1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/ddi.h> 38 #include <sys/cmn_err.h> 39 #include <sys/policy.h> 40 41 #include <sys/systm.h> 42 #include <sys/kmem.h> 43 #include <sys/param.h> 44 #include <sys/socket.h> 45 #include <net/if.h> 46 #include <net/route.h> 47 #include <netinet/in.h> 48 #include <net/if_dl.h> 49 #include <netinet/ip6.h> 50 #include <netinet/icmp6.h> 51 52 #include <inet/common.h> 53 #include <inet/mi.h> 54 #include <inet/ip.h> 55 #include <inet/ip6.h> 56 #include <inet/ip_ndp.h> 57 #include <inet/arp.h> 58 #include <inet/ip_if.h> 59 #include <inet/ip_ire.h> 60 #include <inet/ip_ftable.h> 61 #include <inet/ip_rts.h> 62 #include <inet/nd.h> 63 64 #include <net/pfkeyv2.h> 65 #include <inet/ipsec_info.h> 66 #include <inet/sadb.h> 67 #include <sys/kmem.h> 68 #include <inet/tcp.h> 69 #include <inet/ipclassifier.h> 70 #include <sys/zone.h> 71 #include <sys/cpuvar.h> 72 73 #include <sys/tsol/label.h> 74 #include <sys/tsol/tnet.h> 75 76 struct kmem_cache *rt_entry_cache; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structures. The IPv6 forwarding table 148 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 149 * structure. ip_forwarding_table_v6 is allocated dynamically in 150 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access 153 * ip_forwarding_table_v6[i] without any locks. 154 * 155 * The forwarding table for IPv4 is a radix tree whose leaves 156 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 157 * for IPv4 is dynamically allocated and freed. 158 * 159 * Each irb_t - ire bucket structure has a lock to protect 160 * a bucket and the ires residing in the bucket have a back pointer to 161 * the bucket structure. It also has a reference count for the number 162 * of threads walking the bucket - irb_refcnt which is bumped up 163 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 164 * set to IRE_MARK_CONDEMNED indicating that there are some ires 165 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 166 * last thread to leave the bucket should delete the ires. Usually 167 * this is done by the IRB_REFRELE macro which is used to decrement 168 * the reference count on a bucket. See comments above irb_t structure 169 * definition in ip.h for further details. 170 * 171 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 172 * decrements the reference count, ire_refcnt, atomically on the ire. 173 * ire_refcnt is modified only using this macro. Operations on the IRE 174 * could be described as follows : 175 * 176 * CREATE an ire with reference count initialized to 1. 177 * 178 * ADDITION of an ire holds the bucket lock, checks for duplicates 179 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 180 * bumping up once more i.e the reference count is 2. This is to avoid 181 * an extra lookup in the functions calling ire_add which wants to 182 * work with the ire after adding. 183 * 184 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 185 * macro. It is valid to bump up the referece count of the IRE, 186 * after the lookup has returned an ire. Following are the lookup 187 * functions that return an HELD ire : 188 * 189 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 190 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 191 * ipif_to_ire[_v6]. 192 * 193 * DELETION of an ire holds the bucket lock, removes it from the list 194 * and then decrements the reference count for having removed from the list 195 * by using the IRE_REFRELE macro. If some other thread has looked up 196 * the ire, the reference count would have been bumped up and hence 197 * this ire will not be freed once deleted. It will be freed once the 198 * reference count drops to zero. 199 * 200 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 201 * lookups acquire the bucket lock as RW_READER. 202 * 203 * NOTE : The only functions that does the IRE_REFRELE when an ire is 204 * passed as an argument are : 205 * 206 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 207 * broadcast ires it looks up internally within 208 * the function. Currently, for simplicity it does 209 * not differentiate the one that is passed in and 210 * the ones it looks up internally. It always 211 * IRE_REFRELEs. 212 * 2) ire_send 213 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 214 * that take ire as an argument, it has to selectively 215 * IRE_REFRELE the ire. To maintain symmetry, 216 * ire_send_v6 does the same. 217 * 218 * Otherwise, the general rule is to do the IRE_REFRELE in the function 219 * that is passing the ire as an argument. 220 * 221 * In trying to locate ires the following points are to be noted. 222 * 223 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 224 * to be ignored when walking the ires using ire_next. 225 * 226 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 227 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 228 * applications should not be seeing this ire and hence this ire is ignored 229 * in most cases in the search using ire_next. 230 * 231 * Zones note: 232 * Walking IREs within a given zone also walks certain ires in other 233 * zones. This is done intentionally. IRE walks with a specified 234 * zoneid are used only when doing informational reports, and 235 * zone users want to see things that they can access. See block 236 * comment in ire_walk_ill_match(). 237 */ 238 239 /* 240 * The minimum size of IRE cache table. It will be recalcuated in 241 * ip_ire_init(). 242 * Setable in /etc/system 243 */ 244 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 245 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 246 247 /* 248 * The size of the forwarding table. We will make sure that it is a 249 * power of 2 in ip_ire_init(). 250 * Setable in /etc/system 251 */ 252 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 253 254 struct kmem_cache *ire_cache; 255 static ire_t ire_null; 256 257 /* 258 * The threshold number of IRE in a bucket when the IREs are 259 * cleaned up. This threshold is calculated later in ip_open() 260 * based on the speed of CPU and available memory. This default 261 * value is the maximum. 262 * 263 * We have two kinds of cached IRE, temporary and 264 * non-temporary. Temporary IREs are marked with 265 * IRE_MARK_TEMPORARY. They are IREs created for non 266 * TCP traffic and for forwarding purposes. All others 267 * are non-temporary IREs. We don't mark IRE created for 268 * TCP as temporary because TCP is stateful and there are 269 * info stored in the IRE which can be shared by other TCP 270 * connections to the same destination. For connected 271 * endpoint, we also don't want to mark the IRE used as 272 * temporary because the same IRE will be used frequently, 273 * otherwise, the app should not do a connect(). We change 274 * the marking at ip_bind_connected_*() if necessary. 275 * 276 * We want to keep the cache IRE hash bucket length reasonably 277 * short, otherwise IRE lookup functions will take "forever." 278 * We use the "crude" function that the IRE bucket 279 * length should be based on the CPU speed, which is 1 entry 280 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 281 * (n). This means that with a 750MHz CPU, the max bucket 282 * length can be (750 >> n) entries. 283 * 284 * Note that this threshold is separate for temp and non-temp 285 * IREs. This means that the actual bucket length can be 286 * twice as that. And while we try to keep temporary IRE 287 * length at most at the threshold value, we do not attempt to 288 * make the length for non-temporary IREs fixed, for the 289 * reason stated above. Instead, we start trying to find 290 * "unused" non-temporary IREs when the bucket length reaches 291 * this threshold and clean them up. 292 * 293 * We also want to limit the amount of memory used by 294 * IREs. So if we are allowed to use ~3% of memory (M) 295 * for those IREs, each bucket should not have more than 296 * 297 * M / num of cache bucket / sizeof (ire_t) 298 * 299 * Again the above memory uses are separate for temp and 300 * non-temp cached IREs. 301 * 302 * We may also want the limit to be a function of the number 303 * of interfaces and number of CPUs. Doing the initialization 304 * in ip_open() means that every time an interface is plumbed, 305 * the max is re-calculated. Right now, we don't do anything 306 * different. In future, when we have more experience, we 307 * may want to change this behavior. 308 */ 309 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 310 uint32_t ip6_ire_max_bucket_cnt = 10; 311 uint32_t ip_ire_cleanup_cnt = 2; 312 313 /* 314 * The minimum of the temporary IRE bucket count. We do not want 315 * the length of each bucket to be too short. This may hurt 316 * performance of some apps as the temporary IREs are removed too 317 * often. 318 */ 319 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 320 uint32_t ip6_ire_min_bucket_cnt = 3; 321 322 /* 323 * The ratio of memory consumed by IRE used for temporary to available 324 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 325 * value can be changed in /etc/system. 6 is a reasonable number. 326 */ 327 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 328 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 329 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 330 331 typedef struct nce_clookup_s { 332 ipaddr_t ncecl_addr; 333 boolean_t ncecl_found; 334 } nce_clookup_t; 335 336 /* 337 * The maximum number of buckets in IRE cache table. In future, we may 338 * want to make it a dynamic hash table. For the moment, we fix the 339 * size and allocate the table in ip_ire_init() when IP is first loaded. 340 * We take into account the amount of memory a system has. 341 */ 342 #define IP_MAX_CACHE_TABLE_SIZE 4096 343 344 /* Setable in /etc/system */ 345 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 346 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 347 348 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 349 350 /* Zero iulp_t for initialization. */ 351 const iulp_t ire_uinfo_null = { 0 }; 352 353 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 354 ipsq_func_t func, boolean_t); 355 static void ire_delete_v4(ire_t *ire); 356 static void ire_report_ctable(ire_t *ire, char *mp); 357 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 358 zoneid_t zoneid, ip_stack_t *); 359 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 360 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 361 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, 362 ire_t *ref_ire); 363 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 364 #ifdef DEBUG 365 static void ire_trace_cleanup(const ire_t *); 366 #endif 367 368 /* 369 * To avoid bloating the code, we call this function instead of 370 * using the macro IRE_REFRELE. Use macro only in performance 371 * critical paths. 372 * 373 * Must not be called while holding any locks. Otherwise if this is 374 * the last reference to be released there is a chance of recursive mutex 375 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 376 * to restart an ioctl. The one exception is when the caller is sure that 377 * this is not the last reference to be released. Eg. if the caller is 378 * sure that the ire has not been deleted and won't be deleted. 379 */ 380 void 381 ire_refrele(ire_t *ire) 382 { 383 IRE_REFRELE(ire); 384 } 385 386 void 387 ire_refrele_notr(ire_t *ire) 388 { 389 IRE_REFRELE_NOTR(ire); 390 } 391 392 /* 393 * kmem_cache_alloc constructor for IRE in kma space. 394 * Note that when ire_mp is set the IRE is stored in that mblk and 395 * not in this cache. 396 */ 397 /* ARGSUSED */ 398 static int 399 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 400 { 401 ire_t *ire = buf; 402 403 ire->ire_nce = NULL; 404 405 return (0); 406 } 407 408 /* ARGSUSED1 */ 409 static void 410 ip_ire_destructor(void *buf, void *cdrarg) 411 { 412 ire_t *ire = buf; 413 414 ASSERT(ire->ire_nce == NULL); 415 } 416 417 /* 418 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 419 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 420 * for an existing CACHED IRE. 421 */ 422 /* ARGSUSED */ 423 int 424 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 425 { 426 uchar_t *addr_ucp; 427 ipic_t *ipic; 428 ire_t *ire; 429 ipaddr_t addr; 430 in6_addr_t v6addr; 431 irb_t *irb; 432 zoneid_t zoneid; 433 ip_stack_t *ipst = CONNQ_TO_IPST(q); 434 435 ASSERT(q->q_next == NULL); 436 zoneid = Q_TO_CONN(q)->conn_zoneid; 437 438 /* 439 * Check privilege using the ioctl credential; if it is NULL 440 * then this is a kernel message and therefor privileged. 441 */ 442 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 443 return (EPERM); 444 445 ipic = (ipic_t *)mp->b_rptr; 446 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 447 ipic->ipic_addr_length))) { 448 return (EINVAL); 449 } 450 if (!OK_32PTR(addr_ucp)) 451 return (EINVAL); 452 switch (ipic->ipic_addr_length) { 453 case IP_ADDR_LEN: { 454 /* Extract the destination address. */ 455 addr = *(ipaddr_t *)addr_ucp; 456 /* Find the corresponding IRE. */ 457 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 458 break; 459 } 460 case IPV6_ADDR_LEN: { 461 /* Extract the destination address. */ 462 v6addr = *(in6_addr_t *)addr_ucp; 463 /* Find the corresponding IRE. */ 464 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 465 break; 466 } 467 default: 468 return (EINVAL); 469 } 470 471 if (ire == NULL) 472 return (ENOENT); 473 /* 474 * Update the round trip time estimate and/or the max frag size 475 * and/or the slow start threshold. 476 * 477 * We serialize multiple advises using ire_lock. 478 */ 479 mutex_enter(&ire->ire_lock); 480 if (ipic->ipic_rtt) { 481 /* 482 * If there is no old cached values, initialize them 483 * conservatively. Set them to be (1.5 * new value). 484 */ 485 if (ire->ire_uinfo.iulp_rtt != 0) { 486 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 487 ipic->ipic_rtt) >> 1; 488 } else { 489 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 490 (ipic->ipic_rtt >> 1); 491 } 492 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 493 ire->ire_uinfo.iulp_rtt_sd = 494 (ire->ire_uinfo.iulp_rtt_sd + 495 ipic->ipic_rtt_sd) >> 1; 496 } else { 497 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 498 (ipic->ipic_rtt_sd >> 1); 499 } 500 } 501 if (ipic->ipic_max_frag) 502 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 503 if (ipic->ipic_ssthresh != 0) { 504 if (ire->ire_uinfo.iulp_ssthresh != 0) 505 ire->ire_uinfo.iulp_ssthresh = 506 (ipic->ipic_ssthresh + 507 ire->ire_uinfo.iulp_ssthresh) >> 1; 508 else 509 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 510 } 511 /* 512 * Don't need the ire_lock below this. ire_type does not change 513 * after initialization. ire_marks is protected by irb_lock. 514 */ 515 mutex_exit(&ire->ire_lock); 516 517 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 518 /* 519 * Only increment the temporary IRE count if the original 520 * IRE is not already marked temporary. 521 */ 522 irb = ire->ire_bucket; 523 rw_enter(&irb->irb_lock, RW_WRITER); 524 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 525 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 526 irb->irb_tmp_ire_cnt++; 527 } 528 ire->ire_marks |= ipic->ipic_ire_marks; 529 rw_exit(&irb->irb_lock); 530 } 531 532 ire_refrele(ire); 533 return (0); 534 } 535 536 /* 537 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 538 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 539 * for a host that is not responding. This will force an attempt to 540 * establish a new route, if available, and flush out the ARP entry so 541 * it will re-resolve. Management processes may want to use the 542 * version that generates a reply. 543 * 544 * This function does not support IPv6 since Neighbor Unreachability Detection 545 * means that negative advise like this is useless. 546 */ 547 /* ARGSUSED */ 548 int 549 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 550 { 551 uchar_t *addr_ucp; 552 ipaddr_t addr; 553 ire_t *ire; 554 ipid_t *ipid; 555 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 556 zoneid_t zoneid; 557 ire_t *gire = NULL; 558 ill_t *ill; 559 mblk_t *arp_mp; 560 ip_stack_t *ipst; 561 562 ASSERT(q->q_next == NULL); 563 zoneid = Q_TO_CONN(q)->conn_zoneid; 564 ipst = CONNQ_TO_IPST(q); 565 566 /* 567 * Check privilege using the ioctl credential; if it is NULL 568 * then this is a kernel message and therefor privileged. 569 */ 570 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 571 return (EPERM); 572 573 ipid = (ipid_t *)mp->b_rptr; 574 575 /* Only actions on IRE_CACHEs are acceptable at present. */ 576 if (ipid->ipid_ire_type != IRE_CACHE) 577 return (EINVAL); 578 579 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 580 ipid->ipid_addr_length); 581 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 582 return (EINVAL); 583 switch (ipid->ipid_addr_length) { 584 case IP_ADDR_LEN: 585 /* addr_ucp points at IP addr */ 586 break; 587 case sizeof (sin_t): { 588 sin_t *sin; 589 /* 590 * got complete (sockaddr) address - increment addr_ucp to point 591 * at the ip_addr field. 592 */ 593 sin = (sin_t *)addr_ucp; 594 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 595 break; 596 } 597 default: 598 return (EINVAL); 599 } 600 /* Extract the destination address. */ 601 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 602 603 /* Try to find the CACHED IRE. */ 604 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 605 606 /* Nail it. */ 607 if (ire) { 608 /* Allow delete only on CACHE entries */ 609 if (ire->ire_type != IRE_CACHE) { 610 ire_refrele(ire); 611 return (EINVAL); 612 } 613 614 /* 615 * Verify that the IRE has been around for a while. 616 * This is to protect against transport protocols 617 * that are too eager in sending delete messages. 618 */ 619 if (gethrestime_sec() < 620 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 621 ire_refrele(ire); 622 return (EINVAL); 623 } 624 /* 625 * Now we have a potentially dead cache entry. We need 626 * to remove it. 627 * If this cache entry is generated from a 628 * default route (i.e., ire_cmask == 0), 629 * search the default list and mark it dead and some 630 * background process will try to activate it. 631 */ 632 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 633 /* 634 * Make sure that we pick a different 635 * IRE_DEFAULT next time. 636 */ 637 ire_t *gw_ire; 638 irb_t *irb = NULL; 639 uint_t match_flags; 640 641 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 642 643 gire = ire_ftable_lookup(ire->ire_addr, 644 ire->ire_cmask, 0, 0, 645 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 646 ipst); 647 648 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 649 (void *)gire)); 650 651 if (gire != NULL) { 652 irb = gire->ire_bucket; 653 654 /* 655 * We grab it as writer just to serialize 656 * multiple threads trying to bump up 657 * irb_rr_origin 658 */ 659 rw_enter(&irb->irb_lock, RW_WRITER); 660 if ((gw_ire = irb->irb_rr_origin) == NULL) { 661 rw_exit(&irb->irb_lock); 662 goto done; 663 } 664 665 DTRACE_PROBE1(ip__ire__del__origin, 666 (ire_t *), gw_ire); 667 668 /* Skip past the potentially bad gateway */ 669 if (ire->ire_gateway_addr == 670 gw_ire->ire_gateway_addr) { 671 ire_t *next = gw_ire->ire_next; 672 673 DTRACE_PROBE2(ip__ire__del, 674 (ire_t *), gw_ire, (irb_t *), irb); 675 IRE_FIND_NEXT_ORIGIN(next); 676 irb->irb_rr_origin = next; 677 } 678 rw_exit(&irb->irb_lock); 679 } 680 } 681 done: 682 if (gire != NULL) 683 IRE_REFRELE(gire); 684 /* report the bad route to routing sockets */ 685 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 686 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 687 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 688 routing_sock_info = B_TRUE; 689 690 /* 691 * TCP is really telling us to start over completely, and it 692 * expects that we'll resend the ARP query. Tell ARP to 693 * discard the entry, if this is a local destination. 694 */ 695 ill = ire->ire_stq->q_ptr; 696 if (ire->ire_gateway_addr == 0 && 697 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 698 putnext(ill->ill_rq, arp_mp); 699 } 700 701 ire_delete(ire); 702 ire_refrele(ire); 703 } 704 /* 705 * Also look for an IRE_HOST type redirect ire and 706 * remove it if present. 707 */ 708 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 709 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 710 711 /* Nail it. */ 712 if (ire != NULL) { 713 if (ire->ire_flags & RTF_DYNAMIC) { 714 if (!routing_sock_info) { 715 ip_rts_change(RTM_LOSING, ire->ire_addr, 716 ire->ire_gateway_addr, ire->ire_mask, 717 ire->ire_src_addr, 0, 0, 0, 718 (RTA_DST | RTA_GATEWAY | 719 RTA_NETMASK | RTA_IFA), 720 ipst); 721 } 722 ire_delete(ire); 723 } 724 ire_refrele(ire); 725 } 726 return (0); 727 } 728 729 /* 730 * Named Dispatch routine to produce a formatted report on all IREs. 731 * This report is accessed by using the ndd utility to "get" ND variable 732 * "ipv4_ire_status". 733 */ 734 /* ARGSUSED */ 735 int 736 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 737 { 738 zoneid_t zoneid; 739 ip_stack_t *ipst; 740 741 if (CONN_Q(q)) 742 ipst = CONNQ_TO_IPST(q); 743 else 744 ipst = ILLQ_TO_IPST(q); 745 746 (void) mi_mpprintf(mp, 747 "IRE " MI_COL_HDRPAD_STR 748 /* 01234567[89ABCDEF] */ 749 "rfq " MI_COL_HDRPAD_STR 750 /* 01234567[89ABCDEF] */ 751 "stq " MI_COL_HDRPAD_STR 752 /* 01234567[89ABCDEF] */ 753 " zone " 754 /* 12345 */ 755 "addr mask " 756 /* 123.123.123.123 123.123.123.123 */ 757 "src gateway mxfrg rtt rtt_sd ssthresh ref " 758 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 759 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 760 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 761 "recvpipe in/out/forward type"); 762 /* 12345678 in/out/forward xxxxxxxxxx */ 763 764 /* 765 * Because of the ndd constraint, at most we can have 64K buffer 766 * to put in all IRE info. So to be more efficient, just 767 * allocate a 64K buffer here, assuming we need that large buffer. 