1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains routines that manipulate Internet Routing Entries (IREs). 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/ddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/policy.h> 39 40 #include <sys/systm.h> 41 #include <sys/kmem.h> 42 #include <sys/param.h> 43 #include <sys/socket.h> 44 #include <net/if.h> 45 #include <net/route.h> 46 #include <netinet/in.h> 47 #include <net/if_dl.h> 48 #include <netinet/ip6.h> 49 #include <netinet/icmp6.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/ip_ndp.h> 56 #include <inet/arp.h> 57 #include <inet/ip_if.h> 58 #include <inet/ip_ire.h> 59 #include <inet/ip_ftable.h> 60 #include <inet/ip_rts.h> 61 #include <inet/nd.h> 62 63 #include <inet/tcp.h> 64 #include <inet/ipclassifier.h> 65 #include <sys/zone.h> 66 #include <sys/cpuvar.h> 67 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tnet.h> 70 71 struct kmem_cache *rt_entry_cache; 72 73 typedef struct nce_clookup_s { 74 ipaddr_t ncecl_addr; 75 boolean_t ncecl_found; 76 } nce_clookup_t; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the forwarding table in which is ire stored. 86 * 87 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, 89 * ire_bucket 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_refcnt, ire_identical_ref 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_generation 117 * - Under ire_lock 118 * 119 * ire_nce_cache 120 * - Under ire_lock 121 * 122 * ire_dep_parent (To next IRE in recursive lookup chain) 123 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 124 * walking. We also hold ire_lock when modifying to allow the data path 125 * to only acquire ire_lock. 126 * 127 * ire_dep_parent_generation (Generation number from ire_dep_parent) 128 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock 129 * and ire_lock held when modifying) 130 * 131 * ire_dep_children (From parent to first child) 132 * ire_dep_sib_next (linked list of siblings) 133 * ire_dep_sib_ptpn (linked list of siblings) 134 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 135 * walking. 136 * 137 * As we always hold the bucket locks in all the places while accessing 138 * the above values, it is natural to use them for protecting them. 139 * 140 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table 141 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 142 * structures. ip_forwarding_table_v6 is allocated dynamically in 143 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 144 * initializing the same bucket. Once a bucket is initialized, it is never 145 * de-alloacted. This assumption enables us to access 146 * ip_forwarding_table_v6[i] without any locks. 147 * 148 * The forwarding table for IPv4 is a radix tree whose leaves 149 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 150 * for IPv4 is dynamically allocated and freed. 151 * 152 * Each irb_t - ire bucket structure has a lock to protect 153 * a bucket and the ires residing in the bucket have a back pointer to 154 * the bucket structure. It also has a reference count for the number 155 * of threads walking the bucket - irb_refcnt which is bumped up 156 * using the irb_refhold function. The flags irb_marks can be 157 * set to IRB_MARK_CONDEMNED indicating that there are some ires 158 * in this bucket that are IRE_IS_CONDEMNED and the 159 * last thread to leave the bucket should delete the ires. Usually 160 * this is done by the irb_refrele function which is used to decrement 161 * the reference count on a bucket. See comments above irb_t structure 162 * definition in ip.h for further details. 163 * 164 * The ire_refhold/ire_refrele functions operate on the ire which increments/ 165 * decrements the reference count, ire_refcnt, atomically on the ire. 166 * ire_refcnt is modified only using those functions. Operations on the IRE 167 * could be described as follows : 168 * 169 * CREATE an ire with reference count initialized to 1. 170 * 171 * ADDITION of an ire holds the bucket lock, checks for duplicates 172 * and then adds the ire. ire_add returns the ire after 173 * bumping up once more i.e the reference count is 2. This is to avoid 174 * an extra lookup in the functions calling ire_add which wants to 175 * work with the ire after adding. 176 * 177 * LOOKUP of an ire bumps up the reference count using ire_refhold 178 * function. It is valid to bump up the referece count of the IRE, 179 * after the lookup has returned an ire. Following are the lookup 180 * functions that return an HELD ire : 181 * 182 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6] 183 * 184 * DELETION of an ire holds the bucket lock, removes it from the list 185 * and then decrements the reference count for having removed from the list 186 * by using the ire_refrele function. If some other thread has looked up 187 * the ire, the reference count would have been bumped up and hence 188 * this ire will not be freed once deleted. It will be freed once the 189 * reference count drops to zero. 190 * 191 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 192 * lookups acquire the bucket lock as RW_READER. 193 * 194 * The general rule is to do the ire_refrele in the function 195 * that is passing the ire as an argument. 196 * 197 * In trying to locate ires the following points are to be noted. 198 * 199 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is 200 * to be ignored when walking the ires using ire_next. 201 * 202 * Zones note: 203 * Walking IREs within a given zone also walks certain ires in other 204 * zones. This is done intentionally. IRE walks with a specified 205 * zoneid are used only when doing informational reports, and 206 * zone users want to see things that they can access. See block 207 * comment in ire_walk_ill_match(). 208 */ 209 210 /* 211 * The size of the forwarding table. We will make sure that it is a 212 * power of 2 in ip_ire_init(). 213 * Setable in /etc/system 214 */ 215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 216 217 struct kmem_cache *ire_cache; 218 struct kmem_cache *ncec_cache; 219 struct kmem_cache *nce_cache; 220 221 static ire_t ire_null; 222 223 static ire_t *ire_add_v4(ire_t *ire); 224 static void ire_delete_v4(ire_t *ire); 225 static void ire_dep_invalidate_children(ire_t *child); 226 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 227 zoneid_t zoneid, ip_stack_t *); 228 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 229 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 230 #ifdef DEBUG 231 static void ire_trace_cleanup(const ire_t *); 232 #endif 233 234 /* 235 * Following are the functions to increment/decrement the reference 236 * count of the IREs and IRBs (ire bucket). 237 * 238 * 1) We bump up the reference count of an IRE to make sure that 239 * it does not get deleted and freed while we are using it. 240 * Typically all the lookup functions hold the bucket lock, 241 * and look for the IRE. If it finds an IRE, it bumps up the 242 * reference count before dropping the lock. Sometimes we *may* want 243 * to bump up the reference count after we *looked* up i.e without 244 * holding the bucket lock. So, the ire_refhold function does not assert 245 * on the bucket lock being held. Any thread trying to delete from 246 * the hash bucket can still do so but cannot free the IRE if 247 * ire_refcnt is not 0. 248 * 249 * 2) We bump up the reference count on the bucket where the IRE resides 250 * (IRB), when we want to prevent the IREs getting deleted from a given 251 * hash bucket. This makes life easier for ire_walk type functions which 252 * wants to walk the IRE list, call a function, but needs to drop 253 * the bucket lock to prevent recursive rw_enters. While the 254 * lock is dropped, the list could be changed by other threads or 255 * the same thread could end up deleting the ire or the ire pointed by 256 * ire_next. ire_refholding the ire or ire_next is not sufficient as 257 * a delete will still remove the ire from the bucket while we have 258 * dropped the lock and hence the ire_next would be NULL. Thus, we 259 * need a mechanism to prevent deletions from a given bucket. 260 * 261 * To prevent deletions, we bump up the reference count on the 262 * bucket. If the bucket is held, ire_delete just marks both 263 * the ire and irb as CONDEMNED. When the 264 * reference count on the bucket drops to zero, all the CONDEMNED ires 265 * are deleted. We don't have to bump up the reference count on the 266 * bucket if we are walking the bucket and never have to drop the bucket 267 * lock. Note that irb_refhold does not prevent addition of new ires 268 * in the list. It is okay because addition of new ires will not cause 269 * ire_next to point to freed memory. We do irb_refhold only when 270 * all of the 3 conditions are true : 271 * 272 * 1) The code needs to walk the IRE bucket from start to end. 273 * 2) It may have to drop the bucket lock sometimes while doing (1) 274 * 3) It does not want any ires to be deleted meanwhile. 275 */ 276 277 /* 278 * Bump up the reference count on the hash bucket - IRB to 279 * prevent ires from being deleted in this bucket. 280 */ 281 void 282 irb_refhold(irb_t *irb) 283 { 284 rw_enter(&irb->irb_lock, RW_WRITER); 285 irb->irb_refcnt++; 286 ASSERT(irb->irb_refcnt != 0); 287 rw_exit(&irb->irb_lock); 288 } 289 290 void 291 irb_refhold_locked(irb_t *irb) 292 { 293 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 294 irb->irb_refcnt++; 295 ASSERT(irb->irb_refcnt != 0); 296 } 297 298 /* 299 * Note: when IRB_MARK_DYNAMIC is not set the irb_t 300 * is statically allocated, so that when the irb_refcnt goes to 0, 301 * we simply clean up the ire list and continue. 302 */ 303 void 304 irb_refrele(irb_t *irb) 305 { 306 if (irb->irb_marks & IRB_MARK_DYNAMIC) { 307 irb_refrele_ftable(irb); 308 } else { 309 rw_enter(&irb->irb_lock, RW_WRITER); 310 ASSERT(irb->irb_refcnt != 0); 311 if (--irb->irb_refcnt == 0 && 312 (irb->irb_marks & IRB_MARK_CONDEMNED)) { 313 ire_t *ire_list; 314 315 ire_list = ire_unlink(irb); 316 rw_exit(&irb->irb_lock); 317 ASSERT(ire_list != NULL); 318 ire_cleanup(ire_list); 319 } else { 320 rw_exit(&irb->irb_lock); 321 } 322 } 323 } 324 325 326 /* 327 * Bump up the reference count on the IRE. We cannot assert that the 328 * bucket lock is being held as it is legal to bump up the reference 329 * count after the first lookup has returned the IRE without 330 * holding the lock. 331 */ 332 void 333 ire_refhold(ire_t *ire) 334 { 335 atomic_add_32(&(ire)->ire_refcnt, 1); 336 ASSERT((ire)->ire_refcnt != 0); 337 #ifdef DEBUG 338 ire_trace_ref(ire); 339 #endif 340 } 341 342 void 343 ire_refhold_notr(ire_t *ire) 344 { 345 atomic_add_32(&(ire)->ire_refcnt, 1); 346 ASSERT((ire)->ire_refcnt != 0); 347 } 348 349 void 350 ire_refhold_locked(ire_t *ire) 351 { 352 #ifdef DEBUG 353 ire_trace_ref(ire); 354 #endif 355 ire->ire_refcnt++; 356 } 357 358 /* 359 * Release a ref on an IRE. 360 * 361 * Must not be called while holding any locks. Otherwise if this is 362 * the last reference to be released there is a chance of recursive mutex 363 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 364 * to restart an ioctl. The one exception is when the caller is sure that 365 * this is not the last reference to be released. Eg. if the caller is 366 * sure that the ire has not been deleted and won't be deleted. 367 * 368 * In architectures e.g sun4u, where atomic_add_32_nv is just 369 * a cas, we need to maintain the right memory barrier semantics 370 * as that of mutex_exit i.e all the loads and stores should complete 371 * before the cas is executed. membar_exit() does that here. 372 */ 373 void 374 ire_refrele(ire_t *ire) 375 { 376 #ifdef DEBUG 377 ire_untrace_ref(ire); 378 #endif 379 ASSERT((ire)->ire_refcnt != 0); 380 membar_exit(); 381 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 382 ire_inactive(ire); 383 } 384 385 void 386 ire_refrele_notr(ire_t *ire) 387 { 388 ASSERT((ire)->ire_refcnt != 0); 389 membar_exit(); 390 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 391 ire_inactive(ire); 392 } 393 394 /* 395 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 396 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is 397 * having problems reaching a particular destination. 398 * This will make IP consider alternate routes (e.g., when there are 399 * muliple default routes), and it will also make IP discard any (potentially) 400 * stale redirect. 401 * Management processes may want to use the version that generates a reply. 402 * 403 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6 404 * this function shouldn't be necessary for IP to recover from a bad redirect, 405 * a bad default router (when there are multiple default routers), or 406 * a stale ND/ARP entry. But we retain it in any case. 407 * For instance, this is helpful when TCP suspects a failure before NUD does. 408 */ 409 int 410 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 411 { 412 uchar_t *addr_ucp; 413 uint_t ipversion; 414 sin_t *sin; 415 sin6_t *sin6; 416 ipaddr_t v4addr; 417 in6_addr_t v6addr; 418 ire_t *ire; 419 ipid_t *ipid; 420 zoneid_t zoneid; 421 ip_stack_t *ipst; 422 423 ASSERT(q->q_next == NULL); 424 zoneid = IPCL_ZONEID(Q_TO_CONN(q)); 425 ipst = CONNQ_TO_IPST(q); 426 427 /* 428 * Check privilege using the ioctl credential; if it is NULL 429 * then this is a kernel message and therefor privileged. 