xref: /titanic_51/usr/src/uts/common/inet/ip/ipsecah.c (revision 51243c37ec390dab169cf6b34c97599f5573e915)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/stropts.h>
31 #include <sys/errno.h>
32 #include <sys/strlog.h>
33 #include <sys/tihdr.h>
34 #include <sys/socket.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/kmem.h>
38 #include <sys/cmn_err.h>
39 #include <sys/vtrace.h>
40 #include <sys/debug.h>
41 #include <sys/atomic.h>
42 #include <sys/strsun.h>
43 #include <sys/random.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #include <netinet/ip6.h>
47 #include <netinet/icmp6.h>
48 #include <net/pfkeyv2.h>
49 
50 #include <inet/common.h>
51 #include <inet/mi.h>
52 #include <inet/ip.h>
53 #include <inet/ip6.h>
54 #include <inet/nd.h>
55 #include <inet/ipsec_info.h>
56 #include <inet/ipsec_impl.h>
57 #include <inet/sadb.h>
58 #include <inet/ipsecah.h>
59 #include <inet/ipsec_impl.h>
60 #include <inet/ipdrop.h>
61 #include <sys/taskq.h>
62 #include <sys/policy.h>
63 #include <sys/iphada.h>
64 #include <sys/strsun.h>
65 
66 #include <sys/crypto/common.h>
67 #include <sys/crypto/api.h>
68 #include <sys/kstat.h>
69 
70 /* Packet dropper for AH drops. */
71 static ipdropper_t ah_dropper;
72 
73 static kmutex_t ipsecah_param_lock;	/* Protect ipsecah_param_arr[] below. */
74 /*
75  * Table of ND variables supported by ipsecah. These are loaded into
76  * ipsecah_g_nd in ipsecah_init_nd.
77  * All of these are alterable, within the min/max values given, at run time.
78  */
79 static	ipsecahparam_t	ipsecah_param_arr[] = {
80 	/* min	max			value	name */
81 	{ 0,	3,			0,	"ipsecah_debug"},
82 	{ 125,	32000, SADB_AGE_INTERVAL_DEFAULT,	"ipsecah_age_interval"},
83 	{ 1,	10,			1,	"ipsecah_reap_delay"},
84 	{ 1,	SADB_MAX_REPLAY,	64,	"ipsecah_replay_size"},
85 	{ 1,	300,			15,	"ipsecah_acquire_timeout"},
86 	{ 1,	1800,			90,	"ipsecah_larval_timeout"},
87 	/* Default lifetime values for ACQUIRE messages. */
88 	{ 0,	0xffffffffU,		0,	"ipsecah_default_soft_bytes"},
89 	{ 0,	0xffffffffU,		0,	"ipsecah_default_hard_bytes"},
90 	{ 0,	0xffffffffU,		24000,	"ipsecah_default_soft_addtime"},
91 	{ 0,	0xffffffffU,		28800,	"ipsecah_default_hard_addtime"},
92 	{ 0,	0xffffffffU,		0,	"ipsecah_default_soft_usetime"},
93 	{ 0,	0xffffffffU,		0,	"ipsecah_default_hard_usetime"},
94 	{ 0,	1,			0,	"ipsecah_log_unknown_spi"},
95 };
96 #define	ipsecah_debug		ipsecah_param_arr[0].ipsecah_param_value
97 #define	ipsecah_age_interval	ipsecah_param_arr[1].ipsecah_param_value
98 #define	ipsecah_age_int_max	ipsecah_param_arr[1].ipsecah_param_max
99 #define	ipsecah_reap_delay	ipsecah_param_arr[2].ipsecah_param_value
100 #define	ipsecah_replay_size	ipsecah_param_arr[3].ipsecah_param_value
101 #define	ipsecah_acquire_timeout	ipsecah_param_arr[4].ipsecah_param_value
102 #define	ipsecah_larval_timeout	ipsecah_param_arr[5].ipsecah_param_value
103 #define	ipsecah_default_soft_bytes   ipsecah_param_arr[6].ipsecah_param_value
104 #define	ipsecah_default_hard_bytes   ipsecah_param_arr[7].ipsecah_param_value
105 #define	ipsecah_default_soft_addtime ipsecah_param_arr[8].ipsecah_param_value
106 #define	ipsecah_default_hard_addtime ipsecah_param_arr[9].ipsecah_param_value
107 #define	ipsecah_default_soft_usetime ipsecah_param_arr[10].ipsecah_param_value
108 #define	ipsecah_default_hard_usetime ipsecah_param_arr[11].ipsecah_param_value
109 #define	ipsecah_log_unknown_spi ipsecah_param_arr[12].ipsecah_param_value
110 
111 #define	ah0dbg(a)	printf a
112 /* NOTE:  != 0 instead of > 0 so lint doesn't complain. */
113 #define	ah1dbg(a)	if (ipsecah_debug != 0) printf a
114 #define	ah2dbg(a)	if (ipsecah_debug > 1) printf a
115 #define	ah3dbg(a)	if (ipsecah_debug > 2) printf a
116 
117 static IDP ipsecah_g_nd;
118 
119 /*
120  * XXX This is broken. Padding should be determined dynamically
121  * depending on the ICV size and IP version number so that the
122  * total AH header size is a multiple of 32 bits or 64 bits
123  * for V4 and V6 respectively. For 96bit ICVs we have no problems.
124  * Anything different from that, we need to fix our code.
125  */
126 #define	IPV4_PADDING_ALIGN	0x04	/* Multiple of 32 bits */
127 #define	IPV6_PADDING_ALIGN	0x04	/* Multiple of 32 bits */
128 
129 /*
130  * Helper macro. Avoids a call to msgdsize if there is only one
131  * mblk in the chain.
132  */
133 #define	AH_MSGSIZE(mp) ((mp)->b_cont != NULL ? msgdsize(mp) : MBLKL(mp))
134 
135 static ipsec_status_t ah_auth_out_done(mblk_t *);
136 static ipsec_status_t ah_auth_in_done(mblk_t *);
137 static mblk_t *ah_process_ip_options_v4(mblk_t *, ipsa_t *, int *, uint_t,
138     boolean_t);
139 static mblk_t *ah_process_ip_options_v6(mblk_t *, ipsa_t *, int *, uint_t,
140     boolean_t);
141 static void ah_getspi(mblk_t *, keysock_in_t *);
142 static ipsec_status_t ah_inbound_accelerated(mblk_t *, boolean_t, ipsa_t *,
143     uint32_t);
144 static ipsec_status_t ah_outbound_accelerated_v4(mblk_t *, ipsa_t *);
145 static ipsec_status_t ah_outbound_accelerated_v6(mblk_t *, ipsa_t *);
146 static ipsec_status_t ah_outbound(mblk_t *);
147 
148 static int ipsecah_open(queue_t *, dev_t *, int, int, cred_t *);
149 static int ipsecah_close(queue_t *);
150 static void ipsecah_rput(queue_t *, mblk_t *);
151 static void ipsecah_wput(queue_t *, mblk_t *);
152 static void ah_send_acquire(ipsacq_t *, mblk_t *);
153 static boolean_t ah_register_out(uint32_t, uint32_t, uint_t);
154 
155 static struct module_info info = {
156 	5136, "ipsecah", 0, INFPSZ, 65536, 1024
157 };
158 
159 static struct qinit rinit = {
160 	(pfi_t)ipsecah_rput, NULL, ipsecah_open, ipsecah_close, NULL, &info,
161 	NULL
162 };
163 
164 static struct qinit winit = {
165 	(pfi_t)ipsecah_wput, NULL, ipsecah_open, ipsecah_close, NULL, &info,
166 	NULL
167 };
168 
169 struct streamtab ipsecahinfo = {
170 	&rinit, &winit, NULL, NULL
171 };
172 
173 /*
174  * Keysock instance of AH.  "There can be only one." :)
175  * Use casptr() on this because I don't set it until KEYSOCK_HELLO comes down.
176  * Paired up with the ah_pfkey_q is the ah_event, which will age SAs.
177  */
178 static queue_t *ah_pfkey_q;
179 static timeout_id_t ah_event;
180 static taskq_t *ah_taskq;
181 
182 static mblk_t *ah_ip_unbind;
183 
184 /*
185  * Stats.  This may eventually become a full-blown SNMP MIB once that spec
186  * stabilizes.
187  */
188 typedef struct
189 {
190 	kstat_named_t ah_stat_num_aalgs;
191 	kstat_named_t ah_stat_good_auth;
192 	kstat_named_t ah_stat_bad_auth;
193 	kstat_named_t ah_stat_replay_failures;
194 	kstat_named_t ah_stat_replay_early_failures;
195 	kstat_named_t ah_stat_keysock_in;
196 	kstat_named_t ah_stat_out_requests;
197 	kstat_named_t ah_stat_acquire_requests;
198 	kstat_named_t ah_stat_bytes_expired;
199 	kstat_named_t ah_stat_out_discards;
200 	kstat_named_t ah_stat_in_accelerated;
201 	kstat_named_t ah_stat_out_accelerated;
202 	kstat_named_t ah_stat_noaccel;
203 	kstat_named_t ah_stat_crypto_sync;
204 	kstat_named_t ah_stat_crypto_async;
205 	kstat_named_t ah_stat_crypto_failures;
206 } ah_kstats_t;
207 
208 #define	AH_BUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64++
209 #define	AH_DEBUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64--
210 
211 uint32_t ah_hash_size = IPSEC_DEFAULT_HASH_SIZE;
212 static kstat_t *ah_ksp;
213 static ah_kstats_t *ah_kstats;
214 
215 static int ah_kstat_update(kstat_t *, int);
216 
217 uint64_t ipsacq_maxpackets = IPSACQ_MAXPACKETS;
218 
219 static boolean_t
220 ah_kstat_init(void)
221 {
222 
223 	ah_ksp = kstat_create("ipsecah", 0, "ah_stat", "net",
224 	    KSTAT_TYPE_NAMED, sizeof (*ah_kstats) / sizeof (kstat_named_t),
225 	    KSTAT_FLAG_PERSISTENT);
226 
227 	if (ah_ksp == NULL)
228 		return (B_FALSE);
229 
230 	ah_kstats = ah_ksp->ks_data;
231 
232 	ah_ksp->ks_update = ah_kstat_update;
233 
234 #define	K64 KSTAT_DATA_UINT64
235 #define	KI(x) kstat_named_init(&(ah_kstats->ah_stat_##x), #x, K64)
236 
237 	KI(num_aalgs);
238 	KI(good_auth);
239 	KI(bad_auth);
240 	KI(replay_failures);
241 	KI(replay_early_failures);
242 	KI(keysock_in);
243 	KI(out_requests);
244 	KI(acquire_requests);
245 	KI(bytes_expired);
246 	KI(out_discards);
247 	KI(in_accelerated);
248 	KI(out_accelerated);
249 	KI(noaccel);
250 	KI(crypto_sync);
251 	KI(crypto_async);
252 	KI(crypto_failures);
253 
254 #undef KI
255 #undef K64
256 
257 	kstat_install(ah_ksp);
258 	IP_ACQUIRE_STAT(maxpackets, ipsacq_maxpackets);
259 	return (B_TRUE);
260 }
261 
262 static int
263 ah_kstat_update(kstat_t *kp, int rw)
264 {
265 	ah_kstats_t *ekp;
266 
267 	if ((kp == NULL) || (kp->ks_data == NULL))
268 		return (EIO);
269 
270 	if (rw == KSTAT_WRITE)
271 		return (EACCES);
272 
273 	ASSERT(kp == ah_ksp);
274 	ekp = (ah_kstats_t *)kp->ks_data;
275 	ASSERT(ekp == ah_kstats);
276 
277 	mutex_enter(&alg_lock);
278 	ekp->ah_stat_num_aalgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_AUTH];
279 	mutex_exit(&alg_lock);
280 
281 	return (0);
282 }
283 
284 /*
285  * Don't have to lock ipsec_age_interval, as only one thread will access it at
286  * a time, because I control the one function that does a qtimeout() on
287  * ah_pfkey_q.
288  */
289 /* ARGSUSED */
290 static void
291 ah_ager(void *ignoreme)
292 {
293 	hrtime_t begin = gethrtime();
294 
295 	sadb_ager(&ah_sadb.s_v4, ah_pfkey_q, ah_sadb.s_ip_q,
296 	    ipsecah_reap_delay);
297 	sadb_ager(&ah_sadb.s_v6, ah_pfkey_q, ah_sadb.s_ip_q,
298 	    ipsecah_reap_delay);
299 
300 	ah_event = sadb_retimeout(begin, ah_pfkey_q, ah_ager,
301 	    &ipsecah_age_interval, ipsecah_age_int_max, info.mi_idnum);
302 }
303 
304 /*
305  * Get an AH NDD parameter.
306  */
307 /* ARGSUSED */
308 static int
309 ipsecah_param_get(q, mp, cp, cr)
310 	queue_t	*q;
311 	mblk_t	*mp;
312 	caddr_t	cp;
313 	cred_t *cr;
314 {
315 	ipsecahparam_t	*ipsecahpa = (ipsecahparam_t *)cp;
316 	uint_t value;
317 
318 	mutex_enter(&ipsecah_param_lock);
319 	value = ipsecahpa->ipsecah_param_value;
320 	mutex_exit(&ipsecah_param_lock);
321 
322 	(void) mi_mpprintf(mp, "%u", value);
323 	return (0);
324 }
325 
326 /*
327  * This routine sets an NDD variable in a ipsecahparam_t structure.
328  */
329 /* ARGSUSED */
330 static int
331 ipsecah_param_set(q, mp, value, cp, cr)
332 	queue_t	*q;
333 	mblk_t	*mp;
334 	char	*value;
335 	caddr_t	cp;
336 	cred_t *cr;
337 {
338 	ulong_t	new_value;
339 	ipsecahparam_t	*ipsecahpa = (ipsecahparam_t *)cp;
340 
341 	/*
342 	 * Fail the request if the new value does not lie within the
343 	 * required bounds.
344 	 */
345 	if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
346 	    new_value < ipsecahpa->ipsecah_param_min ||
347 	    new_value > ipsecahpa->ipsecah_param_max) {
348 		    return (EINVAL);
349 	}
350 
351 	/* Set the new value */
352 	mutex_enter(&ipsecah_param_lock);
353 	ipsecahpa->ipsecah_param_value = new_value;
354 	mutex_exit(&ipsecah_param_lock);
355 	return (0);
356 }
357 
358 /*
359  * Using lifetime NDD variables, fill in an extended combination's
360  * lifetime information.
361  */
362 void
363 ipsecah_fill_defs(sadb_x_ecomb_t *ecomb)
364 {
365 	ecomb->sadb_x_ecomb_soft_bytes = ipsecah_default_soft_bytes;
366 	ecomb->sadb_x_ecomb_hard_bytes = ipsecah_default_hard_bytes;
367 	ecomb->sadb_x_ecomb_soft_addtime = ipsecah_default_soft_addtime;
368 	ecomb->sadb_x_ecomb_hard_addtime = ipsecah_default_hard_addtime;
369 	ecomb->sadb_x_ecomb_soft_usetime = ipsecah_default_soft_usetime;
370 	ecomb->sadb_x_ecomb_hard_usetime = ipsecah_default_hard_usetime;
371 }
372 
373 /*
374  * Initialize things for AH at module load time.
375  */
376 boolean_t
377 ipsecah_ddi_init(void)
378 {
379 	int count;
380 	ipsecahparam_t *ahp = ipsecah_param_arr;
381 
382 	for (count = A_CNT(ipsecah_param_arr); count-- > 0; ahp++) {
383 		if (ahp->ipsecah_param_name != NULL &&
384 		    ahp->ipsecah_param_name[0]) {
385 			if (!nd_load(&ipsecah_g_nd, ahp->ipsecah_param_name,
386 			    ipsecah_param_get, ipsecah_param_set,
387 			    (caddr_t)ahp)) {
388 				nd_free(&ipsecah_g_nd);
389 				return (B_FALSE);
390 			}
391 		}
392 	}
393 
394 	if (!ah_kstat_init()) {
395 		nd_free(&ipsecah_g_nd);
396 		return (B_FALSE);
397 	}
398 
399 	ah_taskq = taskq_create("ah_taskq", 1, minclsyspri,
400 	    IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0);
401 
402 	ah_sadb.s_acquire_timeout = &ipsecah_acquire_timeout;
403 	ah_sadb.s_acqfn = ah_send_acquire;
404 
405 	sadbp_init("AH", &ah_sadb, SADB_SATYPE_AH, ah_hash_size);
406 
407 	mutex_init(&ipsecah_param_lock, NULL, MUTEX_DEFAULT, 0);
408 
409 	ip_drop_register(&ah_dropper, "IPsec AH");
410 
411 	return (B_TRUE);
412 }
413 
414 /*
415  * Destroy things for AH at module unload time.
416  */
417 void
418 ipsecah_ddi_destroy(void)
419 {
420 	ah1dbg(("In ddi_destroy.\n"));
421 
422 	sadbp_destroy(&ah_sadb);
423 	ip_drop_unregister(&ah_dropper);
424 	taskq_destroy(ah_taskq);
425 	mutex_destroy(&ipsecah_param_lock);
426 	nd_free(&ipsecah_g_nd);
427 
428 	kstat_delete(ah_ksp);
429 }
430 
431 /*
432  * AH module open routine. The module should be opened by keysock.
433  */
434 /* ARGSUSED */
435 static int
436 ipsecah_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
437 {
438 	if (secpolicy_net_config(credp, B_FALSE) != 0) {
439 		ah1dbg(("Non-privileged user trying to open ipsecah.\n"));
440 		return (EPERM);
441 	}
442 
443 	if (q->q_ptr != NULL)
444 		return (0);  /* Re-open of an already open instance. */
445 
446 	if (sflag != MODOPEN)
447 		return (EINVAL);
448 
449 	/*
450 	 * ASSUMPTIONS (because I'm MT_OCEXCL):
451 	 *
452 	 *	* I'm being pushed on top of IP for all my opens (incl. #1).
453 	 *	* Only ipsecah_open() can write into ah_sadb.s_ip_q.
454 	 *	* Because of this, I can check lazily for ah_sadb.s_ip_q.
455 	 *
456 	 *  If these assumptions are wrong, I'm in BIG trouble...
457 	 */
458 
459 	q->q_ptr = q; /* just so I know I'm open */
460 
461 	if (ah_sadb.s_ip_q == NULL) {
462 		struct T_unbind_req *tur;
463 
464 		ah_sadb.s_ip_q = WR(q);
465 		/* Allocate an unbind... */
466 		ah_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI);
467 
468 		/*
469 		 * Send down T_BIND_REQ to bind IPPROTO_AH.
470 		 * Handle the ACK here in AH.
471 		 */
472 		qprocson(q);
473 		if (ah_ip_unbind == NULL ||
474 		    !sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) {
475 			if (ah_ip_unbind != NULL) {
476 				freeb(ah_ip_unbind);
477 				ah_ip_unbind = NULL;
478 			}
479 			q->q_ptr = NULL;
480 			qprocsoff(q);
481 			return (ENOMEM);
482 		}
483 
484 		ah_ip_unbind->b_datap->db_type = M_PROTO;
485 		tur = (struct T_unbind_req *)ah_ip_unbind->b_rptr;
486 		tur->PRIM_type = T_UNBIND_REQ;
487 	} else {
488 		qprocson(q);
489 	}
490 
491 	/*
492 	 * For now, there's not much I can do.  I'll be getting a message
493 	 * passed down to me from keysock (in my wput), and a T_BIND_ACK
494 	 * up from IP (in my rput).
495 	 */
496 
497 	return (0);
498 }
499 
500 /*
501  * AH module close routine.
502  */
503 static int
504 ipsecah_close(queue_t *q)
505 {
506 	/*
507 	 * If ah_sadb.s_ip_q is attached to this instance, send a
508 	 * T_UNBIND_REQ to IP for the instance before doing
509 	 * a qprocsoff().
510 	 */
511 	if (WR(q) == ah_sadb.s_ip_q && ah_ip_unbind != NULL) {
512 		putnext(WR(q), ah_ip_unbind);
513 		ah_ip_unbind = NULL;
514 	}
515 
516 	/*
517 	 * Clean up q_ptr, if needed.
518 	 */
519 	qprocsoff(q);
520 
521 	/* Keysock queue check is safe, because of OCEXCL perimeter. */
522 
523 	if (q == ah_pfkey_q) {
524 		ah0dbg(("ipsecah_close:  Ummm... keysock is closing AH.\n"));
525 		ah_pfkey_q = NULL;
526 		/* Detach qtimeouts. */
527 		(void) quntimeout(q, ah_event);
528 	}
529 
530 	if (WR(q) == ah_sadb.s_ip_q) {
531 		/*
532 		 * If the ah_sadb.s_ip_q is attached to this instance, find
533 		 * another.  The OCEXCL outer perimeter helps us here.
534 		 */
535 
536 		ah_sadb.s_ip_q = NULL;
537 
538 		/*
539 		 * Find a replacement queue for ah_sadb.s_ip_q.
540 		 */
541 		if (ah_pfkey_q != NULL && ah_pfkey_q != RD(q)) {
542 			/*
543 			 * See if we can use the pfkey_q.
