xref: /titanic_51/usr/src/uts/common/inet/ip/spd.c (revision a3470551d4852eb32a15cd435c98646b57a2c56a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * IPsec Security Policy Database.
30  *
31  * This module maintains the SPD and provides routines used by ip and ip6
32  * to apply IPsec policy to inbound and outbound datagrams.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strlog.h>
41 #include <sys/cmn_err.h>
42 #include <sys/zone.h>
43 
44 #include <sys/systm.h>
45 #include <sys/param.h>
46 #include <sys/kmem.h>
47 #include <sys/ddi.h>
48 
49 #include <sys/crypto/api.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 
54 #include <netinet/ip6.h>
55 #include <netinet/icmp6.h>
56 #include <netinet/udp.h>
57 
58 #include <inet/ip.h>
59 #include <inet/ip6.h>
60 
61 #include <net/pfkeyv2.h>
62 #include <net/pfpolicy.h>
63 #include <inet/ipsec_info.h>
64 #include <inet/sadb.h>
65 #include <inet/ipsec_impl.h>
66 
67 #include <inet/ip_impl.h>	/* For IP_MOD_ID */
68 
69 #include <inet/ipsecah.h>
70 #include <inet/ipsecesp.h>
71 #include <inet/ipdrop.h>
72 #include <inet/ipclassifier.h>
73 #include <inet/tun.h>
74 
75 static void ipsec_update_present_flags();
76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *);
77 static void ipsec_out_free(void *);
78 static void ipsec_in_free(void *);
79 static mblk_t *ipsec_attach_global_policy(mblk_t *, conn_t *,
80     ipsec_selector_t *);
81 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *,
82     ipsec_selector_t *);
83 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
84     ipha_t *, ip6_t *, uint64_t);
85 static void ipsec_in_release_refs(ipsec_in_t *);
86 static void ipsec_out_release_refs(ipsec_out_t *);
87 static void ipsec_action_reclaim(void *);
88 static void ipsid_init(void);
89 static void ipsid_fini(void);
90 
91 /* sel_flags values for ipsec_init_inbound_sel(). */
92 #define	SEL_NONE	0x0000
93 #define	SEL_PORT_POLICY	0x0001
94 #define	SEL_IS_ICMP	0x0002
95 #define	SEL_TUNNEL_MODE	0x0004
96 
97 /* Return values for ipsec_init_inbound_sel(). */
98 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
99     selret_t;
100 
101 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
102     ipha_t *, ip6_t *, uint8_t);
103 
104 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *,
105     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
106     kstat_named_t **);
107 static void ipsec_unregister_prov_update(void);
108 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
109 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
110 static int tunnel_compare(const void *, const void *);
111 static void ipsec_freemsg_chain(mblk_t *);
112 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
113     struct kstat_named *, ipdropper_t *);
114 
115 /*
116  * Policy rule index generator.  We assume this won't wrap in the
117  * lifetime of a system.  If we make 2^20 policy changes per second,
118  * this will last 2^44 seconds, or roughly 500,000 years, so we don't
119  * have to worry about reusing policy index values.
120  *
121  * Protected by ipsec_conf_lock.
122  */
123 uint64_t	ipsec_next_policy_index = 1;
124 
125 /*
126  * Active & Inactive system policy roots
127  */
128 static ipsec_policy_head_t system_policy;
129 static ipsec_policy_head_t inactive_policy;
130 
131 /*
132  * Tunnel policies - AVL tree indexed by tunnel name.
133  */
134 krwlock_t tunnel_policy_lock;
135 uint64_t tunnel_policy_gen;	/* To keep track of updates w/o searches. */
136 avl_tree_t tunnel_policies;
137 
138 /* Packet dropper for generic SPD drops. */
139 ipdropper_t spd_dropper;
140 
141 /*
142  * For now, use a trivially sized hash table for actions.
143  * In the future we can add the structure canonicalization necessary
144  * to get the hash function to behave correctly..
145  */
146 #define	IPSEC_ACTION_HASH_SIZE 1
147 
148 /*
149  * Selector hash table is statically sized at module load time.
150  * we default to 251 buckets, which is the largest prime number under 255
151  */
152 
153 #define	IPSEC_SPDHASH_DEFAULT 251
154 uint32_t ipsec_spd_hashsize = 0;
155 
156 /* SPD hash-size tunable per tunnel. */
157 #define	TUN_SPDHASH_DEFAULT 5
158 uint32_t tun_spd_hashsize;
159 
160 
161 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
162 
163 static HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
164 static HASH_HEAD(ipsec_sel) *ipsec_sel_hash;
165 
166 static kmem_cache_t *ipsec_action_cache;
167 static kmem_cache_t *ipsec_sel_cache;
168 static kmem_cache_t *ipsec_pol_cache;
169 static kmem_cache_t *ipsec_info_cache;
170 
171 boolean_t ipsec_inbound_v4_policy_present = B_FALSE;
172 boolean_t ipsec_outbound_v4_policy_present = B_FALSE;
173 boolean_t ipsec_inbound_v6_policy_present = B_FALSE;
174 boolean_t ipsec_outbound_v6_policy_present = B_FALSE;
175 
176 /* Frag cache prototypes */
177 static void ipsec_fragcache_clean(ipsec_fragcache_t *);
178 static ipsec_fragcache_entry_t *fragcache_delentry(int,
179     ipsec_fragcache_entry_t *, ipsec_fragcache_t *);
180 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
181 void ipsec_fragcache_uninit(ipsec_fragcache_t *);
182 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, int);
183 
184 /*
185  * Because policy needs to know what algorithms are supported, keep the
186  * lists of algorithms here.
187  */
188 
189 kmutex_t alg_lock;
190 krwlock_t itp_get_byaddr_rw_lock;
191 ipsec_tun_pol_t *(*itp_get_byaddr)(uint32_t *, uint32_t *, int);
192 uint8_t ipsec_nalgs[IPSEC_NALGTYPES];
193 ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
194 uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
195 ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES];
196 static crypto_notify_handle_t prov_update_handle = NULL;
197 
198 int ipsec_hdr_pullup_needed = 0;
199 int ipsec_weird_null_inbound_policy = 0;
200 
201 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
202 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
203 
204 /*
205  * Inbound traffic should have matching identities for both SA's.
206  */
207 
208 #define	SA_IDS_MATCH(sa1, sa2) 						\
209 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
210 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
211 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
212 
213 /*
214  * IPv4 Fragments
215  */
216 #define	IS_V4_FRAGMENT(ipha_fragment_offset_and_flags)			\
217 	(((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) ||	\
218 	((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))
219 
220 /*
221  * IPv6 Fragments
222  */
223 #define	IS_V6_FRAGMENT(ipp)	(ipp.ipp_fields & IPPF_FRAGHDR)
224 
225 /*
226  * Policy failure messages.
227  */
228 static char *ipsec_policy_failure_msgs[] = {
229 
230 	/* IPSEC_POLICY_NOT_NEEDED */
231 	"%s: Dropping the datagram because the incoming packet "
232 	"is %s, but the recipient expects clear; Source %s, "
233 	"Destination %s.\n",
234 
235 	/* IPSEC_POLICY_MISMATCH */
236 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
237 	"Destination %s.\n",
238 
239 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
240 	"%s: Authentication present while not expected in the "
241 	"incoming %s packet; Source %s, Destination %s.\n",
242 
243 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
244 	"%s: Encryption present while not expected in the "
245 	"incoming %s packet; Source %s, Destination %s.\n",
246 
247 	/* IPSEC_POLICY_SE_NOT_NEEDED */
248 	"%s: Self-Encapsulation present while not expected in the "
249 	"incoming %s packet; Source %s, Destination %s.\n",
250 };
251 /*
252  * Have a counter for every possible policy message in the previous array.
253  */
254 static uint32_t ipsec_policy_failure_count[IPSEC_POLICY_MAX];
255 /* Time since last ipsec policy failure that printed a message. */
256 hrtime_t ipsec_policy_failure_last = 0;
257 
258 /*
259  * General overviews:
260  *
261  * Locking:
262  *
263  *	All of the system policy structures are protected by a single
264  *	rwlock, ipsec_conf_lock.  These structures are threaded in a
265  *	fairly complex fashion and are not expected to change on a
266  *	regular basis, so this should not cause scaling/contention
267  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
268  *
269  * Allocation policy:
270  *
271  *	We use custom kmem cache types for the various
272  *	bits & pieces of the policy data structures.  All allocations
273  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
274  *	policy table is of potentially unbounded size, so we don't
275  *	want to provide a way to hog all system memory with policy
276  *	entries..
277  */
278 
279 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
280 
281 /* Free all messages in an mblk chain */
282 static void
283 ipsec_freemsg_chain(mblk_t *mp)
284 {
285 	mblk_t *mpnext;
286 	while (mp != NULL) {
287 		ASSERT(mp->b_prev == NULL);
288 		mpnext = mp->b_next;
289 		mp->b_next = NULL;
290 		freemsg(mp);	/* Always works, even if NULL */
291 		mp = mpnext;
292 	}
293 }
294 
295 /* ip_drop all messages in an mblk chain */
296 static void
297 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *arriving,
298     ire_t *outbound_ire, struct kstat_named *counter, ipdropper_t *who_called)
299 {
300 	mblk_t *mpnext;
301 	while (mp != NULL) {
302 		ASSERT(mp->b_prev == NULL);
303 		mpnext = mp->b_next;
304 		mp->b_next = NULL;
305 		ip_drop_packet(mp, inbound, arriving, outbound_ire, counter,
306 		    who_called);
307 		mp = mpnext;
308 	}
309 }
310 
311 /*
312  * AVL tree comparison function.
313  * the in-kernel avl assumes unique keys for all objects.
314  * Since sometimes policy will duplicate rules, we may insert
315  * multiple rules with the same rule id, so we need a tie-breaker.
316  */
317 static int
318 ipsec_policy_cmpbyid(const void *a, const void *b)
319 {
320 	const ipsec_policy_t *ipa, *ipb;
321 	uint64_t idxa, idxb;
322 
323 	ipa = (const ipsec_policy_t *)a;
324 	ipb = (const ipsec_policy_t *)b;
325 	idxa = ipa->ipsp_index;
326 	idxb = ipb->ipsp_index;
327 
328 	if (idxa < idxb)
329 		return (-1);
330 	if (idxa > idxb)
331 		return (1);
332 	/*
333 	 * Tie-breaker #1: All installed policy rules have a non-NULL
334 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
335 	 * actually in-tree but rather a template node being used in
336 	 * an avl_find query; see ipsec_policy_delete().  This gives us
337 	 * a placeholder in the ordering just before the the first entry with
338 	 * a key >= the one we're looking for, so we can walk forward from
339 	 * that point to get the remaining entries with the same id.
340 	 */
341 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
342 		return (-1);
343 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
344 		return (1);
345 	/*
346 	 * At most one of the arguments to the comparison should have a
347 	 * NULL selector pointer; if not, the tree is broken.
348 	 */
349 	ASSERT(ipa->ipsp_sel != NULL);
350 	ASSERT(ipb->ipsp_sel != NULL);
351 	/*
352 	 * Tie-breaker #2: use the virtual address of the policy node
353 	 * to arbitrarily break ties.  Since we use the new tree node in
354 	 * the avl_find() in ipsec_insert_always, the new node will be
355 	 * inserted into the tree in the right place in the sequence.
356 	 */
357 	if (ipa < ipb)
358 		return (-1);
359 	if (ipa > ipb)
360 		return (1);
361 	return (0);
362 }
363 
364 void
365 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
366 {
367 	int dir;
368 
369 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
370 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
371 
372 		if (ipr->ipr_hash == NULL)
373 			continue;
374 
375 		kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
376 		    sizeof (ipsec_policy_hash_t));
377 	}
378 }
379 
380 void
381 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
382 {
383 	int dir;
384 
385 	avl_destroy(&iph->iph_rulebyid);
386 	rw_destroy(&iph->iph_lock);
387 
388 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
389 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
390 		int chain;
391 
392 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
393 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
394 
395 	}
396 	ipsec_polhead_free_table(iph);
397 }
398 
399 /*
400  * Module unload hook.
401  */
402 void
403 ipsec_policy_destroy(void)
404 {
405 	int i;
406 	void *cookie;
407 	ipsec_tun_pol_t *node;
408 
409 	ip_drop_unregister(&spd_dropper);
410 	ip_drop_destroy();
411 
412 	rw_enter(&tunnel_policy_lock, RW_WRITER);
413 	/*
414 	 * It's possible we can just ASSERT() the tree is empty.  After all,
415 	 * we aren't called until IP is ready to unload (and presumably all
416 	 * tunnels have been unplumbed).  But we'll play it safe for now, the
417 	 * loop will just exit immediately if it's empty.
418 	 */
419 	cookie = NULL;
420 	while ((node = (ipsec_tun_pol_t *)
421 		    avl_destroy_nodes(&tunnel_policies, &cookie)) != NULL) {
422 		ITP_REFRELE(node);
423 	}
424 	avl_destroy(&tunnel_policies);
425 	rw_exit(&tunnel_policy_lock);
426 	rw_destroy(&tunnel_policy_lock);
427 	ipsec_polhead_destroy(&system_policy);
428 	ipsec_polhead_destroy(&inactive_policy);
429 
430 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
431 		mutex_destroy(&(ipsec_action_hash[i].hash_lock));
432 
433 	for (i = 0; i < ipsec_spd_hashsize; i++)
434 		mutex_destroy(&(ipsec_sel_hash[i].hash_lock));
435 
436 	ipsec_unregister_prov_update();
437 
438 	mutex_destroy(&alg_lock);
439 
440 	kmem_cache_destroy(ipsec_action_cache);
441 	kmem_cache_destroy(ipsec_sel_cache);
442 	kmem_cache_destroy(ipsec_pol_cache);
443 	kmem_cache_destroy(ipsec_info_cache);
444 	ipsid_gc();
445 	ipsid_fini();
446 }
447 
448 
449 /*
450  * Called when table allocation fails to free the table.
451  */
452 static int
453 ipsec_alloc_tables_failed()
454 {
455 	if (ipsec_sel_hash != NULL) {
456 		kmem_free(ipsec_sel_hash, ipsec_spd_hashsize *
457 		    sizeof (*ipsec_sel_hash));
458 		ipsec_sel_hash = NULL;
459 	}
460 	ipsec_polhead_free_table(&system_policy);
461 	ipsec_polhead_free_table(&inactive_policy);
462 
463 	return (ENOMEM);
464 }
465 
466 /*
467  * Attempt to allocate the tables in a single policy head.
468  * Return nonzero on failure after cleaning up any work in progress.
469  */
470 int
471 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
472     boolean_t global_cleanup)
473 {
474 	int dir;
475 
476 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
477 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
478 
479 		ipr->ipr_nchains = nchains;
480 		ipr->ipr_hash = kmem_zalloc(nchains *
481 		    sizeof (ipsec_policy_hash_t), kmflag);
482 		if (ipr->ipr_hash == NULL)
483 			return (global_cleanup ? ipsec_alloc_tables_failed() :
484 			    ENOMEM);
485 	}
486 	return (0);
487 }
488 
489 /*
490  * Attempt to allocate the various tables.  Return nonzero on failure
491  * after cleaning up any work in progress.
492  */
493 static int
494 ipsec_alloc_tables(int kmflag)
495 {
496 	int error;
497 
498 	error = ipsec_alloc_table(&system_policy, ipsec_spd_hashsize, kmflag,
499 	    B_TRUE);
500 	if (error != 0)
501 		return (error);
502 
503 	error = ipsec_alloc_table(&inactive_policy, ipsec_spd_hashsize, kmflag,
504 	    B_TRUE);
505 	if (error != 0)
506 		return (error);
507 
508 	ipsec_sel_hash = kmem_zalloc(ipsec_spd_hashsize *
509 	    sizeof (*ipsec_sel_hash), kmflag);
510 
511 	if (ipsec_sel_hash == NULL)
512 		return (ipsec_alloc_tables_failed());
513 
514 	return (0);
515 }
516 
517 /*
518  * After table allocation, initialize a policy head.
519  */
520 void
521 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
522 {
523 	int dir, chain;
524 
525 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
526 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
527 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
528 
529 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
530 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
531 		ipr->ipr_nchains = nchains;
532 
533 		for (chain = 0; chain < nchains; chain++) {
534 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
535 			    NULL, MUTEX_DEFAULT, NULL);
536 		}
537 	}
538 }
539 
540 /*
541  * Module load hook.
542  */
543 void
544 ipsec_policy_init()
545 {
546 	int i;
547 
548 	/*
549 	 * Make two attempts to allocate policy hash tables; try it at
550 	 * the "preferred" size (may be set in /etc/system) first,
551 	 * then fall back to the default size.
552 	 */
553 	if (ipsec_spd_hashsize == 0)
554 		ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
555 
556 	if (ipsec_alloc_tables(KM_NOSLEEP) != 0) {
557 		cmn_err(CE_WARN,
558 		    "Unable to allocate %d entry IPsec policy hash table",
559 		    ipsec_spd_hashsize);
560 		ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
561 		cmn_err(CE_WARN, "Falling back to %d entries",
562 		    ipsec_spd_hashsize);
563 		(void) ipsec_alloc_tables(KM_SLEEP);
564 	}
565 
566 	/* Just set a default for tunnels. */
567 	if (tun_spd_hashsize == 0)
568 		tun_spd_hashsize = TUN_SPDHASH_DEFAULT;
569 
570 	ipsid_init();
571 	/*
572 	 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
573 	 * to free them.
574 	 */
575 	system_policy.iph_refs = 1;
576 	inactive_policy.iph_refs = 1;
577 	ipsec_polhead_init(&system_policy, ipsec_spd_hashsize);
578 	ipsec_polhead_init(&inactive_policy, ipsec_spd_hashsize);
579 	rw_init(&tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
580 	avl_create(&tunnel_policies, tunnel_compare, sizeof (ipsec_tun_pol_t),
581 	    0);
582 
583 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
584 		mutex_init(&(ipsec_action_hash[i].hash_lock),
585 		    NULL, MUTEX_DEFAULT, NULL);
586 
587 	for (i = 0; i < ipsec_spd_hashsize; i++)
588 		mutex_init(&(ipsec_sel_hash[i].hash_lock),
589 		    NULL, MUTEX_DEFAULT, NULL);
590 
591 	mutex_init(&alg_lock, NULL, MUTEX_DEFAULT, NULL);
592 
593 	for (i = 0; i < IPSEC_NALGTYPES; i++)
594 		ipsec_nalgs[i] = 0;
595 
596 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
597 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
598 	    ipsec_action_reclaim, NULL, NULL, 0);
599 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
600 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
601 	    NULL, NULL, NULL, 0);
602 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
603 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
604 	    NULL, NULL, NULL, 0);
605 	ipsec_info_cache = kmem_cache_create("ipsec_info",
606 	    sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL,
607 	    NULL, NULL, NULL, 0);
608 
609 	ip_drop_init();
610 	ip_drop_register(&spd_dropper, "IPsec SPD");
611 
612 	/* Set function to dummy until tun is loaded */
613 	rw_init(&itp_get_byaddr_rw_lock, NULL, RW_DEFAULT, NULL);
614 	rw_enter(&itp_get_byaddr_rw_lock, RW_WRITER);
615 	itp_get_byaddr = itp_get_byaddr_dummy;
616 	rw_exit(&itp_get_byaddr_rw_lock);
617 }
618 
619 /*
620  * Sort algorithm lists.
621  *
622  * I may need to split this based on
623  * authentication/encryption, and I may wish to have an administrator
624  * configure this list.  Hold on to some NDD variables...
625  *
626  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
627  * not the ideal metric, it's the only quantifiable measure available.
628  * We need a better metric for sorting algorithms by preference.
629  */
630 static void
631 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid)
632 {
633 	ipsec_alginfo_t *ai = ipsec_alglists[at][algid];
634 	uint8_t holder, swap;
635 	uint_t i;
636 	uint_t count = ipsec_nalgs[at];
637 	ASSERT(ai != NULL);
638 	ASSERT(algid == ai->alg_id);
639 
640 	ASSERT(MUTEX_HELD(&alg_lock));
641 
642 	holder = algid;
643 
644 	for (i = 0; i < count - 1; i++) {
645 		ipsec_alginfo_t *alt;
646 
647 		alt = ipsec_alglists[at][ipsec_sortlist[at][i]];
648 		/*
649 		 * If you want to give precedence to newly added algs,
650 		 * add the = in the > comparison.
651 		 */
652 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
653 			/* Swap sortlist[i] and holder. */
654 			swap = ipsec_sortlist[at][i];
655 			ipsec_sortlist[at][i] = holder;
656 			holder = swap;
657 			ai = alt;
658 		} /* Else just continue. */
659 	}
660 
661 	/* Store holder in last slot. */
662 	ipsec_sortlist[at][i] = holder;
663 }
664 
665 /*
666  * Remove an algorithm from a sorted algorithm list.
667  * This should be considerably easier, even with complex sorting.
668  */
669 static void
670 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid)
671 {
672 	boolean_t copyback = B_FALSE;
673 	int i;
674 	int newcount = ipsec_nalgs[at];
675 
676 	ASSERT(MUTEX_HELD(&alg_lock));
677 
678 	for (i = 0; i <= newcount; i++) {
679 		if (copyback)
680 			ipsec_sortlist[at][i-1] = ipsec_sortlist[at][i];
681 		else if (ipsec_sortlist[at][i] == algid)
682 			copyback = B_TRUE;
683 	}
684 }
685 
686 /*
687  * Add the specified algorithm to the algorithm tables.
688  * Must be called while holding the algorithm table writer lock.
689  */
690 void
691 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg)
692 {
693 	ASSERT(MUTEX_HELD(&alg_lock));
694 
695 	ASSERT(ipsec_alglists[algtype][alg->alg_id] == NULL);
696 	ipsec_alg_fix_min_max(alg, algtype);
697 	ipsec_alglists[algtype][alg->alg_id] = alg;
698 
699 	ipsec_nalgs[algtype]++;
700 	alg_insert_sortlist(algtype, alg->alg_id);
701 }
702 
703 /*
704  * Remove the specified algorithm from the algorithm tables.
705  * Must be called while holding the algorithm table writer lock.
706  */
707 void
708 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid)
709 {
710 	ASSERT(MUTEX_HELD(&alg_lock));
711 
712 	ASSERT(ipsec_alglists[algtype][algid] != NULL);
713 	ipsec_alg_free(ipsec_alglists[algtype][algid]);
714 	ipsec_alglists[algtype][algid] = NULL;
715 
716 	ipsec_nalgs[algtype]--;
717 	alg_remove_sortlist(algtype, algid);
718 }
719 
720 /*
721  * Hooks for spdsock to get a grip on system policy.
722  */
723 
724 ipsec_policy_head_t *
725 ipsec_system_policy(void)
726 {
727 	ipsec_policy_head_t *h = &system_policy;
728 	IPPH_REFHOLD(h);
729 	return (h);
730 }
731 
732 ipsec_policy_head_t *
733 ipsec_inactive_policy(void)
734 {
735 	ipsec_policy_head_t *h = &inactive_policy;
736 	IPPH_REFHOLD(h);
737 	return (h);
738 }
739 
740 /*
741  * Lock inactive policy, then active policy, then exchange policy root
742  * pointers.
743  */
744 void
745 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive)
746 {
747 	int af, dir;
748 	avl_tree_t r1, r2;
749 
750 	rw_enter(&inactive->iph_lock, RW_WRITER);
751 	rw_enter(&active->iph_lock, RW_WRITER);
752 
753 	r1 = active->iph_rulebyid;
754 	r2 = inactive->iph_rulebyid;
755 	active->iph_rulebyid = r2;
756 	inactive->iph_rulebyid = r1;
757 
758 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
759 		ipsec_policy_hash_t *h1, *h2;
760 
761 		h1 = active->iph_root[dir].ipr_hash;
762 		h2 = inactive->iph_root[dir].ipr_hash;
763 		active->iph_root[dir].ipr_hash = h2;
764 		inactive->iph_root[dir].ipr_hash = h1;
765 
766 		for (af = 0; af < IPSEC_NAF; af++) {
767 			ipsec_policy_t *t1, *t2;
768 
769 			t1 = active->iph_root[dir].ipr_nonhash[af];
770 			t2 = inactive->iph_root[dir].ipr_nonhash[af];
771 			active->iph_root[dir].ipr_nonhash[af] = t2;
772 			inactive->iph_root[dir].ipr_nonhash[af] = t1;
773 			if (t1 != NULL) {
774 				t1->ipsp_hash.hash_pp =
775 				    &(inactive->iph_root[dir].ipr_nonhash[af]);
776 			}
777 			if (t2 != NULL) {
778 				t2->ipsp_hash.hash_pp =
779 				    &(active->iph_root[dir].ipr_nonhash[af]);
780 			}
781 
782 		}
783 	}
784 	active->iph_gen++;
785 	inactive->iph_gen++;
786 	ipsec_update_present_flags();
787 	rw_exit(&active->iph_lock);
788 	rw_exit(&inactive->iph_lock);
789 }
790 
791 /*
792  * Swap global policy primary/secondary.
793  */
794 void
795 ipsec_swap_global_policy(void)
796 {
797 	ipsec_swap_policy(&system_policy, &inactive_policy);
798 }
799 
800 /*
801  * Clone one policy rule..
802  */
803 static ipsec_policy_t *
804 ipsec_copy_policy(const ipsec_policy_t *src)
805 {
806 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
807 
808 	if (dst == NULL)
809 		return (NULL);
810 
811 	/*
812 	 * Adjust refcounts of cloned state.
813 	 */
814 	IPACT_REFHOLD(src->ipsp_act);
815 	src->ipsp_sel->ipsl_refs++;
816 
817 	HASH_NULL(dst, ipsp_hash);
818 	dst->ipsp_refs = 1;
819 	dst->ipsp_sel = src->ipsp_sel;
820 	dst->ipsp_act = src->ipsp_act;
821 	dst->ipsp_prio = src->ipsp_prio;
822 	dst->ipsp_index = src->ipsp_index;
823 
824 	return (dst);
825 }
826 
827 void
828 ipsec_insert_always(avl_tree_t *tree, void *new_node)
829 {
830 	void *node;
831 	avl_index_t where;
832 
833 	node = avl_find(tree, new_node, &where);
834 	ASSERT(node == NULL);
835 	avl_insert(tree, new_node, where);
836 }
837 
838 
839 static int
840 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
841     ipsec_policy_t **dstp)
842 {
843 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
844 		ipsec_policy_t *dst = ipsec_copy_policy(src);
845 		if (dst == NULL)
846 			return (ENOMEM);
847 
848 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
849 		ipsec_insert_always(&dph->iph_rulebyid, dst);
850 	}
851 	return (0);
852 }
853 
854 
855 
856 /*
857  * Make one policy head look exactly like another.
858  *
859  * As with ipsec_swap_policy, we lock the destination policy head first, then
860  * the source policy head. Note that we only need to read-lock the source
861  * policy head as we are not changing it.
862  */
863 int
864 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph)
865 {
866 	int af, dir, chain, nchains;
867 
868 	rw_enter(&dph->iph_lock, RW_WRITER);
869 
870 	ipsec_polhead_flush(dph);
871 
872 	rw_enter(&sph->iph_lock, RW_READER);
873 
874 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
875 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
876 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
877 		nchains = dpr->ipr_nchains;
878 
879 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
880 
881 		for (af = 0; af < IPSEC_NAF; af++) {
882 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
883 			    &dpr->ipr_nonhash[af]))
884 				goto abort_copy;
885 		}
886 
887 		for (chain = 0; chain < nchains; chain++) {
888 			if (ipsec_copy_chain(dph,
889 			    spr->ipr_hash[chain].hash_head,
890 			    &dpr->ipr_hash[chain].hash_head))
891 				goto abort_copy;
892 		}
893 	}
894 
895 	dph->iph_gen++;
896 
897 	rw_exit(&sph->iph_lock);
898 	rw_exit(&dph->iph_lock);
899 	return (0);
900 
901 abort_copy:
902 	ipsec_polhead_flush(dph);
903 	rw_exit(&sph->iph_lock);
904 	rw_exit(&dph->iph_lock);
905 	return (ENOMEM);
906 }
907 
908 /*
909  * Clone currently active policy to the inactive policy list.
910  */
911 int
912 ipsec_clone_system_policy(void)
913 {
914 	return (ipsec_copy_polhead(&system_policy, &inactive_policy));
915 }
916 
917 /*
918  * Generic "do we have IPvN policy" answer.
