xref: /titanic_51/usr/src/uts/common/inet/ipf/fil.c (revision 980a6e61aeb2038ab2b640d7ac80b36cf5c7d84b)
1 /*
2  * Copyright (C) 1993-2003 by Darren Reed.
3  *
4  * See the IPFILTER.LICENCE file for details on licencing.
5  *
6  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
7  * Use is subject to license terms.
8  */
9 
10 #pragma ident	"%Z%%M%	%I%	%E% SMI"
11 
12 #if defined(KERNEL) || defined(_KERNEL)
13 # undef KERNEL
14 # undef _KERNEL
15 # define        KERNEL	1
16 # define        _KERNEL	1
17 #endif
18 #include <sys/errno.h>
19 #include <sys/types.h>
20 #include <sys/param.h>
21 #include <sys/time.h>
22 #if defined(__NetBSD__)
23 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL)
24 #  include "opt_ipfilter_log.h"
25 # endif
26 #endif
27 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
28     (__FreeBSD_version >= 220000)
29 # if (__FreeBSD_version >= 400000)
30 #  if !defined(IPFILTER_LKM)
31 #   include "opt_inet6.h"
32 #  endif
33 #  if (__FreeBSD_version == 400019)
34 #   define CSUM_DELAY_DATA
35 #  endif
36 # endif
37 # include <sys/filio.h>
38 #else
39 # include <sys/ioctl.h>
40 #endif
41 #if !defined(_AIX51)
42 # include <sys/fcntl.h>
43 #endif
44 #if defined(_KERNEL)
45 # include <sys/systm.h>
46 # include <sys/file.h>
47 #else
48 # include <stdio.h>
49 # include <string.h>
50 # include <stdlib.h>
51 # include <stddef.h>
52 # include <sys/file.h>
53 # define _KERNEL
54 # ifdef __OpenBSD__
55 struct file;
56 # endif
57 # include <sys/uio.h>
58 # undef _KERNEL
59 #endif
60 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
61     !defined(linux)
62 # include <sys/mbuf.h>
63 #else
64 # if !defined(linux)
65 #  include <sys/byteorder.h>
66 # endif
67 # if (SOLARIS2 < 5) && defined(sun)
68 #  include <sys/dditypes.h>
69 # endif
70 #endif
71 #ifdef __hpux
72 # define _NET_ROUTE_INCLUDED
73 #endif
74 #if !defined(linux)
75 # include <sys/protosw.h>
76 #endif
77 #include <sys/socket.h>
78 #include <net/if.h>
79 #ifdef sun
80 # include <net/af.h>
81 #endif
82 #if !defined(_KERNEL) && defined(__FreeBSD__)
83 # include "radix_ipf.h"
84 #endif
85 #include <net/route.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #if !defined(linux)
90 # include <netinet/ip_var.h>
91 #endif
92 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
93 # include <sys/hashing.h>
94 # include <netinet/in_var.h>
95 #endif
96 #include <netinet/tcp.h>
97 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
98 # include <netinet/udp.h>
99 # include <netinet/ip_icmp.h>
100 #endif
101 #ifdef __hpux
102 # undef _NET_ROUTE_INCLUDED
103 #endif
104 #include "netinet/ip_compat.h"
105 #ifdef	USE_INET6
106 # include <netinet/icmp6.h>
107 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
108 #  include <netinet6/in6_var.h>
109 # endif
110 #endif
111 #include <netinet/tcpip.h>
112 #include "netinet/ip_fil.h"
113 #include "netinet/ip_nat.h"
114 #include "netinet/ip_frag.h"
115 #include "netinet/ip_state.h"
116 #include "netinet/ip_proxy.h"
117 #include "netinet/ip_auth.h"
118 #include "netinet/ipf_stack.h"
119 #ifdef IPFILTER_SCAN
120 # include "netinet/ip_scan.h"
121 #endif
122 #ifdef IPFILTER_SYNC
123 # include "netinet/ip_sync.h"
124 #endif
125 #include "netinet/ip_pool.h"
126 #include "netinet/ip_htable.h"
127 #ifdef IPFILTER_COMPILED
128 # include "netinet/ip_rules.h"
129 #endif
130 #if defined(IPFILTER_BPF) && defined(_KERNEL)
131 # include <net/bpf.h>
132 #endif
133 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
134 # include <sys/malloc.h>
135 # if defined(_KERNEL) && !defined(IPFILTER_LKM)
136 #  include "opt_ipfilter.h"
137 # endif
138 #endif
139 #include "netinet/ipl.h"
140 /* END OF INCLUDES */
141 
142 #if !defined(lint)
143 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
144 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $";
145 #endif
146 
147 #ifndef	_KERNEL
148 # include "ipf.h"
149 # include "ipt.h"
150 # include "bpf-ipf.h"
151 extern	int	opts;
152 
153 # define	FR_VERBOSE(verb_pr)			verbose verb_pr
154 # define	FR_DEBUG(verb_pr)			debug verb_pr
155 #else /* #ifndef _KERNEL */
156 # define	FR_VERBOSE(verb_pr)
157 # define	FR_DEBUG(verb_pr)
158 #endif /* _KERNEL */
159 
160 
161 char	ipfilter_version[] = IPL_VERSION;
162 int	fr_features = 0
163 #ifdef	IPFILTER_LKM
164 		| IPF_FEAT_LKM
165 #endif
166 #ifdef	IPFILTER_LOG
167 		| IPF_FEAT_LOG
168 #endif
169 #ifdef	IPFILTER_LOOKUP
170 		| IPF_FEAT_LOOKUP
171 #endif
172 #ifdef	IPFILTER_BPF
173 		| IPF_FEAT_BPF
174 #endif
175 #ifdef	IPFILTER_COMPILED
176 		| IPF_FEAT_COMPILED
177 #endif
178 #ifdef	IPFILTER_CKSUM
179 		| IPF_FEAT_CKSUM
180 #endif
181 #ifdef	IPFILTER_SYNC
182 		| IPF_FEAT_SYNC
183 #endif
184 #ifdef	IPFILTER_SCAN
185 		| IPF_FEAT_SCAN
186 #endif
187 #ifdef	USE_INET6
188 		| IPF_FEAT_IPV6
189 #endif
190 	;
191 
192 #define	IPF_BUMP(x)	(x)++
193 
194 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
195 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
196 static	int		fr_portcheck __P((frpcmp_t *, u_short *));
197 static	int		frflushlist __P((int, minor_t, int *, frentry_t **,
198 					 ipf_stack_t *));
199 static	ipfunc_t	fr_findfunc __P((ipfunc_t));
200 static	frentry_t	*fr_firewall __P((fr_info_t *, u_32_t *));
201 static	int		fr_funcinit __P((frentry_t *fr, ipf_stack_t *));
202 static	INLINE void	frpr_ah __P((fr_info_t *));
203 static	INLINE void	frpr_esp __P((fr_info_t *));
204 static	INLINE void	frpr_gre __P((fr_info_t *));
205 static	INLINE void	frpr_udp __P((fr_info_t *));
206 static	INLINE void	frpr_tcp __P((fr_info_t *));
207 static	INLINE void	frpr_icmp __P((fr_info_t *));
208 static	INLINE void	frpr_ipv4hdr __P((fr_info_t *));
209 static	INLINE int	frpr_pullup __P((fr_info_t *, int));
210 static	INLINE void	frpr_short __P((fr_info_t *, int));
211 static	INLINE void	frpr_tcpcommon __P((fr_info_t *));
212 static	INLINE void	frpr_udpcommon __P((fr_info_t *));
213 static	INLINE int	fr_updateipid __P((fr_info_t *));
214 #ifdef	IPFILTER_LOOKUP
215 static	int		fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *));
216 static	INLINE void	*fr_resolvelookup __P((u_int, u_int, lookupfunc_t *,
217 					       ipf_stack_t *));
218 #endif
219 static	void		frsynclist __P((int, int, void *, char *, frentry_t *,
220     ipf_stack_t *));
221 static	void		*fr_ifsync __P((int, int, char *, char *,
222 					void *, void *, ipf_stack_t *));
223 static	ipftuneable_t	*fr_findtunebyname __P((const char *, ipf_stack_t *));
224 static	ipftuneable_t	*fr_findtunebycookie __P((void *, void **, ipf_stack_t *));
225 static	void		ipf_unlinktoken __P((ipftoken_t *, ipf_stack_t *));
226 
227 
228 /*
229  * bit values for identifying presence of individual IP options
230  * All of these tables should be ordered by increasing key value on the left
231  * hand side to allow for binary searching of the array and include a trailer
232  * with a 0 for the bitmask for linear searches to easily find the end with.
233  */
234 const	struct	optlist	ipopts[20] = {
235 	{ IPOPT_NOP,	0x000001 },
236 	{ IPOPT_RR,	0x000002 },
237 	{ IPOPT_ZSU,	0x000004 },
238 	{ IPOPT_MTUP,	0x000008 },
239 	{ IPOPT_MTUR,	0x000010 },
240 	{ IPOPT_ENCODE,	0x000020 },
241 	{ IPOPT_TS,	0x000040 },
242 	{ IPOPT_TR,	0x000080 },
243 	{ IPOPT_SECURITY, 0x000100 },
244 	{ IPOPT_LSRR,	0x000200 },
245 	{ IPOPT_E_SEC,	0x000400 },
246 	{ IPOPT_CIPSO,	0x000800 },
247 	{ IPOPT_SATID,	0x001000 },
248 	{ IPOPT_SSRR,	0x002000 },
249 	{ IPOPT_ADDEXT,	0x004000 },
250 	{ IPOPT_VISA,	0x008000 },
251 	{ IPOPT_IMITD,	0x010000 },
252 	{ IPOPT_EIP,	0x020000 },
253 	{ IPOPT_FINN,	0x040000 },
254 	{ 0,		0x000000 }
255 };
256 
257 #ifdef USE_INET6
258 struct optlist ip6exthdr[] = {
259 	{ IPPROTO_HOPOPTS,		0x000001 },
260 	{ IPPROTO_IPV6,			0x000002 },
261 	{ IPPROTO_ROUTING,		0x000004 },
262 	{ IPPROTO_FRAGMENT,		0x000008 },
263 	{ IPPROTO_ESP,			0x000010 },
264 	{ IPPROTO_AH,			0x000020 },
265 	{ IPPROTO_NONE,			0x000040 },
266 	{ IPPROTO_DSTOPTS,		0x000080 },
267 	{ 0,				0 }
268 };
269 #endif
270 
271 struct optlist tcpopts[] = {
272 	{ TCPOPT_NOP,			0x000001 },
273 	{ TCPOPT_MAXSEG,		0x000002 },
274 	{ TCPOPT_WINDOW,		0x000004 },
275 	{ TCPOPT_SACK_PERMITTED,	0x000008 },
276 	{ TCPOPT_SACK,			0x000010 },
277 	{ TCPOPT_TIMESTAMP,		0x000020 },
278 	{ 0,				0x000000 }
279 };
280 
281 /*
282  * bit values for identifying presence of individual IP security options
283  */
284 const	struct	optlist	secopt[8] = {
285 	{ IPSO_CLASS_RES4,	0x01 },
286 	{ IPSO_CLASS_TOPS,	0x02 },
287 	{ IPSO_CLASS_SECR,	0x04 },
288 	{ IPSO_CLASS_RES3,	0x08 },
289 	{ IPSO_CLASS_CONF,	0x10 },
290 	{ IPSO_CLASS_UNCL,	0x20 },
291 	{ IPSO_CLASS_RES2,	0x40 },
292 	{ IPSO_CLASS_RES1,	0x80 }
293 };
294 
295 
296 /*
297  * Table of functions available for use with call rules.
298  */
299 static ipfunc_resolve_t fr_availfuncs[] = {
300 #ifdef	IPFILTER_LOOKUP
301 	{ "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit },
302 	{ "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit },
303 #endif
304 	{ "", NULL }
305 };
306 
307 
308 /*
309  * The next section of code is a a collection of small routines that set
310  * fields in the fr_info_t structure passed based on properties of the
311  * current packet.  There are different routines for the same protocol
312  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
313  * will "special" inspection for setup, is now more easily done by adding
314  * a new routine and expanding the frpr_ipinit*() function rather than by
315  * adding more code to a growing switch statement.
316  */
317 #ifdef USE_INET6
318 static	INLINE int	frpr_ah6 __P((fr_info_t *));
319 static	INLINE void	frpr_esp6 __P((fr_info_t *));
320 static	INLINE void	frpr_gre6 __P((fr_info_t *));
321 static	INLINE void	frpr_udp6 __P((fr_info_t *));
322 static	INLINE void	frpr_tcp6 __P((fr_info_t *));
323 static	INLINE void	frpr_icmp6 __P((fr_info_t *));
324 static	INLINE int	frpr_ipv6hdr __P((fr_info_t *));
325 static	INLINE void	frpr_short6 __P((fr_info_t *, int));
326 static	INLINE int	frpr_hopopts6 __P((fr_info_t *));
327 static	INLINE int	frpr_routing6 __P((fr_info_t *));
328 static	INLINE int	frpr_dstopts6 __P((fr_info_t *));
329 static	INLINE int	frpr_fragment6 __P((fr_info_t *));
330 static	INLINE int	frpr_ipv6exthdr __P((fr_info_t *, int, int));
331 
332 
333 /* ------------------------------------------------------------------------ */
334 /* Function:    frpr_short6                                                 */
335 /* Returns:     void                                                        */
336 /* Parameters:  fin(I) - pointer to packet information                      */
337 /*                                                                          */
338 /* IPv6 Only                                                                */
339 /* This is function enforces the 'is a packet too short to be legit' rule   */
340 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
341 /* for frpr_short() for more details.                                       */
342 /* ------------------------------------------------------------------------ */
343 static INLINE void frpr_short6(fin, xmin)
344 fr_info_t *fin;
345 int xmin;
346 {
347 
348 	if (fin->fin_dlen < xmin)
349 		fin->fin_flx |= FI_SHORT;
350 }
351 
352 
353 /* ------------------------------------------------------------------------ */
354 /* Function:    frpr_ipv6hdr                                                */
355 /* Returns:     int                                                         */
356 /* Parameters:  fin(I) - pointer to packet information                      */
357 /*                                                                          */
358 /* IPv6 Only                                                                */
359 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
360 /* per-protocol analyzer if it exists.                                      */
361 /* ------------------------------------------------------------------------ */
362 static INLINE int frpr_ipv6hdr(fin)
363 fr_info_t *fin;
364 {
365 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
366 	int p, go = 1, i, hdrcount;
367 	fr_ip_t *fi = &fin->fin_fi;
368 
369 	fin->fin_off = 0;
370 
371 	fi->fi_tos = 0;
372 	fi->fi_optmsk = 0;
373 	fi->fi_secmsk = 0;
374 	fi->fi_auth = 0;
375 
376 	p = ip6->ip6_nxt;
377 	fi->fi_ttl = ip6->ip6_hlim;
378 	fi->fi_src.in6 = ip6->ip6_src;
379 	fi->fi_dst.in6 = ip6->ip6_dst;
380 	fin->fin_id = 0;
381 
382 	hdrcount = 0;
383 	while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) {
384 		switch (p)
385 		{
386 		case IPPROTO_UDP :
387 			frpr_udp6(fin);
388 			go = 0;
389 			break;
390 
391 		case IPPROTO_TCP :
392 			frpr_tcp6(fin);
393 			go = 0;
394 			break;
395 
396 		case IPPROTO_ICMPV6 :
397 			frpr_icmp6(fin);
398 			go = 0;
399 			break;
400 
401 		case IPPROTO_GRE :
402 			frpr_gre6(fin);
403 			go = 0;
404 			break;
405 
406 		case IPPROTO_HOPOPTS :
407 			/*
408 			 * hop by hop ext header is only allowed
409 			 * right after IPv6 header.
410 			 */
411 			if (hdrcount != 0) {
412 				fin->fin_flx |= FI_BAD;
413 				p = IPPROTO_NONE;
414 			} else {
415 				p = frpr_hopopts6(fin);
416 			}
417 			break;
418 
419 		case IPPROTO_DSTOPTS :
420 			p = frpr_dstopts6(fin);
421 			break;
422 
423 		case IPPROTO_ROUTING :
424 			p = frpr_routing6(fin);
425 			break;
426 
427 		case IPPROTO_AH :
428 			p = frpr_ah6(fin);
429 			break;
430 
431 		case IPPROTO_ESP :
432 			frpr_esp6(fin);
433 			go = 0;
434 			break;
435 
436 		case IPPROTO_IPV6 :
437 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
438 				if (ip6exthdr[i].ol_val == p) {
439 					fin->fin_flx |= ip6exthdr[i].ol_bit;
440 					break;
441 				}
442 			go = 0;
443 			break;
444 
445 		case IPPROTO_NONE :
446 			go = 0;
447 			break;
448 
449 		case IPPROTO_FRAGMENT :
450 			p = frpr_fragment6(fin);
451 			if (fin->fin_off != 0)  /* Not the first frag */
452 				go = 0;
453 			break;
454 
455 		default :
456 			go = 0;
457 			break;
458 		}
459 		hdrcount++;
460 
461 		/*
462 		 * It is important to note that at this point, for the
463 		 * extension headers (go != 0), the entire header may not have
464 		 * been pulled up when the code gets to this point.  This is
465 		 * only done for "go != 0" because the other header handlers
466 		 * will all pullup their complete header.  The other indicator
467 		 * of an incomplete packet is that this was just an extension
468 		 * header.
469 		 */
470 		if ((go != 0) && (p != IPPROTO_NONE) &&
471 		    (frpr_pullup(fin, 0) == -1)) {
472 			p = IPPROTO_NONE;
473 			go = 0;
474 		}
475 	}
476 	fi->fi_p = p;
477 
478 	if (fin->fin_flx & FI_BAD)
479 		return -1;
480 
481 	return 0;
482 }
483 
484 
485 /* ------------------------------------------------------------------------ */
486 /* Function:    frpr_ipv6exthdr                                             */
487 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
488 /* Parameters:  fin(I)      - pointer to packet information                 */
489 /*              multiple(I) - flag indicating yes/no if multiple occurances */
490 /*                            of this extension header are allowed.         */
491 /*              proto(I)    - protocol number for this extension header     */
492 /*                                                                          */
493 /* IPv6 Only                                                                */
494 /* ------------------------------------------------------------------------ */
495 static INLINE int frpr_ipv6exthdr(fin, multiple, proto)
496 fr_info_t *fin;
497 int multiple, proto;
498 {
499 	struct ip6_ext *hdr;
500 	u_short shift;
501 	int i;
502 
503 	fin->fin_flx |= FI_V6EXTHDR;
504 
505 				/* 8 is default length of extension hdr */
506 	if ((fin->fin_dlen - 8) < 0) {
507 		fin->fin_flx |= FI_SHORT;
508 		return IPPROTO_NONE;
509 	}
510 
511 	if (frpr_pullup(fin, 8) == -1)
512 		return IPPROTO_NONE;
513 
514 	hdr = fin->fin_dp;
515 	shift = 8 + (hdr->ip6e_len << 3);
516 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
517 		fin->fin_flx |= FI_BAD;
518 		return IPPROTO_NONE;
519 	}
520 
521 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
522 		if (ip6exthdr[i].ol_val == proto) {
523 			/*
524 			 * Most IPv6 extension headers are only allowed once.
525 			 */
526 			if ((multiple == 0) &&
527 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
528 				fin->fin_flx |= FI_BAD;
529 			else
530 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
531 			break;
532 		}
533 
534 	fin->fin_dp = (char *)fin->fin_dp + shift;
535 	fin->fin_dlen -= shift;
536 
537 	return hdr->ip6e_nxt;
538 }
539 
540 
541 /* ------------------------------------------------------------------------ */
542 /* Function:    frpr_hopopts6                                               */
543 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
544 /* Parameters:  fin(I) - pointer to packet information                      */
545 /*                                                                          */
546 /* IPv6 Only                                                                */
547 /* This is function checks pending hop by hop options extension header      */
548 /* ------------------------------------------------------------------------ */
549 static INLINE int frpr_hopopts6(fin)
550 fr_info_t *fin;
551 {
552 	return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
553 }
554 
555 
556 /* ------------------------------------------------------------------------ */
557 /* Function:    frpr_routing6                                               */
558 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
559 /* Parameters:  fin(I) - pointer to packet information                      */
560 /*                                                                          */
561 /* IPv6 Only                                                                */
562 /* This is function checks pending routing extension header                 */
563 /* ------------------------------------------------------------------------ */
564 static INLINE int frpr_routing6(fin)
565 fr_info_t *fin;
566 {
567 	struct ip6_ext *hdr;
568 	int shift;
569 
570 	hdr = fin->fin_dp;
571 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE)
572 		return IPPROTO_NONE;
573 
574 	shift = 8 + (hdr->ip6e_len << 3);
575 	/*
576 	 * Nasty extension header length?
577 	 */
578 	if ((hdr->ip6e_len << 3) & 15) {
579 		fin->fin_flx |= FI_BAD;
580 		/*
581 		 * Compensate for the changes made in frpr_ipv6exthdr()
582 		 */
583 		fin->fin_dlen += shift;
584 		fin->fin_dp = (char *)fin->fin_dp - shift;
585 		return IPPROTO_NONE;
586 	}
587 
588 	return hdr->ip6e_nxt;
589 }
590 
591 
592 /* ------------------------------------------------------------------------ */
593 /* Function:    frpr_fragment6                                              */
594 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
595 /* Parameters:  fin(I) - pointer to packet information                      */
596 /*                                                                          */
597 /* IPv6 Only                                                                */
598 /* Examine the IPv6 fragment header and extract fragment offset information.*/
599 /*                                                                          */
600 /* We don't know where the transport layer header (or whatever is next is), */
601 /* as it could be behind destination options (amongst others).  Because     */
602 /* there is no fragment cache, there is no knowledge about whether or not an*/
603 /* upper layer header has been seen (or where it ends) and thus we are not  */
604 /* able to continue processing beyond this header with any confidence.      */
605 /* ------------------------------------------------------------------------ */
606 static INLINE int frpr_fragment6(fin)
607 fr_info_t *fin;
608 {
609 	struct ip6_frag *frag;
610 	int dlen;
611 
612 	fin->fin_flx |= FI_FRAG;
613 
614 	dlen = fin->fin_dlen;
615 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE)
616 		return IPPROTO_NONE;
617 
618 	if (frpr_pullup(fin, sizeof(*frag)) == -1)
619 		return IPPROTO_NONE;
620 
621 	frpr_short6(fin, sizeof(*frag));
622 
623 	if ((fin->fin_flx & FI_SHORT) != 0)
624 		return IPPROTO_NONE;
625 
626 	frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag));
627 	/*
628 	 * Fragment but no fragmentation info set?  Bad packet...
629 	 */
630 	if (frag->ip6f_offlg == 0) {
631 		fin->fin_flx |= FI_BAD;
632 		return IPPROTO_NONE;
633 	}
634 
635 	fin->fin_id = frag->ip6f_ident;
636 	fin->fin_off = frag->ip6f_offlg & IP6F_OFF_MASK;
637 	fin->fin_off = ntohs(fin->fin_off);
638 	if (fin->fin_off != 0)
639 		fin->fin_flx |= FI_FRAGBODY;
640 
641 	fin->fin_dp = (char *)frag + sizeof(*frag);
642 	fin->fin_dlen = dlen - sizeof(*frag);
643 
644 	/* length of hdrs(after frag hdr) + data */
645 	fin->fin_flen = fin->fin_dlen;
646 
647 	/*
648 	 * If the frag is not the last one and the payload length
649 	 * is not multiple of 8, it must be dropped.
650 	 */
651 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) && (dlen % 8)) {
652 		fin->fin_flx |= FI_BAD;
653 		return IPPROTO_NONE;
654 	}
655 
656 	return frag->ip6f_nxt;
657 }
658 
659 
660 /* ------------------------------------------------------------------------ */
661 /* Function:    frpr_dstopts6                                               */
662 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
663 /* Parameters:  fin(I) - pointer to packet information                      */
664 /*              nextheader(I) - stores next header value                    */
665 /*                                                                          */
666 /* IPv6 Only                                                                */
667 /* This is function checks pending destination options extension header     */
668 /* ------------------------------------------------------------------------ */
669 static INLINE int frpr_dstopts6(fin)
670 fr_info_t *fin;
671 {
672 	return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS);
673 }
674 
675 
676 /* ------------------------------------------------------------------------ */
677 /* Function:    frpr_icmp6                                                  */
678 /* Returns:     void                                                        */
679 /* Parameters:  fin(I) - pointer to packet information                      */
680 /*                                                                          */
681 /* IPv6 Only                                                                */
682 /* This routine is mainly concerned with determining the minimum valid size */
683 /* for an ICMPv6 packet.                                                    */
684 /* ------------------------------------------------------------------------ */
685 static INLINE void frpr_icmp6(fin)
686 fr_info_t *fin;
687 {
688 	int minicmpsz = sizeof(struct icmp6_hdr);
689 	struct icmp6_hdr *icmp6;
690 
691 	if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1)
692 		return;
693 
694 	if (fin->fin_dlen > 1) {
695 		icmp6 = fin->fin_dp;
696 
697 		fin->fin_data[0] = *(u_short *)icmp6;
698 
699 		switch (icmp6->icmp6_type)
700 		{
701 		case ICMP6_ECHO_REPLY :
702 		case ICMP6_ECHO_REQUEST :
703 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
704 			break;
705 		case ICMP6_DST_UNREACH :
706 		case ICMP6_PACKET_TOO_BIG :
707 		case ICMP6_TIME_EXCEEDED :
708 		case ICMP6_PARAM_PROB :
709 			if ((fin->fin_m != NULL) &&
710 			    (M_LEN(fin->fin_m) < fin->fin_plen)) {
711 				if (fr_coalesce(fin) != 1)
712 					return;
713 			}
714 			fin->fin_flx |= FI_ICMPERR;
715 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
716 			break;
717 		default :
718 			break;
719 		}
720 	}
721 
722 	frpr_short6(fin, minicmpsz);
723 	fin->fin_flen -= fin->fin_dlen - minicmpsz;
724 }
725 
726 
727 /* ------------------------------------------------------------------------ */
728 /* Function:    frpr_udp6                                                   */
729 /* Returns:     void                                                        */
730 /* Parameters:  fin(I) - pointer to packet information                      */
731 /*                                                                          */
732 /* IPv6 Only                                                                */
733 /* Analyse the packet for IPv6/UDP properties.                              */
734 /* Is not expected to be called for fragmented packets.                     */
735 /* ------------------------------------------------------------------------ */
736 static INLINE void frpr_udp6(fin)
737 fr_info_t *fin;
738 {
739 
740 	fr_checkv6sum(fin);
741 
742 	frpr_short6(fin, sizeof(struct udphdr));
743 	if (frpr_pullup(fin, sizeof(struct udphdr)) == -1)
744 		return;
745 
746 	fin->fin_flen -= fin->fin_dlen - sizeof(struct udphdr);
747 
748 	frpr_udpcommon(fin);
749 }
750 
751 
752 /* ------------------------------------------------------------------------ */
753 /* Function:    frpr_tcp6                                                   */
754 /* Returns:     void                                                        */
755 /* Parameters:  fin(I) - pointer to packet information                      */
756 /*                                                                          */
757 /* IPv6 Only                                                                */
758 /* Analyse the packet for IPv6/TCP properties.                              */
759 /* Is not expected to be called for fragmented packets.                     */
760 /* ------------------------------------------------------------------------ */
761 static INLINE void frpr_tcp6(fin)
762 fr_info_t *fin;
763 {
764 
765 	fr_checkv6sum(fin);
766 
767 	frpr_short6(fin, sizeof(struct tcphdr));
768 	if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1)
769 		return;
770 
771 	fin->fin_flen -= fin->fin_dlen - sizeof(struct tcphdr);
772 
773 	frpr_tcpcommon(fin);
774 }
775 
776 
777 /* ------------------------------------------------------------------------ */
778 /* Function:    frpr_esp6                                                   */
779 /* Returns:     void                                                        */
780 /* Parameters:  fin(I) - pointer to packet information                      */
781 /*                                                                          */
782 /* IPv6 Only                                                                */
783 /* Analyse the packet for ESP properties.                                   */
784 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
785 /* even though the newer ESP packets must also have a sequence number that  */
786 /* is 32bits as well, it is not possible(?) to determine the version from a */
787 /* simple packet header.                                                    */
788 /* ------------------------------------------------------------------------ */
789 static INLINE void frpr_esp6(fin)
790 fr_info_t *fin;
791 {
792 	int i;
793 	frpr_short6(fin, sizeof(grehdr_t));
794 
795 	(void) frpr_pullup(fin, 8);
796 
797 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
798 		if (ip6exthdr[i].ol_val == IPPROTO_ESP) {
799 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
800 			break;
801 		}
802 }
803 
804 
805 /* ------------------------------------------------------------------------ */
806 /* Function:    frpr_ah6                                                    */
807 /* Returns:     void                                                        */
808 /* Parameters:  fin(I) - pointer to packet information                      */
809 /*                                                                          */
810 /* IPv6 Only                                                                */
811 /* Analyse the packet for AH properties.                                    */
812 /* The minimum length is taken to be the combination of all fields in the   */
813 /* header being present and no authentication data (null algorithm used.)   */
814 /* ------------------------------------------------------------------------ */
815 static INLINE int frpr_ah6(fin)
816 fr_info_t *fin;
817 {
818 	authhdr_t *ah;
819 	int i, shift;
820 
821 	frpr_short6(fin, 12);
822 
823 	if (frpr_pullup(fin, sizeof(*ah)) == -1)
824 		return IPPROTO_NONE;
825 
826 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
827 		if (ip6exthdr[i].ol_val == IPPROTO_AH) {
828 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
829 			break;
830 		}
831 
832 	ah = (authhdr_t *)fin->fin_dp;
833 
834 	shift = (ah->ah_plen + 2) * 4;
835 	fin->fin_dlen -= shift;
836 	fin->fin_dp = (char*)fin->fin_dp + shift;
837 
838 	return ah->ah_next;
839 }
840 
841 
842 /* ------------------------------------------------------------------------ */
843 /* Function:    frpr_gre6                                                   */
844 /* Returns:     void                                                        */
845 /* Parameters:  fin(I) - pointer to packet information                      */
846 /*                                                                          */
847 /* Analyse the packet for GRE properties.                                   */
848 /* ------------------------------------------------------------------------ */
849 static INLINE void frpr_gre6(fin)
850 fr_info_t *fin;
851 {
852 	grehdr_t *gre;
853 
854 	frpr_short6(fin, sizeof(grehdr_t));
855 
856 	if (frpr_pullup(fin, sizeof(grehdr_t)) == -1)
857 		return;
858 
859 	gre = fin->fin_dp;
860 	if (GRE_REV(gre->gr_flags) == 1)
861 		fin->fin_data[0] = gre->gr_call;
862 }
863 #endif	/* USE_INET6 */
864 
865 
866 /* ------------------------------------------------------------------------ */
867 /* Function:    frpr_pullup                                                 */
868 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
869 /* Parameters:  fin(I)  - pointer to packet information                     */
870 /*              plen(I) - length (excluding L3 header) to pullup            */
871 /*                                                                          */
872 /* Short inline function to cut down on code duplication to perform a call  */
873 /* to fr_pullup to ensure there is the required amount of data,             */
874 /* consecutively in the packet buffer.                                      */
875 /* ------------------------------------------------------------------------ */
876 static INLINE int frpr_pullup(fin, plen)
877 fr_info_t *fin;
878 int plen;
879 {
880 #if defined(_KERNEL)
881 	if (fin->fin_m != NULL) {
882 		if (fin->fin_dp != NULL)
883 			plen += (char *)fin->fin_dp -
884 				((char *)fin->fin_ip + fin->fin_hlen);
885 		plen += ((char *)fin->fin_ip - MTOD(fin->fin_m, char *)) +
886 		    fin->fin_hlen;
887 		if (M_LEN(fin->fin_m) < plen) {
888 			if (fr_pullup(fin->fin_m, fin, plen) == NULL)
889 				return -1;
890 		}
891 	}
892 #endif
893 	return 0;
894 }
895 
896 
897 /* ------------------------------------------------------------------------ */
898 /* Function:    frpr_short                                                  */
899 /* Returns:     void                                                        */
900 /* Parameters:  fin(I)  - pointer to packet information                     */
901 /*              xmin(I) - minimum header size                               */
902 /*                                                                          */
903 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
904 /* applying here is that the packet must not be fragmented within the layer */
905 /* 4 header.  That is, it must not be a fragment that has its offset set to */
906 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
907 /* entire layer 4 header must be present (min).                             */
908 /* ------------------------------------------------------------------------ */
909 static INLINE void frpr_short(fin, xmin)
910 fr_info_t *fin;
911 int xmin;
912 {
913 
914 	if (fin->fin_off == 0) {
915 		if (fin->fin_dlen < xmin)
916 			fin->fin_flx |= FI_SHORT;
917 	} else if (fin->fin_off < xmin) {
918 		fin->fin_flx |= FI_SHORT;
919 	}
920 }
921 
922 
923 /* ------------------------------------------------------------------------ */
924 /* Function:    frpr_icmp                                                   */
925 /* Returns:     void                                                        */
926 /* Parameters:  fin(I) - pointer to packet information                      */
927 /*                                                                          */
928 /* IPv4 Only                                                                */
929 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
930 /* except extrememly bad packets, both type and code will be present.       */
931 /* The expected minimum size of an ICMP packet is very much dependent on    */
932 /* the type of it.                                                          */
933 /*                                                                          */
934 /* XXX - other ICMP sanity checks?                                          */
935 /* ------------------------------------------------------------------------ */
936 static INLINE void frpr_icmp(fin)
937 fr_info_t *fin;
938 {
939 	int minicmpsz = sizeof(struct icmp);
940 	icmphdr_t *icmp;
941 	ip_t *oip;
942 	ipf_stack_t *ifs = fin->fin_ifs;
943 
944 	if (fin->fin_off != 0) {
945 		frpr_short(fin, ICMPERR_ICMPHLEN);
946 		return;
947 	}
948 
949 	if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1)
950 		return;
951 
952 	fr_checkv4sum(fin);
953 
954 	if (fin->fin_dlen > 1) {
955 		icmp = fin->fin_dp;
956 
957 		fin->fin_data[0] = *(u_short *)icmp;
958 
959 		switch (icmp->icmp_type)
960 		{
961 		case ICMP_ECHOREPLY :
962 		case ICMP_ECHO :
963 		/* Router discovery messaes - RFC 1256 */
964 		case ICMP_ROUTERADVERT :
965 		case ICMP_ROUTERSOLICIT :
966 			minicmpsz = ICMP_MINLEN;
967 			break;
968 		/*
969 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
970 		 * 3 * timestamp(3 * 4)
971 		 */
972 		case ICMP_TSTAMP :
973 		case ICMP_TSTAMPREPLY :
974 			minicmpsz = 20;
975 			break;
976 		/*
977 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
978 		 * mask(4)
979 		 */
980 		case ICMP_MASKREQ :
981 		case ICMP_MASKREPLY :
982 			minicmpsz = 12;
983 			break;
984 		/*
985 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
986 		 */
987 		case ICMP_UNREACH :
988 			if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
989 				if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu)
990 					fin->fin_flx |= FI_BAD;
991 			}
992 			/* FALLTHRU */
993 		case ICMP_SOURCEQUENCH :
994 		case ICMP_REDIRECT :
995 		case ICMP_TIMXCEED :
996 		case ICMP_PARAMPROB :
997 			fin->fin_flx |= FI_ICMPERR;
998 			if (fr_coalesce(fin) != 1)
999 				return;
1000 			/*
1001 			 * ICMP error packets should not be generated for IP
1002 			 * packets that are a fragment that isn't the first
1003 			 * fragment.
