1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/tunables.h> 75 #include <inet/arp.h> 76 #include <inet/ip_arp.h> 77 #include <inet/mib2.h> 78 #include <inet/ip.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/ip_multi.h> 83 #include <inet/ip_ire.h> 84 #include <inet/ip_ftable.h> 85 #include <inet/ip_rts.h> 86 #include <inet/ip_ndp.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_impl.h> 89 #include <inet/sctp_ip.h> 90 #include <inet/ip_netinfo.h> 91 #include <inet/ilb_ip.h> 92 93 #include <netinet/igmp.h> 94 #include <inet/ip_listutils.h> 95 #include <inet/ipclassifier.h> 96 #include <sys/mac_client.h> 97 #include <sys/dld.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 #include <sys/tsol/tndb.h> 103 #include <sys/tsol/tnet.h> 104 105 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 106 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 122 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 123 char *value, caddr_t cp, cred_t *ioc_cr); 124 125 static boolean_t ill_is_quiescent(ill_t *); 126 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 127 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 128 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 129 mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 133 queue_t *q, mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 135 mblk_t *mp); 136 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp); 138 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 139 queue_t *q, mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 141 int ioccmd, struct linkblk *li); 142 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 143 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 144 static void ipsq_flush(ill_t *ill); 145 146 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static void ipsq_delete(ipsq_t *); 149 150 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 151 boolean_t initialize, boolean_t insert, int *errorp); 152 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 153 static void ipif_delete_bcast_ires(ipif_t *ipif); 154 static int ipif_add_ires_v4(ipif_t *, boolean_t); 155 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 156 boolean_t isv6); 157 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 158 static void ipif_free(ipif_t *ipif); 159 static void ipif_free_tail(ipif_t *ipif); 160 static void ipif_set_default(ipif_t *ipif); 161 static int ipif_set_values(queue_t *q, mblk_t *mp, 162 char *interf_name, uint_t *ppa); 163 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 164 queue_t *q); 165 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 166 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 167 ip_stack_t *); 168 169 static int ill_alloc_ppa(ill_if_t *, ill_t *); 170 static void ill_delete_interface_type(ill_if_t *); 171 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 172 static void ill_dl_down(ill_t *ill); 173 static void ill_down(ill_t *ill); 174 static void ill_down_ipifs(ill_t *, boolean_t); 175 static void ill_free_mib(ill_t *ill); 176 static void ill_glist_delete(ill_t *); 177 static void ill_phyint_reinit(ill_t *ill); 178 static void ill_set_nce_router_flags(ill_t *, boolean_t); 179 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 180 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 181 182 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 183 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 184 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 185 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 186 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 187 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 188 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 189 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 190 static ip_v4mapinfo_func_t ip_mbcast_mapping; 191 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 192 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 193 static void phyint_free(phyint_t *); 194 195 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 196 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 197 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 198 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 199 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 200 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 201 dl_capability_sub_t *); 202 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 203 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 204 static void ill_capability_dld_ack(ill_t *, mblk_t *, 205 dl_capability_sub_t *); 206 static void ill_capability_dld_enable(ill_t *); 207 static void ill_capability_ack_thr(void *); 208 static void ill_capability_lso_enable(ill_t *); 209 210 static ill_t *ill_prev_usesrc(ill_t *); 211 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 212 static void ill_disband_usesrc_group(ill_t *); 213 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 214 215 #ifdef DEBUG 216 static void ill_trace_cleanup(const ill_t *); 217 static void ipif_trace_cleanup(const ipif_t *); 218 #endif 219 220 static void ill_dlpi_clear_deferred(ill_t *ill); 221 222 /* 223 * if we go over the memory footprint limit more than once in this msec 224 * interval, we'll start pruning aggressively. 225 */ 226 int ip_min_frag_prune_time = 0; 227 228 static ipft_t ip_ioctl_ftbl[] = { 229 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 230 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 231 IPFT_F_NO_REPLY }, 232 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 233 { 0 } 234 }; 235 236 /* Simple ICMP IP Header Template */ 237 static ipha_t icmp_ipha = { 238 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 239 }; 240 241 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 242 243 static ip_m_t ip_m_tbl[] = { 244 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 245 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 246 ip_nodef_v6intfid }, 247 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 248 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 249 ip_nodef_v6intfid }, 250 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 251 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 252 ip_nodef_v6intfid }, 253 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 254 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 255 ip_nodef_v6intfid }, 256 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 257 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 258 ip_nodef_v6intfid }, 259 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 260 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 261 ip_nodef_v6intfid }, 262 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 263 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 264 ip_ipv4_v6destintfid }, 265 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 266 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 267 ip_ipv6_v6destintfid }, 268 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 269 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 270 ip_nodef_v6intfid }, 271 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 272 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 273 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 274 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 275 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 276 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 277 ip_nodef_v6intfid } 278 }; 279 280 static ill_t ill_null; /* Empty ILL for init. */ 281 char ipif_loopback_name[] = "lo0"; 282 283 /* These are used by all IP network modules. */ 284 sin6_t sin6_null; /* Zero address for quick clears */ 285 sin_t sin_null; /* Zero address for quick clears */ 286 287 /* When set search for unused ipif_seqid */ 288 static ipif_t ipif_zero; 289 290 /* 291 * ppa arena is created after these many 292 * interfaces have been plumbed. 293 */ 294 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 295 296 /* 297 * Allocate per-interface mibs. 298 * Returns true if ok. False otherwise. 299 * ipsq may not yet be allocated (loopback case ). 300 */ 301 static boolean_t 302 ill_allocate_mibs(ill_t *ill) 303 { 304 /* Already allocated? */ 305 if (ill->ill_ip_mib != NULL) { 306 if (ill->ill_isv6) 307 ASSERT(ill->ill_icmp6_mib != NULL); 308 return (B_TRUE); 309 } 310 311 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 312 KM_NOSLEEP); 313 if (ill->ill_ip_mib == NULL) { 314 return (B_FALSE); 315 } 316 317 /* Setup static information */ 318 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 319 sizeof (mib2_ipIfStatsEntry_t)); 320 if (ill->ill_isv6) { 321 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 322 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 323 sizeof (mib2_ipv6AddrEntry_t)); 324 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 325 sizeof (mib2_ipv6RouteEntry_t)); 326 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 327 sizeof (mib2_ipv6NetToMediaEntry_t)); 328 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 329 sizeof (ipv6_member_t)); 330 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 331 sizeof (ipv6_grpsrc_t)); 332 } else { 333 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 334 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 335 sizeof (mib2_ipAddrEntry_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 337 sizeof (mib2_ipRouteEntry_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 339 sizeof (mib2_ipNetToMediaEntry_t)); 340 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 341 sizeof (ip_member_t)); 342 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 343 sizeof (ip_grpsrc_t)); 344 345 /* 346 * For a v4 ill, we are done at this point, because per ill 347 * icmp mibs are only used for v6. 348 */ 349 return (B_TRUE); 350 } 351 352 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 353 KM_NOSLEEP); 354 if (ill->ill_icmp6_mib == NULL) { 355 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 356 ill->ill_ip_mib = NULL; 357 return (B_FALSE); 358 } 359 /* static icmp info */ 360 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 361 sizeof (mib2_ipv6IfIcmpEntry_t); 362 /* 363 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 364 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 365 * -> ill_phyint_reinit 366 */ 367 return (B_TRUE); 368 } 369 370 /* 371 * Completely vaporize a lower level tap and all associated interfaces. 372 * ill_delete is called only out of ip_close when the device control 373 * stream is being closed. 374 */ 375 void 376 ill_delete(ill_t *ill) 377 { 378 ipif_t *ipif; 379 ill_t *prev_ill; 380 ip_stack_t *ipst = ill->ill_ipst; 381 382 /* 383 * ill_delete may be forcibly entering the ipsq. The previous 384 * ioctl may not have completed and may need to be aborted. 385 * ipsq_flush takes care of it. If we don't need to enter the 386 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 387 * ill_delete_tail is sufficient. 388 */ 389 ipsq_flush(ill); 390 391 /* 392 * Nuke all interfaces. ipif_free will take down the interface, 393 * remove it from the list, and free the data structure. 394 * Walk down the ipif list and remove the logical interfaces 395 * first before removing the main ipif. We can't unplumb 396 * zeroth interface first in the case of IPv6 as update_conn_ill 397 * -> ip_ll_multireq de-references ill_ipif for checking 398 * POINTOPOINT. 399 * 400 * If ill_ipif was not properly initialized (i.e low on memory), 401 * then no interfaces to clean up. In this case just clean up the 402 * ill. 403 */ 404 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 405 ipif_free(ipif); 406 407 /* 408 * clean out all the nce_t entries that depend on this 409 * ill for the ill_phys_addr. 410 */ 411 nce_flush(ill, B_TRUE); 412 413 /* Clean up msgs on pending upcalls for mrouted */ 414 reset_mrt_ill(ill); 415 416 update_conn_ill(ill, ipst); 417 418 /* 419 * Remove multicast references added as a result of calls to 420 * ip_join_allmulti(). 421 */ 422 ip_purge_allmulti(ill); 423 424 /* 425 * If the ill being deleted is under IPMP, boot it out of the illgrp. 426 */ 427 if (IS_UNDER_IPMP(ill)) 428 ipmp_ill_leave_illgrp(ill); 429 430 /* 431 * ill_down will arrange to blow off any IRE's dependent on this 432 * ILL, and shut down fragmentation reassembly. 433 */ 434 ill_down(ill); 435 436 /* Let SCTP know, so that it can remove this from its list. */ 437 sctp_update_ill(ill, SCTP_ILL_REMOVE); 438 439 /* 440 * Walk all CONNs that can have a reference on an ire or nce for this 441 * ill (we actually walk all that now have stale references). 442 */ 443 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 444 445 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 446 if (ill->ill_isv6) 447 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 448 449 /* 450 * If an address on this ILL is being used as a source address then 451 * clear out the pointers in other ILLs that point to this ILL. 452 */ 453 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 454 if (ill->ill_usesrc_grp_next != NULL) { 455 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 456 ill_disband_usesrc_group(ill); 457 } else { /* consumer of the usesrc ILL */ 458 prev_ill = ill_prev_usesrc(ill); 459 prev_ill->ill_usesrc_grp_next = 460 ill->ill_usesrc_grp_next; 461 } 462 } 463 rw_exit(&ipst->ips_ill_g_usesrc_lock); 464 } 465 466 static void 467 ipif_non_duplicate(ipif_t *ipif) 468 { 469 ill_t *ill = ipif->ipif_ill; 470 mutex_enter(&ill->ill_lock); 471 if (ipif->ipif_flags & IPIF_DUPLICATE) { 472 ipif->ipif_flags &= ~IPIF_DUPLICATE; 473 ASSERT(ill->ill_ipif_dup_count > 0); 474 ill->ill_ipif_dup_count--; 475 } 476 mutex_exit(&ill->ill_lock); 477 } 478 479 /* 480 * ill_delete_tail is called from ip_modclose after all references 481 * to the closing ill are gone. The wait is done in ip_modclose 482 */ 483 void 484 ill_delete_tail(ill_t *ill) 485 { 486 mblk_t **mpp; 487 ipif_t *ipif; 488 ip_stack_t *ipst = ill->ill_ipst; 489 490 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 491 ipif_non_duplicate(ipif); 492 (void) ipif_down_tail(ipif); 493 } 494 495 ASSERT(ill->ill_ipif_dup_count == 0); 496 497 /* 498 * If polling capability is enabled (which signifies direct 499 * upcall into IP and driver has ill saved as a handle), 500 * we need to make sure that unbind has completed before we 501 * let the ill disappear and driver no longer has any reference 502 * to this ill. 503 */ 504 mutex_enter(&ill->ill_lock); 505 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 506 cv_wait(&ill->ill_cv, &ill->ill_lock); 507 mutex_exit(&ill->ill_lock); 508 ASSERT(!(ill->ill_capabilities & 509 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 510 511 if (ill->ill_net_type != IRE_LOOPBACK) 512 qprocsoff(ill->ill_rq); 513 514 /* 515 * We do an ipsq_flush once again now. New messages could have 516 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 517 * could also have landed up if an ioctl thread had looked up 518 * the ill before we set the ILL_CONDEMNED flag, but not yet 519 * enqueued the ioctl when we did the ipsq_flush last time. 520 */ 521 ipsq_flush(ill); 522 523 /* 524 * Free capabilities. 525 */ 526 if (ill->ill_hcksum_capab != NULL) { 527 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 528 ill->ill_hcksum_capab = NULL; 529 } 530 531 if (ill->ill_zerocopy_capab != NULL) { 532 kmem_free(ill->ill_zerocopy_capab, 533 sizeof (ill_zerocopy_capab_t)); 534 ill->ill_zerocopy_capab = NULL; 535 } 536 537 if (ill->ill_lso_capab != NULL) { 538 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 539 ill->ill_lso_capab = NULL; 540 } 541 542 if (ill->ill_dld_capab != NULL) { 543 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 544 ill->ill_dld_capab = NULL; 545 } 546 547 while (ill->ill_ipif != NULL) 548 ipif_free_tail(ill->ill_ipif); 549 550 /* 551 * We have removed all references to ilm from conn and the ones joined 552 * within the kernel. 553 * 554 * We don't walk conns, mrts and ires because 555 * 556 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 557 * 2) ill_down ->ill_downi walks all the ires and cleans up 558 * ill references. 559 */ 560 561 /* 562 * If this ill is an IPMP meta-interface, blow away the illgrp. This 563 * is safe to do because the illgrp has already been unlinked from the 564 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 565 */ 566 if (IS_IPMP(ill)) { 567 ipmp_illgrp_destroy(ill->ill_grp); 568 ill->ill_grp = NULL; 569 } 570 571 /* 572 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 573 * could free the phyint. No more reference to the phyint after this 574 * point. 575 */ 576 (void) ill_glist_delete(ill); 577 578 if (ill->ill_frag_ptr != NULL) { 579 uint_t count; 580 581 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 582 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 583 } 584 mi_free(ill->ill_frag_ptr); 585 ill->ill_frag_ptr = NULL; 586 ill->ill_frag_hash_tbl = NULL; 587 } 588 589 freemsg(ill->ill_nd_lla_mp); 590 /* Free all retained control messages. */ 591 mpp = &ill->ill_first_mp_to_free; 592 do { 593 while (mpp[0]) { 594 mblk_t *mp; 595 mblk_t *mp1; 596 597 mp = mpp[0]; 598 mpp[0] = mp->b_next; 599 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 600 mp1->b_next = NULL; 601 mp1->b_prev = NULL; 602 } 603 freemsg(mp); 604 } 605 } while (mpp++ != &ill->ill_last_mp_to_free); 606 607 ill_free_mib(ill); 608 609 #ifdef DEBUG 610 ill_trace_cleanup(ill); 611 #endif 612 613 /* The default multicast interface might have changed */ 614 ire_increment_multicast_generation(ipst, ill->ill_isv6); 615 616 /* Drop refcnt here */ 617 netstack_rele(ill->ill_ipst->ips_netstack); 618 ill->ill_ipst = NULL; 619 } 620 621 static void 622 ill_free_mib(ill_t *ill) 623 { 624 ip_stack_t *ipst = ill->ill_ipst; 625 626 /* 627 * MIB statistics must not be lost, so when an interface 628 * goes away the counter values will be added to the global 629 * MIBs. 630 */ 631 if (ill->ill_ip_mib != NULL) { 632 if (ill->ill_isv6) { 633 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 634 ill->ill_ip_mib); 635 } else { 636 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 637 ill->ill_ip_mib); 638 } 639 640 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 641 ill->ill_ip_mib = NULL; 642 } 643 if (ill->ill_icmp6_mib != NULL) { 644 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 645 ill->ill_icmp6_mib); 646 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 647 ill->ill_icmp6_mib = NULL; 648 } 649 } 650 651 /* 652 * Concatenate together a physical address and a sap. 653 * 654 * Sap_lengths are interpreted as follows: 655 * sap_length == 0 ==> no sap 656 * sap_length > 0 ==> sap is at the head of the dlpi address 657 * sap_length < 0 ==> sap is at the tail of the dlpi address 658 */ 659 static void 660 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 661 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 662 { 663 uint16_t sap_addr = (uint16_t)sap_src; 664 665 if (sap_length == 0) { 666 if (phys_src == NULL) 667 bzero(dst, phys_length); 668 else 669 bcopy(phys_src, dst, phys_length); 670 } else if (sap_length < 0) { 671 if (phys_src == NULL) 672 bzero(dst, phys_length); 673 else 674 bcopy(phys_src, dst, phys_length); 675 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 676 } else { 677 bcopy(&sap_addr, dst, sizeof (sap_addr)); 678 if (phys_src == NULL) 679 bzero((char *)dst + sap_length, phys_length); 680 else 681 bcopy(phys_src, (char *)dst + sap_length, phys_length); 682 } 683 } 684 685 /* 686 * Generate a dl_unitdata_req mblk for the device and address given. 687 * addr_length is the length of the physical portion of the address. 688 * If addr is NULL include an all zero address of the specified length. 689 * TRUE? In any case, addr_length is taken to be the entire length of the 690 * dlpi address, including the absolute value of sap_length. 691 */ 692 mblk_t * 693 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 694 t_scalar_t sap_length) 695 { 696 dl_unitdata_req_t *dlur; 697 mblk_t *mp; 698 t_scalar_t abs_sap_length; /* absolute value */ 699 700 abs_sap_length = ABS(sap_length); 701 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 702 DL_UNITDATA_REQ); 703 if (mp == NULL) 704 return (NULL); 705 dlur = (dl_unitdata_req_t *)mp->b_rptr; 706 /* HACK: accomodate incompatible DLPI drivers */ 707 if (addr_length == 8) 708 addr_length = 6; 709 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 710 dlur->dl_dest_addr_offset = sizeof (*dlur); 711 dlur->dl_priority.dl_min = 0; 712 dlur->dl_priority.dl_max = 0; 713 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 714 (uchar_t *)&dlur[1]); 715 return (mp); 716 } 717 718 /* 719 * Add the pending mp to the list. There can be only 1 pending mp 720 * in the list. Any exclusive ioctl that needs to wait for a response 721 * from another module or driver needs to use this function to set 722 * the ipx_pending_mp to the ioctl mblk and wait for the response from 723 * the other module/driver. This is also used while waiting for the 724 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 725 */ 726 boolean_t 727 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 728 int waitfor) 729 { 730 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 731 732 ASSERT(IAM_WRITER_IPIF(ipif)); 733 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 734 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 735 ASSERT(ipx->ipx_pending_mp == NULL); 736 /* 737 * The caller may be using a different ipif than the one passed into 738 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 739 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 740 * that `ipx_current_ipif == ipif'. 741 */ 742 ASSERT(ipx->ipx_current_ipif != NULL); 743 744 /* 745 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 746 * driver. 747 */ 748 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 749 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 750 (DB_TYPE(add_mp) == M_PCPROTO)); 751 752 if (connp != NULL) { 753 ASSERT(MUTEX_HELD(&connp->conn_lock)); 754 /* 755 * Return error if the conn has started closing. The conn 756 * could have finished cleaning up the pending mp list, 757 * If so we should not add another mp to the list negating 758 * the cleanup. 759 */ 760 if (connp->conn_state_flags & CONN_CLOSING) 761 return (B_FALSE); 762 } 763 mutex_enter(&ipx->ipx_lock); 764 ipx->ipx_pending_ipif = ipif; 765 /* 766 * Note down the queue in b_queue. This will be returned by 767 * ipsq_pending_mp_get. Caller will then use these values to restart 768 * the processing 769 */ 770 add_mp->b_next = NULL; 771 add_mp->b_queue = q; 772 ipx->ipx_pending_mp = add_mp; 773 ipx->ipx_waitfor = waitfor; 774 mutex_exit(&ipx->ipx_lock); 775 776 if (connp != NULL) 777 connp->conn_oper_pending_ill = ipif->ipif_ill; 778 779 return (B_TRUE); 780 } 781 782 /* 783 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 784 * queued in the list. 785 */ 786 mblk_t * 787 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 788 { 789 mblk_t *curr = NULL; 790 ipxop_t *ipx = ipsq->ipsq_xop; 791 792 *connpp = NULL; 793 mutex_enter(&ipx->ipx_lock); 794 if (ipx->ipx_pending_mp == NULL) { 795 mutex_exit(&ipx->ipx_lock); 796 return (NULL); 797 } 798 799 /* There can be only 1 such excl message */ 800 curr = ipx->ipx_pending_mp; 801 ASSERT(curr->b_next == NULL); 802 ipx->ipx_pending_ipif = NULL; 803 ipx->ipx_pending_mp = NULL; 804 ipx->ipx_waitfor = 0; 805 mutex_exit(&ipx->ipx_lock); 806 807 if (CONN_Q(curr->b_queue)) { 808 /* 809 * This mp did a refhold on the conn, at the start of the ioctl. 810 * So we can safely return a pointer to the conn to the caller. 811 */ 812 *connpp = Q_TO_CONN(curr->b_queue); 813 } else { 814 *connpp = NULL; 815 } 816 curr->b_next = NULL; 817 curr->b_prev = NULL; 818 return (curr); 819 } 820 821 /* 822 * Cleanup the ioctl mp queued in ipx_pending_mp 823 * - Called in the ill_delete path 824 * - Called in the M_ERROR or M_HANGUP path on the ill. 825 * - Called in the conn close path. 826 * 827 * Returns success on finding the pending mblk associated with the ioctl or 828 * exclusive operation in progress, failure otherwise. 829 */ 830 boolean_t 831 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 832 { 833 mblk_t *mp; 834 ipxop_t *ipx; 835 queue_t *q; 836 ipif_t *ipif; 837 int cmd; 838 839 ASSERT(IAM_WRITER_ILL(ill)); 840 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 841 842 mutex_enter(&ipx->ipx_lock); 843 mp = ipx->ipx_pending_mp; 844 if (connp != NULL) { 845 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 846 /* 847 * Nothing to clean since the conn that is closing 848 * does not have a matching pending mblk in 849 * ipx_pending_mp. 850 */ 851 mutex_exit(&ipx->ipx_lock); 852 return (B_FALSE); 853 } 854 } else { 855 /* 856 * A non-zero ill_error signifies we are called in the 857 * M_ERROR or M_HANGUP path and we need to unconditionally 858 * abort any current ioctl and do the corresponding cleanup. 859 * A zero ill_error means we are in the ill_delete path and 860 * we do the cleanup only if there is a pending mp. 861 */ 862 if (mp == NULL && ill->ill_error == 0) { 863 mutex_exit(&ipx->ipx_lock); 864 return (B_FALSE); 865 } 866 } 867 868 /* Now remove from the ipx_pending_mp */ 869 ipx->ipx_pending_mp = NULL; 870 ipif = ipx->ipx_pending_ipif; 871 ipx->ipx_pending_ipif = NULL; 872 ipx->ipx_waitfor = 0; 873 ipx->ipx_current_ipif = NULL; 874 cmd = ipx->ipx_current_ioctl; 875 ipx->ipx_current_ioctl = 0; 876 ipx->ipx_current_done = B_TRUE; 877 mutex_exit(&ipx->ipx_lock); 878 879 if (mp == NULL) 880 return (B_FALSE); 881 882 q = mp->b_queue; 883 mp->b_next = NULL; 884 mp->b_prev = NULL; 885 mp->b_queue = NULL; 886 887 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 888 DTRACE_PROBE4(ipif__ioctl, 889 char *, "ipsq_pending_mp_cleanup", 890 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 891 ipif_t *, ipif); 892 if (connp == NULL) { 893 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 894 } else { 895 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 896 mutex_enter(&ipif->ipif_ill->ill_lock); 897 ipif->ipif_state_flags &= ~IPIF_CHANGING; 898 mutex_exit(&ipif->ipif_ill->ill_lock); 899 } 900 } else { 901 inet_freemsg(mp); 902 } 903 return (B_TRUE); 904 } 905 906 /* 907 * Called in the conn close path and ill delete path 908 */ 909 static void 910 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 911 { 912 ipsq_t *ipsq; 913 mblk_t *prev; 914 mblk_t *curr; 915 mblk_t *next; 916 queue_t *wq, *rq = NULL; 917 mblk_t *tmp_list = NULL; 918 919 ASSERT(IAM_WRITER_ILL(ill)); 920 if (connp != NULL) 921 wq = CONNP_TO_WQ(connp); 922 else 923 wq = ill->ill_wq; 924 925 /* 926 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 927 * against this here. 928 */ 929 if (wq != NULL) 930 rq = RD(wq); 931 932 ipsq = ill->ill_phyint->phyint_ipsq; 933 /* 934 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 935 * In the case of ioctl from a conn, there can be only 1 mp 936 * queued on the ipsq. If an ill is being unplumbed flush all 937 * the messages. 938 */ 939 mutex_enter(&ipsq->ipsq_lock); 940 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 941 curr = next) { 942 next = curr->b_next; 943 if (connp == NULL || 944 (curr->b_queue == wq || curr->b_queue == rq)) { 945 /* Unlink the mblk from the pending mp list */ 946 if (prev != NULL) { 947 prev->b_next = curr->b_next; 948 } else { 949 ASSERT(ipsq->ipsq_xopq_mphead == curr); 950 ipsq->ipsq_xopq_mphead = curr->b_next; 951 } 952 if (ipsq->ipsq_xopq_mptail == curr) 953 ipsq->ipsq_xopq_mptail = prev; 954 /* 955 * Create a temporary list and release the ipsq lock 956 * New elements are added to the head of the tmp_list 957 */ 958 curr->b_next = tmp_list; 959 tmp_list = curr; 960 } else { 961 prev = curr; 962 } 963 } 964 mutex_exit(&ipsq->ipsq_lock); 965 966 while (tmp_list != NULL) { 967 curr = tmp_list; 968 tmp_list = curr->b_next; 969 curr->b_next = NULL; 970 curr->b_prev = NULL; 971 wq = curr->b_queue; 972 curr->b_queue = NULL; 973 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 974 DTRACE_PROBE4(ipif__ioctl, 975 char *, "ipsq_xopq_mp_cleanup", 976 int, 0, ill_t *, NULL, ipif_t *, NULL); 977 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 978 CONN_CLOSE : NO_COPYOUT, NULL); 979 } else { 980 /* 981 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 982 * this can't be just inet_freemsg. we have to 983 * restart it otherwise the thread will be stuck. 984 */ 985 inet_freemsg(curr); 986 } 987 } 988 } 989 990 /* 991 * This conn has started closing. Cleanup any pending ioctl from this conn. 992 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 993 */ 994 void 995 conn_ioctl_cleanup(conn_t *connp) 996 { 997 ipsq_t *ipsq; 998 ill_t *ill; 999 boolean_t refheld; 1000 1001 /* 1002 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1003 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1004 * started the mp could be present in ipx_pending_mp. Note that if 1005 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1006 * not yet queued anywhere. In this case, the conn close code will wait 1007 * until the conn_ref is dropped. If the stream was a tcp stream, then 1008 * tcp_close will wait first until all ioctls have completed for this 1009 * conn. 1010 */ 1011 mutex_enter(&connp->conn_lock); 1012 ill = connp->conn_oper_pending_ill; 1013 if (ill == NULL) { 1014 mutex_exit(&connp->conn_lock); 1015 return; 1016 } 1017 1018 /* 1019 * We may not be able to refhold the ill if the ill/ipif 1020 * is changing. But we need to make sure that the ill will 1021 * not vanish. So we just bump up the ill_waiter count. 1022 */ 1023 refheld = ill_waiter_inc(ill); 1024 mutex_exit(&connp->conn_lock); 1025 if (refheld) { 1026 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1027 ill_waiter_dcr(ill); 1028 /* 1029 * Check whether this ioctl has started and is 1030 * pending. If it is not found there then check 1031 * whether this ioctl has not even started and is in 1032 * the ipsq_xopq list. 1033 */ 1034 if (!ipsq_pending_mp_cleanup(ill, connp)) 1035 ipsq_xopq_mp_cleanup(ill, connp); 1036 ipsq = ill->ill_phyint->phyint_ipsq; 1037 ipsq_exit(ipsq); 1038 return; 1039 } 1040 } 1041 1042 /* 1043 * The ill is also closing and we could not bump up the 1044 * ill_waiter_count or we could not enter the ipsq. Leave 1045 * the cleanup to ill_delete 1046 */ 1047 mutex_enter(&connp->conn_lock); 1048 while (connp->conn_oper_pending_ill != NULL) 1049 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1050 mutex_exit(&connp->conn_lock); 1051 if (refheld) 1052 ill_waiter_dcr(ill); 1053 } 1054 1055 /* 1056 * ipcl_walk function for cleaning up conn_*_ill fields. 1057 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1058 * conn_bound_if in place. We prefer dropping 1059 * packets instead of sending them out the wrong interface, or accepting 1060 * packets from the wrong ifindex. 1061 */ 1062 static void 1063 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1064 { 1065 ill_t *ill = (ill_t *)arg; 1066 1067 mutex_enter(&connp->conn_lock); 1068 if (connp->conn_dhcpinit_ill == ill) { 1069 connp->conn_dhcpinit_ill = NULL; 1070 ASSERT(ill->ill_dhcpinit != 0); 1071 atomic_dec_32(&ill->ill_dhcpinit); 1072 ill_set_inputfn(ill); 1073 } 1074 mutex_exit(&connp->conn_lock); 1075 } 1076 1077 static int 1078 ill_down_ipifs_tail(ill_t *ill) 1079 { 1080 ipif_t *ipif; 1081 int err; 1082 1083 ASSERT(IAM_WRITER_ILL(ill)); 1084 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1085 ipif_non_duplicate(ipif); 1086 /* 1087 * ipif_down_tail will call arp_ll_down on the last ipif 1088 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1089 */ 1090 if ((err = ipif_down_tail(ipif)) != 0) 1091 return (err); 1092 } 1093 return (0); 1094 } 1095 1096 /* ARGSUSED */ 1097 void 1098 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1099 { 1100 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1101 (void) ill_down_ipifs_tail(q->q_ptr); 1102 freemsg(mp); 1103 ipsq_current_finish(ipsq); 1104 } 1105 1106 /* 1107 * ill_down_start is called when we want to down this ill and bring it up again 1108 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1109 * all interfaces, but don't tear down any plumbing. 1110 */ 1111 boolean_t 1112 ill_down_start(queue_t *q, mblk_t *mp) 1113 { 1114 ill_t *ill = q->q_ptr; 1115 ipif_t *ipif; 1116 1117 ASSERT(IAM_WRITER_ILL(ill)); 1118 mutex_enter(&ill->ill_lock); 1119 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1120 /* no more nce addition allowed */ 1121 mutex_exit(&ill->ill_lock); 1122 1123 /* 1124 * It is possible that some ioctl is already in progress while we 1125 * received the M_ERROR / M_HANGUP in which case, we need to abort 1126 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1127 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1128 * the in progress ioctl from ever completing. 1129 * 1130 * The thread that started the ioctl (if any) must have returned, 1131 * since we are now executing as writer. After the 2 calls below, 1132 * the state of the ipsq and the ill would reflect no trace of any 1133 * pending operation. Subsequently if there is any response to the 1134 * original ioctl from the driver, it would be discarded as an 1135 * unsolicited message from the driver. 1136 */ 1137 (void) ipsq_pending_mp_cleanup(ill, NULL); 1138 ill_dlpi_clear_deferred(ill); 1139 1140 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1141 (void) ipif_down(ipif, NULL, NULL); 1142 1143 ill_down(ill); 1144 1145 /* 1146 * Walk all CONNs that can have a reference on an ire or nce for this 1147 * ill (we actually walk all that now have stale references). 1148 */ 1149 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1150 1151 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1152 if (ill->ill_isv6) 1153 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1154 1155 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1156 1157 /* 1158 * Atomically test and add the pending mp if references are active. 1159 */ 1160 mutex_enter(&ill->ill_lock); 1161 if (!ill_is_quiescent(ill)) { 1162 /* call cannot fail since `conn_t *' argument is NULL */ 1163 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1164 mp, ILL_DOWN); 1165 mutex_exit(&ill->ill_lock); 1166 return (B_FALSE); 1167 } 1168 mutex_exit(&ill->ill_lock); 1169 return (B_TRUE); 1170 } 1171 1172 static void 1173 ill_down(ill_t *ill) 1174 { 1175 mblk_t *mp; 1176 ip_stack_t *ipst = ill->ill_ipst; 1177 1178 /* 1179 * Blow off any IREs dependent on this ILL. 1180 * The caller needs to handle conn_ixa_cleanup 1181 */ 1182 ill_delete_ires(ill); 1183 1184 ire_walk_ill(0, 0, ill_downi, ill, ill); 1185 1186 /* Remove any conn_*_ill depending on this ill */ 1187 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1188 1189 /* 1190 * Free state for additional IREs. 1191 */ 1192 mutex_enter(&ill->ill_saved_ire_lock); 1193 mp = ill->ill_saved_ire_mp; 1194 ill->ill_saved_ire_mp = NULL; 1195 ill->ill_saved_ire_cnt = 0; 1196 mutex_exit(&ill->ill_saved_ire_lock); 1197 freemsg(mp); 1198 } 1199 1200 /* 1201 * ire_walk routine used to delete every IRE that depends on 1202 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1203 * 1204 * Note: since the routes added by the kernel are deleted separately, 1205 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1206 * 1207 * We also remove references on ire_nce_cache entries that refer to the ill. 1208 */ 1209 void 1210 ill_downi(ire_t *ire, char *ill_arg) 1211 { 1212 ill_t *ill = (ill_t *)ill_arg; 1213 nce_t *nce; 1214 1215 mutex_enter(&ire->ire_lock); 1216 nce = ire->ire_nce_cache; 1217 if (nce != NULL && nce->nce_ill == ill) 1218 ire->ire_nce_cache = NULL; 1219 else 1220 nce = NULL; 1221 mutex_exit(&ire->ire_lock); 1222 if (nce != NULL) 1223 nce_refrele(nce); 1224 if (ire->ire_ill == ill) { 1225 /* 1226 * The existing interface binding for ire must be 1227 * deleted before trying to bind the route to another 1228 * interface. However, since we are using the contents of the 1229 * ire after ire_delete, the caller has to ensure that 1230 * CONDEMNED (deleted) ire's are not removed from the list 1231 * when ire_delete() returns. Currently ill_downi() is 1232 * only called as part of ire_walk*() routines, so that 1233 * the irb_refhold() done by ire_walk*() will ensure that 1234 * ire_delete() does not lead to ire_inactive(). 1235 */ 1236 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1237 ire_delete(ire); 1238 if (ire->ire_unbound) 1239 ire_rebind(ire); 1240 } 1241 } 1242 1243 /* Remove IRE_IF_CLONE on this ill */ 1244 void 1245 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1246 { 1247 ill_t *ill = (ill_t *)ill_arg; 1248 1249 ASSERT(ire->ire_type & IRE_IF_CLONE); 1250 if (ire->ire_ill == ill) 1251 ire_delete(ire); 1252 } 1253 1254 /* Consume an M_IOCACK of the fastpath probe. */ 1255 void 1256 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1257 { 1258 mblk_t *mp1 = mp; 1259 1260 /* 1261 * If this was the first attempt turn on the fastpath probing. 1262 */ 1263 mutex_enter(&ill->ill_lock); 1264 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1265 ill->ill_dlpi_fastpath_state = IDS_OK; 1266 mutex_exit(&ill->ill_lock); 1267 1268 /* Free the M_IOCACK mblk, hold on to the data */ 1269 mp = mp->b_cont; 1270 freeb(mp1); 1271 if (mp == NULL) 1272 return; 1273 if (mp->b_cont != NULL) 1274 nce_fastpath_update(ill, mp); 1275 else 1276 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1277 freemsg(mp); 1278 } 1279 1280 /* 1281 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1282 * The data portion of the request is a dl_unitdata_req_t template for 1283 * what we would send downstream in the absence of a fastpath confirmation. 1284 */ 1285 int 1286 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1287 { 1288 struct iocblk *ioc; 1289 mblk_t *mp; 1290 1291 if (dlur_mp == NULL) 1292 return (EINVAL); 1293 1294 mutex_enter(&ill->ill_lock); 1295 switch (ill->ill_dlpi_fastpath_state) { 1296 case IDS_FAILED: 1297 /* 1298 * Driver NAKed the first fastpath ioctl - assume it doesn't 1299 * support it. 1300 */ 1301 mutex_exit(&ill->ill_lock); 1302 return (ENOTSUP); 1303 case IDS_UNKNOWN: 1304 /* This is the first probe */ 1305 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1306 break; 1307 default: 1308 break; 1309 } 1310 mutex_exit(&ill->ill_lock); 1311 1312 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1313 return (EAGAIN); 1314 1315 mp->b_cont = copyb(dlur_mp); 1316 if (mp->b_cont == NULL) { 1317 freeb(mp); 1318 return (EAGAIN); 1319 } 1320 1321 ioc = (struct iocblk *)mp->b_rptr; 1322 ioc->ioc_count = msgdsize(mp->b_cont); 1323 1324 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1325 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1326 putnext(ill->ill_wq, mp); 1327 return (0); 1328 } 1329 1330 void 1331 ill_capability_probe(ill_t *ill) 1332 { 1333 mblk_t *mp; 1334 1335 ASSERT(IAM_WRITER_ILL(ill)); 1336 1337 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1338 ill->ill_dlpi_capab_state != IDCS_FAILED) 1339 return; 1340 1341 /* 1342 * We are starting a new cycle of capability negotiation. 1343 * Free up the capab reset messages of any previous incarnation. 1344 * We will do a fresh allocation when we get the response to our probe 1345 */ 1346 if (ill->ill_capab_reset_mp != NULL) { 1347 freemsg(ill->ill_capab_reset_mp); 1348 ill->ill_capab_reset_mp = NULL; 1349 } 1350 1351 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1352 1353 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1354 if (mp == NULL) 1355 return; 1356 1357 ill_capability_send(ill, mp); 1358 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1359 } 1360 1361 void 1362 ill_capability_reset(ill_t *ill, boolean_t reneg) 1363 { 1364 ASSERT(IAM_WRITER_ILL(ill)); 1365 1366 if (ill->ill_dlpi_capab_state != IDCS_OK) 1367 return; 1368 1369 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1370 1371 ill_capability_send(ill, ill->ill_capab_reset_mp); 1372 ill->ill_capab_reset_mp = NULL; 1373 /* 1374 * We turn off all capabilities except those pertaining to 1375 * direct function call capabilities viz. ILL_CAPAB_DLD* 1376 * which will be turned off by the corresponding reset functions. 1377 */ 1378 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1379 } 1380 1381 static void 1382 ill_capability_reset_alloc(ill_t *ill) 1383 { 1384 mblk_t *mp; 1385 size_t size = 0; 1386 int err; 1387 dl_capability_req_t *capb; 1388 1389 ASSERT(IAM_WRITER_ILL(ill)); 1390 ASSERT(ill->ill_capab_reset_mp == NULL); 1391 1392 if (ILL_HCKSUM_CAPABLE(ill)) { 1393 size += sizeof (dl_capability_sub_t) + 1394 sizeof (dl_capab_hcksum_t); 1395 } 1396 1397 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1398 size += sizeof (dl_capability_sub_t) + 1399 sizeof (dl_capab_zerocopy_t); 1400 } 1401 1402 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1403 size += sizeof (dl_capability_sub_t) + 1404 sizeof (dl_capab_dld_t); 1405 } 1406 1407 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1408 STR_NOSIG, &err); 1409 1410 mp->b_datap->db_type = M_PROTO; 1411 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1412 1413 capb = (dl_capability_req_t *)mp->b_rptr; 1414 capb->dl_primitive = DL_CAPABILITY_REQ; 1415 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1416 capb->dl_sub_length = size; 1417 1418 mp->b_wptr += sizeof (dl_capability_req_t); 1419 1420 /* 1421 * Each handler fills in the corresponding dl_capability_sub_t 1422 * inside the mblk, 1423 */ 1424 ill_capability_hcksum_reset_fill(ill, mp); 1425 ill_capability_zerocopy_reset_fill(ill, mp); 1426 ill_capability_dld_reset_fill(ill, mp); 1427 1428 ill->ill_capab_reset_mp = mp; 1429 } 1430 1431 static void 1432 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1433 { 1434 dl_capab_id_t *id_ic; 1435 uint_t sub_dl_cap = outers->dl_cap; 1436 dl_capability_sub_t *inners; 1437 uint8_t *capend; 1438 1439 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1440 1441 /* 1442 * Note: range checks here are not absolutely sufficient to 1443 * make us robust against malformed messages sent by drivers; 1444 * this is in keeping with the rest of IP's dlpi handling. 1445 * (Remember, it's coming from something else in the kernel 1446 * address space) 1447 */ 1448 1449 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1450 if (capend > mp->b_wptr) { 1451 cmn_err(CE_WARN, "ill_capability_id_ack: " 1452 "malformed sub-capability too long for mblk"); 1453 return; 1454 } 1455 1456 id_ic = (dl_capab_id_t *)(outers + 1); 1457 1458 if (outers->dl_length < sizeof (*id_ic) || 1459 (inners = &id_ic->id_subcap, 1460 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1461 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1462 "encapsulated capab type %d too long for mblk", 1463 inners->dl_cap); 1464 return; 1465 } 1466 1467 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1468 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1469 "isn't as expected; pass-thru module(s) detected, " 1470 "discarding capability\n", inners->dl_cap)); 1471 return; 1472 } 1473 1474 /* Process the encapsulated sub-capability */ 1475 ill_capability_dispatch(ill, mp, inners); 1476 } 1477 1478 static void 1479 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1480 { 1481 dl_capability_sub_t *dl_subcap; 1482 1483 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1484 return; 1485 1486 /* 1487 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1488 * initialized below since it is not used by DLD. 1489 */ 1490 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1491 dl_subcap->dl_cap = DL_CAPAB_DLD; 1492 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1493 1494 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1495 } 1496 1497 static void 1498 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1499 { 1500 /* 1501 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1502 * is only to get the VRRP capability. 1503 * 1504 * Note that we cannot check ill_ipif_up_count here since 1505 * ill_ipif_up_count is only incremented when the resolver is setup. 1506 * That is done asynchronously, and can race with this function. 1507 */ 1508 if (!ill->ill_dl_up) { 1509 if (subp->dl_cap == DL_CAPAB_VRRP) 1510 ill_capability_vrrp_ack(ill, mp, subp); 1511 return; 1512 } 1513 1514 switch (subp->dl_cap) { 1515 case DL_CAPAB_HCKSUM: 1516 ill_capability_hcksum_ack(ill, mp, subp); 1517 break; 1518 case DL_CAPAB_ZEROCOPY: 1519 ill_capability_zerocopy_ack(ill, mp, subp); 1520 break; 1521 case DL_CAPAB_DLD: 1522 ill_capability_dld_ack(ill, mp, subp); 1523 break; 1524 case DL_CAPAB_VRRP: 1525 break; 1526 default: 1527 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1528 subp->dl_cap)); 1529 } 1530 } 1531 1532 /* 1533 * Process the vrrp capability received from a DLS Provider. isub must point 1534 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1535 */ 1536 static void 1537 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1538 { 1539 dl_capab_vrrp_t *vrrp; 1540 uint_t sub_dl_cap = isub->dl_cap; 1541 uint8_t *capend; 1542 1543 ASSERT(IAM_WRITER_ILL(ill)); 1544 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1545 1546 /* 1547 * Note: range checks here are not absolutely sufficient to 1548 * make us robust against malformed messages sent by drivers; 1549 * this is in keeping with the rest of IP's dlpi handling. 1550 * (Remember, it's coming from something else in the kernel 1551 * address space) 1552 */ 1553 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1554 if (capend > mp->b_wptr) { 1555 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1556 "malformed sub-capability too long for mblk"); 1557 return; 1558 } 1559 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1560 1561 /* 1562 * Compare the IP address family and set ILLF_VRRP for the right ill. 1563 */ 1564 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1565 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1566 ill->ill_flags |= ILLF_VRRP; 1567 } 1568 } 1569 1570 /* 1571 * Process a hardware checksum offload capability negotiation ack received 1572 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1573 * of a DL_CAPABILITY_ACK message. 1574 */ 1575 static void 1576 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1577 { 1578 dl_capability_req_t *ocap; 1579 dl_capab_hcksum_t *ihck, *ohck; 1580 ill_hcksum_capab_t **ill_hcksum; 1581 mblk_t *nmp = NULL; 1582 uint_t sub_dl_cap = isub->dl_cap; 1583 uint8_t *capend; 1584 1585 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1586 1587 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1588 1589 /* 1590 * Note: range checks here are not absolutely sufficient to 1591 * make us robust against malformed messages sent by drivers; 1592 * this is in keeping with the rest of IP's dlpi handling. 1593 * (Remember, it's coming from something else in the kernel 1594 * address space) 1595 */ 1596 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1597 if (capend > mp->b_wptr) { 1598 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1599 "malformed sub-capability too long for mblk"); 1600 return; 1601 } 1602 1603 /* 1604 * There are two types of acks we process here: 1605 * 1. acks in reply to a (first form) generic capability req 1606 * (no ENABLE flag set) 1607 * 2. acks in reply to a ENABLE capability req. 1608 * (ENABLE flag set) 1609 */ 1610 ihck = (dl_capab_hcksum_t *)(isub + 1); 1611 1612 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1613 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1614 "unsupported hardware checksum " 1615 "sub-capability (version %d, expected %d)", 1616 ihck->hcksum_version, HCKSUM_VERSION_1); 1617 return; 1618 } 1619 1620 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1621 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1622 "checksum capability isn't as expected; pass-thru " 1623 "module(s) detected, discarding capability\n")); 1624 return; 1625 } 1626 1627 #define CURR_HCKSUM_CAPAB \ 1628 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1629 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1630 1631 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1632 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1633 /* do ENABLE processing */ 1634 if (*ill_hcksum == NULL) { 1635 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1636 KM_NOSLEEP); 1637 1638 if (*ill_hcksum == NULL) { 1639 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1640 "could not enable hcksum version %d " 1641 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1642 ill->ill_name); 1643 return; 1644 } 1645 } 1646 1647 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1648 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1649 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1650 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1651 "has enabled hardware checksumming\n ", 1652 ill->ill_name)); 1653 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1654 /* 1655 * Enabling hardware checksum offload 1656 * Currently IP supports {TCP,UDP}/IPv4 1657 * partial and full cksum offload and 1658 * IPv4 header checksum offload. 1659 * Allocate new mblk which will 1660 * contain a new capability request 1661 * to enable hardware checksum offload. 1662 */ 1663 uint_t size; 1664 uchar_t *rptr; 1665 1666 size = sizeof (dl_capability_req_t) + 1667 sizeof (dl_capability_sub_t) + isub->dl_length; 1668 1669 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1670 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1671 "could not enable hardware cksum for %s (ENOMEM)\n", 1672 ill->ill_name); 1673 return; 1674 } 1675 1676 rptr = nmp->b_rptr; 1677 /* initialize dl_capability_req_t */ 1678 ocap = (dl_capability_req_t *)nmp->b_rptr; 1679 ocap->dl_sub_offset = 1680 sizeof (dl_capability_req_t); 1681 ocap->dl_sub_length = 1682 sizeof (dl_capability_sub_t) + 1683 isub->dl_length; 1684 nmp->b_rptr += sizeof (dl_capability_req_t); 1685 1686 /* initialize dl_capability_sub_t */ 1687 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1688 nmp->b_rptr += sizeof (*isub); 1689 1690 /* initialize dl_capab_hcksum_t */ 1691 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1692 bcopy(ihck, ohck, sizeof (*ihck)); 1693 1694 nmp->b_rptr = rptr; 1695 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1696 1697 /* Set ENABLE flag */ 1698 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1699 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1700 1701 /* 1702 * nmp points to a DL_CAPABILITY_REQ message to enable 1703 * hardware checksum acceleration. 1704 */ 1705 ill_capability_send(ill, nmp); 1706 } else { 1707 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1708 "advertised %x hardware checksum capability flags\n", 1709 ill->ill_name, ihck->hcksum_txflags)); 1710 } 1711 } 1712 1713 static void 1714 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1715 { 1716 dl_capab_hcksum_t *hck_subcap; 1717 dl_capability_sub_t *dl_subcap; 1718 1719 if (!ILL_HCKSUM_CAPABLE(ill)) 1720 return; 1721 1722 ASSERT(ill->ill_hcksum_capab != NULL); 1723 1724 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1725 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1726 dl_subcap->dl_length = sizeof (*hck_subcap); 1727 1728 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1729 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1730 hck_subcap->hcksum_txflags = 0; 1731 1732 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1733 } 1734 1735 static void 1736 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1737 { 1738 mblk_t *nmp = NULL; 1739 dl_capability_req_t *oc; 1740 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1741 ill_zerocopy_capab_t **ill_zerocopy_capab; 1742 uint_t sub_dl_cap = isub->dl_cap; 1743 uint8_t *capend; 1744 1745 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1746 1747 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1748 1749 /* 1750 * Note: range checks here are not absolutely sufficient to 1751 * make us robust against malformed messages sent by drivers; 1752 * this is in keeping with the rest of IP's dlpi handling. 1753 * (Remember, it's coming from something else in the kernel 1754 * address space) 1755 */ 1756 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1757 if (capend > mp->b_wptr) { 1758 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1759 "malformed sub-capability too long for mblk"); 1760 return; 1761 } 1762 1763 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1764 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1765 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1766 "unsupported ZEROCOPY sub-capability (version %d, " 1767 "expected %d)", zc_ic->zerocopy_version, 1768 ZEROCOPY_VERSION_1); 1769 return; 1770 } 1771 1772 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1773 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1774 "capability isn't as expected; pass-thru module(s) " 1775 "detected, discarding capability\n")); 1776 return; 1777 } 1778 1779 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1780 if (*ill_zerocopy_capab == NULL) { 1781 *ill_zerocopy_capab = 1782 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1783 KM_NOSLEEP); 1784 1785 if (*ill_zerocopy_capab == NULL) { 1786 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1787 "could not enable Zero-copy version %d " 1788 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1789 ill->ill_name); 1790 return; 1791 } 1792 } 1793 1794 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1795 "supports Zero-copy version %d\n", ill->ill_name, 1796 ZEROCOPY_VERSION_1)); 1797 1798 (*ill_zerocopy_capab)->ill_zerocopy_version = 1799 zc_ic->zerocopy_version; 1800 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1801 zc_ic->zerocopy_flags; 1802 1803 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1804 } else { 1805 uint_t size; 1806 uchar_t *rptr; 1807 1808 size = sizeof (dl_capability_req_t) + 1809 sizeof (dl_capability_sub_t) + 1810 sizeof (dl_capab_zerocopy_t); 1811 1812 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1813 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1814 "could not enable zerocopy for %s (ENOMEM)\n", 1815 ill->ill_name); 1816 return; 1817 } 1818 1819 rptr = nmp->b_rptr; 1820 /* initialize dl_capability_req_t */ 1821 oc = (dl_capability_req_t *)rptr; 1822 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1823 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1824 sizeof (dl_capab_zerocopy_t); 1825 rptr += sizeof (dl_capability_req_t); 1826 1827 /* initialize dl_capability_sub_t */ 1828 bcopy(isub, rptr, sizeof (*isub)); 1829 rptr += sizeof (*isub); 1830 1831 /* initialize dl_capab_zerocopy_t */ 1832 zc_oc = (dl_capab_zerocopy_t *)rptr; 1833 *zc_oc = *zc_ic; 1834 1835 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1836 "to enable zero-copy version %d\n", ill->ill_name, 1837 ZEROCOPY_VERSION_1)); 1838 1839 /* set VMSAFE_MEM flag */ 1840 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1841 1842 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1843 ill_capability_send(ill, nmp); 1844 } 1845 } 1846 1847 static void 1848 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1849 { 1850 dl_capab_zerocopy_t *zerocopy_subcap; 1851 dl_capability_sub_t *dl_subcap; 1852 1853 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1854 return; 1855 1856 ASSERT(ill->ill_zerocopy_capab != NULL); 1857 1858 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1859 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1860 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1861 1862 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1863 zerocopy_subcap->zerocopy_version = 1864 ill->ill_zerocopy_capab->ill_zerocopy_version; 1865 zerocopy_subcap->zerocopy_flags = 0; 1866 1867 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1868 } 1869 1870 /* 1871 * DLD capability 1872 * Refer to dld.h for more information regarding the purpose and usage 1873 * of this capability. 1874 */ 1875 static void 1876 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1877 { 1878 dl_capab_dld_t *dld_ic, dld; 1879 uint_t sub_dl_cap = isub->dl_cap; 1880 uint8_t *capend; 1881 ill_dld_capab_t *idc; 1882 1883 ASSERT(IAM_WRITER_ILL(ill)); 1884 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1885 1886 /* 1887 * Note: range checks here are not absolutely sufficient to 1888 * make us robust against malformed messages sent by drivers; 1889 * this is in keeping with the rest of IP's dlpi handling. 1890 * (Remember, it's coming from something else in the kernel 1891 * address space) 1892 */ 1893 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1894 if (capend > mp->b_wptr) { 1895 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1896 "malformed sub-capability too long for mblk"); 1897 return; 1898 } 1899 dld_ic = (dl_capab_dld_t *)(isub + 1); 1900 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1901 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1902 "unsupported DLD sub-capability (version %d, " 1903 "expected %d)", dld_ic->dld_version, 1904 DLD_CURRENT_VERSION); 1905 return; 1906 } 1907 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1908 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1909 "capability isn't as expected; pass-thru module(s) " 1910 "detected, discarding capability\n")); 1911 return; 1912 } 1913 1914 /* 1915 * Copy locally to ensure alignment. 1916 */ 1917 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1918 1919 if ((idc = ill->ill_dld_capab) == NULL) { 1920 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1921 if (idc == NULL) { 1922 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1923 "could not enable DLD version %d " 1924 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1925 ill->ill_name); 1926 return; 1927 } 1928 ill->ill_dld_capab = idc; 1929 } 1930 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1931 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1932 ip1dbg(("ill_capability_dld_ack: interface %s " 1933 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1934 1935 ill_capability_dld_enable(ill); 1936 } 1937 1938 /* 1939 * Typically capability negotiation between IP and the driver happens via 1940 * DLPI message exchange. However GLD also offers a direct function call 1941 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1942 * But arbitrary function calls into IP or GLD are not permitted, since both 1943 * of them are protected by their own perimeter mechanism. The perimeter can 1944 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1945 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1946 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1947 * to enter the mac perimeter and then do the direct function calls into 1948 * GLD to enable squeue polling. The ring related callbacks from the mac into 1949 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1950 * protected by the mac perimeter. 1951 */ 1952 static void 1953 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1954 { 1955 ill_dld_capab_t *idc = ill->ill_dld_capab; 1956 int err; 1957 1958 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1959 DLD_ENABLE); 1960 ASSERT(err == 0); 1961 } 1962 1963 static void 1964 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1965 { 1966 ill_dld_capab_t *idc = ill->ill_dld_capab; 1967 int err; 1968 1969 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1970 DLD_DISABLE); 1971 ASSERT(err == 0); 1972 } 1973 1974 boolean_t 1975 ill_mac_perim_held(ill_t *ill) 1976 { 1977 ill_dld_capab_t *idc = ill->ill_dld_capab; 1978 1979 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1980 DLD_QUERY)); 1981 } 1982 1983 static void 1984 ill_capability_direct_enable(ill_t *ill) 1985 { 1986 ill_dld_capab_t *idc = ill->ill_dld_capab; 1987 ill_dld_direct_t *idd = &idc->idc_direct; 1988 dld_capab_direct_t direct; 1989 int rc; 1990 1991 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1992 1993 bzero(&direct, sizeof (direct)); 1994 direct.di_rx_cf = (uintptr_t)ip_input; 1995 direct.di_rx_ch = ill; 1996 1997 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1998 DLD_ENABLE); 1999 if (rc == 0) { 2000 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2001 idd->idd_tx_dh = direct.di_tx_dh; 2002 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2003 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2004 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2005 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2006 ASSERT(idd->idd_tx_cb_df != NULL); 2007 ASSERT(idd->idd_tx_fctl_df != NULL); 2008 ASSERT(idd->idd_tx_df != NULL); 2009 /* 2010 * One time registration of flow enable callback function 2011 */ 2012 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2013 ill_flow_enable, ill); 2014 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2015 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2016 } else { 2017 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2018 "capability, rc = %d\n", rc); 2019 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2020 } 2021 } 2022 2023 static void 2024 ill_capability_poll_enable(ill_t *ill) 2025 { 2026 ill_dld_capab_t *idc = ill->ill_dld_capab; 2027 dld_capab_poll_t poll; 2028 int rc; 2029 2030 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2031 2032 bzero(&poll, sizeof (poll)); 2033 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2034 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2035 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2036 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2037 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2038 poll.poll_ring_ch = ill; 2039 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2040 DLD_ENABLE); 2041 if (rc == 0) { 2042 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2043 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2044 } else { 2045 ip1dbg(("warning: could not enable POLL " 2046 "capability, rc = %d\n", rc)); 2047 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2048 } 2049 } 2050 2051 /* 2052 * Enable the LSO capability. 2053 */ 2054 static void 2055 ill_capability_lso_enable(ill_t *ill) 2056 { 2057 ill_dld_capab_t *idc = ill->ill_dld_capab; 2058 dld_capab_lso_t lso; 2059 int rc; 2060 2061 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2062 2063 if (ill->ill_lso_capab == NULL) { 2064 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2065 KM_NOSLEEP); 2066 if (ill->ill_lso_capab == NULL) { 2067 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2068 "could not enable LSO for %s (ENOMEM)\n", 2069 ill->ill_name); 2070 return; 2071 } 2072 } 2073 2074 bzero(&lso, sizeof (lso)); 2075 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2076 DLD_ENABLE)) == 0) { 2077 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2078 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2079 ill->ill_capabilities |= ILL_CAPAB_LSO; 2080 ip1dbg(("ill_capability_lso_enable: interface %s " 2081 "has enabled LSO\n ", ill->ill_name)); 2082 } else { 2083 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2084 ill->ill_lso_capab = NULL; 2085 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2086 } 2087 } 2088 2089 static void 2090 ill_capability_dld_enable(ill_t *ill) 2091 { 2092 mac_perim_handle_t mph; 2093 2094 ASSERT(IAM_WRITER_ILL(ill)); 2095 2096 if (ill->ill_isv6) 2097 return; 2098 2099 ill_mac_perim_enter(ill, &mph); 2100 if (!ill->ill_isv6) { 2101 ill_capability_direct_enable(ill); 2102 ill_capability_poll_enable(ill); 2103 ill_capability_lso_enable(ill); 2104 } 2105 ill->ill_capabilities |= ILL_CAPAB_DLD; 2106 ill_mac_perim_exit(ill, mph); 2107 } 2108 2109 static void 2110 ill_capability_dld_disable(ill_t *ill) 2111 { 2112 ill_dld_capab_t *idc; 2113 ill_dld_direct_t *idd; 2114 mac_perim_handle_t mph; 2115 2116 ASSERT(IAM_WRITER_ILL(ill)); 2117 2118 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2119 return; 2120 2121 ill_mac_perim_enter(ill, &mph); 2122 2123 idc = ill->ill_dld_capab; 2124 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2125 /* 2126 * For performance we avoid locks in the transmit data path 2127 * and don't maintain a count of the number of threads using 2128 * direct calls. Thus some threads could be using direct 2129 * transmit calls to GLD, even after the capability mechanism 2130 * turns it off. This is still safe since the handles used in 2131 * the direct calls continue to be valid until the unplumb is 2132 * completed. Remove the callback that was added (1-time) at 2133 * capab enable time. 2134 */ 2135 mutex_enter(&ill->ill_lock); 2136 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2137 mutex_exit(&ill->ill_lock); 2138 if (ill->ill_flownotify_mh != NULL) { 2139 idd = &idc->idc_direct; 2140 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2141 ill->ill_flownotify_mh); 2142 ill->ill_flownotify_mh = NULL; 2143 } 2144 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2145 NULL, DLD_DISABLE); 2146 } 2147 2148 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2149 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2150 ip_squeue_clean_all(ill); 2151 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2152 NULL, DLD_DISABLE); 2153 } 2154 2155 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2156 ASSERT(ill->ill_lso_capab != NULL); 2157 /* 2158 * Clear the capability flag for LSO but retain the 2159 * ill_lso_capab structure since it's possible that another 2160 * thread is still referring to it. The structure only gets 2161 * deallocated when we destroy the ill. 2162 */ 2163 2164 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2165 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2166 NULL, DLD_DISABLE); 2167 } 2168 2169 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2170 ill_mac_perim_exit(ill, mph); 2171 } 2172 2173 /* 2174 * Capability Negotiation protocol 2175 * 2176 * We don't wait for DLPI capability operations to finish during interface 2177 * bringup or teardown. Doing so would introduce more asynchrony and the 2178 * interface up/down operations will need multiple return and restarts. 2179 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2180 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2181 * exclusive operation won't start until the DLPI operations of the previous 2182 * exclusive operation complete. 2183 * 2184 * The capability state machine is shown below. 2185 * 2186 * state next state event, action 2187 * 2188 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2189 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2190 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2191 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2192 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2193 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2194 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2195 * ill_capability_probe. 2196 */ 2197 2198 /* 2199 * Dedicated thread started from ip_stack_init that handles capability 2200 * disable. This thread ensures the taskq dispatch does not fail by waiting 2201 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2202 * that direct calls to DLD are done in a cv_waitable context. 2203 */ 2204 void 2205 ill_taskq_dispatch(ip_stack_t *ipst) 2206 { 2207 callb_cpr_t cprinfo; 2208 char name[64]; 2209 mblk_t *mp; 2210 2211 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2212 ipst->ips_netstack->netstack_stackid); 2213 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2214 name); 2215 mutex_enter(&ipst->ips_capab_taskq_lock); 2216 2217 for (;;) { 2218 mp = ipst->ips_capab_taskq_head; 2219 while (mp != NULL) { 2220 ipst->ips_capab_taskq_head = mp->b_next; 2221 if (ipst->ips_capab_taskq_head == NULL) 2222 ipst->ips_capab_taskq_tail = NULL; 2223 mutex_exit(&ipst->ips_capab_taskq_lock); 2224 mp->b_next = NULL; 2225 2226 VERIFY(taskq_dispatch(system_taskq, 2227 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2228 mutex_enter(&ipst->ips_capab_taskq_lock); 2229 mp = ipst->ips_capab_taskq_head; 2230 } 2231 2232 if (ipst->ips_capab_taskq_quit) 2233 break; 2234 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2235 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2236 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2237 } 2238 VERIFY(ipst->ips_capab_taskq_head == NULL); 2239 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2240 CALLB_CPR_EXIT(&cprinfo); 2241 thread_exit(); 2242 } 2243 2244 /* 2245 * Consume a new-style hardware capabilities negotiation ack. 2246 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2247 */ 2248 static void 2249 ill_capability_ack_thr(void *arg) 2250 { 2251 mblk_t *mp = arg; 2252 dl_capability_ack_t *capp; 2253 dl_capability_sub_t *subp, *endp; 2254 ill_t *ill; 2255 boolean_t reneg; 2256 2257 ill = (ill_t *)mp->b_prev; 2258 mp->b_prev = NULL; 2259 2260 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2261 2262 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2263 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2264 /* 2265 * We have received the ack for our DL_CAPAB reset request. 2266 * There isnt' anything in the message that needs processing. 2267 * All message based capabilities have been disabled, now 2268 * do the function call based capability disable. 2269 */ 2270 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2271 ill_capability_dld_disable(ill); 2272 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2273 if (reneg) 2274 ill_capability_probe(ill); 2275 goto done; 2276 } 2277 2278 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2279 ill->ill_dlpi_capab_state = IDCS_OK; 2280 2281 capp = (dl_capability_ack_t *)mp->b_rptr; 2282 2283 if (capp->dl_sub_length == 0) { 2284 /* no new-style capabilities */ 2285 goto done; 2286 } 2287 2288 /* make sure the driver supplied correct dl_sub_length */ 2289 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2290 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2291 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2292 goto done; 2293 } 2294 2295 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2296 /* 2297 * There are sub-capabilities. Process the ones we know about. 2298 * Loop until we don't have room for another sub-cap header.. 2299 */ 2300 for (subp = SC(capp, capp->dl_sub_offset), 2301 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2302 subp <= endp; 2303 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2304 2305 switch (subp->dl_cap) { 2306 case DL_CAPAB_ID_WRAPPER: 2307 ill_capability_id_ack(ill, mp, subp); 2308 break; 2309 default: 2310 ill_capability_dispatch(ill, mp, subp); 2311 break; 2312 } 2313 } 2314 #undef SC 2315 done: 2316 inet_freemsg(mp); 2317 ill_capability_done(ill); 2318 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2319 } 2320 2321 /* 2322 * This needs to be started in a taskq thread to provide a cv_waitable 2323 * context. 2324 */ 2325 void 2326 ill_capability_ack(ill_t *ill, mblk_t *mp) 2327 { 2328 ip_stack_t *ipst = ill->ill_ipst; 2329 2330 mp->b_prev = (mblk_t *)ill; 2331 ASSERT(mp->b_next == NULL); 2332 2333 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2334 TQ_NOSLEEP) != 0) 2335 return; 2336 2337 /* 2338 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2339 * which will do the dispatch using TQ_SLEEP to guarantee success. 2340 */ 2341 mutex_enter(&ipst->ips_capab_taskq_lock); 2342 if (ipst->ips_capab_taskq_head == NULL) { 2343 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2344 ipst->ips_capab_taskq_head = mp; 2345 } else { 2346 ipst->ips_capab_taskq_tail->b_next = mp; 2347 } 2348 ipst->ips_capab_taskq_tail = mp; 2349 2350 cv_signal(&ipst->ips_capab_taskq_cv); 2351 mutex_exit(&ipst->ips_capab_taskq_lock); 2352 } 2353 2354 /* 2355 * This routine is called to scan the fragmentation reassembly table for 2356 * the specified ILL for any packets that are starting to smell. 2357 * dead_interval is the maximum time in seconds that will be tolerated. It 2358 * will either be the value specified in ip_g_frag_timeout, or zero if the 2359 * ILL is shutting down and it is time to blow everything off. 2360 * 2361 * It returns the number of seconds (as a time_t) that the next frag timer 2362 * should be scheduled for, 0 meaning that the timer doesn't need to be 2363 * re-started. Note that the method of calculating next_timeout isn't 2364 * entirely accurate since time will flow between the time we grab 2365 * current_time and the time we schedule the next timeout. This isn't a 2366 * big problem since this is the timer for sending an ICMP reassembly time 2367 * exceeded messages, and it doesn't have to be exactly accurate. 