1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _INET_SADB_H 27 #define _INET_SADB_H 28 29 #ifdef __cplusplus 30 extern "C" { 31 #endif 32 33 #include <inet/ipsec_info.h> 34 #include <sys/crypto/common.h> 35 #include <sys/crypto/api.h> 36 #include <sys/note.h> 37 38 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */ 39 40 /* 41 * Return codes of IPsec processing functions. 42 */ 43 typedef enum { 44 IPSEC_STATUS_SUCCESS = 1, 45 IPSEC_STATUS_FAILED = 2, 46 IPSEC_STATUS_PENDING = 3 47 } ipsec_status_t; 48 49 /* 50 * The Initialization Vector (also known as IV or Nonce) used to 51 * initialize the Block Cipher, is made up of a Counter and a Salt. 52 * The Counter is fixed at 64 bits and is incremented for each packet. 53 * The Salt value can be any whole byte value upto 64 bits. This is 54 * algorithm mode specific and can be configured with ipsecalgs(1m). 55 * 56 * We only support whole byte salt lengths, this is because the salt is 57 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m) 58 * which configures the salt length as a number of bytes. Checks are 59 * made to ensure the salt length defined in ipsecalgs(1m) fits in 60 * the ipsec_nonce_t. 61 * 62 * The Salt value remains constant for the life of the SA, the Salt is 63 * know to both peers, but NOT transmitted on the network. The Counter 64 * portion of the nonce is transmitted over the network with each packet 65 * and is confusingly described as the Initialization Vector by RFCs 66 * 4309/4106. 67 * 68 * The maximum Initialization Vector length is 128 bits, if the actual 69 * size is less, its padded internally by the algorithm. 70 * 71 * The nonce structure is defined like this in the SA (ipsa_t)to ensure 72 * the Initilization Vector (counter) is 64 bit aligned, because it will 73 * be incremented as an uint64_t. The nonce as used by the algorithms is 74 * a straight uint8_t array. 75 * 76 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 77 * | | | | |x|x|x|x| | 78 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 79 * salt_offset <------> 80 * ipsa_saltlen <-------> 81 * ipsa_nonce_buf------^ 82 * ipsa_salt-------------~~~~~~^ 83 * ipsa_nonce------------~~~~~~^ 84 * ipsa_iv-----------------------------^ 85 */ 86 typedef struct ipsec_nonce_s { 87 uint8_t salt[MAXSALTSIZE]; 88 uint64_t iv; 89 } ipsec_nonce_t; 90 91 /* 92 * IP security association. Synchronization assumes 32-bit loads, so 93 * the 64-bit quantities can't even be be read w/o locking it down! 94 */ 95 96 /* keying info */ 97 typedef struct ipsa_key_s { 98 uint8_t *sak_key; /* Algorithm key. */ 99 uint_t sak_keylen; /* Algorithm key length (in bytes). */ 100 uint_t sak_keybits; /* Algorithm key length (in bits) */ 101 uint_t sak_algid; /* Algorithm ID number. */ 102 } ipsa_key_t; 103 104 typedef struct ipsa_s { 105 struct ipsa_s *ipsa_next; /* Next in hash bucket */ 106 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */ 107 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */ 108 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */ 109 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *, 110 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *); 111 /* 112 * NOTE: I may need more pointers, depending on future SA 113 * requirements. 114 */ 115 ipsa_key_t ipsa_authkeydata; 116 #define ipsa_authkey ipsa_authkeydata.sak_key 117 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen 118 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits 119 #define ipsa_auth_alg ipsa_authkeydata.sak_algid 120 ipsa_key_t ipsa_encrkeydata; 121 #define ipsa_encrkey ipsa_encrkeydata.sak_key 122 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen 123 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits 124 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid 125 126 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */ 127 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */ 128 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */ 129 mblk_t *ipsa_bpkt_head; /* Packets received while idle */ 130 mblk_t *ipsa_bpkt_tail; 131 #define SADB_MAX_IDLEPKTS 100 132 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */ 133 134 /* 135 * PF_KEYv2 supports a replay window size of 255. Hence there is a 136 * need a bit vector to support a replay window of 255. 