xref: /titanic_51/usr/src/uts/common/inet/ip/ip_ire.c (revision ccbf80fa3b6bf6b986dca9037e5ad9d6c9f9fa65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 /*
31  * This file contains routines that manipulate Internet Routing Entries (IREs).
32  */
33 
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/ddi.h>
39 #include <sys/cmn_err.h>
40 #include <sys/policy.h>
41 
42 #include <sys/systm.h>
43 #include <sys/kmem.h>
44 #include <sys/param.h>
45 #include <sys/socket.h>
46 #include <net/if.h>
47 #include <net/route.h>
48 #include <netinet/in.h>
49 #include <net/if_dl.h>
50 #include <netinet/ip6.h>
51 #include <netinet/icmp6.h>
52 
53 #include <inet/common.h>
54 #include <inet/mi.h>
55 #include <inet/ip.h>
56 #include <inet/ip6.h>
57 #include <inet/ip_ndp.h>
58 #include <inet/arp.h>
59 #include <inet/ip_if.h>
60 #include <inet/ip_ire.h>
61 #include <inet/ip_ftable.h>
62 #include <inet/ip_rts.h>
63 #include <inet/nd.h>
64 
65 #include <net/pfkeyv2.h>
66 #include <inet/ipsec_info.h>
67 #include <inet/sadb.h>
68 #include <sys/kmem.h>
69 #include <inet/tcp.h>
70 #include <inet/ipclassifier.h>
71 #include <sys/zone.h>
72 #include <sys/tsol/label.h>
73 #include <sys/tsol/tnet.h>
74 
75 struct kmem_cache *rt_entry_cache;
76 
77 
78 /*
79  * Synchronization notes:
80  *
81  * The fields of the ire_t struct are protected in the following way :
82  *
83  * ire_next/ire_ptpn
84  *
85  *	- bucket lock of the respective tables (cache or forwarding tables).
86  *
87  * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
88  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
89  * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
90  *
91  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
92  *	  we don't need a lock whenever these fields are accessed.
93  *
94  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
95  *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
96  *        changes after that. Thus we don't need a lock whenever these
97  *	  fields are accessed.
98  *
99  * ire_gateway_addr_v4[v6]
100  *
101  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
102  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
103  *	  it assumed to be atomic and hence the other parts of the code
104  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
105  *	  and hence any access to it uses ire_lock to get/set the right value.
106  *
107  * ire_ident, ire_refcnt
108  *
109  *	- Updated atomically using atomic_add_32
110  *
111  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
112  *
113  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
114  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
115  *
116  * ire_max_frag, ire_frag_flag
117  *
118  *	- ire_lock is used to set/read both of them together.
119  *
120  * ire_tire_mark
121  *
122  *	- Set in ire_create and updated in ire_expire, which is called
123  *	  by only one function namely ip_trash_timer_expire. Thus only
124  *	  one function updates and examines the value.
125  *
126  * ire_marks
127  *	- bucket lock protects this.
128  *
129  * ire_ipsec_overhead/ire_ll_hdr_length
130  *
131  *	- Place holder for returning the information to the upper layers
132  *	  when IRE_DB_REQ comes down.
133  *
134  *
135  * ipv6_ire_default_count is protected by the bucket lock of
136  * ip_forwarding_table_v6[0][0].
137  *
138  * ipv6_ire_default_index is not protected as it  is just a hint
139  * at which default gateway to use. There is nothing
140  * wrong in using the same gateway for two different connections.
141  *
142  * As we always hold the bucket locks in all the places while accessing
143  * the above values, it is natural to use them for protecting them.
144  *
145  * We have a separate cache table and forwarding table for IPv4 and IPv6.
146  * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
147  * array of irb_t structure and forwarding table (ip_forwarding_table/
148  * ip_forwarding_table_v6) is an array of pointers to array of irb_t
149  * structure. ip_forwarding_table[_v6] is allocated dynamically in
150  * ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads
151  * initializing the same bucket. Once a bucket is initialized, it is never
152  * de-alloacted. This assumption enables us to access ip_forwarding_table[i]
153  * or ip_forwarding_table_v6[i] without any locks.
154  *
155  * Each irb_t - ire bucket structure has a lock to protect
156  * a bucket and the ires residing in the bucket have a back pointer to
157  * the bucket structure. It also has a reference count for the number
158  * of threads walking the bucket - irb_refcnt which is bumped up
159  * using the macro IRB_REFHOLD macro. The flags irb_flags can be
160  * set to IRE_MARK_CONDEMNED indicating that there are some ires
161  * in this bucket that are marked with IRE_MARK_CONDEMNED and the
162  * last thread to leave the bucket should delete the ires. Usually
163  * this is done by the IRB_REFRELE macro which is used to decrement
164  * the reference count on a bucket.
165  *
166  * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
167  * decrements the reference count, ire_refcnt, atomically on the ire.
168  * ire_refcnt is modified only using this macro. Operations on the IRE
169  * could be described as follows :
170  *
171  * CREATE an ire with reference count initialized to 1.
172  *
173  * ADDITION of an ire holds the bucket lock, checks for duplicates
174  * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
175  * bumping up once more i.e the reference count is 2. This is to avoid
176  * an extra lookup in the functions calling ire_add which wants to
177  * work with the ire after adding.
178  *
179  * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
180  * macro. It is valid to bump up the referece count of the IRE,
181  * after the lookup has returned an ire. Following are the lookup
182  * functions that return an HELD ire :
183  *
184  * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
185  * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
186  * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup.
187  *
188  * DELETION of an ire holds the bucket lock, removes it from the list
189  * and then decrements the reference count for having removed from the list
190  * by using the IRE_REFRELE macro. If some other thread has looked up
191  * the ire, the reference count would have been bumped up and hence
192  * this ire will not be freed once deleted. It will be freed once the
193  * reference count drops to zero.
194  *
195  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
196  * lookups acquire the bucket lock as RW_READER.
197  *
198  * NOTE : The only functions that does the IRE_REFRELE when an ire is
199  *	  passed as an argument are :
200  *
201  *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
202  *			   broadcast ires it looks up internally within
203  *			   the function. Currently, for simplicity it does
204  *			   not differentiate the one that is passed in and
205  *			   the ones it looks up internally. It always
206  *			   IRE_REFRELEs.
207  *	  2) ire_send
208  *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
209  *			   that take ire as an argument, it has to selectively
210  *			   IRE_REFRELE the ire. To maintain symmetry,
211  *			   ire_send_v6 does the same.
212  *
213  * Otherwise, the general rule is to do the IRE_REFRELE in the function
214  * that is passing the ire as an argument.
215  *
216  * In trying to locate ires the following points are to be noted.
217  *
218  * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
219  * to be ignored when walking the ires using ire_next.
220  *
221  * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the
222  * benefit of in.mpathd which needs to probe interfaces for failures. Normal
223  * applications should not be seeing this ire and hence this ire is ignored
224  * in most cases in the search using ire_next.
225  *
226  * Zones note:
227  *	Walking IREs within a given zone also walks certain ires in other
228  *	zones.  This is done intentionally.  IRE walks with a specified
229  *	zoneid are used only when doing informational reports, and
230  *	zone users want to see things that they can access. See block
231  *	comment in ire_walk_ill_match().
232  */
233 
234 /* This is dynamically allocated in ip_ire_init */
235 irb_t *ip_cache_table;
236 /* This is dynamically allocated in ire_add_mrtun */
237 irb_t	*ip_mrtun_table;
238 
239 uint32_t	ire_handle = 1;
240 /*
241  * ire_ft_init_lock is used while initializing ip_forwarding_table
242  * dynamically in ire_add.
243  */
244 kmutex_t	ire_ft_init_lock;
245 kmutex_t	ire_mrtun_lock;  /* Protects creation of table and it's count */
246 kmutex_t	ire_srcif_table_lock; /* Same as above */
247 /*
248  * The following counts are used to determine whether a walk is
249  * needed through the reverse tunnel table or through ills
250  */
251 kmutex_t ire_handle_lock;	/* Protects ire_handle */
252 uint_t	ire_mrtun_count;	/* Number of ires in reverse tun table */
253 
254 /*
255  * A per-interface routing table is created ( if not present)
256  * when the first entry is added to this special routing table.
257  * This special routing table is accessed through the ill data structure.
258  * The routing table looks like cache table. For example, currently it
259  * is used by mobile-ip foreign agent to forward data that only comes from
260  * the home agent tunnel for a mobile node. Thus if the outgoing interface
261  * is a RESOLVER interface, IP may need to resolve the hardware address for
262  * the outgoing interface. The routing entries in this table are not updated
263  * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa-
264  * tion is lost as the write queue is passed to ip_wput.
265  * But, before sending the packet out, the hardware information must be updated
266  * in the special forwarding table. ire_srcif_table_count keeps track of total
267  * number of ires that are in interface based tables. Each interface based
268  * table hangs off of the incoming ill and each ill_t also keeps a refcnt
269  * of ires in that table.
270  */
271 
272 uint_t	ire_srcif_table_count; /* Number of ires in all srcif tables */
273 
274 /*
275  * The minimum size of IRE cache table.  It will be recalcuated in
276  * ip_ire_init().
277  */
278 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
279 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
280 
281 /*
282  * The size of the forwarding table.  We will make sure that it is a
283  * power of 2 in ip_ire_init().
284  */
285 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
286 
287 struct	kmem_cache	*ire_cache;
288 static ire_t	ire_null;
289 
290 ire_stats_t ire_stats_v4;	/* IPv4 ire statistics */
291 ire_stats_t ire_stats_v6;	/* IPv6 ire statistics */
292 
293 /*
294  * The threshold number of IRE in a bucket when the IREs are
295  * cleaned up.  This threshold is calculated later in ip_open()
296  * based on the speed of CPU and available memory.  This default
297  * value is the maximum.
298  *
299  * We have two kinds of cached IRE, temporary and
300  * non-temporary.  Temporary IREs are marked with
301  * IRE_MARK_TEMPORARY.  They are IREs created for non
302  * TCP traffic and for forwarding purposes.  All others
303  * are non-temporary IREs.  We don't mark IRE created for
304  * TCP as temporary because TCP is stateful and there are
305  * info stored in the IRE which can be shared by other TCP
306  * connections to the same destination.  For connected
307  * endpoint, we also don't want to mark the IRE used as
308  * temporary because the same IRE will be used frequently,
309  * otherwise, the app should not do a connect().  We change
310  * the marking at ip_bind_connected_*() if necessary.
311  *
312  * We want to keep the cache IRE hash bucket length reasonably
313  * short, otherwise IRE lookup functions will take "forever."
314  * We use the "crude" function that the IRE bucket
315  * length should be based on the CPU speed, which is 1 entry
316  * per x MHz, depending on the shift factor ip_ire_cpu_ratio
317  * (n).  This means that with a 750MHz CPU, the max bucket
318  * length can be (750 >> n) entries.
319  *
320  * Note that this threshold is separate for temp and non-temp
321  * IREs.  This means that the actual bucket length can be
322  * twice as that.  And while we try to keep temporary IRE
323  * length at most at the threshold value, we do not attempt to
324  * make the length for non-temporary IREs fixed, for the
325  * reason stated above.  Instead, we start trying to find
326  * "unused" non-temporary IREs when the bucket length reaches
327  * this threshold and clean them up.
328  *
329  * We also want to limit the amount of memory used by
330  * IREs.  So if we are allowed to use ~3% of memory (M)
331  * for those IREs, each bucket should not have more than
332  *
333  * 	M / num of cache bucket / sizeof (ire_t)
334  *
335  * Again the above memory uses are separate for temp and
336  * non-temp cached IREs.
337  *
338  * We may also want the limit to be a function of the number
339  * of interfaces and number of CPUs.  Doing the initialization
340  * in ip_open() means that every time an interface is plumbed,
341  * the max is re-calculated.  Right now, we don't do anything
342  * different.  In future, when we have more experience, we
343  * may want to change this behavior.
344  */
345 uint32_t ip_ire_max_bucket_cnt = 10;
346 uint32_t ip6_ire_max_bucket_cnt = 10;
347 
348 /*
349  * The minimum of the temporary IRE bucket count.  We do not want
350  * the length of each bucket to be too short.  This may hurt
351  * performance of some apps as the temporary IREs are removed too
352  * often.
353  */
354 uint32_t ip_ire_min_bucket_cnt = 3;
355 uint32_t ip6_ire_min_bucket_cnt = 3;
356 
357 /*
358  * The ratio of memory consumed by IRE used for temporary to available
359  * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
360  * value can be changed in /etc/system.  6 is a reasonable number.
361  */
362 uint32_t ip_ire_mem_ratio = 6;
363 /* The shift factor for CPU speed to calculate the max IRE bucket length. */
364 uint32_t ip_ire_cpu_ratio = 7;
365 
366 typedef struct nce_clookup_s {
367 	ipaddr_t ncecl_addr;
368 	boolean_t ncecl_found;
369 } nce_clookup_t;
370 
371 /*
372  * The maximum number of buckets in IRE cache table.  In future, we may
373  * want to make it a dynamic hash table.  For the moment, we fix the
374  * size and allocate the table in ip_ire_init() when IP is first loaded.
375  * We take into account the amount of memory a system has.
376  */
377 #define	IP_MAX_CACHE_TABLE_SIZE	4096
378 
379 static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
380 static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
381 
382 #define	NUM_ILLS	3	/* To build the ILL list to unlock */
383 
384 /* Zero iulp_t for initialization. */
385 const iulp_t	ire_uinfo_null = { 0 };
386 
387 static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
388     ipsq_func_t func, boolean_t);
389 static int	ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
390     ipsq_func_t func);
391 static ire_t	*ire_update_srcif_v4(ire_t *ire);
392 static void	ire_delete_v4(ire_t *ire);
393 static void	ire_report_ctable(ire_t *ire, char *mp);
394 static void	ire_report_mrtun_table(ire_t *ire, char *mp);
395 static void	ire_report_srcif_table(ire_t *ire, char *mp);
396 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
397     zoneid_t zoneid);
398 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
399     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
400 static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt);
401 extern void	ill_unlock_ills(ill_t **list, int cnt);
402 static void	ire_fastpath_list_add(ill_t *ill, ire_t *ire);
403 static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
404 extern void	th_trace_rrecord(th_trace_t *);
405 #ifdef IRE_DEBUG
406 static void	ire_trace_inactive(ire_t *);
407 #endif
408 
409 /*
410  * To avoid bloating the code, we call this function instead of
411  * using the macro IRE_REFRELE. Use macro only in performance
412  * critical paths.
413  *
414  * Must not be called while holding any locks. Otherwise if this is
415  * the last reference to be released there is a chance of recursive mutex
416  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
417  * to restart an ioctl. The one exception is when the caller is sure that
418  * this is not the last reference to be released. Eg. if the caller is
419  * sure that the ire has not been deleted and won't be deleted.
420  */
421 void
422 ire_refrele(ire_t *ire)
423 {
424 	IRE_REFRELE(ire);
425 }
426 
427 void
428 ire_refrele_notr(ire_t *ire)
429 {
430 	IRE_REFRELE_NOTR(ire);
431 }
432 
433 /*
434  * kmem_cache_alloc constructor for IRE in kma space.
435  * Note that when ire_mp is set the IRE is stored in that mblk and
436  * not in this cache.
437  */
438 /* ARGSUSED */
439 static int
440 ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
441 {
442 	ire_t	*ire = buf;
443 
444 	ire->ire_nce = NULL;
445 
446 	return (0);
447 }
448 
449 /* ARGSUSED1 */
450 static void
451 ip_ire_destructor(void *buf, void *cdrarg)
452 {
453 	ire_t	*ire = buf;
454 
455 	ASSERT(ire->ire_nce == NULL);
456 }
457 
458 /*
459  * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
460  * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
461  * for an existing CACHED IRE.
462  */
463 /* ARGSUSED */
464 int
465 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
466 {
467 	uchar_t	*addr_ucp;
468 	ipic_t	*ipic;
469 	ire_t	*ire;
470 	ipaddr_t	addr;
471 	in6_addr_t	v6addr;
472 	irb_t	*irb;
473 	zoneid_t	zoneid;
474 
475 	ASSERT(q->q_next == NULL);
476 	zoneid = Q_TO_CONN(q)->conn_zoneid;
477 
478 	/*
479 	 * Check privilege using the ioctl credential; if it is NULL
480 	 * then this is a kernel message and therefor privileged.
481 	 */
482 	if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0)
483 		return (EPERM);
484 
485 	ipic = (ipic_t *)mp->b_rptr;
486 	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
487 	    ipic->ipic_addr_length))) {
488 		return (EINVAL);
489 	}
490 	if (!OK_32PTR(addr_ucp))
491 		return (EINVAL);
492 	switch (ipic->ipic_addr_length) {
493 	case IP_ADDR_LEN: {
494 		/* Extract the destination address. */
495 		addr = *(ipaddr_t *)addr_ucp;
496 		/* Find the corresponding IRE. */
497 		ire = ire_cache_lookup(addr, zoneid, NULL);
498 		break;
499 	}
500 	case IPV6_ADDR_LEN: {
501 		/* Extract the destination address. */
502 		v6addr = *(in6_addr_t *)addr_ucp;
503 		/* Find the corresponding IRE. */
504 		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL);
505 		break;
506 	}
507 	default:
508 		return (EINVAL);
509 	}
510 
511 	if (ire == NULL)
512 		return (ENOENT);
513 	/*
514 	 * Update the round trip time estimate and/or the max frag size
515 	 * and/or the slow start threshold.
516 	 *
517 	 * We serialize multiple advises using ire_lock.
518 	 */
519 	mutex_enter(&ire->ire_lock);
520 	if (ipic->ipic_rtt) {
521 		/*
522 		 * If there is no old cached values, initialize them
523 		 * conservatively.  Set them to be (1.5 * new value).
524 		 */
525 		if (ire->ire_uinfo.iulp_rtt != 0) {
526 			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
527 			    ipic->ipic_rtt) >> 1;
528 		} else {
529 			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
530 			    (ipic->ipic_rtt >> 1);
531 		}
532 		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
533 			ire->ire_uinfo.iulp_rtt_sd =
534 			    (ire->ire_uinfo.iulp_rtt_sd +
535 			    ipic->ipic_rtt_sd) >> 1;
536 		} else {
537 			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
538 			    (ipic->ipic_rtt_sd >> 1);
539 		}
540 	}
541 	if (ipic->ipic_max_frag)
542 		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
543 	if (ipic->ipic_ssthresh != 0) {
544 		if (ire->ire_uinfo.iulp_ssthresh != 0)
545 			ire->ire_uinfo.iulp_ssthresh =
546 			    (ipic->ipic_ssthresh +
547 			    ire->ire_uinfo.iulp_ssthresh) >> 1;
548 		else
549 			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
550 	}
551 	/*
552 	 * Don't need the ire_lock below this. ire_type does not change
553 	 * after initialization. ire_marks is protected by irb_lock.
554 	 */
555 	mutex_exit(&ire->ire_lock);
556 
557 	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
558 		/*
559 		 * Only increment the temporary IRE count if the original
560 		 * IRE is not already marked temporary.
561 		 */
562 		irb = ire->ire_bucket;
563 		rw_enter(&irb->irb_lock, RW_WRITER);
564 		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
565 		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
566 			irb->irb_tmp_ire_cnt++;
567 		}
568 		ire->ire_marks |= ipic->ipic_ire_marks;
569 		rw_exit(&irb->irb_lock);
570 	}
571 
572 	ire_refrele(ire);
573 	return (0);
574 }
575 
576 /*
577  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
578  * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
579  * for a host that is not responding.  This will force an attempt to
580  * establish a new route, if available, and flush out the ARP entry so
581  * it will re-resolve.  Management processes may want to use the
582  * version that generates a reply.
583  *
584  * This function does not support IPv6 since Neighbor Unreachability Detection
585  * means that negative advise like this is useless.
586  */
587 /* ARGSUSED */
588 int
589 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
590 {
591 	uchar_t		*addr_ucp;
592 	ipaddr_t	addr;
593 	ire_t		*ire;
594 	ipid_t		*ipid;
595 	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
596 	zoneid_t	zoneid;
597 	ire_t		*gire = NULL;
598 	ill_t		*ill;
599 	mblk_t		*arp_mp;
600 
601 	ASSERT(q->q_next == NULL);
602 	zoneid = Q_TO_CONN(q)->conn_zoneid;
603 
604 	/*
605 	 * Check privilege using the ioctl credential; if it is NULL
606 	 * then this is a kernel message and therefor privileged.
607 	 */
608 	if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0)
609 		return (EPERM);
610 
611 	ipid = (ipid_t *)mp->b_rptr;
612 
613 	/* Only actions on IRE_CACHEs are acceptable at present. */
614 	if (ipid->ipid_ire_type != IRE_CACHE)
615 		return (EINVAL);
616 
617 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
618 		ipid->ipid_addr_length);
619 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
620 		return (EINVAL);
621 	switch (ipid->ipid_addr_length) {
622 	case IP_ADDR_LEN:
623 		/* addr_ucp points at IP addr */
624 		break;
625 	case sizeof (sin_t): {
626 		sin_t	*sin;
627 		/*
628 		 * got complete (sockaddr) address - increment addr_ucp to point
629 		 * at the ip_addr field.
630 		 */
631 		sin = (sin_t *)addr_ucp;
632 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
633 		break;
634 	}
635 	default:
636 		return (EINVAL);
637 	}
638 	/* Extract the destination address. */
639 	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
640 
641 	/* Try to find the CACHED IRE. */
642 	ire = ire_cache_lookup(addr, zoneid, NULL);
643 
644 	/* Nail it. */
645 	if (ire) {
646 		/* Allow delete only on CACHE entries */
647 		if (ire->ire_type != IRE_CACHE) {
648 			ire_refrele(ire);
649 			return (EINVAL);
650 		}
651 
652 		/*
653 		 * Verify that the IRE has been around for a while.
654 		 * This is to protect against transport protocols
655 		 * that are too eager in sending delete messages.
656 		 */
657 		if (gethrestime_sec() <
658 		    ire->ire_create_time + ip_ignore_delete_time) {
659 			ire_refrele(ire);
660 			return (EINVAL);
661 		}
662 		/*
663 		 * Now we have a potentially dead cache entry. We need
664 		 * to remove it.
665 		 * If this cache entry is generated from a
666 		 * default route (i.e., ire_cmask == 0),
667 		 * search the default list and mark it dead and some
668 		 * background process will try to activate it.
669 		 */
670 		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
671 			/*
672 			 * Make sure that we pick a different
673 			 * IRE_DEFAULT next time.
674 			 */
675 			ire_t *gw_ire;
676 			irb_t *irb = NULL;
677 			uint_t match_flags;
678 
679 			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
680 
681 			gire = ire_ftable_lookup(ire->ire_addr,
682 			    ire->ire_cmask, 0, 0,
683 			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags);
684 
685 			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
686 			    (void *)gire));
687 
688 			if (gire != NULL) {
689 				irb = gire->ire_bucket;
690 
691 				/*
692 				 * We grab it as writer just to serialize
693 				 * multiple threads trying to bump up
694 				 * irb_rr_origin
695 				 */
696 				rw_enter(&irb->irb_lock, RW_WRITER);
697 				if ((gw_ire = irb->irb_rr_origin) == NULL) {
698 					rw_exit(&irb->irb_lock);
699 					goto done;
700 				}
701 
702 
703 				/* Skip past the potentially bad gateway */
704 				if (ire->ire_gateway_addr ==
705 				    gw_ire->ire_gateway_addr)
706 					irb->irb_rr_origin = gw_ire->ire_next;
707 
708 				rw_exit(&irb->irb_lock);
709 			}
710 		}
711 done:
712 		if (gire != NULL)
713 			IRE_REFRELE(gire);
714 		/* report the bad route to routing sockets */
715 		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
716 		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
717 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA));
718 		routing_sock_info = B_TRUE;
719 
720 		/*
721 		 * TCP is really telling us to start over completely, and it
722 		 * expects that we'll resend the ARP query.  Tell ARP to
723 		 * discard the entry, if this is a local destination.
724 		 */
725 		ill = ire->ire_stq->q_ptr;
726 		if (ire->ire_gateway_addr == 0 &&
727 		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
728 			putnext(ill->ill_rq, arp_mp);
729 		}
730 
731 		ire_delete(ire);
732 		ire_refrele(ire);
733 	}
734 	/* Also look for an IRE_HOST_REDIRECT and remove it if present */
735 	ire = ire_route_lookup(addr, 0, 0, IRE_HOST_REDIRECT, NULL, NULL,
736 	    ALL_ZONES, NULL, MATCH_IRE_TYPE);
737 
738 	/* Nail it. */
739 	if (ire) {
740 		if (!routing_sock_info) {
741 			ip_rts_change(RTM_LOSING, ire->ire_addr,
742 			    ire->ire_gateway_addr, ire->ire_mask,
743 			    ire->ire_src_addr, 0, 0, 0,
744 			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA));
745 		}
746 		ire_delete(ire);
747 		ire_refrele(ire);
748 	}
749 	return (0);
750 }
751 
752 /*
753  * Named Dispatch routine to produce a formatted report on all IREs.
754  * This report is accessed by using the ndd utility to "get" ND variable
755  * "ipv4_ire_status".
756  */
757 /* ARGSUSED */
758 int
759 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
760 {
761 	zoneid_t zoneid;
762 
763 	(void) mi_mpprintf(mp,
764 	    "IRE      " MI_COL_HDRPAD_STR
765 	/*   01234567[89ABCDEF] */
766 	    "rfq      " MI_COL_HDRPAD_STR
767 	/*   01234567[89ABCDEF] */
768 	    "stq      " MI_COL_HDRPAD_STR
769 	/*   01234567[89ABCDEF] */
770 	    " zone "
771 	/*   12345 */
772 	    "addr            mask            "
773 	/*   123.123.123.123 123.123.123.123 */
774 	    "src             gateway         mxfrg rtt   rtt_sd ssthresh ref "
775 	/*   123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */
776 	    "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe "
777 	/*   123456 123456789 123456789 123456 12345678 1234 12345678 */
778 	    "recvpipe in/out/forward type");
779 	/*   12345678 in/out/forward xxxxxxxxxx */
780 
781 	/*
782 	 * Because of the ndd constraint, at most we can have 64K buffer
783 	 * to put in all IRE info.  So to be more efficient, just
784 	 * allocate a 64K buffer here, assuming we need that large buffer.
785 	 * This should be OK as only root can do ndd /dev/ip.
786 	 */
787 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
788 		/* The following may work even if we cannot get a large buf. */
789 		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
790 		return (0);
791 	}
792 
793 	zoneid = Q_TO_CONN(q)->conn_zoneid;
794 	if (zoneid == GLOBAL_ZONEID)
795 		zoneid = ALL_ZONES;
796 
797 	ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid);
798 	ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid);
799 
800 	return (0);
801 }
802 
803 
804 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */
805 static void
806 ire_report_ctable(ire_t *ire, char *mp)
807 {
808 	char	buf1[16];
809 	char	buf2[16];
810 	char	buf3[16];
811 	char	buf4[16];
812 	uint_t	fo_pkt_count;
813 	uint_t	ib_pkt_count;
814 	int	ref;
815 	uint_t	print_len, buf_len;
816 
817 	if ((ire->ire_type & IRE_CACHETABLE) == 0)
818 	    return;
819 	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
820 	if (buf_len <= 0)
821 		return;
822 
823 	/* Number of active references of this ire */
824 	ref = ire->ire_refcnt;
825 	/* "inbound" to a non local address is a forward */
826 	ib_pkt_count = ire->ire_ib_pkt_count;
827 	fo_pkt_count = 0;
828 	if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) {
829 		fo_pkt_count = ib_pkt_count;
830 		ib_pkt_count = 0;
831 	}
832 	print_len =  snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
833 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d "
834 	    "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d "
835 	    "%04d %08d %08d %d/%d/%d %s\n",
836 	    (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq,
837 	    (int)ire->ire_zoneid,
838 	    ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2),
839 	    ip_dot_addr(ire->ire_src_addr, buf3),
840 	    ip_dot_addr(ire->ire_gateway_addr, buf4),
841 	    ire->ire_max_frag, ire->ire_uinfo.iulp_rtt,
842 	    ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref,
843 	    ire->ire_uinfo.iulp_rtomax,
844 	    (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0),
845 	    (ire->ire_uinfo.iulp_wscale_ok ? 1: 0),
846 	    (ire->ire_uinfo.iulp_ecn_ok ? 1: 0),
847 	    (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0),
848 	    ire->ire_uinfo.iulp_sack,
849 	    ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe,
850 	    ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count,
851 	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type));
852 	if (print_len < buf_len) {
853 		((mblk_t *)mp)->b_wptr += print_len;
854 	} else {
855 		((mblk_t *)mp)->b_wptr += buf_len;
856 	}
857 }
858 
859 /* ARGSUSED */
860 int
861 ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
862 {
863 	(void) mi_mpprintf(mp,
864 	"IRE      " MI_COL_HDRPAD_STR
865 	/*   01234567[89ABCDEF] */
866 	"stq      " MI_COL_HDRPAD_STR
867 	/*   01234567[89ABCDEF] */
868 	"in_ill    " MI_COL_HDRPAD_STR
869 	/*   01234567[89ABCDEF] */
870 	"in_src_addr            "
871 	/*   123.123.123.123 */
872 	"max_frag      "
873 	/*   12345 */
874 	"ref     ");
875 	/*   123 */
876 
877 	ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL);
878 	return (0);
879 }
880 
881 /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */
882 
883 static void
884 ire_report_mrtun_table(ire_t *ire, char *mp)
885 {
886 	char	buf1[INET_ADDRSTRLEN];
887 	int	ref;
888 
889 	/* Number of active references of this ire */
890 	ref = ire->ire_refcnt;
891 	ASSERT(ire->ire_type == IRE_MIPRTUN);
892 	(void) mi_mpprintf((mblk_t *)mp,
893 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
894 	    "%s          %05d             %03d",
895 	    (void *)ire, (void *)ire->ire_stq,
896 	    (void *)ire->ire_in_ill,
897 	    ip_dot_addr(ire->ire_in_src_addr, buf1),
898 	    ire->ire_max_frag, ref);
899 }
900 
901 /*
902  * Dispatch routine to format ires in interface based routine
903  */
904 /* ARGSUSED */
905 int
906 ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
907 {
908 
909 	/* Report all interface based ires */
910 
911 	(void) mi_mpprintf(mp,
912 	    "IRE      " MI_COL_HDRPAD_STR
913 	    /*   01234567[89ABCDEF] */
914 	    "stq      " MI_COL_HDRPAD_STR
915 	    /*   01234567[89ABCDEF] */
916 	    "in_ill    " MI_COL_HDRPAD_STR
917 	    /*   01234567[89ABCDEF] */
918 	    "addr            "
919 	    /*   123.123.123.123 */
920 	    "gateway         "
921 	    /*   123.123.123.123 */
922 	    "max_frag      "
923 	    /*   12345 */
924 	    "ref     "
925 	    /*   123 */
926 	    "type    "
927 	    /* ABCDEFGH */
928 	    "in/out/forward");
929 	ire_walk_srcif_table_v4(ire_report_srcif_table, mp);
930 	return (0);
931 }
932 
933 /* Reports the interface table ires */
934 static void
935 ire_report_srcif_table(ire_t *ire, char *mp)
936 {
937 	char    buf1[INET_ADDRSTRLEN];
938 	char    buf2[INET_ADDRSTRLEN];
939 	int	ref;
940 
941 	ref = ire->ire_refcnt;
942 	(void) mi_mpprintf((mblk_t *)mp,
943 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
944 	    "%s    %s      %05d       %03d      %s     %d",
945 	    (void *)ire, (void *)ire->ire_stq,
946 	    (void *)ire->ire_in_ill,
947 	    ip_dot_addr(ire->ire_addr, buf1),
948 	    ip_dot_addr(ire->ire_gateway_addr, buf2),
949 	    ire->ire_max_frag, ref,
950 	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type),
951 	    ire->ire_ib_pkt_count);
952 
953 }
954 /*
955  * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
956  * down from the Upper Level Protocol to request a copy of the IRE (to check
957  * its type or to extract information like round-trip time estimates or the
958  * MTU.)
959  * The address is assumed to be in the ire_addr field. If no IRE is found
960  * an IRE is returned with ire_type being zero.
961  * Note that the upper lavel protocol has to check for broadcast
962  * (IRE_BROADCAST) and multicast (CLASSD(addr)).