2368 * 2369 * This function is 2370 * sometimes called as writer, although this is not required. 2371 */ 2372 time_t 2373 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2374 { 2375 ipfb_t *ipfb; 2376 ipfb_t *endp; 2377 ipf_t *ipf; 2378 ipf_t *ipfnext; 2379 mblk_t *mp; 2380 time_t current_time = gethrestime_sec(); 2381 time_t next_timeout = 0; 2382 uint32_t hdr_length; 2383 mblk_t *send_icmp_head; 2384 mblk_t *send_icmp_head_v6; 2385 ip_stack_t *ipst = ill->ill_ipst; 2386 ip_recv_attr_t iras; 2387 2388 bzero(&iras, sizeof (iras)); 2389 iras.ira_flags = 0; 2390 iras.ira_ill = iras.ira_rill = ill; 2391 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2392 iras.ira_rifindex = iras.ira_ruifindex; 2393 2394 ipfb = ill->ill_frag_hash_tbl; 2395 if (ipfb == NULL) 2396 return (B_FALSE); 2397 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2398 /* Walk the frag hash table. */ 2399 for (; ipfb < endp; ipfb++) { 2400 send_icmp_head = NULL; 2401 send_icmp_head_v6 = NULL; 2402 mutex_enter(&ipfb->ipfb_lock); 2403 while ((ipf = ipfb->ipfb_ipf) != 0) { 2404 time_t frag_time = current_time - ipf->ipf_timestamp; 2405 time_t frag_timeout; 2406 2407 if (frag_time < dead_interval) { 2408 /* 2409 * There are some outstanding fragments 2410 * that will timeout later. Make note of 2411 * the time so that we can reschedule the 2412 * next timeout appropriately. 2413 */ 2414 frag_timeout = dead_interval - frag_time; 2415 if (next_timeout == 0 || 2416 frag_timeout < next_timeout) { 2417 next_timeout = frag_timeout; 2418 } 2419 break; 2420 } 2421 /* Time's up. Get it out of here. */ 2422 hdr_length = ipf->ipf_nf_hdr_len; 2423 ipfnext = ipf->ipf_hash_next; 2424 if (ipfnext) 2425 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2426 *ipf->ipf_ptphn = ipfnext; 2427 mp = ipf->ipf_mp->b_cont; 2428 for (; mp; mp = mp->b_cont) { 2429 /* Extra points for neatness. */ 2430 IP_REASS_SET_START(mp, 0); 2431 IP_REASS_SET_END(mp, 0); 2432 } 2433 mp = ipf->ipf_mp->b_cont; 2434 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2435 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2436 ipfb->ipfb_count -= ipf->ipf_count; 2437 ASSERT(ipfb->ipfb_frag_pkts > 0); 2438 ipfb->ipfb_frag_pkts--; 2439 /* 2440 * We do not send any icmp message from here because 2441 * we currently are holding the ipfb_lock for this 2442 * hash chain. If we try and send any icmp messages 2443 * from here we may end up via a put back into ip 2444 * trying to get the same lock, causing a recursive 2445 * mutex panic. Instead we build a list and send all 2446 * the icmp messages after we have dropped the lock. 2447 */ 2448 if (ill->ill_isv6) { 2449 if (hdr_length != 0) { 2450 mp->b_next = send_icmp_head_v6; 2451 send_icmp_head_v6 = mp; 2452 } else { 2453 freemsg(mp); 2454 } 2455 } else { 2456 if (hdr_length != 0) { 2457 mp->b_next = send_icmp_head; 2458 send_icmp_head = mp; 2459 } else { 2460 freemsg(mp); 2461 } 2462 } 2463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2464 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2465 freeb(ipf->ipf_mp); 2466 } 2467 mutex_exit(&ipfb->ipfb_lock); 2468 /* 2469 * Now need to send any icmp messages that we delayed from 2470 * above. 2471 */ 2472 while (send_icmp_head_v6 != NULL) { 2473 ip6_t *ip6h; 2474 2475 mp = send_icmp_head_v6; 2476 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2477 mp->b_next = NULL; 2478 ip6h = (ip6_t *)mp->b_rptr; 2479 iras.ira_flags = 0; 2480 /* 2481 * This will result in an incorrect ALL_ZONES zoneid 2482 * for multicast packets, but we 2483 * don't send ICMP errors for those in any case. 2484 */ 2485 iras.ira_zoneid = 2486 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2487 ill, ipst); 2488 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2489 icmp_time_exceeded_v6(mp, 2490 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2491 &iras); 2492 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2493 } 2494 while (send_icmp_head != NULL) { 2495 ipaddr_t dst; 2496 2497 mp = send_icmp_head; 2498 send_icmp_head = send_icmp_head->b_next; 2499 mp->b_next = NULL; 2500 2501 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2502 2503 iras.ira_flags = IRAF_IS_IPV4; 2504 /* 2505 * This will result in an incorrect ALL_ZONES zoneid 2506 * for broadcast and multicast packets, but we 2507 * don't send ICMP errors for those in any case. 2508 */ 2509 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2510 ill, ipst); 2511 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2512 icmp_time_exceeded(mp, 2513 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2514 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2515 } 2516 } 2517 /* 2518 * A non-dying ILL will use the return value to decide whether to 2519 * restart the frag timer, and for how long. 2520 */ 2521 return (next_timeout); 2522 } 2523 2524 /* 2525 * This routine is called when the approximate count of mblk memory used 2526 * for the specified ILL has exceeded max_count. 2527 */ 2528 void 2529 ill_frag_prune(ill_t *ill, uint_t max_count) 2530 { 2531 ipfb_t *ipfb; 2532 ipf_t *ipf; 2533 size_t count; 2534 clock_t now; 2535 2536 /* 2537 * If we are here within ip_min_frag_prune_time msecs remove 2538 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2539 * ill_frag_free_num_pkts. 2540 */ 2541 mutex_enter(&ill->ill_lock); 2542 now = ddi_get_lbolt(); 2543 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2544 (ip_min_frag_prune_time != 0 ? 2545 ip_min_frag_prune_time : msec_per_tick)) { 2546 2547 ill->ill_frag_free_num_pkts++; 2548 2549 } else { 2550 ill->ill_frag_free_num_pkts = 0; 2551 } 2552 ill->ill_last_frag_clean_time = now; 2553 mutex_exit(&ill->ill_lock); 2554 2555 /* 2556 * free ill_frag_free_num_pkts oldest packets from each bucket. 2557 */ 2558 if (ill->ill_frag_free_num_pkts != 0) { 2559 int ix; 2560 2561 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2562 ipfb = &ill->ill_frag_hash_tbl[ix]; 2563 mutex_enter(&ipfb->ipfb_lock); 2564 if (ipfb->ipfb_ipf != NULL) { 2565 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2566 ill->ill_frag_free_num_pkts); 2567 } 2568 mutex_exit(&ipfb->ipfb_lock); 2569 } 2570 } 2571 /* 2572 * While the reassembly list for this ILL is too big, prune a fragment 2573 * queue by age, oldest first. 2574 */ 2575 while (ill->ill_frag_count > max_count) { 2576 int ix; 2577 ipfb_t *oipfb = NULL; 2578 uint_t oldest = UINT_MAX; 2579 2580 count = 0; 2581 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2582 ipfb = &ill->ill_frag_hash_tbl[ix]; 2583 mutex_enter(&ipfb->ipfb_lock); 2584 ipf = ipfb->ipfb_ipf; 2585 if (ipf != NULL && ipf->ipf_gen < oldest) { 2586 oldest = ipf->ipf_gen; 2587 oipfb = ipfb; 2588 } 2589 count += ipfb->ipfb_count; 2590 mutex_exit(&ipfb->ipfb_lock); 2591 } 2592 if (oipfb == NULL) 2593 break; 2594 2595 if (count <= max_count) 2596 return; /* Somebody beat us to it, nothing to do */ 2597 mutex_enter(&oipfb->ipfb_lock); 2598 ipf = oipfb->ipfb_ipf; 2599 if (ipf != NULL) { 2600 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2601 } 2602 mutex_exit(&oipfb->ipfb_lock); 2603 } 2604 } 2605 2606 /* 2607 * free 'free_cnt' fragmented packets starting at ipf. 2608 */ 2609 void 2610 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2611 { 2612 size_t count; 2613 mblk_t *mp; 2614 mblk_t *tmp; 2615 ipf_t **ipfp = ipf->ipf_ptphn; 2616 2617 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2618 ASSERT(ipfp != NULL); 2619 ASSERT(ipf != NULL); 2620 2621 while (ipf != NULL && free_cnt-- > 0) { 2622 count = ipf->ipf_count; 2623 mp = ipf->ipf_mp; 2624 ipf = ipf->ipf_hash_next; 2625 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2626 IP_REASS_SET_START(tmp, 0); 2627 IP_REASS_SET_END(tmp, 0); 2628 } 2629 atomic_add_32(&ill->ill_frag_count, -count); 2630 ASSERT(ipfb->ipfb_count >= count); 2631 ipfb->ipfb_count -= count; 2632 ASSERT(ipfb->ipfb_frag_pkts > 0); 2633 ipfb->ipfb_frag_pkts--; 2634 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2635 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2636 freemsg(mp); 2637 } 2638 2639 if (ipf) 2640 ipf->ipf_ptphn = ipfp; 2641 ipfp[0] = ipf; 2642 } 2643 2644 /* 2645 * Helper function for ill_forward_set(). 2646 */ 2647 static void 2648 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2649 { 2650 ip_stack_t *ipst = ill->ill_ipst; 2651 2652 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2653 2654 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2655 (enable ? "Enabling" : "Disabling"), 2656 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2657 mutex_enter(&ill->ill_lock); 2658 if (enable) 2659 ill->ill_flags |= ILLF_ROUTER; 2660 else 2661 ill->ill_flags &= ~ILLF_ROUTER; 2662 mutex_exit(&ill->ill_lock); 2663 if (ill->ill_isv6) 2664 ill_set_nce_router_flags(ill, enable); 2665 /* Notify routing socket listeners of this change. */ 2666 if (ill->ill_ipif != NULL) 2667 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2668 } 2669 2670 /* 2671 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2672 * socket messages for each interface whose flags we change. 2673 */ 2674 int 2675 ill_forward_set(ill_t *ill, boolean_t enable) 2676 { 2677 ipmp_illgrp_t *illg; 2678 ip_stack_t *ipst = ill->ill_ipst; 2679 2680 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2681 2682 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2683 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2684 return (0); 2685 2686 if (IS_LOOPBACK(ill)) 2687 return (EINVAL); 2688 2689 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2690 /* 2691 * Update all of the interfaces in the group. 2692 */ 2693 illg = ill->ill_grp; 2694 ill = list_head(&illg->ig_if); 2695 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2696 ill_forward_set_on_ill(ill, enable); 2697 2698 /* 2699 * Update the IPMP meta-interface. 2700 */ 2701 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2702 return (0); 2703 } 2704 2705 ill_forward_set_on_ill(ill, enable); 2706 return (0); 2707 } 2708 2709 /* 2710 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2711 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2712 * set or clear. 2713 */ 2714 static void 2715 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2716 { 2717 ipif_t *ipif; 2718 ncec_t *ncec; 2719 nce_t *nce; 2720 2721 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2722 /* 2723 * NOTE: we match across the illgrp because nce's for 2724 * addresses on IPMP interfaces have an nce_ill that points to 2725 * the bound underlying ill. 2726 */ 2727 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2728 if (nce != NULL) { 2729 ncec = nce->nce_common; 2730 mutex_enter(&ncec->ncec_lock); 2731 if (enable) 2732 ncec->ncec_flags |= NCE_F_ISROUTER; 2733 else 2734 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2735 mutex_exit(&ncec->ncec_lock); 2736 nce_refrele(nce); 2737 } 2738 } 2739 } 2740 2741 /* 2742 * Intializes the context structure and returns the first ill in the list 2743 * cuurently start_list and end_list can have values: 2744 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2745 * IP_V4_G_HEAD Traverse IPV4 list only. 2746 * IP_V6_G_HEAD Traverse IPV6 list only. 2747 */ 2748 2749 /* 2750 * We don't check for CONDEMNED ills here. Caller must do that if 2751 * necessary under the ill lock. 2752 */ 2753 ill_t * 2754 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2755 ip_stack_t *ipst) 2756 { 2757 ill_if_t *ifp; 2758 ill_t *ill; 2759 avl_tree_t *avl_tree; 2760 2761 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2762 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2763 2764 /* 2765 * setup the lists to search 2766 */ 2767 if (end_list != MAX_G_HEADS) { 2768 ctx->ctx_current_list = start_list; 2769 ctx->ctx_last_list = end_list; 2770 } else { 2771 ctx->ctx_last_list = MAX_G_HEADS - 1; 2772 ctx->ctx_current_list = 0; 2773 } 2774 2775 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2776 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2777 if (ifp != (ill_if_t *) 2778 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2779 avl_tree = &ifp->illif_avl_by_ppa; 2780 ill = avl_first(avl_tree); 2781 /* 2782 * ill is guaranteed to be non NULL or ifp should have 2783 * not existed. 2784 */ 2785 ASSERT(ill != NULL); 2786 return (ill); 2787 } 2788 ctx->ctx_current_list++; 2789 } 2790 2791 return (NULL); 2792 } 2793 2794 /* 2795 * returns the next ill in the list. ill_first() must have been called 2796 * before calling ill_next() or bad things will happen. 2797 */ 2798 2799 /* 2800 * We don't check for CONDEMNED ills here. Caller must do that if 2801 * necessary under the ill lock. 2802 */ 2803 ill_t * 2804 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2805 { 2806 ill_if_t *ifp; 2807 ill_t *ill; 2808 ip_stack_t *ipst = lastill->ill_ipst; 2809 2810 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2811 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2812 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2813 AVL_AFTER)) != NULL) { 2814 return (ill); 2815 } 2816 2817 /* goto next ill_ifp in the list. */ 2818 ifp = lastill->ill_ifptr->illif_next; 2819 2820 /* make sure not at end of circular list */ 2821 while (ifp == 2822 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2823 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2824 return (NULL); 2825 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2826 } 2827 2828 return (avl_first(&ifp->illif_avl_by_ppa)); 2829 } 2830 2831 /* 2832 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2833 * The final number (PPA) must not have any leading zeros. Upon success, a 2834 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2835 */ 2836 static char * 2837 ill_get_ppa_ptr(char *name) 2838 { 2839 int namelen = strlen(name); 2840 int end_ndx = namelen - 1; 2841 int ppa_ndx, i; 2842 2843 /* 2844 * Check that the first character is [a-zA-Z], and that the last 2845 * character is [0-9]. 2846 */ 2847 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2848 return (NULL); 2849 2850 /* 2851 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2852 */ 2853 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2854 if (!isdigit(name[ppa_ndx - 1])) 2855 break; 2856 2857 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2858 return (NULL); 2859 2860 /* 2861 * Check that the intermediate characters are [a-z0-9.] 2862 */ 2863 for (i = 1; i < ppa_ndx; i++) { 2864 if (!isalpha(name[i]) && !isdigit(name[i]) && 2865 name[i] != '.' && name[i] != '_') { 2866 return (NULL); 2867 } 2868 } 2869 2870 return (name + ppa_ndx); 2871 } 2872 2873 /* 2874 * use avl tree to locate the ill. 2875 */ 2876 static ill_t * 2877 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2878 { 2879 char *ppa_ptr = NULL; 2880 int len; 2881 uint_t ppa; 2882 ill_t *ill = NULL; 2883 ill_if_t *ifp; 2884 int list; 2885 2886 /* 2887 * get ppa ptr 2888 */ 2889 if (isv6) 2890 list = IP_V6_G_HEAD; 2891 else 2892 list = IP_V4_G_HEAD; 2893 2894 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2895 return (NULL); 2896 } 2897 2898 len = ppa_ptr - name + 1; 2899 2900 ppa = stoi(&ppa_ptr); 2901 2902 ifp = IP_VX_ILL_G_LIST(list, ipst); 2903 2904 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2905 /* 2906 * match is done on len - 1 as the name is not null 2907 * terminated it contains ppa in addition to the interface 2908 * name. 2909 */ 2910 if ((ifp->illif_name_len == len) && 2911 bcmp(ifp->illif_name, name, len - 1) == 0) { 2912 break; 2913 } else { 2914 ifp = ifp->illif_next; 2915 } 2916 } 2917 2918 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2919 /* 2920 * Even the interface type does not exist. 2921 */ 2922 return (NULL); 2923 } 2924 2925 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2926 if (ill != NULL) { 2927 mutex_enter(&ill->ill_lock); 2928 if (ILL_CAN_LOOKUP(ill)) { 2929 ill_refhold_locked(ill); 2930 mutex_exit(&ill->ill_lock); 2931 return (ill); 2932 } 2933 mutex_exit(&ill->ill_lock); 2934 } 2935 return (NULL); 2936 } 2937 2938 /* 2939 * comparison function for use with avl. 2940 */ 2941 static int 2942 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2943 { 2944 uint_t ppa; 2945 uint_t ill_ppa; 2946 2947 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2948 2949 ppa = *((uint_t *)ppa_ptr); 2950 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2951 /* 2952 * We want the ill with the lowest ppa to be on the 2953 * top. 2954 */ 2955 if (ill_ppa < ppa) 2956 return (1); 2957 if (ill_ppa > ppa) 2958 return (-1); 2959 return (0); 2960 } 2961 2962 /* 2963 * remove an interface type from the global list. 2964 */ 2965 static void 2966 ill_delete_interface_type(ill_if_t *interface) 2967 { 2968 ASSERT(interface != NULL); 2969 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2970 2971 avl_destroy(&interface->illif_avl_by_ppa); 2972 if (interface->illif_ppa_arena != NULL) 2973 vmem_destroy(interface->illif_ppa_arena); 2974 2975 remque(interface); 2976 2977 mi_free(interface); 2978 } 2979 2980 /* 2981 * remove ill from the global list. 2982 */ 2983 static void 2984 ill_glist_delete(ill_t *ill) 2985 { 2986 ip_stack_t *ipst; 2987 phyint_t *phyi; 2988 2989 if (ill == NULL) 2990 return; 2991 ipst = ill->ill_ipst; 2992 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2993 2994 /* 2995 * If the ill was never inserted into the AVL tree 2996 * we skip the if branch. 2997 */ 2998 if (ill->ill_ifptr != NULL) { 2999 /* 3000 * remove from AVL tree and free ppa number 3001 */ 3002 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3003 3004 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3005 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3006 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3007 } 3008 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3009 ill_delete_interface_type(ill->ill_ifptr); 3010 } 3011 3012 /* 3013 * Indicate ill is no longer in the list. 3014 */ 3015 ill->ill_ifptr = NULL; 3016 ill->ill_name_length = 0; 3017 ill->ill_name[0] = '\0'; 3018 ill->ill_ppa = UINT_MAX; 3019 } 3020 3021 /* Generate one last event for this ill. */ 3022 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3023 ill->ill_name_length); 3024 3025 ASSERT(ill->ill_phyint != NULL); 3026 phyi = ill->ill_phyint; 3027 ill->ill_phyint = NULL; 3028 3029 /* 3030 * ill_init allocates a phyint always to store the copy 3031 * of flags relevant to phyint. At that point in time, we could 3032 * not assign the name and hence phyint_illv4/v6 could not be 3033 * initialized. Later in ipif_set_values, we assign the name to 3034 * the ill, at which point in time we assign phyint_illv4/v6. 3035 * Thus we don't rely on phyint_illv6 to be initialized always. 3036 */ 3037 if (ill->ill_flags & ILLF_IPV6) 3038 phyi->phyint_illv6 = NULL; 3039 else 3040 phyi->phyint_illv4 = NULL; 3041 3042 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3043 rw_exit(&ipst->ips_ill_g_lock); 3044 return; 3045 } 3046 3047 /* 3048 * There are no ills left on this phyint; pull it out of the phyint 3049 * avl trees, and free it. 3050 */ 3051 if (phyi->phyint_ifindex > 0) { 3052 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3053 phyi); 3054 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3055 phyi); 3056 } 3057 rw_exit(&ipst->ips_ill_g_lock); 3058 3059 phyint_free(phyi); 3060 } 3061 3062 /* 3063 * allocate a ppa, if the number of plumbed interfaces of this type are 3064 * less than ill_no_arena do a linear search to find a unused ppa. 3065 * When the number goes beyond ill_no_arena switch to using an arena. 3066 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3067 * is the return value for an error condition, so allocation starts at one 3068 * and is decremented by one. 3069 */ 3070 static int 3071 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3072 { 3073 ill_t *tmp_ill; 3074 uint_t start, end; 3075 int ppa; 3076 3077 if (ifp->illif_ppa_arena == NULL && 3078 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3079 /* 3080 * Create an arena. 3081 */ 3082 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3083 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3084 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3085 /* allocate what has already been assigned */ 3086 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3087 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3088 tmp_ill, AVL_AFTER)) { 3089 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3090 1, /* size */ 3091 1, /* align/quantum */ 3092 0, /* phase */ 3093 0, /* nocross */ 3094 /* minaddr */ 3095 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3096 /* maxaddr */ 3097 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3098 VM_NOSLEEP|VM_FIRSTFIT); 3099 if (ppa == 0) { 3100 ip1dbg(("ill_alloc_ppa: ppa allocation" 3101 " failed while switching")); 3102 vmem_destroy(ifp->illif_ppa_arena); 3103 ifp->illif_ppa_arena = NULL; 3104 break; 3105 } 3106 } 3107 } 3108 3109 if (ifp->illif_ppa_arena != NULL) { 3110 if (ill->ill_ppa == UINT_MAX) { 3111 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3112 1, VM_NOSLEEP|VM_FIRSTFIT); 3113 if (ppa == 0) 3114 return (EAGAIN); 3115 ill->ill_ppa = --ppa; 3116 } else { 3117 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3118 1, /* size */ 3119 1, /* align/quantum */ 3120 0, /* phase */ 3121 0, /* nocross */ 3122 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3123 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3124 VM_NOSLEEP|VM_FIRSTFIT); 3125 /* 3126 * Most likely the allocation failed because 3127 * the requested ppa was in use. 3128 */ 3129 if (ppa == 0) 3130 return (EEXIST); 3131 } 3132 return (0); 3133 } 3134 3135 /* 3136 * No arena is in use and not enough (>ill_no_arena) interfaces have 3137 * been plumbed to create one. Do a linear search to get a unused ppa. 3138 */ 3139 if (ill->ill_ppa == UINT_MAX) { 3140 end = UINT_MAX - 1; 3141 start = 0; 3142 } else { 3143 end = start = ill->ill_ppa; 3144 } 3145 3146 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3147 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3148 if (start++ >= end) { 3149 if (ill->ill_ppa == UINT_MAX) 3150 return (EAGAIN); 3151 else 3152 return (EEXIST); 3153 } 3154 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3155 } 3156 ill->ill_ppa = start; 3157 return (0); 3158 } 3159 3160 /* 3161 * Insert ill into the list of configured ill's. Once this function completes, 3162 * the ill is globally visible and is available through lookups. More precisely 3163 * this happens after the caller drops the ill_g_lock. 3164 */ 3165 static int 3166 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3167 { 3168 ill_if_t *ill_interface; 3169 avl_index_t where = 0; 3170 int error; 3171 int name_length; 3172 int index; 3173 boolean_t check_length = B_FALSE; 3174 ip_stack_t *ipst = ill->ill_ipst; 3175 3176 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3177 3178 name_length = mi_strlen(name) + 1; 3179 3180 if (isv6) 3181 index = IP_V6_G_HEAD; 3182 else 3183 index = IP_V4_G_HEAD; 3184 3185 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3186 /* 3187 * Search for interface type based on name 3188 */ 3189 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3190 if ((ill_interface->illif_name_len == name_length) && 3191 (strcmp(ill_interface->illif_name, name) == 0)) { 3192 break; 3193 } 3194 ill_interface = ill_interface->illif_next; 3195 } 3196 3197 /* 3198 * Interface type not found, create one. 3199 */ 3200 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3201 ill_g_head_t ghead; 3202 3203 /* 3204 * allocate ill_if_t structure 3205 */ 3206 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3207 if (ill_interface == NULL) { 3208 return (ENOMEM); 3209 } 3210 3211 (void) strcpy(ill_interface->illif_name, name); 3212 ill_interface->illif_name_len = name_length; 3213 3214 avl_create(&ill_interface->illif_avl_by_ppa, 3215 ill_compare_ppa, sizeof (ill_t), 3216 offsetof(struct ill_s, ill_avl_byppa)); 3217 3218 /* 3219 * link the structure in the back to maintain order 3220 * of configuration for ifconfig output. 3221 */ 3222 ghead = ipst->ips_ill_g_heads[index]; 3223 insque(ill_interface, ghead.ill_g_list_tail); 3224 } 3225 3226 if (ill->ill_ppa == UINT_MAX) 3227 check_length = B_TRUE; 3228 3229 error = ill_alloc_ppa(ill_interface, ill); 3230 if (error != 0) { 3231 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3232 ill_delete_interface_type(ill->ill_ifptr); 3233 return (error); 3234 } 3235 3236 /* 3237 * When the ppa is choosen by the system, check that there is 3238 * enough space to insert ppa. if a specific ppa was passed in this 3239 * check is not required as the interface name passed in will have 3240 * the right ppa in it. 3241 */ 3242 if (check_length) { 3243 /* 3244 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3245 */ 3246 char buf[sizeof (uint_t) * 3]; 3247 3248 /* 3249 * convert ppa to string to calculate the amount of space 3250 * required for it in the name. 3251 */ 3252 numtos(ill->ill_ppa, buf); 3253 3254 /* Do we have enough space to insert ppa ? */ 3255 3256 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3257 /* Free ppa and interface type struct */ 3258 if (ill_interface->illif_ppa_arena != NULL) { 3259 vmem_free(ill_interface->illif_ppa_arena, 3260 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3261 } 3262 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3263 ill_delete_interface_type(ill->ill_ifptr); 3264 3265 return (EINVAL); 3266 } 3267 } 3268 3269 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3270 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3271 3272 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3273 &where); 3274 ill->ill_ifptr = ill_interface; 3275 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3276 3277 ill_phyint_reinit(ill); 3278 return (0); 3279 } 3280 3281 /* Initialize the per phyint ipsq used for serialization */ 3282 static boolean_t 3283 ipsq_init(ill_t *ill, boolean_t enter) 3284 { 3285 ipsq_t *ipsq; 3286 ipxop_t *ipx; 3287 3288 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3289 return (B_FALSE); 3290 3291 ill->ill_phyint->phyint_ipsq = ipsq; 3292 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3293 ipx->ipx_ipsq = ipsq; 3294 ipsq->ipsq_next = ipsq; 3295 ipsq->ipsq_phyint = ill->ill_phyint; 3296 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3297 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3298 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3299 if (enter) { 3300 ipx->ipx_writer = curthread; 3301 ipx->ipx_forced = B_FALSE; 3302 ipx->ipx_reentry_cnt = 1; 3303 #ifdef DEBUG 3304 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3305 #endif 3306 } 3307 return (B_TRUE); 3308 } 3309 3310 /* 3311 * ill_init is called by ip_open when a device control stream is opened. 3312 * It does a few initializations, and shoots a DL_INFO_REQ message down 3313 * to the driver. The response is later picked up in ip_rput_dlpi and 3314 * used to set up default mechanisms for talking to the driver. (Always 3315 * called as writer.) 3316 * 3317 * If this function returns error, ip_open will call ip_close which in 3318 * turn will call ill_delete to clean up any memory allocated here that 3319 * is not yet freed. 3320 */ 3321 int 3322 ill_init(queue_t *q, ill_t *ill) 3323 { 3324 int count; 3325 dl_info_req_t *dlir; 3326 mblk_t *info_mp; 3327 uchar_t *frag_ptr; 3328 3329 /* 3330 * The ill is initialized to zero by mi_alloc*(). In addition 3331 * some fields already contain valid values, initialized in 3332 * ip_open(), before we reach here. 3333 */ 3334 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3335 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3336 ill->ill_saved_ire_cnt = 0; 3337 3338 ill->ill_rq = q; 3339 ill->ill_wq = WR(q); 3340 3341 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3342 BPRI_HI); 3343 if (info_mp == NULL) 3344 return (ENOMEM); 3345 3346 /* 3347 * Allocate sufficient space to contain our fragment hash table and 3348 * the device name. 3349 */ 3350 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3351 if (frag_ptr == NULL) { 3352 freemsg(info_mp); 3353 return (ENOMEM); 3354 } 3355 ill->ill_frag_ptr = frag_ptr; 3356 ill->ill_frag_free_num_pkts = 0; 3357 ill->ill_last_frag_clean_time = 0; 3358 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3359 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3360 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3361 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3362 NULL, MUTEX_DEFAULT, NULL); 3363 } 3364 3365 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3366 if (ill->ill_phyint == NULL) { 3367 freemsg(info_mp); 3368 mi_free(frag_ptr); 3369 return (ENOMEM); 3370 } 3371 3372 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3373 /* 3374 * For now pretend this is a v4 ill. We need to set phyint_ill* 3375 * at this point because of the following reason. If we can't 3376 * enter the ipsq at some point and cv_wait, the writer that 3377 * wakes us up tries to locate us using the list of all phyints 3378 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3379 * If we don't set it now, we risk a missed wakeup. 3380 */ 3381 ill->ill_phyint->phyint_illv4 = ill; 3382 ill->ill_ppa = UINT_MAX; 3383 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3384 3385 ill_set_inputfn(ill); 3386 3387 if (!ipsq_init(ill, B_TRUE)) { 3388 freemsg(info_mp); 3389 mi_free(frag_ptr); 3390 mi_free(ill->ill_phyint); 3391 return (ENOMEM); 3392 } 3393 3394 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3395 3396 /* Frag queue limit stuff */ 3397 ill->ill_frag_count = 0; 3398 ill->ill_ipf_gen = 0; 3399 3400 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3401 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3402 ill->ill_global_timer = INFINITY; 3403 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3404 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3405 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3406 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3407 3408 /* 3409 * Initialize IPv6 configuration variables. The IP module is always 3410 * opened as an IPv4 module. Instead tracking down the cases where 3411 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3412 * here for convenience, this has no effect until the ill is set to do 3413 * IPv6. 3414 */ 3415 ill->ill_reachable_time = ND_REACHABLE_TIME; 3416 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3417 ill->ill_max_buf = ND_MAX_Q; 3418 ill->ill_refcnt = 0; 3419 3420 /* Send down the Info Request to the driver. */ 3421 info_mp->b_datap->db_type = M_PCPROTO; 3422 dlir = (dl_info_req_t *)info_mp->b_rptr; 3423 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3424 dlir->dl_primitive = DL_INFO_REQ; 3425 3426 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3427 3428 qprocson(q); 3429 ill_dlpi_send(ill, info_mp); 3430 3431 return (0); 3432 } 3433 3434 /* 3435 * ill_dls_info 3436 * creates datalink socket info from the device. 3437 */ 3438 int 3439 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3440 { 3441 size_t len; 3442 3443 sdl->sdl_family = AF_LINK; 3444 sdl->sdl_index = ill_get_upper_ifindex(ill); 3445 sdl->sdl_type = ill->ill_type; 3446 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3447 len = strlen(sdl->sdl_data); 3448 ASSERT(len < 256); 3449 sdl->sdl_nlen = (uchar_t)len; 3450 sdl->sdl_alen = ill->ill_phys_addr_length; 3451 sdl->sdl_slen = 0; 3452 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3453 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3454 3455 return (sizeof (struct sockaddr_dl)); 3456 } 3457 3458 /* 3459 * ill_xarp_info 3460 * creates xarp info from the device. 3461 */ 3462 static int 3463 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3464 { 3465 sdl->sdl_family = AF_LINK; 3466 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3467 sdl->sdl_type = ill->ill_type; 3468 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3469 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3470 sdl->sdl_alen = ill->ill_phys_addr_length; 3471 sdl->sdl_slen = 0; 3472 return (sdl->sdl_nlen); 3473 } 3474 3475 static int 3476 loopback_kstat_update(kstat_t *ksp, int rw) 3477 { 3478 kstat_named_t *kn; 3479 netstackid_t stackid; 3480 netstack_t *ns; 3481 ip_stack_t *ipst; 3482 3483 if (ksp == NULL || ksp->ks_data == NULL) 3484 return (EIO); 3485 3486 if (rw == KSTAT_WRITE) 3487 return (EACCES); 3488 3489 kn = KSTAT_NAMED_PTR(ksp); 3490 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3491 3492 ns = netstack_find_by_stackid(stackid); 3493 if (ns == NULL) 3494 return (-1); 3495 3496 ipst = ns->netstack_ip; 3497 if (ipst == NULL) { 3498 netstack_rele(ns); 3499 return (-1); 3500 } 3501 kn[0].value.ui32 = ipst->ips_loopback_packets; 3502 kn[1].value.ui32 = ipst->ips_loopback_packets; 3503 netstack_rele(ns); 3504 return (0); 3505 } 3506 3507 /* 3508 * Has ifindex been plumbed already? 3509 */ 3510 static boolean_t 3511 phyint_exists(uint_t index, ip_stack_t *ipst) 3512 { 3513 ASSERT(index != 0); 3514 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3515 3516 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3517 &index, NULL) != NULL); 3518 } 3519 3520 /* Pick a unique ifindex */ 3521 boolean_t 3522 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3523 { 3524 uint_t starting_index; 3525 3526 if (!ipst->ips_ill_index_wrap) { 3527 *indexp = ipst->ips_ill_index++; 3528 if (ipst->ips_ill_index == 0) { 3529 /* Reached the uint_t limit Next time wrap */ 3530 ipst->ips_ill_index_wrap = B_TRUE; 3531 } 3532 return (B_TRUE); 3533 } 3534 3535 /* 3536 * Start reusing unused indexes. Note that we hold the ill_g_lock 3537 * at this point and don't want to call any function that attempts 3538 * to get the lock again. 3539 */ 3540 starting_index = ipst->ips_ill_index++; 3541 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3542 if (ipst->ips_ill_index != 0 && 3543 !phyint_exists(ipst->ips_ill_index, ipst)) { 3544 /* found unused index - use it */ 3545 *indexp = ipst->ips_ill_index; 3546 return (B_TRUE); 3547 } 3548 } 3549 3550 /* 3551 * all interface indicies are inuse. 3552 */ 3553 return (B_FALSE); 3554 } 3555 3556 /* 3557 * Assign a unique interface index for the phyint. 3558 */ 3559 static boolean_t 3560 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3561 { 3562 ASSERT(phyi->phyint_ifindex == 0); 3563 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3564 } 3565 3566 /* 3567 * Initialize the flags on `phyi' as per the provided mactype. 3568 */ 3569 static void 3570 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3571 { 3572 uint64_t flags = 0; 3573 3574 /* 3575 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3576 * we always presume the underlying hardware is working and set 3577 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3578 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3579 * there are no active interfaces in the group so we set PHYI_FAILED. 3580 */ 3581 if (mactype == SUNW_DL_IPMP) 3582 flags |= PHYI_FAILED; 3583 else 3584 flags |= PHYI_RUNNING; 3585 3586 switch (mactype) { 3587 case SUNW_DL_VNI: 3588 flags |= PHYI_VIRTUAL; 3589 break; 3590 case SUNW_DL_IPMP: 3591 flags |= PHYI_IPMP; 3592 break; 3593 case DL_LOOP: 3594 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3595 break; 3596 } 3597 3598 mutex_enter(&phyi->phyint_lock); 3599 phyi->phyint_flags |= flags; 3600 mutex_exit(&phyi->phyint_lock); 3601 } 3602 3603 /* 3604 * Return a pointer to the ill which matches the supplied name. Note that 3605 * the ill name length includes the null termination character. (May be 3606 * called as writer.) 3607 * If do_alloc and the interface is "lo0" it will be automatically created. 3608 * Cannot bump up reference on condemned ills. So dup detect can't be done 3609 * using this func. 3610 */ 3611 ill_t * 3612 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3613 boolean_t *did_alloc, ip_stack_t *ipst) 3614 { 3615 ill_t *ill; 3616 ipif_t *ipif; 3617 ipsq_t *ipsq; 3618 kstat_named_t *kn; 3619 boolean_t isloopback; 3620 in6_addr_t ov6addr; 3621 3622 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3623 3624 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3625 ill = ill_find_by_name(name, isv6, ipst); 3626 rw_exit(&ipst->ips_ill_g_lock); 3627 if (ill != NULL) 3628 return (ill); 3629 3630 /* 3631 * Couldn't find it. Does this happen to be a lookup for the 3632 * loopback device and are we allowed to allocate it? 3633 */ 3634 if (!isloopback || !do_alloc) 3635 return (NULL); 3636 3637 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3638 ill = ill_find_by_name(name, isv6, ipst); 3639 if (ill != NULL) { 3640 rw_exit(&ipst->ips_ill_g_lock); 3641 return (ill); 3642 } 3643 3644 /* Create the loopback device on demand */ 3645 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3646 sizeof (ipif_loopback_name), BPRI_MED)); 3647 if (ill == NULL) 3648 goto done; 3649 3650 *ill = ill_null; 3651 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3652 ill->ill_ipst = ipst; 3653 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3654 netstack_hold(ipst->ips_netstack); 3655 /* 3656 * For exclusive stacks we set the zoneid to zero 3657 * to make IP operate as if in the global zone. 3658 */ 3659 ill->ill_zoneid = GLOBAL_ZONEID; 3660 3661 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3662 if (ill->ill_phyint == NULL) 3663 goto done; 3664 3665 if (isv6) 3666 ill->ill_phyint->phyint_illv6 = ill; 3667 else 3668 ill->ill_phyint->phyint_illv4 = ill; 3669 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3670 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3671 3672 if (isv6) { 3673 ill->ill_isv6 = B_TRUE; 3674 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3675 } else { 3676 ill->ill_max_frag = ip_loopback_mtuplus; 3677 } 3678 if (!ill_allocate_mibs(ill)) 3679 goto done; 3680 ill->ill_current_frag = ill->ill_max_frag; 3681 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3682 /* 3683 * ipif_loopback_name can't be pointed at directly because its used 3684 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3685 * from the glist, ill_glist_delete() sets the first character of 3686 * ill_name to '\0'. 3687 */ 3688 ill->ill_name = (char *)ill + sizeof (*ill); 3689 (void) strcpy(ill->ill_name, ipif_loopback_name); 3690 ill->ill_name_length = sizeof (ipif_loopback_name); 3691 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3692 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3693 3694 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3695 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3696 ill->ill_global_timer = INFINITY; 3697 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3698 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3699 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3700 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3701 3702 /* No resolver here. */ 3703 ill->ill_net_type = IRE_LOOPBACK; 3704 3705 /* Initialize the ipsq */ 3706 if (!ipsq_init(ill, B_FALSE)) 3707 goto done; 3708 3709 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3710 if (ipif == NULL) 3711 goto done; 3712 3713 ill->ill_flags = ILLF_MULTICAST; 3714 3715 ov6addr = ipif->ipif_v6lcl_addr; 3716 /* Set up default loopback address and mask. */ 3717 if (!isv6) { 3718 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3719 3720 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3721 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3722 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3723 ipif->ipif_v6subnet); 3724 ill->ill_flags |= ILLF_IPV4; 3725 } else { 3726 ipif->ipif_v6lcl_addr = ipv6_loopback; 3727 ipif->ipif_v6net_mask = ipv6_all_ones; 3728 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3729 ipif->ipif_v6subnet); 3730 ill->ill_flags |= ILLF_IPV6; 3731 } 3732 3733 /* 3734 * Chain us in at the end of the ill list. hold the ill 3735 * before we make it globally visible. 1 for the lookup. 3736 */ 3737 ill->ill_refcnt = 0; 3738 ill_refhold(ill); 3739 3740 ill->ill_frag_count = 0; 3741 ill->ill_frag_free_num_pkts = 0; 3742 ill->ill_last_frag_clean_time = 0; 3743 3744 ipsq = ill->ill_phyint->phyint_ipsq; 3745 3746 ill_set_inputfn(ill); 3747 3748 if (ill_glist_insert(ill, "lo", isv6) != 0) 3749 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3750 3751 /* Let SCTP know so that it can add this to its list */ 3752 sctp_update_ill(ill, SCTP_ILL_INSERT); 3753 3754 /* 3755 * We have already assigned ipif_v6lcl_addr above, but we need to 3756 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3757 * requires to be after ill_glist_insert() since we need the 3758 * ill_index set. Pass on ipv6_loopback as the old address. 3759 */ 3760 sctp_update_ipif_addr(ipif, ov6addr); 3761 3762 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3763 3764 /* 3765 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3766 * If so, free our original one. 3767 */ 3768 if (ipsq != ill->ill_phyint->phyint_ipsq) 3769 ipsq_delete(ipsq); 3770 3771 if (ipst->ips_loopback_ksp == NULL) { 3772 /* Export loopback interface statistics */ 3773 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3774 ipif_loopback_name, "net", 3775 KSTAT_TYPE_NAMED, 2, 0, 3776 ipst->ips_netstack->netstack_stackid); 3777 if (ipst->ips_loopback_ksp != NULL) { 3778 ipst->ips_loopback_ksp->ks_update = 3779 loopback_kstat_update; 3780 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3781 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3782 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3783 ipst->ips_loopback_ksp->ks_private = 3784 (void *)(uintptr_t)ipst->ips_netstack-> 3785 netstack_stackid; 3786 kstat_install(ipst->ips_loopback_ksp); 3787 } 3788 } 3789 3790 *did_alloc = B_TRUE; 3791 rw_exit(&ipst->ips_ill_g_lock); 3792 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3793 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3794 return (ill); 3795 done: 3796 if (ill != NULL) { 3797 if (ill->ill_phyint != NULL) { 3798 ipsq = ill->ill_phyint->phyint_ipsq; 3799 if (ipsq != NULL) { 3800 ipsq->ipsq_phyint = NULL; 3801 ipsq_delete(ipsq); 3802 } 3803 mi_free(ill->ill_phyint); 3804 } 3805 ill_free_mib(ill); 3806 if (ill->ill_ipst != NULL) 3807 netstack_rele(ill->ill_ipst->ips_netstack); 3808 mi_free(ill); 3809 } 3810 rw_exit(&ipst->ips_ill_g_lock); 3811 return (NULL); 3812 } 3813 3814 /* 3815 * For IPP calls - use the ip_stack_t for global stack. 3816 */ 3817 ill_t * 3818 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3819 { 3820 ip_stack_t *ipst; 3821 ill_t *ill; 3822 3823 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3824 if (ipst == NULL) { 3825 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3826 return (NULL); 3827 } 3828 3829 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3830 netstack_rele(ipst->ips_netstack); 3831 return (ill); 3832 } 3833 3834 /* 3835 * Return a pointer to the ill which matches the index and IP version type. 3836 */ 3837 ill_t * 3838 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3839 { 3840 ill_t *ill; 3841 phyint_t *phyi; 3842 3843 /* 3844 * Indexes are stored in the phyint - a common structure 3845 * to both IPv4 and IPv6. 3846 */ 3847 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3848 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3849 (void *) &index, NULL); 3850 if (phyi != NULL) { 3851 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3852 if (ill != NULL) { 3853 mutex_enter(&ill->ill_lock); 3854 if (!ILL_IS_CONDEMNED(ill)) { 3855 ill_refhold_locked(ill); 3856 mutex_exit(&ill->ill_lock); 3857 rw_exit(&ipst->ips_ill_g_lock); 3858 return (ill); 3859 } 3860 mutex_exit(&ill->ill_lock); 3861 } 3862 } 3863 rw_exit(&ipst->ips_ill_g_lock); 3864 return (NULL); 3865 } 3866 3867 /* 3868 * Verify whether or not an interface index is valid for the specified zoneid 3869 * to transmit packets. 3870 * It can be zero (meaning "reset") or an interface index assigned 3871 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3872 */ 3873 boolean_t 3874 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3875 ip_stack_t *ipst) 3876 { 3877 ill_t *ill; 3878 3879 if (ifindex == 0) 3880 return (B_TRUE); 3881 3882 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3883 if (ill == NULL) 3884 return (B_FALSE); 3885 if (IS_VNI(ill)) { 3886 ill_refrele(ill); 3887 return (B_FALSE); 3888 } 3889 ill_refrele(ill); 3890 return (B_TRUE); 3891 } 3892 3893 /* 3894 * Return the ifindex next in sequence after the passed in ifindex. 3895 * If there is no next ifindex for the given protocol, return 0. 3896 */ 3897 uint_t 3898 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3899 { 3900 phyint_t *phyi; 3901 phyint_t *phyi_initial; 3902 uint_t ifindex; 3903 3904 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3905 3906 if (index == 0) { 3907 phyi = avl_first( 3908 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3909 } else { 3910 phyi = phyi_initial = avl_find( 3911 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3912 (void *) &index, NULL); 3913 } 3914 3915 for (; phyi != NULL; 3916 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3917 phyi, AVL_AFTER)) { 3918 /* 3919 * If we're not returning the first interface in the tree 3920 * and we still haven't moved past the phyint_t that 3921 * corresponds to index, avl_walk needs to be called again 3922 */ 3923 if (!((index != 0) && (phyi == phyi_initial))) { 3924 if (isv6) { 3925 if ((phyi->phyint_illv6) && 3926 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3927 (phyi->phyint_illv6->ill_isv6 == 1)) 3928 break; 3929 } else { 3930 if ((phyi->phyint_illv4) && 3931 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3932 (phyi->phyint_illv4->ill_isv6 == 0)) 3933 break; 3934 } 3935 } 3936 } 3937 3938 rw_exit(&ipst->ips_ill_g_lock); 3939 3940 if (phyi != NULL) 3941 ifindex = phyi->phyint_ifindex; 3942 else 3943 ifindex = 0; 3944 3945 return (ifindex); 3946 } 3947 3948 /* 3949 * Return the ifindex for the named interface. 3950 * If there is no next ifindex for the interface, return 0. 3951 */ 3952 uint_t 3953 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3954 { 3955 phyint_t *phyi; 3956 avl_index_t where = 0; 3957 uint_t ifindex; 3958 3959 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3960 3961 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3962 name, &where)) == NULL) { 3963 rw_exit(&ipst->ips_ill_g_lock); 3964 return (0); 3965 } 3966 3967 ifindex = phyi->phyint_ifindex; 3968 3969 rw_exit(&ipst->ips_ill_g_lock); 3970 3971 return (ifindex); 3972 } 3973 3974 /* 3975 * Return the ifindex to be used by upper layer protocols for instance 3976 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 3977 */ 3978 uint_t 3979 ill_get_upper_ifindex(const ill_t *ill) 3980 { 3981 if (IS_UNDER_IPMP(ill)) 3982 return (ipmp_ill_get_ipmp_ifindex(ill)); 3983 else 3984 return (ill->ill_phyint->phyint_ifindex); 3985 } 3986 3987 3988 /* 3989 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 3990 * that gives a running thread a reference to the ill. This reference must be 3991 * released by the thread when it is done accessing the ill and related 3992 * objects. ill_refcnt can not be used to account for static references 3993 * such as other structures pointing to an ill. Callers must generally 3994 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 3995 * or be sure that the ill is not being deleted or changing state before 3996 * calling the refhold functions. A non-zero ill_refcnt ensures that the 3997 * ill won't change any of its critical state such as address, netmask etc. 3998 */ 3999 void 4000 ill_refhold(ill_t *ill) 4001 { 4002 mutex_enter(&ill->ill_lock); 4003 ill->ill_refcnt++; 4004 ILL_TRACE_REF(ill); 4005 mutex_exit(&ill->ill_lock); 4006 } 4007 4008 void 4009 ill_refhold_locked(ill_t *ill) 4010 { 4011 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4012 ill->ill_refcnt++; 4013 ILL_TRACE_REF(ill); 4014 } 4015 4016 /* Returns true if we managed to get a refhold */ 4017 boolean_t 4018 ill_check_and_refhold(ill_t *ill) 4019 { 4020 mutex_enter(&ill->ill_lock); 4021 if (!ILL_IS_CONDEMNED(ill)) { 4022 ill_refhold_locked(ill); 4023 mutex_exit(&ill->ill_lock); 4024 return (B_TRUE); 4025 } 4026 mutex_exit(&ill->ill_lock); 4027 return (B_FALSE); 4028 } 4029 4030 /* 4031 * Must not be called while holding any locks. Otherwise if this is 4032 * the last reference to be released, there is a chance of recursive mutex 4033 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4034 * to restart an ioctl. 4035 */ 4036 void 4037 ill_refrele(ill_t *ill) 4038 { 4039 mutex_enter(&ill->ill_lock); 4040 ASSERT(ill->ill_refcnt != 0); 4041 ill->ill_refcnt--; 4042 ILL_UNTRACE_REF(ill); 4043 if (ill->ill_refcnt != 0) { 4044 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4045 mutex_exit(&ill->ill_lock); 4046 return; 4047 } 4048 4049 /* Drops the ill_lock */ 4050 ipif_ill_refrele_tail(ill); 4051 } 4052 4053 /* 4054 * Obtain a weak reference count on the ill. This reference ensures the 4055 * ill won't be freed, but the ill may change any of its critical state 4056 * such as netmask, address etc. Returns an error if the ill has started 4057 * closing. 4058 */ 4059 boolean_t 4060 ill_waiter_inc(ill_t *ill) 4061 { 4062 mutex_enter(&ill->ill_lock); 4063 if (ill->ill_state_flags & ILL_CONDEMNED) { 4064 mutex_exit(&ill->ill_lock); 4065 return (B_FALSE); 4066 } 4067 ill->ill_waiters++; 4068 mutex_exit(&ill->ill_lock); 4069 return (B_TRUE); 4070 } 4071 4072 void 4073 ill_waiter_dcr(ill_t *ill) 4074 { 4075 mutex_enter(&ill->ill_lock); 4076 ill->ill_waiters--; 4077 if (ill->ill_waiters == 0) 4078 cv_broadcast(&ill->ill_cv); 4079 mutex_exit(&ill->ill_lock); 4080 } 4081 4082 /* 4083 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4084 * driver. We construct best guess defaults for lower level information that 4085 * we need. If an interface is brought up without injection of any overriding 4086 * information from outside, we have to be ready to go with these defaults. 4087 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4088 * we primarely want the dl_provider_style. 4089 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4090 * at which point we assume the other part of the information is valid. 4091 */ 4092 void 4093 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4094 { 4095 uchar_t *brdcst_addr; 4096 uint_t brdcst_addr_length, phys_addr_length; 4097 t_scalar_t sap_length; 4098 dl_info_ack_t *dlia; 4099 ip_m_t *ipm; 4100 dl_qos_cl_sel1_t *sel1; 4101 int min_mtu; 4102 4103 ASSERT(IAM_WRITER_ILL(ill)); 4104 4105 /* 4106 * Till the ill is fully up the ill is not globally visible. 4107 * So no need for a lock. 4108 */ 4109 dlia = (dl_info_ack_t *)mp->b_rptr; 4110 ill->ill_mactype = dlia->dl_mac_type; 4111 4112 ipm = ip_m_lookup(dlia->dl_mac_type); 4113 if (ipm == NULL) { 4114 ipm = ip_m_lookup(DL_OTHER); 4115 ASSERT(ipm != NULL); 4116 } 4117 ill->ill_media = ipm; 4118 4119 /* 4120 * When the new DLPI stuff is ready we'll pull lengths 4121 * from dlia. 4122 */ 4123 if (dlia->dl_version == DL_VERSION_2) { 4124 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4125 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4126 brdcst_addr_length); 4127 if (brdcst_addr == NULL) { 4128 brdcst_addr_length = 0; 4129 } 4130 sap_length = dlia->dl_sap_length; 4131 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4132 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4133 brdcst_addr_length, sap_length, phys_addr_length)); 4134 } else { 4135 brdcst_addr_length = 6; 4136 brdcst_addr = ip_six_byte_all_ones; 4137 sap_length = -2; 4138 phys_addr_length = brdcst_addr_length; 4139 } 4140 4141 ill->ill_bcast_addr_length = brdcst_addr_length; 4142 ill->ill_phys_addr_length = phys_addr_length; 4143 ill->ill_sap_length = sap_length; 4144 4145 /* 4146 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4147 * but we must ensure a minimum IP MTU is used since other bits of 4148 * IP will fly apart otherwise. 4149 */ 4150 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4151 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4152 ill->ill_current_frag = ill->ill_max_frag; 4153 ill->ill_mtu = ill->ill_max_frag; 4154 4155 ill->ill_type = ipm->ip_m_type; 4156 4157 if (!ill->ill_dlpi_style_set) { 4158 if (dlia->dl_provider_style == DL_STYLE2) 4159 ill->ill_needs_attach = 1; 4160 4161 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4162 4163 /* 4164 * Allocate the first ipif on this ill. We don't delay it 4165 * further as ioctl handling assumes at least one ipif exists. 4166 * 4167 * At this point we don't know whether the ill is v4 or v6. 4168 * We will know this whan the SIOCSLIFNAME happens and 4169 * the correct value for ill_isv6 will be assigned in 4170 * ipif_set_values(). We need to hold the ill lock and 4171 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4172 * the wakeup. 4173 */ 4174 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4175 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4176 mutex_enter(&ill->ill_lock); 4177 ASSERT(ill->ill_dlpi_style_set == 0); 4178 ill->ill_dlpi_style_set = 1; 4179 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4180 cv_broadcast(&ill->ill_cv); 4181 mutex_exit(&ill->ill_lock); 4182 freemsg(mp); 4183 return; 4184 } 4185 ASSERT(ill->ill_ipif != NULL); 4186 /* 4187 * We know whether it is IPv4 or IPv6 now, as this is the 4188 * second DL_INFO_ACK we are recieving in response to the 4189 * DL_INFO_REQ sent in ipif_set_values. 4190 */ 4191 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4192 /* 4193 * Clear all the flags that were set based on ill_bcast_addr_length 4194 * and ill_phys_addr_length (in ipif_set_values) as these could have 4195 * changed now and we need to re-evaluate. 4196 */ 4197 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4198 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4199 4200 /* 4201 * Free ill_bcast_mp as things could have changed now. 4202 * 4203 * NOTE: The IPMP meta-interface is special-cased because it starts 4204 * with no underlying interfaces (and thus an unknown broadcast 4205 * address length), but we enforce that an interface is broadcast- 4206 * capable as part of allowing it to join a group. 4207 */ 4208 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4209 if (ill->ill_bcast_mp != NULL) 4210 freemsg(ill->ill_bcast_mp); 4211 ill->ill_net_type = IRE_IF_NORESOLVER; 4212 4213 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4214 ill->ill_phys_addr_length, 4215 ill->ill_sap, 4216 ill->ill_sap_length); 4217 4218 if (ill->ill_isv6) 4219 /* 4220 * Note: xresolv interfaces will eventually need NOARP 4221 * set here as well, but that will require those 4222 * external resolvers to have some knowledge of 4223 * that flag and act appropriately. Not to be changed 4224 * at present. 4225 */ 4226 ill->ill_flags |= ILLF_NONUD; 4227 else 4228 ill->ill_flags |= ILLF_NOARP; 4229 4230 if (ill->ill_mactype == SUNW_DL_VNI) { 4231 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4232 } else if (ill->ill_phys_addr_length == 0 || 4233 ill->ill_mactype == DL_IPV4 || 4234 ill->ill_mactype == DL_IPV6) { 4235 /* 4236 * The underying link is point-to-point, so mark the 4237 * interface as such. We can do IP multicast over 4238 * such a link since it transmits all network-layer 4239 * packets to the remote side the same way. 4240 */ 4241 ill->ill_flags |= ILLF_MULTICAST; 4242 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4243 } 4244 } else { 4245 ill->ill_net_type = IRE_IF_RESOLVER; 4246 if (ill->ill_bcast_mp != NULL) 4247 freemsg(ill->ill_bcast_mp); 4248 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4249 ill->ill_bcast_addr_length, ill->ill_sap, 4250 ill->ill_sap_length); 4251 /* 4252 * Later detect lack of DLPI driver multicast 4253 * capability by catching DL_ENABMULTI errors in 4254 * ip_rput_dlpi. 4255 */ 4256 ill->ill_flags |= ILLF_MULTICAST; 4257 if (!ill->ill_isv6) 4258 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4259 } 4260 4261 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4262 if (ill->ill_mactype == SUNW_DL_IPMP) 4263 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4264 4265 /* By default an interface does not support any CoS marking */ 4266 ill->ill_flags &= ~ILLF_COS_ENABLED; 4267 4268 /* 4269 * If we get QoS information in DL_INFO_ACK, the device supports 4270 * some form of CoS marking, set ILLF_COS_ENABLED. 4271 */ 4272 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4273 dlia->dl_qos_length); 4274 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4275 ill->ill_flags |= ILLF_COS_ENABLED; 4276 } 4277 4278 /* Clear any previous error indication. */ 4279 ill->ill_error = 0; 4280 freemsg(mp); 4281 } 4282 4283 /* 4284 * Perform various checks to verify that an address would make sense as a 4285 * local, remote, or subnet interface address. 4286 */ 4287 static boolean_t 4288 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4289 { 4290 ipaddr_t net_mask; 4291 4292 /* 4293 * Don't allow all zeroes, or all ones, but allow 4294 * all ones netmask. 4295 */ 4296 if ((net_mask = ip_net_mask(addr)) == 0) 4297 return (B_FALSE); 4298 /* A given netmask overrides the "guess" netmask */ 4299 if (subnet_mask != 0) 4300 net_mask = subnet_mask; 4301 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4302 (addr == (addr | ~net_mask)))) { 4303 return (B_FALSE); 4304 } 4305 4306 /* 4307 * Even if the netmask is all ones, we do not allow address to be 4308 * 255.255.255.255 4309 */ 4310 if (addr == INADDR_BROADCAST) 4311 return (B_FALSE); 4312 4313 if (CLASSD(addr)) 4314 return (B_FALSE); 4315 4316 return (B_TRUE); 4317 } 4318 4319 #define V6_IPIF_LINKLOCAL(p) \ 4320 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4321 4322 /* 4323 * Compare two given ipifs and check if the second one is better than 4324 * the first one using the order of preference (not taking deprecated 4325 * into acount) specified in ipif_lookup_multicast(). 4326 */ 4327 static boolean_t 4328 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4329 { 4330 /* Check the least preferred first. */ 4331 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4332 /* If both ipifs are the same, use the first one. */ 4333 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4334 return (B_FALSE); 4335 else 4336 return (B_TRUE); 4337 } 4338 4339 /* For IPv6, check for link local address. */ 4340 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4341 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4342 V6_IPIF_LINKLOCAL(new_ipif)) { 4343 /* The second one is equal or less preferred. */ 4344 return (B_FALSE); 4345 } else { 4346 return (B_TRUE); 4347 } 4348 } 4349 4350 /* Then check for point to point interface. */ 4351 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4352 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4353 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4354 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4355 return (B_FALSE); 4356 } else { 4357 return (B_TRUE); 4358 } 4359 } 4360 4361 /* old_ipif is a normal interface, so no need to use the new one. */ 4362 return (B_FALSE); 4363 } 4364 4365 /* 4366 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4367 * The ipif must be up, and its ill must multicast-capable, not 4368 * condemned, not an underlying interface in an IPMP group, and 4369 * not a VNI interface. Order of preference: 4370 * 4371 * 1a. normal 4372 * 1b. normal, but deprecated 4373 * 2a. point to point 4374 * 2b. point to point, but deprecated 4375 * 3a. link local 4376 * 3b. link local, but deprecated 4377 * 4. loopback. 4378 */ 4379 static ipif_t * 4380 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4381 { 4382 ill_t *ill; 4383 ill_walk_context_t ctx; 4384 ipif_t *ipif; 4385 ipif_t *saved_ipif = NULL; 4386 ipif_t *dep_ipif = NULL; 4387 4388 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4389 if (isv6) 4390 ill = ILL_START_WALK_V6(&ctx, ipst); 4391 else 4392 ill = ILL_START_WALK_V4(&ctx, ipst); 4393 4394 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4395 mutex_enter(&ill->ill_lock); 4396 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4397 ILL_IS_CONDEMNED(ill) || 4398 !(ill->ill_flags & ILLF_MULTICAST)) { 4399 mutex_exit(&ill->ill_lock); 4400 continue; 4401 } 4402 for (ipif = ill->ill_ipif; ipif != NULL; 4403 ipif = ipif->ipif_next) { 4404 if (zoneid != ipif->ipif_zoneid && 4405 zoneid != ALL_ZONES && 4406 ipif->ipif_zoneid != ALL_ZONES) { 4407 continue; 4408 } 4409 if (!(ipif->ipif_flags & IPIF_UP) || 4410 IPIF_IS_CONDEMNED(ipif)) { 4411 continue; 4412 } 4413 4414 /* 4415 * Found one candidate. If it is deprecated, 4416 * remember it in dep_ipif. If it is not deprecated, 4417 * remember it in saved_ipif. 4418 */ 4419 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4420 if (dep_ipif == NULL) { 4421 dep_ipif = ipif; 4422 } else if (ipif_comp_multi(dep_ipif, ipif, 4423 isv6)) { 4424 /* 4425 * If the previous dep_ipif does not 4426 * belong to the same ill, we've done 4427 * a ipif_refhold() on it. So we need 4428 * to release it. 4429 */ 4430 if (dep_ipif->ipif_ill != ill) 4431 ipif_refrele(dep_ipif); 4432 dep_ipif = ipif; 4433 } 4434 continue; 4435 } 4436 if (saved_ipif == NULL) { 4437 saved_ipif = ipif; 4438 } else { 4439 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4440 if (saved_ipif->ipif_ill != ill) 4441 ipif_refrele(saved_ipif); 4442 saved_ipif = ipif; 4443 } 4444 } 4445 } 4446 /* 4447 * Before going to the next ill, do a ipif_refhold() on the 4448 * saved ones. 4449 */ 4450 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4451 ipif_refhold_locked(saved_ipif); 4452 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4453 ipif_refhold_locked(dep_ipif); 4454 mutex_exit(&ill->ill_lock); 4455 } 4456 rw_exit(&ipst->ips_ill_g_lock); 4457 4458 /* 4459 * If we have only the saved_ipif, return it. But if we have both 4460 * saved_ipif and dep_ipif, check to see which one is better. 4461 */ 4462 if (saved_ipif != NULL) { 4463 if (dep_ipif != NULL) { 4464 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4465 ipif_refrele(saved_ipif); 4466 return (dep_ipif); 4467 } else { 4468 ipif_refrele(dep_ipif); 4469 return (saved_ipif); 4470 } 4471 } 4472 return (saved_ipif); 4473 } else { 4474 return (dep_ipif); 4475 } 4476 } 4477 4478 ill_t * 4479 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4480 { 4481 ipif_t *ipif; 4482 ill_t *ill; 4483 4484 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4485 if (ipif == NULL) 4486 return (NULL); 4487 4488 ill = ipif->ipif_ill; 4489 ill_refhold(ill); 4490 ipif_refrele(ipif); 4491 return (ill); 4492 } 4493 4494 /* 4495 * This function is called when an application does not specify an interface 4496 * to be used for multicast traffic (joining a group/sending data). It 4497 * calls ire_lookup_multi() to look for an interface route for the 4498 * specified multicast group. Doing this allows the administrator to add 4499 * prefix routes for multicast to indicate which interface to be used for 4500 * multicast traffic in the above scenario. The route could be for all 4501 * multicast (224.0/4), for a single multicast group (a /32 route) or 4502 * anything in between. If there is no such multicast route, we just find 4503 * any multicast capable interface and return it. The returned ipif 4504 * is refhold'ed. 4505 * 4506 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4507 * unicast table. This is used by CGTP. 4508 */ 4509 ill_t * 4510 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4511 boolean_t *multirtp, ipaddr_t *setsrcp) 4512 { 4513 ill_t *ill; 4514 4515 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4516 if (ill != NULL) 4517 return (ill); 4518 4519 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4520 } 4521 4522 /* 4523 * Look for an ipif with the specified interface address and destination. 4524 * The destination address is used only for matching point-to-point interfaces. 4525 */ 4526 ipif_t * 4527 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4528 { 4529 ipif_t *ipif; 4530 ill_t *ill; 4531 ill_walk_context_t ctx; 4532 4533 /* 4534 * First match all the point-to-point interfaces 4535 * before looking at non-point-to-point interfaces. 4536 * This is done to avoid returning non-point-to-point 4537 * ipif instead of unnumbered point-to-point ipif. 4538 */ 4539 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4540 ill = ILL_START_WALK_V4(&ctx, ipst); 4541 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4542 mutex_enter(&ill->ill_lock); 4543 for (ipif = ill->ill_ipif; ipif != NULL; 4544 ipif = ipif->ipif_next) { 4545 /* Allow the ipif to be down */ 4546 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4547 (ipif->ipif_lcl_addr == if_addr) && 4548 (ipif->ipif_pp_dst_addr == dst)) { 4549 if (!IPIF_IS_CONDEMNED(ipif)) { 4550 ipif_refhold_locked(ipif); 4551 mutex_exit(&ill->ill_lock); 4552 rw_exit(&ipst->ips_ill_g_lock); 4553 return (ipif); 4554 } 4555 } 4556 } 4557 mutex_exit(&ill->ill_lock); 4558 } 4559 rw_exit(&ipst->ips_ill_g_lock); 4560 4561 /* lookup the ipif based on interface address */ 4562 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4563 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4564 return (ipif); 4565 } 4566 4567 /* 4568 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4569 */ 4570 static ipif_t * 4571 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4572 zoneid_t zoneid, ip_stack_t *ipst) 4573 { 4574 ipif_t *ipif; 4575 ill_t *ill; 4576 boolean_t ptp = B_FALSE; 4577 ill_walk_context_t ctx; 4578 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4579 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4580 4581 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4582 /* 4583 * Repeat twice, first based on local addresses and 4584 * next time for pointopoint. 4585 */ 4586 repeat: 4587 ill = ILL_START_WALK_V4(&ctx, ipst); 4588 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4589 if (match_ill != NULL && ill != match_ill && 4590 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4591 continue; 4592 } 4593 mutex_enter(&ill->ill_lock); 4594 for (ipif = ill->ill_ipif; ipif != NULL; 4595 ipif = ipif->ipif_next) { 4596 if (zoneid != ALL_ZONES && 4597 zoneid != ipif->ipif_zoneid && 4598 ipif->ipif_zoneid != ALL_ZONES) 4599 continue; 4600 4601 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4602 continue; 4603 4604 /* Allow the ipif to be down */ 4605 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4606 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4607 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4608 (ipif->ipif_pp_dst_addr == addr))) { 4609 if (!IPIF_IS_CONDEMNED(ipif)) { 4610 ipif_refhold_locked(ipif); 4611 mutex_exit(&ill->ill_lock); 4612 rw_exit(&ipst->ips_ill_g_lock); 4613 return (ipif); 4614 } 4615 } 4616 } 4617 mutex_exit(&ill->ill_lock); 4618 } 4619 4620 /* If we already did the ptp case, then we are done */ 4621 if (ptp) { 4622 rw_exit(&ipst->ips_ill_g_lock); 4623 return (NULL); 4624 } 4625 ptp = B_TRUE; 4626 goto repeat; 4627 } 4628 4629 /* 4630 * Lookup an ipif with the specified address. For point-to-point links we 4631 * look for matches on either the destination address or the local address, 4632 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4633 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4634 * (or illgrp if `match_ill' is in an IPMP group). 4635 */ 4636 ipif_t * 4637 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4638 ip_stack_t *ipst) 4639 { 4640 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4641 zoneid, ipst)); 4642 } 4643 4644 /* 4645 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4646 * except that we will only return an address if it is not marked as 4647 * IPIF_DUPLICATE 4648 */ 4649 ipif_t * 4650 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4651 ip_stack_t *ipst) 4652 { 4653 return (ipif_lookup_addr_common(addr, match_ill, 4654 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4655 zoneid, ipst)); 4656 } 4657 4658 /* 4659 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4660 * `match_ill' across the IPMP group. This function is only needed in some 4661 * corner-cases; almost everything should use ipif_lookup_addr(). 4662 */ 4663 ipif_t * 4664 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4665 { 4666 ASSERT(match_ill != NULL); 4667 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4668 ipst)); 4669 } 4670 4671 /* 4672 * Look for an ipif with the specified address. For point-point links 4673 * we look for matches on either the destination address and the local 4674 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4675 * is set. 4676 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4677 * ill (or illgrp if `match_ill' is in an IPMP group). 4678 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4679 */ 4680 zoneid_t 4681 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4682 { 4683 zoneid_t zoneid; 4684 ipif_t *ipif; 4685 ill_t *ill; 4686 boolean_t ptp = B_FALSE; 4687 ill_walk_context_t ctx; 4688 4689 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4690 /* 4691 * Repeat twice, first based on local addresses and 4692 * next time for pointopoint. 4693 */ 4694 repeat: 4695 ill = ILL_START_WALK_V4(&ctx, ipst); 4696 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4697 if (match_ill != NULL && ill != match_ill && 4698 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4699 continue; 4700 } 4701 mutex_enter(&ill->ill_lock); 4702 for (ipif = ill->ill_ipif; ipif != NULL; 4703 ipif = ipif->ipif_next) { 4704 /* Allow the ipif to be down */ 4705 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4706 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4707 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4708 (ipif->ipif_pp_dst_addr == addr)) && 4709 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4710 zoneid = ipif->ipif_zoneid; 4711 mutex_exit(&ill->ill_lock); 4712 rw_exit(&ipst->ips_ill_g_lock); 4713 /* 4714 * If ipif_zoneid was ALL_ZONES then we have 4715 * a trusted extensions shared IP address. 4716 * In that case GLOBAL_ZONEID works to send. 4717 */ 4718 if (zoneid == ALL_ZONES) 4719 zoneid = GLOBAL_ZONEID; 4720 return (zoneid); 4721 } 4722 } 4723 mutex_exit(&ill->ill_lock); 4724 } 4725 4726 /* If we already did the ptp case, then we are done */ 4727 if (ptp) { 4728 rw_exit(&ipst->ips_ill_g_lock); 4729 return (ALL_ZONES); 4730 } 4731 ptp = B_TRUE; 4732 goto repeat; 4733 } 4734 4735 /* 4736 * Look for an ipif that matches the specified remote address i.e. the 4737 * ipif that would receive the specified packet. 4738 * First look for directly connected interfaces and then do a recursive 4739 * IRE lookup and pick the first ipif corresponding to the source address in the 4740 * ire. 4741 * Returns: held ipif 4742 * 4743 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4744 */ 4745 ipif_t * 4746 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4747 { 4748 ipif_t *ipif; 4749 4750 ASSERT(!ill->ill_isv6); 4751 4752 /* 4753 * Someone could be changing this ipif currently or change it 4754 * after we return this. Thus a few packets could use the old 4755 * old values. However structure updates/creates (ire, ilg, ilm etc) 4756 * will atomically be updated or cleaned up with the new value 4757 * Thus we don't need a lock to check the flags or other attrs below. 