1004 			 */
1005 			oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1006 			if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1007 				fin->fin_flx |= FI_BAD;
1008 			break;
1009 		default :
1010 			break;
1011 		}
1012 
1013 		if (fin->fin_dlen >= 6)				/* ID field */
1014 			fin->fin_data[1] = icmp->icmp_id;
1015 	}
1016 
1017 	frpr_short(fin, minicmpsz);
1018 }
1019 
1020 
1021 /* ------------------------------------------------------------------------ */
1022 /* Function:    frpr_tcpcommon                                              */
1023 /* Returns:     void                                                        */
1024 /* Parameters:  fin(I) - pointer to packet information                      */
1025 /*                                                                          */
1026 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1027 /* and make some checks with how they interact with other fields.           */
1028 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1029 /* valid and mark the packet as bad if not.                                 */
1030 /* ------------------------------------------------------------------------ */
1031 static INLINE void frpr_tcpcommon(fin)
1032 fr_info_t *fin;
1033 {
1034 	int flags, tlen;
1035 	tcphdr_t *tcp;
1036 
1037 	fin->fin_flx |= FI_TCPUDP;
1038 	if (fin->fin_off != 0)
1039 		return;
1040 
1041 	if (frpr_pullup(fin, sizeof(*tcp)) == -1)
1042 		return;
1043 	tcp = fin->fin_dp;
1044 
1045 	if (fin->fin_dlen > 3) {
1046 		fin->fin_sport = ntohs(tcp->th_sport);
1047 		fin->fin_dport = ntohs(tcp->th_dport);
1048 	}
1049 
1050 	if ((fin->fin_flx & FI_SHORT) != 0)
1051 		return;
1052 
1053 	/*
1054 	 * Use of the TCP data offset *must* result in a value that is at
1055 	 * least the same size as the TCP header.
1056 	 */
1057 	tlen = TCP_OFF(tcp) << 2;
1058 	if (tlen < sizeof(tcphdr_t)) {
1059 		fin->fin_flx |= FI_BAD;
1060 		return;
1061 	}
1062 
1063 	flags = tcp->th_flags;
1064 	fin->fin_tcpf = tcp->th_flags;
1065 
1066 	/*
1067 	 * If the urgent flag is set, then the urgent pointer must
1068 	 * also be set and vice versa.  Good TCP packets do not have
1069 	 * just one of these set.
1070 	 */
1071 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1072 		fin->fin_flx |= FI_BAD;
1073 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1074 		/* Ignore this case, it shows up in "real" traffic with */
1075 		/* bogus values in the urgent pointer field. */
1076 		flags = flags; /* LINT */
1077 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1078 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1079 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1080 		fin->fin_flx |= FI_BAD;
1081 	} else if (!(flags & TH_ACK)) {
1082 		/*
1083 		 * If the ack bit isn't set, then either the SYN or
1084 		 * RST bit must be set.  If the SYN bit is set, then
1085 		 * we expect the ACK field to be 0.  If the ACK is
1086 		 * not set and if URG, PSH or FIN are set, consdier
1087 		 * that to indicate a bad TCP packet.
1088 		 */
1089 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1090 			/*
1091 			 * Cisco PIX sets the ACK field to a random value.
1092 			 * In light of this, do not set FI_BAD until a patch
1093 			 * is available from Cisco to ensure that
1094 			 * interoperability between existing systems is
1095 			 * achieved.
1096 			 */
1097 			/*fin->fin_flx |= FI_BAD*/;
1098 			flags = flags; /* LINT */
1099 		} else if (!(flags & (TH_RST|TH_SYN))) {
1100 			fin->fin_flx |= FI_BAD;
1101 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1102 			fin->fin_flx |= FI_BAD;
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * At this point, it's not exactly clear what is to be gained by
1108 	 * marking up which TCP options are and are not present.  The one we
1109 	 * are most interested in is the TCP window scale.  This is only in
1110 	 * a SYN packet [RFC1323] so we don't need this here...?
1111 	 * Now if we were to analyse the header for passive fingerprinting,
1112 	 * then that might add some weight to adding this...
1113 	 */
1114 	if (tlen == sizeof(tcphdr_t))
1115 		return;
1116 
1117 	if (frpr_pullup(fin, tlen) == -1)
1118 		return;
1119 
1120 #if 0
1121 	ip = fin->fin_ip;
1122 	s = (u_char *)(tcp + 1);
1123 	off = IP_HL(ip) << 2;
1124 # ifdef _KERNEL
1125 	if (fin->fin_mp != NULL) {
1126 		mb_t *m = *fin->fin_mp;
1127 
1128 		if (off + tlen > M_LEN(m))
1129 			return;
1130 	}
1131 # endif
1132 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1133 		opt = *s;
1134 		if (opt == '\0')
1135 			break;
1136 		else if (opt == TCPOPT_NOP)
1137 			ol = 1;
1138 		else {
1139 			if (tlen < 2)
1140 				break;
1141 			ol = (int)*(s + 1);
1142 			if (ol < 2 || ol > tlen)
1143 				break;
1144 		}
1145 
1146 		for (i = 9, mv = 4; mv >= 0; ) {
1147 			op = ipopts + i;
1148 			if (opt == (u_char)op->ol_val) {
1149 				optmsk |= op->ol_bit;
1150 				break;
1151 			}
1152 		}
1153 		tlen -= ol;
1154 		s += ol;
1155 	}
1156 #endif /* 0 */
1157 }
1158 
1159 
1160 
1161 /* ------------------------------------------------------------------------ */
1162 /* Function:    frpr_udpcommon                                              */
1163 /* Returns:     void                                                        */
1164 /* Parameters:  fin(I) - pointer to packet information                      */
1165 /*                                                                          */
1166 /* Extract the UDP source and destination ports, if present.  If compiled   */
1167 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1168 /* ------------------------------------------------------------------------ */
1169 static INLINE void frpr_udpcommon(fin)
1170 fr_info_t *fin;
1171 {
1172 	udphdr_t *udp;
1173 
1174 	fin->fin_flx |= FI_TCPUDP;
1175 
1176 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1177 		if (frpr_pullup(fin, sizeof(*udp)) == -1) {
1178 			fin->fin_flx |= FI_SHORT;
1179 			return;
1180 		}
1181 
1182 		udp = fin->fin_dp;
1183 
1184 		fin->fin_sport = ntohs(udp->uh_sport);
1185 		fin->fin_dport = ntohs(udp->uh_dport);
1186 	}
1187 }
1188 
1189 
1190 /* ------------------------------------------------------------------------ */
1191 /* Function:    frpr_tcp                                                    */
1192 /* Returns:     void                                                        */
1193 /* Parameters:  fin(I) - pointer to packet information                      */
1194 /*                                                                          */
1195 /* IPv4 Only                                                                */
1196 /* Analyse the packet for IPv4/TCP properties.                              */
1197 /* ------------------------------------------------------------------------ */
1198 static INLINE void frpr_tcp(fin)
1199 fr_info_t *fin;
1200 {
1201 
1202 	fr_checkv4sum(fin);
1203 
1204 	frpr_short(fin, sizeof(tcphdr_t));
1205 
1206 	frpr_tcpcommon(fin);
1207 }
1208 
1209 
1210 /* ------------------------------------------------------------------------ */
1211 /* Function:    frpr_udp                                                    */
1212 /* Returns:     void                                                        */
1213 /* Parameters:  fin(I) - pointer to packet information                      */
1214 /*                                                                          */
1215 /* IPv4 Only                                                                */
1216 /* Analyse the packet for IPv4/UDP properties.                              */
1217 /* ------------------------------------------------------------------------ */
1218 static INLINE void frpr_udp(fin)
1219 fr_info_t *fin;
1220 {
1221 
1222 	fr_checkv4sum(fin);
1223 
1224 	frpr_short(fin, sizeof(udphdr_t));
1225 
1226 	frpr_udpcommon(fin);
1227 }
1228 
1229 
1230 /* ------------------------------------------------------------------------ */
1231 /* Function:    frpr_esp                                                    */
1232 /* Returns:     void                                                        */
1233 /* Parameters:  fin(I) - pointer to packet information                      */
1234 /*                                                                          */
1235 /* Analyse the packet for ESP properties.                                   */
1236 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1237 /* even though the newer ESP packets must also have a sequence number that  */
1238 /* is 32bits as well, it is not possible(?) to determine the version from a */
1239 /* simple packet header.                                                    */
1240 /* ------------------------------------------------------------------------ */
1241 static INLINE void frpr_esp(fin)
1242 fr_info_t *fin;
1243 {
1244 	if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1))
1245 		return;
1246 
1247 	frpr_short(fin, 8);
1248 }
1249 
1250 
1251 /* ------------------------------------------------------------------------ */
1252 /* Function:    frpr_ah                                                     */
1253 /* Returns:     void                                                        */
1254 /* Parameters:  fin(I) - pointer to packet information                      */
1255 /*                                                                          */
1256 /* Analyse the packet for AH properties.                                    */
1257 /* The minimum length is taken to be the combination of all fields in the   */
1258 /* header being present and no authentication data (null algorithm used.)   */
1259 /* ------------------------------------------------------------------------ */
1260 static INLINE void frpr_ah(fin)
1261 fr_info_t *fin;
1262 {
1263 	authhdr_t *ah;
1264 	int len;
1265 
1266 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1))
1267 		return;
1268 
1269 	ah = (authhdr_t *)fin->fin_dp;
1270 
1271 	len = (ah->ah_plen + 2) << 2;
1272 	frpr_short(fin, len);
1273 }
1274 
1275 
1276 /* ------------------------------------------------------------------------ */
1277 /* Function:    frpr_gre                                                    */
1278 /* Returns:     void                                                        */
1279 /* Parameters:  fin(I) - pointer to packet information                      */
1280 /*                                                                          */
1281 /* Analyse the packet for GRE properties.                                   */
1282 /* ------------------------------------------------------------------------ */
1283 static INLINE void frpr_gre(fin)
1284 fr_info_t *fin;
1285 {
1286 	grehdr_t *gre;
1287 
1288 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1))
1289 		return;
1290 
1291 	frpr_short(fin, sizeof(grehdr_t));
1292 
1293 	if (fin->fin_off == 0) {
1294 		gre = fin->fin_dp;
1295 		if (GRE_REV(gre->gr_flags) == 1)
1296 			fin->fin_data[0] = gre->gr_call;
1297 	}
1298 }
1299 
1300 
1301 /* ------------------------------------------------------------------------ */
1302 /* Function:    frpr_ipv4hdr                                                */
1303 /* Returns:     void                                                        */
1304 /* Parameters:  fin(I) - pointer to packet information                      */
1305 /*                                                                          */
1306 /* IPv4 Only                                                                */
1307 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1308 /* Check all options present and flag their presence if any exist.          */
1309 /* ------------------------------------------------------------------------ */
1310 static INLINE void frpr_ipv4hdr(fin)
1311 fr_info_t *fin;
1312 {
1313 	u_short optmsk = 0, secmsk = 0, auth = 0;
1314 	int hlen, ol, mv, p, i;
1315 	const struct optlist *op;
1316 	u_char *s, opt;
1317 	u_short off;
1318 	fr_ip_t *fi;
1319 	ip_t *ip;
1320 
1321 	fi = &fin->fin_fi;
1322 	hlen = fin->fin_hlen;
1323 
1324 	ip = fin->fin_ip;
1325 	p = ip->ip_p;
1326 	fi->fi_p = p;
1327 	fi->fi_tos = ip->ip_tos;
1328 	fin->fin_id = ip->ip_id;
1329 	off = ip->ip_off;
1330 
1331 	/* Get both TTL and protocol */
1332 	fi->fi_p = ip->ip_p;
1333 	fi->fi_ttl = ip->ip_ttl;
1334 #if 0
1335 	(*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4));
1336 #endif
1337 
1338 	/* Zero out bits not used in IPv6 address */
1339 	fi->fi_src.i6[1] = 0;
1340 	fi->fi_src.i6[2] = 0;
1341 	fi->fi_src.i6[3] = 0;
1342 	fi->fi_dst.i6[1] = 0;
1343 	fi->fi_dst.i6[2] = 0;
1344 	fi->fi_dst.i6[3] = 0;
1345 
1346 	fi->fi_saddr = ip->ip_src.s_addr;
1347 	fi->fi_daddr = ip->ip_dst.s_addr;
1348 
1349 	/*
1350 	 * set packet attribute flags based on the offset and
1351 	 * calculate the byte offset that it represents.
1352 	 */
1353 	off &= IP_MF|IP_OFFMASK;
1354 	if (off != 0) {
1355 		fi->fi_flx |= FI_FRAG;
1356 		off &= IP_OFFMASK;
1357 		if (off != 0) {
1358 			fin->fin_flx |= FI_FRAGBODY;
1359 			off <<= 3;
1360 			if ((off + fin->fin_dlen > 65535) ||
1361 			    (fin->fin_dlen == 0) ||
1362 			    ((ip->ip_off & IP_MF) && (fin->fin_dlen & 7))) {
1363 				/*
1364 				 * The length of the packet, starting at its
1365 				 * offset cannot exceed 65535 (0xffff) as the
1366 				 * length of an IP packet is only 16 bits.
1367 				 *
1368 				 * Any fragment that isn't the last fragment
1369 				 * must have a length greater than 0 and it
1370 				 * must be an even multiple of 8.
1371 				 */
1372 				fi->fi_flx |= FI_BAD;
1373 			}
1374 		}
1375 	}
1376 	fin->fin_off = off;
1377 
1378 	/*
1379 	 * Call per-protocol setup and checking
1380 	 */
1381 	switch (p)
1382 	{
1383 	case IPPROTO_UDP :
1384 		frpr_udp(fin);
1385 		break;
1386 	case IPPROTO_TCP :
1387 		frpr_tcp(fin);
1388 		break;
1389 	case IPPROTO_ICMP :
1390 		frpr_icmp(fin);
1391 		break;
1392 	case IPPROTO_AH :
1393 		frpr_ah(fin);
1394 		break;
1395 	case IPPROTO_ESP :
1396 		frpr_esp(fin);
1397 		break;
1398 	case IPPROTO_GRE :
1399 		frpr_gre(fin);
1400 		break;
1401 	}
1402 
1403 	ip = fin->fin_ip;
1404 	if (ip == NULL)
1405 		return;
1406 
1407 	/*
1408 	 * If it is a standard IP header (no options), set the flag fields
1409 	 * which relate to options to 0.
1410 	 */
1411 	if (hlen == sizeof(*ip)) {
1412 		fi->fi_optmsk = 0;
1413 		fi->fi_secmsk = 0;
1414 		fi->fi_auth = 0;
1415 		return;
1416 	}
1417 
1418 	/*
1419 	 * So the IP header has some IP options attached.  Walk the entire
1420 	 * list of options present with this packet and set flags to indicate
1421 	 * which ones are here and which ones are not.  For the somewhat out
1422 	 * of date and obscure security classification options, set a flag to
1423 	 * represent which classification is present.
1424 	 */
1425 	fi->fi_flx |= FI_OPTIONS;
1426 
1427 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1428 		opt = *s;
1429 		if (opt == '\0')
1430 			break;
1431 		else if (opt == IPOPT_NOP)
1432 			ol = 1;
1433 		else {
1434 			if (hlen < 2)
1435 				break;
1436 			ol = (int)*(s + 1);
1437 			if (ol < 2 || ol > hlen)
1438 				break;
1439 		}
1440 		for (i = 9, mv = 4; mv >= 0; ) {
1441 			op = ipopts + i;
1442 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1443 				optmsk |= op->ol_bit;
1444 				if (opt == IPOPT_SECURITY) {
1445 					const struct optlist *sp;
1446 					u_char	sec;
1447 					int j, m;
1448 
1449 					sec = *(s + 2);	/* classification */
1450 					for (j = 3, m = 2; m >= 0; ) {
1451 						sp = secopt + j;
1452 						if (sec == sp->ol_val) {
1453 							secmsk |= sp->ol_bit;
1454 							auth = *(s + 3);
1455 							auth *= 256;
1456 							auth += *(s + 4);
1457 							break;
1458 						}
1459 						if (sec < sp->ol_val)
1460 							j -= m;
1461 						else
1462 							j += m;
1463 						m--;
1464 					}
1465 				}
1466 				break;
1467 			}
1468 			if (opt < op->ol_val)
1469 				i -= mv;
1470 			else
1471 				i += mv;
1472 			mv--;
1473 		}
1474 		hlen -= ol;
1475 		s += ol;
1476 	}
1477 
1478 	/*
1479 	 *
1480 	 */
1481 	if (auth && !(auth & 0x0100))
1482 		auth &= 0xff00;
1483 	fi->fi_optmsk = optmsk;
1484 	fi->fi_secmsk = secmsk;
1485 	fi->fi_auth = auth;
1486 }
1487 
1488 
1489 /* ------------------------------------------------------------------------ */
1490 /* Function:    fr_makefrip                                                 */
1491 /* Returns:     int - 1 == hdr checking error, 0 == OK                      */
1492 /* Parameters:  hlen(I) - length of IP packet header                        */
1493 /*              ip(I)   - pointer to the IP header                          */
1494 /*              fin(IO) - pointer to packet information                     */
1495 /*                                                                          */
1496 /* Compact the IP header into a structure which contains just the info.     */
1497 /* which is useful for comparing IP headers with and store this information */
1498 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
1499 /* this function will be called with either an IPv4 or IPv6 packet.         */
1500 /* ------------------------------------------------------------------------ */
1501 int	fr_makefrip(hlen, ip, fin)
1502 int hlen;
1503 ip_t *ip;
1504 fr_info_t *fin;
1505 {
1506 	int v;
1507 
1508 	fin->fin_nat = NULL;
1509 	fin->fin_state = NULL;
1510 	fin->fin_depth = 0;
1511 	fin->fin_hlen = (u_short)hlen;
1512 	fin->fin_ip = ip;
1513 	fin->fin_rule = 0xffffffff;
1514 	fin->fin_group[0] = -1;
1515 	fin->fin_group[1] = '\0';
1516 	fin->fin_dlen = fin->fin_plen - hlen;
1517 	fin->fin_dp = (char *)ip + hlen;
1518 
1519 	v = fin->fin_v;
1520 	if (v == 4)
1521 		frpr_ipv4hdr(fin);
1522 #ifdef	USE_INET6
1523 	else if (v == 6) {
1524 		if (frpr_ipv6hdr(fin) == -1)
1525 			return -1;
1526 	}
1527 #endif
1528 	if (fin->fin_ip == NULL)
1529 		return -1;
1530 	return 0;
1531 }
1532 
1533 
1534 /* ------------------------------------------------------------------------ */
1535 /* Function:    fr_portcheck                                                */
1536 /* Returns:     int - 1 == port matched, 0 == port match failed             */
1537 /* Parameters:  frp(I) - pointer to port check `expression'                 */
1538 /*              pop(I) - pointer to port number to evaluate                 */
1539 /*                                                                          */
1540 /* Perform a comparison of a port number against some other(s), using a     */
1541 /* structure with compare information stored in it.                         */
1542 /* ------------------------------------------------------------------------ */
1543 static INLINE int fr_portcheck(frp, pop)
1544 frpcmp_t *frp;
1545 u_short *pop;
1546 {
1547 	u_short tup, po;
1548 	int err = 1;
1549 
1550 	tup = *pop;
1551 	po = frp->frp_port;
1552 
1553 	/*
1554 	 * Do opposite test to that required and continue if that succeeds.
1555 	 */
1556 	switch (frp->frp_cmp)
1557 	{
1558 	case FR_EQUAL :
1559 		if (tup != po) /* EQUAL */
1560 			err = 0;
1561 		break;
1562 	case FR_NEQUAL :
1563 		if (tup == po) /* NOTEQUAL */
1564 			err = 0;
1565 		break;
1566 	case FR_LESST :
1567 		if (tup >= po) /* LESSTHAN */
1568 			err = 0;
1569 		break;
1570 	case FR_GREATERT :
1571 		if (tup <= po) /* GREATERTHAN */
1572 			err = 0;
1573 		break;
1574 	case FR_LESSTE :
1575 		if (tup > po) /* LT or EQ */
1576 			err = 0;
1577 		break;
1578 	case FR_GREATERTE :
1579 		if (tup < po) /* GT or EQ */
1580 			err = 0;
1581 		break;
1582 	case FR_OUTRANGE :
1583 		if (tup >= po && tup <= frp->frp_top) /* Out of range */
1584 			err = 0;
1585 		break;
1586 	case FR_INRANGE :
1587 		if (tup <= po || tup >= frp->frp_top) /* In range */
1588 			err = 0;
1589 		break;
1590 	case FR_INCRANGE :
1591 		if (tup < po || tup > frp->frp_top) /* Inclusive range */
1592 			err = 0;
1593 		break;
1594 	default :
1595 		break;
1596 	}
1597 	return err;
1598 }
1599 
1600 
1601 /* ------------------------------------------------------------------------ */
1602 /* Function:    fr_tcpudpchk                                                */
1603 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
1604 /* Parameters:  fin(I) - pointer to packet information                      */
1605 /*              ft(I)  - pointer to structure with comparison data          */
1606 /*                                                                          */
1607 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
1608 /* structure containing information that we want to match against.          */
1609 /* ------------------------------------------------------------------------ */
1610 int fr_tcpudpchk(fin, ft)
1611 fr_info_t *fin;
1612 frtuc_t *ft;
1613 {
1614 	int err = 1;
1615 
1616 	/*
1617 	 * Both ports should *always* be in the first fragment.
1618 	 * So far, I cannot find any cases where they can not be.
1619 	 *
1620 	 * compare destination ports
1621 	 */
1622 	if (ft->ftu_dcmp)
1623 		err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport);
1624 
1625 	/*
1626 	 * compare source ports
1627 	 */
1628 	if (err && ft->ftu_scmp)
1629 		err = fr_portcheck(&ft->ftu_src, &fin->fin_sport);
1630 
1631 	/*
1632 	 * If we don't have all the TCP/UDP header, then how can we
1633 	 * expect to do any sort of match on it ?  If we were looking for
1634 	 * TCP flags, then NO match.  If not, then match (which should
1635 	 * satisfy the "short" class too).
1636 	 */
1637 	if (err && (fin->fin_p == IPPROTO_TCP)) {
1638 		if (fin->fin_flx & FI_SHORT)
1639 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
1640 		/*
1641 		 * Match the flags ?  If not, abort this match.
1642 		 */
1643 		if (ft->ftu_tcpfm &&
1644 		    ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) {
1645 			FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf,
1646 				 ft->ftu_tcpfm, ft->ftu_tcpf));
1647 			err = 0;
1648 		}
1649 	}
1650 	return err;
1651 }
1652 
1653 
1654 /* ------------------------------------------------------------------------ */
1655 /* Function:    fr_ipfcheck                                                 */
1656 /* Returns:     int - 0 == match, 1 == no match                             */
1657 /* Parameters:  fin(I)     - pointer to packet information                  */
1658 /*              fr(I)      - pointer to filter rule                         */
1659 /*              portcmp(I) - flag indicating whether to attempt matching on */
1660 /*                           TCP/UDP port data.                             */
1661 /*                                                                          */
1662 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
1663 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
1664 /* this function.                                                           */
1665 /* ------------------------------------------------------------------------ */
1666 static INLINE int fr_ipfcheck(fin, fr, portcmp)
1667 fr_info_t *fin;
1668 frentry_t *fr;
1669 int portcmp;
1670 {
1671 	u_32_t	*ld, *lm, *lip;
1672 	fripf_t *fri;
1673 	fr_ip_t *fi;
1674 	int i;
1675 	ipf_stack_t *ifs = fin->fin_ifs;
1676 
1677 	fi = &fin->fin_fi;
1678 	fri = fr->fr_ipf;
1679 	lip = (u_32_t *)fi;
1680 	lm = (u_32_t *)&fri->fri_mip;
1681 	ld = (u_32_t *)&fri->fri_ip;
1682 
1683 	/*
1684 	 * first 32 bits to check coversion:
1685 	 * IP version, TOS, TTL, protocol
1686 	 */
1687 	i = ((*lip & *lm) != *ld);
1688 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
1689 		   *lip, *lm, *ld));
1690 	if (i)
1691 		return 1;
1692 
1693 	/*
1694 	 * Next 32 bits is a constructed bitmask indicating which IP options
1695 	 * are present (if any) in this packet.
1696 	 */
1697 	lip++, lm++, ld++;
1698 	i |= ((*lip & *lm) != *ld);
1699 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
1700 		   *lip, *lm, *ld));
1701 	if (i)
1702 		return 1;
1703 
1704 	lip++, lm++, ld++;
1705 	/*
1706 	 * Unrolled loops (4 each, for 32 bits) for address checks.
1707 	 */
1708 	/*
1709 	 * Check the source address.
1710 	 */
1711 #ifdef	IPFILTER_LOOKUP
1712 	if (fr->fr_satype == FRI_LOOKUP) {
1713 		i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs);
1714 		if (i == -1)
1715 			return 1;
1716 		lip += 3;
1717 		lm += 3;
1718 		ld += 3;
1719 	} else {
1720 #endif
1721 		i = ((*lip & *lm) != *ld);
1722 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
1723 			   *lip, *lm, *ld));
1724 		if (fi->fi_v == 6) {
1725 			lip++, lm++, ld++;
1726 			i |= ((*lip & *lm) != *ld);
1727 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
1728 				   *lip, *lm, *ld));
1729 			lip++, lm++, ld++;
1730 			i |= ((*lip & *lm) != *ld);
1731 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
1732 				   *lip, *lm, *ld));
1733 			lip++, lm++, ld++;
1734 			i |= ((*lip & *lm) != *ld);
1735 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
1736 				   *lip, *lm, *ld));
1737 		} else {
1738 			lip += 3;
1739 			lm += 3;
1740 			ld += 3;
1741 		}
1742 #ifdef	IPFILTER_LOOKUP
1743 	}
1744 #endif
1745 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
1746 	if (i)
1747 		return 1;
1748 
1749 	/*
1750 	 * Check the destination address.
1751 	 */
1752 	lip++, lm++, ld++;
1753 #ifdef	IPFILTER_LOOKUP
1754 	if (fr->fr_datype == FRI_LOOKUP) {
1755 		i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs);
1756 		if (i == -1)
1757 			return 1;
1758 		lip += 3;
1759 		lm += 3;
1760 		ld += 3;
1761 	} else {
1762 #endif
1763 		i = ((*lip & *lm) != *ld);
1764 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
1765 			   *lip, *lm, *ld));
1766 		if (fi->fi_v == 6) {
1767 			lip++, lm++, ld++;
1768 			i |= ((*lip & *lm) != *ld);
1769 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
1770 				   *lip, *lm, *ld));
1771 			lip++, lm++, ld++;
1772 			i |= ((*lip & *lm) != *ld);
1773 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
1774 				   *lip, *lm, *ld));
1775 			lip++, lm++, ld++;
1776 			i |= ((*lip & *lm) != *ld);
1777 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
1778 				   *lip, *lm, *ld));
1779 		} else {
1780 			lip += 3;
1781 			lm += 3;
1782 			ld += 3;
1783 		}
1784 #ifdef	IPFILTER_LOOKUP
1785 	}
1786 #endif
1787 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
1788 	if (i)
1789 		return 1;
1790 	/*
1791 	 * IP addresses matched.  The next 32bits contains:
1792 	 * mast of old IP header security & authentication bits.
1793 	 */
1794 	lip++, lm++, ld++;
1795 	i |= ((*lip & *lm) != *ld);
1796 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n",
1797 		   *lip, *lm, *ld));
1798 
1799 	/*
1800 	 * Next we have 32 bits of packet flags.
