xref: /titanic_51/usr/src/uts/common/inet/ip/ip_ire.c (revision 25540de2e9a31b620c68d87ce2f3bbe8a196ad93)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains routines that manipulate Internet Routing Entries (IREs).
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/stropts.h>
34 #include <sys/strsun.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 #include <sys/policy.h>
38 
39 #include <sys/systm.h>
40 #include <sys/kmem.h>
41 #include <sys/param.h>
42 #include <sys/socket.h>
43 #include <net/if.h>
44 #include <net/route.h>
45 #include <netinet/in.h>
46 #include <net/if_dl.h>
47 #include <netinet/ip6.h>
48 #include <netinet/icmp6.h>
49 
50 #include <inet/common.h>
51 #include <inet/mi.h>
52 #include <inet/ip.h>
53 #include <inet/ip6.h>
54 #include <inet/ip_ndp.h>
55 #include <inet/arp.h>
56 #include <inet/ip_if.h>
57 #include <inet/ip_ire.h>
58 #include <inet/ip_ftable.h>
59 #include <inet/ip_rts.h>
60 #include <inet/nd.h>
61 
62 #include <net/pfkeyv2.h>
63 #include <inet/ipsec_info.h>
64 #include <inet/sadb.h>
65 #include <inet/tcp.h>
66 #include <inet/ipclassifier.h>
67 #include <sys/zone.h>
68 #include <sys/cpuvar.h>
69 
70 #include <sys/tsol/label.h>
71 #include <sys/tsol/tnet.h>
72 
73 struct kmem_cache *rt_entry_cache;
74 
75 /*
76  * Synchronization notes:
77  *
78  * The fields of the ire_t struct are protected in the following way :
79  *
80  * ire_next/ire_ptpn
81  *
82  *	- bucket lock of the respective tables (cache or forwarding tables).
83  *
84  * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
85  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
86  * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
87  *
88  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
89  *	  we don't need a lock whenever these fields are accessed.
90  *
91  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
92  *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
93  *        changes after that. Thus we don't need a lock whenever these
94  *	  fields are accessed.
95  *
96  * ire_gateway_addr_v4[v6]
97  *
98  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
99  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
100  *	  it assumed to be atomic and hence the other parts of the code
101  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
102  *	  and hence any access to it uses ire_lock to get/set the right value.
103  *
104  * ire_ident, ire_refcnt
105  *
106  *	- Updated atomically using atomic_add_32
107  *
108  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
109  *
110  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
111  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
112  *
113  * ire_max_frag, ire_frag_flag
114  *
115  *	- ire_lock is used to set/read both of them together.
116  *
117  * ire_tire_mark
118  *
119  *	- Set in ire_create and updated in ire_expire, which is called
120  *	  by only one function namely ip_trash_timer_expire. Thus only
121  *	  one function updates and examines the value.
122  *
123  * ire_marks
124  *	- bucket lock protects this.
125  *
126  * ire_ipsec_overhead/ire_ll_hdr_length
127  *
128  *	- Place holder for returning the information to the upper layers
129  *	  when IRE_DB_REQ comes down.
130  *
131  *
132  * ipv6_ire_default_count is protected by the bucket lock of
133  * ip_forwarding_table_v6[0][0].
134  *
135  * ipv6_ire_default_index is not protected as it  is just a hint
136  * at which default gateway to use. There is nothing
137  * wrong in using the same gateway for two different connections.
138  *
139  * As we always hold the bucket locks in all the places while accessing
140  * the above values, it is natural to use them for protecting them.
141  *
142  * We have a separate cache table and forwarding table for IPv4 and IPv6.
143  * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
144  * array of irb_t structures. The IPv6 forwarding table
145  * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
146  *  structure. ip_forwarding_table_v6 is allocated dynamically in
147  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
148  * initializing the same bucket. Once a bucket is initialized, it is never
149  * de-alloacted. This assumption enables us to access
150  * ip_forwarding_table_v6[i] without any locks.
151  *
152  * The forwarding table for IPv4 is a radix tree whose leaves
153  * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
154  * for IPv4 is dynamically allocated and freed.
155  *
156  * Each irb_t - ire bucket structure has a lock to protect
157  * a bucket and the ires residing in the bucket have a back pointer to
158  * the bucket structure. It also has a reference count for the number
159  * of threads walking the bucket - irb_refcnt which is bumped up
160  * using the macro IRB_REFHOLD macro. The flags irb_flags can be
161  * set to IRE_MARK_CONDEMNED indicating that there are some ires
162  * in this bucket that are marked with IRE_MARK_CONDEMNED and the
163  * last thread to leave the bucket should delete the ires. Usually
164  * this is done by the IRB_REFRELE macro which is used to decrement
165  * the reference count on a bucket. See comments above irb_t structure
166  * definition in ip.h for further details.
167  *
168  * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
169  * decrements the reference count, ire_refcnt, atomically on the ire.
170  * ire_refcnt is modified only using this macro. Operations on the IRE
171  * could be described as follows :
172  *
173  * CREATE an ire with reference count initialized to 1.
174  *
175  * ADDITION of an ire holds the bucket lock, checks for duplicates
176  * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
177  * bumping up once more i.e the reference count is 2. This is to avoid
178  * an extra lookup in the functions calling ire_add which wants to
179  * work with the ire after adding.
180  *
181  * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
182  * macro. It is valid to bump up the referece count of the IRE,
183  * after the lookup has returned an ire. Following are the lookup
184  * functions that return an HELD ire :
185  *
186  * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
187  * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
188  * ipif_to_ire[_v6].
189  *
190  * DELETION of an ire holds the bucket lock, removes it from the list
191  * and then decrements the reference count for having removed from the list
192  * by using the IRE_REFRELE macro. If some other thread has looked up
193  * the ire, the reference count would have been bumped up and hence
194  * this ire will not be freed once deleted. It will be freed once the
195  * reference count drops to zero.
196  *
197  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
198  * lookups acquire the bucket lock as RW_READER.
199  *
200  * NOTE : The only functions that does the IRE_REFRELE when an ire is
201  *	  passed as an argument are :
202  *
203  *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
204  *			   broadcast ires it looks up internally within
205  *			   the function. Currently, for simplicity it does
206  *			   not differentiate the one that is passed in and
207  *			   the ones it looks up internally. It always
208  *			   IRE_REFRELEs.
209  *	  2) ire_send
210  *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
211  *			   that take ire as an argument, it has to selectively
212  *			   IRE_REFRELE the ire. To maintain symmetry,
213  *			   ire_send_v6 does the same.
214  *
215  * Otherwise, the general rule is to do the IRE_REFRELE in the function
216  * that is passing the ire as an argument.
217  *
218  * In trying to locate ires the following points are to be noted.
219  *
220  * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
221  * to be ignored when walking the ires using ire_next.
222  *
223  * Zones note:
224  *	Walking IREs within a given zone also walks certain ires in other
225  *	zones.  This is done intentionally.  IRE walks with a specified
226  *	zoneid are used only when doing informational reports, and
227  *	zone users want to see things that they can access. See block
228  *	comment in ire_walk_ill_match().
229  */
230 
231 /*
232  * The minimum size of IRE cache table.  It will be recalcuated in
233  * ip_ire_init().
234  * Setable in /etc/system
235  */
236 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
237 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
238 
239 /*
240  * The size of the forwarding table.  We will make sure that it is a
241  * power of 2 in ip_ire_init().
242  * Setable in /etc/system
243  */
244 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
245 
246 struct	kmem_cache	*ire_cache;
247 static ire_t	ire_null;
248 
249 /*
250  * The threshold number of IRE in a bucket when the IREs are
251  * cleaned up.  This threshold is calculated later in ip_open()
252  * based on the speed of CPU and available memory.  This default
253  * value is the maximum.
254  *
255  * We have two kinds of cached IRE, temporary and
256  * non-temporary.  Temporary IREs are marked with
257  * IRE_MARK_TEMPORARY.  They are IREs created for non
258  * TCP traffic and for forwarding purposes.  All others
259  * are non-temporary IREs.  We don't mark IRE created for
260  * TCP as temporary because TCP is stateful and there are
261  * info stored in the IRE which can be shared by other TCP
262  * connections to the same destination.  For connected
263  * endpoint, we also don't want to mark the IRE used as
264  * temporary because the same IRE will be used frequently,
265  * otherwise, the app should not do a connect().  We change
266  * the marking at ip_bind_connected_*() if necessary.
267  *
268  * We want to keep the cache IRE hash bucket length reasonably
269  * short, otherwise IRE lookup functions will take "forever."
270  * We use the "crude" function that the IRE bucket
271  * length should be based on the CPU speed, which is 1 entry
272  * per x MHz, depending on the shift factor ip_ire_cpu_ratio
273  * (n).  This means that with a 750MHz CPU, the max bucket
274  * length can be (750 >> n) entries.
275  *
276  * Note that this threshold is separate for temp and non-temp
277  * IREs.  This means that the actual bucket length can be
278  * twice as that.  And while we try to keep temporary IRE
279  * length at most at the threshold value, we do not attempt to
280  * make the length for non-temporary IREs fixed, for the
281  * reason stated above.  Instead, we start trying to find
282  * "unused" non-temporary IREs when the bucket length reaches
283  * this threshold and clean them up.
284  *
285  * We also want to limit the amount of memory used by
286  * IREs.  So if we are allowed to use ~3% of memory (M)
287  * for those IREs, each bucket should not have more than
288  *
289  * 	M / num of cache bucket / sizeof (ire_t)
290  *
291  * Again the above memory uses are separate for temp and
292  * non-temp cached IREs.
293  *
294  * We may also want the limit to be a function of the number
295  * of interfaces and number of CPUs.  Doing the initialization
296  * in ip_open() means that every time an interface is plumbed,
297  * the max is re-calculated.  Right now, we don't do anything
298  * different.  In future, when we have more experience, we
299  * may want to change this behavior.
300  */
301 uint32_t ip_ire_max_bucket_cnt = 10;	/* Setable in /etc/system */
302 uint32_t ip6_ire_max_bucket_cnt = 10;
303 uint32_t ip_ire_cleanup_cnt = 2;
304 
305 /*
306  * The minimum of the temporary IRE bucket count.  We do not want
307  * the length of each bucket to be too short.  This may hurt
308  * performance of some apps as the temporary IREs are removed too
309  * often.
310  */
311 uint32_t ip_ire_min_bucket_cnt = 3;	/* /etc/system - not used */
312 uint32_t ip6_ire_min_bucket_cnt = 3;
313 
314 /*
315  * The ratio of memory consumed by IRE used for temporary to available
316  * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
317  * value can be changed in /etc/system.  6 is a reasonable number.
318  */
319 uint32_t ip_ire_mem_ratio = 6;	/* /etc/system */
320 /* The shift factor for CPU speed to calculate the max IRE bucket length. */
321 uint32_t ip_ire_cpu_ratio = 7;	/* /etc/system */
322 
323 typedef struct nce_clookup_s {
324 	ipaddr_t ncecl_addr;
325 	boolean_t ncecl_found;
326 } nce_clookup_t;
327 
328 /*
329  * The maximum number of buckets in IRE cache table.  In future, we may
330  * want to make it a dynamic hash table.  For the moment, we fix the
331  * size and allocate the table in ip_ire_init() when IP is first loaded.
332  * We take into account the amount of memory a system has.
333  */
334 #define	IP_MAX_CACHE_TABLE_SIZE	4096
335 
336 /* Setable in /etc/system */
337 static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
338 static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
339 
340 #define	NUM_ILLS	2	/* To build the ILL list to unlock */
341 
342 /* Zero iulp_t for initialization. */
343 const iulp_t	ire_uinfo_null = { 0 };
344 
345 static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
346     ipsq_func_t func, boolean_t);
347 static void	ire_delete_v4(ire_t *ire);
348 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
349     zoneid_t zoneid, ip_stack_t *);
350 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
351     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
352 static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold,
353     ire_t *ref_ire);
354 static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
355 static	ire_t	*ip4_ctable_lookup_impl(ire_ctable_args_t *margs);
356 #ifdef DEBUG
357 static void	ire_trace_cleanup(const ire_t *);
358 #endif
359 
360 /*
361  * To avoid bloating the code, we call this function instead of
362  * using the macro IRE_REFRELE. Use macro only in performance
363  * critical paths.
364  *
365  * Must not be called while holding any locks. Otherwise if this is
366  * the last reference to be released there is a chance of recursive mutex
367  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
368  * to restart an ioctl. The one exception is when the caller is sure that
369  * this is not the last reference to be released. Eg. if the caller is
370  * sure that the ire has not been deleted and won't be deleted.
371  */
372 void
373 ire_refrele(ire_t *ire)
374 {
375 	IRE_REFRELE(ire);
376 }
377 
378 void
379 ire_refrele_notr(ire_t *ire)
380 {
381 	IRE_REFRELE_NOTR(ire);
382 }
383 
384 /*
385  * kmem_cache_alloc constructor for IRE in kma space.
386  * Note that when ire_mp is set the IRE is stored in that mblk and
387  * not in this cache.
388  */
389 /* ARGSUSED */
390 static int
391 ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
392 {
393 	ire_t	*ire = buf;
394 
395 	ire->ire_nce = NULL;
396 
397 	return (0);
398 }
399 
400 /* ARGSUSED1 */
401 static void
402 ip_ire_destructor(void *buf, void *cdrarg)
403 {
404 	ire_t	*ire = buf;
405 
406 	ASSERT(ire->ire_nce == NULL);
407 }
408 
409 /*
410  * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
411  * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
412  * for an existing CACHED IRE.
413  */
414 /* ARGSUSED */
415 int
416 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
417 {
418 	uchar_t	*addr_ucp;
419 	ipic_t	*ipic;
420 	ire_t	*ire;
421 	ipaddr_t	addr;
422 	in6_addr_t	v6addr;
423 	irb_t	*irb;
424 	zoneid_t	zoneid;
425 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
426 
427 	ASSERT(q->q_next == NULL);
428 	zoneid = Q_TO_CONN(q)->conn_zoneid;
429 
430 	/*
431 	 * Check privilege using the ioctl credential; if it is NULL
432 	 * then this is a kernel message and therefor privileged.
433 	 */
434 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
435 		return (EPERM);
436 
437 	ipic = (ipic_t *)mp->b_rptr;
438 	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
439 	    ipic->ipic_addr_length))) {
440 		return (EINVAL);
441 	}
442 	if (!OK_32PTR(addr_ucp))
443 		return (EINVAL);
444 	switch (ipic->ipic_addr_length) {
445 	case IP_ADDR_LEN: {
446 		/* Extract the destination address. */
447 		addr = *(ipaddr_t *)addr_ucp;
448 		/* Find the corresponding IRE. */
449 		ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
450 		break;
451 	}
452 	case IPV6_ADDR_LEN: {
453 		/* Extract the destination address. */
454 		v6addr = *(in6_addr_t *)addr_ucp;
455 		/* Find the corresponding IRE. */
456 		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
457 		break;
458 	}
459 	default:
460 		return (EINVAL);
461 	}
462 
463 	if (ire == NULL)
464 		return (ENOENT);
465 	/*
466 	 * Update the round trip time estimate and/or the max frag size
467 	 * and/or the slow start threshold.
468 	 *
469 	 * We serialize multiple advises using ire_lock.
470 	 */
471 	mutex_enter(&ire->ire_lock);
472 	if (ipic->ipic_rtt) {
473 		/*
474 		 * If there is no old cached values, initialize them
475 		 * conservatively.  Set them to be (1.5 * new value).
476 		 */
477 		if (ire->ire_uinfo.iulp_rtt != 0) {
478 			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
479 			    ipic->ipic_rtt) >> 1;
480 		} else {
481 			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
482 			    (ipic->ipic_rtt >> 1);
483 		}
484 		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
485 			ire->ire_uinfo.iulp_rtt_sd =
486 			    (ire->ire_uinfo.iulp_rtt_sd +
487 			    ipic->ipic_rtt_sd) >> 1;
488 		} else {
489 			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
490 			    (ipic->ipic_rtt_sd >> 1);
491 		}
492 	}
493 	if (ipic->ipic_max_frag)
494 		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
495 	if (ipic->ipic_ssthresh != 0) {
496 		if (ire->ire_uinfo.iulp_ssthresh != 0)
497 			ire->ire_uinfo.iulp_ssthresh =
498 			    (ipic->ipic_ssthresh +
499 			    ire->ire_uinfo.iulp_ssthresh) >> 1;
500 		else
501 			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
502 	}
503 	/*
504 	 * Don't need the ire_lock below this. ire_type does not change
505 	 * after initialization. ire_marks is protected by irb_lock.
506 	 */
507 	mutex_exit(&ire->ire_lock);
508 
509 	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
510 		/*
511 		 * Only increment the temporary IRE count if the original
512 		 * IRE is not already marked temporary.
513 		 */
514 		irb = ire->ire_bucket;
515 		rw_enter(&irb->irb_lock, RW_WRITER);
516 		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
517 		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
518 			irb->irb_tmp_ire_cnt++;
519 		}
520 		ire->ire_marks |= ipic->ipic_ire_marks;
521 		rw_exit(&irb->irb_lock);
522 	}
523 
524 	ire_refrele(ire);
525 	return (0);
526 }
527 
528 /*
529  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
530  * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
531  * for a host that is not responding.  This will force an attempt to
532  * establish a new route, if available, and flush out the ARP entry so
533  * it will re-resolve.  Management processes may want to use the
534  * version that generates a reply.
535  *
536  * This function does not support IPv6 since Neighbor Unreachability Detection
537  * means that negative advise like this is useless.
538  */
539 /* ARGSUSED */
540 int
541 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
542 {
543 	uchar_t		*addr_ucp;
544 	ipaddr_t	addr;
545 	ire_t		*ire;
546 	ipid_t		*ipid;
547 	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
548 	zoneid_t	zoneid;
549 	ire_t		*gire = NULL;
550 	ill_t		*ill;
551 	mblk_t		*arp_mp;
552 	ip_stack_t	*ipst;
553 
554 	ASSERT(q->q_next == NULL);
555 	zoneid = Q_TO_CONN(q)->conn_zoneid;
556 	ipst = CONNQ_TO_IPST(q);
557 
558 	/*
559 	 * Check privilege using the ioctl credential; if it is NULL
560 	 * then this is a kernel message and therefor privileged.
561 	 */
562 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
563 		return (EPERM);
564 
565 	ipid = (ipid_t *)mp->b_rptr;
566 
567 	/* Only actions on IRE_CACHEs are acceptable at present. */
568 	if (ipid->ipid_ire_type != IRE_CACHE)
569 		return (EINVAL);
570 
571 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
572 	    ipid->ipid_addr_length);
573 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
574 		return (EINVAL);
575 	switch (ipid->ipid_addr_length) {
576 	case IP_ADDR_LEN:
577 		/* addr_ucp points at IP addr */
578 		break;
579 	case sizeof (sin_t): {
580 		sin_t	*sin;
581 		/*
582 		 * got complete (sockaddr) address - increment addr_ucp to point
583 		 * at the ip_addr field.
584 		 */
585 		sin = (sin_t *)addr_ucp;
586 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
587 		break;
588 	}
589 	default:
590 		return (EINVAL);
591 	}
592 	/* Extract the destination address. */
593 	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
594 
595 	/* Try to find the CACHED IRE. */
596 	ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
597 
598 	/* Nail it. */
599 	if (ire) {
600 		/* Allow delete only on CACHE entries */
601 		if (ire->ire_type != IRE_CACHE) {
602 			ire_refrele(ire);
603 			return (EINVAL);
604 		}
605 
606 		/*
607 		 * Verify that the IRE has been around for a while.
608 		 * This is to protect against transport protocols
609 		 * that are too eager in sending delete messages.
610 		 */
611 		if (gethrestime_sec() <
612 		    ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
613 			ire_refrele(ire);
614 			return (EINVAL);
615 		}
616 		/*
617 		 * Now we have a potentially dead cache entry. We need
618 		 * to remove it.
619 		 * If this cache entry is generated from a
620 		 * default route (i.e., ire_cmask == 0),
621 		 * search the default list and mark it dead and some
622 		 * background process will try to activate it.
623 		 */
624 		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
625 			/*
626 			 * Make sure that we pick a different
627 			 * IRE_DEFAULT next time.
628 			 */
629 			ire_t *gw_ire;
630 			irb_t *irb = NULL;
631 			uint_t match_flags;
632 
633 			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
634 
635 			gire = ire_ftable_lookup(ire->ire_addr,
636 			    ire->ire_cmask, 0, 0,
637 			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
638 			    ipst);
639 
640 			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
641 			    (void *)gire));
642 
643 			if (gire != NULL) {
644 				irb = gire->ire_bucket;
645 
646 				/*
647 				 * We grab it as writer just to serialize
648 				 * multiple threads trying to bump up
649 				 * irb_rr_origin
650 				 */
651 				rw_enter(&irb->irb_lock, RW_WRITER);
652 				if ((gw_ire = irb->irb_rr_origin) == NULL) {
653 					rw_exit(&irb->irb_lock);
654 					goto done;
655 				}
656 
657 				DTRACE_PROBE1(ip__ire__del__origin,
658 				    (ire_t *), gw_ire);
659 
660 				/* Skip past the potentially bad gateway */
661 				if (ire->ire_gateway_addr ==
662 				    gw_ire->ire_gateway_addr) {
663 					ire_t *next = gw_ire->ire_next;
664 
665 					DTRACE_PROBE2(ip__ire__del,
666 					    (ire_t *), gw_ire, (irb_t *), irb);
667 					IRE_FIND_NEXT_ORIGIN(next);
668 					irb->irb_rr_origin = next;
669 				}
670 				rw_exit(&irb->irb_lock);
671 			}
672 		}
673 done:
674 		if (gire != NULL)
675 			IRE_REFRELE(gire);
676 		/* report the bad route to routing sockets */
677 		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
678 		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
679 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
680 		routing_sock_info = B_TRUE;
681 
682 		/*
683 		 * TCP is really telling us to start over completely, and it
684 		 * expects that we'll resend the ARP query.  Tell ARP to
685 		 * discard the entry, if this is a local destination.
686 		 *
687 		 * But, if the ARP entry is permanent then it shouldn't be
688 		 * deleted, so we set ARED_F_PRESERVE_PERM.
689 		 */
690 		ill = ire->ire_stq->q_ptr;
691 		if (ire->ire_gateway_addr == 0 &&
692 		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
693 			ared_t *ared = (ared_t *)arp_mp->b_rptr;
694 
695 			ASSERT(ared->ared_cmd == AR_ENTRY_DELETE);
696 			ared->ared_flags |= ARED_F_PRESERVE_PERM;
697 			putnext(ill->ill_rq, arp_mp);
698 		}
699 
700 		ire_delete(ire);
701 		ire_refrele(ire);
702 	}
703 	/*
704 	 * Also look for an IRE_HOST type redirect ire and
705 	 * remove it if present.
706 	 */
707 	ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
708 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
709 
710 	/* Nail it. */
711 	if (ire != NULL) {
712 		if (ire->ire_flags & RTF_DYNAMIC) {
713 			if (!routing_sock_info) {
714 				ip_rts_change(RTM_LOSING, ire->ire_addr,
715 				    ire->ire_gateway_addr, ire->ire_mask,
716 				    ire->ire_src_addr, 0, 0, 0,
717 				    (RTA_DST | RTA_GATEWAY |
718 				    RTA_NETMASK | RTA_IFA),
719 				    ipst);
720 			}
721 			ire_delete(ire);
722 		}
723 		ire_refrele(ire);
724 	}
725 	return (0);
726 }
727 
728 
729 /*
730  * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
731  * down from the Upper Level Protocol to request a copy of the IRE (to check
732  * its type or to extract information like round-trip time estimates or the
733  * MTU.)
734  * The address is assumed to be in the ire_addr field. If no IRE is found
735  * an IRE is returned with ire_type being zero.
736  * Note that the upper lavel protocol has to check for broadcast
737  * (IRE_BROADCAST) and multicast (CLASSD(addr)).
738  * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
739  * end of the returned message.
740  *
741  * TCP sends down a message of this type with a connection request packet
742  * chained on. UDP and ICMP send it down to verify that a route exists for
743  * the destination address when they get connected.
744  */
745 void
746 ip_ire_req(queue_t *q, mblk_t *mp)
747 {
748 	ire_t	*inire;
749 	ire_t	*ire;
750 	mblk_t	*mp1;
751 	ire_t	*sire = NULL;
752 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
753 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
754 
755 	ASSERT(q->q_next == NULL);
756 
757 	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
758 	    !OK_32PTR(mp->b_rptr)) {
759 		freemsg(mp);
760 		return;
761 	}
762 	inire = (ire_t *)mp->b_rptr;
763 	/*
764 	 * Got it, now take our best shot at an IRE.
765 	 */
766 	if (inire->ire_ipversion == IPV6_VERSION) {
767 		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
768 		    NULL, &sire, zoneid, NULL,
769 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
770 	} else {
771 		ASSERT(inire->ire_ipversion == IPV4_VERSION);
772 		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
773 		    NULL, &sire, zoneid, NULL,
774 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
775 	}
776 
777 	/*
778 	 * We prevent returning IRES with source address INADDR_ANY
779 	 * as these were temporarily created for sending packets
780 	 * from endpoints that have conn_unspec_src set.
