xref: /titanic_51/usr/src/uts/common/inet/ipf/fil.c (revision b6917abefc343244b784f0cc34bc65b01469c3bf)
1 /*
2  * Copyright (C) 1993-2003 by Darren Reed.
3  *
4  * See the IPFILTER.LICENCE file for details on licencing.
5  *
6  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
7  * Use is subject to license terms.
8  */
9 
10 #pragma ident	"%Z%%M%	%I%	%E% SMI"
11 
12 #if defined(KERNEL) || defined(_KERNEL)
13 # undef KERNEL
14 # undef _KERNEL
15 # define        KERNEL	1
16 # define        _KERNEL	1
17 #endif
18 #include <sys/errno.h>
19 #include <sys/types.h>
20 #include <sys/param.h>
21 #include <sys/time.h>
22 #if defined(__NetBSD__)
23 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL)
24 #  include "opt_ipfilter_log.h"
25 # endif
26 #endif
27 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
28     (__FreeBSD_version >= 220000)
29 # if (__FreeBSD_version >= 400000)
30 #  if !defined(IPFILTER_LKM)
31 #   include "opt_inet6.h"
32 #  endif
33 #  if (__FreeBSD_version == 400019)
34 #   define CSUM_DELAY_DATA
35 #  endif
36 # endif
37 # include <sys/filio.h>
38 #else
39 # include <sys/ioctl.h>
40 #endif
41 #if !defined(_AIX51)
42 # include <sys/fcntl.h>
43 #endif
44 #if defined(_KERNEL)
45 # include <sys/systm.h>
46 # include <sys/file.h>
47 #else
48 # include <stdio.h>
49 # include <string.h>
50 # include <stdlib.h>
51 # include <stddef.h>
52 # include <sys/file.h>
53 # define _KERNEL
54 # ifdef __OpenBSD__
55 struct file;
56 # endif
57 # include <sys/uio.h>
58 # undef _KERNEL
59 #endif
60 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
61     !defined(linux)
62 # include <sys/mbuf.h>
63 #else
64 # if !defined(linux)
65 #  include <sys/byteorder.h>
66 # endif
67 # if (SOLARIS2 < 5) && defined(sun)
68 #  include <sys/dditypes.h>
69 # endif
70 #endif
71 #ifdef __hpux
72 # define _NET_ROUTE_INCLUDED
73 #endif
74 #if !defined(linux)
75 # include <sys/protosw.h>
76 #endif
77 #include <sys/socket.h>
78 #include <net/if.h>
79 #ifdef sun
80 # include <net/af.h>
81 #endif
82 #if !defined(_KERNEL) && defined(__FreeBSD__)
83 # include "radix_ipf.h"
84 #endif
85 #include <net/route.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #if !defined(linux)
90 # include <netinet/ip_var.h>
91 #endif
92 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
93 # include <sys/hashing.h>
94 # include <netinet/in_var.h>
95 #endif
96 #include <netinet/tcp.h>
97 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
98 # include <netinet/udp.h>
99 # include <netinet/ip_icmp.h>
100 #endif
101 #ifdef __hpux
102 # undef _NET_ROUTE_INCLUDED
103 #endif
104 #include "netinet/ip_compat.h"
105 #ifdef	USE_INET6
106 # include <netinet/icmp6.h>
107 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
108 #  include <netinet6/in6_var.h>
109 # endif
110 #endif
111 #include <netinet/tcpip.h>
112 #include "netinet/ip_fil.h"
113 #include "netinet/ip_nat.h"
114 #include "netinet/ip_frag.h"
115 #include "netinet/ip_state.h"
116 #include "netinet/ip_proxy.h"
117 #include "netinet/ip_auth.h"
118 #include "netinet/ipf_stack.h"
119 #ifdef IPFILTER_SCAN
120 # include "netinet/ip_scan.h"
121 #endif
122 #ifdef IPFILTER_SYNC
123 # include "netinet/ip_sync.h"
124 #endif
125 #include "netinet/ip_pool.h"
126 #include "netinet/ip_htable.h"
127 #ifdef IPFILTER_COMPILED
128 # include "netinet/ip_rules.h"
129 #endif
130 #if defined(IPFILTER_BPF) && defined(_KERNEL)
131 # include <net/bpf.h>
132 #endif
133 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
134 # include <sys/malloc.h>
135 # if defined(_KERNEL) && !defined(IPFILTER_LKM)
136 #  include "opt_ipfilter.h"
137 # endif
138 #endif
139 #include "netinet/ipl.h"
140 /* END OF INCLUDES */
141 
142 #if !defined(lint)
143 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
144 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $";
145 #endif
146 
147 #ifndef	_KERNEL
148 # include "ipf.h"
149 # include "ipt.h"
150 # include "bpf-ipf.h"
151 extern	int	opts;
152 
153 # define	FR_VERBOSE(verb_pr)			verbose verb_pr
154 # define	FR_DEBUG(verb_pr)			debug verb_pr
155 #else /* #ifndef _KERNEL */
156 # define	FR_VERBOSE(verb_pr)
157 # define	FR_DEBUG(verb_pr)
158 #endif /* _KERNEL */
159 
160 
161 char	ipfilter_version[] = IPL_VERSION;
162 int	fr_features = 0
163 #ifdef	IPFILTER_LKM
164 		| IPF_FEAT_LKM
165 #endif
166 #ifdef	IPFILTER_LOG
167 		| IPF_FEAT_LOG
168 #endif
169 #ifdef	IPFILTER_LOOKUP
170 		| IPF_FEAT_LOOKUP
171 #endif
172 #ifdef	IPFILTER_BPF
173 		| IPF_FEAT_BPF
174 #endif
175 #ifdef	IPFILTER_COMPILED
176 		| IPF_FEAT_COMPILED
177 #endif
178 #ifdef	IPFILTER_CKSUM
179 		| IPF_FEAT_CKSUM
180 #endif
181 #ifdef	IPFILTER_SYNC
182 		| IPF_FEAT_SYNC
183 #endif
184 #ifdef	IPFILTER_SCAN
185 		| IPF_FEAT_SCAN
186 #endif
187 #ifdef	USE_INET6
188 		| IPF_FEAT_IPV6
189 #endif
190 	;
191 
192 #define	IPF_BUMP(x)	(x)++
193 
194 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
195 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
196 static	int		fr_portcheck __P((frpcmp_t *, u_short *));
197 static	int		frflushlist __P((int, minor_t, int *, frentry_t **,
198 					 ipf_stack_t *));
199 static	ipfunc_t	fr_findfunc __P((ipfunc_t));
200 static	frentry_t	*fr_firewall __P((fr_info_t *, u_32_t *));
201 static	int		fr_funcinit __P((frentry_t *fr, ipf_stack_t *));
202 static	INLINE void	frpr_ah __P((fr_info_t *));
203 static	INLINE void	frpr_esp __P((fr_info_t *));
204 static	INLINE void	frpr_gre __P((fr_info_t *));
205 static	INLINE void	frpr_udp __P((fr_info_t *));
206 static	INLINE void	frpr_tcp __P((fr_info_t *));
207 static	INLINE void	frpr_icmp __P((fr_info_t *));
208 static	INLINE void	frpr_ipv4hdr __P((fr_info_t *));
209 static	INLINE int	frpr_pullup __P((fr_info_t *, int));
210 static	INLINE void	frpr_short __P((fr_info_t *, int));
211 static	INLINE void	frpr_tcpcommon __P((fr_info_t *));
212 static	INLINE void	frpr_udpcommon __P((fr_info_t *));
213 static	INLINE int	fr_updateipid __P((fr_info_t *));
214 #ifdef	IPFILTER_LOOKUP
215 static	int		fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *));
216 static	INLINE void	*fr_resolvelookup __P((u_int, u_int, lookupfunc_t *,
217 					       ipf_stack_t *));
218 #endif
219 static	void		frsynclist __P((int, int, void *, char *, frentry_t *,
220     ipf_stack_t *));
221 static	void		*fr_ifsync __P((int, int, char *, char *,
222 					void *, void *, ipf_stack_t *));
223 static	ipftuneable_t	*fr_findtunebyname __P((const char *, ipf_stack_t *));
224 static	ipftuneable_t	*fr_findtunebycookie __P((void *, void **, ipf_stack_t *));
225 
226 
227 /*
228  * bit values for identifying presence of individual IP options
229  * All of these tables should be ordered by increasing key value on the left
230  * hand side to allow for binary searching of the array and include a trailer
231  * with a 0 for the bitmask for linear searches to easily find the end with.
232  */
233 const	struct	optlist	ipopts[20] = {
234 	{ IPOPT_NOP,	0x000001 },
235 	{ IPOPT_RR,	0x000002 },
236 	{ IPOPT_ZSU,	0x000004 },
237 	{ IPOPT_MTUP,	0x000008 },
238 	{ IPOPT_MTUR,	0x000010 },
239 	{ IPOPT_ENCODE,	0x000020 },
240 	{ IPOPT_TS,	0x000040 },
241 	{ IPOPT_TR,	0x000080 },
242 	{ IPOPT_SECURITY, 0x000100 },
243 	{ IPOPT_LSRR,	0x000200 },
244 	{ IPOPT_E_SEC,	0x000400 },
245 	{ IPOPT_CIPSO,	0x000800 },
246 	{ IPOPT_SATID,	0x001000 },
247 	{ IPOPT_SSRR,	0x002000 },
248 	{ IPOPT_ADDEXT,	0x004000 },
249 	{ IPOPT_VISA,	0x008000 },
250 	{ IPOPT_IMITD,	0x010000 },
251 	{ IPOPT_EIP,	0x020000 },
252 	{ IPOPT_FINN,	0x040000 },
253 	{ 0,		0x000000 }
254 };
255 
256 #ifdef USE_INET6
257 struct optlist ip6exthdr[] = {
258 	{ IPPROTO_HOPOPTS,		0x000001 },
259 	{ IPPROTO_IPV6,			0x000002 },
260 	{ IPPROTO_ROUTING,		0x000004 },
261 	{ IPPROTO_FRAGMENT,		0x000008 },
262 	{ IPPROTO_ESP,			0x000010 },
263 	{ IPPROTO_AH,			0x000020 },
264 	{ IPPROTO_NONE,			0x000040 },
265 	{ IPPROTO_DSTOPTS,		0x000080 },
266 	{ 0,				0 }
267 };
268 #endif
269 
270 struct optlist tcpopts[] = {
271 	{ TCPOPT_NOP,			0x000001 },
272 	{ TCPOPT_MAXSEG,		0x000002 },
273 	{ TCPOPT_WINDOW,		0x000004 },
274 	{ TCPOPT_SACK_PERMITTED,	0x000008 },
275 	{ TCPOPT_SACK,			0x000010 },
276 	{ TCPOPT_TIMESTAMP,		0x000020 },
277 	{ 0,				0x000000 }
278 };
279 
280 /*
281  * bit values for identifying presence of individual IP security options
282  */
283 const	struct	optlist	secopt[8] = {
284 	{ IPSO_CLASS_RES4,	0x01 },
285 	{ IPSO_CLASS_TOPS,	0x02 },
286 	{ IPSO_CLASS_SECR,	0x04 },
287 	{ IPSO_CLASS_RES3,	0x08 },
288 	{ IPSO_CLASS_CONF,	0x10 },
289 	{ IPSO_CLASS_UNCL,	0x20 },
290 	{ IPSO_CLASS_RES2,	0x40 },
291 	{ IPSO_CLASS_RES1,	0x80 }
292 };
293 
294 
295 /*
296  * Table of functions available for use with call rules.
297  */
298 static ipfunc_resolve_t fr_availfuncs[] = {
299 #ifdef	IPFILTER_LOOKUP
300 	{ "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit },
301 	{ "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit },
302 #endif
303 	{ "", NULL }
304 };
305 
306 
307 /*
308  * The next section of code is a a collection of small routines that set
309  * fields in the fr_info_t structure passed based on properties of the
310  * current packet.  There are different routines for the same protocol
311  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
312  * will "special" inspection for setup, is now more easily done by adding
313  * a new routine and expanding the frpr_ipinit*() function rather than by
314  * adding more code to a growing switch statement.
315  */
316 #ifdef USE_INET6
317 static	INLINE int	frpr_ah6 __P((fr_info_t *));
318 static	INLINE void	frpr_esp6 __P((fr_info_t *));
319 static	INLINE void	frpr_gre6 __P((fr_info_t *));
320 static	INLINE void	frpr_udp6 __P((fr_info_t *));
321 static	INLINE void	frpr_tcp6 __P((fr_info_t *));
322 static	INLINE void	frpr_icmp6 __P((fr_info_t *));
323 static	INLINE int	frpr_ipv6hdr __P((fr_info_t *));
324 static	INLINE void	frpr_short6 __P((fr_info_t *, int));
325 static	INLINE int	frpr_hopopts6 __P((fr_info_t *));
326 static	INLINE int	frpr_routing6 __P((fr_info_t *));
327 static	INLINE int	frpr_dstopts6 __P((fr_info_t *));
328 static	INLINE int	frpr_fragment6 __P((fr_info_t *));
329 static	INLINE int	frpr_ipv6exthdr __P((fr_info_t *, int, int));
330 
331 
332 /* ------------------------------------------------------------------------ */
333 /* Function:    frpr_short6                                                 */
334 /* Returns:     void                                                        */
335 /* Parameters:  fin(I) - pointer to packet information                      */
336 /*                                                                          */
337 /* IPv6 Only                                                                */
338 /* This is function enforces the 'is a packet too short to be legit' rule   */
339 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
340 /* for frpr_short() for more details.                                       */
341 /* ------------------------------------------------------------------------ */
342 static INLINE void frpr_short6(fin, xmin)
343 fr_info_t *fin;
344 int xmin;
345 {
346 
347 	if (fin->fin_dlen < xmin)
348 		fin->fin_flx |= FI_SHORT;
349 }
350 
351 
352 /* ------------------------------------------------------------------------ */
353 /* Function:    frpr_ipv6hdr                                                */
354 /* Returns:     int                                                         */
355 /* Parameters:  fin(I) - pointer to packet information                      */
356 /*                                                                          */
357 /* IPv6 Only                                                                */
358 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
359 /* per-protocol analyzer if it exists.                                      */
360 /* ------------------------------------------------------------------------ */
361 static INLINE int frpr_ipv6hdr(fin)
362 fr_info_t *fin;
363 {
364 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
365 	int p, go = 1, i, hdrcount;
366 	fr_ip_t *fi = &fin->fin_fi;
367 
368 	fin->fin_off = 0;
369 
370 	fi->fi_tos = 0;
371 	fi->fi_optmsk = 0;
372 	fi->fi_secmsk = 0;
373 	fi->fi_auth = 0;
374 
375 	p = ip6->ip6_nxt;
376 	fi->fi_ttl = ip6->ip6_hlim;
377 	fi->fi_src.in6 = ip6->ip6_src;
378 	fi->fi_dst.in6 = ip6->ip6_dst;
379 	fin->fin_id = 0;
380 
381 	hdrcount = 0;
382 	while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) {
383 		switch (p)
384 		{
385 		case IPPROTO_UDP :
386 			frpr_udp6(fin);
387 			go = 0;
388 			break;
389 
390 		case IPPROTO_TCP :
391 			frpr_tcp6(fin);
392 			go = 0;
393 			break;
394 
395 		case IPPROTO_ICMPV6 :
396 			frpr_icmp6(fin);
397 			go = 0;
398 			break;
399 
400 		case IPPROTO_GRE :
401 			frpr_gre6(fin);
402 			go = 0;
403 			break;
404 
405 		case IPPROTO_HOPOPTS :
406 			/*
407 			 * hop by hop ext header is only allowed
408 			 * right after IPv6 header.
409 			 */
410 			if (hdrcount != 0) {
411 				fin->fin_flx |= FI_BAD;
412 				p = IPPROTO_NONE;
413 			} else {
414 				p = frpr_hopopts6(fin);
415 			}
416 			break;
417 
418 		case IPPROTO_DSTOPTS :
419 			p = frpr_dstopts6(fin);
420 			break;
421 
422 		case IPPROTO_ROUTING :
423 			p = frpr_routing6(fin);
424 			break;
425 
426 		case IPPROTO_AH :
427 			p = frpr_ah6(fin);
428 			break;
429 
430 		case IPPROTO_ESP :
431 			frpr_esp6(fin);
432 			go = 0;
433 			break;
434 
435 		case IPPROTO_IPV6 :
436 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
437 				if (ip6exthdr[i].ol_val == p) {
438 					fin->fin_flx |= ip6exthdr[i].ol_bit;
439 					break;
440 				}
441 			go = 0;
442 			break;
443 
444 		case IPPROTO_NONE :
445 			go = 0;
446 			break;
447 
448 		case IPPROTO_FRAGMENT :
449 			p = frpr_fragment6(fin);
450 			if (fin->fin_off != 0)  /* Not the first frag */
451 				go = 0;
452 			break;
453 
454 		default :
455 			go = 0;
456 			break;
457 		}
458 		hdrcount++;
459 
460 		/*
461 		 * It is important to note that at this point, for the
462 		 * extension headers (go != 0), the entire header may not have
463 		 * been pulled up when the code gets to this point.  This is
464 		 * only done for "go != 0" because the other header handlers
465 		 * will all pullup their complete header.  The other indicator
466 		 * of an incomplete packet is that this was just an extension
467 		 * header.
468 		 */
469 		if ((go != 0) && (p != IPPROTO_NONE) &&
470 		    (frpr_pullup(fin, 0) == -1)) {
471 			p = IPPROTO_NONE;
472 			go = 0;
473 		}
474 	}
475 	fi->fi_p = p;
476 
477 	if (fin->fin_flx & FI_BAD)
478 		return -1;
479 
480 	return 0;
481 }
482 
483 
484 /* ------------------------------------------------------------------------ */
485 /* Function:    frpr_ipv6exthdr                                             */
486 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
487 /* Parameters:  fin(I)      - pointer to packet information                 */
488 /*              multiple(I) - flag indicating yes/no if multiple occurances */
489 /*                            of this extension header are allowed.         */
490 /*              proto(I)    - protocol number for this extension header     */
491 /*                                                                          */
492 /* IPv6 Only                                                                */
493 /* ------------------------------------------------------------------------ */
494 static INLINE int frpr_ipv6exthdr(fin, multiple, proto)
495 fr_info_t *fin;
496 int multiple, proto;
497 {
498 	struct ip6_ext *hdr;
499 	u_short shift;
500 	int i;
501 
502 	fin->fin_flx |= FI_V6EXTHDR;
503 
504 				/* 8 is default length of extension hdr */
505 	if ((fin->fin_dlen - 8) < 0) {
506 		fin->fin_flx |= FI_SHORT;
507 		return IPPROTO_NONE;
508 	}
509 
510 	if (frpr_pullup(fin, 8) == -1)
511 		return IPPROTO_NONE;
512 
513 	hdr = fin->fin_dp;
514 	shift = 8 + (hdr->ip6e_len << 3);
515 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
516 		fin->fin_flx |= FI_BAD;
517 		return IPPROTO_NONE;
518 	}
519 
520 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
521 		if (ip6exthdr[i].ol_val == proto) {
522 			/*
523 			 * Most IPv6 extension headers are only allowed once.
524 			 */
525 			if ((multiple == 0) &&
526 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
527 				fin->fin_flx |= FI_BAD;
528 			else
529 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
530 			break;
531 		}
532 
533 	fin->fin_dp = (char *)fin->fin_dp + shift;
534 	fin->fin_dlen -= shift;
535 
536 	return hdr->ip6e_nxt;
537 }
538 
539 
540 /* ------------------------------------------------------------------------ */
541 /* Function:    frpr_hopopts6                                               */
542 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
543 /* Parameters:  fin(I) - pointer to packet information                      */
544 /*                                                                          */
545 /* IPv6 Only                                                                */
546 /* This is function checks pending hop by hop options extension header      */
547 /* ------------------------------------------------------------------------ */
548 static INLINE int frpr_hopopts6(fin)
549 fr_info_t *fin;
550 {
551 	return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
552 }
553 
554 
555 /* ------------------------------------------------------------------------ */
556 /* Function:    frpr_routing6                                               */
557 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
558 /* Parameters:  fin(I) - pointer to packet information                      */
559 /*                                                                          */
560 /* IPv6 Only                                                                */
561 /* This is function checks pending routing extension header                 */
562 /* ------------------------------------------------------------------------ */
563 static INLINE int frpr_routing6(fin)
564 fr_info_t *fin;
565 {
566 	struct ip6_ext *hdr;
567 	int shift;
568 
569 	hdr = fin->fin_dp;
570 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE)
571 		return IPPROTO_NONE;
572 
573 	shift = 8 + (hdr->ip6e_len << 3);
574 	/*
575 	 * Nasty extension header length?
576 	 */
577 	if ((hdr->ip6e_len << 3) & 15) {
578 		fin->fin_flx |= FI_BAD;
579 		/*
580 		 * Compensate for the changes made in frpr_ipv6exthdr()
581 		 */
582 		fin->fin_dlen += shift;
583 		fin->fin_dp = (char *)fin->fin_dp - shift;
584 		return IPPROTO_NONE;
585 	}
586 
587 	return hdr->ip6e_nxt;
588 }
589 
590 
591 /* ------------------------------------------------------------------------ */
592 /* Function:    frpr_fragment6                                              */
593 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
594 /* Parameters:  fin(I) - pointer to packet information                      */
595 /*                                                                          */
596 /* IPv6 Only                                                                */
597 /* Examine the IPv6 fragment header and extract fragment offset information.*/
598 /*                                                                          */
599 /* We don't know where the transport layer header (or whatever is next is), */
600 /* as it could be behind destination options (amongst others).  Because     */
601 /* there is no fragment cache, there is no knowledge about whether or not an*/
602 /* upper layer header has been seen (or where it ends) and thus we are not  */
603 /* able to continue processing beyond this header with any confidence.      */
604 /* ------------------------------------------------------------------------ */
605 static INLINE int frpr_fragment6(fin)
606 fr_info_t *fin;
607 {
608 	struct ip6_frag *frag;
609 	int dlen;
610 
611 	fin->fin_flx |= FI_FRAG;
612 
613 	dlen = fin->fin_dlen;
614 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE)
615 		return IPPROTO_NONE;
616 
617 	if (frpr_pullup(fin, sizeof(*frag)) == -1)
618 		return IPPROTO_NONE;
619 
620 	frpr_short6(fin, sizeof(*frag));
621 
622 	if ((fin->fin_flx & FI_SHORT) != 0)
623 		return IPPROTO_NONE;
624 
625 	frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag));
626 	/*
627 	 * Fragment but no fragmentation info set?  Bad packet...
628 	 */
629 	if (frag->ip6f_offlg == 0) {
630 		fin->fin_flx |= FI_BAD;
631 		return IPPROTO_NONE;
632 	}
633 
634 	fin->fin_id = frag->ip6f_ident;
635 	fin->fin_off = frag->ip6f_offlg & IP6F_OFF_MASK;
636 	fin->fin_off = ntohs(fin->fin_off);
637 	if (fin->fin_off != 0)
638 		fin->fin_flx |= FI_FRAGBODY;
639 
640 	fin->fin_dp = (char *)frag + sizeof(*frag);
641 	fin->fin_dlen = dlen - sizeof(*frag);
642 
643 	/* length of hdrs(after frag hdr) + data */
644 	fin->fin_flen = fin->fin_dlen;
645 
646 	/*
647 	 * If the frag is not the last one and the payload length
648 	 * is not multiple of 8, it must be dropped.
649 	 */
650 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) && (dlen % 8)) {
651 		fin->fin_flx |= FI_BAD;
652 		return IPPROTO_NONE;
653 	}
654 
655 	return frag->ip6f_nxt;
656 }
657 
658 
659 /* ------------------------------------------------------------------------ */
660 /* Function:    frpr_dstopts6                                               */
661 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
662 /* Parameters:  fin(I) - pointer to packet information                      */
663 /*              nextheader(I) - stores next header value                    */
664 /*                                                                          */
665 /* IPv6 Only                                                                */
666 /* This is function checks pending destination options extension header     */
667 /* ------------------------------------------------------------------------ */
668 static INLINE int frpr_dstopts6(fin)
669 fr_info_t *fin;
670 {
671 	return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS);
672 }
673 
674 
675 /* ------------------------------------------------------------------------ */
676 /* Function:    frpr_icmp6                                                  */
677 /* Returns:     void                                                        */
678 /* Parameters:  fin(I) - pointer to packet information                      */
679 /*                                                                          */
680 /* IPv6 Only                                                                */
681 /* This routine is mainly concerned with determining the minimum valid size */
682 /* for an ICMPv6 packet.                                                    */
683 /* ------------------------------------------------------------------------ */
684 static INLINE void frpr_icmp6(fin)
685 fr_info_t *fin;
686 {
687 	int minicmpsz = sizeof(struct icmp6_hdr);
688 	struct icmp6_hdr *icmp6;
689 
690 	if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1)
691 		return;
692 
693 	if (fin->fin_dlen > 1) {
694 		icmp6 = fin->fin_dp;
695 
696 		fin->fin_data[0] = *(u_short *)icmp6;
697 
698 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
699 			fin->fin_flx |= FI_ICMPQUERY;
700 
701 		switch (icmp6->icmp6_type)
702 		{
703 		case ICMP6_ECHO_REPLY :
704 		case ICMP6_ECHO_REQUEST :
705 			if (fin->fin_dlen >= 6)
706 				fin->fin_data[1] = icmp6->icmp6_id;
707 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
708 			break;
709 		case ICMP6_DST_UNREACH :
710 		case ICMP6_PACKET_TOO_BIG :
711 		case ICMP6_TIME_EXCEEDED :
712 		case ICMP6_PARAM_PROB :
713 			if ((fin->fin_m != NULL) &&
714 			    (M_LEN(fin->fin_m) < fin->fin_plen)) {
715 				if (fr_coalesce(fin) != 1)
716 					return;
717 			}
718 			fin->fin_flx |= FI_ICMPERR;
719 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
720 			break;
721 		default :
722 			break;
723 		}
724 	}
725 
726 	frpr_short6(fin, minicmpsz);
727 	fin->fin_flen -= fin->fin_dlen - minicmpsz;
728 }
729 
730 
731 /* ------------------------------------------------------------------------ */
732 /* Function:    frpr_udp6                                                   */
733 /* Returns:     void                                                        */
734 /* Parameters:  fin(I) - pointer to packet information                      */
735 /*                                                                          */
736 /* IPv6 Only                                                                */
737 /* Analyse the packet for IPv6/UDP properties.                              */
738 /* Is not expected to be called for fragmented packets.                     */
739 /* ------------------------------------------------------------------------ */
740 static INLINE void frpr_udp6(fin)
741 fr_info_t *fin;
742 {
743 
744 	fr_checkv6sum(fin);
745 
746 	frpr_short6(fin, sizeof(struct udphdr));
747 	if (frpr_pullup(fin, sizeof(struct udphdr)) == -1)
748 		return;
749 
750 	fin->fin_flen -= fin->fin_dlen - sizeof(struct udphdr);
751 
752 	frpr_udpcommon(fin);
753 }
754 
755 
756 /* ------------------------------------------------------------------------ */
757 /* Function:    frpr_tcp6                                                   */
758 /* Returns:     void                                                        */
759 /* Parameters:  fin(I) - pointer to packet information                      */
760 /*                                                                          */
761 /* IPv6 Only                                                                */
762 /* Analyse the packet for IPv6/TCP properties.                              */
763 /* Is not expected to be called for fragmented packets.                     */
764 /* ------------------------------------------------------------------------ */
765 static INLINE void frpr_tcp6(fin)
766 fr_info_t *fin;
767 {
768 
769 	fr_checkv6sum(fin);
770 
771 	frpr_short6(fin, sizeof(struct tcphdr));
772 	if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1)
773 		return;
774 
775 	fin->fin_flen -= fin->fin_dlen - sizeof(struct tcphdr);
776 
777 	frpr_tcpcommon(fin);
778 }
779 
780 
781 /* ------------------------------------------------------------------------ */
782 /* Function:    frpr_esp6                                                   */
783 /* Returns:     void                                                        */
784 /* Parameters:  fin(I) - pointer to packet information                      */
785 /*                                                                          */
786 /* IPv6 Only                                                                */
787 /* Analyse the packet for ESP properties.                                   */
788 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
789 /* even though the newer ESP packets must also have a sequence number that  */
790 /* is 32bits as well, it is not possible(?) to determine the version from a */
791 /* simple packet header.                                                    */
792 /* ------------------------------------------------------------------------ */
793 static INLINE void frpr_esp6(fin)
794 fr_info_t *fin;
795 {
796 	int i;
797 	frpr_short6(fin, sizeof(grehdr_t));
798 
799 	(void) frpr_pullup(fin, 8);
800 
801 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
802 		if (ip6exthdr[i].ol_val == IPPROTO_ESP) {
803 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
804 			break;
805 		}
806 }
807 
808 
809 /* ------------------------------------------------------------------------ */
810 /* Function:    frpr_ah6                                                    */
811 /* Returns:     void                                                        */
812 /* Parameters:  fin(I) - pointer to packet information                      */
813 /*                                                                          */
814 /* IPv6 Only                                                                */
815 /* Analyse the packet for AH properties.                                    */
816 /* The minimum length is taken to be the combination of all fields in the   */
817 /* header being present and no authentication data (null algorithm used.)   */
818 /* ------------------------------------------------------------------------ */
819 static INLINE int frpr_ah6(fin)
820 fr_info_t *fin;
821 {
822 	authhdr_t *ah;
823 	int i, shift;
824 
825 	frpr_short6(fin, 12);
826 
827 	if (frpr_pullup(fin, sizeof(*ah)) == -1)
828 		return IPPROTO_NONE;
829 
830 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
831 		if (ip6exthdr[i].ol_val == IPPROTO_AH) {
832 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
833 			break;
834 		}
835 
836 	ah = (authhdr_t *)fin->fin_dp;
837 
838 	shift = (ah->ah_plen + 2) * 4;
839 	fin->fin_dlen -= shift;
840 	fin->fin_dp = (char*)fin->fin_dp + shift;
841 
842 	return ah->ah_next;
843 }
844 
845 
846 /* ------------------------------------------------------------------------ */
847 /* Function:    frpr_gre6                                                   */
848 /* Returns:     void                                                        */
849 /* Parameters:  fin(I) - pointer to packet information                      */
850 /*                                                                          */
851 /* Analyse the packet for GRE properties.                                   */
852 /* ------------------------------------------------------------------------ */
853 static INLINE void frpr_gre6(fin)
854 fr_info_t *fin;
855 {
856 	grehdr_t *gre;
857 
858 	frpr_short6(fin, sizeof(grehdr_t));
859 
860 	if (frpr_pullup(fin, sizeof(grehdr_t)) == -1)
861 		return;
862 
863 	gre = fin->fin_dp;
864 	if (GRE_REV(gre->gr_flags) == 1)
865 		fin->fin_data[0] = gre->gr_call;
866 }
867 #endif	/* USE_INET6 */
868 
869 
870 /* ------------------------------------------------------------------------ */
871 /* Function:    frpr_pullup                                                 */
872 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
873 /* Parameters:  fin(I)  - pointer to packet information                     */
874 /*              plen(I) - length (excluding L3 header) to pullup            */
875 /*                                                                          */
876 /* Short inline function to cut down on code duplication to perform a call  */
877 /* to fr_pullup to ensure there is the required amount of data,             */
878 /* consecutively in the packet buffer.                                      */
879 /* ------------------------------------------------------------------------ */
880 static INLINE int frpr_pullup(fin, plen)
881 fr_info_t *fin;
882 int plen;
883 {
884 #if defined(_KERNEL)
885 	if (fin->fin_m != NULL) {
886 		if (fin->fin_dp != NULL)
887 			plen += (char *)fin->fin_dp -
888 				((char *)fin->fin_ip + fin->fin_hlen);
889 		plen += ((char *)fin->fin_ip - MTOD(fin->fin_m, char *)) +
890 		    fin->fin_hlen;
891 		if (M_LEN(fin->fin_m) < plen) {
892 			if (fr_pullup(fin->fin_m, fin, plen) == NULL)
893 				return -1;
894 		}
895 	}
896 #endif
897 	return 0;
898 }
899 
900 
901 /* ------------------------------------------------------------------------ */
902 /* Function:    frpr_short                                                  */
903 /* Returns:     void                                                        */
904 /* Parameters:  fin(I)  - pointer to packet information                     */
905 /*              xmin(I) - minimum header size                               */
906 /*                                                                          */
907 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
908 /* applying here is that the packet must not be fragmented within the layer */
909 /* 4 header.  That is, it must not be a fragment that has its offset set to */
910 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
911 /* entire layer 4 header must be present (min).                             */
912 /* ------------------------------------------------------------------------ */
913 static INLINE void frpr_short(fin, xmin)
914 fr_info_t *fin;
915 int xmin;
916 {
917 
918 	if (fin->fin_off == 0) {
919 		if (fin->fin_dlen < xmin)
920 			fin->fin_flx |= FI_SHORT;
921 	} else if (fin->fin_off < xmin) {
922 		fin->fin_flx |= FI_SHORT;
923 	}
924 }
925 
926 
927 /* ------------------------------------------------------------------------ */
928 /* Function:    frpr_icmp                                                   */
929 /* Returns:     void                                                        */
930 /* Parameters:  fin(I) - pointer to packet information                      */
931 /*                                                                          */
932 /* IPv4 Only                                                                */
933 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
934 /* except extrememly bad packets, both type and code will be present.       */
935 /* The expected minimum size of an ICMP packet is very much dependent on    */
936 /* the type of it.                                                          */
937 /*                                                                          */
938 /* XXX - other ICMP sanity checks?                                          */
939 /* ------------------------------------------------------------------------ */
940 static INLINE void frpr_icmp(fin)
941 fr_info_t *fin;
942 {
943 	int minicmpsz = sizeof(struct icmp);
944 	icmphdr_t *icmp;
945 	ip_t *oip;
946 	ipf_stack_t *ifs = fin->fin_ifs;
947 
948 	if (fin->fin_off != 0) {
949 		frpr_short(fin, ICMPERR_ICMPHLEN);
950 		return;
951 	}
952 
953 	if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1)
954 		return;
955 
956 	fr_checkv4sum(fin);
957 
958 	if (fin->fin_dlen > 1) {
959 		icmp = fin->fin_dp;
960 
961 		fin->fin_data[0] = *(u_short *)icmp;
962 
963 		switch (icmp->icmp_type)
964 		{
965 		case ICMP_ECHOREPLY :
966 		case ICMP_ECHO :
967 		/* Router discovery messaes - RFC 1256 */
968 		case ICMP_ROUTERADVERT :
969 		case ICMP_ROUTERSOLICIT :
970 			minicmpsz = ICMP_MINLEN;
971 			break;
972 		/*
973 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
974 		 * 3 * timestamp(3 * 4)
975 		 */
976 		case ICMP_TSTAMP :
977 		case ICMP_TSTAMPREPLY :
978 			minicmpsz = 20;
979 			break;
980 		/*
981 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
982 		 * mask(4)
983 		 */
984 		case ICMP_MASKREQ :
985 		case ICMP_MASKREPLY :
986 			minicmpsz = 12;
987 			break;
988 		/*
989 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
990 		 */
991 		case ICMP_UNREACH :
992 			if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
993 				if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu)
994 					fin->fin_flx |= FI_BAD;
995 			}
996 			/* FALLTHRU */
997 		case ICMP_SOURCEQUENCH :
998 		case ICMP_REDIRECT :
999 		case ICMP_TIMXCEED :
1000 		case ICMP_PARAMPROB :
1001 			fin->fin_flx |= FI_ICMPERR;
1002 			if (fr_coalesce(fin) != 1)
1003 				return;
1004 			/*
1005 			 * ICMP error packets should not be generated for IP
1006 			 * packets that are a fragment that isn't the first
1007 			 * fragment.
