xref: /titanic_51/usr/src/uts/common/inet/ip/ip_ire.c (revision 8f514e743bde41fe7e0ca48510a6d4c40ca51c23)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 1990 Mentat Inc.
24  */
25 
26 /*
27  * This file contains routines that manipulate Internet Routing Entries (IREs).
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/stropts.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 #include <sys/policy.h>
38 
39 #include <sys/systm.h>
40 #include <sys/kmem.h>
41 #include <sys/param.h>
42 #include <sys/socket.h>
43 #include <net/if.h>
44 #include <net/route.h>
45 #include <netinet/in.h>
46 #include <net/if_dl.h>
47 #include <netinet/ip6.h>
48 #include <netinet/icmp6.h>
49 
50 #include <inet/common.h>
51 #include <inet/mi.h>
52 #include <inet/ip.h>
53 #include <inet/ip6.h>
54 #include <inet/ip_ndp.h>
55 #include <inet/arp.h>
56 #include <inet/ip_if.h>
57 #include <inet/ip_ire.h>
58 #include <inet/ip_ftable.h>
59 #include <inet/ip_rts.h>
60 #include <inet/nd.h>
61 #include <inet/tunables.h>
62 
63 #include <inet/tcp.h>
64 #include <inet/ipclassifier.h>
65 #include <sys/zone.h>
66 #include <sys/cpuvar.h>
67 
68 #include <sys/tsol/label.h>
69 #include <sys/tsol/tnet.h>
70 
71 struct kmem_cache *rt_entry_cache;
72 
73 typedef struct nce_clookup_s {
74 	ipaddr_t ncecl_addr;
75 	boolean_t ncecl_found;
76 } nce_clookup_t;
77 
78 /*
79  * Synchronization notes:
80  *
81  * The fields of the ire_t struct are protected in the following way :
82  *
83  * ire_next/ire_ptpn
84  *
85  *	- bucket lock of the forwarding table in which is ire stored.
86  *
87  * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask,
88  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags,
89  * ire_bucket
90  *
91  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
92  *	  we don't need a lock whenever these fields are accessed.
93  *
94  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
95  *        ire_add before inserting in the bucket and never
96  *        changes after that. Thus we don't need a lock whenever these
97  *	  fields are accessed.
98  *
99  * ire_gateway_addr_v4[v6]
100  *
101  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
102  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
103  *	  it assumed to be atomic and hence the other parts of the code
104  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
105  *	  and hence any access to it uses ire_lock to get/set the right value.
106  *
107  * ire_refcnt, ire_identical_ref
108  *
109  *	- Updated atomically using atomic_add_32
110  *
111  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
112  *
113  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
114  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
115  *
116  * ire_generation
117  *	- Under ire_lock
118  *
119  * ire_nce_cache
120  *	- Under ire_lock
121  *
122  * ire_dep_parent (To next IRE in recursive lookup chain)
123  *	- Under ips_ire_dep_lock. Write held when modifying. Read held when
124  *	  walking. We also hold ire_lock when modifying to allow the data path
125  *	  to only acquire ire_lock.
126  *
127  * ire_dep_parent_generation (Generation number from ire_dep_parent)
128  *	- Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock
129  *	  and ire_lock held when modifying)
130  *
131  * ire_dep_children (From parent to first child)
132  * ire_dep_sib_next (linked list of siblings)
133  * ire_dep_sib_ptpn (linked list of siblings)
134  *	- Under ips_ire_dep_lock. Write held when modifying. Read held when
135  *	  walking.
136  *
137  * As we always hold the bucket locks in all the places while accessing
138  * the above values, it is natural to use them for protecting them.
139  *
140  * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table
141  * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
142  * structures. ip_forwarding_table_v6 is allocated dynamically in
143  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
144  * initializing the same bucket. Once a bucket is initialized, it is never
145  * de-alloacted. This assumption enables us to access
146  * ip_forwarding_table_v6[i] without any locks.
147  *
148  * The forwarding table for IPv4 is a radix tree whose leaves
149  * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
150  * for IPv4 is dynamically allocated and freed.
151  *
152  * Each irb_t - ire bucket structure has a lock to protect
153  * a bucket and the ires residing in the bucket have a back pointer to
154  * the bucket structure. It also has a reference count for the number
155  * of threads walking the bucket - irb_refcnt which is bumped up
156  * using the irb_refhold function. The flags irb_marks can be
157  * set to IRB_MARK_CONDEMNED indicating that there are some ires
158  * in this bucket that are IRE_IS_CONDEMNED and the
159  * last thread to leave the bucket should delete the ires. Usually
160  * this is done by the irb_refrele function which is used to decrement
161  * the reference count on a bucket. See comments above irb_t structure
162  * definition in ip.h for further details.
163  *
164  * The ire_refhold/ire_refrele functions operate on the ire which increments/
165  * decrements the reference count, ire_refcnt, atomically on the ire.
166  * ire_refcnt is modified only using those functions. Operations on the IRE
167  * could be described as follows :
168  *
169  * CREATE an ire with reference count initialized to 1.
170  *
171  * ADDITION of an ire holds the bucket lock, checks for duplicates
172  * and then adds the ire. ire_add returns the ire after
173  * bumping up once more i.e the reference count is 2. This is to avoid
174  * an extra lookup in the functions calling ire_add which wants to
175  * work with the ire after adding.
176  *
177  * LOOKUP of an ire bumps up the reference count using ire_refhold
178  * function. It is valid to bump up the referece count of the IRE,
179  * after the lookup has returned an ire. Following are the lookup
180  * functions that return an HELD ire :
181  *
182  * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6]
183  *
184  * DELETION of an ire holds the bucket lock, removes it from the list
185  * and then decrements the reference count for having removed from the list
186  * by using the ire_refrele function. If some other thread has looked up
187  * the ire, the reference count would have been bumped up and hence
188  * this ire will not be freed once deleted. It will be freed once the
189  * reference count drops to zero.
190  *
191  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
192  * lookups acquire the bucket lock as RW_READER.
193  *
194  * The general rule is to do the ire_refrele in the function
195  * that is passing the ire as an argument.
196  *
197  * In trying to locate ires the following points are to be noted.
198  *
199  * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is
200  * to be ignored when walking the ires using ire_next.
201  *
202  * Zones note:
203  *	Walking IREs within a given zone also walks certain ires in other
204  *	zones.  This is done intentionally.  IRE walks with a specified
205  *	zoneid are used only when doing informational reports, and
206  *	zone users want to see things that they can access. See block
207  *	comment in ire_walk_ill_match().
208  */
209 
210 /*
211  * The size of the forwarding table.  We will make sure that it is a
212  * power of 2 in ip_ire_init().
213  * Setable in /etc/system
214  */
215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
216 
217 struct	kmem_cache	*ire_cache;
218 struct	kmem_cache	*ncec_cache;
219 struct	kmem_cache	*nce_cache;
220 
221 static ire_t	ire_null;
222 
223 static ire_t	*ire_add_v4(ire_t *ire);
224 static void	ire_delete_v4(ire_t *ire);
225 static void	ire_dep_invalidate_children(ire_t *child);
226 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
227     zoneid_t zoneid, ip_stack_t *);
228 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
229     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
230 #ifdef DEBUG
231 static void	ire_trace_cleanup(const ire_t *);
232 #endif
233 static void	ire_dep_incr_generation_locked(ire_t *);
234 
235 /*
236  * Following are the functions to increment/decrement the reference
237  * count of the IREs and IRBs (ire bucket).
238  *
239  * 1) We bump up the reference count of an IRE to make sure that
240  *    it does not get deleted and freed while we are using it.
241  *    Typically all the lookup functions hold the bucket lock,
242  *    and look for the IRE. If it finds an IRE, it bumps up the
243  *    reference count before dropping the lock. Sometimes we *may* want
244  *    to bump up the reference count after we *looked* up i.e without
245  *    holding the bucket lock. So, the ire_refhold function does not assert
246  *    on the bucket lock being held. Any thread trying to delete from
247  *    the hash bucket can still do so but cannot free the IRE if
248  *    ire_refcnt is not 0.
249  *
250  * 2) We bump up the reference count on the bucket where the IRE resides
251  *    (IRB), when we want to prevent the IREs getting deleted from a given
252  *    hash bucket. This makes life easier for ire_walk type functions which
253  *    wants to walk the IRE list, call a function, but needs to drop
254  *    the bucket lock to prevent recursive rw_enters. While the
255  *    lock is dropped, the list could be changed by other threads or
256  *    the same thread could end up deleting the ire or the ire pointed by
257  *    ire_next. ire_refholding the ire or ire_next is not sufficient as
258  *    a delete will still remove the ire from the bucket while we have
259  *    dropped the lock and hence the ire_next would be NULL. Thus, we
260  *    need a mechanism to prevent deletions from a given bucket.
261  *
262  *    To prevent deletions, we bump up the reference count on the
263  *    bucket. If the bucket is held, ire_delete just marks both
264  *    the ire and irb as CONDEMNED. When the
265  *    reference count on the bucket drops to zero, all the CONDEMNED ires
266  *    are deleted. We don't have to bump up the reference count on the
267  *    bucket if we are walking the bucket and never have to drop the bucket
268  *    lock. Note that irb_refhold does not prevent addition of new ires
269  *    in the list. It is okay because addition of new ires will not cause
270  *    ire_next to point to freed memory. We do irb_refhold only when
271  *    all of the 3 conditions are true :
272  *
273  *    1) The code needs to walk the IRE bucket from start to end.
274  *    2) It may have to drop the bucket lock sometimes while doing (1)
275  *    3) It does not want any ires to be deleted meanwhile.
276  */
277 
278 /*
279  * Bump up the reference count on the hash bucket - IRB to
280  * prevent ires from being deleted in this bucket.
281  */
282 void
283 irb_refhold(irb_t *irb)
284 {
285 	rw_enter(&irb->irb_lock, RW_WRITER);
286 	irb->irb_refcnt++;
287 	ASSERT(irb->irb_refcnt != 0);
288 	rw_exit(&irb->irb_lock);
289 }
290 
291 void
292 irb_refhold_locked(irb_t *irb)
293 {
294 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
295 	irb->irb_refcnt++;
296 	ASSERT(irb->irb_refcnt != 0);
297 }
298 
299 /*
300  * Note: when IRB_MARK_DYNAMIC is not set the irb_t
301  * is statically allocated, so that when the irb_refcnt goes to 0,
302  * we simply clean up the ire list and continue.
303  */
304 void
305 irb_refrele(irb_t *irb)
306 {
307 	if (irb->irb_marks & IRB_MARK_DYNAMIC) {
308 		irb_refrele_ftable(irb);
309 	} else {
310 		rw_enter(&irb->irb_lock, RW_WRITER);
311 		ASSERT(irb->irb_refcnt != 0);
312 		if (--irb->irb_refcnt	== 0 &&
313 		    (irb->irb_marks & IRB_MARK_CONDEMNED)) {
314 			ire_t *ire_list;
315 
316 			ire_list = ire_unlink(irb);
317 			rw_exit(&irb->irb_lock);
318 			ASSERT(ire_list != NULL);
319 			ire_cleanup(ire_list);
320 		} else {
321 			rw_exit(&irb->irb_lock);
322 		}
323 	}
324 }
325 
326 
327 /*
328  * Bump up the reference count on the IRE. We cannot assert that the
329  * bucket lock is being held as it is legal to bump up the reference
330  * count after the first lookup has returned the IRE without
331  * holding the lock.
332  */
333 void
334 ire_refhold(ire_t *ire)
335 {
336 	atomic_add_32(&(ire)->ire_refcnt, 1);
337 	ASSERT((ire)->ire_refcnt != 0);
338 #ifdef DEBUG
339 	ire_trace_ref(ire);
340 #endif
341 }
342 
343 void
344 ire_refhold_notr(ire_t *ire)
345 {
346 	atomic_add_32(&(ire)->ire_refcnt, 1);
347 	ASSERT((ire)->ire_refcnt != 0);
348 }
349 
350 void
351 ire_refhold_locked(ire_t *ire)
352 {
353 #ifdef DEBUG
354 	ire_trace_ref(ire);
355 #endif
356 	ire->ire_refcnt++;
357 }
358 
359 /*
360  * Release a ref on an IRE.
361  *
362  * Must not be called while holding any locks. Otherwise if this is
363  * the last reference to be released there is a chance of recursive mutex
364  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
365  * to restart an ioctl. The one exception is when the caller is sure that
366  * this is not the last reference to be released. Eg. if the caller is
367  * sure that the ire has not been deleted and won't be deleted.
368  *
369  * In architectures e.g sun4u, where atomic_add_32_nv is just
370  * a cas, we need to maintain the right memory barrier semantics
371  * as that of mutex_exit i.e all the loads and stores should complete
372  * before the cas is executed. membar_exit() does that here.
373  */
374 void
375 ire_refrele(ire_t *ire)
376 {
377 #ifdef DEBUG
378 	ire_untrace_ref(ire);
379 #endif
380 	ASSERT((ire)->ire_refcnt != 0);
381 	membar_exit();
382 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)
383 		ire_inactive(ire);
384 }
385 
386 void
387 ire_refrele_notr(ire_t *ire)
388 {
389 	ASSERT((ire)->ire_refcnt != 0);
390 	membar_exit();
391 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)
392 		ire_inactive(ire);
393 }
394 
395 /*
396  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
397  * IOCTL[s].  The NO_REPLY form is used by TCP to tell IP that it is
398  * having problems reaching a particular destination.
399  * This will make IP consider alternate routes (e.g., when there are
400  * muliple default routes), and it will also make IP discard any (potentially)
401  * stale redirect.
402  * Management processes may want to use the version that generates a reply.
403  *
404  * With the use of NUD like behavior for IPv4/ARP in addition to IPv6
405  * this function shouldn't be necessary for IP to recover from a bad redirect,
406  * a bad default router (when there are multiple default routers), or
407  * a stale ND/ARP entry. But we retain it in any case.
408  * For instance, this is helpful when TCP suspects a failure before NUD does.
409  */
410 int
411 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
412 {
413 	uchar_t		*addr_ucp;
414 	uint_t		ipversion;
415 	sin_t		*sin;
416 	sin6_t		*sin6;
417 	ipaddr_t	v4addr;
418 	in6_addr_t	v6addr;
419 	ire_t		*ire;
420 	ipid_t		*ipid;
421 	zoneid_t	zoneid;
422 	ip_stack_t	*ipst;
423 
424 	ASSERT(q->q_next == NULL);
425 	zoneid = IPCL_ZONEID(Q_TO_CONN(q));
426 	ipst = CONNQ_TO_IPST(q);
427 
428 	/*
429 	 * Check privilege using the ioctl credential; if it is NULL
430 	 * then this is a kernel message and therefor privileged.
431 	 */
432 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
433 		return (EPERM);
434 
435 	ipid = (ipid_t *)mp->b_rptr;
436 
437 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
438 	    ipid->ipid_addr_length);
439 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
440 		return (EINVAL);
441 	switch (ipid->ipid_addr_length) {
442 	case sizeof (sin_t):
443 		/*
444 		 * got complete (sockaddr) address - increment addr_ucp to point
445 		 * at the ip_addr field.
446 		 */
447 		sin = (sin_t *)addr_ucp;
448 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
449 		ipversion = IPV4_VERSION;
450 		break;
451 	case sizeof (sin6_t):
452 		/*
453 		 * got complete (sockaddr) address - increment addr_ucp to point
454 		 * at the ip_addr field.
455 		 */
456 		sin6 = (sin6_t *)addr_ucp;
457 		addr_ucp = (uchar_t *)&sin6->sin6_addr;
458 		ipversion = IPV6_VERSION;
459 		break;
460 	default:
461 		return (EINVAL);
462 	}
463 	if (ipversion == IPV4_VERSION) {
464 		/* Extract the destination address. */
465 		bcopy(addr_ucp, &v4addr, IP_ADDR_LEN);
466 
467 		ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
468 		    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
469 	} else {
470 		/* Extract the destination address. */
471 		bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN);
472 
473 		ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL,
474 		    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
475 	}
476 	if (ire != NULL) {
477 		if (ipversion == IPV4_VERSION) {
478 			ip_rts_change(RTM_LOSING, ire->ire_addr,
479 			    ire->ire_gateway_addr, ire->ire_mask,
480 			    (Q_TO_CONN(q))->conn_laddr_v4,  0, 0, 0,
481 			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
482 			    ire->ire_ipst);
483 		}
484 		(void) ire_no_good(ire);
485 		ire_refrele(ire);
486 	}
487 	return (0);
488 }
489 
490 /*
491  * Initialize the ire that is specific to IPv4 part and call
492  * ire_init_common to finish it.