919  */
920 boolean_t
921 iph_ipvN(ipsec_policy_head_t *iph, boolean_t v6)
922 {
923 	int i, hval;
924 	uint32_t valbit;
925 	ipsec_policy_root_t *ipr;
926 	ipsec_policy_t *ipp;
927 
928 	if (v6) {
929 		valbit = IPSL_IPV6;
930 		hval = IPSEC_AF_V6;
931 	} else {
932 		valbit = IPSL_IPV4;
933 		hval = IPSEC_AF_V4;
934 	}
935 
936 	ASSERT(RW_LOCK_HELD(&iph->iph_lock));
937 	for (ipr = iph->iph_root; ipr < &(iph->iph_root[IPSEC_NTYPES]); ipr++) {
938 		if (ipr->ipr_nonhash[hval] != NULL)
939 			return (B_TRUE);
940 		for (i = 0; i < ipr->ipr_nchains; i++) {
941 			for (ipp = ipr->ipr_hash[i].hash_head; ipp != NULL;
942 			    ipp = ipp->ipsp_hash.hash_next) {
943 				if (ipp->ipsp_sel->ipsl_key.ipsl_valid & valbit)
944 					return (B_TRUE);
945 			}
946 		}
947 	}
948 
949 	return (B_FALSE);
950 }
951 
952 /*
953  * Extract the string from ipsec_policy_failure_msgs[type] and
954  * log it.
955  *
956  */
957 void
958 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
959     boolean_t secure)
960 {
961 	char	sbuf[INET6_ADDRSTRLEN];
962 	char	dbuf[INET6_ADDRSTRLEN];
963 	char	*s;
964 	char	*d;
965 
966 	ASSERT((ipha == NULL && ip6h != NULL) ||
967 	    (ip6h == NULL && ipha != NULL));
968 
969 	if (ipha != NULL) {
970 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
971 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
972 	} else {
973 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
974 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
975 
976 	}
977 
978 	/* Always bump the policy failure counter. */
979 	ipsec_policy_failure_count[type]++;
980 
981 	ipsec_rl_strlog(IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
982 	    ipsec_policy_failure_msgs[type], func_name,
983 	    (secure ? "secure" : "not secure"), s, d);
984 }
985 
986 /*
987  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
988  * in /dev/ip and the same rate-limiting clock so that there's a single
989  * knob to turn to throttle the rate of messages.
990  */
991 void
992 ipsec_rl_strlog(short mid, short sid, char level, ushort_t sl, char *fmt, ...)
993 {
994 	va_list adx;
995 	hrtime_t current = gethrtime();
996 
997 	sl |= SL_CONSOLE;
998 	/*
999 	 * Throttle logging to stop syslog from being swamped. If variable
1000 	 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1001 	 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1002 	 * msec. Convert interval (in msec) to hrtime (in nsec).
1003 	 */
1004 
1005 	if (ipsec_policy_log_interval) {
1006 		if (ipsec_policy_failure_last +
1007 		    ((hrtime_t)ipsec_policy_log_interval * (hrtime_t)1000000) <=
1008 		    current) {
1009 			va_start(adx, fmt);
1010 			(void) vstrlog(mid, sid, level, sl, fmt, adx);
1011 			va_end(adx);
1012 			ipsec_policy_failure_last = current;
1013 		}
1014 	}
1015 }
1016 
1017 void
1018 ipsec_config_flush()
1019 {
1020 	rw_enter(&system_policy.iph_lock, RW_WRITER);
1021 	ipsec_polhead_flush(&system_policy);
1022 	ipsec_next_policy_index = 1;
1023 	rw_exit(&system_policy.iph_lock);
1024 	ipsec_action_reclaim(0);
1025 }
1026 
1027 /*
1028  * Clip a policy's min/max keybits vs. the capabilities of the
1029  * algorithm.
1030  */
1031 static void
1032 act_alg_adjust(uint_t algtype, uint_t algid,
1033     uint16_t *minbits, uint16_t *maxbits)
1034 {
1035 	ipsec_alginfo_t *algp = ipsec_alglists[algtype][algid];
1036 	if (algp != NULL) {
1037 		/*
1038 		 * If passed-in minbits is zero, we assume the caller trusts
1039 		 * us with setting the minimum key size.  We pick the
1040 		 * algorithms DEFAULT key size for the minimum in this case.
1041 		 */
1042 		if (*minbits == 0) {
1043 			*minbits = algp->alg_default_bits;
1044 			ASSERT(*minbits >= algp->alg_minbits);
1045 		} else {
1046 			*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1047 			    algp->alg_minbits);
1048 		}
1049 		if (*maxbits == 0)
1050 			*maxbits = algp->alg_maxbits;
1051 		else
1052 			*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1053 			    algp->alg_maxbits);
1054 		ASSERT(*minbits <= *maxbits);
1055 	} else {
1056 		*minbits = 0;
1057 		*maxbits = 0;
1058 	}
1059 }
1060 
1061 /*
1062  * Check an action's requested algorithms against the algorithms currently
1063  * loaded in the system.
1064  */
1065 boolean_t
1066 ipsec_check_action(ipsec_act_t *act, int *diag)
1067 {
1068 	ipsec_prot_t *ipp;
1069 
1070 	ipp = &act->ipa_apply;
1071 
1072 	if (ipp->ipp_use_ah &&
1073 	    ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1074 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1075 		return (B_FALSE);
1076 	}
1077 	if (ipp->ipp_use_espa &&
1078 	    ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == NULL) {
1079 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1080 		return (B_FALSE);
1081 	}
1082 	if (ipp->ipp_use_esp &&
1083 	    ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1084 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1085 		return (B_FALSE);
1086 	}
1087 
1088 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1089 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits);
1090 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1091 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits);
1092 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1093 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits);
1094 
1095 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1096 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1097 		return (B_FALSE);
1098 	}
1099 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1100 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1101 		return (B_FALSE);
1102 	}
1103 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1104 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1105 		return (B_FALSE);
1106 	}
1107 	/* TODO: sanity check lifetimes */
1108 	return (B_TRUE);
1109 }
1110 
1111 /*
1112  * Set up a single action during wildcard expansion..
1113  */
1114 static void
1115 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1116     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg)
1117 {
1118 	ipsec_prot_t *ipp;
1119 
1120 	*outact = *act;
1121 	ipp = &outact->ipa_apply;
1122 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
1123 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
1124 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1125 
1126 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1127 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits);
1128 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1129 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits);
1130 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1131 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits);
1132 }
1133 
1134 /*
1135  * combinatoric expansion time: expand a wildcarded action into an
1136  * array of wildcarded actions; we return the exploded action list,
1137  * and return a count in *nact (output only).
1138  */
1139 static ipsec_act_t *
1140 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact)
1141 {
1142 	boolean_t use_ah, use_esp, use_espa;
1143 	boolean_t wild_auth, wild_encr, wild_eauth;
1144 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
1145 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
1146 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
1147 	uint_t	action_count, ai;
1148 	ipsec_act_t *outact;
1149 
1150 	if (act->ipa_type != IPSEC_ACT_APPLY) {
1151 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1152 		*nact = 1;
1153 		if (outact != NULL)
1154 			bcopy(act, outact, sizeof (*act));
1155 		return (outact);
1156 	}
1157 	/*
1158 	 * compute the combinatoric explosion..
1159 	 *
1160 	 * we assume a request for encr if esp_req is PREF_REQUIRED
1161 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1162 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1163 	 */
1164 
1165 	use_ah = act->ipa_apply.ipp_use_ah;
1166 	use_esp = act->ipa_apply.ipp_use_esp;
1167 	use_espa = act->ipa_apply.ipp_use_espa;
1168 	auth_alg = act->ipa_apply.ipp_auth_alg;
1169 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1170 	encr_alg = act->ipa_apply.ipp_encr_alg;
1171 
1172 	wild_auth = use_ah && (auth_alg == 0);
1173 	wild_eauth = use_espa && (eauth_alg == 0);
1174 	wild_encr = use_esp && (encr_alg == 0);
1175 
1176 	action_count = 1;
1177 	auth_min = auth_max = auth_alg;
1178 	eauth_min = eauth_max = eauth_alg;
1179 	encr_min = encr_max = encr_alg;
1180 
1181 	/*
1182 	 * set up for explosion.. for each dimension, expand output
1183 	 * size by the explosion factor.
1184 	 *
1185 	 * Don't include the "any" algorithms, if defined, as no
1186 	 * kernel policies should be set for these algorithms.
1187 	 */
1188 
1189 #define	SET_EXP_MINMAX(type, wild, alg, min, max) if (wild) {	\
1190 		int nalgs = ipsec_nalgs[type];			\
1191 		if (ipsec_alglists[type][alg] != NULL)		\
1192 			nalgs--;				\
1193 		action_count *= nalgs;				\
1194 		min = 0;					\
1195 		max = ipsec_nalgs[type] - 1;			\
1196 	}
1197 
1198 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1199 	    auth_min, auth_max);
1200 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1201 	    eauth_min, eauth_max);
1202 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1203 	    encr_min, encr_max);
1204 
1205 #undef	SET_EXP_MINMAX
1206 
1207 	/*
1208 	 * ok, allocate the whole mess..
1209 	 */
1210 
1211 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1212 	if (outact == NULL)
1213 		return (NULL);
1214 
1215 	/*
1216 	 * Now compute all combinations.  Note that non-wildcarded
1217 	 * dimensions just get a single value from auth_min, while
1218 	 * wildcarded dimensions indirect through the sortlist.
1219 	 *
1220 	 * We do encryption outermost since, at this time, there's
1221 	 * greater difference in security and performance between
1222 	 * encryption algorithms vs. authentication algorithms.
1223 	 */
1224 
1225 	ai = 0;
1226 
1227 #define	WHICH_ALG(type, wild, idx) ((wild)?(ipsec_sortlist[type][idx]):(idx))
1228 
1229 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1230 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx);
1231 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1232 			continue;
1233 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1234 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1235 			    auth_idx);
1236 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1237 				continue;
1238 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1239 			    eauth_idx++) {
1240 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1241 				    wild_eauth, eauth_idx);
1242 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1243 					continue;
1244 
1245 				ipsec_setup_act(&outact[ai], act,
1246 				    auth_alg, encr_alg, eauth_alg);
1247 				ai++;
1248 			}
1249 		}
1250 	}
1251 
1252 #undef WHICH_ALG
1253 
1254 	ASSERT(ai == action_count);
1255 	*nact = action_count;
1256 	return (outact);
1257 }
1258 
1259 /*
1260  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1261  */
1262 static void
1263 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp)
1264 {
1265 	bzero(ipp, sizeof (*ipp));
1266 	/*
1267 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1268 	 * "boolean canonicalization" operator.
1269 	 */
1270 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1271 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1272 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg) || !ipp->ipp_use_ah;
1273 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1274 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1275 	    IPSEC_PREF_UNIQUE);
1276 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1277 	ipp->ipp_auth_alg = req->ipsr_auth_alg;
1278 	ipp->ipp_esp_auth_alg = req->ipsr_esp_auth_alg;
1279 }
1280 
1281 /*
1282  * Extract a new-style action from a request.
1283  */
1284 void
1285 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp)
1286 {
1287 	struct ipsec_act act;
1288 	bzero(&act, sizeof (act));
1289 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1290 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1291 		act.ipa_type = IPSEC_ACT_BYPASS;
1292 	} else {
1293 		act.ipa_type = IPSEC_ACT_APPLY;
1294 		ipsec_prot_from_req(req, &act.ipa_apply);
1295 	}
1296 	*actp = ipsec_act_wildcard_expand(&act, nactp);
1297 }
1298 
1299 /*
1300  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1301  * We assume caller has already zero'ed *req for us.
1302  */
1303 static int
1304 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1305 {
1306 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1307 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1308 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1309 
1310 	if (ipp->ipp_use_unique) {
1311 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1312 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1313 	}
1314 	if (ipp->ipp_use_se)
1315 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1316 	if (ipp->ipp_use_ah)
1317 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1318 	if (ipp->ipp_use_esp)
1319 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1320 	return (sizeof (*req));
1321 }
1322 
1323 /*
1324  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1325  * We assume caller has already zero'ed *req for us.
1326  */
1327 static int
1328 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1329 {
1330 	switch (ap->ipa_act.ipa_type) {
1331 	case IPSEC_ACT_BYPASS:
1332 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1333 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1334 		return (sizeof (*req));
1335 	case IPSEC_ACT_APPLY:
1336 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1337 	}
1338 	return (sizeof (*req));
1339 }
1340 
1341 /*
1342  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1343  * We assume caller has already zero'ed *req for us.
1344  */
1345 int
1346 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1347 {
1348 	ipsec_policy_t *p;
1349 
1350 	/*
1351 	 * FULL-PERSOCK: consult hash table, too?
1352 	 */
1353 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1354 	    p != NULL;
1355 	    p = p->ipsp_hash.hash_next) {
1356 		if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1357 			return (ipsec_req_from_act(p->ipsp_act, req));
1358 	}
1359 	return (sizeof (*req));
1360 }
1361 
1362 /*
1363  * Based on per-socket or latched policy, convert to an appropriate
1364  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1365  * be tail-called from ip.
1366  */
1367 int
1368 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1369 {
1370 	ipsec_latch_t *ipl;
1371 	int rv = sizeof (ipsec_req_t);
1372 
1373 	bzero(req, sizeof (*req));
1374 
1375 	mutex_enter(&connp->conn_lock);
1376 	ipl = connp->conn_latch;
1377 
1378 	/*
1379 	 * Find appropriate policy.  First choice is latched action;
1380 	 * failing that, see latched policy; failing that,
1381 	 * look at configured policy.
1382 	 */
1383 	if (ipl != NULL) {
1384 		if (ipl->ipl_in_action != NULL) {
1385 			rv = ipsec_req_from_act(ipl->ipl_in_action, req);
1386 			goto done;
1387 		}
1388 		if (ipl->ipl_in_policy != NULL) {
1389 			rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act,
1390 			    req);
1391 			goto done;
1392 		}
1393 	}
1394 	if (connp->conn_policy != NULL)
1395 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1396 done:
1397 	mutex_exit(&connp->conn_lock);
1398 	return (rv);
1399 }
1400 
1401 void
1402 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1403 {
1404 	kmem_free(act, nact * sizeof (*act));
1405 }
1406 
1407 /*
1408  * When outbound policy is not cached, look it up the hard way and attach
1409  * an ipsec_out_t to the packet..
1410  */
1411 static mblk_t *
1412 ipsec_attach_global_policy(mblk_t *mp, conn_t *connp, ipsec_selector_t *sel)
1413 {
1414 	ipsec_policy_t *p;
1415 
1416 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel);
1417 
1418 	if (p == NULL)
1419 		return (NULL);
1420 	return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol));
1421 }
1422 
1423 /*
1424  * We have an ipsec_out already, but don't have cached policy; fill it in
1425  * with the right actions.
1426  */
1427 static mblk_t *
1428 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp,
1429     ipsec_selector_t *sel)
1430 {
1431 	ipsec_out_t *io;
1432 	ipsec_policy_t *p;
1433 
1434 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1435 	ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA);
1436 
1437 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
1438 
1439 	if (io->ipsec_out_policy == NULL) {
1440 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel);
1441 		io->ipsec_out_policy = p;
1442 	}
1443 	return (ipsec_mp);
1444 }
1445 
1446 
1447 /*
1448  * Consumes a reference to ipsp.
1449  */
1450 static mblk_t *
1451 ipsec_check_loopback_policy(mblk_t *first_mp, boolean_t mctl_present,
1452     ipsec_policy_t *ipsp)
1453 {
1454 	mblk_t *ipsec_mp;
1455 	ipsec_in_t *ii;
1456 
1457 	if (!mctl_present)
1458 		return (first_mp);
1459 
1460 	ipsec_mp = first_mp;
1461 
1462 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1463 	ASSERT(ii->ipsec_in_loopback);
1464 	IPPOL_REFRELE(ipsp);
1465 
1466 	/*
1467 	 * We should do an actual policy check here.  Revisit this
1468 	 * when we revisit the IPsec API.  (And pass a conn_t in when we
1469 	 * get there.)
1470 	 */
1471 
1472 	return (first_mp);
1473 }
1474 
1475 /*
1476  * Check that packet's inbound ports & proto match the selectors
1477  * expected by the SAs it traversed on the way in.
1478  */
1479 static boolean_t
1480 ipsec_check_ipsecin_unique(ipsec_in_t *ii, const char **reason,
1481     kstat_named_t **counter, uint64_t pkt_unique)
1482 {
1483 	uint64_t ah_mask, esp_mask;
1484 	ipsa_t *ah_assoc;
1485 	ipsa_t *esp_assoc;
1486 
1487 	ASSERT(ii->ipsec_in_secure);
1488 	ASSERT(!ii->ipsec_in_loopback);
1489 
1490 	ah_assoc = ii->ipsec_in_ah_sa;
1491 	esp_assoc = ii->ipsec_in_esp_sa;
1492 	ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1493 
1494 	ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1495 	esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1496 
1497 	if ((ah_mask == 0) && (esp_mask == 0))
1498 		return (B_TRUE);
1499 
1500 	/*
1501 	 * The pkt_unique check will also check for tunnel mode on the SA
1502 	 * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1503 	 * should not apply in this case.  ;)
1504 	 */
1505 
1506 	if (ah_mask != 0 &&
1507 	    ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1508 		*reason = "AH inner header mismatch";
1509 		*counter = &ipdrops_spd_ah_innermismatch;
1510 		return (B_FALSE);
1511 	}
1512 	if (esp_mask != 0 &&
1513 	    esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1514 		*reason = "ESP inner header mismatch";
1515 		*counter = &ipdrops_spd_esp_innermismatch;
1516 		return (B_FALSE);
1517 	}
1518 	return (B_TRUE);
1519 }
1520 
1521 static boolean_t
1522 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap,
1523     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1524 {
1525 	boolean_t ret = B_TRUE;
1526 	ipsec_prot_t *ipp;
1527 	ipsa_t *ah_assoc;
1528 	ipsa_t *esp_assoc;
1529 	boolean_t decaps;
1530 
1531 	ASSERT((ipha == NULL && ip6h != NULL) ||
1532 	    (ip6h == NULL && ipha != NULL));
1533 
1534 	if (ii->ipsec_in_loopback) {
1535 		/*
1536 		 * Besides accepting pointer-equivalent actions, we also
1537 		 * accept any ICMP errors we generated for ourselves,
1538 		 * regardless of policy.  If we do not wish to make this
1539 		 * assumption in the future, check here, and where
1540 		 * icmp_loopback is initialized in ip.c and ip6.c.  (Look for
1541 		 * ipsec_out_icmp_loopback.)
1542 		 */
1543 		if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback)
1544 			return (B_TRUE);
1545 
1546 		/* Deep compare necessary here?? */
1547 		*counter = &ipdrops_spd_loopback_mismatch;
1548 		*reason = "loopback policy mismatch";
1549 		return (B_FALSE);
1550 	}
1551 	ASSERT(!ii->ipsec_in_icmp_loopback);
1552 
1553 	ah_assoc = ii->ipsec_in_ah_sa;
1554 	esp_assoc = ii->ipsec_in_esp_sa;
1555 
1556 	decaps = ii->ipsec_in_decaps;
1557 
1558 	switch (ap->ipa_act.ipa_type) {
1559 	case IPSEC_ACT_DISCARD:
1560 	case IPSEC_ACT_REJECT:
1561 		/* Should "fail hard" */
1562 		*counter = &ipdrops_spd_explicit;
1563 		*reason = "blocked by policy";
1564 		return (B_FALSE);
1565 
1566 	case IPSEC_ACT_BYPASS:
1567 	case IPSEC_ACT_CLEAR:
1568 		*counter = &ipdrops_spd_got_secure;
1569 		*reason = "expected clear, got protected";
1570 		return (B_FALSE);
1571 
1572 	case IPSEC_ACT_APPLY:
1573 		ipp = &ap->ipa_act.ipa_apply;
1574 		/*
1575 		 * As of now we do the simple checks of whether
1576 		 * the datagram has gone through the required IPSEC
1577 		 * protocol constraints or not. We might have more
1578 		 * in the future like sensitive levels, key bits, etc.
1579 		 * If it fails the constraints, check whether we would
1580 		 * have accepted this if it had come in clear.
1581 		 */
1582 		if (ipp->ipp_use_ah) {
1583 			if (ah_assoc == NULL) {
1584 				ret = ipsec_inbound_accept_clear(mp, ipha,
1585 				    ip6h);
1586 				*counter = &ipdrops_spd_got_clear;
1587 				*reason = "unprotected not accepted";
1588 				break;
1589 			}
1590 			ASSERT(ah_assoc != NULL);
1591 			ASSERT(ipp->ipp_auth_alg != 0);
1592 
1593 			if (ah_assoc->ipsa_auth_alg !=
1594 			    ipp->ipp_auth_alg) {
1595 				*counter = &ipdrops_spd_bad_ahalg;
1596 				*reason = "unacceptable ah alg";
1597 				ret = B_FALSE;
1598 				break;
1599 			}
1600 		} else if (ah_assoc != NULL) {
1601 			/*
1602 			 * Don't allow this. Check IPSEC NOTE above
1603 			 * ip_fanout_proto().
1604 			 */
1605 			*counter = &ipdrops_spd_got_ah;
1606 			*reason = "unexpected AH";
1607 			ret = B_FALSE;
1608 			break;
1609 		}
1610 		if (ipp->ipp_use_esp) {
1611 			if (esp_assoc == NULL) {
1612 				ret = ipsec_inbound_accept_clear(mp, ipha,
1613 				    ip6h);
1614 				*counter = &ipdrops_spd_got_clear;
1615 				*reason = "unprotected not accepted";
1616 				break;
1617 			}
1618 			ASSERT(esp_assoc != NULL);
1619 			ASSERT(ipp->ipp_encr_alg != 0);
1620 
1621 			if (esp_assoc->ipsa_encr_alg !=
1622 			    ipp->ipp_encr_alg) {
1623 				*counter = &ipdrops_spd_bad_espealg;
1624 				*reason = "unacceptable esp alg";
1625 				ret = B_FALSE;
1626 				break;
1627 			}
1628 			/*
1629 			 * If the client does not need authentication,
1630 			 * we don't verify the alogrithm.
1631 			 */
1632 			if (ipp->ipp_use_espa) {
1633 				if (esp_assoc->ipsa_auth_alg !=
1634 				    ipp->ipp_esp_auth_alg) {
1635 					*counter = &ipdrops_spd_bad_espaalg;
1636 					*reason = "unacceptable esp auth alg";
1637 					ret = B_FALSE;
1638 					break;
1639 				}
1640 			}
1641 		} else if (esp_assoc != NULL) {
1642 				/*
1643 				 * Don't allow this. Check IPSEC NOTE above
1644 				 * ip_fanout_proto().
1645 				 */
1646 			*counter = &ipdrops_spd_got_esp;
1647 			*reason = "unexpected ESP";
1648 			ret = B_FALSE;
1649 			break;
1650 		}
1651 		if (ipp->ipp_use_se) {
1652 			if (!decaps) {
1653 				ret = ipsec_inbound_accept_clear(mp, ipha,
1654 				    ip6h);
1655 				if (!ret) {
1656 					/* XXX mutant? */
1657 					*counter = &ipdrops_spd_bad_selfencap;
1658 					*reason = "self encap not found";
1659 					break;
1660 				}
1661 			}
1662 		} else if (decaps) {
1663 			/*
1664 			 * XXX If the packet comes in tunneled and the
1665 			 * recipient does not expect it to be tunneled, it
1666 			 * is okay. But we drop to be consistent with the
1667 			 * other cases.
1668 			 */
1669 			*counter = &ipdrops_spd_got_selfencap;
1670 			*reason = "unexpected self encap";
1671 			ret = B_FALSE;
1672 			break;
1673 		}
1674 		if (ii->ipsec_in_action != NULL) {
1675 			/*
1676 			 * This can happen if we do a double policy-check on
1677 			 * a packet
1678 			 * XXX XXX should fix this case!
1679 			 */
1680 			IPACT_REFRELE(ii->ipsec_in_action);
1681 		}
1682 		ASSERT(ii->ipsec_in_action == NULL);
1683 		IPACT_REFHOLD(ap);
1684 		ii->ipsec_in_action = ap;
1685 		break;	/* from switch */
1686 	}
1687 	return (ret);
1688 }
1689 
1690 static boolean_t
1691 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1692 {
1693 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1694 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1695 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1696 }
1697 
1698 /*
1699  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1700  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1701  * there are cases when the conn_t is latched but it has wildcard selectors,
1702  * and then we need to fallback to scooping them out of the packet.
1703  *
1704  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1705  * can get away with this because we only have non-zero ports/proto for
1706  * latched conn_ts.
1707  *
1708  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1709  * to not be a nice macro.
1710  */
1711 static uint64_t
1712 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1713 {
1714 	ipsec_selector_t sel;
1715 	uint8_t ulp = connp->conn_ulp;
1716 
1717 	ASSERT(connp->conn_latch->ipl_in_policy != NULL);
1718 
1719 	if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1720 	    (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1721 		/* Slow path - we gotta grab from the packet. */
1722 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1723 			SEL_NONE) != SELRET_SUCCESS) {
1724 			/* Failure -> have caller free packet with ENOMEM. */
1725 			return (0);
1726 		}
1727 		return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1728 			    sel.ips_protocol, 0));
1729 	}
1730 
1731 #ifdef DEBUG_NOT_UNTIL_6478464
1732 	if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1733 	    SELRET_SUCCESS) {
1734 		ASSERT(sel.ips_local_port == connp->conn_lport);
1735 		ASSERT(sel.ips_remote_port == connp->conn_fport);
1736 		ASSERT(sel.ips_protocol == connp->conn_ulp);
1737 	}
1738 	ASSERT(connp->conn_ulp != 0);
1739 #endif
1740 
1741 	return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1742 }
1743 
1744 /*
1745  * Called to check policy on a latched connection, both from this file
1746  * and from tcp.c
1747  */
1748 boolean_t
1749 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl,
1750     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1751     conn_t *connp)
1752 {
1753 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1754 
1755 	if (!ii->ipsec_in_loopback) {
1756 		/*
1757 		 * Over loopback, there aren't real security associations,
1758 		 * so there are neither identities nor "unique" values
1759 		 * for us to check the packet against.
1760 		 */
1761 		if ((ii->ipsec_in_ah_sa != NULL) &&
1762 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) {
1763 			*counter = &ipdrops_spd_ah_badid;
1764 			*reason = "AH identity mismatch";
1765 			return (B_FALSE);
1766 		}
1767 
1768 		if ((ii->ipsec_in_esp_sa != NULL) &&
1769 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) {
1770 			*counter = &ipdrops_spd_esp_badid;
1771 			*reason = "ESP identity mismatch";
1772 			return (B_FALSE);
1773 		}
1774 
1775 		/*
1776 		 * Can fudge pkt_unique from connp because we're latched.
1777 		 * In DEBUG kernels (see conn_to_unique()'s implementation),
1778 		 * verify this even if it REALLY slows things down.
1779 		 */
1780 		if (!ipsec_check_ipsecin_unique(ii, reason, counter,
1781 			conn_to_unique(connp, mp, ipha, ip6h))) {
1782 			return (B_FALSE);
1783 		}
1784 	}
1785 
1786 	return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action,
1787 	    ipha, ip6h, reason, counter));
1788 }
1789 
1790 /*
1791  * Check to see whether this secured datagram meets the policy
1792  * constraints specified in ipsp.
1793  *
1794  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1795  *
1796  * Consumes a reference to ipsp.
1797  */
1798 static mblk_t *
1799 ipsec_check_ipsecin_policy(mblk_t *first_mp, ipsec_policy_t *ipsp,
1800     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique)
1801 {
1802 	ipsec_in_t *ii;
1803 	ipsec_action_t *ap;
1804 	const char *reason = "no policy actions found";
1805 	mblk_t *data_mp, *ipsec_mp;
1806 	kstat_named_t *counter = &ipdrops_spd_got_secure;
1807 
1808 	data_mp = first_mp->b_cont;
1809 	ipsec_mp = first_mp;
1810 
1811 	ASSERT(ipsp != NULL);
1812 
1813 	ASSERT((ipha == NULL && ip6h != NULL) ||
1814 	    (ip6h == NULL && ipha != NULL));
1815 
1816 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1817 
1818 	if (ii->ipsec_in_loopback)
1819 		return (ipsec_check_loopback_policy(first_mp, B_TRUE, ipsp));
1820 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1821 	ASSERT(ii->ipsec_in_secure);
1822 
1823 	if (ii->ipsec_in_action != NULL) {
1824 		/*
1825 		 * this can happen if we do a double policy-check on a packet
1826 		 * Would be nice to be able to delete this test..
1827 		 */
1828 		IPACT_REFRELE(ii->ipsec_in_action);
1829 	}
1830 	ASSERT(ii->ipsec_in_action == NULL);
1831 
1832 	if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) {
1833 		reason = "inbound AH and ESP identities differ";
1834 		counter = &ipdrops_spd_ahesp_diffid;
1835 		goto drop;
1836 	}
1837 
1838 	if (!ipsec_check_ipsecin_unique(ii, &reason, &counter, pkt_unique))
1839 		goto drop;
1840 
1841 	/*
1842 	 * Ok, now loop through the possible actions and see if any
1843 	 * of them work for us.