544 			 */
545 			ah_sadb.s_ip_q = WR(ah_pfkey_q);
546 		}
547 
548 		if (ah_sadb.s_ip_q == NULL ||
549 		    !sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) {
550 			ah1dbg(("ipsecah: Can't reassign ah_sadb.s_ip_q.\n"));
551 			ah_sadb.s_ip_q = NULL;
552 		} else {
553 			ah_ip_unbind = allocb(sizeof (struct T_unbind_req),
554 			    BPRI_HI);
555 
556 			if (ah_ip_unbind != NULL) {
557 				struct T_unbind_req *tur;
558 
559 				ah_ip_unbind->b_datap->db_type = M_PROTO;
560 				tur = (struct T_unbind_req *)
561 				    ah_ip_unbind->b_rptr;
562 				tur->PRIM_type = T_UNBIND_REQ;
563 			}
564 			/* If it's NULL, I can't do much here. */
565 		}
566 	}
567 
568 	return (0);
569 }
570 
571 /*
572  * AH module read put routine.
573  */
574 /* ARGSUSED */
575 static void
576 ipsecah_rput(queue_t *q, mblk_t *mp)
577 {
578 	keysock_in_t *ksi;
579 	int *addrtype;
580 	ire_t *ire;
581 	mblk_t *ire_mp, *last_mp;
582 
583 	switch (mp->b_datap->db_type) {
584 	case M_CTL:
585 		/*
586 		 * IPsec request of some variety from IP.  IPSEC_{IN,OUT}
587 		 * are the common cases, but even ICMP error messages from IP
588 		 * may rise up here.
589 		 *
590 		 * Ummmm, actually, this can also be the reflected KEYSOCK_IN
591 		 * message, with an IRE_DB_TYPE hung off at the end.
592 		 */
593 		switch (((ipsec_info_t *)(mp->b_rptr))->ipsec_info_type) {
594 		case KEYSOCK_IN:
595 			last_mp = mp;
596 			while (last_mp->b_cont != NULL &&
597 			    last_mp->b_cont->b_datap->db_type != IRE_DB_TYPE)
598 				last_mp = last_mp->b_cont;
599 
600 			if (last_mp->b_cont == NULL) {
601 				freemsg(mp);
602 				break;	/* Out of switch. */
603 			}
604 
605 			ire_mp = last_mp->b_cont;
606 			last_mp->b_cont = NULL;
607 
608 			ksi = (keysock_in_t *)mp->b_rptr;
609 
610 			if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN)
611 				addrtype = &ksi->ks_in_srctype;
612 			else if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN)
613 				addrtype = &ksi->ks_in_dsttype;
614 			else if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN)
615 				addrtype = &ksi->ks_in_proxytype;
616 
617 			ire = (ire_t *)ire_mp->b_rptr;
618 
619 			*addrtype = sadb_addrset(ire);
620 
621 			freemsg(ire_mp);
622 			if (ah_pfkey_q != NULL) {
623 				/*
624 				 * Decrement counter to make up for
625 				 * auto-increment in ipsecah_wput().
626 				 * I'm running all MT-hot through here, so
627 				 * don't worry about perimeters and lateral
628 				 * puts.
629 				 */
630 				AH_DEBUMP_STAT(keysock_in);
631 				ipsecah_wput(WR(ah_pfkey_q), mp);
632 			} else {
633 				freemsg(mp);
634 			}
635 			break;
636 		default:
637 			freemsg(mp);
638 			break;
639 		}
640 		break;
641 	case M_PROTO:
642 	case M_PCPROTO:
643 		/* TPI message of some sort. */
644 		switch (*((t_scalar_t *)mp->b_rptr)) {
645 		case T_BIND_ACK:
646 			/* We expect this. */
647 			ah3dbg(("Thank you IP from AH for T_BIND_ACK\n"));
648 			break;
649 		case T_ERROR_ACK:
650 			cmn_err(CE_WARN,
651 			    "ipsecah:  AH received T_ERROR_ACK from IP.");
652 			break;
653 		case T_OK_ACK:
654 			/* Probably from a (rarely sent) T_UNBIND_REQ. */
655 			break;
656 		default:
657 			ah1dbg(("Unknown M_{,PC}PROTO message.\n"));
658 		}
659 		freemsg(mp);
660 		break;
661 	default:
662 		/* For now, passthru message. */
663 		ah2dbg(("AH got unknown mblk type %d.\n",
664 		    mp->b_datap->db_type));
665 		putnext(q, mp);
666 	}
667 }
668 
669 /*
670  * Construct an SADB_REGISTER message with the current algorithms.
671  */
672 static boolean_t
673 ah_register_out(uint32_t sequence, uint32_t pid, uint_t serial)
674 {
675 	mblk_t *mp;
676 	boolean_t rc = B_TRUE;
677 	sadb_msg_t *samsg;
678 	sadb_supported_t *sasupp;
679 	sadb_alg_t *saalg;
680 	uint_t allocsize = sizeof (*samsg);
681 	uint_t i, numalgs_snap;
682 	ipsec_alginfo_t **authalgs;
683 	uint_t num_aalgs;
684 
685 	/* Allocate the KEYSOCK_OUT. */
686 	mp = sadb_keysock_out(serial);
687 	if (mp == NULL) {
688 		ah0dbg(("ah_register_out: couldn't allocate mblk.\n"));
689 		return (B_FALSE);
690 	}
691 
692 	/*
693 	 * Allocate the PF_KEY message that follows KEYSOCK_OUT.
694 	 * The alg reader lock needs to be held while allocating
695 	 * the variable part (i.e. the algorithms) of the message.
696 	 */
697 
698 	mutex_enter(&alg_lock);
699 
700 	/*
701 	 * Return only valid algorithms, so the number of algorithms
702 	 * to send up may be less than the number of algorithm entries
703 	 * in the table.
704 	 */
705 	authalgs = ipsec_alglists[IPSEC_ALG_AUTH];
706 	for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
707 		if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
708 			num_aalgs++;
709 
710 	/*
711 	 * Fill SADB_REGISTER message's algorithm descriptors.  Hold
712 	 * down the lock while filling it.
713 	 */
714 	if (num_aalgs != 0) {
715 		allocsize += (num_aalgs * sizeof (*saalg));
716 		allocsize += sizeof (*sasupp);
717 	}
718 	mp->b_cont = allocb(allocsize, BPRI_HI);
719 	if (mp->b_cont == NULL) {
720 		mutex_exit(&alg_lock);
721 		freemsg(mp);
722 		return (B_FALSE);
723 	}
724 
725 	mp->b_cont->b_wptr += allocsize;
726 	if (num_aalgs != 0) {
727 
728 		saalg = (sadb_alg_t *)(mp->b_cont->b_rptr + sizeof (*samsg) +
729 		    sizeof (*sasupp));
730 		ASSERT(((ulong_t)saalg & 0x7) == 0);
731 
732 		numalgs_snap = 0;
733 		for (i = 0;
734 		    ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs)); i++) {
735 			if (authalgs[i] == NULL || !ALG_VALID(authalgs[i]))
736 				continue;
737 
738 			saalg->sadb_alg_id = authalgs[i]->alg_id;
739 			saalg->sadb_alg_ivlen = 0;
740 			saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits;
741 			saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits;
742 			saalg->sadb_x_alg_increment =
743 			    authalgs[i]->alg_increment;
744 			saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default;
745 			numalgs_snap++;
746 			saalg++;
747 		}
748 		ASSERT(numalgs_snap == num_aalgs);
749 #ifdef DEBUG
750 		/*
751 		 * Reality check to make sure I snagged all of the
752 		 * algorithms.
753 		 */
754 		for (; i < IPSEC_MAX_ALGS; i++)
755 			if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
756 				cmn_err(CE_PANIC,
757 				    "ah_register_out()!  Missed #%d.\n", i);
758 #endif /* DEBUG */
759 	}
760 
761 	mutex_exit(&alg_lock);
762 
763 	/* Now fill the restof the SADB_REGISTER message. */
764 
765 	samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
766 	samsg->sadb_msg_version = PF_KEY_V2;
767 	samsg->sadb_msg_type = SADB_REGISTER;
768 	samsg->sadb_msg_errno = 0;
769 	samsg->sadb_msg_satype = SADB_SATYPE_AH;
770 	samsg->sadb_msg_len = SADB_8TO64(allocsize);
771 	samsg->sadb_msg_reserved = 0;
772 	/*
773 	 * Assume caller has sufficient sequence/pid number info.  If it's one
774 	 * from me over a new alg., I could give two hoots about sequence.
775 	 */
776 	samsg->sadb_msg_seq = sequence;
777 	samsg->sadb_msg_pid = pid;
778 
779 	if (allocsize > sizeof (*samsg)) {
780 		sasupp = (sadb_supported_t *)(samsg + 1);
781 		sasupp->sadb_supported_len =
782 		    SADB_8TO64(allocsize - sizeof (sadb_msg_t));
783 		sasupp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
784 		sasupp->sadb_supported_reserved = 0;
785 	}
786 
787 	if (ah_pfkey_q != NULL)
788 		putnext(ah_pfkey_q, mp);
789 	else {
790 		rc = B_FALSE;
791 		freemsg(mp);
792 	}
793 
794 	return (rc);
795 }
796 
797 /*
798  * Invoked when the algorithm table changes. Causes SADB_REGISTER
799  * messages continaining the current list of algorithms to be
800  * sent up to the AH listeners.
801  */
802 void
803 ipsecah_algs_changed(void)
804 {
805 	/*
806 	 * Time to send a PF_KEY SADB_REGISTER message to AH listeners
807 	 * everywhere.  (The function itself checks for NULL ah_pfkey_q.)
808 	 */
809 	(void) ah_register_out(0, 0, 0);
810 }
811 
812 /*
813  * Stub function that taskq_dispatch() invokes to take the mblk (in arg)
814  * and put() it into AH and STREAMS again.
815  */
816 static void
817 inbound_task(void *arg)
818 {
819 	ah_t *ah;
820 	mblk_t *mp = (mblk_t *)arg;
821 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
822 	int ipsec_rc;
823 
824 	ah2dbg(("in AH inbound_task"));
825 
826 	ah = ipsec_inbound_ah_sa(mp);
827 	if (ah == NULL)
828 		return;
829 	ASSERT(ii->ipsec_in_ah_sa != NULL);
830 	ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(mp, ah);
831 	if (ipsec_rc != IPSEC_STATUS_SUCCESS)
832 		return;
833 	ip_fanout_proto_again(mp, NULL, NULL, NULL);
834 }
835 
836 
837 /*
838  * Now that weak-key passed, actually ADD the security association, and
839  * send back a reply ADD message.
840  */
841 static int
842 ah_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi)
843 {
844 	isaf_t *primary, *secondary, *inbound, *outbound;
845 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
846 	sadb_address_t *dstext =
847 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
848 	struct sockaddr_in *dst;
849 	struct sockaddr_in6 *dst6;
850 	boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE;
851 	uint32_t *dstaddr;
852 	ipsa_t *larval;
853 	ipsacq_t *acqrec;
854 	iacqf_t *acq_bucket;
855 	mblk_t *acq_msgs = NULL;
856 	mblk_t *lpkt;
857 	int rc;
858 	sadb_t *sp;
859 	int outhash;
860 
861 	/*
862 	 * Locate the appropriate table(s).
863 	 */
864 
865 	dst = (struct sockaddr_in *)(dstext + 1);
866 	dst6 = (struct sockaddr_in6 *)dst;
867 	is_ipv4 = (dst->sin_family == AF_INET);
868 	if (is_ipv4) {
869 		sp = &ah_sadb.s_v4;
870 		dstaddr = (uint32_t *)(&dst->sin_addr);
871 		outhash = OUTBOUND_HASH_V4(sp, *(ipaddr_t *)dstaddr);
872 	} else {
873 		ASSERT(dst->sin_family == AF_INET6);
874 		sp = &ah_sadb.s_v6;
875 		dstaddr = (uint32_t *)(&dst6->sin6_addr);
876 		outhash = OUTBOUND_HASH_V6(sp, *(in6_addr_t *)dstaddr);
877 	}
878 
879 	inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi);
880 	outbound = &sp->sdb_of[outhash];
881 
882 	switch (ksi->ks_in_dsttype) {
883 	case KS_IN_ADDR_MBCAST:
884 		clone = B_TRUE;	/* All mcast SAs can be bidirectional */
885 		/* FALLTHRU */
886 	case KS_IN_ADDR_ME:
887 		primary = inbound;
888 		secondary = outbound;
889 		/*
890 		 * If the source address is either one of mine, or unspecified
891 		 * (which is best summed up by saying "not 'not mine'"),
892 		 * then the association is potentially bi-directional,
893 		 * in that it can be used for inbound traffic and outbound
894 		 * traffic.  The best example of such and SA is a multicast
895 		 * SA (which allows me to receive the outbound traffic).
896 		 */
897 		if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME)
898 			clone = B_TRUE;
899 		is_inbound = B_TRUE;
900 		break;
901 	case KS_IN_ADDR_NOTME:
902 		primary = outbound;
903 		secondary = inbound;
904 		/*
905 		 * If the source address literally not mine (either
906 		 * unspecified or not mine), then this SA may have an
907 		 * address that WILL be mine after some configuration.
908 		 * We pay the price for this by making it a bi-directional
909 		 * SA.
910 		 */
911 		if (ksi->ks_in_srctype != KS_IN_ADDR_ME)
912 			clone = B_TRUE;
913 		break;
914 	default:
915 		samsg->sadb_x_msg_diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
916 		return (EINVAL);
917 	}
918 
919 	/*
920 	 * Find a ACQUIRE list entry if possible.  If we've added an SA that
921 	 * suits the needs of an ACQUIRE list entry, we can eliminate the
922 	 * ACQUIRE list entry and transmit the enqueued packets.  Use the
923 	 * high-bit of the sequence number to queue it.  Key off destination
924 	 * addr, and change acqrec's state.
925 	 */
926 
927 	if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) {
928 		acq_bucket = &sp->sdb_acq[outhash];
929 		mutex_enter(&acq_bucket->iacqf_lock);
930 		for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL;
931 		    acqrec = acqrec->ipsacq_next) {
932 			mutex_enter(&acqrec->ipsacq_lock);
933 			/*
934 			 * Q:  I only check sequence.  Should I check dst?
935 			 * A: Yes, check dest because those are the packets
936 			 *    that are queued up.
937 			 */
938 			if (acqrec->ipsacq_seq == samsg->sadb_msg_seq &&
939 			    IPSA_ARE_ADDR_EQUAL(dstaddr,
940 				acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam))
941 				break;
942 			mutex_exit(&acqrec->ipsacq_lock);
943 		}
944 		if (acqrec != NULL) {
945 			/*
946 			 * AHA!  I found an ACQUIRE record for this SA.
947 			 * Grab the msg list, and free the acquire record.
948 			 * I already am holding the lock for this record,
949 			 * so all I have to do is free it.
950 			 */
951 			acq_msgs = acqrec->ipsacq_mp;
952 			acqrec->ipsacq_mp = NULL;
953 			mutex_exit(&acqrec->ipsacq_lock);
954 			sadb_destroy_acquire(acqrec);
955 		}
956 		mutex_exit(&acq_bucket->iacqf_lock);
957 	}
958 
959 	/*
960 	 * Find PF_KEY message, and see if I'm an update.  If so, find entry
961 	 * in larval list (if there).
962 	 */
963 
964 	larval = NULL;
965 
966 	if (samsg->sadb_msg_type == SADB_UPDATE) {
967 		mutex_enter(&inbound->isaf_lock);
968 		larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi,
969 		    ALL_ZEROES_PTR, dstaddr, dst->sin_family);
970 		mutex_exit(&inbound->isaf_lock);
971 
972 		if ((larval == NULL) ||
973 		    (larval->ipsa_state != IPSA_STATE_LARVAL)) {
974 			ah0dbg(("Larval update, but larval disappeared.\n"));
975 			return (ESRCH);
976 		} /* Else sadb_common_add unlinks it for me! */
977 	}
978 
979 	lpkt = NULL;
980 	if (larval != NULL)
981 		lpkt = sadb_clear_lpkt(larval);
982 
983 	rc = sadb_common_add(ah_sadb.s_ip_q, ah_pfkey_q, mp, samsg, ksi,
984 	    primary, secondary, larval, clone, is_inbound);
985 
986 	/*
987 	 * How much more stack will I create with all of these
988 	 * ah_inbound_* and ah_outbound_*() calls?
989 	 */
990 
991 
992 	if (rc == 0 && lpkt != NULL)
993 		rc = !taskq_dispatch(ah_taskq, inbound_task,
994 			    (void *) lpkt, TQ_NOSLEEP);
995 
996 	if (rc != 0) {
997 		ip_drop_packet(lpkt, B_TRUE, NULL, NULL,
998 		    &ipdrops_sadb_inlarval_timeout, &ah_dropper);
999 	}
1000 
1001 	while (acq_msgs != NULL) {
1002 		mblk_t *mp = acq_msgs;
1003 
1004 		acq_msgs = acq_msgs->b_next;
1005 		mp->b_next = NULL;
1006 		if (rc == 0) {
1007 			ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
1008 
1009 			ASSERT(ah_sadb.s_ip_q != NULL);
1010 			if (ipsec_outbound_sa(mp, IPPROTO_AH)) {
1011 				io->ipsec_out_ah_done = B_TRUE;
1012 				if (ah_outbound(mp) == IPSEC_STATUS_SUCCESS) {
1013 					ipha_t *ipha = (ipha_t *)
1014 					    mp->b_cont->b_rptr;
1015 					if (is_ipv4) {
1016 						ip_wput_ipsec_out(NULL, mp,
1017 						    ipha, NULL, NULL);
1018 					} else {
1019 						ip6_t *ip6h = (ip6_t *)ipha;
1020 						ip_wput_ipsec_out_v6(NULL,
1021 						    mp, ip6h, NULL, NULL);
1022 					}
1023 				}
1024 				continue;
1025 			}
1026 		}
1027 		AH_BUMP_STAT(out_discards);
1028 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
1029 		    &ipdrops_sadb_acquire_timeout, &ah_dropper);
1030 	}
1031 
1032 	return (rc);
1033 }
1034 
1035 /*
1036  * Add new AH security association.  This may become a generic AH/ESP
1037  * routine eventually.
1038  */
1039 static int
1040 ah_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic)
1041 {
1042 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
1043 	sadb_address_t *srcext =
1044 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
1045 	sadb_address_t *dstext =
1046 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
1047 	sadb_key_t *key = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
1048 	struct sockaddr_in *src, *dst;
1049 	/* We don't need sockaddr_in6 for now. */
1050 	sadb_lifetime_t *soft =
1051 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
1052 	sadb_lifetime_t *hard =
1053 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
1054 	ipsec_alginfo_t *aalg;
1055 
1056 	/* I need certain extensions present for an ADD message. */
1057 	if (srcext == NULL) {
1058 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
1059 		return (EINVAL);
1060 	}
1061 	if (dstext == NULL) {
1062 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
1063 		return (EINVAL);
1064 	}
1065 	if (assoc == NULL) {
1066 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
1067 		return (EINVAL);
1068 	}
1069 	if (key == NULL) {
1070 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_AKEY;
1071 		return (EINVAL);
1072 	}
1073 
1074 	src = (struct sockaddr_in *)(srcext + 1);
1075 	dst = (struct sockaddr_in *)(dstext + 1);
1076 
1077 	/* Sundry ADD-specific reality checks. */
1078 	/* XXX STATS : Logging/stats here? */
1079 
1080 	if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) {
1081 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
1082 		return (EINVAL);
1083 	}
1084 	if (assoc->sadb_sa_encrypt != SADB_EALG_NONE) {
1085 		*diagnostic = SADB_X_DIAGNOSTIC_ENCR_NOTSUPP;
1086 		return (EINVAL);
1087 	}
1088 	if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY)) {
1089 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
1090 		return (EINVAL);
1091 	}
1092 
1093 	if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0)
1094 		return (EINVAL);
1095 
1096 	if (src->sin_family != dst->sin_family) {
1097 		*diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH;
1098 		return (EINVAL);
1099 	}
1100 
1101 	/* Stuff I don't support, for now.  XXX Diagnostic? */
1102 	if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL ||
1103 	    ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL)
1104 		return (EOPNOTSUPP);
1105 
1106 	/*
1107 	 * XXX Policy : I'm not checking identities or sensitivity
1108 	 * labels at this time, but if I did, I'd do them here, before I sent
1109 	 * the weak key check up to the algorithm.