1008 			 */
1009 			oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1010 			if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1011 				fin->fin_flx |= FI_BAD;
1012 			break;
1013 		default :
1014 			break;
1015 		}
1016 
1017 		if (fin->fin_dlen >= 6)				/* ID field */
1018 			fin->fin_data[1] = icmp->icmp_id;
1019 	}
1020 
1021 	frpr_short(fin, minicmpsz);
1022 }
1023 
1024 
1025 /* ------------------------------------------------------------------------ */
1026 /* Function:    frpr_tcpcommon                                              */
1027 /* Returns:     void                                                        */
1028 /* Parameters:  fin(I) - pointer to packet information                      */
1029 /*                                                                          */
1030 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1031 /* and make some checks with how they interact with other fields.           */
1032 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1033 /* valid and mark the packet as bad if not.                                 */
1034 /* ------------------------------------------------------------------------ */
1035 static INLINE void frpr_tcpcommon(fin)
1036 fr_info_t *fin;
1037 {
1038 	int flags, tlen;
1039 	tcphdr_t *tcp;
1040 
1041 	fin->fin_flx |= FI_TCPUDP;
1042 	if (fin->fin_off != 0)
1043 		return;
1044 
1045 	if (frpr_pullup(fin, sizeof(*tcp)) == -1)
1046 		return;
1047 	tcp = fin->fin_dp;
1048 
1049 	if (fin->fin_dlen > 3) {
1050 		fin->fin_sport = ntohs(tcp->th_sport);
1051 		fin->fin_dport = ntohs(tcp->th_dport);
1052 	}
1053 
1054 	if ((fin->fin_flx & FI_SHORT) != 0)
1055 		return;
1056 
1057 	/*
1058 	 * Use of the TCP data offset *must* result in a value that is at
1059 	 * least the same size as the TCP header.
1060 	 */
1061 	tlen = TCP_OFF(tcp) << 2;
1062 	if (tlen < sizeof(tcphdr_t)) {
1063 		fin->fin_flx |= FI_BAD;
1064 		return;
1065 	}
1066 
1067 	flags = tcp->th_flags;
1068 	fin->fin_tcpf = tcp->th_flags;
1069 
1070 	/*
1071 	 * If the urgent flag is set, then the urgent pointer must
1072 	 * also be set and vice versa.  Good TCP packets do not have
1073 	 * just one of these set.
1074 	 */
1075 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1076 		fin->fin_flx |= FI_BAD;
1077 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1078 		/* Ignore this case, it shows up in "real" traffic with */
1079 		/* bogus values in the urgent pointer field. */
1080 		flags = flags; /* LINT */
1081 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1082 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1083 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1084 		fin->fin_flx |= FI_BAD;
1085 	} else if (!(flags & TH_ACK)) {
1086 		/*
1087 		 * If the ack bit isn't set, then either the SYN or
1088 		 * RST bit must be set.  If the SYN bit is set, then
1089 		 * we expect the ACK field to be 0.  If the ACK is
1090 		 * not set and if URG, PSH or FIN are set, consdier
1091 		 * that to indicate a bad TCP packet.
1092 		 */
1093 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1094 			/*
1095 			 * Cisco PIX sets the ACK field to a random value.
1096 			 * In light of this, do not set FI_BAD until a patch
1097 			 * is available from Cisco to ensure that
1098 			 * interoperability between existing systems is
1099 			 * achieved.
1100 			 */
1101 			/*fin->fin_flx |= FI_BAD*/;
1102 			flags = flags; /* LINT */
1103 		} else if (!(flags & (TH_RST|TH_SYN))) {
1104 			fin->fin_flx |= FI_BAD;
1105 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1106 			fin->fin_flx |= FI_BAD;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * At this point, it's not exactly clear what is to be gained by
1112 	 * marking up which TCP options are and are not present.  The one we
1113 	 * are most interested in is the TCP window scale.  This is only in
1114 	 * a SYN packet [RFC1323] so we don't need this here...?
1115 	 * Now if we were to analyse the header for passive fingerprinting,
1116 	 * then that might add some weight to adding this...
1117 	 */
1118 	if (tlen == sizeof(tcphdr_t))
1119 		return;
1120 
1121 	if (frpr_pullup(fin, tlen) == -1)
1122 		return;
1123 
1124 #if 0
1125 	ip = fin->fin_ip;
1126 	s = (u_char *)(tcp + 1);
1127 	off = IP_HL(ip) << 2;
1128 # ifdef _KERNEL
1129 	if (fin->fin_mp != NULL) {
1130 		mb_t *m = *fin->fin_mp;
1131 
1132 		if (off + tlen > M_LEN(m))
1133 			return;
1134 	}
1135 # endif
1136 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1137 		opt = *s;
1138 		if (opt == '\0')
1139 			break;
1140 		else if (opt == TCPOPT_NOP)
1141 			ol = 1;
1142 		else {
1143 			if (tlen < 2)
1144 				break;
1145 			ol = (int)*(s + 1);
1146 			if (ol < 2 || ol > tlen)
1147 				break;
1148 		}
1149 
1150 		for (i = 9, mv = 4; mv >= 0; ) {
1151 			op = ipopts + i;
1152 			if (opt == (u_char)op->ol_val) {
1153 				optmsk |= op->ol_bit;
1154 				break;
1155 			}
1156 		}
1157 		tlen -= ol;
1158 		s += ol;
1159 	}
1160 #endif /* 0 */
1161 }
1162 
1163 
1164 
1165 /* ------------------------------------------------------------------------ */
1166 /* Function:    frpr_udpcommon                                              */
1167 /* Returns:     void                                                        */
1168 /* Parameters:  fin(I) - pointer to packet information                      */
1169 /*                                                                          */
1170 /* Extract the UDP source and destination ports, if present.  If compiled   */
1171 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1172 /* ------------------------------------------------------------------------ */
1173 static INLINE void frpr_udpcommon(fin)
1174 fr_info_t *fin;
1175 {
1176 	udphdr_t *udp;
1177 
1178 	fin->fin_flx |= FI_TCPUDP;
1179 
1180 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1181 		if (frpr_pullup(fin, sizeof(*udp)) == -1) {
1182 			fin->fin_flx |= FI_SHORT;
1183 			return;
1184 		}
1185 
1186 		udp = fin->fin_dp;
1187 
1188 		fin->fin_sport = ntohs(udp->uh_sport);
1189 		fin->fin_dport = ntohs(udp->uh_dport);
1190 	}
1191 }
1192 
1193 
1194 /* ------------------------------------------------------------------------ */
1195 /* Function:    frpr_tcp                                                    */
1196 /* Returns:     void                                                        */
1197 /* Parameters:  fin(I) - pointer to packet information                      */
1198 /*                                                                          */
1199 /* IPv4 Only                                                                */
1200 /* Analyse the packet for IPv4/TCP properties.                              */
1201 /* ------------------------------------------------------------------------ */
1202 static INLINE void frpr_tcp(fin)
1203 fr_info_t *fin;
1204 {
1205 
1206 	fr_checkv4sum(fin);
1207 
1208 	frpr_short(fin, sizeof(tcphdr_t));
1209 
1210 	frpr_tcpcommon(fin);
1211 }
1212 
1213 
1214 /* ------------------------------------------------------------------------ */
1215 /* Function:    frpr_udp                                                    */
1216 /* Returns:     void                                                        */
1217 /* Parameters:  fin(I) - pointer to packet information                      */
1218 /*                                                                          */
1219 /* IPv4 Only                                                                */
1220 /* Analyse the packet for IPv4/UDP properties.                              */
1221 /* ------------------------------------------------------------------------ */
1222 static INLINE void frpr_udp(fin)
1223 fr_info_t *fin;
1224 {
1225 
1226 	fr_checkv4sum(fin);
1227 
1228 	frpr_short(fin, sizeof(udphdr_t));
1229 
1230 	frpr_udpcommon(fin);
1231 }
1232 
1233 
1234 /* ------------------------------------------------------------------------ */
1235 /* Function:    frpr_esp                                                    */
1236 /* Returns:     void                                                        */
1237 /* Parameters:  fin(I) - pointer to packet information                      */
1238 /*                                                                          */
1239 /* Analyse the packet for ESP properties.                                   */
1240 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1241 /* even though the newer ESP packets must also have a sequence number that  */
1242 /* is 32bits as well, it is not possible(?) to determine the version from a */
1243 /* simple packet header.                                                    */
1244 /* ------------------------------------------------------------------------ */
1245 static INLINE void frpr_esp(fin)
1246 fr_info_t *fin;
1247 {
1248 	if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1))
1249 		return;
1250 
1251 	frpr_short(fin, 8);
1252 }
1253 
1254 
1255 /* ------------------------------------------------------------------------ */
1256 /* Function:    frpr_ah                                                     */
1257 /* Returns:     void                                                        */
1258 /* Parameters:  fin(I) - pointer to packet information                      */
1259 /*                                                                          */
1260 /* Analyse the packet for AH properties.                                    */
1261 /* The minimum length is taken to be the combination of all fields in the   */
1262 /* header being present and no authentication data (null algorithm used.)   */
1263 /* ------------------------------------------------------------------------ */
1264 static INLINE void frpr_ah(fin)
1265 fr_info_t *fin;
1266 {
1267 	authhdr_t *ah;
1268 	int len;
1269 
1270 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1))
1271 		return;
1272 
1273 	ah = (authhdr_t *)fin->fin_dp;
1274 
1275 	len = (ah->ah_plen + 2) << 2;
1276 	frpr_short(fin, len);
1277 }
1278 
1279 
1280 /* ------------------------------------------------------------------------ */
1281 /* Function:    frpr_gre                                                    */
1282 /* Returns:     void                                                        */
1283 /* Parameters:  fin(I) - pointer to packet information                      */
1284 /*                                                                          */
1285 /* Analyse the packet for GRE properties.                                   */
1286 /* ------------------------------------------------------------------------ */
1287 static INLINE void frpr_gre(fin)
1288 fr_info_t *fin;
1289 {
1290 	grehdr_t *gre;
1291 
1292 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1))
1293 		return;
1294 
1295 	frpr_short(fin, sizeof(grehdr_t));
1296 
1297 	if (fin->fin_off == 0) {
1298 		gre = fin->fin_dp;
1299 		if (GRE_REV(gre->gr_flags) == 1)
1300 			fin->fin_data[0] = gre->gr_call;
1301 	}
1302 }
1303 
1304 
1305 /* ------------------------------------------------------------------------ */
1306 /* Function:    frpr_ipv4hdr                                                */
1307 /* Returns:     void                                                        */
1308 /* Parameters:  fin(I) - pointer to packet information                      */
1309 /*                                                                          */
1310 /* IPv4 Only                                                                */
1311 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1312 /* Check all options present and flag their presence if any exist.          */
1313 /* ------------------------------------------------------------------------ */
1314 static INLINE void frpr_ipv4hdr(fin)
1315 fr_info_t *fin;
1316 {
1317 	u_short optmsk = 0, secmsk = 0, auth = 0;
1318 	int hlen, ol, mv, p, i;
1319 	const struct optlist *op;
1320 	u_char *s, opt;
1321 	u_short off;
1322 	fr_ip_t *fi;
1323 	ip_t *ip;
1324 
1325 	fi = &fin->fin_fi;
1326 	hlen = fin->fin_hlen;
1327 
1328 	ip = fin->fin_ip;
1329 	p = ip->ip_p;
1330 	fi->fi_p = p;
1331 	fi->fi_tos = ip->ip_tos;
1332 	fin->fin_id = ip->ip_id;
1333 	off = ip->ip_off;
1334 
1335 	/* Get both TTL and protocol */
1336 	fi->fi_p = ip->ip_p;
1337 	fi->fi_ttl = ip->ip_ttl;
1338 #if 0
1339 	(*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4));
1340 #endif
1341 
1342 	/* Zero out bits not used in IPv6 address */
1343 	fi->fi_src.i6[1] = 0;
1344 	fi->fi_src.i6[2] = 0;
1345 	fi->fi_src.i6[3] = 0;
1346 	fi->fi_dst.i6[1] = 0;
1347 	fi->fi_dst.i6[2] = 0;
1348 	fi->fi_dst.i6[3] = 0;
1349 
1350 	fi->fi_saddr = ip->ip_src.s_addr;
1351 	fi->fi_daddr = ip->ip_dst.s_addr;
1352 
1353 	/*
1354 	 * set packet attribute flags based on the offset and
1355 	 * calculate the byte offset that it represents.
1356 	 */
1357 	off &= IP_MF|IP_OFFMASK;
1358 	if (off != 0) {
1359 		fi->fi_flx |= FI_FRAG;
1360 		off &= IP_OFFMASK;
1361 		if (off != 0) {
1362 			fin->fin_flx |= FI_FRAGBODY;
1363 			off <<= 3;
1364 			if ((off + fin->fin_dlen > 65535) ||
1365 			    (fin->fin_dlen == 0) ||
1366 			    ((ip->ip_off & IP_MF) && (fin->fin_dlen & 7))) {
1367 				/*
1368 				 * The length of the packet, starting at its
1369 				 * offset cannot exceed 65535 (0xffff) as the
1370 				 * length of an IP packet is only 16 bits.
1371 				 *
1372 				 * Any fragment that isn't the last fragment
1373 				 * must have a length greater than 0 and it
1374 				 * must be an even multiple of 8.
1375 				 */
1376 				fi->fi_flx |= FI_BAD;
1377 			}
1378 		}
1379 	}
1380 	fin->fin_off = off;
1381 
1382 	/*
1383 	 * Call per-protocol setup and checking
1384 	 */
1385 	switch (p)
1386 	{
1387 	case IPPROTO_UDP :
1388 		frpr_udp(fin);
1389 		break;
1390 	case IPPROTO_TCP :
1391 		frpr_tcp(fin);
1392 		break;
1393 	case IPPROTO_ICMP :
1394 		frpr_icmp(fin);
1395 		break;
1396 	case IPPROTO_AH :
1397 		frpr_ah(fin);
1398 		break;
1399 	case IPPROTO_ESP :
1400 		frpr_esp(fin);
1401 		break;
1402 	case IPPROTO_GRE :
1403 		frpr_gre(fin);
1404 		break;
1405 	}
1406 
1407 	ip = fin->fin_ip;
1408 	if (ip == NULL)
1409 		return;
1410 
1411 	/*
1412 	 * If it is a standard IP header (no options), set the flag fields
1413 	 * which relate to options to 0.
1414 	 */
1415 	if (hlen == sizeof(*ip)) {
1416 		fi->fi_optmsk = 0;
1417 		fi->fi_secmsk = 0;
1418 		fi->fi_auth = 0;
1419 		return;
1420 	}
1421 
1422 	/*
1423 	 * So the IP header has some IP options attached.  Walk the entire
1424 	 * list of options present with this packet and set flags to indicate
1425 	 * which ones are here and which ones are not.  For the somewhat out
1426 	 * of date and obscure security classification options, set a flag to
1427 	 * represent which classification is present.
1428 	 */
1429 	fi->fi_flx |= FI_OPTIONS;
1430 
1431 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1432 		opt = *s;
1433 		if (opt == '\0')
1434 			break;
1435 		else if (opt == IPOPT_NOP)
1436 			ol = 1;
1437 		else {
1438 			if (hlen < 2)
1439 				break;
1440 			ol = (int)*(s + 1);
1441 			if (ol < 2 || ol > hlen)
1442 				break;
1443 		}
1444 		for (i = 9, mv = 4; mv >= 0; ) {
1445 			op = ipopts + i;
1446 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1447 				optmsk |= op->ol_bit;
1448 				if (opt == IPOPT_SECURITY) {
1449 					const struct optlist *sp;
1450 					u_char	sec;
1451 					int j, m;
1452 
1453 					sec = *(s + 2);	/* classification */
1454 					for (j = 3, m = 2; m >= 0; ) {
1455 						sp = secopt + j;
1456 						if (sec == sp->ol_val) {
1457 							secmsk |= sp->ol_bit;
1458 							auth = *(s + 3);
1459 							auth *= 256;
1460 							auth += *(s + 4);
1461 							break;
1462 						}
1463 						if (sec < sp->ol_val)
1464 							j -= m;
1465 						else
1466 							j += m;
1467 						m--;
1468 					}
1469 				}
1470 				break;
1471 			}
1472 			if (opt < op->ol_val)
1473 				i -= mv;
1474 			else
1475 				i += mv;
1476 			mv--;
1477 		}
1478 		hlen -= ol;
1479 		s += ol;
1480 	}
1481 
1482 	/*
1483 	 *
1484 	 */
1485 	if (auth && !(auth & 0x0100))
1486 		auth &= 0xff00;
1487 	fi->fi_optmsk = optmsk;
1488 	fi->fi_secmsk = secmsk;
1489 	fi->fi_auth = auth;
1490 }
1491 
1492 
1493 /* ------------------------------------------------------------------------ */
1494 /* Function:    fr_makefrip                                                 */
1495 /* Returns:     int - 1 == hdr checking error, 0 == OK                      */
1496 /* Parameters:  hlen(I) - length of IP packet header                        */
1497 /*              ip(I)   - pointer to the IP header                          */
1498 /*              fin(IO) - pointer to packet information                     */
1499 /*                                                                          */
1500 /* Compact the IP header into a structure which contains just the info.     */
1501 /* which is useful for comparing IP headers with and store this information */
1502 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
1503 /* this function will be called with either an IPv4 or IPv6 packet.         */
1504 /* ------------------------------------------------------------------------ */
1505 int	fr_makefrip(hlen, ip, fin)
1506 int hlen;
1507 ip_t *ip;
1508 fr_info_t *fin;
1509 {
1510 	int v;
1511 
1512 	fin->fin_nat = NULL;
1513 	fin->fin_state = NULL;
1514 	fin->fin_depth = 0;
1515 	fin->fin_hlen = (u_short)hlen;
1516 	fin->fin_ip = ip;
1517 	fin->fin_rule = 0xffffffff;
1518 	fin->fin_group[0] = -1;
1519 	fin->fin_group[1] = '\0';
1520 	fin->fin_dlen = fin->fin_plen - hlen;
1521 	fin->fin_dp = (char *)ip + hlen;
1522 
1523 	v = fin->fin_v;
1524 	if (v == 4)
1525 		frpr_ipv4hdr(fin);
1526 #ifdef	USE_INET6
1527 	else if (v == 6) {
1528 		if (frpr_ipv6hdr(fin) == -1)
1529 			return -1;
1530 	}
1531 #endif
1532 	if (fin->fin_ip == NULL)
1533 		return -1;
1534 	return 0;
1535 }
1536 
1537 
1538 /* ------------------------------------------------------------------------ */
1539 /* Function:    fr_portcheck                                                */
1540 /* Returns:     int - 1 == port matched, 0 == port match failed             */
1541 /* Parameters:  frp(I) - pointer to port check `expression'                 */
1542 /*              pop(I) - pointer to port number to evaluate                 */
1543 /*                                                                          */
1544 /* Perform a comparison of a port number against some other(s), using a     */
1545 /* structure with compare information stored in it.                         */
1546 /* ------------------------------------------------------------------------ */
1547 static INLINE int fr_portcheck(frp, pop)
1548 frpcmp_t *frp;
1549 u_short *pop;
1550 {
1551 	u_short tup, po;
1552 	int err = 1;
1553 
1554 	tup = *pop;
1555 	po = frp->frp_port;
1556 
1557 	/*
1558 	 * Do opposite test to that required and continue if that succeeds.
1559 	 */
1560 	switch (frp->frp_cmp)
1561 	{
1562 	case FR_EQUAL :
1563 		if (tup != po) /* EQUAL */
1564 			err = 0;
1565 		break;
1566 	case FR_NEQUAL :
1567 		if (tup == po) /* NOTEQUAL */
1568 			err = 0;
1569 		break;
1570 	case FR_LESST :
1571 		if (tup >= po) /* LESSTHAN */
1572 			err = 0;
1573 		break;
1574 	case FR_GREATERT :
1575 		if (tup <= po) /* GREATERTHAN */
1576 			err = 0;
1577 		break;
1578 	case FR_LESSTE :
1579 		if (tup > po) /* LT or EQ */
1580 			err = 0;
1581 		break;
1582 	case FR_GREATERTE :
1583 		if (tup < po) /* GT or EQ */
1584 			err = 0;
1585 		break;
1586 	case FR_OUTRANGE :
1587 		if (tup >= po && tup <= frp->frp_top) /* Out of range */
1588 			err = 0;
1589 		break;
1590 	case FR_INRANGE :
1591 		if (tup <= po || tup >= frp->frp_top) /* In range */
1592 			err = 0;
1593 		break;
1594 	case FR_INCRANGE :
1595 		if (tup < po || tup > frp->frp_top) /* Inclusive range */
1596 			err = 0;
1597 		break;
1598 	default :
1599 		break;
1600 	}
1601 	return err;
1602 }
1603 
1604 
1605 /* ------------------------------------------------------------------------ */
1606 /* Function:    fr_tcpudpchk                                                */
1607 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
1608 /* Parameters:  fin(I) - pointer to packet information                      */
1609 /*              ft(I)  - pointer to structure with comparison data          */
1610 /*                                                                          */
1611 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
1612 /* structure containing information that we want to match against.          */
1613 /* ------------------------------------------------------------------------ */
1614 int fr_tcpudpchk(fin, ft)
1615 fr_info_t *fin;
1616 frtuc_t *ft;
1617 {
1618 	int err = 1;
1619 
1620 	/*
1621 	 * Both ports should *always* be in the first fragment.
1622 	 * So far, I cannot find any cases where they can not be.
1623 	 *
1624 	 * compare destination ports
1625 	 */
1626 	if (ft->ftu_dcmp)
1627 		err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport);
1628 
1629 	/*
1630 	 * compare source ports
1631 	 */
1632 	if (err && ft->ftu_scmp)
1633 		err = fr_portcheck(&ft->ftu_src, &fin->fin_sport);
1634 
1635 	/*
1636 	 * If we don't have all the TCP/UDP header, then how can we
1637 	 * expect to do any sort of match on it ?  If we were looking for
1638 	 * TCP flags, then NO match.  If not, then match (which should
1639 	 * satisfy the "short" class too).
1640 	 */
1641 	if (err && (fin->fin_p == IPPROTO_TCP)) {
1642 		if (fin->fin_flx & FI_SHORT)
1643 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
1644 		/*
1645 		 * Match the flags ?  If not, abort this match.
1646 		 */
1647 		if (ft->ftu_tcpfm &&
1648 		    ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) {
1649 			FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf,
1650 				 ft->ftu_tcpfm, ft->ftu_tcpf));
1651 			err = 0;
1652 		}
1653 	}
1654 	return err;
1655 }
1656 
1657 
1658 /* ------------------------------------------------------------------------ */
1659 /* Function:    fr_ipfcheck                                                 */
1660 /* Returns:     int - 0 == match, 1 == no match                             */
1661 /* Parameters:  fin(I)     - pointer to packet information                  */
1662 /*              fr(I)      - pointer to filter rule                         */
1663 /*              portcmp(I) - flag indicating whether to attempt matching on */
1664 /*                           TCP/UDP port data.                             */
1665 /*                                                                          */
1666 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
1667 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
1668 /* this function.                                                           */
1669 /* ------------------------------------------------------------------------ */
1670 static INLINE int fr_ipfcheck(fin, fr, portcmp)
1671 fr_info_t *fin;
1672 frentry_t *fr;
1673 int portcmp;
1674 {
1675 	u_32_t	*ld, *lm, *lip;
1676 	fripf_t *fri;
1677 	fr_ip_t *fi;
1678 	int i;
1679 	ipf_stack_t *ifs = fin->fin_ifs;
1680 
1681 	fi = &fin->fin_fi;
1682 	fri = fr->fr_ipf;
1683 	lip = (u_32_t *)fi;
1684 	lm = (u_32_t *)&fri->fri_mip;
1685 	ld = (u_32_t *)&fri->fri_ip;
1686 
1687 	/*
1688 	 * first 32 bits to check coversion:
1689 	 * IP version, TOS, TTL, protocol
1690 	 */
1691 	i = ((*lip & *lm) != *ld);
1692 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
1693 		   *lip, *lm, *ld));
1694 	if (i)
1695 		return 1;
1696 
1697 	/*
1698 	 * Next 32 bits is a constructed bitmask indicating which IP options
1699 	 * are present (if any) in this packet.
1700 	 */
1701 	lip++, lm++, ld++;
1702 	i |= ((*lip & *lm) != *ld);
1703 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
1704 		   *lip, *lm, *ld));
1705 	if (i)
1706 		return 1;
1707 
1708 	lip++, lm++, ld++;
1709 	/*
1710 	 * Unrolled loops (4 each, for 32 bits) for address checks.
1711 	 */
1712 	/*
1713 	 * Check the source address.
1714 	 */
1715 #ifdef	IPFILTER_LOOKUP
1716 	if (fr->fr_satype == FRI_LOOKUP) {
1717 		i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs);
1718 		if (i == -1)
1719 			return 1;
1720 		lip += 3;
1721 		lm += 3;
1722 		ld += 3;
1723 	} else {
1724 #endif
1725 		i = ((*lip & *lm) != *ld);
1726 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
1727 			   *lip, *lm, *ld));
1728 		if (fi->fi_v == 6) {
1729 			lip++, lm++, ld++;
1730 			i |= ((*lip & *lm) != *ld);
1731 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
1732 				   *lip, *lm, *ld));
1733 			lip++, lm++, ld++;
1734 			i |= ((*lip & *lm) != *ld);
1735 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
1736 				   *lip, *lm, *ld));
1737 			lip++, lm++, ld++;
1738 			i |= ((*lip & *lm) != *ld);
1739 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
1740 				   *lip, *lm, *ld));
1741 		} else {
1742 			lip += 3;
1743 			lm += 3;
1744 			ld += 3;
1745 		}
1746 #ifdef	IPFILTER_LOOKUP
1747 	}
1748 #endif
1749 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
1750 	if (i)
1751 		return 1;
1752 
1753 	/*
1754 	 * Check the destination address.
1755 	 */
1756 	lip++, lm++, ld++;
1757 #ifdef	IPFILTER_LOOKUP
1758 	if (fr->fr_datype == FRI_LOOKUP) {
1759 		i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs);
1760 		if (i == -1)
1761 			return 1;
1762 		lip += 3;
1763 		lm += 3;
1764 		ld += 3;
1765 	} else {
1766 #endif
1767 		i = ((*lip & *lm) != *ld);
1768 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
1769 			   *lip, *lm, *ld));
1770 		if (fi->fi_v == 6) {
1771 			lip++, lm++, ld++;
1772 			i |= ((*lip & *lm) != *ld);
1773 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
1774 				   *lip, *lm, *ld));
1775 			lip++, lm++, ld++;
1776 			i |= ((*lip & *lm) != *ld);
1777 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
1778 				   *lip, *lm, *ld));
1779 			lip++, lm++, ld++;
1780 			i |= ((*lip & *lm) != *ld);
1781 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
1782 				   *lip, *lm, *ld));
1783 		} else {
1784 			lip += 3;
1785 			lm += 3;
1786 			ld += 3;
1787 		}
1788 #ifdef	IPFILTER_LOOKUP
1789 	}
1790 #endif
1791 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
1792 	if (i)
1793 		return 1;
1794 	/*
1795 	 * IP addresses matched.  The next 32bits contains:
1796 	 * mast of old IP header security & authentication bits.
1797 	 */
1798 	lip++, lm++, ld++;
1799 	i |= ((*lip & *lm) != *ld);
1800 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n",
1801 		   *lip, *lm, *ld));
1802 
1803 	/*
1804 	 * Next we have 32 bits of packet flags.