1844 	 */
1845 
1846 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1847 		if (ipsec_check_ipsecin_action(ii, data_mp, ap,
1848 		    ipha, ip6h, &reason, &counter)) {
1849 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
1850 			IPPOL_REFRELE(ipsp);
1851 			return (first_mp);
1852 		}
1853 	}
1854 drop:
1855 	ipsec_rl_strlog(IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1856 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
1857 	    reason);
1858 	IPPOL_REFRELE(ipsp);
1859 	ASSERT(ii->ipsec_in_action == NULL);
1860 	BUMP_MIB(&ip_mib, ipsecInFailed);
1861 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper);
1862 	return (NULL);
1863 }
1864 
1865 /*
1866  * sleazy prefix-length-based compare.
1867  * another inlining candidate..
1868  */
1869 boolean_t
1870 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1871 {
1872 	int offset = pfxlen>>3;
1873 	int bitsleft = pfxlen & 7;
1874 	uint8_t *addr2 = (uint8_t *)addr2p;
1875 
1876 	/*
1877 	 * and there was much evil..
1878 	 * XXX should inline-expand the bcmp here and do this 32 bits
1879 	 * or 64 bits at a time..
1880 	 */
1881 	return ((bcmp(addr1, addr2, offset) == 0) &&
1882 	    ((bitsleft == 0) ||
1883 		(((addr1[offset] ^ addr2[offset]) &
1884 		    (0xff<<(8-bitsleft))) == 0)));
1885 }
1886 
1887 static ipsec_policy_t *
1888 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1889     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1890 {
1891 	ipsec_selkey_t *isel;
1892 	ipsec_policy_t *p;
1893 	int bpri = best ? best->ipsp_prio : 0;
1894 
1895 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1896 		uint32_t valid;
1897 
1898 		if (p->ipsp_prio <= bpri)
1899 			continue;
1900 		isel = &p->ipsp_sel->ipsl_key;
1901 		valid = isel->ipsl_valid;
1902 
1903 		if ((valid & IPSL_PROTOCOL) &&
1904 		    (isel->ipsl_proto != sel->ips_protocol))
1905 			continue;
1906 
1907 		if ((valid & IPSL_REMOTE_ADDR) &&
1908 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1909 			isel->ipsl_remote_pfxlen,
1910 			&sel->ips_remote_addr_v6))
1911 			continue;
1912 
1913 		if ((valid & IPSL_LOCAL_ADDR) &&
1914 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
1915 			isel->ipsl_local_pfxlen,
1916 			&sel->ips_local_addr_v6))
1917 			continue;
1918 
1919 		if ((valid & IPSL_REMOTE_PORT) &&
1920 		    isel->ipsl_rport != sel->ips_remote_port)
1921 			continue;
1922 
1923 		if ((valid & IPSL_LOCAL_PORT) &&
1924 		    isel->ipsl_lport != sel->ips_local_port)
1925 			continue;
1926 
1927 		if (!is_icmp_inv_acq) {
1928 			if ((valid & IPSL_ICMP_TYPE) &&
1929 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1930 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1931 				continue;
1932 			}
1933 
1934 			if ((valid & IPSL_ICMP_CODE) &&
1935 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1936 			    isel->ipsl_icmp_code_end <
1937 			    sel->ips_icmp_code)) {
1938 				continue;
1939 			}
1940 		} else {
1941 			/*
1942 			 * special case for icmp inverse acquire
1943 			 * we only want policies that aren't drop/pass
1944 			 */
1945 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
1946 				continue;
1947 		}
1948 
1949 		/* we matched all the packet-port-field selectors! */
1950 		best = p;
1951 		bpri = p->ipsp_prio;
1952 	}
1953 
1954 	return (best);
1955 }
1956 
1957 /*
1958  * Try to find and return the best policy entry under a given policy
1959  * root for a given set of selectors; the first parameter "best" is
1960  * the current best policy so far.  If "best" is non-null, we have a
1961  * reference to it.  We return a reference to a policy; if that policy
1962  * is not the original "best", we need to release that reference
1963  * before returning.
1964  */
1965 ipsec_policy_t *
1966 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
1967     int direction, ipsec_selector_t *sel)
1968 {
1969 	ipsec_policy_t *curbest;
1970 	ipsec_policy_root_t *root;
1971 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
1972 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
1973 
1974 	curbest = best;
1975 	root = &head->iph_root[direction];
1976 
1977 #ifdef DEBUG
1978 	if (is_icmp_inv_acq) {
1979 		if (sel->ips_isv4) {
1980 			if (sel->ips_protocol != IPPROTO_ICMP) {
1981 			    cmn_err(CE_WARN, "ipsec_find_policy_head:"
1982 			    " expecting icmp, got %d", sel->ips_protocol);
1983 			}
1984 		} else {
1985 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
1986 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
1987 				" expecting icmpv6, got %d", sel->ips_protocol);
1988 			}
1989 		}
1990 	}
1991 #endif
1992 
1993 	rw_enter(&head->iph_lock, RW_READER);
1994 
1995 	if (root->ipr_nchains > 0) {
1996 		curbest = ipsec_find_policy_chain(curbest,
1997 		    root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
1998 		    is_icmp_inv_acq);
1999 	}
2000 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2001 	    is_icmp_inv_acq);
2002 
2003 	/*
2004 	 * Adjust reference counts if we found anything new.
2005 	 */
2006 	if (curbest != best) {
2007 		ASSERT(curbest != NULL);
2008 		IPPOL_REFHOLD(curbest);
2009 
2010 		if (best != NULL) {
2011 			IPPOL_REFRELE(best);
2012 		}
2013 	}
2014 
2015 	rw_exit(&head->iph_lock);
2016 
2017 	return (curbest);
2018 }
2019 
2020 /*
2021  * Find the best system policy (either global or per-interface) which
2022  * applies to the given selector; look in all the relevant policy roots
2023  * to figure out which policy wins.
2024  *
2025  * Returns a reference to a policy; caller must release this
2026  * reference when done.
2027  */
2028 ipsec_policy_t *
2029 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io,
2030     ipsec_selector_t *sel)
2031 {
2032 	ipsec_policy_t *p;
2033 
2034 	p = ipsec_find_policy_head(NULL, &system_policy, direction, sel);
2035 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
2036 		p = ipsec_find_policy_head(p, connp->conn_policy,
2037 		    direction, sel);
2038 	} else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) {
2039 		p = ipsec_find_policy_head(p, io->ipsec_out_polhead,
2040 		    direction, sel);
2041 	}
2042 
2043 	return (p);
2044 }
2045 
2046 /*
2047  * Check with global policy and see whether this inbound
2048  * packet meets the policy constraints.
2049  *
2050  * Locate appropriate policy from global policy, supplemented by the
2051  * conn's configured and/or cached policy if the conn is supplied.
2052  *
2053  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2054  * encrypted packet to see if they match.
2055  *
2056  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2057  * floor.
2058  */
2059 mblk_t *
2060 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp,
2061     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2062 {
2063 	ipsec_policy_t *p;
2064 	ipsec_selector_t sel;
2065 	mblk_t *data_mp, *ipsec_mp;
2066 	boolean_t policy_present;
2067 	kstat_named_t *counter;
2068 	ipsec_in_t *ii = NULL;
2069 	uint64_t pkt_unique;
2070 
2071 	data_mp = mctl_present ? first_mp->b_cont : first_mp;
2072 	ipsec_mp = mctl_present ? first_mp : NULL;
2073 
2074 	sel.ips_is_icmp_inv_acq = 0;
2075 
2076 	ASSERT((ipha == NULL && ip6h != NULL) ||
2077 	    (ip6h == NULL && ipha != NULL));
2078 
2079 	if (ipha != NULL)
2080 		policy_present = ipsec_inbound_v4_policy_present;
2081 	else
2082 		policy_present = ipsec_inbound_v6_policy_present;
2083 
2084 	if (!policy_present && connp == NULL) {
2085 		/*
2086 		 * No global policy and no per-socket policy;
2087 		 * just pass it back (but we shouldn't get here in that case)
2088 		 */
2089 		return (first_mp);
2090 	}
2091 
2092 	if (ipsec_mp != NULL) {
2093 		ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2094 		ii = (ipsec_in_t *)(ipsec_mp->b_rptr);
2095 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2096 	}
2097 
2098 	/*
2099 	 * If we have cached policy, use it.
2100 	 * Otherwise consult system policy.
2101 	 */
2102 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
2103 		p = connp->conn_latch->ipl_in_policy;
2104 		if (p != NULL) {
2105 			IPPOL_REFHOLD(p);
2106 		}
2107 		/*
2108 		 * Fudge sel for UNIQUE_ID setting below.
2109 		 */
2110 		pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2111 	} else {
2112 		/* Initialize the ports in the selector */
2113 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2114 			SEL_NONE) == SELRET_NOMEM) {
2115 			/*
2116 			 * Technically not a policy mismatch, but it is
2117 			 * an internal failure.
2118 			 */
2119 			ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2120 			    "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE);
2121 			counter = &ipdrops_spd_nomem;
2122 			goto fail;
2123 		}
2124 
2125 		/*
2126 		 * Find the policy which best applies.
2127 		 *
2128 		 * If we find global policy, we should look at both
2129 		 * local policy and global policy and see which is
2130 		 * stronger and match accordingly.
2131 		 *
2132 		 * If we don't find a global policy, check with
2133 		 * local policy alone.
2134 		 */
2135 
2136 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel);
2137 		pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2138 		    sel.ips_local_port, sel.ips_protocol, 0);
2139 	}
2140 
2141 	if (p == NULL) {
2142 		if (ipsec_mp == NULL) {
2143 			/*
2144 			 * We have no policy; default to succeeding.
2145 			 * XXX paranoid system design doesn't do this.
2146 			 */
2147 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
2148 			return (first_mp);
2149 		} else {
2150 			counter = &ipdrops_spd_got_secure;
2151 			ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2152 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE);
2153 			goto fail;
2154 		}
2155 	}
2156 	if ((ii != NULL) && (ii->ipsec_in_secure)) {
2157 		return (ipsec_check_ipsecin_policy(ipsec_mp, p, ipha, ip6h,
2158 		    pkt_unique));
2159 	}
2160 	if (p->ipsp_act->ipa_allow_clear) {
2161 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
2162 		IPPOL_REFRELE(p);
2163 		return (first_mp);
2164 	}
2165 	IPPOL_REFRELE(p);
2166 	/*
2167 	 * If we reach here, we will drop the packet because it failed the
2168 	 * global policy check because the packet was cleartext, and it
2169 	 * should not have been.
2170 	 */
2171 	ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2172 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE);
2173 	counter = &ipdrops_spd_got_clear;
2174 
2175 fail:
2176 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper);
2177 	BUMP_MIB(&ip_mib, ipsecInFailed);
2178 	return (NULL);
2179 }
2180 
2181 /*
2182  * We check whether an inbound datagram is a valid one
2183  * to accept in clear. If it is secure, it is the job
2184  * of IPSEC to log information appropriately if it
2185  * suspects that it may not be the real one.
2186  *
2187  * It is called only while fanning out to the ULP
2188  * where ULP accepts only secure data and the incoming
2189  * is clear. Usually we never accept clear datagrams in
2190  * such cases. ICMP is the only exception.
2191  *
2192  * NOTE : We don't call this function if the client (ULP)
2193  * is willing to accept things in clear.
2194  */
2195 boolean_t
2196 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2197 {
2198 	ushort_t iph_hdr_length;
2199 	icmph_t *icmph;
2200 	icmp6_t *icmp6;
2201 	uint8_t *nexthdrp;
2202 
2203 	ASSERT((ipha != NULL && ip6h == NULL) ||
2204 	    (ipha == NULL && ip6h != NULL));
2205 
2206 	if (ip6h != NULL) {
2207 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2208 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2209 		    &nexthdrp)) {
2210 			return (B_FALSE);
2211 		}
2212 		if (*nexthdrp != IPPROTO_ICMPV6)
2213 			return (B_FALSE);
2214 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2215 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2216 		switch (icmp6->icmp6_type) {
2217 		case ICMP6_PARAM_PROB:
2218 			/* Corresponds to port/proto unreach in IPv4. */
2219 		case ICMP6_ECHO_REQUEST:
2220 			/* Just like IPv4. */
2221 			return (B_FALSE);
2222 
2223 		case MLD_LISTENER_QUERY:
2224 		case MLD_LISTENER_REPORT:
2225 		case MLD_LISTENER_REDUCTION:
2226 			/*
2227 			 * XXX Seperate NDD in IPv4 what about here?
2228 			 * Plus, mcast is important to ND.
2229 			 */
2230 		case ICMP6_DST_UNREACH:
2231 			/* Corresponds to HOST/NET unreachable in IPv4. */
2232 		case ICMP6_PACKET_TOO_BIG:
2233 		case ICMP6_ECHO_REPLY:
2234 			/* These are trusted in IPv4. */
2235 		case ND_ROUTER_SOLICIT:
2236 		case ND_ROUTER_ADVERT:
2237 		case ND_NEIGHBOR_SOLICIT:
2238 		case ND_NEIGHBOR_ADVERT:
2239 		case ND_REDIRECT:
2240 			/* Trust ND messages for now. */
2241 		case ICMP6_TIME_EXCEEDED:
2242 		default:
2243 			return (B_TRUE);
2244 		}
2245 	} else {
2246 		/*
2247 		 * If it is not ICMP, fail this request.
2248 		 */
2249 		if (ipha->ipha_protocol != IPPROTO_ICMP) {
2250 #ifdef FRAGCACHE_DEBUG
2251 			cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2252 			    ipha->ipha_protocol);
2253 #endif
2254 			return (B_FALSE);
2255 		}
2256 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
2257 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2258 		/*
2259 		 * It is an insecure icmp message. Check to see whether we are
2260 		 * willing to accept this one.
2261 		 */
2262 
2263 		switch (icmph->icmph_type) {
2264 		case ICMP_ECHO_REPLY:
2265 		case ICMP_TIME_STAMP_REPLY:
2266 		case ICMP_INFO_REPLY:
2267 		case ICMP_ROUTER_ADVERTISEMENT:
2268 			/*
2269 			 * We should not encourage clear replies if this
2270 			 * client expects secure. If somebody is replying
2271 			 * in clear some mailicious user watching both the
2272 			 * request and reply, can do chosen-plain-text attacks.
2273 			 * With global policy we might be just expecting secure
2274 			 * but sending out clear. We don't know what the right
2275 			 * thing is. We can't do much here as we can't control
2276 			 * the sender here. Till we are sure of what to do,
2277 			 * accept them.
2278 			 */
2279 			return (B_TRUE);
2280 		case ICMP_ECHO_REQUEST:
2281 		case ICMP_TIME_STAMP_REQUEST:
2282 		case ICMP_INFO_REQUEST:
2283 		case ICMP_ADDRESS_MASK_REQUEST:
2284 		case ICMP_ROUTER_SOLICITATION:
2285 		case ICMP_ADDRESS_MASK_REPLY:
2286 			/*
2287 			 * Don't accept this as somebody could be sending
2288 			 * us plain text to get encrypted data. If we reply,
2289 			 * it will lead to chosen plain text attack.
2290 			 */
2291 			return (B_FALSE);
2292 		case ICMP_DEST_UNREACHABLE:
2293 			switch (icmph->icmph_code) {
2294 			case ICMP_FRAGMENTATION_NEEDED:
2295 				/*
2296 				 * Be in sync with icmp_inbound, where we have
2297 				 * already set ire_max_frag.
2298 				 */
2299 #ifdef FRAGCACHE_DEBUG
2300 			cmn_err(CE_WARN, "ICMP frag needed\n");
2301 #endif
2302 				return (B_TRUE);
2303 			case ICMP_HOST_UNREACHABLE:
2304 			case ICMP_NET_UNREACHABLE:
2305 				/*
2306 				 * By accepting, we could reset a connection.
2307 				 * How do we solve the problem of some
2308 				 * intermediate router sending in-secure ICMP
2309 				 * messages ?
2310 				 */
2311 				return (B_TRUE);
2312 			case ICMP_PORT_UNREACHABLE:
2313 			case ICMP_PROTOCOL_UNREACHABLE:
2314 			default :
2315 				return (B_FALSE);
2316 			}
2317 		case ICMP_SOURCE_QUENCH:
2318 			/*
2319 			 * If this is an attack, TCP will slow start
2320 			 * because of this. Is it very harmful ?
2321 			 */
2322 			return (B_TRUE);
2323 		case ICMP_PARAM_PROBLEM:
2324 			return (B_FALSE);
2325 		case ICMP_TIME_EXCEEDED:
2326 			return (B_TRUE);
2327 		case ICMP_REDIRECT:
2328 			return (B_FALSE);
2329 		default :
2330 			return (B_FALSE);
2331 		}
2332 	}
2333 }
2334 
2335 void
2336 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2337 {
2338 	mutex_enter(&ipl->ipl_lock);
2339 
2340 	if (ipl->ipl_ids_latched) {
2341 		/* I lost, someone else got here before me */
2342 		mutex_exit(&ipl->ipl_lock);
2343 		return;
2344 	}
2345 
2346 	if (local != NULL)
2347 		IPSID_REFHOLD(local);
2348 	if (remote != NULL)
2349 		IPSID_REFHOLD(remote);
2350 
2351 	ipl->ipl_local_cid = local;
2352 	ipl->ipl_remote_cid = remote;
2353 	ipl->ipl_ids_latched = B_TRUE;
2354 	mutex_exit(&ipl->ipl_lock);
2355 }
2356 
2357 void
2358 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii)
2359 {
2360 	ipsa_t *sa;
2361 
2362 	if (!ipl->ipl_ids_latched) {
2363 		ipsid_t *local = NULL;
2364 		ipsid_t *remote = NULL;
2365 
2366 		if (!ii->ipsec_in_loopback) {
2367 			if (ii->ipsec_in_esp_sa != NULL)
2368 				sa = ii->ipsec_in_esp_sa;
2369 			else
2370 				sa = ii->ipsec_in_ah_sa;
2371 			ASSERT(sa != NULL);
2372 			local = sa->ipsa_dst_cid;
2373 			remote = sa->ipsa_src_cid;
2374 		}
2375 		ipsec_latch_ids(ipl, local, remote);
2376 	}
2377 	ipl->ipl_in_action = ii->ipsec_in_action;
2378 	IPACT_REFHOLD(ipl->ipl_in_action);
2379 }
2380 
2381 /*
2382  * Check whether the policy constraints are met either for an
2383  * inbound datagram; called from IP in numerous places.
2384  *
2385  * Note that this is not a chokepoint for inbound policy checks;
2386  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2387  */
2388 mblk_t *
2389 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp,
2390     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2391 {
2392 	ipsec_in_t *ii;
2393 	boolean_t ret;
2394 	mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp;
2395 	mblk_t *ipsec_mp = mctl_present ? first_mp : NULL;
2396 	ipsec_latch_t *ipl;
2397 	uint64_t unique_id;
2398 
2399 	ASSERT(connp != NULL);
2400 	ipl = connp->conn_latch;
2401 
2402 	if (ipsec_mp == NULL) {
2403 clear:
2404 		/*
2405 		 * This is the case where the incoming datagram is
2406 		 * cleartext and we need to see whether this client
2407 		 * would like to receive such untrustworthy things from
2408 		 * the wire.
2409 		 */
2410 		ASSERT(mp != NULL);
2411 
2412 		if (ipl != NULL) {
2413 			/*
2414 			 * Policy is cached in the conn.
2415 			 */
2416 			if ((ipl->ipl_in_policy != NULL) &&
2417 			    (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) {
2418 				ret = ipsec_inbound_accept_clear(mp,
2419 				    ipha, ip6h);
2420 				if (ret) {
2421 					BUMP_MIB(&ip_mib, ipsecInSucceeded);
2422 					return (first_mp);
2423 				} else {
2424 					ipsec_log_policy_failure(
2425 					    IPSEC_POLICY_MISMATCH,
2426 					    "ipsec_check_inbound_policy", ipha,
2427 					    ip6h, B_FALSE);
2428 					ip_drop_packet(first_mp, B_TRUE, NULL,
2429 					    NULL, &ipdrops_spd_got_clear,
2430 					    &spd_dropper);
2431 					BUMP_MIB(&ip_mib, ipsecInFailed);
2432 					return (NULL);
2433 				}
2434 			} else {
2435 				BUMP_MIB(&ip_mib, ipsecInSucceeded);
2436 				return (first_mp);
2437 			}
2438 		} else {
2439 			/*
2440 			 * As this is a non-hardbound connection we need
2441 			 * to look at both per-socket policy and global
2442 			 * policy. As this is cleartext, mark the mp as
2443 			 * M_DATA in case if it is an ICMP error being
2444 			 * reported before calling ipsec_check_global_policy
2445 			 * so that it does not mistake it for IPSEC_IN.
2446 			 */
2447 			uchar_t db_type = mp->b_datap->db_type;
2448 			mp->b_datap->db_type = M_DATA;
2449 			first_mp = ipsec_check_global_policy(first_mp, connp,
2450 			    ipha, ip6h, mctl_present);
2451 			if (first_mp != NULL)
2452 				mp->b_datap->db_type = db_type;
2453 			return (first_mp);
2454 		}
2455 	}
2456 	/*
2457 	 * If it is inbound check whether the attached message
2458 	 * is secure or not. We have a special case for ICMP,
2459 	 * where we have a IPSEC_IN message and the attached
2460 	 * message is not secure. See icmp_inbound_error_fanout
2461 	 * for details.
2462 	 */
2463 	ASSERT(ipsec_mp != NULL);
2464 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2465 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2466 
2467 	if (!ii->ipsec_in_secure)
2468 		goto clear;
2469 
2470 	/*
2471 	 * mp->b_cont could be either a M_CTL message
2472 	 * for icmp errors being sent up or a M_DATA message.
2473 	 */
2474 	ASSERT(mp->b_datap->db_type == M_CTL || mp->b_datap->db_type == M_DATA);
2475 
2476 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2477 
2478 	if (ipl == NULL) {
2479 		/*
2480 		 * We don't have policies cached in the conn
2481 		 * for this stream. So, look at the global
2482 		 * policy. It will check against conn or global
2483 		 * depending on whichever is stronger.
2484 		 */
2485 		return (ipsec_check_global_policy(first_mp, connp,
2486 		    ipha, ip6h, mctl_present));
2487 	}
2488 
2489 	if (ipl->ipl_in_action != NULL) {
2490 		/* Policy is cached & latched; fast(er) path */
2491 		const char *reason;
2492 		kstat_named_t *counter;
2493 		if (ipsec_check_ipsecin_latch(ii, mp, ipl,
2494 		    ipha, ip6h, &reason, &counter, connp)) {
2495 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
2496 			return (first_mp);
2497 		}
2498 		ipsec_rl_strlog(IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
2499 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2500 		    reason);
2501 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2502 		    &spd_dropper);
2503 		BUMP_MIB(&ip_mib, ipsecInFailed);
2504 		return (NULL);
2505 	} else if (ipl->ipl_in_policy == NULL) {
2506 		ipsec_weird_null_inbound_policy++;
2507 		return (first_mp);
2508 	}
2509 
2510 	unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2511 	IPPOL_REFHOLD(ipl->ipl_in_policy);
2512 	first_mp = ipsec_check_ipsecin_policy(first_mp, ipl->ipl_in_policy,
2513 	    ipha, ip6h, unique_id);
2514 	/*
2515 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2516 	 * ipsec_check_ipsecin_policy().
2517 	 */
2518 	if (first_mp != NULL)
2519 		ipsec_latch_inbound(ipl, ii);
2520 	return (first_mp);
2521 }
2522 
2523 /*
2524  * Returns:
2525  *
2526  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2527  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2528  *		     gathering, the initial fragment is too short for
2529  *		     useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2530  *		     set.
2531  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2532  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2533  *		      should put this packet in a fragment-gathering queue.
2534  *		      Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2535  *		      is set.
2536  */
2537 static selret_t
2538 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2539     ip6_t *ip6h, uint8_t sel_flags)
2540 {
2541 	uint16_t *ports;
2542 	ushort_t hdr_len;
2543 	int outer_hdr_len = 0;	/* For ICMP tunnel-mode cases... */
2544 	mblk_t *spare_mp = NULL;
2545 	uint8_t *nexthdrp;
2546 	uint8_t nexthdr;
2547 	uint8_t *typecode;
2548 	uint8_t check_proto;
2549 	ip6_pkt_t ipp;
2550 	boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2551 	boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2552 	boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2553 
2554 	ASSERT((ipha == NULL && ip6h != NULL) ||
2555 	    (ipha != NULL && ip6h == NULL));
2556 
2557 	if (ip6h != NULL) {
2558 		if (is_icmp)
2559 			outer_hdr_len = ((uint8_t *)ip6h) - mp->b_rptr;
2560 
2561 		check_proto = IPPROTO_ICMPV6;
2562 		sel->ips_isv4 = B_FALSE;
2563 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2564 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2565 
2566 		bzero(&ipp, sizeof (ipp));
2567 		(void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL);
2568 
2569 		nexthdr = ip6h->ip6_nxt;
2570 		switch (nexthdr) {
2571 		case IPPROTO_HOPOPTS:
2572 		case IPPROTO_ROUTING:
2573 		case IPPROTO_DSTOPTS:
2574 		case IPPROTO_FRAGMENT:
2575 			/*
2576 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2577 			 * mblk that's contiguous to feed it
2578 			 */
2579 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2580 				return (SELRET_NOMEM);
2581 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2582 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2583 				&hdr_len, &nexthdrp)) {
2584 				/* Malformed packet - caller frees. */
2585 				ipsec_freemsg_chain(spare_mp);
2586 				return (SELRET_BADPKT);
2587 			}
2588 			nexthdr = *nexthdrp;
2589 			/* We can just extract based on hdr_len now. */
2590 			break;
2591 		default:
2592 			hdr_len = IPV6_HDR_LEN;
2593 			break;
2594 		}
2595 
2596 		if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2597 			/* IPv6 Fragment */
2598 			ipsec_freemsg_chain(spare_mp);
2599 			return (SELRET_TUNFRAG);
2600 		}
2601 	} else {
2602 		if (is_icmp)
2603 			outer_hdr_len = ((uint8_t *)ipha) - mp->b_rptr;
2604 		check_proto = IPPROTO_ICMP;
2605 		sel->ips_isv4 = B_TRUE;
2606 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2607 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2608 		nexthdr = ipha->ipha_protocol;
2609 		hdr_len = IPH_HDR_LENGTH(ipha);
2610 
2611 		if (port_policy_present &&
2612 		    IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2613 		    !is_icmp) {
2614 			/* IPv4 Fragment */
2615 			ipsec_freemsg_chain(spare_mp);
2616 			return (SELRET_TUNFRAG);
2617 		}
2618 
2619 	}
2620 	sel->ips_protocol = nexthdr;
2621 
2622 	if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2623 		nexthdr != IPPROTO_SCTP && nexthdr != check_proto) ||
2624 	    (!port_policy_present && tunnel_mode)) {
2625 		sel->ips_remote_port = sel->ips_local_port = 0;
2626 		ipsec_freemsg_chain(spare_mp);
2627 		return (SELRET_SUCCESS);
2628 	}
2629 
2630 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2631 		/* If we didn't pullup a copy already, do so now. */
2632 		/*
2633 		 * XXX performance, will upper-layers frequently split TCP/UDP
2634 		 * apart from IP or options?  If so, perhaps we should revisit
2635 		 * the spare_mp strategy.