781 	 */
782 	if (ire == NULL ||
783 	    (ire->ire_ipversion == IPV4_VERSION &&
784 	    ire->ire_src_addr == INADDR_ANY) ||
785 	    (ire->ire_ipversion == IPV6_VERSION &&
786 	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
787 		inire->ire_type = 0;
788 	} else {
789 		bcopy(ire, inire, sizeof (ire_t));
790 		/* Copy the route metrics from the parent. */
791 		if (sire != NULL) {
792 			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
793 			    sizeof (iulp_t));
794 		}
795 
796 		/*
797 		 * As we don't lookup global policy here, we may not
798 		 * pass the right size if per-socket policy is not
799 		 * present. For these cases, path mtu discovery will
800 		 * do the right thing.
801 		 */
802 		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
803 
804 		/* Pass the latest setting of the ip_path_mtu_discovery */
805 		inire->ire_frag_flag |=
806 		    (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
807 	}
808 	if (ire != NULL)
809 		ire_refrele(ire);
810 	if (sire != NULL)
811 		ire_refrele(sire);
812 	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
813 	mp->b_datap->db_type = IRE_DB_TYPE;
814 
815 	/* Put the IRE_DB_TYPE mblk last in the chain */
816 	mp1 = mp->b_cont;
817 	if (mp1 != NULL) {
818 		mp->b_cont = NULL;
819 		linkb(mp1, mp);
820 		mp = mp1;
821 	}
822 	qreply(q, mp);
823 }
824 
825 /*
826  * Send a packet using the specified IRE.
827  * If ire_src_addr_v6 is all zero then discard the IRE after
828  * the packet has been sent.
829  */
830 static void
831 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
832 {
833 	mblk_t *ipsec_mp;
834 	boolean_t is_secure;
835 	uint_t ifindex;
836 	ill_t	*ill;
837 	zoneid_t zoneid = ire->ire_zoneid;
838 	ip_stack_t	*ipst = ire->ire_ipst;
839 
840 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
841 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
842 	ipsec_mp = pkt;
843 	is_secure = (pkt->b_datap->db_type == M_CTL);
844 	if (is_secure) {
845 		ipsec_out_t *io;
846 
847 		pkt = pkt->b_cont;
848 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
849 		if (io->ipsec_out_type == IPSEC_OUT)
850 			zoneid = io->ipsec_out_zoneid;
851 	}
852 
853 	/* If the packet originated externally then */
854 	if (pkt->b_prev) {
855 		ire_refrele(ire);
856 		/*
857 		 * Extract the ifindex from b_prev (set in ip_rput_noire).
858 		 * Look up interface to see if it still exists (it could have
859 		 * been unplumbed by the time the reply came back from ARP)
860 		 */
861 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
862 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
863 		    NULL, NULL, NULL, NULL, ipst);
864 		if (ill == NULL) {
865 			pkt->b_prev = NULL;
866 			pkt->b_next = NULL;
867 			freemsg(ipsec_mp);
868 			return;
869 		}
870 		q = ill->ill_rq;
871 		pkt->b_prev = NULL;
872 		/*
873 		 * This packet has not gone through IPSEC processing
874 		 * and hence we should not have any IPSEC message
875 		 * prepended.
876 		 */
877 		ASSERT(ipsec_mp == pkt);
878 		put(q, pkt);
879 		ill_refrele(ill);
880 	} else if (pkt->b_next) {
881 		/* Packets from multicast router */
882 		pkt->b_next = NULL;
883 		/*
884 		 * We never get the IPSEC_OUT while forwarding the
885 		 * packet for multicast router.
886 		 */
887 		ASSERT(ipsec_mp == pkt);
888 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
889 		ire_refrele(ire);
890 	} else {
891 		/* Locally originated packets */
892 		boolean_t delete_ire = B_FALSE;
893 		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
894 
895 		/*
896 		 * If this IRE shouldn't be kept in the table (because its
897 		 * source address is unspecified), hold a reference to it so
898 		 * we can delete it even after e.g. ip_wput_ire() has dropped
899 		 * its reference.
900 		 */
901 		if (!(ire->ire_marks & IRE_MARK_NOADD) &&
902 		    ire->ire_src_addr == INADDR_ANY) {
903 			delete_ire = B_TRUE;
904 			IRE_REFHOLD(ire);
905 		}
906 
907 		/*
908 		 * If we were resolving a router we can not use the
909 		 * routers IRE for sending the packet (since it would
910 		 * violate the uniqness of the IP idents) thus we
911 		 * make another pass through ip_wput to create the IRE_CACHE
912 		 * for the destination.
913 		 * When IRE_MARK_NOADD is set, ire_add() is not called.
914 		 * Thus ip_wput() will never find a ire and result in an
915 		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
916 		 * is set. This also implies that IRE_MARK_NOADD can only be
917 		 * used to send packets to directly connected hosts.
918 		 */
919 		if (ipha->ipha_dst != ire->ire_addr &&
920 		    !(ire->ire_marks & IRE_MARK_NOADD)) {
921 			ire_refrele(ire);	/* Held in ire_add */
922 			if (CONN_Q(q)) {
923 				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
924 				    IRE_SEND);
925 			} else {
926 				(void) ip_output((void *)(uintptr_t)zoneid,
927 				    ipsec_mp, q, IRE_SEND);
928 			}
929 		} else {
930 			if (is_secure) {
931 				ipsec_out_t *oi;
932 				ipha_t *ipha;
933 
934 				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
935 				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
936 				if (oi->ipsec_out_proc_begin) {
937 					/*
938 					 * This is the case where
939 					 * ip_wput_ipsec_out could not find
940 					 * the IRE and recreated a new one.
941 					 * As ip_wput_ipsec_out does ire
942 					 * lookups, ire_refrele for the extra
943 					 * bump in ire_add.
944 					 */
945 					ire_refrele(ire);
946 					ip_wput_ipsec_out(q, ipsec_mp, ipha,
947 					    NULL, NULL);
948 				} else {
949 					/*
950 					 * IRE_REFRELE will be done in
951 					 * ip_wput_ire.
952 					 */
953 					ip_wput_ire(q, ipsec_mp, ire, NULL,
954 					    IRE_SEND, zoneid);
955 				}
956 			} else {
957 				/*
958 				 * IRE_REFRELE will be done in ip_wput_ire.
959 				 */
960 				ip_wput_ire(q, ipsec_mp, ire, NULL,
961 				    IRE_SEND, zoneid);
962 			}
963 		}
964 		/*
965 		 * Special code to support sending a single packet with
966 		 * conn_unspec_src using an IRE which has no source address.
967 		 * The IRE is deleted here after sending the packet to avoid
968 		 * having other code trip on it. But before we delete the
969 		 * ire, somebody could have looked up this ire.
970 		 * We prevent returning/using this IRE by the upper layers
971 		 * by making checks to NULL source address in other places
972 		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
973 		 * Though this does not completely prevent other threads
974 		 * from using this ire, this should not cause any problems.
975 		 */
976 		if (delete_ire) {
977 			ip1dbg(("ire_send: delete IRE\n"));
978 			ire_delete(ire);
979 			ire_refrele(ire);	/* Held above */
980 		}
981 	}
982 }
983 
984 /*
985  * Send a packet using the specified IRE.
986  * If ire_src_addr_v6 is all zero then discard the IRE after
987  * the packet has been sent.
988  */
989 static void
990 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
991 {
992 	mblk_t *ipsec_mp;
993 	boolean_t secure;
994 	uint_t ifindex;
995 	zoneid_t zoneid = ire->ire_zoneid;
996 	ip_stack_t	*ipst = ire->ire_ipst;
997 
998 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
999 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1000 	if (pkt->b_datap->db_type == M_CTL) {
1001 		ipsec_out_t *io;
1002 
1003 		ipsec_mp = pkt;
1004 		pkt = pkt->b_cont;
1005 		secure = B_TRUE;
1006 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1007 		if (io->ipsec_out_type == IPSEC_OUT)
1008 			zoneid = io->ipsec_out_zoneid;
1009 	} else {
1010 		ipsec_mp = pkt;
1011 		secure = B_FALSE;
1012 	}
1013 
1014 	/* If the packet originated externally then */
1015 	if (pkt->b_prev) {
1016 		ill_t	*ill;
1017 		/*
1018 		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1019 		 * Look up interface to see if it still exists (it could have
1020 		 * been unplumbed by the time the reply came back from the
1021 		 * resolver).
1022 		 */
1023 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1024 		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1025 		    NULL, NULL, NULL, NULL, ipst);
1026 		if (ill == NULL) {
1027 			pkt->b_prev = NULL;
1028 			pkt->b_next = NULL;
1029 			freemsg(ipsec_mp);
1030 			ire_refrele(ire);	/* Held in ire_add */
1031 			return;
1032 		}
1033 		q = ill->ill_rq;
1034 		pkt->b_prev = NULL;
1035 		/*
1036 		 * This packet has not gone through IPSEC processing
1037 		 * and hence we should not have any IPSEC message
1038 		 * prepended.
1039 		 */
1040 		ASSERT(ipsec_mp == pkt);
1041 		put(q, pkt);
1042 		ill_refrele(ill);
1043 	} else if (pkt->b_next) {
1044 		/* Packets from multicast router */
1045 		pkt->b_next = NULL;
1046 		/*
1047 		 * We never get the IPSEC_OUT while forwarding the
1048 		 * packet for multicast router.
1049 		 */
1050 		ASSERT(ipsec_mp == pkt);
1051 		/*
1052 		 * XXX TODO IPv6.
1053 		 */
1054 		freemsg(pkt);
1055 #ifdef XXX
1056 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1057 #endif
1058 	} else {
1059 		if (secure) {
1060 			ipsec_out_t *oi;
1061 			ip6_t *ip6h;
1062 
1063 			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1064 			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1065 			if (oi->ipsec_out_proc_begin) {
1066 				/*
1067 				 * This is the case where
1068 				 * ip_wput_ipsec_out could not find
1069 				 * the IRE and recreated a new one.
1070 				 */
1071 				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1072 				    NULL, NULL);
1073 			} else {
1074 				if (CONN_Q(q)) {
1075 					(void) ip_output_v6(Q_TO_CONN(q),
1076 					    ipsec_mp, q, IRE_SEND);
1077 				} else {
1078 					(void) ip_output_v6(
1079 					    (void *)(uintptr_t)zoneid,
1080 					    ipsec_mp, q, IRE_SEND);
1081 				}
1082 			}
1083 		} else {
1084 			/*
1085 			 * Send packets through ip_output_v6 so that any
1086 			 * ip6_info header can be processed again.
1087 			 */
1088 			if (CONN_Q(q)) {
1089 				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1090 				    IRE_SEND);
1091 			} else {
1092 				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1093 				    ipsec_mp, q, IRE_SEND);
1094 			}
1095 		}
1096 		/*
1097 		 * Special code to support sending a single packet with
1098 		 * conn_unspec_src using an IRE which has no source address.
1099 		 * The IRE is deleted here after sending the packet to avoid
1100 		 * having other code trip on it. But before we delete the
1101 		 * ire, somebody could have looked up this ire.
1102 		 * We prevent returning/using this IRE by the upper layers
1103 		 * by making checks to NULL source address in other places
1104 		 * like e.g ip_ire_append_v6, ip_ire_req and
1105 		 * ip_bind_connected_v6. Though, this does not completely
1106 		 * prevent other threads from using this ire, this should
1107 		 * not cause any problems.
1108 		 */
1109 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1110 			ip1dbg(("ire_send_v6: delete IRE\n"));
1111 			ire_delete(ire);
1112 		}
1113 	}
1114 	ire_refrele(ire);	/* Held in ire_add */
1115 }
1116 
1117 /*
1118  * Make sure that IRE bucket does not get too long.
1119  * This can cause lock up because ire_cache_lookup()
1120  * may take "forever" to finish.
1121  *
1122  * We only remove a maximum of cnt IREs each time.  This
1123  * should keep the bucket length approximately constant,
1124  * depending on cnt.  This should be enough to defend
1125  * against DoS attack based on creating temporary IREs
1126  * (for forwarding and non-TCP traffic).
1127  *
1128  * We also pass in the address of the newly created IRE
1129  * as we do not want to remove this straight after adding
1130  * it. New IREs are normally added at the tail of the
1131  * bucket.  This means that we are removing the "oldest"
1132  * temporary IREs added.  Only if there are IREs with
1133  * the same ire_addr, do we not add it at the tail.  Refer
1134  * to ire_add_v*().  It should be OK for our purpose.
1135  *
1136  * For non-temporary cached IREs, we make sure that they
1137  * have not been used for some time (defined below), they
1138  * are non-local destinations, and there is no one using
1139  * them at the moment (refcnt == 1).
1140  *
1141  * The above means that the IRE bucket length may become
1142  * very long, consisting of mostly non-temporary IREs.
1143  * This can happen when the hash function does a bad job
1144  * so that most TCP connections cluster to a specific bucket.
1145  * This "hopefully" should never happen.  It can also
1146  * happen if most TCP connections have very long lives.
1147  * Even with the minimal hash table size of 256, there
1148  * has to be a lot of such connections to make the bucket
1149  * length unreasonably long.  This should probably not
1150  * happen either.  The third can when this can happen is
1151  * when the machine is under attack, such as SYN flooding.
1152  * TCP should already have the proper mechanism to protect
1153  * that.  So we should be safe.
1154  *
1155  * This function is called by ire_add_then_send() after
1156  * a new IRE is added and the packet is sent.
1157  *
1158  * The idle cutoff interval is set to 60s.  It can be
1159  * changed using /etc/system.
1160  */
1161 uint32_t ire_idle_cutoff_interval = 60000;
1162 
1163 static void
1164 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire)
1165 {
1166 	ire_t *ire;
1167 	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1168 	int cnt = ip_ire_cleanup_cnt;
1169 
1170 	/*
1171 	 * Try to remove cnt temporary IREs first.
1172 	 */
1173 	for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) {
1174 		if (ire == ref_ire)
1175 			continue;
1176 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
1177 			continue;
1178 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1179 			ASSERT(ire->ire_type == IRE_CACHE);
1180 			ire_delete(ire);
1181 			cnt--;
1182 		}
1183 	}
1184 	if (cnt == 0)
1185 		return;
1186 
1187 	/*
1188 	 * If we didn't satisfy our removal target from temporary IREs
1189 	 * we see how many non-temporary IREs are currently in the bucket.
1190 	 * If this quantity is above the threshold then we see if there are any
1191 	 * candidates for removal. We are still limited to removing a maximum
1192 	 * of cnt IREs.
1193 	 */
1194 	if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) {
1195 		for (ire = irb->irb_ire; cnt > 0 && ire != NULL;
1196 		    ire = ire->ire_next) {
1197 			if (ire == ref_ire)
1198 				continue;
1199 			if (ire->ire_type != IRE_CACHE)
1200 				continue;
1201 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1202 				continue;
1203 			if ((ire->ire_refcnt == 1) &&
1204 			    (lbolt - ire->ire_last_used_time > cut_off)) {
1205 				ire_delete(ire);
1206 				cnt--;
1207 			}
1208 		}
1209 	}
1210 }
1211 
1212 /*
1213  * ire_add_then_send is called when a new IRE has been created in order to
1214  * route an outgoing packet.  Typically, it is called from ip_wput when
1215  * a response comes back down from a resolver.  We add the IRE, and then
1216  * possibly run the packet through ip_wput or ip_rput, as appropriate.
1217  * However, we do not add the newly created IRE in the cache when
1218  * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1219  * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by
1220  * ip_wput_ire() and get deleted.
1221  * Multirouting support: the packet is silently discarded when the new IRE
1222  * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1223  * RTF_MULTIRT flag for the same destination address.
1224  * In this case, we just want to register this additional ire without
1225  * sending the packet, as it has already been replicated through
1226  * existing multirt routes in ip_wput().
1227  */
1228 void
1229 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1230 {
1231 	irb_t *irb;
1232 	boolean_t drop = B_FALSE;
1233 	boolean_t mctl_present;
1234 	mblk_t *first_mp = NULL;
1235 	mblk_t *data_mp = NULL;
1236 	ire_t *dst_ire;
1237 	ipha_t *ipha;
1238 	ip6_t *ip6h;
1239 	ip_stack_t	*ipst = ire->ire_ipst;
1240 	int		ire_limit;
1241 
1242 	if (mp != NULL) {
1243 		/*
1244 		 * We first have to retrieve the destination address carried
1245 		 * by the packet.
1246 		 * We can't rely on ire as it can be related to a gateway.
1247 		 * The destination address will help in determining if
1248 		 * other RTF_MULTIRT ires are already registered.
1249 		 *
1250 		 * We first need to know where we are going : v4 or V6.
1251 		 * the ire version is enough, as there is no risk that
1252 		 * we resolve an IPv6 address with an IPv4 ire
1253 		 * or vice versa.
1254 		 */
1255 		EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1256 		data_mp = mp;
1257 		mp = first_mp;
1258 		if (ire->ire_ipversion == IPV4_VERSION) {
1259 			ipha = (ipha_t *)data_mp->b_rptr;
1260 			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1261 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1262 		} else {
1263 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1264 			ip6h = (ip6_t *)data_mp->b_rptr;
1265 			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1266 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1267 		}
1268 		if (dst_ire != NULL) {
1269 			if (dst_ire->ire_flags & RTF_MULTIRT) {
1270 				/*
1271 				 * At least one resolved multirt route
1272 				 * already exists for the destination,
1273 				 * don't sent this packet: either drop it
1274 				 * or complete the pending resolution,
1275 				 * depending on the ire.
1276 				 */
1277 				drop = B_TRUE;
1278 			}
1279 			ip1dbg(("ire_add_then_send: dst_ire %p "
1280 			    "[dst %08x, gw %08x], drop %d\n",
1281 			    (void *)dst_ire,
1282 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1283 			    ntohl(dst_ire->ire_addr) : \
1284 			    ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1285 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1286 			    ntohl(dst_ire->ire_gateway_addr) : \
1287 			    ntohl(V4_PART_OF_V6(
1288 			    dst_ire->ire_gateway_addr_v6)),
1289 			    drop));
1290 			ire_refrele(dst_ire);
1291 		}
1292 	}
1293 
1294 	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1295 		/* Regular packets with cache bound ires are here. */
1296 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1297 
1298 		if (ire == NULL) {
1299 			mp->b_prev = NULL;
1300 			mp->b_next = NULL;
1301 			MULTIRT_DEBUG_UNTAG(mp);
1302 			freemsg(mp);
1303 			return;
1304 		}
1305 		if (mp == NULL) {
1306 			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1307 			return;
1308 		}
1309 	}
1310 	if (drop) {
1311 		/*
1312 		 * If we're adding an RTF_MULTIRT ire, the resolution
1313 		 * is over: we just drop the packet.
1314 		 */
1315 		if (ire->ire_flags & RTF_MULTIRT) {
1316 			data_mp->b_prev = NULL;
1317 			data_mp->b_next = NULL;
1318 			MULTIRT_DEBUG_UNTAG(mp);
1319 			freemsg(mp);
1320 		} else {
1321 			/*
1322 			 * Otherwise, we're adding the ire to a gateway
1323 			 * for a multirt route.
1324 			 * Invoke ip_newroute() to complete the resolution
1325 			 * of the route. We will then come back here and
1326 			 * finally drop this packet in the above code.
1327 			 */
1328 			if (ire->ire_ipversion == IPV4_VERSION) {
1329 				/*
1330 				 * TODO: in order for CGTP to work in non-global
1331 				 * zones, ip_newroute() must create the IRE
1332 				 * cache in the zone indicated by
1333 				 * ire->ire_zoneid.
1334 				 */
1335 				ip_newroute(q, mp, ipha->ipha_dst,
1336 				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1337 				    ire->ire_zoneid, ipst);
1338 			} else {
1339 				int minlen = sizeof (ip6i_t) + IPV6_HDR_LEN;
1340 
1341 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1342 
1343 				/*
1344 				 * If necessary, skip over the ip6i_t to find
1345 				 * the header with the actual source address.
1346 				 */
1347 				if (ip6h->ip6_nxt == IPPROTO_RAW) {
1348 					if (MBLKL(data_mp) < minlen &&
1349 					    pullupmsg(data_mp, -1) == 0) {
1350 						ip1dbg(("ire_add_then_send: "
1351 						    "cannot pullupmsg ip6i\n"));
1352 						if (mctl_present)
1353 							freeb(first_mp);
1354 						ire_refrele(ire);
1355 						return;
1356 					}
1357 					ASSERT(MBLKL(data_mp) >= IPV6_HDR_LEN);
1358 					ip6h = (ip6_t *)(data_mp->b_rptr +
1359 					    sizeof (ip6i_t));
1360 				}
1361 				ip_newroute_v6(q, mp, &ip6h->ip6_dst,
1362 				    &ip6h->ip6_src, NULL, ire->ire_zoneid,
1363 				    ipst);
1364 			}
1365 		}
1366 
1367 		ire_refrele(ire); /* As done by ire_send(). */
1368 		return;
1369 	}
1370 	/*
1371 	 * Need to remember ire_bucket here as ire_send*() may delete
1372 	 * the ire so we cannot reference it after that.
1373 	 */
1374 	irb = ire->ire_bucket;
1375 	if (ire->ire_ipversion == IPV4_VERSION) {
1376 		ire_send(q, mp, ire);
1377 		ire_limit = ip_ire_max_bucket_cnt;
1378 	} else {
1379 		ire_send_v6(q, mp, ire);
1380 		ire_limit = ip6_ire_max_bucket_cnt;
1381 	}
1382 
1383 	/*
1384 	 * irb is NULL if the IRE was not added to the hash. This happens
1385 	 * when IRE_MARK_NOADD is set and when IREs are returned from
1386 	 * ire_update_srcif_v4().
1387 	 */
1388 	if (irb != NULL) {
1389 		IRB_REFHOLD(irb);
1390 		if (irb->irb_ire_cnt > ire_limit)
1391 			ire_cache_cleanup(irb, ire_limit, ire);
1392 		IRB_REFRELE(irb);
1393 	}
1394 }
1395 
1396 /*
1397  * Initialize the ire that is specific to IPv4 part and call
1398  * ire_init_common to finish it.
1399  */
1400 ire_t *
1401 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1402     uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1403     queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1404     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1405     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1406 {
1407 	ASSERT(type != IRE_CACHE || stq != NULL);
1408 	/*
1409 	 * Reject IRE security attribute creation/initialization
1410 	 * if system is not running in Trusted mode.
1411 	 */
1412 	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1413 		return (NULL);
1414 
1415 
1416 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
1417 
1418 	if (addr != NULL)
1419 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1420 	if (src_addr != NULL)
1421 		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1422 	if (mask != NULL) {
1423 		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1424 		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1425 	}
1426 	if (gateway != NULL) {
1427 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1428 	}
1429 
1430 	if (type == IRE_CACHE)
1431 		ire->ire_cmask = cmask;
1432 
1433 	/* ire_init_common will free the mblks upon encountering any failure */
1434 	if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif,
1435 	    phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst))
1436 		return (NULL);
1437 
1438 	return (ire);
1439 }
1440 
1441 /*
1442  * Similar to ire_create except that it is called only when
1443  * we want to allocate ire as an mblk e.g. we have an external
1444  * resolver ARP.
1445  */
1446 ire_t *
1447 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1448     uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type,
1449     ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1450     uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1451     ip_stack_t *ipst)
1452 {
1453 	ire_t	*ire, *buf;
1454 	ire_t	*ret_ire;
1455 	mblk_t	*mp;
1456 	size_t	bufsize;
1457 	frtn_t	*frtnp;
1458 	ill_t	*ill;
1459 
1460 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1461 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1462 	if (buf == NULL) {
1463 		ip1dbg(("ire_create_mp: alloc failed\n"));
1464 		return (NULL);
1465 	}
1466 	frtnp = (frtn_t *)(buf + 1);
1467 	frtnp->free_arg = (caddr_t)buf;
1468 	frtnp->free_func = ire_freemblk;
1469 
1470 	/*
1471 	 * Allocate the new IRE. The ire created will hold a ref on
1472 	 * an nce_t after ire_nce_init, and this ref must either be
1473 	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1474 	 *	is called after successful arp resolution, or,
1475 	 * (b)  released, when arp resolution fails
1476 	 * Case (b) is handled in ire_freemblk() which will be called
1477 	 * when mp is freed as a result of failed arp.
1478 	 */
1479 	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1480 	if (mp == NULL) {
1481 		ip1dbg(("ire_create_mp: alloc failed\n"));
1482 		kmem_free(buf, bufsize);
1483 		return (NULL);
1484 	}
1485 	ire = (ire_t *)mp->b_rptr;
1486 	mp->b_wptr = (uchar_t *)&ire[1];
1487 
1488 	/* Start clean. */
1489 	*ire = ire_null;
1490 	ire->ire_mp = mp;
1491 	mp->b_datap->db_type = IRE_DB_TYPE;
1492 	ire->ire_marks |= IRE_MARK_UNCACHED;
1493 
1494 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce,
1495 	    rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc,
1496 	    gcgrp, ipst);
1497 
1498 	ill = (ill_t *)(stq->q_ptr);
1499 	if (ret_ire == NULL) {
1500 		/* ire_freemblk needs these set */
1501 		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1502 		ire->ire_stackid = ipst->ips_netstack->netstack_stackid;
1503 		ire->ire_ipst = ipst;
1504 		freeb(ire->ire_mp);
1505 		return (NULL);
1506 	}
1507 	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1508 	ret_ire->ire_stackid = ipst->ips_netstack->netstack_stackid;
1509 	ASSERT(ret_ire == ire);
1510 	ASSERT(ret_ire->ire_ipst == ipst);
1511 	/*
1512 	 * ire_max_frag is normally zero here and is atomically set
1513 	 * under the irebucket lock in ire_add_v[46] except for the
1514 	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1515 	 * is non-zero here.