256 is a nice 137 * round number, so I support that. 138 * 139 * Use an array of uint64_t for best performance on 64-bit 140 * processors. (And hope that 32-bit compilers can handle things 141 * okay.) The " >> 6 " is to get the appropriate number of 64-bit 142 * ints. 143 */ 144 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */ 145 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6]; 146 147 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */ 148 uint64_t ipsa_unique_mask; /* mask value for unique_id */ 149 150 /* 151 * Reference count semantics: 152 * 153 * An SA has a reference count of 1 if something's pointing 154 * to it. This includes being in a hash table. So if an 155 * SA is in a hash table, it has a reference count of at least 1. 156 * 157 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after 158 * said assignment. When a ptr. to an IPSA is released 159 * you MUST REFRELE. When the refcount hits 0, REFRELE 160 * will free the IPSA. 161 */ 162 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */ 163 /* Q: Since I may be doing refcnts differently, will I need cv? */ 164 uint_t ipsa_refcnt; /* Reference count. */ 165 166 /* 167 * The following four time fields are the ones monitored by ah_ager() 168 * and esp_ager() respectively. They are all absolute wall-clock 169 * times. The times of creation (i.e. add time) and first use are 170 * pretty straightforward. The soft and hard expire times are 171 * derived from the times of first use and creation, plus the minimum 172 * expiration times in the fields that follow this. 173 * 174 * For example, if I had a hard add time of 30 seconds, and a hard 175 * use time of 15, the ipsa_hardexpiretime would be time of add, plus 176 * 30 seconds. If I USE the SA such that time of first use plus 15 177 * seconds would be earlier than the add time plus 30 seconds, then 178 * ipsa_hardexpiretime would become this earlier time. 179 */ 180 time_t ipsa_addtime; /* Time I was added. */ 181 time_t ipsa_usetime; /* Time of my first use. */ 182 time_t ipsa_lastuse; /* Time of my last use. */ 183 time_t ipsa_idletime; /* Seconds of idle time */ 184 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */ 185 time_t ipsa_softexpiretime; /* Time of my first soft expire. */ 186 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */ 187 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */ 188 189 struct ipsec_nonce_s *ipsa_nonce_buf; 190 uint8_t *ipsa_nonce; 191 uint_t ipsa_nonce_len; 192 uint8_t *ipsa_salt; 193 uint_t ipsa_saltbits; 194 uint_t ipsa_saltlen; 195 uint64_t *ipsa_iv; 196 197 uint64_t ipsa_iv_hardexpire; 198 uint64_t ipsa_iv_softexpire; 199 /* 200 * The following fields are directly reflected in PF_KEYv2 LIFETIME 201 * extensions. The time_ts are in number-of-seconds, and the bytes 202 * are in... bytes. 203 */ 204 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */ 205 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */ 206 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */ 207 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */ 208 time_t ipsa_idleaddlt; /* Seconds of idle time after add */ 209 time_t ipsa_idleuselt; /* Seconds of idle time after first use */ 210 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */ 211 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */ 212 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */ 213 214 /* 215 * "Allocations" are a concept mentioned in PF_KEYv2. We do not 216 * support them, except to record them per the PF_KEYv2 spec. 217 */ 218 uint_t ipsa_softalloc; /* Allocations allowed (soft). */ 219 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */ 220 uint_t ipsa_alloc; /* Allocations made. */ 221 222 uint_t ipsa_type; /* Type of security association. (AH/etc.) */ 223 uint_t ipsa_state; /* State of my association. */ 224 uint_t ipsa_replay_wsize; /* Size of replay window */ 225 uint32_t ipsa_flags; /* Flags for security association. */ 226 uint32_t ipsa_spi; /* Security parameters index. */ 227 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */ 228 uint32_t ipsa_kmp; /* key management proto */ 229 uint32_t ipsa_kmc; /* key management cookie */ 230 231 boolean_t ipsa_haspeer; /* Has peer in another table. */ 232 233 /* 234 * Address storage. 