1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/ddi.h> 38 #include <sys/cmn_err.h> 39 #include <sys/policy.h> 40 41 #include <sys/systm.h> 42 #include <sys/kmem.h> 43 #include <sys/param.h> 44 #include <sys/socket.h> 45 #include <net/if.h> 46 #include <net/route.h> 47 #include <netinet/in.h> 48 #include <net/if_dl.h> 49 #include <netinet/ip6.h> 50 #include <netinet/icmp6.h> 51 52 #include <inet/common.h> 53 #include <inet/mi.h> 54 #include <inet/ip.h> 55 #include <inet/ip6.h> 56 #include <inet/ip_ndp.h> 57 #include <inet/arp.h> 58 #include <inet/ip_if.h> 59 #include <inet/ip_ire.h> 60 #include <inet/ip_ftable.h> 61 #include <inet/ip_rts.h> 62 #include <inet/nd.h> 63 64 #include <net/pfkeyv2.h> 65 #include <inet/ipsec_info.h> 66 #include <inet/sadb.h> 67 #include <sys/kmem.h> 68 #include <inet/tcp.h> 69 #include <inet/ipclassifier.h> 70 #include <sys/zone.h> 71 #include <sys/cpuvar.h> 72 73 #include <sys/tsol/label.h> 74 #include <sys/tsol/tnet.h> 75 76 struct kmem_cache *rt_entry_cache; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structures. The IPv6 forwarding table 148 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 149 * structure. ip_forwarding_table_v6 is allocated dynamically in 150 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access 153 * ip_forwarding_table_v6[i] without any locks. 154 * 155 * The forwarding table for IPv4 is a radix tree whose leaves 156 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 157 * for IPv4 is dynamically allocated and freed. 158 * 159 * Each irb_t - ire bucket structure has a lock to protect 160 * a bucket and the ires residing in the bucket have a back pointer to 161 * the bucket structure. It also has a reference count for the number 162 * of threads walking the bucket - irb_refcnt which is bumped up 163 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 164 * set to IRE_MARK_CONDEMNED indicating that there are some ires 165 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 166 * last thread to leave the bucket should delete the ires. Usually 167 * this is done by the IRB_REFRELE macro which is used to decrement 168 * the reference count on a bucket. See comments above irb_t structure 169 * definition in ip.h for further details. 170 * 171 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 172 * decrements the reference count, ire_refcnt, atomically on the ire. 173 * ire_refcnt is modified only using this macro. Operations on the IRE 174 * could be described as follows : 175 * 176 * CREATE an ire with reference count initialized to 1. 177 * 178 * ADDITION of an ire holds the bucket lock, checks for duplicates 179 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 180 * bumping up once more i.e the reference count is 2. This is to avoid 181 * an extra lookup in the functions calling ire_add which wants to 182 * work with the ire after adding. 183 * 184 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 185 * macro. It is valid to bump up the referece count of the IRE, 186 * after the lookup has returned an ire. Following are the lookup 187 * functions that return an HELD ire : 188 * 189 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 190 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 191 * ipif_to_ire[_v6]. 192 * 193 * DELETION of an ire holds the bucket lock, removes it from the list 194 * and then decrements the reference count for having removed from the list 195 * by using the IRE_REFRELE macro. If some other thread has looked up 196 * the ire, the reference count would have been bumped up and hence 197 * this ire will not be freed once deleted. It will be freed once the 198 * reference count drops to zero. 199 * 200 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 201 * lookups acquire the bucket lock as RW_READER. 202 * 203 * NOTE : The only functions that does the IRE_REFRELE when an ire is 204 * passed as an argument are : 205 * 206 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 207 * broadcast ires it looks up internally within 208 * the function. Currently, for simplicity it does 209 * not differentiate the one that is passed in and 210 * the ones it looks up internally. It always 211 * IRE_REFRELEs. 212 * 2) ire_send 213 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 214 * that take ire as an argument, it has to selectively 215 * IRE_REFRELE the ire. To maintain symmetry, 216 * ire_send_v6 does the same. 217 * 218 * Otherwise, the general rule is to do the IRE_REFRELE in the function 219 * that is passing the ire as an argument. 220 * 221 * In trying to locate ires the following points are to be noted. 222 * 223 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 224 * to be ignored when walking the ires using ire_next. 225 * 226 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 227 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 228 * applications should not be seeing this ire and hence this ire is ignored 229 * in most cases in the search using ire_next. 230 * 231 * Zones note: 232 * Walking IREs within a given zone also walks certain ires in other 233 * zones. This is done intentionally. IRE walks with a specified 234 * zoneid are used only when doing informational reports, and 235 * zone users want to see things that they can access. See block 236 * comment in ire_walk_ill_match(). 237 */ 238 239 /* 240 * The minimum size of IRE cache table. It will be recalcuated in 241 * ip_ire_init(). 242 * Setable in /etc/system 243 */ 244 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 245 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 246 247 /* 248 * The size of the forwarding table. We will make sure that it is a 249 * power of 2 in ip_ire_init(). 250 * Setable in /etc/system 251 */ 252 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 253 254 struct kmem_cache *ire_cache; 255 static ire_t ire_null; 256 257 /* 258 * The threshold number of IRE in a bucket when the IREs are 259 * cleaned up. This threshold is calculated later in ip_open() 260 * based on the speed of CPU and available memory. This default 261 * value is the maximum. 262 * 263 * We have two kinds of cached IRE, temporary and 264 * non-temporary. Temporary IREs are marked with 265 * IRE_MARK_TEMPORARY. They are IREs created for non 266 * TCP traffic and for forwarding purposes. All others 267 * are non-temporary IREs. We don't mark IRE created for 268 * TCP as temporary because TCP is stateful and there are 269 * info stored in the IRE which can be shared by other TCP 270 * connections to the same destination. For connected 271 * endpoint, we also don't want to mark the IRE used as 272 * temporary because the same IRE will be used frequently, 273 * otherwise, the app should not do a connect(). We change 274 * the marking at ip_bind_connected_*() if necessary. 275 * 276 * We want to keep the cache IRE hash bucket length reasonably 277 * short, otherwise IRE lookup functions will take "forever." 278 * We use the "crude" function that the IRE bucket 279 * length should be based on the CPU speed, which is 1 entry 280 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 281 * (n). This means that with a 750MHz CPU, the max bucket 282 * length can be (750 >> n) entries. 283 * 284 * Note that this threshold is separate for temp and non-temp 285 * IREs. This means that the actual bucket length can be 286 * twice as that. And while we try to keep temporary IRE 287 * length at most at the threshold value, we do not attempt to 288 * make the length for non-temporary IREs fixed, for the 289 * reason stated above. Instead, we start trying to find 290 * "unused" non-temporary IREs when the bucket length reaches 291 * this threshold and clean them up. 292 * 293 * We also want to limit the amount of memory used by 294 * IREs. So if we are allowed to use ~3% of memory (M) 295 * for those IREs, each bucket should not have more than 296 * 297 * M / num of cache bucket / sizeof (ire_t) 298 * 299 * Again the above memory uses are separate for temp and 300 * non-temp cached IREs. 301 * 302 * We may also want the limit to be a function of the number 303 * of interfaces and number of CPUs. Doing the initialization 304 * in ip_open() means that every time an interface is plumbed, 305 * the max is re-calculated. Right now, we don't do anything 306 * different. In future, when we have more experience, we 307 * may want to change this behavior. 308 */ 309 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 310 uint32_t ip6_ire_max_bucket_cnt = 10; 311 uint32_t ip_ire_cleanup_cnt = 2; 312 313 /* 314 * The minimum of the temporary IRE bucket count. We do not want 315 * the length of each bucket to be too short. This may hurt 316 * performance of some apps as the temporary IREs are removed too 317 * often. 318 */ 319 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 320 uint32_t ip6_ire_min_bucket_cnt = 3; 321 322 /* 323 * The ratio of memory consumed by IRE used for temporary to available 324 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 325 * value can be changed in /etc/system. 6 is a reasonable number. 326 */ 327 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 328 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 329 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 330 331 typedef struct nce_clookup_s { 332 ipaddr_t ncecl_addr; 333 boolean_t ncecl_found; 334 } nce_clookup_t; 335 336 /* 337 * The maximum number of buckets in IRE cache table. In future, we may 338 * want to make it a dynamic hash table. For the moment, we fix the 339 * size and allocate the table in ip_ire_init() when IP is first loaded. 340 * We take into account the amount of memory a system has. 341 */ 342 #define IP_MAX_CACHE_TABLE_SIZE 4096 343 344 /* Setable in /etc/system */ 345 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 346 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 347 348 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 349 350 /* Zero iulp_t for initialization. */ 351 const iulp_t ire_uinfo_null = { 0 }; 352 353 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 354 ipsq_func_t func, boolean_t); 355 static void ire_delete_v4(ire_t *ire); 356 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 357 zoneid_t zoneid, ip_stack_t *); 358 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 359 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 360 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, 361 ire_t *ref_ire); 362 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 363 #ifdef DEBUG 364 static void ire_trace_cleanup(const ire_t *); 365 #endif 366 367 /* 368 * To avoid bloating the code, we call this function instead of 369 * using the macro IRE_REFRELE. Use macro only in performance 370 * critical paths. 371 * 372 * Must not be called while holding any locks. Otherwise if this is 373 * the last reference to be released there is a chance of recursive mutex 374 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 375 * to restart an ioctl. The one exception is when the caller is sure that 376 * this is not the last reference to be released. Eg. if the caller is 377 * sure that the ire has not been deleted and won't be deleted. 378 */ 379 void 380 ire_refrele(ire_t *ire) 381 { 382 IRE_REFRELE(ire); 383 } 384 385 void 386 ire_refrele_notr(ire_t *ire) 387 { 388 IRE_REFRELE_NOTR(ire); 389 } 390 391 /* 392 * kmem_cache_alloc constructor for IRE in kma space. 393 * Note that when ire_mp is set the IRE is stored in that mblk and 394 * not in this cache. 395 */ 396 /* ARGSUSED */ 397 static int 398 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 399 { 400 ire_t *ire = buf; 401 402 ire->ire_nce = NULL; 403 404 return (0); 405 } 406 407 /* ARGSUSED1 */ 408 static void 409 ip_ire_destructor(void *buf, void *cdrarg) 410 { 411 ire_t *ire = buf; 412 413 ASSERT(ire->ire_nce == NULL); 414 } 415 416 /* 417 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 418 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 419 * for an existing CACHED IRE. 420 */ 421 /* ARGSUSED */ 422 int 423 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 424 { 425 uchar_t *addr_ucp; 426 ipic_t *ipic; 427 ire_t *ire; 428 ipaddr_t addr; 429 in6_addr_t v6addr; 430 irb_t *irb; 431 zoneid_t zoneid; 432 ip_stack_t *ipst = CONNQ_TO_IPST(q); 433 434 ASSERT(q->q_next == NULL); 435 zoneid = Q_TO_CONN(q)->conn_zoneid; 436 437 /* 438 * Check privilege using the ioctl credential; if it is NULL 439 * then this is a kernel message and therefor privileged. 440 */ 441 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 442 return (EPERM); 443 444 ipic = (ipic_t *)mp->b_rptr; 445 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 446 ipic->ipic_addr_length))) { 447 return (EINVAL); 448 } 449 if (!OK_32PTR(addr_ucp)) 450 return (EINVAL); 451 switch (ipic->ipic_addr_length) { 452 case IP_ADDR_LEN: { 453 /* Extract the destination address. */ 454 addr = *(ipaddr_t *)addr_ucp; 455 /* Find the corresponding IRE. */ 456 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 457 break; 458 } 459 case IPV6_ADDR_LEN: { 460 /* Extract the destination address. */ 461 v6addr = *(in6_addr_t *)addr_ucp; 462 /* Find the corresponding IRE. */ 463 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 464 break; 465 } 466 default: 467 return (EINVAL); 468 } 469 470 if (ire == NULL) 471 return (ENOENT); 472 /* 473 * Update the round trip time estimate and/or the max frag size 474 * and/or the slow start threshold. 475 * 476 * We serialize multiple advises using ire_lock. 477 */ 478 mutex_enter(&ire->ire_lock); 479 if (ipic->ipic_rtt) { 480 /* 481 * If there is no old cached values, initialize them 482 * conservatively. Set them to be (1.5 * new value). 483 */ 484 if (ire->ire_uinfo.iulp_rtt != 0) { 485 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 486 ipic->ipic_rtt) >> 1; 487 } else { 488 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 489 (ipic->ipic_rtt >> 1); 490 } 491 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 492 ire->ire_uinfo.iulp_rtt_sd = 493 (ire->ire_uinfo.iulp_rtt_sd + 494 ipic->ipic_rtt_sd) >> 1; 495 } else { 496 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 497 (ipic->ipic_rtt_sd >> 1); 498 } 499 } 500 if (ipic->ipic_max_frag) 501 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 502 if (ipic->ipic_ssthresh != 0) { 503 if (ire->ire_uinfo.iulp_ssthresh != 0) 504 ire->ire_uinfo.iulp_ssthresh = 505 (ipic->ipic_ssthresh + 506 ire->ire_uinfo.iulp_ssthresh) >> 1; 507 else 508 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 509 } 510 /* 511 * Don't need the ire_lock below this. ire_type does not change 512 * after initialization. ire_marks is protected by irb_lock. 513 */ 514 mutex_exit(&ire->ire_lock); 515 516 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 517 /* 518 * Only increment the temporary IRE count if the original 519 * IRE is not already marked temporary. 520 */ 521 irb = ire->ire_bucket; 522 rw_enter(&irb->irb_lock, RW_WRITER); 523 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 524 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 525 irb->irb_tmp_ire_cnt++; 526 } 527 ire->ire_marks |= ipic->ipic_ire_marks; 528 rw_exit(&irb->irb_lock); 529 } 530 531 ire_refrele(ire); 532 return (0); 533 } 534 535 /* 536 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 537 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 538 * for a host that is not responding. This will force an attempt to 539 * establish a new route, if available, and flush out the ARP entry so 540 * it will re-resolve. Management processes may want to use the 541 * version that generates a reply. 542 * 543 * This function does not support IPv6 since Neighbor Unreachability Detection 544 * means that negative advise like this is useless. 545 */ 546 /* ARGSUSED */ 547 int 548 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 549 { 550 uchar_t *addr_ucp; 551 ipaddr_t addr; 552 ire_t *ire; 553 ipid_t *ipid; 554 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 555 zoneid_t zoneid; 556 ire_t *gire = NULL; 557 ill_t *ill; 558 mblk_t *arp_mp; 559 ip_stack_t *ipst; 560 561 ASSERT(q->q_next == NULL); 562 zoneid = Q_TO_CONN(q)->conn_zoneid; 563 ipst = CONNQ_TO_IPST(q); 564 565 /* 566 * Check privilege using the ioctl credential; if it is NULL 567 * then this is a kernel message and therefor privileged. 568 */ 569 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 570 return (EPERM); 571 572 ipid = (ipid_t *)mp->b_rptr; 573 574 /* Only actions on IRE_CACHEs are acceptable at present. */ 575 if (ipid->ipid_ire_type != IRE_CACHE) 576 return (EINVAL); 577 578 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 579 ipid->ipid_addr_length); 580 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 581 return (EINVAL); 582 switch (ipid->ipid_addr_length) { 583 case IP_ADDR_LEN: 584 /* addr_ucp points at IP addr */ 585 break; 586 case sizeof (sin_t): { 587 sin_t *sin; 588 /* 589 * got complete (sockaddr) address - increment addr_ucp to point 590 * at the ip_addr field. 591 */ 592 sin = (sin_t *)addr_ucp; 593 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 594 break; 595 } 596 default: 597 return (EINVAL); 598 } 599 /* Extract the destination address. */ 600 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 601 602 /* Try to find the CACHED IRE. */ 603 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 604 605 /* Nail it. */ 606 if (ire) { 607 /* Allow delete only on CACHE entries */ 608 if (ire->ire_type != IRE_CACHE) { 609 ire_refrele(ire); 610 return (EINVAL); 611 } 612 613 /* 614 * Verify that the IRE has been around for a while. 615 * This is to protect against transport protocols 616 * that are too eager in sending delete messages. 617 */ 618 if (gethrestime_sec() < 619 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 620 ire_refrele(ire); 621 return (EINVAL); 622 } 623 /* 624 * Now we have a potentially dead cache entry. We need 625 * to remove it. 626 * If this cache entry is generated from a 627 * default route (i.e., ire_cmask == 0), 628 * search the default list and mark it dead and some 629 * background process will try to activate it. 630 */ 631 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 632 /* 633 * Make sure that we pick a different 634 * IRE_DEFAULT next time. 635 */ 636 ire_t *gw_ire; 637 irb_t *irb = NULL; 638 uint_t match_flags; 639 640 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 641 642 gire = ire_ftable_lookup(ire->ire_addr, 643 ire->ire_cmask, 0, 0, 644 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 645 ipst); 646 647 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 648 (void *)gire)); 649 650 if (gire != NULL) { 651 irb = gire->ire_bucket; 652 653 /* 654 * We grab it as writer just to serialize 655 * multiple threads trying to bump up 656 * irb_rr_origin 657 */ 658 rw_enter(&irb->irb_lock, RW_WRITER); 659 if ((gw_ire = irb->irb_rr_origin) == NULL) { 660 rw_exit(&irb->irb_lock); 661 goto done; 662 } 663 664 DTRACE_PROBE1(ip__ire__del__origin, 665 (ire_t *), gw_ire); 666 667 /* Skip past the potentially bad gateway */ 668 if (ire->ire_gateway_addr == 669 gw_ire->ire_gateway_addr) { 670 ire_t *next = gw_ire->ire_next; 671 672 DTRACE_PROBE2(ip__ire__del, 673 (ire_t *), gw_ire, (irb_t *), irb); 674 IRE_FIND_NEXT_ORIGIN(next); 675 irb->irb_rr_origin = next; 676 } 677 rw_exit(&irb->irb_lock); 678 } 679 } 680 done: 681 if (gire != NULL) 682 IRE_REFRELE(gire); 683 /* report the bad route to routing sockets */ 684 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 685 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 686 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 687 routing_sock_info = B_TRUE; 688 689 /* 690 * TCP is really telling us to start over completely, and it 691 * expects that we'll resend the ARP query. Tell ARP to 692 * discard the entry, if this is a local destination. 693 */ 694 ill = ire->ire_stq->q_ptr; 695 if (ire->ire_gateway_addr == 0 && 696 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 697 putnext(ill->ill_rq, arp_mp); 698 } 699 700 ire_delete(ire); 701 ire_refrele(ire); 702 } 703 /* 704 * Also look for an IRE_HOST type redirect ire and 705 * remove it if present. 706 */ 707 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 708 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 709 710 /* Nail it. */ 711 if (ire != NULL) { 712 if (ire->ire_flags & RTF_DYNAMIC) { 713 if (!routing_sock_info) { 714 ip_rts_change(RTM_LOSING, ire->ire_addr, 715 ire->ire_gateway_addr, ire->ire_mask, 716 ire->ire_src_addr, 0, 0, 0, 717 (RTA_DST | RTA_GATEWAY | 718 RTA_NETMASK | RTA_IFA), 719 ipst); 720 } 721 ire_delete(ire); 722 } 723 ire_refrele(ire); 724 } 725 return (0); 726 } 727 728 729 /* 730 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 731 * down from the Upper Level Protocol to request a copy of the IRE (to check 732 * its type or to extract information like round-trip time estimates or the 733 * MTU.) 734 * The address is assumed to be in the ire_addr field. If no IRE is found 735 * an IRE is returned with ire_type being zero. 736 * Note that the upper lavel protocol has to check for broadcast 737 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 738 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 739 * end of the returned message. 740 * 741 * TCP sends down a message of this type with a connection request packet 742 * chained on. UDP and ICMP send it down to verify that a route exists for 743 * the destination address when they get connected. 