2636 		 */
2637 		ipsec_hdr_pullup_needed++;
2638 		if (spare_mp == NULL &&
2639 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2640 			return (SELRET_NOMEM);
2641 		}
2642 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2643 	} else {
2644 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2645 	}
2646 
2647 	if (nexthdr == check_proto) {
2648 		typecode = (uint8_t *)ports;
2649 		sel->ips_icmp_type = *typecode++;
2650 		sel->ips_icmp_code = *typecode;
2651 		sel->ips_remote_port = sel->ips_local_port = 0;
2652 	} else {
2653 		sel->ips_remote_port = *ports++;
2654 		sel->ips_local_port = *ports;
2655 	}
2656 	ipsec_freemsg_chain(spare_mp);
2657 	return (SELRET_SUCCESS);
2658 }
2659 
2660 static boolean_t
2661 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2662     ip6_t *ip6h, int outer_hdr_len)
2663 {
2664 	/*
2665 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2666 	 */
2667 	uint16_t *ports;
2668 	ushort_t hdr_len;
2669 	mblk_t *spare_mp = NULL;
2670 	uint8_t *nexthdrp;
2671 	uint8_t nexthdr;
2672 	uint8_t *typecode;
2673 	uint8_t check_proto;
2674 
2675 	ASSERT((ipha == NULL && ip6h != NULL) ||
2676 	    (ipha != NULL && ip6h == NULL));
2677 
2678 	if (ip6h != NULL) {
2679 		check_proto = IPPROTO_ICMPV6;
2680 		nexthdr = ip6h->ip6_nxt;
2681 		switch (nexthdr) {
2682 		case IPPROTO_HOPOPTS:
2683 		case IPPROTO_ROUTING:
2684 		case IPPROTO_DSTOPTS:
2685 		case IPPROTO_FRAGMENT:
2686 			/*
2687 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2688 			 * mblk that's contiguous to feed it
2689 			 */
2690 			spare_mp = msgpullup(mp, -1);
2691 			if (spare_mp == NULL ||
2692 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2693 				(ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2694 				&hdr_len, &nexthdrp)) {
2695 				/* Always works, even if NULL. */
2696 				ipsec_freemsg_chain(spare_mp);
2697 				ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2698 				    &ipdrops_spd_nomem, &spd_dropper);
2699 				return (B_FALSE);
2700 			} else {
2701 				nexthdr = *nexthdrp;
2702 				/* We can just extract based on hdr_len now. */
2703 			}
2704 			break;
2705 		default:
2706 			hdr_len = IPV6_HDR_LEN;
2707 			break;
2708 		}
2709 	} else {
2710 		check_proto = IPPROTO_ICMP;
2711 		hdr_len = IPH_HDR_LENGTH(ipha);
2712 		nexthdr = ipha->ipha_protocol;
2713 	}
2714 
2715 	sel->ips_protocol = nexthdr;
2716 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2717 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2718 		sel->ips_local_port = sel->ips_remote_port = 0;
2719 		ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2720 		return (B_TRUE);
2721 	}
2722 
2723 	if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2724 		/* If we didn't pullup a copy already, do so now. */
2725 		/*
2726 		 * XXX performance, will upper-layers frequently split TCP/UDP
2727 		 * apart from IP or options?  If so, perhaps we should revisit
2728 		 * the spare_mp strategy.
2729 		 *
2730 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2731 		 */
2732 		if (spare_mp == NULL &&
2733 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2734 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2735 			    &ipdrops_spd_nomem, &spd_dropper);
2736 			return (B_FALSE);
2737 		}
2738 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2739 	} else {
2740 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2741 	}
2742 
2743 	if (nexthdr == check_proto) {
2744 		typecode = (uint8_t *)ports;
2745 		sel->ips_icmp_type = *typecode++;
2746 		sel->ips_icmp_code = *typecode;
2747 		sel->ips_remote_port = sel->ips_local_port = 0;
2748 	} else {
2749 		sel->ips_local_port = *ports++;
2750 		sel->ips_remote_port = *ports;
2751 	}
2752 	ipsec_freemsg_chain(spare_mp);	/* Always works, even if NULL */
2753 	return (B_TRUE);
2754 }
2755 
2756 /*
2757  * Create an ipsec_action_t based on the way an inbound packet was protected.
2758  * Used to reflect traffic back to a sender.
2759  *
2760  * We don't bother interning the action into the hash table.
2761  */
2762 ipsec_action_t *
2763 ipsec_in_to_out_action(ipsec_in_t *ii)
2764 {
2765 	ipsa_t *ah_assoc, *esp_assoc;
2766 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2767 	ipsec_action_t *ap;
2768 	boolean_t unique;
2769 
2770 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2771 
2772 	if (ap == NULL)
2773 		return (NULL);
2774 
2775 	bzero(ap, sizeof (*ap));
2776 	HASH_NULL(ap, ipa_hash);
2777 	ap->ipa_next = NULL;
2778 	ap->ipa_refs = 1;
2779 
2780 	/*
2781 	 * Get the algorithms that were used for this packet.
2782 	 */
2783 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2784 	ap->ipa_act.ipa_log = 0;
2785 	ah_assoc = ii->ipsec_in_ah_sa;
2786 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
2787 
2788 	esp_assoc = ii->ipsec_in_esp_sa;
2789 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
2790 
2791 	if (esp_assoc != NULL) {
2792 		encr_alg = esp_assoc->ipsa_encr_alg;
2793 		espa_alg = esp_assoc->ipsa_auth_alg;
2794 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
2795 	}
2796 	if (ah_assoc != NULL)
2797 		auth_alg = ah_assoc->ipsa_auth_alg;
2798 
2799 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
2800 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
2801 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
2802 	ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps;
2803 	unique = B_FALSE;
2804 
2805 	if (esp_assoc != NULL) {
2806 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
2807 		    esp_assoc->ipsa_authkeybits;
2808 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
2809 		    esp_assoc->ipsa_authkeybits;
2810 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
2811 		    esp_assoc->ipsa_encrkeybits;
2812 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
2813 		    esp_assoc->ipsa_encrkeybits;
2814 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
2815 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
2816 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
2817 			unique = B_TRUE;
2818 	}
2819 	if (ah_assoc != NULL) {
2820 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
2821 		    ah_assoc->ipsa_authkeybits;
2822 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
2823 		    ah_assoc->ipsa_authkeybits;
2824 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
2825 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
2826 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
2827 			unique = B_TRUE;
2828 	}
2829 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
2830 	ap->ipa_want_unique = unique;
2831 	ap->ipa_allow_clear = B_FALSE;
2832 	ap->ipa_want_se = ii->ipsec_in_decaps;
2833 	ap->ipa_want_ah = (ah_assoc != NULL);
2834 	ap->ipa_want_esp = (esp_assoc != NULL);
2835 
2836 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
2837 
2838 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
2839 
2840 	return (ap);
2841 }
2842 
2843 
2844 /*
2845  * Compute the worst-case amount of extra space required by an action.
2846  * Note that, because of the ESP considerations listed below, this is
2847  * actually not the same as the best-case reduction in the MTU; in the
2848  * future, we should pass additional information to this function to
2849  * allow the actual MTU impact to be computed.
2850  *
2851  * AH: Revisit this if we implement algorithms with
2852  * a verifier size of more than 12 bytes.
2853  *
2854  * ESP: A more exact but more messy computation would take into
2855  * account the interaction between the cipher block size and the
2856  * effective MTU, yielding the inner payload size which reflects a
2857  * packet with *minimum* ESP padding..
2858  */
2859 int32_t
2860 ipsec_act_ovhd(const ipsec_act_t *act)
2861 {
2862 	int32_t overhead = 0;
2863 
2864 	if (act->ipa_type == IPSEC_ACT_APPLY) {
2865 		const ipsec_prot_t *ipp = &act->ipa_apply;
2866 
2867 		if (ipp->ipp_use_ah)
2868 			overhead += IPSEC_MAX_AH_HDR_SIZE;
2869 		if (ipp->ipp_use_esp) {
2870 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
2871 			overhead += sizeof (struct udphdr);
2872 		}
2873 		if (ipp->ipp_use_se)
2874 			overhead += IP_SIMPLE_HDR_LENGTH;
2875 	}
2876 	return (overhead);
2877 }
2878 
2879 /*
2880  * This hash function is used only when creating policies and thus is not
2881  * performance-critical for packet flows.
2882  *
2883  * Future work: canonicalize the structures hashed with this (i.e.,
2884  * zeroize padding) so the hash works correctly.
2885  */
2886 /* ARGSUSED */
2887 static uint32_t
2888 policy_hash(int size, const void *start, const void *end)
2889 {
2890 	return (0);
2891 }
2892 
2893 
2894 /*
2895  * Hash function macros for each address type.
2896  *
2897  * The IPV6 hash function assumes that the low order 32-bits of the
2898  * address (typically containing the low order 24 bits of the mac
2899  * address) are reasonably well-distributed.  Revisit this if we run
2900  * into trouble from lots of collisions on ::1 addresses and the like
2901  * (seems unlikely).
2902  */
2903 #define	IPSEC_IPV4_HASH(a, n) ((a) % (n))
2904 #define	IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
2905 
2906 /*
2907  * These two hash functions should produce coordinated values
2908  * but have slightly different roles.
2909  */
2910 static uint32_t
2911 selkey_hash(const ipsec_selkey_t *selkey)
2912 {
2913 	uint32_t valid = selkey->ipsl_valid;
2914 
2915 	if (!(valid & IPSL_REMOTE_ADDR))
2916 		return (IPSEC_SEL_NOHASH);
2917 
2918 	if (valid & IPSL_IPV4) {
2919 		if (selkey->ipsl_remote_pfxlen == 32)
2920 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
2921 				    ipsec_spd_hashsize));
2922 	}
2923 	if (valid & IPSL_IPV6) {
2924 		if (selkey->ipsl_remote_pfxlen == 128)
2925 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
2926 				    ipsec_spd_hashsize));
2927 	}
2928 	return (IPSEC_SEL_NOHASH);
2929 }
2930 
2931 static uint32_t
2932 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
2933 {
2934 	if (sel->ips_isv4) {
2935 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
2936 			    root->ipr_nchains));
2937 	}
2938 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
2939 }
2940 
2941 /*
2942  * Intern actions into the action hash table.
2943  */
2944 ipsec_action_t *
2945 ipsec_act_find(const ipsec_act_t *a, int n)
2946 {
2947 	int i;
2948 	uint32_t hval;
2949 	ipsec_action_t *ap;
2950 	ipsec_action_t *prev = NULL;
2951 	int32_t overhead, maxovhd = 0;
2952 	boolean_t allow_clear = B_FALSE;
2953 	boolean_t want_ah = B_FALSE;
2954 	boolean_t want_esp = B_FALSE;
2955 	boolean_t want_se = B_FALSE;
2956 	boolean_t want_unique = B_FALSE;
2957 
2958 	/*
2959 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
2960 	 * so we can use a non-trivial policy_hash function.
2961 	 */
2962 	for (i = n-1; i >= 0; i--) {
2963 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
2964 
2965 		HASH_LOCK(ipsec_action_hash, hval);
2966 
2967 		for (HASH_ITERATE(ap, ipa_hash, ipsec_action_hash, hval)) {
2968 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
2969 				continue;
2970 			if (ap->ipa_next != prev)
2971 				continue;
2972 			break;
2973 		}
2974 		if (ap != NULL) {
2975 			HASH_UNLOCK(ipsec_action_hash, hval);
2976 			prev = ap;
2977 			continue;
2978 		}
2979 		/*
2980 		 * need to allocate a new one..
2981 		 */
2982 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2983 		if (ap == NULL) {
2984 			HASH_UNLOCK(ipsec_action_hash, hval);
2985 			if (prev != NULL)
2986 				ipsec_action_free(prev);
2987 			return (NULL);
2988 		}
2989 		HASH_INSERT(ap, ipa_hash, ipsec_action_hash, hval);
2990 
2991 		ap->ipa_next = prev;
2992 		ap->ipa_act = a[i];
2993 
2994 		overhead = ipsec_act_ovhd(&a[i]);
2995 		if (maxovhd < overhead)
2996 			maxovhd = overhead;
2997 
2998 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
2999 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
3000 			allow_clear = B_TRUE;
3001 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3002 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
3003 
3004 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3005 			want_ah |= ipp->ipp_use_ah;
3006 			want_esp |= ipp->ipp_use_esp;
3007 			want_se |= ipp->ipp_use_se;
3008 			want_unique |= ipp->ipp_use_unique;
3009 		}
3010 		ap->ipa_allow_clear = allow_clear;
3011 		ap->ipa_want_ah = want_ah;
3012 		ap->ipa_want_esp = want_esp;
3013 		ap->ipa_want_se = want_se;
3014 		ap->ipa_want_unique = want_unique;
3015 		ap->ipa_refs = 1; /* from the hash table */
3016 		ap->ipa_ovhd = maxovhd;
3017 		if (prev)
3018 			prev->ipa_refs++;
3019 		prev = ap;
3020 		HASH_UNLOCK(ipsec_action_hash, hval);
3021 	}
3022 
3023 	ap->ipa_refs++;		/* caller's reference */
3024 
3025 	return (ap);
3026 }
3027 
3028 /*
3029  * Called when refcount goes to 0, indicating that all references to this
3030  * node are gone.
3031  *
3032  * This does not unchain the action from the hash table.
3033  */
3034 void
3035 ipsec_action_free(ipsec_action_t *ap)
3036 {
3037 	for (;;) {
3038 		ipsec_action_t *np = ap->ipa_next;
3039 		ASSERT(ap->ipa_refs == 0);
3040 		ASSERT(ap->ipa_hash.hash_pp == NULL);
3041 		kmem_cache_free(ipsec_action_cache, ap);
3042 		ap = np;
3043 		/* Inlined IPACT_REFRELE -- avoid recursion */
3044 		if (ap == NULL)
3045 			break;
3046 		membar_exit();
3047 		if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
3048 			break;
3049 		/* End inlined IPACT_REFRELE */
3050 	}
3051 }
3052 
3053 /*
3054  * Periodically sweep action hash table for actions with refcount==1, and
3055  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3056  * because we can't close the race between another thread finding the action
3057  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3058  * Instead, we run this function sporadically to clean up after ourselves;
3059  * we also set it as the "reclaim" function for the action kmem_cache.
3060  *
3061  * Note that it may take several passes of ipsec_action_gc() to free all
3062  * "stale" actions.
3063  */
3064 /* ARGSUSED */
3065 static void
3066 ipsec_action_reclaim(void *dummy)
3067 {
3068 	int i;
3069 
3070 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3071 		ipsec_action_t *ap, *np;
3072 
3073 		/* skip the lock if nobody home */
3074 		if (ipsec_action_hash[i].hash_head == NULL)
3075 			continue;
3076 
3077 		HASH_LOCK(ipsec_action_hash, i);
3078 		for (ap = ipsec_action_hash[i].hash_head;
3079 		    ap != NULL; ap = np) {
3080 			ASSERT(ap->ipa_refs > 0);
3081 			np = ap->ipa_hash.hash_next;
3082 			if (ap->ipa_refs > 1)
3083 				continue;
3084 			HASH_UNCHAIN(ap, ipa_hash, ipsec_action_hash, i);
3085 			IPACT_REFRELE(ap);
3086 		}
3087 		HASH_UNLOCK(ipsec_action_hash, i);
3088 	}
3089 }
3090 
3091 /*
3092  * Intern a selector set into the selector set hash table.
3093  * This is simpler than the actions case..
3094  */
3095 static ipsec_sel_t *
3096 ipsec_find_sel(ipsec_selkey_t *selkey)
3097 {
3098 	ipsec_sel_t *sp;
3099 	uint32_t hval, bucket;
3100 
3101 	/*
3102 	 * Exactly one AF bit should be set in selkey.
3103 	 */
3104 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3105 	    !(selkey->ipsl_valid & IPSL_IPV6));
3106 
3107 	hval = selkey_hash(selkey);
3108 	/* Set pol_hval to uninitialized until we put it in a polhead. */
3109 	selkey->ipsl_sel_hval = hval;
3110 
3111 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3112 
3113 	ASSERT(!HASH_LOCKED(ipsec_sel_hash, bucket));
3114 	HASH_LOCK(ipsec_sel_hash, bucket);
3115 
3116 	for (HASH_ITERATE(sp, ipsl_hash, ipsec_sel_hash, bucket)) {
3117 		if (bcmp(&sp->ipsl_key, selkey,
3118 		    offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3119 			break;
3120 	}
3121 	if (sp != NULL) {
3122 		sp->ipsl_refs++;
3123 
3124 		HASH_UNLOCK(ipsec_sel_hash, bucket);
3125 		return (sp);
3126 	}
3127 
3128 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3129 	if (sp == NULL) {
3130 		HASH_UNLOCK(ipsec_sel_hash, bucket);
3131 		return (NULL);
3132 	}
3133 
3134 	HASH_INSERT(sp, ipsl_hash, ipsec_sel_hash, bucket);
3135 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
3136 	sp->ipsl_key = *selkey;
3137 	/* Set to uninitalized and have insertion into polhead fix things. */
3138 	if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3139 		sp->ipsl_key.ipsl_pol_hval = 0;
3140 	else
3141 		sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3142 
3143 	HASH_UNLOCK(ipsec_sel_hash, bucket);
3144 
3145 	return (sp);
3146 }
3147 
3148 static void
3149 ipsec_sel_rel(ipsec_sel_t **spp)
3150 {
3151 	ipsec_sel_t *sp = *spp;
3152 	int hval = sp->ipsl_key.ipsl_sel_hval;
3153 	*spp = NULL;
3154 
3155 	if (hval == IPSEC_SEL_NOHASH)
3156 		hval = 0;
3157 
3158 	ASSERT(!HASH_LOCKED(ipsec_sel_hash, hval));
3159 	HASH_LOCK(ipsec_sel_hash, hval);
3160 	if (--sp->ipsl_refs == 1) {
3161 		HASH_UNCHAIN(sp, ipsl_hash, ipsec_sel_hash, hval);
3162 		sp->ipsl_refs--;
3163 		HASH_UNLOCK(ipsec_sel_hash, hval);
3164 		ASSERT(sp->ipsl_refs == 0);
3165 		kmem_cache_free(ipsec_sel_cache, sp);
3166 		/* Caller unlocks */
3167 		return;
3168 	}
3169 
3170 	HASH_UNLOCK(ipsec_sel_hash, hval);
3171 }
3172 
3173 /*
3174  * Free a policy rule which we know is no longer being referenced.
3175  */
3176 void
3177 ipsec_policy_free(ipsec_policy_t *ipp)
3178 {
3179 	ASSERT(ipp->ipsp_refs == 0);
3180 	ASSERT(ipp->ipsp_sel != NULL);
3181 	ASSERT(ipp->ipsp_act != NULL);
3182 	ipsec_sel_rel(&ipp->ipsp_sel);
3183 	IPACT_REFRELE(ipp->ipsp_act);
3184 	kmem_cache_free(ipsec_pol_cache, ipp);
3185 }
3186 
3187 /*
3188  * Construction of new policy rules; construct a policy, and add it to
3189  * the appropriate tables.
3190  */
3191 ipsec_policy_t *
3192 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3193     int nacts, int prio, uint64_t *index_ptr)
3194 {
3195 	ipsec_action_t *ap;
3196 	ipsec_sel_t *sp;
3197 	ipsec_policy_t *ipp;
3198 
3199 	if (index_ptr == NULL)
3200 		index_ptr = &ipsec_next_policy_index;
3201 
3202 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3203 	ap = ipsec_act_find(a, nacts);
3204 	sp = ipsec_find_sel(keys);
3205 
3206 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3207 		if (ap != NULL) {
3208 			IPACT_REFRELE(ap);
3209 		}
3210 		if (sp != NULL)
3211 			ipsec_sel_rel(&sp);
3212 		if (ipp != NULL)
3213 			kmem_cache_free(ipsec_pol_cache, ipp);
3214 		return (NULL);
3215 	}
3216 
3217 	HASH_NULL(ipp, ipsp_hash);
3218 
3219 	ipp->ipsp_refs = 1;	/* caller's reference */
3220 	ipp->ipsp_sel = sp;
3221 	ipp->ipsp_act = ap;
3222 	ipp->ipsp_prio = prio;	/* rule priority */
3223 	ipp->ipsp_index = *index_ptr;
3224 	(*index_ptr)++;
3225 
3226 	return (ipp);
3227 }
3228 
3229 static void
3230 ipsec_update_present_flags()
3231 {
3232 	boolean_t hashpol = (avl_numnodes(&system_policy.iph_rulebyid) > 0);
3233 
3234 	if (hashpol) {
3235 		ipsec_outbound_v4_policy_present = B_TRUE;
3236 		ipsec_outbound_v6_policy_present = B_TRUE;
3237 		ipsec_inbound_v4_policy_present = B_TRUE;
3238 		ipsec_inbound_v6_policy_present = B_TRUE;
3239 		return;
3240 	}
3241 
3242 	ipsec_outbound_v4_policy_present = (NULL !=
3243 	    system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3244 	    ipr_nonhash[IPSEC_AF_V4]);
3245 	ipsec_outbound_v6_policy_present = (NULL !=
3246 	    system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3247 	    ipr_nonhash[IPSEC_AF_V6]);
3248 	ipsec_inbound_v4_policy_present = (NULL !=
3249 	    system_policy.iph_root[IPSEC_TYPE_INBOUND].
3250 	    ipr_nonhash[IPSEC_AF_V4]);
3251 	ipsec_inbound_v6_policy_present = (NULL !=
3252 	    system_policy.iph_root[IPSEC_TYPE_INBOUND].
3253 	    ipr_nonhash[IPSEC_AF_V6]);
3254 }
3255 
3256 boolean_t
3257 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir)
3258 {
3259 	ipsec_sel_t *sp;
3260 	ipsec_policy_t *ip, *nip, *head;
3261 	int af;
3262 	ipsec_policy_root_t *pr = &php->iph_root[dir];
3263 
3264 	sp = ipsec_find_sel(keys);
3265 
3266 	if (sp == NULL)
3267 		return (B_FALSE);
3268 
3269 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3270 
3271 	rw_enter(&php->iph_lock, RW_WRITER);
3272 
3273 	if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3274 		head = pr->ipr_nonhash[af];
3275 	} else {
3276 		head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3277 	}
3278 
3279 	for (ip = head; ip != NULL; ip = nip) {
3280 		nip = ip->ipsp_hash.hash_next;
3281 		if (ip->ipsp_sel != sp) {
3282 			continue;
3283 		}
3284 
3285 		IPPOL_UNCHAIN(php, ip);
3286 
3287 		php->iph_gen++;
3288 		ipsec_update_present_flags();
3289 
3290 		rw_exit(&php->iph_lock);
3291 
3292 		ipsec_sel_rel(&sp);
3293 
3294 		return (B_TRUE);
3295 	}
3296 
3297 	rw_exit(&php->iph_lock);
3298 	ipsec_sel_rel(&sp);
3299 	return (B_FALSE);
3300 }
3301 
3302 int
3303 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index)
3304 {
3305 	boolean_t found = B_FALSE;
3306 	ipsec_policy_t ipkey;
3307 	ipsec_policy_t *ip;
3308 	avl_index_t where;
3309 
3310 	(void) memset(&ipkey, 0, sizeof (ipkey));
3311 	ipkey.ipsp_index = policy_index;
3312 
3313 	rw_enter(&php->iph_lock, RW_WRITER);
3314 
3315 	/*
3316 	 * We could be cleverer here about the walk.
3317 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
3318 	 * N==number of table entries
3319 	 */
3320 	for (;;) {
3321 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3322 		    (void *)&ipkey, &where);
3323 		ASSERT(ip == NULL);
3324 
3325 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3326 
3327 		if (ip == NULL)
3328 			break;
3329 
3330 		if (ip->ipsp_index != policy_index) {
3331 			ASSERT(ip->ipsp_index > policy_index);
3332 			break;
3333 		}
3334 
3335 		IPPOL_UNCHAIN(php, ip);
3336 		found = B_TRUE;
3337 	}
3338 
3339 	if (found) {
3340 		php->iph_gen++;
3341 		ipsec_update_present_flags();
3342 	}
3343 
3344 	rw_exit(&php->iph_lock);
3345 
3346 	return (found ? 0 : ENOENT);
3347 }
3348 
3349 /*
3350  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3351  * into the correct policy ruleset.  As a side-effect, it sets the hash
3352  * entries on "ipp"'s ipsp_pol_hval.
3353  *
3354  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3355  * duplicate policy exists with exactly the same selectors), or an icmp
3356  * rule exists with a different encryption/authentication action.
3357  */
3358 boolean_t
3359 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3360 {
3361 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3362 	int af = -1;
3363 	ipsec_policy_t *p2, *head;
3364 	uint8_t check_proto;
3365 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3366 	uint32_t	valid = selkey->ipsl_valid;
3367 
3368 	if (valid & IPSL_IPV6) {
3369 		ASSERT(!(valid & IPSL_IPV4));
3370 		af = IPSEC_AF_V6;
3371 		check_proto = IPPROTO_ICMPV6;
3372 	} else {
3373 		ASSERT(valid & IPSL_IPV4);
3374 		af = IPSEC_AF_V4;
3375 		check_proto = IPPROTO_ICMP;
3376 	}
3377 
3378 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3379 
3380 	/*
3381 	 * Double-check that we don't have any duplicate selectors here.
3382 	 * Because selectors are interned below, we need only compare pointers
3383 	 * for equality.
3384 	 */
3385 	if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3386 		head = pr->ipr_nonhash[af];
3387 	} else {
3388 		selkey->ipsl_pol_hval =
3389 		    (selkey->ipsl_valid & IPSL_IPV4) ?
3390 		    IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3391 			pr->ipr_nchains) :
3392 		    IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3393 			pr->ipr_nchains);
3394 
3395 		head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3396 	}
3397 
3398 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3399 		if (p2->ipsp_sel == ipp->ipsp_sel)
3400 			return (B_FALSE);
3401 	}
3402 
3403 	/*
3404 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3405 	 * rules and make sure the action is either new or the same as any
3406 	 * other actions.  We don't have to check the full chain because
3407 	 * discard and bypass will override all other actions
3408 	 */
3409 
3410 	if (valid & IPSL_PROTOCOL &&
3411 	    selkey->ipsl_proto == check_proto &&
3412 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3413 
3414 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3415 
3416 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3417 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3418 			    (p2->ipsp_act->ipa_act.ipa_type ==
3419 				IPSEC_ACT_APPLY)) {
3420 				return (ipsec_compare_action(p2, ipp));
3421 			}
3422 		}
3423 	}
3424 
3425 	return (B_TRUE);
3426 }
3427 
3428 /*
3429  * compare the action chains of two policies for equality
3430  * B_TRUE -> effective equality
3431  */
3432 
3433 static boolean_t
3434 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3435 {
3436 
3437 	ipsec_action_t *act1, *act2;
3438 
3439 	/* We have a valid rule. Let's compare the actions */
3440 	if (p1->ipsp_act == p2->ipsp_act) {
3441 		/* same action. We are good */
3442 		return (B_TRUE);
3443 	}
3444 
3445 	/* we have to walk the chain */
3446 
3447 	act1 = p1->ipsp_act;
3448 	act2 = p2->ipsp_act;
3449 
3450 	while (act1 != NULL && act2 != NULL) {
3451 
3452 		/* otherwise, Are we close enough? */
3453 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3454 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3455 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3456 		    act1->ipa_want_se != act2->ipa_want_se) {
3457 			/* Nope, we aren't */
3458 			return (B_FALSE);
3459 		}
3460 
3461 		if (act1->ipa_want_ah) {
3462 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3463 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3464 				return (B_FALSE);
3465 			}
3466 
3467 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3468 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3469 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3470 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3471 				return (B_FALSE);
3472 			}
3473 		}
3474 
3475 		if (act1->ipa_want_esp) {
3476 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3477 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3478 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3479 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3480 				return (B_FALSE);
3481 			}
3482 
3483 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3484 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3485 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3486 					return (B_FALSE);
3487 				}
3488 
3489 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3490 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3491 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3492 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3493 					return (B_FALSE);
3494 				}
3495 			}
3496 
3497 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3498 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3499 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3500 					return (B_FALSE);
3501 				}
3502 
3503 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3504 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3505 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3506 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3507 					return (B_FALSE);
3508 				}
3509 			}
3510 
3511 		}
3512 
3513 		act1 = act1->ipa_next;
3514 		act2 = act2->ipa_next;
3515 	}
3516 
3517 	if (act1 != NULL || act2 != NULL) {
3518 		return (B_FALSE);
3519 	}
3520 
3521 	return (B_TRUE);
3522 }
3523 
3524 
3525 /*
3526  * Given a constructed ipsec_policy_t policy rule, enter it into
3527  * the correct policy ruleset.
3528  *
3529  * ipsec_check_policy() is assumed to have succeeded first (to check for
3530  * duplicates).