430 */ 431 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 432 return (EPERM); 433 434 ipid = (ipid_t *)mp->b_rptr; 435 436 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 437 ipid->ipid_addr_length); 438 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 439 return (EINVAL); 440 switch (ipid->ipid_addr_length) { 441 case sizeof (sin_t): 442 /* 443 * got complete (sockaddr) address - increment addr_ucp to point 444 * at the ip_addr field. 445 */ 446 sin = (sin_t *)addr_ucp; 447 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 448 ipversion = IPV4_VERSION; 449 break; 450 case sizeof (sin6_t): 451 /* 452 * got complete (sockaddr) address - increment addr_ucp to point 453 * at the ip_addr field. 454 */ 455 sin6 = (sin6_t *)addr_ucp; 456 addr_ucp = (uchar_t *)&sin6->sin6_addr; 457 ipversion = IPV6_VERSION; 458 break; 459 default: 460 return (EINVAL); 461 } 462 if (ipversion == IPV4_VERSION) { 463 /* Extract the destination address. */ 464 bcopy(addr_ucp, &v4addr, IP_ADDR_LEN); 465 466 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 467 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 468 } else { 469 /* Extract the destination address. */ 470 bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN); 471 472 ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL, 473 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 474 } 475 if (ire != NULL) { 476 if (ipversion == IPV4_VERSION) { 477 ip_rts_change(RTM_LOSING, ire->ire_addr, 478 ire->ire_gateway_addr, ire->ire_mask, 479 (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0, 480 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 481 ire->ire_ipst); 482 } 483 (void) ire_no_good(ire); 484 ire_refrele(ire); 485 } 486 return (0); 487 } 488 489 /* 490 * Initialize the ire that is specific to IPv4 part and call 491 * ire_init_common to finish it. 492 * Returns zero or errno. 493 */ 494 int 495 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway, 496 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, 497 tsol_gc_t *gc, ip_stack_t *ipst) 498 { 499 int error; 500 501 /* 502 * Reject IRE security attribute creation/initialization 503 * if system is not running in Trusted mode. 504 */ 505 if (gc != NULL && !is_system_labeled()) 506 return (EINVAL); 507 508 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 509 510 if (addr != NULL) 511 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 512 if (gateway != NULL) 513 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 514 515 /* Make sure we don't have stray values in some fields */ 516 switch (type) { 517 case IRE_LOOPBACK: 518 bcopy(&ire->ire_addr, &ire->ire_gateway_addr, IP_ADDR_LEN); 519 /* FALLTHRU */ 520 case IRE_HOST: 521 case IRE_BROADCAST: 522 case IRE_LOCAL: 523 case IRE_IF_CLONE: 524 ire->ire_mask = IP_HOST_MASK; 525 ire->ire_masklen = IPV4_ABITS; 526 break; 527 case IRE_PREFIX: 528 case IRE_DEFAULT: 529 case IRE_IF_RESOLVER: 530 case IRE_IF_NORESOLVER: 531 if (mask != NULL) { 532 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 533 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 534 } 535 break; 536 case IRE_MULTICAST: 537 case IRE_NOROUTE: 538 ASSERT(mask == NULL); 539 break; 540 default: 541 ASSERT(0); 542 return (EINVAL); 543 } 544 545 error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION, 546 gc, ipst); 547 if (error != NULL) 548 return (error); 549 550 /* Determine which function pointers to use */ 551 ire->ire_postfragfn = ip_xmit; /* Common case */ 552 553 switch (ire->ire_type) { 554 case IRE_LOCAL: 555 ire->ire_sendfn = ire_send_local_v4; 556 ire->ire_recvfn = ire_recv_local_v4; 557 ASSERT(ire->ire_ill != NULL); 558 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) 559 ire->ire_recvfn = ire_recv_noaccept_v6; 560 break; 561 case IRE_LOOPBACK: 562 ire->ire_sendfn = ire_send_local_v4; 563 ire->ire_recvfn = ire_recv_loopback_v4; 564 break; 565 case IRE_BROADCAST: 566 ire->ire_postfragfn = ip_postfrag_loopcheck; 567 ire->ire_sendfn = ire_send_broadcast_v4; 568 ire->ire_recvfn = ire_recv_broadcast_v4; 569 break; 570 case IRE_MULTICAST: 571 ire->ire_postfragfn = ip_postfrag_loopcheck; 572 ire->ire_sendfn = ire_send_multicast_v4; 573 ire->ire_recvfn = ire_recv_multicast_v4; 574 break; 575 default: 576 /* 577 * For IRE_IF_ALL and IRE_OFFLINK we forward received 578 * packets by default. 579 */ 580 ire->ire_sendfn = ire_send_wire_v4; 581 ire->ire_recvfn = ire_recv_forward_v4; 582 break; 583 } 584 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 585 ire->ire_sendfn = ire_send_noroute_v4; 586 ire->ire_recvfn = ire_recv_noroute_v4; 587 } else if (ire->ire_flags & RTF_MULTIRT) { 588 ire->ire_postfragfn = ip_postfrag_multirt_v4; 589 ire->ire_sendfn = ire_send_multirt_v4; 590 /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */ 591 if (ire->ire_type != IRE_BROADCAST) 592 ire->ire_recvfn = ire_recv_multirt_v4; 593 } 594 ire->ire_nce_capable = ire_determine_nce_capable(ire); 595 return (0); 596 } 597 598 /* 599 * Determine ire_nce_capable 600 */ 601 boolean_t 602 ire_determine_nce_capable(ire_t *ire) 603 { 604 int max_masklen; 605 606 if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 607 (ire->ire_type & IRE_MULTICAST)) 608 return (B_TRUE); 609 610 if (ire->ire_ipversion == IPV4_VERSION) 611 max_masklen = IPV4_ABITS; 612 else 613 max_masklen = IPV6_ABITS; 614 615 if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen) 616 return (B_TRUE); 617 return (B_FALSE); 618 } 619 620 /* 621 * ire_create is called to allocate and initialize a new IRE. 622 * 623 * NOTE : This is called as writer sometimes though not required 624 * by this function. 625 */ 626 ire_t * 627 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway, 628 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, 629 ip_stack_t *ipst) 630 { 631 ire_t *ire; 632 int error; 633 634 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 635 if (ire == NULL) { 636 DTRACE_PROBE(kmem__cache__alloc); 637 return (NULL); 638 } 639 *ire = ire_null; 640 641 error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags, 642 gc, ipst); 643 if (error != 0) { 644 DTRACE_PROBE2(ire__init, ire_t *, ire, int, error); 645 kmem_cache_free(ire_cache, ire); 646 return (NULL); 647 } 648 return (ire); 649 } 650 651 /* 652 * Common to IPv4 and IPv6 653 * Returns zero or errno. 654 */ 655 int 656 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid, 657 uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst) 658 { 659 int error; 660 661 #ifdef DEBUG 662 if (ill != NULL) { 663 if (ill->ill_isv6) 664 ASSERT(ipversion == IPV6_VERSION); 665 else 666 ASSERT(ipversion == IPV4_VERSION); 667 } 668 #endif /* DEBUG */ 669 670 /* 671 * Create/initialize IRE security attribute only in Trusted mode; 672 * if the passed in gc is non-NULL, we expect that the caller 673 * has held a reference to it and will release it when this routine 674 * returns a failure, otherwise we own the reference. We do this 675 * prior to initializing the rest IRE fields. 676 */ 677 if (is_system_labeled()) { 678 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 679 IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) { 680 /* release references on behalf of caller */ 681 if (gc != NULL) 682 GC_REFRELE(gc); 683 } else { 684 error = tsol_ire_init_gwattr(ire, ipversion, gc); 685 if (error != 0) 686 return (error); 687 } 688 } 689 690 ire->ire_type = type; 691 ire->ire_flags = RTF_UP | flags; 692 ire->ire_create_time = (uint32_t)gethrestime_sec(); 693 ire->ire_generation = IRE_GENERATION_INITIAL; 694 695 /* 696 * The ill_ire_cnt isn't increased until 697 * the IRE is added to ensure that a walker will find 698 * all IREs that hold a reference on an ill. 699 * 700 * Note that ill_ire_multicast doesn't hold a ref on the ill since 701 * ire_add() is not called for the IRE_MULTICAST. 702 */ 703 ire->ire_ill = ill; 704 ire->ire_zoneid = zoneid; 705 ire->ire_ipversion = ipversion; 706 707 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 708 ire->ire_refcnt = 1; 709 ire->ire_identical_ref = 1; /* Number of ire_delete's needed */ 710 ire->ire_ipst = ipst; /* No netstack_hold */ 711 ire->ire_trace_disable = B_FALSE; 712 713 return (0); 714 } 715 716 /* 717 * This creates an IRE_BROADCAST based on the arguments. 718 * A mirror is ire_lookup_bcast(). 719 * 720 * Any supression of unneeded ones is done in ire_add_v4. 721 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4() 722 * takes care of generating a loopback copy of the packet. 723 */ 724 ire_t ** 725 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep) 726 { 727 ip_stack_t *ipst = ill->ill_ipst; 728 729 ASSERT(IAM_WRITER_ILL(ill)); 730 731 *irep++ = ire_create( 732 (uchar_t *)&addr, /* dest addr */ 733 (uchar_t *)&ip_g_all_ones, /* mask */ 734 NULL, /* no gateway */ 735 IRE_BROADCAST, 736 ill, 737 zoneid, 738 RTF_KERNEL, 739 NULL, 740 ipst); 741 742 return (irep); 743 } 744 745 /* 746 * This looks up an IRE_BROADCAST based on the arguments. 747 * Mirrors ire_create_bcast(). 748 */ 749 ire_t * 750 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 751 { 752 ire_t *ire; 753 int match_args; 754 755 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW | 756 MATCH_IRE_MASK | MATCH_IRE_ZONEONLY; 757 758 if (IS_UNDER_IPMP(ill)) 759 match_args |= MATCH_IRE_TESTHIDDEN; 760 761 ire = ire_ftable_lookup_v4( 762 addr, /* dest addr */ 763 ip_g_all_ones, /* mask */ 764 0, /* no gateway */ 765 IRE_BROADCAST, 766 ill, 767 zoneid, 768 NULL, 769 match_args, 770 0, 771 ill->ill_ipst, 772 NULL); 773 return (ire); 774 } 775 776 /* Arrange to call the specified function for every IRE in the world. */ 777 void 778 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 779 { 780 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 781 } 782 783 void 784 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 785 { 786 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 787 } 788 789 void 790 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 791 { 792 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 793 } 794 795 /* 796 * Walk a particular version. version == 0 means both v4 and v6. 797 */ 798 static void 799 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 800 ip_stack_t *ipst) 801 { 802 if (vers != IPV6_VERSION) { 803 /* 804 * ip_forwarding_table variable doesn't matter for IPv4 since 805 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 806 */ 807 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 808 0, NULL, 809 NULL, zoneid, ipst); 810 } 811 if (vers != IPV4_VERSION) { 812 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 813 ipst->ips_ip6_ftable_hash_size, 814 ipst->ips_ip_forwarding_table_v6, 815 NULL, zoneid, ipst); 816 } 817 } 818 819 /* 820 * Arrange to call the specified function for every IRE that matches the ill. 821 */ 822 void 823 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 824 ill_t *ill) 825 { 826 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 827 828 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 829 } 830 831 /* 832 * Walk a particular ill and version. 833 */ 834 static void 835 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 836 void *arg, uchar_t vers, ill_t *ill) 837 { 838 ip_stack_t *ipst = ill->ill_ipst; 839 840 if (vers == IPV4_VERSION) { 841 ire_walk_ill_tables(match_flags, ire_type, func, arg, 842 IP_MASK_TABLE_SIZE, 843 0, NULL, 844 ill, ALL_ZONES, ipst); 845 } 846 if (vers != IPV4_VERSION) { 847 ire_walk_ill_tables(match_flags, ire_type, func, arg, 848 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 849 ipst->ips_ip_forwarding_table_v6, 850 ill, ALL_ZONES, ipst); 851 } 852 } 853 854 /* 855 * Do the specific matching of IREs to shared-IP zones. 856 * 857 * We have the same logic as in ire_match_args but implemented slightly 858 * differently. 859 */ 860 boolean_t 861 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 862 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 863 { 864 ill_t *dst_ill = NULL; 865 866 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 867 if (match_flags & MATCH_IRE_ILL) { 868 dst_ill = ire->ire_ill; 869 } 870 871 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 872 ire->ire_zoneid != ALL_ZONES) { 873 /* 874 * We're walking the IREs for a specific zone. The only relevant 875 * IREs are: 876 * - all IREs with a matching ire_zoneid 877 * - IRE_IF_ALL IREs for interfaces with a usable source addr 878 * with a matching zone 879 * - IRE_OFFLINK with a gateway reachable from the zone 880 * Note that ealier we only did the IRE_OFFLINK check for 881 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs). 882 */ 883 dst_ill = ire->ire_ill; 884 885 if (ire->ire_type & IRE_ONLINK) { 886 uint_t ifindex; 887 888 /* 889 * Note there is no IRE_INTERFACE on vniN thus 890 * can't do an IRE lookup for a matching route. 