744 */ 745 void 746 ip_ire_req(queue_t *q, mblk_t *mp) 747 { 748 ire_t *inire; 749 ire_t *ire; 750 mblk_t *mp1; 751 ire_t *sire = NULL; 752 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 753 ip_stack_t *ipst = CONNQ_TO_IPST(q); 754 755 ASSERT(q->q_next == NULL); 756 757 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 758 !OK_32PTR(mp->b_rptr)) { 759 freemsg(mp); 760 return; 761 } 762 inire = (ire_t *)mp->b_rptr; 763 /* 764 * Got it, now take our best shot at an IRE. 765 */ 766 if (inire->ire_ipversion == IPV6_VERSION) { 767 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 768 NULL, &sire, zoneid, NULL, 769 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 770 } else { 771 ASSERT(inire->ire_ipversion == IPV4_VERSION); 772 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 773 NULL, &sire, zoneid, NULL, 774 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 775 } 776 777 /* 778 * We prevent returning IRES with source address INADDR_ANY 779 * as these were temporarily created for sending packets 780 * from endpoints that have conn_unspec_src set. 781 */ 782 if (ire == NULL || 783 (ire->ire_ipversion == IPV4_VERSION && 784 ire->ire_src_addr == INADDR_ANY) || 785 (ire->ire_ipversion == IPV6_VERSION && 786 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 787 inire->ire_type = 0; 788 } else { 789 bcopy(ire, inire, sizeof (ire_t)); 790 /* Copy the route metrics from the parent. */ 791 if (sire != NULL) { 792 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 793 sizeof (iulp_t)); 794 } 795 796 /* 797 * As we don't lookup global policy here, we may not 798 * pass the right size if per-socket policy is not 799 * present. For these cases, path mtu discovery will 800 * do the right thing. 801 */ 802 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 803 804 /* Pass the latest setting of the ip_path_mtu_discovery */ 805 inire->ire_frag_flag |= 806 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 807 } 808 if (ire != NULL) 809 ire_refrele(ire); 810 if (sire != NULL) 811 ire_refrele(sire); 812 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 813 mp->b_datap->db_type = IRE_DB_TYPE; 814 815 /* Put the IRE_DB_TYPE mblk last in the chain */ 816 mp1 = mp->b_cont; 817 if (mp1 != NULL) { 818 mp->b_cont = NULL; 819 linkb(mp1, mp); 820 mp = mp1; 821 } 822 qreply(q, mp); 823 } 824 825 /* 826 * Send a packet using the specified IRE. 827 * If ire_src_addr_v6 is all zero then discard the IRE after 828 * the packet has been sent. 829 */ 830 static void 831 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 832 { 833 mblk_t *ipsec_mp; 834 boolean_t is_secure; 835 uint_t ifindex; 836 ill_t *ill; 837 zoneid_t zoneid = ire->ire_zoneid; 838 ip_stack_t *ipst = ire->ire_ipst; 839 840 ASSERT(ire->ire_ipversion == IPV4_VERSION); 841 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 842 ipsec_mp = pkt; 843 is_secure = (pkt->b_datap->db_type == M_CTL); 844 if (is_secure) { 845 ipsec_out_t *io; 846 847 pkt = pkt->b_cont; 848 io = (ipsec_out_t *)ipsec_mp->b_rptr; 849 if (io->ipsec_out_type == IPSEC_OUT) 850 zoneid = io->ipsec_out_zoneid; 851 } 852 853 /* If the packet originated externally then */ 854 if (pkt->b_prev) { 855 ire_refrele(ire); 856 /* 857 * Extract the ifindex from b_prev (set in ip_rput_noire). 858 * Look up interface to see if it still exists (it could have 859 * been unplumbed by the time the reply came back from ARP) 860 */ 861 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 862 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 863 NULL, NULL, NULL, NULL, ipst); 864 if (ill == NULL) { 865 pkt->b_prev = NULL; 866 pkt->b_next = NULL; 867 freemsg(ipsec_mp); 868 return; 869 } 870 q = ill->ill_rq; 871 pkt->b_prev = NULL; 872 /* 873 * This packet has not gone through IPSEC processing 874 * and hence we should not have any IPSEC message 875 * prepended. 876 */ 877 ASSERT(ipsec_mp == pkt); 878 put(q, pkt); 879 ill_refrele(ill); 880 } else if (pkt->b_next) { 881 /* Packets from multicast router */ 882 pkt->b_next = NULL; 883 /* 884 * We never get the IPSEC_OUT while forwarding the 885 * packet for multicast router. 886 */ 887 ASSERT(ipsec_mp == pkt); 888 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 889 ire_refrele(ire); 890 } else { 891 /* Locally originated packets */ 892 boolean_t delete_ire = B_FALSE; 893 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 894 895 /* 896 * If this IRE shouldn't be kept in the table (because its 897 * source address is unspecified), hold a reference to it so 898 * we can delete it even after e.g. ip_wput_ire() has dropped 899 * its reference. 900 */ 901 if (!(ire->ire_marks & IRE_MARK_NOADD) && 902 ire->ire_src_addr == INADDR_ANY) { 903 delete_ire = B_TRUE; 904 IRE_REFHOLD(ire); 905 } 906 907 /* 908 * If we were resolving a router we can not use the 909 * routers IRE for sending the packet (since it would 910 * violate the uniqness of the IP idents) thus we 911 * make another pass through ip_wput to create the IRE_CACHE 912 * for the destination. 913 * When IRE_MARK_NOADD is set, ire_add() is not called. 914 * Thus ip_wput() will never find a ire and result in an 915 * infinite loop. Thus we check whether IRE_MARK_NOADD is 916 * is set. This also implies that IRE_MARK_NOADD can only be 917 * used to send packets to directly connected hosts. 918 */ 919 if (ipha->ipha_dst != ire->ire_addr && 920 !(ire->ire_marks & IRE_MARK_NOADD)) { 921 ire_refrele(ire); /* Held in ire_add */ 922 if (CONN_Q(q)) { 923 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 924 IRE_SEND); 925 } else { 926 (void) ip_output((void *)(uintptr_t)zoneid, 927 ipsec_mp, q, IRE_SEND); 928 } 929 } else { 930 if (is_secure) { 931 ipsec_out_t *oi; 932 ipha_t *ipha; 933 934 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 935 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 936 if (oi->ipsec_out_proc_begin) { 937 /* 938 * This is the case where 939 * ip_wput_ipsec_out could not find 940 * the IRE and recreated a new one. 941 * As ip_wput_ipsec_out does ire 942 * lookups, ire_refrele for the extra 943 * bump in ire_add. 944 */ 945 ire_refrele(ire); 946 ip_wput_ipsec_out(q, ipsec_mp, ipha, 947 NULL, NULL); 948 } else { 949 /* 950 * IRE_REFRELE will be done in 951 * ip_wput_ire. 952 */ 953 ip_wput_ire(q, ipsec_mp, ire, NULL, 954 IRE_SEND, zoneid); 955 } 956 } else { 957 /* 958 * IRE_REFRELE will be done in ip_wput_ire. 959 */ 960 ip_wput_ire(q, ipsec_mp, ire, NULL, 961 IRE_SEND, zoneid); 962 } 963 } 964 /* 965 * Special code to support sending a single packet with 966 * conn_unspec_src using an IRE which has no source address. 967 * The IRE is deleted here after sending the packet to avoid 968 * having other code trip on it. But before we delete the 969 * ire, somebody could have looked up this ire. 970 * We prevent returning/using this IRE by the upper layers 971 * by making checks to NULL source address in other places 972 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 973 * Though this does not completely prevent other threads 974 * from using this ire, this should not cause any problems. 975 */ 976 if (delete_ire) { 977 ip1dbg(("ire_send: delete IRE\n")); 978 ire_delete(ire); 979 ire_refrele(ire); /* Held above */ 980 } 981 } 982 } 983 984 /* 985 * Send a packet using the specified IRE. 986 * If ire_src_addr_v6 is all zero then discard the IRE after 987 * the packet has been sent. 988 */ 989 static void 990 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 991 { 992 mblk_t *ipsec_mp; 993 boolean_t secure; 994 uint_t ifindex; 995 zoneid_t zoneid = ire->ire_zoneid; 996 ip_stack_t *ipst = ire->ire_ipst; 997 998 ASSERT(ire->ire_ipversion == IPV6_VERSION); 999 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1000 if (pkt->b_datap->db_type == M_CTL) { 1001 ipsec_out_t *io; 1002 1003 ipsec_mp = pkt; 1004 pkt = pkt->b_cont; 1005 secure = B_TRUE; 1006 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1007 if (io->ipsec_out_type == IPSEC_OUT) 1008 zoneid = io->ipsec_out_zoneid; 1009 } else { 1010 ipsec_mp = pkt; 1011 secure = B_FALSE; 1012 } 1013 1014 /* If the packet originated externally then */ 1015 if (pkt->b_prev) { 1016 ill_t *ill; 1017 /* 1018 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1019 * Look up interface to see if it still exists (it could have 1020 * been unplumbed by the time the reply came back from the 1021 * resolver). 1022 */ 1023 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1024 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1025 NULL, NULL, NULL, NULL, ipst); 1026 if (ill == NULL) { 1027 pkt->b_prev = NULL; 1028 pkt->b_next = NULL; 1029 freemsg(ipsec_mp); 1030 ire_refrele(ire); /* Held in ire_add */ 1031 return; 1032 } 1033 q = ill->ill_rq; 1034 pkt->b_prev = NULL; 1035 /* 1036 * This packet has not gone through IPSEC processing 1037 * and hence we should not have any IPSEC message 1038 * prepended. 1039 */ 1040 ASSERT(ipsec_mp == pkt); 1041 put(q, pkt); 1042 ill_refrele(ill); 1043 } else if (pkt->b_next) { 1044 /* Packets from multicast router */ 1045 pkt->b_next = NULL; 1046 /* 1047 * We never get the IPSEC_OUT while forwarding the 1048 * packet for multicast router. 1049 */ 1050 ASSERT(ipsec_mp == pkt); 1051 /* 1052 * XXX TODO IPv6. 1053 */ 1054 freemsg(pkt); 1055 #ifdef XXX 1056 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1057 #endif 1058 } else { 1059 if (secure) { 1060 ipsec_out_t *oi; 1061 ip6_t *ip6h; 1062 1063 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1064 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1065 if (oi->ipsec_out_proc_begin) { 1066 /* 1067 * This is the case where 1068 * ip_wput_ipsec_out could not find 1069 * the IRE and recreated a new one. 1070 */ 1071 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1072 NULL, NULL); 1073 } else { 1074 if (CONN_Q(q)) { 1075 (void) ip_output_v6(Q_TO_CONN(q), 1076 ipsec_mp, q, IRE_SEND); 1077 } else { 1078 (void) ip_output_v6( 1079 (void *)(uintptr_t)zoneid, 1080 ipsec_mp, q, IRE_SEND); 1081 } 1082 } 1083 } else { 1084 /* 1085 * Send packets through ip_output_v6 so that any 1086 * ip6_info header can be processed again. 1087 */ 1088 if (CONN_Q(q)) { 1089 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1090 IRE_SEND); 1091 } else { 1092 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1093 ipsec_mp, q, IRE_SEND); 1094 } 1095 } 1096 /* 1097 * Special code to support sending a single packet with 1098 * conn_unspec_src using an IRE which has no source address. 1099 * The IRE is deleted here after sending the packet to avoid 1100 * having other code trip on it. But before we delete the 1101 * ire, somebody could have looked up this ire. 1102 * We prevent returning/using this IRE by the upper layers 1103 * by making checks to NULL source address in other places 1104 * like e.g ip_ire_append_v6, ip_ire_req and 1105 * ip_bind_connected_v6. Though, this does not completely 1106 * prevent other threads from using this ire, this should 1107 * not cause any problems. 1108 */ 1109 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1110 ip1dbg(("ire_send_v6: delete IRE\n")); 1111 ire_delete(ire); 1112 } 1113 } 1114 ire_refrele(ire); /* Held in ire_add */ 1115 } 1116 1117 /* 1118 * Make sure that IRE bucket does not get too long. 1119 * This can cause lock up because ire_cache_lookup() 1120 * may take "forever" to finish. 1121 * 1122 * We only remove a maximum of cnt IREs each time. This 1123 * should keep the bucket length approximately constant, 1124 * depending on cnt. This should be enough to defend 1125 * against DoS attack based on creating temporary IREs 1126 * (for forwarding and non-TCP traffic). 1127 * 1128 * We also pass in the address of the newly created IRE 1129 * as we do not want to remove this straight after adding 1130 * it. New IREs are normally added at the tail of the 1131 * bucket. This means that we are removing the "oldest" 1132 * temporary IREs added. Only if there are IREs with 1133 * the same ire_addr, do we not add it at the tail. Refer 1134 * to ire_add_v*(). It should be OK for our purpose. 1135 * 1136 * For non-temporary cached IREs, we make sure that they 1137 * have not been used for some time (defined below), they 1138 * are non-local destinations, and there is no one using 1139 * them at the moment (refcnt == 1). 1140 * 1141 * The above means that the IRE bucket length may become 1142 * very long, consisting of mostly non-temporary IREs. 1143 * This can happen when the hash function does a bad job 1144 * so that most TCP connections cluster to a specific bucket. 1145 * This "hopefully" should never happen. It can also 1146 * happen if most TCP connections have very long lives. 1147 * Even with the minimal hash table size of 256, there 1148 * has to be a lot of such connections to make the bucket 1149 * length unreasonably long. This should probably not 1150 * happen either. The third can when this can happen is 1151 * when the machine is under attack, such as SYN flooding. 1152 * TCP should already have the proper mechanism to protect 1153 * that. So we should be safe. 1154 * 1155 * This function is called by ire_add_then_send() after 1156 * a new IRE is added and the packet is sent. 1157 * 1158 * The idle cutoff interval is set to 60s. It can be 1159 * changed using /etc/system. 1160 */ 1161 uint32_t ire_idle_cutoff_interval = 60000; 1162 1163 static void 1164 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire) 1165 { 1166 ire_t *ire; 1167 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1168 int cnt = ip_ire_cleanup_cnt; 1169 1170 /* 1171 * Try to remove cnt temporary IREs first. 1172 */ 1173 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) { 1174 if (ire == ref_ire) 1175 continue; 1176 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1177 continue; 1178 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1179 ASSERT(ire->ire_type == IRE_CACHE); 1180 ire_delete(ire); 1181 cnt--; 1182 } 1183 } 1184 if (cnt == 0) 1185 return; 1186 1187 /* 1188 * If we didn't satisfy our removal target from temporary IREs 1189 * we see how many non-temporary IREs are currently in the bucket. 1190 * If this quantity is above the threshold then we see if there are any 1191 * candidates for removal. We are still limited to removing a maximum 1192 * of cnt IREs. 1193 */ 1194 if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) { 1195 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; 1196 ire = ire->ire_next) { 1197 if (ire == ref_ire) 1198 continue; 1199 if (ire->ire_type != IRE_CACHE) 1200 continue; 1201 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1202 continue; 1203 if ((ire->ire_refcnt == 1) && 1204 (lbolt - ire->ire_last_used_time > cut_off)) { 1205 ire_delete(ire); 1206 cnt--; 1207 } 1208 } 1209 } 1210 } 1211 1212 /* 1213 * ire_add_then_send is called when a new IRE has been created in order to 1214 * route an outgoing packet. Typically, it is called from ip_wput when 1215 * a response comes back down from a resolver. We add the IRE, and then 1216 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1217 * However, we do not add the newly created IRE in the cache when 1218 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1219 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1220 * ip_wput_ire() and get deleted. 1221 * Multirouting support: the packet is silently discarded when the new IRE 1222 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1223 * RTF_MULTIRT flag for the same destination address. 1224 * In this case, we just want to register this additional ire without 1225 * sending the packet, as it has already been replicated through 1226 * existing multirt routes in ip_wput(). 1227 */ 1228 void 1229 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1230 { 1231 irb_t *irb; 1232 boolean_t drop = B_FALSE; 1233 /* LINTED : set but not used in function */ 1234 boolean_t mctl_present; 1235 mblk_t *first_mp = NULL; 1236 mblk_t *save_mp = NULL; 1237 ire_t *dst_ire; 1238 ipha_t *ipha; 1239 ip6_t *ip6h; 1240 ip_stack_t *ipst = ire->ire_ipst; 1241 int ire_limit; 1242 1243 if (mp != NULL) { 1244 /* 1245 * We first have to retrieve the destination address carried 1246 * by the packet. 1247 * We can't rely on ire as it can be related to a gateway. 1248 * The destination address will help in determining if 1249 * other RTF_MULTIRT ires are already registered. 1250 * 1251 * We first need to know where we are going : v4 or V6. 1252 * the ire version is enough, as there is no risk that 1253 * we resolve an IPv6 address with an IPv4 ire 1254 * or vice versa. 1255 */ 1256 if (ire->ire_ipversion == IPV4_VERSION) { 1257 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1258 ipha = (ipha_t *)mp->b_rptr; 1259 save_mp = mp; 1260 mp = first_mp; 1261 1262 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1263 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1264 } else { 1265 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1266 /* 1267 * Get a pointer to the beginning of the IPv6 header. 1268 * Ignore leading IPsec control mblks. 1269 */ 1270 first_mp = mp; 1271 if (mp->b_datap->db_type == M_CTL) { 1272 mp = mp->b_cont; 1273 } 1274 ip6h = (ip6_t *)mp->b_rptr; 1275 save_mp = mp; 1276 mp = first_mp; 1277 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1278 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1279 } 1280 if (dst_ire != NULL) { 1281 if (dst_ire->ire_flags & RTF_MULTIRT) { 1282 /* 1283 * At least one resolved multirt route 1284 * already exists for the destination, 1285 * don't sent this packet: either drop it 1286 * or complete the pending resolution, 1287 * depending on the ire. 1288 */ 1289 drop = B_TRUE; 1290 } 1291 ip1dbg(("ire_add_then_send: dst_ire %p " 1292 "[dst %08x, gw %08x], drop %d\n", 1293 (void *)dst_ire, 1294 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1295 ntohl(dst_ire->ire_addr) : \ 1296 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1297 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1298 ntohl(dst_ire->ire_gateway_addr) : \ 1299 ntohl(V4_PART_OF_V6( 1300 dst_ire->ire_gateway_addr_v6)), 1301 drop)); 1302 ire_refrele(dst_ire); 1303 } 1304 } 1305 1306 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1307 /* Regular packets with cache bound ires are here. */ 1308 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1309 1310 if (ire == NULL) { 1311 mp->b_prev = NULL; 1312 mp->b_next = NULL; 1313 MULTIRT_DEBUG_UNTAG(mp); 1314 freemsg(mp); 1315 return; 1316 } 1317 if (mp == NULL) { 1318 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1319 return; 1320 } 1321 } 1322 if (drop) { 1323 /* 1324 * If we're adding an RTF_MULTIRT ire, the resolution 1325 * is over: we just drop the packet. 1326 */ 1327 if (ire->ire_flags & RTF_MULTIRT) { 1328 if (save_mp) { 1329 save_mp->b_prev = NULL; 1330 save_mp->b_next = NULL; 1331 } 1332 MULTIRT_DEBUG_UNTAG(mp); 1333 freemsg(mp); 1334 } else { 1335 /* 1336 * Otherwise, we're adding the ire to a gateway 1337 * for a multirt route. 1338 * Invoke ip_newroute() to complete the resolution 1339 * of the route. We will then come back here and 1340 * finally drop this packet in the above code. 1341 */ 1342 if (ire->ire_ipversion == IPV4_VERSION) { 1343 /* 1344 * TODO: in order for CGTP to work in non-global 1345 * zones, ip_newroute() must create the IRE 1346 * cache in the zone indicated by 1347 * ire->ire_zoneid. 1348 */ 1349 ip_newroute(q, mp, ipha->ipha_dst, 1350 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1351 ire->ire_zoneid, ipst); 1352 } else { 1353 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1354 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1355 NULL, ire->ire_zoneid, ipst); 1356 } 1357 } 1358 1359 ire_refrele(ire); /* As done by ire_send(). */ 1360 return; 1361 } 1362 /* 1363 * Need to remember ire_bucket here as ire_send*() may delete 1364 * the ire so we cannot reference it after that. 1365 */ 1366 irb = ire->ire_bucket; 1367 if (ire->ire_ipversion == IPV4_VERSION) { 1368 ire_send(q, mp, ire); 1369 ire_limit = ip_ire_max_bucket_cnt; 1370 } else { 1371 ire_send_v6(q, mp, ire); 1372 ire_limit = ip6_ire_max_bucket_cnt; 1373 } 1374 1375 /* 1376 * irb is NULL if the IRE was not added to the hash. This happens 1377 * when IRE_MARK_NOADD is set and when IREs are returned from 1378 * ire_update_srcif_v4(). 1379 */ 1380 if (irb != NULL) { 1381 IRB_REFHOLD(irb); 1382 if (irb->irb_ire_cnt > ire_limit) 1383 ire_cache_cleanup(irb, ire_limit, ire); 1384 IRB_REFRELE(irb); 1385 } 1386 } 1387 1388 /* 1389 * Initialize the ire that is specific to IPv4 part and call 1390 * ire_init_common to finish it. 1391 */ 1392 ire_t * 1393 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1394 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1395 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1396 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1397 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1398 { 1399 ASSERT(type != IRE_CACHE || stq != NULL); 1400 /* 1401 * Reject IRE security attribute creation/initialization 1402 * if system is not running in Trusted mode. 1403 */ 1404 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1405 return (NULL); 1406 1407 1408 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1409 1410 if (addr != NULL) 1411 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1412 if (src_addr != NULL) 1413 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1414 if (mask != NULL) { 1415 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1416 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1417 } 1418 if (gateway != NULL) { 1419 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1420 } 1421 1422 if (type == IRE_CACHE) 1423 ire->ire_cmask = cmask; 1424 1425 /* ire_init_common will free the mblks upon encountering any failure */ 1426 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1427 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1428 return (NULL); 1429 1430 return (ire); 1431 } 1432 1433 /* 1434 * Similar to ire_create except that it is called only when 1435 * we want to allocate ire as an mblk e.g. we have an external 1436 * resolver ARP. 1437 */ 1438 ire_t * 1439 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1440 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1441 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1442 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1443 ip_stack_t *ipst) 1444 { 1445 ire_t *ire, *buf; 1446 ire_t *ret_ire; 1447 mblk_t *mp; 1448 size_t bufsize; 1449 frtn_t *frtnp; 1450 ill_t *ill; 1451 1452 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1453 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1454 if (buf == NULL) { 1455 ip1dbg(("ire_create_mp: alloc failed\n")); 1456 return (NULL); 1457 } 1458 frtnp = (frtn_t *)(buf + 1); 1459 frtnp->free_arg = (caddr_t)buf; 1460 frtnp->free_func = ire_freemblk; 1461 1462 /* 1463 * Allocate the new IRE. The ire created will hold a ref on 1464 * an nce_t after ire_nce_init, and this ref must either be 1465 * (a) transferred to the ire_cache entry created when ire_add_v4 1466 * is called after successful arp resolution, or, 1467 * (b) released, when arp resolution fails 1468 * Case (b) is handled in ire_freemblk() which will be called 1469 * when mp is freed as a result of failed arp. 1470 */ 1471 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1472 if (mp == NULL) { 1473 ip1dbg(("ire_create_mp: alloc failed\n")); 1474 kmem_free(buf, bufsize); 1475 return (NULL); 1476 } 1477 ire = (ire_t *)mp->b_rptr; 1478 mp->b_wptr = (uchar_t *)&ire[1]; 1479 1480 /* Start clean. */ 1481 *ire = ire_null; 1482 ire->ire_mp = mp; 1483 mp->b_datap->db_type = IRE_DB_TYPE; 1484 ire->ire_marks |= IRE_MARK_UNCACHED; 1485 1486 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1487 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1488 gcgrp, ipst); 1489 1490 ill = (ill_t *)(stq->q_ptr); 1491 if (ret_ire == NULL) { 1492 /* ire_freemblk needs these set */ 1493 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1494 ire->ire_ipst = ipst; 1495 freeb(ire->ire_mp); 1496 return (NULL); 1497 } 1498 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1499 ASSERT(ret_ire == ire); 1500 /* 1501 * ire_max_frag is normally zero here and is atomically set 1502 * under the irebucket lock in ire_add_v[46] except for the 1503 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1504 * is non-zero here. 1505 */ 1506 ire->ire_max_frag = max_frag; 1507 return (ire); 1508 } 1509 1510 /* 1511 * ire_create is called to allocate and initialize a new IRE. 1512 * 1513 * NOTE : This is called as writer sometimes though not required 1514 * by this function. 