1801 	 */
1802 	lip++, lm++, ld++;
1803 	i |= ((*lip & *lm) != *ld);
1804 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n",
1805 		   *lip, *lm, *ld));
1806 
1807 	if (i == 0) {
1808 		/*
1809 		 * If a fragment, then only the first has what we're
1810 		 * looking for here...
1811 		 */
1812 		if (portcmp) {
1813 			if (!fr_tcpudpchk(fin, &fr->fr_tuc))
1814 				i = 1;
1815 		} else {
1816 			if (fr->fr_dcmp || fr->fr_scmp ||
1817 			    fr->fr_tcpf || fr->fr_tcpfm)
1818 				i = 1;
1819 			if (fr->fr_icmpm || fr->fr_icmp) {
1820 				if (((fi->fi_p != IPPROTO_ICMP) &&
1821 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
1822 				    fin->fin_off || (fin->fin_dlen < 2))
1823 					i = 1;
1824 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
1825 					 fr->fr_icmp) {
1826 					FR_DEBUG(("i. %#x & %#x != %#x\n",
1827 						 fin->fin_data[0],
1828 						 fr->fr_icmpm, fr->fr_icmp));
1829 					i = 1;
1830 				}
1831 			}
1832 		}
1833 	}
1834 	return i;
1835 }
1836 
1837 
1838 /* ------------------------------------------------------------------------ */
1839 /* Function:    fr_scanlist                                                 */
1840 /* Returns:     int - result flags of scanning filter list                  */
1841 /* Parameters:  fin(I) - pointer to packet information                      */
1842 /*              pass(I) - default result to return for filtering            */
1843 /*                                                                          */
1844 /* Check the input/output list of rules for a match to the current packet.  */
1845 /* If a match is found, the value of fr_flags from the rule becomes the     */
1846 /* return value and fin->fin_fr points to the matched rule.                 */
1847 /*                                                                          */
1848 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
1849 /* When unwinding, it should finish up with fin_depth as 0.                 */
1850 /*                                                                          */
1851 /* Could be per interface, but this gets real nasty when you don't have,    */
1852 /* or can't easily change, the kernel source code to .                      */
1853 /* ------------------------------------------------------------------------ */
1854 int fr_scanlist(fin, pass)
1855 fr_info_t *fin;
1856 u_32_t pass;
1857 {
1858 	int rulen, portcmp, off, logged, skip;
1859 	struct frentry *fr, *fnext;
1860 	u_32_t passt, passo;
1861 	ipf_stack_t *ifs = fin->fin_ifs;
1862 
1863 	/*
1864 	 * Do not allow nesting deeper than 16 levels.
1865 	 */
1866 	if (fin->fin_depth >= 16)
1867 		return pass;
1868 
1869 	fr = fin->fin_fr;
1870 
1871 	/*
1872 	 * If there are no rules in this list, return now.
1873 	 */
1874 	if (fr == NULL)
1875 		return pass;
1876 
1877 	skip = 0;
1878 	logged = 0;
1879 	portcmp = 0;
1880 	fin->fin_depth++;
1881 	fin->fin_fr = NULL;
1882 	off = fin->fin_off;
1883 
1884 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
1885 		portcmp = 1;
1886 
1887 	for (rulen = 0; fr; fr = fnext, rulen++) {
1888 		fnext = fr->fr_next;
1889 		if (skip != 0) {
1890 			FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags));
1891 			skip--;
1892 			continue;
1893 		}
1894 
1895 		/*
1896 		 * In all checks below, a null (zero) value in the
1897 		 * filter struture is taken to mean a wildcard.
1898 		 *
1899 		 * check that we are working for the right interface
1900 		 */
1901 #ifdef	_KERNEL
1902 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1903 			continue;
1904 #else
1905 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
1906 			printf("\n");
1907 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
1908 				  FR_ISPASS(pass) ? 'p' :
1909 				  FR_ISACCOUNT(pass) ? 'A' :
1910 				  FR_ISAUTH(pass) ? 'a' :
1911 				  (pass & FR_NOMATCH) ? 'n' :'b'));
1912 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1913 			continue;
1914 		FR_VERBOSE((":i"));
1915 #endif
1916 
1917 		switch (fr->fr_type)
1918 		{
1919 		case FR_T_IPF :
1920 		case FR_T_IPF|FR_T_BUILTIN :
1921 			if (fr_ipfcheck(fin, fr, portcmp))
1922 				continue;
1923 			break;
1924 #if defined(IPFILTER_BPF)
1925 		case FR_T_BPFOPC :
1926 		case FR_T_BPFOPC|FR_T_BUILTIN :
1927 		    {
1928 			u_char *mc;
1929 
1930 			if (*fin->fin_mp == NULL)
1931 				continue;
1932 			if (fin->fin_v != fr->fr_v)
1933 				continue;
1934 			mc = (u_char *)fin->fin_m;
1935 			if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0))
1936 				continue;
1937 			break;
1938 		    }
1939 #endif
1940 		case FR_T_CALLFUNC|FR_T_BUILTIN :
1941 		    {
1942 			frentry_t *f;
1943 
1944 			f = (*fr->fr_func)(fin, &pass);
1945 			if (f != NULL)
1946 				fr = f;
1947 			else
1948 				continue;
1949 			break;
1950 		    }
1951 		default :
1952 			break;
1953 		}
1954 
1955 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
1956 			if (fin->fin_nattag == NULL)
1957 				continue;
1958 			if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
1959 				continue;
1960 		}
1961 		FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen));
1962 
1963 		passt = fr->fr_flags;
1964 
1965 		/*
1966 		 * Allowing a rule with the "keep state" flag set to match
1967 		 * packets that have been tagged "out of window" by the TCP
1968 		 * state tracking is foolish as the attempt to add a new
1969 		 * state entry to the table will fail.
1970 		 */
1971 		if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW))
1972 			continue;
1973 
1974 		/*
1975 		 * If the rule is a "call now" rule, then call the function
1976 		 * in the rule, if it exists and use the results from that.
1977 		 * If the function pointer is bad, just make like we ignore
1978 		 * it, except for increasing the hit counter.
1979 		 */
1980 		if ((passt & FR_CALLNOW) != 0) {
1981 			IPF_BUMP(fr->fr_hits);
1982 			if ((fr->fr_func != NULL) &&
1983 			    (fr->fr_func != (ipfunc_t)-1)) {
1984 				frentry_t *frs;
1985 
1986 				frs = fin->fin_fr;
1987 				fin->fin_fr = fr;
1988 				fr = (*fr->fr_func)(fin, &passt);
1989 				if (fr == NULL) {
1990 					fin->fin_fr = frs;
1991 					continue;
1992 				}
1993 				passt = fr->fr_flags;
1994 				fin->fin_fr = fr;
1995 			}
1996 		} else {
1997 			fin->fin_fr = fr;
1998 		}
1999 
2000 #ifdef  IPFILTER_LOG
2001 		/*
2002 		 * Just log this packet...
2003 		 */
2004 		if ((passt & FR_LOGMASK) == FR_LOG) {
2005 			if (ipflog(fin, passt) == -1) {
2006 				if (passt & FR_LOGORBLOCK) {
2007 					passt &= ~FR_CMDMASK;
2008 					passt |= FR_BLOCK|FR_QUICK;
2009 				}
2010 				IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip);
2011 			}
2012 			IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl);
2013 			logged = 1;
2014 		}
2015 #endif /* IPFILTER_LOG */
2016 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2017 		passo = pass;
2018 		if (FR_ISSKIP(passt))
2019 			skip = fr->fr_arg;
2020 		else if ((passt & FR_LOGMASK) != FR_LOG)
2021 			pass = passt;
2022 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2023 			fin->fin_icode = fr->fr_icode;
2024 		FR_DEBUG(("pass %#x\n", pass));
2025 		IPF_BUMP(fr->fr_hits);
2026 		fin->fin_rule = rulen;
2027 		(void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN);
2028 		if (fr->fr_grp != NULL) {
2029 			fin->fin_fr = *fr->fr_grp;
2030 			pass = fr_scanlist(fin, pass);
2031 			if (fin->fin_fr == NULL) {
2032 				fin->fin_rule = rulen;
2033 				(void) strncpy(fin->fin_group, fr->fr_group,
2034 					       FR_GROUPLEN);
2035 				fin->fin_fr = fr;
2036 			}
2037 			if (fin->fin_flx & FI_DONTCACHE)
2038 				logged = 1;
2039 		}
2040 
2041 		if (pass & FR_QUICK) {
2042 			/*
2043 			 * Finally, if we've asked to track state for this
2044 			 * packet, set it up.  Add state for "quick" rules
2045 			 * here so that if the action fails we can consider
2046 			 * the rule to "not match" and keep on processing
2047 			 * filter rules.
2048 			 */
2049 			if ((pass & FR_KEEPSTATE) &&
2050 			    !(fin->fin_flx & FI_STATE)) {
2051 				int out = fin->fin_out;
2052 
2053 				if (fr_addstate(fin, NULL, 0) != NULL) {
2054 					IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2055 				} else {
2056 					IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2057 					pass = passo;
2058 					continue;
2059 				}
2060 			}
2061 			break;
2062 		}
2063 	}
2064 	if (logged)
2065 		fin->fin_flx |= FI_DONTCACHE;
2066 	fin->fin_depth--;
2067 	return pass;
2068 }
2069 
2070 
2071 /* ------------------------------------------------------------------------ */
2072 /* Function:    fr_acctpkt                                                  */
2073 /* Returns:     frentry_t* - always returns NULL                            */
2074 /* Parameters:  fin(I) - pointer to packet information                      */
2075 /*              passp(IO) - pointer to current/new filter decision (unused) */
2076 /*                                                                          */
2077 /* Checks a packet against accounting rules, if there are any for the given */
2078 /* IP protocol version.                                                     */
2079 /*                                                                          */
2080 /* N.B.: this function returns NULL to match the prototype used by other    */
2081 /* functions called from the IPFilter "mainline" in fr_check().             */
2082 /* ------------------------------------------------------------------------ */
2083 frentry_t *fr_acctpkt(fin, passp)
2084 fr_info_t *fin;
2085 u_32_t *passp;
2086 {
2087 	char group[FR_GROUPLEN];
2088 	frentry_t *fr, *frsave;
2089 	u_32_t pass, rulen;
2090 	ipf_stack_t *ifs = fin->fin_ifs;
2091 
2092 	passp = passp;
2093 #ifdef	USE_INET6
2094 	if (fin->fin_v == 6)
2095 		fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active];
2096 	else
2097 #endif
2098 		fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active];
2099 
2100 	if (fr != NULL) {
2101 		frsave = fin->fin_fr;
2102 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2103 		rulen = fin->fin_rule;
2104 		fin->fin_fr = fr;
2105 		pass = fr_scanlist(fin, FR_NOMATCH);
2106 		if (FR_ISACCOUNT(pass)) {
2107 			IPF_BUMP(ifs->ifs_frstats[0].fr_acct);
2108 		}
2109 		fin->fin_fr = frsave;
2110 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2111 		fin->fin_rule = rulen;
2112 	}
2113 	return NULL;
2114 }
2115 
2116 
2117 /* ------------------------------------------------------------------------ */
2118 /* Function:    fr_firewall                                                 */
2119 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2120 /*                           were found, returns NULL.                      */
2121 /* Parameters:  fin(I) - pointer to packet information                      */
2122 /*              passp(IO) - pointer to current/new filter decision (unused) */
2123 /*                                                                          */
2124 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2125 /* there are any matches.  The first check is to see if a match can be seen */
2126 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2127 /* matching rule is found, take any appropriate actions as defined by the   */
2128 /* rule - except logging.                                                   */
2129 /* ------------------------------------------------------------------------ */
2130 static frentry_t *fr_firewall(fin, passp)
2131 fr_info_t *fin;
2132 u_32_t *passp;
2133 {
2134 	frentry_t *fr;
2135 	u_32_t pass;
2136 	int out;
2137 	ipf_stack_t *ifs = fin->fin_ifs;
2138 
2139 	out = fin->fin_out;
2140 	pass = *passp;
2141 
2142 #ifdef	USE_INET6
2143 	if (fin->fin_v == 6)
2144 		fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active];
2145 	else
2146 #endif
2147 		fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active];
2148 	if (fin->fin_fr != NULL)
2149 		pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2150 
2151 	if ((pass & FR_NOMATCH)) {
2152 		IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2153 	}
2154 	fr = fin->fin_fr;
2155 
2156 	/*
2157 	 * Apply packets per second rate-limiting to a rule as required.
2158 	 */
2159 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2160 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2161 		pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST);
2162 		pass |= FR_BLOCK;
2163 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit);
2164 	}
2165 
2166 	/*
2167 	 * If we fail to add a packet to the authorization queue, then we
2168 	 * drop the packet later.  However, if it was added then pretend
2169 	 * we've dropped it already.
2170 	 */
2171 	if (FR_ISAUTH(pass)) {
2172 		if (fr_newauth(fin->fin_m, fin) != 0) {
2173 #ifdef	_KERNEL
2174 			fin->fin_m = *fin->fin_mp = NULL;
2175 #else
2176 			;
2177 #endif
2178 			fin->fin_error = 0;
2179 		} else
2180 			fin->fin_error = ENOSPC;
2181 	}
2182 
2183 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2184 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2185 		(void) (*fr->fr_func)(fin, &pass);
2186 
2187 	/*
2188 	 * If a rule is a pre-auth rule, check again in the list of rules
2189 	 * loaded for authenticated use.  It does not particulary matter
2190 	 * if this search fails because a "preauth" result, from a rule,
2191 	 * is treated as "not a pass", hence the packet is blocked.
2192 	 */
2193 	if (FR_ISPREAUTH(pass)) {
2194 		if ((fin->fin_fr = ifs->ifs_ipauth) != NULL)
2195 			pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2196 	}
2197 
2198 	/*
2199 	 * If the rule has "keep frag" and the packet is actually a fragment,
2200 	 * then create a fragment state entry.
2201 	 */
2202 	if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2203 		if (fin->fin_flx & FI_FRAG) {
2204 			if (fr_newfrag(fin, pass) == -1) {
2205 				IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr);
2206 			} else {
2207 				IPF_BUMP(ifs->ifs_frstats[out].fr_nfr);
2208 			}
2209 		} else {
2210 			IPF_BUMP(ifs->ifs_frstats[out].fr_cfr);
2211 		}
2212 	}
2213 
2214 	/*
2215 	 * Finally, if we've asked to track state for this packet, set it up.
2216 	 */
2217 	if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) {
2218 		if (fr_addstate(fin, NULL, 0) != NULL) {
2219 			IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2220 		} else {
2221 			IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2222 			if (FR_ISPASS(pass)) {
2223 				pass &= ~FR_CMDMASK;
2224 				pass |= FR_BLOCK;
2225 			}
2226 		}
2227 	}
2228 
2229 	fr = fin->fin_fr;
2230 
2231 	if (passp != NULL)
2232 		*passp = pass;
2233 
2234 	return fr;
2235 }
2236 
2237 
2238 /* ------------------------------------------------------------------------ */
2239 /* Function:    fr_check                                                    */
2240 /* Returns:     int -  0 == packet allowed through,                         */
2241 /*              User space:                                                 */
2242 /*                    -1 == packet blocked                                  */
2243 /*                     1 == packet not matched                              */
2244 /*                    -2 == requires authentication                         */
2245 /*              Kernel:                                                     */
2246 /*                   > 0 == filter error # for packet                       */
2247 /* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2248 /*             hlen(I) - length of header                                   */
2249 /*             ifp(I)  - pointer to interface this packet is on             */
2250 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2251 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2252 /*                       IP packet.                                         */
2253 /* Solaris & HP-UX ONLY :                                                   */
2254 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2255 /*                       interface & direction.                             */
2256 /*                                                                          */
2257 /* fr_check() is the master function for all IPFilter packet processing.    */
2258 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2259 /* authorisation (or pre-authorisation), presence of related state info.,   */
2260 /* generating log entries, IP packet accounting, routing of packets as      */
2261 /* directed by firewall rules and of course whether or not to allow the     */
2262 /* packet to be further processed by the kernel.                            */
2263 /*                                                                          */
2264 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2265 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2266 /* by "mp" changed to a new buffer.                                         */
2267 /* ------------------------------------------------------------------------ */
2268 int fr_check(ip, hlen, ifp, out
2269 #if defined(_KERNEL) && defined(MENTAT)
2270 , qif, mp, ifs)
2271 void *qif;
2272 #else
2273 , mp, ifs)
2274 #endif
2275 mb_t **mp;
2276 ip_t *ip;
2277 int hlen;
2278 void *ifp;
2279 int out;
2280 ipf_stack_t *ifs;
2281 {
2282 	/*
2283 	 * The above really sucks, but short of writing a diff
2284 	 */
2285 	fr_info_t frinfo;
2286 	fr_info_t *fin = &frinfo;
2287 	u_32_t pass;
2288 	frentry_t *fr = NULL;
2289 	int v = IP_V(ip);
2290 	mb_t *mc = NULL;
2291 	mb_t *m;
2292 #ifdef USE_INET6
2293 	ip6_t *ip6;
2294 #endif
2295 #ifdef	_KERNEL
2296 # ifdef MENTAT
2297 	qpktinfo_t *qpi = qif;
2298 #endif
2299 #endif
2300 
2301 	SPL_INT(s);
2302 	pass = ifs->ifs_fr_pass;
2303 
2304 	/*
2305 	 * The first part of fr_check() deals with making sure that what goes
2306 	 * into the filtering engine makes some sense.  Information about the
2307 	 * the packet is distilled, collected into a fr_info_t structure and
2308 	 * the an attempt to ensure the buffer the packet is in is big enough
2309 	 * to hold all the required packet headers.
2310 	 */
2311 #ifdef	_KERNEL
2312 # ifdef MENTAT
2313 	if (!OK_32PTR(ip))
2314 		return 2;
2315 # endif
2316 
2317 
2318 	if (ifs->ifs_fr_running <= 0) {
2319 		return 0;
2320 	}
2321 
2322 	bzero((char *)fin, sizeof(*fin));
2323 
2324 # ifdef MENTAT
2325 	fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST|
2326 					 FI_BROADCAST);
2327 	m = qpi->qpi_m;
2328 	fin->fin_qfm = m;
2329 	fin->fin_qpi = qpi;
2330 # else /* MENTAT */
2331 
2332 	m = *mp;
2333 
2334 #  if defined(M_MCAST)
2335 	if ((m->m_flags & M_MCAST) != 0)
2336 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2337 #  endif
2338 #  if defined(M_MLOOP)
2339 	if ((m->m_flags & M_MLOOP) != 0)
2340 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2341 #  endif
2342 #  if defined(M_BCAST)
2343 	if ((m->m_flags & M_BCAST) != 0)
2344 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2345 #  endif
2346 #  ifdef M_CANFASTFWD
2347 	/*
2348 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2349 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2350 	 * XXX get a "can-fast-forward" filter rule.
2351 	 */
2352 	m->m_flags &= ~M_CANFASTFWD;
2353 #  endif /* M_CANFASTFWD */
2354 #  ifdef CSUM_DELAY_DATA
2355 	/*
2356 	 * disable delayed checksums.
2357 	 */
2358 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2359 		in_delayed_cksum(m);
2360 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2361 	}
2362 #  endif /* CSUM_DELAY_DATA */
2363 # endif /* MENTAT */
2364 #else
2365 
2366 	bzero((char *)fin, sizeof(*fin));
2367 	m = *mp;
2368 #endif /* _KERNEL */
2369 
2370 	fin->fin_v = v;
2371 	fin->fin_m = m;
2372 	fin->fin_ip = ip;
2373 	fin->fin_mp = mp;
2374 	fin->fin_out = out;
2375 	fin->fin_ifp = ifp;
2376 	fin->fin_error = ENETUNREACH;
2377 	fin->fin_hlen = (u_short)hlen;
2378 	fin->fin_dp = (char *)ip + hlen;
2379 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2380 	fin->fin_ifs = ifs;
2381 
2382 	SPL_NET(s);
2383 
2384 #ifdef	USE_INET6
2385 	if (v == 6) {
2386 		IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6);
2387 		/*
2388 		 * Jumbo grams are quite likely too big for internal buffer
2389 		 * structures to handle comfortably, for now, so just drop
2390 		 * them.
2391 		 */
2392 		ip6 = (ip6_t *)ip;
2393 		fin->fin_plen = ntohs(ip6->ip6_plen);
2394 		if (fin->fin_plen == 0) {
2395 			READ_ENTER(&ifs->ifs_ipf_mutex);
2396 			pass = FR_BLOCK|FR_NOMATCH;
2397 			goto filtered;
2398 		}
2399 		fin->fin_plen += sizeof(ip6_t);
2400 	} else
2401 #endif
2402 	{
2403 #if (OpenBSD >= 200311) && defined(_KERNEL)
2404 		ip->ip_len = ntohs(ip->ip_len);
2405 		ip->ip_off = ntohs(ip->ip_off);
2406 #endif
2407 		fin->fin_plen = ip->ip_len;
2408 	}
2409 
2410 	if (fr_makefrip(hlen, ip, fin) == -1) {
2411 		READ_ENTER(&ifs->ifs_ipf_mutex);
2412 		pass = FR_BLOCK;
2413 		goto filtered;
2414 	}
2415 
2416 	/*
2417 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2418 	 * becomes NULL and so we have no packet to free.
2419 	 */
2420 	if (*fin->fin_mp == NULL)
2421 		goto finished;
2422 
2423 	if (!out) {
2424 		if (v == 4) {
2425 #ifdef _KERNEL
2426 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2427 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2428 				fin->fin_flx |= FI_BADSRC;
2429 			}
2430 #endif
2431 			if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) {
2432 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2433 				fin->fin_flx |= FI_LOWTTL;
2434 			}
2435 		}
2436 #ifdef USE_INET6
2437 		else  if (v == 6) {
2438 			ip6 = (ip6_t *)ip;
2439 #ifdef _KERNEL
2440 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2441 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2442 				fin->fin_flx |= FI_BADSRC;
2443 			}
2444 #endif
2445 			if (ip6->ip6_hlim < ifs->ifs_fr_minttl) {
2446 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2447 				fin->fin_flx |= FI_LOWTTL;
2448 			}
2449 		}
2450 #endif
2451 	}
2452 
2453 	if (fin->fin_flx & FI_SHORT) {
2454 		IPF_BUMP(ifs->ifs_frstats[out].fr_short);
2455 	}
2456 
2457 	READ_ENTER(&ifs->ifs_ipf_mutex);
2458 
2459 	/*
2460 	 * Check auth now.  This, combined with the check below to see if apass
2461 	 * is 0 is to ensure that we don't count the packet twice, which can
2462 	 * otherwise occur when we reprocess it.  As it is, we only count it
2463 	 * after it has no auth. table matchup.  This also stops NAT from
2464 	 * occuring until after the packet has been auth'd.
2465 	 */
2466 	fr = fr_checkauth(fin, &pass);
2467 	if (!out) {
2468 		if (fr_checknatin(fin, &pass) == -1) {
2469 			RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2470 			goto finished;
2471 		}
2472 	}
2473 	if (!out)
2474 		(void) fr_acctpkt(fin, NULL);
2475 
2476 	if (fr == NULL)
2477 		if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG)
2478 			fr = fr_knownfrag(fin, &pass);
2479 	if (fr == NULL)
2480 		fr = fr_checkstate(fin, &pass);
2481 
2482 	if ((pass & FR_NOMATCH) || (fr == NULL))
2483 		fr = fr_firewall(fin, &pass);
2484 
2485 	fin->fin_fr = fr;
2486 
2487 	/*
2488 	 * Only count/translate packets which will be passed on, out the
2489 	 * interface.
2490 	 */
2491 	if (out && FR_ISPASS(pass)) {
2492 		(void) fr_acctpkt(fin, NULL);
2493 
2494 		if (fr_checknatout(fin, &pass) == -1) {
2495 			RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2496 			goto finished;
2497 		} else if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) {
2498 			if (fr_updateipid(fin) == -1) {
2499 				IPF_BUMP(ifs->ifs_frstats[1].fr_ipud);
2500 				pass &= ~FR_CMDMASK;
2501 				pass |= FR_BLOCK;
2502 			} else {
2503 				IPF_BUMP(ifs->ifs_frstats[0].fr_ipud);
2504 			}
2505 		}
2506 	}
2507 
2508 #ifdef	IPFILTER_LOG
2509 	if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
2510 		(void) fr_dolog(fin, &pass);
2511 	}
2512 #endif
2513 
2514 	if (fin->fin_state != NULL)
2515 		fr_statederef((ipstate_t **)&fin->fin_state, ifs);
2516 
2517 	if (fin->fin_nat != NULL)
2518 		fr_natderef((nat_t **)&fin->fin_nat, ifs);
2519 
2520 	/*
2521 	 * Only allow FR_DUP to work if a rule matched - it makes no sense to
2522 	 * set FR_DUP as a "default" as there are no instructions about where
2523 	 * to send the packet.  Use fin_m here because it may have changed
2524 	 * (without an update of 'm') in prior processing.
2525 	 */
2526 	if ((fr != NULL) && (pass & FR_DUP)) {
2527 		mc = M_DUPLICATE(fin->fin_m);
2528 	}
2529 
2530 	if (pass & (FR_RETRST|FR_RETICMP)) {
2531 		/*
2532 		 * Should we return an ICMP packet to indicate error
2533 		 * status passing through the packet filter ?
2534 		 * WARNING: ICMP error packets AND TCP RST packets should
2535 		 * ONLY be sent in repsonse to incoming packets.  Sending them
2536 		 * in response to outbound packets can result in a panic on
2537 		 * some operating systems.
2538 		 */
2539 		if (!out) {
2540 			if (pass & FR_RETICMP) {
2541 				int dst;
2542 
2543 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
2544 					dst = 1;
2545 				else
2546 					dst = 0;
2547 				(void) fr_send_icmp_err(ICMP_UNREACH, fin, dst);
2548 				IPF_BUMP(ifs->ifs_frstats[0].fr_ret);
2549 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
2550 				   !(fin->fin_flx & FI_SHORT)) {
2551 				if (fr_send_reset(fin) == 0) {
2552 					IPF_BUMP(ifs->ifs_frstats[1].fr_ret);
2553 				}
2554 			}
2555 		} else {
2556 			if (pass & FR_RETRST)
2557 				fin->fin_error = ECONNRESET;
2558 		}
2559 	}
2560 
2561 	/*
2562 	 * If we didn't drop off the bottom of the list of rules (and thus
2563 	 * the 'current' rule fr is not NULL), then we may have some extra
2564 	 * instructions about what to do with a packet.
2565 	 * Once we're finished return to our caller, freeing the packet if
2566 	 * we are dropping it (* BSD ONLY *).
2567 	 * Reassign m from fin_m as we may have a new buffer, now.
2568 	 */
2569 filtered:
2570 	m = fin->fin_m;
2571 
2572 	if (fr != NULL) {
2573 		frdest_t *fdp;
2574 
2575 		fdp = &fr->fr_tifs[fin->fin_rev];
2576 
2577 		if (!out && (pass & FR_FASTROUTE)) {
2578 			/*
2579 			 * For fastroute rule, no destioation interface defined
2580 			 * so pass NULL as the frdest_t parameter
2581 			 */
2582 			(void) fr_fastroute(m, mp, fin, NULL);
2583 			m = *mp = NULL;
2584 		} else if ((fdp->fd_ifp != NULL) &&
2585 			   (fdp->fd_ifp != (struct ifnet *)-1)) {
2586 			/* this is for to rules: */
2587 			(void) fr_fastroute(m, mp, fin, fdp);
2588 			m = *mp = NULL;
2589 		}
2590 
2591 		/*
2592 		 * Generate a duplicated packet.
2593 		 */
2594 		if (mc != NULL)
2595 			(void) fr_fastroute(mc, &mc, fin, &fr->fr_dif);
2596 	}
2597 
2598 	/*
2599 	 * This late because the likes of fr_fastroute() use fin_fr.
2600 	 */
2601 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2602 
2603 finished:
2604 	if (!FR_ISPASS(pass)) {
2605 		IPF_BUMP(ifs->ifs_frstats[out].fr_block);
2606 		if (*mp != NULL) {
2607 			FREE_MB_T(*mp);
2608 			m = *mp = NULL;
2609 		}
2610 	} else {
2611 		IPF_BUMP(ifs->ifs_frstats[out].fr_pass);
2612 #if defined(_KERNEL) && defined(__sgi)
2613 		if ((fin->fin_hbuf != NULL) &&
2614 		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
2615 			COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf);
2616 		}
2617 #endif
2618 	}
2619 
2620 	SPL_X(s);
2621 
2622 #ifdef _KERNEL
2623 # if OpenBSD >= 200311
2624 	if (FR_ISPASS(pass) && (v == 4)) {
2625 		ip = fin->fin_ip;
2626 		ip->ip_len = ntohs(ip->ip_len);
2627 		ip->ip_off = ntohs(ip->ip_off);
2628 	}
2629 # endif
2630 	return (FR_ISPASS(pass)) ? 0 : fin->fin_error;
2631 #else /* _KERNEL */
2632 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
2633 	if ((pass & FR_NOMATCH) != 0)
2634 		return 1;
2635 
2636 	if ((pass & FR_RETMASK) != 0)
2637 		switch (pass & FR_RETMASK)
2638 		{
2639 		case FR_RETRST :
2640 			return 3;
2641 		case FR_RETICMP :
2642 			return 4;
2643 		case FR_FAKEICMP :
2644 			return 5;
2645 		}
2646 
2647 	switch (pass & FR_CMDMASK)
2648 	{
2649 	case FR_PASS :
2650 		return 0;
2651 	case FR_BLOCK :
2652 		return -1;
2653 	case FR_AUTH :
2654 		return -2;
2655 	case FR_ACCOUNT :
2656 		return -3;
2657 	case FR_PREAUTH :
2658 		return -4;
2659 	}
2660 	return 2;
2661 #endif /* _KERNEL */
2662 }
2663 
2664 
2665 #ifdef	IPFILTER_LOG
2666 /* ------------------------------------------------------------------------ */
2667 /* Function:    fr_dolog                                                    */
2668 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
2669 /* Parameters:  fin(I) - pointer to packet information                      */
2670 /*              passp(IO) - pointer to current/new filter decision (unused) */
2671 /*                                                                          */
2672 /* Checks flags set to see how a packet should be logged, if it is to be    */
2673 /* logged.  Adjust statistics based on its success or not.                  */
2674 /* ------------------------------------------------------------------------ */
2675 frentry_t *fr_dolog(fin, passp)
2676 fr_info_t *fin;
2677 u_32_t *passp;
2678 {
2679 	u_32_t pass;
2680 	int out;
2681 	ipf_stack_t *ifs = fin->fin_ifs;
2682 
2683 	out = fin->fin_out;
2684 	pass = *passp;
2685 
2686 	if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
2687 		pass |= FF_LOGNOMATCH;
2688 		IPF_BUMP(ifs->ifs_frstats[out].fr_npkl);
2689 		goto logit;
2690 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
2691 	    (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) {
2692 		if ((pass & FR_LOGMASK) != FR_LOGP)
2693 			pass |= FF_LOGPASS;
2694 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl);
2695 		goto logit;
2696 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
2697 		   (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) {
2698 		if ((pass & FR_LOGMASK) != FR_LOGB)
2699 			pass |= FF_LOGBLOCK;
2700 		IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl);
2701 logit:
2702 		if (ipflog(fin, pass) == -1) {
2703 			IPF_BUMP(ifs->ifs_frstats[out].fr_skip);
2704 
2705 			/*
2706 			 * If the "or-block" option has been used then
2707 			 * block the packet if we failed to log it.