1516 	 */
1517 	ire->ire_max_frag = max_frag;
1518 	return (ire);
1519 }
1520 
1521 /*
1522  * ire_create is called to allocate and initialize a new IRE.
1523  *
1524  * NOTE : This is called as writer sometimes though not required
1525  * by this function.
1526  */
1527 ire_t *
1528 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1529     uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq,
1530     ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1531     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1532     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1533 {
1534 	ire_t	*ire;
1535 	ire_t	*ret_ire;
1536 
1537 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1538 	if (ire == NULL) {
1539 		ip1dbg(("ire_create: alloc failed\n"));
1540 		return (NULL);
1541 	}
1542 	*ire = ire_null;
1543 
1544 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp,
1545 	    src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags,
1546 	    ulp_info, gc, gcgrp, ipst);
1547 
1548 	if (ret_ire == NULL) {
1549 		kmem_cache_free(ire_cache, ire);
1550 		return (NULL);
1551 	}
1552 	ASSERT(ret_ire == ire);
1553 	return (ire);
1554 }
1555 
1556 
1557 /*
1558  * Common to IPv4 and IPv6
1559  */
1560 boolean_t
1561 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1562     queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle,
1563     uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info,
1564     tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1565 {
1566 	ire->ire_max_fragp = max_fragp;
1567 	ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1568 
1569 #ifdef DEBUG
1570 	if (ipif != NULL) {
1571 		if (ipif->ipif_isv6)
1572 			ASSERT(ipversion == IPV6_VERSION);
1573 		else
1574 			ASSERT(ipversion == IPV4_VERSION);
1575 	}
1576 #endif /* DEBUG */
1577 
1578 	/*
1579 	 * Create/initialize IRE security attribute only in Trusted mode;
1580 	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1581 	 * has held a reference to it and will release it when this routine
1582 	 * returns a failure, otherwise we own the reference.  We do this
1583 	 * prior to initializing the rest IRE fields.
1584 	 *
1585 	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1586 	 * memory leak (in case of external resolution failure). We'll
1587 	 * allocate it after a successful external resolution, in ire_add().
1588 	 * Note that ire->ire_mp != NULL here means this ire is headed
1589 	 * to an external resolver.
1590 	 */
1591 	if (is_system_labeled()) {
1592 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1593 		    IRE_INTERFACE)) != 0) {
1594 			/* release references on behalf of caller */
1595 			if (gc != NULL)
1596 				GC_REFRELE(gc);
1597 			if (gcgrp != NULL)
1598 				GCGRP_REFRELE(gcgrp);
1599 		} else if ((ire->ire_mp == NULL) &&
1600 		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1601 			return (B_FALSE);
1602 		}
1603 	}
1604 
1605 	ire->ire_stq = stq;
1606 	ire->ire_rfq = rfq;
1607 	ire->ire_type = type;
1608 	ire->ire_flags = RTF_UP | flags;
1609 	ire->ire_ident = TICK_TO_MSEC(lbolt);
1610 	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1611 
1612 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1613 	ire->ire_last_used_time = lbolt;
1614 	ire->ire_create_time = (uint32_t)gethrestime_sec();
1615 
1616 	/*
1617 	 * If this IRE is an IRE_CACHE, inherit the handles from the
1618 	 * parent IREs. For others in the forwarding table, assign appropriate
1619 	 * new ones.
1620 	 *
1621 	 * The mutex protecting ire_handle is because ire_create is not always
1622 	 * called as a writer.
1623 	 */
1624 	if (ire->ire_type & IRE_OFFSUBNET) {
1625 		mutex_enter(&ipst->ips_ire_handle_lock);
1626 		ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
1627 		mutex_exit(&ipst->ips_ire_handle_lock);
1628 	} else if (ire->ire_type & IRE_INTERFACE) {
1629 		mutex_enter(&ipst->ips_ire_handle_lock);
1630 		ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
1631 		mutex_exit(&ipst->ips_ire_handle_lock);
1632 	} else if (ire->ire_type == IRE_CACHE) {
1633 		ire->ire_phandle = phandle;
1634 		ire->ire_ihandle = ihandle;
1635 	}
1636 	ire->ire_ipif = ipif;
1637 	if (ipif != NULL) {
1638 		ire->ire_ipif_seqid = ipif->ipif_seqid;
1639 		ire->ire_ipif_ifindex =
1640 		    ipif->ipif_ill->ill_phyint->phyint_ifindex;
1641 		ire->ire_zoneid = ipif->ipif_zoneid;
1642 	} else {
1643 		ire->ire_zoneid = GLOBAL_ZONEID;
1644 	}
1645 	ire->ire_ipversion = ipversion;
1646 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1647 	if (ipversion == IPV4_VERSION) {
1648 		/*
1649 		 * IPv6 initializes the ire_nce in ire_add_v6, which expects
1650 		 * to find the ire_nce to be null when it is called.
1651 		 */
1652 		if (ire_nce_init(ire, src_nce) != 0) {
1653 			/* some failure occurred. propagate error back */
1654 			return (B_FALSE);
1655 		}
1656 	}
1657 	ire->ire_refcnt = 1;
1658 	ire->ire_ipst = ipst;	/* No netstack_hold */
1659 	ire->ire_trace_disable = B_FALSE;
1660 
1661 	return (B_TRUE);
1662 }
1663 
1664 /*
1665  * This routine is called repeatedly by ipif_up to create broadcast IREs.
1666  * It is passed a pointer to a slot in an IRE pointer array into which to
1667  * place the pointer to the new IRE, if indeed we create one.  If the
1668  * IRE corresponding to the address passed in would be a duplicate of an
1669  * existing one, we don't create the new one.  irep is incremented before
1670  * return only if we do create a new IRE.  (Always called as writer.)
1671  *
1672  * Note that with the "match_flags" parameter, we can match on either
1673  * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1674  * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1675  * we only create broadcast ire's on a per physical interface basis. If
1676  * someone is going to be mucking with logical interfaces, it is important
1677  * to call "ipif_check_bcast_ires()" to make sure that any change to a
1678  * logical interface will not cause critical broadcast IRE's to be deleted.
1679  */
1680 ire_t **
1681 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
1682     int match_flags)
1683 {
1684 	ire_t *ire;
1685 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
1686 	boolean_t prefer;
1687 	ill_t *ill = ipif->ipif_ill;
1688 	ip_stack_t *ipst = ill->ill_ipst;
1689 
1690 	/*
1691 	 * No broadcast IREs for the LOOPBACK interface
1692 	 * or others such as point to point and IPIF_NOXMIT.
1693 	 */
1694 	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
1695 	    (ipif->ipif_flags & IPIF_NOXMIT))
1696 		return (irep);
1697 
1698 	/*
1699 	 * If this new IRE would be a duplicate, only prefer it if one of
1700 	 * the following is true:
1701 	 *
1702 	 * 1. The existing one has IPIF_DEPRECATED|IPIF_LOCAL|IPIF_ANYCAST
1703 	 *    set and the new one has all of those clear.
1704 	 *
1705 	 * 2. The existing one corresponds to an underlying ILL in an IPMP
1706 	 *    group and the new one corresponds to an IPMP group interface.
1707 	 */
1708 	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
1709 	    ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
1710 		prefer = ((ire->ire_ipif->ipif_flags & check_flags) &&
1711 		    !(ipif->ipif_flags & check_flags)) ||
1712 		    (IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && IS_IPMP(ill));
1713 		if (!prefer) {
1714 			ire_refrele(ire);
1715 			return (irep);
1716 		}
1717 
1718 		/*
1719 		 * Bcast ires exist in pairs. Both have to be deleted,
1720 		 * Since we are exclusive we can make the above assertion.
1721 		 * The 1st has to be refrele'd since it was ctable_lookup'd.
1722 		 */
1723 		ASSERT(IAM_WRITER_IPIF(ipif));
1724 		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
1725 		ire_delete(ire->ire_next);
1726 		ire_delete(ire);
1727 		ire_refrele(ire);
1728 	}
1729 	return (ire_create_bcast(ipif, addr, irep));
1730 }
1731 
1732 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
1733 
1734 /*
1735  * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
1736  * It leaves all the verifying and deleting to those routines. So it always
1737  * creates 2 bcast ires and chains them into the ire array passed in.
1738  */
1739 ire_t **
1740 ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
1741 {
1742 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1743 	ill_t		*ill = ipif->ipif_ill;
1744 
1745 	ASSERT(IAM_WRITER_IPIF(ipif));
1746 
1747 	if (IS_IPMP(ill)) {
1748 		/*
1749 		 * Broadcast IREs for the IPMP meta-interface use the
1750 		 * nominated broadcast interface to send and receive packets.
1751 		 * If there's no nominated interface, send the packets down to
1752 		 * the IPMP stub driver, which will discard them.  If the
1753 		 * nominated broadcast interface changes, ill_refresh_bcast()
1754 		 * will refresh the broadcast IREs.
1755 		 */
1756 		if ((ill = ipmp_illgrp_cast_ill(ill->ill_grp)) == NULL)
1757 			ill = ipif->ipif_ill;
1758 	}
1759 
1760 	*irep++ = ire_create(
1761 	    (uchar_t *)&addr,			/* dest addr */
1762 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1763 	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
1764 	    NULL,				/* no gateway */
1765 	    &ipif->ipif_mtu,			/* max frag */
1766 	    NULL,				/* no src nce */
1767 	    ill->ill_rq,			/* recv-from queue */
1768 	    ill->ill_wq,			/* send-to queue */
1769 	    IRE_BROADCAST,
1770 	    ipif,
1771 	    0,
1772 	    0,
1773 	    0,
1774 	    0,
1775 	    &ire_uinfo_null,
1776 	    NULL,
1777 	    NULL,
1778 	    ipst);
1779 
1780 	*irep++ = ire_create(
1781 	    (uchar_t *)&addr,			/* dest address */
1782 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1783 	    (uchar_t *)&ipif->ipif_src_addr,	/* source address */
1784 	    NULL,				/* no gateway */
1785 	    &ip_loopback_mtu,			/* max frag size */
1786 	    NULL,				/* no src_nce */
1787 	    ill->ill_rq,			/* recv-from queue */
1788 	    NULL,				/* no send-to queue */
1789 	    IRE_BROADCAST,			/* Needed for fanout in wput */
1790 	    ipif,
1791 	    0,
1792 	    0,
1793 	    0,
1794 	    0,
1795 	    &ire_uinfo_null,
1796 	    NULL,
1797 	    NULL,
1798 	    ipst);
1799 
1800 	return (irep);
1801 }
1802 
1803 /*
1804  * ire_walk routine to delete or update any IRE_CACHE that might contain
1805  * stale information.
1806  * The flags state which entries to delete or update.
1807  * Garbage collection is done separately using kmem alloc callbacks to
1808  * ip_trash_ire_reclaim.
1809  * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
1810  * since other stale information is cleaned up using NUD.
1811  */
1812 void
1813 ire_expire(ire_t *ire, char *arg)
1814 {
1815 	ire_expire_arg_t	*ieap = (ire_expire_arg_t *)(uintptr_t)arg;
1816 	ill_t			*stq_ill;
1817 	int			flush_flags = ieap->iea_flush_flag;
1818 	ip_stack_t		*ipst = ieap->iea_ipst;
1819 
1820 	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
1821 	    (ire->ire_flags & RTF_DYNAMIC)) {
1822 		/* Make sure we delete the corresponding IRE_CACHE */
1823 		ip1dbg(("ire_expire: all redirects\n"));
1824 		ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
1825 		ire_delete(ire);
1826 		atomic_dec_32(&ipst->ips_ip_redirect_cnt);
1827 		return;
1828 	}
1829 	if (ire->ire_type != IRE_CACHE)
1830 		return;
1831 
1832 	if (flush_flags & FLUSH_ARP_TIME) {
1833 		/*
1834 		 * Remove all IRE_CACHE except IPv4 multicast ires. These
1835 		 * ires will be deleted by ip_trash_ire_reclaim_stack()
1836 		 * when system runs low in memory.
1837 		 * Verify that create time is more than ip_ire_arp_interval
1838 		 * milliseconds ago.
1839 		 */
1840 
1841 		if (!(ire->ire_ipversion == IPV4_VERSION &&
1842 		    CLASSD(ire->ire_addr)) && NCE_EXPIRED(ire->ire_nce, ipst)) {
1843 			ire_delete(ire);
1844 			return;
1845 		}
1846 	}
1847 
1848 	if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
1849 	    (ire->ire_ipif != NULL)) {
1850 		/* Increase pmtu if it is less than the interface mtu */
1851 		mutex_enter(&ire->ire_lock);
1852 		/*
1853 		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
1854 		 * get the mtu from the sending interfaces' ipif
1855 		 */
1856 		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
1857 			stq_ill = ire->ire_stq->q_ptr;
1858 			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
1859 			    IP_MAXPACKET);
1860 		} else {
1861 			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
1862 			    IP_MAXPACKET);
1863 		}
1864 		ire->ire_frag_flag |= IPH_DF;
1865 		mutex_exit(&ire->ire_lock);
1866 	}
1867 }
1868 
1869 /*
1870  * Return any local address.  We use this to target ourselves
1871  * when the src address was specified as 'default'.
1872  * Preference for IRE_LOCAL entries.
1873  */
1874 ire_t *
1875 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
1876 {
1877 	ire_t	*ire;
1878 	irb_t	*irb;
1879 	ire_t	*maybe = NULL;
1880 	int i;
1881 
1882 	for (i = 0; i < ipst->ips_ip_cache_table_size;  i++) {
1883 		irb = &ipst->ips_ip_cache_table[i];
1884 		if (irb->irb_ire == NULL)
1885 			continue;
1886 		rw_enter(&irb->irb_lock, RW_READER);
1887 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
1888 			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
1889 			    (ire->ire_zoneid != zoneid &&
1890 			    ire->ire_zoneid != ALL_ZONES))
1891 				continue;
1892 			switch (ire->ire_type) {
1893 			case IRE_LOOPBACK:
1894 				if (maybe == NULL) {
1895 					IRE_REFHOLD(ire);
1896 					maybe = ire;
1897 				}
1898 				break;
1899 			case IRE_LOCAL:
1900 				if (maybe != NULL) {
1901 					ire_refrele(maybe);
1902 				}
1903 				IRE_REFHOLD(ire);
1904 				rw_exit(&irb->irb_lock);
1905 				return (ire);
1906 			}
1907 		}
1908 		rw_exit(&irb->irb_lock);
1909 	}
1910 	return (maybe);
1911 }
1912 
1913 /*
1914  * If the specified IRE is associated with a particular ILL, return
1915  * that ILL pointer (May be called as writer.).
1916  *
1917  * NOTE : This is not a generic function that can be used always.
1918  * This function always returns the ill of the outgoing packets
1919  * if this ire is used.
1920  */
1921 ill_t *
1922 ire_to_ill(const ire_t *ire)
1923 {
1924 	ill_t *ill = NULL;
1925 
1926 	/*
1927 	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
1928 	 *    the source address from. ire_stq is the one where the
1929 	 *    packets will be sent out on. We return that here.
1930 	 *
1931 	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
1932 	 *    copy and they always exist next to each other with loopback
1933 	 *    copy being the first one. If we are called on the non-loopback
1934 	 *    copy, return the one pointed by ire_stq. If it was called on
1935 	 *    a loopback copy, we still return the one pointed by the next
1936 	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
1937 	 *    copy. We don't want use ire_ipif as it might represent the
1938 	 *    source address (if we borrow source addresses for
1939 	 *    IRE_BROADCASTS in the future).
1940 	 *    However if an interface is currently coming up, the above
1941 	 *    condition may not hold during that period since the ires
1942 	 *    are added one at a time. Thus one of the pair could have been
1943 	 *    added and the other not yet added.
1944 	 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
1945 	 * 4) For all others return the ones pointed by ire_ipif->ipif_ill.
1946 	 *    That handles IRE_LOOPBACK.
1947 	 */
1948 
1949 	if (ire->ire_type == IRE_CACHE) {
1950 		ill = (ill_t *)ire->ire_stq->q_ptr;
1951 	} else if (ire->ire_type == IRE_BROADCAST) {
1952 		if (ire->ire_stq != NULL) {
1953 			ill = (ill_t *)ire->ire_stq->q_ptr;
1954 		} else {
1955 			ire_t  *ire_next;
1956 
1957 			ire_next = ire->ire_next;
1958 			if (ire_next != NULL &&
1959 			    ire_next->ire_type == IRE_BROADCAST &&
1960 			    ire_next->ire_addr == ire->ire_addr &&
1961 			    ire_next->ire_ipif == ire->ire_ipif) {
1962 				ill = (ill_t *)ire_next->ire_stq->q_ptr;
1963 			}
1964 		}
1965 	} else if (ire->ire_rfq != NULL) {
1966 		ill = ire->ire_rfq->q_ptr;
1967 	} else if (ire->ire_ipif != NULL) {
1968 		ill = ire->ire_ipif->ipif_ill;
1969 	}
1970 	return (ill);
1971 }
1972 
1973 /* Arrange to call the specified function for every IRE in the world. */
1974 void
1975 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
1976 {
1977 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
1978 }
1979 
1980 void
1981 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
1982 {
1983 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
1984 }
1985 
1986 void
1987 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
1988 {
1989 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
1990 }
1991 
1992 /*
1993  * Walk a particular version. version == 0 means both v4 and v6.
1994  */
1995 static void
1996 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
1997     ip_stack_t *ipst)
1998 {
1999 	if (vers != IPV6_VERSION) {
2000 		/*
2001 		 * ip_forwarding_table variable doesn't matter for IPv4 since
2002 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
2003 		 */
2004 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
2005 		    0, NULL,
2006 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
2007 		    NULL, zoneid, ipst);
2008 	}
2009 	if (vers != IPV4_VERSION) {
2010 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
2011 		    ipst->ips_ip6_ftable_hash_size,
2012 		    ipst->ips_ip_forwarding_table_v6,
2013 		    ipst->ips_ip6_cache_table_size,
2014 		    ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
2015 	}
2016 }
2017 
2018 /*
2019  * Arrange to call the specified function for every IRE that matches the ill.
2020  */
2021 void
2022 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2023     ill_t *ill)
2024 {
2025 	uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION);
2026 
2027 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill);
2028 }
2029 
2030 void
2031 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2032     ill_t *ill)
2033 {
2034 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2035 	    ill);
2036 }
2037 
2038 void
2039 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2040     ill_t *ill)
2041 {
2042 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2043 	    ill);
2044 }
2045 
2046 /*
2047  * Walk a particular ill and version.
2048  */
2049 static void
2050 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2051     void *arg, uchar_t vers, ill_t *ill)
2052 {
2053 	ip_stack_t	*ipst = ill->ill_ipst;
2054 
2055 	if (vers == IPV4_VERSION) {
2056 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2057 		    IP_MASK_TABLE_SIZE, 0,
2058 		    NULL, ipst->ips_ip_cache_table_size,
2059 		    ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
2060 	} else if (vers == IPV6_VERSION) {
2061 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2062 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
2063 		    ipst->ips_ip_forwarding_table_v6,
2064 		    ipst->ips_ip6_cache_table_size,
2065 		    ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
2066 	}
2067 }
2068 
2069 boolean_t
2070 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2071     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
2072 {
2073 	ill_t *ire_stq_ill = NULL;
2074 	ill_t *ire_ipif_ill = NULL;
2075 
2076 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2077 	/*
2078 	 * MATCH_IRE_ILL: We match both on ill pointed by ire_stq and
2079 	 *    ire_ipif.  Only in the case of IRE_CACHEs can ire_stq and
2080 	 *    ire_ipif be pointing to different ills. But we want to keep
2081 	 *    this function generic enough for future use. So, we always
2082 	 *    try to match on both.  The only caller of this function
2083 	 *    ire_walk_ill_tables, will call "func" after we return from
2084 	 *    this function. We expect "func" to do the right filtering
2085 	 *    of ires in this case.
2086 	 */
2087 	if (match_flags & MATCH_IRE_ILL) {
2088 		if (ire->ire_stq != NULL)
2089 			ire_stq_ill = ire->ire_stq->q_ptr;
2090 		if (ire->ire_ipif != NULL)
2091 			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2092 	}
2093 
2094 	if (zoneid != ALL_ZONES) {
2095 		/*
2096 		 * We're walking the IREs for a specific zone. The only relevant
2097 		 * IREs are:
2098 		 * - all IREs with a matching ire_zoneid
2099 		 * - all IRE_OFFSUBNETs as they're shared across all zones
2100 		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2101 		 *   with a matching zone
2102 		 * - IRE_DEFAULTs with a gateway reachable from the zone
2103 		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2104 		 * using the same rule; but the above rules are consistent with
2105 		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2106 		 * routes that can be matched during lookup are also matched
2107 		 * here.
2108 		 */
2109 		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2110 			/*
2111 			 * Note, IRE_INTERFACE can have the stq as NULL. For
2112 			 * example, if the default multicast route is tied to
2113 			 * the loopback address.
2114 			 */
2115 			if ((ire->ire_type & IRE_INTERFACE) &&
2116 			    (ire->ire_stq != NULL)) {
2117 				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2118 				if (ire->ire_ipversion == IPV4_VERSION) {
2119 					if (!ipif_usesrc_avail(ire_stq_ill,
2120 					    zoneid))
2121 						/* No usable src addr in zone */
2122 						return (B_FALSE);
2123 				} else if (ire_stq_ill->ill_usesrc_ifindex
2124 				    != 0) {
2125 					/*
2126 					 * For IPv6 use ipif_select_source_v6()
2127 					 * so the right scope selection is done
2128 					 */
2129 					ipif_t *src_ipif;
2130 					src_ipif =
2131 					    ipif_select_source_v6(ire_stq_ill,
2132 					    &ire->ire_addr_v6, B_FALSE,
2133 					    IPV6_PREFER_SRC_DEFAULT,
2134 					    zoneid);
2135 					if (src_ipif != NULL) {
2136 						ipif_refrele(src_ipif);
2137 					} else {
2138 						return (B_FALSE);
2139 					}
2140 				} else {
2141 					return (B_FALSE);
2142 				}
2143 
2144 			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2145 				return (B_FALSE);
2146 			}
2147 		}
2148 
2149 		/*
2150 		 * Match all default routes from the global zone, irrespective
2151 		 * of reachability. For a non-global zone only match those
2152 		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2153 		 */
2154 		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2155 			int ire_match_flags = 0;
2156 			in6_addr_t gw_addr_v6;
2157 			ire_t *rire;
2158 
2159 			ire_match_flags |= MATCH_IRE_TYPE;
2160 			if (ire->ire_ipif != NULL)
2161 				ire_match_flags |= MATCH_IRE_ILL;
2162 
2163 			if (ire->ire_ipversion == IPV4_VERSION) {
2164 				rire = ire_route_lookup(ire->ire_gateway_addr,
2165 				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2166 				    zoneid, NULL, ire_match_flags, ipst);
2167 			} else {
2168 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2169 				mutex_enter(&ire->ire_lock);
2170 				gw_addr_v6 = ire->ire_gateway_addr_v6;
2171 				mutex_exit(&ire->ire_lock);
2172 				rire = ire_route_lookup_v6(&gw_addr_v6,
2173 				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2174 				    NULL, zoneid, NULL, ire_match_flags, ipst);
2175 			}
2176 			if (rire == NULL) {
2177 				return (B_FALSE);
2178 			}
2179 			ire_refrele(rire);
2180 		}
2181 	}
2182 
2183 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2184 	    (ire->ire_type & ire_type)) &&
2185 	    ((!(match_flags & MATCH_IRE_ILL)) ||
2186 	    (ire_stq_ill == ill || ire_ipif_ill == ill ||
2187 	    ire_ipif_ill != NULL && IS_IN_SAME_ILLGRP(ire_ipif_ill, ill)))) {
2188 		return (B_TRUE);
2189 	}
2190 	return (B_FALSE);
2191 }
2192 
2193 int
2194 rtfunc(struct radix_node *rn, void *arg)
2195 {
2196 	struct rtfuncarg *rtf = arg;
2197 	struct rt_entry *rt;
2198 	irb_t *irb;
2199 	ire_t *ire;
2200 	boolean_t ret;
2201 
2202 	rt = (struct rt_entry *)rn;
2203 	ASSERT(rt != NULL);
2204 	irb = &rt->rt_irb;
2205 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2206 		if ((rtf->rt_match_flags != 0) ||
2207 		    (rtf->rt_zoneid != ALL_ZONES)) {
2208 			ret = ire_walk_ill_match(rtf->rt_match_flags,
2209 			    rtf->rt_ire_type, ire,
2210 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
2211 		} else
2212 			ret = B_TRUE;
2213 		if (ret)
2214 			(*rtf->rt_func)(ire, rtf->rt_arg);
2215 	}
2216 	return (0);
2217 }
2218 
2219 /*
2220  * Walk the ftable and the ctable entries that match the ill.
