1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsubr.h> 29 #include <sys/stropts.h> 30 #include <sys/sunddi.h> 31 #include <sys/cred.h> 32 #include <sys/debug.h> 33 #include <sys/kmem.h> 34 #include <sys/errno.h> 35 #include <sys/disp.h> 36 #include <netinet/in.h> 37 #include <netinet/in_systm.h> 38 #include <netinet/ip.h> 39 #include <netinet/ip_icmp.h> 40 #include <netinet/tcp.h> 41 #include <inet/common.h> 42 #include <inet/ipclassifier.h> 43 #include <inet/ip.h> 44 #include <inet/mib2.h> 45 #include <inet/nd.h> 46 #include <inet/tcp.h> 47 #include <inet/ip_rts.h> 48 #include <inet/ip_ire.h> 49 #include <inet/ip_if.h> 50 #include <sys/modhash.h> 51 52 #include <sys/tsol/label.h> 53 #include <sys/tsol/label_macro.h> 54 #include <sys/tsol/tnet.h> 55 #include <sys/tsol/tndb.h> 56 #include <sys/strsun.h> 57 58 /* tunable for strict error-reply behavior (TCP RST and ICMP Unreachable) */ 59 int tsol_strict_error; 60 61 /* 62 * Some notes on the Trusted Solaris IRE gateway security attributes: 63 * 64 * When running in Trusted mode, the routing subsystem determines whether or 65 * not a packet can be delivered to an off-link host (not directly reachable 66 * through an interface) based on the accreditation checks of the packet's 67 * security attributes against those associated with the next-hop gateway. 68 * 69 * The next-hop gateway's security attributes can be derived from two sources 70 * (in order of preference): route-related and the host database. A Trusted 71 * system must be configured with at least the host database containing an 72 * entry for the next-hop gateway, or otherwise no accreditation checks can 73 * be performed, which may result in the inability to send packets to any 74 * off-link destination host. 75 * 76 * The major differences between the two sources are the number and type of 77 * security attributes used for accreditation checks. A host database entry 78 * can contain at most one set of security attributes, specific only to the 79 * next-hop gateway. On contrast, route-related security attributes are made 80 * up of a collection of security attributes for the distant networks, and 81 * are grouped together per next-hop gateway used to reach those networks. 82 * This is the preferred method, and the routing subsystem will fallback to 83 * the host database entry only if there are no route-related attributes 84 * associated with the next-hop gateway. 85 * 86 * In Trusted mode, all of the IRE entries (except LOCAL/LOOPBACK/BROADCAST/ 87 * INTERFACE type) are initialized to contain a placeholder to store this 88 * information. The ire_gw_secattr structure gets allocated, initialized 89 * and associated with the IRE during the time of the IRE creation. The 90 * initialization process also includes resolving the host database entry 91 * of the next-hop gateway for fallback purposes. It does not include any 92 * route-related attribute setup, as that process comes separately as part 93 * of the route requests (add/change) made to the routing subsystem. 94 * 95 * The underlying logic which involves associating IREs with the gateway 96 * security attributes are represented by the following data structures: 97 * 98 * tsol_gcdb_t, or "gcdb" 99 * 100 * - This is a system-wide collection of records containing the 101 * currently used route-related security attributes, which are fed 102 * through the routing socket interface, e.g. "route add/change". 103 * 104 * tsol_gc_t, or "gc" 105 * 106 * - This is the gateway credential structure, and it provides for the 107 * only mechanism to access the contents of gcdb. More than one gc 108 * entries may refer to the same gcdb record. gc's in the system are 109 * grouped according to the next-hop gateway address. 110 * 111 * tsol_gcgrp_t, or "gcgrp" 112 * 113 * - Group of gateway credentials, and is unique per next-hop gateway 114 * address. When the group is not empty, i.e. when gcgrp_count is 115 * greater than zero, it contains one or more gc's, each pointing to 116 * a gcdb record which indicates the gateway security attributes 117 * associated with the next-hop gateway. 118 * 119 * The fields of the tsol_ire_gw_secattr_t used from within the IRE are: 120 * 121 * igsa_lock 122 * 123 * - Lock that protects all fields within tsol_ire_gw_secattr_t. 124 * 125 * igsa_rhc 126 * 127 * - Remote host cache database entry of next-hop gateway. This is 128 * used in the case when there are no route-related attributes 129 * configured for the IRE. 130 * 131 * igsa_gc 132 * 133 * - A set of route-related attributes that only get set for prefix 134 * IREs. If this is non-NULL, the prefix IRE has been associated 135 * with a set of gateway security attributes by way of route add/ 136 * change functionality. This field stays NULL for IRE_CACHEs. 137 * 138 * igsa_gcgrp 139 * 140 * - Group of gc's which only gets set for IRE_CACHEs. Each of the gc 141 * points to a gcdb record that contains the security attributes 142 * used to perform the credential checks of the packet which uses 143 * the IRE. If the group is not empty, the list of gc's can be 144 * traversed starting at gcgrp_head. This field stays NULL for 145 * prefix IREs. 146 */ 147 148 static kmem_cache_t *ire_gw_secattr_cache; 149 150 #define GCDB_HASH_SIZE 101 151 #define GCGRP_HASH_SIZE 101 152 153 #define GCDB_REFRELE(p) { \ 154 mutex_enter(&gcdb_lock); \ 155 ASSERT((p)->gcdb_refcnt > 0); \ 156 if (--((p)->gcdb_refcnt) == 0) \ 157 gcdb_inactive(p); \ 158 ASSERT(MUTEX_HELD(&gcdb_lock)); \ 159 mutex_exit(&gcdb_lock); \ 160 } 161 162 static int gcdb_hash_size = GCDB_HASH_SIZE; 163 static int gcgrp_hash_size = GCGRP_HASH_SIZE; 164 static mod_hash_t *gcdb_hash; 165 static mod_hash_t *gcgrp4_hash; 166 static mod_hash_t *gcgrp6_hash; 167 168 static kmutex_t gcdb_lock; 169 kmutex_t gcgrp_lock; 170 171 static uint_t gcdb_hash_by_secattr(void *, mod_hash_key_t); 172 static int gcdb_hash_cmp(mod_hash_key_t, mod_hash_key_t); 173 static tsol_gcdb_t *gcdb_lookup(struct rtsa_s *, boolean_t); 174 static void gcdb_inactive(tsol_gcdb_t *); 175 176 static uint_t gcgrp_hash_by_addr(void *, mod_hash_key_t); 177 static int gcgrp_hash_cmp(mod_hash_key_t, mod_hash_key_t); 178 179 static int ire_gw_secattr_constructor(void *, void *, int); 180 static void ire_gw_secattr_destructor(void *, void *); 181 182 void 183 tnet_init(void) 184 { 185 ire_gw_secattr_cache = kmem_cache_create("ire_gw_secattr_cache", 186 sizeof (tsol_ire_gw_secattr_t), 64, ire_gw_secattr_constructor, 187 ire_gw_secattr_destructor, NULL, NULL, NULL, 0); 188 189 gcdb_hash = mod_hash_create_extended("gcdb_hash", 190 gcdb_hash_size, mod_hash_null_keydtor, mod_hash_null_valdtor, 191 gcdb_hash_by_secattr, NULL, gcdb_hash_cmp, KM_SLEEP); 192 193 gcgrp4_hash = mod_hash_create_extended("gcgrp4_hash", 194 gcgrp_hash_size, mod_hash_null_keydtor, mod_hash_null_valdtor, 195 gcgrp_hash_by_addr, NULL, gcgrp_hash_cmp, KM_SLEEP); 196 197 gcgrp6_hash = mod_hash_create_extended("gcgrp6_hash", 198 gcgrp_hash_size, mod_hash_null_keydtor, mod_hash_null_valdtor, 199 gcgrp_hash_by_addr, NULL, gcgrp_hash_cmp, KM_SLEEP); 200 201 mutex_init(&gcdb_lock, NULL, MUTEX_DEFAULT, NULL); 202 mutex_init(&gcgrp_lock, NULL, MUTEX_DEFAULT, NULL); 203 } 204 205 void 206 tnet_fini(void) 207 { 208 kmem_cache_destroy(ire_gw_secattr_cache); 209 mod_hash_destroy_hash(gcdb_hash); 210 mod_hash_destroy_hash(gcgrp4_hash); 211 mod_hash_destroy_hash(gcgrp6_hash); 212 mutex_destroy(&gcdb_lock); 213 mutex_destroy(&gcgrp_lock); 214 } 215 216 /* ARGSUSED */ 217 static int 218 ire_gw_secattr_constructor(void *buf, void *cdrarg, int kmflags) 219 { 220 tsol_ire_gw_secattr_t *attrp = buf; 221 222 mutex_init(&attrp->igsa_lock, NULL, MUTEX_DEFAULT, NULL); 223 224 attrp->igsa_rhc = NULL; 225 attrp->igsa_gc = NULL; 226 attrp->igsa_gcgrp = NULL; 227 228 return (0); 229 } 230 231 /* ARGSUSED */ 232 static void 233 ire_gw_secattr_destructor(void *buf, void *cdrarg) 234 { 235 tsol_ire_gw_secattr_t *attrp = (tsol_ire_gw_secattr_t *)buf; 236 237 mutex_destroy(&attrp->igsa_lock); 238 } 239 240 tsol_ire_gw_secattr_t * 241 ire_gw_secattr_alloc(int kmflags) 242 { 243 return (kmem_cache_alloc(ire_gw_secattr_cache, kmflags)); 244 } 245 246 void 247 ire_gw_secattr_free(tsol_ire_gw_secattr_t *attrp) 248 { 249 ASSERT(MUTEX_NOT_HELD(&attrp->igsa_lock)); 