768 * This should be OK as only root can do ndd /dev/ip. 769 */ 770 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 771 /* The following may work even if we cannot get a large buf. */ 772 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 773 return (0); 774 } 775 776 zoneid = Q_TO_CONN(q)->conn_zoneid; 777 if (zoneid == GLOBAL_ZONEID) 778 zoneid = ALL_ZONES; 779 780 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst); 781 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst); 782 783 return (0); 784 } 785 786 787 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 788 static void 789 ire_report_ctable(ire_t *ire, char *mp) 790 { 791 char buf1[16]; 792 char buf2[16]; 793 char buf3[16]; 794 char buf4[16]; 795 uint_t fo_pkt_count; 796 uint_t ib_pkt_count; 797 int ref; 798 uint_t print_len, buf_len; 799 800 if ((ire->ire_type & IRE_CACHETABLE) == 0) 801 return; 802 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 803 if (buf_len <= 0) 804 return; 805 806 /* Number of active references of this ire */ 807 ref = ire->ire_refcnt; 808 /* "inbound" to a non local address is a forward */ 809 ib_pkt_count = ire->ire_ib_pkt_count; 810 fo_pkt_count = 0; 811 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 812 fo_pkt_count = ib_pkt_count; 813 ib_pkt_count = 0; 814 } 815 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 816 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 817 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 818 "%04d %08d %08d %d/%d/%d %s\n", 819 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 820 (int)ire->ire_zoneid, 821 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 822 ip_dot_addr(ire->ire_src_addr, buf3), 823 ip_dot_addr(ire->ire_gateway_addr, buf4), 824 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 825 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 826 ire->ire_uinfo.iulp_rtomax, 827 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 828 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 829 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 830 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 831 ire->ire_uinfo.iulp_sack, 832 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 833 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 834 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 835 if (print_len < buf_len) { 836 ((mblk_t *)mp)->b_wptr += print_len; 837 } else { 838 ((mblk_t *)mp)->b_wptr += buf_len; 839 } 840 } 841 842 /* 843 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 844 * down from the Upper Level Protocol to request a copy of the IRE (to check 845 * its type or to extract information like round-trip time estimates or the 846 * MTU.) 847 * The address is assumed to be in the ire_addr field. If no IRE is found 848 * an IRE is returned with ire_type being zero. 849 * Note that the upper lavel protocol has to check for broadcast 850 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 851 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 852 * end of the returned message. 853 * 854 * TCP sends down a message of this type with a connection request packet 855 * chained on. UDP and ICMP send it down to verify that a route exists for 856 * the destination address when they get connected. 857 */ 858 void 859 ip_ire_req(queue_t *q, mblk_t *mp) 860 { 861 ire_t *inire; 862 ire_t *ire; 863 mblk_t *mp1; 864 ire_t *sire = NULL; 865 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 866 ip_stack_t *ipst = CONNQ_TO_IPST(q); 867 868 ASSERT(q->q_next == NULL); 869 870 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 871 !OK_32PTR(mp->b_rptr)) { 872 freemsg(mp); 873 return; 874 } 875 inire = (ire_t *)mp->b_rptr; 876 /* 877 * Got it, now take our best shot at an IRE. 878 */ 879 if (inire->ire_ipversion == IPV6_VERSION) { 880 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 881 NULL, &sire, zoneid, NULL, 882 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 883 } else { 884 ASSERT(inire->ire_ipversion == IPV4_VERSION); 885 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 886 NULL, &sire, zoneid, NULL, 887 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 888 } 889 890 /* 891 * We prevent returning IRES with source address INADDR_ANY 892 * as these were temporarily created for sending packets 893 * from endpoints that have conn_unspec_src set. 894 */ 895 if (ire == NULL || 896 (ire->ire_ipversion == IPV4_VERSION && 897 ire->ire_src_addr == INADDR_ANY) || 898 (ire->ire_ipversion == IPV6_VERSION && 899 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 900 inire->ire_type = 0; 901 } else { 902 bcopy(ire, inire, sizeof (ire_t)); 903 /* Copy the route metrics from the parent. */ 904 if (sire != NULL) { 905 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 906 sizeof (iulp_t)); 907 } 908 909 /* 910 * As we don't lookup global policy here, we may not 911 * pass the right size if per-socket policy is not 912 * present. For these cases, path mtu discovery will 913 * do the right thing. 914 */ 915 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 916 917 /* Pass the latest setting of the ip_path_mtu_discovery */ 918 inire->ire_frag_flag |= 919 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 920 } 921 if (ire != NULL) 922 ire_refrele(ire); 923 if (sire != NULL) 924 ire_refrele(sire); 925 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 926 mp->b_datap->db_type = IRE_DB_TYPE; 927 928 /* Put the IRE_DB_TYPE mblk last in the chain */ 929 mp1 = mp->b_cont; 930 if (mp1 != NULL) { 931 mp->b_cont = NULL; 932 linkb(mp1, mp); 933 mp = mp1; 934 } 935 qreply(q, mp); 936 } 937 938 /* 939 * Send a packet using the specified IRE. 940 * If ire_src_addr_v6 is all zero then discard the IRE after 941 * the packet has been sent. 942 */ 943 static void 944 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 945 { 946 mblk_t *ipsec_mp; 947 boolean_t is_secure; 948 uint_t ifindex; 949 ill_t *ill; 950 zoneid_t zoneid = ire->ire_zoneid; 951 ip_stack_t *ipst = ire->ire_ipst; 952 953 ASSERT(ire->ire_ipversion == IPV4_VERSION); 954 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 955 ipsec_mp = pkt; 956 is_secure = (pkt->b_datap->db_type == M_CTL); 957 if (is_secure) { 958 ipsec_out_t *io; 959 960 pkt = pkt->b_cont; 961 io = (ipsec_out_t *)ipsec_mp->b_rptr; 962 if (io->ipsec_out_type == IPSEC_OUT) 963 zoneid = io->ipsec_out_zoneid; 964 } 965 966 /* If the packet originated externally then */ 967 if (pkt->b_prev) { 968 ire_refrele(ire); 969 /* 970 * Extract the ifindex from b_prev (set in ip_rput_noire). 971 * Look up interface to see if it still exists (it could have 972 * been unplumbed by the time the reply came back from ARP) 973 */ 974 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 975 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 976 NULL, NULL, NULL, NULL, ipst); 977 if (ill == NULL) { 978 pkt->b_prev = NULL; 979 pkt->b_next = NULL; 980 freemsg(ipsec_mp); 981 return; 982 } 983 q = ill->ill_rq; 984 pkt->b_prev = NULL; 985 /* 986 * This packet has not gone through IPSEC processing 987 * and hence we should not have any IPSEC message 988 * prepended. 989 */ 990 ASSERT(ipsec_mp == pkt); 991 put(q, pkt); 992 ill_refrele(ill); 993 } else if (pkt->b_next) { 994 /* Packets from multicast router */ 995 pkt->b_next = NULL; 996 /* 997 * We never get the IPSEC_OUT while forwarding the 998 * packet for multicast router. 999 */ 1000 ASSERT(ipsec_mp == pkt); 1001 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 1002 ire_refrele(ire); 1003 } else { 1004 /* Locally originated packets */ 1005 boolean_t is_inaddr_any; 1006 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1007 1008 /* 1009 * We need to do an ire_delete below for which 1010 * we need to make sure that the IRE will be 1011 * around even after calling ip_wput_ire - 1012 * which does ire_refrele. Otherwise somebody 1013 * could potentially delete this ire and hence 1014 * free this ire and we will be calling ire_delete 1015 * on a freed ire below. 1016 */ 1017 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1018 if (is_inaddr_any) { 1019 IRE_REFHOLD(ire); 1020 } 1021 /* 1022 * If we were resolving a router we can not use the 1023 * routers IRE for sending the packet (since it would 1024 * violate the uniqness of the IP idents) thus we 1025 * make another pass through ip_wput to create the IRE_CACHE 1026 * for the destination. 1027 * When IRE_MARK_NOADD is set, ire_add() is not called. 1028 * Thus ip_wput() will never find a ire and result in an 1029 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1030 * is set. This also implies that IRE_MARK_NOADD can only be 1031 * used to send packets to directly connected hosts. 1032 */ 1033 if (ipha->ipha_dst != ire->ire_addr && 1034 !(ire->ire_marks & IRE_MARK_NOADD)) { 1035 ire_refrele(ire); /* Held in ire_add */ 1036 if (CONN_Q(q)) { 1037 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 1038 IRE_SEND); 1039 } else { 1040 (void) ip_output((void *)(uintptr_t)zoneid, 1041 ipsec_mp, q, IRE_SEND); 1042 } 1043 } else { 1044 if (is_secure) { 1045 ipsec_out_t *oi; 1046 ipha_t *ipha; 1047 1048 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1049 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1050 if (oi->ipsec_out_proc_begin) { 1051 /* 1052 * This is the case where 1053 * ip_wput_ipsec_out could not find 1054 * the IRE and recreated a new one. 1055 * As ip_wput_ipsec_out does ire 1056 * lookups, ire_refrele for the extra 1057 * bump in ire_add. 1058 */ 1059 ire_refrele(ire); 1060 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1061 NULL, NULL); 1062 } else { 1063 /* 1064 * IRE_REFRELE will be done in 1065 * ip_wput_ire. 1066 */ 1067 ip_wput_ire(q, ipsec_mp, ire, NULL, 1068 IRE_SEND, zoneid); 1069 } 1070 } else { 1071 /* 1072 * IRE_REFRELE will be done in ip_wput_ire. 1073 */ 1074 ip_wput_ire(q, ipsec_mp, ire, NULL, 1075 IRE_SEND, zoneid); 1076 } 1077 } 1078 /* 1079 * Special code to support sending a single packet with 1080 * conn_unspec_src using an IRE which has no source address. 1081 * The IRE is deleted here after sending the packet to avoid 1082 * having other code trip on it. But before we delete the 1083 * ire, somebody could have looked up this ire. 1084 * We prevent returning/using this IRE by the upper layers 1085 * by making checks to NULL source address in other places 1086 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1087 * Though, this does not completely prevent other threads 1088 * from using this ire, this should not cause any problems. 1089 * 1090 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1091 * because for the normal case i.e !is_inaddr_any, ire_refrele 1092 * above could have potentially freed the ire. 1093 */ 1094 if (is_inaddr_any) { 1095 /* 1096 * If this IRE has been deleted by another thread, then 1097 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1098 * Thus, ire_delete will do nothing. This check 1099 * guards against calling ire_delete when the IRE was 1100 * never inserted in the table, which is handled by 1101 * ire_delete as dropping another reference. 1102 */ 1103 if (ire->ire_bucket != NULL) { 1104 ip1dbg(("ire_send: delete IRE\n")); 1105 ire_delete(ire); 1106 } 1107 ire_refrele(ire); /* Held above */ 1108 } 1109 } 1110 } 1111 1112 /* 1113 * Send a packet using the specified IRE. 1114 * If ire_src_addr_v6 is all zero then discard the IRE after 1115 * the packet has been sent. 1116 */ 1117 static void 1118 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1119 { 1120 mblk_t *ipsec_mp; 1121 boolean_t secure; 1122 uint_t ifindex; 1123 zoneid_t zoneid = ire->ire_zoneid; 1124 ip_stack_t *ipst = ire->ire_ipst; 1125 1126 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1127 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1128 if (pkt->b_datap->db_type == M_CTL) { 1129 ipsec_out_t *io; 1130 1131 ipsec_mp = pkt; 1132 pkt = pkt->b_cont; 1133 secure = B_TRUE; 1134 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1135 if (io->ipsec_out_type == IPSEC_OUT) 1136 zoneid = io->ipsec_out_zoneid; 1137 } else { 1138 ipsec_mp = pkt; 1139 secure = B_FALSE; 1140 } 1141 1142 /* If the packet originated externally then */ 1143 if (pkt->b_prev) { 1144 ill_t *ill; 1145 /* 1146 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1147 * Look up interface to see if it still exists (it could have 1148 * been unplumbed by the time the reply came back from the 1149 * resolver). 1150 */ 1151 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1152 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1153 NULL, NULL, NULL, NULL, ipst); 1154 if (ill == NULL) { 1155 pkt->b_prev = NULL; 1156 pkt->b_next = NULL; 1157 freemsg(ipsec_mp); 1158 ire_refrele(ire); /* Held in ire_add */ 1159 return; 1160 } 1161 q = ill->ill_rq; 1162 pkt->b_prev = NULL; 1163 /* 1164 * This packet has not gone through IPSEC processing 1165 * and hence we should not have any IPSEC message 1166 * prepended. 1167 */ 1168 ASSERT(ipsec_mp == pkt); 1169 put(q, pkt); 1170 ill_refrele(ill); 1171 } else if (pkt->b_next) { 1172 /* Packets from multicast router */ 1173 pkt->b_next = NULL; 1174 /* 1175 * We never get the IPSEC_OUT while forwarding the 1176 * packet for multicast router. 1177 */ 1178 ASSERT(ipsec_mp == pkt); 1179 /* 1180 * XXX TODO IPv6. 1181 */ 1182 freemsg(pkt); 1183 #ifdef XXX 1184 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1185 #endif 1186 } else { 1187 if (secure) { 1188 ipsec_out_t *oi; 1189 ip6_t *ip6h; 1190 1191 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1192 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1193 if (oi->ipsec_out_proc_begin) { 1194 /* 1195 * This is the case where 1196 * ip_wput_ipsec_out could not find 1197 * the IRE and recreated a new one. 1198 */ 1199 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1200 NULL, NULL); 1201 } else { 1202 if (CONN_Q(q)) { 1203 (void) ip_output_v6(Q_TO_CONN(q), 1204 ipsec_mp, q, IRE_SEND); 1205 } else { 1206 (void) ip_output_v6( 1207 (void *)(uintptr_t)zoneid, 1208 ipsec_mp, q, IRE_SEND); 1209 } 1210 } 1211 } else { 1212 /* 1213 * Send packets through ip_output_v6 so that any 1214 * ip6_info header can be processed again. 1215 */ 1216 if (CONN_Q(q)) { 1217 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1218 IRE_SEND); 1219 } else { 1220 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1221 ipsec_mp, q, IRE_SEND); 1222 } 1223 } 1224 /* 1225 * Special code to support sending a single packet with 1226 * conn_unspec_src using an IRE which has no source address. 1227 * The IRE is deleted here after sending the packet to avoid 1228 * having other code trip on it. But before we delete the 1229 * ire, somebody could have looked up this ire. 1230 * We prevent returning/using this IRE by the upper layers 1231 * by making checks to NULL source address in other places 1232 * like e.g ip_ire_append_v6, ip_ire_req and 1233 * ip_bind_connected_v6. Though, this does not completely 1234 * prevent other threads from using this ire, this should 1235 * not cause any problems. 1236 */ 1237 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1238 ip1dbg(("ire_send_v6: delete IRE\n")); 1239 ire_delete(ire); 1240 } 1241 } 1242 ire_refrele(ire); /* Held in ire_add */ 1243 } 1244 1245 /* 1246 * Make sure that IRE bucket does not get too long. 1247 * This can cause lock up because ire_cache_lookup() 1248 * may take "forever" to finish. 1249 * 1250 * We only remove a maximum of cnt IREs each time. This 1251 * should keep the bucket length approximately constant, 1252 * depending on cnt. This should be enough to defend 1253 * against DoS attack based on creating temporary IREs 1254 * (for forwarding and non-TCP traffic). 1255 * 1256 * We also pass in the address of the newly created IRE 1257 * as we do not want to remove this straight after adding 1258 * it. New IREs are normally added at the tail of the 1259 * bucket. This means that we are removing the "oldest" 1260 * temporary IREs added. Only if there are IREs with 1261 * the same ire_addr, do we not add it at the tail. Refer 1262 * to ire_add_v*(). It should be OK for our purpose. 1263 * 1264 * For non-temporary cached IREs, we make sure that they 1265 * have not been used for some time (defined below), they 1266 * are non-local destinations, and there is no one using 1267 * them at the moment (refcnt == 1). 1268 * 1269 * The above means that the IRE bucket length may become 1270 * very long, consisting of mostly non-temporary IREs. 1271 * This can happen when the hash function does a bad job 1272 * so that most TCP connections cluster to a specific bucket. 1273 * This "hopefully" should never happen. It can also 1274 * happen if most TCP connections have very long lives. 1275 * Even with the minimal hash table size of 256, there 1276 * has to be a lot of such connections to make the bucket 1277 * length unreasonably long. This should probably not 1278 * happen either. The third can when this can happen is 1279 * when the machine is under attack, such as SYN flooding. 1280 * TCP should already have the proper mechanism to protect 1281 * that. So we should be safe. 1282 * 1283 * This function is called by ire_add_then_send() after 1284 * a new IRE is added and the packet is sent. 1285 * 1286 * The idle cutoff interval is set to 60s. It can be 1287 * changed using /etc/system. 1288 */ 1289 uint32_t ire_idle_cutoff_interval = 60000; 1290 1291 static void 1292 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire) 1293 { 1294 ire_t *ire; 1295 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1296 int cnt = ip_ire_cleanup_cnt; 1297 1298 /* 1299 * Try to remove cnt temporary IREs first. 1300 */ 1301 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) { 1302 if (ire == ref_ire) 1303 continue; 1304 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1305 continue; 1306 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1307 ASSERT(ire->ire_type == IRE_CACHE); 1308 ire_delete(ire); 1309 cnt--; 1310 } 1311 } 1312 if (cnt == 0) 1313 return; 1314 1315 /* 1316 * If we didn't satisfy our removal target from temporary IREs 1317 * we see how many non-temporary IREs are currently in the bucket. 1318 * If this quantity is above the threshold then we see if there are any 1319 * candidates for removal. We are still limited to removing a maximum 1320 * of cnt IREs. 1321 */ 1322 if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) { 1323 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; 1324 ire = ire->ire_next) { 1325 if (ire == ref_ire) 1326 continue; 1327 if (ire->ire_type != IRE_CACHE) 1328 continue; 1329 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1330 continue; 1331 if ((ire->ire_refcnt == 1) && 1332 (lbolt - ire->ire_last_used_time > cut_off)) { 1333 ire_delete(ire); 1334 cnt--; 1335 } 1336 } 1337 } 1338 } 1339 1340 /* 1341 * ire_add_then_send is called when a new IRE has been created in order to 1342 * route an outgoing packet. Typically, it is called from ip_wput when 1343 * a response comes back down from a resolver. We add the IRE, and then 1344 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1345 * However, we do not add the newly created IRE in the cache when 1346 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1347 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1348 * ip_wput_ire() and get deleted. 1349 * Multirouting support: the packet is silently discarded when the new IRE 1350 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1351 * RTF_MULTIRT flag for the same destination address. 1352 * In this case, we just want to register this additional ire without 1353 * sending the packet, as it has already been replicated through 1354 * existing multirt routes in ip_wput(). 1355 */ 1356 void 1357 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1358 { 1359 irb_t *irb; 1360 boolean_t drop = B_FALSE; 1361 /* LINTED : set but not used in function */ 1362 boolean_t mctl_present; 1363 mblk_t *first_mp = NULL; 1364 mblk_t *save_mp = NULL; 1365 ire_t *dst_ire; 1366 ipha_t *ipha; 1367 ip6_t *ip6h; 1368 ip_stack_t *ipst = ire->ire_ipst; 1369 int ire_limit; 1370 1371 if (mp != NULL) { 1372 /* 1373 * We first have to retrieve the destination address carried 1374 * by the packet. 1375 * We can't rely on ire as it can be related to a gateway. 1376 * The destination address will help in determining if 1377 * other RTF_MULTIRT ires are already registered. 1378 * 1379 * We first need to know where we are going : v4 or V6. 1380 * the ire version is enough, as there is no risk that 1381 * we resolve an IPv6 address with an IPv4 ire 1382 * or vice versa. 1383 */ 1384 if (ire->ire_ipversion == IPV4_VERSION) { 1385 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1386 ipha = (ipha_t *)mp->b_rptr; 1387 save_mp = mp; 1388 mp = first_mp; 1389 1390 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1391 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1392 } else { 1393 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1394 /* 1395 * Get a pointer to the beginning of the IPv6 header. 1396 * Ignore leading IPsec control mblks. 1397 */ 1398 first_mp = mp; 1399 if (mp->b_datap->db_type == M_CTL) { 1400 mp = mp->b_cont; 1401 } 1402 ip6h = (ip6_t *)mp->b_rptr; 1403 save_mp = mp; 1404 mp = first_mp; 1405 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1406 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1407 } 1408 if (dst_ire != NULL) { 1409 if (dst_ire->ire_flags & RTF_MULTIRT) { 1410 /* 1411 * At least one resolved multirt route 1412 * already exists for the destination, 1413 * don't sent this packet: either drop it 1414 * or complete the pending resolution, 1415 * depending on the ire. 1416 */ 1417 drop = B_TRUE; 1418 } 1419 ip1dbg(("ire_add_then_send: dst_ire %p " 1420 "[dst %08x, gw %08x], drop %d\n", 1421 (void *)dst_ire, 1422 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1423 ntohl(dst_ire->ire_addr) : \ 1424 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1425 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1426 ntohl(dst_ire->ire_gateway_addr) : \ 1427 ntohl(V4_PART_OF_V6( 1428 dst_ire->ire_gateway_addr_v6)), 1429 drop)); 1430 ire_refrele(dst_ire); 1431 } 1432 } 1433 1434 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1435 /* Regular packets with cache bound ires are here. */ 1436 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1437 1438 if (ire == NULL) { 1439 mp->b_prev = NULL; 1440 mp->b_next = NULL; 1441 MULTIRT_DEBUG_UNTAG(mp); 1442 freemsg(mp); 1443 return; 1444 } 1445 if (mp == NULL) { 1446 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1447 return; 1448 } 1449 } 1450 if (drop) { 1451 /* 1452 * If we're adding an RTF_MULTIRT ire, the resolution 1453 * is over: we just drop the packet. 1454 */ 1455 if (ire->ire_flags & RTF_MULTIRT) { 1456 if (save_mp) { 1457 save_mp->b_prev = NULL; 1458 save_mp->b_next = NULL; 1459 } 1460 MULTIRT_DEBUG_UNTAG(mp); 1461 freemsg(mp); 1462 } else { 1463 /* 1464 * Otherwise, we're adding the ire to a gateway 1465 * for a multirt route. 1466 * Invoke ip_newroute() to complete the resolution 1467 * of the route. We will then come back here and 1468 * finally drop this packet in the above code. 1469 */ 1470 if (ire->ire_ipversion == IPV4_VERSION) { 1471 /* 1472 * TODO: in order for CGTP to work in non-global 1473 * zones, ip_newroute() must create the IRE 1474 * cache in the zone indicated by 1475 * ire->ire_zoneid. 