4758 */ 4759 mutex_enter(&ill->ill_lock); 4760 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4761 if (IPIF_IS_CONDEMNED(ipif)) 4762 continue; 4763 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4764 ipif->ipif_zoneid != ALL_ZONES) 4765 continue; 4766 /* Allow the ipif to be down */ 4767 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4768 if ((ipif->ipif_pp_dst_addr == addr) || 4769 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4770 ipif->ipif_lcl_addr == addr)) { 4771 ipif_refhold_locked(ipif); 4772 mutex_exit(&ill->ill_lock); 4773 return (ipif); 4774 } 4775 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4776 ipif_refhold_locked(ipif); 4777 mutex_exit(&ill->ill_lock); 4778 return (ipif); 4779 } 4780 } 4781 mutex_exit(&ill->ill_lock); 4782 /* 4783 * For a remote destination it isn't possible to nail down a particular 4784 * ipif. 4785 */ 4786 4787 /* Pick the first interface */ 4788 ipif = ipif_get_next_ipif(NULL, ill); 4789 return (ipif); 4790 } 4791 4792 /* 4793 * This func does not prevent refcnt from increasing. But if 4794 * the caller has taken steps to that effect, then this func 4795 * can be used to determine whether the ill has become quiescent 4796 */ 4797 static boolean_t 4798 ill_is_quiescent(ill_t *ill) 4799 { 4800 ipif_t *ipif; 4801 4802 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4803 4804 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4805 if (ipif->ipif_refcnt != 0) 4806 return (B_FALSE); 4807 } 4808 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4809 return (B_FALSE); 4810 } 4811 return (B_TRUE); 4812 } 4813 4814 boolean_t 4815 ill_is_freeable(ill_t *ill) 4816 { 4817 ipif_t *ipif; 4818 4819 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4820 4821 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4822 if (ipif->ipif_refcnt != 0) { 4823 return (B_FALSE); 4824 } 4825 } 4826 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4827 return (B_FALSE); 4828 } 4829 return (B_TRUE); 4830 } 4831 4832 /* 4833 * This func does not prevent refcnt from increasing. But if 4834 * the caller has taken steps to that effect, then this func 4835 * can be used to determine whether the ipif has become quiescent 4836 */ 4837 static boolean_t 4838 ipif_is_quiescent(ipif_t *ipif) 4839 { 4840 ill_t *ill; 4841 4842 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4843 4844 if (ipif->ipif_refcnt != 0) 4845 return (B_FALSE); 4846 4847 ill = ipif->ipif_ill; 4848 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4849 ill->ill_logical_down) { 4850 return (B_TRUE); 4851 } 4852 4853 /* This is the last ipif going down or being deleted on this ill */ 4854 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4855 return (B_FALSE); 4856 } 4857 4858 return (B_TRUE); 4859 } 4860 4861 /* 4862 * return true if the ipif can be destroyed: the ipif has to be quiescent 4863 * with zero references from ire/ilm to it. 4864 */ 4865 static boolean_t 4866 ipif_is_freeable(ipif_t *ipif) 4867 { 4868 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4869 ASSERT(ipif->ipif_id != 0); 4870 return (ipif->ipif_refcnt == 0); 4871 } 4872 4873 /* 4874 * The ipif/ill/ire has been refreled. Do the tail processing. 4875 * Determine if the ipif or ill in question has become quiescent and if so 4876 * wakeup close and/or restart any queued pending ioctl that is waiting 4877 * for the ipif_down (or ill_down) 4878 */ 4879 void 4880 ipif_ill_refrele_tail(ill_t *ill) 4881 { 4882 mblk_t *mp; 4883 conn_t *connp; 4884 ipsq_t *ipsq; 4885 ipxop_t *ipx; 4886 ipif_t *ipif; 4887 dl_notify_ind_t *dlindp; 4888 4889 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4890 4891 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4892 /* ip_modclose() may be waiting */ 4893 cv_broadcast(&ill->ill_cv); 4894 } 4895 4896 ipsq = ill->ill_phyint->phyint_ipsq; 4897 mutex_enter(&ipsq->ipsq_lock); 4898 ipx = ipsq->ipsq_xop; 4899 mutex_enter(&ipx->ipx_lock); 4900 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4901 goto unlock; 4902 4903 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4904 4905 ipif = ipx->ipx_pending_ipif; 4906 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4907 goto unlock; 4908 4909 switch (ipx->ipx_waitfor) { 4910 case IPIF_DOWN: 4911 if (!ipif_is_quiescent(ipif)) 4912 goto unlock; 4913 break; 4914 case IPIF_FREE: 4915 if (!ipif_is_freeable(ipif)) 4916 goto unlock; 4917 break; 4918 case ILL_DOWN: 4919 if (!ill_is_quiescent(ill)) 4920 goto unlock; 4921 break; 4922 case ILL_FREE: 4923 /* 4924 * ILL_FREE is only for loopback; normal ill teardown waits 4925 * synchronously in ip_modclose() without using ipx_waitfor, 4926 * handled by the cv_broadcast() at the top of this function. 4927 */ 4928 if (!ill_is_freeable(ill)) 4929 goto unlock; 4930 break; 4931 default: 4932 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4933 (void *)ipsq, ipx->ipx_waitfor); 4934 } 4935 4936 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4937 mutex_exit(&ipx->ipx_lock); 4938 mp = ipsq_pending_mp_get(ipsq, &connp); 4939 mutex_exit(&ipsq->ipsq_lock); 4940 mutex_exit(&ill->ill_lock); 4941 4942 ASSERT(mp != NULL); 4943 /* 4944 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4945 * we can only get here when the current operation decides it 4946 * it needs to quiesce via ipsq_pending_mp_add(). 4947 */ 4948 switch (mp->b_datap->db_type) { 4949 case M_PCPROTO: 4950 case M_PROTO: 4951 /* 4952 * For now, only DL_NOTIFY_IND messages can use this facility. 4953 */ 4954 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4955 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4956 4957 switch (dlindp->dl_notification) { 4958 case DL_NOTE_PHYS_ADDR: 4959 qwriter_ip(ill, ill->ill_rq, mp, 4960 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 4961 return; 4962 case DL_NOTE_REPLUMB: 4963 qwriter_ip(ill, ill->ill_rq, mp, 4964 ill_replumb_tail, CUR_OP, B_TRUE); 4965 return; 4966 default: 4967 ASSERT(0); 4968 ill_refrele(ill); 4969 } 4970 break; 4971 4972 case M_ERROR: 4973 case M_HANGUP: 4974 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 4975 B_TRUE); 4976 return; 4977 4978 case M_IOCTL: 4979 case M_IOCDATA: 4980 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 4981 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 4982 return; 4983 4984 default: 4985 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 4986 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 4987 } 4988 return; 4989 unlock: 4990 mutex_exit(&ipsq->ipsq_lock); 4991 mutex_exit(&ipx->ipx_lock); 4992 mutex_exit(&ill->ill_lock); 4993 } 4994 4995 #ifdef DEBUG 4996 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 4997 static void 4998 th_trace_rrecord(th_trace_t *th_trace) 4999 { 5000 tr_buf_t *tr_buf; 5001 uint_t lastref; 5002 5003 lastref = th_trace->th_trace_lastref; 5004 lastref++; 5005 if (lastref == TR_BUF_MAX) 5006 lastref = 0; 5007 th_trace->th_trace_lastref = lastref; 5008 tr_buf = &th_trace->th_trbuf[lastref]; 5009 tr_buf->tr_time = ddi_get_lbolt(); 5010 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5011 } 5012 5013 static void 5014 th_trace_free(void *value) 5015 { 5016 th_trace_t *th_trace = value; 5017 5018 ASSERT(th_trace->th_refcnt == 0); 5019 kmem_free(th_trace, sizeof (*th_trace)); 5020 } 5021 5022 /* 5023 * Find or create the per-thread hash table used to track object references. 5024 * The ipst argument is NULL if we shouldn't allocate. 5025 * 5026 * Accesses per-thread data, so there's no need to lock here. 5027 */ 5028 static mod_hash_t * 5029 th_trace_gethash(ip_stack_t *ipst) 5030 { 5031 th_hash_t *thh; 5032 5033 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5034 mod_hash_t *mh; 5035 char name[256]; 5036 size_t objsize, rshift; 5037 int retv; 5038 5039 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5040 return (NULL); 5041 (void) snprintf(name, sizeof (name), "th_trace_%p", 5042 (void *)curthread); 5043 5044 /* 5045 * We use mod_hash_create_extended here rather than the more 5046 * obvious mod_hash_create_ptrhash because the latter has a 5047 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5048 * block. 5049 */ 5050 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5051 MAX(sizeof (ire_t), sizeof (ncec_t))); 5052 rshift = highbit(objsize); 5053 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5054 th_trace_free, mod_hash_byptr, (void *)rshift, 5055 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5056 if (mh == NULL) { 5057 kmem_free(thh, sizeof (*thh)); 5058 return (NULL); 5059 } 5060 thh->thh_hash = mh; 5061 thh->thh_ipst = ipst; 5062 /* 5063 * We trace ills, ipifs, ires, and nces. All of these are 5064 * per-IP-stack, so the lock on the thread list is as well. 5065 */ 5066 rw_enter(&ip_thread_rwlock, RW_WRITER); 5067 list_insert_tail(&ip_thread_list, thh); 5068 rw_exit(&ip_thread_rwlock); 5069 retv = tsd_set(ip_thread_data, thh); 5070 ASSERT(retv == 0); 5071 } 5072 return (thh != NULL ? thh->thh_hash : NULL); 5073 } 5074 5075 boolean_t 5076 th_trace_ref(const void *obj, ip_stack_t *ipst) 5077 { 5078 th_trace_t *th_trace; 5079 mod_hash_t *mh; 5080 mod_hash_val_t val; 5081 5082 if ((mh = th_trace_gethash(ipst)) == NULL) 5083 return (B_FALSE); 5084 5085 /* 5086 * Attempt to locate the trace buffer for this obj and thread. 5087 * If it does not exist, then allocate a new trace buffer and 5088 * insert into the hash. 5089 */ 5090 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5091 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5092 if (th_trace == NULL) 5093 return (B_FALSE); 5094 5095 th_trace->th_id = curthread; 5096 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5097 (mod_hash_val_t)th_trace) != 0) { 5098 kmem_free(th_trace, sizeof (th_trace_t)); 5099 return (B_FALSE); 5100 } 5101 } else { 5102 th_trace = (th_trace_t *)val; 5103 } 5104 5105 ASSERT(th_trace->th_refcnt >= 0 && 5106 th_trace->th_refcnt < TR_BUF_MAX - 1); 5107 5108 th_trace->th_refcnt++; 5109 th_trace_rrecord(th_trace); 5110 return (B_TRUE); 5111 } 5112 5113 /* 5114 * For the purpose of tracing a reference release, we assume that global 5115 * tracing is always on and that the same thread initiated the reference hold 5116 * is releasing. 5117 */ 5118 void 5119 th_trace_unref(const void *obj) 5120 { 5121 int retv; 5122 mod_hash_t *mh; 5123 th_trace_t *th_trace; 5124 mod_hash_val_t val; 5125 5126 mh = th_trace_gethash(NULL); 5127 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5128 ASSERT(retv == 0); 5129 th_trace = (th_trace_t *)val; 5130 5131 ASSERT(th_trace->th_refcnt > 0); 5132 th_trace->th_refcnt--; 5133 th_trace_rrecord(th_trace); 5134 } 5135 5136 /* 5137 * If tracing has been disabled, then we assume that the reference counts are 5138 * now useless, and we clear them out before destroying the entries. 5139 */ 5140 void 5141 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5142 { 5143 th_hash_t *thh; 5144 mod_hash_t *mh; 5145 mod_hash_val_t val; 5146 th_trace_t *th_trace; 5147 int retv; 5148 5149 rw_enter(&ip_thread_rwlock, RW_READER); 5150 for (thh = list_head(&ip_thread_list); thh != NULL; 5151 thh = list_next(&ip_thread_list, thh)) { 5152 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5153 &val) == 0) { 5154 th_trace = (th_trace_t *)val; 5155 if (trace_disable) 5156 th_trace->th_refcnt = 0; 5157 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5158 ASSERT(retv == 0); 5159 } 5160 } 5161 rw_exit(&ip_thread_rwlock); 5162 } 5163 5164 void 5165 ipif_trace_ref(ipif_t *ipif) 5166 { 5167 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5168 5169 if (ipif->ipif_trace_disable) 5170 return; 5171 5172 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5173 ipif->ipif_trace_disable = B_TRUE; 5174 ipif_trace_cleanup(ipif); 5175 } 5176 } 5177 5178 void 5179 ipif_untrace_ref(ipif_t *ipif) 5180 { 5181 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5182 5183 if (!ipif->ipif_trace_disable) 5184 th_trace_unref(ipif); 5185 } 5186 5187 void 5188 ill_trace_ref(ill_t *ill) 5189 { 5190 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5191 5192 if (ill->ill_trace_disable) 5193 return; 5194 5195 if (!th_trace_ref(ill, ill->ill_ipst)) { 5196 ill->ill_trace_disable = B_TRUE; 5197 ill_trace_cleanup(ill); 5198 } 5199 } 5200 5201 void 5202 ill_untrace_ref(ill_t *ill) 5203 { 5204 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5205 5206 if (!ill->ill_trace_disable) 5207 th_trace_unref(ill); 5208 } 5209 5210 /* 5211 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5212 * failure, ipif_trace_disable is set. 5213 */ 5214 static void 5215 ipif_trace_cleanup(const ipif_t *ipif) 5216 { 5217 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5218 } 5219 5220 /* 5221 * Called when ill is unplumbed or when memory alloc fails. Note that on 5222 * failure, ill_trace_disable is set. 5223 */ 5224 static void 5225 ill_trace_cleanup(const ill_t *ill) 5226 { 5227 th_trace_cleanup(ill, ill->ill_trace_disable); 5228 } 5229 #endif /* DEBUG */ 5230 5231 void 5232 ipif_refhold_locked(ipif_t *ipif) 5233 { 5234 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5235 ipif->ipif_refcnt++; 5236 IPIF_TRACE_REF(ipif); 5237 } 5238 5239 void 5240 ipif_refhold(ipif_t *ipif) 5241 { 5242 ill_t *ill; 5243 5244 ill = ipif->ipif_ill; 5245 mutex_enter(&ill->ill_lock); 5246 ipif->ipif_refcnt++; 5247 IPIF_TRACE_REF(ipif); 5248 mutex_exit(&ill->ill_lock); 5249 } 5250 5251 /* 5252 * Must not be called while holding any locks. Otherwise if this is 5253 * the last reference to be released there is a chance of recursive mutex 5254 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5255 * to restart an ioctl. 5256 */ 5257 void 5258 ipif_refrele(ipif_t *ipif) 5259 { 5260 ill_t *ill; 5261 5262 ill = ipif->ipif_ill; 5263 5264 mutex_enter(&ill->ill_lock); 5265 ASSERT(ipif->ipif_refcnt != 0); 5266 ipif->ipif_refcnt--; 5267 IPIF_UNTRACE_REF(ipif); 5268 if (ipif->ipif_refcnt != 0) { 5269 mutex_exit(&ill->ill_lock); 5270 return; 5271 } 5272 5273 /* Drops the ill_lock */ 5274 ipif_ill_refrele_tail(ill); 5275 } 5276 5277 ipif_t * 5278 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5279 { 5280 ipif_t *ipif; 5281 5282 mutex_enter(&ill->ill_lock); 5283 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5284 ipif != NULL; ipif = ipif->ipif_next) { 5285 if (IPIF_IS_CONDEMNED(ipif)) 5286 continue; 5287 ipif_refhold_locked(ipif); 5288 mutex_exit(&ill->ill_lock); 5289 return (ipif); 5290 } 5291 mutex_exit(&ill->ill_lock); 5292 return (NULL); 5293 } 5294 5295 /* 5296 * TODO: make this table extendible at run time 5297 * Return a pointer to the mac type info for 'mac_type' 5298 */ 5299 static ip_m_t * 5300 ip_m_lookup(t_uscalar_t mac_type) 5301 { 5302 ip_m_t *ipm; 5303 5304 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5305 if (ipm->ip_m_mac_type == mac_type) 5306 return (ipm); 5307 return (NULL); 5308 } 5309 5310 /* 5311 * Make a link layer address from the multicast IP address *addr. 5312 * To form the link layer address, invoke the ip_m_v*mapping function 5313 * associated with the link-layer type. 5314 */ 5315 void 5316 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5317 { 5318 ip_m_t *ipm; 5319 5320 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5321 return; 5322 5323 ASSERT(addr != NULL); 5324 5325 ipm = ip_m_lookup(ill->ill_mactype); 5326 if (ipm == NULL || 5327 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5328 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5329 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5330 ill->ill_name, ill->ill_mactype)); 5331 return; 5332 } 5333 if (ill->ill_isv6) 5334 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5335 else 5336 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5337 } 5338 5339 /* 5340 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5341 * Otherwise returns B_TRUE. 5342 * 5343 * The netmask can be verified to be contiguous with 32 shifts and or 5344 * operations. Take the contiguous mask (in host byte order) and compute 5345 * mask | mask << 1 | mask << 2 | ... | mask << 31 5346 * the result will be the same as the 'mask' for contiguous mask. 5347 */ 5348 static boolean_t 5349 ip_contiguous_mask(uint32_t mask) 5350 { 5351 uint32_t m = mask; 5352 int i; 5353 5354 for (i = 1; i < 32; i++) 5355 m |= (mask << i); 5356 5357 return (m == mask); 5358 } 5359 5360 /* 5361 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5362 * ill is passed in to associate it with the correct interface. 5363 * If ire_arg is set, then we return the held IRE in that location. 5364 */ 5365 int 5366 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5367 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5368 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5369 { 5370 ire_t *ire, *nire; 5371 ire_t *gw_ire = NULL; 5372 ipif_t *ipif = NULL; 5373 uint_t type; 5374 int match_flags = MATCH_IRE_TYPE; 5375 tsol_gc_t *gc = NULL; 5376 tsol_gcgrp_t *gcgrp = NULL; 5377 boolean_t gcgrp_xtraref = B_FALSE; 5378 boolean_t cgtp_broadcast; 5379 boolean_t unbound = B_FALSE; 5380 5381 ip1dbg(("ip_rt_add:")); 5382 5383 if (ire_arg != NULL) 5384 *ire_arg = NULL; 5385 5386 /* disallow non-contiguous netmasks */ 5387 if (!ip_contiguous_mask(ntohl(mask))) 5388 return (ENOTSUP); 5389 5390 /* 5391 * If this is the case of RTF_HOST being set, then we set the netmask 5392 * to all ones (regardless if one was supplied). 5393 */ 5394 if (flags & RTF_HOST) 5395 mask = IP_HOST_MASK; 5396 5397 /* 5398 * Prevent routes with a zero gateway from being created (since 5399 * interfaces can currently be plumbed and brought up no assigned 5400 * address). 5401 */ 5402 if (gw_addr == 0) 5403 return (ENETUNREACH); 5404 /* 5405 * Get the ipif, if any, corresponding to the gw_addr 5406 * If -ifp was specified we restrict ourselves to the ill, otherwise 5407 * we match on the gatway and destination to handle unnumbered pt-pt 5408 * interfaces. 5409 */ 5410 if (ill != NULL) 5411 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5412 else 5413 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5414 if (ipif != NULL) { 5415 if (IS_VNI(ipif->ipif_ill)) { 5416 ipif_refrele(ipif); 5417 return (EINVAL); 5418 } 5419 } 5420 5421 /* 5422 * GateD will attempt to create routes with a loopback interface 5423 * address as the gateway and with RTF_GATEWAY set. We allow 5424 * these routes to be added, but create them as interface routes 5425 * since the gateway is an interface address. 5426 */ 5427 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5428 flags &= ~RTF_GATEWAY; 5429 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5430 mask == IP_HOST_MASK) { 5431 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5432 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5433 NULL); 5434 if (ire != NULL) { 5435 ire_refrele(ire); 5436 ipif_refrele(ipif); 5437 return (EEXIST); 5438 } 5439 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5440 "for 0x%x\n", (void *)ipif, 5441 ipif->ipif_ire_type, 5442 ntohl(ipif->ipif_lcl_addr))); 5443 ire = ire_create( 5444 (uchar_t *)&dst_addr, /* dest address */ 5445 (uchar_t *)&mask, /* mask */ 5446 NULL, /* no gateway */ 5447 ipif->ipif_ire_type, /* LOOPBACK */ 5448 ipif->ipif_ill, 5449 zoneid, 5450 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5451 NULL, 5452 ipst); 5453 5454 if (ire == NULL) { 5455 ipif_refrele(ipif); 5456 return (ENOMEM); 5457 } 5458 /* src address assigned by the caller? */ 5459 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5460 ire->ire_setsrc_addr = src_addr; 5461 5462 nire = ire_add(ire); 5463 if (nire == NULL) { 5464 /* 5465 * In the result of failure, ire_add() will have 5466 * already deleted the ire in question, so there 5467 * is no need to do that here. 5468 */ 5469 ipif_refrele(ipif); 5470 return (ENOMEM); 5471 } 5472 /* 5473 * Check if it was a duplicate entry. This handles 5474 * the case of two racing route adds for the same route 5475 */ 5476 if (nire != ire) { 5477 ASSERT(nire->ire_identical_ref > 1); 5478 ire_delete(nire); 5479 ire_refrele(nire); 5480 ipif_refrele(ipif); 5481 return (EEXIST); 5482 } 5483 ire = nire; 5484 goto save_ire; 5485 } 5486 } 5487 5488 /* 5489 * The routes for multicast with CGTP are quite special in that 5490 * the gateway is the local interface address, yet RTF_GATEWAY 5491 * is set. We turn off RTF_GATEWAY to provide compatibility with 5492 * this undocumented and unusual use of multicast routes. 5493 */ 5494 if ((flags & RTF_MULTIRT) && ipif != NULL) 5495 flags &= ~RTF_GATEWAY; 5496 5497 /* 5498 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5499 * and the gateway address provided is one of the system's interface 5500 * addresses. By using the routing socket interface and supplying an 5501 * RTA_IFP sockaddr with an interface index, an alternate method of 5502 * specifying an interface route to be created is available which uses 5503 * the interface index that specifies the outgoing interface rather than 5504 * the address of an outgoing interface (which may not be able to 5505 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5506 * flag, routes can be specified which not only specify the next-hop to 5507 * be used when routing to a certain prefix, but also which outgoing 5508 * interface should be used. 5509 * 5510 * Previously, interfaces would have unique addresses assigned to them 5511 * and so the address assigned to a particular interface could be used 5512 * to identify a particular interface. One exception to this was the 5513 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5514 * 5515 * With the advent of IPv6 and its link-local addresses, this 5516 * restriction was relaxed and interfaces could share addresses between 5517 * themselves. In fact, typically all of the link-local interfaces on 5518 * an IPv6 node or router will have the same link-local address. In 5519 * order to differentiate between these interfaces, the use of an 5520 * interface index is necessary and this index can be carried inside a 5521 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5522 * of using the interface index, however, is that all of the ipif's that 5523 * are part of an ill have the same index and so the RTA_IFP sockaddr 5524 * cannot be used to differentiate between ipif's (or logical 5525 * interfaces) that belong to the same ill (physical interface). 5526 * 5527 * For example, in the following case involving IPv4 interfaces and 5528 * logical interfaces 5529 * 5530 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5531 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5532 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5533 * 5534 * the ipif's corresponding to each of these interface routes can be 5535 * uniquely identified by the "gateway" (actually interface address). 5536 * 5537 * In this case involving multiple IPv6 default routes to a particular 5538 * link-local gateway, the use of RTA_IFP is necessary to specify which 5539 * default route is of interest: 5540 * 5541 * default fe80::123:4567:89ab:cdef U if0 5542 * default fe80::123:4567:89ab:cdef U if1 5543 */ 5544 5545 /* RTF_GATEWAY not set */ 5546 if (!(flags & RTF_GATEWAY)) { 5547 if (sp != NULL) { 5548 ip2dbg(("ip_rt_add: gateway security attributes " 5549 "cannot be set with interface route\n")); 5550 if (ipif != NULL) 5551 ipif_refrele(ipif); 5552 return (EINVAL); 5553 } 5554 5555 /* 5556 * Whether or not ill (RTA_IFP) is set, we require that 5557 * the gateway is one of our local addresses. 5558 */ 5559 if (ipif == NULL) 5560 return (ENETUNREACH); 5561 5562 /* 5563 * We use MATCH_IRE_ILL here. If the caller specified an 5564 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5565 * we use the ill derived from the gateway address. 5566 * We can always match the gateway address since we record it 5567 * in ire_gateway_addr. 5568 * We don't allow RTA_IFP to specify a different ill than the 5569 * one matching the ipif to make sure we can delete the route. 5570 */ 5571 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5572 if (ill == NULL) { 5573 ill = ipif->ipif_ill; 5574 } else if (ill != ipif->ipif_ill) { 5575 ipif_refrele(ipif); 5576 return (EINVAL); 5577 } 5578 5579 /* 5580 * We check for an existing entry at this point. 5581 * 5582 * Since a netmask isn't passed in via the ioctl interface 5583 * (SIOCADDRT), we don't check for a matching netmask in that 5584 * case. 5585 */ 5586 if (!ioctl_msg) 5587 match_flags |= MATCH_IRE_MASK; 5588 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5589 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5590 NULL); 5591 if (ire != NULL) { 5592 ire_refrele(ire); 5593 ipif_refrele(ipif); 5594 return (EEXIST); 5595 } 5596 5597 /* 5598 * Some software (for example, GateD and Sun Cluster) attempts 5599 * to create (what amount to) IRE_PREFIX routes with the 5600 * loopback address as the gateway. This is primarily done to 5601 * set up prefixes with the RTF_REJECT flag set (for example, 5602 * when generating aggregate routes.) 5603 * 5604 * If the IRE type (as defined by ill->ill_net_type) would be 5605 * IRE_LOOPBACK, then we map the request into a 5606 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5607 * these interface routes, by definition, can only be that. 5608 * 5609 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5610 * routine, but rather using ire_create() directly. 5611 * 5612 */ 5613 type = ill->ill_net_type; 5614 if (type == IRE_LOOPBACK) { 5615 type = IRE_IF_NORESOLVER; 5616 flags |= RTF_BLACKHOLE; 5617 } 5618 5619 /* 5620 * Create a copy of the IRE_IF_NORESOLVER or 5621 * IRE_IF_RESOLVER with the modified address, netmask, and 5622 * gateway. 5623 */ 5624 ire = ire_create( 5625 (uchar_t *)&dst_addr, 5626 (uint8_t *)&mask, 5627 (uint8_t *)&gw_addr, 5628 type, 5629 ill, 5630 zoneid, 5631 flags, 5632 NULL, 5633 ipst); 5634 if (ire == NULL) { 5635 ipif_refrele(ipif); 5636 return (ENOMEM); 5637 } 5638 5639 /* src address assigned by the caller? */ 5640 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5641 ire->ire_setsrc_addr = src_addr; 5642 5643 nire = ire_add(ire); 5644 if (nire == NULL) { 5645 /* 5646 * In the result of failure, ire_add() will have 5647 * already deleted the ire in question, so there 5648 * is no need to do that here. 5649 */ 5650 ipif_refrele(ipif); 5651 return (ENOMEM); 5652 } 5653 /* 5654 * Check if it was a duplicate entry. This handles 5655 * the case of two racing route adds for the same route 5656 */ 5657 if (nire != ire) { 5658 ire_delete(nire); 5659 ire_refrele(nire); 5660 ipif_refrele(ipif); 5661 return (EEXIST); 5662 } 5663 ire = nire; 5664 goto save_ire; 5665 } 5666 5667 /* 5668 * Get an interface IRE for the specified gateway. 5669 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5670 * gateway, it is currently unreachable and we fail the request 5671 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5672 * is an IRE_LOCAL or IRE_LOOPBACK. 5673 * If RTA_IFP was specified we look on that particular ill. 5674 */ 5675 if (ill != NULL) 5676 match_flags |= MATCH_IRE_ILL; 5677 5678 /* Check whether the gateway is reachable. */ 5679 again: 5680 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5681 if (flags & RTF_INDIRECT) 5682 type |= IRE_OFFLINK; 5683 5684 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5685 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5686 if (gw_ire == NULL) { 5687 /* 5688 * With IPMP, we allow host routes to influence in.mpathd's 5689 * target selection. However, if the test addresses are on 5690 * their own network, the above lookup will fail since the 5691 * underlying IRE_INTERFACEs are marked hidden. So allow 5692 * hidden test IREs to be found and try again. 5693 */ 5694 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5695 match_flags |= MATCH_IRE_TESTHIDDEN; 5696 goto again; 5697 } 5698 if (ipif != NULL) 5699 ipif_refrele(ipif); 5700 return (ENETUNREACH); 5701 } 5702 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5703 ire_refrele(gw_ire); 5704 if (ipif != NULL) 5705 ipif_refrele(ipif); 5706 return (ENETUNREACH); 5707 } 5708 5709 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5710 unbound = B_TRUE; 5711 if (ipst->ips_ip_strict_src_multihoming > 0) 5712 ill = gw_ire->ire_ill; 5713 } 5714 5715 /* 5716 * We create one of three types of IREs as a result of this request 5717 * based on the netmask. A netmask of all ones (which is automatically 5718 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5719 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5720 * created. Otherwise, an IRE_PREFIX route is created for the 5721 * destination prefix. 5722 */ 5723 if (mask == IP_HOST_MASK) 5724 type = IRE_HOST; 5725 else if (mask == 0) 5726 type = IRE_DEFAULT; 5727 else 5728 type = IRE_PREFIX; 5729 5730 /* check for a duplicate entry */ 5731 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5732 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5733 0, ipst, NULL); 5734 if (ire != NULL) { 5735 if (ipif != NULL) 5736 ipif_refrele(ipif); 5737 ire_refrele(gw_ire); 5738 ire_refrele(ire); 5739 return (EEXIST); 5740 } 5741 5742 /* Security attribute exists */ 5743 if (sp != NULL) { 5744 tsol_gcgrp_addr_t ga; 5745 5746 /* find or create the gateway credentials group */ 5747 ga.ga_af = AF_INET; 5748 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5749 5750 /* we hold reference to it upon success */ 5751 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5752 if (gcgrp == NULL) { 5753 if (ipif != NULL) 5754 ipif_refrele(ipif); 5755 ire_refrele(gw_ire); 5756 return (ENOMEM); 5757 } 5758 5759 /* 5760 * Create and add the security attribute to the group; a 5761 * reference to the group is made upon allocating a new 5762 * entry successfully. If it finds an already-existing 5763 * entry for the security attribute in the group, it simply 5764 * returns it and no new reference is made to the group. 5765 */ 5766 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5767 if (gc == NULL) { 5768 if (ipif != NULL) 5769 ipif_refrele(ipif); 5770 /* release reference held by gcgrp_lookup */ 5771 GCGRP_REFRELE(gcgrp); 5772 ire_refrele(gw_ire); 5773 return (ENOMEM); 5774 } 5775 } 5776 5777 /* Create the IRE. */ 5778 ire = ire_create( 5779 (uchar_t *)&dst_addr, /* dest address */ 5780 (uchar_t *)&mask, /* mask */ 5781 (uchar_t *)&gw_addr, /* gateway address */ 5782 (ushort_t)type, /* IRE type */ 5783 ill, 5784 zoneid, 5785 flags, 5786 gc, /* security attribute */ 5787 ipst); 5788 5789 /* 5790 * The ire holds a reference to the 'gc' and the 'gc' holds a 5791 * reference to the 'gcgrp'. We can now release the extra reference 5792 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5793 */ 5794 if (gcgrp_xtraref) 5795 GCGRP_REFRELE(gcgrp); 5796 if (ire == NULL) { 5797 if (gc != NULL) 5798 GC_REFRELE(gc); 5799 if (ipif != NULL) 5800 ipif_refrele(ipif); 5801 ire_refrele(gw_ire); 5802 return (ENOMEM); 5803 } 5804 5805 /* Before we add, check if an extra CGTP broadcast is needed */ 5806 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5807 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5808 5809 /* src address assigned by the caller? */ 5810 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5811 ire->ire_setsrc_addr = src_addr; 5812 5813 ire->ire_unbound = unbound; 5814 5815 /* 5816 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5817 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5818 */ 5819 5820 /* Add the new IRE. */ 5821 nire = ire_add(ire); 5822 if (nire == NULL) { 5823 /* 5824 * In the result of failure, ire_add() will have 5825 * already deleted the ire in question, so there 5826 * is no need to do that here. 5827 */ 5828 if (ipif != NULL) 5829 ipif_refrele(ipif); 5830 ire_refrele(gw_ire); 5831 return (ENOMEM); 5832 } 5833 /* 5834 * Check if it was a duplicate entry. This handles 5835 * the case of two racing route adds for the same route 5836 */ 5837 if (nire != ire) { 5838 ire_delete(nire); 5839 ire_refrele(nire); 5840 if (ipif != NULL) 5841 ipif_refrele(ipif); 5842 ire_refrele(gw_ire); 5843 return (EEXIST); 5844 } 5845 ire = nire; 5846 5847 if (flags & RTF_MULTIRT) { 5848 /* 5849 * Invoke the CGTP (multirouting) filtering module 5850 * to add the dst address in the filtering database. 5851 * Replicated inbound packets coming from that address 5852 * will be filtered to discard the duplicates. 5853 * It is not necessary to call the CGTP filter hook 5854 * when the dst address is a broadcast or multicast, 5855 * because an IP source address cannot be a broadcast 5856 * or a multicast. 5857 */ 5858 if (cgtp_broadcast) { 5859 ip_cgtp_bcast_add(ire, ipst); 5860 goto save_ire; 5861 } 5862 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5863 !CLASSD(ire->ire_addr)) { 5864 int res; 5865 ipif_t *src_ipif; 5866 5867 /* Find the source address corresponding to gw_ire */ 5868 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5869 NULL, zoneid, ipst); 5870 if (src_ipif != NULL) { 5871 res = ipst->ips_ip_cgtp_filter_ops-> 5872 cfo_add_dest_v4( 5873 ipst->ips_netstack->netstack_stackid, 5874 ire->ire_addr, 5875 ire->ire_gateway_addr, 5876 ire->ire_setsrc_addr, 5877 src_ipif->ipif_lcl_addr); 5878 ipif_refrele(src_ipif); 5879 } else { 5880 res = EADDRNOTAVAIL; 5881 } 5882 if (res != 0) { 5883 if (ipif != NULL) 5884 ipif_refrele(ipif); 5885 ire_refrele(gw_ire); 5886 ire_delete(ire); 5887 ire_refrele(ire); /* Held in ire_add */ 5888 return (res); 5889 } 5890 } 5891 } 5892 5893 save_ire: 5894 if (gw_ire != NULL) { 5895 ire_refrele(gw_ire); 5896 gw_ire = NULL; 5897 } 5898 if (ill != NULL) { 5899 /* 5900 * Save enough information so that we can recreate the IRE if 5901 * the interface goes down and then up. The metrics associated 5902 * with the route will be saved as well when rts_setmetrics() is 5903 * called after the IRE has been created. In the case where 5904 * memory cannot be allocated, none of this information will be 5905 * saved. 5906 */ 5907 ill_save_ire(ill, ire); 5908 } 5909 if (ioctl_msg) 5910 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5911 if (ire_arg != NULL) { 5912 /* 5913 * Store the ire that was successfully added into where ire_arg 5914 * points to so that callers don't have to look it up 5915 * themselves (but they are responsible for ire_refrele()ing 5916 * the ire when they are finished with it). 5917 */ 5918 *ire_arg = ire; 5919 } else { 5920 ire_refrele(ire); /* Held in ire_add */ 5921 } 5922 if (ipif != NULL) 5923 ipif_refrele(ipif); 5924 return (0); 5925 } 5926 5927 /* 5928 * ip_rt_delete is called to delete an IPv4 route. 5929 * ill is passed in to associate it with the correct interface. 5930 */ 5931 /* ARGSUSED4 */ 5932 int 5933 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5934 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5935 ip_stack_t *ipst, zoneid_t zoneid) 5936 { 5937 ire_t *ire = NULL; 5938 ipif_t *ipif; 5939 uint_t type; 5940 uint_t match_flags = MATCH_IRE_TYPE; 5941 int err = 0; 5942 5943 ip1dbg(("ip_rt_delete:")); 5944 /* 5945 * If this is the case of RTF_HOST being set, then we set the netmask 5946 * to all ones. Otherwise, we use the netmask if one was supplied. 5947 */ 5948 if (flags & RTF_HOST) { 5949 mask = IP_HOST_MASK; 5950 match_flags |= MATCH_IRE_MASK; 5951 } else if (rtm_addrs & RTA_NETMASK) { 5952 match_flags |= MATCH_IRE_MASK; 5953 } 5954 5955 /* 5956 * Note that RTF_GATEWAY is never set on a delete, therefore 5957 * we check if the gateway address is one of our interfaces first, 5958 * and fall back on RTF_GATEWAY routes. 5959 * 5960 * This makes it possible to delete an original 5961 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5962 * However, we have RTF_KERNEL set on the ones created by ipif_up 5963 * and those can not be deleted here. 5964 * 5965 * We use MATCH_IRE_ILL if we know the interface. If the caller 5966 * specified an interface (from the RTA_IFP sockaddr) we use it, 5967 * otherwise we use the ill derived from the gateway address. 5968 * We can always match the gateway address since we record it 5969 * in ire_gateway_addr. 5970 * 5971 * For more detail on specifying routes by gateway address and by 5972 * interface index, see the comments in ip_rt_add(). 5973 */ 5974 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5975 if (ipif != NULL) { 5976 ill_t *ill_match; 5977 5978 if (ill != NULL) 5979 ill_match = ill; 5980 else 5981 ill_match = ipif->ipif_ill; 5982 5983 match_flags |= MATCH_IRE_ILL; 5984 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5985 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 5986 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 5987 match_flags, 0, ipst, NULL); 5988 } 5989 if (ire == NULL) { 5990 match_flags |= MATCH_IRE_GW; 5991 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5992 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 5993 match_flags, 0, ipst, NULL); 5994 } 5995 /* Avoid deleting routes created by kernel from an ipif */ 5996 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 5997 ire_refrele(ire); 5998 ire = NULL; 5999 } 6000 6001 /* Restore in case we didn't find a match */ 6002 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6003 } 6004 6005 if (ire == NULL) { 6006 /* 6007 * At this point, the gateway address is not one of our own 6008 * addresses or a matching interface route was not found. We 6009 * set the IRE type to lookup based on whether 6010 * this is a host route, a default route or just a prefix. 6011 * 6012 * If an ill was passed in, then the lookup is based on an 6013 * interface index so MATCH_IRE_ILL is added to match_flags. 6014 */ 6015 match_flags |= MATCH_IRE_GW; 6016 if (ill != NULL) 6017 match_flags |= MATCH_IRE_ILL; 6018 if (mask == IP_HOST_MASK) 6019 type = IRE_HOST; 6020 else if (mask == 0) 6021 type = IRE_DEFAULT; 6022 else 6023 type = IRE_PREFIX; 6024 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6025 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6026 } 6027 6028 if (ipif != NULL) { 6029 ipif_refrele(ipif); 6030 ipif = NULL; 6031 } 6032 6033 if (ire == NULL) 6034 return (ESRCH); 6035 6036 if (ire->ire_flags & RTF_MULTIRT) { 6037 /* 6038 * Invoke the CGTP (multirouting) filtering module 6039 * to remove the dst address from the filtering database. 6040 * Packets coming from that address will no longer be 6041 * filtered to remove duplicates. 6042 */ 6043 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6044 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6045 ipst->ips_netstack->netstack_stackid, 6046 ire->ire_addr, ire->ire_gateway_addr); 6047 } 6048 ip_cgtp_bcast_delete(ire, ipst); 6049 } 6050 6051 ill = ire->ire_ill; 6052 if (ill != NULL) 6053 ill_remove_saved_ire(ill, ire); 6054 if (ioctl_msg) 6055 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6056 ire_delete(ire); 6057 ire_refrele(ire); 6058 return (err); 6059 } 6060 6061 /* 6062 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6063 */ 6064 /* ARGSUSED */ 6065 int 6066 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6067 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6068 { 6069 ipaddr_t dst_addr; 6070 ipaddr_t gw_addr; 6071 ipaddr_t mask; 6072 int error = 0; 6073 mblk_t *mp1; 6074 struct rtentry *rt; 6075 ipif_t *ipif = NULL; 6076 ip_stack_t *ipst; 6077 6078 ASSERT(q->q_next == NULL); 6079 ipst = CONNQ_TO_IPST(q); 6080 6081 ip1dbg(("ip_siocaddrt:")); 6082 /* Existence of mp1 verified in ip_wput_nondata */ 6083 mp1 = mp->b_cont->b_cont; 6084 rt = (struct rtentry *)mp1->b_rptr; 6085 6086 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6087 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6088 6089 /* 6090 * If the RTF_HOST flag is on, this is a request to assign a gateway 6091 * to a particular host address. In this case, we set the netmask to 6092 * all ones for the particular destination address. Otherwise, 6093 * determine the netmask to be used based on dst_addr and the interfaces 6094 * in use. 6095 */ 6096 if (rt->rt_flags & RTF_HOST) { 6097 mask = IP_HOST_MASK; 6098 } else { 6099 /* 6100 * Note that ip_subnet_mask returns a zero mask in the case of 6101 * default (an all-zeroes address). 6102 */ 6103 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6104 } 6105 6106 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6107 B_TRUE, NULL, ipst, ALL_ZONES); 6108 if (ipif != NULL) 6109 ipif_refrele(ipif); 6110 return (error); 6111 } 6112 6113 /* 6114 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6115 */ 6116 /* ARGSUSED */ 6117 int 6118 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6119 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6120 { 6121 ipaddr_t dst_addr; 6122 ipaddr_t gw_addr; 6123 ipaddr_t mask; 6124 int error; 6125 mblk_t *mp1; 6126 struct rtentry *rt; 6127 ipif_t *ipif = NULL; 6128 ip_stack_t *ipst; 6129 6130 ASSERT(q->q_next == NULL); 6131 ipst = CONNQ_TO_IPST(q); 6132 6133 ip1dbg(("ip_siocdelrt:")); 6134 /* Existence of mp1 verified in ip_wput_nondata */ 6135 mp1 = mp->b_cont->b_cont; 6136 rt = (struct rtentry *)mp1->b_rptr; 6137 6138 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6139 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6140 6141 /* 6142 * If the RTF_HOST flag is on, this is a request to delete a gateway 6143 * to a particular host address. In this case, we set the netmask to 6144 * all ones for the particular destination address. Otherwise, 6145 * determine the netmask to be used based on dst_addr and the interfaces 6146 * in use. 6147 */ 6148 if (rt->rt_flags & RTF_HOST) { 6149 mask = IP_HOST_MASK; 6150 } else { 6151 /* 6152 * Note that ip_subnet_mask returns a zero mask in the case of 6153 * default (an all-zeroes address). 6154 */ 6155 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6156 } 6157 6158 error = ip_rt_delete(dst_addr, mask, gw_addr, 6159 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6160 ipst, ALL_ZONES); 6161 if (ipif != NULL) 6162 ipif_refrele(ipif); 6163 return (error); 6164 } 6165 6166 /* 6167 * Enqueue the mp onto the ipsq, chained by b_next. 6168 * b_prev stores the function to be executed later, and b_queue the queue 6169 * where this mp originated. 6170 */ 6171 void 6172 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6173 ill_t *pending_ill) 6174 { 6175 conn_t *connp; 6176 ipxop_t *ipx = ipsq->ipsq_xop; 6177 6178 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6179 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6180 ASSERT(func != NULL); 6181 6182 mp->b_queue = q; 6183 mp->b_prev = (void *)func; 6184 mp->b_next = NULL; 6185 6186 switch (type) { 6187 case CUR_OP: 6188 if (ipx->ipx_mptail != NULL) { 6189 ASSERT(ipx->ipx_mphead != NULL); 6190 ipx->ipx_mptail->b_next = mp; 6191 } else { 6192 ASSERT(ipx->ipx_mphead == NULL); 6193 ipx->ipx_mphead = mp; 6194 } 6195 ipx->ipx_mptail = mp; 6196 break; 6197 6198 case NEW_OP: 6199 if (ipsq->ipsq_xopq_mptail != NULL) { 6200 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6201 ipsq->ipsq_xopq_mptail->b_next = mp; 6202 } else { 6203 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6204 ipsq->ipsq_xopq_mphead = mp; 6205 } 6206 ipsq->ipsq_xopq_mptail = mp; 6207 ipx->ipx_ipsq_queued = B_TRUE; 6208 break; 6209 6210 case SWITCH_OP: 6211 ASSERT(ipsq->ipsq_swxop != NULL); 6212 /* only one switch operation is currently allowed */ 6213 ASSERT(ipsq->ipsq_switch_mp == NULL); 6214 ipsq->ipsq_switch_mp = mp; 6215 ipx->ipx_ipsq_queued = B_TRUE; 6216 break; 6217 default: 6218 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6219 } 6220 6221 if (CONN_Q(q) && pending_ill != NULL) { 6222 connp = Q_TO_CONN(q); 6223 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6224 connp->conn_oper_pending_ill = pending_ill; 6225 } 6226 } 6227 6228 /* 6229 * Dequeue the next message that requested exclusive access to this IPSQ's 6230 * xop. Specifically: 6231 * 6232 * 1. If we're still processing the current operation on `ipsq', then 6233 * dequeue the next message for the operation (from ipx_mphead), or 6234 * return NULL if there are no queued messages for the operation. 6235 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6236 * 6237 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6238 * not set) see if the ipsq has requested an xop switch. If so, switch 6239 * `ipsq' to a different xop. Xop switches only happen when joining or 6240 * leaving IPMP groups and require a careful dance -- see the comments 6241 * in-line below for details. If we're leaving a group xop or if we're 6242 * joining a group xop and become writer on it, then we proceed to (3). 6243 * Otherwise, we return NULL and exit the xop. 6244 * 6245 * 3. For each IPSQ in the xop, return any switch operation stored on 6246 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6247 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6248 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6249 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6250 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6251 * each phyint in the group, including the IPMP meta-interface phyint. 6252 */ 6253 static mblk_t * 6254 ipsq_dq(ipsq_t *ipsq) 6255 { 6256 ill_t *illv4, *illv6; 6257 mblk_t *mp; 6258 ipsq_t *xopipsq; 6259 ipsq_t *leftipsq = NULL; 6260 ipxop_t *ipx; 6261 phyint_t *phyi = ipsq->ipsq_phyint; 6262 ip_stack_t *ipst = ipsq->ipsq_ipst; 6263 boolean_t emptied = B_FALSE; 6264 6265 /* 6266 * Grab all the locks we need in the defined order (ill_g_lock -> 6267 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6268 */ 6269 rw_enter(&ipst->ips_ill_g_lock, 6270 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6271 mutex_enter(&ipsq->ipsq_lock); 6272 ipx = ipsq->ipsq_xop; 6273 mutex_enter(&ipx->ipx_lock); 6274 6275 /* 6276 * Dequeue the next message associated with the current exclusive 6277 * operation, if any. 6278 */ 6279 if ((mp = ipx->ipx_mphead) != NULL) { 6280 ipx->ipx_mphead = mp->b_next; 6281 if (ipx->ipx_mphead == NULL) 6282 ipx->ipx_mptail = NULL; 6283 mp->b_next = (void *)ipsq; 6284 goto out; 6285 } 6286 6287 if (ipx->ipx_current_ipif != NULL) 6288 goto empty; 6289 6290 if (ipsq->ipsq_swxop != NULL) { 6291 /* 6292 * The exclusive operation that is now being completed has 6293 * requested a switch to a different xop. This happens 6294 * when an interface joins or leaves an IPMP group. Joins 6295 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6296 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6297 * (phyint_free()), or interface plumb for an ill type 6298 * not in the IPMP group (ip_rput_dlpi_writer()). 6299 * 6300 * Xop switches are not allowed on the IPMP meta-interface. 6301 */ 6302 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6303 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6304 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6305 6306 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6307 /* 6308 * We're switching back to our own xop, so we have two 6309 * xop's to drain/exit: our own, and the group xop 6310 * that we are leaving. 6311 * 6312 * First, pull ourselves out of the group ipsq list. 6313 * This is safe since we're writer on ill_g_lock. 6314 */ 6315 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6316 6317 xopipsq = ipx->ipx_ipsq; 6318 while (xopipsq->ipsq_next != ipsq) 6319 xopipsq = xopipsq->ipsq_next; 6320 6321 xopipsq->ipsq_next = ipsq->ipsq_next; 6322 ipsq->ipsq_next = ipsq; 6323 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6324 ipsq->ipsq_swxop = NULL; 6325 6326 /* 6327 * Second, prepare to exit the group xop. The actual 6328 * ipsq_exit() is done at the end of this function 6329 * since we cannot hold any locks across ipsq_exit(). 6330 * Note that although we drop the group's ipx_lock, no 6331 * threads can proceed since we're still ipx_writer. 6332 */ 6333 leftipsq = xopipsq; 6334 mutex_exit(&ipx->ipx_lock); 6335 6336 /* 6337 * Third, set ipx to point to our own xop (which was 6338 * inactive and therefore can be entered). 6339 */ 6340 ipx = ipsq->ipsq_xop; 6341 mutex_enter(&ipx->ipx_lock); 6342 ASSERT(ipx->ipx_writer == NULL); 6343 ASSERT(ipx->ipx_current_ipif == NULL); 6344 } else { 6345 /* 6346 * We're switching from our own xop to a group xop. 6347 * The requestor of the switch must ensure that the 6348 * group xop cannot go away (e.g. by ensuring the 6349 * phyint associated with the xop cannot go away). 6350 * 6351 * If we can become writer on our new xop, then we'll 6352 * do the drain. Otherwise, the current writer of our 6353 * new xop will do the drain when it exits. 6354 * 6355 * First, splice ourselves into the group IPSQ list. 6356 * This is safe since we're writer on ill_g_lock. 6357 */ 6358 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6359 6360 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6361 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6362 xopipsq = xopipsq->ipsq_next; 6363 6364 xopipsq->ipsq_next = ipsq; 6365 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6366 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6367 ipsq->ipsq_swxop = NULL; 6368 6369 /* 6370 * Second, exit our own xop, since it's now unused. 6371 * This is safe since we've got the only reference. 6372 */ 6373 ASSERT(ipx->ipx_writer == curthread); 6374 ipx->ipx_writer = NULL; 6375 VERIFY(--ipx->ipx_reentry_cnt == 0); 6376 ipx->ipx_ipsq_queued = B_FALSE; 6377 mutex_exit(&ipx->ipx_lock); 6378 6379 /* 6380 * Third, set ipx to point to our new xop, and check 6381 * if we can become writer on it. If we cannot, then 6382 * the current writer will drain the IPSQ group when 6383 * it exits. Our ipsq_xop is guaranteed to be stable 6384 * because we're still holding ipsq_lock. 6385 */ 6386 ipx = ipsq->ipsq_xop; 6387 mutex_enter(&ipx->ipx_lock); 6388 if (ipx->ipx_writer != NULL || 6389 ipx->ipx_current_ipif != NULL) { 6390 goto out; 6391 } 6392 } 6393 6394 /* 6395 * Fourth, become writer on our new ipx before we continue 6396 * with the drain. Note that we never dropped ipsq_lock 6397 * above, so no other thread could've raced with us to 6398 * become writer first. Also, we're holding ipx_lock, so 6399 * no other thread can examine the ipx right now. 6400 */ 6401 ASSERT(ipx->ipx_current_ipif == NULL); 6402 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6403 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6404 ipx->ipx_writer = curthread; 6405 ipx->ipx_forced = B_FALSE; 6406 #ifdef DEBUG 6407 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6408 #endif 6409 } 6410 6411 xopipsq = ipsq; 6412 do { 6413 /* 6414 * So that other operations operate on a consistent and 6415 * complete phyint, a switch message on an IPSQ must be 6416 * handled prior to any other operations on that IPSQ. 6417 */ 6418 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6419 xopipsq->ipsq_switch_mp = NULL; 6420 ASSERT(mp->b_next == NULL); 6421 mp->b_next = (void *)xopipsq; 6422 goto out; 6423 } 6424 6425 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6426 xopipsq->ipsq_xopq_mphead = mp->b_next; 6427 if (xopipsq->ipsq_xopq_mphead == NULL) 6428 xopipsq->ipsq_xopq_mptail = NULL; 6429 mp->b_next = (void *)xopipsq; 6430 goto out; 6431 } 6432 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6433 empty: 6434 /* 6435 * There are no messages. Further, we are holding ipx_lock, hence no 6436 * new messages can end up on any IPSQ in the xop. 6437 */ 6438 ipx->ipx_writer = NULL; 6439 ipx->ipx_forced = B_FALSE; 6440 VERIFY(--ipx->ipx_reentry_cnt == 0); 6441 ipx->ipx_ipsq_queued = B_FALSE; 6442 emptied = B_TRUE; 6443 #ifdef DEBUG 6444 ipx->ipx_depth = 0; 6445 #endif 6446 out: 6447 mutex_exit(&ipx->ipx_lock); 6448 mutex_exit(&ipsq->ipsq_lock); 6449 6450 /* 6451 * If we completely emptied the xop, then wake up any threads waiting 6452 * to enter any of the IPSQ's associated with it. 6453 */ 6454 if (emptied) { 6455 xopipsq = ipsq; 6456 do { 6457 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6458 continue; 6459 6460 illv4 = phyi->phyint_illv4; 6461 illv6 = phyi->phyint_illv6; 6462 6463 GRAB_ILL_LOCKS(illv4, illv6); 6464 if (illv4 != NULL) 6465 cv_broadcast(&illv4->ill_cv); 6466 if (illv6 != NULL) 6467 cv_broadcast(&illv6->ill_cv); 6468 RELEASE_ILL_LOCKS(illv4, illv6); 6469 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6470 } 6471 rw_exit(&ipst->ips_ill_g_lock); 6472 6473 /* 6474 * Now that all locks are dropped, exit the IPSQ we left. 6475 */ 6476 if (leftipsq != NULL) 6477 ipsq_exit(leftipsq); 6478 6479 return (mp); 6480 } 6481 6482 /* 6483 * Return completion status of previously initiated DLPI operations on 6484 * ills in the purview of an ipsq. 6485 */ 6486 static boolean_t 6487 ipsq_dlpi_done(ipsq_t *ipsq) 6488 { 6489 ipsq_t *ipsq_start; 6490 phyint_t *phyi; 6491 ill_t *ill; 6492 6493 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6494 ipsq_start = ipsq; 6495 6496 do { 6497 /* 6498 * The only current users of this function are ipsq_try_enter 6499 * and ipsq_enter which have made sure that ipsq_writer is 6500 * NULL before we reach here. ill_dlpi_pending is modified 6501 * only by an ipsq writer 6502 */ 6503 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6504 phyi = ipsq->ipsq_phyint; 6505 /* 6506 * phyi could be NULL if a phyint that is part of an 6507 * IPMP group is being unplumbed. A more detailed 6508 * comment is in ipmp_grp_update_kstats() 6509 */ 6510 if (phyi != NULL) { 6511 ill = phyi->phyint_illv4; 6512 if (ill != NULL && 6513 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6514 ill->ill_arl_dlpi_pending)) 6515 return (B_FALSE); 6516 6517 ill = phyi->phyint_illv6; 6518 if (ill != NULL && 6519 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6520 return (B_FALSE); 6521 } 6522 6523 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6524 6525 return (B_TRUE); 6526 } 6527 6528 /* 6529 * Enter the ipsq corresponding to ill, by waiting synchronously till 6530 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6531 * will have to drain completely before ipsq_enter returns success. 6532 * ipx_current_ipif will be set if some exclusive op is in progress, 6533 * and the ipsq_exit logic will start the next enqueued op after 6534 * completion of the current op. If 'force' is used, we don't wait 6535 * for the enqueued ops. This is needed when a conn_close wants to 6536 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6537 * of an ill can also use this option. But we dont' use it currently. 6538 */ 6539 #define ENTER_SQ_WAIT_TICKS 100 6540 boolean_t 6541 ipsq_enter(ill_t *ill, boolean_t force, int type) 6542 { 6543 ipsq_t *ipsq; 6544 ipxop_t *ipx; 6545 boolean_t waited_enough = B_FALSE; 6546 ip_stack_t *ipst = ill->ill_ipst; 6547 6548 /* 6549 * Note that the relationship between ill and ipsq is fixed as long as 6550 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6551 * relationship between the IPSQ and xop cannot change. However, 6552 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6553 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6554 * waking up all ills in the xop when it becomes available. 6555 */ 6556 for (;;) { 6557 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6558 mutex_enter(&ill->ill_lock); 6559 if (ill->ill_state_flags & ILL_CONDEMNED) { 6560 mutex_exit(&ill->ill_lock); 6561 rw_exit(&ipst->ips_ill_g_lock); 6562 return (B_FALSE); 6563 } 6564 6565 ipsq = ill->ill_phyint->phyint_ipsq; 6566 mutex_enter(&ipsq->ipsq_lock); 6567 ipx = ipsq->ipsq_xop; 6568 mutex_enter(&ipx->ipx_lock); 6569 6570 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6571 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6572 waited_enough)) 6573 break; 6574 6575 rw_exit(&ipst->ips_ill_g_lock); 6576 6577 if (!force || ipx->ipx_writer != NULL) { 6578 mutex_exit(&ipx->ipx_lock); 6579 mutex_exit(&ipsq->ipsq_lock); 6580 cv_wait(&ill->ill_cv, &ill->ill_lock); 6581 } else { 6582 mutex_exit(&ipx->ipx_lock); 6583 mutex_exit(&ipsq->ipsq_lock); 6584 (void) cv_reltimedwait(&ill->ill_cv, 6585 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6586 waited_enough = B_TRUE; 6587 } 6588 mutex_exit(&ill->ill_lock); 6589 } 6590 6591 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6592 ASSERT(ipx->ipx_reentry_cnt == 0); 6593 ipx->ipx_writer = curthread; 6594 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6595 ipx->ipx_reentry_cnt++; 6596 #ifdef DEBUG 6597 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6598 #endif 6599 mutex_exit(&ipx->ipx_lock); 6600 mutex_exit(&ipsq->ipsq_lock); 6601 mutex_exit(&ill->ill_lock); 6602 rw_exit(&ipst->ips_ill_g_lock); 6603 6604 return (B_TRUE); 6605 } 6606 6607 /* 6608 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6609 * across the call to the core interface ipsq_try_enter() and hence calls this 6610 * function directly. This is explained more fully in ipif_set_values(). 6611 * In order to support the above constraint, ipsq_try_enter is implemented as 6612 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6613 */ 6614 static ipsq_t * 6615 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6616 int type, boolean_t reentry_ok) 6617 { 6618 ipsq_t *ipsq; 6619 ipxop_t *ipx; 6620 ip_stack_t *ipst = ill->ill_ipst; 6621 6622 /* 6623 * lock ordering: 6624 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6625 * 6626 * ipx of an ipsq can't change when ipsq_lock is held. 6627 */ 6628 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6629 GRAB_CONN_LOCK(q); 6630 mutex_enter(&ill->ill_lock); 6631 ipsq = ill->ill_phyint->phyint_ipsq; 6632 mutex_enter(&ipsq->ipsq_lock); 6633 ipx = ipsq->ipsq_xop; 6634 mutex_enter(&ipx->ipx_lock); 6635 6636 /* 6637 * 1. Enter the ipsq if we are already writer and reentry is ok. 6638 * (Note: If the caller does not specify reentry_ok then neither 6639 * 'func' nor any of its callees must ever attempt to enter the ipsq 6640 * again. Otherwise it can lead to an infinite loop 6641 * 2. Enter the ipsq if there is no current writer and this attempted 6642 * entry is part of the current operation 6643 * 3. Enter the ipsq if there is no current writer and this is a new 6644 * operation and the operation queue is empty and there is no 6645 * operation currently in progress and if all previously initiated 6646 * DLPI operations have completed. 6647 */ 6648 if ((ipx->ipx_writer == curthread && reentry_ok) || 6649 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6650 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6651 ipsq_dlpi_done(ipsq))))) { 6652 /* Success. */ 6653 ipx->ipx_reentry_cnt++; 6654 ipx->ipx_writer = curthread; 6655 ipx->ipx_forced = B_FALSE; 6656 mutex_exit(&ipx->ipx_lock); 6657 mutex_exit(&ipsq->ipsq_lock); 6658 mutex_exit(&ill->ill_lock); 6659 RELEASE_CONN_LOCK(q); 6660 #ifdef DEBUG 6661 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6662 #endif 6663 return (ipsq); 6664 } 6665 6666 if (func != NULL) 6667 ipsq_enq(ipsq, q, mp, func, type, ill); 6668 6669 mutex_exit(&ipx->ipx_lock); 6670 mutex_exit(&ipsq->ipsq_lock); 6671 mutex_exit(&ill->ill_lock); 6672 RELEASE_CONN_LOCK(q); 6673 return (NULL); 6674 } 6675 6676 /* 6677 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6678 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6679 * There is one ipsq per phyint. The ipsq 6680 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6681 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6682 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6683 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6684 * up the interface) and are enqueued in ipx_mphead. 6685 * 6686 * If a thread does not want to reenter the ipsq when it is already writer, 6687 * it must make sure that the specified reentry point to be called later 6688 * when the ipsq is empty, nor any code path starting from the specified reentry 6689 * point must never ever try to enter the ipsq again. Otherwise it can lead 6690 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6691 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6692 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6693 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6694 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6695 * ioctl if the current ioctl has completed. If the current ioctl is still 6696 * in progress it simply returns. The current ioctl could be waiting for 6697 * a response from another module (the driver or could be waiting for 6698 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6699 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6700 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6701 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6702 * all associated DLPI operations have completed. 6703 */ 6704 6705 /* 6706 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6707 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6708 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6709 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6710 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6711 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6712 */ 6713 ipsq_t * 6714 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6715 ipsq_func_t func, int type, boolean_t reentry_ok) 6716 { 6717 ip_stack_t *ipst; 6718 ipsq_t *ipsq; 6719 6720 /* Only 1 of ipif or ill can be specified */ 6721 ASSERT((ipif != NULL) ^ (ill != NULL)); 6722 6723 if (ipif != NULL) 6724 ill = ipif->ipif_ill; 6725 ipst = ill->ill_ipst; 6726 6727 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6728 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6729 rw_exit(&ipst->ips_ill_g_lock); 6730 6731 return (ipsq); 6732 } 6733 6734 /* 6735 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6736 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6737 * cannot be entered, the mp is queued for completion. 6738 */ 6739 void 6740 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6741 boolean_t reentry_ok) 6742 { 6743 ipsq_t *ipsq; 6744 6745 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6746 6747 /* 6748 * Drop the caller's refhold on the ill. This is safe since we either 6749 * entered the IPSQ (and thus are exclusive), or failed to enter the 6750 * IPSQ, in which case we return without accessing ill anymore. This 6751 * is needed because func needs to see the correct refcount. 6752 * e.g. removeif can work only then. 6753 */ 6754 ill_refrele(ill); 6755 if (ipsq != NULL) { 6756 (*func)(ipsq, q, mp, NULL); 6757 ipsq_exit(ipsq); 6758 } 6759 } 6760 6761 /* 6762 * Exit the specified IPSQ. If this is the final exit on it then drain it 6763 * prior to exiting. Caller must be writer on the specified IPSQ. 6764 */ 6765 void 6766 ipsq_exit(ipsq_t *ipsq) 6767 { 6768 mblk_t *mp; 6769 ipsq_t *mp_ipsq; 6770 queue_t *q; 6771 phyint_t *phyi; 6772 ipsq_func_t func; 6773 6774 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6775 6776 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6777 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6778 ipsq->ipsq_xop->ipx_reentry_cnt--; 6779 return; 6780 } 6781 6782 for (;;) { 6783 phyi = ipsq->ipsq_phyint; 6784 mp = ipsq_dq(ipsq); 6785 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6786 6787 /* 6788 * If we've changed to a new IPSQ, and the phyint associated 6789 * with the old one has gone away, free the old IPSQ. Note 6790 * that this cannot happen while the IPSQ is in a group. 6791 */ 6792 if (mp_ipsq != ipsq && phyi == NULL) { 6793 ASSERT(ipsq->ipsq_next == ipsq); 6794 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6795 ipsq_delete(ipsq); 6796 } 6797 6798 if (mp == NULL) 6799 break; 6800 6801 q = mp->b_queue; 6802 func = (ipsq_func_t)mp->b_prev; 6803 ipsq = mp_ipsq; 6804 mp->b_next = mp->b_prev = NULL; 6805 mp->b_queue = NULL; 6806 6807 /* 6808 * If 'q' is an conn queue, it is valid, since we did a 6809 * a refhold on the conn at the start of the ioctl. 6810 * If 'q' is an ill queue, it is valid, since close of an 6811 * ill will clean up its IPSQ. 6812 */ 6813 (*func)(ipsq, q, mp, NULL); 6814 } 6815 } 6816 6817 /* 6818 * Used to start any igmp or mld timers that could not be started 6819 * while holding ill_mcast_lock. The timers can't be started while holding 6820 * the lock, since mld/igmp_start_timers may need to call untimeout() 6821 * which can't be done while holding the lock which the timeout handler 6822 * acquires. Otherwise 6823 * there could be a deadlock since the timeout handlers 6824 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6825 * ill_mcast_lock. 6826 */ 6827 void 6828 ill_mcast_timer_start(ip_stack_t *ipst) 6829 { 6830 int next; 6831 6832 mutex_enter(&ipst->ips_igmp_timer_lock); 6833 next = ipst->ips_igmp_deferred_next; 6834 ipst->ips_igmp_deferred_next = INFINITY; 6835 mutex_exit(&ipst->ips_igmp_timer_lock); 6836 6837 if (next != INFINITY) 6838 igmp_start_timers(next, ipst); 6839 6840 mutex_enter(&ipst->ips_mld_timer_lock); 6841 next = ipst->ips_mld_deferred_next; 6842 ipst->ips_mld_deferred_next = INFINITY; 6843 mutex_exit(&ipst->ips_mld_timer_lock); 6844 6845 if (next != INFINITY) 6846 mld_start_timers(next, ipst); 6847 } 6848 6849 /* 6850 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6851 * and `ioccmd'. 6852 */ 6853 void 6854 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6855 { 6856 ill_t *ill = ipif->ipif_ill; 6857 ipxop_t *ipx = ipsq->ipsq_xop; 6858 6859 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6860 ASSERT(ipx->ipx_current_ipif == NULL); 6861 ASSERT(ipx->ipx_current_ioctl == 0); 6862 6863 ipx->ipx_current_done = B_FALSE; 6864 ipx->ipx_current_ioctl = ioccmd; 6865 mutex_enter(&ipx->ipx_lock); 6866 ipx->ipx_current_ipif = ipif; 6867 mutex_exit(&ipx->ipx_lock); 6868 6869 /* 6870 * Set IPIF_CHANGING on one or more ipifs associated with the 6871 * current exclusive operation. IPIF_CHANGING prevents any new 6872 * references to the ipif (so that the references will eventually 6873 * drop to zero) and also prevents any "get" operations (e.g., 6874 * SIOCGLIFFLAGS) from being able to access the ipif until the 6875 * operation has completed and the ipif is again in a stable state. 6876 * 6877 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6878 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6879 * on the ill are marked with IPIF_CHANGING since it's unclear which 6880 * ipifs will be affected. 6881 * 6882 * Note that SIOCLIFREMOVEIF is a special case as it sets 6883 * IPIF_CONDEMNED internally after identifying the right ipif to 6884 * operate on. 6885 */ 6886 switch (ioccmd) { 6887 case SIOCLIFREMOVEIF: 6888 break; 6889 case 0: 6890 mutex_enter(&ill->ill_lock); 6891 ipif = ipif->ipif_ill->ill_ipif; 6892 for (; ipif != NULL; ipif = ipif->ipif_next) 6893 ipif->ipif_state_flags |= IPIF_CHANGING; 6894 mutex_exit(&ill->ill_lock); 6895 break; 6896 default: 6897 mutex_enter(&ill->ill_lock); 6898 ipif->ipif_state_flags |= IPIF_CHANGING; 6899 mutex_exit(&ill->ill_lock); 6900 } 6901 } 6902 6903 /* 6904 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6905 * the next exclusive operation to begin once we ipsq_exit(). However, if 6906 * pending DLPI operations remain, then we will wait for the queue to drain 6907 * before allowing the next exclusive operation to begin. This ensures that 6908 * DLPI operations from one exclusive operation are never improperly processed 6909 * as part of a subsequent exclusive operation. 6910 */ 6911 void 6912 ipsq_current_finish(ipsq_t *ipsq) 6913 { 6914 ipxop_t *ipx = ipsq->ipsq_xop; 6915 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6916 ipif_t *ipif = ipx->ipx_current_ipif; 6917 6918 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6919 6920 /* 6921 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6922 * (but in that case, IPIF_CHANGING will already be clear and no 6923 * pending DLPI messages can remain). 6924 */ 6925 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6926 ill_t *ill = ipif->ipif_ill; 6927 6928 mutex_enter(&ill->ill_lock); 6929 dlpi_pending = ill->ill_dlpi_pending; 6930 if (ipx->ipx_current_ioctl == 0) { 6931 ipif = ill->ill_ipif; 6932 for (; ipif != NULL; ipif = ipif->ipif_next) 6933 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6934 } else { 6935 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6936 } 6937 mutex_exit(&ill->ill_lock); 6938 } 6939 6940 ASSERT(!ipx->ipx_current_done); 6941 ipx->ipx_current_done = B_TRUE; 6942 ipx->ipx_current_ioctl = 0; 6943 if (dlpi_pending == DL_PRIM_INVAL) { 6944 mutex_enter(&ipx->ipx_lock); 6945 ipx->ipx_current_ipif = NULL; 6946 mutex_exit(&ipx->ipx_lock); 6947 } 6948 } 6949 6950 /* 6951 * The ill is closing. Flush all messages on the ipsq that originated 6952 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6953 * for this ill since ipsq_enter could not have entered until then. 6954 * New messages can't be queued since the CONDEMNED flag is set. 6955 */ 6956 static void 6957 ipsq_flush(ill_t *ill) 6958 { 6959 queue_t *q; 6960 mblk_t *prev; 6961 mblk_t *mp; 6962 mblk_t *mp_next; 6963 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 6964 6965 ASSERT(IAM_WRITER_ILL(ill)); 6966 6967 /* 6968 * Flush any messages sent up by the driver. 6969 */ 6970 mutex_enter(&ipx->ipx_lock); 6971 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 6972 mp_next = mp->b_next; 6973 q = mp->b_queue; 6974 if (q == ill->ill_rq || q == ill->ill_wq) { 6975 /* dequeue mp */ 6976 if (prev == NULL) 6977 ipx->ipx_mphead = mp->b_next; 6978 else 6979 prev->b_next = mp->b_next; 6980 if (ipx->ipx_mptail == mp) { 6981 ASSERT(mp_next == NULL); 6982 ipx->ipx_mptail = prev; 6983 } 6984 inet_freemsg(mp); 6985 } else { 6986 prev = mp; 6987 } 6988 } 6989 mutex_exit(&ipx->ipx_lock); 6990 (void) ipsq_pending_mp_cleanup(ill, NULL); 6991 ipsq_xopq_mp_cleanup(ill, NULL); 6992 } 6993 6994 /* 6995 * Parse an ifreq or lifreq struct coming down ioctls and refhold 6996 * and return the associated ipif. 6997 * Return value: 6998 * Non zero: An error has occurred. ci may not be filled out. 6999 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7000 * a held ipif in ci.ci_ipif. 7001 */ 7002 int 7003 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7004 cmd_info_t *ci) 7005 { 7006 char *name; 7007 struct ifreq *ifr; 7008 struct lifreq *lifr; 7009 ipif_t *ipif = NULL; 7010 ill_t *ill; 7011 conn_t *connp; 7012 boolean_t isv6; 7013 boolean_t exists; 7014 mblk_t *mp1; 7015 zoneid_t zoneid; 7016 ip_stack_t *ipst; 7017 7018 if (q->q_next != NULL) { 7019 ill = (ill_t *)q->q_ptr; 7020 isv6 = ill->ill_isv6; 7021 connp = NULL; 7022 zoneid = ALL_ZONES; 7023 ipst = ill->ill_ipst; 7024 } else { 7025 ill = NULL; 7026 connp = Q_TO_CONN(q); 7027 isv6 = (connp->conn_family == AF_INET6); 7028 zoneid = connp->conn_zoneid; 7029 if (zoneid == GLOBAL_ZONEID) { 7030 /* global zone can access ipifs in all zones */ 7031 zoneid = ALL_ZONES; 7032 } 7033 ipst = connp->conn_netstack->netstack_ip; 7034 } 7035 7036 /* Has been checked in ip_wput_nondata */ 7037 mp1 = mp->b_cont->b_cont; 7038 7039 if (ipip->ipi_cmd_type == IF_CMD) { 7040 /* This a old style SIOC[GS]IF* command */ 7041 ifr = (struct ifreq *)mp1->b_rptr; 7042 /* 7043 * Null terminate the string to protect against buffer 7044 * overrun. String was generated by user code and may not 7045 * be trusted. 7046 */ 7047 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7048 name = ifr->ifr_name; 7049 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7050 ci->ci_sin6 = NULL; 7051 ci->ci_lifr = (struct lifreq *)ifr; 7052 } else { 7053 /* This a new style SIOC[GS]LIF* command */ 7054 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7055 lifr = (struct lifreq *)mp1->b_rptr; 7056 /* 7057 * Null terminate the string to protect against buffer 7058 * overrun. String was generated by user code and may not 7059 * be trusted. 7060 */ 7061 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7062 name = lifr->lifr_name; 7063 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7064 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7065 ci->ci_lifr = lifr; 7066 } 7067 7068 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7069 /* 7070 * The ioctl will be failed if the ioctl comes down 7071 * an conn stream 7072 */ 7073 if (ill == NULL) { 7074 /* 7075 * Not an ill queue, return EINVAL same as the 7076 * old error code. 7077 */ 7078 return (ENXIO); 7079 } 7080 ipif = ill->ill_ipif; 7081 ipif_refhold(ipif); 7082 } else { 7083 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7084 &exists, isv6, zoneid, ipst); 7085 7086 /* 7087 * Ensure that get ioctls don't see any internal state changes 7088 * caused by set ioctls by deferring them if IPIF_CHANGING is 7089 * set. 7090 */ 7091 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7092 !IAM_WRITER_IPIF(ipif)) { 7093 ipsq_t *ipsq; 7094 7095 if (connp != NULL) 7096 mutex_enter(&connp->conn_lock); 7097 mutex_enter(&ipif->ipif_ill->ill_lock); 7098 if (IPIF_IS_CHANGING(ipif) && 7099 !IPIF_IS_CONDEMNED(ipif)) { 7100 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7101 mutex_enter(&ipsq->ipsq_lock); 7102 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7103 mutex_exit(&ipif->ipif_ill->ill_lock); 7104 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7105 NEW_OP, ipif->ipif_ill); 7106 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7107 mutex_exit(&ipsq->ipsq_lock); 7108 if (connp != NULL) 7109 mutex_exit(&connp->conn_lock); 7110 ipif_refrele(ipif); 7111 return (EINPROGRESS); 7112 } 7113 mutex_exit(&ipif->ipif_ill->ill_lock); 7114 if (connp != NULL) 7115 mutex_exit(&connp->conn_lock); 7116 } 7117 } 7118 7119 /* 7120 * Old style [GS]IFCMD does not admit IPv6 ipif 7121 */ 7122 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7123 ipif_refrele(ipif); 7124 return (ENXIO); 7125 } 7126 7127 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7128 name[0] == '\0') { 7129 /* 7130 * Handle a or a SIOC?IF* with a null name 7131 * during plumb (on the ill queue before the I_PLINK). 7132 */ 7133 ipif = ill->ill_ipif; 7134 ipif_refhold(ipif); 7135 } 7136 7137 if (ipif == NULL) 7138 return (ENXIO); 7139 7140 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7141 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7142 7143 ci->ci_ipif = ipif; 7144 return (0); 7145 } 7146 7147 /* 7148 * Return the total number of ipifs. 