xref: /titanic_51/usr/src/uts/common/inet/ip/ip_rts.c (revision 8cb74972a66bde0af7b1a957d01e0095b82a8b91)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 1988, 1991, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)rtsock.c	8.6 (Berkeley) 2/11/95
39  */
40 
41 /*
42  * This file contains routines that processes routing socket requests.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/stream.h>
47 #include <sys/stropts.h>
48 #include <sys/ddi.h>
49 #include <sys/strsubr.h>
50 #include <sys/cmn_err.h>
51 #include <sys/debug.h>
52 #include <sys/policy.h>
53 #include <sys/zone.h>
54 
55 #include <sys/systm.h>
56 #include <sys/param.h>
57 #include <sys/socket.h>
58 #include <sys/strsun.h>
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <netinet/in.h>
62 #include <net/if_dl.h>
63 #include <netinet/ip6.h>
64 
65 #include <inet/common.h>
66 #include <inet/ip.h>
67 #include <inet/ip6.h>
68 #include <inet/ip_if.h>
69 #include <inet/ip_ire.h>
70 #include <inet/ip_ftable.h>
71 #include <inet/ip_rts.h>
72 
73 #include <inet/ipclassifier.h>
74 
75 #include <sys/tsol/tndb.h>
76 #include <sys/tsol/tnet.h>
77 
78 #define	RTS_MSG_SIZE(type, rtm_addrs, af, sacnt) \
79 	(rts_data_msg_size(rtm_addrs, af, sacnt) + rts_header_msg_size(type))
80 
81 static size_t	rts_copyfromsockaddr(struct sockaddr *sa, in6_addr_t *addrp);
82 static void	rts_fill_msg(int type, int rtm_addrs, ipaddr_t dst,
83     ipaddr_t mask, ipaddr_t gateway, ipaddr_t src_addr, ipaddr_t brd_addr,
84     ipaddr_t author, const ipif_t *ipif, mblk_t *mp, uint_t, const tsol_gc_t *);
85 static int	rts_getaddrs(rt_msghdr_t *rtm, in6_addr_t *dst_addrp,
86     in6_addr_t *gw_addrp, in6_addr_t *net_maskp, in6_addr_t *authorp,
87     in6_addr_t *if_addrp, in6_addr_t *src_addrp, ushort_t *indexp,
88     sa_family_t *afp, tsol_rtsecattr_t *rtsecattr, int *error);
89 static void	rts_getifdata(if_data_t *if_data, const ipif_t *ipif);
90 static int	rts_getmetrics(ire_t *ire, rt_metrics_t *metrics);
91 static mblk_t	*rts_rtmget(mblk_t *mp, ire_t *ire, ire_t *sire,
92     sa_family_t af);
93 static void	rts_setmetrics(ire_t *ire, uint_t which, rt_metrics_t *metrics);
94 static void	ip_rts_request_retry(ipsq_t *, queue_t *q, mblk_t *mp, void *);
95 
96 /*
97  * Send `mp' to all eligible routing queues.  A queue is ineligible if:
98  *
99  *  1. SO_USELOOPBACK is off and it is not the originating queue.
100  *  2. RTAW_UNDER_IPMP is on and RTSQ_UNDER_IPMP is clear in `flags'.
101  *  3. RTAW_UNDER_IPMP is off and RTSQ_NORMAL is clear in `flags'.
102  *  4. It is not the same address family as `af', and `af' isn't AF_UNSPEC.
103  */
104 void
105 rts_queue_input(mblk_t *mp, conn_t *o_connp, sa_family_t af, uint_t flags,
106     ip_stack_t *ipst)
107 {
108 	mblk_t	*mp1;
109 	conn_t 	*connp, *next_connp;
110 
111 	/*
112 	 * Since we don't have an ill_t here, RTSQ_DEFAULT must already be
113 	 * resolved to one or more of RTSQ_NORMAL|RTSQ_UNDER_IPMP by now.
114 	 */
115 	ASSERT(!(flags & RTSQ_DEFAULT));
116 
117 	mutex_enter(&ipst->ips_rts_clients->connf_lock);
118 	connp = ipst->ips_rts_clients->connf_head;
119 
120 	for (; connp != NULL; connp = next_connp) {
121 		next_connp = connp->conn_next;
122 
123 		/*
124 		 * If there was a family specified when this routing socket was
125 		 * created and it doesn't match the family of the message to
126 		 * copy, then continue.
127 		 */
128 		if ((connp->conn_proto != AF_UNSPEC) &&
129 		    (connp->conn_proto != af))
130 			continue;
131 
132 		/*
133 		 * Queue the message only if the conn_t and flags match.
134 		 */
135 		if (connp->conn_rtaware & RTAW_UNDER_IPMP) {
136 			if (!(flags & RTSQ_UNDER_IPMP))
137 				continue;
138 		} else {
139 			if (!(flags & RTSQ_NORMAL))
140 				continue;
141 		}
142 
143 		/*
144 		 * For the originating queue, we only copy the message upstream
145 		 * if loopback is set.  For others reading on the routing
146 		 * socket, we check if there is room upstream for a copy of the
147 		 * message.
148 		 */
149 		if ((o_connp == connp) && connp->conn_loopback == 0) {
150 			connp = connp->conn_next;
151 			continue;
152 		}
153 		CONN_INC_REF(connp);
154 		mutex_exit(&ipst->ips_rts_clients->connf_lock);
155 		/* Pass to rts_input */
156 		if ((IPCL_IS_NONSTR(connp) && !PROTO_FLOW_CNTRLD(connp))||
157 		    (!IPCL_IS_NONSTR(connp) &&
158 		    canputnext(CONNP_TO_RQ(connp)))) {
159 			mp1 = dupmsg(mp);
160 			if (mp1 == NULL)
161 				mp1 = copymsg(mp);
162 			if (mp1 != NULL)
163 				(connp->conn_recv)(connp, mp1, NULL);
164 		}
165 
166 		mutex_enter(&ipst->ips_rts_clients->connf_lock);
167 		/* reload next_connp since conn_next may have changed */
168 		next_connp = connp->conn_next;
169 		CONN_DEC_REF(connp);
170 	}
171 	mutex_exit(&ipst->ips_rts_clients->connf_lock);
172 	freemsg(mp);
173 }
174 
175 /*
176  * Takes an ire and sends an ack to all the routing sockets. This
177  * routine is used
178  * - when a route is created/deleted through the ioctl interface.
179  * - when ire_expire deletes a stale redirect
180  */
181 void
182 ip_rts_rtmsg(int type, ire_t *ire, int error, ip_stack_t *ipst)
183 {
184 	mblk_t		*mp;
185 	rt_msghdr_t	*rtm;
186 	int		rtm_addrs = (RTA_DST | RTA_NETMASK | RTA_GATEWAY);
187 	sa_family_t	af;
188 	in6_addr_t	gw_addr_v6;
189 
190 	if (ire == NULL)
191 		return;
192 	ASSERT(ire->ire_ipversion == IPV4_VERSION ||
193 	    ire->ire_ipversion == IPV6_VERSION);
194 
195 	if (ire->ire_flags & RTF_SETSRC)
196 		rtm_addrs |= RTA_SRC;
197 
198 	switch (ire->ire_ipversion) {
199 	case IPV4_VERSION:
200 		af = AF_INET;
201 		mp = rts_alloc_msg(type, rtm_addrs, af, 0);
202 		if (mp == NULL)
203 			return;
204 		rts_fill_msg(type, rtm_addrs, ire->ire_addr, ire->ire_mask,
205 		    ire->ire_gateway_addr, ire->ire_src_addr, 0, 0, NULL, mp,
206 		    0, NULL);
207 		break;
208 	case IPV6_VERSION:
209 		af = AF_INET6;
210 		mp = rts_alloc_msg(type, rtm_addrs, af, 0);
211 		if (mp == NULL)
212 			return;
213 		mutex_enter(&ire->ire_lock);
214 		gw_addr_v6 = ire->ire_gateway_addr_v6;
215 		mutex_exit(&ire->ire_lock);
216 		rts_fill_msg_v6(type, rtm_addrs, &ire->ire_addr_v6,
217 		    &ire->ire_mask_v6, &gw_addr_v6,
218 		    &ire->ire_src_addr_v6, &ipv6_all_zeros, &ipv6_all_zeros,
219 		    NULL, mp, 0, NULL);
220 		break;
221 	}
222 	rtm = (rt_msghdr_t *)mp->b_rptr;
223 	mp->b_wptr = (uchar_t *)&mp->b_rptr[rtm->rtm_msglen];
224 	rtm->rtm_addrs = rtm_addrs;
225 	rtm->rtm_flags = ire->ire_flags;
226 	if (error != 0)
227 		rtm->rtm_errno = error;
228 	else
229 		rtm->rtm_flags |= RTF_DONE;
230 	rts_queue_input(mp, NULL, af, RTSQ_ALL, ipst);
231 }
232 
233 /* ARGSUSED */
234 static void
235 ip_rts_request_retry(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy)
236 {
237 	(void) ip_rts_request(q, mp, msg_getcred(mp, NULL));
238 }
239 
240 /*
241  * This is a call from the RTS module
242  * indicating that this is a Routing Socket
243  * Stream. Insert this conn_t in routing
244  * socket client list.
245  */
246 void
247 ip_rts_register(conn_t *connp)
248 {
249 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
250 
251 	connp->conn_loopback = 1;
252 	ipcl_hash_insert_wildcard(ipst->ips_rts_clients, connp);
253 }
254 
255 /*
256  * This is a call from the RTS module indicating that it is closing.
257  */
258 void
259 ip_rts_unregister(conn_t *connp)
260 {
261 	ipcl_hash_remove(connp);
262 }
263 
264 /*
265  * Processes requests received on a routing socket. It extracts all the
266  * arguments and calls the appropriate function to process the request.
267  *
268  * RTA_SRC bit flag requests are sent by 'route -setsrc'.
269  *
270  * In general, this function does not consume the message supplied but rather
271  * sends the message upstream with an appropriate UNIX errno.