963  * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
964  * end of the returned message.
965  *
966  * TCP sends down a message of this type with a connection request packet
967  * chained on. UDP and ICMP send it down to verify that a route exists for
968  * the destination address when they get connected.
969  */
970 void
971 ip_ire_req(queue_t *q, mblk_t *mp)
972 {
973 	ire_t	*inire;
974 	ire_t	*ire;
975 	mblk_t	*mp1;
976 	ire_t	*sire = NULL;
977 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
978 
979 	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
980 	    !OK_32PTR(mp->b_rptr)) {
981 		freemsg(mp);
982 		return;
983 	}
984 	inire = (ire_t *)mp->b_rptr;
985 	/*
986 	 * Got it, now take our best shot at an IRE.
987 	 */
988 	if (inire->ire_ipversion == IPV6_VERSION) {
989 		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
990 		    NULL, &sire, zoneid, NULL,
991 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT));
992 	} else {
993 		ASSERT(inire->ire_ipversion == IPV4_VERSION);
994 		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
995 		    NULL, &sire, zoneid, NULL,
996 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT));
997 	}
998 
999 	/*
1000 	 * We prevent returning IRES with source address INADDR_ANY
1001 	 * as these were temporarily created for sending packets
1002 	 * from endpoints that have conn_unspec_src set.
1003 	 */
1004 	if (ire == NULL ||
1005 	    (ire->ire_ipversion == IPV4_VERSION &&
1006 	    ire->ire_src_addr == INADDR_ANY) ||
1007 	    (ire->ire_ipversion == IPV6_VERSION &&
1008 	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
1009 		inire->ire_type = 0;
1010 	} else {
1011 		bcopy(ire, inire, sizeof (ire_t));
1012 		/* Copy the route metrics from the parent. */
1013 		if (sire != NULL) {
1014 			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
1015 			    sizeof (iulp_t));
1016 		}
1017 
1018 		/*
1019 		 * As we don't lookup global policy here, we may not
1020 		 * pass the right size if per-socket policy is not
1021 		 * present. For these cases, path mtu discovery will
1022 		 * do the right thing.
1023 		 */
1024 		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
1025 
1026 		/* Pass the latest setting of the ip_path_mtu_discovery */
1027 		inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0;
1028 	}
1029 	if (ire != NULL)
1030 		ire_refrele(ire);
1031 	if (sire != NULL)
1032 		ire_refrele(sire);
1033 	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
1034 	mp->b_datap->db_type = IRE_DB_TYPE;
1035 
1036 	/* Put the IRE_DB_TYPE mblk last in the chain */
1037 	mp1 = mp->b_cont;
1038 	if (mp1 != NULL) {
1039 		mp->b_cont = NULL;
1040 		linkb(mp1, mp);
1041 		mp = mp1;
1042 	}
1043 	qreply(q, mp);
1044 }
1045 
1046 /*
1047  * Send a packet using the specified IRE.
1048  * If ire_src_addr_v6 is all zero then discard the IRE after
1049  * the packet has been sent.
1050  */
1051 static void
1052 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
1053 {
1054 	mblk_t *ipsec_mp;
1055 	boolean_t is_secure;
1056 	uint_t ifindex;
1057 	ill_t	*ill;
1058 	zoneid_t zoneid = ire->ire_zoneid;
1059 
1060 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1061 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1062 	ipsec_mp = pkt;
1063 	is_secure = (pkt->b_datap->db_type == M_CTL);
1064 	if (is_secure) {
1065 		ipsec_out_t *io;
1066 
1067 		pkt = pkt->b_cont;
1068 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1069 		if (io->ipsec_out_type == IPSEC_OUT)
1070 			zoneid = io->ipsec_out_zoneid;
1071 	}
1072 
1073 	/* If the packet originated externally then */
1074 	if (pkt->b_prev) {
1075 		ire_refrele(ire);
1076 		/*
1077 		 * Extract the ifindex from b_prev (set in ip_rput_noire).
1078 		 * Look up interface to see if it still exists (it could have
1079 		 * been unplumbed by the time the reply came back from ARP)
1080 		 */
1081 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1082 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
1083 		    NULL, NULL, NULL, NULL);
1084 		if (ill == NULL) {
1085 			pkt->b_prev = NULL;
1086 			pkt->b_next = NULL;
1087 			freemsg(ipsec_mp);
1088 			return;
1089 		}
1090 		q = ill->ill_rq;
1091 		pkt->b_prev = NULL;
1092 		/*
1093 		 * This packet has not gone through IPSEC processing
1094 		 * and hence we should not have any IPSEC message
1095 		 * prepended.
1096 		 */
1097 		ASSERT(ipsec_mp == pkt);
1098 		put(q, pkt);
1099 		ill_refrele(ill);
1100 	} else if (pkt->b_next) {
1101 		/* Packets from multicast router */
1102 		pkt->b_next = NULL;
1103 		/*
1104 		 * We never get the IPSEC_OUT while forwarding the
1105 		 * packet for multicast router.
1106 		 */
1107 		ASSERT(ipsec_mp == pkt);
1108 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
1109 		ire_refrele(ire);
1110 	} else {
1111 		/* Locally originated packets */
1112 		boolean_t is_inaddr_any;
1113 		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
1114 
1115 		/*
1116 		 * We need to do an ire_delete below for which
1117 		 * we need to make sure that the IRE will be
1118 		 * around even after calling ip_wput_ire -
1119 		 * which does ire_refrele. Otherwise somebody
1120 		 * could potentially delete this ire and hence
1121 		 * free this ire and we will be calling ire_delete
1122 		 * on a freed ire below.
1123 		 */
1124 		is_inaddr_any = (ire->ire_src_addr == INADDR_ANY);
1125 		if (is_inaddr_any) {
1126 			IRE_REFHOLD(ire);
1127 		}
1128 		/*
1129 		 * If we were resolving a router we can not use the
1130 		 * routers IRE for sending the packet (since it would
1131 		 * violate the uniqness of the IP idents) thus we
1132 		 * make another pass through ip_wput to create the IRE_CACHE
1133 		 * for the destination.
1134 		 * When IRE_MARK_NOADD is set, ire_add() is not called.
1135 		 * Thus ip_wput() will never find a ire and result in an
1136 		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
1137 		 * is set. This also implies that IRE_MARK_NOADD can only be
1138 		 * used to send packets to directly connected hosts.
1139 		 */
1140 		if (ipha->ipha_dst != ire->ire_addr &&
1141 		    !(ire->ire_marks & IRE_MARK_NOADD)) {
1142 			ire_refrele(ire);	/* Held in ire_add */
1143 			if (CONN_Q(q)) {
1144 				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
1145 				    IRE_SEND);
1146 			} else {
1147 				(void) ip_output((void *)(uintptr_t)zoneid,
1148 				    ipsec_mp, q, IRE_SEND);
1149 			}
1150 		} else {
1151 			if (is_secure) {
1152 				ipsec_out_t *oi;
1153 				ipha_t *ipha;
1154 
1155 				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1156 				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
1157 				if (oi->ipsec_out_proc_begin) {
1158 					/*
1159 					 * This is the case where
1160 					 * ip_wput_ipsec_out could not find
1161 					 * the IRE and recreated a new one.
1162 					 * As ip_wput_ipsec_out does ire
1163 					 * lookups, ire_refrele for the extra
1164 					 * bump in ire_add.
1165 					 */
1166 					ire_refrele(ire);
1167 					ip_wput_ipsec_out(q, ipsec_mp, ipha,
1168 					    NULL, NULL);
1169 				} else {
1170 					/*
1171 					 * IRE_REFRELE will be done in
1172 					 * ip_wput_ire.
1173 					 */
1174 					ip_wput_ire(q, ipsec_mp, ire, NULL,
1175 					    IRE_SEND, zoneid);
1176 				}
1177 			} else {
1178 				/*
1179 				 * IRE_REFRELE will be done in ip_wput_ire.
1180 				 */
1181 				ip_wput_ire(q, ipsec_mp, ire, NULL,
1182 				    IRE_SEND, zoneid);
1183 			}
1184 		}
1185 		/*
1186 		 * Special code to support sending a single packet with
1187 		 * conn_unspec_src using an IRE which has no source address.
1188 		 * The IRE is deleted here after sending the packet to avoid
1189 		 * having other code trip on it. But before we delete the
1190 		 * ire, somebody could have looked up this ire.
1191 		 * We prevent returning/using this IRE by the upper layers
1192 		 * by making checks to NULL source address in other places
1193 		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
1194 		 * Though, this does not completely prevent other threads
1195 		 * from using this ire, this should not cause any problems.
1196 		 *
1197 		 * NOTE : We use is_inaddr_any instead of using ire_src_addr
1198 		 * because for the normal case i.e !is_inaddr_any, ire_refrele
1199 		 * above could have potentially freed the ire.
1200 		 */
1201 		if (is_inaddr_any) {
1202 			/*
1203 			 * If this IRE has been deleted by another thread, then
1204 			 * ire_bucket won't be NULL, but ire_ptpn will be NULL.
1205 			 * Thus, ire_delete will do nothing.  This check
1206 			 * guards against calling ire_delete when the IRE was
1207 			 * never inserted in the table, which is handled by
1208 			 * ire_delete as dropping another reference.
1209 			 */
1210 			if (ire->ire_bucket != NULL) {
1211 				ip1dbg(("ire_send: delete IRE\n"));
1212 				ire_delete(ire);
1213 			}
1214 			ire_refrele(ire);	/* Held above */
1215 		}
1216 	}
1217 }
1218 
1219 /*
1220  * Send a packet using the specified IRE.
1221  * If ire_src_addr_v6 is all zero then discard the IRE after
1222  * the packet has been sent.
1223  */
1224 static void
1225 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
1226 {
1227 	mblk_t *ipsec_mp;
1228 	boolean_t secure;
1229 	uint_t ifindex;
1230 	zoneid_t zoneid = ire->ire_zoneid;
1231 
1232 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
1233 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1234 	if (pkt->b_datap->db_type == M_CTL) {
1235 		ipsec_out_t *io;
1236 
1237 		ipsec_mp = pkt;
1238 		pkt = pkt->b_cont;
1239 		secure = B_TRUE;
1240 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1241 		if (io->ipsec_out_type == IPSEC_OUT)
1242 			zoneid = io->ipsec_out_zoneid;
1243 	} else {
1244 		ipsec_mp = pkt;
1245 		secure = B_FALSE;
1246 	}
1247 
1248 	/* If the packet originated externally then */
1249 	if (pkt->b_prev) {
1250 		ill_t	*ill;
1251 		/*
1252 		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1253 		 * Look up interface to see if it still exists (it could have
1254 		 * been unplumbed by the time the reply came back from the
1255 		 * resolver).
1256 		 */
1257 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1258 		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1259 		    NULL, NULL, NULL, NULL);
1260 		if (ill == NULL) {
1261 			pkt->b_prev = NULL;
1262 			pkt->b_next = NULL;
1263 			freemsg(ipsec_mp);
1264 			ire_refrele(ire);	/* Held in ire_add */
1265 			return;
1266 		}
1267 		q = ill->ill_rq;
1268 		pkt->b_prev = NULL;
1269 		/*
1270 		 * This packet has not gone through IPSEC processing
1271 		 * and hence we should not have any IPSEC message
1272 		 * prepended.
1273 		 */
1274 		ASSERT(ipsec_mp == pkt);
1275 		put(q, pkt);
1276 		ill_refrele(ill);
1277 	} else if (pkt->b_next) {
1278 		/* Packets from multicast router */
1279 		pkt->b_next = NULL;
1280 		/*
1281 		 * We never get the IPSEC_OUT while forwarding the
1282 		 * packet for multicast router.
1283 		 */
1284 		ASSERT(ipsec_mp == pkt);
1285 		/*
1286 		 * XXX TODO IPv6.
1287 		 */
1288 		freemsg(pkt);
1289 #ifdef XXX
1290 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1291 #endif
1292 	} else {
1293 		if (secure) {
1294 			ipsec_out_t *oi;
1295 			ip6_t *ip6h;
1296 
1297 			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1298 			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1299 			if (oi->ipsec_out_proc_begin) {
1300 				/*
1301 				 * This is the case where
1302 				 * ip_wput_ipsec_out could not find
1303 				 * the IRE and recreated a new one.
1304 				 */
1305 				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1306 				    NULL, NULL);
1307 			} else {
1308 				if (CONN_Q(q)) {
1309 					(void) ip_output_v6(Q_TO_CONN(q),
1310 					    ipsec_mp, q, IRE_SEND);
1311 				} else {
1312 					(void) ip_output_v6(
1313 					    (void *)(uintptr_t)zoneid,
1314 					    ipsec_mp, q, IRE_SEND);
1315 				}
1316 			}
1317 		} else {
1318 			/*
1319 			 * Send packets through ip_output_v6 so that any
1320 			 * ip6_info header can be processed again.
1321 			 */
1322 			if (CONN_Q(q)) {
1323 				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1324 				    IRE_SEND);
1325 			} else {
1326 				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1327 				    ipsec_mp, q, IRE_SEND);
1328 			}
1329 		}
1330 		/*
1331 		 * Special code to support sending a single packet with
1332 		 * conn_unspec_src using an IRE which has no source address.
1333 		 * The IRE is deleted here after sending the packet to avoid
1334 		 * having other code trip on it. But before we delete the
1335 		 * ire, somebody could have looked up this ire.
1336 		 * We prevent returning/using this IRE by the upper layers
1337 		 * by making checks to NULL source address in other places
1338 		 * like e.g ip_ire_append_v6, ip_ire_req and
1339 		 * ip_bind_connected_v6. Though, this does not completely
1340 		 * prevent other threads from using this ire, this should
1341 		 * not cause any problems.
1342 		 */
1343 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1344 			ip1dbg(("ire_send_v6: delete IRE\n"));
1345 			ire_delete(ire);
1346 		}
1347 	}
1348 	ire_refrele(ire);	/* Held in ire_add */
1349 }
1350 
1351 /*
1352  * Make sure that IRE bucket does not get too long.
1353  * This can cause lock up because ire_cache_lookup()
1354  * may take "forever" to finish.
1355  *
1356  * We just remove cnt IREs each time.  This means that
1357  * the bucket length will stay approximately constant,
1358  * depending on cnt.  This should be enough to defend
1359  * against DoS attack based on creating temporary IREs
1360  * (for forwarding and non-TCP traffic).
1361  *
1362  * Note that new IRE is normally added at the tail of the
1363  * bucket.  This means that we are removing the "oldest"
1364  * temporary IRE added.  Only if there are IREs with
1365  * the same ire_addr, do we not add it at the tail.  Refer
1366  * to ire_add_v*().  It should be OK for our purpose.
1367  *
1368  * For non-temporary cached IREs, we make sure that they
1369  * have not been used for some time (defined below), they
1370  * are non-local destinations, and there is no one using
1371  * them at the moment (refcnt == 1).
1372  *
1373  * The above means that the IRE bucket length may become
1374  * very long, consisting of mostly non-temporary IREs.
1375  * This can happen when the hash function does a bad job
1376  * so that most TCP connections cluster to a specific bucket.
1377  * This "hopefully" should never happen.  It can also
1378  * happen if most TCP connections have very long lives.
1379  * Even with the minimal hash table size of 256, there
1380  * has to be a lot of such connections to make the bucket
1381  * length unreasonably long.  This should probably not
1382  * happen either.  The third can when this can happen is
1383  * when the machine is under attack, such as SYN flooding.
1384  * TCP should already have the proper mechanism to protect
1385  * that.  So we should be safe.
1386  *
1387  * This function is called by ire_add_then_send() after
1388  * a new IRE is added and the packet is sent.
1389  *
1390  * The idle cutoff interval is set to 60s.  It can be
1391  * changed using /etc/system.
1392  */
1393 uint32_t ire_idle_cutoff_interval = 60000;
1394 
1395 static void
1396 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt)
1397 {
1398 	ire_t *ire;
1399 	int tmp_cnt = cnt;
1400 	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1401 
1402 	/*
1403 	 * irb is NULL if the IRE is not added to the hash.  This
1404 	 * happens when IRE_MARK_NOADD is set in ire_add_then_send()
1405 	 * and when ires are returned from ire_update_srcif_v4() routine.
1406 	 */
1407 	if (irb == NULL)
1408 		return;
1409 
1410 	IRB_REFHOLD(irb);
1411 	if (irb->irb_tmp_ire_cnt > threshold) {
1412 		for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0;
1413 		    ire = ire->ire_next) {
1414 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1415 				continue;
1416 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1417 				ASSERT(ire->ire_type == IRE_CACHE);
1418 				ire_delete(ire);
1419 				tmp_cnt--;
1420 			}
1421 		}
1422 	}
1423 	if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) {
1424 		for (ire = irb->irb_ire; ire != NULL && cnt > 0;
1425 		    ire = ire->ire_next) {
1426 			if (ire->ire_marks & IRE_MARK_CONDEMNED ||
1427 			    ire->ire_gateway_addr == 0) {
1428 				continue;
1429 			}
1430 			if ((ire->ire_type == IRE_CACHE) &&
1431 			    (lbolt - ire->ire_last_used_time > cut_off) &&
1432 			    (ire->ire_refcnt == 1)) {
1433 				ire_delete(ire);
1434 				cnt--;
1435 			}
1436 		}
1437 	}
1438 	IRB_REFRELE(irb);
1439 }
1440 
1441 /*
1442  * ire_add_then_send is called when a new IRE has been created in order to
1443  * route an outgoing packet.  Typically, it is called from ip_wput when
1444  * a response comes back down from a resolver.  We add the IRE, and then
1445  * possibly run the packet through ip_wput or ip_rput, as appropriate.
1446  * However, we do not add the newly created IRE in the cache when
1447  * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1448  * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned
1449  * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get
1450  * deleted.
1451  * Multirouting support: the packet is silently discarded when the new IRE
1452  * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1453  * RTF_MULTIRT flag for the same destination address.
1454  * In this case, we just want to register this additional ire without
1455  * sending the packet, as it has already been replicated through
1456  * existing multirt routes in ip_wput().
1457  */
1458 void
1459 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1460 {
1461 	irb_t *irb;
1462 	boolean_t drop = B_FALSE;
1463 	/* LINTED : set but not used in function */
1464 	boolean_t mctl_present;
1465 	mblk_t *first_mp = NULL;
1466 	mblk_t *save_mp = NULL;
1467 	ire_t *dst_ire;
1468 	ipha_t *ipha;
1469 	ip6_t *ip6h;
1470 
1471 	if (mp != NULL) {
1472 		/*
1473 		 * We first have to retrieve the destination address carried
1474 		 * by the packet.
1475 		 * We can't rely on ire as it can be related to a gateway.
1476 		 * The destination address will help in determining if
1477 		 * other RTF_MULTIRT ires are already registered.
1478 		 *
1479 		 * We first need to know where we are going : v4 or V6.
1480 		 * the ire version is enough, as there is no risk that
1481 		 * we resolve an IPv6 address with an IPv4 ire
1482 		 * or vice versa.
1483 		 */
1484 		if (ire->ire_ipversion == IPV4_VERSION) {
1485 			EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1486 			ipha = (ipha_t *)mp->b_rptr;
1487 			save_mp = mp;
1488 			mp = first_mp;
1489 
1490 			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1491 			    ire->ire_zoneid, MBLK_GETLABEL(mp));
1492 		} else {
1493 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1494 			/*
1495 			 * Get a pointer to the beginning of the IPv6 header.
1496 			 * Ignore leading IPsec control mblks.
1497 			 */
1498 			first_mp = mp;
1499 			if (mp->b_datap->db_type == M_CTL) {
1500 				mp = mp->b_cont;
1501 			}
1502 			ip6h = (ip6_t *)mp->b_rptr;
1503 			save_mp = mp;
1504 			mp = first_mp;
1505 			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1506 			    ire->ire_zoneid, MBLK_GETLABEL(mp));
1507 		}
1508 		if (dst_ire != NULL) {
1509 			if (dst_ire->ire_flags & RTF_MULTIRT) {
1510 				/*
1511 				 * At least one resolved multirt route
1512 				 * already exists for the destination,
1513 				 * don't sent this packet: either drop it
1514 				 * or complete the pending resolution,
1515 				 * depending on the ire.
1516 				 */
1517 				drop = B_TRUE;
1518 			}
1519 			ip1dbg(("ire_add_then_send: dst_ire %p "
1520 			    "[dst %08x, gw %08x], drop %d\n",
1521 			    (void *)dst_ire,
1522 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1523 				ntohl(dst_ire->ire_addr) : \
1524 				ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1525 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1526 				ntohl(dst_ire->ire_gateway_addr) : \
1527 				ntohl(V4_PART_OF_V6(
1528 				    dst_ire->ire_gateway_addr_v6)),
1529 			    drop));
1530 			ire_refrele(dst_ire);
1531 		}
1532 	}
1533 
1534 	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1535 		/*
1536 		 * Regular packets with cache bound ires and
1537 		 * the packets from ARP response for ires which
1538 		 * belong to the ire_srcif_v4 table, are here.
1539 		 */
1540 		if (ire->ire_in_ill == NULL) {
1541 			/* Add the ire */
1542 			(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1543 		} else {
1544 			/*
1545 			 * This must be ARP response for ire in interface based
1546 			 * table. Note that we don't add them in cache table,
1547 			 * instead we update the existing table with dlureq_mp
1548 			 * information. The reverse tunnel ires do not come
1549 			 * here, as reverse tunnel is non-resolver interface.
1550 			 * XXX- another design alternative was to mark the
1551 			 * ires in interface based table with a special mark to
1552 			 * make absolutely sure that we operate in right ires.
1553 			 * This idea was not implemented as part of code review
1554 			 * suggestion, as ire_in_ill suffice to distinguish
1555 			 * between the regular ires and interface based
1556 			 * ires now and thus we save a bit in the ire_marks.
1557 			 */
1558 			ire = ire_update_srcif_v4(ire);
1559 		}
1560 
1561 		if (ire == NULL) {
1562 			mp->b_prev = NULL;
1563 			mp->b_next = NULL;
1564 			MULTIRT_DEBUG_UNTAG(mp);
1565 			freemsg(mp);
1566 			return;
1567 		}
1568 		if (mp == NULL) {
1569 			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1570 			return;
1571 		}
1572 	}
1573 	if (drop) {
1574 		/*
1575 		 * If we're adding an RTF_MULTIRT ire, the resolution
1576 		 * is over: we just drop the packet.
1577 		 */
1578 		if (ire->ire_flags & RTF_MULTIRT) {
1579 			if (save_mp) {
1580 				save_mp->b_prev = NULL;
1581 				save_mp->b_next = NULL;
1582 			}
1583 			MULTIRT_DEBUG_UNTAG(mp);
1584 			freemsg(mp);
1585 		} else {
1586 			/*
1587 			 * Otherwise, we're adding the ire to a gateway
1588 			 * for a multirt route.
1589 			 * Invoke ip_newroute() to complete the resolution
1590 			 * of the route. We will then come back here and
1591 			 * finally drop this packet in the above code.
1592 			 */
1593 			if (ire->ire_ipversion == IPV4_VERSION) {
1594 				/*
1595 				 * TODO: in order for CGTP to work in non-global
1596 				 * zones, ip_newroute() must create the IRE
1597 				 * cache in the zone indicated by
1598 				 * ire->ire_zoneid.
1599 				 */
1600 				ip_newroute(q, mp, ipha->ipha_dst, 0,
1601 				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1602 				    ire->ire_zoneid);
1603 			} else {
1604 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1605 				ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL,
1606 				    NULL, ire->ire_zoneid);
1607 			}
1608 		}
1609 
1610 		ire_refrele(ire); /* As done by ire_send(). */
1611 		return;
1612 	}
1613 	/*
1614 	 * Need to remember ire_bucket here as ire_send*() may delete
1615 	 * the ire so we cannot reference it after that.
1616 	 */
1617 	irb = ire->ire_bucket;
1618 	if (ire->ire_ipversion == IPV6_VERSION) {
1619 		ire_send_v6(q, mp, ire);
1620 		/*
1621 		 * Clean up more than 1 IRE so that the clean up does not
1622 		 * need to be done every time when a new IRE is added and
1623 		 * the threshold is reached.
1624 		 */
1625 		ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2);
1626 	} else {
1627 		ire_send(q, mp, ire);
1628 		ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2);
1629 	}
1630 }
1631 
1632 /*
1633  * Initialize the ire that is specific to IPv4 part and call
1634  * ire_init_common to finish it.
1635  */
1636 ire_t *
1637 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1638     uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp,
1639     queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif,
1640     ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1641     uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp)
1642 {
1643 	/*
1644 	 * Reject IRE security attribute creation/initialization
1645 	 * if system is not running in Trusted mode.
1646 	 */
1647 	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1648 		return (NULL);
1649 
1650 	if (fp_mp != NULL) {
1651 		/*
1652 		 * We can't dupb() here as multiple threads could be
1653 		 * calling dupb on the same mp which is incorrect.
1654 		 * First dupb() should be called only by one thread.
1655 		 */
1656 		fp_mp = copyb(fp_mp);
1657 		if (fp_mp == NULL)
1658 			return (NULL);
1659 	}
1660 
1661 	if (dlureq_mp != NULL) {
1662 		/*
1663 		 * We can't dupb() here as multiple threads could be
1664 		 * calling dupb on the same mp which is incorrect.
1665 		 * First dupb() should be called only by one thread.
1666 		 */
1667 		dlureq_mp = copyb(dlureq_mp);
1668 		if (dlureq_mp == NULL) {
1669 			if (fp_mp != NULL)
1670 				freeb(fp_mp);
1671 			return (NULL);
1672 		}
1673 	}
1674 
1675 	/*
1676 	 * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a
1677 	 * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER
1678 	 * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER.
1679 	 */
1680 	if ((type & IRE_INTERFACE) &&
1681 	    dlureq_mp == NULL) {
1682 		ASSERT(fp_mp == NULL);
1683 		ip0dbg(("ire_init: no dlureq_mp\n"));
1684 		return (NULL);
1685 	}
1686 
1687 	BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced);
1688 
1689 	if (addr != NULL)
1690 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1691 	if (src_addr != NULL)
1692 		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1693 	if (mask != NULL) {
1694 		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1695 		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1696 	}
1697 	if (gateway != NULL) {
1698 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1699 	}
1700 	if (in_src_addr != NULL) {
1701 		bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN);
1702 	}
1703 
1704 	if (type == IRE_CACHE)
1705 		ire->ire_cmask = cmask;
1706 
1707 	/* ire_init_common will free the mblks upon encountering any failure */
1708 	if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp,
1709 	    ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info,
1710 	    gc, gcgrp))
1711 		return (NULL);
1712 
1713 	return (ire);
1714 }
1715 
1716 /*
1717  * Similar to ire_create except that it is called only when
1718  * we want to allocate ire as an mblk e.g. we have an external
1719  * resolver ARP.
1720  */
1721 ire_t *
1722 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1723     uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq,
1724     queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill,
1725     ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
1726     const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp)
1727 {
1728 	ire_t	*ire, *buf;
1729 	ire_t	*ret_ire;
1730 	mblk_t	*mp;
1731 	size_t	bufsize;
1732 	frtn_t	*frtnp;
1733 	ill_t	*ill;
1734 
1735 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1736 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1737 	if (buf == NULL) {
1738 		ip1dbg(("ire_create_mp: alloc failed\n"));
1739 		return (NULL);
1740 	}
1741 	frtnp = (frtn_t *)(buf + 1);
1742 	frtnp->free_arg = (caddr_t)buf;
1743 	frtnp->free_func = ire_freemblk;
1744 
1745 	/*
1746 	 * Allocate the new IRE. The ire created will hold a ref on
1747 	 * an nce_t after ire_nce_init, and this ref must either be
1748 	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1749 	 *	is called after successful arp resolution, or,
1750 	 * (b)  released, when arp resolution fails
1751 	 * Case (b) is handled in ire_freemblk() which will be called
1752 	 * when mp is freed as a result of failed arp.
1753 	 */
1754 	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1755 	if (mp == NULL) {
1756 		ip1dbg(("ire_create_mp: alloc failed\n"));
1757 		kmem_free(buf, bufsize);
1758 		return (NULL);
1759 	}
1760 	ire = (ire_t *)mp->b_rptr;
1761 	mp->b_wptr = (uchar_t *)&ire[1];
1762 
1763 	/* Start clean. */
1764 	*ire = ire_null;
1765 	ire->ire_mp = mp;
1766 	mp->b_datap->db_type = IRE_DB_TYPE;
1767 	ire->ire_marks |= IRE_MARK_UNCACHED;
1768 
1769 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
1770 	    NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask,
1771 	    phandle, ihandle, flags, ulp_info, gc, gcgrp);
1772 
1773 	ill = (ill_t *)(stq->q_ptr);
1774 	if (ret_ire == NULL) {
1775 		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1776 		freeb(ire->ire_mp);
1777 		return (NULL);
1778 	}
1779 	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1780 	ASSERT(ret_ire == ire);
1781 	/*
1782 	 * ire_max_frag is normally zero here and is atomically set
1783 	 * under the irebucket lock in ire_add_v[46] except for the
1784 	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1785 	 * is non-zero here.
1786 	 */
1787 	ire->ire_max_frag = max_frag;
1788 	return (ire);
1789 }
1790 
1791 /*
1792  * ire_create is called to allocate and initialize a new IRE.
1793  *
1794  * NOTE : This is called as writer sometimes though not required
1795  * by this function.
1796  */
1797 ire_t *
1798 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1799     uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq,
1800     queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill,
1801     ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
1802     const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp)
1803 {
1804 	ire_t	*ire;
1805 	ire_t	*ret_ire;
1806 
1807 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1808 	if (ire == NULL) {
1809 		ip1dbg(("ire_create: alloc failed\n"));
1810 		return (NULL);
1811 	}
1812 	*ire = ire_null;
1813 
1814 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
1815 	    max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill,  cmask,
1816 	    phandle, ihandle, flags, ulp_info, gc, gcgrp);
1817 
1818 	if (ret_ire == NULL) {
1819 		kmem_cache_free(ire_cache, ire);
1820 		return (NULL);
1821 	}
1822 	ASSERT(ret_ire == ire);
1823 	return (ire);
1824 }
1825 
1826 
1827 /*
1828  * Common to IPv4 and IPv6
1829  */
1830 boolean_t
1831 ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp,
1832     queue_t *rfq, queue_t *stq, ushort_t type,
1833     mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle,
1834     uint32_t ihandle, uint32_t flags, uchar_t ipversion,
1835     const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp)
1836 {
1837 	ire->ire_max_fragp = max_fragp;
1838 	ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0;
1839 
1840 	ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA);
1841 #ifdef DEBUG
1842 	if (ipif != NULL) {
1843 		if (ipif->ipif_isv6)
1844 			ASSERT(ipversion == IPV6_VERSION);
1845 		else
1846 			ASSERT(ipversion == IPV4_VERSION);
1847 	}
1848 #endif /* DEBUG */
1849 
1850 	/*
1851 	 * Create/initialize IRE security attribute only in Trusted mode;
1852 	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1853 	 * has held a reference to it and will release it when this routine
1854 	 * returns a failure, otherwise we own the reference.  We do this
1855 	 * prior to initializing the rest IRE fields.
1856 	 *
1857 	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1858 	 * memory leak (in case of external resolution failure). We'll
1859 	 * allocate it after a successful external resolution, in ire_add().
1860 	 * Note that ire->ire_mp != NULL here means this ire is headed
1861 	 * to an external resolver.
1862 	 */
1863 	if (is_system_labeled()) {
1864 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1865 		    IRE_INTERFACE)) != 0) {
1866 			/* release references on behalf of caller */
1867 			if (gc != NULL)
1868 				GC_REFRELE(gc);
1869 			if (gcgrp != NULL)
1870 				GCGRP_REFRELE(gcgrp);
1871 		} else if ((ire->ire_mp == NULL) &&
1872 		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1873 			/* free any caller-allocated mblks upon failure */
1874 			if (fp_mp != NULL)
1875 				freeb(fp_mp);
1876 			if (dlureq_mp != NULL)
1877 				freeb(dlureq_mp);
1878 			return (B_FALSE);
1879 		}
1880 	}
1881 
1882 	ire->ire_stq = stq;
1883 	ire->ire_rfq = rfq;
1884 	ire->ire_type = type;
1885 	ire->ire_flags = RTF_UP | flags;
1886 	ire->ire_ident = TICK_TO_MSEC(lbolt);
1887 	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1888 
1889 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1890 	ire->ire_last_used_time = lbolt;
1891 	ire->ire_create_time = (uint32_t)gethrestime_sec();
1892 
1893 	/*
1894 	 * If this IRE is an IRE_CACHE, inherit the handles from the
1895 	 * parent IREs. For others in the forwarding table, assign appropriate
1896 	 * new ones.