891 */ 892 ifindex = dst_ill->ill_usesrc_ifindex; 893 if (ifindex == 0) 894 return (B_FALSE); 895 896 /* 897 * If there is a usable source address in the 898 * zone, then it's ok to return an 899 * IRE_INTERFACE 900 */ 901 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 902 zoneid, ipst)) { 903 return (B_FALSE); 904 } 905 } 906 907 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 908 ipif_t *tipif; 909 910 mutex_enter(&dst_ill->ill_lock); 911 for (tipif = dst_ill->ill_ipif; 912 tipif != NULL; tipif = tipif->ipif_next) { 913 if (!IPIF_IS_CONDEMNED(tipif) && 914 (tipif->ipif_flags & IPIF_UP) && 915 (tipif->ipif_zoneid == zoneid || 916 tipif->ipif_zoneid == ALL_ZONES)) 917 break; 918 } 919 mutex_exit(&dst_ill->ill_lock); 920 if (tipif == NULL) { 921 return (B_FALSE); 922 } 923 } 924 925 /* 926 * Match all offlink routes from the global zone, irrespective 927 * of reachability. For a non-global zone only match those 928 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid. 929 */ 930 if ((ire->ire_type & IRE_OFFLINK) && zoneid != GLOBAL_ZONEID && 931 zoneid != ALL_ZONES) { 932 in6_addr_t gw_addr_v6; 933 934 if (ire->ire_ipversion == IPV4_VERSION) { 935 if (!ire_gateway_ok_zone_v4( 936 ire->ire_gateway_addr, zoneid, 937 dst_ill, NULL, ipst, B_FALSE)) 938 return (B_FALSE); 939 } else { 940 ASSERT(ire->ire_ipversion == IPV6_VERSION); 941 mutex_enter(&ire->ire_lock); 942 gw_addr_v6 = ire->ire_gateway_addr_v6; 943 mutex_exit(&ire->ire_lock); 944 945 if (!ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid, 946 dst_ill, NULL, ipst, B_FALSE)) 947 return (B_FALSE); 948 } 949 } 950 } 951 952 if (((!(match_flags & MATCH_IRE_TYPE)) || 953 (ire->ire_type & ire_type)) && 954 ((!(match_flags & MATCH_IRE_ILL)) || 955 (dst_ill == ill || 956 dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) { 957 return (B_TRUE); 958 } 959 return (B_FALSE); 960 } 961 962 int 963 rtfunc(struct radix_node *rn, void *arg) 964 { 965 struct rtfuncarg *rtf = arg; 966 struct rt_entry *rt; 967 irb_t *irb; 968 ire_t *ire; 969 boolean_t ret; 970 971 rt = (struct rt_entry *)rn; 972 ASSERT(rt != NULL); 973 irb = &rt->rt_irb; 974 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 975 if ((rtf->rt_match_flags != 0) || 976 (rtf->rt_zoneid != ALL_ZONES)) { 977 ret = ire_walk_ill_match(rtf->rt_match_flags, 978 rtf->rt_ire_type, ire, 979 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 980 } else { 981 ret = B_TRUE; 982 } 983 if (ret) 984 (*rtf->rt_func)(ire, rtf->rt_arg); 985 } 986 return (0); 987 } 988 989 /* 990 * Walk the ftable entries that match the ill. 991 */ 992 void 993 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 994 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 995 ill_t *ill, zoneid_t zoneid, 996 ip_stack_t *ipst) 997 { 998 irb_t *irb_ptr; 999 irb_t *irb; 1000 ire_t *ire; 1001 int i, j; 1002 boolean_t ret; 1003 struct rtfuncarg rtfarg; 1004 1005 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); 1006 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 1007 1008 /* knobs such that routine is called only for v6 case */ 1009 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 1010 for (i = (ftbl_sz - 1); i >= 0; i--) { 1011 if ((irb_ptr = ipftbl[i]) == NULL) 1012 continue; 1013 for (j = 0; j < htbl_sz; j++) { 1014 irb = &irb_ptr[j]; 1015 if (irb->irb_ire == NULL) 1016 continue; 1017 1018 irb_refhold(irb); 1019 for (ire = irb->irb_ire; ire != NULL; 1020 ire = ire->ire_next) { 1021 if (match_flags == 0 && 1022 zoneid == ALL_ZONES) { 1023 ret = B_TRUE; 1024 } else { 1025 ret = 1026 ire_walk_ill_match( 1027 match_flags, 1028 ire_type, ire, ill, 1029 zoneid, ipst); 1030 } 1031 if (ret) 1032 (*func)(ire, arg); 1033 } 1034 irb_refrele(irb); 1035 } 1036 } 1037 } else { 1038 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 1039 rtfarg.rt_func = func; 1040 rtfarg.rt_arg = arg; 1041 if (match_flags != 0) { 1042 rtfarg.rt_match_flags = match_flags; 1043 } 1044 rtfarg.rt_ire_type = ire_type; 1045 rtfarg.rt_ill = ill; 1046 rtfarg.rt_zoneid = zoneid; 1047 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 1048 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 1049 ipst->ips_ip_ftable, 1050 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 1051 } 1052 } 1053 1054 /* 1055 * This function takes a mask and returns 1056 * number of bits set in the mask. If no 1057 * bit is set it returns 0. 1058 * Assumes a contiguous mask. 1059 */ 1060 int 1061 ip_mask_to_plen(ipaddr_t mask) 1062 { 1063 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 1064 } 1065 1066 /* 1067 * Convert length for a mask to the mask. 1068 */ 1069 ipaddr_t 1070 ip_plen_to_mask(uint_t masklen) 1071 { 1072 if (masklen == 0) 1073 return (0); 1074 1075 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 1076 } 1077 1078 void 1079 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 1080 { 1081 ill_t *ill; 1082 1083 ill = ire->ire_ill; 1084 if (ill != NULL) 1085 mutex_exit(&ill->ill_lock); 1086 rw_exit(&irb_ptr->irb_lock); 1087 } 1088 1089 /* 1090 * ire_add_v[46] atomically make sure that the ill associated 1091 * with the new ire is not going away i.e., we check ILL_CONDEMNED. 1092 */ 1093 int 1094 ire_atomic_start(irb_t *irb_ptr, ire_t *ire) 1095 { 1096 ill_t *ill; 1097 1098 ill = ire->ire_ill; 1099 1100 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 1101 if (ill != NULL) { 1102 mutex_enter(&ill->ill_lock); 1103 1104 /* 1105 * Don't allow IRE's to be created on dying ills. 1106 */ 1107 if (ill->ill_state_flags & ILL_CONDEMNED) { 1108 ire_atomic_end(irb_ptr, ire); 1109 return (ENXIO); 1110 } 1111 1112 if (IS_UNDER_IPMP(ill)) { 1113 int error = 0; 1114 mutex_enter(&ill->ill_phyint->phyint_lock); 1115 if (!ipmp_ill_is_active(ill) && 1116 IRE_HIDDEN_TYPE(ire->ire_type) && 1117 !ire->ire_testhidden) { 1118 error = EINVAL; 1119 } 1120 mutex_exit(&ill->ill_phyint->phyint_lock); 1121 if (error != 0) { 1122 ire_atomic_end(irb_ptr, ire); 1123 return (error); 1124 } 1125 } 1126 1127 } 1128 return (0); 1129 } 1130 1131 /* 1132 * Add a fully initialized IRE to the forwarding table. 1133 * This returns NULL on failure, or a held IRE on success. 1134 * Normally the returned IRE is the same as the argument. But a different 1135 * IRE will be returned if the added IRE is deemed identical to an existing 1136 * one. In that case ire_identical_ref will be increased. 1137 * The caller always needs to do an ire_refrele() on the returned IRE. 1138 */ 1139 ire_t * 1140 ire_add(ire_t *ire) 1141 { 1142 if (IRE_HIDDEN_TYPE(ire->ire_type) && 1143 ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) { 1144 /* 1145 * IREs hosted on interfaces that are under IPMP 1146 * should be hidden so that applications don't 1147 * accidentally end up sending packets with test 1148 * addresses as their source addresses, or 1149 * sending out interfaces that are e.g. IFF_INACTIVE. 1150 * Hide them here. 1151 */ 1152 ire->ire_testhidden = B_TRUE; 1153 } 1154 1155 if (ire->ire_ipversion == IPV6_VERSION) 1156 return (ire_add_v6(ire)); 1157 else 1158 return (ire_add_v4(ire)); 1159 } 1160 1161 /* 1162 * Add a fully initialized IPv4 IRE to the forwarding table. 1163 * This returns NULL on failure, or a held IRE on success. 1164 * Normally the returned IRE is the same as the argument. But a different 1165 * IRE will be returned if the added IRE is deemed identical to an existing 1166 * one. In that case ire_identical_ref will be increased. 1167 * The caller always needs to do an ire_refrele() on the returned IRE. 1168 */ 1169 static ire_t * 1170 ire_add_v4(ire_t *ire) 1171 { 1172 ire_t *ire1; 1173 irb_t *irb_ptr; 1174 ire_t **irep; 1175 int match_flags; 1176 int error; 1177 ip_stack_t *ipst = ire->ire_ipst; 1178 1179 if (ire->ire_ill != NULL) 1180 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1181 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1182 1183 /* Make sure the address is properly masked. */ 1184 ire->ire_addr &= ire->ire_mask; 1185 1186 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 1187 1188 if (ire->ire_ill != NULL) { 1189 match_flags |= MATCH_IRE_ILL; 1190 } 1191 irb_ptr = ire_get_bucket(ire); 1192 if (irb_ptr == NULL) { 1193 printf("no bucket for %p\n", (void *)ire); 1194 ire_delete(ire); 1195 return (NULL); 1196 } 1197 1198 /* 1199 * Start the atomic add of the ire. Grab the ill lock, 1200 * the bucket lock. Check for condemned. 1201 */ 1202 error = ire_atomic_start(irb_ptr, ire); 1203 if (error != 0) { 1204 printf("no ire_atomic_start for %p\n", (void *)ire); 1205 ire_delete(ire); 1206 irb_refrele(irb_ptr); 1207 return (NULL); 1208 } 1209 /* 1210 * If we are creating a hidden IRE, make sure we search for 1211 * hidden IREs when searching for duplicates below. 1212 * Otherwise, we might find an IRE on some other interface 1213 * that's not marked hidden. 1214 */ 1215 if (ire->ire_testhidden) 1216 match_flags |= MATCH_IRE_TESTHIDDEN; 1217 1218 /* 1219 * Atomically check for duplicate and insert in the table. 1220 */ 1221 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 1222 if (IRE_IS_CONDEMNED(ire1)) 1223 continue; 1224 /* 1225 * Here we need an exact match on zoneid, i.e., 1226 * ire_match_args doesn't fit. 1227 */ 1228 if (ire1->ire_zoneid != ire->ire_zoneid) 1229 continue; 1230 1231 if (ire1->ire_type != ire->ire_type) 1232 continue; 1233 1234 /* 1235 * Note: We do not allow multiple routes that differ only 1236 * in the gateway security attributes; such routes are 1237 * considered duplicates. 1238 * To change that we explicitly have to treat them as 1239 * different here. 1240 */ 1241 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 1242 ire->ire_gateway_addr, ire->ire_type, ire->ire_ill, 1243 ire->ire_zoneid, NULL, match_flags)) { 1244 /* 1245 * Return the old ire after doing a REFHOLD. 1246 * As most of the callers continue to use the IRE 1247 * after adding, we return a held ire. This will 1248 * avoid a lookup in the caller again. If the callers 1249 * don't want to use it, they need to do a REFRELE. 1250 */ 1251 atomic_add_32(&ire1->ire_identical_ref, 1); 1252 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1, 1253 ire_t *, ire); 1254 ire_refhold(ire1); 1255 ire_atomic_end(irb_ptr, ire); 1256 ire_delete(ire); 1257 irb_refrele(irb_ptr); 1258 return (ire1); 1259 } 1260 } 1261 1262 /* 1263 * Normally we do head insertion since most things do not care about 1264 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add 1265 * assumes we at least do head insertion so that its IRE_BROADCAST 1266 * arrive ahead of existing IRE_HOST for the same address. 1267 * However, due to shared-IP zones (and restrict_interzone_loopback) 1268 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same 1269 * address. For that reason we do tail insertion for IRE_IF_CLONE. 1270 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket, 1271 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT 1272 * set. 1273 */ 1274 irep = (ire_t **)irb_ptr; 1275 if ((ire->ire_type & IRE_IF_CLONE) || 1276 ((ire->ire_type & IRE_BROADCAST) && 1277 !(ire->ire_flags & RTF_MULTIRT))) { 1278 while ((ire1 = *irep) != NULL) 1279 irep = &ire1->ire_next; 1280 } 1281 /* Insert at *irep */ 1282 ire1 = *irep; 1283 if (ire1 != NULL) 1284 ire1->ire_ptpn = &ire->ire_next; 1285 ire->ire_next = ire1; 1286 /* Link the new one in. */ 1287 ire->ire_ptpn = irep; 1288 1289 /* 1290 * ire_walk routines de-reference ire_next without holding 1291 * a lock. Before we point to the new ire, we want to make 1292 * sure the store that sets the ire_next of the new ire 1293 * reaches global visibility, so that ire_walk routines 1294 * don't see a truncated list of ires i.e if the ire_next 1295 * of the new ire gets set after we do "*irep = ire" due 1296 * to re-ordering, the ire_walk thread will see a NULL 1297 * once it accesses the ire_next of the new ire. 1298 * membar_producer() makes sure that the following store 1299 * happens *after* all of the above stores. 1300 */ 1301 membar_producer(); 1302 *irep = ire; 1303 ire->ire_bucket = irb_ptr; 1304 /* 1305 * We return a bumped up IRE above. Keep it symmetrical 1306 * so that the callers will always have to release. This 1307 * helps the callers of this function because they continue 1308 * to use the IRE after adding and hence they don't have to 1309 * lookup again after we return the IRE. 1310 * 1311 * NOTE : We don't have to use atomics as this is appearing 1312 * in the list for the first time and no one else can bump 1313 * up the reference count on this yet. 1314 */ 1315 ire_refhold_locked(ire); 1316 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 1317 1318 irb_ptr->irb_ire_cnt++; 1319 if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC) 1320 irb_ptr->irb_nire++; 1321 1322 if (ire->ire_ill != NULL) { 1323 ire->ire_ill->ill_ire_cnt++; 1324 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ 1325 } 1326 1327 ire_atomic_end(irb_ptr, ire); 1328 1329 /* Make any caching of the IREs be notified or updated */ 1330 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 1331 1332 if (ire->ire_ill != NULL) 1333 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1334 irb_refrele(irb_ptr); 1335 return (ire); 1336 } 1337 1338 /* 1339 * irb_refrele is the only caller of the function. ire_unlink calls to 1340 * do the final cleanup for this ire. 1341 */ 1342 void 1343 ire_cleanup(ire_t *ire) 1344 { 1345 ire_t *ire_next; 1346 ip_stack_t *ipst = ire->ire_ipst; 1347 1348 ASSERT(ire != NULL); 1349 1350 while (ire != NULL) { 1351 ire_next = ire->ire_next; 1352 if (ire->ire_ipversion == IPV4_VERSION) { 1353 ire_delete_v4(ire); 1354 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 1355 ire_stats_deleted); 1356 } else { 1357 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1358 ire_delete_v6(ire); 1359 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 1360 ire_stats_deleted); 1361 } 1362 /* 1363 * Now it's really out of the list. Before doing the 1364 * REFRELE, set ire_next to NULL as ire_inactive asserts 1365 * so. 1366 */ 1367 ire->ire_next = NULL; 1368 ire_refrele_notr(ire); 1369 ire = ire_next; 1370 } 1371 } 1372 1373 /* 1374 * irb_refrele is the only caller of the function. It calls to unlink 1375 * all the CONDEMNED ires from this bucket. 