272  *
273  * We may need to restart this operation if the ipif cannot be looked up
274  * due to an exclusive operation that is currently in progress. The restart
275  * entry point is ip_rts_request_retry. While the request is enqueud in the
276  * ipsq the ioctl could be aborted and the conn close. To ensure that we don't
277  * have stale conn pointers, ip_wput_ioctl does a conn refhold. This is
278  * released at the completion of the rts ioctl at the end of this function
279  * by calling CONN_OPER_PENDING_DONE or when the ioctl is aborted and
280  * conn close occurs in conn_ioctl_cleanup.
281  */
282 int
283 ip_rts_request_common(queue_t *q, mblk_t *mp, conn_t *connp, cred_t *ioc_cr)
284 {
285 	rt_msghdr_t	*rtm = NULL;
286 	in6_addr_t	dst_addr_v6;
287 	in6_addr_t	src_addr_v6;
288 	in6_addr_t	gw_addr_v6;
289 	in6_addr_t	net_mask_v6;
290 	in6_addr_t	author_v6;
291 	in6_addr_t	if_addr_v6;
292 	mblk_t		*mp1, *ioc_mp = mp;
293 	ire_t		*ire = NULL;
294 	ire_t		*sire = NULL;
295 	int		error = 0;
296 	int		match_flags = MATCH_IRE_DSTONLY;
297 	int		match_flags_local = MATCH_IRE_TYPE | MATCH_IRE_GW;
298 	int		found_addrs;
299 	sa_family_t	af;
300 	ipaddr_t	dst_addr;
301 	ipaddr_t	gw_addr;
302 	ipaddr_t	src_addr;
303 	ipaddr_t	net_mask;
304 	ushort_t	index;
305 	ipif_t		*ipif = NULL;
306 	ipif_t		*tmp_ipif = NULL;
307 	IOCP		iocp = (IOCP)mp->b_rptr;
308 	boolean_t	gcgrp_xtraref = B_FALSE;
309 	tsol_gcgrp_addr_t ga;
310 	tsol_rtsecattr_t rtsecattr;
311 	struct rtsa_s	*rtsap = NULL;
312 	tsol_gcgrp_t	*gcgrp = NULL;
313 	tsol_gc_t	*gc = NULL;
314 	ts_label_t	*tsl = NULL;
315 	zoneid_t	zoneid;
316 	ip_stack_t	*ipst;
317 
318 	ip1dbg(("ip_rts_request: mp is %x\n", DB_TYPE(mp)));
319 
320 	zoneid = connp->conn_zoneid;
321 	ipst = connp->conn_netstack->netstack_ip;
322 
323 	ASSERT(mp->b_cont != NULL);
324 	/* ioc_mp holds mp */
325 	mp = mp->b_cont;
326 
327 	/*
328 	 * The Routing Socket data starts on
329 	 * next block. If there is no next block
330 	 * this is an indication from routing module
331 	 * that it is a routing socket stream queue.
332 	 * We need to support that for compatibility with SDP since
333 	 * it has a contract private interface to use IP_IOC_RTS_REQUEST.
334 	 */
335 	if (mp->b_cont == NULL) {
336 		/*
337 		 * This is a message from SDP
338 		 * indicating that this is a Routing Socket
339 		 * Stream. Insert this conn_t in routing
340 		 * socket client list.
341 		 */
342 		connp->conn_loopback = 1;
343 		ipcl_hash_insert_wildcard(ipst->ips_rts_clients, connp);
344 		goto done;
345 	}
346 	mp1 = dupmsg(mp->b_cont);
347 	if (mp1 == NULL) {
348 		error  = ENOBUFS;
349 		goto done;
350 	}
351 	mp = mp1;
352 
353 	if (mp->b_cont != NULL && !pullupmsg(mp, -1)) {
354 		freemsg(mp);
355 		error =  EINVAL;
356 		goto done;
357 	}
358 	if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
359 		freemsg(mp);
360 		error = EINVAL;
361 		goto done;
362 	}
363 
364 	/*
365 	 * Check the routing message for basic consistency including the
366 	 * version number and that the number of octets written is the same
367 	 * as specified by the rtm_msglen field.
368 	 *
369 	 * At this point, an error can be delivered back via rtm_errno.
370 	 */
371 	rtm = (rt_msghdr_t *)mp->b_rptr;
372 	if ((mp->b_wptr - mp->b_rptr) != rtm->rtm_msglen) {
373 		error = EINVAL;
374 		goto done;
375 	}
376 	if (rtm->rtm_version != RTM_VERSION) {
377 		error = EPROTONOSUPPORT;
378 		goto done;
379 	}
380 
381 	/* Only allow RTM_GET or RTM_RESOLVE for unprivileged process */
382 	if (rtm->rtm_type != RTM_GET &&
383 	    rtm->rtm_type != RTM_RESOLVE &&
384 	    (ioc_cr == NULL ||
385 	    secpolicy_ip_config(ioc_cr, B_FALSE) != 0)) {
386 		error = EPERM;
387 		goto done;
388 	}
389 
390 	found_addrs = rts_getaddrs(rtm, &dst_addr_v6, &gw_addr_v6, &net_mask_v6,
391 	    &author_v6, &if_addr_v6, &src_addr_v6, &index, &af, &rtsecattr,
392 	    &error);
393 
394 	if (error != 0)
395 		goto done;
396 
397 	if ((found_addrs & RTA_DST) == 0) {
398 		error = EINVAL;
399 		goto done;
400 	}
401 
402 	/*
403 	 * Based on the address family of the destination address, determine
404 	 * the destination, gateway and netmask and return the appropriate error
405 	 * if an unknown address family was specified (following the errno
406 	 * values that 4.4BSD-Lite2 returns.)
407 	 */
408 	switch (af) {
409 	case AF_INET:
410 		IN6_V4MAPPED_TO_IPADDR(&dst_addr_v6, dst_addr);
411 		IN6_V4MAPPED_TO_IPADDR(&src_addr_v6, src_addr);
412 		IN6_V4MAPPED_TO_IPADDR(&gw_addr_v6, gw_addr);
413 		if (((found_addrs & RTA_NETMASK) == 0) ||
414 		    (rtm->rtm_flags & RTF_HOST))
415 			net_mask = IP_HOST_MASK;
416 		else
417 			IN6_V4MAPPED_TO_IPADDR(&net_mask_v6, net_mask);
418 		break;
419 	case AF_INET6:
420 		if (((found_addrs & RTA_NETMASK) == 0) ||
421 		    (rtm->rtm_flags & RTF_HOST))
422 			net_mask_v6 = ipv6_all_ones;
423 		break;
424 	default:
425 		/*
426 		 * These errno values are meant to be compatible with
427 		 * 4.4BSD-Lite2 for the given message types.
428 		 */
429 		switch (rtm->rtm_type) {
430 		case RTM_ADD:
431 		case RTM_DELETE:
432 			error = ESRCH;
433 			goto done;
434 		case RTM_GET:
435 		case RTM_CHANGE:
436 			error = EAFNOSUPPORT;
437 			goto done;
438 		default:
439 			error = EOPNOTSUPP;
440 			goto done;
441 		}
442 	}
443 
444 	/*
445 	 * At this point, the address family must be something known.
446 	 */
447 	ASSERT(af == AF_INET || af == AF_INET6);
448 
449 	if (index != 0) {
450 		ill_t   *ill;
451 lookup:
452 		/*
453 		 * IPC must be refheld somewhere in ip_wput_nondata or
454 		 * ip_wput_ioctl etc... and cleaned up if ioctl is killed.
455 		 * If ILL_CHANGING the request is queued in the ipsq.
456 		 */
457 		ill = ill_lookup_on_ifindex(index, af == AF_INET6,
458 		    CONNP_TO_WQ(connp), ioc_mp, ip_rts_request_retry, &error,
459 		    ipst);
460 		if (ill == NULL) {
461 			if (error != EINPROGRESS)
462 				error = EINVAL;
463 			goto done;
464 		}
465 
466 		/*
467 		 * Since all interfaces in an IPMP group must be equivalent,
468 		 * we prevent changes to a specific underlying interface's
469 		 * routing configuration.  However, for backward compatibility,
470 		 * we intepret a request to add a route on an underlying
471 		 * interface as a request to add a route on its IPMP interface.
472 		 */
473 		if (IS_UNDER_IPMP(ill)) {
474 			switch (rtm->rtm_type) {
475 			case RTM_CHANGE:
476 			case RTM_DELETE:
477 				ill_refrele(ill);
478 				error = EINVAL;
479 				goto done;
480 			case RTM_ADD:
481 				index = ipmp_ill_get_ipmp_ifindex(ill);
482 				ill_refrele(ill);
483 				if (index == 0) {
484 					error = EINVAL;
485 					goto done;
486 				}
487 				goto lookup;
488 			}
489 		}
490 
491 		ipif = ipif_get_next_ipif(NULL, ill);
492 		ill_refrele(ill);
493 		match_flags |= MATCH_IRE_ILL;
494 	}
495 
496 	/*
497 	 * If a netmask was supplied in the message, then subsequent route
498 	 * lookups will attempt to match on the netmask as well.
499 	 */
500 	if ((found_addrs & RTA_NETMASK) != 0)
501 		match_flags |= MATCH_IRE_MASK;
502 
503 	/*
504 	 * We only process any passed-in route security attributes for
505 	 * either RTM_ADD or RTM_CHANGE message; We overload them
506 	 * to do an RTM_GET as a different label; ignore otherwise.
507 	 */
508 	if (rtm->rtm_type == RTM_ADD || rtm->rtm_type == RTM_CHANGE ||
509 	    rtm->rtm_type == RTM_GET) {
510 		ASSERT(rtsecattr.rtsa_cnt <= TSOL_RTSA_REQUEST_MAX);
511 		if (rtsecattr.rtsa_cnt > 0)
512 			rtsap = &rtsecattr.rtsa_attr[0];
513 	}
514 
515 	switch (rtm->rtm_type) {
516 	case RTM_ADD:
517 		/* if we are adding a route, gateway is a must */
518 		if ((found_addrs & RTA_GATEWAY) == 0) {
519 			error = EINVAL;
520 			goto done;
521 		}
522 
523 		/* Multirouting does not support net routes. */
524 		if ((rtm->rtm_flags & (RTF_MULTIRT | RTF_HOST)) ==
525 		    RTF_MULTIRT) {
526 			error = EADDRNOTAVAIL;
527 			goto done;
528 		}
529 
530 		/*
531 		 * Multirouting and user-specified source addresses
532 		 * do not support interface based routing.