1110 	 */
1111 
1112 	/* verify that there is a mapping for the specified algorithm */
1113 	mutex_enter(&alg_lock);
1114 	aalg = ipsec_alglists[IPSEC_ALG_AUTH][assoc->sadb_sa_auth];
1115 	if (aalg == NULL || !ALG_VALID(aalg)) {
1116 		mutex_exit(&alg_lock);
1117 		ah1dbg(("Couldn't find auth alg #%d.\n", assoc->sadb_sa_auth));
1118 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
1119 		return (EINVAL);
1120 	}
1121 	ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
1122 
1123 	/* sanity check key sizes */
1124 	if (!ipsec_valid_key_size(key->sadb_key_bits, aalg)) {
1125 		mutex_exit(&alg_lock);
1126 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS;
1127 		return (EINVAL);
1128 	}
1129 
1130 	/* check key and fix parity if needed */
1131 	if (ipsec_check_key(aalg->alg_mech_type, key, B_TRUE,
1132 	    diagnostic) != 0) {
1133 		mutex_exit(&alg_lock);
1134 		return (EINVAL);
1135 	}
1136 
1137 	mutex_exit(&alg_lock);
1138 
1139 	return (ah_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi));
1140 }
1141 
1142 /*
1143  * Update a security association.  Updates come in two varieties.  The first
1144  * is an update of lifetimes on a non-larval SA.  The second is an update of
1145  * a larval SA, which ends up looking a lot more like an add.
1146  */
1147 static int
1148 ah_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic)
1149 {
1150 	sadb_address_t *dstext =
1151 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
1152 	struct sockaddr_in *sin;
1153 
1154 	if (dstext == NULL) {
1155 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
1156 		return (EINVAL);
1157 	}
1158 	sin = (struct sockaddr_in *)(dstext + 1);
1159 	return (sadb_update_sa(mp, ksi,
1160 	    (sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 : &ah_sadb.s_v4,
1161 	    diagnostic, ah_pfkey_q, ah_add_sa));
1162 }
1163 
1164 /*
1165  * Delete a security association.  This is REALLY likely to be code common to
1166  * both AH and ESP.  Find the association, then unlink it.
1167  */
1168 static int
1169 ah_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic)
1170 {
1171 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
1172 	sadb_address_t *dstext =
1173 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
1174 	sadb_address_t *srcext =
1175 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
1176 	struct sockaddr_in *sin;
1177 
1178 	if (assoc == NULL) {
1179 		if (dstext != NULL)
1180 			sin = (struct sockaddr_in *)(dstext + 1);
1181 		else if (srcext != NULL)
1182 			sin = (struct sockaddr_in *)(srcext + 1);
1183 		else {
1184 			*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
1185 			return (EINVAL);
1186 		}
1187 		return sadb_purge_sa(mp, ksi,
1188 		    (sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 :
1189 		    &ah_sadb.s_v4,
1190 		    diagnostic, ah_pfkey_q, ah_sadb.s_ip_q);
1191 	}
1192 
1193 	return (sadb_del_sa(mp, ksi, &ah_sadb, diagnostic, ah_pfkey_q));
1194 }
1195 
1196 /*
1197  * Convert the entire contents of all of AH's SA tables into PF_KEY SADB_DUMP
1198  * messages.
1199  */
1200 static void
1201 ah_dump(mblk_t *mp, keysock_in_t *ksi)
1202 {
1203 	int error;
1204 	sadb_msg_t *samsg;
1205 
1206 	/*
1207 	 * Dump each fanout, bailing if error is non-zero.
1208 	 */
1209 
1210 	error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v4);
1211 	if (error != 0)
1212 		goto bail;
1213 
1214 	error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v6);
1215 bail:
1216 	ASSERT(mp->b_cont != NULL);
1217 	samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
1218 	samsg->sadb_msg_errno = (uint8_t)error;
1219 	sadb_pfkey_echo(ah_pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
1220 	    NULL);
1221 }
1222 
1223 /*
1224  * AH parsing of PF_KEY messages.  Keysock did most of the really silly
1225  * error cases.  What I receive is a fully-formed, syntactically legal
1226  * PF_KEY message.  I then need to check semantics...
1227  *
1228  * This code may become common to AH and ESP.  Stay tuned.
1229  *
1230  * I also make the assumption that db_ref's are cool.  If this assumption
1231  * is wrong, this means that someone other than keysock or me has been
1232  * mucking with PF_KEY messages.
1233  */
1234 static void
1235 ah_parse_pfkey(mblk_t *mp)
1236 {
1237 	mblk_t *msg = mp->b_cont;
1238 	sadb_msg_t *samsg;
1239 	keysock_in_t *ksi;
1240 	int error;
1241 	int diagnostic = SADB_X_DIAGNOSTIC_NONE;
1242 
1243 	ASSERT(msg != NULL);
1244 	samsg = (sadb_msg_t *)msg->b_rptr;
1245 	ksi = (keysock_in_t *)mp->b_rptr;
1246 
1247 	/*
1248 	 * If applicable, convert unspecified AF_INET6 to unspecified
1249 	 * AF_INET.
1250 	 */
1251 	sadb_srcaddrfix(ksi);
1252 
1253 	switch (samsg->sadb_msg_type) {
1254 	case SADB_ADD:
1255 		error = ah_add_sa(mp, ksi, &diagnostic);
1256 		if (error != 0) {
1257 			sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic,
1258 			    ksi->ks_in_serial);
1259 		}
1260 		/* else ah_add_sa() took care of things. */
1261 		break;
1262 	case SADB_DELETE:
1263 		error = ah_del_sa(mp, ksi, &diagnostic);
1264 		if (error != 0) {
1265 			sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic,
1266 			    ksi->ks_in_serial);
1267 		}
1268 		/* Else ah_del_sa() took care of things. */
1269 		break;
1270 	case SADB_GET:
1271 		error = sadb_get_sa(mp, ksi, &ah_sadb, &diagnostic, ah_pfkey_q);
1272 		if (error != 0) {
1273 			sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic,
1274 			    ksi->ks_in_serial);
1275 		}
1276 		/* Else sadb_get_sa() took care of things. */
1277 		break;
1278 	case SADB_FLUSH:
1279 		sadbp_flush(&ah_sadb);
1280 		sadb_pfkey_echo(ah_pfkey_q, mp, samsg, ksi, NULL);
1281 		break;
1282 	case SADB_REGISTER:
1283 		/*
1284 		 * Hmmm, let's do it!  Check for extensions (there should
1285 		 * be none), extract the fields, call ah_register_out(),
1286 		 * then either free or report an error.
1287 		 *
1288 		 * Keysock takes care of the PF_KEY bookkeeping for this.
1289 		 */
1290 		if (ah_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid,
1291 		    ksi->ks_in_serial)) {
1292 			freemsg(mp);
1293 		} else {
1294 			/*
1295 			 * Only way this path hits is if there is a memory
1296 			 * failure.  It will not return B_FALSE because of
1297 			 * lack of ah_pfkey_q if I am in wput().
1298 			 */
1299 			sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic,
1300 			    ksi->ks_in_serial);
1301 		}
1302 		break;
1303 	case SADB_UPDATE:
1304 		/*
1305 		 * Find a larval, if not there, find a full one and get
1306 		 * strict.
1307 		 */
1308 		error = ah_update_sa(mp, ksi, &diagnostic);
1309 		if (error != 0) {
1310 			sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic,
1311 			    ksi->ks_in_serial);
1312 		}
1313 		/* else ah_update_sa() took care of things. */
1314 		break;
1315 	case SADB_GETSPI:
1316 		/*
1317 		 * Reserve a new larval entry.
1318 		 */
1319 		ah_getspi(mp, ksi);
1320 		break;
1321 	case SADB_ACQUIRE:
1322 		/*
1323 		 * Find larval and/or ACQUIRE record and kill it (them), I'm
1324 		 * most likely an error.  Inbound ACQUIRE messages should only
1325 		 * have the base header.
1326 		 */
1327 		sadb_in_acquire(samsg, &ah_sadb, ah_pfkey_q);
1328 		freemsg(mp);
1329 		break;
1330 	case SADB_DUMP:
1331 		/*
1332 		 * Dump all entries.
1333 		 */
1334 		ah_dump(mp, ksi);
1335 		/* ah_dump will take care of the return message, etc. */
1336 		break;
1337 	case SADB_EXPIRE:
1338 		/* Should never reach me. */
1339 		sadb_pfkey_error(ah_pfkey_q, mp, EOPNOTSUPP, diagnostic,
1340 		    ksi->ks_in_serial);
1341 		break;
1342 	default:
1343 		sadb_pfkey_error(ah_pfkey_q, mp, EINVAL,
1344 		    SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial);
1345 		break;
1346 	}
1347 }
1348 
1349 /*
1350  * Handle case where PF_KEY says it can't find a keysock for one of my
1351  * ACQUIRE messages.
1352  */
1353 static void
1354 ah_keysock_no_socket(mblk_t *mp)
1355 {
1356 	sadb_msg_t *samsg;
1357 	keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr;
1358 
1359 	if (mp->b_cont == NULL) {
1360 		freemsg(mp);
1361 		return;
1362 	}
1363 	samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
1364 
1365 	/*
1366 	 * If keysock can't find any registered, delete the acquire record
1367 	 * immediately, and handle errors.
1368 	 */
1369 	if (samsg->sadb_msg_type == SADB_ACQUIRE) {
1370 		samsg->sadb_msg_errno = kse->ks_err_errno;
1371 		samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
1372 		/*
1373 		 * Use the write-side of the ah_pfkey_q, in case there is
1374 		 * no ah_sadb.s_ip_q.
1375 		 */
1376 		sadb_in_acquire(samsg, &ah_sadb, WR(ah_pfkey_q));
1377 	}
1378 
1379 	freemsg(mp);
1380 }
1381 
1382 /*
1383  * First-cut reality check for an inbound PF_KEY message.
1384  */
1385 static boolean_t
1386 ah_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi)
1387 {
1388 	int diagnostic;
1389 
1390 	if (mp->b_cont == NULL) {
1391 		freemsg(mp);
1392 		return (B_TRUE);
1393 	}
1394 
1395 	if (ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL) {
1396 		diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT;
1397 		goto badmsg;
1398 	}
1399 	if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) {
1400 		diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT;
1401 		goto badmsg;
1402 	}
1403 	if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL ||
1404 	    ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) {
1405 		diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT;
1406 		goto badmsg;
1407 	}
1408 	if (ksi->ks_in_srctype == KS_IN_ADDR_MBCAST) {
1409 		diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC;
1410 		goto badmsg;
1411 	}
1412 	if (ksi->ks_in_dsttype == KS_IN_ADDR_UNSPEC) {
1413 		diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
1414 		goto badmsg;
1415 	}
1416 
1417 	return (B_FALSE);	/* False ==> no failures */
1418 
1419 badmsg:
1420 	sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic, ksi->ks_in_serial);
1421 	return (B_TRUE);	/* True ==> failures */
1422 }
1423 
1424 /*
1425  * AH module write put routine.
1426  */
1427 static void
1428 ipsecah_wput(queue_t *q, mblk_t *mp)
1429 {
1430 	ipsec_info_t *ii;
1431 	keysock_in_t *ksi;
1432 	int rc;
1433 	struct iocblk *iocp;
1434 
1435 	ah3dbg(("In ah_wput().\n"));
1436 
1437 	/* NOTE:  Each case must take care of freeing or passing mp. */
1438 	switch (mp->b_datap->db_type) {
1439 	case M_CTL:
1440 		if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) {
1441 			/* Not big enough message. */
1442 			freemsg(mp);
1443 			break;
1444 		}
1445 		ii = (ipsec_info_t *)mp->b_rptr;
1446 
1447 		switch (ii->ipsec_info_type) {
1448 		case KEYSOCK_OUT_ERR:
1449 			ah1dbg(("Got KEYSOCK_OUT_ERR message.\n"));
1450 			ah_keysock_no_socket(mp);
1451 			break;
1452 		case KEYSOCK_IN:
1453 			AH_BUMP_STAT(keysock_in);
1454 			ah3dbg(("Got KEYSOCK_IN message.\n"));
1455 			ksi = (keysock_in_t *)ii;
1456 			/*
1457 			 * Some common reality checks.
1458 			 */
1459 
1460 			if (ah_pfkey_reality_failures(mp, ksi))
1461 				return;
1462 
1463 			/*
1464 			 * Use 'q' instead of ah_sadb.s_ip_q, since
1465 			 * it's the write side already, and it'll go
1466 			 * down to IP.  Use ah_pfkey_q because we
1467 			 * wouldn't get here if that weren't set, and
1468 			 * the RD(q) has been done already.
1469 			 */
1470 			if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) {
1471 				rc = sadb_addrcheck(q, ah_pfkey_q, mp,
1472 				    ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC],
1473 				    ksi->ks_in_serial);
1474 				if (rc == KS_IN_ADDR_UNKNOWN)
1475 					return;
1476 				else
1477 					ksi->ks_in_srctype = rc;
1478 			}
1479 			if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) {
1480 				rc = sadb_addrcheck(q, ah_pfkey_q, mp,
1481 				    ksi->ks_in_extv[SADB_EXT_ADDRESS_DST],
1482 				    ksi->ks_in_serial);
1483 				if (rc == KS_IN_ADDR_UNKNOWN)
1484 					return;
1485 				else
1486 					ksi->ks_in_dsttype = rc;
1487 			}
1488 			/*
1489 			 * XXX Proxy may be a different address family.
1490 			 */
1491 			if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) {
1492 				rc = sadb_addrcheck(q, ah_pfkey_q, mp,
1493 				    ksi->ks_in_extv[SADB_EXT_ADDRESS_PROXY],
1494 				    ksi->ks_in_serial);
1495 				if (rc == KS_IN_ADDR_UNKNOWN)
1496 					return;
1497 				else
1498 					ksi->ks_in_proxytype = rc;
1499 			}
1500 			ah_parse_pfkey(mp);
1501 			break;
1502 		case KEYSOCK_HELLO:
1503 			sadb_keysock_hello(&ah_pfkey_q, q, mp,
1504 			    ah_ager, &ah_event, SADB_SATYPE_AH);
1505 			break;
1506 		default:
1507 			ah1dbg(("Got M_CTL from above of 0x%x.\n",
1508 			    ii->ipsec_info_type));
1509 			freemsg(mp);
1510 			break;
1511 		}
1512 		break;
1513 	case M_IOCTL:
1514 		iocp = (struct iocblk *)mp->b_rptr;
1515 		switch (iocp->ioc_cmd) {
1516 		case ND_SET:
1517 		case ND_GET:
1518 			if (nd_getset(q, ipsecah_g_nd, mp)) {
1519 				qreply(q, mp);
1520 				return;
1521 			} else {
1522 				iocp->ioc_error = ENOENT;
1523 			}
1524 			/* FALLTHRU */
1525 		default:
1526 			/* We really don't support any other ioctls, do we? */
1527 
1528 			/* Return EINVAL */
1529 			if (iocp->ioc_error != ENOENT)
1530 				iocp->ioc_error = EINVAL;
1531 			iocp->ioc_count = 0;
1532 			mp->b_datap->db_type = M_IOCACK;
1533 			qreply(q, mp);
1534 			return;
1535 		}
1536 	default:
1537 		ah3dbg(("Got default message, type %d, passing to IP.\n",
1538 		    mp->b_datap->db_type));
1539 		putnext(q, mp);
1540 	}
1541 }
1542 
1543 /*
1544  * Updating use times can be tricky business if the ipsa_haspeer flag is
1545  * set.  This function is called once in an SA's lifetime.
1546  *
1547  * Caller has to REFRELE "assoc" which is passed in.  This function has
1548  * to REFRELE any peer SA that is obtained.
1549  */
1550 static void
1551 ah_set_usetime(ipsa_t *assoc, boolean_t inbound)
1552 {
1553 	ipsa_t *inassoc, *outassoc;
1554 	isaf_t *bucket;
1555 	sadb_t *sp;
1556 	int outhash;
1557 	boolean_t isv6;
1558 
1559 	/* No peer?  No problem! */
1560 	if (!assoc->ipsa_haspeer) {
1561 		sadb_set_usetime(assoc);
1562 		return;
1563 	}
1564 
1565 	/*
1566 	 * Otherwise, we want to grab both the original assoc and its peer.
1567 	 * There might be a race for this, but if it's a real race, the times
1568 	 * will be out-of-synch by at most a second, and since our time
1569 	 * granularity is a second, this won't be a problem.
1570 	 *
1571 	 * If we need tight synchronization on the peer SA, then we need to
1572 	 * reconsider.
1573 	 */
1574 
1575 	/* Use address family to select IPv6/IPv4 */
1576 	isv6 = (assoc->ipsa_addrfam == AF_INET6);
1577 	if (isv6) {
1578 		sp = &ah_sadb.s_v6;
1579 	} else {
1580 		sp = &ah_sadb.s_v4;
1581 		ASSERT(assoc->ipsa_addrfam == AF_INET);
1582 	}
1583 	if (inbound) {
1584 		inassoc = assoc;
1585 		if (isv6)
1586 			outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
1587 			    &inassoc->ipsa_dstaddr));
1588 		else
1589 			outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
1590 				&inassoc->ipsa_dstaddr));
1591 		bucket = &sp->sdb_of[outhash];
1592 
1593 		mutex_enter(&bucket->isaf_lock);
1594 		outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
1595 		    inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
1596 		    inassoc->ipsa_addrfam);
1597 		mutex_exit(&bucket->isaf_lock);
1598 		if (outassoc == NULL) {
1599 			/* Q: Do we wish to set haspeer == B_FALSE? */
1600 			ah0dbg(("ah_set_usetime: "
1601 			    "can't find peer for inbound.\n"));
1602 			sadb_set_usetime(inassoc);
1603 			return;
1604 		}
1605 	} else {
1606 		outassoc = assoc;
1607 		bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
1608 		mutex_enter(&bucket->isaf_lock);
1609 		inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
1610 		    outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
1611 		    outassoc->ipsa_addrfam);
1612 		mutex_exit(&bucket->isaf_lock);
1613 		if (inassoc == NULL) {
1614 			/* Q: Do we wish to set haspeer == B_FALSE? */
1615 			ah0dbg(("ah_set_usetime: "
1616 			    "can't find peer for outbound.\n"));
1617 			sadb_set_usetime(outassoc);
1618 			return;
1619 		}
1620 	}
1621 
1622 	/* Update usetime on both. */
1623 	sadb_set_usetime(inassoc);
1624 	sadb_set_usetime(outassoc);
1625 
1626 	/*
1627 	 * REFRELE any peer SA.
1628 	 *
1629 	 * Because of the multi-line macro nature of IPSA_REFRELE, keep
1630 	 * them in { }.
1631 	 */
1632 	if (inbound) {
1633 		IPSA_REFRELE(outassoc);
1634 	} else {
1635 		IPSA_REFRELE(inassoc);
1636 	}
1637 }
1638 
1639 /*
1640  * Add a number of bytes to what the SA has protected so far.  Return
1641  * B_TRUE if the SA can still protect that many bytes.
1642  *
1643  * Caller must REFRELE the passed-in assoc.  This function must REFRELE
1644  * any obtained peer SA.
1645  */
1646 static boolean_t
1647 ah_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound)
1648 {
1649 	ipsa_t *inassoc, *outassoc;
1650 	isaf_t *bucket;
1651 	boolean_t inrc, outrc, isv6;
1652 	sadb_t *sp;
1653 	int outhash;
1654 
1655 	/* No peer?  No problem! */
1656 	if (!assoc->ipsa_haspeer) {
1657 		return (sadb_age_bytes(ah_pfkey_q, assoc, bytes,
1658 		    B_TRUE));
1659 	}
1660 
1661 	/*
1662 	 * Otherwise, we want to grab both the original assoc and its peer.
1663 	 * There might be a race for this, but if it's a real race, two
1664 	 * expire messages may occur.  We limit this by only sending the
1665 	 * expire message on one of the peers, we'll pick the inbound
1666 	 * arbitrarily.
1667 	 *
1668 	 * If we need tight synchronization on the peer SA, then we need to
1669 	 * reconsider.
1670 	 */
1671 
1672 	/* Pick v4/v6 bucket based on addrfam. */
1673 	isv6 = (assoc->ipsa_addrfam == AF_INET6);
1674 	if (isv6) {
1675 		sp = &ah_sadb.s_v6;
1676 	} else {
1677 		sp = &ah_sadb.s_v4;
1678 		ASSERT(assoc->ipsa_addrfam == AF_INET);
1679 	}
1680 	if (inbound) {
1681 		inassoc = assoc;
1682 		if (isv6)
1683 			outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
1684 			    &inassoc->ipsa_dstaddr));
1685 		else
1686 			outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
1687 				&inassoc->ipsa_dstaddr));
1688 		bucket = &sp->sdb_of[outhash];
1689 		mutex_enter(&bucket->isaf_lock);
1690 		outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
1691 		    inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
1692 		    inassoc->ipsa_addrfam);
1693 		mutex_exit(&bucket->isaf_lock);
1694 		if (outassoc == NULL) {
1695 			/* Q: Do we wish to set haspeer == B_FALSE? */
1696 			ah0dbg(("ah_age_bytes: "
1697 			    "can't find peer for inbound.\n"));
1698 			return (sadb_age_bytes(ah_pfkey_q, inassoc,
1699 			    bytes, B_TRUE));
1700 		}
1701 	} else {
1702 		outassoc = assoc;
1703 		bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
1704 		mutex_enter(&bucket->isaf_lock);
1705 		inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
1706 		    outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
1707 		    outassoc->ipsa_addrfam);
1708 		mutex_exit(&bucket->isaf_lock);
1709 		if (inassoc == NULL) {
1710 			/* Q: Do we wish to set haspeer == B_FALSE? */
1711 			ah0dbg(("ah_age_bytes: "
1712 			    "can't find peer for outbound.\n"));
1713 			return (sadb_age_bytes(ah_pfkey_q, outassoc,
1714 			    bytes, B_TRUE));
1715 		}
1716 	}
1717 
1718 	inrc = sadb_age_bytes(ah_pfkey_q, inassoc, bytes, B_TRUE);
1719 	outrc = sadb_age_bytes(ah_pfkey_q, outassoc, bytes, B_FALSE);
1720 
1721 	/*
1722 	 * REFRELE any peer SA.