1897 	 *
1898 	 * The mutex protecting ire_handle is because ire_create is not always
1899 	 * called as a writer.
1900 	 */
1901 	if (ire->ire_type & IRE_OFFSUBNET) {
1902 		mutex_enter(&ire_handle_lock);
1903 		ire->ire_phandle = (uint32_t)ire_handle++;
1904 		mutex_exit(&ire_handle_lock);
1905 	} else if (ire->ire_type & IRE_INTERFACE) {
1906 		mutex_enter(&ire_handle_lock);
1907 		ire->ire_ihandle = (uint32_t)ire_handle++;
1908 		mutex_exit(&ire_handle_lock);
1909 	} else if (ire->ire_type == IRE_CACHE) {
1910 		ire->ire_phandle = phandle;
1911 		ire->ire_ihandle = ihandle;
1912 	}
1913 	ire->ire_in_ill = in_ill;
1914 	ire->ire_ipif = ipif;
1915 	if (ipif != NULL) {
1916 		ire->ire_ipif_seqid = ipif->ipif_seqid;
1917 		ire->ire_zoneid = ipif->ipif_zoneid;
1918 	} else {
1919 		ire->ire_zoneid = GLOBAL_ZONEID;
1920 	}
1921 	ire->ire_ipversion = ipversion;
1922 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1923 	if (ipversion == IPV4_VERSION) {
1924 		if (ire_nce_init(ire, fp_mp, dlureq_mp) != 0) {
1925 			/* some failure occurred. propagate error back */
1926 			return (B_FALSE);
1927 		}
1928 	} else {
1929 		ASSERT(ipversion == IPV6_VERSION);
1930 		/*
1931 		 * IPv6 initializes the ire_nce in ire_add_v6,
1932 		 * which expects to find the ire_nce to be null when
1933 		 * when it is called.
1934 		 */
1935 		if (dlureq_mp)
1936 			freemsg(dlureq_mp);
1937 		if (fp_mp)
1938 			freemsg(fp_mp);
1939 	}
1940 	ire->ire_refcnt = 1;
1941 
1942 #ifdef IRE_DEBUG
1943 	bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX);
1944 #endif
1945 
1946 	return (B_TRUE);
1947 }
1948 
1949 /*
1950  * This routine is called repeatedly by ipif_up to create broadcast IREs.
1951  * It is passed a pointer to a slot in an IRE pointer array into which to
1952  * place the pointer to the new IRE, if indeed we create one.  If the
1953  * IRE corresponding to the address passed in would be a duplicate of an
1954  * existing one, we don't create the new one.  irep is incremented before
1955  * return only if we do create a new IRE.  (Always called as writer.)
1956  *
1957  * Note that with the "match_flags" parameter, we can match on either
1958  * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1959  * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1960  * we only create broadcast ire's on a per physical interface basis. If
1961  * someone is going to be mucking with logical interfaces, it is important
1962  * to call "ipif_check_bcast_ires()" to make sure that any change to a
1963  * logical interface will not cause critical broadcast IRE's to be deleted.
1964  */
1965 ire_t **
1966 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
1967     int match_flags)
1968 {
1969 	ire_t *ire;
1970 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
1971 
1972 	/*
1973 	 * No broadcast IREs for the LOOPBACK interface
1974 	 * or others such as point to point and IPIF_NOXMIT.
1975 	 */
1976 	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
1977 	    (ipif->ipif_flags & IPIF_NOXMIT))
1978 		return (irep);
1979 
1980 	/* If this would be a duplicate, don't bother. */
1981 	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
1982 	    ipif->ipif_zoneid, NULL, match_flags)) != NULL) {
1983 		/*
1984 		 * We look for non-deprecated (and non-anycast, non-nolocal)
1985 		 * ipifs as the best choice. ipifs with check_flags matching
1986 		 * (deprecated, etc) are used only if non-deprecated ipifs
1987 		 * are not available. if the existing ire's ipif is deprecated
1988 		 * and the new ipif is non-deprecated, switch to the new ipif
1989 		 */
1990 		if ((!(ire->ire_ipif->ipif_flags & check_flags)) ||
1991 		    (ipif->ipif_flags & check_flags)) {
1992 			ire_refrele(ire);
1993 			return (irep);
1994 		}
1995 		/*
1996 		 * Bcast ires exist in pairs. Both have to be deleted,
1997 		 * Since we are exclusive we can make the above assertion.
1998 		 * The 1st has to be refrele'd since it was ctable_lookup'd.
1999 		 */
2000 		ASSERT(IAM_WRITER_IPIF(ipif));
2001 		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
2002 		ire_delete(ire->ire_next);
2003 		ire_delete(ire);
2004 		ire_refrele(ire);
2005 	}
2006 
2007 	irep = ire_create_bcast(ipif, addr, irep);
2008 
2009 	return (irep);
2010 }
2011 
2012 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
2013 
2014 /*
2015  * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
2016  * It leaves all the verifying and deleting to those routines. So it always
2017  * creates 2 bcast ires and chains them into the ire array passed in.
2018  */
2019 ire_t **
2020 ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
2021 {
2022 	*irep++ = ire_create(
2023 	    (uchar_t *)&addr,			/* dest addr */
2024 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2025 	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
2026 	    NULL,				/* no gateway */
2027 	    NULL,				/* no in_src_addr */
2028 	    &ipif->ipif_mtu,			/* max frag */
2029 	    NULL,				/* fast path header */
2030 	    ipif->ipif_rq,			/* recv-from queue */
2031 	    ipif->ipif_wq,			/* send-to queue */
2032 	    IRE_BROADCAST,
2033 	    ipif->ipif_bcast_mp,		/* xmit header */
2034 	    ipif,
2035 	    NULL,
2036 	    0,
2037 	    0,
2038 	    0,
2039 	    0,
2040 	    &ire_uinfo_null,
2041 	    NULL,
2042 	    NULL);
2043 
2044 	*irep++ = ire_create(
2045 		(uchar_t *)&addr,		 /* dest address */
2046 		(uchar_t *)&ip_g_all_ones,	 /* mask */
2047 		(uchar_t *)&ipif->ipif_src_addr, /* source address */
2048 		NULL,				 /* no gateway */
2049 		NULL,				 /* no in_src_addr */
2050 		&ip_loopback_mtu,		 /* max frag size */
2051 		NULL,				 /* Fast Path header */
2052 		ipif->ipif_rq,			 /* recv-from queue */
2053 		NULL,				 /* no send-to queue */
2054 		IRE_BROADCAST,		/* Needed for fanout in wput */
2055 		NULL,
2056 		ipif,
2057 		NULL,
2058 		0,
2059 		0,
2060 		0,
2061 		0,
2062 		&ire_uinfo_null,
2063 		NULL,
2064 		NULL);
2065 
2066 	return (irep);
2067 }
2068 
2069 /*
2070  * ire_walk routine to delete or update any IRE_CACHE that might contain
2071  * stale information.
2072  * The flags state which entries to delete or update.
2073  * Garbage collection is done separately using kmem alloc callbacks to
2074  * ip_trash_ire_reclaim.
2075  * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
2076  * since other stale information is cleaned up using NUD.
2077  */
2078 void
2079 ire_expire(ire_t *ire, char *arg)
2080 {
2081 	int flush_flags = (int)(uintptr_t)arg;
2082 	ill_t	*stq_ill;
2083 
2084 	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
2085 	    ire->ire_type == IRE_HOST_REDIRECT) {
2086 		/* Make sure we delete the corresponding IRE_CACHE */
2087 		ip1dbg(("ire_expire: all redirects\n"));
2088 		ip_rts_rtmsg(RTM_DELETE, ire, 0);
2089 		ire_delete(ire);
2090 		atomic_dec_32(&ip_redirect_cnt);
2091 		return;
2092 	}
2093 	if (ire->ire_type != IRE_CACHE)
2094 		return;
2095 
2096 	if (flush_flags & FLUSH_ARP_TIME) {
2097 		/*
2098 		 * Remove all IRE_CACHE.
2099 		 * Verify that create time is more than
2100 		 * ip_ire_arp_interval milliseconds ago.
2101 		 */
2102 		if (NCE_EXPIRED(ire->ire_nce)) {
2103 			ire_delete(ire);
2104 			return;
2105 		}
2106 	}
2107 
2108 	if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
2109 	    (ire->ire_ipif != NULL)) {
2110 		/* Increase pmtu if it is less than the interface mtu */
2111 		mutex_enter(&ire->ire_lock);
2112 		/*
2113 		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
2114 		 * get the mtu from the sending interfaces' ipif
2115 		 */
2116 		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
2117 			stq_ill = ire->ire_stq->q_ptr;
2118 			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
2119 			    IP_MAXPACKET);
2120 		} else {
2121 			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
2122 			    IP_MAXPACKET);
2123 		}
2124 		ire->ire_frag_flag |= IPH_DF;
2125 		mutex_exit(&ire->ire_lock);
2126 	}
2127 }
2128 
2129 /*
2130  * Do fast path probing if necessary.
2131  */
2132 void
2133 ire_fastpath(ire_t *ire)
2134 {
2135 	ill_t	*ill;
2136 	int res;
2137 
2138 	if (ire->ire_nce == NULL || ire->ire_nce->nce_fp_mp != NULL ||
2139 	    ire->ire_nce->nce_state != ND_REACHABLE ||
2140 	    ire->ire_nce->nce_res_mp == NULL) {
2141 
2142 		/*
2143 		 * Already contains fastpath info or
2144 		 * doesn't have DL_UNITDATA_REQ header or
2145 		 * or is an incomplete ire in the ire table
2146 		 * or is a loopback broadcast ire i.e. no stq.
2147 		 */
2148 		return;
2149 	}
2150 	ill = ire_to_ill(ire);
2151 	if (ill == NULL)
2152 		return;
2153 	ire_fastpath_list_add(ill, ire);
2154 	res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp);
2155 	/*
2156 	 * EAGAIN is an indication of a transient error
2157 	 * i.e. allocation failure etc. leave the ire in the list it will
2158 	 * be updated when another probe happens for another ire if not
2159 	 * it will be taken out of the list when the ire is deleted.
2160 	 */
2161 	if (res != 0 && res != EAGAIN)
2162 		ire_fastpath_list_delete(ill, ire);
2163 }
2164 
2165 /*
2166  * Update all IRE's that are not in fastpath mode and
2167  * have an dlureq_mp that matches mp. mp->b_cont contains
2168  * the fastpath header.
2169  *
2170  * Returns TRUE if entry should be dequeued, or FALSE otherwise.
2171  */
2172 boolean_t
2173 ire_fastpath_update(ire_t *ire, void *arg)
2174 {
2175 	mblk_t 	*mp,  *fp_mp;
2176 	uchar_t 	*up, *up2;
2177 	ptrdiff_t	cmplen;
2178 	nce_t		*arpce;
2179 
2180 	ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST |
2181 	    IRE_MIPRTUN)) != 0);
2182 
2183 	/*
2184 	 * Already contains fastpath info or doesn't have
2185 	 * DL_UNITDATA_REQ header or is an incomplete ire.
2186 	 */
2187 	if (ire->ire_nce == NULL || ire->ire_nce->nce_res_mp == NULL ||
2188 	    ire->ire_nce->nce_fp_mp != NULL ||
2189 	    ire->ire_nce->nce_state != ND_REACHABLE)
2190 		return (B_TRUE);
2191 
2192 	ip2dbg(("ire_fastpath_update: trying\n"));
2193 	mp = arg;
2194 	up = mp->b_rptr;
2195 	cmplen = mp->b_wptr - up;
2196 	/* Serialize multiple fast path updates */
2197 	mutex_enter(&ire->ire_nce->nce_lock);
2198 	up2 = ire->ire_nce->nce_res_mp->b_rptr;
2199 	ASSERT(cmplen >= 0);
2200 	if (ire->ire_nce->nce_res_mp->b_wptr - up2 != cmplen ||
2201 	    bcmp(up, up2, cmplen) != 0) {
2202 		mutex_exit(&ire->ire_nce->nce_lock);
2203 		/*
2204 		 * Don't take the ire off the fastpath list yet,
2205 		 * since the response may come later.
2206 		 */
2207 		return (B_FALSE);
2208 	}
2209 	arpce = ire->ire_nce;
2210 	/* Matched - install mp as the nce_fp_mp */
2211 	ip1dbg(("ire_fastpath_update: match\n"));
2212 	fp_mp = dupb(mp->b_cont);
2213 	if (fp_mp) {
2214 		/*
2215 		 * We checked nce_fp_mp above. Check it again with the
2216 		 * lock. Update fp_mp only if it has not been done
2217 		 * already.
2218 		 */
2219 		if (arpce->nce_fp_mp == NULL) {
2220 			/*
2221 			 * ire_ll_hdr_length is just an optimization to
2222 			 * store the length. It is used to return the
2223 			 * fast path header length to the upper layers.
2224 			 */
2225 			arpce->nce_fp_mp = fp_mp;
2226 			ire->ire_ll_hdr_length =
2227 			    (uint_t)(fp_mp->b_wptr - fp_mp->b_rptr);
2228 		} else {
2229 			freeb(fp_mp);
2230 		}
2231 	}
2232 	mutex_exit(&ire->ire_nce->nce_lock);
2233 	return (B_TRUE);
2234 }
2235 
2236 /*
2237  * This function handles the DL_NOTE_FASTPATH_FLUSH notification from the
2238  * driver.
2239  */
2240 /* ARGSUSED */
2241 void
2242 ire_fastpath_flush(ire_t *ire, void *arg)
2243 {
2244 	ill_t	*ill;
2245 	int	res;
2246 
2247 	/* No fastpath info? */
2248 	if (ire->ire_nce == NULL ||
2249 	    ire->ire_nce->nce_fp_mp == NULL || ire->ire_nce->nce_res_mp == NULL)
2250 		return;
2251 
2252 	/*
2253 	 * Just remove the IRE if it is for non-broadcast dest.  Then
2254 	 * we will create another one which will have the correct
2255 	 * fastpath info.
2256 	 */
2257 	switch (ire->ire_type) {
2258 	case IRE_CACHE:
2259 		ire_delete(ire);
2260 		break;
2261 	case IRE_MIPRTUN:
2262 	case IRE_BROADCAST:
2263 		/*
2264 		 * We can't delete the ire since it is difficult to
2265 		 * recreate these ire's without going through the
2266 		 * ipif down/up dance. The nce_fp_mp is protected by the
2267 		 * nce_lock in the case of IRE_MIPRTUN and IRE_BROADCAST.
2268 		 * All access to ire->ire_nce->nce_fp_mp in the case of these
2269 		 * 2 ire types * is protected by nce_lock.
2270 		 */
2271 		mutex_enter(&ire->ire_nce->nce_lock);
2272 		if (ire->ire_nce->nce_fp_mp != NULL) {
2273 			freeb(ire->ire_nce->nce_fp_mp);
2274 			ire->ire_nce->nce_fp_mp = NULL;
2275 			mutex_exit(&ire->ire_nce->nce_lock);
2276 			/*
2277 			 * No fastpath probe if there is no stq i.e.
2278 			 * i.e. the case of loopback broadcast ire.
2279 			 */
2280 			if (ire->ire_stq == NULL)
2281 				break;
2282 			ill = (ill_t *)((ire->ire_stq)->q_ptr);
2283 			ire_fastpath_list_add(ill, ire);
2284 			res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp);
2285 			/*
2286 			 * EAGAIN is an indication of a transient error
2287 			 * i.e. allocation failure etc. leave the ire in the
2288 			 * list it will be updated when another probe happens
2289 			 * for another ire if not it will be taken out of the
2290 			 * list when the ire is deleted.
2291 			 */
2292 			if (res != 0 && res != EAGAIN)
2293 				ire_fastpath_list_delete(ill, ire);
2294 		} else {
2295 			mutex_exit(&ire->ire_nce->nce_lock);
2296 		}
2297 		break;
2298 	default:
2299 		/* This should not happen! */
2300 		ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n",
2301 		    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)));
2302 		break;
2303 	}
2304 }
2305 
2306 /*
2307  * Drain the list of ire's waiting for fastpath response.
2308  */
2309 void
2310 ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *),
2311     void *arg)
2312 {
2313 	ire_t	 *next_ire;
2314 	ire_t	 *current_ire;
2315 	ire_t	 *first_ire;
2316 	ire_t	 *prev_ire = NULL;
2317 
2318 	ASSERT(ill != NULL);
2319 
2320 	mutex_enter(&ill->ill_lock);
2321 	first_ire = current_ire = (ire_t *)ill->ill_fastpath_list;
2322 	while (current_ire != (ire_t *)&ill->ill_fastpath_list) {
2323 		next_ire = current_ire->ire_fastpath;
2324 		/*
2325 		 * Take it off the list if we're flushing, or if the callback
2326 		 * routine tells us to do so.  Otherwise, leave the ire in the
2327 		 * fastpath list to handle any pending response from the lower
2328 		 * layer.  We can't drain the list when the callback routine
2329 		 * comparison failed, because the response is asynchronous in
2330 		 * nature, and may not arrive in the same order as the list
2331 		 * insertion.
2332 		 */
2333 		if (func == NULL || func(current_ire, arg)) {
2334 			current_ire->ire_fastpath = NULL;
2335 			if (current_ire == first_ire)
2336 				ill->ill_fastpath_list = first_ire = next_ire;
2337 			else
2338 				prev_ire->ire_fastpath = next_ire;
2339 		} else {
2340 			/* previous element that is still in the list */
2341 			prev_ire = current_ire;
2342 		}
2343 		current_ire = next_ire;
2344 	}
2345 	mutex_exit(&ill->ill_lock);
2346 }
2347 
2348 /*
2349  * Add ire to the ire fastpath list.
2350  */
2351 static void
2352 ire_fastpath_list_add(ill_t *ill, ire_t *ire)
2353 {
2354 	ASSERT(ill != NULL);
2355 	ASSERT(ire->ire_stq != NULL);
2356 
2357 	rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2358 	mutex_enter(&ill->ill_lock);
2359 
2360 	/*
2361 	 * if ire has not been deleted and
2362 	 * is not already in the list add it.
2363 	 */
2364 	if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) &&
2365 	    (ire->ire_fastpath == NULL)) {
2366 		ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list;
2367 		ill->ill_fastpath_list = ire;
2368 	}
2369 
2370 	mutex_exit(&ill->ill_lock);
2371 	rw_exit(&ire->ire_bucket->irb_lock);
2372 }
2373 
2374 /*
2375  * remove ire from the ire fastpath list.
2376  */
2377 void
2378 ire_fastpath_list_delete(ill_t *ill, ire_t *ire)
2379 {
2380 	ire_t	*ire_ptr;
2381 
2382 	ASSERT(ire->ire_stq != NULL && ill != NULL);
2383 
2384 	mutex_enter(&ill->ill_lock);
2385 	if (ire->ire_fastpath == NULL)
2386 		goto done;
2387 
2388 	ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list);
2389 
2390 	if (ill->ill_fastpath_list == ire) {
2391 		ill->ill_fastpath_list = ire->ire_fastpath;
2392 	} else {
2393 		ire_ptr = ill->ill_fastpath_list;
2394 		while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) {
2395 			if (ire_ptr->ire_fastpath == ire) {
2396 				ire_ptr->ire_fastpath = ire->ire_fastpath;
2397 				break;
2398 			}
2399 			ire_ptr = ire_ptr->ire_fastpath;
2400 		}
2401 	}
2402 	ire->ire_fastpath = NULL;
2403 done:
2404 	mutex_exit(&ill->ill_lock);
2405 }
2406 
2407 /*
2408  * Return any local address.  We use this to target ourselves
2409  * when the src address was specified as 'default'.
2410  * Preference for IRE_LOCAL entries.
2411  */
2412 ire_t *
2413 ire_lookup_local(zoneid_t zoneid)
2414 {
2415 	ire_t	*ire;
2416 	irb_t	*irb;
2417 	ire_t	*maybe = NULL;
2418 	int i;
2419 
2420 	for (i = 0; i < ip_cache_table_size;  i++) {
2421 		irb = &ip_cache_table[i];
2422 		if (irb->irb_ire == NULL)
2423 			continue;
2424 		rw_enter(&irb->irb_lock, RW_READER);
2425 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2426 			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
2427 			    (ire->ire_zoneid != zoneid &&
2428 			    ire->ire_zoneid != ALL_ZONES))
2429 				continue;
2430 			switch (ire->ire_type) {
2431 			case IRE_LOOPBACK:
2432 				if (maybe == NULL) {
2433 					IRE_REFHOLD(ire);
2434 					maybe = ire;
2435 				}
2436 				break;
2437 			case IRE_LOCAL:
2438 				if (maybe != NULL) {
2439 					ire_refrele(maybe);
2440 				}
2441 				IRE_REFHOLD(ire);
2442 				rw_exit(&irb->irb_lock);
2443 				return (ire);
2444 			}
2445 		}
2446 		rw_exit(&irb->irb_lock);
2447 	}
2448 	return (maybe);
2449 }
2450 
2451 /*
2452  * If the specified IRE is associated with a particular ILL, return
2453  * that ILL pointer (May be called as writer.).
2454  *
2455  * NOTE : This is not a generic function that can be used always.
2456  * This function always returns the ill of the outgoing packets
2457  * if this ire is used.
2458  */
2459 ill_t *
2460 ire_to_ill(const ire_t *ire)
2461 {
2462 	ill_t *ill = NULL;
2463 
2464 	/*
2465 	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
2466 	 *    the source address from. ire_stq is the one where the
2467 	 *    packets will be sent out on. We return that here.
2468 	 *
2469 	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
2470 	 *    copy and they always exist next to each other with loopback
2471 	 *    copy being the first one. If we are called on the non-loopback
2472 	 *    copy, return the one pointed by ire_stq. If it was called on
2473 	 *    a loopback copy, we still return the one pointed by the next
2474 	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
2475 	 *    copy. We don't want use ire_ipif as it might represent the
2476 	 *    source address (if we borrow source addresses for
2477 	 *    IRE_BROADCASTS in the future).
2478 	 *    However if an interface is currently coming up, the above
2479 	 *    condition may not hold during that period since the ires
2480 	 *    are added one at a time. Thus one of the pair could have been
2481 	 *    added and the other not yet added.
2482 	 * 3) For all others return the ones pointed by ire_ipif->ipif_ill.
2483 	 */
2484 
2485 	if (ire->ire_type == IRE_CACHE) {
2486 		ill = (ill_t *)ire->ire_stq->q_ptr;
2487 	} else if (ire->ire_type == IRE_BROADCAST) {
2488 		if (ire->ire_stq != NULL) {
2489 			ill = (ill_t *)ire->ire_stq->q_ptr;
2490 		} else {
2491 			ire_t  *ire_next;
2492 
2493 			ire_next = ire->ire_next;
2494 			if (ire_next != NULL &&
2495 			    ire_next->ire_type == IRE_BROADCAST &&
2496 			    ire_next->ire_addr == ire->ire_addr &&
2497 			    ire_next->ire_ipif == ire->ire_ipif) {
2498 				ill = (ill_t *)ire_next->ire_stq->q_ptr;
2499 			}
2500 		}
2501 	} else if (ire->ire_ipif != NULL) {
2502 		ill = ire->ire_ipif->ipif_ill;
2503 	}
2504 	return (ill);
2505 }
2506 
2507 /* Arrange to call the specified function for every IRE in the world. */
2508 void
2509 ire_walk(pfv_t func, void *arg)
2510 {
2511 	ire_walk_ipvers(func, arg, 0, ALL_ZONES);
2512 }
2513 
2514 void
2515 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid)
2516 {
2517 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid);
2518 }
2519 
2520 void
2521 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid)
2522 {
2523 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid);
2524 }
2525 
2526 /*
2527  * Walk a particular version. version == 0 means both v4 and v6.
2528  */
2529 static void
2530 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid)
2531 {
2532 	if (vers != IPV6_VERSION) {
2533 		/*
2534 		 * ip_forwarding_table variable doesn't matter for IPv4 since
2535 		 * ire_walk_ill_tables directly calls with the ip_ftable global
2536 		 */
2537 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
2538 		    0, NULL,
2539 		    ip_cache_table_size, ip_cache_table, NULL, zoneid);
2540 	}
2541 	if (vers != IPV4_VERSION) {
2542 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
2543 		    ip6_ftable_hash_size, ip_forwarding_table_v6,
2544 		    ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid);
2545 	}
2546 }
2547 
2548 /*
2549  * Arrange to call the specified
2550  * function for every IRE that matches the ill.
2551  */
2552 void
2553 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2554     ill_t *ill)
2555 {
2556 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill);
2557 }
2558 
2559 void
2560 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2561     ill_t *ill)
2562 {
2563 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2564 	    ill);
2565 }
2566 
2567 void
2568 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2569     ill_t *ill)
2570 {
2571 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2572 	    ill);
2573 }
2574 
2575 /*
2576  * Walk a particular ill and version. version == 0 means both v4 and v6.
2577  */
2578 static void
2579 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2580     void *arg, uchar_t vers, ill_t *ill)
2581 {
2582 	if (vers != IPV6_VERSION) {
2583 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2584 		    IP_MASK_TABLE_SIZE, 0,
2585 		    NULL, ip_cache_table_size,
2586 		    ip_cache_table, ill, ALL_ZONES);
2587 	}
2588 	if (vers != IPV4_VERSION) {
2589 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2590 		    IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size,
2591 		    ip_forwarding_table_v6, ip6_cache_table_size,
2592 		    ip_cache_table_v6, ill, ALL_ZONES);
2593 	}
2594 }
2595 
2596 boolean_t
2597 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2598     ill_t *ill, zoneid_t zoneid)
2599 {
2600 	ill_t *ire_stq_ill = NULL;
2601 	ill_t *ire_ipif_ill = NULL;
2602 	ill_group_t *ire_ill_group = NULL;
2603 
2604 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2605 	/*
2606 	 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq.
2607 	 *    The fast path update uses this to make sure it does not
2608 	 *    update the fast path header of interface X with the fast
2609 	 *    path updates it recieved on interface Y.  It is similar
2610 	 *    in handling DL_NOTE_FASTPATH_FLUSH.
2611 	 *
2612 	 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill
2613 	 *    pointed by ire_stq and ire_ipif. Only in the case of
2614 	 *    IRE_CACHEs can ire_stq and ire_ipif be pointing to
2615 	 *    different ills. But we want to keep this function generic
2616 	 *    enough for future use. So, we always try to match on both.
2617 	 *    The only caller of this function ire_walk_ill_tables, will
2618 	 *    call "func" after we return from this function. We expect
2619 	 *    "func" to do the right filtering of ires in this case.
2620 	 *
2621 	 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups
2622 	 * pointed by ire_stq and ire_ipif should always be the same.
2623 	 * So, we just match on only one of them.
2624 	 */
2625 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
2626 		if (ire->ire_stq != NULL)
2627 			ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2628 		if (ire->ire_ipif != NULL)
2629 			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2630 		if (ire_stq_ill != NULL)
2631 			ire_ill_group = ire_stq_ill->ill_group;
2632 		if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL))
2633 			ire_ill_group = ire_ipif_ill->ill_group;
2634 	}
2635 
2636 	if (zoneid != ALL_ZONES) {
2637 		/*
2638 		 * We're walking the IREs for a specific zone. The only relevant
2639 		 * IREs are:
2640 		 * - all IREs with a matching ire_zoneid
2641 		 * - all IRE_OFFSUBNETs as they're shared across all zones
2642 		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2643 		 *   with a matching zone
2644 		 * - IRE_DEFAULTs with a gateway reachable from the zone
2645 		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2646 		 * using the same rule; but the above rules are consistent with
2647 		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2648 		 * routes that can be matched during lookup are also matched
2649 		 * here.
2650 		 */
2651 		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2652 			/*
2653 			 * Note, IRE_INTERFACE can have the stq as NULL. For
2654 			 * example, if the default multicast route is tied to
2655 			 * the loopback address.
2656 			 */
2657 			if ((ire->ire_type & IRE_INTERFACE) &&
2658 			    (ire->ire_stq != NULL)) {
2659 				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2660 				if (ire->ire_ipversion == IPV4_VERSION) {
2661 					if (!ipif_usesrc_avail(ire_stq_ill,
2662 					    zoneid))
2663 						/* No usable src addr in zone */
2664 						return (B_FALSE);
2665 				} else if (ire_stq_ill->ill_usesrc_ifindex
2666 				    != 0) {
2667 					/*
2668 					 * For IPv6 use ipif_select_source_v6()
2669 					 * so the right scope selection is done
2670 					 */
2671 					ipif_t *src_ipif;
2672 					src_ipif =
2673 					    ipif_select_source_v6(ire_stq_ill,
2674 					    &ire->ire_addr_v6, RESTRICT_TO_NONE,
2675 					    IPV6_PREFER_SRC_DEFAULT,
2676 					    zoneid);
2677 					if (src_ipif != NULL) {
2678 						ipif_refrele(src_ipif);
2679 					} else {
2680 						return (B_FALSE);
2681 					}
2682 				} else {
2683 					return (B_FALSE);
2684 				}
2685 
2686 			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2687 				return (B_FALSE);
2688 			}
2689 		}
2690 
2691 		/*
2692 		 * Match all default routes from the global zone, irrespective
2693 		 * of reachability. For a non-global zone only match those
2694 		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2695 		 */
2696 		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2697 			int ire_match_flags = 0;
2698 			in6_addr_t gw_addr_v6;
2699 			ire_t *rire;
2700 
2701 			ire_match_flags |= MATCH_IRE_TYPE;
2702 			if (ire->ire_ipif != NULL) {
2703 				ire_match_flags |= MATCH_IRE_ILL_GROUP;
2704 			}
2705 			if (ire->ire_ipversion == IPV4_VERSION) {
2706 				rire = ire_route_lookup(ire->ire_gateway_addr,
2707 				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2708 				    zoneid, NULL, ire_match_flags);
2709 			} else {
2710 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2711 				mutex_enter(&ire->ire_lock);
2712 				gw_addr_v6 = ire->ire_gateway_addr_v6;
2713 				mutex_exit(&ire->ire_lock);
2714 				rire = ire_route_lookup_v6(&gw_addr_v6,
2715 				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2716 				    NULL, zoneid, NULL, ire_match_flags);
2717 			}
2718 			if (rire == NULL) {
2719 				return (B_FALSE);
2720 			}
2721 			ire_refrele(rire);
2722 		}
2723 	}
2724 
2725 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2726 		(ire->ire_type & ire_type)) &&
2727 	    ((!(match_flags & MATCH_IRE_WQ)) ||
2728 		(ire->ire_stq == ill->ill_wq)) &&
2729 	    ((!(match_flags & MATCH_IRE_ILL)) ||
2730 		(ire_stq_ill == ill || ire_ipif_ill == ill)) &&
2731 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
2732 		(ire_stq_ill == ill) || (ire_ipif_ill == ill) ||
2733 		(ire_ill_group != NULL &&
2734 		ire_ill_group == ill->ill_group))) {
2735 		return (B_TRUE);
2736 	}
2737 	return (B_FALSE);
2738 }
2739 
2740 int
2741 rtfunc(struct radix_node *rn, void *arg)
2742 {
2743 	struct rtfuncarg *rtf = arg;
2744 	struct rt_entry *rt;
2745 	irb_t *irb;
2746 	ire_t *ire;
2747 	boolean_t ret;
2748 
2749 	rt = (struct rt_entry *)rn;
2750 	ASSERT(rt != NULL);
2751 	irb = &rt->rt_irb;
2752 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2753 		if ((rtf->rt_match_flags != 0) ||
2754 		    (rtf->rt_zoneid != ALL_ZONES)) {
2755 			ret = ire_walk_ill_match(rtf->rt_match_flags,
2756 			    rtf->rt_ire_type, ire,
2757 			    rtf->rt_ill, rtf->rt_zoneid);
2758 		} else
2759 			ret = B_TRUE;
2760 		if (ret)
2761 			(*rtf->rt_func)(ire, rtf->rt_arg);
2762 	}
2763 	return (0);
2764 }
2765 
2766 /*
2767  * Walk the ftable and the ctable entries that match the ill.