250 251 if (attrp->igsa_rhc != NULL) { 252 TNRHC_RELE(attrp->igsa_rhc); 253 attrp->igsa_rhc = NULL; 254 } 255 256 if (attrp->igsa_gc != NULL) { 257 GC_REFRELE(attrp->igsa_gc); 258 attrp->igsa_gc = NULL; 259 } 260 if (attrp->igsa_gcgrp != NULL) { 261 GCGRP_REFRELE(attrp->igsa_gcgrp); 262 attrp->igsa_gcgrp = NULL; 263 } 264 265 ASSERT(attrp->igsa_rhc == NULL); 266 ASSERT(attrp->igsa_gc == NULL); 267 ASSERT(attrp->igsa_gcgrp == NULL); 268 269 kmem_cache_free(ire_gw_secattr_cache, attrp); 270 } 271 272 /* ARGSUSED */ 273 static uint_t 274 gcdb_hash_by_secattr(void *hash_data, mod_hash_key_t key) 275 { 276 const struct rtsa_s *rp = (struct rtsa_s *)key; 277 const uint32_t *up, *ue; 278 uint_t hash; 279 int i; 280 281 ASSERT(rp != NULL); 282 283 /* See comments in hash_bylabel in zone.c for details */ 284 hash = rp->rtsa_doi + (rp->rtsa_doi << 1); 285 up = (const uint32_t *)&rp->rtsa_slrange; 286 ue = up + sizeof (rp->rtsa_slrange) / sizeof (*up); 287 i = 1; 288 while (up < ue) { 289 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 290 hash += *up + (*up << ((i % 16) + 1)); 291 up++; 292 i++; 293 } 294 return (hash); 295 } 296 297 static int 298 gcdb_hash_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 299 { 300 struct rtsa_s *rp1 = (struct rtsa_s *)key1; 301 struct rtsa_s *rp2 = (struct rtsa_s *)key2; 302 303 ASSERT(rp1 != NULL && rp2 != NULL); 304 305 if (blequal(&rp1->rtsa_slrange.lower_bound, 306 &rp2->rtsa_slrange.lower_bound) && 307 blequal(&rp1->rtsa_slrange.upper_bound, 308 &rp2->rtsa_slrange.upper_bound) && 309 rp1->rtsa_doi == rp2->rtsa_doi) 310 return (0); 311 312 /* No match; not found */ 313 return (-1); 314 } 315 316 /* ARGSUSED */ 317 static uint_t 318 gcgrp_hash_by_addr(void *hash_data, mod_hash_key_t key) 319 { 320 tsol_gcgrp_addr_t *ga = (tsol_gcgrp_addr_t *)key; 321 uint_t idx = 0; 322 uint32_t *ap; 323 324 ASSERT(ga != NULL); 325 ASSERT(ga->ga_af == AF_INET || ga->ga_af == AF_INET6); 326 327 ap = (uint32_t *)&ga->ga_addr.s6_addr32[0]; 328 idx ^= *ap++; 329 idx ^= *ap++; 330 idx ^= *ap++; 331 idx ^= *ap; 332 333 return (idx); 334 } 335 336 static int 337 gcgrp_hash_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 338 { 339 tsol_gcgrp_addr_t *ga1 = (tsol_gcgrp_addr_t *)key1; 340 tsol_gcgrp_addr_t *ga2 = (tsol_gcgrp_addr_t *)key2; 341 342 ASSERT(ga1 != NULL && ga2 != NULL); 343 344 /* Address family must match */ 345 if (ga1->ga_af != ga2->ga_af) 346 return (-1); 347 348 if (ga1->ga_addr.s6_addr32[0] == ga2->ga_addr.s6_addr32[0] && 349 ga1->ga_addr.s6_addr32[1] == ga2->ga_addr.s6_addr32[1] && 350 ga1->ga_addr.s6_addr32[2] == ga2->ga_addr.s6_addr32[2] && 351 ga1->ga_addr.s6_addr32[3] == ga2->ga_addr.s6_addr32[3]) 352 return (0); 353 354 /* No match; not found */ 355 return (-1); 356 } 357 358 #define RTSAFLAGS "\20\11cipso\3doi\2max_sl\1min_sl" 359 360 int 361 rtsa_validate(const struct rtsa_s *rp) 362 { 363 uint32_t mask = rp->rtsa_mask; 364 365 /* RTSA_CIPSO must be set, and DOI must not be zero */ 366 if ((mask & RTSA_CIPSO) == 0 || rp->rtsa_doi == 0) { 367 DTRACE_PROBE2(tx__gcdb__log__error__rtsa__validate, char *, 368 "rtsa(1) lacks flag or has 0 doi.", 369 rtsa_s *, rp); 370 return (EINVAL); 371 } 372 /* 373 * SL range must be specified, and it must have its 374 * upper bound dominating its lower bound. 375 */ 376 if ((mask & RTSA_SLRANGE) != RTSA_SLRANGE || 377 !bldominates(&rp->rtsa_slrange.upper_bound, 378 &rp->rtsa_slrange.lower_bound)) { 379 DTRACE_PROBE2(tx__gcdb__log__error__rtsa__validate, char *, 380 "rtsa(1) min_sl and max_sl not set or max_sl is " 381 "not dominating.", rtsa_s *, rp); 382 return (EINVAL); 383 } 384 return (0); 385 } 386 387 /* 388 * A brief explanation of the reference counting scheme: 389 * 390 * Prefix IREs have a non-NULL igsa_gc and a NULL igsa_gcgrp; 391 * IRE_CACHEs have it vice-versa. 392 * 393 * Apart from dynamic references due to to reference holds done 394 * actively by threads, we have the following references: 395 * 396 * gcdb_refcnt: 397 * - Every tsol_gc_t pointing to a tsol_gcdb_t contributes a reference 398 * to the gcdb_refcnt. 399 * 400 * gc_refcnt: 401 * - A prefix IRE that points to an igsa_gc contributes a reference 402 * to the gc_refcnt. 403 * 404 * gcgrp_refcnt: 405 * - An IRE_CACHE that points to an igsa_gcgrp contributes a reference 406 * to the gcgrp_refcnt of the associated tsol_gcgrp_t. 407 * - Every tsol_gc_t in the chain headed by tsol_gcgrp_t contributes 408 * a reference to the gcgrp_refcnt. 409 */ 410 static tsol_gcdb_t * 411 gcdb_lookup(struct rtsa_s *rp, boolean_t alloc) 412 { 413 tsol_gcdb_t *gcdb = NULL; 414 415 if (rtsa_validate(rp) != 0) 416 return (NULL); 417 418 mutex_enter(&gcdb_lock); 419 /* Find a copy in the cache; otherwise, create one and cache it */ 420 if (mod_hash_find(gcdb_hash, (mod_hash_key_t)rp, 421 (mod_hash_val_t *)&gcdb) == 0) { 422 gcdb->gcdb_refcnt++; 423 ASSERT(gcdb->gcdb_refcnt != 0); 424 425 DTRACE_PROBE2(tx__gcdb__log__info__gcdb__lookup, char *, 426 "gcdb(1) is in gcdb_hash(global)", tsol_gcdb_t *, gcdb); 427 } else if (alloc) { 428 gcdb = kmem_zalloc(sizeof (*gcdb), KM_NOSLEEP); 429 if (gcdb != NULL) { 430 gcdb->gcdb_refcnt = 1; 431 gcdb->gcdb_mask = rp->rtsa_mask; 432 gcdb->gcdb_doi = rp->rtsa_doi; 433 gcdb->gcdb_slrange = rp->rtsa_slrange; 434 435 if (mod_hash_insert(gcdb_hash, 436 (mod_hash_key_t)&gcdb->gcdb_attr, 437 (mod_hash_val_t)gcdb) != 0) { 438 mutex_exit(&gcdb_lock); 439 kmem_free(gcdb, sizeof (*gcdb)); 440 return (NULL); 441 } 442 443 DTRACE_PROBE2(tx__gcdb__log__info__gcdb__insert, char *, 444 "gcdb(1) inserted in gcdb_hash(global)", 445 tsol_gcdb_t *, gcdb); 446 } 447 } 448 mutex_exit(&gcdb_lock); 449 return (gcdb); 450 } 451 452 static void 453 gcdb_inactive(tsol_gcdb_t *gcdb) 454 { 455 ASSERT(MUTEX_HELD(&gcdb_lock)); 456 ASSERT(gcdb != NULL && gcdb->gcdb_refcnt == 0); 457 458 (void) mod_hash_remove(gcdb_hash, (mod_hash_key_t)&gcdb->gcdb_attr, 459 (mod_hash_val_t *)&gcdb); 460 461 DTRACE_PROBE2(tx__gcdb__log__info__gcdb__remove, char *, 462 "gcdb(1) removed from gcdb_hash(global)", 463 tsol_gcdb_t *, gcdb); 464 kmem_free(gcdb, sizeof (*gcdb)); 465 } 466 467 tsol_gc_t * 468 gc_create(struct rtsa_s *rp, tsol_gcgrp_t *gcgrp, boolean_t *gcgrp_xtrarefp) 469 { 470 tsol_gc_t *gc; 471 tsol_gcdb_t *gcdb; 472 473 *gcgrp_xtrarefp = B_TRUE; 474 475 rw_enter(&gcgrp->gcgrp_rwlock, RW_WRITER); 476 if ((gcdb = gcdb_lookup(rp, B_TRUE)) == NULL) { 477 rw_exit(&gcgrp->gcgrp_rwlock); 478 return (NULL); 479 } 480 481 for (gc = gcgrp->gcgrp_head; gc != NULL; gc = gc->gc_next) { 482 if (gc->gc_db == gcdb) { 483 ASSERT(gc->gc_grp == gcgrp); 484 485 gc->gc_refcnt++; 486 ASSERT(gc->gc_refcnt != 0); 487 488 GCDB_REFRELE(gcdb); 489 490 DTRACE_PROBE3(tx__gcdb__log__info__gc__create, 491 char *, "found gc(1) in gcgrp(2)", 492 tsol_gc_t *, gc, tsol_gcgrp_t *, gcgrp); 493 rw_exit(&gcgrp->gcgrp_rwlock); 494 return (gc); 495 } 496 } 497 498 gc = kmem_zalloc(sizeof (*gc), KM_NOSLEEP); 499 if (gc != NULL) { 500 if (gcgrp->gcgrp_head == NULL) { 501 gcgrp->gcgrp_head = gcgrp->gcgrp_tail = gc; 502 } else { 503 gcgrp->gcgrp_tail->gc_next = gc; 504 gc->gc_prev = gcgrp->gcgrp_tail; 505 gcgrp->gcgrp_tail = gc; 506 } 507 gcgrp->gcgrp_count++; 508 ASSERT(gcgrp->gcgrp_count != 0); 509 510 /* caller has incremented gcgrp reference for us */ 511 gc->gc_grp = gcgrp; 512 513 gc->gc_db = gcdb; 514 gc->gc_refcnt = 1; 515 516 DTRACE_PROBE3(tx__gcdb__log__info__gc__create, char *, 517 "added gc(1) to gcgrp(2)", tsol_gc_t *, gc, 518 tsol_gcgrp_t *, gcgrp); 519 520 *gcgrp_xtrarefp = B_FALSE; 521 } 522 rw_exit(&gcgrp->gcgrp_rwlock); 523 524 return (gc); 525 } 526 527 void 528 gc_inactive(tsol_gc_t *gc) 529 { 530 tsol_gcgrp_t *gcgrp = gc->gc_grp; 531 532 ASSERT(gcgrp != NULL); 533 ASSERT(RW_WRITE_HELD(&gcgrp->gcgrp_rwlock)); 534 ASSERT(gc->gc_refcnt == 0); 535 536 if (gc->gc_prev != NULL) 537 gc->gc_prev->gc_next = gc->gc_next; 538 else 539 gcgrp->gcgrp_head = gc->gc_next; 540 if (gc->gc_next != NULL) 541 gc->gc_next->gc_prev = gc->gc_prev; 542 else 543 gcgrp->gcgrp_tail = gc->gc_prev; 544 ASSERT(gcgrp->gcgrp_count > 0); 545 gcgrp->gcgrp_count--; 546 547 /* drop lock before it's destroyed */ 548 rw_exit(&gcgrp->gcgrp_rwlock); 549 550 DTRACE_PROBE3(tx__gcdb__log__info__gc__remove, char *, 551 "removed inactive gc(1) from gcgrp(2)", 552 tsol_gc_t *, gc, tsol_gcgrp_t *, gcgrp); 553 554 GCGRP_REFRELE(gcgrp); 555 556 gc->gc_grp = NULL; 557 gc->gc_prev = gc->gc_next = NULL; 558 559 if (gc->gc_db != NULL) 560 GCDB_REFRELE(gc->gc_db); 561 562 kmem_free(gc, sizeof (*gc)); 563 } 564 565 tsol_gcgrp_t * 566 gcgrp_lookup(tsol_gcgrp_addr_t *ga, boolean_t alloc) 567 { 568 tsol_gcgrp_t *gcgrp = NULL; 569 mod_hash_t *hashp; 570 571 ASSERT(ga->ga_af == AF_INET || ga->ga_af == AF_INET6); 572 573 hashp = (ga->ga_af == AF_INET) ? gcgrp4_hash : gcgrp6_hash; 574 575 mutex_enter(&gcgrp_lock); 576 if (mod_hash_find(hashp, (mod_hash_key_t)ga, 577 (mod_hash_val_t *)&gcgrp) == 0) { 578 gcgrp->gcgrp_refcnt++; 579 ASSERT(gcgrp->gcgrp_refcnt != 0); 580 581 DTRACE_PROBE3(tx__gcdb__log__info__gcgrp__lookup, char *, 582 "found gcgrp(1) in hash(2)", tsol_gcgrp_t *, gcgrp, 583 mod_hash_t *, hashp); 584 585 } else if (alloc) { 586 gcgrp = kmem_zalloc(sizeof (*gcgrp), KM_NOSLEEP); 587 if (gcgrp != NULL) { 588 gcgrp->gcgrp_refcnt = 1; 589 rw_init(&gcgrp->gcgrp_rwlock, NULL, RW_DEFAULT, NULL); 590 bcopy(ga, &gcgrp->gcgrp_addr, sizeof (*ga)); 591 592 if (mod_hash_insert(hashp, 593 (mod_hash_key_t)&gcgrp->gcgrp_addr, 594 (mod_hash_val_t)gcgrp) != 0) { 595 mutex_exit(&gcgrp_lock); 596 kmem_free(gcgrp, sizeof (*gcgrp)); 597 return (NULL); 598 } 599 600 DTRACE_PROBE3(tx__gcdb__log__info__gcgrp__insert, 601 char *, "inserted gcgrp(1) in hash(2)", 602 tsol_gcgrp_t *, gcgrp, mod_hash_t *, hashp); 603 } 604 } 605 mutex_exit(&gcgrp_lock); 606 return (gcgrp); 607 } 608 609 void 610 gcgrp_inactive(tsol_gcgrp_t *gcgrp) 611 { 612 tsol_gcgrp_addr_t *ga; 613 mod_hash_t *hashp; 614 615 ASSERT(MUTEX_HELD(&gcgrp_lock)); 616 ASSERT(!RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)); 617 ASSERT(gcgrp != NULL && gcgrp->gcgrp_refcnt == 0); 618 ASSERT(gcgrp->gcgrp_head == NULL && gcgrp->gcgrp_count == 0); 619 620 ga = &gcgrp->gcgrp_addr; 621 ASSERT(ga->ga_af == AF_INET || ga->ga_af == AF_INET6); 622 623 hashp = (ga->ga_af == AF_INET) ? gcgrp4_hash : gcgrp6_hash; 624 (void) mod_hash_remove(hashp, (mod_hash_key_t)ga, 625 (mod_hash_val_t *)&gcgrp); 626 rw_destroy(&gcgrp->gcgrp_rwlock); 627 628 DTRACE_PROBE3(tx__gcdb__log__info__gcgrp__remove, char *, 629 "removed inactive gcgrp(1) from hash(2)", 630 tsol_gcgrp_t *, gcgrp, mod_hash_t *, hashp); 631 632 kmem_free(gcgrp, sizeof (*gcgrp)); 633 } 634 635 /* 636 * Converts CIPSO option to sensitivity label. 637 * Validity checks based on restrictions defined in 638 * COMMERCIAL IP SECURITY OPTION (CIPSO 2.2) (draft-ietf-cipso-ipsecurity) 639 */ 640 static boolean_t 641 cipso_to_sl(const uchar_t *option, bslabel_t *sl) 642 { 643 const struct cipso_option *co = (const struct cipso_option *)option; 644 const struct cipso_tag_type_1 *tt1; 645 646 tt1 = (struct cipso_tag_type_1 *)&co->cipso_tag_type[0]; 647 if (tt1->tag_type != 1 || 648 tt1->tag_length < TSOL_TT1_MIN_LENGTH || 649 tt1->tag_length > TSOL_TT1_MAX_LENGTH || 650 tt1->tag_length + TSOL_CIPSO_TAG_OFFSET > co->cipso_length) 651 return (B_FALSE); 652 653 bsllow(sl); /* assumed: sets compartments to all zeroes */ 654 LCLASS_SET((_bslabel_impl_t *)sl, tt1->tag_sl); 655 bcopy(tt1->tag_cat, &((_bslabel_impl_t *)sl)->compartments, 656 tt1->tag_length - TSOL_TT1_MIN_LENGTH); 657 return (B_TRUE); 658 } 659 660 /* 661 * Parse the CIPSO label in the incoming packet and construct a ts_label_t 662 * that reflects the CIPSO label and attach it to the dblk cred. Later as 663 * the mblk flows up through the stack any code that needs to examine the 664 * packet label can inspect the label from the dblk cred. This function is 665 * called right in ip_rput for all packets, i.e. locally destined and 666 * to be forwarded packets. The forwarding path needs to examine the label 667 * to determine how to forward the packet. 668 * 669 * This routine pulls all message text up into the first mblk. 670 * For IPv4, only the first 20 bytes of the IP header are guaranteed 671 * to exist. For IPv6, only the IPv6 header is guaranteed to exist. 672 */ 673 boolean_t 674 tsol_get_pkt_label(mblk_t *mp, int version) 675 { 676 tsol_tpc_t *src_rhtp; 677 uchar_t *opt_ptr = NULL; 678 const ipha_t *ipha; 679 bslabel_t sl; 680 uint32_t doi; 681 tsol_ip_label_t label_type; 682 const cipso_option_t *co; 683 const void *src; 684 const ip6_t *ip6h; 685 cred_t *credp; 686 pid_t cpid; 687 688 ASSERT(DB_TYPE(mp) == M_DATA); 689 690 if (mp->b_cont != NULL && !pullupmsg(mp, -1)) 691 return (B_FALSE); 692 693 if (version == IPV4_VERSION) { 694 ASSERT(MBLKL(mp) >= IP_SIMPLE_HDR_LENGTH); 695 ipha = (const ipha_t *)mp->b_rptr; 696 src = &ipha->ipha_src; 697 if (!tsol_get_option_v4(mp, &label_type, &opt_ptr)) 698 return (B_FALSE); 699 } else { 700 ASSERT(MBLKL(mp) >= IPV6_HDR_LEN); 701 ip6h = (const ip6_t *)mp->b_rptr; 702 src = &ip6h->ip6_src; 703 if (!tsol_get_option_v6(mp, &label_type, &opt_ptr)) 704 return (B_FALSE); 705 } 706 707 switch (label_type) { 708 case OPT_CIPSO: 709 /* 710 * Convert the CIPSO label to the internal format 711 * and attach it to the dblk cred. 712 * Validity checks based on restrictions defined in 713 * COMMERCIAL IP SECURITY OPTION (CIPSO 2.2) 714 * (draft-ietf-cipso-ipsecurity) 715 */ 716 if (version == IPV6_VERSION && ip6opt_ls == 0) 717 return (B_FALSE); 718 co = (const struct cipso_option *)opt_ptr; 719 if ((co->cipso_length < 720 TSOL_CIPSO_TAG_OFFSET + TSOL_TT1_MIN_LENGTH) || 721 (co->cipso_length > IP_MAX_OPT_LENGTH)) 722 return (B_FALSE); 723 bcopy(co->cipso_doi, &doi, sizeof (doi)); 724 doi = ntohl(doi); 725 if (!cipso_to_sl(opt_ptr, &sl)) 726 return (B_FALSE); 727 setbltype(&sl, SUN_SL_ID); 728 break; 729 730 case OPT_NONE: 731 /* 732 * Handle special cases that are not currently labeled, even 733 * though the sending system may otherwise be configured as 734 * labeled. 735 * - IGMP 736 * - IPv4 ICMP Router Discovery 737 * - IPv6 Neighbor Discovery 738 */ 739 if (version == IPV4_VERSION) { 740 if (ipha->ipha_protocol == IPPROTO_IGMP) 741 return (B_TRUE); 742 if (ipha->ipha_protocol == IPPROTO_ICMP) { 743 const struct icmp *icmp = (const struct icmp *) 744 (mp->b_rptr + IPH_HDR_LENGTH(ipha)); 745 746 if ((uchar_t *)icmp + ICMP_MINLEN > mp->b_wptr) 747 return (B_FALSE); 748 if (icmp->icmp_type == ICMP_ROUTERADVERT || 749 icmp->icmp_type == ICMP_ROUTERSOLICIT) 750 return (B_TRUE); 751 } 752 } else { 753 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 754 const icmp6_t *icmp6 = (const icmp6_t *) 755 (mp->b_rptr + IPV6_HDR_LEN); 756 757 if ((uchar_t *)icmp6 + ICMP6_MINLEN > 758 mp->b_wptr) 759 return (B_FALSE); 760 if (icmp6->icmp6_type >= MLD_LISTENER_QUERY && 761 icmp6->icmp6_type <= ICMP6_MAX_INFO_TYPE) 762 return (B_TRUE); 763 } 764 } 765 766 /* 767 * Look up the tnrhtp database and get the implicit label 768 * that is associated with this unlabeled host and attach 769 * it to the packet. 770 */ 771 if ((src_rhtp = find_tpc(src, version, B_FALSE)) == NULL) 772 return (B_FALSE); 773 774 /* If the sender is labeled, drop the unlabeled packet. */ 775 if (src_rhtp->tpc_tp.host_type != UNLABELED) { 776 TPC_RELE(src_rhtp); 777 pr_addr_dbg("unlabeled packet forged from %s\n", 778 version == IPV4_VERSION ? AF_INET : AF_INET6, src); 779 return (B_FALSE); 780 } 781 782 sl = src_rhtp->tpc_tp.tp_def_label; 783 setbltype(&sl, SUN_SL_ID); 784 doi = src_rhtp->tpc_tp.tp_doi; 785 TPC_RELE(src_rhtp); 786 break; 787 788 default: 789 return (B_FALSE); 790 } 791 792 /* Make sure no other thread is messing with this mblk */ 793 ASSERT(DB_REF(mp) == 1); 794 /* Preserve db_cpid */ 795 credp = msg_extractcred(mp, &cpid); 796 if (credp == NULL) { 797 credp = newcred_from_bslabel(&sl, doi, KM_NOSLEEP); 798 } else { 799 cred_t *newcr; 800 801 newcr = copycred_from_bslabel(credp, &sl, doi, 802 KM_NOSLEEP); 803 crfree(credp); 804 credp = newcr; 805 } 806 if (credp == NULL) 807 return (B_FALSE); 808 mblk_setcred(mp, credp, cpid); 809 crfree(credp); /* mblk has ref on cred */ 810 811 /* 812 * If the source was unlabeled, then flag as such, 813 * while remembering that CIPSO routers add headers. 814 */ 815 if (label_type == OPT_NONE) { 816 crgetlabel(credp)->tsl_flags |= TSLF_UNLABELED; 817 } else if (label_type == OPT_CIPSO) { 818 if ((src_rhtp = find_tpc(src, version, B_FALSE)) == NULL) 819 return (B_FALSE); 820 if (src_rhtp->tpc_tp.host_type == UNLABELED) 821 crgetlabel(credp)->tsl_flags |= TSLF_UNLABELED; 822 TPC_RELE(src_rhtp); 823 } 824 825 return (B_TRUE); 826 } 827 828 /* 829 * This routine determines whether the given packet should be accepted locally. 