7149 */ 7150 static uint_t 7151 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7152 { 7153 uint_t numifs = 0; 7154 ill_t *ill; 7155 ill_walk_context_t ctx; 7156 ipif_t *ipif; 7157 7158 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7159 ill = ILL_START_WALK_V4(&ctx, ipst); 7160 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7161 if (IS_UNDER_IPMP(ill)) 7162 continue; 7163 for (ipif = ill->ill_ipif; ipif != NULL; 7164 ipif = ipif->ipif_next) { 7165 if (ipif->ipif_zoneid == zoneid || 7166 ipif->ipif_zoneid == ALL_ZONES) 7167 numifs++; 7168 } 7169 } 7170 rw_exit(&ipst->ips_ill_g_lock); 7171 return (numifs); 7172 } 7173 7174 /* 7175 * Return the total number of ipifs. 7176 */ 7177 static uint_t 7178 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7179 { 7180 uint_t numifs = 0; 7181 ill_t *ill; 7182 ipif_t *ipif; 7183 ill_walk_context_t ctx; 7184 7185 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7186 7187 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7188 if (family == AF_INET) 7189 ill = ILL_START_WALK_V4(&ctx, ipst); 7190 else if (family == AF_INET6) 7191 ill = ILL_START_WALK_V6(&ctx, ipst); 7192 else 7193 ill = ILL_START_WALK_ALL(&ctx, ipst); 7194 7195 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7196 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7197 continue; 7198 7199 for (ipif = ill->ill_ipif; ipif != NULL; 7200 ipif = ipif->ipif_next) { 7201 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7202 !(lifn_flags & LIFC_NOXMIT)) 7203 continue; 7204 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7205 !(lifn_flags & LIFC_TEMPORARY)) 7206 continue; 7207 if (((ipif->ipif_flags & 7208 (IPIF_NOXMIT|IPIF_NOLOCAL| 7209 IPIF_DEPRECATED)) || 7210 IS_LOOPBACK(ill) || 7211 !(ipif->ipif_flags & IPIF_UP)) && 7212 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7213 continue; 7214 7215 if (zoneid != ipif->ipif_zoneid && 7216 ipif->ipif_zoneid != ALL_ZONES && 7217 (zoneid != GLOBAL_ZONEID || 7218 !(lifn_flags & LIFC_ALLZONES))) 7219 continue; 7220 7221 numifs++; 7222 } 7223 } 7224 rw_exit(&ipst->ips_ill_g_lock); 7225 return (numifs); 7226 } 7227 7228 uint_t 7229 ip_get_lifsrcofnum(ill_t *ill) 7230 { 7231 uint_t numifs = 0; 7232 ill_t *ill_head = ill; 7233 ip_stack_t *ipst = ill->ill_ipst; 7234 7235 /* 7236 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7237 * other thread may be trying to relink the ILLs in this usesrc group 7238 * and adjusting the ill_usesrc_grp_next pointers 7239 */ 7240 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7241 if ((ill->ill_usesrc_ifindex == 0) && 7242 (ill->ill_usesrc_grp_next != NULL)) { 7243 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7244 ill = ill->ill_usesrc_grp_next) 7245 numifs++; 7246 } 7247 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7248 7249 return (numifs); 7250 } 7251 7252 /* Null values are passed in for ipif, sin, and ifreq */ 7253 /* ARGSUSED */ 7254 int 7255 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7256 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7257 { 7258 int *nump; 7259 conn_t *connp = Q_TO_CONN(q); 7260 7261 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7262 7263 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7264 nump = (int *)mp->b_cont->b_cont->b_rptr; 7265 7266 *nump = ip_get_numifs(connp->conn_zoneid, 7267 connp->conn_netstack->netstack_ip); 7268 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7269 return (0); 7270 } 7271 7272 /* Null values are passed in for ipif, sin, and ifreq */ 7273 /* ARGSUSED */ 7274 int 7275 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7276 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7277 { 7278 struct lifnum *lifn; 7279 mblk_t *mp1; 7280 conn_t *connp = Q_TO_CONN(q); 7281 7282 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7283 7284 /* Existence checked in ip_wput_nondata */ 7285 mp1 = mp->b_cont->b_cont; 7286 7287 lifn = (struct lifnum *)mp1->b_rptr; 7288 switch (lifn->lifn_family) { 7289 case AF_UNSPEC: 7290 case AF_INET: 7291 case AF_INET6: 7292 break; 7293 default: 7294 return (EAFNOSUPPORT); 7295 } 7296 7297 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7298 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7299 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7300 return (0); 7301 } 7302 7303 /* ARGSUSED */ 7304 int 7305 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7306 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7307 { 7308 STRUCT_HANDLE(ifconf, ifc); 7309 mblk_t *mp1; 7310 struct iocblk *iocp; 7311 struct ifreq *ifr; 7312 ill_walk_context_t ctx; 7313 ill_t *ill; 7314 ipif_t *ipif; 7315 struct sockaddr_in *sin; 7316 int32_t ifclen; 7317 zoneid_t zoneid; 7318 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7319 7320 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7321 7322 ip1dbg(("ip_sioctl_get_ifconf")); 7323 /* Existence verified in ip_wput_nondata */ 7324 mp1 = mp->b_cont->b_cont; 7325 iocp = (struct iocblk *)mp->b_rptr; 7326 zoneid = Q_TO_CONN(q)->conn_zoneid; 7327 7328 /* 7329 * The original SIOCGIFCONF passed in a struct ifconf which specified 7330 * the user buffer address and length into which the list of struct 7331 * ifreqs was to be copied. Since AT&T Streams does not seem to 7332 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7333 * the SIOCGIFCONF operation was redefined to simply provide 7334 * a large output buffer into which we are supposed to jam the ifreq 7335 * array. The same ioctl command code was used, despite the fact that 7336 * both the applications and the kernel code had to change, thus making 7337 * it impossible to support both interfaces. 7338 * 7339 * For reasons not good enough to try to explain, the following 7340 * algorithm is used for deciding what to do with one of these: 7341 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7342 * form with the output buffer coming down as the continuation message. 7343 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7344 * and we have to copy in the ifconf structure to find out how big the 7345 * output buffer is and where to copy out to. Sure no problem... 7346 * 7347 */ 7348 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7349 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7350 int numifs = 0; 7351 size_t ifc_bufsize; 7352 7353 /* 7354 * Must be (better be!) continuation of a TRANSPARENT 7355 * IOCTL. We just copied in the ifconf structure. 7356 */ 7357 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7358 (struct ifconf *)mp1->b_rptr); 7359 7360 /* 7361 * Allocate a buffer to hold requested information. 7362 * 7363 * If ifc_len is larger than what is needed, we only 7364 * allocate what we will use. 7365 * 7366 * If ifc_len is smaller than what is needed, return 7367 * EINVAL. 7368 * 7369 * XXX: the ill_t structure can hava 2 counters, for 7370 * v4 and v6 (not just ill_ipif_up_count) to store the 7371 * number of interfaces for a device, so we don't need 7372 * to count them here... 7373 */ 7374 numifs = ip_get_numifs(zoneid, ipst); 7375 7376 ifclen = STRUCT_FGET(ifc, ifc_len); 7377 ifc_bufsize = numifs * sizeof (struct ifreq); 7378 if (ifc_bufsize > ifclen) { 7379 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7380 /* old behaviour */ 7381 return (EINVAL); 7382 } else { 7383 ifc_bufsize = ifclen; 7384 } 7385 } 7386 7387 mp1 = mi_copyout_alloc(q, mp, 7388 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7389 if (mp1 == NULL) 7390 return (ENOMEM); 7391 7392 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7393 } 7394 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7395 /* 7396 * the SIOCGIFCONF ioctl only knows about 7397 * IPv4 addresses, so don't try to tell 7398 * it about interfaces with IPv6-only 7399 * addresses. (Last parm 'isv6' is B_FALSE) 7400 */ 7401 7402 ifr = (struct ifreq *)mp1->b_rptr; 7403 7404 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7405 ill = ILL_START_WALK_V4(&ctx, ipst); 7406 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7407 if (IS_UNDER_IPMP(ill)) 7408 continue; 7409 for (ipif = ill->ill_ipif; ipif != NULL; 7410 ipif = ipif->ipif_next) { 7411 if (zoneid != ipif->ipif_zoneid && 7412 ipif->ipif_zoneid != ALL_ZONES) 7413 continue; 7414 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7415 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7416 /* old behaviour */ 7417 rw_exit(&ipst->ips_ill_g_lock); 7418 return (EINVAL); 7419 } else { 7420 goto if_copydone; 7421 } 7422 } 7423 ipif_get_name(ipif, ifr->ifr_name, 7424 sizeof (ifr->ifr_name)); 7425 sin = (sin_t *)&ifr->ifr_addr; 7426 *sin = sin_null; 7427 sin->sin_family = AF_INET; 7428 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7429 ifr++; 7430 } 7431 } 7432 if_copydone: 7433 rw_exit(&ipst->ips_ill_g_lock); 7434 mp1->b_wptr = (uchar_t *)ifr; 7435 7436 if (STRUCT_BUF(ifc) != NULL) { 7437 STRUCT_FSET(ifc, ifc_len, 7438 (int)((uchar_t *)ifr - mp1->b_rptr)); 7439 } 7440 return (0); 7441 } 7442 7443 /* 7444 * Get the interfaces using the address hosted on the interface passed in, 7445 * as a source adddress 7446 */ 7447 /* ARGSUSED */ 7448 int 7449 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7450 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7451 { 7452 mblk_t *mp1; 7453 ill_t *ill, *ill_head; 7454 ipif_t *ipif, *orig_ipif; 7455 int numlifs = 0; 7456 size_t lifs_bufsize, lifsmaxlen; 7457 struct lifreq *lifr; 7458 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7459 uint_t ifindex; 7460 zoneid_t zoneid; 7461 boolean_t isv6 = B_FALSE; 7462 struct sockaddr_in *sin; 7463 struct sockaddr_in6 *sin6; 7464 STRUCT_HANDLE(lifsrcof, lifs); 7465 ip_stack_t *ipst; 7466 7467 ipst = CONNQ_TO_IPST(q); 7468 7469 ASSERT(q->q_next == NULL); 7470 7471 zoneid = Q_TO_CONN(q)->conn_zoneid; 7472 7473 /* Existence verified in ip_wput_nondata */ 7474 mp1 = mp->b_cont->b_cont; 7475 7476 /* 7477 * Must be (better be!) continuation of a TRANSPARENT 7478 * IOCTL. We just copied in the lifsrcof structure. 7479 */ 7480 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7481 (struct lifsrcof *)mp1->b_rptr); 7482 7483 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7484 return (EINVAL); 7485 7486 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7487 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7488 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7489 if (ipif == NULL) { 7490 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7491 ifindex)); 7492 return (ENXIO); 7493 } 7494 7495 /* Allocate a buffer to hold requested information */ 7496 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7497 lifs_bufsize = numlifs * sizeof (struct lifreq); 7498 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7499 /* The actual size needed is always returned in lifs_len */ 7500 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7501 7502 /* If the amount we need is more than what is passed in, abort */ 7503 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7504 ipif_refrele(ipif); 7505 return (0); 7506 } 7507 7508 mp1 = mi_copyout_alloc(q, mp, 7509 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7510 if (mp1 == NULL) { 7511 ipif_refrele(ipif); 7512 return (ENOMEM); 7513 } 7514 7515 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7516 bzero(mp1->b_rptr, lifs_bufsize); 7517 7518 lifr = (struct lifreq *)mp1->b_rptr; 7519 7520 ill = ill_head = ipif->ipif_ill; 7521 orig_ipif = ipif; 7522 7523 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7524 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7525 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7526 7527 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7528 for (; (ill != NULL) && (ill != ill_head); 7529 ill = ill->ill_usesrc_grp_next) { 7530 7531 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7532 break; 7533 7534 ipif = ill->ill_ipif; 7535 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7536 if (ipif->ipif_isv6) { 7537 sin6 = (sin6_t *)&lifr->lifr_addr; 7538 *sin6 = sin6_null; 7539 sin6->sin6_family = AF_INET6; 7540 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7541 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7542 &ipif->ipif_v6net_mask); 7543 } else { 7544 sin = (sin_t *)&lifr->lifr_addr; 7545 *sin = sin_null; 7546 sin->sin_family = AF_INET; 7547 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7548 lifr->lifr_addrlen = ip_mask_to_plen( 7549 ipif->ipif_net_mask); 7550 } 7551 lifr++; 7552 } 7553 rw_exit(&ipst->ips_ill_g_lock); 7554 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7555 ipif_refrele(orig_ipif); 7556 mp1->b_wptr = (uchar_t *)lifr; 7557 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7558 7559 return (0); 7560 } 7561 7562 /* ARGSUSED */ 7563 int 7564 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7565 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7566 { 7567 mblk_t *mp1; 7568 int list; 7569 ill_t *ill; 7570 ipif_t *ipif; 7571 int flags; 7572 int numlifs = 0; 7573 size_t lifc_bufsize; 7574 struct lifreq *lifr; 7575 sa_family_t family; 7576 struct sockaddr_in *sin; 7577 struct sockaddr_in6 *sin6; 7578 ill_walk_context_t ctx; 7579 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7580 int32_t lifclen; 7581 zoneid_t zoneid; 7582 STRUCT_HANDLE(lifconf, lifc); 7583 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7584 7585 ip1dbg(("ip_sioctl_get_lifconf")); 7586 7587 ASSERT(q->q_next == NULL); 7588 7589 zoneid = Q_TO_CONN(q)->conn_zoneid; 7590 7591 /* Existence verified in ip_wput_nondata */ 7592 mp1 = mp->b_cont->b_cont; 7593 7594 /* 7595 * An extended version of SIOCGIFCONF that takes an 7596 * additional address family and flags field. 7597 * AF_UNSPEC retrieve both IPv4 and IPv6. 7598 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7599 * interfaces are omitted. 7600 * Similarly, IPIF_TEMPORARY interfaces are omitted 7601 * unless LIFC_TEMPORARY is specified. 7602 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7603 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7604 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7605 * has priority over LIFC_NOXMIT. 7606 */ 7607 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7608 7609 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7610 return (EINVAL); 7611 7612 /* 7613 * Must be (better be!) continuation of a TRANSPARENT 7614 * IOCTL. We just copied in the lifconf structure. 7615 */ 7616 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7617 7618 family = STRUCT_FGET(lifc, lifc_family); 7619 flags = STRUCT_FGET(lifc, lifc_flags); 7620 7621 switch (family) { 7622 case AF_UNSPEC: 7623 /* 7624 * walk all ILL's. 7625 */ 7626 list = MAX_G_HEADS; 7627 break; 7628 case AF_INET: 7629 /* 7630 * walk only IPV4 ILL's. 7631 */ 7632 list = IP_V4_G_HEAD; 7633 break; 7634 case AF_INET6: 7635 /* 7636 * walk only IPV6 ILL's. 7637 */ 7638 list = IP_V6_G_HEAD; 7639 break; 7640 default: 7641 return (EAFNOSUPPORT); 7642 } 7643 7644 /* 7645 * Allocate a buffer to hold requested information. 7646 * 7647 * If lifc_len is larger than what is needed, we only 7648 * allocate what we will use. 7649 * 7650 * If lifc_len is smaller than what is needed, return 7651 * EINVAL. 7652 */ 7653 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7654 lifc_bufsize = numlifs * sizeof (struct lifreq); 7655 lifclen = STRUCT_FGET(lifc, lifc_len); 7656 if (lifc_bufsize > lifclen) { 7657 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7658 return (EINVAL); 7659 else 7660 lifc_bufsize = lifclen; 7661 } 7662 7663 mp1 = mi_copyout_alloc(q, mp, 7664 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7665 if (mp1 == NULL) 7666 return (ENOMEM); 7667 7668 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7669 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7670 7671 lifr = (struct lifreq *)mp1->b_rptr; 7672 7673 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7674 ill = ill_first(list, list, &ctx, ipst); 7675 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7676 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7677 continue; 7678 7679 for (ipif = ill->ill_ipif; ipif != NULL; 7680 ipif = ipif->ipif_next) { 7681 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7682 !(flags & LIFC_NOXMIT)) 7683 continue; 7684 7685 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7686 !(flags & LIFC_TEMPORARY)) 7687 continue; 7688 7689 if (((ipif->ipif_flags & 7690 (IPIF_NOXMIT|IPIF_NOLOCAL| 7691 IPIF_DEPRECATED)) || 7692 IS_LOOPBACK(ill) || 7693 !(ipif->ipif_flags & IPIF_UP)) && 7694 (flags & LIFC_EXTERNAL_SOURCE)) 7695 continue; 7696 7697 if (zoneid != ipif->ipif_zoneid && 7698 ipif->ipif_zoneid != ALL_ZONES && 7699 (zoneid != GLOBAL_ZONEID || 7700 !(flags & LIFC_ALLZONES))) 7701 continue; 7702 7703 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7704 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7705 rw_exit(&ipst->ips_ill_g_lock); 7706 return (EINVAL); 7707 } else { 7708 goto lif_copydone; 7709 } 7710 } 7711 7712 ipif_get_name(ipif, lifr->lifr_name, 7713 sizeof (lifr->lifr_name)); 7714 lifr->lifr_type = ill->ill_type; 7715 if (ipif->ipif_isv6) { 7716 sin6 = (sin6_t *)&lifr->lifr_addr; 7717 *sin6 = sin6_null; 7718 sin6->sin6_family = AF_INET6; 7719 sin6->sin6_addr = 7720 ipif->ipif_v6lcl_addr; 7721 lifr->lifr_addrlen = 7722 ip_mask_to_plen_v6( 7723 &ipif->ipif_v6net_mask); 7724 } else { 7725 sin = (sin_t *)&lifr->lifr_addr; 7726 *sin = sin_null; 7727 sin->sin_family = AF_INET; 7728 sin->sin_addr.s_addr = 7729 ipif->ipif_lcl_addr; 7730 lifr->lifr_addrlen = 7731 ip_mask_to_plen( 7732 ipif->ipif_net_mask); 7733 } 7734 lifr++; 7735 } 7736 } 7737 lif_copydone: 7738 rw_exit(&ipst->ips_ill_g_lock); 7739 7740 mp1->b_wptr = (uchar_t *)lifr; 7741 if (STRUCT_BUF(lifc) != NULL) { 7742 STRUCT_FSET(lifc, lifc_len, 7743 (int)((uchar_t *)lifr - mp1->b_rptr)); 7744 } 7745 return (0); 7746 } 7747 7748 static void 7749 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7750 { 7751 ip6_asp_t *table; 7752 size_t table_size; 7753 mblk_t *data_mp; 7754 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7755 ip_stack_t *ipst; 7756 7757 if (q->q_next == NULL) 7758 ipst = CONNQ_TO_IPST(q); 7759 else 7760 ipst = ILLQ_TO_IPST(q); 7761 7762 /* These two ioctls are I_STR only */ 7763 if (iocp->ioc_count == TRANSPARENT) { 7764 miocnak(q, mp, 0, EINVAL); 7765 return; 7766 } 7767 7768 data_mp = mp->b_cont; 7769 if (data_mp == NULL) { 7770 /* The user passed us a NULL argument */ 7771 table = NULL; 7772 table_size = iocp->ioc_count; 7773 } else { 7774 /* 7775 * The user provided a table. The stream head 7776 * may have copied in the user data in chunks, 7777 * so make sure everything is pulled up 7778 * properly. 7779 */ 7780 if (MBLKL(data_mp) < iocp->ioc_count) { 7781 mblk_t *new_data_mp; 7782 if ((new_data_mp = msgpullup(data_mp, -1)) == 7783 NULL) { 7784 miocnak(q, mp, 0, ENOMEM); 7785 return; 7786 } 7787 freemsg(data_mp); 7788 data_mp = new_data_mp; 7789 mp->b_cont = data_mp; 7790 } 7791 table = (ip6_asp_t *)data_mp->b_rptr; 7792 table_size = iocp->ioc_count; 7793 } 7794 7795 switch (iocp->ioc_cmd) { 7796 case SIOCGIP6ADDRPOLICY: 7797 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7798 if (iocp->ioc_rval == -1) 7799 iocp->ioc_error = EINVAL; 7800 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7801 else if (table != NULL && 7802 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7803 ip6_asp_t *src = table; 7804 ip6_asp32_t *dst = (void *)table; 7805 int count = table_size / sizeof (ip6_asp_t); 7806 int i; 7807 7808 /* 7809 * We need to do an in-place shrink of the array 7810 * to match the alignment attributes of the 7811 * 32-bit ABI looking at it. 7812 */ 7813 /* LINTED: logical expression always true: op "||" */ 7814 ASSERT(sizeof (*src) > sizeof (*dst)); 7815 for (i = 1; i < count; i++) 7816 bcopy(src + i, dst + i, sizeof (*dst)); 7817 } 7818 #endif 7819 break; 7820 7821 case SIOCSIP6ADDRPOLICY: 7822 ASSERT(mp->b_prev == NULL); 7823 mp->b_prev = (void *)q; 7824 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7825 /* 7826 * We pass in the datamodel here so that the ip6_asp_replace() 7827 * routine can handle converting from 32-bit to native formats 7828 * where necessary. 7829 * 7830 * A better way to handle this might be to convert the inbound 7831 * data structure here, and hang it off a new 'mp'; thus the 7832 * ip6_asp_replace() logic would always be dealing with native 7833 * format data structures.. 7834 * 7835 * (An even simpler way to handle these ioctls is to just 7836 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7837 * and just recompile everything that depends on it.) 7838 */ 7839 #endif 7840 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7841 iocp->ioc_flag & IOC_MODELS); 7842 return; 7843 } 7844 7845 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7846 qreply(q, mp); 7847 } 7848 7849 static void 7850 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7851 { 7852 mblk_t *data_mp; 7853 struct dstinforeq *dir; 7854 uint8_t *end, *cur; 7855 in6_addr_t *daddr, *saddr; 7856 ipaddr_t v4daddr; 7857 ire_t *ire; 7858 ipaddr_t v4setsrc; 7859 in6_addr_t v6setsrc; 7860 char *slabel, *dlabel; 7861 boolean_t isipv4; 7862 int match_ire; 7863 ill_t *dst_ill; 7864 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7865 conn_t *connp = Q_TO_CONN(q); 7866 zoneid_t zoneid = IPCL_ZONEID(connp); 7867 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7868 uint64_t ipif_flags; 7869 7870 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7871 7872 /* 7873 * This ioctl is I_STR only, and must have a 7874 * data mblk following the M_IOCTL mblk. 7875 */ 7876 data_mp = mp->b_cont; 7877 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7878 miocnak(q, mp, 0, EINVAL); 7879 return; 7880 } 7881 7882 if (MBLKL(data_mp) < iocp->ioc_count) { 7883 mblk_t *new_data_mp; 7884 7885 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7886 miocnak(q, mp, 0, ENOMEM); 7887 return; 7888 } 7889 freemsg(data_mp); 7890 data_mp = new_data_mp; 7891 mp->b_cont = data_mp; 7892 } 7893 match_ire = MATCH_IRE_DSTONLY; 7894 7895 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7896 end - cur >= sizeof (struct dstinforeq); 7897 cur += sizeof (struct dstinforeq)) { 7898 dir = (struct dstinforeq *)cur; 7899 daddr = &dir->dir_daddr; 7900 saddr = &dir->dir_saddr; 7901 7902 /* 7903 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7904 * v4 mapped addresses; ire_ftable_lookup_v6() 7905 * and ip_select_source_v6() do not. 7906 */ 7907 dir->dir_dscope = ip_addr_scope_v6(daddr); 7908 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7909 7910 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7911 if (isipv4) { 7912 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7913 v4setsrc = INADDR_ANY; 7914 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7915 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7916 NULL, NULL); 7917 } else { 7918 v6setsrc = ipv6_all_zeros; 7919 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7920 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7921 NULL, NULL); 7922 } 7923 ASSERT(ire != NULL); 7924 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7925 ire_refrele(ire); 7926 dir->dir_dreachable = 0; 7927 7928 /* move on to next dst addr */ 7929 continue; 7930 } 7931 dir->dir_dreachable = 1; 7932 7933 dst_ill = ire_nexthop_ill(ire); 7934 if (dst_ill == NULL) { 7935 ire_refrele(ire); 7936 continue; 7937 } 7938 7939 /* With ipmp we most likely look at the ipmp ill here */ 7940 dir->dir_dmactype = dst_ill->ill_mactype; 7941 7942 if (isipv4) { 7943 ipaddr_t v4saddr; 7944 7945 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7946 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7947 &v4saddr, NULL, &ipif_flags) != 0) { 7948 v4saddr = INADDR_ANY; 7949 ipif_flags = 0; 7950 } 7951 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7952 } else { 7953 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7954 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7955 saddr, NULL, &ipif_flags) != 0) { 7956 *saddr = ipv6_all_zeros; 7957 ipif_flags = 0; 7958 } 7959 } 7960 7961 dir->dir_sscope = ip_addr_scope_v6(saddr); 7962 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7963 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7964 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7965 ire_refrele(ire); 7966 ill_refrele(dst_ill); 7967 } 7968 miocack(q, mp, iocp->ioc_count, 0); 7969 } 7970 7971 /* 7972 * Check if this is an address assigned to this machine. 7973 * Skips interfaces that are down by using ire checks. 7974 * Translates mapped addresses to v4 addresses and then 7975 * treats them as such, returning true if the v4 address 7976 * associated with this mapped address is configured. 7977 * Note: Applications will have to be careful what they do 7978 * with the response; use of mapped addresses limits 7979 * what can be done with the socket, especially with 7980 * respect to socket options and ioctls - neither IPv4 7981 * options nor IPv6 sticky options/ancillary data options 7982 * may be used. 7983 */ 7984 /* ARGSUSED */ 7985 int 7986 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7987 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 7988 { 7989 struct sioc_addrreq *sia; 7990 sin_t *sin; 7991 ire_t *ire; 7992 mblk_t *mp1; 7993 zoneid_t zoneid; 7994 ip_stack_t *ipst; 7995 7996 ip1dbg(("ip_sioctl_tmyaddr")); 7997 7998 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7999 zoneid = Q_TO_CONN(q)->conn_zoneid; 8000 ipst = CONNQ_TO_IPST(q); 8001 8002 /* Existence verified in ip_wput_nondata */ 8003 mp1 = mp->b_cont->b_cont; 8004 sia = (struct sioc_addrreq *)mp1->b_rptr; 8005 sin = (sin_t *)&sia->sa_addr; 8006 switch (sin->sin_family) { 8007 case AF_INET6: { 8008 sin6_t *sin6 = (sin6_t *)sin; 8009 8010 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8011 ipaddr_t v4_addr; 8012 8013 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8014 v4_addr); 8015 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8016 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8017 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8018 } else { 8019 in6_addr_t v6addr; 8020 8021 v6addr = sin6->sin6_addr; 8022 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8023 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8024 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8025 } 8026 break; 8027 } 8028 case AF_INET: { 8029 ipaddr_t v4addr; 8030 8031 v4addr = sin->sin_addr.s_addr; 8032 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8033 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8034 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8035 break; 8036 } 8037 default: 8038 return (EAFNOSUPPORT); 8039 } 8040 if (ire != NULL) { 8041 sia->sa_res = 1; 8042 ire_refrele(ire); 8043 } else { 8044 sia->sa_res = 0; 8045 } 8046 return (0); 8047 } 8048 8049 /* 8050 * Check if this is an address assigned on-link i.e. neighbor, 8051 * and makes sure it's reachable from the current zone. 8052 * Returns true for my addresses as well. 8053 * Translates mapped addresses to v4 addresses and then 8054 * treats them as such, returning true if the v4 address 8055 * associated with this mapped address is configured. 8056 * Note: Applications will have to be careful what they do 8057 * with the response; use of mapped addresses limits 8058 * what can be done with the socket, especially with 8059 * respect to socket options and ioctls - neither IPv4 8060 * options nor IPv6 sticky options/ancillary data options 8061 * may be used. 8062 */ 8063 /* ARGSUSED */ 8064 int 8065 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8066 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8067 { 8068 struct sioc_addrreq *sia; 8069 sin_t *sin; 8070 mblk_t *mp1; 8071 ire_t *ire = NULL; 8072 zoneid_t zoneid; 8073 ip_stack_t *ipst; 8074 8075 ip1dbg(("ip_sioctl_tonlink")); 8076 8077 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8078 zoneid = Q_TO_CONN(q)->conn_zoneid; 8079 ipst = CONNQ_TO_IPST(q); 8080 8081 /* Existence verified in ip_wput_nondata */ 8082 mp1 = mp->b_cont->b_cont; 8083 sia = (struct sioc_addrreq *)mp1->b_rptr; 8084 sin = (sin_t *)&sia->sa_addr; 8085 8086 /* 8087 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8088 * to make sure we only look at on-link unicast address. 8089 */ 8090 switch (sin->sin_family) { 8091 case AF_INET6: { 8092 sin6_t *sin6 = (sin6_t *)sin; 8093 8094 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8095 ipaddr_t v4_addr; 8096 8097 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8098 v4_addr); 8099 if (!CLASSD(v4_addr)) { 8100 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8101 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8102 0, ipst, NULL); 8103 } 8104 } else { 8105 in6_addr_t v6addr; 8106 8107 v6addr = sin6->sin6_addr; 8108 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8109 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8110 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8111 ipst, NULL); 8112 } 8113 } 8114 break; 8115 } 8116 case AF_INET: { 8117 ipaddr_t v4addr; 8118 8119 v4addr = sin->sin_addr.s_addr; 8120 if (!CLASSD(v4addr)) { 8121 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8122 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8123 } 8124 break; 8125 } 8126 default: 8127 return (EAFNOSUPPORT); 8128 } 8129 sia->sa_res = 0; 8130 if (ire != NULL) { 8131 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8132 8133 if ((ire->ire_type & IRE_ONLINK) && 8134 !(ire->ire_type & IRE_BROADCAST)) 8135 sia->sa_res = 1; 8136 ire_refrele(ire); 8137 } 8138 return (0); 8139 } 8140 8141 /* 8142 * TBD: implement when kernel maintaines a list of site prefixes. 8143 */ 8144 /* ARGSUSED */ 8145 int 8146 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8147 ip_ioctl_cmd_t *ipip, void *ifreq) 8148 { 8149 return (ENXIO); 8150 } 8151 8152 /* ARP IOCTLs. */ 8153 /* ARGSUSED */ 8154 int 8155 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8156 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8157 { 8158 int err; 8159 ipaddr_t ipaddr; 8160 struct iocblk *iocp; 8161 conn_t *connp; 8162 struct arpreq *ar; 8163 struct xarpreq *xar; 8164 int arp_flags, flags, alength; 8165 uchar_t *lladdr; 8166 ip_stack_t *ipst; 8167 ill_t *ill = ipif->ipif_ill; 8168 ill_t *proxy_ill = NULL; 8169 ipmp_arpent_t *entp = NULL; 8170 boolean_t proxyarp = B_FALSE; 8171 boolean_t if_arp_ioctl = B_FALSE; 8172 ncec_t *ncec = NULL; 8173 nce_t *nce; 8174 8175 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8176 connp = Q_TO_CONN(q); 8177 ipst = connp->conn_netstack->netstack_ip; 8178 iocp = (struct iocblk *)mp->b_rptr; 8179 8180 if (ipip->ipi_cmd_type == XARP_CMD) { 8181 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8182 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8183 ar = NULL; 8184 8185 arp_flags = xar->xarp_flags; 8186 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8187 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8188 /* 8189 * Validate against user's link layer address length 8190 * input and name and addr length limits. 8191 */ 8192 alength = ill->ill_phys_addr_length; 8193 if (ipip->ipi_cmd == SIOCSXARP) { 8194 if (alength != xar->xarp_ha.sdl_alen || 8195 (alength + xar->xarp_ha.sdl_nlen > 8196 sizeof (xar->xarp_ha.sdl_data))) 8197 return (EINVAL); 8198 } 8199 } else { 8200 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8201 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8202 xar = NULL; 8203 8204 arp_flags = ar->arp_flags; 8205 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8206 /* 8207 * Theoretically, the sa_family could tell us what link 8208 * layer type this operation is trying to deal with. By 8209 * common usage AF_UNSPEC means ethernet. We'll assume 8210 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8211 * for now. Our new SIOC*XARP ioctls can be used more 8212 * generally. 8213 * 8214 * If the underlying media happens to have a non 6 byte 8215 * address, arp module will fail set/get, but the del 8216 * operation will succeed. 8217 */ 8218 alength = 6; 8219 if ((ipip->ipi_cmd != SIOCDARP) && 8220 (alength != ill->ill_phys_addr_length)) { 8221 return (EINVAL); 8222 } 8223 } 8224 8225 /* Translate ATF* flags to NCE* flags */ 8226 flags = 0; 8227 if (arp_flags & ATF_AUTHORITY) 8228 flags |= NCE_F_AUTHORITY; 8229 if (arp_flags & ATF_PERM) 8230 flags |= NCE_F_NONUD; /* not subject to aging */ 8231 if (arp_flags & ATF_PUBL) 8232 flags |= NCE_F_PUBLISH; 8233 8234 /* 8235 * IPMP ARP special handling: 8236 * 8237 * 1. Since ARP mappings must appear consistent across the group, 8238 * prohibit changing ARP mappings on the underlying interfaces. 8239 * 8240 * 2. Since ARP mappings for IPMP data addresses are maintained by 8241 * IP itself, prohibit changing them. 8242 * 8243 * 3. For proxy ARP, use a functioning hardware address in the group, 8244 * provided one exists. If one doesn't, just add the entry as-is; 8245 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8246 */ 8247 if (IS_UNDER_IPMP(ill)) { 8248 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8249 return (EPERM); 8250 } 8251 if (IS_IPMP(ill)) { 8252 ipmp_illgrp_t *illg = ill->ill_grp; 8253 8254 switch (ipip->ipi_cmd) { 8255 case SIOCSARP: 8256 case SIOCSXARP: 8257 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8258 if (proxy_ill != NULL) { 8259 proxyarp = B_TRUE; 8260 if (!ipmp_ill_is_active(proxy_ill)) 8261 proxy_ill = ipmp_illgrp_next_ill(illg); 8262 if (proxy_ill != NULL) 8263 lladdr = proxy_ill->ill_phys_addr; 8264 } 8265 /* FALLTHRU */ 8266 } 8267 } 8268 8269 ipaddr = sin->sin_addr.s_addr; 8270 /* 8271 * don't match across illgrp per case (1) and (2). 8272 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8273 */ 8274 nce = nce_lookup_v4(ill, &ipaddr); 8275 if (nce != NULL) 8276 ncec = nce->nce_common; 8277 8278 switch (iocp->ioc_cmd) { 8279 case SIOCDARP: 8280 case SIOCDXARP: { 8281 /* 8282 * Delete the NCE if any. 8283 */ 8284 if (ncec == NULL) { 8285 iocp->ioc_error = ENXIO; 8286 break; 8287 } 8288 /* Don't allow changes to arp mappings of local addresses. */ 8289 if (NCE_MYADDR(ncec)) { 8290 nce_refrele(nce); 8291 return (ENOTSUP); 8292 } 8293 iocp->ioc_error = 0; 8294 8295 /* 8296 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8297 * This will delete all the nce entries on the under_ills. 8298 */ 8299 ncec_delete(ncec); 8300 /* 8301 * Once the NCE has been deleted, then the ire_dep* consistency 8302 * mechanism will find any IRE which depended on the now 8303 * condemned NCE (as part of sending packets). 8304 * That mechanism handles redirects by deleting redirects 8305 * that refer to UNREACHABLE nces. 8306 */ 8307 break; 8308 } 8309 case SIOCGARP: 8310 case SIOCGXARP: 8311 if (ncec != NULL) { 8312 lladdr = ncec->ncec_lladdr; 8313 flags = ncec->ncec_flags; 8314 iocp->ioc_error = 0; 8315 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8316 } else { 8317 iocp->ioc_error = ENXIO; 8318 } 8319 break; 8320 case SIOCSARP: 8321 case SIOCSXARP: 8322 /* Don't allow changes to arp mappings of local addresses. */ 8323 if (ncec != NULL && NCE_MYADDR(ncec)) { 8324 nce_refrele(nce); 8325 return (ENOTSUP); 8326 } 8327 8328 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8329 flags |= NCE_F_STATIC; 8330 if (!if_arp_ioctl) { 8331 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8332 lladdr, alength, flags); 8333 } else { 8334 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8335 if (ipif != NULL) { 8336 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8337 lladdr, alength, flags); 8338 ipif_refrele(ipif); 8339 } 8340 } 8341 if (nce != NULL) { 8342 nce_refrele(nce); 8343 nce = NULL; 8344 } 8345 /* 8346 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8347 * by nce_add_common() 8348 */ 8349 err = nce_lookup_then_add_v4(ill, lladdr, 8350 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8351 &nce); 8352 if (err == EEXIST) { 8353 ncec = nce->nce_common; 8354 mutex_enter(&ncec->ncec_lock); 8355 ncec->ncec_state = ND_REACHABLE; 8356 ncec->ncec_flags = flags; 8357 nce_update(ncec, ND_UNCHANGED, lladdr); 8358 mutex_exit(&ncec->ncec_lock); 8359 err = 0; 8360 } 8361 if (nce != NULL) { 8362 nce_refrele(nce); 8363 nce = NULL; 8364 } 8365 if (IS_IPMP(ill) && err == 0) { 8366 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8367 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8368 flags); 8369 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8370 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8371 break; 8372 } 8373 } 8374 iocp->ioc_error = err; 8375 } 8376 8377 if (nce != NULL) { 8378 nce_refrele(nce); 8379 } 8380 8381 /* 8382 * If we created an IPMP ARP entry, mark that we've notified ARP. 8383 */ 8384 if (entp != NULL) 8385 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8386 8387 return (iocp->ioc_error); 8388 } 8389 8390 /* 8391 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8392 * the associated sin and refhold and return the associated ipif via `ci'. 8393 */ 8394 int 8395 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8396 cmd_info_t *ci) 8397 { 8398 mblk_t *mp1; 8399 sin_t *sin; 8400 conn_t *connp; 8401 ipif_t *ipif; 8402 ire_t *ire = NULL; 8403 ill_t *ill = NULL; 8404 boolean_t exists; 8405 ip_stack_t *ipst; 8406 struct arpreq *ar; 8407 struct xarpreq *xar; 8408 struct sockaddr_dl *sdl; 8409 8410 /* ioctl comes down on a conn */ 8411 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8412 connp = Q_TO_CONN(q); 8413 if (connp->conn_family == AF_INET6) 8414 return (ENXIO); 8415 8416 ipst = connp->conn_netstack->netstack_ip; 8417 8418 /* Verified in ip_wput_nondata */ 8419 mp1 = mp->b_cont->b_cont; 8420 8421 if (ipip->ipi_cmd_type == XARP_CMD) { 8422 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8423 xar = (struct xarpreq *)mp1->b_rptr; 8424 sin = (sin_t *)&xar->xarp_pa; 8425 sdl = &xar->xarp_ha; 8426 8427 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8428 return (ENXIO); 8429 if (sdl->sdl_nlen >= LIFNAMSIZ) 8430 return (EINVAL); 8431 } else { 8432 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8433 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8434 ar = (struct arpreq *)mp1->b_rptr; 8435 sin = (sin_t *)&ar->arp_pa; 8436 } 8437 8438 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8439 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8440 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8441 if (ipif == NULL) 8442 return (ENXIO); 8443 if (ipif->ipif_id != 0) { 8444 ipif_refrele(ipif); 8445 return (ENXIO); 8446 } 8447 } else { 8448 /* 8449 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8450 * of 0: use the IP address to find the ipif. If the IP 8451 * address is an IPMP test address, ire_ftable_lookup() will 8452 * find the wrong ill, so we first do an ipif_lookup_addr(). 8453 */ 8454 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8455 ipst); 8456 if (ipif == NULL) { 8457 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8458 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8459 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8460 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8461 if (ire != NULL) 8462 ire_refrele(ire); 8463 return (ENXIO); 8464 } 8465 ASSERT(ire != NULL && ill != NULL); 8466 ipif = ill->ill_ipif; 8467 ipif_refhold(ipif); 8468 ire_refrele(ire); 8469 } 8470 } 8471 8472 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8473 ipif_refrele(ipif); 8474 return (ENXIO); 8475 } 8476 8477 ci->ci_sin = sin; 8478 ci->ci_ipif = ipif; 8479 return (0); 8480 } 8481 8482 /* 8483 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8484 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8485 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8486 * up and thus an ill can join that illgrp. 8487 * 8488 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8489 * open()/close() primarily because close() is not allowed to fail or block 8490 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8491 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8492 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8493 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8494 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8495 * state if I_UNLINK didn't occur. 8496 * 8497 * Note that for each plumb/unplumb operation, we may end up here more than 8498 * once because of the way ifconfig works. However, it's OK to link the same 8499 * illgrp more than once, or unlink an illgrp that's already unlinked. 8500 */ 8501 static int 8502 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8503 { 8504 int err; 8505 ip_stack_t *ipst = ill->ill_ipst; 8506 8507 ASSERT(IS_IPMP(ill)); 8508 ASSERT(IAM_WRITER_ILL(ill)); 8509 8510 switch (ioccmd) { 8511 case I_LINK: 8512 return (ENOTSUP); 8513 8514 case I_PLINK: 8515 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8516 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8517 rw_exit(&ipst->ips_ipmp_lock); 8518 break; 8519 8520 case I_PUNLINK: 8521 /* 8522 * Require all UP ipifs be brought down prior to unlinking the 8523 * illgrp so any associated IREs (and other state) is torched. 8524 */ 8525 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8526 return (EBUSY); 8527 8528 /* 8529 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8530 * with an SIOCSLIFGROUPNAME request from an ill trying to 8531 * join this group. Specifically: ills trying to join grab 8532 * ipmp_lock and bump a "pending join" counter checked by 8533 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8534 * joins can occur (since we have ipmp_lock). Once we drop 8535 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8536 * find the illgrp (since we unlinked it) and will return 8537 * EAFNOSUPPORT. This will then take them back through the 8538 * IPMP meta-interface plumbing logic in ifconfig, and thus 8539 * back through I_PLINK above. 8540 */ 8541 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8542 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8543 rw_exit(&ipst->ips_ipmp_lock); 8544 return (err); 8545 default: 8546 break; 8547 } 8548 return (0); 8549 } 8550 8551 /* 8552 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8553 * atomically set/clear the muxids. Also complete the ioctl by acking or 8554 * naking it. Note that the code is structured such that the link type, 8555 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8556 * its clones use the persistent link, while pppd(1M) and perhaps many 8557 * other daemons may use non-persistent link. When combined with some 8558 * ill_t states, linking and unlinking lower streams may be used as 8559 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8560 */ 8561 /* ARGSUSED */ 8562 void 8563 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8564 { 8565 mblk_t *mp1; 8566 struct linkblk *li; 8567 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8568 int err = 0; 8569 8570 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8571 ioccmd == I_LINK || ioccmd == I_UNLINK); 8572 8573 mp1 = mp->b_cont; /* This is the linkblk info */ 8574 li = (struct linkblk *)mp1->b_rptr; 8575 8576 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8577 if (err == EINPROGRESS) 8578 return; 8579 done: 8580 if (err == 0) 8581 miocack(q, mp, 0, 0); 8582 else 8583 miocnak(q, mp, 0, err); 8584 8585 /* Conn was refheld in ip_sioctl_copyin_setup */ 8586 if (CONN_Q(q)) 8587 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8588 } 8589 8590 /* 8591 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8592 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8593 * module stream). If `doconsist' is set, then do the extended consistency 8594 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8595 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8596 * an error code on failure. 8597 */ 8598 static int 8599 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8600 struct linkblk *li) 8601 { 8602 int err = 0; 8603 ill_t *ill; 8604 queue_t *ipwq, *dwq; 8605 const char *name; 8606 struct qinit *qinfo; 8607 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8608 boolean_t entered_ipsq = B_FALSE; 8609 boolean_t is_ip = B_FALSE; 8610 arl_t *arl; 8611 8612 /* 8613 * Walk the lower stream to verify it's the IP module stream. 8614 * The IP module is identified by its name, wput function, 8615 * and non-NULL q_next. STREAMS ensures that the lower stream 8616 * (li->l_qbot) will not vanish until this ioctl completes. 8617 */ 8618 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8619 qinfo = ipwq->q_qinfo; 8620 name = qinfo->qi_minfo->mi_idname; 8621 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8622 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8623 is_ip = B_TRUE; 8624 break; 8625 } 8626 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8627 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8628 break; 8629 } 8630 } 8631 8632 /* 8633 * If this isn't an IP module stream, bail. 8634 */ 8635 if (ipwq == NULL) 8636 return (0); 8637 8638 if (!is_ip) { 8639 arl = (arl_t *)ipwq->q_ptr; 8640 ill = arl_to_ill(arl); 8641 if (ill == NULL) 8642 return (0); 8643 } else { 8644 ill = ipwq->q_ptr; 8645 } 8646 ASSERT(ill != NULL); 8647 8648 if (ipsq == NULL) { 8649 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8650 NEW_OP, B_FALSE); 8651 if (ipsq == NULL) { 8652 if (!is_ip) 8653 ill_refrele(ill); 8654 return (EINPROGRESS); 8655 } 8656 entered_ipsq = B_TRUE; 8657 } 8658 ASSERT(IAM_WRITER_ILL(ill)); 8659 mutex_enter(&ill->ill_lock); 8660 if (!is_ip) { 8661 if (islink && ill->ill_muxid == 0) { 8662 /* 8663 * Plumbing has to be done with IP plumbed first, arp 8664 * second, but here we have arp being plumbed first. 8665 */ 8666 mutex_exit(&ill->ill_lock); 8667 ipsq_exit(ipsq); 8668 ill_refrele(ill); 8669 return (EINVAL); 8670 } 8671 } 8672 mutex_exit(&ill->ill_lock); 8673 if (!is_ip) { 8674 arl->arl_muxid = islink ? li->l_index : 0; 8675 ill_refrele(ill); 8676 goto done; 8677 } 8678 8679 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8680 goto done; 8681 8682 /* 8683 * As part of I_{P}LINKing, stash the number of downstream modules and 8684 * the read queue of the module immediately below IP in the ill. 8685 * These are used during the capability negotiation below. 8686 */ 8687 ill->ill_lmod_rq = NULL; 8688 ill->ill_lmod_cnt = 0; 8689 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8690 ill->ill_lmod_rq = RD(dwq); 8691 for (; dwq != NULL; dwq = dwq->q_next) 8692 ill->ill_lmod_cnt++; 8693 } 8694 8695 ill->ill_muxid = islink ? li->l_index : 0; 8696 8697 /* 8698 * Mark the ipsq busy until the capability operations initiated below 8699 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8700 * returns, but the capability operation may complete asynchronously 8701 * much later. 8702 */ 8703 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8704 /* 8705 * If there's at least one up ipif on this ill, then we're bound to 8706 * the underlying driver via DLPI. In that case, renegotiate 8707 * capabilities to account for any possible change in modules 8708 * interposed between IP and the driver. 8709 */ 8710 if (ill->ill_ipif_up_count > 0) { 8711 if (islink) 8712 ill_capability_probe(ill); 8713 else 8714 ill_capability_reset(ill, B_FALSE); 8715 } 8716 ipsq_current_finish(ipsq); 8717 done: 8718 if (entered_ipsq) 8719 ipsq_exit(ipsq); 8720 8721 return (err); 8722 } 8723 8724 /* 8725 * Search the ioctl command in the ioctl tables and return a pointer 8726 * to the ioctl command information. The ioctl command tables are 8727 * static and fully populated at compile time. 8728 */ 8729 ip_ioctl_cmd_t * 8730 ip_sioctl_lookup(int ioc_cmd) 8731 { 8732 int index; 8733 ip_ioctl_cmd_t *ipip; 8734 ip_ioctl_cmd_t *ipip_end; 8735 8736 if (ioc_cmd == IPI_DONTCARE) 8737 return (NULL); 8738 8739 /* 8740 * Do a 2 step search. First search the indexed table 8741 * based on the least significant byte of the ioctl cmd. 8742 * If we don't find a match, then search the misc table 8743 * serially. 8744 */ 8745 index = ioc_cmd & 0xFF; 8746 if (index < ip_ndx_ioctl_count) { 8747 ipip = &ip_ndx_ioctl_table[index]; 8748 if (ipip->ipi_cmd == ioc_cmd) { 8749 /* Found a match in the ndx table */ 8750 return (ipip); 8751 } 8752 } 8753 8754 /* Search the misc table */ 8755 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8756 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8757 if (ipip->ipi_cmd == ioc_cmd) 8758 /* Found a match in the misc table */ 8759 return (ipip); 8760 } 8761 8762 return (NULL); 8763 } 8764 8765 /* 8766 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8767 */ 8768 static boolean_t 8769 getset_ioctl_checks(mblk_t *mp) 8770 { 8771 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8772 mblk_t *mp1 = mp->b_cont; 8773 mod_ioc_prop_t *pioc; 8774 uint_t flags; 8775 uint_t pioc_size; 8776 8777 /* do sanity checks on various arguments */ 8778 if (mp1 == NULL || iocp->ioc_count == 0 || 8779 iocp->ioc_count == TRANSPARENT) { 8780 return (B_FALSE); 8781 } 8782 if (msgdsize(mp1) < iocp->ioc_count) { 8783 if (!pullupmsg(mp1, iocp->ioc_count)) 8784 return (B_FALSE); 8785 } 8786 8787 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8788 8789 /* sanity checks on mpr_valsize */ 8790 pioc_size = sizeof (mod_ioc_prop_t); 8791 if (pioc->mpr_valsize != 0) 8792 pioc_size += pioc->mpr_valsize - 1; 8793 8794 if (iocp->ioc_count != pioc_size) 8795 return (B_FALSE); 8796 8797 flags = pioc->mpr_flags; 8798 if (iocp->ioc_cmd == SIOCSETPROP) { 8799 /* 8800 * One can either reset the value to it's default value or 8801 * change the current value or append/remove the value from 8802 * a multi-valued properties. 8803 */ 8804 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8805 flags != MOD_PROP_ACTIVE && 8806 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8807 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8808 return (B_FALSE); 8809 } else { 8810 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8811 8812 /* 8813 * One can retrieve only one kind of property information 8814 * at a time. 8815 */ 8816 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8817 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8818 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8819 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8820 return (B_FALSE); 8821 } 8822 8823 return (B_TRUE); 8824 } 8825 8826 /* 8827 * process the SIOC{SET|GET}PROP ioctl's 8828 */ 8829 /* ARGSUSED */ 8830 static void 8831 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8832 { 8833 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8834 mblk_t *mp1 = mp->b_cont; 8835 mod_ioc_prop_t *pioc; 8836 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8837 ip_stack_t *ipst; 8838 icmp_stack_t *is; 8839 tcp_stack_t *tcps; 8840 sctp_stack_t *sctps; 8841 udp_stack_t *us; 8842 netstack_t *stack; 8843 void *cbarg; 8844 cred_t *cr; 8845 boolean_t set; 8846 int err; 8847 8848 ASSERT(q->q_next == NULL); 8849 ASSERT(CONN_Q(q)); 8850 8851 if (!getset_ioctl_checks(mp)) { 8852 miocnak(q, mp, 0, EINVAL); 8853 return; 8854 } 8855 ipst = CONNQ_TO_IPST(q); 8856 stack = ipst->ips_netstack; 8857 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8858 8859 switch (pioc->mpr_proto) { 8860 case MOD_PROTO_IP: 8861 case MOD_PROTO_IPV4: 8862 case MOD_PROTO_IPV6: 8863 ptbl = ipst->ips_propinfo_tbl; 8864 cbarg = ipst; 8865 break; 8866 case MOD_PROTO_RAWIP: 8867 is = stack->netstack_icmp; 8868 ptbl = is->is_propinfo_tbl; 8869 cbarg = is; 8870 break; 8871 case MOD_PROTO_TCP: 8872 tcps = stack->netstack_tcp; 8873 ptbl = tcps->tcps_propinfo_tbl; 8874 cbarg = tcps; 8875 break; 8876 case MOD_PROTO_UDP: 8877 us = stack->netstack_udp; 8878 ptbl = us->us_propinfo_tbl; 8879 cbarg = us; 8880 break; 8881 case MOD_PROTO_SCTP: 8882 sctps = stack->netstack_sctp; 8883 ptbl = sctps->sctps_propinfo_tbl; 8884 cbarg = sctps; 8885 break; 8886 default: 8887 miocnak(q, mp, 0, EINVAL); 8888 return; 8889 } 8890 8891 /* search for given property in respective protocol propinfo table */ 8892 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8893 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 && 8894 pinfo->mpi_proto == pioc->mpr_proto) 8895 break; 8896 } 8897 if (pinfo->mpi_name == NULL) { 8898 miocnak(q, mp, 0, ENOENT); 8899 return; 8900 } 8901 8902 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8903 if (set && pinfo->mpi_setf != NULL) { 8904 cr = msg_getcred(mp, NULL); 8905 if (cr == NULL) 8906 cr = iocp->ioc_cr; 8907 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname, 8908 pioc->mpr_val, pioc->mpr_flags); 8909 } else if (!set && pinfo->mpi_getf != NULL) { 8910 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname, 8911 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8912 } else { 8913 err = EPERM; 8914 } 8915 8916 if (err != 0) { 8917 miocnak(q, mp, 0, err); 8918 } else { 8919 if (set) 8920 miocack(q, mp, 0, 0); 8921 else /* For get, we need to return back the data */ 8922 miocack(q, mp, iocp->ioc_count, 0); 8923 } 8924 } 8925 8926 /* 8927 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8928 * as several routing daemons have unfortunately used this 'unpublished' 8929 * but well-known ioctls. 8930 */ 8931 /* ARGSUSED */ 8932 static void 8933 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8934 { 8935 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8936 mblk_t *mp1 = mp->b_cont; 8937 char *pname, *pval, *buf; 8938 uint_t bufsize, proto; 8939 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8940 ip_stack_t *ipst; 8941 int err = 0; 8942 8943 ASSERT(CONN_Q(q)); 8944 ipst = CONNQ_TO_IPST(q); 8945 8946 if (iocp->ioc_count == 0 || mp1 == NULL) { 8947 miocnak(q, mp, 0, EINVAL); 8948 return; 8949 } 8950 8951 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8952 pval = buf = pname = (char *)mp1->b_rptr; 8953 bufsize = MBLKL(mp1); 8954 8955 if (strcmp(pname, "ip_forwarding") == 0) { 8956 pname = "forwarding"; 8957 proto = MOD_PROTO_IPV4; 8958 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8959 pname = "forwarding"; 8960 proto = MOD_PROTO_IPV6; 8961 } else { 8962 miocnak(q, mp, 0, EINVAL); 8963 return; 8964 } 8965 8966 ptbl = ipst->ips_propinfo_tbl; 8967 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8968 if (strcmp(pinfo->mpi_name, pname) == 0 && 8969 pinfo->mpi_proto == proto) 8970 break; 8971 } 8972 8973 ASSERT(pinfo->mpi_name != NULL); 8974 8975 switch (iocp->ioc_cmd) { 8976 case ND_GET: 8977 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize, 8978 0)) == 0) { 8979 miocack(q, mp, iocp->ioc_count, 0); 8980 return; 8981 } 8982 break; 8983 case ND_SET: 8984 /* 8985 * buffer will have property name and value in the following 8986 * format, 8987 * <property name>'\0'<property value>'\0', extract them; 8988 */ 8989 while (*pval++) 8990 noop; 8991 8992 if (!*pval || pval >= (char *)mp1->b_wptr) { 8993 err = EINVAL; 8994 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL, 8995 pval, 0)) == 0) { 8996 miocack(q, mp, 0, 0); 8997 return; 8998 } 8999 break; 9000 default: 9001 err = EINVAL; 9002 break; 9003 } 9004 miocnak(q, mp, 0, err); 9005 } 9006 9007 /* 9008 * Wrapper function for resuming deferred ioctl processing 9009 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9010 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9011 */ 9012 /* ARGSUSED */ 9013 void 9014 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9015 void *dummy_arg) 9016 { 9017 ip_sioctl_copyin_setup(q, mp); 9018 } 9019 9020 /* 9021 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9022 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9023 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9024 * We establish here the size of the block to be copied in. mi_copyin 9025 * arranges for this to happen, an processing continues in ip_wput_nondata with 9026 * an M_IOCDATA message. 9027 */ 9028 void 9029 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9030 { 9031 int copyin_size; 9032 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9033 ip_ioctl_cmd_t *ipip; 9034 cred_t *cr; 9035 ip_stack_t *ipst; 9036 9037 if (CONN_Q(q)) 9038 ipst = CONNQ_TO_IPST(q); 9039 else 9040 ipst = ILLQ_TO_IPST(q); 9041 9042 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9043 if (ipip == NULL) { 9044 /* 9045 * The ioctl is not one we understand or own. 9046 * Pass it along to be processed down stream, 9047 * if this is a module instance of IP, else nak 9048 * the ioctl. 9049 */ 9050 if (q->q_next == NULL) { 9051 goto nak; 9052 } else { 9053 putnext(q, mp); 9054 return; 9055 } 9056 } 9057 9058 /* 9059 * If this is deferred, then we will do all the checks when we 9060 * come back. 9061 */ 9062 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9063 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9064 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9065 return; 9066 } 9067 9068 /* 9069 * Only allow a very small subset of IP ioctls on this stream if 9070 * IP is a module and not a driver. Allowing ioctls to be processed 9071 * in this case may cause assert failures or data corruption. 9072 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9073 * ioctls allowed on an IP module stream, after which this stream 9074 * normally becomes a multiplexor (at which time the stream head 9075 * will fail all ioctls). 9076 */ 9077 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9078 goto nak; 9079 } 9080 9081 /* Make sure we have ioctl data to process. */ 9082 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9083 goto nak; 9084 9085 /* 9086 * Prefer dblk credential over ioctl credential; some synthesized 9087 * ioctls have kcred set because there's no way to crhold() 9088 * a credential in some contexts. (ioc_cr is not crfree() by 9089 * the framework; the caller of ioctl needs to hold the reference 9090 * for the duration of the call). 9091 */ 9092 cr = msg_getcred(mp, NULL); 9093 if (cr == NULL) 9094 cr = iocp->ioc_cr; 9095 9096 /* Make sure normal users don't send down privileged ioctls */ 9097 if ((ipip->ipi_flags & IPI_PRIV) && 9098 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9099 /* We checked the privilege earlier but log it here */ 9100 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9101 return; 9102 } 9103 9104 /* 9105 * The ioctl command tables can only encode fixed length 9106 * ioctl data. If the length is variable, the table will 9107 * encode the length as zero. Such special cases are handled 9108 * below in the switch. 9109 */ 9110 if (ipip->ipi_copyin_size != 0) { 9111 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9112 return; 9113 } 9114 9115 switch (iocp->ioc_cmd) { 9116 case O_SIOCGIFCONF: 9117 case SIOCGIFCONF: 9118 /* 9119 * This IOCTL is hilarious. See comments in 9120 * ip_sioctl_get_ifconf for the story. 9121 */ 9122 if (iocp->ioc_count == TRANSPARENT) 9123 copyin_size = SIZEOF_STRUCT(ifconf, 9124 iocp->ioc_flag); 9125 else 9126 copyin_size = iocp->ioc_count; 9127 mi_copyin(q, mp, NULL, copyin_size); 9128 return; 9129 9130 case O_SIOCGLIFCONF: 9131 case SIOCGLIFCONF: 9132 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9133 mi_copyin(q, mp, NULL, copyin_size); 9134 return; 9135 9136 case SIOCGLIFSRCOF: 9137 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9138 mi_copyin(q, mp, NULL, copyin_size); 9139 return; 9140 9141 case SIOCGIP6ADDRPOLICY: 9142 ip_sioctl_ip6addrpolicy(q, mp); 9143 ip6_asp_table_refrele(ipst); 9144 return; 9145 9146 case SIOCSIP6ADDRPOLICY: 9147 ip_sioctl_ip6addrpolicy(q, mp); 9148 return; 9149 9150 case SIOCGDSTINFO: 9151 ip_sioctl_dstinfo(q, mp); 9152 ip6_asp_table_refrele(ipst); 9153 return; 9154 9155 case ND_SET: 9156 case ND_GET: 9157 ip_process_legacy_nddprop(q, mp); 9158 return; 9159 9160 case SIOCSETPROP: 9161 case SIOCGETPROP: 9162 ip_sioctl_getsetprop(q, mp); 9163 return; 9164 9165 case I_PLINK: 9166 case I_PUNLINK: 9167 case I_LINK: 9168 case I_UNLINK: 9169 /* 9170 * We treat non-persistent link similarly as the persistent 9171 * link case, in terms of plumbing/unplumbing, as well as 9172 * dynamic re-plumbing events indicator. See comments 9173 * in ip_sioctl_plink() for more. 9174 * 9175 * Request can be enqueued in the 'ipsq' while waiting 9176 * to become exclusive. So bump up the conn ref. 9177 */ 9178 if (CONN_Q(q)) 9179 CONN_INC_REF(Q_TO_CONN(q)); 9180 ip_sioctl_plink(NULL, q, mp, NULL); 9181 return; 9182 9183 case IP_IOCTL: 9184 ip_wput_ioctl(q, mp); 9185 return; 9186 9187 case SIOCILB: 9188 /* The ioctl length varies depending on the ILB command. */ 9189 copyin_size = iocp->ioc_count; 9190 if (copyin_size < sizeof (ilb_cmd_t)) 9191 goto nak; 9192 mi_copyin(q, mp, NULL, copyin_size); 9193 return; 9194 9195 default: 9196 cmn_err(CE_PANIC, "should not happen "); 9197 } 9198 nak: 9199 if (mp->b_cont != NULL) { 9200 freemsg(mp->b_cont); 9201 mp->b_cont = NULL; 9202 } 9203 iocp->ioc_error = EINVAL; 9204 mp->b_datap->db_type = M_IOCNAK; 9205 iocp->ioc_count = 0; 9206 qreply(q, mp); 9207 } 9208 9209 static void 9210 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9211 { 9212 struct arpreq *ar; 9213 struct xarpreq *xar; 9214 mblk_t *tmp; 9215 struct iocblk *iocp; 9216 int x_arp_ioctl = B_FALSE; 9217 int *flagsp; 9218 char *storage = NULL; 9219 9220 ASSERT(ill != NULL); 9221 9222 iocp = (struct iocblk *)mp->b_rptr; 9223 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9224 9225 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9226 if ((iocp->ioc_cmd == SIOCGXARP) || 9227 (iocp->ioc_cmd == SIOCSXARP)) { 9228 x_arp_ioctl = B_TRUE; 9229 xar = (struct xarpreq *)tmp->b_rptr; 9230 flagsp = &xar->xarp_flags; 9231 storage = xar->xarp_ha.sdl_data; 9232 } else { 9233 ar = (struct arpreq *)tmp->b_rptr; 9234 flagsp = &ar->arp_flags; 9235 storage = ar->arp_ha.sa_data; 9236 } 9237 9238 /* 9239 * We're done if this is not an SIOCG{X}ARP 9240 */ 9241 if (x_arp_ioctl) { 9242 storage += ill_xarp_info(&xar->xarp_ha, ill); 9243 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9244 sizeof (xar->xarp_ha.sdl_data)) { 9245 iocp->ioc_error = EINVAL; 9246 return; 9247 } 9248 } 9249 *flagsp = ATF_INUSE; 9250 /* 9251 * If /sbin/arp told us we are the authority using the "permanent" 9252 * flag, or if this is one of my addresses print "permanent" 9253 * in the /sbin/arp output. 9254 */ 9255 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9256 *flagsp |= ATF_AUTHORITY; 9257 if (flags & NCE_F_NONUD) 9258 *flagsp |= ATF_PERM; /* not subject to aging */ 9259 if (flags & NCE_F_PUBLISH) 9260 *flagsp |= ATF_PUBL; 9261 if (hwaddr != NULL) { 9262 *flagsp |= ATF_COM; 9263 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9264 } 9265 } 9266 9267 /* 9268 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9269 * interface) create the next available logical interface for this 9270 * physical interface. 9271 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9272 * ipif with the specified name. 9273 * 9274 * If the address family is not AF_UNSPEC then set the address as well. 9275 * 9276 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9277 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9278 * 9279 * Executed as a writer on the ill. 9280 * So no lock is needed to traverse the ipif chain, or examine the 9281 * phyint flags. 9282 */ 9283 /* ARGSUSED */ 9284 int 9285 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9286 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9287 { 9288 mblk_t *mp1; 9289 struct lifreq *lifr; 9290 boolean_t isv6; 9291 boolean_t exists; 9292 char *name; 9293 char *endp; 9294 char *cp; 9295 int namelen; 9296 ipif_t *ipif; 9297 long id; 9298 ipsq_t *ipsq; 9299 ill_t *ill; 9300 sin_t *sin; 9301 int err = 0; 9302 boolean_t found_sep = B_FALSE; 9303 conn_t *connp; 9304 zoneid_t zoneid; 9305 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9306 9307 ASSERT(q->q_next == NULL); 9308 ip1dbg(("ip_sioctl_addif\n")); 9309 /* Existence of mp1 has been checked in ip_wput_nondata */ 9310 mp1 = mp->b_cont->b_cont; 9311 /* 9312 * Null terminate the string to protect against buffer 9313 * overrun. String was generated by user code and may not 9314 * be trusted. 9315 */ 9316 lifr = (struct lifreq *)mp1->b_rptr; 9317 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9318 name = lifr->lifr_name; 9319 ASSERT(CONN_Q(q)); 9320 connp = Q_TO_CONN(q); 9321 isv6 = (connp->conn_family == AF_INET6); 9322 zoneid = connp->conn_zoneid; 9323 namelen = mi_strlen(name); 9324 if (namelen == 0) 9325 return (EINVAL); 9326 9327 exists = B_FALSE; 9328 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9329 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9330 /* 9331 * Allow creating lo0 using SIOCLIFADDIF. 9332 * can't be any other writer thread. So can pass null below 9333 * for the last 4 args to ipif_lookup_name. 9334 */ 9335 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9336 &exists, isv6, zoneid, ipst); 9337 /* Prevent any further action */ 9338 if (ipif == NULL) { 9339 return (ENOBUFS); 9340 } else if (!exists) { 9341 /* We created the ipif now and as writer */ 9342 ipif_refrele(ipif); 9343 return (0); 9344 } else { 9345 ill = ipif->ipif_ill; 9346 ill_refhold(ill); 9347 ipif_refrele(ipif); 9348 } 9349 } else { 9350 /* Look for a colon in the name. */ 9351 endp = &name[namelen]; 9352 for (cp = endp; --cp > name; ) { 9353 if (*cp == IPIF_SEPARATOR_CHAR) { 9354 found_sep = B_TRUE; 9355 /* 9356 * Reject any non-decimal aliases for plumbing 9357 * of logical interfaces. Aliases with leading 9358 * zeroes are also rejected as they introduce 9359 * ambiguity in the naming of the interfaces. 9360 * Comparing with "0" takes care of all such 9361 * cases. 9362 */ 9363 if ((strncmp("0", cp+1, 1)) == 0) 9364 return (EINVAL); 9365 9366 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9367 id <= 0 || *endp != '\0') { 9368 return (EINVAL); 9369 } 9370 *cp = '\0'; 9371 break; 9372 } 9373 } 9374 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9375 if (found_sep) 9376 *cp = IPIF_SEPARATOR_CHAR; 9377 if (ill == NULL) 9378 return (ENXIO); 9379 } 9380 9381 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9382 B_TRUE); 9383 9384 /* 9385 * Release the refhold due to the lookup, now that we are excl 9386 * or we are just returning 9387 */ 9388 ill_refrele(ill); 9389 9390 if (ipsq == NULL) 9391 return (EINPROGRESS); 9392 9393 /* We are now exclusive on the IPSQ */ 9394 ASSERT(IAM_WRITER_ILL(ill)); 9395 9396 if (found_sep) { 9397 /* Now see if there is an IPIF with this unit number. */ 9398 for (ipif = ill->ill_ipif; ipif != NULL; 9399 ipif = ipif->ipif_next) { 9400 if (ipif->ipif_id == id) { 9401 err = EEXIST; 9402 goto done; 9403 } 9404 } 9405 } 9406 9407 /* 9408 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9409 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9410 * instead. 9411 */ 9412 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9413 B_TRUE, B_TRUE, &err)) == NULL) { 9414 goto done; 9415 } 9416 9417 /* Return created name with ioctl */ 9418 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9419 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9420 ip1dbg(("created %s\n", lifr->lifr_name)); 9421 9422 /* Set address */ 9423 sin = (sin_t *)&lifr->lifr_addr; 9424 if (sin->sin_family != AF_UNSPEC) { 9425 err = ip_sioctl_addr(ipif, sin, q, mp, 9426 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9427 } 9428 9429 done: 9430 ipsq_exit(ipsq); 9431 return (err); 9432 } 9433 9434 /* 9435 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9436 * interface) delete it based on the IP address (on this physical interface). 9437 * Otherwise delete it based on the ipif_id. 9438 * Also, special handling to allow a removeif of lo0. 9439 */ 9440 /* ARGSUSED */ 9441 int 9442 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9443 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9444 { 9445 conn_t *connp; 9446 ill_t *ill = ipif->ipif_ill; 9447 boolean_t success; 9448 ip_stack_t *ipst; 9449 9450 ipst = CONNQ_TO_IPST(q); 9451 9452 ASSERT(q->q_next == NULL); 9453 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9454 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9455 ASSERT(IAM_WRITER_IPIF(ipif)); 9456 9457 connp = Q_TO_CONN(q); 9458 /* 9459 * Special case for unplumbing lo0 (the loopback physical interface). 9460 * If unplumbing lo0, the incoming address structure has been 9461 * initialized to all zeros. When unplumbing lo0, all its logical 9462 * interfaces must be removed too. 9463 * 9464 * Note that this interface may be called to remove a specific 9465 * loopback logical interface (eg, lo0:1). But in that case 9466 * ipif->ipif_id != 0 so that the code path for that case is the 9467 * same as any other interface (meaning it skips the code directly 9468 * below). 9469 */ 9470 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9471 if (sin->sin_family == AF_UNSPEC && 9472 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9473 /* 9474 * Mark it condemned. No new ref. will be made to ill. 9475 */ 9476 mutex_enter(&ill->ill_lock); 9477 ill->ill_state_flags |= ILL_CONDEMNED; 9478 for (ipif = ill->ill_ipif; ipif != NULL; 9479 ipif = ipif->ipif_next) { 9480 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9481 } 9482 mutex_exit(&ill->ill_lock); 9483 9484 ipif = ill->ill_ipif; 9485 /* unplumb the loopback interface */ 9486 ill_delete(ill); 9487 mutex_enter(&connp->conn_lock); 9488 mutex_enter(&ill->ill_lock); 9489 9490 /* Are any references to this ill active */ 9491 if (ill_is_freeable(ill)) { 9492 mutex_exit(&ill->ill_lock); 9493 mutex_exit(&connp->conn_lock); 9494 ill_delete_tail(ill); 9495 mi_free(ill); 9496 return (0); 9497 } 9498 success = ipsq_pending_mp_add(connp, ipif, 9499 CONNP_TO_WQ(connp), mp, ILL_FREE); 9500 mutex_exit(&connp->conn_lock); 9501 mutex_exit(&ill->ill_lock); 9502 if (success) 9503 return (EINPROGRESS); 9504 else 9505 return (EINTR); 9506 } 9507 } 9508 9509 if (ipif->ipif_id == 0) { 9510 ipsq_t *ipsq; 9511 9512 /* Find based on address */ 9513 if (ipif->ipif_isv6) { 9514 sin6_t *sin6; 9515 9516 if (sin->sin_family != AF_INET6) 9517 return (EAFNOSUPPORT); 9518 9519 sin6 = (sin6_t *)sin; 9520 /* We are a writer, so we should be able to lookup */ 9521 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9522 ipst); 9523 } else { 9524 if (sin->sin_family != AF_INET) 9525 return (EAFNOSUPPORT); 9526 9527 /* We are a writer, so we should be able to lookup */ 9528 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9529 ipst); 9530 } 9531 if (ipif == NULL) { 9532 return (EADDRNOTAVAIL); 9533 } 9534 9535 /* 9536 * It is possible for a user to send an SIOCLIFREMOVEIF with 9537 * lifr_name of the physical interface but with an ip address 9538 * lifr_addr of a logical interface plumbed over it. 9539 * So update ipx_current_ipif now that ipif points to the 9540 * correct one. 9541 */ 9542 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9543 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9544 9545 /* This is a writer */ 9546 ipif_refrele(ipif); 9547 } 9548 9549 /* 9550 * Can not delete instance zero since it is tied to the ill. 9551 */ 9552 if (ipif->ipif_id == 0) 9553 return (EBUSY); 9554 9555 mutex_enter(&ill->ill_lock); 9556 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9557 mutex_exit(&ill->ill_lock); 9558 9559 ipif_free(ipif); 9560 9561 mutex_enter(&connp->conn_lock); 9562 mutex_enter(&ill->ill_lock); 9563 9564 /* Are any references to this ipif active */ 9565 if (ipif_is_freeable(ipif)) { 9566 mutex_exit(&ill->ill_lock); 9567 mutex_exit(&connp->conn_lock); 9568 ipif_non_duplicate(ipif); 9569 (void) ipif_down_tail(ipif); 9570 ipif_free_tail(ipif); /* frees ipif */ 9571 return (0); 9572 } 9573 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9574 IPIF_FREE); 9575 mutex_exit(&ill->ill_lock); 9576 mutex_exit(&connp->conn_lock); 9577 if (success) 9578 return (EINPROGRESS); 9579 else 9580 return (EINTR); 9581 } 9582 9583 /* 9584 * Restart the removeif ioctl. The refcnt has gone down to 0. 9585 * The ipif is already condemned. So can't find it thru lookups. 9586 */ 9587 /* ARGSUSED */ 9588 int 9589 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9590 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9591 { 9592 ill_t *ill = ipif->ipif_ill; 9593 9594 ASSERT(IAM_WRITER_IPIF(ipif)); 9595 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9596 9597 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9598 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9599 9600 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9601 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9602 ill_delete_tail(ill); 9603 mi_free(ill); 9604 return (0); 9605 } 9606 9607 ipif_non_duplicate(ipif); 9608 (void) ipif_down_tail(ipif); 9609 ipif_free_tail(ipif); 9610 9611 return (0); 9612 } 9613 9614 /* 9615 * Set the local interface address using the given prefix and ill_token. 