1805 	 */
1806 	lip++, lm++, ld++;
1807 	i |= ((*lip & *lm) != *ld);
1808 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n",
1809 		   *lip, *lm, *ld));
1810 
1811 	if (i == 0) {
1812 		/*
1813 		 * If a fragment, then only the first has what we're
1814 		 * looking for here...
1815 		 */
1816 		if (portcmp) {
1817 			if (!fr_tcpudpchk(fin, &fr->fr_tuc))
1818 				i = 1;
1819 		} else {
1820 			if (fr->fr_dcmp || fr->fr_scmp ||
1821 			    fr->fr_tcpf || fr->fr_tcpfm)
1822 				i = 1;
1823 			if (fr->fr_icmpm || fr->fr_icmp) {
1824 				if (((fi->fi_p != IPPROTO_ICMP) &&
1825 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
1826 				    fin->fin_off || (fin->fin_dlen < 2))
1827 					i = 1;
1828 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
1829 					 fr->fr_icmp) {
1830 					FR_DEBUG(("i. %#x & %#x != %#x\n",
1831 						 fin->fin_data[0],
1832 						 fr->fr_icmpm, fr->fr_icmp));
1833 					i = 1;
1834 				}
1835 			}
1836 		}
1837 	}
1838 	return i;
1839 }
1840 
1841 
1842 /* ------------------------------------------------------------------------ */
1843 /* Function:    fr_scanlist                                                 */
1844 /* Returns:     int - result flags of scanning filter list                  */
1845 /* Parameters:  fin(I) - pointer to packet information                      */
1846 /*              pass(I) - default result to return for filtering            */
1847 /*                                                                          */
1848 /* Check the input/output list of rules for a match to the current packet.  */
1849 /* If a match is found, the value of fr_flags from the rule becomes the     */
1850 /* return value and fin->fin_fr points to the matched rule.                 */
1851 /*                                                                          */
1852 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
1853 /* When unwinding, it should finish up with fin_depth as 0.                 */
1854 /*                                                                          */
1855 /* Could be per interface, but this gets real nasty when you don't have,    */
1856 /* or can't easily change, the kernel source code to .                      */
1857 /* ------------------------------------------------------------------------ */
1858 int fr_scanlist(fin, pass)
1859 fr_info_t *fin;
1860 u_32_t pass;
1861 {
1862 	int rulen, portcmp, off, logged, skip;
1863 	struct frentry *fr, *fnext;
1864 	u_32_t passt, passo;
1865 	ipf_stack_t *ifs = fin->fin_ifs;
1866 
1867 	/*
1868 	 * Do not allow nesting deeper than 16 levels.
1869 	 */
1870 	if (fin->fin_depth >= 16)
1871 		return pass;
1872 
1873 	fr = fin->fin_fr;
1874 
1875 	/*
1876 	 * If there are no rules in this list, return now.
1877 	 */
1878 	if (fr == NULL)
1879 		return pass;
1880 
1881 	skip = 0;
1882 	logged = 0;
1883 	portcmp = 0;
1884 	fin->fin_depth++;
1885 	fin->fin_fr = NULL;
1886 	off = fin->fin_off;
1887 
1888 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
1889 		portcmp = 1;
1890 
1891 	for (rulen = 0; fr; fr = fnext, rulen++) {
1892 		fnext = fr->fr_next;
1893 		if (skip != 0) {
1894 			FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags));
1895 			skip--;
1896 			continue;
1897 		}
1898 
1899 		/*
1900 		 * In all checks below, a null (zero) value in the
1901 		 * filter struture is taken to mean a wildcard.
1902 		 *
1903 		 * check that we are working for the right interface
1904 		 */
1905 #ifdef	_KERNEL
1906 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1907 			continue;
1908 #else
1909 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
1910 			printf("\n");
1911 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
1912 				  FR_ISPASS(pass) ? 'p' :
1913 				  FR_ISACCOUNT(pass) ? 'A' :
1914 				  FR_ISAUTH(pass) ? 'a' :
1915 				  (pass & FR_NOMATCH) ? 'n' :'b'));
1916 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1917 			continue;
1918 		FR_VERBOSE((":i"));
1919 #endif
1920 
1921 		switch (fr->fr_type)
1922 		{
1923 		case FR_T_IPF :
1924 		case FR_T_IPF|FR_T_BUILTIN :
1925 			if (fr_ipfcheck(fin, fr, portcmp))
1926 				continue;
1927 			break;
1928 #if defined(IPFILTER_BPF)
1929 		case FR_T_BPFOPC :
1930 		case FR_T_BPFOPC|FR_T_BUILTIN :
1931 		    {
1932 			u_char *mc;
1933 
1934 			if (*fin->fin_mp == NULL)
1935 				continue;
1936 			if (fin->fin_v != fr->fr_v)
1937 				continue;
1938 			mc = (u_char *)fin->fin_m;
1939 			if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0))
1940 				continue;
1941 			break;
1942 		    }
1943 #endif
1944 		case FR_T_CALLFUNC|FR_T_BUILTIN :
1945 		    {
1946 			frentry_t *f;
1947 
1948 			f = (*fr->fr_func)(fin, &pass);
1949 			if (f != NULL)
1950 				fr = f;
1951 			else
1952 				continue;
1953 			break;
1954 		    }
1955 		default :
1956 			break;
1957 		}
1958 
1959 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
1960 			if (fin->fin_nattag == NULL)
1961 				continue;
1962 			if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
1963 				continue;
1964 		}
1965 		FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen));
1966 
1967 		passt = fr->fr_flags;
1968 
1969 		/*
1970 		 * Allowing a rule with the "keep state" flag set to match
1971 		 * packets that have been tagged "out of window" by the TCP
1972 		 * state tracking is foolish as the attempt to add a new
1973 		 * state entry to the table will fail.
1974 		 */
1975 		if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW))
1976 			continue;
1977 
1978 		/*
1979 		 * If the rule is a "call now" rule, then call the function
1980 		 * in the rule, if it exists and use the results from that.
1981 		 * If the function pointer is bad, just make like we ignore
1982 		 * it, except for increasing the hit counter.
1983 		 */
1984 		if ((passt & FR_CALLNOW) != 0) {
1985 			IPF_BUMP(fr->fr_hits);
1986 			if ((fr->fr_func != NULL) &&
1987 			    (fr->fr_func != (ipfunc_t)-1)) {
1988 				frentry_t *frs;
1989 
1990 				frs = fin->fin_fr;
1991 				fin->fin_fr = fr;
1992 				fr = (*fr->fr_func)(fin, &passt);
1993 				if (fr == NULL) {
1994 					fin->fin_fr = frs;
1995 					continue;
1996 				}
1997 				passt = fr->fr_flags;
1998 				fin->fin_fr = fr;
1999 			}
2000 		} else {
2001 			fin->fin_fr = fr;
2002 		}
2003 
2004 #ifdef  IPFILTER_LOG
2005 		/*
2006 		 * Just log this packet...
2007 		 */
2008 		if ((passt & FR_LOGMASK) == FR_LOG) {
2009 			if (ipflog(fin, passt) == -1) {
2010 				if (passt & FR_LOGORBLOCK) {
2011 					passt &= ~FR_CMDMASK;
2012 					passt |= FR_BLOCK|FR_QUICK;
2013 				}
2014 				IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip);
2015 			}
2016 			IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl);
2017 			logged = 1;
2018 		}
2019 #endif /* IPFILTER_LOG */
2020 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2021 		passo = pass;
2022 		if (FR_ISSKIP(passt))
2023 			skip = fr->fr_arg;
2024 		else if ((passt & FR_LOGMASK) != FR_LOG)
2025 			pass = passt;
2026 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2027 			fin->fin_icode = fr->fr_icode;
2028 		FR_DEBUG(("pass %#x\n", pass));
2029 		IPF_BUMP(fr->fr_hits);
2030 		fin->fin_rule = rulen;
2031 		(void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN);
2032 		if (fr->fr_grp != NULL) {
2033 			fin->fin_fr = *fr->fr_grp;
2034 			pass = fr_scanlist(fin, pass);
2035 			if (fin->fin_fr == NULL) {
2036 				fin->fin_rule = rulen;
2037 				(void) strncpy(fin->fin_group, fr->fr_group,
2038 					       FR_GROUPLEN);
2039 				fin->fin_fr = fr;
2040 			}
2041 			if (fin->fin_flx & FI_DONTCACHE)
2042 				logged = 1;
2043 		}
2044 
2045 		if (pass & FR_QUICK) {
2046 			/*
2047 			 * Finally, if we've asked to track state for this
2048 			 * packet, set it up.  Add state for "quick" rules
2049 			 * here so that if the action fails we can consider
2050 			 * the rule to "not match" and keep on processing
2051 			 * filter rules.
2052 			 */
2053 			if ((pass & FR_KEEPSTATE) &&
2054 			    !(fin->fin_flx & FI_STATE)) {
2055 				int out = fin->fin_out;
2056 
2057 				if (fr_addstate(fin, NULL, 0) != NULL) {
2058 					IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2059 				} else {
2060 					IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2061 					pass = passo;
2062 					continue;
2063 				}
2064 			}
2065 			break;
2066 		}
2067 	}
2068 	if (logged)
2069 		fin->fin_flx |= FI_DONTCACHE;
2070 	fin->fin_depth--;
2071 	return pass;
2072 }
2073 
2074 
2075 /* ------------------------------------------------------------------------ */
2076 /* Function:    fr_acctpkt                                                  */
2077 /* Returns:     frentry_t* - always returns NULL                            */
2078 /* Parameters:  fin(I) - pointer to packet information                      */
2079 /*              passp(IO) - pointer to current/new filter decision (unused) */
2080 /*                                                                          */
2081 /* Checks a packet against accounting rules, if there are any for the given */
2082 /* IP protocol version.                                                     */
2083 /*                                                                          */
2084 /* N.B.: this function returns NULL to match the prototype used by other    */
2085 /* functions called from the IPFilter "mainline" in fr_check().             */
2086 /* ------------------------------------------------------------------------ */
2087 frentry_t *fr_acctpkt(fin, passp)
2088 fr_info_t *fin;
2089 u_32_t *passp;
2090 {
2091 	char group[FR_GROUPLEN];
2092 	frentry_t *fr, *frsave;
2093 	u_32_t pass, rulen;
2094 	ipf_stack_t *ifs = fin->fin_ifs;
2095 
2096 	passp = passp;
2097 #ifdef	USE_INET6
2098 	if (fin->fin_v == 6)
2099 		fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active];
2100 	else
2101 #endif
2102 		fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active];
2103 
2104 	if (fr != NULL) {
2105 		frsave = fin->fin_fr;
2106 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2107 		rulen = fin->fin_rule;
2108 		fin->fin_fr = fr;
2109 		pass = fr_scanlist(fin, FR_NOMATCH);
2110 		if (FR_ISACCOUNT(pass)) {
2111 			IPF_BUMP(ifs->ifs_frstats[0].fr_acct);
2112 		}
2113 		fin->fin_fr = frsave;
2114 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2115 		fin->fin_rule = rulen;
2116 	}
2117 	return NULL;
2118 }
2119 
2120 
2121 /* ------------------------------------------------------------------------ */
2122 /* Function:    fr_firewall                                                 */
2123 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2124 /*                           were found, returns NULL.                      */
2125 /* Parameters:  fin(I) - pointer to packet information                      */
2126 /*              passp(IO) - pointer to current/new filter decision (unused) */
2127 /*                                                                          */
2128 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2129 /* there are any matches.  The first check is to see if a match can be seen */
2130 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2131 /* matching rule is found, take any appropriate actions as defined by the   */
2132 /* rule - except logging.                                                   */
2133 /* ------------------------------------------------------------------------ */
2134 static frentry_t *fr_firewall(fin, passp)
2135 fr_info_t *fin;
2136 u_32_t *passp;
2137 {
2138 	frentry_t *fr;
2139 	u_32_t pass;
2140 	int out;
2141 	ipf_stack_t *ifs = fin->fin_ifs;
2142 
2143 	out = fin->fin_out;
2144 	pass = *passp;
2145 
2146 #ifdef	USE_INET6
2147 	if (fin->fin_v == 6)
2148 		fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active];
2149 	else
2150 #endif
2151 		fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active];
2152 	if (fin->fin_fr != NULL)
2153 		pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2154 
2155 	if ((pass & FR_NOMATCH)) {
2156 		IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2157 	}
2158 	fr = fin->fin_fr;
2159 
2160 	/*
2161 	 * Apply packets per second rate-limiting to a rule as required.
2162 	 */
2163 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2164 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2165 		pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST);
2166 		pass |= FR_BLOCK;
2167 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit);
2168 	}
2169 
2170 	/*
2171 	 * If we fail to add a packet to the authorization queue, then we
2172 	 * drop the packet later.  However, if it was added then pretend
2173 	 * we've dropped it already.
2174 	 */
2175 	if (FR_ISAUTH(pass)) {
2176 		if (fr_newauth(fin->fin_m, fin) != 0) {
2177 #ifdef	_KERNEL
2178 			fin->fin_m = *fin->fin_mp = NULL;
2179 #else
2180 			;
2181 #endif
2182 			fin->fin_error = 0;
2183 		} else
2184 			fin->fin_error = ENOSPC;
2185 	}
2186 
2187 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2188 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2189 		(void) (*fr->fr_func)(fin, &pass);
2190 
2191 	/*
2192 	 * If a rule is a pre-auth rule, check again in the list of rules
2193 	 * loaded for authenticated use.  It does not particulary matter
2194 	 * if this search fails because a "preauth" result, from a rule,
2195 	 * is treated as "not a pass", hence the packet is blocked.
2196 	 */
2197 	if (FR_ISPREAUTH(pass)) {
2198 		if ((fin->fin_fr = ifs->ifs_ipauth) != NULL)
2199 			pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2200 	}
2201 
2202 	/*
2203 	 * If the rule has "keep frag" and the packet is actually a fragment,
2204 	 * then create a fragment state entry.
2205 	 */
2206 	if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2207 		if (fin->fin_flx & FI_FRAG) {
2208 			if (fr_newfrag(fin, pass) == -1) {
2209 				IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr);
2210 			} else {
2211 				IPF_BUMP(ifs->ifs_frstats[out].fr_nfr);
2212 			}
2213 		} else {
2214 			IPF_BUMP(ifs->ifs_frstats[out].fr_cfr);
2215 		}
2216 	}
2217 
2218 	/*
2219 	 * Finally, if we've asked to track state for this packet, set it up.
2220 	 */
2221 	if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) {
2222 		if (fr_addstate(fin, NULL, 0) != NULL) {
2223 			IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2224 		} else {
2225 			IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2226 			if (FR_ISPASS(pass)) {
2227 				pass &= ~FR_CMDMASK;
2228 				pass |= FR_BLOCK;
2229 			}
2230 		}
2231 	}
2232 
2233 	fr = fin->fin_fr;
2234 
2235 	if (passp != NULL)
2236 		*passp = pass;
2237 
2238 	return fr;
2239 }
2240 
2241 
2242 /* ------------------------------------------------------------------------ */
2243 /* Function:    fr_check                                                    */
2244 /* Returns:     int -  0 == packet allowed through,                         */
2245 /*              User space:                                                 */
2246 /*                    -1 == packet blocked                                  */
2247 /*                     1 == packet not matched                              */
2248 /*                    -2 == requires authentication                         */
2249 /*              Kernel:                                                     */
2250 /*                   > 0 == filter error # for packet                       */
2251 /* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2252 /*             hlen(I) - length of header                                   */
2253 /*             ifp(I)  - pointer to interface this packet is on             */
2254 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2255 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2256 /*                       IP packet.                                         */
2257 /* Solaris & HP-UX ONLY :                                                   */
2258 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2259 /*                       interface & direction.                             */
2260 /*                                                                          */
2261 /* fr_check() is the master function for all IPFilter packet processing.    */
2262 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2263 /* authorisation (or pre-authorisation), presence of related state info.,   */
2264 /* generating log entries, IP packet accounting, routing of packets as      */
2265 /* directed by firewall rules and of course whether or not to allow the     */
2266 /* packet to be further processed by the kernel.                            */
2267 /*                                                                          */
2268 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2269 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2270 /* by "mp" changed to a new buffer.                                         */
2271 /* ------------------------------------------------------------------------ */
2272 int fr_check(ip, hlen, ifp, out
2273 #if defined(_KERNEL) && defined(MENTAT)
2274 , qif, mp, ifs)
2275 void *qif;
2276 #else
2277 , mp, ifs)
2278 #endif
2279 mb_t **mp;
2280 ip_t *ip;
2281 int hlen;
2282 void *ifp;
2283 int out;
2284 ipf_stack_t *ifs;
2285 {
2286 	/*
2287 	 * The above really sucks, but short of writing a diff
2288 	 */
2289 	fr_info_t frinfo;
2290 	fr_info_t *fin = &frinfo;
2291 	u_32_t pass;
2292 	frentry_t *fr = NULL;
2293 	int v = IP_V(ip);
2294 	mb_t *mc = NULL;
2295 	mb_t *m;
2296 #ifdef USE_INET6
2297 	ip6_t *ip6;
2298 #endif
2299 #ifdef	_KERNEL
2300 # ifdef MENTAT
2301 	qpktinfo_t *qpi = qif;
2302 #endif
2303 #endif
2304 
2305 	SPL_INT(s);
2306 	pass = ifs->ifs_fr_pass;
2307 
2308 	/*
2309 	 * The first part of fr_check() deals with making sure that what goes
2310 	 * into the filtering engine makes some sense.  Information about the
2311 	 * the packet is distilled, collected into a fr_info_t structure and
2312 	 * the an attempt to ensure the buffer the packet is in is big enough
2313 	 * to hold all the required packet headers.
2314 	 */
2315 #ifdef	_KERNEL
2316 # ifdef MENTAT
2317 	if (!OK_32PTR(ip))
2318 		return 2;
2319 # endif
2320 
2321 
2322 	if (ifs->ifs_fr_running <= 0) {
2323 		return 0;
2324 	}
2325 
2326 	bzero((char *)fin, sizeof(*fin));
2327 
2328 # ifdef MENTAT
2329 	fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST|
2330 					 FI_BROADCAST);
2331 	m = qpi->qpi_m;
2332 	fin->fin_qfm = m;
2333 	fin->fin_qpi = qpi;
2334 # else /* MENTAT */
2335 
2336 	m = *mp;
2337 
2338 #  if defined(M_MCAST)
2339 	if ((m->m_flags & M_MCAST) != 0)
2340 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2341 #  endif
2342 #  if defined(M_MLOOP)
2343 	if ((m->m_flags & M_MLOOP) != 0)
2344 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2345 #  endif
2346 #  if defined(M_BCAST)
2347 	if ((m->m_flags & M_BCAST) != 0)
2348 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2349 #  endif
2350 #  ifdef M_CANFASTFWD
2351 	/*
2352 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2353 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2354 	 * XXX get a "can-fast-forward" filter rule.
2355 	 */
2356 	m->m_flags &= ~M_CANFASTFWD;
2357 #  endif /* M_CANFASTFWD */
2358 #  ifdef CSUM_DELAY_DATA
2359 	/*
2360 	 * disable delayed checksums.
2361 	 */
2362 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2363 		in_delayed_cksum(m);
2364 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2365 	}
2366 #  endif /* CSUM_DELAY_DATA */
2367 # endif /* MENTAT */
2368 #else
2369 
2370 	bzero((char *)fin, sizeof(*fin));
2371 	m = *mp;
2372 #endif /* _KERNEL */
2373 
2374 	fin->fin_v = v;
2375 	fin->fin_m = m;
2376 	fin->fin_ip = ip;
2377 	fin->fin_mp = mp;
2378 	fin->fin_out = out;
2379 	fin->fin_ifp = ifp;
2380 	fin->fin_error = ENETUNREACH;
2381 	fin->fin_hlen = (u_short)hlen;
2382 	fin->fin_dp = (char *)ip + hlen;
2383 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2384 	fin->fin_ifs = ifs;
2385 
2386 	SPL_NET(s);
2387 
2388 #ifdef	USE_INET6
2389 	if (v == 6) {
2390 		IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6);
2391 		/*
2392 		 * Jumbo grams are quite likely too big for internal buffer
2393 		 * structures to handle comfortably, for now, so just drop
2394 		 * them.
2395 		 */
2396 		ip6 = (ip6_t *)ip;
2397 		fin->fin_plen = ntohs(ip6->ip6_plen);
2398 		if (fin->fin_plen == 0) {
2399 			READ_ENTER(&ifs->ifs_ipf_mutex);
2400 			pass = FR_BLOCK|FR_NOMATCH;
2401 			goto filtered;
2402 		}
2403 		fin->fin_plen += sizeof(ip6_t);
2404 	} else
2405 #endif
2406 	{
2407 #if (OpenBSD >= 200311) && defined(_KERNEL)
2408 		ip->ip_len = ntohs(ip->ip_len);
2409 		ip->ip_off = ntohs(ip->ip_off);
2410 #endif
2411 		fin->fin_plen = ip->ip_len;
2412 	}
2413 
2414 	if (fr_makefrip(hlen, ip, fin) == -1) {
2415 		READ_ENTER(&ifs->ifs_ipf_mutex);
2416 		pass = FR_BLOCK;
2417 		goto filtered;
2418 	}
2419 
2420 	/*
2421 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2422 	 * becomes NULL and so we have no packet to free.
2423 	 */
2424 	if (*fin->fin_mp == NULL)
2425 		goto finished;
2426 
2427 	if (!out) {
2428 		if (v == 4) {
2429 #ifdef _KERNEL
2430 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2431 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2432 				fin->fin_flx |= FI_BADSRC;
2433 			}
2434 #endif
2435 			if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) {
2436 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2437 				fin->fin_flx |= FI_LOWTTL;
2438 			}
2439 		}
2440 #ifdef USE_INET6
2441 		else  if (v == 6) {
2442 			ip6 = (ip6_t *)ip;
2443 #ifdef _KERNEL
2444 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2445 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2446 				fin->fin_flx |= FI_BADSRC;
2447 			}
2448 #endif
2449 			if (ip6->ip6_hlim < ifs->ifs_fr_minttl) {
2450 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2451 				fin->fin_flx |= FI_LOWTTL;
2452 			}
2453 		}
2454 #endif
2455 	}
2456 
2457 	if (fin->fin_flx & FI_SHORT) {
2458 		IPF_BUMP(ifs->ifs_frstats[out].fr_short);
2459 	}
2460 
2461 	READ_ENTER(&ifs->ifs_ipf_mutex);
2462 
2463 	/*
2464 	 * Check auth now.  This, combined with the check below to see if apass
2465 	 * is 0 is to ensure that we don't count the packet twice, which can
2466 	 * otherwise occur when we reprocess it.  As it is, we only count it
2467 	 * after it has no auth. table matchup.  This also stops NAT from
2468 	 * occuring until after the packet has been auth'd.
2469 	 */
2470 	fr = fr_checkauth(fin, &pass);
2471 	if (!out) {
2472 		switch (fin->fin_v)
2473 		{
2474 		case 4 :
2475 			if (fr_checknatin(fin, &pass) == -1) {
2476 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2477 				goto finished;
2478 			}
2479 			break;
2480 #ifdef	USE_INET6
2481 		case 6 :
2482 			if (fr_checknat6in(fin, &pass) == -1) {
2483 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2484 				goto finished;
2485 			}
2486 			break;
2487 #endif
2488 		default :
2489 			break;
2490 		}
2491 	}
2492 	if (!out)
2493 		(void) fr_acctpkt(fin, NULL);
2494 
2495 	if (fr == NULL)
2496 		if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG)
2497 			fr = fr_knownfrag(fin, &pass);
2498 	if (fr == NULL)
2499 		fr = fr_checkstate(fin, &pass);
2500 
2501 	if ((pass & FR_NOMATCH) || (fr == NULL))
2502 		fr = fr_firewall(fin, &pass);
2503 
2504 	fin->fin_fr = fr;
2505 
2506 	/*
2507 	 * Only count/translate packets which will be passed on, out the
2508 	 * interface.
2509 	 */
2510 	if (out && FR_ISPASS(pass)) {
2511 		(void) fr_acctpkt(fin, NULL);
2512 
2513 		switch (fin->fin_v)
2514 		{
2515 		case 4 :
2516 			if (fr_checknatout(fin, &pass) == -1) {
2517 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2518 				goto finished;
2519 			}
2520 			break;
2521 #ifdef	USE_INET6
2522 		case 6 :
2523 			if (fr_checknat6out(fin, &pass) == -1) {
2524 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2525 				goto finished;
2526 			}
2527 			break;
2528 #endif
2529 		default :
2530 			break;
2531 		}
2532 
2533 		if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) {
2534 			if (fr_updateipid(fin) == -1) {
2535 				IPF_BUMP(ifs->ifs_frstats[1].fr_ipud);
2536 				pass &= ~FR_CMDMASK;
2537 				pass |= FR_BLOCK;
2538 			} else {
2539 				IPF_BUMP(ifs->ifs_frstats[0].fr_ipud);
2540 			}
2541 		}
2542 	}
2543 
2544 #ifdef	IPFILTER_LOG
2545 	if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
2546 		(void) fr_dolog(fin, &pass);
2547 	}
2548 #endif
2549 
2550 	if (fin->fin_state != NULL)
2551 		fr_statederef((ipstate_t **)&fin->fin_state, ifs);
2552 
2553 	if (fin->fin_nat != NULL)
2554 		fr_natderef((nat_t **)&fin->fin_nat, ifs);
2555 
2556 	/*
2557 	 * Only allow FR_DUP to work if a rule matched - it makes no sense to
2558 	 * set FR_DUP as a "default" as there are no instructions about where
2559 	 * to send the packet.  Use fin_m here because it may have changed
2560 	 * (without an update of 'm') in prior processing.
2561 	 */
2562 	if ((fr != NULL) && (pass & FR_DUP)) {
2563 		mc = M_DUPLICATE(fin->fin_m);
2564 	}
2565 
2566 	if (pass & (FR_RETRST|FR_RETICMP)) {
2567 		/*
2568 		 * Should we return an ICMP packet to indicate error
2569 		 * status passing through the packet filter ?
2570 		 * WARNING: ICMP error packets AND TCP RST packets should
2571 		 * ONLY be sent in repsonse to incoming packets.  Sending them
2572 		 * in response to outbound packets can result in a panic on
2573 		 * some operating systems.
2574 		 */
2575 		if (!out) {
2576 			if (pass & FR_RETICMP) {
2577 				int dst;
2578 
2579 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
2580 					dst = 1;
2581 				else
2582 					dst = 0;
2583 				(void) fr_send_icmp_err(ICMP_UNREACH, fin, dst);
2584 				IPF_BUMP(ifs->ifs_frstats[0].fr_ret);
2585 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
2586 				   !(fin->fin_flx & FI_SHORT)) {
2587 				if (fr_send_reset(fin) == 0) {
2588 					IPF_BUMP(ifs->ifs_frstats[1].fr_ret);
2589 				}
2590 			}
2591 		} else {
2592 			if (pass & FR_RETRST)
2593 				fin->fin_error = ECONNRESET;
2594 		}
2595 	}
2596 
2597 	/*
2598 	 * If we didn't drop off the bottom of the list of rules (and thus
2599 	 * the 'current' rule fr is not NULL), then we may have some extra
2600 	 * instructions about what to do with a packet.
2601 	 * Once we're finished return to our caller, freeing the packet if
2602 	 * we are dropping it (* BSD ONLY *).
2603 	 * Reassign m from fin_m as we may have a new buffer, now.
2604 	 */
2605 filtered:
2606 	m = fin->fin_m;
2607 
2608 	if (fr != NULL) {
2609 		frdest_t *fdp;
2610 
2611 		fdp = &fr->fr_tifs[fin->fin_rev];
2612 
2613 		if (!out && (pass & FR_FASTROUTE)) {
2614 			/*
2615 			 * For fastroute rule, no destioation interface defined
2616 			 * so pass NULL as the frdest_t parameter
2617 			 */
2618 			(void) fr_fastroute(m, mp, fin, NULL);
2619 			m = *mp = NULL;
2620 		} else if ((fdp->fd_ifp != NULL) &&
2621 			   (fdp->fd_ifp != (struct ifnet *)-1)) {
2622 			/* this is for to rules: */
2623 			(void) fr_fastroute(m, mp, fin, fdp);
2624 			m = *mp = NULL;
2625 		}
2626 
2627 		/*
2628 		 * Generate a duplicated packet.
2629 		 */
2630 		if (mc != NULL)
2631 			(void) fr_fastroute(mc, &mc, fin, &fr->fr_dif);
2632 	}
2633 
2634 	/*
2635 	 * This late because the likes of fr_fastroute() use fin_fr.
2636 	 */
2637 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2638 
2639 finished:
2640 	if (!FR_ISPASS(pass)) {
2641 		IPF_BUMP(ifs->ifs_frstats[out].fr_block);
2642 		if (*mp != NULL) {
2643 			FREE_MB_T(*mp);
2644 			m = *mp = NULL;
2645 		}
2646 	} else {
2647 		IPF_BUMP(ifs->ifs_frstats[out].fr_pass);
2648 #if defined(_KERNEL) && defined(__sgi)
2649 		if ((fin->fin_hbuf != NULL) &&
2650 		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
2651 			COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf);
2652 		}
2653 #endif
2654 	}
2655 
2656 	SPL_X(s);
2657 
2658 #ifdef _KERNEL
2659 # if OpenBSD >= 200311
2660 	if (FR_ISPASS(pass) && (v == 4)) {
2661 		ip = fin->fin_ip;
2662 		ip->ip_len = ntohs(ip->ip_len);
2663 		ip->ip_off = ntohs(ip->ip_off);
2664 	}
2665 # endif
2666 	return (FR_ISPASS(pass)) ? 0 : fin->fin_error;
2667 #else /* _KERNEL */
2668 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
2669 	if ((pass & FR_NOMATCH) != 0)
2670 		return 1;
2671 
2672 	if ((pass & FR_RETMASK) != 0)
2673 		switch (pass & FR_RETMASK)
2674 		{
2675 		case FR_RETRST :
2676 			return 3;
2677 		case FR_RETICMP :
2678 			return 4;
2679 		case FR_FAKEICMP :
2680 			return 5;
2681 		}
2682 
2683 	switch (pass & FR_CMDMASK)
2684 	{
2685 	case FR_PASS :
2686 		return 0;
2687 	case FR_BLOCK :
2688 		return -1;
2689 	case FR_AUTH :
2690 		return -2;
2691 	case FR_ACCOUNT :
2692 		return -3;
2693 	case FR_PREAUTH :
2694 		return -4;
2695 	}
2696 	return 2;
2697 #endif /* _KERNEL */
2698 }
2699 
2700 
2701 #ifdef	IPFILTER_LOG
2702 /* ------------------------------------------------------------------------ */
2703 /* Function:    fr_dolog                                                    */
2704 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
2705 /* Parameters:  fin(I) - pointer to packet information                      */
2706 /*              passp(IO) - pointer to current/new filter decision (unused) */
2707 /*                                                                          */
2708 /* Checks flags set to see how a packet should be logged, if it is to be    */
2709 /* logged.  Adjust statistics based on its success or not.                  */
2710 /* ------------------------------------------------------------------------ */
2711 frentry_t *fr_dolog(fin, passp)
2712 fr_info_t *fin;
2713 u_32_t *passp;
2714 {
2715 	u_32_t pass;
2716 	int out;
2717 	ipf_stack_t *ifs = fin->fin_ifs;
2718 
2719 	out = fin->fin_out;
2720 	pass = *passp;
2721 
2722 	if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
2723 		pass |= FF_LOGNOMATCH;
2724 		IPF_BUMP(ifs->ifs_frstats[out].fr_npkl);
2725 		goto logit;
2726 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
2727 	    (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) {
2728 		if ((pass & FR_LOGMASK) != FR_LOGP)
2729 			pass |= FF_LOGPASS;
2730 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl);
2731 		goto logit;
2732 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
2733 		   (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) {
2734 		if ((pass & FR_LOGMASK) != FR_LOGB)
2735 			pass |= FF_LOGBLOCK;
2736 		IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl);
2737 logit:
2738 		if (ipflog(fin, pass) == -1) {
2739 			IPF_BUMP(ifs->ifs_frstats[out].fr_skip);
2740 
2741 			/*
2742 			 * If the "or-block" option has been used then
2743 			 * block the packet if we failed to log it.