1723 	 *
1724 	 * Because of the multi-line macro nature of IPSA_REFRELE, keep
1725 	 * them in { }.
1726 	 */
1727 	if (inbound) {
1728 		IPSA_REFRELE(outassoc);
1729 	} else {
1730 		IPSA_REFRELE(inassoc);
1731 	}
1732 
1733 	return (inrc && outrc);
1734 }
1735 
1736 /*
1737  * Perform the really difficult work of inserting the proposed situation.
1738  * Called while holding the algorithm lock.
1739  */
1740 static void
1741 ah_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs)
1742 {
1743 	sadb_comb_t *comb = (sadb_comb_t *)(prop + 1);
1744 	ipsec_out_t *io;
1745 	ipsec_action_t *ap;
1746 	ipsec_prot_t *prot;
1747 	io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr;
1748 
1749 	ASSERT(MUTEX_HELD(&alg_lock));
1750 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
1751 
1752 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
1753 	prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t));
1754 	*(uint32_t *)(&prop->sadb_prop_replay) = 0;	/* Quick zero-out! */
1755 
1756 	prop->sadb_prop_replay = ipsecah_replay_size;
1757 
1758 	/*
1759 	 * Based upon algorithm properties, and what-not, prioritize a
1760 	 * proposal, based on the ordering of the ah algorithms in the
1761 	 * alternatives presented in the policy rule passed down
1762 	 * through the ipsec_out_t and attached to the acquire record.
1763 	 */
1764 
1765 	for (ap = acqrec->ipsacq_act; ap != NULL;
1766 	    ap = ap->ipa_next) {
1767 		ipsec_alginfo_t *aalg;
1768 
1769 		if ((ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY) ||
1770 		    (!ap->ipa_act.ipa_apply.ipp_use_ah))
1771 			continue;
1772 
1773 		prot = &ap->ipa_act.ipa_apply;
1774 
1775 		ASSERT(prot->ipp_auth_alg > 0);
1776 
1777 		aalg = ipsec_alglists[IPSEC_ALG_AUTH][prot->ipp_auth_alg];
1778 		if (aalg == NULL || !ALG_VALID(aalg))
1779 			continue;
1780 
1781 		/* XXX check aalg for duplicates??.. */
1782 
1783 		comb->sadb_comb_flags = 0;
1784 		comb->sadb_comb_reserved = 0;
1785 		comb->sadb_comb_encrypt = 0;
1786 		comb->sadb_comb_encrypt_minbits = 0;
1787 		comb->sadb_comb_encrypt_maxbits = 0;
1788 
1789 		comb->sadb_comb_auth = aalg->alg_id;
1790 		comb->sadb_comb_auth_minbits = prot->ipp_ah_minbits;
1791 		comb->sadb_comb_auth_maxbits = prot->ipp_ah_maxbits;
1792 
1793 		/*
1794 		 * The following may be based on algorithm
1795 		 * properties, but in the meantime, we just pick
1796 		 * some good, sensible numbers.  Key mgmt. can
1797 		 * (and perhaps should) be the place to finalize
1798 		 * such decisions.
1799 		 */
1800 
1801 		/*
1802 		 * No limits on allocations, since we really don't
1803 		 * support that concept currently.
1804 		 */
1805 		comb->sadb_comb_soft_allocations = 0;
1806 		comb->sadb_comb_hard_allocations = 0;
1807 
1808 		/*
1809 		 * These may want to come from policy rule..
1810 		 */
1811 		comb->sadb_comb_soft_bytes = ipsecah_default_soft_bytes;
1812 		comb->sadb_comb_hard_bytes = ipsecah_default_hard_bytes;
1813 		comb->sadb_comb_soft_addtime = ipsecah_default_soft_addtime;
1814 		comb->sadb_comb_hard_addtime = ipsecah_default_hard_addtime;
1815 		comb->sadb_comb_soft_usetime = ipsecah_default_soft_usetime;
1816 		comb->sadb_comb_hard_usetime = ipsecah_default_hard_usetime;
1817 
1818 		prop->sadb_prop_len += SADB_8TO64(sizeof (*comb));
1819 		if (--combs == 0)
1820 			return;	/* out of space.. */
1821 		comb++;
1822 	}
1823 }
1824 
1825 /*
1826  * Prepare and actually send the SADB_ACQUIRE message to PF_KEY.
1827  */
1828 static void
1829 ah_send_acquire(ipsacq_t *acqrec, mblk_t *extended)
1830 {
1831 	mblk_t *pfkeymp, *msgmp;
1832 	uint_t allocsize, combs;
1833 	sadb_msg_t *samsg;
1834 	sadb_prop_t *prop;
1835 	uint8_t *cur, *end;
1836 
1837 	AH_BUMP_STAT(acquire_requests);
1838 
1839 	ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock));
1840 
1841 	pfkeymp = sadb_keysock_out(0);
1842 	if (pfkeymp == NULL) {
1843 		ah1dbg(("ah_send_acquire: 1st allocb() failed.\n"));
1844 		/* Just bail. */
1845 		goto done;
1846 	}
1847 
1848 	/*
1849 	 * First, allocate a basic ACQUIRE message.  Beyond that,
1850 	 * you need to extract certificate info from
1851 	 */
1852 	allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) +
1853 	    sizeof (sadb_address_t) + sizeof (sadb_prop_t);
1854 
1855 	switch (acqrec->ipsacq_addrfam) {
1856 	case AF_INET:
1857 		allocsize += 2 * sizeof (struct sockaddr_in);
1858 		break;
1859 	case AF_INET6:
1860 		allocsize += 2 * sizeof (struct sockaddr_in6);
1861 		break;
1862 	}
1863 
1864 	mutex_enter(&alg_lock);
1865 
1866 	combs = ipsec_nalgs[IPSEC_ALG_AUTH];
1867 
1868 	allocsize += combs * sizeof (sadb_comb_t);
1869 
1870 	/*
1871 	 * XXX If there are:
1872 	 *	certificate IDs
1873 	 *	proxy address
1874 	 *	<Others>
1875 	 * add additional allocation size.
1876 	 */
1877 
1878 	msgmp = allocb(allocsize, BPRI_HI);
1879 	if (msgmp == NULL) {
1880 		ah0dbg(("ah_send_acquire: 2nd allocb() failed.\n"));
1881 		/* Just bail. */
1882 		freemsg(pfkeymp);
1883 		pfkeymp = NULL;
1884 		goto done;
1885 	}
1886 
1887 	cur = msgmp->b_rptr;
1888 	end = cur + allocsize;
1889 	samsg = (sadb_msg_t *)cur;
1890 	pfkeymp->b_cont = msgmp;
1891 
1892 	/* Set up ACQUIRE. */
1893 	cur = sadb_setup_acquire(cur, end, acqrec);
1894 	if (cur == NULL) {
1895 		ah0dbg(("sadb_setup_acquire failed.\n"));
1896 		/* Just bail. */
1897 		freemsg(pfkeymp);
1898 		pfkeymp = NULL;
1899 		goto done;
1900 	}
1901 	samsg->sadb_msg_satype = SADB_SATYPE_AH;
1902 
1903 	/* XXX Insert proxy address information here. */
1904 
1905 	/* XXX Insert identity information here. */
1906 
1907 	/* XXXMLS Insert sensitivity information here. */
1908 
1909 	/* Insert proposal here. */
1910 
1911 	prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len);
1912 	ah_insert_prop(prop, acqrec, combs);
1913 	samsg->sadb_msg_len += prop->sadb_prop_len;
1914 	msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len);
1915 
1916 done:
1917 	mutex_exit(&alg_lock);
1918 
1919 	/*
1920 	 * Must mutex_exit() before sending PF_KEY message up, in
1921 	 * order to avoid recursive mutex_enter() if there are no registered
1922 	 * listeners.
1923 	 *
1924 	 * Once I've sent the message, I'm cool anyway.
1925 	 */
1926 	mutex_exit(&acqrec->ipsacq_lock);
1927 	if (ah_pfkey_q != NULL && pfkeymp != NULL) {
1928 		if (extended != NULL) {
1929 			putnext(ah_pfkey_q, extended);
1930 		}
1931 		putnext(ah_pfkey_q, pfkeymp);
1932 		return;
1933 	}
1934 	/* NOTE: freemsg() works for extended == NULL. */
1935 	freemsg(extended);
1936 	freemsg(pfkeymp);
1937 }
1938 
1939 /*
1940  * Handle the SADB_GETSPI message.  Create a larval SA.
1941  */
1942 static void
1943 ah_getspi(mblk_t *mp, keysock_in_t *ksi)
1944 {
1945 	ipsa_t *newbie, *target;
1946 	isaf_t *outbound, *inbound;
1947 	int rc, diagnostic;
1948 	sadb_sa_t *assoc;
1949 	keysock_out_t *kso;
1950 	uint32_t newspi;
1951 
1952 	/*
1953 	 * Randomly generate a proposed SPI value.
1954 	 */
1955 	(void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t));
1956 	newbie = sadb_getspi(ksi, newspi, &diagnostic);
1957 
1958 	if (newbie == NULL) {
1959 		sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic,
1960 		    ksi->ks_in_serial);
1961 		return;
1962 	} else if (newbie == (ipsa_t *)-1) {
1963 		sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic,
1964 		    ksi->ks_in_serial);
1965 		return;
1966 	}
1967 
1968 	/*
1969 	 * XXX - We may randomly collide.  We really should recover from this.
1970 	 *	 Unfortunately, that could require spending way-too-much-time
1971 	 *	 in here.  For now, let the user retry.
1972 	 */
1973 
1974 	if (newbie->ipsa_addrfam == AF_INET6) {
1975 		outbound = OUTBOUND_BUCKET_V6(&ah_sadb.s_v6,
1976 		    *(uint32_t *)(newbie->ipsa_dstaddr));
1977 		inbound = INBOUND_BUCKET(&ah_sadb.s_v6, newbie->ipsa_spi);
1978 	} else {
1979 		outbound = OUTBOUND_BUCKET_V4(&ah_sadb.s_v4,
1980 		    *(uint32_t *)(newbie->ipsa_dstaddr));
1981 		inbound = INBOUND_BUCKET(&ah_sadb.s_v4, newbie->ipsa_spi);
1982 	}
1983 
1984 	mutex_enter(&outbound->isaf_lock);
1985 	mutex_enter(&inbound->isaf_lock);
1986 
1987 	/*
1988 	 * Check for collisions (i.e. did sadb_getspi() return with something
1989 	 * that already exists?).
1990 	 *
1991 	 * Try outbound first.  Even though SADB_GETSPI is traditionally
1992 	 * for inbound SAs, you never know what a user might do.
1993 	 */
1994 	target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi,
1995 	    newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam);
1996 	if (target == NULL) {
1997 		target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi,
1998 		    newbie->ipsa_srcaddr, newbie->ipsa_dstaddr,
1999 		    newbie->ipsa_addrfam);
2000 	}
2001 
2002 	/*
2003 	 * I don't have collisions elsewhere!
2004 	 * (Nor will I because I'm still holding inbound/outbound locks.)
2005 	 */
2006 
2007 	if (target != NULL) {
2008 		rc = EEXIST;
2009 		IPSA_REFRELE(target);
2010 	} else {
2011 		/*
2012 		 * sadb_insertassoc() also checks for collisions, so
2013 		 * if there's a colliding larval entry, rc will be set
2014 		 * to EEXIST.
2015 		 */
2016 		rc = sadb_insertassoc(newbie, inbound);
2017 		(void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime);
2018 		newbie->ipsa_hardexpiretime += ipsecah_larval_timeout;
2019 	}
2020 
2021 	/*
2022 	 * Can exit outbound mutex.  Hold inbound until we're done with
2023 	 * newbie.
2024 	 */
2025 	mutex_exit(&outbound->isaf_lock);
2026 
2027 	if (rc != 0) {
2028 		mutex_exit(&inbound->isaf_lock);
2029 		IPSA_REFRELE(newbie);
2030 		sadb_pfkey_error(ah_pfkey_q, mp, rc, SADB_X_DIAGNOSTIC_NONE,
2031 		    ksi->ks_in_serial);
2032 		return;
2033 	}
2034 
2035 	/* Can write here because I'm still holding the bucket lock. */
2036 	newbie->ipsa_type = SADB_SATYPE_AH;
2037 
2038 	/*
2039 	 * Construct successful return message.  We have one thing going
2040 	 * for us in PF_KEY v2.  That's the fact that
2041 	 *	sizeof (sadb_spirange_t) == sizeof (sadb_sa_t)
2042 	 */
2043 	assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
2044 	assoc->sadb_sa_exttype = SADB_EXT_SA;
2045 	assoc->sadb_sa_spi = newbie->ipsa_spi;
2046 	*((uint64_t *)(&assoc->sadb_sa_replay)) = 0;
2047 	mutex_exit(&inbound->isaf_lock);
2048 
2049 	/* Convert KEYSOCK_IN to KEYSOCK_OUT. */
2050 	kso = (keysock_out_t *)ksi;
2051 	kso->ks_out_len = sizeof (*kso);
2052 	kso->ks_out_serial = ksi->ks_in_serial;
2053 	kso->ks_out_type = KEYSOCK_OUT;
2054 
2055 	/*
2056 	 * Can safely putnext() to ah_pfkey_q, because this is a turnaround
2057 	 * from the ah_pfkey_q.
2058 	 */
2059 	putnext(ah_pfkey_q, mp);
2060 }
2061 
2062 /*
2063  * IPv6 sends up the ICMP errors for validation and the removal of the AH
2064  * header.
2065  */
2066 static ipsec_status_t
2067 ah_icmp_error_v6(mblk_t *ipsec_mp)
2068 {
2069 	mblk_t *mp;
2070 	ip6_t *ip6h, *oip6h;
2071 	uint16_t hdr_length, ah_length;
2072 	uint8_t *nexthdrp;
2073 	ah_t *ah;
2074 	icmp6_t *icmp6;
2075 	isaf_t *isaf;
2076 	ipsa_t *assoc;
2077 	uint8_t *post_ah_ptr;
2078 
2079 	mp = ipsec_mp->b_cont;
2080 	ASSERT(mp->b_datap->db_type == M_CTL);
2081 
2082 	/*
2083 	 * Change the type to M_DATA till we finish pullups.
2084 	 */
2085 	mp->b_datap->db_type = M_DATA;
2086 
2087 	/*
2088 	 * Eat the cost of a pullupmsg() for now.  It makes the rest of this
2089 	 * code far less convoluted.
2090 	 */
2091 	if (!pullupmsg(mp, -1) ||
2092 	    !ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, &hdr_length,
2093 		&nexthdrp) ||
2094 	    mp->b_rptr + hdr_length + sizeof (icmp6_t) + sizeof (ip6_t) +
2095 	    sizeof (ah_t) > mp->b_wptr) {
2096 		IP_AH_BUMP_STAT(in_discards);
2097 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem,
2098 		    &ah_dropper);
2099 		return (IPSEC_STATUS_FAILED);
2100 	}
2101 
2102 	oip6h = (ip6_t *)mp->b_rptr;
2103 	icmp6 = (icmp6_t *)((uint8_t *)oip6h + hdr_length);
2104 	ip6h = (ip6_t *)(icmp6 + 1);
2105 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) {
2106 		IP_AH_BUMP_STAT(in_discards);
2107 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
2108 		    &ipdrops_ah_bad_v6_hdrs, &ah_dropper);
2109 		return (IPSEC_STATUS_FAILED);
2110 	}
2111 	ah = (ah_t *)((uint8_t *)ip6h + hdr_length);
2112 
2113 	isaf = OUTBOUND_BUCKET_V6(&ah_sadb.s_v6, ip6h->ip6_dst);
2114 	mutex_enter(&isaf->isaf_lock);
2115 	assoc = ipsec_getassocbyspi(isaf, ah->ah_spi,
2116 	    (uint32_t *)&ip6h->ip6_src, (uint32_t *)&ip6h->ip6_dst, AF_INET6);
2117 	mutex_exit(&isaf->isaf_lock);
2118 
2119 	if (assoc == NULL) {
2120 		IP_AH_BUMP_STAT(lookup_failure);
2121 		IP_AH_BUMP_STAT(in_discards);
2122 		if (ipsecah_log_unknown_spi) {
2123 			ipsec_assocfailure(info.mi_idnum, 0, 0,
2124 			    SL_CONSOLE | SL_WARN | SL_ERROR,
2125 			    "Bad ICMP message - No association for the "
2126 			    "attached AH header whose spi is 0x%x, "
2127 			    "sender is 0x%x\n",
2128 			    ah->ah_spi, &oip6h->ip6_src, AF_INET6);
2129 		}
2130 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa,
2131 		    &ah_dropper);
2132 		return (IPSEC_STATUS_FAILED);
2133 	}
2134 
2135 	IPSA_REFRELE(assoc);
2136 
2137 	/*
2138 	 * There seems to be a valid association. If there is enough of AH
2139 	 * header remove it, otherwise bail.  One could check whether it has
2140 	 * complete AH header plus 8 bytes but it does not make sense if an
2141 	 * icmp error is returned for ICMP messages e.g ICMP time exceeded,
2142 	 * that are being sent up. Let the caller figure out.
2143 	 *
2144 	 * NOTE: ah_length is the number of 32 bit words minus 2.
2145 	 */
2146 	ah_length = (ah->ah_length << 2) + 8;
2147 	post_ah_ptr = (uint8_t *)ah + ah_length;
2148 
2149 	if (post_ah_ptr > mp->b_wptr) {
2150 		IP_AH_BUMP_STAT(in_discards);
2151 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
2152 		    &ipdrops_ah_bad_length, &ah_dropper);
2153 		return (IPSEC_STATUS_FAILED);
2154 	}
2155 
2156 	ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - ah_length);
2157 	*nexthdrp = ah->ah_nexthdr;
2158 	ovbcopy(post_ah_ptr, ah,
2159 	    (size_t)((uintptr_t)mp->b_wptr - (uintptr_t)post_ah_ptr));
2160 	mp->b_wptr -= ah_length;
2161 	/* Rewhack to be an ICMP error. */
2162 	mp->b_datap->db_type = M_CTL;
2163 
2164 	return (IPSEC_STATUS_SUCCESS);
2165 }
2166 
2167 /*
2168  * IP sends up the ICMP errors for validation and the removal of
2169  * the AH header.
2170  */
2171 static ipsec_status_t
2172 ah_icmp_error_v4(mblk_t *ipsec_mp)
2173 {
2174 	mblk_t *mp;
2175 	mblk_t *mp1;
2176 	icmph_t *icmph;
2177 	int iph_hdr_length;
2178 	int hdr_length;
2179 	isaf_t *hptr;
2180 	ipsa_t *assoc;
2181 	int ah_length;
2182 	ipha_t *ipha;
2183 	ipha_t *oipha;
2184 	ah_t *ah;
2185 	uint32_t length;
2186 	int alloc_size;
2187 	uint8_t nexthdr;
2188 
2189 	mp = ipsec_mp->b_cont;
2190 	ASSERT(mp->b_datap->db_type == M_CTL);
2191 
2192 	/*
2193 	 * Change the type to M_DATA till we finish pullups.