9616 */ 9617 /* ARGSUSED */ 9618 int 9619 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9620 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9621 { 9622 int err; 9623 in6_addr_t v6addr; 9624 sin6_t *sin6; 9625 ill_t *ill; 9626 int i; 9627 9628 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9629 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9630 9631 ASSERT(IAM_WRITER_IPIF(ipif)); 9632 9633 if (!ipif->ipif_isv6) 9634 return (EINVAL); 9635 9636 if (sin->sin_family != AF_INET6) 9637 return (EAFNOSUPPORT); 9638 9639 sin6 = (sin6_t *)sin; 9640 v6addr = sin6->sin6_addr; 9641 ill = ipif->ipif_ill; 9642 9643 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9644 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9645 return (EADDRNOTAVAIL); 9646 9647 for (i = 0; i < 4; i++) 9648 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9649 9650 err = ip_sioctl_addr(ipif, sin, q, mp, 9651 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9652 return (err); 9653 } 9654 9655 /* 9656 * Restart entry point to restart the address set operation after the 9657 * refcounts have dropped to zero. 9658 */ 9659 /* ARGSUSED */ 9660 int 9661 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9662 ip_ioctl_cmd_t *ipip, void *ifreq) 9663 { 9664 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9665 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9666 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9667 } 9668 9669 /* 9670 * Set the local interface address. 9671 * Allow an address of all zero when the interface is down. 9672 */ 9673 /* ARGSUSED */ 9674 int 9675 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9676 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9677 { 9678 int err = 0; 9679 in6_addr_t v6addr; 9680 boolean_t need_up = B_FALSE; 9681 9682 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9683 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9684 9685 ASSERT(IAM_WRITER_IPIF(ipif)); 9686 9687 if (ipif->ipif_isv6) { 9688 sin6_t *sin6; 9689 ill_t *ill; 9690 phyint_t *phyi; 9691 9692 if (sin->sin_family != AF_INET6) 9693 return (EAFNOSUPPORT); 9694 9695 sin6 = (sin6_t *)sin; 9696 v6addr = sin6->sin6_addr; 9697 ill = ipif->ipif_ill; 9698 phyi = ill->ill_phyint; 9699 9700 /* 9701 * Enforce that true multicast interfaces have a link-local 9702 * address for logical unit 0. 9703 * 9704 * However for those ipif's for which link-local address was 9705 * not created by default, also allow setting :: as the address. 9706 * This scenario would arise, when we delete an address on ipif 9707 * with logical unit 0, we would want to set :: as the address. 9708 */ 9709 if (ipif->ipif_id == 0 && 9710 (ill->ill_flags & ILLF_MULTICAST) && 9711 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9712 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9713 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9714 9715 /* 9716 * if default link-local was not created by kernel for 9717 * this ill, allow setting :: as the address on ipif:0. 9718 */ 9719 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9720 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9721 return (EADDRNOTAVAIL); 9722 } else { 9723 return (EADDRNOTAVAIL); 9724 } 9725 } 9726 9727 /* 9728 * up interfaces shouldn't have the unspecified address 9729 * unless they also have the IPIF_NOLOCAL flags set and 9730 * have a subnet assigned. 9731 */ 9732 if ((ipif->ipif_flags & IPIF_UP) && 9733 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9734 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9735 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9736 return (EADDRNOTAVAIL); 9737 } 9738 9739 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9740 return (EADDRNOTAVAIL); 9741 } else { 9742 ipaddr_t addr; 9743 9744 if (sin->sin_family != AF_INET) 9745 return (EAFNOSUPPORT); 9746 9747 addr = sin->sin_addr.s_addr; 9748 9749 /* Allow INADDR_ANY as the local address. */ 9750 if (addr != INADDR_ANY && 9751 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9752 return (EADDRNOTAVAIL); 9753 9754 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9755 } 9756 9757 /* 9758 * Even if there is no change we redo things just to rerun 9759 * ipif_set_default. 9760 */ 9761 if (ipif->ipif_flags & IPIF_UP) { 9762 /* 9763 * Setting a new local address, make sure 9764 * we have net and subnet bcast ire's for 9765 * the old address if we need them. 9766 */ 9767 /* 9768 * If the interface is already marked up, 9769 * we call ipif_down which will take care 9770 * of ditching any IREs that have been set 9771 * up based on the old interface address. 9772 */ 9773 err = ipif_logical_down(ipif, q, mp); 9774 if (err == EINPROGRESS) 9775 return (err); 9776 (void) ipif_down_tail(ipif); 9777 need_up = 1; 9778 } 9779 9780 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9781 return (err); 9782 } 9783 9784 int 9785 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9786 boolean_t need_up) 9787 { 9788 in6_addr_t v6addr; 9789 in6_addr_t ov6addr; 9790 ipaddr_t addr; 9791 sin6_t *sin6; 9792 int sinlen; 9793 int err = 0; 9794 ill_t *ill = ipif->ipif_ill; 9795 boolean_t need_dl_down; 9796 boolean_t need_arp_down; 9797 struct iocblk *iocp; 9798 9799 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9800 9801 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9802 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9803 ASSERT(IAM_WRITER_IPIF(ipif)); 9804 9805 /* Must cancel any pending timer before taking the ill_lock */ 9806 if (ipif->ipif_recovery_id != 0) 9807 (void) untimeout(ipif->ipif_recovery_id); 9808 ipif->ipif_recovery_id = 0; 9809 9810 if (ipif->ipif_isv6) { 9811 sin6 = (sin6_t *)sin; 9812 v6addr = sin6->sin6_addr; 9813 sinlen = sizeof (struct sockaddr_in6); 9814 } else { 9815 addr = sin->sin_addr.s_addr; 9816 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9817 sinlen = sizeof (struct sockaddr_in); 9818 } 9819 mutex_enter(&ill->ill_lock); 9820 ov6addr = ipif->ipif_v6lcl_addr; 9821 ipif->ipif_v6lcl_addr = v6addr; 9822 sctp_update_ipif_addr(ipif, ov6addr); 9823 ipif->ipif_addr_ready = 0; 9824 9825 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9826 9827 /* 9828 * If the interface was previously marked as a duplicate, then since 9829 * we've now got a "new" address, it should no longer be considered a 9830 * duplicate -- even if the "new" address is the same as the old one. 9831 * Note that if all ipifs are down, we may have a pending ARP down 9832 * event to handle. This is because we want to recover from duplicates 9833 * and thus delay tearing down ARP until the duplicates have been 9834 * removed or disabled. 9835 */ 9836 need_dl_down = need_arp_down = B_FALSE; 9837 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9838 need_arp_down = !need_up; 9839 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9840 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9841 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9842 need_dl_down = B_TRUE; 9843 } 9844 } 9845 9846 ipif_set_default(ipif); 9847 9848 /* 9849 * If we've just manually set the IPv6 link-local address (0th ipif), 9850 * tag the ill so that future updates to the interface ID don't result 9851 * in this address getting automatically reconfigured from under the 9852 * administrator. 9853 */ 9854 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9855 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9856 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9857 ill->ill_manual_linklocal = 1; 9858 } 9859 9860 /* 9861 * When publishing an interface address change event, we only notify 9862 * the event listeners of the new address. It is assumed that if they 9863 * actively care about the addresses assigned that they will have 9864 * already discovered the previous address assigned (if there was one.) 9865 * 9866 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9867 */ 9868 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9869 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9870 NE_ADDRESS_CHANGE, sin, sinlen); 9871 } 9872 9873 mutex_exit(&ill->ill_lock); 9874 9875 if (need_up) { 9876 /* 9877 * Now bring the interface back up. If this 9878 * is the only IPIF for the ILL, ipif_up 9879 * will have to re-bind to the device, so 9880 * we may get back EINPROGRESS, in which 9881 * case, this IOCTL will get completed in 9882 * ip_rput_dlpi when we see the DL_BIND_ACK. 9883 */ 9884 err = ipif_up(ipif, q, mp); 9885 } else { 9886 /* Perhaps ilgs should use this ill */ 9887 update_conn_ill(NULL, ill->ill_ipst); 9888 } 9889 9890 if (need_dl_down) 9891 ill_dl_down(ill); 9892 9893 if (need_arp_down && !ill->ill_isv6) 9894 (void) ipif_arp_down(ipif); 9895 9896 /* 9897 * The default multicast interface might have changed (for 9898 * instance if the IPv6 scope of the address changed) 9899 */ 9900 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9901 9902 return (err); 9903 } 9904 9905 /* 9906 * Restart entry point to restart the address set operation after the 9907 * refcounts have dropped to zero. 9908 */ 9909 /* ARGSUSED */ 9910 int 9911 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9912 ip_ioctl_cmd_t *ipip, void *ifreq) 9913 { 9914 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9915 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9916 ASSERT(IAM_WRITER_IPIF(ipif)); 9917 (void) ipif_down_tail(ipif); 9918 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9919 } 9920 9921 /* ARGSUSED */ 9922 int 9923 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9924 ip_ioctl_cmd_t *ipip, void *if_req) 9925 { 9926 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9927 struct lifreq *lifr = (struct lifreq *)if_req; 9928 9929 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9930 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9931 /* 9932 * The net mask and address can't change since we have a 9933 * reference to the ipif. So no lock is necessary. 9934 */ 9935 if (ipif->ipif_isv6) { 9936 *sin6 = sin6_null; 9937 sin6->sin6_family = AF_INET6; 9938 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9939 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9940 lifr->lifr_addrlen = 9941 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9942 } else { 9943 *sin = sin_null; 9944 sin->sin_family = AF_INET; 9945 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9946 if (ipip->ipi_cmd_type == LIF_CMD) { 9947 lifr->lifr_addrlen = 9948 ip_mask_to_plen(ipif->ipif_net_mask); 9949 } 9950 } 9951 return (0); 9952 } 9953 9954 /* 9955 * Set the destination address for a pt-pt interface. 9956 */ 9957 /* ARGSUSED */ 9958 int 9959 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9960 ip_ioctl_cmd_t *ipip, void *if_req) 9961 { 9962 int err = 0; 9963 in6_addr_t v6addr; 9964 boolean_t need_up = B_FALSE; 9965 9966 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9967 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9968 ASSERT(IAM_WRITER_IPIF(ipif)); 9969 9970 if (ipif->ipif_isv6) { 9971 sin6_t *sin6; 9972 9973 if (sin->sin_family != AF_INET6) 9974 return (EAFNOSUPPORT); 9975 9976 sin6 = (sin6_t *)sin; 9977 v6addr = sin6->sin6_addr; 9978 9979 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9980 return (EADDRNOTAVAIL); 9981 } else { 9982 ipaddr_t addr; 9983 9984 if (sin->sin_family != AF_INET) 9985 return (EAFNOSUPPORT); 9986 9987 addr = sin->sin_addr.s_addr; 9988 if (addr != INADDR_ANY && 9989 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 9990 return (EADDRNOTAVAIL); 9991 } 9992 9993 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9994 } 9995 9996 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9997 return (0); /* No change */ 9998 9999 if (ipif->ipif_flags & IPIF_UP) { 10000 /* 10001 * If the interface is already marked up, 10002 * we call ipif_down which will take care 10003 * of ditching any IREs that have been set 10004 * up based on the old pp dst address. 10005 */ 10006 err = ipif_logical_down(ipif, q, mp); 10007 if (err == EINPROGRESS) 10008 return (err); 10009 (void) ipif_down_tail(ipif); 10010 need_up = B_TRUE; 10011 } 10012 /* 10013 * could return EINPROGRESS. If so ioctl will complete in 10014 * ip_rput_dlpi_writer 10015 */ 10016 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10017 return (err); 10018 } 10019 10020 static int 10021 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10022 boolean_t need_up) 10023 { 10024 in6_addr_t v6addr; 10025 ill_t *ill = ipif->ipif_ill; 10026 int err = 0; 10027 boolean_t need_dl_down; 10028 boolean_t need_arp_down; 10029 10030 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10031 ipif->ipif_id, (void *)ipif)); 10032 10033 /* Must cancel any pending timer before taking the ill_lock */ 10034 if (ipif->ipif_recovery_id != 0) 10035 (void) untimeout(ipif->ipif_recovery_id); 10036 ipif->ipif_recovery_id = 0; 10037 10038 if (ipif->ipif_isv6) { 10039 sin6_t *sin6; 10040 10041 sin6 = (sin6_t *)sin; 10042 v6addr = sin6->sin6_addr; 10043 } else { 10044 ipaddr_t addr; 10045 10046 addr = sin->sin_addr.s_addr; 10047 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10048 } 10049 mutex_enter(&ill->ill_lock); 10050 /* Set point to point destination address. */ 10051 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10052 /* 10053 * Allow this as a means of creating logical 10054 * pt-pt interfaces on top of e.g. an Ethernet. 10055 * XXX Undocumented HACK for testing. 10056 * pt-pt interfaces are created with NUD disabled. 10057 */ 10058 ipif->ipif_flags |= IPIF_POINTOPOINT; 10059 ipif->ipif_flags &= ~IPIF_BROADCAST; 10060 if (ipif->ipif_isv6) 10061 ill->ill_flags |= ILLF_NONUD; 10062 } 10063 10064 /* 10065 * If the interface was previously marked as a duplicate, then since 10066 * we've now got a "new" address, it should no longer be considered a 10067 * duplicate -- even if the "new" address is the same as the old one. 10068 * Note that if all ipifs are down, we may have a pending ARP down 10069 * event to handle. 10070 */ 10071 need_dl_down = need_arp_down = B_FALSE; 10072 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10073 need_arp_down = !need_up; 10074 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10075 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10076 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10077 need_dl_down = B_TRUE; 10078 } 10079 } 10080 10081 /* 10082 * If we've just manually set the IPv6 destination link-local address 10083 * (0th ipif), tag the ill so that future updates to the destination 10084 * interface ID (as can happen with interfaces over IP tunnels) don't 10085 * result in this address getting automatically reconfigured from 10086 * under the administrator. 10087 */ 10088 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10089 ill->ill_manual_dst_linklocal = 1; 10090 10091 /* Set the new address. */ 10092 ipif->ipif_v6pp_dst_addr = v6addr; 10093 /* Make sure subnet tracks pp_dst */ 10094 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10095 mutex_exit(&ill->ill_lock); 10096 10097 if (need_up) { 10098 /* 10099 * Now bring the interface back up. If this 10100 * is the only IPIF for the ILL, ipif_up 10101 * will have to re-bind to the device, so 10102 * we may get back EINPROGRESS, in which 10103 * case, this IOCTL will get completed in 10104 * ip_rput_dlpi when we see the DL_BIND_ACK. 10105 */ 10106 err = ipif_up(ipif, q, mp); 10107 } 10108 10109 if (need_dl_down) 10110 ill_dl_down(ill); 10111 if (need_arp_down && !ipif->ipif_isv6) 10112 (void) ipif_arp_down(ipif); 10113 10114 return (err); 10115 } 10116 10117 /* 10118 * Restart entry point to restart the dstaddress set operation after the 10119 * refcounts have dropped to zero. 10120 */ 10121 /* ARGSUSED */ 10122 int 10123 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10124 ip_ioctl_cmd_t *ipip, void *ifreq) 10125 { 10126 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10127 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10128 (void) ipif_down_tail(ipif); 10129 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10130 } 10131 10132 /* ARGSUSED */ 10133 int 10134 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10135 ip_ioctl_cmd_t *ipip, void *if_req) 10136 { 10137 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10138 10139 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10141 /* 10142 * Get point to point destination address. The addresses can't 10143 * change since we hold a reference to the ipif. 10144 */ 10145 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10146 return (EADDRNOTAVAIL); 10147 10148 if (ipif->ipif_isv6) { 10149 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10150 *sin6 = sin6_null; 10151 sin6->sin6_family = AF_INET6; 10152 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10153 } else { 10154 *sin = sin_null; 10155 sin->sin_family = AF_INET; 10156 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10157 } 10158 return (0); 10159 } 10160 10161 /* 10162 * Check which flags will change by the given flags being set 10163 * silently ignore flags which userland is not allowed to control. 10164 * (Because these flags may change between SIOCGLIFFLAGS and 10165 * SIOCSLIFFLAGS, and that's outside of userland's control, 10166 * we need to silently ignore them rather than fail.) 10167 */ 10168 static void 10169 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10170 uint64_t *offp) 10171 { 10172 ill_t *ill = ipif->ipif_ill; 10173 phyint_t *phyi = ill->ill_phyint; 10174 uint64_t cantchange_flags, intf_flags; 10175 uint64_t turn_on, turn_off; 10176 10177 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10178 cantchange_flags = IFF_CANTCHANGE; 10179 if (IS_IPMP(ill)) 10180 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10181 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10182 turn_off = intf_flags & turn_on; 10183 turn_on ^= turn_off; 10184 *onp = turn_on; 10185 *offp = turn_off; 10186 } 10187 10188 /* 10189 * Set interface flags. Many flags require special handling (e.g., 10190 * bringing the interface down); see below for details. 10191 * 10192 * NOTE : We really don't enforce that ipif_id zero should be used 10193 * for setting any flags other than IFF_LOGINT_FLAGS. This 10194 * is because applications generally does SICGLIFFLAGS and 10195 * ORs in the new flags (that affects the logical) and does a 10196 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10197 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10198 * flags that will be turned on is correct with respect to 10199 * ipif_id 0. For backward compatibility reasons, it is not done. 10200 */ 10201 /* ARGSUSED */ 10202 int 10203 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10204 ip_ioctl_cmd_t *ipip, void *if_req) 10205 { 10206 uint64_t turn_on; 10207 uint64_t turn_off; 10208 int err = 0; 10209 phyint_t *phyi; 10210 ill_t *ill; 10211 conn_t *connp; 10212 uint64_t intf_flags; 10213 boolean_t phyint_flags_modified = B_FALSE; 10214 uint64_t flags; 10215 struct ifreq *ifr; 10216 struct lifreq *lifr; 10217 boolean_t set_linklocal = B_FALSE; 10218 10219 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10220 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10221 10222 ASSERT(IAM_WRITER_IPIF(ipif)); 10223 10224 ill = ipif->ipif_ill; 10225 phyi = ill->ill_phyint; 10226 10227 if (ipip->ipi_cmd_type == IF_CMD) { 10228 ifr = (struct ifreq *)if_req; 10229 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10230 } else { 10231 lifr = (struct lifreq *)if_req; 10232 flags = lifr->lifr_flags; 10233 } 10234 10235 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10236 10237 /* 10238 * Have the flags been set correctly until now? 10239 */ 10240 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10241 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10242 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10243 /* 10244 * Compare the new flags to the old, and partition 10245 * into those coming on and those going off. 10246 * For the 16 bit command keep the bits above bit 16 unchanged. 10247 */ 10248 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10249 flags |= intf_flags & ~0xFFFF; 10250 10251 /* 10252 * Explicitly fail attempts to change flags that are always invalid on 10253 * an IPMP meta-interface. 10254 */ 10255 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10256 return (EINVAL); 10257 10258 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10259 if ((turn_on|turn_off) == 0) 10260 return (0); /* No change */ 10261 10262 /* 10263 * All test addresses must be IFF_DEPRECATED (to ensure source address 10264 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10265 * allow it to be turned off. 10266 */ 10267 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10268 (turn_on|intf_flags) & IFF_NOFAILOVER) 10269 return (EINVAL); 10270 10271 if ((connp = Q_TO_CONN(q)) == NULL) 10272 return (EINVAL); 10273 10274 /* 10275 * Only vrrp control socket is allowed to change IFF_UP and 10276 * IFF_NOACCEPT flags when IFF_VRRP is set. 10277 */ 10278 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10279 if (!connp->conn_isvrrp) 10280 return (EINVAL); 10281 } 10282 10283 /* 10284 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10285 * VRRP control socket. 10286 */ 10287 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10288 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10289 return (EINVAL); 10290 } 10291 10292 if (turn_on & IFF_NOFAILOVER) { 10293 turn_on |= IFF_DEPRECATED; 10294 flags |= IFF_DEPRECATED; 10295 } 10296 10297 /* 10298 * On underlying interfaces, only allow applications to manage test 10299 * addresses -- otherwise, they may get confused when the address 10300 * moves as part of being brought up. Likewise, prevent an 10301 * application-managed test address from being converted to a data 10302 * address. To prevent migration of administratively up addresses in 10303 * the kernel, we don't allow them to be converted either. 10304 */ 10305 if (IS_UNDER_IPMP(ill)) { 10306 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10307 10308 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10309 return (EINVAL); 10310 10311 if ((turn_off & IFF_NOFAILOVER) && 10312 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10313 return (EINVAL); 10314 } 10315 10316 /* 10317 * Only allow IFF_TEMPORARY flag to be set on 10318 * IPv6 interfaces. 10319 */ 10320 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10321 return (EINVAL); 10322 10323 /* 10324 * cannot turn off IFF_NOXMIT on VNI interfaces. 10325 */ 10326 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10327 return (EINVAL); 10328 10329 /* 10330 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10331 * interfaces. It makes no sense in that context. 10332 */ 10333 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10334 return (EINVAL); 10335 10336 /* 10337 * For IPv6 ipif_id 0, don't allow the interface to be up without 10338 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10339 * If the link local address isn't set, and can be set, it will get 10340 * set later on in this function. 10341 */ 10342 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10343 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10344 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10345 if (ipif_cant_setlinklocal(ipif)) 10346 return (EINVAL); 10347 set_linklocal = B_TRUE; 10348 } 10349 10350 /* 10351 * If we modify physical interface flags, we'll potentially need to 10352 * send up two routing socket messages for the changes (one for the 10353 * IPv4 ill, and another for the IPv6 ill). Note that here. 10354 */ 10355 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10356 phyint_flags_modified = B_TRUE; 10357 10358 /* 10359 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10360 * (otherwise, we'd immediately use them, defeating standby). Also, 10361 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10362 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10363 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10364 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10365 * will not be honored. 10366 */ 10367 if (turn_on & PHYI_STANDBY) { 10368 /* 10369 * No need to grab ill_g_usesrc_lock here; see the 10370 * synchronization notes in ip.c. 10371 */ 10372 if (ill->ill_usesrc_grp_next != NULL || 10373 intf_flags & PHYI_INACTIVE) 10374 return (EINVAL); 10375 if (!(flags & PHYI_FAILED)) { 10376 flags |= PHYI_INACTIVE; 10377 turn_on |= PHYI_INACTIVE; 10378 } 10379 } 10380 10381 if (turn_off & PHYI_STANDBY) { 10382 flags &= ~PHYI_INACTIVE; 10383 turn_off |= PHYI_INACTIVE; 10384 } 10385 10386 /* 10387 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10388 * would end up on. 10389 */ 10390 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10391 (PHYI_FAILED | PHYI_INACTIVE)) 10392 return (EINVAL); 10393 10394 /* 10395 * If ILLF_ROUTER changes, we need to change the ip forwarding 10396 * status of the interface. 10397 */ 10398 if ((turn_on | turn_off) & ILLF_ROUTER) 10399 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10400 10401 /* 10402 * If the interface is not UP and we are not going to 10403 * bring it UP, record the flags and return. When the 10404 * interface comes UP later, the right actions will be 10405 * taken. 10406 */ 10407 if (!(ipif->ipif_flags & IPIF_UP) && 10408 !(turn_on & IPIF_UP)) { 10409 /* Record new flags in their respective places. */ 10410 mutex_enter(&ill->ill_lock); 10411 mutex_enter(&ill->ill_phyint->phyint_lock); 10412 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10413 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10414 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10415 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10416 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10417 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10418 mutex_exit(&ill->ill_lock); 10419 mutex_exit(&ill->ill_phyint->phyint_lock); 10420 10421 /* 10422 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10423 * same to the kernel: if any of them has been set by 10424 * userland, the interface cannot be used for data traffic. 10425 */ 10426 if ((turn_on|turn_off) & 10427 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10428 ASSERT(!IS_IPMP(ill)); 10429 /* 10430 * It's possible the ill is part of an "anonymous" 10431 * IPMP group rather than a real group. In that case, 10432 * there are no other interfaces in the group and thus 10433 * no need to call ipmp_phyint_refresh_active(). 10434 */ 10435 if (IS_UNDER_IPMP(ill)) 10436 ipmp_phyint_refresh_active(phyi); 10437 } 10438 10439 if (phyint_flags_modified) { 10440 if (phyi->phyint_illv4 != NULL) { 10441 ip_rts_ifmsg(phyi->phyint_illv4-> 10442 ill_ipif, RTSQ_DEFAULT); 10443 } 10444 if (phyi->phyint_illv6 != NULL) { 10445 ip_rts_ifmsg(phyi->phyint_illv6-> 10446 ill_ipif, RTSQ_DEFAULT); 10447 } 10448 } 10449 /* The default multicast interface might have changed */ 10450 ire_increment_multicast_generation(ill->ill_ipst, 10451 ill->ill_isv6); 10452 10453 return (0); 10454 } else if (set_linklocal) { 10455 mutex_enter(&ill->ill_lock); 10456 if (set_linklocal) 10457 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10458 mutex_exit(&ill->ill_lock); 10459 } 10460 10461 /* 10462 * Disallow IPv6 interfaces coming up that have the unspecified address, 10463 * or point-to-point interfaces with an unspecified destination. We do 10464 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10465 * have a subnet assigned, which is how in.ndpd currently manages its 10466 * onlink prefix list when no addresses are configured with those 10467 * prefixes. 10468 */ 10469 if (ipif->ipif_isv6 && 10470 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10471 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10472 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10473 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10474 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10475 return (EINVAL); 10476 } 10477 10478 /* 10479 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10480 * from being brought up. 10481 */ 10482 if (!ipif->ipif_isv6 && 10483 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10484 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10485 return (EINVAL); 10486 } 10487 10488 /* 10489 * If we are going to change one or more of the flags that are 10490 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10491 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10492 * IPIF_NOFAILOVER, we will take special action. This is 10493 * done by bring the ipif down, changing the flags and bringing 10494 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10495 * back up will trigger the address to be moved. 10496 * 10497 * If we are going to change IFF_NOACCEPT, we need to bring 10498 * all the ipifs down then bring them up again. The act of 10499 * bringing all the ipifs back up will trigger the local 10500 * ires being recreated with "no_accept" set/cleared. 10501 * 10502 * Note that ILLF_NOACCEPT is always set separately from the 10503 * other flags. 10504 */ 10505 if ((turn_on|turn_off) & 10506 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10507 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10508 IPIF_NOFAILOVER)) { 10509 /* 10510 * ipif_down() will ire_delete bcast ire's for the subnet, 10511 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10512 * entries shared between multiple ipifs on the same subnet. 10513 */ 10514 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10515 !(turn_off & IPIF_UP)) { 10516 if (ipif->ipif_flags & IPIF_UP) 10517 ill->ill_logical_down = 1; 10518 turn_on &= ~IPIF_UP; 10519 } 10520 err = ipif_down(ipif, q, mp); 10521 ip1dbg(("ipif_down returns %d err ", err)); 10522 if (err == EINPROGRESS) 10523 return (err); 10524 (void) ipif_down_tail(ipif); 10525 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10526 /* 10527 * If we can quiesce the ill, then continue. If not, then 10528 * ip_sioctl_flags_tail() will be called from 10529 * ipif_ill_refrele_tail(). 10530 */ 10531 ill_down_ipifs(ill, B_TRUE); 10532 10533 mutex_enter(&connp->conn_lock); 10534 mutex_enter(&ill->ill_lock); 10535 if (!ill_is_quiescent(ill)) { 10536 boolean_t success; 10537 10538 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10539 q, mp, ILL_DOWN); 10540 mutex_exit(&ill->ill_lock); 10541 mutex_exit(&connp->conn_lock); 10542 return (success ? EINPROGRESS : EINTR); 10543 } 10544 mutex_exit(&ill->ill_lock); 10545 mutex_exit(&connp->conn_lock); 10546 } 10547 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10548 } 10549 10550 static int 10551 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10552 { 10553 ill_t *ill; 10554 phyint_t *phyi; 10555 uint64_t turn_on, turn_off; 10556 boolean_t phyint_flags_modified = B_FALSE; 10557 int err = 0; 10558 boolean_t set_linklocal = B_FALSE; 10559 10560 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10561 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10562 10563 ASSERT(IAM_WRITER_IPIF(ipif)); 10564 10565 ill = ipif->ipif_ill; 10566 phyi = ill->ill_phyint; 10567 10568 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10569 10570 /* 10571 * IFF_UP is handled separately. 10572 */ 10573 turn_on &= ~IFF_UP; 10574 turn_off &= ~IFF_UP; 10575 10576 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10577 phyint_flags_modified = B_TRUE; 10578 10579 /* 10580 * Now we change the flags. Track current value of 10581 * other flags in their respective places. 10582 */ 10583 mutex_enter(&ill->ill_lock); 10584 mutex_enter(&phyi->phyint_lock); 10585 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10586 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10587 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10588 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10589 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10590 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10591 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10592 set_linklocal = B_TRUE; 10593 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10594 } 10595 10596 mutex_exit(&ill->ill_lock); 10597 mutex_exit(&phyi->phyint_lock); 10598 10599 if (set_linklocal) 10600 (void) ipif_setlinklocal(ipif); 10601 10602 /* 10603 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10604 * the kernel: if any of them has been set by userland, the interface 10605 * cannot be used for data traffic. 10606 */ 10607 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10608 ASSERT(!IS_IPMP(ill)); 10609 /* 10610 * It's possible the ill is part of an "anonymous" IPMP group 10611 * rather than a real group. In that case, there are no other 10612 * interfaces in the group and thus no need for us to call 10613 * ipmp_phyint_refresh_active(). 10614 */ 10615 if (IS_UNDER_IPMP(ill)) 10616 ipmp_phyint_refresh_active(phyi); 10617 } 10618 10619 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10620 /* 10621 * If the ILLF_NOACCEPT flag is changed, bring up all the 10622 * ipifs that were brought down. 10623 * 10624 * The routing sockets messages are sent as the result 10625 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10626 * as well. 10627 */ 10628 err = ill_up_ipifs(ill, q, mp); 10629 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10630 /* 10631 * XXX ipif_up really does not know whether a phyint flags 10632 * was modified or not. So, it sends up information on 10633 * only one routing sockets message. As we don't bring up 10634 * the interface and also set PHYI_ flags simultaneously 10635 * it should be okay. 10636 */ 10637 err = ipif_up(ipif, q, mp); 10638 } else { 10639 /* 10640 * Make sure routing socket sees all changes to the flags. 10641 * ipif_up_done* handles this when we use ipif_up. 10642 */ 10643 if (phyint_flags_modified) { 10644 if (phyi->phyint_illv4 != NULL) { 10645 ip_rts_ifmsg(phyi->phyint_illv4-> 10646 ill_ipif, RTSQ_DEFAULT); 10647 } 10648 if (phyi->phyint_illv6 != NULL) { 10649 ip_rts_ifmsg(phyi->phyint_illv6-> 10650 ill_ipif, RTSQ_DEFAULT); 10651 } 10652 } else { 10653 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10654 } 10655 /* 10656 * Update the flags in SCTP's IPIF list, ipif_up() will do 10657 * this in need_up case. 10658 */ 10659 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10660 } 10661 10662 /* The default multicast interface might have changed */ 10663 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10664 return (err); 10665 } 10666 10667 /* 10668 * Restart the flags operation now that the refcounts have dropped to zero. 10669 */ 10670 /* ARGSUSED */ 10671 int 10672 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10673 ip_ioctl_cmd_t *ipip, void *if_req) 10674 { 10675 uint64_t flags; 10676 struct ifreq *ifr = if_req; 10677 struct lifreq *lifr = if_req; 10678 uint64_t turn_on, turn_off; 10679 10680 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10681 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10682 10683 if (ipip->ipi_cmd_type == IF_CMD) { 10684 /* cast to uint16_t prevents unwanted sign extension */ 10685 flags = (uint16_t)ifr->ifr_flags; 10686 } else { 10687 flags = lifr->lifr_flags; 10688 } 10689 10690 /* 10691 * If this function call is a result of the ILLF_NOACCEPT flag 10692 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10693 */ 10694 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10695 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10696 (void) ipif_down_tail(ipif); 10697 10698 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10699 } 10700 10701 /* 10702 * Can operate on either a module or a driver queue. 10703 */ 10704 /* ARGSUSED */ 10705 int 10706 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10707 ip_ioctl_cmd_t *ipip, void *if_req) 10708 { 10709 /* 10710 * Has the flags been set correctly till now ? 10711 */ 10712 ill_t *ill = ipif->ipif_ill; 10713 phyint_t *phyi = ill->ill_phyint; 10714 10715 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10716 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10717 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10718 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10719 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10720 10721 /* 10722 * Need a lock since some flags can be set even when there are 10723 * references to the ipif. 10724 */ 10725 mutex_enter(&ill->ill_lock); 10726 if (ipip->ipi_cmd_type == IF_CMD) { 10727 struct ifreq *ifr = (struct ifreq *)if_req; 10728 10729 /* Get interface flags (low 16 only). */ 10730 ifr->ifr_flags = ((ipif->ipif_flags | 10731 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10732 } else { 10733 struct lifreq *lifr = (struct lifreq *)if_req; 10734 10735 /* Get interface flags. */ 10736 lifr->lifr_flags = ipif->ipif_flags | 10737 ill->ill_flags | phyi->phyint_flags; 10738 } 10739 mutex_exit(&ill->ill_lock); 10740 return (0); 10741 } 10742 10743 /* 10744 * We allow the MTU to be set on an ILL, but not have it be different 10745 * for different IPIFs since we don't actually send packets on IPIFs. 10746 */ 10747 /* ARGSUSED */ 10748 int 10749 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10750 ip_ioctl_cmd_t *ipip, void *if_req) 10751 { 10752 int mtu; 10753 int ip_min_mtu; 10754 struct ifreq *ifr; 10755 struct lifreq *lifr; 10756 ill_t *ill; 10757 10758 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10759 ipif->ipif_id, (void *)ipif)); 10760 if (ipip->ipi_cmd_type == IF_CMD) { 10761 ifr = (struct ifreq *)if_req; 10762 mtu = ifr->ifr_metric; 10763 } else { 10764 lifr = (struct lifreq *)if_req; 10765 mtu = lifr->lifr_mtu; 10766 } 10767 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10768 if (ipif->ipif_id != 0) 10769 return (EINVAL); 10770 10771 ill = ipif->ipif_ill; 10772 if (ipif->ipif_isv6) 10773 ip_min_mtu = IPV6_MIN_MTU; 10774 else 10775 ip_min_mtu = IP_MIN_MTU; 10776 10777 mutex_enter(&ill->ill_lock); 10778 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10779 mutex_exit(&ill->ill_lock); 10780 return (EINVAL); 10781 } 10782 /* 10783 * The dce and fragmentation code can handle changes to ill_mtu 10784 * concurrent with sending/fragmenting packets. 10785 */ 10786 ill->ill_mtu = mtu; 10787 ill->ill_flags |= ILLF_FIXEDMTU; 10788 mutex_exit(&ill->ill_lock); 10789 10790 /* 10791 * Make sure all dce_generation checks find out 10792 * that ill_mtu has changed. 10793 */ 10794 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10795 10796 /* Update the MTU in SCTP's list */ 10797 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10798 return (0); 10799 } 10800 10801 /* Get interface MTU. */ 10802 /* ARGSUSED */ 10803 int 10804 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10805 ip_ioctl_cmd_t *ipip, void *if_req) 10806 { 10807 struct ifreq *ifr; 10808 struct lifreq *lifr; 10809 10810 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10811 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10812 10813 /* 10814 * We allow a get on any logical interface even though the set 10815 * can only be done on logical unit 0. 10816 */ 10817 if (ipip->ipi_cmd_type == IF_CMD) { 10818 ifr = (struct ifreq *)if_req; 10819 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10820 } else { 10821 lifr = (struct lifreq *)if_req; 10822 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10823 } 10824 return (0); 10825 } 10826 10827 /* Set interface broadcast address. */ 10828 /* ARGSUSED2 */ 10829 int 10830 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10831 ip_ioctl_cmd_t *ipip, void *if_req) 10832 { 10833 ipaddr_t addr; 10834 ire_t *ire; 10835 ill_t *ill = ipif->ipif_ill; 10836 ip_stack_t *ipst = ill->ill_ipst; 10837 10838 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10839 ipif->ipif_id)); 10840 10841 ASSERT(IAM_WRITER_IPIF(ipif)); 10842 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10843 return (EADDRNOTAVAIL); 10844 10845 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10846 10847 if (sin->sin_family != AF_INET) 10848 return (EAFNOSUPPORT); 10849 10850 addr = sin->sin_addr.s_addr; 10851 10852 if (ipif->ipif_flags & IPIF_UP) { 10853 /* 10854 * If we are already up, make sure the new 10855 * broadcast address makes sense. If it does, 10856 * there should be an IRE for it already. 10857 */ 10858 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10859 ill, ipif->ipif_zoneid, NULL, 10860 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10861 if (ire == NULL) { 10862 return (EINVAL); 10863 } else { 10864 ire_refrele(ire); 10865 } 10866 } 10867 /* 10868 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10869 * needs to already exist we never need to change the set of 10870 * IRE_BROADCASTs when we are UP. 10871 */ 10872 if (addr != ipif->ipif_brd_addr) 10873 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10874 10875 return (0); 10876 } 10877 10878 /* Get interface broadcast address. */ 10879 /* ARGSUSED */ 10880 int 10881 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10882 ip_ioctl_cmd_t *ipip, void *if_req) 10883 { 10884 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10885 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10886 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10887 return (EADDRNOTAVAIL); 10888 10889 /* IPIF_BROADCAST not possible with IPv6 */ 10890 ASSERT(!ipif->ipif_isv6); 10891 *sin = sin_null; 10892 sin->sin_family = AF_INET; 10893 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10894 return (0); 10895 } 10896 10897 /* 10898 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10899 */ 10900 /* ARGSUSED */ 10901 int 10902 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10903 ip_ioctl_cmd_t *ipip, void *if_req) 10904 { 10905 int err = 0; 10906 in6_addr_t v6mask; 10907 10908 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10909 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10910 10911 ASSERT(IAM_WRITER_IPIF(ipif)); 10912 10913 if (ipif->ipif_isv6) { 10914 sin6_t *sin6; 10915 10916 if (sin->sin_family != AF_INET6) 10917 return (EAFNOSUPPORT); 10918 10919 sin6 = (sin6_t *)sin; 10920 v6mask = sin6->sin6_addr; 10921 } else { 10922 ipaddr_t mask; 10923 10924 if (sin->sin_family != AF_INET) 10925 return (EAFNOSUPPORT); 10926 10927 mask = sin->sin_addr.s_addr; 10928 if (!ip_contiguous_mask(ntohl(mask))) 10929 return (ENOTSUP); 10930 V4MASK_TO_V6(mask, v6mask); 10931 } 10932 10933 /* 10934 * No big deal if the interface isn't already up, or the mask 10935 * isn't really changing, or this is pt-pt. 10936 */ 10937 if (!(ipif->ipif_flags & IPIF_UP) || 10938 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10939 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10940 ipif->ipif_v6net_mask = v6mask; 10941 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10942 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10943 ipif->ipif_v6net_mask, 10944 ipif->ipif_v6subnet); 10945 } 10946 return (0); 10947 } 10948 /* 10949 * Make sure we have valid net and subnet broadcast ire's 10950 * for the old netmask, if needed by other logical interfaces. 10951 */ 10952 err = ipif_logical_down(ipif, q, mp); 10953 if (err == EINPROGRESS) 10954 return (err); 10955 (void) ipif_down_tail(ipif); 10956 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10957 return (err); 10958 } 10959 10960 static int 10961 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10962 { 10963 in6_addr_t v6mask; 10964 int err = 0; 10965 10966 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10967 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10968 10969 if (ipif->ipif_isv6) { 10970 sin6_t *sin6; 10971 10972 sin6 = (sin6_t *)sin; 10973 v6mask = sin6->sin6_addr; 10974 } else { 10975 ipaddr_t mask; 10976 10977 mask = sin->sin_addr.s_addr; 10978 V4MASK_TO_V6(mask, v6mask); 10979 } 10980 10981 ipif->ipif_v6net_mask = v6mask; 10982 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10983 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10984 ipif->ipif_v6subnet); 10985 } 10986 err = ipif_up(ipif, q, mp); 10987 10988 if (err == 0 || err == EINPROGRESS) { 10989 /* 10990 * The interface must be DL_BOUND if this packet has to 10991 * go out on the wire. Since we only go through a logical 10992 * down and are bound with the driver during an internal 10993 * down/up that is satisfied. 10994 */ 10995 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10996 /* Potentially broadcast an address mask reply. */ 10997 ipif_mask_reply(ipif); 10998 } 10999 } 11000 return (err); 11001 } 11002 11003 /* ARGSUSED */ 11004 int 11005 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11006 ip_ioctl_cmd_t *ipip, void *if_req) 11007 { 11008 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11009 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11010 (void) ipif_down_tail(ipif); 11011 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11012 } 11013 11014 /* Get interface net mask. */ 11015 /* ARGSUSED */ 11016 int 11017 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11018 ip_ioctl_cmd_t *ipip, void *if_req) 11019 { 11020 struct lifreq *lifr = (struct lifreq *)if_req; 11021 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11022 11023 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11024 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11025 11026 /* 11027 * net mask can't change since we have a reference to the ipif. 11028 */ 11029 if (ipif->ipif_isv6) { 11030 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11031 *sin6 = sin6_null; 11032 sin6->sin6_family = AF_INET6; 11033 sin6->sin6_addr = ipif->ipif_v6net_mask; 11034 lifr->lifr_addrlen = 11035 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11036 } else { 11037 *sin = sin_null; 11038 sin->sin_family = AF_INET; 11039 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11040 if (ipip->ipi_cmd_type == LIF_CMD) { 11041 lifr->lifr_addrlen = 11042 ip_mask_to_plen(ipif->ipif_net_mask); 11043 } 11044 } 11045 return (0); 11046 } 11047 11048 /* ARGSUSED */ 11049 int 11050 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11051 ip_ioctl_cmd_t *ipip, void *if_req) 11052 { 11053 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11054 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11055 11056 /* 11057 * Since no applications should ever be setting metrics on underlying 11058 * interfaces, we explicitly fail to smoke 'em out. 11059 */ 11060 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11061 return (EINVAL); 11062 11063 /* 11064 * Set interface metric. We don't use this for 11065 * anything but we keep track of it in case it is 11066 * important to routing applications or such. 11067 */ 11068 if (ipip->ipi_cmd_type == IF_CMD) { 11069 struct ifreq *ifr; 11070 11071 ifr = (struct ifreq *)if_req; 11072 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11073 } else { 11074 struct lifreq *lifr; 11075 11076 lifr = (struct lifreq *)if_req; 11077 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11078 } 11079 return (0); 11080 } 11081 11082 /* ARGSUSED */ 11083 int 11084 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11085 ip_ioctl_cmd_t *ipip, void *if_req) 11086 { 11087 /* Get interface metric. */ 11088 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11089 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11090 11091 if (ipip->ipi_cmd_type == IF_CMD) { 11092 struct ifreq *ifr; 11093 11094 ifr = (struct ifreq *)if_req; 11095 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11096 } else { 11097 struct lifreq *lifr; 11098 11099 lifr = (struct lifreq *)if_req; 11100 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11101 } 11102 11103 return (0); 11104 } 11105 11106 /* ARGSUSED */ 11107 int 11108 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11109 ip_ioctl_cmd_t *ipip, void *if_req) 11110 { 11111 int arp_muxid; 11112 11113 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11114 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11115 /* 11116 * Set the muxid returned from I_PLINK. 11117 */ 11118 if (ipip->ipi_cmd_type == IF_CMD) { 11119 struct ifreq *ifr = (struct ifreq *)if_req; 11120 11121 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11122 arp_muxid = ifr->ifr_arp_muxid; 11123 } else { 11124 struct lifreq *lifr = (struct lifreq *)if_req; 11125 11126 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11127 arp_muxid = lifr->lifr_arp_muxid; 11128 } 11129 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11130 return (0); 11131 } 11132 11133 /* ARGSUSED */ 11134 int 11135 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11136 ip_ioctl_cmd_t *ipip, void *if_req) 11137 { 11138 int arp_muxid = 0; 11139 11140 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11141 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11142 /* 11143 * Get the muxid saved in ill for I_PUNLINK. 11144 */ 11145 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11146 if (ipip->ipi_cmd_type == IF_CMD) { 11147 struct ifreq *ifr = (struct ifreq *)if_req; 11148 11149 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11150 ifr->ifr_arp_muxid = arp_muxid; 11151 } else { 11152 struct lifreq *lifr = (struct lifreq *)if_req; 11153 11154 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11155 lifr->lifr_arp_muxid = arp_muxid; 11156 } 11157 return (0); 11158 } 11159 11160 /* 11161 * Set the subnet prefix. Does not modify the broadcast address. 11162 */ 11163 /* ARGSUSED */ 11164 int 11165 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11166 ip_ioctl_cmd_t *ipip, void *if_req) 11167 { 11168 int err = 0; 11169 in6_addr_t v6addr; 11170 in6_addr_t v6mask; 11171 boolean_t need_up = B_FALSE; 11172 int addrlen; 11173 11174 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11175 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11176 11177 ASSERT(IAM_WRITER_IPIF(ipif)); 11178 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11179 11180 if (ipif->ipif_isv6) { 11181 sin6_t *sin6; 11182 11183 if (sin->sin_family != AF_INET6) 11184 return (EAFNOSUPPORT); 11185 11186 sin6 = (sin6_t *)sin; 11187 v6addr = sin6->sin6_addr; 11188 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11189 return (EADDRNOTAVAIL); 11190 } else { 11191 ipaddr_t addr; 11192 11193 if (sin->sin_family != AF_INET) 11194 return (EAFNOSUPPORT); 11195 11196 addr = sin->sin_addr.s_addr; 11197 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11198 return (EADDRNOTAVAIL); 11199 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11200 /* Add 96 bits */ 11201 addrlen += IPV6_ABITS - IP_ABITS; 11202 } 11203 11204 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11205 return (EINVAL); 11206 11207 /* Check if bits in the address is set past the mask */ 11208 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11209 return (EINVAL); 11210 11211 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11212 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11213 return (0); /* No change */ 11214 11215 if (ipif->ipif_flags & IPIF_UP) { 11216 /* 11217 * If the interface is already marked up, 11218 * we call ipif_down which will take care 11219 * of ditching any IREs that have been set 11220 * up based on the old interface address. 11221 */ 11222 err = ipif_logical_down(ipif, q, mp); 11223 if (err == EINPROGRESS) 11224 return (err); 11225 (void) ipif_down_tail(ipif); 11226 need_up = B_TRUE; 11227 } 11228 11229 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11230 return (err); 11231 } 11232 11233 static int 11234 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11235 queue_t *q, mblk_t *mp, boolean_t need_up) 11236 { 11237 ill_t *ill = ipif->ipif_ill; 11238 int err = 0; 11239 11240 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11241 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11242 11243 /* Set the new address. */ 11244 mutex_enter(&ill->ill_lock); 11245 ipif->ipif_v6net_mask = v6mask; 11246 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11247 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11248 ipif->ipif_v6subnet); 11249 } 11250 mutex_exit(&ill->ill_lock); 11251 11252 if (need_up) { 11253 /* 11254 * Now bring the interface back up. If this 11255 * is the only IPIF for the ILL, ipif_up 11256 * will have to re-bind to the device, so 11257 * we may get back EINPROGRESS, in which 11258 * case, this IOCTL will get completed in 11259 * ip_rput_dlpi when we see the DL_BIND_ACK. 11260 */ 11261 err = ipif_up(ipif, q, mp); 11262 if (err == EINPROGRESS) 11263 return (err); 11264 } 11265 return (err); 11266 } 11267 11268 /* ARGSUSED */ 11269 int 11270 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11271 ip_ioctl_cmd_t *ipip, void *if_req) 11272 { 11273 int addrlen; 11274 in6_addr_t v6addr; 11275 in6_addr_t v6mask; 11276 struct lifreq *lifr = (struct lifreq *)if_req; 11277 11278 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11279 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11280 (void) ipif_down_tail(ipif); 11281 11282 addrlen = lifr->lifr_addrlen; 11283 if (ipif->ipif_isv6) { 11284 sin6_t *sin6; 11285 11286 sin6 = (sin6_t *)sin; 11287 v6addr = sin6->sin6_addr; 11288 } else { 11289 ipaddr_t addr; 11290 11291 addr = sin->sin_addr.s_addr; 11292 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11293 addrlen += IPV6_ABITS - IP_ABITS; 11294 } 11295 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11296 11297 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11298 } 11299 11300 /* ARGSUSED */ 11301 int 11302 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11303 ip_ioctl_cmd_t *ipip, void *if_req) 11304 { 11305 struct lifreq *lifr = (struct lifreq *)if_req; 11306 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11307 11308 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11309 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11310 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11311 11312 if (ipif->ipif_isv6) { 11313 *sin6 = sin6_null; 11314 sin6->sin6_family = AF_INET6; 11315 sin6->sin6_addr = ipif->ipif_v6subnet; 11316 lifr->lifr_addrlen = 11317 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11318 } else { 11319 *sin = sin_null; 11320 sin->sin_family = AF_INET; 11321 sin->sin_addr.s_addr = ipif->ipif_subnet; 11322 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11323 } 11324 return (0); 11325 } 11326 11327 /* 11328 * Set the IPv6 address token. 11329 */ 11330 /* ARGSUSED */ 11331 int 11332 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11333 ip_ioctl_cmd_t *ipi, void *if_req) 11334 { 11335 ill_t *ill = ipif->ipif_ill; 11336 int err; 11337 in6_addr_t v6addr; 11338 in6_addr_t v6mask; 11339 boolean_t need_up = B_FALSE; 11340 int i; 11341 sin6_t *sin6 = (sin6_t *)sin; 11342 struct lifreq *lifr = (struct lifreq *)if_req; 11343 int addrlen; 11344 11345 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11346 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11347 ASSERT(IAM_WRITER_IPIF(ipif)); 11348 11349 addrlen = lifr->lifr_addrlen; 11350 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11351 if (ipif->ipif_id != 0) 11352 return (EINVAL); 11353 11354 if (!ipif->ipif_isv6) 11355 return (EINVAL); 11356 11357 if (addrlen > IPV6_ABITS) 11358 return (EINVAL); 11359 11360 v6addr = sin6->sin6_addr; 11361 11362 /* 11363 * The length of the token is the length from the end. To get 11364 * the proper mask for this, compute the mask of the bits not 11365 * in the token; ie. the prefix, and then xor to get the mask. 11366 */ 11367 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11368 return (EINVAL); 11369 for (i = 0; i < 4; i++) { 11370 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11371 } 11372 11373 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11374 ill->ill_token_length == addrlen) 11375 return (0); /* No change */ 11376 11377 if (ipif->ipif_flags & IPIF_UP) { 11378 err = ipif_logical_down(ipif, q, mp); 11379 if (err == EINPROGRESS) 11380 return (err); 11381 (void) ipif_down_tail(ipif); 11382 need_up = B_TRUE; 11383 } 11384 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11385 return (err); 11386 } 11387 11388 static int 11389 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11390 mblk_t *mp, boolean_t need_up) 11391 { 11392 in6_addr_t v6addr; 11393 in6_addr_t v6mask; 11394 ill_t *ill = ipif->ipif_ill; 11395 int i; 11396 int err = 0; 11397 11398 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11399 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11400 v6addr = sin6->sin6_addr; 11401 /* 11402 * The length of the token is the length from the end. To get 11403 * the proper mask for this, compute the mask of the bits not 11404 * in the token; ie. the prefix, and then xor to get the mask. 11405 */ 11406 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11407 for (i = 0; i < 4; i++) 11408 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11409 11410 mutex_enter(&ill->ill_lock); 11411 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11412 ill->ill_token_length = addrlen; 11413 ill->ill_manual_token = 1; 11414 11415 /* Reconfigure the link-local address based on this new token */ 11416 ipif_setlinklocal(ill->ill_ipif); 11417 11418 mutex_exit(&ill->ill_lock); 11419 11420 if (need_up) { 11421 /* 11422 * Now bring the interface back up. If this 11423 * is the only IPIF for the ILL, ipif_up 11424 * will have to re-bind to the device, so 11425 * we may get back EINPROGRESS, in which 11426 * case, this IOCTL will get completed in 11427 * ip_rput_dlpi when we see the DL_BIND_ACK. 11428 */ 11429 err = ipif_up(ipif, q, mp); 11430 if (err == EINPROGRESS) 11431 return (err); 11432 } 11433 return (err); 11434 } 11435 11436 /* ARGSUSED */ 11437 int 11438 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11439 ip_ioctl_cmd_t *ipi, void *if_req) 11440 { 11441 ill_t *ill; 11442 sin6_t *sin6 = (sin6_t *)sin; 11443 struct lifreq *lifr = (struct lifreq *)if_req; 11444 11445 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11446 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11447 if (ipif->ipif_id != 0) 11448 return (EINVAL); 11449 11450 ill = ipif->ipif_ill; 11451 if (!ill->ill_isv6) 11452 return (ENXIO); 11453 11454 *sin6 = sin6_null; 11455 sin6->sin6_family = AF_INET6; 11456 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11457 sin6->sin6_addr = ill->ill_token; 11458 lifr->lifr_addrlen = ill->ill_token_length; 11459 return (0); 11460 } 11461 11462 /* 11463 * Set (hardware) link specific information that might override 11464 * what was acquired through the DL_INFO_ACK. 11465 */ 11466 /* ARGSUSED */ 11467 int 11468 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11469 ip_ioctl_cmd_t *ipi, void *if_req) 11470 { 11471 ill_t *ill = ipif->ipif_ill; 11472 int ip_min_mtu; 11473 struct lifreq *lifr = (struct lifreq *)if_req; 11474 lif_ifinfo_req_t *lir; 11475 11476 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11477 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11478 lir = &lifr->lifr_ifinfo; 11479 ASSERT(IAM_WRITER_IPIF(ipif)); 11480 11481 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11482 if (ipif->ipif_id != 0) 11483 return (EINVAL); 11484 11485 /* Set interface MTU. */ 11486 if (ipif->ipif_isv6) 11487 ip_min_mtu = IPV6_MIN_MTU; 11488 else 11489 ip_min_mtu = IP_MIN_MTU; 11490 11491 /* 11492 * Verify values before we set anything. Allow zero to 11493 * mean unspecified. 11494 * 11495 * XXX We should be able to set the user-defined lir_mtu to some value 11496 * that is greater than ill_current_frag but less than ill_max_frag- the 11497 * ill_max_frag value tells us the max MTU that can be handled by the 11498 * datalink, whereas the ill_current_frag is dynamically computed for 11499 * some link-types like tunnels, based on the tunnel PMTU. However, 11500 * since there is currently no way of distinguishing between 11501 * administratively fixed link mtu values (e.g., those set via 11502 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11503 * for tunnels) we conservatively choose the ill_current_frag as the 11504 * upper-bound. 11505 */ 11506 if (lir->lir_maxmtu != 0 && 11507 (lir->lir_maxmtu > ill->ill_current_frag || 11508 lir->lir_maxmtu < ip_min_mtu)) 11509 return (EINVAL); 11510 if (lir->lir_reachtime != 0 && 11511 lir->lir_reachtime > ND_MAX_REACHTIME) 11512 return (EINVAL); 11513 if (lir->lir_reachretrans != 0 && 11514 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11515 return (EINVAL); 11516 11517 mutex_enter(&ill->ill_lock); 11518 /* 11519 * The dce and fragmentation code can handle changes to ill_mtu 11520 * concurrent with sending/fragmenting packets. 11521 */ 11522 if (lir->lir_maxmtu != 0) 11523 ill->ill_user_mtu = lir->lir_maxmtu; 11524 11525 if (lir->lir_reachtime != 0) 11526 ill->ill_reachable_time = lir->lir_reachtime; 11527 11528 if (lir->lir_reachretrans != 0) 11529 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11530 11531 ill->ill_max_hops = lir->lir_maxhops; 11532 ill->ill_max_buf = ND_MAX_Q; 11533 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11534 /* 11535 * ill_mtu is the actual interface MTU, obtained as the min 11536 * of user-configured mtu and the value announced by the 11537 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11538 * we have already made the choice of requiring 11539 * ill_user_mtu < ill_current_frag by the time we get here, 11540 * the ill_mtu effectively gets assigned to the ill_user_mtu 11541 * here. 11542 */ 11543 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11544 } 11545 mutex_exit(&ill->ill_lock); 11546 11547 /* 11548 * Make sure all dce_generation checks find out 11549 * that ill_mtu has changed. 11550 */ 11551 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11552 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11553 11554 /* 11555 * Refresh IPMP meta-interface MTU if necessary. 11556 */ 11557 if (IS_UNDER_IPMP(ill)) 11558 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11559 11560 return (0); 11561 } 11562 11563 /* ARGSUSED */ 11564 int 11565 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11566 ip_ioctl_cmd_t *ipi, void *if_req) 11567 { 11568 struct lif_ifinfo_req *lir; 11569 ill_t *ill = ipif->ipif_ill; 11570 11571 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11572 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11573 if (ipif->ipif_id != 0) 11574 return (EINVAL); 11575 11576 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11577 lir->lir_maxhops = ill->ill_max_hops; 11578 lir->lir_reachtime = ill->ill_reachable_time; 11579 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11580 lir->lir_maxmtu = ill->ill_mtu; 11581 11582 return (0); 11583 } 11584 11585 /* 11586 * Return best guess as to the subnet mask for the specified address. 11587 * Based on the subnet masks for all the configured interfaces. 11588 * 11589 * We end up returning a zero mask in the case of default, multicast or 11590 * experimental. 11591 */ 11592 static ipaddr_t 11593 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11594 { 11595 ipaddr_t net_mask; 11596 ill_t *ill; 11597 ipif_t *ipif; 11598 ill_walk_context_t ctx; 11599 ipif_t *fallback_ipif = NULL; 11600 11601 net_mask = ip_net_mask(addr); 11602 if (net_mask == 0) { 11603 *ipifp = NULL; 11604 return (0); 11605 } 11606 11607 /* Let's check to see if this is maybe a local subnet route. */ 11608 /* this function only applies to IPv4 interfaces */ 11609 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11610 ill = ILL_START_WALK_V4(&ctx, ipst); 11611 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11612 mutex_enter(&ill->ill_lock); 11613 for (ipif = ill->ill_ipif; ipif != NULL; 11614 ipif = ipif->ipif_next) { 11615 if (IPIF_IS_CONDEMNED(ipif)) 11616 continue; 11617 if (!(ipif->ipif_flags & IPIF_UP)) 11618 continue; 11619 if ((ipif->ipif_subnet & net_mask) == 11620 (addr & net_mask)) { 11621 /* 11622 * Don't trust pt-pt interfaces if there are 11623 * other interfaces. 11624 */ 11625 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11626 if (fallback_ipif == NULL) { 11627 ipif_refhold_locked(ipif); 11628 fallback_ipif = ipif; 11629 } 11630 continue; 11631 } 11632 11633 /* 11634 * Fine. Just assume the same net mask as the 11635 * directly attached subnet interface is using. 11636 */ 11637 ipif_refhold_locked(ipif); 11638 mutex_exit(&ill->ill_lock); 11639 rw_exit(&ipst->ips_ill_g_lock); 11640 if (fallback_ipif != NULL) 11641 ipif_refrele(fallback_ipif); 11642 *ipifp = ipif; 11643 return (ipif->ipif_net_mask); 11644 } 11645 } 11646 mutex_exit(&ill->ill_lock); 11647 } 11648 rw_exit(&ipst->ips_ill_g_lock); 11649 11650 *ipifp = fallback_ipif; 11651 return ((fallback_ipif != NULL) ? 11652 fallback_ipif->ipif_net_mask : net_mask); 11653 } 11654 11655 /* 11656 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11657 */ 11658 static void 11659 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11660 { 11661 IOCP iocp; 11662 ipft_t *ipft; 11663 ipllc_t *ipllc; 11664 mblk_t *mp1; 11665 cred_t *cr; 11666 int error = 0; 11667 conn_t *connp; 11668 11669 ip1dbg(("ip_wput_ioctl")); 11670 iocp = (IOCP)mp->b_rptr; 11671 mp1 = mp->b_cont; 11672 if (mp1 == NULL) { 11673 iocp->ioc_error = EINVAL; 11674 mp->b_datap->db_type = M_IOCNAK; 11675 iocp->ioc_count = 0; 11676 qreply(q, mp); 11677 return; 11678 } 11679 11680 /* 11681 * These IOCTLs provide various control capabilities to 11682 * upstream agents such as ULPs and processes. There 11683 * are currently two such IOCTLs implemented. They 11684 * are used by TCP to provide update information for 11685 * existing IREs and to forcibly delete an IRE for a 11686 * host that is not responding, thereby forcing an 11687 * attempt at a new route. 11688 */ 11689 iocp->ioc_error = EINVAL; 11690 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11691 goto done; 11692 11693 ipllc = (ipllc_t *)mp1->b_rptr; 11694 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11695 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11696 break; 11697 } 11698 /* 11699 * prefer credential from mblk over ioctl; 11700 * see ip_sioctl_copyin_setup 11701 */ 11702 cr = msg_getcred(mp, NULL); 11703 if (cr == NULL) 11704 cr = iocp->ioc_cr; 11705 11706 /* 11707 * Refhold the conn in case the request gets queued up in some lookup 11708 */ 11709 ASSERT(CONN_Q(q)); 11710 connp = Q_TO_CONN(q); 11711 CONN_INC_REF(connp); 11712 if (ipft->ipft_pfi && 11713 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11714 pullupmsg(mp1, ipft->ipft_min_size))) { 11715 error = (*ipft->ipft_pfi)(q, 11716 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11717 } 11718 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11719 /* 11720 * CONN_OPER_PENDING_DONE happens in the function called 11721 * through ipft_pfi above. 11722 */ 11723 return; 11724 } 11725 11726 CONN_OPER_PENDING_DONE(connp); 11727 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11728 freemsg(mp); 11729 return; 11730 } 11731 iocp->ioc_error = error; 11732 11733 done: 11734 mp->b_datap->db_type = M_IOCACK; 11735 if (iocp->ioc_error) 11736 iocp->ioc_count = 0; 11737 qreply(q, mp); 11738 } 11739 11740 /* 11741 * Assign a unique id for the ipif. This is used by sctp_addr.c 11742 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11743 */ 11744 static void 11745 ipif_assign_seqid(ipif_t *ipif) 11746 { 11747 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11748 11749 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11750 } 11751 11752 /* 11753 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11754 * administratively down (i.e., no DAD), of the same type, and locked. Note 11755 * that the clone is complete -- including the seqid -- and the expectation is 11756 * that the caller will either free or overwrite `sipif' before it's unlocked. 11757 */ 11758 static void 11759 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11760 { 11761 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11762 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11763 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11764 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11765 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11766 11767 dipif->ipif_flags = sipif->ipif_flags; 11768 dipif->ipif_zoneid = sipif->ipif_zoneid; 11769 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11770 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11771 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11772 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11773 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11774 11775 /* 11776 * As per the comment atop the function, we assume that these sipif 11777 * fields will be changed before sipif is unlocked. 11778 */ 11779 dipif->ipif_seqid = sipif->ipif_seqid; 11780 dipif->ipif_state_flags = sipif->ipif_state_flags; 11781 } 11782 11783 /* 11784 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11785 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11786 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11787 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11788 * down (i.e., no DAD), of the same type, and unlocked. 11789 */ 11790 static void 11791 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11792 { 11793 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11794 ipxop_t *ipx = ipsq->ipsq_xop; 11795 11796 ASSERT(sipif != dipif); 11797 ASSERT(sipif != virgipif); 11798 11799 /* 11800 * Grab all of the locks that protect the ipif in a defined order. 11801 */ 11802 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11803 11804 ipif_clone(sipif, dipif); 11805 if (virgipif != NULL) { 11806 ipif_clone(virgipif, sipif); 11807 mi_free(virgipif); 11808 } 11809 11810 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11811 11812 /* 11813 * Transfer ownership of the current xop, if necessary. 11814 */ 11815 if (ipx->ipx_current_ipif == sipif) { 11816 ASSERT(ipx->ipx_pending_ipif == NULL); 11817 mutex_enter(&ipx->ipx_lock); 11818 ipx->ipx_current_ipif = dipif; 11819 mutex_exit(&ipx->ipx_lock); 11820 } 11821 11822 if (virgipif == NULL) 11823 mi_free(sipif); 11824 } 11825 11826 /* 11827 * checks if: 11828 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11829 * - logical interface is within the allowed range 11830 */ 11831 static int 11832 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11833 { 11834 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11835 return (ENAMETOOLONG); 11836 11837 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11838 return (ERANGE); 11839 return (0); 11840 } 11841 11842 /* 11843 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11844 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11845 * be inserted into the first space available in the list. The value of 11846 * ipif_id will then be set to the appropriate value for its position. 11847 */ 11848 static int 11849 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11850 { 11851 ill_t *ill; 11852 ipif_t *tipif; 11853 ipif_t **tipifp; 11854 int id, err; 11855 ip_stack_t *ipst; 11856 11857 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11858 IAM_WRITER_IPIF(ipif)); 11859 11860 ill = ipif->ipif_ill; 11861 ASSERT(ill != NULL); 11862 ipst = ill->ill_ipst; 11863 11864 /* 11865 * In the case of lo0:0 we already hold the ill_g_lock. 11866 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11867 * ipif_insert. 11868 */ 11869 if (acquire_g_lock) 11870 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11871 mutex_enter(&ill->ill_lock); 11872 id = ipif->ipif_id; 11873 tipifp = &(ill->ill_ipif); 11874 if (id == -1) { /* need to find a real id */ 11875 id = 0; 11876 while ((tipif = *tipifp) != NULL) { 11877 ASSERT(tipif->ipif_id >= id); 11878 if (tipif->ipif_id != id) 11879 break; /* non-consecutive id */ 11880 id++; 11881 tipifp = &(tipif->ipif_next); 11882 } 11883 if ((err = is_lifname_valid(ill, id)) != 0) { 11884 mutex_exit(&ill->ill_lock); 11885 if (acquire_g_lock) 11886 rw_exit(&ipst->ips_ill_g_lock); 11887 return (err); 11888 } 11889 ipif->ipif_id = id; /* assign new id */ 11890 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11891 /* we have a real id; insert ipif in the right place */ 11892 while ((tipif = *tipifp) != NULL) { 11893 ASSERT(tipif->ipif_id != id); 11894 if (tipif->ipif_id > id) 11895 break; /* found correct location */ 11896 tipifp = &(tipif->ipif_next); 11897 } 11898 } else { 11899 mutex_exit(&ill->ill_lock); 11900 if (acquire_g_lock) 11901 rw_exit(&ipst->ips_ill_g_lock); 11902 return (err); 11903 } 11904 11905 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11906 11907 ipif->ipif_next = tipif; 11908 *tipifp = ipif; 11909 mutex_exit(&ill->ill_lock); 11910 if (acquire_g_lock) 11911 rw_exit(&ipst->ips_ill_g_lock); 11912 11913 return (0); 11914 } 11915 11916 static void 11917 ipif_remove(ipif_t *ipif) 11918 { 11919 ipif_t **ipifp; 11920 ill_t *ill = ipif->ipif_ill; 11921 11922 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11923 11924 mutex_enter(&ill->ill_lock); 11925 ipifp = &ill->ill_ipif; 11926 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11927 if (*ipifp == ipif) { 11928 *ipifp = ipif->ipif_next; 11929 break; 11930 } 11931 } 11932 mutex_exit(&ill->ill_lock); 11933 } 11934 11935 /* 11936 * Allocate and initialize a new interface control structure. (Always 11937 * called as writer.) 