830 * It does a range/set check on the packet's label by looking up the given 831 * address in the remote host database. 832 */ 833 boolean_t 834 tsol_receive_local(const mblk_t *mp, const void *addr, uchar_t version, 835 boolean_t shared_addr, const conn_t *connp) 836 { 837 const cred_t *credp; 838 ts_label_t *plabel, *conn_plabel; 839 tsol_tpc_t *tp; 840 boolean_t retv; 841 const bslabel_t *label, *conn_label; 842 843 /* 844 * The cases in which this can happen are: 845 * - IPv6 Router Alert, where ip_rput_data_v6 deliberately skips 846 * over the label attachment process. 847 * - MLD output looped-back to ourselves. 848 * - IPv4 Router Discovery, where tsol_get_pkt_label intentionally 849 * avoids the labeling process. 850 * We trust that all valid paths in the code set the cred pointer when 851 * needed. 852 */ 853 if ((credp = msg_getcred(mp, NULL)) == NULL) 854 return (B_TRUE); 855 856 /* 857 * If this packet is from the inside (not a remote host) and has the 858 * same zoneid as the selected destination, then no checks are 859 * necessary. Membership in the zone is enough proof. This is 860 * intended to be a hot path through this function. 861 */ 862 if (!crisremote(credp) && 863 crgetzone(credp) == crgetzone(connp->conn_cred)) 864 return (B_TRUE); 865 866 plabel = crgetlabel(credp); 867 conn_plabel = crgetlabel(connp->conn_cred); 868 ASSERT(plabel != NULL && conn_plabel != NULL); 869 870 label = label2bslabel(plabel); 871 conn_label = label2bslabel(crgetlabel(connp->conn_cred)); 872 873 /* 874 * MLPs are always validated using the range and set of the local 875 * address, even when the remote host is unlabeled. 876 */ 877 if (connp->conn_mlp_type == mlptBoth || 878 /* LINTED: no consequent */ 879 connp->conn_mlp_type == (shared_addr ? mlptShared : mlptPrivate)) { 880 ; 881 882 /* 883 * If this is a packet from an unlabeled sender, then we must apply 884 * different rules. If the label is equal to the zone's label, then 885 * it's allowed. If it's not equal, but the zone is either the global 886 * zone or the label is dominated by the zone's label, then allow it 887 * as long as it's in the range configured for the destination. 888 */ 889 } else if (plabel->tsl_flags & TSLF_UNLABELED) { 890 if (plabel->tsl_doi == conn_plabel->tsl_doi && 891 blequal(label, conn_label)) 892 return (B_TRUE); 893 894 /* 895 * conn_zoneid is global for an exclusive stack, thus we use 896 * conn_cred to get the zoneid 897 */ 898 if (!connp->conn_mac_exempt || 899 (crgetzoneid(connp->conn_cred) != GLOBAL_ZONEID && 900 (plabel->tsl_doi != conn_plabel->tsl_doi || 901 !bldominates(conn_label, label)))) { 902 DTRACE_PROBE3( 903 tx__ip__log__drop__receivelocal__mac_unl, 904 char *, 905 "unlabeled packet mp(1) fails mac for conn(2)", 906 mblk_t *, mp, conn_t *, connp); 907 return (B_FALSE); 908 } 909 910 /* 911 * If this is a packet from a labeled sender, verify the 912 * label on the packet matches the connection label. 913 */ 914 } else { 915 if (plabel->tsl_doi != conn_plabel->tsl_doi || 916 !blequal(label, conn_label)) { 917 DTRACE_PROBE3(tx__ip__log__drop__receivelocal__mac__slp, 918 char *, 919 "packet mp(1) failed label match to SLP conn(2)", 920 mblk_t *, mp, conn_t *, connp); 921 return (B_FALSE); 922 } 923 /* 924 * No further checks will be needed if this is a zone- 925 * specific address because (1) The process for bringing up 926 * the interface ensures the zone's label is within the zone- 927 * specific address's valid label range; (2) For cases where 928 * the conn is bound to the unspecified addresses, ip fanout 929 * logic ensures conn's zoneid equals the dest addr's zoneid; 930 * (3) Mac-exempt and mlp logic above already handle all 931 * cases where the zone label may not be the same as the 932 * conn label. 933 */ 934 if (!shared_addr) 935 return (B_TRUE); 936 } 937 938 tp = find_tpc(addr, version, B_FALSE); 939 if (tp == NULL) { 940 DTRACE_PROBE3(tx__ip__log__drop__receivelocal__no__tnr, 941 char *, "dropping mp(1), host(2) lacks entry", 942 mblk_t *, mp, void *, addr); 943 return (B_FALSE); 944 } 945 946 /* 947 * The local host address should not be unlabeled at this point. The 948 * only way this can happen is that the destination isn't unicast. We 949 * assume that the packet should not have had a label, and thus should 950 * have been handled by the TSLF_UNLABELED logic above. 951 */ 952 if (tp->tpc_tp.host_type == UNLABELED) { 953 retv = B_FALSE; 954 DTRACE_PROBE3(tx__ip__log__drop__receivelocal__flag, char *, 955 "mp(1) unlabeled source, but tp is not unlabeled.", 956 mblk_t *, mp, tsol_tpc_t *, tp); 957 958 } else if (tp->tpc_tp.host_type != SUN_CIPSO) { 959 retv = B_FALSE; 960 DTRACE_PROBE3(tx__ip__log__drop__receivelocal__tptype, char *, 961 "delivering mp(1), found unrecognized tpc(2) type.", 962 mblk_t *, mp, tsol_tpc_t *, tp); 963 964 } else if (plabel->tsl_doi != tp->tpc_tp.tp_doi) { 965 retv = B_FALSE; 966 DTRACE_PROBE3(tx__ip__log__drop__receivelocal__mac, char *, 967 "mp(1) could not be delievered to tp(2), doi mismatch", 968 mblk_t *, mp, tsol_tpc_t *, tp); 969 970 } else if (!_blinrange(label, &tp->tpc_tp.tp_sl_range_cipso) && 971 !blinlset(label, tp->tpc_tp.tp_sl_set_cipso)) { 972 retv = B_FALSE; 973 DTRACE_PROBE3(tx__ip__log__drop__receivelocal__mac, char *, 974 "mp(1) could not be delievered to tp(2), bad mac", 975 mblk_t *, mp, tsol_tpc_t *, tp); 976 } else { 977 retv = B_TRUE; 978 } 979 980 TPC_RELE(tp); 981 982 return (retv); 983 } 984 985 boolean_t 986 tsol_can_accept_raw(mblk_t *mp, boolean_t check_host) 987 { 988 ts_label_t *plabel = NULL; 989 tsol_tpc_t *src_rhtp, *dst_rhtp; 990 boolean_t retv; 991 cred_t *credp; 992 993 credp = msg_getcred(mp, NULL); 994 if (credp != NULL) 995 plabel = crgetlabel(credp); 996 997 /* We are bootstrapping or the internal template was never deleted */ 998 if (plabel == NULL) 999 return (B_TRUE); 1000 1001 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 1002 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1003 1004 src_rhtp = find_tpc(&ipha->ipha_src, IPV4_VERSION, 1005 B_FALSE); 1006 if (src_rhtp == NULL) 1007 return (B_FALSE); 1008 dst_rhtp = find_tpc(&ipha->ipha_dst, IPV4_VERSION, 1009 B_FALSE); 1010 } else { 1011 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 1012 1013 src_rhtp = find_tpc(&ip6h->ip6_src, IPV6_VERSION, 1014 B_FALSE); 1015 if (src_rhtp == NULL) 1016 return (B_FALSE); 1017 dst_rhtp = find_tpc(&ip6h->ip6_dst, IPV6_VERSION, 1018 B_FALSE); 1019 } 1020 if (dst_rhtp == NULL) { 1021 TPC_RELE(src_rhtp); 1022 return (B_FALSE); 1023 } 1024 1025 if (label2doi(plabel) != src_rhtp->tpc_tp.tp_doi) { 1026 retv = B_FALSE; 1027 1028 /* 1029 * Check that the packet's label is in the correct range for labeled 1030 * sender, or is equal to the default label for unlabeled sender. 1031 */ 1032 } else if ((src_rhtp->tpc_tp.host_type != UNLABELED && 1033 !_blinrange(label2bslabel(plabel), 1034 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 1035 !blinlset(label2bslabel(plabel), 1036 src_rhtp->tpc_tp.tp_sl_set_cipso)) || 1037 (src_rhtp->tpc_tp.host_type == UNLABELED && 1038 !blequal(&plabel->tsl_label, &src_rhtp->tpc_tp.tp_def_label))) { 1039 retv = B_FALSE; 1040 1041 } else if (check_host) { 1042 retv = B_TRUE; 1043 1044 /* 1045 * Until we have SL range in the Zone structure, pass it 1046 * when our own address lookup returned an internal entry. 1047 */ 1048 } else switch (dst_rhtp->tpc_tp.host_type) { 1049 case UNLABELED: 1050 retv = B_TRUE; 1051 break; 1052 1053 case SUN_CIPSO: 1054 retv = _blinrange(label2bslabel(plabel), 1055 &dst_rhtp->tpc_tp.tp_sl_range_cipso) || 1056 blinlset(label2bslabel(plabel), 1057 dst_rhtp->tpc_tp.tp_sl_set_cipso); 1058 break; 1059 1060 default: 1061 retv = B_FALSE; 1062 } 1063 TPC_RELE(src_rhtp); 1064 TPC_RELE(dst_rhtp); 1065 return (retv); 1066 } 1067 1068 /* 1069 * This routine determines whether a response to a failed packet delivery or 1070 * connection should be sent back. By default, the policy is to allow such 1071 * messages to be sent at all times, as these messages reveal little useful 1072 * information and are healthy parts of TCP/IP networking. 