1376 */ 1377 ire_t * 1378 ire_unlink(irb_t *irb) 1379 { 1380 ire_t *ire; 1381 ire_t *ire1; 1382 ire_t **ptpn; 1383 ire_t *ire_list = NULL; 1384 1385 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 1386 ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) || 1387 (irb->irb_refcnt == 0)); 1388 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 1389 ASSERT(irb->irb_ire != NULL); 1390 1391 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 1392 ire1 = ire->ire_next; 1393 if (IRE_IS_CONDEMNED(ire)) { 1394 ptpn = ire->ire_ptpn; 1395 ire1 = ire->ire_next; 1396 if (ire1) 1397 ire1->ire_ptpn = ptpn; 1398 *ptpn = ire1; 1399 ire->ire_ptpn = NULL; 1400 ire->ire_next = NULL; 1401 1402 /* 1403 * We need to call ire_delete_v4 or ire_delete_v6 to 1404 * clean up dependents and the redirects pointing at 1405 * the default gateway. We need to drop the lock 1406 * as ire_flush_cache/ire_delete_host_redircts require 1407 * so. But we can't drop the lock, as ire_unlink needs 1408 * to atomically remove the ires from the list. 1409 * So, create a temporary list of CONDEMNED ires 1410 * for doing ire_delete_v4/ire_delete_v6 operations 1411 * later on. 1412 */ 1413 ire->ire_next = ire_list; 1414 ire_list = ire; 1415 } 1416 } 1417 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 1418 return (ire_list); 1419 } 1420 1421 /* 1422 * Clean up the radix node for this ire. Must be called by irb_refrele 1423 * when there are no ire's left in the bucket. Returns TRUE if the bucket 1424 * is deleted and freed. 1425 */ 1426 boolean_t 1427 irb_inactive(irb_t *irb) 1428 { 1429 struct rt_entry *rt; 1430 struct radix_node *rn; 1431 ip_stack_t *ipst = irb->irb_ipst; 1432 1433 ASSERT(irb->irb_ipst != NULL); 1434 1435 rt = IRB2RT(irb); 1436 rn = (struct radix_node *)rt; 1437 1438 /* first remove it from the radix tree. */ 1439 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1440 rw_enter(&irb->irb_lock, RW_WRITER); 1441 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 1442 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 1443 ipst->ips_ip_ftable); 1444 DTRACE_PROBE1(irb__free, rt_t *, rt); 1445 ASSERT((void *)rn == (void *)rt); 1446 Free(rt, rt_entry_cache); 1447 /* irb_lock is freed */ 1448 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1449 return (B_TRUE); 1450 } 1451 rw_exit(&irb->irb_lock); 1452 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1453 return (B_FALSE); 1454 } 1455 1456 /* 1457 * Delete the specified IRE. 1458 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was 1459 * not incremented i.e., that the insertion in the bucket and the increment 1460 * of that counter is done atomically. 1461 */ 1462 void 1463 ire_delete(ire_t *ire) 1464 { 1465 ire_t *ire1; 1466 ire_t **ptpn; 1467 irb_t *irb; 1468 nce_t *nce; 1469 ip_stack_t *ipst = ire->ire_ipst; 1470 1471 /* We can clear ire_nce_cache under ire_lock even if the IRE is used */ 1472 mutex_enter(&ire->ire_lock); 1473 nce = ire->ire_nce_cache; 1474 ire->ire_nce_cache = NULL; 1475 mutex_exit(&ire->ire_lock); 1476 if (nce != NULL) 1477 nce_refrele(nce); 1478 1479 if ((irb = ire->ire_bucket) == NULL) { 1480 /* 1481 * It was never inserted in the list. Should call REFRELE 1482 * to free this IRE. 1483 */ 1484 ire_refrele_notr(ire); 1485 return; 1486 } 1487 1488 /* 1489 * Move the use counts from an IRE_IF_CLONE to its parent 1490 * IRE_INTERFACE. 1491 * We need to do this before acquiring irb_lock. 1492 */ 1493 if (ire->ire_type & IRE_IF_CLONE) { 1494 ire_t *parent; 1495 1496 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1497 if ((parent = ire->ire_dep_parent) != NULL) { 1498 parent->ire_ob_pkt_count += ire->ire_ob_pkt_count; 1499 parent->ire_ib_pkt_count += ire->ire_ib_pkt_count; 1500 ire->ire_ob_pkt_count = 0; 1501 ire->ire_ib_pkt_count = 0; 1502 } 1503 rw_exit(&ipst->ips_ire_dep_lock); 1504 } 1505 1506 rw_enter(&irb->irb_lock, RW_WRITER); 1507 if (ire->ire_ptpn == NULL) { 1508 /* 1509 * Some other thread has removed us from the list. 1510 * It should have done the REFRELE for us. 1511 */ 1512 rw_exit(&irb->irb_lock); 1513 return; 1514 } 1515 1516 if (!IRE_IS_CONDEMNED(ire)) { 1517 /* Is this an IRE representing multiple duplicate entries? */ 1518 ASSERT(ire->ire_identical_ref >= 1); 1519 if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) { 1520 /* Removed one of the identical parties */ 1521 rw_exit(&irb->irb_lock); 1522 return; 1523 } 1524 1525 irb->irb_ire_cnt--; 1526 ire_make_condemned(ire); 1527 } 1528 1529 if (irb->irb_refcnt != 0) { 1530 /* 1531 * The last thread to leave this bucket will 1532 * delete this ire. 1533 */ 1534 irb->irb_marks |= IRB_MARK_CONDEMNED; 1535 rw_exit(&irb->irb_lock); 1536 return; 1537 } 1538 1539 /* 1540 * Normally to delete an ire, we walk the bucket. While we 1541 * walk the bucket, we normally bump up irb_refcnt and hence 1542 * we return from above where we mark CONDEMNED and the ire 1543 * gets deleted from ire_unlink. This case is where somebody 1544 * knows the ire e.g by doing a lookup, and wants to delete the 1545 * IRE. irb_refcnt would be 0 in this case if nobody is walking 1546 * the bucket. 1547 */ 1548 ptpn = ire->ire_ptpn; 1549 ire1 = ire->ire_next; 1550 if (ire1 != NULL) 1551 ire1->ire_ptpn = ptpn; 1552 ASSERT(ptpn != NULL); 1553 *ptpn = ire1; 1554 ire->ire_ptpn = NULL; 1555 ire->ire_next = NULL; 1556 if (ire->ire_ipversion == IPV6_VERSION) { 1557 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 1558 } else { 1559 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 1560 } 1561 rw_exit(&irb->irb_lock); 1562 1563 /* Cleanup dependents and related stuff */ 1564 if (ire->ire_ipversion == IPV6_VERSION) { 1565 ire_delete_v6(ire); 1566 } else { 1567 ire_delete_v4(ire); 1568 } 1569 /* 1570 * We removed it from the list. Decrement the 1571 * reference count. 1572 */ 1573 ire_refrele_notr(ire); 1574 } 1575 1576 /* 1577 * Delete the specified IRE. 1578 * All calls should use ire_delete(). 1579 * Sometimes called as writer though not required by this function. 1580 * 1581 * NOTE : This function is called only if the ire was added 1582 * in the list. 1583 */ 1584 static void 1585 ire_delete_v4(ire_t *ire) 1586 { 1587 ip_stack_t *ipst = ire->ire_ipst; 1588 1589 ASSERT(ire->ire_refcnt >= 1); 1590 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1591 1592 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 1593 if (ire->ire_type == IRE_DEFAULT) { 1594 /* 1595 * when a default gateway is going away 1596 * delete all the host redirects pointing at that 1597 * gateway. 1598 */ 1599 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 1600 } 1601 1602 /* 1603 * If we are deleting an IRE_INTERFACE then we make sure we also 1604 * delete any IRE_IF_CLONE that has been created from it. 1605 * Those are always in ire_dep_children. 1606 */ 1607 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL) 1608 ire_dep_delete_if_clone(ire); 1609 1610 /* Remove from parent dependencies and child */ 1611 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 1612 if (ire->ire_dep_parent != NULL) 1613 ire_dep_remove(ire); 1614 1615 while (ire->ire_dep_children != NULL) 1616 ire_dep_remove(ire->ire_dep_children); 1617 rw_exit(&ipst->ips_ire_dep_lock); 1618 } 1619 1620 /* 1621 * ire_refrele is the only caller of the function. It calls 1622 * to free the ire when the reference count goes to zero. 1623 */ 1624 void 1625 ire_inactive(ire_t *ire) 1626 { 1627 ill_t *ill; 1628 irb_t *irb; 1629 ip_stack_t *ipst = ire->ire_ipst; 1630 1631 ASSERT(ire->ire_refcnt == 0); 1632 ASSERT(ire->ire_ptpn == NULL); 1633 ASSERT(ire->ire_next == NULL); 1634 1635 /* Count how many condemned ires for kmem_cache callback */ 1636 if (IRE_IS_CONDEMNED(ire)) 1637 atomic_add_32(&ipst->ips_num_ire_condemned, -1); 1638 1639 if (ire->ire_gw_secattr != NULL) { 1640 ire_gw_secattr_free(ire->ire_gw_secattr); 1641 ire->ire_gw_secattr = NULL; 1642 } 1643 1644 /* 1645 * ire_nce_cache is cleared in ire_delete, and we make sure we don't 1646 * set it once the ire is marked condemned. 1647 */ 1648 ASSERT(ire->ire_nce_cache == NULL); 1649 1650 /* 1651 * Since any parent would have a refhold on us they would already 1652 * have been removed. 1653 */ 1654 ASSERT(ire->ire_dep_parent == NULL); 1655 ASSERT(ire->ire_dep_sib_next == NULL); 1656 ASSERT(ire->ire_dep_sib_ptpn == NULL); 1657 1658 /* 1659 * Since any children would have a refhold on us they should have 1660 * already been removed. 1661 */ 1662 ASSERT(ire->ire_dep_children == NULL); 1663 1664 /* 1665 * ill_ire_ref is increased when the IRE is inserted in the 1666 * bucket - not when the IRE is created. 1667 */ 1668 irb = ire->ire_bucket; 1669 ill = ire->ire_ill; 1670 if (irb != NULL && ill != NULL) { 1671 mutex_enter(&ill->ill_lock); 1672 ASSERT(ill->ill_ire_cnt != 0); 1673 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill, 1674 (char *), "ire", (void *), ire); 1675 ill->ill_ire_cnt--; 1676 if (ILL_DOWN_OK(ill)) { 1677 /* Drops the ill lock */ 1678 ipif_ill_refrele_tail(ill); 1679 } else { 1680 mutex_exit(&ill->ill_lock); 1681 } 1682 } 1683 ire->ire_ill = NULL; 1684 1685 /* This should be true for both V4 and V6 */ 1686 if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) { 1687 rw_enter(&irb->irb_lock, RW_WRITER); 1688 irb->irb_nire--; 1689 /* 1690 * Instead of examining the conditions for freeing 1691 * the radix node here, we do it by calling 1692 * irb_refrele which is a single point in the code 1693 * that embeds that logic. Bump up the refcnt to 1694 * be able to call irb_refrele 1695 */ 1696 irb_refhold_locked(irb); 1697 rw_exit(&irb->irb_lock); 1698 irb_refrele(irb); 1699 } 1700 1701 #ifdef DEBUG 1702 ire_trace_cleanup(ire); 1703 #endif 1704 mutex_destroy(&ire->ire_lock); 1705 if (ire->ire_ipversion == IPV6_VERSION) { 1706 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 1707 } else { 1708 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 1709 } 1710 kmem_cache_free(ire_cache, ire); 1711 } 1712 1713 /* 1714 * ire_update_generation is the callback function provided by 1715 * ire_get_bucket() to update the generation number of any 1716 * matching shorter route when a new route is added. 1717 * 1718 * This fucntion always returns a failure return (B_FALSE) 1719 * to force the caller (rn_matchaddr_args) 1720 * to back-track up the tree looking for shorter matches. 1721 */ 1722 /* ARGSUSED */ 1723 static boolean_t 1724 ire_update_generation(struct radix_node *rn, void *arg) 1725 { 1726 struct rt_entry *rt = (struct rt_entry *)rn; 1727 1728 /* We need to handle all in the same bucket */ 1729 irb_increment_generation(&rt->rt_irb); 1730 return (B_FALSE); 1731 } 1732 1733 /* 1734 * Take care of all the generation numbers in the bucket. 1735 */ 1736 void 1737 irb_increment_generation(irb_t *irb) 1738 { 1739 ire_t *ire; 1740 1741 if (irb == NULL || irb->irb_ire_cnt == 0) 1742 return; 1743 1744 irb_refhold(irb); 1745 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1746 if (!IRE_IS_CONDEMNED(ire)) 1747 ire_increment_generation(ire); /* Ourselves */ 1748 ire_dep_incr_generation(ire); /* Dependants */ 1749 } 1750 irb_refrele(irb); 1751 } 1752 1753 /* 1754 * When an IRE is added or deleted this routine is called to make sure 1755 * any caching of IRE information is notified or updated. 1756 * 1757 * The flag argument indicates if the flush request is due to addition 1758 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), 1759 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). 1760 */ 1761 void 1762 ire_flush_cache_v4(ire_t *ire, int flag) 1763 { 1764 irb_t *irb = ire->ire_bucket; 1765 struct rt_entry *rt = IRB2RT(irb); 1766 ip_stack_t *ipst = ire->ire_ipst; 1767 1768 /* 1769 * IRE_IF_CLONE ire's don't provide any new information 1770 * than the parent from which they are cloned, so don't 1771 * perturb the generation numbers. 1772 */ 1773 if (ire->ire_type & IRE_IF_CLONE) 1774 return; 1775 1776 /* 1777 * Ensure that an ire_add during a lookup serializes the updates of the 1778 * generation numbers under the radix head lock so that the lookup gets 1779 * either the old ire and old generation number, or a new ire and new 1780 * generation number. 1781 */ 1782 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1783 1784 /* 1785 * If a route was just added, we need to notify everybody that 1786 * has cached an IRE_NOROUTE since there might now be a better 1787 * route for them. 1788 */ 1789 if (flag == IRE_FLUSH_ADD) { 1790 ire_increment_generation(ipst->ips_ire_reject_v4); 1791 ire_increment_generation(ipst->ips_ire_blackhole_v4); 1792 } 1793 1794 /* Adding a default can't otherwise provide a better route */ 1795 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { 1796 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1797 return; 1798 } 1799 1800 switch (flag) { 1801 case IRE_FLUSH_DELETE: 1802 case IRE_FLUSH_GWCHANGE: 1803 /* 1804 * Update ire_generation for all ire_dep_children chains 1805 * starting with this IRE 1806 */ 1807 ire_dep_incr_generation(ire); 1808 break; 1809 case IRE_FLUSH_ADD: 1810 /* 1811 * Update the generation numbers of all shorter matching routes. 