2744 			 */
2745 			if ((pass & FR_LOGORBLOCK) &&
2746 			    FR_ISPASS(pass)) {
2747 				pass &= ~FR_CMDMASK;
2748 				pass |= FR_BLOCK;
2749 			}
2750 		}
2751 		*passp = pass;
2752 	}
2753 
2754 	return fin->fin_fr;
2755 }
2756 #endif /* IPFILTER_LOG */
2757 
2758 
2759 /* ------------------------------------------------------------------------ */
2760 /* Function:    ipf_cksum                                                   */
2761 /* Returns:     u_short - IP header checksum                                */
2762 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
2763 /*              len(I)  - length of buffer in bytes                         */
2764 /*                                                                          */
2765 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
2766 /*                                                                          */
2767 /* N.B.: addr should be 16bit aligned.                                      */
2768 /* ------------------------------------------------------------------------ */
2769 u_short ipf_cksum(addr, len)
2770 u_short *addr;
2771 int len;
2772 {
2773 	u_32_t sum = 0;
2774 
2775 	for (sum = 0; len > 1; len -= 2)
2776 		sum += *addr++;
2777 
2778 	/* mop up an odd byte, if necessary */
2779 	if (len == 1)
2780 		sum += *(u_char *)addr;
2781 
2782 	/*
2783 	 * add back carry outs from top 16 bits to low 16 bits
2784 	 */
2785 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
2786 	sum += (sum >> 16);			/* add carry */
2787 	return (u_short)(~sum);
2788 }
2789 
2790 
2791 /* ------------------------------------------------------------------------ */
2792 /* Function:    fr_cksum                                                    */
2793 /* Returns:     u_short - layer 4 checksum                                  */
2794 /* Parameters:  m(I  )     - pointer to buffer holding packet               */
2795 /*              ip(I)      - pointer to IP header                           */
2796 /*              l4proto(I) - protocol to caclulate checksum for             */
2797 /*              l4hdr(I)   - pointer to layer 4 header                      */
2798 /*                                                                          */
2799 /* Calculates the TCP checksum for the packet held in "m", using the data   */
2800 /* in the IP header "ip" to seed it.                                        */
2801 /*                                                                          */
2802 /* NB: This function assumes we've pullup'd enough for all of the IP header */
2803 /* and the TCP header.  We also assume that data blocks aren't allocated in */
2804 /* odd sizes.                                                               */
2805 /*                                                                          */
2806 /* Expects ip_len to be in host byte order when called.                     */
2807 /* ------------------------------------------------------------------------ */
2808 u_short fr_cksum(m, ip, l4proto, l4hdr)
2809 mb_t *m;
2810 ip_t *ip;
2811 int l4proto;
2812 void *l4hdr;
2813 {
2814 	u_short *sp, slen, sumsave, l4hlen, *csump;
2815 	u_int sum, sum2;
2816 	int hlen;
2817 #ifdef	USE_INET6
2818 	ip6_t *ip6;
2819 #endif
2820 
2821 	csump = NULL;
2822 	sumsave = 0;
2823 	l4hlen = 0;
2824 	sp = NULL;
2825 	slen = 0;
2826 	hlen = 0;
2827 	sum = 0;
2828 
2829 	/*
2830 	 * Add up IP Header portion
2831 	 */
2832 #ifdef	USE_INET6
2833 	if (IP_V(ip) == 4) {
2834 #endif
2835 		hlen = IP_HL(ip) << 2;
2836 		slen = ip->ip_len - hlen;
2837 		sum = htons((u_short)l4proto);
2838 		sum += htons(slen);
2839 		sp = (u_short *)&ip->ip_src;
2840 		sum += *sp++;	/* ip_src */
2841 		sum += *sp++;
2842 		sum += *sp++;	/* ip_dst */
2843 		sum += *sp++;
2844 #ifdef	USE_INET6
2845 	} else if (IP_V(ip) == 6) {
2846 		ip6 = (ip6_t *)ip;
2847 		hlen = sizeof(*ip6);
2848 		slen = ntohs(ip6->ip6_plen);
2849 		sum = htons((u_short)l4proto);
2850 		sum += htons(slen);
2851 		sp = (u_short *)&ip6->ip6_src;
2852 		sum += *sp++;	/* ip6_src */
2853 		sum += *sp++;
2854 		sum += *sp++;
2855 		sum += *sp++;
2856 		sum += *sp++;
2857 		sum += *sp++;
2858 		sum += *sp++;
2859 		sum += *sp++;
2860 		sum += *sp++;	/* ip6_dst */
2861 		sum += *sp++;
2862 		sum += *sp++;
2863 		sum += *sp++;
2864 		sum += *sp++;
2865 		sum += *sp++;
2866 		sum += *sp++;
2867 		sum += *sp++;
2868 	}
2869 #endif
2870 
2871 	switch (l4proto)
2872 	{
2873 	case IPPROTO_UDP :
2874 		csump = &((udphdr_t *)l4hdr)->uh_sum;
2875 		l4hlen = sizeof(udphdr_t);
2876 		break;
2877 
2878 	case IPPROTO_TCP :
2879 		csump = &((tcphdr_t *)l4hdr)->th_sum;
2880 		l4hlen = sizeof(tcphdr_t);
2881 		break;
2882 	case IPPROTO_ICMP :
2883 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
2884 		l4hlen = 4;
2885 		sum = 0;
2886 		break;
2887 	default :
2888 		break;
2889 	}
2890 
2891 	if (csump != NULL) {
2892 		sumsave = *csump;
2893 		*csump = 0;
2894 	}
2895 
2896 	l4hlen = l4hlen;	/* LINT */
2897 
2898 #ifdef	_KERNEL
2899 # ifdef MENTAT
2900 	{
2901 	void *rp = m->b_rptr;
2902 
2903 	if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr)
2904 		m->b_rptr = (u_char *)ip;
2905 	sum2 = ip_cksum(m, hlen, sum);	/* hlen == offset */
2906 	m->b_rptr = rp;
2907 	sum2 = (sum2 & 0xffff) + (sum2 >> 16);
2908 	sum2 = ~sum2 & 0xffff;
2909 	}
2910 # else /* MENTAT */
2911 #  if defined(BSD) || defined(sun)
2912 #   if BSD >= 199103
2913 	m->m_data += hlen;
2914 #   else
2915 	m->m_off += hlen;
2916 #   endif
2917 	m->m_len -= hlen;
2918 	sum2 = in_cksum(m, slen);
2919 	m->m_len += hlen;
2920 #   if BSD >= 199103
2921 	m->m_data -= hlen;
2922 #   else
2923 	m->m_off -= hlen;
2924 #   endif
2925 	/*
2926 	 * Both sum and sum2 are partial sums, so combine them together.
2927 	 */
2928 	sum += ~sum2 & 0xffff;
2929 	while (sum > 0xffff)
2930 		sum = (sum & 0xffff) + (sum >> 16);
2931 	sum2 = ~sum & 0xffff;
2932 #  else /* defined(BSD) || defined(sun) */
2933 {
2934 	union {
2935 		u_char	c[2];
2936 		u_short	s;
2937 	} bytes;
2938 	u_short len = ip->ip_len;
2939 #   if defined(__sgi)
2940 	int add;
2941 #   endif
2942 
2943 	/*
2944 	 * Add up IP Header portion
2945 	 */
2946 	if (sp != (u_short *)l4hdr)
2947 		sp = (u_short *)l4hdr;
2948 
2949 	switch (l4proto)
2950 	{
2951 	case IPPROTO_UDP :
2952 		sum += *sp++;	/* sport */
2953 		sum += *sp++;	/* dport */
2954 		sum += *sp++;	/* udp length */
2955 		sum += *sp++;	/* checksum */
2956 		break;
2957 
2958 	case IPPROTO_TCP :
2959 		sum += *sp++;	/* sport */
2960 		sum += *sp++;	/* dport */
2961 		sum += *sp++;	/* seq */
2962 		sum += *sp++;
2963 		sum += *sp++;	/* ack */
2964 		sum += *sp++;
2965 		sum += *sp++;	/* off */
2966 		sum += *sp++;	/* win */
2967 		sum += *sp++;	/* checksum */
2968 		sum += *sp++;	/* urp */
2969 		break;
2970 	case IPPROTO_ICMP :
2971 		sum = *sp++;	/* type/code */
2972 		sum += *sp++;	/* checksum */
2973 		break;
2974 	}
2975 
2976 #   ifdef	__sgi
2977 	/*
2978 	 * In case we had to copy the IP & TCP header out of mbufs,
2979 	 * skip over the mbuf bits which are the header
2980 	 */
2981 	if ((caddr_t)ip != mtod(m, caddr_t)) {
2982 		hlen = (caddr_t)sp - (caddr_t)ip;
2983 		while (hlen) {
2984 			add = MIN(hlen, m->m_len);
2985 			sp = (u_short *)(mtod(m, caddr_t) + add);
2986 			hlen -= add;
2987 			if (add == m->m_len) {
2988 				m = m->m_next;
2989 				if (!hlen) {
2990 					if (!m)
2991 						break;
2992 					sp = mtod(m, u_short *);
2993 				}
2994 				PANIC((!m),("fr_cksum(1): not enough data"));
2995 			}
2996 		}
2997 	}
2998 #   endif
2999 
3000 	len -= (l4hlen + hlen);
3001 	if (len <= 0)
3002 		goto nodata;
3003 
3004 	while (len > 1) {
3005 		if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) {
3006 			m = m->m_next;
3007 			PANIC((!m),("fr_cksum(2): not enough data"));
3008 			sp = mtod(m, u_short *);
3009 		}
3010 		if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) {
3011 			bytes.c[0] = *(u_char *)sp;
3012 			m = m->m_next;
3013 			PANIC((!m),("fr_cksum(3): not enough data"));
3014 			sp = mtod(m, u_short *);
3015 			bytes.c[1] = *(u_char *)sp;
3016 			sum += bytes.s;
3017 			sp = (u_short *)((u_char *)sp + 1);
3018 		}
3019 		if ((u_long)sp & 1) {
3020 			bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s));
3021 			sum += bytes.s;
3022 		} else
3023 			sum += *sp++;
3024 		len -= 2;
3025 	}
3026 
3027 	if (len != 0)
3028 		sum += ntohs(*(u_char *)sp << 8);
3029 nodata:
3030 	while (sum > 0xffff)
3031 		sum = (sum & 0xffff) + (sum >> 16);
3032 	sum2 = (u_short)(~sum & 0xffff);
3033 }
3034 #  endif /*  defined(BSD) || defined(sun) */
3035 # endif /* MENTAT */
3036 #else /* _KERNEL */
3037 	for (; slen > 1; slen -= 2)
3038 	        sum += *sp++;
3039 	if (slen)
3040 		sum += ntohs(*(u_char *)sp << 8);
3041 	while (sum > 0xffff)
3042 		sum = (sum & 0xffff) + (sum >> 16);
3043 	sum2 = (u_short)(~sum & 0xffff);
3044 #endif /* _KERNEL */
3045 	if (csump != NULL)
3046 		*csump = sumsave;
3047 	return sum2;
3048 }
3049 
3050 
3051 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \
3052     defined(__sgi) ) && !defined(linux) && !defined(_AIX51)
3053 /*
3054  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3055  *	The Regents of the University of California.  All rights reserved.
3056  *
3057  * Redistribution and use in source and binary forms, with or without
3058  * modification, are permitted provided that the following conditions
3059  * are met:
3060  * 1. Redistributions of source code must retain the above copyright
3061  *    notice, this list of conditions and the following disclaimer.
3062  * 2. Redistributions in binary form must reproduce the above copyright
3063  *    notice, this list of conditions and the following disclaimer in the
3064  *    documentation and/or other materials provided with the distribution.
3065  * 3. Neither the name of the University nor the names of its contributors
3066  *    may be used to endorse or promote products derived from this software
3067  *    without specific prior written permission.
3068  *
3069  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3070  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3071  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3072  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3073  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3074  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3075  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3076  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3077  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3078  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3079  * SUCH DAMAGE.
3080  *
3081  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
3082  * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $
3083  */
3084 /*
3085  * Copy data from an mbuf chain starting "off" bytes from the beginning,
3086  * continuing for "len" bytes, into the indicated buffer.
3087  */
3088 void
3089 m_copydata(m, off, len, cp)
3090 	mb_t *m;
3091 	int off;
3092 	int len;
3093 	caddr_t cp;
3094 {
3095 	unsigned count;
3096 
3097 	if (off < 0 || len < 0)
3098 		panic("m_copydata");
3099 	while (off > 0) {
3100 		if (m == 0)
3101 			panic("m_copydata");
3102 		if (off < m->m_len)
3103 			break;
3104 		off -= m->m_len;
3105 		m = m->m_next;
3106 	}
3107 	while (len > 0) {
3108 		if (m == 0)
3109 			panic("m_copydata");
3110 		count = MIN(m->m_len - off, len);
3111 		bcopy(mtod(m, caddr_t) + off, cp, count);
3112 		len -= count;
3113 		cp += count;
3114 		off = 0;
3115 		m = m->m_next;
3116 	}
3117 }
3118 
3119 
3120 /*
3121  * Copy data from a buffer back into the indicated mbuf chain,
3122  * starting "off" bytes from the beginning, extending the mbuf
3123  * chain if necessary.
3124  */
3125 void
3126 m_copyback(m0, off, len, cp)
3127 	struct	mbuf *m0;
3128 	int off;
3129 	int len;
3130 	caddr_t cp;
3131 {
3132 	int mlen;
3133 	struct mbuf *m = m0, *n;
3134 	int totlen = 0;
3135 
3136 	if (m0 == 0)
3137 		return;
3138 	while (off > (mlen = m->m_len)) {
3139 		off -= mlen;
3140 		totlen += mlen;
3141 		if (m->m_next == 0) {
3142 			n = m_getclr(M_DONTWAIT, m->m_type);
3143 			if (n == 0)
3144 				goto out;
3145 			n->m_len = min(MLEN, len + off);
3146 			m->m_next = n;
3147 		}
3148 		m = m->m_next;
3149 	}
3150 	while (len > 0) {
3151 		mlen = min(m->m_len - off, len);
3152 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
3153 		cp += mlen;
3154 		len -= mlen;
3155 		mlen += off;
3156 		off = 0;
3157 		totlen += mlen;
3158 		if (len == 0)
3159 			break;
3160 		if (m->m_next == 0) {
3161 			n = m_get(M_DONTWAIT, m->m_type);
3162 			if (n == 0)
3163 				break;
3164 			n->m_len = min(MLEN, len);
3165 			m->m_next = n;
3166 		}
3167 		m = m->m_next;
3168 	}
3169 out:
3170 #if 0
3171 	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
3172 		m->m_pkthdr.len = totlen;
3173 #endif
3174 	return;
3175 }
3176 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */
3177 
3178 
3179 /* ------------------------------------------------------------------------ */
3180 /* Function:    fr_findgroup                                                */
3181 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3182 /* Parameters:  group(I) - group name to search for                         */
3183 /*              unit(I)  - device to which this group belongs               */
3184 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3185 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3186 /*                         to where to add the next (last) group or where   */
3187 /*                         to delete group from.                            */
3188 /*                                                                          */
3189 /* Search amongst the defined groups for a particular group number.         */
3190 /* ------------------------------------------------------------------------ */
3191 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs)
3192 char *group;
3193 minor_t unit;
3194 int set;
3195 frgroup_t ***fgpp;
3196 ipf_stack_t *ifs;
3197 {
3198 	frgroup_t *fg, **fgp;
3199 
3200 	/*
3201 	 * Which list of groups to search in is dependent on which list of
3202 	 * rules are being operated on.
3203 	 */
3204 	fgp = &ifs->ifs_ipfgroups[unit][set];
3205 
3206 	while ((fg = *fgp) != NULL) {
3207 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3208 			break;
3209 		else
3210 			fgp = &fg->fg_next;
3211 	}
3212 	if (fgpp != NULL)
3213 		*fgpp = fgp;
3214 	return fg;
3215 }
3216 
3217 
3218 /* ------------------------------------------------------------------------ */
3219 /* Function:    fr_addgroup                                                 */
3220 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3221 /*                            != NULL == pointer to the group               */
3222 /* Parameters:  num(I)   - group number to add                              */
3223 /*              head(I)  - rule pointer that is using this as the head      */
3224 /*              flags(I) - rule flags which describe the type of rule it is */
3225 /*              unit(I)  - device to which this group will belong to        */
3226 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3227 /* Write Locks: ipf_mutex                                                   */
3228 /*                                                                          */
3229 /* Add a new group head, or if it already exists, increase the reference    */
3230 /* count to it.                                                             */
3231 /* ------------------------------------------------------------------------ */
3232 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs)
3233 char *group;
3234 void *head;
3235 u_32_t flags;
3236 minor_t unit;
3237 int set;
3238 ipf_stack_t *ifs;
3239 {
3240 	frgroup_t *fg, **fgp;
3241 	u_32_t gflags;
3242 
3243 	if (group == NULL)
3244 		return NULL;
3245 
3246 	if (unit == IPL_LOGIPF && *group == '\0')
3247 		return NULL;
3248 
3249 	fgp = NULL;
3250 	gflags = flags & FR_INOUT;
3251 
3252 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3253 	if (fg != NULL) {
3254 		if (fg->fg_flags == 0)
3255 			fg->fg_flags = gflags;
3256 		else if (gflags != fg->fg_flags)
3257 			return NULL;
3258 		fg->fg_ref++;
3259 		return fg;
3260 	}
3261 	KMALLOC(fg, frgroup_t *);
3262 	if (fg != NULL) {
3263 		fg->fg_head = head;
3264 		fg->fg_start = NULL;
3265 		fg->fg_next = *fgp;
3266 		bcopy(group, fg->fg_name, FR_GROUPLEN);
3267 		fg->fg_flags = gflags;
3268 		fg->fg_ref = 1;
3269 		*fgp = fg;
3270 	}
3271 	return fg;
3272 }
3273 
3274 
3275 /* ------------------------------------------------------------------------ */
3276 /* Function:    fr_delgroup                                                 */
3277 /* Returns:     Nil                                                         */
3278 /* Parameters:  group(I) - group name to delete                             */
3279 /*              unit(I)  - device to which this group belongs               */
3280 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3281 /* Write Locks: ipf_mutex                                                   */
3282 /*                                                                          */
3283 /* Attempt to delete a group head.                                          */
3284 /* Only do this when its reference count reaches 0.                         */
3285 /* ------------------------------------------------------------------------ */
3286 void fr_delgroup(group, unit, set, ifs)
3287 char *group;
3288 minor_t unit;
3289 int set;
3290 ipf_stack_t *ifs;
3291 {
3292 	frgroup_t *fg, **fgp;
3293 
3294 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3295 	if (fg == NULL)
3296 		return;
3297 
3298 	fg->fg_ref--;
3299 	if (fg->fg_ref == 0) {
3300 		*fgp = fg->fg_next;
3301 		KFREE(fg);
3302 	}
3303 }
3304 
3305 
3306 /* ------------------------------------------------------------------------ */
3307 /* Function:    fr_getrulen                                                 */
3308 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3309 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3310 /*              flags(I) - which set of rules to find the rule in           */
3311 /*              group(I) - group name                                       */
3312 /*              n(I)     - rule number to find                              */
3313 /*                                                                          */
3314 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3315 /* group # g doesn't exist or there are less than n rules in the group.     */
3316 /* ------------------------------------------------------------------------ */
3317 frentry_t *fr_getrulen(unit, group, n, ifs)
3318 int unit;
3319 char *group;
3320 u_32_t n;
3321 ipf_stack_t *ifs;
3322 {
3323 	frentry_t *fr;
3324 	frgroup_t *fg;
3325 
3326 	fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs);
3327 	if (fg == NULL)
3328 		return NULL;
3329 	for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--)
3330 		;
3331 	if (n != 0)
3332 		return NULL;
3333 	return fr;
3334 }
3335 
3336 
3337 /* ------------------------------------------------------------------------ */
3338 /* Function:    fr_rulen                                                    */
3339 /* Returns:     int - >= 0 - rule number, -1 == search failed               */
3340 /* Parameters:  unit(I) - device for which to count the rule's number       */
3341 /*              fr(I)   - pointer to rule to match                          */
3342 /*                                                                          */
3343 /* Return the number for a rule on a specific filtering device.             */
3344 /* ------------------------------------------------------------------------ */
3345 int fr_rulen(unit, fr, ifs)
3346 int unit;
3347 frentry_t *fr;
3348 ipf_stack_t *ifs;
3349 {
3350 	frentry_t *fh;
3351 	frgroup_t *fg;
3352 	u_32_t n = 0;
3353 
3354 	if (fr == NULL)
3355 		return -1;
3356 	fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs);
3357 	if (fg == NULL)
3358 		return -1;
3359 	for (fh = fg->fg_head; fh; n++, fh = fh->fr_next)
3360 		if (fh == fr)
3361 			break;
3362 	if (fh == NULL)
3363 		return -1;
3364 	return n;
3365 }
3366 
3367 
3368 /* ------------------------------------------------------------------------ */
3369 /* Function:    frflushlist                                                 */
3370 /* Returns:     int - >= 0 - number of flushed rules                        */
3371 /* Parameters:  set(I)   - which set of rules (inactive/inactive) this is   */
3372 /*              unit(I)  - device for which to flush rules                  */
3373 /*              flags(I) - which set of rules to flush                      */
3374 /*              nfreedp(O) - pointer to int where flush count is stored     */
3375 /*              listp(I)   - pointer to list to flush pointer               */
3376 /* Write Locks: ipf_mutex                                                   */
3377 /*                                                                          */
3378 /* Recursively flush rules from the list, descending groups as they are     */
3379 /* encountered.  if a rule is the head of a group and it has lost all its   */
3380 /* group members, then also delete the group reference.  nfreedp is needed  */
3381 /* to store the accumulating count of rules removed, whereas the returned   */
3382 /* value is just the number removed from the current list.  The latter is   */
3383 /* needed to correctly adjust reference counts on rules that define groups. */
3384 /*                                                                          */
3385 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3386 /* ------------------------------------------------------------------------ */
3387 static int frflushlist(set, unit, nfreedp, listp, ifs)
3388 int set;
3389 minor_t unit;
3390 int *nfreedp;
3391 frentry_t **listp;
3392 ipf_stack_t *ifs;
3393 {
3394 	int freed = 0;
3395 	frentry_t *fp;
3396 
3397 	while ((fp = *listp) != NULL) {
3398 		if ((fp->fr_type & FR_T_BUILTIN) ||
3399 		    !(fp->fr_flags & FR_COPIED)) {
3400 			listp = &fp->fr_next;
3401 			continue;
3402 		}
3403 		*listp = fp->fr_next;
3404 		if (fp->fr_grp != NULL) {
3405 			(void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs);
3406 		}
3407 
3408 		if (fp->fr_grhead != NULL) {
3409 			fr_delgroup(fp->fr_grhead, unit, set, ifs);
3410 			*fp->fr_grhead = '\0';
3411 		}
3412 
3413 		ASSERT(fp->fr_ref > 0);
3414 		fp->fr_next = NULL;
3415 		if (fr_derefrule(&fp, ifs) == 0)
3416 			freed++;
3417 	}
3418 	*nfreedp += freed;
3419 	return freed;
3420 }
3421 
3422 
3423 /* ------------------------------------------------------------------------ */
3424 /* Function:    frflush                                                     */
3425 /* Returns:     int - >= 0 - number of flushed rules                        */
3426 /* Parameters:  unit(I)  - device for which to flush rules                  */
3427 /*              flags(I) - which set of rules to flush                      */
3428 /*                                                                          */
3429 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3430 /* and IPv6) as defined by the value of flags.                              */
3431 /* ------------------------------------------------------------------------ */
3432 int frflush(unit, proto, flags, ifs)
3433 minor_t unit;
3434 int proto, flags;
3435 ipf_stack_t *ifs;
3436 {
3437 	int flushed = 0, set;
3438 
3439 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3440 
3441 	set = ifs->ifs_fr_active;
3442 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3443 		set = 1 - set;
3444 
3445 	if (flags & FR_OUTQUE) {
3446 		if (proto == 0 || proto == 6) {
3447 			(void) frflushlist(set, unit,
3448 			    &flushed, &ifs->ifs_ipfilter6[1][set], ifs);
3449 			(void) frflushlist(set, unit,
3450 			    &flushed, &ifs->ifs_ipacct6[1][set], ifs);
3451 		}
3452 		if (proto == 0 || proto == 4) {
3453 			(void) frflushlist(set, unit,
3454 			    &flushed, &ifs->ifs_ipfilter[1][set], ifs);
3455 			(void) frflushlist(set, unit,
3456 			    &flushed, &ifs->ifs_ipacct[1][set], ifs);
3457 		}
3458 	}
3459 	if (flags & FR_INQUE) {
3460 		if (proto == 0 || proto == 6) {
3461 			(void) frflushlist(set, unit,
3462 			    &flushed, &ifs->ifs_ipfilter6[0][set], ifs);
3463 			(void) frflushlist(set, unit,
3464 			    &flushed, &ifs->ifs_ipacct6[0][set], ifs);
3465 		}
3466 		if (proto == 0 || proto == 4) {
3467 			(void) frflushlist(set, unit,
3468 			    &flushed, &ifs->ifs_ipfilter[0][set], ifs);
3469 			(void) frflushlist(set, unit,
3470 			    &flushed, &ifs->ifs_ipacct[0][set], ifs);
3471 		}
3472 	}
3473 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3474 
3475 	if (unit == IPL_LOGIPF) {
3476 		int tmp;
3477 
3478 		tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs);
3479 		if (tmp >= 0)
3480 			flushed += tmp;
3481 	}
3482 	return flushed;
3483 }
3484 
3485 
3486 /* ------------------------------------------------------------------------ */
3487 /* Function:    memstr                                                      */
3488 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3489 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3490 /*              dst(I)  - pointer to byte sequence to search                */
3491 /*              slen(I) - match length                                      */
3492 /*              dlen(I) - length available to search in                     */
3493 /*                                                                          */
3494 /* Search dst for a sequence of bytes matching those at src and extend for  */
3495 /* slen bytes.                                                              */
3496 /* ------------------------------------------------------------------------ */
3497 char *memstr(src, dst, slen, dlen)
3498 char *src, *dst;
3499 int slen, dlen;
3500 {
3501 	char *s = NULL;
3502 
3503 	while (dlen >= slen) {
3504 		if (bcmp(src, dst, slen) == 0) {
3505 			s = dst;
3506 			break;
3507 		}
3508 		dst++;
3509 		dlen--;
3510 	}
3511 	return s;
3512 }
3513 /* ------------------------------------------------------------------------ */
3514 /* Function:    fr_fixskip                                                  */
3515 /* Returns:     Nil                                                         */
3516 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3517 /*              rp(I)        - rule added/removed with skip in it.          */
3518 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3519 /*                             depending on whether a rule was just added   */
3520 /*                             or removed.                                  */
3521 /*                                                                          */
3522 /* Adjust all the rules in a list which would have skip'd past the position */
3523 /* where we are inserting to skip to the right place given the change.      */
3524 /* ------------------------------------------------------------------------ */
3525 void fr_fixskip(listp, rp, addremove)
3526 frentry_t **listp, *rp;
3527 int addremove;
3528 {
3529 	int rules, rn;
3530 	frentry_t *fp;
3531 
3532 	rules = 0;
3533 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3534 		rules++;
3535 
3536 	if (!fp)
3537 		return;
3538 
3539 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3540 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3541 			fp->fr_arg += addremove;
3542 }
3543 
3544 
3545 #ifdef	_KERNEL
3546 /* ------------------------------------------------------------------------ */
3547 /* Function:    count4bits                                                  */
3548 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3549 /* Parameters:  ip(I) - 32bit IP address                                    */
3550 /*                                                                          */
3551 /* IPv4 ONLY                                                                */
3552 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3553 /* consecutive 1's is different to that passed, return -1, else return #    */
3554 /* of bits.                                                                 */
3555 /* ------------------------------------------------------------------------ */
3556 int	count4bits(ip)
3557 u_32_t	ip;
3558 {
3559 	u_32_t	ipn;
3560 	int	cnt = 0, i, j;
3561 
3562 	ip = ipn = ntohl(ip);
3563 	for (i = 32; i; i--, ipn *= 2)
3564 		if (ipn & 0x80000000)
3565 			cnt++;
3566 		else
3567 			break;
3568 	ipn = 0;
3569 	for (i = 32, j = cnt; i; i--, j--) {
3570 		ipn *= 2;
3571 		if (j > 0)
3572 			ipn++;
3573 	}
3574 	if (ipn == ip)
3575 		return cnt;
3576 	return -1;
3577 }
3578 
3579 
3580 #ifdef USE_INET6
3581 /* ------------------------------------------------------------------------ */
3582 /* Function:    count6bits                                                  */
3583 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3584 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3585 /*                                                                          */
3586 /* IPv6 ONLY                                                                */
3587 /* count consecutive 1's in bit mask.                                       */
3588 /* ------------------------------------------------------------------------ */
3589 int count6bits(msk)
3590 u_32_t *msk;
3591 {
3592 	int i = 0, k;
3593 	u_32_t j;
3594 
3595 	for (k = 3; k >= 0; k--)
3596 		if (msk[k] == 0xffffffff)
3597 			i += 32;
3598 		else {
3599 			for (j = msk[k]; j; j <<= 1)
3600 				if (j & 0x80000000)
3601 					i++;
3602 		}
3603 	return i;
3604 }
3605 # endif
3606 #endif /* _KERNEL */
3607 
3608 
3609 /* ------------------------------------------------------------------------ */
3610 /* Function:    fr_ifsync                                                   */
3611 /* Returns:     void *    - new interface identifier                        */
3612 /* Parameters:  action(I)  - type of synchronisation to do                  */
3613 /*              v(I)       - IP version being sync'd (v4 or v6)             */
3614 /*              newifp(I)  - interface identifier being introduced/removed  */
3615 /*              oldifp(I)  - interface identifier in a filter rule          */
3616 /*              newname(I) - name associated with oldifp interface          */
3617 /*              oldname(I) - name associated with newifp interface          */
3618 /*                                                                          */
3619 /* This function returns what the new value for "oldifp" should be for its  */
3620 /* caller.  In some cases it will not change, in some it will.              */
3621 /* action == IPFSYNC_RESYNC                                                 */
3622 /*   a new value for oldifp will always be looked up, according to oldname, */
3623 /*   the values of newname and newifp are ignored.                          */
3624 /* action == IPFSYNC_NEWIFP                                                 */
3625 /*   if oldname matches newname then we are doing a sync for the matching   */
3626 /*   interface, so we return newifp to be used in place of oldifp.  If the  */
3627 /*   the names don't match, just return oldifp.                             */
3628 /* action == IPFSYNC_OLDIFP                                                 */
3629 /*   if oldifp matches newifp then we are are doing a sync to remove any    */
3630 /*   references to oldifp, so we return "-1".                               */
3631 /* ------------------------------------------------------------------------ */
3632 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs)
3633 int action, v;
3634 char *newname, *oldname;
3635 void *newifp, *oldifp;
3636 ipf_stack_t *ifs;
3637 {
3638 	void *rval = oldifp;
3639 
3640 	switch (action)
3641 	{
3642 	case IPFSYNC_RESYNC :
3643 		if (oldname[0] != '\0') {
3644 			rval = fr_resolvenic(oldname, v, ifs);
3645 		}
3646 		break;
3647 	case IPFSYNC_NEWIFP :
3648 		if (!strncmp(newname, oldname, LIFNAMSIZ))
3649 			rval = newifp;
3650 		break;
3651 	case IPFSYNC_OLDIFP :
3652 		if (newifp == oldifp)
3653 			rval = (oldifp) ? (void *)-1 : NULL;
3654 		break;
3655 	}
3656 
3657 	return rval;
3658 }
3659 
3660 
3661 /* ------------------------------------------------------------------------ */
3662 /* Function:    frsynclist                                                  */
3663 /* Returns:     void                                                        */
3664 /* Parameters:  action(I) - type of synchronisation to do                   */
3665 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3666 /*              ifp(I)    - interface identifier associated with action     */
3667 /*              name(I)   - name associated with ifp parameter              */
3668 /* Write Locks: ipf_mutex                                                   */
3669 /*                                                                          */
3670 /* Walk through a list of filter rules and resolve any interface names into */
3671 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3672 /* used in the rule.  The interface pointer is used to limit the lookups to */
3673 /* a specific set of matching names if it is non-NULL.                      */
3674 /* ------------------------------------------------------------------------ */
3675 static void frsynclist(action, v, ifp, ifname, fr, ifs)
3676 int action, v;
3677 void *ifp;
3678 char *ifname;
3679 frentry_t *fr;
3680 ipf_stack_t *ifs;
3681 {
3682 	frdest_t *fdp;
3683 	int rv, i;
3684 
3685 	for (; fr; fr = fr->fr_next) {
3686 		rv = fr->fr_v;
3687 		if (v != 0 && v != rv)
3688 			continue;
3689 
3690 		/*
3691 		 * Lookup all the interface names that are part of the rule.