2221  */
2222 void
2223 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2224     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2225     size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
2226     ip_stack_t *ipst)
2227 {
2228 	irb_t	*irb_ptr;
2229 	irb_t	*irb;
2230 	ire_t	*ire;
2231 	int i, j;
2232 	boolean_t ret;
2233 	struct rtfuncarg rtfarg;
2234 
2235 	ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL));
2236 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2237 	/*
2238 	 * Optimize by not looking at the forwarding table if there
2239 	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2240 	 * specified in ire_type.
2241 	 */
2242 	if (!(match_flags & MATCH_IRE_TYPE) ||
2243 	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2244 		/* knobs such that routine is called only for v6 case */
2245 		if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
2246 			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2247 				if ((irb_ptr = ipftbl[i]) == NULL)
2248 					continue;
2249 				for (j = 0; j < htbl_sz; j++) {
2250 					irb = &irb_ptr[j];
2251 					if (irb->irb_ire == NULL)
2252 						continue;
2253 
2254 					IRB_REFHOLD(irb);
2255 					for (ire = irb->irb_ire; ire != NULL;
2256 					    ire = ire->ire_next) {
2257 						if (match_flags == 0 &&
2258 						    zoneid == ALL_ZONES) {
2259 							ret = B_TRUE;
2260 						} else {
2261 							ret =
2262 							    ire_walk_ill_match(
2263 							    match_flags,
2264 							    ire_type, ire, ill,
2265 							    zoneid, ipst);
2266 						}
2267 						if (ret)
2268 							(*func)(ire, arg);
2269 					}
2270 					IRB_REFRELE(irb);
2271 				}
2272 			}
2273 		} else {
2274 			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2275 			rtfarg.rt_func = func;
2276 			rtfarg.rt_arg = arg;
2277 			if (match_flags != 0) {
2278 				rtfarg.rt_match_flags = match_flags;
2279 			}
2280 			rtfarg.rt_ire_type = ire_type;
2281 			rtfarg.rt_ill = ill;
2282 			rtfarg.rt_zoneid = zoneid;
2283 			rtfarg.rt_ipst = ipst;	/* No netstack_hold */
2284 			(void) ipst->ips_ip_ftable->rnh_walktree_mt(
2285 			    ipst->ips_ip_ftable,
2286 			    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
2287 		}
2288 	}
2289 
2290 	/*
2291 	 * Optimize by not looking at the cache table if there
2292 	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2293 	 * specified in ire_type.
2294 	 */
2295 	if (!(match_flags & MATCH_IRE_TYPE) ||
2296 	    ((ire_type & IRE_CACHETABLE) != 0)) {
2297 		for (i = 0; i < ctbl_sz;  i++) {
2298 			irb = &ipctbl[i];
2299 			if (irb->irb_ire == NULL)
2300 				continue;
2301 			IRB_REFHOLD(irb);
2302 			for (ire = irb->irb_ire; ire != NULL;
2303 			    ire = ire->ire_next) {
2304 				if (match_flags == 0 && zoneid == ALL_ZONES) {
2305 					ret = B_TRUE;
2306 				} else {
2307 					ret = ire_walk_ill_match(
2308 					    match_flags, ire_type,
2309 					    ire, ill, zoneid, ipst);
2310 				}
2311 				if (ret)
2312 					(*func)(ire, arg);
2313 			}
2314 			IRB_REFRELE(irb);
2315 		}
2316 	}
2317 }
2318 
2319 /*
2320  * This function takes a mask and returns
2321  * number of bits set in the mask. If no
2322  * bit is set it returns 0.
2323  * Assumes a contiguous mask.
2324  */
2325 int
2326 ip_mask_to_plen(ipaddr_t mask)
2327 {
2328 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2329 }
2330 
2331 /*
2332  * Convert length for a mask to the mask.
2333  */
2334 ipaddr_t
2335 ip_plen_to_mask(uint_t masklen)
2336 {
2337 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2338 }
2339 
2340 void
2341 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2342 {
2343 	ill_t	*ill_list[NUM_ILLS];
2344 	ip_stack_t	*ipst = ire->ire_ipst;
2345 
2346 	ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2347 	ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2348 	ill_unlock_ills(ill_list, NUM_ILLS);
2349 	rw_exit(&irb_ptr->irb_lock);
2350 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
2351 }
2352 
2353 /*
2354  * ire_add_v[46] atomically make sure that the ipif or ill associated
2355  * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2356  * before adding the ire to the table. This ensures that we don't create
2357  * new IRE_CACHEs with stale values for parameters that are passed to
2358  * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2359  * to the ipif_mtu, and not the value. The actual value is derived from the
2360  * parent ire or ipif under the bucket lock.
2361  */
2362 int
2363 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2364     ipsq_func_t func)
2365 {
2366 	ill_t	*stq_ill;
2367 	ill_t	*ipif_ill;
2368 	ill_t	*ill_list[NUM_ILLS];
2369 	int	cnt = NUM_ILLS;
2370 	int	error = 0;
2371 	ill_t	*ill = NULL;
2372 	ip_stack_t	*ipst = ire->ire_ipst;
2373 
2374 	ill_list[0] = stq_ill = ire->ire_stq !=
2375 	    NULL ? ire->ire_stq->q_ptr : NULL;
2376 	ill_list[1] = ipif_ill = ire->ire_ipif !=
2377 	    NULL ? ire->ire_ipif->ipif_ill : NULL;
2378 
2379 	ASSERT((q != NULL && mp != NULL && func != NULL) ||
2380 	    (q == NULL && mp == NULL && func == NULL));
2381 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
2382 	GRAB_CONN_LOCK(q);
2383 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2384 	ill_lock_ills(ill_list, cnt);
2385 
2386 	/*
2387 	 * While the IRE is in the process of being added, a user may have
2388 	 * invoked the ifconfig usesrc option on the stq_ill to make it a
2389 	 * usesrc client ILL. Check for this possibility here, if it is true
2390 	 * then we fail adding the IRE_CACHE. Another check is to make sure
2391 	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
2392 	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
2393 	 */
2394 	if ((ire->ire_type & IRE_CACHE) &&
2395 	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
2396 		if (stq_ill->ill_usesrc_ifindex != 0) {
2397 			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
2398 			if ((ipif_ill->ill_phyint->phyint_ifindex !=
2399 			    stq_ill->ill_usesrc_ifindex) ||
2400 			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
2401 			    (ipif_ill->ill_usesrc_ifindex != 0)) {
2402 				error = EINVAL;
2403 				goto done;
2404 			}
2405 		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
2406 			error = EINVAL;
2407 			goto done;
2408 		}
2409 	}
2410 
2411 	/*
2412 	 * Don't allow IRE's to be created on changing ill's.  Also, since
2413 	 * IPMP flags can be set on an ill without quiescing it, if we're not
2414 	 * a writer on stq_ill, check that the flags still allow IRE creation.
2415 	 */
2416 	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
2417 		if (stq_ill->ill_state_flags & ILL_CHANGING) {
2418 			ill = stq_ill;
2419 			error = EAGAIN;
2420 		} else if (IS_UNDER_IPMP(stq_ill)) {
2421 			mutex_enter(&stq_ill->ill_phyint->phyint_lock);
2422 			if (!ipmp_ill_is_active(stq_ill) &&
2423 			    !(ire->ire_marks & IRE_MARK_TESTHIDDEN)) {
2424 				error = EINVAL;
2425 			}
2426 			mutex_exit(&stq_ill->ill_phyint->phyint_lock);
2427 		}
2428 		if (error != 0)
2429 			goto done;
2430 	}
2431 
2432 	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
2433 	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
2434 		ill = ipif_ill;
2435 		error = EAGAIN;
2436 		goto done;
2437 	}
2438 
2439 	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
2440 	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
2441 		ill = ire->ire_ipif->ipif_ill;
2442 		ASSERT(ill != NULL);
2443 		error = EAGAIN;
2444 		goto done;
2445 	}
2446 
2447 done:
2448 	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
2449 		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
2450 		mutex_enter(&ipsq->ipsq_lock);
2451 		mutex_enter(&ipsq->ipsq_xop->ipx_lock);
2452 		ire_atomic_end(irb_ptr, ire);
2453 		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
2454 		mutex_exit(&ipsq->ipsq_xop->ipx_lock);
2455 		mutex_exit(&ipsq->ipsq_lock);
2456 		error = EINPROGRESS;
2457 	} else if (error != 0) {
2458 		ire_atomic_end(irb_ptr, ire);
2459 	}
2460 
2461 	RELEASE_CONN_LOCK(q);
2462 	return (error);
2463 }
2464 
2465 /*
2466  * Add a fully initialized IRE to an appropriate table based on
2467  * ire_type.
2468  *
2469  * allow_unresolved == B_FALSE indicates a legacy code-path call
2470  * that has prohibited the addition of incomplete ire's. If this
2471  * parameter is set, and we find an nce that is in a state other
2472  * than ND_REACHABLE, we fail the add. Note that nce_state could be
2473  * something other than ND_REACHABLE if the nce had just expired and
2474  * the ire_create preceding the ire_add added a new ND_INITIAL nce.
2475  */
2476 int
2477 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
2478     boolean_t allow_unresolved)
2479 {
2480 	ire_t	*ire1;
2481 	ill_t	*stq_ill = NULL;
2482 	ill_t	*ill;
2483 	ipif_t	*ipif = NULL;
2484 	ill_walk_context_t ctx;
2485 	ire_t	*ire = *irep;
2486 	int	error;
2487 	boolean_t ire_is_mblk = B_FALSE;
2488 	tsol_gcgrp_t *gcgrp = NULL;
2489 	tsol_gcgrp_addr_t ga;
2490 	ip_stack_t	*ipst = ire->ire_ipst;
2491 
2492 	/* get ready for the day when original ire is not created as mblk */
2493 	if (ire->ire_mp != NULL) {
2494 		ire_is_mblk = B_TRUE;
2495 		/* Copy the ire to a kmem_alloc'ed area */
2496 		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
2497 		if (ire1 == NULL) {
2498 			ip1dbg(("ire_add: alloc failed\n"));
2499 			ire_delete(ire);
2500 			*irep = NULL;
2501 			return (ENOMEM);
2502 		}
2503 		ire->ire_marks &= ~IRE_MARK_UNCACHED;
2504 		*ire1 = *ire;
2505 		ire1->ire_mp = NULL;
2506 		ire1->ire_stq_ifindex = 0;
2507 		freeb(ire->ire_mp);
2508 		ire = ire1;
2509 	}
2510 	if (ire->ire_stq != NULL)
2511 		stq_ill = ire->ire_stq->q_ptr;
2512 
2513 	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
2514 	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
2515 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2516 		ill = ILL_START_WALK_ALL(&ctx, ipst);
2517 		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2518 			mutex_enter(&ill->ill_lock);
2519 			if (ill->ill_state_flags & ILL_CONDEMNED) {
2520 				mutex_exit(&ill->ill_lock);
2521 				continue;
2522 			}
2523 			/*
2524 			 * We need to make sure that the ipif is a valid one
2525 			 * before adding the IRE_CACHE. This happens only
2526 			 * with IRE_CACHE when there is an external resolver.
2527 			 *
2528 			 * We can unplumb a logical interface while the
2529 			 * packet is waiting in ARP with the IRE. Then,
2530 			 * later on when we feed the IRE back, the ipif
2531 			 * has to be re-checked. This can't happen with
2532 			 * NDP currently, as we never queue the IRE with
2533 			 * the packet. We always try to recreate the IRE
2534 			 * when the resolution is completed. But, we do
2535 			 * it for IPv6 also here so that in future if
2536 			 * we have external resolvers, it will work without
2537 			 * any change.
2538 			 */
2539 			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
2540 			if (ipif != NULL) {
2541 				ipif_refhold_locked(ipif);
2542 				mutex_exit(&ill->ill_lock);
2543 				break;
2544 			}
2545 			mutex_exit(&ill->ill_lock);
2546 		}
2547 		rw_exit(&ipst->ips_ill_g_lock);
2548 		if (ipif == NULL ||
2549 		    (ipif->ipif_isv6 &&
2550 		    !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) &&
2551 		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
2552 		    &ipif->ipif_v6src_addr)) ||
2553 		    (!ipif->ipif_isv6 &&
2554 		    ire->ire_src_addr != ipif->ipif_src_addr) ||
2555 		    ire->ire_zoneid != ipif->ipif_zoneid) {
2556 			if (ipif != NULL)
2557 				ipif_refrele(ipif);
2558 			ire->ire_ipif = NULL;
2559 			ire_delete(ire);
2560 			*irep = NULL;
2561 			return (EINVAL);
2562 		}
2563 
2564 		ASSERT(ill != NULL);
2565 
2566 		/*
2567 		 * Since we didn't attach label security attributes to the
2568 		 * ire for the resolver case, we need to add it now. (only
2569 		 * for v4 resolver and v6 xresolv case).
2570 		 */
2571 		if (is_system_labeled() && ire_is_mblk) {
2572 			if (ire->ire_ipversion == IPV4_VERSION) {
2573 				ga.ga_af = AF_INET;
2574 				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
2575 				    INADDR_ANY ? ire->ire_gateway_addr :
2576 				    ire->ire_addr, &ga.ga_addr);
2577 			} else {
2578 				ga.ga_af = AF_INET6;
2579 				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
2580 				    &ire->ire_gateway_addr_v6) ?
2581 				    ire->ire_addr_v6 :
2582 				    ire->ire_gateway_addr_v6;
2583 			}
2584 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
2585 			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
2586 			    NULL, gcgrp);
2587 			if (error != 0) {
2588 				if (gcgrp != NULL) {
2589 					GCGRP_REFRELE(gcgrp);
2590 					gcgrp = NULL;
2591 				}
2592 				ipif_refrele(ipif);
2593 				ire->ire_ipif = NULL;
2594 				ire_delete(ire);
2595 				*irep = NULL;
2596 				return (error);
2597 			}
2598 		}
2599 	}
2600 
2601 	/*
2602 	 * In case ire was changed
2603 	 */
2604 	*irep = ire;
2605 	if (ire->ire_ipversion == IPV6_VERSION)
2606 		error = ire_add_v6(irep, q, mp, func);
2607 	else
2608 		error = ire_add_v4(irep, q, mp, func, allow_unresolved);
2609 	if (ipif != NULL)
2610 		ipif_refrele(ipif);
2611 	return (error);
2612 }
2613 
2614 /*
2615  * Add an initialized IRE to an appropriate table based on ire_type.
2616  *
2617  * The forward table contains IRE_PREFIX/IRE_HOST and
2618  * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
2619  *
2620  * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
2621  * and IRE_CACHE.
2622  *
2623  * NOTE : This function is called as writer though not required
2624  * by this function.
2625  */
2626 static int
2627 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
2628     boolean_t allow_unresolved)
2629 {
2630 	ire_t	*ire1;
2631 	irb_t	*irb_ptr;
2632 	ire_t	**irep;
2633 	int	flags;
2634 	ire_t	*pire = NULL;
2635 	ill_t	*stq_ill;
2636 	ire_t	*ire = *ire_p;
2637 	int	error;
2638 	boolean_t need_refrele = B_FALSE;
2639 	nce_t	*nce;
2640 	ip_stack_t	*ipst = ire->ire_ipst;
2641 	uint_t	marks = 0;
2642 
2643 	/*
2644 	 * IREs with source addresses hosted on interfaces that are under IPMP
2645 	 * should be hidden so that applications don't accidentally end up
2646 	 * sending packets with test addresses as their source addresses, or
2647 	 * sending out interfaces that are e.g. IFF_INACTIVE.  Hide them here.
2648 	 */
2649 	if (ire->ire_ipif != NULL && IS_UNDER_IPMP(ire->ire_ipif->ipif_ill))
2650 		marks |= IRE_MARK_TESTHIDDEN;
2651 
2652 	if (ire->ire_ipif != NULL)
2653 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
2654 	if (ire->ire_stq != NULL)
2655 		ASSERT(!MUTEX_HELD(
2656 		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
2657 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
2658 	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
2659 
2660 	/* Find the appropriate list head. */
2661 	switch (ire->ire_type) {
2662 	case IRE_HOST:
2663 		ire->ire_mask = IP_HOST_MASK;
2664 		ire->ire_masklen = IP_ABITS;
2665 		ire->ire_marks |= marks;
2666 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2667 			ire->ire_src_addr = 0;
2668 		break;
2669 	case IRE_CACHE:
2670 		ire->ire_mask = IP_HOST_MASK;
2671 		ire->ire_masklen = IP_ABITS;
2672 		ire->ire_marks |= marks;
2673 		break;
2674 	case IRE_BROADCAST:
2675 	case IRE_LOCAL:
2676 	case IRE_LOOPBACK:
2677 		ire->ire_mask = IP_HOST_MASK;
2678 		ire->ire_masklen = IP_ABITS;
2679 		break;
2680 	case IRE_PREFIX:
2681 	case IRE_DEFAULT:
2682 		ire->ire_marks |= marks;
2683 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2684 			ire->ire_src_addr = 0;
2685 		break;
2686 	case IRE_IF_RESOLVER:
2687 	case IRE_IF_NORESOLVER:
2688 		ire->ire_marks |= marks;
2689 		break;
2690 	default:
2691 		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
2692 		    (void *)ire, ire->ire_type));
2693 		ire_delete(ire);
2694 		*ire_p = NULL;
2695 		return (EINVAL);
2696 	}
2697 
2698 	/* Make sure the address is properly masked. */
2699 	ire->ire_addr &= ire->ire_mask;
2700 
2701 	/*
2702 	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
2703 	 * of the interface route while adding an IRE_CACHE for an on-link
2704 	 * destination in the IRE_IF_RESOLVER case, since the ire has to
2705 	 * go to ARP and return. We can't do a REFHOLD on the
2706 	 * associated interface ire for fear of ARP freeing the message.
2707 	 * Here we look up the interface ire in the forwarding table and
2708 	 * make sure that the interface route has not been deleted.
2709 	 */
2710 	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
2711 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
2712 
2713 		ASSERT(ire->ire_max_fragp == NULL);
2714 		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
2715 			/*
2716 			 * The ihandle that we used in ip_newroute_multi
2717 			 * comes from the interface route corresponding
2718 			 * to ire_ipif. Lookup here to see if it exists
2719 			 * still.
2720 			 * If the ire has a source address assigned using
2721 			 * RTF_SETSRC, ire_ipif is the logical interface holding
2722 			 * this source address, so we can't use it to check for
2723 			 * the existence of the interface route. Instead we rely
2724 			 * on the brute force ihandle search in
2725 			 * ire_ihandle_lookup_onlink() below.
2726 			 */
2727 			pire = ipif_to_ire(ire->ire_ipif);
2728 			if (pire == NULL) {
2729 				ire_delete(ire);
2730 				*ire_p = NULL;
2731 				return (EINVAL);
2732 			} else if (pire->ire_ihandle != ire->ire_ihandle) {
2733 				ire_refrele(pire);
2734 				ire_delete(ire);
2735 				*ire_p = NULL;
2736 				return (EINVAL);
2737 			}
2738 		} else {
2739 			pire = ire_ihandle_lookup_onlink(ire);
2740 			if (pire == NULL) {
2741 				ire_delete(ire);
2742 				*ire_p = NULL;
2743 				return (EINVAL);
2744 			}
2745 		}
2746 		/* Prevent pire from getting deleted */
2747 		IRB_REFHOLD(pire->ire_bucket);
2748 		/* Has it been removed already ? */
2749 		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
2750 			IRB_REFRELE(pire->ire_bucket);
2751 			ire_refrele(pire);
2752 			ire_delete(ire);
2753 			*ire_p = NULL;
2754 			return (EINVAL);
2755 		}
2756 	} else {
2757 		ASSERT(ire->ire_max_fragp != NULL);
2758 	}
2759 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
2760 
2761 	if (ire->ire_ipif != NULL) {
2762 		/*
2763 		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
2764 		 * for historic reasons and to maintain symmetry with
2765 		 * IPv6 code path. Historically this was used by
2766 		 * multicast code to create multiple IRE_CACHES on
2767 		 * a single ill with different ipifs. This was used
2768 		 * so that multicast packets leaving the node had the
2769 		 * right source address. This is no longer needed as
2770 		 * ip_wput initializes the address correctly.
2771 		 */
2772 		flags |= MATCH_IRE_IPIF;
2773 		/*
2774 		 * If we are creating a hidden IRE, make sure we search for
2775 		 * hidden IREs when searching for duplicates below.
2776 		 * Otherwise, we might find an IRE on some other interface
2777 		 * that's not marked hidden.
2778 		 */
2779 		if (ire->ire_marks & IRE_MARK_TESTHIDDEN)
2780 			flags |= MATCH_IRE_MARK_TESTHIDDEN;
2781 	}
2782 	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
2783 		irb_ptr = ire_get_bucket(ire);
2784 		need_refrele = B_TRUE;
2785 		if (irb_ptr == NULL) {
2786 			/*
2787 			 * This assumes that the ire has not added
2788 			 * a reference to the ipif.
2789 			 */
2790 			ire->ire_ipif = NULL;
2791 			ire_delete(ire);
2792 			if (pire != NULL) {
2793 				IRB_REFRELE(pire->ire_bucket);
2794 				ire_refrele(pire);
2795 			}
2796 			*ire_p = NULL;
2797 			return (EINVAL);
2798 		}
2799 	} else {
2800 		irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
2801 		    ire->ire_addr, ipst->ips_ip_cache_table_size)]);
2802 	}
2803 
2804 	/*
2805 	 * Start the atomic add of the ire. Grab the ill locks,
2806 	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
2807 	 *
2808 	 * If ipif or ill is changing ire_atomic_start() may queue the
2809 	 * request and return EINPROGRESS.
2810 	 * To avoid lock order problems, get the ndp4->ndp_g_lock.
2811 	 */
2812 	mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
2813 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
2814 	if (error != 0) {
2815 		mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2816 		/*
2817 		 * We don't know whether it is a valid ipif or not.
2818 		 * So, set it to NULL. This assumes that the ire has not added
2819 		 * a reference to the ipif.
2820 		 */
2821 		ire->ire_ipif = NULL;
2822 		ire_delete(ire);
2823 		if (pire != NULL) {
2824 			IRB_REFRELE(pire->ire_bucket);
2825 			ire_refrele(pire);
2826 		}
2827 		*ire_p = NULL;
2828 		if (need_refrele)
2829 			IRB_REFRELE(irb_ptr);
2830 		return (error);
2831 	}
2832 	/*
2833 	 * To avoid creating ires having stale values for the ire_max_frag
2834 	 * we get the latest value atomically here. For more details
2835 	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
2836 	 * in ip_rput_dlpi_writer
2837 	 */
2838 	if (ire->ire_max_fragp == NULL) {
2839 		if (CLASSD(ire->ire_addr))
2840 			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
2841 		else
2842 			ire->ire_max_frag = pire->ire_max_frag;
2843 	} else {
2844 		uint_t	max_frag;
2845 
2846 		max_frag = *ire->ire_max_fragp;
2847 		ire->ire_max_fragp = NULL;
2848 		ire->ire_max_frag = max_frag;
2849 	}
2850 	/*
2851 	 * Atomically check for duplicate and insert in the table.
2852 	 */
2853 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
2854 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
2855 			continue;
2856 		if (ire->ire_ipif != NULL) {
2857 			/*
2858 			 * We do MATCH_IRE_ILL implicitly here for IREs
2859 			 * with a non-null ire_ipif, including IRE_CACHEs.
2860 			 * As ire_ipif and ire_stq could point to two
2861 			 * different ills, we can't pass just ire_ipif to
2862 			 * ire_match_args and get a match on both ills.
2863 			 * This is just needed for duplicate checks here and
2864 			 * so we don't add an extra argument to
2865 			 * ire_match_args for this. Do it locally.
2866 			 *
2867 			 * NOTE : Currently there is no part of the code
2868 			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
2869 			 * match for IRE_CACHEs. Thus we don't want to
2870 			 * extend the arguments to ire_match_args.
2871 			 */
2872 			if (ire1->ire_stq != ire->ire_stq)
2873 				continue;
2874 			/*
2875 			 * Multiroute IRE_CACHEs for a given destination can
2876 			 * have the same ire_ipif, typically if their source
2877 			 * address is forced using RTF_SETSRC, and the same
2878 			 * send-to queue. We differentiate them using the parent
2879 			 * handle.
2880 			 */
2881 			if (ire->ire_type == IRE_CACHE &&
2882 			    (ire1->ire_flags & RTF_MULTIRT) &&
2883 			    (ire->ire_flags & RTF_MULTIRT) &&
2884 			    (ire1->ire_phandle != ire->ire_phandle))
2885 				continue;
2886 		}
2887 		if (ire1->ire_zoneid != ire->ire_zoneid)
2888 			continue;
2889 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
2890 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
2891 		    ire->ire_zoneid, 0, NULL, flags, NULL)) {
2892 			/*
2893 			 * Return the old ire after doing a REFHOLD.
2894 			 * As most of the callers continue to use the IRE
2895 			 * after adding, we return a held ire. This will
2896 			 * avoid a lookup in the caller again. If the callers
2897 			 * don't want to use it, they need to do a REFRELE.