1812 * ire_update_generation takes care of the dependants by 1813 * using ire_dep_incr_generation. 1814 */ 1815 (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst, 1816 ipst->ips_ip_ftable, ire_update_generation, NULL); 1817 break; 1818 } 1819 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1820 } 1821 1822 /* 1823 * Matches the arguments passed with the values in the ire. 1824 * 1825 * Note: for match types that match using "ill" passed in, ill 1826 * must be checked for non-NULL before calling this routine. 1827 */ 1828 boolean_t 1829 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 1830 int type, const ill_t *ill, zoneid_t zoneid, 1831 const ts_label_t *tsl, int match_flags) 1832 { 1833 ill_t *ire_ill = NULL, *dst_ill; 1834 ip_stack_t *ipst = ire->ire_ipst; 1835 1836 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1837 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 1838 ASSERT((!(match_flags & MATCH_IRE_ILL)) || 1839 (ill != NULL && !ill->ill_isv6)); 1840 1841 /* 1842 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is 1843 * in fact hidden, to ensure the caller gets the right one. 1844 */ 1845 if (ire->ire_testhidden) { 1846 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) 1847 return (B_FALSE); 1848 } 1849 1850 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 1851 ire->ire_zoneid != ALL_ZONES) { 1852 /* 1853 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid 1854 * does not match that of ire_zoneid, a failure to 1855 * match is reported at this point. Otherwise, since some IREs 1856 * that are available in the global zone can be used in local 1857 * zones, additional checks need to be performed: 1858 * 1859 * IRE_LOOPBACK 1860 * entries should never be matched in this situation. 1861 * Each zone has its own IRE_LOOPBACK. 1862 * 1863 * IRE_LOCAL 1864 * We allow them for any zoneid. ire_route_recursive 1865 * does additional checks when 1866 * ip_restrict_interzone_loopback is set. 1867 * 1868 * If ill_usesrc_ifindex is set 1869 * Then we check if the zone has a valid source address 1870 * on the usesrc ill. 1871 * 1872 * If ire_ill is set, then check that the zone has an ipif 1873 * on that ill. 1874 * 1875 * Outside of this function (in ire_round_robin) we check 1876 * that any IRE_OFFLINK has a gateway that reachable from the 1877 * zone when we have multiple choices (ECMP). 1878 */ 1879 if (match_flags & MATCH_IRE_ZONEONLY) 1880 return (B_FALSE); 1881 if (ire->ire_type & IRE_LOOPBACK) 1882 return (B_FALSE); 1883 1884 if (ire->ire_type & IRE_LOCAL) 1885 goto matchit; 1886 1887 /* 1888 * The normal case of IRE_ONLINK has a matching zoneid. 1889 * Here we handle the case when shared-IP zones have been 1890 * configured with IP addresses on vniN. In that case it 1891 * is ok for traffic from a zone to use IRE_ONLINK routes 1892 * if the ill has a usesrc pointing at vniN 1893 */ 1894 dst_ill = ire->ire_ill; 1895 if (ire->ire_type & IRE_ONLINK) { 1896 uint_t ifindex; 1897 1898 /* 1899 * Note there is no IRE_INTERFACE on vniN thus 1900 * can't do an IRE lookup for a matching route. 1901 */ 1902 ifindex = dst_ill->ill_usesrc_ifindex; 1903 if (ifindex == 0) 1904 return (B_FALSE); 1905 1906 /* 1907 * If there is a usable source address in the 1908 * zone, then it's ok to return this IRE_INTERFACE 1909 */ 1910 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 1911 zoneid, ipst)) { 1912 ip3dbg(("ire_match_args: no usrsrc for zone" 1913 " dst_ill %p\n", (void *)dst_ill)); 1914 return (B_FALSE); 1915 } 1916 } 1917 /* 1918 * For exampe, with 1919 * route add 11.0.0.0 gw1 -ifp bge0 1920 * route add 11.0.0.0 gw2 -ifp bge1 1921 * this code would differentiate based on 1922 * where the sending zone has addresses. 1923 * Only if the zone has an address on bge0 can it use the first 1924 * route. It isn't clear if this behavior is documented 1925 * anywhere. 1926 */ 1927 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 1928 ipif_t *tipif; 1929 1930 mutex_enter(&dst_ill->ill_lock); 1931 for (tipif = dst_ill->ill_ipif; 1932 tipif != NULL; tipif = tipif->ipif_next) { 1933 if (!IPIF_IS_CONDEMNED(tipif) && 1934 (tipif->ipif_flags & IPIF_UP) && 1935 (tipif->ipif_zoneid == zoneid || 1936 tipif->ipif_zoneid == ALL_ZONES)) 1937 break; 1938 } 1939 mutex_exit(&dst_ill->ill_lock); 1940 if (tipif == NULL) { 1941 return (B_FALSE); 1942 } 1943 } 1944 } 1945 1946 matchit: 1947 if (match_flags & MATCH_IRE_ILL) { 1948 ire_ill = ire->ire_ill; 1949 1950 /* 1951 * If asked to match an ill, we *must* match 1952 * on the ire_ill for ipmp test addresses, or 1953 * any of the ill in the group for data addresses. 1954 * If we don't, we may as well fail. 1955 * However, we need an exception for IRE_LOCALs to ensure 1956 * we loopback packets even sent to test addresses on different 1957 * interfaces in the group. 1958 */ 1959 if ((match_flags & MATCH_IRE_TESTHIDDEN) && 1960 !(ire->ire_type & IRE_LOCAL)) { 1961 if (ire->ire_ill != ill) 1962 return (B_FALSE); 1963 } else { 1964 match_flags &= ~MATCH_IRE_TESTHIDDEN; 1965 /* 1966 * We know that ill is not NULL, but ire_ill could be 1967 * NULL 1968 */ 1969 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) 1970 return (B_FALSE); 1971 } 1972 } 1973 1974 if ((ire->ire_addr == (addr & mask)) && 1975 ((!(match_flags & MATCH_IRE_GW)) || 1976 (ire->ire_gateway_addr == gateway)) && 1977 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && 1978 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && 1979 ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) && 1980 ((!(match_flags & MATCH_IRE_SECATTR)) || 1981 (!is_system_labeled()) || 1982 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 1983 /* We found the matched IRE */ 1984 return (B_TRUE); 1985 } 1986 return (B_FALSE); 1987 } 1988 1989 /* 1990 * Check if the IRE_LOCAL uses the same ill as another route would use. 1991 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 1992 * then we don't allow this IRE_LOCAL to be used. 1993 * We always return an IRE; will be RTF_REJECT if no route available. 1994 */ 1995 ire_t * 1996 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl, 1997 const ill_t *ill, uint_t *generationp) 1998 { 1999 ip_stack_t *ipst = ire->ire_ipst; 2000 ire_t *alt_ire; 2001 uint_t ire_type; 2002 uint_t generation; 2003 uint_t match_flags; 2004 2005 ASSERT(ire->ire_type & IRE_LOCAL); 2006 ASSERT(ire->ire_ill != NULL); 2007 2008 /* 2009 * Need to match on everything but local. 2010 * This might result in the creation of a IRE_IF_CLONE for the 2011 * same address as the IRE_LOCAL when restrict_interzone_loopback is 2012 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted 2013 * to make sure the IRE_LOCAL is always found first. 2014 */ 2015 ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK); 2016 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 2017 if (ill != NULL) 2018 match_flags |= MATCH_IRE_ILL; 2019 2020 if (ire->ire_ipversion == IPV4_VERSION) { 2021 alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type, 2022 ill, zoneid, tsl, match_flags, B_TRUE, 0, ipst, NULL, NULL, 2023 &generation); 2024 } else { 2025 alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type, 2026 ill, zoneid, tsl, match_flags, B_TRUE, 0, ipst, NULL, NULL, 2027 &generation); 2028 } 2029 ASSERT(alt_ire != NULL); 2030 2031 if (alt_ire->ire_ill == ire->ire_ill) { 2032 /* Going out the same ILL - ok to send to IRE_LOCAL */ 2033 ire_refrele(alt_ire); 2034 } else { 2035 /* Different ill - ignore IRE_LOCAL */ 2036 ire_refrele(ire); 2037 ire = alt_ire; 2038 if (generationp != NULL) 2039 *generationp = generation; 2040 } 2041 return (ire); 2042 } 2043 2044 boolean_t 2045 ire_find_zoneid(struct radix_node *rn, void *arg) 2046 { 2047 struct rt_entry *rt = (struct rt_entry *)rn; 2048 irb_t *irb; 2049 ire_t *ire; 2050 ire_ftable_args_t *margs = arg; 2051 2052 ASSERT(rt != NULL); 2053 2054 irb = &rt->rt_irb; 2055 2056 if (irb->irb_ire_cnt == 0) 2057 return (B_FALSE); 2058 2059 rw_enter(&irb->irb_lock, RW_READER); 2060 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2061 if (IRE_IS_CONDEMNED(ire)) 2062 continue; 2063 2064 if (ire->ire_zoneid != ALL_ZONES && 2065 ire->ire_zoneid != margs->ift_zoneid) 2066 continue; 2067 2068 if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill) 2069 continue; 2070 2071 if (is_system_labeled() && 2072 tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0) 2073 continue; 2074 2075 rw_exit(&irb->irb_lock); 2076 return (B_TRUE); 2077 } 2078 rw_exit(&irb->irb_lock); 2079 return (B_FALSE); 2080 } 2081 2082 /* 2083 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified 2084 * gateway address. If ill is non-NULL we also match on it. 2085 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. 2086 */ 2087 boolean_t 2088 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill, 2089 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) 2090 { 2091 struct rt_sockaddr rdst; 2092 struct rt_entry *rt; 2093 ire_ftable_args_t margs; 2094 2095 ASSERT(ill == NULL || !ill->ill_isv6); 2096 if (lock_held) 2097 ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock)); 2098 else 2099 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 2100 2101 rdst.rt_sin_len = sizeof (rdst); 2102 rdst.rt_sin_family = AF_INET; 2103 rdst.rt_sin_addr.s_addr = gateway; 2104 2105 /* 2106 * We only use margs for ill, zoneid, and tsl matching in 2107 * ire_find_zoneid 2108 */ 2109 (void) memset(&margs, 0, sizeof (margs)); 2110 margs.ift_ill = ill; 2111 margs.ift_zoneid = zoneid; 2112 margs.ift_tsl = tsl; 2113 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, 2114 ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs); 2115 2116 if (!lock_held) 2117 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 2118 2119 return (rt != NULL); 2120 } 2121 2122 /* 2123 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs. 2124 * The fraction argument tells us what fraction of the IREs to delete. 2125 * Common for IPv4 and IPv6. 2126 * Used when memory backpressure. 2127 */ 2128 static void 2129 ire_delete_reclaim(ire_t *ire, char *arg) 2130 { 2131 ip_stack_t *ipst = ire->ire_ipst; 2132 uint_t fraction = *(uint_t *)arg; 2133 uint_t rand; 2134 2135 if ((ire->ire_flags & RTF_DYNAMIC) || 2136 (ire->ire_type & IRE_IF_CLONE)) { 2137 2138 /* Pick a random number */ 2139 rand = (uint_t)ddi_get_lbolt() + 2140 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256); 2141 2142 /* Use truncation */ 2143 if ((rand/fraction)*fraction == rand) { 2144 IP_STAT(ipst, ip_ire_reclaim_deleted); 2145 ire_delete(ire); 2146 } 2147 } 2148 2149 } 2150 2151 /* 2152 * kmem_cache callback to free up memory. 2153 * 2154 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically 2155 * (RTF_DYNAMIC and IRE_IF_CLONE). 2156 */ 2157 static void 2158 ip_ire_reclaim_stack(ip_stack_t *ipst) 2159 { 2160 uint_t fraction = ipst->ips_ip_ire_reclaim_fraction; 2161 2162 IP_STAT(ipst, ip_ire_reclaim_calls); 2163 2164 ire_walk(ire_delete_reclaim, &fraction, ipst); 2165 2166 /* 2167 * Walk all CONNs that can have a reference on an ire, nce or dce. 2168 * Get them to update any stale references to drop any refholds they 2169 * have. 2170 */ 2171 ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst); 2172 } 2173 2174 /* 2175 * Called by the memory allocator subsystem directly, when the system 2176 * is running low on memory. 2177 */ 2178 /* ARGSUSED */ 2179 void 2180 ip_ire_reclaim(void *args) 2181 { 2182 netstack_handle_t nh; 2183 netstack_t *ns; 2184 2185 netstack_next_init(&nh); 2186 while ((ns = netstack_next(&nh)) != NULL) { 2187 ip_ire_reclaim_stack(ns->netstack_ip); 2188 netstack_rele(ns); 2189 } 2190 netstack_next_fini(&nh); 2191 } 2192 2193 static void 2194 power2_roundup(uint32_t *value) 2195 { 2196 int i; 2197 2198 for (i = 1; i < 31; i++) { 2199 if (*value <= (1 << i)) 2200 break; 2201 } 2202 *value = (1 << i); 2203 } 2204 2205 /* Global init for all zones */ 2206 void 2207 ip_ire_g_init() 2208 { 2209 /* 2210 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim() 2211 * will give disposable IREs back to system when needed. 2212 * This needs to be done here before anything else, since 2213 * ire_add() expects the cache to be created. 2214 */ 2215 ire_cache = kmem_cache_create("ire_cache", 2216 sizeof (ire_t), 0, NULL, NULL, 2217 ip_ire_reclaim, NULL, NULL, 0); 2218 2219 ncec_cache = kmem_cache_create("ncec_cache", 2220 sizeof (ncec_t), 0, NULL, NULL, 2221 ip_nce_reclaim, NULL, NULL, 0); 2222 nce_cache = kmem_cache_create("nce_cache", 2223 sizeof (nce_t), 0, NULL, NULL, 2224 NULL, NULL, NULL, 0); 2225 2226 rt_entry_cache = kmem_cache_create("rt_entry", 2227 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 2228 2229 /* 2230 * Have radix code setup kmem caches etc. 2231 */ 2232 rn_init(); 2233 } 2234 2235 void 2236 ip_ire_init(ip_stack_t *ipst) 2237 { 2238 ire_t *ire; 2239 int error; 2240 2241 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 2242 2243 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 2244 2245 /* 2246 * Make sure that the forwarding table size is a power of 2. 