; 13969 13970 if ((mp = tcp->tcp_xmit_head) != NULL) 13971 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 13972 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13973 B_TRUE); 13974 13975 /* 13976 * When slow start after retransmission begins, start with 13977 * this seq no. tcp_rexmit_max marks the end of special slow 13978 * start phase. tcp_snd_burst controls how many segments 13979 * can be sent because of an ack. 13980 */ 13981 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13982 tcp->tcp_snd_burst = TCP_CWND_SS; 13983 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13984 (tcp->tcp_unsent == 0)) { 13985 tcp->tcp_rexmit_max = tcp->tcp_fss; 13986 } else { 13987 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13988 } 13989 tcp->tcp_rexmit = B_TRUE; 13990 tcp->tcp_dupack_cnt = 0; 13991 13992 /* 13993 * Remove all rexmit SACK blk to start from fresh. 13994 */ 13995 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 13996 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 13997 if (mp == NULL) { 13998 return; 13999 } 14000 14001 tcp->tcp_csuna = tcp->tcp_snxt; 14002 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 14003 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 14004 tcp_send_data(tcp, mp); 14005 14006 } 14007 14008 static int 14009 tcp_do_unbind(conn_t *connp) 14010 { 14011 tcp_t *tcp = connp->conn_tcp; 14012 14013 switch (tcp->tcp_state) { 14014 case TCPS_BOUND: 14015 case TCPS_LISTEN: 14016 break; 14017 default: 14018 return (-TOUTSTATE); 14019 } 14020 14021 /* 14022 * Need to clean up all the eagers since after the unbind, segments 14023 * will no longer be delivered to this listener stream. 14024 */ 14025 mutex_enter(&tcp->tcp_eager_lock); 14026 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 14027 tcp_eager_cleanup(tcp, 0); 14028 } 14029 mutex_exit(&tcp->tcp_eager_lock); 14030 14031 /* Clean up the listener connection counter if necessary. */ 14032 if (tcp->tcp_listen_cnt != NULL) 14033 TCP_DECR_LISTEN_CNT(tcp); 14034 connp->conn_laddr_v6 = ipv6_all_zeros; 14035 connp->conn_saddr_v6 = ipv6_all_zeros; 14036 tcp_bind_hash_remove(tcp); 14037 tcp->tcp_state = TCPS_IDLE; 14038 14039 ip_unbind(connp); 14040 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 14041 14042 return (0); 14043 } 14044 14045 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 14046 static void 14047 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 14048 { 14049 conn_t *connp = tcp->tcp_connp; 14050 int error; 14051 14052 error = tcp_do_unbind(connp); 14053 if (error > 0) { 14054 tcp_err_ack(tcp, mp, TSYSERR, error); 14055 } else if (error < 0) { 14056 tcp_err_ack(tcp, mp, -error, 0); 14057 } else { 14058 /* Send M_FLUSH according to TPI */ 14059 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 14060 14061 mp = mi_tpi_ok_ack_alloc(mp); 14062 if (mp != NULL) 14063 putnext(connp->conn_rq, mp); 14064 } 14065 } 14066 14067 /* 14068 * Don't let port fall into the privileged range. 14069 * Since the extra privileged ports can be arbitrary we also 14070 * ensure that we exclude those from consideration. 14071 * tcp_g_epriv_ports is not sorted thus we loop over it until 14072 * there are no changes. 14073 * 14074 * Note: No locks are held when inspecting tcp_g_*epriv_ports 14075 * but instead the code relies on: 14076 * - the fact that the address of the array and its size never changes 14077 * - the atomic assignment of the elements of the array 14078 * 14079 * Returns 0 if there are no more ports available. 14080 * 14081 * TS note: skip multilevel ports. 14082 */ 14083 static in_port_t 14084 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 14085 { 14086 int i; 14087 boolean_t restart = B_FALSE; 14088 tcp_stack_t *tcps = tcp->tcp_tcps; 14089 14090 if (random && tcp_random_anon_port != 0) { 14091 (void) random_get_pseudo_bytes((uint8_t *)&port, 14092 sizeof (in_port_t)); 14093 /* 14094 * Unless changed by a sys admin, the smallest anon port 14095 * is 32768 and the largest anon port is 65535. It is 14096 * very likely (50%) for the random port to be smaller 14097 * than the smallest anon port. When that happens, 14098 * add port % (anon port range) to the smallest anon 14099 * port to get the random port. It should fall into the 14100 * valid anon port range. 14101 */ 14102 if (port < tcps->tcps_smallest_anon_port) { 14103 port = tcps->tcps_smallest_anon_port + 14104 port % (tcps->tcps_largest_anon_port - 14105 tcps->tcps_smallest_anon_port); 14106 } 14107 } 14108 14109 retry: 14110 if (port < tcps->tcps_smallest_anon_port) 14111 port = (in_port_t)tcps->tcps_smallest_anon_port; 14112 14113 if (port > tcps->tcps_largest_anon_port) { 14114 if (restart) 14115 return (0); 14116 restart = B_TRUE; 14117 port = (in_port_t)tcps->tcps_smallest_anon_port; 14118 } 14119 14120 if (port < tcps->tcps_smallest_nonpriv_port) 14121 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 14122 14123 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 14124 if (port == tcps->tcps_g_epriv_ports[i]) { 14125 port++; 14126 /* 14127 * Make sure whether the port is in the 14128 * valid range. 14129 */ 14130 goto retry; 14131 } 14132 } 14133 if (is_system_labeled() && 14134 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 14135 IPPROTO_TCP, B_TRUE)) != 0) { 14136 port = i; 14137 goto retry; 14138 } 14139 return (port); 14140 } 14141 14142 /* 14143 * Return the next anonymous port in the privileged port range for 14144 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 14145 * downwards. This is the same behavior as documented in the userland 14146 * library call rresvport(3N). 14147 * 14148 * TS note: skip multilevel ports. 14149 */ 14150 static in_port_t 14151 tcp_get_next_priv_port(const tcp_t *tcp) 14152 { 14153 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 14154 in_port_t nextport; 14155 boolean_t restart = B_FALSE; 14156 tcp_stack_t *tcps = tcp->tcp_tcps; 14157 retry: 14158 if (next_priv_port < tcps->tcps_min_anonpriv_port || 14159 next_priv_port >= IPPORT_RESERVED) { 14160 next_priv_port = IPPORT_RESERVED - 1; 14161 if (restart) 14162 return (0); 14163 restart = B_TRUE; 14164 } 14165 if (is_system_labeled() && 14166 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 14167 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 14168 next_priv_port = nextport; 14169 goto retry; 14170 } 14171 return (next_priv_port--); 14172 } 14173 14174 /* The write side r/w procedure. */ 14175 14176 #if CCS_STATS 14177 struct { 14178 struct { 14179 int64_t count, bytes; 14180 } tot, hit; 14181 } wrw_stats; 14182 #endif 14183 14184 /* 14185 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 14186 * messages. 14187 */ 14188 /* ARGSUSED */ 14189 static void 14190 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14191 { 14192 conn_t *connp = (conn_t *)arg; 14193 tcp_t *tcp = connp->conn_tcp; 14194 14195 ASSERT(DB_TYPE(mp) != M_IOCTL); 14196 /* 14197 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 14198 * Once the close starts, streamhead and sockfs will not let any data 14199 * packets come down (close ensures that there are no threads using the 14200 * queue and no new threads will come down) but since qprocsoff() 14201 * hasn't happened yet, a M_FLUSH or some non data message might 14202 * get reflected back (in response to our own FLUSHRW) and get 14203 * processed after tcp_close() is done. The conn would still be valid 14204 * because a ref would have added but we need to check the state 14205 * before actually processing the packet. 14206 */ 14207 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 14208 freemsg(mp); 14209 return; 14210 } 14211 14212 switch (DB_TYPE(mp)) { 14213 case M_IOCDATA: 14214 tcp_wput_iocdata(tcp, mp); 14215 break; 14216 case M_FLUSH: 14217 tcp_wput_flush(tcp, mp); 14218 break; 14219 default: 14220 ip_wput_nondata(connp->conn_wq, mp); 14221 break; 14222 } 14223 } 14224 14225 /* 14226 * The TCP fast path write put procedure. 14227 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 14228 */ 14229 /* ARGSUSED */ 14230 void 14231 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14232 { 14233 int len; 14234 int hdrlen; 14235 int plen; 14236 mblk_t *mp1; 14237 uchar_t *rptr; 14238 uint32_t snxt; 14239 tcpha_t *tcpha; 14240 struct datab *db; 14241 uint32_t suna; 14242 uint32_t mss; 14243 ipaddr_t *dst; 14244 ipaddr_t *src; 14245 uint32_t sum; 14246 int usable; 14247 conn_t *connp = (conn_t *)arg; 14248 tcp_t *tcp = connp->conn_tcp; 14249 uint32_t msize; 14250 tcp_stack_t *tcps = tcp->tcp_tcps; 14251 ip_xmit_attr_t *ixa; 14252 clock_t now; 14253 14254 /* 14255 * Try and ASSERT the minimum possible references on the 14256 * conn early enough. Since we are executing on write side, 14257 * the connection is obviously not detached and that means 14258 * there is a ref each for TCP and IP. Since we are behind 14259 * the squeue, the minimum references needed are 3. If the 14260 * conn is in classifier hash list, there should be an 14261 * extra ref for that (we check both the possibilities). 14262 */ 14263 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14264 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14265 14266 ASSERT(DB_TYPE(mp) == M_DATA); 14267 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 14268 14269 mutex_enter(&tcp->tcp_non_sq_lock); 14270 tcp->tcp_squeue_bytes -= msize; 14271 mutex_exit(&tcp->tcp_non_sq_lock); 14272 14273 /* Bypass tcp protocol for fused tcp loopback */ 14274 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 14275 return; 14276 14277 mss = tcp->tcp_mss; 14278 /* 14279 * If ZEROCOPY has turned off, try not to send any zero-copy message 14280 * down. Do backoff, now. 14281 */ 14282 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 14283 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 14284 14285 14286 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14287 len = (int)(mp->b_wptr - mp->b_rptr); 14288 14289 /* 14290 * Criteria for fast path: 14291 * 14292 * 1. no unsent data 14293 * 2. single mblk in request 14294 * 3. connection established 14295 * 4. data in mblk 14296 * 5. len <= mss 14297 * 6. no tcp_valid bits 14298 */ 14299 if ((tcp->tcp_unsent != 0) || 14300 (tcp->tcp_cork) || 14301 (mp->b_cont != NULL) || 14302 (tcp->tcp_state != TCPS_ESTABLISHED) || 14303 (len == 0) || 14304 (len > mss) || 14305 (tcp->tcp_valid_bits != 0)) { 14306 tcp_wput_data(tcp, mp, B_FALSE); 14307 return; 14308 } 14309 14310 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 14311 ASSERT(tcp->tcp_fin_sent == 0); 14312 14313 /* queue new packet onto retransmission queue */ 14314 if (tcp->tcp_xmit_head == NULL) { 14315 tcp->tcp_xmit_head = mp; 14316 } else { 14317 tcp->tcp_xmit_last->b_cont = mp; 14318 } 14319 tcp->tcp_xmit_last = mp; 14320 tcp->tcp_xmit_tail = mp; 14321 14322 /* find out how much we can send */ 14323 /* BEGIN CSTYLED */ 14324 /* 14325 * un-acked usable 14326 * |--------------|-----------------| 14327 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 14328 */ 14329 /* END CSTYLED */ 14330 14331 /* start sending from tcp_snxt */ 14332 snxt = tcp->tcp_snxt; 14333 14334 /* 14335 * Check to see if this connection has been idled for some 14336 * time and no ACK is expected. If it is, we need to slow 14337 * start again to get back the connection's "self-clock" as 14338 * described in VJ's paper. 14339 * 14340 * Reinitialize tcp_cwnd after idle. 14341 */ 14342 now = LBOLT_FASTPATH; 14343 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14344 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 14345 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14346 } 14347 14348 usable = tcp->tcp_swnd; /* tcp window size */ 14349 if (usable > tcp->tcp_cwnd) 14350 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14351 usable -= snxt; /* subtract stuff already sent */ 14352 suna = tcp->tcp_suna; 14353 usable += suna; 14354 /* usable can be < 0 if the congestion window is smaller */ 14355 if (len > usable) { 14356 /* Can't send complete M_DATA in one shot */ 14357 goto slow; 14358 } 14359 14360 mutex_enter(&tcp->tcp_non_sq_lock); 14361 if (tcp->tcp_flow_stopped && 14362 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14363 tcp_clrqfull(tcp); 14364 } 14365 mutex_exit(&tcp->tcp_non_sq_lock); 14366 14367 /* 14368 * determine if anything to send (Nagle). 14369 * 14370 * 1. len < tcp_mss (i.e. small) 14371 * 2. unacknowledged data present 14372 * 3. len < nagle limit 14373 * 4. last packet sent < nagle limit (previous packet sent) 14374 */ 14375 if ((len < mss) && (snxt != suna) && 14376 (len < (int)tcp->tcp_naglim) && 14377 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14378 /* 14379 * This was the first unsent packet and normally 14380 * mss < xmit_hiwater so there is no need to worry 14381 * about flow control. The next packet will go 14382 * through the flow control check in tcp_wput_data(). 14383 */ 14384 /* leftover work from above */ 14385 tcp->tcp_unsent = len; 14386 tcp->tcp_xmit_tail_unsent = len; 14387 14388 return; 14389 } 14390 14391 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14392 14393 if (snxt == suna) { 14394 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14395 } 14396 14397 /* we have always sent something */ 14398 tcp->tcp_rack_cnt = 0; 14399 14400 tcp->tcp_snxt = snxt + len; 14401 tcp->tcp_rack = tcp->tcp_rnxt; 14402 14403 if ((mp1 = dupb(mp)) == 0) 14404 goto no_memory; 14405 mp->b_prev = (mblk_t *)(uintptr_t)now; 14406 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14407 14408 /* adjust tcp header information */ 14409 tcpha = tcp->tcp_tcpha; 14410 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14411 14412 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14413 sum = (sum >> 16) + (sum & 0xFFFF); 14414 tcpha->tha_sum = htons(sum); 14415 14416 tcpha->tha_seq = htonl(snxt); 14417 14418 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14419 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14420 BUMP_LOCAL(tcp->tcp_obsegs); 14421 14422 /* Update the latest receive window size in TCP header. */ 14423 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14424 14425 tcp->tcp_last_sent_len = (ushort_t)len; 14426 14427 plen = len + connp->conn_ht_iphc_len; 14428 14429 ixa = connp->conn_ixa; 14430 ixa->ixa_pktlen = plen; 14431 14432 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14433 tcp->tcp_ipha->ipha_length = htons(plen); 14434 } else { 14435 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14436 } 14437 14438 /* see if we need to allocate a mblk for the headers */ 14439 hdrlen = connp->conn_ht_iphc_len; 14440 rptr = mp1->b_rptr - hdrlen; 14441 db = mp1->b_datap; 14442 if ((db->db_ref != 2) || rptr < db->db_base || 14443 (!OK_32PTR(rptr))) { 14444 /* NOTE: we assume allocb returns an OK_32PTR */ 14445 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14446 if (!mp) { 14447 freemsg(mp1); 14448 goto no_memory; 14449 } 14450 mp->b_cont = mp1; 14451 mp1 = mp; 14452 /* Leave room for Link Level header */ 14453 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14454 mp1->b_wptr = &rptr[hdrlen]; 14455 } 14456 mp1->b_rptr = rptr; 14457 14458 /* Fill in the timestamp option. */ 14459 if (tcp->tcp_snd_ts_ok) { 14460 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 14461 14462 U32_TO_BE32(llbolt, 14463 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14464 U32_TO_BE32(tcp->tcp_ts_recent, 14465 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14466 } else { 14467 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14468 } 14469 14470 /* copy header into outgoing packet */ 14471 dst = (ipaddr_t *)rptr; 14472 src = (ipaddr_t *)connp->conn_ht_iphc; 14473 dst[0] = src[0]; 14474 dst[1] = src[1]; 14475 dst[2] = src[2]; 14476 dst[3] = src[3]; 14477 dst[4] = src[4]; 14478 dst[5] = src[5]; 14479 dst[6] = src[6]; 14480 dst[7] = src[7]; 14481 dst[8] = src[8]; 14482 dst[9] = src[9]; 14483 if (hdrlen -= 40) { 14484 hdrlen >>= 2; 14485 dst += 10; 14486 src += 10; 14487 do { 14488 *dst++ = *src++; 14489 } while (--hdrlen); 14490 } 14491 14492 /* 14493 * Set the ECN info in the TCP header. Note that this 14494 * is not the template header. 14495 */ 14496 if (tcp->tcp_ecn_ok) { 14497 SET_ECT(tcp, rptr); 14498 14499 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14500 if (tcp->tcp_ecn_echo_on) 14501 tcpha->tha_flags |= TH_ECE; 14502 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14503 tcpha->tha_flags |= TH_CWR; 14504 tcp->tcp_ecn_cwr_sent = B_TRUE; 14505 } 14506 } 14507 14508 if (tcp->tcp_ip_forward_progress) { 14509 tcp->tcp_ip_forward_progress = B_FALSE; 14510 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14511 } else { 14512 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14513 } 14514 tcp_send_data(tcp, mp1); 14515 return; 14516 14517 /* 14518 * If we ran out of memory, we pretend to have sent the packet 14519 * and that it was lost on the wire. 14520 */ 14521 no_memory: 14522 return; 14523 14524 slow: 14525 /* leftover work from above */ 14526 tcp->tcp_unsent = len; 14527 tcp->tcp_xmit_tail_unsent = len; 14528 tcp_wput_data(tcp, NULL, B_FALSE); 14529 } 14530 14531 /* 14532 * This runs at the tail end of accept processing on the squeue of the 14533 * new connection. 14534 */ 14535 /* ARGSUSED */ 14536 void 14537 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14538 { 14539 conn_t *connp = (conn_t *)arg; 14540 tcp_t *tcp = connp->conn_tcp; 14541 queue_t *q = connp->conn_rq; 14542 tcp_stack_t *tcps = tcp->tcp_tcps; 14543 /* socket options */ 14544 struct sock_proto_props sopp; 14545 14546 /* We should just receive a single mblk that fits a T_discon_ind */ 14547 ASSERT(mp->b_cont == NULL); 14548 14549 /* 14550 * Drop the eager's ref on the listener, that was placed when 14551 * this eager began life in tcp_input_listener. 14552 */ 14553 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14554 if (IPCL_IS_NONSTR(connp)) { 14555 /* Safe to free conn_ind message */ 14556 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14557 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14558 } 14559 14560 tcp->tcp_detached = B_FALSE; 14561 14562 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14563 /* 14564 * Someone blewoff the eager before we could finish 14565 * the accept. 14566 * 14567 * The only reason eager exists it because we put in 14568 * a ref on it when conn ind went up. We need to send 14569 * a disconnect indication up while the last reference 14570 * on the eager will be dropped by the squeue when we 14571 * return. 14572 */ 14573 ASSERT(tcp->tcp_listener == NULL); 14574 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14575 if (IPCL_IS_NONSTR(connp)) { 14576 ASSERT(tcp->tcp_issocket); 14577 (*connp->conn_upcalls->su_disconnected)( 14578 connp->conn_upper_handle, tcp->tcp_connid, 14579 ECONNREFUSED); 14580 freemsg(mp); 14581 } else { 14582 struct T_discon_ind *tdi; 14583 14584 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14585 /* 14586 * Let us reuse the incoming mblk to avoid 14587 * memory allocation failure problems. We know 14588 * that the size of the incoming mblk i.e. 14589 * stroptions is greater than sizeof 14590 * T_discon_ind. 14591 */ 14592 ASSERT(DB_REF(mp) == 1); 14593 ASSERT(MBLKSIZE(mp) >= 14594 sizeof (struct T_discon_ind)); 14595 14596 DB_TYPE(mp) = M_PROTO; 14597 ((union T_primitives *)mp->b_rptr)->type = 14598 T_DISCON_IND; 14599 tdi = (struct T_discon_ind *)mp->b_rptr; 14600 if (tcp->tcp_issocket) { 14601 tdi->DISCON_reason = ECONNREFUSED; 14602 tdi->SEQ_number = 0; 14603 } else { 14604 tdi->DISCON_reason = ENOPROTOOPT; 14605 tdi->SEQ_number = 14606 tcp->tcp_conn_req_seqnum; 14607 } 14608 mp->b_wptr = mp->b_rptr + 14609 sizeof (struct T_discon_ind); 14610 putnext(q, mp); 14611 } 14612 } 14613 tcp->tcp_hard_binding = B_FALSE; 14614 return; 14615 } 14616 14617 /* 14618 * This is the first time we run on the correct 14619 * queue after tcp_accept. So fix all the q parameters 14620 * here. 14621 */ 14622 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14623 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14624 14625 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14626 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14627 connp->conn_rcvbuf; 14628 14629 /* 14630 * Determine what write offset value to use depending on SACK and 14631 * whether the endpoint is fused or not. 14632 */ 14633 if (tcp->tcp_fused) { 14634 ASSERT(tcp->tcp_loopback); 14635 ASSERT(tcp->tcp_loopback_peer != NULL); 14636 /* 14637 * For fused tcp loopback, set the stream head's write 14638 * offset value to zero since we won't be needing any room 14639 * for TCP/IP headers. This would also improve performance 14640 * since it would reduce the amount of work done by kmem. 14641 * Non-fused tcp loopback case is handled separately below. 14642 */ 14643 sopp.sopp_wroff = 0; 14644 /* 14645 * Update the peer's transmit parameters according to 14646 * our recently calculated high water mark value. 14647 */ 14648 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14649 } else if (tcp->tcp_snd_sack_ok) { 14650 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14651 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14652 } else { 14653 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14654 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14655 } 14656 14657 /* 14658 * If this is endpoint is handling SSL, then reserve extra 14659 * offset and space at the end. 14660 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14661 * overriding the previous setting. The extra cost of signing and 14662 * encrypting multiple MSS-size records (12 of them with Ethernet), 14663 * instead of a single contiguous one by the stream head 14664 * largely outweighs the statistical reduction of ACKs, when 14665 * applicable. The peer will also save on decryption and verification 14666 * costs. 14667 */ 14668 if (tcp->tcp_kssl_ctx != NULL) { 14669 sopp.sopp_wroff += SSL3_WROFFSET; 14670 14671 sopp.sopp_flags |= SOCKOPT_TAIL; 14672 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14673 14674 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14675 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14676 14677 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14678 } 14679 14680 /* Send the options up */ 14681 if (IPCL_IS_NONSTR(connp)) { 14682 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14683 ASSERT(tcp->tcp_kssl_ctx != NULL); 14684 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14685 } 14686 if (tcp->tcp_loopback) { 14687 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14688 sopp.sopp_loopback = B_TRUE; 14689 } 14690 (*connp->conn_upcalls->su_set_proto_props) 14691 (connp->conn_upper_handle, &sopp); 14692 freemsg(mp); 14693 } else { 14694 /* 14695 * Let us reuse the incoming mblk to avoid 14696 * memory allocation failure problems. We know 14697 * that the size of the incoming mblk is at least 14698 * stroptions 14699 */ 14700 struct stroptions *stropt; 14701 14702 ASSERT(DB_REF(mp) == 1); 14703 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14704 14705 DB_TYPE(mp) = M_SETOPTS; 14706 stropt = (struct stroptions *)mp->b_rptr; 14707 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14708 stropt = (struct stroptions *)mp->b_rptr; 14709 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14710 stropt->so_hiwat = sopp.sopp_rxhiwat; 14711 stropt->so_wroff = sopp.sopp_wroff; 14712 stropt->so_maxblk = sopp.sopp_maxblk; 14713 14714 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14715 ASSERT(tcp->tcp_kssl_ctx != NULL); 14716 14717 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14718 stropt->so_tail = sopp.sopp_tail; 14719 stropt->so_copyopt = sopp.sopp_zcopyflag; 14720 } 14721 14722 /* Send the options up */ 14723 putnext(q, mp); 14724 } 14725 14726 /* 14727 * Pass up any data and/or a fin that has been received. 14728 * 14729 * Adjust receive window in case it had decreased 14730 * (because there is data <=> tcp_rcv_list != NULL) 14731 * while the connection was detached. Note that 14732 * in case the eager was flow-controlled, w/o this 14733 * code, the rwnd may never open up again! 14734 */ 14735 if (tcp->tcp_rcv_list != NULL) { 14736 if (IPCL_IS_NONSTR(connp)) { 14737 mblk_t *mp; 14738 int space_left; 14739 int error; 14740 boolean_t push = B_TRUE; 14741 14742 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14743 (connp->conn_upper_handle, NULL, 0, 0, &error, 14744 &push) >= 0) { 14745 tcp->tcp_rwnd = connp->conn_rcvbuf; 14746 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14747 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14748 tcp_xmit_ctl(NULL, 14749 tcp, (tcp->tcp_swnd == 0) ? 14750 tcp->tcp_suna : tcp->tcp_snxt, 14751 tcp->tcp_rnxt, TH_ACK); 14752 } 14753 } 14754 while ((mp = tcp->tcp_rcv_list) != NULL) { 14755 push = B_TRUE; 14756 tcp->tcp_rcv_list = mp->b_next; 14757 mp->b_next = NULL; 14758 space_left = (*connp->conn_upcalls->su_recv) 14759 (connp->conn_upper_handle, mp, msgdsize(mp), 14760 0, &error, &push); 14761 if (space_left < 0) { 14762 /* 14763 * We should never be in middle of a 14764 * fallback, the squeue guarantees that. 14765 */ 14766 ASSERT(error != EOPNOTSUPP); 14767 } 14768 } 14769 tcp->tcp_rcv_last_head = NULL; 14770 tcp->tcp_rcv_last_tail = NULL; 14771 tcp->tcp_rcv_cnt = 0; 14772 } else { 14773 /* We drain directly in case of fused tcp loopback */ 14774 14775 if (!tcp->tcp_fused && canputnext(q)) { 14776 tcp->tcp_rwnd = connp->conn_rcvbuf; 14777 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14778 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14779 tcp_xmit_ctl(NULL, 14780 tcp, (tcp->tcp_swnd == 0) ? 14781 tcp->tcp_suna : tcp->tcp_snxt, 14782 tcp->tcp_rnxt, TH_ACK); 14783 } 14784 } 14785 14786 (void) tcp_rcv_drain(tcp); 14787 } 14788 14789 /* 14790 * For fused tcp loopback, back-enable peer endpoint 14791 * if it's currently flow-controlled. 14792 */ 14793 if (tcp->tcp_fused) { 14794 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14795 14796 ASSERT(peer_tcp != NULL); 14797 ASSERT(peer_tcp->tcp_fused); 14798 14799 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14800 if (peer_tcp->tcp_flow_stopped) { 14801 tcp_clrqfull(peer_tcp); 14802 TCP_STAT(tcps, tcp_fusion_backenabled); 14803 } 14804 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14805 } 14806 } 14807 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14808 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14809 tcp->tcp_ordrel_done = B_TRUE; 14810 if (IPCL_IS_NONSTR(connp)) { 14811 ASSERT(tcp->tcp_ordrel_mp == NULL); 14812 (*connp->conn_upcalls->su_opctl)( 14813 connp->conn_upper_handle, 14814 SOCK_OPCTL_SHUT_RECV, 0); 14815 } else { 14816 mp = tcp->tcp_ordrel_mp; 14817 tcp->tcp_ordrel_mp = NULL; 14818 putnext(q, mp); 14819 } 14820 } 14821 tcp->tcp_hard_binding = B_FALSE; 14822 14823 if (connp->conn_keepalive) { 14824 tcp->tcp_ka_last_intrvl = 0; 14825 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14826 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14827 } 14828 14829 /* 14830 * At this point, eager is fully established and will 14831 * have the following references - 14832 * 14833 * 2 references for connection to exist (1 for TCP and 1 for IP). 14834 * 1 reference for the squeue which will be dropped by the squeue as 14835 * soon as this function returns. 14836 * There will be 1 additonal reference for being in classifier 14837 * hash list provided something bad hasn't happened. 14838 */ 14839 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14840 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14841 } 14842 14843 /* 14844 * The function called through squeue to get behind listener's perimeter to 14845 * send a deferred conn_ind. 14846 */ 14847 /* ARGSUSED */ 14848 void 14849 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14850 { 14851 conn_t *lconnp = (conn_t *)arg; 14852 tcp_t *listener = lconnp->conn_tcp; 14853 struct T_conn_ind *conn_ind; 14854 tcp_t *tcp; 14855 14856 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14857 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14858 conn_ind->OPT_length); 14859 14860 if (listener->tcp_state != TCPS_LISTEN) { 14861 /* 14862 * If listener has closed, it would have caused a 14863 * a cleanup/blowoff to happen for the eager, so 14864 * we don't need to do anything more. 14865 */ 14866 freemsg(mp); 14867 return; 14868 } 14869 14870 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14871 } 14872 14873 /* 14874 * Common to TPI and sockfs accept code. 14875 */ 14876 /* ARGSUSED2 */ 14877 static int 14878 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14879 { 14880 tcp_t *listener, *eager; 14881 mblk_t *discon_mp; 14882 14883 listener = lconnp->conn_tcp; 14884 ASSERT(listener->tcp_state == TCPS_LISTEN); 14885 eager = econnp->conn_tcp; 14886 ASSERT(eager->tcp_listener != NULL); 14887 14888 /* 14889 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14890 * use it if something failed. 14891 */ 14892 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14893 sizeof (struct stroptions)), BPRI_HI); 14894 14895 if (discon_mp == NULL) { 14896 return (-TPROTO); 14897 } 14898 eager->tcp_issocket = B_TRUE; 14899 14900 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14901 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14902 ASSERT(econnp->conn_netstack == 14903 listener->tcp_connp->conn_netstack); 14904 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14905 14906 /* Put the ref for IP */ 14907 CONN_INC_REF(econnp); 14908 14909 /* 14910 * We should have minimum of 3 references on the conn 14911 * at this point. One each for TCP and IP and one for 14912 * the T_conn_ind that was sent up when the 3-way handshake 14913 * completed. In the normal case we would also have another 14914 * reference (making a total of 4) for the conn being in the 14915 * classifier hash list. However the eager could have received 14916 * an RST subsequently and tcp_closei_local could have removed 14917 * the eager from the classifier hash list, hence we can't 14918 * assert that reference. 14919 */ 14920 ASSERT(econnp->conn_ref >= 3); 14921 14922 mutex_enter(&listener->tcp_eager_lock); 14923 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14924 14925 tcp_t *tail; 14926 tcp_t *tcp; 14927 mblk_t *mp1; 14928 14929 tcp = listener->tcp_eager_prev_q0; 14930 /* 14931 * listener->tcp_eager_prev_q0 points to the TAIL of the 14932 * deferred T_conn_ind queue. We need to get to the head 14933 * of the queue in order to send up T_conn_ind the same 14934 * order as how the 3WHS is completed. 14935 */ 14936 while (tcp != listener) { 14937 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14938 !tcp->tcp_kssl_pending) 14939 break; 14940 else 14941 tcp = tcp->tcp_eager_prev_q0; 14942 } 14943 /* None of the pending eagers can be sent up now */ 14944 if (tcp == listener) 14945 goto no_more_eagers; 14946 14947 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14948 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14949 /* Move from q0 to q */ 14950 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14951 listener->tcp_conn_req_cnt_q0--; 14952 listener->tcp_conn_req_cnt_q++; 14953 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14954 tcp->tcp_eager_prev_q0; 14955 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14956 tcp->tcp_eager_next_q0; 14957 tcp->tcp_eager_prev_q0 = NULL; 14958 tcp->tcp_eager_next_q0 = NULL; 14959 tcp->tcp_conn_def_q0 = B_FALSE; 14960 14961 /* Make sure the tcp isn't in the list of droppables */ 14962 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14963 tcp->tcp_eager_prev_drop_q0 == NULL); 14964 14965 /* 14966 * Insert at end of the queue because sockfs sends 14967 * down T_CONN_RES in chronological order. Leaving 14968 * the older conn indications at front of the queue 14969 * helps reducing search time. 14970 */ 14971 tail = listener->tcp_eager_last_q; 14972 if (tail != NULL) { 14973 tail->tcp_eager_next_q = tcp; 14974 } else { 14975 listener->tcp_eager_next_q = tcp; 14976 } 14977 listener->tcp_eager_last_q = tcp; 14978 tcp->tcp_eager_next_q = NULL; 14979 14980 /* Need to get inside the listener perimeter */ 14981 CONN_INC_REF(listener->tcp_connp); 14982 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14983 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14984 SQTAG_TCP_SEND_PENDING); 14985 } 14986 no_more_eagers: 14987 tcp_eager_unlink(eager); 14988 mutex_exit(&listener->tcp_eager_lock); 14989 14990 /* 14991 * At this point, the eager is detached from the listener 14992 * but we still have an extra refs on eager (apart from the 14993 * usual tcp references). The ref was placed in tcp_input_data 14994 * before sending the conn_ind in tcp_send_conn_ind. 14995 * The ref will be dropped in tcp_accept_finish(). 