1515 */ 1516 ire_t * 1517 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1518 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1519 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1520 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1521 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1522 { 1523 ire_t *ire; 1524 ire_t *ret_ire; 1525 1526 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1527 if (ire == NULL) { 1528 ip1dbg(("ire_create: alloc failed\n")); 1529 return (NULL); 1530 } 1531 *ire = ire_null; 1532 1533 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1534 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1535 ulp_info, gc, gcgrp, ipst); 1536 1537 if (ret_ire == NULL) { 1538 kmem_cache_free(ire_cache, ire); 1539 return (NULL); 1540 } 1541 ASSERT(ret_ire == ire); 1542 return (ire); 1543 } 1544 1545 1546 /* 1547 * Common to IPv4 and IPv6 1548 */ 1549 boolean_t 1550 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1551 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1552 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1553 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1554 { 1555 ire->ire_max_fragp = max_fragp; 1556 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1557 1558 #ifdef DEBUG 1559 if (ipif != NULL) { 1560 if (ipif->ipif_isv6) 1561 ASSERT(ipversion == IPV6_VERSION); 1562 else 1563 ASSERT(ipversion == IPV4_VERSION); 1564 } 1565 #endif /* DEBUG */ 1566 1567 /* 1568 * Create/initialize IRE security attribute only in Trusted mode; 1569 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1570 * has held a reference to it and will release it when this routine 1571 * returns a failure, otherwise we own the reference. We do this 1572 * prior to initializing the rest IRE fields. 1573 * 1574 * Don't allocate ire_gw_secattr for the resolver case to prevent 1575 * memory leak (in case of external resolution failure). We'll 1576 * allocate it after a successful external resolution, in ire_add(). 1577 * Note that ire->ire_mp != NULL here means this ire is headed 1578 * to an external resolver. 1579 */ 1580 if (is_system_labeled()) { 1581 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1582 IRE_INTERFACE)) != 0) { 1583 /* release references on behalf of caller */ 1584 if (gc != NULL) 1585 GC_REFRELE(gc); 1586 if (gcgrp != NULL) 1587 GCGRP_REFRELE(gcgrp); 1588 } else if ((ire->ire_mp == NULL) && 1589 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1590 return (B_FALSE); 1591 } 1592 } 1593 1594 ire->ire_stq = stq; 1595 ire->ire_rfq = rfq; 1596 ire->ire_type = type; 1597 ire->ire_flags = RTF_UP | flags; 1598 ire->ire_ident = TICK_TO_MSEC(lbolt); 1599 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1600 1601 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1602 ire->ire_last_used_time = lbolt; 1603 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1604 1605 /* 1606 * If this IRE is an IRE_CACHE, inherit the handles from the 1607 * parent IREs. For others in the forwarding table, assign appropriate 1608 * new ones. 1609 * 1610 * The mutex protecting ire_handle is because ire_create is not always 1611 * called as a writer. 1612 */ 1613 if (ire->ire_type & IRE_OFFSUBNET) { 1614 mutex_enter(&ipst->ips_ire_handle_lock); 1615 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1616 mutex_exit(&ipst->ips_ire_handle_lock); 1617 } else if (ire->ire_type & IRE_INTERFACE) { 1618 mutex_enter(&ipst->ips_ire_handle_lock); 1619 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1620 mutex_exit(&ipst->ips_ire_handle_lock); 1621 } else if (ire->ire_type == IRE_CACHE) { 1622 ire->ire_phandle = phandle; 1623 ire->ire_ihandle = ihandle; 1624 } 1625 ire->ire_ipif = ipif; 1626 if (ipif != NULL) { 1627 ire->ire_ipif_seqid = ipif->ipif_seqid; 1628 ire->ire_zoneid = ipif->ipif_zoneid; 1629 } else { 1630 ire->ire_zoneid = GLOBAL_ZONEID; 1631 } 1632 ire->ire_ipversion = ipversion; 1633 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1634 if (ipversion == IPV4_VERSION) { 1635 /* 1636 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1637 * to find the ire_nce to be null when it is called. 1638 */ 1639 if (ire_nce_init(ire, src_nce) != 0) { 1640 /* some failure occurred. propagate error back */ 1641 return (B_FALSE); 1642 } 1643 } 1644 ire->ire_refcnt = 1; 1645 ire->ire_ipst = ipst; /* No netstack_hold */ 1646 ire->ire_trace_disable = B_FALSE; 1647 1648 return (B_TRUE); 1649 } 1650 1651 /* 1652 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1653 * It is passed a pointer to a slot in an IRE pointer array into which to 1654 * place the pointer to the new IRE, if indeed we create one. If the 1655 * IRE corresponding to the address passed in would be a duplicate of an 1656 * existing one, we don't create the new one. irep is incremented before 1657 * return only if we do create a new IRE. (Always called as writer.) 1658 * 1659 * Note that with the "match_flags" parameter, we can match on either 1660 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1661 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1662 * we only create broadcast ire's on a per physical interface basis. If 1663 * someone is going to be mucking with logical interfaces, it is important 1664 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1665 * logical interface will not cause critical broadcast IRE's to be deleted. 1666 */ 1667 ire_t ** 1668 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1669 int match_flags) 1670 { 1671 ire_t *ire; 1672 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1673 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1674 1675 /* 1676 * No broadcast IREs for the LOOPBACK interface 1677 * or others such as point to point and IPIF_NOXMIT. 1678 */ 1679 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1680 (ipif->ipif_flags & IPIF_NOXMIT)) 1681 return (irep); 1682 1683 /* If this would be a duplicate, don't bother. */ 1684 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1685 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1686 /* 1687 * We look for non-deprecated (and non-anycast, non-nolocal) 1688 * ipifs as the best choice. ipifs with check_flags matching 1689 * (deprecated, etc) are used only if non-deprecated ipifs 1690 * are not available. if the existing ire's ipif is deprecated 1691 * and the new ipif is non-deprecated, switch to the new ipif 1692 */ 1693 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1694 (ipif->ipif_flags & check_flags)) { 1695 ire_refrele(ire); 1696 return (irep); 1697 } 1698 /* 1699 * Bcast ires exist in pairs. Both have to be deleted, 1700 * Since we are exclusive we can make the above assertion. 1701 * The 1st has to be refrele'd since it was ctable_lookup'd. 1702 */ 1703 ASSERT(IAM_WRITER_IPIF(ipif)); 1704 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1705 ire_delete(ire->ire_next); 1706 ire_delete(ire); 1707 ire_refrele(ire); 1708 } 1709 1710 irep = ire_create_bcast(ipif, addr, irep); 1711 1712 return (irep); 1713 } 1714 1715 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1716 1717 /* 1718 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1719 * It leaves all the verifying and deleting to those routines. So it always 1720 * creates 2 bcast ires and chains them into the ire array passed in. 1721 */ 1722 ire_t ** 1723 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1724 { 1725 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1726 1727 *irep++ = ire_create( 1728 (uchar_t *)&addr, /* dest addr */ 1729 (uchar_t *)&ip_g_all_ones, /* mask */ 1730 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1731 NULL, /* no gateway */ 1732 &ipif->ipif_mtu, /* max frag */ 1733 NULL, /* no src nce */ 1734 ipif->ipif_rq, /* recv-from queue */ 1735 ipif->ipif_wq, /* send-to queue */ 1736 IRE_BROADCAST, 1737 ipif, 1738 0, 1739 0, 1740 0, 1741 0, 1742 &ire_uinfo_null, 1743 NULL, 1744 NULL, 1745 ipst); 1746 1747 *irep++ = ire_create( 1748 (uchar_t *)&addr, /* dest address */ 1749 (uchar_t *)&ip_g_all_ones, /* mask */ 1750 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1751 NULL, /* no gateway */ 1752 &ip_loopback_mtu, /* max frag size */ 1753 NULL, /* no src_nce */ 1754 ipif->ipif_rq, /* recv-from queue */ 1755 NULL, /* no send-to queue */ 1756 IRE_BROADCAST, /* Needed for fanout in wput */ 1757 ipif, 1758 0, 1759 0, 1760 0, 1761 0, 1762 &ire_uinfo_null, 1763 NULL, 1764 NULL, 1765 ipst); 1766 1767 return (irep); 1768 } 1769 1770 /* 1771 * ire_walk routine to delete or update any IRE_CACHE that might contain 1772 * stale information. 1773 * The flags state which entries to delete or update. 1774 * Garbage collection is done separately using kmem alloc callbacks to 1775 * ip_trash_ire_reclaim. 1776 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1777 * since other stale information is cleaned up using NUD. 1778 */ 1779 void 1780 ire_expire(ire_t *ire, char *arg) 1781 { 1782 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1783 ill_t *stq_ill; 1784 int flush_flags = ieap->iea_flush_flag; 1785 ip_stack_t *ipst = ieap->iea_ipst; 1786 1787 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1788 (ire->ire_flags & RTF_DYNAMIC)) { 1789 /* Make sure we delete the corresponding IRE_CACHE */ 1790 ip1dbg(("ire_expire: all redirects\n")); 1791 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1792 ire_delete(ire); 1793 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1794 return; 1795 } 1796 if (ire->ire_type != IRE_CACHE) 1797 return; 1798 1799 if (flush_flags & FLUSH_ARP_TIME) { 1800 /* 1801 * Remove all IRE_CACHE except IPv4 multicast ires. These 1802 * ires will be deleted by ip_trash_ire_reclaim_stack() 1803 * when system runs low in memory. 1804 * Verify that create time is more than ip_ire_arp_interval 1805 * milliseconds ago. 1806 */ 1807 1808 if (!(ire->ire_ipversion == IPV4_VERSION && 1809 CLASSD(ire->ire_addr)) && NCE_EXPIRED(ire->ire_nce, ipst)) { 1810 ire_delete(ire); 1811 return; 1812 } 1813 } 1814 1815 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1816 (ire->ire_ipif != NULL)) { 1817 /* Increase pmtu if it is less than the interface mtu */ 1818 mutex_enter(&ire->ire_lock); 1819 /* 1820 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1821 * get the mtu from the sending interfaces' ipif 1822 */ 1823 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1824 stq_ill = ire->ire_stq->q_ptr; 1825 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1826 IP_MAXPACKET); 1827 } else { 1828 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1829 IP_MAXPACKET); 1830 } 1831 ire->ire_frag_flag |= IPH_DF; 1832 mutex_exit(&ire->ire_lock); 1833 } 1834 } 1835 1836 /* 1837 * Return any local address. We use this to target ourselves 1838 * when the src address was specified as 'default'. 1839 * Preference for IRE_LOCAL entries. 1840 */ 1841 ire_t * 1842 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1843 { 1844 ire_t *ire; 1845 irb_t *irb; 1846 ire_t *maybe = NULL; 1847 int i; 1848 1849 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1850 irb = &ipst->ips_ip_cache_table[i]; 1851 if (irb->irb_ire == NULL) 1852 continue; 1853 rw_enter(&irb->irb_lock, RW_READER); 1854 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1855 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1856 (ire->ire_zoneid != zoneid && 1857 ire->ire_zoneid != ALL_ZONES)) 1858 continue; 1859 switch (ire->ire_type) { 1860 case IRE_LOOPBACK: 1861 if (maybe == NULL) { 1862 IRE_REFHOLD(ire); 1863 maybe = ire; 1864 } 1865 break; 1866 case IRE_LOCAL: 1867 if (maybe != NULL) { 1868 ire_refrele(maybe); 1869 } 1870 IRE_REFHOLD(ire); 1871 rw_exit(&irb->irb_lock); 1872 return (ire); 1873 } 1874 } 1875 rw_exit(&irb->irb_lock); 1876 } 1877 return (maybe); 1878 } 1879 1880 /* 1881 * If the specified IRE is associated with a particular ILL, return 1882 * that ILL pointer (May be called as writer.). 1883 * 1884 * NOTE : This is not a generic function that can be used always. 1885 * This function always returns the ill of the outgoing packets 1886 * if this ire is used. 1887 */ 1888 ill_t * 1889 ire_to_ill(const ire_t *ire) 1890 { 1891 ill_t *ill = NULL; 1892 1893 /* 1894 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 1895 * the source address from. ire_stq is the one where the 1896 * packets will be sent out on. We return that here. 1897 * 1898 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 1899 * copy and they always exist next to each other with loopback 1900 * copy being the first one. If we are called on the non-loopback 1901 * copy, return the one pointed by ire_stq. If it was called on 1902 * a loopback copy, we still return the one pointed by the next 1903 * ire's ire_stq pointer i.e the one pointed by the non-loopback 1904 * copy. We don't want use ire_ipif as it might represent the 1905 * source address (if we borrow source addresses for 1906 * IRE_BROADCASTS in the future). 1907 * However if an interface is currently coming up, the above 1908 * condition may not hold during that period since the ires 1909 * are added one at a time. Thus one of the pair could have been 1910 * added and the other not yet added. 1911 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 1912 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 1913 * That handles IRE_LOOPBACK. 1914 */ 1915 1916 if (ire->ire_type == IRE_CACHE) { 1917 ill = (ill_t *)ire->ire_stq->q_ptr; 1918 } else if (ire->ire_type == IRE_BROADCAST) { 1919 if (ire->ire_stq != NULL) { 1920 ill = (ill_t *)ire->ire_stq->q_ptr; 1921 } else { 1922 ire_t *ire_next; 1923 1924 ire_next = ire->ire_next; 1925 if (ire_next != NULL && 1926 ire_next->ire_type == IRE_BROADCAST && 1927 ire_next->ire_addr == ire->ire_addr && 1928 ire_next->ire_ipif == ire->ire_ipif) { 1929 ill = (ill_t *)ire_next->ire_stq->q_ptr; 1930 } 1931 } 1932 } else if (ire->ire_rfq != NULL) { 1933 ill = ire->ire_rfq->q_ptr; 1934 } else if (ire->ire_ipif != NULL) { 1935 ill = ire->ire_ipif->ipif_ill; 1936 } 1937 return (ill); 1938 } 1939 1940 /* Arrange to call the specified function for every IRE in the world. */ 1941 void 1942 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 1943 { 1944 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 1945 } 1946 1947 void 1948 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1949 { 1950 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 1951 } 1952 1953 void 1954 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1955 { 1956 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 1957 } 1958 1959 /* 1960 * Walk a particular version. version == 0 means both v4 and v6. 1961 */ 1962 static void 1963 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 1964 ip_stack_t *ipst) 1965 { 1966 if (vers != IPV6_VERSION) { 1967 /* 1968 * ip_forwarding_table variable doesn't matter for IPv4 since 1969 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 1970 */ 1971 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 1972 0, NULL, 1973 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 1974 NULL, zoneid, ipst); 1975 } 1976 if (vers != IPV4_VERSION) { 1977 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 1978 ipst->ips_ip6_ftable_hash_size, 1979 ipst->ips_ip_forwarding_table_v6, 1980 ipst->ips_ip6_cache_table_size, 1981 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 1982 } 1983 } 1984 1985 /* 1986 * Arrange to call the specified function for every IRE that matches the ill. 1987 */ 1988 void 1989 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 1990 ill_t *ill) 1991 { 1992 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 1993 1994 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 1995 } 1996 1997 void 1998 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 1999 ill_t *ill) 2000 { 2001 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2002 ill); 2003 } 2004 2005 void 2006 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2007 ill_t *ill) 2008 { 2009 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2010 ill); 2011 } 2012 2013 /* 2014 * Walk a particular ill and version. 2015 */ 2016 static void 2017 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2018 void *arg, uchar_t vers, ill_t *ill) 2019 { 2020 ip_stack_t *ipst = ill->ill_ipst; 2021 2022 if (vers == IPV4_VERSION) { 2023 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2024 IP_MASK_TABLE_SIZE, 0, 2025 NULL, ipst->ips_ip_cache_table_size, 2026 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2027 } else if (vers == IPV6_VERSION) { 2028 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2029 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2030 ipst->ips_ip_forwarding_table_v6, 2031 ipst->ips_ip6_cache_table_size, 2032 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2033 } 2034 } 2035 2036 boolean_t 2037 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2038 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2039 { 2040 ill_t *ire_stq_ill = NULL; 2041 ill_t *ire_ipif_ill = NULL; 2042 ill_group_t *ire_ill_group = NULL; 2043 2044 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2045 /* 2046 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2047 * pointed by ire_stq and ire_ipif. Only in the case of 2048 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2049 * different ills. But we want to keep this function generic 2050 * enough for future use. So, we always try to match on both. 2051 * The only caller of this function ire_walk_ill_tables, will 2052 * call "func" after we return from this function. We expect 2053 * "func" to do the right filtering of ires in this case. 2054 * 2055 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2056 * pointed by ire_stq and ire_ipif should always be the same. 2057 * So, we just match on only one of them. 2058 */ 2059 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2060 if (ire->ire_stq != NULL) 2061 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2062 if (ire->ire_ipif != NULL) 2063 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2064 if (ire_stq_ill != NULL) 2065 ire_ill_group = ire_stq_ill->ill_group; 2066 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2067 ire_ill_group = ire_ipif_ill->ill_group; 2068 } 2069 2070 if (zoneid != ALL_ZONES) { 2071 /* 2072 * We're walking the IREs for a specific zone. The only relevant 2073 * IREs are: 2074 * - all IREs with a matching ire_zoneid 2075 * - all IRE_OFFSUBNETs as they're shared across all zones 2076 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2077 * with a matching zone 2078 * - IRE_DEFAULTs with a gateway reachable from the zone 2079 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2080 * using the same rule; but the above rules are consistent with 2081 * the behavior of ire_ftable_lookup[_v6]() so that all the 2082 * routes that can be matched during lookup are also matched 2083 * here. 2084 */ 2085 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2086 /* 2087 * Note, IRE_INTERFACE can have the stq as NULL. For 2088 * example, if the default multicast route is tied to 2089 * the loopback address. 2090 */ 2091 if ((ire->ire_type & IRE_INTERFACE) && 2092 (ire->ire_stq != NULL)) { 2093 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2094 if (ire->ire_ipversion == IPV4_VERSION) { 2095 if (!ipif_usesrc_avail(ire_stq_ill, 2096 zoneid)) 2097 /* No usable src addr in zone */ 2098 return (B_FALSE); 2099 } else if (ire_stq_ill->ill_usesrc_ifindex 2100 != 0) { 2101 /* 2102 * For IPv6 use ipif_select_source_v6() 2103 * so the right scope selection is done 2104 */ 2105 ipif_t *src_ipif; 2106 src_ipif = 2107 ipif_select_source_v6(ire_stq_ill, 2108 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2109 IPV6_PREFER_SRC_DEFAULT, 2110 zoneid); 2111 if (src_ipif != NULL) { 2112 ipif_refrele(src_ipif); 2113 } else { 2114 return (B_FALSE); 2115 } 2116 } else { 2117 return (B_FALSE); 2118 } 2119 2120 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2121 return (B_FALSE); 2122 } 2123 } 2124 2125 /* 2126 * Match all default routes from the global zone, irrespective 2127 * of reachability. For a non-global zone only match those 2128 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2129 */ 2130 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2131 int ire_match_flags = 0; 2132 in6_addr_t gw_addr_v6; 2133 ire_t *rire; 2134 2135 ire_match_flags |= MATCH_IRE_TYPE; 2136 if (ire->ire_ipif != NULL) { 2137 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2138 } 2139 if (ire->ire_ipversion == IPV4_VERSION) { 2140 rire = ire_route_lookup(ire->ire_gateway_addr, 2141 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2142 zoneid, NULL, ire_match_flags, ipst); 2143 } else { 2144 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2145 mutex_enter(&ire->ire_lock); 2146 gw_addr_v6 = ire->ire_gateway_addr_v6; 2147 mutex_exit(&ire->ire_lock); 2148 rire = ire_route_lookup_v6(&gw_addr_v6, 2149 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2150 NULL, zoneid, NULL, ire_match_flags, ipst); 2151 } 2152 if (rire == NULL) { 2153 return (B_FALSE); 2154 } 2155 ire_refrele(rire); 2156 } 2157 } 2158 2159 if (((!