2708 			 */
2709 			if ((pass & FR_LOGORBLOCK) &&
2710 			    FR_ISPASS(pass)) {
2711 				pass &= ~FR_CMDMASK;
2712 				pass |= FR_BLOCK;
2713 			}
2714 		}
2715 		*passp = pass;
2716 	}
2717 
2718 	return fin->fin_fr;
2719 }
2720 #endif /* IPFILTER_LOG */
2721 
2722 
2723 /* ------------------------------------------------------------------------ */
2724 /* Function:    ipf_cksum                                                   */
2725 /* Returns:     u_short - IP header checksum                                */
2726 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
2727 /*              len(I)  - length of buffer in bytes                         */
2728 /*                                                                          */
2729 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
2730 /*                                                                          */
2731 /* N.B.: addr should be 16bit aligned.                                      */
2732 /* ------------------------------------------------------------------------ */
2733 u_short ipf_cksum(addr, len)
2734 u_short *addr;
2735 int len;
2736 {
2737 	u_32_t sum = 0;
2738 
2739 	for (sum = 0; len > 1; len -= 2)
2740 		sum += *addr++;
2741 
2742 	/* mop up an odd byte, if necessary */
2743 	if (len == 1)
2744 		sum += *(u_char *)addr;
2745 
2746 	/*
2747 	 * add back carry outs from top 16 bits to low 16 bits
2748 	 */
2749 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
2750 	sum += (sum >> 16);			/* add carry */
2751 	return (u_short)(~sum);
2752 }
2753 
2754 
2755 /* ------------------------------------------------------------------------ */
2756 /* Function:    fr_cksum                                                    */
2757 /* Returns:     u_short - layer 4 checksum                                  */
2758 /* Parameters:  m(I  )     - pointer to buffer holding packet               */
2759 /*              ip(I)      - pointer to IP header                           */
2760 /*              l4proto(I) - protocol to caclulate checksum for             */
2761 /*              l4hdr(I)   - pointer to layer 4 header                      */
2762 /*                                                                          */
2763 /* Calculates the TCP checksum for the packet held in "m", using the data   */
2764 /* in the IP header "ip" to seed it.                                        */
2765 /*                                                                          */
2766 /* NB: This function assumes we've pullup'd enough for all of the IP header */
2767 /* and the TCP header.  We also assume that data blocks aren't allocated in */
2768 /* odd sizes.                                                               */
2769 /*                                                                          */
2770 /* Expects ip_len to be in host byte order when called.                     */
2771 /* ------------------------------------------------------------------------ */
2772 u_short fr_cksum(m, ip, l4proto, l4hdr)
2773 mb_t *m;
2774 ip_t *ip;
2775 int l4proto;
2776 void *l4hdr;
2777 {
2778 	u_short *sp, slen, sumsave, l4hlen, *csump;
2779 	u_int sum, sum2;
2780 	int hlen;
2781 #ifdef	USE_INET6
2782 	ip6_t *ip6;
2783 #endif
2784 
2785 	csump = NULL;
2786 	sumsave = 0;
2787 	l4hlen = 0;
2788 	sp = NULL;
2789 	slen = 0;
2790 	hlen = 0;
2791 	sum = 0;
2792 
2793 	/*
2794 	 * Add up IP Header portion
2795 	 */
2796 #ifdef	USE_INET6
2797 	if (IP_V(ip) == 4) {
2798 #endif
2799 		hlen = IP_HL(ip) << 2;
2800 		slen = ip->ip_len - hlen;
2801 		sum = htons((u_short)l4proto);
2802 		sum += htons(slen);
2803 		sp = (u_short *)&ip->ip_src;
2804 		sum += *sp++;	/* ip_src */
2805 		sum += *sp++;
2806 		sum += *sp++;	/* ip_dst */
2807 		sum += *sp++;
2808 #ifdef	USE_INET6
2809 	} else if (IP_V(ip) == 6) {
2810 		ip6 = (ip6_t *)ip;
2811 		hlen = sizeof(*ip6);
2812 		slen = ntohs(ip6->ip6_plen);
2813 		sum = htons((u_short)l4proto);
2814 		sum += htons(slen);
2815 		sp = (u_short *)&ip6->ip6_src;
2816 		sum += *sp++;	/* ip6_src */
2817 		sum += *sp++;
2818 		sum += *sp++;
2819 		sum += *sp++;
2820 		sum += *sp++;
2821 		sum += *sp++;
2822 		sum += *sp++;
2823 		sum += *sp++;
2824 		sum += *sp++;	/* ip6_dst */
2825 		sum += *sp++;
2826 		sum += *sp++;
2827 		sum += *sp++;
2828 		sum += *sp++;
2829 		sum += *sp++;
2830 		sum += *sp++;
2831 		sum += *sp++;
2832 	}
2833 #endif
2834 
2835 	switch (l4proto)
2836 	{
2837 	case IPPROTO_UDP :
2838 		csump = &((udphdr_t *)l4hdr)->uh_sum;
2839 		l4hlen = sizeof(udphdr_t);
2840 		break;
2841 
2842 	case IPPROTO_TCP :
2843 		csump = &((tcphdr_t *)l4hdr)->th_sum;
2844 		l4hlen = sizeof(tcphdr_t);
2845 		break;
2846 	case IPPROTO_ICMP :
2847 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
2848 		l4hlen = 4;
2849 		sum = 0;
2850 		break;
2851 	default :
2852 		break;
2853 	}
2854 
2855 	if (csump != NULL) {
2856 		sumsave = *csump;
2857 		*csump = 0;
2858 	}
2859 
2860 	l4hlen = l4hlen;	/* LINT */
2861 
2862 #ifdef	_KERNEL
2863 # ifdef MENTAT
2864 	{
2865 	void *rp = m->b_rptr;
2866 
2867 	if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr)
2868 		m->b_rptr = (u_char *)ip;
2869 	sum2 = ip_cksum(m, hlen, sum);	/* hlen == offset */
2870 	m->b_rptr = rp;
2871 	sum2 = (sum2 & 0xffff) + (sum2 >> 16);
2872 	sum2 = ~sum2 & 0xffff;
2873 	}
2874 # else /* MENTAT */
2875 #  if defined(BSD) || defined(sun)
2876 #   if BSD >= 199103
2877 	m->m_data += hlen;
2878 #   else
2879 	m->m_off += hlen;
2880 #   endif
2881 	m->m_len -= hlen;
2882 	sum2 = in_cksum(m, slen);
2883 	m->m_len += hlen;
2884 #   if BSD >= 199103
2885 	m->m_data -= hlen;
2886 #   else
2887 	m->m_off -= hlen;
2888 #   endif
2889 	/*
2890 	 * Both sum and sum2 are partial sums, so combine them together.
2891 	 */
2892 	sum += ~sum2 & 0xffff;
2893 	while (sum > 0xffff)
2894 		sum = (sum & 0xffff) + (sum >> 16);
2895 	sum2 = ~sum & 0xffff;
2896 #  else /* defined(BSD) || defined(sun) */
2897 {
2898 	union {
2899 		u_char	c[2];
2900 		u_short	s;
2901 	} bytes;
2902 	u_short len = ip->ip_len;
2903 #   if defined(__sgi)
2904 	int add;
2905 #   endif
2906 
2907 	/*
2908 	 * Add up IP Header portion
2909 	 */
2910 	if (sp != (u_short *)l4hdr)
2911 		sp = (u_short *)l4hdr;
2912 
2913 	switch (l4proto)
2914 	{
2915 	case IPPROTO_UDP :
2916 		sum += *sp++;	/* sport */
2917 		sum += *sp++;	/* dport */
2918 		sum += *sp++;	/* udp length */
2919 		sum += *sp++;	/* checksum */
2920 		break;
2921 
2922 	case IPPROTO_TCP :
2923 		sum += *sp++;	/* sport */
2924 		sum += *sp++;	/* dport */
2925 		sum += *sp++;	/* seq */
2926 		sum += *sp++;
2927 		sum += *sp++;	/* ack */
2928 		sum += *sp++;
2929 		sum += *sp++;	/* off */
2930 		sum += *sp++;	/* win */
2931 		sum += *sp++;	/* checksum */
2932 		sum += *sp++;	/* urp */
2933 		break;
2934 	case IPPROTO_ICMP :
2935 		sum = *sp++;	/* type/code */
2936 		sum += *sp++;	/* checksum */
2937 		break;
2938 	}
2939 
2940 #   ifdef	__sgi
2941 	/*
2942 	 * In case we had to copy the IP & TCP header out of mbufs,
2943 	 * skip over the mbuf bits which are the header
2944 	 */
2945 	if ((caddr_t)ip != mtod(m, caddr_t)) {
2946 		hlen = (caddr_t)sp - (caddr_t)ip;
2947 		while (hlen) {
2948 			add = MIN(hlen, m->m_len);
2949 			sp = (u_short *)(mtod(m, caddr_t) + add);
2950 			hlen -= add;
2951 			if (add == m->m_len) {
2952 				m = m->m_next;
2953 				if (!hlen) {
2954 					if (!m)
2955 						break;
2956 					sp = mtod(m, u_short *);
2957 				}
2958 				PANIC((!m),("fr_cksum(1): not enough data"));
2959 			}
2960 		}
2961 	}
2962 #   endif
2963 
2964 	len -= (l4hlen + hlen);
2965 	if (len <= 0)
2966 		goto nodata;
2967 
2968 	while (len > 1) {
2969 		if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) {
2970 			m = m->m_next;
2971 			PANIC((!m),("fr_cksum(2): not enough data"));
2972 			sp = mtod(m, u_short *);
2973 		}
2974 		if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) {
2975 			bytes.c[0] = *(u_char *)sp;
2976 			m = m->m_next;
2977 			PANIC((!m),("fr_cksum(3): not enough data"));
2978 			sp = mtod(m, u_short *);
2979 			bytes.c[1] = *(u_char *)sp;
2980 			sum += bytes.s;
2981 			sp = (u_short *)((u_char *)sp + 1);
2982 		}
2983 		if ((u_long)sp & 1) {
2984 			bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s));
2985 			sum += bytes.s;
2986 		} else
2987 			sum += *sp++;
2988 		len -= 2;
2989 	}
2990 
2991 	if (len != 0)
2992 		sum += ntohs(*(u_char *)sp << 8);
2993 nodata:
2994 	while (sum > 0xffff)
2995 		sum = (sum & 0xffff) + (sum >> 16);
2996 	sum2 = (u_short)(~sum & 0xffff);
2997 }
2998 #  endif /*  defined(BSD) || defined(sun) */
2999 # endif /* MENTAT */
3000 #else /* _KERNEL */
3001 	for (; slen > 1; slen -= 2)
3002 	        sum += *sp++;
3003 	if (slen)
3004 		sum += ntohs(*(u_char *)sp << 8);
3005 	while (sum > 0xffff)
3006 		sum = (sum & 0xffff) + (sum >> 16);
3007 	sum2 = (u_short)(~sum & 0xffff);
3008 #endif /* _KERNEL */
3009 	if (csump != NULL)
3010 		*csump = sumsave;
3011 	return sum2;
3012 }
3013 
3014 
3015 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \
3016     defined(__sgi) ) && !defined(linux) && !defined(_AIX51)
3017 /*
3018  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3019  *	The Regents of the University of California.  All rights reserved.
3020  *
3021  * Redistribution and use in source and binary forms, with or without
3022  * modification, are permitted provided that the following conditions
3023  * are met:
3024  * 1. Redistributions of source code must retain the above copyright
3025  *    notice, this list of conditions and the following disclaimer.
3026  * 2. Redistributions in binary form must reproduce the above copyright
3027  *    notice, this list of conditions and the following disclaimer in the
3028  *    documentation and/or other materials provided with the distribution.
3029  * 3. Neither the name of the University nor the names of its contributors
3030  *    may be used to endorse or promote products derived from this software
3031  *    without specific prior written permission.
3032  *
3033  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3034  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3035  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3036  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3037  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3038  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3039  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3040  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3041  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3042  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3043  * SUCH DAMAGE.
3044  *
3045  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
3046  * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $
3047  */
3048 /*
3049  * Copy data from an mbuf chain starting "off" bytes from the beginning,
3050  * continuing for "len" bytes, into the indicated buffer.
3051  */
3052 void
3053 m_copydata(m, off, len, cp)
3054 	mb_t *m;
3055 	int off;
3056 	int len;
3057 	caddr_t cp;
3058 {
3059 	unsigned count;
3060 
3061 	if (off < 0 || len < 0)
3062 		panic("m_copydata");
3063 	while (off > 0) {
3064 		if (m == 0)
3065 			panic("m_copydata");
3066 		if (off < m->m_len)
3067 			break;
3068 		off -= m->m_len;
3069 		m = m->m_next;
3070 	}
3071 	while (len > 0) {
3072 		if (m == 0)
3073 			panic("m_copydata");
3074 		count = MIN(m->m_len - off, len);
3075 		bcopy(mtod(m, caddr_t) + off, cp, count);
3076 		len -= count;
3077 		cp += count;
3078 		off = 0;
3079 		m = m->m_next;
3080 	}
3081 }
3082 
3083 
3084 /*
3085  * Copy data from a buffer back into the indicated mbuf chain,
3086  * starting "off" bytes from the beginning, extending the mbuf
3087  * chain if necessary.
3088  */
3089 void
3090 m_copyback(m0, off, len, cp)
3091 	struct	mbuf *m0;
3092 	int off;
3093 	int len;
3094 	caddr_t cp;
3095 {
3096 	int mlen;
3097 	struct mbuf *m = m0, *n;
3098 	int totlen = 0;
3099 
3100 	if (m0 == 0)
3101 		return;
3102 	while (off > (mlen = m->m_len)) {
3103 		off -= mlen;
3104 		totlen += mlen;
3105 		if (m->m_next == 0) {
3106 			n = m_getclr(M_DONTWAIT, m->m_type);
3107 			if (n == 0)
3108 				goto out;
3109 			n->m_len = min(MLEN, len + off);
3110 			m->m_next = n;
3111 		}
3112 		m = m->m_next;
3113 	}
3114 	while (len > 0) {
3115 		mlen = min(m->m_len - off, len);
3116 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
3117 		cp += mlen;
3118 		len -= mlen;
3119 		mlen += off;
3120 		off = 0;
3121 		totlen += mlen;
3122 		if (len == 0)
3123 			break;
3124 		if (m->m_next == 0) {
3125 			n = m_get(M_DONTWAIT, m->m_type);
3126 			if (n == 0)
3127 				break;
3128 			n->m_len = min(MLEN, len);
3129 			m->m_next = n;
3130 		}
3131 		m = m->m_next;
3132 	}
3133 out:
3134 #if 0
3135 	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
3136 		m->m_pkthdr.len = totlen;
3137 #endif
3138 	return;
3139 }
3140 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */
3141 
3142 
3143 /* ------------------------------------------------------------------------ */
3144 /* Function:    fr_findgroup                                                */
3145 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3146 /* Parameters:  group(I) - group name to search for                         */
3147 /*              unit(I)  - device to which this group belongs               */
3148 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3149 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3150 /*                         to where to add the next (last) group or where   */
3151 /*                         to delete group from.                            */
3152 /*                                                                          */
3153 /* Search amongst the defined groups for a particular group number.         */
3154 /* ------------------------------------------------------------------------ */
3155 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs)
3156 char *group;
3157 minor_t unit;
3158 int set;
3159 frgroup_t ***fgpp;
3160 ipf_stack_t *ifs;
3161 {
3162 	frgroup_t *fg, **fgp;
3163 
3164 	/*
3165 	 * Which list of groups to search in is dependent on which list of
3166 	 * rules are being operated on.
3167 	 */
3168 	fgp = &ifs->ifs_ipfgroups[unit][set];
3169 
3170 	while ((fg = *fgp) != NULL) {
3171 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3172 			break;
3173 		else
3174 			fgp = &fg->fg_next;
3175 	}
3176 	if (fgpp != NULL)
3177 		*fgpp = fgp;
3178 	return fg;
3179 }
3180 
3181 
3182 /* ------------------------------------------------------------------------ */
3183 /* Function:    fr_addgroup                                                 */
3184 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3185 /*                            != NULL == pointer to the group               */
3186 /* Parameters:  num(I)   - group number to add                              */
3187 /*              head(I)  - rule pointer that is using this as the head      */
3188 /*              flags(I) - rule flags which describe the type of rule it is */
3189 /*              unit(I)  - device to which this group will belong to        */
3190 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3191 /* Write Locks: ipf_mutex                                                   */
3192 /*                                                                          */
3193 /* Add a new group head, or if it already exists, increase the reference    */
3194 /* count to it.                                                             */
3195 /* ------------------------------------------------------------------------ */
3196 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs)
3197 char *group;
3198 void *head;
3199 u_32_t flags;
3200 minor_t unit;
3201 int set;
3202 ipf_stack_t *ifs;
3203 {
3204 	frgroup_t *fg, **fgp;
3205 	u_32_t gflags;
3206 
3207 	if (group == NULL)
3208 		return NULL;
3209 
3210 	if (unit == IPL_LOGIPF && *group == '\0')
3211 		return NULL;
3212 
3213 	fgp = NULL;
3214 	gflags = flags & FR_INOUT;
3215 
3216 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3217 	if (fg != NULL) {
3218 		if (fg->fg_flags == 0)
3219 			fg->fg_flags = gflags;
3220 		else if (gflags != fg->fg_flags)
3221 			return NULL;
3222 		fg->fg_ref++;
3223 		return fg;
3224 	}
3225 	KMALLOC(fg, frgroup_t *);
3226 	if (fg != NULL) {
3227 		fg->fg_head = head;
3228 		fg->fg_start = NULL;
3229 		fg->fg_next = *fgp;
3230 		bcopy(group, fg->fg_name, FR_GROUPLEN);
3231 		fg->fg_flags = gflags;
3232 		fg->fg_ref = 1;
3233 		*fgp = fg;
3234 	}
3235 	return fg;
3236 }
3237 
3238 
3239 /* ------------------------------------------------------------------------ */
3240 /* Function:    fr_delgroup                                                 */
3241 /* Returns:     Nil                                                         */
3242 /* Parameters:  group(I) - group name to delete                             */
3243 /*              unit(I)  - device to which this group belongs               */
3244 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3245 /* Write Locks: ipf_mutex                                                   */
3246 /*                                                                          */
3247 /* Attempt to delete a group head.                                          */
3248 /* Only do this when its reference count reaches 0.                         */
3249 /* ------------------------------------------------------------------------ */
3250 void fr_delgroup(group, unit, set, ifs)
3251 char *group;
3252 minor_t unit;
3253 int set;
3254 ipf_stack_t *ifs;
3255 {
3256 	frgroup_t *fg, **fgp;
3257 
3258 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3259 	if (fg == NULL)
3260 		return;
3261 
3262 	fg->fg_ref--;
3263 	if (fg->fg_ref == 0) {
3264 		*fgp = fg->fg_next;
3265 		KFREE(fg);
3266 	}
3267 }
3268 
3269 
3270 /* ------------------------------------------------------------------------ */
3271 /* Function:    fr_getrulen                                                 */
3272 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3273 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3274 /*              flags(I) - which set of rules to find the rule in           */
3275 /*              group(I) - group name                                       */
3276 /*              n(I)     - rule number to find                              */
3277 /*                                                                          */
3278 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3279 /* group # g doesn't exist or there are less than n rules in the group.     */
3280 /* ------------------------------------------------------------------------ */
3281 frentry_t *fr_getrulen(unit, group, n, ifs)
3282 int unit;
3283 char *group;
3284 u_32_t n;
3285 ipf_stack_t *ifs;
3286 {
3287 	frentry_t *fr;
3288 	frgroup_t *fg;
3289 
3290 	fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs);
3291 	if (fg == NULL)
3292 		return NULL;
3293 	for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--)
3294 		;
3295 	if (n != 0)
3296 		return NULL;
3297 	return fr;
3298 }
3299 
3300 
3301 /* ------------------------------------------------------------------------ */
3302 /* Function:    fr_rulen                                                    */
3303 /* Returns:     int - >= 0 - rule number, -1 == search failed               */
3304 /* Parameters:  unit(I) - device for which to count the rule's number       */
3305 /*              fr(I)   - pointer to rule to match                          */
3306 /*                                                                          */
3307 /* Return the number for a rule on a specific filtering device.             */
3308 /* ------------------------------------------------------------------------ */
3309 int fr_rulen(unit, fr, ifs)
3310 int unit;
3311 frentry_t *fr;
3312 ipf_stack_t *ifs;
3313 {
3314 	frentry_t *fh;
3315 	frgroup_t *fg;
3316 	u_32_t n = 0;
3317 
3318 	if (fr == NULL)
3319 		return -1;
3320 	fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs);
3321 	if (fg == NULL)
3322 		return -1;
3323 	for (fh = fg->fg_head; fh; n++, fh = fh->fr_next)
3324 		if (fh == fr)
3325 			break;
3326 	if (fh == NULL)
3327 		return -1;
3328 	return n;
3329 }
3330 
3331 
3332 /* ------------------------------------------------------------------------ */
3333 /* Function:    frflushlist                                                 */
3334 /* Returns:     int - >= 0 - number of flushed rules                        */
3335 /* Parameters:  set(I)   - which set of rules (inactive/inactive) this is   */
3336 /*              unit(I)  - device for which to flush rules                  */
3337 /*              flags(I) - which set of rules to flush                      */
3338 /*              nfreedp(O) - pointer to int where flush count is stored     */
3339 /*              listp(I)   - pointer to list to flush pointer               */
3340 /* Write Locks: ipf_mutex                                                   */
3341 /*                                                                          */
3342 /* Recursively flush rules from the list, descending groups as they are     */
3343 /* encountered.  if a rule is the head of a group and it has lost all its   */
3344 /* group members, then also delete the group reference.  nfreedp is needed  */
3345 /* to store the accumulating count of rules removed, whereas the returned   */
3346 /* value is just the number removed from the current list.  The latter is   */
3347 /* needed to correctly adjust reference counts on rules that define groups. */
3348 /*                                                                          */
3349 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3350 /* ------------------------------------------------------------------------ */
3351 static int frflushlist(set, unit, nfreedp, listp, ifs)
3352 int set;
3353 minor_t unit;
3354 int *nfreedp;
3355 frentry_t **listp;
3356 ipf_stack_t *ifs;
3357 {
3358 	int freed = 0;
3359 	frentry_t *fp;
3360 
3361 	while ((fp = *listp) != NULL) {
3362 		if ((fp->fr_type & FR_T_BUILTIN) ||
3363 		    !(fp->fr_flags & FR_COPIED)) {
3364 			listp = &fp->fr_next;
3365 			continue;
3366 		}
3367 		*listp = fp->fr_next;
3368 		if (fp->fr_grp != NULL) {
3369 			(void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs);
3370 		}
3371 
3372 		if (fp->fr_grhead != NULL) {
3373 			fr_delgroup(fp->fr_grhead, unit, set, ifs);
3374 			*fp->fr_grhead = '\0';
3375 		}
3376 
3377 		ASSERT(fp->fr_ref > 0);
3378 		fp->fr_next = NULL;
3379 		if (fr_derefrule(&fp, ifs) == 0)
3380 			freed++;
3381 	}
3382 	*nfreedp += freed;
3383 	return freed;
3384 }
3385 
3386 
3387 /* ------------------------------------------------------------------------ */
3388 /* Function:    frflush                                                     */
3389 /* Returns:     int - >= 0 - number of flushed rules                        */
3390 /* Parameters:  unit(I)  - device for which to flush rules                  */
3391 /*              flags(I) - which set of rules to flush                      */
3392 /*                                                                          */
3393 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3394 /* and IPv6) as defined by the value of flags.                              */
3395 /* ------------------------------------------------------------------------ */
3396 int frflush(unit, proto, flags, ifs)
3397 minor_t unit;
3398 int proto, flags;
3399 ipf_stack_t *ifs;
3400 {
3401 	int flushed = 0, set;
3402 
3403 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3404 
3405 	set = ifs->ifs_fr_active;
3406 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3407 		set = 1 - set;
3408 
3409 	if (flags & FR_OUTQUE) {
3410 		if (proto == 0 || proto == 6) {
3411 			(void) frflushlist(set, unit,
3412 			    &flushed, &ifs->ifs_ipfilter6[1][set], ifs);
3413 			(void) frflushlist(set, unit,
3414 			    &flushed, &ifs->ifs_ipacct6[1][set], ifs);
3415 		}
3416 		if (proto == 0 || proto == 4) {
3417 			(void) frflushlist(set, unit,
3418 			    &flushed, &ifs->ifs_ipfilter[1][set], ifs);
3419 			(void) frflushlist(set, unit,
3420 			    &flushed, &ifs->ifs_ipacct[1][set], ifs);
3421 		}
3422 	}
3423 	if (flags & FR_INQUE) {
3424 		if (proto == 0 || proto == 6) {
3425 			(void) frflushlist(set, unit,
3426 			    &flushed, &ifs->ifs_ipfilter6[0][set], ifs);
3427 			(void) frflushlist(set, unit,
3428 			    &flushed, &ifs->ifs_ipacct6[0][set], ifs);
3429 		}
3430 		if (proto == 0 || proto == 4) {
3431 			(void) frflushlist(set, unit,
3432 			    &flushed, &ifs->ifs_ipfilter[0][set], ifs);
3433 			(void) frflushlist(set, unit,
3434 			    &flushed, &ifs->ifs_ipacct[0][set], ifs);
3435 		}
3436 	}
3437 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3438 
3439 	if (unit == IPL_LOGIPF) {
3440 		int tmp;
3441 
3442 		tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs);
3443 		if (tmp >= 0)
3444 			flushed += tmp;
3445 	}
3446 	return flushed;
3447 }
3448 
3449 
3450 /* ------------------------------------------------------------------------ */
3451 /* Function:    memstr                                                      */
3452 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3453 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3454 /*              dst(I)  - pointer to byte sequence to search                */
3455 /*              slen(I) - match length                                      */
3456 /*              dlen(I) - length available to search in                     */
3457 /*                                                                          */
3458 /* Search dst for a sequence of bytes matching those at src and extend for  */
3459 /* slen bytes.                                                              */
3460 /* ------------------------------------------------------------------------ */
3461 char *memstr(src, dst, slen, dlen)
3462 char *src, *dst;
3463 int slen, dlen;
3464 {
3465 	char *s = NULL;
3466 
3467 	while (dlen >= slen) {
3468 		if (bcmp(src, dst, slen) == 0) {
3469 			s = dst;
3470 			break;
3471 		}
3472 		dst++;
3473 		dlen--;
3474 	}
3475 	return s;
3476 }
3477 /* ------------------------------------------------------------------------ */
3478 /* Function:    fr_fixskip                                                  */
3479 /* Returns:     Nil                                                         */
3480 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3481 /*              rp(I)        - rule added/removed with skip in it.          */
3482 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3483 /*                             depending on whether a rule was just added   */
3484 /*                             or removed.                                  */
3485 /*                                                                          */
3486 /* Adjust all the rules in a list which would have skip'd past the position */
3487 /* where we are inserting to skip to the right place given the change.      */
3488 /* ------------------------------------------------------------------------ */
3489 void fr_fixskip(listp, rp, addremove)
3490 frentry_t **listp, *rp;
3491 int addremove;
3492 {
3493 	int rules, rn;
3494 	frentry_t *fp;
3495 
3496 	rules = 0;
3497 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3498 		rules++;
3499 
3500 	if (!fp)
3501 		return;
3502 
3503 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3504 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3505 			fp->fr_arg += addremove;
3506 }
3507 
3508 
3509 #ifdef	_KERNEL
3510 /* ------------------------------------------------------------------------ */
3511 /* Function:    count4bits                                                  */
3512 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3513 /* Parameters:  ip(I) - 32bit IP address                                    */
3514 /*                                                                          */
3515 /* IPv4 ONLY                                                                */
3516 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3517 /* consecutive 1's is different to that passed, return -1, else return #    */
3518 /* of bits.                                                                 */
3519 /* ------------------------------------------------------------------------ */
3520 int	count4bits(ip)
3521 u_32_t	ip;
3522 {
3523 	u_32_t	ipn;
3524 	int	cnt = 0, i, j;
3525 
3526 	ip = ipn = ntohl(ip);
3527 	for (i = 32; i; i--, ipn *= 2)
3528 		if (ipn & 0x80000000)
3529 			cnt++;
3530 		else
3531 			break;
3532 	ipn = 0;
3533 	for (i = 32, j = cnt; i; i--, j--) {
3534 		ipn *= 2;
3535 		if (j > 0)
3536 			ipn++;
3537 	}
3538 	if (ipn == ip)
3539 		return cnt;
3540 	return -1;
3541 }
3542 
3543 
3544 #ifdef USE_INET6
3545 /* ------------------------------------------------------------------------ */
3546 /* Function:    count6bits                                                  */
3547 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3548 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3549 /*                                                                          */
3550 /* IPv6 ONLY                                                                */
3551 /* count consecutive 1's in bit mask.                                       */
3552 /* ------------------------------------------------------------------------ */
3553 int count6bits(msk)
3554 u_32_t *msk;
3555 {
3556 	int i = 0, k;
3557 	u_32_t j;
3558 
3559 	for (k = 3; k >= 0; k--)
3560 		if (msk[k] == 0xffffffff)
3561 			i += 32;
3562 		else {
3563 			for (j = msk[k]; j; j <<= 1)
3564 				if (j & 0x80000000)
3565 					i++;
3566 		}
3567 	return i;
3568 }
3569 # endif
3570 #endif /* _KERNEL */
3571 
3572 
3573 /* ------------------------------------------------------------------------ */
3574 /* Function:    fr_ifsync                                                   */
3575 /* Returns:     void *    - new interface identifier                        */
3576 /* Parameters:  action(I)  - type of synchronisation to do                  */
3577 /*              v(I)       - IP version being sync'd (v4 or v6)             */
3578 /*              newifp(I)  - interface identifier being introduced/removed  */
3579 /*              oldifp(I)  - interface identifier in a filter rule          */
3580 /*              newname(I) - name associated with oldifp interface          */
3581 /*              oldname(I) - name associated with newifp interface          */
3582 /*                                                                          */
3583 /* This function returns what the new value for "oldifp" should be for its  */
3584 /* caller.  In some cases it will not change, in some it will.              */
3585 /* action == IPFSYNC_RESYNC                                                 */
3586 /*   a new value for oldifp will always be looked up, according to oldname, */
3587 /*   the values of newname and newifp are ignored.                          */
3588 /* action == IPFSYNC_NEWIFP                                                 */
3589 /*   if oldname matches newname then we are doing a sync for the matching   */
3590 /*   interface, so we return newifp to be used in place of oldifp.  If the  */
3591 /*   the names don't match, just return oldifp.                             */
3592 /* action == IPFSYNC_OLDIFP                                                 */
3593 /*   if oldifp matches newifp then we are are doing a sync to remove any    */
3594 /*   references to oldifp, so we return "-1".                               */
3595 /* ------------------------------------------------------------------------ */
3596 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs)
3597 int action, v;
3598 char *newname, *oldname;
3599 void *newifp, *oldifp;
3600 ipf_stack_t *ifs;
3601 {
3602 	void *rval = oldifp;
3603 
3604 	switch (action)
3605 	{
3606 	case IPFSYNC_RESYNC :
3607 		if (oldname[0] != '\0') {
3608 			rval = fr_resolvenic(oldname, v, ifs);
3609 		}
3610 		break;
3611 	case IPFSYNC_NEWIFP :
3612 		if (!strncmp(newname, oldname, LIFNAMSIZ))
3613 			rval = newifp;
3614 		break;
3615 	case IPFSYNC_OLDIFP :
3616 		if (newifp == oldifp)
3617 			rval = (oldifp) ? (void *)-1 : NULL;
3618 		break;
3619 	}
3620 
3621 	return rval;
3622 }
3623 
3624 
3625 /* ------------------------------------------------------------------------ */
3626 /* Function:    frsynclist                                                  */
3627 /* Returns:     void                                                        */
3628 /* Parameters:  action(I) - type of synchronisation to do                   */
3629 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3630 /*              ifp(I)    - interface identifier associated with action     */
3631 /*              name(I)   - name associated with ifp parameter              */
3632 /* Write Locks: ipf_mutex                                                   */
3633 /*                                                                          */
3634 /* Walk through a list of filter rules and resolve any interface names into */
3635 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3636 /* used in the rule.  The interface pointer is used to limit the lookups to */
3637 /* a specific set of matching names if it is non-NULL.                      */
3638 /* ------------------------------------------------------------------------ */
3639 static void frsynclist(action, v, ifp, ifname, fr, ifs)
3640 int action, v;
3641 void *ifp;
3642 char *ifname;
3643 frentry_t *fr;
3644 ipf_stack_t *ifs;
3645 {
3646 	frdest_t *fdp;
3647 	int rv, i;
3648 
3649 	for (; fr; fr = fr->fr_next) {
3650 		rv = fr->fr_v;
3651 		if (v != 0 && v != rv)
3652 			continue;
3653 
3654 		/*
3655 		 * Lookup all the interface names that are part of the rule.