14996 */ 14997 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 14998 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 14999 return (0); 15000 } 15001 15002 int 15003 tcp_accept(sock_lower_handle_t lproto_handle, 15004 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 15005 cred_t *cr) 15006 { 15007 conn_t *lconnp, *econnp; 15008 tcp_t *listener, *eager; 15009 15010 lconnp = (conn_t *)lproto_handle; 15011 listener = lconnp->conn_tcp; 15012 ASSERT(listener->tcp_state == TCPS_LISTEN); 15013 econnp = (conn_t *)eproto_handle; 15014 eager = econnp->conn_tcp; 15015 ASSERT(eager->tcp_listener != NULL); 15016 15017 /* 15018 * It is OK to manipulate these fields outside the eager's squeue 15019 * because they will not start being used until tcp_accept_finish 15020 * has been called. 15021 */ 15022 ASSERT(lconnp->conn_upper_handle != NULL); 15023 ASSERT(econnp->conn_upper_handle == NULL); 15024 econnp->conn_upper_handle = sock_handle; 15025 econnp->conn_upcalls = lconnp->conn_upcalls; 15026 ASSERT(IPCL_IS_NONSTR(econnp)); 15027 return (tcp_accept_common(lconnp, econnp, cr)); 15028 } 15029 15030 15031 /* 15032 * This is the STREAMS entry point for T_CONN_RES coming down on 15033 * Acceptor STREAM when sockfs listener does accept processing. 15034 * Read the block comment on top of tcp_input_listener(). 15035 */ 15036 void 15037 tcp_tpi_accept(queue_t *q, mblk_t *mp) 15038 { 15039 queue_t *rq = RD(q); 15040 struct T_conn_res *conn_res; 15041 tcp_t *eager; 15042 tcp_t *listener; 15043 struct T_ok_ack *ok; 15044 t_scalar_t PRIM_type; 15045 conn_t *econnp; 15046 cred_t *cr; 15047 15048 ASSERT(DB_TYPE(mp) == M_PROTO); 15049 15050 /* 15051 * All Solaris components should pass a db_credp 15052 * for this TPI message, hence we ASSERT. 15053 * But in case there is some other M_PROTO that looks 15054 * like a TPI message sent by some other kernel 15055 * component, we check and return an error. 15056 */ 15057 cr = msg_getcred(mp, NULL); 15058 ASSERT(cr != NULL); 15059 if (cr == NULL) { 15060 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 15061 if (mp != NULL) 15062 putnext(rq, mp); 15063 return; 15064 } 15065 conn_res = (struct T_conn_res *)mp->b_rptr; 15066 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 15067 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 15068 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15069 if (mp != NULL) 15070 putnext(rq, mp); 15071 return; 15072 } 15073 switch (conn_res->PRIM_type) { 15074 case O_T_CONN_RES: 15075 case T_CONN_RES: 15076 /* 15077 * We pass up an err ack if allocb fails. This will 15078 * cause sockfs to issue a T_DISCON_REQ which will cause 15079 * tcp_eager_blowoff to be called. sockfs will then call 15080 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 15081 * we need to do the allocb up here because we have to 15082 * make sure rq->q_qinfo->qi_qclose still points to the 15083 * correct function (tcp_tpi_close_accept) in case allocb 15084 * fails. 15085 */ 15086 bcopy(mp->b_rptr + conn_res->OPT_offset, 15087 &eager, conn_res->OPT_length); 15088 PRIM_type = conn_res->PRIM_type; 15089 mp->b_datap->db_type = M_PCPROTO; 15090 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 15091 ok = (struct T_ok_ack *)mp->b_rptr; 15092 ok->PRIM_type = T_OK_ACK; 15093 ok->CORRECT_prim = PRIM_type; 15094 econnp = eager->tcp_connp; 15095 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 15096 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 15097 econnp->conn_rq = rq; 15098 econnp->conn_wq = q; 15099 rq->q_ptr = econnp; 15100 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 15101 q->q_ptr = econnp; 15102 q->q_qinfo = &tcp_winit; 15103 listener = eager->tcp_listener; 15104 15105 if (tcp_accept_common(listener->tcp_connp, 15106 econnp, cr) < 0) { 15107 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15108 if (mp != NULL) 15109 putnext(rq, mp); 15110 return; 15111 } 15112 15113 /* 15114 * Send the new local address also up to sockfs. There 15115 * should already be enough space in the mp that came 15116 * down from soaccept(). 15117 */ 15118 if (econnp->conn_family == AF_INET) { 15119 sin_t *sin; 15120 15121 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15122 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 15123 sin = (sin_t *)mp->b_wptr; 15124 mp->b_wptr += sizeof (sin_t); 15125 sin->sin_family = AF_INET; 15126 sin->sin_port = econnp->conn_lport; 15127 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 15128 } else { 15129 sin6_t *sin6; 15130 15131 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15132 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 15133 sin6 = (sin6_t *)mp->b_wptr; 15134 mp->b_wptr += sizeof (sin6_t); 15135 sin6->sin6_family = AF_INET6; 15136 sin6->sin6_port = econnp->conn_lport; 15137 sin6->sin6_addr = econnp->conn_laddr_v6; 15138 if (econnp->conn_ipversion == IPV4_VERSION) 15139 sin6->sin6_flowinfo = 0; 15140 else 15141 sin6->sin6_flowinfo = econnp->conn_flowinfo; 15142 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 15143 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 15144 sin6->sin6_scope_id = 15145 econnp->conn_ixa->ixa_scopeid; 15146 } else { 15147 sin6->sin6_scope_id = 0; 15148 } 15149 sin6->__sin6_src_id = 0; 15150 } 15151 15152 putnext(rq, mp); 15153 return; 15154 default: 15155 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 15156 if (mp != NULL) 15157 putnext(rq, mp); 15158 return; 15159 } 15160 } 15161 15162 /* 15163 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 15164 */ 15165 static void 15166 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 15167 { 15168 void *data; 15169 mblk_t *datamp = mp->b_cont; 15170 conn_t *connp = Q_TO_CONN(q); 15171 tcp_t *tcp = connp->conn_tcp; 15172 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 15173 15174 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 15175 cmdp->cb_error = EPROTO; 15176 qreply(q, mp); 15177 return; 15178 } 15179 15180 data = datamp->b_rptr; 15181 15182 switch (cmdp->cb_cmd) { 15183 case TI_GETPEERNAME: 15184 if (tcp->tcp_state < TCPS_SYN_RCVD) 15185 cmdp->cb_error = ENOTCONN; 15186 else 15187 cmdp->cb_error = conn_getpeername(connp, data, 15188 &cmdp->cb_len); 15189 break; 15190 case TI_GETMYNAME: 15191 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 15192 break; 15193 default: 15194 cmdp->cb_error = EINVAL; 15195 break; 15196 } 15197 15198 qreply(q, mp); 15199 } 15200 15201 void 15202 tcp_wput(queue_t *q, mblk_t *mp) 15203 { 15204 conn_t *connp = Q_TO_CONN(q); 15205 tcp_t *tcp; 15206 void (*output_proc)(); 15207 t_scalar_t type; 15208 uchar_t *rptr; 15209 struct iocblk *iocp; 15210 size_t size; 15211 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 15212 15213 ASSERT(connp->conn_ref >= 2); 15214 15215 switch (DB_TYPE(mp)) { 15216 case M_DATA: 15217 tcp = connp->conn_tcp; 15218 ASSERT(tcp != NULL); 15219 15220 size = msgdsize(mp); 15221 15222 mutex_enter(&tcp->tcp_non_sq_lock); 15223 tcp->tcp_squeue_bytes += size; 15224 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 15225 tcp_setqfull(tcp); 15226 } 15227 mutex_exit(&tcp->tcp_non_sq_lock); 15228 15229 CONN_INC_REF(connp); 15230 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 15231 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 15232 return; 15233 15234 case M_CMD: 15235 tcp_wput_cmdblk(q, mp); 15236 return; 15237 15238 case M_PROTO: 15239 case M_PCPROTO: 15240 /* 15241 * if it is a snmp message, don't get behind the squeue 15242 */ 15243 tcp = connp->conn_tcp; 15244 rptr = mp->b_rptr; 15245 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 15246 type = ((union T_primitives *)rptr)->type; 15247 } else { 15248 if (connp->conn_debug) { 15249 (void) strlog(TCP_MOD_ID, 0, 1, 15250 SL_ERROR|SL_TRACE, 15251 "tcp_wput_proto, dropping one..."); 15252 } 15253 freemsg(mp); 15254 return; 15255 } 15256 if (type == T_SVR4_OPTMGMT_REQ) { 15257 /* 15258 * All Solaris components should pass a db_credp 15259 * for this TPI message, hence we ASSERT. 15260 * But in case there is some other M_PROTO that looks 15261 * like a TPI message sent by some other kernel 15262 * component, we check and return an error. 15263 */ 15264 cred_t *cr = msg_getcred(mp, NULL); 15265 15266 ASSERT(cr != NULL); 15267 if (cr == NULL) { 15268 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 15269 return; 15270 } 15271 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 15272 cr)) { 15273 /* 15274 * This was a SNMP request 15275 */ 15276 return; 15277 } else { 15278 output_proc = tcp_wput_proto; 15279 } 15280 } else { 15281 output_proc = tcp_wput_proto; 15282 } 15283 break; 15284 case M_IOCTL: 15285 /* 15286 * Most ioctls can be processed right away without going via 15287 * squeues - process them right here. Those that do require 15288 * squeue (currently _SIOCSOCKFALLBACK) 15289 * are processed by tcp_wput_ioctl(). 15290 */ 15291 iocp = (struct iocblk *)mp->b_rptr; 15292 tcp = connp->conn_tcp; 15293 15294 switch (iocp->ioc_cmd) { 15295 case TCP_IOC_ABORT_CONN: 15296 tcp_ioctl_abort_conn(q, mp); 15297 return; 15298 case TI_GETPEERNAME: 15299 case TI_GETMYNAME: 15300 mi_copyin(q, mp, NULL, 15301 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 15302 return; 15303 case ND_SET: 15304 /* nd_getset does the necessary checks */ 15305 case ND_GET: 15306 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 15307 qreply(q, mp); 15308 return; 15309 } 15310 CONN_INC_IOCTLREF(connp); 15311 ip_wput_nondata(q, mp); 15312 CONN_DEC_IOCTLREF(connp); 15313 return; 15314 15315 default: 15316 output_proc = tcp_wput_ioctl; 15317 break; 15318 } 15319 break; 15320 default: 15321 output_proc = tcp_wput_nondata; 15322 break; 15323 } 15324 15325 CONN_INC_REF(connp); 15326 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15327 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15328 } 15329 15330 /* 15331 * Initial STREAMS write side put() procedure for sockets. It tries to 15332 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15333 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15334 * are handled by tcp_wput() as usual. 15335 * 15336 * All further messages will also be handled by tcp_wput() because we cannot 15337 * be sure that the above short cut is safe later. 15338 */ 15339 static void 15340 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15341 { 15342 conn_t *connp = Q_TO_CONN(wq); 15343 tcp_t *tcp = connp->conn_tcp; 15344 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15345 15346 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15347 wq->q_qinfo = &tcp_winit; 15348 15349 ASSERT(IPCL_IS_TCP(connp)); 15350 ASSERT(TCP_IS_SOCKET(tcp)); 15351 15352 if (DB_TYPE(mp) == M_PCPROTO && 15353 MBLKL(mp) == sizeof (struct T_capability_req) && 15354 car->PRIM_type == T_CAPABILITY_REQ) { 15355 tcp_capability_req(tcp, mp); 15356 return; 15357 } 15358 15359 tcp_wput(wq, mp); 15360 } 15361 15362 /* ARGSUSED */ 15363 static void 15364 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15365 { 15366 #ifdef DEBUG 15367 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15368 #endif 15369 freemsg(mp); 15370 } 15371 15372 /* 15373 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15374 */ 15375 static boolean_t 15376 tcp_zcopy_check(tcp_t *tcp) 15377 { 15378 conn_t *connp = tcp->tcp_connp; 15379 ip_xmit_attr_t *ixa = connp->conn_ixa; 15380 boolean_t zc_enabled = B_FALSE; 15381 tcp_stack_t *tcps = tcp->tcp_tcps; 15382 15383 if (do_tcpzcopy == 2) 15384 zc_enabled = B_TRUE; 15385 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15386 zc_enabled = B_TRUE; 15387 15388 tcp->tcp_snd_zcopy_on = zc_enabled; 15389 if (!TCP_IS_DETACHED(tcp)) { 15390 if (zc_enabled) { 15391 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15392 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15393 ZCVMSAFE); 15394 TCP_STAT(tcps, tcp_zcopy_on); 15395 } else { 15396 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15397 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15398 ZCVMUNSAFE); 15399 TCP_STAT(tcps, tcp_zcopy_off); 15400 } 15401 } 15402 return (zc_enabled); 15403 } 15404 15405 /* 15406 * Backoff from a zero-copy message by copying data to a new allocated 15407 * message and freeing the original desballoca'ed segmapped message. 15408 * 15409 * This function is called by following two callers: 15410 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15411 * the origial desballoca'ed message and notify sockfs. This is in re- 15412 * transmit state. 15413 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15414 * to be copied to new message. 15415 */ 15416 static mblk_t * 15417 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15418 { 15419 mblk_t *nbp; 15420 mblk_t *head = NULL; 15421 mblk_t *tail = NULL; 15422 tcp_stack_t *tcps = tcp->tcp_tcps; 15423 15424 ASSERT(bp != NULL); 15425 while (bp != NULL) { 15426 if (IS_VMLOANED_MBLK(bp)) { 15427 TCP_STAT(tcps, tcp_zcopy_backoff); 15428 if ((nbp = copyb(bp)) == NULL) { 15429 tcp->tcp_xmit_zc_clean = B_FALSE; 15430 if (tail != NULL) 15431 tail->b_cont = bp; 15432 return ((head == NULL) ? bp : head); 15433 } 15434 15435 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15436 if (fix_xmitlist) 15437 tcp_zcopy_notify(tcp); 15438 else 15439 nbp->b_datap->db_struioflag |= 15440 STRUIO_ZCNOTIFY; 15441 } 15442 nbp->b_cont = bp->b_cont; 15443 15444 /* 15445 * Copy saved information and adjust tcp_xmit_tail 15446 * if needed. 15447 */ 15448 if (fix_xmitlist) { 15449 nbp->b_prev = bp->b_prev; 15450 nbp->b_next = bp->b_next; 15451 15452 if (tcp->tcp_xmit_tail == bp) 15453 tcp->tcp_xmit_tail = nbp; 15454 } 15455 15456 /* Free the original message. */ 15457 bp->b_prev = NULL; 15458 bp->b_next = NULL; 15459 freeb(bp); 15460 15461 bp = nbp; 15462 } 15463 15464 if (head == NULL) { 15465 head = bp; 15466 } 15467 if (tail == NULL) { 15468 tail = bp; 15469 } else { 15470 tail->b_cont = bp; 15471 tail = bp; 15472 } 15473 15474 /* Move forward. */ 15475 bp = bp->b_cont; 15476 } 15477 15478 if (fix_xmitlist) { 15479 tcp->tcp_xmit_last = tail; 15480 tcp->tcp_xmit_zc_clean = B_TRUE; 15481 } 15482 15483 return (head); 15484 } 15485 15486 static void 15487 tcp_zcopy_notify(tcp_t *tcp) 15488 { 15489 struct stdata *stp; 15490 conn_t *connp; 15491 15492 if (tcp->tcp_detached) 15493 return; 15494 connp = tcp->tcp_connp; 15495 if (IPCL_IS_NONSTR(connp)) { 15496 (*connp->conn_upcalls->su_zcopy_notify) 15497 (connp->conn_upper_handle); 15498 return; 15499 } 15500 stp = STREAM(connp->conn_rq); 15501 mutex_enter(&stp->sd_lock); 15502 stp->sd_flag |= STZCNOTIFY; 15503 cv_broadcast(&stp->sd_zcopy_wait); 15504 mutex_exit(&stp->sd_lock); 15505 } 15506 15507 /* 15508 * Update the TCP connection according to change of LSO capability. 15509 */ 15510 static void 15511 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15512 { 15513 /* 15514 * We check against IPv4 header length to preserve the old behavior 15515 * of only enabling LSO when there are no IP options. 15516 * But this restriction might not be necessary at all. Before removing 15517 * it, need to verify how LSO is handled for source routing case, with 15518 * which IP does software checksum. 15519 * 15520 * For IPv6, whenever any extension header is needed, LSO is supressed. 15521 */ 15522 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15523 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15524 return; 15525 15526 /* 15527 * Either the LSO capability newly became usable, or it has changed. 15528 */ 15529 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15530 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15531 15532 ASSERT(lsoc->ill_lso_max > 0); 15533 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15534 15535 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15536 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15537 15538 /* 15539 * If LSO to be enabled, notify the STREAM header with larger 15540 * data block. 15541 */ 15542 if (!tcp->tcp_lso) 15543 tcp->tcp_maxpsz_multiplier = 0; 15544 15545 tcp->tcp_lso = B_TRUE; 15546 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15547 } else { /* LSO capability is not usable any more. */ 15548 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15549 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15550 15551 /* 15552 * If LSO to be disabled, notify the STREAM header with smaller 15553 * data block. And need to restore fragsize to PMTU. 15554 */ 15555 if (tcp->tcp_lso) { 15556 tcp->tcp_maxpsz_multiplier = 15557 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15558 ixa->ixa_fragsize = ixa->ixa_pmtu; 15559 tcp->tcp_lso = B_FALSE; 15560 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15561 } 15562 } 15563 15564 (void) tcp_maxpsz_set(tcp, B_TRUE); 15565 } 15566 15567 /* 15568 * Update the TCP connection according to change of ZEROCOPY capability. 15569 */ 15570 static void 15571 tcp_update_zcopy(tcp_t *tcp) 15572 { 15573 conn_t *connp = tcp->tcp_connp; 15574 tcp_stack_t *tcps = tcp->tcp_tcps; 15575 15576 if (tcp->tcp_snd_zcopy_on) { 15577 tcp->tcp_snd_zcopy_on = B_FALSE; 15578 if (!TCP_IS_DETACHED(tcp)) { 15579 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15580 ZCVMUNSAFE); 15581 TCP_STAT(tcps, tcp_zcopy_off); 15582 } 15583 } else { 15584 tcp->tcp_snd_zcopy_on = B_TRUE; 15585 if (!TCP_IS_DETACHED(tcp)) { 15586 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15587 ZCVMSAFE); 15588 TCP_STAT(tcps, tcp_zcopy_on); 15589 } 15590 } 15591 } 15592 15593 /* 15594 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15595 * so it's safe to update the TCP connection. 15596 */ 15597 /* ARGSUSED1 */ 15598 static void 15599 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15600 ixa_notify_arg_t narg) 15601 { 15602 tcp_t *tcp = (tcp_t *)arg; 15603 conn_t *connp = tcp->tcp_connp; 15604 15605 switch (ntype) { 15606 case IXAN_LSO: 15607 tcp_update_lso(tcp, connp->conn_ixa); 15608 break; 15609 case IXAN_PMTU: 15610 tcp_update_pmtu(tcp, B_FALSE); 15611 break; 15612 case IXAN_ZCOPY: 15613 tcp_update_zcopy(tcp); 15614 break; 15615 default: 15616 break; 15617 } 15618 } 15619 15620 static void 15621 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15622 { 15623 conn_t *connp = tcp->tcp_connp; 15624 15625 /* 15626 * Check here to avoid sending zero-copy message down to IP when 15627 * ZEROCOPY capability has turned off. We only need to deal with 15628 * the race condition between sockfs and the notification here. 15629 * Since we have tried to backoff the tcp_xmit_head when turning 15630 * zero-copy off and new messages in tcp_output(), we simply drop 15631 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15632 * is not true. 15633 */ 15634 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15635 !tcp->tcp_xmit_zc_clean) { 15636 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15637 freemsg(mp); 15638 return; 15639 } 15640 15641 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15642 (void) conn_ip_output(mp, connp->conn_ixa); 15643 } 15644 15645 /* 15646 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15647 * if the receiver shrinks the window, i.e. moves the right window to the 15648 * left, the we should not send new data, but should retransmit normally the 15649 * old unacked data between suna and suna + swnd. We might has sent data 15650 * that is now outside the new window, pretend that we didn't send it. 15651 */ 15652 static void 15653 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15654 { 15655 uint32_t snxt = tcp->tcp_snxt; 15656 15657 ASSERT(shrunk_count > 0); 15658 15659 if (!tcp->tcp_is_wnd_shrnk) { 15660 tcp->tcp_snxt_shrunk = snxt; 15661 tcp->tcp_is_wnd_shrnk = B_TRUE; 15662 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15663 tcp->tcp_snxt_shrunk = snxt; 15664 } 15665 15666 /* Pretend we didn't send the data outside the window */ 15667 snxt -= shrunk_count; 15668 15669 /* Reset all the values per the now shrunk window */ 15670 tcp_update_xmit_tail(tcp, snxt); 15671 tcp->tcp_unsent += shrunk_count; 15672 15673 /* 15674 * If the SACK option is set, delete the entire list of 15675 * notsack'ed blocks. 15676 */ 15677 if (tcp->tcp_sack_info != NULL) { 15678 if (tcp->tcp_notsack_list != NULL) 15679 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15680 } 15681 15682 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15683 /* 15684 * Make sure the timer is running so that we will probe a zero 15685 * window. 15686 */ 15687 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15688 } 15689 15690 15691 /* 15692 * The TCP normal data output path. 15693 * NOTE: the logic of the fast path is duplicated from this function. 15694 */ 15695 static void 15696 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15697 { 15698 int len; 15699 mblk_t *local_time; 15700 mblk_t *mp1; 15701 uint32_t snxt; 15702 int tail_unsent; 15703 int tcpstate; 15704 int usable = 0; 15705 mblk_t *xmit_tail; 15706 int32_t mss; 15707 int32_t num_sack_blk = 0; 15708 int32_t total_hdr_len; 15709 int32_t tcp_hdr_len; 15710 int rc; 15711 tcp_stack_t *tcps = tcp->tcp_tcps; 15712 conn_t *connp = tcp->tcp_connp; 15713 clock_t now = LBOLT_FASTPATH; 15714 15715 tcpstate = tcp->tcp_state; 15716 if (mp == NULL) { 15717 /* 15718 * tcp_wput_data() with NULL mp should only be called when 15719 * there is unsent data. 15720 */ 15721 ASSERT(tcp->tcp_unsent > 0); 15722 /* Really tacky... but we need this for detached closes. */ 15723 len = tcp->tcp_unsent; 15724 goto data_null; 15725 } 15726 15727 #if CCS_STATS 15728 wrw_stats.tot.count++; 15729 wrw_stats.tot.bytes += msgdsize(mp); 15730 #endif 15731 ASSERT(mp->b_datap->db_type == M_DATA); 15732 /* 15733 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15734 * or before a connection attempt has begun. 15735 */ 15736 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15737 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15738 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15739 #ifdef DEBUG 15740 cmn_err(CE_WARN, 15741 "tcp_wput_data: data after ordrel, %s", 15742 tcp_display(tcp, NULL, 15743 DISP_ADDR_AND_PORT)); 15744 #else 15745 if (connp->conn_debug) { 15746 (void) strlog(TCP_MOD_ID, 0, 1, 15747 SL_TRACE|SL_ERROR, 15748 "tcp_wput_data: data after ordrel, %s\n", 15749 tcp_display(tcp, NULL, 15750 DISP_ADDR_AND_PORT)); 15751 } 15752 #endif /* DEBUG */ 15753 } 15754 if (tcp->tcp_snd_zcopy_aware && 15755 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15756 tcp_zcopy_notify(tcp); 15757 freemsg(mp); 15758 mutex_enter(&tcp->tcp_non_sq_lock); 15759 if (tcp->tcp_flow_stopped && 15760 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15761 tcp_clrqfull(tcp); 15762 } 15763 mutex_exit(&tcp->tcp_non_sq_lock); 15764 return; 15765 } 15766 15767 /* Strip empties */ 15768 for (;;) { 15769 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15770 (uintptr_t)INT_MAX); 15771 len = (int)(mp->b_wptr - mp->b_rptr); 15772 if (len > 0) 15773 break; 15774 mp1 = mp; 15775 mp = mp->b_cont; 15776 freeb(mp1); 15777 if (!mp) { 15778 return; 15779 } 15780 } 15781 15782 /* If we are the first on the list ... */ 15783 if (tcp->tcp_xmit_head == NULL) { 15784 tcp->tcp_xmit_head = mp; 15785 tcp->tcp_xmit_tail = mp; 15786 tcp->tcp_xmit_tail_unsent = len; 15787 } else { 15788 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15789 struct datab *dp; 15790 15791 mp1 = tcp->tcp_xmit_last; 15792 if (len < tcp_tx_pull_len && 15793 (dp = mp1->b_datap)->db_ref == 1 && 15794 dp->db_lim - mp1->b_wptr >= len) { 15795 ASSERT(len > 0); 15796 ASSERT(!mp1->b_cont); 15797 if (len == 1) { 15798 *mp1->b_wptr++ = *mp->b_rptr; 15799 } else { 15800 bcopy(mp->b_rptr, mp1->b_wptr, len); 15801 mp1->b_wptr += len; 15802 } 15803 if (mp1 == tcp->tcp_xmit_tail) 15804 tcp->tcp_xmit_tail_unsent += len; 15805 mp1->b_cont = mp->b_cont; 15806 if (tcp->tcp_snd_zcopy_aware && 15807 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15808 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15809 freeb(mp); 15810 mp = mp1; 15811 } else { 15812 tcp->tcp_xmit_last->b_cont = mp; 15813 } 15814 len += tcp->tcp_unsent; 15815 } 15816 15817 /* Tack on however many more positive length mblks we have */ 15818 if ((mp1 = mp->b_cont) != NULL) { 15819 do { 15820 int tlen; 15821 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15822 (uintptr_t)INT_MAX); 15823 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15824 if (tlen <= 0) { 15825 mp->b_cont = mp1->b_cont; 15826 freeb(mp1); 15827 } else { 15828 len += tlen; 15829 mp = mp1; 15830 } 15831 } while ((mp1 = mp->b_cont) != NULL); 15832 } 15833 tcp->tcp_xmit_last = mp; 15834 tcp->tcp_unsent = len; 15835 15836 if (urgent) 15837 usable = 1; 15838 15839 data_null: 15840 snxt = tcp->tcp_snxt; 15841 xmit_tail = tcp->tcp_xmit_tail; 15842 tail_unsent = tcp->tcp_xmit_tail_unsent; 15843 15844 /* 15845 * Note that tcp_mss has been adjusted to take into account the 15846 * timestamp option if applicable. Because SACK options do not 15847 * appear in every TCP segments and they are of variable lengths, 15848 * they cannot be included in tcp_mss. Thus we need to calculate 15849 * the actual segment length when we need to send a segment which 15850 * includes SACK options. 15851 */ 15852 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15853 int32_t opt_len; 15854 15855 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15856 tcp->tcp_num_sack_blk); 15857 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15858 2 + TCPOPT_HEADER_LEN; 15859 mss = tcp->tcp_mss - opt_len; 15860 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15861 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15862 } else { 15863 mss = tcp->tcp_mss; 15864 total_hdr_len = connp->conn_ht_iphc_len; 15865 tcp_hdr_len = connp->conn_ht_ulp_len; 15866 } 15867 15868 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15869 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 15870 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15871 } 15872 if (tcpstate == TCPS_SYN_RCVD) { 15873 /* 15874 * The three-way connection establishment handshake is not 15875 * complete yet. We want to queue the data for transmission 15876 * after entering ESTABLISHED state (RFC793). A jump to 15877 * "done" label effectively leaves data on the queue. 15878 */ 15879 goto done; 15880 } else { 15881 int usable_r; 15882 15883 /* 15884 * In the special case when cwnd is zero, which can only 15885 * happen if the connection is ECN capable, return now. 15886 * New segments is sent using tcp_timer(). The timer 15887 * is set in tcp_input_data(). 15888 */ 15889 if (tcp->tcp_cwnd == 0) { 15890 /* 15891 * Note that tcp_cwnd is 0 before 3-way handshake is 15892 * finished. 15893 */ 15894 ASSERT(tcp->tcp_ecn_ok || 15895 tcp->tcp_state < TCPS_ESTABLISHED); 15896 return; 15897 } 15898 15899 /* NOTE: trouble if xmitting while SYN not acked? */ 15900 usable_r = snxt - tcp->tcp_suna; 15901 usable_r = tcp->tcp_swnd - usable_r; 15902 15903 /* 15904 * Check if the receiver has shrunk the window. If 15905 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15906 * cannot be set as there is unsent data, so FIN cannot 15907 * be sent out. Otherwise, we need to take into account 15908 * of FIN as it consumes an "invisible" sequence number. 15909 */ 15910 ASSERT(tcp->tcp_fin_sent == 0); 15911 if (usable_r < 0) { 15912 /* 15913 * The receiver has shrunk the window and we have sent 15914 * -usable_r date beyond the window, re-adjust. 15915 * 15916 * If TCP window scaling is enabled, there can be 15917 * round down error as the advertised receive window 15918 * is actually right shifted n bits. This means that 15919 * the lower n bits info is wiped out. It will look 15920 * like the window is shrunk. Do a check here to 15921 * see if the shrunk amount is actually within the 15922 * error in window calculation. If it is, just 15923 * return. Note that this check is inside the 15924 * shrunk window check. This makes sure that even 15925 * though tcp_process_shrunk_swnd() is not called, 15926 * we will stop further processing. 15927 */ 15928 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15929 tcp_process_shrunk_swnd(tcp, -usable_r); 15930 } 15931 return; 15932 } 15933 15934 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15935 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15936 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15937 15938 /* usable = MIN(usable, unsent) */ 15939 if (usable_r > len) 15940 usable_r = len; 15941 15942 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15943 if (usable_r > 0) { 15944 usable = usable_r; 15945 } else { 15946 /* Bypass all other unnecessary processing. */ 15947 goto done; 15948 } 15949 } 15950 15951 local_time = (mblk_t *)now; 15952 15953 /* 15954 * "Our" Nagle Algorithm. This is not the same as in the old 15955 * BSD. This is more in line with the true intent of Nagle. 15956 * 15957 * The conditions are: 15958 * 1. The amount of unsent data (or amount of data which can be 15959 * sent, whichever is smaller) is less than Nagle limit. 15960 * 2. The last sent size is also less than Nagle limit. 15961 * 3. There is unack'ed data. 15962 * 4. Urgent pointer is not set. Send urgent data ignoring the 15963 * Nagle algorithm. This reduces the probability that urgent 15964 * bytes get "merged" together. 15965 * 5. The app has not closed the connection. This eliminates the 15966 * wait time of the receiving side waiting for the last piece of 15967 * (small) data. 15968 * 15969 * If all are satisified, exit without sending anything. Note 15970 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15971 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15972 * 4095). 15973 */ 15974 if (usable < (int)tcp->tcp_naglim && 15975 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15976 snxt != tcp->tcp_suna && 15977 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15978 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15979 goto done; 15980 } 15981 15982 /* 15983 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15984 * is set, then we have to force TCP not to send partial segment 15985 * (smaller than MSS bytes). We are calculating the usable now 15986 * based on full mss and will save the rest of remaining data for 15987 * later. When tcp_zero_win_probe is set, TCP needs to send out 15988 * something to do zero window probe. 15989 */ 15990 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 15991 if (usable < mss) 15992 goto done; 15993 usable = (usable / mss) * mss; 15994 } 15995 15996 /* Update the latest receive window size in TCP header. */ 15997 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 15998 15999 /* Send the packet. */ 16000 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 16001 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 16002 local_time); 16003 16004 /* Pretend that all we were trying to send really got sent */ 16005 if (rc < 0 && tail_unsent < 0) { 16006 do { 16007 xmit_tail = xmit_tail->b_cont; 16008 xmit_tail->b_prev = local_time; 16009 ASSERT((uintptr_t)(xmit_tail->b_wptr - 16010 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 16011 tail_unsent += (int)(xmit_tail->b_wptr - 16012 xmit_tail->b_rptr); 16013 } while (tail_unsent < 0); 16014 } 16015 done:; 16016 tcp->tcp_xmit_tail = xmit_tail; 16017 tcp->tcp_xmit_tail_unsent = tail_unsent; 16018 len = tcp->tcp_snxt - snxt; 16019 if (len) { 16020 /* 16021 * If new data was sent, need to update the notsack 16022 * list, which is, afterall, data blocks that have 16023 * not been sack'ed by the receiver. New data is 16024 * not sack'ed. 16025 */ 16026 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16027 /* len is a negative value. */ 16028 tcp->tcp_pipe -= len; 16029 tcp_notsack_update(&(tcp->tcp_notsack_list), 16030 tcp->tcp_snxt, snxt, 16031 &(tcp->tcp_num_notsack_blk), 16032 &(tcp->tcp_cnt_notsack_list)); 16033 } 16034 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 16035 tcp->tcp_rack = tcp->tcp_rnxt; 16036 tcp->tcp_rack_cnt = 0; 16037 if ((snxt + len) == tcp->tcp_suna) { 16038 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16039 } 16040 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 16041 /* 16042 * Didn't send anything. Make sure the timer is running 16043 * so that we will probe a zero window. 