1476 */ 1477 ip_newroute(q, mp, ipha->ipha_dst, 1478 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1479 ire->ire_zoneid, ipst); 1480 } else { 1481 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1482 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1483 NULL, ire->ire_zoneid, ipst); 1484 } 1485 } 1486 1487 ire_refrele(ire); /* As done by ire_send(). */ 1488 return; 1489 } 1490 /* 1491 * Need to remember ire_bucket here as ire_send*() may delete 1492 * the ire so we cannot reference it after that. 1493 */ 1494 irb = ire->ire_bucket; 1495 if (ire->ire_ipversion == IPV4_VERSION) { 1496 ire_send(q, mp, ire); 1497 ire_limit = ip_ire_max_bucket_cnt; 1498 } else { 1499 ire_send_v6(q, mp, ire); 1500 ire_limit = ip6_ire_max_bucket_cnt; 1501 } 1502 1503 /* 1504 * irb is NULL if the IRE was not added to the hash. This happens 1505 * when IRE_MARK_NOADD is set and when IREs are returned from 1506 * ire_update_srcif_v4(). 1507 */ 1508 if (irb != NULL) { 1509 IRB_REFHOLD(irb); 1510 if (irb->irb_ire_cnt > ire_limit) 1511 ire_cache_cleanup(irb, ire_limit, ire); 1512 IRB_REFRELE(irb); 1513 } 1514 } 1515 1516 /* 1517 * Initialize the ire that is specific to IPv4 part and call 1518 * ire_init_common to finish it. 1519 */ 1520 ire_t * 1521 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1522 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1523 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1524 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1525 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1526 { 1527 /* 1528 * Reject IRE security attribute creation/initialization 1529 * if system is not running in Trusted mode. 1530 */ 1531 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1532 return (NULL); 1533 1534 1535 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1536 1537 if (addr != NULL) 1538 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1539 if (src_addr != NULL) 1540 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1541 if (mask != NULL) { 1542 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1543 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1544 } 1545 if (gateway != NULL) { 1546 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1547 } 1548 1549 if (type == IRE_CACHE) 1550 ire->ire_cmask = cmask; 1551 1552 /* ire_init_common will free the mblks upon encountering any failure */ 1553 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1554 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1555 return (NULL); 1556 1557 return (ire); 1558 } 1559 1560 /* 1561 * Similar to ire_create except that it is called only when 1562 * we want to allocate ire as an mblk e.g. we have an external 1563 * resolver ARP. 1564 */ 1565 ire_t * 1566 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1567 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1568 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1569 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1570 ip_stack_t *ipst) 1571 { 1572 ire_t *ire, *buf; 1573 ire_t *ret_ire; 1574 mblk_t *mp; 1575 size_t bufsize; 1576 frtn_t *frtnp; 1577 ill_t *ill; 1578 1579 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1580 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1581 if (buf == NULL) { 1582 ip1dbg(("ire_create_mp: alloc failed\n")); 1583 return (NULL); 1584 } 1585 frtnp = (frtn_t *)(buf + 1); 1586 frtnp->free_arg = (caddr_t)buf; 1587 frtnp->free_func = ire_freemblk; 1588 1589 /* 1590 * Allocate the new IRE. The ire created will hold a ref on 1591 * an nce_t after ire_nce_init, and this ref must either be 1592 * (a) transferred to the ire_cache entry created when ire_add_v4 1593 * is called after successful arp resolution, or, 1594 * (b) released, when arp resolution fails 1595 * Case (b) is handled in ire_freemblk() which will be called 1596 * when mp is freed as a result of failed arp. 1597 */ 1598 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1599 if (mp == NULL) { 1600 ip1dbg(("ire_create_mp: alloc failed\n")); 1601 kmem_free(buf, bufsize); 1602 return (NULL); 1603 } 1604 ire = (ire_t *)mp->b_rptr; 1605 mp->b_wptr = (uchar_t *)&ire[1]; 1606 1607 /* Start clean. */ 1608 *ire = ire_null; 1609 ire->ire_mp = mp; 1610 mp->b_datap->db_type = IRE_DB_TYPE; 1611 ire->ire_marks |= IRE_MARK_UNCACHED; 1612 1613 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1614 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1615 gcgrp, ipst); 1616 1617 ill = (ill_t *)(stq->q_ptr); 1618 if (ret_ire == NULL) { 1619 /* ire_freemblk needs these set */ 1620 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1621 ire->ire_ipst = ipst; 1622 freeb(ire->ire_mp); 1623 return (NULL); 1624 } 1625 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1626 ASSERT(ret_ire == ire); 1627 /* 1628 * ire_max_frag is normally zero here and is atomically set 1629 * under the irebucket lock in ire_add_v[46] except for the 1630 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1631 * is non-zero here. 1632 */ 1633 ire->ire_max_frag = max_frag; 1634 return (ire); 1635 } 1636 1637 /* 1638 * ire_create is called to allocate and initialize a new IRE. 1639 * 1640 * NOTE : This is called as writer sometimes though not required 1641 * by this function. 1642 */ 1643 ire_t * 1644 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1645 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1646 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1647 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1648 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1649 { 1650 ire_t *ire; 1651 ire_t *ret_ire; 1652 1653 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1654 if (ire == NULL) { 1655 ip1dbg(("ire_create: alloc failed\n")); 1656 return (NULL); 1657 } 1658 *ire = ire_null; 1659 1660 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1661 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1662 ulp_info, gc, gcgrp, ipst); 1663 1664 if (ret_ire == NULL) { 1665 kmem_cache_free(ire_cache, ire); 1666 return (NULL); 1667 } 1668 ASSERT(ret_ire == ire); 1669 return (ire); 1670 } 1671 1672 1673 /* 1674 * Common to IPv4 and IPv6 1675 */ 1676 boolean_t 1677 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1678 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1679 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1680 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1681 { 1682 ire->ire_max_fragp = max_fragp; 1683 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1684 1685 #ifdef DEBUG 1686 if (ipif != NULL) { 1687 if (ipif->ipif_isv6) 1688 ASSERT(ipversion == IPV6_VERSION); 1689 else 1690 ASSERT(ipversion == IPV4_VERSION); 1691 } 1692 #endif /* DEBUG */ 1693 1694 /* 1695 * Create/initialize IRE security attribute only in Trusted mode; 1696 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1697 * has held a reference to it and will release it when this routine 1698 * returns a failure, otherwise we own the reference. We do this 1699 * prior to initializing the rest IRE fields. 1700 * 1701 * Don't allocate ire_gw_secattr for the resolver case to prevent 1702 * memory leak (in case of external resolution failure). We'll 1703 * allocate it after a successful external resolution, in ire_add(). 1704 * Note that ire->ire_mp != NULL here means this ire is headed 1705 * to an external resolver. 1706 */ 1707 if (is_system_labeled()) { 1708 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1709 IRE_INTERFACE)) != 0) { 1710 /* release references on behalf of caller */ 1711 if (gc != NULL) 1712 GC_REFRELE(gc); 1713 if (gcgrp != NULL) 1714 GCGRP_REFRELE(gcgrp); 1715 } else if ((ire->ire_mp == NULL) && 1716 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1717 return (B_FALSE); 1718 } 1719 } 1720 1721 ire->ire_stq = stq; 1722 ire->ire_rfq = rfq; 1723 ire->ire_type = type; 1724 ire->ire_flags = RTF_UP | flags; 1725 ire->ire_ident = TICK_TO_MSEC(lbolt); 1726 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1727 1728 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1729 ire->ire_last_used_time = lbolt; 1730 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1731 1732 /* 1733 * If this IRE is an IRE_CACHE, inherit the handles from the 1734 * parent IREs. For others in the forwarding table, assign appropriate 1735 * new ones. 1736 * 1737 * The mutex protecting ire_handle is because ire_create is not always 1738 * called as a writer. 1739 */ 1740 if (ire->ire_type & IRE_OFFSUBNET) { 1741 mutex_enter(&ipst->ips_ire_handle_lock); 1742 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1743 mutex_exit(&ipst->ips_ire_handle_lock); 1744 } else if (ire->ire_type & IRE_INTERFACE) { 1745 mutex_enter(&ipst->ips_ire_handle_lock); 1746 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1747 mutex_exit(&ipst->ips_ire_handle_lock); 1748 } else if (ire->ire_type == IRE_CACHE) { 1749 ire->ire_phandle = phandle; 1750 ire->ire_ihandle = ihandle; 1751 } 1752 ire->ire_ipif = ipif; 1753 if (ipif != NULL) { 1754 ire->ire_ipif_seqid = ipif->ipif_seqid; 1755 ire->ire_zoneid = ipif->ipif_zoneid; 1756 } else { 1757 ire->ire_zoneid = GLOBAL_ZONEID; 1758 } 1759 ire->ire_ipversion = ipversion; 1760 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1761 if (ipversion == IPV4_VERSION) { 1762 /* 1763 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1764 * to find the ire_nce to be null when it is called. 1765 */ 1766 if (ire_nce_init(ire, src_nce) != 0) { 1767 /* some failure occurred. propagate error back */ 1768 return (B_FALSE); 1769 } 1770 } 1771 ire->ire_refcnt = 1; 1772 ire->ire_ipst = ipst; /* No netstack_hold */ 1773 ire->ire_trace_disable = B_FALSE; 1774 1775 return (B_TRUE); 1776 } 1777 1778 /* 1779 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1780 * It is passed a pointer to a slot in an IRE pointer array into which to 1781 * place the pointer to the new IRE, if indeed we create one. If the 1782 * IRE corresponding to the address passed in would be a duplicate of an 1783 * existing one, we don't create the new one. irep is incremented before 1784 * return only if we do create a new IRE. (Always called as writer.) 1785 * 1786 * Note that with the "match_flags" parameter, we can match on either 1787 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1788 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1789 * we only create broadcast ire's on a per physical interface basis. If 1790 * someone is going to be mucking with logical interfaces, it is important 1791 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1792 * logical interface will not cause critical broadcast IRE's to be deleted. 1793 */ 1794 ire_t ** 1795 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1796 int match_flags) 1797 { 1798 ire_t *ire; 1799 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1800 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1801 1802 /* 1803 * No broadcast IREs for the LOOPBACK interface 1804 * or others such as point to point and IPIF_NOXMIT. 1805 */ 1806 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1807 (ipif->ipif_flags & IPIF_NOXMIT)) 1808 return (irep); 1809 1810 /* If this would be a duplicate, don't bother. */ 1811 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1812 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1813 /* 1814 * We look for non-deprecated (and non-anycast, non-nolocal) 1815 * ipifs as the best choice. ipifs with check_flags matching 1816 * (deprecated, etc) are used only if non-deprecated ipifs 1817 * are not available. if the existing ire's ipif is deprecated 1818 * and the new ipif is non-deprecated, switch to the new ipif 1819 */ 1820 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1821 (ipif->ipif_flags & check_flags)) { 1822 ire_refrele(ire); 1823 return (irep); 1824 } 1825 /* 1826 * Bcast ires exist in pairs. Both have to be deleted, 1827 * Since we are exclusive we can make the above assertion. 1828 * The 1st has to be refrele'd since it was ctable_lookup'd. 1829 */ 1830 ASSERT(IAM_WRITER_IPIF(ipif)); 1831 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1832 ire_delete(ire->ire_next); 1833 ire_delete(ire); 1834 ire_refrele(ire); 1835 } 1836 1837 irep = ire_create_bcast(ipif, addr, irep); 1838 1839 return (irep); 1840 } 1841 1842 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1843 1844 /* 1845 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1846 * It leaves all the verifying and deleting to those routines. So it always 1847 * creates 2 bcast ires and chains them into the ire array passed in. 1848 */ 1849 ire_t ** 1850 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1851 { 1852 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1853 1854 *irep++ = ire_create( 1855 (uchar_t *)&addr, /* dest addr */ 1856 (uchar_t *)&ip_g_all_ones, /* mask */ 1857 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1858 NULL, /* no gateway */ 1859 &ipif->ipif_mtu, /* max frag */ 1860 NULL, /* no src nce */ 1861 ipif->ipif_rq, /* recv-from queue */ 1862 ipif->ipif_wq, /* send-to queue */ 1863 IRE_BROADCAST, 1864 ipif, 1865 0, 1866 0, 1867 0, 1868 0, 1869 &ire_uinfo_null, 1870 NULL, 1871 NULL, 1872 ipst); 1873 1874 *irep++ = ire_create( 1875 (uchar_t *)&addr, /* dest address */ 1876 (uchar_t *)&ip_g_all_ones, /* mask */ 1877 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1878 NULL, /* no gateway */ 1879 &ip_loopback_mtu, /* max frag size */ 1880 NULL, /* no src_nce */ 1881 ipif->ipif_rq, /* recv-from queue */ 1882 NULL, /* no send-to queue */ 1883 IRE_BROADCAST, /* Needed for fanout in wput */ 1884 ipif, 1885 0, 1886 0, 1887 0, 1888 0, 1889 &ire_uinfo_null, 1890 NULL, 1891 NULL, 1892 ipst); 1893 1894 return (irep); 1895 } 1896 1897 /* 1898 * ire_walk routine to delete or update any IRE_CACHE that might contain 1899 * stale information. 1900 * The flags state which entries to delete or update. 1901 * Garbage collection is done separately using kmem alloc callbacks to 1902 * ip_trash_ire_reclaim. 1903 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1904 * since other stale information is cleaned up using NUD. 1905 */ 1906 void 1907 ire_expire(ire_t *ire, char *arg) 1908 { 1909 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1910 ill_t *stq_ill; 1911 int flush_flags = ieap->iea_flush_flag; 1912 ip_stack_t *ipst = ieap->iea_ipst; 1913 1914 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1915 (ire->ire_flags & RTF_DYNAMIC)) { 1916 /* Make sure we delete the corresponding IRE_CACHE */ 1917 ip1dbg(("ire_expire: all redirects\n")); 1918 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1919 ire_delete(ire); 1920 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1921 return; 1922 } 1923 if (ire->ire_type != IRE_CACHE) 1924 return; 1925 1926 if (flush_flags & FLUSH_ARP_TIME) { 1927 /* 1928 * Remove all IRE_CACHE. 1929 * Verify that create time is more than 1930 * ip_ire_arp_interval milliseconds ago. 1931 */ 1932 if (NCE_EXPIRED(ire->ire_nce, ipst)) { 1933 ire_delete(ire); 1934 return; 1935 } 1936 } 1937 1938 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1939 (ire->ire_ipif != NULL)) { 1940 /* Increase pmtu if it is less than the interface mtu */ 1941 mutex_enter(&ire->ire_lock); 1942 /* 1943 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1944 * get the mtu from the sending interfaces' ipif 1945 */ 1946 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1947 stq_ill = ire->ire_stq->q_ptr; 1948 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1949 IP_MAXPACKET); 1950 } else { 1951 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1952 IP_MAXPACKET); 1953 } 1954 ire->ire_frag_flag |= IPH_DF; 1955 mutex_exit(&ire->ire_lock); 1956 } 1957 } 1958 1959 /* 1960 * Return any local address. We use this to target ourselves 1961 * when the src address was specified as 'default'. 1962 * Preference for IRE_LOCAL entries. 1963 */ 1964 ire_t * 1965 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1966 { 1967 ire_t *ire; 1968 irb_t *irb; 1969 ire_t *maybe = NULL; 1970 int i; 1971 1972 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1973 irb = &ipst->ips_ip_cache_table[i]; 1974 if (irb->irb_ire == NULL) 1975 continue; 1976 rw_enter(&irb->irb_lock, RW_READER); 1977 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1978 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1979 (ire->ire_zoneid != zoneid && 1980 ire->ire_zoneid != ALL_ZONES)) 1981 continue; 1982 switch (ire->ire_type) { 1983 case IRE_LOOPBACK: 1984 if (maybe == NULL) { 1985 IRE_REFHOLD(ire); 1986 maybe = ire; 1987 } 1988 break; 1989 case IRE_LOCAL: 1990 if (maybe != NULL) { 1991 ire_refrele(maybe); 1992 } 1993 IRE_REFHOLD(ire); 1994 rw_exit(&irb->irb_lock); 1995 return (ire); 1996 } 1997 } 1998 rw_exit(&irb->irb_lock); 1999 } 2000 return (maybe); 2001 } 2002 2003 /* 2004 * If the specified IRE is associated with a particular ILL, return 2005 * that ILL pointer (May be called as writer.). 2006 * 2007 * NOTE : This is not a generic function that can be used always. 2008 * This function always returns the ill of the outgoing packets 2009 * if this ire is used. 2010 */ 2011 ill_t * 2012 ire_to_ill(const ire_t *ire) 2013 { 2014 ill_t *ill = NULL; 2015 2016 /* 2017 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2018 * the source address from. ire_stq is the one where the 2019 * packets will be sent out on. We return that here. 2020 * 2021 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2022 * copy and they always exist next to each other with loopback 2023 * copy being the first one. If we are called on the non-loopback 2024 * copy, return the one pointed by ire_stq. If it was called on 2025 * a loopback copy, we still return the one pointed by the next 2026 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2027 * copy. We don't want use ire_ipif as it might represent the 2028 * source address (if we borrow source addresses for 2029 * IRE_BROADCASTS in the future). 2030 * However if an interface is currently coming up, the above 2031 * condition may not hold during that period since the ires 2032 * are added one at a time. Thus one of the pair could have been 2033 * added and the other not yet added. 2034 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 2035 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 2036 * That handles IRE_LOOPBACK. 2037 */ 2038 2039 if (ire->ire_type == IRE_CACHE) { 2040 ill = (ill_t *)ire->ire_stq->q_ptr; 2041 } else if (ire->ire_type == IRE_BROADCAST) { 2042 if (ire->ire_stq != NULL) { 2043 ill = (ill_t *)ire->ire_stq->q_ptr; 2044 } else { 2045 ire_t *ire_next; 2046 2047 ire_next = ire->ire_next; 2048 if (ire_next != NULL && 2049 ire_next->ire_type == IRE_BROADCAST && 2050 ire_next->ire_addr == ire->ire_addr && 2051 ire_next->ire_ipif == ire->ire_ipif) { 2052 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2053 } 2054 } 2055 } else if (ire->ire_rfq != NULL) { 2056 ill = ire->ire_rfq->q_ptr; 2057 } else if (ire->ire_ipif != NULL) { 2058 ill = ire->ire_ipif->ipif_ill; 2059 } 2060 return (ill); 2061 } 2062 2063 /* Arrange to call the specified function for every IRE in the world. */ 2064 void 2065 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 2066 { 2067 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 2068 } 2069 2070 void 2071 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2072 { 2073 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 2074 } 2075 2076 void 2077 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2078 { 2079 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 2080 } 2081 2082 /* 2083 * Walk a particular version. version == 0 means both v4 and v6. 2084 */ 2085 static void 2086 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 2087 ip_stack_t *ipst) 2088 { 2089 if (vers != IPV6_VERSION) { 2090 /* 2091 * ip_forwarding_table variable doesn't matter for IPv4 since 2092 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 2093 */ 2094 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2095 0, NULL, 2096 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 2097 NULL, zoneid, ipst); 2098 } 2099 if (vers != IPV4_VERSION) { 2100 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2101 ipst->ips_ip6_ftable_hash_size, 2102 ipst->ips_ip_forwarding_table_v6, 2103 ipst->ips_ip6_cache_table_size, 2104 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 2105 } 2106 } 2107 2108 /* 2109 * Arrange to call the specified 2110 * function for every IRE that matches the ill. 2111 */ 2112 void 2113 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2114 ill_t *ill) 2115 { 2116 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2117 } 2118 2119 void 2120 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2121 ill_t *ill) 2122 { 2123 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2124 ill); 2125 } 2126 2127 void 2128 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2129 ill_t *ill) 2130 { 2131 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2132 ill); 2133 } 2134 2135 /* 2136 * Walk a particular ill and version. version == 0 means both v4 and v6. 2137 */ 2138 static void 2139 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2140 void *arg, uchar_t vers, ill_t *ill) 2141 { 2142 ip_stack_t *ipst = ill->ill_ipst; 2143 2144 if (vers != IPV6_VERSION) { 2145 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2146 IP_MASK_TABLE_SIZE, 0, 2147 NULL, ipst->ips_ip_cache_table_size, 2148 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2149 } 2150 if (vers != IPV4_VERSION) { 2151 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2152 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2153 ipst->ips_ip_forwarding_table_v6, 2154 ipst->ips_ip6_cache_table_size, 2155 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2156 } 2157 } 2158 2159 boolean_t 2160 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2161 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2162 { 2163 ill_t *ire_stq_ill = NULL; 2164 ill_t *ire_ipif_ill = NULL; 2165 ill_group_t *ire_ill_group = NULL; 2166 2167 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2168 /* 2169 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2170 * pointed by ire_stq and ire_ipif. Only in the case of 2171 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2172 * different ills. But we want to keep this function generic 2173 * enough for future use. So, we always try to match on both. 2174 * The only caller of this function ire_walk_ill_tables, will 2175 * call "func" after we return from this function. We expect 2176 * "func" to do the right filtering of ires in this case. 2177 * 2178 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2179 * pointed by ire_stq and ire_ipif should always be the same. 2180 * So, we just match on only one of them. 2181 */ 2182 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2183 if (ire->ire_stq != NULL) 2184 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2185 if (ire->ire_ipif != NULL) 2186 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2187 if (ire_stq_ill != NULL) 2188 ire_ill_group = ire_stq_ill->ill_group; 2189 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2190 ire_ill_group = ire_ipif_ill->ill_group; 2191 } 2192 2193 if (zoneid != ALL_ZONES) { 2194 /* 2195 * We're walking the IREs for a specific zone. The only relevant 2196 * IREs are: 2197 * - all IREs with a matching ire_zoneid 2198 * - all IRE_OFFSUBNETs as they're shared across all zones 2199 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2200 * with a matching zone 2201 * - IRE_DEFAULTs with a gateway reachable from the zone 2202 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2203 * using the same rule; but the above rules are consistent with 2204 * the behavior of ire_ftable_lookup[_v6]() so that all the 2205 * routes that can be matched during lookup are also matched 2206 * here. 2207 */ 2208 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2209 /* 2210 * Note, IRE_INTERFACE can have the stq as NULL. For 2211 * example, if the default multicast route is tied to 2212 * the loopback address. 