2768  */
2769 void
2770 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2771     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2772     size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid)
2773 {
2774 	irb_t	*irb_ptr;
2775 	irb_t	*irb;
2776 	ire_t	*ire;
2777 	int i, j;
2778 	boolean_t ret;
2779 	struct rtfuncarg rtfarg;
2780 
2781 	ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
2782 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
2783 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2784 	/*
2785 	 * Optimize by not looking at the forwarding table if there
2786 	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2787 	 * specified in ire_type.
2788 	 */
2789 	if (!(match_flags & MATCH_IRE_TYPE) ||
2790 	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2791 		/* knobs such that routine is called only for v6 case */
2792 		if (ipftbl == ip_forwarding_table_v6) {
2793 			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2794 				if ((irb_ptr = ipftbl[i]) == NULL)
2795 					continue;
2796 				for (j = 0; j < htbl_sz; j++) {
2797 					irb = &irb_ptr[j];
2798 					if (irb->irb_ire == NULL)
2799 						continue;
2800 
2801 					IRB_REFHOLD(irb);
2802 					for (ire = irb->irb_ire; ire != NULL;
2803 						ire = ire->ire_next) {
2804 						if (match_flags == 0 &&
2805 						    zoneid == ALL_ZONES) {
2806 							ret = B_TRUE;
2807 						} else {
2808 							ret =
2809 							    ire_walk_ill_match(
2810 							    match_flags,
2811 							    ire_type, ire, ill,
2812 							    zoneid);
2813 						}
2814 						if (ret)
2815 							(*func)(ire, arg);
2816 					}
2817 					IRB_REFRELE(irb);
2818 				}
2819 			}
2820 		} else {
2821 			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2822 			rtfarg.rt_func = func;
2823 			rtfarg.rt_arg = arg;
2824 			if (match_flags != 0) {
2825 				rtfarg.rt_match_flags = match_flags;
2826 			}
2827 			rtfarg.rt_ire_type = ire_type;
2828 			rtfarg.rt_ill = ill;
2829 			rtfarg.rt_zoneid = zoneid;
2830 			(void) ip_ftable->rnh_walktree_mt(ip_ftable, rtfunc,
2831 			    &rtfarg, irb_refhold_rn, irb_refrele_rn);
2832 		}
2833 	}
2834 
2835 	/*
2836 	 * Optimize by not looking at the cache table if there
2837 	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2838 	 * specified in ire_type.
2839 	 */
2840 	if (!(match_flags & MATCH_IRE_TYPE) ||
2841 	    ((ire_type & IRE_CACHETABLE) != 0)) {
2842 		for (i = 0; i < ctbl_sz;  i++) {
2843 			irb = &ipctbl[i];
2844 			if (irb->irb_ire == NULL)
2845 				continue;
2846 			IRB_REFHOLD(irb);
2847 			for (ire = irb->irb_ire; ire != NULL;
2848 			    ire = ire->ire_next) {
2849 				if (match_flags == 0 && zoneid == ALL_ZONES) {
2850 					ret = B_TRUE;
2851 				} else {
2852 					ret = ire_walk_ill_match(
2853 					    match_flags, ire_type,
2854 					    ire, ill, zoneid);
2855 				}
2856 				if (ret)
2857 					(*func)(ire, arg);
2858 			}
2859 			IRB_REFRELE(irb);
2860 		}
2861 	}
2862 }
2863 
2864 /*
2865  * This routine walks through the ill chain to find if there is any
2866  * ire linked to the ill's interface based forwarding table
2867  * The arg could be ill or mp. This routine is called when a ill goes
2868  * down/deleted or the 'ipv4_ire_srcif_status' report is printed.
2869  */
2870 void
2871 ire_walk_srcif_table_v4(pfv_t func, void *arg)
2872 {
2873 	irb_t   *irb;
2874 	ire_t   *ire;
2875 	ill_t	*ill, *next_ill;
2876 	int	i;
2877 	int	total_count;
2878 	ill_walk_context_t ctx;
2879 
2880 	/*
2881 	 * Take care of ire's in other ill's per-interface forwarding
2882 	 * table. Check if any ire in any of the ill's ill_srcif_table
2883 	 * is pointing to this ill.
2884 	 */
2885 	mutex_enter(&ire_srcif_table_lock);
2886 	if (ire_srcif_table_count == 0) {
2887 		mutex_exit(&ire_srcif_table_lock);
2888 		return;
2889 	}
2890 	mutex_exit(&ire_srcif_table_lock);
2891 
2892 #ifdef DEBUG
2893 	/* Keep accounting of all interface based table ires */
2894 	total_count = 0;
2895 	rw_enter(&ill_g_lock, RW_READER);
2896 	ill = ILL_START_WALK_V4(&ctx);
2897 	while (ill != NULL) {
2898 		mutex_enter(&ill->ill_lock);
2899 		total_count += ill->ill_srcif_refcnt;
2900 		next_ill = ill_next(&ctx, ill);
2901 		mutex_exit(&ill->ill_lock);
2902 		ill = next_ill;
2903 	}
2904 	rw_exit(&ill_g_lock);
2905 
2906 	/* Hold lock here to make sure ire_srcif_table_count is stable */
2907 	mutex_enter(&ire_srcif_table_lock);
2908 	i = ire_srcif_table_count;
2909 	mutex_exit(&ire_srcif_table_lock);
2910 	ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d "
2911 	    "total ill_srcif_refcnt %d\n", i, total_count));
2912 #endif
2913 	rw_enter(&ill_g_lock, RW_READER);
2914 	ill = ILL_START_WALK_V4(&ctx);
2915 	while (ill != NULL) {
2916 		mutex_enter(&ill->ill_lock);
2917 		if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) {
2918 			next_ill = ill_next(&ctx, ill);
2919 			mutex_exit(&ill->ill_lock);
2920 			ill = next_ill;
2921 			continue;
2922 		}
2923 		ill_refhold_locked(ill);
2924 		mutex_exit(&ill->ill_lock);
2925 		rw_exit(&ill_g_lock);
2926 		if (ill->ill_srcif_table != NULL) {
2927 			for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
2928 				irb = &(ill->ill_srcif_table[i]);
2929 				if (irb->irb_ire == NULL)
2930 					continue;
2931 				IRB_REFHOLD(irb);
2932 				for (ire = irb->irb_ire; ire != NULL;
2933 				    ire = ire->ire_next) {
2934 					(*func)(ire, arg);
2935 				}
2936 				IRB_REFRELE(irb);
2937 			}
2938 		}
2939 		rw_enter(&ill_g_lock, RW_READER);
2940 		next_ill = ill_next(&ctx, ill);
2941 		ill_refrele(ill);
2942 		ill = next_ill;
2943 	}
2944 	rw_exit(&ill_g_lock);
2945 }
2946 
2947 /*
2948  * This function takes a mask and returns
2949  * number of bits set in the mask. If no
2950  * bit is set it returns 0.
2951  * Assumes a contiguous mask.
2952  */
2953 int
2954 ip_mask_to_plen(ipaddr_t mask)
2955 {
2956 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2957 }
2958 
2959 /*
2960  * Convert length for a mask to the mask.
2961  */
2962 ipaddr_t
2963 ip_plen_to_mask(uint_t masklen)
2964 {
2965 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2966 }
2967 
2968 void
2969 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2970 {
2971 	ill_t	*ill_list[NUM_ILLS];
2972 
2973 	ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2974 	ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2975 	ill_list[2] = ire->ire_in_ill;
2976 	ill_unlock_ills(ill_list, NUM_ILLS);
2977 	rw_exit(&irb_ptr->irb_lock);
2978 	rw_exit(&ill_g_usesrc_lock);
2979 }
2980 
2981 /*
2982  * ire_add_v[46] atomically make sure that the ipif or ill associated
2983  * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2984  * before adding the ire to the table. This ensures that we don't create
2985  * new IRE_CACHEs with stale values for parameters that are passed to
2986  * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2987  * to the ipif_mtu, and not the value. The actual value is derived from the
2988  * parent ire or ipif under the bucket lock.
2989  */
2990 int
2991 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2992     ipsq_func_t func)
2993 {
2994 	ill_t	*stq_ill;
2995 	ill_t	*ipif_ill;
2996 	ill_t	*in_ill;
2997 	ill_t	*ill_list[NUM_ILLS];
2998 	int	cnt = NUM_ILLS;
2999 	int	error = 0;
3000 	ill_t	*ill = NULL;
3001 
3002 	ill_list[0] = stq_ill = ire->ire_stq !=
3003 		NULL ? ire->ire_stq->q_ptr : NULL;
3004 	ill_list[1] = ipif_ill = ire->ire_ipif !=
3005 		NULL ? ire->ire_ipif->ipif_ill : NULL;
3006 	ill_list[2] = in_ill = ire->ire_in_ill;
3007 
3008 	ASSERT((q != NULL && mp != NULL && func != NULL) ||
3009 	    (q == NULL && mp == NULL && func == NULL));
3010 	rw_enter(&ill_g_usesrc_lock, RW_READER);
3011 	GRAB_CONN_LOCK(q);
3012 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
3013 	ill_lock_ills(ill_list, cnt);
3014 
3015 	/*
3016 	 * While the IRE is in the process of being added, a user may have
3017 	 * invoked the ifconfig usesrc option on the stq_ill to make it a
3018 	 * usesrc client ILL. Check for this possibility here, if it is true
3019 	 * then we fail adding the IRE_CACHE. Another check is to make sure
3020 	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
3021 	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
3022 	 */
3023 	if ((ire->ire_type & IRE_CACHE) &&
3024 	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
3025 		if (stq_ill->ill_usesrc_ifindex != 0) {
3026 			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
3027 			if ((ipif_ill->ill_phyint->phyint_ifindex !=
3028 			    stq_ill->ill_usesrc_ifindex) ||
3029 			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
3030 			    (ipif_ill->ill_usesrc_ifindex != 0)) {
3031 				error = EINVAL;
3032 				goto done;
3033 			}
3034 		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
3035 			error = EINVAL;
3036 			goto done;
3037 		}
3038 	}
3039 
3040 	/*
3041 	 * IPMP flag settings happen without taking the exclusive route
3042 	 * in ip_sioctl_flags. So we need to make an atomic check here
3043 	 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the
3044 	 * FAILBACK=no case.
3045 	 */
3046 	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
3047 		if (stq_ill->ill_state_flags & ILL_CHANGING) {
3048 			ill = stq_ill;
3049 			error = EAGAIN;
3050 		} else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
3051 		    (ill_is_probeonly(stq_ill) &&
3052 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
3053 			error = EINVAL;
3054 		}
3055 		goto done;
3056 	}
3057 
3058 	/*
3059 	 * We don't check for OFFLINE/FAILED in this case because
3060 	 * the source address selection logic (ipif_select_source)
3061 	 * may still select a source address from such an ill. The
3062 	 * assumption is that these addresses will be moved by in.mpathd
3063 	 * soon. (i.e. this is a race). However link local addresses
3064 	 * will not move and hence ipif_select_source_v6 tries to avoid
3065 	 * FAILED ills. Please see ipif_select_source_v6 for more info
3066 	 */
3067 	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
3068 	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
3069 		ill = ipif_ill;
3070 		error = EAGAIN;
3071 		goto done;
3072 	}
3073 
3074 	if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) &&
3075 	    (in_ill->ill_state_flags & ILL_CHANGING)) {
3076 		ill = in_ill;
3077 		error = EAGAIN;
3078 		goto done;
3079 	}
3080 
3081 	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
3082 	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
3083 		ill = ire->ire_ipif->ipif_ill;
3084 		ASSERT(ill != NULL);
3085 		error = EAGAIN;
3086 		goto done;
3087 	}
3088 
3089 done:
3090 	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
3091 		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
3092 		mutex_enter(&ipsq->ipsq_lock);
3093 		ire_atomic_end(irb_ptr, ire);
3094 		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
3095 		mutex_exit(&ipsq->ipsq_lock);
3096 		error = EINPROGRESS;
3097 	} else if (error != 0) {
3098 		ire_atomic_end(irb_ptr, ire);
3099 	}
3100 
3101 	RELEASE_CONN_LOCK(q);
3102 	return (error);
3103 }
3104 
3105 /*
3106  * Add a fully initialized IRE to an appropriate table based on
3107  * ire_type.
3108  *
3109  * allow_unresolved == B_FALSE indicates a legacy code-path call
3110  * that has prohibited the addition of incomplete ire's. If this
3111  * parameter is set, and we find an nce that is in a state other
3112  * than ND_REACHABLE, we fail the add. Note that nce_state could be
3113  * something other than ND_REACHABLE if nce_reinit has just
3114  * kicked in and reset the nce.
3115  */
3116 int
3117 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
3118     boolean_t allow_unresolved)
3119 {
3120 	ire_t	*ire1;
3121 	ill_t	*stq_ill = NULL;
3122 	ill_t	*ill;
3123 	ipif_t	*ipif = NULL;
3124 	ill_walk_context_t ctx;
3125 	ire_t	*ire = *irep;
3126 	int	error;
3127 	boolean_t ire_is_mblk = B_FALSE;
3128 	tsol_gcgrp_t *gcgrp = NULL;
3129 	tsol_gcgrp_addr_t ga;
3130 
3131 	ASSERT(ire->ire_type != IRE_MIPRTUN);
3132 
3133 	/* get ready for the day when original ire is not created as mblk */
3134 	if (ire->ire_mp != NULL) {
3135 		ire_is_mblk = B_TRUE;
3136 		/* Copy the ire to a kmem_alloc'ed area */
3137 		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
3138 		if (ire1 == NULL) {
3139 			ip1dbg(("ire_add: alloc failed\n"));
3140 			ire_delete(ire);
3141 			*irep = NULL;
3142 			return (ENOMEM);
3143 		}
3144 		ire->ire_marks &= ~IRE_MARK_UNCACHED;
3145 		*ire1 = *ire;
3146 		ire1->ire_mp = NULL;
3147 		ire1->ire_stq_ifindex = 0;
3148 		freeb(ire->ire_mp);
3149 		ire = ire1;
3150 	}
3151 	if (ire->ire_stq != NULL)
3152 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3153 
3154 	if (ire->ire_type == IRE_CACHE) {
3155 		/*
3156 		 * If this interface is FAILED, or INACTIVE or has hit
3157 		 * the FAILBACK=no case, we create IRE_CACHES marked
3158 		 * HIDDEN for some special cases e.g. bind to
3159 		 * IPIF_NOFAILOVER address etc. So, if this interface
3160 		 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are
3161 		 * not creating hidden ires, we should not allow that.
3162 		 * This happens because the state of the interface
3163 		 * changed while we were waiting in ARP. If this is the
3164 		 * daemon sending probes, the next probe will create
3165 		 * HIDDEN ires and we will create an ire then. This
3166 		 * cannot happen with NDP currently because IRE is
3167 		 * never queued in NDP. But it can happen in the
3168 		 * future when we have external resolvers with IPv6.
3169 		 * If the interface gets marked with OFFLINE while we
3170 		 * are waiting in ARP, don't add the ire.
3171 		 */
3172 		if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
3173 		    (ill_is_probeonly(stq_ill) &&
3174 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
3175 			/*
3176 			 * We don't know whether it is a valid ipif or not.
3177 			 * unless we do the check below. So, set it to NULL.
3178 			 */
3179 			ire->ire_ipif = NULL;
3180 			ire_delete(ire);
3181 			*irep = NULL;
3182 			return (EINVAL);
3183 		}
3184 	}
3185 
3186 	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
3187 	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
3188 		rw_enter(&ill_g_lock, RW_READER);
3189 		ill = ILL_START_WALK_ALL(&ctx);
3190 		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
3191 			mutex_enter(&ill->ill_lock);
3192 			if (ill->ill_state_flags & ILL_CONDEMNED) {
3193 				mutex_exit(&ill->ill_lock);
3194 				continue;
3195 			}
3196 			/*
3197 			 * We need to make sure that the ipif is a valid one
3198 			 * before adding the IRE_CACHE. This happens only
3199 			 * with IRE_CACHE when there is an external resolver.
3200 			 *
3201 			 * We can unplumb a logical interface while the
3202 			 * packet is waiting in ARP with the IRE. Then,
3203 			 * later on when we feed the IRE back, the ipif
3204 			 * has to be re-checked. This can't happen with
3205 			 * NDP currently, as we never queue the IRE with
3206 			 * the packet. We always try to recreate the IRE
3207 			 * when the resolution is completed. But, we do
3208 			 * it for IPv6 also here so that in future if
3209 			 * we have external resolvers, it will work without
3210 			 * any change.
3211 			 */
3212 			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
3213 			if (ipif != NULL) {
3214 				ipif_refhold_locked(ipif);
3215 				mutex_exit(&ill->ill_lock);
3216 				break;
3217 			}
3218 			mutex_exit(&ill->ill_lock);
3219 		}
3220 		rw_exit(&ill_g_lock);
3221 		if (ipif == NULL ||
3222 		    (ipif->ipif_isv6 &&
3223 		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
3224 		    &ipif->ipif_v6src_addr)) ||
3225 		    (!ipif->ipif_isv6 &&
3226 		    ire->ire_src_addr != ipif->ipif_src_addr) ||
3227 		    ire->ire_zoneid != ipif->ipif_zoneid) {
3228 
3229 			if (ipif != NULL)
3230 				ipif_refrele(ipif);
3231 			ire->ire_ipif = NULL;
3232 			ire_delete(ire);
3233 			*irep = NULL;
3234 			return (EINVAL);
3235 		}
3236 
3237 
3238 		ASSERT(ill != NULL);
3239 		/*
3240 		 * If this group was dismantled while this packets was
3241 		 * queued in ARP, don't add it here.
3242 		 */
3243 		if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) {
3244 			/* We don't want ire_inactive bump stats for this */
3245 			ipif_refrele(ipif);
3246 			ire->ire_ipif = NULL;
3247 			ire_delete(ire);
3248 			*irep = NULL;
3249 			return (EINVAL);
3250 		}
3251 
3252 		/*
3253 		 * Since we didn't attach label security attributes to the
3254 		 * ire for the resolver case, we need to add it now. (only
3255 		 * for v4 resolver and v6 xresolv case).
3256 		 */
3257 		if (is_system_labeled() && ire_is_mblk) {
3258 			if (ire->ire_ipversion == IPV4_VERSION) {
3259 				ga.ga_af = AF_INET;
3260 				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
3261 				    INADDR_ANY ? ire->ire_gateway_addr :
3262 				    ire->ire_addr, &ga.ga_addr);
3263 			} else {
3264 				ga.ga_af = AF_INET6;
3265 				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
3266 				    &ire->ire_gateway_addr_v6) ?
3267 				    ire->ire_addr_v6 :
3268 				    ire->ire_gateway_addr_v6;
3269 			}
3270 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
3271 			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
3272 			    NULL, gcgrp);
3273 			if (error != 0) {
3274 				if (gcgrp != NULL) {
3275 					GCGRP_REFRELE(gcgrp);
3276 					gcgrp = NULL;
3277 				}
3278 				ipif_refrele(ipif);
3279 				ire->ire_ipif = NULL;
3280 				ire_delete(ire);
3281 				*irep = NULL;
3282 				return (error);
3283 			}
3284 		}
3285 	}
3286 
3287 	/*
3288 	 * In case ire was changed
3289 	 */
3290 	*irep = ire;
3291 	if (ire->ire_ipversion == IPV6_VERSION) {
3292 		error = ire_add_v6(irep, q, mp, func);
3293 	} else {
3294 		if (ire->ire_in_ill == NULL)
3295 			error = ire_add_v4(irep, q, mp, func, allow_unresolved);
3296 		else
3297 			error = ire_add_srcif_v4(irep, q, mp, func);
3298 	}
3299 	if (ipif != NULL)
3300 		ipif_refrele(ipif);
3301 	return (error);
3302 }
3303 
3304 /*
3305  * Add an initialized IRE to an appropriate table based on ire_type.
3306  *
3307  * The forward table contains IRE_PREFIX/IRE_HOST/IRE_HOST_REDIRECT
3308  * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
3309  *
3310  * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
3311  * and IRE_CACHE.
3312  *
3313  * NOTE : This function is called as writer though not required
3314  * by this function.
3315  */
3316 static int
3317 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
3318     boolean_t allow_unresolved)
3319 {
3320 	ire_t	*ire1;
3321 	irb_t	*irb_ptr;
3322 	ire_t	**irep;
3323 	int	flags;
3324 	ire_t	*pire = NULL;
3325 	ill_t	*stq_ill;
3326 	ire_t	*ire = *ire_p;
3327 	int	error;
3328 	boolean_t need_refrele = B_FALSE;
3329 	nce_t	*nce;
3330 
3331 	if (ire->ire_ipif != NULL)
3332 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3333 	if (ire->ire_stq != NULL)
3334 		ASSERT(!MUTEX_HELD(
3335 		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
3336 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3337 	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
3338 	ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */
3339 
3340 	/* Find the appropriate list head. */
3341 	switch (ire->ire_type) {
3342 	case IRE_HOST:
3343 		ire->ire_mask = IP_HOST_MASK;
3344 		ire->ire_masklen = IP_ABITS;
3345 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3346 			ire->ire_src_addr = 0;
3347 		break;
3348 	case IRE_HOST_REDIRECT:
3349 		ire->ire_mask = IP_HOST_MASK;
3350 		ire->ire_masklen = IP_ABITS;
3351 		ire->ire_src_addr = 0;
3352 		break;
3353 	case IRE_CACHE:
3354 	case IRE_BROADCAST:
3355 	case IRE_LOCAL:
3356 	case IRE_LOOPBACK:
3357 		ire->ire_mask = IP_HOST_MASK;
3358 		ire->ire_masklen = IP_ABITS;
3359 		break;
3360 	case IRE_PREFIX:
3361 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3362 			ire->ire_src_addr = 0;
3363 		break;
3364 	case IRE_DEFAULT:
3365 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3366 			ire->ire_src_addr = 0;
3367 		break;
3368 	case IRE_IF_RESOLVER:
3369 	case IRE_IF_NORESOLVER:
3370 		break;
3371 	default:
3372 		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
3373 		    (void *)ire, ire->ire_type));
3374 		ire_delete(ire);
3375 		*ire_p = NULL;
3376 		return (EINVAL);
3377 	}
3378 
3379 	/* Make sure the address is properly masked. */
3380 	ire->ire_addr &= ire->ire_mask;
3381 
3382 	/*
3383 	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
3384 	 * of the interface route while adding an IRE_CACHE for an on-link
3385 	 * destination in the IRE_IF_RESOLVER case, since the ire has to
3386 	 * go to ARP and return. We can't do a REFHOLD on the
3387 	 * associated interface ire for fear of ARP freeing the message.
3388 	 * Here we look up the interface ire in the forwarding table and
3389 	 * make sure that the interface route has not been deleted.
3390 	 */
3391 	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
3392 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
3393 
3394 		ASSERT(ire->ire_max_fragp == NULL);
3395 		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
3396 			/*
3397 			 * The ihandle that we used in ip_newroute_multi
3398 			 * comes from the interface route corresponding
3399 			 * to ire_ipif. Lookup here to see if it exists
3400 			 * still.
3401 			 * If the ire has a source address assigned using
3402 			 * RTF_SETSRC, ire_ipif is the logical interface holding
3403 			 * this source address, so we can't use it to check for
3404 			 * the existence of the interface route. Instead we rely
3405 			 * on the brute force ihandle search in
3406 			 * ire_ihandle_lookup_onlink() below.
3407 			 */
3408 			pire = ipif_to_ire(ire->ire_ipif);
3409 			if (pire == NULL) {
3410 				ire_delete(ire);
3411 				*ire_p = NULL;
3412 				return (EINVAL);
3413 			} else if (pire->ire_ihandle != ire->ire_ihandle) {
3414 				ire_refrele(pire);
3415 				ire_delete(ire);
3416 				*ire_p = NULL;
3417 				return (EINVAL);
3418 			}
3419 		} else {
3420 			pire = ire_ihandle_lookup_onlink(ire);
3421 			if (pire == NULL) {
3422 				ire_delete(ire);
3423 				*ire_p = NULL;
3424 				return (EINVAL);
3425 			}
3426 		}
3427 		/* Prevent pire from getting deleted */
3428 		IRB_REFHOLD(pire->ire_bucket);
3429 		/* Has it been removed already ? */
3430 		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
3431 			IRB_REFRELE(pire->ire_bucket);
3432 			ire_refrele(pire);
3433 			ire_delete(ire);
3434 			*ire_p = NULL;
3435 			return (EINVAL);
3436 		}
3437 	} else {
3438 		ASSERT(ire->ire_max_fragp != NULL);
3439 	}
3440 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
3441 
3442 	if (ire->ire_ipif != NULL) {
3443 		/*
3444 		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
3445 		 * for historic reasons and to maintain symmetry with
3446 		 * IPv6 code path. Historically this was used by
3447 		 * multicast code to create multiple IRE_CACHES on
3448 		 * a single ill with different ipifs. This was used
3449 		 * so that multicast packets leaving the node had the
3450 		 * right source address. This is no longer needed as
3451 		 * ip_wput initializes the address correctly.
3452 		 */
3453 		flags |= MATCH_IRE_IPIF;
3454 		/*
3455 		 * If we are creating hidden ires, make sure we search on
3456 		 * this ill (MATCH_IRE_ILL) and a hidden ire,
3457 		 * while we are searching for duplicates below. Otherwise we
3458 		 * could potentially find an IRE on some other interface
3459 		 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We
3460 		 * shouldn't do this as this will lead to an infinite loop
3461 		 * (if we get to ip_wput again) eventually we need an hidden
3462 		 * ire for this packet to go out. MATCH_IRE_ILL is explicitly
3463 		 * done below.
3464 		 */
3465 		if (ire->ire_type == IRE_CACHE &&
3466 		    (ire->ire_marks & IRE_MARK_HIDDEN))
3467 			flags |= (MATCH_IRE_MARK_HIDDEN);
3468 	}
3469 	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
3470 		irb_ptr = ire_get_bucket(ire);
3471 		need_refrele = B_TRUE;
3472 		if (irb_ptr == NULL) {
3473 			/*
3474 			 * This assumes that the ire has not added
3475 			 * a reference to the ipif.
3476 			 */
3477 			ire->ire_ipif = NULL;
3478 			ire_delete(ire);
3479 			if (pire != NULL) {
3480 				IRB_REFRELE(pire->ire_bucket);
3481 				ire_refrele(pire);
3482 			}
3483 			*ire_p = NULL;
3484 			return (EINVAL);
3485 		}
3486 	} else {
3487 		irb_ptr = &(ip_cache_table[IRE_ADDR_HASH(ire->ire_addr,
3488 		    ip_cache_table_size)]);
3489 	}
3490 
3491 	/*
3492 	 * Start the atomic add of the ire. Grab the ill locks,
3493 	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
3494 	 *
3495 	 * If ipif or ill is changing ire_atomic_start() may queue the
3496 	 * request and return EINPROGRESS.
3497 	 * To avoid lock order problems, get the ndp4.ndp_g_lock.
3498 	 */
3499 	mutex_enter(&ndp4.ndp_g_lock);
3500 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
3501 	if (error != 0) {
3502 		mutex_exit(&ndp4.ndp_g_lock);
3503 		/*
3504 		 * We don't know whether it is a valid ipif or not.
3505 		 * So, set it to NULL. This assumes that the ire has not added
3506 		 * a reference to the ipif.
3507 		 */
3508 		ire->ire_ipif = NULL;
3509 		ire_delete(ire);
3510 		if (pire != NULL) {
3511 			IRB_REFRELE(pire->ire_bucket);
3512 			ire_refrele(pire);
3513 		}
3514 		*ire_p = NULL;
3515 		if (need_refrele)
3516 			IRB_REFRELE(irb_ptr);
3517 		return (error);
3518 	}
3519 	/*
3520 	 * To avoid creating ires having stale values for the ire_max_frag
3521 	 * we get the latest value atomically here. For more details
3522 	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
3523 	 * in ip_rput_dlpi_writer
3524 	 */
3525 	if (ire->ire_max_fragp == NULL) {
3526 		if (CLASSD(ire->ire_addr))
3527 			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
3528 		else
3529 			ire->ire_max_frag = pire->ire_max_frag;
3530 	} else {
3531 		uint_t	max_frag;
3532 
3533 		max_frag = *ire->ire_max_fragp;
3534 		ire->ire_max_fragp = NULL;
3535 		ire->ire_max_frag = max_frag;
3536 	}
3537 	/*
3538 	 * Atomically check for duplicate and insert in the table.
3539 	 */
3540 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
3541 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
3542 			continue;
3543 		if (ire->ire_ipif != NULL) {
3544 			/*
3545 			 * We do MATCH_IRE_ILL implicitly here for IREs
3546 			 * with a non-null ire_ipif, including IRE_CACHEs.
3547 			 * As ire_ipif and ire_stq could point to two
3548 			 * different ills, we can't pass just ire_ipif to
3549 			 * ire_match_args and get a match on both ills.
3550 			 * This is just needed for duplicate checks here and
3551 			 * so we don't add an extra argument to
3552 			 * ire_match_args for this. Do it locally.
3553 			 *
3554 			 * NOTE : Currently there is no part of the code
3555 			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
3556 			 * match for IRE_CACHEs. Thus we don't want to
3557 			 * extend the arguments to ire_match_args.
3558 			 */
3559 			if (ire1->ire_stq != ire->ire_stq)
3560 				continue;
3561 			/*
3562 			 * Multiroute IRE_CACHEs for a given destination can
3563 			 * have the same ire_ipif, typically if their source
3564 			 * address is forced using RTF_SETSRC, and the same
3565 			 * send-to queue. We differentiate them using the parent
3566 			 * handle.
3567 			 */
3568 			if (ire->ire_type == IRE_CACHE &&
3569 			    (ire1->ire_flags & RTF_MULTIRT) &&
3570 			    (ire->ire_flags & RTF_MULTIRT) &&
3571 			    (ire1->ire_phandle != ire->ire_phandle))
3572 				continue;
3573 		}
3574 		if (ire1->ire_zoneid != ire->ire_zoneid)
3575 			continue;
3576 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
3577 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
3578 		    ire->ire_zoneid, 0, NULL, flags)) {
3579 			/*
3580 			 * Return the old ire after doing a REFHOLD.
3581 			 * As most of the callers continue to use the IRE
3582 			 * after adding, we return a held ire. This will
3583 			 * avoid a lookup in the caller again. If the callers
3584 			 * don't want to use it, they need to do a REFRELE.
3585 			 */
3586 			ip1dbg(("found dup ire existing %p new %p",
3587 			    (void *)ire1, (void *)ire));
3588 			IRE_REFHOLD(ire1);
3589 			ire_atomic_end(irb_ptr, ire);
3590 			mutex_exit(&ndp4.ndp_g_lock);
3591 			ire_delete(ire);
3592 			if (pire != NULL) {
3593 				/*
3594 				 * Assert that it is not removed from the
3595 				 * list yet.
3596 				 */
3597 				ASSERT(pire->ire_ptpn != NULL);
3598 				IRB_REFRELE(pire->ire_bucket);
3599 				ire_refrele(pire);
3600 			}
3601 			*ire_p = ire1;
3602 			if (need_refrele)
3603 				IRB_REFRELE(irb_ptr);
3604 			return (0);
3605 		}
3606 	}
3607 	if (ire->ire_type & IRE_CACHE) {
3608 		ASSERT(ire->ire_stq != NULL);
3609 		nce = ndp_lookup_v4(ire_to_ill(ire),
3610 		    ((ire->ire_gateway_addr != INADDR_ANY) ?
3611 		    &ire->ire_gateway_addr : &ire->ire_addr),
3612 		    B_TRUE);
3613 		if (nce != NULL)
3614 			mutex_enter(&nce->nce_lock);
3615 		/*
3616 		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
3617 		 * and the caller has prohibited the addition of incomplete
3618 		 * ire's, we fail the add. Note that nce_state could be
3619 		 * something other than ND_REACHABLE if nce_reinit has just
3620 		 * kicked in and reset the nce.