2247 * The IRE*_ADDR_HASH() macroes depend on that. 2248 */ 2249 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 2250 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 2251 2252 /* 2253 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6. 2254 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has 2255 * RTF_BLACKHOLE set. We use the latter for transient errors such 2256 * as memory allocation failures and tripping on IRE_IS_CONDEMNED 2257 * entries. 2258 */ 2259 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2260 *ire = ire_null; 2261 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2262 RTF_REJECT|RTF_UP, NULL, ipst); 2263 ASSERT(error == 0); 2264 ipst->ips_ire_reject_v4 = ire; 2265 2266 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2267 *ire = ire_null; 2268 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2269 RTF_REJECT|RTF_UP, NULL, ipst); 2270 ASSERT(error == 0); 2271 ipst->ips_ire_reject_v6 = ire; 2272 2273 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2274 *ire = ire_null; 2275 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2276 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2277 ASSERT(error == 0); 2278 ipst->ips_ire_blackhole_v4 = ire; 2279 2280 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2281 *ire = ire_null; 2282 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2283 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2284 ASSERT(error == 0); 2285 ipst->ips_ire_blackhole_v6 = ire; 2286 2287 rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL); 2288 rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL); 2289 } 2290 2291 void 2292 ip_ire_g_fini(void) 2293 { 2294 kmem_cache_destroy(ire_cache); 2295 kmem_cache_destroy(ncec_cache); 2296 kmem_cache_destroy(nce_cache); 2297 kmem_cache_destroy(rt_entry_cache); 2298 2299 rn_fini(); 2300 } 2301 2302 void 2303 ip_ire_fini(ip_stack_t *ipst) 2304 { 2305 int i; 2306 2307 rw_destroy(&ipst->ips_ire_dep_lock); 2308 rw_destroy(&ipst->ips_ip6_ire_head_lock); 2309 2310 ire_refrele_notr(ipst->ips_ire_reject_v6); 2311 ipst->ips_ire_reject_v6 = NULL; 2312 ire_refrele_notr(ipst->ips_ire_reject_v4); 2313 ipst->ips_ire_reject_v4 = NULL; 2314 ire_refrele_notr(ipst->ips_ire_blackhole_v6); 2315 ipst->ips_ire_blackhole_v6 = NULL; 2316 ire_refrele_notr(ipst->ips_ire_blackhole_v4); 2317 ipst->ips_ire_blackhole_v4 = NULL; 2318 2319 /* 2320 * Delete all IREs - assumes that the ill/ipifs have 2321 * been removed so what remains are just the ftable to handle. 2322 */ 2323 ire_walk(ire_delete, NULL, ipst); 2324 2325 rn_freehead(ipst->ips_ip_ftable); 2326 ipst->ips_ip_ftable = NULL; 2327 2328 mutex_destroy(&ipst->ips_ire_ft_init_lock); 2329 2330 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 2331 irb_t *ptr; 2332 int j; 2333 2334 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 2335 continue; 2336 2337 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 2338 ASSERT(ptr[j].irb_ire == NULL); 2339 rw_destroy(&ptr[j].irb_lock); 2340 } 2341 mi_free(ptr); 2342 ipst->ips_ip_forwarding_table_v6[i] = NULL; 2343 } 2344 } 2345 2346 #ifdef DEBUG 2347 void 2348 ire_trace_ref(ire_t *ire) 2349 { 2350 mutex_enter(&ire->ire_lock); 2351 if (ire->ire_trace_disable) { 2352 mutex_exit(&ire->ire_lock); 2353 return; 2354 } 2355 2356 if (th_trace_ref(ire, ire->ire_ipst)) { 2357 mutex_exit(&ire->ire_lock); 2358 } else { 2359 ire->ire_trace_disable = B_TRUE; 2360 mutex_exit(&ire->ire_lock); 2361 ire_trace_cleanup(ire); 2362 } 2363 } 2364 2365 void 2366 ire_untrace_ref(ire_t *ire) 2367 { 2368 mutex_enter(&ire->ire_lock); 2369 if (!ire->ire_trace_disable) 2370 th_trace_unref(ire); 2371 mutex_exit(&ire->ire_lock); 2372 } 2373 2374 static void 2375 ire_trace_cleanup(const ire_t *ire) 2376 { 2377 th_trace_cleanup(ire, ire->ire_trace_disable); 2378 } 2379 #endif /* DEBUG */ 2380 2381 /* 2382 * Find, or create if needed, the nce_t pointer to the neighbor cache 2383 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t 2384 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or 2385 * on the next available under-ill (selected by the IPMP rotor) in the 2386 * unicast IPMP case. 2387 * 2388 * If a neighbor-cache entry has to be created (i.e., one does not already 2389 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache 2390 * entry are initialized in nce_add_v4(). The broadcast, multicast, and 2391 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of 2392 * the ncec_t created. The ncec_lladdr is non-null for all link types with 2393 * non-zero ill_phys_addr_length, though the contents may be zero in cases 2394 * where the link-layer type is not known at the time of creation 2395 * (e.g., IRE_IFRESOLVER links) 2396 * 2397 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr 2398 * has the physical broadcast address of the outgoing interface. 2399 * For unicast ire entries, 2400 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 2401 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state. 2402 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 2403 * layer resolution is necessary, so that the ncec_t will be in the 2404 * ND_REACHABLE state 2405 * 2406 * The link layer information needed for broadcast addresses, and for 2407 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 2408 * never needs re-verification for the lifetime of the ncec_t. These are 2409 * therefore marked NCE_F_NONUD. 2410 * 2411 * The nce returned will be created such that the nce_ill == ill that 2412 * is passed in. Note that the nce itself may not have ncec_ill == ill 2413 * where IPMP links are involved. 2414 */ 2415 static nce_t * 2416 ire_nce_init(ill_t *ill, const void *addr, int ire_type) 2417 { 2418 int err; 2419 nce_t *nce = NULL; 2420 uint16_t ncec_flags; 2421 uchar_t *hwaddr; 2422 boolean_t need_refrele = B_FALSE; 2423 ill_t *in_ill = ill; 2424 boolean_t is_unicast; 2425 uint_t hwaddr_len; 2426 2427 is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0); 2428 if (IS_IPMP(ill) || 2429 ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) { 2430 if ((ill = ipmp_ill_get_xmit_ill(ill, is_unicast)) == NULL) 2431 return (NULL); 2432 need_refrele = B_TRUE; 2433 } 2434 ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0; 2435 2436 switch (ire_type) { 2437 case IRE_BROADCAST: 2438 ASSERT(!ill->ill_isv6); 2439 ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD); 2440 break; 2441 case IRE_MULTICAST: 2442 ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD); 2443 break; 2444 } 2445 2446 if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) { 2447 hwaddr = ill->ill_dest_addr; 2448 } else { 2449 hwaddr = NULL; 2450 } 2451 hwaddr_len = ill->ill_phys_addr_length; 2452 2453 retry: 2454 /* nce_state will be computed by nce_add_common() */ 2455 if (!ill->ill_isv6) { 2456 err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr, 2457 ncec_flags, ND_UNCHANGED, &nce); 2458 } else { 2459 err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr, 2460 ncec_flags, ND_UNCHANGED, &nce); 2461 } 2462 2463 switch (err) { 2464 case 0: 2465 break; 2466 case EEXIST: 2467 /* 2468 * When subnets change or partially overlap what was once 2469 * a broadcast address could now be a unicast, or vice versa. 2470 */ 2471 if (((ncec_flags ^ nce->nce_common->ncec_flags) & 2472 NCE_F_BCAST) != 0) { 2473 ASSERT(!ill->ill_isv6); 2474 ncec_delete(nce->nce_common); 2475 nce_refrele(nce); 2476 goto retry; 2477 } 2478 break; 2479 default: 2480 DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err); 2481 if (need_refrele) 2482 ill_refrele(ill); 2483 return (NULL); 2484 } 2485 /* 2486 * If the ill was an under-ill of an IPMP group, we need to verify 2487 * that it is still active so that we select an active interface in 2488 * the group. However, since ipmp_ill_is_active ASSERTs for 2489 * IS_UNDER_IPMP(), we first need to verify that the ill is an 2490 * under-ill, and since this is being done in the data path, the 2491 * only way to ascertain this is by holding the ill_g_lock. 2492 */ 2493 rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER); 2494 mutex_enter(&ill->ill_lock); 2495 mutex_enter(&ill->ill_phyint->phyint_lock); 2496 if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 2497 /* 2498 * need_refrele implies that the under ill was selected by 2499 * ipmp_ill_get_xmit_ill() because either the in_ill was an 2500 * ipmp_ill, or we are sending a non-unicast packet on 2501 * an under_ill. However, when we get here, the ill selected by 2502 * ipmp_ill_get_xmit_ill was pulled out of the active set 2503 * (for unicast) or cast_ill nomination (for 2504 * !unicast) after it was picked as the outgoing ill. 2505 * We have to pick an active interface and/or cast_ill in the 2506 * group. 2507 */ 2508 mutex_exit(&ill->ill_phyint->phyint_lock); 2509 nce_delete(nce); 2510 mutex_exit(&ill->ill_lock); 2511 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2512 nce_refrele(nce); 2513 ill_refrele(ill); 2514 if ((ill = ipmp_ill_get_xmit_ill(in_ill, is_unicast)) == NULL) 2515 return (NULL); 2516 goto retry; 2517 } else { 2518 mutex_exit(&ill->ill_phyint->phyint_lock); 2519 mutex_exit(&ill->ill_lock); 2520 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2521 } 2522 done: 2523 ASSERT(nce->nce_ill == ill); 2524 if (need_refrele) 2525 ill_refrele(ill); 2526 return (nce); 2527 } 2528 2529 nce_t * 2530 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type) 2531 { 2532 return (ire_nce_init(ill, &addr4, ire_type)); 2533 } 2534 2535 nce_t * 2536 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type) 2537 { 2538 ASSERT((ire_type & IRE_BROADCAST) == 0); 2539 return (ire_nce_init(ill, addr6, ire_type)); 2540 } 2541 2542 /* 2543 * The caller should hold irb_lock as a writer if the ire is in a bucket. 2544 */ 2545 void 2546 ire_make_condemned(ire_t *ire) 2547 { 2548 ip_stack_t *ipst = ire->ire_ipst; 2549 2550 mutex_enter(&ire->ire_lock); 2551 ASSERT(ire->ire_bucket == NULL || 2552 RW_WRITE_HELD(&ire->ire_bucket->irb_lock)); 2553 ASSERT(!IRE_IS_CONDEMNED(ire)); 2554 ire->ire_generation = IRE_GENERATION_CONDEMNED; 2555 /* Count how many condemned ires for kmem_cache callback */ 2556 atomic_add_32(&ipst->ips_num_ire_condemned, 1); 2557 mutex_exit(&ire->ire_lock); 2558 } 2559 2560 /* 2561 * Increment the generation avoiding the special condemned value 2562 */ 2563 void 2564 ire_increment_generation(ire_t *ire) 2565 { 2566 uint_t generation; 2567 2568 mutex_enter(&ire->ire_lock); 2569 /* 2570 * Even though the caller has a hold it can't prevent a concurrent 2571 * ire_delete marking the IRE condemned 2572 */ 2573 if (!IRE_IS_CONDEMNED(ire)) { 2574 generation = ire->ire_generation + 1; 2575 if (generation == IRE_GENERATION_CONDEMNED) 2576 generation = IRE_GENERATION_INITIAL; 2577 ASSERT(generation != IRE_GENERATION_VERIFY); 2578 ire->ire_generation = generation; 2579 } 2580 mutex_exit(&ire->ire_lock); 2581 } 2582 2583 /* 2584 * Increment ire_generation on all the IRE_MULTICASTs 2585 * Used when the default multicast interface (as determined by 2586 * ill_lookup_multicast) might have changed. 2587 * 2588 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and 2589 * ill unplumb. 2590 */ 2591 void 2592 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6) 2593 { 2594 ill_t *ill; 2595 ill_walk_context_t ctx; 2596 2597 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2598 if (isv6) 2599 ill = ILL_START_WALK_V6(&ctx, ipst); 2600 else 2601 ill = ILL_START_WALK_V4(&ctx, ipst); 2602 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2603 if (ILL_IS_CONDEMNED(ill)) 2604 continue; 2605 if (ill->ill_ire_multicast != NULL) 2606 ire_increment_generation(ill->ill_ire_multicast); 2607 } 2608 rw_exit(&ipst->ips_ill_g_lock); 2609 } 2610 2611 /* 2612 * Return a held IRE_NOROUTE with RTF_REJECT set 2613 */ 2614 ire_t * 2615 ire_reject(ip_stack_t *ipst, boolean_t isv6) 2616 { 2617 ire_t *ire; 2618 2619 if (isv6) 2620 ire = ipst->ips_ire_reject_v6; 2621 else 2622 ire = ipst->ips_ire_reject_v4; 2623 2624 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2625 ire_refhold(ire); 2626 return (ire); 2627 } 2628 2629 /* 2630 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set 2631 */ 2632 ire_t * 2633 ire_blackhole(ip_stack_t *ipst, boolean_t isv6) 2634 { 2635 ire_t *ire; 2636 2637 if (isv6) 2638 ire = ipst->ips_ire_blackhole_v6; 2639 else 2640 ire = ipst->ips_ire_blackhole_v4; 2641 2642 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2643 ire_refhold(ire); 2644 return (ire); 2645 } 2646 2647 /* 2648 * Return a held IRE_MULTICAST. 2649 */ 2650 ire_t * 2651 ire_multicast(ill_t *ill) 2652 { 2653 ire_t *ire = ill->ill_ire_multicast; 2654 2655 ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED); 2656 if (ire == NULL) 2657 ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6); 2658 else 2659 ire_refhold(ire); 2660 return (ire); 2661 } 2662 2663 /* 2664 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK 2665 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6). 2666 * This can return an RTF_REJECT|RTF_BLACKHOLE. 2667 * The returned IRE is held. 2668 * The assumption is that ip_select_route() has been called and returned the 2669 * IRE (thus ip_select_route would have set up the ire_dep* information.) 