2194 	 */
2195 	mp->b_datap->db_type = M_DATA;
2196 
2197 	oipha = ipha = (ipha_t *)mp->b_rptr;
2198 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2199 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2200 
2201 	ipha = (ipha_t *)&icmph[1];
2202 	hdr_length = IPH_HDR_LENGTH(ipha);
2203 
2204 	/*
2205 	 * See if we have enough to locate the SPI
2206 	 */
2207 	if ((uchar_t *)ipha + hdr_length + 8 > mp->b_wptr) {
2208 		if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 8 -
2209 			    mp->b_rptr)) {
2210 			ipsec_rl_strlog(info.mi_idnum, 0, 0,
2211 			    SL_WARN | SL_ERROR,
2212 			    "ICMP error: Small AH header\n");
2213 			IP_AH_BUMP_STAT(in_discards);
2214 			ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
2215 			    &ipdrops_ah_bad_length, &ah_dropper);
2216 			return (IPSEC_STATUS_FAILED);
2217 		}
2218 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2219 		ipha = (ipha_t *)&icmph[1];
2220 	}
2221 
2222 	ah = (ah_t *)((uint8_t *)ipha + hdr_length);
2223 	nexthdr = ah->ah_nexthdr;
2224 
2225 	hptr = OUTBOUND_BUCKET_V4(&ah_sadb.s_v4, ipha->ipha_dst);
2226 	mutex_enter(&hptr->isaf_lock);
2227 	assoc = ipsec_getassocbyspi(hptr, ah->ah_spi,
2228 	    (uint32_t *)&ipha->ipha_src, (uint32_t *)&ipha->ipha_dst, AF_INET);
2229 	mutex_exit(&hptr->isaf_lock);
2230 
2231 	if (assoc == NULL) {
2232 		IP_AH_BUMP_STAT(lookup_failure);
2233 		IP_AH_BUMP_STAT(in_discards);
2234 		if (ipsecah_log_unknown_spi) {
2235 			ipsec_assocfailure(info.mi_idnum, 0, 0,
2236 			    SL_CONSOLE | SL_WARN | SL_ERROR,
2237 			    "Bad ICMP message - No association for the "
2238 			    "attached AH header whose spi is 0x%x, "
2239 			    "sender is 0x%x\n",
2240 			    ah->ah_spi, &oipha->ipha_src, AF_INET);
2241 		}
2242 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa,
2243 		    &ah_dropper);
2244 		return (IPSEC_STATUS_FAILED);
2245 	}
2246 
2247 	IPSA_REFRELE(assoc);
2248 	/*
2249 	 * There seems to be a valid association. If there
2250 	 * is enough of AH header remove it, otherwise remove
2251 	 * as much as possible and send it back. One could check
2252 	 * whether it has complete AH header plus 8 bytes but it
2253 	 * does not make sense if an icmp error is returned for
2254 	 * ICMP messages e.g ICMP time exceeded, that are being
2255 	 * sent up. Let the caller figure out.
2256 	 *
2257 	 * NOTE: ah_length is the number of 32 bit words minus 2.
2258 	 */
2259 	ah_length = (ah->ah_length << 2) + 8;
2260 
2261 	if ((uchar_t *)ipha + hdr_length + ah_length > mp->b_wptr) {
2262 		if (mp->b_cont == NULL) {
2263 			/*
2264 			 * There is nothing to pullup. Just remove as
2265 			 * much as possible. This is a common case for
2266 			 * IPV4.
2267 			 */
2268 			ah_length = (mp->b_wptr - ((uchar_t *)ipha +
2269 			    hdr_length));
2270 			goto done;
2271 		}
2272 		/* Pullup the full ah header */
2273 		if (!pullupmsg(mp, (uchar_t *)ah + ah_length - mp->b_rptr)) {
2274 			/*
2275 			 * pullupmsg could have failed if there was not
2276 			 * enough to pullup or memory allocation failed.
2277 			 * We tried hard, give up now.
2278 			 */
2279 			IP_AH_BUMP_STAT(in_discards);
2280 			ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
2281 			    &ipdrops_ah_nomem, &ah_dropper);
2282 			return (IPSEC_STATUS_FAILED);
2283 		}
2284 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2285 		ipha = (ipha_t *)&icmph[1];
2286 	}
2287 done:
2288 	/*
2289 	 * Remove the AH header and change the protocol.
2290 	 * Don't update the spi fields in the ipsec_in
2291 	 * message as we are called just to validate the
2292 	 * message attached to the ICMP message.
2293 	 *
2294 	 * If we never pulled up since all of the message
2295 	 * is in one single mblk, we can't remove the AH header
2296 	 * by just setting the b_wptr to the beginning of the
2297 	 * AH header. We need to allocate a mblk that can hold
2298 	 * up until the inner IP header and copy them.
2299 	 */
2300 	alloc_size = iph_hdr_length + sizeof (icmph_t) + hdr_length;
2301 
2302 	if ((mp1 = allocb(alloc_size, BPRI_LO)) == NULL) {
2303 		IP_AH_BUMP_STAT(in_discards);
2304 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem,
2305 		    &ah_dropper);
2306 		return (IPSEC_STATUS_FAILED);
2307 	}
2308 	/* ICMP errors are M_CTL messages */
2309 	mp1->b_datap->db_type = M_CTL;
2310 	ipsec_mp->b_cont = mp1;
2311 	bcopy(mp->b_rptr, mp1->b_rptr, alloc_size);
2312 	mp1->b_wptr += alloc_size;
2313 
2314 	/*
2315 	 * Skip whatever we have copied and as much of AH header
2316 	 * possible. If we still have something left in the original
2317 	 * message, tag on.
2318 	 */
2319 	mp->b_rptr = (uchar_t *)ipha + hdr_length + ah_length;
2320 
2321 	if (mp->b_rptr != mp->b_wptr) {
2322 		mp1->b_cont = mp;
2323 	} else {
2324 		if (mp->b_cont != NULL)
2325 			mp1->b_cont = mp->b_cont;
2326 		freeb(mp);
2327 	}
2328 
2329 	ipha = (ipha_t *)(mp1->b_rptr + iph_hdr_length + sizeof (icmph_t));
2330 	ipha->ipha_protocol = nexthdr;
2331 	length = ntohs(ipha->ipha_length);
2332 	length -= ah_length;
2333 	ipha->ipha_length = htons((uint16_t)length);
2334 	ipha->ipha_hdr_checksum = 0;
2335 	ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
2336 
2337 	return (IPSEC_STATUS_SUCCESS);
2338 }
2339 
2340 /*
2341  * IP calls this to validate the ICMP errors that
2342  * we got from the network.
2343  */
2344 ipsec_status_t
2345 ipsecah_icmp_error(mblk_t *mp)
2346 {
2347 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
2348 
2349 	if (ii->ipsec_in_v4)
2350 		return (ah_icmp_error_v4(mp));
2351 	else
2352 		return (ah_icmp_error_v6(mp));
2353 }
2354 
2355 static int
2356 ah_fix_tlv_options_v6(uint8_t *oi_opt, uint8_t *pi_opt, uint_t ehdrlen,
2357     uint8_t hdr_type, boolean_t copy_always)
2358 {
2359 	uint8_t opt_type;
2360 	uint_t optlen;
2361 
2362 	ASSERT(hdr_type == IPPROTO_DSTOPTS || hdr_type == IPPROTO_HOPOPTS);
2363 
2364 	/*
2365 	 * Copy the next header and hdr ext. len of the HOP-by-HOP
2366 	 * and Destination option.
2367 	 */
2368 	*pi_opt++ = *oi_opt++;
2369 	*pi_opt++ = *oi_opt++;
2370 	ehdrlen -= 2;
2371 
2372 	/*
2373 	 * Now handle all the TLV encoded options.
2374 	 */
2375 	while (ehdrlen != 0) {
2376 		opt_type = *oi_opt;
2377 
2378 		if (opt_type == IP6OPT_PAD1) {
2379 			optlen = 1;
2380 		} else {
2381 			if (ehdrlen < 2)
2382 				goto bad_opt;
2383 			optlen = 2 + oi_opt[1];
2384 			if (optlen > ehdrlen)
2385 				goto bad_opt;
2386 		}
2387 		if (copy_always || !(opt_type & IP6OPT_MUTABLE)) {
2388 			bcopy(oi_opt, pi_opt, optlen);
2389 		} else {
2390 			if (optlen == 1) {
2391 				*pi_opt = 0;
2392 			} else {
2393 				/*
2394 				 * Copy the type and data length fields.
2395 				 * Zero the option data by skipping
2396 				 * option type and option data len
2397 				 * fields.
2398 				 */
2399 				*pi_opt = *oi_opt;
2400 				*(pi_opt + 1) = *(oi_opt + 1);
2401 				bzero(pi_opt + 2, optlen - 2);
2402 			}
2403 		}
2404 		ehdrlen -= optlen;
2405 		oi_opt += optlen;
2406 		pi_opt += optlen;
2407 	}
2408 	return (0);
2409 bad_opt:
2410 	return (-1);
2411 }
2412 
2413 /*
2414  * Construct a pseudo header for AH, processing all the options.
2415  *
2416  * oip6h is the IPv6 header of the incoming or outgoing packet.
2417  * ip6h is the pointer to the pseudo headers IPV6 header. All
2418  * the space needed for the options have been allocated including
2419  * the AH header.
2420  *
2421  * If copy_always is set, all the options that appear before AH are copied
2422  * blindly without checking for IP6OPT_MUTABLE. This is used by
2423  * ah_auth_out_done().  Please refer to that function for details.
2424  *
2425  * NOTE :
2426  *
2427  * *  AH header is never copied in this function even if copy_always
2428  *    is set. It just returns the ah_offset - offset of the AH header
2429  *    and the caller needs to do the copying. This is done so that we
2430  *    don't have pass extra arguments e.g. SA etc. and also,
2431  *    it is not needed when ah_auth_out_done is calling this function.
2432  */
2433 static uint_t
2434 ah_fix_phdr_v6(ip6_t *ip6h, ip6_t *oip6h, boolean_t outbound,
2435     boolean_t copy_always)
2436 {
2437 	uint8_t	*oi_opt;
2438 	uint8_t	*pi_opt;
2439 	uint8_t nexthdr;
2440 	uint8_t *prev_nexthdr;
2441 	ip6_hbh_t *hbhhdr;
2442 	ip6_dest_t *dsthdr = NULL;
2443 	ip6_rthdr0_t *rthdr;
2444 	int ehdrlen;
2445 	ah_t *ah;
2446 	int ret;
2447 
2448 	/*
2449 	 * In the outbound case for source route, ULP has already moved
2450 	 * the first hop, which is now in ip6_dst. We need to re-arrange
2451 	 * the header to make it look like how it would appear in the
2452 	 * receiver i.e
2453 	 *
2454 	 * Because of ip_massage_options_v6 the header looks like
2455 	 * this :
2456 	 *
2457 	 * ip6_src = S, ip6_dst = I1. followed by I2,I3,D.
2458 	 *
2459 	 * When it reaches the receiver, it would look like
2460 	 *
2461 	 * ip6_src = S, ip6_dst = D. followed by I1,I2,I3.
2462 	 *
2463 	 * NOTE : We assume that there are no problems with the options
2464 	 * as IP should have already checked this.
2465 	 */
2466 
2467 	oi_opt = (uchar_t *)&oip6h[1];
2468 	pi_opt = (uchar_t *)&ip6h[1];
2469 
2470 	/*
2471 	 * We set the prev_nexthdr properly in the pseudo header.
2472 	 * After we finish authentication and come back from the
2473 	 * algorithm module, pseudo header will become the real
2474 	 * IP header.
2475 	 */
2476 	prev_nexthdr = (uint8_t *)&ip6h->ip6_nxt;
2477 	nexthdr = oip6h->ip6_nxt;
2478 	/* Assume IP has already stripped it */
2479 	ASSERT(nexthdr != IPPROTO_FRAGMENT && nexthdr != IPPROTO_RAW);
2480 	ah = NULL;
2481 	dsthdr = NULL;
2482 	for (;;) {
2483 		switch (nexthdr) {
2484 		case IPPROTO_HOPOPTS:
2485 			hbhhdr = (ip6_hbh_t *)oi_opt;
2486 			nexthdr = hbhhdr->ip6h_nxt;
2487 			ehdrlen = 8 * (hbhhdr->ip6h_len + 1);
2488 			ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen,
2489 			    IPPROTO_HOPOPTS, copy_always);
2490 			/*
2491 			 * Return a zero offset indicating error if there
2492 			 * was error.
2493 			 */
2494 			if (ret == -1)
2495 				return (0);
2496 			hbhhdr = (ip6_hbh_t *)pi_opt;
2497 			prev_nexthdr = (uint8_t *)&hbhhdr->ip6h_nxt;
2498 			break;
2499 		case IPPROTO_ROUTING:
2500 			rthdr = (ip6_rthdr0_t *)oi_opt;
2501 			nexthdr = rthdr->ip6r0_nxt;
2502 			ehdrlen = 8 * (rthdr->ip6r0_len + 1);
2503 			if (!copy_always && outbound) {
2504 				int i, left;
2505 				ip6_rthdr0_t *prthdr;
2506 				in6_addr_t *ap, *pap;
2507 
2508 				left = rthdr->ip6r0_segleft;
2509 				prthdr = (ip6_rthdr0_t *)pi_opt;
2510 				pap = (in6_addr_t *)(prthdr + 1);
2511 				ap = (in6_addr_t *)(rthdr + 1);
2512 				/*
2513 				 * First eight bytes except seg_left
2514 				 * does not change en route.
2515 				 */
2516 				bcopy(oi_opt, pi_opt, 8);
2517 				prthdr->ip6r0_segleft = 0;
2518 				/*
2519 				 * First address has been moved to
2520 				 * the destination address of the
2521 				 * ip header by ip_massage_options_v6.
2522 				 * And the real destination address is
2523 				 * in the last address part of the
2524 				 * option.
2525 				 */
2526 				*pap = oip6h->ip6_dst;
2527 				for (i = 1; i < left - 1; i++)
2528 					pap[i] = ap[i - 1];
2529 				ip6h->ip6_dst = *(ap + left - 1);
2530 			} else {
2531 				bcopy(oi_opt, pi_opt, ehdrlen);
2532 			}
2533 			rthdr = (ip6_rthdr0_t *)pi_opt;
2534 			prev_nexthdr = (uint8_t *)&rthdr->ip6r0_nxt;
2535 			break;
2536 		case IPPROTO_DSTOPTS:
2537 			/*
2538 			 * Destination options are tricky.  If there is
2539 			 * a terminal (e.g. non-IPv6-extension) header
2540 			 * following the destination options, don't
2541 			 * reset prev_nexthdr or advance the AH insertion
2542 			 * point and just treat this as a terminal header.
2543 			 *
2544 			 * If this is an inbound packet, just deal with
2545 			 * it as is.
2546 			 */
2547 			dsthdr = (ip6_dest_t *)oi_opt;
2548 			/*
2549 			 * XXX I hope common-subexpression elimination
2550 			 * saves us the double-evaluate.
2551 			 */
2552 			if (outbound && dsthdr->ip6d_nxt != IPPROTO_ROUTING &&
2553 			    dsthdr->ip6d_nxt != IPPROTO_HOPOPTS)
2554 				goto terminal_hdr;
2555 			nexthdr = dsthdr->ip6d_nxt;
2556 			ehdrlen = 8 * (dsthdr->ip6d_len + 1);
2557 			ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen,
2558 			    IPPROTO_DSTOPTS, copy_always);
2559 			/*
2560 			 * Return a zero offset indicating error if there
2561 			 * was error.
2562 			 */
2563 			if (ret == -1)
2564 				return (0);
2565 			break;
2566 		case IPPROTO_AH:
2567 			/*
2568 			 * Be conservative in what you send.  We shouldn't
2569 			 * see two same-scoped AH's in one packet.
2570 			 * (Inner-IP-scoped AH will be hit by terminal
2571 			 * header of IP or IPv6.)
2572 			 */
2573 			ASSERT(!outbound);
2574 			return ((uint_t)(pi_opt - (uint8_t *)ip6h));
2575 		default:
2576 			ASSERT(outbound);
2577 terminal_hdr:
2578 			*prev_nexthdr = IPPROTO_AH;
2579 			ah = (ah_t *)pi_opt;
2580 			ah->ah_nexthdr = nexthdr;
2581 			return ((uint_t)(pi_opt - (uint8_t *)ip6h));
2582 		}
2583 		pi_opt += ehdrlen;
2584 		oi_opt += ehdrlen;
2585 	}
2586 	/* NOTREACHED */
2587 }
2588 
2589 static boolean_t
2590 ah_finish_up(ah_t *phdr_ah, ah_t *inbound_ah, ipsa_t *assoc,
2591     int ah_data_sz, int ah_align_sz)
2592 {
2593 	int i;
2594 
2595 	/*
2596 	 * Padding :
2597 	 *
2598 	 * 1) Authentication data may have to be padded
2599 	 * before ICV calculation if ICV is not a multiple
2600 	 * of 64 bits. This padding is arbitrary and transmitted
2601 	 * with the packet at the end of the authentication data.
2602 	 * Payload length should include the padding bytes.
2603 	 *
2604 	 * 2) Explicit padding of the whole datagram may be
2605 	 * required by the algorithm which need not be
2606 	 * transmitted. It is assumed that this will be taken
2607 	 * care by the algorithm module.
2608 	 */
2609 	bzero(phdr_ah + 1, ah_data_sz);	/* Zero out ICV for pseudo-hdr. */
2610 
2611 	if (inbound_ah == NULL) {
2612 		/* Outbound AH datagram. */
2613 
2614 		phdr_ah->ah_length = (ah_align_sz >> 2) + 1;
2615 		phdr_ah->ah_reserved = 0;
2616 		phdr_ah->ah_spi = assoc->ipsa_spi;
2617 
2618 		phdr_ah->ah_replay =
2619 		    htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1));
2620 		if (phdr_ah->ah_replay == 0 && assoc->ipsa_replay_wsize != 0) {
2621 			/*
2622 			 * XXX We have replay counter wrapping.  We probably
2623 			 * want to nuke this SA (and its peer).
2624 			 */
2625 			ipsec_assocfailure(info.mi_idnum, 0, 0,
2626 			    SL_ERROR | SL_CONSOLE | SL_WARN,
2627 			    "Outbound AH SA (0x%x), dst %s has wrapped "
2628 			    "sequence.\n", phdr_ah->ah_spi,
2629 			    assoc->ipsa_dstaddr, assoc->ipsa_addrfam);
2630 
2631 			sadb_replay_delete(assoc);
2632 			/* Caller will free phdr_mp and return NULL. */
2633 			return (B_FALSE);
2634 		}
2635 
2636 		if (ah_data_sz != ah_align_sz) {
2637 			uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) +
2638 			    ah_data_sz);
2639 
2640 			for (i = 0; i < (ah_align_sz - ah_data_sz); i++) {
2641 				pad[i] = (uchar_t)i;	/* Fill the padding */
2642 			}
2643 		}
2644 	} else {
2645 		/* Inbound AH datagram. */
2646 		phdr_ah->ah_nexthdr = inbound_ah->ah_nexthdr;
2647 		phdr_ah->ah_length = inbound_ah->ah_length;
2648 		phdr_ah->ah_reserved = 0;
2649 		ASSERT(inbound_ah->ah_spi == assoc->ipsa_spi);
2650 		phdr_ah->ah_spi = inbound_ah->ah_spi;
2651 		phdr_ah->ah_replay = inbound_ah->ah_replay;
2652 
2653 		if (ah_data_sz != ah_align_sz) {
2654 			uchar_t *opad = ((uchar_t *)inbound_ah + sizeof (ah_t) +
2655 			    ah_data_sz);
2656 			uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) +
2657 			    ah_data_sz);
2658 
2659 			for (i = 0; i < (ah_align_sz - ah_data_sz); i++) {
2660 				pad[i] = opad[i];	/* Copy the padding */
2661 			}
2662 		}
2663 	}
2664 
2665 	return (B_TRUE);
2666 }
2667 
2668 /*
2669  * Called upon failing the inbound ICV check. The message passed as
2670  * argument is freed.
2671  */
2672 static void
2673 ah_log_bad_auth(mblk_t *ipsec_in)
2674 {
2675 	mblk_t *mp = ipsec_in->b_cont->b_cont;
2676 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr;
2677 	boolean_t isv4 = ii->ipsec_in_v4;
2678 	ipsa_t *assoc = ii->ipsec_in_ah_sa;
2679 	int af;
2680 	void *addr;
2681 
2682 	mp->b_rptr -= ii->ipsec_in_skip_len;
2683 
2684 	if (isv4) {
2685 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
2686 		addr = &ipha->ipha_dst;
2687 		af = AF_INET;
2688 	} else {
2689 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
2690 		addr = &ip6h->ip6_dst;
2691 		af = AF_INET6;
2692 	}
2693 
2694 	/*
2695 	 * Log the event. Don't print to the console, block
2696 	 * potential denial-of-service attack.
2697 	 */
2698 	AH_BUMP_STAT(bad_auth);
2699 
2700 	ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
2701 	    "AH Authentication failed spi %x, dst_addr %s",
2702 	    assoc->ipsa_spi, addr, af);
2703 
2704 	IP_AH_BUMP_STAT(in_discards);
2705 	ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_bad_auth,
2706 	    &ah_dropper);
2707 }
2708 
2709 /*
2710  * Kernel crypto framework callback invoked after completion of async
2711  * crypto requests.
2712  */
2713 static void
2714 ah_kcf_callback(void *arg, int status)
2715 {
2716 	mblk_t *ipsec_mp = (mblk_t *)arg;
2717 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2718 	boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN);
2719 
2720 	ASSERT(ipsec_mp->b_cont != NULL);
2721 
2722 	if (status == CRYPTO_SUCCESS) {
2723 		if (is_inbound) {
2724 			if (ah_auth_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS)
2725 				return;
2726 			/* finish IPsec processing */
2727 			ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL);
2728 		} else {
2729 			ipha_t *ipha;
2730 
2731 			if (ah_auth_out_done(ipsec_mp) != IPSEC_STATUS_SUCCESS)
2732 				return;
2733 
2734 			/* finish IPsec processing */
2735 			ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
2736 			if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
2737 				ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL,
2738 				    NULL);
2739 			} else {
2740 				ip6_t *ip6h = (ip6_t *)ipha;
2741 				ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h,
2742 				    NULL, NULL);
2743 			}
2744 		}
2745 
2746 	} else if (status == CRYPTO_INVALID_MAC) {
2747 		ah_log_bad_auth(ipsec_mp);
2748 
2749 	} else {
2750 		ah1dbg(("ah_kcf_callback: crypto failed with 0x%x\n", status));
2751 		AH_BUMP_STAT(crypto_failures);
2752 		if (is_inbound)
2753 			IP_AH_BUMP_STAT(in_discards);
2754 		else
2755 			AH_BUMP_STAT(out_discards);
2756 		ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL,
2757 		    &ipdrops_ah_crypto_failed, &ah_dropper);
2758 	}
2759 }
2760 
2761 /*
2762  * Invoked on kernel crypto failure during inbound and outbound processing.