1073 * 1074 * If tsol_strict_error is set, then we do strict tests: if the packet label is 1075 * within the label range/set of this host/zone, return B_TRUE; otherwise 1076 * return B_FALSE, which causes the packet to be dropped silently. 1077 * 1078 * Note that tsol_get_pkt_label will cause the packet to drop if the sender is 1079 * marked as labeled in the remote host database, but the packet lacks a label. 1080 * This means that we don't need to do a lookup on the source; the 1081 * TSLF_UNLABELED flag is sufficient. 1082 */ 1083 boolean_t 1084 tsol_can_reply_error(const mblk_t *mp) 1085 { 1086 ts_label_t *plabel = NULL; 1087 tsol_tpc_t *rhtp; 1088 const ipha_t *ipha; 1089 const ip6_t *ip6h; 1090 boolean_t retv; 1091 bslabel_t *pktbs; 1092 cred_t *credp; 1093 1094 /* Caller must pull up at least the IP header */ 1095 ASSERT(MBLKL(mp) >= (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ? 1096 sizeof (*ipha) : sizeof (*ip6h))); 1097 1098 if (!tsol_strict_error) 1099 return (B_TRUE); 1100 1101 credp = msg_getcred(mp, NULL); 1102 if (credp != NULL) 1103 plabel = crgetlabel(credp); 1104 1105 /* We are bootstrapping or the internal template was never deleted */ 1106 if (plabel == NULL) 1107 return (B_TRUE); 1108 1109 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 1110 ipha = (const ipha_t *)mp->b_rptr; 1111 rhtp = find_tpc(&ipha->ipha_dst, IPV4_VERSION, B_FALSE); 1112 } else { 1113 ip6h = (const ip6_t *)mp->b_rptr; 1114 rhtp = find_tpc(&ip6h->ip6_dst, IPV6_VERSION, B_FALSE); 1115 } 1116 1117 if (rhtp == NULL || label2doi(plabel) != rhtp->tpc_tp.tp_doi) { 1118 retv = B_FALSE; 1119 } else { 1120 /* 1121 * If we're in the midst of forwarding, then the destination 1122 * address might not be labeled. In that case, allow unlabeled 1123 * packets through only if the default label is the same, and 1124 * labeled ones if they dominate. 1125 */ 1126 pktbs = label2bslabel(plabel); 1127 switch (rhtp->tpc_tp.host_type) { 1128 case UNLABELED: 1129 if (plabel->tsl_flags & TSLF_UNLABELED) { 1130 retv = blequal(pktbs, 1131 &rhtp->tpc_tp.tp_def_label); 1132 } else { 1133 retv = bldominates(pktbs, 1134 &rhtp->tpc_tp.tp_def_label); 1135 } 1136 break; 1137 1138 case SUN_CIPSO: 1139 retv = _blinrange(pktbs, 1140 &rhtp->tpc_tp.tp_sl_range_cipso) || 1141 blinlset(pktbs, rhtp->tpc_tp.tp_sl_set_cipso); 1142 break; 1143 1144 default: 1145 retv = B_FALSE; 1146 break; 1147 } 1148 } 1149 1150 if (rhtp != NULL) 1151 TPC_RELE(rhtp); 1152 1153 return (retv); 1154 } 1155 1156 /* 1157 * Finds the zone associated with the given packet. Returns GLOBAL_ZONEID if 1158 * the zone cannot be located. 1159 * 1160 * This is used by the classifier when the packet matches an ALL_ZONES IRE, and 1161 * there's no MLP defined. 1162 * 1163 * Note that we assume that this is only invoked in the ALL_ZONES case. 1164 * Handling other cases would require handle exclusive stack zones where either 1165 * this routine or the callers would have to map from 1166 * the zoneid (zone->zone_id) to what IP uses in conn_zoneid etc. 1167 */ 1168 zoneid_t 1169 tsol_packet_to_zoneid(const mblk_t *mp) 1170 { 1171 cred_t *cr = msg_getcred(mp, NULL); 1172 zone_t *zone; 1173 ts_label_t *label; 1174 1175 if (cr != NULL) { 1176 if ((label = crgetlabel(cr)) != NULL) { 1177 zone = zone_find_by_label(label); 1178 if (zone != NULL) { 1179 zoneid_t zoneid = zone->zone_id; 1180 1181 zone_rele(zone); 1182 return (zoneid); 1183 } 1184 } 1185 } 1186 return (GLOBAL_ZONEID); 1187 } 1188 1189 int 1190 tsol_ire_match_gwattr(ire_t *ire, const ts_label_t *tsl) 1191 { 1192 int error = 0; 1193 tsol_ire_gw_secattr_t *attrp = NULL; 1194 tsol_tnrhc_t *gw_rhc = NULL; 1195 tsol_gcgrp_t *gcgrp = NULL; 1196 tsol_gc_t *gc = NULL; 1197 in_addr_t ga_addr4; 1198 void *paddr = NULL; 1199 1200 /* Not in Trusted mode or IRE is local/loopback/broadcast/interface */ 1201 if (!is_system_labeled() || 1202 (ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1203 IRE_INTERFACE))) 1204 goto done; 1205 1206 /* 1207 * If we don't have a label to compare with, or the IRE does not 1208 * contain any gateway security attributes, there's not much that 1209 * we can do. We let the former case pass, and the latter fail, 1210 * since the IRE doesn't qualify for a match due to the lack of 1211 * security attributes. 1212 */ 1213 if (tsl == NULL || ire->ire_gw_secattr == NULL) { 1214 if (tsl != NULL) { 1215 DTRACE_PROBE3(tx__ip__log__drop__irematch__nogwsec, 1216 char *, 1217 "ire(1) lacks ire_gw_secattr matching label(2)", 1218 ire_t *, ire, ts_label_t *, tsl); 1219 error = EACCES; 1220 } 1221 goto done; 1222 } 1223 1224 attrp = ire->ire_gw_secattr; 1225 1226 /* 1227 * The possible lock order scenarios related to the tsol gateway 1228 * attribute locks are documented at the beginning of ip.c in the 1229 * lock order scenario section. 1230 */ 1231 mutex_enter(&attrp->igsa_lock); 1232 1233 /* 1234 * Depending on the IRE type (prefix vs. cache), we seek the group 1235 * structure which contains all security credentials of the gateway. 1236 * A prefix IRE is associated with at most one gateway credential, 1237 * while a cache IRE is associated with every credentials that the 1238 * gateway has. 1239 */ 1240 if ((gc = attrp->igsa_gc) != NULL) { /* prefix */ 1241 gcgrp = gc->gc_grp; 1242 ASSERT(gcgrp != NULL); 1243 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 1244 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { /* cache */ 1245 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 1246 gc = gcgrp->gcgrp_head; 1247 if (gc == NULL) { 1248 /* gc group is empty, so the drop lock now */ 1249 ASSERT(gcgrp->gcgrp_count == 0); 1250 rw_exit(&gcgrp->gcgrp_rwlock); 1251 gcgrp = NULL; 1252 } 1253 } 1254 1255 if (gcgrp != NULL) 1256 GCGRP_REFHOLD(gcgrp); 1257 1258 if ((gw_rhc = attrp->igsa_rhc) != NULL) { 1259 /* 1260 * If our cached entry has grown stale, then discard it so we 1261 * can get a new one. 1262 */ 1263 if (gw_rhc->rhc_invalid || gw_rhc->rhc_tpc->tpc_invalid) { 1264 TNRHC_RELE(gw_rhc); 1265 attrp->igsa_rhc = gw_rhc = NULL; 1266 } else { 1267 TNRHC_HOLD(gw_rhc) 1268 } 1269 } 1270 1271 /* Last attempt at loading the template had failed; try again */ 1272 if (gw_rhc == NULL) { 1273 if (gcgrp != NULL) { 1274 tsol_gcgrp_addr_t *ga = &gcgrp->gcgrp_addr; 1275 1276 if (ire->ire_ipversion == IPV4_VERSION) { 1277 ASSERT(ga->ga_af == AF_INET); 1278 IN6_V4MAPPED_TO_IPADDR(&ga->ga_addr, ga_addr4); 1279 paddr = &ga_addr4; 1280 } else { 1281 ASSERT(ga->ga_af == AF_INET6); 1282 paddr = &ga->ga_addr; 1283 } 1284 } else if (ire->ire_ipversion == IPV6_VERSION && 1285 !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 1286 paddr = &ire->ire_gateway_addr_v6; 1287 } else if (ire->ire_ipversion == IPV4_VERSION && 1288 ire->ire_gateway_addr != INADDR_ANY) { 1289 paddr = &ire->ire_gateway_addr; 1290 } 1291 1292 /* We've found a gateway address to do the template lookup */ 1293 if (paddr != NULL) { 1294 ASSERT(gw_rhc == NULL); 1295 gw_rhc = find_rhc(paddr, ire->ire_ipversion, B_FALSE); 1296 if (gw_rhc != NULL) { 1297 /* 1298 * Note that if the lookup above returned an 1299 * internal template, we'll use it for the 1300 * time being, and do another lookup next 1301 * time around. 1302 */ 1303 /* Another thread has loaded the template? */ 1304 if (attrp->igsa_rhc != NULL) { 1305 TNRHC_RELE(gw_rhc) 1306 /* reload, it could be different */ 1307 gw_rhc = attrp->igsa_rhc; 1308 } else { 1309 attrp->igsa_rhc = gw_rhc; 1310 } 1311 /* 1312 * Hold an extra reference just like we did 1313 * above prior to dropping the igsa_lock. 1314 */ 1315 TNRHC_HOLD(gw_rhc) 1316 } 1317 } 1318 } 1319 1320 mutex_exit(&attrp->igsa_lock); 1321 /* Gateway template not found */ 1322 if (gw_rhc == NULL) { 1323 /* 1324 * If destination address is directly reachable through an 1325 * interface rather than through a learned route, pass it. 1326 */ 1327 if (paddr != NULL) { 1328 DTRACE_PROBE3( 1329 tx__ip__log__drop__irematch__nogwtmpl, char *, 1330 "ire(1), label(2) off-link with no gw_rhc", 1331 ire_t *, ire, ts_label_t *, tsl); 1332 error = EINVAL; 1333 } 1334 goto done; 1335 } 1336 1337 if (gc != NULL) { 1338 tsol_gcdb_t *gcdb; 1339 /* 1340 * In the case of IRE_CACHE we've got one or more gateway 1341 * security credentials to compare against the passed in label. 