16044 */ 16045 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16046 } 16047 /* Note that len is the amount we just sent but with a negative sign */ 16048 tcp->tcp_unsent += len; 16049 mutex_enter(&tcp->tcp_non_sq_lock); 16050 if (tcp->tcp_flow_stopped) { 16051 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 16052 tcp_clrqfull(tcp); 16053 } 16054 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 16055 if (!(tcp->tcp_detached)) 16056 tcp_setqfull(tcp); 16057 } 16058 mutex_exit(&tcp->tcp_non_sq_lock); 16059 } 16060 16061 /* 16062 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 16063 * with the template header, as well as other options such as time-stamp, 16064 * ECN and/or SACK. 16065 */ 16066 static void 16067 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 16068 { 16069 tcpha_t *tcp_tmpl, *tcpha; 16070 uint32_t *dst, *src; 16071 int hdrlen; 16072 conn_t *connp = tcp->tcp_connp; 16073 16074 ASSERT(OK_32PTR(rptr)); 16075 16076 /* Template header */ 16077 tcp_tmpl = tcp->tcp_tcpha; 16078 16079 /* Header of outgoing packet */ 16080 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 16081 16082 /* dst and src are opaque 32-bit fields, used for copying */ 16083 dst = (uint32_t *)rptr; 16084 src = (uint32_t *)connp->conn_ht_iphc; 16085 hdrlen = connp->conn_ht_iphc_len; 16086 16087 /* Fill time-stamp option if needed */ 16088 if (tcp->tcp_snd_ts_ok) { 16089 U32_TO_BE32((uint32_t)now, 16090 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 16091 U32_TO_BE32(tcp->tcp_ts_recent, 16092 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 16093 } else { 16094 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 16095 } 16096 16097 /* 16098 * Copy the template header; is this really more efficient than 16099 * calling bcopy()? For simple IPv4/TCP, it may be the case, 16100 * but perhaps not for other scenarios. 16101 */ 16102 dst[0] = src[0]; 16103 dst[1] = src[1]; 16104 dst[2] = src[2]; 16105 dst[3] = src[3]; 16106 dst[4] = src[4]; 16107 dst[5] = src[5]; 16108 dst[6] = src[6]; 16109 dst[7] = src[7]; 16110 dst[8] = src[8]; 16111 dst[9] = src[9]; 16112 if (hdrlen -= 40) { 16113 hdrlen >>= 2; 16114 dst += 10; 16115 src += 10; 16116 do { 16117 *dst++ = *src++; 16118 } while (--hdrlen); 16119 } 16120 16121 /* 16122 * Set the ECN info in the TCP header if it is not a zero 16123 * window probe. Zero window probe is only sent in 16124 * tcp_wput_data() and tcp_timer(). 16125 */ 16126 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 16127 SET_ECT(tcp, rptr); 16128 16129 if (tcp->tcp_ecn_echo_on) 16130 tcpha->tha_flags |= TH_ECE; 16131 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16132 tcpha->tha_flags |= TH_CWR; 16133 tcp->tcp_ecn_cwr_sent = B_TRUE; 16134 } 16135 } 16136 16137 /* Fill in SACK options */ 16138 if (num_sack_blk > 0) { 16139 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 16140 sack_blk_t *tmp; 16141 int32_t i; 16142 16143 wptr[0] = TCPOPT_NOP; 16144 wptr[1] = TCPOPT_NOP; 16145 wptr[2] = TCPOPT_SACK; 16146 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 16147 sizeof (sack_blk_t); 16148 wptr += TCPOPT_REAL_SACK_LEN; 16149 16150 tmp = tcp->tcp_sack_list; 16151 for (i = 0; i < num_sack_blk; i++) { 16152 U32_TO_BE32(tmp[i].begin, wptr); 16153 wptr += sizeof (tcp_seq); 16154 U32_TO_BE32(tmp[i].end, wptr); 16155 wptr += sizeof (tcp_seq); 16156 } 16157 tcpha->tha_offset_and_reserved += 16158 ((num_sack_blk * 2 + 1) << 4); 16159 } 16160 } 16161 16162 /* 16163 * tcp_send() is called by tcp_wput_data() and returns one of the following: 16164 * 16165 * -1 = failed allocation. 16166 * 0 = success; burst count reached, or usable send window is too small, 16167 * and that we'd rather wait until later before sending again. 16168 */ 16169 static int 16170 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 16171 const int tcp_hdr_len, const int num_sack_blk, int *usable, 16172 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 16173 { 16174 int num_burst_seg = tcp->tcp_snd_burst; 16175 int num_lso_seg = 1; 16176 uint_t lso_usable; 16177 boolean_t do_lso_send = B_FALSE; 16178 tcp_stack_t *tcps = tcp->tcp_tcps; 16179 conn_t *connp = tcp->tcp_connp; 16180 ip_xmit_attr_t *ixa = connp->conn_ixa; 16181 16182 /* 16183 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 16184 * the underlying connection is LSO capable. Will check whether having 16185 * enough available data to initiate LSO transmission in the for(){} 16186 * loops. 16187 */ 16188 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 16189 do_lso_send = B_TRUE; 16190 16191 for (;;) { 16192 struct datab *db; 16193 tcpha_t *tcpha; 16194 uint32_t sum; 16195 mblk_t *mp, *mp1; 16196 uchar_t *rptr; 16197 int len; 16198 16199 /* 16200 * Burst count reached, return successfully. 16201 */ 16202 if (num_burst_seg == 0) 16203 break; 16204 16205 /* 16206 * Calculate the maximum payload length we can send at one 16207 * time. 16208 */ 16209 if (do_lso_send) { 16210 /* 16211 * Check whether be able to to do LSO for the current 16212 * available data. 16213 */ 16214 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 16215 lso_usable = MIN(tcp->tcp_lso_max, *usable); 16216 lso_usable = MIN(lso_usable, 16217 num_burst_seg * mss); 16218 16219 num_lso_seg = lso_usable / mss; 16220 if (lso_usable % mss) { 16221 num_lso_seg++; 16222 tcp->tcp_last_sent_len = (ushort_t) 16223 (lso_usable % mss); 16224 } else { 16225 tcp->tcp_last_sent_len = (ushort_t)mss; 16226 } 16227 } else { 16228 do_lso_send = B_FALSE; 16229 num_lso_seg = 1; 16230 lso_usable = mss; 16231 } 16232 } 16233 16234 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 16235 #ifdef DEBUG 16236 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 16237 do_lso_send); 16238 #endif 16239 /* 16240 * Adjust num_burst_seg here. 16241 */ 16242 num_burst_seg -= num_lso_seg; 16243 16244 len = mss; 16245 if (len > *usable) { 16246 ASSERT(do_lso_send == B_FALSE); 16247 16248 len = *usable; 16249 if (len <= 0) { 16250 /* Terminate the loop */ 16251 break; /* success; too small */ 16252 } 16253 /* 16254 * Sender silly-window avoidance. 16255 * Ignore this if we are going to send a 16256 * zero window probe out. 16257 * 16258 * TODO: force data into microscopic window? 16259 * ==> (!pushed || (unsent > usable)) 16260 */ 16261 if (len < (tcp->tcp_max_swnd >> 1) && 16262 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 16263 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 16264 len == 1) && (! tcp->tcp_zero_win_probe)) { 16265 /* 16266 * If the retransmit timer is not running 16267 * we start it so that we will retransmit 16268 * in the case when the receiver has 16269 * decremented the window. 16270 */ 16271 if (*snxt == tcp->tcp_snxt && 16272 *snxt == tcp->tcp_suna) { 16273 /* 16274 * We are not supposed to send 16275 * anything. So let's wait a little 16276 * bit longer before breaking SWS 16277 * avoidance. 16278 * 16279 * What should the value be? 16280 * Suggestion: MAX(init rexmit time, 16281 * tcp->tcp_rto) 16282 */ 16283 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16284 } 16285 break; /* success; too small */ 16286 } 16287 } 16288 16289 tcpha = tcp->tcp_tcpha; 16290 16291 /* 16292 * The reason to adjust len here is that we need to set flags 16293 * and calculate checksum. 16294 */ 16295 if (do_lso_send) 16296 len = lso_usable; 16297 16298 *usable -= len; /* Approximate - can be adjusted later */ 16299 if (*usable > 0) 16300 tcpha->tha_flags = TH_ACK; 16301 else 16302 tcpha->tha_flags = (TH_ACK | TH_PUSH); 16303 16304 /* 16305 * Prime pump for IP's checksumming on our behalf. 16306 * Include the adjustment for a source route if any. 16307 * In case of LSO, the partial pseudo-header checksum should 16308 * exclusive TCP length, so zero tha_sum before IP calculate 16309 * pseudo-header checksum for partial checksum offload. 16310 */ 16311 if (do_lso_send) { 16312 sum = 0; 16313 } else { 16314 sum = len + tcp_hdr_len + connp->conn_sum; 16315 sum = (sum >> 16) + (sum & 0xFFFF); 16316 } 16317 tcpha->tha_sum = htons(sum); 16318 tcpha->tha_seq = htonl(*snxt); 16319 16320 /* 16321 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16322 * set. For the case when TCP_FSS_VALID is the only valid 16323 * bit (normal active close), branch off only when we think 16324 * that the FIN flag needs to be set. Note for this case, 16325 * that (snxt + len) may not reflect the actual seg_len, 16326 * as len may be further reduced in tcp_xmit_mp(). If len 16327 * gets modified, we will end up here again. 16328 */ 16329 if (tcp->tcp_valid_bits != 0 && 16330 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16331 ((*snxt + len) == tcp->tcp_fss))) { 16332 uchar_t *prev_rptr; 16333 uint32_t prev_snxt = tcp->tcp_snxt; 16334 16335 if (*tail_unsent == 0) { 16336 ASSERT((*xmit_tail)->b_cont != NULL); 16337 *xmit_tail = (*xmit_tail)->b_cont; 16338 prev_rptr = (*xmit_tail)->b_rptr; 16339 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16340 (*xmit_tail)->b_rptr); 16341 } else { 16342 prev_rptr = (*xmit_tail)->b_rptr; 16343 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16344 *tail_unsent; 16345 } 16346 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16347 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16348 /* Restore tcp_snxt so we get amount sent right. */ 16349 tcp->tcp_snxt = prev_snxt; 16350 if (prev_rptr == (*xmit_tail)->b_rptr) { 16351 /* 16352 * If the previous timestamp is still in use, 16353 * don't stomp on it. 16354 */ 16355 if ((*xmit_tail)->b_next == NULL) { 16356 (*xmit_tail)->b_prev = local_time; 16357 (*xmit_tail)->b_next = 16358 (mblk_t *)(uintptr_t)(*snxt); 16359 } 16360 } else 16361 (*xmit_tail)->b_rptr = prev_rptr; 16362 16363 if (mp == NULL) { 16364 return (-1); 16365 } 16366 mp1 = mp->b_cont; 16367 16368 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16369 tcp->tcp_last_sent_len = (ushort_t)len; 16370 while (mp1->b_cont) { 16371 *xmit_tail = (*xmit_tail)->b_cont; 16372 (*xmit_tail)->b_prev = local_time; 16373 (*xmit_tail)->b_next = 16374 (mblk_t *)(uintptr_t)(*snxt); 16375 mp1 = mp1->b_cont; 16376 } 16377 *snxt += len; 16378 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16379 BUMP_LOCAL(tcp->tcp_obsegs); 16380 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16381 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16382 tcp_send_data(tcp, mp); 16383 continue; 16384 } 16385 16386 *snxt += len; /* Adjust later if we don't send all of len */ 16387 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16388 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16389 16390 if (*tail_unsent) { 16391 /* Are the bytes above us in flight? */ 16392 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16393 if (rptr != (*xmit_tail)->b_rptr) { 16394 *tail_unsent -= len; 16395 if (len <= mss) /* LSO is unusable */ 16396 tcp->tcp_last_sent_len = (ushort_t)len; 16397 len += total_hdr_len; 16398 ixa->ixa_pktlen = len; 16399 16400 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16401 tcp->tcp_ipha->ipha_length = htons(len); 16402 } else { 16403 tcp->tcp_ip6h->ip6_plen = 16404 htons(len - IPV6_HDR_LEN); 16405 } 16406 16407 mp = dupb(*xmit_tail); 16408 if (mp == NULL) { 16409 return (-1); /* out_of_mem */ 16410 } 16411 mp->b_rptr = rptr; 16412 /* 16413 * If the old timestamp is no longer in use, 16414 * sample a new timestamp now. 16415 */ 16416 if ((*xmit_tail)->b_next == NULL) { 16417 (*xmit_tail)->b_prev = local_time; 16418 (*xmit_tail)->b_next = 16419 (mblk_t *)(uintptr_t)(*snxt-len); 16420 } 16421 goto must_alloc; 16422 } 16423 } else { 16424 *xmit_tail = (*xmit_tail)->b_cont; 16425 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16426 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16427 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16428 (*xmit_tail)->b_rptr); 16429 } 16430 16431 (*xmit_tail)->b_prev = local_time; 16432 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16433 16434 *tail_unsent -= len; 16435 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16436 tcp->tcp_last_sent_len = (ushort_t)len; 16437 16438 len += total_hdr_len; 16439 ixa->ixa_pktlen = len; 16440 16441 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16442 tcp->tcp_ipha->ipha_length = htons(len); 16443 } else { 16444 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16445 } 16446 16447 mp = dupb(*xmit_tail); 16448 if (mp == NULL) { 16449 return (-1); /* out_of_mem */ 16450 } 16451 16452 len = total_hdr_len; 16453 /* 16454 * There are four reasons to allocate a new hdr mblk: 16455 * 1) The bytes above us are in use by another packet 16456 * 2) We don't have good alignment 16457 * 3) The mblk is being shared 16458 * 4) We don't have enough room for a header 16459 */ 16460 rptr = mp->b_rptr - len; 16461 if (!OK_32PTR(rptr) || 16462 ((db = mp->b_datap), db->db_ref != 2) || 16463 rptr < db->db_base) { 16464 /* NOTE: we assume allocb returns an OK_32PTR */ 16465 16466 must_alloc:; 16467 mp1 = allocb(connp->conn_ht_iphc_allocated + 16468 tcps->tcps_wroff_xtra, BPRI_MED); 16469 if (mp1 == NULL) { 16470 freemsg(mp); 16471 return (-1); /* out_of_mem */ 16472 } 16473 mp1->b_cont = mp; 16474 mp = mp1; 16475 /* Leave room for Link Level header */ 16476 len = total_hdr_len; 16477 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16478 mp->b_wptr = &rptr[len]; 16479 } 16480 16481 /* 16482 * Fill in the header using the template header, and add 16483 * options such as time-stamp, ECN and/or SACK, as needed. 16484 */ 16485 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16486 16487 mp->b_rptr = rptr; 16488 16489 if (*tail_unsent) { 16490 int spill = *tail_unsent; 16491 16492 mp1 = mp->b_cont; 16493 if (mp1 == NULL) 16494 mp1 = mp; 16495 16496 /* 16497 * If we're a little short, tack on more mblks until 16498 * there is no more spillover. 16499 */ 16500 while (spill < 0) { 16501 mblk_t *nmp; 16502 int nmpsz; 16503 16504 nmp = (*xmit_tail)->b_cont; 16505 nmpsz = MBLKL(nmp); 16506 16507 /* 16508 * Excess data in mblk; can we split it? 16509 * If LSO is enabled for the connection, 16510 * keep on splitting as this is a transient 16511 * send path. 16512 */ 16513 if (!do_lso_send && (spill + nmpsz > 0)) { 16514 /* 16515 * Don't split if stream head was 16516 * told to break up larger writes 16517 * into smaller ones. 16518 */ 16519 if (tcp->tcp_maxpsz_multiplier > 0) 16520 break; 16521 16522 /* 16523 * Next mblk is less than SMSS/2 16524 * rounded up to nearest 64-byte; 16525 * let it get sent as part of the 16526 * next segment. 16527 */ 16528 if (tcp->tcp_localnet && 16529 !tcp->tcp_cork && 16530 (nmpsz < roundup((mss >> 1), 64))) 16531 break; 16532 } 16533 16534 *xmit_tail = nmp; 16535 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16536 /* Stash for rtt use later */ 16537 (*xmit_tail)->b_prev = local_time; 16538 (*xmit_tail)->b_next = 16539 (mblk_t *)(uintptr_t)(*snxt - len); 16540 mp1->b_cont = dupb(*xmit_tail); 16541 mp1 = mp1->b_cont; 16542 16543 spill += nmpsz; 16544 if (mp1 == NULL) { 16545 *tail_unsent = spill; 16546 freemsg(mp); 16547 return (-1); /* out_of_mem */ 16548 } 16549 } 16550 16551 /* Trim back any surplus on the last mblk */ 16552 if (spill >= 0) { 16553 mp1->b_wptr -= spill; 16554 *tail_unsent = spill; 16555 } else { 16556 /* 16557 * We did not send everything we could in 16558 * order to remain within the b_cont limit. 16559 */ 16560 *usable -= spill; 16561 *snxt += spill; 16562 tcp->tcp_last_sent_len += spill; 16563 UPDATE_MIB(&tcps->tcps_mib, 16564 tcpOutDataBytes, spill); 16565 /* 16566 * Adjust the checksum 16567 */ 16568 tcpha = (tcpha_t *)(rptr + 16569 ixa->ixa_ip_hdr_length); 16570 sum += spill; 16571 sum = (sum >> 16) + (sum & 0xFFFF); 16572 tcpha->tha_sum = htons(sum); 16573 if (connp->conn_ipversion == IPV4_VERSION) { 16574 sum = ntohs( 16575 ((ipha_t *)rptr)->ipha_length) + 16576 spill; 16577 ((ipha_t *)rptr)->ipha_length = 16578 htons(sum); 16579 } else { 16580 sum = ntohs( 16581 ((ip6_t *)rptr)->ip6_plen) + 16582 spill; 16583 ((ip6_t *)rptr)->ip6_plen = 16584 htons(sum); 16585 } 16586 ixa->ixa_pktlen += spill; 16587 *tail_unsent = 0; 16588 } 16589 } 16590 if (tcp->tcp_ip_forward_progress) { 16591 tcp->tcp_ip_forward_progress = B_FALSE; 16592 ixa->ixa_flags |= IXAF_REACH_CONF; 16593 } else { 16594 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16595 } 16596 16597 if (do_lso_send) { 16598 /* Append LSO information to the mp. */ 16599 lso_info_set(mp, mss, HW_LSO); 16600 ixa->ixa_fragsize = IP_MAXPACKET; 16601 ixa->ixa_extra_ident = num_lso_seg - 1; 16602 16603 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16604 boolean_t, B_TRUE); 16605 16606 tcp_send_data(tcp, mp); 16607 16608 /* 16609 * Restore values of ixa_fragsize and ixa_extra_ident. 16610 */ 16611 ixa->ixa_fragsize = ixa->ixa_pmtu; 16612 ixa->ixa_extra_ident = 0; 16613 tcp->tcp_obsegs += num_lso_seg; 16614 TCP_STAT(tcps, tcp_lso_times); 16615 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16616 } else { 16617 /* 16618 * Make sure to clean up LSO information. Wherever a 16619 * new mp uses the prepended header room after dupb(), 16620 * lso_info_cleanup() should be called. 16621 */ 16622 lso_info_cleanup(mp); 16623 tcp_send_data(tcp, mp); 16624 BUMP_LOCAL(tcp->tcp_obsegs); 16625 } 16626 } 16627 16628 return (0); 16629 } 16630 16631 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16632 static void 16633 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16634 { 16635 uchar_t fval = *mp->b_rptr; 16636 mblk_t *tail; 16637 conn_t *connp = tcp->tcp_connp; 16638 queue_t *q = connp->conn_wq; 16639 16640 /* TODO: How should flush interact with urgent data? */ 16641 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16642 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16643 /* 16644 * Flush only data that has not yet been put on the wire. If 16645 * we flush data that we have already transmitted, life, as we 16646 * know it, may come to an end. 16647 */ 16648 tail = tcp->tcp_xmit_tail; 16649 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16650 tcp->tcp_xmit_tail_unsent = 0; 16651 tcp->tcp_unsent = 0; 16652 if (tail->b_wptr != tail->b_rptr) 16653 tail = tail->b_cont; 16654 if (tail) { 16655 mblk_t **excess = &tcp->tcp_xmit_head; 16656 for (;;) { 16657 mblk_t *mp1 = *excess; 16658 if (mp1 == tail) 16659 break; 16660 tcp->tcp_xmit_tail = mp1; 16661 tcp->tcp_xmit_last = mp1; 16662 excess = &mp1->b_cont; 16663 } 16664 *excess = NULL; 16665 tcp_close_mpp(&tail); 16666 if (tcp->tcp_snd_zcopy_aware) 16667 tcp_zcopy_notify(tcp); 16668 } 16669 /* 16670 * We have no unsent data, so unsent must be less than 16671 * conn_sndlowat, so re-enable flow. 16672 */ 16673 mutex_enter(&tcp->tcp_non_sq_lock); 16674 if (tcp->tcp_flow_stopped) { 16675 tcp_clrqfull(tcp); 16676 } 16677 mutex_exit(&tcp->tcp_non_sq_lock); 16678 } 16679 /* 16680 * TODO: you can't just flush these, you have to increase rwnd for one 16681 * thing. For another, how should urgent data interact? 16682 */ 16683 if (fval & FLUSHR) { 16684 *mp->b_rptr = fval & ~FLUSHW; 16685 /* XXX */ 16686 qreply(q, mp); 16687 return; 16688 } 16689 freemsg(mp); 16690 } 16691 16692 /* 16693 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16694 * messages. 16695 */ 16696 static void 16697 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16698 { 16699 mblk_t *mp1; 16700 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16701 STRUCT_HANDLE(strbuf, sb); 16702 uint_t addrlen; 16703 conn_t *connp = tcp->tcp_connp; 16704 queue_t *q = connp->conn_wq; 16705 16706 /* Make sure it is one of ours. */ 16707 switch (iocp->ioc_cmd) { 16708 case TI_GETMYNAME: 16709 case TI_GETPEERNAME: 16710 break; 16711 default: 16712 /* 16713 * If the conn is closing, then error the ioctl here. Otherwise 16714 * use the CONN_IOCTLREF_* macros to hold off tcp_close until 16715 * we're done here. 16716 */ 16717 mutex_enter(&connp->conn_lock); 16718 if (connp->conn_state_flags & CONN_CLOSING) { 16719 mutex_exit(&connp->conn_lock); 16720 iocp->ioc_error = EINVAL; 16721 mp->b_datap->db_type = M_IOCNAK; 16722 iocp->ioc_count = 0; 16723 qreply(q, mp); 16724 return; 16725 } 16726 16727 CONN_INC_IOCTLREF_LOCKED(connp); 16728 ip_wput_nondata(q, mp); 16729 CONN_DEC_IOCTLREF(connp); 16730 return; 16731 } 16732 switch (mi_copy_state(q, mp, &mp1)) { 16733 case -1: 16734 return; 16735 case MI_COPY_CASE(MI_COPY_IN, 1): 16736 break; 16737 case MI_COPY_CASE(MI_COPY_OUT, 1): 16738 /* Copy out the strbuf. */ 16739 mi_copyout(q, mp); 16740 return; 16741 case MI_COPY_CASE(MI_COPY_OUT, 2): 16742 /* All done. */ 16743 mi_copy_done(q, mp, 0); 16744 return; 16745 default: 16746 mi_copy_done(q, mp, EPROTO); 16747 return; 16748 } 16749 /* Check alignment of the strbuf */ 16750 if (!OK_32PTR(mp1->b_rptr)) { 16751 mi_copy_done(q, mp, EINVAL); 16752 return; 16753 } 16754 16755 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16756 16757 if (connp->conn_family == AF_INET) 16758 addrlen = sizeof (sin_t); 16759 else 16760 addrlen = sizeof (sin6_t); 16761 16762 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16763 mi_copy_done(q, mp, EINVAL); 16764 return; 16765 } 16766 16767 switch (iocp->ioc_cmd) { 16768 case TI_GETMYNAME: 16769 break; 16770 case TI_GETPEERNAME: 16771 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16772 mi_copy_done(q, mp, ENOTCONN); 16773 return; 16774 } 16775 break; 16776 } 16777 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16778 if (!mp1) 16779 return; 16780 16781 STRUCT_FSET(sb, len, addrlen); 16782 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16783 case TI_GETMYNAME: 16784 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16785 &addrlen); 16786 break; 16787 case TI_GETPEERNAME: 16788 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16789 &addrlen); 16790 break; 16791 } 16792 mp1->b_wptr += addrlen; 16793 /* Copy out the address */ 16794 mi_copyout(q, mp); 16795 } 16796 16797 static void 16798 tcp_use_pure_tpi(tcp_t *tcp) 16799 { 16800 conn_t *connp = tcp->tcp_connp; 16801 16802 #ifdef _ILP32 16803 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16804 #else 16805 tcp->tcp_acceptor_id = connp->conn_dev; 16806 #endif 16807 /* 16808 * Insert this socket into the acceptor hash. 16809 * We might need it for T_CONN_RES message 16810 */ 16811 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16812 16813 tcp->tcp_issocket = B_FALSE; 16814 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16815 } 16816 16817 /* 16818 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16819 * messages. 16820 */ 16821 /* ARGSUSED */ 16822 static void 16823 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16824 { 16825 conn_t *connp = (conn_t *)arg; 16826 tcp_t *tcp = connp->conn_tcp; 16827 queue_t *q = connp->conn_wq; 16828 struct iocblk *iocp; 16829 16830 ASSERT(DB_TYPE(mp) == M_IOCTL); 16831 /* 16832 * Try and ASSERT the minimum possible references on the 16833 * conn early enough. Since we are executing on write side, 16834 * the connection is obviously not detached and that means 16835 * there is a ref each for TCP and IP. Since we are behind 16836 * the squeue, the minimum references needed are 3. If the 16837 * conn is in classifier hash list, there should be an 16838 * extra ref for that (we check both the possibilities). 16839 */ 16840 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16841 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16842 16843 iocp = (struct iocblk *)mp->b_rptr; 16844 switch (iocp->ioc_cmd) { 16845 case _SIOCSOCKFALLBACK: 16846 /* 16847 * Either sockmod is about to be popped and the socket 16848 * would now be treated as a plain stream, or a module 16849 * is about to be pushed so we could no longer use read- 16850 * side synchronous streams for fused loopback tcp. 16851 * Drain any queued data and disable direct sockfs 16852 * interface from now on. 16853 */ 16854 if (!tcp->tcp_issocket) { 16855 DB_TYPE(mp) = M_IOCNAK; 16856 iocp->ioc_error = EINVAL; 16857 } else { 16858 tcp_use_pure_tpi(tcp); 16859 DB_TYPE(mp) = M_IOCACK; 16860 iocp->ioc_error = 0; 16861 } 16862 iocp->ioc_count = 0; 16863 iocp->ioc_rval = 0; 16864 qreply(q, mp); 16865 return; 16866 } 16867 16868 /* 16869 * If the conn is closing, then error the ioctl here. Otherwise bump the 16870 * conn_ioctlref to hold off tcp_close until we're done here. 16871 */ 16872 mutex_enter(&(connp)->conn_lock); 16873 if ((connp)->conn_state_flags & CONN_CLOSING) { 16874 mutex_exit(&(connp)->conn_lock); 16875 iocp->ioc_error = EINVAL; 16876 mp->b_datap->db_type = M_IOCNAK; 16877 iocp->ioc_count = 0; 16878 qreply(q, mp); 16879 return; 16880 } 16881 16882 CONN_INC_IOCTLREF_LOCKED(connp); 16883 ip_wput_nondata(q, mp); 16884 CONN_DEC_IOCTLREF(connp); 16885 } 16886 16887 /* 16888 * This routine is called by tcp_wput() to handle all TPI requests. 16889 */ 16890 /* ARGSUSED */ 16891 static void 16892 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16893 { 16894 conn_t *connp = (conn_t *)arg; 16895 tcp_t *tcp = connp->conn_tcp; 16896 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16897 uchar_t *rptr; 16898 t_scalar_t type; 16899 cred_t *cr; 16900 16901 /* 16902 * Try and ASSERT the minimum possible references on the 16903 * conn early enough. Since we are executing on write side, 16904 * the connection is obviously not detached and that means 16905 * there is a ref each for TCP and IP. Since we are behind 16906 * the squeue, the minimum references needed are 3. If the 16907 * conn is in classifier hash list, there should be an 16908 * extra ref for that (we check both the possibilities). 16909 */ 16910 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16911 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16912 16913 rptr = mp->b_rptr; 16914 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16915 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16916 type = ((union T_primitives *)rptr)->type; 16917 if (type == T_EXDATA_REQ) { 16918 tcp_output_urgent(connp, mp, arg2, NULL); 16919 } else if (type != T_DATA_REQ) { 16920 goto non_urgent_data; 16921 } else { 16922 /* TODO: options, flags, ... from user */ 16923 /* Set length to zero for reclamation below */ 16924 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16925 freeb(mp); 16926 } 16927 return; 16928 } else { 16929 if (connp->conn_debug) { 16930 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16931 "tcp_wput_proto, dropping one..."); 16932 } 16933 freemsg(mp); 16934 return; 16935 } 16936 16937 non_urgent_data: 16938 16939 switch ((int)tprim->type) { 16940 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16941 /* 16942 * save the kssl_ent_t from the next block, and convert this 16943 * back to a normal bind_req. 16944 */ 16945 if (mp->b_cont != NULL) { 16946 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16947 16948 if (tcp->tcp_kssl_ent != NULL) { 16949 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16950 KSSL_NO_PROXY); 16951 tcp->tcp_kssl_ent = NULL; 16952 } 16953 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16954 sizeof (kssl_ent_t)); 16955 kssl_hold_ent(tcp->tcp_kssl_ent); 16956 freemsg(mp->b_cont); 16957 mp->b_cont = NULL; 16958 } 16959 tprim->type = T_BIND_REQ; 16960 16961 /* FALLTHROUGH */ 16962 case O_T_BIND_REQ: /* bind request */ 16963 case T_BIND_REQ: /* new semantics bind request */ 16964 tcp_tpi_bind(tcp, mp); 16965 break; 16966 case T_UNBIND_REQ: /* unbind request */ 16967 tcp_tpi_unbind(tcp, mp); 16968 break; 16969 case O_T_CONN_RES: /* old connection response XXX */ 16970 case T_CONN_RES: /* connection response */ 16971 tcp_tli_accept(tcp, mp); 16972 break; 16973 case T_CONN_REQ: /* connection request */ 16974 tcp_tpi_connect(tcp, mp); 16975 break; 16976 case T_DISCON_REQ: /* disconnect request */ 16977 tcp_disconnect(tcp, mp); 16978 break; 16979 case T_CAPABILITY_REQ: 16980 tcp_capability_req(tcp, mp); /* capability request */ 16981 break; 16982 case T_INFO_REQ: /* information request */ 16983 tcp_info_req(tcp, mp); 16984 break; 16985 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16986 case T_OPTMGMT_REQ: 16987 /* 16988 * Note: no support for snmpcom_req() through new 16989 * T_OPTMGMT_REQ. See comments in ip.c 16990 */ 16991 16992 /* 16993 * All Solaris components should pass a db_credp 16994 * for this TPI message, hence we ASSERT. 16995 * But in case there is some other M_PROTO that looks 16996 * like a TPI message sent by some other kernel 16997 * component, we check and return an error. 16998 */ 16999 cr = msg_getcred(mp, NULL); 17000 ASSERT(cr != NULL); 17001 if (cr == NULL) { 17002 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 17003 return; 17004 } 17005 /* 17006 * If EINPROGRESS is returned, the request has been queued 17007 * for subsequent processing by ip_restart_optmgmt(), which 17008 * will do the CONN_DEC_REF(). 17009 */ 17010 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 17011 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17012 } else { 17013 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17014 } 17015 break; 17016 17017 case T_UNITDATA_REQ: /* unitdata request */ 17018 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17019 break; 17020 case T_ORDREL_REQ: /* orderly release req */ 17021 freemsg(mp); 17022 17023 if (tcp->tcp_fused) 17024 tcp_unfuse(tcp); 17025 17026 if (tcp_xmit_end(tcp) != 0) { 17027 /* 17028 * We were crossing FINs and got a reset from 17029 * the other side. Just ignore it. 17030 */ 17031 if (connp->conn_debug) { 17032 (void) strlog(TCP_MOD_ID, 0, 1, 17033 SL_ERROR|SL_TRACE, 17034 "tcp_wput_proto, T_ORDREL_REQ out of " 17035 "state %s", 17036 tcp_display(tcp, NULL, 17037 DISP_ADDR_AND_PORT)); 17038 } 17039 } 17040 break; 17041 case T_ADDR_REQ: 17042 tcp_addr_req(tcp, mp); 17043 break; 17044 default: 17045 if (connp->conn_debug) { 17046 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 17047 "tcp_wput_proto, bogus TPI msg, type %d", 17048 tprim->type); 17049 } 17050 /* 17051 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 17052 * to recover. 17053 */ 17054 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17055 break; 17056 } 17057 } 17058 17059 /* 17060 * The TCP write service routine should never be called... 17061 */ 17062 /* ARGSUSED */ 17063 static void 17064 tcp_wsrv(queue_t *q) 17065 { 17066 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17067 17068 TCP_STAT(tcps, tcp_wsrv_called); 17069 } 17070 17071 /* 17072 * Send out a control packet on the tcp connection specified. This routine 17073 * is typically called where we need a simple ACK or RST generated. 17074 */ 17075 static void 17076 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 17077 { 17078 uchar_t *rptr; 17079 tcpha_t *tcpha; 17080 ipha_t *ipha = NULL; 17081 ip6_t *ip6h = NULL; 17082 uint32_t sum; 17083 int total_hdr_len; 17084 int ip_hdr_len; 17085 mblk_t *mp; 17086 tcp_stack_t *tcps = tcp->tcp_tcps; 17087 conn_t *connp = tcp->tcp_connp; 17088 ip_xmit_attr_t *ixa = connp->conn_ixa; 17089 17090 /* 17091 * Save sum for use in source route later. 17092 */ 17093 sum = connp->conn_ht_ulp_len + connp->conn_sum; 17094 total_hdr_len = connp->conn_ht_iphc_len; 17095 ip_hdr_len = ixa->ixa_ip_hdr_length; 17096 17097 /* If a text string is passed in with the request, pass it to strlog. */ 17098 if (str != NULL && connp->conn_debug) { 17099 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17100 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 17101 str, seq, ack, ctl); 17102 } 17103 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17104 BPRI_MED); 17105 if (mp == NULL) { 17106 return; 17107 } 17108 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 17109 mp->b_rptr = rptr; 17110 mp->b_wptr = &rptr[total_hdr_len]; 17111 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 17112 17113 ixa->ixa_pktlen = total_hdr_len; 17114 17115 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17116 ipha = (ipha_t *)rptr; 17117 ipha->ipha_length = htons(total_hdr_len); 17118 } else { 17119 ip6h = (ip6_t *)rptr; 17120 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17121 } 17122 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17123 tcpha->tha_flags = (uint8_t)ctl; 17124 if (ctl & TH_RST) { 17125 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17126 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17127 /* 17128 * Don't send TSopt w/ TH_RST packets per RFC 1323. 