2763  */
2764 static void
2765 ah_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc)
2766 {
2767 	ah1dbg(("crypto failed for %s AH with 0x%x\n",
2768 	    is_inbound ? "inbound" : "outbound", kef_rc));
2769 	ip_drop_packet(mp, is_inbound, NULL, NULL, &ipdrops_ah_crypto_failed,
2770 	    &ah_dropper);
2771 	AH_BUMP_STAT(crypto_failures);
2772 	if (is_inbound)
2773 		IP_AH_BUMP_STAT(in_discards);
2774 	else
2775 		AH_BUMP_STAT(out_discards);
2776 }
2777 
2778 /*
2779  * Helper macros for the ah_submit_req_{inbound,outbound}() functions.
2780  */
2781 
2782 #define	AH_INIT_CALLREQ(_cr) {						\
2783 	(_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED;		\
2784 	if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == IPSEC_ALGS_EXEC_ASYNC) \
2785 		(_cr)->cr_flag |= CRYPTO_ALWAYS_QUEUE;			\
2786 	(_cr)->cr_callback_arg = ipsec_mp;				\
2787 	(_cr)->cr_callback_func = ah_kcf_callback;			\
2788 }
2789 
2790 #define	AH_INIT_CRYPTO_DATA(data, msglen, mblk) {			\
2791 	(data)->cd_format = CRYPTO_DATA_MBLK;				\
2792 	(data)->cd_mp = mblk;						\
2793 	(data)->cd_offset = 0;						\
2794 	(data)->cd_length = msglen;					\
2795 }
2796 
2797 #define	AH_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) {			\
2798 	(mac)->cd_format = CRYPTO_DATA_RAW;				\
2799 	(mac)->cd_offset = 0;						\
2800 	(mac)->cd_length = icvlen;					\
2801 	(mac)->cd_raw.iov_base = icvbuf;				\
2802 	(mac)->cd_raw.iov_len = icvlen;					\
2803 }
2804 
2805 /*
2806  * Submit an inbound packet for processing by the crypto framework.
2807  */
2808 static ipsec_status_t
2809 ah_submit_req_inbound(mblk_t *ipsec_mp, size_t skip_len, uint32_t ah_offset,
2810     ipsa_t *assoc)
2811 {
2812 	int kef_rc;
2813 	mblk_t *phdr_mp;
2814 	crypto_call_req_t call_req;
2815 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2816 	uint_t icv_len = assoc->ipsa_mac_len;
2817 	crypto_ctx_template_t ctx_tmpl;
2818 
2819 	phdr_mp = ipsec_mp->b_cont;
2820 	ASSERT(phdr_mp != NULL);
2821 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2822 
2823 	/* init arguments for the crypto framework */
2824 	AH_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, AH_MSGSIZE(phdr_mp),
2825 	    phdr_mp);
2826 
2827 	AH_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac, icv_len,
2828 	    (char *)phdr_mp->b_cont->b_rptr - skip_len + ah_offset +
2829 	    sizeof (ah_t));
2830 
2831 	AH_INIT_CALLREQ(&call_req);
2832 
2833 	ii->ipsec_in_skip_len = skip_len;
2834 
2835 	IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, ctx_tmpl);
2836 
2837 	/* call KEF to do the MAC operation */
2838 	kef_rc = crypto_mac_verify(&assoc->ipsa_amech,
2839 	    &ii->ipsec_in_crypto_data, &assoc->ipsa_kcfauthkey, ctx_tmpl,
2840 	    &ii->ipsec_in_crypto_mac, &call_req);
2841 
2842 	switch (kef_rc) {
2843 	case CRYPTO_SUCCESS:
2844 		AH_BUMP_STAT(crypto_sync);
2845 		return (ah_auth_in_done(ipsec_mp));
2846 	case CRYPTO_QUEUED:
2847 		/* ah_callback() will be invoked on completion */
2848 		AH_BUMP_STAT(crypto_async);
2849 		return (IPSEC_STATUS_PENDING);
2850 	case CRYPTO_INVALID_MAC:
2851 		AH_BUMP_STAT(crypto_sync);
2852 		ah_log_bad_auth(ipsec_mp);
2853 		return (IPSEC_STATUS_FAILED);
2854 	}
2855 
2856 	ah_crypto_failed(ipsec_mp, B_TRUE, kef_rc);
2857 	return (IPSEC_STATUS_FAILED);
2858 }
2859 
2860 /*
2861  * Submit an outbound packet for processing by the crypto framework.
2862  */
2863 static ipsec_status_t
2864 ah_submit_req_outbound(mblk_t *ipsec_mp, size_t skip_len, ipsa_t *assoc)
2865 {
2866 	int kef_rc;
2867 	mblk_t *phdr_mp;
2868 	crypto_call_req_t call_req;
2869 	ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
2870 	uint_t icv_len = assoc->ipsa_mac_len;
2871 
2872 	phdr_mp = ipsec_mp->b_cont;
2873 	ASSERT(phdr_mp != NULL);
2874 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
2875 
2876 	/* init arguments for the crypto framework */
2877 	AH_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, AH_MSGSIZE(phdr_mp),
2878 	    phdr_mp);
2879 
2880 	AH_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac, icv_len,
2881 	    (char *)phdr_mp->b_wptr);
2882 
2883 	AH_INIT_CALLREQ(&call_req);
2884 
2885 	io->ipsec_out_skip_len = skip_len;
2886 
2887 	ASSERT(io->ipsec_out_ah_sa != NULL);
2888 
2889 	/* call KEF to do the MAC operation */
2890 	kef_rc = crypto_mac(&assoc->ipsa_amech, &io->ipsec_out_crypto_data,
2891 	    &assoc->ipsa_kcfauthkey, assoc->ipsa_authtmpl,
2892 	    &io->ipsec_out_crypto_mac, &call_req);
2893 
2894 	switch (kef_rc) {
2895 	case CRYPTO_SUCCESS:
2896 		AH_BUMP_STAT(crypto_sync);
2897 		return (ah_auth_out_done(ipsec_mp));
2898 	case CRYPTO_QUEUED:
2899 		/* ah_callback() will be invoked on completion */
2900 		AH_BUMP_STAT(crypto_async);
2901 		return (IPSEC_STATUS_PENDING);
2902 	}
2903 
2904 	ah_crypto_failed(ipsec_mp, B_FALSE, kef_rc);
2905 	return (IPSEC_STATUS_FAILED);
2906 }
2907 
2908 /*
2909  * This function constructs a pseudo header by looking at the IP header
2910  * and options if any. This is called for both outbound and inbound,
2911  * before computing the ICV.
2912  */
2913 static mblk_t *
2914 ah_process_ip_options_v6(mblk_t *mp, ipsa_t *assoc, int *length_to_skip,
2915     uint_t ah_data_sz, boolean_t outbound)
2916 {
2917 	ip6_t	*ip6h;
2918 	ip6_t	*oip6h;
2919 	mblk_t 	*phdr_mp;
2920 	int option_length;
2921 	uint_t	ah_align_sz;
2922 	uint_t ah_offset;
2923 	int hdr_size;
2924 
2925 	/*
2926 	 * Allocate space for the authentication data also. It is
2927 	 * useful both during the ICV calculation where we need to
2928 	 * feed in zeroes and while sending the datagram back to IP
2929 	 * where we will be using the same space.
2930 	 *
2931 	 * We need to allocate space for padding bytes if it is not
2932 	 * a multiple of IPV6_PADDING_ALIGN.
2933 	 *
2934 	 * In addition, we allocate space for the ICV computed by
2935 	 * the kernel crypto framework, saving us a separate kmem
2936 	 * allocation down the road.
2937 	 */
2938 
2939 	ah_align_sz = P2ALIGN(ah_data_sz + IPV6_PADDING_ALIGN - 1,
2940 	    IPV6_PADDING_ALIGN);
2941 
2942 	ASSERT(ah_align_sz >= ah_data_sz);
2943 
2944 	hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE);
2945 	option_length = hdr_size - IPV6_HDR_LEN;
2946 
2947 	/* This was not included in ipsec_ah_get_hdr_size_v6() */
2948 	hdr_size += (sizeof (ah_t) + ah_align_sz);
2949 
2950 	if (!outbound && (MBLKL(mp) < hdr_size)) {
2951 		/*
2952 		 * We have post-AH header options in a separate mblk,
2953 		 * a pullup is required.
2954 		 */
2955 		if (!pullupmsg(mp, hdr_size))
2956 			return (NULL);
2957 	}
2958 
2959 	if ((phdr_mp = allocb(hdr_size + ah_data_sz, BPRI_HI)) == NULL) {
2960 		return (NULL);
2961 	}
2962 
2963 	oip6h = (ip6_t *)mp->b_rptr;
2964 
2965 	/*
2966 	 * Form the basic IP header first. Zero out the header
2967 	 * so that the mutable fields are zeroed out.
2968 	 */
2969 	ip6h = (ip6_t *)phdr_mp->b_rptr;
2970 	bzero(ip6h, sizeof (ip6_t));
2971 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
2972 
2973 	if (outbound) {
2974 		/*
2975 		 * Include the size of AH and authentication data.
2976 		 * This is how our recipient would compute the
2977 		 * authentication data. Look at what we do in the
2978 		 * inbound case below.
2979 		 */
2980 		ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) +
2981 		    sizeof (ah_t) + ah_align_sz);
2982 	} else {
2983 		ip6h->ip6_plen = oip6h->ip6_plen;
2984 	}
2985 
2986 	ip6h->ip6_src = oip6h->ip6_src;
2987 	ip6h->ip6_dst = oip6h->ip6_dst;
2988 
2989 	*length_to_skip = IPV6_HDR_LEN;
2990 	if (option_length == 0) {
2991 		/* Form the AH header */
2992 		ip6h->ip6_nxt = IPPROTO_AH;
2993 		((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt;
2994 		ah_offset = *length_to_skip;
2995 	} else {
2996 		ip6h->ip6_nxt = oip6h->ip6_nxt;
2997 		/* option_length does not include the AH header's size */
2998 		*length_to_skip += option_length;
2999 
3000 		ah_offset = ah_fix_phdr_v6(ip6h, oip6h, outbound, B_FALSE);
3001 		if (ah_offset == 0) {
3002 			ip_drop_packet(phdr_mp, !outbound, NULL, NULL,
3003 			    &ipdrops_ah_bad_v6_hdrs, &ah_dropper);
3004 			return (NULL);
3005 		}
3006 	}
3007 
3008 	if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)),
3009 	    (outbound ? NULL : ((ah_t *)((uint8_t *)oip6h + ah_offset))),
3010 	    assoc, ah_data_sz, ah_align_sz)) {
3011 		freeb(phdr_mp);
3012 		/*
3013 		 * Returning NULL will tell the caller to
3014 		 * IPSA_REFELE(), free the memory, etc.
3015 		 */
3016 		return (NULL);
3017 	}
3018 
3019 	phdr_mp->b_wptr = ((uint8_t *)ip6h + ah_offset + sizeof (ah_t) +
3020 	    ah_align_sz);
3021 	if (!outbound)
3022 		*length_to_skip += sizeof (ah_t) + ah_align_sz;
3023 	return (phdr_mp);
3024 }
3025 
3026 /*
3027  * This function constructs a pseudo header by looking at the IP header
3028  * and options if any. This is called for both outbound and inbound,
3029  * before computing the ICV.
3030  */
3031 static mblk_t *
3032 ah_process_ip_options_v4(mblk_t *mp, ipsa_t *assoc, int *length_to_skip,
3033     uint_t ah_data_sz, boolean_t outbound)
3034 {
3035 	ipoptp_t opts;
3036 	uint32_t option_length;
3037 	ipha_t	*ipha;
3038 	ipha_t	*oipha;
3039 	mblk_t 	*phdr_mp;
3040 	int	 size;
3041 	uchar_t	*optptr;
3042 	uint8_t optval;
3043 	uint8_t optlen;
3044 	ipaddr_t dst;
3045 	uint32_t v_hlen_tos_len;
3046 	int ip_hdr_length;
3047 	uint_t	ah_align_sz;
3048 	uint32_t off;
3049 
3050 #ifdef	_BIG_ENDIAN
3051 #define	V_HLEN	(v_hlen_tos_len >> 24)
3052 #else
3053 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
3054 #endif
3055 
3056 	oipha = (ipha_t *)mp->b_rptr;
3057 	v_hlen_tos_len = ((uint32_t *)oipha)[0];
3058 
3059 	/*
3060 	 * Allocate space for the authentication data also. It is
3061 	 * useful both during the ICV calculation where we need to
3062 	 * feed in zeroes and while sending the datagram back to IP
3063 	 * where we will be using the same space.
3064 	 *
3065 	 * We need to allocate space for padding bytes if it is not
3066 	 * a multiple of IPV4_PADDING_ALIGN.
3067 	 *
3068 	 * In addition, we allocate space for the ICV computed by
3069 	 * the kernel crypto framework, saving us a separate kmem
3070 	 * allocation down the road.
3071 	 */
3072 
3073 	ah_align_sz = P2ALIGN(ah_data_sz + IPV4_PADDING_ALIGN - 1,
3074 	    IPV4_PADDING_ALIGN);
3075 
3076 	ASSERT(ah_align_sz >= ah_data_sz);
3077 
3078 	size = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz +
3079 	    ah_data_sz;
3080 
3081 	if (V_HLEN != IP_SIMPLE_HDR_VERSION) {
3082 		option_length = oipha->ipha_version_and_hdr_length -
3083 		    (uint8_t)((IP_VERSION << 4) +
3084 		    IP_SIMPLE_HDR_LENGTH_IN_WORDS);
3085 		option_length <<= 2;
3086 		size += option_length;
3087 	}
3088 
3089 	if ((phdr_mp = allocb(size, BPRI_HI)) == NULL) {
3090 		return (NULL);
3091 	}
3092 
3093 	/*
3094 	 * Form the basic IP header first.
3095 	 */
3096 	ipha = (ipha_t *)phdr_mp->b_rptr;
3097 	ipha->ipha_version_and_hdr_length = oipha->ipha_version_and_hdr_length;
3098 	ipha->ipha_type_of_service = 0;
3099 
3100 	if (outbound) {
3101 		/*
3102 		 * Include the size of AH and authentication data.
3103 		 * This is how our recipient would compute the
3104 		 * authentication data. Look at what we do in the
3105 		 * inbound case below.
3106 		 */
3107 		ipha->ipha_length = ntohs(htons(oipha->ipha_length) +
3108 		    sizeof (ah_t) + ah_align_sz);
3109 	} else {
3110 		ipha->ipha_length = oipha->ipha_length;
3111 	}
3112 
3113 	ipha->ipha_ident = oipha->ipha_ident;
3114 	ipha->ipha_fragment_offset_and_flags = 0;
3115 	ipha->ipha_ttl = 0;
3116 	ipha->ipha_protocol = IPPROTO_AH;
3117 	ipha->ipha_hdr_checksum = 0;
3118 	ipha->ipha_src = oipha->ipha_src;
3119 	ipha->ipha_dst = dst = oipha->ipha_dst;
3120 
3121 	/*
3122 	 * If there is no option to process return now.
3123 	 */
3124 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH;
3125 
3126 	if (V_HLEN == IP_SIMPLE_HDR_VERSION) {
3127 		/* Form the AH header */
3128 		goto ah_hdr;
3129 	}
3130 
3131 	ip_hdr_length += option_length;
3132 
3133 	/*
3134 	 * We have options. In the outbound case for source route,
3135 	 * ULP has already moved the first hop, which is now in
3136 	 * ipha_dst. We need the final destination for the calculation
3137 	 * of authentication data. And also make sure that mutable
3138 	 * and experimental fields are zeroed out in the IP options.
3139 	 */
3140 
3141 	bcopy(&oipha[1], &ipha[1], option_length);
3142 
3143 	for (optval = ipoptp_first(&opts, ipha);
3144 	    optval != IPOPT_EOL;
3145 	    optval = ipoptp_next(&opts)) {
3146 		optptr = opts.ipoptp_cur;
3147 		optlen = opts.ipoptp_len;
3148 		switch (optval) {
3149 		case IPOPT_EXTSEC:
3150 		case IPOPT_COMSEC:
3151 		case IPOPT_RA:
3152 		case IPOPT_SDMDD:
3153 		case IPOPT_SECURITY:
3154 			/*
3155 			 * These options are Immutable, leave them as-is.
3156 			 * Note that IPOPT_NOP is also Immutable, but it
3157 			 * was skipped by ipoptp_next() and thus remains
3158 			 * intact in the header.
3159 			 */
3160 			break;
3161 		case IPOPT_SSRR:
3162 		case IPOPT_LSRR:
3163 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0)
3164 				goto bad_ipv4opt;
3165 			/*
3166 			 * These two are mutable and will be zeroed, but
3167 			 * first get the final destination.
3168 			 */
3169 			off = optptr[IPOPT_OFFSET];
3170 			/*
3171 			 * If one of the conditions is true, it means
3172 			 * end of options and dst already has the right
3173 			 * value. So, just fall through.
3174 			 */
3175 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
3176 				off = optlen - IP_ADDR_LEN;
3177 				bcopy(&optptr[off], &dst, IP_ADDR_LEN);
3178 			}
3179 			/* FALLTHRU */
3180 		case IPOPT_RR:
3181 		case IPOPT_TS:
3182 		case IPOPT_SATID:
3183 		default:
3184 			/*
3185 			 * optlen should include from the beginning of an
3186 			 * option.
3187 			 * NOTE : Stream Identifier Option (SID): RFC 791
3188 			 * shows the bit pattern of optlen as 2 and documents
3189 			 * the length as 4. We assume it to be 2 here.
3190 			 */
3191 			bzero(optptr, optlen);
3192 			break;
3193 		}
3194 	}
3195 
3196 	if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
3197 bad_ipv4opt:
3198 		ah1dbg(("AH : bad IPv4 option"));
3199 		freeb(phdr_mp);
3200 		return (NULL);
3201 	}
3202 
3203 	/*
3204 	 * Don't change ipha_dst for an inbound datagram as it points
3205 	 * to the right value. Only for the outbound with LSRR/SSRR,
3206 	 * because of ip_massage_options called by the ULP, ipha_dst
3207 	 * points to the first hop and we need to use the final
3208 	 * destination for computing the ICV.
3209 	 */
3210 
3211 	if (outbound)
3212 		ipha->ipha_dst = dst;
3213 ah_hdr:
3214 	((ah_t *)((uint8_t *)ipha + ip_hdr_length))->ah_nexthdr =
3215 	    oipha->ipha_protocol;
3216 	if (!ah_finish_up(((ah_t *)((uint8_t *)ipha + ip_hdr_length)),
3217 	    (outbound ? NULL : ((ah_t *)((uint8_t *)oipha + ip_hdr_length))),
3218 	    assoc, ah_data_sz, ah_align_sz)) {
3219 		freeb(phdr_mp);
3220 		/*
3221 		 * Returning NULL will tell the caller to IPSA_REFELE(), free
3222 		 * the memory, etc.
3223 		 */
3224 		return (NULL);
3225 	}
3226 
3227 	phdr_mp->b_wptr = ((uchar_t *)ipha + ip_hdr_length +
3228 	    sizeof (ah_t) + ah_align_sz);
3229 
3230 	ASSERT(phdr_mp->b_wptr <= phdr_mp->b_datap->db_lim);
3231 	if (outbound)
3232 		*length_to_skip = ip_hdr_length;
3233 	else
3234 		*length_to_skip = ip_hdr_length + sizeof (ah_t) + ah_align_sz;
3235 	return (phdr_mp);
3236 }
3237 
3238 /*
3239  * Authenticate an outbound datagram. This function is called
3240  * whenever IP sends an outbound datagram that needs authentication.
3241  */
3242 static ipsec_status_t
3243 ah_outbound(mblk_t *ipsec_out)
3244 {
3245 	mblk_t *mp;
3246 	mblk_t *phdr_mp;
3247 	ipsec_out_t *oi;
3248 	ipsa_t *assoc;
3249 	int length_to_skip;
3250 	uint_t ah_align_sz;
3251 	uint_t age_bytes;
3252 
3253 	/*
3254 	 * Construct the chain of mblks
3255 	 *
3256 	 * IPSEC_OUT->PSEUDO_HDR->DATA
3257 	 *
3258 	 * one by one.