3692 		 */
3693 		for (i = 0; i < 4; i++) {
3694 			fr->fr_ifas[i] = fr_ifsync(action, rv, ifname,
3695 						   fr->fr_ifnames[i],
3696 						   ifp, fr->fr_ifas[i],
3697 						   ifs);
3698 		}
3699 
3700 		fdp = &fr->fr_tifs[0];
3701 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3702 					   ifp, fdp->fd_ifp, ifs);
3703 
3704 		fdp = &fr->fr_tifs[1];
3705 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3706 					   ifp, fdp->fd_ifp, ifs);
3707 
3708 		fdp = &fr->fr_dif;
3709 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3710 					   ifp, fdp->fd_ifp, ifs);
3711 
3712 		if (action != IPFSYNC_RESYNC)
3713 			continue;
3714 
3715 		if (fr->fr_type == FR_T_IPF) {
3716 			if (fr->fr_satype != FRI_NORMAL &&
3717 			    fr->fr_satype != FRI_LOOKUP) {
3718 				(void)fr_ifpaddr(rv, fr->fr_satype,
3719 						 fr->fr_ifas[fr->fr_sifpidx],
3720 						 &fr->fr_src, &fr->fr_smsk,
3721 						 ifs);
3722 			}
3723 			if (fr->fr_datype != FRI_NORMAL &&
3724 			    fr->fr_datype != FRI_LOOKUP) {
3725 				(void)fr_ifpaddr(rv, fr->fr_datype,
3726 						 fr->fr_ifas[fr->fr_difpidx],
3727 						 &fr->fr_dst, &fr->fr_dmsk,
3728 						 ifs);
3729 			}
3730 		}
3731 
3732 #ifdef	IPFILTER_LOOKUP
3733 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP &&
3734 		    fr->fr_srcptr == NULL) {
3735 			fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype,
3736 							 fr->fr_srcnum,
3737 							 &fr->fr_srcfunc, ifs);
3738 		}
3739 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP &&
3740 		    fr->fr_dstptr == NULL) {
3741 			fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype,
3742 							 fr->fr_dstnum,
3743 							 &fr->fr_dstfunc, ifs);
3744 		}
3745 #endif
3746 	}
3747 }
3748 
3749 
3750 #ifdef	_KERNEL
3751 /* ------------------------------------------------------------------------ */
3752 /* Function:    frsync                                                      */
3753 /* Returns:     void                                                        */
3754 /* Parameters:  action(I) - type of synchronisation to do                   */
3755 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3756 /*              ifp(I)    - interface identifier associated with action     */
3757 /*              name(I)   - name associated with ifp parameter              */
3758 /*                                                                          */
3759 /* frsync() is called when we suspect that the interface list or            */
3760 /* information about interfaces (like IP#) has changed.  Go through all     */
3761 /* filter rules, NAT entries and the state table and check if anything      */
3762 /* needs to be changed/updated.                                             */
3763 /* With the filtering hooks added to Solaris, we needed to change the manner*/
3764 /* in which this was done to support three different types of sync:         */
3765 /* - complete resync of all interface name/identifiers                      */
3766 /* - new interface being announced with its name and identifier             */
3767 /* - interface removal being announced by only its identifier               */
3768 /* ------------------------------------------------------------------------ */
3769 void frsync(action, v, ifp, name, ifs)
3770 int action, v;
3771 void *ifp;
3772 char *name;
3773 ipf_stack_t *ifs;
3774 {
3775 	int i;
3776 
3777 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3778 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs);
3779 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs);
3780 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs);
3781 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs);
3782 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs);
3783 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs);
3784 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs);
3785 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs);
3786 
3787 	for (i = 0; i < IPL_LOGSIZE; i++) {
3788 		frgroup_t *g;
3789 
3790 		for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next)
3791 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3792 		for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next)
3793 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3794 	}
3795 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3796 }
3797 
3798 
3799 /*
3800  * In the functions below, bcopy() is called because the pointer being
3801  * copied _from_ in this instance is a pointer to a char buf (which could
3802  * end up being unaligned) and on the kernel's local stack.
3803  */
3804 /* ------------------------------------------------------------------------ */
3805 /* Function:    copyinptr                                                   */
3806 /* Returns:     int - 0 = success, else failure                             */
3807 /* Parameters:  src(I)  - pointer to the source address                     */
3808 /*              dst(I)  - destination address                               */
3809 /*              size(I) - number of bytes to copy                           */
3810 /*                                                                          */
3811 /* Copy a block of data in from user space, given a pointer to the pointer  */
3812 /* to start copying from (src) and a pointer to where to store it (dst).    */
3813 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
3814 /* ------------------------------------------------------------------------ */
3815 int copyinptr(src, dst, size)
3816 void *src, *dst;
3817 size_t size;
3818 {
3819 	caddr_t ca;
3820 	int err;
3821 
3822 # if SOLARIS
3823 	err = COPYIN(src, (caddr_t)&ca, sizeof(ca));
3824 	if (err != 0)
3825 		return err;
3826 # else
3827 	bcopy(src, (caddr_t)&ca, sizeof(ca));
3828 # endif
3829 	err = COPYIN(ca, dst, size);
3830 	return err;
3831 }
3832 
3833 
3834 /* ------------------------------------------------------------------------ */
3835 /* Function:    copyoutptr                                                  */
3836 /* Returns:     int - 0 = success, else failure                             */
3837 /* Parameters:  src(I)  - pointer to the source address                     */
3838 /*              dst(I)  - destination address                               */
3839 /*              size(I) - number of bytes to copy                           */
3840 /*                                                                          */
3841 /* Copy a block of data out to user space, given a pointer to the pointer   */
3842 /* to start copying from (src) and a pointer to where to store it (dst).    */
3843 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
3844 /* ------------------------------------------------------------------------ */
3845 int copyoutptr(src, dst, size)
3846 void *src, *dst;
3847 size_t size;
3848 {
3849 	caddr_t ca;
3850 	int err;
3851 
3852 # if SOLARIS
3853 	err = COPYIN(dst, (caddr_t)&ca, sizeof(ca));
3854 	if (err != 0)
3855 		return err;
3856 # else
3857 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
3858 # endif
3859 	err = COPYOUT(src, ca, size);
3860 	return err;
3861 }
3862 #endif
3863 
3864 
3865 /* ------------------------------------------------------------------------ */
3866 /* Function:    fr_lock                                                     */
3867 /* Returns:     (void)                                                      */
3868 /* Parameters:  data(I)  - pointer to lock value to set                     */
3869 /*              lockp(O) - pointer to location to store old lock value      */
3870 /*                                                                          */
3871 /* Get the new value for the lock integer, set it and return the old value  */
3872 /* in *lockp.                                                               */
3873 /* ------------------------------------------------------------------------ */
3874 void fr_lock(data, lockp)
3875 caddr_t data;
3876 int *lockp;
3877 {
3878 	int arg;
3879 
3880 	BCOPYIN(data, (caddr_t)&arg, sizeof(arg));
3881 	BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp));
3882 	*lockp = arg;
3883 }
3884 
3885 
3886 /* ------------------------------------------------------------------------ */
3887 /* Function:    fr_getstat                                                  */
3888 /* Returns:     Nil                                                         */
3889 /* Parameters:  fiop(I)  - pointer to ipfilter stats structure              */
3890 /*                                                                          */
3891 /* Stores a copy of current pointers, counters, etc, in the friostat        */
3892 /* structure.                                                               */
3893 /* ------------------------------------------------------------------------ */
3894 void fr_getstat(fiop, ifs)
3895 friostat_t *fiop;
3896 ipf_stack_t *ifs;
3897 {
3898 	int i, j;
3899 
3900 	bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st,
3901 	    sizeof(filterstats_t) * 2);
3902 	fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock;
3903 	fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock;
3904 	fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock;
3905 	fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock;
3906 
3907 	for (i = 0; i < 2; i++)
3908 		for (j = 0; j < 2; j++) {
3909 			fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j];
3910 			fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j];
3911 			fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j];
3912 			fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j];
3913 		}
3914 
3915 	fiop->f_ticks = ifs->ifs_fr_ticks;
3916 	fiop->f_active = ifs->ifs_fr_active;
3917 	fiop->f_froute[0] = ifs->ifs_fr_frouteok[0];
3918 	fiop->f_froute[1] = ifs->ifs_fr_frouteok[1];
3919 
3920 	fiop->f_running = ifs->ifs_fr_running;
3921 	for (i = 0; i < IPL_LOGSIZE; i++) {
3922 		fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0];
3923 		fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1];
3924 	}
3925 #ifdef  IPFILTER_LOG
3926 	fiop->f_logging = 1;
3927 #else
3928 	fiop->f_logging = 0;
3929 #endif
3930 	fiop->f_defpass = ifs->ifs_fr_pass;
3931 	fiop->f_features = fr_features;
3932 	(void) strncpy(fiop->f_version, ipfilter_version,
3933 		       sizeof(fiop->f_version));
3934 }
3935 
3936 
3937 #ifdef	USE_INET6
3938 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
3939 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
3940 	-1,			/* 1: UNUSED */
3941 	-1,			/* 2: UNUSED */
3942 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
3943 	-1,			/* 4: ICMP_SOURCEQUENCH */
3944 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
3945 	-1,			/* 6: UNUSED */
3946 	-1,			/* 7: UNUSED */
3947 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
3948 	-1,			/* 9: UNUSED */
3949 	-1,			/* 10: UNUSED */
3950 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
3951 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
3952 	-1,			/* 13: ICMP_TSTAMP */
3953 	-1,			/* 14: ICMP_TSTAMPREPLY */
3954 	-1,			/* 15: ICMP_IREQ */
3955 	-1,			/* 16: ICMP_IREQREPLY */
3956 	-1,			/* 17: ICMP_MASKREQ */
3957 	-1,			/* 18: ICMP_MASKREPLY */
3958 };
3959 
3960 
3961 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
3962 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
3963 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
3964 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
3965 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
3966 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
3967 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
3968 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
3969 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
3970 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
3971 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
3972 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
3973 	-1,				/* 11: ICMP_UNREACH_TOSNET */
3974 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
3975 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
3976 };
3977 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
3978 #endif
3979 
3980 int	icmpreplytype4[ICMP_MAXTYPE + 1];
3981 
3982 
3983 /* ------------------------------------------------------------------------ */
3984 /* Function:    fr_matchicmpqueryreply                                      */
3985 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
3986 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
3987 /*              ic(I)   - ICMP information                                  */
3988 /*              icmp(I) - ICMP packet header                                */
3989 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
3990 /*                                                                          */
3991 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
3992 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
3993 /* else return 0 for no match.                                              */
3994 /* ------------------------------------------------------------------------ */
3995 int fr_matchicmpqueryreply(v, ic, icmp, rev)
3996 int v;
3997 icmpinfo_t *ic;
3998 icmphdr_t *icmp;
3999 int rev;
4000 {
4001 	int ictype;
4002 
4003 	ictype = ic->ici_type;
4004 
4005 	if (v == 4) {
4006 		/*
4007 		 * If we matched its type on the way in, then when going out
4008 		 * it will still be the same type.
4009 		 */
4010 		if ((!rev && (icmp->icmp_type == ictype)) ||
4011 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4012 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4013 				return 1;
4014 			if (icmp->icmp_id == ic->ici_id)
4015 				return 1;
4016 		}
4017 	}
4018 #ifdef	USE_INET6
4019 	else if (v == 6) {
4020 		if ((!rev && (icmp->icmp_type == ictype)) ||
4021 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4022 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4023 				return 1;
4024 			if (icmp->icmp_id == ic->ici_id)
4025 				return 1;
4026 		}
4027 	}
4028 #endif
4029 	return 0;
4030 }
4031 
4032 
4033 #ifdef	IPFILTER_LOOKUP
4034 /* ------------------------------------------------------------------------ */
4035 /* Function:    fr_resolvelookup                                            */
4036 /* Returns:     void * - NULL = failure, else success.                      */
4037 /* Parameters:  type(I)     - type of lookup these parameters are for.      */
4038 /*              number(I)   - table number to use when searching            */
4039 /*              funcptr(IO) - pointer to pointer for storing IP address     */
4040 /*                           searching function.                            */
4041 /*                                                                          */
4042 /* Search for the "table" number passed in amongst those configured for     */
4043 /* that particular type.  If the type is recognised then the function to    */
4044 /* call to do the IP address search will be change, regardless of whether   */
4045 /* or not the "table" number exists.                                        */
4046 /* ------------------------------------------------------------------------ */
4047 static void *fr_resolvelookup(type, number, funcptr, ifs)
4048 u_int type, number;
4049 lookupfunc_t *funcptr;
4050 ipf_stack_t *ifs;
4051 {
4052 	char name[FR_GROUPLEN];
4053 	iphtable_t *iph;
4054 	ip_pool_t *ipo;
4055 	void *ptr;
4056 
4057 #if defined(SNPRINTF) && defined(_KERNEL)
4058 	(void) SNPRINTF(name, sizeof(name), "%u", number);
4059 #else
4060 	(void) sprintf(name, "%u", number);
4061 #endif
4062 
4063 	READ_ENTER(&ifs->ifs_ip_poolrw);
4064 
4065 	switch (type)
4066 	{
4067 	case IPLT_POOL :
4068 # if (defined(__osf__) && defined(_KERNEL))
4069 		ptr = NULL;
4070 		*funcptr = NULL;
4071 # else
4072 		ipo = ip_pool_find(IPL_LOGIPF, name, ifs);
4073 		ptr = ipo;
4074 		if (ipo != NULL) {
4075 			ATOMIC_INC32(ipo->ipo_ref);
4076 		}
4077 		*funcptr = ip_pool_search;
4078 # endif
4079 		break;
4080 	case IPLT_HASH :
4081 		iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4082 		ptr = iph;
4083 		if (iph != NULL) {
4084 			ATOMIC_INC32(iph->iph_ref);
4085 		}
4086 		*funcptr = fr_iphmfindip;
4087 		break;
4088 	default:
4089 		ptr = NULL;
4090 		*funcptr = NULL;
4091 		break;
4092 	}
4093 	RWLOCK_EXIT(&ifs->ifs_ip_poolrw);
4094 
4095 	return ptr;
4096 }
4097 #endif
4098 
4099 
4100 /* ------------------------------------------------------------------------ */
4101 /* Function:    frrequest                                                   */
4102 /* Returns:     int - 0 == success, > 0 == errno value                      */
4103 /* Parameters:  unit(I)     - device for which this is for                  */
4104 /*              req(I)      - ioctl command (SIOC*)                         */
4105 /*              data(I)     - pointr to ioctl data                          */
4106 /*              set(I)      - 1 or 0 (filter set)                           */
4107 /*              makecopy(I) - flag indicating whether data points to a rule */
4108 /*                            in kernel space & hence doesn't need copying. */
4109 /*                                                                          */
4110 /* This function handles all the requests which operate on the list of      */
4111 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4112 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4113 /* names are resolved here and other sanity checks are made on the content  */
4114 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4115 /* then make sure they are created and initialised before exiting.          */
4116 /* ------------------------------------------------------------------------ */
4117 int frrequest(unit, req, data, set, makecopy, ifs)
4118 int unit;
4119 ioctlcmd_t req;
4120 int set, makecopy;
4121 caddr_t data;
4122 ipf_stack_t *ifs;
4123 {
4124 	frentry_t frd, *fp, *f, **fprev, **ftail;
4125 	int error = 0, in, v;
4126 	void *ptr, *uptr;
4127 	u_int *p, *pp;
4128 	frgroup_t *fg;
4129 	char *group;
4130 
4131 	fg = NULL;
4132 	fp = &frd;
4133 	if (makecopy != 0) {
4134 		error = fr_inobj(data, fp, IPFOBJ_FRENTRY);
4135 		if (error)
4136 			return EFAULT;
4137 		if ((fp->fr_flags & FR_T_BUILTIN) != 0)
4138 			return EINVAL;
4139 		fp->fr_ref = 0;
4140 		fp->fr_flags |= FR_COPIED;
4141 	} else {
4142 		fp = (frentry_t *)data;
4143 		if ((fp->fr_type & FR_T_BUILTIN) == 0)
4144 			return EINVAL;
4145 		fp->fr_flags &= ~FR_COPIED;
4146 	}
4147 
4148 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4149 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL)))
4150 		return EINVAL;
4151 
4152 	v = fp->fr_v;
4153 	uptr = fp->fr_data;
4154 
4155 	/*
4156 	 * Only filter rules for IPv4 or IPv6 are accepted.
4157 	 */
4158 	if (v == 4)
4159 		/*EMPTY*/;
4160 #ifdef	USE_INET6
4161 	else if (v == 6)
4162 		/*EMPTY*/;
4163 #endif
4164 	else {
4165 		return EINVAL;
4166 	}
4167 
4168 	/*
4169 	 * If the rule is being loaded from user space, i.e. we had to copy it
4170 	 * into kernel space, then do not trust the function pointer in the
4171 	 * rule.
4172 	 */
4173 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4174 		if (fr_findfunc(fp->fr_func) == NULL)
4175 			return ESRCH;
4176 		error = fr_funcinit(fp, ifs);
4177 		if (error != 0)
4178 			return error;
4179 	}
4180 
4181 	ptr = NULL;
4182 	/*
4183 	 * Check that the group number does exist and that its use (in/out)
4184 	 * matches what the rule is.
4185 	 */
4186 	if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN))
4187 		*fp->fr_grhead = '\0';
4188 	group = fp->fr_group;
4189 	if (!strncmp(group, "0", FR_GROUPLEN))
4190 		*group = '\0';
4191 
4192 	if (FR_ISACCOUNT(fp->fr_flags))
4193 		unit = IPL_LOGCOUNT;
4194 
4195 	if ((req != (int)SIOCZRLST) && (*group != '\0')) {
4196 		fg = fr_findgroup(group, unit, set, NULL, ifs);
4197 		if (fg == NULL)
4198 			return ESRCH;
4199 		if (fg->fg_flags == 0)
4200 			fg->fg_flags = fp->fr_flags & FR_INOUT;
4201 		else if (fg->fg_flags != (fp->fr_flags & FR_INOUT))
4202 			return ESRCH;
4203 	}
4204 
4205 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4206 
4207 	/*
4208 	 * Work out which rule list this change is being applied to.
4209 	 */
4210 	ftail = NULL;
4211 	fprev = NULL;
4212 	if (unit == IPL_LOGAUTH)
4213 		fprev = &ifs->ifs_ipauth;
4214 	else if (v == 4) {
4215 		if (FR_ISACCOUNT(fp->fr_flags))
4216 			fprev = &ifs->ifs_ipacct[in][set];
4217 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4218 			fprev = &ifs->ifs_ipfilter[in][set];
4219 	} else if (v == 6) {
4220 		if (FR_ISACCOUNT(fp->fr_flags))
4221 			fprev = &ifs->ifs_ipacct6[in][set];
4222 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4223 			fprev = &ifs->ifs_ipfilter6[in][set];
4224 	}
4225 	if (fprev == NULL)
4226 		return ESRCH;
4227 
4228 	if (*group != '\0') {
4229 	    if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs)))
4230 			return ESRCH;
4231 		fprev = &fg->fg_start;
4232 	}
4233 
4234 	ftail = fprev;
4235 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4236 		if (fp->fr_collect <= f->fr_collect) {
4237 			ftail = fprev;
4238 			f = NULL;
4239 			break;
4240 		}
4241 		fprev = ftail;
4242 	}
4243 
4244 	/*
4245 	 * Copy in extra data for the rule.
4246 	 */
4247 	if (fp->fr_dsize != 0) {
4248 		if (makecopy != 0) {
4249 			KMALLOCS(ptr, void *, fp->fr_dsize);
4250 			if (!ptr)
4251 				return ENOMEM;
4252 			error = COPYIN(uptr, ptr, fp->fr_dsize);
4253 		} else {
4254 			ptr = uptr;
4255 			error = 0;
4256 		}
4257 		if (error != 0) {
4258 			KFREES(ptr, fp->fr_dsize);
4259 			return ENOMEM;
4260 		}
4261 		fp->fr_data = ptr;
4262 	} else
4263 		fp->fr_data = NULL;
4264 
4265 	/*
4266 	 * Perform per-rule type sanity checks of their members.
4267 	 */
4268 	switch (fp->fr_type & ~FR_T_BUILTIN)
4269 	{
4270 #if defined(IPFILTER_BPF)
4271 	case FR_T_BPFOPC :
4272 		if (fp->fr_dsize == 0)
4273 			return EINVAL;
4274 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4275 			if (makecopy && fp->fr_data != NULL) {
4276 				KFREES(fp->fr_data, fp->fr_dsize);
4277 			}
4278 			return EINVAL;
4279 		}
4280 		break;
4281 #endif
4282 	case FR_T_IPF :
4283 		if (fp->fr_dsize != sizeof(fripf_t))
4284 			return EINVAL;
4285 
4286 		/*
4287 		 * Allowing a rule with both "keep state" and "with oow" is
4288 		 * pointless because adding a state entry to the table will
4289 		 * fail with the out of window (oow) flag set.
4290 		 */
4291 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW))
4292 			return EINVAL;
4293 
4294 		switch (fp->fr_satype)
4295 		{
4296 		case FRI_BROADCAST :
4297 		case FRI_DYNAMIC :
4298 		case FRI_NETWORK :
4299 		case FRI_NETMASKED :
4300 		case FRI_PEERADDR :
4301 			if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) {
4302 				if (makecopy && fp->fr_data != NULL) {
4303 					KFREES(fp->fr_data, fp->fr_dsize);
4304 				}
4305 				return EINVAL;
4306 			}
4307 			break;
4308 #ifdef	IPFILTER_LOOKUP
4309 		case FRI_LOOKUP :
4310 			fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype,
4311 							 fp->fr_srcnum,
4312 							 &fp->fr_srcfunc, ifs);
4313 			break;
4314 #endif
4315 		default :
4316 			break;
4317 		}
4318 
4319 		switch (fp->fr_datype)
4320 		{
4321 		case FRI_BROADCAST :
4322 		case FRI_DYNAMIC :
4323 		case FRI_NETWORK :
4324 		case FRI_NETMASKED :
4325 		case FRI_PEERADDR :
4326 			if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) {
4327 				if (makecopy && fp->fr_data != NULL) {
4328 					KFREES(fp->fr_data, fp->fr_dsize);
4329 				}
4330 				return EINVAL;
4331 			}
4332 			break;
4333 #ifdef	IPFILTER_LOOKUP
4334 		case FRI_LOOKUP :
4335 			fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype,
4336 							 fp->fr_dstnum,
4337 							 &fp->fr_dstfunc, ifs);
4338 			break;
4339 #endif
4340 		default :
4341 			break;
4342 		}
4343 		break;
4344 	case FR_T_NONE :
4345 		break;
4346 	case FR_T_CALLFUNC :
4347 		break;
4348 	case FR_T_COMPIPF :
4349 		break;
4350 	default :
4351 		if (makecopy && fp->fr_data != NULL) {
4352 			KFREES(fp->fr_data, fp->fr_dsize);
4353 		}
4354 		return EINVAL;
4355 	}
4356 
4357 	/*
4358 	 * Lookup all the interface names that are part of the rule.
4359 	 */
4360 	frsynclist(0, 0, NULL, NULL, fp, ifs);
4361 	fp->fr_statecnt = 0;
4362 
4363 	/*
4364 	 * Look for an existing matching filter rule, but don't include the
4365 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4366 	 * This elminates rules which are indentical being loaded.  Checksum
4367 	 * the constant part of the filter rule to make comparisons quicker
4368 	 * (this meaning no pointers are included).
4369 	 */
4370 	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4371 	     p < pp; p++)
4372 		fp->fr_cksum += *p;
4373 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4374 	for (p = (u_int *)fp->fr_data; p < pp; p++)
4375 		fp->fr_cksum += *p;
4376 
4377 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
4378 
4379 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4380 		if ((fp->fr_cksum != f->fr_cksum) ||
4381 		    (f->fr_dsize != fp->fr_dsize))
4382 			continue;
4383 		if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ))
4384 			continue;
4385 		if ((!ptr && !f->fr_data) ||
4386 		    (ptr && f->fr_data &&
4387 		     !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4388 			break;
4389 	}
4390 
4391 	/*
4392 	 * If zero'ing statistics, copy current to caller and zero.
4393 	 */
4394 	if (req == (ioctlcmd_t)SIOCZRLST) {
4395 		if (f == NULL)
4396 			error = ESRCH;
4397 		else {
4398 			/*
4399 			 * Copy and reduce lock because of impending copyout.
4400 			 * Well we should, but if we do then the atomicity of
4401 			 * this call and the correctness of fr_hits and
4402 			 * fr_bytes cannot be guaranteed.  As it is, this code
4403 			 * only resets them to 0 if they are successfully
4404 			 * copied out into user space.
4405 			 */
4406 			bcopy((char *)f, (char *)fp, sizeof(*f));
4407 
4408 			/*
4409 			 * When we copy this rule back out, set the data
4410 			 * pointer to be what it was in user space.
4411 			 */
4412 			fp->fr_data = uptr;
4413 			error = fr_outobj(data, fp, IPFOBJ_FRENTRY);
4414 
4415 			if (error == 0) {
4416 				if ((f->fr_dsize != 0) && (uptr != NULL))
4417 					error = COPYOUT(f->fr_data, uptr,
4418 							f->fr_dsize);
4419 				if (error == 0) {
4420 					f->fr_hits = 0;
4421 					f->fr_bytes = 0;
4422 				}
4423 			}
4424 		}
4425 
4426 		if ((ptr != NULL) && (makecopy != 0)) {
4427 			KFREES(ptr, fp->fr_dsize);
4428 		}
4429 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4430 		return error;
4431 	}
4432 
4433 	if (!f) {
4434 		/*
4435 		 * At the end of this, ftail must point to the place where the
4436 		 * new rule is to be saved/inserted/added.
4437 		 * For SIOCAD*FR, this should be the last rule in the group of
4438 		 * rules that have equal fr_collect fields.
4439 		 * For SIOCIN*FR, ...
4440 		 */
4441 		if (req == (ioctlcmd_t)SIOCADAFR ||
4442 		    req == (ioctlcmd_t)SIOCADIFR) {
4443 
4444 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4445 				if (f->fr_collect > fp->fr_collect)
4446 					break;
4447 				ftail = &f->fr_next;
4448 			}
4449 			f = NULL;
4450 			ptr = NULL;
4451 			error = 0;
4452 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4453 			   req == (ioctlcmd_t)SIOCINIFR) {
4454 			while ((f = *fprev) != NULL) {
4455 				if (f->fr_collect >= fp->fr_collect)
4456 					break;
4457 				fprev = &f->fr_next;
4458 			}
4459 			ftail = fprev;
4460 			if (fp->fr_hits != 0) {
4461 				while (fp->fr_hits && (f = *ftail)) {
4462 					if (f->fr_collect != fp->fr_collect)
4463 						break;
4464 					fprev = ftail;
4465 					ftail = &f->fr_next;
4466 					fp->fr_hits--;
4467 				}
4468 			}
4469 			f = NULL;
4470 			ptr = NULL;
4471 			error = 0;
4472 		}
4473 	}
4474 
4475 	/*
4476 	 * Request to remove a rule.
4477 	 */
4478 	if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) {
4479 		if (!f)
4480 			error = ESRCH;
4481 		else {
4482 			/*
4483 			 * Do not allow activity from user space to interfere
4484 			 * with rules not loaded that way.
4485 			 */
4486 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4487 				error = EPERM;
4488 				goto done;
4489 			}
4490 
4491 			/*
4492 			 * Return EBUSY if the rule is being reference by
4493 			 * something else (eg state information.
4494 			 */
4495 			if (f->fr_ref > 1) {
4496 				error = EBUSY;
4497 				goto done;
4498 			}
4499 #ifdef	IPFILTER_SCAN
4500 			if (f->fr_isctag[0] != '\0' &&
4501 			    (f->fr_isc != (struct ipscan *)-1))
4502 				ipsc_detachfr(f);
4503 #endif
4504 			if (unit == IPL_LOGAUTH) {
4505 				error = fr_preauthcmd(req, f, ftail, ifs);
4506 				goto done;
4507 			}
4508 			if (*f->fr_grhead != '\0')
4509 				fr_delgroup(f->fr_grhead, unit, set, ifs);
4510 			fr_fixskip(ftail, f, -1);
4511 			*ftail = f->fr_next;
4512 			f->fr_next = NULL;
4513 			(void)fr_derefrule(&f, ifs);
4514 		}
4515 	} else {
4516 		/*
4517 		 * Not removing, so we must be adding/inserting a rule.