2670 * If some IRE is deleteted then ire_dep_remove() will have been called and 2671 * we might not find a nexthop IRE, in which case we return NULL. 2672 */ 2673 ire_t * 2674 ire_nexthop(ire_t *ire) 2675 { 2676 ip_stack_t *ipst = ire->ire_ipst; 2677 2678 /* Acquire lock to walk ire_dep_parent */ 2679 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 2680 while (ire != NULL) { 2681 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 2682 goto done; 2683 } 2684 /* 2685 * If we find an IRE_ONLINK we are done. This includes 2686 * the case of IRE_MULTICAST. 2687 * Note that in order to send packets we need a host-specific 2688 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this 2689 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE 2690 * was not host specific. 2691 * However, ip_rts_request doesn't want to send packets 2692 * hence doesn't want to allocate an IRE_IF_CLONE. Yet 2693 * it needs an IRE_IF_ALL to get to the ill. Thus 2694 * we return IRE_IF_ALL that are not host specific here. 2695 */ 2696 if (ire->ire_type & IRE_ONLINK) 2697 goto done; 2698 ire = ire->ire_dep_parent; 2699 } 2700 rw_exit(&ipst->ips_ire_dep_lock); 2701 return (NULL); 2702 2703 done: 2704 ire_refhold(ire); 2705 rw_exit(&ipst->ips_ire_dep_lock); 2706 return (ire); 2707 } 2708 2709 /* 2710 * Find the ill used to send packets. This will be NULL in case 2711 * of a reject or blackhole. 2712 * The returned ill is held; caller needs to do ill_refrele when done. 2713 */ 2714 ill_t * 2715 ire_nexthop_ill(ire_t *ire) 2716 { 2717 ill_t *ill; 2718 2719 ire = ire_nexthop(ire); 2720 if (ire == NULL) 2721 return (NULL); 2722 2723 /* ire_ill can not change for an existing ire */ 2724 ill = ire->ire_ill; 2725 if (ill != NULL) 2726 ill_refhold(ill); 2727 ire_refrele(ire); 2728 return (ill); 2729 } 2730 2731 #ifdef DEBUG 2732 static boolean_t 2733 parent_has_child(ire_t *parent, ire_t *child) 2734 { 2735 ire_t *ire; 2736 ire_t *prev; 2737 2738 ire = parent->ire_dep_children; 2739 prev = NULL; 2740 while (ire != NULL) { 2741 if (prev == NULL) { 2742 ASSERT(ire->ire_dep_sib_ptpn == 2743 &(parent->ire_dep_children)); 2744 } else { 2745 ASSERT(ire->ire_dep_sib_ptpn == 2746 &(prev->ire_dep_sib_next)); 2747 } 2748 if (ire == child) 2749 return (B_TRUE); 2750 prev = ire; 2751 ire = ire->ire_dep_sib_next; 2752 } 2753 return (B_FALSE); 2754 } 2755 2756 static void 2757 ire_dep_verify(ire_t *ire) 2758 { 2759 ire_t *parent = ire->ire_dep_parent; 2760 ire_t *child = ire->ire_dep_children; 2761 2762 ASSERT(ire->ire_ipversion == IPV4_VERSION || 2763 ire->ire_ipversion == IPV6_VERSION); 2764 if (parent != NULL) { 2765 ASSERT(parent->ire_ipversion == IPV4_VERSION || 2766 parent->ire_ipversion == IPV6_VERSION); 2767 ASSERT(parent->ire_refcnt >= 1); 2768 ASSERT(parent_has_child(parent, ire)); 2769 } 2770 if (child != NULL) { 2771 ASSERT(child->ire_ipversion == IPV4_VERSION || 2772 child->ire_ipversion == IPV6_VERSION); 2773 ASSERT(child->ire_dep_parent == ire); 2774 ASSERT(child->ire_dep_sib_ptpn != NULL); 2775 ASSERT(parent_has_child(ire, child)); 2776 } 2777 } 2778 #endif /* DEBUG */ 2779 2780 /* 2781 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage. 2782 */ 2783 void 2784 ire_dep_remove(ire_t *ire) 2785 { 2786 ip_stack_t *ipst = ire->ire_ipst; 2787 ire_t *parent = ire->ire_dep_parent; 2788 ire_t *next; 2789 nce_t *nce; 2790 2791 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2792 ASSERT(ire->ire_dep_parent != NULL); 2793 ASSERT(ire->ire_dep_sib_ptpn != NULL); 2794 2795 #ifdef DEBUG 2796 ire_dep_verify(ire); 2797 ire_dep_verify(parent); 2798 #endif 2799 2800 next = ire->ire_dep_sib_next; 2801 if (next != NULL) 2802 next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn; 2803 2804 ASSERT(*(ire->ire_dep_sib_ptpn) == ire); 2805 *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next; 2806 2807 ire->ire_dep_sib_ptpn = NULL; 2808 ire->ire_dep_sib_next = NULL; 2809 2810 mutex_enter(&ire->ire_lock); 2811 parent = ire->ire_dep_parent; 2812 ire->ire_dep_parent = NULL; 2813 mutex_exit(&ire->ire_lock); 2814 2815 /* 2816 * Make sure all our children, grandchildren, etc set 2817 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since 2818 * we can no longer guarantee than the children have a current 2819 * ire_nce_cache and ire_nexthop_ill(). 2820 */ 2821 if (ire->ire_dep_children != NULL) 2822 ire_dep_invalidate_children(ire->ire_dep_children); 2823 2824 /* 2825 * Since the parent is gone we make sure we clear ire_nce_cache. 2826 * We can clear it under ire_lock even if the IRE is used 2827 */ 2828 mutex_enter(&ire->ire_lock); 2829 nce = ire->ire_nce_cache; 2830 ire->ire_nce_cache = NULL; 2831 mutex_exit(&ire->ire_lock); 2832 if (nce != NULL) 2833 nce_refrele(nce); 2834 2835 #ifdef DEBUG 2836 ire_dep_verify(ire); 2837 ire_dep_verify(parent); 2838 #endif 2839 2840 ire_refrele_notr(parent); 2841 ire_refrele_notr(ire); 2842 } 2843 2844 /* 2845 * Insert the child in the linkage of the parent 2846 */ 2847 static void 2848 ire_dep_parent_insert(ire_t *child, ire_t *parent) 2849 { 2850 ip_stack_t *ipst = child->ire_ipst; 2851 ire_t *next; 2852 2853 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2854 ASSERT(child->ire_dep_parent == NULL); 2855 2856 #ifdef DEBUG 2857 ire_dep_verify(child); 2858 ire_dep_verify(parent); 2859 #endif 2860 /* No parents => no siblings */ 2861 ASSERT(child->ire_dep_sib_ptpn == NULL); 2862 ASSERT(child->ire_dep_sib_next == NULL); 2863 2864 ire_refhold_notr(parent); 2865 ire_refhold_notr(child); 2866 2867 /* Head insertion */ 2868 next = parent->ire_dep_children; 2869 if (next != NULL) { 2870 ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children)); 2871 child->ire_dep_sib_next = next; 2872 next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next); 2873 } 2874 parent->ire_dep_children = child; 2875 child->ire_dep_sib_ptpn = &(parent->ire_dep_children); 2876 2877 mutex_enter(&child->ire_lock); 2878 child->ire_dep_parent = parent; 2879 mutex_exit(&child->ire_lock); 2880 2881 #ifdef DEBUG 2882 ire_dep_verify(child); 2883 ire_dep_verify(parent); 2884 #endif 2885 } 2886 2887 2888 /* 2889 * Given count worth of ires and generations, build ire_dep_* relationships 2890 * from ires[0] to ires[count-1]. Record generations[i+1] in 2891 * ire_dep_parent_generation for ires[i]. 2892 * We graft onto an existing parent chain by making sure that we don't 2893 * touch ire_dep_parent for ires[count-1]. 2894 * 2895 * We check for any condemned ire_generation count and return B_FALSE in 2896 * that case so that the caller can tear it apart. 2897 * 2898 * Note that generations[0] is not used. Caller handles that. 2899 */ 2900 boolean_t 2901 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count) 2902 { 2903 ire_t *ire = ires[0]; 2904 ip_stack_t *ipst; 2905 uint_t i; 2906 2907 ASSERT(count > 0); 2908 if (count == 1) { 2909 /* No work to do */ 2910 return (B_TRUE); 2911 } 2912 ipst = ire->ire_ipst; 2913 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2914 /* 2915 * Do not remove the linkage for any existing parent chain i.e., 2916 * ires[count-1] is left alone. 2917 */ 2918 for (i = 0; i < count-1; i++) { 2919 /* Remove existing parent if we need to change it */ 2920 if (ires[i]->ire_dep_parent != NULL && 2921 ires[i]->ire_dep_parent != ires[i+1]) 2922 ire_dep_remove(ires[i]); 2923 } 2924 2925 for (i = 0; i < count - 1; i++) { 2926 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2927 ires[i]->ire_ipversion == IPV6_VERSION); 2928 /* Does it need to change? */ 2929 if (ires[i]->ire_dep_parent != ires[i+1]) 2930 ire_dep_parent_insert(ires[i], ires[i+1]); 2931 2932 mutex_enter(&ires[i+1]->ire_lock); 2933 if (IRE_IS_CONDEMNED(ires[i+1])) { 2934 mutex_exit(&ires[i+1]->ire_lock); 2935 rw_exit(&ipst->ips_ire_dep_lock); 2936 return (B_FALSE); 2937 } 2938 mutex_exit(&ires[i+1]->ire_lock); 2939 2940 mutex_enter(&ires[i]->ire_lock); 2941 ires[i]->ire_dep_parent_generation = generations[i+1]; 2942 mutex_exit(&ires[i]->ire_lock); 2943 } 2944 rw_exit(&ipst->ips_ire_dep_lock); 2945 return (B_TRUE); 2946 } 2947 2948 /* 2949 * Given count worth of ires, unbuild ire_dep_* relationships 2950 * from ires[0] to ires[count-1]. 2951 */ 2952 void 2953 ire_dep_unbuild(ire_t *ires[], uint_t count) 2954 { 2955 ip_stack_t *ipst; 2956 uint_t i; 2957 2958 if (count == 0) { 2959 /* No work to do */ 2960 return; 2961 } 2962 ipst = ires[0]->ire_ipst; 2963 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2964 for (i = 0; i < count; i++) { 2965 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2966 ires[i]->ire_ipversion == IPV6_VERSION); 2967 if (ires[i]->ire_dep_parent != NULL) 2968 ire_dep_remove(ires[i]); 2969 mutex_enter(&ires[i]->ire_lock); 2970 ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 2971 mutex_exit(&ires[i]->ire_lock); 2972 } 2973 rw_exit(&ipst->ips_ire_dep_lock); 2974 } 2975 2976 /* 2977 * Both the forwarding and the outbound code paths can trip on 2978 * a condemned NCE, in which case we call this function. 2979 * We have two different behaviors: if the NCE was UNREACHABLE 2980 * it is an indication that something failed. In that case 2981 * we see if we should look for a different IRE (for example, 2982 * delete any matching redirect IRE, or try a different 2983 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully 2984 * different IRE will be picked next time we send/forward. 2985 * 2986 * If we are called by the output path then fail_if_better is set 2987 * and we return NULL if there could be a better IRE. This is because the 2988 * output path retries the IRE lookup. (The input/forward path can not retry.) 2989 * 2990 * If the NCE was not unreachable then we pick/allocate a 2991 * new (most likely ND_INITIAL) NCE and proceed with it. 2992 * 2993 * ipha/ip6h are needed for multicast packets; ipha needs to be 2994 * set for IPv4 and ip6h needs to be set for IPv6 packets. 2995 */ 2996 nce_t * 2997 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h, 2998 boolean_t fail_if_better) 2999 { 3000 if (nce->nce_common->ncec_state == ND_UNREACHABLE) { 3001 if (ire_no_good(ire) && fail_if_better) { 3002 /* 3003 * Did some changes, or ECMP likely to exist. 3004 * Make ip_output look for a different IRE 3005 */ 3006 return (NULL); 3007 } 3008 } 3009 if (ire_revalidate_nce(ire) == ENETUNREACH) { 3010 /* The ire_dep_parent chain went bad, or no memory? */ 3011 (void) ire_no_good(ire); 3012 return (NULL); 3013 } 3014 if (ire->ire_ipversion == IPV4_VERSION) { 3015 ASSERT(ipha != NULL); 3016 nce = ire_to_nce(ire, ipha->ipha_dst, NULL); 3017 } else { 3018 ASSERT(ip6h != NULL); 3019 nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst); 3020 } 3021 3022 if (nce == NULL) 3023 return (NULL); 3024 if (nce->nce_is_condemned) { 3025 nce_refrele(nce); 3026 return (NULL); 3027 } 3028 return (nce); 3029 } 3030 3031 /* 3032 * The caller has found that the ire is bad, either due to a reference to an NCE 3033 * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved. 3034 * We update things so a subsequent attempt to send to the destination 3035 * is likely to find different IRE, or that a new NCE would be created. 3036 * 3037 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would 3038 * find a different route (either due to having deleted a redirect, or there 3039 * being ECMP routes.) 3040 * 3041 * If we have a redirect (RTF_DYNAMIC) we delete it. 3042 * Otherwise we increment ire_badcnt and increment the generation number so 3043 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken 3044 * into account in the route selection when we have multiple choices (multiple 3045 * default routes or ECMP in general). 3046 * Any time ip_select_route find an ire with a condemned ire_nce_cache 3047 * (e.g., if no equal cost route to the bad one) ip_select_route will make 3048 * sure the NCE is revalidated to avoid getting stuck on a 3049 * NCE_F_CONDMNED ncec that caused ire_no_good to be called. 3050 */ 3051 boolean_t 3052 ire_no_good(ire_t *ire) 3053 { 3054 ip_stack_t *ipst = ire->ire_ipst; 3055 ire_t *ire2; 3056 nce_t *nce; 3057 3058 if (ire->ire_flags & RTF_DYNAMIC) { 3059 ire_delete(ire); 3060 return (B_TRUE); 3061 } 3062 if (ire->ire_flags & RTF_INDIRECT) { 3063 /* Check if next IRE is a redirect */ 3064 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3065 if (ire->ire_dep_parent != NULL && 3066 (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) { 3067 ire2 = ire->ire_dep_parent; 3068 ire_refhold(ire2); 3069 } else { 3070 ire2 = NULL; 3071 } 3072 rw_exit(&ipst->ips_ire_dep_lock); 3073 if (ire2 != NULL) { 3074 ire_delete(ire2); 3075 ire_refrele(ire2); 3076 return (B_TRUE); 3077 } 3078 } 3079 /* 3080 * No redirect involved. Increment badcnt so that if we have ECMP 3081 * routes we are likely to pick a different one for the next packet. 3082 * 3083 * If the NCE is unreachable and condemned we should drop the reference 3084 * to it so that a new NCE can be created. 3085 * 3086 * Finally we increment the generation number so that any ixa_ire 3087 * cache will be revalidated. 