17129 */ 17130 if (tcp->tcp_snd_ts_ok && 17131 tcp->tcp_state > TCPS_SYN_SENT) { 17132 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 17133 *(mp->b_wptr) = TCPOPT_EOL; 17134 17135 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 17136 17137 if (connp->conn_ipversion == IPV4_VERSION) { 17138 ipha->ipha_length = htons(total_hdr_len - 17139 TCPOPT_REAL_TS_LEN); 17140 } else { 17141 ip6h->ip6_plen = htons(total_hdr_len - 17142 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 17143 } 17144 tcpha->tha_offset_and_reserved -= (3 << 4); 17145 sum -= TCPOPT_REAL_TS_LEN; 17146 } 17147 } 17148 if (ctl & TH_ACK) { 17149 if (tcp->tcp_snd_ts_ok) { 17150 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17151 17152 U32_TO_BE32(llbolt, 17153 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17154 U32_TO_BE32(tcp->tcp_ts_recent, 17155 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17156 } 17157 17158 /* Update the latest receive window size in TCP header. */ 17159 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17160 /* Track what we sent to the peer */ 17161 tcp->tcp_tcpha->tha_win = tcpha->tha_win; 17162 tcp->tcp_rack = ack; 17163 tcp->tcp_rack_cnt = 0; 17164 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17165 } 17166 BUMP_LOCAL(tcp->tcp_obsegs); 17167 tcpha->tha_seq = htonl(seq); 17168 tcpha->tha_ack = htonl(ack); 17169 /* 17170 * Include the adjustment for a source route if any. 17171 */ 17172 sum = (sum >> 16) + (sum & 0xFFFF); 17173 tcpha->tha_sum = htons(sum); 17174 tcp_send_data(tcp, mp); 17175 } 17176 17177 /* 17178 * If this routine returns B_TRUE, TCP can generate a RST in response 17179 * to a segment. If it returns B_FALSE, TCP should not respond. 17180 */ 17181 static boolean_t 17182 tcp_send_rst_chk(tcp_stack_t *tcps) 17183 { 17184 int64_t now; 17185 17186 /* 17187 * TCP needs to protect itself from generating too many RSTs. 17188 * This can be a DoS attack by sending us random segments 17189 * soliciting RSTs. 17190 * 17191 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 17192 * in each 1 second interval. In this way, TCP still generate 17193 * RSTs in normal cases but when under attack, the impact is 17194 * limited. 17195 */ 17196 if (tcps->tcps_rst_sent_rate_enabled != 0) { 17197 now = ddi_get_lbolt64(); 17198 if (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 17199 1*SECONDS) { 17200 tcps->tcps_last_rst_intrvl = now; 17201 tcps->tcps_rst_cnt = 1; 17202 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 17203 return (B_FALSE); 17204 } 17205 } 17206 return (B_TRUE); 17207 } 17208 17209 /* 17210 * Generate a reset based on an inbound packet, connp is set by caller 17211 * when RST is in response to an unexpected inbound packet for which 17212 * there is active tcp state in the system. 17213 * 17214 * IPSEC NOTE : Try to send the reply with the same protection as it came 17215 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 17216 * That way the packet will go out at the same level of protection as it 17217 * came in with. 17218 */ 17219 static void 17220 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 17221 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 17222 { 17223 ipha_t *ipha = NULL; 17224 ip6_t *ip6h = NULL; 17225 ushort_t len; 17226 tcpha_t *tcpha; 17227 int i; 17228 ipaddr_t v4addr; 17229 in6_addr_t v6addr; 17230 netstack_t *ns = ipst->ips_netstack; 17231 tcp_stack_t *tcps = ns->netstack_tcp; 17232 ip_xmit_attr_t ixas, *ixa; 17233 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17234 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 17235 ushort_t port; 17236 17237 if (!tcp_send_rst_chk(tcps)) { 17238 TCP_STAT(tcps, tcp_rst_unsent); 17239 freemsg(mp); 17240 return; 17241 } 17242 17243 /* 17244 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 17245 * options from the listener. In that case the caller must ensure that 17246 * we are running on the listener = connp squeue. 17247 * 17248 * We get a safe copy of conn_ixa so we don't need to restore anything 17249 * we or ip_output_simple might change in the ixa. 17250 */ 17251 if (connp != NULL) { 17252 ASSERT(connp->conn_on_sqp); 17253 17254 ixa = conn_get_ixa_exclusive(connp); 17255 if (ixa == NULL) { 17256 TCP_STAT(tcps, tcp_rst_unsent); 17257 freemsg(mp); 17258 return; 17259 } 17260 need_refrele = B_TRUE; 17261 } else { 17262 bzero(&ixas, sizeof (ixas)); 17263 ixa = &ixas; 17264 /* 17265 * IXAF_VERIFY_SOURCE is overkill since we know the 17266 * packet was for us. 17267 */ 17268 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 17269 ixa->ixa_protocol = IPPROTO_TCP; 17270 ixa->ixa_zoneid = ira->ira_zoneid; 17271 ixa->ixa_ifindex = 0; 17272 ixa->ixa_ipst = ipst; 17273 ixa->ixa_cred = kcred; 17274 ixa->ixa_cpid = NOPID; 17275 } 17276 17277 if (str && tcps->tcps_dbg) { 17278 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17279 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 17280 "flags 0x%x", 17281 str, seq, ack, ctl); 17282 } 17283 if (mp->b_datap->db_ref != 1) { 17284 mblk_t *mp1 = copyb(mp); 17285 freemsg(mp); 17286 mp = mp1; 17287 if (mp == NULL) 17288 goto done; 17289 } else if (mp->b_cont) { 17290 freemsg(mp->b_cont); 17291 mp->b_cont = NULL; 17292 DB_CKSUMFLAGS(mp) = 0; 17293 } 17294 /* 17295 * We skip reversing source route here. 17296 * (for now we replace all IP options with EOL) 17297 */ 17298 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17299 ipha = (ipha_t *)mp->b_rptr; 17300 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 17301 mp->b_rptr[i] = IPOPT_EOL; 17302 /* 17303 * Make sure that src address isn't flagrantly invalid. 17304 * Not all broadcast address checking for the src address 17305 * is possible, since we don't know the netmask of the src 17306 * addr. No check for destination address is done, since 17307 * IP will not pass up a packet with a broadcast dest 17308 * address to TCP. Similar checks are done below for IPv6. 17309 */ 17310 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 17311 CLASSD(ipha->ipha_src)) { 17312 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 17313 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17314 freemsg(mp); 17315 goto done; 17316 } 17317 } else { 17318 ip6h = (ip6_t *)mp->b_rptr; 17319 17320 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 17321 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 17322 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 17323 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17324 freemsg(mp); 17325 goto done; 17326 } 17327 17328 /* Remove any extension headers assuming partial overlay */ 17329 if (ip_hdr_len > IPV6_HDR_LEN) { 17330 uint8_t *to; 17331 17332 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 17333 ovbcopy(ip6h, to, IPV6_HDR_LEN); 17334 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 17335 ip_hdr_len = IPV6_HDR_LEN; 17336 ip6h = (ip6_t *)mp->b_rptr; 17337 ip6h->ip6_nxt = IPPROTO_TCP; 17338 } 17339 } 17340 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 17341 if (tcpha->tha_flags & TH_RST) { 17342 freemsg(mp); 17343 goto done; 17344 } 17345 tcpha->tha_offset_and_reserved = (5 << 4); 17346 len = ip_hdr_len + sizeof (tcpha_t); 17347 mp->b_wptr = &mp->b_rptr[len]; 17348 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17349 ipha->ipha_length = htons(len); 17350 /* Swap addresses */ 17351 v4addr = ipha->ipha_src; 17352 ipha->ipha_src = ipha->ipha_dst; 17353 ipha->ipha_dst = v4addr; 17354 ipha->ipha_ident = 0; 17355 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17356 ixa->ixa_flags |= IXAF_IS_IPV4; 17357 ixa->ixa_ip_hdr_length = ip_hdr_len; 17358 } else { 17359 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17360 /* Swap addresses */ 17361 v6addr = ip6h->ip6_src; 17362 ip6h->ip6_src = ip6h->ip6_dst; 17363 ip6h->ip6_dst = v6addr; 17364 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17365 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17366 17367 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17368 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17369 ixa->ixa_scopeid = ira->ira_ruifindex; 17370 } 17371 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17372 } 17373 ixa->ixa_pktlen = len; 17374 17375 /* Swap the ports */ 17376 port = tcpha->tha_fport; 17377 tcpha->tha_fport = tcpha->tha_lport; 17378 tcpha->tha_lport = port; 17379 17380 tcpha->tha_ack = htonl(ack); 17381 tcpha->tha_seq = htonl(seq); 17382 tcpha->tha_win = 0; 17383 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17384 tcpha->tha_flags = (uint8_t)ctl; 17385 if (ctl & TH_RST) { 17386 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17387 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17388 } 17389 17390 /* Discard any old label */ 17391 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17392 ASSERT(ixa->ixa_tsl != NULL); 17393 label_rele(ixa->ixa_tsl); 17394 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17395 } 17396 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17397 17398 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17399 /* 17400 * Apply IPsec based on how IPsec was applied to 17401 * the packet that caused the RST. 17402 */ 17403 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17404 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17405 /* Note: mp already consumed and ip_drop_packet done */ 17406 goto done; 17407 } 17408 } else { 17409 /* 17410 * This is in clear. The RST message we are building 17411 * here should go out in clear, independent of our policy. 17412 */ 17413 ixa->ixa_flags |= IXAF_NO_IPSEC; 17414 } 17415 17416 /* 17417 * NOTE: one might consider tracing a TCP packet here, but 17418 * this function has no active TCP state and no tcp structure 17419 * that has a trace buffer. If we traced here, we would have 17420 * to keep a local trace buffer in tcp_record_trace(). 17421 */ 17422 17423 (void) ip_output_simple(mp, ixa); 17424 done: 17425 ixa_cleanup(ixa); 17426 if (need_refrele) { 17427 ASSERT(ixa != &ixas); 17428 ixa_refrele(ixa); 17429 } 17430 } 17431 17432 /* 17433 * Initiate closedown sequence on an active connection. (May be called as 17434 * writer.) Return value zero for OK return, non-zero for error return. 17435 */ 17436 static int 17437 tcp_xmit_end(tcp_t *tcp) 17438 { 17439 mblk_t *mp; 17440 tcp_stack_t *tcps = tcp->tcp_tcps; 17441 iulp_t uinfo; 17442 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17443 conn_t *connp = tcp->tcp_connp; 17444 17445 if (tcp->tcp_state < TCPS_SYN_RCVD || 17446 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17447 /* 17448 * Invalid state, only states TCPS_SYN_RCVD, 17449 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17450 */ 17451 return (-1); 17452 } 17453 17454 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17455 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17456 /* 17457 * If there is nothing more unsent, send the FIN now. 17458 * Otherwise, it will go out with the last segment. 17459 */ 17460 if (tcp->tcp_unsent == 0) { 17461 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17462 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17463 17464 if (mp) { 17465 tcp_send_data(tcp, mp); 17466 } else { 17467 /* 17468 * Couldn't allocate msg. Pretend we got it out. 17469 * Wait for rexmit timeout. 17470 */ 17471 tcp->tcp_snxt = tcp->tcp_fss + 1; 17472 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17473 } 17474 17475 /* 17476 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17477 * changed. 17478 */ 17479 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17480 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17481 } 17482 } else { 17483 /* 17484 * If tcp->tcp_cork is set, then the data will not get sent, 17485 * so we have to check that and unset it first. 17486 */ 17487 if (tcp->tcp_cork) 17488 tcp->tcp_cork = B_FALSE; 17489 tcp_wput_data(tcp, NULL, B_FALSE); 17490 } 17491 17492 /* 17493 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17494 * is 0, don't update the cache. 17495 */ 17496 if (tcps->tcps_rtt_updates == 0 || 17497 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17498 return (0); 17499 17500 /* 17501 * We do not have a good algorithm to update ssthresh at this time. 17502 * So don't do any update. 17503 */ 17504 bzero(&uinfo, sizeof (uinfo)); 17505 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17506 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17507 17508 /* 17509 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17510 * if source routed but we don't. 17511 */ 17512 if (connp->conn_ipversion == IPV4_VERSION) { 17513 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17514 return (0); 17515 } 17516 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17517 } else { 17518 uint_t ifindex; 17519 17520 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17521 &tcp->tcp_ip6h->ip6_dst))) { 17522 return (0); 17523 } 17524 ifindex = 0; 17525 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17526 ip_xmit_attr_t *ixa = connp->conn_ixa; 17527 17528 /* 17529 * If we are going to create a DCE we'd better have 17530 * an ifindex 17531 */ 17532 if (ixa->ixa_nce != NULL) { 17533 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17534 ill_phyint->phyint_ifindex; 17535 } else { 17536 return (0); 17537 } 17538 } 17539 17540 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17541 ipst); 17542 } 17543 return (0); 17544 } 17545 17546 /* 17547 * Generate a "no listener here" RST in response to an "unknown" segment. 17548 * connp is set by caller when RST is in response to an unexpected 17549 * inbound packet for which there is active tcp state in the system. 17550 * Note that we are reusing the incoming mp to construct the outgoing RST. 17551 */ 17552 void 17553 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17554 conn_t *connp) 17555 { 17556 uchar_t *rptr; 17557 uint32_t seg_len; 17558 tcpha_t *tcpha; 17559 uint32_t seg_seq; 17560 uint32_t seg_ack; 17561 uint_t flags; 17562 ipha_t *ipha; 17563 ip6_t *ip6h; 17564 boolean_t policy_present; 17565 netstack_t *ns = ipst->ips_netstack; 17566 tcp_stack_t *tcps = ns->netstack_tcp; 17567 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17568 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17569 17570 TCP_STAT(tcps, tcp_no_listener); 17571 17572 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17573 policy_present = ipss->ipsec_inbound_v4_policy_present; 17574 ipha = (ipha_t *)mp->b_rptr; 17575 ip6h = NULL; 17576 } else { 17577 policy_present = ipss->ipsec_inbound_v6_policy_present; 17578 ipha = NULL; 17579 ip6h = (ip6_t *)mp->b_rptr; 17580 } 17581 17582 if (policy_present) { 17583 /* 17584 * The conn_t parameter is NULL because we already know 17585 * nobody's home. 17586 */ 17587 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17588 ira, ns); 17589 if (mp == NULL) 17590 return; 17591 } 17592 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17593 DTRACE_PROBE2( 17594 tx__ip__log__error__nolistener__tcp, 17595 char *, "Could not reply with RST to mp(1)", 17596 mblk_t *, mp); 17597 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17598 freemsg(mp); 17599 return; 17600 } 17601 17602 rptr = mp->b_rptr; 17603 17604 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17605 seg_seq = ntohl(tcpha->tha_seq); 17606 seg_ack = ntohl(tcpha->tha_ack); 17607 flags = tcpha->tha_flags; 17608 17609 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17610 if (flags & TH_RST) { 17611 freemsg(mp); 17612 } else if (flags & TH_ACK) { 17613 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17614 ira, ipst, connp); 17615 } else { 17616 if (flags & TH_SYN) { 17617 seg_len++; 17618 } else { 17619 /* 17620 * Here we violate the RFC. Note that a normal 17621 * TCP will never send a segment without the ACK 17622 * flag, except for RST or SYN segment. This 17623 * segment is neither. Just drop it on the 17624 * floor. 17625 */ 17626 freemsg(mp); 17627 TCP_STAT(tcps, tcp_rst_unsent); 17628 return; 17629 } 17630 17631 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17632 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17633 } 17634 } 17635 17636 /* 17637 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17638 * ip and tcp header ready to pass down to IP. If the mp passed in is 17639 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17640 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17641 * otherwise it will dup partial mblks.) 17642 * Otherwise, an appropriate ACK packet will be generated. This 17643 * routine is not usually called to send new data for the first time. It 17644 * is mostly called out of the timer for retransmits, and to generate ACKs. 17645 * 17646 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17647 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17648 * of the original mblk chain will be returned in *offset and *end_mp. 17649 */ 17650 mblk_t * 17651 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17652 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17653 boolean_t rexmit) 17654 { 17655 int data_length; 17656 int32_t off = 0; 17657 uint_t flags; 17658 mblk_t *mp1; 17659 mblk_t *mp2; 17660 uchar_t *rptr; 17661 tcpha_t *tcpha; 17662 int32_t num_sack_blk = 0; 17663 int32_t sack_opt_len = 0; 17664 tcp_stack_t *tcps = tcp->tcp_tcps; 17665 conn_t *connp = tcp->tcp_connp; 17666 ip_xmit_attr_t *ixa = connp->conn_ixa; 17667 17668 /* Allocate for our maximum TCP header + link-level */ 17669 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17670 BPRI_MED); 17671 if (!mp1) 17672 return (NULL); 17673 data_length = 0; 17674 17675 /* 17676 * Note that tcp_mss has been adjusted to take into account the 17677 * timestamp option if applicable. Because SACK options do not 17678 * appear in every TCP segments and they are of variable lengths, 17679 * they cannot be included in tcp_mss. Thus we need to calculate 17680 * the actual segment length when we need to send a segment which 17681 * includes SACK options. 17682 */ 17683 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17684 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17685 tcp->tcp_num_sack_blk); 17686 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17687 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17688 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17689 max_to_send -= sack_opt_len; 17690 } 17691 17692 if (offset != NULL) { 17693 off = *offset; 17694 /* We use offset as an indicator that end_mp is not NULL. */ 17695 *end_mp = NULL; 17696 } 17697 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17698 /* This could be faster with cooperation from downstream */ 17699 if (mp2 != mp1 && !sendall && 17700 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17701 max_to_send) 17702 /* 17703 * Don't send the next mblk since the whole mblk 17704 * does not fit. 17705 */ 17706 break; 17707 mp2->b_cont = dupb(mp); 17708 mp2 = mp2->b_cont; 17709 if (!mp2) { 17710 freemsg(mp1); 17711 return (NULL); 17712 } 17713 mp2->b_rptr += off; 17714 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17715 (uintptr_t)INT_MAX); 17716 17717 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17718 if (data_length > max_to_send) { 17719 mp2->b_wptr -= data_length - max_to_send; 17720 data_length = max_to_send; 17721 off = mp2->b_wptr - mp->b_rptr; 17722 break; 17723 } else { 17724 off = 0; 17725 } 17726 } 17727 if (offset != NULL) { 17728 *offset = off; 17729 *end_mp = mp; 17730 } 17731 if (seg_len != NULL) { 17732 *seg_len = data_length; 17733 } 17734 17735 /* Update the latest receive window size in TCP header. */ 17736 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17737 17738 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17739 mp1->b_rptr = rptr; 17740 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17741 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17742 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17743 tcpha->tha_seq = htonl(seq); 17744 17745 /* 17746 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17747 * that this function was called from tcp_wput_data. Thus, when called 17748 * to retransmit data the setting of the PUSH bit may appear some 17749 * what random in that it might get set when it should not. This 17750 * should not pose any performance issues. 17751 */ 17752 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17753 tcp->tcp_unsent == data_length)) { 17754 flags = TH_ACK | TH_PUSH; 17755 } else { 17756 flags = TH_ACK; 17757 } 17758 17759 if (tcp->tcp_ecn_ok) { 17760 if (tcp->tcp_ecn_echo_on) 17761 flags |= TH_ECE; 17762 17763 /* 17764 * Only set ECT bit and ECN_CWR if a segment contains new data. 17765 * There is no TCP flow control for non-data segments, and 17766 * only data segment is transmitted reliably. 17767 */ 17768 if (data_length > 0 && !rexmit) { 17769 SET_ECT(tcp, rptr); 17770 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17771 flags |= TH_CWR; 17772 tcp->tcp_ecn_cwr_sent = B_TRUE; 17773 } 17774 } 17775 } 17776 17777 if (tcp->tcp_valid_bits) { 17778 uint32_t u1; 17779 17780 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17781 seq == tcp->tcp_iss) { 17782 uchar_t *wptr; 17783 17784 /* 17785 * If TCP_ISS_VALID and the seq number is tcp_iss, 17786 * TCP can only be in SYN-SENT, SYN-RCVD or 17787 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17788 * our SYN is not ack'ed but the app closes this 17789 * TCP connection. 17790 */ 17791 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17792 tcp->tcp_state == TCPS_SYN_RCVD || 17793 tcp->tcp_state == TCPS_FIN_WAIT_1); 17794 17795 /* 17796 * Tack on the MSS option. It is always needed 17797 * for both active and passive open. 17798 * 17799 * MSS option value should be interface MTU - MIN 17800 * TCP/IP header according to RFC 793 as it means 17801 * the maximum segment size TCP can receive. But 17802 * to get around some broken middle boxes/end hosts 17803 * out there, we allow the option value to be the 17804 * same as the MSS option size on the peer side. 17805 * In this way, the other side will not send 17806 * anything larger than they can receive. 17807 * 17808 * Note that for SYN_SENT state, the ndd param 17809 * tcp_use_smss_as_mss_opt has no effect as we 17810 * don't know the peer's MSS option value. So 17811 * the only case we need to take care of is in 17812 * SYN_RCVD state, which is done later. 17813 */ 17814 wptr = mp1->b_wptr; 17815 wptr[0] = TCPOPT_MAXSEG; 17816 wptr[1] = TCPOPT_MAXSEG_LEN; 17817 wptr += 2; 17818 u1 = tcp->tcp_initial_pmtu - 17819 (connp->conn_ipversion == IPV4_VERSION ? 17820 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17821 TCP_MIN_HEADER_LENGTH; 17822 U16_TO_BE16(u1, wptr); 17823 mp1->b_wptr = wptr + 2; 17824 /* Update the offset to cover the additional word */ 17825 tcpha->tha_offset_and_reserved += (1 << 4); 17826 17827 /* 17828 * Note that the following way of filling in 17829 * TCP options are not optimal. Some NOPs can 17830 * be saved. But there is no need at this time 17831 * to optimize it. When it is needed, we will 17832 * do it. 17833 */ 17834 switch (tcp->tcp_state) { 17835 case TCPS_SYN_SENT: 17836 flags = TH_SYN; 17837 17838 if (tcp->tcp_snd_ts_ok) { 17839 uint32_t llbolt = 17840 (uint32_t)LBOLT_FASTPATH; 17841 17842 wptr = mp1->b_wptr; 17843 wptr[0] = TCPOPT_NOP; 17844 wptr[1] = TCPOPT_NOP; 17845 wptr[2] = TCPOPT_TSTAMP; 17846 wptr[3] = TCPOPT_TSTAMP_LEN; 17847 wptr += 4; 17848 U32_TO_BE32(llbolt, wptr); 17849 wptr += 4; 17850 ASSERT(tcp->tcp_ts_recent == 0); 17851 U32_TO_BE32(0L, wptr); 17852 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17853 tcpha->tha_offset_and_reserved += 17854 (3 << 4); 17855 } 17856 17857 /* 17858 * Set up all the bits to tell other side 17859 * we are ECN capable. 17860 */ 17861 if (tcp->tcp_ecn_ok) { 17862 flags |= (TH_ECE | TH_CWR); 17863 } 17864 break; 17865 case TCPS_SYN_RCVD: 17866 flags |= TH_SYN; 17867 17868 /* 17869 * Reset the MSS option value to be SMSS 17870 * We should probably add back the bytes 17871 * for timestamp option and IPsec. We 17872 * don't do that as this is a workaround 17873 * for broken middle boxes/end hosts, it 17874 * is better for us to be more cautious. 17875 * They may not take these things into 17876 * account in their SMSS calculation. Thus 17877 * the peer's calculated SMSS may be smaller 17878 * than what it can be. This should be OK. 17879 */ 17880 if (tcps->tcps_use_smss_as_mss_opt) { 17881 u1 = tcp->tcp_mss; 17882 U16_TO_BE16(u1, wptr); 17883 } 17884 17885 /* 17886 * If the other side is ECN capable, reply 17887 * that we are also ECN capable. 17888 */ 17889 if (tcp->tcp_ecn_ok) 17890 flags |= TH_ECE; 17891 break; 17892 default: 17893 /* 17894 * The above ASSERT() makes sure that this 17895 * must be FIN-WAIT-1 state. Our SYN has 17896 * not been ack'ed so retransmit it. 17897 */ 17898 flags |= TH_SYN; 17899 break; 17900 } 17901 17902 if (tcp->tcp_snd_ws_ok) { 17903 wptr = mp1->b_wptr; 17904 wptr[0] = TCPOPT_NOP; 17905 wptr[1] = TCPOPT_WSCALE; 17906 wptr[2] = TCPOPT_WS_LEN; 17907 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17908 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17909 tcpha->tha_offset_and_reserved += (1 << 4); 17910 } 17911 17912 if (tcp->tcp_snd_sack_ok) { 17913 wptr = mp1->b_wptr; 17914 wptr[0] = TCPOPT_NOP; 17915 wptr[1] = TCPOPT_NOP; 17916 wptr[2] = TCPOPT_SACK_PERMITTED; 17917 wptr[3] = TCPOPT_SACK_OK_LEN; 17918 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17919 tcpha->tha_offset_and_reserved += (1 << 4); 17920 } 17921 17922 /* allocb() of adequate mblk assures space */ 17923 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17924 (uintptr_t)INT_MAX); 17925 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17926 /* 17927 * Get IP set to checksum on our behalf 17928 * Include the adjustment for a source route if any. 17929 */ 17930 u1 += connp->conn_sum; 17931 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17932 tcpha->tha_sum = htons(u1); 17933 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17934 } 17935 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17936 (seq + data_length) == tcp->tcp_fss) { 17937 if (!tcp->tcp_fin_acked) { 17938 flags |= TH_FIN; 17939 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17940 } 17941 if (!tcp->tcp_fin_sent) { 17942 tcp->tcp_fin_sent = B_TRUE; 17943 switch (tcp->tcp_state) { 17944 case TCPS_SYN_RCVD: 17945 case TCPS_ESTABLISHED: 17946 tcp->tcp_state = TCPS_FIN_WAIT_1; 17947 break; 17948 case TCPS_CLOSE_WAIT: 17949 tcp->tcp_state = TCPS_LAST_ACK; 17950 break; 17951 } 17952 if (tcp->tcp_suna == tcp->tcp_snxt) 17953 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17954 tcp->tcp_snxt = tcp->tcp_fss + 1; 17955 } 17956 } 17957 /* 17958 * Note the trick here. u1 is unsigned. When tcp_urg 17959 * is smaller than seq, u1 will become a very huge value. 17960 * So the comparison will fail. Also note that tcp_urp 17961 * should be positive, see RFC 793 page 17. 17962 */ 17963 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17964 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17965 u1 < (uint32_t)(64 * 1024)) { 17966 flags |= TH_URG; 17967 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17968 tcpha->tha_urp = htons(u1); 17969 } 17970 } 17971 tcpha->tha_flags = (uchar_t)flags; 17972 tcp->tcp_rack = tcp->tcp_rnxt; 17973 tcp->tcp_rack_cnt = 0; 17974 17975 if (tcp->tcp_snd_ts_ok) { 17976 if (tcp->tcp_state != TCPS_SYN_SENT) { 17977 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17978 17979 U32_TO_BE32(llbolt, 17980 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17981 U32_TO_BE32(tcp->tcp_ts_recent, 17982 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17983 } 17984 } 17985 17986 if (num_sack_blk > 0) { 17987 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17988 sack_blk_t *tmp; 17989 int32_t i; 17990 17991 wptr[0] = TCPOPT_NOP; 17992 wptr[1] = TCPOPT_NOP; 17993 wptr[2] = TCPOPT_SACK; 17994 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17995 sizeof (sack_blk_t); 17996 wptr += TCPOPT_REAL_SACK_LEN; 17997 17998 tmp = tcp->tcp_sack_list; 17999 for (i = 0; i < num_sack_blk; i++) { 18000 U32_TO_BE32(tmp[i].begin, wptr); 18001 wptr += sizeof (tcp_seq); 18002 U32_TO_BE32(tmp[i].end, wptr); 18003 wptr += sizeof (tcp_seq); 18004 } 18005 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 18006 } 18007 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 18008 data_length += (int)(mp1->b_wptr - rptr); 18009 18010 ixa->ixa_pktlen = data_length; 18011 18012 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18013 ((ipha_t *)rptr)->ipha_length = htons(data_length); 18014 } else { 18015 ip6_t *ip6 = (ip6_t *)rptr; 18016 18017 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 18018 } 18019 18020 /* 18021 * Prime pump for IP 18022 * Include the adjustment for a source route if any. 18023 */ 18024 data_length -= ixa->ixa_ip_hdr_length; 18025 data_length += connp->conn_sum; 18026 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18027 tcpha->tha_sum = htons(data_length); 18028 if (tcp->tcp_ip_forward_progress) { 18029 tcp->tcp_ip_forward_progress = B_FALSE; 18030 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18031 } else { 18032 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18033 } 18034 return (mp1); 18035 } 18036 18037 /* This function handles the push timeout. */ 18038 void 18039 tcp_push_timer(void *arg) 18040 { 18041 conn_t *connp = (conn_t *)arg; 18042 tcp_t *tcp = connp->conn_tcp; 18043 18044 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 18045 18046 ASSERT(tcp->tcp_listener == NULL); 18047 18048 ASSERT(!IPCL_IS_NONSTR(connp)); 18049 18050 tcp->tcp_push_tid = 0; 18051 18052 if (tcp->tcp_rcv_list != NULL && 18053 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 18054 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 18055 } 18056 18057 /* 18058 * This function handles delayed ACK timeout. 18059 */ 18060 static void 18061 tcp_ack_timer(void *arg) 18062 { 18063 conn_t *connp = (conn_t *)arg; 18064 tcp_t *tcp = connp->conn_tcp; 18065 mblk_t *mp; 18066 tcp_stack_t *tcps = tcp->tcp_tcps; 18067 18068 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 18069 18070 tcp->tcp_ack_tid = 0; 18071 18072 if (tcp->tcp_fused) 18073 return; 18074 18075 /* 18076 * Do not send ACK if there is no outstanding unack'ed data. 18077 */ 18078 if (tcp->tcp_rnxt == tcp->tcp_rack) { 18079 return; 18080 } 18081 18082 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 18083 /* 18084 * Make sure we don't allow deferred ACKs to result in 18085 * timer-based ACKing. If we have held off an ACK 18086 * when there was more than an mss here, and the timer 18087 * goes off, we have to worry about the possibility 18088 * that the sender isn't doing slow-start, or is out 18089 * of step with us for some other reason. We fall 18090 * permanently back in the direction of 18091 * ACK-every-other-packet as suggested in RFC 1122. 18092 */ 18093 if (tcp->tcp_rack_abs_max > 2) 18094 tcp->tcp_rack_abs_max--; 18095 tcp->tcp_rack_cur_max = 2; 18096 } 18097 mp = tcp_ack_mp(tcp); 18098 18099 if (mp != NULL) { 18100 BUMP_LOCAL(tcp->tcp_obsegs); 18101 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 18102 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 18103 tcp_send_data(tcp, mp); 18104 } 18105 } 18106 18107 18108 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 18109 static mblk_t * 18110 tcp_ack_mp(tcp_t *tcp) 18111 { 18112 uint32_t seq_no; 18113 tcp_stack_t *tcps = tcp->tcp_tcps; 18114 conn_t *connp = tcp->tcp_connp; 18115 18116 /* 18117 * There are a few cases to be considered while setting the sequence no. 18118 * Essentially, we can come here while processing an unacceptable pkt 18119 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 18120 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 18121 * If we are here for a zero window probe, stick with suna. In all 18122 * other cases, we check if suna + swnd encompasses snxt and set 18123 * the sequence number to snxt, if so. If snxt falls outside the 18124 * window (the receiver probably shrunk its window), we will go with 18125 * suna + swnd, otherwise the sequence no will be unacceptable to the 18126 * receiver. 