493  * Returns zero or errno.
494  */
495 int
496 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway,
497     ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags,
498     tsol_gc_t *gc, ip_stack_t *ipst)
499 {
500 	int error;
501 
502 	/*
503 	 * Reject IRE security attribute creation/initialization
504 	 * if system is not running in Trusted mode.
505 	 */
506 	if (gc != NULL && !is_system_labeled())
507 		return (EINVAL);
508 
509 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
510 
511 	if (addr != NULL)
512 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
513 	if (gateway != NULL)
514 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
515 
516 	/* Make sure we don't have stray values in some fields */
517 	switch (type) {
518 	case IRE_LOOPBACK:
519 	case IRE_HOST:
520 	case IRE_BROADCAST:
521 	case IRE_LOCAL:
522 	case IRE_IF_CLONE:
523 		ire->ire_mask = IP_HOST_MASK;
524 		ire->ire_masklen = IPV4_ABITS;
525 		break;
526 	case IRE_PREFIX:
527 	case IRE_DEFAULT:
528 	case IRE_IF_RESOLVER:
529 	case IRE_IF_NORESOLVER:
530 		if (mask != NULL) {
531 			bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
532 			ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
533 		}
534 		break;
535 	case IRE_MULTICAST:
536 	case IRE_NOROUTE:
537 		ASSERT(mask == NULL);
538 		break;
539 	default:
540 		ASSERT(0);
541 		return (EINVAL);
542 	}
543 
544 	error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION,
545 	    gc, ipst);
546 	if (error != NULL)
547 		return (error);
548 
549 	/* Determine which function pointers to use */
550 	ire->ire_postfragfn = ip_xmit;		/* Common case */
551 
552 	switch (ire->ire_type) {
553 	case IRE_LOCAL:
554 		ire->ire_sendfn = ire_send_local_v4;
555 		ire->ire_recvfn = ire_recv_local_v4;
556 		ASSERT(ire->ire_ill != NULL);
557 		if (ire->ire_ill->ill_flags & ILLF_NOACCEPT)
558 			ire->ire_recvfn = ire_recv_noaccept_v6;
559 		break;
560 	case IRE_LOOPBACK:
561 		ire->ire_sendfn = ire_send_local_v4;
562 		ire->ire_recvfn = ire_recv_loopback_v4;
563 		break;
564 	case IRE_BROADCAST:
565 		ire->ire_postfragfn = ip_postfrag_loopcheck;
566 		ire->ire_sendfn = ire_send_broadcast_v4;
567 		ire->ire_recvfn = ire_recv_broadcast_v4;
568 		break;
569 	case IRE_MULTICAST:
570 		ire->ire_postfragfn = ip_postfrag_loopcheck;
571 		ire->ire_sendfn = ire_send_multicast_v4;
572 		ire->ire_recvfn = ire_recv_multicast_v4;
573 		break;
574 	default:
575 		/*
576 		 * For IRE_IF_ALL and IRE_OFFLINK we forward received
577 		 * packets by default.
578 		 */
579 		ire->ire_sendfn = ire_send_wire_v4;
580 		ire->ire_recvfn = ire_recv_forward_v4;
581 		break;
582 	}
583 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
584 		ire->ire_sendfn = ire_send_noroute_v4;
585 		ire->ire_recvfn = ire_recv_noroute_v4;
586 	} else if (ire->ire_flags & RTF_MULTIRT) {
587 		ire->ire_postfragfn = ip_postfrag_multirt_v4;
588 		ire->ire_sendfn = ire_send_multirt_v4;
589 		/* Multirt receive of broadcast uses ire_recv_broadcast_v4 */
590 		if (ire->ire_type != IRE_BROADCAST)
591 			ire->ire_recvfn = ire_recv_multirt_v4;
592 	}
593 	ire->ire_nce_capable = ire_determine_nce_capable(ire);
594 	return (0);
595 }
596 
597 /*
598  * Determine ire_nce_capable
599  */
600 boolean_t
601 ire_determine_nce_capable(ire_t *ire)
602 {
603 	int max_masklen;
604 
605 	if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
606 	    (ire->ire_type & IRE_MULTICAST))
607 		return (B_TRUE);
608 
609 	if (ire->ire_ipversion == IPV4_VERSION)
610 		max_masklen = IPV4_ABITS;
611 	else
612 		max_masklen = IPV6_ABITS;
613 
614 	if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen)
615 		return (B_TRUE);
616 	return (B_FALSE);
617 }
618 
619 /*
620  * ire_create is called to allocate and initialize a new IRE.
621  *
622  * NOTE : This is called as writer sometimes though not required
623  * by this function.
624  */
625 ire_t *
626 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway,
627     ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc,
628     ip_stack_t *ipst)
629 {
630 	ire_t	*ire;
631 	int	error;
632 
633 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
634 	if (ire == NULL) {
635 		DTRACE_PROBE(kmem__cache__alloc);
636 		return (NULL);
637 	}
638 	*ire = ire_null;
639 
640 	error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags,
641 	    gc, ipst);
642 	if (error != 0) {
643 		DTRACE_PROBE2(ire__init, ire_t *, ire, int, error);
644 		kmem_cache_free(ire_cache, ire);
645 		return (NULL);
646 	}
647 	return (ire);
648 }
649 
650 /*
651  * Common to IPv4 and IPv6
652  * Returns zero or errno.
653  */
654 int
655 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid,
656     uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst)
657 {
658 	int error;
659 
660 #ifdef DEBUG
661 	if (ill != NULL) {
662 		if (ill->ill_isv6)
663 			ASSERT(ipversion == IPV6_VERSION);
664 		else
665 			ASSERT(ipversion == IPV4_VERSION);
666 	}
667 #endif /* DEBUG */
668 
669 	/*
670 	 * Create/initialize IRE security attribute only in Trusted mode;
671 	 * if the passed in gc is non-NULL, we expect that the caller
672 	 * has held a reference to it and will release it when this routine
673 	 * returns a failure, otherwise we own the reference.  We do this
674 	 * prior to initializing the rest IRE fields.
675 	 */
676 	if (is_system_labeled()) {
677 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
678 		    IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) {
679 			/* release references on behalf of caller */
680 			if (gc != NULL)
681 				GC_REFRELE(gc);
682 		} else {
683 			error = tsol_ire_init_gwattr(ire, ipversion, gc);
684 			if (error != 0)
685 				return (error);
686 		}
687 	}
688 
689 	ire->ire_type = type;
690 	ire->ire_flags = RTF_UP | flags;
691 	ire->ire_create_time = (uint32_t)gethrestime_sec();
692 	ire->ire_generation = IRE_GENERATION_INITIAL;
693 
694 	/*
695 	 * The ill_ire_cnt isn't increased until
696 	 * the IRE is added to ensure that a walker will find
697 	 * all IREs that hold a reference on an ill.
698 	 *
699 	 * Note that ill_ire_multicast doesn't hold a ref on the ill since
700 	 * ire_add() is not called for the IRE_MULTICAST.
701 	 */
702 	ire->ire_ill = ill;
703 	ire->ire_zoneid = zoneid;
704 	ire->ire_ipversion = ipversion;
705 
706 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
707 	ire->ire_refcnt = 1;
708 	ire->ire_identical_ref = 1;	/* Number of ire_delete's needed */
709 	ire->ire_ipst = ipst;	/* No netstack_hold */
710 	ire->ire_trace_disable = B_FALSE;
711 
712 	return (0);
713 }
714 
715 /*
716  * This creates an IRE_BROADCAST based on the arguments.
717  * A mirror is ire_lookup_bcast().
718  *
719  * Any supression of unneeded ones is done in ire_add_v4.
720  * We add one IRE_BROADCAST per address. ire_send_broadcast_v4()
721  * takes care of generating a loopback copy of the packet.
722  */
723 ire_t **
724 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep)
725 {
726 	ip_stack_t	*ipst = ill->ill_ipst;
727 
728 	ASSERT(IAM_WRITER_ILL(ill));
729 
730 	*irep++ = ire_create(
731 	    (uchar_t *)&addr,			/* dest addr */
732 	    (uchar_t *)&ip_g_all_ones,		/* mask */
733 	    NULL,				/* no gateway */
734 	    IRE_BROADCAST,
735 	    ill,
736 	    zoneid,
737 	    RTF_KERNEL,
738 	    NULL,
739 	    ipst);
740 
741 	return (irep);
742 }
743 
744 /*
745  * This looks up an IRE_BROADCAST based on the arguments.
746  * Mirrors ire_create_bcast().
747  */
748 ire_t *
749 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
750 {
751 	ire_t		*ire;
752 	int		match_args;
753 
754 	match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW |
755 	    MATCH_IRE_MASK | MATCH_IRE_ZONEONLY;
756 
757 	if (IS_UNDER_IPMP(ill))
758 		match_args |= MATCH_IRE_TESTHIDDEN;
759 
760 	ire = ire_ftable_lookup_v4(
761 	    addr,				/* dest addr */
762 	    ip_g_all_ones,			/* mask */
763 	    0,					/* no gateway */
764 	    IRE_BROADCAST,
765 	    ill,
766 	    zoneid,
767 	    NULL,
768 	    match_args,
769 	    0,
770 	    ill->ill_ipst,
771 	    NULL);
772 	return (ire);
773 }
774 
775 /* Arrange to call the specified function for every IRE in the world. */
776 void
777 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
778 {
779 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
780 }
781 
782 void
783 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
784 {
785 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
786 }
787 
788 void
789 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
790 {
791 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
792 }
793 
794 /*
795  * Walk a particular version. version == 0 means both v4 and v6.
796  */
797 static void
798 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
799     ip_stack_t *ipst)
800 {
801 	if (vers != IPV6_VERSION) {
802 		/*
803 		 * ip_forwarding_table variable doesn't matter for IPv4 since
804 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
805 		 */
806 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
807 		    0, NULL,
808 		    NULL, zoneid, ipst);
809 	}
810 	if (vers != IPV4_VERSION) {
811 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
812 		    ipst->ips_ip6_ftable_hash_size,
813 		    ipst->ips_ip_forwarding_table_v6,
814 		    NULL, zoneid, ipst);
815 	}
816 }
817 
818 /*
819  * Arrange to call the specified function for every IRE that matches the ill.
820  */
821 void
822 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
823     ill_t *ill)
824 {
825 	uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION);
826 
827 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill);
828 }
829 
830 /*
831  * Walk a particular ill and version.
832  */
833 static void
834 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
835     void *arg, uchar_t vers, ill_t *ill)
836 {
837 	ip_stack_t	*ipst = ill->ill_ipst;
838 
839 	if (vers == IPV4_VERSION) {
840 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
841 		    IP_MASK_TABLE_SIZE,
842 		    0, NULL,
843 		    ill, ALL_ZONES, ipst);
844 	}
845 	if (vers != IPV4_VERSION) {
846 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
847 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
848 		    ipst->ips_ip_forwarding_table_v6,
849 		    ill, ALL_ZONES, ipst);
850 	}
851 }
852 
853 /*
854  * Do the specific matching of IREs to shared-IP zones.
855  *
856  * We have the same logic as in ire_match_args but implemented slightly
857  * differently.
858  */
859 boolean_t
860 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
861     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
862 {
863 	ill_t *dst_ill = ire->ire_ill;
864 
865 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
866 
867 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
868 	    ire->ire_zoneid != ALL_ZONES) {
869 		/*
870 		 * We're walking the IREs for a specific zone. The only relevant
871 		 * IREs are:
872 		 * - all IREs with a matching ire_zoneid
873 		 * - IRE_IF_ALL IREs for interfaces with a usable source addr
874 		 *   with a matching zone
875 		 * - IRE_OFFLINK with a gateway reachable from the zone
876 		 * Note that ealier we only did the IRE_OFFLINK check for
877 		 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs).
878 		 */
879 		if (ire->ire_type & IRE_ONLINK) {
880 			uint_t	ifindex;
881 
882 			/*
883 			 * Note there is no IRE_INTERFACE on vniN thus
884 			 * can't do an IRE lookup for a matching route.
885 			 */
886 			ifindex = dst_ill->ill_usesrc_ifindex;
887 			if (ifindex == 0)
888 				return (B_FALSE);
889 
890 			/*
891 			 * If there is a usable source address in the
892 			 * zone, then it's ok to return an
893 			 * IRE_INTERFACE
894 			 */
895 			if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
896 			    zoneid, ipst)) {
897 				return (B_FALSE);
898 			}
899 		}
900 		if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
901 			ipif_t	*tipif;
902 
903 			mutex_enter(&dst_ill->ill_lock);
904 			for (tipif = dst_ill->ill_ipif;
905 			    tipif != NULL; tipif = tipif->ipif_next) {
906 				if (!IPIF_IS_CONDEMNED(tipif) &&
907 				    (tipif->ipif_flags & IPIF_UP) &&
908 				    (tipif->ipif_zoneid == zoneid ||
909 				    tipif->ipif_zoneid == ALL_ZONES))
910 					break;
911 			}
912 			mutex_exit(&dst_ill->ill_lock);
913 			if (tipif == NULL) {
914 				return (B_FALSE);
915 			}
916 		}
917 	}
918 	/*
919 	 * Except for ALL_ZONES, we only match the offlink routes
920 	 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid.
921 	 * Since we can have leftover routes after the IP addresses have
922 	 * changed, the global zone will also match offlink routes where the
923 	 * gateway is unreachable from any zone.
924 	 */
925 	if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) {
926 		in6_addr_t gw_addr_v6;
927 		boolean_t reach;
928 
929 		if (ire->ire_ipversion == IPV4_VERSION) {
930 			reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr,
931 			    zoneid, dst_ill, NULL, ipst, B_FALSE);
932 		} else {
933 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
934 			mutex_enter(&ire->ire_lock);
935 			gw_addr_v6 = ire->ire_gateway_addr_v6;
936 			mutex_exit(&ire->ire_lock);
937 
938 			reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid,
939 			    dst_ill, NULL, ipst, B_FALSE);
940 		}
941 		if (!reach) {
942 			if (zoneid != GLOBAL_ZONEID)
943 				return (B_FALSE);
944 
945 			/*
946 			 * Check if ALL_ZONES reachable - if not then let the
947 			 * global zone see it.
948 			 */
949 			if (ire->ire_ipversion == IPV4_VERSION) {
950 				reach = ire_gateway_ok_zone_v4(
951 				    ire->ire_gateway_addr, ALL_ZONES,
952 				    dst_ill, NULL, ipst, B_FALSE);
953 			} else {
954 				reach = ire_gateway_ok_zone_v6(&gw_addr_v6,
955 				    ALL_ZONES, dst_ill, NULL, ipst, B_FALSE);
956 			}
957 			if (reach) {
958 				/*
959 				 * Some other zone could see it, hence hide it
960 				 * in the global zone.
961 				 */
962 				return (B_FALSE);
963 			}
964 		}
965 	}
966 
967 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
968 	    (ire->ire_type & ire_type)) &&
969 	    ((!(match_flags & MATCH_IRE_ILL)) ||
970 	    (dst_ill == ill ||
971 	    dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) {
972 		return (B_TRUE);
973 	}
974 	return (B_FALSE);
975 }
976 
977 int
978 rtfunc(struct radix_node *rn, void *arg)
979 {
980 	struct rtfuncarg *rtf = arg;
981 	struct rt_entry *rt;
982 	irb_t *irb;
983 	ire_t *ire;
984 	boolean_t ret;
985 
986 	rt = (struct rt_entry *)rn;
987 	ASSERT(rt != NULL);
988 	irb = &rt->rt_irb;
989 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
990 		if ((rtf->rt_match_flags != 0) ||
991 		    (rtf->rt_zoneid != ALL_ZONES)) {
992 			ret = ire_walk_ill_match(rtf->rt_match_flags,
993 			    rtf->rt_ire_type, ire,
994 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
995 		} else {
996 			ret = B_TRUE;
997 		}
998 		if (ret)
999 			(*rtf->rt_func)(ire, rtf->rt_arg);
1000 	}
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Walk the ftable entries that match the ill.