2213 */ 2214 if ((ire->ire_type & IRE_INTERFACE) && 2215 (ire->ire_stq != NULL)) { 2216 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2217 if (ire->ire_ipversion == IPV4_VERSION) { 2218 if (!ipif_usesrc_avail(ire_stq_ill, 2219 zoneid)) 2220 /* No usable src addr in zone */ 2221 return (B_FALSE); 2222 } else if (ire_stq_ill->ill_usesrc_ifindex 2223 != 0) { 2224 /* 2225 * For IPv6 use ipif_select_source_v6() 2226 * so the right scope selection is done 2227 */ 2228 ipif_t *src_ipif; 2229 src_ipif = 2230 ipif_select_source_v6(ire_stq_ill, 2231 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2232 IPV6_PREFER_SRC_DEFAULT, 2233 zoneid); 2234 if (src_ipif != NULL) { 2235 ipif_refrele(src_ipif); 2236 } else { 2237 return (B_FALSE); 2238 } 2239 } else { 2240 return (B_FALSE); 2241 } 2242 2243 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2244 return (B_FALSE); 2245 } 2246 } 2247 2248 /* 2249 * Match all default routes from the global zone, irrespective 2250 * of reachability. For a non-global zone only match those 2251 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2252 */ 2253 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2254 int ire_match_flags = 0; 2255 in6_addr_t gw_addr_v6; 2256 ire_t *rire; 2257 2258 ire_match_flags |= MATCH_IRE_TYPE; 2259 if (ire->ire_ipif != NULL) { 2260 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2261 } 2262 if (ire->ire_ipversion == IPV4_VERSION) { 2263 rire = ire_route_lookup(ire->ire_gateway_addr, 2264 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2265 zoneid, NULL, ire_match_flags, ipst); 2266 } else { 2267 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2268 mutex_enter(&ire->ire_lock); 2269 gw_addr_v6 = ire->ire_gateway_addr_v6; 2270 mutex_exit(&ire->ire_lock); 2271 rire = ire_route_lookup_v6(&gw_addr_v6, 2272 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2273 NULL, zoneid, NULL, ire_match_flags, ipst); 2274 } 2275 if (rire == NULL) { 2276 return (B_FALSE); 2277 } 2278 ire_refrele(rire); 2279 } 2280 } 2281 2282 if (((!(match_flags & MATCH_IRE_TYPE)) || 2283 (ire->ire_type & ire_type)) && 2284 ((!(match_flags & MATCH_IRE_ILL)) || 2285 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2286 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2287 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2288 (ire_ill_group != NULL && 2289 ire_ill_group == ill->ill_group))) { 2290 return (B_TRUE); 2291 } 2292 return (B_FALSE); 2293 } 2294 2295 int 2296 rtfunc(struct radix_node *rn, void *arg) 2297 { 2298 struct rtfuncarg *rtf = arg; 2299 struct rt_entry *rt; 2300 irb_t *irb; 2301 ire_t *ire; 2302 boolean_t ret; 2303 2304 rt = (struct rt_entry *)rn; 2305 ASSERT(rt != NULL); 2306 irb = &rt->rt_irb; 2307 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2308 if ((rtf->rt_match_flags != 0) || 2309 (rtf->rt_zoneid != ALL_ZONES)) { 2310 ret = ire_walk_ill_match(rtf->rt_match_flags, 2311 rtf->rt_ire_type, ire, 2312 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2313 } else 2314 ret = B_TRUE; 2315 if (ret) 2316 (*rtf->rt_func)(ire, rtf->rt_arg); 2317 } 2318 return (0); 2319 } 2320 2321 /* 2322 * Walk the ftable and the ctable entries that match the ill. 2323 */ 2324 void 2325 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2326 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2327 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2328 ip_stack_t *ipst) 2329 { 2330 irb_t *irb_ptr; 2331 irb_t *irb; 2332 ire_t *ire; 2333 int i, j; 2334 boolean_t ret; 2335 struct rtfuncarg rtfarg; 2336 2337 ASSERT((!(match_flags & (MATCH_IRE_ILL | 2338 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2339 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2340 /* 2341 * Optimize by not looking at the forwarding table if there 2342 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2343 * specified in ire_type. 2344 */ 2345 if (!(match_flags & MATCH_IRE_TYPE) || 2346 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2347 /* knobs such that routine is called only for v6 case */ 2348 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2349 for (i = (ftbl_sz - 1); i >= 0; i--) { 2350 if ((irb_ptr = ipftbl[i]) == NULL) 2351 continue; 2352 for (j = 0; j < htbl_sz; j++) { 2353 irb = &irb_ptr[j]; 2354 if (irb->irb_ire == NULL) 2355 continue; 2356 2357 IRB_REFHOLD(irb); 2358 for (ire = irb->irb_ire; ire != NULL; 2359 ire = ire->ire_next) { 2360 if (match_flags == 0 && 2361 zoneid == ALL_ZONES) { 2362 ret = B_TRUE; 2363 } else { 2364 ret = 2365 ire_walk_ill_match( 2366 match_flags, 2367 ire_type, ire, ill, 2368 zoneid, ipst); 2369 } 2370 if (ret) 2371 (*func)(ire, arg); 2372 } 2373 IRB_REFRELE(irb); 2374 } 2375 } 2376 } else { 2377 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2378 rtfarg.rt_func = func; 2379 rtfarg.rt_arg = arg; 2380 if (match_flags != 0) { 2381 rtfarg.rt_match_flags = match_flags; 2382 } 2383 rtfarg.rt_ire_type = ire_type; 2384 rtfarg.rt_ill = ill; 2385 rtfarg.rt_zoneid = zoneid; 2386 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2387 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2388 ipst->ips_ip_ftable, 2389 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2390 } 2391 } 2392 2393 /* 2394 * Optimize by not looking at the cache table if there 2395 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2396 * specified in ire_type. 2397 */ 2398 if (!(match_flags & MATCH_IRE_TYPE) || 2399 ((ire_type & IRE_CACHETABLE) != 0)) { 2400 for (i = 0; i < ctbl_sz; i++) { 2401 irb = &ipctbl[i]; 2402 if (irb->irb_ire == NULL) 2403 continue; 2404 IRB_REFHOLD(irb); 2405 for (ire = irb->irb_ire; ire != NULL; 2406 ire = ire->ire_next) { 2407 if (match_flags == 0 && zoneid == ALL_ZONES) { 2408 ret = B_TRUE; 2409 } else { 2410 ret = ire_walk_ill_match( 2411 match_flags, ire_type, 2412 ire, ill, zoneid, ipst); 2413 } 2414 if (ret) 2415 (*func)(ire, arg); 2416 } 2417 IRB_REFRELE(irb); 2418 } 2419 } 2420 } 2421 2422 /* 2423 * This function takes a mask and returns 2424 * number of bits set in the mask. If no 2425 * bit is set it returns 0. 2426 * Assumes a contiguous mask. 2427 */ 2428 int 2429 ip_mask_to_plen(ipaddr_t mask) 2430 { 2431 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2432 } 2433 2434 /* 2435 * Convert length for a mask to the mask. 2436 */ 2437 ipaddr_t 2438 ip_plen_to_mask(uint_t masklen) 2439 { 2440 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2441 } 2442 2443 void 2444 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2445 { 2446 ill_t *ill_list[NUM_ILLS]; 2447 ip_stack_t *ipst = ire->ire_ipst; 2448 2449 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2450 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2451 ill_unlock_ills(ill_list, NUM_ILLS); 2452 rw_exit(&irb_ptr->irb_lock); 2453 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2454 } 2455 2456 /* 2457 * ire_add_v[46] atomically make sure that the ipif or ill associated 2458 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2459 * before adding the ire to the table. This ensures that we don't create 2460 * new IRE_CACHEs with stale values for parameters that are passed to 2461 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2462 * to the ipif_mtu, and not the value. The actual value is derived from the 2463 * parent ire or ipif under the bucket lock. 2464 */ 2465 int 2466 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2467 ipsq_func_t func) 2468 { 2469 ill_t *stq_ill; 2470 ill_t *ipif_ill; 2471 ill_t *ill_list[NUM_ILLS]; 2472 int cnt = NUM_ILLS; 2473 int error = 0; 2474 ill_t *ill = NULL; 2475 ip_stack_t *ipst = ire->ire_ipst; 2476 2477 ill_list[0] = stq_ill = ire->ire_stq != 2478 NULL ? ire->ire_stq->q_ptr : NULL; 2479 ill_list[1] = ipif_ill = ire->ire_ipif != 2480 NULL ? ire->ire_ipif->ipif_ill : NULL; 2481 2482 ASSERT((q != NULL && mp != NULL && func != NULL) || 2483 (q == NULL && mp == NULL && func == NULL)); 2484 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2485 GRAB_CONN_LOCK(q); 2486 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2487 ill_lock_ills(ill_list, cnt); 2488 2489 /* 2490 * While the IRE is in the process of being added, a user may have 2491 * invoked the ifconfig usesrc option on the stq_ill to make it a 2492 * usesrc client ILL. Check for this possibility here, if it is true 2493 * then we fail adding the IRE_CACHE. Another check is to make sure 2494 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2495 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2496 */ 2497 if ((ire->ire_type & IRE_CACHE) && 2498 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2499 if (stq_ill->ill_usesrc_ifindex != 0) { 2500 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2501 if ((ipif_ill->ill_phyint->phyint_ifindex != 2502 stq_ill->ill_usesrc_ifindex) || 2503 (ipif_ill->ill_usesrc_grp_next == NULL) || 2504 (ipif_ill->ill_usesrc_ifindex != 0)) { 2505 error = EINVAL; 2506 goto done; 2507 } 2508 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2509 error = EINVAL; 2510 goto done; 2511 } 2512 } 2513 2514 /* 2515 * IPMP flag settings happen without taking the exclusive route 2516 * in ip_sioctl_flags. So we need to make an atomic check here 2517 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2518 * FAILBACK=no case. 2519 */ 2520 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2521 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2522 ill = stq_ill; 2523 error = EAGAIN; 2524 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2525 (ill_is_probeonly(stq_ill) && 2526 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2527 error = EINVAL; 2528 } 2529 goto done; 2530 } 2531 2532 /* 2533 * We don't check for OFFLINE/FAILED in this case because 2534 * the source address selection logic (ipif_select_source) 2535 * may still select a source address from such an ill. The 2536 * assumption is that these addresses will be moved by in.mpathd 2537 * soon. (i.e. this is a race). However link local addresses 2538 * will not move and hence ipif_select_source_v6 tries to avoid 2539 * FAILED ills. Please see ipif_select_source_v6 for more info 2540 */ 2541 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2542 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2543 ill = ipif_ill; 2544 error = EAGAIN; 2545 goto done; 2546 } 2547 2548 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2549 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2550 ill = ire->ire_ipif->ipif_ill; 2551 ASSERT(ill != NULL); 2552 error = EAGAIN; 2553 goto done; 2554 } 2555 2556 done: 2557 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2558 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2559 mutex_enter(&ipsq->ipsq_lock); 2560 ire_atomic_end(irb_ptr, ire); 2561 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2562 mutex_exit(&ipsq->ipsq_lock); 2563 error = EINPROGRESS; 2564 } else if (error != 0) { 2565 ire_atomic_end(irb_ptr, ire); 2566 } 2567 2568 RELEASE_CONN_LOCK(q); 2569 return (error); 2570 } 2571 2572 /* 2573 * Add a fully initialized IRE to an appropriate table based on 2574 * ire_type. 2575 * 2576 * allow_unresolved == B_FALSE indicates a legacy code-path call 2577 * that has prohibited the addition of incomplete ire's. If this 2578 * parameter is set, and we find an nce that is in a state other 2579 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2580 * something other than ND_REACHABLE if the nce had just expired and 2581 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2582 */ 2583 int 2584 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2585 boolean_t allow_unresolved) 2586 { 2587 ire_t *ire1; 2588 ill_t *stq_ill = NULL; 2589 ill_t *ill; 2590 ipif_t *ipif = NULL; 2591 ill_walk_context_t ctx; 2592 ire_t *ire = *irep; 2593 int error; 2594 boolean_t ire_is_mblk = B_FALSE; 2595 tsol_gcgrp_t *gcgrp = NULL; 2596 tsol_gcgrp_addr_t ga; 2597 ip_stack_t *ipst = ire->ire_ipst; 2598 2599 /* get ready for the day when original ire is not created as mblk */ 2600 if (ire->ire_mp != NULL) { 2601 ire_is_mblk = B_TRUE; 2602 /* Copy the ire to a kmem_alloc'ed area */ 2603 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2604 if (ire1 == NULL) { 2605 ip1dbg(("ire_add: alloc failed\n")); 2606 ire_delete(ire); 2607 *irep = NULL; 2608 return (ENOMEM); 2609 } 2610 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2611 *ire1 = *ire; 2612 ire1->ire_mp = NULL; 2613 ire1->ire_stq_ifindex = 0; 2614 freeb(ire->ire_mp); 2615 ire = ire1; 2616 } 2617 if (ire->ire_stq != NULL) 2618 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2619 2620 if (ire->ire_type == IRE_CACHE) { 2621 /* 2622 * If this interface is FAILED, or INACTIVE or has hit 2623 * the FAILBACK=no case, we create IRE_CACHES marked 2624 * HIDDEN for some special cases e.g. bind to 2625 * IPIF_NOFAILOVER address etc. So, if this interface 2626 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2627 * not creating hidden ires, we should not allow that. 2628 * This happens because the state of the interface 2629 * changed while we were waiting in ARP. If this is the 2630 * daemon sending probes, the next probe will create 2631 * HIDDEN ires and we will create an ire then. This 2632 * cannot happen with NDP currently because IRE is 2633 * never queued in NDP. But it can happen in the 2634 * future when we have external resolvers with IPv6. 2635 * If the interface gets marked with OFFLINE while we 2636 * are waiting in ARP, don't add the ire. 2637 */ 2638 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2639 (ill_is_probeonly(stq_ill) && 2640 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2641 /* 2642 * We don't know whether it is a valid ipif or not. 2643 * unless we do the check below. So, set it to NULL. 2644 */ 2645 ire->ire_ipif = NULL; 2646 ire_delete(ire); 2647 *irep = NULL; 2648 return (EINVAL); 2649 } 2650 } 2651 2652 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2653 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2654 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2655 ill = ILL_START_WALK_ALL(&ctx, ipst); 2656 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2657 mutex_enter(&ill->ill_lock); 2658 if (ill->ill_state_flags & ILL_CONDEMNED) { 2659 mutex_exit(&ill->ill_lock); 2660 continue; 2661 } 2662 /* 2663 * We need to make sure that the ipif is a valid one 2664 * before adding the IRE_CACHE. This happens only 2665 * with IRE_CACHE when there is an external resolver. 2666 * 2667 * We can unplumb a logical interface while the 2668 * packet is waiting in ARP with the IRE. Then, 2669 * later on when we feed the IRE back, the ipif 2670 * has to be re-checked. This can't happen with 2671 * NDP currently, as we never queue the IRE with 2672 * the packet. We always try to recreate the IRE 2673 * when the resolution is completed. But, we do 2674 * it for IPv6 also here so that in future if 2675 * we have external resolvers, it will work without 2676 * any change. 2677 */ 2678 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2679 if (ipif != NULL) { 2680 ipif_refhold_locked(ipif); 2681 mutex_exit(&ill->ill_lock); 2682 break; 2683 } 2684 mutex_exit(&ill->ill_lock); 2685 } 2686 rw_exit(&ipst->ips_ill_g_lock); 2687 if (ipif == NULL || 2688 (ipif->ipif_isv6 && 2689 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2690 &ipif->ipif_v6src_addr)) || 2691 (!ipif->ipif_isv6 && 2692 ire->ire_src_addr != ipif->ipif_src_addr) || 2693 ire->ire_zoneid != ipif->ipif_zoneid) { 2694 2695 if (ipif != NULL) 2696 ipif_refrele(ipif); 2697 ire->ire_ipif = NULL; 2698 ire_delete(ire); 2699 *irep = NULL; 2700 return (EINVAL); 2701 } 2702 2703 2704 ASSERT(ill != NULL); 2705 /* 2706 * If this group was dismantled while this packets was 2707 * queued in ARP, don't add it here. 2708 */ 2709 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2710 /* We don't want ire_inactive bump stats for this */ 2711 ipif_refrele(ipif); 2712 ire->ire_ipif = NULL; 2713 ire_delete(ire); 2714 *irep = NULL; 2715 return (EINVAL); 2716 } 2717 2718 /* 2719 * Since we didn't attach label security attributes to the 2720 * ire for the resolver case, we need to add it now. (only 2721 * for v4 resolver and v6 xresolv case). 2722 */ 2723 if (is_system_labeled() && ire_is_mblk) { 2724 if (ire->ire_ipversion == IPV4_VERSION) { 2725 ga.ga_af = AF_INET; 2726 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2727 INADDR_ANY ? ire->ire_gateway_addr : 2728 ire->ire_addr, &ga.ga_addr); 2729 } else { 2730 ga.ga_af = AF_INET6; 2731 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2732 &ire->ire_gateway_addr_v6) ? 2733 ire->ire_addr_v6 : 2734 ire->ire_gateway_addr_v6; 2735 } 2736 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2737 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2738 NULL, gcgrp); 2739 if (error != 0) { 2740 if (gcgrp != NULL) { 2741 GCGRP_REFRELE(gcgrp); 2742 gcgrp = NULL; 2743 } 2744 ipif_refrele(ipif); 2745 ire->ire_ipif = NULL; 2746 ire_delete(ire); 2747 *irep = NULL; 2748 return (error); 2749 } 2750 } 2751 } 2752 2753 /* 2754 * In case ire was changed 2755 */ 2756 *irep = ire; 2757 if (ire->ire_ipversion == IPV6_VERSION) 2758 error = ire_add_v6(irep, q, mp, func); 2759 else 2760 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2761 if (ipif != NULL) 2762 ipif_refrele(ipif); 2763 return (error); 2764 } 2765 2766 /* 2767 * Add an initialized IRE to an appropriate table based on ire_type. 2768 * 2769 * The forward table contains IRE_PREFIX/IRE_HOST and 2770 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2771 * 2772 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2773 * and IRE_CACHE. 2774 * 2775 * NOTE : This function is called as writer though not required 2776 * by this function. 2777 */ 2778 static int 2779 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2780 boolean_t allow_unresolved) 2781 { 2782 ire_t *ire1; 2783 irb_t *irb_ptr; 2784 ire_t **irep; 2785 int flags; 2786 ire_t *pire = NULL; 2787 ill_t *stq_ill; 2788 ire_t *ire = *ire_p; 2789 int error; 2790 boolean_t need_refrele = B_FALSE; 2791 nce_t *nce; 2792 ip_stack_t *ipst = ire->ire_ipst; 2793 2794 if (ire->ire_ipif != NULL) 2795 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2796 if (ire->ire_stq != NULL) 2797 ASSERT(!MUTEX_HELD( 2798 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2799 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2800 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2801 2802 /* Find the appropriate list head. */ 2803 switch (ire->ire_type) { 2804 case IRE_HOST: 2805 ire->ire_mask = IP_HOST_MASK; 2806 ire->ire_masklen = IP_ABITS; 2807 if ((ire->ire_flags & RTF_SETSRC) == 0) 2808 ire->ire_src_addr = 0; 2809 break; 2810 case IRE_CACHE: 2811 case IRE_BROADCAST: 2812 case IRE_LOCAL: 2813 case IRE_LOOPBACK: 2814 ire->ire_mask = IP_HOST_MASK; 2815 ire->ire_masklen = IP_ABITS; 2816 break; 2817 case IRE_PREFIX: 2818 if ((ire->ire_flags & RTF_SETSRC) == 0) 2819 ire->ire_src_addr = 0; 2820 break; 2821 case IRE_DEFAULT: 2822 if ((ire->ire_flags & RTF_SETSRC) == 0) 2823 ire->ire_src_addr = 0; 2824 break; 2825 case IRE_IF_RESOLVER: 2826 case IRE_IF_NORESOLVER: 2827 break; 2828 default: 2829 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2830 (void *)ire, ire->ire_type)); 2831 ire_delete(ire); 2832 *ire_p = NULL; 2833 return (EINVAL); 2834 } 2835 2836 /* Make sure the address is properly masked. */ 2837 ire->ire_addr &= ire->ire_mask; 2838 2839 /* 2840 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2841 * of the interface route while adding an IRE_CACHE for an on-link 2842 * destination in the IRE_IF_RESOLVER case, since the ire has to 2843 * go to ARP and return. We can't do a REFHOLD on the 2844 * associated interface ire for fear of ARP freeing the message. 2845 * Here we look up the interface ire in the forwarding table and 2846 * make sure that the interface route has not been deleted. 2847 */ 2848 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2849 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2850 2851 ASSERT(ire->ire_max_fragp == NULL); 2852 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2853 /* 2854 * The ihandle that we used in ip_newroute_multi 2855 * comes from the interface route corresponding 2856 * to ire_ipif. Lookup here to see if it exists 2857 * still. 2858 * If the ire has a source address assigned using 2859 * RTF_SETSRC, ire_ipif is the logical interface holding 2860 * this source address, so we can't use it to check for 2861 * the existence of the interface route. Instead we rely 2862 * on the brute force ihandle search in 2863 * ire_ihandle_lookup_onlink() below. 2864 */ 2865 pire = ipif_to_ire(ire->ire_ipif); 2866 if (pire == NULL) { 2867 ire_delete(ire); 2868 *ire_p = NULL; 2869 return (EINVAL); 2870 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2871 ire_refrele(pire); 2872 ire_delete(ire); 2873 *ire_p = NULL; 2874 return (EINVAL); 2875 } 2876 } else { 2877 pire = ire_ihandle_lookup_onlink(ire); 2878 if (pire == NULL) { 2879 ire_delete(ire); 2880 *ire_p = NULL; 2881 return (EINVAL); 2882 } 2883 } 2884 /* Prevent pire from getting deleted */ 2885 IRB_REFHOLD(pire->ire_bucket); 2886 /* Has it been removed already ? */ 2887 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2888 IRB_REFRELE(pire->ire_bucket); 2889 ire_refrele(pire); 2890 ire_delete(ire); 2891 *ire_p = NULL; 2892 return (EINVAL); 2893 } 2894 } else { 2895 ASSERT(ire->ire_max_fragp != NULL); 2896 } 2897 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2898 2899 if (ire->ire_ipif != NULL) { 2900 /* 2901 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2902 * for historic reasons and to maintain symmetry with 2903 * IPv6 code path. Historically this was used by 2904 * multicast code to create multiple IRE_CACHES on 2905 * a single ill with different ipifs. This was used 2906 * so that multicast packets leaving the node had the 2907 * right source address. This is no longer needed as 2908 * ip_wput initializes the address correctly. 