3259 	 */
3260 
3261 	AH_BUMP_STAT(out_requests);
3262 
3263 	ASSERT(ipsec_out->b_datap->db_type == M_CTL);
3264 
3265 	ASSERT(MBLKL(ipsec_out) >= sizeof (ipsec_info_t));
3266 
3267 	mp = ipsec_out->b_cont;
3268 	oi = (ipsec_out_t *)ipsec_out->b_rptr;
3269 
3270 	ASSERT(mp->b_datap->db_type == M_DATA);
3271 
3272 	assoc = oi->ipsec_out_ah_sa;
3273 	ASSERT(assoc != NULL);
3274 	if (assoc->ipsa_usetime == 0)
3275 		ah_set_usetime(assoc, B_FALSE);
3276 
3277 	/*
3278 	 * Age SA according to number of bytes that will be sent after
3279 	 * adding the AH header, ICV, and padding to the packet.
3280 	 */
3281 
3282 	if (oi->ipsec_out_v4) {
3283 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
3284 		ah_align_sz = P2ALIGN(assoc->ipsa_mac_len +
3285 		    IPV4_PADDING_ALIGN - 1, IPV4_PADDING_ALIGN);
3286 		age_bytes = ntohs(ipha->ipha_length) + sizeof (ah_t) +
3287 		    ah_align_sz;
3288 	} else {
3289 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
3290 		ah_align_sz = P2ALIGN(assoc->ipsa_mac_len +
3291 		    IPV6_PADDING_ALIGN - 1, IPV6_PADDING_ALIGN);
3292 		age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) +
3293 			sizeof (ah_t) + ah_align_sz;
3294 	}
3295 
3296 	if (!ah_age_bytes(assoc, age_bytes, B_FALSE)) {
3297 		/* rig things as if ipsec_getassocbyconn() failed */
3298 		ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
3299 		    "AH association 0x%x, dst %s had bytes expire.\n",
3300 		    ntohl(assoc->ipsa_spi), assoc->ipsa_dstaddr, AF_INET);
3301 		freemsg(ipsec_out);
3302 		return (IPSEC_STATUS_FAILED);
3303 	}
3304 
3305 	if (oi->ipsec_out_is_capab_ill) {
3306 		ah3dbg(("ah_outbound: pkt can be accelerated\n"));
3307 		if (oi->ipsec_out_v4)
3308 			return (ah_outbound_accelerated_v4(ipsec_out, assoc));
3309 		else
3310 			return (ah_outbound_accelerated_v6(ipsec_out, assoc));
3311 	}
3312 	AH_BUMP_STAT(noaccel);
3313 
3314 	/*
3315 	 * Insert pseudo header:
3316 	 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP
3317 	 */
3318 
3319 	if (oi->ipsec_out_v4) {
3320 		phdr_mp = ah_process_ip_options_v4(mp, assoc, &length_to_skip,
3321 		    assoc->ipsa_mac_len, B_TRUE);
3322 	} else {
3323 		phdr_mp = ah_process_ip_options_v6(mp, assoc, &length_to_skip,
3324 		    assoc->ipsa_mac_len, B_TRUE);
3325 	}
3326 
3327 	if (phdr_mp == NULL) {
3328 		AH_BUMP_STAT(out_discards);
3329 		ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL,
3330 		    &ipdrops_ah_bad_v4_opts, &ah_dropper);
3331 		return (IPSEC_STATUS_FAILED);
3332 	}
3333 
3334 	ipsec_out->b_cont = phdr_mp;
3335 	phdr_mp->b_cont = mp;
3336 	mp->b_rptr += length_to_skip;
3337 
3338 	/*
3339 	 * At this point ipsec_out points to the IPSEC_OUT, new_mp
3340 	 * points to an mblk containing the pseudo header (IP header,
3341 	 * AH header, and ICV with mutable fields zero'ed out).
3342 	 * mp points to the mblk containing the ULP data. The original
3343 	 * IP header is kept before the ULP data in mp.
3344 	 */
3345 
3346 	/* submit MAC request to KCF */
3347 	return (ah_submit_req_outbound(ipsec_out, length_to_skip, assoc));
3348 }
3349 
3350 static ipsec_status_t
3351 ah_inbound(mblk_t *ipsec_in_mp, void *arg)
3352 {
3353 	mblk_t *data_mp = ipsec_in_mp->b_cont;
3354 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr;
3355 	ah_t *ah = (ah_t *)arg;
3356 	ipsa_t *assoc = ii->ipsec_in_ah_sa;
3357 	int length_to_skip;
3358 	int ah_length;
3359 	mblk_t *phdr_mp;
3360 	uint32_t ah_offset;
3361 
3362 	ASSERT(assoc != NULL);
3363 	if (assoc->ipsa_usetime == 0)
3364 		ah_set_usetime(assoc, B_TRUE);
3365 
3366 	/*
3367 	 * We may wish to check replay in-range-only here as an optimization.
3368 	 * Include the reality check of ipsa->ipsa_replay >
3369 	 * ipsa->ipsa_replay_wsize for times when it's the first N packets,
3370 	 * where N == ipsa->ipsa_replay_wsize.
3371 	 *
3372 	 * Another check that may come here later is the "collision" check.
3373 	 * If legitimate packets flow quickly enough, this won't be a problem,
3374 	 * but collisions may cause authentication algorithm crunching to
3375 	 * take place when it doesn't need to.
3376 	 */
3377 	if (!sadb_replay_peek(assoc, ah->ah_replay)) {
3378 		AH_BUMP_STAT(replay_early_failures);
3379 		IP_AH_BUMP_STAT(in_discards);
3380 		ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL,
3381 		    &ipdrops_ah_early_replay, &ah_dropper);
3382 		return (IPSEC_STATUS_FAILED);
3383 	}
3384 
3385 	/*
3386 	 * The offset of the AH header can be computed from its pointer
3387 	 * within the data mblk, which was pulled up until the AH header
3388 	 * by ipsec_inbound_ah_sa() during SA selection.
3389 	 */
3390 	ah_offset = (uchar_t *)ah - data_mp->b_rptr;
3391 
3392 	/*
3393 	 * Has this packet already been processed by a hardware
3394 	 * IPsec accelerator?
3395 	 */
3396 	if (ii->ipsec_in_accelerated) {
3397 		ah3dbg(("ah_inbound_v6: pkt processed by ill=%d isv6=%d\n",
3398 		    ii->ipsec_in_ill_index, !ii->ipsec_in_v4));
3399 		return (ah_inbound_accelerated(ipsec_in_mp, ii->ipsec_in_v4,
3400 		    assoc, ah_offset));
3401 	}
3402 	AH_BUMP_STAT(noaccel);
3403 
3404 	/*
3405 	 * We need to pullup until the ICV before we call
3406 	 * ah_process_ip_options_v6.
3407 	 */
3408 	ah_length = (ah->ah_length << 2) + 8;
3409 
3410 	/*
3411 	 * NOTE : If we want to use any field of IP/AH header, you need
3412 	 * to re-assign following the pullup.
3413 	 */
3414 	if (((uchar_t *)ah + ah_length) > data_mp->b_wptr) {
3415 		if (!pullupmsg(data_mp, (uchar_t *)ah + ah_length -
3416 		    data_mp->b_rptr)) {
3417 			(void) ipsec_rl_strlog(info.mi_idnum, 0, 0,
3418 			    SL_WARN | SL_ERROR,
3419 			    "ah_inbound: Small AH header\n");
3420 			IP_AH_BUMP_STAT(in_discards);
3421 			ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL,
3422 			    &ipdrops_ah_nomem, &ah_dropper);
3423 			return (IPSEC_STATUS_FAILED);
3424 		}
3425 	}
3426 
3427 	/*
3428 	 * Insert pseudo header:
3429 	 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP
3430 	 */
3431 	if (ii->ipsec_in_v4) {
3432 		phdr_mp = ah_process_ip_options_v4(data_mp, assoc,
3433 		    &length_to_skip, assoc->ipsa_mac_len, B_FALSE);
3434 	} else {
3435 		phdr_mp = ah_process_ip_options_v6(data_mp, assoc,
3436 		    &length_to_skip, assoc->ipsa_mac_len, B_FALSE);
3437 	}
3438 
3439 	if (phdr_mp == NULL) {
3440 		IP_AH_BUMP_STAT(in_discards);
3441 		ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL,
3442 		    ii->ipsec_in_v4 ? &ipdrops_ah_bad_v4_opts :
3443 		    &ipdrops_ah_bad_v6_hdrs, &ah_dropper);
3444 		return (IPSEC_STATUS_FAILED);
3445 	}
3446 
3447 	ipsec_in_mp->b_cont = phdr_mp;
3448 	phdr_mp->b_cont = data_mp;
3449 	data_mp->b_rptr += length_to_skip;
3450 
3451 	/* submit request to KCF */
3452 	return (ah_submit_req_inbound(ipsec_in_mp, length_to_skip, ah_offset,
3453 	    assoc));
3454 }
3455 
3456 /*
3457  * ah_inbound_accelerated:
3458  * Called from ah_inbound() to process IPsec packets that have been
3459  * accelerated by hardware.
3460  *
3461  * Basically does what ah_auth_in_done() with some changes since
3462  * no pseudo-headers are involved, i.e. the passed message is a
3463  * IPSEC_INFO->DATA.
3464  *
3465  * It is assumed that only packets that have been successfully
3466  * processed by the adapter come here.
3467  *
3468  * 1. get algorithm structure corresponding to association
3469  * 2. calculate pointers to authentication header and ICV
3470  * 3. compare ICV in AH header with ICV in data attributes
3471  *    3.1 if different:
3472  *	  3.1.1 generate error
3473  *        3.1.2 discard message
3474  *    3.2 if ICV matches:
3475  *	  3.2.1 check replay
3476  *        3.2.2 remove AH header
3477  *        3.2.3 age SA byte
3478  *        3.2.4 send to IP
3479  */
3480 ipsec_status_t
3481 ah_inbound_accelerated(mblk_t *ipsec_in, boolean_t isv4, ipsa_t *assoc,
3482     uint32_t ah_offset)
3483 {
3484 	mblk_t *mp;
3485 	ipha_t *ipha;
3486 	ah_t *ah;
3487 	ipsec_in_t *ii;
3488 	uint32_t icv_len;
3489 	uint32_t align_len;
3490 	uint32_t age_bytes;
3491 	ip6_t *ip6h;
3492 	uint8_t *in_icv;
3493 	mblk_t *hada_mp;
3494 	uint32_t next_hdr;
3495 	da_ipsec_t *hada;
3496 	kstat_named_t *counter;
3497 
3498 	AH_BUMP_STAT(in_accelerated);
3499 
3500 	ii = (ipsec_in_t *)ipsec_in->b_rptr;
3501 	mp = ipsec_in->b_cont;
3502 	hada_mp = ii->ipsec_in_da;
3503 	ASSERT(hada_mp != NULL);
3504 	hada = (da_ipsec_t *)hada_mp->b_rptr;
3505 
3506 	/*
3507 	 * We only support one level of decapsulation in hardware, so
3508 	 * nuke the pointer.
3509 	 */
3510 	ii->ipsec_in_da = NULL;
3511 	ii->ipsec_in_accelerated = B_FALSE;
3512 
3513 	/*
3514 	 * Extract ICV length from attributes M_CTL and sanity check
3515 	 * its value. We allow the mblk to be smaller than da_ipsec_t
3516 	 * for a small ICV, as long as the entire ICV fits within the mblk.
3517 	 * Also ensures that the ICV length computed by Provider
3518 	 * corresponds to the ICV length of the algorithm specified by the SA.
3519 	 */
3520 	icv_len = hada->da_icv_len;
3521 	if ((icv_len != assoc->ipsa_mac_len) ||
3522 	    (icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) <
3523 		(sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) {
3524 		ah0dbg(("ah_inbound_accelerated: "
3525 		    "ICV len (%u) incorrect or mblk too small (%u)\n",
3526 		    icv_len, (uint32_t)(MBLKL(hada_mp))));
3527 		counter = &ipdrops_ah_bad_length;
3528 		goto ah_in_discard;
3529 	}
3530 	ASSERT(icv_len != 0);
3531 
3532 	/* compute the padded AH ICV len */
3533 	if (isv4) {
3534 		ipha = (ipha_t *)mp->b_rptr;
3535 		align_len = (icv_len + IPV4_PADDING_ALIGN - 1) &
3536 		    -IPV4_PADDING_ALIGN;
3537 	} else {
3538 		ip6h = (ip6_t *)mp->b_rptr;
3539 		align_len = (icv_len + IPV6_PADDING_ALIGN - 1) &
3540 		    -IPV6_PADDING_ALIGN;
3541 	}
3542 
3543 	ah = (ah_t *)(mp->b_rptr + ah_offset);
3544 	in_icv = (uint8_t *)ah + sizeof (ah_t);
3545 
3546 	/* compare ICV in AH header vs ICV computed by adapter */
3547 	if (bcmp(hada->da_icv, in_icv, icv_len)) {
3548 		int af;
3549 		void *addr;
3550 
3551 		if (isv4) {
3552 			addr = &ipha->ipha_dst;
3553 			af = AF_INET;
3554 		} else {
3555 			addr = &ip6h->ip6_dst;
3556 			af = AF_INET6;
3557 		}
3558 
3559 		/*
3560 		 * Log the event. Don't print to the console, block
3561 		 * potential denial-of-service attack.
3562 		 */
3563 		AH_BUMP_STAT(bad_auth);
3564 		ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
3565 		    "AH Authentication failed spi %x, dst_addr %s",
3566 		    assoc->ipsa_spi, addr, af);
3567 		counter = &ipdrops_ah_bad_auth;
3568 		goto ah_in_discard;
3569 	}
3570 
3571 	ah3dbg(("AH succeeded, checking replay\n"));
3572 	AH_BUMP_STAT(good_auth);
3573 
3574 	if (!sadb_replay_check(assoc, ah->ah_replay)) {
3575 		int af;
3576 		void *addr;
3577 
3578 		if (isv4) {
3579 			addr = &ipha->ipha_dst;
3580 			af = AF_INET;
3581 		} else {
3582 			addr = &ip6h->ip6_dst;
3583 			af = AF_INET6;
3584 		}
3585 
3586 		/*
3587 		 * Log the event. As of now we print out an event.
3588 		 * Do not print the replay failure number, or else
3589 		 * syslog cannot collate the error messages.  Printing
3590 		 * the replay number that failed (or printing to the
3591 		 * console) opens a denial-of-service attack.
3592 		 */
3593 		AH_BUMP_STAT(replay_failures);
3594 		ipsec_assocfailure(info.mi_idnum, 0, 0,
3595 		    SL_ERROR | SL_WARN,
3596 		    "Replay failed for AH spi %x, dst_addr %s",
3597 		    assoc->ipsa_spi, addr, af);
3598 		counter = &ipdrops_ah_replay;
3599 		goto ah_in_discard;
3600 	}
3601 
3602 	/*
3603 	 * Remove AH header. We do this by copying everything before
3604 	 * the AH header onto the AH header+ICV.
3605 	 */
3606 	/* overwrite AH with what was preceeding it (IP header) */
3607 	next_hdr = ah->ah_nexthdr;
3608 	ovbcopy(mp->b_rptr, mp->b_rptr + sizeof (ah_t) + align_len,
3609 	    ah_offset);
3610 	mp->b_rptr += sizeof (ah_t) + align_len;
3611 	if (isv4) {
3612 		/* adjust IP header next protocol */
3613 		ipha = (ipha_t *)mp->b_rptr;
3614 		ipha->ipha_protocol = next_hdr;
3615 
3616 		age_bytes = ipha->ipha_length;
3617 
3618 		/* adjust length in IP header */
3619 		ipha->ipha_length -= (sizeof (ah_t) + align_len);
3620 
3621 		/* recalculate checksum */
3622 		ipha->ipha_hdr_checksum = 0;
3623 		ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
3624 	} else {
3625 		/* adjust IP header next protocol */
3626 		ip6h = (ip6_t *)mp->b_rptr;
3627 		ip6h->ip6_nxt = next_hdr;
3628 
3629 		age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) +
3630 		    sizeof (ah_t);
3631 
3632 		/* adjust length in IP header */
3633 		ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
3634 		    (sizeof (ah_t) + align_len));
3635 	}
3636 
3637 	/* age SA */
3638 	if (!ah_age_bytes(assoc, age_bytes, B_TRUE)) {
3639 		/* The ipsa has hit hard expiration, LOG and AUDIT. */
3640 		ipsec_assocfailure(info.mi_idnum, 0, 0,
3641 		    SL_ERROR | SL_WARN,
3642 		    "AH Association 0x%x, dst %s had bytes expire.\n",
3643 		    assoc->ipsa_spi, assoc->ipsa_dstaddr,
3644 		    AF_INET);
3645 		AH_BUMP_STAT(bytes_expired);
3646 		counter = &ipdrops_ah_bytes_expire;
3647 		goto ah_in_discard;
3648 	}
3649 
3650 	freeb(hada_mp);
3651 	return (IPSEC_STATUS_SUCCESS);
3652 
3653 ah_in_discard:
3654 	IP_AH_BUMP_STAT(in_discards);
3655 	freeb(hada_mp);
3656 	ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper);
3657 	return (IPSEC_STATUS_FAILED);
3658 }
3659 
3660 /*
3661  * ah_outbound_accelerated_v4:
3662  * Called from ah_outbound_v4() and once it is determined that the
3663  * packet is elligible for hardware acceleration.
3664  *
3665  * We proceed as follows:
3666  * 1. allocate and initialize attributes mblk
3667  * 2. mark IPSEC_OUT to indicate that pkt is accelerated
3668  * 3. insert AH header
3669  */
3670 static ipsec_status_t
3671 ah_outbound_accelerated_v4(mblk_t *ipsec_mp, ipsa_t *assoc)
3672 {
3673 	mblk_t *mp, *new_mp;
3674 	ipsec_out_t *oi;
3675 	uint_t ah_data_sz;	/* ICV length, algorithm dependent */
3676 	uint_t ah_align_sz;	/* ICV length + padding */
3677 	uint32_t v_hlen_tos_len; /* from original IP header */
3678 	ipha_t	*oipha;		/* original IP header */
3679 	ipha_t	*nipha;		/* new IP header */
3680 	uint_t option_length = 0;
3681 	uint_t new_hdr_len;	/* new header length */
3682 	uint_t iphdr_length;
3683 	ah_t *ah_hdr;		/* ptr to AH header */
3684 
3685 	AH_BUMP_STAT(out_accelerated);
3686 
3687 	oi = (ipsec_out_t *)ipsec_mp->b_rptr;
3688 	mp = ipsec_mp->b_cont;
3689 
3690 	oipha = (ipha_t *)mp->b_rptr;
3691 	v_hlen_tos_len = ((uint32_t *)oipha)[0];
3692 
3693 	/* mark packet as being accelerated in IPSEC_OUT */
3694 	ASSERT(oi->ipsec_out_accelerated == B_FALSE);
3695 	oi->ipsec_out_accelerated = B_TRUE;
3696 
3697 	/* calculate authentication data length, i.e. ICV + padding */
3698 	ah_data_sz = assoc->ipsa_mac_len;
3699 	ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) &
3700 	    -IPV4_PADDING_ALIGN;
3701 
3702 	/*
3703 	 * Insert pseudo header:
3704 	 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP
3705 	 */
3706 
3707 	/* IP + AH + authentication + padding data length */
3708 	new_hdr_len = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz;
3709 	if (V_HLEN != IP_SIMPLE_HDR_VERSION) {
3710 		option_length = oipha->ipha_version_and_hdr_length -
3711 		    (uint8_t)((IP_VERSION << 4) +
3712 		    IP_SIMPLE_HDR_LENGTH_IN_WORDS);
3713 		option_length <<= 2;
3714 		new_hdr_len += option_length;
3715 	}
3716 
3717 	/* allocate pseudo-header mblk */
3718 	if ((new_mp = allocb(new_hdr_len, BPRI_HI)) == NULL) {
3719 		/* IPsec kstats: bump bean counter here */
3720 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
3721 		    &ipdrops_ah_nomem, &ah_dropper);
3722 		return (IPSEC_STATUS_FAILED);
3723 	}
3724 
3725 	new_mp->b_cont = mp;
3726 	ipsec_mp->b_cont = new_mp;
3727 	new_mp->b_wptr += new_hdr_len;
3728 
3729 	/* copy original IP header to new header */
3730 	bcopy(mp->b_rptr, new_mp->b_rptr, IP_SIMPLE_HDR_LENGTH +
3731 	    option_length);
3732 
3733 	/* update IP header */
3734 	nipha = (ipha_t *)new_mp->b_rptr;
3735 	nipha->ipha_protocol = IPPROTO_AH;
3736 	iphdr_length = ntohs(nipha->ipha_length);
3737 	iphdr_length += sizeof (ah_t) + ah_align_sz;
3738 	nipha->ipha_length = htons(iphdr_length);
3739 	nipha->ipha_hdr_checksum = 0;
3740 	nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha);
3741 
3742 	/* skip original IP header in mp */
3743 	mp->b_rptr += IP_SIMPLE_HDR_LENGTH + option_length;
3744 
3745 	/* initialize AH header */
3746 	ah_hdr = (ah_t *)(new_mp->b_rptr + IP_SIMPLE_HDR_LENGTH +
3747 	    option_length);
3748 	ah_hdr->ah_nexthdr = oipha->ipha_protocol;
3749 	if (!ah_finish_up(ah_hdr, NULL, assoc, ah_data_sz, ah_align_sz)) {
3750 		/* Only way this fails is if outbound replay counter wraps. */
3751 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
3752 		    &ipdrops_ah_replay, &ah_dropper);
3753 		return (IPSEC_STATUS_FAILED);
3754 	}
3755 
3756 	return (IPSEC_STATUS_SUCCESS);
3757 }
3758 
3759 /*
3760  * ah_outbound_accelerated_v6:
3761  *
3762  * Called from ah_outbound_v6() once it is determined that the packet
3763  * is eligible for hardware acceleration.