1006  */
1007 void
1008 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
1009     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
1010     ill_t *ill, zoneid_t zoneid,
1011     ip_stack_t *ipst)
1012 {
1013 	irb_t	*irb_ptr;
1014 	irb_t	*irb;
1015 	ire_t	*ire;
1016 	int i, j;
1017 	boolean_t ret;
1018 	struct rtfuncarg rtfarg;
1019 
1020 	ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL));
1021 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
1022 
1023 	/* knobs such that routine is called only for v6 case */
1024 	if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
1025 		for (i = (ftbl_sz - 1);  i >= 0; i--) {
1026 			if ((irb_ptr = ipftbl[i]) == NULL)
1027 				continue;
1028 			for (j = 0; j < htbl_sz; j++) {
1029 				irb = &irb_ptr[j];
1030 				if (irb->irb_ire == NULL)
1031 					continue;
1032 
1033 				irb_refhold(irb);
1034 				for (ire = irb->irb_ire; ire != NULL;
1035 				    ire = ire->ire_next) {
1036 					if (match_flags == 0 &&
1037 					    zoneid == ALL_ZONES) {
1038 						ret = B_TRUE;
1039 					} else {
1040 						ret =
1041 						    ire_walk_ill_match(
1042 						    match_flags,
1043 						    ire_type, ire, ill,
1044 						    zoneid, ipst);
1045 					}
1046 					if (ret)
1047 						(*func)(ire, arg);
1048 				}
1049 				irb_refrele(irb);
1050 			}
1051 		}
1052 	} else {
1053 		bzero(&rtfarg, sizeof (rtfarg));
1054 		rtfarg.rt_func = func;
1055 		rtfarg.rt_arg = arg;
1056 		if (match_flags != 0) {
1057 			rtfarg.rt_match_flags = match_flags;
1058 		}
1059 		rtfarg.rt_ire_type = ire_type;
1060 		rtfarg.rt_ill = ill;
1061 		rtfarg.rt_zoneid = zoneid;
1062 		rtfarg.rt_ipst = ipst;	/* No netstack_hold */
1063 		(void) ipst->ips_ip_ftable->rnh_walktree_mt(
1064 		    ipst->ips_ip_ftable,
1065 		    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
1066 	}
1067 }
1068 
1069 /*
1070  * This function takes a mask and returns
1071  * number of bits set in the mask. If no
1072  * bit is set it returns 0.
1073  * Assumes a contiguous mask.
1074  */
1075 int
1076 ip_mask_to_plen(ipaddr_t mask)
1077 {
1078 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
1079 }
1080 
1081 /*
1082  * Convert length for a mask to the mask.
1083  */
1084 ipaddr_t
1085 ip_plen_to_mask(uint_t masklen)
1086 {
1087 	if (masklen == 0)
1088 		return (0);
1089 
1090 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
1091 }
1092 
1093 void
1094 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
1095 {
1096 	ill_t		*ill;
1097 
1098 	ill = ire->ire_ill;
1099 	if (ill != NULL)
1100 		mutex_exit(&ill->ill_lock);
1101 	rw_exit(&irb_ptr->irb_lock);
1102 }
1103 
1104 /*
1105  * ire_add_v[46] atomically make sure that the ill associated
1106  * with the new ire is not going away i.e., we check ILL_CONDEMNED.
1107  */
1108 int
1109 ire_atomic_start(irb_t *irb_ptr, ire_t *ire)
1110 {
1111 	ill_t		*ill;
1112 
1113 	ill = ire->ire_ill;
1114 
1115 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
1116 	if (ill != NULL) {
1117 		mutex_enter(&ill->ill_lock);
1118 
1119 		/*
1120 		 * Don't allow IRE's to be created on dying ills.
1121 		 */
1122 		if (ill->ill_state_flags & ILL_CONDEMNED) {
1123 			ire_atomic_end(irb_ptr, ire);
1124 			return (ENXIO);
1125 		}
1126 
1127 		if (IS_UNDER_IPMP(ill)) {
1128 			int	error = 0;
1129 			mutex_enter(&ill->ill_phyint->phyint_lock);
1130 			if (!ipmp_ill_is_active(ill) &&
1131 			    IRE_HIDDEN_TYPE(ire->ire_type) &&
1132 			    !ire->ire_testhidden) {
1133 				error = EINVAL;
1134 			}
1135 			mutex_exit(&ill->ill_phyint->phyint_lock);
1136 			if (error != 0) {
1137 				ire_atomic_end(irb_ptr, ire);
1138 				return (error);
1139 			}
1140 		}
1141 
1142 	}
1143 	return (0);
1144 }
1145 
1146 /*
1147  * Add a fully initialized IRE to the forwarding table.
1148  * This returns NULL on failure, or a held IRE on success.
1149  * Normally the returned IRE is the same as the argument. But a different
1150  * IRE will be returned if the added IRE is deemed identical to an existing
1151  * one. In that case ire_identical_ref will be increased.
1152  * The caller always needs to do an ire_refrele() on the returned IRE.
1153  */
1154 ire_t *
1155 ire_add(ire_t *ire)
1156 {
1157 	if (IRE_HIDDEN_TYPE(ire->ire_type) &&
1158 	    ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) {
1159 		/*
1160 		 * IREs hosted on interfaces that are under IPMP
1161 		 * should be hidden so that applications don't
1162 		 * accidentally end up sending packets with test
1163 		 * addresses as their source addresses, or
1164 		 * sending out interfaces that are e.g. IFF_INACTIVE.
1165 		 * Hide them here.
1166 		 */
1167 		ire->ire_testhidden = B_TRUE;
1168 	}
1169 
1170 	if (ire->ire_ipversion == IPV6_VERSION)
1171 		return (ire_add_v6(ire));
1172 	else
1173 		return (ire_add_v4(ire));
1174 }
1175 
1176 /*
1177  * Add a fully initialized IPv4 IRE to the forwarding table.
1178  * This returns NULL on failure, or a held IRE on success.
1179  * Normally the returned IRE is the same as the argument. But a different
1180  * IRE will be returned if the added IRE is deemed identical to an existing
1181  * one. In that case ire_identical_ref will be increased.
1182  * The caller always needs to do an ire_refrele() on the returned IRE.
1183  */
1184 static ire_t *
1185 ire_add_v4(ire_t *ire)
1186 {
1187 	ire_t	*ire1;
1188 	irb_t	*irb_ptr;
1189 	ire_t	**irep;
1190 	int	match_flags;
1191 	int	error;
1192 	ip_stack_t	*ipst = ire->ire_ipst;
1193 
1194 	if (ire->ire_ill != NULL)
1195 		ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock));
1196 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1197 
1198 	/* Make sure the address is properly masked. */
1199 	ire->ire_addr &= ire->ire_mask;
1200 
1201 	match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
1202 
1203 	if (ire->ire_ill != NULL) {
1204 		match_flags |= MATCH_IRE_ILL;
1205 	}
1206 	irb_ptr = ire_get_bucket(ire);
1207 	if (irb_ptr == NULL) {
1208 		printf("no bucket for %p\n", (void *)ire);
1209 		ire_delete(ire);
1210 		return (NULL);
1211 	}
1212 
1213 	/*
1214 	 * Start the atomic add of the ire. Grab the ill lock,
1215 	 * the bucket lock. Check for condemned.
1216 	 */
1217 	error = ire_atomic_start(irb_ptr, ire);
1218 	if (error != 0) {
1219 		printf("no ire_atomic_start for %p\n", (void *)ire);
1220 		ire_delete(ire);
1221 		irb_refrele(irb_ptr);
1222 		return (NULL);
1223 	}
1224 	/*
1225 	 * If we are creating a hidden IRE, make sure we search for
1226 	 * hidden IREs when searching for duplicates below.
1227 	 * Otherwise, we might find an IRE on some other interface
1228 	 * that's not marked hidden.
1229 	 */
1230 	if (ire->ire_testhidden)
1231 		match_flags |= MATCH_IRE_TESTHIDDEN;
1232 
1233 	/*
1234 	 * Atomically check for duplicate and insert in the table.
1235 	 */
1236 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
1237 		if (IRE_IS_CONDEMNED(ire1))
1238 			continue;
1239 		/*
1240 		 * Here we need an exact match on zoneid, i.e.,
1241 		 * ire_match_args doesn't fit.
1242 		 */
1243 		if (ire1->ire_zoneid != ire->ire_zoneid)
1244 			continue;
1245 
1246 		if (ire1->ire_type != ire->ire_type)
1247 			continue;
1248 
1249 		/*
1250 		 * Note: We do not allow multiple routes that differ only
1251 		 * in the gateway security attributes; such routes are
1252 		 * considered duplicates.
1253 		 * To change that we explicitly have to treat them as
1254 		 * different here.
1255 		 */
1256 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
1257 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ill,
1258 		    ire->ire_zoneid, NULL, match_flags)) {
1259 			/*
1260 			 * Return the old ire after doing a REFHOLD.
1261 			 * As most of the callers continue to use the IRE
1262 			 * after adding, we return a held ire. This will
1263 			 * avoid a lookup in the caller again. If the callers
1264 			 * don't want to use it, they need to do a REFRELE.
1265 			 *
1266 			 * We only allow exactly one IRE_IF_CLONE for any dst,
1267 			 * so, if the is an IF_CLONE, return the ire without
1268 			 * an identical_ref, but with an ire_ref held.
1269 			 */
1270 			if (ire->ire_type != IRE_IF_CLONE) {
1271 				atomic_add_32(&ire1->ire_identical_ref, 1);
1272 				DTRACE_PROBE2(ire__add__exist, ire_t *, ire1,
1273 				    ire_t *, ire);
1274 			}
1275 			ire_refhold(ire1);
1276 			ire_atomic_end(irb_ptr, ire);
1277 			ire_delete(ire);
1278 			irb_refrele(irb_ptr);
1279 			return (ire1);
1280 		}
1281 	}
1282 
1283 	/*
1284 	 * Normally we do head insertion since most things do not care about
1285 	 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add
1286 	 * assumes we at least do head insertion so that its IRE_BROADCAST
1287 	 * arrive ahead of existing IRE_HOST for the same address.
1288 	 * However, due to shared-IP zones (and restrict_interzone_loopback)
1289 	 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same
1290 	 * address. For that reason we do tail insertion for IRE_IF_CLONE.
1291 	 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket,
1292 	 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT
1293 	 * set.
1294 	 */
1295 	irep = (ire_t **)irb_ptr;
1296 	if ((ire->ire_type & IRE_IF_CLONE) ||
1297 	    ((ire->ire_type & IRE_BROADCAST) &&
1298 	    !(ire->ire_flags & RTF_MULTIRT))) {
1299 		while ((ire1 = *irep) != NULL)
1300 			irep = &ire1->ire_next;
1301 	}
1302 	/* Insert at *irep */
1303 	ire1 = *irep;
1304 	if (ire1 != NULL)
1305 		ire1->ire_ptpn = &ire->ire_next;
1306 	ire->ire_next = ire1;
1307 	/* Link the new one in. */
1308 	ire->ire_ptpn = irep;
1309 
1310 	/*
1311 	 * ire_walk routines de-reference ire_next without holding
1312 	 * a lock. Before we point to the new ire, we want to make
1313 	 * sure the store that sets the ire_next of the new ire
1314 	 * reaches global visibility, so that ire_walk routines
1315 	 * don't see a truncated list of ires i.e if the ire_next
1316 	 * of the new ire gets set after we do "*irep = ire" due
1317 	 * to re-ordering, the ire_walk thread will see a NULL
1318 	 * once it accesses the ire_next of the new ire.
1319 	 * membar_producer() makes sure that the following store
1320 	 * happens *after* all of the above stores.
1321 	 */
1322 	membar_producer();
1323 	*irep = ire;
1324 	ire->ire_bucket = irb_ptr;
1325 	/*
1326 	 * We return a bumped up IRE above. Keep it symmetrical
1327 	 * so that the callers will always have to release. This
1328 	 * helps the callers of this function because they continue
1329 	 * to use the IRE after adding and hence they don't have to
1330 	 * lookup again after we return the IRE.
1331 	 *
1332 	 * NOTE : We don't have to use atomics as this is appearing
1333 	 * in the list for the first time and no one else can bump
1334 	 * up the reference count on this yet.
1335 	 */
1336 	ire_refhold_locked(ire);
1337 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
1338 
1339 	irb_ptr->irb_ire_cnt++;
1340 	if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC)
1341 		irb_ptr->irb_nire++;
1342 
1343 	if (ire->ire_ill != NULL) {
1344 		ire->ire_ill->ill_ire_cnt++;
1345 		ASSERT(ire->ire_ill->ill_ire_cnt != 0);	/* Wraparound */
1346 	}
1347 
1348 	ire_atomic_end(irb_ptr, ire);
1349 
1350 	/* Make any caching of the IREs be notified or updated */
1351 	ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
1352 
1353 	if (ire->ire_ill != NULL)
1354 		ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock));
1355 	irb_refrele(irb_ptr);
1356 	return (ire);
1357 }
1358 
1359 /*
1360  * irb_refrele is the only caller of the function. ire_unlink calls to
1361  * do the final cleanup for this ire.
1362  */
1363 void
1364 ire_cleanup(ire_t *ire)
1365 {
1366 	ire_t *ire_next;
1367 	ip_stack_t *ipst = ire->ire_ipst;
1368 
1369 	ASSERT(ire != NULL);
1370 
1371 	while (ire != NULL) {
1372 		ire_next = ire->ire_next;
1373 		if (ire->ire_ipversion == IPV4_VERSION) {
1374 			ire_delete_v4(ire);
1375 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
1376 			    ire_stats_deleted);
1377 		} else {
1378 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1379 			ire_delete_v6(ire);
1380 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
1381 			    ire_stats_deleted);
1382 		}
1383 		/*
1384 		 * Now it's really out of the list. Before doing the
1385 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
1386 		 * so.
1387 		 */
1388 		ire->ire_next = NULL;
1389 		ire_refrele_notr(ire);
1390 		ire = ire_next;
1391 	}
1392 }
1393 
1394 /*
1395  * irb_refrele is the only caller of the function. It calls to unlink
1396  * all the CONDEMNED ires from this bucket.
1397  */
1398 ire_t *
1399 ire_unlink(irb_t *irb)
1400 {
1401 	ire_t *ire;
1402 	ire_t *ire1;
1403 	ire_t **ptpn;
1404 	ire_t *ire_list = NULL;
1405 
1406 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
1407 	ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) ||
1408 	    (irb->irb_refcnt == 0));
1409 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
1410 	ASSERT(irb->irb_ire != NULL);
1411 
1412 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
1413 		ire1 = ire->ire_next;
1414 		if (IRE_IS_CONDEMNED(ire)) {
1415 			ptpn = ire->ire_ptpn;
1416 			ire1 = ire->ire_next;
1417 			if (ire1)
1418 				ire1->ire_ptpn = ptpn;
1419 			*ptpn = ire1;
1420 			ire->ire_ptpn = NULL;
1421 			ire->ire_next = NULL;
1422 
1423 			/*
1424 			 * We need to call ire_delete_v4 or ire_delete_v6 to
1425 			 * clean up dependents and the redirects pointing at
1426 			 * the default gateway. We need to drop the lock
1427 			 * as ire_flush_cache/ire_delete_host_redircts require
1428 			 * so. But we can't drop the lock, as ire_unlink needs
1429 			 * to atomically remove the ires from the list.
1430 			 * So, create a temporary list of CONDEMNED ires
1431 			 * for doing ire_delete_v4/ire_delete_v6 operations
1432 			 * later on.
1433 			 */
1434 			ire->ire_next = ire_list;
1435 			ire_list = ire;
1436 		}
1437 	}
1438 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
1439 	return (ire_list);
1440 }
1441 
1442 /*
1443  * Clean up the radix node for this ire. Must be called by irb_refrele
1444  * when there are no ire's left in the bucket. Returns TRUE if the bucket
1445  * is deleted and freed.