2898 			 */
2899 			ip1dbg(("found dup ire existing %p new %p\n",
2900 			    (void *)ire1, (void *)ire));
2901 			IRE_REFHOLD(ire1);
2902 			ire_atomic_end(irb_ptr, ire);
2903 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2904 			ire_delete(ire);
2905 			if (pire != NULL) {
2906 				/*
2907 				 * Assert that it is not removed from the
2908 				 * list yet.
2909 				 */
2910 				ASSERT(pire->ire_ptpn != NULL);
2911 				IRB_REFRELE(pire->ire_bucket);
2912 				ire_refrele(pire);
2913 			}
2914 			*ire_p = ire1;
2915 			if (need_refrele)
2916 				IRB_REFRELE(irb_ptr);
2917 			return (0);
2918 		}
2919 	}
2920 
2921 	if (ire->ire_type & IRE_CACHE) {
2922 		ASSERT(ire->ire_stq != NULL);
2923 		nce = ndp_lookup_v4(ire_to_ill(ire),
2924 		    ((ire->ire_gateway_addr != INADDR_ANY) ?
2925 		    &ire->ire_gateway_addr : &ire->ire_addr),
2926 		    B_TRUE);
2927 		if (nce != NULL)
2928 			mutex_enter(&nce->nce_lock);
2929 		/*
2930 		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
2931 		 * and the caller has prohibited the addition of incomplete
2932 		 * ire's, we fail the add. Note that nce_state could be
2933 		 * something other than ND_REACHABLE if the nce had
2934 		 * just expired and the ire_create preceding the
2935 		 * ire_add added a new ND_INITIAL nce.
2936 		 */
2937 		if ((nce == NULL) ||
2938 		    (nce->nce_flags & NCE_F_CONDEMNED) ||
2939 		    (!allow_unresolved &&
2940 		    (nce->nce_state != ND_REACHABLE))) {
2941 			if (nce != NULL) {
2942 				DTRACE_PROBE1(ire__bad__nce, nce_t *, nce);
2943 				mutex_exit(&nce->nce_lock);
2944 			}
2945 			ire_atomic_end(irb_ptr, ire);
2946 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2947 			if (nce != NULL)
2948 				NCE_REFRELE(nce);
2949 			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
2950 			ire_delete(ire);
2951 			if (pire != NULL) {
2952 				IRB_REFRELE(pire->ire_bucket);
2953 				ire_refrele(pire);
2954 			}
2955 			*ire_p = NULL;
2956 			if (need_refrele)
2957 				IRB_REFRELE(irb_ptr);
2958 			return (EINVAL);
2959 		} else {
2960 			ire->ire_nce = nce;
2961 			mutex_exit(&nce->nce_lock);
2962 			/*
2963 			 * We are associating this nce to the ire, so
2964 			 * change the nce ref taken in ndp_lookup_v4() from
2965 			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
2966 			 */
2967 			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
2968 		}
2969 	}
2970 	/*
2971 	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
2972 	 * grouping identical addresses together on the hash chain.  We do
2973 	 * this only for IRE_BROADCASTs as ip_wput_ire is currently interested
2974 	 * in such groupings only for broadcasts.
2975 	 *
2976 	 * Find the first entry that matches ire_addr. *irep will be null
2977 	 * if no match.
2978 	 *
2979 	 * Note: the loopback and non-loopback broadcast entries for an
2980 	 * interface MUST be added before any MULTIRT entries.
2981 	 */
2982 	irep = (ire_t **)irb_ptr;
2983 	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
2984 		irep = &ire1->ire_next;
2985 	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
2986 		/*
2987 		 * We found some ire (i.e *irep) with a matching addr. We
2988 		 * want to group ires with same addr.
2989 		 */
2990 		for (;;) {
2991 			ire1 = *irep;
2992 			if ((ire1->ire_next == NULL) ||
2993 			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
2994 			    (ire1->ire_type != IRE_BROADCAST) ||
2995 			    (ire1->ire_flags & RTF_MULTIRT) ||
2996 			    (ire1->ire_ipif->ipif_ill->ill_grp ==
2997 			    ire->ire_ipif->ipif_ill->ill_grp))
2998 				break;
2999 			irep = &ire1->ire_next;
3000 		}
3001 		ASSERT(*irep != NULL);
3002 		/*
3003 		 * The ire will be added before *irep, so
3004 		 * if irep is a MULTIRT ire, just break to
3005 		 * ire insertion code.
3006 		 */
3007 		if (((*irep)->ire_flags & RTF_MULTIRT) != 0)
3008 			goto insert_ire;
3009 
3010 		irep = &((*irep)->ire_next);
3011 
3012 		/*
3013 		 * Either we have hit the end of the list or the address
3014 		 * did not match.
3015 		 */
3016 		while (*irep != NULL) {
3017 			ire1 = *irep;
3018 			if ((ire1->ire_addr != ire->ire_addr) ||
3019 			    (ire1->ire_type != IRE_BROADCAST))
3020 				break;
3021 			if (ire1->ire_ipif == ire->ire_ipif) {
3022 				irep = &ire1->ire_next;
3023 				break;
3024 			}
3025 			irep = &ire1->ire_next;
3026 		}
3027 	} else if (*irep != NULL) {
3028 		/*
3029 		 * Find the last ire which matches ire_addr.
3030 		 * Needed to do tail insertion among entries with the same
3031 		 * ire_addr.
3032 		 */
3033 		while (ire->ire_addr == ire1->ire_addr) {
3034 			irep = &ire1->ire_next;
3035 			ire1 = *irep;
3036 			if (ire1 == NULL)
3037 				break;
3038 		}
3039 	}
3040 
3041 insert_ire:
3042 	/* Insert at *irep */
3043 	ire1 = *irep;
3044 	if (ire1 != NULL)
3045 		ire1->ire_ptpn = &ire->ire_next;
3046 	ire->ire_next = ire1;
3047 	/* Link the new one in. */
3048 	ire->ire_ptpn = irep;
3049 
3050 	/*
3051 	 * ire_walk routines de-reference ire_next without holding
3052 	 * a lock. Before we point to the new ire, we want to make
3053 	 * sure the store that sets the ire_next of the new ire
3054 	 * reaches global visibility, so that ire_walk routines
3055 	 * don't see a truncated list of ires i.e if the ire_next
3056 	 * of the new ire gets set after we do "*irep = ire" due
3057 	 * to re-ordering, the ire_walk thread will see a NULL
3058 	 * once it accesses the ire_next of the new ire.
3059 	 * membar_producer() makes sure that the following store
3060 	 * happens *after* all of the above stores.
3061 	 */
3062 	membar_producer();
3063 	*irep = ire;
3064 	ire->ire_bucket = irb_ptr;
3065 	/*
3066 	 * We return a bumped up IRE above. Keep it symmetrical
3067 	 * so that the callers will always have to release. This
3068 	 * helps the callers of this function because they continue
3069 	 * to use the IRE after adding and hence they don't have to
3070 	 * lookup again after we return the IRE.
3071 	 *
3072 	 * NOTE : We don't have to use atomics as this is appearing
3073 	 * in the list for the first time and no one else can bump
3074 	 * up the reference count on this yet.
3075 	 */
3076 	IRE_REFHOLD_LOCKED(ire);
3077 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
3078 
3079 	irb_ptr->irb_ire_cnt++;
3080 	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3081 		irb_ptr->irb_nire++;
3082 
3083 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3084 		irb_ptr->irb_tmp_ire_cnt++;
3085 
3086 	if (ire->ire_ipif != NULL) {
3087 		DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ire->ire_ipif,
3088 		    (char *), "ire", (void *), ire);
3089 		ire->ire_ipif->ipif_ire_cnt++;
3090 		if (ire->ire_stq != NULL) {
3091 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3092 			DTRACE_PROBE3(ill__incr__cnt, (ill_t *), stq_ill,
3093 			    (char *), "ire", (void *), ire);
3094 			stq_ill->ill_ire_cnt++;
3095 		}
3096 	} else {
3097 		ASSERT(ire->ire_stq == NULL);
3098 	}
3099 
3100 	ire_atomic_end(irb_ptr, ire);
3101 	mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3102 
3103 	if (pire != NULL) {
3104 		/* Assert that it is not removed from the list yet */
3105 		ASSERT(pire->ire_ptpn != NULL);
3106 		IRB_REFRELE(pire->ire_bucket);
3107 		ire_refrele(pire);
3108 	}
3109 
3110 	if (ire->ire_type != IRE_CACHE) {
3111 		/*
3112 		 * For ire's with host mask see if there is an entry
3113 		 * in the cache. If there is one flush the whole cache as
3114 		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3115 		 * If no entry is found than there is no need to flush the
3116 		 * cache.
3117 		 */
3118 		if (ire->ire_mask == IP_HOST_MASK) {
3119 			ire_t *lire;
3120 			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3121 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3122 			if (lire != NULL) {
3123 				ire_refrele(lire);
3124 				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3125 			}
3126 		} else {
3127 			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3128 		}
3129 	}
3130 	/*
3131 	 * We had to delay the fast path probe until the ire is inserted
3132 	 * in the list. Otherwise the fast path ack won't find the ire in
3133 	 * the table.
3134 	 */
3135 	if (ire->ire_type == IRE_CACHE ||
3136 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) {
3137 		ASSERT(ire->ire_nce != NULL);
3138 		if (ire->ire_nce->nce_state == ND_REACHABLE)
3139 			nce_fastpath(ire->ire_nce);
3140 	}
3141 	if (ire->ire_ipif != NULL)
3142 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3143 	*ire_p = ire;
3144 	if (need_refrele) {
3145 		IRB_REFRELE(irb_ptr);
3146 	}
3147 	return (0);
3148 }
3149 
3150 /*
3151  * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3152  * do the final cleanup for this ire.
3153  */
3154 void
3155 ire_cleanup(ire_t *ire)
3156 {
3157 	ire_t *ire_next;
3158 	ip_stack_t *ipst = ire->ire_ipst;
3159 
3160 	ASSERT(ire != NULL);
3161 
3162 	while (ire != NULL) {
3163 		ire_next = ire->ire_next;
3164 		if (ire->ire_ipversion == IPV4_VERSION) {
3165 			ire_delete_v4(ire);
3166 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
3167 			    ire_stats_deleted);
3168 		} else {
3169 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3170 			ire_delete_v6(ire);
3171 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
3172 			    ire_stats_deleted);
3173 		}
3174 		/*
3175 		 * Now it's really out of the list. Before doing the
3176 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3177 		 * so.
3178 		 */
3179 		ire->ire_next = NULL;
3180 		IRE_REFRELE_NOTR(ire);
3181 		ire = ire_next;
3182 	}
3183 }
3184 
3185 /*
3186  * IRB_REFRELE is the only caller of the function. It calls to unlink
3187  * all the CONDEMNED ires from this bucket.
3188  */
3189 ire_t *
3190 ire_unlink(irb_t *irb)
3191 {
3192 	ire_t *ire;
3193 	ire_t *ire1;
3194 	ire_t **ptpn;
3195 	ire_t *ire_list = NULL;
3196 
3197 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3198 	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3199 	    (irb->irb_refcnt == 0));
3200 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3201 	ASSERT(irb->irb_ire != NULL);
3202 
3203 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3204 		ip_stack_t	*ipst = ire->ire_ipst;
3205 
3206 		ire1 = ire->ire_next;
3207 		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3208 			ptpn = ire->ire_ptpn;
3209 			ire1 = ire->ire_next;
3210 			if (ire1)
3211 				ire1->ire_ptpn = ptpn;
3212 			*ptpn = ire1;
3213 			ire->ire_ptpn = NULL;
3214 			ire->ire_next = NULL;
3215 			if (ire->ire_type == IRE_DEFAULT) {
3216 				/*
3217 				 * IRE is out of the list. We need to adjust
3218 				 * the accounting before the caller drops
3219 				 * the lock.
3220 				 */
3221 				if (ire->ire_ipversion == IPV6_VERSION) {
3222 					ASSERT(ipst->
3223 					    ips_ipv6_ire_default_count !=
3224 					    0);
3225 					ipst->ips_ipv6_ire_default_count--;
3226 				}
3227 			}
3228 			/*
3229 			 * We need to call ire_delete_v4 or ire_delete_v6
3230 			 * to clean up the cache or the redirects pointing at
3231 			 * the default gateway. We need to drop the lock
3232 			 * as ire_flush_cache/ire_delete_host_redircts require
3233 			 * so. But we can't drop the lock, as ire_unlink needs
3234 			 * to atomically remove the ires from the list.
3235 			 * So, create a temporary list of CONDEMNED ires
3236 			 * for doing ire_delete_v4/ire_delete_v6 operations
3237 			 * later on.
3238 			 */
3239 			ire->ire_next = ire_list;
3240 			ire_list = ire;
3241 		}
3242 	}
3243 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3244 	return (ire_list);
3245 }
3246 
3247 /*
3248  * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3249  * ARP message on any of its interface queue, it scans the nce table and
3250  * deletes and calls ndp_delete() for the appropriate nce. This action
3251  * also deletes all the neighbor/ire cache entries for that address.
3252  * This function is called from ip_arp_news in ip.c and also for
3253  * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3254  * true if it finds a nce entry which is used by ip_arp_news to determine if
3255  * it needs to do an ire_walk_v4. The return value is also  used for the
3256  * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3257  * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3258  * ip_if->ipif_ill also needs to be matched.
3259  */
3260 boolean_t
3261 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst)
3262 {
3263 	ill_t	*ill;
3264 	nce_t	*nce;
3265 
3266 	ill = (ipif ? ipif->ipif_ill : NULL);
3267 
3268 	if (ill != NULL) {
3269 		/*
3270 		 * clean up the nce (and any relevant ire's) that matches
3271 		 * on addr and ill.
3272 		 */
3273 		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3274 		if (nce != NULL) {
3275 			ndp_delete(nce);
3276 			return (B_TRUE);
3277 		}
3278 	} else {
3279 		/*
3280 		 * ill is wildcard. clean up all nce's and
3281 		 * ire's that match on addr
3282 		 */
3283 		nce_clookup_t cl;
3284 
3285 		cl.ncecl_addr = addr;
3286 		cl.ncecl_found = B_FALSE;
3287 
3288 		ndp_walk_common(ipst->ips_ndp4, NULL,
3289 		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3290 
3291 		/*
3292 		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3293 		 *  we found a matching nce.
3294 		 */
3295 		return (cl.ncecl_found);
3296 	}
3297 	return (B_FALSE);
3298 
3299 }
3300 
3301 /* Delete the supplied nce if its nce_addr matches the supplied address */
3302 static void
3303 ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3304 {
3305 	nce_clookup_t *cl = (nce_clookup_t *)arg;
3306 	ipaddr_t nce_addr;
3307 
3308 	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3309 	if (nce_addr == cl->ncecl_addr) {
3310 		cl->ncecl_found = B_TRUE;
3311 		/* clean up the nce (and any relevant ire's) */
3312 		ndp_delete(nce);
3313 	}
3314 }
3315 
3316 /*
3317  * Clean up the radix node for this ire. Must be called by IRB_REFRELE
3318  * when there are no ire's left in the bucket. Returns TRUE if the bucket
3319  * is deleted and freed.
3320  */
3321 boolean_t
3322 irb_inactive(irb_t *irb)
3323 {
3324 	struct rt_entry *rt;
3325 	struct radix_node *rn;
3326 	ip_stack_t *ipst = irb->irb_ipst;
3327 
3328 	ASSERT(irb->irb_ipst != NULL);
3329 
3330 	rt = IRB2RT(irb);
3331 	rn = (struct radix_node *)rt;
3332 
3333 	/* first remove it from the radix tree. */
3334 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
3335 	rw_enter(&irb->irb_lock, RW_WRITER);
3336 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
3337 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
3338 		    ipst->ips_ip_ftable);
3339 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
3340 		ASSERT((void *)rn == (void *)rt);
3341 		Free(rt, rt_entry_cache);
3342 		/* irb_lock is freed */
3343 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3344 		return (B_TRUE);
3345 	}
3346 	rw_exit(&irb->irb_lock);
3347 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3348 	return (B_FALSE);
3349 }
3350 
3351 /*
3352  * Delete the specified IRE.
3353  */
3354 void
3355 ire_delete(ire_t *ire)
3356 {
3357 	ire_t	*ire1;
3358 	ire_t	**ptpn;
3359 	irb_t *irb;
3360 	ip_stack_t	*ipst = ire->ire_ipst;
3361 
3362 	if ((irb = ire->ire_bucket) == NULL) {
3363 		/*
3364 		 * It was never inserted in the list. Should call REFRELE
3365 		 * to free this IRE.
3366 		 */
3367 		IRE_REFRELE_NOTR(ire);
3368 		return;
3369 	}
3370 
3371 	rw_enter(&irb->irb_lock, RW_WRITER);
3372 
3373 	if (irb->irb_rr_origin == ire) {
3374 		irb->irb_rr_origin = NULL;
3375 	}
3376 
3377 	/*
3378 	 * In case of V4 we might still be waiting for fastpath ack.
3379 	 */
3380 	if (ire->ire_ipversion == IPV4_VERSION &&
3381 	    (ire->ire_type == IRE_CACHE ||
3382 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) {
3383 		ASSERT(ire->ire_nce != NULL);
3384 		nce_fastpath_list_delete(ire->ire_nce);
3385 	}
3386 
3387 	if (ire->ire_ptpn == NULL) {
3388 		/*
3389 		 * Some other thread has removed us from the list.
3390 		 * It should have done the REFRELE for us.
3391 		 */
3392 		rw_exit(&irb->irb_lock);
3393 		return;
3394 	}
3395 
3396 	if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3397 		irb->irb_ire_cnt--;
3398 		ire->ire_marks |= IRE_MARK_CONDEMNED;
3399 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
3400 			irb->irb_tmp_ire_cnt--;
3401 			ire->ire_marks &= ~IRE_MARK_TEMPORARY;
3402 		}
3403 	}
3404 
3405 	if (irb->irb_refcnt != 0) {
3406 		/*
3407 		 * The last thread to leave this bucket will
3408 		 * delete this ire.
3409 		 */
3410 		irb->irb_marks |= IRB_MARK_CONDEMNED;
3411 		rw_exit(&irb->irb_lock);
3412 		return;
3413 	}
3414 
3415 	/*
3416 	 * Normally to delete an ire, we walk the bucket. While we
3417 	 * walk the bucket, we normally bump up irb_refcnt and hence
3418 	 * we return from above where we mark CONDEMNED and the ire
3419 	 * gets deleted from ire_unlink. This case is where somebody
3420 	 * knows the ire e.g by doing a lookup, and wants to delete the
3421 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
3422 	 * the bucket.
3423 	 */
3424 	ptpn = ire->ire_ptpn;
3425 	ire1 = ire->ire_next;
3426 	if (ire1 != NULL)
3427 		ire1->ire_ptpn = ptpn;
3428 	ASSERT(ptpn != NULL);
3429 	*ptpn = ire1;
3430 	ire->ire_ptpn = NULL;
3431 	ire->ire_next = NULL;
3432 	if (ire->ire_ipversion == IPV6_VERSION) {
3433 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
3434 	} else {
3435 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
3436 	}
3437 	/*
3438 	 * ip_wput/ip_wput_v6 checks this flag to see whether
3439 	 * it should still use the cached ire or not.
3440 	 */
3441 	if (ire->ire_type == IRE_DEFAULT) {
3442 		/*
3443 		 * IRE is out of the list. We need to adjust the
3444 		 * accounting before we drop the lock.
3445 		 */
3446 		if (ire->ire_ipversion == IPV6_VERSION) {
3447 			ASSERT(ipst->ips_ipv6_ire_default_count != 0);
3448 			ipst->ips_ipv6_ire_default_count--;
3449 		}
3450 	}
3451 	rw_exit(&irb->irb_lock);
3452 
3453 	if (ire->ire_ipversion == IPV6_VERSION) {
3454 		ire_delete_v6(ire);
3455 	} else {
3456 		ire_delete_v4(ire);
3457 	}
3458 	/*
3459 	 * We removed it from the list. Decrement the
3460 	 * reference count.
3461 	 */
3462 	IRE_REFRELE_NOTR(ire);
3463 }
3464 
3465 /*
3466  * Delete the specified IRE.
3467  * All calls should use ire_delete().
3468  * Sometimes called as writer though not required by this function.
3469  *
3470  * NOTE : This function is called only if the ire was added
3471  * in the list.
3472  */
3473 static void
3474 ire_delete_v4(ire_t *ire)
3475 {
3476 	ip_stack_t	*ipst = ire->ire_ipst;
3477 
3478 	ASSERT(ire->ire_refcnt >= 1);
3479 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3480 
3481 	if (ire->ire_type != IRE_CACHE)
3482 		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
3483 	if (ire->ire_type == IRE_DEFAULT) {
3484 		/*
3485 		 * when a default gateway is going away
3486 		 * delete all the host redirects pointing at that
3487 		 * gateway.
3488 		 */
3489 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
3490 	}
3491 }
3492 
3493 /*
3494  * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
3495  * to free the ire when the reference count goes to zero.
3496  */
3497 void
3498 ire_inactive(ire_t *ire)
3499 {
3500 	nce_t	*nce;
3501 	ill_t	*ill = NULL;
3502 	ill_t	*stq_ill = NULL;
3503 	ipif_t	*ipif;
3504 	boolean_t	need_wakeup = B_FALSE;
3505 	irb_t 	*irb;
3506 	ip_stack_t	*ipst = ire->ire_ipst;
3507 
3508 	ASSERT(ire->ire_refcnt == 0);
3509 	ASSERT(ire->ire_ptpn == NULL);
3510 	ASSERT(ire->ire_next == NULL);
3511 
3512 	if (ire->ire_gw_secattr != NULL) {
3513 		ire_gw_secattr_free(ire->ire_gw_secattr);
3514 		ire->ire_gw_secattr = NULL;
3515 	}
3516 
3517 	if (ire->ire_mp != NULL) {
3518 		ASSERT(ire->ire_bucket == NULL);
3519 		mutex_destroy(&ire->ire_lock);
3520 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3521 		if (ire->ire_nce != NULL)
3522 			NCE_REFRELE_NOTR(ire->ire_nce);
3523 		freeb(ire->ire_mp);
3524 		return;
3525 	}
3526 
3527 	if ((nce = ire->ire_nce) != NULL) {
3528 		NCE_REFRELE_NOTR(nce);
3529 		ire->ire_nce = NULL;
3530 	}
3531 
3532 	if (ire->ire_ipif == NULL)
3533 		goto end;
3534 
3535 	ipif = ire->ire_ipif;
3536 	ill = ipif->ipif_ill;
3537 
3538 	if (ire->ire_bucket == NULL) {
3539 		/* The ire was never inserted in the table. */
3540 		goto end;
3541 	}
3542 
3543 	/*
3544 	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
3545 	 * non-null ill_ire_count also goes down by 1.
3546 	 *
3547 	 * The ipif that is associated with an ire is ire->ire_ipif and
3548 	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
3549 	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
3550 	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done.
3551 	 * However, for VNI or IPMP IRE entries, stq_ill can be different.
3552 	 * If this is different from ire->ire_ipif->ipif_ill and if the
3553 	 * ill_ire_cnt on the stq_ill also has dropped to zero, we call
3554 	 * ipif_ill_refrele_tail on the stq_ill.
3555 	 */
3556 	if (ire->ire_stq != NULL)
3557 		stq_ill = ire->ire_stq->q_ptr;
3558 
3559 	if (stq_ill == NULL || stq_ill == ill) {
3560 		/* Optimize the most common case */
3561 		mutex_enter(&ill->ill_lock);
3562 		ASSERT(ipif->ipif_ire_cnt != 0);
3563 		DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif,
3564 		    (char *), "ire", (void *), ire);
3565 		ipif->ipif_ire_cnt--;
3566 		if (IPIF_DOWN_OK(ipif))
3567 			need_wakeup = B_TRUE;
3568 		if (stq_ill != NULL) {
3569 			ASSERT(stq_ill->ill_ire_cnt != 0);
3570 			DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill,
3571 			    (char *), "ire", (void *), ire);
3572 			stq_ill->ill_ire_cnt--;
3573 			if (ILL_DOWN_OK(stq_ill))
3574 				need_wakeup = B_TRUE;
3575 		}
3576 		if (need_wakeup) {
3577 			/* Drops the ill lock */
3578 			ipif_ill_refrele_tail(ill);
3579 		} else {
3580 			mutex_exit(&ill->ill_lock);
3581 		}
3582 	} else {
3583 		/*
3584 		 * We can't grab all the ill locks at the same time.
3585 		 * It can lead to recursive lock enter in the call to
3586 		 * ipif_ill_refrele_tail and later. Instead do it 1 at
3587 		 * a time.