3088 */ 3089 mutex_enter(&ire->ire_lock); 3090 ire->ire_badcnt++; 3091 ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64()); 3092 nce = ire->ire_nce_cache; 3093 if (nce != NULL && nce->nce_is_condemned && 3094 nce->nce_common->ncec_state == ND_UNREACHABLE) 3095 ire->ire_nce_cache = NULL; 3096 else 3097 nce = NULL; 3098 mutex_exit(&ire->ire_lock); 3099 if (nce != NULL) 3100 nce_refrele(nce); 3101 3102 ire_increment_generation(ire); 3103 ire_dep_incr_generation(ire); 3104 3105 return (ire->ire_bucket->irb_ire_cnt > 1); 3106 } 3107 3108 /* 3109 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation == 3110 * ire_dep_parent_generation. 3111 * If they all match we just return ire_generation from the topmost IRE. 3112 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation 3113 * above the mismatch to IRE_GENERATION_VERIFY and also returning 3114 * IRE_GENERATION_VERIFY. 3115 */ 3116 uint_t 3117 ire_dep_validate_generations(ire_t *ire) 3118 { 3119 ip_stack_t *ipst = ire->ire_ipst; 3120 uint_t generation; 3121 ire_t *ire1; 3122 3123 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3124 generation = ire->ire_generation; /* Assuming things match */ 3125 for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) { 3126 ASSERT(ire1->ire_ipversion == IPV4_VERSION || 3127 ire1->ire_ipversion == IPV6_VERSION); 3128 if (ire1->ire_dep_parent == NULL) 3129 break; 3130 if (ire1->ire_dep_parent_generation != 3131 ire1->ire_dep_parent->ire_generation) 3132 goto mismatch; 3133 } 3134 rw_exit(&ipst->ips_ire_dep_lock); 3135 return (generation); 3136 3137 mismatch: 3138 generation = IRE_GENERATION_VERIFY; 3139 /* Fill from top down to the mismatch with _VERIFY */ 3140 while (ire != ire1) { 3141 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3142 ire->ire_ipversion == IPV6_VERSION); 3143 mutex_enter(&ire->ire_lock); 3144 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3145 mutex_exit(&ire->ire_lock); 3146 ire = ire->ire_dep_parent; 3147 } 3148 rw_exit(&ipst->ips_ire_dep_lock); 3149 return (generation); 3150 } 3151 3152 /* 3153 * Used when we need to return an ire with ire_dep_parent, but we 3154 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE 3155 * Using IRE_GENERATION_VERIFY means that next time we'll redo the 3156 * recursive lookup. 3157 */ 3158 void 3159 ire_dep_invalidate_generations(ire_t *ire) 3160 { 3161 ip_stack_t *ipst = ire->ire_ipst; 3162 3163 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3164 while (ire != NULL) { 3165 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3166 ire->ire_ipversion == IPV6_VERSION); 3167 mutex_enter(&ire->ire_lock); 3168 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3169 mutex_exit(&ire->ire_lock); 3170 ire = ire->ire_dep_parent; 3171 } 3172 rw_exit(&ipst->ips_ire_dep_lock); 3173 } 3174 3175 /* Set _VERIFY ire_dep_parent_generation for all children recursively */ 3176 static void 3177 ire_dep_invalidate_children(ire_t *child) 3178 { 3179 ip_stack_t *ipst = child->ire_ipst; 3180 3181 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 3182 /* Depth first */ 3183 if (child->ire_dep_children != NULL) 3184 ire_dep_invalidate_children(child->ire_dep_children); 3185 3186 while (child != NULL) { 3187 mutex_enter(&child->ire_lock); 3188 child->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3189 mutex_exit(&child->ire_lock); 3190 child = child->ire_dep_sib_next; 3191 } 3192 } 3193 3194 static void 3195 ire_dep_increment_children(ire_t *child) 3196 { 3197 ip_stack_t *ipst = child->ire_ipst; 3198 3199 ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock)); 3200 /* Depth first */ 3201 if (child->ire_dep_children != NULL) 3202 ire_dep_increment_children(child->ire_dep_children); 3203 3204 while (child != NULL) { 3205 if (!IRE_IS_CONDEMNED(child)) 3206 ire_increment_generation(child); 3207 child = child->ire_dep_sib_next; 3208 } 3209 } 3210 3211 /* 3212 * Walk all the children of this ire recursively and increment their 3213 * generation number. 3214 */ 3215 void 3216 ire_dep_incr_generation(ire_t *parent) 3217 { 3218 ip_stack_t *ipst = parent->ire_ipst; 3219 3220 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3221 if (parent->ire_dep_children != NULL) 3222 ire_dep_increment_children(parent->ire_dep_children); 3223 rw_exit(&ipst->ips_ire_dep_lock); 3224 } 3225 3226 /* 3227 * Get a new ire_nce_cache for this IRE as well as its nexthop. 3228 * Returns zero if it succeeds. Can fail due to lack of memory or when 3229 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those 3230 * cases. 3231 * 3232 * In the in.mpathd case, the ire will have ire_testhidden 3233 * set; so we should create the ncec for the underlying ill. 3234 * 3235 * Note that the error returned by ire_revalidate_nce() is ignored by most 3236 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH 3237 * error to mark potentially bad ire's. For all the other callers, an 3238 * error return could indicate a transient condition like ENOMEM, or could 3239 * be the result of an interface that is going down/unplumbing. In the former 3240 * case (transient error), we would leave the old stale ire/ire_nce_cache 3241 * in place, and possibly use incorrect link-layer information to send packets 3242 * but would eventually recover. In the latter case (ill down/replumb), 3243 * ire_revalidate_nce() might return a condemned nce back, but we would then 3244 * recover in the packet output path. 3245 */ 3246 int 3247 ire_revalidate_nce(ire_t *ire) 3248 { 3249 nce_t *nce, *old_nce; 3250 ire_t *nexthop; 3251 3252 /* 3253 * For multicast we conceptually have an NCE but we don't store it 3254 * in ire_nce_cache; when ire_to_nce is called we allocate the nce. 3255 */ 3256 if (ire->ire_type & IRE_MULTICAST) 3257 return (0); 3258 3259 /* ire_testhidden should only be set on under-interfaces */ 3260 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3261 3262 nexthop = ire_nexthop(ire); 3263 if (nexthop == NULL) { 3264 /* The route is potentially bad */ 3265 (void) ire_no_good(ire); 3266 return (ENETUNREACH); 3267 } 3268 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3269 ASSERT(ire->ire_ill != NULL); 3270 3271 if (ire->ire_ipversion == IPV4_VERSION) 3272 nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr); 3273 else 3274 nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6); 3275 } else { 3276 ASSERT(nexthop->ire_type & IRE_ONLINK); 3277 if (ire->ire_ipversion == IPV4_VERSION) { 3278 nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr, 3279 nexthop->ire_type); 3280 } else { 3281 nce = ndp_nce_init(nexthop->ire_ill, 3282 &nexthop->ire_addr_v6, nexthop->ire_type); 3283 } 3284 } 3285 if (nce == NULL) { 3286 /* 3287 * Leave the old stale one in place to avoid a NULL 3288 * ire_nce_cache. 3289 */ 3290 ire_refrele(nexthop); 3291 return (ENOMEM); 3292 } 3293 3294 if (nexthop != ire) { 3295 /* Update the nexthop ire */ 3296 mutex_enter(&nexthop->ire_lock); 3297 old_nce = nexthop->ire_nce_cache; 3298 if (!IRE_IS_CONDEMNED(nexthop)) { 3299 nce_refhold(nce); 3300 nexthop->ire_nce_cache = nce; 3301 } else { 3302 nexthop->ire_nce_cache = NULL; 3303 } 3304 mutex_exit(&nexthop->ire_lock); 3305 if (old_nce != NULL) 3306 nce_refrele(old_nce); 3307 } 3308 ire_refrele(nexthop); 3309 3310 mutex_enter(&ire->ire_lock); 3311 old_nce = ire->ire_nce_cache; 3312 if (!IRE_IS_CONDEMNED(ire)) { 3313 nce_refhold(nce); 3314 ire->ire_nce_cache = nce; 3315 } else { 3316 ire->ire_nce_cache = NULL; 3317 } 3318 mutex_exit(&ire->ire_lock); 3319 if (old_nce != NULL) 3320 nce_refrele(old_nce); 3321 3322 nce_refrele(nce); 3323 return (0); 3324 } 3325 3326 /* 3327 * Get a held nce for a given ire. 3328 * In the common case this is just from ire_nce_cache. 3329 * For IRE_MULTICAST this needs to do an explicit lookup since we do not 3330 * have an IRE_MULTICAST per address. 3331 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those 3332 * so they can check whether the NCE went unreachable (as opposed to was 3333 * condemned for some other reason). 3334 */ 3335 nce_t * 3336 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop) 3337 { 3338 nce_t *nce; 3339 3340 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 3341 return (NULL); 3342 3343 /* ire_testhidden should only be set on under-interfaces */ 3344 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3345 3346 mutex_enter(&ire->ire_lock); 3347 nce = ire->ire_nce_cache; 3348 if (nce != NULL) { 3349 nce_refhold(nce); 3350 mutex_exit(&ire->ire_lock); 3351 return (nce); 3352 } 3353 mutex_exit(&ire->ire_lock); 3354 3355 if (ire->ire_type & IRE_MULTICAST) { 3356 ASSERT(ire->ire_ill != NULL); 3357 3358 if (ire->ire_ipversion == IPV4_VERSION) { 3359 ASSERT(v6nexthop == NULL); 3360 3361 nce = arp_nce_init(ire->ire_ill, v4nexthop, 3362 ire->ire_type); 3363 } else { 3364 ASSERT(v6nexthop != NULL); 3365 ASSERT(v4nexthop == 0); 3366 nce = ndp_nce_init(ire->ire_ill, v6nexthop, 3367 ire->ire_type); 3368 } 3369 return (nce); 3370 } 3371 return (NULL); 3372 } 3373 3374 nce_t * 3375 ire_to_nce_pkt(ire_t *ire, mblk_t *mp) 3376 { 3377 ipha_t *ipha; 3378 ip6_t *ip6h; 3379 3380 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 3381 ipha = (ipha_t *)mp->b_rptr; 3382 return (ire_to_nce(ire, ipha->ipha_dst, NULL)); 3383 } else { 3384 ip6h = (ip6_t *)mp->b_rptr; 3385 return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst)); 3386 } 3387 } 3388 3389 /* 3390 * Given an IRE_INTERFACE (that matches more than one address) create 3391 * and return an IRE_IF_CLONE for the specific address. 3392 * Return the generation number. 3393 * Returns NULL is no memory for the IRE. 3394 * Handles both IPv4 and IPv6. 3395 */ 3396 ire_t * 3397 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp) 3398 { 3399 ire_t *ire; 3400 ire_t *nire; 3401 3402 if (ire_if->ire_ipversion == IPV4_VERSION) { 3403 ipaddr_t v4addr; 3404 ipaddr_t mask = IP_HOST_MASK; 3405 3406 ASSERT(IN6_IS_ADDR_V4MAPPED(addr)); 3407 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 3408 3409 ire = ire_create( 3410 (uchar_t *)&v4addr, /* dest address */ 3411 (uchar_t *)&mask, /* mask */ 3412 (uchar_t *)&ire_if->ire_gateway_addr, 3413 IRE_IF_CLONE, /* IRE type */ 3414 ire_if->ire_ill, 3415 ire_if->ire_zoneid, 3416 ire_if->ire_flags | RTF_HOST, 3417 NULL, /* No security attr for IRE_IF_ALL */ 3418 ire_if->ire_ipst); 3419 } else { 3420 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); 3421 ire = ire_create_v6( 3422 addr, /* dest address */ 3423 &ipv6_all_ones, /* mask */ 3424 &ire_if->ire_gateway_addr_v6, /* gateway addr */ 3425 IRE_IF_CLONE, /* IRE type */ 3426 ire_if->ire_ill, 3427 ire_if->ire_zoneid, 3428 ire_if->ire_flags | RTF_HOST, 3429 NULL, /* No security attr for IRE_IF_ALL */ 3430 ire_if->ire_ipst); 3431 } 3432 if (ire == NULL) 3433 return (NULL); 3434 3435 /* Take the metrics, in particular the mtu, from the IRE_IF */ 3436 ire->ire_metrics = ire_if->ire_metrics; 3437 3438 nire = ire_add(ire); 3439 if (nire == NULL) /* Some failure */ 3440 return (NULL); 3441 3442 if (generationp != NULL) 3443 *generationp = nire->ire_generation; 3444 3445 /* 3446 * Make sure races don't add a duplicate by 3447 * catching the case when an identical was returned. 3448 */ 3449 if (nire != ire) { 3450 ASSERT(nire->ire_identical_ref > 1); 3451 ire_delete(nire); 3452 } 3453 return (nire); 3454 } 3455 3456 /* 3457 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the 3458 * ire_dep_children (just walk the ire_dep_sib_next since they are all 3459 * immediate children.) 3460 * Since we hold a lock while we remove them we need to defer the actual 3461 * calls to ire_delete() until we have dropped the lock. This makes things 3462 * less efficient since we restart at the top after dropping the lock. But 3463 * we only run when an IRE_INTERFACE is deleted which is infrquent. 3464 * 3465 * Note that ire_dep_children can be any mixture of offlink routes and 3466 * IRE_IF_CLONE entries. 3467 */ 3468 void 3469 ire_dep_delete_if_clone(ire_t *parent) 3470 { 3471 ip_stack_t *ipst = parent->ire_ipst; 3472 ire_t *child, *next; 3473 3474 restart: 3475 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3476 if (parent->ire_dep_children == NULL) { 3477 rw_exit(&ipst->ips_ire_dep_lock); 3478 return; 3479 } 3480 child = parent->ire_dep_children; 3481 while (child != NULL) { 3482 next = child->ire_dep_sib_next; 3483 if ((child->ire_type & IRE_IF_CLONE) && 3484 !IRE_IS_CONDEMNED(child)) { 3485 ire_refhold(child); 3486 rw_exit(&ipst->ips_ire_dep_lock); 3487 ire_delete(child); 3488 ASSERT(IRE_IS_CONDEMNED(child)); 3489 ire_refrele(child); 3490 goto restart; 3491 } 3492 child = next; 3493 } 3494 rw_exit(&ipst->ips_ire_dep_lock); 3495 } 3496 3497 /* 3498 * ire_pref() is used in recursive route-resolution for a destination to 3499 * determine the preference of an ire, where "preference" is determined 3500 * based on the level of indirection to the destination of the ire. 3501 * A higher preference indicates that fewer lookups are needed to complete 3502 * recursive route lookup. Thus 3503 * ire_pref(RTF_INDIRECT) < ire_pref(IRE_IF_RESOLVER) < ire_pref(IRE_PREF_CLONE) 3504 */ 3505 int 3506 ire_pref(ire_t *ire) 3507 { 3508 if (ire->ire_flags & RTF_INDIRECT) 3509 return (1); 3510 if (ire->ire_type & IRE_OFFLINK) 3511 return (2); 3512 if (ire->ire_type & (IRE_IF_RESOLVER|IRE_IF_NORESOLVER)) 3513 return (3); 3514 if (ire->ire_type & IRE_IF_CLONE) 3515 return (4); 3516 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) 3517 return (5); 3518 return (-1); /* unknown ire_type */ 3519 } 3520