235 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc. 236 * 237 * Address families (per sys/socket.h) guide us. We could have just 238 * used sockaddr_storage 239 */ 240 sa_family_t ipsa_addrfam; 241 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */ 242 243 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN]; 244 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN]; 245 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN]; 246 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN]; 247 248 uint8_t ipsa_innersrcpfx; 249 uint8_t ipsa_innerdstpfx; 250 251 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */ 252 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */ 253 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */ 254 255 /* these can only be v4 */ 256 uint32_t ipsa_natt_addr_loc; 257 uint32_t ipsa_natt_addr_rem; 258 259 /* 260 * icmp type and code. *_end are to specify ranges. if only 261 * a single value, * and *_end are the same value. 262 */ 263 uint8_t ipsa_icmp_type; 264 uint8_t ipsa_icmp_type_end; 265 uint8_t ipsa_icmp_code; 266 uint8_t ipsa_icmp_code_end; 267 268 /* 269 * For the kernel crypto framework. 270 */ 271 crypto_key_t ipsa_kcfauthkey; /* authentication key */ 272 crypto_key_t ipsa_kcfencrkey; /* encryption key */ 273 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */ 274 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */ 275 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */ 276 crypto_mechanism_t ipsa_emech; /* encr mech type */ 277 size_t ipsa_mac_len; /* auth MAC/ICV length */ 278 size_t ipsa_iv_len; /* encr IV length */ 279 size_t ipsa_datalen; /* block length in bytes. */ 280 281 /* 282 * Input and output processing functions called from IP. 283 */ 284 ipsec_status_t (*ipsa_output_func)(mblk_t *); 285 ipsec_status_t (*ipsa_input_func)(mblk_t *, void *); 286 287 /* 288 * Soft reference to paired SA 289 */ 290 uint32_t ipsa_otherspi; 291 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */ 292 293 cred_t *ipsa_cred; /* MLS: cred_t attributes */ 294 cred_t *ipsa_ocred; /* MLS: outer label */ 295 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */ 296 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH]; 297 } ipsa_t; 298 299 /* 300 * ipsa_t address handling macros. We want these to be inlined, and deal 301 * with 32-bit words to avoid bcmp/bcopy calls. 302 * 303 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume 304 * that we have 32-bit alignment on everything. 305 */ 306 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \ 307 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \ 308 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0))) 309 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \ 310 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \ 311 (((fam) == AF_INET) || \ 312 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \ 313 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \ 314 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1]))) 315 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \ 316 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \ 317 if ((fam) == AF_INET6) {\ 318 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \ 319 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \ 320 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } } 321 322 /* 323 * ipsa_t reference hold/release macros. 324 * 325 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you 326 * REFRELE. An ipsa_t that is newly inserted into the table should have 327 * a reference count of 1 (for the table's pointer), plus 1 more for every 328 * pointer that is referencing the ipsa_t. 329 */ 330 331 #define IPSA_REFHOLD(ipsa) { \ 332 atomic_add_32(&(ipsa)->ipsa_refcnt, 1); \ 333 ASSERT((ipsa)->ipsa_refcnt != 0); \ 334 } 335 336 /* 337 * Decrement the reference count on the SA. 338 * In architectures e.g sun4u, where atomic_add_32_nv is just 339 * a cas, we need to maintain the right memory barrier semantics 340 * as that of mutex_exit i.e all the loads and stores should complete 341 * before the cas is executed. membar_exit() does that here. 342 */ 343 344 #define IPSA_REFRELE(ipsa) { \ 345 