3656 		 */
3657 		for (i = 0; i < 4; i++) {
3658 			fr->fr_ifas[i] = fr_ifsync(action, rv, ifname,
3659 						   fr->fr_ifnames[i],
3660 						   ifp, fr->fr_ifas[i],
3661 						   ifs);
3662 		}
3663 
3664 		fdp = &fr->fr_tifs[0];
3665 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3666 					   ifp, fdp->fd_ifp, ifs);
3667 
3668 		fdp = &fr->fr_tifs[1];
3669 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3670 					   ifp, fdp->fd_ifp, ifs);
3671 
3672 		fdp = &fr->fr_dif;
3673 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3674 					   ifp, fdp->fd_ifp, ifs);
3675 
3676 		if (action != IPFSYNC_RESYNC)
3677 			continue;
3678 
3679 		if (fr->fr_type == FR_T_IPF) {
3680 			if (fr->fr_satype != FRI_NORMAL &&
3681 			    fr->fr_satype != FRI_LOOKUP) {
3682 				(void)fr_ifpaddr(rv, fr->fr_satype,
3683 						 fr->fr_ifas[fr->fr_sifpidx],
3684 						 &fr->fr_src, &fr->fr_smsk,
3685 						 ifs);
3686 			}
3687 			if (fr->fr_datype != FRI_NORMAL &&
3688 			    fr->fr_datype != FRI_LOOKUP) {
3689 				(void)fr_ifpaddr(rv, fr->fr_datype,
3690 						 fr->fr_ifas[fr->fr_difpidx],
3691 						 &fr->fr_dst, &fr->fr_dmsk,
3692 						 ifs);
3693 			}
3694 		}
3695 
3696 #ifdef	IPFILTER_LOOKUP
3697 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP &&
3698 		    fr->fr_srcptr == NULL) {
3699 			fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype,
3700 							 fr->fr_srcnum,
3701 							 &fr->fr_srcfunc, ifs);
3702 		}
3703 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP &&
3704 		    fr->fr_dstptr == NULL) {
3705 			fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype,
3706 							 fr->fr_dstnum,
3707 							 &fr->fr_dstfunc, ifs);
3708 		}
3709 #endif
3710 	}
3711 }
3712 
3713 
3714 #ifdef	_KERNEL
3715 /* ------------------------------------------------------------------------ */
3716 /* Function:    frsync                                                      */
3717 /* Returns:     void                                                        */
3718 /* Parameters:  action(I) - type of synchronisation to do                   */
3719 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3720 /*              ifp(I)    - interface identifier associated with action     */
3721 /*              name(I)   - name associated with ifp parameter              */
3722 /*                                                                          */
3723 /* frsync() is called when we suspect that the interface list or            */
3724 /* information about interfaces (like IP#) has changed.  Go through all     */
3725 /* filter rules, NAT entries and the state table and check if anything      */
3726 /* needs to be changed/updated.                                             */
3727 /* With the filtering hooks added to Solaris, we needed to change the manner*/
3728 /* in which this was done to support three different types of sync:         */
3729 /* - complete resync of all interface name/identifiers                      */
3730 /* - new interface being announced with its name and identifier             */
3731 /* - interface removal being announced by only its identifier               */
3732 /* ------------------------------------------------------------------------ */
3733 void frsync(action, v, ifp, name, ifs)
3734 int action, v;
3735 void *ifp;
3736 char *name;
3737 ipf_stack_t *ifs;
3738 {
3739 	int i;
3740 
3741 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3742 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs);
3743 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs);
3744 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs);
3745 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs);
3746 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs);
3747 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs);
3748 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs);
3749 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs);
3750 
3751 	for (i = 0; i < IPL_LOGSIZE; i++) {
3752 		frgroup_t *g;
3753 
3754 		for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next)
3755 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3756 		for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next)
3757 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3758 	}
3759 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3760 }
3761 
3762 
3763 /*
3764  * In the functions below, bcopy() is called because the pointer being
3765  * copied _from_ in this instance is a pointer to a char buf (which could
3766  * end up being unaligned) and on the kernel's local stack.
3767  */
3768 /* ------------------------------------------------------------------------ */
3769 /* Function:    copyinptr                                                   */
3770 /* Returns:     int - 0 = success, else failure                             */
3771 /* Parameters:  src(I)  - pointer to the source address                     */
3772 /*              dst(I)  - destination address                               */
3773 /*              size(I) - number of bytes to copy                           */
3774 /*                                                                          */
3775 /* Copy a block of data in from user space, given a pointer to the pointer  */
3776 /* to start copying from (src) and a pointer to where to store it (dst).    */
3777 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
3778 /* ------------------------------------------------------------------------ */
3779 int copyinptr(src, dst, size)
3780 void *src, *dst;
3781 size_t size;
3782 {
3783 	caddr_t ca;
3784 	int err;
3785 
3786 # if SOLARIS
3787 	err = COPYIN(src, (caddr_t)&ca, sizeof(ca));
3788 	if (err != 0)
3789 		return err;
3790 # else
3791 	bcopy(src, (caddr_t)&ca, sizeof(ca));
3792 # endif
3793 	err = COPYIN(ca, dst, size);
3794 	return err;
3795 }
3796 
3797 
3798 /* ------------------------------------------------------------------------ */
3799 /* Function:    copyoutptr                                                  */
3800 /* Returns:     int - 0 = success, else failure                             */
3801 /* Parameters:  src(I)  - pointer to the source address                     */
3802 /*              dst(I)  - destination address                               */
3803 /*              size(I) - number of bytes to copy                           */
3804 /*                                                                          */
3805 /* Copy a block of data out to user space, given a pointer to the pointer   */
3806 /* to start copying from (src) and a pointer to where to store it (dst).    */
3807 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
3808 /* ------------------------------------------------------------------------ */
3809 int copyoutptr(src, dst, size)
3810 void *src, *dst;
3811 size_t size;
3812 {
3813 	caddr_t ca;
3814 	int err;
3815 
3816 # if SOLARIS
3817 	err = COPYIN(dst, (caddr_t)&ca, sizeof(ca));
3818 	if (err != 0)
3819 		return err;
3820 # else
3821 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
3822 # endif
3823 	err = COPYOUT(src, ca, size);
3824 	return err;
3825 }
3826 #endif
3827 
3828 
3829 /* ------------------------------------------------------------------------ */
3830 /* Function:    fr_lock                                                     */
3831 /* Returns:     (void)                                                      */
3832 /* Parameters:  data(I)  - pointer to lock value to set                     */
3833 /*              lockp(O) - pointer to location to store old lock value      */
3834 /*                                                                          */
3835 /* Get the new value for the lock integer, set it and return the old value  */
3836 /* in *lockp.                                                               */
3837 /* ------------------------------------------------------------------------ */
3838 void fr_lock(data, lockp)
3839 caddr_t data;
3840 int *lockp;
3841 {
3842 	int arg;
3843 
3844 	BCOPYIN(data, (caddr_t)&arg, sizeof(arg));
3845 	BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp));
3846 	*lockp = arg;
3847 }
3848 
3849 
3850 /* ------------------------------------------------------------------------ */
3851 /* Function:    fr_getstat                                                  */
3852 /* Returns:     Nil                                                         */
3853 /* Parameters:  fiop(I)  - pointer to ipfilter stats structure              */
3854 /*                                                                          */
3855 /* Stores a copy of current pointers, counters, etc, in the friostat        */
3856 /* structure.                                                               */
3857 /* ------------------------------------------------------------------------ */
3858 void fr_getstat(fiop, ifs)
3859 friostat_t *fiop;
3860 ipf_stack_t *ifs;
3861 {
3862 	int i, j;
3863 
3864 	bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st,
3865 	    sizeof(filterstats_t) * 2);
3866 	fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock;
3867 	fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock;
3868 	fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock;
3869 	fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock;
3870 
3871 	for (i = 0; i < 2; i++)
3872 		for (j = 0; j < 2; j++) {
3873 			fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j];
3874 			fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j];
3875 			fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j];
3876 			fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j];
3877 		}
3878 
3879 	fiop->f_ticks = ifs->ifs_fr_ticks;
3880 	fiop->f_active = ifs->ifs_fr_active;
3881 	fiop->f_froute[0] = ifs->ifs_fr_frouteok[0];
3882 	fiop->f_froute[1] = ifs->ifs_fr_frouteok[1];
3883 
3884 	fiop->f_running = ifs->ifs_fr_running;
3885 	for (i = 0; i < IPL_LOGSIZE; i++) {
3886 		fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0];
3887 		fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1];
3888 	}
3889 #ifdef  IPFILTER_LOG
3890 	fiop->f_logging = 1;
3891 #else
3892 	fiop->f_logging = 0;
3893 #endif
3894 	fiop->f_defpass = ifs->ifs_fr_pass;
3895 	fiop->f_features = fr_features;
3896 	(void) strncpy(fiop->f_version, ipfilter_version,
3897 		       sizeof(fiop->f_version));
3898 }
3899 
3900 
3901 #ifdef	USE_INET6
3902 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
3903 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
3904 	-1,			/* 1: UNUSED */
3905 	-1,			/* 2: UNUSED */
3906 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
3907 	-1,			/* 4: ICMP_SOURCEQUENCH */
3908 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
3909 	-1,			/* 6: UNUSED */
3910 	-1,			/* 7: UNUSED */
3911 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
3912 	-1,			/* 9: UNUSED */
3913 	-1,			/* 10: UNUSED */
3914 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
3915 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
3916 	-1,			/* 13: ICMP_TSTAMP */
3917 	-1,			/* 14: ICMP_TSTAMPREPLY */
3918 	-1,			/* 15: ICMP_IREQ */
3919 	-1,			/* 16: ICMP_IREQREPLY */
3920 	-1,			/* 17: ICMP_MASKREQ */
3921 	-1,			/* 18: ICMP_MASKREPLY */
3922 };
3923 
3924 
3925 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
3926 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
3927 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
3928 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
3929 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
3930 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
3931 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
3932 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
3933 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
3934 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
3935 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
3936 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
3937 	-1,				/* 11: ICMP_UNREACH_TOSNET */
3938 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
3939 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
3940 };
3941 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
3942 #endif
3943 
3944 int	icmpreplytype4[ICMP_MAXTYPE + 1];
3945 
3946 
3947 /* ------------------------------------------------------------------------ */
3948 /* Function:    fr_matchicmpqueryreply                                      */
3949 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
3950 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
3951 /*              ic(I)   - ICMP information                                  */
3952 /*              icmp(I) - ICMP packet header                                */
3953 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
3954 /*                                                                          */
3955 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
3956 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
3957 /* else return 0 for no match.                                              */
3958 /* ------------------------------------------------------------------------ */
3959 int fr_matchicmpqueryreply(v, ic, icmp, rev)
3960 int v;
3961 icmpinfo_t *ic;
3962 icmphdr_t *icmp;
3963 int rev;
3964 {
3965 	int ictype;
3966 
3967 	ictype = ic->ici_type;
3968 
3969 	if (v == 4) {
3970 		/*
3971 		 * If we matched its type on the way in, then when going out
3972 		 * it will still be the same type.
3973 		 */
3974 		if ((!rev && (icmp->icmp_type == ictype)) ||
3975 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
3976 			if (icmp->icmp_type != ICMP_ECHOREPLY)
3977 				return 1;
3978 			if (icmp->icmp_id == ic->ici_id)
3979 				return 1;
3980 		}
3981 	}
3982 #ifdef	USE_INET6
3983 	else if (v == 6) {
3984 		if ((!rev && (icmp->icmp_type == ictype)) ||
3985 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
3986 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
3987 				return 1;
3988 			if (icmp->icmp_id == ic->ici_id)
3989 				return 1;
3990 		}
3991 	}
3992 #endif
3993 	return 0;
3994 }
3995 
3996 
3997 #ifdef	IPFILTER_LOOKUP
3998 /* ------------------------------------------------------------------------ */
3999 /* Function:    fr_resolvelookup                                            */
4000 /* Returns:     void * - NULL = failure, else success.                      */
4001 /* Parameters:  type(I)     - type of lookup these parameters are for.      */
4002 /*              number(I)   - table number to use when searching            */
4003 /*              funcptr(IO) - pointer to pointer for storing IP address     */
4004 /*                           searching function.                            */
4005 /*                                                                          */
4006 /* Search for the "table" number passed in amongst those configured for     */
4007 /* that particular type.  If the type is recognised then the function to    */
4008 /* call to do the IP address search will be change, regardless of whether   */
4009 /* or not the "table" number exists.                                        */
4010 /* ------------------------------------------------------------------------ */
4011 static void *fr_resolvelookup(type, number, funcptr, ifs)
4012 u_int type, number;
4013 lookupfunc_t *funcptr;
4014 ipf_stack_t *ifs;
4015 {
4016 	char name[FR_GROUPLEN];
4017 	iphtable_t *iph;
4018 	ip_pool_t *ipo;
4019 	void *ptr;
4020 
4021 #if defined(SNPRINTF) && defined(_KERNEL)
4022 	(void) SNPRINTF(name, sizeof(name), "%u", number);
4023 #else
4024 	(void) sprintf(name, "%u", number);
4025 #endif
4026 
4027 	READ_ENTER(&ifs->ifs_ip_poolrw);
4028 
4029 	switch (type)
4030 	{
4031 	case IPLT_POOL :
4032 # if (defined(__osf__) && defined(_KERNEL))
4033 		ptr = NULL;
4034 		*funcptr = NULL;
4035 # else
4036 		ipo = ip_pool_find(IPL_LOGIPF, name, ifs);
4037 		ptr = ipo;
4038 		if (ipo != NULL) {
4039 			ATOMIC_INC32(ipo->ipo_ref);
4040 		}
4041 		*funcptr = ip_pool_search;
4042 # endif
4043 		break;
4044 	case IPLT_HASH :
4045 		iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4046 		ptr = iph;
4047 		if (iph != NULL) {
4048 			ATOMIC_INC32(iph->iph_ref);
4049 		}
4050 		*funcptr = fr_iphmfindip;
4051 		break;
4052 	default:
4053 		ptr = NULL;
4054 		*funcptr = NULL;
4055 		break;
4056 	}
4057 	RWLOCK_EXIT(&ifs->ifs_ip_poolrw);
4058 
4059 	return ptr;
4060 }
4061 #endif
4062 
4063 
4064 /* ------------------------------------------------------------------------ */
4065 /* Function:    frrequest                                                   */
4066 /* Returns:     int - 0 == success, > 0 == errno value                      */
4067 /* Parameters:  unit(I)     - device for which this is for                  */
4068 /*              req(I)      - ioctl command (SIOC*)                         */
4069 /*              data(I)     - pointr to ioctl data                          */
4070 /*              set(I)      - 1 or 0 (filter set)                           */
4071 /*              makecopy(I) - flag indicating whether data points to a rule */
4072 /*                            in kernel space & hence doesn't need copying. */
4073 /*                                                                          */
4074 /* This function handles all the requests which operate on the list of      */
4075 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4076 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4077 /* names are resolved here and other sanity checks are made on the content  */
4078 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4079 /* then make sure they are created and initialised before exiting.          */
4080 /* ------------------------------------------------------------------------ */
4081 int frrequest(unit, req, data, set, makecopy, ifs)
4082 int unit;
4083 ioctlcmd_t req;
4084 int set, makecopy;
4085 caddr_t data;
4086 ipf_stack_t *ifs;
4087 {
4088 	frentry_t frd, *fp, *f, **fprev, **ftail;
4089 	int error = 0, in, v;
4090 	void *ptr, *uptr;
4091 	u_int *p, *pp;
4092 	frgroup_t *fg;
4093 	char *group;
4094 
4095 	fg = NULL;
4096 	fp = &frd;
4097 	if (makecopy != 0) {
4098 		error = fr_inobj(data, fp, IPFOBJ_FRENTRY);
4099 		if (error)
4100 			return EFAULT;
4101 		if ((fp->fr_flags & FR_T_BUILTIN) != 0)
4102 			return EINVAL;
4103 		fp->fr_ref = 0;
4104 		fp->fr_flags |= FR_COPIED;
4105 	} else {
4106 		fp = (frentry_t *)data;
4107 		if ((fp->fr_type & FR_T_BUILTIN) == 0)
4108 			return EINVAL;
4109 		fp->fr_flags &= ~FR_COPIED;
4110 	}
4111 
4112 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4113 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL)))
4114 		return EINVAL;
4115 
4116 	v = fp->fr_v;
4117 	uptr = fp->fr_data;
4118 
4119 	/*
4120 	 * Only filter rules for IPv4 or IPv6 are accepted.
4121 	 */
4122 	if (v == 4)
4123 		/*EMPTY*/;
4124 #ifdef	USE_INET6
4125 	else if (v == 6)
4126 		/*EMPTY*/;
4127 #endif
4128 	else {
4129 		return EINVAL;
4130 	}
4131 
4132 	/*
4133 	 * If the rule is being loaded from user space, i.e. we had to copy it
4134 	 * into kernel space, then do not trust the function pointer in the
4135 	 * rule.
4136 	 */
4137 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4138 		if (fr_findfunc(fp->fr_func) == NULL)
4139 			return ESRCH;
4140 		error = fr_funcinit(fp, ifs);
4141 		if (error != 0)
4142 			return error;
4143 	}
4144 
4145 	ptr = NULL;
4146 	/*
4147 	 * Check that the group number does exist and that its use (in/out)
4148 	 * matches what the rule is.
4149 	 */
4150 	if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN))
4151 		*fp->fr_grhead = '\0';
4152 	group = fp->fr_group;
4153 	if (!strncmp(group, "0", FR_GROUPLEN))
4154 		*group = '\0';
4155 
4156 	if (FR_ISACCOUNT(fp->fr_flags))
4157 		unit = IPL_LOGCOUNT;
4158 
4159 	if ((req != (int)SIOCZRLST) && (*group != '\0')) {
4160 		fg = fr_findgroup(group, unit, set, NULL, ifs);
4161 		if (fg == NULL)
4162 			return ESRCH;
4163 		if (fg->fg_flags == 0)
4164 			fg->fg_flags = fp->fr_flags & FR_INOUT;
4165 		else if (fg->fg_flags != (fp->fr_flags & FR_INOUT))
4166 			return ESRCH;
4167 	}
4168 
4169 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4170 
4171 	/*
4172 	 * Work out which rule list this change is being applied to.
4173 	 */
4174 	ftail = NULL;
4175 	fprev = NULL;
4176 	if (unit == IPL_LOGAUTH)
4177 		fprev = &ifs->ifs_ipauth;
4178 	else if (v == 4) {
4179 		if (FR_ISACCOUNT(fp->fr_flags))
4180 			fprev = &ifs->ifs_ipacct[in][set];
4181 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4182 			fprev = &ifs->ifs_ipfilter[in][set];
4183 	} else if (v == 6) {
4184 		if (FR_ISACCOUNT(fp->fr_flags))
4185 			fprev = &ifs->ifs_ipacct6[in][set];
4186 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4187 			fprev = &ifs->ifs_ipfilter6[in][set];
4188 	}
4189 	if (fprev == NULL)
4190 		return ESRCH;
4191 
4192 	if (*group != '\0') {
4193 	    if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs)))
4194 			return ESRCH;
4195 		fprev = &fg->fg_start;
4196 	}
4197 
4198 	ftail = fprev;
4199 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4200 		if (fp->fr_collect <= f->fr_collect) {
4201 			ftail = fprev;
4202 			f = NULL;
4203 			break;
4204 		}
4205 		fprev = ftail;
4206 	}
4207 
4208 	/*
4209 	 * Copy in extra data for the rule.
4210 	 */
4211 	if (fp->fr_dsize != 0) {
4212 		if (makecopy != 0) {
4213 			KMALLOCS(ptr, void *, fp->fr_dsize);
4214 			if (!ptr)
4215 				return ENOMEM;
4216 			error = COPYIN(uptr, ptr, fp->fr_dsize);
4217 		} else {
4218 			ptr = uptr;
4219 			error = 0;
4220 		}
4221 		if (error != 0) {
4222 			KFREES(ptr, fp->fr_dsize);
4223 			return ENOMEM;
4224 		}
4225 		fp->fr_data = ptr;
4226 	} else
4227 		fp->fr_data = NULL;
4228 
4229 	/*
4230 	 * Perform per-rule type sanity checks of their members.
4231 	 */
4232 	switch (fp->fr_type & ~FR_T_BUILTIN)
4233 	{
4234 #if defined(IPFILTER_BPF)
4235 	case FR_T_BPFOPC :
4236 		if (fp->fr_dsize == 0)
4237 			return EINVAL;
4238 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4239 			if (makecopy && fp->fr_data != NULL) {
4240 				KFREES(fp->fr_data, fp->fr_dsize);
4241 			}
4242 			return EINVAL;
4243 		}
4244 		break;
4245 #endif
4246 	case FR_T_IPF :
4247 		if (fp->fr_dsize != sizeof(fripf_t))
4248 			return EINVAL;
4249 
4250 		/*
4251 		 * Allowing a rule with both "keep state" and "with oow" is
4252 		 * pointless because adding a state entry to the table will
4253 		 * fail with the out of window (oow) flag set.
4254 		 */
4255 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW))
4256 			return EINVAL;
4257 
4258 		switch (fp->fr_satype)
4259 		{
4260 		case FRI_BROADCAST :
4261 		case FRI_DYNAMIC :
4262 		case FRI_NETWORK :
4263 		case FRI_NETMASKED :
4264 		case FRI_PEERADDR :
4265 			if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) {
4266 				if (makecopy && fp->fr_data != NULL) {
4267 					KFREES(fp->fr_data, fp->fr_dsize);
4268 				}
4269 				return EINVAL;
4270 			}
4271 			break;
4272 #ifdef	IPFILTER_LOOKUP
4273 		case FRI_LOOKUP :
4274 			fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype,
4275 							 fp->fr_srcnum,
4276 							 &fp->fr_srcfunc, ifs);
4277 			break;
4278 #endif
4279 		default :
4280 			break;
4281 		}
4282 
4283 		switch (fp->fr_datype)
4284 		{
4285 		case FRI_BROADCAST :
4286 		case FRI_DYNAMIC :
4287 		case FRI_NETWORK :
4288 		case FRI_NETMASKED :
4289 		case FRI_PEERADDR :
4290 			if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) {
4291 				if (makecopy && fp->fr_data != NULL) {
4292 					KFREES(fp->fr_data, fp->fr_dsize);
4293 				}
4294 				return EINVAL;
4295 			}
4296 			break;
4297 #ifdef	IPFILTER_LOOKUP
4298 		case FRI_LOOKUP :
4299 			fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype,
4300 							 fp->fr_dstnum,
4301 							 &fp->fr_dstfunc, ifs);
4302 			break;
4303 #endif
4304 		default :
4305 			break;
4306 		}
4307 		break;
4308 	case FR_T_NONE :
4309 		break;
4310 	case FR_T_CALLFUNC :
4311 		break;
4312 	case FR_T_COMPIPF :
4313 		break;
4314 	default :
4315 		if (makecopy && fp->fr_data != NULL) {
4316 			KFREES(fp->fr_data, fp->fr_dsize);
4317 		}
4318 		return EINVAL;
4319 	}
4320 
4321 	/*
4322 	 * Lookup all the interface names that are part of the rule.
4323 	 */
4324 	frsynclist(0, 0, NULL, NULL, fp, ifs);
4325 	fp->fr_statecnt = 0;
4326 
4327 	/*
4328 	 * Look for an existing matching filter rule, but don't include the
4329 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4330 	 * This elminates rules which are indentical being loaded.  Checksum
4331 	 * the constant part of the filter rule to make comparisons quicker
4332 	 * (this meaning no pointers are included).
4333 	 */
4334 	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4335 	     p < pp; p++)
4336 		fp->fr_cksum += *p;
4337 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4338 	for (p = (u_int *)fp->fr_data; p < pp; p++)
4339 		fp->fr_cksum += *p;
4340 
4341 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
4342 
4343 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4344 		if ((fp->fr_cksum != f->fr_cksum) ||
4345 		    (f->fr_dsize != fp->fr_dsize))
4346 			continue;
4347 		if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ))
4348 			continue;
4349 		if ((!ptr && !f->fr_data) ||
4350 		    (ptr && f->fr_data &&
4351 		     !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4352 			break;
4353 	}
4354 
4355 	/*
4356 	 * If zero'ing statistics, copy current to caller and zero.
4357 	 */
4358 	if (req == (ioctlcmd_t)SIOCZRLST) {
4359 		if (f == NULL)
4360 			error = ESRCH;
4361 		else {
4362 			/*
4363 			 * Copy and reduce lock because of impending copyout.
4364 			 * Well we should, but if we do then the atomicity of
4365 			 * this call and the correctness of fr_hits and
4366 			 * fr_bytes cannot be guaranteed.  As it is, this code
4367 			 * only resets them to 0 if they are successfully
4368 			 * copied out into user space.
4369 			 */
4370 			bcopy((char *)f, (char *)fp, sizeof(*f));
4371 
4372 			/*
4373 			 * When we copy this rule back out, set the data
4374 			 * pointer to be what it was in user space.
4375 			 */
4376 			fp->fr_data = uptr;
4377 			error = fr_outobj(data, fp, IPFOBJ_FRENTRY);
4378 
4379 			if (error == 0) {
4380 				if ((f->fr_dsize != 0) && (uptr != NULL))
4381 					error = COPYOUT(f->fr_data, uptr,
4382 							f->fr_dsize);
4383 				if (error == 0) {
4384 					f->fr_hits = 0;
4385 					f->fr_bytes = 0;
4386 				}
4387 			}
4388 		}
4389 
4390 		if ((ptr != NULL) && (makecopy != 0)) {
4391 			KFREES(ptr, fp->fr_dsize);
4392 		}
4393 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4394 		return error;
4395 	}
4396 
4397 	if (!f) {
4398 		/*
4399 		 * At the end of this, ftail must point to the place where the
4400 		 * new rule is to be saved/inserted/added.
4401 		 * For SIOCAD*FR, this should be the last rule in the group of
4402 		 * rules that have equal fr_collect fields.
4403 		 * For SIOCIN*FR, ...
4404 		 */
4405 		if (req == (ioctlcmd_t)SIOCADAFR ||
4406 		    req == (ioctlcmd_t)SIOCADIFR) {
4407 
4408 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4409 				if (f->fr_collect > fp->fr_collect)
4410 					break;
4411 				ftail = &f->fr_next;
4412 			}
4413 			f = NULL;
4414 			ptr = NULL;
4415 			error = 0;
4416 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4417 			   req == (ioctlcmd_t)SIOCINIFR) {
4418 			while ((f = *fprev) != NULL) {
4419 				if (f->fr_collect >= fp->fr_collect)
4420 					break;
4421 				fprev = &f->fr_next;
4422 			}
4423 			ftail = fprev;
4424 			if (fp->fr_hits != 0) {
4425 				while (fp->fr_hits && (f = *ftail)) {
4426 					if (f->fr_collect != fp->fr_collect)
4427 						break;
4428 					fprev = ftail;
4429 					ftail = &f->fr_next;
4430 					fp->fr_hits--;
4431 				}
4432 			}
4433 			f = NULL;
4434 			ptr = NULL;
4435 			error = 0;
4436 		}
4437 	}
4438 
4439 	/*
4440 	 * Request to remove a rule.
4441 	 */
4442 	if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) {
4443 		if (!f)
4444 			error = ESRCH;
4445 		else {
4446 			/*
4447 			 * Do not allow activity from user space to interfere
4448 			 * with rules not loaded that way.
4449 			 */
4450 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4451 				error = EPERM;
4452 				goto done;
4453 			}
4454 
4455 			/*
4456 			 * Return EBUSY if the rule is being reference by
4457 			 * something else (eg state information.
4458 			 */
4459 			if (f->fr_ref > 1) {
4460 				error = EBUSY;
4461 				goto done;
4462 			}
4463 #ifdef	IPFILTER_SCAN
4464 			if (f->fr_isctag[0] != '\0' &&
4465 			    (f->fr_isc != (struct ipscan *)-1))
4466 				ipsc_detachfr(f);
4467 #endif
4468 			if (unit == IPL_LOGAUTH) {
4469 				error = fr_preauthcmd(req, f, ftail, ifs);
4470 				goto done;
4471 			}
4472 			if (*f->fr_grhead != '\0')
4473 				fr_delgroup(f->fr_grhead, unit, set, ifs);
4474 			fr_fixskip(ftail, f, -1);
4475 			*ftail = f->fr_next;
4476 			f->fr_next = NULL;
4477 			(void)fr_derefrule(&f, ifs);
4478 		}
4479 	} else {
4480 		/*
4481 		 * Not removing, so we must be adding/inserting a rule.