1446  */
1447 boolean_t
1448 irb_inactive(irb_t *irb)
1449 {
1450 	struct rt_entry *rt;
1451 	struct radix_node *rn;
1452 	ip_stack_t *ipst = irb->irb_ipst;
1453 
1454 	ASSERT(irb->irb_ipst != NULL);
1455 
1456 	rt = IRB2RT(irb);
1457 	rn = (struct radix_node *)rt;
1458 
1459 	/* first remove it from the radix tree. */
1460 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
1461 	rw_enter(&irb->irb_lock, RW_WRITER);
1462 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
1463 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
1464 		    ipst->ips_ip_ftable);
1465 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
1466 		ASSERT((void *)rn == (void *)rt);
1467 		Free(rt, rt_entry_cache);
1468 		/* irb_lock is freed */
1469 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1470 		return (B_TRUE);
1471 	}
1472 	rw_exit(&irb->irb_lock);
1473 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1474 	return (B_FALSE);
1475 }
1476 
1477 /*
1478  * Delete the specified IRE.
1479  * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was
1480  * not incremented i.e., that the insertion in the bucket and the increment
1481  * of that counter is done atomically.
1482  */
1483 void
1484 ire_delete(ire_t *ire)
1485 {
1486 	ire_t	*ire1;
1487 	ire_t	**ptpn;
1488 	irb_t	*irb;
1489 	ip_stack_t	*ipst = ire->ire_ipst;
1490 
1491 	if ((irb = ire->ire_bucket) == NULL) {
1492 		/*
1493 		 * It was never inserted in the list. Should call REFRELE
1494 		 * to free this IRE.
1495 		 */
1496 		ire_make_condemned(ire);
1497 		ire_refrele_notr(ire);
1498 		return;
1499 	}
1500 
1501 	/*
1502 	 * Move the use counts from an IRE_IF_CLONE to its parent
1503 	 * IRE_INTERFACE.
1504 	 * We need to do this before acquiring irb_lock.
1505 	 */
1506 	if (ire->ire_type & IRE_IF_CLONE) {
1507 		ire_t *parent;
1508 
1509 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
1510 		if ((parent = ire->ire_dep_parent) != NULL) {
1511 			parent->ire_ob_pkt_count += ire->ire_ob_pkt_count;
1512 			parent->ire_ib_pkt_count += ire->ire_ib_pkt_count;
1513 			ire->ire_ob_pkt_count = 0;
1514 			ire->ire_ib_pkt_count = 0;
1515 		}
1516 		rw_exit(&ipst->ips_ire_dep_lock);
1517 	}
1518 
1519 	rw_enter(&irb->irb_lock, RW_WRITER);
1520 	if (ire->ire_ptpn == NULL) {
1521 		/*
1522 		 * Some other thread has removed us from the list.
1523 		 * It should have done the REFRELE for us.
1524 		 */
1525 		rw_exit(&irb->irb_lock);
1526 		return;
1527 	}
1528 
1529 	if (!IRE_IS_CONDEMNED(ire)) {
1530 		/* Is this an IRE representing multiple duplicate entries? */
1531 		ASSERT(ire->ire_identical_ref >= 1);
1532 		if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) {
1533 			/* Removed one of the identical parties */
1534 			rw_exit(&irb->irb_lock);
1535 			return;
1536 		}
1537 
1538 		irb->irb_ire_cnt--;
1539 		ire_make_condemned(ire);
1540 	}
1541 
1542 	if (irb->irb_refcnt != 0) {
1543 		/*
1544 		 * The last thread to leave this bucket will
1545 		 * delete this ire.
1546 		 */
1547 		irb->irb_marks |= IRB_MARK_CONDEMNED;
1548 		rw_exit(&irb->irb_lock);
1549 		return;
1550 	}
1551 
1552 	/*
1553 	 * Normally to delete an ire, we walk the bucket. While we
1554 	 * walk the bucket, we normally bump up irb_refcnt and hence
1555 	 * we return from above where we mark CONDEMNED and the ire
1556 	 * gets deleted from ire_unlink. This case is where somebody
1557 	 * knows the ire e.g by doing a lookup, and wants to delete the
1558 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
1559 	 * the bucket.
1560 	 */
1561 	ptpn = ire->ire_ptpn;
1562 	ire1 = ire->ire_next;
1563 	if (ire1 != NULL)
1564 		ire1->ire_ptpn = ptpn;
1565 	ASSERT(ptpn != NULL);
1566 	*ptpn = ire1;
1567 	ire->ire_ptpn = NULL;
1568 	ire->ire_next = NULL;
1569 	if (ire->ire_ipversion == IPV6_VERSION) {
1570 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
1571 	} else {
1572 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
1573 	}
1574 	rw_exit(&irb->irb_lock);
1575 
1576 	/* Cleanup dependents and related stuff */
1577 	if (ire->ire_ipversion == IPV6_VERSION) {
1578 		ire_delete_v6(ire);
1579 	} else {
1580 		ire_delete_v4(ire);
1581 	}
1582 	/*
1583 	 * We removed it from the list. Decrement the
1584 	 * reference count.
1585 	 */
1586 	ire_refrele_notr(ire);
1587 }
1588 
1589 /*
1590  * Delete the specified IRE.
1591  * All calls should use ire_delete().
1592  * Sometimes called as writer though not required by this function.
1593  *
1594  * NOTE : This function is called only if the ire was added
1595  * in the list.
1596  */
1597 static void
1598 ire_delete_v4(ire_t *ire)
1599 {
1600 	ip_stack_t	*ipst = ire->ire_ipst;
1601 
1602 	ASSERT(ire->ire_refcnt >= 1);
1603 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1604 
1605 	ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
1606 	if (ire->ire_type == IRE_DEFAULT) {
1607 		/*
1608 		 * when a default gateway is going away
1609 		 * delete all the host redirects pointing at that
1610 		 * gateway.
1611 		 */
1612 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
1613 	}
1614 
1615 	/*
1616 	 * If we are deleting an IRE_INTERFACE then we make sure we also
1617 	 * delete any IRE_IF_CLONE that has been created from it.
1618 	 * Those are always in ire_dep_children.
1619 	 */
1620 	if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL)
1621 		ire_dep_delete_if_clone(ire);
1622 
1623 	/* Remove from parent dependencies and child */
1624 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
1625 	if (ire->ire_dep_parent != NULL)
1626 		ire_dep_remove(ire);
1627 
1628 	while (ire->ire_dep_children != NULL)
1629 		ire_dep_remove(ire->ire_dep_children);
1630 	rw_exit(&ipst->ips_ire_dep_lock);
1631 }
1632 
1633 /*
1634  * ire_refrele is the only caller of the function. It calls
1635  * to free the ire when the reference count goes to zero.
1636  */
1637 void
1638 ire_inactive(ire_t *ire)
1639 {
1640 	ill_t	*ill;
1641 	irb_t 	*irb;
1642 	ip_stack_t	*ipst = ire->ire_ipst;
1643 
1644 	ASSERT(ire->ire_refcnt == 0);
1645 	ASSERT(ire->ire_ptpn == NULL);
1646 	ASSERT(ire->ire_next == NULL);
1647 
1648 	/* Count how many condemned ires for kmem_cache callback */
1649 	ASSERT(IRE_IS_CONDEMNED(ire));
1650 	atomic_add_32(&ipst->ips_num_ire_condemned, -1);
1651 
1652 	if (ire->ire_gw_secattr != NULL) {
1653 		ire_gw_secattr_free(ire->ire_gw_secattr);
1654 		ire->ire_gw_secattr = NULL;
1655 	}
1656 
1657 	/*
1658 	 * ire_nce_cache is cleared in ire_delete, and we make sure we don't
1659 	 * set it once the ire is marked condemned.
1660 	 */
1661 	ASSERT(ire->ire_nce_cache == NULL);
1662 
1663 	/*
1664 	 * Since any parent would have a refhold on us they would already
1665 	 * have been removed.
1666 	 */
1667 	ASSERT(ire->ire_dep_parent == NULL);
1668 	ASSERT(ire->ire_dep_sib_next == NULL);
1669 	ASSERT(ire->ire_dep_sib_ptpn == NULL);
1670 
1671 	/*
1672 	 * Since any children would have a refhold on us they should have
1673 	 * already been removed.
1674 	 */
1675 	ASSERT(ire->ire_dep_children == NULL);
1676 
1677 	/*
1678 	 * ill_ire_ref is increased when the IRE is inserted in the
1679 	 * bucket - not when the IRE is created.
1680 	 */
1681 	irb = ire->ire_bucket;
1682 	ill = ire->ire_ill;
1683 	if (irb != NULL && ill != NULL) {
1684 		mutex_enter(&ill->ill_lock);
1685 		ASSERT(ill->ill_ire_cnt != 0);
1686 		DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill,
1687 		    (char *), "ire", (void *), ire);
1688 		ill->ill_ire_cnt--;
1689 		if (ILL_DOWN_OK(ill)) {
1690 			/* Drops the ill lock */
1691 			ipif_ill_refrele_tail(ill);
1692 		} else {
1693 			mutex_exit(&ill->ill_lock);
1694 		}
1695 	}
1696 	ire->ire_ill = NULL;
1697 
1698 	/* This should be true for both V4 and V6 */
1699 	if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) {
1700 		rw_enter(&irb->irb_lock, RW_WRITER);
1701 		irb->irb_nire--;
1702 		/*
1703 		 * Instead of examining the conditions for freeing
1704 		 * the radix node here, we do it by calling
1705 		 * irb_refrele which is a single point in the code
1706 		 * that embeds that logic. Bump up the refcnt to
1707 		 * be able to call irb_refrele
1708 		 */
1709 		irb_refhold_locked(irb);
1710 		rw_exit(&irb->irb_lock);
1711 		irb_refrele(irb);
1712 	}
1713 
1714 #ifdef DEBUG
1715 	ire_trace_cleanup(ire);
1716 #endif
1717 	mutex_destroy(&ire->ire_lock);
1718 	if (ire->ire_ipversion == IPV6_VERSION) {
1719 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
1720 	} else {
1721 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
1722 	}
1723 	kmem_cache_free(ire_cache, ire);
1724 }
1725 
1726 /*
1727  * ire_update_generation is the callback function provided by
1728  * ire_get_bucket() to update the generation number of any
1729  * matching shorter route when a new route is added.
1730  *
1731  * This fucntion always returns a failure return (B_FALSE)
1732  * to force the caller (rn_matchaddr_args)
1733  * to back-track up the tree looking for shorter matches.
1734  */
1735 /* ARGSUSED */
1736 static boolean_t
1737 ire_update_generation(struct radix_node *rn, void *arg)
1738 {
1739 	struct rt_entry *rt = (struct rt_entry *)rn;
1740 
1741 	/* We need to handle all in the same bucket */
1742 	irb_increment_generation(&rt->rt_irb);
1743 	return (B_FALSE);
1744 }
1745 
1746 /*
1747  * Take care of all the generation numbers in the bucket.
1748  */
1749 void
1750 irb_increment_generation(irb_t *irb)
1751 {
1752 	ire_t *ire;
1753 	ip_stack_t *ipst;
1754 
1755 	if (irb == NULL || irb->irb_ire_cnt == 0)
1756 		return;
1757 
1758 	ipst = irb->irb_ipst;
1759 	/*
1760 	 * we cannot do an irb_refhold/irb_refrele here as the caller
1761 	 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele
1762 	 * may result in an attempt to free the irb_t, which also needs
1763 	 * the RADIX_NODE_HEAD lock. However, since we want to traverse the
1764 	 * irb_ire list without fear of having a condemned ire removed from
1765 	 * the list, we acquire the irb_lock as WRITER. Moreover, since
1766 	 * the ire_generation increments are done under the ire_dep_lock,
1767 	 * acquire the locks in the prescribed lock order first.
1768 	 */
1769 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
1770 	rw_enter(&irb->irb_lock, RW_WRITER);
1771 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
1772 		if (!IRE_IS_CONDEMNED(ire))
1773 			ire_increment_generation(ire);	/* Ourselves */
1774 		ire_dep_incr_generation_locked(ire);	/* Dependants */
1775 	}
1776 	rw_exit(&irb->irb_lock);
1777 	rw_exit(&ipst->ips_ire_dep_lock);
1778 }
1779 
1780 /*
1781  * When an IRE is added or deleted this routine is called to make sure
1782  * any caching of IRE information is notified or updated.
1783  *
1784  * The flag argument indicates if the flush request is due to addition
1785  * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
1786  * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
1787  */
1788 void
1789 ire_flush_cache_v4(ire_t *ire, int flag)
1790 {
1791 	irb_t *irb = ire->ire_bucket;
1792 	struct rt_entry *rt = IRB2RT(irb);
1793 	ip_stack_t *ipst = ire->ire_ipst;
1794 
1795 	/*
1796 	 * IRE_IF_CLONE ire's don't provide any new information
1797 	 * than the parent from which they are cloned, so don't
1798 	 * perturb the generation numbers.
1799 	 */
1800 	if (ire->ire_type & IRE_IF_CLONE)
1801 		return;
1802 
1803 	/*
1804 	 * Ensure that an ire_add during a lookup serializes the updates of the
1805 	 * generation numbers under the radix head lock so that the lookup gets
1806 	 * either the old ire and old generation number, or a new ire and new
1807 	 * generation number.
1808 	 */
1809 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
1810 
1811 	/*
1812 	 * If a route was just added, we need to notify everybody that
1813 	 * has cached an IRE_NOROUTE since there might now be a better
1814 	 * route for them.
1815 	 */
1816 	if (flag == IRE_FLUSH_ADD) {
1817 		ire_increment_generation(ipst->ips_ire_reject_v4);
1818 		ire_increment_generation(ipst->ips_ire_blackhole_v4);
1819 	}
1820 
1821 	/* Adding a default can't otherwise provide a better route */
1822 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) {
1823 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1824 		return;
1825 	}
1826 
1827 	switch (flag) {
1828 	case IRE_FLUSH_DELETE:
1829 	case IRE_FLUSH_GWCHANGE:
1830 		/*
1831 		 * Update ire_generation for all ire_dep_children chains
1832 		 * starting with this IRE
1833 		 */
1834 		ire_dep_incr_generation(ire);
1835 		break;
1836 	case IRE_FLUSH_ADD:
1837 		/*
1838 		 * Update the generation numbers of all shorter matching routes.
1839 		 * ire_update_generation takes care of the dependants by
1840 		 * using ire_dep_incr_generation.
1841 		 */
1842 		(void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst,
1843 		    ipst->ips_ip_ftable, ire_update_generation, NULL);
1844 		break;
1845 	}
1846 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1847 }
1848 
1849 /*
1850  * Matches the arguments passed with the values in the ire.
1851  *
1852  * Note: for match types that match using "ill" passed in, ill
1853  * must be checked for non-NULL before calling this routine.
1854  */
1855 boolean_t
1856 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
1857     int type, const ill_t *ill, zoneid_t zoneid,
1858     const ts_label_t *tsl, int match_flags)
1859 {
1860 	ill_t *ire_ill = NULL, *dst_ill;
1861 	ip_stack_t *ipst = ire->ire_ipst;
1862 
1863 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1864 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
1865 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) ||
1866 	    (ill != NULL && !ill->ill_isv6));
1867 
1868 	/*
1869 	 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is
1870 	 * in fact hidden, to ensure the caller gets the right one.
1871 	 */
1872 	if (ire->ire_testhidden) {
1873 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))
1874 			return (B_FALSE);
1875 	}
1876 
1877 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
1878 	    ire->ire_zoneid != ALL_ZONES) {
1879 		/*
1880 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
1881 		 * does not match that of ire_zoneid, a failure to
1882 		 * match is reported at this point. Otherwise, since some IREs
1883 		 * that are available in the global zone can be used in local
1884 		 * zones, additional checks need to be performed:
1885 		 *
1886 		 * IRE_LOOPBACK
1887 		 *	entries should never be matched in this situation.
1888 		 *	Each zone has its own IRE_LOOPBACK.
1889 		 *
1890 		 * IRE_LOCAL
1891 		 *	We allow them for any zoneid. ire_route_recursive
1892 		 *	does additional checks when
1893 		 *	ip_restrict_interzone_loopback is set.