533 		 * Assigning a source address to an interface based
534 		 * route is achievable by plumbing a new ipif and
535 		 * setting up the interface route via this ipif,
536 		 * though.
537 		 */
538 		if (rtm->rtm_flags & (RTF_MULTIRT | RTF_SETSRC)) {
539 			if ((rtm->rtm_flags & RTF_GATEWAY) == 0) {
540 				error = EADDRNOTAVAIL;
541 				goto done;
542 			}
543 		}
544 
545 		switch (af) {
546 		case AF_INET:
547 			if (src_addr != INADDR_ANY) {
548 				/*
549 				 * The RTF_SETSRC flag is present, check that
550 				 * the supplied src address is not the loopback
551 				 * address. This would produce martian packets.
552 				 */
553 				if (src_addr == htonl(INADDR_LOOPBACK)) {
554 					error = EINVAL;
555 					goto done;
556 				}
557 				/*
558 				 * Also check that the supplied address is a
559 				 * valid, local one.
560 				 */
561 				tmp_ipif = ipif_lookup_addr(src_addr, NULL,
562 				    ALL_ZONES, CONNP_TO_WQ(connp), ioc_mp,
563 				    ip_rts_request_retry, &error, ipst);
564 				if (tmp_ipif == NULL) {
565 					if (error != EINPROGRESS)
566 						error = EADDRNOTAVAIL;
567 					goto done;
568 				}
569 				if (!(tmp_ipif->ipif_flags & IPIF_UP) ||
570 				    (tmp_ipif->ipif_flags &
571 				    (IPIF_NOLOCAL | IPIF_ANYCAST))) {
572 					error = EINVAL;
573 					goto done;
574 				}
575 			} else {
576 				/*
577 				 * The RTF_SETSRC modifier must be associated
578 				 * to a non-null source address.
579 				 */
580 				if (rtm->rtm_flags & RTF_SETSRC) {
581 					error = EINVAL;
582 					goto done;
583 				}
584 			}
585 
586 			error = ip_rt_add(dst_addr, net_mask, gw_addr, src_addr,
587 			    rtm->rtm_flags, ipif, &ire, B_FALSE,
588 			    WR(q), ioc_mp, ip_rts_request_retry,
589 			    rtsap, ipst);
590 			if (ipif != NULL)
591 				ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
592 			break;
593 		case AF_INET6:
594 			if (!IN6_IS_ADDR_UNSPECIFIED(&src_addr_v6)) {
595 				/*
596 				 * The RTF_SETSRC flag is present, check that
597 				 * the supplied src address is not the loopback
598 				 * address. This would produce martian packets.
599 				 */
600 				if (IN6_IS_ADDR_LOOPBACK(&src_addr_v6)) {
601 					error = EINVAL;
602 					goto done;
603 				}
604 				/*
605 				 * Also check that the supplied address is a
606 				 * valid, local one.
607 				 */
608 				tmp_ipif = ipif_lookup_addr_v6(&src_addr_v6,
609 				    NULL, ALL_ZONES, CONNP_TO_WQ(connp), ioc_mp,
610 				    ip_rts_request_retry, &error, ipst);
611 				if (tmp_ipif == NULL) {
612 					if (error != EINPROGRESS)
613 						error = EADDRNOTAVAIL;
614 					goto done;
615 				}
616 
617 				if (!(tmp_ipif->ipif_flags & IPIF_UP) ||
618 				    (tmp_ipif->ipif_flags &
619 				    (IPIF_NOLOCAL | IPIF_ANYCAST))) {
620 					error = EINVAL;
621 					goto done;
622 				}
623 
624 				error = ip_rt_add_v6(&dst_addr_v6, &net_mask_v6,
625 				    &gw_addr_v6, &src_addr_v6, rtm->rtm_flags,
626 				    ipif, &ire, WR(q), ioc_mp,
627 				    ip_rts_request_retry, rtsap, ipst);
628 				break;
629 			}
630 			/*
631 			 * The RTF_SETSRC modifier must be associated
632 			 * to a non-null source address.
633 			 */
634 			if (rtm->rtm_flags & RTF_SETSRC) {
635 				error = EINVAL;
636 				goto done;
637 			}
638 			error = ip_rt_add_v6(&dst_addr_v6, &net_mask_v6,
639 			    &gw_addr_v6, NULL, rtm->rtm_flags,
640 			    ipif, &ire, WR(q), ioc_mp,
641 			    ip_rts_request_retry, rtsap, ipst);
642 			if (ipif != NULL)
643 				ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
644 			break;
645 		}
646 		if (error != 0)
647 			goto done;
648 		ASSERT(ire != NULL);
649 		rts_setmetrics(ire, rtm->rtm_inits, &rtm->rtm_rmx);
650 		break;
651 	case RTM_DELETE:
652 		/* if we are deleting a route, gateway is a must */
653 		if ((found_addrs & RTA_GATEWAY) == 0) {
654 			error = EINVAL;
655 			goto done;
656 		}
657 		/*
658 		 * The RTF_SETSRC modifier does not make sense
659 		 * when deleting a route.
660 		 */
661 		if (rtm->rtm_flags & RTF_SETSRC) {
662 			error = EINVAL;
663 			goto done;
664 		}
665 
666 		switch (af) {
667 		case AF_INET:
668 			error = ip_rt_delete(dst_addr, net_mask, gw_addr,
669 			    found_addrs, rtm->rtm_flags, ipif, B_FALSE,
670 			    WR(q), ioc_mp, ip_rts_request_retry, ipst);
671 			break;
672 		case AF_INET6:
673 			error = ip_rt_delete_v6(&dst_addr_v6, &net_mask_v6,
674 			    &gw_addr_v6, found_addrs, rtm->rtm_flags, ipif,
675 			    WR(q), ioc_mp, ip_rts_request_retry, ipst);
676 			break;
677 		}
678 		break;
679 	case RTM_GET:
680 	case RTM_CHANGE:
681 		/*
682 		 * In the case of RTM_GET, the forwarding table should be
683 		 * searched recursively with default being matched if the
684 		 * specific route doesn't exist.  Also, if a gateway was
685 		 * specified then the gateway address must also be matched.
686 		 *
687 		 * In the case of RTM_CHANGE, the gateway address (if supplied)
688 		 * is the new gateway address so matching on the gateway address
689 		 * is not done.  This can lead to ambiguity when looking up the
690 		 * route to change as usually only the destination (and netmask,
691 		 * if supplied) is used for the lookup.  However if a RTA_IFP
692 		 * sockaddr is also supplied, it can disambiguate which route to
693 		 * change provided the ambigous routes are tied to distinct
694 		 * ill's (or interface indices).  If the routes are not tied to
695 		 * any particular interfaces (for example, with traditional
696 		 * gateway routes), then a RTA_IFP sockaddr will be of no use as
697 		 * it won't match any such routes.
698 		 * RTA_SRC is not supported for RTM_GET and RTM_CHANGE,
699 		 * except when RTM_CHANGE is combined to RTF_SETSRC.
700 		 */
701 		if (((found_addrs & RTA_SRC) != 0) &&
702 		    ((rtm->rtm_type == RTM_GET) ||
703 		    !(rtm->rtm_flags & RTF_SETSRC))) {
704 			error = EOPNOTSUPP;
705 			goto done;
706 		}
707 
708 		if (rtm->rtm_type == RTM_GET) {
709 			match_flags |=
710 			    (MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE |
711 			    MATCH_IRE_SECATTR);
712 			match_flags_local |= MATCH_IRE_SECATTR;
713 			if ((found_addrs & RTA_GATEWAY) != 0)
714 				match_flags |= MATCH_IRE_GW;
715 			if (ioc_cr)
716 				tsl = crgetlabel(ioc_cr);
717 			if (rtsap != NULL) {
718 				if (rtsa_validate(rtsap) != 0) {
719 					error = EINVAL;
720 					goto done;
721 				}
722 				if (tsl != NULL &&
723 				    crgetzoneid(ioc_cr) != GLOBAL_ZONEID &&
724 				    (tsl->tsl_doi != rtsap->rtsa_doi ||
725 				    !bldominates(&tsl->tsl_label,
726 				    &rtsap->rtsa_slrange.lower_bound))) {
727 					error = EPERM;
728 					goto done;
729 				}
730 				tsl = labelalloc(
731 				    &rtsap->rtsa_slrange.lower_bound,
732 				    rtsap->rtsa_doi, KM_NOSLEEP);
733 			}
734 		}
735 		if (rtm->rtm_type == RTM_CHANGE) {
736 			if ((found_addrs & RTA_GATEWAY) &&
737 			    (rtm->rtm_flags & RTF_SETSRC)) {
738 				/*
739 				 * Do not want to change the gateway,
740 				 * but rather the source address.
741 				 */
742 				match_flags |= MATCH_IRE_GW;
743 			}
744 		}
745 
746 		/*
747 		 * If the netmask is all ones (either as supplied or as derived
748 		 * above), then first check for an IRE_LOOPBACK or
749 		 * IRE_LOCAL entry.
750 		 *
751 		 * If we didn't check for or find an IRE_LOOPBACK or IRE_LOCAL
752 		 * entry, then look in the forwarding table.
753 		 */
754 		switch (af) {
755 		case AF_INET:
756 			if (net_mask == IP_HOST_MASK) {
757 				ire = ire_ctable_lookup(dst_addr, gw_addr,
758 				    IRE_LOCAL | IRE_LOOPBACK, NULL, zoneid,
759 				    tsl, match_flags_local, ipst);
760 				/*
761 				 * If we found an IRE_LOCAL, make sure
762 				 * it is one that would be used by this
763 				 * zone to send packets.