4482 		 */
4483 		if (f)
4484 			error = EEXIST;
4485 		else {
4486 			if (unit == IPL_LOGAUTH) {
4487 				error = fr_preauthcmd(req, fp, ftail, ifs);
4488 				goto done;
4489 			}
4490 			if (makecopy) {
4491 				KMALLOC(f, frentry_t *);
4492 			} else
4493 				f = fp;
4494 			if (f != NULL) {
4495 				if (fp != f)
4496 					bcopy((char *)fp, (char *)f,
4497 					      sizeof(*f));
4498 				MUTEX_NUKE(&f->fr_lock);
4499 				MUTEX_INIT(&f->fr_lock, "filter rule lock");
4500 #ifdef	IPFILTER_SCAN
4501 				if (f->fr_isctag[0] != '\0' &&
4502 				    ipsc_attachfr(f))
4503 					f->fr_isc = (struct ipscan *)-1;
4504 #endif
4505 				f->fr_hits = 0;
4506 				if (makecopy != 0)
4507 					f->fr_ref = 1;
4508 				f->fr_next = *ftail;
4509 				*ftail = f;
4510 				if (req == (ioctlcmd_t)SIOCINIFR ||
4511 				    req == (ioctlcmd_t)SIOCINAFR)
4512 					fr_fixskip(ftail, f, 1);
4513 				f->fr_grp = NULL;
4514 				group = f->fr_grhead;
4515 				if (*group != '\0') {
4516 					fg = fr_addgroup(group, f, f->fr_flags,
4517 							 unit, set, ifs);
4518 					if (fg != NULL)
4519 						f->fr_grp = &fg->fg_start;
4520 				}
4521 			} else
4522 				error = ENOMEM;
4523 		}
4524 	}
4525 done:
4526 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4527 	if ((ptr != NULL) && (error != 0) && (makecopy != 0)) {
4528 		KFREES(ptr, fp->fr_dsize);
4529 	}
4530 	return (error);
4531 }
4532 
4533 
4534 /* ------------------------------------------------------------------------ */
4535 /* Function:    fr_funcinit                                                 */
4536 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
4537 /* Parameters:  fr(I) - pointer to filter rule                              */
4538 /*                                                                          */
4539 /* If a rule is a call rule, then check if the function it points to needs  */
4540 /* an init function to be called now the rule has been loaded.              */
4541 /* ------------------------------------------------------------------------ */
4542 static int fr_funcinit(fr, ifs)
4543 frentry_t *fr;
4544 ipf_stack_t *ifs;
4545 {
4546 	ipfunc_resolve_t *ft;
4547 	int err;
4548 
4549 	err = ESRCH;
4550 
4551 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4552 		if (ft->ipfu_addr == fr->fr_func) {
4553 			err = 0;
4554 			if (ft->ipfu_init != NULL)
4555 				err = (*ft->ipfu_init)(fr, ifs);
4556 			break;
4557 		}
4558 	return err;
4559 }
4560 
4561 
4562 /* ------------------------------------------------------------------------ */
4563 /* Function:    fr_findfunc                                                 */
4564 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
4565 /* Parameters:  funcptr(I) - function pointer to lookup                     */
4566 /*                                                                          */
4567 /* Look for a function in the table of known functions.                     */
4568 /* ------------------------------------------------------------------------ */
4569 static ipfunc_t fr_findfunc(funcptr)
4570 ipfunc_t funcptr;
4571 {
4572 	ipfunc_resolve_t *ft;
4573 
4574 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4575 		if (ft->ipfu_addr == funcptr)
4576 			return funcptr;
4577 	return NULL;
4578 }
4579 
4580 
4581 /* ------------------------------------------------------------------------ */
4582 /* Function:    fr_resolvefunc                                              */
4583 /* Returns:     int - 0 == success, else error                              */
4584 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
4585 /*                                                                          */
4586 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
4587 /* This will either be the function name (if the pointer is set) or the     */
4588 /* function pointer if the name is set.  When found, fill in the other one  */
4589 /* so that the entire, complete, structure can be copied back to user space.*/
4590 /* ------------------------------------------------------------------------ */
4591 int fr_resolvefunc(data)
4592 void *data;
4593 {
4594 	ipfunc_resolve_t res, *ft;
4595 
4596 	BCOPYIN(data, &res, sizeof(res));
4597 
4598 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
4599 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4600 			if (strncmp(res.ipfu_name, ft->ipfu_name,
4601 				    sizeof(res.ipfu_name)) == 0) {
4602 				res.ipfu_addr = ft->ipfu_addr;
4603 				res.ipfu_init = ft->ipfu_init;
4604 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4605 					return EFAULT;
4606 				return 0;
4607 			}
4608 	}
4609 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
4610 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4611 			if (ft->ipfu_addr == res.ipfu_addr) {
4612 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
4613 					       sizeof(res.ipfu_name));
4614 				res.ipfu_init = ft->ipfu_init;
4615 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4616 					return EFAULT;
4617 				return 0;
4618 			}
4619 	}
4620 	return ESRCH;
4621 }
4622 
4623 
4624 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \
4625     (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \
4626     (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \
4627     (defined(__OpenBSD__) && (OpenBSD < 200006))
4628 /*
4629  * From: NetBSD
4630  * ppsratecheck(): packets (or events) per second limitation.
4631  */
4632 int
4633 ppsratecheck(lasttime, curpps, maxpps)
4634 	struct timeval *lasttime;
4635 	int *curpps;
4636 	int maxpps;	/* maximum pps allowed */
4637 {
4638 	struct timeval tv, delta;
4639 	int rv;
4640 
4641 	GETKTIME(&tv);
4642 
4643 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
4644 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
4645 	if (delta.tv_usec < 0) {
4646 		delta.tv_sec--;
4647 		delta.tv_usec += 1000000;
4648 	}
4649 
4650 	/*
4651 	 * check for 0,0 is so that the message will be seen at least once.
4652 	 * if more than one second have passed since the last update of
4653 	 * lasttime, reset the counter.
4654 	 *
4655 	 * we do increment *curpps even in *curpps < maxpps case, as some may
4656 	 * try to use *curpps for stat purposes as well.
4657 	 */
4658 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
4659 	    delta.tv_sec >= 1) {
4660 		*lasttime = tv;
4661 		*curpps = 0;
4662 		rv = 1;
4663 	} else if (maxpps < 0)
4664 		rv = 1;
4665 	else if (*curpps < maxpps)
4666 		rv = 1;
4667 	else
4668 		rv = 0;
4669 	*curpps = *curpps + 1;
4670 
4671 	return (rv);
4672 }
4673 #endif
4674 
4675 
4676 /* ------------------------------------------------------------------------ */
4677 /* Function:    fr_derefrule                                                */
4678 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
4679 /* Parameters:  fr(I) - pointer to filter rule                              */
4680 /*                                                                          */
4681 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
4682 /* free it and any associated storage space being used by it.               */
4683 /* ------------------------------------------------------------------------ */
4684 int fr_derefrule(frp, ifs)
4685 frentry_t **frp;
4686 ipf_stack_t *ifs;
4687 {
4688 	frentry_t *fr;
4689 
4690 	fr = *frp;
4691 
4692 	MUTEX_ENTER(&fr->fr_lock);
4693 	fr->fr_ref--;
4694 	if (fr->fr_ref == 0) {
4695 		MUTEX_EXIT(&fr->fr_lock);
4696 		MUTEX_DESTROY(&fr->fr_lock);
4697 
4698 #ifdef IPFILTER_LOOKUP
4699 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP)
4700 		    ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs);
4701 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP)
4702 		    ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs);
4703 #endif
4704 
4705 		if (fr->fr_dsize) {
4706 			KFREES(fr->fr_data, fr->fr_dsize);
4707 		}
4708 		if ((fr->fr_flags & FR_COPIED) != 0) {
4709 			KFREE(fr);
4710 			return 0;
4711 		}
4712 		return 1;
4713 	} else {
4714 		MUTEX_EXIT(&fr->fr_lock);
4715 	}
4716 	*frp = NULL;
4717 	return -1;
4718 }
4719 
4720 
4721 #ifdef	IPFILTER_LOOKUP
4722 /* ------------------------------------------------------------------------ */
4723 /* Function:    fr_grpmapinit                                               */
4724 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
4725 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
4726 /*                                                                          */
4727 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
4728 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap.                   */
4729 /* ------------------------------------------------------------------------ */
4730 static int fr_grpmapinit(fr, ifs)
4731 frentry_t *fr;
4732 ipf_stack_t *ifs;
4733 {
4734 	char name[FR_GROUPLEN];
4735 	iphtable_t *iph;
4736 
4737 #if defined(SNPRINTF) && defined(_KERNEL)
4738 	(void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
4739 #else
4740 	(void) sprintf(name, "%d", fr->fr_arg);
4741 #endif
4742 	iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4743 	if (iph == NULL)
4744 		return ESRCH;
4745 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT))
4746 		return ESRCH;
4747 	fr->fr_ptr = iph;
4748 	return 0;
4749 }
4750 
4751 
4752 /* ------------------------------------------------------------------------ */
4753 /* Function:    fr_srcgrpmap                                                */
4754 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4755 /* Parameters:  fin(I)    - pointer to packet information                   */
4756 /*              passp(IO) - pointer to current/new filter decision (unused) */
4757 /*                                                                          */
4758 /* Look for a rule group head in a hash table, using the source address as  */
4759 /* the key, and descend into that group and continue matching rules against */
4760 /* the packet.                                                              */
4761 /* ------------------------------------------------------------------------ */
4762 frentry_t *fr_srcgrpmap(fin, passp)
4763 fr_info_t *fin;
4764 u_32_t *passp;
4765 {
4766 	frgroup_t *fg;
4767 	void *rval;
4768 	ipf_stack_t *ifs = fin->fin_ifs;
4769 
4770 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs);
4771 	if (rval == NULL)
4772 		return NULL;
4773 
4774 	fg = rval;
4775 	fin->fin_fr = fg->fg_start;
4776 	(void) fr_scanlist(fin, *passp);
4777 	return fin->fin_fr;
4778 }
4779 
4780 
4781 /* ------------------------------------------------------------------------ */
4782 /* Function:    fr_dstgrpmap                                                */
4783 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4784 /* Parameters:  fin(I)    - pointer to packet information                   */
4785 /*              passp(IO) - pointer to current/new filter decision (unused) */
4786 /*                                                                          */
4787 /* Look for a rule group head in a hash table, using the destination        */
4788 /* address as the key, and descend into that group and continue matching    */
4789 /* rules against  the packet.                                               */
4790 /* ------------------------------------------------------------------------ */
4791 frentry_t *fr_dstgrpmap(fin, passp)
4792 fr_info_t *fin;
4793 u_32_t *passp;
4794 {
4795 	frgroup_t *fg;
4796 	void *rval;
4797 	ipf_stack_t *ifs = fin->fin_ifs;
4798 
4799 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs);
4800 	if (rval == NULL)
4801 		return NULL;
4802 
4803 	fg = rval;
4804 	fin->fin_fr = fg->fg_start;
4805 	(void) fr_scanlist(fin, *passp);
4806 	return fin->fin_fr;
4807 }
4808 #endif /* IPFILTER_LOOKUP */
4809 
4810 /*
4811  * Queue functions
4812  * ===============
4813  * These functions manage objects on queues for efficient timeouts.  There are
4814  * a number of system defined queues as well as user defined timeouts.  It is
4815  * expected that a lock is held in the domain in which the queue belongs
4816  * (i.e. either state or NAT) when calling any of these functions that prevents
4817  * fr_freetimeoutqueue() from being called at the same time as any other.
4818  */
4819 
4820 
4821 /* ------------------------------------------------------------------------ */
4822 /* Function:    fr_addtimeoutqueue                                          */
4823 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
4824 /*                               timeout queue with given interval.         */
4825 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
4826 /*                           of interface queues.                           */
4827 /*              seconds(I) - timeout value in seconds for this queue.       */
4828 /*                                                                          */
4829 /* This routine first looks for a timeout queue that matches the interval   */
4830 /* being requested.  If it finds one, increments the reference counter and  */
4831 /* returns a pointer to it.  If none are found, it allocates a new one and  */
4832 /* inserts it at the top of the list.                                       */
4833 /*                                                                          */
4834 /* Locking.                                                                 */
4835 /* It is assumed that the caller of this function has an appropriate lock   */
4836 /* held (exclusively) in the domain that encompases 'parent'.               */
4837 /* ------------------------------------------------------------------------ */
4838 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs)
4839 ipftq_t **parent;
4840 u_int seconds;
4841 ipf_stack_t *ifs;
4842 {
4843 	ipftq_t *ifq;
4844 	u_int period;
4845 
4846 	period = seconds * IPF_HZ_DIVIDE;
4847 
4848 	MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock);
4849 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
4850 		if (ifq->ifq_ttl == period) {
4851 			/*
4852 			 * Reset the delete flag, if set, so the structure
4853 			 * gets reused rather than freed and reallocated.
4854 			 */
4855 			MUTEX_ENTER(&ifq->ifq_lock);
4856 			ifq->ifq_flags &= ~IFQF_DELETE;
4857 			ifq->ifq_ref++;
4858 			MUTEX_EXIT(&ifq->ifq_lock);
4859 			MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
4860 
4861 			return ifq;
4862 		}
4863 	}
4864 
4865 	KMALLOC(ifq, ipftq_t *);
4866 	if (ifq != NULL) {
4867 		ifq->ifq_ttl = period;
4868 		ifq->ifq_head = NULL;
4869 		ifq->ifq_tail = &ifq->ifq_head;
4870 		ifq->ifq_next = *parent;
4871 		ifq->ifq_pnext = parent;
4872 		ifq->ifq_ref = 1;
4873 		ifq->ifq_flags = IFQF_USER;
4874 		*parent = ifq;
4875 		ifs->ifs_fr_userifqs++;
4876 		MUTEX_NUKE(&ifq->ifq_lock);
4877 		MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex");
4878 	}
4879 	MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
4880 	return ifq;
4881 }
4882 
4883 
4884 /* ------------------------------------------------------------------------ */
4885 /* Function:    fr_deletetimeoutqueue                                       */
4886 /* Returns:     int    - new reference count value of the timeout queue     */
4887 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
4888 /* Locks:       ifq->ifq_lock                                               */
4889 /*                                                                          */
4890 /* This routine must be called when we're discarding a pointer to a timeout */
4891 /* queue object, taking care of the reference counter.                      */
4892 /*                                                                          */
4893 /* Now that this just sets a DELETE flag, it requires the expire code to    */
4894 /* check the list of user defined timeout queues and call the free function */
4895 /* below (currently commented out) to stop memory leaking.  It is done this */
4896 /* way because the locking may not be sufficient to safely do a free when   */
4897 /* this function is called.                                                 */
4898 /* ------------------------------------------------------------------------ */
4899 int fr_deletetimeoutqueue(ifq)
4900 ipftq_t *ifq;
4901 {
4902 
4903 	ifq->ifq_ref--;
4904 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
4905 		ifq->ifq_flags |= IFQF_DELETE;
4906 	}
4907 
4908 	return ifq->ifq_ref;
4909 }
4910 
4911 
4912 /* ------------------------------------------------------------------------ */
4913 /* Function:    fr_freetimeoutqueue                                         */
4914 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
4915 /* Returns:     Nil                                                         */
4916 /*                                                                          */
4917 /* Locking:                                                                 */
4918 /* It is assumed that the caller of this function has an appropriate lock   */
4919 /* held (exclusively) in the domain that encompases the callers "domain".   */
4920 /* The ifq_lock for this structure should not be held.                      */
4921 /*                                                                          */
4922 /* Remove a user definde timeout queue from the list of queues it is in and */
4923 /* tidy up after this is done.                                              */
4924 /* ------------------------------------------------------------------------ */
4925 void fr_freetimeoutqueue(ifq, ifs)
4926 ipftq_t *ifq;
4927 ipf_stack_t *ifs;
4928 {
4929 
4930 
4931 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
4932 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
4933 		printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
4934 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
4935 		       ifq->ifq_ref);
4936 		return;
4937 	}
4938 
4939 	/*
4940 	 * Remove from its position in the list.
4941 	 */
4942 	*ifq->ifq_pnext = ifq->ifq_next;
4943 	if (ifq->ifq_next != NULL)
4944 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
4945 
4946 	MUTEX_DESTROY(&ifq->ifq_lock);
4947 	ifs->ifs_fr_userifqs--;
4948 	KFREE(ifq);
4949 }
4950 
4951 
4952 /* ------------------------------------------------------------------------ */
4953 /* Function:    fr_deletequeueentry                                         */
4954 /* Returns:     Nil                                                         */
4955 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
4956 /*              ifq(I) - timeout queue to remove entry from                 */
4957 /*                                                                          */
4958 /* Remove a tail queue entry from its queue and make it an orphan.          */
4959 /* fr_deletetimeoutqueue is called to make sure the reference count on the  */
4960 /* queue is correct.  We can't, however, call fr_freetimeoutqueue because   */
4961 /* the correct lock(s) may not be held that would make it safe to do so.    */
4962 /* ------------------------------------------------------------------------ */
4963 void fr_deletequeueentry(tqe)
4964 ipftqent_t *tqe;
4965 {
4966 	ipftq_t *ifq;
4967 
4968 	ifq = tqe->tqe_ifq;
4969 	if (ifq == NULL)
4970 		return;
4971 
4972 	MUTEX_ENTER(&ifq->ifq_lock);
4973 
4974 	if (tqe->tqe_pnext != NULL) {
4975 		*tqe->tqe_pnext = tqe->tqe_next;
4976 		if (tqe->tqe_next != NULL)
4977 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
4978 		else    /* we must be the tail anyway */
4979 			ifq->ifq_tail = tqe->tqe_pnext;
4980 
4981 		tqe->tqe_pnext = NULL;
4982 		tqe->tqe_ifq = NULL;
4983 	}
4984 
4985 	(void) fr_deletetimeoutqueue(ifq);
4986 
4987 	MUTEX_EXIT(&ifq->ifq_lock);
4988 }
4989 
4990 
4991 /* ------------------------------------------------------------------------ */
4992 /* Function:    fr_queuefront                                               */
4993 /* Returns:     Nil                                                         */
4994 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
4995 /*                                                                          */
4996 /* Move a queue entry to the front of the queue, if it isn't already there. */
4997 /* ------------------------------------------------------------------------ */
4998 void fr_queuefront(tqe)
4999 ipftqent_t *tqe;
5000 {
5001 	ipftq_t *ifq;
5002 
5003 	ifq = tqe->tqe_ifq;
5004 	if (ifq == NULL)
5005 		return;
5006 
5007 	MUTEX_ENTER(&ifq->ifq_lock);
5008 	if (ifq->ifq_head != tqe) {
5009 		*tqe->tqe_pnext = tqe->tqe_next;
5010 		if (tqe->tqe_next)
5011 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5012 		else
5013 			ifq->ifq_tail = tqe->tqe_pnext;
5014 
5015 		tqe->tqe_next = ifq->ifq_head;
5016 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5017 		ifq->ifq_head = tqe;
5018 		tqe->tqe_pnext = &ifq->ifq_head;
5019 	}
5020 	MUTEX_EXIT(&ifq->ifq_lock);
5021 }
5022 
5023 
5024 /* ------------------------------------------------------------------------ */
5025 /* Function:    fr_queueback                                                */
5026 /* Returns:     Nil                                                         */
5027 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5028 /*                                                                          */
5029 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5030 /* ------------------------------------------------------------------------ */
5031 void fr_queueback(tqe, ifs)
5032 ipftqent_t *tqe;
5033 ipf_stack_t *ifs;
5034 {
5035 	ipftq_t *ifq;
5036 
5037 	ifq = tqe->tqe_ifq;
5038 	if (ifq == NULL)
5039 		return;
5040 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5041 
5042 	MUTEX_ENTER(&ifq->ifq_lock);
5043 	if (tqe->tqe_next == NULL) {		/* at the end already ? */
5044 		MUTEX_EXIT(&ifq->ifq_lock);
5045 		return;
5046 	}
5047 
5048 	/*
5049 	 * Remove from list
5050 	 */
5051 	*tqe->tqe_pnext = tqe->tqe_next;
5052 	tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5053 
5054 	/*
5055 	 * Make it the last entry.
5056 	 */
5057 	tqe->tqe_next = NULL;
5058 	tqe->tqe_pnext = ifq->ifq_tail;
5059 	*ifq->ifq_tail = tqe;
5060 	ifq->ifq_tail = &tqe->tqe_next;
5061 	MUTEX_EXIT(&ifq->ifq_lock);
5062 }
5063 
5064 
5065 /* ------------------------------------------------------------------------ */
5066 /* Function:    fr_queueappend                                              */
5067 /* Returns:     Nil                                                         */
5068 /* Parameters:  tqe(I)    - pointer to timeout queue entry                  */
5069 /*              ifq(I)    - pointer to timeout queue                        */
5070 /*              parent(I) - owing object pointer                            */
5071 /*                                                                          */
5072 /* Add a new item to this queue and put it on the very end.                 */
5073 /* ------------------------------------------------------------------------ */
5074 void fr_queueappend(tqe, ifq, parent, ifs)
5075 ipftqent_t *tqe;
5076 ipftq_t *ifq;
5077 void *parent;
5078 ipf_stack_t *ifs;
5079 {
5080 
5081 	MUTEX_ENTER(&ifq->ifq_lock);
5082 	tqe->tqe_parent = parent;
5083 	tqe->tqe_pnext = ifq->ifq_tail;
5084 	*ifq->ifq_tail = tqe;
5085 	ifq->ifq_tail = &tqe->tqe_next;
5086 	tqe->tqe_next = NULL;
5087 	tqe->tqe_ifq = ifq;
5088 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5089 	ifq->ifq_ref++;
5090 	MUTEX_EXIT(&ifq->ifq_lock);
5091 }
5092 
5093 
5094 /* ------------------------------------------------------------------------ */
5095 /* Function:    fr_movequeue                                                */
5096 /* Returns:     Nil                                                         */
5097 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5098 /*              oifp(I) - old timeout queue entry was on                    */
5099 /*              nifp(I) - new timeout queue to put entry on                 */
5100 /*                                                                          */
5101 /* Move a queue entry from one timeout queue to another timeout queue.      */
5102 /* If it notices that the current entry is already last and does not need   */
5103 /* to move queue, the return.                                               */
5104 /* ------------------------------------------------------------------------ */
5105 void fr_movequeue(tqe, oifq, nifq, ifs)
5106 ipftqent_t *tqe;
5107 ipftq_t *oifq, *nifq;
5108 ipf_stack_t *ifs;
5109 {
5110 	/*
5111 	 * Is the operation here going to be a no-op ?
5112 	 */
5113 	tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl;
5114 	if (oifq == nifq) {
5115 		if (tqe->tqe_next == NULL)
5116 			return;
5117 		if (tqe->tqe_next->tqe_die == tqe->tqe_die)
5118 			return;
5119 	}
5120 
5121 	MUTEX_ENTER(&oifq->ifq_lock);
5122 	/*
5123 	 * Remove from the old queue
5124 	 */
5125 	*tqe->tqe_pnext = tqe->tqe_next;
5126 	if (tqe->tqe_next)
5127 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5128 	else
5129 		oifq->ifq_tail = tqe->tqe_pnext;
5130 	tqe->tqe_next = NULL;
5131 
5132 	/*
5133 	 * If we're moving from one queue to another, release the lock on the
5134 	 * old queue and get a lock on the new queue.  For user defined queues,
5135 	 * if we're moving off it, call delete in case it can now be freed.
5136 	 */
5137 	if (oifq != nifq) {
5138 		tqe->tqe_ifq = NULL;
5139 
5140 		(void) fr_deletetimeoutqueue(oifq);
5141 
5142 		MUTEX_EXIT(&oifq->ifq_lock);
5143 
5144 		MUTEX_ENTER(&nifq->ifq_lock);
5145 
5146 		tqe->tqe_ifq = nifq;
5147 		nifq->ifq_ref++;
5148 	}
5149 
5150 	/*
5151 	 * Add to the bottom of the new queue
5152 	 */
5153 	tqe->tqe_pnext = nifq->ifq_tail;
5154 	*nifq->ifq_tail = tqe;
5155 	nifq->ifq_tail = &tqe->tqe_next;
5156 	MUTEX_EXIT(&nifq->ifq_lock);
5157 }
5158 
5159 
5160 /* ------------------------------------------------------------------------ */
5161 /* Function:    fr_updateipid                                               */
5162 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5163 /* Parameters:  fin(I) - pointer to packet information                      */
5164 /*                                                                          */
5165 /* When we are doing NAT, change the IP of every packet to represent a      */
5166 /* single sequence of packets coming from the host, hiding any host         */
5167 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5168 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5169 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5170 /* has no match in the cache, return an error.                              */
5171 /* ------------------------------------------------------------------------ */
5172 static INLINE int fr_updateipid(fin)
5173 fr_info_t *fin;
5174 {
5175 	u_short id, ido, sums;
5176 	u_32_t sumd, sum;
5177 	ip_t *ip;
5178 
5179 	if (fin->fin_off != 0) {
5180 		sum = fr_ipid_knownfrag(fin);
5181 		if (sum == 0xffffffff)
5182 			return -1;
5183 		sum &= 0xffff;
5184 		id = (u_short)sum;
5185 	} else {
5186 		id = fr_nextipid(fin);
5187 		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5188 			(void) fr_ipid_newfrag(fin, (u_32_t)id);
5189 	}
5190 
5191 	ip = fin->fin_ip;
5192 	ido = ntohs(ip->ip_id);
5193 	if (id == ido)
5194 		return 0;
5195 	ip->ip_id = htons(id);
5196 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5197 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5198 	sum += sumd;
5199 	sum = (sum >> 16) + (sum & 0xffff);
5200 	sum = (sum >> 16) + (sum & 0xffff);
5201 	sums = ~(u_short)sum;
5202 	ip->ip_sum = htons(sums);
5203 	return 0;
5204 }
5205 
5206 
5207 #ifdef	NEED_FRGETIFNAME
5208 /* ------------------------------------------------------------------------ */
5209 /* Function:    fr_getifname                                                */
5210 /* Returns:     char *    - pointer to interface name                       */
5211 /* Parameters:  ifp(I)    - pointer to network interface                    */
5212 /*              buffer(O) - pointer to where to store interface name        */
5213 /*                                                                          */
5214 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5215 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5216 /* as a NULL pointer then return a pointer to a static array.               */
5217 /* ------------------------------------------------------------------------ */
5218 char *fr_getifname(ifp, buffer)
5219 struct ifnet *ifp;
5220 char *buffer;
5221 {
5222 	static char namebuf[LIFNAMSIZ];
5223 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5224      defined(__sgi) || defined(linux) || defined(_AIX51) || \
5225      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5226 	int unit, space;
5227 	char temp[20];
5228 	char *s;
5229 # endif
5230 
5231 	ASSERT(buffer != NULL);
5232 #ifdef notdef
5233 	if (buffer == NULL)
5234 		buffer = namebuf;
5235 #endif
5236 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5237 	buffer[LIFNAMSIZ - 1] = '\0';
5238 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5239      defined(__sgi) || defined(_AIX51) || \
5240      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5241 	for (s = buffer; *s; s++)
5242 		;
5243 	unit = ifp->if_unit;
5244 	space = LIFNAMSIZ - (s - buffer);
5245 	if (space > 0) {
5246 #  if defined(SNPRINTF) && defined(_KERNEL)
5247 		(void) SNPRINTF(temp, sizeof(temp), "%d", unit);
5248 #  else
5249 		(void) sprintf(temp, "%d", unit);
5250 #  endif
5251 		(void) strncpy(s, temp, space);
5252 	}
5253 # endif
5254 	return buffer;
5255 }
5256 #endif
5257 
5258 
5259 /* ------------------------------------------------------------------------ */
5260 /* Function:    fr_ioctlswitch                                              */
5261 /* Returns:     int     - -1 continue processing, else ioctl return value   */
5262 /* Parameters:  unit(I) - device unit opened                                */
5263 /*              data(I) - pointer to ioctl data                             */
5264 /*              cmd(I)  - ioctl command                                     */
5265 /*              mode(I) - mode value                                        */
5266 /*                                                                          */
5267 /* Based on the value of unit, call the appropriate ioctl handler or return */
5268 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
5269 /* for the device in order to execute the ioctl.                            */
5270 /* ------------------------------------------------------------------------ */
5271 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs)
5272 int unit, mode, uid;
5273 ioctlcmd_t cmd;
5274 void *data, *ctx;
5275 ipf_stack_t *ifs;
5276 {
5277 	int error = 0;
5278 
5279 	switch (unit)
5280 	{
5281 	case IPL_LOGIPF :
5282 		error = -1;
5283 		break;
5284 	case IPL_LOGNAT :
5285 		if (ifs->ifs_fr_running > 0)
5286 			error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs);
5287 		else
5288 			error = EIO;
5289 		break;
5290 	case IPL_LOGSTATE :
5291 		if (ifs->ifs_fr_running > 0)
5292 			error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs);
5293 		else
5294 			error = EIO;
5295 		break;
5296 	case IPL_LOGAUTH :
5297 		if (ifs->ifs_fr_running > 0) {
5298 			if ((cmd == (ioctlcmd_t)SIOCADAFR) ||
5299 			    (cmd == (ioctlcmd_t)SIOCRMAFR)) {
5300 				if (!(mode & FWRITE)) {
5301 					error = EPERM;
5302 				} else {
5303 					error = frrequest(unit, cmd, data,
5304 						  ifs->ifs_fr_active, 1, ifs);
5305 				}
5306 			} else {
5307 				error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs);
5308 			}
5309 		} else
5310 			error = EIO;
5311 		break;
5312 	case IPL_LOGSYNC :
5313 #ifdef IPFILTER_SYNC
5314 		if (ifs->ifs_fr_running > 0)
5315 			error = fr_sync_ioctl(data, cmd, mode, ifs);
5316 		else
5317 #endif
5318 			error = EIO;
5319 		break;
5320 	case IPL_LOGSCAN :
5321 #ifdef IPFILTER_SCAN
5322 		if (ifs->ifs_fr_running > 0)
5323 			error = fr_scan_ioctl(data, cmd, mode, ifs);
5324 		else
5325 #endif
5326 			error = EIO;
5327 		break;
5328 	case IPL_LOGLOOKUP :
5329 #ifdef IPFILTER_LOOKUP
5330 		if (ifs->ifs_fr_running > 0)
5331 			error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs);
5332 		else
5333 #endif
5334 			error = EIO;
5335 		break;
5336 	default :
5337 		error = EIO;
5338 		break;
5339 	}
5340 
5341 	return error;
5342 }
5343 
5344 
5345 /*
5346  * This array defines the expected size of objects coming into the kernel
5347  * for the various recognised object types.