1894 		 *
1895 		 * If ill_usesrc_ifindex is set
1896 		 *	Then we check if the zone has a valid source address
1897 		 *	on the usesrc ill.
1898 		 *
1899 		 * If ire_ill is set, then check that the zone has an ipif
1900 		 *	on that ill.
1901 		 *
1902 		 * Outside of this function (in ire_round_robin) we check
1903 		 * that any IRE_OFFLINK has a gateway that reachable from the
1904 		 * zone when we have multiple choices (ECMP).
1905 		 */
1906 		if (match_flags & MATCH_IRE_ZONEONLY)
1907 			return (B_FALSE);
1908 		if (ire->ire_type & IRE_LOOPBACK)
1909 			return (B_FALSE);
1910 
1911 		if (ire->ire_type & IRE_LOCAL)
1912 			goto matchit;
1913 
1914 		/*
1915 		 * The normal case of IRE_ONLINK has a matching zoneid.
1916 		 * Here we handle the case when shared-IP zones have been
1917 		 * configured with IP addresses on vniN. In that case it
1918 		 * is ok for traffic from a zone to use IRE_ONLINK routes
1919 		 * if the ill has a usesrc pointing at vniN
1920 		 */
1921 		dst_ill = ire->ire_ill;
1922 		if (ire->ire_type & IRE_ONLINK) {
1923 			uint_t	ifindex;
1924 
1925 			/*
1926 			 * Note there is no IRE_INTERFACE on vniN thus
1927 			 * can't do an IRE lookup for a matching route.
1928 			 */
1929 			ifindex = dst_ill->ill_usesrc_ifindex;
1930 			if (ifindex == 0)
1931 				return (B_FALSE);
1932 
1933 			/*
1934 			 * If there is a usable source address in the
1935 			 * zone, then it's ok to return this IRE_INTERFACE
1936 			 */
1937 			if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
1938 			    zoneid, ipst)) {
1939 				ip3dbg(("ire_match_args: no usrsrc for zone"
1940 				    " dst_ill %p\n", (void *)dst_ill));
1941 				return (B_FALSE);
1942 			}
1943 		}
1944 		/*
1945 		 * For example, with
1946 		 * route add 11.0.0.0 gw1 -ifp bge0
1947 		 * route add 11.0.0.0 gw2 -ifp bge1
1948 		 * this code would differentiate based on
1949 		 * where the sending zone has addresses.
1950 		 * Only if the zone has an address on bge0 can it use the first
1951 		 * route. It isn't clear if this behavior is documented
1952 		 * anywhere.
1953 		 */
1954 		if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
1955 			ipif_t	*tipif;
1956 
1957 			mutex_enter(&dst_ill->ill_lock);
1958 			for (tipif = dst_ill->ill_ipif;
1959 			    tipif != NULL; tipif = tipif->ipif_next) {
1960 				if (!IPIF_IS_CONDEMNED(tipif) &&
1961 				    (tipif->ipif_flags & IPIF_UP) &&
1962 				    (tipif->ipif_zoneid == zoneid ||
1963 				    tipif->ipif_zoneid == ALL_ZONES))
1964 					break;
1965 			}
1966 			mutex_exit(&dst_ill->ill_lock);
1967 			if (tipif == NULL) {
1968 				return (B_FALSE);
1969 			}
1970 		}
1971 	}
1972 
1973 matchit:
1974 	ire_ill = ire->ire_ill;
1975 	if (match_flags & MATCH_IRE_ILL) {
1976 
1977 		/*
1978 		 * If asked to match an ill, we *must* match
1979 		 * on the ire_ill for ipmp test addresses, or
1980 		 * any of the ill in the group for data addresses.
1981 		 * If we don't, we may as well fail.
1982 		 * However, we need an exception for IRE_LOCALs to ensure
1983 		 * we loopback packets even sent to test addresses on different
1984 		 * interfaces in the group.
1985 		 */
1986 		if ((match_flags & MATCH_IRE_TESTHIDDEN) &&
1987 		    !(ire->ire_type & IRE_LOCAL)) {
1988 			if (ire->ire_ill != ill)
1989 				return (B_FALSE);
1990 		} else  {
1991 			match_flags &= ~MATCH_IRE_TESTHIDDEN;
1992 			/*
1993 			 * We know that ill is not NULL, but ire_ill could be
1994 			 * NULL
1995 			 */
1996 			if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill))
1997 				return (B_FALSE);
1998 		}
1999 	}
2000 	if (match_flags & MATCH_IRE_SRC_ILL) {
2001 		if (ire_ill == NULL)
2002 			return (B_FALSE);
2003 		if (!IS_ON_SAME_LAN(ill, ire_ill)) {
2004 			if (ire_ill->ill_usesrc_ifindex == 0 ||
2005 			    (ire_ill->ill_usesrc_ifindex !=
2006 			    ill->ill_phyint->phyint_ifindex))
2007 				return (B_FALSE);
2008 		}
2009 	}
2010 
2011 	if ((ire->ire_addr == (addr & mask)) &&
2012 	    ((!(match_flags & MATCH_IRE_GW)) ||
2013 	    (ire->ire_gateway_addr == gateway)) &&
2014 	    ((!(match_flags & MATCH_IRE_DIRECT)) ||
2015 	    !(ire->ire_flags & RTF_INDIRECT)) &&
2016 	    ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) &&
2017 	    ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) &&
2018 	    ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) &&
2019 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
2020 	    (!is_system_labeled()) ||
2021 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
2022 		/* We found the matched IRE */
2023 		return (B_TRUE);
2024 	}
2025 	return (B_FALSE);
2026 }
2027 
2028 /*
2029  * Check if the IRE_LOCAL uses the same ill as another route would use.
2030  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
2031  * then we don't allow this IRE_LOCAL to be used.
2032  * We always return an IRE; will be RTF_REJECT if no route available.
2033  */
2034 ire_t *
2035 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl,
2036     const ill_t *ill, uint_t *generationp)
2037 {
2038 	ip_stack_t	*ipst = ire->ire_ipst;
2039 	ire_t		*alt_ire;
2040 	uint_t		ire_type;
2041 	uint_t		generation;
2042 	uint_t		match_flags;
2043 
2044 	ASSERT(ire->ire_type & IRE_LOCAL);
2045 	ASSERT(ire->ire_ill != NULL);
2046 
2047 	/*
2048 	 * Need to match on everything but local.
2049 	 * This might result in the creation of a IRE_IF_CLONE for the
2050 	 * same address as the IRE_LOCAL when restrict_interzone_loopback is
2051 	 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted
2052 	 * to make sure the IRE_LOCAL is always found first.
2053 	 */
2054 	ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK);
2055 	match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
2056 	if (ill != NULL)
2057 		match_flags |= MATCH_IRE_ILL;
2058 
2059 	if (ire->ire_ipversion == IPV4_VERSION) {
2060 		alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type,
2061 		    ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL,
2062 		    NULL, &generation);
2063 	} else {
2064 		alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type,
2065 		    ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL,
2066 		    NULL, &generation);
2067 	}
2068 	ASSERT(alt_ire != NULL);
2069 
2070 	if (alt_ire->ire_ill == ire->ire_ill) {
2071 		/* Going out the same ILL - ok to send to IRE_LOCAL */
2072 		ire_refrele(alt_ire);
2073 	} else {
2074 		/* Different ill - ignore IRE_LOCAL */
2075 		ire_refrele(ire);
2076 		ire = alt_ire;
2077 		if (generationp != NULL)
2078 			*generationp = generation;
2079 	}
2080 	return (ire);
2081 }
2082 
2083 boolean_t
2084 ire_find_zoneid(struct radix_node *rn, void *arg)
2085 {
2086 	struct rt_entry *rt = (struct rt_entry *)rn;
2087 	irb_t *irb;
2088 	ire_t *ire;
2089 	ire_ftable_args_t *margs = arg;
2090 
2091 	ASSERT(rt != NULL);
2092 
2093 	irb = &rt->rt_irb;
2094 
2095 	if (irb->irb_ire_cnt == 0)
2096 		return (B_FALSE);
2097 
2098 	rw_enter(&irb->irb_lock, RW_READER);
2099 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2100 		if (IRE_IS_CONDEMNED(ire))
2101 			continue;
2102 
2103 		if (!(ire->ire_type & IRE_INTERFACE))
2104 			continue;
2105 
2106 		if (ire->ire_zoneid != ALL_ZONES &&
2107 		    ire->ire_zoneid != margs->ift_zoneid)
2108 			continue;
2109 
2110 		if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill)
2111 			continue;
2112 
2113 		if (is_system_labeled() &&
2114 		    tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0)
2115 			continue;
2116 
2117 		rw_exit(&irb->irb_lock);
2118 		return (B_TRUE);
2119 	}
2120 	rw_exit(&irb->irb_lock);
2121 	return (B_FALSE);
2122 }
2123 
2124 /*
2125  * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
2126  * gateway address. If ill is non-NULL we also match on it.
2127  * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
2128  */
2129 boolean_t
2130 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill,
2131     const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held)
2132 {
2133 	struct rt_sockaddr rdst;
2134 	struct rt_entry *rt;
2135 	ire_ftable_args_t margs;
2136 
2137 	ASSERT(ill == NULL || !ill->ill_isv6);
2138 	if (lock_held)
2139 		ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock));
2140 	else
2141 		RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
2142 
2143 	bzero(&rdst, sizeof (rdst));
2144 	rdst.rt_sin_len = sizeof (rdst);
2145 	rdst.rt_sin_family = AF_INET;
2146 	rdst.rt_sin_addr.s_addr = gateway;
2147 
2148 	/*
2149 	 * We only use margs for ill, zoneid, and tsl matching in
2150 	 * ire_find_zoneid
2151 	 */
2152 	bzero(&margs, sizeof (margs));
2153 	margs.ift_ill = ill;
2154 	margs.ift_zoneid = zoneid;
2155 	margs.ift_tsl = tsl;
2156 	rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
2157 	    ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs);
2158 
2159 	if (!lock_held)
2160 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
2161 
2162 	return (rt != NULL);
2163 }
2164 
2165 /*
2166  * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs.
2167  * The fraction argument tells us what fraction of the IREs to delete.
2168  * Common for IPv4 and IPv6.
2169  * Used when memory backpressure.
2170  */
2171 static void
2172 ire_delete_reclaim(ire_t *ire, char *arg)
2173 {
2174 	ip_stack_t	*ipst = ire->ire_ipst;
2175 	uint_t		fraction = *(uint_t *)arg;
2176 	uint_t		rand;
2177 
2178 	if ((ire->ire_flags & RTF_DYNAMIC) ||
2179 	    (ire->ire_type & IRE_IF_CLONE)) {
2180 
2181 		/* Pick a random number */
2182 		rand = (uint_t)ddi_get_lbolt() +
2183 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256);
2184 
2185 		/* Use truncation */
2186 		if ((rand/fraction)*fraction == rand) {
2187 			IP_STAT(ipst, ip_ire_reclaim_deleted);
2188 			ire_delete(ire);
2189 		}
2190 	}
2191 
2192 }
2193 
2194 /*
2195  * kmem_cache callback to free up memory.
2196  *
2197  * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically
2198  * (RTF_DYNAMIC and IRE_IF_CLONE).
2199  */
2200 static void
2201 ip_ire_reclaim_stack(ip_stack_t *ipst)
2202 {
2203 	uint_t	fraction = ipst->ips_ip_ire_reclaim_fraction;
2204 
2205 	IP_STAT(ipst, ip_ire_reclaim_calls);
2206 
2207 	ire_walk(ire_delete_reclaim, &fraction, ipst);
2208 
2209 	/*
2210 	 * Walk all CONNs that can have a reference on an ire, nce or dce.
2211 	 * Get them to update any stale references to drop any refholds they
2212 	 * have.
2213 	 */
2214 	ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst);
2215 }
2216 
2217 /*
2218  * Called by the memory allocator subsystem directly, when the system
2219  * is running low on memory.
2220  */
2221 /* ARGSUSED */
2222 void
2223 ip_ire_reclaim(void *args)
2224 {
2225 	netstack_handle_t nh;
2226 	netstack_t *ns;
2227 	ip_stack_t *ipst;
2228 
2229 	netstack_next_init(&nh);
2230 	while ((ns = netstack_next(&nh)) != NULL) {
2231 		/*
2232 		 * netstack_next() can return a netstack_t with a NULL
2233 		 * netstack_ip at boot time.
2234 		 */
2235 		if ((ipst = ns->netstack_ip) == NULL) {
2236 			netstack_rele(ns);
2237 			continue;
2238 		}
2239 		ip_ire_reclaim_stack(ipst);
2240 		netstack_rele(ns);
2241 	}
2242 	netstack_next_fini(&nh);
2243 }
2244 
2245 static void
2246 power2_roundup(uint32_t *value)
2247 {
2248 	int i;
2249 
2250 	for (i = 1; i < 31; i++) {
2251 		if (*value <= (1 << i))
2252 			break;
2253 	}
2254 	*value = (1 << i);
2255 }
2256 
2257 /* Global init for all zones */
2258 void
2259 ip_ire_g_init()
2260 {
2261 	/*
2262 	 * Create kmem_caches.  ip_ire_reclaim() and ip_nce_reclaim()
2263 	 * will give disposable IREs back to system when needed.
2264 	 * This needs to be done here before anything else, since
2265 	 * ire_add() expects the cache to be created.
2266 	 */
2267 	ire_cache = kmem_cache_create("ire_cache",
2268 	    sizeof (ire_t), 0, NULL, NULL,
2269 	    ip_ire_reclaim, NULL, NULL, 0);
2270 
2271 	ncec_cache = kmem_cache_create("ncec_cache",
2272 	    sizeof (ncec_t), 0, NULL, NULL,
2273 	    ip_nce_reclaim, NULL, NULL, 0);
2274 	nce_cache = kmem_cache_create("nce_cache",
2275 	    sizeof (nce_t), 0, NULL, NULL,
2276 	    NULL, NULL, NULL, 0);
2277 
2278 	rt_entry_cache = kmem_cache_create("rt_entry",
2279 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
2280 
2281 	/*
2282 	 * Have radix code setup kmem caches etc.
2283 	 */
2284 	rn_init();
2285 }
2286 
2287 void
2288 ip_ire_init(ip_stack_t *ipst)
2289 {
2290 	ire_t	*ire;
2291 	int	error;
2292 
2293 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
2294 
2295 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
2296 
2297 	/*
2298 	 * Make sure that the forwarding table size is a power of 2.
2299 	 * The IRE*_ADDR_HASH() macroes depend on that.
2300 	 */
2301 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
2302 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
2303 
2304 	/*
2305 	 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6.
2306 	 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has
2307 	 * RTF_BLACKHOLE set. We use the latter for transient errors such
2308 	 * as memory allocation failures and tripping on IRE_IS_CONDEMNED
2309 	 * entries.