764 				 */
765 				if (ire != NULL &&
766 				    ire->ire_type == IRE_LOCAL &&
767 				    ipst->ips_ip_restrict_interzone_loopback &&
768 				    !ire_local_ok_across_zones(ire,
769 				    zoneid, &dst_addr, tsl, ipst)) {
770 					ire_refrele(ire);
771 					ire = NULL;
772 				}
773 			}
774 			if (ire == NULL) {
775 				ire = ire_ftable_lookup(dst_addr, net_mask,
776 				    gw_addr, 0, ipif, &sire, zoneid, 0,
777 				    tsl, match_flags, ipst);
778 			}
779 			break;
780 		case AF_INET6:
781 			if (IN6_ARE_ADDR_EQUAL(&net_mask_v6, &ipv6_all_ones)) {
782 				ire = ire_ctable_lookup_v6(&dst_addr_v6,
783 				    &gw_addr_v6, IRE_LOCAL | IRE_LOOPBACK, NULL,
784 				    zoneid, tsl, match_flags_local, ipst);
785 				/*
786 				 * If we found an IRE_LOCAL, make sure
787 				 * it is one that would be used by this
788 				 * zone to send packets.
789 				 */
790 				if (ire != NULL &&
791 				    ire->ire_type == IRE_LOCAL &&
792 				    ipst->ips_ip_restrict_interzone_loopback &&
793 				    !ire_local_ok_across_zones(ire,
794 				    zoneid, (void *)&dst_addr_v6, tsl, ipst)) {
795 					ire_refrele(ire);
796 					ire = NULL;
797 				}
798 			}
799 			if (ire == NULL) {
800 				ire = ire_ftable_lookup_v6(&dst_addr_v6,
801 				    &net_mask_v6, &gw_addr_v6, 0, ipif, &sire,
802 				    zoneid, 0, tsl, match_flags, ipst);
803 			}
804 			break;
805 		}
806 		if (tsl != NULL && tsl != crgetlabel(ioc_cr))
807 			label_rele(tsl);
808 
809 		if (ire == NULL) {
810 			error = ESRCH;
811 			goto done;
812 		}
813 		/* we know the IRE before we come here */
814 		switch (rtm->rtm_type) {
815 		case RTM_GET:
816 			mp1 = rts_rtmget(mp, ire, sire, af);
817 			if (mp1 == NULL) {
818 				error = ENOBUFS;
819 				goto done;
820 			}
821 			freemsg(mp);
822 			mp = mp1;
823 			rtm = (rt_msghdr_t *)mp->b_rptr;
824 			break;
825 		case RTM_CHANGE:
826 			/*
827 			 * Do not allow to the multirouting state of a route
828 			 * to be changed. This aims to prevent undesirable
829 			 * stages where both multirt and non-multirt routes
830 			 * for the same destination are declared.
831 			 */
832 			if ((ire->ire_flags & RTF_MULTIRT) !=
833 			    (rtm->rtm_flags & RTF_MULTIRT)) {
834 				error = EINVAL;
835 				goto done;
836 			}
837 			/*
838 			 * Note that we do not need to do
839 			 * ire_flush_cache_*(IRE_FLUSH_ADD) as a change
840 			 * in metrics or gateway will not affect existing
841 			 * routes since it does not create a more specific
842 			 * route.
843 			 */
844 			switch (af) {
845 			case AF_INET:
846 				ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
847 				if ((found_addrs & RTA_GATEWAY) != 0 &&
848 				    (ire->ire_gateway_addr != gw_addr)) {
849 					ire->ire_gateway_addr = gw_addr;
850 				}
851 
852 				if (rtsap != NULL) {
853 					ga.ga_af = AF_INET;
854 					IN6_IPADDR_TO_V4MAPPED(
855 					    ire->ire_gateway_addr, &ga.ga_addr);
856 
857 					gcgrp = gcgrp_lookup(&ga, B_TRUE);
858 					if (gcgrp == NULL) {
859 						error = ENOMEM;
860 						goto done;
861 					}
862 				}
863 
864 				if ((found_addrs & RTA_SRC) != 0 &&
865 				    (rtm->rtm_flags & RTF_SETSRC) != 0 &&
866 				    (ire->ire_src_addr != src_addr)) {
867 
868 					if (src_addr != INADDR_ANY) {
869 						/*
870 						 * The RTF_SETSRC flag is
871 						 * present, check that the
872 						 * supplied src address is not
873 						 * the loopback address. This
874 						 * would produce martian
875 						 * packets.
876 						 */
877 						if (src_addr ==
878 						    htonl(INADDR_LOOPBACK)) {
879 							error = EINVAL;
880 							goto done;
881 						}
882 						/*
883 						 * Also check that the the
884 						 * supplied addr is a valid
885 						 * local address.
886 						 */
887 						tmp_ipif = ipif_lookup_addr(
888 						    src_addr, NULL, ALL_ZONES,
889 						    WR(q), ioc_mp,
890 						    ip_rts_request_retry,
891 						    &error, ipst);
892 						if (tmp_ipif == NULL) {
893 							error = (error ==
894 							    EINPROGRESS) ?
895 							    error :
896 							    EADDRNOTAVAIL;
897 							goto done;
898 						}
899 
900 						if (!(tmp_ipif->ipif_flags &
901 						    IPIF_UP) ||
902 						    (tmp_ipif->ipif_flags &
903 						    (IPIF_NOLOCAL |
904 						    IPIF_ANYCAST))) {
905 							error = EINVAL;
906 							goto done;
907 						}
908 						ire->ire_flags |= RTF_SETSRC;
909 					} else {
910 						ire->ire_flags &= ~RTF_SETSRC;
911 					}
912 					ire->ire_src_addr = src_addr;
913 				}
914 				break;
915 			case AF_INET6:
916 				ire_flush_cache_v6(ire, IRE_FLUSH_DELETE);
917 				mutex_enter(&ire->ire_lock);
918 				if ((found_addrs & RTA_GATEWAY) != 0 &&
919 				    !IN6_ARE_ADDR_EQUAL(
920 				    &ire->ire_gateway_addr_v6, &gw_addr_v6)) {
921 					ire->ire_gateway_addr_v6 = gw_addr_v6;
922 				}
923 
924 				if (rtsap != NULL) {
925 					ga.ga_af = AF_INET6;
926 					ga.ga_addr = ire->ire_gateway_addr_v6;
927 
928 					gcgrp = gcgrp_lookup(&ga, B_TRUE);
929 					if (gcgrp == NULL) {
930 						error = ENOMEM;
931 						goto done;
932 					}
933 				}
934 
935 				if ((found_addrs & RTA_SRC) != 0 &&
936 				    (rtm->rtm_flags & RTF_SETSRC) != 0 &&
937 				    !IN6_ARE_ADDR_EQUAL(
938 				    &ire->ire_src_addr_v6, &src_addr_v6)) {
939 
940 					if (!IN6_IS_ADDR_UNSPECIFIED(
941 					    &src_addr_v6)) {
942 						/*
943 						 * The RTF_SETSRC flag is
944 						 * present, check that the
945 						 * supplied src address is not
946 						 * the loopback address. This
947 						 * would produce martian
948 						 * packets.
949 						 */
950 						if (IN6_IS_ADDR_LOOPBACK(
951 						    &src_addr_v6)) {
952 							mutex_exit(
953 							    &ire->ire_lock);
954 							error = EINVAL;
955 							goto done;
956 						}
957 						/*
958 						 * Also check that the the
959 						 * supplied addr is a valid
960 						 * local address.
961 						 */
962 						tmp_ipif = ipif_lookup_addr_v6(
963 						    &src_addr_v6, NULL,
964 						    ALL_ZONES,
965 						    CONNP_TO_WQ(connp), ioc_mp,
966 						    ip_rts_request_retry,
967 						    &error, ipst);
968 						if (tmp_ipif == NULL) {
969 							mutex_exit(
970 							    &ire->ire_lock);
971 							error = (error ==
972 							    EINPROGRESS) ?
973 							    error :
974 							    EADDRNOTAVAIL;
975 							goto done;
976 						}
977 						if (!(tmp_ipif->ipif_flags &
978 						    IPIF_UP) ||
979 						    (tmp_ipif->ipif_flags &
980 						    (IPIF_NOLOCAL |
981 						    IPIF_ANYCAST))) {
982 							mutex_exit(
983 							    &ire->ire_lock);
984 							error = EINVAL;
985 							goto done;
986 						}
987 						ire->ire_flags |= RTF_SETSRC;
988 					} else {
989 						ire->ire_flags &= ~RTF_SETSRC;
990 					}
991 					ire->ire_src_addr_v6 = src_addr_v6;
992 				}
993 				mutex_exit(&ire->ire_lock);
994 				break;
995 			}
996 
997 			if (rtsap != NULL) {
998 				in_addr_t ga_addr4;
999 
1000 				ASSERT(gcgrp != NULL);
1001 
1002 				/*
1003 				 * Create and add the security attribute to
1004 				 * prefix IRE; it will add a reference to the
1005 				 * group upon allocating a new entry.  If it
1006 				 * finds an already-existing entry for the
1007 				 * security attribute, it simply returns it
1008 				 * and no new group reference is made.
1009 				 */
1010 				gc = gc_create(rtsap, gcgrp, &gcgrp_xtraref);
1011 				if (gc == NULL ||
1012 				    (error = tsol_ire_init_gwattr(ire,
1013 				    ire->ire_ipversion, gc, NULL)) != 0) {
1014 					if (gc != NULL) {
1015 						GC_REFRELE(gc);
1016 					} else {
1017 						/* gc_create failed */
1018 						error = ENOMEM;
1019 					}
1020 					goto done;
1021 				}
1022 
1023 				/*
1024 				 * Now delete any existing gateway IRE caches
1025 				 * as well as all caches using the gateway,
1026 				 * and allow them to be created on demand
1027 				 * through ip_newroute{_v6}.