(match_flags & MATCH_IRE_TYPE)) || 2160 (ire->ire_type & ire_type)) && 2161 ((!(match_flags & MATCH_IRE_ILL)) || 2162 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2163 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2164 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2165 (ire_ill_group != NULL && 2166 ire_ill_group == ill->ill_group))) { 2167 return (B_TRUE); 2168 } 2169 return (B_FALSE); 2170 } 2171 2172 int 2173 rtfunc(struct radix_node *rn, void *arg) 2174 { 2175 struct rtfuncarg *rtf = arg; 2176 struct rt_entry *rt; 2177 irb_t *irb; 2178 ire_t *ire; 2179 boolean_t ret; 2180 2181 rt = (struct rt_entry *)rn; 2182 ASSERT(rt != NULL); 2183 irb = &rt->rt_irb; 2184 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2185 if ((rtf->rt_match_flags != 0) || 2186 (rtf->rt_zoneid != ALL_ZONES)) { 2187 ret = ire_walk_ill_match(rtf->rt_match_flags, 2188 rtf->rt_ire_type, ire, 2189 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2190 } else 2191 ret = B_TRUE; 2192 if (ret) 2193 (*rtf->rt_func)(ire, rtf->rt_arg); 2194 } 2195 return (0); 2196 } 2197 2198 /* 2199 * Walk the ftable and the ctable entries that match the ill. 2200 */ 2201 void 2202 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2203 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2204 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2205 ip_stack_t *ipst) 2206 { 2207 irb_t *irb_ptr; 2208 irb_t *irb; 2209 ire_t *ire; 2210 int i, j; 2211 boolean_t ret; 2212 struct rtfuncarg rtfarg; 2213 2214 ASSERT((!(match_flags & (MATCH_IRE_ILL | 2215 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2216 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2217 /* 2218 * Optimize by not looking at the forwarding table if there 2219 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2220 * specified in ire_type. 2221 */ 2222 if (!(match_flags & MATCH_IRE_TYPE) || 2223 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2224 /* knobs such that routine is called only for v6 case */ 2225 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2226 for (i = (ftbl_sz - 1); i >= 0; i--) { 2227 if ((irb_ptr = ipftbl[i]) == NULL) 2228 continue; 2229 for (j = 0; j < htbl_sz; j++) { 2230 irb = &irb_ptr[j]; 2231 if (irb->irb_ire == NULL) 2232 continue; 2233 2234 IRB_REFHOLD(irb); 2235 for (ire = irb->irb_ire; ire != NULL; 2236 ire = ire->ire_next) { 2237 if (match_flags == 0 && 2238 zoneid == ALL_ZONES) { 2239 ret = B_TRUE; 2240 } else { 2241 ret = 2242 ire_walk_ill_match( 2243 match_flags, 2244 ire_type, ire, ill, 2245 zoneid, ipst); 2246 } 2247 if (ret) 2248 (*func)(ire, arg); 2249 } 2250 IRB_REFRELE(irb); 2251 } 2252 } 2253 } else { 2254 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2255 rtfarg.rt_func = func; 2256 rtfarg.rt_arg = arg; 2257 if (match_flags != 0) { 2258 rtfarg.rt_match_flags = match_flags; 2259 } 2260 rtfarg.rt_ire_type = ire_type; 2261 rtfarg.rt_ill = ill; 2262 rtfarg.rt_zoneid = zoneid; 2263 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2264 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2265 ipst->ips_ip_ftable, 2266 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2267 } 2268 } 2269 2270 /* 2271 * Optimize by not looking at the cache table if there 2272 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2273 * specified in ire_type. 2274 */ 2275 if (!(match_flags & MATCH_IRE_TYPE) || 2276 ((ire_type & IRE_CACHETABLE) != 0)) { 2277 for (i = 0; i < ctbl_sz; i++) { 2278 irb = &ipctbl[i]; 2279 if (irb->irb_ire == NULL) 2280 continue; 2281 IRB_REFHOLD(irb); 2282 for (ire = irb->irb_ire; ire != NULL; 2283 ire = ire->ire_next) { 2284 if (match_flags == 0 && zoneid == ALL_ZONES) { 2285 ret = B_TRUE; 2286 } else { 2287 ret = ire_walk_ill_match( 2288 match_flags, ire_type, 2289 ire, ill, zoneid, ipst); 2290 } 2291 if (ret) 2292 (*func)(ire, arg); 2293 } 2294 IRB_REFRELE(irb); 2295 } 2296 } 2297 } 2298 2299 /* 2300 * This function takes a mask and returns 2301 * number of bits set in the mask. If no 2302 * bit is set it returns 0. 2303 * Assumes a contiguous mask. 2304 */ 2305 int 2306 ip_mask_to_plen(ipaddr_t mask) 2307 { 2308 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2309 } 2310 2311 /* 2312 * Convert length for a mask to the mask. 2313 */ 2314 ipaddr_t 2315 ip_plen_to_mask(uint_t masklen) 2316 { 2317 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2318 } 2319 2320 void 2321 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2322 { 2323 ill_t *ill_list[NUM_ILLS]; 2324 ip_stack_t *ipst = ire->ire_ipst; 2325 2326 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2327 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2328 ill_unlock_ills(ill_list, NUM_ILLS); 2329 rw_exit(&irb_ptr->irb_lock); 2330 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2331 } 2332 2333 /* 2334 * ire_add_v[46] atomically make sure that the ipif or ill associated 2335 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2336 * before adding the ire to the table. This ensures that we don't create 2337 * new IRE_CACHEs with stale values for parameters that are passed to 2338 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2339 * to the ipif_mtu, and not the value. The actual value is derived from the 2340 * parent ire or ipif under the bucket lock. 2341 */ 2342 int 2343 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2344 ipsq_func_t func) 2345 { 2346 ill_t *stq_ill; 2347 ill_t *ipif_ill; 2348 ill_t *ill_list[NUM_ILLS]; 2349 int cnt = NUM_ILLS; 2350 int error = 0; 2351 ill_t *ill = NULL; 2352 ip_stack_t *ipst = ire->ire_ipst; 2353 2354 ill_list[0] = stq_ill = ire->ire_stq != 2355 NULL ? ire->ire_stq->q_ptr : NULL; 2356 ill_list[1] = ipif_ill = ire->ire_ipif != 2357 NULL ? ire->ire_ipif->ipif_ill : NULL; 2358 2359 ASSERT((q != NULL && mp != NULL && func != NULL) || 2360 (q == NULL && mp == NULL && func == NULL)); 2361 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2362 GRAB_CONN_LOCK(q); 2363 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2364 ill_lock_ills(ill_list, cnt); 2365 2366 /* 2367 * While the IRE is in the process of being added, a user may have 2368 * invoked the ifconfig usesrc option on the stq_ill to make it a 2369 * usesrc client ILL. Check for this possibility here, if it is true 2370 * then we fail adding the IRE_CACHE. Another check is to make sure 2371 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2372 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2373 */ 2374 if ((ire->ire_type & IRE_CACHE) && 2375 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2376 if (stq_ill->ill_usesrc_ifindex != 0) { 2377 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2378 if ((ipif_ill->ill_phyint->phyint_ifindex != 2379 stq_ill->ill_usesrc_ifindex) || 2380 (ipif_ill->ill_usesrc_grp_next == NULL) || 2381 (ipif_ill->ill_usesrc_ifindex != 0)) { 2382 error = EINVAL; 2383 goto done; 2384 } 2385 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2386 error = EINVAL; 2387 goto done; 2388 } 2389 } 2390 2391 /* 2392 * IPMP flag settings happen without taking the exclusive route 2393 * in ip_sioctl_flags. So we need to make an atomic check here 2394 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2395 * FAILBACK=no case. 2396 */ 2397 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2398 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2399 ill = stq_ill; 2400 error = EAGAIN; 2401 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2402 (ill_is_probeonly(stq_ill) && 2403 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2404 error = EINVAL; 2405 } 2406 goto done; 2407 } 2408 2409 /* 2410 * We don't check for OFFLINE/FAILED in this case because 2411 * the source address selection logic (ipif_select_source) 2412 * may still select a source address from such an ill. The 2413 * assumption is that these addresses will be moved by in.mpathd 2414 * soon. (i.e. this is a race). However link local addresses 2415 * will not move and hence ipif_select_source_v6 tries to avoid 2416 * FAILED ills. Please see ipif_select_source_v6 for more info 2417 */ 2418 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2419 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2420 ill = ipif_ill; 2421 error = EAGAIN; 2422 goto done; 2423 } 2424 2425 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2426 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2427 ill = ire->ire_ipif->ipif_ill; 2428 ASSERT(ill != NULL); 2429 error = EAGAIN; 2430 goto done; 2431 } 2432 2433 done: 2434 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2435 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2436 mutex_enter(&ipsq->ipsq_lock); 2437 ire_atomic_end(irb_ptr, ire); 2438 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2439 mutex_exit(&ipsq->ipsq_lock); 2440 error = EINPROGRESS; 2441 } else if (error != 0) { 2442 ire_atomic_end(irb_ptr, ire); 2443 } 2444 2445 RELEASE_CONN_LOCK(q); 2446 return (error); 2447 } 2448 2449 /* 2450 * Add a fully initialized IRE to an appropriate table based on 2451 * ire_type. 2452 * 2453 * allow_unresolved == B_FALSE indicates a legacy code-path call 2454 * that has prohibited the addition of incomplete ire's. If this 2455 * parameter is set, and we find an nce that is in a state other 2456 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2457 * something other than ND_REACHABLE if the nce had just expired and 2458 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2459 */ 2460 int 2461 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2462 boolean_t allow_unresolved) 2463 { 2464 ire_t *ire1; 2465 ill_t *stq_ill = NULL; 2466 ill_t *ill; 2467 ipif_t *ipif = NULL; 2468 ill_walk_context_t ctx; 2469 ire_t *ire = *irep; 2470 int error; 2471 boolean_t ire_is_mblk = B_FALSE; 2472 tsol_gcgrp_t *gcgrp = NULL; 2473 tsol_gcgrp_addr_t ga; 2474 ip_stack_t *ipst = ire->ire_ipst; 2475 2476 /* get ready for the day when original ire is not created as mblk */ 2477 if (ire->ire_mp != NULL) { 2478 ire_is_mblk = B_TRUE; 2479 /* Copy the ire to a kmem_alloc'ed area */ 2480 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2481 if (ire1 == NULL) { 2482 ip1dbg(("ire_add: alloc failed\n")); 2483 ire_delete(ire); 2484 *irep = NULL; 2485 return (ENOMEM); 2486 } 2487 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2488 *ire1 = *ire; 2489 ire1->ire_mp = NULL; 2490 ire1->ire_stq_ifindex = 0; 2491 freeb(ire->ire_mp); 2492 ire = ire1; 2493 } 2494 if (ire->ire_stq != NULL) 2495 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2496 2497 if (ire->ire_type == IRE_CACHE) { 2498 /* 2499 * If this interface is FAILED, or INACTIVE or has hit 2500 * the FAILBACK=no case, we create IRE_CACHES marked 2501 * HIDDEN for some special cases e.g. bind to 2502 * IPIF_NOFAILOVER address etc. So, if this interface 2503 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2504 * not creating hidden ires, we should not allow that. 2505 * This happens because the state of the interface 2506 * changed while we were waiting in ARP. If this is the 2507 * daemon sending probes, the next probe will create 2508 * HIDDEN ires and we will create an ire then. This 2509 * cannot happen with NDP currently because IRE is 2510 * never queued in NDP. But it can happen in the 2511 * future when we have external resolvers with IPv6. 2512 * If the interface gets marked with OFFLINE while we 2513 * are waiting in ARP, don't add the ire. 2514 */ 2515 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2516 (ill_is_probeonly(stq_ill) && 2517 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2518 /* 2519 * We don't know whether it is a valid ipif or not. 2520 * unless we do the check below. So, set it to NULL. 2521 */ 2522 ire->ire_ipif = NULL; 2523 ire_delete(ire); 2524 *irep = NULL; 2525 return (EINVAL); 2526 } 2527 } 2528 2529 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2530 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2531 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2532 ill = ILL_START_WALK_ALL(&ctx, ipst); 2533 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2534 mutex_enter(&ill->ill_lock); 2535 if (ill->ill_state_flags & ILL_CONDEMNED) { 2536 mutex_exit(&ill->ill_lock); 2537 continue; 2538 } 2539 /* 2540 * We need to make sure that the ipif is a valid one 2541 * before adding the IRE_CACHE. This happens only 2542 * with IRE_CACHE when there is an external resolver. 2543 * 2544 * We can unplumb a logical interface while the 2545 * packet is waiting in ARP with the IRE. Then, 2546 * later on when we feed the IRE back, the ipif 2547 * has to be re-checked. This can't happen with 2548 * NDP currently, as we never queue the IRE with 2549 * the packet. We always try to recreate the IRE 2550 * when the resolution is completed. But, we do 2551 * it for IPv6 also here so that in future if 2552 * we have external resolvers, it will work without 2553 * any change. 2554 */ 2555 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2556 if (ipif != NULL) { 2557 ipif_refhold_locked(ipif); 2558 mutex_exit(&ill->ill_lock); 2559 break; 2560 } 2561 mutex_exit(&ill->ill_lock); 2562 } 2563 rw_exit(&ipst->ips_ill_g_lock); 2564 if (ipif == NULL || 2565 (ipif->ipif_isv6 && 2566 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2567 &ipif->ipif_v6src_addr)) || 2568 (!ipif->ipif_isv6 && 2569 ire->ire_src_addr != ipif->ipif_src_addr) || 2570 ire->ire_zoneid != ipif->ipif_zoneid) { 2571 2572 if (ipif != NULL) 2573 ipif_refrele(ipif); 2574 ire->ire_ipif = NULL; 2575 ire_delete(ire); 2576 *irep = NULL; 2577 return (EINVAL); 2578 } 2579 2580 2581 ASSERT(ill != NULL); 2582 /* 2583 * If this group was dismantled while this packets was 2584 * queued in ARP, don't add it here. 2585 */ 2586 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2587 /* We don't want ire_inactive bump stats for this */ 2588 ipif_refrele(ipif); 2589 ire->ire_ipif = NULL; 2590 ire_delete(ire); 2591 *irep = NULL; 2592 return (EINVAL); 2593 } 2594 2595 /* 2596 * Since we didn't attach label security attributes to the 2597 * ire for the resolver case, we need to add it now. (only 2598 * for v4 resolver and v6 xresolv case). 2599 */ 2600 if (is_system_labeled() && ire_is_mblk) { 2601 if (ire->ire_ipversion == IPV4_VERSION) { 2602 ga.ga_af = AF_INET; 2603 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2604 INADDR_ANY ? ire->ire_gateway_addr : 2605 ire->ire_addr, &ga.ga_addr); 2606 } else { 2607 ga.ga_af = AF_INET6; 2608 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2609 &ire->ire_gateway_addr_v6) ? 2610 ire->ire_addr_v6 : 2611 ire->ire_gateway_addr_v6; 2612 } 2613 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2614 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2615 NULL, gcgrp); 2616 if (error != 0) { 2617 if (gcgrp != NULL) { 2618 GCGRP_REFRELE(gcgrp); 2619 gcgrp = NULL; 2620 } 2621 ipif_refrele(ipif); 2622 ire->ire_ipif = NULL; 2623 ire_delete(ire); 2624 *irep = NULL; 2625 return (error); 2626 } 2627 } 2628 } 2629 2630 /* 2631 * In case ire was changed 2632 */ 2633 *irep = ire; 2634 if (ire->ire_ipversion == IPV6_VERSION) 2635 error = ire_add_v6(irep, q, mp, func); 2636 else 2637 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2638 if (ipif != NULL) 2639 ipif_refrele(ipif); 2640 return (error); 2641 } 2642 2643 /* 2644 * Add an initialized IRE to an appropriate table based on ire_type. 2645 * 2646 * The forward table contains IRE_PREFIX/IRE_HOST and 2647 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2648 * 2649 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2650 * and IRE_CACHE. 2651 * 2652 * NOTE : This function is called as writer though not required 2653 * by this function. 2654 */ 2655 static int 2656 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2657 boolean_t allow_unresolved) 2658 { 2659 ire_t *ire1; 2660 irb_t *irb_ptr; 2661 ire_t **irep; 2662 int flags; 2663 ire_t *pire = NULL; 2664 ill_t *stq_ill; 2665 ire_t *ire = *ire_p; 2666 int error; 2667 boolean_t need_refrele = B_FALSE; 2668 nce_t *nce; 2669 ip_stack_t *ipst = ire->ire_ipst; 2670 2671 if (ire->ire_ipif != NULL) 2672 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2673 if (ire->ire_stq != NULL) 2674 ASSERT(!MUTEX_HELD( 2675 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2676 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2677 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2678 2679 /* Find the appropriate list head. */ 2680 switch (ire->ire_type) { 2681 case IRE_HOST: 2682 ire->ire_mask = IP_HOST_MASK; 2683 ire->ire_masklen = IP_ABITS; 2684 if ((ire->ire_flags & RTF_SETSRC) == 0) 2685 ire->ire_src_addr = 0; 2686 break; 2687 case IRE_CACHE: 2688 case IRE_BROADCAST: 2689 case IRE_LOCAL: 2690 case IRE_LOOPBACK: 2691 ire->ire_mask = IP_HOST_MASK; 2692 ire->ire_masklen = IP_ABITS; 2693 break; 2694 case IRE_PREFIX: 2695 if ((ire->ire_flags & RTF_SETSRC) == 0) 2696 ire->ire_src_addr = 0; 2697 break; 2698 case IRE_DEFAULT: 2699 if ((ire->ire_flags & RTF_SETSRC) == 0) 2700 ire->ire_src_addr = 0; 2701 break; 2702 case IRE_IF_RESOLVER: 2703 case IRE_IF_NORESOLVER: 2704 break; 2705 default: 2706 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2707 (void *)ire, ire->ire_type)); 2708 ire_delete(ire); 2709 *ire_p = NULL; 2710 return (EINVAL); 2711 } 2712 2713 /* Make sure the address is properly masked. */ 2714 ire->ire_addr &= ire->ire_mask; 2715 2716 /* 2717 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2718 * of the interface route while adding an IRE_CACHE for an on-link 2719 * destination in the IRE_IF_RESOLVER case, since the ire has to 2720 * go to ARP and return. We can't do a REFHOLD on the 2721 * associated interface ire for fear of ARP freeing the message. 2722 * Here we look up the interface ire in the forwarding table and 2723 * make sure that the interface route has not been deleted. 2724 */ 2725 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2726 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2727 2728 ASSERT(ire->ire_max_fragp == NULL); 2729 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2730 /* 2731 * The ihandle that we used in ip_newroute_multi 2732 * comes from the interface route corresponding 2733 * to ire_ipif. Lookup here to see if it exists 2734 * still. 2735 * If the ire has a source address assigned using 2736 * RTF_SETSRC, ire_ipif is the logical interface holding 2737 * this source address, so we can't use it to check for 2738 * the existence of the interface route. Instead we rely 2739 * on the brute force ihandle search in 2740 * ire_ihandle_lookup_onlink() below. 2741 */ 2742 pire = ipif_to_ire(ire->ire_ipif); 2743 if (pire == NULL) { 2744 ire_delete(ire); 2745 *ire_p = NULL; 2746 return (EINVAL); 2747 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2748 ire_refrele(pire); 2749 ire_delete(ire); 2750 *ire_p = NULL; 2751 return (EINVAL); 2752 } 2753 } else { 2754 pire = ire_ihandle_lookup_onlink(ire); 2755 if (pire == NULL) { 2756 ire_delete(ire); 2757 *ire_p = NULL; 2758 return (EINVAL); 2759 } 2760 } 2761 /* Prevent pire from getting deleted */ 2762 IRB_REFHOLD(pire->ire_bucket); 2763 /* Has it been removed already ? */ 2764 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2765 IRB_REFRELE(pire->ire_bucket); 2766 ire_refrele(pire); 2767 ire_delete(ire); 2768 *ire_p = NULL; 2769 return (EINVAL); 2770 } 2771 } else { 2772 ASSERT(ire->ire_max_fragp != NULL); 2773 } 2774 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2775 2776 if (ire->ire_ipif != NULL) { 2777 /* 2778 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2779 * for historic reasons and to maintain symmetry with 2780 * IPv6 code path. Historically this was used by 2781 * multicast code to create multiple IRE_CACHES on 2782 * a single ill with different ipifs. This was used 2783 * so that multicast packets leaving the node had the 2784 * right source address. This is no longer needed as 2785 * ip_wput initializes the address correctly. 2786 */ 2787 flags |= MATCH_IRE_IPIF; 2788 /* 2789 * If we are creating hidden ires, make sure we search on 2790 * this ill (MATCH_IRE_ILL) and a hidden ire, 2791 * while we are searching for duplicates below. Otherwise we 2792 * could potentially find an IRE on some other interface 2793 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2794 * shouldn't do this as this will lead to an infinite loop 2795 * (if we get to ip_wput again) eventually we need an hidden 2796 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2797 * done below. 2798 */ 2799 if (ire->ire_type == IRE_CACHE && 2800 (ire->ire_marks & IRE_MARK_HIDDEN)) 2801 flags |= (MATCH_IRE_MARK_HIDDEN); 2802 } 2803 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2804 irb_ptr = ire_get_bucket(ire); 2805 need_refrele = B_TRUE; 2806 if (irb_ptr == NULL) { 2807 /* 2808 * This assumes that the ire has not added 2809 * a reference to the ipif. 2810 */ 2811 ire->ire_ipif = NULL; 2812 ire_delete(ire); 2813 if (pire != NULL) { 2814 IRB_REFRELE(pire->ire_bucket); 2815 ire_refrele(pire); 2816 } 2817 *ire_p = NULL; 2818 return (EINVAL); 2819 } 2820 } else { 2821 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2822 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2823 } 2824 2825 /* 2826 * Start the atomic add of the ire. Grab the ill locks, 2827 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2828 * 2829 * If ipif or ill is changing ire_atomic_start() may queue the 2830 * request and return EINPROGRESS. 2831 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2832 */ 2833 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2834 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2835 if (error != 0) { 2836 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2837 /* 2838 * We don't know whether it is a valid ipif or not. 2839 * So, set it to NULL. This assumes that the ire has not added 2840 * a reference to the ipif. 2841 */ 2842 ire->ire_ipif = NULL; 2843 ire_delete(ire); 2844 if (pire != NULL) { 2845 IRB_REFRELE(pire->ire_bucket); 2846 ire_refrele(pire); 2847 } 2848 *ire_p = NULL; 2849 if (need_refrele) 2850 IRB_REFRELE(irb_ptr); 2851 return (error); 2852 } 2853 /* 2854 * To avoid creating ires having stale values for the ire_max_frag 2855 * we get the latest value atomically here. For more details 2856 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2857 * in ip_rput_dlpi_writer 2858 */ 2859 if (ire->ire_max_fragp == NULL) { 2860 if (CLASSD(ire->ire_addr)) 2861 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2862 else 2863 ire->ire_max_frag = pire->ire_max_frag; 2864 } else { 2865 uint_t max_frag; 2866 2867 max_frag = *ire->ire_max_fragp; 2868 ire->ire_max_fragp = NULL; 2869 ire->ire_max_frag = max_frag; 2870 } 2871 /* 2872 * Atomically check for duplicate and insert in the table. 