3531  */
3532 void
3533 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3534 {
3535 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3536 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3537 	uint32_t valid = selkey->ipsl_valid;
3538 	uint32_t hval = selkey->ipsl_pol_hval;
3539 	int af = -1;
3540 
3541 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3542 
3543 	if (valid & IPSL_IPV6) {
3544 		ASSERT(!(valid & IPSL_IPV4));
3545 		af = IPSEC_AF_V6;
3546 	} else {
3547 		ASSERT(valid & IPSL_IPV4);
3548 		af = IPSEC_AF_V4;
3549 	}
3550 
3551 	php->iph_gen++;
3552 
3553 	if (hval == IPSEC_SEL_NOHASH) {
3554 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3555 	} else {
3556 		HASH_LOCK(pr->ipr_hash, hval);
3557 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3558 		HASH_UNLOCK(pr->ipr_hash, hval);
3559 	}
3560 
3561 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3562 
3563 	ipsec_update_present_flags();
3564 }
3565 
3566 static void
3567 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3568 {
3569 	ipsec_policy_t *ip, *nip;
3570 
3571 	int af, chain, nchain;
3572 
3573 	for (af = 0; af < IPSEC_NAF; af++) {
3574 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3575 			nip = ip->ipsp_hash.hash_next;
3576 			IPPOL_UNCHAIN(php, ip);
3577 		}
3578 		ipr->ipr_nonhash[af] = NULL;
3579 	}
3580 	nchain = ipr->ipr_nchains;
3581 
3582 	for (chain = 0; chain < nchain; chain++) {
3583 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3584 		    ip = nip) {
3585 			nip = ip->ipsp_hash.hash_next;
3586 			IPPOL_UNCHAIN(php, ip);
3587 		}
3588 		ipr->ipr_hash[chain].hash_head = NULL;
3589 	}
3590 }
3591 
3592 void
3593 ipsec_polhead_flush(ipsec_policy_head_t *php)
3594 {
3595 	int dir;
3596 
3597 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3598 
3599 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3600 		ipsec_ipr_flush(php, &php->iph_root[dir]);
3601 
3602 	ipsec_update_present_flags();
3603 }
3604 
3605 void
3606 ipsec_polhead_free(ipsec_policy_head_t *php)
3607 {
3608 	int dir;
3609 
3610 	ASSERT(php->iph_refs == 0);
3611 	rw_enter(&php->iph_lock, RW_WRITER);
3612 	ipsec_polhead_flush(php);
3613 	rw_exit(&php->iph_lock);
3614 	rw_destroy(&php->iph_lock);
3615 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3616 		ipsec_policy_root_t *ipr = &php->iph_root[dir];
3617 		int chain;
3618 
3619 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
3620 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3621 
3622 	}
3623 	ipsec_polhead_free_table(php);
3624 	kmem_free(php, sizeof (*php));
3625 }
3626 
3627 static void
3628 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3629 {
3630 	int af;
3631 
3632 	ipr->ipr_nchains = 0;
3633 	ipr->ipr_hash = NULL;
3634 
3635 	for (af = 0; af < IPSEC_NAF; af++) {
3636 		ipr->ipr_nonhash[af] = NULL;
3637 	}
3638 }
3639 
3640 ipsec_policy_head_t *
3641 ipsec_polhead_create(void)
3642 {
3643 	ipsec_policy_head_t *php;
3644 
3645 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3646 	if (php == NULL)
3647 		return (php);
3648 
3649 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3650 	php->iph_refs = 1;
3651 	php->iph_gen = 0;
3652 
3653 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3654 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3655 
3656 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3657 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3658 
3659 	return (php);
3660 }
3661 
3662 /*
3663  * Clone the policy head into a new polhead; release one reference to the
3664  * old one and return the only reference to the new one.
3665  * If the old one had a refcount of 1, just return it.
3666  */
3667 ipsec_policy_head_t *
3668 ipsec_polhead_split(ipsec_policy_head_t *php)
3669 {
3670 	ipsec_policy_head_t *nphp;
3671 
3672 	if (php == NULL)
3673 		return (ipsec_polhead_create());
3674 	else if (php->iph_refs == 1)
3675 		return (php);
3676 
3677 	nphp = ipsec_polhead_create();
3678 	if (nphp == NULL)
3679 		return (NULL);
3680 
3681 	if (ipsec_copy_polhead(php, nphp) != 0) {
3682 		ipsec_polhead_free(nphp);
3683 		return (NULL);
3684 	}
3685 	IPPH_REFRELE(php);
3686 	return (nphp);
3687 }
3688 
3689 /*
3690  * When sending a response to a ICMP request or generating a RST
3691  * in the TCP case, the outbound packets need to go at the same level
3692  * of protection as the incoming ones i.e we associate our outbound
3693  * policy with how the packet came in. We call this after we have
3694  * accepted the incoming packet which may or may not have been in
3695  * clear and hence we are sending the reply back with the policy
3696  * matching the incoming datagram's policy.
3697  *
3698  * NOTE : This technology serves two purposes :
3699  *
3700  * 1) If we have multiple outbound policies, we send out a reply
3701  *    matching with how it came in rather than matching the outbound
3702  *    policy.
3703  *
3704  * 2) For assymetric policies, we want to make sure that incoming
3705  *    and outgoing has the same level of protection. Assymetric
3706  *    policies exist only with global policy where we may not have
3707  *    both outbound and inbound at the same time.
3708  *
3709  * NOTE2:	This function is called by cleartext cases, so it needs to be
3710  *		in IP proper.
3711  */
3712 boolean_t
3713 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h)
3714 {
3715 	ipsec_in_t  *ii;
3716 	ipsec_out_t  *io;
3717 	boolean_t v4;
3718 	mblk_t *mp;
3719 	boolean_t secure, attach_if;
3720 	uint_t ifindex;
3721 	ipsec_selector_t sel;
3722 	ipsec_action_t *reflect_action = NULL;
3723 	zoneid_t zoneid;
3724 
3725 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3726 
3727 	bzero((void*)&sel, sizeof (sel));
3728 
3729 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3730 
3731 	mp = ipsec_mp->b_cont;
3732 	ASSERT(mp != NULL);
3733 
3734 	if (ii->ipsec_in_action != NULL) {
3735 		/* transfer reference.. */
3736 		reflect_action = ii->ipsec_in_action;
3737 		ii->ipsec_in_action = NULL;
3738 	} else if (!ii->ipsec_in_loopback)
3739 		reflect_action = ipsec_in_to_out_action(ii);
3740 	secure = ii->ipsec_in_secure;
3741 	attach_if = ii->ipsec_in_attach_if;
3742 	ifindex = ii->ipsec_in_ill_index;
3743 	zoneid = ii->ipsec_in_zoneid;
3744 	ASSERT(zoneid != ALL_ZONES);
3745 	v4 = ii->ipsec_in_v4;
3746 
3747 	ipsec_in_release_refs(ii);
3748 
3749 	/*
3750 	 * The caller is going to send the datagram out which might
3751 	 * go on the wire or delivered locally through ip_wput_local.
3752 	 *
3753 	 * 1) If it goes out on the wire, new associations will be
3754 	 *    obtained.
3755 	 * 2) If it is delivered locally, ip_wput_local will convert
3756 	 *    this IPSEC_OUT to a IPSEC_IN looking at the requests.
3757 	 */
3758 
3759 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3760 	bzero(io, sizeof (ipsec_out_t));
3761 	io->ipsec_out_type = IPSEC_OUT;
3762 	io->ipsec_out_len = sizeof (ipsec_out_t);
3763 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3764 	io->ipsec_out_frtn.free_arg = (char *)io;
3765 	io->ipsec_out_act = reflect_action;
3766 
3767 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0))
3768 		return (B_FALSE);
3769 
3770 	io->ipsec_out_src_port = sel.ips_local_port;
3771 	io->ipsec_out_dst_port = sel.ips_remote_port;
3772 	io->ipsec_out_proto = sel.ips_protocol;
3773 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
3774 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
3775 
3776 	/*
3777 	 * Don't use global policy for this, as we want
3778 	 * to use the same protection that was applied to the inbound packet.
3779 	 */
3780 	io->ipsec_out_use_global_policy = B_FALSE;
3781 	io->ipsec_out_proc_begin = B_FALSE;
3782 	io->ipsec_out_secure = secure;
3783 	io->ipsec_out_v4 = v4;
3784 	io->ipsec_out_attach_if = attach_if;
3785 	io->ipsec_out_ill_index = ifindex;
3786 	io->ipsec_out_zoneid = zoneid;
3787 	return (B_TRUE);
3788 }
3789 
3790 mblk_t *
3791 ipsec_in_tag(mblk_t *mp, mblk_t *cont)
3792 {
3793 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
3794 	ipsec_in_t *nii;
3795 	mblk_t *nmp;
3796 	frtn_t nfrtn;
3797 
3798 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
3799 	ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t));
3800 
3801 	nmp = ipsec_in_alloc(ii->ipsec_in_v4);
3802 
3803 	ASSERT(nmp->b_datap->db_type == M_CTL);
3804 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
3805 
3806 	/*
3807 	 * Bump refcounts.
3808 	 */
3809 	if (ii->ipsec_in_ah_sa != NULL)
3810 		IPSA_REFHOLD(ii->ipsec_in_ah_sa);
3811 	if (ii->ipsec_in_esp_sa != NULL)
3812 		IPSA_REFHOLD(ii->ipsec_in_esp_sa);
3813 	if (ii->ipsec_in_policy != NULL)
3814 		IPPH_REFHOLD(ii->ipsec_in_policy);
3815 
3816 	/*
3817 	 * Copy everything, but preserve the free routine provided by
3818 	 * ipsec_in_alloc().
3819 	 */
3820 	nii = (ipsec_in_t *)nmp->b_rptr;
3821 	nfrtn = nii->ipsec_in_frtn;
3822 	bcopy(ii, nii, sizeof (*ii));
3823 	nii->ipsec_in_frtn = nfrtn;
3824 
3825 	nmp->b_cont = cont;
3826 
3827 	return (nmp);
3828 }
3829 
3830 mblk_t *
3831 ipsec_out_tag(mblk_t *mp, mblk_t *cont)
3832 {
3833 	ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
3834 	ipsec_out_t *nio;
3835 	mblk_t *nmp;
3836 	frtn_t nfrtn;
3837 
3838 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3839 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3840 
3841 	nmp = ipsec_alloc_ipsec_out();
3842 	if (nmp == NULL) {
3843 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
3844 		    &ipdrops_spd_nomem, &spd_dropper);
3845 		return (NULL);
3846 	}
3847 	ASSERT(nmp->b_datap->db_type == M_CTL);
3848 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
3849 
3850 	/*
3851 	 * Bump refcounts.
3852 	 */
3853 	if (io->ipsec_out_ah_sa != NULL)
3854 		IPSA_REFHOLD(io->ipsec_out_ah_sa);
3855 	if (io->ipsec_out_esp_sa != NULL)
3856 		IPSA_REFHOLD(io->ipsec_out_esp_sa);
3857 	if (io->ipsec_out_polhead != NULL)
3858 		IPPH_REFHOLD(io->ipsec_out_polhead);
3859 	if (io->ipsec_out_policy != NULL)
3860 		IPPOL_REFHOLD(io->ipsec_out_policy);
3861 	if (io->ipsec_out_act != NULL)
3862 		IPACT_REFHOLD(io->ipsec_out_act);
3863 	if (io->ipsec_out_latch != NULL)
3864 		IPLATCH_REFHOLD(io->ipsec_out_latch);
3865 	if (io->ipsec_out_cred != NULL)
3866 		crhold(io->ipsec_out_cred);
3867 
3868 	/*
3869 	 * Copy everything, but preserve the free routine provided by
3870 	 * ipsec_alloc_ipsec_out().
3871 	 */
3872 	nio = (ipsec_out_t *)nmp->b_rptr;
3873 	nfrtn = nio->ipsec_out_frtn;
3874 	bcopy(io, nio, sizeof (*io));
3875 	nio->ipsec_out_frtn = nfrtn;
3876 
3877 	nmp->b_cont = cont;
3878 
3879 	return (nmp);
3880 }
3881 
3882 static void
3883 ipsec_out_release_refs(ipsec_out_t *io)
3884 {
3885 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3886 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3887 
3888 	/* Note: IPSA_REFRELE is multi-line macro */
3889 	if (io->ipsec_out_ah_sa != NULL)
3890 		IPSA_REFRELE(io->ipsec_out_ah_sa);
3891 	if (io->ipsec_out_esp_sa != NULL)
3892 		IPSA_REFRELE(io->ipsec_out_esp_sa);
3893 	if (io->ipsec_out_polhead != NULL)
3894 		IPPH_REFRELE(io->ipsec_out_polhead);
3895 	if (io->ipsec_out_policy != NULL)
3896 		IPPOL_REFRELE(io->ipsec_out_policy);
3897 	if (io->ipsec_out_act != NULL)
3898 		IPACT_REFRELE(io->ipsec_out_act);
3899 	if (io->ipsec_out_cred != NULL) {
3900 		crfree(io->ipsec_out_cred);
3901 		io->ipsec_out_cred = NULL;
3902 	}
3903 	if (io->ipsec_out_latch) {
3904 		IPLATCH_REFRELE(io->ipsec_out_latch);
3905 		io->ipsec_out_latch = NULL;
3906 	}
3907 }
3908 
3909 static void
3910 ipsec_out_free(void *arg)
3911 {
3912 	ipsec_out_t *io = (ipsec_out_t *)arg;
3913 	ipsec_out_release_refs(io);
3914 	kmem_cache_free(ipsec_info_cache, arg);
3915 }
3916 
3917 static void
3918 ipsec_in_release_refs(ipsec_in_t *ii)
3919 {
3920 	/* Note: IPSA_REFRELE is multi-line macro */
3921 	if (ii->ipsec_in_ah_sa != NULL)
3922 		IPSA_REFRELE(ii->ipsec_in_ah_sa);
3923 	if (ii->ipsec_in_esp_sa != NULL)
3924 		IPSA_REFRELE(ii->ipsec_in_esp_sa);
3925 	if (ii->ipsec_in_policy != NULL)
3926 		IPPH_REFRELE(ii->ipsec_in_policy);
3927 	if (ii->ipsec_in_da != NULL) {
3928 		freeb(ii->ipsec_in_da);
3929 		ii->ipsec_in_da = NULL;
3930 	}
3931 }
3932 
3933 static void
3934 ipsec_in_free(void *arg)
3935 {
3936 	ipsec_in_t *ii = (ipsec_in_t *)arg;
3937 	ipsec_in_release_refs(ii);
3938 	kmem_cache_free(ipsec_info_cache, arg);
3939 }
3940 
3941 /*
3942  * This is called only for outbound datagrams if the datagram needs to
3943  * go out secure.  A NULL mp can be passed to get an ipsec_out. This
3944  * facility is used by ip_unbind.
3945  *
3946  * NOTE : o As the data part could be modified by ipsec_out_process etc.
3947  *	    we can't make it fast by calling a dup.
3948  */
3949 mblk_t *
3950 ipsec_alloc_ipsec_out()
3951 {
3952 	mblk_t *ipsec_mp;
3953 
3954 	ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
3955 
3956 	if (io == NULL)
3957 		return (NULL);
3958 
3959 	bzero(io, sizeof (ipsec_out_t));
3960 
3961 	io->ipsec_out_type = IPSEC_OUT;
3962 	io->ipsec_out_len = sizeof (ipsec_out_t);
3963 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3964 	io->ipsec_out_frtn.free_arg = (char *)io;
3965 
3966 	/*
3967 	 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code
3968 	 * using ipsec_out_zoneid should assert that the zoneid has been set to
3969 	 * a sane value.
3970 	 */
3971 	io->ipsec_out_zoneid = ALL_ZONES;
3972 
3973 	ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI,
3974 	    &io->ipsec_out_frtn);
3975 	if (ipsec_mp == NULL) {
3976 		ipsec_out_free(io);
3977 
3978 		return (NULL);
3979 	}
3980 	ipsec_mp->b_datap->db_type = M_CTL;
3981 	ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t);
3982 
3983 	return (ipsec_mp);
3984 }
3985 
3986 /*
3987  * Attach an IPSEC_OUT; use pol for policy if it is non-null.
3988  * Otherwise initialize using conn.
3989  *
3990  * If pol is non-null, we consume a reference to it.
3991  */
3992 mblk_t *
3993 ipsec_attach_ipsec_out(mblk_t *mp, conn_t *connp, ipsec_policy_t *pol,
3994     uint8_t proto)
3995 {
3996 	mblk_t *ipsec_mp;
3997 
3998 	ASSERT((pol != NULL) || (connp != NULL));
3999 
4000 	ipsec_mp = ipsec_alloc_ipsec_out();
4001 	if (ipsec_mp == NULL) {
4002 		ipsec_rl_strlog(IP_MOD_ID, 0, 0, SL_ERROR|SL_NOTE,
4003 		    "ipsec_attach_ipsec_out: Allocation failure\n");
4004 		BUMP_MIB(&ip_mib, ipOutDiscards);
4005 		ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_spd_nomem,
4006 		    &spd_dropper);
4007 		return (NULL);
4008 	}
4009 	ipsec_mp->b_cont = mp;
4010 	return (ipsec_init_ipsec_out(ipsec_mp, connp, pol, proto));
4011 }
4012 
4013 /*
4014  * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null.
4015  * Otherwise initialize using conn.
4016  *
4017  * If pol is non-null, we consume a reference to it.
4018  */
4019 mblk_t *
4020 ipsec_init_ipsec_out(mblk_t *ipsec_mp, conn_t *connp, ipsec_policy_t *pol,
4021     uint8_t proto)
4022 {
4023 	mblk_t *mp;
4024 	ipsec_out_t *io;
4025 	ipsec_policy_t *p;
4026 	ipha_t *ipha;
4027 	ip6_t *ip6h;
4028 
4029 	ASSERT((pol != NULL) || (connp != NULL));
4030 
4031 	/*
4032 	 * If mp is NULL, we won't/should not be using it.
4033 	 */
4034 	mp = ipsec_mp->b_cont;
4035 
4036 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4037 	ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t)));
4038 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4039 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4040 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4041 	io->ipsec_out_latch = NULL;
4042 	/*
4043 	 * Set the zoneid when we have the connp.
4044 	 * Otherwise, we're called from ip_wput_attach_policy() who will take
4045 	 * care of setting the zoneid.
4046 	 */
4047 	if (connp != NULL)
4048 		io->ipsec_out_zoneid = connp->conn_zoneid;
4049 
4050 	if (mp != NULL) {
4051 		ipha = (ipha_t *)mp->b_rptr;
4052 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
4053 			io->ipsec_out_v4 = B_TRUE;
4054 			ip6h = NULL;
4055 		} else {
4056 			io->ipsec_out_v4 = B_FALSE;
4057 			ip6h = (ip6_t *)ipha;
4058 			ipha = NULL;
4059 		}
4060 	} else {
4061 		ASSERT(connp != NULL && connp->conn_policy_cached);
4062 		ip6h = NULL;
4063 		ipha = NULL;
4064 		io->ipsec_out_v4 = !connp->conn_pkt_isv6;
4065 	}
4066 
4067 	p = NULL;
4068 
4069 	/*
4070 	 * Take latched policies over global policy.  Check here again for
4071 	 * this, in case we had conn_latch set while the packet was flying
4072 	 * around in IP.
4073 	 */
4074 	if (connp != NULL && connp->conn_latch != NULL) {
4075 		p = connp->conn_latch->ipl_out_policy;
4076 		io->ipsec_out_latch = connp->conn_latch;
4077 		IPLATCH_REFHOLD(connp->conn_latch);
4078 		if (p != NULL) {
4079 			IPPOL_REFHOLD(p);
4080 		}
4081 		io->ipsec_out_src_port = connp->conn_lport;
4082 		io->ipsec_out_dst_port = connp->conn_fport;
4083 		io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0;
4084 		if (pol != NULL)
4085 			IPPOL_REFRELE(pol);
4086 	} else if (pol != NULL) {
4087 		ipsec_selector_t sel;
4088 
4089 		bzero((void*)&sel, sizeof (sel));
4090 
4091 		p = pol;
4092 		/*
4093 		 * conn does not have the port information. Get
4094 		 * it from the packet.
4095 		 */
4096 
4097 		if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0)) {
4098 			/* Callee did ip_drop_packet(). */
4099 			return (NULL);
4100 		}
4101 		io->ipsec_out_src_port = sel.ips_local_port;
4102 		io->ipsec_out_dst_port = sel.ips_remote_port;
4103 		io->ipsec_out_icmp_type = sel.ips_icmp_type;
4104 		io->ipsec_out_icmp_code = sel.ips_icmp_code;
4105 	}
4106 
4107 	io->ipsec_out_proto = proto;
4108 	io->ipsec_out_use_global_policy = B_TRUE;
4109 	io->ipsec_out_secure = (p != NULL);
4110 	io->ipsec_out_policy = p;
4111 
4112 	if (p == NULL) {
4113 		if (connp->conn_policy != NULL) {
4114 			io->ipsec_out_secure = B_TRUE;
4115 			ASSERT(io->ipsec_out_latch == NULL);
4116 			ASSERT(io->ipsec_out_use_global_policy == B_TRUE);
4117 			io->ipsec_out_need_policy = B_TRUE;
4118 			ASSERT(io->ipsec_out_polhead == NULL);
4119 			IPPH_REFHOLD(connp->conn_policy);
4120 			io->ipsec_out_polhead = connp->conn_policy;
4121 		}
4122 	} else {
4123 		/* Handle explicit drop action. */
4124 		if (p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_DISCARD ||
4125 		    p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_REJECT) {
4126 			ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
4127 			    &ipdrops_spd_explicit, &spd_dropper);
4128 			ipsec_mp = NULL;
4129 		}
4130 	}
4131 
4132 	return (ipsec_mp);
4133 }
4134 
4135 /*
4136  * Allocate an IPSEC_IN mblk.  This will be prepended to an inbound datagram
4137  * and keep track of what-if-any IPsec processing will be applied to the
4138  * datagram.
4139  */
4140 mblk_t *
4141 ipsec_in_alloc(boolean_t isv4)
4142 {
4143 	mblk_t *ipsec_in;
4144 	ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4145 
4146 	if (ii == NULL)
4147 		return (NULL);
4148 
4149 	bzero(ii, sizeof (ipsec_info_t));
4150 	ii->ipsec_in_type = IPSEC_IN;
4151 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4152 
4153 	ii->ipsec_in_v4 = isv4;
4154 	ii->ipsec_in_secure = B_TRUE;
4155 
4156 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4157 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4158 
4159 	ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI,
4160 	    &ii->ipsec_in_frtn);
4161 	if (ipsec_in == NULL) {
4162 		ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n"));
4163 		ipsec_in_free(ii);
4164 		return (NULL);
4165 	}
4166 
4167 	ipsec_in->b_datap->db_type = M_CTL;
4168 	ipsec_in->b_wptr += sizeof (ipsec_info_t);
4169 
4170 	return (ipsec_in);
4171 }
4172 
4173 /*
4174  * This is called from ip_wput_local when a packet which needs
4175  * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN
4176  * before fanout, where the policy check happens.  In most of the
4177  * cases, IPSEC processing has *never* been done.  There is one case
4178  * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where
4179  * the packet is destined for localhost, IPSEC processing has already
4180  * been done.
4181  *
4182  * Future: This could happen after SA selection has occurred for
4183  * outbound.. which will tell us who the src and dst identities are..
4184  * Then it's just a matter of splicing the ah/esp SA pointers from the
4185  * ipsec_out_t to the ipsec_in_t.
4186  */
4187 void
4188 ipsec_out_to_in(mblk_t *ipsec_mp)
4189 {
4190 	ipsec_in_t  *ii;
4191 	ipsec_out_t *io;
4192 	ipsec_policy_t *pol;
4193 	ipsec_action_t *act;
4194 	boolean_t v4, icmp_loopback;
4195 	zoneid_t zoneid;
4196 
4197 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4198 
4199 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4200 
4201 	v4 = io->ipsec_out_v4;
4202 	zoneid = io->ipsec_out_zoneid;
4203 	icmp_loopback = io->ipsec_out_icmp_loopback;
4204 
4205 	act = io->ipsec_out_act;
4206 	if (act == NULL) {
4207 		pol = io->ipsec_out_policy;
4208 		if (pol != NULL) {
4209 			act = pol->ipsp_act;
4210 			IPACT_REFHOLD(act);
4211 		}
4212 	}
4213 	io->ipsec_out_act = NULL;
4214 
4215 	ipsec_out_release_refs(io);
4216 
4217 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
4218 	bzero(ii, sizeof (ipsec_in_t));
4219 	ii->ipsec_in_type = IPSEC_IN;
4220 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4221 	ii->ipsec_in_loopback = B_TRUE;
4222 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4223 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4224 	ii->ipsec_in_action = act;
4225 	ii->ipsec_in_zoneid = zoneid;
4226 
4227 	/*
4228 	 * In most of the cases, we can't look at the ipsec_out_XXX_sa
4229 	 * because this never went through IPSEC processing. So, look at
4230 	 * the requests and infer whether it would have gone through
4231 	 * IPSEC processing or not. Initialize the "done" fields with
4232 	 * the requests. The possible values for "done" fields are :
4233 	 *
4234 	 * 1) zero, indicates that a particular preference was never
4235 	 *    requested.
4236 	 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/
4237 	 *    IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that
4238 	 *    IPSEC processing has been completed.
4239 	 */
4240 	ii->ipsec_in_secure = B_TRUE;
4241 	ii->ipsec_in_v4 = v4;
4242 	ii->ipsec_in_icmp_loopback = icmp_loopback;
4243 	ii->ipsec_in_attach_if = B_FALSE;
4244 }
4245 
4246 /*
4247  * Consults global policy to see whether this datagram should
4248  * go out secure. If so it attaches a ipsec_mp in front and
4249  * returns.
4250  */
4251 mblk_t *
4252 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
4253     conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
4254 {
4255 	mblk_t *mp;
4256 	ipsec_out_t *io = NULL;
4257 	ipsec_selector_t sel;
4258 	uint_t	ill_index;
4259 	boolean_t conn_dontroutex;
4260 	boolean_t conn_multicast_loopx;
4261 	boolean_t policy_present;
4262 
4263 	ASSERT((ipha != NULL && ip6h == NULL) ||
4264 	    (ip6h != NULL && ipha == NULL));
4265 
4266 	bzero((void*)&sel, sizeof (sel));
4267 
4268 	if (ipha != NULL)
4269 		policy_present = ipsec_outbound_v4_policy_present;
4270 	else
4271 		policy_present = ipsec_outbound_v6_policy_present;
4272 	/*
4273 	 * Fast Path to see if there is any policy.
4274 	 */
4275 	if (!policy_present) {
4276 		if (ipsec_mp->b_datap->db_type == M_CTL) {
4277 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
4278 			if (!io->ipsec_out_secure) {
4279 				/*
4280 				 * If there is no global policy and ip_wput
4281 				 * or ip_wput_multicast has attached this mp
4282 				 * for multicast case, free the ipsec_mp and
4283 				 * return the original mp.
4284 				 */
4285 				mp = ipsec_mp->b_cont;
4286 				freeb(ipsec_mp);
4287 				ipsec_mp = mp;
4288 				io = NULL;
4289 			}
4290 			ASSERT(io == NULL || !io->ipsec_out_tunnel);
4291 		}
4292 		if (((io == NULL) || (io->ipsec_out_polhead == NULL)) &&
4293 		    ((connp == NULL) || (connp->conn_policy == NULL)))
4294 			return (ipsec_mp);
4295 	}
4296 
4297 	ill_index = 0;
4298 	conn_multicast_loopx = conn_dontroutex = B_FALSE;
4299 	mp = ipsec_mp;
4300 	if (ipsec_mp->b_datap->db_type == M_CTL) {
4301 		mp = ipsec_mp->b_cont;
4302 		/*
4303 		 * This is a connection where we have some per-socket
4304 		 * policy or ip_wput has attached an ipsec_mp for
4305 		 * the multicast datagram.
4306 		 */
4307 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
4308 		if (!io->ipsec_out_secure) {
4309 			/*
4310 			 * This ipsec_mp was allocated in ip_wput or
4311 			 * ip_wput_multicast so that we will know the
4312 			 * value of ill_index, conn_dontroute,
4313 			 * conn_multicast_loop in the multicast case if
4314 			 * we inherit global policy here.
4315 			 */
4316 			ill_index = io->ipsec_out_ill_index;
4317 			conn_dontroutex = io->ipsec_out_dontroute;
4318 			conn_multicast_loopx = io->ipsec_out_multicast_loop;
4319 			freeb(ipsec_mp);
4320 			ipsec_mp = mp;
4321 			io = NULL;
4322 		}
4323 		ASSERT(io == NULL || !io->ipsec_out_tunnel);
4324 	}
4325 
4326 	if (ipha != NULL) {
4327 		sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ?
4328 		    ipha->ipha_src : ire->ire_src_addr);
4329 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4330 		sel.ips_protocol = (uint8_t)ipha->ipha_protocol;
4331 		sel.ips_isv4 = B_TRUE;
4332 	} else {
4333 		ushort_t hdr_len;
4334 		uint8_t	*nexthdrp;
4335 		boolean_t is_fragment;
4336 
4337 		sel.ips_isv4 = B_FALSE;
4338 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
4339 			if (!unspec_src)
4340 				sel.ips_local_addr_v6 = ire->ire_src_addr_v6;
4341 		} else {
4342 			sel.ips_local_addr_v6 = ip6h->ip6_src;
4343 		}
4344 
4345 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment);
4346 		if (is_fragment) {
4347 			/*
4348 			 * It's a packet fragment for a packet that
4349 			 * we have already processed (since IPsec processing
4350 			 * is done before fragmentation), so we don't
4351 			 * have to do policy checks again. Fragments can
4352 			 * come back to us for processing if they have
4353 			 * been queued up due to flow control.