1028 				 */
1029 				IN6_V4MAPPED_TO_IPADDR(&ga.ga_addr, ga_addr4);
1030 				if (af == AF_INET) {
1031 					ire_clookup_delete_cache_gw(
1032 					    ga_addr4, ALL_ZONES, ipst);
1033 				} else {
1034 					ire_clookup_delete_cache_gw_v6(
1035 					    &ga.ga_addr, ALL_ZONES, ipst);
1036 				}
1037 			}
1038 			rts_setmetrics(ire, rtm->rtm_inits, &rtm->rtm_rmx);
1039 			break;
1040 		}
1041 		break;
1042 	default:
1043 		error = EOPNOTSUPP;
1044 		break;
1045 	}
1046 done:
1047 	if (ire != NULL)
1048 		ire_refrele(ire);
1049 	if (sire != NULL)
1050 		ire_refrele(sire);
1051 	if (ipif != NULL)
1052 		ipif_refrele(ipif);
1053 	if (tmp_ipif != NULL)
1054 		ipif_refrele(tmp_ipif);
1055 
1056 	if (gcgrp_xtraref)
1057 		GCGRP_REFRELE(gcgrp);
1058 
1059 	if (error == EINPROGRESS) {
1060 		if (rtm != NULL)
1061 			freemsg(mp);
1062 		return (error);
1063 	}
1064 	if (rtm != NULL) {
1065 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1066 		if (error != 0) {
1067 			rtm->rtm_errno = error;
1068 			/* Send error ACK */
1069 			ip1dbg(("ip_rts_request: error %d\n", error));
1070 		} else {
1071 			rtm->rtm_flags |= RTF_DONE;
1072 			/* OK ACK already set up by caller except this */
1073 			ip2dbg(("ip_rts_request: OK ACK\n"));
1074 		}
1075 		rts_queue_input(mp, connp, af, RTSQ_ALL, ipst);
1076 	}
1077 
1078 	iocp->ioc_error = error;
1079 	ioc_mp->b_datap->db_type = M_IOCACK;
1080 	if (iocp->ioc_error != 0)
1081 		iocp->ioc_count = 0;
1082 	(connp->conn_recv)(connp, ioc_mp, NULL);
1083 
1084 	/* conn was refheld in ip_wput_ioctl. */
1085 	CONN_OPER_PENDING_DONE(connp);
1086 
1087 	return (error);
1088 }
1089 
1090 int
1091 ip_rts_request(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
1092 {
1093 	return (ip_rts_request_common(q, mp, Q_TO_CONN(q), ioc_cr));
1094 }
1095 
1096 /*
1097  * Build a reply to the RTM_GET request contained in the given message block
1098  * using the retrieved IRE of the destination address, the parent IRE (if it
1099  * exists) and the address family.
1100  *
1101  * Returns a pointer to a message block containing the reply if successful,
1102  * otherwise NULL is returned.
1103  */
1104 static mblk_t *
1105 rts_rtmget(mblk_t *mp, ire_t *ire, ire_t *sire, sa_family_t af)
1106 {
1107 	rt_msghdr_t	*rtm;
1108 	rt_msghdr_t	*new_rtm;
1109 	mblk_t		*new_mp;
1110 	int		rtm_addrs;
1111 	int		rtm_flags;
1112 	in6_addr_t	gw_addr_v6;
1113 	tsol_ire_gw_secattr_t *attrp = NULL;
1114 	tsol_gc_t	*gc = NULL;
1115 	tsol_gcgrp_t	*gcgrp = NULL;
1116 	int		sacnt = 0;
1117 
1118 	ASSERT(ire->ire_ipif != NULL);
1119 	rtm = (rt_msghdr_t *)mp->b_rptr;
1120 
1121 	if (sire != NULL && sire->ire_gw_secattr != NULL)
1122 		attrp = sire->ire_gw_secattr;
1123 	else if (ire->ire_gw_secattr != NULL)
1124 		attrp = ire->ire_gw_secattr;
1125 
1126 	if (attrp != NULL) {
1127 		mutex_enter(&attrp->igsa_lock);
1128 		if ((gc = attrp->igsa_gc) != NULL) {
1129 			gcgrp = gc->gc_grp;
1130 			ASSERT(gcgrp != NULL);
1131 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
1132 			sacnt = 1;
1133 		} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
1134 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
1135 			gc = gcgrp->gcgrp_head;
1136 			sacnt = gcgrp->gcgrp_count;
1137 		}
1138 		mutex_exit(&attrp->igsa_lock);
1139 
1140 		/* do nothing if there's no gc to report */
1141 		if (gc == NULL) {
1142 			ASSERT(sacnt == 0);
1143 			if (gcgrp != NULL) {
1144 				/* we might as well drop the lock now */
1145 				rw_exit(&gcgrp->gcgrp_rwlock);
1146 				gcgrp = NULL;
1147 			}
1148 			attrp = NULL;
1149 		}
1150 
1151 		ASSERT(gc == NULL || (gcgrp != NULL &&
1152 		    RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
1153 	}
1154 	ASSERT(sacnt == 0 || gc != NULL);
1155 
1156 	/*
1157 	 * Always return RTA_DST, RTA_GATEWAY and RTA_NETMASK.
1158 	 *
1159 	 * The 4.4BSD-Lite2 code (net/rtsock.c) returns both
1160 	 * RTA_IFP and RTA_IFA if either is defined, and also
1161 	 * returns RTA_BRD if the appropriate interface is
1162 	 * point-to-point.
1163 	 */
1164 	rtm_addrs = (RTA_DST | RTA_GATEWAY | RTA_NETMASK);
1165 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
1166 		rtm_addrs |= (RTA_IFP | RTA_IFA);
1167 		if (ire->ire_ipif->ipif_flags & IPIF_POINTOPOINT)
1168 			rtm_addrs |= RTA_BRD;
1169 	}
1170 
1171 	new_mp = rts_alloc_msg(RTM_GET, rtm_addrs, af, sacnt);
1172 	if (new_mp == NULL) {
1173 		if (gcgrp != NULL)
1174 			rw_exit(&gcgrp->gcgrp_rwlock);
1175 		return (NULL);
1176 	}
1177 
1178 	/*
1179 	 * We set the destination address, gateway address,
1180 	 * netmask and flags in the RTM_GET response depending
1181 	 * on whether we found a parent IRE or not.
1182 	 * In particular, if we did find a parent IRE during the
1183 	 * recursive search, use that IRE's gateway address.
1184 	 * Otherwise, we use the IRE's source address for the
1185 	 * gateway address.
1186 	 */
1187 	ASSERT(af == AF_INET || af == AF_INET6);
1188 	switch (af) {
1189 	case AF_INET:
1190 		if (sire == NULL) {
1191 			rtm_flags = ire->ire_flags;
1192 			rts_fill_msg(RTM_GET, rtm_addrs, ire->ire_addr,
1193 			    ire->ire_mask, ire->ire_src_addr, ire->ire_src_addr,
1194 			    ire->ire_ipif->ipif_pp_dst_addr, 0, ire->ire_ipif,
1195 			    new_mp, sacnt, gc);
1196 		} else {
1197 			if (sire->ire_flags & RTF_SETSRC)
1198 				rtm_addrs |= RTA_SRC;
1199 
1200 			rtm_flags = sire->ire_flags;
1201 			rts_fill_msg(RTM_GET, rtm_addrs, sire->ire_addr,
1202 			    sire->ire_mask, sire->ire_gateway_addr,
1203 			    (sire->ire_flags & RTF_SETSRC) ?
1204 			    sire->ire_src_addr : ire->ire_src_addr,
1205 			    ire->ire_ipif->ipif_pp_dst_addr,
1206 			    0, ire->ire_ipif, new_mp, sacnt, gc);
1207 		}
1208 		break;
1209 	case AF_INET6:
1210 		if (sire == NULL) {
1211 			rtm_flags = ire->ire_flags;
1212 			rts_fill_msg_v6(RTM_GET, rtm_addrs, &ire->ire_addr_v6,
1213 			    &ire->ire_mask_v6, &ire->ire_src_addr_v6,
1214 			    &ire->ire_src_addr_v6,
1215 			    &ire->ire_ipif->ipif_v6pp_dst_addr,
1216 			    &ipv6_all_zeros, ire->ire_ipif, new_mp,
1217 			    sacnt, gc);
1218 		} else {
1219 			if (sire->ire_flags & RTF_SETSRC)
1220 				rtm_addrs |= RTA_SRC;
1221 
1222 			rtm_flags = sire->ire_flags;
1223 			mutex_enter(&sire->ire_lock);
1224 			gw_addr_v6 = sire->ire_gateway_addr_v6;
1225 			mutex_exit(&sire->ire_lock);
1226 			rts_fill_msg_v6(RTM_GET, rtm_addrs, &sire->ire_addr_v6,
1227 			    &sire->ire_mask_v6, &gw_addr_v6,
1228 			    (sire->ire_flags & RTF_SETSRC) ?
1229 			    &sire->ire_src_addr_v6 : &ire->ire_src_addr_v6,
1230 			    &ire->ire_ipif->ipif_v6pp_dst_addr, &ipv6_all_zeros,
1231 			    ire->ire_ipif, new_mp, sacnt, gc);
1232 		}
1233 		break;
1234 	}
1235 
1236 	if (gcgrp != NULL)
1237 		rw_exit(&gcgrp->gcgrp_rwlock);
1238 
1239 	new_rtm = (rt_msghdr_t *)new_mp->b_rptr;
1240 
1241 	/*
1242 	 * The rtm_msglen, rtm_version and rtm_type fields in
1243 	 * RTM_GET response are filled in by rts_fill_msg.
1244 	 *
1245 	 * rtm_addrs and rtm_flags are filled in based on what
1246 	 * was requested and the state of the IREs looked up
1247 	 * above.
1248 	 *
1249 	 * rtm_inits and rtm_rmx are filled in with metrics
1250 	 * based on whether a parent IRE was found or not.
1251 	 *
1252 	 * TODO: rtm_index and rtm_use should probably be
1253 	 * filled in with something resonable here and not just
1254 	 * copied from the request.
1255 	 */
1256 	new_rtm->rtm_index = rtm->rtm_index;
1257 	new_rtm->rtm_pid = rtm->rtm_pid;
1258 	new_rtm->rtm_seq = rtm->rtm_seq;
1259 	new_rtm->rtm_use = rtm->rtm_use;
1260 	new_rtm->rtm_addrs = rtm_addrs;
1261 	new_rtm->rtm_flags = rtm_flags;
1262 	if (sire == NULL)
1263 		new_rtm->rtm_inits = rts_getmetrics(ire, &new_rtm->rtm_rmx);
1264 	else
1265 		new_rtm->rtm_inits = rts_getmetrics(sire, &new_rtm->rtm_rmx);
1266 
1267 	return (new_mp);
1268 }
1269 
1270 /*
1271  * Fill the given if_data_t with interface statistics.