11938 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11939 * is not part of the global linked list of ills. ipif_seqid is unique 11940 * in the system and to preserve the uniqueness, it is assigned only 11941 * when ill becomes part of the global list. At that point ill will 11942 * have a name. If it doesn't get assigned here, it will get assigned 11943 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11944 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11945 * the interface flags or any other information from the DL_INFO_ACK for 11946 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11947 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11948 * second DL_INFO_ACK comes in from the driver. 11949 */ 11950 static ipif_t * 11951 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11952 boolean_t insert, int *errorp) 11953 { 11954 int err; 11955 ipif_t *ipif; 11956 ip_stack_t *ipst = ill->ill_ipst; 11957 11958 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11959 ill->ill_name, id, (void *)ill)); 11960 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11961 11962 if (errorp != NULL) 11963 *errorp = 0; 11964 11965 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11966 if (errorp != NULL) 11967 *errorp = ENOMEM; 11968 return (NULL); 11969 } 11970 *ipif = ipif_zero; /* start clean */ 11971 11972 ipif->ipif_ill = ill; 11973 ipif->ipif_id = id; /* could be -1 */ 11974 /* 11975 * Inherit the zoneid from the ill; for the shared stack instance 11976 * this is always the global zone 11977 */ 11978 ipif->ipif_zoneid = ill->ill_zoneid; 11979 11980 ipif->ipif_refcnt = 0; 11981 11982 if (insert) { 11983 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 11984 mi_free(ipif); 11985 if (errorp != NULL) 11986 *errorp = err; 11987 return (NULL); 11988 } 11989 /* -1 id should have been replaced by real id */ 11990 id = ipif->ipif_id; 11991 ASSERT(id >= 0); 11992 } 11993 11994 if (ill->ill_name[0] != '\0') 11995 ipif_assign_seqid(ipif); 11996 11997 /* 11998 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11999 * (which must not exist yet because the zeroth ipif is created once 12000 * per ill). However, do not not link it to the ipmp_grp_t until 12001 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12002 */ 12003 if (id == 0 && IS_IPMP(ill)) { 12004 if (ipmp_illgrp_create(ill) == NULL) { 12005 if (insert) { 12006 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12007 ipif_remove(ipif); 12008 rw_exit(&ipst->ips_ill_g_lock); 12009 } 12010 mi_free(ipif); 12011 if (errorp != NULL) 12012 *errorp = ENOMEM; 12013 return (NULL); 12014 } 12015 } 12016 12017 /* 12018 * We grab ill_lock to protect the flag changes. The ipif is still 12019 * not up and can't be looked up until the ioctl completes and the 12020 * IPIF_CHANGING flag is cleared. 12021 */ 12022 mutex_enter(&ill->ill_lock); 12023 12024 ipif->ipif_ire_type = ire_type; 12025 12026 if (ipif->ipif_isv6) { 12027 ill->ill_flags |= ILLF_IPV6; 12028 } else { 12029 ipaddr_t inaddr_any = INADDR_ANY; 12030 12031 ill->ill_flags |= ILLF_IPV4; 12032 12033 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12034 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12035 &ipif->ipif_v6lcl_addr); 12036 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12037 &ipif->ipif_v6subnet); 12038 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12039 &ipif->ipif_v6net_mask); 12040 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12041 &ipif->ipif_v6brd_addr); 12042 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12043 &ipif->ipif_v6pp_dst_addr); 12044 } 12045 12046 /* 12047 * Don't set the interface flags etc. now, will do it in 12048 * ip_ll_subnet_defaults. 12049 */ 12050 if (!initialize) 12051 goto out; 12052 12053 /* 12054 * NOTE: The IPMP meta-interface is special-cased because it starts 12055 * with no underlying interfaces (and thus an unknown broadcast 12056 * address length), but all interfaces that can be placed into an IPMP 12057 * group are required to be broadcast-capable. 12058 */ 12059 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12060 /* 12061 * Later detect lack of DLPI driver multicast capability by 12062 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12063 */ 12064 ill->ill_flags |= ILLF_MULTICAST; 12065 if (!ipif->ipif_isv6) 12066 ipif->ipif_flags |= IPIF_BROADCAST; 12067 } else { 12068 if (ill->ill_net_type != IRE_LOOPBACK) { 12069 if (ipif->ipif_isv6) 12070 /* 12071 * Note: xresolv interfaces will eventually need 12072 * NOARP set here as well, but that will require 12073 * those external resolvers to have some 12074 * knowledge of that flag and act appropriately. 12075 * Not to be changed at present. 12076 */ 12077 ill->ill_flags |= ILLF_NONUD; 12078 else 12079 ill->ill_flags |= ILLF_NOARP; 12080 } 12081 if (ill->ill_phys_addr_length == 0) { 12082 if (IS_VNI(ill)) { 12083 ipif->ipif_flags |= IPIF_NOXMIT; 12084 } else { 12085 /* pt-pt supports multicast. */ 12086 ill->ill_flags |= ILLF_MULTICAST; 12087 if (ill->ill_net_type != IRE_LOOPBACK) 12088 ipif->ipif_flags |= IPIF_POINTOPOINT; 12089 } 12090 } 12091 } 12092 out: 12093 mutex_exit(&ill->ill_lock); 12094 return (ipif); 12095 } 12096 12097 /* 12098 * Remove the neighbor cache entries associated with this logical 12099 * interface. 12100 */ 12101 int 12102 ipif_arp_down(ipif_t *ipif) 12103 { 12104 ill_t *ill = ipif->ipif_ill; 12105 int err = 0; 12106 12107 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12108 ASSERT(IAM_WRITER_IPIF(ipif)); 12109 12110 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12111 ill_t *, ill, ipif_t *, ipif); 12112 ipif_nce_down(ipif); 12113 12114 /* 12115 * If this is the last ipif that is going down and there are no 12116 * duplicate addresses we may yet attempt to re-probe, then we need to 12117 * clean up ARP completely. 12118 */ 12119 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12120 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12121 /* 12122 * If this was the last ipif on an IPMP interface, purge any 12123 * static ARP entries associated with it. 12124 */ 12125 if (IS_IPMP(ill)) 12126 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12127 12128 /* UNBIND, DETACH */ 12129 err = arp_ll_down(ill); 12130 } 12131 12132 return (err); 12133 } 12134 12135 /* 12136 * Get the resolver set up for a new IP address. (Always called as writer.) 12137 * Called both for IPv4 and IPv6 interfaces, though it only does some 12138 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12139 * 12140 * The enumerated value res_act tunes the behavior: 12141 * * Res_act_initial: set up all the resolver structures for a new 12142 * IP address. 12143 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12144 * ARP message in defense of the address. 12145 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12146 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12147 * 12148 * Returns zero on success, or an errno upon failure. 12149 */ 12150 int 12151 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12152 { 12153 ill_t *ill = ipif->ipif_ill; 12154 int err; 12155 boolean_t was_dup; 12156 12157 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12158 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12159 ASSERT(IAM_WRITER_IPIF(ipif)); 12160 12161 was_dup = B_FALSE; 12162 if (res_act == Res_act_initial) { 12163 ipif->ipif_addr_ready = 0; 12164 /* 12165 * We're bringing an interface up here. There's no way that we 12166 * should need to shut down ARP now. 12167 */ 12168 mutex_enter(&ill->ill_lock); 12169 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12170 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12171 ill->ill_ipif_dup_count--; 12172 was_dup = B_TRUE; 12173 } 12174 mutex_exit(&ill->ill_lock); 12175 } 12176 if (ipif->ipif_recovery_id != 0) 12177 (void) untimeout(ipif->ipif_recovery_id); 12178 ipif->ipif_recovery_id = 0; 12179 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12180 ipif->ipif_addr_ready = 1; 12181 return (0); 12182 } 12183 /* NDP will set the ipif_addr_ready flag when it's ready */ 12184 if (ill->ill_isv6) 12185 return (0); 12186 12187 err = ipif_arp_up(ipif, res_act, was_dup); 12188 return (err); 12189 } 12190 12191 /* 12192 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12193 * when a link has just gone back up. 12194 */ 12195 static void 12196 ipif_nce_start_dad(ipif_t *ipif) 12197 { 12198 ncec_t *ncec; 12199 ill_t *ill = ipif->ipif_ill; 12200 boolean_t isv6 = ill->ill_isv6; 12201 12202 if (isv6) { 12203 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12204 &ipif->ipif_v6lcl_addr); 12205 } else { 12206 ipaddr_t v4addr; 12207 12208 if (ill->ill_net_type != IRE_IF_RESOLVER || 12209 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12210 ipif->ipif_lcl_addr == INADDR_ANY) { 12211 /* 12212 * If we can't contact ARP for some reason, 12213 * that's not really a problem. Just send 12214 * out the routing socket notification that 12215 * DAD completion would have done, and continue. 12216 */ 12217 ipif_mask_reply(ipif); 12218 ipif_up_notify(ipif); 12219 ipif->ipif_addr_ready = 1; 12220 return; 12221 } 12222 12223 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12224 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12225 } 12226 12227 if (ncec == NULL) { 12228 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12229 (void *)ipif)); 12230 return; 12231 } 12232 if (!nce_restart_dad(ncec)) { 12233 /* 12234 * If we can't restart DAD for some reason, that's not really a 12235 * problem. Just send out the routing socket notification that 12236 * DAD completion would have done, and continue. 12237 */ 12238 ipif_up_notify(ipif); 12239 ipif->ipif_addr_ready = 1; 12240 } 12241 ncec_refrele(ncec); 12242 } 12243 12244 /* 12245 * Restart duplicate address detection on all interfaces on the given ill. 12246 * 12247 * This is called when an interface transitions from down to up 12248 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12249 * 12250 * Note that since the underlying physical link has transitioned, we must cause 12251 * at least one routing socket message to be sent here, either via DAD 12252 * completion or just by default on the first ipif. (If we don't do this, then 12253 * in.mpathd will see long delays when doing link-based failure recovery.) 12254 */ 12255 void 12256 ill_restart_dad(ill_t *ill, boolean_t went_up) 12257 { 12258 ipif_t *ipif; 12259 12260 if (ill == NULL) 12261 return; 12262 12263 /* 12264 * If layer two doesn't support duplicate address detection, then just 12265 * send the routing socket message now and be done with it. 12266 */ 12267 if (!ill->ill_isv6 && arp_no_defense) { 12268 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12269 return; 12270 } 12271 12272 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12273 if (went_up) { 12274 12275 if (ipif->ipif_flags & IPIF_UP) { 12276 ipif_nce_start_dad(ipif); 12277 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12278 /* 12279 * kick off the bring-up process now. 12280 */ 12281 ipif_do_recovery(ipif); 12282 } else { 12283 /* 12284 * Unfortunately, the first ipif is "special" 12285 * and represents the underlying ill in the 12286 * routing socket messages. Thus, when this 12287 * one ipif is down, we must still notify so 12288 * that the user knows the IFF_RUNNING status 12289 * change. (If the first ipif is up, then 12290 * we'll handle eventual routing socket 12291 * notification via DAD completion.) 12292 */ 12293 if (ipif == ill->ill_ipif) { 12294 ip_rts_ifmsg(ill->ill_ipif, 12295 RTSQ_DEFAULT); 12296 } 12297 } 12298 } else { 12299 /* 12300 * After link down, we'll need to send a new routing 12301 * message when the link comes back, so clear 12302 * ipif_addr_ready. 12303 */ 12304 ipif->ipif_addr_ready = 0; 12305 } 12306 } 12307 12308 /* 12309 * If we've torn down links, then notify the user right away. 12310 */ 12311 if (!went_up) 12312 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12313 } 12314 12315 static void 12316 ipsq_delete(ipsq_t *ipsq) 12317 { 12318 ipxop_t *ipx = ipsq->ipsq_xop; 12319 12320 ipsq->ipsq_ipst = NULL; 12321 ASSERT(ipsq->ipsq_phyint == NULL); 12322 ASSERT(ipsq->ipsq_xop != NULL); 12323 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12324 ASSERT(ipx->ipx_pending_mp == NULL); 12325 kmem_free(ipsq, sizeof (ipsq_t)); 12326 } 12327 12328 static int 12329 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12330 { 12331 int err = 0; 12332 ipif_t *ipif; 12333 12334 if (ill == NULL) 12335 return (0); 12336 12337 ASSERT(IAM_WRITER_ILL(ill)); 12338 ill->ill_up_ipifs = B_TRUE; 12339 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12340 if (ipif->ipif_was_up) { 12341 if (!(ipif->ipif_flags & IPIF_UP)) 12342 err = ipif_up(ipif, q, mp); 12343 ipif->ipif_was_up = B_FALSE; 12344 if (err != 0) { 12345 ASSERT(err == EINPROGRESS); 12346 return (err); 12347 } 12348 } 12349 } 12350 ill->ill_up_ipifs = B_FALSE; 12351 return (0); 12352 } 12353 12354 /* 12355 * This function is called to bring up all the ipifs that were up before 12356 * bringing the ill down via ill_down_ipifs(). 12357 */ 12358 int 12359 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12360 { 12361 int err; 12362 12363 ASSERT(IAM_WRITER_ILL(ill)); 12364 12365 if (ill->ill_replumbing) { 12366 ill->ill_replumbing = 0; 12367 /* 12368 * Send down REPLUMB_DONE notification followed by the 12369 * BIND_REQ on the arp stream. 12370 */ 12371 if (!ill->ill_isv6) 12372 arp_send_replumb_conf(ill); 12373 } 12374 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12375 if (err != 0) 12376 return (err); 12377 12378 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12379 } 12380 12381 /* 12382 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12383 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12384 */ 12385 static void 12386 ill_down_ipifs(ill_t *ill, boolean_t logical) 12387 { 12388 ipif_t *ipif; 12389 12390 ASSERT(IAM_WRITER_ILL(ill)); 12391 12392 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12393 /* 12394 * We go through the ipif_down logic even if the ipif 12395 * is already down, since routes can be added based 12396 * on down ipifs. Going through ipif_down once again 12397 * will delete any IREs created based on these routes. 12398 */ 12399 if (ipif->ipif_flags & IPIF_UP) 12400 ipif->ipif_was_up = B_TRUE; 12401 12402 if (logical) { 12403 (void) ipif_logical_down(ipif, NULL, NULL); 12404 ipif_non_duplicate(ipif); 12405 (void) ipif_down_tail(ipif); 12406 } else { 12407 (void) ipif_down(ipif, NULL, NULL); 12408 } 12409 } 12410 } 12411 12412 /* 12413 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12414 * a look again at valid source addresses. 12415 * This should be called each time after the set of source addresses has been 12416 * changed. 12417 */ 12418 void 12419 ip_update_source_selection(ip_stack_t *ipst) 12420 { 12421 /* We skip past SRC_GENERATION_VERIFY */ 12422 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12423 SRC_GENERATION_VERIFY) 12424 atomic_add_32(&ipst->ips_src_generation, 1); 12425 } 12426 12427 /* 12428 * Finish the group join started in ip_sioctl_groupname(). 12429 */ 12430 /* ARGSUSED */ 12431 static void 12432 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12433 { 12434 ill_t *ill = q->q_ptr; 12435 phyint_t *phyi = ill->ill_phyint; 12436 ipmp_grp_t *grp = phyi->phyint_grp; 12437 ip_stack_t *ipst = ill->ill_ipst; 12438 12439 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12440 ASSERT(!IS_IPMP(ill) && grp != NULL); 12441 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12442 12443 if (phyi->phyint_illv4 != NULL) { 12444 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12445 VERIFY(grp->gr_pendv4-- > 0); 12446 rw_exit(&ipst->ips_ipmp_lock); 12447 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12448 } 12449 if (phyi->phyint_illv6 != NULL) { 12450 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12451 VERIFY(grp->gr_pendv6-- > 0); 12452 rw_exit(&ipst->ips_ipmp_lock); 12453 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12454 } 12455 freemsg(mp); 12456 } 12457 12458 /* 12459 * Process an SIOCSLIFGROUPNAME request. 12460 */ 12461 /* ARGSUSED */ 12462 int 12463 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12464 ip_ioctl_cmd_t *ipip, void *ifreq) 12465 { 12466 struct lifreq *lifr = ifreq; 12467 ill_t *ill = ipif->ipif_ill; 12468 ip_stack_t *ipst = ill->ill_ipst; 12469 phyint_t *phyi = ill->ill_phyint; 12470 ipmp_grp_t *grp = phyi->phyint_grp; 12471 mblk_t *ipsq_mp; 12472 int err = 0; 12473 12474 /* 12475 * Note that phyint_grp can only change here, where we're exclusive. 12476 */ 12477 ASSERT(IAM_WRITER_ILL(ill)); 12478 12479 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12480 (phyi->phyint_flags & PHYI_VIRTUAL)) 12481 return (EINVAL); 12482 12483 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12484 12485 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12486 12487 /* 12488 * If the name hasn't changed, there's nothing to do. 12489 */ 12490 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12491 goto unlock; 12492 12493 /* 12494 * Handle requests to rename an IPMP meta-interface. 12495 * 12496 * Note that creation of the IPMP meta-interface is handled in 12497 * userland through the standard plumbing sequence. As part of the 12498 * plumbing the IPMP meta-interface, its initial groupname is set to 12499 * the name of the interface (see ipif_set_values_tail()). 12500 */ 12501 if (IS_IPMP(ill)) { 12502 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12503 goto unlock; 12504 } 12505 12506 /* 12507 * Handle requests to add or remove an IP interface from a group. 12508 */ 12509 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12510 /* 12511 * Moves are handled by first removing the interface from 12512 * its existing group, and then adding it to another group. 12513 * So, fail if it's already in a group. 12514 */ 12515 if (IS_UNDER_IPMP(ill)) { 12516 err = EALREADY; 12517 goto unlock; 12518 } 12519 12520 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12521 if (grp == NULL) { 12522 err = ENOENT; 12523 goto unlock; 12524 } 12525 12526 /* 12527 * Check if the phyint and its ills are suitable for 12528 * inclusion into the group. 12529 */ 12530 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12531 goto unlock; 12532 12533 /* 12534 * Checks pass; join the group, and enqueue the remaining 12535 * illgrp joins for when we've become part of the group xop 12536 * and are exclusive across its IPSQs. Since qwriter_ip() 12537 * requires an mblk_t to scribble on, and since `mp' will be 12538 * freed as part of completing the ioctl, allocate another. 12539 */ 12540 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12541 err = ENOMEM; 12542 goto unlock; 12543 } 12544 12545 /* 12546 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12547 * IPMP meta-interface ills needed by `phyi' cannot go away 12548 * before ip_join_illgrps() is called back. See the comments 12549 * in ip_sioctl_plink_ipmp() for more. 12550 */ 12551 if (phyi->phyint_illv4 != NULL) 12552 grp->gr_pendv4++; 12553 if (phyi->phyint_illv6 != NULL) 12554 grp->gr_pendv6++; 12555 12556 rw_exit(&ipst->ips_ipmp_lock); 12557 12558 ipmp_phyint_join_grp(phyi, grp); 12559 ill_refhold(ill); 12560 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12561 SWITCH_OP, B_FALSE); 12562 return (0); 12563 } else { 12564 /* 12565 * Request to remove the interface from a group. If the 12566 * interface is not in a group, this trivially succeeds. 12567 */ 12568 rw_exit(&ipst->ips_ipmp_lock); 12569 if (IS_UNDER_IPMP(ill)) 12570 ipmp_phyint_leave_grp(phyi); 12571 return (0); 12572 } 12573 unlock: 12574 rw_exit(&ipst->ips_ipmp_lock); 12575 return (err); 12576 } 12577 12578 /* 12579 * Process an SIOCGLIFBINDING request. 12580 */ 12581 /* ARGSUSED */ 12582 int 12583 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12584 ip_ioctl_cmd_t *ipip, void *ifreq) 12585 { 12586 ill_t *ill; 12587 struct lifreq *lifr = ifreq; 12588 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12589 12590 if (!IS_IPMP(ipif->ipif_ill)) 12591 return (EINVAL); 12592 12593 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12594 if ((ill = ipif->ipif_bound_ill) == NULL) 12595 lifr->lifr_binding[0] = '\0'; 12596 else 12597 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12598 rw_exit(&ipst->ips_ipmp_lock); 12599 return (0); 12600 } 12601 12602 /* 12603 * Process an SIOCGLIFGROUPNAME request. 12604 */ 12605 /* ARGSUSED */ 12606 int 12607 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12608 ip_ioctl_cmd_t *ipip, void *ifreq) 12609 { 12610 ipmp_grp_t *grp; 12611 struct lifreq *lifr = ifreq; 12612 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12613 12614 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12615 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12616 lifr->lifr_groupname[0] = '\0'; 12617 else 12618 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12619 rw_exit(&ipst->ips_ipmp_lock); 12620 return (0); 12621 } 12622 12623 /* 12624 * Process an SIOCGLIFGROUPINFO request. 12625 */ 12626 /* ARGSUSED */ 12627 int 12628 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12629 ip_ioctl_cmd_t *ipip, void *dummy) 12630 { 12631 ipmp_grp_t *grp; 12632 lifgroupinfo_t *lifgr; 12633 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12634 12635 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12636 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12637 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12638 12639 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12640 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12641 rw_exit(&ipst->ips_ipmp_lock); 12642 return (ENOENT); 12643 } 12644 ipmp_grp_info(grp, lifgr); 12645 rw_exit(&ipst->ips_ipmp_lock); 12646 return (0); 12647 } 12648 12649 static void 12650 ill_dl_down(ill_t *ill) 12651 { 12652 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12653 12654 /* 12655 * The ill is down; unbind but stay attached since we're still 12656 * associated with a PPA. If we have negotiated DLPI capabilites 12657 * with the data link service provider (IDS_OK) then reset them. 12658 * The interval between unbinding and rebinding is potentially 12659 * unbounded hence we cannot assume things will be the same. 12660 * The DLPI capabilities will be probed again when the data link 12661 * is brought up. 12662 */ 12663 mblk_t *mp = ill->ill_unbind_mp; 12664 12665 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12666 12667 if (!ill->ill_replumbing) { 12668 /* Free all ilms for this ill */ 12669 update_conn_ill(ill, ill->ill_ipst); 12670 } else { 12671 ill_leave_multicast(ill); 12672 } 12673 12674 ill->ill_unbind_mp = NULL; 12675 if (mp != NULL) { 12676 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12677 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12678 ill->ill_name)); 12679 mutex_enter(&ill->ill_lock); 12680 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12681 mutex_exit(&ill->ill_lock); 12682 /* 12683 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12684 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12685 * ill_capability_dld_disable disable rightaway. If this is not 12686 * an unplumb operation then the disable happens on receipt of 12687 * the capab ack via ip_rput_dlpi_writer -> 12688 * ill_capability_ack_thr. In both cases the order of 12689 * the operations seen by DLD is capability disable followed 12690 * by DL_UNBIND. Also the DLD capability disable needs a 12691 * cv_wait'able context. 12692 */ 12693 if (ill->ill_state_flags & ILL_CONDEMNED) 12694 ill_capability_dld_disable(ill); 12695 ill_capability_reset(ill, B_FALSE); 12696 ill_dlpi_send(ill, mp); 12697 } 12698 mutex_enter(&ill->ill_lock); 12699 ill->ill_dl_up = 0; 12700 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12701 mutex_exit(&ill->ill_lock); 12702 } 12703 12704 void 12705 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12706 { 12707 union DL_primitives *dlp; 12708 t_uscalar_t prim; 12709 boolean_t waitack = B_FALSE; 12710 12711 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12712 12713 dlp = (union DL_primitives *)mp->b_rptr; 12714 prim = dlp->dl_primitive; 12715 12716 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12717 dl_primstr(prim), prim, ill->ill_name)); 12718 12719 switch (prim) { 12720 case DL_PHYS_ADDR_REQ: 12721 { 12722 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12723 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12724 break; 12725 } 12726 case DL_BIND_REQ: 12727 mutex_enter(&ill->ill_lock); 12728 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12729 mutex_exit(&ill->ill_lock); 12730 break; 12731 } 12732 12733 /* 12734 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12735 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12736 * we only wait for the ACK of the DL_UNBIND_REQ. 12737 */ 12738 mutex_enter(&ill->ill_lock); 12739 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12740 (prim == DL_UNBIND_REQ)) { 12741 ill->ill_dlpi_pending = prim; 12742 waitack = B_TRUE; 12743 } 12744 12745 mutex_exit(&ill->ill_lock); 12746 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12747 char *, dl_primstr(prim), ill_t *, ill); 12748 putnext(ill->ill_wq, mp); 12749 12750 /* 12751 * There is no ack for DL_NOTIFY_CONF messages 12752 */ 12753 if (waitack && prim == DL_NOTIFY_CONF) 12754 ill_dlpi_done(ill, prim); 12755 } 12756 12757 /* 12758 * Helper function for ill_dlpi_send(). 12759 */ 12760 /* ARGSUSED */ 12761 static void 12762 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12763 { 12764 ill_dlpi_send(q->q_ptr, mp); 12765 } 12766 12767 /* 12768 * Send a DLPI control message to the driver but make sure there 12769 * is only one outstanding message. Uses ill_dlpi_pending to tell 12770 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12771 * when an ACK or a NAK is received to process the next queued message. 12772 */ 12773 void 12774 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12775 { 12776 mblk_t **mpp; 12777 12778 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12779 12780 /* 12781 * To ensure that any DLPI requests for current exclusive operation 12782 * are always completely sent before any DLPI messages for other 12783 * operations, require writer access before enqueuing. 12784 */ 12785 if (!IAM_WRITER_ILL(ill)) { 12786 ill_refhold(ill); 12787 /* qwriter_ip() does the ill_refrele() */ 12788 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12789 NEW_OP, B_TRUE); 12790 return; 12791 } 12792 12793 mutex_enter(&ill->ill_lock); 12794 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12795 /* Must queue message. Tail insertion */ 12796 mpp = &ill->ill_dlpi_deferred; 12797 while (*mpp != NULL) 12798 mpp = &((*mpp)->b_next); 12799 12800 ip1dbg(("ill_dlpi_send: deferring request for %s " 12801 "while %s pending\n", ill->ill_name, 12802 dl_primstr(ill->ill_dlpi_pending))); 12803 12804 *mpp = mp; 12805 mutex_exit(&ill->ill_lock); 12806 return; 12807 } 12808 mutex_exit(&ill->ill_lock); 12809 ill_dlpi_dispatch(ill, mp); 12810 } 12811 12812 void 12813 ill_capability_send(ill_t *ill, mblk_t *mp) 12814 { 12815 ill->ill_capab_pending_cnt++; 12816 ill_dlpi_send(ill, mp); 12817 } 12818 12819 void 12820 ill_capability_done(ill_t *ill) 12821 { 12822 ASSERT(ill->ill_capab_pending_cnt != 0); 12823 12824 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12825 12826 ill->ill_capab_pending_cnt--; 12827 if (ill->ill_capab_pending_cnt == 0 && 12828 ill->ill_dlpi_capab_state == IDCS_OK) 12829 ill_capability_reset_alloc(ill); 12830 } 12831 12832 /* 12833 * Send all deferred DLPI messages without waiting for their ACKs. 12834 */ 12835 void 12836 ill_dlpi_send_deferred(ill_t *ill) 12837 { 12838 mblk_t *mp, *nextmp; 12839 12840 /* 12841 * Clear ill_dlpi_pending so that the message is not queued in 12842 * ill_dlpi_send(). 12843 */ 12844 mutex_enter(&ill->ill_lock); 12845 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12846 mp = ill->ill_dlpi_deferred; 12847 ill->ill_dlpi_deferred = NULL; 12848 mutex_exit(&ill->ill_lock); 12849 12850 for (; mp != NULL; mp = nextmp) { 12851 nextmp = mp->b_next; 12852 mp->b_next = NULL; 12853 ill_dlpi_send(ill, mp); 12854 } 12855 } 12856 12857 /* 12858 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12859 * or M_HANGUP 12860 */ 12861 static void 12862 ill_dlpi_clear_deferred(ill_t *ill) 12863 { 12864 mblk_t *mp, *nextmp; 12865 12866 mutex_enter(&ill->ill_lock); 12867 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12868 mp = ill->ill_dlpi_deferred; 12869 ill->ill_dlpi_deferred = NULL; 12870 mutex_exit(&ill->ill_lock); 12871 12872 for (; mp != NULL; mp = nextmp) { 12873 nextmp = mp->b_next; 12874 inet_freemsg(mp); 12875 } 12876 } 12877 12878 /* 12879 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12880 */ 12881 boolean_t 12882 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12883 { 12884 t_uscalar_t pending; 12885 12886 mutex_enter(&ill->ill_lock); 12887 if (ill->ill_dlpi_pending == prim) { 12888 mutex_exit(&ill->ill_lock); 12889 return (B_TRUE); 12890 } 12891 12892 /* 12893 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12894 * without waiting, so don't print any warnings in that case. 12895 */ 12896 if (ill->ill_state_flags & ILL_CONDEMNED) { 12897 mutex_exit(&ill->ill_lock); 12898 return (B_FALSE); 12899 } 12900 pending = ill->ill_dlpi_pending; 12901 mutex_exit(&ill->ill_lock); 12902 12903 if (pending == DL_PRIM_INVAL) { 12904 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12905 "received unsolicited ack for %s on %s\n", 12906 dl_primstr(prim), ill->ill_name); 12907 } else { 12908 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12909 "received unexpected ack for %s on %s (expecting %s)\n", 12910 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12911 } 12912 return (B_FALSE); 12913 } 12914 12915 /* 12916 * Complete the current DLPI operation associated with `prim' on `ill' and 12917 * start the next queued DLPI operation (if any). If there are no queued DLPI 12918 * operations and the ill's current exclusive IPSQ operation has finished 12919 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12920 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12921 * the comments above ipsq_current_finish() for details. 12922 */ 12923 void 12924 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12925 { 12926 mblk_t *mp; 12927 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12928 ipxop_t *ipx = ipsq->ipsq_xop; 12929 12930 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12931 mutex_enter(&ill->ill_lock); 12932 12933 ASSERT(prim != DL_PRIM_INVAL); 12934 ASSERT(ill->ill_dlpi_pending == prim); 12935 12936 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12937 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12938 12939 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12940 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12941 if (ipx->ipx_current_done) { 12942 mutex_enter(&ipx->ipx_lock); 12943 ipx->ipx_current_ipif = NULL; 12944 mutex_exit(&ipx->ipx_lock); 12945 } 12946 cv_signal(&ill->ill_cv); 12947 mutex_exit(&ill->ill_lock); 12948 return; 12949 } 12950 12951 ill->ill_dlpi_deferred = mp->b_next; 12952 mp->b_next = NULL; 12953 mutex_exit(&ill->ill_lock); 12954 12955 ill_dlpi_dispatch(ill, mp); 12956 } 12957 12958 /* 12959 * Queue a (multicast) DLPI control message to be sent to the driver by 12960 * later calling ill_dlpi_send_queued. 12961 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12962 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12963 * for the same group to race. 12964 * We send DLPI control messages in order using ill_lock. 12965 * For IPMP we should be called on the cast_ill. 12966 */ 12967 void 12968 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12969 { 12970 mblk_t **mpp; 12971 12972 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12973 12974 mutex_enter(&ill->ill_lock); 12975 /* Must queue message. Tail insertion */ 12976 mpp = &ill->ill_dlpi_deferred; 12977 while (*mpp != NULL) 12978 mpp = &((*mpp)->b_next); 12979 12980 *mpp = mp; 12981 mutex_exit(&ill->ill_lock); 12982 } 12983 12984 /* 12985 * Send the messages that were queued. Make sure there is only 12986 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12987 * when an ACK or a NAK is received to process the next queued message. 12988 * For IPMP we are called on the upper ill, but when send what is queued 12989 * on the cast_ill. 12990 */ 12991 void 12992 ill_dlpi_send_queued(ill_t *ill) 12993 { 12994 mblk_t *mp; 12995 union DL_primitives *dlp; 12996 t_uscalar_t prim; 12997 ill_t *release_ill = NULL; 12998 12999 if (IS_IPMP(ill)) { 13000 /* On the upper IPMP ill. */ 13001 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13002 if (release_ill == NULL) { 13003 /* Avoid ever sending anything down to the ipmpstub */ 13004 return; 13005 } 13006 ill = release_ill; 13007 } 13008 mutex_enter(&ill->ill_lock); 13009 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13010 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13011 /* Can't send. Somebody else will send it */ 13012 mutex_exit(&ill->ill_lock); 13013 goto done; 13014 } 13015 ill->ill_dlpi_deferred = mp->b_next; 13016 mp->b_next = NULL; 13017 if (!ill->ill_dl_up) { 13018 /* 13019 * Nobody there. All multicast addresses will be 13020 * re-joined when we get the DL_BIND_ACK bringing the 13021 * interface up. 13022 */ 13023 freemsg(mp); 13024 continue; 13025 } 13026 dlp = (union DL_primitives *)mp->b_rptr; 13027 prim = dlp->dl_primitive; 13028 13029 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13030 (prim == DL_UNBIND_REQ)) { 13031 ill->ill_dlpi_pending = prim; 13032 } 13033 mutex_exit(&ill->ill_lock); 13034 13035 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13036 char *, dl_primstr(prim), ill_t *, ill); 13037 putnext(ill->ill_wq, mp); 13038 mutex_enter(&ill->ill_lock); 13039 } 13040 mutex_exit(&ill->ill_lock); 13041 done: 13042 if (release_ill != NULL) 13043 ill_refrele(release_ill); 13044 } 13045 13046 /* 13047 * Queue an IP (IGMP/MLD) message to be sent by IP from 13048 * ill_mcast_send_queued 13049 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13050 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13051 * group to race. 13052 * We send them in order using ill_lock. 13053 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13054 */ 13055 void 13056 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13057 { 13058 mblk_t **mpp; 13059 ill_t *release_ill = NULL; 13060 13061 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13062 13063 if (IS_IPMP(ill)) { 13064 /* On the upper IPMP ill. */ 13065 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13066 if (release_ill == NULL) { 13067 /* Discard instead of queuing for the ipmp interface */ 13068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13069 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13070 mp, ill); 13071 freemsg(mp); 13072 return; 13073 } 13074 ill = release_ill; 13075 } 13076 13077 mutex_enter(&ill->ill_lock); 13078 /* Must queue message. Tail insertion */ 13079 mpp = &ill->ill_mcast_deferred; 13080 while (*mpp != NULL) 13081 mpp = &((*mpp)->b_next); 13082 13083 *mpp = mp; 13084 mutex_exit(&ill->ill_lock); 13085 if (release_ill != NULL) 13086 ill_refrele(release_ill); 13087 } 13088 13089 /* 13090 * Send the IP packets that were queued by ill_mcast_queue. 13091 * These are IGMP/MLD packets. 13092 * 13093 * For IPMP we are called on the upper ill, but when send what is queued 13094 * on the cast_ill. 13095 * 13096 * Request loopback of the report if we are acting as a multicast 13097 * router, so that the process-level routing demon can hear it. 13098 * This will run multiple times for the same group if there are members 13099 * on the same group for multiple ipif's on the same ill. The 13100 * igmp_input/mld_input code will suppress this due to the loopback thus we 13101 * always loopback membership report. 13102 * 13103 * We also need to make sure that this does not get load balanced 13104 * by IPMP. We do this by passing an ill to ip_output_simple. 13105 */ 13106 void 13107 ill_mcast_send_queued(ill_t *ill) 13108 { 13109 mblk_t *mp; 13110 ip_xmit_attr_t ixas; 13111 ill_t *release_ill = NULL; 13112 13113 if (IS_IPMP(ill)) { 13114 /* On the upper IPMP ill. */ 13115 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13116 if (release_ill == NULL) { 13117 /* 13118 * We should have no messages on the ipmp interface 13119 * but no point in trying to send them. 13120 */ 13121 return; 13122 } 13123 ill = release_ill; 13124 } 13125 bzero(&ixas, sizeof (ixas)); 13126 ixas.ixa_zoneid = ALL_ZONES; 13127 ixas.ixa_cred = kcred; 13128 ixas.ixa_cpid = NOPID; 13129 ixas.ixa_tsl = NULL; 13130 /* 13131 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13132 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13133 * That is necessary to handle IGMP/MLD snooping switches. 13134 */ 13135 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13136 ixas.ixa_ipst = ill->ill_ipst; 13137 13138 mutex_enter(&ill->ill_lock); 13139 while ((mp = ill->ill_mcast_deferred) != NULL) { 13140 ill->ill_mcast_deferred = mp->b_next; 13141 mp->b_next = NULL; 13142 if (!ill->ill_dl_up) { 13143 /* 13144 * Nobody there. Just drop the ip packets. 13145 * IGMP/MLD will resend later, if this is a replumb. 13146 */ 13147 freemsg(mp); 13148 continue; 13149 } 13150 mutex_enter(&ill->ill_phyint->phyint_lock); 13151 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13152 /* 13153 * When the ill is getting deactivated, we only want to 13154 * send the DLPI messages, so drop IGMP/MLD packets. 13155 * DLPI messages are handled by ill_dlpi_send_queued() 13156 */ 13157 mutex_exit(&ill->ill_phyint->phyint_lock); 13158 freemsg(mp); 13159 continue; 13160 } 13161 mutex_exit(&ill->ill_phyint->phyint_lock); 13162 mutex_exit(&ill->ill_lock); 13163 13164 /* Check whether we are sending IPv4 or IPv6. */ 13165 if (ill->ill_isv6) { 13166 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13167 13168 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13169 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13170 } else { 13171 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13172 13173 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13174 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13175 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13176 } 13177 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13178 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13179 (void) ip_output_simple(mp, &ixas); 13180 ixa_cleanup(&ixas); 13181 13182 mutex_enter(&ill->ill_lock); 13183 } 13184 mutex_exit(&ill->ill_lock); 13185 13186 done: 13187 if (release_ill != NULL) 13188 ill_refrele(release_ill); 13189 } 13190 13191 /* 13192 * Take down a specific interface, but don't lose any information about it. 13193 * (Always called as writer.) 13194 * This function goes through the down sequence even if the interface is 13195 * already down. There are 2 reasons. 13196 * a. Currently we permit interface routes that depend on down interfaces 13197 * to be added. This behaviour itself is questionable. However it appears 13198 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13199 * time. We go thru the cleanup in order to remove these routes. 13200 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13201 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13202 * down, but we need to cleanup i.e. do ill_dl_down and 13203 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13204 * 13205 * IP-MT notes: 13206 * 13207 * Model of reference to interfaces. 13208 * 13209 * The following members in ipif_t track references to the ipif. 13210 * int ipif_refcnt; Active reference count 13211 * 13212 * The following members in ill_t track references to the ill. 13213 * int ill_refcnt; active refcnt 13214 * uint_t ill_ire_cnt; Number of ires referencing ill 13215 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13216 * uint_t ill_nce_cnt; Number of nces referencing ill 13217 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13218 * 13219 * Reference to an ipif or ill can be obtained in any of the following ways. 13220 * 13221 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13222 * Pointers to ipif / ill from other data structures viz ire and conn. 13223 * Implicit reference to the ipif / ill by holding a reference to the ire. 13224 * 13225 * The ipif/ill lookup functions return a reference held ipif / ill. 13226 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13227 * This is a purely dynamic reference count associated with threads holding 13228 * references to the ipif / ill. Pointers from other structures do not 13229 * count towards this reference count. 13230 * 13231 * ill_ire_cnt is the number of ire's associated with the 13232 * ill. This is incremented whenever a new ire is created referencing the 13233 * ill. This is done atomically inside ire_add_v[46] where the ire is 13234 * actually added to the ire hash table. The count is decremented in 13235 * ire_inactive where the ire is destroyed. 13236 * 13237 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13238 * This is incremented atomically in 13239 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13240 * table. Similarly it is decremented in ncec_inactive() where the ncec 13241 * is destroyed. 13242 * 13243 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13244 * incremented atomically in nce_add() where the nce is actually added to the 13245 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13246 * is destroyed. 13247 * 13248 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13249 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13250 * 13251 * Flow of ioctls involving interface down/up 13252 * 13253 * The following is the sequence of an attempt to set some critical flags on an 13254 * up interface. 13255 * ip_sioctl_flags 13256 * ipif_down 13257 * wait for ipif to be quiescent 13258 * ipif_down_tail 13259 * ip_sioctl_flags_tail 13260 * 13261 * All set ioctls that involve down/up sequence would have a skeleton similar 13262 * to the above. All the *tail functions are called after the refcounts have 13263 * dropped to the appropriate values. 13264 * 13265 * SIOC ioctls during the IPIF_CHANGING interval. 13266 * 13267 * Threads handling SIOC set ioctls serialize on the squeue, but this 13268 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13269 * steps of internal changes to the state, some of which are visible in 13270 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13271 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13272 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13273 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13274 * the current exclusive operation completes. The IPIF_CHANGING check 13275 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13276 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13277 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13278 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13279 * until we release the ipsq_lock, even though the ill/ipif state flags 13280 * can change after we drop the ill_lock. 13281 */ 13282 int 13283 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13284 { 13285 ill_t *ill = ipif->ipif_ill; 13286 conn_t *connp; 13287 boolean_t success; 13288 boolean_t ipif_was_up = B_FALSE; 13289 ip_stack_t *ipst = ill->ill_ipst; 13290 13291 ASSERT(IAM_WRITER_IPIF(ipif)); 13292 13293 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13294 13295 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13296 ill_t *, ill, ipif_t *, ipif); 13297 13298 if (ipif->ipif_flags & IPIF_UP) { 13299 mutex_enter(&ill->ill_lock); 13300 ipif->ipif_flags &= ~IPIF_UP; 13301 ASSERT(ill->ill_ipif_up_count > 0); 13302 --ill->ill_ipif_up_count; 13303 mutex_exit(&ill->ill_lock); 13304 ipif_was_up = B_TRUE; 13305 /* Update status in SCTP's list */ 13306 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13307 ill_nic_event_dispatch(ipif->ipif_ill, 13308 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13309 } 13310 13311 /* 13312 * Blow away memberships we established in ipif_multicast_up(). 13313 */ 13314 ipif_multicast_down(ipif); 13315 13316 /* 13317 * Remove from the mapping for __sin6_src_id. We insert only 13318 * when the address is not INADDR_ANY. As IPv4 addresses are 13319 * stored as mapped addresses, we need to check for mapped 13320 * INADDR_ANY also. 13321 */ 13322 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13323 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13324 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13325 int err; 13326 13327 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13328 ipif->ipif_zoneid, ipst); 13329 if (err != 0) { 13330 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13331 } 13332 } 13333 13334 if (ipif_was_up) { 13335 /* only delete if we'd added ire's before */ 13336 if (ipif->ipif_isv6) 13337 ipif_delete_ires_v6(ipif); 13338 else 13339 ipif_delete_ires_v4(ipif); 13340 } 13341 13342 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13343 /* 13344 * Since the interface is now down, it may have just become 13345 * inactive. Note that this needs to be done even for a 13346 * lll_logical_down(), or ARP entries will not get correctly 13347 * restored when the interface comes back up. 13348 */ 13349 if (IS_UNDER_IPMP(ill)) 13350 ipmp_ill_refresh_active(ill); 13351 } 13352 13353 /* 13354 * neighbor-discovery or arp entries for this interface. The ipif 13355 * has to be quiesced, so we walk all the nce's and delete those 13356 * that point at the ipif->ipif_ill. At the same time, we also 13357 * update IPMP so that ipifs for data addresses are unbound. We dont 13358 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13359 * that for ipif_down_tail() 13360 */ 13361 ipif_nce_down(ipif); 13362 13363 /* 13364 * If this is the last ipif on the ill, we also need to remove 13365 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13366 * never succeed. 13367 */ 13368 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13369 ire_walk_ill(0, 0, ill_downi, ill, ill); 13370 13371 /* 13372 * Walk all CONNs that can have a reference on an ire for this 13373 * ipif (we actually walk all that now have stale references). 13374 */ 13375 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13376 13377 /* 13378 * If mp is NULL the caller will wait for the appropriate refcnt. 13379 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13380 * and ill_delete -> ipif_free -> ipif_down 13381 */ 13382 if (mp == NULL) { 13383 ASSERT(q == NULL); 13384 return (0); 13385 } 13386 13387 if (CONN_Q(q)) { 13388 connp = Q_TO_CONN(q); 13389 mutex_enter(&connp->conn_lock); 13390 } else { 13391 connp = NULL; 13392 } 13393 mutex_enter(&ill->ill_lock); 13394 /* 13395 * Are there any ire's pointing to this ipif that are still active ? 13396 * If this is the last ipif going down, are there any ire's pointing 13397 * to this ill that are still active ? 13398 */ 13399 if (ipif_is_quiescent(ipif)) { 13400 mutex_exit(&ill->ill_lock); 13401 if (connp != NULL) 13402 mutex_exit(&connp->conn_lock); 13403 return (0); 13404 } 13405 13406 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13407 ill->ill_name, (void *)ill)); 13408 /* 13409 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13410 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13411 * which in turn is called by the last refrele on the ipif/ill/ire. 13412 */ 13413 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13414 if (!success) { 13415 /* The conn is closing. So just return */ 13416 ASSERT(connp != NULL); 13417 mutex_exit(&ill->ill_lock); 13418 mutex_exit(&connp->conn_lock); 13419 return (EINTR); 13420 } 13421 13422 mutex_exit(&ill->ill_lock); 13423 if (connp != NULL) 13424 mutex_exit(&connp->conn_lock); 13425 return (EINPROGRESS); 13426 } 13427 13428 int 13429 ipif_down_tail(ipif_t *ipif) 13430 { 13431 ill_t *ill = ipif->ipif_ill; 13432 int err = 0; 13433 13434 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13435 ill_t *, ill, ipif_t *, ipif); 13436 13437 /* 13438 * Skip any loopback interface (null wq). 13439 * If this is the last logical interface on the ill 13440 * have ill_dl_down tell the driver we are gone (unbind) 13441 * Note that lun 0 can ipif_down even though 13442 * there are other logical units that are up. 13443 * This occurs e.g. when we change a "significant" IFF_ flag. 13444 */ 13445 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13446 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13447 ill->ill_dl_up) { 13448 ill_dl_down(ill); 13449 } 13450 if (!ipif->ipif_isv6) 13451 err = ipif_arp_down(ipif); 13452 13453 ill->ill_logical_down = 0; 13454 13455 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13456 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13457 return (err); 13458 } 13459 13460 /* 13461 * Bring interface logically down without bringing the physical interface 13462 * down e.g. when the netmask is changed. This avoids long lasting link 13463 * negotiations between an ethernet interface and a certain switches. 13464 */ 13465 static int 13466 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13467 { 13468 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13469 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13470 13471 /* 13472 * The ill_logical_down flag is a transient flag. It is set here 13473 * and is cleared once the down has completed in ipif_down_tail. 13474 * This flag does not indicate whether the ill stream is in the 13475 * DL_BOUND state with the driver. Instead this flag is used by 13476 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13477 * the driver. The state of the ill stream i.e. whether it is 13478 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13479 */ 13480 ipif->ipif_ill->ill_logical_down = 1; 13481 return (ipif_down(ipif, q, mp)); 13482 } 13483 13484 /* 13485 * Initiate deallocate of an IPIF. Always called as writer. Called by 13486 * ill_delete or ip_sioctl_removeif. 13487 */ 13488 static void 13489 ipif_free(ipif_t *ipif) 13490 { 13491 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13492 13493 ASSERT(IAM_WRITER_IPIF(ipif)); 13494 13495 if (ipif->ipif_recovery_id != 0) 13496 (void) untimeout(ipif->ipif_recovery_id); 13497 ipif->ipif_recovery_id = 0; 13498 13499 /* 13500 * Take down the interface. We can be called either from ill_delete 13501 * or from ip_sioctl_removeif. 13502 */ 13503 (void) ipif_down(ipif, NULL, NULL); 13504 13505 /* 13506 * Now that the interface is down, there's no chance it can still 13507 * become a duplicate. Cancel any timer that may have been set while 13508 * tearing down. 13509 */ 13510 if (ipif->ipif_recovery_id != 0) 13511 (void) untimeout(ipif->ipif_recovery_id); 13512 ipif->ipif_recovery_id = 0; 13513 13514 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13515 /* Remove pointers to this ill in the multicast routing tables */ 13516 reset_mrt_vif_ipif(ipif); 13517 /* If necessary, clear the cached source ipif rotor. */ 13518 if (ipif->ipif_ill->ill_src_ipif == ipif) 13519 ipif->ipif_ill->ill_src_ipif = NULL; 13520 rw_exit(&ipst->ips_ill_g_lock); 13521 } 13522 13523 static void 13524 ipif_free_tail(ipif_t *ipif) 13525 { 13526 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13527 13528 /* 13529 * Need to hold both ill_g_lock and ill_lock while 13530 * inserting or removing an ipif from the linked list 13531 * of ipifs hanging off the ill. 13532 */ 13533 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13534 13535 #ifdef DEBUG 13536 ipif_trace_cleanup(ipif); 13537 #endif 13538 13539 /* Ask SCTP to take it out of it list */ 13540 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13541 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13542 13543 /* Get it out of the ILL interface list. */ 13544 ipif_remove(ipif); 13545 rw_exit(&ipst->ips_ill_g_lock); 13546 13547 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13548 ASSERT(ipif->ipif_recovery_id == 0); 13549 ASSERT(ipif->ipif_ire_local == NULL); 13550 ASSERT(ipif->ipif_ire_if == NULL); 13551 13552 /* Free the memory. */ 13553 mi_free(ipif); 13554 } 13555 13556 /* 13557 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13558 * is zero. 13559 */ 13560 void 13561 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13562 { 13563 char lbuf[LIFNAMSIZ]; 13564 char *name; 13565 size_t name_len; 13566 13567 buf[0] = '\0'; 13568 name = ipif->ipif_ill->ill_name; 13569 name_len = ipif->ipif_ill->ill_name_length; 13570 if (ipif->ipif_id != 0) { 13571 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13572 ipif->ipif_id); 13573 name = lbuf; 13574 name_len = mi_strlen(name) + 1; 13575 } 13576 len -= 1; 13577 buf[len] = '\0'; 13578 len = MIN(len, name_len); 13579 bcopy(name, buf, len); 13580 } 13581 13582 /* 13583 * Sets `buf' to an ill name. 13584 */ 13585 void 13586 ill_get_name(const ill_t *ill, char *buf, int len) 13587 { 13588 char *name; 13589 size_t name_len; 13590 13591 name = ill->ill_name; 13592 name_len = ill->ill_name_length; 13593 len -= 1; 13594 buf[len] = '\0'; 13595 len = MIN(len, name_len); 13596 bcopy(name, buf, len); 13597 } 13598 13599 /* 13600 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13601 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13602 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13603 * (May be called as writer.) 13604 */ 13605 static ipif_t * 13606 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13607 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13608 { 13609 char *cp; 13610 char *endp; 13611 long id; 13612 ill_t *ill; 13613 ipif_t *ipif; 13614 uint_t ire_type; 13615 boolean_t did_alloc = B_FALSE; 13616 13617 /* 13618 * If the caller wants to us to create the ipif, make sure we have a 13619 * valid zoneid 13620 */ 13621 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13622 13623 if (namelen == 0) { 13624 return (NULL); 13625 } 13626 13627 *exists = B_FALSE; 13628 /* Look for a colon in the name. */ 13629 endp = &name[namelen]; 13630 for (cp = endp; --cp > name; ) { 13631 if (*cp == IPIF_SEPARATOR_CHAR) 13632 break; 13633 } 13634 13635 if (*cp == IPIF_SEPARATOR_CHAR) { 13636 /* 13637 * Reject any non-decimal aliases for logical 13638 * interfaces. Aliases with leading zeroes 13639 * are also rejected as they introduce ambiguity 13640 * in the naming of the interfaces. 13641 * In order to confirm with existing semantics, 13642 * and to not break any programs/script relying 13643 * on that behaviour, if<0>:0 is considered to be 13644 * a valid interface. 13645 * 13646 * If alias has two or more digits and the first 13647 * is zero, fail. 13648 */ 13649 if (&cp[2] < endp && cp[1] == '0') { 13650 return (NULL); 13651 } 13652 } 13653 13654 if (cp <= name) { 13655 cp = endp; 13656 } else { 13657 *cp = '\0'; 13658 } 13659 13660 /* 13661 * Look up the ILL, based on the portion of the name 13662 * before the slash. ill_lookup_on_name returns a held ill. 13663 * Temporary to check whether ill exists already. If so 13664 * ill_lookup_on_name will clear it. 13665 */ 13666 ill = ill_lookup_on_name(name, do_alloc, isv6, 13667 &did_alloc, ipst); 13668 if (cp != endp) 13669 *cp = IPIF_SEPARATOR_CHAR; 13670 if (ill == NULL) 13671 return (NULL); 13672 13673 /* Establish the unit number in the name. */ 13674 id = 0; 13675 if (cp < endp && *endp == '\0') { 13676 /* If there was a colon, the unit number follows. */ 13677 cp++; 13678 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13679 ill_refrele(ill); 13680 return (NULL); 13681 } 13682 } 13683 13684 mutex_enter(&ill->ill_lock); 13685 /* Now see if there is an IPIF with this unit number. */ 13686 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13687 if (ipif->ipif_id == id) { 13688 if (zoneid != ALL_ZONES && 13689 zoneid != ipif->ipif_zoneid && 13690 ipif->ipif_zoneid != ALL_ZONES) { 13691 mutex_exit(&ill->ill_lock); 13692 ill_refrele(ill); 13693 return (NULL); 13694 } 13695 if (IPIF_CAN_LOOKUP(ipif)) { 13696 ipif_refhold_locked(ipif); 13697 mutex_exit(&ill->ill_lock); 13698 if (!did_alloc) 13699 *exists = B_TRUE; 13700 /* 13701 * Drop locks before calling ill_refrele 13702 * since it can potentially call into 13703 * ipif_ill_refrele_tail which can end up 13704 * in trying to acquire any lock. 13705 */ 13706 ill_refrele(ill); 13707 return (ipif); 13708 } 13709 } 13710 } 13711 13712 if (!do_alloc) { 13713 mutex_exit(&ill->ill_lock); 13714 ill_refrele(ill); 13715 return (NULL); 13716 } 13717 13718 /* 13719 * If none found, atomically allocate and return a new one. 13720 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13721 * to support "receive only" use of lo0:1 etc. as is still done 13722 * below as an initial guess. 13723 * However, this is now likely to be overriden later in ipif_up_done() 13724 * when we know for sure what address has been configured on the 13725 * interface, since we might have more than one loopback interface 13726 * with a loopback address, e.g. in the case of zones, and all the 13727 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13728 */ 13729 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13730 ire_type = IRE_LOOPBACK; 13731 else 13732 ire_type = IRE_LOCAL; 13733 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13734 if (ipif != NULL) 13735 ipif_refhold_locked(ipif); 13736 mutex_exit(&ill->ill_lock); 13737 ill_refrele(ill); 13738 return (ipif); 13739 } 13740 13741 /* 13742 * This routine is called whenever a new address comes up on an ipif. If 13743 * we are configured to respond to address mask requests, then we are supposed 13744 * to broadcast an address mask reply at this time. This routine is also 13745 * called if we are already up, but a netmask change is made. This is legal 13746 * but might not make the system manager very popular. (May be called 13747 * as writer.) 13748 */ 13749 void 13750 ipif_mask_reply(ipif_t *ipif) 13751 { 13752 icmph_t *icmph; 13753 ipha_t *ipha; 13754 mblk_t *mp; 13755 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13756 ip_xmit_attr_t ixas; 13757 13758 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13759 13760 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13761 return; 13762 13763 /* ICMP mask reply is IPv4 only */ 13764 ASSERT(!ipif->ipif_isv6); 13765 /* ICMP mask reply is not for a loopback interface */ 13766 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13767 13768 if (ipif->ipif_lcl_addr == INADDR_ANY) 13769 return; 13770 13771 mp = allocb(REPLY_LEN, BPRI_HI); 13772 if (mp == NULL) 13773 return; 13774 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13775 13776 ipha = (ipha_t *)mp->b_rptr; 13777 bzero(ipha, REPLY_LEN); 13778 *ipha = icmp_ipha; 13779 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13780 ipha->ipha_src = ipif->ipif_lcl_addr; 13781 ipha->ipha_dst = ipif->ipif_brd_addr; 13782 ipha->ipha_length = htons(REPLY_LEN); 13783 ipha->ipha_ident = 0; 13784 13785 icmph = (icmph_t *)&ipha[1]; 13786 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13787 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13788 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13789 13790 bzero(&ixas, sizeof (ixas)); 13791 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13792 ixas.ixa_zoneid = ALL_ZONES; 13793 ixas.ixa_ifindex = 0; 13794 ixas.ixa_ipst = ipst; 13795 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13796 (void) ip_output_simple(mp, &ixas); 13797 ixa_cleanup(&ixas); 13798 #undef REPLY_LEN 13799 } 13800 13801 /* 13802 * Join the ipif specific multicast groups. 13803 * Must be called after a mapping has been set up in the resolver. (Always 13804 * called as writer.) 13805 */ 13806 void 13807 ipif_multicast_up(ipif_t *ipif) 13808 { 13809 int err; 13810 ill_t *ill; 13811 ilm_t *ilm; 13812 13813 ASSERT(IAM_WRITER_IPIF(ipif)); 13814 13815 ill = ipif->ipif_ill; 13816 13817 ip1dbg(("ipif_multicast_up\n")); 13818 if (!(ill->ill_flags & ILLF_MULTICAST) || 13819 ipif->ipif_allhosts_ilm != NULL) 13820 return; 13821 13822 if (ipif->ipif_isv6) { 13823 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13824 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13825 13826 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13827 13828 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13829 return; 13830 13831 ip1dbg(("ipif_multicast_up - addmulti\n")); 13832 13833 /* 13834 * Join the all hosts multicast address. We skip this for 13835 * underlying IPMP interfaces since they should be invisible. 13836 */ 13837 if (!IS_UNDER_IPMP(ill)) { 13838 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13839 &err); 13840 if (ilm == NULL) { 13841 ASSERT(err != 0); 13842 ip0dbg(("ipif_multicast_up: " 13843 "all_hosts_mcast failed %d\n", err)); 13844 return; 13845 } 13846 ipif->ipif_allhosts_ilm = ilm; 13847 } 13848 13849 /* 13850 * Enable multicast for the solicited node multicast address. 13851 * If IPMP we need to put the membership on the upper ill. 13852 */ 13853 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13854 ill_t *mcast_ill = NULL; 13855 boolean_t need_refrele; 13856 13857 if (IS_UNDER_IPMP(ill) && 13858 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13859 need_refrele = B_TRUE; 13860 } else { 13861 mcast_ill = ill; 13862 need_refrele = B_FALSE; 13863 } 13864 13865 ilm = ip_addmulti(&v6solmc, mcast_ill, 13866 ipif->ipif_zoneid, &err); 13867 if (need_refrele) 13868 ill_refrele(mcast_ill); 13869 13870 if (ilm == NULL) { 13871 ASSERT(err != 0); 13872 ip0dbg(("ipif_multicast_up: solicited MC" 13873 " failed %d\n", err)); 13874 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13875 ipif->ipif_allhosts_ilm = NULL; 13876 (void) ip_delmulti(ilm); 13877 } 13878 return; 13879 } 13880 ipif->ipif_solmulti_ilm = ilm; 13881 } 13882 } else { 13883 in6_addr_t v6group; 13884 13885 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13886 return; 13887 13888 /* Join the all hosts multicast address */ 13889 ip1dbg(("ipif_multicast_up - addmulti\n")); 13890 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13891 13892 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13893 if (ilm == NULL) { 13894 ASSERT(err != 0); 13895 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13896 return; 13897 } 13898 ipif->ipif_allhosts_ilm = ilm; 13899 } 13900 } 13901 13902 /* 13903 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13904 * (ilms from explicit memberships are handled in conn_update_ill.) 13905 */ 13906 void 13907 ipif_multicast_down(ipif_t *ipif) 13908 { 13909 ASSERT(IAM_WRITER_IPIF(ipif)); 13910 13911 ip1dbg(("ipif_multicast_down\n")); 13912 13913 if (ipif->ipif_allhosts_ilm != NULL) { 13914 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13915 ipif->ipif_allhosts_ilm = NULL; 13916 } 13917 if (ipif->ipif_solmulti_ilm != NULL) { 13918 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13919 ipif->ipif_solmulti_ilm = NULL; 13920 } 13921 } 13922 13923 /* 13924 * Used when an interface comes up to recreate any extra routes on this 13925 * interface. 13926 */ 13927 int 13928 ill_recover_saved_ire(ill_t *ill) 13929 { 13930 mblk_t *mp; 13931 ip_stack_t *ipst = ill->ill_ipst; 13932 13933 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13934 13935 mutex_enter(&ill->ill_saved_ire_lock); 13936 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13937 ire_t *ire, *nire; 13938 ifrt_t *ifrt; 13939 13940 ifrt = (ifrt_t *)mp->b_rptr; 13941 /* 13942 * Create a copy of the IRE with the saved address and netmask. 13943 */ 13944 if (ill->ill_isv6) { 13945 ire = ire_create_v6( 13946 &ifrt->ifrt_v6addr, 13947 &ifrt->ifrt_v6mask, 13948 &ifrt->ifrt_v6gateway_addr, 13949 ifrt->ifrt_type, 13950 ill, 13951 ifrt->ifrt_zoneid, 13952 ifrt->ifrt_flags, 13953 NULL, 13954 ipst); 13955 } else { 13956 ire = ire_create( 13957 (uint8_t *)&ifrt->ifrt_addr, 13958 (uint8_t *)&ifrt->ifrt_mask, 13959 (uint8_t *)&ifrt->ifrt_gateway_addr, 13960 ifrt->ifrt_type, 13961 ill, 13962 ifrt->ifrt_zoneid, 13963 ifrt->ifrt_flags, 13964 NULL, 13965 ipst); 13966 } 13967 if (ire == NULL) { 13968 mutex_exit(&ill->ill_saved_ire_lock); 13969 return (ENOMEM); 13970 } 13971 13972 if (ifrt->ifrt_flags & RTF_SETSRC) { 13973 if (ill->ill_isv6) { 13974 ire->ire_setsrc_addr_v6 = 13975 ifrt->ifrt_v6setsrc_addr; 13976 } else { 13977 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13978 } 13979 } 13980 13981 /* 13982 * Some software (for example, GateD and Sun Cluster) attempts 13983 * to create (what amount to) IRE_PREFIX routes with the 13984 * loopback address as the gateway. This is primarily done to 13985 * set up prefixes with the RTF_REJECT flag set (for example, 13986 * when generating aggregate routes.) 13987 * 13988 * If the IRE type (as defined by ill->ill_net_type) is 13989 * IRE_LOOPBACK, then we map the request into a 13990 * IRE_IF_NORESOLVER. 13991 */ 13992 if (ill->ill_net_type == IRE_LOOPBACK) 13993 ire->ire_type = IRE_IF_NORESOLVER; 13994 13995 /* 13996 * ire held by ire_add, will be refreled' towards the 13997 * the end of ipif_up_done 13998 */ 13999 nire = ire_add(ire); 14000 /* 14001 * Check if it was a duplicate entry. This handles 14002 * the case of two racing route adds for the same route 14003 */ 14004 if (nire == NULL) { 14005 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14006 } else if (nire != ire) { 14007 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14008 (void *)nire)); 14009 ire_delete(nire); 14010 } else { 14011 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14012 (void *)nire)); 14013 } 14014 if (nire != NULL) 14015 ire_refrele(nire); 14016 } 14017 mutex_exit(&ill->ill_saved_ire_lock); 14018 return (0); 14019 } 14020 14021 /* 14022 * Used to set the netmask and broadcast address to default values when the 14023 * interface is brought up. (Always called as writer.) 14024 */ 14025 static void 14026 ipif_set_default(ipif_t *ipif) 14027 { 14028 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14029 14030 if (!ipif->ipif_isv6) { 14031 /* 14032 * Interface holds an IPv4 address. Default 14033 * mask is the natural netmask. 14034 */ 14035 if (!ipif->ipif_net_mask) { 14036 ipaddr_t v4mask; 14037 14038 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14039 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14040 } 14041 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14042 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14043 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14044 } else { 14045 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14046 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14047 } 14048 /* 14049 * NOTE: SunOS 4.X does this even if the broadcast address 14050 * has been already set thus we do the same here. 14051 */ 14052 if (ipif->ipif_flags & IPIF_BROADCAST) { 14053 ipaddr_t v4addr; 14054 14055 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14056 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14057 } 14058 } else { 14059 /* 14060 * Interface holds an IPv6-only address. Default 14061 * mask is all-ones. 14062 */ 14063 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14064 ipif->ipif_v6net_mask = ipv6_all_ones; 14065 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14066 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14067 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14068 } else { 14069 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14070 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14071 } 14072 } 14073 } 14074 14075 /* 14076 * Return 0 if this address can be used as local address without causing 14077 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14078 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14079 * Note that the same IPv6 link-local address is allowed as long as the ills 14080 * are not on the same link. 14081 */ 14082 int 14083 ip_addr_availability_check(ipif_t *new_ipif) 14084 { 14085 in6_addr_t our_v6addr; 14086 ill_t *ill; 14087 ipif_t *ipif; 14088 ill_walk_context_t ctx; 14089 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14090 14091 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14092 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14093 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14094 14095 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14096 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14097 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14098 return (0); 14099 14100 our_v6addr = new_ipif->ipif_v6lcl_addr; 14101 14102 if (new_ipif->ipif_isv6) 14103 ill = ILL_START_WALK_V6(&ctx, ipst); 14104 else 14105 ill = ILL_START_WALK_V4(&ctx, ipst); 14106 14107 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14108 for (ipif = ill->ill_ipif; ipif != NULL; 14109 ipif = ipif->ipif_next) { 14110 if ((ipif == new_ipif) || 14111 !(ipif->ipif_flags & IPIF_UP) || 14112 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14113 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14114 &our_v6addr)) 14115 continue; 14116 14117 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14118 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14119 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14120 ipif->ipif_flags |= IPIF_UNNUMBERED; 14121 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14122 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14123 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14124 continue; 14125 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14126 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14127 continue; 14128 else if (new_ipif->ipif_ill == ill) 14129 return (EADDRINUSE); 14130 else 14131 return (EADDRNOTAVAIL); 14132 } 14133 } 14134 14135 return (0); 14136 } 14137 14138 /* 14139 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14140 * IREs for the ipif. 14141 * When the routine returns EINPROGRESS then mp has been consumed and 14142 * the ioctl will be acked from ip_rput_dlpi. 14143 */ 14144 int 14145 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14146 { 14147 ill_t *ill = ipif->ipif_ill; 14148 boolean_t isv6 = ipif->ipif_isv6; 14149 int err = 0; 14150 boolean_t success; 14151 uint_t ipif_orig_id; 14152 ip_stack_t *ipst = ill->ill_ipst; 14153 14154 ASSERT(IAM_WRITER_IPIF(ipif)); 14155 14156 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14157 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14158 ill_t *, ill, ipif_t *, ipif); 14159 14160 /* Shouldn't get here if it is already up. */ 14161 if (ipif->ipif_flags & IPIF_UP) 14162 return (EALREADY); 14163 14164 /* 14165 * If this is a request to bring up a data address on an interface 14166 * under IPMP, then move the address to its IPMP meta-interface and 14167 * try to bring it up. One complication is that the zeroth ipif for 14168 * an ill is special, in that every ill always has one, and that code 14169 * throughout IP deferences ill->ill_ipif without holding any locks. 14170 */ 14171 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14172 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14173 ipif_t *stubipif = NULL, *moveipif = NULL; 14174 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14175 14176 /* 14177 * The ipif being brought up should be quiesced. If it's not, 14178 * something has gone amiss and we need to bail out. (If it's 14179 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14180 */ 14181 mutex_enter(&ill->ill_lock); 14182 if (!ipif_is_quiescent(ipif)) { 14183 mutex_exit(&ill->ill_lock); 14184 return (EINVAL); 14185 } 14186 mutex_exit(&ill->ill_lock); 14187 14188 /* 14189 * If we're going to need to allocate ipifs, do it prior 14190 * to starting the move (and grabbing locks). 