ASSERT((ipsa)->ipsa_refcnt != 0); \ 346 membar_exit(); \ 347 if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0) \ 348 ((ipsa)->ipsa_freefunc)(ipsa); \ 349 } 350 351 /* 352 * Security association hash macros and definitions. For now, assume the 353 * IPsec model, and hash outbounds on destination address, and inbounds on 354 * SPI. 355 */ 356 357 #define IPSEC_DEFAULT_HASH_SIZE 256 358 359 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize)) 360 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize)) 361 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \ 362 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \ 363 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3))) 364 365 /* 366 * Syntactic sugar to find the appropriate hash bucket directly. 367 */ 368 369 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)]) 370 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \ 371 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)]) 372 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \ 373 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)]) 374 375 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */ 376 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */ 377 /* backward compat. */ 378 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */ 379 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */ 380 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */ 381 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */ 382 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */ 383 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */ 384 385 #define IPSA_F_HW 0x200000 /* hwaccel capable SA */ 386 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC 387 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM 388 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED 389 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \ 390 SADB_X_SAFLAGS_NATTED) 391 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */ 392 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */ 393 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */ 394 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */ 395 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL 396 /* 397 * These flags are only defined here to prevent a flag value collision. 398 */ 399 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */ 400 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */ 401 402 /* 403 * Sets of flags that are allowed to by set or modified by PF_KEY apps. 404 */ 405 #define AH_UPDATE_SETTABLE_FLAGS \ 406 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \ 407 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \ 408 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \ 409 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4) 410 411 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ 412 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT) 413 414 #define AH_ADD_SETTABLE_FLAGS \ 415 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \ 416 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \ 417 SADB_SAFLAGS_NOREPLAY) 418 419 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ 420 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \ 421 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2) 422 423 424 425 /* SA states are important for handling UPDATE PF_KEY messages. */ 426 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL 427 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE 428 #define IPSA_STATE_DYING SADB_SASTATE_DYING 429 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD 430 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE 431 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE 432 433 /* 434 * NOTE: If the document authors do things right in defining algorithms, we'll 435 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC, 436 * etc. 437 */ 438 439 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */ 440 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */ 441 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */ 442 443 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */ 444 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */ 445 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */ 446 447 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */ 448 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC 449 #define IPSA_EALG_3DES SADB_EALG_3DESCBC 450 451 /* 452 * Protect each ipsa_t bucket (and linkage) with a lock. 453 */ 454 455 typedef struct isaf_s { 456 ipsa_t *isaf_ipsa; 457 kmutex_t isaf_lock; 458 uint64_t isaf_gen; 459 } isaf_t; 460 461 /* 462 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound 463 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record. 