1342 * Perform label range comparison against each security 1343 * credential of the gateway. In the case of a prefix ire 1344 * we need to match against the security attributes of 1345 * just the route itself, so the loop is executed only once. 1346 */ 1347 ASSERT(gcgrp != NULL); 1348 do { 1349 gcdb = gc->gc_db; 1350 if (tsl->tsl_doi == gcdb->gcdb_doi && 1351 _blinrange(&tsl->tsl_label, &gcdb->gcdb_slrange)) 1352 break; 1353 if (ire->ire_type == IRE_CACHE) 1354 gc = gc->gc_next; 1355 else 1356 gc = NULL; 1357 } while (gc != NULL); 1358 1359 if (gc == NULL) { 1360 DTRACE_PROBE3( 1361 tx__ip__log__drop__irematch__nogcmatched, 1362 char *, "ire(1), tsl(2): all gc failed match", 1363 ire_t *, ire, ts_label_t *, tsl); 1364 error = EACCES; 1365 } 1366 } else { 1367 /* 1368 * We didn't find any gateway credentials in the IRE 1369 * attributes; fall back to the gateway's template for 1370 * label range checks, if we are required to do so. 1371 */ 1372 ASSERT(gw_rhc != NULL); 1373 switch (gw_rhc->rhc_tpc->tpc_tp.host_type) { 1374 case SUN_CIPSO: 1375 if (tsl->tsl_doi != gw_rhc->rhc_tpc->tpc_tp.tp_doi || 1376 (!_blinrange(&tsl->tsl_label, 1377 &gw_rhc->rhc_tpc->tpc_tp.tp_sl_range_cipso) && 1378 !blinlset(&tsl->tsl_label, 1379 gw_rhc->rhc_tpc->tpc_tp.tp_sl_set_cipso))) { 1380 error = EACCES; 1381 DTRACE_PROBE4( 1382 tx__ip__log__drop__irematch__deftmpl, 1383 char *, "ire(1), tsl(2), gw_rhc(3) " 1384 "failed match (cipso gw)", 1385 ire_t *, ire, ts_label_t *, tsl, 1386 tsol_tnrhc_t *, gw_rhc); 1387 } 1388 break; 1389 1390 case UNLABELED: 1391 if (tsl->tsl_doi != gw_rhc->rhc_tpc->tpc_tp.tp_doi || 1392 (!_blinrange(&tsl->tsl_label, 1393 &gw_rhc->rhc_tpc->tpc_tp.tp_gw_sl_range) && 1394 !blinlset(&tsl->tsl_label, 1395 gw_rhc->rhc_tpc->tpc_tp.tp_gw_sl_set))) { 1396 error = EACCES; 1397 DTRACE_PROBE4( 1398 tx__ip__log__drop__irematch__deftmpl, 1399 char *, "ire(1), tsl(2), gw_rhc(3) " 1400 "failed match (unlabeled gw)", 1401 ire_t *, ire, ts_label_t *, tsl, 1402 tsol_tnrhc_t *, gw_rhc); 1403 } 1404 break; 1405 } 1406 } 1407 1408 done: 1409 1410 if (gcgrp != NULL) { 1411 rw_exit(&gcgrp->gcgrp_rwlock); 1412 GCGRP_REFRELE(gcgrp); 1413 } 1414 1415 if (gw_rhc != NULL) 1416 TNRHC_RELE(gw_rhc) 1417 1418 return (error); 1419 } 1420 1421 /* 1422 * Performs label accreditation checks for packet forwarding. 1423 * 1424 * Returns a pointer to the modified mblk if allowed for forwarding, 1425 * or NULL if the packet must be dropped. 1426 */ 1427 mblk_t * 1428 tsol_ip_forward(ire_t *ire, mblk_t *mp) 1429 { 1430 tsol_ire_gw_secattr_t *attrp = NULL; 1431 ipha_t *ipha; 1432 ip6_t *ip6h; 1433 const void *pdst; 1434 const void *psrc; 1435 boolean_t off_link; 1436 tsol_tpc_t *dst_rhtp, *gw_rhtp; 1437 tsol_ip_label_t label_type; 1438 uchar_t *opt_ptr = NULL; 1439 ts_label_t *tsl; 1440 uint8_t proto; 1441 int af, adjust; 1442 uint16_t iplen; 1443 boolean_t need_tpc_rele = B_FALSE; 1444 ipaddr_t *gw; 1445 ip_stack_t *ipst = ire->ire_ipst; 1446 cred_t *credp; 1447 pid_t pid; 1448 1449 ASSERT(ire != NULL && mp != NULL); 1450 ASSERT(ire->ire_stq != NULL); 1451 1452 af = (ire->ire_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 1453 1454 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 1455 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1456 ipha = (ipha_t *)mp->b_rptr; 1457 psrc = &ipha->ipha_src; 1458 pdst = &ipha->ipha_dst; 1459 proto = ipha->ipha_protocol; 1460 1461 /* 1462 * off_link is TRUE if destination not directly reachable. 1463 * Surya note: we avoid creation of per-dst IRE_CACHE entries 1464 * for forwarded packets, so we set off_link to be TRUE 1465 * if the packet dst is different from the ire_addr of 1466 * the ire for the nexthop. 1467 */ 1468 off_link = ((ipha->ipha_dst != ire->ire_addr) || 1469 (ire->ire_gateway_addr != INADDR_ANY)); 1470 if (!tsol_get_option_v4(mp, &label_type, &opt_ptr)) 1471 return (NULL); 1472 } else { 1473 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1474 ip6h = (ip6_t *)mp->b_rptr; 1475 psrc = &ip6h->ip6_src; 1476 pdst = &ip6h->ip6_dst; 1477 proto = ip6h->ip6_nxt; 1478 1479 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP && 1480 proto != IPPROTO_ICMPV6) { 1481 uint8_t *nexthdrp; 1482 uint16_t hdr_len; 1483 1484 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_len, 1485 &nexthdrp)) { 1486 /* malformed packet; drop it */ 1487 return (NULL); 1488 } 1489 proto = *nexthdrp; 1490 } 1491 1492 /* destination not directly reachable? */ 1493 off_link = !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 1494 if (!tsol_get_option_v6(mp, &label_type, &opt_ptr)) 1495 return (NULL); 1496 } 1497 1498 if ((tsl = msg_getlabel(mp)) == NULL) 1499 return (mp); 1500 1501 ASSERT(psrc != NULL && pdst != NULL); 1502 dst_rhtp = find_tpc(pdst, ire->ire_ipversion, B_FALSE); 1503 1504 if (dst_rhtp == NULL) { 1505 /* 1506 * Without a template we do not know if forwarding 1507 * violates MAC 1508 */ 1509 DTRACE_PROBE3(tx__ip__log__drop__forward__nodst, char *, 1510 "mp(1) dropped, no template for destination ip4|6(2)", 1511 mblk_t *, mp, void *, pdst); 1512 return (NULL); 1513 } 1514 1515 /* 1516 * Gateway template must have existed for off-link destinations, 1517 * since tsol_ire_match_gwattr has ensured such condition. 1518 */ 1519 if (ire->ire_ipversion == IPV4_VERSION && off_link) { 1520 /* 1521 * Surya note: first check if we can get the gw_rhtp from 1522 * the ire_gw_secattr->igsa_rhc; if this is null, then 1523 * do a lookup based on the ire_addr (address of gw) 1524 */ 1525 if (ire->ire_gw_secattr != NULL && 1526 ire->ire_gw_secattr->igsa_rhc != NULL) { 1527 attrp = ire->ire_gw_secattr; 1528 gw_rhtp = attrp->igsa_rhc->rhc_tpc; 1529 } else { 1530 /* 1531 * use the ire_addr if this is the IRE_CACHE of nexthop 1532 */ 1533 gw = (ire->ire_gateway_addr == NULL? &ire->ire_addr : 1534 &ire->ire_gateway_addr); 1535 gw_rhtp = find_tpc(gw, ire->ire_ipversion, B_FALSE); 1536 need_tpc_rele = B_TRUE; 1537 } 1538 if (gw_rhtp == NULL) { 1539 DTRACE_PROBE3(tx__ip__log__drop__forward__nogw, char *, 1540 "mp(1) dropped, no gateway in ire attributes(2)", 1541 mblk_t *, mp, tsol_ire_gw_secattr_t *, attrp); 1542 mp = NULL; 1543 goto keep_label; 1544 } 1545 } 1546 if (ire->ire_ipversion == IPV6_VERSION && 1547 ((attrp = ire->ire_gw_secattr) == NULL || attrp->igsa_rhc == NULL || 1548 (gw_rhtp = attrp->igsa_rhc->rhc_tpc) == NULL) && off_link) { 1549 DTRACE_PROBE3(tx__ip__log__drop__forward__nogw, char *, 1550 "mp(1) dropped, no gateway in ire attributes(2)", 1551 mblk_t *, mp, tsol_ire_gw_secattr_t *, attrp); 1552 mp = NULL; 1553 goto keep_label; 1554 } 1555 1556 /* 1557 * Check that the label for the packet is acceptable 1558 * by destination host; otherwise, drop it. 1559 */ 1560 switch (dst_rhtp->tpc_tp.host_type) { 1561 case SUN_CIPSO: 1562 if (tsl->tsl_doi != dst_rhtp->tpc_tp.tp_doi || 1563 (!_blinrange(&tsl->tsl_label, 1564 &dst_rhtp->tpc_tp.tp_sl_range_cipso) && 1565 !blinlset(&tsl->tsl_label, 1566 dst_rhtp->tpc_tp.tp_sl_set_cipso))) { 1567 DTRACE_PROBE4(tx__ip__log__drop__forward__mac, char *, 1568 "labeled packet mp(1) dropped, label(2) fails " 1569 "destination(3) accredation check", 1570 mblk_t *, mp, ts_label_t *, tsl, 1571 tsol_tpc_t *, dst_rhtp); 1572 mp = NULL; 1573 goto keep_label; 1574 } 1575 break; 1576 1577 1578 case UNLABELED: 1579 if (tsl->tsl_doi != dst_rhtp->tpc_tp.tp_doi || 1580 !blequal(&dst_rhtp->tpc_tp.tp_def_label, 1581 &tsl->tsl_label)) { 1582 DTRACE_PROBE4(tx__ip__log__drop__forward__mac, char *, 1583 "unlabeled packet mp(1) dropped, label(2) fails " 1584 "destination(3) accredation check", 1585 mblk_t *, mp, ts_label_t *, tsl, 1586 tsol_tpc_t *, dst_rhtp); 1587 mp = NULL; 1588 goto keep_label; 1589 } 1590 break; 1591 } 1592 if (label_type == OPT_CIPSO) { 1593 /* 1594 * We keep the label on any of the following cases: 1595 * 1596 * 1. The destination is labeled (on/off-link). 1597 * 2. The unlabeled destination is off-link, 1598 * and the next hop gateway is labeled. 1599 */ 1600 if (dst_rhtp->tpc_tp.host_type != UNLABELED || 1601 (off_link && 1602 gw_rhtp->tpc_tp.host_type != UNLABELED)) 1603 goto keep_label; 1604 1605 /* 1606 * Strip off the CIPSO option from the packet because: the 1607 * unlabeled destination host is directly reachable through 1608 * an interface (on-link); or, the unlabeled destination host 1609 * is not directly reachable (off-link), and the next hop 1610 * gateway is unlabeled. 