3621 		 */
3622 		if ((nce == NULL) ||
3623 		    (nce->nce_flags & NCE_F_CONDEMNED) ||
3624 		    (!allow_unresolved &&
3625 		    ((nce->nce_state & ND_REACHABLE) == 0))) {
3626 			if (nce != NULL)
3627 				mutex_exit(&nce->nce_lock);
3628 			ire_atomic_end(irb_ptr, ire);
3629 			mutex_exit(&ndp4.ndp_g_lock);
3630 			if (nce != NULL)
3631 				NCE_REFRELE(nce);
3632 			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
3633 			ire_delete(ire);
3634 			if (pire != NULL) {
3635 				IRB_REFRELE(pire->ire_bucket);
3636 				ire_refrele(pire);
3637 			}
3638 			*ire_p = NULL;
3639 			if (need_refrele)
3640 				IRB_REFRELE(irb_ptr);
3641 			return (EINVAL);
3642 		} else {
3643 			ire->ire_nce = nce;
3644 			mutex_exit(&nce->nce_lock);
3645 			/*
3646 			 * We are associating this nce to the ire, so
3647 			 * change the nce ref taken in ndp_lookup_v4() from
3648 			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
3649 			 */
3650 			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
3651 		}
3652 	}
3653 	/*
3654 	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
3655 	 * grouping identical addresses together on the hash chain. We also
3656 	 * don't want to send multiple copies out if there are two ills part
3657 	 * of the same group. Thus we group the ires with same addr and same
3658 	 * ill group together so that ip_wput_ire can easily skip all the
3659 	 * ires with same addr and same group after sending the first copy.
3660 	 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently
3661 	 * interested in such groupings only for broadcasts.
3662 	 *
3663 	 * NOTE : If the interfaces are brought up first and then grouped,
3664 	 * illgrp_insert will handle it. We come here when the interfaces
3665 	 * are already in group and we are bringing them UP.
3666 	 *
3667 	 * Find the first entry that matches ire_addr. *irep will be null
3668 	 * if no match.
3669 	 */
3670 	irep = (ire_t **)irb_ptr;
3671 	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
3672 		irep = &ire1->ire_next;
3673 	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
3674 		/*
3675 		 * We found some ire (i.e *irep) with a matching addr. We
3676 		 * want to group ires with same addr and same ill group
3677 		 * together.
3678 		 *
3679 		 * First get to the entry that matches our address and
3680 		 * ill group i.e stop as soon as we find the first ire
3681 		 * matching the ill group and address. If there is only
3682 		 * an address match, we should walk and look for some
3683 		 * group match. These are some of the possible scenarios :
3684 		 *
3685 		 * 1) There are no groups at all i.e all ire's ill_group
3686 		 *    are NULL. In that case we will essentially group
3687 		 *    all the ires with the same addr together. Same as
3688 		 *    the "else" block of this "if".
3689 		 *
3690 		 * 2) There are some groups and this ire's ill_group is
3691 		 *    NULL. In this case, we will first find the group
3692 		 *    that matches the address and a NULL group. Then
3693 		 *    we will insert the ire at the end of that group.
3694 		 *
3695 		 * 3) There are some groups and this ires's ill_group is
3696 		 *    non-NULL. In this case we will first find the group
3697 		 *    that matches the address and the ill_group. Then
3698 		 *    we will insert the ire at the end of that group.
3699 		 */
3700 		/* LINTED : constant in conditional context */
3701 		while (1) {
3702 			ire1 = *irep;
3703 			if ((ire1->ire_next == NULL) ||
3704 			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
3705 			    (ire1->ire_type != IRE_BROADCAST) ||
3706 			    (ire1->ire_ipif->ipif_ill->ill_group ==
3707 			    ire->ire_ipif->ipif_ill->ill_group))
3708 				break;
3709 			irep = &ire1->ire_next;
3710 		}
3711 		ASSERT(*irep != NULL);
3712 		irep = &((*irep)->ire_next);
3713 
3714 		/*
3715 		 * Either we have hit the end of the list or the address
3716 		 * did not match or the group *matched*. If we found
3717 		 * a match on the group, skip to the end of the group.
3718 		 */
3719 		while (*irep != NULL) {
3720 			ire1 = *irep;
3721 			if ((ire1->ire_addr != ire->ire_addr) ||
3722 			    (ire1->ire_type != IRE_BROADCAST) ||
3723 			    (ire1->ire_ipif->ipif_ill->ill_group !=
3724 			    ire->ire_ipif->ipif_ill->ill_group))
3725 				break;
3726 			if (ire1->ire_ipif->ipif_ill->ill_group == NULL &&
3727 			    ire1->ire_ipif == ire->ire_ipif) {
3728 				irep = &ire1->ire_next;
3729 				break;
3730 			}
3731 			irep = &ire1->ire_next;
3732 		}
3733 	} else if (*irep != NULL) {
3734 		/*
3735 		 * Find the last ire which matches ire_addr.
3736 		 * Needed to do tail insertion among entries with the same
3737 		 * ire_addr.
3738 		 */
3739 		while (ire->ire_addr == ire1->ire_addr) {
3740 			irep = &ire1->ire_next;
3741 			ire1 = *irep;
3742 			if (ire1 == NULL)
3743 				break;
3744 		}
3745 	}
3746 
3747 	/* Insert at *irep */
3748 	ire1 = *irep;
3749 	if (ire1 != NULL)
3750 		ire1->ire_ptpn = &ire->ire_next;
3751 	ire->ire_next = ire1;
3752 	/* Link the new one in. */
3753 	ire->ire_ptpn = irep;
3754 
3755 	/*
3756 	 * ire_walk routines de-reference ire_next without holding
3757 	 * a lock. Before we point to the new ire, we want to make
3758 	 * sure the store that sets the ire_next of the new ire
3759 	 * reaches global visibility, so that ire_walk routines
3760 	 * don't see a truncated list of ires i.e if the ire_next
3761 	 * of the new ire gets set after we do "*irep = ire" due
3762 	 * to re-ordering, the ire_walk thread will see a NULL
3763 	 * once it accesses the ire_next of the new ire.
3764 	 * membar_producer() makes sure that the following store
3765 	 * happens *after* all of the above stores.
3766 	 */
3767 	membar_producer();
3768 	*irep = ire;
3769 	ire->ire_bucket = irb_ptr;
3770 	/*
3771 	 * We return a bumped up IRE above. Keep it symmetrical
3772 	 * so that the callers will always have to release. This
3773 	 * helps the callers of this function because they continue
3774 	 * to use the IRE after adding and hence they don't have to
3775 	 * lookup again after we return the IRE.
3776 	 *
3777 	 * NOTE : We don't have to use atomics as this is appearing
3778 	 * in the list for the first time and no one else can bump
3779 	 * up the reference count on this yet.
3780 	 */
3781 	IRE_REFHOLD_LOCKED(ire);
3782 	BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted);
3783 
3784 	irb_ptr->irb_ire_cnt++;
3785 	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3786 		irb_ptr->irb_nire++;
3787 
3788 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3789 		irb_ptr->irb_tmp_ire_cnt++;
3790 
3791 	if (ire->ire_ipif != NULL) {
3792 		ire->ire_ipif->ipif_ire_cnt++;
3793 		if (ire->ire_stq != NULL) {
3794 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3795 			stq_ill->ill_ire_cnt++;
3796 		}
3797 	} else {
3798 		ASSERT(ire->ire_stq == NULL);
3799 	}
3800 
3801 	ire_atomic_end(irb_ptr, ire);
3802 	mutex_exit(&ndp4.ndp_g_lock);
3803 
3804 	if (pire != NULL) {
3805 		/* Assert that it is not removed from the list yet */
3806 		ASSERT(pire->ire_ptpn != NULL);
3807 		IRB_REFRELE(pire->ire_bucket);
3808 		ire_refrele(pire);
3809 	}
3810 
3811 	if (ire->ire_type != IRE_CACHE) {
3812 		/*
3813 		 * For ire's with host mask see if there is an entry
3814 		 * in the cache. If there is one flush the whole cache as
3815 		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3816 		 * If no entry is found than there is no need to flush the
3817 		 * cache.
3818 		 */
3819 		if (ire->ire_mask == IP_HOST_MASK) {
3820 			ire_t *lire;
3821 			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3822 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
3823 			if (lire != NULL) {
3824 				ire_refrele(lire);
3825 				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3826 			}
3827 		} else {
3828 			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3829 		}
3830 	}
3831 	/*
3832 	 * We had to delay the fast path probe until the ire is inserted
3833 	 * in the list. Otherwise the fast path ack won't find the ire in
3834 	 * the table.
3835 	 */
3836 	if (ire->ire_type == IRE_CACHE || ire->ire_type == IRE_BROADCAST)
3837 		ire_fastpath(ire);
3838 	if (ire->ire_ipif != NULL)
3839 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3840 	*ire_p = ire;
3841 	if (need_refrele) {
3842 		IRB_REFRELE(irb_ptr);
3843 	}
3844 	return (0);
3845 }
3846 
3847 /*
3848  * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3849  * do the final cleanup for this ire.
3850  */
3851 void
3852 ire_cleanup(ire_t *ire)
3853 {
3854 	ire_t *ire_next;
3855 
3856 	ASSERT(ire != NULL);
3857 
3858 	while (ire != NULL) {
3859 		ire_next = ire->ire_next;
3860 		if (ire->ire_ipversion == IPV4_VERSION) {
3861 			ire_delete_v4(ire);
3862 			BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted);
3863 		} else {
3864 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3865 			ire_delete_v6(ire);
3866 			BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted);
3867 		}
3868 		/*
3869 		 * Now it's really out of the list. Before doing the
3870 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3871 		 * so.
3872 		 */
3873 		ire->ire_next = NULL;
3874 		IRE_REFRELE_NOTR(ire);
3875 		ire = ire_next;
3876 	}
3877 }
3878 
3879 /*
3880  * IRB_REFRELE is the only caller of the function. It calls to unlink
3881  * all the CONDEMNED ires from this bucket.
3882  */
3883 ire_t *
3884 ire_unlink(irb_t *irb)
3885 {
3886 	ire_t *ire;
3887 	ire_t *ire1;
3888 	ire_t **ptpn;
3889 	ire_t *ire_list = NULL;
3890 
3891 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3892 	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3893 	    (irb->irb_refcnt == 0));
3894 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3895 	ASSERT(irb->irb_ire != NULL);
3896 
3897 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3898 		ire1 = ire->ire_next;
3899 		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3900 			ptpn = ire->ire_ptpn;
3901 			ire1 = ire->ire_next;
3902 			if (ire1)
3903 				ire1->ire_ptpn = ptpn;
3904 			*ptpn = ire1;
3905 			ire->ire_ptpn = NULL;
3906 			ire->ire_next = NULL;
3907 			if (ire->ire_type == IRE_DEFAULT) {
3908 				/*
3909 				 * IRE is out of the list. We need to adjust
3910 				 * the accounting before the caller drops
3911 				 * the lock.
3912 				 */
3913 				if (ire->ire_ipversion == IPV6_VERSION) {
3914 					ASSERT(ipv6_ire_default_count != 0);
3915 					ipv6_ire_default_count--;
3916 				}
3917 			}
3918 			/*
3919 			 * We need to call ire_delete_v4 or ire_delete_v6
3920 			 * to clean up the cache or the redirects pointing at
3921 			 * the default gateway. We need to drop the lock
3922 			 * as ire_flush_cache/ire_delete_host_redircts require
3923 			 * so. But we can't drop the lock, as ire_unlink needs
3924 			 * to atomically remove the ires from the list.
3925 			 * So, create a temporary list of CONDEMNED ires
3926 			 * for doing ire_delete_v4/ire_delete_v6 operations
3927 			 * later on.
3928 			 */
3929 			ire->ire_next = ire_list;
3930 			ire_list = ire;
3931 		}
3932 	}
3933 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3934 	return (ire_list);
3935 }
3936 
3937 /*
3938  * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3939  * ARP message on any of its interface queue, it scans the nce table and
3940  * deletes and calls ndp_delete() for the appropriate nce. This action
3941  * also deletes all the neighbor/ire cache entries for that address.
3942  * This function is called from ip_arp_news in ip.c and also for
3943  * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3944  * true if it finds a nce entry which is used by ip_arp_news to determine if
3945  * it needs to do an ire_walk_v4. The return value is also  used for the
3946  * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3947  * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3948  * ip_if->ipif_ill also needs to be matched.
3949  */
3950 boolean_t
3951 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif)
3952 {
3953 	ill_t	*ill;
3954 	nce_t	*nce;
3955 
3956 	ill = (ipif ? ipif->ipif_ill : NULL);
3957 
3958 	if (ill != NULL) {
3959 		/*
3960 		 * clean up the nce (and any relevant ire's) that matches
3961 		 * on addr and ill.
3962 		 */
3963 		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3964 		if (nce != NULL) {
3965 			ndp_delete(nce);
3966 			return (B_TRUE);
3967 		}
3968 	} else {
3969 		/*
3970 		 * ill is wildcard. clean up all nce's and
3971 		 * ire's that match on addr
3972 		 */
3973 		nce_clookup_t cl;
3974 
3975 		cl.ncecl_addr = addr;
3976 		cl.ncecl_found = B_FALSE;
3977 
3978 		ndp_walk_common(&ndp4, NULL,
3979 		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3980 
3981 		/*
3982 		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3983 		 *  we found a matching nce.
3984 		 */
3985 		return (cl.ncecl_found);
3986 	}
3987 	return (B_FALSE);
3988 
3989 }
3990 
3991 /* Delete the supplied nce if its nce_addr matches the supplied address */
3992 static void
3993 ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3994 {
3995 	nce_clookup_t *cl = (nce_clookup_t *)arg;
3996 	ipaddr_t nce_addr;
3997 
3998 	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3999 	if (nce_addr == cl->ncecl_addr) {
4000 		cl->ncecl_found = B_TRUE;
4001 		/* clean up the nce (and any relevant ire's) */
4002 		ndp_delete(nce);
4003 	}
4004 }
4005 
4006 /*
4007  * Clean up the radix node for this ire. Must be called by IRB_REFRELE
4008  * when there are no ire's left in the bucket. Returns TRUE if the bucket
4009  * is deleted and freed.
4010  */
4011 boolean_t
4012 irb_inactive(irb_t *irb)
4013 {
4014 	struct rt_entry *rt;
4015 	struct radix_node *rn;
4016 
4017 	rt = IRB2RT(irb);
4018 	rn = (struct radix_node *)rt;
4019 
4020 	/* first remove it from the radix tree. */
4021 	RADIX_NODE_HEAD_WLOCK(ip_ftable);
4022 	rw_enter(&irb->irb_lock, RW_WRITER);
4023 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
4024 		rn = ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
4025 		    ip_ftable);
4026 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
4027 		ASSERT((void *)rn == (void *)rt);
4028 		Free(rt, rt_entry_cache);
4029 		/* irb_lock is freed */
4030 		RADIX_NODE_HEAD_UNLOCK(ip_ftable);
4031 		return (B_TRUE);
4032 	}
4033 	rw_exit(&irb->irb_lock);
4034 	RADIX_NODE_HEAD_UNLOCK(ip_ftable);
4035 	return (B_FALSE);
4036 }
4037 
4038 /*
4039  * Delete the specified IRE.
4040  */
4041 void
4042 ire_delete(ire_t *ire)
4043 {
4044 	ire_t	*ire1;
4045 	ire_t	**ptpn;
4046 	irb_t *irb;
4047 
4048 	if ((irb = ire->ire_bucket) == NULL) {
4049 		/*
4050 		 * It was never inserted in the list. Should call REFRELE
4051 		 * to free this IRE.
4052 		 */
4053 		IRE_REFRELE_NOTR(ire);
4054 		return;
4055 	}
4056 
4057 	rw_enter(&irb->irb_lock, RW_WRITER);
4058 
4059 	if (irb->irb_rr_origin == ire) {
4060 		irb->irb_rr_origin = NULL;
4061 	}
4062 
4063 	/*
4064 	 * In case of V4 we might still be waiting for fastpath ack.
4065 	 */
4066 	if (ire->ire_ipversion == IPV4_VERSION && ire->ire_stq != NULL) {
4067 		ill_t *ill;
4068 
4069 		ill = ire_to_ill(ire);
4070 		if (ill != NULL)
4071 			ire_fastpath_list_delete(ill, ire);
4072 	}
4073 
4074 	if (ire->ire_ptpn == NULL) {
4075 		/*
4076 		 * Some other thread has removed us from the list.
4077 		 * It should have done the REFRELE for us.
4078 		 */
4079 		rw_exit(&irb->irb_lock);
4080 		return;
4081 	}
4082 
4083 	if (irb->irb_refcnt != 0) {
4084 		/*
4085 		 * The last thread to leave this bucket will
4086 		 * delete this ire.
4087 		 */
4088 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
4089 			irb->irb_ire_cnt--;
4090 			if (ire->ire_marks & IRE_MARK_TEMPORARY)
4091 				irb->irb_tmp_ire_cnt--;
4092 			ire->ire_marks |= IRE_MARK_CONDEMNED;
4093 		}
4094 		irb->irb_marks |= IRB_MARK_CONDEMNED;
4095 		rw_exit(&irb->irb_lock);
4096 		return;
4097 	}
4098 
4099 	/*
4100 	 * Normally to delete an ire, we walk the bucket. While we
4101 	 * walk the bucket, we normally bump up irb_refcnt and hence
4102 	 * we return from above where we mark CONDEMNED and the ire
4103 	 * gets deleted from ire_unlink. This case is where somebody
4104 	 * knows the ire e.g by doing a lookup, and wants to delete the
4105 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
4106 	 * the bucket.
4107 	 */
4108 	ptpn = ire->ire_ptpn;
4109 	ire1 = ire->ire_next;
4110 	if (ire1 != NULL)
4111 		ire1->ire_ptpn = ptpn;
4112 	ASSERT(ptpn != NULL);
4113 	*ptpn = ire1;
4114 	ire->ire_ptpn = NULL;
4115 	ire->ire_next = NULL;
4116 	if (ire->ire_ipversion == IPV6_VERSION) {
4117 		BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted);
4118 	} else {
4119 		BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted);
4120 	}
4121 	/*
4122 	 * ip_wput/ip_wput_v6 checks this flag to see whether
4123 	 * it should still use the cached ire or not.
4124 	 */
4125 	ire->ire_marks |= IRE_MARK_CONDEMNED;
4126 	if (ire->ire_type == IRE_DEFAULT) {
4127 		/*
4128 		 * IRE is out of the list. We need to adjust the
4129 		 * accounting before we drop the lock.
4130 		 */
4131 		if (ire->ire_ipversion == IPV6_VERSION) {
4132 			ASSERT(ipv6_ire_default_count != 0);
4133 			ipv6_ire_default_count--;
4134 		}
4135 	}
4136 	irb->irb_ire_cnt--;
4137 
4138 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
4139 		irb->irb_tmp_ire_cnt--;
4140 	rw_exit(&irb->irb_lock);
4141 
4142 	if (ire->ire_ipversion == IPV6_VERSION) {
4143 		ire_delete_v6(ire);
4144 	} else {
4145 		ire_delete_v4(ire);
4146 	}
4147 	/*
4148 	 * We removed it from the list. Decrement the
4149 	 * reference count.
4150 	 */
4151 	IRE_REFRELE_NOTR(ire);
4152 }
4153 
4154 /*
4155  * Delete the specified IRE.
4156  * All calls should use ire_delete().
4157  * Sometimes called as writer though not required by this function.
4158  *
4159  * NOTE : This function is called only if the ire was added
4160  * in the list.
4161  */
4162 static void
4163 ire_delete_v4(ire_t *ire)
4164 {
4165 	ASSERT(ire->ire_refcnt >= 1);
4166 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
4167 
4168 	if (ire->ire_type != IRE_CACHE)
4169 		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
4170 	if (ire->ire_type == IRE_DEFAULT) {
4171 		/*
4172 		 * when a default gateway is going away
4173 		 * delete all the host redirects pointing at that
4174 		 * gateway.
4175 		 */
4176 		ire_delete_host_redirects(ire->ire_gateway_addr);
4177 	}
4178 }
4179 
4180 /*
4181  * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
4182  * to free the ire when the reference count goes to zero.
4183  */
4184 void
4185 ire_inactive(ire_t *ire)
4186 {
4187 	nce_t	*nce;
4188 	ill_t	*ill = NULL;
4189 	ill_t	*stq_ill = NULL;
4190 	ill_t	*in_ill = NULL;
4191 	ipif_t	*ipif;
4192 	boolean_t	need_wakeup = B_FALSE;
4193 	irb_t 	*irb;
4194 
4195 	ASSERT(ire->ire_refcnt == 0);
4196 	ASSERT(ire->ire_ptpn == NULL);
4197 	ASSERT(ire->ire_next == NULL);
4198 
4199 	if (ire->ire_gw_secattr != NULL) {
4200 		ire_gw_secattr_free(ire->ire_gw_secattr);
4201 		ire->ire_gw_secattr = NULL;
4202 	}
4203 
4204 	if (ire->ire_mp != NULL) {
4205 		ASSERT(ire->ire_fastpath == NULL);
4206 		ASSERT(ire->ire_bucket == NULL);
4207 		mutex_destroy(&ire->ire_lock);
4208 		BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed);
4209 		if (ire->ire_nce != NULL)
4210 			NCE_REFRELE_NOTR(ire->ire_nce);
4211 		freeb(ire->ire_mp);
4212 		return;
4213 	}
4214 
4215 	if ((nce = ire->ire_nce) != NULL) {
4216 		NCE_REFRELE_NOTR(nce);
4217 		ire->ire_nce = NULL;
4218 	}
4219 
4220 	if (ire->ire_ipif == NULL)
4221 		goto end;
4222 
4223 	ipif = ire->ire_ipif;
4224 	ill = ipif->ipif_ill;
4225 
4226 	if (ire->ire_bucket == NULL) {
4227 		/* The ire was never inserted in the table. */
4228 		goto end;
4229 	}
4230 
4231 	/*
4232 	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
4233 	 * non-null ill_ire_count also goes down by 1. If the in_ill is
4234 	 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1.
4235 	 *
4236 	 * The ipif that is associated with an ire is ire->ire_ipif and
4237 	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
4238 	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
4239 	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only
4240 	 * in the case of IRE_CACHES when IPMP is used, stq_ill can be
4241 	 * different. If this is different from ire->ire_ipif->ipif_ill and
4242 	 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call
4243 	 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use
4244 	 * in_ill could be non-null. If it is a reverse tunnel related ire
4245 	 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire
4246 	 * ill_srcif_refcnt is non-null.
4247 	 */
4248 
4249 	if (ire->ire_stq != NULL)
4250 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
4251 	if (ire->ire_in_ill != NULL)
4252 		in_ill = ire->ire_in_ill;
4253 
4254 	if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) {
4255 		/* Optimize the most common case */
4256 		mutex_enter(&ill->ill_lock);
4257 		ASSERT(ipif->ipif_ire_cnt != 0);
4258 		ipif->ipif_ire_cnt--;
4259 		if (ipif->ipif_ire_cnt == 0)
4260 			need_wakeup = B_TRUE;
4261 		if (stq_ill != NULL) {
4262 			ASSERT(stq_ill->ill_ire_cnt != 0);
4263 			stq_ill->ill_ire_cnt--;
4264 			if (stq_ill->ill_ire_cnt == 0)
4265 				need_wakeup = B_TRUE;
4266 		}
4267 		if (need_wakeup) {
4268 			/* Drops the ill lock */
4269 			ipif_ill_refrele_tail(ill);
4270 		} else {
4271 			mutex_exit(&ill->ill_lock);
4272 		}
4273 	} else {
4274 		/*
4275 		 * We can't grab all the ill locks at the same time.
4276 		 * It can lead to recursive lock enter in the call to
4277 		 * ipif_ill_refrele_tail and later. Instead do it 1 at
4278 		 * a time.
4279 		 */
4280 		mutex_enter(&ill->ill_lock);
4281 		ASSERT(ipif->ipif_ire_cnt != 0);
4282 		ipif->ipif_ire_cnt--;
4283 		if (ipif->ipif_ire_cnt == 0) {
4284 			/* Drops the lock */
4285 			ipif_ill_refrele_tail(ill);
4286 		} else {
4287 			mutex_exit(&ill->ill_lock);
4288 		}
4289 		if (stq_ill != NULL) {
4290 			mutex_enter(&stq_ill->ill_lock);
4291 			ASSERT(stq_ill->ill_ire_cnt != 0);
4292 			stq_ill->ill_ire_cnt--;
4293 			if (stq_ill->ill_ire_cnt == 0)  {
4294 				/* Drops the ill lock */
4295 				ipif_ill_refrele_tail(stq_ill);
4296 			} else {
4297 				mutex_exit(&stq_ill->ill_lock);
4298 			}
4299 		}
4300 		if (in_ill != NULL) {
4301 			mutex_enter(&in_ill->ill_lock);
4302 			if (ire->ire_type == IRE_MIPRTUN) {
4303 				/*
4304 				 * Mobile IP reverse tunnel ire.
4305 				 * Decrement table count and the
4306 				 * ill reference count. This signifies
4307 				 * mipagent is deleting reverse tunnel
4308 				 * route for a particular mobile node.
4309 				 */
4310 				mutex_enter(&ire_mrtun_lock);
4311 				ire_mrtun_count--;
4312 				mutex_exit(&ire_mrtun_lock);
4313 				ASSERT(in_ill->ill_mrtun_refcnt != 0);
4314 				in_ill->ill_mrtun_refcnt--;
4315 				if (in_ill->ill_mrtun_refcnt == 0) {
4316 					/* Drops the ill lock */
4317 					ipif_ill_refrele_tail(in_ill);
4318 				} else {
4319 					mutex_exit(&in_ill->ill_lock);
4320 				}
4321 			} else {
4322 				mutex_enter(&ire_srcif_table_lock);
4323 				ire_srcif_table_count--;
4324 				mutex_exit(&ire_srcif_table_lock);
4325 				ASSERT(in_ill->ill_srcif_refcnt != 0);
4326 				in_ill->ill_srcif_refcnt--;
4327 				if (in_ill->ill_srcif_refcnt == 0) {
4328 					/* Drops the ill lock */
4329 					ipif_ill_refrele_tail(in_ill);
4330 				} else {
4331 					mutex_exit(&in_ill->ill_lock);
4332 				}
4333 			}
4334 		}
4335 	}
4336 end:
4337 	/* This should be true for both V4 and V6 */
4338 	ASSERT(ire->ire_fastpath == NULL);
4339 
4340 	if ((ire->ire_type & IRE_FORWARDTABLE) &&
4341 	    (ire->ire_ipversion == IPV4_VERSION) &&
4342 	    ((irb = ire->ire_bucket) != NULL)) {
4343 		rw_enter(&irb->irb_lock, RW_WRITER);
4344 		irb->irb_nire--;
4345 		/*
4346 		 * Instead of examining the conditions for freeing
4347 		 * the radix node here, we do it by calling
4348 		 * IRB_REFRELE which is a single point in the code
4349 		 * that embeds that logic. Bump up the refcnt to
4350 		 * be able to call IRB_REFRELE
4351 		 */
4352 		IRB_REFHOLD_LOCKED(irb);
4353 		rw_exit(&irb->irb_lock);
4354 		IRB_REFRELE(irb);
4355 	}
4356 	ire->ire_ipif = NULL;
4357 
4358 	if (ire->ire_in_ill != NULL) {
4359 		ire->ire_in_ill = NULL;
4360 	}
4361 
4362 #ifdef IRE_DEBUG
4363 	ire_trace_inactive(ire);
4364 #endif
4365 	mutex_destroy(&ire->ire_lock);
4366 	if (ire->ire_ipversion == IPV6_VERSION) {
4367 		BUMP_IRE_STATS(ire_stats_v6, ire_stats_freed);
4368 	} else {
4369 		BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed);
4370 	}
4371 	ASSERT(ire->ire_mp == NULL);
4372 	/* Has been allocated out of the cache */
4373 	kmem_cache_free(ire_cache, ire);
4374 }
4375 
4376 /*
4377  * ire_walk routine to delete all IRE_CACHE/IRE_HOST_REDIRECT entries
4378  * that have a given gateway address.
4379  */
4380 void
4381 ire_delete_cache_gw(ire_t *ire, char *cp)
4382 {
4383 	ipaddr_t	gw_addr;
4384 
4385 	if (!(ire->ire_type & (IRE_CACHE|IRE_HOST_REDIRECT)))
4386 		return;
4387 
4388 	bcopy(cp, &gw_addr, sizeof (gw_addr));
4389 	if (ire->ire_gateway_addr == gw_addr) {
4390 		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
4391 			(int)ntohl(ire->ire_addr), ire->ire_type,
4392 			(int)ntohl(ire->ire_gateway_addr)));
4393 		ire_delete(ire);
4394 	}
4395 }
4396 
4397 /*
4398  * Remove all IRE_CACHE entries that match the ire specified.
4399  *
4400  * The flag argument indicates if the flush request is due to addition
4401  * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
4402  *
4403  * This routine takes only the IREs from the forwarding table and flushes
4404  * the corresponding entries from the cache table.
4405  *
4406  * When flushing due to the deletion of an old route, it
4407  * just checks the cache handles (ire_phandle and ire_ihandle) and
4408  * deletes the ones that match.
4409  *
4410  * When flushing due to the creation of a new route, it checks
4411  * if a cache entry's address matches the one in the IRE and
4412  * that the cache entry's parent has a less specific mask than the
4413  * one in IRE. The destination of such a cache entry could be the
4414  * gateway for other cache entries, so we need to flush those as
4415  * well by looking for gateway addresses matching the IRE's address.
4416  */
4417 void
4418 ire_flush_cache_v4(ire_t *ire, int flag)
4419 {
4420 	int i;
4421 	ire_t *cire;
4422 	irb_t *irb;
4423 
4424 	if (ire->ire_type & IRE_CACHE)
4425 	    return;
4426 
4427 	/*
4428 	 * If a default is just created, there is no point
4429 	 * in going through the cache, as there will not be any
4430 	 * cached ires.
4431 	 */
4432 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
4433 		return;
4434 	if (flag == IRE_FLUSH_ADD) {
4435 		/*
4436 		 * This selective flush is due to the addition of
4437 		 * new IRE.
4438 		 */
4439 		for (i = 0; i < ip_cache_table_size; i++) {
4440 			irb = &ip_cache_table[i];
4441 			if ((cire = irb->irb_ire) == NULL)
4442 				continue;
4443 			IRB_REFHOLD(irb);
4444 			for (cire = irb->irb_ire; cire != NULL;
4445 			    cire = cire->ire_next) {
4446 				if (cire->ire_type != IRE_CACHE)
4447 					continue;
4448 				/*
4449 				 * If 'cire' belongs to the same subnet
4450 				 * as the new ire being added, and 'cire'
4451 				 * is derived from a prefix that is less
4452 				 * specific than the new ire being added,
4453 				 * we need to flush 'cire'; for instance,
4454 				 * when a new interface comes up.
4455 				 */
4456 				if (((cire->ire_addr & ire->ire_mask) ==
4457 				    (ire->ire_addr & ire->ire_mask)) &&
4458 				    (ip_mask_to_plen(cire->ire_cmask) <=
4459 				    ire->ire_masklen)) {
4460 					ire_delete(cire);
4461 					continue;
4462 				}
4463 				/*
4464 				 * This is the case when the ire_gateway_addr
4465 				 * of 'cire' belongs to the same subnet as
4466 				 * the new ire being added.
4467 				 * Flushing such ires is sometimes required to
4468 				 * avoid misrouting: say we have a machine with
4469 				 * two interfaces (I1 and I2), a default router
4470 				 * R on the I1 subnet, and a host route to an
4471 				 * off-link destination D with a gateway G on
4472 				 * the I2 subnet.
4473 				 * Under normal operation, we will have an
4474 				 * on-link cache entry for G and an off-link
4475 				 * cache entry for D with G as ire_gateway_addr,
4476 				 * traffic to D will reach its destination
4477 				 * through gateway G.
4478 				 * If the administrator does 'ifconfig I2 down',
4479 				 * the cache entries for D and G will be
4480 				 * flushed. However, G will now be resolved as
4481 				 * an off-link destination using R (the default
4482 				 * router) as gateway. Then D will also be
4483 				 * resolved as an off-link destination using G
4484 				 * as gateway - this behavior is due to
4485 				 * compatibility reasons, see comment in
4486 				 * ire_ihandle_lookup_offlink(). Traffic to D
4487 				 * will go to the router R and probably won't
4488 				 * reach the destination.