4518 		 */
4519 		if (f)
4520 			error = EEXIST;
4521 		else {
4522 			if (unit == IPL_LOGAUTH) {
4523 				error = fr_preauthcmd(req, fp, ftail, ifs);
4524 				goto done;
4525 			}
4526 			if (makecopy) {
4527 				KMALLOC(f, frentry_t *);
4528 			} else
4529 				f = fp;
4530 			if (f != NULL) {
4531 				if (fp != f)
4532 					bcopy((char *)fp, (char *)f,
4533 					      sizeof(*f));
4534 				MUTEX_NUKE(&f->fr_lock);
4535 				MUTEX_INIT(&f->fr_lock, "filter rule lock");
4536 #ifdef	IPFILTER_SCAN
4537 				if (f->fr_isctag[0] != '\0' &&
4538 				    ipsc_attachfr(f))
4539 					f->fr_isc = (struct ipscan *)-1;
4540 #endif
4541 				f->fr_hits = 0;
4542 				if (makecopy != 0)
4543 					f->fr_ref = 1;
4544 				f->fr_next = *ftail;
4545 				*ftail = f;
4546 				if (req == (ioctlcmd_t)SIOCINIFR ||
4547 				    req == (ioctlcmd_t)SIOCINAFR)
4548 					fr_fixskip(ftail, f, 1);
4549 				f->fr_grp = NULL;
4550 				group = f->fr_grhead;
4551 				if (*group != '\0') {
4552 					fg = fr_addgroup(group, f, f->fr_flags,
4553 							 unit, set, ifs);
4554 					if (fg != NULL)
4555 						f->fr_grp = &fg->fg_start;
4556 				}
4557 			} else
4558 				error = ENOMEM;
4559 		}
4560 	}
4561 done:
4562 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4563 	if ((ptr != NULL) && (error != 0) && (makecopy != 0)) {
4564 		KFREES(ptr, fp->fr_dsize);
4565 	}
4566 	return (error);
4567 }
4568 
4569 
4570 /* ------------------------------------------------------------------------ */
4571 /* Function:    fr_funcinit                                                 */
4572 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
4573 /* Parameters:  fr(I) - pointer to filter rule                              */
4574 /*                                                                          */
4575 /* If a rule is a call rule, then check if the function it points to needs  */
4576 /* an init function to be called now the rule has been loaded.              */
4577 /* ------------------------------------------------------------------------ */
4578 static int fr_funcinit(fr, ifs)
4579 frentry_t *fr;
4580 ipf_stack_t *ifs;
4581 {
4582 	ipfunc_resolve_t *ft;
4583 	int err;
4584 
4585 	err = ESRCH;
4586 
4587 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4588 		if (ft->ipfu_addr == fr->fr_func) {
4589 			err = 0;
4590 			if (ft->ipfu_init != NULL)
4591 				err = (*ft->ipfu_init)(fr, ifs);
4592 			break;
4593 		}
4594 	return err;
4595 }
4596 
4597 
4598 /* ------------------------------------------------------------------------ */
4599 /* Function:    fr_findfunc                                                 */
4600 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
4601 /* Parameters:  funcptr(I) - function pointer to lookup                     */
4602 /*                                                                          */
4603 /* Look for a function in the table of known functions.                     */
4604 /* ------------------------------------------------------------------------ */
4605 static ipfunc_t fr_findfunc(funcptr)
4606 ipfunc_t funcptr;
4607 {
4608 	ipfunc_resolve_t *ft;
4609 
4610 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4611 		if (ft->ipfu_addr == funcptr)
4612 			return funcptr;
4613 	return NULL;
4614 }
4615 
4616 
4617 /* ------------------------------------------------------------------------ */
4618 /* Function:    fr_resolvefunc                                              */
4619 /* Returns:     int - 0 == success, else error                              */
4620 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
4621 /*                                                                          */
4622 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
4623 /* This will either be the function name (if the pointer is set) or the     */
4624 /* function pointer if the name is set.  When found, fill in the other one  */
4625 /* so that the entire, complete, structure can be copied back to user space.*/
4626 /* ------------------------------------------------------------------------ */
4627 int fr_resolvefunc(data)
4628 void *data;
4629 {
4630 	ipfunc_resolve_t res, *ft;
4631 
4632 	BCOPYIN(data, &res, sizeof(res));
4633 
4634 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
4635 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4636 			if (strncmp(res.ipfu_name, ft->ipfu_name,
4637 				    sizeof(res.ipfu_name)) == 0) {
4638 				res.ipfu_addr = ft->ipfu_addr;
4639 				res.ipfu_init = ft->ipfu_init;
4640 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4641 					return EFAULT;
4642 				return 0;
4643 			}
4644 	}
4645 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
4646 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4647 			if (ft->ipfu_addr == res.ipfu_addr) {
4648 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
4649 					       sizeof(res.ipfu_name));
4650 				res.ipfu_init = ft->ipfu_init;
4651 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4652 					return EFAULT;
4653 				return 0;
4654 			}
4655 	}
4656 	return ESRCH;
4657 }
4658 
4659 
4660 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \
4661     (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \
4662     (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \
4663     (defined(__OpenBSD__) && (OpenBSD < 200006))
4664 /*
4665  * From: NetBSD
4666  * ppsratecheck(): packets (or events) per second limitation.
4667  */
4668 int
4669 ppsratecheck(lasttime, curpps, maxpps)
4670 	struct timeval *lasttime;
4671 	int *curpps;
4672 	int maxpps;	/* maximum pps allowed */
4673 {
4674 	struct timeval tv, delta;
4675 	int rv;
4676 
4677 	GETKTIME(&tv);
4678 
4679 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
4680 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
4681 	if (delta.tv_usec < 0) {
4682 		delta.tv_sec--;
4683 		delta.tv_usec += 1000000;
4684 	}
4685 
4686 	/*
4687 	 * check for 0,0 is so that the message will be seen at least once.
4688 	 * if more than one second have passed since the last update of
4689 	 * lasttime, reset the counter.
4690 	 *
4691 	 * we do increment *curpps even in *curpps < maxpps case, as some may
4692 	 * try to use *curpps for stat purposes as well.
4693 	 */
4694 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
4695 	    delta.tv_sec >= 1) {
4696 		*lasttime = tv;
4697 		*curpps = 0;
4698 		rv = 1;
4699 	} else if (maxpps < 0)
4700 		rv = 1;
4701 	else if (*curpps < maxpps)
4702 		rv = 1;
4703 	else
4704 		rv = 0;
4705 	*curpps = *curpps + 1;
4706 
4707 	return (rv);
4708 }
4709 #endif
4710 
4711 
4712 /* ------------------------------------------------------------------------ */
4713 /* Function:    fr_derefrule                                                */
4714 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
4715 /* Parameters:  fr(I) - pointer to filter rule                              */
4716 /*                                                                          */
4717 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
4718 /* free it and any associated storage space being used by it.               */
4719 /* ------------------------------------------------------------------------ */
4720 int fr_derefrule(frp, ifs)
4721 frentry_t **frp;
4722 ipf_stack_t *ifs;
4723 {
4724 	frentry_t *fr;
4725 
4726 	fr = *frp;
4727 
4728 	MUTEX_ENTER(&fr->fr_lock);
4729 	fr->fr_ref--;
4730 	if (fr->fr_ref == 0) {
4731 		MUTEX_EXIT(&fr->fr_lock);
4732 		MUTEX_DESTROY(&fr->fr_lock);
4733 
4734 #ifdef IPFILTER_LOOKUP
4735 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP)
4736 		    ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs);
4737 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP)
4738 		    ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs);
4739 #endif
4740 
4741 		if (fr->fr_dsize) {
4742 			KFREES(fr->fr_data, fr->fr_dsize);
4743 		}
4744 		if ((fr->fr_flags & FR_COPIED) != 0) {
4745 			KFREE(fr);
4746 			return 0;
4747 		}
4748 		return 1;
4749 	} else {
4750 		MUTEX_EXIT(&fr->fr_lock);
4751 	}
4752 	*frp = NULL;
4753 	return -1;
4754 }
4755 
4756 
4757 #ifdef	IPFILTER_LOOKUP
4758 /* ------------------------------------------------------------------------ */
4759 /* Function:    fr_grpmapinit                                               */
4760 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
4761 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
4762 /*                                                                          */
4763 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
4764 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap.                   */
4765 /* ------------------------------------------------------------------------ */
4766 static int fr_grpmapinit(fr, ifs)
4767 frentry_t *fr;
4768 ipf_stack_t *ifs;
4769 {
4770 	char name[FR_GROUPLEN];
4771 	iphtable_t *iph;
4772 
4773 #if defined(SNPRINTF) && defined(_KERNEL)
4774 	(void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
4775 #else
4776 	(void) sprintf(name, "%d", fr->fr_arg);
4777 #endif
4778 	iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4779 	if (iph == NULL)
4780 		return ESRCH;
4781 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT))
4782 		return ESRCH;
4783 	fr->fr_ptr = iph;
4784 	return 0;
4785 }
4786 
4787 
4788 /* ------------------------------------------------------------------------ */
4789 /* Function:    fr_srcgrpmap                                                */
4790 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4791 /* Parameters:  fin(I)    - pointer to packet information                   */
4792 /*              passp(IO) - pointer to current/new filter decision (unused) */
4793 /*                                                                          */
4794 /* Look for a rule group head in a hash table, using the source address as  */
4795 /* the key, and descend into that group and continue matching rules against */
4796 /* the packet.                                                              */
4797 /* ------------------------------------------------------------------------ */
4798 frentry_t *fr_srcgrpmap(fin, passp)
4799 fr_info_t *fin;
4800 u_32_t *passp;
4801 {
4802 	frgroup_t *fg;
4803 	void *rval;
4804 	ipf_stack_t *ifs = fin->fin_ifs;
4805 
4806 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs);
4807 	if (rval == NULL)
4808 		return NULL;
4809 
4810 	fg = rval;
4811 	fin->fin_fr = fg->fg_start;
4812 	(void) fr_scanlist(fin, *passp);
4813 	return fin->fin_fr;
4814 }
4815 
4816 
4817 /* ------------------------------------------------------------------------ */
4818 /* Function:    fr_dstgrpmap                                                */
4819 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4820 /* Parameters:  fin(I)    - pointer to packet information                   */
4821 /*              passp(IO) - pointer to current/new filter decision (unused) */
4822 /*                                                                          */
4823 /* Look for a rule group head in a hash table, using the destination        */
4824 /* address as the key, and descend into that group and continue matching    */
4825 /* rules against  the packet.                                               */
4826 /* ------------------------------------------------------------------------ */
4827 frentry_t *fr_dstgrpmap(fin, passp)
4828 fr_info_t *fin;
4829 u_32_t *passp;
4830 {
4831 	frgroup_t *fg;
4832 	void *rval;
4833 	ipf_stack_t *ifs = fin->fin_ifs;
4834 
4835 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs);
4836 	if (rval == NULL)
4837 		return NULL;
4838 
4839 	fg = rval;
4840 	fin->fin_fr = fg->fg_start;
4841 	(void) fr_scanlist(fin, *passp);
4842 	return fin->fin_fr;
4843 }
4844 #endif /* IPFILTER_LOOKUP */
4845 
4846 /*
4847  * Queue functions
4848  * ===============
4849  * These functions manage objects on queues for efficient timeouts.  There are
4850  * a number of system defined queues as well as user defined timeouts.  It is
4851  * expected that a lock is held in the domain in which the queue belongs
4852  * (i.e. either state or NAT) when calling any of these functions that prevents
4853  * fr_freetimeoutqueue() from being called at the same time as any other.
4854  */
4855 
4856 
4857 /* ------------------------------------------------------------------------ */
4858 /* Function:    fr_addtimeoutqueue                                          */
4859 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
4860 /*                               timeout queue with given interval.         */
4861 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
4862 /*                           of interface queues.                           */
4863 /*              seconds(I) - timeout value in seconds for this queue.       */
4864 /*                                                                          */
4865 /* This routine first looks for a timeout queue that matches the interval   */
4866 /* being requested.  If it finds one, increments the reference counter and  */
4867 /* returns a pointer to it.  If none are found, it allocates a new one and  */
4868 /* inserts it at the top of the list.                                       */
4869 /*                                                                          */
4870 /* Locking.                                                                 */
4871 /* It is assumed that the caller of this function has an appropriate lock   */
4872 /* held (exclusively) in the domain that encompases 'parent'.               */
4873 /* ------------------------------------------------------------------------ */
4874 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs)
4875 ipftq_t **parent;
4876 u_int seconds;
4877 ipf_stack_t *ifs;
4878 {
4879 	ipftq_t *ifq;
4880 	u_int period;
4881 
4882 	period = seconds * IPF_HZ_DIVIDE;
4883 
4884 	MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock);
4885 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
4886 		if (ifq->ifq_ttl == period) {
4887 			/*
4888 			 * Reset the delete flag, if set, so the structure
4889 			 * gets reused rather than freed and reallocated.
4890 			 */
4891 			MUTEX_ENTER(&ifq->ifq_lock);
4892 			ifq->ifq_flags &= ~IFQF_DELETE;
4893 			ifq->ifq_ref++;
4894 			MUTEX_EXIT(&ifq->ifq_lock);
4895 			MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
4896 
4897 			return ifq;
4898 		}
4899 	}
4900 
4901 	KMALLOC(ifq, ipftq_t *);
4902 	if (ifq != NULL) {
4903 		ifq->ifq_ttl = period;
4904 		ifq->ifq_head = NULL;
4905 		ifq->ifq_tail = &ifq->ifq_head;
4906 		ifq->ifq_next = *parent;
4907 		ifq->ifq_pnext = parent;
4908 		ifq->ifq_ref = 1;
4909 		ifq->ifq_flags = IFQF_USER;
4910 		*parent = ifq;
4911 		ifs->ifs_fr_userifqs++;
4912 		MUTEX_NUKE(&ifq->ifq_lock);
4913 		MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex");
4914 	}
4915 	MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
4916 	return ifq;
4917 }
4918 
4919 
4920 /* ------------------------------------------------------------------------ */
4921 /* Function:    fr_deletetimeoutqueue                                       */
4922 /* Returns:     int    - new reference count value of the timeout queue     */
4923 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
4924 /* Locks:       ifq->ifq_lock                                               */
4925 /*                                                                          */
4926 /* This routine must be called when we're discarding a pointer to a timeout */
4927 /* queue object, taking care of the reference counter.                      */
4928 /*                                                                          */
4929 /* Now that this just sets a DELETE flag, it requires the expire code to    */
4930 /* check the list of user defined timeout queues and call the free function */
4931 /* below (currently commented out) to stop memory leaking.  It is done this */
4932 /* way because the locking may not be sufficient to safely do a free when   */
4933 /* this function is called.                                                 */
4934 /* ------------------------------------------------------------------------ */
4935 int fr_deletetimeoutqueue(ifq)
4936 ipftq_t *ifq;
4937 {
4938 
4939 	ifq->ifq_ref--;
4940 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
4941 		ifq->ifq_flags |= IFQF_DELETE;
4942 	}
4943 
4944 	return ifq->ifq_ref;
4945 }
4946 
4947 
4948 /* ------------------------------------------------------------------------ */
4949 /* Function:    fr_freetimeoutqueue                                         */
4950 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
4951 /* Returns:     Nil                                                         */
4952 /*                                                                          */
4953 /* Locking:                                                                 */
4954 /* It is assumed that the caller of this function has an appropriate lock   */
4955 /* held (exclusively) in the domain that encompases the callers "domain".   */
4956 /* The ifq_lock for this structure should not be held.                      */
4957 /*                                                                          */
4958 /* Remove a user definde timeout queue from the list of queues it is in and */
4959 /* tidy up after this is done.                                              */
4960 /* ------------------------------------------------------------------------ */
4961 void fr_freetimeoutqueue(ifq, ifs)
4962 ipftq_t *ifq;
4963 ipf_stack_t *ifs;
4964 {
4965 
4966 
4967 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
4968 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
4969 		printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
4970 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
4971 		       ifq->ifq_ref);
4972 		return;
4973 	}
4974 
4975 	/*
4976 	 * Remove from its position in the list.
4977 	 */
4978 	*ifq->ifq_pnext = ifq->ifq_next;
4979 	if (ifq->ifq_next != NULL)
4980 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
4981 
4982 	MUTEX_DESTROY(&ifq->ifq_lock);
4983 	ifs->ifs_fr_userifqs--;
4984 	KFREE(ifq);
4985 }
4986 
4987 
4988 /* ------------------------------------------------------------------------ */
4989 /* Function:    fr_deletequeueentry                                         */
4990 /* Returns:     Nil                                                         */
4991 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
4992 /*              ifq(I) - timeout queue to remove entry from                 */
4993 /*                                                                          */
4994 /* Remove a tail queue entry from its queue and make it an orphan.          */
4995 /* fr_deletetimeoutqueue is called to make sure the reference count on the  */
4996 /* queue is correct.  We can't, however, call fr_freetimeoutqueue because   */
4997 /* the correct lock(s) may not be held that would make it safe to do so.    */
4998 /* ------------------------------------------------------------------------ */
4999 void fr_deletequeueentry(tqe)
5000 ipftqent_t *tqe;
5001 {
5002 	ipftq_t *ifq;
5003 
5004 	ifq = tqe->tqe_ifq;
5005 	if (ifq == NULL)
5006 		return;
5007 
5008 	MUTEX_ENTER(&ifq->ifq_lock);
5009 
5010 	if (tqe->tqe_pnext != NULL) {
5011 		*tqe->tqe_pnext = tqe->tqe_next;
5012 		if (tqe->tqe_next != NULL)
5013 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5014 		else    /* we must be the tail anyway */
5015 			ifq->ifq_tail = tqe->tqe_pnext;
5016 
5017 		tqe->tqe_pnext = NULL;
5018 		tqe->tqe_ifq = NULL;
5019 	}
5020 
5021 	(void) fr_deletetimeoutqueue(ifq);
5022 
5023 	MUTEX_EXIT(&ifq->ifq_lock);
5024 }
5025 
5026 
5027 /* ------------------------------------------------------------------------ */
5028 /* Function:    fr_queuefront                                               */
5029 /* Returns:     Nil                                                         */
5030 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5031 /*                                                                          */
5032 /* Move a queue entry to the front of the queue, if it isn't already there. */
5033 /* ------------------------------------------------------------------------ */
5034 void fr_queuefront(tqe)
5035 ipftqent_t *tqe;
5036 {
5037 	ipftq_t *ifq;
5038 
5039 	ifq = tqe->tqe_ifq;
5040 	if (ifq == NULL)
5041 		return;
5042 
5043 	MUTEX_ENTER(&ifq->ifq_lock);
5044 	if (ifq->ifq_head != tqe) {
5045 		*tqe->tqe_pnext = tqe->tqe_next;
5046 		if (tqe->tqe_next)
5047 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5048 		else
5049 			ifq->ifq_tail = tqe->tqe_pnext;
5050 
5051 		tqe->tqe_next = ifq->ifq_head;
5052 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5053 		ifq->ifq_head = tqe;
5054 		tqe->tqe_pnext = &ifq->ifq_head;
5055 	}
5056 	MUTEX_EXIT(&ifq->ifq_lock);
5057 }
5058 
5059 
5060 /* ------------------------------------------------------------------------ */
5061 /* Function:    fr_queueback                                                */
5062 /* Returns:     Nil                                                         */
5063 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5064 /*                                                                          */
5065 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5066 /* ------------------------------------------------------------------------ */
5067 void fr_queueback(tqe, ifs)
5068 ipftqent_t *tqe;
5069 ipf_stack_t *ifs;
5070 {
5071 	ipftq_t *ifq;
5072 
5073 	ifq = tqe->tqe_ifq;
5074 	if (ifq == NULL)
5075 		return;
5076 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5077 
5078 	MUTEX_ENTER(&ifq->ifq_lock);
5079 	if (tqe->tqe_next == NULL) {		/* at the end already ? */
5080 		MUTEX_EXIT(&ifq->ifq_lock);
5081 		return;
5082 	}
5083 
5084 	/*
5085 	 * Remove from list
5086 	 */
5087 	*tqe->tqe_pnext = tqe->tqe_next;
5088 	tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5089 
5090 	/*
5091 	 * Make it the last entry.
5092 	 */
5093 	tqe->tqe_next = NULL;
5094 	tqe->tqe_pnext = ifq->ifq_tail;
5095 	*ifq->ifq_tail = tqe;
5096 	ifq->ifq_tail = &tqe->tqe_next;
5097 	MUTEX_EXIT(&ifq->ifq_lock);
5098 }
5099 
5100 
5101 /* ------------------------------------------------------------------------ */
5102 /* Function:    fr_queueappend                                              */
5103 /* Returns:     Nil                                                         */
5104 /* Parameters:  tqe(I)    - pointer to timeout queue entry                  */
5105 /*              ifq(I)    - pointer to timeout queue                        */
5106 /*              parent(I) - owing object pointer                            */
5107 /*                                                                          */
5108 /* Add a new item to this queue and put it on the very end.                 */
5109 /* ------------------------------------------------------------------------ */
5110 void fr_queueappend(tqe, ifq, parent, ifs)
5111 ipftqent_t *tqe;
5112 ipftq_t *ifq;
5113 void *parent;
5114 ipf_stack_t *ifs;
5115 {
5116 
5117 	MUTEX_ENTER(&ifq->ifq_lock);
5118 	tqe->tqe_parent = parent;
5119 	tqe->tqe_pnext = ifq->ifq_tail;
5120 	*ifq->ifq_tail = tqe;
5121 	ifq->ifq_tail = &tqe->tqe_next;
5122 	tqe->tqe_next = NULL;
5123 	tqe->tqe_ifq = ifq;
5124 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5125 	ifq->ifq_ref++;
5126 	MUTEX_EXIT(&ifq->ifq_lock);
5127 }
5128 
5129 
5130 /* ------------------------------------------------------------------------ */
5131 /* Function:    fr_movequeue                                                */
5132 /* Returns:     Nil                                                         */
5133 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5134 /*              oifp(I) - old timeout queue entry was on                    */
5135 /*              nifp(I) - new timeout queue to put entry on                 */
5136 /*                                                                          */
5137 /* Move a queue entry from one timeout queue to another timeout queue.      */
5138 /* If it notices that the current entry is already last and does not need   */
5139 /* to move queue, the return.                                               */
5140 /* ------------------------------------------------------------------------ */
5141 void fr_movequeue(tqe, oifq, nifq, ifs)
5142 ipftqent_t *tqe;
5143 ipftq_t *oifq, *nifq;
5144 ipf_stack_t *ifs;
5145 {
5146 	/*
5147 	 * Is the operation here going to be a no-op ?
5148 	 */
5149 	tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl;
5150 	if (oifq == nifq) {
5151 		if (tqe->tqe_next == NULL)
5152 			return;
5153 		if (tqe->tqe_next->tqe_die == tqe->tqe_die)
5154 			return;
5155 	}
5156 
5157 	MUTEX_ENTER(&oifq->ifq_lock);
5158 	/*
5159 	 * Remove from the old queue
5160 	 */
5161 	*tqe->tqe_pnext = tqe->tqe_next;
5162 	if (tqe->tqe_next)
5163 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5164 	else
5165 		oifq->ifq_tail = tqe->tqe_pnext;
5166 	tqe->tqe_next = NULL;
5167 
5168 	/*
5169 	 * If we're moving from one queue to another, release the lock on the
5170 	 * old queue and get a lock on the new queue.  For user defined queues,
5171 	 * if we're moving off it, call delete in case it can now be freed.
5172 	 */
5173 	if (oifq != nifq) {
5174 		tqe->tqe_ifq = NULL;
5175 
5176 		(void) fr_deletetimeoutqueue(oifq);
5177 
5178 		MUTEX_EXIT(&oifq->ifq_lock);
5179 
5180 		MUTEX_ENTER(&nifq->ifq_lock);
5181 
5182 		tqe->tqe_ifq = nifq;
5183 		nifq->ifq_ref++;
5184 	}
5185 
5186 	/*
5187 	 * Add to the bottom of the new queue
5188 	 */
5189 	tqe->tqe_pnext = nifq->ifq_tail;
5190 	*nifq->ifq_tail = tqe;
5191 	nifq->ifq_tail = &tqe->tqe_next;
5192 	MUTEX_EXIT(&nifq->ifq_lock);
5193 }
5194 
5195 
5196 /* ------------------------------------------------------------------------ */
5197 /* Function:    fr_updateipid                                               */
5198 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5199 /* Parameters:  fin(I) - pointer to packet information                      */
5200 /*                                                                          */
5201 /* When we are doing NAT, change the IP of every packet to represent a      */
5202 /* single sequence of packets coming from the host, hiding any host         */
5203 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5204 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5205 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5206 /* has no match in the cache, return an error.                              */
5207 /* ------------------------------------------------------------------------ */
5208 static INLINE int fr_updateipid(fin)
5209 fr_info_t *fin;
5210 {
5211 	u_short id, ido, sums;
5212 	u_32_t sumd, sum;
5213 	ip_t *ip;
5214 
5215 	if (fin->fin_off != 0) {
5216 		sum = fr_ipid_knownfrag(fin);
5217 		if (sum == 0xffffffff)
5218 			return -1;
5219 		sum &= 0xffff;
5220 		id = (u_short)sum;
5221 	} else {
5222 		id = fr_nextipid(fin);
5223 		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5224 			(void) fr_ipid_newfrag(fin, (u_32_t)id);
5225 	}
5226 
5227 	ip = fin->fin_ip;
5228 	ido = ntohs(ip->ip_id);
5229 	if (id == ido)
5230 		return 0;
5231 	ip->ip_id = htons(id);
5232 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5233 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5234 	sum += sumd;
5235 	sum = (sum >> 16) + (sum & 0xffff);
5236 	sum = (sum >> 16) + (sum & 0xffff);
5237 	sums = ~(u_short)sum;
5238 	ip->ip_sum = htons(sums);
5239 	return 0;
5240 }
5241 
5242 
5243 #ifdef	NEED_FRGETIFNAME
5244 /* ------------------------------------------------------------------------ */
5245 /* Function:    fr_getifname                                                */
5246 /* Returns:     char *    - pointer to interface name                       */
5247 /* Parameters:  ifp(I)    - pointer to network interface                    */
5248 /*              buffer(O) - pointer to where to store interface name        */
5249 /*                                                                          */
5250 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5251 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5252 /* as a NULL pointer then return a pointer to a static array.               */
5253 /* ------------------------------------------------------------------------ */
5254 char *fr_getifname(ifp, buffer)
5255 struct ifnet *ifp;
5256 char *buffer;
5257 {
5258 	static char namebuf[LIFNAMSIZ];
5259 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5260      defined(__sgi) || defined(linux) || defined(_AIX51) || \
5261      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5262 	int unit, space;
5263 	char temp[20];
5264 	char *s;
5265 # endif
5266 
5267 	ASSERT(buffer != NULL);
5268 #ifdef notdef
5269 	if (buffer == NULL)
5270 		buffer = namebuf;
5271 #endif
5272 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5273 	buffer[LIFNAMSIZ - 1] = '\0';
5274 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5275      defined(__sgi) || defined(_AIX51) || \
5276      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5277 	for (s = buffer; *s; s++)
5278 		;
5279 	unit = ifp->if_unit;
5280 	space = LIFNAMSIZ - (s - buffer);
5281 	if (space > 0) {
5282 #  if defined(SNPRINTF) && defined(_KERNEL)
5283 		(void) SNPRINTF(temp, sizeof(temp), "%d", unit);
5284 #  else
5285 		(void) sprintf(temp, "%d", unit);
5286 #  endif
5287 		(void) strncpy(s, temp, space);
5288 	}
5289 # endif
5290 	return buffer;
5291 }
5292 #endif
5293 
5294 
5295 /* ------------------------------------------------------------------------ */
5296 /* Function:    fr_ioctlswitch                                              */
5297 /* Returns:     int     - -1 continue processing, else ioctl return value   */
5298 /* Parameters:  unit(I) - device unit opened                                */
5299 /*              data(I) - pointer to ioctl data                             */
5300 /*              cmd(I)  - ioctl command                                     */
5301 /*              mode(I) - mode value                                        */
5302 /*                                                                          */
5303 /* Based on the value of unit, call the appropriate ioctl handler or return */
5304 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
5305 /* for the device in order to execute the ioctl.                            */
5306 /* ------------------------------------------------------------------------ */
5307 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs)
5308 int unit, mode, uid;
5309 ioctlcmd_t cmd;
5310 void *data, *ctx;
5311 ipf_stack_t *ifs;
5312 {
5313 	int error = 0;
5314 
5315 	switch (unit)
5316 	{
5317 	case IPL_LOGIPF :
5318 		error = -1;
5319 		break;
5320 	case IPL_LOGNAT :
5321 		if (ifs->ifs_fr_running > 0)
5322 			error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs);
5323 		else
5324 			error = EIO;
5325 		break;
5326 	case IPL_LOGSTATE :
5327 		if (ifs->ifs_fr_running > 0)
5328 			error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs);
5329 		else
5330 			error = EIO;
5331 		break;
5332 	case IPL_LOGAUTH :
5333 		if (ifs->ifs_fr_running > 0) {
5334 			if ((cmd == (ioctlcmd_t)SIOCADAFR) ||
5335 			    (cmd == (ioctlcmd_t)SIOCRMAFR)) {
5336 				if (!(mode & FWRITE)) {
5337 					error = EPERM;
5338 				} else {
5339 					error = frrequest(unit, cmd, data,
5340 						  ifs->ifs_fr_active, 1, ifs);
5341 				}
5342 			} else {
5343 				error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs);
5344 			}
5345 		} else
5346 			error = EIO;
5347 		break;
5348 	case IPL_LOGSYNC :
5349 #ifdef IPFILTER_SYNC
5350 		if (ifs->ifs_fr_running > 0)
5351 			error = fr_sync_ioctl(data, cmd, mode, ifs);
5352 		else
5353 #endif
5354 			error = EIO;
5355 		break;
5356 	case IPL_LOGSCAN :
5357 #ifdef IPFILTER_SCAN
5358 		if (ifs->ifs_fr_running > 0)
5359 			error = fr_scan_ioctl(data, cmd, mode, ifs);
5360 		else
5361 #endif
5362 			error = EIO;
5363 		break;
5364 	case IPL_LOGLOOKUP :
5365 #ifdef IPFILTER_LOOKUP
5366 		if (ifs->ifs_fr_running > 0)
5367 			error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs);
5368 		else
5369 #endif
5370 			error = EIO;
5371 		break;
5372 	default :
5373 		error = EIO;
5374 		break;
5375 	}
5376 
5377 	return error;
5378 }
5379 
5380 
5381 /*
5382  * This array defines the expected size of objects coming into the kernel
5383  * for the various recognised object types.