1611 */ 1612 adjust = (af == AF_INET) ? tsol_remove_secopt(ipha, MBLKL(mp)) : 1613 tsol_remove_secopt_v6(ip6h, MBLKL(mp)); 1614 1615 ASSERT(adjust <= 0); 1616 if (adjust != 0) { 1617 1618 /* adjust is negative */ 1619 ASSERT((mp->b_wptr + adjust) >= mp->b_rptr); 1620 mp->b_wptr += adjust; 1621 1622 if (af == AF_INET) { 1623 ipha = (ipha_t *)mp->b_rptr; 1624 iplen = ntohs(ipha->ipha_length) + adjust; 1625 ipha->ipha_length = htons(iplen); 1626 ipha->ipha_hdr_checksum = 0; 1627 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 1628 } 1629 DTRACE_PROBE3(tx__ip__log__info__forward__adjust, 1630 char *, 1631 "mp(1) adjusted(2) for CIPSO option removal", 1632 mblk_t *, mp, int, adjust); 1633 } 1634 goto keep_label; 1635 } 1636 1637 ASSERT(label_type == OPT_NONE); 1638 ASSERT(dst_rhtp != NULL); 1639 1640 /* 1641 * We need to add CIPSO option if the destination or the next hop 1642 * gateway is labeled. Otherwise, pass the packet as is. 1643 */ 1644 if (dst_rhtp->tpc_tp.host_type == UNLABELED && 1645 (!off_link || gw_rhtp->tpc_tp.host_type == UNLABELED)) 1646 goto keep_label; 1647 1648 1649 credp = msg_getcred(mp, &pid); 1650 if ((af == AF_INET && 1651 tsol_check_label(credp, &mp, B_FALSE, ipst, pid) != 0) || 1652 (af == AF_INET6 && 1653 tsol_check_label_v6(credp, &mp, B_FALSE, ipst, pid) != 0)) { 1654 mp = NULL; 1655 goto keep_label; 1656 } 1657 1658 if (af == AF_INET) { 1659 ipha = (ipha_t *)mp->b_rptr; 1660 ipha->ipha_hdr_checksum = 0; 1661 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 1662 } 1663 1664 keep_label: 1665 TPC_RELE(dst_rhtp); 1666 if (need_tpc_rele && gw_rhtp != NULL) 1667 TPC_RELE(gw_rhtp); 1668 return (mp); 1669 } 1670 1671 /* 1672 * Name: tsol_pmtu_adjust() 1673 * 1674 * Returns the adjusted mtu after removing security option. 1675 * Removes/subtracts the option if the packet's cred indicates an unlabeled 1676 * sender or if pkt_diff indicates this system enlarged the packet. 1677 */ 1678 uint32_t 1679 tsol_pmtu_adjust(mblk_t *mp, uint32_t mtu, int pkt_diff, int af) 1680 { 1681 int label_adj = 0; 1682 uint32_t min_mtu = IP_MIN_MTU; 1683 tsol_tpc_t *src_rhtp; 1684 void *src; 1685 1686 /* 1687 * Note: label_adj is non-positive, indicating the number of 1688 * bytes removed by removing the security option from the 1689 * header. 1690 */ 1691 if (af == AF_INET6) { 1692 ip6_t *ip6h; 1693 1694 min_mtu = IPV6_MIN_MTU; 1695 ip6h = (ip6_t *)mp->b_rptr; 1696 src = &ip6h->ip6_src; 1697 if ((src_rhtp = find_tpc(src, IPV6_VERSION, B_FALSE)) == NULL) 1698 return (mtu); 1699 if (pkt_diff > 0 || src_rhtp->tpc_tp.host_type == UNLABELED) { 1700 label_adj = tsol_remove_secopt_v6( 1701 (ip6_t *)mp->b_rptr, MBLKL(mp)); 1702 } 1703 } else { 1704 ipha_t *ipha; 1705 1706 ASSERT(af == AF_INET); 1707 ipha = (ipha_t *)mp->b_rptr; 1708 src = &ipha->ipha_src; 1709 if ((src_rhtp = find_tpc(src, IPV4_VERSION, B_FALSE)) == NULL) 1710 return (mtu); 1711 if (pkt_diff > 0 || src_rhtp->tpc_tp.host_type == UNLABELED) 1712 label_adj = tsol_remove_secopt( 1713 (ipha_t *)mp->b_rptr, MBLKL(mp)); 1714 } 1715 /* 1716 * Make pkt_diff non-negative and the larger of the bytes 1717 * previously added (if any) or just removed, since label 1718 * addition + subtraction may not be completely idempotent. 1719 */ 1720 if (pkt_diff < -label_adj) 1721 pkt_diff = -label_adj; 1722 if (pkt_diff > 0 && pkt_diff < mtu) 1723 mtu -= pkt_diff; 1724 1725 TPC_RELE(src_rhtp); 1726 return (MAX(mtu, min_mtu)); 1727 } 1728 1729 /* 1730 * Name: tsol_rtsa_init() 1731 * 1732 * Normal: Sanity checks on the route security attributes provided by 1733 * user. Convert it into a route security parameter list to 1734 * be returned to caller. 1735 * 1736 * Output: EINVAL if bad security attributes in the routing message 1737 * ENOMEM if unable to allocate data structures 1738 * 0 otherwise. 1739 * 1740 * Note: On input, cp must point to the end of any addresses in 1741 * the rt_msghdr_t structure. 1742 */ 1743 int 1744 tsol_rtsa_init(rt_msghdr_t *rtm, tsol_rtsecattr_t *sp, caddr_t cp) 1745 { 1746 uint_t sacnt; 1747 int err; 1748 caddr_t lim; 1749 tsol_rtsecattr_t *tp; 1750 1751 ASSERT((cp >= (caddr_t)&rtm[1]) && sp != NULL); 1752 1753 /* 1754 * In theory, we could accept as many security attributes configured 1755 * per route destination. However, the current design is limited 1756 * such that at most only one set security attributes is allowed to 1757 * be associated with a prefix IRE. We therefore assert for now. 1758 */ 1759 /* LINTED */ 1760 ASSERT(TSOL_RTSA_REQUEST_MAX == 1); 1761 1762 sp->rtsa_cnt = 0; 1763 lim = (caddr_t)rtm + rtm->rtm_msglen; 1764 ASSERT(cp <= lim); 1765 1766 if ((lim - cp) < sizeof (rtm_ext_t) || 1767 ((rtm_ext_t *)cp)->rtmex_type != RTMEX_GATEWAY_SECATTR) 1768 return (0); 1769 1770 if (((rtm_ext_t *)cp)->rtmex_len < sizeof (tsol_rtsecattr_t)) 1771 return (EINVAL); 1772 1773 cp += sizeof (rtm_ext_t); 1774 1775 if ((lim - cp) < sizeof (*tp) || 1776 (tp = (tsol_rtsecattr_t *)cp, (sacnt = tp->rtsa_cnt) == 0) || 1777 (lim - cp) < TSOL_RTSECATTR_SIZE(sacnt)) 1778 return (EINVAL); 1779 1780 /* 1781 * Trying to add route security attributes when system 1782 * labeling service is not available, or when user supllies 1783 * more than the maximum number of security attributes 1784 * allowed per request. 1785 */ 1786 if ((sacnt > 0 && !is_system_labeled()) || 1787 sacnt > TSOL_RTSA_REQUEST_MAX) 1788 return (EINVAL); 1789 1790 /* Ensure valid credentials */ 1791 if ((err = rtsa_validate(&((tsol_rtsecattr_t *)cp)-> 1792 rtsa_attr[0])) != 0) { 1793 cp += sizeof (*sp); 1794 return (err); 1795 } 1796 1797 bcopy(cp, sp, sizeof (*sp)); 1798 cp += sizeof (*sp); 1799 return (0); 1800 } 1801 1802 int 1803 tsol_ire_init_gwattr(ire_t *ire, uchar_t ipversion, tsol_gc_t *gc, 1804 tsol_gcgrp_t *gcgrp) 1805 { 1806 tsol_ire_gw_secattr_t *attrp; 1807 boolean_t exists = B_FALSE; 1808 in_addr_t ga_addr4; 1809 void *paddr = NULL; 1810 1811 ASSERT(ire != NULL); 1812 1813 /* 1814 * The only time that attrp can be NULL is when this routine is 1815 * called for the first time during the creation/initialization 1816 * of the corresponding IRE. It will only get cleared when the 1817 * IRE is deleted. 1818 */ 1819 if ((attrp = ire->ire_gw_secattr) == NULL) { 1820 attrp = ire_gw_secattr_alloc(KM_NOSLEEP); 1821 if (attrp == NULL) 1822 return (ENOMEM); 1823 ire->ire_gw_secattr = attrp; 1824 } else { 1825 exists = B_TRUE; 1826 mutex_enter(&attrp->igsa_lock); 1827 1828 if (attrp->igsa_rhc != NULL) { 1829 TNRHC_RELE(attrp->igsa_rhc); 1830 attrp->igsa_rhc = NULL; 1831 } 1832 1833 if (attrp->igsa_gc != NULL) 1834 GC_REFRELE(attrp->igsa_gc); 1835 if (attrp->igsa_gcgrp != NULL) 1836 GCGRP_REFRELE(attrp->igsa_gcgrp); 1837 } 1838 ASSERT(!exists || MUTEX_HELD(&attrp->igsa_lock)); 1839 1840 /* 1841 * References already held by caller and we keep them; 1842 * note that both gc and gcgrp may be set to NULL to 1843 * clear out igsa_gc and igsa_gcgrp, respectively. 1844 */ 1845 attrp->igsa_gc = gc; 1846 attrp->igsa_gcgrp = gcgrp; 1847 1848 if (gcgrp == NULL && gc != NULL) { 1849 gcgrp = gc->gc_grp; 1850 ASSERT(gcgrp != NULL); 1851 } 1852 1853 /* 1854 * Intialize the template for gateway; we use the gateway's 1855 * address found in either the passed in gateway credential 1856 * or group pointer, or the ire_gateway_addr{_v6} field. 1857 */ 1858 if (gcgrp != NULL) { 1859 tsol_gcgrp_addr_t *ga = &gcgrp->gcgrp_addr; 1860 1861 /* 1862 * Caller is holding a reference, and that we don't 1863 * need to hold any lock to access the address. 1864 */ 1865 if (ipversion == IPV4_VERSION) { 1866 ASSERT(ga->ga_af == AF_INET); 1867 IN6_V4MAPPED_TO_IPADDR(&ga->ga_addr, ga_addr4); 1868 paddr = &ga_addr4; 1869 } else { 1870 ASSERT(ga->ga_af == AF_INET6); 1871 paddr = &ga->ga_addr; 1872 } 1873 } else if (ipversion == IPV6_VERSION && 1874 !