3588 		 */
3589 		mutex_enter(&ill->ill_lock);
3590 		ASSERT(ipif->ipif_ire_cnt != 0);
3591 		DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif,
3592 		    (char *), "ire", (void *), ire);
3593 		ipif->ipif_ire_cnt--;
3594 		if (IPIF_DOWN_OK(ipif)) {
3595 			/* Drops the lock */
3596 			ipif_ill_refrele_tail(ill);
3597 		} else {
3598 			mutex_exit(&ill->ill_lock);
3599 		}
3600 		if (stq_ill != NULL) {
3601 			mutex_enter(&stq_ill->ill_lock);
3602 			ASSERT(stq_ill->ill_ire_cnt != 0);
3603 			DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill,
3604 			    (char *), "ire", (void *), ire);
3605 			stq_ill->ill_ire_cnt--;
3606 			if (ILL_DOWN_OK(stq_ill)) {
3607 				/* Drops the ill lock */
3608 				ipif_ill_refrele_tail(stq_ill);
3609 			} else {
3610 				mutex_exit(&stq_ill->ill_lock);
3611 			}
3612 		}
3613 	}
3614 end:
3615 	/* This should be true for both V4 and V6 */
3616 
3617 	if ((ire->ire_type & IRE_FORWARDTABLE) &&
3618 	    (ire->ire_ipversion == IPV4_VERSION) &&
3619 	    ((irb = ire->ire_bucket) != NULL)) {
3620 		rw_enter(&irb->irb_lock, RW_WRITER);
3621 		irb->irb_nire--;
3622 		/*
3623 		 * Instead of examining the conditions for freeing
3624 		 * the radix node here, we do it by calling
3625 		 * IRB_REFRELE which is a single point in the code
3626 		 * that embeds that logic. Bump up the refcnt to
3627 		 * be able to call IRB_REFRELE
3628 		 */
3629 		IRB_REFHOLD_LOCKED(irb);
3630 		rw_exit(&irb->irb_lock);
3631 		IRB_REFRELE(irb);
3632 	}
3633 	ire->ire_ipif = NULL;
3634 
3635 #ifdef DEBUG
3636 	ire_trace_cleanup(ire);
3637 #endif
3638 	mutex_destroy(&ire->ire_lock);
3639 	if (ire->ire_ipversion == IPV6_VERSION) {
3640 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
3641 	} else {
3642 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3643 	}
3644 	ASSERT(ire->ire_mp == NULL);
3645 	/* Has been allocated out of the cache */
3646 	kmem_cache_free(ire_cache, ire);
3647 }
3648 
3649 /*
3650  * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect
3651  * entries that have a given gateway address.
3652  */
3653 void
3654 ire_delete_cache_gw(ire_t *ire, char *cp)
3655 {
3656 	ipaddr_t	gw_addr;
3657 
3658 	if (!(ire->ire_type & IRE_CACHE) &&
3659 	    !(ire->ire_flags & RTF_DYNAMIC))
3660 		return;
3661 
3662 	bcopy(cp, &gw_addr, sizeof (gw_addr));
3663 	if (ire->ire_gateway_addr == gw_addr) {
3664 		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
3665 		    (int)ntohl(ire->ire_addr), ire->ire_type,
3666 		    (int)ntohl(ire->ire_gateway_addr)));
3667 		ire_delete(ire);
3668 	}
3669 }
3670 
3671 /*
3672  * Remove all IRE_CACHE entries that match the ire specified.
3673  *
3674  * The flag argument indicates if the flush request is due to addition
3675  * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
3676  *
3677  * This routine takes only the IREs from the forwarding table and flushes
3678  * the corresponding entries from the cache table.
3679  *
3680  * When flushing due to the deletion of an old route, it
3681  * just checks the cache handles (ire_phandle and ire_ihandle) and
3682  * deletes the ones that match.
3683  *
3684  * When flushing due to the creation of a new route, it checks
3685  * if a cache entry's address matches the one in the IRE and
3686  * that the cache entry's parent has a less specific mask than the
3687  * one in IRE. The destination of such a cache entry could be the
3688  * gateway for other cache entries, so we need to flush those as
3689  * well by looking for gateway addresses matching the IRE's address.
3690  */
3691 void
3692 ire_flush_cache_v4(ire_t *ire, int flag)
3693 {
3694 	int i;
3695 	ire_t *cire;
3696 	irb_t *irb;
3697 	ip_stack_t	*ipst = ire->ire_ipst;
3698 
3699 	if (ire->ire_type & IRE_CACHE)
3700 		return;
3701 
3702 	/*
3703 	 * If a default is just created, there is no point
3704 	 * in going through the cache, as there will not be any
3705 	 * cached ires.
3706 	 */
3707 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
3708 		return;
3709 	if (flag == IRE_FLUSH_ADD) {
3710 		/*
3711 		 * This selective flush is due to the addition of
3712 		 * new IRE.
3713 		 */
3714 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3715 			irb = &ipst->ips_ip_cache_table[i];
3716 			if ((cire = irb->irb_ire) == NULL)
3717 				continue;
3718 			IRB_REFHOLD(irb);
3719 			for (cire = irb->irb_ire; cire != NULL;
3720 			    cire = cire->ire_next) {
3721 				if (cire->ire_type != IRE_CACHE)
3722 					continue;
3723 				/*
3724 				 * If 'cire' belongs to the same subnet
3725 				 * as the new ire being added, and 'cire'
3726 				 * is derived from a prefix that is less
3727 				 * specific than the new ire being added,
3728 				 * we need to flush 'cire'; for instance,
3729 				 * when a new interface comes up.
3730 				 */
3731 				if (((cire->ire_addr & ire->ire_mask) ==
3732 				    (ire->ire_addr & ire->ire_mask)) &&
3733 				    (ip_mask_to_plen(cire->ire_cmask) <=
3734 				    ire->ire_masklen)) {
3735 					ire_delete(cire);
3736 					continue;
3737 				}
3738 				/*
3739 				 * This is the case when the ire_gateway_addr
3740 				 * of 'cire' belongs to the same subnet as
3741 				 * the new ire being added.
3742 				 * Flushing such ires is sometimes required to
3743 				 * avoid misrouting: say we have a machine with
3744 				 * two interfaces (I1 and I2), a default router
3745 				 * R on the I1 subnet, and a host route to an
3746 				 * off-link destination D with a gateway G on
3747 				 * the I2 subnet.
3748 				 * Under normal operation, we will have an
3749 				 * on-link cache entry for G and an off-link
3750 				 * cache entry for D with G as ire_gateway_addr,
3751 				 * traffic to D will reach its destination
3752 				 * through gateway G.
3753 				 * If the administrator does 'ifconfig I2 down',
3754 				 * the cache entries for D and G will be
3755 				 * flushed. However, G will now be resolved as
3756 				 * an off-link destination using R (the default
3757 				 * router) as gateway. Then D will also be
3758 				 * resolved as an off-link destination using G
3759 				 * as gateway - this behavior is due to
3760 				 * compatibility reasons, see comment in
3761 				 * ire_ihandle_lookup_offlink(). Traffic to D
3762 				 * will go to the router R and probably won't
3763 				 * reach the destination.
3764 				 * The administrator then does 'ifconfig I2 up'.
3765 				 * Since G is on the I2 subnet, this routine
3766 				 * will flush its cache entry. It must also
3767 				 * flush the cache entry for D, otherwise
3768 				 * traffic will stay misrouted until the IRE
3769 				 * times out.
3770 				 */
3771 				if ((cire->ire_gateway_addr & ire->ire_mask) ==
3772 				    (ire->ire_addr & ire->ire_mask)) {
3773 					ire_delete(cire);
3774 					continue;
3775 				}
3776 			}
3777 			IRB_REFRELE(irb);
3778 		}
3779 	} else {
3780 		/*
3781 		 * delete the cache entries based on
3782 		 * handle in the IRE as this IRE is
3783 		 * being deleted/changed.
3784 		 */
3785 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3786 			irb = &ipst->ips_ip_cache_table[i];
3787 			if ((cire = irb->irb_ire) == NULL)
3788 				continue;
3789 			IRB_REFHOLD(irb);
3790 			for (cire = irb->irb_ire; cire != NULL;
3791 			    cire = cire->ire_next) {
3792 				if (cire->ire_type != IRE_CACHE)
3793 					continue;
3794 				if ((cire->ire_phandle == 0 ||
3795 				    cire->ire_phandle != ire->ire_phandle) &&
3796 				    (cire->ire_ihandle == 0 ||
3797 				    cire->ire_ihandle != ire->ire_ihandle))
3798 					continue;
3799 				ire_delete(cire);
3800 			}
3801 			IRB_REFRELE(irb);
3802 		}
3803 	}
3804 }
3805 
3806 /*
3807  * Matches the arguments passed with the values in the ire.
3808  *
3809  * Note: for match types that match using "ipif" passed in, ipif
3810  * must be checked for non-NULL before calling this routine.
3811  */
3812 boolean_t
3813 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
3814     int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
3815     const ts_label_t *tsl, int match_flags, queue_t *wq)
3816 {
3817 	ill_t *ire_ill = NULL, *dst_ill;
3818 	ill_t *ipif_ill = NULL;
3819 
3820 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3821 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
3822 	ASSERT((!(match_flags & MATCH_IRE_ILL)) ||
3823 	    (ipif != NULL && !ipif->ipif_isv6));
3824 	ASSERT(!(match_flags & MATCH_IRE_WQ) || wq != NULL);
3825 
3826 	/*
3827 	 * If MATCH_IRE_MARK_TESTHIDDEN is set, then only return the IRE if it
3828 	 * is in fact hidden, to ensure the caller gets the right one.  One
3829 	 * exception: if the caller passed MATCH_IRE_IHANDLE, then they
3830 	 * already know the identity of the given IRE_INTERFACE entry and
3831 	 * there's no point trying to hide it from them.
3832 	 */
3833 	if (ire->ire_marks & IRE_MARK_TESTHIDDEN) {
3834 		if (match_flags & MATCH_IRE_IHANDLE)
3835 			match_flags |= MATCH_IRE_MARK_TESTHIDDEN;
3836 
3837 		if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN))
3838 			return (B_FALSE);
3839 	}
3840 
3841 	/*
3842 	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
3843 	 * is used. In that case the routing table is bypassed and the
3844 	 * packets are sent directly to the specified nexthop. The
3845 	 * IRE_CACHE entry representing this route should be marked
3846 	 * with IRE_MARK_PRIVATE_ADDR.
3847 	 */
3848 
3849 	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
3850 	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
3851 		return (B_FALSE);
3852 
3853 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
3854 	    ire->ire_zoneid != ALL_ZONES) {
3855 		/*
3856 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
3857 		 * valid and does not match that of ire_zoneid, a failure to
3858 		 * match is reported at this point. Otherwise, since some IREs
3859 		 * that are available in the global zone can be used in local
3860 		 * zones, additional checks need to be performed:
3861 		 *
3862 		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
3863 		 *	entries should never be matched in this situation.
3864 		 *
3865 		 *	IRE entries that have an interface associated with them
3866 		 *	should in general not match unless they are an IRE_LOCAL
3867 		 *	or in the case when MATCH_IRE_DEFAULT has been set in
3868 		 *	the caller.  In the case of the former, checking of the
3869 		 *	other fields supplied should take place.
3870 		 *
3871 		 *	In the case where MATCH_IRE_DEFAULT has been set,
3872 		 *	all of the ipif's associated with the IRE's ill are
3873 		 *	checked to see if there is a matching zoneid.  If any
3874 		 *	one ipif has a matching zoneid, this IRE is a
3875 		 *	potential candidate so checking of the other fields
3876 		 *	takes place.
3877 		 *
3878 		 *	In the case where the IRE_INTERFACE has a usable source
3879 		 *	address (indicated by ill_usesrc_ifindex) in the
3880 		 *	correct zone then it's permitted to return this IRE
3881 		 */
3882 		if (match_flags & MATCH_IRE_ZONEONLY)
3883 			return (B_FALSE);
3884 		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
3885 			return (B_FALSE);
3886 		/*
3887 		 * Note, IRE_INTERFACE can have the stq as NULL. For
3888 		 * example, if the default multicast route is tied to
3889 		 * the loopback address.
3890 		 */
3891 		if ((ire->ire_type & IRE_INTERFACE) &&
3892 		    (ire->ire_stq != NULL)) {
3893 			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
3894 			/*
3895 			 * If there is a usable source address in the
3896 			 * zone, then it's ok to return an
3897 			 * IRE_INTERFACE
3898 			 */
3899 			if (ipif_usesrc_avail(dst_ill, zoneid)) {
3900 				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
3901 				    (void *)dst_ill,
3902 				    (ire->ire_addr == (addr & mask))));
3903 			} else {
3904 				ip3dbg(("ire_match_args: src_ipif NULL"
3905 				    " dst_ill %p\n", (void *)dst_ill));
3906 				return (B_FALSE);
3907 			}
3908 		}
3909 		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
3910 		    !(ire->ire_type & IRE_INTERFACE)) {
3911 			ipif_t	*tipif;
3912 
3913 			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
3914 				return (B_FALSE);
3915 			}
3916 			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
3917 			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
3918 			    tipif != NULL; tipif = tipif->ipif_next) {
3919 				if (IPIF_CAN_LOOKUP(tipif) &&
3920 				    (tipif->ipif_flags & IPIF_UP) &&
3921 				    (tipif->ipif_zoneid == zoneid ||
3922 				    tipif->ipif_zoneid == ALL_ZONES))
3923 					break;
3924 			}
3925 			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
3926 			if (tipif == NULL) {
3927 				return (B_FALSE);
3928 			}
3929 		}
3930 	}
3931 
3932 	/*
3933 	 * For IRE_CACHE entries, MATCH_IRE_ILL means that somebody wants to
3934 	 * send out ire_stq (ire_ipif for IRE_CACHE entries is just the means
3935 	 * of getting a source address -- i.e., ire_src_addr ==
3936 	 * ire->ire_ipif->ipif_src_addr).  ire_to_ill() handles this.
3937 	 *
3938 	 * NOTE: For IPMP, MATCH_IRE_ILL usually matches any ill in the group.
3939 	 * However, if MATCH_IRE_MARK_TESTHIDDEN is set (i.e., the IRE is for
3940 	 * IPMP test traffic), then the ill must match exactly.
3941 	 */
3942 	if (match_flags & MATCH_IRE_ILL) {
3943 		ire_ill = ire_to_ill(ire);
3944 		ipif_ill = ipif->ipif_ill;
3945 	}
3946 
3947 	if ((ire->ire_addr == (addr & mask)) &&
3948 	    ((!(match_flags & MATCH_IRE_GW)) ||
3949 	    (ire->ire_gateway_addr == gateway)) &&
3950 	    ((!(match_flags & MATCH_IRE_TYPE)) ||
3951 	    (ire->ire_type & type)) &&
3952 	    ((!(match_flags & MATCH_IRE_SRC)) ||
3953 	    (ire->ire_src_addr == ipif->ipif_src_addr)) &&
3954 	    ((!(match_flags & MATCH_IRE_IPIF)) ||
3955 	    (ire->ire_ipif == ipif)) &&
3956 	    ((!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) ||
3957 	    (ire->ire_marks & IRE_MARK_TESTHIDDEN)) &&
3958 	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
3959 	    (ire->ire_type != IRE_CACHE ||
3960 	    ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
3961 	    ((!(match_flags & MATCH_IRE_WQ)) ||
3962 	    (ire->ire_stq == wq)) &&
3963 	    ((!(match_flags & MATCH_IRE_ILL)) ||
3964 	    (ire_ill == ipif_ill ||
3965 	    (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN) &&
3966 	    ire_ill != NULL && IS_IN_SAME_ILLGRP(ipif_ill, ire_ill)))) &&
3967 	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
3968 	    (ire->ire_ihandle == ihandle)) &&
3969 	    ((!(match_flags & MATCH_IRE_MASK)) ||
3970 	    (ire->ire_mask == mask)) &&
3971 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
3972 	    (!is_system_labeled()) ||
3973 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
3974 		/* We found the matched IRE */
3975 		return (B_TRUE);
3976 	}
3977 	return (B_FALSE);
3978 }
3979 
3980 
3981 /*
3982  * Lookup for a route in all the tables
3983  */
3984 ire_t *
3985 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
3986     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
3987     const ts_label_t *tsl, int flags, ip_stack_t *ipst)
3988 {
3989 	ire_t *ire = NULL;
3990 
3991 	/*
3992 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
3993 	 * MATCH_IRE_ILL is set.
3994 	 */
3995 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL)) && (ipif == NULL))
3996 		return (NULL);
3997 
3998 	/*
3999 	 * might be asking for a cache lookup,
4000 	 * This is not best way to lookup cache,
4001 	 * user should call ire_cache_lookup directly.
4002 	 *
4003 	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
4004 	 * in the forwarding table, if the applicable type flags were set.
4005 	 */
4006 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
4007 		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
4008 		    tsl, flags, ipst);
4009 		if (ire != NULL)
4010 			return (ire);
4011 	}
4012 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4013 		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4014 		    zoneid, 0, tsl, flags, ipst);
4015 	}
4016 	return (ire);
4017 }
4018 
4019 
4020 /*
4021  * Delete the IRE cache for the gateway and all IRE caches whose
4022  * ire_gateway_addr points to this gateway, and allow them to
4023  * be created on demand by ip_newroute.
4024  */
4025 void
4026 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
4027 {
4028 	irb_t *irb;
4029 	ire_t *ire;
4030 
4031 	irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4032 	    ipst->ips_ip_cache_table_size)];
4033 	IRB_REFHOLD(irb);
4034 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4035 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4036 			continue;
4037 
4038 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4039 		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4040 		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE, NULL)) {
4041 			ire_delete(ire);
4042 		}
4043 	}
4044 	IRB_REFRELE(irb);
4045 
4046 	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst);
4047 }
4048 
4049 /*
4050  * Looks up cache table for a route.
4051  * specific lookup can be indicated by
4052  * passing the MATCH_* flags and the
4053  * necessary parameters.
4054  */
4055 ire_t *
4056 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4057     zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4058 {
4059 	ire_ctable_args_t	margs;
4060 
4061 	margs.ict_addr = &addr;
4062 	margs.ict_gateway = &gateway;
4063 	margs.ict_type = type;
4064 	margs.ict_ipif = ipif;
4065 	margs.ict_zoneid = zoneid;
4066 	margs.ict_tsl = tsl;
4067 	margs.ict_flags = flags;
4068 	margs.ict_ipst = ipst;
4069 	margs.ict_wq = NULL;
4070 
4071 	return (ip4_ctable_lookup_impl(&margs));
4072 }
4073 
4074 /*
4075  * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4076  * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are identical
4077  * or part of the same illgrp.  (In the IPMP case, usually the two IREs
4078  * will both belong to the IPMP ill, but exceptions are possible -- e.g.
4079  * if IPMP test addresses are on their own subnet.)
4080  */
4081 boolean_t
4082 ire_local_same_lan(ire_t *ire_local, ire_t *xmit_ire)
4083 {
4084 	ill_t *recv_ill, *xmit_ill;
4085 
4086 	ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK));
4087 	ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE));
4088 
4089 	recv_ill = ire_to_ill(ire_local);
4090 	xmit_ill = ire_to_ill(xmit_ire);
4091 
4092 	ASSERT(recv_ill != NULL);
4093 	ASSERT(xmit_ill != NULL);
4094 
4095 	return (IS_ON_SAME_LAN(recv_ill, xmit_ill));
4096 }
4097 
4098 /*
4099  * Check if the IRE_LOCAL uses the same ill as another route would use.
4100  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
4101  * then we don't allow this IRE_LOCAL to be used.
4102  */
4103 boolean_t
4104 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4105     const ts_label_t *tsl, ip_stack_t *ipst)
4106 {
4107 	ire_t		*alt_ire;
4108 	boolean_t	rval;
4109 	int		flags;
4110 
4111 	flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE;
4112 
4113 	if (ire_local->ire_ipversion == IPV4_VERSION) {
4114 		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4115 		    NULL, zoneid, 0, tsl, flags, ipst);
4116 	} else {
4117 		alt_ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL,
4118 		    NULL, zoneid, 0, tsl, flags, ipst);
4119 	}
4120 
4121 	if (alt_ire == NULL)
4122 		return (B_FALSE);
4123 
4124 	if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4125 		ire_refrele(alt_ire);
4126 		return (B_FALSE);
4127 	}
4128 	rval = ire_local_same_lan(ire_local, alt_ire);
4129 
4130 	ire_refrele(alt_ire);
4131 	return (rval);
4132 }
4133 
4134 /*
4135  * Lookup cache
4136  *
4137  * In general the zoneid has to match (where ALL_ZONES match all of them).
4138  * But for IRE_LOCAL we also need to handle the case where L2 should
4139  * conceptually loop back the packet. This is necessary since neither
4140  * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4141  * own MAC address. This loopback is needed when the normal
4142  * routes (ignoring IREs with different zoneids) would send out the packet on
4143  * the same ill as the ill with which this IRE_LOCAL is associated.
4144  *
4145  * Earlier versions of this code always matched an IRE_LOCAL independently of
4146  * the zoneid. We preserve that earlier behavior when
4147  * ip_restrict_interzone_loopback is turned off.
4148  */
4149 ire_t *
4150 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl,
4151     ip_stack_t *ipst)
4152 {
4153 	irb_t *irb_ptr;
4154 	ire_t *ire;
4155 
4156 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4157 	    ipst->ips_ip_cache_table_size)];
4158 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4159 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4160 		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4161 		    IRE_MARK_TESTHIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4162 			continue;
4163 		}
4164 		if (ire->ire_addr == addr) {
4165 			/*
4166 			 * Finally, check if the security policy has any
4167 			 * restriction on using this route for the specified
4168 			 * message.
4169 			 */
4170 			if (tsl != NULL &&
4171 			    ire->ire_gw_secattr != NULL &&
4172 			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4173 				continue;
4174 			}
4175 
4176 			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4177 			    ire->ire_zoneid == ALL_ZONES) {
4178 				IRE_REFHOLD(ire);
4179 				rw_exit(&irb_ptr->irb_lock);
4180 				return (ire);
4181 			}
4182 
4183 			if (ire->ire_type == IRE_LOCAL) {
4184 				if (ipst->ips_ip_restrict_interzone_loopback &&
4185 				    !ire_local_ok_across_zones(ire, zoneid,
4186 				    &addr, tsl, ipst))
4187 					continue;
4188 
4189 				IRE_REFHOLD(ire);
4190 				rw_exit(&irb_ptr->irb_lock);
4191 				return (ire);
4192 			}
4193 		}
4194 	}
4195 	rw_exit(&irb_ptr->irb_lock);
4196 	return (NULL);
4197 }
4198 
4199 ire_t *
4200 ire_cache_lookup_simple(ipaddr_t dst, ip_stack_t *ipst)
4201 {
4202 	irb_t *irb_ptr;
4203 	ire_t *ire;
4204 
4205 	/*
4206 	 * Look for an ire in the cachetable whose
4207 	 * ire_addr matches the destination.
4208 	 * Since we are being called by forwarding fastpath
4209 	 * no need to check for Trusted Solaris label.
4210 	 */
4211 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(
4212 	    dst, ipst->ips_ip_cache_table_size)];
4213 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4214 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4215 		if (ire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN |
4216 		    IRE_MARK_PRIVATE_ADDR)) {
4217 			continue;
4218 		}
4219 		if (ire->ire_addr == dst) {
4220 			IRE_REFHOLD(ire);
4221 			rw_exit(&irb_ptr->irb_lock);
4222 			return (ire);
4223 		}
4224 	}
4225 	rw_exit(&irb_ptr->irb_lock);
4226 	return (NULL);
4227 }
4228 
4229 /*
4230  * Locate the interface ire that is tied to the cache ire 'cire' via
4231  * cire->ire_ihandle.
4232  *
4233  * We are trying to create the cache ire for an offlink destn based
4234  * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4235  * as found by ip_newroute(). We are called from ip_newroute() in
4236  * the IRE_CACHE case.
4237  */
4238 ire_t *
4239 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4240 {
4241 	ire_t	*ire;
4242 	int	match_flags;
4243 	ipaddr_t gw_addr;
4244 	ipif_t	*gw_ipif;
4245 	ip_stack_t	*ipst = cire->ire_ipst;
4246 
4247 	ASSERT(cire != NULL && pire != NULL);
4248 
4249 	/*
4250 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4251 	 * because the ihandle refers to an ipif which can be in only one zone.
4252 	 */
4253 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4254 	if (pire->ire_ipif != NULL)
4255 		match_flags |= MATCH_IRE_ILL;
4256 	/*
4257 	 * We know that the mask of the interface ire equals cire->ire_cmask.
4258 	 * (When ip_newroute() created 'cire' for the gateway it set its
4259 	 * cmask from the interface ire's mask)
4260 	 */
4261 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4262 	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4263 	    NULL, match_flags, ipst);
4264 	if (ire != NULL)
4265 		return (ire);
4266 	/*
4267 	 * If we didn't find an interface ire above, we can't declare failure.
4268 	 * For backwards compatibility, we need to support prefix routes
4269 	 * pointing to next hop gateways that are not on-link.
4270 	 *
4271 	 * Assume we are trying to ping some offlink destn, and we have the
4272 	 * routing table below.
4273 	 *
4274 	 * Eg.	default	- gw1		<--- pire	(line 1)
4275 	 *	gw1	- gw2				(line 2)
4276 	 *	gw2	- hme0				(line 3)
4277 	 *
4278 	 * If we already have a cache ire for gw1 in 'cire', the
4279 	 * ire_ftable_lookup above would have failed, since there is no
4280 	 * interface ire to reach gw1. We will fallthru below.
4281 	 *
4282 	 * Here we duplicate the steps that ire_ftable_lookup() did in
4283 	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
4284 	 * The differences are the following
4285 	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
4286 	 *	instead of ire_route_lookup()
4287 	 * ii.  We look for only prefix routes in the 1st call below.
4288 	 * ii.  We want to match on the ihandle in the 2nd call below.