1272  */
1273 static void
1274 rts_getifdata(if_data_t *if_data, const ipif_t *ipif)
1275 {
1276 	if_data->ifi_type = ipif->ipif_type;	/* ethernet, tokenring, etc */
1277 	if_data->ifi_addrlen = 0;		/* media address length */
1278 	if_data->ifi_hdrlen = 0;		/* media header length */
1279 	if_data->ifi_mtu = ipif->ipif_mtu;	/* maximum transmission unit */
1280 	if_data->ifi_metric = ipif->ipif_metric; /* metric (external only) */
1281 	if_data->ifi_baudrate = 0;		/* linespeed */
1282 
1283 	if_data->ifi_ipackets = 0;		/* packets received on if */
1284 	if_data->ifi_ierrors = 0;		/* input errors on interface */
1285 	if_data->ifi_opackets = 0;		/* packets sent on interface */
1286 	if_data->ifi_oerrors = 0;		/* output errors on if */
1287 	if_data->ifi_collisions = 0;		/* collisions on csma if */
1288 	if_data->ifi_ibytes = 0;		/* total number received */
1289 	if_data->ifi_obytes = 0;		/* total number sent */
1290 	if_data->ifi_imcasts = 0;		/* multicast packets received */
1291 	if_data->ifi_omcasts = 0;		/* multicast packets sent */
1292 	if_data->ifi_iqdrops = 0;		/* dropped on input */
1293 	if_data->ifi_noproto = 0;		/* destined for unsupported */
1294 						/* protocol. */
1295 }
1296 
1297 /*
1298  * Set the metrics on a forwarding table route.
1299  */
1300 static void
1301 rts_setmetrics(ire_t *ire, uint_t which, rt_metrics_t *metrics)
1302 {
1303 	clock_t		rtt;
1304 	clock_t		rtt_sd;
1305 	ipif_t		*ipif;
1306 	ifrt_t		*ifrt;
1307 	mblk_t		*mp;
1308 	in6_addr_t	gw_addr_v6;
1309 
1310 	/*
1311 	 * Bypass obtaining the lock and searching ipif_saved_ire_mp in the
1312 	 * common case of no metrics.
1313 	 */
1314 	if (which == 0)
1315 		return;
1316 	ire->ire_uinfo.iulp_set = B_TRUE;
1317 
1318 	/*
1319 	 * iulp_rtt and iulp_rtt_sd are in milliseconds, but 4.4BSD-Lite2's
1320 	 * <net/route.h> says: rmx_rtt and rmx_rttvar are stored as
1321 	 * microseconds.
1322 	 */
1323 	if (which & RTV_RTT)
1324 		rtt = metrics->rmx_rtt / 1000;
1325 	if (which & RTV_RTTVAR)
1326 		rtt_sd = metrics->rmx_rttvar / 1000;
1327 
1328 	/*
1329 	 * Update the metrics in the IRE itself.
1330 	 */
1331 	mutex_enter(&ire->ire_lock);
1332 	if (which & RTV_MTU)
1333 		ire->ire_max_frag = metrics->rmx_mtu;
1334 	if (which & RTV_RTT)
1335 		ire->ire_uinfo.iulp_rtt = rtt;
1336 	if (which & RTV_SSTHRESH)
1337 		ire->ire_uinfo.iulp_ssthresh = metrics->rmx_ssthresh;
1338 	if (which & RTV_RTTVAR)
1339 		ire->ire_uinfo.iulp_rtt_sd = rtt_sd;
1340 	if (which & RTV_SPIPE)
1341 		ire->ire_uinfo.iulp_spipe = metrics->rmx_sendpipe;
1342 	if (which & RTV_RPIPE)
1343 		ire->ire_uinfo.iulp_rpipe = metrics->rmx_recvpipe;
1344 	mutex_exit(&ire->ire_lock);
1345 
1346 	/*
1347 	 * Search through the ifrt_t chain hanging off the IPIF in order to
1348 	 * reflect the metric change there.
1349 	 */
1350 	ipif = ire->ire_ipif;
1351 	if (ipif == NULL)
1352 		return;
1353 	ASSERT((ipif->ipif_isv6 && ire->ire_ipversion == IPV6_VERSION) ||
1354 	    ((!ipif->ipif_isv6 && ire->ire_ipversion == IPV4_VERSION)));
1355 	if (ipif->ipif_isv6) {
1356 		mutex_enter(&ire->ire_lock);
1357 		gw_addr_v6 = ire->ire_gateway_addr_v6;
1358 		mutex_exit(&ire->ire_lock);
1359 	}
1360 	mutex_enter(&ipif->ipif_saved_ire_lock);
1361 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
1362 		/*
1363 		 * On a given ipif, the triple of address, gateway and mask is
1364 		 * unique for each saved IRE (in the case of ordinary interface
1365 		 * routes, the gateway address is all-zeroes).
1366 		 */
1367 		ifrt = (ifrt_t *)mp->b_rptr;
1368 		if (ipif->ipif_isv6) {
1369 			if (!IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
1370 			    &ire->ire_addr_v6) ||
1371 			    !IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
1372 			    &gw_addr_v6) ||
1373 			    !IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
1374 			    &ire->ire_mask_v6))
1375 				continue;
1376 		} else {
1377 			if (ifrt->ifrt_addr != ire->ire_addr ||
1378 			    ifrt->ifrt_gateway_addr != ire->ire_gateway_addr ||
1379 			    ifrt->ifrt_mask != ire->ire_mask)
1380 				continue;
1381 		}
1382 		if (which & RTV_MTU)
1383 			ifrt->ifrt_max_frag = metrics->rmx_mtu;
1384 		if (which & RTV_RTT)
1385 			ifrt->ifrt_iulp_info.iulp_rtt = rtt;
1386 		if (which & RTV_SSTHRESH) {
1387 			ifrt->ifrt_iulp_info.iulp_ssthresh =
1388 			    metrics->rmx_ssthresh;
1389 		}
1390 		if (which & RTV_RTTVAR)
1391 			ifrt->ifrt_iulp_info.iulp_rtt_sd = metrics->rmx_rttvar;
1392 		if (which & RTV_SPIPE)
1393 			ifrt->ifrt_iulp_info.iulp_spipe = metrics->rmx_sendpipe;
1394 		if (which & RTV_RPIPE)
1395 			ifrt->ifrt_iulp_info.iulp_rpipe = metrics->rmx_recvpipe;
1396 		break;
1397 	}
1398 	mutex_exit(&ipif->ipif_saved_ire_lock);
1399 }
1400 
1401 /*
1402  * Get the metrics from a forwarding table route.
1403  */
1404 static int
1405 rts_getmetrics(ire_t *ire, rt_metrics_t *metrics)
1406 {
1407 	int	metrics_set = 0;
1408 
1409 	bzero(metrics, sizeof (rt_metrics_t));
1410 	/*
1411 	 * iulp_rtt and iulp_rtt_sd are in milliseconds, but 4.4BSD-Lite2's
1412 	 * <net/route.h> says: rmx_rtt and rmx_rttvar are stored as
1413 	 * microseconds.
1414 	 */
1415 	metrics->rmx_rtt = ire->ire_uinfo.iulp_rtt * 1000;
1416 	metrics_set |= RTV_RTT;
1417 	metrics->rmx_mtu = ire->ire_max_frag;
1418 	metrics_set |= RTV_MTU;
1419 	metrics->rmx_ssthresh = ire->ire_uinfo.iulp_ssthresh;
1420 	metrics_set |= RTV_SSTHRESH;
1421 	metrics->rmx_rttvar = ire->ire_uinfo.iulp_rtt_sd * 1000;
1422 	metrics_set |= RTV_RTTVAR;
1423 	metrics->rmx_sendpipe = ire->ire_uinfo.iulp_spipe;
1424 	metrics_set |= RTV_SPIPE;
1425 	metrics->rmx_recvpipe = ire->ire_uinfo.iulp_rpipe;
1426 	metrics_set |= RTV_RPIPE;
1427 	return (metrics_set);
1428 }
1429 
1430 /*
1431  * Takes a pointer to a routing message and extracts necessary info by looking
1432  * at the rtm->rtm_addrs bits and store the requested sockaddrs in the pointers
1433  * passed (all of which must be valid).
1434  *
1435  * The bitmask of sockaddrs actually found in the message is returned, or zero
1436  * is returned in the case of an error.
1437  */
1438 static int
1439 rts_getaddrs(rt_msghdr_t *rtm, in6_addr_t *dst_addrp, in6_addr_t *gw_addrp,
1440     in6_addr_t *net_maskp, in6_addr_t *authorp, in6_addr_t *if_addrp,
1441     in6_addr_t *in_src_addrp, ushort_t *indexp, sa_family_t *afp,
1442     tsol_rtsecattr_t *rtsecattr, int *error)
1443 {
1444 	struct sockaddr *sa;
1445 	int	i;
1446 	int	addr_bits;
1447 	int	length;
1448 	int	found_addrs = 0;
1449 	caddr_t	cp;
1450 	size_t	size;
1451 	struct sockaddr_dl *sdl;
1452 
1453 	*dst_addrp = ipv6_all_zeros;
1454 	*gw_addrp = ipv6_all_zeros;
1455 	*net_maskp = ipv6_all_zeros;
1456 	*authorp = ipv6_all_zeros;
1457 	*if_addrp = ipv6_all_zeros;
1458 	*in_src_addrp = ipv6_all_zeros;
1459 	*indexp = 0;
1460 	*afp = AF_UNSPEC;
1461 	rtsecattr->rtsa_cnt = 0;
1462 	*error = 0;
1463 
1464 	/*
1465 	 * At present we handle only RTA_DST, RTA_GATEWAY, RTA_NETMASK, RTA_IFP,
1466 	 * RTA_IFA and RTA_AUTHOR.  The rest will be added as we need them.
1467 	 */
1468 	cp = (caddr_t)&rtm[1];
1469 	length = rtm->rtm_msglen;
1470 	for (i = 0; (i < RTA_NUMBITS) && ((cp - (caddr_t)rtm) < length); i++) {
1471 		/*
1472 		 * The address family we are working with starts out as
1473 		 * AF_UNSPEC, but is set to the one specified with the
1474 		 * destination address.