464 */ 465 466 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */ 467 /* waiting for an ACQUIRE to finish. */ 468 469 typedef struct ipsacq_s { 470 struct ipsacq_s *ipsacq_next; 471 struct ipsacq_s **ipsacq_ptpn; 472 kmutex_t *ipsacq_linklock; 473 struct ipsec_policy_s *ipsacq_policy; 474 struct ipsec_action_s *ipsacq_act; 475 476 sa_family_t ipsacq_addrfam; /* Address family. */ 477 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */ 478 int ipsacq_numpackets; /* How many packets queued up so far. */ 479 uint32_t ipsacq_seq; /* PF_KEY sequence number. */ 480 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */ 481 482 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */ 483 time_t ipsacq_expire; /* Wall-clock time when this record expires. */ 484 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */ 485 486 /* These two point inside the last mblk inserted. */ 487 uint32_t *ipsacq_srcaddr; 488 uint32_t *ipsacq_dstaddr; 489 490 /* Cache these instead of point so we can mask off accordingly */ 491 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN]; 492 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN]; 493 494 /* These may change per-acquire. */ 495 uint16_t ipsacq_srcport; 496 uint16_t ipsacq_dstport; 497 uint8_t ipsacq_proto; 498 uint8_t ipsacq_inner_proto; 499 uint8_t ipsacq_innersrcpfx; 500 uint8_t ipsacq_innerdstpfx; 501 502 /* icmp type and code of triggering packet (if applicable) */ 503 uint8_t ipsacq_icmp_type; 504 uint8_t ipsacq_icmp_code; 505 506 /* credentials associated with triggering packet */ 507 cred_t *ipsacq_cred; 508 } ipsacq_t; 509 510 /* 511 * Kernel-generated sequence numbers will be no less than 0x80000000 to 512 * forestall any cretinous problems with manual keying accidentally updating 513 * an ACQUIRE entry. 514 */ 515 #define IACQF_LOWEST_SEQ 0x80000000 516 517 #define SADB_AGE_INTERVAL_DEFAULT 8000 518 519 /* 520 * ACQUIRE fanout. Protect each linkage with a lock. 521 */ 522 523 typedef struct iacqf_s { 524 ipsacq_t *iacqf_ipsacq; 525 kmutex_t iacqf_lock; 526 } iacqf_t; 527 528 /* 529 * A (network protocol, ipsec protocol) specific SADB. 530 * (i.e., one each for {ah, esp} and {v4, v6}. 531 * 532 * Keep outbound assocs about the same as ire_cache entries for now. 533 * One danger point, multiple SAs for a single dest will clog a bucket. 534 * For the future, consider two-level hashing (2nd hash on IPC?), then probe. 535 */ 536 537 typedef struct sadb_s 538 { 539 isaf_t *sdb_of; 540 isaf_t *sdb_if; 541 iacqf_t *sdb_acq; 542 int sdb_hashsize; 543 } sadb_t; 544 545 /* 546 * A pair of SADB's (one for v4, one for v6), and related state (including 547 * acquire callbacks). 548 */ 549 550 typedef struct sadbp_s 551 { 552 uint32_t s_satype; 553 queue_t *s_ip_q; 554 uint32_t *s_acquire_timeout; 555 void (*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *); 556 sadb_t s_v4; 557 sadb_t s_v6; 558 uint32_t s_addflags; 559 uint32_t s_updateflags; 560 } sadbp_t; 561 562 /* 563 * A pair of SA's for a single connection, the structure contains a 564 * pointer to a SA and the SA its paired with (opposite direction) as well 565 * as the SA's respective hash buckets. 566 */ 567 typedef struct ipsap_s 568 { 569 boolean_t in_inbound_table; 570 isaf_t *ipsap_bucket; 571 ipsa_t *ipsap_sa_ptr; 572 isaf_t *ipsap_pbucket; 573 ipsa_t *ipsap_psa_ptr; 574 } ipsap_t; 575 576 typedef struct templist_s 577 { 578 ipsa_t *ipsa; 579 struct templist_s *next; 580 } templist_t; 581 582 /* Pointer to an all-zeroes IPv6 address. */ 583 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros) 584 585 /* 586 * Form unique id from ipsec_out_t 587 */ 588 589 #define SA_FORM_UNIQUE_ID(io) \ 590 SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \ 591 ((io)->ipsec_out_tunnel ? ((io)->ipsec_out_inaf == AF_INET6 ? \ 592 IPPROTO_IPV6 : IPPROTO_ENCAP) : (io)->ipsec_out_proto), \ 593 ((io)->ipsec_out_tunnel ? (io)->ipsec_out_proto : 0)) 594 595 /* 596 * This macro is used to generate unique ids (along with the addresses, both 597 * inner and outer) for outbound datagrams that require unique SAs. 598 * 599 * N.B. casts and unsigned shift amounts discourage unwarranted 600 * sign extension of dstport, proto, and iproto. 