4354 			 */
4355 			if (ipsec_mp->b_datap->db_type == M_CTL) {
4356 				mp = ipsec_mp->b_cont;
4357 				freeb(ipsec_mp);
4358 				ipsec_mp = mp;
4359 			}
4360 			return (ipsec_mp);
4361 		}
4362 
4363 		/* IPv6 common-case. */
4364 		sel.ips_protocol = ip6h->ip6_nxt;
4365 		switch (ip6h->ip6_nxt) {
4366 		case IPPROTO_TCP:
4367 		case IPPROTO_UDP:
4368 		case IPPROTO_SCTP:
4369 		case IPPROTO_ICMPV6:
4370 			break;
4371 		default:
4372 			if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
4373 			    &hdr_len, &nexthdrp)) {
4374 				BUMP_MIB(&ip6_mib, ipv6OutDiscards);
4375 				freemsg(ipsec_mp); /* Not IPsec-related drop. */
4376 				return (NULL);
4377 			}
4378 			sel.ips_protocol = *nexthdrp;
4379 			break;
4380 		}
4381 	}
4382 
4383 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0)) {
4384 		if (ipha != NULL) {
4385 			BUMP_MIB(&ip_mib, ipOutDiscards);
4386 		} else {
4387 			BUMP_MIB(&ip6_mib, ipv6OutDiscards);
4388 		}
4389 
4390 		/* Callee dropped the packet. */
4391 		return (NULL);
4392 	}
4393 
4394 	if (io != NULL) {
4395 		/*
4396 		 * We seem to have some local policy (we already have
4397 		 * an ipsec_out).  Look at global policy and see
4398 		 * whether we have to inherit or not.
4399 		 */
4400 		io->ipsec_out_need_policy = B_FALSE;
4401 		ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp, &sel);
4402 		ASSERT((io->ipsec_out_policy != NULL) ||
4403 		    (io->ipsec_out_act != NULL));
4404 		ASSERT(io->ipsec_out_need_policy == B_FALSE);
4405 		return (ipsec_mp);
4406 	}
4407 	ipsec_mp = ipsec_attach_global_policy(mp, connp, &sel);
4408 	if (ipsec_mp == NULL)
4409 		return (mp);
4410 
4411 	/*
4412 	 * Copy the right port information.
4413 	 */
4414 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4415 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4416 
4417 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
4418 	ASSERT((io->ipsec_out_policy != NULL) ||
4419 	    (io->ipsec_out_act != NULL));
4420 	io->ipsec_out_src_port = sel.ips_local_port;
4421 	io->ipsec_out_dst_port = sel.ips_remote_port;
4422 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4423 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4424 	/*
4425 	 * Set ill_index, conn_dontroute and conn_multicast_loop
4426 	 * for multicast datagrams.
4427 	 */
4428 	io->ipsec_out_ill_index = ill_index;
4429 	io->ipsec_out_dontroute = conn_dontroutex;
4430 	io->ipsec_out_multicast_loop = conn_multicast_loopx;
4431 
4432 	if (zoneid == ALL_ZONES)
4433 		zoneid = GLOBAL_ZONEID;
4434 	io->ipsec_out_zoneid = zoneid;
4435 	return (ipsec_mp);
4436 }
4437 
4438 /*
4439  * When appropriate, this function caches inbound and outbound policy
4440  * for this connection.
4441  *
4442  * XXX need to work out more details about per-interface policy and
4443  * caching here!
4444  *
4445  * XXX may want to split inbound and outbound caching for ill..
4446  */
4447 int
4448 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4449 {
4450 	boolean_t global_policy_present;
4451 
4452 	/*
4453 	 * There is no policy latching for ICMP sockets because we can't
4454 	 * decide on which policy to use until we see the packet and get
4455 	 * type/code selectors.
4456 	 */
4457 	if (connp->conn_ulp == IPPROTO_ICMP ||
4458 	    connp->conn_ulp == IPPROTO_ICMPV6) {
4459 		connp->conn_in_enforce_policy =
4460 		    connp->conn_out_enforce_policy = B_TRUE;
4461 		if (connp->conn_latch != NULL) {
4462 			IPLATCH_REFRELE(connp->conn_latch);
4463 			connp->conn_latch = NULL;
4464 		}
4465 		connp->conn_flags |= IPCL_CHECK_POLICY;
4466 		return (0);
4467 	}
4468 
4469 	global_policy_present = isv4 ?
4470 	    (ipsec_outbound_v4_policy_present ||
4471 		ipsec_inbound_v4_policy_present) :
4472 	    (ipsec_outbound_v6_policy_present ||
4473 		ipsec_inbound_v6_policy_present);
4474 
4475 	if ((connp->conn_policy != NULL) || global_policy_present) {
4476 		ipsec_selector_t sel;
4477 		ipsec_policy_t	*p;
4478 
4479 		if (connp->conn_latch == NULL &&
4480 		    (connp->conn_latch = iplatch_create()) == NULL) {
4481 			return (ENOMEM);
4482 		}
4483 
4484 		sel.ips_protocol = connp->conn_ulp;
4485 		sel.ips_local_port = connp->conn_lport;
4486 		sel.ips_remote_port = connp->conn_fport;
4487 		sel.ips_is_icmp_inv_acq = 0;
4488 		sel.ips_isv4 = isv4;
4489 		if (isv4) {
4490 			sel.ips_local_addr_v4 = connp->conn_src;
4491 			sel.ips_remote_addr_v4 = connp->conn_rem;
4492 		} else {
4493 			sel.ips_local_addr_v6 = connp->conn_srcv6;
4494 			sel.ips_remote_addr_v6 = connp->conn_remv6;
4495 		}
4496 
4497 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel);
4498 		if (connp->conn_latch->ipl_in_policy != NULL)
4499 			IPPOL_REFRELE(connp->conn_latch->ipl_in_policy);
4500 		connp->conn_latch->ipl_in_policy = p;
4501 		connp->conn_in_enforce_policy = (p != NULL);
4502 
4503 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel);
4504 		if (connp->conn_latch->ipl_out_policy != NULL)
4505 			IPPOL_REFRELE(connp->conn_latch->ipl_out_policy);
4506 		connp->conn_latch->ipl_out_policy = p;
4507 		connp->conn_out_enforce_policy = (p != NULL);
4508 
4509 		/* Clear the latched actions too, in case we're recaching. */
4510 		if (connp->conn_latch->ipl_out_action != NULL)
4511 			IPACT_REFRELE(connp->conn_latch->ipl_out_action);
4512 		if (connp->conn_latch->ipl_in_action != NULL)
4513 			IPACT_REFRELE(connp->conn_latch->ipl_in_action);
4514 	}
4515 
4516 	/*
4517 	 * We may or may not have policy for this endpoint.  We still set
4518 	 * conn_policy_cached so that inbound datagrams don't have to look
4519 	 * at global policy as policy is considered latched for these
4520 	 * endpoints.  We should not set conn_policy_cached until the conn
4521 	 * reflects the actual policy. If we *set* this before inheriting
4522 	 * the policy there is a window where the check
4523 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4524 	 * on the conn (because we have not yet copied the policy on to
4525 	 * conn and hence not set conn_in_enforce_policy) nor with the
4526 	 * global policy (because conn_policy_cached is already set).
4527 	 */
4528 	connp->conn_policy_cached = B_TRUE;
4529 	if (connp->conn_in_enforce_policy)
4530 		connp->conn_flags |= IPCL_CHECK_POLICY;
4531 	return (0);
4532 }
4533 
4534 void
4535 iplatch_free(ipsec_latch_t *ipl)
4536 {
4537 	if (ipl->ipl_out_policy != NULL)
4538 		IPPOL_REFRELE(ipl->ipl_out_policy);
4539 	if (ipl->ipl_in_policy != NULL)
4540 		IPPOL_REFRELE(ipl->ipl_in_policy);
4541 	if (ipl->ipl_in_action != NULL)
4542 		IPACT_REFRELE(ipl->ipl_in_action);
4543 	if (ipl->ipl_out_action != NULL)
4544 		IPACT_REFRELE(ipl->ipl_out_action);
4545 	if (ipl->ipl_local_cid != NULL)
4546 		IPSID_REFRELE(ipl->ipl_local_cid);
4547 	if (ipl->ipl_remote_cid != NULL)
4548 		IPSID_REFRELE(ipl->ipl_remote_cid);
4549 	if (ipl->ipl_local_id != NULL)
4550 		crfree(ipl->ipl_local_id);
4551 	mutex_destroy(&ipl->ipl_lock);
4552 	kmem_free(ipl, sizeof (*ipl));
4553 }
4554 
4555 ipsec_latch_t *
4556 iplatch_create()
4557 {
4558 	ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4559 	if (ipl == NULL)
4560 		return (ipl);
4561 	bzero(ipl, sizeof (*ipl));
4562 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4563 	ipl->ipl_refcnt = 1;
4564 	return (ipl);
4565 }
4566 
4567 /*
4568  * Identity hash table.
4569  *
4570  * Identities are refcounted and "interned" into the hash table.
4571  * Only references coming from other objects (SA's, latching state)
4572  * are counted in ipsid_refcnt.
4573  *
4574  * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
4575  * is locked, (b) we know that the refcount must be > 0.
4576  *
4577  * The ipsid_next and ipsid_ptpn fields are only to be referenced or
4578  * modified when the bucket lock is held; in particular, we only
4579  * delete objects while holding the bucket lock, and we only increase
4580  * the refcount from 0 to 1 while the bucket lock is held.
4581  */
4582 
4583 #define	IPSID_HASHSIZE 64
4584 
4585 typedef struct ipsif_s
4586 {
4587 	ipsid_t *ipsif_head;
4588 	kmutex_t ipsif_lock;
4589 } ipsif_t;
4590 
4591 ipsif_t ipsid_buckets[IPSID_HASHSIZE];
4592 
4593 /*
4594  * Hash function for ID hash table.
4595  */
4596 static uint32_t
4597 ipsid_hash(int idtype, char *idstring)
4598 {
4599 	uint32_t hval = idtype;
4600 	unsigned char c;
4601 
4602 	while ((c = *idstring++) != 0) {
4603 		hval = (hval << 4) | (hval >> 28);
4604 		hval ^= c;
4605 	}
4606 	hval = hval ^ (hval >> 16);
4607 	return (hval & (IPSID_HASHSIZE-1));
4608 }
4609 
4610 /*
4611  * Look up identity string in hash table.  Return identity object
4612  * corresponding to the name -- either preexisting, or newly allocated.
4613  *
4614  * Return NULL if we need to allocate a new one and can't get memory.
4615  */
4616 ipsid_t *
4617 ipsid_lookup(int idtype, char *idstring)
4618 {
4619 	ipsid_t *retval;
4620 	char *nstr;
4621 	int idlen = strlen(idstring) + 1;
4622 
4623 	ipsif_t *bucket = &ipsid_buckets[ipsid_hash(idtype, idstring)];
4624 
4625 	mutex_enter(&bucket->ipsif_lock);
4626 
4627 	for (retval = bucket->ipsif_head; retval != NULL;
4628 	    retval = retval->ipsid_next) {
4629 		if (idtype != retval->ipsid_type)
4630 			continue;
4631 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4632 			continue;
4633 
4634 		IPSID_REFHOLD(retval);
4635 		mutex_exit(&bucket->ipsif_lock);
4636 		return (retval);
4637 	}
4638 
4639 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4640 	if (!retval) {
4641 		mutex_exit(&bucket->ipsif_lock);
4642 		return (NULL);
4643 	}
4644 
4645 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4646 	if (!nstr) {
4647 		mutex_exit(&bucket->ipsif_lock);
4648 		kmem_free(retval, sizeof (*retval));
4649 		return (NULL);
4650 	}
4651 
4652 	retval->ipsid_refcnt = 1;
4653 	retval->ipsid_next = bucket->ipsif_head;
4654 	if (retval->ipsid_next != NULL)
4655 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4656 	retval->ipsid_ptpn = &bucket->ipsif_head;
4657 	retval->ipsid_type = idtype;
4658 	retval->ipsid_cid = nstr;
4659 	bucket->ipsif_head = retval;
4660 	bcopy(idstring, nstr, idlen);
4661 	mutex_exit(&bucket->ipsif_lock);
4662 
4663 	return (retval);
4664 }
4665 
4666 /*
4667  * Garbage collect the identity hash table.
4668  */
4669 void
4670 ipsid_gc()
4671 {
4672 	int i, len;
4673 	ipsid_t *id, *nid;
4674 	ipsif_t *bucket;
4675 
4676 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4677 		bucket = &ipsid_buckets[i];
4678 		mutex_enter(&bucket->ipsif_lock);
4679 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4680 			nid = id->ipsid_next;
4681 			if (id->ipsid_refcnt == 0) {
4682 				*id->ipsid_ptpn = nid;
4683 				if (nid != NULL)
4684 					nid->ipsid_ptpn = id->ipsid_ptpn;
4685 				len = strlen(id->ipsid_cid) + 1;
4686 				kmem_free(id->ipsid_cid, len);
4687 				kmem_free(id, sizeof (*id));
4688 			}
4689 		}
4690 		mutex_exit(&bucket->ipsif_lock);
4691 	}
4692 }
4693 
4694 /*
4695  * Return true if two identities are the same.
4696  */
4697 boolean_t
4698 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4699 {
4700 	if (id1 == id2)
4701 		return (B_TRUE);
4702 #ifdef DEBUG
4703 	if ((id1 == NULL) || (id2 == NULL))
4704 		return (B_FALSE);
4705 	/*
4706 	 * test that we're interning id's correctly..
4707 	 */
4708 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4709 	    (id1->ipsid_type != id2->ipsid_type));
4710 #endif
4711 	return (B_FALSE);
4712 }
4713 
4714 /*
4715  * Initialize identity table; called during module initialization.
4716  */
4717 static void
4718 ipsid_init()
4719 {
4720 	ipsif_t *bucket;
4721 	int i;
4722 
4723 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4724 		bucket = &ipsid_buckets[i];
4725 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4726 	}
4727 }
4728 
4729 /*
4730  * Free identity table (preparatory to module unload)
4731  */
4732 static void
4733 ipsid_fini()
4734 {
4735 	ipsif_t *bucket;
4736 	int i;
4737 
4738 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4739 		bucket = &ipsid_buckets[i];
4740 		mutex_destroy(&bucket->ipsif_lock);
4741 	}
4742 }
4743 
4744 /*
4745  * Update the minimum and maximum supported key sizes for the
4746  * specified algorithm. Must be called while holding the algorithms lock.
4747  */
4748 void
4749 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type)
4750 {
4751 	size_t crypto_min = (size_t)-1, crypto_max = 0;
4752 	size_t cur_crypto_min, cur_crypto_max;
4753 	boolean_t is_valid;
4754 	crypto_mechanism_info_t *mech_infos;
4755 	uint_t nmech_infos;
4756 	int crypto_rc, i;
4757 	crypto_mech_usage_t mask;
4758 
4759 	ASSERT(MUTEX_HELD(&alg_lock));
4760 
4761 	/*
4762 	 * Compute the min, max, and default key sizes (in number of
4763 	 * increments to the default key size in bits) as defined
4764 	 * by the algorithm mappings. This range of key sizes is used
4765 	 * for policy related operations. The effective key sizes
4766 	 * supported by the framework could be more limited than
4767 	 * those defined for an algorithm.
4768 	 */
4769 	alg->alg_default_bits = alg->alg_key_sizes[0];
4770 	if (alg->alg_increment != 0) {
4771 		/* key sizes are defined by range & increment */
4772 		alg->alg_minbits = alg->alg_key_sizes[1];
4773 		alg->alg_maxbits = alg->alg_key_sizes[2];
4774 
4775 		alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits,
4776 		    alg->alg_increment, alg->alg_default_bits);
4777 	} else if (alg->alg_nkey_sizes == 0) {
4778 		/* no specified key size for algorithm */
4779 		alg->alg_minbits = alg->alg_maxbits = 0;
4780 	} else {
4781 		/* key sizes are defined by enumeration */
4782 		alg->alg_minbits = (uint16_t)-1;
4783 		alg->alg_maxbits = 0;
4784 
4785 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
4786 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
4787 				alg->alg_minbits = alg->alg_key_sizes[i];
4788 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4789 				alg->alg_maxbits = alg->alg_key_sizes[i];
4790 		}
4791 		alg->alg_default = 0;
4792 	}
4793 
4794 	if (!(alg->alg_flags & ALG_FLAG_VALID))
4795 		return;
4796 
4797 	/*
4798 	 * Mechanisms do not apply to the NULL encryption
4799 	 * algorithm, so simply return for this case.
4800 	 */
4801 	if (alg->alg_id == SADB_EALG_NULL)
4802 		return;
4803 
4804 	/*
4805 	 * Find the min and max key sizes supported by the cryptographic
4806 	 * framework providers.
4807 	 */
4808 
4809 	/* get the key sizes supported by the framework */
4810 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4811 	    &mech_infos, &nmech_infos, KM_SLEEP);
4812 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4813 		alg->alg_flags &= ~ALG_FLAG_VALID;
4814 		return;
4815 	}
4816 
4817 	/* min and max key sizes supported by framework */
4818 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4819 		int unit_bits;
4820 
4821 		/*
4822 		 * Ignore entries that do not support the operations
4823 		 * needed for the algorithm type.
4824 		 */
4825 		if (alg_type == IPSEC_ALG_AUTH)
4826 			mask = CRYPTO_MECH_USAGE_MAC;
4827 		else
4828 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
4829 				CRYPTO_MECH_USAGE_DECRYPT;
4830 		if ((mech_infos[i].mi_usage & mask) != mask)
4831 			continue;
4832 
4833 		unit_bits = (mech_infos[i].mi_keysize_unit ==
4834 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
4835 		/* adjust min/max supported by framework */
4836 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4837 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4838 
4839 		if (cur_crypto_min < crypto_min)
4840 			crypto_min = cur_crypto_min;
4841 
4842 		/*
4843 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4844 		 * the crypto framework which means "no upper limit".
4845 		 */
4846 		if (mech_infos[i].mi_max_key_size ==
4847 		    CRYPTO_EFFECTIVELY_INFINITE)
4848 			crypto_max = (size_t)-1;
4849 		else if (cur_crypto_max > crypto_max)
4850 			crypto_max = cur_crypto_max;
4851 
4852 		is_valid = B_TRUE;
4853 	}
4854 
4855 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4856 	    nmech_infos);
4857 
4858 	if (!is_valid) {
4859 		/* no key sizes supported by framework */
4860 		alg->alg_flags &= ~ALG_FLAG_VALID;
4861 		return;
4862 	}
4863 
4864 	/*
4865 	 * Determine min and max key sizes from alg_key_sizes[].
4866 	 * defined for the algorithm entry. Adjust key sizes based on
4867 	 * those supported by the framework.
4868 	 */
4869 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4870 	if (alg->alg_increment != 0) {
4871 		/* supported key sizes are defined by range  & increment */
4872 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4873 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4874 
4875 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
4876 		    (uint16_t)crypto_min);
4877 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4878 		    (uint16_t)crypto_max);
4879 
4880 		/*
4881 		 * If the sizes supported by the framework are outside
4882 		 * the range of sizes defined by the algorithm mappings,
4883 		 * the algorithm cannot be used. Check for this
4884 		 * condition here.
4885 		 */
4886 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4887 			alg->alg_flags &= ~ALG_FLAG_VALID;
4888 			return;
4889 		}
4890 
4891 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4892 		    alg->alg_ef_default_bits = alg->alg_ef_minbits;
4893 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4894 		    alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4895 
4896 		alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits,
4897 		    alg->alg_increment, alg->alg_ef_default_bits);
4898 	} else if (alg->alg_nkey_sizes == 0) {
4899 		/* no specified key size for algorithm */
4900 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4901 	} else {
4902 		/* supported key sizes are defined by enumeration */
4903 		alg->alg_ef_minbits = (uint16_t)-1;
4904 		alg->alg_ef_maxbits = 0;
4905 
4906 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4907 			/*
4908 			 * Ignore the current key size if it is not in the
4909 			 * range of sizes supported by the framework.
4910 			 */
4911 			if (alg->alg_key_sizes[i] < crypto_min ||
4912 			    alg->alg_key_sizes[i] > crypto_max)
4913 				continue;
4914 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4915 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
4916 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4917 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4918 			is_valid = B_TRUE;
4919 		}
4920 
4921 		if (!is_valid) {
4922 			alg->alg_flags &= ~ALG_FLAG_VALID;
4923 			return;
4924 		}
4925 		alg->alg_ef_default = 0;
4926 	}
4927 }
4928 
4929 /*
4930  * Free the memory used by the specified algorithm.
4931  */
4932 void
4933 ipsec_alg_free(ipsec_alginfo_t *alg)
4934 {
4935 	if (alg == NULL)
4936 		return;
4937 
4938 	if (alg->alg_key_sizes != NULL)
4939 		kmem_free(alg->alg_key_sizes,
4940 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4941 
4942 	if (alg->alg_block_sizes != NULL)
4943 		kmem_free(alg->alg_block_sizes,
4944 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4945 
4946 	kmem_free(alg, sizeof (*alg));
4947 }
4948 
4949 /*
4950  * Check the validity of the specified key size for an algorithm.
4951  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4952  */
4953 boolean_t
4954 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4955 {
4956 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4957 		return (B_FALSE);
4958 
4959 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4960 		/*
4961 		 * If the key sizes are defined by enumeration, the new
4962 		 * key size must be equal to one of the supported values.
4963 		 */
4964 		int i;
4965 
4966 		for (i = 0; i < alg->alg_nkey_sizes; i++)
4967 			if (key_size == alg->alg_key_sizes[i])
4968 				break;
4969 		if (i == alg->alg_nkey_sizes)
4970 			return (B_FALSE);
4971 	}
4972 
4973 	return (B_TRUE);
4974 }
4975 
4976 /*
4977  * Callback function invoked by the crypto framework when a provider
4978  * registers or unregisters. This callback updates the algorithms
4979  * tables when a crypto algorithm is no longer available or becomes
4980  * available, and triggers the freeing/creation of context templates
4981  * associated with existing SAs, if needed.
4982  */
4983 void
4984 ipsec_prov_update_callback(uint32_t event, void *event_arg)
4985 {
4986 	crypto_notify_event_change_t *prov_change =
4987 	    (crypto_notify_event_change_t *)event_arg;
4988 	uint_t algidx, algid, algtype, mech_count, mech_idx;
4989 	ipsec_alginfo_t *alg;
4990 	ipsec_alginfo_t oalg;
4991 	crypto_mech_name_t *mechs;
4992 	boolean_t alg_changed = B_FALSE;
4993 
4994 	/* ignore events for which we didn't register */
4995 	if (event != CRYPTO_EVENT_MECHS_CHANGED) {
4996 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
4997 			" received from crypto framework\n", event));
4998 		return;
4999 	}
5000 
5001 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5002 	if (mechs == NULL)
5003 		return;
5004 
5005 	/*
5006 	 * Walk the list of currently defined IPsec algorithm. Update
5007 	 * the algorithm valid flag and trigger an update of the
5008 	 * SAs that depend on that algorithm.
5009 	 */
5010 	mutex_enter(&alg_lock);
5011 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5012 		for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) {
5013 
5014 			algid = ipsec_sortlist[algtype][algidx];
5015 			alg = ipsec_alglists[algtype][algid];
5016 			ASSERT(alg != NULL);
5017 
5018 			/*
5019 			 * Skip the algorithms which do not map to the
5020 			 * crypto framework provider being added or removed.
5021 			 */
5022 			if (strncmp(alg->alg_mech_name,
5023 			    prov_change->ec_mech_name,
5024 			    CRYPTO_MAX_MECH_NAME) != 0)
5025 				continue;
5026 
5027 			/*
5028 			 * Determine if the mechanism is valid. If it
5029 			 * is not, mark the algorithm as being invalid. If
5030 			 * it is, mark the algorithm as being valid.
5031 			 */
5032 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5033 				if (strncmp(alg->alg_mech_name,
5034 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5035 					break;
5036 			if (mech_idx == mech_count &&
5037 			    alg->alg_flags & ALG_FLAG_VALID) {
5038 				alg->alg_flags &= ~ALG_FLAG_VALID;
5039 				alg_changed = B_TRUE;
5040 			} else if (mech_idx < mech_count &&
5041 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
5042 				alg->alg_flags |= ALG_FLAG_VALID;
5043 				alg_changed = B_TRUE;
5044 			}
5045 
5046 			/*
5047 			 * Update the supported key sizes, regardless
5048 			 * of whether a crypto provider was added or
5049 			 * removed.
5050 			 */
5051 			oalg = *alg;
5052 			ipsec_alg_fix_min_max(alg, algtype);
5053 			if (!alg_changed &&
5054 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5055 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5056 			    alg->alg_ef_default != oalg.alg_ef_default ||
5057 			    alg->alg_ef_default_bits !=
5058 			    oalg.alg_ef_default_bits)
5059 				alg_changed = B_TRUE;
5060 
5061 			/*
5062 			 * Update the affected SAs if a software provider is
5063 			 * being added or removed.
5064 			 */
5065 			if (prov_change->ec_provider_type ==
5066 			    CRYPTO_SW_PROVIDER)
5067 				sadb_alg_update(algtype, alg->alg_id,
5068 				    prov_change->ec_change ==
5069 				    CRYPTO_MECH_ADDED);
5070 		}
5071 	}
5072 	mutex_exit(&alg_lock);
5073 	crypto_free_mech_list(mechs, mech_count);
5074 
5075 	if (alg_changed) {
5076 		/*
5077 		 * An algorithm has changed, i.e. it became valid or
5078 		 * invalid, or its support key sizes have changed.
5079 		 * Notify ipsecah and ipsecesp of this change so
5080 		 * that they can send a SADB_REGISTER to their consumers.
5081 		 */
5082 		ipsecah_algs_changed();
5083 		ipsecesp_algs_changed();
5084 	}
5085 }
5086 
5087 /*
5088  * Registers with the crypto framework to be notified of crypto
5089  * providers changes. Used to update the algorithm tables and
5090  * to free or create context templates if needed. Invoked after IPsec
5091  * is loaded successfully.
5092  */
5093 void
5094 ipsec_register_prov_update(void)
5095 {
5096 	prov_update_handle = crypto_notify_events(
5097 	    ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5098 }
5099 
5100 /*
5101  * Unregisters from the framework to be notified of crypto providers
5102  * changes. Called from ipsec_policy_destroy().
5103  */
5104 static void
5105 ipsec_unregister_prov_update(void)
5106 {
5107 	if (prov_update_handle != NULL)
5108 		crypto_unnotify_events(prov_update_handle);
5109 }
5110 
5111 /*
5112  * Tunnel-mode support routines.
5113  */
5114 
5115 /*
5116  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5117  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5118  * with no match, then still return the packet and have global policy take
5119  * a crack at it in IP.
5120  *
5121  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5122  * inner-packet contents.
5123  */
5124 mblk_t *
5125 ipsec_tun_outbound(mblk_t *mp, tun_t *atp, ipha_t *inner_ipv4,
5126     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len)
5127 {
5128 	ipsec_tun_pol_t *itp = atp->tun_itp;
5129 	ipsec_policy_head_t *polhead;
5130 	ipsec_selector_t sel;
5131 	mblk_t *ipsec_mp, *ipsec_mp_head, *nmp;
5132 	mblk_t *spare_mp = NULL;
5133 	ipsec_out_t *io;
5134 	boolean_t is_fragment;
5135 	ipsec_policy_t *pol;
5136 
5137 	ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5138 	    outer_ipv4 != NULL && outer_ipv6 == NULL);
5139 	/* We take care of inners in a bit. */
5140 
5141 	/* No policy on this tunnel - let global policy have at it. */
5142 	if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE))
5143 		return (mp);
5144 	polhead = itp->itp_policy;
5145 
5146 	bzero(&sel, sizeof (sel));
5147 	if (inner_ipv4 != NULL) {
5148 		ASSERT(inner_ipv6 == NULL);
5149 		sel.ips_isv4 = B_TRUE;
5150 		sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5151 		sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5152 		sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5153 		is_fragment =
5154 		    IS_V4_FRAGMENT(inner_ipv4->ipha_fragment_offset_and_flags);
5155 	} else {
5156 		ASSERT(inner_ipv6 != NULL);
5157 		sel.ips_isv4 = B_FALSE;
5158 		sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5159 		/* Use ip_get_dst_v6() just for the fragment bit. */
5160 		sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6,
5161 		    &is_fragment);
5162 		/*
5163 		 * Reset, because we don't care about routing-header dests
5164 		 * in the forwarding/tunnel path.
5165 		 */
5166 		sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5167 	}
5168 
5169 	if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5170 		if (is_fragment) {
5171 			ipha_t *oiph;
5172 			ipha_t *iph = NULL;
5173 			ip6_t *ip6h = NULL;
5174 			int hdr_len;
5175 			uint16_t ip6_hdr_length;
5176 			uint8_t v6_proto;
5177 			uint8_t *v6_proto_p;
5178 
5179 			/*
5180 			 * We have a fragment we need to track!