14191 */ 14192 if (ipif->ipif_id == 0) { 14193 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14194 B_FALSE, &err)) == NULL) { 14195 return (err); 14196 } 14197 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14198 B_FALSE, &err)) == NULL) { 14199 mi_free(moveipif); 14200 return (err); 14201 } 14202 } 14203 14204 /* 14205 * Grab or transfer the ipif to move. During the move, keep 14206 * ill_g_lock held to prevent any ill walker threads from 14207 * seeing things in an inconsistent state. 14208 */ 14209 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14210 if (ipif->ipif_id != 0) { 14211 ipif_remove(ipif); 14212 } else { 14213 ipif_transfer(ipif, moveipif, stubipif); 14214 ipif = moveipif; 14215 } 14216 14217 /* 14218 * Place the ipif on the IPMP ill. If the zeroth ipif on 14219 * the IPMP ill is a stub (0.0.0.0 down address) then we 14220 * replace that one. Otherwise, pick the next available slot. 14221 */ 14222 ipif->ipif_ill = ipmp_ill; 14223 ipif_orig_id = ipif->ipif_id; 14224 14225 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14226 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14227 ipif = ipmp_ill->ill_ipif; 14228 } else { 14229 ipif->ipif_id = -1; 14230 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14231 /* 14232 * No more available ipif_id's -- put it back 14233 * on the original ill and fail the operation. 14234 * Since we're writer on the ill, we can be 14235 * sure our old slot is still available. 14236 */ 14237 ipif->ipif_id = ipif_orig_id; 14238 ipif->ipif_ill = ill; 14239 if (ipif_orig_id == 0) { 14240 ipif_transfer(ipif, ill->ill_ipif, 14241 NULL); 14242 } else { 14243 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14244 } 14245 rw_exit(&ipst->ips_ill_g_lock); 14246 return (err); 14247 } 14248 } 14249 rw_exit(&ipst->ips_ill_g_lock); 14250 14251 /* 14252 * Tell SCTP that the ipif has moved. Note that even if we 14253 * had to allocate a new ipif, the original sequence id was 14254 * preserved and therefore SCTP won't know. 14255 */ 14256 sctp_move_ipif(ipif, ill, ipmp_ill); 14257 14258 /* 14259 * If the ipif being brought up was on slot zero, then we 14260 * first need to bring up the placeholder we stuck there. In 14261 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14262 * call to ipif_up() itself, if we successfully bring up the 14263 * placeholder, we'll check ill_move_ipif and bring it up too. 14264 */ 14265 if (ipif_orig_id == 0) { 14266 ASSERT(ill->ill_move_ipif == NULL); 14267 ill->ill_move_ipif = ipif; 14268 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14269 ASSERT(ill->ill_move_ipif == NULL); 14270 if (err != EINPROGRESS) 14271 ill->ill_move_ipif = NULL; 14272 return (err); 14273 } 14274 14275 /* 14276 * Bring it up on the IPMP ill. 14277 */ 14278 return (ipif_up(ipif, q, mp)); 14279 } 14280 14281 /* Skip arp/ndp for any loopback interface. */ 14282 if (ill->ill_wq != NULL) { 14283 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14284 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14285 14286 if (!ill->ill_dl_up) { 14287 /* 14288 * ill_dl_up is not yet set. i.e. we are yet to 14289 * DL_BIND with the driver and this is the first 14290 * logical interface on the ill to become "up". 14291 * Tell the driver to get going (via DL_BIND_REQ). 14292 * Note that changing "significant" IFF_ flags 14293 * address/netmask etc cause a down/up dance, but 14294 * does not cause an unbind (DL_UNBIND) with the driver 14295 */ 14296 return (ill_dl_up(ill, ipif, mp, q)); 14297 } 14298 14299 /* 14300 * ipif_resolver_up may end up needeing to bind/attach 14301 * the ARP stream, which in turn necessitates a 14302 * DLPI message exchange with the driver. ioctls are 14303 * serialized and so we cannot send more than one 14304 * interface up message at a time. If ipif_resolver_up 14305 * does need to wait for the DLPI handshake for the ARP stream, 14306 * we get EINPROGRESS and we will complete in arp_bringup_done. 14307 */ 14308 14309 ASSERT(connp != NULL || !CONN_Q(q)); 14310 if (connp != NULL) 14311 mutex_enter(&connp->conn_lock); 14312 mutex_enter(&ill->ill_lock); 14313 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14314 mutex_exit(&ill->ill_lock); 14315 if (connp != NULL) 14316 mutex_exit(&connp->conn_lock); 14317 if (!success) 14318 return (EINTR); 14319 14320 /* 14321 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14322 * complete when ipif_ndp_up returns. 14323 */ 14324 err = ipif_resolver_up(ipif, Res_act_initial); 14325 if (err == EINPROGRESS) { 14326 /* We will complete it in arp_bringup_done() */ 14327 return (err); 14328 } 14329 14330 if (isv6 && err == 0) 14331 err = ipif_ndp_up(ipif, B_TRUE); 14332 14333 ASSERT(err != EINPROGRESS); 14334 mp = ipsq_pending_mp_get(ipsq, &connp); 14335 ASSERT(mp != NULL); 14336 if (err != 0) 14337 return (err); 14338 } else { 14339 /* 14340 * Interfaces without underlying hardware don't do duplicate 14341 * address detection. 14342 */ 14343 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14344 ipif->ipif_addr_ready = 1; 14345 err = ill_add_ires(ill); 14346 /* allocation failure? */ 14347 if (err != 0) 14348 return (err); 14349 } 14350 14351 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14352 if (err == 0 && ill->ill_move_ipif != NULL) { 14353 ipif = ill->ill_move_ipif; 14354 ill->ill_move_ipif = NULL; 14355 return (ipif_up(ipif, q, mp)); 14356 } 14357 return (err); 14358 } 14359 14360 /* 14361 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14362 * The identical set of IREs need to be removed in ill_delete_ires(). 14363 */ 14364 int 14365 ill_add_ires(ill_t *ill) 14366 { 14367 ire_t *ire; 14368 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14369 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14370 14371 if (ill->ill_ire_multicast != NULL) 14372 return (0); 14373 14374 /* 14375 * provide some dummy ire_addr for creating the ire. 14376 */ 14377 if (ill->ill_isv6) { 14378 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14379 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14380 } else { 14381 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14382 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14383 } 14384 if (ire == NULL) 14385 return (ENOMEM); 14386 14387 ill->ill_ire_multicast = ire; 14388 return (0); 14389 } 14390 14391 void 14392 ill_delete_ires(ill_t *ill) 14393 { 14394 if (ill->ill_ire_multicast != NULL) { 14395 /* 14396 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14397 * which was taken without any th_tracing enabled. 14398 * We also mark it as condemned (note that it was never added) 14399 * so that caching conn's can move off of it. 14400 */ 14401 ire_make_condemned(ill->ill_ire_multicast); 14402 ire_refrele_notr(ill->ill_ire_multicast); 14403 ill->ill_ire_multicast = NULL; 14404 } 14405 } 14406 14407 /* 14408 * Perform a bind for the physical device. 14409 * When the routine returns EINPROGRESS then mp has been consumed and 14410 * the ioctl will be acked from ip_rput_dlpi. 14411 * Allocate an unbind message and save it until ipif_down. 14412 */ 14413 static int 14414 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14415 { 14416 mblk_t *bind_mp = NULL; 14417 mblk_t *unbind_mp = NULL; 14418 conn_t *connp; 14419 boolean_t success; 14420 int err; 14421 14422 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14423 14424 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14425 ASSERT(IAM_WRITER_ILL(ill)); 14426 ASSERT(mp != NULL); 14427 14428 /* 14429 * Make sure we have an IRE_MULTICAST in case we immediately 14430 * start receiving packets. 14431 */ 14432 err = ill_add_ires(ill); 14433 if (err != 0) 14434 goto bad; 14435 14436 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14437 DL_BIND_REQ); 14438 if (bind_mp == NULL) 14439 goto bad; 14440 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14441 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14442 14443 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14444 if (unbind_mp == NULL) 14445 goto bad; 14446 14447 /* 14448 * Record state needed to complete this operation when the 14449 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14450 */ 14451 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14452 ASSERT(connp != NULL || !CONN_Q(q)); 14453 GRAB_CONN_LOCK(q); 14454 mutex_enter(&ipif->ipif_ill->ill_lock); 14455 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14456 mutex_exit(&ipif->ipif_ill->ill_lock); 14457 RELEASE_CONN_LOCK(q); 14458 if (!success) 14459 goto bad; 14460 14461 /* 14462 * Save the unbind message for ill_dl_down(); it will be consumed when 14463 * the interface goes down. 14464 */ 14465 ASSERT(ill->ill_unbind_mp == NULL); 14466 ill->ill_unbind_mp = unbind_mp; 14467 14468 ill_dlpi_send(ill, bind_mp); 14469 /* Send down link-layer capabilities probe if not already done. */ 14470 ill_capability_probe(ill); 14471 14472 /* 14473 * Sysid used to rely on the fact that netboots set domainname 14474 * and the like. Now that miniroot boots aren't strictly netboots 14475 * and miniroot network configuration is driven from userland 14476 * these things still need to be set. This situation can be detected 14477 * by comparing the interface being configured here to the one 14478 * dhcifname was set to reference by the boot loader. Once sysid is 14479 * converted to use dhcp_ipc_getinfo() this call can go away. 14480 */ 14481 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14482 (strcmp(ill->ill_name, dhcifname) == 0) && 14483 (strlen(srpc_domain) == 0)) { 14484 if (dhcpinit() != 0) 14485 cmn_err(CE_WARN, "no cached dhcp response"); 14486 } 14487 14488 /* 14489 * This operation will complete in ip_rput_dlpi with either 14490 * a DL_BIND_ACK or DL_ERROR_ACK. 14491 */ 14492 return (EINPROGRESS); 14493 bad: 14494 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14495 14496 freemsg(bind_mp); 14497 freemsg(unbind_mp); 14498 return (ENOMEM); 14499 } 14500 14501 /* Add room for tcp+ip headers */ 14502 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14503 14504 /* 14505 * DLPI and ARP is up. 14506 * Create all the IREs associated with an interface. Bring up multicast. 14507 * Set the interface flag and finish other initialization 14508 * that potentially had to be deferred to after DL_BIND_ACK. 14509 */ 14510 int 14511 ipif_up_done(ipif_t *ipif) 14512 { 14513 ill_t *ill = ipif->ipif_ill; 14514 int err = 0; 14515 boolean_t loopback = B_FALSE; 14516 boolean_t update_src_selection = B_TRUE; 14517 ipif_t *tmp_ipif; 14518 14519 ip1dbg(("ipif_up_done(%s:%u)\n", 14520 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14521 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14522 ill_t *, ill, ipif_t *, ipif); 14523 14524 /* Check if this is a loopback interface */ 14525 if (ipif->ipif_ill->ill_wq == NULL) 14526 loopback = B_TRUE; 14527 14528 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14529 14530 /* 14531 * If all other interfaces for this ill are down or DEPRECATED, 14532 * or otherwise unsuitable for source address selection, 14533 * reset the src generation numbers to make sure source 14534 * address selection gets to take this new ipif into account. 14535 * No need to hold ill_lock while traversing the ipif list since 14536 * we are writer 14537 */ 14538 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14539 tmp_ipif = tmp_ipif->ipif_next) { 14540 if (((tmp_ipif->ipif_flags & 14541 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14542 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14543 (tmp_ipif == ipif)) 14544 continue; 14545 /* first useable pre-existing interface */ 14546 update_src_selection = B_FALSE; 14547 break; 14548 } 14549 if (update_src_selection) 14550 ip_update_source_selection(ill->ill_ipst); 14551 14552 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14553 nce_t *loop_nce = NULL; 14554 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14555 14556 /* 14557 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14558 * ipif_lookup_on_name(), but in the case of zones we can have 14559 * several loopback addresses on lo0. So all the interfaces with 14560 * loopback addresses need to be marked IRE_LOOPBACK. 14561 */ 14562 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14563 htonl(INADDR_LOOPBACK)) 14564 ipif->ipif_ire_type = IRE_LOOPBACK; 14565 else 14566 ipif->ipif_ire_type = IRE_LOCAL; 14567 if (ill->ill_net_type != IRE_LOOPBACK) 14568 flags |= NCE_F_PUBLISH; 14569 14570 /* add unicast nce for the local addr */ 14571 err = nce_lookup_then_add_v4(ill, NULL, 14572 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14573 ND_REACHABLE, &loop_nce); 14574 /* A shared-IP zone sees EEXIST for lo0:N */ 14575 if (err == 0 || err == EEXIST) { 14576 ipif->ipif_added_nce = 1; 14577 loop_nce->nce_ipif_cnt++; 14578 nce_refrele(loop_nce); 14579 err = 0; 14580 } else { 14581 ASSERT(loop_nce == NULL); 14582 return (err); 14583 } 14584 } 14585 14586 /* Create all the IREs associated with this interface */ 14587 err = ipif_add_ires_v4(ipif, loopback); 14588 if (err != 0) { 14589 /* 14590 * see comments about return value from 14591 * ip_addr_availability_check() in ipif_add_ires_v4(). 14592 */ 14593 if (err != EADDRINUSE) { 14594 (void) ipif_arp_down(ipif); 14595 } else { 14596 /* 14597 * Make IPMP aware of the deleted ipif so that 14598 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14599 * can be completed. Note that we do not want to 14600 * destroy the nce that was created on the ipmp_ill 14601 * for the active copy of the duplicate address in 14602 * use. 14603 */ 14604 if (IS_IPMP(ill)) 14605 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14606 err = EADDRNOTAVAIL; 14607 } 14608 return (err); 14609 } 14610 14611 if (ill->ill_ipif_up_count == 1 && !loopback) { 14612 /* Recover any additional IREs entries for this ill */ 14613 (void) ill_recover_saved_ire(ill); 14614 } 14615 14616 if (ill->ill_need_recover_multicast) { 14617 /* 14618 * Need to recover all multicast memberships in the driver. 14619 * This had to be deferred until we had attached. The same 14620 * code exists in ipif_up_done_v6() to recover IPv6 14621 * memberships. 14622 * 14623 * Note that it would be preferable to unconditionally do the 14624 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14625 * that since ill_join_allmulti() depends on ill_dl_up being 14626 * set, and it is not set until we receive a DL_BIND_ACK after 14627 * having called ill_dl_up(). 14628 */ 14629 ill_recover_multicast(ill); 14630 } 14631 14632 if (ill->ill_ipif_up_count == 1) { 14633 /* 14634 * Since the interface is now up, it may now be active. 14635 */ 14636 if (IS_UNDER_IPMP(ill)) 14637 ipmp_ill_refresh_active(ill); 14638 14639 /* 14640 * If this is an IPMP interface, we may now be able to 14641 * establish ARP entries. 14642 */ 14643 if (IS_IPMP(ill)) 14644 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14645 } 14646 14647 /* Join the allhosts multicast address */ 14648 ipif_multicast_up(ipif); 14649 14650 if (!loopback && !update_src_selection && 14651 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14652 ip_update_source_selection(ill->ill_ipst); 14653 14654 if (!loopback && ipif->ipif_addr_ready) { 14655 /* Broadcast an address mask reply. */ 14656 ipif_mask_reply(ipif); 14657 } 14658 /* Perhaps ilgs should use this ill */ 14659 update_conn_ill(NULL, ill->ill_ipst); 14660 14661 /* 14662 * This had to be deferred until we had bound. Tell routing sockets and 14663 * others that this interface is up if it looks like the address has 14664 * been validated. Otherwise, if it isn't ready yet, wait for 14665 * duplicate address detection to do its thing. 14666 */ 14667 if (ipif->ipif_addr_ready) 14668 ipif_up_notify(ipif); 14669 return (0); 14670 } 14671 14672 /* 14673 * Add the IREs associated with the ipif. 14674 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14675 */ 14676 static int 14677 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14678 { 14679 ill_t *ill = ipif->ipif_ill; 14680 ip_stack_t *ipst = ill->ill_ipst; 14681 ire_t *ire_array[20]; 14682 ire_t **irep = ire_array; 14683 ire_t **irep1; 14684 ipaddr_t net_mask = 0; 14685 ipaddr_t subnet_mask, route_mask; 14686 int err; 14687 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14688 ire_t *ire_if = NULL; 14689 uchar_t *gw; 14690 14691 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14692 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14693 /* 14694 * If we're on a labeled system then make sure that zone- 14695 * private addresses have proper remote host database entries. 14696 */ 14697 if (is_system_labeled() && 14698 ipif->ipif_ire_type != IRE_LOOPBACK && 14699 !tsol_check_interface_address(ipif)) 14700 return (EINVAL); 14701 14702 /* Register the source address for __sin6_src_id */ 14703 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14704 ipif->ipif_zoneid, ipst); 14705 if (err != 0) { 14706 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14707 return (err); 14708 } 14709 14710 if (loopback) 14711 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14712 else 14713 gw = NULL; 14714 14715 /* If the interface address is set, create the local IRE. */ 14716 ire_local = ire_create( 14717 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14718 (uchar_t *)&ip_g_all_ones, /* mask */ 14719 gw, /* gateway */ 14720 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14721 ipif->ipif_ill, 14722 ipif->ipif_zoneid, 14723 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14724 RTF_PRIVATE : 0) | RTF_KERNEL, 14725 NULL, 14726 ipst); 14727 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14728 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14729 ipif->ipif_ire_type, 14730 ntohl(ipif->ipif_lcl_addr))); 14731 if (ire_local == NULL) { 14732 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14733 err = ENOMEM; 14734 goto bad; 14735 } 14736 } else { 14737 ip1dbg(( 14738 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14739 ipif->ipif_ire_type, 14740 ntohl(ipif->ipif_lcl_addr), 14741 (uint_t)ipif->ipif_flags)); 14742 } 14743 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14744 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14745 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14746 } else { 14747 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14748 } 14749 14750 subnet_mask = ipif->ipif_net_mask; 14751 14752 /* 14753 * If mask was not specified, use natural netmask of 14754 * interface address. Also, store this mask back into the 14755 * ipif struct. 14756 */ 14757 if (subnet_mask == 0) { 14758 subnet_mask = net_mask; 14759 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14760 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14761 ipif->ipif_v6subnet); 14762 } 14763 14764 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14765 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14766 ipif->ipif_subnet != INADDR_ANY) { 14767 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14768 14769 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14770 route_mask = IP_HOST_MASK; 14771 } else { 14772 route_mask = subnet_mask; 14773 } 14774 14775 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14776 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14777 (void *)ipif, (void *)ill, ill->ill_net_type, 14778 ntohl(ipif->ipif_subnet))); 14779 ire_if = ire_create( 14780 (uchar_t *)&ipif->ipif_subnet, 14781 (uchar_t *)&route_mask, 14782 (uchar_t *)&ipif->ipif_lcl_addr, 14783 ill->ill_net_type, 14784 ill, 14785 ipif->ipif_zoneid, 14786 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14787 RTF_PRIVATE: 0) | RTF_KERNEL, 14788 NULL, 14789 ipst); 14790 if (ire_if == NULL) { 14791 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14792 err = ENOMEM; 14793 goto bad; 14794 } 14795 } 14796 14797 /* 14798 * Create any necessary broadcast IREs. 14799 */ 14800 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14801 !(ipif->ipif_flags & IPIF_NOXMIT)) 14802 irep = ipif_create_bcast_ires(ipif, irep); 14803 14804 /* If an earlier ire_create failed, get out now */ 14805 for (irep1 = irep; irep1 > ire_array; ) { 14806 irep1--; 14807 if (*irep1 == NULL) { 14808 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14809 err = ENOMEM; 14810 goto bad; 14811 } 14812 } 14813 14814 /* 14815 * Need to atomically check for IP address availability under 14816 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14817 * ills or new ipifs can be added while we are checking availability. 14818 */ 14819 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14820 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14821 /* Mark it up, and increment counters. */ 14822 ipif->ipif_flags |= IPIF_UP; 14823 ill->ill_ipif_up_count++; 14824 err = ip_addr_availability_check(ipif); 14825 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14826 rw_exit(&ipst->ips_ill_g_lock); 14827 14828 if (err != 0) { 14829 /* 14830 * Our address may already be up on the same ill. In this case, 14831 * the ARP entry for our ipif replaced the one for the other 14832 * ipif. So we don't want to delete it (otherwise the other ipif 14833 * would be unable to send packets). 14834 * ip_addr_availability_check() identifies this case for us and 14835 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14836 * which is the expected error code. 14837 */ 14838 ill->ill_ipif_up_count--; 14839 ipif->ipif_flags &= ~IPIF_UP; 14840 goto bad; 14841 } 14842 14843 /* 14844 * Add in all newly created IREs. ire_create_bcast() has 14845 * already checked for duplicates of the IRE_BROADCAST type. 14846 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14847 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14848 * a /32 route. 14849 */ 14850 if (ire_if != NULL) { 14851 ire_if = ire_add(ire_if); 14852 if (ire_if == NULL) { 14853 err = ENOMEM; 14854 goto bad2; 14855 } 14856 #ifdef DEBUG 14857 ire_refhold_notr(ire_if); 14858 ire_refrele(ire_if); 14859 #endif 14860 } 14861 if (ire_local != NULL) { 14862 ire_local = ire_add(ire_local); 14863 if (ire_local == NULL) { 14864 err = ENOMEM; 14865 goto bad2; 14866 } 14867 #ifdef DEBUG 14868 ire_refhold_notr(ire_local); 14869 ire_refrele(ire_local); 14870 #endif 14871 } 14872 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14873 if (ire_local != NULL) 14874 ipif->ipif_ire_local = ire_local; 14875 if (ire_if != NULL) 14876 ipif->ipif_ire_if = ire_if; 14877 rw_exit(&ipst->ips_ill_g_lock); 14878 ire_local = NULL; 14879 ire_if = NULL; 14880 14881 /* 14882 * We first add all of them, and if that succeeds we refrele the 14883 * bunch. That enables us to delete all of them should any of the 14884 * ire_adds fail. 14885 */ 14886 for (irep1 = irep; irep1 > ire_array; ) { 14887 irep1--; 14888 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14889 *irep1 = ire_add(*irep1); 14890 if (*irep1 == NULL) { 14891 err = ENOMEM; 14892 goto bad2; 14893 } 14894 } 14895 14896 for (irep1 = irep; irep1 > ire_array; ) { 14897 irep1--; 14898 /* refheld by ire_add. */ 14899 if (*irep1 != NULL) { 14900 ire_refrele(*irep1); 14901 *irep1 = NULL; 14902 } 14903 } 14904 14905 if (!loopback) { 14906 /* 14907 * If the broadcast address has been set, make sure it makes 14908 * sense based on the interface address. 14909 * Only match on ill since we are sharing broadcast addresses. 14910 */ 14911 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14912 (ipif->ipif_flags & IPIF_BROADCAST)) { 14913 ire_t *ire; 14914 14915 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14916 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14917 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14918 14919 if (ire == NULL) { 14920 /* 14921 * If there isn't a matching broadcast IRE, 14922 * revert to the default for this netmask. 14923 */ 14924 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14925 mutex_enter(&ipif->ipif_ill->ill_lock); 14926 ipif_set_default(ipif); 14927 mutex_exit(&ipif->ipif_ill->ill_lock); 14928 } else { 14929 ire_refrele(ire); 14930 } 14931 } 14932 14933 } 14934 return (0); 14935 14936 bad2: 14937 ill->ill_ipif_up_count--; 14938 ipif->ipif_flags &= ~IPIF_UP; 14939 14940 bad: 14941 ip1dbg(("ipif_add_ires: FAILED \n")); 14942 if (ire_local != NULL) 14943 ire_delete(ire_local); 14944 if (ire_if != NULL) 14945 ire_delete(ire_if); 14946 14947 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14948 ire_local = ipif->ipif_ire_local; 14949 ipif->ipif_ire_local = NULL; 14950 ire_if = ipif->ipif_ire_if; 14951 ipif->ipif_ire_if = NULL; 14952 rw_exit(&ipst->ips_ill_g_lock); 14953 if (ire_local != NULL) { 14954 ire_delete(ire_local); 14955 ire_refrele_notr(ire_local); 14956 } 14957 if (ire_if != NULL) { 14958 ire_delete(ire_if); 14959 ire_refrele_notr(ire_if); 14960 } 14961 14962 while (irep > ire_array) { 14963 irep--; 14964 if (*irep != NULL) { 14965 ire_delete(*irep); 14966 } 14967 } 14968 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14969 14970 return (err); 14971 } 14972 14973 /* Remove all the IREs created by ipif_add_ires_v4 */ 14974 void 14975 ipif_delete_ires_v4(ipif_t *ipif) 14976 { 14977 ill_t *ill = ipif->ipif_ill; 14978 ip_stack_t *ipst = ill->ill_ipst; 14979 ire_t *ire; 14980 14981 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14982 ire = ipif->ipif_ire_local; 14983 ipif->ipif_ire_local = NULL; 14984 rw_exit(&ipst->ips_ill_g_lock); 14985 if (ire != NULL) { 14986 /* 14987 * Move count to ipif so we don't loose the count due to 14988 * a down/up dance. 14989 */ 14990 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14991 14992 ire_delete(ire); 14993 ire_refrele_notr(ire); 14994 } 14995 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14996 ire = ipif->ipif_ire_if; 14997 ipif->ipif_ire_if = NULL; 14998 rw_exit(&ipst->ips_ill_g_lock); 14999 if (ire != NULL) { 15000 ire_delete(ire); 15001 ire_refrele_notr(ire); 15002 } 15003 15004 /* 15005 * Delete the broadcast IREs. 15006 */ 15007 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15008 !(ipif->ipif_flags & IPIF_NOXMIT)) 15009 ipif_delete_bcast_ires(ipif); 15010 } 15011 15012 /* 15013 * Checks for availbility of a usable source address (if there is one) when the 15014 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15015 * this selection is done regardless of the destination. 15016 */ 15017 boolean_t 15018 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15019 ip_stack_t *ipst) 15020 { 15021 ipif_t *ipif = NULL; 15022 ill_t *uill; 15023 15024 ASSERT(ifindex != 0); 15025 15026 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15027 if (uill == NULL) 15028 return (B_FALSE); 15029 15030 mutex_enter(&uill->ill_lock); 15031 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15032 if (IPIF_IS_CONDEMNED(ipif)) 15033 continue; 15034 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15035 continue; 15036 if (!(ipif->ipif_flags & IPIF_UP)) 15037 continue; 15038 if (ipif->ipif_zoneid != zoneid) 15039 continue; 15040 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15041 ipif->ipif_lcl_addr == INADDR_ANY) 15042 continue; 15043 mutex_exit(&uill->ill_lock); 15044 ill_refrele(uill); 15045 return (B_TRUE); 15046 } 15047 mutex_exit(&uill->ill_lock); 15048 ill_refrele(uill); 15049 return (B_FALSE); 15050 } 15051 15052 /* 15053 * Find an ipif with a good local address on the ill+zoneid. 15054 */ 15055 ipif_t * 15056 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15057 { 15058 ipif_t *ipif; 15059 15060 mutex_enter(&ill->ill_lock); 15061 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15062 if (IPIF_IS_CONDEMNED(ipif)) 15063 continue; 15064 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15065 continue; 15066 if (!(ipif->ipif_flags & IPIF_UP)) 15067 continue; 15068 if (ipif->ipif_zoneid != zoneid && 15069 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15070 continue; 15071 if (ill->ill_isv6 ? 15072 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15073 ipif->ipif_lcl_addr == INADDR_ANY) 15074 continue; 15075 ipif_refhold_locked(ipif); 15076 mutex_exit(&ill->ill_lock); 15077 return (ipif); 15078 } 15079 mutex_exit(&ill->ill_lock); 15080 return (NULL); 15081 } 15082 15083 /* 15084 * IP source address type, sorted from worst to best. For a given type, 15085 * always prefer IP addresses on the same subnet. All-zones addresses are 15086 * suboptimal because they pose problems with unlabeled destinations. 15087 */ 15088 typedef enum { 15089 IPIF_NONE, 15090 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15091 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15092 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15093 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15094 IPIF_DIFFNET, /* normal and different subnet */ 15095 IPIF_SAMENET, /* normal and same subnet */ 15096 IPIF_LOCALADDR /* local loopback */ 15097 } ipif_type_t; 15098 15099 /* 15100 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15101 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15102 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15103 * the first one, unless IPMP is used in which case we round-robin among them; 15104 * see below for more. 15105 * 15106 * Returns NULL if there is no suitable source address for the ill. 15107 * This only occurs when there is no valid source address for the ill. 15108 */ 15109 ipif_t * 15110 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15111 boolean_t allow_usesrc, boolean_t *notreadyp) 15112 { 15113 ill_t *usill = NULL; 15114 ill_t *ipmp_ill = NULL; 15115 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15116 ipif_type_t type, best_type; 15117 tsol_tpc_t *src_rhtp, *dst_rhtp; 15118 ip_stack_t *ipst = ill->ill_ipst; 15119 boolean_t samenet; 15120 15121 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15122 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15123 B_FALSE, ipst); 15124 if (usill != NULL) 15125 ill = usill; /* Select source from usesrc ILL */ 15126 else 15127 return (NULL); 15128 } 15129 15130 /* 15131 * Test addresses should never be used for source address selection, 15132 * so if we were passed one, switch to the IPMP meta-interface. 15133 */ 15134 if (IS_UNDER_IPMP(ill)) { 15135 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15136 ill = ipmp_ill; /* Select source from IPMP ill */ 15137 else 15138 return (NULL); 15139 } 15140 15141 /* 15142 * If we're dealing with an unlabeled destination on a labeled system, 15143 * make sure that we ignore source addresses that are incompatible with 15144 * the destination's default label. That destination's default label 15145 * must dominate the minimum label on the source address. 15146 */ 15147 dst_rhtp = NULL; 15148 if (is_system_labeled()) { 15149 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15150 if (dst_rhtp == NULL) 15151 return (NULL); 15152 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15153 TPC_RELE(dst_rhtp); 15154 dst_rhtp = NULL; 15155 } 15156 } 15157 15158 /* 15159 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15160 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15161 * After selecting the right ipif, under ill_lock make sure ipif is 15162 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15163 * we retry. Inside the loop we still need to check for CONDEMNED, 15164 * but not under a lock. 15165 */ 15166 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15167 retry: 15168 /* 15169 * For source address selection, we treat the ipif list as circular 15170 * and continue until we get back to where we started. This allows 15171 * IPMP to vary source address selection (which improves inbound load 15172 * spreading) by caching its last ending point and starting from 15173 * there. NOTE: we don't have to worry about ill_src_ipif changing 15174 * ills since that can't happen on the IPMP ill. 15175 */ 15176 start_ipif = ill->ill_ipif; 15177 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15178 start_ipif = ill->ill_src_ipif; 15179 15180 ipif = start_ipif; 15181 best_ipif = NULL; 15182 best_type = IPIF_NONE; 15183 do { 15184 if ((next_ipif = ipif->ipif_next) == NULL) 15185 next_ipif = ill->ill_ipif; 15186 15187 if (IPIF_IS_CONDEMNED(ipif)) 15188 continue; 15189 /* Always skip NOLOCAL and ANYCAST interfaces */ 15190 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15191 continue; 15192 /* Always skip NOACCEPT interfaces */ 15193 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15194 continue; 15195 if (!(ipif->ipif_flags & IPIF_UP)) 15196 continue; 15197 15198 if (!ipif->ipif_addr_ready) { 15199 if (notreadyp != NULL) 15200 *notreadyp = B_TRUE; 15201 continue; 15202 } 15203 15204 if (zoneid != ALL_ZONES && 15205 ipif->ipif_zoneid != zoneid && 15206 ipif->ipif_zoneid != ALL_ZONES) 15207 continue; 15208 15209 /* 15210 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15211 * are not valid as source addresses. 15212 */ 15213 if (ipif->ipif_lcl_addr == INADDR_ANY) 15214 continue; 15215 15216 /* 15217 * Check compatibility of local address for destination's 15218 * default label if we're on a labeled system. Incompatible 15219 * addresses can't be used at all. 15220 */ 15221 if (dst_rhtp != NULL) { 15222 boolean_t incompat; 15223 15224 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15225 IPV4_VERSION, B_FALSE); 15226 if (src_rhtp == NULL) 15227 continue; 15228 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15229 src_rhtp->tpc_tp.tp_doi != 15230 dst_rhtp->tpc_tp.tp_doi || 15231 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15232 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15233 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15234 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15235 TPC_RELE(src_rhtp); 15236 if (incompat) 15237 continue; 15238 } 15239 15240 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15241 15242 if (ipif->ipif_lcl_addr == dst) { 15243 type = IPIF_LOCALADDR; 15244 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15245 type = samenet ? IPIF_SAMENET_DEPRECATED : 15246 IPIF_DIFFNET_DEPRECATED; 15247 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15248 type = samenet ? IPIF_SAMENET_ALLZONES : 15249 IPIF_DIFFNET_ALLZONES; 15250 } else { 15251 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15252 } 15253 15254 if (type > best_type) { 15255 best_type = type; 15256 best_ipif = ipif; 15257 if (best_type == IPIF_LOCALADDR) 15258 break; /* can't get better */ 15259 } 15260 } while ((ipif = next_ipif) != start_ipif); 15261 15262 if ((ipif = best_ipif) != NULL) { 15263 mutex_enter(&ipif->ipif_ill->ill_lock); 15264 if (IPIF_IS_CONDEMNED(ipif)) { 15265 mutex_exit(&ipif->ipif_ill->ill_lock); 15266 goto retry; 15267 } 15268 ipif_refhold_locked(ipif); 15269 15270 /* 15271 * For IPMP, update the source ipif rotor to the next ipif, 15272 * provided we can look it up. (We must not use it if it's 15273 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15274 * ipif_free() checked ill_src_ipif.) 15275 */ 15276 if (IS_IPMP(ill) && ipif != NULL) { 15277 next_ipif = ipif->ipif_next; 15278 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15279 ill->ill_src_ipif = next_ipif; 15280 else 15281 ill->ill_src_ipif = NULL; 15282 } 15283 mutex_exit(&ipif->ipif_ill->ill_lock); 15284 } 15285 15286 rw_exit(&ipst->ips_ill_g_lock); 15287 if (usill != NULL) 15288 ill_refrele(usill); 15289 if (ipmp_ill != NULL) 15290 ill_refrele(ipmp_ill); 15291 if (dst_rhtp != NULL) 15292 TPC_RELE(dst_rhtp); 15293 15294 #ifdef DEBUG 15295 if (ipif == NULL) { 15296 char buf1[INET6_ADDRSTRLEN]; 15297 15298 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15299 ill->ill_name, 15300 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15301 } else { 15302 char buf1[INET6_ADDRSTRLEN]; 15303 char buf2[INET6_ADDRSTRLEN]; 15304 15305 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15306 ipif->ipif_ill->ill_name, 15307 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15308 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15309 buf2, sizeof (buf2)))); 15310 } 15311 #endif /* DEBUG */ 15312 return (ipif); 15313 } 15314 15315 /* 15316 * Pick a source address based on the destination ill and an optional setsrc 15317 * address. 15318 * The result is stored in srcp. If generation is set, then put the source 15319 * generation number there before we look for the source address (to avoid 15320 * missing changes in the set of source addresses. 15321 * If flagsp is set, then us it to pass back ipif_flags. 15322 * 15323 * If the caller wants to cache the returned source address and detect when 15324 * that might be stale, the caller should pass in a generation argument, 15325 * which the caller can later compare against ips_src_generation 15326 * 15327 * The precedence order for selecting an IPv4 source address is: 15328 * - RTF_SETSRC on the offlink ire always wins. 15329 * - If usrsrc is set, swap the ill to be the usesrc one. 15330 * - If IPMP is used on the ill, select a random address from the most 15331 * preferred ones below: 15332 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15333 * 2. Not deprecated, not ALL_ZONES 15334 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15335 * 4. Not deprecated, ALL_ZONES 15336 * 5. If onlink destination, same subnet and deprecated 15337 * 6. Deprecated. 15338 * 15339 * We have lower preference for ALL_ZONES IP addresses, 15340 * as they pose problems with unlabeled destinations. 15341 * 15342 * Note that when multiple IP addresses match e.g., #1 we pick 15343 * the first one if IPMP is not in use. With IPMP we randomize. 15344 */ 15345 int 15346 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15347 ipaddr_t multicast_ifaddr, 15348 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15349 uint32_t *generation, uint64_t *flagsp) 15350 { 15351 ipif_t *ipif; 15352 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15353 15354 if (flagsp != NULL) 15355 *flagsp = 0; 15356 15357 /* 15358 * Need to grab the generation number before we check to 15359 * avoid a race with a change to the set of local addresses. 15360 * No lock needed since the thread which updates the set of local 15361 * addresses use ipif/ill locks and exit those (hence a store memory 15362 * barrier) before doing the atomic increase of ips_src_generation. 15363 */ 15364 if (generation != NULL) { 15365 *generation = ipst->ips_src_generation; 15366 } 15367 15368 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15369 *srcp = multicast_ifaddr; 15370 return (0); 15371 } 15372 15373 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15374 if (setsrc != INADDR_ANY) { 15375 *srcp = setsrc; 15376 return (0); 15377 } 15378 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15379 if (ipif == NULL) { 15380 if (notready) 15381 return (ENETDOWN); 15382 else 15383 return (EADDRNOTAVAIL); 15384 } 15385 *srcp = ipif->ipif_lcl_addr; 15386 if (flagsp != NULL) 15387 *flagsp = ipif->ipif_flags; 15388 ipif_refrele(ipif); 15389 return (0); 15390 } 15391 15392 /* ARGSUSED */ 15393 int 15394 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15395 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15396 { 15397 /* 15398 * ill_phyint_reinit merged the v4 and v6 into a single 15399 * ipsq. We might not have been able to complete the 15400 * operation in ipif_set_values, if we could not become 15401 * exclusive. If so restart it here. 15402 */ 15403 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15404 } 15405 15406 /* 15407 * Can operate on either a module or a driver queue. 15408 * Returns an error if not a module queue. 15409 */ 15410 /* ARGSUSED */ 15411 int 15412 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15413 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15414 { 15415 queue_t *q1 = q; 15416 char *cp; 15417 char interf_name[LIFNAMSIZ]; 15418 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15419 15420 if (q->q_next == NULL) { 15421 ip1dbg(( 15422 "if_unitsel: IF_UNITSEL: no q_next\n")); 15423 return (EINVAL); 15424 } 15425 15426 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15427 return (EALREADY); 15428 15429 do { 15430 q1 = q1->q_next; 15431 } while (q1->q_next); 15432 cp = q1->q_qinfo->qi_minfo->mi_idname; 15433 (void) sprintf(interf_name, "%s%d", cp, ppa); 15434 15435 /* 15436 * Here we are not going to delay the ioack until after 15437 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15438 * original ioctl message before sending the requests. 15439 */ 15440 return (ipif_set_values(q, mp, interf_name, &ppa)); 15441 } 15442 15443 /* ARGSUSED */ 15444 int 15445 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15446 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15447 { 15448 return (ENXIO); 15449 } 15450 15451 /* 15452 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15453 * `irep'. Returns a pointer to the next free `irep' entry 15454 * A mirror exists in ipif_delete_bcast_ires(). 15455 * 15456 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15457 * done in ire_add. 15458 */ 15459 static ire_t ** 15460 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15461 { 15462 ipaddr_t addr; 15463 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15464 ipaddr_t subnetmask = ipif->ipif_net_mask; 15465 ill_t *ill = ipif->ipif_ill; 15466 zoneid_t zoneid = ipif->ipif_zoneid; 15467 15468 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15469 15470 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15471 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15472 15473 if (ipif->ipif_lcl_addr == INADDR_ANY || 15474 (ipif->ipif_flags & IPIF_NOLOCAL)) 15475 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15476 15477 irep = ire_create_bcast(ill, 0, zoneid, irep); 15478 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15479 15480 /* 15481 * For backward compatibility, we create net broadcast IREs based on 15482 * the old "IP address class system", since some old machines only 15483 * respond to these class derived net broadcast. However, we must not 15484 * create these net broadcast IREs if the subnetmask is shorter than 15485 * the IP address class based derived netmask. Otherwise, we may 15486 * create a net broadcast address which is the same as an IP address 15487 * on the subnet -- and then TCP will refuse to talk to that address. 15488 */ 15489 if (netmask < subnetmask) { 15490 addr = netmask & ipif->ipif_subnet; 15491 irep = ire_create_bcast(ill, addr, zoneid, irep); 15492 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15493 } 15494 15495 /* 15496 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15497 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15498 * created. Creating these broadcast IREs will only create confusion 15499 * as `addr' will be the same as the IP address. 15500 */ 15501 if (subnetmask != 0xFFFFFFFF) { 15502 addr = ipif->ipif_subnet; 15503 irep = ire_create_bcast(ill, addr, zoneid, irep); 15504 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15505 } 15506 15507 return (irep); 15508 } 15509 15510 /* 15511 * Mirror of ipif_create_bcast_ires() 15512 */ 15513 static void 15514 ipif_delete_bcast_ires(ipif_t *ipif) 15515 { 15516 ipaddr_t addr; 15517 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15518 ipaddr_t subnetmask = ipif->ipif_net_mask; 15519 ill_t *ill = ipif->ipif_ill; 15520 zoneid_t zoneid = ipif->ipif_zoneid; 15521 ire_t *ire; 15522 15523 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15524 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15525 15526 if (ipif->ipif_lcl_addr == INADDR_ANY || 15527 (ipif->ipif_flags & IPIF_NOLOCAL)) 15528 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15529 15530 ire = ire_lookup_bcast(ill, 0, zoneid); 15531 ASSERT(ire != NULL); 15532 ire_delete(ire); ire_refrele(ire); 15533 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15534 ASSERT(ire != NULL); 15535 ire_delete(ire); ire_refrele(ire); 15536 15537 /* 15538 * For backward compatibility, we create net broadcast IREs based on 15539 * the old "IP address class system", since some old machines only 15540 * respond to these class derived net broadcast. However, we must not 15541 * create these net broadcast IREs if the subnetmask is shorter than 15542 * the IP address class based derived netmask. Otherwise, we may 15543 * create a net broadcast address which is the same as an IP address 15544 * on the subnet -- and then TCP will refuse to talk to that address. 15545 */ 15546 if (netmask < subnetmask) { 15547 addr = netmask & ipif->ipif_subnet; 15548 ire = ire_lookup_bcast(ill, addr, zoneid); 15549 ASSERT(ire != NULL); 15550 ire_delete(ire); ire_refrele(ire); 15551 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15552 ASSERT(ire != NULL); 15553 ire_delete(ire); ire_refrele(ire); 15554 } 15555 15556 /* 15557 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15558 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15559 * created. Creating these broadcast IREs will only create confusion 15560 * as `addr' will be the same as the IP address. 15561 */ 15562 if (subnetmask != 0xFFFFFFFF) { 15563 addr = ipif->ipif_subnet; 15564 ire = ire_lookup_bcast(ill, addr, zoneid); 15565 ASSERT(ire != NULL); 15566 ire_delete(ire); ire_refrele(ire); 15567 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15568 ASSERT(ire != NULL); 15569 ire_delete(ire); ire_refrele(ire); 15570 } 15571 } 15572 15573 /* 15574 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15575 * from lifr_flags and the name from lifr_name. 15576 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15577 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15578 * Returns EINPROGRESS when mp has been consumed by queueing it on 15579 * ipx_pending_mp and the ioctl will complete in ip_rput. 15580 * 15581 * Can operate on either a module or a driver queue. 15582 * Returns an error if not a module queue. 15583 */ 15584 /* ARGSUSED */ 15585 int 15586 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15587 ip_ioctl_cmd_t *ipip, void *if_req) 15588 { 15589 ill_t *ill = q->q_ptr; 15590 phyint_t *phyi; 15591 ip_stack_t *ipst; 15592 struct lifreq *lifr = if_req; 15593 uint64_t new_flags; 15594 15595 ASSERT(ipif != NULL); 15596 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15597 15598 if (q->q_next == NULL) { 15599 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15600 return (EINVAL); 15601 } 15602 15603 /* 15604 * If we are not writer on 'q' then this interface exists already 15605 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15606 * so return EALREADY. 15607 */ 15608 if (ill != ipif->ipif_ill) 15609 return (EALREADY); 15610 15611 if (ill->ill_name[0] != '\0') 15612 return (EALREADY); 15613 15614 /* 15615 * If there's another ill already with the requested name, ensure 15616 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15617 * fuse together two unrelated ills, which will cause chaos. 15618 */ 15619 ipst = ill->ill_ipst; 15620 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15621 lifr->lifr_name, NULL); 15622 if (phyi != NULL) { 15623 ill_t *ill_mate = phyi->phyint_illv4; 15624 15625 if (ill_mate == NULL) 15626 ill_mate = phyi->phyint_illv6; 15627 ASSERT(ill_mate != NULL); 15628 15629 if (ill_mate->ill_media->ip_m_mac_type != 15630 ill->ill_media->ip_m_mac_type) { 15631 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15632 "use the same ill name on differing media\n")); 15633 return (EINVAL); 15634 } 15635 } 15636 15637 /* 15638 * We start off as IFF_IPV4 in ipif_allocate and become 15639 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15640 * The only flags that we read from user space are IFF_IPV4, 15641 * IFF_IPV6, and IFF_BROADCAST. 15642 * 15643 * This ill has not been inserted into the global list. 15644 * So we are still single threaded and don't need any lock 15645 * 15646 * Saniy check the flags. 15647 */ 15648 15649 if ((lifr->lifr_flags & IFF_BROADCAST) && 15650 ((lifr->lifr_flags & IFF_IPV6) || 15651 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15652 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15653 "or IPv6 i.e., no broadcast \n")); 15654 return (EINVAL); 15655 } 15656 15657 new_flags = 15658 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15659 15660 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15661 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15662 "IFF_IPV4 or IFF_IPV6\n")); 15663 return (EINVAL); 15664 } 15665 15666 /* 15667 * We always start off as IPv4, so only need to check for IPv6. 15668 */ 15669 if ((new_flags & IFF_IPV6) != 0) { 15670 ill->ill_flags |= ILLF_IPV6; 15671 ill->ill_flags &= ~ILLF_IPV4; 15672 15673 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15674 ill->ill_flags |= ILLF_NOLINKLOCAL; 15675 } 15676 15677 if ((new_flags & IFF_BROADCAST) != 0) 15678 ipif->ipif_flags |= IPIF_BROADCAST; 15679 else 15680 ipif->ipif_flags &= ~IPIF_BROADCAST; 15681 15682 /* We started off as V4. */ 15683 if (ill->ill_flags & ILLF_IPV6) { 15684 ill->ill_phyint->phyint_illv6 = ill; 15685 ill->ill_phyint->phyint_illv4 = NULL; 15686 } 15687 15688 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15689 } 15690 15691 /* ARGSUSED */ 15692 int 15693 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15694 ip_ioctl_cmd_t *ipip, void *if_req) 15695 { 15696 /* 15697 * ill_phyint_reinit merged the v4 and v6 into a single 15698 * ipsq. We might not have been able to complete the 15699 * slifname in ipif_set_values, if we could not become 15700 * exclusive. If so restart it here 15701 */ 15702 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15703 } 15704 15705 /* 15706 * Return a pointer to the ipif which matches the index, IP version type and 15707 * zoneid. 15708 */ 15709 ipif_t * 15710 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15711 ip_stack_t *ipst) 15712 { 15713 ill_t *ill; 15714 ipif_t *ipif = NULL; 15715 15716 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15717 if (ill != NULL) { 15718 mutex_enter(&ill->ill_lock); 15719 for (ipif = ill->ill_ipif; ipif != NULL; 15720 ipif = ipif->ipif_next) { 15721 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15722 zoneid == ipif->ipif_zoneid || 15723 ipif->ipif_zoneid == ALL_ZONES)) { 15724 ipif_refhold_locked(ipif); 15725 break; 15726 } 15727 } 15728 mutex_exit(&ill->ill_lock); 15729 ill_refrele(ill); 15730 } 15731 return (ipif); 15732 } 15733 15734 /* 15735 * Change an existing physical interface's index. If the new index 15736 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15737 * Finally, we update other systems which may have a dependence on the 15738 * index value. 15739 */ 15740 /* ARGSUSED */ 15741 int 15742 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15743 ip_ioctl_cmd_t *ipip, void *ifreq) 15744 { 15745 ill_t *ill; 15746 phyint_t *phyi; 15747 struct ifreq *ifr = (struct ifreq *)ifreq; 15748 struct lifreq *lifr = (struct lifreq *)ifreq; 15749 uint_t old_index, index; 15750 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15751 avl_index_t where; 15752 15753 if (ipip->ipi_cmd_type == IF_CMD) 15754 index = ifr->ifr_index; 15755 else 15756 index = lifr->lifr_index; 15757 15758 /* 15759 * Only allow on physical interface. Also, index zero is illegal. 15760 */ 15761 ill = ipif->ipif_ill; 15762 phyi = ill->ill_phyint; 15763 if (ipif->ipif_id != 0 || index == 0) { 15764 return (EINVAL); 15765 } 15766 15767 /* If the index is not changing, no work to do */ 15768 if (phyi->phyint_ifindex == index) 15769 return (0); 15770 15771 /* 15772 * Use phyint_exists() to determine if the new interface index 15773 * is already in use. If the index is unused then we need to 15774 * change the phyint's position in the phyint_list_avl_by_index 15775 * tree. If we do not do this, subsequent lookups (using the new 15776 * index value) will not find the phyint. 15777 */ 15778 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15779 if (phyint_exists(index, ipst)) { 15780 rw_exit(&ipst->ips_ill_g_lock); 15781 return (EEXIST); 15782 } 15783 15784 /* 15785 * The new index is unused. Set it in the phyint. However we must not 15786 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15787 * changes. The event must be bound to old ifindex value. 15788 */ 15789 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15790 &index, sizeof (index)); 15791 15792 old_index = phyi->phyint_ifindex; 15793 phyi->phyint_ifindex = index; 15794 15795 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15796 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15797 &index, &where); 15798 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15799 phyi, where); 15800 rw_exit(&ipst->ips_ill_g_lock); 15801 15802 /* Update SCTP's ILL list */ 15803 sctp_ill_reindex(ill, old_index); 15804 15805 /* Send the routing sockets message */ 15806 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15807 if (ILL_OTHER(ill)) 15808 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15809 15810 /* Perhaps ilgs should use this ill */ 15811 update_conn_ill(NULL, ill->ill_ipst); 15812 return (0); 15813 } 15814 15815 /* ARGSUSED */ 15816 int 15817 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15818 ip_ioctl_cmd_t *ipip, void *ifreq) 15819 { 15820 struct ifreq *ifr = (struct ifreq *)ifreq; 15821 struct lifreq *lifr = (struct lifreq *)ifreq; 15822 15823 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15824 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15825 /* Get the interface index */ 15826 if (ipip->ipi_cmd_type == IF_CMD) { 15827 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15828 } else { 15829 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15830 } 15831 return (0); 15832 } 15833 15834 /* ARGSUSED */ 15835 int 15836 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15837 ip_ioctl_cmd_t *ipip, void *ifreq) 15838 { 15839 struct lifreq *lifr = (struct lifreq *)ifreq; 15840 15841 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15842 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15843 /* Get the interface zone */ 15844 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15845 lifr->lifr_zoneid = ipif->ipif_zoneid; 15846 return (0); 15847 } 15848 15849 /* 15850 * Set the zoneid of an interface. 15851 */ 15852 /* ARGSUSED */ 15853 int 15854 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15855 ip_ioctl_cmd_t *ipip, void *ifreq) 15856 { 15857 struct lifreq *lifr = (struct lifreq *)ifreq; 15858 int err = 0; 15859 boolean_t need_up = B_FALSE; 15860 zone_t *zptr; 15861 zone_status_t status; 15862 zoneid_t zoneid; 15863 15864 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15865 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15866 if (!is_system_labeled()) 15867 return (ENOTSUP); 15868 zoneid = GLOBAL_ZONEID; 15869 } 15870 15871 /* cannot assign instance zero to a non-global zone */ 15872 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15873 return (ENOTSUP); 15874 15875 /* 15876 * Cannot assign to a zone that doesn't exist or is shutting down. In 15877 * the event of a race with the zone shutdown processing, since IP 15878 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15879 * interface will be cleaned up even if the zone is shut down 15880 * immediately after the status check. If the interface can't be brought 15881 * down right away, and the zone is shut down before the restart 15882 * function is called, we resolve the possible races by rechecking the 15883 * zone status in the restart function. 15884 */ 15885 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15886 return (EINVAL); 15887 status = zone_status_get(zptr); 15888 zone_rele(zptr); 15889 15890 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15891 return (EINVAL); 15892 15893 if (ipif->ipif_flags & IPIF_UP) { 15894 /* 15895 * If the interface is already marked up, 15896 * we call ipif_down which will take care 15897 * of ditching any IREs that have been set 15898 * up based on the old interface address. 15899 */ 15900 err = ipif_logical_down(ipif, q, mp); 15901 if (err == EINPROGRESS) 15902 return (err); 15903 (void) ipif_down_tail(ipif); 15904 need_up = B_TRUE; 15905 } 15906 15907 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15908 return (err); 15909 } 15910 15911 static int 15912 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15913 queue_t *q, mblk_t *mp, boolean_t need_up) 15914 { 15915 int err = 0; 15916 ip_stack_t *ipst; 15917 15918 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15919 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15920 15921 if (CONN_Q(q)) 15922 ipst = CONNQ_TO_IPST(q); 15923 else 15924 ipst = ILLQ_TO_IPST(q); 15925 15926 /* 15927 * For exclusive stacks we don't allow a different zoneid than 15928 * global. 15929 */ 15930 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15931 zoneid != GLOBAL_ZONEID) 15932 return (EINVAL); 15933 15934 /* Set the new zone id. */ 15935 ipif->ipif_zoneid = zoneid; 15936 15937 /* Update sctp list */ 15938 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15939 15940 /* The default multicast interface might have changed */ 15941 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15942 15943 if (need_up) { 15944 /* 15945 * Now bring the interface back up. If this 15946 * is the only IPIF for the ILL, ipif_up 15947 * will have to re-bind to the device, so 15948 * we may get back EINPROGRESS, in which 15949 * case, this IOCTL will get completed in 15950 * ip_rput_dlpi when we see the DL_BIND_ACK. 15951 */ 15952 err = ipif_up(ipif, q, mp); 15953 } 15954 return (err); 15955 } 15956 15957 /* ARGSUSED */ 15958 int 15959 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15960 ip_ioctl_cmd_t *ipip, void *if_req) 15961 { 15962 struct lifreq *lifr = (struct lifreq *)if_req; 15963 zoneid_t zoneid; 15964 zone_t *zptr; 15965 zone_status_t status; 15966 15967 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15968 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15969 zoneid = GLOBAL_ZONEID; 15970 15971 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15972 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15973 15974 /* 15975 * We recheck the zone status to resolve the following race condition: 15976 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15977 * 2) hme0:1 is up and can't be brought down right away; 15978 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15979 * 3) zone "myzone" is halted; the zone status switches to 15980 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15981 * the interfaces to remove - hme0:1 is not returned because it's not 15982 * yet in "myzone", so it won't be removed; 15983 * 4) the restart function for SIOCSLIFZONE is called; without the 15984 * status check here, we would have hme0:1 in "myzone" after it's been 15985 * destroyed. 15986 * Note that if the status check fails, we need to bring the interface 15987 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15988 * ipif_up_done[_v6](). 15989 */ 15990 status = ZONE_IS_UNINITIALIZED; 15991 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15992 status = zone_status_get(zptr); 15993 zone_rele(zptr); 15994 } 15995 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15996 if (ipif->ipif_isv6) { 15997 (void) ipif_up_done_v6(ipif); 15998 } else { 15999 (void) ipif_up_done(ipif); 16000 } 16001 return (EINVAL); 16002 } 16003 16004 (void) ipif_down_tail(ipif); 16005 16006 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16007 B_TRUE)); 16008 } 16009 16010 /* 16011 * Return the number of addresses on `ill' with one or more of the values 16012 * in `set' set and all of the values in `clear' clear. 16013 */ 16014 static uint_t 16015 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16016 { 16017 ipif_t *ipif; 16018 uint_t cnt = 0; 16019 16020 ASSERT(IAM_WRITER_ILL(ill)); 16021 16022 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16023 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16024 cnt++; 16025 16026 return (cnt); 16027 } 16028 16029 /* 16030 * Return the number of migratable addresses on `ill' that are under 16031 * application control. 16032 */ 16033 uint_t 16034 ill_appaddr_cnt(const ill_t *ill) 16035 { 16036 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16037 IPIF_NOFAILOVER)); 16038 } 16039 16040 /* 16041 * Return the number of point-to-point addresses on `ill'. 16042 */ 16043 uint_t 16044 ill_ptpaddr_cnt(const ill_t *ill) 16045 { 16046 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16047 } 16048 16049 /* ARGSUSED */ 16050 int 16051 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16052 ip_ioctl_cmd_t *ipip, void *ifreq) 16053 { 16054 struct lifreq *lifr = ifreq; 16055 16056 ASSERT(q->q_next == NULL); 16057 ASSERT(CONN_Q(q)); 16058 16059 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16060 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16061 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16062 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16063 16064 return (0); 16065 } 16066 16067 /* Find the previous ILL in this usesrc group */ 16068 static ill_t * 16069 ill_prev_usesrc(ill_t *uill) 16070 { 16071 ill_t *ill; 16072 16073 for (ill = uill->ill_usesrc_grp_next; 16074 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16075 ill = ill->ill_usesrc_grp_next) 16076 /* do nothing */; 16077 return (ill); 16078 } 16079 16080 /* 16081 * Release all members of the usesrc group. This routine is called 16082 * from ill_delete when the interface being unplumbed is the 16083 * group head. 16084 * 16085 * This silently clears the usesrc that ifconfig setup. 16086 * An alternative would be to keep that ifindex, and drop packets on the floor 16087 * since no source address can be selected. 16088 * Even if we keep the current semantics, don't need a lock and a linked list. 16089 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16090 * the one that is being removed. Issue is how we return the usesrc users 16091 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16092 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16093 * ill walk, but the walker would need to insert in the ioctl response. 16094 */ 16095 static void 16096 ill_disband_usesrc_group(ill_t *uill) 16097 { 16098 ill_t *next_ill, *tmp_ill; 16099 ip_stack_t *ipst = uill->ill_ipst; 16100 16101 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16102 next_ill = uill->ill_usesrc_grp_next; 16103 16104 do { 16105 ASSERT(next_ill != NULL); 16106 tmp_ill = next_ill->ill_usesrc_grp_next; 16107 ASSERT(tmp_ill != NULL); 16108 next_ill->ill_usesrc_grp_next = NULL; 16109 next_ill->ill_usesrc_ifindex = 0; 16110 next_ill = tmp_ill; 16111 } while (next_ill->ill_usesrc_ifindex != 0); 16112 uill->ill_usesrc_grp_next = NULL; 16113 } 16114 16115 /* 16116 * Remove the client usesrc ILL from the list and relink to a new list 16117 */ 16118 int 16119 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16120 { 16121 ill_t *ill, *tmp_ill; 16122 ip_stack_t *ipst = ucill->ill_ipst; 16123 16124 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16125 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16126 16127 /* 16128 * Check if the usesrc client ILL passed in is not already 16129 * in use as a usesrc ILL i.e one whose source address is 16130 * in use OR a usesrc ILL is not already in use as a usesrc 16131 * client ILL 16132 */ 16133 if ((ucill->ill_usesrc_ifindex == 0) || 16134 (uill->ill_usesrc_ifindex != 0)) { 16135 return (-1); 16136 } 16137 16138 ill = ill_prev_usesrc(ucill); 16139 ASSERT(ill->ill_usesrc_grp_next != NULL); 16140 16141 /* Remove from the current list */ 16142 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16143 /* Only two elements in the list */ 16144 ASSERT(ill->ill_usesrc_ifindex == 0); 16145 ill->ill_usesrc_grp_next = NULL; 16146 } else { 16147 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16148 } 16149 16150 if (ifindex == 0) { 16151 ucill->ill_usesrc_ifindex = 0; 16152 ucill->ill_usesrc_grp_next = NULL; 16153 return (0); 16154 } 16155 16156 ucill->ill_usesrc_ifindex = ifindex; 16157 tmp_ill = uill->ill_usesrc_grp_next; 16158 uill->ill_usesrc_grp_next = ucill; 16159 ucill->ill_usesrc_grp_next = 16160 (tmp_ill != NULL) ? tmp_ill : uill; 16161 return (0); 16162 } 16163 16164 /* 16165 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16166 * ip.c for locking details. 16167 */ 16168 /* ARGSUSED */ 16169 int 16170 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16171 ip_ioctl_cmd_t *ipip, void *ifreq) 16172 { 16173 struct lifreq *lifr = (struct lifreq *)ifreq; 16174 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16175 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16176 int err = 0, ret; 16177 uint_t ifindex; 16178 ipsq_t *ipsq = NULL; 16179 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16180 16181 ASSERT(IAM_WRITER_IPIF(ipif)); 16182 ASSERT(q->q_next == NULL); 16183 ASSERT(CONN_Q(q)); 16184 16185 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16186 16187 ifindex = lifr->lifr_index; 16188 if (ifindex == 0) { 16189 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16190 /* non usesrc group interface, nothing to reset */ 16191 return (0); 16192 } 16193 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16194 /* valid reset request */ 16195 reset_flg = B_TRUE; 16196 } 16197 16198 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16199 if (usesrc_ill == NULL) 16200 return (ENXIO); 16201 if (usesrc_ill == ipif->ipif_ill) { 16202 ill_refrele(usesrc_ill); 16203 return (EINVAL); 16204 } 16205 16206 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16207 NEW_OP, B_TRUE); 16208 if (ipsq == NULL) { 16209 err = EINPROGRESS; 16210 /* Operation enqueued on the ipsq of the usesrc ILL */ 16211 goto done; 16212 } 16213 16214 /* USESRC isn't currently supported with IPMP */ 16215 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16216 err = ENOTSUP; 16217 goto done; 16218 } 16219 16220 /* 16221 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16222 * used by IPMP underlying interfaces, but someone might think it's 16223 * more general and try to use it independently with VNI.) 16224 */ 16225 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16226 err = ENOTSUP; 16227 goto done; 16228 } 16229 16230 /* 16231 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16232 * already a client then return EINVAL 16233 */ 16234 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16235 err = EINVAL; 16236 goto done; 16237 } 16238 16239 /* 16240 * If the ill_usesrc_ifindex field is already set to what it needs to 16241 * be then this is a duplicate operation. 16242 */ 16243 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16244 err = 0; 16245 goto done; 16246 } 16247 16248 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16249 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16250 usesrc_ill->ill_isv6)); 16251 16252 /* 16253 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16254 * and the ill_usesrc_ifindex fields 16255 */ 16256 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16257 16258 if (reset_flg) { 16259 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16260 if (ret != 0) { 16261 err = EINVAL; 16262 } 16263 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16264 goto done; 16265 } 16266 16267 /* 16268 * Four possibilities to consider: 16269 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16270 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16271 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16272 * 4. Both are part of their respective usesrc groups 16273 */ 16274 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16275 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16276 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16277 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16278 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16279 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16280 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16281 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16282 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16283 /* Insert at head of list */ 16284 usesrc_cli_ill->ill_usesrc_grp_next = 16285 usesrc_ill->ill_usesrc_grp_next; 16286 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16287 } else { 16288 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16289 ifindex); 16290 if (ret != 0) 16291 err = EINVAL; 16292 } 16293 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16294 16295 done: 16296 if (ipsq != NULL) 16297 ipsq_exit(ipsq); 16298 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16299 ill_refrele(usesrc_ill); 16300 16301 /* Let conn_ixa caching know that source address selection changed */ 16302 ip_update_source_selection(ipst); 16303 16304 return (err); 16305 } 16306 16307 /* ARGSUSED */ 16308 int 16309 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16310 ip_ioctl_cmd_t *ipip, void *if_req) 16311 { 16312 struct lifreq *lifr = (struct lifreq *)if_req; 16313 ill_t *ill = ipif->ipif_ill; 16314 16315 /* 16316 * Need a lock since IFF_UP can be set even when there are 16317 * references to the ipif. 16318 */ 16319 mutex_enter(&ill->ill_lock); 16320 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16321 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16322 else 16323 lifr->lifr_dadstate = DAD_DONE; 16324 mutex_exit(&ill->ill_lock); 16325 return (0); 16326 } 16327 16328 /* 16329 * comparison function used by avl. 16330 */ 16331 static int 16332 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16333 { 16334 16335 uint_t index; 16336 16337 ASSERT(phyip != NULL && index_ptr != NULL); 16338 16339 index = *((uint_t *)index_ptr); 16340 /* 16341 * let the phyint with the lowest index be on top. 16342 */ 16343 if (((phyint_t *)phyip)->phyint_ifindex < index) 16344 return (1); 16345 if (((phyint_t *)phyip)->phyint_ifindex > index) 16346 return (-1); 16347 return (0); 16348 } 16349 16350 /* 16351 * comparison function used by avl. 16352 */ 16353 static int 16354 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16355 { 16356 ill_t *ill; 16357 int res = 0; 16358 16359 ASSERT(phyip != NULL && name_ptr != NULL); 16360 16361 if (((phyint_t *)phyip)->phyint_illv4) 16362 ill = ((phyint_t *)phyip)->phyint_illv4; 16363 else 16364 ill = ((phyint_t *)phyip)->phyint_illv6; 16365 ASSERT(ill != NULL); 16366 16367 res = strcmp(ill->ill_name, (char *)name_ptr); 16368 if (res > 0) 16369 return (1); 16370 else if (res < 0) 16371 return (-1); 16372 return (0); 16373 } 16374 16375 /* 16376 * This function is called on the unplumb path via ill_glist_delete() when 16377 * there are no ills left on the phyint and thus the phyint can be freed. 16378 */ 16379 static void 16380 phyint_free(phyint_t *phyi) 16381 { 16382 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16383 16384 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16385 16386 /* 16387 * If this phyint was an IPMP meta-interface, blow away the group. 16388 * This is safe to do because all of the illgrps have already been 16389 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16390 * If we're cleaning up as a result of failed initialization, 16391 * phyint_grp may be NULL. 16392 */ 16393 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16394 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16395 ipmp_grp_destroy(phyi->phyint_grp); 16396 phyi->phyint_grp = NULL; 16397 rw_exit(&ipst->ips_ipmp_lock); 16398 } 16399 16400 /* 16401 * If this interface was under IPMP, take it out of the group. 16402 */ 16403 if (phyi->phyint_grp != NULL) 16404 ipmp_phyint_leave_grp(phyi); 16405 16406 /* 16407 * Delete the phyint and disassociate its ipsq. The ipsq itself 16408 * will be freed in ipsq_exit(). 16409 */ 16410 phyi->phyint_ipsq->ipsq_phyint = NULL; 16411 phyi->phyint_name[0] = '\0'; 16412 16413 mi_free(phyi); 16414 } 16415 16416 /* 16417 * Attach the ill to the phyint structure which can be shared by both 16418 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16419 * function is called from ipif_set_values and ill_lookup_on_name (for 16420 * loopback) where we know the name of the ill. We lookup the ill and if 16421 * there is one present already with the name use that phyint. Otherwise 16422 * reuse the one allocated by ill_init. 16423 */ 16424 static void 16425 ill_phyint_reinit(ill_t *ill) 16426 { 16427 boolean_t isv6 = ill->ill_isv6; 16428 phyint_t *phyi_old; 16429 phyint_t *phyi; 16430 avl_index_t where = 0; 16431 ill_t *ill_other = NULL; 16432 ip_stack_t *ipst = ill->ill_ipst; 16433 16434 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16435 16436 phyi_old = ill->ill_phyint; 16437 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16438 phyi_old->phyint_illv6 == NULL)); 16439 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16440 phyi_old->phyint_illv4 == NULL)); 16441 ASSERT(phyi_old->phyint_ifindex == 0); 16442 16443 /* 16444 * Now that our ill has a name, set it in the phyint. 