4489 				 * The administrator then does 'ifconfig I2 up'.
4490 				 * Since G is on the I2 subnet, this routine
4491 				 * will flush its cache entry. It must also
4492 				 * flush the cache entry for D, otherwise
4493 				 * traffic will stay misrouted until the IRE
4494 				 * times out.
4495 				 */
4496 				if ((cire->ire_gateway_addr & ire->ire_mask) ==
4497 				    (ire->ire_addr & ire->ire_mask)) {
4498 					ire_delete(cire);
4499 					continue;
4500 				}
4501 			}
4502 			IRB_REFRELE(irb);
4503 		}
4504 	} else {
4505 		/*
4506 		 * delete the cache entries based on
4507 		 * handle in the IRE as this IRE is
4508 		 * being deleted/changed.
4509 		 */
4510 		for (i = 0; i < ip_cache_table_size; i++) {
4511 			irb = &ip_cache_table[i];
4512 			if ((cire = irb->irb_ire) == NULL)
4513 				continue;
4514 			IRB_REFHOLD(irb);
4515 			for (cire = irb->irb_ire; cire != NULL;
4516 			    cire = cire->ire_next) {
4517 				if (cire->ire_type != IRE_CACHE)
4518 					continue;
4519 				if ((cire->ire_phandle == 0 ||
4520 				    cire->ire_phandle != ire->ire_phandle) &&
4521 				    (cire->ire_ihandle == 0 ||
4522 				    cire->ire_ihandle != ire->ire_ihandle))
4523 					continue;
4524 				ire_delete(cire);
4525 			}
4526 			IRB_REFRELE(irb);
4527 		}
4528 	}
4529 }
4530 
4531 /*
4532  * Matches the arguments passed with the values in the ire.
4533  *
4534  * Note: for match types that match using "ipif" passed in, ipif
4535  * must be checked for non-NULL before calling this routine.
4536  */
4537 boolean_t
4538 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4539     int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
4540     const ts_label_t *tsl, int match_flags)
4541 {
4542 	ill_t *ire_ill = NULL, *dst_ill;
4543 	ill_t *ipif_ill = NULL;
4544 	ill_group_t *ire_ill_group = NULL;
4545 	ill_group_t *ipif_ill_group = NULL;
4546 
4547 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
4548 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
4549 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) ||
4550 	    (ipif != NULL && !ipif->ipif_isv6));
4551 	ASSERT(!(match_flags & MATCH_IRE_WQ));
4552 
4553 	/*
4554 	 * HIDDEN cache entries have to be looked up specifically with
4555 	 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set
4556 	 * when the interface is FAILED or INACTIVE. In that case,
4557 	 * any IRE_CACHES that exists should be marked with
4558 	 * IRE_MARK_HIDDEN. So, we don't really need to match below
4559 	 * for IRE_MARK_HIDDEN. But we do so for consistency.
4560 	 */
4561 	if (!(match_flags & MATCH_IRE_MARK_HIDDEN) &&
4562 	    (ire->ire_marks & IRE_MARK_HIDDEN))
4563 		return (B_FALSE);
4564 
4565 	/*
4566 	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
4567 	 * is used. In that case the routing table is bypassed and the
4568 	 * packets are sent directly to the specified nexthop. The
4569 	 * IRE_CACHE entry representing this route should be marked
4570 	 * with IRE_MARK_PRIVATE_ADDR.
4571 	 */
4572 
4573 	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
4574 	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
4575 		return (B_FALSE);
4576 
4577 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
4578 	    ire->ire_zoneid != ALL_ZONES) {
4579 		/*
4580 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
4581 		 * valid and does not match that of ire_zoneid, a failure to
4582 		 * match is reported at this point. Otherwise, since some IREs
4583 		 * that are available in the global zone can be used in local
4584 		 * zones, additional checks need to be performed:
4585 		 *
4586 		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
4587 		 *	entries should never be matched in this situation.
4588 		 *
4589 		 *	IRE entries that have an interface associated with them
4590 		 *	should in general not match unless they are an IRE_LOCAL
4591 		 *	or in the case when MATCH_IRE_DEFAULT has been set in
4592 		 *	the caller.  In the case of the former, checking of the
4593 		 *	other fields supplied should take place.
4594 		 *
4595 		 *	In the case where MATCH_IRE_DEFAULT has been set,
4596 		 *	all of the ipif's associated with the IRE's ill are
4597 		 *	checked to see if there is a matching zoneid.  If any
4598 		 *	one ipif has a matching zoneid, this IRE is a
4599 		 *	potential candidate so checking of the other fields
4600 		 *	takes place.
4601 		 *
4602 		 *	In the case where the IRE_INTERFACE has a usable source
4603 		 *	address (indicated by ill_usesrc_ifindex) in the
4604 		 *	correct zone then it's permitted to return this IRE
4605 		 */
4606 		if (match_flags & MATCH_IRE_ZONEONLY)
4607 			return (B_FALSE);
4608 		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
4609 			return (B_FALSE);
4610 		/*
4611 		 * Note, IRE_INTERFACE can have the stq as NULL. For
4612 		 * example, if the default multicast route is tied to
4613 		 * the loopback address.
4614 		 */
4615 		if ((ire->ire_type & IRE_INTERFACE) &&
4616 		    (ire->ire_stq != NULL)) {
4617 			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
4618 			/*
4619 			 * If there is a usable source address in the
4620 			 * zone, then it's ok to return an
4621 			 * IRE_INTERFACE
4622 			 */
4623 			if (ipif_usesrc_avail(dst_ill, zoneid)) {
4624 				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
4625 				    (void *)dst_ill,
4626 				    (ire->ire_addr == (addr & mask))));
4627 			} else {
4628 				ip3dbg(("ire_match_args: src_ipif NULL"
4629 				    " dst_ill %p\n", (void *)dst_ill));
4630 				return (B_FALSE);
4631 			}
4632 		}
4633 		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
4634 		    !(ire->ire_type & IRE_INTERFACE)) {
4635 			ipif_t	*tipif;
4636 
4637 			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
4638 				return (B_FALSE);
4639 			}
4640 			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
4641 			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
4642 			    tipif != NULL; tipif = tipif->ipif_next) {
4643 				if (IPIF_CAN_LOOKUP(tipif) &&
4644 				    (tipif->ipif_flags & IPIF_UP) &&
4645 				    (tipif->ipif_zoneid == zoneid ||
4646 				    tipif->ipif_zoneid == ALL_ZONES))
4647 					break;
4648 			}
4649 			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
4650 			if (tipif == NULL) {
4651 				return (B_FALSE);
4652 			}
4653 		}
4654 	}
4655 
4656 	/*
4657 	 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that
4658 	 * somebody wants to send out on a particular interface which
4659 	 * is given by ire_stq and hence use ire_stq to derive the ill
4660 	 * value. ire_ipif for IRE_CACHES is just the means of getting
4661 	 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr.
4662 	 * ire_to_ill does the right thing for this.
4663 	 */
4664 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
4665 		ire_ill = ire_to_ill(ire);
4666 		if (ire_ill != NULL)
4667 			ire_ill_group = ire_ill->ill_group;
4668 		ipif_ill = ipif->ipif_ill;
4669 		ipif_ill_group = ipif_ill->ill_group;
4670 	}
4671 
4672 	if ((ire->ire_addr == (addr & mask)) &&
4673 	    ((!(match_flags & MATCH_IRE_GW)) ||
4674 		(ire->ire_gateway_addr == gateway)) &&
4675 	    ((!(match_flags & MATCH_IRE_TYPE)) ||
4676 		(ire->ire_type & type)) &&
4677 	    ((!(match_flags & MATCH_IRE_SRC)) ||
4678 		(ire->ire_src_addr == ipif->ipif_src_addr)) &&
4679 	    ((!(match_flags & MATCH_IRE_IPIF)) ||
4680 		(ire->ire_ipif == ipif)) &&
4681 	    ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) ||
4682 		(ire->ire_type != IRE_CACHE ||
4683 		ire->ire_marks & IRE_MARK_HIDDEN)) &&
4684 	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
4685 		(ire->ire_type != IRE_CACHE ||
4686 		ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
4687 	    ((!(match_flags & MATCH_IRE_ILL)) ||
4688 		(ire_ill == ipif_ill)) &&
4689 	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
4690 		(ire->ire_ihandle == ihandle)) &&
4691 	    ((!(match_flags & MATCH_IRE_MASK)) ||
4692 		(ire->ire_mask == mask)) &&
4693 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
4694 		(ire_ill == ipif_ill) ||
4695 		(ire_ill_group != NULL &&
4696 		ire_ill_group == ipif_ill_group)) &&
4697 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
4698 		(!is_system_labeled()) ||
4699 		(tsol_ire_match_gwattr(ire, tsl) == 0))) {
4700 		/* We found the matched IRE */
4701 		return (B_TRUE);
4702 	}
4703 	return (B_FALSE);
4704 }
4705 
4706 
4707 /*
4708  * Lookup for a route in all the tables
4709  */
4710 ire_t *
4711 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4712     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
4713     const ts_label_t *tsl, int flags)
4714 {
4715 	ire_t *ire = NULL;
4716 
4717 	/*
4718 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4719 	 * MATCH_IRE_ILL is set.
4720 	 */
4721 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4722 	    (ipif == NULL))
4723 		return (NULL);
4724 
4725 	/*
4726 	 * might be asking for a cache lookup,
4727 	 * This is not best way to lookup cache,
4728 	 * user should call ire_cache_lookup directly.
4729 	 *
4730 	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
4731 	 * in the forwarding table, if the applicable type flags were set.
4732 	 */
4733 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
4734 		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
4735 		    tsl, flags);
4736 		if (ire != NULL)
4737 			return (ire);
4738 	}
4739 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4740 		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4741 		    zoneid, 0, tsl, flags);
4742 	}
4743 	return (ire);
4744 }
4745 
4746 
4747 /*
4748  * Delete the IRE cache for the gateway and all IRE caches whose
4749  * ire_gateway_addr points to this gateway, and allow them to
4750  * be created on demand by ip_newroute.
4751  */
4752 void
4753 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid)
4754 {
4755 	irb_t *irb;
4756 	ire_t *ire;
4757 
4758 	irb = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)];
4759 	IRB_REFHOLD(irb);
4760 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4761 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4762 			continue;
4763 
4764 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4765 		ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL);
4766 		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4767 		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) {
4768 			ire_delete(ire);
4769 		}
4770 	}
4771 	IRB_REFRELE(irb);
4772 
4773 	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid);
4774 }
4775 
4776 /*
4777  * Looks up cache table for a route.
4778  * specific lookup can be indicated by
4779  * passing the MATCH_* flags and the
4780  * necessary parameters.
4781  */
4782 ire_t *
4783 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4784     zoneid_t zoneid, const ts_label_t *tsl, int flags)
4785 {
4786 	irb_t *irb_ptr;
4787 	ire_t *ire;
4788 
4789 	/*
4790 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4791 	 * MATCH_IRE_ILL is set.
4792 	 */
4793 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4794 	    (ipif == NULL))
4795 		return (NULL);
4796 
4797 	irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)];
4798 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4799 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4800 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4801 			continue;
4802 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4803 		ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL);
4804 		if (ire_match_args(ire, addr, ire->ire_mask, gateway, type,
4805 		    ipif, zoneid, 0, tsl, flags)) {
4806 			IRE_REFHOLD(ire);
4807 			rw_exit(&irb_ptr->irb_lock);
4808 			return (ire);
4809 		}
4810 	}
4811 	rw_exit(&irb_ptr->irb_lock);
4812 	return (NULL);
4813 }
4814 
4815 /*
4816  * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4817  * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of
4818  * the same ill group.
4819  */
4820 boolean_t
4821 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire)
4822 {
4823 	ill_t		*recv_ill, *xmit_ill;
4824 	ill_group_t	*recv_group, *xmit_group;
4825 
4826 	ASSERT(ire_local->ire_type == IRE_LOCAL);
4827 	ASSERT(ire_local->ire_rfq != NULL);
4828 	ASSERT(xmit_ire->ire_type & (IRE_CACHE|IRE_BROADCAST|IRE_INTERFACE));
4829 	ASSERT(xmit_ire->ire_stq != NULL);
4830 	ASSERT(xmit_ire->ire_ipif != NULL);
4831 
4832 	recv_ill = ire_local->ire_rfq->q_ptr;
4833 	xmit_ill = xmit_ire->ire_stq->q_ptr;
4834 
4835 	if (recv_ill == xmit_ill)
4836 		return (B_TRUE);
4837 
4838 	recv_group = recv_ill->ill_group;
4839 	xmit_group = xmit_ill->ill_group;
4840 
4841 	if (recv_group != NULL && recv_group == xmit_group)
4842 		return (B_TRUE);
4843 
4844 	return (B_FALSE);
4845 }
4846 
4847 /*
4848  * Check if the IRE_LOCAL uses the same ill (group) as another route would use.
4849  */
4850 boolean_t
4851 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4852     const ts_label_t *tsl)
4853 {
4854 	ire_t		*alt_ire;
4855 	boolean_t	rval;
4856 
4857 	if (ire_local->ire_ipversion == IPV4_VERSION) {
4858 		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4859 		    NULL, zoneid, 0, tsl,
4860 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4861 		    MATCH_IRE_RJ_BHOLE);
4862 	} else {
4863 		alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
4864 		    0, NULL, NULL, zoneid, 0, tsl,
4865 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4866 		    MATCH_IRE_RJ_BHOLE);
4867 	}
4868 
4869 	if (alt_ire == NULL)
4870 		return (B_FALSE);
4871 
4872 	rval = ire_local_same_ill_group(ire_local, alt_ire);
4873 
4874 	ire_refrele(alt_ire);
4875 	return (rval);
4876 }
4877 
4878 /*
4879  * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers
4880  * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get
4881  * to the hidden ones.
4882  *
4883  * In general the zoneid has to match (where ALL_ZONES match all of them).
4884  * But for IRE_LOCAL we also need to handle the case where L2 should
4885  * conceptually loop back the packet. This is necessary since neither
4886  * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4887  * own MAC address. This loopback is needed when the normal
4888  * routes (ignoring IREs with different zoneids) would send out the packet on
4889  * the same ill (or ill group) as the ill with which this IRE_LOCAL is
4890  * associated.
4891  *
4892  * Earlier versions of this code always matched an IRE_LOCAL independently of
4893  * the zoneid. We preserve that earlier behavior when
4894  * ip_restrict_interzone_loopback is turned off.
4895  */
4896 ire_t *
4897 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl)
4898 {
4899 	irb_t *irb_ptr;
4900 	ire_t *ire;
4901 
4902 	irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)];
4903 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4904 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4905 		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4906 		    IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4907 			continue;
4908 		}
4909 		if (ire->ire_addr == addr) {
4910 			/*
4911 			 * Finally, check if the security policy has any
4912 			 * restriction on using this route for the specified
4913 			 * message.
4914 			 */
4915 			if (tsl != NULL &&
4916 			    ire->ire_gw_secattr != NULL &&
4917 			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4918 				continue;
4919 			}
4920 
4921 			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4922 			    ire->ire_zoneid == ALL_ZONES) {
4923 				IRE_REFHOLD(ire);
4924 				rw_exit(&irb_ptr->irb_lock);
4925 				return (ire);
4926 			}
4927 
4928 			if (ire->ire_type == IRE_LOCAL) {
4929 				if (ip_restrict_interzone_loopback &&
4930 				    !ire_local_ok_across_zones(ire, zoneid,
4931 				    &addr, tsl))
4932 					continue;
4933 
4934 				IRE_REFHOLD(ire);
4935 				rw_exit(&irb_ptr->irb_lock);
4936 				return (ire);
4937 			}
4938 		}
4939 	}
4940 	rw_exit(&irb_ptr->irb_lock);
4941 	return (NULL);
4942 }
4943 
4944 /*
4945  * Locate the interface ire that is tied to the cache ire 'cire' via
4946  * cire->ire_ihandle.
4947  *
4948  * We are trying to create the cache ire for an offlink destn based
4949  * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4950  * as found by ip_newroute(). We are called from ip_newroute() in
4951  * the IRE_CACHE case.
4952  */
4953 ire_t *
4954 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4955 {
4956 	ire_t	*ire;
4957 	int	match_flags;
4958 	ipaddr_t gw_addr;
4959 	ipif_t	*gw_ipif;
4960 
4961 	ASSERT(cire != NULL && pire != NULL);
4962 
4963 	/*
4964 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4965 	 * because the ihandle refers to an ipif which can be in only one zone.
4966 	 */
4967 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4968 	/*
4969 	 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only
4970 	 * for on-link hosts. We should never be here for onlink.
4971 	 * Thus, use MATCH_IRE_ILL_GROUP.
4972 	 */
4973 	if (pire->ire_ipif != NULL)
4974 		match_flags |= MATCH_IRE_ILL_GROUP;
4975 	/*
4976 	 * We know that the mask of the interface ire equals cire->ire_cmask.
4977 	 * (When ip_newroute() created 'cire' for the gateway it set its
4978 	 * cmask from the interface ire's mask)
4979 	 */
4980 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4981 	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4982 	    NULL, match_flags);
4983 	if (ire != NULL)
4984 		return (ire);
4985 	/*
4986 	 * If we didn't find an interface ire above, we can't declare failure.
4987 	 * For backwards compatibility, we need to support prefix routes
4988 	 * pointing to next hop gateways that are not on-link.
4989 	 *
4990 	 * Assume we are trying to ping some offlink destn, and we have the
4991 	 * routing table below.
4992 	 *
4993 	 * Eg.	default	- gw1		<--- pire	(line 1)
4994 	 *	gw1	- gw2				(line 2)
4995 	 *	gw2	- hme0				(line 3)
4996 	 *
4997 	 * If we already have a cache ire for gw1 in 'cire', the
4998 	 * ire_ftable_lookup above would have failed, since there is no
4999 	 * interface ire to reach gw1. We will fallthru below.
5000 	 *
5001 	 * Here we duplicate the steps that ire_ftable_lookup() did in
5002 	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
5003 	 * The differences are the following
5004 	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
5005 	 *	instead of ire_route_lookup()
5006 	 * ii.  We look for only prefix routes in the 1st call below.
5007 	 * ii.  We want to match on the ihandle in the 2nd call below.
5008 	 */
5009 	match_flags =  MATCH_IRE_TYPE;
5010 	if (pire->ire_ipif != NULL)
5011 		match_flags |= MATCH_IRE_ILL_GROUP;
5012 	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
5013 	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags);
5014 	if (ire == NULL)
5015 		return (NULL);
5016 	/*
5017 	 * At this point 'ire' corresponds to the entry shown in line 2.
5018 	 * gw_addr is 'gw2' in the example above.
5019 	 */
5020 	gw_addr = ire->ire_gateway_addr;
5021 	gw_ipif = ire->ire_ipif;
5022 	ire_refrele(ire);
5023 
5024 	match_flags |= MATCH_IRE_IHANDLE;
5025 	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
5026 	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags);
5027 	return (ire);
5028 }
5029 
5030 /*
5031  * ire_mrtun_lookup() is called by ip_rput() when packet is to be
5032  * tunneled through reverse tunnel. This is only supported for
5033  * IPv4 packets
5034  */
5035 
5036 ire_t *
5037 ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill)
5038 {
5039 	irb_t *irb_ptr;
5040 	ire_t *ire;
5041 
5042 	ASSERT(ill != NULL);
5043 	ASSERT(!(ill->ill_isv6));
5044 
5045 	if (ip_mrtun_table == NULL)
5046 		return (NULL);
5047 	irb_ptr = &ip_mrtun_table[IRE_ADDR_HASH(srcaddr, IP_MRTUN_TABLE_SIZE)];
5048 	rw_enter(&irb_ptr->irb_lock, RW_READER);
5049 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
5050 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
5051 			continue;
5052 		if ((ire->ire_in_src_addr == srcaddr) &&
5053 		    ire->ire_in_ill == ill) {
5054 			IRE_REFHOLD(ire);
5055 			rw_exit(&irb_ptr->irb_lock);
5056 			return (ire);
5057 		}
5058 	}
5059 	rw_exit(&irb_ptr->irb_lock);
5060 	return (NULL);
5061 }
5062 
5063 /*
5064  * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
5065  * ire associated with the specified ipif.
5066  *
5067  * This might occasionally be called when IPIF_UP is not set since
5068  * the IP_MULTICAST_IF as well as creating interface routes
5069  * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
5070  *
5071  * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
5072  * the ipif, this routine might return NULL.
5073  */
5074 ire_t *
5075 ipif_to_ire(const ipif_t *ipif)
5076 {
5077 	ire_t	*ire;
5078 
5079 	ASSERT(!ipif->ipif_isv6);
5080 	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
5081 		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
5082 		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
5083 	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
5084 		/* In this case we need to lookup destination address. */
5085 		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
5086 		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
5087 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK));
5088 	} else {
5089 		ire = ire_ftable_lookup(ipif->ipif_subnet,
5090 		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
5091 		    ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF |
5092 		    MATCH_IRE_MASK));
5093 	}
5094 	return (ire);
5095 }
5096 
5097 /*
5098  * ire_walk function.
5099  * Count the number of IRE_CACHE entries in different categories.
5100  */
5101 void
5102 ire_cache_count(ire_t *ire, char *arg)
5103 {
5104 	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
5105 
5106 	if (ire->ire_type != IRE_CACHE)
5107 		return;
5108 
5109 	icc->icc_total++;
5110 
5111 	if (ire->ire_ipversion == IPV6_VERSION) {
5112 		mutex_enter(&ire->ire_lock);
5113 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
5114 			mutex_exit(&ire->ire_lock);
5115 			icc->icc_onlink++;
5116 			return;
5117 		}
5118 		mutex_exit(&ire->ire_lock);
5119 	} else {
5120 		if (ire->ire_gateway_addr == 0) {
5121 			icc->icc_onlink++;
5122 			return;
5123 		}
5124 	}
5125 
5126 	ASSERT(ire->ire_ipif != NULL);
5127 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
5128 		icc->icc_pmtu++;
5129 	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
5130 	    ire->ire_ib_pkt_count)
5131 		icc->icc_offlink++;
5132 	else
5133 		icc->icc_unused++;
5134 }
5135 
5136 /*
5137  * ire_walk function called by ip_trash_ire_reclaim().
5138  * Free a fraction of the IRE_CACHE cache entries. The fractions are
5139  * different for different categories of IRE_CACHE entries.
5140  * A fraction of zero means to not free any in that category.
5141  * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
5142  * is N then every Nth hash bucket chain will be freed.
5143  */
5144 void
5145 ire_cache_reclaim(ire_t *ire, char *arg)
5146 {
5147 	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
5148 	uint_t rand;
5149 
5150 	if (ire->ire_type != IRE_CACHE)
5151 		return;
5152 
5153 	if (ire->ire_ipversion == IPV6_VERSION) {
5154 		rand = (uint_t)lbolt +
5155 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6, ip6_cache_table_size);
5156 		mutex_enter(&ire->ire_lock);
5157 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
5158 			mutex_exit(&ire->ire_lock);
5159 			if (icr->icr_onlink != 0 &&
5160 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
5161 				ire_delete(ire);
5162 				return;
5163 			}
5164 			goto done;
5165 		}
5166 		mutex_exit(&ire->ire_lock);
5167 	} else {
5168 		rand = (uint_t)lbolt +
5169 		    IRE_ADDR_HASH(ire->ire_addr, ip_cache_table_size);
5170 		if (ire->ire_gateway_addr == 0) {
5171 			if (icr->icr_onlink != 0 &&
5172 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
5173 				ire_delete(ire);
5174 				return;
5175 			}
5176 			goto done;
5177 		}
5178 	}
5179 	/* Not onlink IRE */
5180 	ASSERT(ire->ire_ipif != NULL);
5181 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
5182 		/* Use ptmu fraction */
5183 		if (icr->icr_pmtu != 0 &&
5184 		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
5185 			ire_delete(ire);
5186 			return;
5187 		}
5188 	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
5189 	    ire->ire_ib_pkt_count) {
5190 		/* Use offlink fraction */
5191 		if (icr->icr_offlink != 0 &&
5192 		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
5193 			ire_delete(ire);
5194 			return;
5195 		}
5196 	} else {
5197 		/* Use unused fraction */
5198 		if (icr->icr_unused != 0 &&
5199 		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
5200 			ire_delete(ire);
5201 			return;
5202 		}
5203 	}
5204 done:
5205 	/*
5206 	 * Update tire_mark so that those that haven't been used since this
5207 	 * reclaim will be considered unused next time we reclaim.
5208 	 */
5209 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
5210 }
5211 
5212 static void
5213 power2_roundup(uint32_t *value)
5214 {
5215 	int i;
5216 
5217 	for (i = 1; i < 31; i++) {
5218 		if (*value <= (1 << i))
5219 			break;
5220 	}
5221 	*value = (1 << i);
5222 }
5223 
5224 void
5225 ip_ire_init()
5226 {
5227 	int i;
5228 
5229 	mutex_init(&ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
5230 	mutex_init(&ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
5231 	mutex_init(&ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL);
5232 	mutex_init(&ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL);
5233 	mutex_init(&ndp4.ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
5234 
5235 	rn_init();
5236 	(void) rn_inithead((void **)&ip_ftable, 32);
5237 	rt_entry_cache = kmem_cache_create("rt_entry",
5238 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
5239 
5240 	/* Calculate the IPv4 cache table size. */
5241 	ip_cache_table_size = MAX(ip_cache_table_size,
5242 	    ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) /
5243 	    ip_ire_max_bucket_cnt));
5244 	if (ip_cache_table_size > ip_max_cache_table_size)
5245 		ip_cache_table_size = ip_max_cache_table_size;
5246 	/*
5247 	 * Make sure that the table size is always a power of 2.  The
5248 	 * hash macro IRE_ADDR_HASH() depends on that.
5249 	 */
5250 	power2_roundup(&ip_cache_table_size);
5251 
5252 	ip_cache_table = (irb_t *)kmem_zalloc(ip_cache_table_size *
5253 	    sizeof (irb_t), KM_SLEEP);
5254 
5255 	for (i = 0; i < ip_cache_table_size; i++) {
5256 		rw_init(&ip_cache_table[i].irb_lock, NULL,
5257 		    RW_DEFAULT, NULL);
5258 	}
5259 
5260 	/* Calculate the IPv6 cache table size. */
5261 	ip6_cache_table_size = MAX(ip6_cache_table_size,
5262 	    ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) /
5263 	    ip6_ire_max_bucket_cnt));
5264 	if (ip6_cache_table_size > ip6_max_cache_table_size)
5265 		ip6_cache_table_size = ip6_max_cache_table_size;
5266 	/*
5267 	 * Make sure that the table size is always a power of 2.  The
5268 	 * hash macro IRE_ADDR_HASH_V6() depends on that.
5269 	 */
5270 	power2_roundup(&ip6_cache_table_size);
5271 
5272 	ip_cache_table_v6 = (irb_t *)kmem_zalloc(ip6_cache_table_size *
5273 	    sizeof (irb_t), KM_SLEEP);
5274 
5275 	for (i = 0; i < ip6_cache_table_size; i++) {
5276 		rw_init(&ip_cache_table_v6[i].irb_lock, NULL,
5277 		    RW_DEFAULT, NULL);
5278 	}
5279 	/*
5280 	 * Create ire caches, ire_reclaim()
5281 	 * will give IRE_CACHE back to system when needed.
5282 	 * This needs to be done here before anything else, since
5283 	 * ire_add() expects the cache to be created.
5284 	 */
5285 	ire_cache = kmem_cache_create("ire_cache",
5286 		sizeof (ire_t), 0, ip_ire_constructor,
5287 		ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
5288 
5289 	/*
5290 	 * Initialize ip_mrtun_table to NULL now, it will be
5291 	 * populated by ip_rt_add if reverse tunnel is created
5292 	 */
5293 	ip_mrtun_table = NULL;
5294 
5295 	/*
5296 	 * Make sure that the forwarding table size is a power of 2.
5297 	 * The IRE*_ADDR_HASH() macroes depend on that.
5298 	 */
5299 	power2_roundup(&ip6_ftable_hash_size);
5300 }
5301 
5302 void
5303 ip_ire_fini()
5304 {
5305 	int i;
5306 
5307 	mutex_destroy(&ire_ft_init_lock);
5308 	mutex_destroy(&ire_handle_lock);
5309 	mutex_destroy(&ndp4.ndp_g_lock);
5310 
5311 	rn_fini();
5312 	RADIX_NODE_HEAD_DESTROY(ip_ftable);
5313 	kmem_cache_destroy(rt_entry_cache);
5314 
5315 	for (i = 0; i < ip_cache_table_size; i++) {
5316 		rw_destroy(&ip_cache_table[i].irb_lock);
5317 	}
5318 	kmem_free(ip_cache_table, ip_cache_table_size * sizeof (irb_t));
5319 
5320 	for (i = 0; i < ip6_cache_table_size; i++) {
5321 		rw_destroy(&ip_cache_table_v6[i].irb_lock);
5322 	}
5323 	kmem_free(ip_cache_table_v6, ip6_cache_table_size * sizeof (irb_t));
5324 
5325 	if (ip_mrtun_table != NULL) {
5326 		for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5327 			rw_destroy(&ip_mrtun_table[i].irb_lock);
5328 		}
5329 		kmem_free(ip_mrtun_table, IP_MRTUN_TABLE_SIZE * sizeof (irb_t));
5330 	}
5331 	kmem_cache_destroy(ire_cache);
5332 }
5333 
5334 int
5335 ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func)
5336 {
5337 	ire_t   *ire1;
5338 	irb_t	*irb_ptr;
5339 	ire_t	**irep;
5340 	ire_t	*ire;
5341 	int	i;
5342 	uint_t	max_frag;
5343 	ill_t	*stq_ill;
5344 	int error;
5345 
5346 	ire = *ire_p;
5347 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5348 	/* Is ip_mrtun_table empty ? */
5349 
5350 	if (ip_mrtun_table == NULL) {
5351 		/* create the mrtun table */
5352 		mutex_enter(&ire_mrtun_lock);
5353 		if (ip_mrtun_table == NULL) {
5354 			ip_mrtun_table =
5355 			    (irb_t *)kmem_zalloc(IP_MRTUN_TABLE_SIZE *
5356 			    sizeof (irb_t), KM_NOSLEEP);
5357 
5358 			if (ip_mrtun_table == NULL) {
5359 				ip2dbg(("ire_add_mrtun: allocation failure\n"));
5360 				mutex_exit(&ire_mrtun_lock);
5361 				ire_refrele(ire);
5362 				*ire_p = NULL;
5363 				return (ENOMEM);
5364 			}
5365 
5366 			for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5367 			    rw_init(&ip_mrtun_table[i].irb_lock, NULL,
5368 				    RW_DEFAULT, NULL);
5369 			}
5370 			ip2dbg(("ire_add_mrtun: mrtun table is created\n"));
5371 		}
5372 		/* some other thread got it and created the table */
5373 		mutex_exit(&ire_mrtun_lock);
5374 	}
5375 
5376 	/*
5377 	 * Check for duplicate in the bucket and insert in the table
5378 	 */
5379 	irb_ptr = &(ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr,
5380 	    IP_MRTUN_TABLE_SIZE)]);
5381 
5382 	/*
5383 	 * Start the atomic add of the ire. Grab the ill locks,
5384 	 * ill_g_usesrc_lock and the bucket lock.
5385 	 *
5386 	 * If ipif or ill is changing ire_atomic_start() may queue the
5387 	 * request and return EINPROGRESS.
5388 	 */
5389 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
5390 	if (error != 0) {
5391 		/*
5392 		 * We don't know whether it is a valid ipif or not.
5393 		 * So, set it to NULL. This assumes that the ire has not added
5394 		 * a reference to the ipif.