4289 	 */
4290 	match_flags =  MATCH_IRE_TYPE;
4291 	if (pire->ire_ipif != NULL)
4292 		match_flags |= MATCH_IRE_ILL;
4293 	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
4294 	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
4295 	if (ire == NULL)
4296 		return (NULL);
4297 	/*
4298 	 * At this point 'ire' corresponds to the entry shown in line 2.
4299 	 * gw_addr is 'gw2' in the example above.
4300 	 */
4301 	gw_addr = ire->ire_gateway_addr;
4302 	gw_ipif = ire->ire_ipif;
4303 	ire_refrele(ire);
4304 
4305 	match_flags |= MATCH_IRE_IHANDLE;
4306 	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
4307 	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags,
4308 	    ipst);
4309 	return (ire);
4310 }
4311 
4312 /*
4313  * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
4314  * ire associated with the specified ipif.
4315  *
4316  * This might occasionally be called when IPIF_UP is not set since
4317  * the IP_MULTICAST_IF as well as creating interface routes
4318  * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
4319  *
4320  * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
4321  * the ipif, this routine might return NULL.
4322  */
4323 ire_t *
4324 ipif_to_ire(const ipif_t *ipif)
4325 {
4326 	ire_t	*ire;
4327 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
4328 	uint_t	match_flags = MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK;
4329 
4330 	/*
4331 	 * IRE_INTERFACE entries for ills under IPMP are IRE_MARK_TESTHIDDEN
4332 	 * so that they aren't accidentally returned.  However, if the
4333 	 * caller's ipif is on an ill under IPMP, there's no need to hide 'em.
4334 	 */
4335 	if (IS_UNDER_IPMP(ipif->ipif_ill))
4336 		match_flags |= MATCH_IRE_MARK_TESTHIDDEN;
4337 
4338 	ASSERT(!ipif->ipif_isv6);
4339 	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
4340 		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
4341 		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
4342 		    ipst);
4343 	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4344 		/* In this case we need to lookup destination address. */
4345 		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
4346 		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, match_flags,
4347 		    ipst);
4348 	} else {
4349 		ire = ire_ftable_lookup(ipif->ipif_subnet,
4350 		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
4351 		    ALL_ZONES, 0, NULL, match_flags, ipst);
4352 	}
4353 	return (ire);
4354 }
4355 
4356 /*
4357  * ire_walk function.
4358  * Count the number of IRE_CACHE entries in different categories.
4359  */
4360 void
4361 ire_cache_count(ire_t *ire, char *arg)
4362 {
4363 	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
4364 
4365 	if (ire->ire_type != IRE_CACHE)
4366 		return;
4367 
4368 	icc->icc_total++;
4369 
4370 	if (ire->ire_ipversion == IPV6_VERSION) {
4371 		mutex_enter(&ire->ire_lock);
4372 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4373 			mutex_exit(&ire->ire_lock);
4374 			icc->icc_onlink++;
4375 			return;
4376 		}
4377 		mutex_exit(&ire->ire_lock);
4378 	} else {
4379 		if (ire->ire_gateway_addr == 0) {
4380 			icc->icc_onlink++;
4381 			return;
4382 		}
4383 	}
4384 
4385 	ASSERT(ire->ire_ipif != NULL);
4386 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
4387 		icc->icc_pmtu++;
4388 	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4389 	    ire->ire_ib_pkt_count)
4390 		icc->icc_offlink++;
4391 	else
4392 		icc->icc_unused++;
4393 }
4394 
4395 /*
4396  * ire_walk function called by ip_trash_ire_reclaim().
4397  * Free a fraction of the IRE_CACHE cache entries. The fractions are
4398  * different for different categories of IRE_CACHE entries.
4399  * A fraction of zero means to not free any in that category.
4400  * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
4401  * is N then every Nth hash bucket chain will be freed.
4402  */
4403 void
4404 ire_cache_reclaim(ire_t *ire, char *arg)
4405 {
4406 	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
4407 	uint_t rand;
4408 	ip_stack_t	*ipst = icr->icr_ipst;
4409 
4410 	if (ire->ire_type != IRE_CACHE)
4411 		return;
4412 
4413 	if (ire->ire_ipversion == IPV6_VERSION) {
4414 		rand = (uint_t)lbolt +
4415 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6,
4416 		    ipst->ips_ip6_cache_table_size);
4417 		mutex_enter(&ire->ire_lock);
4418 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4419 			mutex_exit(&ire->ire_lock);
4420 			if (icr->icr_onlink != 0 &&
4421 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4422 				ire_delete(ire);
4423 				return;
4424 			}
4425 			goto done;
4426 		}
4427 		mutex_exit(&ire->ire_lock);
4428 	} else {
4429 		rand = (uint_t)lbolt +
4430 		    IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size);
4431 		if (ire->ire_gateway_addr == 0) {
4432 			if (icr->icr_onlink != 0 &&
4433 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4434 				ire_delete(ire);
4435 				return;
4436 			}
4437 			goto done;
4438 		}
4439 	}
4440 	/* Not onlink IRE */
4441 	ASSERT(ire->ire_ipif != NULL);
4442 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
4443 		/* Use ptmu fraction */
4444 		if (icr->icr_pmtu != 0 &&
4445 		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
4446 			ire_delete(ire);
4447 			return;
4448 		}
4449 	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4450 	    ire->ire_ib_pkt_count) {
4451 		/* Use offlink fraction */
4452 		if (icr->icr_offlink != 0 &&
4453 		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
4454 			ire_delete(ire);
4455 			return;
4456 		}
4457 	} else {
4458 		/* Use unused fraction */
4459 		if (icr->icr_unused != 0 &&
4460 		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
4461 			ire_delete(ire);
4462 			return;
4463 		}
4464 	}
4465 done:
4466 	/*
4467 	 * Update tire_mark so that those that haven't been used since this
4468 	 * reclaim will be considered unused next time we reclaim.
4469 	 */
4470 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
4471 }
4472 
4473 static void
4474 power2_roundup(uint32_t *value)
4475 {
4476 	int i;
4477 
4478 	for (i = 1; i < 31; i++) {
4479 		if (*value <= (1 << i))
4480 			break;
4481 	}
4482 	*value = (1 << i);
4483 }
4484 
4485 /* Global init for all zones */
4486 void
4487 ip_ire_g_init()
4488 {
4489 	/*
4490 	 * Create ire caches, ire_reclaim()
4491 	 * will give IRE_CACHE back to system when needed.
4492 	 * This needs to be done here before anything else, since
4493 	 * ire_add() expects the cache to be created.
4494 	 */
4495 	ire_cache = kmem_cache_create("ire_cache",
4496 	    sizeof (ire_t), 0, ip_ire_constructor,
4497 	    ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
4498 
4499 	rt_entry_cache = kmem_cache_create("rt_entry",
4500 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
4501 
4502 	/*
4503 	 * Have radix code setup kmem caches etc.
4504 	 */
4505 	rn_init();
4506 }
4507 
4508 void
4509 ip_ire_init(ip_stack_t *ipst)
4510 {
4511 	int i;
4512 	uint32_t mem_cnt;
4513 	uint32_t cpu_cnt;
4514 	uint32_t min_cnt;
4515 	pgcnt_t mem_avail;
4516 
4517 	/*
4518 	 * ip_ire_max_bucket_cnt is sized below based on the memory
4519 	 * size and the cpu speed of the machine. This is upper
4520 	 * bounded by the compile time value of ip_ire_max_bucket_cnt
4521 	 * and is lower bounded by the compile time value of
4522 	 * ip_ire_min_bucket_cnt.  Similar logic applies to
4523 	 * ip6_ire_max_bucket_cnt.
4524 	 *
4525 	 * We calculate this for each IP Instances in order to use
4526 	 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are
4527 	 * in effect when the zone is booted.
4528 	 */
4529 	mem_avail = kmem_avail();
4530 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4531 	    ip_cache_table_size / sizeof (ire_t);
4532 	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
4533 
4534 	min_cnt = MIN(cpu_cnt, mem_cnt);
4535 	if (min_cnt < ip_ire_min_bucket_cnt)
4536 		min_cnt = ip_ire_min_bucket_cnt;
4537 	if (ip_ire_max_bucket_cnt > min_cnt) {
4538 		ip_ire_max_bucket_cnt = min_cnt;
4539 	}
4540 
4541 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4542 	    ip6_cache_table_size / sizeof (ire_t);
4543 	min_cnt = MIN(cpu_cnt, mem_cnt);
4544 	if (min_cnt < ip6_ire_min_bucket_cnt)
4545 		min_cnt = ip6_ire_min_bucket_cnt;
4546 	if (ip6_ire_max_bucket_cnt > min_cnt) {
4547 		ip6_ire_max_bucket_cnt = min_cnt;
4548 	}
4549 
4550 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
4551 	mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
4552 
4553 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
4554 
4555 
4556 	/* Calculate the IPv4 cache table size. */
4557 	ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size,
4558 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4559 	    ip_ire_max_bucket_cnt));
4560 	if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size)
4561 		ipst->ips_ip_cache_table_size = ip_max_cache_table_size;
4562 	/*
4563 	 * Make sure that the table size is always a power of 2.  The
4564 	 * hash macro IRE_ADDR_HASH() depends on that.
4565 	 */
4566 	power2_roundup(&ipst->ips_ip_cache_table_size);
4567 
4568 	ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size *
4569 	    sizeof (irb_t), KM_SLEEP);
4570 
4571 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4572 		rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL,
4573 		    RW_DEFAULT, NULL);
4574 	}
4575 
4576 	/* Calculate the IPv6 cache table size. */
4577 	ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size,
4578 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4579 	    ip6_ire_max_bucket_cnt));
4580 	if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size)
4581 		ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size;
4582 	/*
4583 	 * Make sure that the table size is always a power of 2.  The
4584 	 * hash macro IRE_ADDR_HASH_V6() depends on that.
4585 	 */
4586 	power2_roundup(&ipst->ips_ip6_cache_table_size);
4587 
4588 	ipst->ips_ip_cache_table_v6 = kmem_zalloc(
4589 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP);
4590 
4591 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4592 		rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL,
4593 		    RW_DEFAULT, NULL);
4594 	}
4595 
4596 	/*
4597 	 * Make sure that the forwarding table size is a power of 2.
4598 	 * The IRE*_ADDR_HASH() macroes depend on that.
4599 	 */
4600 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
4601 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
4602 
4603 	ipst->ips_ire_handle = 1;
4604 }
4605 
4606 void
4607 ip_ire_g_fini(void)
4608 {
4609 	kmem_cache_destroy(ire_cache);
4610 	kmem_cache_destroy(rt_entry_cache);
4611 
4612 	rn_fini();
4613 }
4614 
4615 void
4616 ip_ire_fini(ip_stack_t *ipst)
4617 {
4618 	int i;
4619 
4620 	/*
4621 	 * Delete all IREs - assumes that the ill/ipifs have
4622 	 * been removed so what remains are just the ftable and IRE_CACHE.
4623 	 */
4624 	ire_walk(ire_delete, NULL, ipst);
4625 
4626 	rn_freehead(ipst->ips_ip_ftable);
4627 	ipst->ips_ip_ftable = NULL;
4628 
4629 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
4630 	mutex_destroy(&ipst->ips_ire_handle_lock);
4631 
4632 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4633 		ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL);
4634 		rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock);
4635 	}
4636 	kmem_free(ipst->ips_ip_cache_table,
4637 	    ipst->ips_ip_cache_table_size * sizeof (irb_t));
4638 	ipst->ips_ip_cache_table = NULL;
4639 
4640 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4641 		ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL);
4642 		rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock);
4643 	}
4644 	kmem_free(ipst->ips_ip_cache_table_v6,
4645 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t));
4646 	ipst->ips_ip_cache_table_v6 = NULL;
4647 
4648 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
4649 		irb_t *ptr;
4650 		int j;
4651 
4652 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
4653 			continue;
4654 
4655 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
4656 			ASSERT(ptr[j].irb_ire == NULL);
4657 			rw_destroy(&ptr[j].irb_lock);
4658 		}
4659 		mi_free(ptr);
4660 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
4661 	}
4662 }
4663 
4664 /*
4665  * Check if another multirt route resolution is needed.
4666  * B_TRUE is returned is there remain a resolvable route,
4667  * or if no route for that dst is resolved yet.
4668  * B_FALSE is returned if all routes for that dst are resolved
4669  * or if the remaining unresolved routes are actually not
4670  * resolvable.
4671  * This only works in the global zone.
4672  */
4673 boolean_t
4674 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst)
4675 {
4676 	ire_t	*first_fire;
4677 	ire_t	*first_cire;
4678 	ire_t	*fire;
4679 	ire_t	*cire;
4680 	irb_t	*firb;
4681 	irb_t	*cirb;
4682 	int	unres_cnt = 0;
4683 	boolean_t resolvable = B_FALSE;
4684 
4685 	/* Retrieve the first IRE_HOST that matches the destination */
4686 	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
4687 	    NULL, ALL_ZONES, 0, tsl,
4688 	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
4689 
4690 	/* No route at all */
4691 	if (first_fire == NULL) {
4692 		return (B_TRUE);
4693 	}
4694 
4695 	firb = first_fire->ire_bucket;
4696 	ASSERT(firb != NULL);
4697 
4698 	/* Retrieve the first IRE_CACHE ire for that destination. */
4699 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
4700 
4701 	/* No resolved route. */
4702 	if (first_cire == NULL) {
4703 		ire_refrele(first_fire);
4704 		return (B_TRUE);
4705 	}
4706 
4707 	/*
4708 	 * At least one route is resolved. Here we look through the forward
4709 	 * and cache tables, to compare the number of declared routes
4710 	 * with the number of resolved routes. The search for a resolvable
4711 	 * route is performed only if at least one route remains
4712 	 * unresolved.
4713 	 */
4714 	cirb = first_cire->ire_bucket;
4715 	ASSERT(cirb != NULL);
4716 
4717 	/* Count the number of routes to that dest that are declared. */
4718 	IRB_REFHOLD(firb);
4719 	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
4720 		if (!(fire->ire_flags & RTF_MULTIRT))
4721 			continue;
4722 		if (fire->ire_addr != dst)
4723 			continue;
4724 		unres_cnt++;
4725 	}
4726 	IRB_REFRELE(firb);
4727 
4728 	/* Then subtract the number of routes to that dst that are resolved */
4729 	IRB_REFHOLD(cirb);
4730 	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
4731 		if (!(cire->ire_flags & RTF_MULTIRT))
4732 			continue;
4733 		if (cire->ire_addr != dst)
4734 			continue;
4735 		if (cire->ire_marks & (IRE_MARK_CONDEMNED|IRE_MARK_TESTHIDDEN))
4736 			continue;
4737 		unres_cnt--;
4738 	}
4739 	IRB_REFRELE(cirb);
4740 
4741 	/* At least one route is unresolved; search for a resolvable route. */
4742 	if (unres_cnt > 0)
4743 		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
4744 		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst);
4745 
4746 	if (first_fire != NULL)
4747 		ire_refrele(first_fire);
4748 
4749 	if (first_cire != NULL)
4750 		ire_refrele(first_cire);
4751 
4752 	return (resolvable);
4753 }
4754 
4755 
4756 /*
4757  * Explore a forward_table bucket, starting from fire_arg.
4758  * fire_arg MUST be an IRE_HOST entry.
4759  *
4760  * Return B_TRUE and update *ire_arg and *fire_arg
4761  * if at least one resolvable route is found. *ire_arg
4762  * is the IRE entry for *fire_arg's gateway.
4763  *
4764  * Return B_FALSE otherwise (all routes are resolved or
4765  * the remaining unresolved routes are all unresolvable).
4766  *
4767  * The IRE selection relies on a priority mechanism
4768  * driven by the flags passed in by the caller.
4769  * The caller, such as ip_newroute_ipif(), can get the most
4770  * relevant ire at each stage of a multiple route resolution.
4771  *
4772  * The rules are:
4773  *
4774  * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
4775  *   ires are preferred for the gateway. This gives the highest
4776  *   priority to routes that can be resolved without using
4777  *   a resolver.
4778  *
4779  * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
4780  *   is specified but no IRE_CACHETABLE ire entry for the gateway
4781  *   is found, the following rules apply.
4782  *
4783  * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
4784  *   ires for the gateway, that have not been tried since
4785  *   a configurable amount of time, are preferred.
4786  *   This applies when a resolver must be invoked for
4787  *   a missing route, but we don't want to use the resolver
4788  *   upon each packet emission. If no such resolver is found,
4789  *   B_FALSE is returned.
4790  *   The MULTIRT_USESTAMP flag can be combined with
4791  *   MULTIRT_CACHEGW.
4792  *
4793  * - if MULTIRT_USESTAMP is not specified in flags, the first
4794  *   unresolved but resolvable route is selected.
4795  *
4796  * - Otherwise, there is no resolvalble route, and
4797  *   B_FALSE is returned.
4798  *
4799  * At last, MULTIRT_SETSTAMP can be specified in flags to
4800  * request the timestamp of unresolvable routes to
4801  * be refreshed. This prevents the useless exploration
4802  * of those routes for a while, when MULTIRT_USESTAMP is used.
4803  *
4804  * This only works in the global zone.
4805  */
4806 boolean_t
4807 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
4808     const ts_label_t *tsl, ip_stack_t *ipst)
4809 {
4810 	clock_t	delta;
4811 	ire_t	*best_fire = NULL;
4812 	ire_t	*best_cire = NULL;
4813 	ire_t	*first_fire;
4814 	ire_t	*first_cire;
4815 	ire_t	*fire;
4816 	ire_t	*cire;
4817 	irb_t	*firb = NULL;
4818 	irb_t	*cirb = NULL;
4819 	ire_t	*gw_ire;
4820 	boolean_t	already_resolved;
4821 	boolean_t	res;
4822 	ipaddr_t	dst;
4823 	ipaddr_t	gw;
4824 
4825 	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
4826 	    (void *)*ire_arg, (void *)*fire_arg, flags));
4827 
4828 	ASSERT(ire_arg != NULL);
4829 	ASSERT(fire_arg != NULL);
4830 
4831 	/* Not an IRE_HOST ire; give up. */
4832 	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
4833 		return (B_FALSE);
4834 	}
4835 
4836 	/* This is the first IRE_HOST ire for that destination. */
4837 	first_fire = *fire_arg;
4838 	firb = first_fire->ire_bucket;
4839 	ASSERT(firb != NULL);
4840 
4841 	dst = first_fire->ire_addr;
4842 
4843 	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
4844 
4845 	/*
4846 	 * Retrieve the first IRE_CACHE ire for that destination;
4847 	 * if we don't find one, no route for that dest is
4848 	 * resolved yet.
4849 	 */
4850 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
4851 	if (first_cire != NULL) {
4852 		cirb = first_cire->ire_bucket;
4853 	}
4854 
4855 	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
4856 
4857 	/*
4858 	 * Search for a resolvable route, giving the top priority
4859 	 * to routes that can be resolved without any call to the resolver.
4860 	 */
4861 	IRB_REFHOLD(firb);
4862 
4863 	if (!CLASSD(dst)) {
4864 		/*
4865 		 * For all multiroute IRE_HOST ires for that destination,
4866 		 * check if the route via the IRE_HOST's gateway is
4867 		 * resolved yet.
4868 		 */
4869 		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
4870 
4871 			if (!(fire->ire_flags & RTF_MULTIRT))
4872 				continue;
4873 			if (fire->ire_addr != dst)
4874 				continue;
4875 
4876 			if (fire->ire_gw_secattr != NULL &&
4877 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
4878 				continue;
4879 			}
4880 
4881 			gw = fire->ire_gateway_addr;
4882 
4883 			ip2dbg(("ire_multirt_lookup: fire %p, "
4884 			    "ire_addr %08x, ire_gateway_addr %08x\n",
4885 			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
4886 
4887 			already_resolved = B_FALSE;
4888 
4889 			if (first_cire != NULL) {
4890 				ASSERT(cirb != NULL);
4891 
4892 				IRB_REFHOLD(cirb);
4893 				/*
4894 				 * For all IRE_CACHE ires for that
4895 				 * destination.
4896 				 */
4897 				for (cire = first_cire;
4898 				    cire != NULL;
4899 				    cire = cire->ire_next) {
4900 
4901 					if (!(cire->ire_flags & RTF_MULTIRT))
4902 						continue;
4903 					if (cire->ire_addr != dst)
4904 						continue;
4905 					if (cire->ire_marks &
4906 					    (IRE_MARK_CONDEMNED |
4907 					    IRE_MARK_TESTHIDDEN))
4908 						continue;
4909 
4910 					if (cire->ire_gw_secattr != NULL &&
4911 					    tsol_ire_match_gwattr(cire,
4912 					    tsl) != 0) {
4913 						continue;
4914 					}
4915 
4916 					/*
4917 					 * Check if the IRE_CACHE's gateway
4918 					 * matches the IRE_HOST's gateway.
4919 					 */
4920 					if (cire->ire_gateway_addr == gw) {
4921 						already_resolved = B_TRUE;
4922 						break;
4923 					}
4924 				}
4925 				IRB_REFRELE(cirb);
4926 			}
4927 
4928 			/*
4929 			 * This route is already resolved;
4930 			 * proceed with next one.
4931 			 */
4932 			if (already_resolved) {
4933 				ip2dbg(("ire_multirt_lookup: found cire %p, "
4934 				    "already resolved\n", (void *)cire));
4935 				continue;
4936 			}
4937 
4938 			/*
4939 			 * The route is unresolved; is it actually
4940 			 * resolvable, i.e. is there a cache or a resolver
4941 			 * for the gateway?
4942 			 */
4943 			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
4944 			    ALL_ZONES, tsl,
4945 			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst);
4946 
4947 			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
4948 			    (void *)gw_ire));
4949 
4950 			/*
4951 			 * If gw_ire is typed IRE_CACHETABLE,
4952 			 * this route can be resolved without any call to the
4953 			 * resolver. If the MULTIRT_CACHEGW flag is set,
4954 			 * give the top priority to this ire and exit the
4955 			 * loop.
4956 			 * This is typically the case when an ARP reply
4957 			 * is processed through ip_wput_nondata().
4958 			 */
4959 			if ((flags & MULTIRT_CACHEGW) &&
4960 			    (gw_ire != NULL) &&
4961 			    (gw_ire->ire_type & IRE_CACHETABLE)) {
4962 				ASSERT(gw_ire->ire_nce == NULL ||
4963 				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
4964 				/*
4965 				 * Release the resolver associated to the
4966 				 * previous candidate best ire, if any.
4967 				 */
4968 				if (best_cire != NULL) {
4969 					ire_refrele(best_cire);
4970 					ASSERT(best_fire != NULL);
4971 				}
4972 
4973 				best_fire = fire;
4974 				best_cire = gw_ire;
4975 
4976 				ip2dbg(("ire_multirt_lookup: found top prio "
4977 				    "best_fire %p, best_cire %p\n",
4978 				    (void *)best_fire, (void *)best_cire));
4979 				break;
4980 			}
4981 
4982 			/*
4983 			 * Compute the time elapsed since our preceding
4984 			 * attempt to  resolve that route.
4985 			 * If the MULTIRT_USESTAMP flag is set, we take that
4986 			 * route into account only if this time interval
4987 			 * exceeds ip_multirt_resolution_interval;
4988 			 * this prevents us from attempting to resolve a
4989 			 * broken route upon each sending of a packet.
4990 			 */
4991 			delta = lbolt - fire->ire_last_used_time;
4992 			delta = TICK_TO_MSEC(delta);
4993 
4994 			res = (boolean_t)((delta >
4995 			    ipst->ips_ip_multirt_resolution_interval) ||
4996 			    (!(flags & MULTIRT_USESTAMP)));
4997 
4998 			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
4999 			    "res %d\n",
5000 			    (void *)fire, delta, res));
5001 
5002 			if (res) {
5003 				/*
5004 				 * We are here if MULTIRT_USESTAMP flag is set
5005 				 * and the resolver for fire's gateway
5006 				 * has not been tried since
5007 				 * ip_multirt_resolution_interval, or if
5008 				 * MULTIRT_USESTAMP is not set but gw_ire did
5009 				 * not fill the conditions for MULTIRT_CACHEGW,
5010 				 * or if neither MULTIRT_USESTAMP nor
5011 				 * MULTIRT_CACHEGW are set.
5012 				 */
5013 				if (gw_ire != NULL) {
5014 					if (best_fire == NULL) {
5015 						ASSERT(best_cire == NULL);
5016 
5017 						best_fire = fire;
5018 						best_cire = gw_ire;
5019 
5020 						ip2dbg(("ire_multirt_lookup:"
5021 						    "found candidate "
5022 						    "best_fire %p, "
5023 						    "best_cire %p\n",
5024 						    (void *)best_fire,
5025 						    (void *)best_cire));
5026 
5027 						/*
5028 						 * If MULTIRT_CACHEGW is not
5029 						 * set, we ignore the top
5030 						 * priority ires that can
5031 						 * be resolved without any
5032 						 * call to the resolver;
5033 						 * In that case, there is
5034 						 * actually no need
5035 						 * to continue the loop.
5036 						 */
5037 						if (!(flags &
5038 						    MULTIRT_CACHEGW)) {
5039 							break;
5040 						}
5041 						continue;
5042 					}
5043 				} else {
5044 					/*
5045 					 * No resolver for the gateway: the
5046 					 * route is not resolvable.