2873 */ 2874 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2875 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2876 continue; 2877 if (ire->ire_ipif != NULL) { 2878 /* 2879 * We do MATCH_IRE_ILL implicitly here for IREs 2880 * with a non-null ire_ipif, including IRE_CACHEs. 2881 * As ire_ipif and ire_stq could point to two 2882 * different ills, we can't pass just ire_ipif to 2883 * ire_match_args and get a match on both ills. 2884 * This is just needed for duplicate checks here and 2885 * so we don't add an extra argument to 2886 * ire_match_args for this. Do it locally. 2887 * 2888 * NOTE : Currently there is no part of the code 2889 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 2890 * match for IRE_CACHEs. Thus we don't want to 2891 * extend the arguments to ire_match_args. 2892 */ 2893 if (ire1->ire_stq != ire->ire_stq) 2894 continue; 2895 /* 2896 * Multiroute IRE_CACHEs for a given destination can 2897 * have the same ire_ipif, typically if their source 2898 * address is forced using RTF_SETSRC, and the same 2899 * send-to queue. We differentiate them using the parent 2900 * handle. 2901 */ 2902 if (ire->ire_type == IRE_CACHE && 2903 (ire1->ire_flags & RTF_MULTIRT) && 2904 (ire->ire_flags & RTF_MULTIRT) && 2905 (ire1->ire_phandle != ire->ire_phandle)) 2906 continue; 2907 } 2908 if (ire1->ire_zoneid != ire->ire_zoneid) 2909 continue; 2910 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 2911 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 2912 ire->ire_zoneid, 0, NULL, flags)) { 2913 /* 2914 * Return the old ire after doing a REFHOLD. 2915 * As most of the callers continue to use the IRE 2916 * after adding, we return a held ire. This will 2917 * avoid a lookup in the caller again. If the callers 2918 * don't want to use it, they need to do a REFRELE. 2919 */ 2920 ip1dbg(("found dup ire existing %p new %p", 2921 (void *)ire1, (void *)ire)); 2922 IRE_REFHOLD(ire1); 2923 ire_atomic_end(irb_ptr, ire); 2924 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2925 ire_delete(ire); 2926 if (pire != NULL) { 2927 /* 2928 * Assert that it is not removed from the 2929 * list yet. 2930 */ 2931 ASSERT(pire->ire_ptpn != NULL); 2932 IRB_REFRELE(pire->ire_bucket); 2933 ire_refrele(pire); 2934 } 2935 *ire_p = ire1; 2936 if (need_refrele) 2937 IRB_REFRELE(irb_ptr); 2938 return (0); 2939 } 2940 } 2941 if (ire->ire_type & IRE_CACHE) { 2942 ASSERT(ire->ire_stq != NULL); 2943 nce = ndp_lookup_v4(ire_to_ill(ire), 2944 ((ire->ire_gateway_addr != INADDR_ANY) ? 2945 &ire->ire_gateway_addr : &ire->ire_addr), 2946 B_TRUE); 2947 if (nce != NULL) 2948 mutex_enter(&nce->nce_lock); 2949 /* 2950 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 2951 * and the caller has prohibited the addition of incomplete 2952 * ire's, we fail the add. Note that nce_state could be 2953 * something other than ND_REACHABLE if the nce had 2954 * just expired and the ire_create preceding the 2955 * ire_add added a new ND_INITIAL nce. 2956 */ 2957 if ((nce == NULL) || 2958 (nce->nce_flags & NCE_F_CONDEMNED) || 2959 (!allow_unresolved && 2960 (nce->nce_state != ND_REACHABLE))) { 2961 if (nce != NULL) { 2962 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 2963 mutex_exit(&nce->nce_lock); 2964 } 2965 ire_atomic_end(irb_ptr, ire); 2966 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2967 if (nce != NULL) 2968 NCE_REFRELE(nce); 2969 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 2970 ire_delete(ire); 2971 if (pire != NULL) { 2972 IRB_REFRELE(pire->ire_bucket); 2973 ire_refrele(pire); 2974 } 2975 *ire_p = NULL; 2976 if (need_refrele) 2977 IRB_REFRELE(irb_ptr); 2978 return (EINVAL); 2979 } else { 2980 ire->ire_nce = nce; 2981 mutex_exit(&nce->nce_lock); 2982 /* 2983 * We are associating this nce to the ire, so 2984 * change the nce ref taken in ndp_lookup_v4() from 2985 * NCE_REFHOLD to NCE_REFHOLD_NOTR 2986 */ 2987 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 2988 } 2989 } 2990 /* 2991 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 2992 * grouping identical addresses together on the hash chain. We also 2993 * don't want to send multiple copies out if there are two ills part 2994 * of the same group. Thus we group the ires with same addr and same 2995 * ill group together so that ip_wput_ire can easily skip all the 2996 * ires with same addr and same group after sending the first copy. 2997 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 2998 * interested in such groupings only for broadcasts. 2999 * 3000 * NOTE : If the interfaces are brought up first and then grouped, 3001 * illgrp_insert will handle it. We come here when the interfaces 3002 * are already in group and we are bringing them UP. 3003 * 3004 * Find the first entry that matches ire_addr. *irep will be null 3005 * if no match. 3006 * 3007 * Note: the loopback and non-loopback broadcast entries for an 3008 * interface MUST be added before any MULTIRT entries. 3009 */ 3010 irep = (ire_t **)irb_ptr; 3011 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3012 irep = &ire1->ire_next; 3013 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3014 /* 3015 * We found some ire (i.e *irep) with a matching addr. We 3016 * want to group ires with same addr and same ill group 3017 * together. 3018 * 3019 * First get to the entry that matches our address and 3020 * ill group i.e stop as soon as we find the first ire 3021 * matching the ill group and address. If there is only 3022 * an address match, we should walk and look for some 3023 * group match. These are some of the possible scenarios : 3024 * 3025 * 1) There are no groups at all i.e all ire's ill_group 3026 * are NULL. In that case we will essentially group 3027 * all the ires with the same addr together. Same as 3028 * the "else" block of this "if". 3029 * 3030 * 2) There are some groups and this ire's ill_group is 3031 * NULL. In this case, we will first find the group 3032 * that matches the address and a NULL group. Then 3033 * we will insert the ire at the end of that group. 3034 * 3035 * 3) There are some groups and this ires's ill_group is 3036 * non-NULL. In this case we will first find the group 3037 * that matches the address and the ill_group. Then 3038 * we will insert the ire at the end of that group. 3039 */ 3040 for (;;) { 3041 ire1 = *irep; 3042 if ((ire1->ire_next == NULL) || 3043 (ire1->ire_next->ire_addr != ire->ire_addr) || 3044 (ire1->ire_type != IRE_BROADCAST) || 3045 (ire1->ire_flags & RTF_MULTIRT) || 3046 (ire1->ire_ipif->ipif_ill->ill_group == 3047 ire->ire_ipif->ipif_ill->ill_group)) 3048 break; 3049 irep = &ire1->ire_next; 3050 } 3051 ASSERT(*irep != NULL); 3052 /* 3053 * The ire will be added before *irep, so 3054 * if irep is a MULTIRT ire, just break to 3055 * ire insertion code. 3056 */ 3057 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3058 goto insert_ire; 3059 3060 irep = &((*irep)->ire_next); 3061 3062 /* 3063 * Either we have hit the end of the list or the address 3064 * did not match or the group *matched*. If we found 3065 * a match on the group, skip to the end of the group. 3066 */ 3067 while (*irep != NULL) { 3068 ire1 = *irep; 3069 if ((ire1->ire_addr != ire->ire_addr) || 3070 (ire1->ire_type != IRE_BROADCAST) || 3071 (ire1->ire_ipif->ipif_ill->ill_group != 3072 ire->ire_ipif->ipif_ill->ill_group)) 3073 break; 3074 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3075 ire1->ire_ipif == ire->ire_ipif) { 3076 irep = &ire1->ire_next; 3077 break; 3078 } 3079 irep = &ire1->ire_next; 3080 } 3081 } else if (*irep != NULL) { 3082 /* 3083 * Find the last ire which matches ire_addr. 3084 * Needed to do tail insertion among entries with the same 3085 * ire_addr. 3086 */ 3087 while (ire->ire_addr == ire1->ire_addr) { 3088 irep = &ire1->ire_next; 3089 ire1 = *irep; 3090 if (ire1 == NULL) 3091 break; 3092 } 3093 } 3094 3095 insert_ire: 3096 /* Insert at *irep */ 3097 ire1 = *irep; 3098 if (ire1 != NULL) 3099 ire1->ire_ptpn = &ire->ire_next; 3100 ire->ire_next = ire1; 3101 /* Link the new one in. */ 3102 ire->ire_ptpn = irep; 3103 3104 /* 3105 * ire_walk routines de-reference ire_next without holding 3106 * a lock. Before we point to the new ire, we want to make 3107 * sure the store that sets the ire_next of the new ire 3108 * reaches global visibility, so that ire_walk routines 3109 * don't see a truncated list of ires i.e if the ire_next 3110 * of the new ire gets set after we do "*irep = ire" due 3111 * to re-ordering, the ire_walk thread will see a NULL 3112 * once it accesses the ire_next of the new ire. 3113 * membar_producer() makes sure that the following store 3114 * happens *after* all of the above stores. 3115 */ 3116 membar_producer(); 3117 *irep = ire; 3118 ire->ire_bucket = irb_ptr; 3119 /* 3120 * We return a bumped up IRE above. Keep it symmetrical 3121 * so that the callers will always have to release. This 3122 * helps the callers of this function because they continue 3123 * to use the IRE after adding and hence they don't have to 3124 * lookup again after we return the IRE. 3125 * 3126 * NOTE : We don't have to use atomics as this is appearing 3127 * in the list for the first time and no one else can bump 3128 * up the reference count on this yet. 3129 */ 3130 IRE_REFHOLD_LOCKED(ire); 3131 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3132 3133 irb_ptr->irb_ire_cnt++; 3134 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3135 irb_ptr->irb_nire++; 3136 3137 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3138 irb_ptr->irb_tmp_ire_cnt++; 3139 3140 if (ire->ire_ipif != NULL) { 3141 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ire->ire_ipif, 3142 (char *), "ire", (void *), ire); 3143 ire->ire_ipif->ipif_ire_cnt++; 3144 if (ire->ire_stq != NULL) { 3145 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3146 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), stq_ill, 3147 (char *), "ire", (void *), ire); 3148 stq_ill->ill_ire_cnt++; 3149 } 3150 } else { 3151 ASSERT(ire->ire_stq == NULL); 3152 } 3153 3154 ire_atomic_end(irb_ptr, ire); 3155 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3156 3157 if (pire != NULL) { 3158 /* Assert that it is not removed from the list yet */ 3159 ASSERT(pire->ire_ptpn != NULL); 3160 IRB_REFRELE(pire->ire_bucket); 3161 ire_refrele(pire); 3162 } 3163 3164 if (ire->ire_type != IRE_CACHE) { 3165 /* 3166 * For ire's with host mask see if there is an entry 3167 * in the cache. If there is one flush the whole cache as 3168 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3169 * If no entry is found than there is no need to flush the 3170 * cache. 3171 */ 3172 if (ire->ire_mask == IP_HOST_MASK) { 3173 ire_t *lire; 3174 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3175 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3176 if (lire != NULL) { 3177 ire_refrele(lire); 3178 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3179 } 3180 } else { 3181 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3182 } 3183 } 3184 /* 3185 * We had to delay the fast path probe until the ire is inserted 3186 * in the list. Otherwise the fast path ack won't find the ire in 3187 * the table. 3188 */ 3189 if (ire->ire_type == IRE_CACHE || 3190 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3191 ASSERT(ire->ire_nce != NULL); 3192 if (ire->ire_nce->nce_state == ND_REACHABLE) 3193 nce_fastpath(ire->ire_nce); 3194 } 3195 if (ire->ire_ipif != NULL) 3196 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3197 *ire_p = ire; 3198 if (need_refrele) { 3199 IRB_REFRELE(irb_ptr); 3200 } 3201 return (0); 3202 } 3203 3204 /* 3205 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3206 * do the final cleanup for this ire. 3207 */ 3208 void 3209 ire_cleanup(ire_t *ire) 3210 { 3211 ire_t *ire_next; 3212 ip_stack_t *ipst = ire->ire_ipst; 3213 3214 ASSERT(ire != NULL); 3215 3216 while (ire != NULL) { 3217 ire_next = ire->ire_next; 3218 if (ire->ire_ipversion == IPV4_VERSION) { 3219 ire_delete_v4(ire); 3220 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3221 ire_stats_deleted); 3222 } else { 3223 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3224 ire_delete_v6(ire); 3225 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3226 ire_stats_deleted); 3227 } 3228 /* 3229 * Now it's really out of the list. Before doing the 3230 * REFRELE, set ire_next to NULL as ire_inactive asserts 3231 * so. 3232 */ 3233 ire->ire_next = NULL; 3234 IRE_REFRELE_NOTR(ire); 3235 ire = ire_next; 3236 } 3237 } 3238 3239 /* 3240 * IRB_REFRELE is the only caller of the function. It calls to unlink 3241 * all the CONDEMNED ires from this bucket. 3242 */ 3243 ire_t * 3244 ire_unlink(irb_t *irb) 3245 { 3246 ire_t *ire; 3247 ire_t *ire1; 3248 ire_t **ptpn; 3249 ire_t *ire_list = NULL; 3250 3251 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3252 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3253 (irb->irb_refcnt == 0)); 3254 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3255 ASSERT(irb->irb_ire != NULL); 3256 3257 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3258 ip_stack_t *ipst = ire->ire_ipst; 3259 3260 ire1 = ire->ire_next; 3261 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3262 ptpn = ire->ire_ptpn; 3263 ire1 = ire->ire_next; 3264 if (ire1) 3265 ire1->ire_ptpn = ptpn; 3266 *ptpn = ire1; 3267 ire->ire_ptpn = NULL; 3268 ire->ire_next = NULL; 3269 if (ire->ire_type == IRE_DEFAULT) { 3270 /* 3271 * IRE is out of the list. We need to adjust 3272 * the accounting before the caller drops 3273 * the lock. 3274 */ 3275 if (ire->ire_ipversion == IPV6_VERSION) { 3276 ASSERT(ipst-> 3277 ips_ipv6_ire_default_count != 3278 0); 3279 ipst->ips_ipv6_ire_default_count--; 3280 } 3281 } 3282 /* 3283 * We need to call ire_delete_v4 or ire_delete_v6 3284 * to clean up the cache or the redirects pointing at 3285 * the default gateway. We need to drop the lock 3286 * as ire_flush_cache/ire_delete_host_redircts require 3287 * so. But we can't drop the lock, as ire_unlink needs 3288 * to atomically remove the ires from the list. 3289 * So, create a temporary list of CONDEMNED ires 3290 * for doing ire_delete_v4/ire_delete_v6 operations 3291 * later on. 3292 */ 3293 ire->ire_next = ire_list; 3294 ire_list = ire; 3295 } 3296 } 3297 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3298 return (ire_list); 3299 } 3300 3301 /* 3302 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3303 * ARP message on any of its interface queue, it scans the nce table and 3304 * deletes and calls ndp_delete() for the appropriate nce. This action 3305 * also deletes all the neighbor/ire cache entries for that address. 3306 * This function is called from ip_arp_news in ip.c and also for 3307 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3308 * true if it finds a nce entry which is used by ip_arp_news to determine if 3309 * it needs to do an ire_walk_v4. The return value is also used for the 3310 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3311 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3312 * ip_if->ipif_ill also needs to be matched. 3313 */ 3314 boolean_t 3315 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3316 { 3317 ill_t *ill; 3318 nce_t *nce; 3319 3320 ill = (ipif ? ipif->ipif_ill : NULL); 3321 3322 if (ill != NULL) { 3323 /* 3324 * clean up the nce (and any relevant ire's) that matches 3325 * on addr and ill. 3326 */ 3327 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3328 if (nce != NULL) { 3329 ndp_delete(nce); 3330 return (B_TRUE); 3331 } 3332 } else { 3333 /* 3334 * ill is wildcard. clean up all nce's and 3335 * ire's that match on addr 3336 */ 3337 nce_clookup_t cl; 3338 3339 cl.ncecl_addr = addr; 3340 cl.ncecl_found = B_FALSE; 3341 3342 ndp_walk_common(ipst->ips_ndp4, NULL, 3343 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3344 3345 /* 3346 * ncecl_found would be set by ip_nce_clookup_and_delete if 3347 * we found a matching nce. 3348 */ 3349 return (cl.ncecl_found); 3350 } 3351 return (B_FALSE); 3352 3353 } 3354 3355 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3356 static void 3357 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3358 { 3359 nce_clookup_t *cl = (nce_clookup_t *)arg; 3360 ipaddr_t nce_addr; 3361 3362 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3363 if (nce_addr == cl->ncecl_addr) { 3364 cl->ncecl_found = B_TRUE; 3365 /* clean up the nce (and any relevant ire's) */ 3366 ndp_delete(nce); 3367 } 3368 } 3369 3370 /* 3371 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3372 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3373 * is deleted and freed. 3374 */ 3375 boolean_t 3376 irb_inactive(irb_t *irb) 3377 { 3378 struct rt_entry *rt; 3379 struct radix_node *rn; 3380 ip_stack_t *ipst = irb->irb_ipst; 3381 3382 ASSERT(irb->irb_ipst != NULL); 3383 3384 rt = IRB2RT(irb); 3385 rn = (struct radix_node *)rt; 3386 3387 /* first remove it from the radix tree. */ 3388 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3389 rw_enter(&irb->irb_lock, RW_WRITER); 3390 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3391 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3392 ipst->ips_ip_ftable); 3393 DTRACE_PROBE1(irb__free, rt_t *, rt); 3394 ASSERT((void *)rn == (void *)rt); 3395 Free(rt, rt_entry_cache); 3396 /* irb_lock is freed */ 3397 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3398 return (B_TRUE); 3399 } 3400 rw_exit(&irb->irb_lock); 3401 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3402 return (B_FALSE); 3403 } 3404 3405 /* 3406 * Delete the specified IRE. 3407 */ 3408 void 3409 ire_delete(ire_t *ire) 3410 { 3411 ire_t *ire1; 3412 ire_t **ptpn; 3413 irb_t *irb; 3414 ip_stack_t *ipst = ire->ire_ipst; 3415 3416 if ((irb = ire->ire_bucket) == NULL) { 3417 /* 3418 * It was never inserted in the list. Should call REFRELE 3419 * to free this IRE. 3420 */ 3421 IRE_REFRELE_NOTR(ire); 3422 return; 3423 } 3424 3425 rw_enter(&irb->irb_lock, RW_WRITER); 3426 3427 if (irb->irb_rr_origin == ire) { 3428 irb->irb_rr_origin = NULL; 3429 } 3430 3431 /* 3432 * In case of V4 we might still be waiting for fastpath ack. 3433 */ 3434 if (ire->ire_ipversion == IPV4_VERSION && 3435 (ire->ire_type == IRE_CACHE || 3436 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3437 ASSERT(ire->ire_nce != NULL); 3438 nce_fastpath_list_delete(ire->ire_nce); 3439 } 3440 3441 if (ire->ire_ptpn == NULL) { 3442 /* 3443 * Some other thread has removed us from the list. 3444 * It should have done the REFRELE for us. 3445 */ 3446 rw_exit(&irb->irb_lock); 3447 return; 3448 } 3449 3450 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3451 irb->irb_ire_cnt--; 3452 ire->ire_marks |= IRE_MARK_CONDEMNED; 3453 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 3454 irb->irb_tmp_ire_cnt--; 3455 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 3456 } 3457 } 3458 3459 if (irb->irb_refcnt != 0) { 3460 /* 3461 * The last thread to leave this bucket will 3462 * delete this ire. 3463 */ 3464 irb->irb_marks |= IRB_MARK_CONDEMNED; 3465 rw_exit(&irb->irb_lock); 3466 return; 3467 } 3468 3469 /* 3470 * Normally to delete an ire, we walk the bucket. While we 3471 * walk the bucket, we normally bump up irb_refcnt and hence 3472 * we return from above where we mark CONDEMNED and the ire 3473 * gets deleted from ire_unlink. This case is where somebody 3474 * knows the ire e.g by doing a lookup, and wants to delete the 3475 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3476 * the bucket. 3477 */ 3478 ptpn = ire->ire_ptpn; 3479 ire1 = ire->ire_next; 3480 if (ire1 != NULL) 3481 ire1->ire_ptpn = ptpn; 3482 ASSERT(ptpn != NULL); 3483 *ptpn = ire1; 3484 ire->ire_ptpn = NULL; 3485 ire->ire_next = NULL; 3486 if (ire->ire_ipversion == IPV6_VERSION) { 3487 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3488 } else { 3489 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3490 } 3491 /* 3492 * ip_wput/ip_wput_v6 checks this flag to see whether 3493 * it should still use the cached ire or not. 3494 */ 3495 if (ire->ire_type == IRE_DEFAULT) { 3496 /* 3497 * IRE is out of the list. We need to adjust the 3498 * accounting before we drop the lock. 3499 */ 3500 if (ire->ire_ipversion == IPV6_VERSION) { 3501 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3502 ipst->ips_ipv6_ire_default_count--; 3503 } 3504 } 3505 rw_exit(&irb->irb_lock); 3506 3507 if (ire->ire_ipversion == IPV6_VERSION) { 3508 ire_delete_v6(ire); 3509 } else { 3510 ire_delete_v4(ire); 3511 } 3512 /* 3513 * We removed it from the list. Decrement the 3514 * reference count. 3515 */ 3516 IRE_REFRELE_NOTR(ire); 3517 } 3518 3519 /* 3520 * Delete the specified IRE. 3521 * All calls should use ire_delete(). 3522 * Sometimes called as writer though not required by this function. 3523 * 3524 * NOTE : This function is called only if the ire was added 3525 * in the list. 3526 */ 3527 static void 3528 ire_delete_v4(ire_t *ire) 3529 { 3530 ip_stack_t *ipst = ire->ire_ipst; 3531 3532 ASSERT(ire->ire_refcnt >= 1); 3533 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3534 3535 if (ire->ire_type != IRE_CACHE) 3536 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3537 if (ire->ire_type == IRE_DEFAULT) { 3538 /* 3539 * when a default gateway is going away 3540 * delete all the host redirects pointing at that 3541 * gateway. 