2909 */ 2910 flags |= MATCH_IRE_IPIF; 2911 /* 2912 * If we are creating hidden ires, make sure we search on 2913 * this ill (MATCH_IRE_ILL) and a hidden ire, 2914 * while we are searching for duplicates below. Otherwise we 2915 * could potentially find an IRE on some other interface 2916 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2917 * shouldn't do this as this will lead to an infinite loop 2918 * (if we get to ip_wput again) eventually we need an hidden 2919 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2920 * done below. 2921 */ 2922 if (ire->ire_type == IRE_CACHE && 2923 (ire->ire_marks & IRE_MARK_HIDDEN)) 2924 flags |= (MATCH_IRE_MARK_HIDDEN); 2925 } 2926 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2927 irb_ptr = ire_get_bucket(ire); 2928 need_refrele = B_TRUE; 2929 if (irb_ptr == NULL) { 2930 /* 2931 * This assumes that the ire has not added 2932 * a reference to the ipif. 2933 */ 2934 ire->ire_ipif = NULL; 2935 ire_delete(ire); 2936 if (pire != NULL) { 2937 IRB_REFRELE(pire->ire_bucket); 2938 ire_refrele(pire); 2939 } 2940 *ire_p = NULL; 2941 return (EINVAL); 2942 } 2943 } else { 2944 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2945 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2946 } 2947 2948 /* 2949 * Start the atomic add of the ire. Grab the ill locks, 2950 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2951 * 2952 * If ipif or ill is changing ire_atomic_start() may queue the 2953 * request and return EINPROGRESS. 2954 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2955 */ 2956 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2957 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2958 if (error != 0) { 2959 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2960 /* 2961 * We don't know whether it is a valid ipif or not. 2962 * So, set it to NULL. This assumes that the ire has not added 2963 * a reference to the ipif. 2964 */ 2965 ire->ire_ipif = NULL; 2966 ire_delete(ire); 2967 if (pire != NULL) { 2968 IRB_REFRELE(pire->ire_bucket); 2969 ire_refrele(pire); 2970 } 2971 *ire_p = NULL; 2972 if (need_refrele) 2973 IRB_REFRELE(irb_ptr); 2974 return (error); 2975 } 2976 /* 2977 * To avoid creating ires having stale values for the ire_max_frag 2978 * we get the latest value atomically here. For more details 2979 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2980 * in ip_rput_dlpi_writer 2981 */ 2982 if (ire->ire_max_fragp == NULL) { 2983 if (CLASSD(ire->ire_addr)) 2984 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2985 else 2986 ire->ire_max_frag = pire->ire_max_frag; 2987 } else { 2988 uint_t max_frag; 2989 2990 max_frag = *ire->ire_max_fragp; 2991 ire->ire_max_fragp = NULL; 2992 ire->ire_max_frag = max_frag; 2993 } 2994 /* 2995 * Atomically check for duplicate and insert in the table. 2996 */ 2997 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2998 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2999 continue; 3000 if (ire->ire_ipif != NULL) { 3001 /* 3002 * We do MATCH_IRE_ILL implicitly here for IREs 3003 * with a non-null ire_ipif, including IRE_CACHEs. 3004 * As ire_ipif and ire_stq could point to two 3005 * different ills, we can't pass just ire_ipif to 3006 * ire_match_args and get a match on both ills. 3007 * This is just needed for duplicate checks here and 3008 * so we don't add an extra argument to 3009 * ire_match_args for this. Do it locally. 3010 * 3011 * NOTE : Currently there is no part of the code 3012 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3013 * match for IRE_CACHEs. Thus we don't want to 3014 * extend the arguments to ire_match_args. 3015 */ 3016 if (ire1->ire_stq != ire->ire_stq) 3017 continue; 3018 /* 3019 * Multiroute IRE_CACHEs for a given destination can 3020 * have the same ire_ipif, typically if their source 3021 * address is forced using RTF_SETSRC, and the same 3022 * send-to queue. We differentiate them using the parent 3023 * handle. 3024 */ 3025 if (ire->ire_type == IRE_CACHE && 3026 (ire1->ire_flags & RTF_MULTIRT) && 3027 (ire->ire_flags & RTF_MULTIRT) && 3028 (ire1->ire_phandle != ire->ire_phandle)) 3029 continue; 3030 } 3031 if (ire1->ire_zoneid != ire->ire_zoneid) 3032 continue; 3033 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3034 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3035 ire->ire_zoneid, 0, NULL, flags)) { 3036 /* 3037 * Return the old ire after doing a REFHOLD. 3038 * As most of the callers continue to use the IRE 3039 * after adding, we return a held ire. This will 3040 * avoid a lookup in the caller again. If the callers 3041 * don't want to use it, they need to do a REFRELE. 3042 */ 3043 ip1dbg(("found dup ire existing %p new %p", 3044 (void *)ire1, (void *)ire)); 3045 IRE_REFHOLD(ire1); 3046 ire_atomic_end(irb_ptr, ire); 3047 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3048 ire_delete(ire); 3049 if (pire != NULL) { 3050 /* 3051 * Assert that it is not removed from the 3052 * list yet. 3053 */ 3054 ASSERT(pire->ire_ptpn != NULL); 3055 IRB_REFRELE(pire->ire_bucket); 3056 ire_refrele(pire); 3057 } 3058 *ire_p = ire1; 3059 if (need_refrele) 3060 IRB_REFRELE(irb_ptr); 3061 return (0); 3062 } 3063 } 3064 if (ire->ire_type & IRE_CACHE) { 3065 ASSERT(ire->ire_stq != NULL); 3066 nce = ndp_lookup_v4(ire_to_ill(ire), 3067 ((ire->ire_gateway_addr != INADDR_ANY) ? 3068 &ire->ire_gateway_addr : &ire->ire_addr), 3069 B_TRUE); 3070 if (nce != NULL) 3071 mutex_enter(&nce->nce_lock); 3072 /* 3073 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3074 * and the caller has prohibited the addition of incomplete 3075 * ire's, we fail the add. Note that nce_state could be 3076 * something other than ND_REACHABLE if the nce had 3077 * just expired and the ire_create preceding the 3078 * ire_add added a new ND_INITIAL nce. 3079 */ 3080 if ((nce == NULL) || 3081 (nce->nce_flags & NCE_F_CONDEMNED) || 3082 (!allow_unresolved && 3083 (nce->nce_state != ND_REACHABLE))) { 3084 if (nce != NULL) { 3085 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 3086 mutex_exit(&nce->nce_lock); 3087 } 3088 ire_atomic_end(irb_ptr, ire); 3089 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3090 if (nce != NULL) 3091 NCE_REFRELE(nce); 3092 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3093 ire_delete(ire); 3094 if (pire != NULL) { 3095 IRB_REFRELE(pire->ire_bucket); 3096 ire_refrele(pire); 3097 } 3098 *ire_p = NULL; 3099 if (need_refrele) 3100 IRB_REFRELE(irb_ptr); 3101 return (EINVAL); 3102 } else { 3103 ire->ire_nce = nce; 3104 mutex_exit(&nce->nce_lock); 3105 /* 3106 * We are associating this nce to the ire, so 3107 * change the nce ref taken in ndp_lookup_v4() from 3108 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3109 */ 3110 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3111 } 3112 } 3113 /* 3114 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3115 * grouping identical addresses together on the hash chain. We also 3116 * don't want to send multiple copies out if there are two ills part 3117 * of the same group. Thus we group the ires with same addr and same 3118 * ill group together so that ip_wput_ire can easily skip all the 3119 * ires with same addr and same group after sending the first copy. 3120 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3121 * interested in such groupings only for broadcasts. 3122 * 3123 * NOTE : If the interfaces are brought up first and then grouped, 3124 * illgrp_insert will handle it. We come here when the interfaces 3125 * are already in group and we are bringing them UP. 3126 * 3127 * Find the first entry that matches ire_addr. *irep will be null 3128 * if no match. 3129 * 3130 * Note: the loopback and non-loopback broadcast entries for an 3131 * interface MUST be added before any MULTIRT entries. 3132 */ 3133 irep = (ire_t **)irb_ptr; 3134 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3135 irep = &ire1->ire_next; 3136 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3137 /* 3138 * We found some ire (i.e *irep) with a matching addr. We 3139 * want to group ires with same addr and same ill group 3140 * together. 3141 * 3142 * First get to the entry that matches our address and 3143 * ill group i.e stop as soon as we find the first ire 3144 * matching the ill group and address. If there is only 3145 * an address match, we should walk and look for some 3146 * group match. These are some of the possible scenarios : 3147 * 3148 * 1) There are no groups at all i.e all ire's ill_group 3149 * are NULL. In that case we will essentially group 3150 * all the ires with the same addr together. Same as 3151 * the "else" block of this "if". 3152 * 3153 * 2) There are some groups and this ire's ill_group is 3154 * NULL. In this case, we will first find the group 3155 * that matches the address and a NULL group. Then 3156 * we will insert the ire at the end of that group. 3157 * 3158 * 3) There are some groups and this ires's ill_group is 3159 * non-NULL. In this case we will first find the group 3160 * that matches the address and the ill_group. Then 3161 * we will insert the ire at the end of that group. 3162 */ 3163 for (;;) { 3164 ire1 = *irep; 3165 if ((ire1->ire_next == NULL) || 3166 (ire1->ire_next->ire_addr != ire->ire_addr) || 3167 (ire1->ire_type != IRE_BROADCAST) || 3168 (ire1->ire_flags & RTF_MULTIRT) || 3169 (ire1->ire_ipif->ipif_ill->ill_group == 3170 ire->ire_ipif->ipif_ill->ill_group)) 3171 break; 3172 irep = &ire1->ire_next; 3173 } 3174 ASSERT(*irep != NULL); 3175 /* 3176 * The ire will be added before *irep, so 3177 * if irep is a MULTIRT ire, just break to 3178 * ire insertion code. 3179 */ 3180 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3181 goto insert_ire; 3182 3183 irep = &((*irep)->ire_next); 3184 3185 /* 3186 * Either we have hit the end of the list or the address 3187 * did not match or the group *matched*. If we found 3188 * a match on the group, skip to the end of the group. 3189 */ 3190 while (*irep != NULL) { 3191 ire1 = *irep; 3192 if ((ire1->ire_addr != ire->ire_addr) || 3193 (ire1->ire_type != IRE_BROADCAST) || 3194 (ire1->ire_ipif->ipif_ill->ill_group != 3195 ire->ire_ipif->ipif_ill->ill_group)) 3196 break; 3197 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3198 ire1->ire_ipif == ire->ire_ipif) { 3199 irep = &ire1->ire_next; 3200 break; 3201 } 3202 irep = &ire1->ire_next; 3203 } 3204 } else if (*irep != NULL) { 3205 /* 3206 * Find the last ire which matches ire_addr. 3207 * Needed to do tail insertion among entries with the same 3208 * ire_addr. 3209 */ 3210 while (ire->ire_addr == ire1->ire_addr) { 3211 irep = &ire1->ire_next; 3212 ire1 = *irep; 3213 if (ire1 == NULL) 3214 break; 3215 } 3216 } 3217 3218 insert_ire: 3219 /* Insert at *irep */ 3220 ire1 = *irep; 3221 if (ire1 != NULL) 3222 ire1->ire_ptpn = &ire->ire_next; 3223 ire->ire_next = ire1; 3224 /* Link the new one in. */ 3225 ire->ire_ptpn = irep; 3226 3227 /* 3228 * ire_walk routines de-reference ire_next without holding 3229 * a lock. Before we point to the new ire, we want to make 3230 * sure the store that sets the ire_next of the new ire 3231 * reaches global visibility, so that ire_walk routines 3232 * don't see a truncated list of ires i.e if the ire_next 3233 * of the new ire gets set after we do "*irep = ire" due 3234 * to re-ordering, the ire_walk thread will see a NULL 3235 * once it accesses the ire_next of the new ire. 3236 * membar_producer() makes sure that the following store 3237 * happens *after* all of the above stores. 3238 */ 3239 membar_producer(); 3240 *irep = ire; 3241 ire->ire_bucket = irb_ptr; 3242 /* 3243 * We return a bumped up IRE above. Keep it symmetrical 3244 * so that the callers will always have to release. This 3245 * helps the callers of this function because they continue 3246 * to use the IRE after adding and hence they don't have to 3247 * lookup again after we return the IRE. 3248 * 3249 * NOTE : We don't have to use atomics as this is appearing 3250 * in the list for the first time and no one else can bump 3251 * up the reference count on this yet. 3252 */ 3253 IRE_REFHOLD_LOCKED(ire); 3254 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3255 3256 irb_ptr->irb_ire_cnt++; 3257 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3258 irb_ptr->irb_nire++; 3259 3260 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3261 irb_ptr->irb_tmp_ire_cnt++; 3262 3263 if (ire->ire_ipif != NULL) { 3264 ire->ire_ipif->ipif_ire_cnt++; 3265 if (ire->ire_stq != NULL) { 3266 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3267 stq_ill->ill_ire_cnt++; 3268 } 3269 } else { 3270 ASSERT(ire->ire_stq == NULL); 3271 } 3272 3273 ire_atomic_end(irb_ptr, ire); 3274 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3275 3276 if (pire != NULL) { 3277 /* Assert that it is not removed from the list yet */ 3278 ASSERT(pire->ire_ptpn != NULL); 3279 IRB_REFRELE(pire->ire_bucket); 3280 ire_refrele(pire); 3281 } 3282 3283 if (ire->ire_type != IRE_CACHE) { 3284 /* 3285 * For ire's with host mask see if there is an entry 3286 * in the cache. If there is one flush the whole cache as 3287 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3288 * If no entry is found than there is no need to flush the 3289 * cache. 3290 */ 3291 if (ire->ire_mask == IP_HOST_MASK) { 3292 ire_t *lire; 3293 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3294 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3295 if (lire != NULL) { 3296 ire_refrele(lire); 3297 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3298 } 3299 } else { 3300 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3301 } 3302 } 3303 /* 3304 * We had to delay the fast path probe until the ire is inserted 3305 * in the list. Otherwise the fast path ack won't find the ire in 3306 * the table. 3307 */ 3308 if (ire->ire_type == IRE_CACHE || 3309 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3310 ASSERT(ire->ire_nce != NULL); 3311 if (ire->ire_nce->nce_state == ND_REACHABLE) 3312 nce_fastpath(ire->ire_nce); 3313 } 3314 if (ire->ire_ipif != NULL) 3315 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3316 *ire_p = ire; 3317 if (need_refrele) { 3318 IRB_REFRELE(irb_ptr); 3319 } 3320 return (0); 3321 } 3322 3323 /* 3324 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3325 * do the final cleanup for this ire. 3326 */ 3327 void 3328 ire_cleanup(ire_t *ire) 3329 { 3330 ire_t *ire_next; 3331 ip_stack_t *ipst = ire->ire_ipst; 3332 3333 ASSERT(ire != NULL); 3334 3335 while (ire != NULL) { 3336 ire_next = ire->ire_next; 3337 if (ire->ire_ipversion == IPV4_VERSION) { 3338 ire_delete_v4(ire); 3339 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3340 ire_stats_deleted); 3341 } else { 3342 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3343 ire_delete_v6(ire); 3344 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3345 ire_stats_deleted); 3346 } 3347 /* 3348 * Now it's really out of the list. Before doing the 3349 * REFRELE, set ire_next to NULL as ire_inactive asserts 3350 * so. 3351 */ 3352 ire->ire_next = NULL; 3353 IRE_REFRELE_NOTR(ire); 3354 ire = ire_next; 3355 } 3356 } 3357 3358 /* 3359 * IRB_REFRELE is the only caller of the function. It calls to unlink 3360 * all the CONDEMNED ires from this bucket. 3361 */ 3362 ire_t * 3363 ire_unlink(irb_t *irb) 3364 { 3365 ire_t *ire; 3366 ire_t *ire1; 3367 ire_t **ptpn; 3368 ire_t *ire_list = NULL; 3369 3370 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3371 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3372 (irb->irb_refcnt == 0)); 3373 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3374 ASSERT(irb->irb_ire != NULL); 3375 3376 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3377 ip_stack_t *ipst = ire->ire_ipst; 3378 3379 ire1 = ire->ire_next; 3380 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3381 ptpn = ire->ire_ptpn; 3382 ire1 = ire->ire_next; 3383 if (ire1) 3384 ire1->ire_ptpn = ptpn; 3385 *ptpn = ire1; 3386 ire->ire_ptpn = NULL; 3387 ire->ire_next = NULL; 3388 if (ire->ire_type == IRE_DEFAULT) { 3389 /* 3390 * IRE is out of the list. We need to adjust 3391 * the accounting before the caller drops 3392 * the lock. 3393 */ 3394 if (ire->ire_ipversion == IPV6_VERSION) { 3395 ASSERT(ipst-> 3396 ips_ipv6_ire_default_count != 3397 0); 3398 ipst->ips_ipv6_ire_default_count--; 3399 } 3400 } 3401 /* 3402 * We need to call ire_delete_v4 or ire_delete_v6 3403 * to clean up the cache or the redirects pointing at 3404 * the default gateway. We need to drop the lock 3405 * as ire_flush_cache/ire_delete_host_redircts require 3406 * so. But we can't drop the lock, as ire_unlink needs 3407 * to atomically remove the ires from the list. 3408 * So, create a temporary list of CONDEMNED ires 3409 * for doing ire_delete_v4/ire_delete_v6 operations 3410 * later on. 3411 */ 3412 ire->ire_next = ire_list; 3413 ire_list = ire; 3414 } 3415 } 3416 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3417 return (ire_list); 3418 } 3419 3420 /* 3421 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3422 * ARP message on any of its interface queue, it scans the nce table and 3423 * deletes and calls ndp_delete() for the appropriate nce. This action 3424 * also deletes all the neighbor/ire cache entries for that address. 3425 * This function is called from ip_arp_news in ip.c and also for 3426 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3427 * true if it finds a nce entry which is used by ip_arp_news to determine if 3428 * it needs to do an ire_walk_v4. The return value is also used for the 3429 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3430 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3431 * ip_if->ipif_ill also needs to be matched. 3432 */ 3433 boolean_t 3434 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3435 { 3436 ill_t *ill; 3437 nce_t *nce; 3438 3439 ill = (ipif ? ipif->ipif_ill : NULL); 3440 3441 if (ill != NULL) { 3442 /* 3443 * clean up the nce (and any relevant ire's) that matches 3444 * on addr and ill. 3445 */ 3446 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3447 if (nce != NULL) { 3448 ndp_delete(nce); 3449 return (B_TRUE); 3450 } 3451 } else { 3452 /* 3453 * ill is wildcard. clean up all nce's and 3454 * ire's that match on addr 3455 */ 3456 nce_clookup_t cl; 3457 3458 cl.ncecl_addr = addr; 3459 cl.ncecl_found = B_FALSE; 3460 3461 ndp_walk_common(ipst->ips_ndp4, NULL, 3462 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3463 3464 /* 3465 * ncecl_found would be set by ip_nce_clookup_and_delete if 3466 * we found a matching nce. 3467 */ 3468 return (cl.ncecl_found); 3469 } 3470 return (B_FALSE); 3471 3472 } 3473 3474 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3475 static void 3476 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3477 { 3478 nce_clookup_t *cl = (nce_clookup_t *)arg; 3479 ipaddr_t nce_addr; 3480 3481 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3482 if (nce_addr == cl->ncecl_addr) { 3483 cl->ncecl_found = B_TRUE; 3484 /* clean up the nce (and any relevant ire's) */ 3485 ndp_delete(nce); 3486 } 3487 } 3488 3489 /* 3490 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3491 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3492 * is deleted and freed. 3493 */ 3494 boolean_t 3495 irb_inactive(irb_t *irb) 3496 { 3497 struct rt_entry *rt; 3498 struct radix_node *rn; 3499 ip_stack_t *ipst = irb->irb_ipst; 3500 3501 ASSERT(irb->irb_ipst != NULL); 3502 3503 rt = IRB2RT(irb); 3504 rn = (struct radix_node *)rt; 3505 3506 /* first remove it from the radix tree. */ 3507 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3508 rw_enter(&irb->irb_lock, RW_WRITER); 3509 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3510 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3511 ipst->ips_ip_ftable); 3512 DTRACE_PROBE1(irb__free, rt_t *, rt); 3513 ASSERT((void *)rn == (void *)rt); 3514 Free(rt, rt_entry_cache); 3515 /* irb_lock is freed */ 3516 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3517 return (B_TRUE); 3518 } 3519 rw_exit(&irb->irb_lock); 3520 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3521 return (B_FALSE); 3522 } 3523 3524 /* 3525 * Delete the specified IRE. 3526 */ 3527 void 3528 ire_delete(ire_t *ire) 3529 { 3530 ire_t *ire1; 3531 ire_t **ptpn; 3532 irb_t *irb; 3533 ip_stack_t *ipst = ire->ire_ipst; 3534 3535 if ((irb = ire->ire_bucket) == NULL) { 3536 /* 3537 * It was never inserted in the list. Should call REFRELE 3538 * to free this IRE. 3539 */ 3540 IRE_REFRELE_NOTR(ire); 3541 return; 3542 } 3543 3544 rw_enter(&irb->irb_lock, RW_WRITER); 3545 3546 if (irb->irb_rr_origin == ire) { 3547 irb->irb_rr_origin = NULL; 3548 } 3549 3550 /* 3551 * In case of V4 we might still be waiting for fastpath ack. 3552 */ 3553 if (ire->ire_ipversion == IPV4_VERSION && 3554 (ire->ire_type == IRE_CACHE || 3555 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3556 ASSERT(ire->ire_nce != NULL); 3557 nce_fastpath_list_delete(ire->ire_nce); 3558 } 3559 3560 if (ire->ire_ptpn == NULL) { 3561 /* 3562 * Some other thread has removed us from the list. 3563 * It should have done the REFRELE for us. 3564 */ 3565 rw_exit(&irb->irb_lock); 3566 return; 3567 } 3568 3569 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3570 irb->irb_ire_cnt--; 3571 ire->ire_marks |= IRE_MARK_CONDEMNED; 3572 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 3573 irb->irb_tmp_ire_cnt--; 3574 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 3575 } 3576 } 3577 3578 if (irb->irb_refcnt != 0) { 3579 /* 3580 * The last thread to leave this bucket will 3581 * delete this ire. 3582 */ 3583 irb->irb_marks |= IRB_MARK_CONDEMNED; 3584 rw_exit(&irb->irb_lock); 3585 return; 3586 } 3587 3588 /* 3589 * Normally to delete an ire, we walk the bucket. While we 3590 * walk the bucket, we normally bump up irb_refcnt and hence 3591 * we return from above where we mark CONDEMNED and the ire 3592 * gets deleted from ire_unlink. This case is where somebody 3593 * knows the ire e.g by doing a lookup, and wants to delete the 3594 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3595 * the bucket. 3596 */ 3597 ptpn = ire->ire_ptpn; 3598 ire1 = ire->ire_next; 3599 if (ire1 != NULL) 3600 ire1->ire_ptpn = ptpn; 3601 ASSERT(ptpn != NULL); 3602 *ptpn = ire1; 3603 ire->ire_ptpn = NULL; 3604 ire->ire_next = NULL; 3605 if (ire->ire_ipversion == IPV6_VERSION) { 3606 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3607 } else { 3608 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3609 } 3610 /* 3611 * ip_wput/ip_wput_v6 checks this flag to see whether 3612 * it should still use the cached ire or not. 3613 */ 3614 if (ire->ire_type == IRE_DEFAULT) { 3615 /* 3616 * IRE is out of the list. We need to adjust the 3617 * accounting before we drop the lock. 3618 */ 3619 if (ire->ire_ipversion == IPV6_VERSION) { 3620 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3621 ipst->ips_ipv6_ire_default_count--; 3622 } 3623 } 3624 rw_exit(&irb->irb_lock); 3625 3626 if (ire->ire_ipversion == IPV6_VERSION) { 3627 ire_delete_v6(ire); 3628 } else { 3629 ire_delete_v4(ire); 3630 } 3631 /* 3632 * We removed it from the list. Decrement the 3633 * reference count. 