5395 		 */
5396 		ire->ire_ipif = NULL;
5397 		ire_delete(ire);
5398 		ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n"));
5399 		*ire_p = NULL;
5400 		return (error);
5401 	}
5402 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
5403 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
5404 			continue;
5405 		/* has anyone inserted the route in the meanwhile ? */
5406 		if (ire1->ire_in_ill == ire->ire_in_ill &&
5407 		    ire1->ire_in_src_addr == ire->ire_in_src_addr) {
5408 			ip1dbg(("ire_add_mrtun: Duplicate entry exists\n"));
5409 			IRE_REFHOLD(ire1);
5410 			ire_atomic_end(irb_ptr, ire);
5411 			ire_delete(ire);
5412 			/* Return the old ire */
5413 			*ire_p = ire1;
5414 			return (0);
5415 		}
5416 	}
5417 
5418 	/* Atomically set the ire_max_frag */
5419 	max_frag = *ire->ire_max_fragp;
5420 	ire->ire_max_fragp = NULL;
5421 	ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET);
5422 	ASSERT(ire->ire_type != IRE_CACHE);
5423 	irep = (ire_t **)irb_ptr;
5424 	if (*irep != NULL) {
5425 		/* Find the last ire which matches ire_in_src_addr */
5426 		ire1 = *irep;
5427 		while (ire1->ire_in_src_addr == ire->ire_in_src_addr) {
5428 			irep = &ire1->ire_next;
5429 			ire1 = *irep;
5430 			if (ire1 == NULL)
5431 				break;
5432 		}
5433 	}
5434 	ire1 = *irep;
5435 	if (ire1 != NULL)
5436 		ire1->ire_ptpn = &ire->ire_next;
5437 	ire->ire_next = ire1;
5438 	/* Link the new one in. */
5439 	ire->ire_ptpn = irep;
5440 	membar_producer();
5441 	*irep = ire;
5442 	ire->ire_bucket = irb_ptr;
5443 	IRE_REFHOLD_LOCKED(ire);
5444 
5445 	ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep));
5446 
5447 	/*
5448 	 * Protect ire_mrtun_count and ill_mrtun_refcnt from
5449 	 * another thread trying to add ire in the table
5450 	 */
5451 	mutex_enter(&ire_mrtun_lock);
5452 	ire_mrtun_count++;
5453 	mutex_exit(&ire_mrtun_lock);
5454 	/*
5455 	 * ill_mrtun_refcnt is protected by the ill_lock held via
5456 	 * ire_atomic_start
5457 	 */
5458 	ire->ire_in_ill->ill_mrtun_refcnt++;
5459 
5460 	if (ire->ire_ipif != NULL) {
5461 		ire->ire_ipif->ipif_ire_cnt++;
5462 		if (ire->ire_stq != NULL) {
5463 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5464 			stq_ill->ill_ire_cnt++;
5465 		}
5466 	} else {
5467 		ASSERT(ire->ire_stq == NULL);
5468 	}
5469 
5470 	ire_atomic_end(irb_ptr, ire);
5471 	ire_fastpath(ire);
5472 	*ire_p = ire;
5473 	return (0);
5474 }
5475 
5476 
5477 /* Walks down the mrtun table */
5478 
5479 void
5480 ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
5481     ill_t *ill)
5482 {
5483 	irb_t	*irb;
5484 	ire_t	*ire;
5485 	int	i;
5486 	int	ret;
5487 
5488 	ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
5489 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
5490 	ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN);
5491 
5492 	mutex_enter(&ire_mrtun_lock);
5493 	if (ire_mrtun_count == 0) {
5494 		mutex_exit(&ire_mrtun_lock);
5495 		return;
5496 	}
5497 	mutex_exit(&ire_mrtun_lock);
5498 
5499 	ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n"));
5500 	for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5501 
5502 		irb = &(ip_mrtun_table[i]);
5503 		if (irb->irb_ire == NULL)
5504 			continue;
5505 		IRB_REFHOLD(irb);
5506 		for (ire = irb->irb_ire; ire != NULL;
5507 		    ire = ire->ire_next) {
5508 			ASSERT(ire->ire_ipversion == IPV4_VERSION);
5509 			if (match_flags != 0) {
5510 				ret = ire_walk_ill_match(
5511 				    match_flags, ire_type,
5512 				    ire, ill, ALL_ZONES);
5513 			}
5514 			if (match_flags == 0 || ret)
5515 				(*func)(ire, arg);
5516 		}
5517 		IRB_REFRELE(irb);
5518 	}
5519 }
5520 
5521 /*
5522  * Source interface based lookup routine (IPV4 only).
5523  * This routine is called only when RTA_SRCIFP bitflag is set
5524  * by routing socket while adding/deleting the route and it is
5525  * also called from ip_rput() when packets arrive from an interface
5526  * for which ill_srcif_ref_cnt is positive. This function is useful
5527  * when a packet coming from one interface must be forwarded to another
5528  * designated interface to reach the correct node. This function is also
5529  * called from ip_newroute when the link-layer address of an ire is resolved.
5530  * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type
5531  * ires--thus the ire_type parameter is needed.
5532  */
5533 
5534 ire_t *
5535 ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif,
5536     ill_t *in_ill, int flags)
5537 {
5538 	irb_t	*irb_ptr;
5539 	ire_t	*ire;
5540 	irb_t	*ire_srcif_table;
5541 
5542 	ASSERT(in_ill != NULL && !in_ill->ill_isv6);
5543 	ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) ||
5544 	    (ipif != NULL && !ipif->ipif_isv6));
5545 
5546 	/*
5547 	 * No need to lock the ill since it is refheld by the caller of this
5548 	 * function
5549 	 */
5550 	if (in_ill->ill_srcif_table == NULL) {
5551 		return (NULL);
5552 	}
5553 
5554 	if (!(flags & MATCH_IRE_TYPE)) {
5555 		flags |= MATCH_IRE_TYPE;
5556 		ire_type = IRE_INTERFACE;
5557 	}
5558 	ire_srcif_table = in_ill->ill_srcif_table;
5559 	irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr,
5560 	    IP_SRCIF_TABLE_SIZE)];
5561 	rw_enter(&irb_ptr->irb_lock, RW_READER);
5562 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
5563 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
5564 			continue;
5565 		if (ire_match_args(ire, dst_addr, ire->ire_mask, 0,
5566 		    ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) {
5567 			IRE_REFHOLD(ire);
5568 			rw_exit(&irb_ptr->irb_lock);
5569 			return (ire);
5570 		}
5571 	}
5572 	/* Not Found */
5573 	rw_exit(&irb_ptr->irb_lock);
5574 	return (NULL);
5575 }
5576 
5577 
5578 /*
5579  * Adds the ire into the special routing table which is hanging off of
5580  * the src_ipif->ipif_ill. It also increments the refcnt in the ill.
5581  * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER
5582  * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL
5583  * for IRE_IF_RESOLVER entry because we do not have the dst_addr's
5584  * link-layer address at the time of addition.
5585  * Upon resolving the address from ARP, dlureq_mp field is updated with
5586  * proper information in ire_update_srcif_v4.
5587  */
5588 static int
5589 ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func)
5590 {
5591 	ire_t	*ire1;
5592 	irb_t	*ire_srcifp_table = NULL;
5593 	irb_t	*irb_ptr = NULL;
5594 	ire_t   **irep;
5595 	ire_t   *ire;
5596 	int	flags;
5597 	int	i;
5598 	ill_t	*stq_ill;
5599 	uint_t	max_frag;
5600 	int error = 0;
5601 
5602 	ire = *ire_p;
5603 	ASSERT(ire->ire_in_ill != NULL);
5604 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5605 	ASSERT(ire->ire_type == IRE_IF_NORESOLVER ||
5606 	    ire->ire_type == IRE_IF_RESOLVER);
5607 
5608 	ire->ire_mask = IP_HOST_MASK;
5609 	/*
5610 	 * Update ire_nce->nce_res_mp with NULL value upon creation;
5611 	 * first free the default res_mp created by ire_nce_init.
5612 	 */
5613 	freeb(ire->ire_nce->nce_res_mp);
5614 	if (ire->ire_type == IRE_IF_RESOLVER) {
5615 		/*
5616 		 * assign NULL now, it will be updated
5617 		 * with correct value upon returning from
5618 		 * ARP
5619 		 */
5620 		ire->ire_nce->nce_res_mp = NULL;
5621 	} else {
5622 		ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL,
5623 		    ire->ire_ipif->ipif_ill->ill_phys_addr_length,
5624 		    ire->ire_ipif->ipif_ill->ill_sap,
5625 		    ire->ire_ipif->ipif_ill->ill_sap_length);
5626 	}
5627 	/* Make sure the address is properly masked. */
5628 	ire->ire_addr &= ire->ire_mask;
5629 
5630 	ASSERT(ire->ire_max_fragp != NULL);
5631 	max_frag = *ire->ire_max_fragp;
5632 	ire->ire_max_fragp = NULL;
5633 	ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET);
5634 
5635 	mutex_enter(&ire->ire_in_ill->ill_lock);
5636 	if (ire->ire_in_ill->ill_srcif_table == NULL) {
5637 		/* create the incoming interface based table */
5638 		ire->ire_in_ill->ill_srcif_table =
5639 		    (irb_t *)kmem_zalloc(IP_SRCIF_TABLE_SIZE *
5640 			sizeof (irb_t), KM_NOSLEEP);
5641 		if (ire->ire_in_ill->ill_srcif_table == NULL) {
5642 			ip1dbg(("ire_add_srcif_v4: Allocation fail\n"));
5643 			mutex_exit(&ire->ire_in_ill->ill_lock);
5644 			ire_delete(ire);
5645 			*ire_p = NULL;
5646 			return (ENOMEM);
5647 		}
5648 		ire_srcifp_table = ire->ire_in_ill->ill_srcif_table;
5649 		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
5650 			rw_init(&ire_srcifp_table[i].irb_lock, NULL,
5651 			    RW_DEFAULT, NULL);
5652 		}
5653 		ip2dbg(("ire_add_srcif_v4: table created for ill %p\n",
5654 		    (void *)ire->ire_in_ill));
5655 	}
5656 	/* Check for duplicate and insert */
5657 	ASSERT(ire->ire_in_ill->ill_srcif_table != NULL);
5658 	irb_ptr =
5659 	    &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr,
5660 	    IP_SRCIF_TABLE_SIZE)]);
5661 	mutex_exit(&ire->ire_in_ill->ill_lock);
5662 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
5663 	flags |= MATCH_IRE_IPIF;
5664 
5665 	/*
5666 	 * Start the atomic add of the ire. Grab the ill locks,
5667 	 * ill_g_usesrc_lock and the bucket lock.
5668 	 *
5669 	 * If ipif or ill is changing ire_atomic_start() may queue the
5670 	 * request and return EINPROGRESS.
5671 	 */
5672 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
5673 	if (error != 0) {
5674 		/*
5675 		 * We don't know whether it is a valid ipif or not.
5676 		 * So, set it to NULL. This assumes that the ire has not added
5677 		 * a reference to the ipif.
5678 		 */
5679 		ire->ire_ipif = NULL;
5680 		ire_delete(ire);
5681 		ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n"));
5682 		*ire_p = NULL;
5683 		return (error);
5684 	}
5685 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
5686 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
5687 			continue;
5688 		if (ire1->ire_zoneid != ire->ire_zoneid)
5689 			continue;
5690 		/* Has anyone inserted route in the meanwhile ? */
5691 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0,
5692 		    ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL,
5693 		    flags)) {
5694 			ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n"));
5695 			IRE_REFHOLD(ire1);
5696 			ire_atomic_end(irb_ptr, ire);
5697 			ire_delete(ire);
5698 			/* Return old ire as in ire_add_v4 */
5699 			*ire_p = ire1;
5700 			return (0);
5701 		}
5702 	}
5703 	irep = (ire_t **)irb_ptr;
5704 	if (*irep != NULL) {
5705 		/* Find the last ire which matches ire_addr */
5706 		ire1 = *irep;
5707 		while (ire1->ire_addr == ire->ire_addr) {
5708 			irep = &ire1->ire_next;
5709 			ire1 = *irep;
5710 			if (ire1 == NULL)
5711 				break;
5712 		}
5713 	}
5714 	ire1 = *irep;
5715 	if (ire1 != NULL)
5716 		ire1->ire_ptpn = &ire->ire_next;
5717 	ire->ire_next = ire1;
5718 	/* Link the new one in. */
5719 	ire->ire_ptpn = irep;
5720 	membar_producer();
5721 	*irep = ire;
5722 	ire->ire_bucket = irb_ptr;
5723 	IRE_REFHOLD_LOCKED(ire);
5724 
5725 	/*
5726 	 * Protect ire_in_ill->ill_srcif_refcnt and table reference count.
5727 	 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock
5728 	 * so ill_srcif_refcnt is already protected.
5729 	 */
5730 	ire->ire_in_ill->ill_srcif_refcnt++;
5731 	mutex_enter(&ire_srcif_table_lock);
5732 	ire_srcif_table_count++;
5733 	mutex_exit(&ire_srcif_table_lock);
5734 	irb_ptr->irb_ire_cnt++;
5735 	if (ire->ire_ipif != NULL) {
5736 		ire->ire_ipif->ipif_ire_cnt++;
5737 		if (ire->ire_stq != NULL) {
5738 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5739 			stq_ill->ill_ire_cnt++;
5740 		}
5741 	} else {
5742 		ASSERT(ire->ire_stq == NULL);
5743 	}
5744 
5745 	ire_atomic_end(irb_ptr, ire);
5746 	*ire_p = ire;
5747 	return (0);
5748 }
5749 
5750 
5751 /*
5752  * This function is called by ire_add_then_send when ARP request comes
5753  * back to ip_wput->ire_add_then_send for resolved ire in the interface
5754  * based routing table. At this point, it only needs to update the resolver
5755  * information for the ire. The passed ire is returned to the caller as it
5756  * is the ire which is created as mblk.
5757  */
5758 
5759 static ire_t *
5760 ire_update_srcif_v4(ire_t *ire)
5761 {
5762 	ire_t   *ire1;
5763 	irb_t	*irb;
5764 	int	error;
5765 
5766 	ASSERT(ire->ire_type != IRE_MIPRTUN &&
5767 	    ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER);
5768 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5769 
5770 	/*
5771 	 * This ire is from ARP. Update
5772 	 * ire_nce->nce_res_mp info
5773 	 */
5774 	ire1 = ire_srcif_table_lookup(ire->ire_addr,
5775 	    IRE_IF_RESOLVER, ire->ire_ipif,
5776 	    ire->ire_in_ill,
5777 	    MATCH_IRE_ILL | MATCH_IRE_TYPE);
5778 	if (ire1 == NULL) {
5779 		/* Mobile node registration expired ? */
5780 		ire_delete(ire);
5781 		return (NULL);
5782 	}
5783 	irb = ire1->ire_bucket;
5784 	ASSERT(irb != NULL);
5785 	/*
5786 	 * Start the atomic add of the ire. Grab the ill locks,
5787 	 * ill_g_usesrc_lock and the bucket lock.
5788 	 */
5789 	error = ire_atomic_start(irb, ire1, NULL, NULL, NULL);
5790 	if (error != 0) {
5791 		/*
5792 		 * We don't know whether it is a valid ipif or not.
5793 		 * So, set it to NULL. This assumes that the ire has not added
5794 		 * a reference to the ipif.
5795 		 */
5796 		ire->ire_ipif = NULL;
5797 		ire_delete(ire);
5798 		ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n"));
5799 		return (NULL);
5800 	}
5801 	ASSERT(ire->ire_max_fragp == NULL);
5802 	ire->ire_max_frag = ire1->ire_max_frag;
5803 	/*
5804 	 * Update resolver information and
5805 	 * send-to queue.
5806 	 */
5807 	ASSERT(ire->ire_nce->nce_res_mp != NULL);
5808 	ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp);
5809 	if (ire1->ire_nce->nce_res_mp ==  NULL) {
5810 		ip0dbg(("ire_update_srcif: copyb failed\n"));
5811 		ire_refrele(ire1);
5812 		ire_refrele(ire);
5813 		ire_atomic_end(irb, ire1);
5814 		return (NULL);
5815 	}
5816 	ire1->ire_stq = ire->ire_stq;
5817 
5818 	ASSERT(ire->ire_nce->nce_fp_mp == NULL);
5819 
5820 	ire_atomic_end(irb, ire1);
5821 	ire_refrele(ire1);
5822 	/* Return the passed ire */
5823 	return (ire);   /* Update done */
5824 }
5825 
5826 
5827 /*
5828  * Check if another multirt route resolution is needed.
5829  * B_TRUE is returned is there remain a resolvable route,
5830  * or if no route for that dst is resolved yet.
5831  * B_FALSE is returned if all routes for that dst are resolved
5832  * or if the remaining unresolved routes are actually not
5833  * resolvable.
5834  * This only works in the global zone.
5835  */
5836 boolean_t
5837 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl)
5838 {
5839 	ire_t	*first_fire;
5840 	ire_t	*first_cire;
5841 	ire_t	*fire;
5842 	ire_t	*cire;
5843 	irb_t	*firb;
5844 	irb_t	*cirb;
5845 	int	unres_cnt = 0;
5846 	boolean_t resolvable = B_FALSE;
5847 
5848 	/* Retrieve the first IRE_HOST that matches the destination */
5849 	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
5850 	    NULL, ALL_ZONES, 0, tsl,
5851 	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR);
5852 
5853 	/* No route at all */
5854 	if (first_fire == NULL) {
5855 		return (B_TRUE);
5856 	}
5857 
5858 	firb = first_fire->ire_bucket;
5859 	ASSERT(firb != NULL);
5860 
5861 	/* Retrieve the first IRE_CACHE ire for that destination. */
5862 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl);
5863 
5864 	/* No resolved route. */
5865 	if (first_cire == NULL) {
5866 		ire_refrele(first_fire);
5867 		return (B_TRUE);
5868 	}
5869 
5870 	/*
5871 	 * At least one route is resolved. Here we look through the forward
5872 	 * and cache tables, to compare the number of declared routes
5873 	 * with the number of resolved routes. The search for a resolvable
5874 	 * route is performed only if at least one route remains
5875 	 * unresolved.
5876 	 */
5877 	cirb = first_cire->ire_bucket;
5878 	ASSERT(cirb != NULL);
5879 
5880 	/* Count the number of routes to that dest that are declared. */
5881 	IRB_REFHOLD(firb);
5882 	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5883 		if (!(fire->ire_flags & RTF_MULTIRT))
5884 			continue;
5885 		if (fire->ire_addr != dst)
5886 			continue;
5887 		unres_cnt++;
5888 	}
5889 	IRB_REFRELE(firb);
5890 
5891 	/* Then subtract the number of routes to that dst that are resolved */
5892 	IRB_REFHOLD(cirb);
5893 	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
5894 		if (!(cire->ire_flags & RTF_MULTIRT))
5895 			continue;
5896 		if (cire->ire_addr != dst)
5897 			continue;
5898 		if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
5899 			continue;
5900 		unres_cnt--;
5901 	}
5902 	IRB_REFRELE(cirb);
5903 
5904 	/* At least one route is unresolved; search for a resolvable route. */
5905 	if (unres_cnt > 0)
5906 		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
5907 		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl);
5908 
5909 	if (first_fire != NULL)
5910 		ire_refrele(first_fire);
5911 
5912 	if (first_cire != NULL)
5913 		ire_refrele(first_cire);
5914 
5915 	return (resolvable);
5916 }
5917 
5918 
5919 /*
5920  * Explore a forward_table bucket, starting from fire_arg.
5921  * fire_arg MUST be an IRE_HOST entry.
5922  *
5923  * Return B_TRUE and update *ire_arg and *fire_arg
5924  * if at least one resolvable route is found. *ire_arg
5925  * is the IRE entry for *fire_arg's gateway.
5926  *
5927  * Return B_FALSE otherwise (all routes are resolved or
5928  * the remaining unresolved routes are all unresolvable).
5929  *
5930  * The IRE selection relies on a priority mechanism
5931  * driven by the flags passed in by the caller.
5932  * The caller, such as ip_newroute_ipif(), can get the most
5933  * relevant ire at each stage of a multiple route resolution.
5934  *
5935  * The rules are:
5936  *
5937  * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
5938  *   ires are preferred for the gateway. This gives the highest
5939  *   priority to routes that can be resolved without using
5940  *   a resolver.
5941  *
5942  * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
5943  *   is specified but no IRE_CACHETABLE ire entry for the gateway
5944  *   is found, the following rules apply.
5945  *
5946  * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
5947  *   ires for the gateway, that have not been tried since
5948  *   a configurable amount of time, are preferred.
5949  *   This applies when a resolver must be invoked for
5950  *   a missing route, but we don't want to use the resolver
5951  *   upon each packet emission. If no such resolver is found,
5952  *   B_FALSE is returned.
5953  *   The MULTIRT_USESTAMP flag can be combined with
5954  *   MULTIRT_CACHEGW.
5955  *
5956  * - if MULTIRT_USESTAMP is not specified in flags, the first
5957  *   unresolved but resolvable route is selected.
5958  *
5959  * - Otherwise, there is no resolvalble route, and
5960  *   B_FALSE is returned.
5961  *
5962  * At last, MULTIRT_SETSTAMP can be specified in flags to
5963  * request the timestamp of unresolvable routes to
5964  * be refreshed. This prevents the useless exploration
5965  * of those routes for a while, when MULTIRT_USESTAMP is used.
5966  *
5967  * This only works in the global zone.
5968  */
5969 boolean_t
5970 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
5971     const ts_label_t *tsl)
5972 {
5973 	clock_t	delta;
5974 	ire_t	*best_fire = NULL;
5975 	ire_t	*best_cire = NULL;
5976 	ire_t	*first_fire;
5977 	ire_t	*first_cire;
5978 	ire_t	*fire;
5979 	ire_t	*cire;
5980 	irb_t	*firb = NULL;
5981 	irb_t	*cirb = NULL;
5982 	ire_t	*gw_ire;
5983 	boolean_t	already_resolved;
5984 	boolean_t	res;
5985 	ipaddr_t	dst;
5986 	ipaddr_t	gw;
5987 
5988 	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
5989 	    (void *)*ire_arg, (void *)*fire_arg, flags));
5990 
5991 	ASSERT(ire_arg != NULL);
5992 	ASSERT(fire_arg != NULL);
5993 
5994 	/* Not an IRE_HOST ire; give up. */
5995 	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
5996 		return (B_FALSE);
5997 	}
5998 
5999 	/* This is the first IRE_HOST ire for that destination. */
6000 	first_fire = *fire_arg;
6001 	firb = first_fire->ire_bucket;
6002 	ASSERT(firb != NULL);
6003 
6004 	dst = first_fire->ire_addr;
6005 
6006 	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
6007 
6008 	/*
6009 	 * Retrieve the first IRE_CACHE ire for that destination;
6010 	 * if we don't find one, no route for that dest is
6011 	 * resolved yet.
6012 	 */
6013 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl);
6014 	if (first_cire != NULL) {
6015 		cirb = first_cire->ire_bucket;
6016 	}
6017 
6018 	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
6019 
6020 	/*
6021 	 * Search for a resolvable route, giving the top priority
6022 	 * to routes that can be resolved without any call to the resolver.
6023 	 */
6024 	IRB_REFHOLD(firb);
6025 
6026 	if (!CLASSD(dst)) {
6027 		/*
6028 		 * For all multiroute IRE_HOST ires for that destination,
6029 		 * check if the route via the IRE_HOST's gateway is
6030 		 * resolved yet.
6031 		 */
6032 		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
6033 
6034 			if (!(fire->ire_flags & RTF_MULTIRT))
6035 				continue;
6036 			if (fire->ire_addr != dst)
6037 				continue;
6038 
6039 			if (fire->ire_gw_secattr != NULL &&
6040 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
6041 				continue;
6042 			}
6043 
6044 			gw = fire->ire_gateway_addr;
6045 
6046 			ip2dbg(("ire_multirt_lookup: fire %p, "
6047 			    "ire_addr %08x, ire_gateway_addr %08x\n",
6048 			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
6049 
6050 			already_resolved = B_FALSE;
6051 
6052 			if (first_cire != NULL) {
6053 				ASSERT(cirb != NULL);
6054 
6055 				IRB_REFHOLD(cirb);
6056 				/*
6057 				 * For all IRE_CACHE ires for that
6058 				 * destination.
6059 				 */
6060 				for (cire = first_cire;
6061 				    cire != NULL;
6062 				    cire = cire->ire_next) {
6063 
6064 					if (!(cire->ire_flags & RTF_MULTIRT))
6065 						continue;
6066 					if (cire->ire_addr != dst)
6067 						continue;
6068 					if (cire->ire_marks &
6069 					    (IRE_MARK_CONDEMNED |
6070 						IRE_MARK_HIDDEN))
6071 						continue;
6072 
6073 					if (cire->ire_gw_secattr != NULL &&
6074 					    tsol_ire_match_gwattr(cire,
6075 					    tsl) != 0) {
6076 						continue;
6077 					}
6078 
6079 					/*
6080 					 * Check if the IRE_CACHE's gateway
6081 					 * matches the IRE_HOST's gateway.
6082 					 */
6083 					if (cire->ire_gateway_addr == gw) {
6084 						already_resolved = B_TRUE;
6085 						break;
6086 					}
6087 				}
6088 				IRB_REFRELE(cirb);
6089 			}
6090 
6091 			/*
6092 			 * This route is already resolved;
6093 			 * proceed with next one.
6094 			 */
6095 			if (already_resolved) {
6096 				ip2dbg(("ire_multirt_lookup: found cire %p, "
6097 				    "already resolved\n", (void *)cire));
6098 				continue;
6099 			}
6100 
6101 			/*
6102 			 * The route is unresolved; is it actually
6103 			 * resolvable, i.e. is there a cache or a resolver
6104 			 * for the gateway?
6105 			 */
6106 			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
6107 			    ALL_ZONES, tsl,
6108 			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR);
6109 
6110 			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
6111 			    (void *)gw_ire));
6112 
6113 			/*
6114 			 * If gw_ire is typed IRE_CACHETABLE,
6115 			 * this route can be resolved without any call to the
6116 			 * resolver. If the MULTIRT_CACHEGW flag is set,
6117 			 * give the top priority to this ire and exit the
6118 			 * loop.
6119 			 * This is typically the case when an ARP reply
6120 			 * is processed through ip_wput_nondata().
6121 			 */
6122 			if ((flags & MULTIRT_CACHEGW) &&
6123 			    (gw_ire != NULL) &&
6124 			    (gw_ire->ire_type & IRE_CACHETABLE)) {
6125 				ASSERT(gw_ire->ire_nce == NULL ||
6126 				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
6127 				/*
6128 				 * Release the resolver associated to the
6129 				 * previous candidate best ire, if any.
6130 				 */
6131 				if (best_cire != NULL) {
6132 					ire_refrele(best_cire);
6133 					ASSERT(best_fire != NULL);
6134 				}
6135 
6136 				best_fire = fire;
6137 				best_cire = gw_ire;
6138 
6139 				ip2dbg(("ire_multirt_lookup: found top prio "
6140 				    "best_fire %p, best_cire %p\n",
6141 				    (void *)best_fire, (void *)best_cire));
6142 				break;
6143 			}
6144 
6145 			/*
6146 			 * Compute the time elapsed since our preceding
6147 			 * attempt to  resolve that route.
6148 			 * If the MULTIRT_USESTAMP flag is set, we take that
6149 			 * route into account only if this time interval
6150 			 * exceeds ip_multirt_resolution_interval;
6151 			 * this prevents us from attempting to resolve a
6152 			 * broken route upon each sending of a packet.
6153 			 */
6154 			delta = lbolt - fire->ire_last_used_time;
6155 			delta = TICK_TO_MSEC(delta);
6156 
6157 			res = (boolean_t)
6158 			    ((delta > ip_multirt_resolution_interval) ||
6159 				(!(flags & MULTIRT_USESTAMP)));
6160 
6161 			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
6162 			    "res %d\n",
6163 			    (void *)fire, delta, res));
6164 
6165 			if (res) {
6166 				/*
6167 				 * We are here if MULTIRT_USESTAMP flag is set
6168 				 * and the resolver for fire's gateway
6169 				 * has not been tried since
6170 				 * ip_multirt_resolution_interval, or if
6171 				 * MULTIRT_USESTAMP is not set but gw_ire did
6172 				 * not fill the conditions for MULTIRT_CACHEGW,
6173 				 * or if neither MULTIRT_USESTAMP nor
6174 				 * MULTIRT_CACHEGW are set.
6175 				 */
6176 				if (gw_ire != NULL) {
6177 					if (best_fire == NULL) {
6178 						ASSERT(best_cire == NULL);
6179 
6180 						best_fire = fire;
6181 						best_cire = gw_ire;
6182 
6183 						ip2dbg(("ire_multirt_lookup:"
6184 						    "found candidate "
6185 						    "best_fire %p, "
6186 						    "best_cire %p\n",
6187 						    (void *)best_fire,
6188 						    (void *)best_cire));
6189 
6190 						/*
6191 						 * If MULTIRT_CACHEGW is not
6192 						 * set, we ignore the top
6193 						 * priority ires that can
6194 						 * be resolved without any
6195 						 * call to the resolver;
6196 						 * In that case, there is
6197 						 * actually no need
6198 						 * to continue the loop.
6199 						 */
6200 						if (!(flags &
6201 						    MULTIRT_CACHEGW)) {
6202 							break;
6203 						}
6204 						continue;
6205 					}
6206 				} else {
6207 					/*
6208 					 * No resolver for the gateway: the
6209 					 * route is not resolvable.
6210 					 * If the MULTIRT_SETSTAMP flag is
6211 					 * set, we stamp the IRE_HOST ire,
6212 					 * so we will not select it again
6213 					 * during this resolution interval.
6214 					 */
6215 					if (flags & MULTIRT_SETSTAMP)
6216 						fire->ire_last_used_time =
6217 						    lbolt;
6218 				}
6219 			}
6220 
6221 			if (gw_ire != NULL)
6222 				ire_refrele(gw_ire);
6223 		}
6224 	} else { /* CLASSD(dst) */
6225 
6226 		for (fire = first_fire;
6227 		    fire != NULL;
6228 		    fire = fire->ire_next) {
6229 
6230 			if (!(fire->ire_flags & RTF_MULTIRT))
6231 				continue;
6232 			if (fire->ire_addr != dst)
6233 				continue;
6234 
6235 			if (fire->ire_gw_secattr != NULL &&
6236 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
6237 				continue;
6238 			}
6239 
6240 			already_resolved = B_FALSE;
6241 
6242 			gw = fire->ire_gateway_addr;
6243 
6244 			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
6245 			    NULL, NULL, ALL_ZONES, 0, tsl,
6246 			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
6247 			    MATCH_IRE_SECATTR);
6248 
6249 			/* No resolver for the gateway; we skip this ire. */
6250 			if (gw_ire == NULL) {
6251 				continue;
6252 			}
6253 			ASSERT(gw_ire->ire_nce == NULL ||
6254 			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
6255 
6256 			if (first_cire != NULL) {
6257 
6258 				IRB_REFHOLD(cirb);
6259 				/*
6260 				 * For all IRE_CACHE ires for that
6261 				 * destination.
6262 				 */
6263 				for (cire = first_cire;
6264 				    cire != NULL;
6265 				    cire = cire->ire_next) {
6266 
6267 					if (!(cire->ire_flags & RTF_MULTIRT))
6268 						continue;
6269 					if (cire->ire_addr != dst)
6270 						continue;
6271 					if (cire->ire_marks &
6272 					    (IRE_MARK_CONDEMNED |
6273 						IRE_MARK_HIDDEN))
6274 						continue;
6275 
6276 					if (cire->ire_gw_secattr != NULL &&
6277 					    tsol_ire_match_gwattr(cire,
6278 					    tsl) != 0) {
6279 						continue;
6280 					}
6281 
6282 					/*
6283 					 * Cache entries are linked to the
6284 					 * parent routes using the parent handle
6285 					 * (ire_phandle). If no cache entry has
6286 					 * the same handle as fire, fire is
6287 					 * still unresolved.
6288 					 */
6289 					ASSERT(cire->ire_phandle != 0);
6290 					if (cire->ire_phandle ==
6291 					    fire->ire_phandle) {
6292 						already_resolved = B_TRUE;
6293 						break;
6294 					}
6295 				}
6296 				IRB_REFRELE(cirb);
6297 			}
6298 
6299 			/*
6300 			 * This route is already resolved; proceed with
6301 			 * next one.
6302 			 */
6303 			if (already_resolved) {
6304 				ire_refrele(gw_ire);
6305 				continue;
6306 			}
6307 
6308 			/*
6309 			 * Compute the time elapsed since our preceding
6310 			 * attempt to resolve that route.
6311 			 * If the MULTIRT_USESTAMP flag is set, we take
6312 			 * that route into account only if this time
6313 			 * interval exceeds ip_multirt_resolution_interval;
6314 			 * this prevents us from attempting to resolve a
6315 			 * broken route upon each sending of a packet.