5348  */
5349 #define	NUM_OBJ_TYPES	19
5350 
5351 static	int	fr_objbytes[NUM_OBJ_TYPES][2] = {
5352 	{ 1,	sizeof(struct frentry) },		/* frentry */
5353 	{ 0,	sizeof(struct friostat) },
5354 	{ 0,	sizeof(struct fr_info) },
5355 	{ 0,	sizeof(struct fr_authstat) },
5356 	{ 0,	sizeof(struct ipfrstat) },
5357 	{ 0,	sizeof(struct ipnat) },
5358 	{ 0,	sizeof(struct natstat) },
5359 	{ 0,	sizeof(struct ipstate_save) },
5360 	{ 1,	sizeof(struct nat_save) },		/* nat_save */
5361 	{ 0,	sizeof(struct natlookup) },
5362 	{ 1,	sizeof(struct ipstate) },		/* ipstate */
5363 	{ 0,	sizeof(struct ips_stat) },
5364 	{ 0,	sizeof(struct frauth) },
5365 	{ 0,	sizeof(struct ipftune) },
5366 	{ 0,	sizeof(struct nat) },                   /* nat_t */
5367 	{ 0,	sizeof(struct ipfruleiter) },
5368 	{ 0,	sizeof(struct ipfgeniter) },
5369 	{ 0,	sizeof(struct ipftable) },
5370 	{ 0,	sizeof(struct ipflookupiter) }
5371 };
5372 
5373 
5374 /* ------------------------------------------------------------------------ */
5375 /* Function:    fr_inobj                                                    */
5376 /* Returns:     int     - 0 = success, else failure                         */
5377 /* Parameters:  data(I) - pointer to ioctl data                             */
5378 /*              ptr(I)  - pointer to store real data in                     */
5379 /*              type(I) - type of structure being moved                     */
5380 /*                                                                          */
5381 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
5382 /* add things to check for version numbers, sizes, etc, to make it backward */
5383 /* compatible at the ABI for user land.                                     */
5384 /* ------------------------------------------------------------------------ */
5385 int fr_inobj(data, ptr, type)
5386 void *data;
5387 void *ptr;
5388 int type;
5389 {
5390 	ipfobj_t obj;
5391 	int error = 0;
5392 
5393 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5394 		return EINVAL;
5395 
5396 	BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5397 
5398 	if (obj.ipfo_type != type)
5399 		return EINVAL;
5400 
5401 #ifndef	IPFILTER_COMPAT
5402 	if ((fr_objbytes[type][0] & 1) != 0) {
5403 		if (obj.ipfo_size < fr_objbytes[type][1])
5404 			return EINVAL;
5405 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5406 		return EINVAL;
5407 #else
5408 	if (obj.ipfo_rev != IPFILTER_VERSION)
5409 		/* XXX compatibility hook here */
5410 		;
5411 	if ((fr_objbytes[type][0] & 1) != 0) {
5412 		if (obj.ipfo_size < fr_objbytes[type][1])
5413 			/* XXX compatibility hook here */
5414 			return EINVAL;
5415 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5416 		/* XXX compatibility hook here */
5417 		return EINVAL;
5418 #endif
5419 
5420 	if ((fr_objbytes[type][0] & 1) != 0) {
5421 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5422 				fr_objbytes[type][1]);
5423 	} else {
5424 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5425 				obj.ipfo_size);
5426 	}
5427 	return error;
5428 }
5429 
5430 
5431 /* ------------------------------------------------------------------------ */
5432 /* Function:    fr_inobjsz                                                  */
5433 /* Returns:     int     - 0 = success, else failure                         */
5434 /* Parameters:  data(I) - pointer to ioctl data                             */
5435 /*              ptr(I)  - pointer to store real data in                     */
5436 /*              type(I) - type of structure being moved                     */
5437 /*              sz(I)   - size of data to copy                              */
5438 /*                                                                          */
5439 /* As per fr_inobj, except the size of the object to copy in is passed in   */
5440 /* but it must not be smaller than the size defined for the type and the    */
5441 /* type must allow for varied sized objects.  The extra requirement here is */
5442 /* that sz must match the size of the object being passed in - this is not  */
5443 /* not possible nor required in fr_inobj().                                 */
5444 /* ------------------------------------------------------------------------ */
5445 int fr_inobjsz(data, ptr, type, sz)
5446 void *data;
5447 void *ptr;
5448 int type, sz;
5449 {
5450 	ipfobj_t obj;
5451 	int error;
5452 
5453 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5454 		return EINVAL;
5455 	if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1]))
5456 		return EINVAL;
5457 
5458 	BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5459 
5460 	if (obj.ipfo_type != type)
5461 		return EINVAL;
5462 
5463 #ifndef	IPFILTER_COMPAT
5464 	if (obj.ipfo_size != sz)
5465 		return EINVAL;
5466 #else
5467 	if (obj.ipfo_rev != IPFILTER_VERSION)
5468 		/* XXX compatibility hook here */
5469 		;
5470 	if (obj.ipfo_size != sz)
5471 		/* XXX compatibility hook here */
5472 		return EINVAL;
5473 #endif
5474 
5475 	error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz);
5476 	return error;
5477 }
5478 
5479 
5480 /* ------------------------------------------------------------------------ */
5481 /* Function:    fr_outobjsz                                                 */
5482 /* Returns:     int     - 0 = success, else failure                         */
5483 /* Parameters:  data(I) - pointer to ioctl data                             */
5484 /*              ptr(I)  - pointer to store real data in                     */
5485 /*              type(I) - type of structure being moved                     */
5486 /*              sz(I)   - size of data to copy                              */
5487 /*                                                                          */
5488 /* As per fr_outobj, except the size of the object to copy out is passed in */
5489 /* but it must not be smaller than the size defined for the type and the    */
5490 /* type must allow for varied sized objects.  The extra requirement here is */
5491 /* that sz must match the size of the object being passed in - this is not  */
5492 /* not possible nor required in fr_outobj().                                */
5493 /* ------------------------------------------------------------------------ */
5494 int fr_outobjsz(data, ptr, type, sz)
5495 void *data;
5496 void *ptr;
5497 int type, sz;
5498 {
5499 	ipfobj_t obj;
5500 	int error;
5501 
5502 	if ((type < 0) || (type > NUM_OBJ_TYPES-1) ||
5503 	    ((fr_objbytes[type][0] & 1) == 0) ||
5504 	    (sz < fr_objbytes[type][1]))
5505 		return EINVAL;
5506 
5507 	BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5508 
5509 	if (obj.ipfo_type != type)
5510 		return EINVAL;
5511 
5512 #ifndef	IPFILTER_COMPAT
5513 	if (obj.ipfo_size != sz)
5514 		return EINVAL;
5515 #else
5516 	if (obj.ipfo_rev != IPFILTER_VERSION)
5517 		/* XXX compatibility hook here */
5518 		;
5519 	if (obj.ipfo_size != sz)
5520 		/* XXX compatibility hook here */
5521 		return EINVAL;
5522 #endif
5523 
5524 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz);
5525 	return error;
5526 }
5527 
5528 
5529 /* ------------------------------------------------------------------------ */
5530 /* Function:    fr_outobj                                                   */
5531 /* Returns:     int     - 0 = success, else failure                         */
5532 /* Parameters:  data(I) - pointer to ioctl data                             */
5533 /*              ptr(I)  - pointer to store real data in                     */
5534 /*              type(I) - type of structure being moved                     */
5535 /*                                                                          */
5536 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
5537 /* future, we add things to check for version numbers, sizes, etc, to make  */
5538 /* it backward  compatible at the ABI for user land.                        */
5539 /* ------------------------------------------------------------------------ */
5540 int fr_outobj(data, ptr, type)
5541 void *data;
5542 void *ptr;
5543 int type;
5544 {
5545 	ipfobj_t obj;
5546 	int error;
5547 
5548 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5549 		return EINVAL;
5550 
5551 	BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5552 
5553 	if (obj.ipfo_type != type)
5554 		return EINVAL;
5555 
5556 #ifndef	IPFILTER_COMPAT
5557 	if ((fr_objbytes[type][0] & 1) != 0) {
5558 		if (obj.ipfo_size < fr_objbytes[type][1])
5559 			return EINVAL;
5560 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5561 		return EINVAL;
5562 #else
5563 	if (obj.ipfo_rev != IPFILTER_VERSION)
5564 		/* XXX compatibility hook here */
5565 		;
5566 	if ((fr_objbytes[type][0] & 1) != 0) {
5567 		if (obj.ipfo_size < fr_objbytes[type][1])
5568 			/* XXX compatibility hook here */
5569 			return EINVAL;
5570 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5571 		/* XXX compatibility hook here */
5572 		return EINVAL;
5573 #endif
5574 
5575 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size);
5576 	return error;
5577 }
5578 
5579 
5580 /* ------------------------------------------------------------------------ */
5581 /* Function:    fr_checkl4sum                                               */
5582 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
5583 /* Parameters:  fin(I) - pointer to packet information                      */
5584 /*                                                                          */
5585 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
5586 /* not possible, return without indicating a failure or success but in a    */
5587 /* way that is ditinguishable.                                              */
5588 /* ------------------------------------------------------------------------ */
5589 int fr_checkl4sum(fin)
5590 fr_info_t *fin;
5591 {
5592 	u_short sum, hdrsum, *csump;
5593 	udphdr_t *udp;
5594 	int dosum;
5595 	ipf_stack_t *ifs = fin->fin_ifs;
5596 
5597 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5598 	net_data_t net_data_p;
5599 	if (fin->fin_v == 4)
5600 		net_data_p = ifs->ifs_ipf_ipv4;
5601 	else
5602 		net_data_p = ifs->ifs_ipf_ipv6;
5603 #endif
5604 
5605 	if ((fin->fin_flx & FI_NOCKSUM) != 0)
5606 		return 0;
5607 
5608 	/*
5609 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
5610 	 * isn't already considered "bad", then validate the checksum.  If
5611 	 * this check fails then considered the packet to be "bad".
5612 	 */
5613 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
5614 		return 1;
5615 
5616 	csump = NULL;
5617 	hdrsum = 0;
5618 	dosum = 0;
5619 	sum = 0;
5620 
5621 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5622 	ASSERT(fin->fin_m != NULL);
5623 	if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) ||
5624 	    NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) {
5625 			hdrsum = 0;
5626 			sum = 0;
5627 	} else {
5628 #endif
5629 		switch (fin->fin_p)
5630 		{
5631 		case IPPROTO_TCP :
5632 			csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
5633 			dosum = 1;
5634 			break;
5635 
5636 		case IPPROTO_UDP :
5637 			udp = fin->fin_dp;
5638 			if (udp->uh_sum != 0) {
5639 				csump = &udp->uh_sum;
5640 				dosum = 1;
5641 			}
5642 			break;
5643 
5644 		case IPPROTO_ICMP :
5645 			csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
5646 			dosum = 1;
5647 			break;
5648 
5649 		default :
5650 			return 1;
5651 			/*NOTREACHED*/
5652 		}
5653 
5654 		if (csump != NULL)
5655 			hdrsum = *csump;
5656 
5657 		if (dosum)
5658 			sum = fr_cksum(fin->fin_m, fin->fin_ip,
5659 				       fin->fin_p, fin->fin_dp);
5660 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5661 	}
5662 #endif
5663 #if !defined(_KERNEL)
5664 	if (sum == hdrsum) {
5665 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
5666 	} else {
5667 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
5668 	}
5669 #endif
5670 	if (hdrsum == sum)
5671 		return 0;
5672 	return -1;
5673 }
5674 
5675 
5676 /* ------------------------------------------------------------------------ */
5677 /* Function:    fr_ifpfillv4addr                                            */
5678 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5679 /* Parameters:  atype(I)   - type of network address update to perform      */
5680 /*              sin(I)     - pointer to source of address information       */
5681 /*              mask(I)    - pointer to source of netmask information       */
5682 /*              inp(I)     - pointer to destination address store           */
5683 /*              inpmask(I) - pointer to destination netmask store           */
5684 /*                                                                          */
5685 /* Given a type of network address update (atype) to perform, copy          */
5686 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5687 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5688 /* which case the operation fails.  For all values of atype other than      */
5689 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5690 /* value.                                                                   */
5691 /* ------------------------------------------------------------------------ */
5692 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask)
5693 int atype;
5694 struct sockaddr_in *sin, *mask;
5695 struct in_addr *inp, *inpmask;
5696 {
5697 	if (inpmask != NULL && atype != FRI_NETMASKED)
5698 		inpmask->s_addr = 0xffffffff;
5699 
5700 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5701 		if (atype == FRI_NETMASKED) {
5702 			if (inpmask == NULL)
5703 				return -1;
5704 			inpmask->s_addr = mask->sin_addr.s_addr;
5705 		}
5706 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
5707 	} else {
5708 		inp->s_addr = sin->sin_addr.s_addr;
5709 	}
5710 	return 0;
5711 }
5712 
5713 
5714 #ifdef	USE_INET6
5715 /* ------------------------------------------------------------------------ */
5716 /* Function:    fr_ifpfillv6addr                                            */
5717 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5718 /* Parameters:  atype(I)   - type of network address update to perform      */
5719 /*              sin(I)     - pointer to source of address information       */
5720 /*              mask(I)    - pointer to source of netmask information       */
5721 /*              inp(I)     - pointer to destination address store           */
5722 /*              inpmask(I) - pointer to destination netmask store           */
5723 /*                                                                          */
5724 /* Given a type of network address update (atype) to perform, copy          */
5725 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5726 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5727 /* which case the operation fails.  For all values of atype other than      */
5728 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5729 /* value.                                                                   */
5730 /* ------------------------------------------------------------------------ */
5731 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask)
5732 int atype;
5733 struct sockaddr_in6 *sin, *mask;
5734 struct in_addr *inp, *inpmask;
5735 {
5736 	i6addr_t *src, *dst, *and, *dmask;
5737 
5738 	src = (i6addr_t *)&sin->sin6_addr;
5739 	and = (i6addr_t *)&mask->sin6_addr;
5740 	dst = (i6addr_t *)inp;
5741 	dmask = (i6addr_t *)inpmask;
5742 
5743 	if (inpmask != NULL && atype != FRI_NETMASKED) {
5744 		dmask->i6[0] = 0xffffffff;
5745 		dmask->i6[1] = 0xffffffff;
5746 		dmask->i6[2] = 0xffffffff;
5747 		dmask->i6[3] = 0xffffffff;
5748 	}
5749 
5750 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5751 		if (atype == FRI_NETMASKED) {
5752 			if (inpmask == NULL)
5753 				return -1;
5754 			dmask->i6[0] = and->i6[0];
5755 			dmask->i6[1] = and->i6[1];
5756 			dmask->i6[2] = and->i6[2];
5757 			dmask->i6[3] = and->i6[3];
5758 		}
5759 
5760 		dst->i6[0] = src->i6[0] & and->i6[0];
5761 		dst->i6[1] = src->i6[1] & and->i6[1];
5762 		dst->i6[2] = src->i6[2] & and->i6[2];
5763 		dst->i6[3] = src->i6[3] & and->i6[3];
5764 	} else {
5765 		dst->i6[0] = src->i6[0];
5766 		dst->i6[1] = src->i6[1];
5767 		dst->i6[2] = src->i6[2];
5768 		dst->i6[3] = src->i6[3];
5769 	}
5770 	return 0;
5771 }
5772 #endif
5773 
5774 
5775 /* ------------------------------------------------------------------------ */
5776 /* Function:    fr_matchtag                                                 */
5777 /* Returns:     0 == mismatch, 1 == match.                                  */
5778 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
5779 /*              tag2(I) - pointer to second tag to compare                  */
5780 /*                                                                          */
5781 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
5782 /* considered to be a match or not match, respectively.  The tag is 16      */
5783 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
5784 /* compare the ints instead, for speed. tag1 is the master of the           */
5785 /* comparison.  This function should only be called with both tag1 and tag2 */
5786 /* as non-NULL pointers.                                                    */
5787 /* ------------------------------------------------------------------------ */
5788 int fr_matchtag(tag1, tag2)
5789 ipftag_t *tag1, *tag2;
5790 {
5791 	if (tag1 == tag2)
5792 		return 1;
5793 
5794 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
5795 		return 1;
5796 
5797 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
5798 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
5799 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
5800 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
5801 		return 1;
5802 	return 0;
5803 }
5804 
5805 
5806 /* ------------------------------------------------------------------------ */
5807 /* Function:    fr_coalesce                                                 */
5808 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
5809 /* Parameters:  fin(I) - pointer to packet information                      */
5810 /*                                                                          */
5811 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
5812 /* If this call returns a failure then the buffers have also been freed.    */
5813 /* ------------------------------------------------------------------------ */
5814 int fr_coalesce(fin)
5815 fr_info_t *fin;
5816 {
5817 	ipf_stack_t *ifs = fin->fin_ifs;
5818 	if ((fin->fin_flx & FI_COALESCE) != 0)
5819 		return 1;
5820 
5821 	/*
5822 	 * If the mbuf pointers indicate that there is no mbuf to work with,
5823 	 * return but do not indicate success or failure.
5824 	 */
5825 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
5826 		return 0;
5827 
5828 #if defined(_KERNEL)
5829 	if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
5830 		IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]);
5831 # ifdef MENTAT
5832 		FREE_MB_T(*fin->fin_mp);
5833 # endif
5834 		*fin->fin_mp = NULL;
5835 		fin->fin_m = NULL;
5836 		return -1;
5837 	}
5838 #else
5839 	fin = fin;	/* LINT */
5840 #endif
5841 	return 1;
5842 }
5843 
5844 
5845 /*
5846  * The following table lists all of the tunable variables that can be
5847  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT.  The format of each row
5848  * in the table below is as follows:
5849  *
5850  * pointer to value, name of value, minimum, maximum, size of the value's
5851  *     container, value attribute flags
5852  *
5853  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
5854  * means the value can only be written to when IPFilter is loaded but disabled.
5855  * The obvious implication is if neither of these are set then the value can be
5856  * changed at any time without harm.
5857  */
5858 ipftuneable_t lcl_ipf_tuneables[] = {
5859 	/* filtering */
5860 	{ { NULL },	"fr_flags",		0,	0xffffffff,
5861 			0,		0 },
5862 	{ { NULL },	"fr_active",		0,	0,
5863 			0,		IPFT_RDONLY },
5864 	{ { NULL },	"fr_control_forwarding",	0, 1,
5865 			0,		0 },
5866 	{ { NULL },	"fr_update_ipid",	0,	1,
5867 			0,		0 },
5868 	{ { NULL },	"fr_chksrc",		0,	1,
5869 			0,		0 },
5870 	{ { NULL },	"fr_minttl",		0,	1,
5871 			0,		0 },
5872 	{ { NULL }, 	"fr_icmpminfragmtu",	0,	1,
5873 			0,		0 },
5874 	{ { NULL },		"fr_pass",		0,	0xffffffff,
5875 			0,		0 },
5876 #if SOLARIS2 >= 10
5877 	{ { NULL },	"ipf_loopback",		0,	1,
5878 			0,		IPFT_WRDISABLED },
5879 #endif
5880 	/* state */
5881 	{ { NULL }, "fr_tcpidletimeout",	1,	0x7fffffff,
5882 			0,	IPFT_WRDISABLED },
5883 	{ { NULL },	"fr_tcpclosewait",	1,	0x7fffffff,
5884 			0,	IPFT_WRDISABLED },
5885 	{ { NULL },	"fr_tcplastack",	1,	0x7fffffff,
5886 			0,		IPFT_WRDISABLED },
5887 	{ { NULL },	"fr_tcptimeout",	1,	0x7fffffff,
5888 			0,		IPFT_WRDISABLED },
5889 	{ { NULL },	"fr_tcpclosed",		1,	0x7fffffff,
5890 			0,		IPFT_WRDISABLED },
5891 	{ { NULL },	"fr_tcphalfclosed",	1,	0x7fffffff,
5892 			0,	IPFT_WRDISABLED },
5893 	{ { NULL },	"fr_udptimeout",	1,	0x7fffffff,
5894 			0,		IPFT_WRDISABLED },
5895 	{ { NULL }, "fr_udpacktimeout",	1,	0x7fffffff,
5896 			0,	IPFT_WRDISABLED },
5897 	{ { NULL },	"fr_icmptimeout",	1,	0x7fffffff,
5898 			0,		IPFT_WRDISABLED },
5899 	{ { NULL }, "fr_icmpacktimeout",	1,	0x7fffffff,
5900 			0,	IPFT_WRDISABLED },
5901 	{ { NULL }, "fr_iptimeout",		1,	0x7fffffff,
5902 			0,		IPFT_WRDISABLED },
5903 	{ { NULL },	"fr_statemax",		1,	0x7fffffff,
5904 			0,		0 },
5905 	{ { NULL },	"fr_statesize",		1,	0x7fffffff,
5906 			0,		IPFT_WRDISABLED },
5907 	{ { NULL },	"fr_state_lock",	0,	1,
5908 			0,		IPFT_RDONLY },
5909 	{ { NULL }, "fr_state_maxbucket", 1,	0x7fffffff,
5910 			0,	IPFT_WRDISABLED },
5911 	{ { NULL }, "fr_state_maxbucket_reset",	0, 1,
5912 			0, IPFT_WRDISABLED },
5913 	{ { NULL },	"ipstate_logging",	0,	1,
5914 			0,	0 },
5915 	/* nat */
5916 	{ { NULL },		"fr_nat_lock",		0,	1,
5917 			0,		IPFT_RDONLY },
5918 	{ { NULL },	"ipf_nattable_sz",	1,	0x7fffffff,
5919 			0,	IPFT_WRDISABLED },
5920 	{ { NULL }, "ipf_nattable_max",	1,	0x7fffffff,
5921 			0,	0 },
5922 	{ { NULL },	"ipf_natrules_sz",	1,	0x7fffffff,
5923 			0,	IPFT_WRDISABLED },
5924 	{ { NULL },	"ipf_rdrrules_sz",	1,	0x7fffffff,
5925 			0,	IPFT_WRDISABLED },
5926 	{ { NULL },	"ipf_hostmap_sz",	1,	0x7fffffff,
5927 			0,		IPFT_WRDISABLED },
5928 	{ { NULL }, "fr_nat_maxbucket",	1,	0x7fffffff,
5929 			0,	IPFT_WRDISABLED },
5930 	{ { NULL },	"fr_nat_maxbucket_reset",	0, 1,
5931 			0,	IPFT_WRDISABLED },
5932 	{ { NULL },		"nat_logging",		0,	1,
5933 			0,		0 },
5934 	{ { NULL },	"fr_defnatage",		1,	0x7fffffff,
5935 			0,		IPFT_WRDISABLED },
5936 	{ { NULL },	"fr_defnatipage",	1,	0x7fffffff,
5937 			0,		IPFT_WRDISABLED },
5938 	{ { NULL }, "fr_defnaticmpage",	1,	0x7fffffff,
5939 			0,	IPFT_WRDISABLED },
5940 	{ { NULL },	"nat_flush_lvl_hi",	1,	100,
5941 			0,		0 },
5942 	{ { NULL },	"nat_flush_lvl_lo",	1,	100,
5943 			0,		0 },
5944 	/* frag */
5945 	{ { NULL },	"ipfr_size",		1,	0x7fffffff,
5946 			0,		IPFT_WRDISABLED },
5947 	{ { NULL },	"fr_ipfrttl",		1,	0x7fffffff,
5948 			0,		IPFT_WRDISABLED },
5949 #ifdef IPFILTER_LOG
5950 	/* log */
5951 	{ { NULL },	"ipl_suppress",		0,	1,
5952 			0,		0 },
5953 	{ { NULL },	"ipl_buffer_sz",	0,	0,
5954 			0,		IPFT_RDONLY },
5955 	{ { NULL },	"ipl_logmax",		0,	0x7fffffff,
5956 			0,		IPFT_WRDISABLED },
5957 	{ { NULL },	"ipl_logall",		0,	1,
5958 			0,		0 },
5959 	{ { NULL },	"ipl_logsize",		0,	0x80000,
5960 			0,		0 },
5961 #endif
5962 	{ { NULL },		NULL,			0,	0 }
5963 };
5964 
5965 static ipftuneable_t *
5966 tune_lookup(ipf_stack_t *ifs, char *name)
5967 {
5968     int i;
5969 
5970     for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) {
5971 	if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0)
5972 	    return (&ifs->ifs_ipf_tuneables[i]);
5973     }
5974     return (NULL);
5975 }
5976 
5977 #ifdef _KERNEL
5978 extern dev_info_t *ipf_dev_info;
5979 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *));
5980 #endif
5981 
5982 /* -------------------------------------------------------------------- */
5983 /* Function:	ipftuneable_setdefs()					*/
5984 /* Returns:		void						*/
5985 /* Parameters:	ifs - pointer to newly allocated IPF instance		*/
5986 /*				assigned to	IP instance		*/
5987 /*									*/
5988 /* Function initializes IPF instance variables. Function is invoked	*/
5989 /* from	ipftuneable_alloc(). ipftuneable_alloc() is called only one	*/
5990 /* time during IP instance lifetime - at the time of IP instance	*/
5991 /* creation. Anytime IP	instance is being created new private IPF	*/
5992 /* instance is allocated and assigned to it. The moment of IP 		*/
5993 /* instance creation is the right time to initialize those IPF 		*/
5994 /* variables.								*/
5995 /*									*/
5996 /* -------------------------------------------------------------------- */
5997 static void ipftuneable_setdefs(ipf_stack_t *ifs)
5998 {
5999 	ifs->ifs_ipfr_size = IPFT_SIZE;
6000 	ifs->ifs_fr_ipfrttl = 120;	/* 60 seconds */
6001 
6002 	/* it comes from fr_authinit() in IPF auth */
6003 	ifs->ifs_fr_authsize = FR_NUMAUTH;
6004 	ifs->ifs_fr_defaultauthage = 600;
6005 
6006 	/* it comes from fr_stateinit() in IPF state */
6007 	ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5);	/* five days */
6008 	ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL);
6009 	ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL);
6010 	ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL);
6011 	ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60);
6012 	ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600);	/* 2 hours */
6013 	ifs->ifs_fr_udptimeout = IPF_TTLVAL(120);
6014 	ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12);
6015 	ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60);
6016 	ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6);
6017 	ifs->ifs_fr_iptimeout = IPF_TTLVAL(60);
6018 	ifs->ifs_fr_statemax = IPSTATE_MAX;
6019 	ifs->ifs_fr_statesize = IPSTATE_SIZE;
6020 	ifs->ifs_fr_state_maxbucket_reset = 1;
6021 
6022 	/* it comes from fr_natinit() in ipnat */
6023 	ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ;
6024 	ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX;
6025 	ifs->ifs_ipf_natrules_sz = NAT_SIZE;
6026 	ifs->ifs_ipf_rdrrules_sz = RDR_SIZE;
6027 	ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE;
6028 	ifs->ifs_fr_nat_maxbucket_reset = 1;
6029 	ifs->ifs_fr_defnatage = DEF_NAT_AGE;
6030 	ifs->ifs_fr_defnatipage = 120;		/* 60 seconds */
6031 	ifs->ifs_fr_defnaticmpage = 6;		/* 3 seconds */
6032 	ifs->ifs_nat_flush_lvl_hi = NAT_FLUSH_HI;
6033 	ifs->ifs_nat_flush_lvl_lo = NAT_FLUSH_LO;
6034 
6035 #ifdef IPFILTER_LOG
6036 	/* it comes from fr_loginit() in IPF log */
6037 	ifs->ifs_ipl_suppress = 1;
6038 	ifs->ifs_ipl_logmax = IPL_LOGMAX;
6039 	ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE;
6040 
6041 	/* from fr_natinit() */
6042 	ifs->ifs_nat_logging = 1;
6043 
6044 	/* from fr_stateinit() */
6045 	ifs->ifs_ipstate_logging = 1;
6046 #else
6047 	/* from fr_natinit() */
6048 	ifs->ifs_nat_logging = 0;
6049 
6050 	/* from fr_stateinit() */
6051 	ifs->ifs_ipstate_logging = 0;
6052 #endif
6053 	ifs->ifs_ipf_loopback = 0;
6054 
6055 }
6056 /*
6057  * Allocate a per-stack tuneable and copy in the names. Then
6058  * set it to point to each of the per-stack tunables.
6059  */
6060 void
6061 ipftuneable_alloc(ipf_stack_t *ifs)
6062 {
6063     ipftuneable_t *item;
6064 
6065     KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *,
6066 	sizeof (lcl_ipf_tuneables));
6067     bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables,
6068 	sizeof (lcl_ipf_tuneables));
6069 
6070 #define TUNE_SET(_ifs, _name, _field)			\
6071     item = tune_lookup((_ifs), (_name));		\
6072     if (item != NULL) {					\
6073 	item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field);	\
6074 	item->ipft_sz = sizeof ((_ifs)->_field);	\
6075     }
6076 
6077     TUNE_SET(ifs, "fr_flags", ifs_fr_flags);
6078     TUNE_SET(ifs, "fr_active", ifs_fr_active);
6079     TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding);
6080     TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid);
6081     TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc);
6082     TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl);
6083     TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu);
6084     TUNE_SET(ifs, "fr_pass", ifs_fr_pass);
6085     TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout);
6086     TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait);
6087     TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack);
6088     TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout);
6089     TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed);
6090     TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed);
6091     TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout);
6092     TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout);
6093     TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout);
6094     TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout);
6095     TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout);
6096     TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax);
6097     TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize);
6098     TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock);
6099     TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket);
6100     TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset);
6101     TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging);
6102     TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock);
6103     TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz);
6104     TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max);
6105     TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz);
6106     TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz);
6107     TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz);
6108     TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket);
6109     TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset);
6110     TUNE_SET(ifs, "nat_logging", ifs_nat_logging);
6111     TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage);
6112     TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage);
6113     TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage);
6114     TUNE_SET(ifs, "nat_flush_lvl_hi", ifs_nat_flush_lvl_hi);
6115     TUNE_SET(ifs, "nat_flush_lvl_lo", ifs_nat_flush_lvl_lo);
6116     TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size);
6117     TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl);
6118     TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback);
6119 #ifdef IPFILTER_LOG
6120     TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress);
6121     TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz);
6122     TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax);
6123     TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall);
6124     TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize);
6125 #endif
6126 #undef TUNE_SET
6127 
6128 	ipftuneable_setdefs(ifs);
6129 
6130 #ifdef _KERNEL
6131     (void) ipf_property_update(ipf_dev_info, ifs);
6132 #endif
6133 }
6134 
6135 void
6136 ipftuneable_free(ipf_stack_t *ifs)
6137 {
6138 	KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables));
6139 	ifs->ifs_ipf_tuneables = NULL;
6140 }
6141 
6142 /* ------------------------------------------------------------------------ */
6143 /* Function:    fr_findtunebycookie                                         */
6144 /* Returns:     NULL = search failed, else pointer to tune struct           */
6145 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6146 /*              next(O)   - pointer to place to store the cookie for the    */
6147 /*                          "next" tuneable, if it is desired.              */
6148 /*                                                                          */
6149 /* This function is used to walk through all of the existing tunables with  */
6150 /* successive calls.  It searches the known tunables for the one which has  */
6151 /* a matching value for "cookie" - ie its address.  When returning a match, */
6152 /* the next one to be found may be returned inside next.                    */
6153 /* ------------------------------------------------------------------------ */
6154 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs)
6155 void *cookie, **next;
6156 ipf_stack_t * ifs;
6157 {
6158 	ipftuneable_t *ta, **tap;
6159 
6160 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6161 		if (ta == cookie) {
6162 			if (next != NULL) {
6163 				/*
6164 				 * If the next entry in the array has a name
6165 				 * present, then return a pointer to it for
6166 				 * where to go next, else return a pointer to
6167 				 * the dynaminc list as a key to search there
6168 				 * next.  This facilitates a weak linking of
6169 				 * the two "lists" together.