3634 */ 3635 IRE_REFRELE_NOTR(ire); 3636 } 3637 3638 /* 3639 * Delete the specified IRE. 3640 * All calls should use ire_delete(). 3641 * Sometimes called as writer though not required by this function. 3642 * 3643 * NOTE : This function is called only if the ire was added 3644 * in the list. 3645 */ 3646 static void 3647 ire_delete_v4(ire_t *ire) 3648 { 3649 ip_stack_t *ipst = ire->ire_ipst; 3650 3651 ASSERT(ire->ire_refcnt >= 1); 3652 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3653 3654 if (ire->ire_type != IRE_CACHE) 3655 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3656 if (ire->ire_type == IRE_DEFAULT) { 3657 /* 3658 * when a default gateway is going away 3659 * delete all the host redirects pointing at that 3660 * gateway. 3661 */ 3662 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3663 } 3664 } 3665 3666 /* 3667 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3668 * to free the ire when the reference count goes to zero. 3669 */ 3670 void 3671 ire_inactive(ire_t *ire) 3672 { 3673 nce_t *nce; 3674 ill_t *ill = NULL; 3675 ill_t *stq_ill = NULL; 3676 ipif_t *ipif; 3677 boolean_t need_wakeup = B_FALSE; 3678 irb_t *irb; 3679 ip_stack_t *ipst = ire->ire_ipst; 3680 3681 ASSERT(ire->ire_refcnt == 0); 3682 ASSERT(ire->ire_ptpn == NULL); 3683 ASSERT(ire->ire_next == NULL); 3684 3685 if (ire->ire_gw_secattr != NULL) { 3686 ire_gw_secattr_free(ire->ire_gw_secattr); 3687 ire->ire_gw_secattr = NULL; 3688 } 3689 3690 if (ire->ire_mp != NULL) { 3691 ASSERT(ire->ire_bucket == NULL); 3692 mutex_destroy(&ire->ire_lock); 3693 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3694 if (ire->ire_nce != NULL) 3695 NCE_REFRELE_NOTR(ire->ire_nce); 3696 freeb(ire->ire_mp); 3697 return; 3698 } 3699 3700 if ((nce = ire->ire_nce) != NULL) { 3701 NCE_REFRELE_NOTR(nce); 3702 ire->ire_nce = NULL; 3703 } 3704 3705 if (ire->ire_ipif == NULL) 3706 goto end; 3707 3708 ipif = ire->ire_ipif; 3709 ill = ipif->ipif_ill; 3710 3711 if (ire->ire_bucket == NULL) { 3712 /* The ire was never inserted in the table. */ 3713 goto end; 3714 } 3715 3716 /* 3717 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3718 * non-null ill_ire_count also goes down by 1. 3719 * 3720 * The ipif that is associated with an ire is ire->ire_ipif and 3721 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3722 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3723 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3724 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3725 * different. If this is different from ire->ire_ipif->ipif_ill and 3726 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3727 * ipif_ill_refrele_tail on the stq_ill. 3728 */ 3729 3730 if (ire->ire_stq != NULL) 3731 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3732 3733 if (stq_ill == NULL || stq_ill == ill) { 3734 /* Optimize the most common case */ 3735 mutex_enter(&ill->ill_lock); 3736 ASSERT(ipif->ipif_ire_cnt != 0); 3737 ipif->ipif_ire_cnt--; 3738 if (ipif->ipif_ire_cnt == 0) 3739 need_wakeup = B_TRUE; 3740 if (stq_ill != NULL) { 3741 ASSERT(stq_ill->ill_ire_cnt != 0); 3742 stq_ill->ill_ire_cnt--; 3743 if (stq_ill->ill_ire_cnt == 0) 3744 need_wakeup = B_TRUE; 3745 } 3746 if (need_wakeup) { 3747 /* Drops the ill lock */ 3748 ipif_ill_refrele_tail(ill); 3749 } else { 3750 mutex_exit(&ill->ill_lock); 3751 } 3752 } else { 3753 /* 3754 * We can't grab all the ill locks at the same time. 3755 * It can lead to recursive lock enter in the call to 3756 * ipif_ill_refrele_tail and later. Instead do it 1 at 3757 * a time. 3758 */ 3759 mutex_enter(&ill->ill_lock); 3760 ASSERT(ipif->ipif_ire_cnt != 0); 3761 ipif->ipif_ire_cnt--; 3762 if (ipif->ipif_ire_cnt == 0) { 3763 /* Drops the lock */ 3764 ipif_ill_refrele_tail(ill); 3765 } else { 3766 mutex_exit(&ill->ill_lock); 3767 } 3768 if (stq_ill != NULL) { 3769 mutex_enter(&stq_ill->ill_lock); 3770 ASSERT(stq_ill->ill_ire_cnt != 0); 3771 stq_ill->ill_ire_cnt--; 3772 if (stq_ill->ill_ire_cnt == 0) { 3773 /* Drops the ill lock */ 3774 ipif_ill_refrele_tail(stq_ill); 3775 } else { 3776 mutex_exit(&stq_ill->ill_lock); 3777 } 3778 } 3779 } 3780 end: 3781 /* This should be true for both V4 and V6 */ 3782 3783 if ((ire->ire_type & IRE_FORWARDTABLE) && 3784 (ire->ire_ipversion == IPV4_VERSION) && 3785 ((irb = ire->ire_bucket) != NULL)) { 3786 rw_enter(&irb->irb_lock, RW_WRITER); 3787 irb->irb_nire--; 3788 /* 3789 * Instead of examining the conditions for freeing 3790 * the radix node here, we do it by calling 3791 * IRB_REFRELE which is a single point in the code 3792 * that embeds that logic. Bump up the refcnt to 3793 * be able to call IRB_REFRELE 3794 */ 3795 IRB_REFHOLD_LOCKED(irb); 3796 rw_exit(&irb->irb_lock); 3797 IRB_REFRELE(irb); 3798 } 3799 ire->ire_ipif = NULL; 3800 3801 #ifdef DEBUG 3802 ire_trace_cleanup(ire); 3803 #endif 3804 mutex_destroy(&ire->ire_lock); 3805 if (ire->ire_ipversion == IPV6_VERSION) { 3806 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3807 } else { 3808 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3809 } 3810 ASSERT(ire->ire_mp == NULL); 3811 /* Has been allocated out of the cache */ 3812 kmem_cache_free(ire_cache, ire); 3813 } 3814 3815 /* 3816 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3817 * entries that have a given gateway address. 3818 */ 3819 void 3820 ire_delete_cache_gw(ire_t *ire, char *cp) 3821 { 3822 ipaddr_t gw_addr; 3823 3824 if (!(ire->ire_type & IRE_CACHE) && 3825 !(ire->ire_flags & RTF_DYNAMIC)) 3826 return; 3827 3828 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3829 if (ire->ire_gateway_addr == gw_addr) { 3830 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3831 (int)ntohl(ire->ire_addr), ire->ire_type, 3832 (int)ntohl(ire->ire_gateway_addr))); 3833 ire_delete(ire); 3834 } 3835 } 3836 3837 /* 3838 * Remove all IRE_CACHE entries that match the ire specified. 3839 * 3840 * The flag argument indicates if the flush request is due to addition 3841 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3842 * 3843 * This routine takes only the IREs from the forwarding table and flushes 3844 * the corresponding entries from the cache table. 3845 * 3846 * When flushing due to the deletion of an old route, it 3847 * just checks the cache handles (ire_phandle and ire_ihandle) and 3848 * deletes the ones that match. 3849 * 3850 * When flushing due to the creation of a new route, it checks 3851 * if a cache entry's address matches the one in the IRE and 3852 * that the cache entry's parent has a less specific mask than the 3853 * one in IRE. The destination of such a cache entry could be the 3854 * gateway for other cache entries, so we need to flush those as 3855 * well by looking for gateway addresses matching the IRE's address. 3856 */ 3857 void 3858 ire_flush_cache_v4(ire_t *ire, int flag) 3859 { 3860 int i; 3861 ire_t *cire; 3862 irb_t *irb; 3863 ip_stack_t *ipst = ire->ire_ipst; 3864 3865 if (ire->ire_type & IRE_CACHE) 3866 return; 3867 3868 /* 3869 * If a default is just created, there is no point 3870 * in going through the cache, as there will not be any 3871 * cached ires. 3872 */ 3873 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3874 return; 3875 if (flag == IRE_FLUSH_ADD) { 3876 /* 3877 * This selective flush is due to the addition of 3878 * new IRE. 3879 */ 3880 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3881 irb = &ipst->ips_ip_cache_table[i]; 3882 if ((cire = irb->irb_ire) == NULL) 3883 continue; 3884 IRB_REFHOLD(irb); 3885 for (cire = irb->irb_ire; cire != NULL; 3886 cire = cire->ire_next) { 3887 if (cire->ire_type != IRE_CACHE) 3888 continue; 3889 /* 3890 * If 'cire' belongs to the same subnet 3891 * as the new ire being added, and 'cire' 3892 * is derived from a prefix that is less 3893 * specific than the new ire being added, 3894 * we need to flush 'cire'; for instance, 3895 * when a new interface comes up. 3896 */ 3897 if (((cire->ire_addr & ire->ire_mask) == 3898 (ire->ire_addr & ire->ire_mask)) && 3899 (ip_mask_to_plen(cire->ire_cmask) <= 3900 ire->ire_masklen)) { 3901 ire_delete(cire); 3902 continue; 3903 } 3904 /* 3905 * This is the case when the ire_gateway_addr 3906 * of 'cire' belongs to the same subnet as 3907 * the new ire being added. 3908 * Flushing such ires is sometimes required to 3909 * avoid misrouting: say we have a machine with 3910 * two interfaces (I1 and I2), a default router 3911 * R on the I1 subnet, and a host route to an 3912 * off-link destination D with a gateway G on 3913 * the I2 subnet. 3914 * Under normal operation, we will have an 3915 * on-link cache entry for G and an off-link 3916 * cache entry for D with G as ire_gateway_addr, 3917 * traffic to D will reach its destination 3918 * through gateway G. 3919 * If the administrator does 'ifconfig I2 down', 3920 * the cache entries for D and G will be 3921 * flushed. However, G will now be resolved as 3922 * an off-link destination using R (the default 3923 * router) as gateway. Then D will also be 3924 * resolved as an off-link destination using G 3925 * as gateway - this behavior is due to 3926 * compatibility reasons, see comment in 3927 * ire_ihandle_lookup_offlink(). Traffic to D 3928 * will go to the router R and probably won't 3929 * reach the destination. 3930 * The administrator then does 'ifconfig I2 up'. 3931 * Since G is on the I2 subnet, this routine 3932 * will flush its cache entry. It must also 3933 * flush the cache entry for D, otherwise 3934 * traffic will stay misrouted until the IRE 3935 * times out. 3936 */ 3937 if ((cire->ire_gateway_addr & ire->ire_mask) == 3938 (ire->ire_addr & ire->ire_mask)) { 3939 ire_delete(cire); 3940 continue; 3941 } 3942 } 3943 IRB_REFRELE(irb); 3944 } 3945 } else { 3946 /* 3947 * delete the cache entries based on 3948 * handle in the IRE as this IRE is 3949 * being deleted/changed. 3950 */ 3951 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3952 irb = &ipst->ips_ip_cache_table[i]; 3953 if ((cire = irb->irb_ire) == NULL) 3954 continue; 3955 IRB_REFHOLD(irb); 3956 for (cire = irb->irb_ire; cire != NULL; 3957 cire = cire->ire_next) { 3958 if (cire->ire_type != IRE_CACHE) 3959 continue; 3960 if ((cire->ire_phandle == 0 || 3961 cire->ire_phandle != ire->ire_phandle) && 3962 (cire->ire_ihandle == 0 || 3963 cire->ire_ihandle != ire->ire_ihandle)) 3964 continue; 3965 ire_delete(cire); 3966 } 3967 IRB_REFRELE(irb); 3968 } 3969 } 3970 } 3971 3972 /* 3973 * Matches the arguments passed with the values in the ire. 3974 * 3975 * Note: for match types that match using "ipif" passed in, ipif 3976 * must be checked for non-NULL before calling this routine. 3977 */ 3978 boolean_t 3979 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3980 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3981 const ts_label_t *tsl, int match_flags) 3982 { 3983 ill_t *ire_ill = NULL, *dst_ill; 3984 ill_t *ipif_ill = NULL; 3985 ill_group_t *ire_ill_group = NULL; 3986 ill_group_t *ipif_ill_group = NULL; 3987 3988 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3989 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3990 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3991 (ipif != NULL && !ipif->ipif_isv6)); 3992 3993 /* 3994 * HIDDEN cache entries have to be looked up specifically with 3995 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3996 * when the interface is FAILED or INACTIVE. In that case, 3997 * any IRE_CACHES that exists should be marked with 3998 * IRE_MARK_HIDDEN. So, we don't really need to match below 3999 * for IRE_MARK_HIDDEN. But we do so for consistency. 4000 */ 4001 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 4002 (ire->ire_marks & IRE_MARK_HIDDEN)) 4003 return (B_FALSE); 4004 4005 /* 4006 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 4007 * is used. In that case the routing table is bypassed and the 4008 * packets are sent directly to the specified nexthop. The 4009 * IRE_CACHE entry representing this route should be marked 4010 * with IRE_MARK_PRIVATE_ADDR. 4011 */ 4012 4013 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4014 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4015 return (B_FALSE); 4016 4017 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4018 ire->ire_zoneid != ALL_ZONES) { 4019 /* 4020 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4021 * valid and does not match that of ire_zoneid, a failure to 4022 * match is reported at this point. Otherwise, since some IREs 4023 * that are available in the global zone can be used in local 4024 * zones, additional checks need to be performed: 4025 * 4026 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4027 * entries should never be matched in this situation. 4028 * 4029 * IRE entries that have an interface associated with them 4030 * should in general not match unless they are an IRE_LOCAL 4031 * or in the case when MATCH_IRE_DEFAULT has been set in 4032 * the caller. In the case of the former, checking of the 4033 * other fields supplied should take place. 4034 * 4035 * In the case where MATCH_IRE_DEFAULT has been set, 4036 * all of the ipif's associated with the IRE's ill are 4037 * checked to see if there is a matching zoneid. If any 4038 * one ipif has a matching zoneid, this IRE is a 4039 * potential candidate so checking of the other fields 4040 * takes place. 4041 * 4042 * In the case where the IRE_INTERFACE has a usable source 4043 * address (indicated by ill_usesrc_ifindex) in the 4044 * correct zone then it's permitted to return this IRE 4045 */ 4046 if (match_flags & MATCH_IRE_ZONEONLY) 4047 return (B_FALSE); 4048 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4049 return (B_FALSE); 4050 /* 4051 * Note, IRE_INTERFACE can have the stq as NULL. For 4052 * example, if the default multicast route is tied to 4053 * the loopback address. 4054 */ 4055 if ((ire->ire_type & IRE_INTERFACE) && 4056 (ire->ire_stq != NULL)) { 4057 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4058 /* 4059 * If there is a usable source address in the 4060 * zone, then it's ok to return an 4061 * IRE_INTERFACE 4062 */ 4063 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4064 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4065 (void *)dst_ill, 4066 (ire->ire_addr == (addr & mask)))); 4067 } else { 4068 ip3dbg(("ire_match_args: src_ipif NULL" 4069 " dst_ill %p\n", (void *)dst_ill)); 4070 return (B_FALSE); 4071 } 4072 } 4073 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4074 !(ire->ire_type & IRE_INTERFACE)) { 4075 ipif_t *tipif; 4076 4077 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4078 return (B_FALSE); 4079 } 4080 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4081 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4082 tipif != NULL; tipif = tipif->ipif_next) { 4083 if (IPIF_CAN_LOOKUP(tipif) && 4084 (tipif->ipif_flags & IPIF_UP) && 4085 (tipif->ipif_zoneid == zoneid || 4086 tipif->ipif_zoneid == ALL_ZONES)) 4087 break; 4088 } 4089 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4090 if (tipif == NULL) { 4091 return (B_FALSE); 4092 } 4093 } 4094 } 4095 4096 /* 4097 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4098 * somebody wants to send out on a particular interface which 4099 * is given by ire_stq and hence use ire_stq to derive the ill 4100 * value. ire_ipif for IRE_CACHES is just the means of getting 4101 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4102 * ire_to_ill does the right thing for this. 4103 */ 4104 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4105 ire_ill = ire_to_ill(ire); 4106 if (ire_ill != NULL) 4107 ire_ill_group = ire_ill->ill_group; 4108 ipif_ill = ipif->ipif_ill; 4109 ipif_ill_group = ipif_ill->ill_group; 4110 } 4111 4112 if ((ire->ire_addr == (addr & mask)) && 4113 ((!(match_flags & MATCH_IRE_GW)) || 4114 (ire->ire_gateway_addr == gateway)) && 4115 ((!(match_flags & MATCH_IRE_TYPE)) || 4116 (ire->ire_type & type)) && 4117 ((!(match_flags & MATCH_IRE_SRC)) || 4118 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4119 ((!(match_flags & MATCH_IRE_IPIF)) || 4120 (ire->ire_ipif == ipif)) && 4121 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4122 (ire->ire_type != IRE_CACHE || 4123 ire->ire_marks & IRE_MARK_HIDDEN)) && 4124 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4125 (ire->ire_type != IRE_CACHE || 4126 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4127 ((!(match_flags & MATCH_IRE_ILL)) || 4128 (ire_ill == ipif_ill)) && 4129 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4130 (ire->ire_ihandle == ihandle)) && 4131 ((!(match_flags & MATCH_IRE_MASK)) || 4132 (ire->ire_mask == mask)) && 4133 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4134 (ire_ill == ipif_ill) || 4135 (ire_ill_group != NULL && 4136 ire_ill_group == ipif_ill_group)) && 4137 ((!(match_flags & MATCH_IRE_SECATTR)) || 4138 (!is_system_labeled()) || 4139 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4140 /* We found the matched IRE */ 4141 return (B_TRUE); 4142 } 4143 return (B_FALSE); 4144 } 4145 4146 4147 /* 4148 * Lookup for a route in all the tables 4149 */ 4150 ire_t * 4151 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4152 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4153 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4154 { 4155 ire_t *ire = NULL; 4156 4157 /* 4158 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4159 * MATCH_IRE_ILL is set. 4160 */ 4161 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4162 (ipif == NULL)) 4163 return (NULL); 4164 4165 /* 4166 * might be asking for a cache lookup, 4167 * This is not best way to lookup cache, 4168 * user should call ire_cache_lookup directly. 4169 * 4170 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4171 * in the forwarding table, if the applicable type flags were set. 4172 */ 4173 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4174 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4175 tsl, flags, ipst); 4176 if (ire != NULL) 4177 return (ire); 4178 } 4179 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4180 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4181 zoneid, 0, tsl, flags, ipst); 4182 } 4183 return (ire); 4184 } 4185 4186 4187 /* 4188 * Delete the IRE cache for the gateway and all IRE caches whose 4189 * ire_gateway_addr points to this gateway, and allow them to 4190 * be created on demand by ip_newroute. 4191 */ 4192 void 4193 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4194 { 4195 irb_t *irb; 4196 ire_t *ire; 4197 4198 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4199 ipst->ips_ip_cache_table_size)]; 4200 IRB_REFHOLD(irb); 4201 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4202 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4203 continue; 4204 4205 ASSERT(ire->ire_mask == IP_HOST_MASK); 4206 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4207 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4208 ire_delete(ire); 4209 } 4210 } 4211 IRB_REFRELE(irb); 4212 4213 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4214 } 4215 4216 /* 4217 * Looks up cache table for a route. 4218 * specific lookup can be indicated by 4219 * passing the MATCH_* flags and the 4220 * necessary parameters. 4221 */ 4222 ire_t * 4223 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4224 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4225 { 4226 irb_t *irb_ptr; 4227 ire_t *ire; 4228 4229 /* 4230 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4231 * MATCH_IRE_ILL is set. 4232 */ 4233 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4234 (ipif == NULL)) 4235 return (NULL); 4236 4237 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4238 ipst->ips_ip_cache_table_size)]; 4239 rw_enter(&irb_ptr->irb_lock, RW_READER); 4240 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4241 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4242 continue; 4243 ASSERT(ire->ire_mask == IP_HOST_MASK); 4244 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4245 ipif, zoneid, 0, tsl, flags)) { 4246 IRE_REFHOLD(ire); 4247 rw_exit(&irb_ptr->irb_lock); 4248 return (ire); 4249 } 4250 } 4251 rw_exit(&irb_ptr->irb_lock); 4252 return (NULL); 4253 } 4254 4255 /* 4256 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4257 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4258 * the same ill group. 4259 */ 4260 boolean_t 4261 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4262 { 4263 ill_t *recv_ill, *xmit_ill; 4264 ill_group_t *recv_group, *xmit_group; 4265 4266 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4267 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4268 4269 recv_ill = ire_to_ill(ire_local); 4270 xmit_ill = ire_to_ill(xmit_ire); 4271 4272 ASSERT(recv_ill != NULL); 4273 ASSERT(xmit_ill != NULL); 4274 4275 if (recv_ill == xmit_ill) 4276 return (B_TRUE); 4277 4278 recv_group = recv_ill->ill_group; 4279 xmit_group = xmit_ill->ill_group; 4280 4281 if (recv_group != NULL && recv_group == xmit_group) 4282 return (B_TRUE); 4283 4284 return (B_FALSE); 4285 } 4286 4287 /* 4288 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4289 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4290 * then we don't allow this IRE_LOCAL to be used. 4291 */ 4292 boolean_t 4293 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4294 const ts_label_t *tsl, ip_stack_t *ipst) 4295 { 4296 ire_t *alt_ire; 4297 boolean_t rval; 4298 4299 if (ire_local->ire_ipversion == IPV4_VERSION) { 4300 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4301 NULL, zoneid, 0, tsl, 4302 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4303 MATCH_IRE_RJ_BHOLE, ipst); 4304 } else { 4305 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4306 0, NULL, NULL, zoneid, 0, tsl, 4307 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4308 MATCH_IRE_RJ_BHOLE, ipst); 4309 } 4310 4311 if (alt_ire == NULL) 4312 return (B_FALSE); 4313 4314 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4315 ire_refrele(alt_ire); 4316 return (B_FALSE); 4317 } 4318 rval = ire_local_same_ill_group(ire_local, alt_ire); 4319 4320 ire_refrele(alt_ire); 4321 return (rval); 4322 } 4323 4324 /* 4325 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4326 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4327 * to the hidden ones. 4328 * 4329 * In general the zoneid has to match (where ALL_ZONES match all of them). 