1475 		 *
1476 		 * If the "working" address family that has been set to
1477 		 * something other than AF_UNSPEC, then the address family of
1478 		 * subsequent sockaddrs must either be AF_UNSPEC (for
1479 		 * compatibility with older programs) or must be the same as our
1480 		 * "working" one.
1481 		 *
1482 		 * This code assumes that RTA_DST (1) comes first in the loop.
1483 		 */
1484 		sa = (struct sockaddr *)cp;
1485 		addr_bits = (rtm->rtm_addrs & (1 << i));
1486 		if (addr_bits == 0)
1487 			continue;
1488 		switch (addr_bits) {
1489 		case RTA_DST:
1490 			size = rts_copyfromsockaddr(sa, dst_addrp);
1491 			*afp = sa->sa_family;
1492 			break;
1493 		case RTA_GATEWAY:
1494 			if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC)
1495 				return (0);
1496 			size = rts_copyfromsockaddr(sa, gw_addrp);
1497 			break;
1498 		case RTA_NETMASK:
1499 			if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC)
1500 				return (0);
1501 			size = rts_copyfromsockaddr(sa, net_maskp);
1502 			break;
1503 		case RTA_IFP:
1504 			if (sa->sa_family != AF_LINK &&
1505 			    sa->sa_family != AF_UNSPEC)
1506 				return (0);
1507 			sdl = (struct sockaddr_dl *)cp;
1508 			*indexp = sdl->sdl_index;
1509 			size = sizeof (struct sockaddr_dl);
1510 			break;
1511 		case RTA_SRC:
1512 			/* Source address of the incoming packet */
1513 			size = rts_copyfromsockaddr(sa, in_src_addrp);
1514 			*afp = sa->sa_family;
1515 			break;
1516 		case RTA_IFA:
1517 			if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC)
1518 				return (0);
1519 			size = rts_copyfromsockaddr(sa, if_addrp);
1520 			break;
1521 		case RTA_AUTHOR:
1522 			if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC)
1523 				return (0);
1524 			size = rts_copyfromsockaddr(sa, authorp);
1525 			break;
1526 		default:
1527 			return (0);
1528 		}
1529 		if (size == 0)
1530 			return (0);
1531 		cp += size;
1532 		found_addrs |= addr_bits;
1533 	}
1534 
1535 	/*
1536 	 * Parse the routing message and look for any security-
1537 	 * related attributes for the route.  For each valid
1538 	 * attribute, allocate/obtain the corresponding kernel
1539 	 * route security attributes.
1540 	 */
1541 	*error = tsol_rtsa_init(rtm, rtsecattr, cp);
1542 	ASSERT(rtsecattr->rtsa_cnt <= TSOL_RTSA_REQUEST_MAX);
1543 
1544 	return (found_addrs);
1545 }
1546 
1547 /*
1548  * Fills the message with the given info.
1549  */
1550 static void
1551 rts_fill_msg(int type, int rtm_addrs, ipaddr_t dst, ipaddr_t mask,
1552     ipaddr_t gateway, ipaddr_t src_addr, ipaddr_t brd_addr, ipaddr_t author,
1553     const ipif_t *ipif, mblk_t *mp, uint_t sacnt, const tsol_gc_t *gc)
1554 {
1555 	rt_msghdr_t	*rtm;
1556 	sin_t		*sin;
1557 	size_t		data_size, header_size;
1558 	uchar_t		*cp;
1559 	int		i;
1560 
1561 	ASSERT(mp != NULL);
1562 	ASSERT(sacnt == 0 || gc != NULL);
1563 	/*
1564 	 * First find the type of the message
1565 	 * and its length.
1566 	 */
1567 	header_size = rts_header_msg_size(type);
1568 	/*
1569 	 * Now find the size of the data
1570 	 * that follows the message header.
1571 	 */
1572 	data_size = rts_data_msg_size(rtm_addrs, AF_INET, sacnt);
1573 
1574 	rtm = (rt_msghdr_t *)mp->b_rptr;
1575 	mp->b_wptr = &mp->b_rptr[header_size];
1576 	cp = mp->b_wptr;
1577 	bzero(cp, data_size);
1578 	for (i = 0; i < RTA_NUMBITS; i++) {
1579 		sin = (sin_t *)cp;
1580 		switch (rtm_addrs & (1 << i)) {
1581 		case RTA_DST:
1582 			sin->sin_addr.s_addr = dst;
1583 			sin->sin_family = AF_INET;
1584 			cp += sizeof (sin_t);
1585 			break;
1586 		case RTA_GATEWAY:
1587 			sin->sin_addr.s_addr = gateway;
1588 			sin->sin_family = AF_INET;
1589 			cp += sizeof (sin_t);
1590 			break;
1591 		case RTA_NETMASK:
1592 			sin->sin_addr.s_addr = mask;
1593 			sin->sin_family = AF_INET;
1594 			cp += sizeof (sin_t);
1595 			break;
1596 		case RTA_IFP:
1597 			cp += ill_dls_info((struct sockaddr_dl *)cp, ipif);
1598 			break;
1599 		case RTA_IFA:
1600 		case RTA_SRC:
1601 			sin->sin_addr.s_addr = src_addr;
1602 			sin->sin_family = AF_INET;
1603 			cp += sizeof (sin_t);
1604 			break;
1605 		case RTA_AUTHOR:
1606 			sin->sin_addr.s_addr = author;
1607 			sin->sin_family = AF_INET;
1608 			cp += sizeof (sin_t);
1609 			break;
1610 		case RTA_BRD:
1611 			/*
1612 			 * RTA_BRD is used typically to specify a point-to-point
1613 			 * destination address.
1614 			 */
1615 			sin->sin_addr.s_addr = brd_addr;
1616 			sin->sin_family = AF_INET;
1617 			cp += sizeof (sin_t);
1618 			break;
1619 		}
1620 	}
1621 
1622 	if (gc != NULL) {
1623 		rtm_ext_t *rtm_ext;
1624 		struct rtsa_s *rp_dst;
1625 		tsol_rtsecattr_t *rsap;
1626 		int i;
1627 
1628 		ASSERT(gc->gc_grp != NULL);
1629 		ASSERT(RW_LOCK_HELD(&gc->gc_grp->gcgrp_rwlock));
1630 		ASSERT(sacnt > 0);
1631 
1632 		rtm_ext = (rtm_ext_t *)cp;
1633 		rtm_ext->rtmex_type = RTMEX_GATEWAY_SECATTR;
1634 		rtm_ext->rtmex_len = TSOL_RTSECATTR_SIZE(sacnt);
1635 
1636 		rsap = (tsol_rtsecattr_t *)(rtm_ext + 1);
1637 		rsap->rtsa_cnt = sacnt;
1638 		rp_dst = rsap->rtsa_attr;
1639 
1640 		for (i = 0; i < sacnt; i++, gc = gc->gc_next, rp_dst++) {
1641 			ASSERT(gc->gc_db != NULL);
1642 			bcopy(&gc->gc_db->gcdb_attr, rp_dst, sizeof (*rp_dst));
1643 		}
1644 		cp = (uchar_t *)rp_dst;
1645 	}
1646 
1647 	mp->b_wptr = cp;
1648 	mp->b_cont = NULL;
1649 	/*
1650 	 * set the fields that are common to
1651 	 * to different messages.
1652 	 */
1653 	rtm->rtm_msglen = (short)(header_size + data_size);
1654 	rtm->rtm_version = RTM_VERSION;
1655 	rtm->rtm_type = (uchar_t)type;
1656 }
1657 
1658 /*
1659  * Allocates and initializes a routing socket message.
1660  */
1661 mblk_t *
1662 rts_alloc_msg(int type, int rtm_addrs, sa_family_t af, uint_t sacnt)
1663 {
1664 	size_t	length;
1665 	mblk_t	*mp;
1666 
1667 	length = RTS_MSG_SIZE(type, rtm_addrs, af, sacnt);
1668 	mp = allocb(length, BPRI_MED);
1669 	if (mp == NULL)
1670 		return (mp);
1671 	bzero(mp->b_rptr, length);
1672 	return (mp);
1673 }
1674 
1675 /*
1676  * Returns the size of the routing
1677  * socket message header size.
1678  */
1679 size_t
1680 rts_header_msg_size(int type)
1681 {
1682 	switch (type) {
1683 	case RTM_DELADDR:
1684 	case RTM_NEWADDR:
1685 		return (sizeof (ifa_msghdr_t));
1686 	case RTM_IFINFO:
1687 		return (sizeof (if_msghdr_t));
1688 	default:
1689 		return (sizeof (rt_msghdr_t));
1690 	}
1691 }
1692 
1693 /*
1694  * Returns the size of the message needed with the given rtm_addrs and family.
1695  *
1696  * It is assumed that all of the sockaddrs (with the exception of RTA_IFP) are
1697  * of the same family (currently either AF_INET or AF_INET6).
1698  */
1699 size_t
1700 rts_data_msg_size(int rtm_addrs, sa_family_t af, uint_t sacnt)
1701 {
1702 	int	i;
1703 	size_t	length = 0;
1704 
1705 	for (i = 0; i < RTA_NUMBITS; i++) {
1706 		switch (rtm_addrs & (1 << i)) {
1707 		case RTA_IFP:
1708 			length += sizeof (struct sockaddr_dl);
1709 			break;
1710 		case RTA_DST:
1711 		case RTA_GATEWAY:
1712 		case RTA_NETMASK:
1713 		case RTA_SRC:
1714 		case RTA_IFA:
1715 		case RTA_AUTHOR:
1716 		case RTA_BRD:
1717 			ASSERT(af == AF_INET || af == AF_INET6);
1718 			switch (af) {
1719 			case AF_INET:
1720 				length += sizeof (sin_t);
1721 				break;
1722 			case AF_INET6:
1723 				length += sizeof (sin6_t);
1724 				break;
1725 			}
1726 			break;
1727 		}
1728 	}
1729 	if (sacnt > 0)
1730 		length += sizeof (rtm_ext_t) + TSOL_RTSECATTR_SIZE(sacnt);
1731 
1732 	return (length);
1733 }
1734 
1735 /*
1736  * This routine is called to generate a message to the routing
1737  * socket indicating that a redirect has occured, a routing lookup
1738  * has failed, or that a protocol has detected timeouts to a particular
1739  * destination. This routine is called for message types RTM_LOSING,
1740  * RTM_REDIRECT, and RTM_MISS.