6170 				 */
6171 				if ((ta + 1)->ipft_name != NULL)
6172 					*next = ta + 1;
6173 				else
6174 					*next = &ifs->ifs_ipf_tunelist;
6175 			}
6176 			return ta;
6177 		}
6178 
6179 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6180 		if (tap == cookie) {
6181 			if (next != NULL)
6182 				*next = &ta->ipft_next;
6183 			return ta;
6184 		}
6185 
6186 	if (next != NULL)
6187 		*next = NULL;
6188 	return NULL;
6189 }
6190 
6191 
6192 /* ------------------------------------------------------------------------ */
6193 /* Function:    fr_findtunebyname                                           */
6194 /* Returns:     NULL = search failed, else pointer to tune struct           */
6195 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6196 /*                                                                          */
6197 /* Search the static array of tuneables and the list of dynamic tuneables   */
6198 /* for an entry with a matching name.  If we can find one, return a pointer */
6199 /* to the matching structure.                                               */
6200 /* ------------------------------------------------------------------------ */
6201 static ipftuneable_t *fr_findtunebyname(name, ifs)
6202 const char *name;
6203 ipf_stack_t *ifs;
6204 {
6205 	ipftuneable_t *ta;
6206 
6207 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6208 		if (!strcmp(ta->ipft_name, name)) {
6209 			return ta;
6210 		}
6211 
6212 	for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next)
6213 		if (!strcmp(ta->ipft_name, name)) {
6214 			return ta;
6215 		}
6216 
6217 	return NULL;
6218 }
6219 
6220 
6221 /* ------------------------------------------------------------------------ */
6222 /* Function:    fr_addipftune                                               */
6223 /* Returns:     int - 0 == success, else failure                            */
6224 /* Parameters:  newtune - pointer to new tune struct to add to tuneables    */
6225 /*                                                                          */
6226 /* Appends the tune structure pointer to by "newtune" to the end of the     */
6227 /* current list of "dynamic" tuneable parameters.  Once added, the owner    */
6228 /* of the object is not expected to ever change "ipft_next".                */
6229 /* ------------------------------------------------------------------------ */
6230 int fr_addipftune(newtune, ifs)
6231 ipftuneable_t *newtune;
6232 ipf_stack_t *ifs;
6233 {
6234 	ipftuneable_t *ta, **tap;
6235 
6236 	ta = fr_findtunebyname(newtune->ipft_name, ifs);
6237 	if (ta != NULL)
6238 		return EEXIST;
6239 
6240 	for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next)
6241 		;
6242 
6243 	newtune->ipft_next = NULL;
6244 	*tap = newtune;
6245 	return 0;
6246 }
6247 
6248 
6249 /* ------------------------------------------------------------------------ */
6250 /* Function:    fr_delipftune                                               */
6251 /* Returns:     int - 0 == success, else failure                            */
6252 /* Parameters:  oldtune - pointer to tune struct to remove from the list of */
6253 /*                        current dynamic tuneables                         */
6254 /*                                                                          */
6255 /* Search for the tune structure, by pointer, in the list of those that are */
6256 /* dynamically added at run time.  If found, adjust the list so that this   */
6257 /* structure is no longer part of it.                                       */
6258 /* ------------------------------------------------------------------------ */
6259 int fr_delipftune(oldtune, ifs)
6260 ipftuneable_t *oldtune;
6261 ipf_stack_t *ifs;
6262 {
6263 	ipftuneable_t *ta, **tap;
6264 
6265 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6266 		if (ta == oldtune) {
6267 			*tap = oldtune->ipft_next;
6268 			oldtune->ipft_next = NULL;
6269 			return 0;
6270 		}
6271 
6272 	return ESRCH;
6273 }
6274 
6275 
6276 /* ------------------------------------------------------------------------ */
6277 /* Function:    fr_ipftune                                                  */
6278 /* Returns:     int - 0 == success, else failure                            */
6279 /* Parameters:  cmd(I)  - ioctl command number                              */
6280 /*              data(I) - pointer to ioctl data structure                   */
6281 /*                                                                          */
6282 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
6283 /* three ioctls provide the means to access and control global variables    */
6284 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
6285 /* changed without rebooting, reloading or recompiling.  The initialisation */
6286 /* and 'destruction' routines of the various components of ipfilter are all */
6287 /* each responsible for handling their own values being too big.            */
6288 /* ------------------------------------------------------------------------ */
6289 int fr_ipftune(cmd, data, ifs)
6290 ioctlcmd_t cmd;
6291 void *data;
6292 ipf_stack_t *ifs;
6293 {
6294 	ipftuneable_t *ta;
6295 	ipftune_t tu;
6296 	void *cookie;
6297 	int error;
6298 
6299 	error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE);
6300 	if (error != 0)
6301 		return error;
6302 
6303 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
6304 	cookie = tu.ipft_cookie;
6305 	ta = NULL;
6306 
6307 	switch (cmd)
6308 	{
6309 	case SIOCIPFGETNEXT :
6310 		/*
6311 		 * If cookie is non-NULL, assume it to be a pointer to the last
6312 		 * entry we looked at, so find it (if possible) and return a
6313 		 * pointer to the next one after it.  The last entry in the
6314 		 * the table is a NULL entry, so when we get to it, set cookie
6315 		 * to NULL and return that, indicating end of list, erstwhile
6316 		 * if we come in with cookie set to NULL, we are starting anew
6317 		 * at the front of the list.
6318 		 */
6319 		if (cookie != NULL) {
6320 			ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs);
6321 		} else {
6322 			ta = ifs->ifs_ipf_tuneables;
6323 			tu.ipft_cookie = ta + 1;
6324 		}
6325 		if (ta != NULL) {
6326 			/*
6327 			 * Entry found, but does the data pointed to by that
6328 			 * row fit in what we can return?
6329 			 */
6330 			if (ta->ipft_sz > sizeof(tu.ipft_un))
6331 				return EINVAL;
6332 
6333 			tu.ipft_vlong = 0;
6334 			if (ta->ipft_sz == sizeof(u_long))
6335 				tu.ipft_vlong = *ta->ipft_plong;
6336 			else if (ta->ipft_sz == sizeof(u_int))
6337 				tu.ipft_vint = *ta->ipft_pint;
6338 			else if (ta->ipft_sz == sizeof(u_short))
6339 				tu.ipft_vshort = *ta->ipft_pshort;
6340 			else if (ta->ipft_sz == sizeof(u_char))
6341 				tu.ipft_vchar = *ta->ipft_pchar;
6342 
6343 			tu.ipft_sz = ta->ipft_sz;
6344 			tu.ipft_min = ta->ipft_min;
6345 			tu.ipft_max = ta->ipft_max;
6346 			tu.ipft_flags = ta->ipft_flags;
6347 			bcopy(ta->ipft_name, tu.ipft_name,
6348 			      MIN(sizeof(tu.ipft_name),
6349 				  strlen(ta->ipft_name) + 1));
6350 		}
6351 		error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6352 		break;
6353 
6354 	case SIOCIPFGET :
6355 	case SIOCIPFSET :
6356 		/*
6357 		 * Search by name or by cookie value for a particular entry
6358 		 * in the tuning paramter table.
6359 		 */
6360 		error = ESRCH;
6361 		if (cookie != NULL) {
6362 			ta = fr_findtunebycookie(cookie, NULL, ifs);
6363 			if (ta != NULL)
6364 				error = 0;
6365 		} else if (tu.ipft_name[0] != '\0') {
6366 			ta = fr_findtunebyname(tu.ipft_name, ifs);
6367 			if (ta != NULL)
6368 				error = 0;
6369 		}
6370 		if (error != 0)
6371 			break;
6372 
6373 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
6374 			/*
6375 			 * Fetch the tuning parameters for a particular value
6376 			 */
6377 			tu.ipft_vlong = 0;
6378 			if (ta->ipft_sz == sizeof(u_long))
6379 				tu.ipft_vlong = *ta->ipft_plong;
6380 			else if (ta->ipft_sz == sizeof(u_int))
6381 				tu.ipft_vint = *ta->ipft_pint;
6382 			else if (ta->ipft_sz == sizeof(u_short))
6383 				tu.ipft_vshort = *ta->ipft_pshort;
6384 			else if (ta->ipft_sz == sizeof(u_char))
6385 				tu.ipft_vchar = *ta->ipft_pchar;
6386 			tu.ipft_cookie = ta;
6387 			tu.ipft_sz = ta->ipft_sz;
6388 			tu.ipft_min = ta->ipft_min;
6389 			tu.ipft_max = ta->ipft_max;
6390 			tu.ipft_flags = ta->ipft_flags;
6391 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6392 
6393 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
6394 			/*
6395 			 * Set an internal parameter.  The hard part here is
6396 			 * getting the new value safely and correctly out of
6397 			 * the kernel (given we only know its size, not type.)
6398 			 */
6399 			u_long in;
6400 
6401 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
6402 			    (ifs->ifs_fr_running > 0)) {
6403 				error = EBUSY;
6404 				break;
6405 			}
6406 
6407 			in = tu.ipft_vlong;
6408 			if (in < ta->ipft_min || in > ta->ipft_max) {
6409 				error = EINVAL;
6410 				break;
6411 			}
6412 
6413 			if (ta->ipft_sz == sizeof(u_long)) {
6414 				tu.ipft_vlong = *ta->ipft_plong;
6415 				*ta->ipft_plong = in;
6416 			} else if (ta->ipft_sz == sizeof(u_int)) {
6417 				tu.ipft_vint = *ta->ipft_pint;
6418 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
6419 			} else if (ta->ipft_sz == sizeof(u_short)) {
6420 				tu.ipft_vshort = *ta->ipft_pshort;
6421 				*ta->ipft_pshort = (u_short)(in & 0xffff);
6422 			} else if (ta->ipft_sz == sizeof(u_char)) {
6423 				tu.ipft_vchar = *ta->ipft_pchar;
6424 				*ta->ipft_pchar = (u_char)(in & 0xff);
6425 			}
6426 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6427 		}
6428 		break;
6429 
6430 	default :
6431 		error = EINVAL;
6432 		break;
6433 	}
6434 
6435 	return error;
6436 }
6437 
6438 
6439 /* ------------------------------------------------------------------------ */
6440 /* Function:    fr_initialise                                               */
6441 /* Returns:     int - 0 == success,  < 0 == failure                         */
6442 /* Parameters:  None.                                                       */
6443 /*                                                                          */
6444 /* Call of the initialise functions for all the various subsystems inside   */
6445 /* of IPFilter.  If any of them should fail, return immeadiately a failure  */
6446 /* BUT do not try to recover from the error here.                           */
6447 /* ------------------------------------------------------------------------ */
6448 int fr_initialise(ifs)
6449 ipf_stack_t *ifs;
6450 {
6451 	int i;
6452 
6453 #ifdef IPFILTER_LOG
6454 	i = fr_loginit(ifs);
6455 	if (i < 0)
6456 		return -10 + i;
6457 #endif
6458 	i = fr_natinit(ifs);
6459 	if (i < 0)
6460 		return -20 + i;
6461 
6462 	i = fr_stateinit(ifs);
6463 	if (i < 0)
6464 		return -30 + i;
6465 
6466 	i = fr_authinit(ifs);
6467 	if (i < 0)
6468 		return -40 + i;
6469 
6470 	i = fr_fraginit(ifs);
6471 	if (i < 0)
6472 		return -50 + i;
6473 
6474 	i = appr_init(ifs);
6475 	if (i < 0)
6476 		return -60 + i;
6477 
6478 #ifdef IPFILTER_SYNC
6479 	i = ipfsync_init(ifs);
6480 	if (i < 0)
6481 		return -70 + i;
6482 #endif
6483 #ifdef IPFILTER_SCAN
6484 	i = ipsc_init(ifs);
6485 	if (i < 0)
6486 		return -80 + i;
6487 #endif
6488 #ifdef IPFILTER_LOOKUP
6489 	i = ip_lookup_init(ifs);
6490 	if (i < 0)
6491 		return -90 + i;
6492 #endif
6493 #ifdef IPFILTER_COMPILED
6494 	ipfrule_add(ifs);
6495 #endif
6496 	return 0;
6497 }
6498 
6499 
6500 /* ------------------------------------------------------------------------ */
6501 /* Function:    fr_deinitialise                                             */
6502 /* Returns:     None.                                                       */
6503 /* Parameters:  None.                                                       */
6504 /*                                                                          */
6505 /* Call all the various subsystem cleanup routines to deallocate memory or  */
6506 /* destroy locks or whatever they've done that they need to now undo.       */
6507 /* The order here IS important as there are some cross references of        */
6508 /* internal data structures.                                                */
6509 /* ------------------------------------------------------------------------ */
6510 void fr_deinitialise(ifs)
6511 ipf_stack_t *ifs;
6512 {
6513 	fr_fragunload(ifs);
6514 	fr_authunload(ifs);
6515 	fr_natunload(ifs);
6516 	fr_stateunload(ifs);
6517 #ifdef IPFILTER_SCAN
6518 	fr_scanunload(ifs);
6519 #endif
6520 	appr_unload(ifs);
6521 
6522 #ifdef IPFILTER_COMPILED
6523 	ipfrule_remove(ifs);
6524 #endif
6525 
6526 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6527 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs);
6528 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6529 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs);
6530 
6531 #ifdef IPFILTER_LOOKUP
6532 	ip_lookup_unload(ifs);
6533 #endif
6534 
6535 #ifdef IPFILTER_LOG
6536 	fr_logunload(ifs);
6537 #endif
6538 }
6539 
6540 
6541 /* ------------------------------------------------------------------------ */
6542 /* Function:    fr_zerostats                                                */
6543 /* Returns:     int - 0 = success, else failure                             */
6544 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
6545 /*                                                                          */
6546 /* Copies the current statistics out to userspace and then zero's the       */
6547 /* current ones in the kernel. The lock is only held across the bzero() as  */
6548 /* the copyout may result in paging (ie network activity.)                  */
6549 /* ------------------------------------------------------------------------ */
6550 int	fr_zerostats(data, ifs)
6551 caddr_t	data;
6552 ipf_stack_t *ifs;
6553 {
6554 	friostat_t fio;
6555 	int error;
6556 
6557 	fr_getstat(&fio, ifs);
6558 	error = copyoutptr(&fio, data, sizeof(fio));
6559 	if (error)
6560 		return EFAULT;
6561 
6562 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
6563 	bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2);
6564 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
6565 
6566 	return 0;
6567 }
6568 
6569 
6570 #ifdef _KERNEL
6571 /* ------------------------------------------------------------------------ */
6572 /* Function:    fr_resolvedest                                              */
6573 /* Returns:     Nil                                                         */
6574 /* Parameters:  fdp(IO) - pointer to destination information to resolve     */
6575 /*              v(I)    - IP protocol version to match                      */
6576 /*                                                                          */
6577 /* Looks up an interface name in the frdest structure pointed to by fdp and */
6578 /* if a matching name can be found for the particular IP protocol version   */
6579 /* then store the interface pointer in the frdest struct.  If no match is   */
6580 /* found, then set the interface pointer to be -1 as NULL is considered to  */
6581 /* indicate there is no information at all in the structure.                */
6582 /* ------------------------------------------------------------------------ */
6583 void fr_resolvedest(fdp, v, ifs)
6584 frdest_t *fdp;
6585 int v;
6586 ipf_stack_t *ifs;
6587 {
6588 	fdp->fd_ifp = NULL;
6589 
6590   	if (*fdp->fd_ifname != '\0') {
6591  		fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs);
6592 		if (fdp->fd_ifp == NULL)
6593 			fdp->fd_ifp = (void *)-1;
6594 	}
6595 }
6596 #endif /* _KERNEL */
6597 
6598 
6599 /* ------------------------------------------------------------------------ */
6600 /* Function:    fr_resolvenic                                               */
6601 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
6602 /*                      pointer to interface structure for NIC              */
6603 /* Parameters:  name(I) - complete interface name                           */
6604 /*              v(I)    - IP protocol version                               */
6605 /*                                                                          */
6606 /* Look for a network interface structure that firstly has a matching name  */
6607 /* to that passed in and that is also being used for that IP protocol       */
6608 /* version (necessary on some platforms where there are separate listings   */
6609 /* for both IPv4 and IPv6 on the same physical NIC.                         */
6610 /*                                                                          */
6611 /* One might wonder why name gets terminated with a \0 byte in here.  The   */
6612 /* reason is an interface name could get into the kernel structures of ipf  */
6613 /* in any number of ways and so long as they all use the same sized array   */
6614 /* to put the name in, it makes sense to ensure it gets null terminated     */
6615 /* before it is used for its intended purpose - finding its match in the    */
6616 /* kernel's list of configured interfaces.                                  */
6617 /*                                                                          */
6618 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an     */
6619 /*       array for the name that is LIFNAMSIZ bytes (at least) in length.   */
6620 /* ------------------------------------------------------------------------ */
6621 void *fr_resolvenic(name, v, ifs)
6622 char *name;
6623 int v;
6624 ipf_stack_t *ifs;
6625 {
6626 	void *nic;
6627 
6628 	if (name[0] == '\0')
6629 		return NULL;
6630 
6631 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
6632 		return NULL;
6633 	}
6634 
6635 	name[LIFNAMSIZ - 1] = '\0';
6636 
6637 	nic = GETIFP(name, v, ifs);
6638 	if (nic == NULL)
6639 		nic = (void *)-1;
6640 	return nic;
6641 }
6642 
6643 
6644 /* ------------------------------------------------------------------------ */
6645 /* Function:    ipf_expiretokens                                            */
6646 /* Returns:     None.                                                       */
6647 /* Parameters:  ifs - ipf stack instance                                    */
6648 /*                                                                          */
6649 /* This function is run every ipf tick to see if there are any tokens that  */
6650 /* have been held for too long and need to be freed up.                     */
6651 /* ------------------------------------------------------------------------ */
6652 void ipf_expiretokens(ifs)
6653 ipf_stack_t *ifs;
6654 {
6655 	ipftoken_t *it;
6656 
6657 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6658 	while ((it = ifs->ifs_ipftokenhead) != NULL) {
6659 		if (it->ipt_die > ifs->ifs_fr_ticks)
6660 			break;
6661 
6662 		ipf_freetoken(it, ifs);
6663 	}
6664 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6665 }
6666 
6667 
6668 /* ------------------------------------------------------------------------ */
6669 /* Function:    ipf_deltoken                                                */
6670 /* Returns:     int - 0 = success, else error                               */
6671 /* Parameters:  type(I) - the token type to match                           */
6672 /*              uid(I)  - uid owning the token                              */
6673 /*              ptr(I)  - context pointer for the token                     */
6674 /*              ifs - ipf stack instance                                    */
6675 /*                                                                          */
6676 /* This function looks for a a token in the current list that matches up    */
6677 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
6678 /* call ipf_freetoken() to remove it from the list.                         */
6679 /* ------------------------------------------------------------------------ */
6680 int ipf_deltoken(type, uid, ptr, ifs)
6681 int type, uid;
6682 void *ptr;
6683 ipf_stack_t *ifs;
6684 {
6685 	ipftoken_t *it;
6686 	int error = ESRCH;
6687 
6688 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6689 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next)
6690 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6691 		    uid == it->ipt_uid) {
6692 			ipf_freetoken(it, ifs);
6693 			error = 0;
6694 			break;
6695 	}
6696 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6697 
6698 	return error;
6699 }
6700 
6701 
6702 /* ------------------------------------------------------------------------ */
6703 /* Function:    ipf_unlinktoken                                             */
6704 /* Returns:     None.                                                       */
6705 /* Parameters:  token(I) - pointer to token structure                       */
6706 /*              ifs - ipf stack instance                                    */
6707 /*                                                                          */
6708 /* This function unlinks a token structure from the linked list of tokens   */
6709 /* that it belongs to.  The head pointer never needs to be explicitly       */
6710 /* adjusted, but the tail does due to the linked list implementation.       */
6711 /* ------------------------------------------------------------------------ */
6712 static void ipf_unlinktoken(token, ifs)
6713 ipftoken_t *token;
6714 ipf_stack_t *ifs;
6715 {
6716 
6717 	if (ifs->ifs_ipftokentail == &token->ipt_next)
6718 		ifs->ifs_ipftokentail = token->ipt_pnext;
6719 
6720 	*token->ipt_pnext = token->ipt_next;
6721 	if (token->ipt_next != NULL)
6722 		token->ipt_next->ipt_pnext = token->ipt_pnext;
6723 }
6724 
6725 
6726 /* ------------------------------------------------------------------------ */
6727 /* Function:    ipf_findtoken                                               */
6728 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
6729 /* Parameters:  type(I) - the token type to match                           */
6730 /*              uid(I) - uid owning the token                               */
6731 /*              ptr(I) - context pointer for the token                      */
6732 /*              ifs - ipf stack instance                                    */
6733 /*                                                                          */
6734 /* This function looks for a live token in the list of current tokens that  */
6735 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
6736 /* allocated.  If one is found then it is moved to the top of the list of   */
6737 /* currently active tokens.                                                 */
6738 /*                                                                          */
6739 /* NOTE: It is by design that this function returns holding a read lock on  */
6740 /*       ipf_tokens.  Callers must make sure they release it!               */
6741 /* ------------------------------------------------------------------------ */
6742 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs)
6743 int type, uid;
6744 void *ptr;
6745 ipf_stack_t *ifs;
6746 {
6747 	ipftoken_t *it, *new;
6748 
6749 	KMALLOC(new, ipftoken_t *);
6750 
6751 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6752 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) {
6753 		if (it->ipt_alive == 0)
6754 			continue;
6755 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6756 		    uid == it->ipt_uid)
6757 			break;
6758 	}
6759 
6760 	if (it == NULL) {
6761 		it = new;
6762 		new = NULL;
6763 		if (it == NULL)
6764 			return NULL;
6765 		it->ipt_data = NULL;
6766 		it->ipt_ctx = ptr;
6767 		it->ipt_uid = uid;
6768 		it->ipt_type = type;
6769 		it->ipt_next = NULL;
6770 		it->ipt_alive = 1;
6771 	} else {
6772 		if (new != NULL) {
6773 			KFREE(new);
6774 			new = NULL;
6775 		}
6776 
6777 		ipf_unlinktoken(it, ifs);
6778 	}
6779 	it->ipt_pnext = ifs->ifs_ipftokentail;
6780 	*ifs->ifs_ipftokentail = it;
6781 	ifs->ifs_ipftokentail = &it->ipt_next;
6782 	it->ipt_next = NULL;
6783 
6784 	it->ipt_die = ifs->ifs_fr_ticks + 2;
6785 
6786 	MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens);
6787 
6788 	return it;
6789 }
6790 
6791 
6792 /* ------------------------------------------------------------------------ */
6793 /* Function:    ipf_freetoken                                               */
6794 /* Returns:     None.                                                       */
6795 /* Parameters:  token(I) - pointer to token structure                       */
6796 /*              ifs - ipf stack instance                                    */
6797 /*                                                                          */
6798 /* This function unlinks a token from the linked list and on the path to    */
6799 /* free'ing the data, it calls the dereference function that is associated  */
6800 /* with the type of data pointed to by the token as it is considered to     */
6801 /* hold a reference to it.                                                  */
6802 /* ------------------------------------------------------------------------ */
6803 void ipf_freetoken(token, ifs)
6804 ipftoken_t *token;
6805 ipf_stack_t *ifs;
6806 {
6807 	void *data, **datap;
6808 
6809 	ipf_unlinktoken(token, ifs);
6810 
6811 	data = token->ipt_data;
6812 	datap = &data;
6813 
6814 	if ((data != NULL) && (data != (void *)-1)) {
6815 		switch (token->ipt_type)
6816 		{
6817 		case IPFGENITER_IPF :
6818 			(void)fr_derefrule((frentry_t **)datap, ifs);
6819 			break;
6820 		case IPFGENITER_IPNAT :
6821 			WRITE_ENTER(&ifs->ifs_ipf_nat);
6822 			fr_ipnatderef((ipnat_t **)datap, ifs);
6823 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
6824 			break;
6825 		case IPFGENITER_NAT :
6826 			fr_natderef((nat_t **)datap, ifs);
6827 			break;
6828 		case IPFGENITER_STATE :
6829 			fr_statederef((ipstate_t **)datap, ifs);
6830 			break;
6831 		case IPFGENITER_FRAG :
6832 			fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs);
6833 			break;
6834 		case IPFGENITER_NATFRAG :
6835  			fr_fragderef((ipfr_t **)datap,
6836 				     &ifs->ifs_ipf_natfrag, ifs);
6837 			break;
6838 		case IPFGENITER_HOSTMAP :
6839 			WRITE_ENTER(&ifs->ifs_ipf_nat);
6840 			fr_hostmapdel((hostmap_t **)datap);
6841 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
6842 			break;
6843 		default :
6844 			(void) ip_lookup_iterderef(token->ipt_type, data, ifs);
6845 			break;
6846 		}
6847 	}
6848 
6849 	KFREE(token);
6850 }
6851 
6852 
6853 /* ------------------------------------------------------------------------ */
6854 /* Function:    ipf_getnextrule                                             */
6855 /* Returns:     int - 0 = success, else error                               */
6856 /* Parameters:  t(I)   - pointer to destination information to resolve      */
6857 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
6858 /*              ifs - ipf stack instance                                    */
6859 /*                                                                          */
6860 /* This function's first job is to bring in the ipfruleiter_t structure via */
6861 /* the ipfobj_t structure to determine what should be the next rule to      */
6862 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
6863 /* find the 'next rule'.  This may include searching rule group lists or    */
6864 /* just be as simple as looking at the 'next' field in the rule structure.  */
6865 /* When we have found the rule to return, increase its reference count and  */
6866 /* if we used an existing rule to get here, decrease its reference count.   */
6867 /* ------------------------------------------------------------------------ */
6868 int ipf_getnextrule(t, ptr, ifs)
6869 ipftoken_t *t;
6870 void *ptr;
6871 ipf_stack_t *ifs;
6872 {
6873 	frentry_t *fr, *next, zero;
6874 	int error, out, count;
6875 	ipfruleiter_t it;
6876 	frgroup_t *fg;
6877 	char *dst;
6878 
6879 	if (t == NULL || ptr == NULL)
6880 		return EFAULT;
6881 	error = fr_inobj(ptr, &it, IPFOBJ_IPFITER);
6882 	if (error != 0)
6883 		return error;
6884 	if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6))
6885 		return EINVAL;
6886 	if ((it.iri_inout < 0) || (it.iri_inout > 3))
6887 		return EINVAL;
6888 	if (it.iri_nrules == 0)
6889 		return EINVAL;
6890 	if ((it.iri_active != 0) && (it.iri_active != 1))
6891 		return EINVAL;
6892 	if (it.iri_rule == NULL)
6893 		return EFAULT;
6894 
6895 	/*
6896 	 * Use bitmask on it.iri_inout to determine direction.
6897 	 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while
6898 	 * F_IN (0) and F_ACIN (2) mask to out = 0.
6899 	 */
6900 	out = it.iri_inout & F_OUT;
6901 	READ_ENTER(&ifs->ifs_ipf_mutex);
6902 
6903 	/*
6904 	 * Retrieve "previous" entry from token and find the next entry.
6905 	 */
6906 	fr = t->ipt_data;
6907 	if (fr == NULL) {
6908 		if (*it.iri_group == '\0') {
6909 			/*
6910 			 * Use bitmask again to determine accounting or not.
6911 			 * F_ACIN will mask to accounting cases F_ACIN (2)
6912 			 * or F_ACOUT (3), but not F_IN or F_OUT.
6913 			 */
6914 			if ((it.iri_inout & F_ACIN) != 0) {
6915 				if (it.iri_ver == AF_INET)
6916 					next = ifs->ifs_ipacct
6917 					    [out][it.iri_active];
6918 				else
6919 					next = ifs->ifs_ipacct6
6920 					    [out][it.iri_active];
6921 			} else {
6922 				if (it.iri_ver == AF_INET)
6923 					next = ifs->ifs_ipfilter
6924 					    [out][it.iri_active];
6925 				else
6926 					next = ifs->ifs_ipfilter6
6927 					    [out][it.iri_active];
6928 			}
6929 		} else {
6930 			fg = fr_findgroup(it.iri_group, IPL_LOGIPF,
6931 					  it.iri_active, NULL, ifs);
6932 			if (fg != NULL)
6933 				next = fg->fg_start;
6934 			else
6935 				next = NULL;
6936 		}
6937 	} else {
6938 		next = fr->fr_next;
6939 	}
6940 
6941 	dst = (char *)it.iri_rule;
6942 	/*
6943 	 * The ipfruleiter may ask for more than 1 rule at a time to be
6944 	 * copied out, so long as that many exist in the list to start with!
6945 	 */
6946 	for (count = it.iri_nrules; count > 0; count--) {
6947 		/*
6948 		 * If we found an entry, add reference to it and update token.
6949 		 * Otherwise, zero out data to be returned and NULL out token.
6950 		 */
6951 		if (next != NULL) {
6952 			MUTEX_ENTER(&next->fr_lock);
6953 			next->fr_ref++;
6954 			MUTEX_EXIT(&next->fr_lock);
6955 			t->ipt_data = next;
6956 		} else {
6957 			bzero(&zero, sizeof(zero));
6958 			next = &zero;
6959 			t->ipt_data = NULL;
6960 		}
6961 
6962 		/*
6963 		 * Now that we have ref, it's save to give up lock.
6964 		 */
6965 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
6966 
6967 		/*
6968 		 * Copy out data and clean up references and token as needed.
6969 		 */
6970 		error = COPYOUT(next, dst, sizeof(*next));
6971 		if (error != 0)
6972 			error = EFAULT;
6973 		if (t->ipt_data == NULL) {
6974 			ipf_freetoken(t, ifs);
6975 			break;
6976 		} else {
6977 			if (fr != NULL)
6978 				(void) fr_derefrule(&fr, ifs);
6979 			if (next->fr_data != NULL) {
6980 				dst += sizeof(*next);
6981 				error = COPYOUT(next->fr_data, dst,
6982 						next->fr_dsize);
6983 				if (error != 0)
6984 					error = EFAULT;
6985 				else
6986 					dst += next->fr_dsize;
6987 			}
6988 			if (next->fr_next == NULL) {
6989 				ipf_freetoken(t, ifs);
6990 				break;
6991 			}
6992 		}
6993 
6994 		if ((count == 1) || (error != 0))
6995 			break;
6996 
6997 		READ_ENTER(&ifs->ifs_ipf_mutex);
6998 		fr = next;
6999 		next = fr->fr_next;
7000 	}
7001 
7002 	return error;
7003 }
7004 
7005 
7006 /* ------------------------------------------------------------------------ */
7007 /* Function:    fr_frruleiter                                               */
7008 /* Returns:     int - 0 = success, else error                               */
7009 /* Parameters:  data(I) - the token type to match                           */
7010 /*              uid(I) - uid owning the token                               */
7011 /*              ptr(I) - context pointer for the token                      */
7012 /*              ifs - ipf stack instance                                    */
7013 /*                                                                          */
7014 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7015 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7016 /* the process doing the ioctl and use that to ask for the next rule.       */
7017 /* ------------------------------------------------------------------------ */
7018 int ipf_frruleiter(data, uid, ctx, ifs)
7019 void *data, *ctx;
7020 int uid;
7021 ipf_stack_t *ifs;
7022 {
7023 	ipftoken_t *token;
7024 	int error;
7025 
7026 	token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs);
7027 	if (token != NULL)
7028 		error = ipf_getnextrule(token, data, ifs);
7029 	else
7030 		error = EFAULT;
7031 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7032 
7033 	return error;
7034 }
7035 
7036 
7037 /* ------------------------------------------------------------------------ */
7038 /* Function:    ipf_geniter                                                 */
7039 /* Returns:     int - 0 = success, else error                               */
7040 /* Parameters:  token(I) - pointer to ipftoken structure                    */
7041 /*              itp(I) - pointer to ipfgeniter structure                    */
7042 /*              ifs - ipf stack instance                                    */
7043 /*                                                                          */
7044 /* Generic iterator called from ipf_genericiter.  Currently only used for   */
7045 /* walking through list of fragments.                                       */
7046 /* ------------------------------------------------------------------------ */
7047 int ipf_geniter(token, itp, ifs)
7048 ipftoken_t *token;
7049 ipfgeniter_t *itp;
7050 ipf_stack_t *ifs;
7051 {
7052 	int error;
7053 
7054 	switch (itp->igi_type)
7055 	{
7056 	case IPFGENITER_FRAG :
7057 		error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list,
7058 				    &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag,
7059 				    ifs);
7060 		break;
7061 	default :
7062 		error = EINVAL;
7063 		break;
7064 	}
7065 
7066 	return error;
7067 }
7068 
7069 
7070 /* ------------------------------------------------------------------------ */
7071 /* Function:    ipf_genericiter                                             */
7072 /* Returns:     int - 0 = success, else error                               */
7073 /* Parameters:  data(I) - the token type to match                           */
7074 /*              uid(I) - uid owning the token                               */
7075 /*              ptr(I) - context pointer for the token                      */
7076 /*              ifs - ipf stack instance                                    */
7077 /*                                                                          */
7078 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7079 /* ipf_geniter when handling SIOCGENITER.  It's role is to find the right   */
7080 /* token in the kernel for the process using the ioctl, and to use that     */
7081 /* token when calling ipf_geniter.                                          */
7082 /* ------------------------------------------------------------------------ */
7083 int ipf_genericiter(data, uid, ctx, ifs)
7084 void *data, *ctx;
7085 int uid;
7086 ipf_stack_t *ifs;
7087 {
7088 	ipftoken_t *token;
7089 	ipfgeniter_t iter;
7090 	int error;
7091 
7092 	error = fr_inobj(data, &iter, IPFOBJ_GENITER);
7093 	if (error != 0)
7094 		return error;
7095 
7096 	token = ipf_findtoken(iter.igi_type, uid, ctx, ifs);
7097 	if (token != NULL) {
7098 		token->ipt_subtype = iter.igi_type;
7099 		error = ipf_geniter(token, &iter, ifs);
7100 	} else
7101 		error = EFAULT;
7102 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7103 
7104 	return error;
7105 }
7106