5384  */
5385 #define	NUM_OBJ_TYPES	19
5386 
5387 static	int	fr_objbytes[NUM_OBJ_TYPES][2] = {
5388 	{ 1,	sizeof(struct frentry) },		/* frentry */
5389 	{ 0,	sizeof(struct friostat) },
5390 	{ 0,	sizeof(struct fr_info) },
5391 	{ 0,	sizeof(struct fr_authstat) },
5392 	{ 0,	sizeof(struct ipfrstat) },
5393 	{ 0,	sizeof(struct ipnat) },
5394 	{ 0,	sizeof(struct natstat) },
5395 	{ 0,	sizeof(struct ipstate_save) },
5396 	{ 1,	sizeof(struct nat_save) },		/* nat_save */
5397 	{ 0,	sizeof(struct natlookup) },
5398 	{ 1,	sizeof(struct ipstate) },		/* ipstate */
5399 	{ 0,	sizeof(struct ips_stat) },
5400 	{ 0,	sizeof(struct frauth) },
5401 	{ 0,	sizeof(struct ipftune) },
5402 	{ 0,	sizeof(struct nat) },                   /* nat_t */
5403 	{ 0,	sizeof(struct ipfruleiter) },
5404 	{ 0,	sizeof(struct ipfgeniter) },
5405 	{ 0,	sizeof(struct ipftable) },
5406 	{ 0,	sizeof(struct ipflookupiter) }
5407 };
5408 
5409 
5410 /* ------------------------------------------------------------------------ */
5411 /* Function:    fr_inobj                                                    */
5412 /* Returns:     int     - 0 = success, else failure                         */
5413 /* Parameters:  data(I) - pointer to ioctl data                             */
5414 /*              ptr(I)  - pointer to store real data in                     */
5415 /*              type(I) - type of structure being moved                     */
5416 /*                                                                          */
5417 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
5418 /* add things to check for version numbers, sizes, etc, to make it backward */
5419 /* compatible at the ABI for user land.                                     */
5420 /* ------------------------------------------------------------------------ */
5421 int fr_inobj(data, ptr, type)
5422 void *data;
5423 void *ptr;
5424 int type;
5425 {
5426 	ipfobj_t obj;
5427 	int error = 0;
5428 
5429 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5430 		return EINVAL;
5431 
5432 	BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5433 
5434 	if (obj.ipfo_type != type)
5435 		return EINVAL;
5436 
5437 #ifndef	IPFILTER_COMPAT
5438 	if ((fr_objbytes[type][0] & 1) != 0) {
5439 		if (obj.ipfo_size < fr_objbytes[type][1])
5440 			return EINVAL;
5441 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5442 		return EINVAL;
5443 #else
5444 	if (obj.ipfo_rev != IPFILTER_VERSION) {
5445 		error = fr_incomptrans(&obj, ptr);
5446 		return error;
5447 	}
5448 
5449 	if ((fr_objbytes[type][0] & 1) != 0 &&
5450 	    obj.ipfo_size < fr_objbytes[type][1] ||
5451 	    obj.ipfo_size != fr_objbytes[type][1])
5452 		return EINVAL;
5453 #endif
5454 
5455 	if ((fr_objbytes[type][0] & 1) != 0) {
5456 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5457 				fr_objbytes[type][1]);
5458 	} else {
5459 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5460 				obj.ipfo_size);
5461 	}
5462 	return error;
5463 }
5464 
5465 
5466 /* ------------------------------------------------------------------------ */
5467 /* Function:    fr_inobjsz                                                  */
5468 /* Returns:     int     - 0 = success, else failure                         */
5469 /* Parameters:  data(I) - pointer to ioctl data                             */
5470 /*              ptr(I)  - pointer to store real data in                     */
5471 /*              type(I) - type of structure being moved                     */
5472 /*              sz(I)   - size of data to copy                              */
5473 /*                                                                          */
5474 /* As per fr_inobj, except the size of the object to copy in is passed in   */
5475 /* but it must not be smaller than the size defined for the type and the    */
5476 /* type must allow for varied sized objects.  The extra requirement here is */
5477 /* that sz must match the size of the object being passed in - this is not  */
5478 /* not possible nor required in fr_inobj().                                 */
5479 /* ------------------------------------------------------------------------ */
5480 int fr_inobjsz(data, ptr, type, sz)
5481 void *data;
5482 void *ptr;
5483 int type, sz;
5484 {
5485 	ipfobj_t obj;
5486 	int error;
5487 
5488 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5489 		return EINVAL;
5490 	if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1]))
5491 		return EINVAL;
5492 
5493 	BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5494 
5495 	if (obj.ipfo_type != type)
5496 		return EINVAL;
5497 
5498 #ifndef	IPFILTER_COMPAT
5499 	if (obj.ipfo_size != sz)
5500 		return EINVAL;
5501 #else
5502 	if (obj.ipfo_rev != IPFILTER_VERSION)
5503 		/*XXX compatibility hook here */
5504 		/*EMPTY*/;
5505 	if (obj.ipfo_size != sz)
5506 		/* XXX compatibility hook here */
5507 		return EINVAL;
5508 #endif
5509 
5510 	error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz);
5511 	return error;
5512 }
5513 
5514 
5515 /* ------------------------------------------------------------------------ */
5516 /* Function:    fr_outobjsz                                                 */
5517 /* Returns:     int     - 0 = success, else failure                         */
5518 /* Parameters:  data(I) - pointer to ioctl data                             */
5519 /*              ptr(I)  - pointer to store real data in                     */
5520 /*              type(I) - type of structure being moved                     */
5521 /*              sz(I)   - size of data to copy                              */
5522 /*                                                                          */
5523 /* As per fr_outobj, except the size of the object to copy out is passed in */
5524 /* but it must not be smaller than the size defined for the type and the    */
5525 /* type must allow for varied sized objects.  The extra requirement here is */
5526 /* that sz must match the size of the object being passed in - this is not  */
5527 /* not possible nor required in fr_outobj().                                */
5528 /* ------------------------------------------------------------------------ */
5529 int fr_outobjsz(data, ptr, type, sz)
5530 void *data;
5531 void *ptr;
5532 int type, sz;
5533 {
5534 	ipfobj_t obj;
5535 	int error;
5536 
5537 	if ((type < 0) || (type > NUM_OBJ_TYPES-1) ||
5538 	    ((fr_objbytes[type][0] & 1) == 0) ||
5539 	    (sz < fr_objbytes[type][1]))
5540 		return EINVAL;
5541 
5542 	BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5543 
5544 	if (obj.ipfo_type != type)
5545 		return EINVAL;
5546 
5547 #ifndef	IPFILTER_COMPAT
5548 	if (obj.ipfo_size != sz)
5549 		return EINVAL;
5550 #else
5551 	if (obj.ipfo_rev != IPFILTER_VERSION)
5552 		/* XXX compatibility hook here */
5553 		/*EMPTY*/;
5554 	if (obj.ipfo_size != sz)
5555 		/* XXX compatibility hook here */
5556 		return EINVAL;
5557 #endif
5558 
5559 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz);
5560 	return error;
5561 }
5562 
5563 
5564 /* ------------------------------------------------------------------------ */
5565 /* Function:    fr_outobj                                                   */
5566 /* Returns:     int     - 0 = success, else failure                         */
5567 /* Parameters:  data(I) - pointer to ioctl data                             */
5568 /*              ptr(I)  - pointer to store real data in                     */
5569 /*              type(I) - type of structure being moved                     */
5570 /*                                                                          */
5571 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
5572 /* future, we add things to check for version numbers, sizes, etc, to make  */
5573 /* it backward  compatible at the ABI for user land.                        */
5574 /* ------------------------------------------------------------------------ */
5575 int fr_outobj(data, ptr, type)
5576 void *data;
5577 void *ptr;
5578 int type;
5579 {
5580 	ipfobj_t obj;
5581 	int error;
5582 
5583 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5584 		return EINVAL;
5585 
5586 	BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5587 
5588 	if (obj.ipfo_type != type)
5589 		return EINVAL;
5590 
5591 #ifndef	IPFILTER_COMPAT
5592 	if ((fr_objbytes[type][0] & 1) != 0) {
5593 		if (obj.ipfo_size < fr_objbytes[type][1])
5594 			return EINVAL;
5595 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5596 		return EINVAL;
5597 #else
5598 	if (obj.ipfo_rev != IPFILTER_VERSION) {
5599 		error = fr_outcomptrans(&obj, ptr);
5600 		return error;
5601 	}
5602 
5603 	if ((fr_objbytes[type][0] & 1) != 0 &&
5604 	    obj.ipfo_size < fr_objbytes[type][1] ||
5605 	    obj.ipfo_size != fr_objbytes[type][1])
5606 		return EINVAL;
5607 #endif
5608 
5609 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size);
5610 	return error;
5611 }
5612 
5613 
5614 /* ------------------------------------------------------------------------ */
5615 /* Function:    fr_checkl4sum                                               */
5616 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
5617 /* Parameters:  fin(I) - pointer to packet information                      */
5618 /*                                                                          */
5619 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
5620 /* not possible, return without indicating a failure or success but in a    */
5621 /* way that is ditinguishable.                                              */
5622 /* ------------------------------------------------------------------------ */
5623 int fr_checkl4sum(fin)
5624 fr_info_t *fin;
5625 {
5626 	u_short sum, hdrsum, *csump;
5627 	udphdr_t *udp;
5628 	int dosum;
5629 	ipf_stack_t *ifs = fin->fin_ifs;
5630 
5631 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5632 	net_data_t net_data_p;
5633 	if (fin->fin_v == 4)
5634 		net_data_p = ifs->ifs_ipf_ipv4;
5635 	else
5636 		net_data_p = ifs->ifs_ipf_ipv6;
5637 #endif
5638 
5639 	if ((fin->fin_flx & FI_NOCKSUM) != 0)
5640 		return 0;
5641 
5642 	/*
5643 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
5644 	 * isn't already considered "bad", then validate the checksum.  If
5645 	 * this check fails then considered the packet to be "bad".
5646 	 */
5647 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
5648 		return 1;
5649 
5650 	csump = NULL;
5651 	hdrsum = 0;
5652 	dosum = 0;
5653 	sum = 0;
5654 
5655 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5656 	ASSERT(fin->fin_m != NULL);
5657 	if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) ||
5658 	    NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) {
5659 			hdrsum = 0;
5660 			sum = 0;
5661 	} else {
5662 #endif
5663 		switch (fin->fin_p)
5664 		{
5665 		case IPPROTO_TCP :
5666 			csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
5667 			dosum = 1;
5668 			break;
5669 
5670 		case IPPROTO_UDP :
5671 			udp = fin->fin_dp;
5672 			if (udp->uh_sum != 0) {
5673 				csump = &udp->uh_sum;
5674 				dosum = 1;
5675 			}
5676 			break;
5677 
5678 		case IPPROTO_ICMP :
5679 			csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
5680 			dosum = 1;
5681 			break;
5682 
5683 		default :
5684 			return 1;
5685 			/*NOTREACHED*/
5686 		}
5687 
5688 		if (csump != NULL)
5689 			hdrsum = *csump;
5690 
5691 		if (dosum)
5692 			sum = fr_cksum(fin->fin_m, fin->fin_ip,
5693 				       fin->fin_p, fin->fin_dp);
5694 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5695 	}
5696 #endif
5697 #if !defined(_KERNEL)
5698 	if (sum == hdrsum) {
5699 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
5700 	} else {
5701 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
5702 	}
5703 #endif
5704 	if (hdrsum == sum)
5705 		return 0;
5706 	return -1;
5707 }
5708 
5709 
5710 /* ------------------------------------------------------------------------ */
5711 /* Function:    fr_ifpfillv4addr                                            */
5712 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5713 /* Parameters:  atype(I)   - type of network address update to perform      */
5714 /*              sin(I)     - pointer to source of address information       */
5715 /*              mask(I)    - pointer to source of netmask information       */
5716 /*              inp(I)     - pointer to destination address store           */
5717 /*              inpmask(I) - pointer to destination netmask store           */
5718 /*                                                                          */
5719 /* Given a type of network address update (atype) to perform, copy          */
5720 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5721 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5722 /* which case the operation fails.  For all values of atype other than      */
5723 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5724 /* value.                                                                   */
5725 /* ------------------------------------------------------------------------ */
5726 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask)
5727 int atype;
5728 struct sockaddr_in *sin, *mask;
5729 struct in_addr *inp, *inpmask;
5730 {
5731 	if (inpmask != NULL && atype != FRI_NETMASKED)
5732 		inpmask->s_addr = 0xffffffff;
5733 
5734 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5735 		if (atype == FRI_NETMASKED) {
5736 			if (inpmask == NULL)
5737 				return -1;
5738 			inpmask->s_addr = mask->sin_addr.s_addr;
5739 		}
5740 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
5741 	} else {
5742 		inp->s_addr = sin->sin_addr.s_addr;
5743 	}
5744 	return 0;
5745 }
5746 
5747 
5748 #ifdef	USE_INET6
5749 /* ------------------------------------------------------------------------ */
5750 /* Function:    fr_ifpfillv6addr                                            */
5751 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5752 /* Parameters:  atype(I)   - type of network address update to perform      */
5753 /*              sin(I)     - pointer to source of address information       */
5754 /*              mask(I)    - pointer to source of netmask information       */
5755 /*              inp(I)     - pointer to destination address store           */
5756 /*              inpmask(I) - pointer to destination netmask store           */
5757 /*                                                                          */
5758 /* Given a type of network address update (atype) to perform, copy          */
5759 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5760 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5761 /* which case the operation fails.  For all values of atype other than      */
5762 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5763 /* value.                                                                   */
5764 /* ------------------------------------------------------------------------ */
5765 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask)
5766 int atype;
5767 struct sockaddr_in6 *sin, *mask;
5768 struct in_addr *inp, *inpmask;
5769 {
5770 	i6addr_t *src, *dst, *and, *dmask;
5771 
5772 	src = (i6addr_t *)&sin->sin6_addr;
5773 	and = (i6addr_t *)&mask->sin6_addr;
5774 	dst = (i6addr_t *)inp;
5775 	dmask = (i6addr_t *)inpmask;
5776 
5777 	if (inpmask != NULL && atype != FRI_NETMASKED) {
5778 		dmask->i6[0] = 0xffffffff;
5779 		dmask->i6[1] = 0xffffffff;
5780 		dmask->i6[2] = 0xffffffff;
5781 		dmask->i6[3] = 0xffffffff;
5782 	}
5783 
5784 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5785 		if (atype == FRI_NETMASKED) {
5786 			if (inpmask == NULL)
5787 				return -1;
5788 			dmask->i6[0] = and->i6[0];
5789 			dmask->i6[1] = and->i6[1];
5790 			dmask->i6[2] = and->i6[2];
5791 			dmask->i6[3] = and->i6[3];
5792 		}
5793 
5794 		dst->i6[0] = src->i6[0] & and->i6[0];
5795 		dst->i6[1] = src->i6[1] & and->i6[1];
5796 		dst->i6[2] = src->i6[2] & and->i6[2];
5797 		dst->i6[3] = src->i6[3] & and->i6[3];
5798 	} else {
5799 		dst->i6[0] = src->i6[0];
5800 		dst->i6[1] = src->i6[1];
5801 		dst->i6[2] = src->i6[2];
5802 		dst->i6[3] = src->i6[3];
5803 	}
5804 	return 0;
5805 }
5806 #endif
5807 
5808 
5809 /* ------------------------------------------------------------------------ */
5810 /* Function:    fr_matchtag                                                 */
5811 /* Returns:     0 == mismatch, 1 == match.                                  */
5812 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
5813 /*              tag2(I) - pointer to second tag to compare                  */
5814 /*                                                                          */
5815 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
5816 /* considered to be a match or not match, respectively.  The tag is 16      */
5817 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
5818 /* compare the ints instead, for speed. tag1 is the master of the           */
5819 /* comparison.  This function should only be called with both tag1 and tag2 */
5820 /* as non-NULL pointers.                                                    */
5821 /* ------------------------------------------------------------------------ */
5822 int fr_matchtag(tag1, tag2)
5823 ipftag_t *tag1, *tag2;
5824 {
5825 	if (tag1 == tag2)
5826 		return 1;
5827 
5828 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
5829 		return 1;
5830 
5831 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
5832 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
5833 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
5834 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
5835 		return 1;
5836 	return 0;
5837 }
5838 
5839 
5840 /* ------------------------------------------------------------------------ */
5841 /* Function:    fr_coalesce                                                 */
5842 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
5843 /* Parameters:  fin(I) - pointer to packet information                      */
5844 /*                                                                          */
5845 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
5846 /* If this call returns a failure then the buffers have also been freed.    */
5847 /* ------------------------------------------------------------------------ */
5848 int fr_coalesce(fin)
5849 fr_info_t *fin;
5850 {
5851 	ipf_stack_t *ifs = fin->fin_ifs;
5852 	if ((fin->fin_flx & FI_COALESCE) != 0)
5853 		return 1;
5854 
5855 	/*
5856 	 * If the mbuf pointers indicate that there is no mbuf to work with,
5857 	 * return but do not indicate success or failure.
5858 	 */
5859 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
5860 		return 0;
5861 
5862 #if defined(_KERNEL)
5863 	if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
5864 		IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]);
5865 # ifdef MENTAT
5866 		FREE_MB_T(*fin->fin_mp);
5867 # endif
5868 		*fin->fin_mp = NULL;
5869 		fin->fin_m = NULL;
5870 		return -1;
5871 	}
5872 #else
5873 	fin = fin;	/* LINT */
5874 #endif
5875 	return 1;
5876 }
5877 
5878 
5879 /*
5880  * The following table lists all of the tunable variables that can be
5881  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT.  The format of each row
5882  * in the table below is as follows:
5883  *
5884  * pointer to value, name of value, minimum, maximum, size of the value's
5885  *     container, value attribute flags
5886  *
5887  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
5888  * means the value can only be written to when IPFilter is loaded but disabled.
5889  * The obvious implication is if neither of these are set then the value can be
5890  * changed at any time without harm.
5891  */
5892 ipftuneable_t lcl_ipf_tuneables[] = {
5893 	/* filtering */
5894 	{ { NULL },	"fr_flags",		0,	0xffffffff,
5895 			0,		0 },
5896 	{ { NULL },	"fr_active",		0,	0,
5897 			0,		IPFT_RDONLY },
5898 	{ { NULL },	"fr_control_forwarding",	0, 1,
5899 			0,		0 },
5900 	{ { NULL },	"fr_update_ipid",	0,	1,
5901 			0,		0 },
5902 	{ { NULL },	"fr_chksrc",		0,	1,
5903 			0,		0 },
5904 	{ { NULL },	"fr_minttl",		0,	1,
5905 			0,		0 },
5906 	{ { NULL }, 	"fr_icmpminfragmtu",	0,	1,
5907 			0,		0 },
5908 	{ { NULL },		"fr_pass",		0,	0xffffffff,
5909 			0,		0 },
5910 #if SOLARIS2 >= 10
5911 	{ { NULL },	"ipf_loopback",		0,	1,
5912 			0,		IPFT_WRDISABLED },
5913 #endif
5914 	/* state */
5915 	{ { NULL }, "fr_tcpidletimeout",	1,	0x7fffffff,
5916 			0,	IPFT_WRDISABLED },
5917 	{ { NULL },	"fr_tcpclosewait",	1,	0x7fffffff,
5918 			0,	IPFT_WRDISABLED },
5919 	{ { NULL },	"fr_tcplastack",	1,	0x7fffffff,
5920 			0,		IPFT_WRDISABLED },
5921 	{ { NULL },	"fr_tcptimeout",	1,	0x7fffffff,
5922 			0,		IPFT_WRDISABLED },
5923 	{ { NULL },	"fr_tcpclosed",		1,	0x7fffffff,
5924 			0,		IPFT_WRDISABLED },
5925 	{ { NULL },	"fr_tcphalfclosed",	1,	0x7fffffff,
5926 			0,	IPFT_WRDISABLED },
5927 	{ { NULL },	"fr_udptimeout",	1,	0x7fffffff,
5928 			0,		IPFT_WRDISABLED },
5929 	{ { NULL }, "fr_udpacktimeout",	1,	0x7fffffff,
5930 			0,	IPFT_WRDISABLED },
5931 	{ { NULL },	"fr_icmptimeout",	1,	0x7fffffff,
5932 			0,		IPFT_WRDISABLED },
5933 	{ { NULL }, "fr_icmpacktimeout",	1,	0x7fffffff,
5934 			0,	IPFT_WRDISABLED },
5935 	{ { NULL }, "fr_iptimeout",		1,	0x7fffffff,
5936 			0,		IPFT_WRDISABLED },
5937 	{ { NULL },	"fr_statemax",		1,	0x7fffffff,
5938 			0,		0 },
5939 	{ { NULL },	"fr_statesize",		1,	0x7fffffff,
5940 			0,		IPFT_WRDISABLED },
5941 	{ { NULL },	"fr_state_lock",	0,	1,
5942 			0,		IPFT_RDONLY },
5943 	{ { NULL }, "fr_state_maxbucket", 1,	0x7fffffff,
5944 			0,	IPFT_WRDISABLED },
5945 	{ { NULL }, "fr_state_maxbucket_reset",	0, 1,
5946 			0, IPFT_WRDISABLED },
5947 	{ { NULL },	"ipstate_logging",	0,	1,
5948 			0,	0 },
5949 	/* nat */
5950 	{ { NULL },		"fr_nat_lock",		0,	1,
5951 			0,		IPFT_RDONLY },
5952 	{ { NULL },	"ipf_nattable_sz",	1,	0x7fffffff,
5953 			0,	IPFT_WRDISABLED },
5954 	{ { NULL }, "ipf_nattable_max",	1,	0x7fffffff,
5955 			0,	0 },
5956 	{ { NULL },	"ipf_natrules_sz",	1,	0x7fffffff,
5957 			0,	IPFT_WRDISABLED },
5958 	{ { NULL },	"ipf_rdrrules_sz",	1,	0x7fffffff,
5959 			0,	IPFT_WRDISABLED },
5960 	{ { NULL },	"ipf_hostmap_sz",	1,	0x7fffffff,
5961 			0,		IPFT_WRDISABLED },
5962 	{ { NULL }, "fr_nat_maxbucket",	1,	0x7fffffff,
5963 			0,	IPFT_WRDISABLED },
5964 	{ { NULL },	"fr_nat_maxbucket_reset",	0, 1,
5965 			0,	IPFT_WRDISABLED },
5966 	{ { NULL },		"nat_logging",		0,	1,
5967 			0,		0 },
5968 	{ { NULL },	"fr_defnatage",		1,	0x7fffffff,
5969 			0,		IPFT_WRDISABLED },
5970 	{ { NULL },	"fr_defnatipage",	1,	0x7fffffff,
5971 			0,		IPFT_WRDISABLED },
5972 	{ { NULL }, "fr_defnaticmpage",	1,	0x7fffffff,
5973 			0,	IPFT_WRDISABLED },
5974 	{ { NULL },	"nat_flush_lvl_hi",	1,	100,
5975 			0,		0 },
5976 	{ { NULL },	"nat_flush_lvl_lo",	1,	100,
5977 			0,		0 },
5978 	/* frag */
5979 	{ { NULL },	"ipfr_size",		1,	0x7fffffff,
5980 			0,		IPFT_WRDISABLED },
5981 	{ { NULL },	"fr_ipfrttl",		1,	0x7fffffff,
5982 			0,		IPFT_WRDISABLED },
5983 #ifdef IPFILTER_LOG
5984 	/* log */
5985 	{ { NULL },	"ipl_suppress",		0,	1,
5986 			0,		0 },
5987 	{ { NULL },	"ipl_buffer_sz",	0,	0,
5988 			0,		IPFT_RDONLY },
5989 	{ { NULL },	"ipl_logmax",		0,	0x7fffffff,
5990 			0,		IPFT_WRDISABLED },
5991 	{ { NULL },	"ipl_logall",		0,	1,
5992 			0,		0 },
5993 	{ { NULL },	"ipl_logsize",		0,	0x80000,
5994 			0,		0 },
5995 #endif
5996 	{ { NULL },		NULL,			0,	0 }
5997 };
5998 
5999 static ipftuneable_t *
6000 tune_lookup(ipf_stack_t *ifs, char *name)
6001 {
6002     int i;
6003 
6004     for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) {
6005 	if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0)
6006 	    return (&ifs->ifs_ipf_tuneables[i]);
6007     }
6008     return (NULL);
6009 }
6010 
6011 #ifdef _KERNEL
6012 extern dev_info_t *ipf_dev_info;
6013 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *));
6014 #endif
6015 
6016 /* -------------------------------------------------------------------- */
6017 /* Function:	ipftuneable_setdefs()					*/
6018 /* Returns:		void						*/
6019 /* Parameters:	ifs - pointer to newly allocated IPF instance		*/
6020 /*				assigned to	IP instance		*/
6021 /*									*/
6022 /* Function initializes IPF instance variables. Function is invoked	*/
6023 /* from	ipftuneable_alloc(). ipftuneable_alloc() is called only one	*/
6024 /* time during IP instance lifetime - at the time of IP instance	*/
6025 /* creation. Anytime IP	instance is being created new private IPF	*/
6026 /* instance is allocated and assigned to it. The moment of IP 		*/
6027 /* instance creation is the right time to initialize those IPF 		*/
6028 /* variables.								*/
6029 /*									*/
6030 /* -------------------------------------------------------------------- */
6031 static void ipftuneable_setdefs(ipf_stack_t *ifs)
6032 {
6033 	ifs->ifs_ipfr_size = IPFT_SIZE;
6034 	ifs->ifs_fr_ipfrttl = 120;	/* 60 seconds */
6035 
6036 	/* it comes from fr_authinit() in IPF auth */
6037 	ifs->ifs_fr_authsize = FR_NUMAUTH;
6038 	ifs->ifs_fr_defaultauthage = 600;
6039 
6040 	/* it comes from fr_stateinit() in IPF state */
6041 	ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5);	/* five days */
6042 	ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL);
6043 	ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL);
6044 	ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL);
6045 	ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60);
6046 	ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600);	/* 2 hours */
6047 	ifs->ifs_fr_udptimeout = IPF_TTLVAL(120);
6048 	ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12);
6049 	ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60);
6050 	ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6);
6051 	ifs->ifs_fr_iptimeout = IPF_TTLVAL(60);
6052 	ifs->ifs_fr_statemax = IPSTATE_MAX;
6053 	ifs->ifs_fr_statesize = IPSTATE_SIZE;
6054 	ifs->ifs_fr_state_maxbucket_reset = 1;
6055 
6056 	/* it comes from fr_natinit() in ipnat */
6057 	ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ;
6058 	ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX;
6059 	ifs->ifs_ipf_natrules_sz = NAT_SIZE;
6060 	ifs->ifs_ipf_rdrrules_sz = RDR_SIZE;
6061 	ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE;
6062 	ifs->ifs_fr_nat_maxbucket_reset = 1;
6063 	ifs->ifs_fr_defnatage = DEF_NAT_AGE;
6064 	ifs->ifs_fr_defnatipage = 120;		/* 60 seconds */
6065 	ifs->ifs_fr_defnaticmpage = 6;		/* 3 seconds */
6066 	ifs->ifs_nat_flush_lvl_hi = NAT_FLUSH_HI;
6067 	ifs->ifs_nat_flush_lvl_lo = NAT_FLUSH_LO;
6068 
6069 #ifdef IPFILTER_LOG
6070 	/* it comes from fr_loginit() in IPF log */
6071 	ifs->ifs_ipl_suppress = 1;
6072 	ifs->ifs_ipl_logmax = IPL_LOGMAX;
6073 	ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE;
6074 
6075 	/* from fr_natinit() */
6076 	ifs->ifs_nat_logging = 1;
6077 
6078 	/* from fr_stateinit() */
6079 	ifs->ifs_ipstate_logging = 1;
6080 #else
6081 	/* from fr_natinit() */
6082 	ifs->ifs_nat_logging = 0;
6083 
6084 	/* from fr_stateinit() */
6085 	ifs->ifs_ipstate_logging = 0;
6086 #endif
6087 	ifs->ifs_ipf_loopback = 0;
6088 
6089 }
6090 /*
6091  * Allocate a per-stack tuneable and copy in the names. Then
6092  * set it to point to each of the per-stack tunables.
6093  */
6094 void
6095 ipftuneable_alloc(ipf_stack_t *ifs)
6096 {
6097     ipftuneable_t *item;
6098 
6099     KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *,
6100 	sizeof (lcl_ipf_tuneables));
6101     bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables,
6102 	sizeof (lcl_ipf_tuneables));
6103 
6104 #define TUNE_SET(_ifs, _name, _field)			\
6105     item = tune_lookup((_ifs), (_name));		\
6106     if (item != NULL) {					\
6107 	item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field);	\
6108 	item->ipft_sz = sizeof ((_ifs)->_field);	\
6109     }
6110 
6111     TUNE_SET(ifs, "fr_flags", ifs_fr_flags);
6112     TUNE_SET(ifs, "fr_active", ifs_fr_active);
6113     TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding);
6114     TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid);
6115     TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc);
6116     TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl);
6117     TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu);
6118     TUNE_SET(ifs, "fr_pass", ifs_fr_pass);
6119     TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout);
6120     TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait);
6121     TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack);
6122     TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout);
6123     TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed);
6124     TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed);
6125     TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout);
6126     TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout);
6127     TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout);
6128     TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout);
6129     TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout);
6130     TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax);
6131     TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize);
6132     TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock);
6133     TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket);
6134     TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset);
6135     TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging);
6136     TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock);
6137     TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz);
6138     TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max);
6139     TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz);
6140     TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz);
6141     TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz);
6142     TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket);
6143     TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset);
6144     TUNE_SET(ifs, "nat_logging", ifs_nat_logging);
6145     TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage);
6146     TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage);
6147     TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage);
6148     TUNE_SET(ifs, "nat_flush_lvl_hi", ifs_nat_flush_lvl_hi);
6149     TUNE_SET(ifs, "nat_flush_lvl_lo", ifs_nat_flush_lvl_lo);
6150     TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size);
6151     TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl);
6152     TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback);
6153 #ifdef IPFILTER_LOG
6154     TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress);
6155     TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz);
6156     TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax);
6157     TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall);
6158     TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize);
6159 #endif
6160 #undef TUNE_SET
6161 
6162 	ipftuneable_setdefs(ifs);
6163 
6164 #ifdef _KERNEL
6165     (void) ipf_property_update(ipf_dev_info, ifs);
6166 #endif
6167 }
6168 
6169 void
6170 ipftuneable_free(ipf_stack_t *ifs)
6171 {
6172 	KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables));
6173 	ifs->ifs_ipf_tuneables = NULL;
6174 }
6175 
6176 /* ------------------------------------------------------------------------ */
6177 /* Function:    fr_findtunebycookie                                         */
6178 /* Returns:     NULL = search failed, else pointer to tune struct           */
6179 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6180 /*              next(O)   - pointer to place to store the cookie for the    */
6181 /*                          "next" tuneable, if it is desired.              */
6182 /*                                                                          */
6183 /* This function is used to walk through all of the existing tunables with  */
6184 /* successive calls.  It searches the known tunables for the one which has  */
6185 /* a matching value for "cookie" - ie its address.  When returning a match, */
6186 /* the next one to be found may be returned inside next.                    */
6187 /* ------------------------------------------------------------------------ */
6188 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs)
6189 void *cookie, **next;
6190 ipf_stack_t * ifs;
6191 {
6192 	ipftuneable_t *ta, **tap;
6193 
6194 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6195 		if (ta == cookie) {
6196 			if (next != NULL) {
6197 				/*
6198 				 * If the next entry in the array has a name
6199 				 * present, then return a pointer to it for
6200 				 * where to go next, else return a pointer to
6201 				 * the dynaminc list as a key to search there
6202 				 * next.  This facilitates a weak linking of
6203 				 * the two "lists" together.