2310 	 */
2311 	ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2312 	*ire = ire_null;
2313 	error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2314 	    RTF_REJECT|RTF_UP, NULL, ipst);
2315 	ASSERT(error == 0);
2316 	ipst->ips_ire_reject_v4 = ire;
2317 
2318 	ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2319 	*ire = ire_null;
2320 	error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2321 	    RTF_REJECT|RTF_UP, NULL, ipst);
2322 	ASSERT(error == 0);
2323 	ipst->ips_ire_reject_v6 = ire;
2324 
2325 	ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2326 	*ire = ire_null;
2327 	error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2328 	    RTF_BLACKHOLE|RTF_UP, NULL, ipst);
2329 	ASSERT(error == 0);
2330 	ipst->ips_ire_blackhole_v4 = ire;
2331 
2332 	ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2333 	*ire = ire_null;
2334 	error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2335 	    RTF_BLACKHOLE|RTF_UP, NULL, ipst);
2336 	ASSERT(error == 0);
2337 	ipst->ips_ire_blackhole_v6 = ire;
2338 
2339 	rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL);
2340 	rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL);
2341 }
2342 
2343 void
2344 ip_ire_g_fini(void)
2345 {
2346 	kmem_cache_destroy(ire_cache);
2347 	kmem_cache_destroy(ncec_cache);
2348 	kmem_cache_destroy(nce_cache);
2349 	kmem_cache_destroy(rt_entry_cache);
2350 
2351 	rn_fini();
2352 }
2353 
2354 void
2355 ip_ire_fini(ip_stack_t *ipst)
2356 {
2357 	int i;
2358 
2359 	rw_destroy(&ipst->ips_ire_dep_lock);
2360 	rw_destroy(&ipst->ips_ip6_ire_head_lock);
2361 
2362 	ire_make_condemned(ipst->ips_ire_reject_v6);
2363 	ire_refrele_notr(ipst->ips_ire_reject_v6);
2364 	ipst->ips_ire_reject_v6 = NULL;
2365 
2366 	ire_make_condemned(ipst->ips_ire_reject_v4);
2367 	ire_refrele_notr(ipst->ips_ire_reject_v4);
2368 	ipst->ips_ire_reject_v4 = NULL;
2369 
2370 	ire_make_condemned(ipst->ips_ire_blackhole_v6);
2371 	ire_refrele_notr(ipst->ips_ire_blackhole_v6);
2372 	ipst->ips_ire_blackhole_v6 = NULL;
2373 
2374 	ire_make_condemned(ipst->ips_ire_blackhole_v4);
2375 	ire_refrele_notr(ipst->ips_ire_blackhole_v4);
2376 	ipst->ips_ire_blackhole_v4 = NULL;
2377 
2378 	/*
2379 	 * Delete all IREs - assumes that the ill/ipifs have
2380 	 * been removed so what remains are just the ftable to handle.
2381 	 */
2382 	ire_walk(ire_delete, NULL, ipst);
2383 
2384 	rn_freehead(ipst->ips_ip_ftable);
2385 	ipst->ips_ip_ftable = NULL;
2386 
2387 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
2388 
2389 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
2390 		irb_t *ptr;
2391 		int j;
2392 
2393 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
2394 			continue;
2395 
2396 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
2397 			ASSERT(ptr[j].irb_ire == NULL);
2398 			rw_destroy(&ptr[j].irb_lock);
2399 		}
2400 		mi_free(ptr);
2401 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
2402 	}
2403 }
2404 
2405 #ifdef DEBUG
2406 void
2407 ire_trace_ref(ire_t *ire)
2408 {
2409 	mutex_enter(&ire->ire_lock);
2410 	if (ire->ire_trace_disable) {
2411 		mutex_exit(&ire->ire_lock);
2412 		return;
2413 	}
2414 
2415 	if (th_trace_ref(ire, ire->ire_ipst)) {
2416 		mutex_exit(&ire->ire_lock);
2417 	} else {
2418 		ire->ire_trace_disable = B_TRUE;
2419 		mutex_exit(&ire->ire_lock);
2420 		ire_trace_cleanup(ire);
2421 	}
2422 }
2423 
2424 void
2425 ire_untrace_ref(ire_t *ire)
2426 {
2427 	mutex_enter(&ire->ire_lock);
2428 	if (!ire->ire_trace_disable)
2429 		th_trace_unref(ire);
2430 	mutex_exit(&ire->ire_lock);
2431 }
2432 
2433 static void
2434 ire_trace_cleanup(const ire_t *ire)
2435 {
2436 	th_trace_cleanup(ire, ire->ire_trace_disable);
2437 }
2438 #endif /* DEBUG */
2439 
2440 /*
2441  * Find, or create if needed, the nce_t pointer to the neighbor cache
2442  * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t
2443  * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or
2444  * on the next available under-ill (selected by the IPMP rotor) in the
2445  * unicast IPMP case.
2446  *
2447  * If a neighbor-cache entry has to be created (i.e., one does not already
2448  * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache
2449  * entry are initialized in nce_add_v4(). The broadcast, multicast, and
2450  * link-layer type determine the contents of {ncec_state, ncec_lladdr} of
2451  * the ncec_t created. The ncec_lladdr is non-null for all link types with
2452  * non-zero ill_phys_addr_length, though the contents may be zero in cases
2453  * where the link-layer type is not known at the time of creation
2454  * (e.g., IRE_IFRESOLVER links)
2455  *
2456  * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr
2457  * has the physical broadcast address of the outgoing interface.
2458  * For unicast ire entries,
2459  *   - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
2460  *     ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state.
2461  *   - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
2462  *     layer resolution is necessary, so that the ncec_t will be in the
2463  *     ND_REACHABLE state
2464  *
2465  * The link layer information needed for broadcast addresses, and for
2466  * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
2467  * never needs re-verification for the lifetime of the ncec_t. These are
2468  * therefore marked NCE_F_NONUD.
2469  *
2470  * The nce returned will be created such that the nce_ill == ill that
2471  * is passed in. Note that the nce itself may not have ncec_ill == ill
2472  * where IPMP links are involved.
2473  */
2474 static nce_t *
2475 ire_nce_init(ill_t *ill, const void *addr, int ire_type)
2476 {
2477 	int		err;
2478 	nce_t		*nce = NULL;
2479 	uint16_t	ncec_flags;
2480 	uchar_t		*hwaddr;
2481 	boolean_t	need_refrele = B_FALSE;
2482 	ill_t		*in_ill = ill;
2483 	boolean_t	is_unicast;
2484 	uint_t		hwaddr_len;
2485 
2486 	is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0);
2487 	if (IS_IPMP(ill) ||
2488 	    ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) {
2489 		if ((ill = ipmp_ill_hold_xmit_ill(ill, is_unicast)) == NULL)
2490 			return (NULL);
2491 		need_refrele = B_TRUE;
2492 	}
2493 	ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0;
2494 
2495 	switch (ire_type) {
2496 	case IRE_BROADCAST:
2497 		ASSERT(!ill->ill_isv6);
2498 		ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD);
2499 		break;
2500 	case IRE_MULTICAST:
2501 		ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD);
2502 		break;
2503 	}
2504 
2505 	if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) {
2506 		hwaddr = ill->ill_dest_addr;
2507 	} else {
2508 		hwaddr = NULL;
2509 	}
2510 	hwaddr_len = ill->ill_phys_addr_length;
2511 
2512 retry:
2513 	/* nce_state will be computed by nce_add_common() */
2514 	if (!ill->ill_isv6) {
2515 		err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr,
2516 		    ncec_flags, ND_UNCHANGED, &nce);
2517 	} else {
2518 		err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr,
2519 		    ncec_flags, ND_UNCHANGED, &nce);
2520 	}
2521 
2522 	switch (err) {
2523 	case 0:
2524 		break;
2525 	case EEXIST:
2526 		/*
2527 		 * When subnets change or partially overlap what was once
2528 		 * a broadcast address could now be a unicast, or vice versa.
2529 		 */
2530 		if (((ncec_flags ^ nce->nce_common->ncec_flags) &
2531 		    NCE_F_BCAST) != 0) {
2532 			ASSERT(!ill->ill_isv6);
2533 			ncec_delete(nce->nce_common);
2534 			nce_refrele(nce);
2535 			goto retry;
2536 		}
2537 		break;
2538 	default:
2539 		DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err);
2540 		if (need_refrele)
2541 			ill_refrele(ill);
2542 		return (NULL);
2543 	}
2544 	/*
2545 	 * If the ill was an under-ill of an IPMP group, we need to verify
2546 	 * that it is still active so that we select an active interface in
2547 	 * the group. However, since ipmp_ill_is_active ASSERTs for
2548 	 * IS_UNDER_IPMP(), we first need to verify that the ill is an
2549 	 * under-ill, and since this is being done in the data path, the
2550 	 * only way to ascertain this is by holding the ill_g_lock.
2551 	 */
2552 	rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER);
2553 	mutex_enter(&ill->ill_lock);
2554 	mutex_enter(&ill->ill_phyint->phyint_lock);
2555 	if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
2556 		/*
2557 		 * need_refrele implies that the under ill was selected by
2558 		 * ipmp_ill_hold_xmit_ill() because either the in_ill was an
2559 		 * ipmp_ill, or we are sending a non-unicast packet on an
2560 		 * under_ill. However, when we get here, the ill selected by
2561 		 * ipmp_ill_hold_xmit_ill was pulled out of the active set
2562 		 * (for unicast) or cast_ill nomination (for !unicast) after
2563 		 * it was picked as the outgoing ill.  We have to pick an
2564 		 * active interface and/or cast_ill in the group.
2565 		 */
2566 		mutex_exit(&ill->ill_phyint->phyint_lock);
2567 		nce_delete(nce);
2568 		mutex_exit(&ill->ill_lock);
2569 		rw_exit(&ill->ill_ipst->ips_ill_g_lock);
2570 		nce_refrele(nce);
2571 		ill_refrele(ill);
2572 		if ((ill = ipmp_ill_hold_xmit_ill(in_ill, is_unicast)) == NULL)
2573 			return (NULL);
2574 		goto retry;
2575 	} else {
2576 		mutex_exit(&ill->ill_phyint->phyint_lock);
2577 		mutex_exit(&ill->ill_lock);
2578 		rw_exit(&ill->ill_ipst->ips_ill_g_lock);
2579 	}
2580 done:
2581 	ASSERT(nce->nce_ill == ill);
2582 	if (need_refrele)
2583 		ill_refrele(ill);
2584 	return (nce);
2585 }
2586 
2587 nce_t *
2588 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type)
2589 {
2590 	return (ire_nce_init(ill, &addr4, ire_type));
2591 }
2592 
2593 nce_t *
2594 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type)
2595 {
2596 	ASSERT((ire_type & IRE_BROADCAST) == 0);
2597 	return (ire_nce_init(ill, addr6, ire_type));
2598 }
2599 
2600 /*
2601  * The caller should hold irb_lock as a writer if the ire is in a bucket.
2602  * This routine will clear ire_nce_cache, and we make sure that we can never
2603  * set ire_nce_cache after the ire is marked condemned.
2604  */
2605 void
2606 ire_make_condemned(ire_t *ire)
2607 {
2608 	ip_stack_t	*ipst = ire->ire_ipst;
2609 	nce_t		*nce;
2610 
2611 	mutex_enter(&ire->ire_lock);
2612 	ASSERT(ire->ire_bucket == NULL ||
2613 	    RW_WRITE_HELD(&ire->ire_bucket->irb_lock));
2614 	ASSERT(!IRE_IS_CONDEMNED(ire));
2615 	ire->ire_generation = IRE_GENERATION_CONDEMNED;
2616 	/* Count how many condemned ires for kmem_cache callback */
2617 	atomic_add_32(&ipst->ips_num_ire_condemned, 1);
2618 	nce = ire->ire_nce_cache;
2619 	ire->ire_nce_cache = NULL;
2620 	mutex_exit(&ire->ire_lock);
2621 	if (nce != NULL)
2622 		nce_refrele(nce);
2623 }
2624 
2625 /*
2626  * Increment the generation avoiding the special condemned value
2627  */
2628 void
2629 ire_increment_generation(ire_t *ire)
2630 {
2631 	uint_t generation;
2632 
2633 	mutex_enter(&ire->ire_lock);
2634 	/*
2635 	 * Even though the caller has a hold it can't prevent a concurrent
2636 	 * ire_delete marking the IRE condemned
2637 	 */
2638 	if (!IRE_IS_CONDEMNED(ire)) {
2639 		generation = ire->ire_generation + 1;
2640 		if (generation == IRE_GENERATION_CONDEMNED)
2641 			generation = IRE_GENERATION_INITIAL;
2642 		ASSERT(generation != IRE_GENERATION_VERIFY);
2643 		ire->ire_generation = generation;
2644 	}
2645 	mutex_exit(&ire->ire_lock);
2646 }
2647 
2648 /*
2649  * Increment ire_generation on all the IRE_MULTICASTs
2650  * Used when the default multicast interface (as determined by
2651  * ill_lookup_multicast) might have changed.
2652  *
2653  * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and
2654  * ill unplumb.
2655  */
2656 void
2657 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6)
2658 {
2659 	ill_t	*ill;
2660 	ill_walk_context_t ctx;
2661 
2662 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2663 	if (isv6)
2664 		ill = ILL_START_WALK_V6(&ctx, ipst);
2665 	else
2666 		ill = ILL_START_WALK_V4(&ctx, ipst);
2667 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2668 		if (ILL_IS_CONDEMNED(ill))
2669 			continue;
2670 		if (ill->ill_ire_multicast != NULL)
2671 			ire_increment_generation(ill->ill_ire_multicast);
2672 	}
2673 	rw_exit(&ipst->ips_ill_g_lock);
2674 }
2675 
2676 /*
2677  * Return a held IRE_NOROUTE with RTF_REJECT set
2678  */
2679 ire_t *
2680 ire_reject(ip_stack_t *ipst, boolean_t isv6)
2681 {
2682 	ire_t *ire;
2683 
2684 	if (isv6)
2685 		ire = ipst->ips_ire_reject_v6;
2686 	else
2687 		ire = ipst->ips_ire_reject_v4;
2688 
2689 	ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED);
2690 	ire_refhold(ire);
2691 	return (ire);
2692 }
2693 
2694 /*
2695  * Return a held IRE_NOROUTE with RTF_BLACKHOLE set
2696  */
2697 ire_t *
2698 ire_blackhole(ip_stack_t *ipst, boolean_t isv6)
2699 {
2700 	ire_t *ire;
2701 
2702 	if (isv6)
2703 		ire = ipst->ips_ire_blackhole_v6;
2704 	else
2705 		ire = ipst->ips_ire_blackhole_v4;
2706 
2707 	ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED);
2708 	ire_refhold(ire);
2709 	return (ire);
2710 }
2711 
2712 /*
2713  * Return a held IRE_MULTICAST.
2714  */
2715 ire_t *
2716 ire_multicast(ill_t *ill)
2717 {
2718 	ire_t *ire = ill->ill_ire_multicast;
2719 
2720 	ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED);
2721 	if (ire == NULL)
2722 		ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6);
2723 	else
2724 		ire_refhold(ire);
2725 	return (ire);
2726 }
2727 
2728 /*
2729  * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK
2730  * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6).
2731  * This can return an RTF_REJECT|RTF_BLACKHOLE.
2732  * The returned IRE is held.
2733  * The assumption is that ip_select_route() has been called and returned the
2734  * IRE (thus ip_select_route would have set up the ire_dep* information.)
2735  * If some IRE is deleteted then ire_dep_remove() will have been called and
2736  * we might not find a nexthop IRE, in which case we return NULL.
2737  */
2738 ire_t *
2739 ire_nexthop(ire_t *ire)
2740 {
2741 	ip_stack_t	*ipst = ire->ire_ipst;
2742 
2743 	/* Acquire lock to walk ire_dep_parent */
2744 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
2745 	while (ire != NULL) {
2746 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
2747 			goto done;
2748 		}
2749 		/*
2750 		 * If we find an IRE_ONLINK we are done. This includes
2751 		 * the case of IRE_MULTICAST.
2752 		 * Note that in order to send packets we need a host-specific
2753 		 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this
2754 		 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE
2755 		 * was not host specific.
2756 		 * However, ip_rts_request doesn't want to send packets
2757 		 * hence doesn't want to allocate an IRE_IF_CLONE. Yet
2758 		 * it needs an IRE_IF_ALL to get to the ill. Thus
2759 		 * we return IRE_IF_ALL that are not host specific here.
2760 		 */
2761 		if (ire->ire_type & IRE_ONLINK)
2762 			goto done;
2763 		ire = ire->ire_dep_parent;
2764 	}
2765 	rw_exit(&ipst->ips_ire_dep_lock);
2766 	return (NULL);
2767 
2768 done:
2769 	ire_refhold(ire);
2770 	rw_exit(&ipst->ips_ire_dep_lock);
2771 	return (ire);
2772 }
2773 
2774 /*
2775  * Find the ill used to send packets. This will be NULL in case
2776  * of a reject or blackhole.
2777  * The returned ill is held; caller needs to do ill_refrele when done.