18127 */ 18128 if (tcp->tcp_zero_win_probe) { 18129 seq_no = tcp->tcp_suna; 18130 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 18131 ASSERT(tcp->tcp_swnd == 0); 18132 seq_no = tcp->tcp_snxt; 18133 } else { 18134 seq_no = SEQ_GT(tcp->tcp_snxt, 18135 (tcp->tcp_suna + tcp->tcp_swnd)) ? 18136 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 18137 } 18138 18139 if (tcp->tcp_valid_bits) { 18140 /* 18141 * For the complex case where we have to send some 18142 * controls (FIN or SYN), let tcp_xmit_mp do it. 18143 */ 18144 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 18145 NULL, B_FALSE)); 18146 } else { 18147 /* Generate a simple ACK */ 18148 int data_length; 18149 uchar_t *rptr; 18150 tcpha_t *tcpha; 18151 mblk_t *mp1; 18152 int32_t total_hdr_len; 18153 int32_t tcp_hdr_len; 18154 int32_t num_sack_blk = 0; 18155 int32_t sack_opt_len; 18156 ip_xmit_attr_t *ixa = connp->conn_ixa; 18157 18158 /* 18159 * Allocate space for TCP + IP headers 18160 * and link-level header 18161 */ 18162 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18163 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18164 tcp->tcp_num_sack_blk); 18165 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 18166 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 18167 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 18168 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 18169 } else { 18170 total_hdr_len = connp->conn_ht_iphc_len; 18171 tcp_hdr_len = connp->conn_ht_ulp_len; 18172 } 18173 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 18174 if (!mp1) 18175 return (NULL); 18176 18177 /* Update the latest receive window size in TCP header. */ 18178 tcp->tcp_tcpha->tha_win = 18179 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 18180 /* copy in prototype TCP + IP header */ 18181 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 18182 mp1->b_rptr = rptr; 18183 mp1->b_wptr = rptr + total_hdr_len; 18184 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 18185 18186 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 18187 18188 /* Set the TCP sequence number. */ 18189 tcpha->tha_seq = htonl(seq_no); 18190 18191 /* Set up the TCP flag field. */ 18192 tcpha->tha_flags = (uchar_t)TH_ACK; 18193 if (tcp->tcp_ecn_echo_on) 18194 tcpha->tha_flags |= TH_ECE; 18195 18196 tcp->tcp_rack = tcp->tcp_rnxt; 18197 tcp->tcp_rack_cnt = 0; 18198 18199 /* fill in timestamp option if in use */ 18200 if (tcp->tcp_snd_ts_ok) { 18201 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 18202 18203 U32_TO_BE32(llbolt, 18204 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 18205 U32_TO_BE32(tcp->tcp_ts_recent, 18206 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 18207 } 18208 18209 /* Fill in SACK options */ 18210 if (num_sack_blk > 0) { 18211 uchar_t *wptr = (uchar_t *)tcpha + 18212 connp->conn_ht_ulp_len; 18213 sack_blk_t *tmp; 18214 int32_t i; 18215 18216 wptr[0] = TCPOPT_NOP; 18217 wptr[1] = TCPOPT_NOP; 18218 wptr[2] = TCPOPT_SACK; 18219 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18220 sizeof (sack_blk_t); 18221 wptr += TCPOPT_REAL_SACK_LEN; 18222 18223 tmp = tcp->tcp_sack_list; 18224 for (i = 0; i < num_sack_blk; i++) { 18225 U32_TO_BE32(tmp[i].begin, wptr); 18226 wptr += sizeof (tcp_seq); 18227 U32_TO_BE32(tmp[i].end, wptr); 18228 wptr += sizeof (tcp_seq); 18229 } 18230 tcpha->tha_offset_and_reserved += 18231 ((num_sack_blk * 2 + 1) << 4); 18232 } 18233 18234 ixa->ixa_pktlen = total_hdr_len; 18235 18236 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18237 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 18238 } else { 18239 ip6_t *ip6 = (ip6_t *)rptr; 18240 18241 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 18242 } 18243 18244 /* 18245 * Prime pump for checksum calculation in IP. Include the 18246 * adjustment for a source route if any. 18247 */ 18248 data_length = tcp_hdr_len + connp->conn_sum; 18249 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18250 tcpha->tha_sum = htons(data_length); 18251 18252 if (tcp->tcp_ip_forward_progress) { 18253 tcp->tcp_ip_forward_progress = B_FALSE; 18254 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18255 } else { 18256 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18257 } 18258 return (mp1); 18259 } 18260 } 18261 18262 /* 18263 * Hash list insertion routine for tcp_t structures. Each hash bucket 18264 * contains a list of tcp_t entries, and each entry is bound to a unique 18265 * port. If there are multiple tcp_t's that are bound to the same port, then 18266 * one of them will be linked into the hash bucket list, and the rest will 18267 * hang off of that one entry. For each port, entries bound to a specific IP 18268 * address will be inserted before those those bound to INADDR_ANY. 18269 */ 18270 static void 18271 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 18272 { 18273 tcp_t **tcpp; 18274 tcp_t *tcpnext; 18275 tcp_t *tcphash; 18276 conn_t *connp = tcp->tcp_connp; 18277 conn_t *connext; 18278 18279 if (tcp->tcp_ptpbhn != NULL) { 18280 ASSERT(!caller_holds_lock); 18281 tcp_bind_hash_remove(tcp); 18282 } 18283 tcpp = &tbf->tf_tcp; 18284 if (!caller_holds_lock) { 18285 mutex_enter(&tbf->tf_lock); 18286 } else { 18287 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 18288 } 18289 tcphash = tcpp[0]; 18290 tcpnext = NULL; 18291 if (tcphash != NULL) { 18292 /* Look for an entry using the same port */ 18293 while ((tcphash = tcpp[0]) != NULL && 18294 connp->conn_lport != tcphash->tcp_connp->conn_lport) 18295 tcpp = &(tcphash->tcp_bind_hash); 18296 18297 /* The port was not found, just add to the end */ 18298 if (tcphash == NULL) 18299 goto insert; 18300 18301 /* 18302 * OK, there already exists an entry bound to the 18303 * same port. 18304 * 18305 * If the new tcp bound to the INADDR_ANY address 18306 * and the first one in the list is not bound to 18307 * INADDR_ANY we skip all entries until we find the 18308 * first one bound to INADDR_ANY. 18309 * This makes sure that applications binding to a 18310 * specific address get preference over those binding to 18311 * INADDR_ANY. 18312 */ 18313 tcpnext = tcphash; 18314 connext = tcpnext->tcp_connp; 18315 tcphash = NULL; 18316 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 18317 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 18318 while ((tcpnext = tcpp[0]) != NULL) { 18319 connext = tcpnext->tcp_connp; 18320 if (!V6_OR_V4_INADDR_ANY( 18321 connext->conn_bound_addr_v6)) 18322 tcpp = &(tcpnext->tcp_bind_hash_port); 18323 else 18324 break; 18325 } 18326 if (tcpnext != NULL) { 18327 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18328 tcphash = tcpnext->tcp_bind_hash; 18329 if (tcphash != NULL) { 18330 tcphash->tcp_ptpbhn = 18331 &(tcp->tcp_bind_hash); 18332 tcpnext->tcp_bind_hash = NULL; 18333 } 18334 } 18335 } else { 18336 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18337 tcphash = tcpnext->tcp_bind_hash; 18338 if (tcphash != NULL) { 18339 tcphash->tcp_ptpbhn = 18340 &(tcp->tcp_bind_hash); 18341 tcpnext->tcp_bind_hash = NULL; 18342 } 18343 } 18344 } 18345 insert: 18346 tcp->tcp_bind_hash_port = tcpnext; 18347 tcp->tcp_bind_hash = tcphash; 18348 tcp->tcp_ptpbhn = tcpp; 18349 tcpp[0] = tcp; 18350 if (!caller_holds_lock) 18351 mutex_exit(&tbf->tf_lock); 18352 } 18353 18354 /* 18355 * Hash list removal routine for tcp_t structures. 18356 */ 18357 static void 18358 tcp_bind_hash_remove(tcp_t *tcp) 18359 { 18360 tcp_t *tcpnext; 18361 kmutex_t *lockp; 18362 tcp_stack_t *tcps = tcp->tcp_tcps; 18363 conn_t *connp = tcp->tcp_connp; 18364 18365 if (tcp->tcp_ptpbhn == NULL) 18366 return; 18367 18368 /* 18369 * Extract the lock pointer in case there are concurrent 18370 * hash_remove's for this instance. 18371 */ 18372 ASSERT(connp->conn_lport != 0); 18373 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18374 connp->conn_lport)].tf_lock; 18375 18376 ASSERT(lockp != NULL); 18377 mutex_enter(lockp); 18378 if (tcp->tcp_ptpbhn) { 18379 tcpnext = tcp->tcp_bind_hash_port; 18380 if (tcpnext != NULL) { 18381 tcp->tcp_bind_hash_port = NULL; 18382 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18383 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18384 if (tcpnext->tcp_bind_hash != NULL) { 18385 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18386 &(tcpnext->tcp_bind_hash); 18387 tcp->tcp_bind_hash = NULL; 18388 } 18389 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18390 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18391 tcp->tcp_bind_hash = NULL; 18392 } 18393 *tcp->tcp_ptpbhn = tcpnext; 18394 tcp->tcp_ptpbhn = NULL; 18395 } 18396 mutex_exit(lockp); 18397 } 18398 18399 18400 /* 18401 * Hash list lookup routine for tcp_t structures. 18402 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18403 */ 18404 static tcp_t * 18405 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18406 { 18407 tf_t *tf; 18408 tcp_t *tcp; 18409 18410 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18411 mutex_enter(&tf->tf_lock); 18412 for (tcp = tf->tf_tcp; tcp != NULL; 18413 tcp = tcp->tcp_acceptor_hash) { 18414 if (tcp->tcp_acceptor_id == id) { 18415 CONN_INC_REF(tcp->tcp_connp); 18416 mutex_exit(&tf->tf_lock); 18417 return (tcp); 18418 } 18419 } 18420 mutex_exit(&tf->tf_lock); 18421 return (NULL); 18422 } 18423 18424 18425 /* 18426 * Hash list insertion routine for tcp_t structures. 18427 */ 18428 void 18429 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18430 { 18431 tf_t *tf; 18432 tcp_t **tcpp; 18433 tcp_t *tcpnext; 18434 tcp_stack_t *tcps = tcp->tcp_tcps; 18435 18436 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18437 18438 if (tcp->tcp_ptpahn != NULL) 18439 tcp_acceptor_hash_remove(tcp); 18440 tcpp = &tf->tf_tcp; 18441 mutex_enter(&tf->tf_lock); 18442 tcpnext = tcpp[0]; 18443 if (tcpnext) 18444 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18445 tcp->tcp_acceptor_hash = tcpnext; 18446 tcp->tcp_ptpahn = tcpp; 18447 tcpp[0] = tcp; 18448 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18449 mutex_exit(&tf->tf_lock); 18450 } 18451 18452 /* 18453 * Hash list removal routine for tcp_t structures. 18454 */ 18455 static void 18456 tcp_acceptor_hash_remove(tcp_t *tcp) 18457 { 18458 tcp_t *tcpnext; 18459 kmutex_t *lockp; 18460 18461 /* 18462 * Extract the lock pointer in case there are concurrent 18463 * hash_remove's for this instance. 18464 */ 18465 lockp = tcp->tcp_acceptor_lockp; 18466 18467 if (tcp->tcp_ptpahn == NULL) 18468 return; 18469 18470 ASSERT(lockp != NULL); 18471 mutex_enter(lockp); 18472 if (tcp->tcp_ptpahn) { 18473 tcpnext = tcp->tcp_acceptor_hash; 18474 if (tcpnext) { 18475 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18476 tcp->tcp_acceptor_hash = NULL; 18477 } 18478 *tcp->tcp_ptpahn = tcpnext; 18479 tcp->tcp_ptpahn = NULL; 18480 } 18481 mutex_exit(lockp); 18482 tcp->tcp_acceptor_lockp = NULL; 18483 } 18484 18485 /* 18486 * Type three generator adapted from the random() function in 4.4 BSD: 18487 */ 18488 18489 /* 18490 * Copyright (c) 1983, 1993 18491 * The Regents of the University of California. All rights reserved. 18492 * 18493 * Redistribution and use in source and binary forms, with or without 18494 * modification, are permitted provided that the following conditions 18495 * are met: 18496 * 1. Redistributions of source code must retain the above copyright 18497 * notice, this list of conditions and the following disclaimer. 18498 * 2. Redistributions in binary form must reproduce the above copyright 18499 * notice, this list of conditions and the following disclaimer in the 18500 * documentation and/or other materials provided with the distribution. 18501 * 3. All advertising materials mentioning features or use of this software 18502 * must display the following acknowledgement: 18503 * This product includes software developed by the University of 18504 * California, Berkeley and its contributors. 18505 * 4. Neither the name of the University nor the names of its contributors 18506 * may be used to endorse or promote products derived from this software 18507 * without specific prior written permission. 18508 * 18509 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18510 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18511 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18512 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18513 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18514 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18515 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18516 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18517 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18518 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18519 * SUCH DAMAGE. 18520 */ 18521 18522 /* Type 3 -- x**31 + x**3 + 1 */ 18523 #define DEG_3 31 18524 #define SEP_3 3 18525 18526 18527 /* Protected by tcp_random_lock */ 18528 static int tcp_randtbl[DEG_3 + 1]; 18529 18530 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18531 static int *tcp_random_rptr = &tcp_randtbl[1]; 18532 18533 static int *tcp_random_state = &tcp_randtbl[1]; 18534 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18535 18536 kmutex_t tcp_random_lock; 18537 18538 void 18539 tcp_random_init(void) 18540 { 18541 int i; 18542 hrtime_t hrt; 18543 time_t wallclock; 18544 uint64_t result; 18545 18546 /* 18547 * Use high-res timer and current time for seed. Gethrtime() returns 18548 * a longlong, which may contain resolution down to nanoseconds. 18549 * The current time will either be a 32-bit or a 64-bit quantity. 18550 * XOR the two together in a 64-bit result variable. 18551 * Convert the result to a 32-bit value by multiplying the high-order 18552 * 32-bits by the low-order 32-bits. 18553 */ 18554 18555 hrt = gethrtime(); 18556 (void) drv_getparm(TIME, &wallclock); 18557 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18558 mutex_enter(&tcp_random_lock); 18559 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18560 (result & 0xffffffff); 18561 18562 for (i = 1; i < DEG_3; i++) 18563 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18564 + 12345; 18565 tcp_random_fptr = &tcp_random_state[SEP_3]; 18566 tcp_random_rptr = &tcp_random_state[0]; 18567 mutex_exit(&tcp_random_lock); 18568 for (i = 0; i < 10 * DEG_3; i++) 18569 (void) tcp_random(); 18570 } 18571 18572 /* 18573 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18574 * This range is selected to be approximately centered on TCP_ISS / 2, 18575 * and easy to compute. We get this value by generating a 32-bit random 18576 * number, selecting out the high-order 17 bits, and then adding one so 18577 * that we never return zero. 18578 */ 18579 int 18580 tcp_random(void) 18581 { 18582 int i; 18583 18584 mutex_enter(&tcp_random_lock); 18585 *tcp_random_fptr += *tcp_random_rptr; 18586 18587 /* 18588 * The high-order bits are more random than the low-order bits, 18589 * so we select out the high-order 17 bits and add one so that 18590 * we never return zero. 18591 */ 18592 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18593 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18594 tcp_random_fptr = tcp_random_state; 18595 ++tcp_random_rptr; 18596 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18597 tcp_random_rptr = tcp_random_state; 18598 18599 mutex_exit(&tcp_random_lock); 18600 return (i); 18601 } 18602 18603 static int 18604 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18605 int *t_errorp, int *sys_errorp) 18606 { 18607 int error; 18608 int is_absreq_failure; 18609 t_scalar_t *opt_lenp; 18610 t_scalar_t opt_offset; 18611 int prim_type; 18612 struct T_conn_req *tcreqp; 18613 struct T_conn_res *tcresp; 18614 cred_t *cr; 18615 18616 /* 18617 * All Solaris components should pass a db_credp 18618 * for this TPI message, hence we ASSERT. 18619 * But in case there is some other M_PROTO that looks 18620 * like a TPI message sent by some other kernel 18621 * component, we check and return an error. 18622 */ 18623 cr = msg_getcred(mp, NULL); 18624 ASSERT(cr != NULL); 18625 if (cr == NULL) 18626 return (-1); 18627 18628 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18629 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18630 prim_type == T_CONN_RES); 18631 18632 switch (prim_type) { 18633 case T_CONN_REQ: 18634 tcreqp = (struct T_conn_req *)mp->b_rptr; 18635 opt_offset = tcreqp->OPT_offset; 18636 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18637 break; 18638 case O_T_CONN_RES: 18639 case T_CONN_RES: 18640 tcresp = (struct T_conn_res *)mp->b_rptr; 18641 opt_offset = tcresp->OPT_offset; 18642 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18643 break; 18644 } 18645 18646 *t_errorp = 0; 18647 *sys_errorp = 0; 18648 *do_disconnectp = 0; 18649 18650 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18651 opt_offset, cr, &tcp_opt_obj, 18652 NULL, &is_absreq_failure); 18653 18654 switch (error) { 18655 case 0: /* no error */ 18656 ASSERT(is_absreq_failure == 0); 18657 return (0); 18658 case ENOPROTOOPT: 18659 *t_errorp = TBADOPT; 18660 break; 18661 case EACCES: 18662 *t_errorp = TACCES; 18663 break; 18664 default: 18665 *t_errorp = TSYSERR; *sys_errorp = error; 18666 break; 18667 } 18668 if (is_absreq_failure != 0) { 18669 /* 18670 * The connection request should get the local ack 18671 * T_OK_ACK and then a T_DISCON_IND. 18672 */ 18673 *do_disconnectp = 1; 18674 } 18675 return (-1); 18676 } 18677 18678 /* 18679 * Split this function out so that if the secret changes, I'm okay. 18680 * 18681 * Initialize the tcp_iss_cookie and tcp_iss_key. 18682 */ 18683 18684 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18685 18686 static void 18687 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18688 { 18689 struct { 18690 int32_t current_time; 18691 uint32_t randnum; 18692 uint16_t pad; 18693 uint8_t ether[6]; 18694 uint8_t passwd[PASSWD_SIZE]; 18695 } tcp_iss_cookie; 18696 time_t t; 18697 18698 /* 18699 * Start with the current absolute time. 18700 */ 18701 (void) drv_getparm(TIME, &t); 18702 tcp_iss_cookie.current_time = t; 18703 18704 /* 18705 * XXX - Need a more random number per RFC 1750, not this crap. 18706 * OTOH, if what follows is pretty random, then I'm in better shape. 18707 */ 18708 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18709 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18710 18711 /* 18712 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18713 * as a good template. 18714 */ 18715 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18716 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18717 18718 /* 18719 * The pass-phrase. Normally this is supplied by user-called NDD. 18720 */ 18721 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18722 18723 /* 18724 * See 4010593 if this section becomes a problem again, 18725 * but the local ethernet address is useful here. 18726 */ 18727 (void) localetheraddr(NULL, 18728 (struct ether_addr *)&tcp_iss_cookie.ether); 18729 18730 /* 18731 * Hash 'em all together. The MD5Final is called per-connection. 18732 */ 18733 mutex_enter(&tcps->tcps_iss_key_lock); 18734 MD5Init(&tcps->tcps_iss_key); 18735 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18736 sizeof (tcp_iss_cookie)); 18737 mutex_exit(&tcps->tcps_iss_key_lock); 18738 } 18739 18740 /* 18741 * Set the RFC 1948 pass phrase 18742 */ 18743 /* ARGSUSED */ 18744 static int 18745 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18746 cred_t *cr) 18747 { 18748 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18749 18750 /* 18751 * Basically, value contains a new pass phrase. Pass it along! 18752 */ 18753 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18754 return (0); 18755 } 18756 18757 /* ARGSUSED */ 18758 static int 18759 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18760 { 18761 bzero(buf, sizeof (tcp_sack_info_t)); 18762 return (0); 18763 } 18764 18765 /* 18766 * Called by IP when IP is loaded into the kernel 18767 */ 18768 void 18769 tcp_ddi_g_init(void) 18770 { 18771 tcp_timercache = kmem_cache_create("tcp_timercache", 18772 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18773 NULL, NULL, NULL, NULL, NULL, 0); 18774 18775 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18776 sizeof (tcp_sack_info_t), 0, 18777 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18778 18779 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18780 18781 /* Initialize the random number generator */ 18782 tcp_random_init(); 18783 18784 /* A single callback independently of how many netstacks we have */ 18785 ip_squeue_init(tcp_squeue_add); 18786 18787 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18788 18789 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18790 18791 /* 18792 * We want to be informed each time a stack is created or 18793 * destroyed in the kernel, so we can maintain the 18794 * set of tcp_stack_t's. 18795 */ 18796 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18797 } 18798 18799 18800 #define INET_NAME "ip" 18801 18802 /* 18803 * Initialize the TCP stack instance. 18804 */ 18805 static void * 18806 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18807 { 18808 tcp_stack_t *tcps; 18809 tcpparam_t *pa; 18810 int i; 18811 int error = 0; 18812 major_t major; 18813 18814 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18815 tcps->tcps_netstack = ns; 18816 18817 /* Initialize locks */ 18818 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18819 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18820 18821 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18822 tcps->tcps_g_epriv_ports[0] = 2049; 18823 tcps->tcps_g_epriv_ports[1] = 4045; 18824 tcps->tcps_min_anonpriv_port = 512; 18825 18826 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18827 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18828 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18829 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 18830 18831 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18832 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18833 MUTEX_DEFAULT, NULL); 18834 } 18835 18836 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18837 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18838 MUTEX_DEFAULT, NULL); 18839 } 18840 18841 /* TCP's IPsec code calls the packet dropper. */ 18842 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18843 18844 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18845 tcps->tcps_params = pa; 18846 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18847 18848 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18849 A_CNT(lcl_tcp_param_arr), tcps); 18850 18851 /* 18852 * Note: To really walk the device tree you need the devinfo 18853 * pointer to your device which is only available after probe/attach. 18854 * The following is safe only because it uses ddi_root_node() 18855 */ 18856 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18857 tcp_opt_obj.odb_opt_arr_cnt); 18858 18859 /* 18860 * Initialize RFC 1948 secret values. This will probably be reset once 18861 * by the boot scripts. 18862 * 18863 * Use NULL name, as the name is caught by the new lockstats. 18864 * 18865 * Initialize with some random, non-guessable string, like the global 18866 * T_INFO_ACK. 18867 */ 18868 18869 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18870 sizeof (tcp_g_t_info_ack), tcps); 18871 18872 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18873 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18874 18875 major = mod_name_to_major(INET_NAME); 18876 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18877 ASSERT(error == 0); 18878 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18879 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18880 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18881 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18882 18883 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 18884 tcps->tcps_reclaim = B_FALSE; 18885 tcps->tcps_reclaim_tid = 0; 18886 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max * 3; 18887 18888 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 18889 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 18890 offsetof(tcp_listener_t, tl_link)); 18891 18892 return (tcps); 18893 } 18894 18895 /* 18896 * Called when the IP module is about to be unloaded. 18897 */ 18898 void 18899 tcp_ddi_g_destroy(void) 18900 { 18901 tcp_g_kstat_fini(tcp_g_kstat); 18902 tcp_g_kstat = NULL; 18903 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18904 18905 mutex_destroy(&tcp_random_lock); 18906 18907 kmem_cache_destroy(tcp_timercache); 18908 kmem_cache_destroy(tcp_sack_info_cache); 18909 18910 netstack_unregister(NS_TCP); 18911 } 18912 18913 /* 18914 * Free the TCP stack instance. 18915 */ 18916 static void 18917 tcp_stack_fini(netstackid_t stackid, void *arg) 18918 { 18919 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18920 int i; 18921 18922 freeb(tcps->tcps_ixa_cleanup_mp); 18923 tcps->tcps_ixa_cleanup_mp = NULL; 18924 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18925 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18926 18927 if (tcps->tcps_reclaim_tid != 0) 18928 (void) untimeout(tcps->tcps_reclaim_tid); 18929 mutex_destroy(&tcps->tcps_reclaim_lock); 18930 18931 tcp_listener_conf_cleanup(tcps); 18932 18933 nd_free(&tcps->tcps_g_nd); 18934 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18935 tcps->tcps_params = NULL; 18936 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18937 tcps->tcps_wroff_xtra_param = NULL; 18938 18939 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18940 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18941 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18942 } 18943 18944 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18945 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18946 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18947 } 18948 18949 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18950 tcps->tcps_bind_fanout = NULL; 18951 18952 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 18953 TCP_ACCEPTOR_FANOUT_SIZE); 18954 tcps->tcps_acceptor_fanout = NULL; 18955 18956 mutex_destroy(&tcps->tcps_iss_key_lock); 18957 mutex_destroy(&tcps->tcps_epriv_port_lock); 18958 18959 ip_drop_unregister(&tcps->tcps_dropper); 18960 18961 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18962 tcps->tcps_kstat = NULL; 18963 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18964 18965 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18966 tcps->tcps_mibkp = NULL; 18967 18968 ldi_ident_release(tcps->tcps_ldi_ident); 18969 kmem_free(tcps, sizeof (*tcps)); 18970 } 18971 18972 /* 18973 * Generate ISS, taking into account NDD changes may happen halfway through. 18974 * (If the iss is not zero, set it.) 18975 */ 18976 18977 static void 18978 tcp_iss_init(tcp_t *tcp) 18979 { 18980 MD5_CTX context; 18981 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18982 uint32_t answer[4]; 18983 tcp_stack_t *tcps = tcp->tcp_tcps; 18984 conn_t *connp = tcp->tcp_connp; 18985 18986 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18987 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18988 switch (tcps->tcps_strong_iss) { 18989 case 2: 18990 mutex_enter(&tcps->tcps_iss_key_lock); 18991 context = tcps->tcps_iss_key; 18992 mutex_exit(&tcps->tcps_iss_key_lock); 18993 arg.ports = connp->conn_ports; 18994 arg.src = connp->conn_laddr_v6; 18995 arg.dst = connp->conn_faddr_v6; 18996 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 18997 MD5Final((uchar_t *)answer, &context); 18998 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 18999 /* 19000 * Now that we've hashed into a unique per-connection sequence 19001 * space, add a random increment per strong_iss == 1. So I 19002 * guess we'll have to... 19003 */ 19004 /* FALLTHRU */ 19005 case 1: 19006 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 19007 break; 19008 default: 19009 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19010 break; 19011 } 19012 tcp->tcp_valid_bits = TCP_ISS_VALID; 19013 tcp->tcp_fss = tcp->tcp_iss - 1; 19014 tcp->tcp_suna = tcp->tcp_iss; 19015 tcp->tcp_snxt = tcp->tcp_iss + 1; 19016 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 19017 tcp->tcp_csuna = tcp->tcp_snxt; 19018 } 19019 19020 /* 19021 * Exported routine for extracting active tcp connection status. 19022 * 19023 * This is used by the Solaris Cluster Networking software to 19024 * gather a list of connections that need to be forwarded to 19025 * specific nodes in the cluster when configuration changes occur. 19026 * 19027 * The callback is invoked for each tcp_t structure from all netstacks, 19028 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 19029 * from the netstack with the specified stack_id. Returning 19030 * non-zero from the callback routine terminates the search. 19031 */ 19032 int 19033 cl_tcp_walk_list(netstackid_t stack_id, 19034 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 19035 { 19036 netstack_handle_t nh; 19037 netstack_t *ns; 19038 int ret = 0; 19039 19040 if (stack_id >= 0) { 19041 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 19042 return (EINVAL); 19043 19044 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19045 ns->netstack_tcp); 19046 netstack_rele(ns); 19047 return (ret); 19048 } 19049 19050 netstack_next_init(&nh); 19051 while ((ns = netstack_next(&nh)) != NULL) { 19052 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19053 ns->netstack_tcp); 19054 netstack_rele(ns); 19055 } 19056 netstack_next_fini(&nh); 19057 return (ret); 19058 } 19059 19060 static int 19061 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 19062 tcp_stack_t *tcps) 19063 { 19064 tcp_t *tcp; 19065 cl_tcp_info_t cl_tcpi; 19066 connf_t *connfp; 19067 conn_t *connp; 19068 int i; 19069 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19070 19071 ASSERT(callback != NULL); 19072 19073 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 19074 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 19075 connp = NULL; 19076 19077 while ((connp = 19078 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 19079 19080 tcp = connp->conn_tcp; 19081 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 19082 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 19083 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 19084 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 19085 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 19086 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 19087 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 19088 19089 /* 19090 * If the callback returns non-zero 19091 * we terminate the traversal. 19092 */ 19093 if ((*callback)(&cl_tcpi, arg) != 0) { 19094 CONN_DEC_REF(tcp->tcp_connp); 19095 return (1); 19096 } 19097 } 19098 } 19099 19100 return (0); 19101 } 19102 19103 /* 19104 * Macros used for accessing the different types of sockaddr 19105 * structures inside a tcp_ioc_abort_conn_t. 19106 */ 19107 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 19108 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 19109 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 19110 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 19111 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 19112 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 19113 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 19114 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 19115 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 19116 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 19117 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 19118 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 19119 19120 /* 19121 * Return the correct error code to mimic the behavior 19122 * of a connection reset. 