5181 			 */
5182 			mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5183 			    outer_hdr_len);
5184 			if (mp == NULL)
5185 				return (NULL);
5186 
5187 			/*
5188 			 * If we get here, we have a full
5189 			 * fragment chain
5190 			 */
5191 
5192 			oiph = (ipha_t *)mp->b_rptr;
5193 			if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5194 				hdr_len = ((outer_hdr_len != 0) ?
5195 				    IPH_HDR_LENGTH(oiph) : 0);
5196 				iph = (ipha_t *)(mp->b_rptr + hdr_len);
5197 			} else {
5198 				ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5199 				if ((spare_mp = msgpullup(mp, -1)) == NULL) {
5200 					ip_drop_packet_chain(mp, B_FALSE,
5201 					    NULL, NULL, &ipdrops_spd_nomem,
5202 					    &spd_dropper);
5203 				}
5204 				ip6h = (ip6_t *)spare_mp->b_rptr;
5205 				(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
5206 				    &ip6_hdr_length, &v6_proto_p);
5207 				hdr_len = ip6_hdr_length;
5208 			}
5209 			outer_hdr_len = hdr_len;
5210 
5211 			if (sel.ips_isv4) {
5212 				if (iph == NULL) {
5213 					/* Was v6 outer */
5214 					iph = (ipha_t *)(mp->b_rptr + hdr_len);
5215 				}
5216 				inner_ipv4 = iph;
5217 				sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5218 				sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5219 				sel.ips_protocol =
5220 				    (uint8_t)inner_ipv4->ipha_protocol;
5221 			} else {
5222 				if ((spare_mp == NULL) &&
5223 				    ((spare_mp = msgpullup(mp, -1)) == NULL)) {
5224 					ip_drop_packet_chain(mp, B_FALSE,
5225 					    NULL, NULL, &ipdrops_spd_nomem,
5226 					    &spd_dropper);
5227 				}
5228 				inner_ipv6 = (ip6_t *)(spare_mp->b_rptr +
5229 				    hdr_len);
5230 				sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5231 				sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5232 				(void) ip_hdr_length_nexthdr_v6(spare_mp,
5233 				    inner_ipv6, &ip6_hdr_length,
5234 				    &v6_proto_p);
5235 				v6_proto = *v6_proto_p;
5236 				sel.ips_protocol = v6_proto;
5237 #ifdef FRAGCACHE_DEBUG
5238 				cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5239 				    sel.ips_protocol);
5240 #endif
5241 			}
5242 			/* Ports are extracted below */
5243 		}
5244 
5245 		/* Get ports... */
5246 		if (spare_mp != NULL) {
5247 			if (!ipsec_init_outbound_ports(&sel, spare_mp,
5248 			    inner_ipv4, inner_ipv6, outer_hdr_len)) {
5249 				/*
5250 				 * callee did ip_drop_packet_chain() on
5251 				 * spare_mp
5252 				 */
5253 				ipsec_freemsg_chain(mp);
5254 				return (NULL);
5255 			}
5256 		} else {
5257 			if (!ipsec_init_outbound_ports(&sel, mp,
5258 			    inner_ipv4, inner_ipv6, outer_hdr_len)) {
5259 				/* callee did ip_drop_packet_chain() on mp. */
5260 				return (NULL);
5261 			}
5262 		}
5263 #ifdef FRAGCACHE_DEBUG
5264 		if (inner_ipv4 != NULL)
5265 			cmn_err(CE_WARN,
5266 			    "(v4) sel.ips_protocol = %d, "
5267 			    "sel.ips_local_port = %d, "
5268 			    "sel.ips_remote_port = %d\n",
5269 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5270 			    ntohs(sel.ips_remote_port));
5271 		if (inner_ipv6 != NULL)
5272 			cmn_err(CE_WARN,
5273 			    "(v6) sel.ips_protocol = %d, "
5274 			    "sel.ips_local_port = %d, "
5275 			    "sel.ips_remote_port = %d\n",
5276 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5277 			    ntohs(sel.ips_remote_port));
5278 #endif
5279 		/* Success so far - done with spare_mp */
5280 		ipsec_freemsg_chain(spare_mp);
5281 	}
5282 	rw_enter(&polhead->iph_lock, RW_READER);
5283 	pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
5284 	rw_exit(&polhead->iph_lock);
5285 	if (pol == NULL) {
5286 		/*
5287 		 * No matching policy on this tunnel, drop the packet.
5288 		 *
5289 		 * NOTE:  Tunnel-mode tunnels are different from the
5290 		 * IP global transport mode policy head.  For a tunnel-mode
5291 		 * tunnel, we drop the packet in lieu of passing it
5292 		 * along accepted the way a global-policy miss would.
5293 		 *
5294 		 * NOTE2:  "negotiate transport" tunnels should match ALL
5295 		 * inbound packets, but we do not uncomment the ASSERT()
5296 		 * below because if/when we open PF_POLICY, a user can
5297 		 * shoot him/her-self in the foot with a 0 priority.
5298 		 */
5299 
5300 		/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5301 #ifdef FRAGCACHE_DEBUG
5302 		cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5303 		    "per-port policy\n");
5304 #endif
5305 		ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5306 		    &ipdrops_spd_explicit, &spd_dropper);
5307 		return (NULL);
5308 	}
5309 
5310 #ifdef FRAGCACHE_DEBUG
5311 	cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5312 #endif
5313 
5314 	/* Construct an IPSEC_OUT message. */
5315 	ipsec_mp = ipsec_mp_head = ipsec_alloc_ipsec_out();
5316 	if (ipsec_mp == NULL) {
5317 		IPPOL_REFRELE(pol);
5318 		ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_spd_nomem,
5319 		    &spd_dropper);
5320 		return (NULL);
5321 	}
5322 	ipsec_mp->b_cont = mp;
5323 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
5324 	IPPH_REFHOLD(polhead);
5325 	/*
5326 	 * NOTE: free() function of ipsec_out mblk will release polhead and
5327 	 * pol references.
5328 	 */
5329 	io->ipsec_out_polhead = polhead;
5330 	io->ipsec_out_policy = pol;
5331 	io->ipsec_out_zoneid = atp->tun_zoneid;
5332 	io->ipsec_out_v4 = (outer_ipv4 != NULL);
5333 	io->ipsec_out_secure = B_TRUE;
5334 
5335 	if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5336 		/* Set up transport mode for tunnelled packets. */
5337 		io->ipsec_out_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5338 		    IPPROTO_IPV6;
5339 		return (ipsec_mp);
5340 	}
5341 
5342 	/* Fill in tunnel-mode goodies here. */
5343 	io->ipsec_out_tunnel = B_TRUE;
5344 	/* XXX Do I need to fill in all of the goodies here? */
5345 	if (inner_ipv4) {
5346 		io->ipsec_out_inaf = AF_INET;
5347 		io->ipsec_out_insrc[0] =
5348 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5349 		io->ipsec_out_indst[0] =
5350 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5351 	} else {
5352 		io->ipsec_out_inaf = AF_INET6;
5353 		io->ipsec_out_insrc[0] =
5354 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5355 		io->ipsec_out_insrc[1] =
5356 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5357 		io->ipsec_out_insrc[2] =
5358 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5359 		io->ipsec_out_insrc[3] =
5360 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5361 		io->ipsec_out_indst[0] =
5362 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5363 		io->ipsec_out_indst[1] =
5364 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5365 		io->ipsec_out_indst[2] =
5366 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5367 		io->ipsec_out_indst[3] =
5368 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5369 	}
5370 	io->ipsec_out_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5371 	io->ipsec_out_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5372 	/* NOTE:  These are used for transport mode too. */
5373 	io->ipsec_out_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5374 	io->ipsec_out_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5375 	io->ipsec_out_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5376 
5377 	/*
5378 	 * The mp pointer still valid
5379 	 * Add ipsec_out to each fragment.
5380 	 * The fragment head already has one
5381 	 */
5382 	nmp = mp->b_next;
5383 	mp->b_next = NULL;
5384 	mp = nmp;
5385 	ASSERT(ipsec_mp != NULL);
5386 	while (mp != NULL) {
5387 		nmp = mp->b_next;
5388 		ipsec_mp->b_next = ipsec_out_tag(ipsec_mp_head, mp);
5389 		if (ipsec_mp->b_next == NULL) {
5390 			ip_drop_packet_chain(ipsec_mp_head, B_FALSE, NULL, NULL,
5391 			    &ipdrops_spd_nomem, &spd_dropper);
5392 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5393 			    &ipdrops_spd_nomem, &spd_dropper);
5394 			return (NULL);
5395 		}
5396 		ipsec_mp = ipsec_mp->b_next;
5397 		mp->b_next = NULL;
5398 		mp = nmp;
5399 	}
5400 	return (ipsec_mp_head);
5401 }
5402 
5403 /*
5404  * NOTE: The following releases pol's reference and
5405  * calls ip_drop_packet() for me on NULL returns.
5406  */
5407 mblk_t *
5408 ipsec_check_ipsecin_policy_reasm(mblk_t *ipsec_mp, ipsec_policy_t *pol,
5409     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique)
5410 {
5411 	/* Assume ipsec_mp is a chain of b_next-linked IPSEC_IN M_CTLs. */
5412 	mblk_t *data_chain = NULL, *data_tail = NULL;
5413 	mblk_t *ii_next;
5414 
5415 	while (ipsec_mp != NULL) {
5416 		ii_next = ipsec_mp->b_next;
5417 		ipsec_mp->b_next = NULL;  /* No tripping asserts. */
5418 
5419 		/*
5420 		 * Need IPPOL_REFHOLD(pol) for extras because
5421 		 * ipsecin_policy does the refrele.
5422 		 */
5423 		IPPOL_REFHOLD(pol);
5424 
5425 		if (ipsec_check_ipsecin_policy(ipsec_mp, pol, inner_ipv4,
5426 		    inner_ipv6, pkt_unique) != NULL) {
5427 			if (data_tail == NULL) {
5428 				/* First one */
5429 				data_chain = data_tail = ipsec_mp->b_cont;
5430 			} else {
5431 				data_tail->b_next = ipsec_mp->b_cont;
5432 				data_tail = data_tail->b_next;
5433 			}
5434 			freeb(ipsec_mp);
5435 		} else {
5436 			/*
5437 			 * ipsec_check_ipsecin_policy() freed ipsec_mp
5438 			 * already.   Need to get rid of any extra pol
5439 			 * references, and any remaining bits as well.
5440 			 */
5441 			IPPOL_REFRELE(pol);
5442 			ipsec_freemsg_chain(data_chain);
5443 			ipsec_freemsg_chain(ii_next);	/* ipdrop stats? */
5444 			return (NULL);
5445 		}
5446 		ipsec_mp = ii_next;
5447 	}
5448 	/*
5449 	 * One last release because either the loop bumped it up, or we never
5450 	 * called ipsec_check_ipsecin_policy().
5451 	 */
5452 	IPPOL_REFRELE(pol);
5453 
5454 	/* data_chain is ready for return to tun module. */
5455 	return (data_chain);
5456 }
5457 
5458 
5459 /*
5460  * Returns B_TRUE if the inbound packet passed an IPsec policy check.  Returns
5461  * B_FALSE if it failed or if it is a fragment needing its friends before a
5462  * policy check can be performed.
5463  *
5464  * Expects a non-NULL *data_mp, an optional ipsec_mp, and a non-NULL polhead.
5465  * data_mp may be reassigned with a b_next chain of packets if fragments
5466  * neeeded to be collected for a proper policy check.
5467  *
5468  * Always frees ipsec_mp, but only frees data_mp if returns B_FALSE.  This
5469  * function calls ip_drop_packet() on data_mp if need be.
5470  *
5471  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5472  * is inspecting an ICMP packet.
5473  */
5474 boolean_t
5475 ipsec_tun_inbound(mblk_t *ipsec_mp, mblk_t **data_mp, ipsec_tun_pol_t *itp,
5476     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5477     ip6_t *outer_ipv6, int outer_hdr_len)
5478 {
5479 	ipsec_policy_head_t *polhead;
5480 	ipsec_selector_t sel;
5481 	mblk_t *message = (ipsec_mp == NULL) ? *data_mp : ipsec_mp;
5482 	ipsec_policy_t *pol;
5483 	uint16_t tmpport;
5484 	selret_t rc;
5485 	boolean_t retval, port_policy_present, is_icmp, global_present;
5486 	in6_addr_t tmpaddr;
5487 	ipaddr_t tmp4;
5488 	uint8_t flags, *holder, *outer_hdr;
5489 
5490 	sel.ips_is_icmp_inv_acq = 0;
5491 
5492 	if (outer_ipv4 != NULL) {
5493 		ASSERT(outer_ipv6 == NULL);
5494 		outer_hdr = (uint8_t *)outer_ipv4;
5495 		global_present = ipsec_inbound_v4_policy_present;
5496 	} else {
5497 		outer_hdr = (uint8_t *)outer_ipv6;
5498 		global_present = ipsec_inbound_v6_policy_present;
5499 	}
5500 	ASSERT(outer_hdr != NULL);
5501 
5502 	ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5503 	    inner_ipv4 == NULL && inner_ipv6 != NULL);
5504 	ASSERT(message == *data_mp || message->b_cont == *data_mp);
5505 
5506 	if (outer_hdr_len < 0) {
5507 		outer_hdr_len = (-outer_hdr_len);
5508 		is_icmp = B_TRUE;
5509 	} else {
5510 		is_icmp = B_FALSE;
5511 	}
5512 
5513 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5514 		polhead = itp->itp_policy;
5515 		/*
5516 		 * We need to perform full Tunnel-Mode enforcement,
5517 		 * and we need to have inner-header data for such enforcement.
5518 		 *
5519 		 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5520 		 * and on return.
5521 		 */
5522 
5523 		port_policy_present = ((itp->itp_flags &
5524 		    ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5525 		flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5526 		    (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5527 
5528 		rc = ipsec_init_inbound_sel(&sel, *data_mp, inner_ipv4,
5529 		    inner_ipv6, flags);
5530 
5531 		switch (rc) {
5532 		case SELRET_NOMEM:
5533 			ip_drop_packet(message, B_TRUE, NULL, NULL,
5534 			    &ipdrops_spd_nomem, &spd_dropper);
5535 			return (B_FALSE);
5536 		case SELRET_TUNFRAG:
5537 			/*
5538 			 * At this point, if we're cleartext, we don't want
5539 			 * to go there.
5540 			 */
5541 			if (ipsec_mp == NULL) {
5542 				ip_drop_packet(*data_mp, B_TRUE, NULL, NULL,
5543 				    &ipdrops_spd_got_clear, &spd_dropper);
5544 				*data_mp = NULL;
5545 				return (B_FALSE);
5546 			}
5547 			ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->
5548 			    ipsec_in_secure);
5549 			message = ipsec_fragcache_add(&itp->itp_fragcache,
5550 			    ipsec_mp, *data_mp, outer_hdr_len);
5551 
5552 			if (message == NULL) {
5553 				/*
5554 				 * Data is cached, fragment chain is not
5555 				 * complete.  I consume ipsec_mp and data_mp
5556 				 */
5557 				return (B_FALSE);
5558 			}
5559 
5560 			/*
5561 			 * If we get here, we have a full fragment chain.
5562 			 * Reacquire headers and selectors from first fragment.
5563 			 */
5564 			if (inner_ipv4 != NULL) {
5565 				inner_ipv4 = (ipha_t *)message->b_cont->b_rptr;
5566 				ASSERT(message->b_cont->b_wptr -
5567 				    message->b_cont->b_rptr > sizeof (ipha_t));
5568 			} else {
5569 				inner_ipv6 = (ip6_t *)message->b_cont->b_rptr;
5570 				ASSERT(message->b_cont->b_wptr -
5571 				    message->b_cont->b_rptr > sizeof (ip6_t));
5572 			}
5573 			/* Use SEL_NONE so we always get ports! */
5574 			rc = ipsec_init_inbound_sel(&sel, message->b_cont,
5575 			    inner_ipv4, inner_ipv6, SEL_NONE);
5576 			switch (rc) {
5577 			case SELRET_SUCCESS:
5578 				/*
5579 				 * Get to same place as first caller's
5580 				 * SELRET_SUCCESS case.
5581 				 */
5582 				break;
5583 			case SELRET_NOMEM:
5584 				ip_drop_packet_chain(message, B_TRUE, NULL,
5585 				    NULL, &ipdrops_spd_nomem, &spd_dropper);
5586 				return (B_FALSE);
5587 			case SELRET_BADPKT:
5588 				ip_drop_packet_chain(message, B_TRUE, NULL,
5589 				    NULL, &ipdrops_spd_malformed_frag,
5590 				    &spd_dropper);
5591 				return (B_FALSE);
5592 			case SELRET_TUNFRAG:
5593 				cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5594 				/* FALLTHRU */
5595 			default:
5596 				cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5597 				    " returns bizarro 0x%x", rc);
5598 				/* Guaranteed panic! */
5599 				ASSERT(rc == SELRET_NOMEM);
5600 				return (B_FALSE);
5601 			}
5602 			/* FALLTHRU */
5603 		case SELRET_SUCCESS:
5604 			/*
5605 			 * Common case:
5606 			 * No per-port policy or a non-fragment.  Keep going.
5607 			 */
5608 			break;
5609 		case SELRET_BADPKT:
5610 			/*
5611 			 * We may receive ICMP (with IPv6 inner) packets that
5612 			 * trigger this return value.  Send 'em in for
5613 			 * enforcement checking.
5614 			 */
5615 			cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5616 			    "sending 'bad packet' in for enforcement");
5617 			break;
5618 		default:
5619 			cmn_err(CE_WARN,
5620 			    "ipsec_init_inbound_sel() returns bizarro 0x%x",
5621 			    rc);
5622 			ASSERT(rc == SELRET_NOMEM);	/* Guaranteed panic! */
5623 			return (B_FALSE);
5624 		}
5625 
5626 		if (is_icmp) {
5627 			/*
5628 			 * Swap local/remote because this is an ICMP packet.
5629 			 */
5630 			tmpaddr = sel.ips_local_addr_v6;
5631 			sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5632 			sel.ips_remote_addr_v6 = tmpaddr;
5633 			tmpport = sel.ips_local_port;
5634 			sel.ips_local_port = sel.ips_remote_port;
5635 			sel.ips_remote_port = tmpport;
5636 		}
5637 
5638 		/* find_policy_head() */
5639 		rw_enter(&polhead->iph_lock, RW_READER);
5640 		pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5641 		    &sel);
5642 		rw_exit(&polhead->iph_lock);
5643 		if (pol != NULL) {
5644 			if (ipsec_mp == NULL ||
5645 			    !((ipsec_in_t *)ipsec_mp->b_rptr)->
5646 				ipsec_in_secure) {
5647 				retval = pol->ipsp_act->ipa_allow_clear;
5648 				if (!retval) {
5649 					/*
5650 					 * XXX should never get here with
5651 					 * tunnel reassembled fragments?
5652 					 */
5653 					ASSERT(message->b_next == NULL);
5654 					ip_drop_packet(message, B_TRUE, NULL,
5655 					    NULL, &ipdrops_spd_got_clear,
5656 					    &spd_dropper);
5657 				} else if (ipsec_mp != NULL) {
5658 					freeb(ipsec_mp);
5659 				}
5660 
5661 				IPPOL_REFRELE(pol);
5662 				return (retval);
5663 			}
5664 			/*
5665 			 * NOTE: The following releases pol's reference and
5666 			 * calls ip_drop_packet() for me on NULL returns.
5667 			 *
5668 			 * "sel" is still good here, so let's use it!
5669 			 */
5670 			*data_mp = ipsec_check_ipsecin_policy_reasm(message,
5671 			    pol, inner_ipv4, inner_ipv6, SA_UNIQUE_ID(
5672 				sel.ips_remote_port, sel.ips_local_port,
5673 				(inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5674 				IPPROTO_ENCAP, sel.ips_protocol));
5675 			return (*data_mp != NULL);
5676 		}
5677 
5678 		/*
5679 		 * Else fallthru and check the global policy on the outer
5680 		 * header(s) if this tunnel is an old-style transport-mode
5681 		 * one.  Drop the packet explicitly (no policy entry) for
5682 		 * a new-style tunnel-mode tunnel.
5683 		 */
5684 		if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5685 			ip_drop_packet_chain(message, B_TRUE, NULL,
5686 			    NULL, &ipdrops_spd_explicit, &spd_dropper);
5687 			return (B_FALSE);
5688 		}
5689 	}
5690 
5691 	/*
5692 	 * NOTE:  If we reach here, we will not have packet chains from
5693 	 * fragcache_add(), because the only way I get chains is on a
5694 	 * tunnel-mode tunnel, which either returns with a pass, or gets
5695 	 * hit by the ip_drop_packet_chain() call right above here.
5696 	 */
5697 
5698 	/* If no per-tunnel security, check global policy now. */
5699 	if (ipsec_mp != NULL && !global_present) {
5700 		if (((ipsec_in_t *)(ipsec_mp->b_rptr))->
5701 		    ipsec_in_icmp_loopback) {
5702 			/*
5703 			 * This is an ICMP message with an ipsec_mp
5704 			 * attached.  We should accept it.
5705 			 */
5706 			if (ipsec_mp != NULL)
5707 				freeb(ipsec_mp);
5708 			return (B_TRUE);
5709 		}
5710 
5711 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
5712 		    &ipdrops_spd_got_secure, &spd_dropper);
5713 		return (B_FALSE);
5714 	}
5715 
5716 	/*
5717 	 * The following assertion is valid because only the tun module alters
5718 	 * the mblk chain - stripping the outer header by advancing mp->b_rptr.
5719 	 */
5720 	ASSERT(is_icmp ||
5721 	    ((*data_mp)->b_datap->db_base <= outer_hdr &&
5722 		outer_hdr < (*data_mp)->b_rptr));
5723 	holder = (*data_mp)->b_rptr;
5724 	(*data_mp)->b_rptr = outer_hdr;
5725 
5726 	if (is_icmp) {
5727 		/*
5728 		 * For ICMP packets, "outer_ipvN" is set to the outer header
5729 		 * that is *INSIDE* the ICMP payload.  For global policy
5730 		 * checking, we need to reverse src/dst on the payload in
5731 		 * order to construct selectors appropriately.  See "ripha"
5732 		 * constructions in ip.c.  To avoid a bug like 6478464 (see
5733 		 * earlier in this file), we will actually exchange src/dst
5734 		 * in the packet, and reverse if after the call to
5735 		 * ipsec_check_global_policy().
5736 		 */
5737 		if (outer_ipv4 != NULL) {
5738 			tmp4 = outer_ipv4->ipha_src;
5739 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5740 			outer_ipv4->ipha_dst = tmp4;
5741 		} else {
5742 			ASSERT(outer_ipv6 != NULL);
5743 			tmpaddr = outer_ipv6->ip6_src;
5744 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5745 			outer_ipv6->ip6_dst = tmpaddr;
5746 		}
5747 	}
5748 
5749 	/* NOTE:  Frees message if it returns NULL. */
5750 	if (ipsec_check_global_policy(message, NULL, outer_ipv4, outer_ipv6,
5751 		(ipsec_mp != NULL)) == NULL) {
5752 		return (B_FALSE);
5753 	}
5754 
5755 	if (is_icmp) {
5756 		/* Set things back to normal. */
5757 		if (outer_ipv4 != NULL) {
5758 			tmp4 = outer_ipv4->ipha_src;
5759 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5760 			outer_ipv4->ipha_dst = tmp4;
5761 		} else {
5762 			/* No need for ASSERT()s now. */
5763 			tmpaddr = outer_ipv6->ip6_src;
5764 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5765 			outer_ipv6->ip6_dst = tmpaddr;
5766 		}
5767 	}
5768 
5769 	(*data_mp)->b_rptr = holder;
5770 
5771 	if (ipsec_mp != NULL)
5772 		freeb(ipsec_mp);
5773 
5774 	/*
5775 	 * At this point, we pretend it's a cleartext accepted
5776 	 * packet.
5777 	 */
5778 	return (B_TRUE);
5779 }
5780 
5781 /*
5782  * AVL comparison routine for our list of tunnel polheads.
5783  */
5784 static int
5785 tunnel_compare(const void *arg1, const void *arg2)
5786 {
5787 	ipsec_tun_pol_t *left, *right;
5788 	int rc;
5789 
5790 	left = (ipsec_tun_pol_t *)arg1;
5791 	right = (ipsec_tun_pol_t *)arg2;
5792 
5793 	rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
5794 	return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
5795 }
5796 
5797 /*
5798  * Free a tunnel policy node.
5799  */
5800 void
5801 itp_free(ipsec_tun_pol_t *node)
5802 {
5803 	IPPH_REFRELE(node->itp_policy);
5804 	IPPH_REFRELE(node->itp_inactive);
5805 	mutex_destroy(&node->itp_lock);
5806 	kmem_free(node, sizeof (*node));
5807 }
5808 
5809 void
5810 itp_unlink(ipsec_tun_pol_t *node)
5811 {
5812 	rw_enter(&tunnel_policy_lock, RW_WRITER);
5813 	tunnel_policy_gen++;
5814 	ipsec_fragcache_uninit(&node->itp_fragcache);
5815 	avl_remove(&tunnel_policies, node);
5816 	rw_exit(&tunnel_policy_lock);
5817 	ITP_REFRELE(node);
5818 }
5819 
5820 /*
5821  * Public interface to look up a tunnel security policy by name.  Used by
5822  * spdsock mostly.  Returns "node" with a bumped refcnt.
5823  */
5824 ipsec_tun_pol_t *
5825 get_tunnel_policy(char *name)
5826 {
5827 	ipsec_tun_pol_t *node, lookup;
5828 
5829 	(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
5830 
5831 	rw_enter(&tunnel_policy_lock, RW_READER);
5832 	node = (ipsec_tun_pol_t *)avl_find(&tunnel_policies, &lookup, NULL);
5833 	if (node != NULL) {
5834 		ITP_REFHOLD(node);
5835 	}
5836 	rw_exit(&tunnel_policy_lock);
5837 
5838 	return (node);
5839 }
5840 
5841 /*
5842  * Public interface to walk all tunnel security polcies.  Useful for spdsock
5843  * DUMP operations.  iterator() will not consume a reference.
5844  */
5845 void
5846 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *), void *arg)
5847 {
5848 	ipsec_tun_pol_t *node;
5849 
5850 	rw_enter(&tunnel_policy_lock, RW_READER);
5851 	for (node = avl_first(&tunnel_policies); node != NULL;
5852 	    node = AVL_NEXT(&tunnel_policies, node)) {
5853 		iterator(node, arg);
5854 	}
5855 	rw_exit(&tunnel_policy_lock);
5856 }
5857 
5858 /*
5859  * Initialize policy head.  This can only fail if there's a memory problem.
5860  */
5861 static boolean_t
5862 tunnel_polhead_init(ipsec_policy_head_t *iph)
5863 {
5864 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
5865 	iph->iph_refs = 1;
5866 	iph->iph_gen = 0;
5867 	if (ipsec_alloc_table(iph, tun_spd_hashsize, KM_SLEEP, B_FALSE) != 0) {
5868 		ipsec_polhead_free_table(iph);
5869 		return (B_FALSE);
5870 	}
5871 	ipsec_polhead_init(iph, tun_spd_hashsize);
5872 	return (B_TRUE);
5873 }
5874 
5875 /*
5876  * Create a tunnel policy node with "name".  Set errno with
5877  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
5878  * node.
5879  */
5880 ipsec_tun_pol_t *
5881 create_tunnel_policy(char *name, int *errno, uint64_t *gen)
5882 {
5883 	ipsec_tun_pol_t *newbie, *existing;
5884 	avl_index_t where;
5885 
5886 	newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
5887 	if (newbie == NULL) {
5888 		*errno = ENOMEM;
5889 		return (NULL);
5890 	}
5891 	if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
5892 		kmem_free(newbie, sizeof (*newbie));
5893 		*errno = ENOMEM;
5894 		return (NULL);
5895 	}
5896 
5897 	(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
5898 
5899 	rw_enter(&tunnel_policy_lock, RW_WRITER);
5900 	existing = (ipsec_tun_pol_t *)avl_find(&tunnel_policies, newbie,
5901 	    &where);
5902 	if (existing != NULL) {
5903 		itp_free(newbie);
5904 		*errno = EEXIST;
5905 		rw_exit(&tunnel_policy_lock);
5906 		return (NULL);
5907 	}
5908 	tunnel_policy_gen++;
5909 	*gen = tunnel_policy_gen;
5910 	newbie->itp_refcnt = 2;	/* One for the caller, one for the tree. */
5911 	newbie->itp_next_policy_index = 1;
5912 	avl_insert(&tunnel_policies, newbie, where);
5913 	mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
5914 	newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
5915 	    KM_NOSLEEP);
5916 	if (newbie->itp_policy == NULL)
5917 		goto nomem;
5918 	newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
5919 	    KM_NOSLEEP);
5920 	if (newbie->itp_inactive == NULL) {
5921 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
5922 		goto nomem;
5923 	}
5924 
5925 	if (!tunnel_polhead_init(newbie->itp_policy)) {
5926 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
5927 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
5928 		goto nomem;
5929 	} else if (!tunnel_polhead_init(newbie->itp_inactive)) {
5930 		IPPH_REFRELE(newbie->itp_policy);
5931 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
5932 		goto nomem;
5933 	}
5934 	rw_exit(&tunnel_policy_lock);
5935 
5936 	return (newbie);
5937 nomem:
5938 	*errno = ENOMEM;
5939 	kmem_free(newbie, sizeof (*newbie));
5940 	return (NULL);
5941 }
5942 
5943 /*
5944  * We can't call the tun_t lookup function until tun is
5945  * loaded, so create a dummy function to avoid symbol
5946  * lookup errors on boot.