2778  */
2779 ill_t *
2780 ire_nexthop_ill(ire_t *ire)
2781 {
2782 	ill_t		*ill;
2783 
2784 	ire = ire_nexthop(ire);
2785 	if (ire == NULL)
2786 		return (NULL);
2787 
2788 	/* ire_ill can not change for an existing ire */
2789 	ill = ire->ire_ill;
2790 	if (ill != NULL)
2791 		ill_refhold(ill);
2792 	ire_refrele(ire);
2793 	return (ill);
2794 }
2795 
2796 #ifdef DEBUG
2797 static boolean_t
2798 parent_has_child(ire_t *parent, ire_t *child)
2799 {
2800 	ire_t	*ire;
2801 	ire_t	*prev;
2802 
2803 	ire = parent->ire_dep_children;
2804 	prev = NULL;
2805 	while (ire != NULL) {
2806 		if (prev == NULL) {
2807 			ASSERT(ire->ire_dep_sib_ptpn ==
2808 			    &(parent->ire_dep_children));
2809 		} else {
2810 			ASSERT(ire->ire_dep_sib_ptpn ==
2811 			    &(prev->ire_dep_sib_next));
2812 		}
2813 		if (ire == child)
2814 			return (B_TRUE);
2815 		prev = ire;
2816 		ire = ire->ire_dep_sib_next;
2817 	}
2818 	return (B_FALSE);
2819 }
2820 
2821 static void
2822 ire_dep_verify(ire_t *ire)
2823 {
2824 	ire_t		*parent = ire->ire_dep_parent;
2825 	ire_t		*child = ire->ire_dep_children;
2826 
2827 	ASSERT(ire->ire_ipversion == IPV4_VERSION ||
2828 	    ire->ire_ipversion == IPV6_VERSION);
2829 	if (parent != NULL) {
2830 		ASSERT(parent->ire_ipversion == IPV4_VERSION ||
2831 		    parent->ire_ipversion == IPV6_VERSION);
2832 		ASSERT(parent->ire_refcnt >= 1);
2833 		ASSERT(parent_has_child(parent, ire));
2834 	}
2835 	if (child != NULL) {
2836 		ASSERT(child->ire_ipversion == IPV4_VERSION ||
2837 		    child->ire_ipversion == IPV6_VERSION);
2838 		ASSERT(child->ire_dep_parent == ire);
2839 		ASSERT(child->ire_dep_sib_ptpn != NULL);
2840 		ASSERT(parent_has_child(ire, child));
2841 	}
2842 }
2843 #endif /* DEBUG */
2844 
2845 /*
2846  * Assumes ire_dep_parent is set. Remove this child from its parent's linkage.
2847  */
2848 void
2849 ire_dep_remove(ire_t *ire)
2850 {
2851 	ip_stack_t	*ipst = ire->ire_ipst;
2852 	ire_t		*parent = ire->ire_dep_parent;
2853 	ire_t		*next;
2854 	nce_t		*nce;
2855 
2856 	ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
2857 	ASSERT(ire->ire_dep_parent != NULL);
2858 	ASSERT(ire->ire_dep_sib_ptpn != NULL);
2859 
2860 #ifdef DEBUG
2861 	ire_dep_verify(ire);
2862 	ire_dep_verify(parent);
2863 #endif
2864 
2865 	next = ire->ire_dep_sib_next;
2866 	if (next != NULL)
2867 		next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn;
2868 
2869 	ASSERT(*(ire->ire_dep_sib_ptpn) == ire);
2870 	*(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next;
2871 
2872 	ire->ire_dep_sib_ptpn = NULL;
2873 	ire->ire_dep_sib_next = NULL;
2874 
2875 	mutex_enter(&ire->ire_lock);
2876 	parent = ire->ire_dep_parent;
2877 	ire->ire_dep_parent = NULL;
2878 	mutex_exit(&ire->ire_lock);
2879 
2880 	/*
2881 	 * Make sure all our children, grandchildren, etc set
2882 	 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since
2883 	 * we can no longer guarantee than the children have a current
2884 	 * ire_nce_cache and ire_nexthop_ill().
2885 	 */
2886 	if (ire->ire_dep_children != NULL)
2887 		ire_dep_invalidate_children(ire->ire_dep_children);
2888 
2889 	/*
2890 	 * Since the parent is gone we make sure we clear ire_nce_cache.
2891 	 * We can clear it under ire_lock even if the IRE is used
2892 	 */
2893 	mutex_enter(&ire->ire_lock);
2894 	nce = ire->ire_nce_cache;
2895 	ire->ire_nce_cache = NULL;
2896 	mutex_exit(&ire->ire_lock);
2897 	if (nce != NULL)
2898 		nce_refrele(nce);
2899 
2900 #ifdef DEBUG
2901 	ire_dep_verify(ire);
2902 	ire_dep_verify(parent);
2903 #endif
2904 
2905 	ire_refrele_notr(parent);
2906 	ire_refrele_notr(ire);
2907 }
2908 
2909 /*
2910  * Insert the child in the linkage of the parent
2911  */
2912 static void
2913 ire_dep_parent_insert(ire_t *child, ire_t *parent)
2914 {
2915 	ip_stack_t	*ipst = child->ire_ipst;
2916 	ire_t		*next;
2917 
2918 	ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
2919 	ASSERT(child->ire_dep_parent == NULL);
2920 
2921 #ifdef DEBUG
2922 	ire_dep_verify(child);
2923 	ire_dep_verify(parent);
2924 #endif
2925 	/* No parents => no siblings */
2926 	ASSERT(child->ire_dep_sib_ptpn == NULL);
2927 	ASSERT(child->ire_dep_sib_next == NULL);
2928 
2929 	ire_refhold_notr(parent);
2930 	ire_refhold_notr(child);
2931 
2932 	/* Head insertion */
2933 	next = parent->ire_dep_children;
2934 	if (next != NULL) {
2935 		ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children));
2936 		child->ire_dep_sib_next = next;
2937 		next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next);
2938 	}
2939 	parent->ire_dep_children = child;
2940 	child->ire_dep_sib_ptpn = &(parent->ire_dep_children);
2941 
2942 	mutex_enter(&child->ire_lock);
2943 	child->ire_dep_parent = parent;
2944 	mutex_exit(&child->ire_lock);
2945 
2946 #ifdef DEBUG
2947 	ire_dep_verify(child);
2948 	ire_dep_verify(parent);
2949 #endif
2950 }
2951 
2952 
2953 /*
2954  * Given count worth of ires and generations, build ire_dep_* relationships
2955  * from ires[0] to ires[count-1]. Record generations[i+1] in
2956  * ire_dep_parent_generation for ires[i].
2957  * We graft onto an existing parent chain by making sure that we don't
2958  * touch ire_dep_parent for ires[count-1].
2959  *
2960  * We check for any condemned ire_generation count and return B_FALSE in
2961  * that case so that the caller can tear it apart.
2962  *
2963  * Note that generations[0] is not used. Caller handles that.
2964  */
2965 boolean_t
2966 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count)
2967 {
2968 	ire_t		*ire = ires[0];
2969 	ip_stack_t	*ipst;
2970 	uint_t		i;
2971 
2972 	ASSERT(count > 0);
2973 	if (count == 1) {
2974 		/* No work to do */
2975 		return (B_TRUE);
2976 	}
2977 	ipst = ire->ire_ipst;
2978 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
2979 	/*
2980 	 * Do not remove the linkage for any existing parent chain i.e.,
2981 	 * ires[count-1] is left alone.
2982 	 */
2983 	for (i = 0; i < count-1; i++) {
2984 		/* Remove existing parent if we need to change it */
2985 		if (ires[i]->ire_dep_parent != NULL &&
2986 		    ires[i]->ire_dep_parent != ires[i+1])
2987 			ire_dep_remove(ires[i]);
2988 	}
2989 
2990 	for (i = 0; i < count - 1; i++) {
2991 		ASSERT(ires[i]->ire_ipversion == IPV4_VERSION ||
2992 		    ires[i]->ire_ipversion == IPV6_VERSION);
2993 		/* Does it need to change? */
2994 		if (ires[i]->ire_dep_parent != ires[i+1])
2995 			ire_dep_parent_insert(ires[i], ires[i+1]);
2996 
2997 		mutex_enter(&ires[i+1]->ire_lock);
2998 		if (IRE_IS_CONDEMNED(ires[i+1])) {
2999 			mutex_exit(&ires[i+1]->ire_lock);
3000 			rw_exit(&ipst->ips_ire_dep_lock);
3001 			return (B_FALSE);
3002 		}
3003 		mutex_exit(&ires[i+1]->ire_lock);
3004 
3005 		mutex_enter(&ires[i]->ire_lock);
3006 		ires[i]->ire_dep_parent_generation = generations[i+1];
3007 		mutex_exit(&ires[i]->ire_lock);
3008 	}
3009 	rw_exit(&ipst->ips_ire_dep_lock);
3010 	return (B_TRUE);
3011 }
3012 
3013 /*
3014  * Given count worth of ires, unbuild ire_dep_* relationships
3015  * from ires[0] to ires[count-1].
3016  */
3017 void
3018 ire_dep_unbuild(ire_t *ires[], uint_t count)
3019 {
3020 	ip_stack_t	*ipst;
3021 	uint_t		i;
3022 
3023 	if (count == 0) {
3024 		/* No work to do */
3025 		return;
3026 	}
3027 	ipst = ires[0]->ire_ipst;
3028 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
3029 	for (i = 0; i < count; i++) {
3030 		ASSERT(ires[i]->ire_ipversion == IPV4_VERSION ||
3031 		    ires[i]->ire_ipversion == IPV6_VERSION);
3032 		if (ires[i]->ire_dep_parent != NULL)
3033 			ire_dep_remove(ires[i]);
3034 		mutex_enter(&ires[i]->ire_lock);
3035 		ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3036 		mutex_exit(&ires[i]->ire_lock);
3037 	}
3038 	rw_exit(&ipst->ips_ire_dep_lock);
3039 }
3040 
3041 /*
3042  * Both the forwarding and the outbound code paths can trip on
3043  * a condemned NCE, in which case we call this function.
3044  * We have two different behaviors: if the NCE was UNREACHABLE
3045  * it is an indication that something failed. In that case
3046  * we see if we should look for a different IRE (for example,
3047  * delete any matching redirect IRE, or try a different
3048  * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully
3049  * different IRE will be picked next time we send/forward.
3050  *
3051  * If we are called by the output path then fail_if_better is set
3052  * and we return NULL if there could be a better IRE. This is because the
3053  * output path retries the IRE lookup. (The input/forward path can not retry.)
3054  *
3055  * If the NCE was not unreachable then we pick/allocate a
3056  * new (most likely ND_INITIAL) NCE and proceed with it.
3057  *
3058  * ipha/ip6h are needed for multicast packets; ipha needs to be
3059  * set for IPv4 and ip6h needs to be set for IPv6 packets.
3060  */
3061 nce_t *
3062 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h,
3063     boolean_t fail_if_better)
3064 {
3065 	if (nce->nce_common->ncec_state == ND_UNREACHABLE) {
3066 		if (ire_no_good(ire) && fail_if_better) {
3067 			/*
3068 			 * Did some changes, or ECMP likely to exist.
3069 			 * Make ip_output look for a different IRE
3070 			 */
3071 			return (NULL);
3072 		}
3073 	}
3074 	if (ire_revalidate_nce(ire) == ENETUNREACH) {
3075 		/* The ire_dep_parent chain went bad, or no memory? */
3076 		(void) ire_no_good(ire);
3077 		return (NULL);
3078 	}
3079 	if (ire->ire_ipversion == IPV4_VERSION) {
3080 		ASSERT(ipha != NULL);
3081 		nce = ire_to_nce(ire, ipha->ipha_dst, NULL);
3082 	} else {
3083 		ASSERT(ip6h != NULL);
3084 		nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst);
3085 	}
3086 
3087 	if (nce == NULL)
3088 		return (NULL);
3089 	if (nce->nce_is_condemned) {
3090 		nce_refrele(nce);
3091 		return (NULL);
3092 	}
3093 	return (nce);
3094 }
3095 
3096 /*
3097  * The caller has found that the ire is bad, either due to a reference to an NCE
3098  * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved.
3099  * We update things so a subsequent attempt to send to the destination
3100  * is likely to find different IRE, or that a new NCE would be created.
3101  *
3102  * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would
3103  * find a different route (either due to having deleted a redirect, or there
3104  * being ECMP routes.)
3105  *
3106  * If we have a redirect (RTF_DYNAMIC) we delete it.
3107  * Otherwise we increment ire_badcnt and increment the generation number so
3108  * that a cached ixa_ire will redo the route selection. ire_badcnt is taken
3109  * into account in the route selection when we have multiple choices (multiple
3110  * default routes or ECMP in general).
3111  * Any time ip_select_route find an ire with a condemned ire_nce_cache
3112  * (e.g., if no equal cost route to the bad one) ip_select_route will make
3113  * sure the NCE is revalidated to avoid getting stuck on a
3114  * NCE_F_CONDMNED ncec that caused ire_no_good to be called.
3115  */
3116 boolean_t
3117 ire_no_good(ire_t *ire)
3118 {
3119 	ip_stack_t	*ipst = ire->ire_ipst;
3120 	ire_t		*ire2;
3121 	nce_t		*nce;
3122 
3123 	if (ire->ire_flags & RTF_DYNAMIC) {
3124 		ire_delete(ire);
3125 		return (B_TRUE);
3126 	}
3127 	if (ire->ire_flags & RTF_INDIRECT) {
3128 		/* Check if next IRE is a redirect */
3129 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3130 		if (ire->ire_dep_parent != NULL &&
3131 		    (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) {
3132 			ire2 = ire->ire_dep_parent;
3133 			ire_refhold(ire2);
3134 		} else {
3135 			ire2 = NULL;
3136 		}
3137 		rw_exit(&ipst->ips_ire_dep_lock);
3138 		if (ire2 != NULL) {
3139 			ire_delete(ire2);
3140 			ire_refrele(ire2);
3141 			return (B_TRUE);
3142 		}
3143 	}
3144 	/*
3145 	 * No redirect involved. Increment badcnt so that if we have ECMP
3146 	 * routes we are likely to pick a different one for the next packet.
3147 	 *
3148 	 * If the NCE is unreachable and condemned we should drop the reference
3149 	 * to it so that a new NCE can be created.
3150 	 *
3151 	 * Finally we increment the generation number so that any ixa_ire
3152 	 * cache will be revalidated.
3153 	 */
3154 	mutex_enter(&ire->ire_lock);
3155 	ire->ire_badcnt++;
3156 	ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64());
3157 	nce = ire->ire_nce_cache;
3158 	if (nce != NULL && nce->nce_is_condemned &&
3159 	    nce->nce_common->ncec_state == ND_UNREACHABLE)
3160 		ire->ire_nce_cache = NULL;
3161 	else
3162 		nce = NULL;
3163 	mutex_exit(&ire->ire_lock);
3164 	if (nce != NULL)
3165 		nce_refrele(nce);
3166 
3167 	ire_increment_generation(ire);
3168 	ire_dep_incr_generation(ire);
3169 
3170 	return (ire->ire_bucket->irb_ire_cnt > 1);
3171 }
3172 
3173 /*
3174  * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation ==
3175  * ire_dep_parent_generation.
3176  * If they all match we just return ire_generation from the topmost IRE.
3177  * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation
3178  * above the mismatch to IRE_GENERATION_VERIFY and also returning
3179  * IRE_GENERATION_VERIFY.
3180  */
3181 uint_t
3182 ire_dep_validate_generations(ire_t *ire)
3183 {
3184 	ip_stack_t	*ipst = ire->ire_ipst;
3185 	uint_t		generation;
3186 	ire_t		*ire1;
3187 
3188 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3189 	generation = ire->ire_generation;	/* Assuming things match */
3190 	for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) {
3191 		ASSERT(ire1->ire_ipversion == IPV4_VERSION ||
3192 		    ire1->ire_ipversion == IPV6_VERSION);
3193 		if (ire1->ire_dep_parent == NULL)
3194 			break;
3195 		if (ire1->ire_dep_parent_generation !=
3196 		    ire1->ire_dep_parent->ire_generation)
3197 			goto mismatch;
3198 	}
3199 	rw_exit(&ipst->ips_ire_dep_lock);
3200 	return (generation);
3201 
3202 mismatch:
3203 	generation = IRE_GENERATION_VERIFY;
3204 	/* Fill from top down to the mismatch with _VERIFY */
3205 	while (ire != ire1) {
3206 		ASSERT(ire->ire_ipversion == IPV4_VERSION ||
3207 		    ire->ire_ipversion == IPV6_VERSION);
3208 		mutex_enter(&ire->ire_lock);
3209 		ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3210 		mutex_exit(&ire->ire_lock);
3211 		ire = ire->ire_dep_parent;
3212 	}
3213 	rw_exit(&ipst->ips_ire_dep_lock);
3214 	return (generation);
3215 }
3216 
3217 /*
3218  * Used when we need to return an ire with ire_dep_parent, but we
3219  * know the chain is invalid for instance we didn't create an IRE_IF_CLONE
3220  * Using IRE_GENERATION_VERIFY means that next time we'll redo the
3221  * recursive lookup.