3764  *
3765  * We proceed as follows:
3766  * 1. allocate and initialize attributes mblk
3767  * 2. mark IPSEC_OUT to indicate that pkt is accelerated
3768  * 3. insert AH header
3769  */
3770 static ipsec_status_t
3771 ah_outbound_accelerated_v6(mblk_t *ipsec_mp, ipsa_t *assoc)
3772 {
3773 	mblk_t *mp, *phdr_mp;
3774 	ipsec_out_t *oi;
3775 	uint_t ah_data_sz;	/* ICV length, algorithm dependent */
3776 	uint_t ah_align_sz;	/* ICV length + padding */
3777 	ip6_t	*oip6h;		/* original IP header */
3778 	ip6_t	*ip6h;		/* new IP header */
3779 	uint_t option_length = 0;
3780 	uint_t hdr_size;
3781 	uint_t ah_offset;
3782 	ah_t *ah_hdr;		/* ptr to AH header */
3783 
3784 	AH_BUMP_STAT(out_accelerated);
3785 
3786 	oi = (ipsec_out_t *)ipsec_mp->b_rptr;
3787 	mp = ipsec_mp->b_cont;
3788 
3789 	oip6h = (ip6_t *)mp->b_rptr;
3790 
3791 	/* mark packet as being accelerated in IPSEC_OUT */
3792 	ASSERT(oi->ipsec_out_accelerated == B_FALSE);
3793 	oi->ipsec_out_accelerated = B_TRUE;
3794 
3795 	/* calculate authentication data length, i.e. ICV + padding */
3796 	ah_data_sz = assoc->ipsa_mac_len;
3797 	ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) &
3798 	    -IPV4_PADDING_ALIGN;
3799 
3800 	ASSERT(ah_align_sz >= ah_data_sz);
3801 
3802 	hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE);
3803 	option_length = hdr_size - IPV6_HDR_LEN;
3804 
3805 	/* This was not included in ipsec_ah_get_hdr_size_v6() */
3806 	hdr_size += (sizeof (ah_t) + ah_align_sz);
3807 
3808 	if ((phdr_mp = allocb(hdr_size, BPRI_HI)) == NULL) {
3809 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, &ipdrops_ah_nomem,
3810 		    &ah_dropper);
3811 		return (IPSEC_STATUS_FAILED);
3812 	}
3813 	phdr_mp->b_wptr += hdr_size;
3814 
3815 	/*
3816 	 * Form the basic IP header first.  We always assign every bit
3817 	 * of the v6 basic header, so a separate bzero is unneeded.
3818 	 */
3819 	ip6h = (ip6_t *)phdr_mp->b_rptr;
3820 	ip6h->ip6_vcf = oip6h->ip6_vcf;
3821 	ip6h->ip6_hlim = oip6h->ip6_hlim;
3822 	ip6h->ip6_src = oip6h->ip6_src;
3823 	ip6h->ip6_dst = oip6h->ip6_dst;
3824 	/*
3825 	 * Include the size of AH and authentication data.
3826 	 * This is how our recipient would compute the
3827 	 * authentication data. Look at what we do in the
3828 	 * inbound case below.
3829 	 */
3830 	ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) + sizeof (ah_t) +
3831 	    ah_align_sz);
3832 
3833 	/*
3834 	 * Insert pseudo header:
3835 	 * IPSEC_INFO -> [IP6, LLH, ULP] =>
3836 	 *	IPSEC_INFO -> [IP, LLH, AH, ICV] -> ULP
3837 	 */
3838 
3839 	if (option_length == 0) {
3840 		/* Form the AH header */
3841 		ip6h->ip6_nxt = IPPROTO_AH;
3842 		((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt;
3843 		ah_offset = IPV6_HDR_LEN;
3844 	} else {
3845 		ip6h->ip6_nxt = oip6h->ip6_nxt;
3846 		/* option_length does not include the AH header's size */
3847 		ah_offset = ah_fix_phdr_v6(ip6h, oip6h, B_TRUE, B_FALSE);
3848 		if (ah_offset == 0) {
3849 			freemsg(phdr_mp);
3850 			ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
3851 			    &ipdrops_ah_bad_v6_hdrs, &ah_dropper);
3852 			return (IPSEC_STATUS_FAILED);
3853 		}
3854 	}
3855 
3856 	phdr_mp->b_cont = mp;
3857 	ipsec_mp->b_cont = phdr_mp;
3858 
3859 	/* skip original IP header in mp */
3860 	mp->b_rptr += IPV6_HDR_LEN + option_length;
3861 
3862 	/* initialize AH header */
3863 	ah_hdr = (ah_t *)(phdr_mp->b_rptr + IPV6_HDR_LEN + option_length);
3864 	ah_hdr->ah_nexthdr = oip6h->ip6_nxt;
3865 
3866 	if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)), NULL,
3867 	    assoc, ah_data_sz, ah_align_sz)) {
3868 		/* Only way this fails is if outbound replay counter wraps. */
3869 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
3870 		    &ipdrops_ah_replay, &ah_dropper);
3871 		return (IPSEC_STATUS_FAILED);
3872 	}
3873 
3874 	return (IPSEC_STATUS_SUCCESS);
3875 }
3876 
3877 /*
3878  * Invoked after processing of an inbound packet by the
3879  * kernel crypto framework. Called by ah_submit_req() for a sync request,
3880  * or by the kcf callback for an async request.
3881  * Returns IPSEC_STATUS_SUCCESS on success, IPSEC_STATUS_FAILED on failure.
3882  * On failure, the mblk chain ipsec_in is freed by this function.
3883  */
3884 static ipsec_status_t
3885 ah_auth_in_done(mblk_t *ipsec_in)
3886 {
3887 	mblk_t *phdr_mp;
3888 	ipha_t *ipha;
3889 	uint_t ah_offset = 0;
3890 	mblk_t *mp;
3891 	int align_len;
3892 	ah_t *ah;
3893 	ipha_t *nipha;
3894 	uint32_t length;
3895 	ipsec_in_t *ii;
3896 	boolean_t isv4;
3897 	ip6_t *ip6h;
3898 	ip6_t *nip6h;
3899 	uint_t icv_len;
3900 	ipsa_t *assoc;
3901 	kstat_named_t *counter;
3902 
3903 	ii = (ipsec_in_t *)ipsec_in->b_rptr;
3904 	isv4 = ii->ipsec_in_v4;
3905 	assoc = ii->ipsec_in_ah_sa;
3906 	icv_len = (uint_t)ii->ipsec_in_crypto_mac.cd_raw.iov_len;
3907 
3908 	phdr_mp = ipsec_in->b_cont;
3909 	if (phdr_mp == NULL) {
3910 		ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem,
3911 		    &ah_dropper);
3912 		return (IPSEC_STATUS_FAILED);
3913 	}
3914 
3915 	mp = phdr_mp->b_cont;
3916 	if (mp == NULL) {
3917 		ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem,
3918 		    &ah_dropper);
3919 		return (IPSEC_STATUS_FAILED);
3920 	}
3921 	mp->b_rptr -= ii->ipsec_in_skip_len;
3922 
3923 	if (isv4) {
3924 		ipha = (ipha_t *)mp->b_rptr;
3925 		ah_offset = ipha->ipha_version_and_hdr_length -
3926 		    (uint8_t)((IP_VERSION << 4));
3927 		ah_offset <<= 2;
3928 		align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1,
3929 		    IPV4_PADDING_ALIGN);
3930 	} else {
3931 		ip6h = (ip6_t *)mp->b_rptr;
3932 		ah_offset = ipsec_ah_get_hdr_size_v6(mp, B_TRUE);
3933 		ASSERT((mp->b_wptr - mp->b_rptr) >= ah_offset);
3934 		align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1,
3935 		    IPV6_PADDING_ALIGN);
3936 	}
3937 
3938 	ah = (ah_t *)(mp->b_rptr + ah_offset);
3939 
3940 	/*
3941 	 * We get here only when authentication passed.
3942 	 */
3943 
3944 	ah3dbg(("AH succeeded, checking replay\n"));
3945 	AH_BUMP_STAT(good_auth);
3946 
3947 	if (!sadb_replay_check(assoc, ah->ah_replay)) {
3948 		int af;
3949 		void *addr;
3950 
3951 		if (isv4) {
3952 			addr = &ipha->ipha_dst;
3953 			af = AF_INET;
3954 		} else {
3955 			addr = &ip6h->ip6_dst;
3956 			af = AF_INET6;
3957 		}
3958 
3959 		/*
3960 		 * Log the event. As of now we print out an event.
3961 		 * Do not print the replay failure number, or else
3962 		 * syslog cannot collate the error messages.  Printing
3963 		 * the replay number that failed (or printing to the
3964 		 * console) opens a denial-of-service attack.
3965 		 */
3966 		AH_BUMP_STAT(replay_failures);
3967 		ipsec_assocfailure(info.mi_idnum, 0, 0,
3968 		    SL_ERROR | SL_WARN,
3969 		    "Replay failed for AH spi %x, dst_addr %s",
3970 		    assoc->ipsa_spi, addr, af);
3971 		counter = &ipdrops_ah_replay;
3972 		goto ah_in_discard;
3973 	}
3974 
3975 	/*
3976 	 * We need to remove the AH header from the original
3977 	 * datagram. Easy way to do this is to use phdr_mp
3978 	 * to hold the IP header and the orginal mp to hold
3979 	 * the rest of it. So, we copy the IP header on to
3980 	 * phdr_mp, and set the b_rptr in mp past AH header.
3981 	 */
3982 	if (isv4) {
3983 		bcopy(mp->b_rptr, phdr_mp->b_rptr, ah_offset);
3984 		phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset;
3985 		nipha = (ipha_t *)phdr_mp->b_rptr;
3986 		/*
3987 		 * Assign the right protocol, adjust the length as we
3988 		 * are removing the AH header and adjust the checksum to
3989 		 * account for the protocol and length.
3990 		 */
3991 		nipha->ipha_protocol = ah->ah_nexthdr;
3992 		length = ntohs(nipha->ipha_length);
3993 		if (!ah_age_bytes(assoc, length, B_TRUE)) {
3994 			/* The ipsa has hit hard expiration, LOG and AUDIT. */
3995 			ipsec_assocfailure(info.mi_idnum, 0, 0,
3996 			    SL_ERROR | SL_WARN,
3997 			    "AH Association 0x%x, dst %s had bytes expire.\n",
3998 			    assoc->ipsa_spi, assoc->ipsa_dstaddr,
3999 			    AF_INET);
4000 			AH_BUMP_STAT(bytes_expired);
4001 			counter = &ipdrops_ah_bytes_expire;
4002 			goto ah_in_discard;
4003 		}
4004 		length -= (sizeof (ah_t) + align_len);
4005 
4006 		nipha->ipha_length = htons((uint16_t)length);
4007 		nipha->ipha_hdr_checksum = 0;
4008 		nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha);
4009 		/*
4010 		 * Skip IP,AH and the authentication data in the
4011 		 * original datagram.
4012 		 */
4013 		mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len);
4014 	} else {
4015 		uchar_t *whereptr;
4016 		int hdrlen;
4017 		uint8_t *nexthdr;
4018 		ip6_hbh_t *hbhhdr;
4019 		ip6_dest_t *dsthdr;
4020 		ip6_rthdr0_t *rthdr;
4021 
4022 		nip6h = (ip6_t *)phdr_mp->b_rptr;
4023 
4024 		/*
4025 		 * Make phdr_mp hold until the AH header and make
4026 		 * mp hold everything past AH header.
4027 		 */
4028 		length = ntohs(nip6h->ip6_plen);
4029 		if (!ah_age_bytes(assoc, length + sizeof (ip6_t), B_TRUE)) {
4030 			/* The ipsa has hit hard expiration, LOG and AUDIT. */
4031 			ipsec_assocfailure(info.mi_idnum, 0, 0,
4032 			    SL_ERROR | SL_WARN,
4033 			    "AH Association 0x%x, dst %s had bytes "
4034 			    "expire.\n", assoc->ipsa_spi, &ip6h->ip6_dst,
4035 			    AF_INET6);
4036 			AH_BUMP_STAT(bytes_expired);
4037 			counter = &ipdrops_ah_bytes_expire;
4038 			goto ah_in_discard;
4039 		}
4040 		bcopy(ip6h, nip6h, ah_offset);
4041 		phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset;
4042 		mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len);
4043 
4044 		/*
4045 		 * Update the next header field of the header preceding
4046 		 * AH with the next header field of AH. Start with the
4047 		 * IPv6 header and proceed with the extension headers
4048 		 * until we find what we're looking for.
4049 		 */
4050 		nexthdr = &nip6h->ip6_nxt;
4051 		whereptr =  (uchar_t *)nip6h;
4052 		hdrlen = sizeof (ip6_t);
4053 
4054 		while (*nexthdr != IPPROTO_AH) {
4055 			whereptr += hdrlen;
4056 			/* Assume IP has already stripped it */
4057 			ASSERT(*nexthdr != IPPROTO_FRAGMENT &&
4058 			    *nexthdr != IPPROTO_RAW);
4059 			switch (*nexthdr) {
4060 			case IPPROTO_HOPOPTS:
4061 				hbhhdr = (ip6_hbh_t *)whereptr;
4062 				nexthdr = &hbhhdr->ip6h_nxt;
4063 				hdrlen = 8 * (hbhhdr->ip6h_len + 1);
4064 				break;
4065 			case IPPROTO_DSTOPTS:
4066 				dsthdr = (ip6_dest_t *)whereptr;
4067 				nexthdr = &dsthdr->ip6d_nxt;
4068 				hdrlen = 8 * (dsthdr->ip6d_len + 1);
4069 				break;
4070 			case IPPROTO_ROUTING:
4071 				rthdr = (ip6_rthdr0_t *)whereptr;
4072 				nexthdr = &rthdr->ip6r0_nxt;
4073 				hdrlen = 8 * (rthdr->ip6r0_len + 1);
4074 				break;
4075 			}
4076 		}
4077 		*nexthdr = ah->ah_nexthdr;
4078 
4079 		length -= (sizeof (ah_t) + align_len);
4080 		nip6h->ip6_plen = htons((uint16_t)length);
4081 	}
4082 
4083 	return (IPSEC_STATUS_SUCCESS);
4084 
4085 ah_in_discard:
4086 	IP_AH_BUMP_STAT(in_discards);
4087 	ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper);
4088 	return (IPSEC_STATUS_FAILED);
4089 }
4090 
4091 /*
4092  * Invoked after processing of an outbound packet by the
4093  * kernel crypto framework, either by ah_submit_req() for a request
4094  * executed syncrhonously, or by the KEF callback for a request
4095  * executed asynchronously.
4096  */
4097 static ipsec_status_t
4098 ah_auth_out_done(mblk_t *ipsec_out)
4099 {
4100 	mblk_t *phdr_mp;
4101 	mblk_t *mp;
4102 	int align_len;
4103 	uint32_t hdrs_length;
4104 	uchar_t *ptr;
4105 	uint32_t length;
4106 	boolean_t isv4;
4107 	ipsec_out_t *io;
4108 	size_t icv_len;
4109 
4110 	io = (ipsec_out_t *)ipsec_out->b_rptr;
4111 	isv4 = io->ipsec_out_v4;
4112 	icv_len = io->ipsec_out_crypto_mac.cd_raw.iov_len;
4113 
4114 	phdr_mp = ipsec_out->b_cont;
4115 	if (phdr_mp == NULL) {
4116 		ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL,
4117 		    &ipdrops_ah_nomem, &ah_dropper);
4118 		return (IPSEC_STATUS_FAILED);
4119 	}
4120 
4121 	mp = phdr_mp->b_cont;
4122 	if (mp == NULL) {
4123 		ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL,
4124 		    &ipdrops_ah_nomem, &ah_dropper);
4125 		return (IPSEC_STATUS_FAILED);
4126 	}
4127 	mp->b_rptr -= io->ipsec_out_skip_len;
4128 
4129 	if (isv4) {
4130 		ipha_t *ipha;
4131 		ipha_t *nipha;
4132 
4133 		ipha = (ipha_t *)mp->b_rptr;
4134 		hdrs_length = ipha->ipha_version_and_hdr_length -
4135 		    (uint8_t)((IP_VERSION << 4));
4136 		hdrs_length <<= 2;
4137 		align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1,
4138 		    IPV4_PADDING_ALIGN);
4139 		/*
4140 		 * phdr_mp must have the right amount of space for the
4141 		 * combined IP and AH header. Copy the IP header and
4142 		 * the ack_data onto AH. Note that the AH header was
4143 		 * already formed before the ICV calculation and hence
4144 		 * you don't have to copy it here.
4145 		 */
4146 		bcopy(mp->b_rptr, phdr_mp->b_rptr, hdrs_length);
4147 
4148 		ptr = phdr_mp->b_rptr + hdrs_length + sizeof (ah_t);
4149 		bcopy(phdr_mp->b_wptr, ptr, icv_len);
4150 
4151 		/*
4152 		 * Compute the new header checksum as we are assigning
4153 		 * IPPROTO_AH and adjusting the length here.
4154 		 */
4155 		nipha = (ipha_t *)phdr_mp->b_rptr;
4156 
4157 		nipha->ipha_protocol = IPPROTO_AH;
4158 		length = ntohs(nipha->ipha_length);
4159 		length += (sizeof (ah_t) + align_len);
4160 		nipha->ipha_length = htons((uint16_t)length);
4161 		nipha->ipha_hdr_checksum = 0;
4162 		nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha);
4163 	} else {
4164 		ip6_t *ip6h;
4165 		ip6_t *nip6h;
4166 		uint_t ah_offset;
4167 
4168 		ip6h = (ip6_t *)mp->b_rptr;
4169 		nip6h = (ip6_t *)phdr_mp->b_rptr;
4170 		align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1,
4171 		    IPV6_PADDING_ALIGN);
4172 		/*
4173 		 * phdr_mp must have the right amount of space for the
4174 		 * combined IP and AH header. Copy the IP header with
4175 		 * options into the pseudo header. When we constructed
4176 		 * a pseudo header, we did not copy some of the mutable
4177 		 * fields. We do it now by calling ah_fix_phdr_v6()
4178 		 * with the last argument B_TRUE. It returns the
4179 		 * ah_offset into the pseudo header.
4180 		 */
4181 
4182 		bcopy(ip6h, nip6h, IPV6_HDR_LEN);
4183 		ah_offset = ah_fix_phdr_v6(nip6h, ip6h, B_TRUE, B_TRUE);
4184 		ASSERT(ah_offset != 0);
4185 		/*
4186 		 * phdr_mp can hold exactly the whole IP header with options
4187 		 * plus the AH header also. Thus subtracting the AH header's
4188 		 * size should give exactly how much of the original header
4189 		 * should be skipped.
4190 		 */
4191 		hdrs_length = (phdr_mp->b_wptr - phdr_mp->b_rptr) -
4192 		    sizeof (ah_t) - icv_len;
4193 		bcopy(phdr_mp->b_wptr, ((uint8_t *)nip6h + ah_offset +
4194 		    sizeof (ah_t)), icv_len);
4195 		length = ntohs(nip6h->ip6_plen);
4196 		length += (sizeof (ah_t) + align_len);
4197 		nip6h->ip6_plen = htons((uint16_t)length);
4198 	}
4199 
4200 	/* Skip the original IP header */
4201 	mp->b_rptr += hdrs_length;
4202 	if (mp->b_rptr == mp->b_wptr) {
4203 		phdr_mp->b_cont = mp->b_cont;
4204 		freeb(mp);
4205 	}
4206 
4207 	return (IPSEC_STATUS_SUCCESS);
4208 }
4209 
4210 /*
4211  * Wrapper to allow IP to trigger an AH association failure message
4212  * during SA inbound selection.
4213  */
4214 void
4215 ipsecah_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt,
4216     uint32_t spi, void *addr, int af)
4217 {
4218 	if (ipsecah_log_unknown_spi) {
4219 		ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi,
4220 		    addr, af);
4221 	}
4222 
4223 	ip_drop_packet(mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa,
4224 	    &ah_dropper);
4225 }
4226 
4227 /*
4228  * Initialize the AH input and output processing functions.
4229  */
4230 void
4231 ipsecah_init_funcs(ipsa_t *sa)
4232 {
4233 	if (sa->ipsa_output_func == NULL)
4234 		sa->ipsa_output_func = ah_outbound;
4235 	if (sa->ipsa_input_func == NULL)
4236 		sa->ipsa_input_func = ah_inbound;
4237 }
4238