3542 */ 3543 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3544 } 3545 } 3546 3547 /* 3548 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3549 * to free the ire when the reference count goes to zero. 3550 */ 3551 void 3552 ire_inactive(ire_t *ire) 3553 { 3554 nce_t *nce; 3555 ill_t *ill = NULL; 3556 ill_t *stq_ill = NULL; 3557 ipif_t *ipif; 3558 boolean_t need_wakeup = B_FALSE; 3559 irb_t *irb; 3560 ip_stack_t *ipst = ire->ire_ipst; 3561 3562 ASSERT(ire->ire_refcnt == 0); 3563 ASSERT(ire->ire_ptpn == NULL); 3564 ASSERT(ire->ire_next == NULL); 3565 3566 if (ire->ire_gw_secattr != NULL) { 3567 ire_gw_secattr_free(ire->ire_gw_secattr); 3568 ire->ire_gw_secattr = NULL; 3569 } 3570 3571 if (ire->ire_mp != NULL) { 3572 ASSERT(ire->ire_bucket == NULL); 3573 mutex_destroy(&ire->ire_lock); 3574 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3575 if (ire->ire_nce != NULL) 3576 NCE_REFRELE_NOTR(ire->ire_nce); 3577 freeb(ire->ire_mp); 3578 return; 3579 } 3580 3581 if ((nce = ire->ire_nce) != NULL) { 3582 NCE_REFRELE_NOTR(nce); 3583 ire->ire_nce = NULL; 3584 } 3585 3586 if (ire->ire_ipif == NULL) 3587 goto end; 3588 3589 ipif = ire->ire_ipif; 3590 ill = ipif->ipif_ill; 3591 3592 if (ire->ire_bucket == NULL) { 3593 /* The ire was never inserted in the table. */ 3594 goto end; 3595 } 3596 3597 /* 3598 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3599 * non-null ill_ire_count also goes down by 1. 3600 * 3601 * The ipif that is associated with an ire is ire->ire_ipif and 3602 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3603 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3604 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3605 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3606 * different. If this is different from ire->ire_ipif->ipif_ill and 3607 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3608 * ipif_ill_refrele_tail on the stq_ill. 3609 */ 3610 3611 if (ire->ire_stq != NULL) 3612 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3613 3614 if (stq_ill == NULL || stq_ill == ill) { 3615 /* Optimize the most common case */ 3616 mutex_enter(&ill->ill_lock); 3617 ASSERT(ipif->ipif_ire_cnt != 0); 3618 DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif, 3619 (char *), "ire", (void *), ire); 3620 ipif->ipif_ire_cnt--; 3621 if (IPIF_DOWN_OK(ipif)) 3622 need_wakeup = B_TRUE; 3623 if (stq_ill != NULL) { 3624 ASSERT(stq_ill->ill_ire_cnt != 0); 3625 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill, 3626 (char *), "ire", (void *), ire); 3627 stq_ill->ill_ire_cnt--; 3628 if (ILL_DOWN_OK(stq_ill)) 3629 need_wakeup = B_TRUE; 3630 } 3631 if (need_wakeup) { 3632 /* Drops the ill lock */ 3633 ipif_ill_refrele_tail(ill); 3634 } else { 3635 mutex_exit(&ill->ill_lock); 3636 } 3637 } else { 3638 /* 3639 * We can't grab all the ill locks at the same time. 3640 * It can lead to recursive lock enter in the call to 3641 * ipif_ill_refrele_tail and later. Instead do it 1 at 3642 * a time. 3643 */ 3644 mutex_enter(&ill->ill_lock); 3645 ASSERT(ipif->ipif_ire_cnt != 0); 3646 DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif, 3647 (char *), "ire", (void *), ire); 3648 ipif->ipif_ire_cnt--; 3649 if (IPIF_DOWN_OK(ipif)) { 3650 /* Drops the lock */ 3651 ipif_ill_refrele_tail(ill); 3652 } else { 3653 mutex_exit(&ill->ill_lock); 3654 } 3655 if (stq_ill != NULL) { 3656 mutex_enter(&stq_ill->ill_lock); 3657 ASSERT(stq_ill->ill_ire_cnt != 0); 3658 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill, 3659 (char *), "ire", (void *), ire); 3660 stq_ill->ill_ire_cnt--; 3661 if (ILL_DOWN_OK(stq_ill)) { 3662 /* Drops the ill lock */ 3663 ipif_ill_refrele_tail(stq_ill); 3664 } else { 3665 mutex_exit(&stq_ill->ill_lock); 3666 } 3667 } 3668 } 3669 end: 3670 /* This should be true for both V4 and V6 */ 3671 3672 if ((ire->ire_type & IRE_FORWARDTABLE) && 3673 (ire->ire_ipversion == IPV4_VERSION) && 3674 ((irb = ire->ire_bucket) != NULL)) { 3675 rw_enter(&irb->irb_lock, RW_WRITER); 3676 irb->irb_nire--; 3677 /* 3678 * Instead of examining the conditions for freeing 3679 * the radix node here, we do it by calling 3680 * IRB_REFRELE which is a single point in the code 3681 * that embeds that logic. Bump up the refcnt to 3682 * be able to call IRB_REFRELE 3683 */ 3684 IRB_REFHOLD_LOCKED(irb); 3685 rw_exit(&irb->irb_lock); 3686 IRB_REFRELE(irb); 3687 } 3688 ire->ire_ipif = NULL; 3689 3690 #ifdef DEBUG 3691 ire_trace_cleanup(ire); 3692 #endif 3693 mutex_destroy(&ire->ire_lock); 3694 if (ire->ire_ipversion == IPV6_VERSION) { 3695 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3696 } else { 3697 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3698 } 3699 ASSERT(ire->ire_mp == NULL); 3700 /* Has been allocated out of the cache */ 3701 kmem_cache_free(ire_cache, ire); 3702 } 3703 3704 /* 3705 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3706 * entries that have a given gateway address. 3707 */ 3708 void 3709 ire_delete_cache_gw(ire_t *ire, char *cp) 3710 { 3711 ipaddr_t gw_addr; 3712 3713 if (!(ire->ire_type & IRE_CACHE) && 3714 !(ire->ire_flags & RTF_DYNAMIC)) 3715 return; 3716 3717 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3718 if (ire->ire_gateway_addr == gw_addr) { 3719 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3720 (int)ntohl(ire->ire_addr), ire->ire_type, 3721 (int)ntohl(ire->ire_gateway_addr))); 3722 ire_delete(ire); 3723 } 3724 } 3725 3726 /* 3727 * Remove all IRE_CACHE entries that match the ire specified. 3728 * 3729 * The flag argument indicates if the flush request is due to addition 3730 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3731 * 3732 * This routine takes only the IREs from the forwarding table and flushes 3733 * the corresponding entries from the cache table. 3734 * 3735 * When flushing due to the deletion of an old route, it 3736 * just checks the cache handles (ire_phandle and ire_ihandle) and 3737 * deletes the ones that match. 3738 * 3739 * When flushing due to the creation of a new route, it checks 3740 * if a cache entry's address matches the one in the IRE and 3741 * that the cache entry's parent has a less specific mask than the 3742 * one in IRE. The destination of such a cache entry could be the 3743 * gateway for other cache entries, so we need to flush those as 3744 * well by looking for gateway addresses matching the IRE's address. 3745 */ 3746 void 3747 ire_flush_cache_v4(ire_t *ire, int flag) 3748 { 3749 int i; 3750 ire_t *cire; 3751 irb_t *irb; 3752 ip_stack_t *ipst = ire->ire_ipst; 3753 3754 if (ire->ire_type & IRE_CACHE) 3755 return; 3756 3757 /* 3758 * If a default is just created, there is no point 3759 * in going through the cache, as there will not be any 3760 * cached ires. 3761 */ 3762 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3763 return; 3764 if (flag == IRE_FLUSH_ADD) { 3765 /* 3766 * This selective flush is due to the addition of 3767 * new IRE. 3768 */ 3769 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3770 irb = &ipst->ips_ip_cache_table[i]; 3771 if ((cire = irb->irb_ire) == NULL) 3772 continue; 3773 IRB_REFHOLD(irb); 3774 for (cire = irb->irb_ire; cire != NULL; 3775 cire = cire->ire_next) { 3776 if (cire->ire_type != IRE_CACHE) 3777 continue; 3778 /* 3779 * If 'cire' belongs to the same subnet 3780 * as the new ire being added, and 'cire' 3781 * is derived from a prefix that is less 3782 * specific than the new ire being added, 3783 * we need to flush 'cire'; for instance, 3784 * when a new interface comes up. 3785 */ 3786 if (((cire->ire_addr & ire->ire_mask) == 3787 (ire->ire_addr & ire->ire_mask)) && 3788 (ip_mask_to_plen(cire->ire_cmask) <= 3789 ire->ire_masklen)) { 3790 ire_delete(cire); 3791 continue; 3792 } 3793 /* 3794 * This is the case when the ire_gateway_addr 3795 * of 'cire' belongs to the same subnet as 3796 * the new ire being added. 3797 * Flushing such ires is sometimes required to 3798 * avoid misrouting: say we have a machine with 3799 * two interfaces (I1 and I2), a default router 3800 * R on the I1 subnet, and a host route to an 3801 * off-link destination D with a gateway G on 3802 * the I2 subnet. 3803 * Under normal operation, we will have an 3804 * on-link cache entry for G and an off-link 3805 * cache entry for D with G as ire_gateway_addr, 3806 * traffic to D will reach its destination 3807 * through gateway G. 3808 * If the administrator does 'ifconfig I2 down', 3809 * the cache entries for D and G will be 3810 * flushed. However, G will now be resolved as 3811 * an off-link destination using R (the default 3812 * router) as gateway. Then D will also be 3813 * resolved as an off-link destination using G 3814 * as gateway - this behavior is due to 3815 * compatibility reasons, see comment in 3816 * ire_ihandle_lookup_offlink(). Traffic to D 3817 * will go to the router R and probably won't 3818 * reach the destination. 3819 * The administrator then does 'ifconfig I2 up'. 3820 * Since G is on the I2 subnet, this routine 3821 * will flush its cache entry. It must also 3822 * flush the cache entry for D, otherwise 3823 * traffic will stay misrouted until the IRE 3824 * times out. 3825 */ 3826 if ((cire->ire_gateway_addr & ire->ire_mask) == 3827 (ire->ire_addr & ire->ire_mask)) { 3828 ire_delete(cire); 3829 continue; 3830 } 3831 } 3832 IRB_REFRELE(irb); 3833 } 3834 } else { 3835 /* 3836 * delete the cache entries based on 3837 * handle in the IRE as this IRE is 3838 * being deleted/changed. 3839 */ 3840 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3841 irb = &ipst->ips_ip_cache_table[i]; 3842 if ((cire = irb->irb_ire) == NULL) 3843 continue; 3844 IRB_REFHOLD(irb); 3845 for (cire = irb->irb_ire; cire != NULL; 3846 cire = cire->ire_next) { 3847 if (cire->ire_type != IRE_CACHE) 3848 continue; 3849 if ((cire->ire_phandle == 0 || 3850 cire->ire_phandle != ire->ire_phandle) && 3851 (cire->ire_ihandle == 0 || 3852 cire->ire_ihandle != ire->ire_ihandle)) 3853 continue; 3854 ire_delete(cire); 3855 } 3856 IRB_REFRELE(irb); 3857 } 3858 } 3859 } 3860 3861 /* 3862 * Matches the arguments passed with the values in the ire. 3863 * 3864 * Note: for match types that match using "ipif" passed in, ipif 3865 * must be checked for non-NULL before calling this routine. 3866 */ 3867 boolean_t 3868 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3869 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3870 const ts_label_t *tsl, int match_flags) 3871 { 3872 ill_t *ire_ill = NULL, *dst_ill; 3873 ill_t *ipif_ill = NULL; 3874 ill_group_t *ire_ill_group = NULL; 3875 ill_group_t *ipif_ill_group = NULL; 3876 3877 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3878 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3879 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3880 (ipif != NULL && !ipif->ipif_isv6)); 3881 3882 /* 3883 * HIDDEN cache entries have to be looked up specifically with 3884 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3885 * when the interface is FAILED or INACTIVE. In that case, 3886 * any IRE_CACHES that exists should be marked with 3887 * IRE_MARK_HIDDEN. So, we don't really need to match below 3888 * for IRE_MARK_HIDDEN. But we do so for consistency. 3889 */ 3890 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 3891 (ire->ire_marks & IRE_MARK_HIDDEN)) 3892 return (B_FALSE); 3893 3894 /* 3895 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 3896 * is used. In that case the routing table is bypassed and the 3897 * packets are sent directly to the specified nexthop. The 3898 * IRE_CACHE entry representing this route should be marked 3899 * with IRE_MARK_PRIVATE_ADDR. 3900 */ 3901 3902 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 3903 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 3904 return (B_FALSE); 3905 3906 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 3907 ire->ire_zoneid != ALL_ZONES) { 3908 /* 3909 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 3910 * valid and does not match that of ire_zoneid, a failure to 3911 * match is reported at this point. Otherwise, since some IREs 3912 * that are available in the global zone can be used in local 3913 * zones, additional checks need to be performed: 3914 * 3915 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 3916 * entries should never be matched in this situation. 3917 * 3918 * IRE entries that have an interface associated with them 3919 * should in general not match unless they are an IRE_LOCAL 3920 * or in the case when MATCH_IRE_DEFAULT has been set in 3921 * the caller. In the case of the former, checking of the 3922 * other fields supplied should take place. 3923 * 3924 * In the case where MATCH_IRE_DEFAULT has been set, 3925 * all of the ipif's associated with the IRE's ill are 3926 * checked to see if there is a matching zoneid. If any 3927 * one ipif has a matching zoneid, this IRE is a 3928 * potential candidate so checking of the other fields 3929 * takes place. 3930 * 3931 * In the case where the IRE_INTERFACE has a usable source 3932 * address (indicated by ill_usesrc_ifindex) in the 3933 * correct zone then it's permitted to return this IRE 3934 */ 3935 if (match_flags & MATCH_IRE_ZONEONLY) 3936 return (B_FALSE); 3937 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 3938 return (B_FALSE); 3939 /* 3940 * Note, IRE_INTERFACE can have the stq as NULL. For 3941 * example, if the default multicast route is tied to 3942 * the loopback address. 3943 */ 3944 if ((ire->ire_type & IRE_INTERFACE) && 3945 (ire->ire_stq != NULL)) { 3946 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 3947 /* 3948 * If there is a usable source address in the 3949 * zone, then it's ok to return an 3950 * IRE_INTERFACE 3951 */ 3952 if (ipif_usesrc_avail(dst_ill, zoneid)) { 3953 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 3954 (void *)dst_ill, 3955 (ire->ire_addr == (addr & mask)))); 3956 } else { 3957 ip3dbg(("ire_match_args: src_ipif NULL" 3958 " dst_ill %p\n", (void *)dst_ill)); 3959 return (B_FALSE); 3960 } 3961 } 3962 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 3963 !(ire->ire_type & IRE_INTERFACE)) { 3964 ipif_t *tipif; 3965 3966 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 3967 return (B_FALSE); 3968 } 3969 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 3970 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 3971 tipif != NULL; tipif = tipif->ipif_next) { 3972 if (IPIF_CAN_LOOKUP(tipif) && 3973 (tipif->ipif_flags & IPIF_UP) && 3974 (tipif->ipif_zoneid == zoneid || 3975 tipif->ipif_zoneid == ALL_ZONES)) 3976 break; 3977 } 3978 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 3979 if (tipif == NULL) { 3980 return (B_FALSE); 3981 } 3982 } 3983 } 3984 3985 /* 3986 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 3987 * somebody wants to send out on a particular interface which 3988 * is given by ire_stq and hence use ire_stq to derive the ill 3989 * value. ire_ipif for IRE_CACHES is just the means of getting 3990 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 3991 * ire_to_ill does the right thing for this. 3992 */ 3993 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 3994 ire_ill = ire_to_ill(ire); 3995 if (ire_ill != NULL) 3996 ire_ill_group = ire_ill->ill_group; 3997 ipif_ill = ipif->ipif_ill; 3998 ipif_ill_group = ipif_ill->ill_group; 3999 } 4000 4001 if ((ire->ire_addr == (addr & mask)) && 4002 ((!(match_flags & MATCH_IRE_GW)) || 4003 (ire->ire_gateway_addr == gateway)) && 4004 ((!(match_flags & MATCH_IRE_TYPE)) || 4005 (ire->ire_type & type)) && 4006 ((!(match_flags & MATCH_IRE_SRC)) || 4007 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4008 ((!(match_flags & MATCH_IRE_IPIF)) || 4009 (ire->ire_ipif == ipif)) && 4010 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4011 (ire->ire_type != IRE_CACHE || 4012 ire->ire_marks & IRE_MARK_HIDDEN)) && 4013 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4014 (ire->ire_type != IRE_CACHE || 4015 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4016 ((!(match_flags & MATCH_IRE_ILL)) || 4017 (ire_ill == ipif_ill)) && 4018 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4019 (ire->ire_ihandle == ihandle)) && 4020 ((!(match_flags & MATCH_IRE_MASK)) || 4021 (ire->ire_mask == mask)) && 4022 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4023 (ire_ill == ipif_ill) || 4024 (ire_ill_group != NULL && 4025 ire_ill_group == ipif_ill_group)) && 4026 ((!(match_flags & MATCH_IRE_SECATTR)) || 4027 (!is_system_labeled()) || 4028 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4029 /* We found the matched IRE */ 4030 return (B_TRUE); 4031 } 4032 return (B_FALSE); 4033 } 4034 4035 4036 /* 4037 * Lookup for a route in all the tables 4038 */ 4039 ire_t * 4040 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4041 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4042 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4043 { 4044 ire_t *ire = NULL; 4045 4046 /* 4047 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4048 * MATCH_IRE_ILL is set. 4049 */ 4050 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4051 (ipif == NULL)) 4052 return (NULL); 4053 4054 /* 4055 * might be asking for a cache lookup, 4056 * This is not best way to lookup cache, 4057 * user should call ire_cache_lookup directly. 4058 * 4059 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4060 * in the forwarding table, if the applicable type flags were set. 4061 */ 4062 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4063 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4064 tsl, flags, ipst); 4065 if (ire != NULL) 4066 return (ire); 4067 } 4068 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4069 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4070 zoneid, 0, tsl, flags, ipst); 4071 } 4072 return (ire); 4073 } 4074 4075 4076 /* 4077 * Delete the IRE cache for the gateway and all IRE caches whose 4078 * ire_gateway_addr points to this gateway, and allow them to 4079 * be created on demand by ip_newroute. 4080 */ 4081 void 4082 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4083 { 4084 irb_t *irb; 4085 ire_t *ire; 4086 4087 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4088 ipst->ips_ip_cache_table_size)]; 4089 IRB_REFHOLD(irb); 4090 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4091 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4092 continue; 4093 4094 ASSERT(ire->ire_mask == IP_HOST_MASK); 4095 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4096 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4097 ire_delete(ire); 4098 } 4099 } 4100 IRB_REFRELE(irb); 4101 4102 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4103 } 4104 4105 /* 4106 * Looks up cache table for a route. 4107 * specific lookup can be indicated by 4108 * passing the MATCH_* flags and the 4109 * necessary parameters. 4110 */ 4111 ire_t * 4112 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4113 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4114 { 4115 irb_t *irb_ptr; 4116 ire_t *ire; 4117 4118 /* 4119 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4120 * MATCH_IRE_ILL is set. 4121 */ 4122 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4123 (ipif == NULL)) 4124 return (NULL); 4125 4126 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4127 ipst->ips_ip_cache_table_size)]; 4128 rw_enter(&irb_ptr->irb_lock, RW_READER); 4129 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4130 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4131 continue; 4132 ASSERT(ire->ire_mask == IP_HOST_MASK); 4133 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4134 ipif, zoneid, 0, tsl, flags)) { 4135 IRE_REFHOLD(ire); 4136 rw_exit(&irb_ptr->irb_lock); 4137 return (ire); 4138 } 4139 } 4140 rw_exit(&irb_ptr->irb_lock); 4141 return (NULL); 4142 } 4143 4144 /* 4145 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4146 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4147 * the same ill group. 4148 */ 4149 boolean_t 4150 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4151 { 4152 ill_t *recv_ill, *xmit_ill; 4153 ill_group_t *recv_group, *xmit_group; 4154 4155 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4156 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4157 4158 recv_ill = ire_to_ill(ire_local); 4159 xmit_ill = ire_to_ill(xmit_ire); 4160 4161 ASSERT(recv_ill != NULL); 4162 ASSERT(xmit_ill != NULL); 4163 4164 if (recv_ill == xmit_ill) 4165 return (B_TRUE); 4166 4167 recv_group = recv_ill->ill_group; 4168 xmit_group = xmit_ill->ill_group; 4169 4170 if (recv_group != NULL && recv_group == xmit_group) 4171 return (B_TRUE); 4172 4173 return (B_FALSE); 4174 } 4175 4176 /* 4177 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4178 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4179 * then we don't allow this IRE_LOCAL to be used. 4180 */ 4181 boolean_t 4182 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4183 const ts_label_t *tsl, ip_stack_t *ipst) 4184 { 4185 ire_t *alt_ire; 4186 boolean_t rval; 4187 4188 if (ire_local->ire_ipversion == IPV4_VERSION) { 4189 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4190 NULL, zoneid, 0, tsl, 4191 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4192 MATCH_IRE_RJ_BHOLE, ipst); 4193 } else { 4194 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4195 0, NULL, NULL, zoneid, 0, tsl, 4196 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4197 MATCH_IRE_RJ_BHOLE, ipst); 4198 } 4199 4200 if (alt_ire == NULL) 4201 return (B_FALSE); 4202 4203 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4204 ire_refrele(alt_ire); 4205 return (B_FALSE); 4206 } 4207 rval = ire_local_same_ill_group(ire_local, alt_ire); 4208 4209 ire_refrele(alt_ire); 4210 return (rval); 4211 } 4212 4213 /* 4214 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4215 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4216 * to the hidden ones. 4217 * 4218 * In general the zoneid has to match (where ALL_ZONES match all of them). 4219 * But for IRE_LOCAL we also need to handle the case where L2 should 4220 * conceptually loop back the packet. This is necessary since neither 4221 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4222 * own MAC address. This loopback is needed when the normal 4223 * routes (ignoring IREs with different zoneids) would send out the packet on 4224 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4225 * associated. 4226 * 4227 * Earlier versions of this code always matched an IRE_LOCAL independently of 4228 * the zoneid. We preserve that earlier behavior when 4229 * ip_restrict_interzone_loopback is turned off. 4230 */ 4231 ire_t * 4232 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4233 ip_stack_t *ipst) 4234 { 4235 irb_t *irb_ptr; 4236 ire_t *ire; 4237 4238 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4239 ipst->ips_ip_cache_table_size)]; 4240 rw_enter(&irb_ptr->irb_lock, RW_READER); 4241 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4242 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4243 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4244 continue; 4245 } 4246 if (ire->ire_addr == addr) { 4247 /* 4248 * Finally, check if the security policy has any 4249 * restriction on using this route for the specified 4250 * message. 