601 * 602 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias): 603 * 604 * 6 4 43 33 11 605 * 3 7 09 21 65 0 606 * +---------------*-------+-------+--------------+---------------+ 607 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> | 608 * +---------------*-------+-------+--------------+---------------+ 609 * 610 * If there are inner addresses (tunnel mode) the ports come from the 611 * inner addresses. If there are no inner addresses, the ports come from 612 * the outer addresses (transport mode). Tunnel mode MUST have <proto> 613 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6. 614 */ 615 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \ 616 ((srcport) | ((uint64_t)(dstport) << 16U) | \ 617 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U)) 618 619 /* 620 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value 621 * from a packet to an SA. 622 */ 623 624 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \ 625 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \ 626 (dstport != 0) ? 0xffff : 0, \ 627 (proto != 0) ? 0xff : 0, \ 628 (iproto != 0) ? 0xff : 0) 629 630 /* 631 * Decompose unique id back into its original fields. 632 */ 633 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff 634 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff 635 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff) 636 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff) 637 638 typedef struct ipsa_query_s ipsa_query_t; 639 640 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *); 641 642 #define IPSA_NMATCH 10 643 644 /* 645 * SADB query structure. 646 * 647 * Provide a generalized mechanism for matching entries in the SADB; 648 * one of these structures is initialized using sadb_form_query(), 649 * and then can be used as a parameter to sadb_match_query() which returns 650 * B_TRUE if the SA matches the query. 651 * 652 * Under the covers, sadb_form_query populates the matchers[] array with 653 * functions which are called one at a time until one fails to match. 654 */ 655 struct ipsa_query_s { 656 uint32_t req, match; 657 sadb_address_t *srcext, *dstext; 658 sadb_ident_t *srcid, *dstid; 659 sadb_x_kmc_t *kmcext; 660 sadb_sa_t *assoc; 661 uint32_t spi; 662 struct sockaddr_in *src; 663 struct sockaddr_in6 *src6; 664 struct sockaddr_in *dst; 665 struct sockaddr_in6 *dst6; 666 sa_family_t af; 667 uint32_t *srcaddr, *dstaddr; 668 uint32_t ifindex; 669 uint32_t kmc, kmp; 670 char *didstr, *sidstr; 671 uint16_t didtype, sidtype; 672 sadbp_t *spp; 673 sadb_t *sp; 674 isaf_t *inbound, *outbound; 675 uint32_t outhash; 676 uint32_t inhash; 677 ipsa_match_fn_t matchers[IPSA_NMATCH]; 678 }; 679 680 #define IPSA_Q_SA 0x00000001 681 #define IPSA_Q_DST 0x00000002 682 #define IPSA_Q_SRC 0x00000004 683 #define IPSA_Q_DSTID 0x00000008 684 #define IPSA_Q_SRCID 0x00000010 685 #define IPSA_Q_KMC 0x00000020 686 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */ 687 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */ 688 689 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *); 690 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa); 691 692 693 /* 694 * All functions that return an ipsa_t will return it with IPSA_REFHOLD() 695 * already called. 