5047 					 * If the MULTIRT_SETSTAMP flag is
5048 					 * set, we stamp the IRE_HOST ire,
5049 					 * so we will not select it again
5050 					 * during this resolution interval.
5051 					 */
5052 					if (flags & MULTIRT_SETSTAMP)
5053 						fire->ire_last_used_time =
5054 						    lbolt;
5055 				}
5056 			}
5057 
5058 			if (gw_ire != NULL)
5059 				ire_refrele(gw_ire);
5060 		}
5061 	} else { /* CLASSD(dst) */
5062 
5063 		for (fire = first_fire;
5064 		    fire != NULL;
5065 		    fire = fire->ire_next) {
5066 
5067 			if (!(fire->ire_flags & RTF_MULTIRT))
5068 				continue;
5069 			if (fire->ire_addr != dst)
5070 				continue;
5071 
5072 			if (fire->ire_gw_secattr != NULL &&
5073 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5074 				continue;
5075 			}
5076 
5077 			already_resolved = B_FALSE;
5078 
5079 			gw = fire->ire_gateway_addr;
5080 
5081 			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
5082 			    NULL, NULL, ALL_ZONES, 0, tsl,
5083 			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
5084 			    MATCH_IRE_SECATTR, ipst);
5085 
5086 			/* No resolver for the gateway; we skip this ire. */
5087 			if (gw_ire == NULL) {
5088 				continue;
5089 			}
5090 			ASSERT(gw_ire->ire_nce == NULL ||
5091 			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5092 
5093 			if (first_cire != NULL) {
5094 
5095 				IRB_REFHOLD(cirb);
5096 				/*
5097 				 * For all IRE_CACHE ires for that
5098 				 * destination.
5099 				 */
5100 				for (cire = first_cire;
5101 				    cire != NULL;
5102 				    cire = cire->ire_next) {
5103 
5104 					if (!(cire->ire_flags & RTF_MULTIRT))
5105 						continue;
5106 					if (cire->ire_addr != dst)
5107 						continue;
5108 					if (cire->ire_marks &
5109 					    (IRE_MARK_CONDEMNED |
5110 					    IRE_MARK_TESTHIDDEN))
5111 						continue;
5112 
5113 					if (cire->ire_gw_secattr != NULL &&
5114 					    tsol_ire_match_gwattr(cire,
5115 					    tsl) != 0) {
5116 						continue;
5117 					}
5118 
5119 					/*
5120 					 * Cache entries are linked to the
5121 					 * parent routes using the parent handle
5122 					 * (ire_phandle). If no cache entry has
5123 					 * the same handle as fire, fire is
5124 					 * still unresolved.
5125 					 */
5126 					ASSERT(cire->ire_phandle != 0);
5127 					if (cire->ire_phandle ==
5128 					    fire->ire_phandle) {
5129 						already_resolved = B_TRUE;
5130 						break;
5131 					}
5132 				}
5133 				IRB_REFRELE(cirb);
5134 			}
5135 
5136 			/*
5137 			 * This route is already resolved; proceed with
5138 			 * next one.
5139 			 */
5140 			if (already_resolved) {
5141 				ire_refrele(gw_ire);
5142 				continue;
5143 			}
5144 
5145 			/*
5146 			 * Compute the time elapsed since our preceding
5147 			 * attempt to resolve that route.
5148 			 * If the MULTIRT_USESTAMP flag is set, we take
5149 			 * that route into account only if this time
5150 			 * interval exceeds ip_multirt_resolution_interval;
5151 			 * this prevents us from attempting to resolve a
5152 			 * broken route upon each sending of a packet.
5153 			 */
5154 			delta = lbolt - fire->ire_last_used_time;
5155 			delta = TICK_TO_MSEC(delta);
5156 
5157 			res = (boolean_t)((delta >
5158 			    ipst->ips_ip_multirt_resolution_interval) ||
5159 			    (!(flags & MULTIRT_USESTAMP)));
5160 
5161 			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
5162 			    "flags %04x, res %d\n",
5163 			    (void *)fire, delta, flags, res));
5164 
5165 			if (res) {
5166 				if (best_cire != NULL) {
5167 					/*
5168 					 * Release the resolver associated
5169 					 * to the preceding candidate best
5170 					 * ire, if any.
5171 					 */
5172 					ire_refrele(best_cire);
5173 					ASSERT(best_fire != NULL);
5174 				}
5175 				best_fire = fire;
5176 				best_cire = gw_ire;
5177 				continue;
5178 			}
5179 
5180 			ire_refrele(gw_ire);
5181 		}
5182 	}
5183 
5184 	if (best_fire != NULL) {
5185 		IRE_REFHOLD(best_fire);
5186 	}
5187 	IRB_REFRELE(firb);
5188 
5189 	/* Release the first IRE_CACHE we initially looked up, if any. */
5190 	if (first_cire != NULL)
5191 		ire_refrele(first_cire);
5192 
5193 	/* Found a resolvable route. */
5194 	if (best_fire != NULL) {
5195 		ASSERT(best_cire != NULL);
5196 
5197 		if (*fire_arg != NULL)
5198 			ire_refrele(*fire_arg);
5199 		if (*ire_arg != NULL)
5200 			ire_refrele(*ire_arg);
5201 
5202 		/*
5203 		 * Update the passed-in arguments with the
5204 		 * resolvable multirt route we found.
5205 		 */
5206 		*fire_arg = best_fire;
5207 		*ire_arg = best_cire;
5208 
5209 		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
5210 		    "*fire_arg %p, *ire_arg %p\n",
5211 		    (void *)best_fire, (void *)best_cire));
5212 
5213 		return (B_TRUE);
5214 	}
5215 
5216 	ASSERT(best_cire == NULL);
5217 
5218 	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
5219 	    "*ire_arg %p\n",
5220 	    (void *)*fire_arg, (void *)*ire_arg));
5221 
5222 	/* No resolvable route. */
5223 	return (B_FALSE);
5224 }
5225 
5226 /*
5227  * IRE iterator for inbound and loopback broadcast processing.
5228  * Given an IRE_BROADCAST ire, walk the ires with the same destination
5229  * address, but skip over the passed-in ire. Returns the next ire without
5230  * a hold - assumes that the caller holds a reference on the IRE bucket.
5231  */
5232 ire_t *
5233 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
5234 {
5235 	ill_t *ill;
5236 
5237 	if (curr == NULL) {
5238 		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
5239 		    curr = curr->ire_next) {
5240 			if (curr->ire_addr == ire->ire_addr)
5241 				break;
5242 		}
5243 	} else {
5244 		curr = curr->ire_next;
5245 	}
5246 	ill = ire_to_ill(ire);
5247 	for (; curr != NULL; curr = curr->ire_next) {
5248 		if (curr->ire_addr != ire->ire_addr) {
5249 			/*
5250 			 * All the IREs to a given destination are contiguous;
5251 			 * break out once the address doesn't match.
5252 			 */
5253 			break;
5254 		}
5255 		if (curr == ire) {
5256 			/* skip over the passed-in ire */
5257 			continue;
5258 		}
5259 		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
5260 		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
5261 			/*
5262 			 * If the passed-in ire is loopback, skip over
5263 			 * non-loopback ires and vice versa.
5264 			 */
5265 			continue;
5266 		}
5267 		if (ire_to_ill(curr) != ill) {
5268 			/* skip over IREs going through a different interface */
5269 			continue;
5270 		}
5271 		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
5272 			/* skip over deleted IREs */
5273 			continue;
5274 		}
5275 		return (curr);
5276 	}
5277 	return (NULL);
5278 }
5279 
5280 #ifdef DEBUG
5281 void
5282 ire_trace_ref(ire_t *ire)
5283 {
5284 	mutex_enter(&ire->ire_lock);
5285 	if (ire->ire_trace_disable) {
5286 		mutex_exit(&ire->ire_lock);
5287 		return;
5288 	}
5289 
5290 	if (th_trace_ref(ire, ire->ire_ipst)) {
5291 		mutex_exit(&ire->ire_lock);
5292 	} else {
5293 		ire->ire_trace_disable = B_TRUE;
5294 		mutex_exit(&ire->ire_lock);
5295 		ire_trace_cleanup(ire);
5296 	}
5297 }
5298 
5299 void
5300 ire_untrace_ref(ire_t *ire)
5301 {
5302 	mutex_enter(&ire->ire_lock);
5303 	if (!ire->ire_trace_disable)
5304 		th_trace_unref(ire);
5305 	mutex_exit(&ire->ire_lock);
5306 }
5307 
5308 static void
5309 ire_trace_cleanup(const ire_t *ire)
5310 {
5311 	th_trace_cleanup(ire, ire->ire_trace_disable);
5312 }
5313 #endif /* DEBUG */
5314 
5315 /*
5316  * Generate a message chain with an arp request to resolve the in_ire.
5317  * It is assumed that in_ire itself is currently in the ire cache table,
5318  * so we create a fake_ire filled with enough information about ire_addr etc.
5319  * to retrieve in_ire when the DL_UNITDATA response from the resolver
5320  * comes back. The fake_ire itself is created by calling esballoc with
5321  * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
5322  * invoked when the mblk containing fake_ire is freed.
5323  */
5324 void
5325 ire_arpresolve(ire_t *in_ire)
5326 {
5327 	areq_t		*areq;
5328 	ipaddr_t	*addrp;
5329 	mblk_t 		*ire_mp, *areq_mp;
5330 	ire_t 		*ire, *buf;
5331 	size_t		bufsize;
5332 	frtn_t		*frtnp;
5333 	ill_t		*dst_ill;
5334 	ip_stack_t	*ipst;
5335 
5336 	ASSERT(in_ire->ire_nce != NULL);
5337 
5338 	dst_ill = ire_to_ill(in_ire);
5339 	ipst = dst_ill->ill_ipst;
5340 
5341 	/*
5342 	 * Construct message chain for the resolver
5343 	 * of the form:
5344 	 *	ARP_REQ_MBLK-->IRE_MBLK
5345 	 *
5346 	 * NOTE : If the response does not
5347 	 * come back, ARP frees the packet. For this reason,
5348 	 * we can't REFHOLD the bucket of save_ire to prevent
5349 	 * deletions. We may not be able to REFRELE the bucket
5350 	 * if the response never comes back. Thus, before
5351 	 * adding the ire, ire_add_v4 will make sure that the
5352 	 * interface route does not get deleted. This is the
5353 	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
5354 	 * where we can always prevent deletions because of
5355 	 * the synchronous nature of adding IRES i.e
5356 	 * ire_add_then_send is called after creating the IRE.
5357 	 */
5358 
5359 	/*
5360 	 * We use esballoc to allocate the second part (IRE_MBLK)
5361 	 * of the message chain depicted above.  This mblk will be freed
5362 	 * by arp when there is a timeout, and otherwise passed to IP
5363 	 * and IP will free it after processing the ARP response.
5364 	 */
5365 
5366 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
5367 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
5368 	if (buf == NULL) {
5369 		ip1dbg(("ire_arpresolve: alloc buffer failed\n"));
5370 		return;
5371 	}
5372 	frtnp = (frtn_t *)(buf + 1);
5373 	frtnp->free_arg = (caddr_t)buf;
5374 	frtnp->free_func = ire_freemblk;
5375 
5376 	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
5377 	if (ire_mp == NULL) {
5378 		ip1dbg(("ire_arpresolve: esballoc failed\n"));
5379 		kmem_free(buf, bufsize);
5380 		return;
5381 	}
5382 
5383 	areq_mp = copyb(dst_ill->ill_resolver_mp);
5384 	if (areq_mp == NULL) {
5385 		freemsg(ire_mp);
5386 		return;
5387 	}
5388 
5389 	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
5390 	ire = (ire_t *)buf;
5391 	/*
5392 	 * keep enough info in the fake ire so that we can pull up
5393 	 * the incomplete ire (in_ire) after result comes back from
5394 	 * arp and make it complete.
5395 	 */
5396 	*ire = ire_null;
5397 	ire->ire_u = in_ire->ire_u;
5398 	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
5399 	ire->ire_ipif_ifindex = in_ire->ire_ipif_ifindex;
5400 	ire->ire_ipif = in_ire->ire_ipif;
5401 	ire->ire_stq = dst_ill->ill_wq;
5402 	ire->ire_stq_ifindex = dst_ill->ill_phyint->phyint_ifindex;
5403 	ire->ire_zoneid = in_ire->ire_zoneid;
5404 	ire->ire_stackid = ipst->ips_netstack->netstack_stackid;
5405 	ire->ire_ipst = ipst;
5406 
5407 	/*
5408 	 * ire_freemblk will be called when ire_mp is freed, both for
5409 	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
5410 	 * when the arp resolution failed.
5411 	 */
5412 	ire->ire_marks |= IRE_MARK_UNCACHED;
5413 	ire->ire_mp = ire_mp;
5414 	ire_mp->b_wptr = (uchar_t *)&ire[1];
5415 	ire_mp->b_cont = NULL;
5416 	linkb(areq_mp, ire_mp);
5417 
5418 	/*
5419 	 * Fill in the source and dest addrs for the resolver.
5420 	 * NOTE: this depends on memory layouts imposed by
5421 	 * ill_init().
5422 	 */
5423 	areq = (areq_t *)areq_mp->b_rptr;
5424 	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
5425 	*addrp = ire->ire_src_addr;
5426 
5427 	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
5428 	if (ire->ire_gateway_addr != INADDR_ANY) {
5429 		*addrp = ire->ire_gateway_addr;
5430 	} else {
5431 		*addrp = ire->ire_addr;
5432 	}
5433 
5434 	/* Up to the resolver. */
5435 	if (canputnext(dst_ill->ill_rq)) {
5436 		putnext(dst_ill->ill_rq, areq_mp);
5437 	} else {
5438 		freemsg(areq_mp);
5439 	}
5440 }
5441 
5442 /*
5443  * Esballoc free function for AR_ENTRY_QUERY request to clean up any
5444  * unresolved ire_t and/or nce_t structures when ARP resolution fails.
5445  *
5446  * This function can be called by ARP via free routine for ire_mp or
5447  * by IPv4(both host and forwarding path) via ire_delete
5448  * in case ARP resolution fails.
5449  * NOTE: Since IP is MT, ARP can call into IP but not vice versa
5450  * (for IP to talk to ARP, it still has to send AR* messages).
5451  *
5452  * Note that the ARP/IP merge should replace the functioanlity by providing
5453  * direct function calls to clean up unresolved entries in ire/nce lists.
5454  */
5455 void
5456 ire_freemblk(ire_t *ire_mp)
5457 {
5458 	nce_t		*nce = NULL;
5459 	ill_t		*ill;
5460 	ip_stack_t	*ipst;
5461 	netstack_t	*ns = NULL;
5462 
5463 	ASSERT(ire_mp != NULL);
5464 
5465 	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
5466 		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
5467 		    (void *)ire_mp));
5468 		goto cleanup;
5469 	}
5470 	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
5471 		goto cleanup; /* everything succeeded. just free and return */
5472 	}
5473 
5474 	/*
5475 	 * the arp information corresponding to this ire_mp was not
5476 	 * transferred to an ire_cache entry. Need
5477 	 * to clean up incomplete ire's and nce, if necessary.
5478 	 */
5479 	ASSERT(ire_mp->ire_stq != NULL);
5480 	ASSERT(ire_mp->ire_stq_ifindex != 0);
5481 	ASSERT(ire_mp->ire_ipst != NULL);
5482 
5483 	ns = netstack_find_by_stackid(ire_mp->ire_stackid);
5484 	ipst = (ns ? ns->netstack_ip : NULL);
5485 	if (ipst == NULL || ipst != ire_mp->ire_ipst) /* Disapeared on us */
5486 		goto  cleanup;
5487 
5488 	/*
5489 	 * Get any nce's corresponding to this ire_mp. We first have to
5490 	 * make sure that the ill is still around.
5491 	 */
5492 	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex,
5493 	    B_FALSE, NULL, NULL, NULL, NULL, ipst);
5494 	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
5495 	    (ill->ill_state_flags & ILL_CONDEMNED)) {
5496 		/*
5497 		 * ill went away. no nce to clean up.
5498 		 * Note that the ill_state_flags could be set to
5499 		 * ILL_CONDEMNED after this point, but if we know
5500 		 * that it is CONDEMNED now, we just bail out quickly.
5501 		 */
5502 		if (ill != NULL)
5503 			ill_refrele(ill);
5504 		goto cleanup;
5505 	}
5506 	nce = ndp_lookup_v4(ill,
5507 	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
5508 	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
5509 	    B_FALSE);
5510 	ill_refrele(ill);
5511 
5512 	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
5513 		/*
5514 		 * some incomplete nce was found.
5515 		 */
5516 		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
5517 		    nce_t *, nce, ire_t *, ire_mp);
5518 		/*
5519 		 * Send the icmp_unreachable messages for the queued mblks in
5520 		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
5521 		 * for this ire
5522 		 */
5523 		arp_resolv_failed(nce);
5524 		/*
5525 		 * Delete the nce and clean up all ire's pointing at this nce
5526 		 * in the cachetable
5527 		 */
5528 		ndp_delete(nce);
5529 	}
5530 	if (nce != NULL)
5531 		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
5532 
5533 cleanup:
5534 	if (ns != NULL)
5535 		netstack_rele(ns);
5536 	/*
5537 	 * Get rid of the ire buffer
5538 	 * We call kmem_free here(instead of ire_delete()), since
5539 	 * this is the freeb's callback.
5540 	 */
5541 	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
5542 }
5543 
5544 /*
5545  * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and
5546  * non-loopback IRE_BROADCAST ire's.
5547  *
5548  * If a neighbor-cache entry has to be created (i.e., one does not already
5549  * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache
5550  * entry are initialized in ndp_add_v4(). These values are picked from
5551  * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the
5552  * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values
5553  * determine the {nce_state, nce_res_mp} of the nce_t created. All
5554  * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp
5555  * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire
5556  * entries,
5557  *   - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
5558  *     nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state.
5559  *   - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
5560  *     layer resolution is necessary, so that the nce_t will be in the
5561  *     ND_REACHABLE state and the nce_res_mp will have a copy of the
5562  *     ill_resolver_mp of the outgoing interface.
5563  *
5564  * The link layer information needed for broadcast addresses, and for
5565  * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
5566  * never needs re-verification for the lifetime of the nce_t. These are
5567  * therefore marked NCE_F_PERMANENT, and never allowed to expire via
5568  * NCE_EXPIRED.
5569  *
5570  * IRE_CACHE ire's contain the information for  the nexthop (ire_gateway_addr)
5571  * in the case of indirect routes, and for the dst itself (ire_addr) in the
5572  * case of direct routes, with the nce_res_mp containing a template
5573  * DL_UNITDATA request.
5574  *
5575  * The actual association of the ire_nce to the nce created here is
5576  * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
5577  * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
5578  * the ire_nce assignment is done in ire_add_then_send.
5579  */
5580 int
5581 ire_nce_init(ire_t *ire, nce_t *src_nce)
5582 {
5583 	in_addr_t	addr4;
5584 	int		err;
5585 	nce_t		*nce = NULL;
5586 	ill_t		*ire_ill;
5587 	uint16_t	nce_flags = 0;
5588 	ip_stack_t	*ipst;
5589 
5590 	if (ire->ire_stq == NULL)
5591 		return (0); /* no need to create nce for local/loopback */
5592 
5593 	switch (ire->ire_type) {
5594 	case IRE_CACHE:
5595 		if (ire->ire_gateway_addr != INADDR_ANY)
5596 			addr4 = ire->ire_gateway_addr; /* 'G' route */
5597 		else
5598 			addr4 = ire->ire_addr; /* direct route */
5599 		break;
5600 	case IRE_BROADCAST:
5601 		addr4 = ire->ire_addr;
5602 		nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST);
5603 		break;
5604 	default:
5605 		return (0);
5606 	}
5607 
5608 	/*
5609 	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
5610 	 * rules in ire_forward_src_ipif. We want the dlureq_mp
5611 	 * for the outgoing interface, which we get from the ire_stq.
5612 	 */
5613 	ire_ill = ire_to_ill(ire);
5614 	ipst = ire_ill->ill_ipst;
5615 
5616 	/*
5617 	 * IRE_IF_NORESOLVER entries never need re-verification and
5618 	 * do not expire, so we mark them as NCE_F_PERMANENT.
5619 	 */
5620 	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)
5621 		nce_flags |= NCE_F_PERMANENT;
5622 
5623 retry_nce:
5624 	err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags,
5625 	    &nce, src_nce);
5626 
5627 	if (err == EEXIST && NCE_EXPIRED(nce, ipst)) {
5628 		/*
5629 		 * We looked up an expired nce.
5630 		 * Go back and try to create one again.
5631 		 */
5632 		ndp_delete(nce);
5633 		NCE_REFRELE(nce);
5634 		nce = NULL;
5635 		goto retry_nce;
5636 	}
5637 
5638 	ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n",
5639 	    (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err));
5640 
5641 	switch (err) {
5642 	case 0:
5643 	case EEXIST:
5644 		/*
5645 		 * return a pointer to a newly created or existing nce_t;
5646 		 * note that the ire-nce mapping is many-one, i.e.,
5647 		 * multiple ire's could point to the same nce_t.
5648 		 */
5649 		break;
5650 	default:
5651 		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
5652 		return (EINVAL);
5653 	}
5654 	if (ire->ire_type == IRE_BROADCAST) {
5655 		/*
5656 		 * Two bcast ires are created for each interface;
5657 		 * 1. loopback copy (which does not  have an
5658 		 *    ire_stq, and therefore has no ire_nce), and,
5659 		 * 2. the non-loopback copy, which has the nce_res_mp
5660 		 *    initialized to a copy of the ill_bcast_mp, and
5661 		 *    is marked as ND_REACHABLE at this point.
5662 		 *    This nce does not undergo any further state changes,
5663 		 *    and exists as long as the interface is plumbed.
5664 		 * Note: the assignment of ire_nce here is a historical
5665 		 * artifact of old code that used to inline ire_add().
5666 		 */
5667 		ire->ire_nce = nce;
5668 		/*
5669 		 * We are associating this nce to the ire,
5670 		 * so change the nce ref taken in
5671 		 * ndp_lookup_then_add_v4() from
5672 		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
5673 		 */
5674 		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
5675 	} else {
5676 		/*
5677 		 * We are not using this nce_t just yet so release
5678 		 * the ref taken in ndp_lookup_then_add_v4()
5679 		 */
5680 		NCE_REFRELE(nce);
5681 	}
5682 	return (0);
5683 }
5684 
5685 /*
5686  * This is the implementation of the IPv4 IRE cache lookup procedure.
5687  * Separating the interface from the implementation allows additional
5688  * flexibility when specifying search criteria.
5689  */
5690 static ire_t *
5691 ip4_ctable_lookup_impl(ire_ctable_args_t *margs)
5692 {
5693 	irb_t			*irb_ptr;
5694 	ire_t			*ire;
5695 	ip_stack_t		*ipst = margs->ict_ipst;
5696 
5697 	if ((margs->ict_flags & (MATCH_IRE_SRC | MATCH_IRE_ILL)) &&
5698 	    (margs->ict_ipif == NULL)) {
5699 		return (NULL);
5700 	}
5701 
5702 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(
5703 	    *((ipaddr_t *)margs->ict_addr), ipst->ips_ip_cache_table_size)];
5704 	rw_enter(&irb_ptr->irb_lock, RW_READER);
5705 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
5706 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
5707 			continue;
5708 		ASSERT(ire->ire_mask == IP_HOST_MASK);
5709 		if (ire_match_args(ire, *((ipaddr_t *)margs->ict_addr),
5710 		    ire->ire_mask, *((ipaddr_t *)margs->ict_gateway),
5711 		    margs->ict_type, margs->ict_ipif, margs->ict_zoneid, 0,
5712 		    margs->ict_tsl, margs->ict_flags, margs->ict_wq)) {
5713 			IRE_REFHOLD(ire);
5714 			rw_exit(&irb_ptr->irb_lock);
5715 			return (ire);
5716 		}
5717 	}
5718 
5719 	rw_exit(&irb_ptr->irb_lock);
5720 	return (NULL);
5721 }
5722 
5723 /*
5724  * This function locates IRE_CACHE entries which were added by the
5725  * ire_forward() path. We can fully specify the IRE we are looking for by
5726  * providing the ipif (MATCH_IRE_IPIF) *and* the stq (MATCH_IRE_WQ).
5727  */
5728 ire_t *
5729 ire_arpresolve_lookup(ipaddr_t addr, ipaddr_t gw, ipif_t *ipif,
5730     zoneid_t zoneid, ip_stack_t *ipst, queue_t *wq)
5731 {
5732 	ire_ctable_args_t	margs;
5733 
5734 	margs.ict_addr = &addr;
5735 	margs.ict_gateway = &gw;
5736 	margs.ict_type = IRE_CACHE;
5737 	margs.ict_ipif = ipif;
5738 	margs.ict_zoneid = zoneid;
5739 	margs.ict_tsl = NULL;
5740 	margs.ict_flags = MATCH_IRE_GW | MATCH_IRE_IPIF | MATCH_IRE_ZONEONLY |
5741 	    MATCH_IRE_TYPE | MATCH_IRE_WQ;
5742 	margs.ict_ipst = ipst;
5743 	margs.ict_wq = wq;
5744 
5745 	return (ip4_ctable_lookup_impl(&margs));
5746 }
5747