4251 */ 4252 if (tsl != NULL && 4253 ire->ire_gw_secattr != NULL && 4254 tsol_ire_match_gwattr(ire, tsl) != 0) { 4255 continue; 4256 } 4257 4258 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4259 ire->ire_zoneid == ALL_ZONES) { 4260 IRE_REFHOLD(ire); 4261 rw_exit(&irb_ptr->irb_lock); 4262 return (ire); 4263 } 4264 4265 if (ire->ire_type == IRE_LOCAL) { 4266 if (ipst->ips_ip_restrict_interzone_loopback && 4267 !ire_local_ok_across_zones(ire, zoneid, 4268 &addr, tsl, ipst)) 4269 continue; 4270 4271 IRE_REFHOLD(ire); 4272 rw_exit(&irb_ptr->irb_lock); 4273 return (ire); 4274 } 4275 } 4276 } 4277 rw_exit(&irb_ptr->irb_lock); 4278 return (NULL); 4279 } 4280 4281 /* 4282 * Locate the interface ire that is tied to the cache ire 'cire' via 4283 * cire->ire_ihandle. 4284 * 4285 * We are trying to create the cache ire for an offlink destn based 4286 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4287 * as found by ip_newroute(). We are called from ip_newroute() in 4288 * the IRE_CACHE case. 4289 */ 4290 ire_t * 4291 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4292 { 4293 ire_t *ire; 4294 int match_flags; 4295 ipaddr_t gw_addr; 4296 ipif_t *gw_ipif; 4297 ip_stack_t *ipst = cire->ire_ipst; 4298 4299 ASSERT(cire != NULL && pire != NULL); 4300 4301 /* 4302 * We don't need to specify the zoneid to ire_ftable_lookup() below 4303 * because the ihandle refers to an ipif which can be in only one zone. 4304 */ 4305 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4306 /* 4307 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4308 * for on-link hosts. We should never be here for onlink. 4309 * Thus, use MATCH_IRE_ILL_GROUP. 4310 */ 4311 if (pire->ire_ipif != NULL) 4312 match_flags |= MATCH_IRE_ILL_GROUP; 4313 /* 4314 * We know that the mask of the interface ire equals cire->ire_cmask. 4315 * (When ip_newroute() created 'cire' for the gateway it set its 4316 * cmask from the interface ire's mask) 4317 */ 4318 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4319 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4320 NULL, match_flags, ipst); 4321 if (ire != NULL) 4322 return (ire); 4323 /* 4324 * If we didn't find an interface ire above, we can't declare failure. 4325 * For backwards compatibility, we need to support prefix routes 4326 * pointing to next hop gateways that are not on-link. 4327 * 4328 * Assume we are trying to ping some offlink destn, and we have the 4329 * routing table below. 4330 * 4331 * Eg. default - gw1 <--- pire (line 1) 4332 * gw1 - gw2 (line 2) 4333 * gw2 - hme0 (line 3) 4334 * 4335 * If we already have a cache ire for gw1 in 'cire', the 4336 * ire_ftable_lookup above would have failed, since there is no 4337 * interface ire to reach gw1. We will fallthru below. 4338 * 4339 * Here we duplicate the steps that ire_ftable_lookup() did in 4340 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4341 * The differences are the following 4342 * i. We want the interface ire only, so we call ire_ftable_lookup() 4343 * instead of ire_route_lookup() 4344 * ii. We look for only prefix routes in the 1st call below. 4345 * ii. We want to match on the ihandle in the 2nd call below. 4346 */ 4347 match_flags = MATCH_IRE_TYPE; 4348 if (pire->ire_ipif != NULL) 4349 match_flags |= MATCH_IRE_ILL_GROUP; 4350 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4351 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4352 if (ire == NULL) 4353 return (NULL); 4354 /* 4355 * At this point 'ire' corresponds to the entry shown in line 2. 4356 * gw_addr is 'gw2' in the example above. 4357 */ 4358 gw_addr = ire->ire_gateway_addr; 4359 gw_ipif = ire->ire_ipif; 4360 ire_refrele(ire); 4361 4362 match_flags |= MATCH_IRE_IHANDLE; 4363 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4364 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4365 ipst); 4366 return (ire); 4367 } 4368 4369 /* 4370 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4371 * ire associated with the specified ipif. 4372 * 4373 * This might occasionally be called when IPIF_UP is not set since 4374 * the IP_MULTICAST_IF as well as creating interface routes 4375 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4376 * 4377 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4378 * the ipif, this routine might return NULL. 4379 */ 4380 ire_t * 4381 ipif_to_ire(const ipif_t *ipif) 4382 { 4383 ire_t *ire; 4384 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4385 4386 ASSERT(!ipif->ipif_isv6); 4387 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4388 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4389 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4390 ipst); 4391 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4392 /* In this case we need to lookup destination address. */ 4393 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4394 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4395 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4396 } else { 4397 ire = ire_ftable_lookup(ipif->ipif_subnet, 4398 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4399 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4400 MATCH_IRE_MASK), ipst); 4401 } 4402 return (ire); 4403 } 4404 4405 /* 4406 * ire_walk function. 4407 * Count the number of IRE_CACHE entries in different categories. 4408 */ 4409 void 4410 ire_cache_count(ire_t *ire, char *arg) 4411 { 4412 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4413 4414 if (ire->ire_type != IRE_CACHE) 4415 return; 4416 4417 icc->icc_total++; 4418 4419 if (ire->ire_ipversion == IPV6_VERSION) { 4420 mutex_enter(&ire->ire_lock); 4421 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4422 mutex_exit(&ire->ire_lock); 4423 icc->icc_onlink++; 4424 return; 4425 } 4426 mutex_exit(&ire->ire_lock); 4427 } else { 4428 if (ire->ire_gateway_addr == 0) { 4429 icc->icc_onlink++; 4430 return; 4431 } 4432 } 4433 4434 ASSERT(ire->ire_ipif != NULL); 4435 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4436 icc->icc_pmtu++; 4437 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4438 ire->ire_ib_pkt_count) 4439 icc->icc_offlink++; 4440 else 4441 icc->icc_unused++; 4442 } 4443 4444 /* 4445 * ire_walk function called by ip_trash_ire_reclaim(). 4446 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4447 * different for different categories of IRE_CACHE entries. 4448 * A fraction of zero means to not free any in that category. 4449 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4450 * is N then every Nth hash bucket chain will be freed. 4451 */ 4452 void 4453 ire_cache_reclaim(ire_t *ire, char *arg) 4454 { 4455 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4456 uint_t rand; 4457 ip_stack_t *ipst = icr->icr_ipst; 4458 4459 if (ire->ire_type != IRE_CACHE) 4460 return; 4461 4462 if (ire->ire_ipversion == IPV6_VERSION) { 4463 rand = (uint_t)lbolt + 4464 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4465 ipst->ips_ip6_cache_table_size); 4466 mutex_enter(&ire->ire_lock); 4467 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4468 mutex_exit(&ire->ire_lock); 4469 if (icr->icr_onlink != 0 && 4470 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4471 ire_delete(ire); 4472 return; 4473 } 4474 goto done; 4475 } 4476 mutex_exit(&ire->ire_lock); 4477 } else { 4478 rand = (uint_t)lbolt + 4479 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4480 if (ire->ire_gateway_addr == 0) { 4481 if (icr->icr_onlink != 0 && 4482 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4483 ire_delete(ire); 4484 return; 4485 } 4486 goto done; 4487 } 4488 } 4489 /* Not onlink IRE */ 4490 ASSERT(ire->ire_ipif != NULL); 4491 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4492 /* Use ptmu fraction */ 4493 if (icr->icr_pmtu != 0 && 4494 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4495 ire_delete(ire); 4496 return; 4497 } 4498 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4499 ire->ire_ib_pkt_count) { 4500 /* Use offlink fraction */ 4501 if (icr->icr_offlink != 0 && 4502 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4503 ire_delete(ire); 4504 return; 4505 } 4506 } else { 4507 /* Use unused fraction */ 4508 if (icr->icr_unused != 0 && 4509 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4510 ire_delete(ire); 4511 return; 4512 } 4513 } 4514 done: 4515 /* 4516 * Update tire_mark so that those that haven't been used since this 4517 * reclaim will be considered unused next time we reclaim. 4518 */ 4519 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4520 } 4521 4522 static void 4523 power2_roundup(uint32_t *value) 4524 { 4525 int i; 4526 4527 for (i = 1; i < 31; i++) { 4528 if (*value <= (1 << i)) 4529 break; 4530 } 4531 *value = (1 << i); 4532 } 4533 4534 /* Global init for all zones */ 4535 void 4536 ip_ire_g_init() 4537 { 4538 /* 4539 * Create ire caches, ire_reclaim() 4540 * will give IRE_CACHE back to system when needed. 4541 * This needs to be done here before anything else, since 4542 * ire_add() expects the cache to be created. 4543 */ 4544 ire_cache = kmem_cache_create("ire_cache", 4545 sizeof (ire_t), 0, ip_ire_constructor, 4546 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4547 4548 rt_entry_cache = kmem_cache_create("rt_entry", 4549 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4550 4551 /* 4552 * Have radix code setup kmem caches etc. 4553 */ 4554 rn_init(); 4555 } 4556 4557 void 4558 ip_ire_init(ip_stack_t *ipst) 4559 { 4560 int i; 4561 uint32_t mem_cnt; 4562 uint32_t cpu_cnt; 4563 uint32_t min_cnt; 4564 pgcnt_t mem_avail; 4565 4566 /* 4567 * ip_ire_max_bucket_cnt is sized below based on the memory 4568 * size and the cpu speed of the machine. This is upper 4569 * bounded by the compile time value of ip_ire_max_bucket_cnt 4570 * and is lower bounded by the compile time value of 4571 * ip_ire_min_bucket_cnt. Similar logic applies to 4572 * ip6_ire_max_bucket_cnt. 4573 * 4574 * We calculate this for each IP Instances in order to use 4575 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4576 * in effect when the zone is booted. 4577 */ 4578 mem_avail = kmem_avail(); 4579 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4580 ip_cache_table_size / sizeof (ire_t); 4581 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4582 4583 min_cnt = MIN(cpu_cnt, mem_cnt); 4584 if (min_cnt < ip_ire_min_bucket_cnt) 4585 min_cnt = ip_ire_min_bucket_cnt; 4586 if (ip_ire_max_bucket_cnt > min_cnt) { 4587 ip_ire_max_bucket_cnt = min_cnt; 4588 } 4589 4590 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4591 ip6_cache_table_size / sizeof (ire_t); 4592 min_cnt = MIN(cpu_cnt, mem_cnt); 4593 if (min_cnt < ip6_ire_min_bucket_cnt) 4594 min_cnt = ip6_ire_min_bucket_cnt; 4595 if (ip6_ire_max_bucket_cnt > min_cnt) { 4596 ip6_ire_max_bucket_cnt = min_cnt; 4597 } 4598 4599 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4600 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4601 4602 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4603 4604 4605 /* Calculate the IPv4 cache table size. */ 4606 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4607 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4608 ip_ire_max_bucket_cnt)); 4609 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4610 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4611 /* 4612 * Make sure that the table size is always a power of 2. The 4613 * hash macro IRE_ADDR_HASH() depends on that. 4614 */ 4615 power2_roundup(&ipst->ips_ip_cache_table_size); 4616 4617 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4618 sizeof (irb_t), KM_SLEEP); 4619 4620 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4621 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4622 RW_DEFAULT, NULL); 4623 } 4624 4625 /* Calculate the IPv6 cache table size. */ 4626 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4627 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4628 ip6_ire_max_bucket_cnt)); 4629 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4630 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4631 /* 4632 * Make sure that the table size is always a power of 2. The 4633 * hash macro IRE_ADDR_HASH_V6() depends on that. 4634 */ 4635 power2_roundup(&ipst->ips_ip6_cache_table_size); 4636 4637 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4638 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4639 4640 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4641 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4642 RW_DEFAULT, NULL); 4643 } 4644 4645 /* 4646 * Make sure that the forwarding table size is a power of 2. 4647 * The IRE*_ADDR_HASH() macroes depend on that. 4648 */ 4649 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4650 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4651 4652 ipst->ips_ire_handle = 1; 4653 } 4654 4655 void 4656 ip_ire_g_fini(void) 4657 { 4658 kmem_cache_destroy(ire_cache); 4659 kmem_cache_destroy(rt_entry_cache); 4660 4661 rn_fini(); 4662 } 4663 4664 void 4665 ip_ire_fini(ip_stack_t *ipst) 4666 { 4667 int i; 4668 4669 /* 4670 * Delete all IREs - assumes that the ill/ipifs have 4671 * been removed so what remains are just the ftable and IRE_CACHE. 4672 */ 4673 ire_walk(ire_delete, NULL, ipst); 4674 4675 rn_freehead(ipst->ips_ip_ftable); 4676 ipst->ips_ip_ftable = NULL; 4677 4678 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4679 mutex_destroy(&ipst->ips_ire_handle_lock); 4680 4681 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4682 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4683 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4684 } 4685 kmem_free(ipst->ips_ip_cache_table, 4686 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4687 ipst->ips_ip_cache_table = NULL; 4688 4689 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4690 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4691 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4692 } 4693 kmem_free(ipst->ips_ip_cache_table_v6, 4694 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4695 ipst->ips_ip_cache_table_v6 = NULL; 4696 4697 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4698 irb_t *ptr; 4699 int j; 4700 4701 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4702 continue; 4703 4704 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4705 ASSERT(ptr[j].irb_ire == NULL); 4706 rw_destroy(&ptr[j].irb_lock); 4707 } 4708 mi_free(ptr); 4709 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4710 } 4711 } 4712 4713 /* 4714 * Check if another multirt route resolution is needed. 4715 * B_TRUE is returned is there remain a resolvable route, 4716 * or if no route for that dst is resolved yet. 4717 * B_FALSE is returned if all routes for that dst are resolved 4718 * or if the remaining unresolved routes are actually not 4719 * resolvable. 4720 * This only works in the global zone. 4721 */ 4722 boolean_t 4723 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4724 { 4725 ire_t *first_fire; 4726 ire_t *first_cire; 4727 ire_t *fire; 4728 ire_t *cire; 4729 irb_t *firb; 4730 irb_t *cirb; 4731 int unres_cnt = 0; 4732 boolean_t resolvable = B_FALSE; 4733 4734 /* Retrieve the first IRE_HOST that matches the destination */ 4735 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4736 NULL, ALL_ZONES, 0, tsl, 4737 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4738 4739 /* No route at all */ 4740 if (first_fire == NULL) { 4741 return (B_TRUE); 4742 } 4743 4744 firb = first_fire->ire_bucket; 4745 ASSERT(firb != NULL); 4746 4747 /* Retrieve the first IRE_CACHE ire for that destination. */ 4748 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4749 4750 /* No resolved route. */ 4751 if (first_cire == NULL) { 4752 ire_refrele(first_fire); 4753 return (B_TRUE); 4754 } 4755 4756 /* 4757 * At least one route is resolved. Here we look through the forward 4758 * and cache tables, to compare the number of declared routes 4759 * with the number of resolved routes. The search for a resolvable 4760 * route is performed only if at least one route remains 4761 * unresolved. 4762 */ 4763 cirb = first_cire->ire_bucket; 4764 ASSERT(cirb != NULL); 4765 4766 /* Count the number of routes to that dest that are declared. */ 4767 IRB_REFHOLD(firb); 4768 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4769 if (!(fire->ire_flags & RTF_MULTIRT)) 4770 continue; 4771 if (fire->ire_addr != dst) 4772 continue; 4773 unres_cnt++; 4774 } 4775 IRB_REFRELE(firb); 4776 4777 /* Then subtract the number of routes to that dst that are resolved */ 4778 IRB_REFHOLD(cirb); 4779 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4780 if (!(cire->ire_flags & RTF_MULTIRT)) 4781 continue; 4782 if (cire->ire_addr != dst) 4783 continue; 4784 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4785 continue; 4786 unres_cnt--; 4787 } 4788 IRB_REFRELE(cirb); 4789 4790 /* At least one route is unresolved; search for a resolvable route. */ 4791 if (unres_cnt > 0) 4792 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4793 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4794 4795 if (first_fire != NULL) 4796 ire_refrele(first_fire); 4797 4798 if (first_cire != NULL) 4799 ire_refrele(first_cire); 4800 4801 return (resolvable); 4802 } 4803 4804 4805 /* 4806 * Explore a forward_table bucket, starting from fire_arg. 4807 * fire_arg MUST be an IRE_HOST entry. 4808 * 4809 * Return B_TRUE and update *ire_arg and *fire_arg 4810 * if at least one resolvable route is found. *ire_arg 4811 * is the IRE entry for *fire_arg's gateway. 4812 * 4813 * Return B_FALSE otherwise (all routes are resolved or 4814 * the remaining unresolved routes are all unresolvable). 4815 * 4816 * The IRE selection relies on a priority mechanism 4817 * driven by the flags passed in by the caller. 4818 * The caller, such as ip_newroute_ipif(), can get the most 4819 * relevant ire at each stage of a multiple route resolution. 4820 * 4821 * The rules are: 4822 * 4823 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4824 * ires are preferred for the gateway. This gives the highest 4825 * priority to routes that can be resolved without using 4826 * a resolver. 4827 * 4828 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4829 * is specified but no IRE_CACHETABLE ire entry for the gateway 4830 * is found, the following rules apply. 4831 * 4832 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4833 * ires for the gateway, that have not been tried since 4834 * a configurable amount of time, are preferred. 4835 * This applies when a resolver must be invoked for 4836 * a missing route, but we don't want to use the resolver 4837 * upon each packet emission. If no such resolver is found, 4838 * B_FALSE is returned. 4839 * The MULTIRT_USESTAMP flag can be combined with 4840 * MULTIRT_CACHEGW. 4841 * 4842 * - if MULTIRT_USESTAMP is not specified in flags, the first 4843 * unresolved but resolvable route is selected. 4844 * 4845 * - Otherwise, there is no resolvalble route, and 4846 * B_FALSE is returned. 4847 * 4848 * At last, MULTIRT_SETSTAMP can be specified in flags to 4849 * request the timestamp of unresolvable routes to 4850 * be refreshed. This prevents the useless exploration 4851 * of those routes for a while, when MULTIRT_USESTAMP is used. 4852 * 4853 * This only works in the global zone. 4854 */ 4855 boolean_t 4856 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4857 const ts_label_t *tsl, ip_stack_t *ipst) 4858 { 4859 clock_t delta; 4860 ire_t *best_fire = NULL; 4861 ire_t *best_cire = NULL; 4862 ire_t *first_fire; 4863 ire_t *first_cire; 4864 ire_t *fire; 4865 ire_t *cire; 4866 irb_t *firb = NULL; 4867 irb_t *cirb = NULL; 4868 ire_t *gw_ire; 4869 boolean_t already_resolved; 4870 boolean_t res; 4871 ipaddr_t dst; 4872 ipaddr_t gw; 4873 4874 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4875 (void *)*ire_arg, (void *)*fire_arg, flags)); 4876 4877 ASSERT(ire_arg != NULL); 4878 ASSERT(fire_arg != NULL); 4879 4880 /* Not an IRE_HOST ire; give up. */ 4881 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4882 return (B_FALSE); 4883 } 4884 4885 /* This is the first IRE_HOST ire for that destination. */ 4886 first_fire = *fire_arg; 4887 firb = first_fire->ire_bucket; 4888 ASSERT(firb != NULL); 4889 4890 dst = first_fire->ire_addr; 4891 4892 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 4893 4894 /* 4895 * Retrieve the first IRE_CACHE ire for that destination; 4896 * if we don't find one, no route for that dest is 4897 * resolved yet. 4898 */ 4899 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4900 if (first_cire != NULL) { 4901 cirb = first_cire->ire_bucket; 4902 } 4903 4904 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 4905 4906 /* 4907 * Search for a resolvable route, giving the top priority 4908 * to routes that can be resolved without any call to the resolver. 4909 */ 4910 IRB_REFHOLD(firb); 4911 4912 if (!CLASSD(dst)) { 4913 /* 4914 * For all multiroute IRE_HOST ires for that destination, 4915 * check if the route via the IRE_HOST's gateway is 4916 * resolved yet. 4917 */ 4918 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4919 4920 if (!(fire->ire_flags & RTF_MULTIRT)) 4921 continue; 4922 if (fire->ire_addr != dst) 4923 continue; 4924 4925 if (fire->ire_gw_secattr != NULL && 4926 tsol_ire_match_gwattr(fire, tsl) != 0) { 4927 continue; 4928 } 4929 4930 gw = fire->ire_gateway_addr; 4931 4932 ip2dbg(("ire_multirt_lookup: fire %p, " 4933 "ire_addr %08x, ire_gateway_addr %08x\n", 4934 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 4935 4936 already_resolved = B_FALSE; 4937 4938 if (first_cire != NULL) { 4939 ASSERT(cirb != NULL); 4940 4941 IRB_REFHOLD(cirb); 4942 /* 4943 * For all IRE_CACHE ires for that 4944 * destination. 4945 */ 4946 for (cire = first_cire; 4947 cire != NULL; 4948 cire = cire->ire_next) { 4949 4950 if (!(cire->ire_flags & RTF_MULTIRT)) 4951 continue; 4952 if (cire->ire_addr != dst) 4953 continue; 4954 if (cire->ire_marks & 4955 (IRE_MARK_CONDEMNED | 4956 IRE_MARK_HIDDEN)) 4957 continue; 4958 4959 if (cire->ire_gw_secattr != NULL && 4960 tsol_ire_match_gwattr(cire, 4961 tsl) != 0) { 4962 continue; 4963 } 4964 4965 /* 4966 * Check if the IRE_CACHE's gateway 4967 * matches the IRE_HOST's gateway. 