696 */ 697 698 /* SA retrieval (inbound and outbound) */ 699 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *, 700 sa_family_t); 701 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *, 702 sa_family_t, uint8_t, cred_t *); 703 704 /* SA insertion. */ 705 int sadb_insertassoc(ipsa_t *, isaf_t *); 706 707 /* SA table construction and destruction. */ 708 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *); 709 void sadbp_flush(sadbp_t *, netstack_t *); 710 void sadbp_destroy(sadbp_t *, netstack_t *); 711 712 /* SA insertion and deletion. */ 713 int sadb_insertassoc(ipsa_t *, isaf_t *); 714 void sadb_unlinkassoc(ipsa_t *); 715 716 /* Support routines to interface a keysock consumer to PF_KEY. */ 717 mblk_t *sadb_keysock_out(minor_t); 718 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *); 719 int sadb_labelchk(struct keysock_in_s *); 720 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *, 721 ipsa_t *); 722 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t); 723 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *), 724 void *, timeout_id_t *, int); 725 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *); 726 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *); 727 int sadb_addrset(ire_t *); 728 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *, 729 uint8_t); 730 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *, 731 queue_t *); 732 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *, 733 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *, 734 netstack_t *, sadbp_t *); 735 void sadb_set_usetime(ipsa_t *); 736 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t); 737 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *, 738 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *), 739 netstack_t *, uint8_t); 740 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t); 741 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 742 crypto_data_t *); 743 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 744 crypto_data_t *); 745 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 746 crypto_data_t *); 747 748 void sadb_destroy_acquire(ipsacq_t *, netstack_t *); 749 struct ipsec_stack; 750 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *); 751 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t); 752 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *); 753 boolean_t sadb_replay_check(ipsa_t *, uint32_t); 754 boolean_t sadb_replay_peek(ipsa_t *, uint32_t); 755 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *); 756 void sadb_replay_delete(ipsa_t *); 757 void sadb_ager(sadb_t *, queue_t *, queue_t *, int, netstack_t *); 758 759 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *, 760 uint_t *, uint_t, short); 761 void sadb_sa_refrele(void *target); 762 boolean_t sadb_set_lpkt(ipsa_t *, mblk_t *, netstack_t *); 763 mblk_t *sadb_clear_lpkt(ipsa_t *); 764 void sadb_buf_pkt(ipsa_t *, mblk_t *, netstack_t *); 765 void sadb_clear_buf_pkt(void *ipkt); 766 767 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \ 768 { \ 769 if (buf_pkt != NULL) { \ 770 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \ 771 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \ 772 /* Dispatch was unsuccessful drop the packets. */ \ 773 mblk_t *tmp; \ 774 while (buf_pkt != NULL) { \ 775 tmp = buf_pkt->b_next; \ 776 buf_pkt->b_next = NULL; \ 777 ip_drop_packet(buf_pkt, B_TRUE, NULL, \ 778 NULL, DROPPER(stack, \ 779 ipds_sadb_inidle_timeout), \ 780 &dropper); \ 781 buf_pkt = tmp; \ 782 } \ 783 } \ 784 } \ 785 } \ 786 787 /* 788 * Hw accel-related calls (downloading sadb to driver) 789 */ 790 void sadb_ill_download(ill_t *, uint_t); 791 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t); 792 /* 793 * Sub-set of the IPsec hardware acceleration capabilities functions 794 * implemented by ip_if.c 795 */ 796 extern boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *, 797 netstack_t *); 798 extern void ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *, 799 netstack_t *); 800 801 802 /* 803 * One IPsec -> IP linking routine, and two IPsec rate-limiting routines. 804 */ 805 extern boolean_t sadb_t_bind_req(queue_t *, int); 806 /*PRINTFLIKE6*/ 807 extern void ipsec_rl_strlog(netstack_t *, short, short, char, 808 ushort_t, char *, ...) 809 __KPRINTFLIKE(6); 810 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t, 811 void *, int, netstack_t *); 812 813 /* 814 * Algorithm types. 