5947  */
5948 /* ARGSUSED */
5949 ipsec_tun_pol_t *
5950 itp_get_byaddr_dummy(uint32_t *laddr, uint32_t *faddr, int af)
5951 {
5952 	return (NULL);  /* Always return NULL. */
5953 }
5954 
5955 /*
5956  * Frag cache code, based on SunScreen 3.2 source
5957  *	screen/kernel/common/screen_fragcache.c
5958  */
5959 
5960 #define	IPSEC_FRAG_TTL_MAX	5
5961 /*
5962  * Note that the following parameters create 256 hash buckets
5963  * with 1024 free entries to be distributed.  Things are cleaned
5964  * periodically and are attempted to be cleaned when there is no
5965  * free space, but this system errs on the side of dropping packets
5966  * over creating memory exhaustion.  We may decide to make hash
5967  * factor a tunable if this proves to be a bad decision.
5968  */
5969 #define	IPSEC_FRAG_HASH_SLOTS	(1<<8)
5970 #define	IPSEC_FRAG_HASH_FACTOR	4
5971 #define	IPSEC_FRAG_HASH_SIZE	(IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
5972 
5973 #define	IPSEC_FRAG_HASH_MASK		(IPSEC_FRAG_HASH_SLOTS - 1)
5974 #define	IPSEC_FRAG_HASH_FUNC(id)	(((id) & IPSEC_FRAG_HASH_MASK) ^ \
5975 					    (((id) / \
5976 					    (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
5977 					    IPSEC_FRAG_HASH_MASK))
5978 
5979 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
5980 #define	IPSEC_MAX_FRAGS		1366
5981 
5982 #define	V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
5983 				    IPH_OFFSET) << 3)
5984 #define	V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
5985 		IPH_MF)
5986 
5987 /*
5988  * Initialize an ipsec fragcache instance.
5989  * Returns B_FALSE if memory allocation fails.
5990  */
5991 boolean_t
5992 ipsec_fragcache_init(ipsec_fragcache_t *frag)
5993 {
5994 	ipsec_fragcache_entry_t *ftemp;
5995 	int i;
5996 
5997 	mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
5998 	frag->itpf_ptr = (ipsec_fragcache_entry_t **)
5999 		kmem_zalloc(
6000 		    sizeof (ipsec_fragcache_entry_t *) *
6001 		    IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6002 	if (frag->itpf_ptr == NULL)
6003 		return (B_FALSE);
6004 
6005 	ftemp = (ipsec_fragcache_entry_t *)
6006 		kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6007 		    IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6008 	if (ftemp == NULL) {
6009 		kmem_free(frag->itpf_ptr,
6010 		    sizeof (ipsec_fragcache_entry_t *) *
6011 		    IPSEC_FRAG_HASH_SLOTS);
6012 		return (B_FALSE);
6013 	}
6014 
6015 	frag->itpf_freelist = NULL;
6016 
6017 	for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6018 	    ftemp->itpfe_next = frag->itpf_freelist;
6019 	    frag->itpf_freelist = ftemp;
6020 	    ftemp++;
6021 	}
6022 
6023 	frag->itpf_expire_hint = 0;
6024 
6025 	return (B_TRUE);
6026 }
6027 
6028 void
6029 ipsec_fragcache_uninit(ipsec_fragcache_t *frag)
6030 {
6031 	ipsec_fragcache_entry_t *fep;
6032 	int i;
6033 
6034 	mutex_enter(&frag->itpf_lock);
6035 	if (frag->itpf_ptr) {
6036 		/* Delete any existing fragcache entry chains */
6037 		for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6038 			fep = (frag->itpf_ptr)[i];
6039 			while (fep != NULL) {
6040 				/* Returned fep is next in chain or NULL */
6041 				fep = fragcache_delentry(i, fep, frag);
6042 			}
6043 		}
6044 		/*
6045 		 * Chase the pointers back to the beginning
6046 		 * of the memory allocation and then
6047 		 * get rid of the allocated freelist
6048 		 */
6049 		while (frag->itpf_freelist->itpfe_next != NULL)
6050 			frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6051 		/*
6052 		 * XXX - If we ever dynamically grow the freelist
6053 		 * then we'll have to free entries individually
6054 		 * or determine how many entries or chunks we have
6055 		 * grown since the initial allocation.
6056 		 */
6057 		kmem_free(frag->itpf_freelist,
6058 		    sizeof (ipsec_fragcache_entry_t) *
6059 		    IPSEC_FRAG_HASH_SIZE);
6060 		/* Free the fragcache structure */
6061 		kmem_free(frag->itpf_ptr,
6062 		    sizeof (ipsec_fragcache_entry_t *) *
6063 		    IPSEC_FRAG_HASH_SLOTS);
6064 	}
6065 	mutex_exit(&frag->itpf_lock);
6066 	mutex_destroy(&frag->itpf_lock);
6067 }
6068 
6069 /*
6070  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6071  * Returns mp if a whole fragment has been assembled, NULL otherwise
6072  */
6073 
6074 mblk_t *
6075 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *ipsec_mp, mblk_t *mp,
6076     int outer_hdr_len)
6077 {
6078 	boolean_t is_v4;
6079 	time_t itpf_time;
6080 	ipha_t *iph;
6081 	ipha_t *oiph;
6082 	ip6_t *ip6h = NULL;
6083 	uint8_t v6_proto;
6084 	uint8_t *v6_proto_p;
6085 	uint16_t ip6_hdr_length;
6086 	ip6_pkt_t ipp;
6087 	ip6_frag_t *fraghdr;
6088 	ipsec_fragcache_entry_t *fep;
6089 	int i;
6090 	mblk_t *nmp, *prevmp, *spare_mp = NULL;
6091 	int firstbyte, lastbyte;
6092 	int offset;
6093 	int last;
6094 	boolean_t inbound = (ipsec_mp != NULL);
6095 	mblk_t *first_mp = inbound ? ipsec_mp : mp;
6096 
6097 	mutex_enter(&frag->itpf_lock);
6098 
6099 	oiph  = (ipha_t *)mp->b_rptr;
6100 	iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6101 	if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6102 		is_v4 = B_TRUE;
6103 	} else {
6104 		ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6105 		if ((spare_mp = msgpullup(mp, -1)) == NULL) {
6106 			mutex_exit(&frag->itpf_lock);
6107 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6108 			    &ipdrops_spd_nomem, &spd_dropper);
6109 			return (NULL);
6110 		}
6111 		ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
6112 
6113 		if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h, &ip6_hdr_length,
6114 		    &v6_proto_p)) {
6115 			/*
6116 			 * Find upper layer protocol.
6117 			 * If it fails we have a malformed packet
6118 			 */
6119 			mutex_exit(&frag->itpf_lock);
6120 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6121 			    &ipdrops_spd_malformed_packet, &spd_dropper);
6122 			freemsg(spare_mp);
6123 			return (NULL);
6124 		} else {
6125 			v6_proto = *v6_proto_p;
6126 		}
6127 
6128 
6129 		bzero(&ipp, sizeof (ipp));
6130 		(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6131 		if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6132 			/*
6133 			 * We think this is a fragment, but didn't find
6134 			 * a fragment header.  Something is wrong.
6135 			 */
6136 			mutex_exit(&frag->itpf_lock);
6137 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6138 			    &ipdrops_spd_malformed_frag, &spd_dropper);
6139 			freemsg(spare_mp);
6140 			return (NULL);
6141 		}
6142 		fraghdr = ipp.ipp_fraghdr;
6143 		is_v4 = B_FALSE;
6144 	}
6145 
6146 	/* Anything to cleanup? */
6147 
6148 	/*
6149 	 * This cleanup call could be put in a timer loop
6150 	 * but it may actually be just as reasonable a decision to
6151 	 * leave it here.  The disadvantage is this only gets called when
6152 	 * frags are added.  The advantage is that it is not
6153 	 * susceptible to race conditions like a time-based cleanup
6154 	 * may be.
6155 	 */
6156 	itpf_time = gethrestime_sec();
6157 	if (itpf_time >= frag->itpf_expire_hint)
6158 		ipsec_fragcache_clean(frag);
6159 
6160 	/* Lookup to see if there is an existing entry */
6161 
6162 	if (is_v4)
6163 		i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6164 	else
6165 		i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6166 
6167 	for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6168 		if (is_v4) {
6169 			ASSERT(iph != NULL);
6170 			if ((fep->itpfe_id == iph->ipha_ident) &&
6171 			    (fep->itpfe_src == iph->ipha_src) &&
6172 			    (fep->itpfe_dst == iph->ipha_dst) &&
6173 			    (fep->itpfe_proto == iph->ipha_protocol))
6174 				break;
6175 		} else {
6176 			ASSERT(fraghdr != NULL);
6177 			ASSERT(fep != NULL);
6178 			if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6179 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6180 			    &ip6h->ip6_src) &&
6181 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6182 			    &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6183 				break;
6184 		}
6185 	}
6186 
6187 	if (is_v4) {
6188 		firstbyte = V4_FRAG_OFFSET(iph);
6189 		lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6190 		    IPH_HDR_LENGTH(iph);
6191 		last = (V4_MORE_FRAGS(iph) == 0);
6192 #ifdef FRAGCACHE_DEBUG
6193 		cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6194 		    "last = %d, id = %d\n", firstbyte, lastbyte, last,
6195 		    iph->ipha_ident);
6196 #endif
6197 	} else {
6198 		firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6199 		lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6200 		    sizeof (ip6_t) - ip6_hdr_length;
6201 		last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6202 #ifdef FRAGCACHE_DEBUG
6203 		cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6204 		    "last = %d, id = %d, fraghdr = %p, spare_mp = %p\n",
6205 		    firstbyte, lastbyte, last, fraghdr->ip6f_ident,
6206 		    fraghdr, spare_mp);
6207 #endif
6208 	}
6209 
6210 	/* check for bogus fragments and delete the entry */
6211 	if (firstbyte > 0 && firstbyte <= 8) {
6212 		if (fep != NULL)
6213 			(void) fragcache_delentry(i, fep, frag);
6214 		mutex_exit(&frag->itpf_lock);
6215 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6216 		    &ipdrops_spd_malformed_frag, &spd_dropper);
6217 		freemsg(spare_mp);
6218 		return (NULL);
6219 	}
6220 
6221 	/* Not found, allocate a new entry */
6222 	if (fep == NULL) {
6223 		if (frag->itpf_freelist == NULL) {
6224 			/* see if there is some space */
6225 			ipsec_fragcache_clean(frag);
6226 			if (frag->itpf_freelist == NULL) {
6227 				mutex_exit(&frag->itpf_lock);
6228 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6229 				    &ipdrops_spd_nomem, &spd_dropper);
6230 				freemsg(spare_mp);
6231 				return (NULL);
6232 			}
6233 		}
6234 
6235 		fep = frag->itpf_freelist;
6236 		frag->itpf_freelist = fep->itpfe_next;
6237 
6238 		if (is_v4) {
6239 			bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6240 			    sizeof (struct in_addr));
6241 			bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6242 			    sizeof (struct in_addr));
6243 			fep->itpfe_id = iph->ipha_ident;
6244 			fep->itpfe_proto = iph->ipha_protocol;
6245 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6246 		} else {
6247 			bcopy((in6_addr_t *)&ip6h->ip6_src,
6248 			    (in6_addr_t *)&fep->itpfe_src6,
6249 			    sizeof (struct in6_addr));
6250 			bcopy((in6_addr_t *)&ip6h->ip6_dst,
6251 			    (in6_addr_t *)&fep->itpfe_dst6,
6252 			    sizeof (struct in6_addr));
6253 			fep->itpfe_id = fraghdr->ip6f_ident;
6254 			fep->itpfe_proto = v6_proto;
6255 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6256 		}
6257 		itpf_time = gethrestime_sec();
6258 		fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6259 		fep->itpfe_last = 0;
6260 		fep->itpfe_fraglist = NULL;
6261 		fep->itpfe_depth = 0;
6262 		fep->itpfe_next = (frag->itpf_ptr)[i];
6263 		(frag->itpf_ptr)[i] = fep;
6264 
6265 		if (frag->itpf_expire_hint > fep->itpfe_exp)
6266 			frag->itpf_expire_hint = fep->itpfe_exp;
6267 
6268 	}
6269 	freemsg(spare_mp);
6270 
6271 	/* Insert it in the frag list */
6272 	/* List is in order by starting offset of fragments */
6273 
6274 	prevmp = NULL;
6275 	for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6276 		ipha_t *niph;
6277 		ipha_t *oniph;
6278 		ip6_t *nip6h;
6279 		ip6_pkt_t nipp;
6280 		ip6_frag_t *nfraghdr;
6281 		uint16_t nip6_hdr_length;
6282 		uint8_t *nv6_proto_p;
6283 		int nfirstbyte, nlastbyte;
6284 		char *data, *ndata;
6285 		mblk_t *nspare_mp = NULL;
6286 		mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6287 		int hdr_len;
6288 
6289 		oniph  = (ipha_t *)mp->b_rptr;
6290 		nip6h = NULL;
6291 		niph = NULL;
6292 
6293 		/*
6294 		 * Determine outer header type and length and set
6295 		 * pointers appropriately
6296 		 */
6297 
6298 		if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6299 			hdr_len = ((outer_hdr_len != 0) ?
6300 			    IPH_HDR_LENGTH(oiph) : 0);
6301 			niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6302 		} else {
6303 			ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6304 			if ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL) {
6305 				mutex_exit(&frag->itpf_lock);
6306 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6307 				    &ipdrops_spd_nomem, &spd_dropper);
6308 				return (NULL);
6309 			}
6310 			nip6h = (ip6_t *)nspare_mp->b_rptr;
6311 			(void) ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6312 			    &nip6_hdr_length, &v6_proto_p);
6313 			hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6314 		}
6315 
6316 		/*
6317 		 * Determine inner header type and length and set
6318 		 * pointers appropriately
6319 		 */
6320 
6321 		if (is_v4) {
6322 			if (niph == NULL) {
6323 				/* Was v6 outer */
6324 				niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6325 			}
6326 			nfirstbyte = V4_FRAG_OFFSET(niph);
6327 			nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6328 			    IPH_HDR_LENGTH(niph);
6329 		} else {
6330 			if ((nspare_mp == NULL) &&
6331 			    ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL)) {
6332 				mutex_exit(&frag->itpf_lock);
6333 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6334 				    &ipdrops_spd_nomem, &spd_dropper);
6335 				return (NULL);
6336 			}
6337 			nip6h = (ip6_t *)(nspare_mp->b_rptr + hdr_len);
6338 			if (!ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6339 			    &nip6_hdr_length, &nv6_proto_p)) {
6340 				mutex_exit(&frag->itpf_lock);
6341 			    ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6342 				&ipdrops_spd_malformed_frag, &spd_dropper);
6343 			    ipsec_freemsg_chain(nspare_mp);
6344 			    return (NULL);
6345 			}
6346 			bzero(&nipp, sizeof (nipp));
6347 			(void) ip_find_hdr_v6(nspare_mp, nip6h, &nipp, NULL);
6348 			nfraghdr = nipp.ipp_fraghdr;
6349 			nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6350 			    IP6F_OFF_MASK);
6351 			nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6352 			    sizeof (ip6_t) - nip6_hdr_length;
6353 		}
6354 		ipsec_freemsg_chain(nspare_mp);
6355 
6356 		/* Check for overlapping fragments */
6357 		if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6358 			/*
6359 			 * Overlap Check:
6360 			 *  ~~~~---------		# Check if the newly
6361 			 * ~	ndata_mp|		# received fragment
6362 			 *  ~~~~---------		# overlaps with the
6363 			 *	 ---------~~~~~~	# current fragment.
6364 			 *	|    mp		~
6365 			 *	 ---------~~~~~~
6366 			 */
6367 			if (is_v4) {
6368 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6369 				    firstbyte - nfirstbyte;
6370 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6371 			} else {
6372 				data  = (char *)ip6h  +
6373 				    nip6_hdr_length + firstbyte -
6374 				    nfirstbyte;
6375 				ndata = (char *)nip6h + nip6_hdr_length;
6376 			}
6377 			if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6378 			    - firstbyte)) {
6379 				/* Overlapping data does not match */
6380 				(void) fragcache_delentry(i, fep, frag);
6381 				mutex_exit(&frag->itpf_lock);
6382 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6383 				    &ipdrops_spd_overlap_frag, &spd_dropper);
6384 				return (NULL);
6385 			}
6386 			/* Part of defense for jolt2.c fragmentation attack */
6387 			if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6388 				/*
6389 				 * Check for identical or subset fragments:
6390 				 *  ----------	    ~~~~--------~~~~~
6391 				 * |    nmp   | or  ~	   nmp	    ~
6392 				 *  ----------	    ~~~~--------~~~~~
6393 				 *  ----------		  ------
6394 				 * |	mp    |		 |  mp  |
6395 				 *  ----------		  ------
6396 				 */
6397 				mutex_exit(&frag->itpf_lock);
6398 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6399 				    &ipdrops_spd_evil_frag, &spd_dropper);
6400 				return (NULL);
6401 			}
6402 
6403 		}
6404 
6405 		/* Correct location for this fragment? */
6406 		if (firstbyte <= nfirstbyte) {
6407 			/*
6408 			 * Check if the tail end of the new fragment overlaps
6409 			 * with the head of the current fragment.
6410 			 *	  --------~~~~~~~
6411 			 *	 |    nmp	~
6412 			 *	  --------~~~~~~~
6413 			 *  ~~~~~--------
6414 			 *  ~	mp	 |
6415 			 *  ~~~~~--------
6416 			 */
6417 			if (lastbyte > nfirstbyte) {
6418 				/* Fragments overlap */
6419 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6420 				    firstbyte - nfirstbyte;
6421 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6422 				if (is_v4) {
6423 					data  = (char *)iph +
6424 					    IPH_HDR_LENGTH(iph) + firstbyte -
6425 					    nfirstbyte;
6426 					ndata = (char *)niph +
6427 					    IPH_HDR_LENGTH(niph);
6428 				} else {
6429 					data  = (char *)ip6h  +
6430 					    nip6_hdr_length + firstbyte -
6431 					    nfirstbyte;
6432 					ndata = (char *)nip6h + nip6_hdr_length;
6433 				}
6434 				if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6435 				    - nfirstbyte)) {
6436 					/* Overlap mismatch */
6437 					(void) fragcache_delentry(i, fep, frag);
6438 					mutex_exit(&frag->itpf_lock);
6439 					ip_drop_packet(first_mp, inbound, NULL,
6440 					    NULL, &ipdrops_spd_overlap_frag,
6441 					    &spd_dropper);
6442 					return (NULL);
6443 				}
6444 			}
6445 
6446 			/*
6447 			 * Fragment does not illegally overlap and can now
6448 			 * be inserted into the chain
6449 			 */
6450 			break;
6451 		}
6452 
6453 		prevmp = nmp;
6454 	}
6455 	first_mp->b_next = nmp;
6456 
6457 	if (prevmp == NULL) {
6458 		fep->itpfe_fraglist = first_mp;
6459 	} else {
6460 		prevmp->b_next = first_mp;
6461 	}
6462 	if (last)
6463 		fep->itpfe_last = 1;
6464 
6465 	/* Part of defense for jolt2.c fragmentation attack */
6466 	if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6467 		(void) fragcache_delentry(i, fep, frag);
6468 		mutex_exit(&frag->itpf_lock);
6469 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6470 		    &ipdrops_spd_max_frags, &spd_dropper);
6471 		return (NULL);
6472 	}
6473 
6474 	/* Check for complete packet */
6475 
6476 	if (!fep->itpfe_last) {
6477 		mutex_exit(&frag->itpf_lock);
6478 #ifdef FRAGCACHE_DEBUG
6479 		cmn_err(CE_WARN, "Fragment cached, not last.\n");
6480 #endif
6481 		return (NULL);
6482 	}
6483 
6484 #ifdef FRAGCACHE_DEBUG
6485 	cmn_err(CE_WARN, "Last fragment cached.\n");
6486 	cmn_err(CE_WARN, "mp = %p, first_mp = %p.\n", mp, first_mp);
6487 #endif
6488 
6489 	offset = 0;
6490 	for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6491 		mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6492 		int hdr_len;
6493 
6494 		oiph  = (ipha_t *)data_mp->b_rptr;
6495 		ip6h = NULL;
6496 		iph = NULL;
6497 
6498 		spare_mp = NULL;
6499 		if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6500 			hdr_len = ((outer_hdr_len != 0) ?
6501 			    IPH_HDR_LENGTH(oiph) : 0);
6502 			iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6503 		} else {
6504 			ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6505 			if ((spare_mp = msgpullup(data_mp, -1)) == NULL) {
6506 				mutex_exit(&frag->itpf_lock);
6507 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6508 				    &ipdrops_spd_nomem, &spd_dropper);
6509 				return (NULL);
6510 			}
6511 			ip6h = (ip6_t *)spare_mp->b_rptr;
6512 			(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6513 			    &ip6_hdr_length, &v6_proto_p);
6514 			hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6515 		}
6516 
6517 		/* Calculate current fragment start/end */
6518 		if (is_v4) {
6519 			if (iph == NULL) {
6520 				/* Was v6 outer */
6521 				iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6522 			}
6523 			firstbyte = V4_FRAG_OFFSET(iph);
6524 			lastbyte = firstbyte + ntohs(iph->ipha_length) -
6525 			    IPH_HDR_LENGTH(iph);
6526 		} else {
6527 			if ((spare_mp == NULL) &&
6528 				((spare_mp = msgpullup(data_mp, -1)) == NULL)) {
6529 				mutex_exit(&frag->itpf_lock);
6530 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6531 				    &ipdrops_spd_nomem, &spd_dropper);
6532 				return (NULL);
6533 			}
6534 			ip6h = (ip6_t *)(spare_mp->b_rptr + hdr_len);
6535 			if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6536 			    &ip6_hdr_length, &v6_proto_p)) {
6537 				mutex_exit(&frag->itpf_lock);
6538 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6539 				    &ipdrops_spd_malformed_frag, &spd_dropper);
6540 				ipsec_freemsg_chain(spare_mp);
6541 				return (NULL);
6542 			}
6543 			v6_proto = *v6_proto_p;
6544 			bzero(&ipp, sizeof (ipp));
6545 			(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6546 			fraghdr = ipp.ipp_fraghdr;
6547 			firstbyte = ntohs(fraghdr->ip6f_offlg &
6548 			    IP6F_OFF_MASK);
6549 			lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6550 			    sizeof (ip6_t) - ip6_hdr_length;
6551 		}
6552 
6553 		/*
6554 		 * If this fragment is greater than current offset,
6555 		 * we have a missing fragment so return NULL
6556 		 */
6557 		if (firstbyte > offset) {
6558 			mutex_exit(&frag->itpf_lock);
6559 #ifdef FRAGCACHE_DEBUG
6560 			/*
6561 			 * Note, this can happen when the last frag
6562 			 * gets sent through because it is smaller
6563 			 * than the MTU.  It is not necessarily an
6564 			 * error condition.
6565 			 */
6566 			cmn_err(CE_WARN, "Frag greater than offset! : "
6567 			    "missing fragment: firstbyte = %d, offset = %d, "
6568 			    "mp = %p\n", firstbyte, offset, mp);
6569 #endif
6570 			ipsec_freemsg_chain(spare_mp);
6571 			return (NULL);
6572 		}
6573 
6574 		/*
6575 		 * If we are at the last fragment, we have the complete
6576 		 * packet, so rechain things and return it to caller
6577 		 * for processing
6578 		 */
6579 
6580 		if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6581 		    (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6582 			mp = fep->itpfe_fraglist;
6583 			fep->itpfe_fraglist = NULL;
6584 			(void) fragcache_delentry(i, fep, frag);
6585 			mutex_exit(&frag->itpf_lock);
6586 
6587 			if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6588 			    65535)) || (!is_v4 && (firstbyte +
6589 			    ntohs(ip6h->ip6_plen) > 65535))) {
6590 				/* It is an invalid "ping-o-death" packet */
6591 				/* Discard it */
6592 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6593 				    &ipdrops_spd_evil_frag, &spd_dropper);
6594 				ipsec_freemsg_chain(spare_mp);
6595 				return (NULL);
6596 			}
6597 #ifdef FRAGCACHE_DEBUG
6598 			cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6599 				"mp->b_next = %p", mp, mp->b_next);
6600 #endif
6601 			ipsec_freemsg_chain(spare_mp);
6602 			/*
6603 			 * For inbound case, mp has ipsec_in b_next'd chain
6604 			 * For outbound case, it is just data mp chain
6605 			 */
6606 			return (mp);
6607 		}
6608 		ipsec_freemsg_chain(spare_mp);
6609 
6610 		/*
6611 		 * Update new ending offset if this
6612 		 * fragment extends the packet
6613 		 */
6614 		if (offset < lastbyte)
6615 			offset = lastbyte;
6616 	}
6617 
6618 	mutex_exit(&frag->itpf_lock);
6619 
6620 	/* Didn't find last fragment, so return NULL */
6621 	return (NULL);
6622 }
6623 
6624 static void
6625 ipsec_fragcache_clean(ipsec_fragcache_t *frag)
6626 {
6627 	ipsec_fragcache_entry_t *fep;
6628 	int i;
6629 	ipsec_fragcache_entry_t *earlyfep = NULL;
6630 	time_t itpf_time;
6631 	int earlyexp;
6632 	int earlyi = 0;
6633 
6634 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6635 
6636 	itpf_time = gethrestime_sec();
6637 	earlyexp = itpf_time + 10000;
6638 
6639 	for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6640 	    fep = (frag->itpf_ptr)[i];
6641 	    while (fep) {
6642 		if (fep->itpfe_exp < itpf_time) {
6643 			/* found */
6644 			fep = fragcache_delentry(i, fep, frag);
6645 		} else {
6646 			if (fep->itpfe_exp < earlyexp) {
6647 				earlyfep = fep;
6648 				earlyexp = fep->itpfe_exp;
6649 				earlyi = i;
6650 			}
6651 			fep = fep->itpfe_next;
6652 		}
6653 	    }
6654 	}
6655 
6656 	frag->itpf_expire_hint = earlyexp;
6657 
6658 	/* if (!found) */
6659 	if (frag->itpf_freelist == NULL)
6660 		(void) fragcache_delentry(earlyi, earlyfep, frag);
6661 }
6662 
6663 static ipsec_fragcache_entry_t *
6664 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
6665     ipsec_fragcache_t *frag)
6666 {
6667 	ipsec_fragcache_entry_t *targp;
6668 	ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
6669 
6670 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6671 
6672 	/* Free up any fragment list still in cache entry */
6673 	ipsec_freemsg_chain(fep->itpfe_fraglist);
6674 
6675 	targp = (frag->itpf_ptr)[slot];
6676 	ASSERT(targp != 0);
6677 
6678 	if (targp == fep) {
6679 		/* unlink from head of hash chain */
6680 		(frag->itpf_ptr)[slot] = nextp;
6681 		/* link into free list */
6682 		fep->itpfe_next = frag->itpf_freelist;
6683 		frag->itpf_freelist = fep;
6684 		return (nextp);
6685 	}
6686 
6687 	/* maybe should use double linked list to make update faster */
6688 	/* must be past front of chain */
6689 	while (targp) {
6690 	    if (targp->itpfe_next == fep) {
6691 		    /* unlink from hash chain */
6692 		    targp->itpfe_next = nextp;
6693 		    /* link into free list */
6694 		    fep->itpfe_next = frag->itpf_freelist;
6695 		    frag->itpf_freelist = fep;
6696 		    return (nextp);
6697 	    }
6698 	    targp = targp->itpfe_next;
6699 	    ASSERT(targp != 0);
6700 	}
6701 	/* NOTREACHED */
6702 	return (NULL);
6703 }
6704