4330 * But for IRE_LOCAL we also need to handle the case where L2 should 4331 * conceptually loop back the packet. This is necessary since neither 4332 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4333 * own MAC address. This loopback is needed when the normal 4334 * routes (ignoring IREs with different zoneids) would send out the packet on 4335 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4336 * associated. 4337 * 4338 * Earlier versions of this code always matched an IRE_LOCAL independently of 4339 * the zoneid. We preserve that earlier behavior when 4340 * ip_restrict_interzone_loopback is turned off. 4341 */ 4342 ire_t * 4343 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4344 ip_stack_t *ipst) 4345 { 4346 irb_t *irb_ptr; 4347 ire_t *ire; 4348 4349 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4350 ipst->ips_ip_cache_table_size)]; 4351 rw_enter(&irb_ptr->irb_lock, RW_READER); 4352 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4353 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4354 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4355 continue; 4356 } 4357 if (ire->ire_addr == addr) { 4358 /* 4359 * Finally, check if the security policy has any 4360 * restriction on using this route for the specified 4361 * message. 4362 */ 4363 if (tsl != NULL && 4364 ire->ire_gw_secattr != NULL && 4365 tsol_ire_match_gwattr(ire, tsl) != 0) { 4366 continue; 4367 } 4368 4369 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4370 ire->ire_zoneid == ALL_ZONES) { 4371 IRE_REFHOLD(ire); 4372 rw_exit(&irb_ptr->irb_lock); 4373 return (ire); 4374 } 4375 4376 if (ire->ire_type == IRE_LOCAL) { 4377 if (ipst->ips_ip_restrict_interzone_loopback && 4378 !ire_local_ok_across_zones(ire, zoneid, 4379 &addr, tsl, ipst)) 4380 continue; 4381 4382 IRE_REFHOLD(ire); 4383 rw_exit(&irb_ptr->irb_lock); 4384 return (ire); 4385 } 4386 } 4387 } 4388 rw_exit(&irb_ptr->irb_lock); 4389 return (NULL); 4390 } 4391 4392 /* 4393 * Locate the interface ire that is tied to the cache ire 'cire' via 4394 * cire->ire_ihandle. 4395 * 4396 * We are trying to create the cache ire for an offlink destn based 4397 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4398 * as found by ip_newroute(). We are called from ip_newroute() in 4399 * the IRE_CACHE case. 4400 */ 4401 ire_t * 4402 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4403 { 4404 ire_t *ire; 4405 int match_flags; 4406 ipaddr_t gw_addr; 4407 ipif_t *gw_ipif; 4408 ip_stack_t *ipst = cire->ire_ipst; 4409 4410 ASSERT(cire != NULL && pire != NULL); 4411 4412 /* 4413 * We don't need to specify the zoneid to ire_ftable_lookup() below 4414 * because the ihandle refers to an ipif which can be in only one zone. 4415 */ 4416 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4417 /* 4418 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4419 * for on-link hosts. We should never be here for onlink. 4420 * Thus, use MATCH_IRE_ILL_GROUP. 4421 */ 4422 if (pire->ire_ipif != NULL) 4423 match_flags |= MATCH_IRE_ILL_GROUP; 4424 /* 4425 * We know that the mask of the interface ire equals cire->ire_cmask. 4426 * (When ip_newroute() created 'cire' for the gateway it set its 4427 * cmask from the interface ire's mask) 4428 */ 4429 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4430 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4431 NULL, match_flags, ipst); 4432 if (ire != NULL) 4433 return (ire); 4434 /* 4435 * If we didn't find an interface ire above, we can't declare failure. 4436 * For backwards compatibility, we need to support prefix routes 4437 * pointing to next hop gateways that are not on-link. 4438 * 4439 * Assume we are trying to ping some offlink destn, and we have the 4440 * routing table below. 4441 * 4442 * Eg. default - gw1 <--- pire (line 1) 4443 * gw1 - gw2 (line 2) 4444 * gw2 - hme0 (line 3) 4445 * 4446 * If we already have a cache ire for gw1 in 'cire', the 4447 * ire_ftable_lookup above would have failed, since there is no 4448 * interface ire to reach gw1. We will fallthru below. 4449 * 4450 * Here we duplicate the steps that ire_ftable_lookup() did in 4451 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4452 * The differences are the following 4453 * i. We want the interface ire only, so we call ire_ftable_lookup() 4454 * instead of ire_route_lookup() 4455 * ii. We look for only prefix routes in the 1st call below. 4456 * ii. We want to match on the ihandle in the 2nd call below. 4457 */ 4458 match_flags = MATCH_IRE_TYPE; 4459 if (pire->ire_ipif != NULL) 4460 match_flags |= MATCH_IRE_ILL_GROUP; 4461 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4462 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4463 if (ire == NULL) 4464 return (NULL); 4465 /* 4466 * At this point 'ire' corresponds to the entry shown in line 2. 4467 * gw_addr is 'gw2' in the example above. 4468 */ 4469 gw_addr = ire->ire_gateway_addr; 4470 gw_ipif = ire->ire_ipif; 4471 ire_refrele(ire); 4472 4473 match_flags |= MATCH_IRE_IHANDLE; 4474 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4475 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4476 ipst); 4477 return (ire); 4478 } 4479 4480 /* 4481 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4482 * ire associated with the specified ipif. 4483 * 4484 * This might occasionally be called when IPIF_UP is not set since 4485 * the IP_MULTICAST_IF as well as creating interface routes 4486 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4487 * 4488 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4489 * the ipif, this routine might return NULL. 4490 */ 4491 ire_t * 4492 ipif_to_ire(const ipif_t *ipif) 4493 { 4494 ire_t *ire; 4495 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4496 4497 ASSERT(!ipif->ipif_isv6); 4498 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4499 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4500 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4501 ipst); 4502 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4503 /* In this case we need to lookup destination address. */ 4504 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4505 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4506 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4507 } else { 4508 ire = ire_ftable_lookup(ipif->ipif_subnet, 4509 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4510 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4511 MATCH_IRE_MASK), ipst); 4512 } 4513 return (ire); 4514 } 4515 4516 /* 4517 * ire_walk function. 4518 * Count the number of IRE_CACHE entries in different categories. 4519 */ 4520 void 4521 ire_cache_count(ire_t *ire, char *arg) 4522 { 4523 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4524 4525 if (ire->ire_type != IRE_CACHE) 4526 return; 4527 4528 icc->icc_total++; 4529 4530 if (ire->ire_ipversion == IPV6_VERSION) { 4531 mutex_enter(&ire->ire_lock); 4532 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4533 mutex_exit(&ire->ire_lock); 4534 icc->icc_onlink++; 4535 return; 4536 } 4537 mutex_exit(&ire->ire_lock); 4538 } else { 4539 if (ire->ire_gateway_addr == 0) { 4540 icc->icc_onlink++; 4541 return; 4542 } 4543 } 4544 4545 ASSERT(ire->ire_ipif != NULL); 4546 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4547 icc->icc_pmtu++; 4548 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4549 ire->ire_ib_pkt_count) 4550 icc->icc_offlink++; 4551 else 4552 icc->icc_unused++; 4553 } 4554 4555 /* 4556 * ire_walk function called by ip_trash_ire_reclaim(). 4557 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4558 * different for different categories of IRE_CACHE entries. 4559 * A fraction of zero means to not free any in that category. 4560 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4561 * is N then every Nth hash bucket chain will be freed. 4562 */ 4563 void 4564 ire_cache_reclaim(ire_t *ire, char *arg) 4565 { 4566 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4567 uint_t rand; 4568 ip_stack_t *ipst = icr->icr_ipst; 4569 4570 if (ire->ire_type != IRE_CACHE) 4571 return; 4572 4573 if (ire->ire_ipversion == IPV6_VERSION) { 4574 rand = (uint_t)lbolt + 4575 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4576 ipst->ips_ip6_cache_table_size); 4577 mutex_enter(&ire->ire_lock); 4578 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4579 mutex_exit(&ire->ire_lock); 4580 if (icr->icr_onlink != 0 && 4581 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4582 ire_delete(ire); 4583 return; 4584 } 4585 goto done; 4586 } 4587 mutex_exit(&ire->ire_lock); 4588 } else { 4589 rand = (uint_t)lbolt + 4590 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4591 if (ire->ire_gateway_addr == 0) { 4592 if (icr->icr_onlink != 0 && 4593 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4594 ire_delete(ire); 4595 return; 4596 } 4597 goto done; 4598 } 4599 } 4600 /* Not onlink IRE */ 4601 ASSERT(ire->ire_ipif != NULL); 4602 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4603 /* Use ptmu fraction */ 4604 if (icr->icr_pmtu != 0 && 4605 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4606 ire_delete(ire); 4607 return; 4608 } 4609 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4610 ire->ire_ib_pkt_count) { 4611 /* Use offlink fraction */ 4612 if (icr->icr_offlink != 0 && 4613 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4614 ire_delete(ire); 4615 return; 4616 } 4617 } else { 4618 /* Use unused fraction */ 4619 if (icr->icr_unused != 0 && 4620 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4621 ire_delete(ire); 4622 return; 4623 } 4624 } 4625 done: 4626 /* 4627 * Update tire_mark so that those that haven't been used since this 4628 * reclaim will be considered unused next time we reclaim. 4629 */ 4630 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4631 } 4632 4633 static void 4634 power2_roundup(uint32_t *value) 4635 { 4636 int i; 4637 4638 for (i = 1; i < 31; i++) { 4639 if (*value <= (1 << i)) 4640 break; 4641 } 4642 *value = (1 << i); 4643 } 4644 4645 /* Global init for all zones */ 4646 void 4647 ip_ire_g_init() 4648 { 4649 /* 4650 * Create ire caches, ire_reclaim() 4651 * will give IRE_CACHE back to system when needed. 4652 * This needs to be done here before anything else, since 4653 * ire_add() expects the cache to be created. 4654 */ 4655 ire_cache = kmem_cache_create("ire_cache", 4656 sizeof (ire_t), 0, ip_ire_constructor, 4657 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4658 4659 rt_entry_cache = kmem_cache_create("rt_entry", 4660 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4661 4662 /* 4663 * Have radix code setup kmem caches etc. 4664 */ 4665 rn_init(); 4666 } 4667 4668 void 4669 ip_ire_init(ip_stack_t *ipst) 4670 { 4671 int i; 4672 uint32_t mem_cnt; 4673 uint32_t cpu_cnt; 4674 uint32_t min_cnt; 4675 pgcnt_t mem_avail; 4676 4677 /* 4678 * ip_ire_max_bucket_cnt is sized below based on the memory 4679 * size and the cpu speed of the machine. This is upper 4680 * bounded by the compile time value of ip_ire_max_bucket_cnt 4681 * and is lower bounded by the compile time value of 4682 * ip_ire_min_bucket_cnt. Similar logic applies to 4683 * ip6_ire_max_bucket_cnt. 4684 * 4685 * We calculate this for each IP Instances in order to use 4686 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4687 * in effect when the zone is booted. 4688 */ 4689 mem_avail = kmem_avail(); 4690 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4691 ip_cache_table_size / sizeof (ire_t); 4692 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4693 4694 min_cnt = MIN(cpu_cnt, mem_cnt); 4695 if (min_cnt < ip_ire_min_bucket_cnt) 4696 min_cnt = ip_ire_min_bucket_cnt; 4697 if (ip_ire_max_bucket_cnt > min_cnt) { 4698 ip_ire_max_bucket_cnt = min_cnt; 4699 } 4700 4701 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4702 ip6_cache_table_size / sizeof (ire_t); 4703 min_cnt = MIN(cpu_cnt, mem_cnt); 4704 if (min_cnt < ip6_ire_min_bucket_cnt) 4705 min_cnt = ip6_ire_min_bucket_cnt; 4706 if (ip6_ire_max_bucket_cnt > min_cnt) { 4707 ip6_ire_max_bucket_cnt = min_cnt; 4708 } 4709 4710 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4711 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4712 4713 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4714 4715 4716 /* Calculate the IPv4 cache table size. */ 4717 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4718 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4719 ip_ire_max_bucket_cnt)); 4720 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4721 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4722 /* 4723 * Make sure that the table size is always a power of 2. The 4724 * hash macro IRE_ADDR_HASH() depends on that. 4725 */ 4726 power2_roundup(&ipst->ips_ip_cache_table_size); 4727 4728 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4729 sizeof (irb_t), KM_SLEEP); 4730 4731 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4732 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4733 RW_DEFAULT, NULL); 4734 } 4735 4736 /* Calculate the IPv6 cache table size. */ 4737 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4738 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4739 ip6_ire_max_bucket_cnt)); 4740 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4741 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4742 /* 4743 * Make sure that the table size is always a power of 2. The 4744 * hash macro IRE_ADDR_HASH_V6() depends on that. 4745 */ 4746 power2_roundup(&ipst->ips_ip6_cache_table_size); 4747 4748 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4749 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4750 4751 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4752 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4753 RW_DEFAULT, NULL); 4754 } 4755 4756 /* 4757 * Make sure that the forwarding table size is a power of 2. 4758 * The IRE*_ADDR_HASH() macroes depend on that. 4759 */ 4760 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4761 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4762 4763 ipst->ips_ire_handle = 1; 4764 } 4765 4766 void 4767 ip_ire_g_fini(void) 4768 { 4769 kmem_cache_destroy(ire_cache); 4770 kmem_cache_destroy(rt_entry_cache); 4771 4772 rn_fini(); 4773 } 4774 4775 void 4776 ip_ire_fini(ip_stack_t *ipst) 4777 { 4778 int i; 4779 4780 /* 4781 * Delete all IREs - assumes that the ill/ipifs have 4782 * been removed so what remains are just the ftable and IRE_CACHE. 4783 */ 4784 ire_walk(ire_delete, NULL, ipst); 4785 4786 rn_freehead(ipst->ips_ip_ftable); 4787 ipst->ips_ip_ftable = NULL; 4788 4789 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4790 mutex_destroy(&ipst->ips_ire_handle_lock); 4791 4792 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4793 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4794 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4795 } 4796 kmem_free(ipst->ips_ip_cache_table, 4797 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4798 ipst->ips_ip_cache_table = NULL; 4799 4800 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4801 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4802 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4803 } 4804 kmem_free(ipst->ips_ip_cache_table_v6, 4805 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4806 ipst->ips_ip_cache_table_v6 = NULL; 4807 4808 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4809 irb_t *ptr; 4810 int j; 4811 4812 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4813 continue; 4814 4815 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4816 ASSERT(ptr[j].irb_ire == NULL); 4817 rw_destroy(&ptr[j].irb_lock); 4818 } 4819 mi_free(ptr); 4820 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4821 } 4822 } 4823 4824 /* 4825 * Check if another multirt route resolution is needed. 4826 * B_TRUE is returned is there remain a resolvable route, 4827 * or if no route for that dst is resolved yet. 4828 * B_FALSE is returned if all routes for that dst are resolved 4829 * or if the remaining unresolved routes are actually not 4830 * resolvable. 4831 * This only works in the global zone. 4832 */ 4833 boolean_t 4834 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4835 { 4836 ire_t *first_fire; 4837 ire_t *first_cire; 4838 ire_t *fire; 4839 ire_t *cire; 4840 irb_t *firb; 4841 irb_t *cirb; 4842 int unres_cnt = 0; 4843 boolean_t resolvable = B_FALSE; 4844 4845 /* Retrieve the first IRE_HOST that matches the destination */ 4846 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4847 NULL, ALL_ZONES, 0, tsl, 4848 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4849 4850 /* No route at all */ 4851 if (first_fire == NULL) { 4852 return (B_TRUE); 4853 } 4854 4855 firb = first_fire->ire_bucket; 4856 ASSERT(firb != NULL); 4857 4858 /* Retrieve the first IRE_CACHE ire for that destination. */ 4859 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4860 4861 /* No resolved route. */ 4862 if (first_cire == NULL) { 4863 ire_refrele(first_fire); 4864 return (B_TRUE); 4865 } 4866 4867 /* 4868 * At least one route is resolved. Here we look through the forward 4869 * and cache tables, to compare the number of declared routes 4870 * with the number of resolved routes. The search for a resolvable 4871 * route is performed only if at least one route remains 4872 * unresolved. 4873 */ 4874 cirb = first_cire->ire_bucket; 4875 ASSERT(cirb != NULL); 4876 4877 /* Count the number of routes to that dest that are declared. */ 4878 IRB_REFHOLD(firb); 4879 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4880 if (!(fire->ire_flags & RTF_MULTIRT)) 4881 continue; 4882 if (fire->ire_addr != dst) 4883 continue; 4884 unres_cnt++; 4885 } 4886 IRB_REFRELE(firb); 4887 4888 /* Then subtract the number of routes to that dst that are resolved */ 4889 IRB_REFHOLD(cirb); 4890 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4891 if (!(cire->ire_flags & RTF_MULTIRT)) 4892 continue; 4893 if (cire->ire_addr != dst) 4894 continue; 4895 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4896 continue; 4897 unres_cnt--; 4898 } 4899 IRB_REFRELE(cirb); 4900 4901 /* At least one route is unresolved; search for a resolvable route. */ 4902 if (unres_cnt > 0) 4903 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4904 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4905 4906 if (first_fire != NULL) 4907 ire_refrele(first_fire); 4908 4909 if (first_cire != NULL) 4910 ire_refrele(first_cire); 4911 4912 return (resolvable); 4913 } 4914 4915 4916 /* 4917 * Explore a forward_table bucket, starting from fire_arg. 4918 * fire_arg MUST be an IRE_HOST entry. 4919 * 4920 * Return B_TRUE and update *ire_arg and *fire_arg 4921 * if at least one resolvable route is found. *ire_arg 4922 * is the IRE entry for *fire_arg's gateway. 4923 * 4924 * Return B_FALSE otherwise (all routes are resolved or 4925 * the remaining unresolved routes are all unresolvable). 4926 * 4927 * The IRE selection relies on a priority mechanism 4928 * driven by the flags passed in by the caller. 4929 * The caller, such as ip_newroute_ipif(), can get the most 4930 * relevant ire at each stage of a multiple route resolution. 4931 * 4932 * The rules are: 4933 * 4934 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4935 * ires are preferred for the gateway. This gives the highest 4936 * priority to routes that can be resolved without using 4937 * a resolver. 4938 * 4939 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4940 * is specified but no IRE_CACHETABLE ire entry for the gateway 4941 * is found, the following rules apply. 4942 * 4943 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4944 * ires for the gateway, that have not been tried since 4945 * a configurable amount of time, are preferred. 4946 * This applies when a resolver must be invoked for 4947 * a missing route, but we don't want to use the resolver 4948 * upon each packet emission. If no such resolver is found, 4949 * B_FALSE is returned. 4950 * The MULTIRT_USESTAMP flag can be combined with 4951 * MULTIRT_CACHEGW. 4952 * 4953 * - if MULTIRT_USESTAMP is not specified in flags, the first 4954 * unresolved but resolvable route is selected. 4955 * 4956 * - Otherwise, there is no resolvalble route, and 4957 * B_FALSE is returned. 4958 * 4959 * At last, MULTIRT_SETSTAMP can be specified in flags to 4960 * request the timestamp of unresolvable routes to 4961 * be refreshed. This prevents the useless exploration 4962 * of those routes for a while, when MULTIRT_USESTAMP is used. 4963 * 4964 * This only works in the global zone. 4965 */ 4966 boolean_t 4967 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4968 const ts_label_t *tsl, ip_stack_t *ipst) 4969 { 4970 clock_t delta; 4971 ire_t *best_fire = NULL; 4972 ire_t *best_cire = NULL; 4973 ire_t *first_fire; 4974 ire_t *first_cire; 4975 ire_t *fire; 4976 ire_t *cire; 4977 irb_t *firb = NULL; 4978 irb_t *cirb = NULL; 4979 ire_t *gw_ire; 4980 boolean_t already_resolved; 4981 boolean_t res; 4982 ipaddr_t dst; 4983 ipaddr_t gw; 4984 4985 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4986 (void *)*ire_arg, (void *)*fire_arg, flags)); 4987 4988 ASSERT(ire_arg != NULL); 4989 ASSERT(fire_arg != NULL); 4990 4991 /* Not an IRE_HOST ire; give up. */ 4992 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4993 return (B_FALSE); 4994 } 4995 4996 /* This is the first IRE_HOST ire for that destination. */ 4997 first_fire = *fire_arg; 4998 firb = first_fire->ire_bucket; 4999 ASSERT(firb != NULL); 5000 5001 dst = first_fire->ire_addr; 5002 5003 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 5004 5005 /* 5006 * Retrieve the first IRE_CACHE ire for that destination; 5007 * if we don't find one, no route for that dest is 5008 * resolved yet. 5009 */ 5010 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 5011 if (first_cire != NULL) { 5012 cirb = first_cire->ire_bucket; 5013 } 5014 5015 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 5016 5017 /* 5018 * Search for a resolvable route, giving the top priority 5019 * to routes that can be resolved without any call to the resolver. 5020 */ 5021 IRB_REFHOLD(firb); 5022 5023 if (!CLASSD(dst)) { 5024 /* 5025 * For all multiroute IRE_HOST ires for that destination, 5026 * check if the route via the IRE_HOST's gateway is 5027 * resolved yet. 5028 */ 5029 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5030 5031 if (!(fire->ire_flags & RTF_MULTIRT)) 5032 continue; 5033 if (fire->ire_addr != dst) 5034 continue; 5035 5036 if (fire->ire_gw_secattr != NULL && 5037 tsol_ire_match_gwattr(fire, tsl) != 0) { 5038 continue; 5039 } 5040 5041 gw = fire->ire_gateway_addr; 5042 5043 ip2dbg(("ire_multirt_lookup: fire %p, " 5044 "ire_addr %08x, ire_gateway_addr %08x\n", 5045 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 5046 5047 already_resolved = B_FALSE; 5048 5049 if (first_cire != NULL) { 5050 ASSERT(cirb != NULL); 5051 5052 IRB_REFHOLD(cirb); 5053 /* 5054 * For all IRE_CACHE ires for that 5055 * destination. 