19123 */ 19124 #define TCP_AC_GET_ERRCODE(state, err) { \ 19125 switch ((state)) { \ 19126 case TCPS_SYN_SENT: \ 19127 case TCPS_SYN_RCVD: \ 19128 (err) = ECONNREFUSED; \ 19129 break; \ 19130 case TCPS_ESTABLISHED: \ 19131 case TCPS_FIN_WAIT_1: \ 19132 case TCPS_FIN_WAIT_2: \ 19133 case TCPS_CLOSE_WAIT: \ 19134 (err) = ECONNRESET; \ 19135 break; \ 19136 case TCPS_CLOSING: \ 19137 case TCPS_LAST_ACK: \ 19138 case TCPS_TIME_WAIT: \ 19139 (err) = 0; \ 19140 break; \ 19141 default: \ 19142 (err) = ENXIO; \ 19143 } \ 19144 } 19145 19146 /* 19147 * Check if a tcp structure matches the info in acp. 19148 */ 19149 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 19150 (((acp)->ac_local.ss_family == AF_INET) ? \ 19151 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 19152 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 19153 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 19154 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 19155 (TCP_AC_V4LPORT((acp)) == 0 || \ 19156 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 19157 (TCP_AC_V4RPORT((acp)) == 0 || \ 19158 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 19159 (acp)->ac_start <= (tcp)->tcp_state && \ 19160 (acp)->ac_end >= (tcp)->tcp_state) : \ 19161 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 19162 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 19163 &(connp)->conn_laddr_v6)) && \ 19164 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 19165 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 19166 &(connp)->conn_faddr_v6)) && \ 19167 (TCP_AC_V6LPORT((acp)) == 0 || \ 19168 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 19169 (TCP_AC_V6RPORT((acp)) == 0 || \ 19170 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 19171 (acp)->ac_start <= (tcp)->tcp_state && \ 19172 (acp)->ac_end >= (tcp)->tcp_state)) 19173 19174 #define TCP_AC_MATCH(acp, connp, tcp) \ 19175 (((acp)->ac_zoneid == ALL_ZONES || \ 19176 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 19177 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 19178 19179 /* 19180 * Build a message containing a tcp_ioc_abort_conn_t structure 19181 * which is filled in with information from acp and tp. 19182 */ 19183 static mblk_t * 19184 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 19185 { 19186 mblk_t *mp; 19187 tcp_ioc_abort_conn_t *tacp; 19188 19189 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 19190 if (mp == NULL) 19191 return (NULL); 19192 19193 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 19194 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 19195 sizeof (uint32_t)); 19196 19197 tacp->ac_start = acp->ac_start; 19198 tacp->ac_end = acp->ac_end; 19199 tacp->ac_zoneid = acp->ac_zoneid; 19200 19201 if (acp->ac_local.ss_family == AF_INET) { 19202 tacp->ac_local.ss_family = AF_INET; 19203 tacp->ac_remote.ss_family = AF_INET; 19204 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 19205 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 19206 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 19207 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 19208 } else { 19209 tacp->ac_local.ss_family = AF_INET6; 19210 tacp->ac_remote.ss_family = AF_INET6; 19211 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 19212 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 19213 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 19214 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 19215 } 19216 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 19217 return (mp); 19218 } 19219 19220 /* 19221 * Print a tcp_ioc_abort_conn_t structure. 19222 */ 19223 static void 19224 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 19225 { 19226 char lbuf[128]; 19227 char rbuf[128]; 19228 sa_family_t af; 19229 in_port_t lport, rport; 19230 ushort_t logflags; 19231 19232 af = acp->ac_local.ss_family; 19233 19234 if (af == AF_INET) { 19235 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 19236 lbuf, 128); 19237 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 19238 rbuf, 128); 19239 lport = ntohs(TCP_AC_V4LPORT(acp)); 19240 rport = ntohs(TCP_AC_V4RPORT(acp)); 19241 } else { 19242 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 19243 lbuf, 128); 19244 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 19245 rbuf, 128); 19246 lport = ntohs(TCP_AC_V6LPORT(acp)); 19247 rport = ntohs(TCP_AC_V6RPORT(acp)); 19248 } 19249 19250 logflags = SL_TRACE | SL_NOTE; 19251 /* 19252 * Don't print this message to the console if the operation was done 19253 * to a non-global zone. 19254 */ 19255 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19256 logflags |= SL_CONSOLE; 19257 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 19258 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 19259 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 19260 acp->ac_start, acp->ac_end); 19261 } 19262 19263 /* 19264 * Called using SQ_FILL when a message built using 19265 * tcp_ioctl_abort_build_msg is put into a queue. 19266 * Note that when we get here there is no wildcard in acp any more. 19267 */ 19268 /* ARGSUSED2 */ 19269 static void 19270 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 19271 ip_recv_attr_t *dummy) 19272 { 19273 conn_t *connp = (conn_t *)arg; 19274 tcp_t *tcp = connp->conn_tcp; 19275 tcp_ioc_abort_conn_t *acp; 19276 19277 /* 19278 * Don't accept any input on a closed tcp as this TCP logically does 19279 * not exist on the system. Don't proceed further with this TCP. 19280 * For eg. this packet could trigger another close of this tcp 19281 * which would be disastrous for tcp_refcnt. tcp_close_detached / 19282 * tcp_clean_death / tcp_closei_local must be called at most once 19283 * on a TCP. 19284 */ 19285 if (tcp->tcp_state == TCPS_CLOSED || 19286 tcp->tcp_state == TCPS_BOUND) { 19287 freemsg(mp); 19288 return; 19289 } 19290 19291 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 19292 if (tcp->tcp_state <= acp->ac_end) { 19293 /* 19294 * If we get here, we are already on the correct 19295 * squeue. This ioctl follows the following path 19296 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 19297 * ->tcp_ioctl_abort->squeue_enter (if on a 19298 * different squeue) 19299 */ 19300 int errcode; 19301 19302 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 19303 (void) tcp_clean_death(tcp, errcode, 26); 19304 } 19305 freemsg(mp); 19306 } 19307 19308 /* 19309 * Abort all matching connections on a hash chain. 19310 */ 19311 static int 19312 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 19313 boolean_t exact, tcp_stack_t *tcps) 19314 { 19315 int nmatch, err = 0; 19316 tcp_t *tcp; 19317 MBLKP mp, last, listhead = NULL; 19318 conn_t *tconnp; 19319 connf_t *connfp; 19320 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19321 19322 connfp = &ipst->ips_ipcl_conn_fanout[index]; 19323 19324 startover: 19325 nmatch = 0; 19326 19327 mutex_enter(&connfp->connf_lock); 19328 for (tconnp = connfp->connf_head; tconnp != NULL; 19329 tconnp = tconnp->conn_next) { 19330 tcp = tconnp->conn_tcp; 19331 /* 19332 * We are missing a check on sin6_scope_id for linklocals here, 19333 * but current usage is just for aborting based on zoneid 19334 * for shared-IP zones. 19335 */ 19336 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 19337 CONN_INC_REF(tconnp); 19338 mp = tcp_ioctl_abort_build_msg(acp, tcp); 19339 if (mp == NULL) { 19340 err = ENOMEM; 19341 CONN_DEC_REF(tconnp); 19342 break; 19343 } 19344 mp->b_prev = (mblk_t *)tcp; 19345 19346 if (listhead == NULL) { 19347 listhead = mp; 19348 last = mp; 19349 } else { 19350 last->b_next = mp; 19351 last = mp; 19352 } 19353 nmatch++; 19354 if (exact) 19355 break; 19356 } 19357 19358 /* Avoid holding lock for too long. */ 19359 if (nmatch >= 500) 19360 break; 19361 } 19362 mutex_exit(&connfp->connf_lock); 19363 19364 /* Pass mp into the correct tcp */ 19365 while ((mp = listhead) != NULL) { 19366 listhead = listhead->b_next; 19367 tcp = (tcp_t *)mp->b_prev; 19368 mp->b_next = mp->b_prev = NULL; 19369 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 19370 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19371 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19372 } 19373 19374 *count += nmatch; 19375 if (nmatch >= 500 && err == 0) 19376 goto startover; 19377 return (err); 19378 } 19379 19380 /* 19381 * Abort all connections that matches the attributes specified in acp. 19382 */ 19383 static int 19384 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19385 { 19386 sa_family_t af; 19387 uint32_t ports; 19388 uint16_t *pports; 19389 int err = 0, count = 0; 19390 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19391 int index = -1; 19392 ushort_t logflags; 19393 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19394 19395 af = acp->ac_local.ss_family; 19396 19397 if (af == AF_INET) { 19398 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19399 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19400 pports = (uint16_t *)&ports; 19401 pports[1] = TCP_AC_V4LPORT(acp); 19402 pports[0] = TCP_AC_V4RPORT(acp); 19403 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19404 } 19405 } else { 19406 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19407 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19408 pports = (uint16_t *)&ports; 19409 pports[1] = TCP_AC_V6LPORT(acp); 19410 pports[0] = TCP_AC_V6RPORT(acp); 19411 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19412 } 19413 } 19414 19415 /* 19416 * For cases where remote addr, local port, and remote port are non- 19417 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19418 */ 19419 if (index != -1) { 19420 err = tcp_ioctl_abort_bucket(acp, index, 19421 &count, exact, tcps); 19422 } else { 19423 /* 19424 * loop through all entries for wildcard case 19425 */ 19426 for (index = 0; 19427 index < ipst->ips_ipcl_conn_fanout_size; 19428 index++) { 19429 err = tcp_ioctl_abort_bucket(acp, index, 19430 &count, exact, tcps); 19431 if (err != 0) 19432 break; 19433 } 19434 } 19435 19436 logflags = SL_TRACE | SL_NOTE; 19437 /* 19438 * Don't print this message to the console if the operation was done 19439 * to a non-global zone. 19440 */ 19441 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19442 logflags |= SL_CONSOLE; 19443 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19444 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19445 if (err == 0 && count == 0) 19446 err = ENOENT; 19447 return (err); 19448 } 19449 19450 /* 19451 * Process the TCP_IOC_ABORT_CONN ioctl request. 19452 */ 19453 static void 19454 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19455 { 19456 int err; 19457 IOCP iocp; 19458 MBLKP mp1; 19459 sa_family_t laf, raf; 19460 tcp_ioc_abort_conn_t *acp; 19461 zone_t *zptr; 19462 conn_t *connp = Q_TO_CONN(q); 19463 zoneid_t zoneid = connp->conn_zoneid; 19464 tcp_t *tcp = connp->conn_tcp; 19465 tcp_stack_t *tcps = tcp->tcp_tcps; 19466 19467 iocp = (IOCP)mp->b_rptr; 19468 19469 if ((mp1 = mp->b_cont) == NULL || 19470 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19471 err = EINVAL; 19472 goto out; 19473 } 19474 19475 /* check permissions */ 19476 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19477 err = EPERM; 19478 goto out; 19479 } 19480 19481 if (mp1->b_cont != NULL) { 19482 freemsg(mp1->b_cont); 19483 mp1->b_cont = NULL; 19484 } 19485 19486 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19487 laf = acp->ac_local.ss_family; 19488 raf = acp->ac_remote.ss_family; 19489 19490 /* check that a zone with the supplied zoneid exists */ 19491 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19492 zptr = zone_find_by_id(zoneid); 19493 if (zptr != NULL) { 19494 zone_rele(zptr); 19495 } else { 19496 err = EINVAL; 19497 goto out; 19498 } 19499 } 19500 19501 /* 19502 * For exclusive stacks we set the zoneid to zero 19503 * to make TCP operate as if in the global zone. 19504 */ 19505 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19506 acp->ac_zoneid = GLOBAL_ZONEID; 19507 19508 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19509 acp->ac_start > acp->ac_end || laf != raf || 19510 (laf != AF_INET && laf != AF_INET6)) { 19511 err = EINVAL; 19512 goto out; 19513 } 19514 19515 tcp_ioctl_abort_dump(acp); 19516 err = tcp_ioctl_abort(acp, tcps); 19517 19518 out: 19519 if (mp1 != NULL) { 19520 freemsg(mp1); 19521 mp->b_cont = NULL; 19522 } 19523 19524 if (err != 0) 19525 miocnak(q, mp, 0, err); 19526 else 19527 miocack(q, mp, 0, 0); 19528 } 19529 19530 /* 19531 * tcp_time_wait_processing() handles processing of incoming packets when 19532 * the tcp is in the TIME_WAIT state. 19533 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19534 * on the time wait list. 19535 */ 19536 void 19537 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19538 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19539 { 19540 int32_t bytes_acked; 19541 int32_t gap; 19542 int32_t rgap; 19543 tcp_opt_t tcpopt; 19544 uint_t flags; 19545 uint32_t new_swnd = 0; 19546 conn_t *nconnp; 19547 conn_t *connp = tcp->tcp_connp; 19548 tcp_stack_t *tcps = tcp->tcp_tcps; 19549 19550 BUMP_LOCAL(tcp->tcp_ibsegs); 19551 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19552 19553 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19554 new_swnd = ntohs(tcpha->tha_win) << 19555 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19556 if (tcp->tcp_snd_ts_ok) { 19557 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19558 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19559 tcp->tcp_rnxt, TH_ACK); 19560 goto done; 19561 } 19562 } 19563 gap = seg_seq - tcp->tcp_rnxt; 19564 rgap = tcp->tcp_rwnd - (gap + seg_len); 19565 if (gap < 0) { 19566 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19567 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19568 (seg_len > -gap ? -gap : seg_len)); 19569 seg_len += gap; 19570 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19571 if (flags & TH_RST) { 19572 goto done; 19573 } 19574 if ((flags & TH_FIN) && seg_len == -1) { 19575 /* 19576 * When TCP receives a duplicate FIN in 19577 * TIME_WAIT state, restart the 2 MSL timer. 19578 * See page 73 in RFC 793. Make sure this TCP 19579 * is already on the TIME_WAIT list. If not, 19580 * just restart the timer. 19581 */ 19582 if (TCP_IS_DETACHED(tcp)) { 19583 if (tcp_time_wait_remove(tcp, NULL) == 19584 B_TRUE) { 19585 tcp_time_wait_append(tcp); 19586 TCP_DBGSTAT(tcps, 19587 tcp_rput_time_wait); 19588 } 19589 } else { 19590 ASSERT(tcp != NULL); 19591 TCP_TIMER_RESTART(tcp, 19592 tcps->tcps_time_wait_interval); 19593 } 19594 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19595 tcp->tcp_rnxt, TH_ACK); 19596 goto done; 19597 } 19598 flags |= TH_ACK_NEEDED; 19599 seg_len = 0; 19600 goto process_ack; 19601 } 19602 19603 /* Fix seg_seq, and chew the gap off the front. */ 19604 seg_seq = tcp->tcp_rnxt; 19605 } 19606 19607 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19608 /* 19609 * Make sure that when we accept the connection, pick 19610 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19611 * old connection. 19612 * 19613 * The next ISS generated is equal to tcp_iss_incr_extra 19614 * + ISS_INCR/2 + other components depending on the 19615 * value of tcp_strong_iss. We pre-calculate the new 19616 * ISS here and compare with tcp_snxt to determine if 19617 * we need to make adjustment to tcp_iss_incr_extra. 19618 * 19619 * The above calculation is ugly and is a 19620 * waste of CPU cycles... 19621 */ 19622 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19623 int32_t adj; 19624 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19625 19626 switch (tcps->tcps_strong_iss) { 19627 case 2: { 19628 /* Add time and MD5 components. */ 19629 uint32_t answer[4]; 19630 struct { 19631 uint32_t ports; 19632 in6_addr_t src; 19633 in6_addr_t dst; 19634 } arg; 19635 MD5_CTX context; 19636 19637 mutex_enter(&tcps->tcps_iss_key_lock); 19638 context = tcps->tcps_iss_key; 19639 mutex_exit(&tcps->tcps_iss_key_lock); 19640 arg.ports = connp->conn_ports; 19641 /* We use MAPPED addresses in tcp_iss_init */ 19642 arg.src = connp->conn_laddr_v6; 19643 arg.dst = connp->conn_faddr_v6; 19644 MD5Update(&context, (uchar_t *)&arg, 19645 sizeof (arg)); 19646 MD5Final((uchar_t *)answer, &context); 19647 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19648 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19649 break; 19650 } 19651 case 1: 19652 /* Add time component and min random (i.e. 1). */ 19653 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19654 break; 19655 default: 19656 /* Add only time component. */ 19657 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19658 break; 19659 } 19660 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19661 /* 19662 * New ISS not guaranteed to be ISS_INCR/2 19663 * ahead of the current tcp_snxt, so add the 19664 * difference to tcp_iss_incr_extra. 19665 */ 19666 tcps->tcps_iss_incr_extra += adj; 19667 } 19668 /* 19669 * If tcp_clean_death() can not perform the task now, 19670 * drop the SYN packet and let the other side re-xmit. 19671 * Otherwise pass the SYN packet back in, since the 19672 * old tcp state has been cleaned up or freed. 19673 */ 19674 if (tcp_clean_death(tcp, 0, 27) == -1) 19675 goto done; 19676 nconnp = ipcl_classify(mp, ira, ipst); 19677 if (nconnp != NULL) { 19678 TCP_STAT(tcps, tcp_time_wait_syn_success); 19679 /* Drops ref on nconnp */ 19680 tcp_reinput(nconnp, mp, ira, ipst); 19681 return; 19682 } 19683 goto done; 19684 } 19685 19686 /* 19687 * rgap is the amount of stuff received out of window. A negative 19688 * value is the amount out of window. 19689 */ 19690 if (rgap < 0) { 19691 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19692 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19693 /* Fix seg_len and make sure there is something left. */ 19694 seg_len += rgap; 19695 if (seg_len <= 0) { 19696 if (flags & TH_RST) { 19697 goto done; 19698 } 19699 flags |= TH_ACK_NEEDED; 19700 seg_len = 0; 19701 goto process_ack; 19702 } 19703 } 19704 /* 19705 * Check whether we can update tcp_ts_recent. This test is 19706 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19707 * Extensions for High Performance: An Update", Internet Draft. 19708 */ 19709 if (tcp->tcp_snd_ts_ok && 19710 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19711 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19712 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19713 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 19714 } 19715 19716 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19717 /* Always ack out of order packets */ 19718 flags |= TH_ACK_NEEDED; 19719 seg_len = 0; 19720 } else if (seg_len > 0) { 19721 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19722 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19723 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19724 } 19725 if (flags & TH_RST) { 19726 (void) tcp_clean_death(tcp, 0, 28); 19727 goto done; 19728 } 19729 if (flags & TH_SYN) { 19730 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19731 TH_RST|TH_ACK); 19732 /* 19733 * Do not delete the TCP structure if it is in 19734 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19735 */ 19736 goto done; 19737 } 19738 process_ack: 19739 if (flags & TH_ACK) { 19740 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19741 if (bytes_acked <= 0) { 19742 if (bytes_acked == 0 && seg_len == 0 && 19743 new_swnd == tcp->tcp_swnd) 19744 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19745 } else { 19746 /* Acks something not sent */ 19747 flags |= TH_ACK_NEEDED; 19748 } 19749 } 19750 if (flags & TH_ACK_NEEDED) { 19751 /* 19752 * Time to send an ack for some reason. 19753 */ 19754 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19755 tcp->tcp_rnxt, TH_ACK); 19756 } 19757 done: 19758 freemsg(mp); 19759 } 19760 19761 /* 19762 * TCP Timers Implementation. 19763 */ 19764 timeout_id_t 19765 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19766 { 19767 mblk_t *mp; 19768 tcp_timer_t *tcpt; 19769 tcp_t *tcp = connp->conn_tcp; 19770 19771 ASSERT(connp->conn_sqp != NULL); 19772 19773 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19774 19775 if (tcp->tcp_timercache == NULL) { 19776 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19777 } else { 19778 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19779 mp = tcp->tcp_timercache; 19780 tcp->tcp_timercache = mp->b_next; 19781 mp->b_next = NULL; 19782 ASSERT(mp->b_wptr == NULL); 19783 } 19784 19785 CONN_INC_REF(connp); 19786 tcpt = (tcp_timer_t *)mp->b_rptr; 19787 tcpt->connp = connp; 19788 tcpt->tcpt_proc = f; 19789 /* 19790 * TCP timers are normal timeouts. Plus, they do not require more than 19791 * a 10 millisecond resolution. By choosing a coarser resolution and by 19792 * rounding up the expiration to the next resolution boundary, we can 19793 * batch timers in the callout subsystem to make TCP timers more 19794 * efficient. The roundup also protects short timers from expiring too 19795 * early before they have a chance to be cancelled. 19796 */ 19797 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19798 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19799 19800 return ((timeout_id_t)mp); 19801 } 19802 19803 static void 19804 tcp_timer_callback(void *arg) 19805 { 19806 mblk_t *mp = (mblk_t *)arg; 19807 tcp_timer_t *tcpt; 19808 conn_t *connp; 19809 19810 tcpt = (tcp_timer_t *)mp->b_rptr; 19811 connp = tcpt->connp; 19812 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19813 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19814 } 19815 19816 /* ARGSUSED */ 19817 static void 19818 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19819 { 19820 tcp_timer_t *tcpt; 19821 conn_t *connp = (conn_t *)arg; 19822 tcp_t *tcp = connp->conn_tcp; 19823 19824 tcpt = (tcp_timer_t *)mp->b_rptr; 19825 ASSERT(connp == tcpt->connp); 19826 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19827 19828 /* 19829 * If the TCP has reached the closed state, don't proceed any 19830 * further. This TCP logically does not exist on the system. 19831 * tcpt_proc could for example access queues, that have already 19832 * been qprocoff'ed off. 19833 */ 19834 if (tcp->tcp_state != TCPS_CLOSED) { 19835 (*tcpt->tcpt_proc)(connp); 19836 } else { 19837 tcp->tcp_timer_tid = 0; 19838 } 19839 tcp_timer_free(connp->conn_tcp, mp); 19840 } 19841 19842 /* 19843 * There is potential race with untimeout and the handler firing at the same 19844 * time. The mblock may be freed by the handler while we are trying to use 19845 * it. But since both should execute on the same squeue, this race should not 19846 * occur. 19847 */ 19848 clock_t 19849 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19850 { 19851 mblk_t *mp = (mblk_t *)id; 19852 tcp_timer_t *tcpt; 19853 clock_t delta; 19854 19855 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19856 19857 if (mp == NULL) 19858 return (-1); 19859 19860 tcpt = (tcp_timer_t *)mp->b_rptr; 19861 ASSERT(tcpt->connp == connp); 19862 19863 delta = untimeout_default(tcpt->tcpt_tid, 0); 19864 19865 if (delta >= 0) { 19866 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19867 tcp_timer_free(connp->conn_tcp, mp); 19868 CONN_DEC_REF(connp); 19869 } 19870 19871 return (delta); 19872 } 19873 19874 /* 19875 * Allocate space for the timer event. The allocation looks like mblk, but it is 19876 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19877 * 19878 * Dealing with failures: If we can't allocate from the timer cache we try 19879 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19880 * points to b_rptr. 19881 * If we can't allocate anything using allocb_tryhard(), we perform a last 19882 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19883 * save the actual allocation size in b_datap. 19884 */ 19885 mblk_t * 19886 tcp_timermp_alloc(int kmflags) 19887 { 19888 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19889 kmflags & ~KM_PANIC); 19890 19891 if (mp != NULL) { 19892 mp->b_next = mp->b_prev = NULL; 19893 mp->b_rptr = (uchar_t *)(&mp[1]); 19894 mp->b_wptr = NULL; 19895 mp->b_datap = NULL; 19896 mp->b_queue = NULL; 19897 mp->b_cont = NULL; 19898 } else if (kmflags & KM_PANIC) { 19899 /* 19900 * Failed to allocate memory for the timer. Try allocating from 19901 * dblock caches. 19902 */ 19903 /* ipclassifier calls this from a constructor - hence no tcps */ 19904 TCP_G_STAT(tcp_timermp_allocfail); 19905 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19906 if (mp == NULL) { 19907 size_t size = 0; 19908 /* 19909 * Memory is really low. Try tryhard allocation. 19910 * 19911 * ipclassifier calls this from a constructor - 19912 * hence no tcps 19913 */ 19914 TCP_G_STAT(tcp_timermp_allocdblfail); 19915 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19916 sizeof (tcp_timer_t), &size, kmflags); 19917 mp->b_rptr = (uchar_t *)(&mp[1]); 19918 mp->b_next = mp->b_prev = NULL; 19919 mp->b_wptr = (uchar_t *)-1; 19920 mp->b_datap = (dblk_t *)size; 19921 mp->b_queue = NULL; 19922 mp->b_cont = NULL; 19923 } 19924 ASSERT(mp->b_wptr != NULL); 19925 } 19926 /* ipclassifier calls this from a constructor - hence no tcps */ 19927 TCP_G_DBGSTAT(tcp_timermp_alloced); 19928 19929 return (mp); 19930 } 19931 19932 /* 19933 * Free per-tcp timer cache. 19934 * It can only contain entries from tcp_timercache. 19935 */ 19936 void 19937 tcp_timermp_free(tcp_t *tcp) 19938 { 19939 mblk_t *mp; 19940 19941 while ((mp = tcp->tcp_timercache) != NULL) { 19942 ASSERT(mp->b_wptr == NULL); 19943 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19944 kmem_cache_free(tcp_timercache, mp); 19945 } 19946 } 19947 19948 /* 19949 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19950 * events there already (currently at most two events are cached). 19951 * If the event is not allocated from the timer cache, free it right away. 19952 */ 19953 static void 19954 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19955 { 19956 mblk_t *mp1 = tcp->tcp_timercache; 19957 19958 if (mp->b_wptr != NULL) { 19959 /* 19960 * This allocation is not from a timer cache, free it right 19961 * away. 19962 */ 19963 if (mp->b_wptr != (uchar_t *)-1) 19964 freeb(mp); 19965 else 19966 kmem_free(mp, (size_t)mp->b_datap); 19967 } else if (mp1 == NULL || mp1->b_next == NULL) { 19968 /* Cache this timer block for future allocations */ 19969 mp->b_rptr = (uchar_t *)(&mp[1]); 19970 mp->b_next = mp1; 19971 tcp->tcp_timercache = mp; 19972 } else { 19973 kmem_cache_free(tcp_timercache, mp); 19974 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19975 } 19976 } 19977 19978 /* 19979 * End of TCP Timers implementation. 19980 */ 19981 19982 /* 19983 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19984 * on the specified backing STREAMS q. Note, the caller may make the 19985 * decision to call based on the tcp_t.tcp_flow_stopped value which 19986 * when check outside the q's lock is only an advisory check ... 19987 */ 19988 void 19989 tcp_setqfull(tcp_t *tcp) 19990 { 19991 tcp_stack_t *tcps = tcp->tcp_tcps; 19992 conn_t *connp = tcp->tcp_connp; 19993 19994 if (tcp->tcp_closed) 19995 return; 19996 19997 conn_setqfull(connp, &tcp->tcp_flow_stopped); 19998 if (tcp->tcp_flow_stopped) 19999 TCP_STAT(tcps, tcp_flwctl_on); 20000 } 20001 20002 void 20003 tcp_clrqfull(tcp_t *tcp) 20004 { 20005 conn_t *connp = tcp->tcp_connp; 20006 20007 if (tcp->tcp_closed) 20008 return; 20009 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 20010 } 20011 20012 /* 20013 * kstats related to squeues i.e. not per IP instance 20014 */ 20015 static void * 20016 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 20017 { 20018 kstat_t *ksp; 20019 20020 tcp_g_stat_t template = { 20021 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 20022 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 20023 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 20024 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 20025 }; 20026 20027 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 20028 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20029 KSTAT_FLAG_VIRTUAL); 20030 20031 if (ksp == NULL) 20032 return (NULL); 20033 20034 bcopy(&template, tcp_g_statp, sizeof (template)); 20035 ksp->ks_data = (void *)tcp_g_statp; 20036 20037 kstat_install(ksp); 20038 return (ksp); 20039 } 20040 20041 static void 20042 tcp_g_kstat_fini(kstat_t *ksp) 20043 { 20044 if (ksp != NULL) { 20045 kstat_delete(ksp); 20046 } 20047 } 20048 20049 20050 static void * 20051 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 20052 { 20053 kstat_t *ksp; 20054 20055 tcp_stat_t template = { 20056 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 20057 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 20058 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 20059 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 20060 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 20061 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 20062 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 20063 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 20064 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 20065 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 20066 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 20067 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 20068 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 20069 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 20070 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 20071 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 20072 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 20073 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 20074 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 20075 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 20076 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 20077 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 20078 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 20079 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 20080 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 20081 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 20082 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 20083 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 20084 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 20085 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 20086 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 20087 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 20088 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 20089 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 20090 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 20091 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 20092 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 20093 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 20094 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 20095 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 20096 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 20097 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 20098 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 20099 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 20100 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 20101 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 20102 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 20103 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 20104 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 20105 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 20106 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 20107 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 20108 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 20109 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 20110 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 20111 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 20112 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 20113 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 