6316 			 */
6317 			delta = lbolt - fire->ire_last_used_time;
6318 			delta = TICK_TO_MSEC(delta);
6319 
6320 			res = (boolean_t)
6321 			    ((delta > ip_multirt_resolution_interval) ||
6322 			    (!(flags & MULTIRT_USESTAMP)));
6323 
6324 			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
6325 			    "flags %04x, res %d\n",
6326 			    (void *)fire, delta, flags, res));
6327 
6328 			if (res) {
6329 				if (best_cire != NULL) {
6330 					/*
6331 					 * Release the resolver associated
6332 					 * to the preceding candidate best
6333 					 * ire, if any.
6334 					 */
6335 					ire_refrele(best_cire);
6336 					ASSERT(best_fire != NULL);
6337 				}
6338 				best_fire = fire;
6339 				best_cire = gw_ire;
6340 				continue;
6341 			}
6342 
6343 			ire_refrele(gw_ire);
6344 		}
6345 	}
6346 
6347 	if (best_fire != NULL) {
6348 		IRE_REFHOLD(best_fire);
6349 	}
6350 	IRB_REFRELE(firb);
6351 
6352 	/* Release the first IRE_CACHE we initially looked up, if any. */
6353 	if (first_cire != NULL)
6354 		ire_refrele(first_cire);
6355 
6356 	/* Found a resolvable route. */
6357 	if (best_fire != NULL) {
6358 		ASSERT(best_cire != NULL);
6359 
6360 		if (*fire_arg != NULL)
6361 			ire_refrele(*fire_arg);
6362 		if (*ire_arg != NULL)
6363 			ire_refrele(*ire_arg);
6364 
6365 		/*
6366 		 * Update the passed-in arguments with the
6367 		 * resolvable multirt route we found.
6368 		 */
6369 		*fire_arg = best_fire;
6370 		*ire_arg = best_cire;
6371 
6372 		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
6373 		    "*fire_arg %p, *ire_arg %p\n",
6374 		    (void *)best_fire, (void *)best_cire));
6375 
6376 		return (B_TRUE);
6377 	}
6378 
6379 	ASSERT(best_cire == NULL);
6380 
6381 	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
6382 	    "*ire_arg %p\n",
6383 	    (void *)*fire_arg, (void *)*ire_arg));
6384 
6385 	/* No resolvable route. */
6386 	return (B_FALSE);
6387 }
6388 
6389 /*
6390  * The purpose of the next two functions is to provide some external access to
6391  * routing/l2 lookup functionality while hiding the implementation of routing
6392  * and interface data structures (IRE/ILL).  Thus, interfaces are passed/
6393  * returned by name instead of by ILL reference.  These functions are used by
6394  * IP Filter.
6395  * Return a link layer header suitable for an IP packet being sent to the
6396  * dst_addr IP address.  The interface associated with the route is put into
6397  * ifname, which must be a buffer of LIFNAMSIZ bytes.  The dst_addr is the
6398  * packet's ultimate destination address, not a router address.
6399  *
6400  * This function is used when the caller wants to know the outbound interface
6401  * and MAC header for a packet given only the address.
6402  */
6403 mblk_t *
6404 ip_nexthop_route(const struct sockaddr *target, char *ifname)
6405 {
6406 	struct nce_s *nce;
6407 	ire_t *dir;
6408 	ill_t *ill;
6409 	mblk_t *mp, *tmp_mp;
6410 
6411 	/* parameter sanity */
6412 	if (ifname == NULL || target == NULL)
6413 		return (NULL);
6414 
6415 	/* Find the route entry, if it exists. */
6416 	switch (target->sa_family) {
6417 	case AF_INET:
6418 		dir = ire_route_lookup(
6419 		    ((struct sockaddr_in *)target)->sin_addr.s_addr,
6420 		    0xffffffff,
6421 		    0, 0, NULL, NULL, ALL_ZONES, NULL,
6422 		    MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE);
6423 		break;
6424 	case AF_INET6:
6425 		dir = ire_route_lookup_v6(
6426 		    &((struct sockaddr_in6 *)target)->sin6_addr,
6427 		    NULL,
6428 		    0, 0, NULL, NULL, ALL_ZONES, NULL,
6429 		    MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE);
6430 		if ((dir != NULL) && (dir->ire_nce == NULL)) {
6431 			ire_refrele(dir);
6432 			dir = NULL;
6433 		}
6434 		break;
6435 	default:
6436 		dir = NULL;
6437 		break;
6438 	}
6439 
6440 	if (dir == NULL) {
6441 		return (NULL);
6442 	}
6443 
6444 	/* Map the IRE to an ILL so we can fill in ifname. */
6445 	ill = ire_to_ill(dir);
6446 	if (ill == NULL) {
6447 		ire_refrele(dir);
6448 		return (NULL);
6449 	}
6450 	(void) strncpy(ifname, ill->ill_name, LIFNAMSIZ);
6451 
6452 	if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) {
6453 		mp = copyb(ill->ill_resolver_mp);
6454 		ire_refrele(dir);
6455 		return (mp);
6456 	}
6457 
6458 	/* Return a copy of the header to the caller. */
6459 	switch (target->sa_family) {
6460 	case AF_INET :
6461 		if (dir->ire_nce != NULL &&
6462 		    dir->ire_nce->nce_state == ND_REACHABLE) {
6463 			if (dir->ire_nce->nce_fp_mp != NULL)
6464 				tmp_mp = dir->ire_nce->nce_fp_mp;
6465 			else
6466 				tmp_mp = dir->ire_nce->nce_fp_mp;
6467 			if ((mp = dupb(tmp_mp)) == NULL)
6468 				mp = copyb(tmp_mp);
6469 		} else {
6470 			mp = copyb(ill->ill_resolver_mp);
6471 		}
6472 		break;
6473 	case AF_INET6 :
6474 		nce = dir->ire_nce;
6475 		if (nce->nce_fp_mp != NULL) {
6476 			if ((mp = dupb(nce->nce_fp_mp)) == NULL)
6477 				mp = copyb(nce->nce_fp_mp);
6478 		} else if (nce->nce_res_mp != NULL) {
6479 			if ((mp = dupb(nce->nce_res_mp)) == NULL)
6480 				mp = copyb(nce->nce_res_mp);
6481 		} else {
6482 			mp = NULL;
6483 		}
6484 		break;
6485 	}
6486 
6487 	ire_refrele(dir);
6488 	return (mp);
6489 }
6490 
6491 
6492 /*
6493  * Return a link layer header suitable for an IP packet being sent to the
6494  * dst_addr IP address on the specified output interface.  The dst_addr
6495  * may be the packet's ultimate destination or a predetermined next hop
6496  * router's address.
6497  * ifname must be nul-terminated.
6498  *
6499  * This function is used when the caller knows the outbound interface (usually
6500  * because it was specified by policy) and only needs the MAC header for a
6501  * packet.
6502  */
6503 mblk_t *
6504 ip_nexthop(const struct sockaddr *target, const char *ifname)
6505 {
6506 	struct nce_s *nce;
6507 	ill_walk_context_t ctx;
6508 	t_uscalar_t sap;
6509 	ire_t *dir;
6510 	ill_t *ill;
6511 	mblk_t *mp;
6512 
6513 	/* parameter sanity */
6514 	if (ifname == NULL || target == NULL)
6515 		return (NULL);
6516 
6517 	switch (target->sa_family) {
6518 	case AF_INET :
6519 		sap = IP_DL_SAP;
6520 		break;
6521 	case AF_INET6 :
6522 		sap = IP6_DL_SAP;
6523 		break;
6524 	default:
6525 		return (NULL);
6526 	}
6527 
6528 	/* Lock ill_g_lock before walking through the list */
6529 	rw_enter(&ill_g_lock, RW_READER);
6530 	/*
6531 	 * Can we find the interface name among those currently configured?
6532 	 */
6533 	for (ill = ILL_START_WALK_ALL(&ctx); ill != NULL;
6534 	    ill = ill_next(&ctx, ill)) {
6535 		if ((strcmp(ifname, ill->ill_name) == 0) &&
6536 		    (ill->ill_sap == sap))
6537 			break;
6538 	}
6539 	if (ill == NULL || ill->ill_ipif == NULL) {
6540 		rw_exit(&ill_g_lock);
6541 		return (NULL);
6542 	}
6543 
6544 	mutex_enter(&ill->ill_lock);
6545 	if (!ILL_CAN_LOOKUP(ill)) {
6546 		mutex_exit(&ill->ill_lock);
6547 		rw_exit(&ill_g_lock);
6548 		return (NULL);
6549 	}
6550 	ill_refhold_locked(ill);
6551 	mutex_exit(&ill->ill_lock);
6552 	rw_exit(&ill_g_lock);
6553 
6554 	/* Find the resolver entry, if it exists. */
6555 	switch (target->sa_family) {
6556 	case AF_INET:
6557 		dir = ire_route_lookup(
6558 			((struct sockaddr_in *)target)->sin_addr.s_addr,
6559 			0xffffffff,
6560 			0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL,
6561 			MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|
6562 			MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF);
6563 		if ((dir != NULL) && dir->ire_nce != NULL &&
6564 		    dir->ire_nce->nce_state != ND_REACHABLE) {
6565 			ire_refrele(dir);
6566 			dir = NULL;
6567 		}
6568 		break;
6569 	case AF_INET6:
6570 		dir = ire_route_lookup_v6(
6571 			&((struct sockaddr_in6 *)target)->sin6_addr, NULL,
6572 			0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL,
6573 			MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|
6574 			MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF);
6575 		if ((dir != NULL) && (dir->ire_nce == NULL)) {
6576 			ire_refrele(dir);
6577 			dir = NULL;
6578 		}
6579 		break;
6580 	default:
6581 		dir = NULL;
6582 		break;
6583 	}
6584 
6585 	if (dir == NULL) {
6586 		return (NULL);
6587 	}
6588 
6589 	if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) {
6590 		mp = copyb(ill->ill_resolver_mp);
6591 		ill_refrele(ill);
6592 		ire_refrele(dir);
6593 		return (mp);
6594 	}
6595 
6596 	/* Return a copy of the header to the caller. */
6597 	switch (target->sa_family) {
6598 	case AF_INET :
6599 		if (dir->ire_nce->nce_fp_mp != NULL) {
6600 			if ((mp = dupb(dir->ire_nce->nce_fp_mp)) == NULL)
6601 				mp = copyb(dir->ire_nce->nce_fp_mp);
6602 		} else if (dir->ire_nce->nce_res_mp != NULL) {
6603 			if ((mp = dupb(dir->ire_nce->nce_res_mp)) == NULL)
6604 				mp = copyb(dir->ire_nce->nce_res_mp);
6605 		} else {
6606 			mp = copyb(ill->ill_resolver_mp);
6607 		}
6608 		break;
6609 	case AF_INET6 :
6610 		nce = dir->ire_nce;
6611 		if (nce->nce_fp_mp != NULL) {
6612 			if ((mp = dupb(nce->nce_fp_mp)) == NULL)
6613 				mp = copyb(nce->nce_fp_mp);
6614 		} else if (nce->nce_res_mp != NULL) {
6615 			if ((mp = dupb(nce->nce_res_mp)) == NULL)
6616 				mp = copyb(nce->nce_res_mp);
6617 		} else {
6618 			mp = NULL;
6619 		}
6620 		break;
6621 	}
6622 
6623 	ire_refrele(dir);
6624 	ill_refrele(ill);
6625 	return (mp);
6626 }
6627 
6628 /*
6629  * IRE iterator for inbound and loopback broadcast processing.
6630  * Given an IRE_BROADCAST ire, walk the ires with the same destination
6631  * address, but skip over the passed-in ire. Returns the next ire without
6632  * a hold - assumes that the caller holds a reference on the IRE bucket.
6633  */
6634 ire_t *
6635 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
6636 {
6637 	ill_t *ill;
6638 
6639 	if (curr == NULL) {
6640 		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
6641 		    curr = curr->ire_next) {
6642 			if (curr->ire_addr == ire->ire_addr)
6643 				break;
6644 		}
6645 	} else {
6646 		curr = curr->ire_next;
6647 	}
6648 	ill = ire_to_ill(ire);
6649 	for (; curr != NULL; curr = curr->ire_next) {
6650 		if (curr->ire_addr != ire->ire_addr) {
6651 			/*
6652 			 * All the IREs to a given destination are contiguous;
6653 			 * break out once the address doesn't match.
6654 			 */
6655 			break;
6656 		}
6657 		if (curr == ire) {
6658 			/* skip over the passed-in ire */
6659 			continue;
6660 		}
6661 		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
6662 		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
6663 			/*
6664 			 * If the passed-in ire is loopback, skip over
6665 			 * non-loopback ires and vice versa.
6666 			 */
6667 			continue;
6668 		}
6669 		if (ire_to_ill(curr) != ill) {
6670 			/* skip over IREs going through a different interface */
6671 			continue;
6672 		}
6673 		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
6674 			/* skip over deleted IREs */
6675 			continue;
6676 		}
6677 		return (curr);
6678 	}
6679 	return (NULL);
6680 }
6681 
6682 #ifdef IRE_DEBUG
6683 th_trace_t *
6684 th_trace_ire_lookup(ire_t *ire)
6685 {
6686 	int bucket_id;
6687 	th_trace_t *th_trace;
6688 
6689 	ASSERT(MUTEX_HELD(&ire->ire_lock));
6690 
6691 	bucket_id = IP_TR_HASH(curthread);
6692 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6693 
6694 	for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL;
6695 	    th_trace = th_trace->th_next) {
6696 		if (th_trace->th_id == curthread)
6697 			return (th_trace);
6698 	}
6699 	return (NULL);
6700 }
6701 
6702 void
6703 ire_trace_ref(ire_t *ire)
6704 {
6705 	int bucket_id;
6706 	th_trace_t *th_trace;
6707 
6708 	/*
6709 	 * Attempt to locate the trace buffer for the curthread.
6710 	 * If it does not exist, then allocate a new trace buffer
6711 	 * and link it in list of trace bufs for this ipif, at the head
6712 	 */
6713 	mutex_enter(&ire->ire_lock);
6714 	if (ire->ire_trace_disable == B_TRUE) {
6715 		mutex_exit(&ire->ire_lock);
6716 		return;
6717 	}
6718 	th_trace = th_trace_ire_lookup(ire);
6719 	if (th_trace == NULL) {
6720 		bucket_id = IP_TR_HASH(curthread);
6721 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6722 		    KM_NOSLEEP);
6723 		if (th_trace == NULL) {
6724 			ire->ire_trace_disable = B_TRUE;
6725 			mutex_exit(&ire->ire_lock);
6726 			ire_trace_inactive(ire);
6727 			return;
6728 		}
6729 
6730 		th_trace->th_id = curthread;
6731 		th_trace->th_next = ire->ire_trace[bucket_id];
6732 		th_trace->th_prev = &ire->ire_trace[bucket_id];
6733 		if (th_trace->th_next != NULL)
6734 			th_trace->th_next->th_prev = &th_trace->th_next;
6735 		ire->ire_trace[bucket_id] = th_trace;
6736 	}
6737 	ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1);
6738 	th_trace->th_refcnt++;
6739 	th_trace_rrecord(th_trace);
6740 	mutex_exit(&ire->ire_lock);
6741 }
6742 
6743 void
6744 ire_trace_free(th_trace_t *th_trace)
6745 {
6746 	/* unlink th_trace and free it */
6747 	*th_trace->th_prev = th_trace->th_next;
6748 	if (th_trace->th_next != NULL)
6749 		th_trace->th_next->th_prev = th_trace->th_prev;
6750 	th_trace->th_next = NULL;
6751 	th_trace->th_prev = NULL;
6752 	kmem_free(th_trace, sizeof (th_trace_t));
6753 }
6754 
6755 void
6756 ire_untrace_ref(ire_t *ire)
6757 {
6758 	th_trace_t *th_trace;
6759 
6760 	mutex_enter(&ire->ire_lock);
6761 
6762 	if (ire->ire_trace_disable == B_TRUE) {
6763 		mutex_exit(&ire->ire_lock);
6764 		return;
6765 	}
6766 
6767 	th_trace = th_trace_ire_lookup(ire);
6768 	ASSERT(th_trace != NULL && th_trace->th_refcnt > 0);
6769 	th_trace_rrecord(th_trace);
6770 	th_trace->th_refcnt--;
6771 
6772 	if (th_trace->th_refcnt == 0)
6773 		ire_trace_free(th_trace);
6774 
6775 	mutex_exit(&ire->ire_lock);
6776 }
6777 
6778 static void
6779 ire_trace_inactive(ire_t *ire)
6780 {
6781 	th_trace_t *th_trace;
6782 	int i;
6783 
6784 	mutex_enter(&ire->ire_lock);
6785 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6786 		while (ire->ire_trace[i] != NULL) {
6787 			th_trace = ire->ire_trace[i];
6788 
6789 			/* unlink th_trace and free it */
6790 			ire->ire_trace[i] = th_trace->th_next;
6791 			if (th_trace->th_next != NULL)
6792 				th_trace->th_next->th_prev =
6793 				    &ire->ire_trace[i];
6794 
6795 			th_trace->th_next = NULL;
6796 			th_trace->th_prev = NULL;
6797 			kmem_free(th_trace, sizeof (th_trace_t));
6798 		}
6799 	}
6800 
6801 	mutex_exit(&ire->ire_lock);
6802 }
6803 
6804 /* ARGSUSED */
6805 void
6806 ire_thread_exit(ire_t *ire, caddr_t arg)
6807 {
6808 	th_trace_t	*th_trace;
6809 
6810 	mutex_enter(&ire->ire_lock);
6811 	th_trace = th_trace_ire_lookup(ire);
6812 	if (th_trace == NULL) {
6813 		mutex_exit(&ire->ire_lock);
6814 		return;
6815 	}
6816 	ASSERT(th_trace->th_refcnt == 0);
6817 
6818 	ire_trace_free(th_trace);
6819 	mutex_exit(&ire->ire_lock);
6820 }
6821 
6822 #endif
6823 
6824 /*
6825  * Generate a message chain with an arp request to resolve the in_ire.
6826  * It is assumed that in_ire itself is currently in the ire cache table,
6827  * so we create a fake_ire filled with enough information about ire_addr etc.
6828  * to retrieve in_ire when the DL_UNITDATA response from the resolver
6829  * comes back. The fake_ire itself is created by calling esballoc with
6830  * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
6831  * invoked when the mblk containing fake_ire is freed.
6832  */
6833 void
6834 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill)
6835 {
6836 	areq_t		*areq;
6837 	ipaddr_t	*addrp;
6838 	mblk_t 		*ire_mp, *dlureq_mp;
6839 	ire_t 		*ire, *buf;
6840 	size_t		bufsize;
6841 	frtn_t		*frtnp;
6842 	ill_t		*ill;
6843 
6844 	/*
6845 	 * Construct message chain for the resolver
6846 	 * of the form:
6847 	 *	ARP_REQ_MBLK-->IRE_MBLK
6848 	 *
6849 	 * NOTE : If the response does not
6850 	 * come back, ARP frees the packet. For this reason,
6851 	 * we can't REFHOLD the bucket of save_ire to prevent
6852 	 * deletions. We may not be able to REFRELE the bucket
6853 	 * if the response never comes back. Thus, before
6854 	 * adding the ire, ire_add_v4 will make sure that the
6855 	 * interface route does not get deleted. This is the
6856 	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
6857 	 * where we can always prevent deletions because of
6858 	 * the synchronous nature of adding IRES i.e
6859 	 * ire_add_then_send is called after creating the IRE.
6860 	 */
6861 
6862 	/*
6863 	 * We use esballoc to allocate the second part(the ire_t size mblk)
6864 	 * of the message chain depicted above. THis mblk will be freed
6865 	 * by arp when there is a  timeout, and otherwise passed to IP
6866 	 * and IP will * free it after processing the ARP response.
6867 	 */
6868 
6869 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
6870 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
6871 	if (buf == NULL) {
6872 		ip1dbg(("ire_arpresolver:alloc buffer failed\n "));
6873 		return;
6874 	}
6875 	frtnp = (frtn_t *)(buf + 1);
6876 	frtnp->free_arg = (caddr_t)buf;
6877 	frtnp->free_func = ire_freemblk;
6878 
6879 	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
6880 
6881 	if (ire_mp == NULL) {
6882 		ip1dbg(("ire_arpresolve: esballoc failed\n"));
6883 		kmem_free(buf, bufsize);
6884 		return;
6885 	}
6886 	ASSERT(in_ire->ire_nce != NULL);
6887 	dlureq_mp = copyb(dst_ill->ill_resolver_mp);
6888 	if (dlureq_mp == NULL) {
6889 		kmem_free(buf, bufsize);
6890 		return;
6891 	}
6892 
6893 	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
6894 	ire = (ire_t *)buf;
6895 	/*
6896 	 * keep enough info in the fake ire so that we can pull up
6897 	 * the incomplete ire (in_ire) after result comes back from
6898 	 * arp and make it complete.
6899 	 */
6900 	*ire = ire_null;
6901 	ire->ire_u = in_ire->ire_u;
6902 	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
6903 	ire->ire_ipif = in_ire->ire_ipif;
6904 	ire->ire_stq = in_ire->ire_stq;
6905 	ill = ire_to_ill(ire);
6906 	ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
6907 	ire->ire_zoneid = in_ire->ire_zoneid;
6908 	/*
6909 	 * ire_freemblk will be called when ire_mp is freed, both for
6910 	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
6911 	 * when the arp resolution failed.
6912 	 */
6913 	ire->ire_marks |= IRE_MARK_UNCACHED;
6914 	ire->ire_mp = ire_mp;
6915 	ire_mp->b_wptr = (uchar_t *)&ire[1];
6916 	ire_mp->b_cont = NULL;
6917 	ASSERT(dlureq_mp != NULL);
6918 	linkb(dlureq_mp, ire_mp);
6919 
6920 	/*
6921 	 * Fill in the source and dest addrs for the resolver.
6922 	 * NOTE: this depends on memory layouts imposed by
6923 	 * ill_init().
6924 	 */
6925 	areq = (areq_t *)dlureq_mp->b_rptr;
6926 	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
6927 	*addrp = ire->ire_src_addr;
6928 
6929 	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
6930 	if (ire->ire_gateway_addr != INADDR_ANY) {
6931 		*addrp = ire->ire_gateway_addr;
6932 	} else {
6933 		*addrp = ire->ire_addr;
6934 	}
6935 
6936 	/* Up to the resolver. */
6937 	if (canputnext(dst_ill->ill_rq)) {
6938 		putnext(dst_ill->ill_rq, dlureq_mp);
6939 	} else {
6940 		/* Prepare for cleanup */
6941 		freemsg(dlureq_mp);
6942 	}
6943 }
6944 
6945 /*
6946  * Esballoc free function for AR_ENTRY_QUERY request to clean up any
6947  * unresolved ire_t and/or nce_t structures when ARP resolution fails.
6948  *
6949  * This function can be called by ARP via free routine for ire_mp or
6950  * by IPv4(both host and forwarding path) via ire_delete
6951  * in case ARP resolution fails.
6952  * NOTE: Since IP is MT, ARP can call into IP but not vice versa
6953  * (for IP to talk to ARP, it still has to send AR* messages).
6954  *
6955  * Note that the ARP/IP merge should replace the functioanlity by providing
6956  * direct function calls to clean up unresolved entries in ire/nce lists.
6957  */
6958 void
6959 ire_freemblk(ire_t *ire_mp)
6960 {
6961 	nce_t		*nce = NULL;
6962 	ill_t		*ill;
6963 
6964 	ASSERT(ire_mp != NULL);
6965 
6966 	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
6967 		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
6968 		    (void *)ire_mp));
6969 		goto cleanup;
6970 	}
6971 	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
6972 		goto cleanup; /* everything succeeded. just free and return */
6973 	}
6974 
6975 	/*
6976 	 * the arp information corresponding to this ire_mp was not
6977 	 * transferred to  a ire_cache entry. Need
6978 	 * to clean up incomplete ire's and nce, if necessary.
6979 	 */
6980 	ASSERT(ire_mp->ire_stq != NULL);
6981 	ASSERT(ire_mp->ire_stq_ifindex != 0);
6982 	/*
6983 	 * Get any nce's corresponding to this ire_mp. We first have to
6984 	 * make sure that the ill is still around.
6985 	 */
6986 	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, B_FALSE,
6987 	    NULL, NULL, NULL, NULL);
6988 	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
6989 	    (ill->ill_state_flags & ILL_CONDEMNED)) {
6990 		/*
6991 		 * ill went away. no nce to clean up.
6992 		 * Note that the ill_state_flags could be set to
6993 		 * ILL_CONDEMNED after this point, but if we know
6994 		 * that it is CONDEMNED now, we just bail out quickly.
6995 		 */
6996 		if (ill != NULL)
6997 			ill_refrele(ill);
6998 		goto cleanup;
6999 	}
7000 	nce = ndp_lookup_v4(ill,
7001 	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
7002 	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
7003 	    B_FALSE);
7004 	ill_refrele(ill);
7005 
7006 	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
7007 		/*
7008 		 * some incomplete nce was found.
7009 		 */
7010 		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
7011 		    nce_t *, nce, ire_t *, ire_mp);
7012 		/*
7013 		 * Send the icmp_unreachable messages for the queued mblks in
7014 		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
7015 		 * for this ire
7016 		 */
7017 		arp_resolv_failed(nce);
7018 		/*
7019 		 * Delete the nce and clean up all ire's pointing at this nce
7020 		 * in the cachetable
7021 		 */
7022 		ndp_delete(nce);
7023 	}
7024 	if (nce != NULL)
7025 		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
7026 
7027 cleanup:
7028 	/*
7029 	 * Get rid of the ire buffer
7030 	 * We call kmem_free here(instead of ire_delete()), since
7031 	 * this is the freeb's callback.
7032 	 */
7033 	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
7034 }
7035 
7036 
7037 /*
7038  * create the neighbor cache entry  nce_t for  IRE_CACHE and
7039  * non-loopback IRE_BROADCAST ire's. Note that IRE_BROADCAST
7040  * (non-loopback) entries  have the nce_res_mp set to the
7041  * template passed in (generated from ill_bcast_mp); IRE_CACHE ire's
7042  * contain the information for  the nexthop (ire_gateway_addr) in the
7043  * case of indirect routes, and for the dst itself (ire_addr) in the
7044  * case of direct routes, with the nce_res_mp containing a template
7045  * DL_UNITDATA request.
7046  *
7047  * This function always consumes res_mp and fp_mp.
7048  *
7049  * The actual association of the ire_nce to the nce created here is
7050  * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
7051  * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
7052  * the ire_nce assignment is done in ire_add_then_send, and mobile-ip
7053  * where the assignment is done in ire_add_mrtun().
7054  */
7055 int
7056 ire_nce_init(ire_t *ire, mblk_t *fp_mp, mblk_t *res_mp)
7057 {
7058 	in_addr_t	addr4, mask4;
7059 	int		err;
7060 	nce_t		*arpce = NULL;
7061 	ill_t		*ire_ill;
7062 	uint16_t	nce_state, nce_flags;
7063 
7064 	if (ire->ire_stq == NULL) {
7065 		if (res_mp)
7066 			freemsg(res_mp);
7067 		if (fp_mp)
7068 			freemsg(fp_mp);
7069 		return (0); /* no need to create nce for local/loopback */
7070 	}
7071 
7072 	mask4 = IP_HOST_MASK;
7073 	switch (ire->ire_type) {
7074 	case IRE_CACHE:
7075 		if (ire->ire_gateway_addr != INADDR_ANY)
7076 			addr4 = ire->ire_gateway_addr; /* 'G' route */
7077 		else
7078 			addr4 = ire->ire_addr; /* direct route */
7079 		break;
7080 	case IRE_BROADCAST:
7081 		addr4 = ire->ire_addr;
7082 		break;
7083 	default:
7084 		if (res_mp)
7085 			freemsg(res_mp);
7086 		if (fp_mp)
7087 			freemsg(fp_mp);
7088 		return (0);
7089 	}
7090 
7091 	/*
7092 	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
7093 	 * rules in ire_forward_src_ipif. We want the dlureq_mp
7094 	 * for the outgoing interface, which we get from the ire_stq.
7095 	 */
7096 	ire_ill = ire_to_ill(ire);
7097 
7098 	/*
7099 	 * if we are creating an nce for the first time, and this is
7100 	 * a NORESOLVER interface, atomically create the nce in the
7101 	 * REACHABLE state; else create it in the ND_INITIAL state.
7102 	 */
7103 	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)  {
7104 		nce_state = ND_REACHABLE;
7105 		nce_flags = NCE_F_PERMANENT;
7106 	} else {
7107 		if (fp_mp != NULL)
7108 			nce_state = ND_REACHABLE;
7109 		else
7110 			nce_state = ND_INITIAL;
7111 		nce_flags = 0;
7112 	}
7113 
7114 	err = ndp_lookup_then_add(ire_ill, NULL,
7115 	    &addr4, &mask4, NULL, 0, nce_flags, nce_state, &arpce,
7116 	    fp_mp, res_mp);
7117 
7118 	ip1dbg(("ire 0x%p addr 0x%lx mask 0x%lx type 0x%x; "
7119 	    "found nce 0x%p err %d\n", (void *)ire, (ulong_t)addr4,
7120 	    (ulong_t)mask4, ire->ire_type, (void *)arpce, err));
7121 
7122 	switch (err) {
7123 	case 0:
7124 		break;
7125 	case EEXIST:
7126 		/*
7127 		 * return a pointer to an existing nce_t;
7128 		 * note that the ire-nce mapping is many-one, i.e.,
7129 		 * multiple ire's could point to the same nce_t;
7130 		 */
7131 		if (fp_mp != NULL) {
7132 			freemsg(fp_mp);
7133 		}
7134 		if (res_mp != NULL) {
7135 			freemsg(res_mp);
7136 		}
7137 		break;
7138 	default:
7139 		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
7140 		if (res_mp)
7141 			freemsg(res_mp);
7142 		if (fp_mp)
7143 			freemsg(fp_mp);
7144 		return (EINVAL);
7145 	}
7146 #if DEBUG
7147 	/*
7148 	 * if an nce_fp_mp was passed in, we should be picking up an
7149 	 * existing nce_t in the ND_REACHABLE state.
7150 	 */
7151 	mutex_enter(&arpce->nce_lock);
7152 	ASSERT(arpce->nce_fp_mp == NULL || arpce->nce_state == ND_REACHABLE);
7153 	mutex_exit(&arpce->nce_lock);
7154 #endif
7155 	if (ire->ire_type == IRE_BROADCAST) {
7156 		/*
7157 		 * Two bcast ires are created for each interface;
7158 		 * 1. loopback copy (which does not  have an
7159 		 *    ire_stq, and therefore has no ire_nce), and,
7160 		 * 2. the non-loopback copy, which has the nce_res_mp
7161 		 *    initialized to a copy of the ill_bcast_mp, and
7162 		 *    is marked as ND_REACHABLE at this point.
7163 		 *    This nce does not undergo any further state changes,
7164 		 *    and exists as long as the interface is plumbed.
7165 		 * Note: we do the ire_nce assignment here for IRE_BROADCAST
7166 		 * because some functions like ill_mark_bcast() inline the
7167 		 * ire_add functionality;
7168 		 */
7169 		mutex_enter(&arpce->nce_lock);
7170 		arpce->nce_state = ND_REACHABLE;
7171 		arpce->nce_flags |= NCE_F_PERMANENT;
7172 		arpce->nce_last = TICK_TO_MSEC(lbolt64);
7173 		ire->ire_nce = arpce;
7174 		mutex_exit(&arpce->nce_lock);
7175 		/*
7176 		 * We are associating this nce to the ire,
7177 		 * so change the nce ref taken in
7178 		 * ndp_lookup_then_add_v4() from
7179 		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
7180 		 */
7181 		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
7182 	} else {
7183 		if (NCE_EXPIRED(arpce))
7184 			arpce = nce_reinit(arpce);
7185 		if (arpce != NULL) {
7186 			/*
7187 			 * We are not using this nce_t just yet so release
7188 			 * the ref taken in ndp_lookup_then_add_v4()
7189 			 */
7190 			NCE_REFRELE(arpce);
7191 		} else {
7192 			ip0dbg(("can't reinit arpce for ill 0x%p;\n",
7193 			    (void *)ire_ill));
7194 		}
7195 	}
7196 	return (0);
7197 }
7198