4968 */ 4969 if (cire->ire_gateway_addr == gw) { 4970 already_resolved = B_TRUE; 4971 break; 4972 } 4973 } 4974 IRB_REFRELE(cirb); 4975 } 4976 4977 /* 4978 * This route is already resolved; 4979 * proceed with next one. 4980 */ 4981 if (already_resolved) { 4982 ip2dbg(("ire_multirt_lookup: found cire %p, " 4983 "already resolved\n", (void *)cire)); 4984 continue; 4985 } 4986 4987 /* 4988 * The route is unresolved; is it actually 4989 * resolvable, i.e. is there a cache or a resolver 4990 * for the gateway? 4991 */ 4992 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 4993 ALL_ZONES, tsl, 4994 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 4995 4996 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 4997 (void *)gw_ire)); 4998 4999 /* 5000 * If gw_ire is typed IRE_CACHETABLE, 5001 * this route can be resolved without any call to the 5002 * resolver. If the MULTIRT_CACHEGW flag is set, 5003 * give the top priority to this ire and exit the 5004 * loop. 5005 * This is typically the case when an ARP reply 5006 * is processed through ip_wput_nondata(). 5007 */ 5008 if ((flags & MULTIRT_CACHEGW) && 5009 (gw_ire != NULL) && 5010 (gw_ire->ire_type & IRE_CACHETABLE)) { 5011 ASSERT(gw_ire->ire_nce == NULL || 5012 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5013 /* 5014 * Release the resolver associated to the 5015 * previous candidate best ire, if any. 5016 */ 5017 if (best_cire != NULL) { 5018 ire_refrele(best_cire); 5019 ASSERT(best_fire != NULL); 5020 } 5021 5022 best_fire = fire; 5023 best_cire = gw_ire; 5024 5025 ip2dbg(("ire_multirt_lookup: found top prio " 5026 "best_fire %p, best_cire %p\n", 5027 (void *)best_fire, (void *)best_cire)); 5028 break; 5029 } 5030 5031 /* 5032 * Compute the time elapsed since our preceding 5033 * attempt to resolve that route. 5034 * If the MULTIRT_USESTAMP flag is set, we take that 5035 * route into account only if this time interval 5036 * exceeds ip_multirt_resolution_interval; 5037 * this prevents us from attempting to resolve a 5038 * broken route upon each sending of a packet. 5039 */ 5040 delta = lbolt - fire->ire_last_used_time; 5041 delta = TICK_TO_MSEC(delta); 5042 5043 res = (boolean_t)((delta > 5044 ipst->ips_ip_multirt_resolution_interval) || 5045 (!(flags & MULTIRT_USESTAMP))); 5046 5047 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5048 "res %d\n", 5049 (void *)fire, delta, res)); 5050 5051 if (res) { 5052 /* 5053 * We are here if MULTIRT_USESTAMP flag is set 5054 * and the resolver for fire's gateway 5055 * has not been tried since 5056 * ip_multirt_resolution_interval, or if 5057 * MULTIRT_USESTAMP is not set but gw_ire did 5058 * not fill the conditions for MULTIRT_CACHEGW, 5059 * or if neither MULTIRT_USESTAMP nor 5060 * MULTIRT_CACHEGW are set. 5061 */ 5062 if (gw_ire != NULL) { 5063 if (best_fire == NULL) { 5064 ASSERT(best_cire == NULL); 5065 5066 best_fire = fire; 5067 best_cire = gw_ire; 5068 5069 ip2dbg(("ire_multirt_lookup:" 5070 "found candidate " 5071 "best_fire %p, " 5072 "best_cire %p\n", 5073 (void *)best_fire, 5074 (void *)best_cire)); 5075 5076 /* 5077 * If MULTIRT_CACHEGW is not 5078 * set, we ignore the top 5079 * priority ires that can 5080 * be resolved without any 5081 * call to the resolver; 5082 * In that case, there is 5083 * actually no need 5084 * to continue the loop. 5085 */ 5086 if (!(flags & 5087 MULTIRT_CACHEGW)) { 5088 break; 5089 } 5090 continue; 5091 } 5092 } else { 5093 /* 5094 * No resolver for the gateway: the 5095 * route is not resolvable. 5096 * If the MULTIRT_SETSTAMP flag is 5097 * set, we stamp the IRE_HOST ire, 5098 * so we will not select it again 5099 * during this resolution interval. 5100 */ 5101 if (flags & MULTIRT_SETSTAMP) 5102 fire->ire_last_used_time = 5103 lbolt; 5104 } 5105 } 5106 5107 if (gw_ire != NULL) 5108 ire_refrele(gw_ire); 5109 } 5110 } else { /* CLASSD(dst) */ 5111 5112 for (fire = first_fire; 5113 fire != NULL; 5114 fire = fire->ire_next) { 5115 5116 if (!(fire->ire_flags & RTF_MULTIRT)) 5117 continue; 5118 if (fire->ire_addr != dst) 5119 continue; 5120 5121 if (fire->ire_gw_secattr != NULL && 5122 tsol_ire_match_gwattr(fire, tsl) != 0) { 5123 continue; 5124 } 5125 5126 already_resolved = B_FALSE; 5127 5128 gw = fire->ire_gateway_addr; 5129 5130 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5131 NULL, NULL, ALL_ZONES, 0, tsl, 5132 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5133 MATCH_IRE_SECATTR, ipst); 5134 5135 /* No resolver for the gateway; we skip this ire. */ 5136 if (gw_ire == NULL) { 5137 continue; 5138 } 5139 ASSERT(gw_ire->ire_nce == NULL || 5140 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5141 5142 if (first_cire != NULL) { 5143 5144 IRB_REFHOLD(cirb); 5145 /* 5146 * For all IRE_CACHE ires for that 5147 * destination. 5148 */ 5149 for (cire = first_cire; 5150 cire != NULL; 5151 cire = cire->ire_next) { 5152 5153 if (!(cire->ire_flags & RTF_MULTIRT)) 5154 continue; 5155 if (cire->ire_addr != dst) 5156 continue; 5157 if (cire->ire_marks & 5158 (IRE_MARK_CONDEMNED | 5159 IRE_MARK_HIDDEN)) 5160 continue; 5161 5162 if (cire->ire_gw_secattr != NULL && 5163 tsol_ire_match_gwattr(cire, 5164 tsl) != 0) { 5165 continue; 5166 } 5167 5168 /* 5169 * Cache entries are linked to the 5170 * parent routes using the parent handle 5171 * (ire_phandle). If no cache entry has 5172 * the same handle as fire, fire is 5173 * still unresolved. 5174 */ 5175 ASSERT(cire->ire_phandle != 0); 5176 if (cire->ire_phandle == 5177 fire->ire_phandle) { 5178 already_resolved = B_TRUE; 5179 break; 5180 } 5181 } 5182 IRB_REFRELE(cirb); 5183 } 5184 5185 /* 5186 * This route is already resolved; proceed with 5187 * next one. 5188 */ 5189 if (already_resolved) { 5190 ire_refrele(gw_ire); 5191 continue; 5192 } 5193 5194 /* 5195 * Compute the time elapsed since our preceding 5196 * attempt to resolve that route. 5197 * If the MULTIRT_USESTAMP flag is set, we take 5198 * that route into account only if this time 5199 * interval exceeds ip_multirt_resolution_interval; 5200 * this prevents us from attempting to resolve a 5201 * broken route upon each sending of a packet. 5202 */ 5203 delta = lbolt - fire->ire_last_used_time; 5204 delta = TICK_TO_MSEC(delta); 5205 5206 res = (boolean_t)((delta > 5207 ipst->ips_ip_multirt_resolution_interval) || 5208 (!(flags & MULTIRT_USESTAMP))); 5209 5210 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5211 "flags %04x, res %d\n", 5212 (void *)fire, delta, flags, res)); 5213 5214 if (res) { 5215 if (best_cire != NULL) { 5216 /* 5217 * Release the resolver associated 5218 * to the preceding candidate best 5219 * ire, if any. 5220 */ 5221 ire_refrele(best_cire); 5222 ASSERT(best_fire != NULL); 5223 } 5224 best_fire = fire; 5225 best_cire = gw_ire; 5226 continue; 5227 } 5228 5229 ire_refrele(gw_ire); 5230 } 5231 } 5232 5233 if (best_fire != NULL) { 5234 IRE_REFHOLD(best_fire); 5235 } 5236 IRB_REFRELE(firb); 5237 5238 /* Release the first IRE_CACHE we initially looked up, if any. */ 5239 if (first_cire != NULL) 5240 ire_refrele(first_cire); 5241 5242 /* Found a resolvable route. */ 5243 if (best_fire != NULL) { 5244 ASSERT(best_cire != NULL); 5245 5246 if (*fire_arg != NULL) 5247 ire_refrele(*fire_arg); 5248 if (*ire_arg != NULL) 5249 ire_refrele(*ire_arg); 5250 5251 /* 5252 * Update the passed-in arguments with the 5253 * resolvable multirt route we found. 5254 */ 5255 *fire_arg = best_fire; 5256 *ire_arg = best_cire; 5257 5258 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5259 "*fire_arg %p, *ire_arg %p\n", 5260 (void *)best_fire, (void *)best_cire)); 5261 5262 return (B_TRUE); 5263 } 5264 5265 ASSERT(best_cire == NULL); 5266 5267 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5268 "*ire_arg %p\n", 5269 (void *)*fire_arg, (void *)*ire_arg)); 5270 5271 /* No resolvable route. */ 5272 return (B_FALSE); 5273 } 5274 5275 /* 5276 * IRE iterator for inbound and loopback broadcast processing. 5277 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5278 * address, but skip over the passed-in ire. Returns the next ire without 5279 * a hold - assumes that the caller holds a reference on the IRE bucket. 5280 */ 5281 ire_t * 5282 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5283 { 5284 ill_t *ill; 5285 5286 if (curr == NULL) { 5287 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5288 curr = curr->ire_next) { 5289 if (curr->ire_addr == ire->ire_addr) 5290 break; 5291 } 5292 } else { 5293 curr = curr->ire_next; 5294 } 5295 ill = ire_to_ill(ire); 5296 for (; curr != NULL; curr = curr->ire_next) { 5297 if (curr->ire_addr != ire->ire_addr) { 5298 /* 5299 * All the IREs to a given destination are contiguous; 5300 * break out once the address doesn't match. 5301 */ 5302 break; 5303 } 5304 if (curr == ire) { 5305 /* skip over the passed-in ire */ 5306 continue; 5307 } 5308 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5309 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5310 /* 5311 * If the passed-in ire is loopback, skip over 5312 * non-loopback ires and vice versa. 5313 */ 5314 continue; 5315 } 5316 if (ire_to_ill(curr) != ill) { 5317 /* skip over IREs going through a different interface */ 5318 continue; 5319 } 5320 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5321 /* skip over deleted IREs */ 5322 continue; 5323 } 5324 return (curr); 5325 } 5326 return (NULL); 5327 } 5328 5329 #ifdef DEBUG 5330 void 5331 ire_trace_ref(ire_t *ire) 5332 { 5333 mutex_enter(&ire->ire_lock); 5334 if (ire->ire_trace_disable) { 5335 mutex_exit(&ire->ire_lock); 5336 return; 5337 } 5338 5339 if (th_trace_ref(ire, ire->ire_ipst)) { 5340 mutex_exit(&ire->ire_lock); 5341 } else { 5342 ire->ire_trace_disable = B_TRUE; 5343 mutex_exit(&ire->ire_lock); 5344 ire_trace_cleanup(ire); 5345 } 5346 } 5347 5348 void 5349 ire_untrace_ref(ire_t *ire) 5350 { 5351 mutex_enter(&ire->ire_lock); 5352 if (!ire->ire_trace_disable) 5353 th_trace_unref(ire); 5354 mutex_exit(&ire->ire_lock); 5355 } 5356 5357 static void 5358 ire_trace_cleanup(const ire_t *ire) 5359 { 5360 th_trace_cleanup(ire, ire->ire_trace_disable); 5361 } 5362 #endif /* DEBUG */ 5363 5364 /* 5365 * Generate a message chain with an arp request to resolve the in_ire. 5366 * It is assumed that in_ire itself is currently in the ire cache table, 5367 * so we create a fake_ire filled with enough information about ire_addr etc. 5368 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5369 * comes back. The fake_ire itself is created by calling esballoc with 5370 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5371 * invoked when the mblk containing fake_ire is freed. 5372 */ 5373 void 5374 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5375 { 5376 areq_t *areq; 5377 ipaddr_t *addrp; 5378 mblk_t *ire_mp, *areq_mp; 5379 ire_t *ire, *buf; 5380 size_t bufsize; 5381 frtn_t *frtnp; 5382 ill_t *ill; 5383 ip_stack_t *ipst = dst_ill->ill_ipst; 5384 5385 /* 5386 * Construct message chain for the resolver 5387 * of the form: 5388 * ARP_REQ_MBLK-->IRE_MBLK 5389 * 5390 * NOTE : If the response does not 5391 * come back, ARP frees the packet. For this reason, 5392 * we can't REFHOLD the bucket of save_ire to prevent 5393 * deletions. We may not be able to REFRELE the bucket 5394 * if the response never comes back. Thus, before 5395 * adding the ire, ire_add_v4 will make sure that the 5396 * interface route does not get deleted. This is the 5397 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5398 * where we can always prevent deletions because of 5399 * the synchronous nature of adding IRES i.e 5400 * ire_add_then_send is called after creating the IRE. 5401 */ 5402 5403 /* 5404 * We use esballoc to allocate the second part(the ire_t size mblk) 5405 * of the message chain depicted above. THis mblk will be freed 5406 * by arp when there is a timeout, and otherwise passed to IP 5407 * and IP will * free it after processing the ARP response. 5408 */ 5409 5410 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5411 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5412 if (buf == NULL) { 5413 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5414 return; 5415 } 5416 frtnp = (frtn_t *)(buf + 1); 5417 frtnp->free_arg = (caddr_t)buf; 5418 frtnp->free_func = ire_freemblk; 5419 5420 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5421 5422 if (ire_mp == NULL) { 5423 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5424 kmem_free(buf, bufsize); 5425 return; 5426 } 5427 ASSERT(in_ire->ire_nce != NULL); 5428 areq_mp = copyb(dst_ill->ill_resolver_mp); 5429 if (areq_mp == NULL) { 5430 kmem_free(buf, bufsize); 5431 return; 5432 } 5433 5434 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5435 ire = (ire_t *)buf; 5436 /* 5437 * keep enough info in the fake ire so that we can pull up 5438 * the incomplete ire (in_ire) after result comes back from 5439 * arp and make it complete. 5440 */ 5441 *ire = ire_null; 5442 ire->ire_u = in_ire->ire_u; 5443 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5444 ire->ire_ipif = in_ire->ire_ipif; 5445 ire->ire_stq = in_ire->ire_stq; 5446 ill = ire_to_ill(ire); 5447 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5448 ire->ire_zoneid = in_ire->ire_zoneid; 5449 ire->ire_ipst = ipst; 5450 5451 /* 5452 * ire_freemblk will be called when ire_mp is freed, both for 5453 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5454 * when the arp resolution failed. 5455 */ 5456 ire->ire_marks |= IRE_MARK_UNCACHED; 5457 ire->ire_mp = ire_mp; 5458 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5459 ire_mp->b_cont = NULL; 5460 linkb(areq_mp, ire_mp); 5461 5462 /* 5463 * Fill in the source and dest addrs for the resolver. 5464 * NOTE: this depends on memory layouts imposed by 5465 * ill_init(). 5466 */ 5467 areq = (areq_t *)areq_mp->b_rptr; 5468 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5469 *addrp = ire->ire_src_addr; 5470 5471 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5472 if (ire->ire_gateway_addr != INADDR_ANY) { 5473 *addrp = ire->ire_gateway_addr; 5474 } else { 5475 *addrp = ire->ire_addr; 5476 } 5477 5478 /* Up to the resolver. */ 5479 if (canputnext(dst_ill->ill_rq)) { 5480 putnext(dst_ill->ill_rq, areq_mp); 5481 } else { 5482 freemsg(areq_mp); 5483 } 5484 } 5485 5486 /* 5487 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5488 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5489 * 5490 * This function can be called by ARP via free routine for ire_mp or 5491 * by IPv4(both host and forwarding path) via ire_delete 5492 * in case ARP resolution fails. 5493 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5494 * (for IP to talk to ARP, it still has to send AR* messages). 5495 * 5496 * Note that the ARP/IP merge should replace the functioanlity by providing 5497 * direct function calls to clean up unresolved entries in ire/nce lists. 5498 */ 5499 void 5500 ire_freemblk(ire_t *ire_mp) 5501 { 5502 nce_t *nce = NULL; 5503 ill_t *ill; 5504 ip_stack_t *ipst; 5505 5506 ASSERT(ire_mp != NULL); 5507 5508 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5509 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5510 (void *)ire_mp)); 5511 goto cleanup; 5512 } 5513 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5514 goto cleanup; /* everything succeeded. just free and return */ 5515 } 5516 5517 /* 5518 * the arp information corresponding to this ire_mp was not 5519 * transferred to a ire_cache entry. Need 5520 * to clean up incomplete ire's and nce, if necessary. 5521 */ 5522 ASSERT(ire_mp->ire_stq != NULL); 5523 ASSERT(ire_mp->ire_stq_ifindex != 0); 5524 ASSERT(ire_mp->ire_ipst != NULL); 5525 5526 ipst = ire_mp->ire_ipst; 5527 5528 /* 5529 * Get any nce's corresponding to this ire_mp. We first have to 5530 * make sure that the ill is still around. 5531 */ 5532 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5533 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5534 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5535 (ill->ill_state_flags & ILL_CONDEMNED)) { 5536 /* 5537 * ill went away. no nce to clean up. 5538 * Note that the ill_state_flags could be set to 5539 * ILL_CONDEMNED after this point, but if we know 5540 * that it is CONDEMNED now, we just bail out quickly. 5541 */ 5542 if (ill != NULL) 5543 ill_refrele(ill); 5544 goto cleanup; 5545 } 5546 nce = ndp_lookup_v4(ill, 5547 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5548 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5549 B_FALSE); 5550 ill_refrele(ill); 5551 5552 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5553 /* 5554 * some incomplete nce was found. 5555 */ 5556 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5557 nce_t *, nce, ire_t *, ire_mp); 5558 /* 5559 * Send the icmp_unreachable messages for the queued mblks in 5560 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5561 * for this ire 5562 */ 5563 arp_resolv_failed(nce); 5564 /* 5565 * Delete the nce and clean up all ire's pointing at this nce 5566 * in the cachetable 5567 */ 5568 ndp_delete(nce); 5569 } 5570 if (nce != NULL) 5571 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5572 5573 cleanup: 5574 /* 5575 * Get rid of the ire buffer 5576 * We call kmem_free here(instead of ire_delete()), since 5577 * this is the freeb's callback. 5578 */ 5579 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5580 } 5581 5582 /* 5583 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5584 * non-loopback IRE_BROADCAST ire's. 5585 * 5586 * If a neighbor-cache entry has to be created (i.e., one does not already 5587 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5588 * entry are initialized in ndp_add_v4(). These values are picked from 5589 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5590 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5591 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5592 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5593 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5594 * entries, 5595 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5596 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5597 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5598 * layer resolution is necessary, so that the nce_t will be in the 5599 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5600 * ill_resolver_mp of the outgoing interface. 5601 * 5602 * The link layer information needed for broadcast addresses, and for 5603 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5604 * never needs re-verification for the lifetime of the nce_t. These are 5605 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5606 * NCE_EXPIRED. 5607 * 5608 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5609 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5610 * case of direct routes, with the nce_res_mp containing a template 5611 * DL_UNITDATA request. 5612 * 5613 * The actual association of the ire_nce to the nce created here is 5614 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5615 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5616 * the ire_nce assignment is done in ire_add_then_send. 5617 */ 5618 int 5619 ire_nce_init(ire_t *ire, nce_t *src_nce) 5620 { 5621 in_addr_t addr4; 5622 int err; 5623 nce_t *nce = NULL; 5624 ill_t *ire_ill; 5625 uint16_t nce_flags = 0; 5626 ip_stack_t *ipst; 5627 5628 if (ire->ire_stq == NULL) 5629 return (0); /* no need to create nce for local/loopback */ 5630 5631 switch (ire->ire_type) { 5632 case IRE_CACHE: 5633 if (ire->ire_gateway_addr != INADDR_ANY) 5634 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5635 else 5636 addr4 = ire->ire_addr; /* direct route */ 5637 break; 5638 case IRE_BROADCAST: 5639 addr4 = ire->ire_addr; 5640 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5641 break; 5642 default: 5643 return (0); 5644 } 5645 5646 /* 5647 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5648 * rules in ire_forward_src_ipif. We want the dlureq_mp 5649 * for the outgoing interface, which we get from the ire_stq. 5650 */ 5651 ire_ill = ire_to_ill(ire); 5652 ipst = ire_ill->ill_ipst; 5653 5654 /* 5655 * IRE_IF_NORESOLVER entries never need re-verification and 5656 * do not expire, so we mark them as NCE_F_PERMANENT. 5657 */ 5658 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5659 nce_flags |= NCE_F_PERMANENT; 5660 5661 retry_nce: 5662 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5663 &nce, src_nce); 5664 5665 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5666 /* 5667 * We looked up an expired nce. 5668 * Go back and try to create one again. 5669 */ 5670 ndp_delete(nce); 5671 NCE_REFRELE(nce); 5672 nce = NULL; 5673 goto retry_nce; 5674 } 5675 5676 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5677 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5678 5679 switch (err) { 5680 case 0: 5681 case EEXIST: 5682 /* 5683 * return a pointer to a newly created or existing nce_t; 5684 * note that the ire-nce mapping is many-one, i.e., 5685 * multiple ire's could point to the same nce_t. 5686 */ 5687 break; 5688 default: 5689 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5690 return (EINVAL); 5691 } 5692 if (ire->ire_type == IRE_BROADCAST) { 5693 /* 5694 * Two bcast ires are created for each interface; 5695 * 1. loopback copy (which does not have an 5696 * ire_stq, and therefore has no ire_nce), and, 5697 * 2. the non-loopback copy, which has the nce_res_mp 5698 * initialized to a copy of the ill_bcast_mp, and 5699 * is marked as ND_REACHABLE at this point. 5700 * This nce does not undergo any further state changes, 5701 * and exists as long as the interface is plumbed. 5702 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5703 * because some functions like ill_mark_bcast() inline the 5704 * ire_add functionality. 5705 */ 5706 ire->ire_nce = nce; 5707 /* 5708 * We are associating this nce to the ire, 5709 * so change the nce ref taken in 5710 * ndp_lookup_then_add_v4() from 5711 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5712 */ 5713 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5714 } else { 5715 /* 5716 * We are not using this nce_t just yet so release 5717 * the ref taken in ndp_lookup_then_add_v4() 5718 */ 5719 NCE_REFRELE(nce); 5720 } 5721 return (0); 5722 } 5723