5056 */ 5057 for (cire = first_cire; 5058 cire != NULL; 5059 cire = cire->ire_next) { 5060 5061 if (!(cire->ire_flags & RTF_MULTIRT)) 5062 continue; 5063 if (cire->ire_addr != dst) 5064 continue; 5065 if (cire->ire_marks & 5066 (IRE_MARK_CONDEMNED | 5067 IRE_MARK_HIDDEN)) 5068 continue; 5069 5070 if (cire->ire_gw_secattr != NULL && 5071 tsol_ire_match_gwattr(cire, 5072 tsl) != 0) { 5073 continue; 5074 } 5075 5076 /* 5077 * Check if the IRE_CACHE's gateway 5078 * matches the IRE_HOST's gateway. 5079 */ 5080 if (cire->ire_gateway_addr == gw) { 5081 already_resolved = B_TRUE; 5082 break; 5083 } 5084 } 5085 IRB_REFRELE(cirb); 5086 } 5087 5088 /* 5089 * This route is already resolved; 5090 * proceed with next one. 5091 */ 5092 if (already_resolved) { 5093 ip2dbg(("ire_multirt_lookup: found cire %p, " 5094 "already resolved\n", (void *)cire)); 5095 continue; 5096 } 5097 5098 /* 5099 * The route is unresolved; is it actually 5100 * resolvable, i.e. is there a cache or a resolver 5101 * for the gateway? 5102 */ 5103 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 5104 ALL_ZONES, tsl, 5105 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 5106 5107 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 5108 (void *)gw_ire)); 5109 5110 /* 5111 * If gw_ire is typed IRE_CACHETABLE, 5112 * this route can be resolved without any call to the 5113 * resolver. If the MULTIRT_CACHEGW flag is set, 5114 * give the top priority to this ire and exit the 5115 * loop. 5116 * This is typically the case when an ARP reply 5117 * is processed through ip_wput_nondata(). 5118 */ 5119 if ((flags & MULTIRT_CACHEGW) && 5120 (gw_ire != NULL) && 5121 (gw_ire->ire_type & IRE_CACHETABLE)) { 5122 ASSERT(gw_ire->ire_nce == NULL || 5123 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5124 /* 5125 * Release the resolver associated to the 5126 * previous candidate best ire, if any. 5127 */ 5128 if (best_cire != NULL) { 5129 ire_refrele(best_cire); 5130 ASSERT(best_fire != NULL); 5131 } 5132 5133 best_fire = fire; 5134 best_cire = gw_ire; 5135 5136 ip2dbg(("ire_multirt_lookup: found top prio " 5137 "best_fire %p, best_cire %p\n", 5138 (void *)best_fire, (void *)best_cire)); 5139 break; 5140 } 5141 5142 /* 5143 * Compute the time elapsed since our preceding 5144 * attempt to resolve that route. 5145 * If the MULTIRT_USESTAMP flag is set, we take that 5146 * route into account only if this time interval 5147 * exceeds ip_multirt_resolution_interval; 5148 * this prevents us from attempting to resolve a 5149 * broken route upon each sending of a packet. 5150 */ 5151 delta = lbolt - fire->ire_last_used_time; 5152 delta = TICK_TO_MSEC(delta); 5153 5154 res = (boolean_t)((delta > 5155 ipst->ips_ip_multirt_resolution_interval) || 5156 (!(flags & MULTIRT_USESTAMP))); 5157 5158 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5159 "res %d\n", 5160 (void *)fire, delta, res)); 5161 5162 if (res) { 5163 /* 5164 * We are here if MULTIRT_USESTAMP flag is set 5165 * and the resolver for fire's gateway 5166 * has not been tried since 5167 * ip_multirt_resolution_interval, or if 5168 * MULTIRT_USESTAMP is not set but gw_ire did 5169 * not fill the conditions for MULTIRT_CACHEGW, 5170 * or if neither MULTIRT_USESTAMP nor 5171 * MULTIRT_CACHEGW are set. 5172 */ 5173 if (gw_ire != NULL) { 5174 if (best_fire == NULL) { 5175 ASSERT(best_cire == NULL); 5176 5177 best_fire = fire; 5178 best_cire = gw_ire; 5179 5180 ip2dbg(("ire_multirt_lookup:" 5181 "found candidate " 5182 "best_fire %p, " 5183 "best_cire %p\n", 5184 (void *)best_fire, 5185 (void *)best_cire)); 5186 5187 /* 5188 * If MULTIRT_CACHEGW is not 5189 * set, we ignore the top 5190 * priority ires that can 5191 * be resolved without any 5192 * call to the resolver; 5193 * In that case, there is 5194 * actually no need 5195 * to continue the loop. 5196 */ 5197 if (!(flags & 5198 MULTIRT_CACHEGW)) { 5199 break; 5200 } 5201 continue; 5202 } 5203 } else { 5204 /* 5205 * No resolver for the gateway: the 5206 * route is not resolvable. 5207 * If the MULTIRT_SETSTAMP flag is 5208 * set, we stamp the IRE_HOST ire, 5209 * so we will not select it again 5210 * during this resolution interval. 5211 */ 5212 if (flags & MULTIRT_SETSTAMP) 5213 fire->ire_last_used_time = 5214 lbolt; 5215 } 5216 } 5217 5218 if (gw_ire != NULL) 5219 ire_refrele(gw_ire); 5220 } 5221 } else { /* CLASSD(dst) */ 5222 5223 for (fire = first_fire; 5224 fire != NULL; 5225 fire = fire->ire_next) { 5226 5227 if (!(fire->ire_flags & RTF_MULTIRT)) 5228 continue; 5229 if (fire->ire_addr != dst) 5230 continue; 5231 5232 if (fire->ire_gw_secattr != NULL && 5233 tsol_ire_match_gwattr(fire, tsl) != 0) { 5234 continue; 5235 } 5236 5237 already_resolved = B_FALSE; 5238 5239 gw = fire->ire_gateway_addr; 5240 5241 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5242 NULL, NULL, ALL_ZONES, 0, tsl, 5243 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5244 MATCH_IRE_SECATTR, ipst); 5245 5246 /* No resolver for the gateway; we skip this ire. */ 5247 if (gw_ire == NULL) { 5248 continue; 5249 } 5250 ASSERT(gw_ire->ire_nce == NULL || 5251 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5252 5253 if (first_cire != NULL) { 5254 5255 IRB_REFHOLD(cirb); 5256 /* 5257 * For all IRE_CACHE ires for that 5258 * destination. 5259 */ 5260 for (cire = first_cire; 5261 cire != NULL; 5262 cire = cire->ire_next) { 5263 5264 if (!(cire->ire_flags & RTF_MULTIRT)) 5265 continue; 5266 if (cire->ire_addr != dst) 5267 continue; 5268 if (cire->ire_marks & 5269 (IRE_MARK_CONDEMNED | 5270 IRE_MARK_HIDDEN)) 5271 continue; 5272 5273 if (cire->ire_gw_secattr != NULL && 5274 tsol_ire_match_gwattr(cire, 5275 tsl) != 0) { 5276 continue; 5277 } 5278 5279 /* 5280 * Cache entries are linked to the 5281 * parent routes using the parent handle 5282 * (ire_phandle). If no cache entry has 5283 * the same handle as fire, fire is 5284 * still unresolved. 5285 */ 5286 ASSERT(cire->ire_phandle != 0); 5287 if (cire->ire_phandle == 5288 fire->ire_phandle) { 5289 already_resolved = B_TRUE; 5290 break; 5291 } 5292 } 5293 IRB_REFRELE(cirb); 5294 } 5295 5296 /* 5297 * This route is already resolved; proceed with 5298 * next one. 5299 */ 5300 if (already_resolved) { 5301 ire_refrele(gw_ire); 5302 continue; 5303 } 5304 5305 /* 5306 * Compute the time elapsed since our preceding 5307 * attempt to resolve that route. 5308 * If the MULTIRT_USESTAMP flag is set, we take 5309 * that route into account only if this time 5310 * interval exceeds ip_multirt_resolution_interval; 5311 * this prevents us from attempting to resolve a 5312 * broken route upon each sending of a packet. 5313 */ 5314 delta = lbolt - fire->ire_last_used_time; 5315 delta = TICK_TO_MSEC(delta); 5316 5317 res = (boolean_t)((delta > 5318 ipst->ips_ip_multirt_resolution_interval) || 5319 (!(flags & MULTIRT_USESTAMP))); 5320 5321 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5322 "flags %04x, res %d\n", 5323 (void *)fire, delta, flags, res)); 5324 5325 if (res) { 5326 if (best_cire != NULL) { 5327 /* 5328 * Release the resolver associated 5329 * to the preceding candidate best 5330 * ire, if any. 5331 */ 5332 ire_refrele(best_cire); 5333 ASSERT(best_fire != NULL); 5334 } 5335 best_fire = fire; 5336 best_cire = gw_ire; 5337 continue; 5338 } 5339 5340 ire_refrele(gw_ire); 5341 } 5342 } 5343 5344 if (best_fire != NULL) { 5345 IRE_REFHOLD(best_fire); 5346 } 5347 IRB_REFRELE(firb); 5348 5349 /* Release the first IRE_CACHE we initially looked up, if any. */ 5350 if (first_cire != NULL) 5351 ire_refrele(first_cire); 5352 5353 /* Found a resolvable route. */ 5354 if (best_fire != NULL) { 5355 ASSERT(best_cire != NULL); 5356 5357 if (*fire_arg != NULL) 5358 ire_refrele(*fire_arg); 5359 if (*ire_arg != NULL) 5360 ire_refrele(*ire_arg); 5361 5362 /* 5363 * Update the passed-in arguments with the 5364 * resolvable multirt route we found. 5365 */ 5366 *fire_arg = best_fire; 5367 *ire_arg = best_cire; 5368 5369 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5370 "*fire_arg %p, *ire_arg %p\n", 5371 (void *)best_fire, (void *)best_cire)); 5372 5373 return (B_TRUE); 5374 } 5375 5376 ASSERT(best_cire == NULL); 5377 5378 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5379 "*ire_arg %p\n", 5380 (void *)*fire_arg, (void *)*ire_arg)); 5381 5382 /* No resolvable route. */ 5383 return (B_FALSE); 5384 } 5385 5386 /* 5387 * IRE iterator for inbound and loopback broadcast processing. 5388 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5389 * address, but skip over the passed-in ire. Returns the next ire without 5390 * a hold - assumes that the caller holds a reference on the IRE bucket. 5391 */ 5392 ire_t * 5393 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5394 { 5395 ill_t *ill; 5396 5397 if (curr == NULL) { 5398 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5399 curr = curr->ire_next) { 5400 if (curr->ire_addr == ire->ire_addr) 5401 break; 5402 } 5403 } else { 5404 curr = curr->ire_next; 5405 } 5406 ill = ire_to_ill(ire); 5407 for (; curr != NULL; curr = curr->ire_next) { 5408 if (curr->ire_addr != ire->ire_addr) { 5409 /* 5410 * All the IREs to a given destination are contiguous; 5411 * break out once the address doesn't match. 5412 */ 5413 break; 5414 } 5415 if (curr == ire) { 5416 /* skip over the passed-in ire */ 5417 continue; 5418 } 5419 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5420 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5421 /* 5422 * If the passed-in ire is loopback, skip over 5423 * non-loopback ires and vice versa. 5424 */ 5425 continue; 5426 } 5427 if (ire_to_ill(curr) != ill) { 5428 /* skip over IREs going through a different interface */ 5429 continue; 5430 } 5431 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5432 /* skip over deleted IREs */ 5433 continue; 5434 } 5435 return (curr); 5436 } 5437 return (NULL); 5438 } 5439 5440 #ifdef DEBUG 5441 void 5442 ire_trace_ref(ire_t *ire) 5443 { 5444 mutex_enter(&ire->ire_lock); 5445 if (ire->ire_trace_disable) { 5446 mutex_exit(&ire->ire_lock); 5447 return; 5448 } 5449 5450 if (th_trace_ref(ire, ire->ire_ipst)) { 5451 mutex_exit(&ire->ire_lock); 5452 } else { 5453 ire->ire_trace_disable = B_TRUE; 5454 mutex_exit(&ire->ire_lock); 5455 ire_trace_cleanup(ire); 5456 } 5457 } 5458 5459 void 5460 ire_untrace_ref(ire_t *ire) 5461 { 5462 mutex_enter(&ire->ire_lock); 5463 if (!ire->ire_trace_disable) 5464 th_trace_unref(ire); 5465 mutex_exit(&ire->ire_lock); 5466 } 5467 5468 static void 5469 ire_trace_cleanup(const ire_t *ire) 5470 { 5471 th_trace_cleanup(ire, ire->ire_trace_disable); 5472 } 5473 #endif /* DEBUG */ 5474 5475 /* 5476 * Generate a message chain with an arp request to resolve the in_ire. 5477 * It is assumed that in_ire itself is currently in the ire cache table, 5478 * so we create a fake_ire filled with enough information about ire_addr etc. 5479 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5480 * comes back. The fake_ire itself is created by calling esballoc with 5481 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5482 * invoked when the mblk containing fake_ire is freed. 5483 */ 5484 void 5485 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5486 { 5487 areq_t *areq; 5488 ipaddr_t *addrp; 5489 mblk_t *ire_mp, *areq_mp; 5490 ire_t *ire, *buf; 5491 size_t bufsize; 5492 frtn_t *frtnp; 5493 ill_t *ill; 5494 ip_stack_t *ipst = dst_ill->ill_ipst; 5495 5496 /* 5497 * Construct message chain for the resolver 5498 * of the form: 5499 * ARP_REQ_MBLK-->IRE_MBLK 5500 * 5501 * NOTE : If the response does not 5502 * come back, ARP frees the packet. For this reason, 5503 * we can't REFHOLD the bucket of save_ire to prevent 5504 * deletions. We may not be able to REFRELE the bucket 5505 * if the response never comes back. Thus, before 5506 * adding the ire, ire_add_v4 will make sure that the 5507 * interface route does not get deleted. This is the 5508 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5509 * where we can always prevent deletions because of 5510 * the synchronous nature of adding IRES i.e 5511 * ire_add_then_send is called after creating the IRE. 5512 */ 5513 5514 /* 5515 * We use esballoc to allocate the second part(the ire_t size mblk) 5516 * of the message chain depicted above. THis mblk will be freed 5517 * by arp when there is a timeout, and otherwise passed to IP 5518 * and IP will * free it after processing the ARP response. 5519 */ 5520 5521 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5522 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5523 if (buf == NULL) { 5524 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5525 return; 5526 } 5527 frtnp = (frtn_t *)(buf + 1); 5528 frtnp->free_arg = (caddr_t)buf; 5529 frtnp->free_func = ire_freemblk; 5530 5531 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5532 5533 if (ire_mp == NULL) { 5534 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5535 kmem_free(buf, bufsize); 5536 return; 5537 } 5538 ASSERT(in_ire->ire_nce != NULL); 5539 areq_mp = copyb(dst_ill->ill_resolver_mp); 5540 if (areq_mp == NULL) { 5541 kmem_free(buf, bufsize); 5542 return; 5543 } 5544 5545 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5546 ire = (ire_t *)buf; 5547 /* 5548 * keep enough info in the fake ire so that we can pull up 5549 * the incomplete ire (in_ire) after result comes back from 5550 * arp and make it complete. 5551 */ 5552 *ire = ire_null; 5553 ire->ire_u = in_ire->ire_u; 5554 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5555 ire->ire_ipif = in_ire->ire_ipif; 5556 ire->ire_stq = in_ire->ire_stq; 5557 ill = ire_to_ill(ire); 5558 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5559 ire->ire_zoneid = in_ire->ire_zoneid; 5560 ire->ire_ipst = ipst; 5561 5562 /* 5563 * ire_freemblk will be called when ire_mp is freed, both for 5564 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5565 * when the arp resolution failed. 5566 */ 5567 ire->ire_marks |= IRE_MARK_UNCACHED; 5568 ire->ire_mp = ire_mp; 5569 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5570 ire_mp->b_cont = NULL; 5571 linkb(areq_mp, ire_mp); 5572 5573 /* 5574 * Fill in the source and dest addrs for the resolver. 5575 * NOTE: this depends on memory layouts imposed by 5576 * ill_init(). 5577 */ 5578 areq = (areq_t *)areq_mp->b_rptr; 5579 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5580 *addrp = ire->ire_src_addr; 5581 5582 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5583 if (ire->ire_gateway_addr != INADDR_ANY) { 5584 *addrp = ire->ire_gateway_addr; 5585 } else { 5586 *addrp = ire->ire_addr; 5587 } 5588 5589 /* Up to the resolver. */ 5590 if (canputnext(dst_ill->ill_rq)) { 5591 putnext(dst_ill->ill_rq, areq_mp); 5592 } else { 5593 freemsg(areq_mp); 5594 } 5595 } 5596 5597 /* 5598 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5599 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5600 * 5601 * This function can be called by ARP via free routine for ire_mp or 5602 * by IPv4(both host and forwarding path) via ire_delete 5603 * in case ARP resolution fails. 5604 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5605 * (for IP to talk to ARP, it still has to send AR* messages). 5606 * 5607 * Note that the ARP/IP merge should replace the functioanlity by providing 5608 * direct function calls to clean up unresolved entries in ire/nce lists. 5609 */ 5610 void 5611 ire_freemblk(ire_t *ire_mp) 5612 { 5613 nce_t *nce = NULL; 5614 ill_t *ill; 5615 ip_stack_t *ipst; 5616 5617 ASSERT(ire_mp != NULL); 5618 5619 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5620 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5621 (void *)ire_mp)); 5622 goto cleanup; 5623 } 5624 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5625 goto cleanup; /* everything succeeded. just free and return */ 5626 } 5627 5628 /* 5629 * the arp information corresponding to this ire_mp was not 5630 * transferred to a ire_cache entry. Need 5631 * to clean up incomplete ire's and nce, if necessary. 5632 */ 5633 ASSERT(ire_mp->ire_stq != NULL); 5634 ASSERT(ire_mp->ire_stq_ifindex != 0); 5635 ASSERT(ire_mp->ire_ipst != NULL); 5636 5637 ipst = ire_mp->ire_ipst; 5638 5639 /* 5640 * Get any nce's corresponding to this ire_mp. We first have to 5641 * make sure that the ill is still around. 5642 */ 5643 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5644 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5645 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5646 (ill->ill_state_flags & ILL_CONDEMNED)) { 5647 /* 5648 * ill went away. no nce to clean up. 5649 * Note that the ill_state_flags could be set to 5650 * ILL_CONDEMNED after this point, but if we know 5651 * that it is CONDEMNED now, we just bail out quickly. 5652 */ 5653 if (ill != NULL) 5654 ill_refrele(ill); 5655 goto cleanup; 5656 } 5657 nce = ndp_lookup_v4(ill, 5658 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5659 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5660 B_FALSE); 5661 ill_refrele(ill); 5662 5663 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5664 /* 5665 * some incomplete nce was found. 5666 */ 5667 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5668 nce_t *, nce, ire_t *, ire_mp); 5669 /* 5670 * Send the icmp_unreachable messages for the queued mblks in 5671 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5672 * for this ire 5673 */ 5674 arp_resolv_failed(nce); 5675 /* 5676 * Delete the nce and clean up all ire's pointing at this nce 5677 * in the cachetable 5678 */ 5679 ndp_delete(nce); 5680 } 5681 if (nce != NULL) 5682 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5683 5684 cleanup: 5685 /* 5686 * Get rid of the ire buffer 5687 * We call kmem_free here(instead of ire_delete()), since 5688 * this is the freeb's callback. 5689 */ 5690 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5691 } 5692 5693 /* 5694 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5695 * non-loopback IRE_BROADCAST ire's. 5696 * 5697 * If a neighbor-cache entry has to be created (i.e., one does not already 5698 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5699 * entry are initialized in ndp_add_v4(). These values are picked from 5700 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5701 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5702 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5703 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5704 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5705 * entries, 5706 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5707 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5708 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5709 * layer resolution is necessary, so that the nce_t will be in the 5710 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5711 * ill_resolver_mp of the outgoing interface. 5712 * 5713 * The link layer information needed for broadcast addresses, and for 5714 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5715 * never needs re-verification for the lifetime of the nce_t. These are 5716 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5717 * NCE_EXPIRED. 5718 * 5719 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5720 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5721 * case of direct routes, with the nce_res_mp containing a template 5722 * DL_UNITDATA request. 5723 * 5724 * The actual association of the ire_nce to the nce created here is 5725 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5726 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5727 * the ire_nce assignment is done in ire_add_then_send. 5728 */ 5729 int 5730 ire_nce_init(ire_t *ire, nce_t *src_nce) 5731 { 5732 in_addr_t addr4; 5733 int err; 5734 nce_t *nce = NULL; 5735 ill_t *ire_ill; 5736 uint16_t nce_flags = 0; 5737 ip_stack_t *ipst; 5738 5739 if (ire->ire_stq == NULL) 5740 return (0); /* no need to create nce for local/loopback */ 5741 5742 switch (ire->ire_type) { 5743 case IRE_CACHE: 5744 if (ire->ire_gateway_addr != INADDR_ANY) 5745 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5746 else 5747 addr4 = ire->ire_addr; /* direct route */ 5748 break; 5749 case IRE_BROADCAST: 5750 addr4 = ire->ire_addr; 5751 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5752 break; 5753 default: 5754 return (0); 5755 } 5756 5757 /* 5758 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5759 * rules in ire_forward_src_ipif. We want the dlureq_mp 5760 * for the outgoing interface, which we get from the ire_stq. 5761 */ 5762 ire_ill = ire_to_ill(ire); 5763 ipst = ire_ill->ill_ipst; 5764 5765 /* 5766 * IRE_IF_NORESOLVER entries never need re-verification and 5767 * do not expire, so we mark them as NCE_F_PERMANENT. 5768 */ 5769 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5770 nce_flags |= NCE_F_PERMANENT; 5771 5772 retry_nce: 5773 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5774 &nce, src_nce); 5775 5776 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5777 /* 5778 * We looked up an expired nce. 5779 * Go back and try to create one again. 5780 */ 5781 ndp_delete(nce); 5782 NCE_REFRELE(nce); 5783 nce = NULL; 5784 goto retry_nce; 5785 } 5786 5787 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5788 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5789 5790 switch (err) { 5791 case 0: 5792 case EEXIST: 5793 /* 5794 * return a pointer to a newly created or existing nce_t; 5795 * note that the ire-nce mapping is many-one, i.e., 5796 * multiple ire's could point to the same nce_t. 5797 */ 5798 break; 5799 default: 5800 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5801 return (EINVAL); 5802 } 5803 if (ire->ire_type == IRE_BROADCAST) { 5804 /* 5805 * Two bcast ires are created for each interface; 5806 * 1. loopback copy (which does not have an 5807 * ire_stq, and therefore has no ire_nce), and, 5808 * 2. the non-loopback copy, which has the nce_res_mp 5809 * initialized to a copy of the ill_bcast_mp, and 5810 * is marked as ND_REACHABLE at this point. 5811 * This nce does not undergo any further state changes, 5812 * and exists as long as the interface is plumbed. 5813 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5814 * because some functions like ill_mark_bcast() inline the 5815 * ire_add functionality. 5816 */ 5817 ire->ire_nce = nce; 5818 /* 5819 * We are associating this nce to the ire, 5820 * so change the nce ref taken in 5821 * ndp_lookup_then_add_v4() from 5822 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5823 */ 5824 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5825 } else { 5826 /* 5827 * We are not using this nce_t just yet so release 5828 * the ref taken in ndp_lookup_then_add_v4() 5829 */ 5830 NCE_REFRELE(nce); 5831 } 5832 return (0); 5833 } 5834