815 */ 816 817 #define IPSEC_NALGTYPES 2 818 819 typedef enum ipsec_algtype { 820 IPSEC_ALG_AUTH = 0, 821 IPSEC_ALG_ENCR = 1 822 } ipsec_algtype_t; 823 824 /* 825 * Definitions as per IPsec/ISAKMP DOI. 826 */ 827 828 #define IPSEC_MAX_ALGS 256 829 #define PROTO_IPSEC_AH 2 830 #define PROTO_IPSEC_ESP 3 831 832 /* 833 * Common algorithm info. 834 */ 835 typedef struct ipsec_alginfo 836 { 837 uint8_t alg_id; 838 uint8_t alg_flags; 839 uint16_t *alg_key_sizes; 840 uint16_t *alg_block_sizes; 841 uint16_t *alg_params; 842 uint16_t alg_nkey_sizes; 843 uint16_t alg_ivlen; 844 uint16_t alg_icvlen; 845 uint8_t alg_saltlen; 846 uint16_t alg_nblock_sizes; 847 uint16_t alg_nparams; 848 uint16_t alg_minbits; 849 uint16_t alg_maxbits; 850 uint16_t alg_datalen; 851 /* 852 * increment: number of bits from keysize to keysize 853 * default: # of increments from min to default key len 854 */ 855 uint16_t alg_increment; 856 uint16_t alg_default; 857 uint16_t alg_default_bits; 858 /* 859 * Min, max, and default key sizes effectively supported 860 * by the encryption framework. 861 */ 862 uint16_t alg_ef_minbits; 863 uint16_t alg_ef_maxbits; 864 uint16_t alg_ef_default; 865 uint16_t alg_ef_default_bits; 866 867 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */ 868 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */ 869 } ipsec_alginfo_t; 870 871 #define alg_datalen alg_block_sizes[0] 872 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID) 873 874 /* 875 * Software crypto execution mode. 876 */ 877 typedef enum { 878 IPSEC_ALGS_EXEC_SYNC = 0, 879 IPSEC_ALGS_EXEC_ASYNC = 1 880 } ipsec_algs_exec_mode_t; 881 882 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *); 883 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *); 884 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t, 885 netstack_t *ns); 886 extern void alg_flag_check(ipsec_alginfo_t *); 887 extern void ipsec_alg_free(ipsec_alginfo_t *); 888 extern void ipsec_register_prov_update(void); 889 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, 890 netstack_t *); 891 892 extern int sadb_sens_len_from_cred(cred_t *); 893 extern void sadb_sens_from_cred(sadb_sens_t *, int, cred_t *, int); 894 895 /* 896 * Context templates management. 897 */ 898 899 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1) 900 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \ 901 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \ 902 mutex_enter(&assoc->ipsa_lock); \ 903 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \ 904 ipsec_stack_t *ipss; \ 905 \ 906 ipss = assoc->ipsa_netstack->netstack_ipsec; \ 907 mutex_enter(&ipss->ipsec_alg_lock); \ 908 (void) ipsec_create_ctx_tmpl(_sa, _type); \ 909 mutex_exit(&ipss->ipsec_alg_lock); \ 910 } \ 911 mutex_exit(&assoc->ipsa_lock); \ 912 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \ 913 _tmpl = NULL; \ 914 } \ 915 } 916 917 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 918 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 919 920 /* key checking */ 921 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *); 922 923 typedef struct ipsec_kstats_s { 924 kstat_named_t esp_stat_in_requests; 925 kstat_named_t esp_stat_in_discards; 926 kstat_named_t esp_stat_lookup_failure; 927 kstat_named_t ah_stat_in_requests; 928 kstat_named_t ah_stat_in_discards; 929 kstat_named_t ah_stat_lookup_failure; 930 kstat_named_t sadb_acquire_maxpackets; 931 kstat_named_t sadb_acquire_qhiwater; 932 } ipsec_kstats_t; 933 934 /* 935 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if 936 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it 937 * fails, it will be NULL. Note this is done for all stack instances, 938 * so it *could* fail. hence a non-NULL checking is done for 939 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT 940 */ 941 #define IP_ESP_BUMP_STAT(ipss, x) \ 942 do { \ 943 if ((ipss)->ipsec_kstats != NULL) \ 944 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \ 945 _NOTE(CONSTCOND) \ 946 } while (0) 947 948 #define IP_AH_BUMP_STAT(ipss, x) \ 949 do { \ 950 if ((ipss)->ipsec_kstats != NULL) \ 951 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \ 952 _NOTE(CONSTCOND) \ 953 } while (0) 954 955 #define IP_ACQUIRE_STAT(ipss, val, new) \ 956 do { \ 957 if ((ipss)->ipsec_kstats != NULL && \ 958 ((uint64_t)(new)) > \ 959 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \ 960 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \ 961 ((uint64_t)(new)); \ 962 _NOTE(CONSTCOND) \ 963 } while (0) 964 965 966 #ifdef __cplusplus 967 } 968 #endif 969 970 #endif /* _INET_SADB_H */ 971