20114 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 20115 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 20116 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 20117 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 20118 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 20119 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 20120 { "tcp_listen_cnt_drop", KSTAT_DATA_UINT64 }, 20121 { "tcp_listen_mem_drop", KSTAT_DATA_UINT64 }, 20122 { "tcp_zwin_ack_syn", KSTAT_DATA_UINT64 }, 20123 { "tcp_rst_unsent", KSTAT_DATA_UINT64 } 20124 }; 20125 20126 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 20127 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20128 KSTAT_FLAG_VIRTUAL, stackid); 20129 20130 if (ksp == NULL) 20131 return (NULL); 20132 20133 bcopy(&template, tcps_statisticsp, sizeof (template)); 20134 ksp->ks_data = (void *)tcps_statisticsp; 20135 ksp->ks_private = (void *)(uintptr_t)stackid; 20136 20137 kstat_install(ksp); 20138 return (ksp); 20139 } 20140 20141 static void 20142 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 20143 { 20144 if (ksp != NULL) { 20145 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20146 kstat_delete_netstack(ksp, stackid); 20147 } 20148 } 20149 20150 /* 20151 * TCP Kstats implementation 20152 */ 20153 static void * 20154 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 20155 { 20156 kstat_t *ksp; 20157 20158 tcp_named_kstat_t template = { 20159 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 20160 { "rtoMin", KSTAT_DATA_INT32, 0 }, 20161 { "rtoMax", KSTAT_DATA_INT32, 0 }, 20162 { "maxConn", KSTAT_DATA_INT32, 0 }, 20163 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 20164 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 20165 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 20166 { "estabResets", KSTAT_DATA_UINT32, 0 }, 20167 { "currEstab", KSTAT_DATA_UINT32, 0 }, 20168 { "inSegs", KSTAT_DATA_UINT64, 0 }, 20169 { "outSegs", KSTAT_DATA_UINT64, 0 }, 20170 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 20171 { "connTableSize", KSTAT_DATA_INT32, 0 }, 20172 { "outRsts", KSTAT_DATA_UINT32, 0 }, 20173 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 20174 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 20175 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 20176 { "outAck", KSTAT_DATA_UINT32, 0 }, 20177 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 20178 { "outUrg", KSTAT_DATA_UINT32, 0 }, 20179 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 20180 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 20181 { "outControl", KSTAT_DATA_UINT32, 0 }, 20182 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 20183 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 20184 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 20185 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 20186 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 20187 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 20188 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 20189 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 20190 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 20191 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 20192 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 20193 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 20194 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 20195 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 20196 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 20197 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 20198 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 20199 { "inClosed", KSTAT_DATA_UINT32, 0 }, 20200 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 20201 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 20202 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 20203 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 20204 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 20205 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 20206 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 20207 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 20208 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 20209 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 20210 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 20211 { "connTableSize6", KSTAT_DATA_INT32, 0 } 20212 }; 20213 20214 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 20215 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 20216 20217 if (ksp == NULL) 20218 return (NULL); 20219 20220 template.rtoAlgorithm.value.ui32 = 4; 20221 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 20222 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 20223 template.maxConn.value.i32 = -1; 20224 20225 bcopy(&template, ksp->ks_data, sizeof (template)); 20226 ksp->ks_update = tcp_kstat_update; 20227 ksp->ks_private = (void *)(uintptr_t)stackid; 20228 20229 kstat_install(ksp); 20230 return (ksp); 20231 } 20232 20233 static void 20234 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 20235 { 20236 if (ksp != NULL) { 20237 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20238 kstat_delete_netstack(ksp, stackid); 20239 } 20240 } 20241 20242 static int 20243 tcp_kstat_update(kstat_t *kp, int rw) 20244 { 20245 tcp_named_kstat_t *tcpkp; 20246 tcp_t *tcp; 20247 connf_t *connfp; 20248 conn_t *connp; 20249 int i; 20250 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 20251 netstack_t *ns; 20252 tcp_stack_t *tcps; 20253 ip_stack_t *ipst; 20254 20255 if ((kp == NULL) || (kp->ks_data == NULL)) 20256 return (EIO); 20257 20258 if (rw == KSTAT_WRITE) 20259 return (EACCES); 20260 20261 ns = netstack_find_by_stackid(stackid); 20262 if (ns == NULL) 20263 return (-1); 20264 tcps = ns->netstack_tcp; 20265 if (tcps == NULL) { 20266 netstack_rele(ns); 20267 return (-1); 20268 } 20269 20270 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 20271 20272 tcpkp->currEstab.value.ui32 = 0; 20273 20274 ipst = ns->netstack_ip; 20275 20276 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 20277 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 20278 connp = NULL; 20279 while ((connp = 20280 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 20281 tcp = connp->conn_tcp; 20282 switch (tcp_snmp_state(tcp)) { 20283 case MIB2_TCP_established: 20284 case MIB2_TCP_closeWait: 20285 tcpkp->currEstab.value.ui32++; 20286 break; 20287 } 20288 } 20289 } 20290 20291 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 20292 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 20293 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 20294 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 20295 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 20296 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 20297 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 20298 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 20299 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 20300 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 20301 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 20302 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 20303 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 20304 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 20305 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 20306 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 20307 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 20308 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 20309 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 20310 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 20311 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 20312 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 20313 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 20314 tcpkp->inDataInorderSegs.value.ui32 = 20315 tcps->tcps_mib.tcpInDataInorderSegs; 20316 tcpkp->inDataInorderBytes.value.ui32 = 20317 tcps->tcps_mib.tcpInDataInorderBytes; 20318 tcpkp->inDataUnorderSegs.value.ui32 = 20319 tcps->tcps_mib.tcpInDataUnorderSegs; 20320 tcpkp->inDataUnorderBytes.value.ui32 = 20321 tcps->tcps_mib.tcpInDataUnorderBytes; 20322 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 20323 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 20324 tcpkp->inDataPartDupSegs.value.ui32 = 20325 tcps->tcps_mib.tcpInDataPartDupSegs; 20326 tcpkp->inDataPartDupBytes.value.ui32 = 20327 tcps->tcps_mib.tcpInDataPartDupBytes; 20328 tcpkp->inDataPastWinSegs.value.ui32 = 20329 tcps->tcps_mib.tcpInDataPastWinSegs; 20330 tcpkp->inDataPastWinBytes.value.ui32 = 20331 tcps->tcps_mib.tcpInDataPastWinBytes; 20332 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 20333 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 20334 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 20335 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 20336 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 20337 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 20338 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 20339 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 20340 tcpkp->timKeepaliveProbe.value.ui32 = 20341 tcps->tcps_mib.tcpTimKeepaliveProbe; 20342 tcpkp->timKeepaliveDrop.value.ui32 = 20343 tcps->tcps_mib.tcpTimKeepaliveDrop; 20344 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 20345 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 20346 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 20347 tcpkp->outSackRetransSegs.value.ui32 = 20348 tcps->tcps_mib.tcpOutSackRetransSegs; 20349 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 20350 20351 netstack_rele(ns); 20352 return (0); 20353 } 20354 20355 static int 20356 tcp_squeue_switch(int val) 20357 { 20358 int rval = SQ_FILL; 20359 20360 switch (val) { 20361 case 1: 20362 rval = SQ_NODRAIN; 20363 break; 20364 case 2: 20365 rval = SQ_PROCESS; 20366 break; 20367 default: 20368 break; 20369 } 20370 return (rval); 20371 } 20372 20373 /* 20374 * This is called once for each squeue - globally for all stack 20375 * instances. 20376 */ 20377 static void 20378 tcp_squeue_add(squeue_t *sqp) 20379 { 20380 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20381 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20382 20383 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20384 tcp_time_wait->tcp_time_wait_tid = 20385 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20386 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20387 CALLOUT_FLAG_ROUNDUP); 20388 if (tcp_free_list_max_cnt == 0) { 20389 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20390 max_ncpus : boot_max_ncpus); 20391 20392 /* 20393 * Limit number of entries to 1% of availble memory / tcp_ncpus 20394 */ 20395 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20396 (tcp_ncpus * sizeof (tcp_t) * 100); 20397 } 20398 tcp_time_wait->tcp_free_list_cnt = 0; 20399 } 20400 20401 /* 20402 * On a labeled system we have some protocols above TCP, such as RPC, which 20403 * appear to assume that every mblk in a chain has a db_credp. 20404 */ 20405 static void 20406 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20407 { 20408 ASSERT(is_system_labeled()); 20409 ASSERT(ira->ira_cred != NULL); 20410 20411 while (mp != NULL) { 20412 mblk_setcred(mp, ira->ira_cred, NOPID); 20413 mp = mp->b_cont; 20414 } 20415 } 20416 20417 static int 20418 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20419 boolean_t bind_to_req_port_only, cred_t *cr) 20420 { 20421 in_port_t mlp_port; 20422 mlp_type_t addrtype, mlptype; 20423 boolean_t user_specified; 20424 in_port_t allocated_port; 20425 in_port_t requested_port = *requested_port_ptr; 20426 conn_t *connp = tcp->tcp_connp; 20427 zone_t *zone; 20428 tcp_stack_t *tcps = tcp->tcp_tcps; 20429 in6_addr_t v6addr = connp->conn_laddr_v6; 20430 20431 /* 20432 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20433 */ 20434 ASSERT(cr != NULL); 20435 20436 /* 20437 * Get a valid port (within the anonymous range and should not 20438 * be a privileged one) to use if the user has not given a port. 20439 * If multiple threads are here, they may all start with 20440 * with the same initial port. But, it should be fine as long as 20441 * tcp_bindi will ensure that no two threads will be assigned 20442 * the same port. 20443 * 20444 * NOTE: XXX If a privileged process asks for an anonymous port, we 20445 * still check for ports only in the range > tcp_smallest_non_priv_port, 20446 * unless TCP_ANONPRIVBIND option is set. 20447 */ 20448 mlptype = mlptSingle; 20449 mlp_port = requested_port; 20450 if (requested_port == 0) { 20451 requested_port = connp->conn_anon_priv_bind ? 20452 tcp_get_next_priv_port(tcp) : 20453 tcp_update_next_port(tcps->tcps_next_port_to_try, 20454 tcp, B_TRUE); 20455 if (requested_port == 0) { 20456 return (-TNOADDR); 20457 } 20458 user_specified = B_FALSE; 20459 20460 /* 20461 * If the user went through one of the RPC interfaces to create 20462 * this socket and RPC is MLP in this zone, then give him an 20463 * anonymous MLP. 20464 */ 20465 if (connp->conn_anon_mlp && is_system_labeled()) { 20466 zone = crgetzone(cr); 20467 addrtype = tsol_mlp_addr_type( 20468 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20469 IPV6_VERSION, &v6addr, 20470 tcps->tcps_netstack->netstack_ip); 20471 if (addrtype == mlptSingle) { 20472 return (-TNOADDR); 20473 } 20474 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20475 PMAPPORT, addrtype); 20476 mlp_port = PMAPPORT; 20477 } 20478 } else { 20479 int i; 20480 boolean_t priv = B_FALSE; 20481 20482 /* 20483 * If the requested_port is in the well-known privileged range, 20484 * verify that the stream was opened by a privileged user. 20485 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20486 * but instead the code relies on: 20487 * - the fact that the address of the array and its size never 20488 * changes 20489 * - the atomic assignment of the elements of the array 20490 */ 20491 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20492 priv = B_TRUE; 20493 } else { 20494 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20495 if (requested_port == 20496 tcps->tcps_g_epriv_ports[i]) { 20497 priv = B_TRUE; 20498 break; 20499 } 20500 } 20501 } 20502 if (priv) { 20503 if (secpolicy_net_privaddr(cr, requested_port, 20504 IPPROTO_TCP) != 0) { 20505 if (connp->conn_debug) { 20506 (void) strlog(TCP_MOD_ID, 0, 1, 20507 SL_ERROR|SL_TRACE, 20508 "tcp_bind: no priv for port %d", 20509 requested_port); 20510 } 20511 return (-TACCES); 20512 } 20513 } 20514 user_specified = B_TRUE; 20515 20516 connp = tcp->tcp_connp; 20517 if (is_system_labeled()) { 20518 zone = crgetzone(cr); 20519 addrtype = tsol_mlp_addr_type( 20520 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20521 IPV6_VERSION, &v6addr, 20522 tcps->tcps_netstack->netstack_ip); 20523 if (addrtype == mlptSingle) { 20524 return (-TNOADDR); 20525 } 20526 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20527 requested_port, addrtype); 20528 } 20529 } 20530 20531 if (mlptype != mlptSingle) { 20532 if (secpolicy_net_bindmlp(cr) != 0) { 20533 if (connp->conn_debug) { 20534 (void) strlog(TCP_MOD_ID, 0, 1, 20535 SL_ERROR|SL_TRACE, 20536 "tcp_bind: no priv for multilevel port %d", 20537 requested_port); 20538 } 20539 return (-TACCES); 20540 } 20541 20542 /* 20543 * If we're specifically binding a shared IP address and the 20544 * port is MLP on shared addresses, then check to see if this 20545 * zone actually owns the MLP. Reject if not. 20546 */ 20547 if (mlptype == mlptShared && addrtype == mlptShared) { 20548 /* 20549 * No need to handle exclusive-stack zones since 20550 * ALL_ZONES only applies to the shared stack. 20551 */ 20552 zoneid_t mlpzone; 20553 20554 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20555 htons(mlp_port)); 20556 if (connp->conn_zoneid != mlpzone) { 20557 if (connp->conn_debug) { 20558 (void) strlog(TCP_MOD_ID, 0, 1, 20559 SL_ERROR|SL_TRACE, 20560 "tcp_bind: attempt to bind port " 20561 "%d on shared addr in zone %d " 20562 "(should be %d)", 20563 mlp_port, connp->conn_zoneid, 20564 mlpzone); 20565 } 20566 return (-TACCES); 20567 } 20568 } 20569 20570 if (!user_specified) { 20571 int err; 20572 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20573 requested_port, B_TRUE); 20574 if (err != 0) { 20575 if (connp->conn_debug) { 20576 (void) strlog(TCP_MOD_ID, 0, 1, 20577 SL_ERROR|SL_TRACE, 20578 "tcp_bind: cannot establish anon " 20579 "MLP for port %d", 20580 requested_port); 20581 } 20582 return (err); 20583 } 20584 connp->conn_anon_port = B_TRUE; 20585 } 20586 connp->conn_mlp_type = mlptype; 20587 } 20588 20589 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20590 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20591 user_specified); 20592 20593 if (allocated_port == 0) { 20594 connp->conn_mlp_type = mlptSingle; 20595 if (connp->conn_anon_port) { 20596 connp->conn_anon_port = B_FALSE; 20597 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20598 requested_port, B_FALSE); 20599 } 20600 if (bind_to_req_port_only) { 20601 if (connp->conn_debug) { 20602 (void) strlog(TCP_MOD_ID, 0, 1, 20603 SL_ERROR|SL_TRACE, 20604 "tcp_bind: requested addr busy"); 20605 } 20606 return (-TADDRBUSY); 20607 } else { 20608 /* If we are out of ports, fail the bind. */ 20609 if (connp->conn_debug) { 20610 (void) strlog(TCP_MOD_ID, 0, 1, 20611 SL_ERROR|SL_TRACE, 20612 "tcp_bind: out of ports?"); 20613 } 20614 return (-TNOADDR); 20615 } 20616 } 20617 20618 /* Pass the allocated port back */ 20619 *requested_port_ptr = allocated_port; 20620 return (0); 20621 } 20622 20623 /* 20624 * Check the address and check/pick a local port number. 20625 */ 20626 static int 20627 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20628 boolean_t bind_to_req_port_only) 20629 { 20630 tcp_t *tcp = connp->conn_tcp; 20631 sin_t *sin; 20632 sin6_t *sin6; 20633 in_port_t requested_port; 20634 ipaddr_t v4addr; 20635 in6_addr_t v6addr; 20636 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20637 zoneid_t zoneid = IPCL_ZONEID(connp); 20638 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20639 uint_t scopeid = 0; 20640 int error = 0; 20641 ip_xmit_attr_t *ixa = connp->conn_ixa; 20642 20643 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20644 20645 if (tcp->tcp_state == TCPS_BOUND) { 20646 return (0); 20647 } else if (tcp->tcp_state > TCPS_BOUND) { 20648 if (connp->conn_debug) { 20649 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20650 "tcp_bind: bad state, %d", tcp->tcp_state); 20651 } 20652 return (-TOUTSTATE); 20653 } 20654 20655 ASSERT(sa != NULL && len != 0); 20656 20657 if (!OK_32PTR((char *)sa)) { 20658 if (connp->conn_debug) { 20659 (void) strlog(TCP_MOD_ID, 0, 1, 20660 SL_ERROR|SL_TRACE, 20661 "tcp_bind: bad address parameter, " 20662 "address %p, len %d", 20663 (void *)sa, len); 20664 } 20665 return (-TPROTO); 20666 } 20667 20668 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20669 if (error != 0) { 20670 return (error); 20671 } 20672 20673 switch (len) { 20674 case sizeof (sin_t): /* Complete IPv4 address */ 20675 sin = (sin_t *)sa; 20676 requested_port = ntohs(sin->sin_port); 20677 v4addr = sin->sin_addr.s_addr; 20678 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20679 if (v4addr != INADDR_ANY) { 20680 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20681 B_FALSE); 20682 } 20683 break; 20684 20685 case sizeof (sin6_t): /* Complete IPv6 address */ 20686 sin6 = (sin6_t *)sa; 20687 v6addr = sin6->sin6_addr; 20688 requested_port = ntohs(sin6->sin6_port); 20689 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20690 if (connp->conn_ipv6_v6only) 20691 return (EADDRNOTAVAIL); 20692 20693 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20694 if (v4addr != INADDR_ANY) { 20695 laddr_type = ip_laddr_verify_v4(v4addr, 20696 zoneid, ipst, B_FALSE); 20697 } 20698 } else { 20699 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20700 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20701 scopeid = sin6->sin6_scope_id; 20702 laddr_type = ip_laddr_verify_v6(&v6addr, 20703 zoneid, ipst, B_FALSE, scopeid); 20704 } 20705 } 20706 break; 20707 20708 default: 20709 if (connp->conn_debug) { 20710 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20711 "tcp_bind: bad address length, %d", len); 20712 } 20713 return (EAFNOSUPPORT); 20714 /* return (-TBADADDR); */ 20715 } 20716 20717 /* Is the local address a valid unicast address? */ 20718 if (laddr_type == IPVL_BAD) 20719 return (EADDRNOTAVAIL); 20720 20721 connp->conn_bound_addr_v6 = v6addr; 20722 if (scopeid != 0) { 20723 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20724 ixa->ixa_scopeid = scopeid; 20725 connp->conn_incoming_ifindex = scopeid; 20726 } else { 20727 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20728 connp->conn_incoming_ifindex = connp->conn_bound_if; 20729 } 20730 20731 connp->conn_laddr_v6 = v6addr; 20732 connp->conn_saddr_v6 = v6addr; 20733 20734 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20735 20736 error = tcp_bind_select_lport(tcp, &requested_port, 20737 bind_to_req_port_only, cr); 20738 if (error != 0) { 20739 connp->conn_laddr_v6 = ipv6_all_zeros; 20740 connp->conn_saddr_v6 = ipv6_all_zeros; 20741 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20742 } 20743 return (error); 20744 } 20745 20746 /* 20747 * Return unix error is tli error is TSYSERR, otherwise return a negative 20748 * tli error. 20749 */ 20750 int 20751 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20752 boolean_t bind_to_req_port_only) 20753 { 20754 int error; 20755 tcp_t *tcp = connp->conn_tcp; 20756 20757 if (tcp->tcp_state >= TCPS_BOUND) { 20758 if (connp->conn_debug) { 20759 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20760 "tcp_bind: bad state, %d", tcp->tcp_state); 20761 } 20762 return (-TOUTSTATE); 20763 } 20764 20765 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20766 if (error != 0) 20767 return (error); 20768 20769 ASSERT(tcp->tcp_state == TCPS_BOUND); 20770 tcp->tcp_conn_req_max = 0; 20771 return (0); 20772 } 20773 20774 int 20775 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20776 socklen_t len, cred_t *cr) 20777 { 20778 int error; 20779 conn_t *connp = (conn_t *)proto_handle; 20780 squeue_t *sqp = connp->conn_sqp; 20781 20782 /* All Solaris components should pass a cred for this operation. */ 20783 ASSERT(cr != NULL); 20784 20785 ASSERT(sqp != NULL); 20786 ASSERT(connp->conn_upper_handle != NULL); 20787 20788 error = squeue_synch_enter(sqp, connp, NULL); 20789 if (error != 0) { 20790 /* failed to enter */ 20791 return (ENOSR); 20792 } 20793 20794 /* binding to a NULL address really means unbind */ 20795 if (sa == NULL) { 20796 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20797 error = tcp_do_unbind(connp); 20798 else 20799 error = EINVAL; 20800 } else { 20801 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20802 } 20803 20804 squeue_synch_exit(sqp, connp); 20805 20806 if (error < 0) { 20807 if (error == -TOUTSTATE) 20808 error = EINVAL; 20809 else 20810 error = proto_tlitosyserr(-error); 20811 } 20812 20813 return (error); 20814 } 20815 20816 /* 20817 * If the return value from this function is positive, it's a UNIX error. 20818 * Otherwise, if it's negative, then the absolute value is a TLI error. 20819 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20820 */ 20821 int 20822 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20823 cred_t *cr, pid_t pid) 20824 { 20825 tcp_t *tcp = connp->conn_tcp; 20826 sin_t *sin = (sin_t *)sa; 20827 sin6_t *sin6 = (sin6_t *)sa; 20828 ipaddr_t *dstaddrp; 20829 in_port_t dstport; 20830 uint_t srcid; 20831 int error; 20832 uint32_t mss; 20833 mblk_t *syn_mp; 20834 tcp_stack_t *tcps = tcp->tcp_tcps; 20835 int32_t oldstate; 20836 ip_xmit_attr_t *ixa = connp->conn_ixa; 20837 20838 oldstate = tcp->tcp_state; 20839 20840 switch (len) { 20841 default: 20842 /* 20843 * Should never happen 20844 */ 20845 return (EINVAL); 20846 20847 case sizeof (sin_t): 20848 sin = (sin_t *)sa; 20849 if (sin->sin_port == 0) { 20850 return (-TBADADDR); 20851 } 20852 if (connp->conn_ipv6_v6only) { 20853 return (EAFNOSUPPORT); 20854 } 20855 break; 20856 20857 case sizeof (sin6_t): 20858 sin6 = (sin6_t *)sa; 20859 if (sin6->sin6_port == 0) { 20860 return (-TBADADDR); 20861 } 20862 break; 20863 } 20864 /* 20865 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20866 * make sure that the conn_ipversion is IPV4_VERSION. We 20867 * need to this before we call tcp_bindi() so that the port lookup 20868 * code will look for ports in the correct port space (IPv4 and 20869 * IPv6 have separate port spaces). 20870 */ 20871 if (connp->conn_family == AF_INET6 && 20872 connp->conn_ipversion == IPV6_VERSION && 20873 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20874 if (connp->conn_ipv6_v6only) 20875 return (EADDRNOTAVAIL); 20876 20877 connp->conn_ipversion = IPV4_VERSION; 20878 } 20879 20880 switch (tcp->tcp_state) { 20881 case TCPS_LISTEN: 20882 /* 20883 * Listening sockets are not allowed to issue connect(). 20884 */ 20885 if (IPCL_IS_NONSTR(connp)) 20886 return (EOPNOTSUPP); 20887 /* FALLTHRU */ 20888 case TCPS_IDLE: 20889 /* 20890 * We support quick connect, refer to comments in 20891 * tcp_connect_*() 20892 */ 20893 /* FALLTHRU */ 20894 case TCPS_BOUND: 20895 break; 20896 default: 20897 return (-TOUTSTATE); 20898 } 20899 20900 /* 20901 * We update our cred/cpid based on the caller of connect 20902 */ 20903 if (connp->conn_cred != cr) { 20904 crhold(cr); 20905 crfree(connp->conn_cred); 20906 connp->conn_cred = cr; 20907 } 20908 connp->conn_cpid = pid; 20909 20910 /* Cache things in the ixa without any refhold */ 20911 ixa->ixa_cred = cr; 20912 ixa->ixa_cpid = pid; 20913 if (is_system_labeled()) { 20914 /* We need to restart with a label based on the cred */ 20915 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20916 } 20917 20918 if (connp->conn_family == AF_INET6) { 20919 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20920 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20921 sin6->sin6_port, sin6->sin6_flowinfo, 20922 sin6->__sin6_src_id, sin6->sin6_scope_id); 20923 } else { 20924 /* 20925 * Destination adress is mapped IPv6 address. 20926 * Source bound address should be unspecified or 20927 * IPv6 mapped address as well. 20928 */ 20929 if (!IN6_IS_ADDR_UNSPECIFIED( 20930 &connp->conn_bound_addr_v6) && 20931 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20932 return (EADDRNOTAVAIL); 20933 } 20934 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20935 dstport = sin6->sin6_port; 20936 srcid = sin6->__sin6_src_id; 20937 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20938 srcid); 20939 } 20940 } else { 20941 dstaddrp = &sin->sin_addr.s_addr; 20942 dstport = sin->sin_port; 20943 srcid = 0; 20944 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20945 } 20946 20947 if (error != 0) 20948 goto connect_failed; 20949 20950 CL_INET_CONNECT(connp, B_TRUE, error); 20951 if (error != 0) 20952 goto connect_failed; 20953 20954 /* connect succeeded */ 20955 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20956 tcp->tcp_active_open = 1; 20957 20958 /* 20959 * tcp_set_destination() does not adjust for TCP/IP header length. 20960 */ 20961 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20962 20963 /* 20964 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20965 * to the nearest MSS. 20966 * 20967 * We do the round up here because we need to get the interface MTU 20968 * first before we can do the round up. 20969 */ 20970 tcp->tcp_rwnd = connp->conn_rcvbuf; 20971 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20972 tcps->tcps_recv_hiwat_minmss * mss); 20973 connp->conn_rcvbuf = tcp->tcp_rwnd; 20974 tcp_set_ws_value(tcp); 20975 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20976 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20977 tcp->tcp_snd_ws_ok = B_TRUE; 20978 20979 /* 20980 * Set tcp_snd_ts_ok to true 20981 * so that tcp_xmit_mp will 20982 * include the timestamp 20983 * option in the SYN segment. 20984 */ 20985 if (tcps->tcps_tstamp_always || 20986 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20987 tcp->tcp_snd_ts_ok = B_TRUE; 20988 } 20989 20990 /* 20991 * tcp_snd_sack_ok can be set in 20992 * tcp_set_destination() if the sack metric 20993 * is set. So check it here also. 20994 */ 20995 if (tcps->tcps_sack_permitted == 2 || 20996 tcp->tcp_snd_sack_ok) { 20997 if (tcp->tcp_sack_info == NULL) { 20998 tcp->tcp_sack_info = kmem_cache_alloc( 20999 tcp_sack_info_cache, KM_SLEEP); 21000 } 21001 tcp->tcp_snd_sack_ok = B_TRUE; 21002 } 21003 21004 /* 21005 * Should we use ECN? Note that the current 21006 * default value (SunOS 5.9) of tcp_ecn_permitted 21007 * is 1. The reason for doing this is that there 21008 * are equipments out there that will drop ECN 21009 * enabled IP packets. Setting it to 1 avoids 21010 * compatibility problems. 21011 */ 21012 if (tcps->tcps_ecn_permitted == 2) 21013 tcp->tcp_ecn_ok = B_TRUE; 21014 21015 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21016 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21017 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 21018 if (syn_mp != NULL) { 21019 /* 21020 * We must bump the generation before sending the syn 21021 * to ensure that we use the right generation in case 21022 * this thread issues a "connected" up call. 21023 */ 21024 SOCK_CONNID_BUMP(tcp->tcp_connid); 21025 tcp_send_data(tcp, syn_mp); 21026 } 21027 21028 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21029 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21030 return (0); 21031 21032 connect_failed: 21033 connp->conn_faddr_v6 = ipv6_all_zeros; 21034 connp->conn_fport = 0; 21035 tcp->tcp_state = oldstate; 21036 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21037 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21038 return (error); 21039 } 21040 21041 int 21042 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 21043 socklen_t len, sock_connid_t *id, cred_t *cr) 21044 { 21045 conn_t *connp = (conn_t *)proto_handle; 21046 squeue_t *sqp = connp->conn_sqp; 21047 int error; 21048 21049 ASSERT(connp->conn_upper_handle != NULL); 21050 21051 /* All Solaris components should pass a cred for this operation. */ 21052 ASSERT(cr != NULL); 21053 21054 error = proto_verify_ip_addr(connp->conn_family, sa, len); 21055 if (error != 0) { 21056 return (error); 21057 } 21058 21059 error = squeue_synch_enter(sqp, connp, NULL); 21060 if (error != 0) { 21061 /* failed to enter */ 21062 return (ENOSR); 21063 } 21064 21065 /* 21066 * TCP supports quick connect, so no need to do an implicit bind 21067 */ 21068 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 21069 if (error == 0) { 21070 *id = connp->conn_tcp->tcp_connid; 21071 } else if (error < 0) { 21072 if (error == -TOUTSTATE) { 21073 switch (connp->conn_tcp->tcp_state) { 21074 case TCPS_SYN_SENT: 21075 error = EALREADY; 21076 break; 21077 case TCPS_ESTABLISHED: 21078 error = EISCONN; 21079 break; 21080 case TCPS_LISTEN: 21081 error = EOPNOTSUPP; 21082 break; 21083 default: 21084 error = EINVAL; 21085 break; 21086 } 21087 } else { 21088 error = proto_tlitosyserr(-error); 21089 } 21090 } 21091 21092 if (connp->conn_tcp->tcp_loopback) { 21093 struct sock_proto_props sopp; 21094 21095 sopp.sopp_flags = SOCKOPT_LOOPBACK; 21096 sopp.sopp_loopback = B_TRUE; 21097 21098 (*connp->conn_upcalls->su_set_proto_props)( 21099 connp->conn_upper_handle, &sopp); 21100 } 21101 done: 21102 squeue_synch_exit(sqp, connp); 21103 21104 return ((error == 0) ? EINPROGRESS : error); 21105 } 21106 21107 /* ARGSUSED */ 21108 sock_lower_handle_t 21109 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 21110 uint_t *smodep, int *errorp, int flags, cred_t *credp) 21111 { 21112 conn_t *connp; 21113 boolean_t isv6 = family == AF_INET6; 21114 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 21115 (proto != 0 && proto != IPPROTO_TCP)) { 21116 *errorp = EPROTONOSUPPORT; 21117 return (NULL); 21118 } 21119 21120 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 21121 if (connp == NULL) { 21122 return (NULL); 21123 } 21124 21125 /* 21126 * Put the ref for TCP. Ref for IP was already put 21127 * by ipcl_conn_create. Also Make the conn_t globally 21128 * visible to walkers 21129 */ 21130 mutex_enter(&connp->conn_lock); 21131 CONN_INC_REF_LOCKED(connp); 21132 ASSERT(connp->conn_ref == 2); 21133 connp->conn_state_flags &= ~CONN_INCIPIENT; 21134 21135 connp->conn_flags |= IPCL_NONSTR; 21136 mutex_exit(&connp->conn_lock); 21137 21138 ASSERT(errorp != NULL); 21139 *errorp = 0; 21140 *sock_downcalls = &sock_tcp_downcalls; 21141 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 21142 SM_SENDFILESUPP; 21143 21144 return ((sock_lower_handle_t)connp); 21145 } 21146 21147 /* ARGSUSED */ 21148 void 21149 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 21150 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 21151 { 21152 conn_t *connp = (conn_t *)proto_handle; 21153 struct sock_proto_props sopp; 21154 21155 ASSERT(connp->conn_upper_handle == NULL); 21156 21157 /* All Solaris components should pass a cred for this operation. */ 21158 ASSERT(cr != NULL); 21159 21160 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 21161 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 21162 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 21163 21164 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 21165 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 21166 sopp.sopp_maxpsz = INFPSZ; 21167 sopp.sopp_maxblk = INFPSZ; 21168 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 21169 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 21170 sopp.sopp_maxaddrlen = sizeof (sin6_t); 21171 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 21172 tcp_rinfo.mi_minpsz; 21173 21174 connp->conn_upcalls = sock_upcalls; 21175 connp->conn_upper_handle = sock_handle; 21176 21177 ASSERT(connp->conn_rcvbuf != 0 && 21178 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 21179 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 21180 } 21181 21182 /* ARGSUSED */ 21183 int 21184 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 21185 { 21186 conn_t *connp = (conn_t *)proto_handle; 21187 21188 ASSERT(connp->conn_upper_handle != NULL); 21189 21190 /* All Solaris components should pass a cred for this operation. */ 21191 ASSERT(cr != NULL); 21192 21193 tcp_close_common(connp, flags); 21194 21195 ip_free_helper_stream(connp); 21196 21197 /* 21198 * Drop IP's reference on the conn. This is the last reference 21199 * on the connp if the state was less than established. If the 21200 * connection has gone into timewait state, then we will have 21201 * one ref for the TCP and one more ref (total of two) for the 21202 * classifier connected hash list (a timewait connections stays 21203 * in connected hash till closed). 