1741  */
1742 void
1743 ip_rts_change(int type, ipaddr_t dst_addr, ipaddr_t gw_addr, ipaddr_t net_mask,
1744     ipaddr_t source, ipaddr_t author, int flags, int error, int rtm_addrs,
1745     ip_stack_t *ipst)
1746 {
1747 	rt_msghdr_t	*rtm;
1748 	mblk_t		*mp;
1749 
1750 	if (rtm_addrs == 0)
1751 		return;
1752 	mp = rts_alloc_msg(type, rtm_addrs, AF_INET, 0);
1753 	if (mp == NULL)
1754 		return;
1755 	rts_fill_msg(type, rtm_addrs, dst_addr, net_mask, gw_addr, source, 0,
1756 	    author, NULL, mp, 0, NULL);
1757 	rtm = (rt_msghdr_t *)mp->b_rptr;
1758 	rtm->rtm_flags = flags;
1759 	rtm->rtm_errno = error;
1760 	rtm->rtm_flags |= RTF_DONE;
1761 	rtm->rtm_addrs = rtm_addrs;
1762 	rts_queue_input(mp, NULL, AF_INET, RTSQ_ALL, ipst);
1763 }
1764 
1765 /*
1766  * This routine is called to generate a message to the routing
1767  * socket indicating that the status of a network interface has changed.
1768  * Message type generated RTM_IFINFO.
1769  */
1770 void
1771 ip_rts_ifmsg(const ipif_t *ipif, uint_t flags)
1772 {
1773 	ip_rts_xifmsg(ipif, 0, 0, flags);
1774 }
1775 
1776 void
1777 ip_rts_xifmsg(const ipif_t *ipif, uint64_t set, uint64_t clear, uint_t flags)
1778 {
1779 	if_msghdr_t	*ifm;
1780 	mblk_t		*mp;
1781 	sa_family_t	af;
1782 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1783 
1784 	/*
1785 	 * This message should be generated only when the physical interface
1786 	 * is changing state.
1787 	 */
1788 	if (ipif->ipif_id != 0)
1789 		return;
1790 
1791 	if (ipif->ipif_isv6) {
1792 		af = AF_INET6;
1793 		mp = rts_alloc_msg(RTM_IFINFO, RTA_IFP, af, 0);
1794 		if (mp == NULL)
1795 			return;
1796 		rts_fill_msg_v6(RTM_IFINFO, RTA_IFP, &ipv6_all_zeros,
1797 		    &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros,
1798 		    &ipv6_all_zeros, &ipv6_all_zeros, ipif, mp, 0, NULL);
1799 	} else {
1800 		af = AF_INET;
1801 		mp = rts_alloc_msg(RTM_IFINFO, RTA_IFP, af, 0);
1802 		if (mp == NULL)
1803 			return;
1804 		rts_fill_msg(RTM_IFINFO, RTA_IFP, 0, 0, 0, 0, 0, 0, ipif, mp,
1805 		    0, NULL);
1806 	}
1807 	ifm = (if_msghdr_t *)mp->b_rptr;
1808 	ifm->ifm_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
1809 	ifm->ifm_flags = (ipif->ipif_flags | ipif->ipif_ill->ill_flags |
1810 	    ipif->ipif_ill->ill_phyint->phyint_flags | set) & ~clear;
1811 	rts_getifdata(&ifm->ifm_data, ipif);
1812 	ifm->ifm_addrs = RTA_IFP;
1813 
1814 	if (flags & RTSQ_DEFAULT) {
1815 		flags = RTSQ_ALL;
1816 		/*
1817 		 * If this message is for an underlying interface, prevent
1818 		 * "normal" (IPMP-unaware) routing sockets from seeing it.
1819 		 */
1820 		if (IS_UNDER_IPMP(ipif->ipif_ill))
1821 			flags &= ~RTSQ_NORMAL;
1822 	}
1823 
1824 	rts_queue_input(mp, NULL, af, flags, ipst);
1825 }
1826 
1827 /*
1828  * This is called to generate messages to the routing socket
1829  * indicating a network interface has had addresses associated with it.
1830  * The structure of the code is based on the 4.4BSD-Lite2 <net/rtsock.c>.
1831  */
1832 void
1833 ip_rts_newaddrmsg(int cmd, int error, const ipif_t *ipif, uint_t flags)
1834 {
1835 	int		pass;
1836 	int		ncmd;
1837 	int		rtm_addrs;
1838 	mblk_t		*mp;
1839 	ifa_msghdr_t	*ifam;
1840 	rt_msghdr_t	*rtm;
1841 	sa_family_t	af;
1842 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1843 
1844 	if (ipif->ipif_isv6)
1845 		af = AF_INET6;
1846 	else
1847 		af = AF_INET;
1848 
1849 	if (flags & RTSQ_DEFAULT) {
1850 		flags = RTSQ_ALL;
1851 		/*
1852 		 * If this message is for an underlying interface, prevent
1853 		 * "normal" (IPMP-unaware) routing sockets from seeing it.
1854 		 */
1855 		if (IS_UNDER_IPMP(ipif->ipif_ill))
1856 			flags &= ~RTSQ_NORMAL;
1857 	}
1858 
1859 	/*
1860 	 * If the request is DELETE, send RTM_DELETE and RTM_DELADDR.
1861 	 * if the request is ADD, send RTM_NEWADDR and RTM_ADD.
1862 	 */
1863 	for (pass = 1; pass < 3; pass++) {
1864 		if ((cmd == RTM_ADD && pass == 1) ||
1865 		    (cmd == RTM_DELETE && pass == 2)) {
1866 			ncmd = ((cmd == RTM_ADD) ? RTM_NEWADDR : RTM_DELADDR);
1867 
1868 			rtm_addrs = (RTA_IFA | RTA_NETMASK | RTA_BRD | RTA_IFP);
1869 			mp = rts_alloc_msg(ncmd, rtm_addrs, af, 0);
1870 			if (mp == NULL)
1871 				continue;
1872 			switch (af) {
1873 			case AF_INET:
1874 				rts_fill_msg(ncmd, rtm_addrs, 0,
1875 				    ipif->ipif_net_mask, 0, ipif->ipif_lcl_addr,
1876 				    ipif->ipif_pp_dst_addr, 0, ipif, mp,
1877 				    0, NULL);
1878 				break;
1879 			case AF_INET6:
1880 				rts_fill_msg_v6(ncmd, rtm_addrs,
1881 				    &ipv6_all_zeros, &ipif->ipif_v6net_mask,
1882 				    &ipv6_all_zeros, &ipif->ipif_v6lcl_addr,
1883 				    &ipif->ipif_v6pp_dst_addr, &ipv6_all_zeros,
1884 				    ipif, mp, 0, NULL);
1885 				break;
1886 			}
1887 			ifam = (ifa_msghdr_t *)mp->b_rptr;
1888 			ifam->ifam_index =
1889 			    ipif->ipif_ill->ill_phyint->phyint_ifindex;
1890 			ifam->ifam_metric = ipif->ipif_metric;
1891 			ifam->ifam_flags = ((cmd == RTM_ADD) ? RTF_UP : 0);
1892 			ifam->ifam_addrs = rtm_addrs;
1893 			rts_queue_input(mp, NULL, af, flags, ipst);
1894 		}
1895 		if ((cmd == RTM_ADD && pass == 2) ||
1896 		    (cmd == RTM_DELETE && pass == 1)) {
1897 			rtm_addrs = (RTA_DST | RTA_NETMASK);
1898 			mp = rts_alloc_msg(cmd, rtm_addrs, af, 0);
1899 			if (mp == NULL)
1900 				continue;
1901 			switch (af) {
1902 			case AF_INET:
1903 				rts_fill_msg(cmd, rtm_addrs,
1904 				    ipif->ipif_lcl_addr, ipif->ipif_net_mask, 0,
1905 				    0, 0, 0, NULL, mp, 0, NULL);
1906 				break;
1907 			case AF_INET6:
1908 				rts_fill_msg_v6(cmd, rtm_addrs,
1909 				    &ipif->ipif_v6lcl_addr,
1910 				    &ipif->ipif_v6net_mask, &ipv6_all_zeros,
1911 				    &ipv6_all_zeros, &ipv6_all_zeros,
1912 				    &ipv6_all_zeros, NULL, mp, 0, NULL);
1913 				break;
1914 			}
1915 			rtm = (rt_msghdr_t *)mp->b_rptr;
1916 			rtm->rtm_index =
1917 			    ipif->ipif_ill->ill_phyint->phyint_ifindex;
1918 			rtm->rtm_flags = ((cmd == RTM_ADD) ? RTF_UP : 0);
1919 			rtm->rtm_errno = error;
1920 			if (error == 0)
1921 				rtm->rtm_flags |= RTF_DONE;
1922 			rtm->rtm_addrs = rtm_addrs;
1923 			rts_queue_input(mp, NULL, af, flags, ipst);
1924 		}
1925 	}
1926 }
1927 
1928 /*
1929  * Based on the address family specified in a sockaddr, copy the address field
1930  * into an in6_addr_t.
1931  *
1932  * In the case of AF_UNSPEC, we assume the family is actually AF_INET for
1933  * compatibility with programs that leave the family cleared in the sockaddr.
1934  * Callers of rts_copyfromsockaddr should check the family themselves if they
1935  * wish to verify its value.
1936  *
1937  * In the case of AF_INET6, a check is made to ensure that address is not an
1938  * IPv4-mapped address.
1939  */
1940 size_t
1941 rts_copyfromsockaddr(struct sockaddr *sa, in6_addr_t *addrp)
1942 {
1943 	switch (sa->sa_family) {
1944 	case AF_INET:
1945 	case AF_UNSPEC:
1946 		IN6_IPADDR_TO_V4MAPPED(((sin_t *)sa)->sin_addr.s_addr, addrp);
1947 		return (sizeof (sin_t));
1948 	case AF_INET6:
1949 		*addrp = ((sin6_t *)sa)->sin6_addr;
1950 		if (IN6_IS_ADDR_V4MAPPED(addrp))
1951 			return (0);
1952 		return (sizeof (sin6_t));
1953 	default:
1954 		return (0);
1955 	}
1956 }
1957