3222  */
3223 void
3224 ire_dep_invalidate_generations(ire_t *ire)
3225 {
3226 	ip_stack_t	*ipst = ire->ire_ipst;
3227 
3228 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3229 	while (ire != NULL) {
3230 		ASSERT(ire->ire_ipversion == IPV4_VERSION ||
3231 		    ire->ire_ipversion == IPV6_VERSION);
3232 		mutex_enter(&ire->ire_lock);
3233 		ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3234 		mutex_exit(&ire->ire_lock);
3235 		ire = ire->ire_dep_parent;
3236 	}
3237 	rw_exit(&ipst->ips_ire_dep_lock);
3238 }
3239 
3240 /* Set _VERIFY ire_dep_parent_generation for all children recursively */
3241 static void
3242 ire_dep_invalidate_children(ire_t *child)
3243 {
3244 	ip_stack_t	*ipst = child->ire_ipst;
3245 
3246 	ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
3247 	/* Depth first */
3248 	if (child->ire_dep_children != NULL)
3249 		ire_dep_invalidate_children(child->ire_dep_children);
3250 
3251 	while (child != NULL) {
3252 		mutex_enter(&child->ire_lock);
3253 		child->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3254 		mutex_exit(&child->ire_lock);
3255 		child = child->ire_dep_sib_next;
3256 	}
3257 }
3258 
3259 static void
3260 ire_dep_increment_children(ire_t *child)
3261 {
3262 	ip_stack_t	*ipst = child->ire_ipst;
3263 
3264 	ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock));
3265 	/* Depth first */
3266 	if (child->ire_dep_children != NULL)
3267 		ire_dep_increment_children(child->ire_dep_children);
3268 
3269 	while (child != NULL) {
3270 		if (!IRE_IS_CONDEMNED(child))
3271 			ire_increment_generation(child);
3272 		child = child->ire_dep_sib_next;
3273 	}
3274 }
3275 
3276 /*
3277  * Walk all the children of this ire recursively and increment their
3278  * generation number.
3279  */
3280 static void
3281 ire_dep_incr_generation_locked(ire_t *parent)
3282 {
3283 	ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock));
3284 	if (parent->ire_dep_children != NULL)
3285 		ire_dep_increment_children(parent->ire_dep_children);
3286 }
3287 
3288 void
3289 ire_dep_incr_generation(ire_t *parent)
3290 {
3291 	ip_stack_t	*ipst = parent->ire_ipst;
3292 
3293 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3294 	ire_dep_incr_generation_locked(parent);
3295 	rw_exit(&ipst->ips_ire_dep_lock);
3296 }
3297 
3298 /*
3299  * Get a new ire_nce_cache for this IRE as well as its nexthop.
3300  * Returns zero if it succeeds. Can fail due to lack of memory or when
3301  * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those
3302  * cases.
3303  *
3304  * In the in.mpathd case, the ire will have ire_testhidden
3305  * set; so we should create the ncec for the underlying ill.
3306  *
3307  * Note that the error returned by ire_revalidate_nce() is ignored by most
3308  * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH
3309  * error to mark potentially bad ire's. For all the other callers, an
3310  * error return could indicate a transient condition like ENOMEM, or could
3311  * be the result of an interface that is going down/unplumbing. In the former
3312  * case (transient error), we would leave the old stale ire/ire_nce_cache
3313  * in place, and possibly use incorrect link-layer information to send packets
3314  * but would eventually recover. In the latter case (ill down/replumb),
3315  * ire_revalidate_nce() might return a condemned nce back, but we would then
3316  * recover in the packet output path.
3317  */
3318 int
3319 ire_revalidate_nce(ire_t *ire)
3320 {
3321 	nce_t		*nce, *old_nce;
3322 	ire_t		*nexthop;
3323 
3324 	/*
3325 	 * For multicast we conceptually have an NCE but we don't store it
3326 	 * in ire_nce_cache; when ire_to_nce is called we allocate the nce.
3327 	 */
3328 	if (ire->ire_type & IRE_MULTICAST)
3329 		return (0);
3330 
3331 	/* ire_testhidden should only be set on under-interfaces */
3332 	ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill));
3333 
3334 	nexthop = ire_nexthop(ire);
3335 	if (nexthop == NULL) {
3336 		/* The route is potentially bad */
3337 		(void) ire_no_good(ire);
3338 		return (ENETUNREACH);
3339 	}
3340 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3341 		ASSERT(ire->ire_ill != NULL);
3342 
3343 		if (ire->ire_ipversion == IPV4_VERSION)
3344 			nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr);
3345 		else
3346 			nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6);
3347 	} else {
3348 		ASSERT(nexthop->ire_type & IRE_ONLINK);
3349 		if (ire->ire_ipversion == IPV4_VERSION) {
3350 			nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr,
3351 			    nexthop->ire_type);
3352 		} else {
3353 			nce = ndp_nce_init(nexthop->ire_ill,
3354 			    &nexthop->ire_addr_v6, nexthop->ire_type);
3355 		}
3356 	}
3357 	if (nce == NULL) {
3358 		/*
3359 		 * Leave the old stale one in place to avoid a NULL
3360 		 * ire_nce_cache.
3361 		 */
3362 		ire_refrele(nexthop);
3363 		return (ENOMEM);
3364 	}
3365 
3366 	if (nexthop != ire) {
3367 		/* Update the nexthop ire */
3368 		mutex_enter(&nexthop->ire_lock);
3369 		old_nce = nexthop->ire_nce_cache;
3370 		if (!IRE_IS_CONDEMNED(nexthop)) {
3371 			nce_refhold(nce);
3372 			nexthop->ire_nce_cache = nce;
3373 		} else {
3374 			nexthop->ire_nce_cache = NULL;
3375 		}
3376 		mutex_exit(&nexthop->ire_lock);
3377 		if (old_nce != NULL)
3378 			nce_refrele(old_nce);
3379 	}
3380 	ire_refrele(nexthop);
3381 
3382 	mutex_enter(&ire->ire_lock);
3383 	old_nce = ire->ire_nce_cache;
3384 	if (!IRE_IS_CONDEMNED(ire)) {
3385 		nce_refhold(nce);
3386 		ire->ire_nce_cache = nce;
3387 	} else {
3388 		ire->ire_nce_cache = NULL;
3389 	}
3390 	mutex_exit(&ire->ire_lock);
3391 	if (old_nce != NULL)
3392 		nce_refrele(old_nce);
3393 
3394 	nce_refrele(nce);
3395 	return (0);
3396 }
3397 
3398 /*
3399  * Get a held nce for a given ire.
3400  * In the common case this is just from ire_nce_cache.
3401  * For IRE_MULTICAST this needs to do an explicit lookup since we do not
3402  * have an IRE_MULTICAST per address.
3403  * Note that this explicitly returns CONDEMNED NCEs. The caller needs those
3404  * so they can check whether the NCE went unreachable (as opposed to was
3405  * condemned for some other reason).
3406  */
3407 nce_t *
3408 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop)
3409 {
3410 	nce_t	*nce;
3411 
3412 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
3413 		return (NULL);
3414 
3415 	/* ire_testhidden should only be set on under-interfaces */
3416 	ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill));
3417 
3418 	mutex_enter(&ire->ire_lock);
3419 	nce = ire->ire_nce_cache;
3420 	if (nce != NULL) {
3421 		nce_refhold(nce);
3422 		mutex_exit(&ire->ire_lock);
3423 		return (nce);
3424 	}
3425 	mutex_exit(&ire->ire_lock);
3426 
3427 	if (ire->ire_type & IRE_MULTICAST) {
3428 		ASSERT(ire->ire_ill != NULL);
3429 
3430 		if (ire->ire_ipversion == IPV4_VERSION) {
3431 			ASSERT(v6nexthop == NULL);
3432 
3433 			nce = arp_nce_init(ire->ire_ill, v4nexthop,
3434 			    ire->ire_type);
3435 		} else {
3436 			ASSERT(v6nexthop != NULL);
3437 			ASSERT(v4nexthop == 0);
3438 			nce = ndp_nce_init(ire->ire_ill, v6nexthop,
3439 			    ire->ire_type);
3440 		}
3441 		return (nce);
3442 	}
3443 	return (NULL);
3444 }
3445 
3446 nce_t *
3447 ire_to_nce_pkt(ire_t *ire, mblk_t *mp)
3448 {
3449 	ipha_t		*ipha;
3450 	ip6_t		*ip6h;
3451 
3452 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
3453 		ipha = (ipha_t *)mp->b_rptr;
3454 		return (ire_to_nce(ire, ipha->ipha_dst, NULL));
3455 	} else {
3456 		ip6h = (ip6_t *)mp->b_rptr;
3457 		return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst));
3458 	}
3459 }
3460 
3461 /*
3462  * Given an IRE_INTERFACE (that matches more than one address) create
3463  * and return an IRE_IF_CLONE for the specific address.
3464  * Return the generation number.
3465  * Returns NULL is no memory for the IRE.
3466  * Handles both IPv4 and IPv6.
3467  *
3468  * IRE_IF_CLONE entries may only be created adn added by calling
3469  * ire_create_if_clone(), and we depend on the fact that ire_add will
3470  * atomically ensure that attempts to add multiple identical IRE_IF_CLONE
3471  * entries will not result in duplicate (i.e., ire_identical_ref > 1)
3472  * CLONE entries, so that a single ire_delete is sufficient to remove the
3473  * CLONE.
3474  */
3475 ire_t *
3476 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp)
3477 {
3478 	ire_t		*ire;
3479 	ire_t		*nire;
3480 
3481 	if (ire_if->ire_ipversion == IPV4_VERSION) {
3482 		ipaddr_t	v4addr;
3483 		ipaddr_t	mask = IP_HOST_MASK;
3484 
3485 		ASSERT(IN6_IS_ADDR_V4MAPPED(addr));
3486 		IN6_V4MAPPED_TO_IPADDR(addr, v4addr);
3487 
3488 		ire = ire_create(
3489 		    (uchar_t *)&v4addr,			/* dest address */
3490 		    (uchar_t *)&mask,			/* mask */
3491 		    (uchar_t *)&ire_if->ire_gateway_addr,
3492 		    IRE_IF_CLONE,			/* IRE type */
3493 		    ire_if->ire_ill,
3494 		    ire_if->ire_zoneid,
3495 		    ire_if->ire_flags | RTF_HOST,
3496 		    NULL,		/* No security attr for IRE_IF_ALL */
3497 		    ire_if->ire_ipst);
3498 	} else {
3499 		ASSERT(!IN6_IS_ADDR_V4MAPPED(addr));
3500 		ire = ire_create_v6(
3501 		    addr,				/* dest address */
3502 		    &ipv6_all_ones,			/* mask */
3503 		    &ire_if->ire_gateway_addr_v6,	/* gateway addr */
3504 		    IRE_IF_CLONE,			/* IRE type */
3505 		    ire_if->ire_ill,
3506 		    ire_if->ire_zoneid,
3507 		    ire_if->ire_flags | RTF_HOST,
3508 		    NULL,		/* No security attr for IRE_IF_ALL */
3509 		    ire_if->ire_ipst);
3510 	}
3511 	if (ire == NULL)
3512 		return (NULL);
3513 
3514 	/* Take the metrics, in particular the mtu, from the IRE_IF */
3515 	ire->ire_metrics = ire_if->ire_metrics;
3516 
3517 	nire = ire_add(ire);
3518 	if (nire == NULL) /* Some failure */
3519 		return (NULL);
3520 
3521 	if (generationp != NULL)
3522 		*generationp = nire->ire_generation;
3523 
3524 	return (nire);
3525 }
3526 
3527 /*
3528  * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the
3529  * ire_dep_children (just walk the ire_dep_sib_next since they are all
3530  * immediate children.)
3531  * Since we hold a lock while we remove them we need to defer the actual
3532  * calls to ire_delete() until we have dropped the lock. This makes things
3533  * less efficient since we restart at the top after dropping the lock. But
3534  * we only run when an IRE_INTERFACE is deleted which is infrquent.
3535  *
3536  * Note that ire_dep_children can be any mixture of offlink routes and
3537  * IRE_IF_CLONE entries.
3538  */
3539 void
3540 ire_dep_delete_if_clone(ire_t *parent)
3541 {
3542 	ip_stack_t	*ipst = parent->ire_ipst;
3543 	ire_t		*child, *next;
3544 
3545 restart:
3546 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3547 	if (parent->ire_dep_children == NULL) {
3548 		rw_exit(&ipst->ips_ire_dep_lock);
3549 		return;
3550 	}
3551 	child = parent->ire_dep_children;
3552 	while (child != NULL) {
3553 		next = child->ire_dep_sib_next;
3554 		if ((child->ire_type & IRE_IF_CLONE) &&
3555 		    !IRE_IS_CONDEMNED(child)) {
3556 			ire_refhold(child);
3557 			rw_exit(&ipst->ips_ire_dep_lock);
3558 			ire_delete(child);
3559 			ASSERT(IRE_IS_CONDEMNED(child));
3560 			ire_refrele(child);
3561 			goto restart;
3562 		}
3563 		child = next;
3564 	}
3565 	rw_exit(&ipst->ips_ire_dep_lock);
3566 }
3567 
3568 /*
3569  * In the preferred/strict src multihoming modes, unbound routes (i.e.,
3570  * ire_t entries with ire_unbound set to B_TRUE) are bound to an interface
3571  * by selecting the first available interface that has an interface route for
3572  * the ire_gateway. If that interface is subsequently brought down, ill_downi()
3573  * will call ire_rebind() so that the unbound route can be bound to some other
3574  * matching interface thereby preserving the intended reachability information
3575  * from the original unbound route.
3576  */
3577 void
3578 ire_rebind(ire_t *ire)
3579 {
3580 	ire_t	*gw_ire, *new_ire;
3581 	int	match_flags = MATCH_IRE_TYPE;
3582 	ill_t	*gw_ill;
3583 	boolean_t isv6 = (ire->ire_ipversion == IPV6_VERSION);
3584 	ip_stack_t *ipst = ire->ire_ipst;
3585 
3586 	ASSERT(ire->ire_unbound);
3587 again:
3588 	if (isv6) {
3589 		gw_ire = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 0, 0,
3590 		    IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0,
3591 		    ipst, NULL);
3592 	} else {
3593 		gw_ire = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
3594 		    IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0,
3595 		    ipst, NULL);
3596 	}
3597 	if (gw_ire == NULL) {
3598 		/* see comments in ip_rt_add[_v6]() for IPMP */
3599 		if (match_flags & MATCH_IRE_TESTHIDDEN)
3600 			return;
3601 
3602 		match_flags |= MATCH_IRE_TESTHIDDEN;
3603 		goto again;
3604 	}
3605 	gw_ill = gw_ire->ire_ill;
3606 	if (isv6) {
3607 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
3608 		    &ire->ire_gateway_addr_v6, ire->ire_type, gw_ill,
3609 		    ire->ire_zoneid, ire->ire_flags, NULL, ipst);
3610 	} else {
3611 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
3612 		    (uchar_t *)&ire->ire_mask,
3613 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, gw_ill,
3614 		    ire->ire_zoneid, ire->ire_flags, NULL, ipst);
3615 	}
3616 	ire_refrele(gw_ire);
3617 	if (new_ire == NULL)
3618 		return;
3619 	new_ire->ire_unbound = B_TRUE;
3620 	new_ire = ire_add(new_ire);
3621 	if (new_ire != NULL)
3622 		ire_refrele(new_ire);
3623 }
3624