6204 				 */
6205 				if ((ta + 1)->ipft_name != NULL)
6206 					*next = ta + 1;
6207 				else
6208 					*next = &ifs->ifs_ipf_tunelist;
6209 			}
6210 			return ta;
6211 		}
6212 
6213 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6214 		if (tap == cookie) {
6215 			if (next != NULL)
6216 				*next = &ta->ipft_next;
6217 			return ta;
6218 		}
6219 
6220 	if (next != NULL)
6221 		*next = NULL;
6222 	return NULL;
6223 }
6224 
6225 
6226 /* ------------------------------------------------------------------------ */
6227 /* Function:    fr_findtunebyname                                           */
6228 /* Returns:     NULL = search failed, else pointer to tune struct           */
6229 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6230 /*                                                                          */
6231 /* Search the static array of tuneables and the list of dynamic tuneables   */
6232 /* for an entry with a matching name.  If we can find one, return a pointer */
6233 /* to the matching structure.                                               */
6234 /* ------------------------------------------------------------------------ */
6235 static ipftuneable_t *fr_findtunebyname(name, ifs)
6236 const char *name;
6237 ipf_stack_t *ifs;
6238 {
6239 	ipftuneable_t *ta;
6240 
6241 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6242 		if (!strcmp(ta->ipft_name, name)) {
6243 			return ta;
6244 		}
6245 
6246 	for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next)
6247 		if (!strcmp(ta->ipft_name, name)) {
6248 			return ta;
6249 		}
6250 
6251 	return NULL;
6252 }
6253 
6254 
6255 /* ------------------------------------------------------------------------ */
6256 /* Function:    fr_addipftune                                               */
6257 /* Returns:     int - 0 == success, else failure                            */
6258 /* Parameters:  newtune - pointer to new tune struct to add to tuneables    */
6259 /*                                                                          */
6260 /* Appends the tune structure pointer to by "newtune" to the end of the     */
6261 /* current list of "dynamic" tuneable parameters.  Once added, the owner    */
6262 /* of the object is not expected to ever change "ipft_next".                */
6263 /* ------------------------------------------------------------------------ */
6264 int fr_addipftune(newtune, ifs)
6265 ipftuneable_t *newtune;
6266 ipf_stack_t *ifs;
6267 {
6268 	ipftuneable_t *ta, **tap;
6269 
6270 	ta = fr_findtunebyname(newtune->ipft_name, ifs);
6271 	if (ta != NULL)
6272 		return EEXIST;
6273 
6274 	for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next)
6275 		;
6276 
6277 	newtune->ipft_next = NULL;
6278 	*tap = newtune;
6279 	return 0;
6280 }
6281 
6282 
6283 /* ------------------------------------------------------------------------ */
6284 /* Function:    fr_delipftune                                               */
6285 /* Returns:     int - 0 == success, else failure                            */
6286 /* Parameters:  oldtune - pointer to tune struct to remove from the list of */
6287 /*                        current dynamic tuneables                         */
6288 /*                                                                          */
6289 /* Search for the tune structure, by pointer, in the list of those that are */
6290 /* dynamically added at run time.  If found, adjust the list so that this   */
6291 /* structure is no longer part of it.                                       */
6292 /* ------------------------------------------------------------------------ */
6293 int fr_delipftune(oldtune, ifs)
6294 ipftuneable_t *oldtune;
6295 ipf_stack_t *ifs;
6296 {
6297 	ipftuneable_t *ta, **tap;
6298 
6299 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6300 		if (ta == oldtune) {
6301 			*tap = oldtune->ipft_next;
6302 			oldtune->ipft_next = NULL;
6303 			return 0;
6304 		}
6305 
6306 	return ESRCH;
6307 }
6308 
6309 
6310 /* ------------------------------------------------------------------------ */
6311 /* Function:    fr_ipftune                                                  */
6312 /* Returns:     int - 0 == success, else failure                            */
6313 /* Parameters:  cmd(I)  - ioctl command number                              */
6314 /*              data(I) - pointer to ioctl data structure                   */
6315 /*                                                                          */
6316 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
6317 /* three ioctls provide the means to access and control global variables    */
6318 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
6319 /* changed without rebooting, reloading or recompiling.  The initialisation */
6320 /* and 'destruction' routines of the various components of ipfilter are all */
6321 /* each responsible for handling their own values being too big.            */
6322 /* ------------------------------------------------------------------------ */
6323 int fr_ipftune(cmd, data, ifs)
6324 ioctlcmd_t cmd;
6325 void *data;
6326 ipf_stack_t *ifs;
6327 {
6328 	ipftuneable_t *ta;
6329 	ipftune_t tu;
6330 	void *cookie;
6331 	int error;
6332 
6333 	error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE);
6334 	if (error != 0)
6335 		return error;
6336 
6337 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
6338 	cookie = tu.ipft_cookie;
6339 	ta = NULL;
6340 
6341 	switch (cmd)
6342 	{
6343 	case SIOCIPFGETNEXT :
6344 		/*
6345 		 * If cookie is non-NULL, assume it to be a pointer to the last
6346 		 * entry we looked at, so find it (if possible) and return a
6347 		 * pointer to the next one after it.  The last entry in the
6348 		 * the table is a NULL entry, so when we get to it, set cookie
6349 		 * to NULL and return that, indicating end of list, erstwhile
6350 		 * if we come in with cookie set to NULL, we are starting anew
6351 		 * at the front of the list.
6352 		 */
6353 		if (cookie != NULL) {
6354 			ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs);
6355 		} else {
6356 			ta = ifs->ifs_ipf_tuneables;
6357 			tu.ipft_cookie = ta + 1;
6358 		}
6359 		if (ta != NULL) {
6360 			/*
6361 			 * Entry found, but does the data pointed to by that
6362 			 * row fit in what we can return?
6363 			 */
6364 			if (ta->ipft_sz > sizeof(tu.ipft_un))
6365 				return EINVAL;
6366 
6367 			tu.ipft_vlong = 0;
6368 			if (ta->ipft_sz == sizeof(u_long))
6369 				tu.ipft_vlong = *ta->ipft_plong;
6370 			else if (ta->ipft_sz == sizeof(u_int))
6371 				tu.ipft_vint = *ta->ipft_pint;
6372 			else if (ta->ipft_sz == sizeof(u_short))
6373 				tu.ipft_vshort = *ta->ipft_pshort;
6374 			else if (ta->ipft_sz == sizeof(u_char))
6375 				tu.ipft_vchar = *ta->ipft_pchar;
6376 
6377 			tu.ipft_sz = ta->ipft_sz;
6378 			tu.ipft_min = ta->ipft_min;
6379 			tu.ipft_max = ta->ipft_max;
6380 			tu.ipft_flags = ta->ipft_flags;
6381 			bcopy(ta->ipft_name, tu.ipft_name,
6382 			      MIN(sizeof(tu.ipft_name),
6383 				  strlen(ta->ipft_name) + 1));
6384 		}
6385 		error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6386 		break;
6387 
6388 	case SIOCIPFGET :
6389 	case SIOCIPFSET :
6390 		/*
6391 		 * Search by name or by cookie value for a particular entry
6392 		 * in the tuning paramter table.
6393 		 */
6394 		error = ESRCH;
6395 		if (cookie != NULL) {
6396 			ta = fr_findtunebycookie(cookie, NULL, ifs);
6397 			if (ta != NULL)
6398 				error = 0;
6399 		} else if (tu.ipft_name[0] != '\0') {
6400 			ta = fr_findtunebyname(tu.ipft_name, ifs);
6401 			if (ta != NULL)
6402 				error = 0;
6403 		}
6404 		if (error != 0)
6405 			break;
6406 
6407 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
6408 			/*
6409 			 * Fetch the tuning parameters for a particular value
6410 			 */
6411 			tu.ipft_vlong = 0;
6412 			if (ta->ipft_sz == sizeof(u_long))
6413 				tu.ipft_vlong = *ta->ipft_plong;
6414 			else if (ta->ipft_sz == sizeof(u_int))
6415 				tu.ipft_vint = *ta->ipft_pint;
6416 			else if (ta->ipft_sz == sizeof(u_short))
6417 				tu.ipft_vshort = *ta->ipft_pshort;
6418 			else if (ta->ipft_sz == sizeof(u_char))
6419 				tu.ipft_vchar = *ta->ipft_pchar;
6420 			tu.ipft_cookie = ta;
6421 			tu.ipft_sz = ta->ipft_sz;
6422 			tu.ipft_min = ta->ipft_min;
6423 			tu.ipft_max = ta->ipft_max;
6424 			tu.ipft_flags = ta->ipft_flags;
6425 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6426 
6427 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
6428 			/*
6429 			 * Set an internal parameter.  The hard part here is
6430 			 * getting the new value safely and correctly out of
6431 			 * the kernel (given we only know its size, not type.)
6432 			 */
6433 			u_long in;
6434 
6435 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
6436 			    (ifs->ifs_fr_running > 0)) {
6437 				error = EBUSY;
6438 				break;
6439 			}
6440 
6441 			in = tu.ipft_vlong;
6442 			if (in < ta->ipft_min || in > ta->ipft_max) {
6443 				error = EINVAL;
6444 				break;
6445 			}
6446 
6447 			if (ta->ipft_sz == sizeof(u_long)) {
6448 				tu.ipft_vlong = *ta->ipft_plong;
6449 				*ta->ipft_plong = in;
6450 			} else if (ta->ipft_sz == sizeof(u_int)) {
6451 				tu.ipft_vint = *ta->ipft_pint;
6452 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
6453 			} else if (ta->ipft_sz == sizeof(u_short)) {
6454 				tu.ipft_vshort = *ta->ipft_pshort;
6455 				*ta->ipft_pshort = (u_short)(in & 0xffff);
6456 			} else if (ta->ipft_sz == sizeof(u_char)) {
6457 				tu.ipft_vchar = *ta->ipft_pchar;
6458 				*ta->ipft_pchar = (u_char)(in & 0xff);
6459 			}
6460 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6461 		}
6462 		break;
6463 
6464 	default :
6465 		error = EINVAL;
6466 		break;
6467 	}
6468 
6469 	return error;
6470 }
6471 
6472 
6473 /* ------------------------------------------------------------------------ */
6474 /* Function:    fr_initialise                                               */
6475 /* Returns:     int - 0 == success,  < 0 == failure                         */
6476 /* Parameters:  None.                                                       */
6477 /*                                                                          */
6478 /* Call of the initialise functions for all the various subsystems inside   */
6479 /* of IPFilter.  If any of them should fail, return immeadiately a failure  */
6480 /* BUT do not try to recover from the error here.                           */
6481 /* ------------------------------------------------------------------------ */
6482 int fr_initialise(ifs)
6483 ipf_stack_t *ifs;
6484 {
6485 	int i;
6486 
6487 #ifdef IPFILTER_LOG
6488 	i = fr_loginit(ifs);
6489 	if (i < 0)
6490 		return -10 + i;
6491 #endif
6492 	i = fr_natinit(ifs);
6493 	if (i < 0)
6494 		return -20 + i;
6495 
6496 	i = fr_stateinit(ifs);
6497 	if (i < 0)
6498 		return -30 + i;
6499 
6500 	i = fr_authinit(ifs);
6501 	if (i < 0)
6502 		return -40 + i;
6503 
6504 	i = fr_fraginit(ifs);
6505 	if (i < 0)
6506 		return -50 + i;
6507 
6508 	i = appr_init(ifs);
6509 	if (i < 0)
6510 		return -60 + i;
6511 
6512 #ifdef IPFILTER_SYNC
6513 	i = ipfsync_init(ifs);
6514 	if (i < 0)
6515 		return -70 + i;
6516 #endif
6517 #ifdef IPFILTER_SCAN
6518 	i = ipsc_init(ifs);
6519 	if (i < 0)
6520 		return -80 + i;
6521 #endif
6522 #ifdef IPFILTER_LOOKUP
6523 	i = ip_lookup_init(ifs);
6524 	if (i < 0)
6525 		return -90 + i;
6526 #endif
6527 #ifdef IPFILTER_COMPILED
6528 	ipfrule_add(ifs);
6529 #endif
6530 	return 0;
6531 }
6532 
6533 
6534 /* ------------------------------------------------------------------------ */
6535 /* Function:    fr_deinitialise                                             */
6536 /* Returns:     None.                                                       */
6537 /* Parameters:  None.                                                       */
6538 /*                                                                          */
6539 /* Call all the various subsystem cleanup routines to deallocate memory or  */
6540 /* destroy locks or whatever they've done that they need to now undo.       */
6541 /* The order here IS important as there are some cross references of        */
6542 /* internal data structures.                                                */
6543 /* ------------------------------------------------------------------------ */
6544 void fr_deinitialise(ifs)
6545 ipf_stack_t *ifs;
6546 {
6547 	fr_fragunload(ifs);
6548 	fr_authunload(ifs);
6549 	fr_natunload(ifs);
6550 	fr_stateunload(ifs);
6551 #ifdef IPFILTER_SCAN
6552 	fr_scanunload(ifs);
6553 #endif
6554 	appr_unload(ifs);
6555 
6556 #ifdef IPFILTER_COMPILED
6557 	ipfrule_remove(ifs);
6558 #endif
6559 
6560 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6561 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs);
6562 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6563 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs);
6564 
6565 #ifdef IPFILTER_LOOKUP
6566 	ip_lookup_unload(ifs);
6567 #endif
6568 
6569 #ifdef IPFILTER_LOG
6570 	fr_logunload(ifs);
6571 #endif
6572 }
6573 
6574 
6575 /* ------------------------------------------------------------------------ */
6576 /* Function:    fr_zerostats                                                */
6577 /* Returns:     int - 0 = success, else failure                             */
6578 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
6579 /*                                                                          */
6580 /* Copies the current statistics out to userspace and then zero's the       */
6581 /* current ones in the kernel. The lock is only held across the bzero() as  */
6582 /* the copyout may result in paging (ie network activity.)                  */
6583 /* ------------------------------------------------------------------------ */
6584 int	fr_zerostats(data, ifs)
6585 caddr_t	data;
6586 ipf_stack_t *ifs;
6587 {
6588 	friostat_t fio;
6589 	int error;
6590 
6591 	fr_getstat(&fio, ifs);
6592 	error = copyoutptr(&fio, data, sizeof(fio));
6593 	if (error)
6594 		return EFAULT;
6595 
6596 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
6597 	bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2);
6598 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
6599 
6600 	return 0;
6601 }
6602 
6603 
6604 #ifdef _KERNEL
6605 /* ------------------------------------------------------------------------ */
6606 /* Function:    fr_resolvedest                                              */
6607 /* Returns:     Nil                                                         */
6608 /* Parameters:  fdp(IO) - pointer to destination information to resolve     */
6609 /*              v(I)    - IP protocol version to match                      */
6610 /*                                                                          */
6611 /* Looks up an interface name in the frdest structure pointed to by fdp and */
6612 /* if a matching name can be found for the particular IP protocol version   */
6613 /* then store the interface pointer in the frdest struct.  If no match is   */
6614 /* found, then set the interface pointer to be -1 as NULL is considered to  */
6615 /* indicate there is no information at all in the structure.                */
6616 /* ------------------------------------------------------------------------ */
6617 void fr_resolvedest(fdp, v, ifs)
6618 frdest_t *fdp;
6619 int v;
6620 ipf_stack_t *ifs;
6621 {
6622 	fdp->fd_ifp = NULL;
6623 
6624   	if (*fdp->fd_ifname != '\0') {
6625  		fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs);
6626 		if (fdp->fd_ifp == NULL)
6627 			fdp->fd_ifp = (void *)-1;
6628 	}
6629 }
6630 #endif /* _KERNEL */
6631 
6632 
6633 /* ------------------------------------------------------------------------ */
6634 /* Function:    fr_resolvenic                                               */
6635 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
6636 /*                      pointer to interface structure for NIC              */
6637 /* Parameters:  name(I) - complete interface name                           */
6638 /*              v(I)    - IP protocol version                               */
6639 /*                                                                          */
6640 /* Look for a network interface structure that firstly has a matching name  */
6641 /* to that passed in and that is also being used for that IP protocol       */
6642 /* version (necessary on some platforms where there are separate listings   */
6643 /* for both IPv4 and IPv6 on the same physical NIC.                         */
6644 /*                                                                          */
6645 /* One might wonder why name gets terminated with a \0 byte in here.  The   */
6646 /* reason is an interface name could get into the kernel structures of ipf  */
6647 /* in any number of ways and so long as they all use the same sized array   */
6648 /* to put the name in, it makes sense to ensure it gets null terminated     */
6649 /* before it is used for its intended purpose - finding its match in the    */
6650 /* kernel's list of configured interfaces.                                  */
6651 /*                                                                          */
6652 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an     */
6653 /*       array for the name that is LIFNAMSIZ bytes (at least) in length.   */
6654 /* ------------------------------------------------------------------------ */
6655 void *fr_resolvenic(name, v, ifs)
6656 char *name;
6657 int v;
6658 ipf_stack_t *ifs;
6659 {
6660 	void *nic;
6661 
6662 	if (name[0] == '\0')
6663 		return NULL;
6664 
6665 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
6666 		return NULL;
6667 	}
6668 
6669 	name[LIFNAMSIZ - 1] = '\0';
6670 
6671 	nic = GETIFP(name, v, ifs);
6672 	if (nic == NULL)
6673 		nic = (void *)-1;
6674 	return nic;
6675 }
6676 
6677 
6678 /* ------------------------------------------------------------------------ */
6679 /* Function:    ipf_expiretokens                                            */
6680 /* Returns:     None.                                                       */
6681 /* Parameters:  ifs - ipf stack instance                                    */
6682 /*                                                                          */
6683 /* This function is run every ipf tick to see if there are any tokens that  */
6684 /* have been held for too long and need to be freed up.                     */
6685 /* ------------------------------------------------------------------------ */
6686 void ipf_expiretokens(ifs)
6687 ipf_stack_t *ifs;
6688 {
6689 	ipftoken_t *it;
6690 
6691 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6692 	while ((it = ifs->ifs_ipftokenhead) != NULL) {
6693 		if (it->ipt_die > ifs->ifs_fr_ticks)
6694 			break;
6695 
6696 		ipf_freetoken(it, ifs);
6697 	}
6698 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6699 }
6700 
6701 
6702 /* ------------------------------------------------------------------------ */
6703 /* Function:    ipf_deltoken                                                */
6704 /* Returns:     int - 0 = success, else error                               */
6705 /* Parameters:  type(I) - the token type to match                           */
6706 /*              uid(I)  - uid owning the token                              */
6707 /*              ptr(I)  - context pointer for the token                     */
6708 /*              ifs - ipf stack instance                                    */
6709 /*                                                                          */
6710 /* This function looks for a a token in the current list that matches up    */
6711 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
6712 /* call ipf_freetoken() to remove it from the list.                         */
6713 /* ------------------------------------------------------------------------ */
6714 int ipf_deltoken(type, uid, ptr, ifs)
6715 int type, uid;
6716 void *ptr;
6717 ipf_stack_t *ifs;
6718 {
6719 	ipftoken_t *it;
6720 	int error = ESRCH;
6721 
6722 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6723 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next)
6724 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6725 		    uid == it->ipt_uid) {
6726 			ipf_freetoken(it, ifs);
6727 			error = 0;
6728 			break;
6729 	}
6730 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6731 
6732 	return error;
6733 }
6734 
6735 
6736 /* ------------------------------------------------------------------------ */
6737 /* Function:    ipf_unlinktoken                                             */
6738 /* Returns:     None.                                                       */
6739 /* Parameters:  token(I) - pointer to token structure                       */
6740 /*              ifs - ipf stack instance                                    */
6741 /*                                                                          */
6742 /* This function unlinks a token structure from the linked list of tokens   */
6743 /* that it belongs to.  The head pointer never needs to be explicitly       */
6744 /* adjusted, but the tail does due to the linked list implementation.       */
6745 /* ------------------------------------------------------------------------ */
6746 static void ipf_unlinktoken(token, ifs)
6747 ipftoken_t *token;
6748 ipf_stack_t *ifs;
6749 {
6750 
6751 	if (ifs->ifs_ipftokentail == &token->ipt_next)
6752 		ifs->ifs_ipftokentail = token->ipt_pnext;
6753 
6754 	*token->ipt_pnext = token->ipt_next;
6755 	if (token->ipt_next != NULL)
6756 		token->ipt_next->ipt_pnext = token->ipt_pnext;
6757 }
6758 
6759 
6760 /* ------------------------------------------------------------------------ */
6761 /* Function:    ipf_findtoken                                               */
6762 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
6763 /* Parameters:  type(I) - the token type to match                           */
6764 /*              uid(I) - uid owning the token                               */
6765 /*              ptr(I) - context pointer for the token                      */
6766 /*              ifs - ipf stack instance                                    */
6767 /*                                                                          */
6768 /* This function looks for a live token in the list of current tokens that  */
6769 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
6770 /* allocated.  If one is found then it is moved to the top of the list of   */
6771 /* currently active tokens.                                                 */
6772 /*                                                                          */
6773 /* NOTE: It is by design that this function returns holding a read lock on  */
6774 /*       ipf_tokens.  Callers must make sure they release it!               */
6775 /* ------------------------------------------------------------------------ */
6776 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs)
6777 int type, uid;
6778 void *ptr;
6779 ipf_stack_t *ifs;
6780 {
6781 	ipftoken_t *it, *new;
6782 
6783 	KMALLOC(new, ipftoken_t *);
6784 
6785 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6786 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) {
6787 		if (it->ipt_alive == 0)
6788 			continue;
6789 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6790 		    uid == it->ipt_uid)
6791 			break;
6792 	}
6793 
6794 	if (it == NULL) {
6795 		it = new;
6796 		new = NULL;
6797 		if (it == NULL)
6798 			return NULL;
6799 		it->ipt_data = NULL;
6800 		it->ipt_ctx = ptr;
6801 		it->ipt_uid = uid;
6802 		it->ipt_type = type;
6803 		it->ipt_next = NULL;
6804 		it->ipt_alive = 1;
6805 	} else {
6806 		if (new != NULL) {
6807 			KFREE(new);
6808 			new = NULL;
6809 		}
6810 
6811 		ipf_unlinktoken(it, ifs);
6812 	}
6813 	it->ipt_pnext = ifs->ifs_ipftokentail;
6814 	*ifs->ifs_ipftokentail = it;
6815 	ifs->ifs_ipftokentail = &it->ipt_next;
6816 	it->ipt_next = NULL;
6817 
6818 	it->ipt_die = ifs->ifs_fr_ticks + 2;
6819 
6820 	MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens);
6821 
6822 	return it;
6823 }
6824 
6825 
6826 /* ------------------------------------------------------------------------ */
6827 /* Function:    ipf_freetoken                                               */
6828 /* Returns:     None.                                                       */
6829 /* Parameters:  token(I) - pointer to token structure                       */
6830 /*              ifs - ipf stack instance                                    */
6831 /*                                                                          */
6832 /* This function unlinks a token from the linked list and on the path to    */
6833 /* free'ing the data, it calls the dereference function that is associated  */
6834 /* with the type of data pointed to by the token as it is considered to     */
6835 /* hold a reference to it.                                                  */
6836 /* ------------------------------------------------------------------------ */
6837 void ipf_freetoken(token, ifs)
6838 ipftoken_t *token;
6839 ipf_stack_t *ifs;
6840 {
6841 	void *data, **datap;
6842 
6843 	ipf_unlinktoken(token, ifs);
6844 
6845 	data = token->ipt_data;
6846 	datap = &data;
6847 
6848 	if ((data != NULL) && (data != (void *)-1)) {
6849 		switch (token->ipt_type)
6850 		{
6851 		case IPFGENITER_IPF :
6852 			(void)fr_derefrule((frentry_t **)datap, ifs);
6853 			break;
6854 		case IPFGENITER_IPNAT :
6855 			WRITE_ENTER(&ifs->ifs_ipf_nat);
6856 			fr_ipnatderef((ipnat_t **)datap, ifs);
6857 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
6858 			break;
6859 		case IPFGENITER_NAT :
6860 			fr_natderef((nat_t **)datap, ifs);
6861 			break;
6862 		case IPFGENITER_STATE :
6863 			fr_statederef((ipstate_t **)datap, ifs);
6864 			break;
6865 		case IPFGENITER_FRAG :
6866 			fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs);
6867 			break;
6868 		case IPFGENITER_NATFRAG :
6869  			fr_fragderef((ipfr_t **)datap,
6870 				     &ifs->ifs_ipf_natfrag, ifs);
6871 			break;
6872 		case IPFGENITER_HOSTMAP :
6873 			WRITE_ENTER(&ifs->ifs_ipf_nat);
6874 			fr_hostmapdel((hostmap_t **)datap);
6875 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
6876 			break;
6877 		default :
6878 			(void) ip_lookup_iterderef(token->ipt_type, data, ifs);
6879 			break;
6880 		}
6881 	}
6882 
6883 	KFREE(token);
6884 }
6885 
6886 
6887 /* ------------------------------------------------------------------------ */
6888 /* Function:    ipf_getnextrule                                             */
6889 /* Returns:     int - 0 = success, else error                               */
6890 /* Parameters:  t(I)   - pointer to destination information to resolve      */
6891 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
6892 /*              ifs - ipf stack instance                                    */
6893 /*                                                                          */
6894 /* This function's first job is to bring in the ipfruleiter_t structure via */
6895 /* the ipfobj_t structure to determine what should be the next rule to      */
6896 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
6897 /* find the 'next rule'.  This may include searching rule group lists or    */
6898 /* just be as simple as looking at the 'next' field in the rule structure.  */
6899 /* When we have found the rule to return, increase its reference count and  */
6900 /* if we used an existing rule to get here, decrease its reference count.   */
6901 /* ------------------------------------------------------------------------ */
6902 int ipf_getnextrule(t, ptr, ifs)
6903 ipftoken_t *t;
6904 void *ptr;
6905 ipf_stack_t *ifs;
6906 {
6907 	frentry_t *fr, *next, zero;
6908 	int error, out, count;
6909 	ipfruleiter_t it;
6910 	frgroup_t *fg;
6911 	char *dst;
6912 
6913 	if (t == NULL || ptr == NULL)
6914 		return EFAULT;
6915 	error = fr_inobj(ptr, &it, IPFOBJ_IPFITER);
6916 	if (error != 0)
6917 		return error;
6918 	if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6))
6919 		return EINVAL;
6920 	if ((it.iri_inout < 0) || (it.iri_inout > 3))
6921 		return EINVAL;
6922 	if (it.iri_nrules == 0)
6923 		return EINVAL;
6924 	if ((it.iri_active != 0) && (it.iri_active != 1))
6925 		return EINVAL;
6926 	if (it.iri_rule == NULL)
6927 		return EFAULT;
6928 
6929 	/*
6930 	 * Use bitmask on it.iri_inout to determine direction.
6931 	 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while
6932 	 * F_IN (0) and F_ACIN (2) mask to out = 0.
6933 	 */
6934 	out = it.iri_inout & F_OUT;
6935 	READ_ENTER(&ifs->ifs_ipf_mutex);
6936 
6937 	/*
6938 	 * Retrieve "previous" entry from token and find the next entry.
6939 	 */
6940 	fr = t->ipt_data;
6941 	if (fr == NULL) {
6942 		if (*it.iri_group == '\0') {
6943 			/*
6944 			 * Use bitmask again to determine accounting or not.
6945 			 * F_ACIN will mask to accounting cases F_ACIN (2)
6946 			 * or F_ACOUT (3), but not F_IN or F_OUT.
6947 			 */
6948 			if ((it.iri_inout & F_ACIN) != 0) {
6949 				if (it.iri_ver == AF_INET)
6950 					next = ifs->ifs_ipacct
6951 					    [out][it.iri_active];
6952 				else
6953 					next = ifs->ifs_ipacct6
6954 					    [out][it.iri_active];
6955 			} else {
6956 				if (it.iri_ver == AF_INET)
6957 					next = ifs->ifs_ipfilter
6958 					    [out][it.iri_active];
6959 				else
6960 					next = ifs->ifs_ipfilter6
6961 					    [out][it.iri_active];
6962 			}
6963 		} else {
6964 			fg = fr_findgroup(it.iri_group, IPL_LOGIPF,
6965 					  it.iri_active, NULL, ifs);
6966 			if (fg != NULL)
6967 				next = fg->fg_start;
6968 			else
6969 				next = NULL;
6970 		}
6971 	} else {
6972 		next = fr->fr_next;
6973 	}
6974 
6975 	dst = (char *)it.iri_rule;
6976 	/*
6977 	 * The ipfruleiter may ask for more than 1 rule at a time to be
6978 	 * copied out, so long as that many exist in the list to start with!
6979 	 */
6980 	for (count = it.iri_nrules; count > 0; count--) {
6981 		/*
6982 		 * If we found an entry, add reference to it and update token.
6983 		 * Otherwise, zero out data to be returned and NULL out token.
6984 		 */
6985 		if (next != NULL) {
6986 			MUTEX_ENTER(&next->fr_lock);
6987 			next->fr_ref++;
6988 			MUTEX_EXIT(&next->fr_lock);
6989 			t->ipt_data = next;
6990 		} else {
6991 			bzero(&zero, sizeof(zero));
6992 			next = &zero;
6993 			t->ipt_data = NULL;
6994 		}
6995 
6996 		/*
6997 		 * Now that we have ref, it's save to give up lock.
6998 		 */
6999 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
7000 
7001 		/*
7002 		 * Copy out data and clean up references and token as needed.
7003 		 */
7004 		error = COPYOUT(next, dst, sizeof(*next));
7005 		if (error != 0)
7006 			error = EFAULT;
7007 		if (t->ipt_data == NULL) {
7008 			ipf_freetoken(t, ifs);
7009 			break;
7010 		} else {
7011 			if (fr != NULL)
7012 				(void) fr_derefrule(&fr, ifs);
7013 			if (next->fr_data != NULL) {
7014 				dst += sizeof(*next);
7015 				error = COPYOUT(next->fr_data, dst,
7016 						next->fr_dsize);
7017 				if (error != 0)
7018 					error = EFAULT;
7019 				else
7020 					dst += next->fr_dsize;
7021 			}
7022 			if (next->fr_next == NULL) {
7023 				ipf_freetoken(t, ifs);
7024 				break;
7025 			}
7026 		}
7027 
7028 		if ((count == 1) || (error != 0))
7029 			break;
7030 
7031 		READ_ENTER(&ifs->ifs_ipf_mutex);
7032 		fr = next;
7033 		next = fr->fr_next;
7034 	}
7035 
7036 	return error;
7037 }
7038 
7039 
7040 /* ------------------------------------------------------------------------ */
7041 /* Function:    fr_frruleiter                                               */
7042 /* Returns:     int - 0 = success, else error                               */
7043 /* Parameters:  data(I) - the token type to match                           */
7044 /*              uid(I) - uid owning the token                               */
7045 /*              ptr(I) - context pointer for the token                      */
7046 /*              ifs - ipf stack instance                                    */
7047 /*                                                                          */
7048 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7049 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7050 /* the process doing the ioctl and use that to ask for the next rule.       */
7051 /* ------------------------------------------------------------------------ */
7052 int ipf_frruleiter(data, uid, ctx, ifs)
7053 void *data, *ctx;
7054 int uid;
7055 ipf_stack_t *ifs;
7056 {
7057 	ipftoken_t *token;
7058 	int error;
7059 
7060 	token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs);
7061 	if (token != NULL)
7062 		error = ipf_getnextrule(token, data, ifs);
7063 	else
7064 		error = EFAULT;
7065 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7066 
7067 	return error;
7068 }
7069 
7070 
7071 /* ------------------------------------------------------------------------ */
7072 /* Function:    ipf_geniter                                                 */
7073 /* Returns:     int - 0 = success, else error                               */
7074 /* Parameters:  token(I) - pointer to ipftoken structure                    */
7075 /*              itp(I) - pointer to ipfgeniter structure                    */
7076 /*              ifs - ipf stack instance                                    */
7077 /*                                                                          */
7078 /* Generic iterator called from ipf_genericiter.  Currently only used for   */
7079 /* walking through list of fragments.                                       */
7080 /* ------------------------------------------------------------------------ */
7081 int ipf_geniter(token, itp, ifs)
7082 ipftoken_t *token;
7083 ipfgeniter_t *itp;
7084 ipf_stack_t *ifs;
7085 {
7086 	int error;
7087 
7088 	switch (itp->igi_type)
7089 	{
7090 	case IPFGENITER_FRAG :
7091 		error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list,
7092 				    &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag,
7093 				    ifs);
7094 		break;
7095 	default :
7096 		error = EINVAL;
7097 		break;
7098 	}
7099 
7100 	return error;
7101 }
7102 
7103 
7104 /* ------------------------------------------------------------------------ */
7105 /* Function:    ipf_genericiter                                             */
7106 /* Returns:     int - 0 = success, else error                               */
7107 /* Parameters:  data(I) - the token type to match                           */
7108 /*              uid(I) - uid owning the token                               */
7109 /*              ptr(I) - context pointer for the token                      */
7110 /*              ifs - ipf stack instance                                    */
7111 /*                                                                          */
7112 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7113 /* ipf_geniter when handling SIOCGENITER.  It's role is to find the right   */
7114 /* token in the kernel for the process using the ioctl, and to use that     */
7115 /* token when calling ipf_geniter.                                          */
7116 /* ------------------------------------------------------------------------ */
7117 int ipf_genericiter(data, uid, ctx, ifs)
7118 void *data, *ctx;
7119 int uid;
7120 ipf_stack_t *ifs;
7121 {
7122 	ipftoken_t *token;
7123 	ipfgeniter_t iter;
7124 	int error;
7125 
7126 	error = fr_inobj(data, &iter, IPFOBJ_GENITER);
7127 	if (error != 0)
7128 		return error;
7129 
7130 	token = ipf_findtoken(iter.igi_type, uid, ctx, ifs);
7131 	if (token != NULL) {
7132 		token->ipt_subtype = iter.igi_type;
7133 		error = ipf_geniter(token, &iter, ifs);
7134 	} else
7135 		error = EFAULT;
7136 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7137 
7138 	return error;
7139 }
7140