21204 * 21205 * We can't assert the references because there might be other 21206 * transient reference places because of some walkers or queued 21207 * packets in squeue for the timewait state. 21208 */ 21209 CONN_DEC_REF(connp); 21210 return (0); 21211 } 21212 21213 /* ARGSUSED */ 21214 int 21215 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 21216 cred_t *cr) 21217 { 21218 tcp_t *tcp; 21219 uint32_t msize; 21220 conn_t *connp = (conn_t *)proto_handle; 21221 int32_t tcpstate; 21222 21223 /* All Solaris components should pass a cred for this operation. */ 21224 ASSERT(cr != NULL); 21225 21226 ASSERT(connp->conn_ref >= 2); 21227 ASSERT(connp->conn_upper_handle != NULL); 21228 21229 if (msg->msg_controllen != 0) { 21230 freemsg(mp); 21231 return (EOPNOTSUPP); 21232 } 21233 21234 switch (DB_TYPE(mp)) { 21235 case M_DATA: 21236 tcp = connp->conn_tcp; 21237 ASSERT(tcp != NULL); 21238 21239 tcpstate = tcp->tcp_state; 21240 if (tcpstate < TCPS_ESTABLISHED) { 21241 freemsg(mp); 21242 /* 21243 * We return ENOTCONN if the endpoint is trying to 21244 * connect or has never been connected, and EPIPE if it 21245 * has been disconnected. The connection id helps us 21246 * distinguish between the last two cases. 21247 */ 21248 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 21249 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 21250 } else if (tcpstate > TCPS_CLOSE_WAIT) { 21251 freemsg(mp); 21252 return (EPIPE); 21253 } 21254 21255 msize = msgdsize(mp); 21256 21257 mutex_enter(&tcp->tcp_non_sq_lock); 21258 tcp->tcp_squeue_bytes += msize; 21259 /* 21260 * Squeue Flow Control 21261 */ 21262 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 21263 tcp_setqfull(tcp); 21264 } 21265 mutex_exit(&tcp->tcp_non_sq_lock); 21266 21267 /* 21268 * The application may pass in an address in the msghdr, but 21269 * we ignore the address on connection-oriented sockets. 21270 * Just like BSD this code does not generate an error for 21271 * TCP (a CONNREQUIRED socket) when sending to an address 21272 * passed in with sendto/sendmsg. Instead the data is 21273 * delivered on the connection as if no address had been 21274 * supplied. 21275 */ 21276 CONN_INC_REF(connp); 21277 21278 if (msg->msg_flags & MSG_OOB) { 21279 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 21280 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21281 } else { 21282 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 21283 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21284 } 21285 21286 return (0); 21287 21288 default: 21289 ASSERT(0); 21290 } 21291 21292 freemsg(mp); 21293 return (0); 21294 } 21295 21296 /* ARGSUSED2 */ 21297 void 21298 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21299 { 21300 int len; 21301 uint32_t msize; 21302 conn_t *connp = (conn_t *)arg; 21303 tcp_t *tcp = connp->conn_tcp; 21304 21305 msize = msgdsize(mp); 21306 21307 len = msize - 1; 21308 if (len < 0) { 21309 freemsg(mp); 21310 return; 21311 } 21312 21313 /* 21314 * Try to force urgent data out on the wire. Even if we have unsent 21315 * data this will at least send the urgent flag. 21316 * XXX does not handle more flag correctly. 21317 */ 21318 len += tcp->tcp_unsent; 21319 len += tcp->tcp_snxt; 21320 tcp->tcp_urg = len; 21321 tcp->tcp_valid_bits |= TCP_URG_VALID; 21322 21323 /* Bypass tcp protocol for fused tcp loopback */ 21324 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21325 return; 21326 21327 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 21328 if (DB_TYPE(mp) != M_DATA) { 21329 mblk_t *mp1 = mp; 21330 ASSERT(!IPCL_IS_NONSTR(connp)); 21331 mp = mp->b_cont; 21332 freeb(mp1); 21333 } 21334 tcp_wput_data(tcp, mp, B_TRUE); 21335 } 21336 21337 /* ARGSUSED3 */ 21338 int 21339 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21340 socklen_t *addrlenp, cred_t *cr) 21341 { 21342 conn_t *connp = (conn_t *)proto_handle; 21343 tcp_t *tcp = connp->conn_tcp; 21344 21345 ASSERT(connp->conn_upper_handle != NULL); 21346 /* All Solaris components should pass a cred for this operation. */ 21347 ASSERT(cr != NULL); 21348 21349 ASSERT(tcp != NULL); 21350 if (tcp->tcp_state < TCPS_SYN_RCVD) 21351 return (ENOTCONN); 21352 21353 return (conn_getpeername(connp, addr, addrlenp)); 21354 } 21355 21356 /* ARGSUSED3 */ 21357 int 21358 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21359 socklen_t *addrlenp, cred_t *cr) 21360 { 21361 conn_t *connp = (conn_t *)proto_handle; 21362 21363 /* All Solaris components should pass a cred for this operation. */ 21364 ASSERT(cr != NULL); 21365 21366 ASSERT(connp->conn_upper_handle != NULL); 21367 return (conn_getsockname(connp, addr, addrlenp)); 21368 } 21369 21370 /* 21371 * tcp_fallback 21372 * 21373 * A direct socket is falling back to using STREAMS. The queue 21374 * that is being passed down was created using tcp_open() with 21375 * the SO_FALLBACK flag set. As a result, the queue is not 21376 * associated with a conn, and the q_ptrs instead contain the 21377 * dev and minor area that should be used. 21378 * 21379 * The 'issocket' flag indicates whether the FireEngine 21380 * optimizations should be used. The common case would be that 21381 * optimizations are enabled, and they might be subsequently 21382 * disabled using the _SIOCSOCKFALLBACK ioctl. 21383 */ 21384 21385 /* 21386 * An active connection is falling back to TPI. Gather all the information 21387 * required by the STREAM head and TPI sonode and send it up. 21388 */ 21389 void 21390 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21391 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21392 { 21393 conn_t *connp = tcp->tcp_connp; 21394 struct stroptions *stropt; 21395 struct T_capability_ack tca; 21396 struct sockaddr_in6 laddr, faddr; 21397 socklen_t laddrlen, faddrlen; 21398 short opts; 21399 int error; 21400 mblk_t *mp; 21401 21402 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21403 connp->conn_minor_arena = WR(q)->q_ptr; 21404 21405 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21406 21407 connp->conn_rq = RD(q); 21408 connp->conn_wq = WR(q); 21409 21410 WR(q)->q_qinfo = &tcp_sock_winit; 21411 21412 if (!issocket) 21413 tcp_use_pure_tpi(tcp); 21414 21415 /* 21416 * free the helper stream 21417 */ 21418 ip_free_helper_stream(connp); 21419 21420 /* 21421 * Notify the STREAM head about options 21422 */ 21423 DB_TYPE(stropt_mp) = M_SETOPTS; 21424 stropt = (struct stroptions *)stropt_mp->b_rptr; 21425 stropt_mp->b_wptr += sizeof (struct stroptions); 21426 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21427 21428 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21429 tcp->tcp_tcps->tcps_wroff_xtra); 21430 if (tcp->tcp_snd_sack_ok) 21431 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21432 stropt->so_hiwat = connp->conn_rcvbuf; 21433 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21434 21435 putnext(RD(q), stropt_mp); 21436 21437 /* 21438 * Collect the information needed to sync with the sonode 21439 */ 21440 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21441 21442 laddrlen = faddrlen = sizeof (sin6_t); 21443 (void) tcp_getsockname((sock_lower_handle_t)connp, 21444 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21445 error = tcp_getpeername((sock_lower_handle_t)connp, 21446 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21447 if (error != 0) 21448 faddrlen = 0; 21449 21450 opts = 0; 21451 if (connp->conn_oobinline) 21452 opts |= SO_OOBINLINE; 21453 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21454 opts |= SO_DONTROUTE; 21455 21456 /* 21457 * Notify the socket that the protocol is now quiescent, 21458 * and it's therefore safe move data from the socket 21459 * to the stream head. 21460 */ 21461 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21462 (struct sockaddr *)&laddr, laddrlen, 21463 (struct sockaddr *)&faddr, faddrlen, opts); 21464 21465 while ((mp = tcp->tcp_rcv_list) != NULL) { 21466 tcp->tcp_rcv_list = mp->b_next; 21467 mp->b_next = NULL; 21468 /* We never do fallback for kernel RPC */ 21469 putnext(q, mp); 21470 } 21471 tcp->tcp_rcv_last_head = NULL; 21472 tcp->tcp_rcv_last_tail = NULL; 21473 tcp->tcp_rcv_cnt = 0; 21474 } 21475 21476 /* 21477 * An eager is falling back to TPI. All we have to do is send 21478 * up a T_CONN_IND. 21479 */ 21480 void 21481 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21482 { 21483 tcp_t *listener = eager->tcp_listener; 21484 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21485 21486 ASSERT(listener != NULL); 21487 ASSERT(mp != NULL); 21488 21489 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21490 21491 /* 21492 * TLI/XTI applications will get confused by 21493 * sending eager as an option since it violates 21494 * the option semantics. So remove the eager as 21495 * option since TLI/XTI app doesn't need it anyway. 21496 */ 21497 if (!direct_sockfs) { 21498 struct T_conn_ind *conn_ind; 21499 21500 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21501 conn_ind->OPT_length = 0; 21502 conn_ind->OPT_offset = 0; 21503 } 21504 21505 /* 21506 * Sockfs guarantees that the listener will not be closed 21507 * during fallback. So we can safely use the listener's queue. 21508 */ 21509 putnext(listener->tcp_connp->conn_rq, mp); 21510 } 21511 21512 int 21513 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21514 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21515 { 21516 tcp_t *tcp; 21517 conn_t *connp = (conn_t *)proto_handle; 21518 int error; 21519 mblk_t *stropt_mp; 21520 mblk_t *ordrel_mp; 21521 21522 tcp = connp->conn_tcp; 21523 21524 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21525 NULL); 21526 21527 /* Pre-allocate the T_ordrel_ind mblk. */ 21528 ASSERT(tcp->tcp_ordrel_mp == NULL); 21529 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21530 STR_NOSIG, NULL); 21531 ordrel_mp->b_datap->db_type = M_PROTO; 21532 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21533 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21534 21535 /* 21536 * Enter the squeue so that no new packets can come in 21537 */ 21538 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21539 if (error != 0) { 21540 /* failed to enter, free all the pre-allocated messages. */ 21541 freeb(stropt_mp); 21542 freeb(ordrel_mp); 21543 /* 21544 * We cannot process the eager, so at least send out a 21545 * RST so the peer can reconnect. 21546 */ 21547 if (tcp->tcp_listener != NULL) { 21548 (void) tcp_eager_blowoff(tcp->tcp_listener, 21549 tcp->tcp_conn_req_seqnum); 21550 } 21551 return (ENOMEM); 21552 } 21553 21554 /* 21555 * Both endpoints must be of the same type (either STREAMS or 21556 * non-STREAMS) for fusion to be enabled. So if we are fused, 21557 * we have to unfuse. 21558 */ 21559 if (tcp->tcp_fused) 21560 tcp_unfuse(tcp); 21561 21562 /* 21563 * No longer a direct socket 21564 */ 21565 connp->conn_flags &= ~IPCL_NONSTR; 21566 tcp->tcp_ordrel_mp = ordrel_mp; 21567 21568 if (tcp->tcp_listener != NULL) { 21569 /* The eager will deal with opts when accept() is called */ 21570 freeb(stropt_mp); 21571 tcp_fallback_eager(tcp, direct_sockfs); 21572 } else { 21573 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21574 quiesced_cb); 21575 } 21576 21577 /* 21578 * There should be atleast two ref's (IP + TCP) 21579 */ 21580 ASSERT(connp->conn_ref >= 2); 21581 squeue_synch_exit(connp->conn_sqp, connp); 21582 21583 return (0); 21584 } 21585 21586 /* ARGSUSED */ 21587 static void 21588 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21589 { 21590 conn_t *connp = (conn_t *)arg; 21591 tcp_t *tcp = connp->conn_tcp; 21592 21593 freemsg(mp); 21594 21595 if (tcp->tcp_fused) 21596 tcp_unfuse(tcp); 21597 21598 if (tcp_xmit_end(tcp) != 0) { 21599 /* 21600 * We were crossing FINs and got a reset from 21601 * the other side. Just ignore it. 21602 */ 21603 if (connp->conn_debug) { 21604 (void) strlog(TCP_MOD_ID, 0, 1, 21605 SL_ERROR|SL_TRACE, 21606 "tcp_shutdown_output() out of state %s", 21607 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21608 } 21609 } 21610 } 21611 21612 /* ARGSUSED */ 21613 int 21614 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21615 { 21616 conn_t *connp = (conn_t *)proto_handle; 21617 tcp_t *tcp = connp->conn_tcp; 21618 21619 ASSERT(connp->conn_upper_handle != NULL); 21620 21621 /* All Solaris components should pass a cred for this operation. */ 21622 ASSERT(cr != NULL); 21623 21624 /* 21625 * X/Open requires that we check the connected state. 21626 */ 21627 if (tcp->tcp_state < TCPS_SYN_SENT) 21628 return (ENOTCONN); 21629 21630 /* shutdown the send side */ 21631 if (how != SHUT_RD) { 21632 mblk_t *bp; 21633 21634 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21635 CONN_INC_REF(connp); 21636 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21637 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21638 21639 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21640 SOCK_OPCTL_SHUT_SEND, 0); 21641 } 21642 21643 /* shutdown the recv side */ 21644 if (how != SHUT_WR) 21645 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21646 SOCK_OPCTL_SHUT_RECV, 0); 21647 21648 return (0); 21649 } 21650 21651 /* 21652 * SOP_LISTEN() calls into tcp_listen(). 21653 */ 21654 /* ARGSUSED */ 21655 int 21656 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21657 { 21658 conn_t *connp = (conn_t *)proto_handle; 21659 int error; 21660 squeue_t *sqp = connp->conn_sqp; 21661 21662 ASSERT(connp->conn_upper_handle != NULL); 21663 21664 /* All Solaris components should pass a cred for this operation. */ 21665 ASSERT(cr != NULL); 21666 21667 error = squeue_synch_enter(sqp, connp, NULL); 21668 if (error != 0) { 21669 /* failed to enter */ 21670 return (ENOBUFS); 21671 } 21672 21673 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21674 if (error == 0) { 21675 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21676 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21677 } else if (error < 0) { 21678 if (error == -TOUTSTATE) 21679 error = EINVAL; 21680 else 21681 error = proto_tlitosyserr(-error); 21682 } 21683 squeue_synch_exit(sqp, connp); 21684 return (error); 21685 } 21686 21687 static int 21688 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21689 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21690 { 21691 tcp_t *tcp = connp->conn_tcp; 21692 int error = 0; 21693 tcp_stack_t *tcps = tcp->tcp_tcps; 21694 21695 /* All Solaris components should pass a cred for this operation. */ 21696 ASSERT(cr != NULL); 21697 21698 if (tcp->tcp_state >= TCPS_BOUND) { 21699 if ((tcp->tcp_state == TCPS_BOUND || 21700 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21701 /* 21702 * Handle listen() increasing backlog. 21703 * This is more "liberal" then what the TPI spec 21704 * requires but is needed to avoid a t_unbind 21705 * when handling listen() since the port number 21706 * might be "stolen" between the unbind and bind. 21707 */ 21708 goto do_listen; 21709 } 21710 if (connp->conn_debug) { 21711 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21712 "tcp_listen: bad state, %d", tcp->tcp_state); 21713 } 21714 return (-TOUTSTATE); 21715 } else { 21716 if (sa == NULL) { 21717 sin6_t addr; 21718 sin_t *sin; 21719 sin6_t *sin6; 21720 21721 ASSERT(IPCL_IS_NONSTR(connp)); 21722 /* Do an implicit bind: Request for a generic port. */ 21723 if (connp->conn_family == AF_INET) { 21724 len = sizeof (sin_t); 21725 sin = (sin_t *)&addr; 21726 *sin = sin_null; 21727 sin->sin_family = AF_INET; 21728 } else { 21729 ASSERT(connp->conn_family == AF_INET6); 21730 len = sizeof (sin6_t); 21731 sin6 = (sin6_t *)&addr; 21732 *sin6 = sin6_null; 21733 sin6->sin6_family = AF_INET6; 21734 } 21735 sa = (struct sockaddr *)&addr; 21736 } 21737 21738 error = tcp_bind_check(connp, sa, len, cr, 21739 bind_to_req_port_only); 21740 if (error) 21741 return (error); 21742 /* Fall through and do the fanout insertion */ 21743 } 21744 21745 do_listen: 21746 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21747 tcp->tcp_conn_req_max = backlog; 21748 if (tcp->tcp_conn_req_max) { 21749 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21750 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21751 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21752 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21753 /* 21754 * If this is a listener, do not reset the eager list 21755 * and other stuffs. Note that we don't check if the 21756 * existing eager list meets the new tcp_conn_req_max 21757 * requirement. 21758 */ 21759 if (tcp->tcp_state != TCPS_LISTEN) { 21760 tcp->tcp_state = TCPS_LISTEN; 21761 /* Initialize the chain. Don't need the eager_lock */ 21762 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21763 tcp->tcp_eager_next_drop_q0 = tcp; 21764 tcp->tcp_eager_prev_drop_q0 = tcp; 21765 tcp->tcp_second_ctimer_threshold = 21766 tcps->tcps_ip_abort_linterval; 21767 } 21768 } 21769 21770 /* 21771 * We need to make sure that the conn_recv is set to a non-null 21772 * value before we insert the conn into the classifier table. 21773 * This is to avoid a race with an incoming packet which does an 21774 * ipcl_classify(). 21775 * We initially set it to tcp_input_listener_unbound to try to 21776 * pick a good squeue for the listener when the first SYN arrives. 21777 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21778 * first SYN. 21779 */ 21780 connp->conn_recv = tcp_input_listener_unbound; 21781 21782 /* Insert the listener in the classifier table */ 21783 error = ip_laddr_fanout_insert(connp); 21784 if (error != 0) { 21785 /* Undo the bind - release the port number */ 21786 tcp->tcp_state = TCPS_IDLE; 21787 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21788 21789 connp->conn_laddr_v6 = ipv6_all_zeros; 21790 connp->conn_saddr_v6 = ipv6_all_zeros; 21791 connp->conn_ports = 0; 21792 21793 if (connp->conn_anon_port) { 21794 zone_t *zone; 21795 21796 zone = crgetzone(cr); 21797 connp->conn_anon_port = B_FALSE; 21798 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21799 connp->conn_proto, connp->conn_lport, B_FALSE); 21800 } 21801 connp->conn_mlp_type = mlptSingle; 21802 21803 tcp_bind_hash_remove(tcp); 21804 return (error); 21805 } else { 21806 /* 21807 * If there is a connection limit, allocate and initialize 21808 * the counter struct. Note that since listen can be called 21809 * multiple times, the struct may have been allready allocated. 21810 */ 21811 if (!list_is_empty(&tcps->tcps_listener_conf) && 21812 tcp->tcp_listen_cnt == NULL) { 21813 tcp_listen_cnt_t *tlc; 21814 uint32_t ratio; 21815 21816 ratio = tcp_find_listener_conf(tcps, 21817 ntohs(connp->conn_lport)); 21818 if (ratio != 0) { 21819 uint32_t mem_ratio, tot_buf; 21820 21821 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 21822 KM_SLEEP); 21823 /* 21824 * Calculate the connection limit based on 21825 * the configured ratio and maxusers. Maxusers 21826 * are calculated based on memory size, 21827 * ~ 1 user per MB. Note that the conn_rcvbuf 21828 * and conn_sndbuf may change after a 21829 * connection is accepted. So what we have 21830 * is only an approximation. 21831 */ 21832 if ((tot_buf = connp->conn_rcvbuf + 21833 connp->conn_sndbuf) < MB) { 21834 mem_ratio = MB / tot_buf; 21835 tlc->tlc_max = maxusers / ratio * 21836 mem_ratio; 21837 } else { 21838 mem_ratio = tot_buf / MB; 21839 tlc->tlc_max = maxusers / ratio / 21840 mem_ratio; 21841 } 21842 /* At least we should allow two connections! */ 21843 if (tlc->tlc_max <= tcp_min_conn_listener) 21844 tlc->tlc_max = tcp_min_conn_listener; 21845 tlc->tlc_cnt = 1; 21846 tlc->tlc_drop = 0; 21847 tcp->tcp_listen_cnt = tlc; 21848 } 21849 } 21850 } 21851 return (error); 21852 } 21853 21854 void 21855 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21856 { 21857 conn_t *connp = (conn_t *)proto_handle; 21858 tcp_t *tcp = connp->conn_tcp; 21859 mblk_t *mp; 21860 int error; 21861 21862 ASSERT(connp->conn_upper_handle != NULL); 21863 21864 /* 21865 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21866 * is currently running. 21867 */ 21868 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21869 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21870 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21871 return; 21872 } 21873 tcp->tcp_rsrv_mp = NULL; 21874 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21875 21876 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21877 ASSERT(error == 0); 21878 21879 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21880 tcp->tcp_rsrv_mp = mp; 21881 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21882 21883 if (tcp->tcp_fused) { 21884 tcp_fuse_backenable(tcp); 21885 } else { 21886 tcp->tcp_rwnd = connp->conn_rcvbuf; 21887 /* 21888 * Send back a window update immediately if TCP is above 21889 * ESTABLISHED state and the increase of the rcv window 21890 * that the other side knows is at least 1 MSS after flow 21891 * control is lifted. 21892 */ 21893 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21894 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21895 tcp_xmit_ctl(NULL, tcp, 21896 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21897 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21898 } 21899 } 21900 21901 squeue_synch_exit(connp->conn_sqp, connp); 21902 } 21903 21904 /* ARGSUSED */ 21905 int 21906 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21907 int mode, int32_t *rvalp, cred_t *cr) 21908 { 21909 conn_t *connp = (conn_t *)proto_handle; 21910 int error; 21911 21912 ASSERT(connp->conn_upper_handle != NULL); 21913 21914 /* All Solaris components should pass a cred for this operation. */ 21915 ASSERT(cr != NULL); 21916 21917 /* 21918 * If we don't have a helper stream then create one. 21919 * ip_create_helper_stream takes care of locking the conn_t, 21920 * so this check for NULL is just a performance optimization. 21921 */ 21922 if (connp->conn_helper_info == NULL) { 21923 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21924 21925 /* 21926 * Create a helper stream for non-STREAMS socket. 21927 */ 21928 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21929 if (error != 0) { 21930 ip0dbg(("tcp_ioctl: create of IP helper stream " 21931 "failed %d\n", error)); 21932 return (error); 21933 } 21934 } 21935 21936 switch (cmd) { 21937 case ND_SET: 21938 case ND_GET: 21939 case _SIOCSOCKFALLBACK: 21940 case TCP_IOC_ABORT_CONN: 21941 case TI_GETPEERNAME: 21942 case TI_GETMYNAME: 21943 ip1dbg(("tcp_ioctl: cmd 0x%x on non streams socket", 21944 cmd)); 21945 error = EINVAL; 21946 break; 21947 default: 21948 /* 21949 * If the conn is not closing, pass on to IP using 21950 * helper stream. Bump the ioctlref to prevent tcp_close 21951 * from closing the rq/wq out from underneath the ioctl 21952 * if it ends up queued or aborted/interrupted. 21953 */ 21954 mutex_enter(&connp->conn_lock); 21955 if (connp->conn_state_flags & (CONN_CLOSING)) { 21956 mutex_exit(&connp->conn_lock); 21957 error = EINVAL; 21958 break; 21959 } 21960 CONN_INC_IOCTLREF_LOCKED(connp); 21961 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21962 cmd, arg, mode, cr, rvalp); 21963 CONN_DEC_IOCTLREF(connp); 21964 break; 21965 } 21966 return (error); 21967 } 21968 21969 sock_downcalls_t sock_tcp_downcalls = { 21970 tcp_activate, 21971 tcp_accept, 21972 tcp_bind, 21973 tcp_listen, 21974 tcp_connect, 21975 tcp_getpeername, 21976 tcp_getsockname, 21977 tcp_getsockopt, 21978 tcp_setsockopt, 21979 tcp_sendmsg, 21980 NULL, 21981 NULL, 21982 NULL, 21983 tcp_shutdown, 21984 tcp_clr_flowctrl, 21985 tcp_ioctl, 21986 tcp_close, 21987 }; 21988 21989 /* 21990 * Timeout function to reset the TCP stack variable tcps_reclaim to false. 21991 */ 21992 static void 21993 tcp_reclaim_timer(void *arg) 21994 { 21995 tcp_stack_t *tcps = (tcp_stack_t *)arg; 21996 21997 mutex_enter(&tcps->tcps_reclaim_lock); 21998 tcps->tcps_reclaim = B_FALSE; 21999 tcps->tcps_reclaim_tid = 0; 22000 mutex_exit(&tcps->tcps_reclaim_lock); 22001 /* Only need to print this once. */ 22002 if (tcps->tcps_netstack->netstack_stackid == GLOBAL_ZONEID) 22003 cmn_err(CE_WARN, "TCP defensive mode off\n"); 22004 } 22005 22006 /* 22007 * Kmem reclaim call back function. When the system is under memory 22008 * pressure, we set the TCP stack variable tcps_reclaim to true. This 22009 * variable is reset to false after tcps_reclaim_period msecs. During this 22010 * period, TCP will be more aggressive in aborting connections not making 22011 * progress, meaning retransmitting for some time (tcp_early_abort seconds). 22012 * TCP will also not accept new connection request for those listeners whose 22013 * q or q0 is not empty. 22014 */ 22015 /* ARGSUSED */ 22016 void 22017 tcp_conn_reclaim(void *arg) 22018 { 22019 netstack_handle_t nh; 22020 netstack_t *ns; 22021 tcp_stack_t *tcps; 22022 boolean_t new = B_FALSE; 22023 22024 netstack_next_init(&nh); 22025 while ((ns = netstack_next(&nh)) != NULL) { 22026 tcps = ns->netstack_tcp; 22027 mutex_enter(&tcps->tcps_reclaim_lock); 22028 if (!tcps->tcps_reclaim) { 22029 tcps->tcps_reclaim = B_TRUE; 22030 tcps->tcps_reclaim_tid = timeout(tcp_reclaim_timer, 22031 tcps, MSEC_TO_TICK(tcps->tcps_reclaim_period)); 22032 new = B_TRUE; 22033 } 22034 mutex_exit(&tcps->tcps_reclaim_lock); 22035 netstack_rele(ns); 22036 } 22037 netstack_next_fini(&nh); 22038 if (new) 22039 cmn_err(CE_WARN, "Memory pressure: TCP defensive mode on\n"); 22040 } 22041 22042 /* 22043 * Given a tcp_stack_t and a port (in host byte order), find a listener 22044 * configuration for that port and return the ratio. 22045 */ 22046 static uint32_t 22047 tcp_find_listener_conf(tcp_stack_t *tcps, in_port_t port) 22048 { 22049 tcp_listener_t *tl; 22050 uint32_t ratio = 0; 22051 22052 mutex_enter(&tcps->tcps_listener_conf_lock); 22053 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22054 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22055 if (tl->tl_port == port) { 22056 ratio = tl->tl_ratio; 22057 break; 22058 } 22059 } 22060 mutex_exit(&tcps->tcps_listener_conf_lock); 22061 return (ratio); 22062 } 22063 22064 /* 22065 * Ndd param helper routine to return the current list of listener limit 22066 * configuration. 22067 */ 22068 /* ARGSUSED */ 22069 static int 22070 tcp_listener_conf_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22071 { 22072 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22073 tcp_listener_t *tl; 22074 22075 mutex_enter(&tcps->tcps_listener_conf_lock); 22076 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22077 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22078 (void) mi_mpprintf(mp, "%d:%d ", tl->tl_port, tl->tl_ratio); 22079 } 22080 mutex_exit(&tcps->tcps_listener_conf_lock); 22081 return (0); 22082 } 22083 22084 /* 22085 * Ndd param helper routine to add a new listener limit configuration. 22086 */ 22087 /* ARGSUSED */ 22088 static int 22089 tcp_listener_conf_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22090 cred_t *cr) 22091 { 22092 tcp_listener_t *new_tl; 22093 tcp_listener_t *tl; 22094 long lport; 22095 long ratio; 22096 char *colon; 22097 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22098 22099 if (ddi_strtol(value, &colon, 10, &lport) != 0 || lport <= 0 || 22100 lport > USHRT_MAX || *colon != ':') { 22101 return (EINVAL); 22102 } 22103 if (ddi_strtol(colon + 1, NULL, 10, &ratio) != 0 || ratio <= 0) 22104 return (EINVAL); 22105 22106 mutex_enter(&tcps->tcps_listener_conf_lock); 22107 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22108 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22109 /* There is an existing entry, so update its ratio value. */ 22110 if (tl->tl_port == lport) { 22111 tl->tl_ratio = ratio; 22112 mutex_exit(&tcps->tcps_listener_conf_lock); 22113 return (0); 22114 } 22115 } 22116 22117 if ((new_tl = kmem_alloc(sizeof (tcp_listener_t), KM_NOSLEEP)) == 22118 NULL) { 22119 mutex_exit(&tcps->tcps_listener_conf_lock); 22120 return (ENOMEM); 22121 } 22122 22123 new_tl->tl_port = lport; 22124 new_tl->tl_ratio = ratio; 22125 list_insert_tail(&tcps->tcps_listener_conf, new_tl); 22126 mutex_exit(&tcps->tcps_listener_conf_lock); 22127 return (0); 22128 } 22129 22130 /* 22131 * Ndd param helper routine to remove a listener limit configuration. 22132 */ 22133 /* ARGSUSED */ 22134 static int 22135 tcp_listener_conf_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22136 cred_t *cr) 22137 { 22138 tcp_listener_t *tl; 22139 long lport; 22140 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22141 22142 if (ddi_strtol(value, NULL, 10, &lport) != 0 || lport <= 0 || 22143 lport > USHRT_MAX) { 22144 return (EINVAL); 22145 } 22146 mutex_enter(&tcps->tcps_listener_conf_lock); 22147 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22148 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22149 if (tl->tl_port == lport) { 22150 list_remove(&tcps->tcps_listener_conf, tl); 22151 mutex_exit(&tcps->tcps_listener_conf_lock); 22152 kmem_free(tl, sizeof (tcp_listener_t)); 22153 return (0); 22154 } 22155 } 22156 mutex_exit(&tcps->tcps_listener_conf_lock); 22157 return (ESRCH); 22158 } 22159 22160 /* 22161 * To remove all listener limit configuration in a tcp_stack_t. 22162 */ 22163 static void 22164 tcp_listener_conf_cleanup(tcp_stack_t *tcps) 22165 { 22166 tcp_listener_t *tl; 22167 22168 mutex_enter(&tcps->tcps_listener_conf_lock); 22169 while ((tl = list_head(&tcps->tcps_listener_conf)) != NULL) { 22170 list_remove(&tcps->tcps_listener_conf, tl); 22171 kmem_free(tl, sizeof (tcp_listener_t)); 22172 } 22173 mutex_destroy(&tcps->tcps_listener_conf_lock); 22174 list_destroy(&tcps->tcps_listener_conf); 22175 } 22176