16445 */ 16446 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16447 16448 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16449 ill->ill_name, &where); 16450 16451 /* 16452 * 1. We grabbed the ill_g_lock before inserting this ill into 16453 * the global list of ills. So no other thread could have located 16454 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16455 * 2. Now locate the other protocol instance of this ill. 16456 * 3. Now grab both ill locks in the right order, and the phyint lock of 16457 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16458 * of neither ill can change. 16459 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16460 * other ill. 16461 * 5. Release all locks. 16462 */ 16463 16464 /* 16465 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16466 * we are initializing IPv4. 16467 */ 16468 if (phyi != NULL) { 16469 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16470 ASSERT(ill_other->ill_phyint != NULL); 16471 ASSERT((isv6 && !ill_other->ill_isv6) || 16472 (!isv6 && ill_other->ill_isv6)); 16473 GRAB_ILL_LOCKS(ill, ill_other); 16474 /* 16475 * We are potentially throwing away phyint_flags which 16476 * could be different from the one that we obtain from 16477 * ill_other->ill_phyint. But it is okay as we are assuming 16478 * that the state maintained within IP is correct. 16479 */ 16480 mutex_enter(&phyi->phyint_lock); 16481 if (isv6) { 16482 ASSERT(phyi->phyint_illv6 == NULL); 16483 phyi->phyint_illv6 = ill; 16484 } else { 16485 ASSERT(phyi->phyint_illv4 == NULL); 16486 phyi->phyint_illv4 = ill; 16487 } 16488 16489 /* 16490 * Delete the old phyint and make its ipsq eligible 16491 * to be freed in ipsq_exit(). 16492 */ 16493 phyi_old->phyint_illv4 = NULL; 16494 phyi_old->phyint_illv6 = NULL; 16495 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16496 phyi_old->phyint_name[0] = '\0'; 16497 mi_free(phyi_old); 16498 } else { 16499 mutex_enter(&ill->ill_lock); 16500 /* 16501 * We don't need to acquire any lock, since 16502 * the ill is not yet visible globally and we 16503 * have not yet released the ill_g_lock. 16504 */ 16505 phyi = phyi_old; 16506 mutex_enter(&phyi->phyint_lock); 16507 /* XXX We need a recovery strategy here. */ 16508 if (!phyint_assign_ifindex(phyi, ipst)) 16509 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16510 16511 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16512 (void *)phyi, where); 16513 16514 (void) avl_find(&ipst->ips_phyint_g_list-> 16515 phyint_list_avl_by_index, 16516 &phyi->phyint_ifindex, &where); 16517 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16518 (void *)phyi, where); 16519 } 16520 16521 /* 16522 * Reassigning ill_phyint automatically reassigns the ipsq also. 16523 * pending mp is not affected because that is per ill basis. 16524 */ 16525 ill->ill_phyint = phyi; 16526 16527 /* 16528 * Now that the phyint's ifindex has been assigned, complete the 16529 * remaining 16530 */ 16531 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16532 if (ill->ill_isv6) { 16533 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16534 ill->ill_phyint->phyint_ifindex; 16535 ill->ill_mcast_type = ipst->ips_mld_max_version; 16536 } else { 16537 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16538 } 16539 16540 /* 16541 * Generate an event within the hooks framework to indicate that 16542 * a new interface has just been added to IP. For this event to 16543 * be generated, the network interface must, at least, have an 16544 * ifindex assigned to it. (We don't generate the event for 16545 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16546 * 16547 * This needs to be run inside the ill_g_lock perimeter to ensure 16548 * that the ordering of delivered events to listeners matches the 16549 * order of them in the kernel. 16550 */ 16551 if (!IS_LOOPBACK(ill)) { 16552 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16553 ill->ill_name_length); 16554 } 16555 RELEASE_ILL_LOCKS(ill, ill_other); 16556 mutex_exit(&phyi->phyint_lock); 16557 } 16558 16559 /* 16560 * Notify any downstream modules of the name of this interface. 16561 * An M_IOCTL is used even though we don't expect a successful reply. 16562 * Any reply message from the driver (presumably an M_IOCNAK) will 16563 * eventually get discarded somewhere upstream. The message format is 16564 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16565 * to IP. 16566 */ 16567 static void 16568 ip_ifname_notify(ill_t *ill, queue_t *q) 16569 { 16570 mblk_t *mp1, *mp2; 16571 struct iocblk *iocp; 16572 struct lifreq *lifr; 16573 16574 mp1 = mkiocb(SIOCSLIFNAME); 16575 if (mp1 == NULL) 16576 return; 16577 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16578 if (mp2 == NULL) { 16579 freeb(mp1); 16580 return; 16581 } 16582 16583 mp1->b_cont = mp2; 16584 iocp = (struct iocblk *)mp1->b_rptr; 16585 iocp->ioc_count = sizeof (struct lifreq); 16586 16587 lifr = (struct lifreq *)mp2->b_rptr; 16588 mp2->b_wptr += sizeof (struct lifreq); 16589 bzero(lifr, sizeof (struct lifreq)); 16590 16591 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16592 lifr->lifr_ppa = ill->ill_ppa; 16593 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16594 16595 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16596 char *, "SIOCSLIFNAME", ill_t *, ill); 16597 putnext(q, mp1); 16598 } 16599 16600 static int 16601 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16602 { 16603 int err; 16604 ip_stack_t *ipst = ill->ill_ipst; 16605 phyint_t *phyi = ill->ill_phyint; 16606 16607 /* 16608 * Now that ill_name is set, the configuration for the IPMP 16609 * meta-interface can be performed. 16610 */ 16611 if (IS_IPMP(ill)) { 16612 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16613 /* 16614 * If phyi->phyint_grp is NULL, then this is the first IPMP 16615 * meta-interface and we need to create the IPMP group. 16616 */ 16617 if (phyi->phyint_grp == NULL) { 16618 /* 16619 * If someone has renamed another IPMP group to have 16620 * the same name as our interface, bail. 16621 */ 16622 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16623 rw_exit(&ipst->ips_ipmp_lock); 16624 return (EEXIST); 16625 } 16626 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16627 if (phyi->phyint_grp == NULL) { 16628 rw_exit(&ipst->ips_ipmp_lock); 16629 return (ENOMEM); 16630 } 16631 } 16632 rw_exit(&ipst->ips_ipmp_lock); 16633 } 16634 16635 /* Tell downstream modules where they are. */ 16636 ip_ifname_notify(ill, q); 16637 16638 /* 16639 * ill_dl_phys returns EINPROGRESS in the usual case. 16640 * Error cases are ENOMEM ... 16641 */ 16642 err = ill_dl_phys(ill, ipif, mp, q); 16643 16644 if (ill->ill_isv6) { 16645 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16646 if (ipst->ips_mld_slowtimeout_id == 0) { 16647 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16648 (void *)ipst, 16649 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16650 } 16651 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16652 } else { 16653 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16654 if (ipst->ips_igmp_slowtimeout_id == 0) { 16655 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16656 (void *)ipst, 16657 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16658 } 16659 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16660 } 16661 16662 return (err); 16663 } 16664 16665 /* 16666 * Common routine for ppa and ifname setting. Should be called exclusive. 16667 * 16668 * Returns EINPROGRESS when mp has been consumed by queueing it on 16669 * ipx_pending_mp and the ioctl will complete in ip_rput. 16670 * 16671 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16672 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16673 * For SLIFNAME, we pass these values back to the userland. 16674 */ 16675 static int 16676 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16677 { 16678 ill_t *ill; 16679 ipif_t *ipif; 16680 ipsq_t *ipsq; 16681 char *ppa_ptr; 16682 char *old_ptr; 16683 char old_char; 16684 int error; 16685 ip_stack_t *ipst; 16686 16687 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16688 ASSERT(q->q_next != NULL); 16689 ASSERT(interf_name != NULL); 16690 16691 ill = (ill_t *)q->q_ptr; 16692 ipst = ill->ill_ipst; 16693 16694 ASSERT(ill->ill_ipst != NULL); 16695 ASSERT(ill->ill_name[0] == '\0'); 16696 ASSERT(IAM_WRITER_ILL(ill)); 16697 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16698 ASSERT(ill->ill_ppa == UINT_MAX); 16699 16700 ill->ill_defend_start = ill->ill_defend_count = 0; 16701 /* The ppa is sent down by ifconfig or is chosen */ 16702 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16703 return (EINVAL); 16704 } 16705 16706 /* 16707 * make sure ppa passed in is same as ppa in the name. 16708 * This check is not made when ppa == UINT_MAX in that case ppa 16709 * in the name could be anything. System will choose a ppa and 16710 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16711 */ 16712 if (*new_ppa_ptr != UINT_MAX) { 16713 /* stoi changes the pointer */ 16714 old_ptr = ppa_ptr; 16715 /* 16716 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16717 * (they don't have an externally visible ppa). We assign one 16718 * here so that we can manage the interface. Note that in 16719 * the past this value was always 0 for DLPI 1 drivers. 16720 */ 16721 if (*new_ppa_ptr == 0) 16722 *new_ppa_ptr = stoi(&old_ptr); 16723 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16724 return (EINVAL); 16725 } 16726 /* 16727 * terminate string before ppa 16728 * save char at that location. 16729 */ 16730 old_char = ppa_ptr[0]; 16731 ppa_ptr[0] = '\0'; 16732 16733 ill->ill_ppa = *new_ppa_ptr; 16734 /* 16735 * Finish as much work now as possible before calling ill_glist_insert 16736 * which makes the ill globally visible and also merges it with the 16737 * other protocol instance of this phyint. The remaining work is 16738 * done after entering the ipsq which may happen sometime later. 16739 */ 16740 ipif = ill->ill_ipif; 16741 16742 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16743 ipif_assign_seqid(ipif); 16744 16745 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16746 ill->ill_flags |= ILLF_IPV4; 16747 16748 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16749 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16750 16751 if (ill->ill_flags & ILLF_IPV6) { 16752 16753 ill->ill_isv6 = B_TRUE; 16754 ill_set_inputfn(ill); 16755 if (ill->ill_rq != NULL) { 16756 ill->ill_rq->q_qinfo = &iprinitv6; 16757 } 16758 16759 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16760 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16761 ipif->ipif_v6subnet = ipv6_all_zeros; 16762 ipif->ipif_v6net_mask = ipv6_all_zeros; 16763 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16764 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16765 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16766 /* 16767 * point-to-point or Non-mulicast capable 16768 * interfaces won't do NUD unless explicitly 16769 * configured to do so. 16770 */ 16771 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16772 !(ill->ill_flags & ILLF_MULTICAST)) { 16773 ill->ill_flags |= ILLF_NONUD; 16774 } 16775 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16776 if (ill->ill_flags & ILLF_NOARP) { 16777 /* 16778 * Note: xresolv interfaces will eventually need 16779 * NOARP set here as well, but that will require 16780 * those external resolvers to have some 16781 * knowledge of that flag and act appropriately. 16782 * Not to be changed at present. 16783 */ 16784 ill->ill_flags &= ~ILLF_NOARP; 16785 } 16786 /* 16787 * Set the ILLF_ROUTER flag according to the global 16788 * IPv6 forwarding policy. 16789 */ 16790 if (ipst->ips_ipv6_forwarding != 0) 16791 ill->ill_flags |= ILLF_ROUTER; 16792 } else if (ill->ill_flags & ILLF_IPV4) { 16793 ill->ill_isv6 = B_FALSE; 16794 ill_set_inputfn(ill); 16795 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16796 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16797 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16798 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16799 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16800 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16801 /* 16802 * Set the ILLF_ROUTER flag according to the global 16803 * IPv4 forwarding policy. 16804 */ 16805 if (ipst->ips_ip_forwarding != 0) 16806 ill->ill_flags |= ILLF_ROUTER; 16807 } 16808 16809 ASSERT(ill->ill_phyint != NULL); 16810 16811 /* 16812 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16813 * be completed in ill_glist_insert -> ill_phyint_reinit 16814 */ 16815 if (!ill_allocate_mibs(ill)) 16816 return (ENOMEM); 16817 16818 /* 16819 * Pick a default sap until we get the DL_INFO_ACK back from 16820 * the driver. 16821 */ 16822 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16823 ill->ill_media->ip_m_ipv4sap; 16824 16825 ill->ill_ifname_pending = 1; 16826 ill->ill_ifname_pending_err = 0; 16827 16828 /* 16829 * When the first ipif comes up in ipif_up_done(), multicast groups 16830 * that were joined while this ill was not bound to the DLPI link need 16831 * to be recovered by ill_recover_multicast(). 16832 */ 16833 ill->ill_need_recover_multicast = 1; 16834 16835 ill_refhold(ill); 16836 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16837 if ((error = ill_glist_insert(ill, interf_name, 16838 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16839 ill->ill_ppa = UINT_MAX; 16840 ill->ill_name[0] = '\0'; 16841 /* 16842 * undo null termination done above. 16843 */ 16844 ppa_ptr[0] = old_char; 16845 rw_exit(&ipst->ips_ill_g_lock); 16846 ill_refrele(ill); 16847 return (error); 16848 } 16849 16850 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16851 16852 /* 16853 * When we return the buffer pointed to by interf_name should contain 16854 * the same name as in ill_name. 16855 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16856 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16857 * so copy full name and update the ppa ptr. 16858 * When ppa passed in != UINT_MAX all values are correct just undo 16859 * null termination, this saves a bcopy. 16860 */ 16861 if (*new_ppa_ptr == UINT_MAX) { 16862 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16863 *new_ppa_ptr = ill->ill_ppa; 16864 } else { 16865 /* 16866 * undo null termination done above. 16867 */ 16868 ppa_ptr[0] = old_char; 16869 } 16870 16871 /* Let SCTP know about this ILL */ 16872 sctp_update_ill(ill, SCTP_ILL_INSERT); 16873 16874 /* 16875 * ill_glist_insert has made the ill visible globally, and 16876 * ill_phyint_reinit could have changed the ipsq. At this point, 16877 * we need to hold the ips_ill_g_lock across the call to enter the 16878 * ipsq to enforce atomicity and prevent reordering. In the event 16879 * the ipsq has changed, and if the new ipsq is currently busy, 16880 * we need to make sure that this half-completed ioctl is ahead of 16881 * any subsequent ioctl. We achieve this by not dropping the 16882 * ips_ill_g_lock which prevents any ill lookup itself thereby 16883 * ensuring that new ioctls can't start. 16884 */ 16885 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16886 B_TRUE); 16887 16888 rw_exit(&ipst->ips_ill_g_lock); 16889 ill_refrele(ill); 16890 if (ipsq == NULL) 16891 return (EINPROGRESS); 16892 16893 /* 16894 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16895 */ 16896 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16897 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16898 else 16899 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16900 16901 error = ipif_set_values_tail(ill, ipif, mp, q); 16902 ipsq_exit(ipsq); 16903 if (error != 0 && error != EINPROGRESS) { 16904 /* 16905 * restore previous values 16906 */ 16907 ill->ill_isv6 = B_FALSE; 16908 ill_set_inputfn(ill); 16909 } 16910 return (error); 16911 } 16912 16913 void 16914 ipif_init(ip_stack_t *ipst) 16915 { 16916 int i; 16917 16918 for (i = 0; i < MAX_G_HEADS; i++) { 16919 ipst->ips_ill_g_heads[i].ill_g_list_head = 16920 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16921 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16922 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16923 } 16924 16925 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16926 ill_phyint_compare_index, 16927 sizeof (phyint_t), 16928 offsetof(struct phyint, phyint_avl_by_index)); 16929 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16930 ill_phyint_compare_name, 16931 sizeof (phyint_t), 16932 offsetof(struct phyint, phyint_avl_by_name)); 16933 } 16934 16935 /* 16936 * Save enough information so that we can recreate the IRE if 16937 * the interface goes down and then up. 16938 */ 16939 void 16940 ill_save_ire(ill_t *ill, ire_t *ire) 16941 { 16942 mblk_t *save_mp; 16943 16944 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16945 if (save_mp != NULL) { 16946 ifrt_t *ifrt; 16947 16948 save_mp->b_wptr += sizeof (ifrt_t); 16949 ifrt = (ifrt_t *)save_mp->b_rptr; 16950 bzero(ifrt, sizeof (ifrt_t)); 16951 ifrt->ifrt_type = ire->ire_type; 16952 if (ire->ire_ipversion == IPV4_VERSION) { 16953 ASSERT(!ill->ill_isv6); 16954 ifrt->ifrt_addr = ire->ire_addr; 16955 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16956 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16957 ifrt->ifrt_mask = ire->ire_mask; 16958 } else { 16959 ASSERT(ill->ill_isv6); 16960 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16961 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16962 mutex_enter(&ire->ire_lock); 16963 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16964 mutex_exit(&ire->ire_lock); 16965 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16966 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16967 } 16968 ifrt->ifrt_flags = ire->ire_flags; 16969 ifrt->ifrt_zoneid = ire->ire_zoneid; 16970 mutex_enter(&ill->ill_saved_ire_lock); 16971 save_mp->b_cont = ill->ill_saved_ire_mp; 16972 ill->ill_saved_ire_mp = save_mp; 16973 ill->ill_saved_ire_cnt++; 16974 mutex_exit(&ill->ill_saved_ire_lock); 16975 } 16976 } 16977 16978 /* 16979 * Remove one entry from ill_saved_ire_mp. 16980 */ 16981 void 16982 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16983 { 16984 mblk_t **mpp; 16985 mblk_t *mp; 16986 ifrt_t *ifrt; 16987 16988 /* Remove from ill_saved_ire_mp list if it is there */ 16989 mutex_enter(&ill->ill_saved_ire_lock); 16990 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16991 mpp = &(*mpp)->b_cont) { 16992 in6_addr_t gw_addr_v6; 16993 16994 /* 16995 * On a given ill, the tuple of address, gateway, mask, 16996 * ire_type, and zoneid is unique for each saved IRE. 16997 */ 16998 mp = *mpp; 16999 ifrt = (ifrt_t *)mp->b_rptr; 17000 /* ire_gateway_addr_v6 can change - need lock */ 17001 mutex_enter(&ire->ire_lock); 17002 gw_addr_v6 = ire->ire_gateway_addr_v6; 17003 mutex_exit(&ire->ire_lock); 17004 17005 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17006 ifrt->ifrt_type != ire->ire_type) 17007 continue; 17008 17009 if (ill->ill_isv6 ? 17010 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17011 &ire->ire_addr_v6) && 17012 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17013 &gw_addr_v6) && 17014 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17015 &ire->ire_mask_v6)) : 17016 (ifrt->ifrt_addr == ire->ire_addr && 17017 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17018 ifrt->ifrt_mask == ire->ire_mask)) { 17019 *mpp = mp->b_cont; 17020 ill->ill_saved_ire_cnt--; 17021 freeb(mp); 17022 break; 17023 } 17024 } 17025 mutex_exit(&ill->ill_saved_ire_lock); 17026 } 17027 17028 /* 17029 * IP multirouting broadcast routes handling 17030 * Append CGTP broadcast IREs to regular ones created 17031 * at ifconfig time. 17032 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17033 * the destination and the gateway are broadcast addresses. 17034 * The caller has verified that the destination is an IRE_BROADCAST and that 17035 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17036 * we create a MULTIRT IRE_BROADCAST. 17037 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17038 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17039 */ 17040 static void 17041 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17042 { 17043 ire_t *ire_prim; 17044 17045 ASSERT(ire != NULL); 17046 17047 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17048 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17049 NULL); 17050 if (ire_prim != NULL) { 17051 /* 17052 * We are in the special case of broadcasts for 17053 * CGTP. We add an IRE_BROADCAST that holds 17054 * the RTF_MULTIRT flag, the destination 17055 * address and the low level 17056 * info of ire_prim. In other words, CGTP 17057 * broadcast is added to the redundant ipif. 17058 */ 17059 ill_t *ill_prim; 17060 ire_t *bcast_ire; 17061 17062 ill_prim = ire_prim->ire_ill; 17063 17064 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17065 (void *)ire_prim, (void *)ill_prim)); 17066 17067 bcast_ire = ire_create( 17068 (uchar_t *)&ire->ire_addr, 17069 (uchar_t *)&ip_g_all_ones, 17070 (uchar_t *)&ire->ire_gateway_addr, 17071 IRE_BROADCAST, 17072 ill_prim, 17073 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17074 ire->ire_flags | RTF_KERNEL, 17075 NULL, 17076 ipst); 17077 17078 /* 17079 * Here we assume that ire_add does head insertion so that 17080 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17081 */ 17082 if (bcast_ire != NULL) { 17083 if (ire->ire_flags & RTF_SETSRC) { 17084 bcast_ire->ire_setsrc_addr = 17085 ire->ire_setsrc_addr; 17086 } 17087 bcast_ire = ire_add(bcast_ire); 17088 if (bcast_ire != NULL) { 17089 ip2dbg(("ip_cgtp_filter_bcast_add: " 17090 "added bcast_ire %p\n", 17091 (void *)bcast_ire)); 17092 17093 ill_save_ire(ill_prim, bcast_ire); 17094 ire_refrele(bcast_ire); 17095 } 17096 } 17097 ire_refrele(ire_prim); 17098 } 17099 } 17100 17101 /* 17102 * IP multirouting broadcast routes handling 17103 * Remove the broadcast ire. 17104 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17105 * the destination and the gateway are broadcast addresses. 17106 * The caller has only verified that RTF_MULTIRT was set. We check 17107 * that the destination is broadcast and that the gateway is a broadcast 17108 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17109 */ 17110 static void 17111 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17112 { 17113 ASSERT(ire != NULL); 17114 17115 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17116 ire_t *ire_prim; 17117 17118 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17119 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17120 ipst, NULL); 17121 if (ire_prim != NULL) { 17122 ill_t *ill_prim; 17123 ire_t *bcast_ire; 17124 17125 ill_prim = ire_prim->ire_ill; 17126 17127 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17128 "ire_prim %p, ill_prim %p\n", 17129 (void *)ire_prim, (void *)ill_prim)); 17130 17131 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17132 ire->ire_gateway_addr, IRE_BROADCAST, 17133 ill_prim, ALL_ZONES, NULL, 17134 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17135 MATCH_IRE_MASK, 0, ipst, NULL); 17136 17137 if (bcast_ire != NULL) { 17138 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17139 "looked up bcast_ire %p\n", 17140 (void *)bcast_ire)); 17141 ill_remove_saved_ire(bcast_ire->ire_ill, 17142 bcast_ire); 17143 ire_delete(bcast_ire); 17144 ire_refrele(bcast_ire); 17145 } 17146 ire_refrele(ire_prim); 17147 } 17148 } 17149 } 17150 17151 /* 17152 * Derive an interface id from the link layer address. 17153 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17154 */ 17155 static void 17156 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17157 { 17158 char *addr; 17159 17160 /* 17161 * Note that some IPv6 interfaces get plumbed over links that claim to 17162 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17163 * PPP links). The ETHERADDRL check here ensures that we only set the 17164 * interface ID on IPv6 interfaces above links that actually have real 17165 * Ethernet addresses. 17166 */ 17167 if (ill->ill_phys_addr_length == ETHERADDRL) { 17168 /* Form EUI-64 like address */ 17169 addr = (char *)&v6addr->s6_addr32[2]; 17170 bcopy(ill->ill_phys_addr, addr, 3); 17171 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17172 addr[3] = (char)0xff; 17173 addr[4] = (char)0xfe; 17174 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17175 } 17176 } 17177 17178 /* ARGSUSED */ 17179 static void 17180 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17181 { 17182 } 17183 17184 typedef struct ipmp_ifcookie { 17185 uint32_t ic_hostid; 17186 char ic_ifname[LIFNAMSIZ]; 17187 char ic_zonename[ZONENAME_MAX]; 17188 } ipmp_ifcookie_t; 17189 17190 /* 17191 * Construct a pseudo-random interface ID for the IPMP interface that's both 17192 * predictable and (almost) guaranteed to be unique. 17193 */ 17194 static void 17195 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17196 { 17197 zone_t *zp; 17198 uint8_t *addr; 17199 uchar_t hash[16]; 17200 ulong_t hostid; 17201 MD5_CTX ctx; 17202 ipmp_ifcookie_t ic = { 0 }; 17203 17204 ASSERT(IS_IPMP(ill)); 17205 17206 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17207 ic.ic_hostid = htonl((uint32_t)hostid); 17208 17209 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17210 17211 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17212 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17213 zone_rele(zp); 17214 } 17215 17216 MD5Init(&ctx); 17217 MD5Update(&ctx, &ic, sizeof (ic)); 17218 MD5Final(hash, &ctx); 17219 17220 /* 17221 * Map the hash to an interface ID per the basic approach in RFC3041. 17222 */ 17223 addr = &v6addr->s6_addr8[8]; 17224 bcopy(hash + 8, addr, sizeof (uint64_t)); 17225 addr[0] &= ~0x2; /* set local bit */ 17226 } 17227 17228 /* 17229 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17230 */ 17231 static void 17232 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17233 { 17234 phyint_t *phyi = ill->ill_phyint; 17235 17236 /* 17237 * Check PHYI_MULTI_BCAST and length of physical 17238 * address to determine if we use the mapping or the 17239 * broadcast address. 17240 */ 17241 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17242 ill->ill_phys_addr_length != ETHERADDRL) { 17243 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17244 return; 17245 } 17246 m_physaddr[0] = 0x33; 17247 m_physaddr[1] = 0x33; 17248 m_physaddr[2] = m_ip6addr[12]; 17249 m_physaddr[3] = m_ip6addr[13]; 17250 m_physaddr[4] = m_ip6addr[14]; 17251 m_physaddr[5] = m_ip6addr[15]; 17252 } 17253 17254 /* 17255 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17256 */ 17257 static void 17258 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17259 { 17260 phyint_t *phyi = ill->ill_phyint; 17261 17262 /* 17263 * Check PHYI_MULTI_BCAST and length of physical 17264 * address to determine if we use the mapping or the 17265 * broadcast address. 17266 */ 17267 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17268 ill->ill_phys_addr_length != ETHERADDRL) { 17269 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17270 return; 17271 } 17272 m_physaddr[0] = 0x01; 17273 m_physaddr[1] = 0x00; 17274 m_physaddr[2] = 0x5e; 17275 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17276 m_physaddr[4] = m_ipaddr[2]; 17277 m_physaddr[5] = m_ipaddr[3]; 17278 } 17279 17280 /* ARGSUSED */ 17281 static void 17282 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17283 { 17284 /* 17285 * for the MULTI_BCAST case and other cases when we want to 17286 * use the link-layer broadcast address for multicast. 17287 */ 17288 uint8_t *bphys_addr; 17289 dl_unitdata_req_t *dlur; 17290 17291 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17292 if (ill->ill_sap_length < 0) { 17293 bphys_addr = (uchar_t *)dlur + 17294 dlur->dl_dest_addr_offset; 17295 } else { 17296 bphys_addr = (uchar_t *)dlur + 17297 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17298 } 17299 17300 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17301 } 17302 17303 /* 17304 * Derive IPoIB interface id from the link layer address. 17305 */ 17306 static void 17307 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17308 { 17309 char *addr; 17310 17311 ASSERT(ill->ill_phys_addr_length == 20); 17312 addr = (char *)&v6addr->s6_addr32[2]; 17313 bcopy(ill->ill_phys_addr + 12, addr, 8); 17314 /* 17315 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17316 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17317 * rules. In these cases, the IBA considers these GUIDs to be in 17318 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17319 * required; vendors are required not to assign global EUI-64's 17320 * that differ only in u/l bit values, thus guaranteeing uniqueness 17321 * of the interface identifier. Whether the GUID is in modified 17322 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17323 * bit set to 1. 17324 */ 17325 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17326 } 17327 17328 /* 17329 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17330 * Note on mapping from multicast IP addresses to IPoIB multicast link 17331 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17332 * The format of an IPoIB multicast address is: 17333 * 17334 * 4 byte QPN Scope Sign. Pkey 17335 * +--------------------------------------------+ 17336 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17337 * +--------------------------------------------+ 17338 * 17339 * The Scope and Pkey components are properties of the IBA port and 17340 * network interface. They can be ascertained from the broadcast address. 17341 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17342 */ 17343 static void 17344 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17345 { 17346 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17347 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17348 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17349 uint8_t *bphys_addr; 17350 dl_unitdata_req_t *dlur; 17351 17352 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17353 17354 /* 17355 * RFC 4391: IPv4 MGID is 28-bit long. 17356 */ 17357 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17358 m_physaddr[17] = m_ipaddr[1]; 17359 m_physaddr[18] = m_ipaddr[2]; 17360 m_physaddr[19] = m_ipaddr[3]; 17361 17362 17363 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17364 if (ill->ill_sap_length < 0) { 17365 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17366 } else { 17367 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17368 ill->ill_sap_length; 17369 } 17370 /* 17371 * Now fill in the IBA scope/Pkey values from the broadcast address. 17372 */ 17373 m_physaddr[5] = bphys_addr[5]; 17374 m_physaddr[8] = bphys_addr[8]; 17375 m_physaddr[9] = bphys_addr[9]; 17376 } 17377 17378 static void 17379 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17380 { 17381 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17382 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17383 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17384 uint8_t *bphys_addr; 17385 dl_unitdata_req_t *dlur; 17386 17387 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17388 17389 /* 17390 * RFC 4391: IPv4 MGID is 80-bit long. 17391 */ 17392 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17393 17394 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17395 if (ill->ill_sap_length < 0) { 17396 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17397 } else { 17398 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17399 ill->ill_sap_length; 17400 } 17401 /* 17402 * Now fill in the IBA scope/Pkey values from the broadcast address. 17403 */ 17404 m_physaddr[5] = bphys_addr[5]; 17405 m_physaddr[8] = bphys_addr[8]; 17406 m_physaddr[9] = bphys_addr[9]; 17407 } 17408 17409 /* 17410 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17411 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17412 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17413 * of RFC4213. 17414 */ 17415 static void 17416 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17417 { 17418 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17419 v6addr->s6_addr32[2] = 0; 17420 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17421 } 17422 17423 /* 17424 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17425 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17426 * id. 17427 */ 17428 static void 17429 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17430 { 17431 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17432 17433 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17434 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17435 } 17436 17437 static void 17438 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17439 { 17440 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17441 } 17442 17443 static void 17444 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17445 { 17446 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17447 } 17448 17449 static void 17450 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17451 { 17452 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17453 } 17454 17455 static void 17456 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17457 { 17458 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17459 } 17460 17461 /* 17462 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17463 * Returns an held ill, or NULL. 17464 */ 17465 ill_t * 17466 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17467 ip_stack_t *ipst) 17468 { 17469 ill_t *ill; 17470 ipif_t *ipif; 17471 17472 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17473 if (ill == NULL) 17474 return (NULL); 17475 17476 mutex_enter(&ill->ill_lock); 17477 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17478 if (IPIF_IS_CONDEMNED(ipif)) 17479 continue; 17480 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17481 ipif->ipif_zoneid != ALL_ZONES) 17482 continue; 17483 17484 mutex_exit(&ill->ill_lock); 17485 return (ill); 17486 } 17487 mutex_exit(&ill->ill_lock); 17488 ill_refrele(ill); 17489 return (NULL); 17490 } 17491 17492 /* 17493 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17494 * If a pointer to an ipif_t is returned then the caller will need to do 17495 * an ill_refrele(). 17496 */ 17497 ipif_t * 17498 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17499 ip_stack_t *ipst) 17500 { 17501 ipif_t *ipif; 17502 ill_t *ill; 17503 17504 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17505 if (ill == NULL) 17506 return (NULL); 17507 17508 mutex_enter(&ill->ill_lock); 17509 if (ill->ill_state_flags & ILL_CONDEMNED) { 17510 mutex_exit(&ill->ill_lock); 17511 ill_refrele(ill); 17512 return (NULL); 17513 } 17514 17515 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17516 if (!IPIF_CAN_LOOKUP(ipif)) 17517 continue; 17518 if (lifidx == ipif->ipif_id) { 17519 ipif_refhold_locked(ipif); 17520 break; 17521 } 17522 } 17523 17524 mutex_exit(&ill->ill_lock); 17525 ill_refrele(ill); 17526 return (ipif); 17527 } 17528 17529 /* 17530 * Set ill_inputfn based on the current know state. 17531 * This needs to be called when any of the factors taken into 17532 * account changes. 17533 */ 17534 void 17535 ill_set_inputfn(ill_t *ill) 17536 { 17537 ip_stack_t *ipst = ill->ill_ipst; 17538 17539 if (ill->ill_isv6) { 17540 if (is_system_labeled()) 17541 ill->ill_inputfn = ill_input_full_v6; 17542 else 17543 ill->ill_inputfn = ill_input_short_v6; 17544 } else { 17545 if (is_system_labeled()) 17546 ill->ill_inputfn = ill_input_full_v4; 17547 else if (ill->ill_dhcpinit != 0) 17548 ill->ill_inputfn = ill_input_full_v4; 17549 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17550 != NULL) 17551 ill->ill_inputfn = ill_input_full_v4; 17552 else if (ipst->ips_ip_cgtp_filter && 17553 ipst->ips_ip_cgtp_filter_ops != NULL) 17554 ill->ill_inputfn = ill_input_full_v4; 17555 else 17556 ill->ill_inputfn = ill_input_short_v4; 17557 } 17558 } 17559 17560 /* 17561 * Re-evaluate ill_inputfn for all the IPv4 ills. 17562 * Used when RSVP and CGTP comes and goes. 17563 */ 17564 void 17565 ill_set_inputfn_all(ip_stack_t *ipst) 17566 { 17567 ill_walk_context_t ctx; 17568 ill_t *ill; 17569 17570 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17571 ill = ILL_START_WALK_V4(&ctx, ipst); 17572 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17573 ill_set_inputfn(ill); 17574 17575 rw_exit(&ipst->ips_ill_g_lock); 17576 } 17577 17578 /* 17579 * Set the physical address information for `ill' to the contents of the 17580 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17581 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17582 * EINPROGRESS will be returned. 17583 */ 17584 int 17585 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17586 { 17587 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17588 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17589 17590 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17591 17592 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17593 dlindp->dl_data != DL_CURR_DEST_ADDR && 17594 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17595 /* Changing DL_IPV6_TOKEN is not yet supported */ 17596 return (0); 17597 } 17598 17599 /* 17600 * We need to store up to two copies of `mp' in `ill'. Due to the 17601 * design of ipsq_pending_mp_add(), we can't pass them as separate 17602 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17603 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17604 */ 17605 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17606 freemsg(mp); 17607 return (ENOMEM); 17608 } 17609 17610 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17611 mutex_enter(&ill->ill_lock); 17612 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17613 /* no more nce addition allowed */ 17614 mutex_exit(&ill->ill_lock); 17615 17616 /* 17617 * If we can quiesce the ill, then set the address. If not, then 17618 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17619 */ 17620 ill_down_ipifs(ill, B_TRUE); 17621 mutex_enter(&ill->ill_lock); 17622 if (!ill_is_quiescent(ill)) { 17623 /* call cannot fail since `conn_t *' argument is NULL */ 17624 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17625 mp, ILL_DOWN); 17626 mutex_exit(&ill->ill_lock); 17627 return (EINPROGRESS); 17628 } 17629 mutex_exit(&ill->ill_lock); 17630 17631 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17632 return (0); 17633 } 17634 17635 /* 17636 * Once the ill associated with `q' has quiesced, set its physical address 17637 * information to the values in `addrmp'. Note that two copies of `addrmp' 17638 * are passed (linked by b_cont), since we sometimes need to save two distinct 17639 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17640 * failure (we'll free the other copy if it's not needed). Since the ill_t 17641 * is quiesced, we know any stale nce's with the old address information have 17642 * already been removed, so we don't need to call nce_flush(). 17643 */ 17644 /* ARGSUSED */ 17645 static void 17646 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17647 { 17648 ill_t *ill = q->q_ptr; 17649 mblk_t *addrmp2 = unlinkb(addrmp); 17650 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17651 uint_t addrlen, addroff; 17652 int status; 17653 17654 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17655 17656 addroff = dlindp->dl_addr_offset; 17657 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17658 17659 switch (dlindp->dl_data) { 17660 case DL_IPV6_LINK_LAYER_ADDR: 17661 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17662 freemsg(addrmp2); 17663 break; 17664 17665 case DL_CURR_DEST_ADDR: 17666 freemsg(ill->ill_dest_addr_mp); 17667 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17668 ill->ill_dest_addr_mp = addrmp; 17669 if (ill->ill_isv6) { 17670 ill_setdesttoken(ill); 17671 ipif_setdestlinklocal(ill->ill_ipif); 17672 } 17673 freemsg(addrmp2); 17674 break; 17675 17676 case DL_CURR_PHYS_ADDR: 17677 freemsg(ill->ill_phys_addr_mp); 17678 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17679 ill->ill_phys_addr_mp = addrmp; 17680 ill->ill_phys_addr_length = addrlen; 17681 if (ill->ill_isv6) 17682 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17683 else 17684 freemsg(addrmp2); 17685 if (ill->ill_isv6) { 17686 ill_setdefaulttoken(ill); 17687 ipif_setlinklocal(ill->ill_ipif); 17688 } 17689 break; 17690 default: 17691 ASSERT(0); 17692 } 17693 17694 /* 17695 * If there are ipifs to bring up, ill_up_ipifs() will return 17696 * EINPROGRESS, and ipsq_current_finish() will be called by 17697 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17698 * brought up. 17699 */ 17700 status = ill_up_ipifs(ill, q, addrmp); 17701 mutex_enter(&ill->ill_lock); 17702 if (ill->ill_dl_up) 17703 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17704 mutex_exit(&ill->ill_lock); 17705 if (status != EINPROGRESS) 17706 ipsq_current_finish(ipsq); 17707 } 17708 17709 /* 17710 * Helper routine for setting the ill_nd_lla fields. 17711 */ 17712 void 17713 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17714 { 17715 freemsg(ill->ill_nd_lla_mp); 17716 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17717 ill->ill_nd_lla_mp = ndmp; 17718 ill->ill_nd_lla_len = addrlen; 17719 } 17720 17721 /* 17722 * Replumb the ill. 17723 */ 17724 int 17725 ill_replumb(ill_t *ill, mblk_t *mp) 17726 { 17727 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17728 17729 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17730 17731 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17732 17733 mutex_enter(&ill->ill_lock); 17734 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17735 /* no more nce addition allowed */ 17736 mutex_exit(&ill->ill_lock); 17737 17738 /* 17739 * If we can quiesce the ill, then continue. If not, then 17740 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17741 */ 17742 ill_down_ipifs(ill, B_FALSE); 17743 17744 mutex_enter(&ill->ill_lock); 17745 if (!ill_is_quiescent(ill)) { 17746 /* call cannot fail since `conn_t *' argument is NULL */ 17747 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17748 mp, ILL_DOWN); 17749 mutex_exit(&ill->ill_lock); 17750 return (EINPROGRESS); 17751 } 17752 mutex_exit(&ill->ill_lock); 17753 17754 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17755 return (0); 17756 } 17757 17758 /* ARGSUSED */ 17759 static void 17760 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17761 { 17762 ill_t *ill = q->q_ptr; 17763 int err; 17764 conn_t *connp = NULL; 17765 17766 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17767 freemsg(ill->ill_replumb_mp); 17768 ill->ill_replumb_mp = copyb(mp); 17769 17770 if (ill->ill_replumb_mp == NULL) { 17771 /* out of memory */ 17772 ipsq_current_finish(ipsq); 17773 return; 17774 } 17775 17776 mutex_enter(&ill->ill_lock); 17777 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17778 ill->ill_rq, ill->ill_replumb_mp, 0); 17779 mutex_exit(&ill->ill_lock); 17780 17781 if (!ill->ill_up_ipifs) { 17782 /* already closing */ 17783 ipsq_current_finish(ipsq); 17784 return; 17785 } 17786 ill->ill_replumbing = 1; 17787 err = ill_down_ipifs_tail(ill); 17788 17789 /* 17790 * Successfully quiesced and brought down the interface, now we send 17791 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17792 * DL_NOTE_REPLUMB message. 17793 */ 17794 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17795 DL_NOTIFY_CONF); 17796 ASSERT(mp != NULL); 17797 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17798 DL_NOTE_REPLUMB_DONE; 17799 ill_dlpi_send(ill, mp); 17800 17801 /* 17802 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17803 * streams have to be unbound. When all the DLPI exchanges are done, 17804 * ipsq_current_finish() will be called by arp_bringup_done(). The 17805 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17806 * arp_bringup_done(). 17807 */ 17808 ASSERT(ill->ill_replumb_mp != NULL); 17809 if (err == EINPROGRESS) 17810 return; 17811 else 17812 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17813 ASSERT(connp == NULL); 17814 if (err == 0 && ill->ill_replumb_mp != NULL && 17815 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17816 return; 17817 } 17818 ipsq_current_finish(ipsq); 17819 } 17820 17821 /* 17822 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17823 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17824 * as per the ioctl. On failure, an errno is returned. 17825 */ 17826 static int 17827 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17828 { 17829 int rval; 17830 struct strioctl iocb; 17831 17832 iocb.ic_cmd = cmd; 17833 iocb.ic_timout = 15; 17834 iocb.ic_len = bufsize; 17835 iocb.ic_dp = buf; 17836 17837 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17838 } 17839 17840 /* 17841 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17842 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17843 */ 17844 static int 17845 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17846 uint_t *bufsizep, cred_t *cr) 17847 { 17848 int err; 17849 struct lifnum lifn; 17850 17851 bzero(&lifn, sizeof (lifn)); 17852 lifn.lifn_family = af; 17853 lifn.lifn_flags = LIFC_UNDER_IPMP; 17854 17855 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17856 return (err); 17857 17858 /* 17859 * Pad the interface count to account for additional interfaces that 17860 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17861 */ 17862 lifn.lifn_count += 4; 17863 bzero(lifcp, sizeof (*lifcp)); 17864 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17865 lifcp->lifc_family = af; 17866 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17867 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17868 17869 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17870 if (err != 0) { 17871 kmem_free(lifcp->lifc_buf, *bufsizep); 17872 return (err); 17873 } 17874 17875 return (0); 17876 } 17877 17878 /* 17879 * Helper for ip_interface_cleanup() that removes the loopback interface. 17880 */ 17881 static void 17882 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17883 { 17884 int err; 17885 struct lifreq lifr; 17886 17887 bzero(&lifr, sizeof (lifr)); 17888 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17889 17890 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17891 if (err != 0) { 17892 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17893 "error %d\n", isv6 ? "v6" : "v4", err)); 17894 } 17895 } 17896 17897 /* 17898 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17899 * groups and that IPMP data addresses are down. These conditions must be met 17900 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17901 */ 17902 static void 17903 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17904 { 17905 int af = isv6 ? AF_INET6 : AF_INET; 17906 int i, nifs; 17907 int err; 17908 uint_t bufsize; 17909 uint_t lifrsize = sizeof (struct lifreq); 17910 struct lifconf lifc; 17911 struct lifreq *lifrp; 17912 17913 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17914 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17915 "(error %d); any IPMP interfaces cannot be shutdown", err); 17916 return; 17917 } 17918 17919 nifs = lifc.lifc_len / lifrsize; 17920 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17921 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17922 if (err != 0) { 17923 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17924 "flags: error %d", lifrp->lifr_name, err); 17925 continue; 17926 } 17927 17928 if (lifrp->lifr_flags & IFF_IPMP) { 17929 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17930 continue; 17931 17932 lifrp->lifr_flags &= ~IFF_UP; 17933 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17934 if (err != 0) { 17935 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17936 "bring down (error %d); IPMP interface may " 17937 "not be shutdown", lifrp->lifr_name, err); 17938 } 17939 17940 /* 17941 * Check if IFF_DUPLICATE is still set -- and if so, 17942 * reset the address to clear it. 17943 */ 17944 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17945 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17946 continue; 17947 17948 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17949 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17950 lifrp, lifrsize, cr)) != 0) { 17951 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17952 "reset DAD (error %d); IPMP interface may " 17953 "not be shutdown", lifrp->lifr_name, err); 17954 } 17955 continue; 17956 } 17957 17958 lifrp->lifr_groupname[0] = '\0'; 17959 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17960 if (err != 0) { 17961 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17962 "IPMP group (error %d); associated IPMP interface " 17963 "may not be shutdown", lifrp->lifr_name, err); 17964 continue; 17965 } 17966 } 17967 17968 kmem_free(lifc.lifc_buf, bufsize); 17969 } 17970 17971 #define UDPDEV "/devices/pseudo/udp@0:udp" 17972 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17973 17974 /* 17975 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17976 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17977 * when the user-level processes in the zone are killed and the latter are 17978 * cleaned up by str_stack_shutdown(). 17979 */ 17980 void 17981 ip_interface_cleanup(ip_stack_t *ipst) 17982 { 17983 ldi_handle_t lh; 17984 ldi_ident_t li; 17985 cred_t *cr; 17986 int err; 17987 int i; 17988 char *devs[] = { UDP6DEV, UDPDEV }; 17989 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17990 17991 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17992 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17993 " error %d", err); 17994 return; 17995 } 17996 17997 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17998 ASSERT(cr != NULL); 17999 18000 /* 18001 * NOTE: loop executes exactly twice and is hardcoded to know that the 18002 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18003 * the loop.) 18004 */ 18005 for (i = 0; i < 2; i++) { 18006 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18007 if (err != 0) { 18008 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18009 " error %d", devs[i], err); 18010 continue; 18011 } 18012 18013 ip_loopback_removeif(lh, i == 0, cr); 18014 ip_ipmp_cleanup(lh, i == 0, cr); 18015 18016 (void) ldi_close(lh, FREAD|FWRITE, cr); 18017 } 18018 18019 ldi_ident_release(li); 18020 crfree(cr); 18021 } 18022 18023 /* 18024 * This needs to be in-sync with nic_event_t definition 18025 */ 18026 static const char * 18027 ill_hook_event2str(nic_event_t event) 18028 { 18029 switch (event) { 18030 case NE_PLUMB: 18031 return ("PLUMB"); 18032 case NE_UNPLUMB: 18033 return ("UNPLUMB"); 18034 case NE_UP: 18035 return ("UP"); 18036 case NE_DOWN: 18037 return ("DOWN"); 18038 case NE_ADDRESS_CHANGE: 18039 return ("ADDRESS_CHANGE"); 18040 case NE_LIF_UP: 18041 return ("LIF_UP"); 18042 case NE_LIF_DOWN: 18043 return ("LIF_DOWN"); 18044 case NE_IFINDEX_CHANGE: 18045 return ("IFINDEX_CHANGE"); 18046 default: 18047 return ("UNKNOWN"); 18048 } 18049 } 18050 18051 void 18052 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18053 nic_event_data_t data, size_t datalen) 18054 { 18055 ip_stack_t *ipst = ill->ill_ipst; 18056 hook_nic_event_int_t *info; 18057 const char *str = NULL; 18058 18059 /* create a new nic event info */ 18060 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18061 goto fail; 18062 18063 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18064 info->hnei_event.hne_lif = lif; 18065 info->hnei_event.hne_event = event; 18066 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18067 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18068 info->hnei_event.hne_data = NULL; 18069 info->hnei_event.hne_datalen = 0; 18070 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18071 18072 if (data != NULL && datalen != 0) { 18073 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18074 if (info->hnei_event.hne_data == NULL) 18075 goto fail; 18076 bcopy(data, info->hnei_event.hne_data, datalen); 18077 info->hnei_event.hne_datalen = datalen; 18078 } 18079 18080 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18081 DDI_NOSLEEP) == DDI_SUCCESS) 18082 return; 18083 18084 fail: 18085 if (info != NULL) { 18086 if (info->hnei_event.hne_data != NULL) { 18087 kmem_free(info->hnei_event.hne_data, 18088 info->hnei_event.hne_datalen); 18089 } 18090 kmem_free(info, sizeof (hook_nic_event_t)); 18091 } 18092 str = ill_hook_event2str(event); 18093 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18094 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18095 } 18096 18097 static int 18098 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18099 { 18100 int err = 0; 18101 const in_addr_t *addr = NULL; 18102 nce_t *nce = NULL; 18103 ill_t *ill = ipif->ipif_ill; 18104 ill_t *bound_ill; 18105 boolean_t added_ipif = B_FALSE; 18106 uint16_t state; 18107 uint16_t flags; 18108 18109 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18110 ill_t *, ill, ipif_t *, ipif); 18111 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18112 addr = &ipif->ipif_lcl_addr; 18113 } 18114 18115 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18116 if (res_act != Res_act_initial) 18117 return (EINVAL); 18118 } 18119 18120 if (addr != NULL) { 18121 ipmp_illgrp_t *illg = ill->ill_grp; 18122 18123 /* add unicast nce for the local addr */ 18124 18125 if (IS_IPMP(ill)) { 18126 /* 18127 * If we're here via ipif_up(), then the ipif 18128 * won't be bound yet -- add it to the group, 18129 * which will bind it if possible. (We would 18130 * add it in ipif_up(), but deleting on failure 18131 * there is gruesome.) If we're here via 18132 * ipmp_ill_bind_ipif(), then the ipif has 18133 * already been added to the group and we 18134 * just need to use the binding. 18135 */ 18136 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18137 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18138 if (bound_ill == NULL) { 18139 /* 18140 * We couldn't bind the ipif to an ill 18141 * yet, so we have nothing to publish. 18142 * Mark the address as ready and return. 18143 */ 18144 ipif->ipif_addr_ready = 1; 18145 return (0); 18146 } 18147 added_ipif = B_TRUE; 18148 } 18149 } else { 18150 bound_ill = ill; 18151 } 18152 18153 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18154 NCE_F_NONUD); 18155 /* 18156 * If this is an initial bring-up (or the ipif was never 18157 * completely brought up), do DAD. Otherwise, we're here 18158 * because IPMP has rebound an address to this ill: send 18159 * unsolicited advertisements (ARP announcements) to 18160 * inform others. 18161 */ 18162 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18163 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18164 } else { 18165 state = ND_REACHABLE; 18166 flags |= NCE_F_UNSOL_ADV; 18167 } 18168 18169 retry: 18170 err = nce_lookup_then_add_v4(ill, 18171 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18172 addr, flags, state, &nce); 18173 18174 /* 18175 * note that we may encounter EEXIST if we are moving 18176 * the nce as a result of a rebind operation. 18177 */ 18178 switch (err) { 18179 case 0: 18180 ipif->ipif_added_nce = 1; 18181 nce->nce_ipif_cnt++; 18182 break; 18183 case EEXIST: 18184 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18185 ill->ill_name)); 18186 if (!NCE_MYADDR(nce->nce_common)) { 18187 /* 18188 * A leftover nce from before this address 18189 * existed 18190 */ 18191 ncec_delete(nce->nce_common); 18192 nce_refrele(nce); 18193 nce = NULL; 18194 goto retry; 18195 } 18196 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18197 nce_refrele(nce); 18198 nce = NULL; 18199 ip1dbg(("ipif_arp_up: NCE already exists " 18200 "for %s:%u\n", ill->ill_name, 18201 ipif->ipif_id)); 18202 goto arp_up_done; 18203 } 18204 /* 18205 * Duplicate local addresses are permissible for 18206 * IPIF_POINTOPOINT interfaces which will get marked 18207 * IPIF_UNNUMBERED later in 18208 * ip_addr_availability_check(). 18209 * 18210 * The nce_ipif_cnt field tracks the number of 18211 * ipifs that have nce_addr as their local address. 18212 */ 18213 ipif->ipif_addr_ready = 1; 18214 ipif->ipif_added_nce = 1; 18215 nce->nce_ipif_cnt++; 18216 err = 0; 18217 break; 18218 default: 18219 ASSERT(nce == NULL); 18220 goto arp_up_done; 18221 } 18222 if (arp_no_defense) { 18223 if ((ipif->ipif_flags & IPIF_UP) && 18224 !ipif->ipif_addr_ready) 18225 ipif_up_notify(ipif); 18226 ipif->ipif_addr_ready = 1; 18227 } 18228 } else { 18229 /* zero address. nothing to publish */ 18230 ipif->ipif_addr_ready = 1; 18231 } 18232 if (nce != NULL) 18233 nce_refrele(nce); 18234 arp_up_done: 18235 if (added_ipif && err != 0) 18236 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18237 return (err); 18238 } 18239 18240 int 18241 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18242 { 18243 int err = 0; 18244 ill_t *ill = ipif->ipif_ill; 18245 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18246 18247 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18248 ill_t *, ill, ipif_t *, ipif); 18249 18250 /* 18251 * need to bring up ARP or setup mcast mapping only 18252 * when the first interface is coming UP. 18253 */ 18254 first_interface = (ill->ill_ipif_up_count == 0 && 18255 ill->ill_ipif_dup_count == 0 && !was_dup); 18256 18257 if (res_act == Res_act_initial && first_interface) { 18258 /* 18259 * Send ATTACH + BIND 18260 */ 18261 err = arp_ll_up(ill); 18262 if (err != EINPROGRESS && err != 0) 18263 return (err); 18264 18265 /* 18266 * Add NCE for local address. Start DAD. 18267 * we'll wait to hear that DAD has finished 18268 * before using the interface. 18269 */ 18270 if (err == EINPROGRESS) 18271 wait_for_dlpi = B_TRUE; 18272 } 18273 18274 if (!wait_for_dlpi) 18275 (void) ipif_arp_up_done_tail(ipif, res_act); 18276 18277 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18278 } 18279 18280 /* 18281 * Finish processing of "arp_up" after all the DLPI message 18282 * exchanges have completed between arp and the driver. 18283 */ 18284 void 18285 arp_bringup_done(ill_t *ill, int err) 18286 { 18287 mblk_t *mp1; 18288 ipif_t *ipif; 18289 conn_t *connp = NULL; 18290 ipsq_t *ipsq; 18291 queue_t *q; 18292 18293 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18294 18295 ASSERT(IAM_WRITER_ILL(ill)); 18296 18297 ipsq = ill->ill_phyint->phyint_ipsq; 18298 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18299 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18300 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18301 if (mp1 == NULL) /* bringup was aborted by the user */ 18302 return; 18303 18304 /* 18305 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18306 * must have an associated conn_t. Otherwise, we're bringing this 18307 * interface back up as part of handling an asynchronous event (e.g., 18308 * physical address change). 18309 */ 18310 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18311 ASSERT(connp != NULL); 18312 q = CONNP_TO_WQ(connp); 18313 } else { 18314 ASSERT(connp == NULL); 18315 q = ill->ill_rq; 18316 } 18317 if (err == 0) { 18318 if (ipif->ipif_isv6) { 18319 if ((err = ipif_up_done_v6(ipif)) != 0) 18320 ip0dbg(("arp_bringup_done: init failed\n")); 18321 } else { 18322 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18323 if (err != 0 || 18324 (err = ipif_up_done(ipif)) != 0) { 18325 ip0dbg(("arp_bringup_done: " 18326 "init failed err %x\n", err)); 18327 (void) ipif_arp_down(ipif); 18328 } 18329 18330 } 18331 } else { 18332 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18333 } 18334 18335 if ((err == 0) && (ill->ill_up_ipifs)) { 18336 err = ill_up_ipifs(ill, q, mp1); 18337 if (err == EINPROGRESS) 18338 return; 18339 } 18340 18341 /* 18342 * If we have a moved ipif to bring up, and everything has succeeded 18343 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18344 * down -- the admin can try to bring it up by hand if need be. 18345 */ 18346 if (ill->ill_move_ipif != NULL) { 18347 ipif = ill->ill_move_ipif; 18348 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18349 ipif->ipif_ill->ill_name)); 18350 ill->ill_move_ipif = NULL; 18351 if (err == 0) { 18352 err = ipif_up(ipif, q, mp1); 18353 if (err == EINPROGRESS) 18354 return; 18355 } 18356 } 18357 18358 /* 18359 * The operation must complete without EINPROGRESS since 18360 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18361 * Otherwise, the operation will be stuck forever in the ipsq. 18362 */ 18363 ASSERT(err != EINPROGRESS); 18364 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18365 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18366 int, ipsq->ipsq_xop->ipx_current_ioctl, 18367 ill_t *, ill, ipif_t *, ipif); 18368 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18369 } else { 18370 ipsq_current_finish(ipsq); 18371 } 18372 } 18373 18374 /* 18375 * Finish processing of arp replumb after all the DLPI message 18376 * exchanges have completed between arp and the driver. 18377 */ 18378 void 18379 arp_replumb_done(ill_t *ill, int err) 18380 { 18381 mblk_t *mp1; 18382 ipif_t *ipif; 18383 conn_t *connp = NULL; 18384 ipsq_t *ipsq; 18385 queue_t *q; 18386 18387 ASSERT(IAM_WRITER_ILL(ill)); 18388 18389 ipsq = ill->ill_phyint->phyint_ipsq; 18390 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18391 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18392 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18393 if (mp1 == NULL) { 18394 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18395 ipsq->ipsq_xop->ipx_current_ioctl)); 18396 /* bringup was aborted by the user */ 18397 return; 18398 } 18399 /* 18400 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18401 * must have an associated conn_t. Otherwise, we're bringing this 18402 * interface back up as part of handling an asynchronous event (e.g., 18403 * physical address change). 18404 */ 18405 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18406 ASSERT(connp != NULL); 18407 q = CONNP_TO_WQ(connp); 18408 } else { 18409 ASSERT(connp == NULL); 18410 q = ill->ill_rq; 18411 } 18412 if ((err == 0) && (ill->ill_up_ipifs)) { 18413 err = ill_up_ipifs(ill, q, mp1); 18414 if (err == EINPROGRESS) 18415 return; 18416 } 18417 /* 18418 * The operation must complete without EINPROGRESS since 18419 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18420 * Otherwise, the operation will be stuck forever in the ipsq. 18421 */ 18422 ASSERT(err != EINPROGRESS); 18423 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18424 DTRACE_PROBE4(ipif__ioctl, char *, 18425 "arp_replumb_done finish", 18426 int, ipsq->ipsq_xop->ipx_current_ioctl, 18427 ill_t *, ill, ipif_t *, ipif); 18428 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18429 } else { 18430 ipsq_current_finish(ipsq); 18431 } 18432 } 18433 18434 void 18435 ipif_up_notify(ipif_t *ipif) 18436 { 18437 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18438 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18439 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18440 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18441 NE_LIF_UP, NULL, 0); 18442 } 18443 18444 /* 18445 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18446 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18447 * TPI end points with STREAMS modules pushed above. This is assured by not 18448 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18449 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18450 * while unwinding from the ispq and that could be a thread from the bottom. 18451 */ 18452 /* ARGSUSED */ 18453 int 18454 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18455 ip_ioctl_cmd_t *ipip, void *arg) 18456 { 18457 mblk_t *cmd_mp = mp->b_cont->b_cont; 18458 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18459 int ret = 0; 18460 int i; 18461 size_t size; 18462 ip_stack_t *ipst; 18463 zoneid_t zoneid; 18464 ilb_stack_t *ilbs; 18465 18466 ipst = CONNQ_TO_IPST(q); 18467 ilbs = ipst->ips_netstack->netstack_ilb; 18468 zoneid = Q_TO_CONN(q)->conn_zoneid; 18469 18470 switch (command) { 18471 case ILB_CREATE_RULE: { 18472 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18473 18474 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18475 ret = EINVAL; 18476 break; 18477 } 18478 18479 ret = ilb_rule_add(ilbs, zoneid, cmd); 18480 break; 18481 } 18482 case ILB_DESTROY_RULE: 18483 case ILB_ENABLE_RULE: 18484 case ILB_DISABLE_RULE: { 18485 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18486 18487 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18488 ret = EINVAL; 18489 break; 18490 } 18491 18492 if (cmd->flags & ILB_RULE_ALLRULES) { 18493 if (command == ILB_DESTROY_RULE) { 18494 ilb_rule_del_all(ilbs, zoneid); 18495 break; 18496 } else if (command == ILB_ENABLE_RULE) { 18497 ilb_rule_enable_all(ilbs, zoneid); 18498 break; 18499 } else if (command == ILB_DISABLE_RULE) { 18500 ilb_rule_disable_all(ilbs, zoneid); 18501 break; 18502 } 18503 } else { 18504 if (command == ILB_DESTROY_RULE) { 18505 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18506 } else if (command == ILB_ENABLE_RULE) { 18507 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18508 NULL); 18509 } else if (command == ILB_DISABLE_RULE) { 18510 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18511 NULL); 18512 } 18513 } 18514 break; 18515 } 18516 case ILB_NUM_RULES: { 18517 ilb_num_rules_cmd_t *cmd; 18518 18519 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18520 ret = EINVAL; 18521 break; 18522 } 18523 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18524 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18525 break; 18526 } 18527 case ILB_RULE_NAMES: { 18528 ilb_rule_names_cmd_t *cmd; 18529 18530 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18531 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18532 cmd->num_names == 0) { 18533 ret = EINVAL; 18534 break; 18535 } 18536 size = cmd->num_names * ILB_RULE_NAMESZ; 18537 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18538 size != cmd_mp->b_wptr) { 18539 ret = EINVAL; 18540 break; 18541 } 18542 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18543 break; 18544 } 18545 case ILB_NUM_SERVERS: { 18546 ilb_num_servers_cmd_t *cmd; 18547 18548 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18549 ret = EINVAL; 18550 break; 18551 } 18552 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18553 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18554 &(cmd->num)); 18555 break; 18556 } 18557 case ILB_LIST_RULE: { 18558 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18559 18560 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18561 ret = EINVAL; 18562 break; 18563 } 18564 ret = ilb_rule_list(ilbs, zoneid, cmd); 18565 break; 18566 } 18567 case ILB_LIST_SERVERS: { 18568 ilb_servers_info_cmd_t *cmd; 18569 18570 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18571 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18572 cmd->num_servers == 0) { 18573 ret = EINVAL; 18574 break; 18575 } 18576 size = cmd->num_servers * sizeof (ilb_server_info_t); 18577 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18578 size != cmd_mp->b_wptr) { 18579 ret = EINVAL; 18580 break; 18581 } 18582 18583 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18584 &cmd->num_servers); 18585 break; 18586 } 18587 case ILB_ADD_SERVERS: { 18588 ilb_servers_info_cmd_t *cmd; 18589 ilb_rule_t *rule; 18590 18591 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18592 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18593 ret = EINVAL; 18594 break; 18595 } 18596 size = cmd->num_servers * sizeof (ilb_server_info_t); 18597 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18598 size != cmd_mp->b_wptr) { 18599 ret = EINVAL; 18600 break; 18601 } 18602 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18603 if (rule == NULL) { 18604 ASSERT(ret != 0); 18605 break; 18606 } 18607 for (i = 0; i < cmd->num_servers; i++) { 18608 ilb_server_info_t *s; 18609 18610 s = &cmd->servers[i]; 18611 s->err = ilb_server_add(ilbs, rule, s); 18612 } 18613 ILB_RULE_REFRELE(rule); 18614 break; 18615 } 18616 case ILB_DEL_SERVERS: 18617 case ILB_ENABLE_SERVERS: 18618 case ILB_DISABLE_SERVERS: { 18619 ilb_servers_cmd_t *cmd; 18620 ilb_rule_t *rule; 18621 int (*f)(); 18622 18623 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18624 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18625 ret = EINVAL; 18626 break; 18627 } 18628 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18629 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18630 size != cmd_mp->b_wptr) { 18631 ret = EINVAL; 18632 break; 18633 } 18634 18635 if (command == ILB_DEL_SERVERS) 18636 f = ilb_server_del; 18637 else if (command == ILB_ENABLE_SERVERS) 18638 f = ilb_server_enable; 18639 else if (command == ILB_DISABLE_SERVERS) 18640 f = ilb_server_disable; 18641 18642 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18643 if (rule == NULL) { 18644 ASSERT(ret != 0); 18645 break; 18646 } 18647 18648 for (i = 0; i < cmd->num_servers; i++) { 18649 ilb_server_arg_t *s; 18650 18651 s = &cmd->servers[i]; 18652 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18653 } 18654 ILB_RULE_REFRELE(rule); 18655 break; 18656 } 18657 case ILB_LIST_NAT_TABLE: { 18658 ilb_list_nat_cmd_t *cmd; 18659 18660 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18661 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18662 ret = EINVAL; 18663 break; 18664 } 18665 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18666 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18667 size != cmd_mp->b_wptr) { 18668 ret = EINVAL; 18669 break; 18670 } 18671 18672 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18673 &cmd->flags); 18674 break; 18675 } 18676 case ILB_LIST_STICKY_TABLE: { 18677 ilb_list_sticky_cmd_t *cmd; 18678 18679 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18680 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18681 ret = EINVAL; 18682 break; 18683 } 18684 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18685 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18686 size != cmd_mp->b_wptr) { 18687 ret = EINVAL; 18688 break; 18689 } 18690 18691 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18692 &cmd->num_sticky, &cmd->flags); 18693 break; 18694 } 18695 default: 18696 ret = EINVAL; 18697 break; 18698 } 18699 done: 18700 return (ret); 18701 } 18702 18703 /* Remove all cache entries for this logical interface */ 18704 void 18705 ipif_nce_down(ipif_t *ipif) 18706 { 18707 ill_t *ill = ipif->ipif_ill; 18708 nce_t *nce; 18709 18710 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18711 ill_t *, ill, ipif_t *, ipif); 18712 if (ipif->ipif_added_nce) { 18713 if (ipif->ipif_isv6) 18714 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18715 else 18716 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18717 if (nce != NULL) { 18718 if (--nce->nce_ipif_cnt == 0) 18719 ncec_delete(nce->nce_common); 18720 ipif->ipif_added_nce = 0; 18721 nce_refrele(nce); 18722 } else { 18723 /* 18724 * nce may already be NULL because it was already 18725 * flushed, e.g., due to a call to nce_flush 18726 */ 18727 ipif->ipif_added_nce = 0; 18728 } 18729 } 18730 /* 18731 * Make IPMP aware of the deleted data address. 18732 */ 18733 if (IS_IPMP(ill)) 18734 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18735 18736 /* 18737 * Remove all other nces dependent on this ill when the last ipif 18738 * is going away. 18739 */ 18740 if (ill->ill_ipif_up_count == 0) { 18741 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18742 (uchar_t *)ill, ill->ill_ipst); 18743 if (IS_UNDER_IPMP(ill)) 18744 nce_flush(ill, B_TRUE); 18745 } 18746 } 18747 18748 /* 18749 * find the first interface that uses usill for its source address. 18750 */ 18751 ill_t * 18752 ill_lookup_usesrc(ill_t *usill) 18753 { 18754 ip_stack_t *ipst = usill->ill_ipst; 18755 ill_t *ill; 18756 18757 ASSERT(usill != NULL); 18758 18759 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 18760 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18761 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18762 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 18763 ill = ill->ill_usesrc_grp_next) { 18764 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 18765 !ILL_IS_CONDEMNED(ill)) { 18766 ill_refhold(ill); 18767 break; 18768 } 18769 } 18770 rw_exit(&ipst->ips_ill_g_lock); 18771 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18772 return (ill); 18773 } 18774