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 1875 paddr = &ire->ire_gateway_addr_v6; 1876 } else if (ipversion == IPV4_VERSION && 1877 ire->ire_gateway_addr != INADDR_ANY) { 1878 paddr = &ire->ire_gateway_addr; 1879 } 1880 1881 /* 1882 * Lookup the gateway template; note that we could get an internal 1883 * template here, which we cache anyway. During IRE matching, we'll 1884 * try to update this gateway template cache and hopefully get a 1885 * real one. 1886 */ 1887 if (paddr != NULL) { 1888 attrp->igsa_rhc = find_rhc(paddr, ipversion, B_FALSE); 1889 } 1890 1891 if (exists) 1892 mutex_exit(&attrp->igsa_lock); 1893 1894 return (0); 1895 } 1896 1897 /* 1898 * This function figures the type of MLP that we'll be using based on the 1899 * address that the user is binding and the zone. If the address is 1900 * unspecified, then we're looking at both private and shared. If it's one 1901 * of the zone's private addresses, then it's private only. If it's one 1902 * of the global addresses, then it's shared only. 1903 * 1904 * If we can't figure out what it is, then return mlptSingle. That's actually 1905 * an error case. 1906 * 1907 * The callers are assume to pass in zone->zone_id and not the zoneid that 1908 * is stored in a conn_t (since the latter will be GLOBAL_ZONEID in an 1909 * exclusive stack zone). 1910 */ 1911 mlp_type_t 1912 tsol_mlp_addr_type(zoneid_t zoneid, uchar_t version, const void *addr, 1913 ip_stack_t *ipst) 1914 { 1915 in_addr_t in4; 1916 ire_t *ire; 1917 ipif_t *ipif; 1918 zoneid_t addrzone; 1919 zoneid_t ip_zoneid; 1920 1921 ASSERT(addr != NULL); 1922 1923 /* 1924 * For exclusive stacks we set the zoneid to zero 1925 * to operate as if in the global zone for IRE and conn_t comparisons. 1926 */ 1927 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 1928 ip_zoneid = GLOBAL_ZONEID; 1929 else 1930 ip_zoneid = zoneid; 1931 1932 if (version == IPV6_VERSION && 1933 IN6_IS_ADDR_V4MAPPED((const in6_addr_t *)addr)) { 1934 IN6_V4MAPPED_TO_IPADDR((const in6_addr_t *)addr, in4); 1935 addr = &in4; 1936 version = IPV4_VERSION; 1937 } 1938 1939 if (version == IPV4_VERSION) { 1940 in4 = *(const in_addr_t *)addr; 1941 if (in4 == INADDR_ANY) { 1942 return (mlptBoth); 1943 } 1944 ire = ire_cache_lookup(in4, ip_zoneid, NULL, ipst); 1945 } else { 1946 if (IN6_IS_ADDR_UNSPECIFIED((const in6_addr_t *)addr)) { 1947 return (mlptBoth); 1948 } 1949 ire = ire_cache_lookup_v6(addr, ip_zoneid, NULL, ipst); 1950 } 1951 /* 1952 * If we can't find the IRE, then we have to behave exactly like 1953 * ip_bind_laddr{,_v6}. That means looking up the IPIF so that users 1954 * can bind to addresses on "down" interfaces. 1955 * 1956 * If we can't find that either, then the bind is going to fail, so 1957 * just give up. Note that there's a miniscule chance that the address 1958 * is in transition, but we don't bother handling that. 1959 */ 1960 if (ire == NULL) { 1961 if (version == IPV4_VERSION) 1962 ipif = ipif_lookup_addr(*(const in_addr_t *)addr, NULL, 1963 ip_zoneid, NULL, NULL, NULL, NULL, ipst); 1964 else 1965 ipif = ipif_lookup_addr_v6((const in6_addr_t *)addr, 1966 NULL, ip_zoneid, NULL, NULL, NULL, NULL, ipst); 1967 if (ipif == NULL) { 1968 return (mlptSingle); 1969 } 1970 addrzone = ipif->ipif_zoneid; 1971 ipif_refrele(ipif); 1972 } else { 1973 addrzone = ire->ire_zoneid; 1974 ire_refrele(ire); 1975 } 1976 return (addrzone == ALL_ZONES ? mlptShared : mlptPrivate); 1977 } 1978 1979 /* 1980 * Since we are configuring local interfaces, and we know trusted 1981 * extension CDE requires local interfaces to be cipso host type in 1982 * order to function correctly, we'll associate a cipso template 1983 * to each local interface and let the interface come up. Configuring 1984 * a local interface to be "unlabeled" host type is a configuration error. 1985 * We'll override that error and make the interface host type to be cipso 1986 * here. 1987 * 1988 * The code is optimized for the usual "success" case and unwinds things on 1989 * error. We don't want to go to the trouble and expense of formatting the 1990 * interface name for the usual case where everything is configured correctly. 1991 */ 1992 boolean_t 1993 tsol_check_interface_address(const ipif_t *ipif) 1994 { 1995 tsol_tpc_t *tp; 1996 char addrbuf[INET6_ADDRSTRLEN]; 1997 int af; 1998 const void *addr; 1999 zone_t *zone; 2000 ts_label_t *plabel; 2001 const bslabel_t *label; 2002 char ifbuf[LIFNAMSIZ + 10]; 2003 const char *ifname; 2004 boolean_t retval; 2005 tsol_rhent_t rhent; 2006 netstack_t *ns = ipif->ipif_ill->ill_ipst->ips_netstack; 2007 2008 if (IN6_IS_ADDR_V4MAPPED(&ipif->ipif_v6lcl_addr)) { 2009 af = AF_INET; 2010 addr = &V4_PART_OF_V6(ipif->ipif_v6lcl_addr); 2011 } else { 2012 af = AF_INET6; 2013 addr = &ipif->ipif_v6lcl_addr; 2014 } 2015 2016 tp = find_tpc(&ipif->ipif_v6lcl_addr, IPV6_VERSION, B_FALSE); 2017 2018 /* assumes that ALL_ZONES implies that there is no exclusive stack */ 2019 if (ipif->ipif_zoneid == ALL_ZONES) { 2020 zone = NULL; 2021 } else if (ns->netstack_stackid == GLOBAL_NETSTACKID) { 2022 /* Shared stack case */ 2023 zone = zone_find_by_id(ipif->ipif_zoneid); 2024 } else { 2025 /* Exclusive stack case */ 2026 zone = zone_find_by_id(crgetzoneid(ipif->ipif_ill->ill_credp)); 2027 } 2028 if (zone != NULL) { 2029 plabel = zone->zone_slabel; 2030 ASSERT(plabel != NULL); 2031 label = label2bslabel(plabel); 2032 } 2033 2034 /* 2035 * If it's CIPSO and an all-zones address, then we're done. 2036 * If it's a CIPSO zone specific address, the zone's label 2037 * must be in the range or set specified in the template. 2038 * When the remote host entry is missing or the template 2039 * type is incorrect for this interface, we create a 2040 * CIPSO host entry in kernel and allow the interface to be 2041 * brought up as CIPSO type. 2042 */ 2043 if (tp != NULL && ( 2044 /* The all-zones case */ 2045 (tp->tpc_tp.host_type == SUN_CIPSO && 2046 tp->tpc_tp.tp_doi == default_doi && 2047 ipif->ipif_zoneid == ALL_ZONES) || 2048 /* The local-zone case */ 2049 (zone != NULL && plabel->tsl_doi == tp->tpc_tp.tp_doi && 2050 ((tp->tpc_tp.host_type == SUN_CIPSO && 2051 (_blinrange(label, &tp->tpc_tp.tp_sl_range_cipso) || 2052 blinlset(label, tp->tpc_tp.tp_sl_set_cipso))))))) { 2053 if (zone != NULL) 2054 zone_rele(zone); 2055 TPC_RELE(tp); 2056 return (B_TRUE); 2057 } 2058 2059 ifname = ipif->ipif_ill->ill_name; 2060 if (ipif->ipif_id != 0) { 2061 (void) snprintf(ifbuf, sizeof (ifbuf), "%s:%u", ifname, 2062 ipif->ipif_id); 2063 ifname = ifbuf; 2064 } 2065 (void) inet_ntop(af, addr, addrbuf, sizeof (addrbuf)); 2066 2067 if (tp == NULL) { 2068 cmn_err(CE_NOTE, "template entry for %s missing. Default to " 2069 "CIPSO type for %s", ifname, addrbuf); 2070 retval = B_TRUE; 2071 } else if (tp->tpc_tp.host_type == UNLABELED) { 2072 cmn_err(CE_NOTE, "template type for %s incorrectly configured. " 2073 "Change to CIPSO type for %s", ifname, addrbuf); 2074 retval = B_TRUE; 2075 } else if (ipif->ipif_zoneid == ALL_ZONES) { 2076 if (tp->tpc_tp.host_type != SUN_CIPSO) { 2077 cmn_err(CE_NOTE, "%s failed: %s isn't set to CIPSO for " 2078 "all-zones. Converted to CIPSO.", ifname, addrbuf); 2079 retval = B_TRUE; 2080 } else { 2081 cmn_err(CE_NOTE, "%s failed: %s has wrong DOI %d " 2082 "instead of %d", ifname, addrbuf, 2083 tp->tpc_tp.tp_doi, default_doi); 2084 retval = B_FALSE; 2085 } 2086 } else if (zone == NULL) { 2087 cmn_err(CE_NOTE, "%s failed: zoneid %d unknown", 2088 ifname, ipif->ipif_zoneid); 2089 retval = B_FALSE; 2090 } else if (plabel->tsl_doi != tp->tpc_tp.tp_doi) { 2091 cmn_err(CE_NOTE, "%s failed: zone %s has DOI %d but %s has " 2092 "DOI %d", ifname, zone->zone_name, plabel->tsl_doi, 2093 addrbuf, tp->tpc_tp.tp_doi); 2094 retval = B_FALSE; 2095 } else { 2096 cmn_err(CE_NOTE, "%s failed: zone %s label incompatible with " 2097 "%s", ifname, zone->zone_name, addrbuf); 2098 tsol_print_label(label, "zone label"); 2099 retval = B_FALSE; 2100 } 2101 2102 if (zone != NULL) 2103 zone_rele(zone); 2104 if (tp != NULL) 2105 TPC_RELE(tp); 2106 if (retval) { 2107 /* 2108 * we've corrected a config error and let the interface 2109 * come up as cipso. Need to insert an rhent. 2110 */ 2111 if ((rhent.rh_address.ta_family = af) == AF_INET) { 2112 rhent.rh_prefix = 32; 2113 rhent.rh_address.ta_addr_v4 = *(struct in_addr *)addr; 2114 } else { 2115 rhent.rh_prefix = 128; 2116 rhent.rh_address.ta_addr_v6 = *(in6_addr_t *)addr; 2117 } 2118 (void) strcpy(rhent.rh_template, "cipso"); 2119 if (tnrh_load(&rhent) != 0) { 2120 cmn_err(CE_NOTE, "%s failed: Cannot insert CIPSO " 2121 "template for local addr %s", ifname, addrbuf); 2122 retval = B_FALSE; 2123 } 2124 } 2125 return (retval); 2126 } 2127